Introduction to

COMPLEX ANALYSIS

Reading, Massachusetts

ROLF NEVANLINNA
Academy of Finland

V. PAATERO
University of Helsinki

Translated by

T. KOVARI and G. S. GOODMAN
Imperial College of Science and Technology, London

A
vv

ADDISON-WESLEY PUBLISHING COMPANY
Menlo Park, California - London - Don Mills, Ontario



This volume is the only authorized English translation of Einfiihrung in die Funktionentheorie

by Rolf Nevanlinna and V. Paatero published by Birkhduser Verlag, whose copyright notice
on the original edition reads

© Birkhduser Verlag Basel, 1964.

Copyright © 1969 by Rolf Nevanlinna.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without prior written permission of the Copyright holder. Printed
in Great Britain. Library of Congress Catalog Card No. 69-18119.

ISBN 0-201-05265-2
DEFGHIJKLM-CO-79876543



FOREWORD

The present textbook is based upon lectures given by the authors at Helsinki
University and at the University of Ziirich, and is a translation of the German
edition, Einfiihrung in die Funktionentheorie, published by Birkhduser Verlag,
Basel, in 1964.

It is assumed that the reader is acquainted with analytic geometry and the
calculus, so that this introduction to the theory of functions may be begun in
the third or fourth year of undergraduate study in college.

. As the Table of Contents indicates, the present volume is limited to the
presentation of the elements of the theory of functions, and the authors have
attempted to make the material both comprehensible and precise. Among the
sections in which this volume deviates more or less from other presentations
we must mention the following: the introduction of the complex numbers,
the concept of homotopy and its application, the integral theorems, the theory
and application of harmonic functions, in particular harmonic measure, and
the correspondence of boundaries under conformal mapping.

Exercises have been placed at the end of each chapter, and all 320 of these
exercises should be solved by the student for better insight into the subject
matter, whether he learns the subject through lectures or by self-study.

In introducing the elementary functions (Chapters 2-7) we have followed
in many places the presentation given by Ernst Lindeldf in his Finnish text-
book, Johdatus funktioteoriaan (introduction to the theory of functions). This
is particularly true for a considerable number of the exercises of these chapters.

We have received assistance in our work from various sources. First we
owe thanks to Dr. G. S. Goodman and Dr. T. K&vari for the effort and interest
which they have put into the translation of the book. We also express our
appreciation to Addison-Wesley Publishing Company and, in particular, to
Professor A. J. Lohwater for the valuable advice and generous assistance
which he has given in the editing of this edition.

Helsinki, September, 1968 Rolf Nevanlinna
V. Paatero
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CHAPTER 1

THE CONCEPT OF
AN ANALYTIC FUNCTION

The theory of functions is concerned with complex-valued functions of a
complex variable. OQur study is confined to those functions which are
differentiable in a sense which will be made precise later on; such functions
are known as analytic functions. In order to create a basis for the theory, we
begin by introducing the complex numbers in a manner which will lead us
naturally to their interpretation as vectors in the plane.

§1. THE COMPLEX NUMBERS

1.1. Two-dimensional Vector Spaces
We begin by stating the axioms for a two-dimensional vector space over the
real numbers. ‘
Let there be given a set R, whose elements a, b, .. ., x, y, ... shall be
called points or vectors, satisfying the following conditions.
1. To every two elements a, b € R there corresponds an element ¢ € R,
known as their sum and written ¢ = @ + b, obeying the following rules:
L1. a+ b= b + a (the commutative law).
12. a+ (b + ¢) = (a + b) + ¢ (the associative law).
1.3. There is a zero in R, denoted x = 0, with the property that
a+0=aforeverya € R.
1.4. Theequationa -+ x =bhas one and only one solution,x =56 —aeR.
II. To every vector a and every real number A there corresponds a vector
b = Aa € R, known as their product, and obeying the following rules.

IL1. Aua) = (Aw)a (A, u real numbers).

I1.2. (A + p)a = Aa + pa, Ma + b) = Aa + Ab (the distributive law).

I1.3. l'a=a.

IL.4. The product Aa vanishes if and only if A = 0, or @ = 0, or both
A=0anda=0.7F

I1.5. The axiom of dimension. there exist two vectors aand bin R which
are linearly independent, that is, for which the equation

+ We shall use the symbol 0 for the number zero as well as for the vector zero without,
we trust, provoking any confusion.
1



2 THE CONCEPT OF AN ANALYTIC FUNCTION §1

Aa + pb = 0 has only the solution A = p = 0, but every three
vectors a, b, ¢ in R are linearly dependent, that is, the equation
Aa + pb + vc = 0 always has a solution such that at least one of
the three numbers A, p, v does not vanish.

This axiom asserts that the dimension of the vector space R is equal to
two. In the resulting “affine plane” every vector x admits a representation in
terms of its coordinates in a two-dimensional reference system. Such a system
is given by a basis for R, that is, by two linearly independent vectors e,
e, € R. From ILS5 it follows that every vector x € R has two numbers §,
and &, associated with it (its coordinates in this reference system) such that

x=£e + e

1.2. Plane Euclidean Geometry

_Axioms I and II define a two-dimensional vector space whose geometry is the

geometry of the affine plane. It becomes a Euclidean geometry once we
introduce a (Euclidean) measure of length and angle. We can arrive at such
a measure by defining, for any two vectors x and y in R, a scalar product
-(x, ) with the following properties.

IIL1. (x,y) is a real, symmetric function of its arguments x and y:
x, ») =y, x). -
II1.2. (x, y)is linear in each argument.¥

IIL3. (x, y) is positive definite, that is, (x, x) = 0, and equality holds
only for x = 0.

The length, norm, or modulus |x| of a vector x is defined by
x| = +V/(x, x).
It is easily proved (Exercises 1 and 2)§ that the flollowing inequalities hold:
1) Schwarz’s inequality (x, y)* £ |x|? | ylz‘;
2) The triangle inequality |x + y| £ |x| + |y|.
The angle [x, y] between two vectors x, ¥ (#0) is defined by

x5
x| {7l
Two vectors are therefore orthogonal if (x, y) = 0

cos [x, y] =

+ A function f(x) is said to be linear, if f(Ax) = Af(x) and f(x; + x;) =
f(x1) + f(x2). The linearity of the scalar product (x, y) asserts, therefore, that this
product obeys the distributive law.
1 Unless there are indications to the contrary, the numbers will always refer to the
exercises at the end of the chapter.



§1 THE COMPLEX NUMBERS 3

If ey, e, is a basis for R and if the vectors x, y have the representations
x=4§e + e y=me + e
in terms of this basis, then

2
x,9) = ({1, + &6y, me; + 1282 = i%—l g€

where the g;; denote the real constants
gu = (e, &) (812 = 821)-
The square of the norm of x is the quadratic form

[x]* = (x, x) = iz;a‘gikfifk = gn& + 28126:6; + 82263

It reduces to the Pythagorean form

|x|2 = & + €3
if and only if the coordinate system is orthonormal; that is,
(el’ e2) = 01 Iell = |eZI = 1

(the Cartesian coordinate system).

1.3. Extension of the Set R to a Vector Algebra
In what follows, we shall not introduce a metric into the plane R for the time
being, so that we shall be dealing with an affine geometry on R defined by the
postulates in groups I and II. The problem before us is to see whether it is
possible to extend I and II so as to give R the structure of a field (or algebra),
and, if this is possible, to discover in how many different ways it can be done.
The vector space R becomes an algebra once we are able to define, for
any two elements x, y € R, a “product”

z=Xxy €R
which satisfies the following axioms.

1V.1. The product is commutative: xy = yx.
IV.2. The product is bilinear, that is, linear in each factor.
IV.3. The product is associative: x(yz) = (xy)z.

IV.4. The product xy vanishes, xy = 0, if and only if at least one
factor vanishes.

1.4.

Our task, then, is o find all bilinear forms xy € R which satisfy these axioms IV.
In order to arrive at the general solution to this problem, we shall assume, at
first, that we already have a product xy defined on R in accordance with axioms
1V and see what this tells us.
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If we fix the vector y # 0 in the product z = xy, we obtain a linear
transformation in x which maps the plane R into itself. This mapping is
one-to-one, for if z; = x,y, z, = x,y, then

zy — 2z, = (X, — X)y.

Since y was assumed to be different from 0, z, — z, will vanish if and only if
x; — x, = 0. Different vectors x therefore have (for each fixed y # 0) different
image vectors z = xy.

On the other hand, the range of the mapping z = xy is the whole plane R.
For, if x, and x, are two vectors in R, and A, and A, are two arbitrary real
numbers, then

Quxy + 22x0)y = A%y + X2y = Az + Az,

where z, = x,y, 2z, = x,y. From this we see that the image vectors z,, z, are
-linearly independent if and only if the vectors x,, x, are linearly independent.
Hence, if x,, x, is a basis for R, then z,, z, will also be a basis. If the vector
x has the coordinates A,, A, in the system (x,, x,), then its image vector has
the same coordinates in the system (z,, z,), for z=xy = Az, + A,z,. Hence,
-the set of image vectors z = xy covers the plane R exactly once if x runs
through all values in R (for y fixed).
Thus, for any given vector y # 0, there is precisely one vector x whlch
makes the product xy take a prescribed value z; that element is the “quotient”

x=2zfy.

1.5. Definition of the Unit Vector ¢

If, in particular, we take z = y (#0), then there is a definite vectore = e, € R
having the property that e,y = y. We shall show that e, is independent of the
choice of y. Let y, and y, be two non-zero vectors. If e,y, =y, e;¥, =y,
then

Y2 Y2
e = = — = (e —
2V2 =)Y2 =M )’1 ( 'yl)y

and this last expression is, by axiom IV.3 (the associative law), equal to
e(3172/y1) = e,y,. Hence, e,y, = e,y,, or (e; — €;)y, = 0, from which it
follows that e; = e,, since y, # 0.

The element e (£0) defined uniquely by the equation

ey=ye=y (1.1)
is called the unit vector, or unit, in R.
1.6. Definition of the Vector i
Let a be an arbitrary vector in R and consider the equation

x? =a.
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If this equation has a solution x = x,, x? = a, then, for every vector x € R,
we have
X2 —a=xt-x}=(x—x)x+ x)),
so that the equation x2 — a = 0 has, in addition to x = x,, one further
solution x = —x,.
Let us choose a = —e and solve the equation

x2 + e = 0. (1.2)

The existence of a solution will be shown in an exercise (Exercise 3). We
denote the solutions by x = +i (#0). The vector i is linearly independent
of the vector e, for, if i = Ae (A real), then we would have —e = i? = (Ae)? =
A2e? = X2, or (1 + A?)e = 0, which is impossible, since both 1 + A% # 0 and
e#0.

The vectors x = e and x = i span the entire plane R. An arbitrary vector
x € R has the coordinate representation

x = fe + ni.

‘This representation has been found under the assumption that there is a
product, defined for pairs of vectors x,, x, € R, which satisfies the axioms IV.
If x, and x, are written in terms of coordinates,

X = fle + T)li, Xy = fze + 7]2i,

it follows from IV and the definition of the basis vectors e and i via (1.1) and
(1.2) that the product x,x, must have the form

x,x; = (§1e + nii)(éze + m2d)
= (£,1€2 — mmoe + (Em2 + M. (1.3)
The quotient x,/x, (x, # 0) is defined to be that vector x = £e + ni which,
when multiplied by the vector x, = £,e + 7,1, yields the vector x; = £,e + 7,i.
With the aid of (1.3), we can obtain the coordinates ¢, n of x from the equations
&b —nm =&, n2€ + Em = 1.
Therefore the quotient x,/x, is given by the expression
x, _&etmi L&+ mm
x, e+ &+
1.7. The Solution of the Extension Problem

We now turn all this around and choose any two linearly independent vectors
in R, label them e and i, and define the product x;x, of two vectors
x;=¢&e+ ;i (j=1, 2) by means of Eq. (1.3). We shall then have
ex = xe = x and i2 + e = 0, and all the axioms IV will be satisfied. The
verification of axioms 1V.1-3 we leave to the reader. To prove IV.4, we

’7‘2 — f}%’" i (1.4)

e+
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observe that the equation x,;x, = 0 is equivalent, by (1.3), to the coordinate
equations
£16, — mimy =0, €y + € =0.

Squaring and then adding, we obtain
& +mDE + 7)) =0.

Consequently, £, =7, =0 or £, =7, =0, that is, x, =0 or x, =0 (or
x; = x, = 0), as required by axiom IV 4.
We have, therefore, completely solved the problem before us:

If the vectors e and i are any two arbitrarily chosen linearly independent
vectors, then (1.3) furnishes a definition for the product of two vectors in R
which makes R into a field (or algebra, that is, a vector space which satisfies
the axioms 1V), and this definition of the product is the only one that is
compatible with all the axioms.

1.8. Notation for Complex Numbers. Absolute Value and Argument

.Having made R into a field in which every vector, or complex number, can be

written as £,e + £,i, we want to say something about notation. Vectors £e
(£ real) along the e-axis we shall denote, for brevity, by £ alone, by dropping
the e. In view of the property xe = ex = x which defines the unit, this can
hardly lead to confusion. Furthermore, in keeping with a long-standing
custom we shall denote the coordinates of a complex number z = £,e + £,i =
& + &iby €, = x, £, = y, and write

z=Xx++iy.

The real number x is called the real part of z, and the real number y is called
the imaginary part of z. These terms can be abbreviated to

x = Rez, y=Imz

We now introduce a Euclidean metric into the “complex plane” R by
defining the scalar product (z,, z;) of two complex numbers z;, = x, + iy,,
Zy = X + iy, as

(z1, 23) = X%, + Y122

This means that the basis vectors e and i are orthogonal to one another, and
that their lengths are one: |e| = [i| = 1.

The modulus or absolute value of a complex number z = x + iy is then
given by

lz| = +V(z, z) = +V/x2 + y2.
If we go over to polar coordinates, we get

z = r(cos ¢ + isin ),
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where r = |z|, ¢ = arc tan y/x. The quantity ¢ is called the argument of z:
arg z = ¢ = arc tan y/x.

As long as z # 0, ¢ is defined up to a multiple of 27 (we say “modulo 27,”
and write “mod 27”).

In this notation, the product of two complex numbers

z; = rcos ¢, + isingd,) (k=1,2)
is
2,2, = ryra{cos () + ¢) + isin (¢; + )}

From this it follows that

The absolute value of the product of two complex numbers is equal to the

product of their absolute values, while the argument of the product is equal

to the sum (mod 27) of the arguments of the factors:

|z122] = |z1] |z2],  arg(z1z) = arg z, + arg z, (mod 2m).

- The latter rule presupposes that the factors are different from zero, since the
argument of the number z = 0 is indeterminate.
From the product rule it follows that

2y

2 =T argil = arg z; — arg z, (mod 27).
2

|22 Z2
If all n factors, z = r(cos ¢ + isin ¢), of a product are equal we obtain

[r(cos ¢ + isin ¢)]" = r"(cos ne + i sin ne).

This yields as a special case, for r = 1, de Moivre’s formula
(cos ¢ + isin )" = cos ne + i sin ne. (1.5)

The numbers x + iy and x — iy are said to be complex conjugates. The
complex conjugate of the complex number z is denoted by Z; obviously,

1 1
= |z|%: = = 5 =_—_(z—2
zZ = |z]?%; Rez 3 (z + 2), Im z 3 (z—-2).

Geometrically speaking, the addition of complex numbers corresponds
to vector addition (according to the parallelogram rule). The difference
z; — z, corresponds to a vector whose initial point is at z, and whose end-
pointis at z;. The modulus of the difference |z, — z,| gives the distance between
the points z, and z,.

Since the complex numbers form an algebra (axioms I-IV), the ratlonal
operations of arithmetic (addition, subtraction, multiplication, and division)
obey the same rules as in the real case. Over and beyond this, the defining
equation i2 = —1 must be taken into account.
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§2. POINT SETS IN THE COMPLEX PLANE
1.9. Convergent Sequences
A sequence of complex numbers
Z13Z25 e osZps e (1.6)

tends to a limit,
lim z, = z, 1.7

n—c
if, to any arbitrarily prescribed number € > 0, a number nc > 0 can be -
found such that
[z, —zl <€ for n2Zne (1.8)
The condition (1.8) says, geometrically, that all the points z, (n = n¢) lie in
a circle about z with radius e.
Letz = x + iy, z, = X, + iy,

Then the conditions
lim x, = x and limy, =y (1.9)

n—oo n—00

are necessary and sufficient for (1.7) to hold.

The necessity of the condition (1.9) follows immediately from the in- .
equalities .
Ixn'"xl = |zn_zla |yn_y| s !Z,,—ZI.
Conversely, if (1.9) is fulfilled, then there exists a number N with the property
that :
€
2
Consequently, for all n = N we have

%, — x| < and |y,,—y|<§ for n2N.

|20 — 2| = Vi — X7 + (g — ¥) < —%< 6

which shows that the condition (1.9) is also sufficient. The following theorem
is also easy to prove (Exercise 16):

Ifz # O, the conditions

lim |z,| = |2| and lim arg z, = arg z (mod 27)

are necessary and sufficient for the validity of (1.7).
When the sequence z, (n = 1, 2, .. .) is such that

lim |z,]| = =,

n—-
we say that the sequence tends to « and write simply

lim z, = o.
n—>00
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This limit, «, is taken as a point, the point at infinity, of the complex plane.
The plane, completed by the single point at infinity, is called the extended,
or closed, plane.f In many questions, the point z = « has an equal status
with the finite points of the plane (cf. Section 3.13).

1.10. The Topology of the Complex Plane

The set of points z belonging to the interior of a disk of radius r with center
at the point zy = xg + iyy # ©:

K.: lz —zo| <r

is called a circular neighborhood of z,. A circular neighborhood of the point
z = o will be taken to mean the set of points which lie outside some circle of
radius r about the origin: |z| > r.

A set of points {z} in the extended plane |z| £ « is said to be open if each
of its points is the center of some circular neighborhood which belongs
entirely to the set. T

An open set of points {z} in the extended plane |z| £ « forms a domain
- if it is possible to join any two points in {z} by a polygonal path which lies
entirely in {z}. (This condition makes the open set connected.)

Any domain containing the point z, is called a neighborhood of z,.

A point a is called a cluster point (or sometimes, a limit point or accumula-
tion point) of a set of complex numbers {z} if every circular neighborhood of
a contains at least one point z # a of {z}. From this it follows that every
neighborhood of a cluster point @ must contain infinitely many points of the
set.

If a set contains all of its cluster points, the set is said to be
closed.

The set of points |z] < « is open. The extended plane |z] £ o is both
open and closed (Exercise 18).  Open sets and closed sets are important
particular classes of sets, but an arbitrary set of points is, in general, neither
open nor closed.

A closed set which cannot be split into two disjoint closed subsets is called
a continuum.

A set of points {z} is said to be compact if any infinite subset of it has a
cluster point belonging to {z}. (A compact set is therefore closed.) The
closed plane |z]| £ o is compact.

The set of points in the plane which do not belong to a given set {z} forms
what is called the complement of {z}. The complement of an open set is
closed, and the complement of a closed set is open (Exercise 20).

+ The finite plane can also be extended in other ways. For example, in projective
geometry, there is the so-called line at infinity with its infinitely many, infinitely
distant points.
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Let G be a domain. If G does not contain every point of |z| £ o, then
the points of the complement of G fall into two classes:

a) Boundary points of G. These do not belong to G, but are cluster points
of G. The set of boundary points forms the boundary of G.

b) Exterior points of G. These are points which belong neither to G nor
to the boundary of G. This set can be empty.

If I is the boundary of the domain G, then the union G U I’ (that is, the
set of all points which belong either to G or I') is a closed set (Exercise 21).
It is called the closure of the domain G.

The union of a domain and its boundary is also called a closed domain.

§3. FUNCTIONS OF A COMPLEX VARIABLE

1.11. Definition of a Function. Continuity

 Functions of a complex variable are defined in the same manner as functions
of a real variable:

If to every value z in a domain G there corresponds a definite complex value w,
then the mapping f: z — w is said to be a function defined in the domain G.

The number w = f(2) is called the value of the function at the point z.

In what follows we shall consider first only those functions which assume
Jfinite values in a finite domain, that is, a domain belonging to the finite plane
|z] < .

The real and imaginary parts, # and v, of the function f(z) are real
functions of the real variables x and y (z = x + iy):

U= u(xa ,V), v= U(x, y)

Conversely, any two such functions always define one complex function
f@=u+wofz=x+iy.
Continuity is defined in the same way as in the real case:

A function w = f(2) is continuous at the point z if, to every positive number
€, there corresponds a positive number p., such that

|fz+d2)—f(@2)| <e  whenever |4z| <p..

Geometrically speaking, the continuity of a function w = f(z) at z = z,
means this: to an arbitrarily small disk K, centered at wy = f(z;) there
corresponds a disk K about z, with the property that w = f(z) lies in X,
whenever z lies in K.

The limit of a function is defined in the same way as the limit of a sequence
in Section 1.9. Everything that was said there about the limit of a sequence
of complex numbers applies here as well. Combining the definitions of
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continuity and of a limit we can say that a function f(z) is continuous at a
point z if

lim f(z + 4z2) = f(2).

dz—0

The real and imaginary parts of a continuous function are obviously
continuous functions themselves, and conversely. The same holds for the
absolute value and the argument of a continuous function, provided that the
function does not vanish ( f(z) # 0).

1.12. Differentiable Functions

The derivative of a function of a complex variable is defined in the same way
as in the real case.

Let f(2) be a function defined in a neighborhood of the point z. If the
difference quotient

A fe+4)-f@)
Az Az

tends to a finite limit A whenever Az tends to zero, then the number A is
called the derivative of f at the point z and is denoted by

fl2y=4 —-Allm é«f (1.10)

The difference € = Af /4z — A therefore tends to zero with 4z. Hence,
Af has the expansion

Af = AAz + Az e = A4z + Az(4z), (1.10y

where (4z) denotes a number which tends to zero as 4z — 0.

If, on the other hand, there exists a constant A such that (1.10)’ is satisfied,
then 4f /4z = A + (4z). Accordingly, the difference quotient 4f /4z tends
to the limit A4 as 4z — 0. Hence, A is the derivative f’(z) of the function
S @)

Equations (1.10) and (1.10)" are therefore equivalent.

The expansion (1.10)’ expresses the fact that the function fis differentiable
at the point z. The first term is the differential

df =f'(2)4z

corresponding to the increment 4z, The total increment Af of the function
f is obtained by adding to the differential df the re-
mainder term Az(4z). Af

If 7'(z) # O, this remainder term is negligible r0)
in comparison with df as 4z — 0. Therefore, for
small values of |4z|, the differential df is a good /72 df
approximation to the increment Af: the ratio of Figure 1
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the length of the vector p(p) (Where p = |4z|) to |df]| tends to zero with
4z.

If, in particular, we choose f (z) = z, then dz = 4z. Accordingly, we can
write df = f'(z)dz. The derivative f' is therefore the quotient} of two
differentials df and dz:

g _

o (2).
(This notation is due to Leibniz.)

1.13. The Cauchy-Riemann Differential Equations

We shall now investigate what form the equations that define the derivative
(1.10, 1.10") assume when we separate the variables into their real and
imaginary parts:

z=x+1iy, f(@=uxp)+ivx,y).
Accordingly, 4z = 4Ax + idy and
u(x + 4Ax, y + 4y) — u(x, y) = du,
vo(x + dx, y + Ady) — v(x, y) = dv.

We also write
A=atif,  Adz) = (o) + i(p)a).
where (p), and (p), denote real numbers which tend to zero with
p = |4z| = V(dx)? + (4y)-.
If the function fis differentiable, then, by (1.10)’,
Au + idv = (o« + iB)(dx + idy) + p((p), + i(p)z).
Comparison of the real and imaginary parts yields
du = adx — Bdy + p(p);,  dv = BdAdx + ady + p(p).

These formulas say that u(x, y) and v(x, y), considered as functions of the
real variables x and y, are differentiable at the point (x, y). If we set 4y =0
(so that now p = |4x|) and then divide by 4, the first equation yields
du
=

The function u(x, y) therefore possesses the partial derivative u, = a.

14x]
o + I dx) >« as dx-—>0.

+ The differentials dz = 4z and df = f’ dz are finite (and not ‘‘infinitesimal”) com-
plex quantities. On the other hand, as we have already seen, the differential df’
approximates 4f better and better, the smaller the modulus of 4z = dz is.
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In a similar way, we can prove that u, = -, v, = 8 and v, = . We
thus have the following result.

If the function f (z) = u + iv is differentiable, then the functions u(x, y) and

v(x, y) are also differentiable. The partial derivatives are related by the

equations

Uy = D), U, = —U,. (1.11)

These partial differential equations, which relate the real and imaginary
parts of a differentiable function, are known as the Cauchy-Riemann differential
equations.

The converse of this result is also true.

If u(x, y) and v(x, y) are differentiable functions of x and y, and if their
partial derivatives u,, u,, v,, v, satisfy the Cauchy-Riemann differential
equations, then the complex function

f(Z) = u(x’ y) + iv(x, y) .
is differentiable with respect to the variable z = x + iy. Its derivative, f'(z),
is
f'@) =u, + v, = v, — iu,
Proof. The assumption that » and v are differentiable at the point (x, y)
means that they have the expansions

du = udx + udy + p(p);, Adv=v,dx + v,dy + p(p),.  (1.12)

Here, the quantities (p), and (p), vanish when p = V/(4dx)? + (4y)? tends to 0.
If we multiply the second equation in (1.12) by i and add it to the first equation,
we get

Af = du + idv = (u, + v, )Ax + (u, + iv,)Ady + p(p),
where (p) = (p), + i(p), — 0 as p — 0. Since, by hypothesis, the Cauchy-
Riemann equations (1.11) are satisfied, we can write

Af = (u, + v )dx + (v, + i )dy + p(p)
= (ux + ivx)(Ax + iAy) + P(P)'

But, according to (1.10)', this means that f(z) is differentiable and has the
derivative f'(z) = u, + v, = v, — iu,.

Remark. If a function u(x, y) of two real variables is differentiable at a point
(x, »):

du=adx + Bdy +p(p) ((p) >0 as p=+V(dx} + (dy)> - 0),

then, as we pointed out above, it possesses partial derivatives u, = o and
u, = B at this point. We know from the theory of real functions of several
variables that, conversely, the mere existence of the derivatives u, and u, at

the point (x, y)'in no way implies the differentiability of the function u(x, y)
at this point. If, however, we make the additional hypothesis that the partial
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derivatives u, and u, also exist in a neighborhood of the point (x, y) and are
continuous at this point, then one can conclude that u is differentiable at the
point. (We use the mean-value theorem; cf. Exercises 27 and 28.)

1.14. The Definition of an Analytic Function
Iff (2) is defined in a finite domain G, and is differentiable in z at each point of
G, then f (2) is said to be an analytic function in G.

A function is said to be arnalytic at a point if it is analytic in a neighborhood
of the point. .

The definition of an analytic function in the domain G says that at every
point of G this function possesses a finite derivative

, . Af
7@ = e |

This definition of an analytic function was given by the founder of the
theory of complex functions, Augustin Cauchy (1789-1857). From what we
have just discussed, it is equivalent to the following definition, given by
Bernhard Riemann (1826-1866).

A function f(2) = u(x,y) + iv(x,y) is analytic in a domain G if the

Sfunctions u(x, y) and v(x, y) are differentiable throughout G and the Cauchy-

Riemann differential equations

U, = vy, Uy = —0,

are satisfied.

Later on, we shall show that still more follows from these assumptions,
namely, that an analytic function is continuously differentiable (that is, it
possesses a continuous derivative), and the same holds for its real and
imaginary parts. In their original definition of an analytic function, the
founders of complex function theory, Cauchy and Riemann, required the
continuity of the derivatives. That this property already follows from the
differentiability assumption was proved only at a later date (Edouard Goursat,
1900).

We shall see, in fact, that the existence of all the higher derivatives
follows from the analyticity of a function. Despite its apparent simplicity,
then, the definition of an analytic function constitutes an enormous restric-
tion compared with the general definition of a complex function.

The real and imaginary parts u and v of an analytic function have con-
tinuous partial derivatives of all orders, as we shall prove later on. From
the Cauchy-Riemann differential equations (1.11) it follows that « and v
satisfy Laplace’s equation

2 2
AU.=_aU 0*U

oz T 0

(cf. Exercise 32). Functions of this sort are called harmonic functions.
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Two harmonic functions which are related by the Cauchy-Riemann
equations are said to be harmonic conjugates. The real part and the imaginary
part of an analytic function are therefore conjugate harmonic functions.

1.15. The Rules of Differentiation

The derivative of a complex function has been defined in precisely the same
way as the corresponding notion in the case of a function of a single real
variable. The definition is based upon the rational operations of arithmetic
and the notion of limit, both of which remain unchanged when we go over
from the real domain to the complex domain. Accordingly, all the rules of
differential calculus (for example, for the derivative of a sum, or a product,
or a quotient) remain intact and can be applied, without further ado, to
complex functions.

The same also holds for the composition of functions. Suppose that the
function w = w(z) is analytic in the domain G, of the z-plane and that its
values lie in a domain G,, of the w-plane. If, further, { = {(w) is an analytic
function of w in the domain G,,, then the composite function z —w — {

{={(w2) =1
is analytic in G,.

- To prove this, it is only necessary to show that fis a differentiable function
of z. We leave this to the reader as an exercise (Exercise 29). At the same time,
we note that the chain rule for the derivative of a composite function holds in
the complex domain:

dg , d¢ dw
az f'@)= o

1.16. Conformal Mapping by Analytic Functions

Suppose that the function w = w(z) is continuous in a neighborhood of the
point z, and is differentiable at zy. Suppose, further, that w'(zq) s 0.

WJIf the point z moves along the ray arg (z — zy) = ¢ (= const.), then its
image w(z) = w(zo) + 4w moves along a well-defined curve y4 which starts
at wy = w(z,) and is such that

T = we) + (d2) = Wizl + 4],
where €(4z) = (4z)/w'(zy) — 0 as 4z — 0. Therefore, as 4z — 0, we have

4 4
Iljyzgl“l - |w'(zo)|, arg Z—z—) =argdw — ¢ — arg w'(z).  (1.13)

From the second formula in (1.13) it follows that y4 possesses a tangent

at the point wy which makes an angle

¥ = ¢ + arg w'(zo)
with the real axis.
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If we take two rays, arg (z — zp) = ¢, (v =1, 2), then the angle between the
tangents to their image curves at the point w, turns out to be

¢2_¢’l=¢2_¢1‘

Under the mapping from the z-plane into the w-plane this angle therefore
remains fixed. If the angle of inclination of the ray in the z-plane increases,
then the angle of inclination of the tangent to the image curve also increases:
the orientation is preserved.

From the first formula in (1.13), we conclude that the ratio of corre-
sponding distances |4dw| and |4z| tends to the same limit |w’(z,)| indepen-
dently of the direction chosen for the vector 4z.

Geometrically speaking, this means that the mapping of the z-plane into
the w-plane resembles a similarity mapping in a neighborhood centered at z,,
and the resemblance becomes stronger as the size of the neighborhood shrinks.

NS
L

On the basis of these considerations we make the following definition:

If the function w = w(z) has a non-vanishing derivative at the point z,
then the mapping z — w is called conformal at the point z,,.

This definition is equivalent to the existence of the following (finite)
limits:

Figure 2

. w
A]:—ln)o arg ZE ’ (a)
. |4w|
Alir_n)o 122] # 0, (b) |

where Aw = w(zy + 4z) — w(z).

1.17.

In order to enlarge upon the foregoing considerations, we shall separate the
complex function w(z) into its real and imaginary parts. We shall assume that
the real and imaginary parts of the function

w = w(z) = u(x, y) + iv(x, y)
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are differentiable at the point z;, and that the functional determinant is
positive,
9(u, v)
a(x, y)

= U, — U, >0 (1.149)

at the point z,,.

If, in addition, one of the two limits (a) and (b) mentioned in Section 1.16
exists, then w(z) is differentiable at the point z; and w'(zg) # O.

To prove this, we shall first assume the existence of the limit (a). If we
write 4z = dz = dx + idy # 0 and dw = du + idv, then

dv dx — du dy
dudx + dvdy’
since, by (1.14), du and dv do not both vanish. This limit and therefore also
the expression :
dvdx —dudy v,dx*+ (v, — u,) dx dy — u, dy*
dudx +dvdy u.dx* + (u, + vy) dxdy + v, dy?

. w
lim arg—— = arctan
A4z—0 AZ

is independent of dx and dy. From this it follows that the coefficients of the
quadratic forms occurring in the numerator and denominator are proportional,

Uy = Auy, u, = —Av,, v, — Uy = Muy + 0y),
where A depends only upon z,. Consequently,
1+ 2w, —-u)=0

and so
Uy = Dy, U, = —v,.

The Cauchy-Riemann equations therefore hold, and the existence of
w'(zo) # O follows from (1.14) and Section 1.13.

We shall now prove the same result from the existence of the limit (b)
instead of (a). (The hypotheses made at the beginning of this section are still
assumed to be in force.)

The expression
. |4w|)*  du? + dv?

lim =
20 |4z dx* + dy?
W2 + v¥) dx? + 2uu, + vw,) dx dy + (U2 + v2) dy?
= dx? + dy?

(#0)

is independent of dx and dy. From this it follows, as in the first case, that

Uty + 0,0, =0, w2+ vi=ul+1vi>0, (1.15)
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and, consequently,

U,
Z=—T=p or Uy =pv, Uy = ull.
by U

From the second equation in (1.15), we obtain u = +1. Because of assumption
(1.14), » =1, and the Cauchy-Riemann equations hold. From this we
conclude, as above, that the derivative w'(zy) # O exists.

Remark. According to the foregoing proof, it follows from the existence of
the limit (b) that 4 = +1 or u = —1, depending upon whether the functional
determinant u,v, — u,v, is positive or negative. In the latter case, the mapping
z — wis indirectly conformal at the point z, (Exercise 39).

EXERCISES ON CHAPTER 1
1. Prove Schwarz’s inequality (x, ¥)®> < |x|? |y|? (Section 1.2). Under what
conditions does equality vhold?

Hint. |Ax + py]* = (Ax + py, Ax + py) = N(x, x) + 20u(x, ») + p*(p, ») is
positive definite with respect to A and p (or it vanishes identically).

2. Prove the triangle inequality (Section 1.2):
llz)| = [z| £ |21 + 2} = |zi| + |z2].

Under what conditions does equahty hold? Generalize the inequality on the
right to n complex numbers.

3. Prove, with the aid of axioms IV, Section 1.3, that the équation
x*+e=0 (1.2)

possesses a solution. Here e is that vector for which ex = xe = x holds for
all values of x.

Hint. Take as a basis for the x-plane the vector e and a vector f, linearly
independent of e. Let

x=oe+oaf, y=PBe+phf, [fi=vet+y.f

be the coordinate representation of two arbitrary vectors x and y and of the
vector 2. Then

xy = oa,fie + (1B + 0af) f+ 0afa f?
= (1 + y12aBr)e + (B + By + v20,B)) f.

Since xy = 0 only if x = 0 or y = 0, the system of equations

afy + y10282 =0, afy + (o + y202)B2 =0
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has only the solutions «; = «; = 0 or 8; = 8, = 0. Such will be the case if
and only if the determinant of the coefficients of 8, and B,,
ay(oy + y200) — Y105 = of + yyo0p — 105 # 0
for all af + o« > 0. This quadratic form in o, and a, is therefore definite,
and the discriminant of the form is positive:
—(4y, + 3 > 0.
Now solve Eq. (1.2), setting x = «,e + «, f. The equation
x*+e=(af +ned + 1) e+ Qayay + y08) f=0
is equivalent to the system of equations
of +yie3 +1=0, ax(20; + y00) = 0
which possesses two pairs of real roots:
Y2 2
RV o M 3]
4. Show that the product x;x, defined in Section 1.7 satisfies the axioms
Iv. 1-3.

5. What is the geometric interpretation of the multiplication of complex
numbers ?

6. Find the real and imaginary parts of the quotient of the complex numbers
z, = X, + iy, 2, = X, + iy, by multiplying top and bottom by the complex
conjugate Z, of z,.

7. Prove that the determinant of the real and imaginary parts of the complex
numbers g and b is (@b — ab)/2i.

8. The value of a rational expression goes over into its complex conjugate
when every complex number occurring in the expression is replaced by its
complex conjugate. (Show this.) Deduce from this the theorem:

If the coefficients of the algebraic equation ayz" + a;z" ' + -+ +a, =0
are real, then the complex roots of the equation are conjugate in pairs.
9. Prove that (z = x + iy)
¢l + 1y
V2
When does equality hold ?
10. Prove that

= 2 = Il + [l

a—>b
1 — ab

if a and b are complex numbers with |a| = 1 or |6 = 1.

=1’
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11. Prove that

a—b
—ap =1
if laj < 1and [b] < 1.
12. Prove that
az + b _1
bz +d

for|z| = 1.

'13. Derive the formulas
|21 + z2* = |2,]® + |23]* + 2 Re (2,2)),
|z) = 2|* = |2,]® + |2z5|* — 2 Re (z,2).

The second one includes the Law of Cosines.

14. Separate the following expressions into real and imaginary parts (z is
complex):
1 z—i 1

3 —

. .2 2"
zZ—1 zZ+1 z

iz3,
15. Explain the geometrical significance of the absolute value and the argu-

ment of the function (z — i)/(z + i) and investigate how they vary as z varies.

16. Prove the following theorem:

limz,=2z+#0

n—-00

holds if and only if the conditions

lim |z,| = |z| and  lim arg z, = arg z (mod 27)

n—w

are fulfilled.

17. Prove the Bolzano-Weierstrass Theorem: Every bounded infinite set of
points has a cluster point.

18. Show that the set of points |z| £ « is both open and closed.

19. Give an example of a set of points in the plane which is neither open nor
closed.

20. Show that in the complex plane (a) the complement of an open set is
closed; (b) the complement of a closed set is open.

21. Prove that (a) the boundary of a domain is a closed set; (b) the union
G U I' of a domain G with its boundary I is a closed set.

22. Prove that the union 4 U B of two closed sets 4 and B is closed.
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23. Prove that the intersection 4 N B of two closed sets 4 and B (that is,
the set of points common to 4 and B) is closed.

24. Prove that (a) the union 4 U B and (b) the intersection 4 N B of two
open sets 4 and B are open.

25. Prove that the union of arbitrarily many open sets is open.

26. Prove the Heine-Borel Theorem: If a bounded, closed set A is covered by
a set C of open disks (that is, A is contained in the union of the disks in C), then
there is a finite number of disks in C which cover A.

27. Prove that if a real function u(x, y) of two real variables possesses partial
derivatives which are continuous at a point, then the function is differentiable
at this point.

28. Show by means of the example u = x?y/(x? + y?) that the continuity of
a function and the existence of partial derivatives is not sufficient for the
differentiability of the function.

29. Prove the chain rule for the differentiation of a composite function.

30. Verify that the real and imaginary parts of the functions of z given in
Exercise 14 satisfy the Cauchy-Riemann equations.
31. By use of polar coordinates, investigate the real and imaginary parts of
z" and 1/z", with particular rerefence to their sign. ‘
32. Prove that the real and imaginary parts of an analytic function
w(z) = u(x, y) + i v(x, y) satisfy Laplace’s equation
*U  *U
Er
y
provided u and v possess continuous partial derivatives of the second order.
33. Prove that, in a disk on which the derivative of a complex function
vanishes identically, the function is constant.

34. Show that every polynomial of the first degree a + bx + cy with real
coefficients is the real part of an analytic function of z (= x + iy), and construct
this function.

35. What are the most general polynomials, with real coefficients, of second
degree

4U = =0,

U(x,y) = a + bx + cy + dx*® + exy + fy?,
Vix,y)=a +b'x+cy+dx*+exy+f'y?

for which U(x, y) + i V(x, y) is an analytic function of z = x + iy? Show
that the function in question is a polynomial of second degree in z.

36. What is the most general polynomial, with real coefficients, of the form
ax® + 3bx2%y + 3exy? + dy?

which is the real part of an analytic function? Construct this function.
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37. Show that the form of the Cauchy-Riemann equations and of Laplace’s
equation is preserved when the coordinate system x, y is replaced by another
rectangular coordinate system whose axes are in the same position relative
to one another as were the original coordinate axes.

38. Show that in polar coordinates the Cauchy-Riemann equations have the

form
wu_loo 1o
or rod  or rog
and Laplace’s equation has the form

?U_ 190U 12U

o Ty oor ' r?og?
39. The real and imaginary parts of a function w(z) = u(x, y) + i v(x, y) are
differentiable at a certain point zy and d(u, v)/o(x, y) = uw, — uw, < 0.
Prove that if the limit (b) in Section 1.16 exists, the mapping z — w = u — iv
is conformal at the point z; and the given mapping z — w is indirectly
conformal (conformal with the sense of the angles reversed).
40. Suppose that the function w(z) is analytic in a domain G which is symmetric
with respect to the real axis. Show that f(z) = w(Z) is then an analytic function
of zin G.

= 0.



CHAPTER 2

GENERAL PROPERTIES
OF RATIONAL FUNCTIONS

§1. THE .n-TH POWER

2.1. Continuity and Differentiability

The function w = z" (n a positive integer) is a continuous function of z. For
every value of z it possesses the derivative dw/|dz = nz""!,

Proof. The increment 4w in the function w when z changes by 4z is, by the
binomial formula,

Aw = (z + Az)" — 2" = pz" 4z + (;) " Az)? 4 - - - + (Az)",

from which it follows that
|dw| £ n|z|"|4z] + (’21) |z|*2|dz)? + - - - + |dz|".

We see that |dw| < e whenever |4z| is sufficiently small. The n-th power is
therefore a continuous function of z.
For the difference quotient of the function, we obtain

g; =nz"! + (g) "2z 4 - - -+ (d2y!
and, therefore,
Aw . n
- -1 < n—-2 . e n n—1
;S (2) |z|"~2|dz| + + |dz|*t.
This yields, for the derivative, the formula
daw _d@z") .,
;1; = —’““dz = nz .

2.2. The Binomial Equation
We want to find out what values of z satisfy the equation

"=qaq#0. @.1n
Introducing the notation

z=r(cos¢ +ising), a=p(cosy + isin),
23
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we can write (2.1) in the form
r*(cos ng + i sin ng) = p(cos ¢ + i sin ).
This equation is fulfilled if and only if

= p, ng =y + k2w (k=0,+1,42,...). 2.2)
From Eq. (2.2) it follows that
_n/, - !ﬁ 27T
r=¥p  $=Lar?

Those values of ¢ which differ by multiples of 27, so that the difference
of the corresponding values of k is divisible by n, give rise to the same value
of z. The function z" therefore assumes every value a s 0 at n different
points, namely,

_tifeos (%4 12 4 isin (D4 k2] o
z—\/p[cos(n+kh— + isin n+kn k=0,1,..,n—1).
2.3)
As a —> 0, the values of z given by (2.3) all tend to zero, and for z = 0
they all coincide. At this point,

w0 =0 (=1,2..,n—1), w"™0)#DO.

We say that the function w = z" possesses a zero of n-th order (or n-tuple zero)
at the origin.

2.3. The Mapping by Means of the Power Function

The n-th power, }

W= z" n=2), 2.4

defines a function which is analytic in the entire z-plane. Its derivative,

w' = nz""!, does not vanish for z % 0, so that by Chapter 1, (2.4) gives a

mapping of the z-plane into the w-plane which is conformal whenever z # 0.
From (2.4) we have

w| = |z|*, argw =nargz. @.5)

Thus circles |z| = const. in the z-plane correspond to circles |[w| = const. in’
the w-plane. Every angle with vertex at the origin is multiplied by n. The
mapping is therefore not conformal at the origin z = 0, where w’ = 0. If we
let z make one circuit around the circle |z| = r, its image point w will go
around the circle [w| = r" n times. Thus »n different values of z, of the form
(2.3), correspond to each value of w = p(cos b + isin ) # 0. These values
of z may also be written as

Zo=zok  (k=0,1,..,n—1), (2.6)
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where

n

2o =%/p (cos¢+ isin%)
and
20, . 2w
€, = COS — + 1810 —
n n

is a root of the equation z" = 1,

To every ray y emanating from the origin in the z-plane there corres-
ponds a ray from the origin in the w-plane which makes an angle with the
positive real axis that is » times as large as the corresponding angle made
by y. When y is rotated through the angle 2=/n, its image ray turns through
an angle of 2#. Thus, to the sector

Fy: 0__<_argz§27ﬂ

there corresponds the entire w-plane. To every point on the positive real
axis in the w-plane there corresponds one point on each of the two rays that
bound the sector Fy; otherwise, the correspondence is one-to-one. We can
obtain a correspondence which is everywhere one-to-one by slitting the
w-plane along the positive real axis from the origin to infinity and associating
the “upper edge” (arg w = 0) of the slit with the positive real axis in the
z-plane and the “lower edge” (arg w = 27) with the ray arg z = 2#/n.

If the ray y is rotated once more through the angle 2#/n, its image ray
turns through the whole angle 27 all over again. As in the previous case, the
sector

F: 2—" fargzs2 3217
n n
is therefore mapped one-to-one onto the entire slit plane. Two points z, and
z; in the sectors Fy and F), respectively, are mapped onto the same point in
the w-plane whenever z, = zge,,.
This procedure shows that the function (2.4) maps every sector

F,: k%réargzé(k+l)gg k=01..,n-1

in a one-to-one manner onto the whole plane slit along the positive real axis.

To every point in the z-plane there corresponds a definite point in the
w-plane. Conversely, to every point w % 0 there correspond precisely n
different points in the z-plane. The inverse of the function (2.4),

z=4%w=wln X))

has therefore n different values or branches: it is an n-valued function.
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2.4. The Riemann Surface for the n-th Power

We can extend the mapping given by the n-th power w = z" by defining
W= = lim z" (z - «) as the image of z = . In order to make the
mapping between the extended z-plane and the extended w-plane one-to-one,
we now slit the w-plane along the positive real axis, make » replicas of it,
and associate with each replica of the slit plane a different sector F; (k = 0,
1,...,n—1). We then bind these planes together along the edges of the
slits and form a connected surface R,, in such a way that R,, will be completely

z-plane w-plane

/ Fy :;/ 7

F F, ‘—J
/ Fy =%—/

Figure 3

swept out by the image of a ray arg z = const. when this ray makes one
complete turn about the origin. To achieve this, we join the “lower” edge of
the first sheet to the “upper” edge of the second sheet, the lower edge of the
second sheet to the upper edge of the third, etc., until, finally, we join the lower
edge of the n-th sheet to the upper edge of the first sheet. Thus there arises a
closed, n-sheeted surface R,,, which is known as a Riemann surface (cf. Fig. 3).1

The function (2.4) maps the extended z-plane in a one-to-one manner
onto the n-sheeted Riemann surface R,,. Its inverse function (2.7) is therefore
single-valued on this surface. Each point w # 0 appears on every sheet of
the surface, and therefore » times in all, but the point w = 0 appears only
once on the surface because all the sheets are joined together there.

If we go once around the point w = 0, we always proceed to a new sheet.
Only after n revolutions do we return to our starting point. If we make k
revolutions about the origin, where

dargw=k-2m,

T The idea of making a multiple-valued function single-valued by defining it on a
many-sheeted surface comes from Riemann.
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then the image point in the z-plane moves, according to (2.5), in such a way
that ‘

27
Aargz=k7-

The point z therefore returns to its starting point only when k is divisible by n;
otherwise z ends up in some other sector Fy, . . ., F,_, of the z-plane.

The n sheets of the surface are joined together at the points w = 0 and
w = . Such points are called branch points of (n — 1)-st order of the Riemann
surface R,,.

The Riemann surface R,, is also said to be a covering surface of the plane
[w] £ . This important topological notion is defined in the following way.

Let G, and G, be two domains in the complex planes |z| £ « and
Iw| £ =, respectively. G, is called an unbranched covering surface of G,, if
the following conditions are fulfilled.

1) There is a mapping which associates to each point z € G, a unique
point w € G,,.

2) Whenever this mapping takes a point z = g into a point w = b, it
maps a certain neighborhood U, of z = a topologically (one-to-one
and continuously in both directions) onto a certain neighborhood
U,of w=15,

3) Every point w € G,, is the image of at least one point z € G,.

The mapping furnished by the power w = z" satisfies these properties for
the domains G,: 0 < |z] < , G,,: 0 < [w]| < 0. Under the mapping the
latter domain is covered precisely n times. The covering surface G, is un-
branched relative to the “underlying surface” G,,. If we add the branch points
z=w=0and z=w = o, G, is called a branched covering surface of the
w-plane with branch points at 0 and .

The many-sheeted surface R,, defined above is therefore a relatively
branched covering surface of |w| < .

R, can be made to a topological map of the plane G, (|z| £ ») by
taking the n-sheeted circular domains |w| <r" and |w|> R" that corre-
spond under the mapping w = z" to the circular neighborhoods |z| < r and
|z] > R, respectively, as the *“circular neighborhoods” of the branch points
w=0, ©». R, as well as G, are therefore both coverings of G,, (|w| £ «).
The surface R,, has been introduced “in space” to aid our geometrical intui-
tion. But it is just as easy to grasp the structure of this surface by means of
the domain G, when, as above, it is divided up into “sheets” F, (k =0, ...,
n — 1) each of which corresponds to a complete replica of the underlying
surface G,,. This fact should be borne in mind when, later on, we construct
Riemann surfaces which make the inverses of other single-valued mappings
z — w single-valued.
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2.5. The Cyclic Group of the #-th Roots

The points at which the function (2.4) assumes the same value w can be found,
according to Eq. (2.6), by taking any one of them, say z, and making the
substitution

S=1ze& (k=0,+1,+2,...). 2.8)
These substitutions form what is called a group.

A group is defined in the following way.
A set R of elements a, b, c, . . . forms a group if the following postulates
hold: '

1) To every ordered pair of elements (a, b) in R there is associated an

element ¢ in R, written ¢ = ab.
2) This operation is associative:

a(bc) = (ab)c.

3) There exists an element e in R, called the identity, such that, for every
a € R, the equation
ae=ea=a
holds.
4) Every element a € R possesses an inverse, a™!, in R, satisfying

1

ag'=ala=e.

In the set (2.8) we take as elements the substitutions S themselves, and we
define as the group product S,S, of

Sy =1z and S, =zl
the result of composing them:
815, = zekrekt = zelathe,

which is again a substitution.
The conditions (1) and (2) are obviously fulfilled.

If we set
e=1zel =z
then (3) is also satisfied.

Finally, the substitution inverse to S = zeX is
S = zeg* = zel ¥,

for
SS7! = 8718 = ze ¥k = 2.

Since e¥*" = € for every integer k, the number of different substitutions
is finite, in fact equal to n. Such a group is said to be finite and of order n.
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By repeated application of the substitution S = ze, we obtain all the
substitutions of the group (2.8). If we set S? = SS, etc., the different sub-
stitutions of the group can be written as

S =e, S, 8%...,8"L

The elements of the group are thus powers of a single element S in the group.
Such a group is said to be cyclic.

The group (2.8) (more generally, any cyclic group) is commutative, or
abelian, that is, S,S, = S, is valid for all substitutions S;, S, in the group.

§2. POLYNOMIALS
2.6. Zeros
A polynomial of degree n is an expression of the form
P(z)=ayz"+az"' + -+ a, 2.9

The coefficients are given complex numbers g, 4y, . . ., a,, with gy # 0. It
follows from Section 2.1 that P,(z) is continuous and, at every finite value of
z, possesses a well-defined derivative which can be computed according to the
rule familiar from the real case.

Replacing z by x + iy in (2.9) and expanding (x + iy)"* for each value
of k (k=0,1,...,n— 1) according to the binomial formula, we obtain a
decomposition of P,(z) into real and imaginary parts:

P,,(Z) = Un(x’ y) + iVn(x9 y)'

The functions U,(x, y) and V,(x, y) are polynomials in x and y of degree n.
They are, according to Chapter 1 (Section 1.14), harmonic functions and
satisfy the Cauchy-Riemann differential equations.

We want to find out what values a polynomial will assume when z varies.
This question can be resolved with the help of the Fundamental Theorem of
Algebra:

A polynomial P,(z) (n Z 1) vanishes for at least one value of z.

We shall defer the proof of this theorem until later (Section 9.13).
The following theorem also holds:

If the polynomial P,(z) vanishes for z = z,, then
’ Py(z) = (z — z))Py_,(2), (2.10)
where P,_\(z) is a polynomial of degree n — 1. ‘

Indeed, if we divide P,(2) by (z — z;) until the remainder is independent
of z, we obtain the identity

Pyz) = (z — z,)P,_,(2) + R.
Setting z = z, yields R = 0, since P,(z,) = 0.
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If we apply successively the Fundamental Theorem of Algebra and the
theorem just proved, we find that

Pyz) = aoz — 2))(z — 25) . . . (2 — z),

where the z,, z,, ..., z, are, apart from the ordering, uniquely determined
complex numbers.

The polynomial P,(z) vanishes for the values z = z,, z,, .. ., z,, and only
for these. The values z; need not all be distinct. If v, values of the z; are equal
to z,, v, equal to z,, . . ., v, equal to z; (zy, . . ., z; all distinct), then

A K
P (2) = afz — z))"(z — z)"* . . . (z — z)", > vi=nh
iz1

If P(z) has the representation
P@)=(E—-z20'0) @z,

where Q(z) is a polynomial and Q(zo) # 0, then z = z is said to be a zero of
u-th order of the polynomial P(z). The polynomial P,(z) above therefore has
a zero of v;-th order at each pointz, i = 1, 2, . . ., k).

From the result just obtained, it follows that an algebraic equation of
the n-th degree possesses exactly z roots (when each root is counted according
to its multiplicity or order).

We speak of an n-th order c-point z, of a polynomial P(z) when z, is an
n-th order zero of the polynomial P(z) — c.

From this it follows that the polynomial P,(z) assumes every finite value
precisely n times. ‘

2.7. The Behavior at Infinity

We now want to investigate the behavior of a polynomial P,(z) when
|z| — . If we write

a a a,
P..(Z)=z"(ao+—zl+z—§+m+z—:),

then

a a a,
1Pi@)| = |zl"jao + + Z+ - + - (2.11)

Since the second factor tends to the limit |ao| # 0 when |z| — <, we have

lim |P(z)] = .
|z|—o
Moreover, it follows from (2.11) that
. |Pu(z)
|z1|l-r?w\ | |ao] # 0.
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We therefore say that the polynomial P,(z) possesses a pole of n-th order at

infinity. Another way of expressing this is to say that the polynomial assumes
the value « exactly » times.

§3. RATIONAL FUNCTIONS
2.8. Zeros and Poles

A rational function is obtained whenever we apply the rational operations of
arithmetic finitely many times to the variable z and to certain given complex
numbers. We can write the result as

P(2)

.R(Z) = —Q‘(?)’

.12)

where P(z) and Q(z) are polynomials

P(Z) — aoz"‘ + alzm—l 4o 4 ay,
0@) = boz" + b" + -+ + b,
(ag, by + 0) without common factors. The real and imaginary parts of the
function R(z) are rational functions of x and y.

From Section 1.15 it follows that a rational function R(z) is differentiable
whenever Q(z) # 0; the rule for differentiation is the same as in the real case.

2.9,
If we factor P(z) and Q(z) so that

P(z) = apz — a)t(z — o). .. (z — o),
0(z) = bo(z — B)""(z — B)* ... (z — B,
where ay # 0, by # 0 and «; # B, for all i, j, we obtain for R(z) the repre-
sentation
(z — o)z — ). .. (2 — o)

RO =K P By =B

(2.13)

with K = ao/bo.
The normal form (2.13) of the rational function R(z) places in evidence
all of its finite zeros and poles. From (2.13),

R(2) = (z — «))"'Ry(2),

where R,(z) is a rational function which, at the point z = «, assumes a finite,
non-zero value. We thus designate the point «, as a zero of order pu, of the

function R(z). Similarly, &, «;, .. ., oy are zeros of orders py, g3, « . . fhes
respectively, of the function R(z).
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Now let us write (2.13) in the form

R(2) = Ry(2),

1
(z—B)1
where R,(z) is again a rational function which, at the point z = 8,, has a finite,
non-zero value. Therefore |R(z)| increases beyond all bounds when z — 8,
but in such a way that (z — B,)"'R(z) tends to a finite, non-zero limit. For
this reason we say that R(z) possesses a pole of order v, at the point f,.
Similarly, 8, is a pole of order v,, etc.

At every point z which is different from «,, otz, v v s % By B2y - . ., Bithe
function R(z) assumes a finite, non-zero value.

2.10. The Order of the Function R(z)

Let us consider the behavior of the function R(z) when |z| increases beyond
all bounds. We write R(z) in the form

a;
a0+——+" + —
Z

b0+b‘+ oy

R(z) = zm™

There are three different cases to treat, depending upon the relative
magnitudes of m and n.

1) Form > n, lim R(z) = . Since

|z}]—0

lim X&) _ 90 ¢ o,

z—s00 2 bo

 is a pole of order m — n of R(z).
2) Form = n,

lim R(z) = —
by

Z-—»00

The function therefore has a finite, non-zero value at z = .

3) Form < n, hm R(z) = 0 and, at the same time,

Z—)CD

lim z"™R(z) =

Z—>0

The function has a zero of order n — m at .
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We summarize these results in the following table.

Number of Zeros Number of Poles
Ii{l‘n::‘: At All g‘nﬂ’: At All
plane infinity together plane infinity together
m>n m — m n m-—n m
m=n m — m=n ‘n — n=m
m<n m n—m n n — n

The number of zeros of a rational function is equal to the number of its poles
when both are counted according to multiplicity.

This number is called the order of the function. It is equal to the greater
of the degrees m and n of the polynomials P(z) and Q(z) in (2.12), respectively.

2.11. c-Points of the Function

Now that we have treated the zeros and poles, we shall consider the c-points
of the function R(z), that is, those points z at which R(z) = ¢ # 0, . If z,
is a c-point of the function

P(2)

()

R(2) =
then z, is a zero of the function

_P() - c0()
R(Z)—-c= 0)

A zero of order p of the function (2.14) is said to be a c-point of order
of the function R(z). The numerator and denominator of the function (2.14)
can have no.common factor, for if they did, it would be a factor of P(z), and
therefore R(z) would not be in reduced form. From this it follows that the
order of the function (2.14) is equal to the order p of R(z). From what has
just been proven, the function (2.14) takes the value zero p times. Therefore
R(z) takes the value ¢ p times. Thus we have proved the following theorem:

(2.14)

A rational function assumes every value the same number of times as its
© order. ’

2.12. Decomposition into Partial Fractions

If the degree m of the polynomial P(z) that forms the numerator of the
rational function
P(z)

ko) =20
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is greater than, or equal to, the degree n of the polynomial Q(z) in the
denominator, we can divide the polynomial P(z) by Q(z) until the remainder
P,(z) is of lower degree than the divisor Q(z). Let G,,_,(2) be the polynomial
of degree m — n obtained as the quotient. Then

P(2) = Q@2)Gm-n(2) + Pi(2)
and
0(2)
Since P,(z) is of lower degree than Q(z), the difference

R(Z) - Gm—-n(z)

R(z) = Gu-u(2) +

has the value 0 at infinity.
We now split off all the parts of the function which become infinite at the
remaining poles. According to (2.13), we have

1 P(2)
R(z)= —7— —=
© = c=hr 0@
where Q,(z) is a polynomial of degree n — v, which does not contain z — 8,
as a factor. P(z)/Q,(z), therefore, has a finite, non-zero value at z = §8,. Let
us expand P and @, into powers of z — B;:
P(z)= Ao+ Ay(z — B)) + -+ + Aulz — BY™
Oxz) = By + By(z — Ba) + ** + + Bpy (z — B
Here, Ao = P(B,) # 0 and By = Qx(B)) # 0. If we divide the polynomial

P(z) by the polynomial Q,(z) and terminate the division as soon as (z — ;)"
appears as a factor in the remainder, then

g/\((zz)) =cotelz—B)+ + el - + (- /3,\)”"}(;8 ,

N=1,2...,0), (2.15)

where cg, ¢}, . . ., ,,_; are constants and P*(z) is a polynomial. By (2.15),

VA~

_ 1 P*(2)
where
1 - ‘o i 7 el 2.17
G (Z - /3/\) (z — B)* + (z — Bt + T Ba 2.17)

With the aid of (2.16) and (2.17), we see that
1) The difference

R(z) ~ Gy, (;_LB;)
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has a finite value at the point z = §,; and
2)

1
lim G, (——) =0.
Z—> A z— B/\
2.13.
We claim that R(z) is identically equal to the following sum F(2):

F(@) = Gpil(2) + Z GVA( /9,\) @.18)

The difference
R(z) — F(2) (2.19)

is a rational function. It is finite at every finite pointz # B, (A = 1,2,..., ).
In order to study the difference at the point B,, we write it as

[rer=en ()} - 0w - 2 0n 5)

By (1), the expression in brackets remains finite for z = B, ; the same holds
for the remaining terms as well. The expression (2.19) therefore has a finite
value even at B,. In a similar way we can conclude that the difference is finite
at every point 8,. Therefore (2.19) is a polynomial in z.

Since the difference can also be written in the form

RG) — FG) = {RG) ~ Gues@)} - Z 6 (2 5).

it vanishes at infinity. The polynomial (2.19) therefore has no pole at infinity
either. It is therefore a constant, whose value, from the above, must be zero.
Thus our assertion is proved.

The rational function (2.12) can therefore be written in the form

R(2) = Gpoyl(2) + Z GVA( BA) (2.20)

and this representation in partial fractions is unique (see Exercise 6).

EXERCISES ON CHAPTER 2

1. Split the function w = 22 into real and imaginary parts and investigate:
(a) how straight lines in the z-plane are mapped into the w-plane; (b) how
straight lines in the w-plane are mapped into the z-plane.
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Hint. Consider first the lines parallel to the coordinate axes. If a configuration
in the z-plane is rotated about the origin, what happens to its image in the
w-plane ?

2. Which curves in the z-plane correspond to the circles |w — b| = ¢ under
the mapping w = z2? Check the dependence of these curves on the value of -
16/p.

Solution. The curves are lemniscates |z — a||z + a| = p with a = V/b.

3. What values does the function 4\/2 possess at the point z = i? Write
these values in trigonometric and in algebraic form. In what sequence do
these values come up, when, starting at z = 1 with the function value 1,
z describes the unit circle once in the negative direction (that is, in the direction
in which arg z decreases)?

4. Derive the rule for differentiation of a rational function.
5. Decompose the functions

1 z* nd 1

Zy1’ 2-1° ? 2z + DAz + 2
into partial fractions.

6. Show that the partial fraction decomposition (2.20) of a rational function
is unique.

7. If the order of a rational function is p, then, by Section 2.11, the function
assumes a given value c¢ at p points, some of which may coincide for certain
values of ¢, For which values of ¢ does this happen?




CHAPTER 3

LINEAR TRANSFORMATIONS

§1. BASIC PROPERTIES OF LINEAR TRANSFORMATIONS
3.1. The Group of Linear Transformations

The term linear (or bilinear) transformation is used to designate a rational
function w = w(z) of first order. Its general form is

_az+b

where the determinant of the coefficients is assumed to be different from zero:
ad — be # 0. (3.2)

Were this determinant zero, w would be either indeterminate (¢ = b = ¢ =
d = 0) or constant (and therefore a rational function of order zero).

The linear transformations satisfy the group axioms (1)-(4) given in
Section 2.5. In particular, the identity transformation I (w = z) plays the
role of the identity in the group, and the inverse S~! of the transformation
(3.1) is the transformation

z=S"l(w) = —aw + b
oW —a
The collection (3.1) therefore forms a group under composition.

The linear transformation (3.1) furnishes a one-to-one mapping of the
extended z-plane onto the extended w-plane (Section 1.9). In particular, it
places in correspondence the points

a
z = oo, W= - and zZ=—-, w = co,
c c

The mapping is conformal at all other points in the plane, for when z # —d/c,

dw  ad — be

& (@rap” ®
3.2. The Invariance of the Cross-Ratio
Let z, (# «, —d/c) be an arbitrary point of the z-plane and let w, be its image:

w. = %1 +b
YUz 4+ d
37
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Then
_ (ad = be)(z — z))
'Y ezy +d)ez+ d)

A similar formula holds for any other pair of associated points z,, w,
(z, # »,—d[c). Forming their quotient, we get

w—w

w—-w zZ—2Z
"“A 19

W—w, z—12, G-3)
where A is the constant
_cz+d
A—cz,+d¢0’°°'

Equation (3.3) holds for all finite pairs z, w = (az + b)/(cz + d). If z;, w,
is a third pair of corresponding points, then

W3_Wl=/\23“21

W3 — W, 23— 2

Elimination of A between this equation and (3.3) converts the transformation
(3.1) into the following form:

W — w)/(w — wy) - (z—2z)/(z —2) .
w3 — w)/(w; —wy) (23 — z)/(z3 — 2,)

Conversely, (3.4) defines a linear transformation which makes correspond
to any three distinct given values z = z,, z,, z; any three arbitrarily prescribed
values wy, w,, ws. ;

On each side of formula (3.4) appears what is known as the cross-ratio
of four points «, B, v, 6:

(3.4

_(@—y)(z—19)
By =g iE—5)
The equation
(W, W3, Wy, w2) = (Z, 23, 2y, 22) (3'4)'

asserts that the cross-ratio of four points is invariant under a linear transforma-
tion.

Up to now we have assumed that the points z,, w, (v = 1, 2, 3) are different
from . However, formula (3.4)’ also holds when any one of these values is
infinite. For example, if w; = «, then we have

w—-w
w— W,

(W, @©, Wi, w2) =

It is easy to see that even in this case (3.4)’ determines a linear transformation
which carries the points z = z, into the points w = w, (v = 1, 2, 3).
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3.3. The Steiner Circles

Let us choose two arbitrary points z = z,, z, (# «, —d/c) and denote their
images under (3.1) by w = w,, w,, respectively. The transformation (3.1)
can then be put into the form (3.3), where the constant A is non-zero. Con-
sequently,

|W_W1|_ |z = z)|

)Y , 3.3)
o=l ~ M 63
w — Wl _ z — Zl ”
arg - — ", arg A + arg =2 (mod 27). 3.3)
Let p be a positive number. Then
|z — 2| _
|z — z,|

is the equation of a circle known from elementary geometry as the circle of
Apollonius: it is the locus of all points z for which the ratio of the distances
from the “limiting points” z, and z, is constant. As z moves around this
circle, the point w, according to (3.3)’, must move on a circle with the limiting
points w, and w,. The ratio of the distances from w to these limiting points
is |Alp = const.
The expression

] g arg(z — z)) —arg (z — z,)
z— 12z,

¢ = arg

gives the angle between the vectors z — z, and z — z, (Fig. 4). When z moves
from z, to z, along a circular arc «, ¢ remains constant and equals the angle
¢, between the tangent to this arc at z, and the vector z; — z,. According
to Eq. (3.3)",

g = arg::_ ::= ¢o + arg A
is also constant. Therefore the image point w also moves along a circular arc 8
which makes the angle ¢y + arg A with the vector w; — w,. If z now moves
along the complementary arc of the arc «, ¢ = ¢ + 7 and, consequently,
i = ¢o + arg A + 7. Hence, w also moves along the complementary arc of B.
The circle through the points z, and z, therefore corresponds to a circle
through the points w; and w,. ’

We shall now construct all the “Steiner circles’ which belong to the
limiting points z; and z,. There are two kinds of circles to be distinguished.
The first kind consists of the Apollonius circles (circles about the limiting
points) which correspond to different values of p; the second kind consists of
the circles through the limiting points which correspond to different values
of ¢ (circles through the limiting points). From the foregoing, we see that a



40 LINEAR TRANSFORMATIONS §1

linear transformation (3.1) maps this system of Steiner circles onto a similar
system in the w-plane having limiting points w, and w,. Under this trans-
formation circles of the first kind are mapped onto circles of the first kind,
and circles of the second kind are mapped onto circles of the second kind.
From elementary geometry it is known (and, in any case, easy to prove)
that through every point in the plane there passes exactly one circle of the
first kind and one of the second kind in the Steiner system belonging to any
two arbitrary limiting points. The two kinds of circles intersect orthogonally.

Figure 4

This result continues to hold when one or the other of the limiting points
(z, or z,, w, or w,) moves off to infinity. If, for example, z, # , z, = «», then
the “circles” of the second kind become straight lines through the point z,
and the circles of the first kind become concentric circles about this point.

For this reason, straight lines and circles are not distinguished in the
theory of linear transformations: by a “circle” is understood either a (finite)
circle or a straight line.

3.4. The Mapping of Circles
We now can prove easily:

A linear transformation is a circular collineation: it maps circles onto circles.
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Proof. Let C, be an arbitrary circle in the z-plane. We select two points z,
and z, on it and denote their image points under the mapping (3.1) by w,
and w,. C, can then be thought of as a circle of the second kind through the
limiting points z; and z,. Accordingly, it will be mapped by (3.1) onto a
circle of the second kind through the limiting points w, and w,, which proves
our assertion.

A variety of other important consequences can be drawn from the above-
mentioned properties of the Steiner circles.

Let C be a Steiner circle of the first kind with limiting points z, and z,.
The straight line through z; and z, cuts the circle C in two diametrically

Figure 5§

opposite points, z = a, z = b. By the definition of the circle C, the cross-
ratio
(@—z)/(a— z)
C=z)6—2) " ¢
Such a sequence of points a, b, z,, z, is said to be harmonic. The points z,
and z, are called symmetric points with respect to the circle C. It is easy to
show that z, and z, are polar with respect to the circle C; this means that z,
(or z,) is the mid-point of the chord which joins the points of contact with
the circle of the tangents drawn from the point z, (z,, respectively).

From (3.5) it follows that r,r, = p?, where r, and r, are the distances
of the points z, and z, from the center of the circle C and p is the radius of C.

In particular, if C is a straight line, then C is the perpendicular bisector
of the segment z,z,, and the reflected points z, and z, are symmetric with
respect to C.

Now we shall prove:

(a’ ba 21, 22) =

If a linear transformation maps a circle C, onto a circle C,,, and if z and z*
are symmetric points with respect to C,, then their image points w and w*
are symmetric with respect to C,,.

Indeed, C, is a Steiner circle of the first kind with limiting points z and z*,
By Section 3.3, C,, is then also a Steiner circle of the first kind with limiting
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points w and w*. Therefore, w and w* are symmetric pomts with respect
to C,.

3.5. Fixed Points

We consider now the fixed points of a linear transformation (3.1); that is, the
points z which coincide with their image points under the mapping. Such
points must satisfy the condition

_al+b
l_CC—i—d’
or
¢+ (d—a)l —b=0. (3.6)

If the discriminant
4 =(a— d)?+ 4bc = (a + d)*> — 4(ad — bc) 3.7

of the quadratic equation (3.6) does not vanish, then (3.6) has two distinct
roots { = {;, {,, which are finite when ¢ # 0. If, however, ¢ = 0, then one
of the roots is { = .

In the following, we shall suppose that 4 # 0, and consider first the case
¢ # 0, so that there are two distinct finite fixed points, {, and {,. From
Section 3.3 it follows that the system of Steiner circles with limiting points
z, = {, and z, = {, remains fixed under the transformation (3.1), with circles
of the first kind going over into circles of the first kind, and circles of the
second kind going over into circles of the second kind.

Figure 6
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If 4 #0, but ¢ =0, then by (3.7), 4 = (a — d)?, so that a # d and
neither a nor d vanishes. The fixed points are

C1=

g7 ad L=
and the mapping of the Steiner net is the same as in the case ¢ # 0. The
circles of the first kind are concentric circles about {,, while the circles of the
second kind are straight lines through {,. The transformation (3.1) assumes
the form

w—{ =Mz - ), (3.8)
with A = a/d. This is a similarity (or homothetic) transformation with the
fixed point {; as center.

3.6. Elliptic and Hyperbolic Transformations
If 4 # 0 and ¢ # 0, then, by Section 3.2, the transformation is of the form

w-—1{ z—=§
b Az—-{;’ 3.9
where A # 0 is a finite constant.

If, in particular, |A] = 1, then it follows from (3.9) (cf. Section 3.3) that
every circle of the first kind in the Steiner system with limiting points £, and
¢, is left invariant. Under the mapping, then, the points z “flow” along these
invariant circles in such a way that circles of the second kind pass over into
one another. Such a mapping is said to be elliptic.

Similarly, one can speak of an elliptic transformation when 4 # 0,
¢ = 0. Now, the second fixed point is at infinity, and the transformation is
of the form (3.8), with |A| = |a/d| = 1, that s, |a| = |d|. The transformation
(3.8) represents a rotation (through the angle arg X) about the fixed point {;.

The value A = —1 gives rise to an elliptic transformation of a particular
kind. If we set z; = w, = {,, z;, = wy, = {, in (3.3)", then the circles of the
second kind are also invariant: the arcs bounded by the limiting points are
merely interchanged. This elliptic transformation is involutory; that is, if
the point z is mapped into the point w, then w is mapped into z, as we can
easily see from (3.9) (A = —1).

Now suppose that A is real and positive. Comparing the arguments of
the left and right sides of (3.9) shows that, in the Steiner system belonging to
the limiting points £, and {,, the circles of first kind go over into one another,
while the circles of second kind remain fixed. The transformation therefore
represents a “flow” along the circle of second kind. A transformation of this
kind is said to be hyperbolic.

Incase 4 # 0, ¢ = 0, {, equals infinity; the transformation is of the form
(3.8). It is hyperbolic when arg A = arg @ — arg d = 0 (mod 2#). The map-
ping is homothetic; {, is the center and A is the quotient or scale factor.
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The general mapping (3.9) can always be thought of as the result of
composing an elliptic transformation with a hyperbolic transformation. Let
arg A = ¢. We first effect the elliptic transformation in which A is replaced
by A, =cos ¢ + isiné ([A,]| = 1), and then the hyperbolic transformation
with the A-value X, = |A]. The resulting general linear transformation has two
different fixed points and is called loxodromic.

3.7. Parabelic Transformations

We now turn to the case 4 = 0. The transformation (3.1) is then called
parabolic.

First let us assume that ¢ = 0 Then, by (3.7), a = d # 0, and the hnear
transformation (3.1) is thus of the form

wW=z+w (w = bjd # x). (3.10)

If w = 0 (that is, b = 0), this is the identity transformation. Every point is
a fixed point. If w # 0, (3.10) is a simple translation (parallel displacement)
with the “displacement vector” w. The only fixed pointis { = . The straight
lines L, in the direction w are the streamlines; their perpendiculars, the lines
L,, pass over into one ancther under the flow.

It remains for us to investigate the case 4 = 0, ¢ # 0. Equation (3.6)
then yields one finite fixed point
a—d

2c

This is the only fixed point of the parabolic mapping, since the point z =
goes over into the point w = a/c, so that c is not a fixed point.
We now obtain

— =

{ =

az+b al+b ad—bc z-1
cz+d cl+d cl+d cz+d

and if we set cz + d = ¢(z — {) + ¢{ + d in the last expression, we obtain

1 _ccl—i-d (cL+dP 1
w—{ “ad—bc ad—bc z—10C

Here
_a+d (a+d)2 4 (a+d)
A

and so

CRT

ad — be )

Thus, the transformation assumes the form

1 1

Wt z-¢T“
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where
, el+d 2
©=Cd—bc ara PO
If we set

w = L z = ! 3.11
- W — ga = z — g’ ( . )

then (3.1) reduces to the form
w =2z + o' (3.12)

This is a parallel displacement of the z’-plane. Under this mapping all straight
lines L} in the direction o’ are left invariant. The lines L; which cut them
orthogonally go over into one another, being displaced by an amount equal
to the magnitude of w'.

We can return to the original variables (z and w) by use of the inverse
transformation of (3.11), z = { + 1/z’. The lines L] thereupon go into circles
L, which are mutually tangent at the point z = w = {, but have no other
points in common. Their common tangent is the line z = { + 1/(7w’), which
is the image of the straight line z’ = 7w’ (v a real parameter). The perpen-
diculars L; go over into circles L,, which are also tangent to one another at
z = { and cut the circles L, orthogonally. Under a parabolic transformation
the circles L, appear as invariant ‘‘streamlines’; the orthogonal family of
circles L, remains unchanged as a whole, but individual circles are trans-
formed into other circles of the family.

The parabolic transformations arise as the limiting case of the elliptic
and hyperbolic transformations when the fixed points coincide; the systems
of circles L, and L, can thereupon be regarded as the limiting case of the
Steiner system when the limiting points ¢, and {, coincide.

From (3.11), it follows that for { = 0

1

2= (3.13)

This transformation is called an inversion. Since
, 1 ;
[z|=m, arg z’ = —arg z,

we can obtain (3.13) by a reflection in the real axis followed by a further
reflection in the unit circle (cf. Section 3.4.). Each of these two transformations
is itself indirectly conformal.

§2. MAPPING PROBLEMS
3.8. The Conformal Mapping of Two Circular Domains onto one Another

By a circular domain K we mean a domain whose boundary consists of a
circle C, so that K is either the interior or the exterior of C. If, in particular,
C is a straight line, then K is one of the two half-planes bounded by C.
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We pose the following problem:

Map a given circular domain K, of the z-plane conformally onto a given
circular domain K,, of the w-plane.

Solution 1. We choose three arbitrary points z,, z,, z; on the periphery of
K, and three arbitrary points w,, w,, w; on the periphery of K,, and ordered
in the same sense as z,, z,, z;.T The equation (w, w;, w;, w,) = (2, 23, 2,, 25),
or

w—w)w—w)  (z—2)/(z—2)

(w3 — w)/(w; — wy) B (z3 - z2)(z3 — z3)’

defines a linear transformation of z into w which carries the points z, into the
points w, (v = 1, 2, 3). Since a linear transformation maps circles onto circles,
the circle C, which passes through the points z,, z,, z; corresponds to the circle
C,, through w, w,, w;. Each circular domain bounded by C, corresponds to
a circular domain bounded by C,,; it is the ordering of the points z, and w,
which forces K, to be mapped onto X,,.

From this we see that the mapping problem can be solved when three
pairs of boundary points (z,, w,) (v = 1, 2, 3) are arbitrarily chosen, so long
as they have the same sense. The mapping is then uniquely determined by
the choice of these boundary points.

Solution 2. 'We can also construct the mapping of K, onto K,, so that two
arbitrary points z, and wy in the interiors of K, and K, respectively, corre-
spond. According to §1, if such a linear mapping exists at all, it carries the
symmetric point z§ of z, relative to the circle C, onto the symmetric point
wi of w relative to C,,. It is therefore of the form

w — Wo . z — Zo
W A Py (A constant). (3.19)

As we know, such a mapping transforms the Steiner circles about the limiting
points z,, z§ into the Steiner circles about the limiting points wy, wg. The circles

1 If K is the interior of C, and therefore a finite circular domain, the point z traverses
the circle C in the positive sense with respect to K if the function arg (z — a), for a
an arbitrary interior point of K, increases. 1t is easy to show that this property is
independent of the choice of the point a. On the other hand, if K is the exterior of
C, the definition of the positive sense is reversed, so that the boundary point z moves
in the negative sense with respect to the interior of C. If, in particular, C is a straight
line, so that K is a half-plane, the positive direction on C with respect to X is defined
as above: it is the direction in which arg (z — a) increases when a is any interior
point of K. Intuitively, this means the following: if we set up the coordinate axes
in the z(= x + iy)-plane in the usual way (that is, so that the positive y-axis when
turned in a clockwise sense through 90° will coincide with the positive x-axis), then
the domain K remains to the left of the boundary when a point traverses the boundary
in the positive sense (cf. Exercise 15).
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C, and C,, themselves belong to these pencils, however, and there exists one
value of A which forces (3.14) to map C, onto C,.. We determine this value
of A in the following way.

Let z, and w, be arbitrary points on the circles C, and C,, respectively.
If A is calculated from the equation

wl'—WO Z]’—Zo
Wy — wg z, —z¢

(3.14)

and substituted into (3.14), we can see that the transformation (3.14) maps
the circle C, onto the circle C,,. w, is thereby the image of z,, and the mapping
problem is solved.

This course of reasoning shows that we can find a conformal mapping of
the domain K, onto the domain K,, in which we can choose two pairs of corre-
sponding points: a pair of interior points (zy, wy) and a pair of boundary
points (z,, w;). Once they are picked, the linear mapping (3.14) is uniquely
determined.

One may ask whether there exist analytic functions w = w(z) other than
linear transformations which perform this conformal mapping, under the side
conditions mentioned above. Later (Section 9.16) we shall show that there
are no others. The linear transformation determined above is therefore the
only solution of the mapping problem.

3.9. The Conformal Mapping of the Unit Disk onto Itself
We shall now consider in more detail the mapping problem posed in Section
3.8, for the special case in which K, and K, are the unit disks |z| £ 1, |w| = 1.

then of the form (3.14), where
- calculation of the symmetric
1, arg z§ = arg z,, so that

L
Vo

2, (3.15)

cn

- ZoZ
_f0% 1.
- 202

nd if and only if the constant

another. The transformation we are seeking is
the constant A is still to be determined. In the
points of z, and w, we observe that |z,| |z§| =

Zg = — W,
0 zo9

%k 1 *
0

-t )]

Equation (3.14) therefore becomes

w— Wo _ Z—2Z

1—wow 11— 3
in which the constant n = AZy/w,. If |z] = 1, th
1-
1-
Hence, the circles |z| = 1 and |w| = 1 correspc
7 is unimodular (that is, has modulus 1).

Z"—‘Zol_

2Z — zo2]
1 - ioz' N

l—iozl_
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Formula (3.15) therefore embraces all the linear transformations which
map the unit disk onto itself and make the interior points z, and w, correspond.

3.10.
If, in particular, we choose wy = 0, then
_z—1z
w= K 1-— foz

defines a mapping of the disk |[z| £ 1 onto the disk |w| £ 1, which carries
the point z, to the origin. We can also write this transformation in the form
az+ b
W= ;
bz+a

(3.16)

here a, b are arbitrary complex numbers with |6| < |a|. Formula (3.16) arises
when we set = a/a and z, = —b/a. It therefore embraces (under the condi-
tion |b| < |a]) all (directly) conformal mappings of the unit disk onto itself.
Let us compute the fixed points of this transformation. We obtain these
whenz =w = {:
b~ (@—-at—-b=0.

If we put a = « + iB, then a — @ = 2iB (B real), and the fixed points are

therefore
iB + V|b]* — B?
{2 = —

For |b| = |B| (# 0) there is only one fixed point, {, = {, = { = iB/b,
which lies on the circumference of the unit disk: |{| = 1. The mapping is
parabolic. 4

For |b| > |B| there are two distinct fixed points, { = {,, {;, which both
lie on the unit circle:

2 + b 2 __ A2
op =g ==y,
The mapping is hyperbolic.
For |b| < |B|, finally, the fixed points are

2= 5B+ V= TOP).

Both points lie upon the same straight line through the origin and are
symmetric with respect to the unit circle. The mapping is elliptic.

In the parabolic mapping, the circles which go through the fixed point
and which are tangent to the unit circle (the so-called oricycles) are invariant,
while, in the hyperbolic case, the Steiner circlés of second kind through the
fixed points (the Aypercycles) and, in the elliptic case, the circles of first kind
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about the fixed points (the cycles), are invariant. From our previous dis-
cussion, it then follows that there is, for each case, a flow along the designated
circles (see Fig. 7).

{1

Oricycle Hypercycle Cycle
Figure 7

3.11. Conformal Self-Mappings of the Unit Disk and Non-Euclidean Geometry
If we write (3.15) in the form

w — Wo _ 1 e Wow
Z — Zg 1 —_ z-oz ’
we then get, for z — z, w = w(z) — w(z,) = w,,
dw _ 1-— [wol?
dz =TT |z
If we take the absolute value on both sides of this equation, we have
ldw| |z
1= |wol? 1 — |z

Under a conformal mapping of the unit disk onto itself the differential
expression
|dz|

do = T— |}

therefore remains invariant.

In the terminology of Henri Poincaré (1854-1912) do defines the ‘“‘hyper-
bolic length” of an element of arc dz at the point z (|z| < 1). In this metric,
a regular curve which joins the points z, and z, and lies within the unit disk

has the length
f” do = f 2l 3.17)

z=24 2=y 1 — [2]?

If we subject the curve to an arbitrary transformation w = S(z) which
maps the unit disk conformally onto itself, the hyperbolic length of the curve
remains fixed. This fact allows us to determine the geodesic, that is, the
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shortest path—in the given metric—which joins two points. The path must
be chosen in such a way that the integral (3.17) extended over it is minimized.
We can solve this problem in the calculus of variations directly by use of an
elementary method based upon the invariance of
the hyperbolic length.

First, we map the unit disk conformally onto
itself by a function w = S(z) which carries the
point z, into the origin and z, into the point
p (0 <p < 1) on the real axis. Since the “arc
length” is preserved under this mapping, the
problem is reduced to that of determining the
shortest “‘distance” between the points z = 0
and z = p. We claim that the shortest distance
is associated with the straight line path along the
segment (0, p) of the real axis. If we set |z| = ¢, then |dz| Z |dt|, and
accordingly (Fig. 8),

P P P P
o -

Z= z=01’“t2= z=01—t2 ¢=01"‘t2

Figure 8

The shortest distance is obtained precisely when the arc (0, p) coincides with
the segment (0, p).

The segment (0, p) is therefore the path of shortest length between the
points z = 0 and z = p; its length is (1/2) log [(1 + p)/(1 — p)]. The path of
shortest length between two arbitrary points z; and z, (|z,| < 1, v =1, 2)
is therefore the circular arc z,z, which maps onto the segment (0, p) under
the transformation S(z). This arc intersects the circumference of the unit
disk orthogonally. It is uniquely determined by this property, once the points
z, and z, are given.

3.12,

If we conceive of the points z in the unit disk (Jz| < 1) as “points” in this
metric and the circular arcs which are orthogonal to the unit circle as “lines”,
then the rules of the non-Euclidean (hyperbolic) geometry of Bolyai and
Lobachevsky apply in the resulting “plane”, provided that we look upon
two “segments” and two “angles” as equal when they can be transformed
into one another by a conformal self-mapping S(z) of the unit disk.t

We can easily show that the congruence axioms of plane Euclidean
geometry hold here, as well as the remaining Euclidean axioms (for example,
“through any two distinct points there is one and only one line”), with one

t The angle of intersection between two curves is therefore the same in the Euclidean
and in the non-Euclidean metrics. But the arc lengths are different from one another,
as (3.17) shows.
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single exception: the parallel axiom. One sees immediately that, if a line L
is given, then, through every point P not on L, there pass infinitely many
“lines” which do not intersect L. They lie in a zone formed by two extreme
“lines” through P which “point in the same

direction” as L. The latter are represented in
Fig. 9 by the ‘“parallels” to L; that is, the ,
circular arcs which are tangent at the unit circle ‘

to the arc which represents the given “line” L. "‘
The boundary of the unit disk represents
the “infinitely distant”, or the ‘“horizon™, since
the distance of a point z from the origin,
1+ 2|
o1 Figure 9

exceeds all bounds when z approaches the boundary |z| = 1.

With the aid of this so-called “Poincaré model” we are able to obtain an
intuitive insight into the rules of non-Euclidean geometry.

Now let us turn our attention to the figures which represent circular arcs
in the unit disk.

As already mentioned, circular arcs which meet the unit circle |z| = 1
orthogonally represent non-Euclidean lines. Let us now consider a “pencil
of lines” (L) through a given point z = a {|a] < 1). The corresponding circles
intersect one another at the point z = 1/ which is symmetric to a with respect
to the unit circle, and the curves which intersect these circles at right angles
(the orthogonal trajectories) are Steiner circles of the first kind about the
symmetric points. If these circles lie within the unit disk |z| < 1, they represent
non-Euclidean circles or cycles. Like the circles of Euclidean geometry, each
cycle is the locus of points which have the same (non-Euclidean) distance

from the “center” z = a.

Figure 10

In Euclidean geometry, the locus of points at a fixed distance from a
given line constitutes a parallel to the given line. This no longer holds in the
non-Euclidean case. These loci, the so-called “contour-lines” or hypercycles,
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are represented by circular arcs which intersect the given “line” L at its two
“infinitely distant” points on the unit circle. The “contour-lines” are not
orthogonal to the circle |z| = 1; hence, they are not “lines” in the non-Euclidean
geometry.

The orthogonal trajectories of a family of parallels in Euclidean geometry
are likewise parallel lines. In non-Euclidean geometry this is no longer so.
Let us consider a “pencil of lines” which is made up of “lines” L which are
“parallels” to one another. They are therefore circular arcs L which are
orthogonal to the boundary of the unit disk at the point { (|{} = 1). Their
orthogonal trajectories are the circles which are tangent at { to the unit circle
{z] = 1 from within. These are neither cycles nor hypercycles, but represent a
third kind of non-Euclidean “circle”: oricycles.

The conformal mappings S of the unit disk onto itself represent motions
of the non-Euclidean plane (|z| < 1). The elliptic mappings S correspond to
“rotations” about the center (fixed point) {, = a; the streamlines are, in this
case, cycles. To the Euclidean parallel displacements there correspond two
kinds of “displacements” in the non-Euclidean geometry. The first kind is
made up of the Ayperbolic transformations under which the streamlines are
hypercycles joining the fixed points {; and {,. The second kind consists of the
parabolic transformations; the flow occurs here along the oricycles whose
“infinitely distant” point is the fixed point { (|| = 1).

From the foregoing remarks, it is clear that the phenomena of non-
Euclidean plane geometry are more varied than those of Euclidean geometry.
We direct the reader to the exercises at the end of the chapter.

§3. STEREOGRAPHIC PROJECTION

3.13. Mapping of the z-Plane onto the Riemann Sphere

By the introduction of the point at infinity we succeeded in making the linear
transformations one-to-one in the entire closed plane. The distinguished
position afforded that point disappears when, following Riemann, we map
the complex plane onto the surface of the sphere.

Let us consider a sphere which is tangent to the z-plane at the origin O.
The diameter of the sphere shall have the length p; the point at the opposite
end of the diameter through O we shall label P.

We associate to each point 4 of the complex plane that point 4’ of the
sphere where the segment PA penetrates the surface of the sphere. If the point
A goes off to infinity, 4’ goes to the “north pole”, P, of the sphere, and con-
versely. If we associate the point at infinity with the north pole P, then the
surface of the sphere is mapped in a one-to-one way onto the plane. This
mapping of the surface of the sphere onto the plane is called stereographic
projection.

The “meridians” of the sphere correspond to the lines of the z-plane
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which pass through O. Suppose that y is a line of the z-plane which does
not pass through O. The rays drawn from the pole P to the points of the
line y form a plane, and this plane cuts the sphere in a circle o’ through P.
The tangent to o’ at the point P is parallel to v, since it is the line of inter-
section of the plane through y and the tangent plane to the sphere at P (which
is parallel to the z-plane). Two lines y, and v, of the z-plane which intersect
at the point 4 correspond to two circles y; and y; on the sphere, and these
circles intersect at A’, the image of 4, and again at P. The angle between the
circular arcs at 4’ has the same magnitude as the angle at P, and therefore the
same magnitude as the angle between the lines v, and y,. Since, under the
mapping of a curve onto the sphere, its tangent maps onto a circle which is in
contact with the image curve, we conclude that corresponding angles in the
z-plane and on the Riemann sphere will have the same magnitude.

P

Fi 11
P igure

The mapping of the z-plane onto the Riemann sphere is therefore angle-
preserving.

Let r and ¢ be the polar coordinates of a point A4 in the z-plane, and let A
and 6 be the longitude and latitude of its image point 4°. For the prime
meridian (the meridian of zero longitude) we choose the meridian which maps
onto the x-axis. Then

¢=A  r=ptany

(see Fig. 11). Since, however, 6 + /2 = 2, or y = 6/2 + =/4, the equations
of the mapping turn out to be

0 =
b= r=ptan(§+z)ﬂ-

Let a and a’ be the distances of the points A and A’, respectively, from the
pole P. From Fig. 11, it is apparent that aa’ = p?, or

N

a’=P-—-¢
a
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We thus obtain the mapping of the z-plane onto the Riemann sphere by
reflection in a sphere whose center is P and whose radius is p.

From the above it follows that every linear transformation of the z-plane
corresponds to a one-to-one, angle-preserving mapping of the Riemann
sphere onto itself.

3.14. Rotations of the Riemann Sphere

As an application, we ask when a linear transformation represents a rotation
of the Riemann sphere. In this instance, we set p = 1. In order that the map-
ping be a rotation of the sphere about a diameter, the end-points of every
diameter must be mapped into end-points of a diameter. Let z be an arbitrary
point in the z-plane, and let z* be the point in the z-plane which is the pre-image
of the point on the sphere that is diametrically opposite to the image point
of z. Then, according to Fig. 12,

argz* = argz + w, |zz*¥| = 1.
P
Figure 12
z 0 z*
From this it follows that
* 1
Z¥=—=.
z
Together with the equation
az +b
Y=z+d (3.18)

we must also have
1 _ @) +b —a+bz
w (/D) +d —c+di

If we take conjugates and solve for w, we obtain

dz — ¢
W= —— .
—bz + a
This, together with (3.18), gives
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whence it follows that |a| = |d|, and therefore
d=ed, c¢=—eb, where |e/=1

Since we can write 1/e as the quotient of two conjugate complex numbers,
1/e = u/@, we obtain, finally,
az+ b
w= i (3.19)
where we have written a and b in place of ua and ub, respectively.

If, conversely, a and b are two arbitrary complex numbers, then the
linear transformation (3.19) represents a rotation of the sphere. We refer to
Exercises 35 and 36 for the proof.

Formula (3.19) therefore expresses the general form of a rotation of the
sphere.

It can be proved by elementary geometry that the most general congruence
mapping (motion) of the surface of the sphere amounts to a rotation about a
suitably chosen axis.

EXERCISES ON CHAPTER 3

1. Show that the linear transformations (3.1) satisfy the postulates (1) and
(2) for a group (Section 2.5).

2. Show that the linear transformation which carries the points z, and z,
(# =) into the points w, and w, = oo, respectively, maps the Steiner circles
belonging to z, and z, into circles about w, and straight lines through w,.

3. Find the linear transformation which carries (a) the points z = 0, 1, i into
the points w = —1, — i, 0; (b) the points z = —1, 1, i into the points w = 0,
3, .

4. A linear transformation maps the points z,, z,, z;, into the points w,, w,,
ws. Determine, geometrically, the point w which corresponds to a given
point z.

5. Which transformations (3.1) map the plane congruently onto itself?

6. What linear transformation corresponds to a rotation of the z-plane
through 90° about the point z = 27

7. Map the z-plane congruently onto the w-plane in such a way that the
points z = 2, 3 and w = 2i, i correspond to one another. By what sort of
rotation can this mapping be geometrically defined ?

8. Determine the similarity transformation which carries the pointsz = 1, 3
into the points w = —1, —2 + i, and decompose it into a rotation and a
perspectivity with the same point as center.

9. Show that under reflection in a circle about O (a) every line / which does
not pass through O goes over into a circle through O whose tangent at O is
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parallel to /, (b) every circle K drawn through O goes over into a line which is
parallel to the tangent to K at O, (c) every circle which does not pass through
O goes over into a circle homothetic with respect to O to the given circle.
10. Which circles correspond to the straight lines y = x, y = x/2 and to the
unit circle when the z-plane (z = x + iy) is reflected in the circle [z — 2| = 1?
Also construct the circles geometrically.
11. Show that there exists a linear transformation which maps four arbitrarily
given points onto the points 1, —1, k, —k, where k depends upon the given
points. How many different solutions are there to this problem, and how
are they related ?
12. Determine the type of the following linear transformations:
:_ z 2z 3z—4 oz

W1 Yoo YTro1e Yoo
13. Show that every involutory linear transformation is elliptic.
14, Separate the linear transformation (3.1) into a similarity transformation
and an inversion.
Hint. First bring the transformation into the form w — wy = of/(z — zy),
where z, = —d/c, wy = a/c and « is a constant.
15. Let a be a point in the interior of the circle |z — zp| = p, so that
la — zy| < p. Prove that if z moves along the circle in such a way that
0 = arg (z — z,) increases, then ¢ = arg (z — a) also increases.
Hint. If |a — zy| = r (< p), arg (@ — z) = «, then
psin @ — rsina and d¢=p(p—rcos(0—a))d0'
pcosf —rcosa |z — a|?
From this it is apparent that df and d¢ have the same sign.
16. Map the half-plane Re z < 4 conformally onto the unit disk {w| < 1 in
such a way that the points z = 0, » correspond to the points w=0,—1. Divide
up the w-plane by the coordinate axes and the bisectors of the angles between
them, draw the corresponding curves in the z-plane, and investigate how the
different sections of the two planes are associated.
17. Suppose that there are given two circles in the z-plane which have no
common points. Show that the domain bounded by these two circles can be
mapped onto an annulus whose boundary is made up of two concentric circles,
and that the annulus is uniquely determined up to a similarity transformation.
(The logarithm of the ratio of the radii of the image circles is termed the
modulus of the domain.)
18. Map the domain bounded by the circles |z| =1 and |z —3%| =3
conformally onto an annulus whose outer boundary is the circle |w| = 1.
How large is the radius of the inner circle?

Answer. 2 — V/3.

¢ = arc tan
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19. Reflect the point z in a given circle K|, and reflect the image of zin another
fixed circle K;,. Show that the resulting point w is related to the point z by a
linear transformation and investigate how the type of this transformation
depends upon the relative position of the circles K, and K.

20. Let K, and K, be two circles, one of which lies completely inside the
other. Suppose that there exists a circle k; with the following properties:
(a) it is tangent to K, and K; (b) if one draws a circle k, which is tangent to
K, K,, and k,, and then a circle k; which is tangent to K, K,, and k,, etc.,
a circle k, is eventually obtained which is tangent to K, K;, k,_, and to the
first circle k,, so that one has a closed chain of mutually tangent circles &,
k,, . .., k, which are all tangent to the circles K| and K,. Show that under
this assumption the chain of circles always closes, no matter which of the
circles tangent to K, and K, is taken as the initial circle k.

21. Prove that the sum of the angles « + 8 + y of a non-Euclidean triangle
in the Poincaré model is always less than two right angles.

Hint. An arbitrary triangle can always be brought by a non-Euclidean
motion into such a position that one of its vertices lies at the origin.

22. Prove that the expression for are®length in the hyperbolic geometry of
the half-plane y = Im { > Ois
J.2)
%o 277

Hint., Map the disk |z| < 1 conformally onto the half-plane 5 > 0.

23. Prove that the so-called angular defect of a non-Euclidean triangle,
m— (¢ + B + ), is equal to quadruple the (non-Euclidean) area of the
triangle.

Hint. 1n the Poincaré model the non-Euclidean element of area is computed
from the expression

_ af _dF

TP

where df is the ordinary Euclidean element of area at the point z = x + iy
of the disk |z| < 1 (df = dx dy) and dF is the element of area at the point
{ = € + inin the half-plane n > 0 (dF = d¢ dy).

It is simplest to treat first the case of a triangle in the half-plane n > 0
having one vertex at { = c. An arbitrary triangle can be transformed by a
non-Euclidean motion into a triangle which has two vertices 4 and B on a
line ¢ = const. If a parallel to the imaginary axis is drawn through the third
vertex C, the problem reduces to the special case treated above.

dw

24. Determine the (non-Euclidean) area of a triangle whose angles are all 0.

25. Prove that in the Poincaré model of non-Euclidean geometry the normal
from a point a to the line L is the shortest distance from a to L.
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26. Draw the normal N from a point z to a “line” L and two parallels through
z. Calculate the angle between the two parallels with the aid of the (non-
Euclidean) length of the normal N.

Hint. Thereisno restriction in taking for L the diameter (—1, +1) and choosing
z to lie on the imaginary axis.
27. Show that if the sum of the angles of a circular triangle ABC is smaller
than 7, then the sides of the triangle have a common orthocircle.
Hint. Make a linear transformation which carries the circles AB and AC
into straight lines.
28. Show that if the sum of the angles in a circular triangle is equal to =, then
the sides intersect at a common point.
Hint. Compare Exercise 27.
29. Letz, and z, be two points in the z-plane. Prove that the (chordal) distance
between their image points on the Riemann sphere is
|2y — 2] ,

V(A + 2,0 + [z,

when the diameter of the Riemann sphere has length one.

30. Show that the differential expression |dz|/(1 + |z|?), which represents the
length of the element of arc on the Riemann sphere at the point which corre-
sponds to the point z in the plane, is invariant under the transformation (3.19).

31. Determine by use of the differential expression given in the previous
exercise and the procedure of Section 3.11 the shortest distance between two
points on the Riemann sphere.

32. Prove that reflection in a sphere transforms (a) every plane which does
not go through the center O into a sphere through O whose tangent plane at
O is parallel to the given plane, (b) every sphere which does not go through
O into a sphere which is homothetic to the given sphere with respect to O.

Hint. One can proceed in the same way as with the corresponding theorems
concerning reflection in the plane (Exercise 9).

33. Prove that every circle in the z-plane cofresponds to a circle on the
Riemann sphere which does not pass through the pole P, and conversely.

34. Derive formula (3.16) in the way in which formula (3.19) was derived,
bearing in mind that under a conformal mapping of the unit disk onto itself
symmetric points z and z* = 1/Z go over into symmetric points w and
w* = 1/w.

35. Let a and b be two arbitrary complex numbers. Prove that the trans-
formation (3.19) is elliptic and that its fixed points correspond to the opposite
ends of a diameter on the Riemann sphere.
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36. Prove that if the fixed points of an elliptic transformation map onto the
opposite ends of a diameter on the Riemann sphere, then this transformation
corresponds to a rotation of the Riemann sphere about the said diameter.

37. Prove that reflection in a sphere is an angle-preserving transformation.

38. Show that the hyperbolic distance between the points z; and z,
(Iz)], |22} < 1) is given by the formula % log (z,, z,, {;, {;), where {; and
8, (44| = |&,] = 1) are the “infinitely distant” points on the “line”” L through
z,, Z,, situated on L in the order {5, z,, z,, {,.

Hint. The mapping S (Section 3.11) which carries z, to the origin and z,
to the point p takes {, to —1 and {, to +1. By the invariance of the cross-ratio,
(215 22, Ch CZ) = (0, p>+1, - =0+ P)/(l - P)-

39. Prove that the constant A in Eq. (3.9) satisfies the equation A + 1/A + 2 =
(a + d)*/(ad — bc), where a, b, ¢, d are the constants appearing in (3.1).

Hint. By Section 3.2, A = (¢{; + d)/(c{, + d); {, and {, can be calculated
explicitly from (3.6).

40. What values does the function o defined by the equation o + 4 =
(a + d)*/(ad — bc) assume when the transformation (3.1) is (a) elliptic,
(b) hyperbolic, (c) loxodromic, (d) parabolic? What is the connection between
o and the discriminant 4 (cf. Eq. 3.7)?



CHAPTER 4

MAPPING BY RATIONAL
FUNCTIONS OF SECOND ORDER

4.1. Reduction to the Function w = z2

A rational function of second order has the general form

_P(z)=a022+alz+a2, @1
Q@) byz*> + bz + b, ’

where at least one of the coefficients a,, by does not vanish, and the numerator

and denominator have no common zeros. In what follows, we shall show

that by use of linear transformations one can always reduce (4.1) to the form
w=z2:

Equation (4.1) can be written as
w(w) = (§(2)% “4.2)

where w and { are certain linear transformations of the variables w and z,

respectively.
4.2,
We shall carry out the proof in three steps.

1) Suppose that w(z) is a polynomial (Q(z) = b, # 0). Then

w(z) = ¢gz® + ¢z + ¢, (co # 0).
By completing the square, we obtain
w = colz — z0)? + W,

where z, and w, are constants. Thus, if we set w = (w — wy)/cq, { = z — 2,
we get an equation of the form (4.2).

2) Suppose the denominator is a perfect square: Q(z) = bo(z — z,)*>. By
expanding P into powers of z — z, we obtain

P c c

- é - (z —021)2 + z "lz
Thus, if we replace 1/(z — z,) by a new variable, (2) reduces to the previous
case (1), and the required transformations are

w + ¢ (co # 0).
1

_Ww—W [ = 1

Co z— 2z
60

— Z,.
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3) There still remains the case in which the polynomial Q has one or two

simple zeros.
We form the derivative
, Az2 + 2Bz + C
w'(z) = ot “4.3)
where
_ ay by _ ap by & b, '
A= a, b, |’ B= a4, b, | C= a, b, 4.3)

At most one of these determinants can vanish. For the vanishing of two of
them would imply the vanishing of the third; thus the coefficients a and b
would be proportional, and w would reduce to a constant. But this is ruled
out by our assumption in (4.1).
The equation
Az? + 2Bz + C=0

is therefore of the first or second degree, and hence possesses at least one
root z = z,.

We claim that Q(z,) # 0. For otherwise, the function w(z) would have
a simple pole at z,, and therefore its derivative w’(z) would have a double
pole at z,, as the partial fraction expansion of w(z) shows. But, if Q(z,) = 0
we could cancel out a common factor z — z, in (4.3), in which case w’ would
be left with a simple pole at z;,. Hence the case Q(z,) = 0 cannot occur. From
this it follows that w'(zy) = 0

Let us write w(z,) = wy and form the difference

PG PGy _ HE)
@) = o = 5 T Blzo) ~ 0G0)00)

The function H(z) is a polynomial of at most second degree. Since the
numerator H vanishes at z = z,, it contains the linear factor z — z,,

H(z) = (z — zo)H,(2),

from which it follows that

W) —wo _ H@)
Z—=2 0(z0)0(2)

If we let z tend to z,, the left-hand side of (4.4) will converge to w'(zy) = 0
Hence H(zo) =0 and H, is divisible by z — z,. Since, however, H(z)
can be of degree at most two, we must have H = co(z — zy)* (¢o # 0),
H, = c¢y(z — zy). Therefore, by (4.4)

4.4)

—Qu)Q@ oy

w— -z
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We can now work with the right-hand side of this equation as we did in
case (2). By so doing, we can easily determine linear transformations w(w)

and {(z) such that
ww) = ({@))~

4.3. The Mapping z — w(z)

The nature of the mapping effected by a rational function of the second order
is revealed by (4.2). The function w = { maps the {-plane onto a two-sheeted
Riemann surface R,, having branch points of the first order at w = 0, ©. At
the corresponding points { = 0, « (and only at these) the mapping is not
conformal.

Now, by means of the inverse z = z({) of the linear transformation
{ = {(z), we go back from  to the variable z. This mapping is everywhere
conformal. Similarly, by inverting the equations w = w(w), we obtain a
second linear transformation, w = w*(w). Put z(0) = z,, z() = z, and
w*(0) = w;, w¥*(o) = w,. The mapping w = w(z) is generated when we
carry out the mappings: z - { - w — w in succession. Hence, the com-
posite mapping is conformal everywhere except at the points z,, z,. The
image of the z-plane is a two-sheeted Riemann surface R,, with branch points
of the first order at w, = w(z;), w, = w(z,). We can construct the surface R,
by slitting the w-plane along a curve /,, which joins the branch points w, and
w,, and then superposing this slit plane on a replica of itself in such a way
that the opposing edges of the /,-slit lying on different sheets are joined
together in a cross-wise fashion.

The mapping z — w therefore has very much the same structure as the
mapping w = z2. The branch points w = 0, o are merely shifted to w = w,,
w,, and the pre-images z = 0,  of these branch points are shifted to z = z,,
z,. All this becomes particularly clear if one thinks in terms of the Riemann
spheres associated with the z- and w-planes, instead of the planes themselves
(cf. Section 3.13).

4.4.

The notation introduced above allows us to bring (4.2) into a simple analytic
form. Since the linear mapping z — { carries the points z = z,, z, into the
points { = 0, , it is of the form

zZ— 2
zZ— 2

(=« (o a constant # 0),

provided z, and z, are both finite. In the same way

(B a constant  0),



HIGHER-ORDER RATIONAL FUNCTIONS 63

Figure 13
Thus (4.2) assumes the form
w—w | (z—2z)?
Lo (z = 22) O £ 0). @.5)

It is easy to see how these formulas are altered when one of the points z,, z,,
wy, W, is equal to .
‘From (4.5) it follows that

— — 2
|W wll — ,)‘I (|Z zll) ,

[w — w,| |z — 2z,

w—w z—z
arg —— = arg A + 2 arg !
w—w, z -z,

Thus the two families of Steiner circles with limiting points z, and z, (cf.
Section 3.3) are transformed under the mapping (4.5) into the corresponding
families of Steiner circles with limiting points w, and w,. If z traverses once
a circle of the first kind, then w will describe the corresponding circle twice.
If z goes along a circle C; of the second kind from z, to z,, then w goes along
the image circle C,, from w, to w,. But if z continues further and goes along
complementary arc z,z,, then w will retrace the same arc of C,, in the opposite
direction w,w,.

Were we to choose the circular arc w,w, of C,, as the curve [, in the
construction of the Riemann surface described in Section 4.3, one sheet of
the surface would correspond to the interior of the circle C, while the other
sheet would correspond to the exterior of this circle.

4.5. A Remark about Rational Functions of Higher Order

If w(z) is a rational function of order = 3, it cannot, in general, be brought
into the special form

YW (z - z‘)" (4.6)

w— w, zZ— Z
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by means of linear transformations { = {(z), w = w(w) analogous to (4.5).
One can see this already in the case of a polynomial of third degree, by the
example w = z3 — 3z. Were this to have the representation (4.6), z, would
be a third-order zero of w — wy; this, however, is impossible, since all of the
zeros of w’ are of the first order.

We shall reconsider this question in greater detail in Chapter 9.

EXERCISES ON CHAPTER 4

1. Map the z-plane, slit along the positive real axis from 1 to «, conformally
onto the unit disk in such a way that the points 0 and 1 remain fixed.

2. Investigate the mapping by the function

w=(1+z)
n

for positive integer values of .
3. Investigate the mapping by the function w = 4(z + 1/z).

4. Map the z-plane, slit along the positive real axis from 1 to « and along
the negative real axis from —1 to —c, conformally onto the unit disk in such
a way that 0 and 1 are fixed points.

5. Map the z-plane, slit along the line segment joining the two points @ and b,
conformally onto the unit disk in such a way that the points z = g, « corre-
spond to the points w = ~1, 0.



CHAPTER $§

THE EXPONENTIAL FUNCTION
AND ITS INVERSE. THE GENERAL POWER

§1. DEFINITION AND BASIC
PROPERTIES OF THE EXPONENTIAL FUNCTION

5.1. Extension of the Real Exponential into the Complex Domain

For real values of x
. x\"
lim (1 + —) = e*,
n—o n

We shall take this property as the basis for our definition of the exponential
function in the complex domain.

Let us replace x by the complex number z = x + iy; we shall show that
the resulting sequence

_ (1 + g)" n=1,2..) (5.1)

converges as n — .

A necessary and sufficient condition for the existence of a finite, non-zero
limit of the sequence (5.1) is that both [c,| and arg ¢, tend to definite finite
values as n — oo, the first of which is positive. If we replace z by x -+ iy in

(5.1) we obtain
2 n/2
{03+ G
n n
so that

_ x2+y 2x I 1
loglc,,|——log(1+2 T3 )_i{n-’_[ﬁi]}_x-i_[n]' (5.2)

x Ly
|c,,|=|l+—+1¥
n n

The expression [1/n*] denotes a function of #» which, when multiplied by n*,
remains bounded as » ~> «. From (5.2) it is apparent that log |c,| — x.
Hence,

lim [c,| = €*.

n—>0

The argument of ¢, is

Y
n+x

arg ¢, = narg (1 + Z) =n Arc tan (5.3)

65



66 THE EXPONENTIAL FUNCTION AND ITS INVERSE §1

Here, for sufficiently large n, the principal branch of the function arc tan,
assuming values in the interval (—=/2, 7/2), can be taken. From Eq. (5.3) it

follows that
lim arg ¢, = y.

n—>
Hence, for every finite value of z = x + iy, the limit
n
lim (1 + E) = e*(cos y + isiny) 5.4
n—sc0 n
exists.

We now define the function e* by means of the formula

¢ = lim (1 + f) : (5.5)
n—s n
From (5.4) and (5.5) it follows that
& = *t = ¢¥(cos y + isin y), (5.6)
and consequently ;
le?] = e, arg e =y, 5.7

5.2. Properties of the Exponential Function

For real values of the variable z the exponential function is always different
from zero. This property continues to hold for complex values of z, since, by
(5.7), |e*] = e* > 0.

If a function of z approaches a limit when z tends to infinity along some
definite path, the limit is called an asymptotic value of the function along this
path. According to the relations (5.7), the exponential function possesses an
asymptotic value along every path z = z(¢) = x(¢) + iy(¢) (0 £ t < ») for
which |x(¢)| -> © as # — . This asymptotic value is o if x(¢) — -+, and
itis 0 if x(z) — —.

Next we may verify that the addition formula for the exponential function
retains its validity. If z, = x; + iy, z, = x, + iy,, then by (5.6)

€147 = e¥*2[cos (y; + ¥,) + isin (y; + )]
On the other hand,
€% ez = " e*(cos y, + i sin y,)(cos y, + isin y,)
= e"**[cos (y, + y;) + isin (p, + y2)].

The addition theorem
ei1tiz = g™ g2 (5.8

therefore holds for complex values of z, and z,.
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From (5.8) and (5.6) it follows that
eer=e"=1,
hence,

e =

Sl =

When the addition formula is applied to a sum involving »n terms, we
obtain
() = em, (5.9)

where 7 is a positive integer. If we extend the definitions

to complex values of a, then formula (5.9) holds for all integer values of n.
When z is chosen, in (5.6), to be purely imaginary, z = iy or z = —iy, we
obtain Euler’s formulas:

e”=cosy+isiny, e =cosy—isiny (5:10)
and
iy ~iy . e
cos y = e____+2e s siny = e__fg_ ’ (5.11)

Equations (5.10) and (5.9) imply de Moivre’s formula:
(cos ¢ + isin )" = (e'?)" = e'"® = cos n¢ + i sin ne.

These formulas can be used to express powers and products of sines and
cosines in terms of sines and cosines of multiple angles. For example,

cos'$ = (d‘%‘e‘j)s =} + ) + (e + e )
=} cos 3¢ + 3 cos ¢. A

Euler’s formulas offer a new and simple means of representing complex

numbers z:
z =r(cos ¢ + isin ) = re's.

If, for example, we set r = 1, = =, we obtain
ein — _1
For ¢ = n-2x it turns out that
en 2t = n=0,+1,+2,...).

These formulas exhibit a remarkable connection between the numbers e, ,
i, and —1.
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5.3. The Derivative of the Exponential Function

Since the real and imaginary parts of the exponential function are continuous,
the function itself is continuous. We are now going to show that e* possesses
a derivative for every value of z = x + iy.

Let us split the function w = e? into its real and imaginary parts:

w=u-+iv=-e"cosy + ie*siny.

The increment in the functions » and v that corresponds to an increment
Az = Ax + idy in the variable z can be written as

Au = e*cos y Ax — e*sin y 4y + p(p),
Adv = e*siny Ax + e*cos y 4y + p(p),

where p = |4z|, and where (p) denotes a function of p which tends to zero
when p tends to zero. Thus we obtain for the increment of the function w
the expression

Aw = du + idv = e* cos y (Ax + idy) — e*sin y (dy — idx) + p(p)
= e*(cos y + isin y)Az + Az(4z).

From this it follows that
dw!_det _ .
dzy dz ’
and the differentiation formula from the real case is the same in the complex
domain. Consequently, the exponential function is analytic in the whole z-plane
(z # «). Such functions are known as entire (or integral) functions.
From the differentiation formula it follows at once that the exponential
function possesses derivatives of all orders, and that each of these derivatives
is equal to e*.

5.4. The Periodicity of the Exponential Function

Up to now we have discussed a number of properties of the exponential
function which turn out to hold for both real and complex values of the
independent variable. We now come to a new and remarkable property which
appears only when we make the transition to complex values of z.
When z changes by an amount »n-27i (n = +1,42,...), € remains
unchanged since
ertn-2ml . o7 gn-2ml e, (512)

The exponential function is therefore periadic, with 2mi as its period.

In general, a function w = f(z) is called periodic if there exists a constant
w # 0 (a period) with the property that for every value of z

fz+w)=1().
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If w is a period, then nw is also a period for n an arbitrary integer. For
positive values of  this can be proved by induction. For negative values of n,
it can be reduced to the case of positive values by setting n = —k, and writing

fiz—kw)=f(z— ko + ko) =f(2).

If the function f(z) possesses no periods besides those of the form nw
(n = £1, £2, . . .), the function is said to be simply periodic, and the number
w is said to be its primitive period.

5.5.

According to (5.12), n-2wi is a period of the exponential function for every
integer n. We shall now show that this function possesses no further periods.
Letz, = x, + iy,and z, = x, + iy, be two values of z at which the exponential
function assumes the same values:

e = e*2,
Then
es
{= - e = |, (5.13)
so that
¢ = en = 1.

Since x, and x, are real, this is possible only for x, — x, = 0, or x; = x,.
According to (5.13), we also have that

arg{ =y, — y, = n-2m
Hence, z, — z, = n*2mi, or
Z) = 25 + n-2mi.

Accordingly, all the periods of the exponential function are multiples of the
period 2wi, which is thus the primitive period.

The points z + n-2mi (n = 0, +1, 42, . . .} are said to be equivalent. For
each value of z, one of these points lies in the strip

0<y<2nm (5.14)

bounded by the parallel lines y = 0 and y = 2#. In this period-strip the
function therefore assumes every value which it is capable of assuming,.

The periodicity of the exponential function does not appear in the real
domain, since the periods of the function are all imaginary.
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§2. MAPPING BY MEANS OF THE
EXPONENTIAL FUNCTION. THE LOGARITHM

5.6. The Riemann Surface of the Exponential Function

Now let us turn to the mapping effected by the exponential function and
consider those curves along which the modulus or the argument of w = €*
is constant.

Since |e?| = e, |w| is constant on every line parallel to the imaginary axis,
but its values increase as we move out in the direction of the positive x-axis.
To the lines parallel to the imaginary axis in the z-plane therefore there
correspond circles about the origin in the w-plane. In particular, |w] — o as
x — o and |w| - 0as x — —oo.

Since arg w = arg ¢* = y remains constant when z varies along lines
parallel to the real axis

y =d, (5.15)
every such line in the z-plane corresponds to a ray emanating from the origin
in the w-plane. If the point z describes the line (5.15) from left toeight, w
describes the ray which is its image from the origin outwards to infinity. If d
increases from O to 27, so that the ray (5.15) sweeps out the strip (5.14),
the image ray rotates about the origin, beginning with the positive real axis,
through the angle 27. The function w = e* therefore maps the parallel strip
0 < y £ 27 onto the w-plane slit along the positive real axis in such a way
that the line y = 0 corresponds to the upper edge of the slit and the line y = 2=
corresponds its lower edge.

Since the function possesses the period 2, it maps every parallel strip

v2r Sy S (v+ )27 v=0%1,42,..) (5.16)
onto a replica of the w-plane slit in the same manner. The points z which differ
from one another by v-27i are thereby mapped onto the same point. One
thus obtains infinitely many w-planes, all slit in an identical way, of which
each represents the jmage of a parallel strip (5.16). These planes can be joined
together into an infinite-sheeted Riemann surface by joining the lower edge
of the slit on the y-th sheet to the upper edge on the (v + 1)-st sheet. The branch
points of the surface are 0 and «. All the sheets are joined together at these
branch points; the order of each branch point is therefore infinite.

The function w = ¢* maps the entire z-plane in a one-to-one way onto
the Riemann surface just described. Since dw/dz = €* # 0 everywhere, the
mapping is conformal at every finite point of the z-plane.

5.7. The Riemann Surface of the Exponential Function as the Limiting Case of
the Riemann Surfaces for Powers

The exponential function w = ¢7 is the limit of the rational functions

Wy = (1 + g) (5.17)
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when n — . In order to investigate the mapping effected by the function
(5.17), we perform it in two steps:

C=1+;219 wn=§n'

The first transformation amounts to a translation and a contraction. It carries
the point z = —n into the origin. The second transformation maps the {-plane
onto an n-sheeted Riemann surface with branch point at the origin. The
function (5.17) therefore maps the z-plane onto an n-sheeted Riemann surface
in such a way that the point z = —n replaces the origin as a branch point of
the surface. To each sector 0 < arg (z + n) < 2w/n corresponds an entire

n/n 4

—-n n=38 0 —-n n=32 0
' Figure 14

slit w-plane. As n increases, the vertex of the sector recedes more and more
to the left and the sector differs less and less from the parallel strip (5.14).
The mapping of an arbitrary finite region in the z-plane comes nearer and
nearer to the mapping by the exponential function. On any finite domain one
can therefore approximate the mapping furnished by the exponential function
with arbitrary precision by the mapping given by a rational function (5.17)
(cf. Exercise 7).

5.8. The Logarithm

Let us now determine the points z = x + iy at which e* assumes a given value
w = re'® # 0. The condition e* = w yields the equation

et = o¥ ol — o9,
This equation holds under the conditions
e=r and y=¢+k2r (k=0,+1,42,...). (5.18)

The first equation yields
x=1logr,
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where the logarithm of the positive number r has a well-defined real value.
Consequently,

z=1logr+ i(¢ + k-2w) = log |w| + iargw + k-2mi. (5.19)

The function e* assumes every value w # 0 at infinitely many places in the
z-plane which differ only by integer multiples of 27i. Each parallel strip
v 27 £ y < (v + 1)27 is a fundamental domain of the exponential function: to
every such fundamental domain there corresponds precisely one of the values
(5.19).

5.9.

We are thus led to the inverse of the exponential function, for which we retain
the notation log w. The logarithm is an infinitely multiple-valued function:

z=1logw=1log|w| +iargw+ k27w (k=0,+1,+2,...). (520)

The function z = log w maps the infinite-sheeted Riemann surface con-
structed in Section 5.6 onto the schlicht (that is, simply covered) z-plane. The
single-valued branch of the function given by the formula

log |w| + i arg w,

where 0 £ arg w < 2w, is designated as the principal branch of the logarithm.

If w describes a closed curve y in the w-plane which does not “wind”
about the origin, i.e. one for which the increment of arg w is equal to zero
when w describes the curve: 4, arg w = 0 (Exercise 10), then z returns to its
starting point. If, however, y does wind about the origin, so that
4, argw = k-27 (k # 0), then a new branch of the logarithm, z + k-2mi, is
obtained.

5.10. Rules for Calculating with the Logarithm

The familiar properties of the real logarithm also hold for the complex
logarithm. From (5.20) we see immediately that the real and imaginary parts

~of logw for w # 0 are conyinuous, and so the same is true for the function
log w itself.

We shall show that each branch of the function log w has a derivative at
every pointw # 0. We give to w the increment 4w and designate the resulting
increment of z by 4z. Then

4z -~ 1

dw ~ dw[dz’
The increment 4z — 0 when 4w ~> 0. But Aw/4z — dw/dz = €* = w # 0.
Hence, the function log w possesses the derivative

The rule for differentiation is thus the same as in the real case.
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In the neighborhood |w — wy| < po of any point wy = p, €' (p > 0),
every branch of log w is an analytic function.

From the addition theorem for the exponential function we obtain, as in
the real case, the relations:

log (w,w,) = log w, + log w,, log % = log w, — log w,,
2
provided one chooses the branches of the logarithm in a suitable way.

5.11. Problems of Conformal Mapping

Several interesting conformal mappings can be performed with the help of the
exponential function. For example, a parallel strip can be mapped onto a
disk. By means of a similarity transformation the strip can first be mapped
onto the strip

O<y<m

The function w = e carries this strip onto a half-plane. If we then map the
half-plane onto a disk by means of a linear transformation, we get the con-
formal mapping of the original strip onto a disk.

One can likewise map the domain bounded by two tangent circles con-
formally onto a disk. Indeed, if one first carries out any sort of linear trans-
formation which takes the point of tangency of the circles to «, the circles
will be mapped onto parallel lines and the domain bounded by them will
therefore be transformed into a parallel strip. One then proceeds as in the
first example.

§3. THE GENERAL POWER

5.12.

The general power
w = z#,

where p is an arbitrary complex constant, is defined with the aid of the
exponential function:

ZH = (e!°87)1 = gHrlosz, (5.21)
Setting u = « + iB gives us
oM = eo:loz]zl—ﬁargz et(ﬁlogleaargz)
and therefore

‘|z#| =exleslzi=Parez arg z¢ = Blog |z| + « arg z. (5.22)
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In general, both the modulus and the argument of the power are multiple-
valued functions. The modulus is single-valued only when 8 = 0, that is,
when the exponent u = « is real. Then

j2#] = [z~

5.13.

We want to examine somewhat more closely the case in which the exponent
is a rational real number: u = m/n (m and » positive integers). Then, accord-
ing to (5.22),

ol = 2] = lelmn, argw = arg 2 = T arg 2

We see from this that circles about the origin in the z-plane are mapped
into circles about the origin in the w-plane. Rays emanating from the origin
in the z-plane go over into rays of the same sort in the w-plane. Every angle
whose vertex lies at the origin is multiplied by m/n.

In the particular case when m = 1, u = 1/n, the z-plane slit along the
positive real axis corresponds to the sector

2
< < <X
0= argw = ”
of the w-plane. Hence, the function
w = zln (5.23)

effects a one-to-one mapping of the n-sheeted Riemann surface over the
z-plane with branch points of the (n — 1)-st order at the origin and at infinity
onto the schlicht w-plane. The function (5.23) is the inverse function w = A/z
of the function z = w", which we have already investigated explicitly in
Section 2.3.

In the general case, u = m/n, we have, by (5.21),

W= zmn — glmmlogz _ (e(l/n) lozz)m — (zl/n)m' (5.24)

The mapping effected by the function (5.24) can thus be broken into two
successive mappings: first, the mapping of an n-sheeted Riemann surface over
the z-plane onto the schlicht plane, followed by the mapping of the schlicht
plane onto an m-sheeted Riemann surface. The function (5.24) therefore maps
an n-sheeted Riemann surface over the z-plane in a one-to-one way onto an
m-sheeted Riemann surface over the w-plane. Both surfaces have 0 and «
as branch points. The mapping is, except at the branch points, everywhere
conformal.
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EXERCISES ON CHAPTER 5

1. Calculate the value of the function e® at the points z = —iw/2, 3in/4,
1-—2i
2. Change the following numbers into the form re'¢:

i 1 .3 . a+ib
3 Tptig,  1+2 o

3. At which points z does e® assume the values 2, —1,i,—i/2,—1 — i, 1 + 2i?

-3, 2i,

4. Show that the real and imaginary parts of the function e satisfy both
the Cauchy-Riemann equations and Laplace’s equation.

5. By use of Euler’s formulas, write cos® ¢, sin® ¢, and cos® ¢ sin? ¢ as
linear expressions in the sine and cosine of integer multiples of ¢.

6. Prove the formula
1 1
1 +2COS¢+200s2¢+---+2cosn¢=§11(n_'l'?)_‘ﬁ,
sin 3¢

7. Show that the limit

. z\"

lim (1 + —) = e?
n

R—>c0

holds uniformly in the disk |z] £ R, where R is an arbitrary positive number.

8. How does e* chari)ge when the point z goes off to infinity along a ray from
the origin ?

9. Determine which curves in the w-plane correspond to straight lines in
the z-plane under the mapping w = €7, and which curves in the z-plane corre-
spond to straight lines in the w-plane under this mapping.

10. Let z = z(r) # 0 be a continuous function of =+ (« £ 7 =< B) and denote
the curve z = z(7) by v. Show that arg z has a unique value at every point
of y, once a definite value for arg z at the point z(«x) has been established and
the curve is described in a continuous manner, starting at that point.

Hint. The interval (o, §) can be partitioned into subintervals (7,_;, 7,)
wv=1,...,n 1= a, r, = f)in such a way that |z(+") — z(7")| < d when 7’
and 7" belong to the same subinterval (,_;, 7,) and d = min |z(7)| in the
interval « £ 7 < B.

11. Determine the different values of the following logarithms:

log 1, / log (—3), log(—i), log(-1+1i), log(3+ 4i), log a—1b

a+ib’

12. Map that portion of the z-plane which lies outside the circles [z — 1| = 1
and |z + 1| = 1 conformally onto the exterior of the unit disk in the w-plane
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so that the points at infinity correspond to one another and the mapping is
symmetric in the coordinate axes.

Solution. w = i(e™* + 1)[(e""* — 1).

13. Investigate the mapping defined by the function w = log [(z — @)/(z — b)),
where a and b are two given complex numbers. Determine the locus of all
points for which the real part of the function assumes a prescribed value and
the locus of all points for which the imaginary part is constant.

14, Investigate how the branches of the function log [(z = a)/(z — b)] pass
from one to another as z moves about the plane.

15. Construct an infinite-sheeted Riemann surface over the z-plane with
branch points at 0 and «. Map that portion of the surface which lies inside
the circle |z] = p (> 1) conformally onto the unit disk in the w-plane in such
a way that the points z = 0 and w = 1 correspond and so that the point
w = 0 corresponds to the point z = 1 on the “principal sheet” (arg z = 0) of
the surface.

Solution. w = log z/log (z/p?), where the principal value of the function is to
be chosen at the point z = p on the principal sheet.

16. Map the portion of the Riemann surface considered in the preceding
problem that lies between the circles |z| = p; and |z| = p, (> p;) conformally
onto the unit disk in the w-plane in such away that the points z = V/p,p, = 2,
and z = p, correspond to the points w =0 and w = 1.

Solution.
w = ._l’(e(niIZh) log(z/z0) __ 1) /(e(ﬂiIZh) 103(:/70) + 1)’

where zo = ~/p1p; and h = % log p,/p,. The principal value of the function
log (z/z,) is to be chosen at the point z = z, on the principal sheet of the
surface.

17.. Map the surface of the sphere conformally onto a parallel strip in the
plane so that the meridians correspond to lines parallel to the imaginary axis
and the circles of latitude correspond to lines parallel to the real axis (the
Mercator projection).

Hint. Use stereographic projection.

18. Let w(z) be analytic and let w = p e¥, z = re'®. Prove that at every
point z 4 0 where w # 0 the Cauchy-Riemann equations can be written in the
form ,

_p op__

or r 9

o~ For
Hint. Consider the function log w(z).
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19. Which branches of the function z3/# assume the value —1 + i, and at what
points?
20. Determine the different values of the following expressions:

(_1)«/5, 21t a+ i)\/§’ it
21. What value does the function z! assume at the point z = —1, if one starts
with the principal value of the function at the point z = 1 (arg z = 0) and
allows z to rotate one and a half turns continuously about the origin in the
negative sense ?
22. Show that under the mapping w = z¥ (p = « + iff) the straight lines
arg z = const. and the circles |z| = const. correspond to logarithmic spirals
in the w-plane which intersect orthogonally.

23. Map the domain —7/6 < ’(;5 < /6 in the z-plane (z = r ') conformally
onto the unit disk |w| < 1 in such a way that the points z = 1, 0 go over into
the points w = 0, —1.

Solution. The mapping function is w = (23 - 1)/(z* + 1).

24. Determine the function which maps the circular sector —7/4 < ¢ < #/4,
r < 1, conformally onto the unit disk in the w-plane in such a way that the

points z = 0, 1/4/2 go over into the points w = —1, 0. How does this function
map the remaining portions of the plane?
Solution. w = —(2z* + 3z% — 2)/(2z* — 3z% — 2) is the required function.

25. Map the domain —h < y < h, x > 0 of the z-plane (z = x + iy) con-
formally onto the unit disk in the w-plane in such a way that the points z = 0,
a (a > 0) correspond to the points w = —1, 0.

Solution. The mapping function is

e'nz/h — 2k errz/2h —1
= enz/h + 2k eﬂz/Zh — 1

26. Map a domain bounded by two intersecting circular arcs conformally
onto the unit disk.

with k = L(em/2h — g~maith)




CHAPTER 6

THE TRIGONOMETRIC FUNCTIONS

§1. THE SINE AND COSINE

6.1. Extension of the Definition to Complex Values. Basic Properties

The elementary definitions of the trigonometric functions do not hold for
complex values of the argument. However, from the previous chapter, we
know that for all real values of z

e = cos z + isin z, e =cosz —isinz, 6.1)
from which it follows that

cos z eh e sin z e e
2 i 2i

(6.2)

We now define the cosine and sine for, complex values of z by means of the
Sormulas (6.2).

The formulas (6.1) then hold for all complex values of z.

The formulas (6.2) define the cosine and sine in terms of the complex
exponential function. Thus these functions possess a derivative at every point
z, and we see easily that

dcosz sin z dsinz cos z
dz ? dz ’

These two trigonometric functions are therefore analytic in the whole plane
z # o, and thus they are entire functions.

The other familiar properties and formulas of the sine and cosine are also
preserved. The defining equations (6.2) tell us that cos z is an even function
and that sin z is odd:

cos (—z) = cos z, sin (—z) = — sin z.

The addition theorems for the sine and cosine come out of (6.2) when we
78



§1 THE SINE AND COSINE 79

make the substitution z = z, + z, and apply the addition theorem for the
exponential function along with the formulas (6.1):

el — oiz1 pl22 = (cos z; + Isin z,)(cos z, + i sin z,)
= (cos z, €os z, — sin z, sin z,) + i(sin z, cos z, + cos z; sin z,),
e i=1+2) — (cos z, cos z, — sin z, sin z,) — i(sin z; cos z, -+ €OS z, sin z5).
From this it follows, by addition and subtraction, that

cos (z; + z,) = COS z, COS z, — sin z; sin z,, ©63)
sin (z; + z,) = sin z; cos z, + €Os 2, §in z,. '
We can obtain the other familiar trigonometric formulas from the addition
formulas (6.3). By setting z; = —z, = z, the first one yields

/7

sin?z + cos?z = 1.
or z, = —n/[2, z; = z we have

§ cos (z — %m) = sin z. (6.4)

Finally, when z, = z, z, = n-2m, n an integer, we get

cos (z + n+2w) = cos z, sin (z + n-27) = sin z.
The sine and cosine functions are thus periodic, with period 27, even for
complex values of z.

We shall show next that 2= is the primitive period. If w is an arbitrary
period of cos z, then for all z

cos (z + w) = cos z.
When we set z = 0 in this formula, we get
cosw =1, (6.5)
while for z.= —=/2 we have, in view of (6.4),
sinw = 0. 6.6)
Hence, by (6.5) and (6.6), we have
e =cosw+isinw=1.

But this can hold if and only if iw = k-2, orw = k-2 (k = 0, £1, £2, .. ).
All of the periods are thus multiples of 2w, so that 2 is the primitive period
of the cosine. In a similar way, we can show that the primitive period of the
sine is 2. This shows that the functions cos z and sin z are simply periodic.
It is enough then to study them within a single period-strip, for example
—nr=x<m.
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6.2.
On the imaginary axis z - iy we have, by (6.2),

e“)’ e!’ ey — e)’

7 = cosh y, Sin iy = ——7-— =i sinh y. 6.7)

cos iy =

The addition theorem (6.3) now permits us to split cos z and sin z into real
and imaginary parts:

cos z = o8 (x + iy) = cos x cos iy — sin x sin iy
= cos x cosh y — i sin x sinh y, (6.8)

sin z = sin (x + iy) = sin x cosh y + i cos x sinh y.

It is clear from (6.8) that cos z is real when sin x = 0 or when sinh y = 0.
The latter condition is fulfilled only on the real axis. The function cos z is
therefore real on the lines parallel to the imaginary axis whose equations are
x =kmw(k = 0,41, £2, . . .) and on the real-axis; otherwise, it is not real. On
these parallel lines |cos z| = cosh y 2 1 and |cos z| — o for |y| — .

In a similar fashion, we can show that sin z is real on the real axis and on
the straight lines x = (k + )7 (k = 0, £1, +2,...). On the latter we have
[sin z| = cosh y 2 1, and also [sin z| — « for [y| — .

Let us now examine, more generally, the behavior of the modulus of each
function for |y| — «. From (6.2) we have

< e+ e _e +/£" — cosh
[cos z] = 3 == = cosh y,
lle®| — le7|| _ |e* — e
2 2

= [sinh y|.

|cos z] =

Hence we have, for all z,
|sinh y] £ |cos z] < cosh y.

The same inequalities can be obtained for the modulus of sin z. It follows
that

lim |sinz] = lim |cosz| = .
ls 1yl—>o

6.3. The Distribution of Values in a Period-Strip

We are now going to examine more closely the distribution of the values of
cos z in a period-strip and determine those points at which cos z assumes a
prescribed value w. The condition cos z = w can be written, by means of the

Euler equations, as
' (%) - 2we*+1=0. 6.9)
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This quadratic equation in e'* possesses two roots,

e =w+ Vwr —1, (6.10)
whose product is 1. They are therefore different from zero for every finite
value w. Let us set

w+ Vwt—1=re? 6.11)

and choose the argument ¢ to lie in the interval —w £ ¢ < #. The second
root is then

w—Vw —1= % e'9, (6.12)
The solution of the equation
el = rei? (6.13)
is
z=%log(rei¢)=¢—ilogr+n°21r (n=0,+1,42,...).

The point z corresponding to the value n = 0 belongs to the fundamental
period-strip
—TSXx <. (6.14)

The second root (6.12) of Eq. (6.9) is
z=—¢ +ilogr+ n-2m.

The point z = —¢ + ilogr corresponding to the value n = 0 lies in the
period-strip (6.14) (in the case ¢ = —= it would be the point corresponding
ton = —1).
If we write
zy=¢ —ilogr,
then all the numbers
zy +n2w and —z, + n-2mw (n=0,%1,...)

are roots of the equation cos z = w.
The two roots belonging to the fundamental period-strip coincide when
w = +1. When w = +1, Eq. (6.10) becomes ¢'* = 1. Only the root z = 0 of
this equation lies in the fundamental period-strip. Because the two roots z,
and —z, now coincide, the equation cos z =1 has a double root at the origin.
If, on the other hand, w = —1, the equation

etz —_ _‘1 — eiﬂ

has the roots
‘ z=m+n2mw (n=0,+1,42,...).

Among these, the value z = z, = —= belongs to the fundamental period-strip.
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This coincides with the root —z, — 2. Hence, z = — is a double root of the
equation cos z = —1.

In the fundamental period-strip the function cos z assumes the value 0
at the points =/2 and —/2, and these are the only zeros located there, for the
function can assume no value more than twice in a single period-strip.

If we count a double root as two coincident, simple roots, we can
formulate the result just obtained as follows:

In every period-strip the function cos z assumes every finite value at two
points.

A period-strip is therefore not a fundamental domain for the cosine. We
get such a domain by taking only half of a period-strip, for example, the
part lying above the real axis. Only a part of the boundary is to be included,
for example, x = —~m,y = Oand x < 0,y = 0 (the point z = 0 being “halved”).

At no finite point of the plane does cos z attain the value «, but the
function does tend to « as a limit when z goes to infinity in such a way that
its imaginary part tends either to +w or—ow. Thus, the value « is an asymptotic
value of cos z.

The foregoing investigation shows that the value of cos z remains un-
changed when we make the substitutions

z+ n-2m, —z+n2m (n=0,+1,42,...). (6.15)

These substitutions form a group. The fundamental substitutions of the group
are —z and z + 27#. We obtain all the elements of the group from these two
by iterating them and their inverses a finite number of times.

The properties of the function sin z can be reduced to those of cos z, by
means of Eq. (6.4).

§2. THE TANGENT AND THE COTANGENT

6.4. Definition
The functions tan z and cot z are defined by the formulas
sin z cos z
tanz = ——, cotz =———. (6.16)
0S z sin z
By use of Euler’s formulas, these trigonometric functions can be expressed in
terms of the exponential function:
1 eiz —_ e—iz eiz + e—iz

tanz = - ——— cotz=1i
i elz + e—iz ? eiz _ e—iz

(6.17)

Since tan z and cot z are reciprocals, it suffices to consider only one of
them in detail. We shall start with the function

iz —iz
cosz ef+e
— =i —" (6.18)
sin z e” —e

cotz =
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Because of the relation sin? z + cos? z = 1, sin z and cos z cannot both
vanish at the same time. Their quotient cot z therefore has a finite value at
all points z (# ), except at the zeros z = nm (n = 0, £1, 42, ...) of sin z,
where cot z becomes infinite.

The function cot z is continuous at the points z # nw. It follows im-
mediately from the definition (6.16) that

so that the derivative of cot z has the same form as in the real case.

When we pass from the value z to the value z + =, the functions sin z and
cos z merely change sign, so that # is a period of the function cot z. Con-
versely, if w # 0 is an arbitrary period, cot (z + w) = cot z, then, by setting
z = 0 we obtain the condition cot w = . By (6.18), €' = 7', or e2!* = 1.
This equation is satisfied only by the values w = nw (n =0, £1,...). The
primitive period of the function cot z is therefore w = 7. For the fundamental
period-strip we can choose

IIA
=
A

(NI ]
[T ]

The function cot z is analytic for all values z in this strip, except for z = 0,
where cot z becomes infinite. In order to investigate the behavior of the
function at this special point, we form the product

z
zcotz = ——Cos z.
sin z

By the definition of the derivative of sin z,

sinz sinz—sin0
z z

—>cos0 =1,

so that
zcotz — 1 as z — 0.

Since cot z becomes infinite at the point z = 0 in such a way that z cot z
tends to a finite non-zero limit, we call z = 0 a simple pole of the function
cot z (cf. Section 2.9).

Because of the periodicity of the function, cot z possesses a simple pole
at each of the points z =nmw (n =0,+1,+2,...). The function cotz is
therefore analytic for all values z # « except at those isolated points where
the poles occur. Such a function is said to be a meromorphic function.
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6.5. The Distribution of Values in the Period-Strips

We shall investigate the distribution of values of cot z in the fundamental
period-strip by determining the roots of the equation
et 41

cotz = l;z—iz___l =W (619)

for different values of w. Solving (6.19) for 2/ gives
wi

e212= ]
w-—1

2

from which it follows that cot z nowhere assumes the values 4-i. On the other
hand, if w # +i, we may write

PEI_re$ >0, r<d<m)
w—i
and find that
2iz =logr + id + n-2mi
or
z—é—ilo r+nr  (n=0,+l1 )
=75 —5log n=0,41,...).

Of these values, the one/with n = 0, z = (¢ — i log r)/2, belongs to the
fundamental period-strip. Therefore, cot z assumes every value w # +i at
precisely one point in the period-strip; in paﬁicular, it assumes the value
w= o (r =1, ¢ = 0) at the pole z = 0.

The exceptional values w = +i, which cot z fails to assume for z # o,
are asymptotic values to which cot z tends as | y| — «. Indeed, |€??| = ™%,
so that it follows from (6.19) that cot z — Fi when y —> -0,

6.6. The Function w = tan 2
All the properties of tan z result from (6.16) or, more simply, from the equation

tan (z — g) = —cot z. (6.20)
From this equation one sees that the function tan z also has the primitive
period = and, in any period-strip, assumes every value w # 4i precisely once.
It takes the value w = « at the simple poles occurring at z = #/2 + nm. The
exceptional values w = +i are asymptotic values to which tan z tends when
Yy = +oo.

The derivative of tan z has the familiar form

d tan z
dz cos? z
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tan z is therefore a meromorphic function: it is analytic everywhere in the
plane except at the points z = #/2 + nw (n = 0, £1, . . .) where it has simple
poles.

§3. THE MAPPINGS GIVEN BY THE
FUNCTIONS tan 7 AND cot z. THEIR INVERSE FUNCTIONS
6.7. The Riemann Surface of the Function cot z

In order to investigate the mapping of the z-plane onto the w-plane given by
the function

2iz 1
W= cotz =i (6.21)
we carry it out in three stages:
1
z, = 2iz, z, = €%, W= i2 tl (6.22)
z, — 1

The fundamental period-strip —7/2 £ x < =/2 is mapped in a one-to-one
way onto the strip —7 £ y, < =7 (z, = x, + iy;). The function z, = €* maps
the latter strip onto the z,-plane slit along the negative real axis. The boundary
line x = —m/2 corresponds to the lower edge of the slit while the boundary
line x = m/2 corresponds to the upper edge. The imaginary axis x = 0 goes
over onto the positive real axis in the z,-plane, and the segment
~m)2 £ x < w/2, y = 0 goes over onto the unit circle |z,| = 1. The origin
z = 0 goes into the point z, = 1.

The last of the mappings (6.22) is a linear transformation of the z,-plane
into the w-plane which transforms the slit (0, —) into the slit (—, i) in the
w-plane. The circumference |z,| = 1 goes over into the real axis, the point
z = 0 corresponds to w = «, and the boundary lines x = +#/2, x = —7/2 go
over into the edges of the slit (—i, #): the former into the right-hand edge,
and the latter into the left-hand edge. Additional correspondences can be
inferred from Figs. 15-18.

z-plane 2;-plane

SH

W/ 7 xl
| /Afliii

— i

Figure 15 Figure 16
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z;-plane w-plane |

Figure 17 Figure 18

Since the function cot z is periodic, every period-strip 2n — 7/2 £ x <
(2n + 1)7/2 is mapped in the same way onto a slit w-plane. A one-to-one
correspondence between the z- and w-planes can be achieved by joining the
n-th plane F,, slit along the segment (—i, i), with the (n + 1)-st plane F,,,,
likewise slit, so that the right-hand edge of the slit in F), is joined to the left-
hand edge of the slit in F,,;. In this way we obtain an infinite-sheeted
Riemann surface R,, over the w-plane as the conformal image of the z-plane.
Its branch points are the asymptotic values w = +i of the function cot z;
both are of infinite order. )

The surface R,, is therefore constructed just like the Riemann surface of
the exponential function, only the branch points are now at +i.

6.8. The Inverse Function arc cot 2

By the preceding analysis we can now construct the inverse function,
z = arc cot w, of the function w = cot z. It has'infinitely many branches, and
is single-valued on the Riemann surface R,. Each of its branches is a single-
valued analytic function in a w-plane slit along the segment (—i, +i). The
derivative is, as in the real case,

darccotw— ! gintz—— 1 1
dw d B T 1+cotfz 1+ w?’
—cot z
dz
and therefore exists for all values of w # +i.
By solving Eq. (6.21) for z, we can represent arc cot w in terms of the

logarithm:

w1
w—1i

z= 1 lo
BT
6.9. The Mapping given by the Function tan z
From Egq. (6.20), which can be written in the form
1

tanz=—cot(z+z)=———,
cot z

2

we see that the function w = tan z maps the period-strip 0 < x < 7 onto
a plane slit in exactly the same way as the image of —#/2 £ x < m/2 under
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the mapping cot z. The image of the entire z-plane is the Riemann surface
considered above with branch points at +i.

The inverse function z = arc tan w maps this Riemann surface one-to-
one conformally onto the schlicht z-plane. The derivative of the inverse
function,

d , 1
EV arctan w = m ’
exists for w # i, and arctanw can also be expressed in terms of the
logarithm:
i—w
i+w

—z—arccotw—llo
) = 2%

The branch —=/2 < Re z < 7/2 is called the principal branch and is denoted
by Arc tan w.

§4. THE MAPPINGS GIVEN BY THE FUNCTIONS
sin z AND cos z. THE FUNCTIONS arc sin z AND arc cos 2

6.10. The Image of a Period-Strip under the Function cos z
We consider now the mapping given by the function

eiz + e—iz . (eiz)2 + 1

W=Ccosz= 3 > ot (6.23)
We may break the mapping into the following succession of mappings:
z, =iz (z, = x; + iyy), (6.24)
z, = €4, (6.25)
2
. V43 + 1
W= o (6.26)

The mapping (6.24) is just a rotation of the z-plane about the origin
through an angle of #/2. To the period-strip Fy (—7 < x < =) corresponds
the parallel-strip —= < y, < #. The correspondence is shown in Figs. 19
and 20.

z-plane z,-plane

Z

+ i

==

—ni

N

D

===\
Figure 19 Figure 20
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The transformation (6.25) maps the parallel-strip —# < y, < = onto the
z,-plane slit along the negative real axis from zero to infinity, as is shown in
Figs. 20 and 21.

Finally the function (6.26) maps the entire z,-plane onto a two-sheeted
Riemann surface. To study the correspondence in more detail, we write (6.26)
in the form given in Chapter 4. The zeros of the derivative of the function
(6.26) lie at z, = +1, where the function has the values w = £1. If we now
subtract these values from w and divide the expressions obtained, the trans-
formation assumes the form

w—1 z, — 1)?
w+1l (z2 + 1) ) 6.27)
This transformation is decomposed again:

_z—1
{= P (6.28)
w={, (6.29)

w—1
w = m . (6.30)

The transformation (6.28) maps the z,-plane linearly onto the {-plane in
such a way that z, = 1 goes into the origin and z, = —1 goes into the point
{ = «. The real axis remains fixed. The point z, = 0 goes into { = —1 and
z, = oo into { = 1. Both the slit from —1 to « along the negative real axis
and the slit from 1 to « along the positive real axis correspond to the slit
along the negative real axis in the z,-plane (Figs. 21 and 22).

e

3
2.
2
=
(]

2,-plane

—1

.

Figure 21 Figure 22

\

e ———————————
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The transformation (6.29) maps the {-plane onto a two-sheeted Riemann
surface over the w-plane, whose branch points are at w = 0, . The points
0 and « remain fixed. Both sheets of the surface are slit along the positive real
axis from 1 to . The sheets of the surface are joined in a criss-cross fashion
along the segment (0, 1).
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Finally we go from the w-plane into the w-plane by means of the linear
transformation (6.30), which carries the points w = 0, 1, « into the points
w =1, oo, —1, respectively. The real w-axis goes over into the real w-axis;
the upper and lower half-planes are each mapped into themselves. The slit
between w = 0 and w = 1 is mapped onto a slit along the positive real axis
from the point 1 to the point «. Along this slit the sheets of the resulting
Riemann surface are joined together in a criss-cross manner. To the slit from
1 to «, which lies on both sheets, there corresponds in the w-plane another
slit from —1 to c along the negative real axis.

w-plane w-plane

AN
//////////////////M/’///////

//////// W

- 1=0=+ 137

4
v 4
7 4
o

Figure 23 Figure 24

The final result of this analysis is to establish that the function w = cos z

maps the fundamental period-strip
Fy: T Ex<m

onto a two-sheeted Riemann surface whose branch points are 1 and «; each
sheet is slit along the negative real axis from —1 to . The sheets are joined
together in a cross-wise manner alonga “seam’ that runs from 1 to « along the
positive real axis. To the left half of the period-strip, —7r £ x < 0, corresponds
the “bottom” sheet of the Riemann surface and to the right half, 0 < x < =,
corresponds the “top” sheet. To the line x = — is associated, in the bottom
sheet, the edges of the slit from —1 to . The other boundary line x = = of the
period-strip corresponds to the slit from —1 to « in the top sheet. As z
approaches the line x = = in the upper half-plane, w approaches the slit in the
top sheet from the lower half-plane. If, on the other hand, z approaches the
line x = = from the lower half-plane, w approaches the slit in the top sheet
from the upper half-plane. The precise correspondence can be inferred from
Figs. 19-24, in which corresponding regions are shaded in the same way.

6.11. The Riemann Surface of the Function cos
Since the function cos z is periodic, it follows that every period-strip
F,: -l Ex<@v+ Dn
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is mapped in a similar way onto a slit, two-sheeted Riemann surface. Points
which differ by an integer multiple of 27 occupy the same positions on these
two-sheeted Riemann surfaces.

If z moves in the z-plane from the parallel-strip F, into the strip F, its
image w must move from the Riemann surface corresponding to F, to the one
that corresponds to F;. The edges of the slit on the top sheet of the surface
corresponding to F, must therefore be joined in a criss-cross manner to the
edges of the slit on the bottom sheet of the surface that corresponds to F).
On the other hand, if z goes from F, to F_,, its image w goes to the surface
which corresponds to F_;. The edges of the slit on the lower sheet of the
original surface are therefore joined cross-wise to the edges of the slit on the
top sheet of the surface associated with F_,. Going on in this way, we may
combine all the two-sheeted surfaces into a connected Riemann surface.
Every sheet of the resulting surface will correspond to half of a period-strip.
The sheets are combined in such a way that each sheet is joined to the following
one in a cross-wise manner along the edges of slits which alternate between
(1, ©) and (-1, —=). In this way a connected Riemann surface is formed
which possesses at each of the two points 1 and —1 infinitely many branch
points of the first order (Fig. 25). At infinity, however, there are two branch
points of infinite order. We can convince ourselves of this fact by the following
considerations. If a point winds once about the point c in the w-plane, which
is to say that it winds once about both points —1 and 1, its image point on the
Riemann surface moves to another sheet. There is still another sheet between
this sheet and the original sheet, so that in such a circuit around the point oo,
w always jumps over a sheet. If the image point in the z-plane starts off in
the upper half-plane, it remains in the upper half-plane all the time. But, if
one starts off on the Riemann surface with a point w which corresponds to a
point z in the lower half-plane, then w moves on the Riemann surface only

[T __7
 ———
—L -2 /

Figure 25
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in such half-planes as correspond in the z-plane to portions of period-strips
which lie in the lower half-plane.

6.12. The Inverse Function arc cos w

As we have already shown, the function w = cos z maps the entire z-plane
conformally and one-to-one onto an infinite-sheeted Riemann surface. Its

inverse function
Z = arc cos w (6.31)

is therefore an infinitely multiple-valued function whose different branches
go over into one another when w makes a circuit about the points —1 and 1.
The function is single-valued on the Riemann surface constructed above. As
the principal branch of the function one generally takes the branch
0 = Re z < 7, and denotes it by Arc cos w.

The function (6.31) can be expressed in terms of the logarithm by means
of Egs. (6.24), (6.25) and (6.26). We obtain

z=arccosw=%log(w+ Vw2 —1).

6.13. The Mapping given by the Function sin z

The mapping given by the function sin z can be investigated in precisely the
same way as we have dealt with cos z. But one can also reduce sin z directly
to cos z by means of (6.4). The mapping given by the sine is thus obtained
from that given by the cosine by subjecting the z-plane to a parallel displace-
ment of /2.

All the trigonometrical functions have now been reduced to the
exponential function, and their inverse functions to the logarithm,

§5. SURVEY OF THE RIEMANN
SURFACES OF THE ELEMENTARY FUNCTIONS

6.14. The n-th Power

In Chapter 2 we saw that the n-th power w = z" (n a positive integer) maps
the schlicht plane 0 < |z| £ « in a one-to-one way onto an n-sheeted cover-
ing surface R,, lying over the plane 0 £ |w| £ «. The mapping is conformal
except at the points z = 0, o, which correspond to the branch points w = 0,
o, of order n — 1.

The structure of the surface R,, can be described in the following way:
We divide the plane into two half-planes: for instance, by the imaginary axis
u=0(w=u+ iv). The images in the z-plane of these two half-planes H,:
u> 0and H,: u < 0 consist of the sectors

F .

v

VT ™
argz—7l<2—n v=0,...,2n—-1),
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with v even and with v odd, respectively. If we connect these 2n sectors together,
we obtain the entire z-plane. Its image in the w-plane is the n-sheeted covering
surface R,,, with branch points w = 0, « of order n — 1, which results from
Jjoining the 2n half-planes H, and H, together. We now take as representatives
of the n half-planes H, the point w = 1 and of the # half-planes H, the point
w = —1. Their image points z, = """ (v =0, . . ., 2n — 1) are associated
with the sectors F,. If we denote the points z, with a cross for odd v and a
small circle for even v, and join successive points by line segments, the structure
of the surface R,, will be represented schematically by a graph (Fig. 26, right).
Here the points denoted by circles or crosses represent half-planes H, and
H,, respectively. The graph divides the plane into two 2n-gons (one inside
the graph and one outside) which represent the two branch points of order
n — 1overw = 0and w = w, respectively.

. N
N\

Figure 26

6.15. The Exponential Function

The Riemann surface of the exponential function w = € can be represented
in a similar way. If we define the two half-planes H, and H, as above, their
image domains in the z-plane will be the parallel-strips

]y—2v17'|<?—; and |y—(2v+1)7r]<%,

respectively, with v = 0, £1, . . .. The images of the pointsw = I and w = —1
are :
z = Qumi and z=QQv + Dmi,

respectively, v = 0, +1, .... We take them as representatives of the half-
planes H, and H,, denoting them by a circle or a cross, respectively, and then
join successive points by a line segment. This yields a graph (on the left in
Fig. 27) which represents the infinite-sheeted Riemann surface R,, onto which
w = e® maps the schlicht z-plane. The plane is divided by the graph into two
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polygons (the left- and right-hand half-planes) which represent the two
branch points of R,, of infinite order lying over w = 0 and w = oo, respectively.

6.16. The Trigonometrical Functions

We can obtain a similar representation for the functions w = sin z and
w = cos z. To each of the half-sheets H,: v > 0 and H,: v <0 (w = u + iv)
of the corresponding Riemann surface R,, there is associated a “triangle” in
the z-plane bounded by a segment of the x-axis and two rays parallel to the
imaginary axis. If we again represent these “half-sheets” by circles and crosses,
we obtain as the “schematic diagram” of R,, the graph on the right in Fig. 27;
it gives a good over-all view of the structure of the surface. The plane is decom-
posed by the graph into infinitely many “polygons”. The two upper and
lower polygons (with infinitely many sides) correspond to the two branch
points of the surface R, over w = . The two polygons are separated by a
chain of infinitely many rectangles; these correspond alternately to the branch
points of first order over the points w = +1.

The surface of the function w = tan z (or cot z) has the same structure
as the surface for the exponential function. It can therefore be represented
by the left-hand graph in Fig. 27.

e X e () s X s () s X st
3[ L
‘I
i
l
l Figure 27

EXERCISES ON CHAPTER 6
1. Determine the following values:
sin i, cos i, cos (/4 — i), tan (1 + §).
2. Determine all the roots of the following equations:
sinz = i, cos z = 2, cotz=1+1i

Which of these roots belong to the fundamental domains of the functions, as
given in the text?
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3. Derive the differentiation formulas for cos z and sin z by use of the
addition theorem.

Hint. The value of the limit
. _sinz
lim —=
20 2
can be determined by using the definition of the sine once the derivative of
the function e* at the origin is known.

4. Show that the real and imaginary parts of the functions tan (x + iy) and
cot (x + iy) satisfy the Cauchy-Riemann equations.

5. Draw about each pole of the function cot z a circle of fixed arbitrarily
small radius p and show that when z lies outside these circles |cot z] is bounded
by a finite number that depends only upon p.

6. Derive the most important properties of the function tan z from its
mapping properties, which may be assumed known.

7. What values does the function Arc sin (ia) (—7/2 < Re Arcsin z < 7/2)
assume when a is a real number, and what values does Arc tan (iaz) assume,
when a is a real number whose modulus is smaller than 1?

8. Suppose the function arc cos z has, at the point z = 2, its principal value.
Let z make one circuit about the point z = 1 and one circuit about the points
z=1 and z = -1 in a positive direction. What value does the function
assume when z returns to the point z = 2?

9. Along what path in the plane must the point z move if (a) Arc cos z is to
go into the branch —Arc cos z — 2w, (b) Arc sin z7is to go into the branch
Arc sin z + 4, (c) Arc tan z is to go into the branch Arc tan z — 37 ?



CHAPTER 7

INFINITE SERIES WITH COMPLEX TERMS

§1. GENERAL THEOREMS

7.1. Convergent Series
We shall consider an infinite series

0
Xo=C+tC+ et a.n
v=]
with complex terms
¢, = a, + ib, n=12..)

The fact that the rational operations and the notion of limit remain formally
unchanged in the transition from the real case to the complex case makes it
possible to transfer the theory of infinite series to the complex domain.

Definition. The series (7.1) is said to be convergent if the sequence of partial
sums

tends to a finite limit s as n — c.

The limit s is called the sum of the convergent series, and we write

s= X C,

v=1]

Whenever the series (7.1) converges, the series

nt+1

is also convergent, and its sum r,, the remainder after n terms, is equal to
S — 8,
A series is said to be divergent if it does not converge.
Just as in the real case, we have the following result.
95
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Theorem 1, The terms of a convergent series form a null sequence,

lim ¢, = 0.
Indeed, lim ¢, = lim (s, — 5,_y) =5 —s=0.
The generalization of the theory of infinite series from the real domain
to the complex domain is based on the following theorem.

Theorem 2. A necessary and sufficient condition for the convergence of the
series (7.1) is that the series formed from the real and imaginary parts

© ©

> a, and > b, (7.2)

v=] v=1
both converge.

Proof. Let n n
Oy = Z a,, Tn = E bv (Sn =0, + i'rn)-
1 1

In order that s = lim s, exist and be finite, it is necessary and sufficient
that the limits ¢ = lim o, and 7 = lim 7, both exist and be finite, and this is
the same as the convergence of the series (7.2).

We have

-8

c,=Xa,+iXhb,.
1 1

7.2. The Cauchy Convergence Criterion
Of fundamental importance in the theory of convergence is Cauchy’s criterion,
which is as follows.

Theorem 3. A necessary and sufficient condition for the existence of a finite
limit s of a sequence of complex numbers

S1s 825 « o o3 Spy o 0 e
is that for every e > 0, there is a number ny such that
| — Sm] <€  for  nZn,, m = ng. (1.3)

By using Theorem 2, we could reduce this theorem to the corresponding
criterion for real numbers. Nevertheless, we prefer to give a direct proof in
the complex case.

Proof. The necessity follows directly from the triangle inequality. For if
lim s, = s exists, then

lsn - Sm| = l(S - Sm) - (S - S,,)I = |S - Sml + IS - Snly

which immediately implies (7.3).
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Conversely, suppose that condition (7.3) is fulfilled. Then, for n = ny,
we have
ISal = ISn = Sny + Sngl = [Sng] + 52 = Sugl < [Sny] + €

If M is the largest of the numbers |s,| + e (v = 1,2, ..., np), then |s,| < M
for every n. The sequence s, is therefore bounded.

From this it follows (cf. Exercise 17, p. 20) that there is a number
s (|s] £ M) such that the inequality

[s — sm| < € (7.4)

holds for infinitely many indices m. Now let n 2 n, be chosen arbitrarily.
Then, for every m = n,, we have

s = 8al = (s = sw) + (5 — )| S |5 — 50| + &
If we now fix the number m = n, so that (7.4) holds, then
[s — 8.] < 2e.

Since this is valid for every n = ny, it follows that s = lim s, as n — .
In the language of the theory of series, the Cauchy criterion takes the
following form.

Theorem 4. The series 3 ¢, converges if and only if to each € > 0, there
is a number ny such that the inequality

n+p

PIA

<€

holds for alln z ny and any p 2 0.

7.3. Absolute Convergence

The series (7.1) is said to be absolutely convergent if the series of absolute
values, ‘

E‘x le,l, (7.5

converges.
We shall prove:

Theorem S, If a series is absolutely convergent, then it converges.

The converse is not true, as the example of the alternating harmonic
series (¢, = (—1)"/n) shows.

A convergent series which does not converge absolutely is said to be
conditionally convergent.
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‘Proof of Theorem 5. Let the series (7.5) be convergent. Then, by the Cauchy
criterion, for every e > 0 there is an integer n, such that the sequence of

partial sums u
p,,=;|c,,| n=0,1,...)

satisfies the condition m
lpm—pal = X o] <e

v=n+1

when m = n = n,. But then, for these same values m, n,

m
% 6

Ism - Sn‘ =
v=n+

m
< 3 lal<e
v=n+1

and the theorem follows from the Cauchy condition.
For absolutely convergent series we have:

Theorem 6. One can interchange the order of the terms of an absolutely
convergent series in any way without altering its sum.

Proof. Let the series (7.1) converge absolutely, and let the series

o0
e 7.1y
v=1
contain exactly the same terms, but in a different order. By hypothesis, for
every € > 0, there exists an integer n, such that

L
> el <e
no+1

Let n, (Z ng) be an arbitrary integer, so large that the numbers cy, . . ., ¢,
include all the numbers c,, .. ., ¢,,. Then, forn = n,,

n ny ,
Ecv_zcv
1 1

o0
= X lgl<e
no+1
If we let n —> o, it follows that

Se

0 m ,
ch—zcv
1 1

which implies the theorem.
One can also rearrange the series so that the terms are the sums of infinite

subseries.
'We mention, finally, Cauchy’s Product Rule.

Theorem 7. If the series

u, and V=3Xv, (7.6)

Ms

U=

]

—
<
i
-

v
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converge, and if at least one of them converges absolutely, then
UV =73 (v, + uyv,_y + *** + uy). 1.7
n=1

The proof is carried out exactly as in the real case. The terms of the product
series (7.7) and their order must be formed as written. If, however, both
series in (7.6) converge absolutely, then we may group the terms in (7.7) and
rearrange them arbitrarily. For in this case, the series remains convergent
when the terms in the parentheses are replaced by their absolute values.

7.4. Uniform Convergence
We consider now the series

% w(2)=w(@) +wi(2)+ -+ w2+ (7.8)

whose terms w,(z) are functions of the complex variable z. All of the functions
w,(2) are defined on a set 4. We assume that the series (7.8) converges for
each value z € A. We denote the sum of the series by s(z) and the n-th partial
sum of the series by s,(z). If, for each € > 0, there exists an #, which is indepen-
dent of z and which has the property that ‘

lsy(z) = 5(z)] <e for nzn,

where z is an arbitrary point of A4, the series (7.8) is said to be uniformly
convergent on A.

The Cauchy criterion holds for the uniform convergence of the series
(7.8):

Theorem 8. A necessary and sufficient condition for the uniform convergence
of the series (1.8) on A is that for every € > 0 there exists an integer n, such
that

S )

v=n+1

Jor alln = n, and for all p > 0.

<e for z €A,

Asa gorollary, we have:
Theorem 9. If at every point z € A

(wa2)] = 1 n=12...)
and the “majorant series” ©

converges, then the series >, w,(z) converges absolutely and uniformly on A.
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We shall prove the following theorem concerning a uniformly convergent
series, which is already familiar in the real case.

Theorem 10. If the series (1.8) converges uniformly in a domain G and if
each of its terms w,(2) is continuous in G, then the sum of the series is a
continuous function of z in G.

Proof. Let z and z 4 4z be points of the domain G. Let us write

S(Z) = S,,(Z) + Rn+l(z)s
so that
ds = s(z + dz) — 5(z) = 5,(z + Az) = 5,(2) + Rori(z + 4z) — Ry (2),
and thus
|ds| = |su(z + 42) — 5,(2)| + |Rpsi(z + 42)| + |Rpss(2)].
Since the series converges uniformly, to any arbitrary € > 0 there corresponds
an n, such that for n = n,, |R,.,(z)|] < /3, independently of the choice of
z € G. Weshall choose a fixed n which fulfils this condition. Since the function
5y(z) is a finite sum of continuous functions, it is itself continuous. Con-
sequently, there exists a 8, > O such that
€
3
whenever |4z| < 8, and z + 4z € G. From this it follows that

IS,,(Z + AZ) - S,,(Z)l <

|ds| < 3 § —e for |dz] <8,

This proves the continuity of the function s(z).

§2. POWER SERIES

1.5. The Circle of Convergence
In this section we shall investigate power series

ﬁ ez —zo)l' =co+ c)(z — zg) + €z — Zg)> +* -, (7.9)
n=0

in which the ¢, ¢y, ¢,, . . . and z; are complex numbers.

The first question before us is to determine those (complex) values of z
for which the series converges. We shall begin by proving the following
theorem of N. H. Abel (1802-1829).

Theorem 1. If the series (1.9) converges for any value z', z' # z,, then
Jor every value of z which satisfies the condition

IZ - Zo‘ < IZ' - Zol (7.10)

the series not only converges, but converges absolutely.
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Thus, if one draws a circle about z, with radius [z’ — z,|, the series

converges at every point inside the circle.

Proof. Since the series o

2 ,,(Z - ZO)n

n=0

converges, there exists a positive number M such that, for every n,

lenz' — zo)"| < M.
From this it follows that

M
|Cn| <7y

~ i n=0,l,2,...).
|z — 2o , (

Thus, for the general term of the series (7.9), we have the estimate

Zo

len(z — zo)"| =

is a convergent geometric series, since, by hypothesis, the ratio

_Zo

But the series

(7.11)

Z—Zo

Z— 2y

q <L

z — Zy
Accordingly, the series (7.9) converges absolutely at every point z which
satisfies condition (7.10).

7.6.

The series (7.9) obviously converges at the point z,. It can happen that it
converges only at this point. In the sequel we leave this case aside and assume
that there is at least one other point z’ # z; at which the series converges.
We denote by {z'} the set of all points for which the series converges and by
R the least upper bound of the numbers |z — z;|:

R =sup |z’ — zy)| £ . (7.12)
Theorem 2. The series (71.9) converges at every interior point of the circle
|z — zo| <R, (7.13)
and it diverges at every point exterior to the circle.

Proof. First let z be an interior point of (7.13). By (7.12), the set {z'} contains
a number z’ such that
|z = zo| <[2' —zo| = R
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Since the series converges at the point z’, it also converges at the point z by
Abel’s theorem. The divergence of the series in the exterior of the circle (7.13)
is an immediate consequence of the definition (7.12) of R.

The circle |z — zy| = R will be called the circle of convergence of the
series (7.9) and its radius R will be called the radius of convergence.

Theorem 3. If the radius of convergence R is finite, then the least upper
bound of the terms |c,| |z — zo|" is infinite for every |z — zy| > R.

Indeed, if for some point z; of |z — zy| > R the inequality
|z — 2] < M <

held for every n, then the same argument as was used to prove Abel’s theorem
would show that the series converges for every point z which satisfies the
condition

|z — zo| < |z — zol.

If we choose z here to lie in the annulus R < |z — zo| < |z, — 2|, we would
have a contradiction, as the radius of convergence would then be greater
than R.

7.7. Determination of the Radius of Convergence

The radius of convergence R can be determined from the coefficients c,
¢y, . . . of the series.

Since the series converges for |z — zg| =r < R, |c,|r" — 0 as n — c.
Hence, there exists a number 7, such that |c,|r" < 1, or

1
Ve
This number r is thus at most equal to the smallest cluster point of the

sequence on the right. Since, however,.r is an arbitrary number less than R,
it follows that R itself has this property:

r<<

for n > ny.

< lminf .
R = 11:'11 :onf m

If, in particular, R = o, then the number on the right is also infinite.

If R < o, then for |z — zg| = r > R, the least upper bound of the
numbers |c,|r", n =0, 1,. . ., is infinite (Theorem 3). Therefore the inequalities
|ealr™ > 1, 7 > 1/%/]c,|, hold for infinitely many indices n. Accordingly,

> lim inf ——,
r 11}'1_1_) Lnf Vel

and, since r can be chosen arbitrarily close to R, this inequality also holds
forr=R.
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Therefore we have the result:
Theorem 4. The radius of convergence of the power series (1.9) is

1
R = liminf — - (7.14)
n—>c0 \/ Ic,,|

7.8. The Power Series as an Analytic Function

We wish to investigate further the sum of a power series inside the circle of
convergence. For the sake of simplicity, we shall choose the “center” z, = 0;
there is no real loss of generality in doing this. The power series we consider

is therefore of the form ©
3 ¢z (7.15)

Its radius of convergence R is assumed to be positive. The series is then
absolutely convergent for {z| < R. We also have that the power series (7.15)
is uniformly convergent on every disk |z| < r < R. In fact, for these values
of z the series is majorized by the convergent series 3 |¢,|r", and the uni-
formity follows from Theorem 9 (p. 99).

It turns out therefore (if we apply Theorem 10, p. 100) that the sum
S(2) of a power series is continuous throughout the circle of convergence
|z} < R.

7.9.

If we differentiate the series (7.15) term by term, we obtain a new power

series
ne,z"1. (7.15)

Ms

1
—

n

By (7.14) its radius of convergence is

hm inf —————

nsw AN \/lc,,l

However, ¥/n — 1 as n — , whence

1
R, = lim inf —=— = R.
! n—»w ’\n/ |C,ll
Hence, the derived series (1.15)' has the same radius of convergence as the
original series (7.15).

If we differentiate the series (7.15) term by term once again, we obtain

the series ©
> n(n — 1)c,2"2, (7.16)

n=2

whose radius of convergence is again equal to R.
We now prove that the sum S(z) of the series (7.15) has a derivative,
equal to the sum S,(z) of the series (7.15)':

5'(z) = 8,(2).
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In view of the definition of the derivative, we must show that
lim S(z + 42) — S(2)
a4z

4z—>0

= 8,(2)

holds for |z| < R.
Let us assume that |[4z] < R — |z| and form the expression

f(AZ) = S(Z + AAzz — S(z) - Sl( ) i ‘(z + AZ)” —Z nz"'l} .
=2

The binomial formula then yields

(z+ 4z — 2z
4z

= (;) 247 & (’;) Az e+ (”:) Az

_nn—1)
2

— nzn-—l

-2 2
n—2 n—3 n—-2\
Az { + 3 ? Az + -+ + A=) dz) }

Since the modulus of the expression in braces is less than or equal to
(|z] + |4z])*"2, we have the estimate

C AP =2 ] < 2 — 1)(el + 14212,
from which it follows that
17@D) 5 48> nn = (el + 1zl

n=2

The series on the right is made up of the moduli of the terms of the series
(7.16), taken at the point |z| + |dz|. It converges because [z| + |4z] < R.
If we choose

|z| + |4z| £ R, <R,

then there exists a finite number M such that
22 nn — 1)|c,|(jz| + |4z])" 2 < M

and therefore
M
|f(d2)]| 5 42| 5 -
From this it follows that
lim f(4z2) =

4z—0
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and

S'G) = lim S(z + Aj)z— S(2)

d4z—0

= 5,(2).

This reasoning can be applied again to the power series S;(z), etc. We
thus obtain the following general theorem.

Theorem 5. A power series defines within its circle of convergence a
continuous function. This function possesses continuous derivatives of every
‘order, which are obtained by term-by-term differentiation of the original
power series. All the power series derived in this fashion have the same
radius of convergence as the original series.

From this we conclude, in particular, that a power series defines within
its circle of convergence an analytic function.

Later on, in Chapter 9, we shall see that, conversely, every function which
is analytic in the neighborhood of a point z = z, can be represented by a
power series. Karl Weierstrass (1815-1897) developed the theory of analytic
functions from this property.

7.10. The Power Series Expansions of Elementary Functions

As an application, we shall expand the functions e, cos z, and sin z into
power series in z. It follows from the definition of the exponential function
that

e* = ¥ = e¥(cos y + isin y).

We employ the power series expansions of these real functions to obtain

AT AP AR
cosy+tsmy—l+zy—§—!—zﬁ+ﬂ+ ,
x? X3
e=1+x+§—!+3—!+"°.

Both series are absolutely convergent for all values of x and y. If we
now multiply the series according to the Cauchy product rule, we get, as the
general term

(x+iy =z
n! n!

bl
and, therefore, as the complete expansion,
n

2
=l zde

X oy doee (7.17)

This series converges for all z; its sum is €.
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The functions cos z and sin z are defined in terms of the exponential
function as
eiz + e—iz . eiz — e—iz
CoSZ =——r—-, sinz=—————.
2 2i
If we now expand the functions e'? and e~ according to (7.17), we get

the series expansions

2 4

=1 z
COs Z = ~2—!+4—!— »
. PARN
smz=z-3—!+—5—~!~'°',

which converge for all values of z. They have the same form as in the real
case.

EXERCISES ON CHAPTER 7

1. If the series u, + u, + - - - is convergent, then there exists a positive
number M such that the inequality

luv+uv+l+'.'+uv+lf| <M
holds for all v and p.
2. Prove the Cauchy product rule (Section 7.3).

3. Prove that a series converges uniformly if and only if the series of real
parts and the series of imaginary parts of the terms occurring in the original
series converge uniformly.

4. Determine the domain of convergence and the sum of the following
geometric series:

RN SEUR SR
z+1 (@+12 (+1)° ’

z z \? z \?
b)z—l+(z—1> +(z——1) o

)@ -D+@E -1+ -1+~

5. Expand 1/(z + a) into increasing powers of (z — b) and of 1/(z — b), and
determine the domain of convergence of each of the resulting series.

6. Expand the rational function 1/(z?> + 1) into increasing powers of the
difference z — 1 and determine the domain of convergence of the series.
(Expand the function in partial fractions and expand each term individually
into a series.)
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7. Expand the rational function 1/(z + 1)(z + 2) into partial fractions and
expand it into a series (a) of positive powers of z, (b) of negative powers of
z. (c) Then expand one partial fraction into positive powers of z and the other
into negative powers of z.

Determine the domain of validity of the resulting series in each case, and
the law governing the formation of the coefficients in the series.

8. Set z = r(cos ¢ + isin @) in the series

Ms

n
z’

n=0

and split each term into its real and imaginary parts. Form the series of real
parts and the series of imaginary parts, and find the sum of each when it
converges.

9. What can be said about the domain of convergence of the power series

o0

S
— n

= (z = zo)

10. Show that the power series

0 0
> az’ and > az’™"

v=0 v=n

both have the same radius of convergence.
11. Determine the radii of convergence of the following power series:

DS, B ’27 . 9Sed <D D> (ﬁ%ﬁ)

12. Determine the region of convérgence of the following series:

(—1)" Zn zn
a) z+n’ l:))zl—z”’ C)Zzz"+l

13. Prove that if R; and R, are the radii of convergence of the series Y a,z"
and Y} b,z", then the series 3 a,b,z" has aradius of convergence R 2 R, R,.
14. Show (by differentiation of the series 1/(1 — z) = X} z") that the function
(1 — z)™ (m a positive integer) can be represented within the unit circle by
the familiar binomial series. Derive the same result by use of the product
rule for series.
15. Prove that if |a,/a,,| tends to a finite limit p as » tends to infinity, then
p is the radius of convergence of the series X a,z".




CHAPTER 8

INTEGRATION IN THE
COMPLEX DOMAIN. CAUCHY’S THEOREM

§1. COMPLEX LINE INTEGRALS

8.1. Arcs and Closed Curves
An arc ab is defined by a parametric equation

z=12(1r) (a=z(),b=2(p) 8.1)
in which = runs through a real interval « < r £ B, and z(7) = x(7) + iy(7)
is a continuous function of = in this interval. The orientation of the arc is
fixed by its parametrization: the point z describes the arc in the positive sense
as 7 increases from « to 8. An oriented arc is also called a path.

If I is a path (8.1) then the same arc with the opposite orientation is
denoted by /=!. The path /! is thus described when 7 decreases from f to «.

If the terminal point of a path I’ coincides with the initial point of a path
I, then the composite path that is obtained as the point z describes first the
path /” and then the path [ is denoted by the product /I’.

The arc ab is said to be a Jordan arc if z(r)) # z(r))fora £ 7y <7, S B.

A Jordan curve is defined to be a closed path (z(a) = z(B)) with the
property that z(r,) # z(r;)) foroe £ 7, < 7, < B.

If the function z() has a continuous derivative dx/dr = 2(7) = x(r) +
iy(r) # O throughout the interval « < = < B, the arc ab has at every point
a tangent whose direction varies continuously as the point describes the curve.

Such an arc is said to be regular or smooth. A curve which consists of a
finite number of smooth arcs is said to be piecewise regular (or smooth).

From the Heine-Borel theorem (cf. Exercise 26, p. 21) one can show
that any arc lying in the domain G can be covered by a finite number of disks
belonging entirely to G. Hence, any two points P and Q of the domain can
be joined by a finite chain of disks C, (v =1, 2, . . ., n) with the following
property: Each disk C, is contained in G; the center of the disk C, lies in the
interior of C,_; (v = 2, . . ., n); Pis in the disk C; and Q is in the disk C,.

8.2. The Complex Line Integral

Let w = w(z) be a single-valued complex function defined in a domain G in
the finite complex plane. We wish to define the complex line integral

fz w(z) dz

108
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extended over the arc (8.1) lying in the domain G. We proceed as one does
for real integrals. The parameter-interval («, B) is divided up into a finite
number of subintervals whose end-points form a partition

D: a=Tg<...< Ty <7, <...<Tp=p.
The corresponding points on the curve (8.1) are
z, = z(1,) (v=0,1,...,m 2(«) = a, z(B) = b).

From each interval (r,_;, 7,) we choose an arbitrary point + = o, (1,_; £
o, £ 7,), and setting {, = z(g,) we form the sum

Zp = 3 W)@ = zm)

If the curve (8.1) and the function w(z) satisfy additional conditions that we
shall give in the next section, it can be shown that 2, will tend to a finite limit
when the partition D is unrestrictedly refined (i.e., as n — «, the length of
longest subintetrval tends to zero), and the value of this limit will be independent
of the way in which the limiting process is carried out. We then define the
integral as

[2w@) dz = lim % W@ - 7-1). 32

n—->o v=1

8.3. Existence Proof

We assert that X, will tend to a finite limit in the manner described if the
function w(z) and the arc / < G satisfy the following conditions.

1. The function w(z) is continuous throughout the domain G.

2. The length of the polygons z; . .. z,_,2, . . . 2, corresponding to the
partitions D is bounded.

Thus, there exists a finite constant L (independent of D) such that
n
LD == ; IZ,, - Z,,_l| é L.

From a given partition D we can form a refinement D’ by introducing a finite
number of new points of division. The corresponding sums then satisfy the

condition
|&p — &b | £ OpL,

where O, denotes the maximal oscillation of w(z) on the subarcs of / deter-
mined by the partition D.

+ The oscillation of a function w(z) on a set A is defined by

sup |w(a) — w(b)|.
abeAd
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For the proof of the assertion we consider the first subinterval (z,, z,)
of D and the corresponding term

w({ Nz, — 2o) 8.3)

in the sum 2. Suppose that this interval is subdivided by the partition D’
into m subintervals with end-points z, = zg, zi, .. ., z, = z;,. Let an inter-
mediate point of the interval (z;,_,, z,) be denoted by z = {,. The contribution
of these intervals to the sum 2, is

> WLz, — Zhs).
=1

If we write m
2y — 2= ? (Z;l - Z;«-—l),

then we have

WL — 20 — 3w — 2m)

= (vt - w(C,t))(z,;—z,:-l)] < 0,5 Izl — 2]

The same reasoning is applied to each subinterval of D, and the ninequalities
obtained in this way are added together. The triangle inequality then yields
the estimate

|Zp — Zp| £ OpLp < OpL.

Now let D, and D, be two arbitrary partitions and X, 2, the correspond-
ing sums (the intermediate points { are chosen arbitrarily). The totality of all
the points of subdivision occurring in these partitions determines a new
partition D’ which is a refinement of both D, and D,. If X}, is one of the sums
corresponding to this new partition, we have, in view of the foregoing in-
equality, that

[Zp, — Zp,| £ [Zb, — Zp| + |2p, — Zb| = L(Op, + Op,).

Since the function w(z) is continuous on the closed arc /, it is uniformly
continuous on / (Exercise 1, p. 127). Hence, for any ¢ > 0 there exists a number
3. > 0, such that the oscillation Oy, of the function w(z(r)) is less than e for
every partition D for which 7, — 7,_; < 8.. From the inequality Op < € it
follows that for any two sufficiently fine partitions D,, D,

IZ‘Dl - szl é 2L€. (8.4)

The Cauchy convergence criterion now implies that the finite limit (8.2) will
exist for every partition D as it becomes progressively finer (i.e., as the length
of the maximal subinterval of the partition D tends to zero).
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8.4. The Concept of Arc Length

If the arc (8.1) has the property postulated above that the lengths L, of the
inscribed polygons have a finite upper bound L, then the arc is said to be
rectifiable, and the least upper bound of the set (Lp) (for all partitions D)
sup Ly =35 8.5)
(D)
is called the length of the arc. We shall prove the following.
As the partition D becomes progressively finer, the length L, converges
to a limit:}
s = lim L. 8.6)

In view of (8.5), for every € > O there is a partition D, of the interval («, B)
for which

€
Lo >s— 5

Let N be the number of the points of division of D, that lie in the interior of
(«, B). Since the function z(r) is uniformly continuous in the closed interval
(o, B), there exists a number & > 0 such that

|2r) — ()] < 3 3.7

whenever |7 — 7’| < 8. Now consider an arbitrary partition D of («, B)
whose subintervals are each less than 8 in length. For a common refinement
D’ of D and D, we have

Ly 2 Lp,>s5—5-
2
The number of subintervals of D’ that have an internal division-point of D,
as one of their end-points is at most 2N. The sum of the corresponding con-
tributions to L,y is at most 2Ne/4N = ¢/2. All the remaining subintervals of

D’ are also subintervals of D. Hence, the sum of their contributions to Ly
is certainly no greater than L,. We thus obtain for L, the estimate

€
A2

s <
LD =LD+2

whence
szLD_Z_LD'—§>s—-e.
The assertion (8.6) is thereby proved.

1 This limit can be denoted as an integral: s = [, |dz|.
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8.5.

Suppose now that the curve (8.1) is continuously differentiable, that is, the
derivative

dz . .,
% = 2(r) = 5(7) + 9(7)
exists and is continuous. Then the arc length is given by the formula:
B
s= |7 |4n)] dr = |, |dz]. 8.8)
Proof. By the definition of the derivative, ‘
2(r + A1) — z(7) = #(n)dr + A=(d7), 8.9

where (47) — 0 as 47 — 0. It is a consequence of the continuity of the
derivative that the function (47) tends to zero uniformly, i.e., for € > 0 there
exists a 8, > 0 such that |[(47)| < € for all 7 in the interval (&, §), provided
that |[47| < 8, (cf. Exercise 3, p. 127).

Suppose now that- D is a partition of (e, 8) for which 7, — r,_; <3,. Then
for the corresponding polygon we have

2y — Zpy = Z(Tv—l)('ru - Tv;l) + (Tv - Tv—l)<e>’

where {€> denotes a number whose modulus is less than €: [{e)| < e. Hence,
we have also

|z, — zoy| = |2(r,-DI(7, = 721) + (7, — T KD,
and so, by summing, we obtain
Ly= ; 4, Dl(r, = 70es) + 72 (8.10)
where
Iro| = Ell &, — 7o) = (B — a). (8.11)

Now |2(7)| is continuous in the interval « £ 7 £ B. By taking D progressively
finer, we obtain

lim 3 267l = 7o) = [1 26)]
Hence, it follows from (8.11) that L, tends to the expression in (8.8), and this

is what we wanted to prove.
To the interval («, 7) (x £ 7 £ B) there thus corresponds the arc length

sy = [T drs 2 = i) = o)
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If in addition the curve is regular:
#(7) = (1) + iy(r) # O,

then ds/dr > 0. The arc length s(7) is then a strictly increasing function of 7
and thus the same is true for its inverse function = = 7(s), whose derivative
is just dr/ds = 1/(ds/dr) > 0. Hence, for a regular curve, one can introduce the
arc length as a new parameter: z = z(7) = z(7(s)) = z*(5), and this is often
useful in the theory of line integrals.

8.6. The Line Integral over a Regular Curve

If the arc (8.1) is continuously differentiable (or, more specially, if it is regular),
then, by means of the substitution z = z(7), one can reduce the line integral
of a continuous complex-valued function w = w(z) to the ordinary integral
of a function of = extended over the parameter-interval («, B). If, in the sum
Zp (Section 8.2) wetake §, =z,_, (v=1,.. ., n),

2y = $ w(z,_1)(2, = 2,-1),

and replace the difference z, — z,_, by (8.9), we obtain

Zp = 3wz, D)), = 1) + 1o (8.12)
Here
fp = $ W(Z(Tv—l))(rv - Tv—l)<€>’

provided that the length 7, — 7,_, of each subinterval is less than 8, (Section
8.5). If we denote the maximum of |w| on / by M, we have that

ro] = M(B — o)e. -
The function f(7) = w(z(r))2(7) is continuous in the interval (e, B). There-

fore as the partition D becomes progressively finer, the first sum on the
right-hand side of (8.12) converges to the integral

[ r@ ar = [* w(z)etr) dr.

Since the remainder term rj, converges to zero, this integral is also the limit
of the sum 2, and thus

[2 @) dz = [* wiz)ete) ar. (8.13)
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8.7. Rules of Computation
From the definition of the line integral follow these rules of computation:

1) j Cw(z)dz = C f w(z)dz  (C a constant);

f(wl +w2)dz=fwldz+fw2dz.

2) If the arc / = ab is extended by an arc !’ = bc, then

fabcwdz=fabwdz ’—I—‘fbc.wdz.'
3) ﬁwﬁégﬂwﬁ
4 IfM =I?glx |w(z)| and L is the length of /, then
Ulwdz)nglldd:ML.
5) Forw = u + iv, z = x + iy we have
fwdz=f(udx——va"y)+if(vdx+udy).

Finally, we mention the folloWing theorem:

If wi(2), wy(2), . . . are continuous functions defined on a rectifiable curve I,
and if the series

we) = 3 w2

converges uniformly on this curve, then the series can be integrated term by
term:

[ W) dz = g [ wi@) dz. |

The proof of this theorem is left as an exercise (Exercise 6, p. 127).

§2. THE PRIMITIVE FUNCTION
8.8. Formulation of the Problem

Let w(z) = u(z) + iv(z) be a continuous single-valued complex function in
the domain G of the finite z-plane. Any complex function W(z) = U(z) + iV(z)
-which is single-valued in G and has the property that

W'(z) = w(z)

is said to be a primitive function of w(z).
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Such a primitive function W; if it exists, is an analyti¢c function of z in G.
We ask:

1) Under what conditions does w(z) possess a primitive function W(z)?
2) What is the totality of all primitive functions W(z)?

- The theory of integration in the real domain depends in an essential way
on the connection between the notions of “primitive function” and “definite
integral”. This connection is also valid in the complex domain. If W(2) =
U(z) + iV(2) is a primitive function of w(z) which is single-valued in G, and if
| = ab denotes a continuously differentiable path joining the points z = ¢ and
z = b inside of G, then

f (@) dz = W) — ‘W(a). (8.14)

The proof is obtained from the corresponding theorem for real integrals
(the so-called fundamental theorem of the calculus). Let z =z(7) (« £ 7 £ B;
z(«) = a, z(B) = b) be the equation of /. Then

WED) _ eyt

and, hence, W(z(r)) is a primitive function of f(r) = w(z(7))z(r) on the
interval « < 7 < B. If we decompose f into its real and imaginary parts, we
see that the condition (8.14) is indeed a consequence of the fundamental
theorem of the calculus.

From (8.14) it follows that the primitive function W of w, when it exists,
is uniquely determined up to an additive constant. In fact,

W(b) = f W@ dz+C, (8.15)

where [ = ab is a path joining the points @ and b, and C = W(a). Conversely,
if W is a primitive function and C is an arbitrary constant, then W + C is
another primitive function. Thus if W is one particular primitive function, all
the others are given by the expression W + C, where Cis an arbitrary constant.

8.9. Conditions of Integrability
We now pass on to question (1) (Section 8.8) and derive a necessary and
sufficient condition for the existence of a primitive function. The right-hand
side of formula (8.14) depends only on the end-points @ and b of the curve /.
Hence, the same is true for the left-hand side.
If the function w(z) is integrable in G (that is, if w(z) has a single-valued
primitive function in G), then the value of the integral

[y dz (8.16)

is independent of the path of integration joining the points a and b in G.
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Suppose now that / is a closed path, i.e., suppose that a = b. In this case
(8.14) implies the following integrability condition.

If w(z) is integrable in G, then for any continuously differentiable closed
curve v, lying entirely in G,

f , w2) dz = 0. (8.17)

Remark. 1f both the arcs /; and /, join the points a and b, then the path
I3'1, =l is closed. The path / is thus obtained by running first through /,
and then back through /, (i.e., through the arc I5'). We have

[waz={ +[.=] -],

Thus if the integral vanishes over every closed curve, then the integral (5 is
independent of the path, and conversely.

8.10. The Sufficiency of the Integrability Condition (8.17)

We assume that the necessary condition (8.17) for integrability is fulfilled,
and show conversely that the function w(z) has a primitive function.
We choose in G an arbitrary point z,, which we take as fixed; we let z
" be another arbitrary point of G and / a piecewise regular path from z, to z.
The points of / will be denoted by ¢.
If w(z) has a primitive function W(z), then we know by (8.14) that

W) =C + fl witydt  (C = W(zy)).

Conversely, if we wish to deduce the existence of the primitive function from
condition (8.17), we proceed directly from the integral

d(2) = f ; w(t) dt

taken over an arbitrary, piecewise regular path z,z =1 < G. Since the
integrability condition (8.17) is assumed to be fulfilled, the value ¢(z) is
independent of the choice of the path z,z; ¢(z) is thus defined in G as a single-
valued function. We have to show that ¢(z) is a primitive function of w(z):
$'(2) = wz). |

We consider a disk with center z € G and radius p which lies entirely in G.
For |4z| < p we have

44 = $z + 42) - ¢ = |

z+d4z

w(tyde — [* w(r) dt = | e i,
(8.18)

Zo

t If the path vy is piecewise regular, then the integral is the sum of the integrals over
the regular subarcs. Hence, the theorems stated above remain valid for piecewise
regular curves.
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where in the last integral we choose the segment (z, z + 4z) for our path of
integration. Since w(¢) is continuous at the point ¢ = z, we have on this
segment

w(t) = w(z) + r(?),

where |r(t)] is less than ¢, provided that | — z| < 8. Hence,
[ wryde = | T w(z)dt + [27 1ty de = wiydz + [
where the modulus of the last integral does not exceed

[ 1l at] < el4z|

z+dz +4z

r(t) dt,

z

whenever |4z| < 8. It follows that
¢(z + 42) — ¢(2) = w(z)dz + |4z|(4z),
where (4z) — 0 as 4z — 0. Then, by the definition of the derivative, we have

$'(@) = w(2).

Thus ¢ is a primitive function of w in the domain G.
The problem of integrability is thus reduced to the necessary and sufficient
condition (8.17).

§3. CAUCHY’S THEOREM

8.11. Integrability and Analyticity
In the previous sections it has been proved that the independence of the
integral

f  w(z) dz

of its path of integration constitutes a necessary and sufficient condition for
the integrability of the complex-valued function w(z), single-valued and
continuous in the domain G. This property can be reduced to a simple local
condition.

For the integrability of the function w(z) in the domain G it is necessary that
w(z) be analytic at every point of G.

Under an additional assumption on the topological character of the
domain G, this condition is also sufficient.

To prove that the condition is necessary we require tools that are not yet at
our disposal. For this reason the proof of this part of the assertion will be
given in the next chapter (Exercise 6, p. 165). The second part of the
assertion will be proved first under the assumption that the domain G is
convex. This means that if g and b are two arbitrary points of G, then the
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segment ab also lies in G. In Section 4 it will be possible to replace this assump-
tion by a weaker one. What we shall prove is:

In a convex domain G every analytic function w = w(z) is integrable.

8.12. Goursat’s Proof
We consider the integral

I= fy w(z) dz

taken in the positive sense over the boundary y of a triangle 4 in G. We
decompose 4 into four congruent subtnangles 4, with positively oriented
boundaries ;. Then we have

I=3% J’y‘ w(z)dz. |

In fact, every edge in this partition that is interior to 4 is the common edge

of two adjoining subtriangles, but with opposite orientation. Thus the con-

tributions of these sides to the integral cancel each other, while the contribu-

tions of the outer sides add up to the complete integral over the boundary y.}
Thus we have

1 < 3|[,, W de| s 4|1),
where '
L=, Wz

denotes the integral taken over the boundary of whichever of the four triangles
4, gives it its largest absolute value. (If there are several triangles giving the
greatest absolute value, I; can be chosen to be the integral over any one of
them provided it is fixed.) If |4| and |4,| = |4|/4 denote the areas of the
triangles so fixed, we have

1| _ 4 i

41 = " =ja

+ The rigorous proof of these intuitively obvious assertions rests on the definition
of orientation of the boundary. The positive orientation of the triangle P;P,P; is
fixed in just the same way as for circles in the footnote on p. 46. Let T} be the half-
plane bounded by the line through P, and P; and containing P;. The half-planes T,
and T; are defined similarly. The interior of the triangle P,P,P; is then defined as
the intersection of the half-planes T, T5, Ts.

Let a be an arbitrary interior point of the triangle. One can show that as z
traverses the perimeter of the triangle in the sense P,P,P;P;, darg(z — a) is
either everywhere positive, or everywhere negative independently of the choice of a.
In the first case we say that the orientation of the boundary is positive with respect
to the plane, or with respect to the interior of the triangle; in the second case the
orientation is said to be negative.
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By repeating this process we obtain a sequence of nested similar triangles

4>4,>--->4,> - with boundaries y, i, . . ., ¥y, . - . such that
e TEE I e I e . S _ 8.19
4] = 14,] 14,] ®.19)
where

I, = .[y. w(z) dz.

The length [y,| = |y|/2" of the boundary y, tends to zero asn — . It follows
that the (closed) triangles 4, (n = 1, 2, .. .) have exactly one common point
z = z, in the (closed) triangle 4.

Now w(z) is differentiable at the point z = z,, and, hence,

w(z) = w(zo) + W'(20)(z — 2o) + |z — zo|e(2),

where €(z) - 0 as z — z,. Hence,
f y.. w(z) dz = w(zy) fy" dz + w'(zp) f . (z—2zp) dz + fy" |z — zo|e(z) dz.

The primitive functions of the first two integrands on the right-hand side are
z and (z — z,)?/2; thus the integrals over the closed path v, are zero. In the
third integral |z — zy| < |y,] = 0 as n — «; that is, for every e > 0 there
exists an n, such that |e(z)| < € on y, whenever n > n.. For these values of
n we have

il = [, war| = [ |z zole@ dz| < lvale [ 1dz] = el

and, hence,
2

L

n

2 _ .M

lyal? _
4,77 14|

e|y|? for n > n,, which is possible only if I = 0.

A

Se
I

N

Thus, in view of (8.19), |7|

8.13. Cauchy’s Theorem

We are now in a position to construct a primitive function for a function
w(z), which is analytic in a convex domain G.

Let z, be a fixed point of G, and let z € G be an arbitrary second point.
We define in G a single-valued function by the integral

$@) = [2 wo)at,

where the integral is taken over the straight-line segment zyz. If we go from z
to the point z + 4z € G, we have

Ap = $(z + 42) - $@) = [ w(ryde — [T wiya,

Zo
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where both integrals are taken over straight-line segments. In view of Section
8.12, the integral of w over the boundary of the triangle z,, z, z + 4z, vanishes.

Hence,
a4 -

It can now be shown, as in Section 8.10, that ¢(z) is a primitive function of
w(z) in G, which was to be proved. Applying the necessary condition of
integrability (8.17), one can further conclude that:

z+4z

w(t) dt.

For an analytic function w(z), single-valued in the convex domain G, the
integral

f , w(z) dz
vanishes over any (piecewise) regular closed curve y contained in G.

This is Cauchy’s theorem, the fundamental theorem for the development
of the theory of analytic functions. In the next section we shall extend it to
more general domains.

Remark 1. The theorem remains valid if the curve y contains a boundary
arc of G on which w(z) is analytic. If we keep in mind the definition of
analyticity at a point, we see that the above proof is still valid in this case.

Remark 2. If the path I (z = z(7); « £ 7 £ B; 2(0) = a, z(ﬁ) b)in G is
rectifiable, then the line integral

L w(z) dz (8.20)

is to be understood in the sense of the definition of Section 1. If w(z) now has
a single-valued primitive function W(z) in G and if the path of integration is
piecewise regular, then

f w(z) dz = j AW = W) - W(a). (8.21)

This formula is valid for an arbitrary rectifiable curve, since the integral over
a rectifiable curve can be approximated arbitrarily closely by means of
integrals over piecewise regular curves (Exercise 14, p. 128).

8.14. Determination of the Primitive Function on Chains of Convex Domains

Let G be an arbitrary domain, w(z) an analytic function in G, and / =ab a
piecewise regular path in G. We can decompose / into a finite number of
subarcs I, = ¢,_;c, W = 1,2,...,1n; ¢y = a, ¢, = b) in such a way that each
1, belongs to a convex domain G, < G (Section 8.1). Then, in view of Section
8.13, there -exists in each subdomain G, a single-valued primitive function
W,(z) of w(z), so that the integral (8.20) can be evaluated by the formula

[ W) dz = éﬁ,‘ W) dz = g} (W) — Wier)).  (8.22)
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These considerations can be extended to the case in which [ is an arbitrary
(continuous) path. The integral (8.20), which, until now, has been defined
only for rectifiable paths I, can be defined for an arbitrary continuous path
by the formula (8.22). This definition is independent of the manner of
decomposition (/,) (Exercise 15, p. 128).

Cauchy’s theorem is valid therefore for arbitrary continuous paths y
which lie in a convex domain G.

§4. THE GENERAL FORMULATION OF CAUCHY’S THEOREM

8.15. Winding Number of a Closed Curve

In the previous paragraph we have discussed the integration of analytic
functions in a convex domain. We now ask ourselves the question: is this
special property of the domain G essential for the validity of the results of
Section 3, in particular, is it essential for the validity of Cauchy’s theorem ?
That the topological nature of the domain has some bearing upon the problems
of integrability is evident from the following simple example.

Let z = ¢ be an arbitrary point of the plane and let y denote a piecewise
regular closed path z = z(7) (« £ 7 £ ) which does not meet the point
z = ¢ (z(7) # ¢). The function w(z) = 1/(z — ¢) is analytic in the punctured
plane 0 < |z — ¢| < » where it is the derivative of the function log (z — ¢) =
log |z — ¢| + iarg (z — ¢). In view of (8.13) we have

1 z 1 B 2(+)dr
U = 3 yz—;—c*%faz@._c

_ 1[4, )—|d+1fﬁi () — ) dr. (8.23
—2_7rifa71; og |z(r) — c| dr 5 Aad’rarg z(7) — ¢) dr. ('. )

Since the function log |z — ¢| is single-valued, the first integral on the right-
hand side is zero. The second integral is the increment of arg (z — ¢) along y,
and thus it is an integral multiple of 27. If we write ¢ = a + ib and
z(7) = x + iy, we obtain for the integer u, the following value:

1 (B d 1 (Bd y—5b
Zfaa;arg(z(-r)—c)dr—z;faa;arctanx_adf
lf"(x—a)}"—(y-b)fc
dr.

), (x—af + (y~ bP

The integer u. defined by the integral (8.23) is called the winding number of
the oriented closed curve y with respect to the point z = c; it gives just the
increment of (1/2) arg (z(r) — c) as 7 runs through the interval (e, g), and
z describes the curve y (cf. Exercise 10, p. 75).

If, for example, y is the circle z = re!” (0 < 7 = 27), then the winding
number u, is zero for |¢| > r,and is 1 for |¢| < r.
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Thus if y denotes the circle z = ¢ + re'”,

f dz = 27
.},Z—C

in spite of the fact that the integrand w = 1/(z — ¢) is analytic in the domain
G: 0 <|z—¢| <. Accordingly, the integral (8.20) which appears in
Cauchy’s theorem does not vanish for all closed curves y in G. It is easy to
see why the construction that we carried out in Section 8.13 breaks down in
this case. In fact, if z, % c is an arbitrary point of G, then the line segment
zyz, which served in Section 8.13 as the path of integration in obtaining the
primitive function, will lie in G only when this segment does not pass through
the boundary point z = ¢ of G. I, on the other hand, the point c is on this
segment, one cannot reach the point z by means of the construction, since
the integrand becomes infinite on the path of integration (at the point z = ¢),
and so the construction breaks down.

8.16. Deformation of Paths

We now turn to the problem of integration for a general domain G. For this
we require some auxiliary topological concepts.
Let / be a continuous path,

I z=201) (x=7Z2B;za)=a z(B)=>)

lying to G, and let /; be a subarc (z = z(r), ¢, S 7 S Bj;0 S oy < By S B)
of I which lies in a convex subdomain G, of G.t We leave the initial and
terminal positions (¢ £ 7 < «;, 8; £ 7 < B) of the curve / fixed, but we
replace the middle portion /; (¢; £ 7 < B,) by another continuous curve /;
-which joins the point a; = z(«,) to the point b, = z(8,) in G,. We say that
the new continuous path !’ obtained in this way arises from / by means of an
elementary deformation.

Now suppose that / and 1’ are two arbitrary paths in G which join the
points @ and b. 'If I’ can be obtained from / by means of a finite number of
elementary deformations, then /is said to be homotopic to I’ (with respect to
the domain G). '

Homotopy is an equivalence relation: it is (1) reflexive: / is homotopic to
itself; (2) symmetric: if / is homotopic to I, then !’ is homotopic to I; (3)
transitive: if / is homotopic to /', and /" is homotopic to /", then / is homotopic
tol”.

t This condition is certainly fulfilled if 8; — «, is chosen sufficiently small; /; will
then lie in a disk G; < G.
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8.17. Remarks

The above definition of homotopy is equivalent to the usual topological
definition (cf. Exercise 16, p. 128). The latter is based on the notion of
“continuous deformation’’, whose exact definition is as follows.

Two continuous paths /,: z =z,(7) (« £ 7 £ B; v =0, 1) joining the
points a and b in G are homotopic (to each other) if there exists a continuous
function z = z(o, 7) defined in the rectangle (‘“‘deformation-rectangle’)
« 2 7=B, 0= o= 1, with values belonging to G, such that z(o, o) = a,
(o, B) = b, and Z(O’ T) = 20(7)5 (1, 7) = ZI(T)'

The continuous family of curves I,: z = z(o, 7) (« £ 7 < B) defined for
0 £ o = 1, each joining the points a and b, provides a “continuous deforma-
tion” of /; into /;. We base homotopy theory on the notion of elementary
deformations because it is particularly convenient to apply: to carry out an
elementary deformation on a curve we only need to enclose a portion of the
curve by a convex subdomain of the given domain G. This is often simpler
to do than to construct a deformation rectangle.

8.18. The Fundamental Group

The concept of homotopy can be applied to the special case of closed paths
I = yin G. We fix an arbitrary point z = a in G and we consider the totality
of all continuous paths y for which the point @ is both the initial and the
terminal point. Since homotopy is an equivalence relation for such paths,
the set of all paths can be decomposed into disjoint equivalence classes (H),
madeup of mutuallyhomotopicpaths. These homotopy classesformagroup (H). -
The group operation is defined in the following way: If H, and H, are given
classes, and if y, € H, (v = 1, 2), then H,H, is the homotopy class which
contains the “product path” y,y, (cf. Section 8.1). In view of the equivalence
property of homotopy, the definition of the product class H,H, is independent
of the choice of the representatives i, and y, of the homotopy classes H,
and H,.
Furthermore, the group axioms are satisfied:

1) The product is associative.

2) There exists a well-defined “unit class” H, with the property that
HyH = HH, = H for every class H. (H, is the class of all nuli-
homotopic paths y, i.e., the set of all paths homotopic to the “null
path” z = z(7) = a.)

3) Each class H has an inverse class H~! with the property that
HH™' = H'H=H, (If y € H, then H™! is the class containing
the path y~! with opposite orientation.)

The group (H) is called the fundamental group of the domain G.
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8.19.

Remark 1. The fundamental group (H) of G has been defined by means of
continuous closed paths y passing through a fixed point z=a € G. It is
important to note that the structure of the group does not depend on the
choice of the point a: the group is uniquely determined by the domain G up
to an isomorphism.}

To prove this assertion we consider on the one hand the paths (y) with
initial point g, and on the other hand the paths (y") whose initial point is
another fixed point z = ¢’ € G. We join @ and a’ by an arbitrary continuous
pathaa’ =1 < G. The relations

Y=k y=DYI
define a one-to-one correspondence between the paths ¢ and the paths y'.
Two homotopic paths y correspond to two homotopic paths 9, and con-
versely. Furthermore, the path y,y, will correspond to the path y}y;, and
conversely. Thus we have established a one-to-one correspondence between
the homotopy classes (H) and (H’),and this correspondence is an isomorphism.

The relations between corresponding homotopy classes can be expressed
by the formulas

H' = IHI™}, H=I"'H'I;
the groups (H) and (H’) are said to be conjugate under the transformation
by I

Remark 2. 'We have used continuous paths / for the definition of homotopy.
It can be proved easily that we should have achieved the same results if, instead
of allowing general continuous paths, we had restricted our attention to
polygonal paths with a finite number of edges (cf. Exercise 17, p. 129).

8.20. The General Form of Cauchy’s Theorem. Primitive Functions

If the fundamental group (H) of the domain G of the finite z-plane consists
of the unit element H, alone, then G is said to be simply connected. In this
case every closed path in G is null-homotopic.

It is a trivial consequence of the definition that every convex domain is
simply connected.

We mention without proof that a domain is simply connected if its
boundary consists of a single continuum (Section 1.10).

+ Two groups 4 and B are isomorphic if the following conditions are fulfilled:
(1) There is a one-to-one correspondence between the elements @ of the group 4
and the elements b of the group B (a <« b); (2) a, > b, (v = 1, 2) implies that
aja <> blbz. )

If the conditions (1) and (2) are valid in one direction only, a — b, a, — b,,
aia, — bib,, the group B is said to be homomorphic to the group 4. Thus, if B is
homomorphic to 4 and A4 is homomorphic to B, then 4 and B are isomorphic.
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We can now state the general form of Cauchy’s theorem:

If w(z) is analytic in a simply connected domain G, then
f @) dz =0 (8.24)

for every closed path y in G.

First of all, we note that, in view of Section 8.14, the integral (8.24) is well
defined for any path . To prove the theorem we shall use the special form of
Cauchy’s theorem (Section 3) and the properties of the homotopy. Since G
is simply connected, the path y can be deformed into a point-path (null path)
zg in G by means of a finite number of elementary deformations. It follows
from the special form of Cauchy’s theorem (compare Sections 8.13 and 8.14)
that the value of the integral is invariant under an elementary deformation.
Since the integral over a null path is zero, the assertion (8.24) is proved.

_If we assume that G is simply connected, the integral

f@@) = f :o w(z) dz, (8.25)

over an arbitrary piecewise regular path / = zyz (or, in particular, over a
polygonal path) defines a single-valued primitive function of w(z) in G:
S'(2) = w(z). The totality of primitive functions is obtained from f(z) by the
addition of a constant.

8.21. The Group of Integral Values

We now abandon the assumption that the domain G is simply connected. If
w(z) is analytic in G, we may draw the following conclusion from Section 8.20.
The Cauchy integral

f , w(z) dz

taken over a closed curve y has the same value I for all curves y belonging
to the same homotopy class H. If y = y,y, is the “product” of the paths
Y € Hl: and Y2 € Hz, then

Tas = [, wiz=[ wdz+ [ wiz =Ty + I (826)

Thus the values Iy of the integrals form a (commutative) group (Z) with the
addition (of complex numbers) as group operation. The unit element of the
group () is the number zero. The groups (H) and (Iy) are thus related in
the following way: To each element H of the fundamental group corresponds
a well-defined integral-value Iy, and this correspondence satisfies the relation
(8.26). Hence, the group (/) is homomorphic to the group (H) (footnote on
p. 124). To the unit element H, (the class of null-homotopic paths)
corresponds the integral-value I, = 0.
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If H is the homotopy class defined by the closed path y, we have as a
generalization of Cauchy’s theorem that

fy w(z) dz = I.

In the special case when v is null-homotopic in G, this reduces to the original
form of Cauchy’s theorem.

Finally, we observe that the integral over the closed path ' = ly/™! has
the same value as the integral over y. Thus the group (I) is isomorphic to the
group (1), where (H') denotes the group conjugate to (H) under the trans-
formation by /. From this it follows that the group (/y) is independent of the
choice of the initial point @ on the closed path y.

8.22. Modules of Periodicity

If the function w(z) is analytic in the domain G, then the integral of w assumes
the same value along every path I’ = ab homotopic to / = ab = G. If [ and
1" are not homotopic (which happens if and only if the closed path y = ['I™!
is not null-homotopic), we have

f,»WdZ=f,Wdz+nydz'

Thus, the integrals over / and !’ differ by the value I, the module of periodicity,
which in turn is determined by the class H (containing y = I'/~!). Hence:

For fixed z and z,, the primitive function

r@=[lw@d+c (C=f@)

is determined up to an additive term Iy. If the path of integration varies
within a fixed homotopy class, then the term Iy (the module of periodicity)
remains constant.

8.23. Multiply Connected Domains

If the domain D is multiply connected (i.e., not simply connected), then the
fundamental group has other elements H besides the unit H, corresponding
to paths in G which are not null-homotopic. If there exists a system of finitely
many generators H,, H,, . . ., H, such that every element of the fundamental
group can be written as a finite product of the generators and their inverses,
then (H) has a basis, i.e., a system Hy, H,, . . ., H,_, with a minimal number
q = 1 of generators. This number, g, the rank of the fundamental group, is
called the connectivity number of the domain G. If (H) does not possess a
finite system of generators, we say that G has infinite connectivity (cf. Exercise
20, p. 130).
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If w(z) is analytic in the g-tuply connected domain G, and if H, (v =
0,1,...,9 — 1) is a basis of G, then every module of periodicity I of the
primitive function of w(z) can be written in the form

q-—1
IH = 20 muIHy
V=

with integer coefficients m,,.

EXERCISES ON CHAPTER 8

1. Prove that a function w(z) which is continuous on a closed arc /is uniformly
continuous on /, i.e., that for every € > O there exists a p, > 0, such that
|[w(z,) — w(z,)| < € whenever z, and z, are points of the arc / and
IZ | S zZl < Pe-

2. If w(z) is continuous in a domain G, then it is uniformly continuous on
every compact (closed and bounded) subset G’ of G, i.e., for every € > 0,
there is a corresponding p, > 0, such that |w(z;) — w(z,)| < e provided that
lz; — 23] < pc.and z}, 2, € G'.

3. Show that the function (47) in (8.9) tends to zero uniformly in the interval
@ < 7 < Bas dr — 0, i.e., that for every € > 0, there exists a 6. > 0 such
that for every 7 in the interval (a, B), |(4d7)| < € whenever |d7| < 3.

Hint. Split the function z(7) into real and imaginary parts and apply the
mean-value theorem.

4. Show that the value of the integral (8.2) is independent of the parametric
representation (8.1) of the arc /, provided that the conditions for the existence
of the integral are fulfilled.

5. Prove the rules of computation (1) to (5) for line integrals (Section 8.7).

6. Prove the theorem on the term-by-term integration of uniformly con-
vergent series (Section 8.7).

7. Evaluate
[F 1l dz

for the following paths of integration: (a) a straight-line segment, (b) the
arc|z]| = 1,Rez 2 0,(c) thearc |z] = 1,Rez = 0.

8. Evaluate [ (Re z) dz (a) along the segment z,z,, (b) along a circle with
center z, and radius r, described in the positive direction.

9. Let the function w(z) be continuous outside the circle |z| = ry, and let
lim rM(r) = 0, where M(r) is the maximum of |w(z)| on K,: |z| = r (> ry).

r—>o

Show that
lim f L W@ dz = 0.
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10. Let the function w(z) be continuous for 0 < |z| <r, and let
lim rM(r) = 0, where M (r) is the maximum of |w(z)| on the circle K,: |z| = r

r—>0

(< rg). Show that

lim x w(z)dz =0

r—0
11. Evaluate | z dz, where y is a rectifiable closed curve.
12. Evaluate the integral [ |z — 1||dz| along the circle |z| = 1 described in
the positive direction.
13. Evaluate the integral

eZ
fl +zzdz

along the curve |z — 1| = 1 described in the positive direction.

14. Let w(z) be a continuous function in the domain G, and let / < G be a
rectifiable curve. Prove that for every € > O there exists a piecewise regular
curve y with the same end-points as /, such that

U’wdz—fywdz' <e

Hint. Let G, be a bounded closed subdomain of G containing the curve /,
and let L be the length of /. Since w(z) is uniformly continuous in G,, for
every € > 0 there exists a §, > 0 such that jw(z") — w(z")| < €/(2L) whenever
z' € Gy, z” € G, and |z’ — z"| < 8. Divide the curve / into subarcs z,_,z,
each lying in a disk in G of diameter 8.. Then y can be chosen as the polygon
with the vertices z, (v = 0, 1, . . ., n), since

[ @) dz — 5 wie-)e, - )] <L =5
v=1

U” w(z) dz — él w(z,-1)(z, — 2,-1)

< £
5
15. Show that the generalized definition of the line integral (given in Section

8.14) n
flwdz= 3 . wdz

v=1
is independent of the choice of the partition (7).
16. Prove that the two definitions of homotopy given in Sections 8.16 and

8.17 are equivalent.

Hint. (1) The property in Section 8.17 is a consequence of the definition in
Section 8.16. To prove this, it is sufficient to construct a deformation rectangle
for an elementary deformation D. If D is effected by means of the curves
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I:z=z/(r) (¢« = 7 2 B; z(x) = a, z,(B) = b; v = 0, 1) lying in the convex
domain G, we may define z(o, 7) by z(o, 7) = (1 — 0)z¢(7) + 02,(7) for
0<o=1l

(2) The property in Section 8.16 is a consequence of the definition in Section
8.17. Suppose that the deformation z = z(o, 7) is given in accordance with Sec-
tion 8.17. The deformation rectangle can be divided up into small (congruent)
rectangles R in such a way that the image of each rectangle will lie in a corre~
sponding convex subdomain of G (since z(o, ) is uniformly continuous in
the closed deformation rectangle; Exercise 2). The
elementary deformations to be constructed can be  ,
defined in the following way (Fig. 28). We start with
the rectangles adjoining the side o = 0. First the
subsegments 12,23, ... of thesideo =0, S 7 < B
are replaced by the polygons 1122, 223’3, .. ..
Each replacement corresponds, by means of the > >
mapping (o, 7) — z, to an elementary deformation
of the corresponding arc of /;,. Next, the twice-
described segments 2'22°, 333’ of the paths
11'2'22'3'3 ... are replaced, by means of an elementary deformation, by
the point paths 2', 3, .... The curve /, is thereby deformed by means
of a finite number of elementary deformations into the image of the
segment 1’2’3 . . .. Continuing this process, we finally reach the curve /,.

1 Y 3

Figure 28

17. Suppose that two continuous paths / and !’ which join the points @ and b
in G are homotopic in the sense of Section 8.16. Then, there exists a sequence
of continuous paths I = I, I, . . ., I, = I’ such that [, is obtained from /,_,
by means of an elementary deformation D, (v = 1, ..., m). Show that the
paths /y, /,, . . ., I, can be replaced by polygonal paths [, /,, . . ., [,, which are
“polygonally homotopic”; this means they go over into one another by
means of a finite number of elementary deformations; here the notion of
deformation is restricted to deformations that transform polygonal paths into

polygonal paths.

Hint. Suppose that the elementary deformation D,, which transforms /,_,
into /,, deforms the arc a,b, of ,_, into a subarc of /, (with the same end-
points). Divide / =/, into ny small subarcs cp_jcp (u=1,. .., ny), each
subarc belonging to a convex subdomain G, of G. By means of n, elementary
deformations replace each of these arcs by the corresponding straight-line
segment cd_ lcg. In this way one obtains a polygonal path /,, homotopicto I = /.
The elementary deformation D, transforms /, into /,. If the subarc a,b,
(deformed by D,) contains the j division points ¢, . . ., ¢}y ;_1, then I, will
contain the division points ¢ = a, ¢%, . . ., ¢}_y, ay, by, €yjs . . o € = b. We
shall denote these division points (in the order in which they occur on /;) by
ch=a,cl, ..., cl =b. Ifeacharcc,_c,is deformed into the segment c}_,c.
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(by means of an elementary deformation), the arc /; is transformed into a
polygonal path /.

Moreover, /, may be obtained from J, by means of “polygonal deforma-
tions” in the following way. First subject Ip = ¢§ ... c_;c? ... cQyj1cds;

. ¢% to three elementary deformations, transforming the subpolygons

e e e ...y, and ¢y, c?,; into the polygons ¢?_,a,cd, cfa,bicd,;_,,
and ¢, ;_,b,c), ;, respectively. Two further elementary polygonal deformations
(replacing the polygon a,c0a, by the point path a, and b,c), ,_,b, by b,) produce
the polygonal path [, = ¢} ... c),.

Repeating this process, one obtains the desired sequence of polygons:
Iy, I,, ..., I,. The vertices ¥, ..., ¢ of I, are all points of the curve
I, = I’. Replacing each subarc cfc}, cf'cy, ... of I’ by the corresponding
edge of I, by means of elementary deformations, the arc I’ is transformed
into the polygon [,

18. Prove the following assertion: If two domains G, and G, are mapped
onto each other by means of a homeomorphism (a one-to-one mapping
continuous in both directions), each (closed) null-homotopic path in G
corresponds to a null-homotopic path in G,. Consequently, the homeomorphic
image of a simply connected domain is also simply connected.

19. What are the different values of the integral
' _dr
ol-+2%
when all possible paths of integration are considered ?
20. What is the connectivity number of the domainz #n(n=1,2,...)?
21. Use the formula

Z dz
logz-—logzo=f —
zoz

to derive properties of the mapping w = log z.

22. ProvethatthecircularannulusO < r < |z| < R £ o isdoubly connected,
and determine its fundamental group.

Hint. Let I, be a path joining z, to z inside the annulus. The integral
dz

1 Z

w=u+iv=

maps /, onto a path /, lying in the strip log (/|zo|) < u < log (R/|z,|) and
joining the points w = 0 and w = n-27i (n an integer). Such a path /,, can be
deformed into the segment (0, 7-2#7). This deformation will induce a deforma-
tion of /, onto the circle |z| = |z,| described n times or (in the case n = 0)
into the point path z = z,. The class of the null-path z = z; and the circle
|z} = |zo| therefore form a basis of the fundamental group.



CHAPTER 9

CAUCHY’S INTEGRAL
FORMULA AND ITS APPLICATIONS

§1. CAUCHY’S FORMULA
9.1. Derivation of the Formula for a Disk

Let the function w = w(z) be analytic in the domain G. We consider a closed
disk K < G, along with the positive orientation of its circumference y. We

evaluate the integral
I, = f i(ﬂ dz

yz—a

where a ¢ v is an arbitrary point of the complex plane.

First, if @ is in the exterior of K, the quotient f (z) = w(z)/(z — a) is analytic
in K, so that I, = 0 by Cauchy’s theorem.

Now suppose that a is an interior point of the disk X. Then the quotient
f(2) is analytic at every point z s a of the domain G. In order to calculate
the integral we choose three points z,, z,, 2, on the circle y which have a positive
orientation and which are such that the arcs z,z,,, (v=1,2,3;z, = z))
when viewed from the point a subtend angles
less than 7. We form a circle y’ (|z — a| =r)
lying in K, and denote by z = z, (v = 1, 2, 3)
the intersection of the straight line @z, with
the circle o',

Since the closed path z{z,z,z;z, lies in
the closed convex sector az;z, in which
f () = w(2)/(z — a) is analytic (except at z = a),
we can apply Cauchy’s theoremt (Section
8.13) to obtain

0= fz'lzl + fzxzz + fzzz'z + lezzll. Figure 29

By cyclic permutation of the indices 1, 2, 3, we obtain two similar equalities.
If we add these three equations we have

I,=1I,.

1 Note that the sector we are considering can be embedded in a larger convex sector
in which £ (z) is still analytic.
131
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If we substitute w(z) = w(a) + (w(z) — w(a)) in the integral on the right, we

find that
I, = w(a) f A + f w2) = wa) dz
yZ—a y Z—a

To calculate the first integral on the right-hand side, we set z — a@ = re'® and

obtain
fz—a f dlog(z—a)—tf d = 2mi.

Now the absolute value of the second integral in the expression for I, is at
most

[, W) — wia) [dlog (z — @)] = [T [we) — w(@)] d$ < 2me,

for, because of the continuity of w(z), we can choose the radius r of 9’ so
small that {w(z) — w(a)| < e will hold on ¢ for a given € > 0. Hence (using
the notation (2we); cf. Section 8.5)

I, = I, = 2miw(a) + (2me).

As € — 0 we obtain
I, = f »@) dz = 2miw(a).
yZ—a

Thus, we have proved the following theorem:

If v is the positively oriented circumference of the disk K, then, at every
interior point z = a of K

wa) = = f "3 4, ©.1)
Y

i), z—a

This is Cauchy’s integral formula for a disk K. It shows that the values of
an analytic function in the interior of a disk are determined by its values on
the circumference v.

9.2. Expansion of an Analytic Function into a Power Series

We shall now derive a fundamental expansion for analytic functions from
Cauchy’s integral formula. If w(z) is analytic on a closed disk K: |z — a| £ p,

then
w(z) = f 0 4 ©.2)

holds for all values [z — a] < p; here y is the posmvely oriented circumference
of K. We expand the factor 1/({ — z) of the integrand to a geometric series

1 1
{-z C-a—-(z—-a
1 z—a . (z—a)’ll (z—ay

I A () A (g N g g
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By integration we obtain
wiz)=co+c(z—a)+ -+ cpi(z — @) + R(2). 9.3)

The coefficients in this expansion are given by

1
- | e =0,...,n—1), 9.3)’
cl' 2 i J.y (C a)p+] ; (V 0’ ’ b n 1) ( )

and the remainder term is

C-ar[  wd :
SR W cer st 63"

From (9.3)" we obtain the estimate

Iz — al" IW(€)| IdZl
IR = =5 f Il —al"|l 2|

Since |{—z|=[({—a)—(z—a)| 2p—|z—a| and [W()| £ M (with a
suitable constant M), we have

IR s —M 12— “'n- 9.3)"

p—lz—a| p!

9.3. The General Form of Cauchy’s Integral Formula

We consider again a function w = w(z) which is analytic in a domain G of
the finite z-plane. Let z = a be an arbitrary point of the domain G. Then the
difference quotient

' w(z) w(a)

zZ—a

f@) =

is analytic at every point z # a of the domain G. We shall show that it is also
analytic at the point a. Since the function w(z) is analytic in the domain G
by hypothesis, it is differentiable:

w(z) w(a)

— w'(a) as z > a.
Z—a

Hence, if we define the value of f(z) at a to be f(a) = w'(a), then f(z) is
continuous at the point z = a. By means of the expansion (9.3) we may
conclude that f'(z) is even differentiable at the point z = a € G. In fact, if
we apply this expansion for a disk |z — a| < p lying in G, we find first of all
that ¢y = w(a). For n = 2 we find that

W)= co_  , Rel@)

T == mat 2,
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It follows from the estimate (9.3)” that the quotient R,(z)/(z — a) tends to
zero as z — a. Hence, ¢; = w'(@) = f(a). We now apply (9.3) for n = 3.
We find that
w(z Ry(z
f@ =" @) + ex(z - a) + DD,

z—a a

and, hence,

fQ-r@_, , R@

z—a 2T (z = a)2
In view of (9.3)”’ the second term tends to zero as z — a4, and we conclude
that the limit

- f@—f@ _ ..
lim==—y =/ @=c
exists.
Thus we have shown that the quotlent f(2) is an analytic function of z
in the whole domain D. Using Cauchy’s theorem, we obtain the result that

for every null-homotopic path v in G

fyf(z) dz = 0.

If y does not pass through a, we have

0= f ) ____w(zz - Z(") dz = f w(z) — w(a) f

The value of the second integral is 2miu,, where u, is the windihg number of
the path ¢ with respect to the point . Thus we have derived the following
theorem.

Let the function w(z) be analytic in G, and let y be a null-homotopic closed
pathin G. Then, for every point z € G, z ¢ vy,

uw(z) = ﬁ f y §W(—Oz a, (9.4)

where u, is the winding number of -y with respect to the point z.

In a simply connected domain every closed path y is null-homotopic, and
(9.4) holds therefore for any closed path y in G not passing through z. If the
winding number u, of y is 1, Cauchy’s integral formula (9.4) takes the simpler
form:

1 w(d) ,
w(z) = 3 fy T s d¢. | 0.4

This is the case, in particular, if y is a positively oriented circle which is null-
homotopic with respect to G (compare with Eq. 9.1).
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Remark. Cauchy expounded his integral theory in an extensive series of papers,
the first of which was published in 1814. Even earlier, however, some knowl-
edge existed concerning complex integration and complex functions. The
most important forerunners of Cauchy in complex function theory were
Leonhard Euler (1707-1783) and Carl Friedrich Gauss (1777-1855).

§2. THE TAYLOR EXPANSION OF AN ANALYTIC FUNCTION

9.4. Taylor Expansion

Once more, we consider a fixed disk |z — a| £ p contained in a domain G in
.~ which we have an analytic function w(z). If the positively oriented circle
|z — a| = p is denoted by v, the expansion (9.3) is valid for every n = 0.
The coefficients ¢, do not depend on z, and have the values (9.3)’, while the
remainder term satisfies the inequality

|z — d] |z — al\"!
mel st (B0

where M is the maximum of |w(z)| on the circle |z — a| = p. We now
consider a, p, and z fixed (|z — a| < p), and let n tend to infinity. Then

- n—1
(|z a|) 50
P

and therefore the remainder term R,(z) tends to the limit zero. Thus we have
proved that in the disk |z — a| < p the function w(z) has the convergent
power series representation

wz) = % ez — @y

with coefficients
w2 _
Cn sz Gogmd @=01,..).

In view of Section 7.9, the sum of a convergent power series has deriva-
tives of all orders, which can be found by term-by-term differentiation. The
values of the derivatives at the point z = q are given by

n! w(z)

w(")(a) = n! Cp = 2‘—7” (Z _ a)n—&—T
Y

Thus we have proved the following theorem.

dz.

A function analytic in a domain G has derivatives of all orders. In the
neighborhood of a point z = a € G, it has the Taylor expansion

e = > D (2~ a, ©.5)

0



136 CAUCHY’S INTEGRAL FORMULA AND ITS APPLICATIONS §2

which converges at least in the disk |z — a| < p whose radius p is the
shortest distance of the point a from the boundary of the domain G.

The derivatives have the integral representation ‘

won(g) = 2L f - ),,H dz, ©.6)

where y is the circumference of a disk |{ — z| £ p lying in the domain G.
We can deduce this result directly from Cauchy’s integral formula (9.1) if we
differentiate with respect to the parameter a (Exercise 1, p. 165). The same
argument shows that (9.6) is valid for an arbitrary null-homotopic closed
curve in G whose winding number with respect to the point z is 1. If the
winding number is not 1, the value of the right-hand side of (9.6) is #,w™(z2).

9.5. Expansion of the Elementary Functions

It follows from the theorem proved above that the Taylor expansion of an
entire function (i.e., a function analytic everywhere in the finite z-plane)
converges for every finite value of z. As was shown directly in Section 7.10,
this holds in particular for the functions €, sin z, and cos z.

The branch of the function log (1 + z) which vanishes for z = 0 and which
is analytic in the disk |z] < 1 can be expanded into a convergent power series
in z. This series is the same as it is for real values of the argument, i.e.,

22 2
1 —z-Z 4 ...
logl+2)=z 5 + 3
Similarly, for the function
(l + Z)" = eMlog(1+2)

we obtain the binomial series
1+ 2= (“) z",

which converges in the disk |z| < 1 whenever we choose that branch of the
logarithm which takes the value 1 when z = 0.

9.6. The Function Defined by the Cauchy Integral

Let us now investigate what can be said about the function defined by (9.4)'
if on the right-hand side w({) is replaced by an arbitrary function §({) which
is continuous on the rectifiable arc y. We shall prove that the function

1 ()
w(z) = 3 fy I d{ ©.7

defined in this way is analytic for every z not lying on y. Suppose that a is
an arbitrary point not lying on y. We expand the function w(z) in powers
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of z — a as in Section 9.2. We conclude from this, as in Section 9.4, that the
function (9.7) is analytic at z = a. Its derivatives are given by

w®(q) = o zf @ ./J(g;nﬂ d¢ n=12..)).

If z approaches some point { € v, w(z) will not, in general, converge to
the value () (cf. Exercise 5, p. 165).

In the special case when v is a closed curve, e.g. a circle, (9.7) defines an
analytic function in the interior of ¢ and another analytic function in its
exterior.

9.7. Integrals Depending upon a Parameter
As a generalization of the above results we shall prove the following theorem.

Let y be a rectifiable arc and G a domain. Let f (t, z) be a single-valued
Sfunction defined for t € y, z € G, which is continuous and has a derivative
[t z) continuous in t and z. Then the integral

w(z) = f St

defines an analytic function w(z) in the domain G, whose derivative is

w'(z) = 4 j f(t,2z)dt = f [, 2) dt. 9.8)
dz J , y
To prove this theorem it is sufficient to show that forz € G
I f (f(" z+ ‘LZZ) S, z)) dt =0 9.9)
y

as 4z — 0.

Suppose that the disk |{ — z| < p is contained in G, and that [4z] < p.
Since f'(¢, z) is an analytic function of z for every fixed ¢ € y, we have, in
view of Sections 9.2 and 9.3, that

f(t,z+ 4z) — f(t, 2) = f.(t, 2)Az + R4, z, 4z), (9.10)
where R, is the integral
Ry(t, z, 4z2) = (AZ) ACTY) at

k(=2 —2z—-42)
taken over the circle K: |{ — z| = p. Since f(¢, {) is continuous, there exists
a constant M such that | f(z, z)] £ M for every ¢ € y and { € K. Therefore
|4z)? M M
dl| = ——7— |4z|?
2n ) 72— 122D | = oo =1z 147!

!R2(t; Z, AZ)[ =

independently of ¢ € y.
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In view of (9.10), we obtain the following estimate for the integral (9.9): ’
J‘ Ry(t, z, 4z2) & M|Az|
v 4z — |4z])

Thus we have proved that w(z) has the derivative (9.8). Therefore w(z) is
analytic.

1l =

f |dt| -0 as 4z — 0.

§3. CONSEQUENCES OF CAUCHY'’S INTEGRAL FORMULA
9.8. Limit of a Sequence of Analytic Functions

As an application of Cauchy’s integral formula we shall prove the following
theorem of Weierstrass.

Ifw,(2), wy(2), . . . is a sequence of functions analytic in G, and if this sequence
converges uniformly on every compact subset of G to a finite limit function,

lim w,(2) = w(2), 9.11)

n—o©

then w(z) is analytic in G and its derivative is

w'(z) = lim wy(2).

N—>00

Let z be an arbitrary point of G, and let y be a circle in G, containing z in its
interior. By Cauchy’s integral formula, we have

wy(z) = ——f c"(o d mn=12...) (9.12)

Since the convergence in (9.11) is uniform on the circle y, we have
[WiD) — ()| <e for nzn.

Hence,

] 1 g [ 0 = 5 [ P < 5

where p is the shortest distance of the point z from y and L is the length of y.
It follows from this estimate that the right-hand side of (9.12) has the limit

1 w({)
%ch_zdl.

Since the limit of the left-hand side is w(z), we have

1 w()
W(Z) = ZT—I fy — dc.

¢

The function w(z) can therefore be represented by a Cauchy integral; hence,
it is analytic in G.
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Starting from the formula

wie) = 5 [ At

and repeating the above argument, we see that

lim w,(2) = w'(2).

n—00

We can formulate our result in another form:

If wi(2), wy(2), . . . is a sequence of functions, analytic in G, and if the series
0
Z w/(2)
v=1

converges uniformly on every compact subset of G, then the sum w(z) of
the series is analytic in G. Its derivative can be calculated by differentiating
the series term by term.

9.9. Uniqueness Theorem for Analytic Functions
We shall prove the following fundamental theorem.

If a function w(z) is analytic in a domain G and if w(z) = 0 on a set of points
(z) having a limit point a in G, then w(z) vanishes identically in G.

Proof. Let C, be a disk |z — a| < r which lies in G. By assumption, there
exists in C, a sequence of points a,, a,, ..., a,, ... (a, # a, a, — a) such
that w(@,) =0 (n=1,2,...). We shall show that all coefficients vanish in
the Taylor expansion

w2)=co+cz—a)+- - +clz—a)y+

which convergesin |z — a| < r.
By assumption, we haveforz =a,(n =1,2,...)

—co=c(@—a)+ - +cla—a)+

As n — o, the right-hand side of this identity tends to zero; hence, ¢, = 0.
We now assume that we have already proved that ¢y =¢, =+-+=¢,_; = 0.
Then

0= w(a" = (an - a)v[cv + cv+1(an - a) + - ‘].

Since a, # a, the sum in the bracket must vanish. From this it follows as
above that ¢, = 0. Since all the coefficients ¢, vanish, w(z) = 0 in the whole
disk C,.

To show now that w(z,) = 0 for any point z, of G, we join the point
z = q and the point z = z; by a finite chain of disks in G (cf. Section 8.1).
If we apply the result just proved to these disks, we have that w(z) vanishes
in each of these disks, and, hence, vanishes at z = z,,
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From the theorem just proved we obtain immediately the following
result.

If wi(z) and w,(z) are analytic in a domain G, and if w,(2) = wy(z) on a
set of points (z) having a limit point in G, then w(2) = w,(2) identically
in G.

9.10. Gauss’s Mean-Value Theorem

Suppose that w(z) is analytic in a neighborhood K: |z — a| < R of the point
z = a. We expand w(z) into the power series

w(z) = % ¢z — a)".

The coefficients are

1 f w(2) dz

Cp = 71—,
" mi), E—arn

where v is a closed path in X with winding number 1 with respect to a. If we
choose the circle |z — a] = r as y and write z = a + re'$, we have

dz i

(7—_0)—"‘q - rr et dé
so that
W@ _ 1 [* 18y, ~ind
i == w(a + re'®)e "% do. 9.13)

For n = 0 we obtain the so-called mean-value theorem of Gauss:
2m
w(a) = 1 f w(a + re'?) dp. 9.19)
271' 0

This theorem asserts that the value of an analytic function at the center of a
circle is equal to the arithmetic mean of its values on the circle.

9.11. Liouville’s Theorem
With the help of formula (9.13) one can prove Liouville’s theorem.

If w(z) is an entire function (that is, analytic in the finite z-plane) and is
bounded (that is, there exists a finite constant M such that {w(z)| = M for
every value z # «), then w(z) reduces to a constant.

Proof. It follows from (9.13) that
1 27 ,
i ¢ <
ol 5 5o [ Ivta+ ret)] dp <

If we let r — o, the right-hand side tends to zero for » = 1. Hence,
¢ =c¢,=...=0,and w(z) = const. = ¢, = w(a).

M
"

9.15)
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In the same way we can prove the following more general theorem.
If the absolute value of an entire function w(z) increases more slowly than
the m-th power of r, where m is a positive integer, that is, if

M(r) = max w(2)] 9.16)

z]=r

satisfies the condition
M(r)
rm

-0 as r—> o,

then w(z) is a polynomial of degree less than m.
In fact, if we apply (9.15) with a = 0, we have

M(r) M@r) 1
l nl pm pnem .

The right-hand side tends to zero for every n = m as r —> «; hence,
Cm = Cmyy =...=0,and

w@)=co+ ¢z + -+ Cpyz™ L.

9.12. The Maximum Principle

Let w(z) be analytic in a domain G. We denote the least upper bound of its
modulus by
g = sup [w(2)]. .17

Then for every z € G we have |w(z)| < g. We shall prove the following
theorem.

If \w(2)| attains its least upper bound g in G then w(z) is.a constant (of
modulus g).

Suppose that |w(a)| = g (< ») for some a € G. Let r be a positive number
less than the shortest distance p of the point a from the boundary of G. By
the mean-value theorem of Gauss,

1 27
0=|w@a)| —g= |2——f w(a + re'?) d¢l -
T Jo

1 2n . 1 27
— ¢ < — g =
<o [ @ retap-gs o [Teap-g-o,
whence
0=g— 5 [ wat re®) dp= o [ (e~ Iuta+ re) di.

The integrand of the last integral is a non-negative continuous function of ¢,
so that the integral can vanish only if the integrand is identically zero (Exercise
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9, p. 165). Hence, |w(a + re'?)| = g everywhere on the circle |z — a| = r,
and, since r can be chosen arbitrarily in the interval 0 <r < p, |w(z)| = g
holds everywhere in the disk |z — a| < p. But an analytic function whose
modulus is constant is itself a constant (Exercise 10, p. 165). Thus w(z) is
constant in the disk |z — 4| < p and, by the uniqueness theorem of Section
9.9, in the whole domain G.

Consequently, if w(z) is not constant, |w(z)| < g holds at every point
of G. From this maximum principle we can deduce the following theorem.

Let I' be the boundary of G. Suppose that the function w(z) is analytic
in G, and satisfies at every boundary point { € I the condition

lim s?p [w(z)| = M, (9.18)
where M is a constant. Then \w(z)| £ M in the whole domain G. If
[w(z)| = M at a point z € G, then w(z) reduces to a constant.

To prove this theorem it is sufficient to show that g = sup {w(z)| £ M.
G

\ By the definition of the least upper bound there exists a sequence of points .
a,(n=1,2,...)in the domain G and a point a € G U I" such that

lima,=a and lim (w(a,)| =g as n— .

To begin with if a € G, it follows from the continuity of w at the point a
that [w(a)| = lim |w(a,)] = g. Thus |w(z)| attains its least upper bound in
the domain G and therefore, by the last theorem, |w(z)| = g. The assumption
(9.18) now implies that g £ M.

On the other hand, suppose that a is a point of the boundary I". Then

g = lim |w(a,)| £ lim sup {w(z)| = M,
and the proof is complete.

9.13. The Fundamental Theorem of Algebra

As an application of the maximum principle we shall prove the fundamental

theorem of algebra (see Section 2.6).
We consider a polynomial of degree n

PiZ)=apz" +az" '+ +a, (nz1, a3 0).
We fix an arbitrary point z, # «, and subsequently a positive number
M > |P(zp)]. .19

Since |P(z)] - = as z — o, there exists a number R > |z, such that
|P(z)] > M for |z| Z R. Assume that P(z) # O for every z. Then by the
maximum principle we must have |1/P(z)| <1/M, or |P(z)| > M, for
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|z] < R. This implies that |P(z,)| > M, which contradicts (9.19). Thus P(z)
has at least one zero, which was to be proved.

9.14. Schwarz’s Lemma

Next we shall apply the maximum principle to prove Schwarz’s lemma.

Let w = w(z) be a bounded analytic function in the unit disk |z| < 1,

w2 =1 for |z] <1, (9.20)
which vanishes at the origin:
w(z) = ¢z + cz2 + - -, (9.20)
Then
(w(2)| £ |2| 9.21)

Sfor every z (|z| < 1). If equality \w(z)| = |z] holds for some value z
O < |z| < 1), then w(z) is a linear transformation w = €'z, where « is a
real constant.

Proof. In the unit disk |z] < 1

@) = (Z) —c ezt

is analytic (if we set £(0) = c,). Let z = a be an arbitrary point of the unit
disk. We choose an r such that |a¢| < r < 1. On the circle |z| = r we have

1fG) =@l ]

Fiare

By the maximum principle this inequality also holds in the disk |z| £ r,and
therefore

w(a) 1
| f@)] = <=
If we let r tend to 1, we have that
@l = "2 <

Thus | f(a)] =1 can hold only in the case f(z) = w(z)/z = e'*, where « is a
real constant. This proves our assertion. The name “Schwarz’s lemma” and
the above proof are due to C. Carathéodory (1904).

9.15. Generalization of Schwarz’s Lemma

We now drop the special assumption that w(0) = O but we keep the assump-
tion that |w(z)] < 1. We write b = w(a) (|a| < 1, |b] < 1). We consider the
linear transformations (cf. Section 3.10)

z—a w—b

=77+, w= A

1—az 1—bw
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which map the unit disks |z| < 1 and |w| < 1 onto themselves in such a way
that the points z = @ and w = b are taken into the origin. Applying the
reasoning of the last section to the quotient

7 2

o _ W) — Bl - bui@)]
[~ G-ald-a) 6.2

we find that
\9] <1 (9.23)
4
Equality holds only if w = e'*{, i.e., if w(z) is a linear transformation of the
unit disk onto itself which carries the point z = a into the point z = b.
This result, which contains Schwarz’s lemma as a special case, has the
following geometric interpretation (cf. Chapter 3).
Let us consider the Steiner circles of the first kind with limiting points
z =a, 1/a and w = b, 1/b in the z-plane and the w-plane. If w = w(z) is a
linear transformation which maps the disk |z] < 1 onto |w| < 1 in such a way
that w(a) = b, then the circles

z—a

|- =2 9.24)

1 — bw

iw—b

will map onto each other. The theorem just proved can now be stated in the
following way. If w = w(z) is an analytic function in |z| < 1 which satisfies
there the conditions |w(z)| < 1and w(a) = b, and if the point z is in the interior
or on the circumference of the first circle of (9.24), then the corresponding
value of the function w(z) lies in the interior or on the circumference of the
second circle of (9.24) with the same value A (< 1). The point can lie on the
boundary only if w(z) is the linear transformation considered above.

In particular, if we set z = a, w(@) = b, it follows from (9.22) and (9.23)
that

= la]> _

W@l { =g S b

or,ifweseta =z,
ldwz)|  _ _|dz]

T— W@ = 1= [ 023

In view of Section 3.11, we can formulate this result as followst:

If w = w(z) is analytic in the disk |z| < 1 and is bounded there, |w(z)| <1,
then the hyperbolic length of the image dw = w'(2)dz of an element of
arc dz cannot exceed the hyperbolic length of dz.

t This generalization of Schwarz’s lemma was given by G. Pick in 1916.
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If I, is a rectifiable arc lying in the unit disk which is mapped by w = w(z)
onto the arc /,,, then by integrating the inequality (9.25) over /, we obtain

ldw] ldz)
wl—=Iw? = J,1—]z?

Hence, the mapping w = w(z) diminishes non-Euclidean arc length. Equality
holds in the above inequality only if the mapping w = w(z) is a “non-
Euclidean motion.”

9.16. Conformal Mapping of a Disk onto a Disk

We give one more application of the maximum principle by provmg the
following theorem.

An analytic function w(z) which maps the unit disk |z| < 1 homeomorphically
(i.e., in a one-to-one and bicontinuous manner) onto itself and which leaves
the origin z = O invariant is of the form w(z) = e'*z, where o is a real
constant.

Proof. Let py be an arbitrary number in the interval 0 < p, < 1. Under the
mapping w(z) the disk |w| = p, corresponds to a closed set (z) in the disk
|z] < 1. On this set |z| attains a well-defined maximum ry < 1. By the one-
to-one property of the mapping, we have

po S W@ <1 for rg=slzl<l. (9.26)

The zero of the function w(z) at z = 0 has a finite order v = 1. The quotient
£ (@) = w(z)/z’ is analytic in |z| < 1 and is non-zero. In view of | f(z)| =
[w(z)| |z|™ and the relation (9.26) we have for |z| =r (ro <r < 1) the
inequalities

por S |f @) s 1. 0.27)

If we apply the maximum principle to the analytic functions f and 1/ fin the
disk |z| = r, we see that (9.27) is valid for every |z| < r. Let us now fix a
point z (|z] < 1) and choose r = max ([z] ro). If we first let r — 1 and
then let p, — 1, we obtain | f(z)] = 1.

Since this equality holds for all |z] < 1, it follows that f(z) is a uni-
modular constant e'*, so that w(z) = ¢'*z”. Since the mapping is one-to-one,
we must have v = 1, and the theorem is proved.

From this result we deduce the following more general theorem (compare
Section 3.8).

An analytic function w = f(2) which maps a disk K, of the z-plane homeo-
morphically onto a disk K,, of the w-plane is a linear transformation.
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Proof. Let { = {(2), z = z({), be the linear transformation which maps K,
onto the disk [{| < 1 and takes a fixed point z, of K; into the origin { = 0,
and let w = w(w), w = w(w) be the transformation which maps the disk K,
onto the disk |w| < 1 and takes the point wy, = w(z,) into the origin w = 0.

Then the function
w = o(f(z(0)) = o*(0) (9.28)

maps the unit disk onto itself in a one-to-one manner and leaves the origin
invariant. By the theorem proved at the beginning of this section, w*({) is
then a linear transformation. Hence, in view of (9.28),

w = f(2) = f(@*(¥2))

is therefore a linear transformation, as asserted.

§4. THE LAURENT EXPANSION

9.17. Derivation of the Expansion

Let the function w(z) be analytic in the annulus G: ry < |z — a| < R,. Let z.
be an arbitrary point of G which, for the time being, we shall consider as
fixed. Further, let r and R be two numbers such that ry <r < |z — a] <
R < R,. We denote vy, and vy the positively oriented circles |z —a| = r
and |z — a| = R, respectively, and we choose two points z, € y, and z, € yg
in such a way that the straight-line segment z,z, lies in r < |z — a| < R and
does not pass through the point z. We denote by I
the closed path describing the paths z,z;, ¥, z,2,,
and vy in succession. The winding number of the
curve I" with respect to z is

1
27 pC—Z

g )
2mi z271 yr 7122 YR

since the first and third integrals cancel each other,
the second integral vanishes, and the fourth integral
is equal to 2si.

Applying Cauchy’s integral formula to the function w(z), we obtain

Figure 30

W) =5 f ) gwfg)z dL = wi(2) + Wy(@), (9.29)

where

@ =5 [ 7Ot wm-—g [ Ca o

wi—2

since the integrals taken over the segments z,z, and z,z, cancel.
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The function w,(z) is analytic in the whole disk |z — a| < R (Section 9.6).
It possesses a Taylor expansion about the point a:

wi@) = i ¢z —a, (9.31)
with :
1 W
ey f e (L= ay T ¢ (v=0,1,...). 9.32)

The series converges in the disk |z — a| < R.

The integral wy(z) defines a function analytic in the domain |z — a| > r
(cf. Section 9.6). Let us expand it into a series of powers of 1/(z — a).

First we expand the expression 1/({ — z) into a geometric series:

11 1 _NG-a  C-a
{—z z—al_C_—_g ~ (z-a) (@-a(z-9
z—a

By integiration we obtain .
walz) = Z Gyt R,
where the coefficients are given by
oy = -Zl?ify, wl)€ —aytdt (v=12..), 9.33)

and where

ay'(z — )

In the domain |z — a| > r we have the bound

R S 5- f ,z'_wf,?'_,(,z ,)lll—lz =)

where

RO =5 [ w02
vr

M, = nax [w(Q)].
—a|=r
Hence, R,(z) tends to zero as n — . Thus we obtain the following expansion
for wy(2):

wal2) = Z G c_‘”a)v : (9.34)

Both expansions (9.31) and (9.34) hold in the annulus r < |z — 4| < R.
Since the values of the integrals (9.32) and (9.33) are independent of the radius
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p (r = p £ R) of the circle y along which we integrate, we may combine
(9.31) and (9.34) to give

w(z) = § cfz — a), (9.35)

where the coefficients are given by

W
Cy Z"J = . (=0,+1,+2,..)).

a)v 7 __ W+l

The expansion (9.35) converges in the annulus r < |z — a| < R. But, since
r and R are arbitrary numbers (r, < r < R < R,), the expression (9.35)
converges in fact in the whole annulus ry < |z — a| < R,. This expansion
is called the Laurent expansion of the function w(z).

If the function w(z) is analytic in the domain G except at the point 2 and
if R, is the shortest distance of a from the boundary of G, then r and R can
be chosen arbitrarily, provided only that R < R,. The values of the functions
wy(z) and w,(2) at the point z do not depend on the choice of r and R so long
as r < |z — a} < R. Hence, w,(2) is analytic in the whole domain G except
for the point z = a, and the expansion (9.34) for w,(z) is valid. Thus we have
proved the following theorem.

A function w(z) which is analytic and single-valued in the domain G with
the exception of a point a can be expanded into a series (9.35) which con-
verges in the greatest annulus 0 < |z — a| < R, lying entirely in G.

The coefficients of the series are given by the expression (9.32), where yy is
any arbitrary positively oriented circle |{ — a] = R(0 < R < R,).

As a power series, the Laurent series converges uniformly on every
compact subset in its domain of convergence.

9.18. Uniqueness Theorem
Suppose that in some way we obtain for the function w(z) a second expansion
of the form
+o0
wiz) = % bfz—ay (9.36)

valid in the annulus (0 £)r < |z — a| < R. Thenb, = ¢, (v = 0, £1, 42, .. .).
To prove this uniqueness theorem we note that the series

~+00

( W(Z;M.1 - z bV(Z _ a)v—n-l

V==00
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converges uniformly on every closed subset of the annulus. If we integrate
this series term by term over a circle y with center at @ and with radius p
(r < p < R), we obtain

W, .
[ @Gwa-3 [ sg-a=a  om
For v # n we have

[ @¢-ayrar=o.
Y

On the other hand, if v = n we obtain
—a)l dit = —a) = b.-2mi
f bl — oyl =b, f ,dlog ({ — a) = b, 2ri.
Hence, it follows from (9.37) that

"o )
bn 2mf € - a)n+l = Cn (n=0,+1,...).

This proves the uniqueness theorem.

§5. ISOLATED SINGULARITIES OF AN ANALYTIC FUNCTION
9.19. Poles

Let the function w = w(z) be analytic (and single-valued) for0 < |z — a| £ R,.
We have shown in the previous section that w(z) can be expanded into a
Laurent series (9.35).
We write
M, = max |w(z)|
] |z—al=r

and we assume that as z tends to the point a (at which w(z) is not defined)
w(z) increases more slowly than a certain power of 1/|z — a|, so that for
some integern = 0

M|z —a"*' >0 as r=|z—a] —0. 9.38)

Using the formula (9.32) we obtain for the absolute values of the co-
efficients the estimates

el S 7 | 1WOI1E a5 M.

If m Z n + 1, then by (9.38), M.r™ tends to zero as r — 0, and, since the
coefficient c_,, does not depend upon r, it follows thatc_,_, = ¢_,_, = =0.
Thus the Laurent expansion of the function w(z),

W(Z)='—CL'+"'+

z — a)r (zc:la) + co + ¢;(z — a) + c)(z — a)® +

(9.39)
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contains only a finite number of terms (at most n), which become infinite as
z—>a.
If we further assume that ¢_, # 0, we see that

wz)z—a) >c,#0 as z—a. (9.40)

In this case we say (if n > 0) that the function w(z) has a pole of order n at the
point z = a. ’

If (9.38) is already satisfied for n = 0, the expansion of w(z) contains no
negative powers of z — a:

wz)=co+cz—a)+---.

If we extend the definition of w(z) to the point z = a by setting w(a) = ¢4, w(2)
becomes continuous, indeed analytic at this point. Accordingly, the point a
is called a removable singularity.

Conversely, if condition (9.40) is satisfied for » = 0, M,|z — a|"*! tends

to zero as z — a, and the Laurent expansion of the function is of the form

9.39).

Hence, (9.38) is the necessary and sufficient condition that the function
have a pole of order £ n or a removable singularity at the point z = a.

If the function w(z) is analytic in a domain G with the exception of certain
singularities, we say that w(z) is regular at all the remaining points of G.

9.20. Essential Singularities

If (9.38) is not satisfied for any finite n, the maximum of |w(z)| increases
faster than any power of |z — a|. In view of what we have shown in Section
9.19 this is the case if and only if the Laurent expansion (9.35) of the function
contains infinitely many terms with negative powers of z — a. Such a point
z = ais said to be an essential singularity of w(z).

If the singularity z = a of w(z) is a removable singularity or a pole, then
w(z) tends to a definite limit (finite or infinite) as z — a. On the other hand,
the behavior of an analytic function is highly discontinuous in the neighbor-
hood of an essential singularity, as is shown by the following theorem of
Weierstrass.

If z = a is an essential singularity of an analytic function w(z), then the
values taken by w = w(z) in every neighborhood 0 < |z —a| S r of a
come arbitrarily close to every complex number w.

Thus for every ¢ # o and for every e > 0 there exists a point z (# @) in
the neighborhood 0 < |z — 4| < r such that |w(z) — ¢| < e. If the values of
w = w(z) are treated as points of the w-plane, then the points w(z) which
correspond to the domain 0 < |z — a| < r are “everywhere dense”, i.e., no
disk of the w-plane (however small its radius) is free of the points w(z) (see
the examples in Section 9.22).
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We shall prove Weierstrass’s theorem by contradiction. If the theorem
were false, then there would exist € > 0, r > 0 and a complex number ¢ # «
such that |w(z) — ¢| = e for every point of the disk |z — a| < r, and, hence,

1
w(z) — ¢

!
-

IA

The function 1/(w(z) — ¢) is then regular for 0 < |z — a| < r, and must then

(by Section 9.19) have a removable singularity at the point a. Therefore we
must have

1
— — n — n+1 “oe
W) — ¢ Cz —a + Cpi(z — @)t + - -,

where n = 0 and ¢, # 0. It would follow that

1 1 1

R o ) S EE Ry

f@.

The function f(z) would be regular in the neighborhood of the point z = g,
and f(a) = 1/c, # 0. Hence, either w(z) would have a pole of ordernat z = gq,
or else (if n = 0) w(z) would be regular at this point. This contradicts our
assumption, and consequently the theorem is true.

9.21. Behavior of a Function in the Neighborhood of the Point

If a function w(z) is analytic in a domain R < |z| < «, its behavior near the

point z = « can be investigated by means of the Laurent expansion. Let
M, = max |w(z)| for |z} = r.

1) If there exists an integer n (= 0) such that

¢ Mr

W»O as  r=|z] > o,

then it follows from (9.32) (with a = 0) that at most » positive powers of z
appear in the Laurent expansion

+00
> ez (9.41)
In fact, we have

M,
lcml = ‘r—":’

and for m = n + 1 the right-hand side tends to zero as r — . Hence,
Cpy1 = Cn+2‘= ...=0and

c_ _
w(z)=cnz"+---+clz+co+7l+c?i2-+"‘- 9.42)
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It follows that

w(z) N

Cu as z — o0,
V4

If ¢, # 0, the point z = o is said to be a pole of order n of the function w(z).

In particular, if w(z) is an entire function, that is, a function analytic in
the whole finite z-plane, its Laurent expansion does not contain any negative
powers of z, and the Laurent expansion reduces to the Taylor expansion of
the function about the point z = 0. Thus we arrive once again at the following
conclusion (already proved in Section 9.11).

If the modulus of an entire function w(z) increases more slowly than a
power of r, so that

M,

;;l—_ﬁ -0 as r — o,
then w(z) reduces to a polynomial of degree at most n. For n = 0 we obtain
a sharper form of Liouville’s theorem (Section 9.11).
If the maximum modulus M, of an entire function increases more slowly
than r, ‘

M,
—r—f—+0 as r—> o,

the function reduces to a constant.

2) If the maximum of |w(z)| increases faster than any power of r,

7,5 — © as r— o
for any choice of n, then the Laurent expansion (9.41) of w(z) contains infinitely
many positive powers of z. In this case the point z = « is an essential
singularity of the function w(z). In the neighborhood of such a point there
are values of the function w(z) as close to any prescribed complex number ¢
as one pleases. This can be proved as in Section 9.20 by considering the
function w(z) — ¢ (Exercise 14, p. 166).

One can also investigate the behavior of a function w(z) in the neighbor-
hood of the point z = « by transforming it by means of the inversion z = 1/{
into a function w(1/{) = w*({) of ¢, which will have the same kind of singularity
(a pole or an essential singularity) at the point { = 0 as w(z) has at the point
z = . In particular, if n = 0 in the expansion (9.42), w*({) will be regular
at the point { = 0if we set w*(0) = ¢,. For this reason we say that the function
w(z) is regular at the point z = « and set w(®) = ¢,.

Remark. A remarkable sharpening of Weierstrass’s theorem was obtained by
Emile Picard in 1879: He proved that an entire function which is not a poly-
nomial actually assumes every complex value ¢ # oo in the neighborhood of
the essential singularity z = « with at most one exception. An exceptional
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value ean in fact occur: e.g., the exponential function w = e* omits the value
¢ = 0. The proof of Picard’s theorem requires deeper methods, and will be
given only in the last chapter of this book (Section 17.36).

9.22. Examples

As an illustration we shall consider the singularities of the single-valued
elementary functions. The exponential function w = e¢* has only one
singularity, z = o, and this is an essential singularity. The inversion 1/z = {
transforms e” into the function e!/* which has an essential singularity at { = 0
and no other singularities. In the neighborhood of { = 0 this function takes
every non-zero value infinitely often. The inversion maps the period strips
of the exponential function onto regions bounded by circles which are tangent
to the real axis at the origin.

Similarly, z = o is the only singularity of the functions sin z and cos z.
It is an\'essential singularity for both functions.

The function tan z = sin z/cos z is regular everywhere except at the points

2z = % tkr  (k=0,41,...), (9.43)

which are the zeros of the function cos z. In the neighborhood of the points
(9.43) we havet
sinz D* + [z — z]
cosz (=1)**1(z — z) + [(z — z)?]
1 1+[z-2z]
_zmzk l+[z—2z]

tan z =

The second factor is regular both at the point z, and in a neighborhood of z,.
Therefore we can expand it into a series of positive powers of z — z,, which
implies that it is of the form 1 + [z — z,]. We obtain

L Gtp—ad=——1 s pe—-2),

tan z = — = —
Z'—Zk Z—Zk

where P(z — z;) denotes a power series in positive powers of z — z,. We
shall also use this notation in the sequel. This expansion shows us that tan z
has simple poles (poles of order one) at the points (9.43).

The point z = « is a limit point of the poles of tan z. In every neighbor-
hood of z = « the function tan z assumes every complex value with the
exception of the values +i.

It can be shown in the same way that the points z = k7w (k = 0, +1,...)

+ Henceforth [(z — z,)"] will denote a function which has the property that when it
is divided by the expression (z — z,)" the quotient remains bounded as z — z, — 0.
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are simple poles of the function cot z = cos z/sin z; the point z = « is a limit
point of these poles.

The functions tan z and cot z are therefore meromorphic functions (cf.
Section 6.4).

9.23. Analytic Functions whose only Singularities are Poles

We saw in Chapter 2 that the only singularities of a rational function are
poles, and that the number of poles is finite. We now prove the converse
theorem.

An analytic function which has no singularities in the extended plane other
than poles is a rational function.

Proof. The number of poles must be finite, otherwise they would have a limit
point in the extended plane and this point would be neither a pole nor a point
of regularity of the function.

Let by, b,, . . ., by, and possibly z = «, be the poles of the function w(z).
At the pole b, i = 1, 2, .. ., k) of order n, the function w(z) has the Laurent
expansion ,

—nx c-—m+l e _ e

W(Z) ( )m + (Z _ bg)m_l + + Co + cl(Z bl) + . (9.44)
This expansion is valid in the largest disk with center b, which is free of other
poles. We may write (9.44) in the form

w(z) = Gy, (;j—b-i) + P(z — by, (9.45)

where G,, denotes the sum of those terms which become infinite at the point
z =b;. We form a circle about the origin containing all the finite poles b;;
then outside this circle the function w(z) has the expansion

w(z)=c,,,z'”+c,,,_lz""“+\"-+co+%+--- (m = 0),
which we may write, as in (9.45), in the form

w(z) = G,(z) + B (%) > (9.46)

where G,(z) is a polynomial in z and SB(I /2) is a power series in 1/z.

The function
RG) = 2 6 (;25) + Guld

is rational and has the same poles as w(z). The function

(2) = w(2) — R(2)
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is cértainly regular everywhere with the possible exception of the points
z = b;and z = . If we write f(z) in the form

1@ = wo) - 6 (25 )} - ; 6 (;25) - 6w
i

we see that f(2) is bounded in the neighborhood of the point b;, and therefore
is regular at the point b;. From the representation

< 1
0= (46) = Gul) = > 6o (25

we also see that f(z) is regular at infinity. Hence, f(2) is regular in the
extended plane and thus, by Liouville’s theorem, it is a constant. The function
w(z) = R(z) + f(2) is therefore rational.

We have used a similar argument already in Sections 2.12-2.13 to derive
the partial-fraction expansion of rational functions. From the theorem we
have just proved it follows that a meromorphic function which is regular at
z = o, or has a pole there, is rational.

§6. THE INVERSE OF AN ANALYTIC FUNCTION

9.24. The Inverse of a Function in the
Neighborhood of a Point at which the Derivative does not Vanish

Let us now consider an analytic function
f@=as+az+az+: -

defined in a neighborhood |z| < R of the origin and let us assume that
S'(0) =a; # 0. We shall prove that the function w = f(z) is uniquely
invertible for sufficiently small values of |w — ay|:

In a certain disk |w — ag| < pg (po > 0) there exists a well-defined single-
valued function

2= gW) = bW — ag) + by(w — ag) + - - - (bl=al),

such that the identity f (g(w)) = w holds throughout the disk |w — a,| < pq.

By replacing f by (f — ag)/a, we can restrict ourselves to the case g, = 0,
a, = 1. Under this assumption f'(z) — 1 as z — 0. If @ is a fixed number
in the interval 0 < @ < 1 we can choose a positive number r, < R such that

|f'@®—1 26 for |z] = ro. 9.47)
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First of all we shall prove:

1) The mapping of the disk |z] < r, by the function f(z) is schlicht, i.e.,
it has the property that

f(a) # () for a#b.
To prove this assertion we write
f@) =z + ¢(2), (9.48)
where $(0) = ¢'(0) = 0. If a and b are points of the disk |z| < r,, we have

$0) - ¢@ = [ ¢ @)z,
and if we integrate along the straight line segment ab, we find that
b
14¢) - $@)| s [ 1$'C)| ldz) < O [* |dz] = Op—a|.  (9.49)

Hence,

| f®) —f@)| =0t —a)+ ($(b) — $@)| 2 |b— a| — Ob — a
= |b—al(1 — 6) >0,

and our assertion is proved. '
Now we proceed to the construction of the inverse function. To solve the
equation f(z) = w for z we may consider the equivalent equation (see Eq. 9.48)

z=w— ¢(2) (9.50)

and solve it by means of Picard’s method of successive approximation. We set
zo = 0 and define the sequence z,, z,, . . . by means of the recursion formula

Zp=w—4¢(z) (@=0,1,..)). (9.50)
We now prove the following assertions: ‘
2) If wis chosen from the disk
lwl £ po =ro(l — 6),
then the points z, (n = 0, 1, . . .) all lie in the disk |z| < r,.

3) The sequence z, converges uniformly in the disk |w| < 7, to a limit
z = g(w).

Proof of assertion (2). For n =0 we have |z,| = 0 < ry. If we assume that
|z,] < roholds forv =0, 1, ..., n we can show that |z,,,| < ro. In fact, if
we use the recursion formula (9.50)’, we have

!Zn-l-ll é le + l‘n{’(zn)l;
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whence it follows from the inequality (9.49) with a =0, b =z, ($(a) =
$(0) = 0) that
|Zar1] £ [W] + Oz, < |w| + Or.

Now if |w| £ pg = ro(1 — 0), then |z,,,| < ry, so that this proves (2) by
induction.

Proof of assertion (3). By applying the inequality (9.49) we obtain for the
modulus of the difference z,,, — z, = —(¢(z,) — ¢(z,,_l)) the following
estimate:

|zn+l znl = |¢(Zn) - ¢(Zn—l)| @Izn - n-—l! @nlzl‘

= O"|w| £ Op,.
Hence,
P—l
Znip — znl = v+l T v) é ]Zv+l - Z,
n
n+p—1
< po z e <o b,

n

The last expression tends to zero as n — . The uniform convergence of the
sequence z, follows from the Cauchy criterion.

It can be easily seen that g(w) = lim z, is the inverse function we were
looking for. g(w) is the limit of a uniformly convergent sequence of analytic
functions z, = z,(w) in [w| £ po, and, hence, it is itself an analytic function of
w for |w| < pg (cf. Section 9.8). Further, in view of the continuity of ¢(z), it
follows from (9.50)’ that

gw) = lim z,,; = w — lim ¢(z,) = w — $(g(w)).
Thus, in view of (9.48), we have
f(gw)) = gw) + $(gw)) = w.

Hence, g(w) is the inverse function of f(z). By the chain rule (Section 1.15)
(df /dz) - (dg/dw) = 1 and, hence, g'(w) = 1/ f'(2).

We conclude now from these results that the function z = g(w) maps the
disk |w| < p, onto some domain G, of the z-plane which lies in the disk
|z] < ro. Its boundary Iy is the one-to-one image of the circle |w| = po. The
mapping is conformal everywhere since f'(z) # 0 in the disk |z| £ ry (cf.
Section 1.16).
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9.25. The Nature of the Mapping in the Neighborhood of a Zero of the Derivative

Suppose that w = f(2) is analytic in the disk |z| £ R and that its derivative
is zero at the origin. Let us assume that f'(z) does not vanish identically and
that f(0) = 0. Then the function has an expansion

w=f@=az"+a,z2"""'+--+ (@ #0,nz22).
To investigate the mapping effected by this function, we write
w=a,z"(1 + $(2))

and choose an ry > 0 so small that

@I = 2tz <1
whenever [z| £ r,.
We now introduce a new variable
W= z", C = '}\/w,
and obtain
=Va, 2(1 + ¢@2))'/". 9.51)

We fix the values of the roots on the right-hand side in the following way.
If a,=|a,le™ (0 £ «, <27) we define the constant %/a, by putting
Va, = V]a,|e™, where 3/|a,| > 0. Since |¢| <1 for |z] < ro, we have
1+ ¢ # 0. If we choose that branch of log (1 + ¢(z)) which vanishes for
z =0, ¢$(0) = 0, then

¢'(2)
= dz
log (1 + ‘/’(Z)) f 1+ #(@)
is single-valued in |z| £ r,. This then determines a branch of the function
(1 + ¢(2))!m = et/m tos (+$)

which is single-valued in [z| £ r.
Thus the function { in (9.51) is a single-valued analytic function in the
disk |z| < ry; its Taylor expansion is of the form

{=biz+bgz*+ ",

where b, = Va, # 0. In view of the results of the preceding section, this
function has a single-valued inverse in a neighborhood |{| £ p, of the origin,
where it has the expansion

_¢

This function gives a one-to-one conformal mapping of the disk |{| < po
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onto a certain domain G, lying in the disk |z] < r,. The boundary I'y of G,
is the one-to-one image of the circle |{| = pq.

w-plane
Z-plane ¢-plane

“—

T

To ‘ e

’ / £y ¢ 7 Po <

<
et

Figure 31

The substitution w = {" takes us back to the function w(z). We know
that the transformation w = {* (Sections 2.3-2.4) maps the schlicht disk
|{| £ po onto part of an n-sheeted Riemann surface R,, covering the disk
|w| £ p§ ntimes and having the point w = 0 as a branch point of order n — 1.
The mapping is not conformal at this point: the angles at the origin z =0
are multiplied by » under this mapping. To each region

VT sagl<G DT, 2] 5 p,

corresponds a disk |w| < p§ slit along the positive real axis. We can construct
the Riemann surface R, from these disks. by pasting the edges of the slits
together (as indicated in Section 2.4). In the z-plane these slits correspond
to n arcs joining the origin to the boundary I';. Two successive arcs intersect
at the origin at an angle of 2=/n. Therefore, the function w = f(z) maps the
schlicht domain G, in a one-to-one way onto a Riemann surface R,, in such
a way that the origin corresponds to the origin. At the origin (and only at
this point) the mapping fails to be conformal: An angle « with vertex at the
origin goes into an angle ne with vertex at w = 0. Therefore, the inverse
function z = z(w) of w = f(z) is multiple-valued in the neighborhood of the
branch point w = 0. It has n different branches in the disk |w| £ p? which
go over into one another as w circumscribes the origin. Only after » such
revolutions will the image curve in the z-plane be closed.
Let us sum up our results.

If the function w(2) is analytic in the neighborhood of the point z, and if
w'(zg) # 0, thenw = w(z) maps aneighborhood of z, one-to-one conformally
onto a neighborhood of the point wy = w(z).
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If, however, z, is a zero of the derivative w'(z) of order n — 1 (n > 1),
the function w = w(z) maps some neighborhood of z, in a one-to-one way
onto an n-sheeted Riemann surface for which wy = w(z,) is a branch-point
of order n — 1. The mapping is conformal in this neighborhood except at
the point z,,.

9.26. The Mapping in the Neighborhood of a Pole

Let the function w = f(z) be single-vailued and regular in the region
0 < |z] £ R, and let z = 0 be a pole of f(2) of order n (n = 1):

b_ b_
Wef@ ="+ S byt bzt (b 2 0)

We define the function
}. z" l
f b-n+b——n+lz+°”,

where the denominator is a non-zero regular function of z in some disk
|z] < ro £ R. Hence, w = 1/ fis regular for |z| < ro, and z = 0 is a zero of
w of order n. We can therefore apply to w the results obtained in the preceding
section.

If n = 1, then dw/dz # 0 at the point z = 0, and z is a single-valued
regular function of w in a disk |w| < p,. This disk corresponds to the exterior
of the circle |w| = 1/pg in the w-plane. Thus the region |w| > 1/p, is mapped
one-to-one conformally onto a neighborhood G, of z = 0.

On the other hand, if # > 1, it follows from Section 9.25 that w = f(2)
maps a neighborhood of the point z = 0 onto a Riemann surface consisting
of n disks |w| > (1/po)", which form an n-sheeted surface with the branch
point w = . The inverse function z = z(w) of f(z) has n branches which
go over into one another as w makes a circuit of the branch point w = « of
the surface.

We note finally that if we wish to investigate the mapping of a neighbor-
hood of the point z = « by a function w = f(z) which is single-valued and
regular in this neighborhood, the inversion z — 1/z (which transforms the
point c into the origin) will reduce to the case already discussed.

w =

9.27. The Image of a Domain is a Domain
The results proved above contain the following theorem.

A non-constant analytic function maps a domain onto a domain.

To prove this result we assume that w(z) is analytic in a domain G, and
we denote by E the set of values in the w-plane assumed by the function w(z).
If wy (# o) is an arbitrary point of the set E, there exists a point z, in G such
that w(zo) = wo. In view of the results proved above, the function w(z)
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assumes. in a neighborhood of z, in G every complex value belonging to some
disk with center w,. If w = « belongs to E, then w(z) takes every complex
value outside some circle. Thus the image of G is open and one can see easily
that it is also connected (since w(z) is continuous in G).

In general the image domain is not schlicht. For example, the function
w = z2 maps the domain |z| < 1 onto the domain |w| < 1, but each point
of |w| < 1is covered twice by the image.

9.28. The Limit of a Sequence of Schlicht Functions

We shall use the foregoing results concerning the mapping properties of an
analytic function to prove an important theorem about the limit of a sequence
of schlicht functions.

Suppose that
w = f(2) n=12,...)

is a sequence of analytic functions regular in a domain G of the finite z-plane
and having the following properties:

1) The mapping of the domain G given by the function w = f,(z) is
schlicht, i.e., at distinct points of G the function f,(z) takes distinct
values:

flz) # ful(z2) Jor zy # 2z

2) The sequence f,(z) converges uniformly on every compact subset of G.
Then there are only two possibilities: The limit function w = f(2) is either
a constant or else it defines a schlicht mapping of the domain G.

Proof. In view of Weierstrass’s theorem (Section 9.8) the function f(2) is
analytic in the domain G. We assume that it is not a constant, and we prove
that it is schlicht:

f@) —f(z0) #0 for z— 2z # 0.

Since the difference f(z) — f(z,) does not vanish identically, it has a zero of
finite order m (1 £ m < ) at the point z = z,. By the theorem in Section
9.25 there exists a small p > 0 such that the inverse function of f(z) maps
an m-sheeted disk |w — wy| £ p, with branch point at wy = f(z,) onto a
closed schlicht subdomain G, of G. Hence, f(z) # f(z,) on G, if z # z, and
| £(2) — wo| = p if z belongs to I, the boundary of G,. Since the sequence
J converges uniformly on G,, there exists an integer n, such that for every
zeG,

1@ ~F@I <f  for  nzn 0.52)
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We now assert that if n 2 n, the function w = f,(z) assumes in G, every
complex value w satisfying the condition

P

— <
IW Wo[ 2°

If w = w is such a value, then on the boundary I', we have
5@ = wil = [(f@ = 1) + (/@) ~ f Q)]

2 /@~ wl =@ -f@>5-F-F.
Now if f,(z) — w; # 0in G,, then we could apply the maximum principle to
the function 1/( f,(z) — w,) and conclude that the inequality

| /@) = wi| > £ ©.53)
holds at every point of the domain G,. However, f(z) assumes in G, every
value win |w — wo| < p. Letz, € G, beapomt such that f(z,) = w,. Then,
in view of (9.52), | fu(z)) — w,| < p/4 which contradicts (9.53). This con-
tradiction shows that the set of values assumed by the function w = f,(2)
(n 2 np) in the domain G, covers the whole disk |w — wy| < p/2.

Since the function w = f,(2) is schlicht in the domain G, it follows that
| fu(z) — wo| > p/2 at every point z of G outside G,. If we let n — », we
may also conclude that |f(z) — wo| 2 p/2. Thus f(2) # f(zo) = w, for
z € G outside G,. On the other hand, in the domain G,, z = z, is the only
point where f(z) assumes the value wy,. Thus we have proved that
f (@) = f(zp) # 0 for z — z, # 0. Further, since the mapping w = f(2) is
schlicht, it follows that m =1 and, hence, f'(z;) # 0. The mapping is
therefore conformal throughout the domain G.

§7. MAPPING BY A RATIONAL FUNCTION
9.29.

As an application of Section 6 we investigate the mapping effected by a
rational function of order n (2 1):

P(z)=aoz"+-°°+a,,
0@ bz + -+ 5,

where at least one of the coefficients a,, b, is not zero, and where P(z) and
Q(2) have no common zeros.

We have seen in Section 2.10 that such a rational function has exactly n
zeros and n poles provided that each zero and pole is counted according to
its multiplicity, and provided that the point z = « is also taken into account.

w=w(z) =

(9.54)
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More generally (cf. Section 2.11), w(z) assumes every value » times; hence, it
maps the closed schlicht z-plane onto the closed w-plane covered » times. We
shall now examine more closely the structure of this n-sheeted Riemann
surface R,

9.30. The Branch Points of the Surface

To begin with, consider a point z, # o at which w'(z,) # 0. By Section 9.24
the function w(z) maps a neighborhood of z, one-to-one conformally onto a
schlicht neighborhood of the point wy = w(zy). Thus, any branch points of
the Riemann surface can be images of only those points at which the derivative
vanishes. The point w = o« and the image of the point z = « are also possible
branch points.

If zy # o is a zero of w'(z) of order w — 1 (u > 1), then w(z) maps a
certain neighborhood of z, onto part of a u-sheeted Riemann surface with a
branch point of order p. — 1 at the point wy = w(z,).

On the other hand, if z, # « is a pole of w(z) of order », the function
w = w(z) maps some neighborhood of the point z, onto part of a v-sheeted
Riemann surface with a branch point of order » — 1 at infinity (for v = 1 the
mapping is schlicht). The derivative of w(z) has a pole of order v + 1 at the
point zg, as can be seen immediately from the partial-fraction expansion of
w(z).

‘We must still examine the mapping of a neighborhood of the point z =
Here we may assume without loss of generality that the function w(z) vanishes
at the point z = « (this means that by # 0 buta, = 0in Eq.9.54). Forifb, =0,
then a, % 0, and we can reduce this situation to the case b, # 0, a; = 0 by
means of the linear transformation 1/w. If, on the other hand, g, # 0 and
by # 0, then w(z) - w, = ay/b, as z — « and the function w(z) — w,
vanishes at the point z = co.

Ifay=...=a,.,=0,a, #0(l £pu = n), then the function w(z) has
a zero of order u at the point z = « and thus has an expansion of the form

w(z) = — { B+ e(z)}

where €(z) is a rational function which tends to zero as z ~> ». For the
derivative we obtain the expression

W@ = o {0+ ). 9.55)

where €,(z) - 0 as z — o (cf. Exercise 18, p. 166). Therefore, if z =  is
a zero of w(z) of order u, the derivative has a zero of order o + 1 at z = oo,
The inversion { = 1/z transforms w(z) into the function w(1/{), which
has a zero of order p at the point { = 0. This function maps a neighborhood
of the point { = 0 either onto a schlicht neighborhood of the point w = 0
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(if p = 1) or onto a u-sheeted Riemann surface with a branch point of order
p — Latw = 0 (if » > 1). Thus the original function w(z) maps the neighbor-
hood of the point z = « in a corresponding manner.

9.31. Riemann’s Formula

There exists a remarkable connection between the number of sheets of the
Riemann surface R,, of a rational function w(z) and the number of its branch
points. We now examine this connection.

We assume, as above, that the point z = « is a zero of w(z) of order p
(1 £p, £n).

As we saw in the last section, the derivative w'(z) has exactly the same
poles as w(z), and a pole z = B % » of w(z) of order v is a pole of w'(z) of
order v + 1. Each such pole corresponds to a branch point of order v — 1
of the Riemann surface R,, at the point w = .  The sum of the orders of the
poles of w'(z) is given by

N=3@+D=23v—-3@—-1D=2n-3 -1, (9.56)
where the sum is extended over all the poles; it is equal to the order of the
derivative w'(z). The last term 3] (v — 1) is the sum of the orders of branch
points of the Riemann surface R, over the point w = «.

Since w'(z) is of order N, the sum of the orders of its zeros is also equal

toN. If z = « # 0 is a zero of order u of w(z) and if w(e) # o, then z = «
is a zero of w'(z) of order u — 1. The sum of the orders of these zeros,

Z(l“—l)’

is the sum of the orders of the finite branch points of R,, corresponding to
finite points of the z-plane. ‘

The derivative w'(2) also has a zero of order p,, + 1 at the point z = .
This corresponds to a branch point of the surface R, (over the point w = 0)
of order p, — 1. Hence, the total number of zeros of the derivative (each

zero counted according to multiplicity) is
N=Y@E—-D+p,+1=2@—-D+{@,—1)+2. 9.57)
Comparing the values (9.56) and (9.57), we obtain
2n=2=(@u—-D+2X@ -1+ @, 1)
The sum of the orders r — 1 of all the branch points is therefore
Sr—1)=2n-2 (9.58).

This is Riemann’s formula.

This result we derived under the assumption that the point z = o is a
zero of w(z). As we have seen in Section 9.30, this assumption does not result
in any loss of generality, so that (9.58) is valid in general. ‘
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EXERCISES ON CHAPTER 9

1. Derive the expression (9.6) for w'(z) (n = 1) directly by applying the
definition of the derivative to the expression (9.1) and prove the continuity
of w'(z), by using the definition of continuity.

2. Derive the formula (9.6) for the derivative w™(z) of an analytic function
w(z) directly from Cauchy’s integral formula by applying the theorem on the
differentiation of parametric integrals (cf. Section 9.7).

3. Prove that the power-series expansions of the functions arc tan z and
arc sin z are valid in the disk |z| < 1.

4. Starting from the power-series expansion of the derivative of
log (z + Va? + z2) (a # 0), expand the function into a power series in z (take
that branch of v/a? + z2 which is equal to a at z = 0, and take the principal
value of the logarithm). Where is the expansion valid ?

5. Let the boundary of the domain G be a rectifiable Jordan curve y, and let
the function #({) be continuous on . By Section 9.6, the function w(z)
defined by the formula (9.7) is analytic in the domain G. Show that if G is
the unit disk |z| < 1, y its boundary |z| = 1 and ¢({) = 1/{, then w(z) does
nottendto () asz - L € y.

6. Suppose that the function w(z) is continuous in a simply connected
domain G and that {, w(z) dz = 0 for every closed curve y in G. Prove that
w(z) is analytic in G. (Morera’s theorem.)

Hint. It follows from the assumption that w(z) has a single-valued primitive
function W{(z) in the domain G. Its derivative w(z) is analytic.

Thus we have established that the analyticity of w(z) is a necessary con-
dition for the integrability condition (8.17) (cf. Section 8.11).

7. Prove Liouville’s theorem by using Cauchy’s integral formula to show
that the derivative of the function in question vanishes identically.
8. Prove the fundamental theorem of algebra by applying Liouville’s theorem
to the reciprocal of the polynomial.
9. Let f(x) be a continuous real function in the interval « £ x £ B and let
f(x) 2 0. Show that if
[reax=o,

then f(x) = 0 in the whole interval « < x < B.

10. An analytic function w(z) whose modulus |w(z)| is constant in a domain
G is itself constant.

Hint. From the assumption u? + v? = const. (W = u + iv) it follows that
uu, + vo, = uu, + vv, = 0, and from the Cauchy-Riemann differential
equations that (u® + v*)(u2 + w?) = 0. If w(z) = 0, then u = v = 0 holds
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only at individual points, so that u, = », = 0 must hold everywhere and
therefore also v, = v, = 0.

11. Let w(z) be analytic for |z| < 1, with |w(z)| £ 1 and w(0) = 0. Show
that |[w'(0)] < 1. When does equality hold?

12. Prove the following generalization of Schwarz’s lemma: If w(z) is analytic
and |w| £ 1for |z| < 1, then
wO)| — 12| _ [w(0)| + |2|
= S W) £ e
i = w2 = MO = T 1) 2

13. The functions f(z) and g(z) have poles of orders m and n, respectively,
at the point z = 4. What can one say about the functions f(z) + g(z),
f(2)g(2), and f(z)/g(z) at this point ?

14. Prove the theorem of Weierstrass when the essential singularity is at
infinity (cf. Section 9.21).

15. Investigate the zeros and singularities of the function e=/#* sin (1/z).

16. Let the function w(z) be analytic on the closed domain R £ |z] £ .
Show that

0@ = w) =~ [ PO >R,

where vy denotes the circle |z| = R.

17. Prove the maximum principle by using the fact that an analytic function
maps a domain onto a domain (cf. Section 9.27).

18. Show that in formula (9.55) €,(z) — Oasz — O.

19. Investigate the mapping effected by the function
_*+22 41

Tt 22241

20. Investigate the mapping by the function w = z* + 3z.

w

21. A triangle with three right angles bounded by congruent circular arcs in
the z-plane is mapped conformally onto the unit disk of the w-plane in such
a way that the center O of the triangle is mapped into the center of the disk
and the vertices are mapped into the points: w = 1, w = — % + iV/3/2. Show
that the whole z-plane is mapped onto a 4-sheeted Riemann surface and
examine precisely the correspondence between this surface and the z-plane.

Solution. Assuming that O is the origin, that the distance of the centers of
the boundary arcs from O is one, and that the straight line determined by O
and one of these centers is the positive real axis, then the mapping function
has the form

_4z(1 - 2%

T 1+828



CHAPTER 10

4 THE RESIDUE
THEOREM AND ITS APPLICATIONS

§1. THE RESIDUE THEOREM
10.1. Formulation of the Problem

This chapter is devoted to an important generalization of Cauchy’s theorem.

We consider an analytic function w(z) which is single-valued in a simply
connected domain G of the finite z-plane and which is regular there except for
a finite number of singularities z = z, (v = 1, . . ., n). Let y be a continuous,
oriented, closed path lying entirely in G and not passing through any of the
points z,, . . ., z,, We wish to evaluate the integral

j @) dz. (10.1)

10.2. Derivation of the Residue Theorem

In order to evaluate the integral (10.1) we expand w(z) into a Laurent series
in the neighborhood of z = z,:

w(z) = £i(2) + g:1(2),

where
fi@=a+az—2z)+"""

is regular in a disk |z — z;| £ r, lying in the domain G and

= 4 4-2 cee
8@ = — cte—et (10.2)

is regular everywhere except at z = z,.
Similarly, we form in the neighborhood of each of the remaining points
Zy, . . . Z, the Laurent expansions

w2)=f2)+glz) @=2,..,n.
The difference
F@) = w@) — 3 ()
167
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is regular in the whole domain G. Since this domain is simply connected, it
follows from Cauchy’s theorem that

0=fyF(z)dz-:fyw(z)dz—Z:!}fyg,,(z)dz.

However, the series (10.2) for g,(z) converges uniformly on the curve y.
Therefore we can compute its integral by term-by-term integration of the
expansion (10.2). Forallm = 2 we have

f., (z —flzz,)"' 1 —} m fy d(z —lz,)m_1

For the integral of the first term of the series we obtain

I
e

where u,, is the winding number of the path y with respect to z,. The coefficient
a_, of the power (z — z,)! in the Laurent expansion of w(z) appears as a
factor, and this factor is called the residue of the function w(z) at the point
z = z,. Henceforth it will be denoted by R,, = a_,. By repeating the process
of evaluating the integrals of the functions g, (v = 2, .. ., n), we obtain the
residue theorem.

Let w(z) be single-valued and analytic in a simply connected domain G
except at the points z,, . . ., z,. If y is a closed path in G not passing through
the singularities z,, . . ., z,, then v

/

1 "o
i fy w(z) dz = v§=_‘,l uz R;,,

where u,, is the winding number of y with respect to z, and R, is the residue
of w(z) at z,.

This theorem contains Cauchy’s integral formula as a special case. To show
this we assume that f (z) is regular in the whole domain G. Then fora € G
the function

w(z) = f—(i)

is regular in G except at the point z = g, where its residue is f(a). Thus, by
the residue theorem

o f O 4 - w1

which is Cauchy’s integral formula.
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§2. APPLICATION OF THE RESIDUE
THEOREM TO THE EVALUATION OF DEFINITE INTEGRALS

10.3.

We shall show through some examples how the residue theorem can be
applied to the evaluation of definite integrals. First we shall verify by this
method the elementary identity

+oo dx
f—w 1’:}2 —-— . (10.3)
The analytic function
W) =1

is regular everywhere except at the points z = +i. From its partial-fraction

expansion
1 1 1
M) =5 (‘Zit‘i TIF i)

we see that the residue R; at the point i is 1/2i. We now draw a circle of radius
R > 1 about the origin and integrate the function w(z) along the curve consist-
ing of the semicircle Kz which lies in the half-plane Im z > 0 together with
the segment (—R, R) of the real axis. The winding number of y with respect
to iis 1, with respect to —i is 0. Hence, by the residue theorem,

dz . '
fy 'i-—_*_—zi = 27TlRi = 7. (10.4)
We now split the integral into two parts

f dz _J‘R dz +J’ dz
yU4+22 ) gl +22 7 1+ 22

and let R tend to infinity. The first integral tends to the integral (10.3) to be
evaluated, while the second integral tends to zero, since

J‘ dz < 7R
KRl + z?

SR 0 as R — .
The formula (10.3) is therefore established.

10.4.
As a second example, we evaluate the integral

@ A-1
f ud dx,
ol +x
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where A is a real parameter in the interval 0 < A < 1; this implies the con-
vergence of the integral. We consider the complex function

z/\—l

Y& =117

Each branch of w(z) is single-valued in the plane slit along the positive real
axis. We select that branch which is real on the upper edge of the slit. We
integrate w(z) along the curve y con-
sisting of the circles Kg: |z] = R > 1,
K,: |z| =r < 1, and the two segments
AB and B’ A’ which form the two edges
of the slit along the real axis (Figure 32).
The curve y is so oriented that Kj
is traversed in the positive direction
relative to its interior.

The only singularity of the function
w(z) in G is at the point z = —1. The
residue at this point is the value of the
function

ZA—1 — p(A-D)logz

Figure 32

at the point z = —1. Here we must choose that branch of the logarithm which
is real on the segment 4AB. Therefore the residue of the function at the point
=—lis
R_‘ — (_1)/\—1 — e(/\—l)ﬂi — e/\ni e~ = _e/\ﬂt.

The winding number of y with respect to z= —1 is 1. Hence, by the residue
theorem,

A1
f dz = —2mi M, (10.5)
y1l+z

We split the integral (10.5) into four parts:
fy==f43*‘fxn*' Bu'*‘fxrg (10.6)

For the second integral on the right-hand side we obtain the estimate

A-1 A
J‘ 27 < 27R
KR 1 +z

s 2 (10.7)

Since A is less than 1, this expression tends to zero as R — .
The last integral in (10.6) can be estimated in a similar way:

z/\—l . 27"./\
° di < .
fK,-u 1+ zdz( S1-—r (10.8)

Since A is positive this integral also tends to zero as r — 0.
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The integrals

[ov@ds  and [, w@d=—[, wed

B4

on the right-hand side of (10.6) do not cancel, since w(z) has different values
on the two edges of the slit. In the first integral z*~! is real, and we can write

zA-—l R xA—l
fABI+zdz=fr1+xdx. (10.9)

On the other hand, arg z = 27 on the segment 4'B’ and hence we have

ZA-1 = p(A—Dlogz _ p(A=D)(ogx+2mi) _ yA-1 oA-1271 _ A-1 e2nu\’

where z = x + iy. Thus, for the third integral on the right-hand side of
(10.6) we obtain the expression

fB'A' TZi-;Lz dz = —e*™? ff l_x% dx,
from which it follows that
f + f = (1 — 2™ Al dx. (10.10)
4B B4’ P1+x

If we let R tend to infinity and r tend to zero, we obtain from (10.5)-(10.10)
the result

o yA-l dr = —27i €Mt . 2. 7
0 1+ x X = 1 — e2nm_‘”ez\ni - e—/\ni_ SinAﬂ'.
This formula
© x/\—l T
= 0-1
jol+xdx S O<Aa<]) (10.11)

is important in the theory of the I'-function (Chapter 15).

10.5. Laplace Integrals

As a last example we shall evaluate the integrals

+00 elx +o0 eix d 0.2
—~d. nd - dx, 10.
f_mx—iax a f,wx+ta ( )
where a is a positive real number and the integration is along the real axis.
We integrate the analytic functions e'?/(z — ia) and e'*/(z + ia) over a path
y consisting of a semicircle K in the upper half-plane of radius R > a with
center at the origin and the segment (—R, +R) of the real axis.

The function e'*/(z — ia) is regular everywhere except at the point z = ia.
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The residue of the function at this point is R,, = ¢™ Applying the residue
theorem, we obtain

iz
f - ¢ —dz = 2mie™. (10.13)
.

Since the second function e'?/(z + ia) is regular everywhere in the half-plane
Im z =0, we have

iz
f ¢ _dz=o. (10.14)
yZ+ia
We break the integral (10.13) into two parts:
iz +R ix iz
f e,dz=f ¢ ,dx—l—f ¢ &, (10.15)
y2Z—ia _rRX —ia ke Z — Ia

and estimate the second integral by

ez 1
f —dz| £ ———~f le*| |dz|.
ke Z — ia R—a ]k,

If we substitute z = R e'?, we obtain

iz £ n/2
f ¢ —dz| £ R f e Rsind g4 — 2R f e Rsind g4
KrZ — 1a 0

“=R-aJ, R—a

We choose a positive € < 7/2 and write

/2

™2 _Rsing 74 — (€ ,-Rsing ~Rsing
e e Kt
We have, independently of R, that 7
€ —Rsing
0< fo e dé < e.

Since

n/2 mw
0< f e Rsing d¢ < e Rsine _2_ < €
€

for sufficiently large R, we obtain

lim ;”2 e~Rsind g — 0,
R—©

It now follows from (10.13) and (10.15) that

+o0 eix
f — dx = 2mie™*, (10.16)
—o X — ia

Starting from (10.14) we find in an analogous way that

+0 eix
j‘m ¥+ ia dx =0. (10.17)
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By adding and subtracting formulae (10.16) and (10.17) and by decomposing
the integrals into real and imaginary parts, we obtain the following formulas
for the so-called Laplace integrals:

*t® xsin x acos x
22 dx=me a R
f_w 2 =T f e dx = me™, (10.18)

If we let a — 0, we obtain from the first of these formulas that

oo oF
sSin x
f dx = m,
e X

e x sin x *o sin x o g2 sin x
—dx — —Zdx| = T oy dx
o X2 2 + & e X —o X(X* + a?)

“+eo 02
= dx = ma
f-m x2 + a2 3

since

and this tends to zero as a — 0.

§3. THE PARTIAL-FRACTION EXPANSION OF cot mz

10.6.
Earlier we derived a partial-fraction decomposition for rational functions
(Sections 2.12-2.13). The terms in this decomposition are of the form
cu/(z — a,)¥, where the numbers a; are the poles of the function, the numbers
k are positive integers, and the c;, are constants. A corresponding representa-
tion holds in general for meromorphic functions (Section 6.4). Instead of
proving this general result here, we shall restrict ourselves to discussing an
important example, the function cot 7z.
The function cot 7z has period 1, and has simple poles at the points

z=vy(v =0,+l,...). Weform the integral

i. cot 7z cotmz 4.

2ni Jxkz—a
where a # v (v = 0, £1,...), and integrate over the circle K: |z| = p, =
n+ %> lal. In the interior of K the integrand has poles at the points
0, +1, ..., £z and at the point @ whenevera # v + 3 (v = 0, £1,...). The
residue at the point z = a is R, = cot wa. In the neighborhood of the point

z = v we have

" _cosmz cos v + [z — v] - 1 + B - )
CoL™Z = 5in mz mcosmv(z—v)+ [(z—v)?] m(z—v) i

and
1 =

——t [z
z—a v—a +1 }
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so that
cotwz 1
z—a w(v —a) z—

S+ Bz )

Hence, the residue at the point z = v is R, = 1/#(v — a), and by the residue
theorem we have

1 cot 7z
27Ti K zZ —

dz-—cotwa+ Z

v—a

1< 1
= cotma — — Z —. (10.19)
This formula is also valid for @ = » + 4. In fact, in this case cot 77a = 0, and
z = q is not a pole of the integrand.

10.7.
‘We write the integral on the left-hand side of (10.19) as

cot 7z cot 7z C -
f i dz=f i dz+f Tz o,
kZ—a KZ—a K, Z2—a
where K, and K, denote the upper and lower semicircles of K, respectively.

In the last integral we substitute z = —t. If z describes the arc K, in the
positive sense, then ¢ describes the arc X in the positive sense. Hence,

f cot nz ds — f cot mz ds — f cot 7t df — 2a J‘ (;Ot nz dz.
kZ—a KnZ—a ntlta Kz —at
(10.20)

We now let n tend to «, whereby the radius p, of K also tends to infinity, and
show that the integral (10.20) tends to the limit zero. To estimate the function
cot 7z we exclude its poles by the disks C,: |z —v] <r <3 (¥ =0,+1,...).
Since cot 7z tends to +i uniformly as {Im z| — «, |cot 7z| is bounded by a
constant M in that part of the period strip lying outside the disk C,. Because
of the periodicity, |cot wz| < M everywhere outside the disks C,. Hence, it
follows that

J‘ (::Zot'nz2 ‘é mMp,
K —a Pﬁ_lalz

As p, — oo this expression tends to zero. Thus it follows from (10.19) that

= cot ma = lim Z . (10.21)
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If we combine the terms which correspond to the values +v, we have

1 1 2a
avTare—aon @=b2)

Replacing a by z and writing the term which corresponds to v = 0 separately,
we obtain from (10.21) the expansion

o

2z
+ D (10.22)

v=1

Ny |-

mcot 7wz =

This series converges absolutely and uniformly on every compact set which
does not contain any of the points +1, 42, . . .. The expansion (10.22) is valid
for every z # v (v =0, £1,...). It converges uniformly on an arbitrary
compact set if we omit a finite number of terms, those which become
infinite on the given set. When we approach one of the points z = 0, 1, . ..
both sides of (10.22) become infinite.

§4. THE ARGUMENT PRINCIPLE
10.8.

Suppose that the function w = w(z) is single-valued and, apart from a finite
number of poles b,, b,, ..., b,, regular in a simply connected domain G.
Suppose further that w(z) has a finite number of zeros a,, as, . . ., @, in G,
and that the orders of the poles are v,, v,, . . ., v, and the orders of the zeros
are [y, thay - « -5 e

Let us apply the residue theorem to the logarithmic derivative

dlogw(z) w'(2)
r@ = T dz w2

of the function w(z); f(2) is regular in the domain G, except at the points
a(i=1,..,m)and b, i=1,...,n). In the neighborhood of a zero a,,
w(z) has the expansion

W(Z) = Am z— ai)m + Am-H(Z - ai)mH +ooe (A;u # 0)’

whence
w'(2) = wdufz — a) ! + [z — a)].

Thus, for the function f(z) we obtain the expression

_ mtlz-a]l  p _
SO =i b—al z—a " PE~ @
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Hence, the function f'(2) has a simple pole with residue R,, = pu; at the point
a;. Similarly, in the neighborhood of a pole b; of w(z) we have

w(z) = @ ‘"‘)v, “r+By+ Biz—b)+ - (B, #0),
, vB_, B_
W(Z)='—(—_i—‘b—)£‘l_+‘l ————— ( 11,)2+Bl+[z i]’
and, hence,
~ (14— 8]
. zZ — bi _ Vi _
Therefore the function f(z) again has a simple pole with residue —v; at the
point b,.
The zeros ay, ..., a, and the poles by, ..., b, of the function w(z) are

thus simple poles of the function f(z) = w'(z)/w(z). The corresponding
residues are p,, . . ., p, and —vy, . . ., —v,, respectively.

If y is an oriented closed path in G not passing through the points g; and
b,, it follows from the residue theorem that :

f ‘;((zz)) dz = 2mi :,‘i Uagpts — é u,,,vi]. (10.23)
On the other hand,
f W) 4 - f dlog w(z) = idl, arg w(z), (10.24)
y W(2)

where 4, arg w(z) is the increment of arg w(z) along the curve y. It follows
now from (10.23) and (10.24) that

4, arg w(z) = 2 {ix Ug by — Zn‘,l u,,,v,} . (10.25)
i= i= .

We have thus proved the argument principle:

Let the function w(z) be analytic in a simply connected domain G, apart
Jrom a finite number of poles, and let w(z) have at most a finite number of
zeros in G. If y is an oriented path in G not passing through any of the
zeros or poles of w(z), then the increment of arg w(z), as z describes the
curve v, is given by formula (10.25).

If the function w(z) is regular everywhere in G, the second sum on the
right-hand side of (10.25) vanishes.

If w(z) has no zeros in G, the first sum on the right-hand side of (10.25)
vanishes. For this special case we have the following theorem.



§5 APPLICATIONS OF THE ARGUMENT PRINCIPLE 177

If w(z) is regular and non-zero in a simply connected domain G, then the
variation of the argument of w(z) along a closed curve in G is zero.

In this simplest case the argument principle is still valid if it is assumed only
that w(z) is single-valued, continuous and non-zero in the domain G (Exercise
14, p. 183).

If the boundary of G is, in particular, a Jordan curve whose winding
number is 1 with respect to every point of G, we may formulate the argument
principle in the following way.

If w(z) is analytic, apart from a finite number of poles, in the closure of the
domain G bounded by a simple closed Jordan curve v and if w # 0, © ony,
then the increment of the argument of w along vy is equal to the difference
of the total number of zeros and the total number of poles G multiplied by
2.

§5. APPLICATIONS OF THE ARGUMENT PRINCIPLE

10.9. The Fundamental Theorem of Algebra

As a first application we give a new proof of the fundamental theorem of
algebra (cf. Sections 2.6 and 9.13). We write the polynomial

P@)=ayz" +az" '+ +a, @@z21a #0) (10.26)

in the form

P(z) = agz*{l + f(2)}, (10.27)
where
1 a 1 a, 1
fO= i art tas

tends to zero as z — «. Therefore there exists an R > 0 such that
|f@@)| <1 for lz| = R. (10.28)

Since, in view of (10.27) and (10.28), P(z) # O outside and on the circle K:
|z| = R, all the zeros of P(z) (if any) lie in the interior of K. By the argument
principle, the number of zeros of P(z) multiplied by 27 is equal to 4, arg P(2),
since the winding number of K with respect to each zero is 1. We can calculate
- the expression 4, arg P(z) by using (10.27):

Adg.arg P(z) = A, arg z" + A, arg {1 + f(2)}
=n-2m + dg arg {1 + f(2)}.

From (10.28) it follows that the point { = 1 + f(z) liesin the disk |{ — 1] < 1.
As z describes Ky, { describes a closed curve in the disk |{ — 1| < 1. The

1 We may restrict ourselves to the assumption that G is bounded and that its boundary
is a positively oriented Jordan curve (cf. Section 10.11).
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increment of its argument is therefore a multiple of 27r. On the other hand,
since arg { is restricted to lie between —/2 and +/2, the increment can only

be zero,
Agparg{l +f(2)} =0,

whence dg, arg P(z) = n-27 (cf. Section 9.25). Therefore, the total number
of zeros of P(z) is equal to n. We have thus proved the following sharper form
of the fundamental theorem of algebra.

Every polynomial of degree n has n zeros (where each zero is counted
according to multiplicity).

10.10. Rouché’s Theorem
We make the following assumptions:
1) The domain G is bounded by a Jordan curve y, whose winding number
is 1 with respect to every point of G (cf. footnote on p. 177).
2) w(z) and f (2) are analytic in G and on its boundary.
3) W@ - f@I < |f@|ony.
Then the functions w(z) and f (z) have the same number of zeros in G (where
the zeros are counted according to multiplicity). ’

Proof. 1t follows from assumption (3) that f(z) # 0 and w(z) % O on the
curve y. Hence, we can apply the argument principle to the function

w@) =f@) + wiz) —f@)} =1 () {1 + W(z}(—z )f (Z)} )

The increment of the argument along vy is

4, argw(z) = 4, arg f(2) + 4, arg {1 + ﬂ%ﬁﬂz—)} . (10.29)

By assumption (3) the point { = 1 + (w(z) — f(2))/ f(2) lies in the circle
|¢ — 1] < 1 for every z € y. It follows from this, exactly as in Section 10.9,
that the last term in (10.29) is zero. Hence,

4, arg w(z) = 4, arg f (2).

The result now follows from the argument principle.

10.11. The Jordan Curve Theorem

In employing assumption (1) of Rouché’s theorem we assumed that the
closed Jordan curve y has winding number 1 relative to every point z € G
in its interior. This is part of the content of the Jordan curve theorem.f

t We shall not prove this theorem here; for a proof, we refer the reader to textbooks
on topology. See, for example, M. H. A. Newman, Elements of the Topology of
Plane Sets of Points, 4th edition, Cambridge, 1961.



§5 , APPLICATIONS OF THE ARGUMENT PRINCIPLE 179

A Jordan curve y separates the ( finite) plane into two domains G, and
G, both of which are bounded by y. One of the domains, G,, is bounded
and the other, G,, is unbounded.

The winding number of the curve vy is zero with respect to each point of
G,, and is 1 or—1 with respect to each point of G,, depending on the direction
in which vy is described. (We say that the orientation is positive in the first
case and negative in the second; cf. Sections 3.8 and 8.12.)

The domain G, is simply connected.

10.12. The Inverse Function

With the help of Rouché’s theorem, we shall now give a new proof of the
inverse-function theorem (first proved in Section 9.24).

If the function w = w(z) is regular in the neighborhood of a point z, and
w'(zo) # 0, then in a certain neighborhood of the point wy = w(z,) one can
define z as a single-valued function of w, z = z(w), w(z(w)) = w."

By assumption we have
w(z) — wo = (z — 20) f (2),

where f(z,) # 0, . Since z, cannot be a limit point of zeros of w(z) — wy,
there exists a number p, > 0 such that

wiz) #wy for 0<|z—z4| £ p,.

Therefore, |{w(z) — wo| has a positive minimum on the circle |z — z,| = p,.
Let '

0<p,< min |[wz)— wy|. (10.30)

|z—z0|=pz

We shall now show that the function w(z) assumes exactly once in the disk
|z — 24| < p, every value w, in the disk |w, — wy| < p,,. To show this, we
apply Rouché’s theorem to the functions w(z) — w, and w(z) — w,. In view
of (10.30), the assumptions of that theorem are fulfilled, since |w; — wy| < p,.
In this way we conclude that in the disk |z — zy| < p, the function w(z) — w,
assumes the value 0 exactly as many times as the function w(z) — w, does,
that is, exactly once. This proves the theorem.

10.13. A Theorem on the Conformal
Mapping of Domains Bounded by Jordan Curves

As a further application of the argument principle we shall prove the following
theorem:

Suppose that the domains G, and G, are bounded by Jordan curves
vz and y,,. If w(2) is analytic on the closed domain G, U v, and maps the
curve vy, in a one-to-one manner onto the curve vy,, then w(z) maps the
domain G one-to-one conformally onto the domain G,
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Proof. Let z, be an arbitrary point in G,. Its image w, = w(z,) cannot lie
on y,, since the points of y, and y,, are in one-to-one correspondence. The
function

w(z)

zl

f@=——

does not vanish on y, and is regular everywhere in G,, except possibly at z,.
If we set

f(z) = lim 22 =" W(z)

zZ—>2Z1

= w'(z)),

then f(z) will be regular at z;,. By the argument principle we have

4, argf(z) = 4, arg(Wz) — w,) — 4,, arg (z — z,)
=n27 =0, (10.31)

where 7 is the total number of zeros of f(z) in G,. If z makes a complete
circuit of v, in the positive direction, then, by assumption (cf. Section 10.11),

4, arg(z — z)) = 2m,
whence it follows from (10.31) that
4,,, arg (w(z) — wy) = 2m. , (10.32)
On the other hand, if z describes the curve y, once, the point w describes the

curve y,, once, so that, by Section 10.11, the left-hand side of (10.32) is less
than or equal to 27. Hence,

4,, arg (w(z) — w,) = 2m.

By Section 10.11 the point w, lies in G,, and the positive orientation on v,
corresponds to the positive orientation on v,,, and vice versa.

In order to show, conversely, that to each point w, in G,, corresponds a -
well-defined point of G,, we start from the equation

4, arg (w — wy) = 2m.

If w makes a circuit of the curve y,, z describes the curve y, in the same
direction. Therefore
4, arg (w(z) — w,) = 2.

It follows from the argument principle that w(z) assumes the value w, at one
and only one point of the domain G,. The one-to-one character of the mapping
is thereby proved.

Since the mapping is one-to-one, we have

w(z) # 0 (10.33)
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in the entire domain G,. For otherwise, if there were a point z, in G, such
that w'(zy) = 0, the function w(z) would assume at least twice in a neighbor-
hood of z, certain values in a neighborhood of w(z,). It follows from (10.33)
that the mapping is conformal at each point of G,.

If we make a linear transformation of the z-plane or w-plane which takes
a point of y, or y,, to the point «, these results can be extended to the case
that at least one of y, and y,, passes through the point <.

EXERCISES ON CHAPTER 10
1. The function arc tan z can be defined by the integral.

z dz

arctanz = —_—
ol + 22

Using this definition discuss the properties of the function: its multi-valued
character and modules of periodicity, singularities, and limiting values as
z = 4.

2. Using the residue theorem evaluate the following integrals:

eZ
a) ‘ fy 5 dz,

where y is the circle |z} = 1,
b) fy tan nz dz,

where y is the circle |z| = # and # is a positive integer.
3. Evaluate the integral
eiz
f —dz,
y Z

where y is the curve consisting of the semicircles |z|] = R, Imz >0 and
|zl =r (<R), Imz >0, together with the segments r <z < R and
—R £z %X —r. Let R - o and r — 0, and find the value of

J‘ sinx
0o X
4. By using the well-known formula of integral calculus,
[ ax= Ve,
0 2

evaluate the so-called Fresnel integrals

I ® 1 [m
2 — 1 2 me — .
focosxdx fos1nxdx 2J2
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Hint. Integrate the function e™* along a closed curve consisting of the two
segments joining the origin to the points R and R e'"/* and of the minor arc
of the circle |z| = R between these points. Then let R tend to infinity.

5. Derive the formula

o dx _1-3o5...(2n_l)
f_«, TT~ 246-@y (D

6. Derive the formula

® cos mx T m
IOH—*xzdx~§e (m>0).

7. Evaluate the integral
f teo cos x dx
o X+ D2+ D
Answer.
m2e —1
6 &
8. Let the functions f(z) and w(z) be analytic in the simply connected domain
G, and let w(z) have in G the zeros a,, a,, . . ., @, (a zero of order v is written v

times). Let y be a closed curve in G not passing through the points a,
v =1,2,...,n). Derive the formula

[ roy@ =} ura)

where u,, is the winding number of v with respect to g, (v =1,2,...,n).
What happens to this formula if f(z) has a finite number of poles in G?

9. Apply the formula derived in Exercise 8 to calculate

Z;lz—kfor k=1, Bk=2

v=1}
w2 ot
a) 6’ b) 90"
10. Generalize the preceding exercise to an arbitrary positive integer k.
Hint. The exercise leads to the Bernoulli numbers B, which are defined by the
following recursion formula:

1 2k +1 2k +1

+ (=1 (2k + l) B, =0 k=12...).

Answers.

2k
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11. Prove that the partial-fraction expansion (10.22) of the function = cot 7z
converges uniformly on every compact set that does not contain any of the
pointsz=n(n =0, +1,42,...).
12. Using the partial-fraction expansion of cot =z, evaluate
i R
5 .

&nt + 1
13. Expand the function 1/sin? 7z into partial fractions.
14. Prove the argument principle in the following form: If the function w(z)
is single-valued, continuous, and non-zero on a Jordan curve y and in its
interior, then

4, arg w(z) = 0.
Hint. Partition the interior G of y into subdomains G, (v = 1, 2, .. ., n) and
show that 4 arg w(z) = 0 along the boundary of each G, (v=1,...,n)
whenever the partition is sufficiently fine.
15. Find the image of the half-plane Imz > 0 under the mapping
w = z + k log z, where k is a positive constant.

16. Let the analytic function w(z) map a domain G, one-to-one conformally
onto a domain G,,; both domains have a well-defined area. Show that the
area 4 of G, is given by the double integral

A= f j 5, WO\ dx dy.
17. The Bieberbach area theorem. If

w(z) = éo c,z"

is analytic and schlicht in the disk |z| < r, then the area of the image domain
is given by

0
A =m Y njc,|?r?.
n=1

Hint. Apply the formula given in Exercise 16 and use polar coordinates.

18. In addition to the assumptions made in the preceding exercise we assume
that w'(0) = 1. Show that the area of the image domain is then greater than
or equal to the area of the disk |z] < r. Under what condition does equality
hold?

19. Suppose that w(z) is analytic in a domain G, that y, is a piecewise regular
curve in G, and that w'(z) # O for z € y,. Show that the length of the image
curve y,, of y, is

L= W@l dz].



CHAPTER 11

HARMONIC FUNCTIONS

§1. PRELIMINARY CONSIDERATIONS
11.1. Definition

The real and imaginary parts of an analytic function satisfy Laplace’s
differential equation (Section 1.14) and are therefore harmonic functions. In
this chapter we shall treat the theory of these functions in detail. We make
the following definition:

If a real function u(x, y) of two real variables has differentiable partial deri-
vatives u, and u, in a domain G and satisfies Laplace’s differential equation

o2u 9%u

A"EW’LEFO’ (1.1

then it is said to be harmonic in G.

In order to discuss rigorously the theory of harmonic functions, we shall
first recall certain fundamental properties of real line integrals.

11.2. Integration of a Differential Form

In Chapter 8 we formulated the problem of determining the primitive function
of an analytic function. This problem may be considered as a special case of
the so-called fundamental problem of the integral calculus of functions of
two real variables:

Let M(x, y) and N(x, y) be single-valued real functions defined in a domain
G. Find all functions f (x, y) which are single-valued in G and whose total
differential is ‘

df = Mdx + Ndy. (11.2)

In particular, the statement that f, = M, f, = N is contained in (11.2). We
can solve this problem by the same method which we used earlier to find the
primitive function -of an analytic function. We shall proceed to do so, under
the following assumption:

1) The functions M (x, y) and N(x, y) are differentiable in the domain G.
184
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11.3. A Lemma

The solution of the foregoing problem depends on an important lemma
concerning the line integral of the differential form M dx + N dy. Let 4 be
a triangle P,P,P; which is contained in the domain G together with its
(positively oriented) boundary 94 = P,P,P,;P,, and let P, denote a point of
this closed triangle. We shall discuss the integral

M(de-l—Ndy).

We denote the coordinates of P, (in a given cartesian coordinate system) by
x=1x,y=y @=0,1,2,3). Since M(x, y) is differentiable in G, we have,
in some neighborhood of (xg, ¥o),

M(xs J") = M(xo, yD) + Mx(xO, yO)(x - xO) + My(x09 yO)(y - yO) + r(r)’

where r = V/(x — xp)* + (¥ — yo)* and (r) is a number which tends to zero
as r — 0. We substitute this expression into the integral [ M dx. Since
M(xg, ¥o) + M, (xo, ¥o)(x — X,) is the derivative of the single-valued function
M (x4, yo)x + M (xg, yo)(x — X0)?/2, that part of the integral corresponding
to it vanishes over 94.

To find the value of the integral

oq (¥ — Vo) dx
we write the equation of the segment P, P, in the form
x = x, + 7(x; — X,), y=y+1(y—y) O=s7=s0).
Since dx = (x, — x,) dr, we obtain

[ pops @ = 90 dx = 31 + 32 = 0)(x2 — 31).

The integrals over P,P; and P, P, are obtained by cyclic permutation. Adding
these integrals, we obtain for the whole integral the value
Xy X2 X2 X3 X3 Xy )

1
—yodx =—|4 =——(
faa =) 4 2\[y1 y2 Y2 V3 Y3

Taken with opposite sign, this expression represents the area |4| of the
triangle 4.

If max |(r)] = m on 24, we can estimate the integral of the remainder
term by

] [,a7® dx{ < 5m-38 = 5%(3),

where 8 is the length of the longest side of the triangle, and (§) —~ 0asé — 0
(i.e., when the triangle shrinks to the fixed point P).
Altogether we have

[ 15 M, 3) dx = —My(x0, 304 + 8O).
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In the same way we obtain

[ 00 NG ) dy = Nolo, 0)l4] + 8%3),

where (8) — 0 as 8 — 0. We have thus proved the following result. If
the functions M(x, y) and N(x, y) are differentiable in the domain G, then
the line integral taken over the positively oriented boundary 04 of a triangle
4 < G can be expressed by the formula

[0g M dx + N dy) = (Nulxo, y0) = My(x0, 39))|4] + 83),  (113)

where (x,, o) is an arbitrary point of the domain G, 4 is a triangle (=G)
containing (x,, ¥o), and 3 is the longest side of the triangle; further (8) — 0
as the triangle 4 shrinks to the point (x,, ¥o) (8 — 0).

One should note that in the proof of this lemma we have not used the
full strength of condition (1), but only the following, weaker, condition.

The functions M and N are continuous in the domain G and differentiable
at the point (x,, yo) € G.

This condition implies the existence of the partial derivatives M., M,,
N,, N, at the point (x,, })0).

11.4. Interchangeability of the Order of Differentiation

Let us apply Eq. (11.3) to a function f(x, y) which is single-valued in the
domain G and whose partial derivatives f, and f, are continuous in G and
differentiable at the point (x, yo). If we write f, =M, f, = N, then
df = M dx + N dy, with M, = f,, and N, = f,,.

Then

oy M a5+ Nay) = [ df = (i, 32) = (1, 7:) = 0
and we obtain from (11.3) that
82
f;’x(xOs J’o) "'f;c,v(xo’ yO) = "Izl (8)-

If the triangle shrinks to the point (x,, yo) while retaining its shape, then
82/|4| is a constant, & tends to zero, and so does (8). Thus the right-hand
side of the last formula tends to zero and, hence, the constant on the left-hand
side must be zero. Therefore, k

S0, Yo) = fx(X0, Y0)- (11.4)

This result contains the fundamental theorem of the differential calculus
concerning the interchangeability of the order of differentiation. We have
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proved it under rather weak assumptions which differ from those upon which
the usualf proofs of this theorem are based.

11.5." The Integrability Condition

We now return to the problem formulated in Section 11.2 and assume to
begin with that

1) The functions M(x, y) and N(x, y) are differentiable at every point of
the domain G.

If f(x, y) is a solution of the problem, then f, = M, f, = N in G, and
hence, as we have shown in Section 11.4,

Ni(x,y) = My(x,y) = 0. (1L5)

The vector (M, N), whose components are f, = M, f, = N, is the gradient,
grad f, of the function f. The left-hand side of formula (11.5) is the curl or
rotation of this vector:

curl grad f = curl (M, N) = N, — M,.
For the existence of the integral f'(x, y) in G it is thus necessary that

2) The condition
curl(M,N)=N,— M, =0

is satisfied at every point of G.

11.6. Sufficiency of the Integrability Condition

We assume now that M and N satisfy the two conditions (1) and (2). If we
assume, moreover, that G is convex, then the solution f(x, y) can be con-
structed by the method of Goursat, which led us in Chapter 8 to the construc-
tion of the primitive function of an analytic function. In order to show this,
we choose two arbitrary points (x,, yo) and (x,, ¥;) in G and join them by a
straight-line segment; this segment lies in G. If we assume for a moment
that /' (x, y) is a solution of our problem, then

FGuy) =Gy + [0 df = f o y0) + [0

x1,y1) x1,y1)

(M dx + N dy),

t If it is assumed that £, and f, are continuously differentiable at the point (x, ¥o),
then (11.4) is a simple consequence of the mean-value theorem. The so-called
Schwarz Theorem contains the following refinement: If £,, f,, and f,, are continuous
at the point (xo, yo), then f,,(xo, o) exists and is equal to f,,(xo, yo). Our derivation
of (11.4), however, is based upon different assumptions: we assumed that the partial
derivatives are differentiable at the point (x,, ¥), but we have made no assumption
about the continuity of the derivatives f,, and f,,,.
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where the path of integration is the segment joining the two points. From
this it follows that for a given initial value f (x,, y,) the problem can have no
other solution than

C+ f"‘"’ (M dx + N dy),

(x0,¥0

where C = f(xp, yo).
Conversely, we shall now prove that the single-valued function f(x, y)
defined by the integral

f Y (M dx + N dy), (11.6)

(x0,50)

where the path of integration is the segment joining the points (xy, ) and
(x, »), is a solution of our problem.
First of all we shall show the following: If

o4 (Mdx + Ndy)=0 (11.7)
for every triangle 4 < G, then (11.6) is the solution of our problem.

Proof. If the points P,(x,,y,) (v =0, 1) are given, we apply (11.7) to the
triangle PyP,PP,, where the point P € G is chosen on the line parallel to the
x-axis passing through P, (P = (x, + 4x, y;)). By (11.7) we obtain for the
increment of the function

x,»)
Sy =77 (Mdx+ Ndy)

the expression
Af = f(x; + dx, y1) — £ (x1, 1)

J‘(xl+4x.;v1) J‘(xl,yl) J‘(x1+Ax.y1)
(x0,0) (x0,y0) (x1,71).
Here all integrals are taken over straight-line segments. The last integral,
however, can be written as
(x1+dx,y1)
4= | M(x, y)) dx
(x1,y1)

x1+dx

= Mo, p)dx + [ (MG 30) = MG, ) dx

= M(x), y)4x + Ax(4dx),

where (4x) tends to zero as 4x — 0. This expression shows that the partial
derivative £, of the function f (x, y) at the point (x,, y,) is equal to M (x,, y,).

In the same way one can show that f,(x,;, ;) = N(x,;, y;). However,
since (x,, y;) is an arbitrary point of the domain G and since the functions
M and N are assumed to be continuous, it follows that the differential of

Sf(x, y)is

X1

df (x,y) = M(x, y) dx + N(x, y) dy,
which was to be proved.
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Hence, if, in addition to the assumptions (1) and (2), (11.7) also holds, the
desired integral f(x, y) exists and is uniquely determined up to an additive
constant (C = f (o, o))-

If the'domain G is not convex, we may define the integral f (x, y) first for
a convex subdomain of G. Starting from this subdomain, we may continue
f(x, y)td the whole of G by means of chains of disks. If G is simply connected,
then the integral £ (x, y) is single-valued in the whole domain (cf. Chapter 8,

§).

11.7. Goursat’s Proof

It remains for us to show that (11.7) is in fact a consequence of the assumptions
(1) and (2), in other words, that

I= IM(de+Ndy)=o

for the boundary 84 of an arbitrary triangle 4 < G. The proof is completely
analogous to that given in Section 8.12. We divide the triangle 4 into four
congruent subtriangles, on at least one of which the line integral will have a
largest value; we choose one of these triangles and call it 4,. By repeating
this process we obtain an infinite sequence of nested similar triangles
4>4,>...24,> ... Ifweset

L={,Md+Nd) (=12,
we may conclude, as in Section 8.12, that
l_Il< |_Ill<...< |Z.| < e
1= 12, = 214, 5 1)
The length |94, = |84]|/2" of the boundary 94, tends to zero asn — «. The
closed triangles 4, (n=1,2,...) converge to a well-defined limit point
(xo, ¥o) Which belongs to the closed triangle.

Since M and N satisfy conditions (1) and (2) (Section 11.5), it follows
from (11.3) that

I, = an (M dx + N dy)
= (Nx(x09 yO) - My(xm yO))lAnl + 8?!(8") = 831(871)’

where &, is the longest side of the triangle 4, and (6,) —> 0 as 8, — 0 (i.e,, as
n — «). From this it follows that

Ll _ & o\ _ &
14, = 7, © = 127 @

From the inequalities (11.8) we now have that

1] = |4] Iij;ll =80@) >0 as n-—>ow,

which is only possible if 7 = 0. This proves (11.7).
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We have thus proved the following theorem:

If the functions M (x, y) and N(x, y) satisfy conditions (1) and (2) (Section
11.5) in a simply connected domain G, then the differential M dx + N dy
has an integral (11.6) which is uniquely determined up to an additive constant.

11.8. Determination of the Conjugate Harmonic Function

We saw in Section 1.14 that the real and imaginary parts of an analytic function
are harmonic functions which satisfy the Cauchy-Riemann differential
equations. Such functions are said to be conjugate harmonic functions. We
shall now consider the following problem: Given a harmonic function,
determine its conjugate harmonic function. Let u(x, y) be harmonic in a
simply connected domain G. We seek a function v(x, y) which satisfies the
conditions
Uy = —Uy, Uy = Uy

Since u, and u, are differentiable, and since —u, dx + u, dy satisfies the
integrability condition (Section 11.5), there exists a function

(x0,y0)

oo [ G )

which is uniquely determined up to an additive constant and whose total
differential is —u, dx + u, dy. This function is the conjugate of u.

The function w(z) = u + iv is analytic. The harmonic function u(x, y)
therefore determines an analytic function (unique up to an additive imaginary
constant) whose real part is the given harmonic function . If the imaginary
part v(x, y) is given, the analytic function w(z) is determined up to an additive
real constant. ‘

Since an analytic function w(z) has derivatives of all orders, a harmonic
Sfunction u(x, y) has partial derivatives of all orders. These partial derivatives
(as real or imaginary parts of analytic functions) are also harmonic.

Conversely, the properties of analytic functions can be derived from the
properties of harmonic functions. In particular, Cauchy’s theorem is a
consequence of the results proved above for real line integrals (Exercise 2,
p. 208).

Proving that a given function is harmonic is often done most conveniently
by showing that it is the real or imaginary part of an analytic function. For
example, r" cos n¢ and r"sin né are harmonic functions since they are the
real and imaginary parts of the function z* = (r e*4)".

11.9. Behavior under Conformal Mapping

If the function u is harmonic, then so is Cu, where C is a constant. If u and
v are harmonic, then so is their sum u + v. From these observations it follows



§2 ' GAUSS’S MEAN-VALUE THEOREM 191

that the set of harmonic functions is linear: If u,, u,, ..., u, are harmonic
functions, then C,u, + Ciu, + - - - + C,u, is also a harmonic function, where
C,, C,, ..., C,are constants.

On the other hand, the product and the quotient of two harmonic functions
are not, in general, harmonic.

A change of variables,

x=-x(‘f, 7])’ J’=)’(§, 77)9 (119)

will transform a harmonic function #(x, y) into a function of the new variables
¢ and 7,
u(x, ) = u(x(¢, n), (¢, ) = a(¢, 7).

In general the function (¢, n) is not harmonic. However, if the equations
(11.9) define a conformal mapping of a domain G of the (x, y)-plane onto a
domain G of the (&, n)-plane, then @ is harmonic. This can be proved by
computing 47 and taking into account the conditions of conformality.
Whenever the conformal mapping is orientation-preserving we can also give
a proof based on the composition of analytic functions. For the functions
(11.9) then satisfy the Cauchy-Riemann differential equations; thus if we
write x + iy =12, £+ in=1{_, then z=x(§ ) + iy, n) is an analytic
function z({) of .

We form the harmonic conjugate v(x, y) of u and then the analytic function

w(z) = u(x, y) + i v(x, ). (11.10)
The substitution z = z({) transforms (11.10) into an analytic function of {:
w(z(D)) = a(é, ) + i o(€, 7).

Its real part (¢, 1) is therefore harmonic, which is what we wanted to prove.

§2. GAUSS’S MEAN-VALUE THEOREM.
THE MAXIMUM AND MINIMUM PRINCIPLES

11.10. Gauss’s Mean-Value Theorem

If we equate the real parts on both sides of formula (9.14), which was derived
for analytic functions, we obtain Gauss’s mean-value theorem for harmonic
functions.

Ifu(2) = u(x, y)is harmonic in a domain which contains the disk |z — a| < r,
then

w(a) = -2-1; f :" w(a + r %) dg.

Remark. The converse is also true: If £ (x, y) is a continuous real function in
the domain G and satisfies the mean-value theorem for every disk contained
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in G, then f(x, ) is harmonic. The proof is left as an exercise (Exercise 15,
p. 210).

Thus the mean-value property can serve as the definition of a harmonic
function.

11.11. The Maximum and Minimum Principles

In Section 9.12 we proved the maximum principle for the modulus of an
analytic function. We also have a maximum and minimum principle for
harmonic functions.

If the function w(z), harmonic in the domain G, attains its upper or lower
bound in G, then it is a constant.

Suppose that u attains its least upper bound M ata pointa € G:u(a) = M.
By Gauss’s mean-value theorem

. 27
wa) = M=.1_f ua + r %) do, (11.11)
27)’ 0
where the disk
lz—a| S r (11.12)

is contained in the domain G. It can be proved as in Section 9.12 that (11.11)
is possible only if # = M everywhere in the disk (11.12). Applying the method
of a chain of disks, we may then show that u is a constant throughout the
domain G (cf. Section 9.9). It is recommended that the reader carry out in
detail the proof outlined here. »

The minimum principle can be proved in the same way, or can be deduced
from the maximum principle by applying it to the function —u.

It follows from the maximum and minimum principles that a function
harmonic on a closed domain attains its maximum and minimum on the
boundary of the domain. Furthermore, if a function harmonic on a closed
domain is constant on the boundary, then it is constant in the whole domain.
It follows directly that if two functions » and v are harmonic on the closed
domain and u = v at every boundary point of G, then u = v throughout the
domain G.

As an example, let us consider the harmonic function u defined as the
real part of the analytic function (1 + z)/(1 — 2):

1+2z 1—r2
1—z 1+r*—2rcos¢

u=Re = u(r e'%),

where z = r ', The function # is harmonic in the unit disk, and on its
boundary r = 1 we have u = 0 except when ¢ = 0." Nevertheless,  is not
identically zero in the unit disk. The reason is that the assumptions of the
maximum and minimum principles are not satisfied, since the function has a
singularity on the boundary at the point z = 1. If we let z approach the point
1 along the real axis, then u — .



§2 GAUSS’S MEAN-VALUE THEOREM 193

A function u is said to be harmonic at the point z = « if the function
#(%) = u(1/{) (the transform of u(z) under the inversion z = 1/{) is harmonic
in the neighborhood of the point { = 0.

It can easily be shown that the maximum and minimum principle is also
valid in a domain of the extended z-plane.

As an example, we consider an analytic function u + iv which is real on
the real axis and regular in the upper half-plane. On the real axis we have
v = 0, but it does not follow that v = 0, since v need not be regular at z = .
For example, a polynomial with real coefficients is such a function.

11.12.
We can also formulate the maximum principle in the following way.

If the function u(z) is harmonic in a domain G of the extended complex plane
and if at every boundary point { of G
lim sup u(z) £ M, (11.13)

Z—>

thenu < M throughout G.

Proof. Let « be the least upper bound of u(z) in G. ‘Then there is a point
zo € G at which u(z,) = «, or there exists an infinite sequence

ZiyZye e (11.14)
such that
lim u(z,) = «.

n—»00

The sequence (11.14) contains a subsequence

. Zy1s Zygs -+
such that
lim z,, = 7/, lim u(z,,) = .
i—o0 i—c
In each case there is a point zg, either in G or on its boundary, such that the
least upper bound of #(z) is equal to « in an arbitrarily small neighborhood
of z,,.

If z, is on the boundary of G, then & £ M by (11.13). On the other hand,
if z, € G, then u(z,) = « by continuity. Thus u(z) assumes its maximum value
in the interior of the domain, and, hence, is constant by the original maximum
principle. In this case again « < M, and the theorem is proved.

11.13. Generalization of the Maximum Principle

The examples discussed in Section 11.11 show that the function u(z) need not
be less than or equal to M if condition (11.13) is not fulfilled at every boundary
point. However, if we make an additional assumption, exceptional boundary
points can be admitted.
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In fact, one can state the following generalization of the maximum
principle.
If v
1) The function u(z) is harmonic and bounded in the domain G: u(z) < K;
2) There exists a positive number M such that lim sup u(z) < M(< K) at
every boundary point { of G, except at a finite number of points {,,

§2’ LR ] Cn'
Then u(z) < M at every point of G (provided that the boundary
of G also contains points other than {,, . . ., {,).

Proof. We assume first that G has exterior points. By means of a bilinear
transformation we may reduce the problem to the case that G is contained in
a disk of diameter d. The function

(z) = u(z) ~ AZ log ( K (11.15)

where A is an arbitrary positive constant, is harmonic in G and less than u(z).
Hence,
11m supv(z) = M
f{#¢{E=12,..,n. On the other hand, if z — {,, then
lOg (d/lZ - Cvl) — 0,
lim supv(z) £ M.

z—Ly
It follows from Section 11.12 that, for every interior point of G,
v(z) £ M. (11.16)
If z is a fixed point of the domain G, it follows from (11.15) and (11.16) that

so that, for these points,

v=1 v '

The sum on the right-hand side has a finite value for any fixed z in G. Since
A is an arbitrary positive number, it follows from (11.17) that u(z) < M.

Let us now consider the case when G has no exterior points. Let z, be an
arbitrary interior point of G, and let u(z,) = u,. Because of the continuity
of u, we know for every positive € there exists a p > 0 such that u(z) < u, + €
for |z — zg| £ po- The theorem has already been proved for the domain
obtained from G by removing the disk |z — z,| = p. Since e is arbitrary, it
follows that u(z) cannot exceed in G the larger of the numbers M and u,. If
uy > M, then u, = sup u and u attains its greatest value in the interior of the
domain. By the maximum principle u(z) = u,, which contradicts assumption
(2). Therefore uy < M, i.e., u(z) £ M throughout G. The theorem is thereby
completely proved.
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The minimum principle has a corresponding generalization.
The theorem remains true if the set of exceptional boundary points is
countably infinite. The proof is analogous (cf. Exercise 11, p. 209).

§3. POISSON’S FORMULA

11.14.

If w(z) is an analytic function regular on a closed domain, then the values of
w(z) in the interior of the domain are determined by its values on the boundary
by means of Cauchy’s integral formula. It was shown in Section 2 that
harmonic functions have the same property. If the function u(z) is harmonic
in a disk |z| £ p, then Gauss’s mean-value theorem gives the value of u(z) at
the center z = 0 (Section 11.10):

27
u(0) = 517—7 f " ulp )

In order to express the value of u at an arbitrary interior point z of the disk
by means of its values on the circumference, we map the disk |z] S p con-
formally onto itself so that the point z goes into the origin.
We consider first a conformal mapping of the disk onto itself which takes
the point a into the point 4. It is of the form
z—a _ 5 {—b
P B’
where A is a constant (Section 3.9), which is to be determined in such a way
that |z} = p whenever |{| = p. Multiplying the left-hand side of (11.18) by
#/Z and the right-hand side by £/, we obtain
_ z—a {—b
= A .
tr—ae N e
Now if this equation is to be satisfied for ]z] || = p, we must have |A| = 1
or A = e'*, where o is real. The mapping is therefore defined by the equation

(11.19)

(11.18)

Z=8 _ {—b
p* — az pt— b’
By logarithmic differentiation of (11.18) we obtain

p*— |af? Pt — |6
dz = 11.20
- -@ " T-HE " (1129
This equation is also valid on the circles |z| = p, |{| = p. We denote corre-
sponding boundary points by

z=pe, {=pe

If we let the points z and { vary on these circles, we obtain
d: d
zz ido, fz = i dy. (11.21)
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On the circle |z] = p we have p?/z = Z and similarly on [{| = p we have
p?/¢ = {. From (11.20) and (11.21) we then have

2 2 2 2
p?—lal* ., p*— b
= do = L= b di.

(11.22)

11.15.

We assume now that the function u(z) is harmonic in the disk |z| £ p, and
we wish to determine its value at the point z, = r e'® by means of the values
taken by the function on |z| = p. We map the disk |z| £ p onto the disk
|{] £ p by means of a bilinear transformation in such a way that the point
z = z4 goes into { = 0. Then u(z) becomes a harmonic function of the new
variable {; we denote the new function by #({). In particular,

u(zy) = u(0).
By Gauss’s mean-value theorem,
2n
eo) = 0) = 5 [ o ) d: (11.23)
. 27 0 .

In order to make z once more the variable of integration, we apply formula
(11.22) with a = z,, b = 0. We obtain:

PP B TN sl .2 P ) 11.24
weg) = ur ) =5 | o e (11.24)

If we replace zy by z = r e/ and the variable of mtegratmn zby { =pe'd,
(11.24) takes the form

u(z) = u(r ') = %T- Jo u(p e'e) |€ IZIIZ do

27 0 P _ r2
- 2Trf0 ulpe )pz + r? — 2pr cos (0 ¢>) (11.25)
This is Poisson’s formula.
If u(z) is harmonic in the unit circle, we have (p = 1):
u(z) = u(r e'?) = R u(e'%) L= (11.26)
B T 2m ), 1+r2—2rcos(9—¢) '

11.16. Schwarz’s Formula

It can be proved directly from the integral (11.25) that u(z) = u(r '#) is a
harmonic function. In fact, the kernel of the integral,

p? —r?

0 )
Kip e 2) p?r+r?—2prcos(0 — ¢)’
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is the real part of the analytic function ({ + z)/({ — z), and as such is a
harmonic function of z. Hence, the integral (11.25) is also a harmonic function
of z, since the required differentiations can be carried out under the integral
sign.

Since we can represent the real part » of an analytic function w(z) = u + iv
as a Poisson integral (11.25), we can find a representation of w(z) itself by
means of the boundary values of its real part.

We form the integral

27
@) = 511—7'{0 w(p €'%) E tZa 127

which defines a regular function of z. The real part of f(z) is u(z), the same
as the real part of w(z). The difference of the functions w(z) and f (z) is therefore
an imaginary constant. Hence,

Y wl+z ,
W(Z —2—"f0 u(pee)z;—_—z-d0+lC,

where C is a real constant. If we set z = 0, we see that C = v(0). We have
thus established Schwarz’s formula:

w(z) = 2—177 f u(p e'%) g 29 + iv(0).

§4. HARMONIC MEASURE
11.17. The Geometric Meaning of the Poisson Kernel
The kernel

1-r? _1—z? RZ;+z
1+r2—2rcos(@—¢) |L—z]> -z

of the Poisson integral has a simple geometric interpretation. By the well-
known theorem on secants (Fig. 33),

A+ 2D = |z = 1§ — 2| [T — 2], ¢
or
1=z =0 -z |8 —2.  (11.28)

On the other hand, if df’ is the element of arc de-
scribed by {’ when { describes the element of arc df,
we have

(-1}

aa_ av ¢
TZ:—;, == (11.29) Figare 33
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By (11.28) and (11.29) we have

1|z 1
0 |{—z]* 1+r*=2rcos(d—¢)°

If { is fixed, then d§’'/df is a function of z. It is clear from formula (11.29)
and from the geometrical interpretation that the level curves of the Poisson
kernel (11.30) are circles tangent to the unit circle at the point {. If z tends
to any point (# {) of the circle |z| = 1, then (11.30) tends to 0.

(11.30)

11.18. Definition of the Harmonic Measure
In view of formula (11.22), the differential

1——|z|2d6 : 1 —r2

de’=|§—z|2 1 +r?—2rcos (0 — ¢)

is invariant under the group of bilinear transformations mapping the unit disk
onto itself, where we replace z = re'® and { = e'® by their image points. This
implies that the integral taken between two arbitrary limits 0, and 6,
©0=0,<6,=0,+2n)

o, 0y=L (" =L (" L—r (1131
(z; 6, 0,) = 21rf=9,0, =5§fa,l+r2—2rcos(0—¢) (11.31)
is also invariant under this group. In other words, if we apply a linear trans-
formation of the group which maps z onto z’, and €'°* and ¢ onto ¢! and
and €%, then

w(z; 8y, 0) = w(z’; 0, ;).

The quantity 2ww(z; 6,, 0,) is the arc length on the circle intercepted by the
chords drawn from the points ¢/’ and €'%2 through the point z. If @ is the
angle between these chords (Fig. 34), then

27Tw = 2@ —_ (02 - 01).

el% It is evident from the geometric interpretation
that w varies between 0 and 1. If @ is fixed,
then w is also constant. Hence, the level curves
of w are the arcs of circles through the points e'%!
y and ¢'%2, Onthearc 8, < 6 < 6, of the unit circle
£) the harmonic measure w has the value 1; on the
complementary arc 8, < § < 0, + 2= its value
is 0. At the point z = 0, w is the arc length of

(€', e'%2) divided by 2.
e The function w is a harmonic function of z,
Figure 34 since its integrand (11.30) is harmonic. It can

eib
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be considered as a generalized measure of the arc (e'!, €!%2), calculated with
respect to the point z, and w(z; 6,, 0,) is called the harmonic measure of the
arc (¢'%, ¢'%?) at the point z with respect to the unit disk.

The harmonic measure w(z, «) of an arc « of the circle |z| =1 at the point z
with respect to the unit disk G thus has the following properties:

1) w(z, &) is harmonic and bounded in the domain G.
2) w =1 at every interior point of the arc «; w = O at every interior point
of the complementary arc B.

It follows from the generalized maximum and minimum principles that the
function w(z, «) is uniquely determined by these two conditions (Section
11.13). For, if two functions satisfy conditions (1) and (2), then their difference
vanishes identically (cf. Section 11.11).

For an arbitrary domain G whose boundary is a Jordan curve (or is made
up of a finite number of Jordan arcs), the harmonic measure w(z, ) of a
boundary arc « is defined by conditions (1) and (2).

For the union U« of a finite or countably infinite number of boundary
arcs, the harmonic measure is defined as the sum w(z, Ua) = 3 w(z, «) (see
Exercise 20, p. 210).

If « is the whole boundary curve, then w(z, ) = 1. If « reduces to a
point, then w = 0. If z is fixed and « increases, then w(z, «) also increases.

11.19. Applications

We now introduce three results of Ernst Lindelof (1870-1946) which can be
easily proved by means of the harmonic measure.

Theorem 1. Let w = w(z), z = x + iy, be analytic in the open semi-circle
lz| <1,y > 0, and let w(z) satisfy the following conditions:

1) w(z) is bounded, |w(z)| < 1;

2) w(z2) is continuous on the diameter y =0, 0 < |x| < 1, and lim w(x) =0.

x—0
Then lim w(z) =0 (y = 0).
20

Proof. We form the harmonic measure w(z) of the segment y =0, |x| < r
with respect to the semi-circle C,: |z] <r, y > 0. We find (Exercise 19, p.
210) that
20,(2)
w(z) = — 1,

where 6,(2) is the angle which the diameter (y = 0, |x| £ r) of C, subtends at
the point z.

If w(z) = 0, the assertion of the theorem is obviously true. We therefore
assume that w(z) does not vanish identically. For every e in the interval

0 < € < 1 there exists an r > 0 so small that
wx) <€t if O<|x]2r(<])
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The function
u(z) = log [w(@)| + 20(2) log—i (11.32)

is harmonic in the domain C, except at the zeros of w(z). If we remove these
zeros, we obtain a subdomain C, whose boundary consists of the following
parts: (1) the semicircle |z| = r, y > 0; (2) the segments y = 0, 0 < |x| < r;
(3) the removed zeros; (4) the point z = 0.

At the boundary points (1) u is continuous; since w = 0 and |w| < 1, we
have here

u(z) < 0.
The same applies to the boundary points (2), at which log |w| < 2 log € and
w = 1, and to the boundary points (3), at which ¥ = —. Since u is bounded
in the domain C,: u < 2 log (1/e), it follows from the generalized maximum
principle that u(z) < 0 in the whole domain C,, so that log |w| £ 2w log ¢,
whence
[w(z)| £ °@,

Now let y be a circular arc (y > 0) which intersects the real axis at the points
X = +r at an angle of #/4. On this arc w = 4. In the segment S, bounded
by y and the chord y =0, |x| < r we have w = 4. Hence, |w(z)| £ ¢ for
z € Sy, and the theorem is proved.

11.20.
A generalization of Theorem 1 is the following.

Theorem 2. Let G be a simply connected domain bounded by a Jordan
curve I, and let f (2) be an analytic function in G which satisfies the follow-
ing conditions:
D |f@)| £ 1forz e G;
2) f(2) is continuous at all boundary points { of I'" with the exception
of a single boundary point {,;
3) as { — &, on I, the boundary values of f(2) tend to a well-defined
limit a = lim £ ({).
Then f(2) is continuous at z = {,, that is,
limf(z) =a
as the point z € G tends to the point {,.

In the proof we may assume that {, =0, a =0 and f(z) # 0. We go
over to the variable

w=w(z)=u+iv=f

where the path of integration zoz < G and the branch of the function log z
at the point z, are both fixed in some arbitrary way. Since G is simply con-

z dz
— + log zy = log z,
z0 z
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nected, w is a single-valued regular function in the domair G. Its inverse
z = e is likewise single-valued. The function w = w(z) therefore maps G
one-to-one conformally onto a domain D of the w-plane, whose boundary
y contains the point w = o (4 = —»).

Let r > 0, and let D, denote the intersection of the domain D and the
half-plane u < log r. The boundary of the domain D, will consist of certain
arcs of y (u < logr) and a (countable) set of disjoint open segments (8) of
the line u = log r, whose total length does not exceed 2.

O

]

u=logr
Figure 35

Theorem 2 will be proved if we can show that for every 0 < € < 1 there
exists a positive number r = r, such that

@l =f() <e
whenever w € D,..
First, by hypothesis, we can find an r, > 0 such that at every finite pointt
of the boundary arcs y of the domain Dy, = D,, we have

1f(e”)] < & (11.33)

Let w(w) denote the harmonic measure of the boundary segments (8) of the
domain D, with respect to the half-plane u < log ry:

ww) = 2 8w, 5), (11.34)
T®
where 8(w, 6) denotes the angle at which the segment § is seen from the point
w (Exercise 18, p. 210). We construct the function

Uw) = log | f(e™)] + 2(1 — w(®)) log%, (11.35)

T By hypothesis, one can first single out the sub-arc of y starting at w = o, on
which (11.33) holds. On the remaining part of y the function « has a finite minimum
uy. Hence, by taking log ro < 1o we can make sure that (11.33) holds at every finite
point of y belonging to the boundary of D,.
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which is harmonic in the domain D, obtained from D, by removing the zeros
of f. The boundary of D, consists of (1) the removed zeros; (2) the finite
points of y: —wo < u < logry; (3) the segments §; (4) the point w = o
(u = —»). At the points (1) U = —oo; at the points (2) log | f| = 2loge
(condition 11.33), so that U < 2wloge < 0; at the points (3) w =1,
U=1log|f| <0. At all finite boundary points of D, therefore, U < 0.
Moreover, U is bounded in D, (U < 2(1 — w(w)) log (1/¢) < 2log(1/e). It
then follows from the generalized maximum principle that U(w) < 0 in the
whole domain D, and therefore also in the domain D,. Thus

log | £(e”)] < 2(1 — w) log € = 2(w(w) — 1) 1og% (11.36)

holds throughout the domain D, If we restrict u to the half-plane
u < log r, — =, then, by (11.34),
ww) < %
and by (11.36) we have
|f@)]| =|f()| <e  whenever u <logry— .

Theorem 2 is thus proved.

11.21.
As a corollary of Theorem 2 we shall prove the following result.

Theorem 3. Let G be a simply connected domain whose boundary I' is a
Jordan curve. Let the function f (z) be analytic in G and satisfy the following
conditions:

D) | f(2)| = 1everywhere in G,
2) f(2) is continuous at all boundary points with the exception of the single
boundary point {;;
3) if I') and I, denote the boundary arcs determined by {, and a second
point ' € I, then the limits
a= tm fQ, b= lm QO

. rial—-lo 2sf-20o
exist.

Then a = b and
limf(z)=a

as z € G tends to the point {,.

The theorem will be proved by contradiction. We assume that a # b, and
we form the function

w(z) = (f (@) — a)(f(2) - b),
which is bounded in G (|w(z)] = (1 + |a|)(1 + |b])) and tends to the limit 0
as { e I'tends to {;,. By Theorem 2

limw(z) =0
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asz € Gtends to {,. Let e be such that 0 < e < |a — b|/2. Then there exists
an r > 0 such that
w(z)| < €* (11.37)

if ze G,, where G, denotes that component of the intersection of G and the
disk |z — Zo| < r which has {, as a boundary point (cf. Fig. 36).

Figure 36

By hypothesis, we can find a sufficiently small subarc y, of I';, terminating
at {,, such that

|f(z)—a|<|"—;ﬂ for zey,.

Furthermore, we can choose vy, so small that it belongs to the boundary of G,.
Similarly, we choose a subarc y, of I', which belongs to the boundary of G,
and which is such that

|f(z)—b|<|a;b| for zewy,

We join an arbitrary point {; of the arc y, to a point {, of the arc y, by means
of a continuous curve / which lies entirely in the domain G,.}
Since

17 @) —a <228 <1 p) - )

t The domain G, is a Jordan domain; any two points of a Jordan domain can be
joined by means of a continuous curve which lies entirely in the domain (Exercises
5-6, p. 340) except for its end-points.
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and

1F@)-b <920

<|f(&) —dl,

and since f(z) — a and f(z) — b are continuous in G, there exists at least
one point z, on the arc / at which

7o —al = £ bl 2 452,

Then
w(zo)| = |(f (z0) — a)(f (z0) — B)| = ('“ . ') S e

On the other hand, in view of (11.37), z, € G, implies that {w(zy)| < €2. This
contradiction shows that @ = 5. We now conclude from Theorem 2 that
lim f(z) = aas z - {3, z € G. This completes the proof of Theorem 3.

§5. THE DIRICHLET PROBLEM

11.22.

Let U(8) be a bounded continuous, or at least piecewise continuous,} function
defined in the interval 0 < 8 < 27: |U(6)] £ M. We wish to find a bounded
function u(z), harmonic in the disk |z| < 1, which takes the value U(f,) at
the point ¢, = '%° for every point of continuity 8, of U(6), that is, u(z) should
tend to the limit U(f,) as z tends to {, from within the disk |z| < 1. This
problem is called the Dirichlet problem.

It follows from the generalized maximum and minimum principles
(Section 11.13) that if such a function exists, it is uniquely determined.

We consider first the special case where U(f) =1 for 0, < 8 < 8, and
U(6) = O elsewhere. The unique bounded harmonic function which takes
these boundary values is the harmonic measure of the arc 8, < 6 < 6,. We
have shown that it possesses the integral representation (11.31). On the other
hand, we know that if u(e'®) is replaced in the Poisson integral (11.26) by the
given function U(f) which takes the values 1 and 0, the Poisson integral
reduces to the integral (11.31). Thus the solution of the Dirichlet problem
for the boundary values 1, 0 can be obtained directly from Poisson’s formula.
We may therefore expect that in the general case the solution can also be
found in a similar way.

t A function £ (x) of a real variable x is said to be piecewise continuous in the interval
a £ x = b if the interval (a, b) can be decomposed into a finite number of sub-
intervals (x,-1,x,) w =1,2,...,n;x0 = a,x, = b) in such a way that f(x) is
continuous in the intervals x,-; < x < x,, and the limits lim f(x) and

. X"Xy—l"]'o
lim fx)@=12,...,n) exist.
x—>xp—0
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To solve the Dirichlet problem in the general case we therefore consider
the Poisson integral

1—1r2

1 27
u@) = 2 fo ve 14+ r2—2rcos(f — ¢) 0 (11.38)

and show that it represents a harmonic function in the unit circle which has
the boundary values U(6).

The fact that u(z) is harmonic in the unit disk follows from the fact that
the kernel

1—-r2

i6 —_
K(e 1z)~1+r2—2rC05(9—¢)

is a harmonic function of z.
We shall show that if 8, is any point of continuity of U(6) and if {, = e'%,
then
lim u(z) = U(0,).

z—Lo

It follows from (11.31) that (11.38) may be written as
27
u@) = [," U(6) do(z; 0, 6).
If we set
27 2n
Uy = UGy [, delz;0,0) = [7 U(8y) dulz; 0, 6),

we obtain
2m
u(z) — U(Bp) = f o [U©) — U(6))] du(z; 0, 6). (11.39)
Since U is continuous at the point 8,, there exists for every € > 0 an interval

0, £ 6 < 0, on which
|U@) — U@By)| < e. (11.40)

We divide the interval of integration into the parts (0,, 8,) and (0,, 8, + 2=).
Outside the interval (0, 27) we define U(0) to be periodic with period 27. On
the interval (8,, 6,) (11.40) holds, so that

62 02
Uo=o, [U6) — U(60)] dw) <e fo. dw < e.
For the second integral we obtain the estimate

' f::m [U@®) — U] dw' < 2Mw(z; 05, 6, + 27).

If z tends to a point {, which does not lie on the arc (8,, 8, + 27), then
w(z; 0,, 6, + 27) tends to zero. Thus there exists a p, > 0 such that

w(z;0,,0, +2n)<e if |z—{l<p. and |z] <1,
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which implies that
uz) — U@ <e@M +1) - if |z—ll<p, and |z <1

Hence,
linz u(z) = U(G,).
Z—60

We have thus proved the following theorem.

If UO) is a piecewise continuous bounded function in the interval
0 £ 6 < 2m, then the Poisson integral (11.38) defines a function u(z) which
is harmonic in |z| < 1 and which has the boundary value u(6) at every point.
of continuity e® of U on the unit circle. The function u(z) is uniquely
determined. :

If, instead of the unit disk, we consider the disk |z| < p, then the solution
of the Dirichlet problem is given by Poisson’s formula (11.25), if we replace
u(p €'%) by the prescribed piecewise continuous function U(#).

§6. HARNACK’S PRINCIPLE

11.23. Lemma ,
For the Poisson kernel K(p e'%, z) we have the following estimate:

u<K ewz <_p_t_r

This estimate and Poisson’s formula (11.25) yield the following bound for
non-negative harmonic functions:

27
Prr 1 (™ pe®yds — ;’%:uw).

<
u(z)=p——r217 0

We may also obtain a corresponding Jower bound for u(z). If we combine the
upper and lower bounds we obtain

ﬁ - :u(O) < u@) < ;’—J_’——: 1(0). (11.41)

11.24. Harnack’s Principle
We assume now that the functions

ul(z)9 uZ(z)’ L u,,(z), ...
are harmonic in the disk |z]| £ p and that

yySu, 2...5u, =
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holds for every z in [z] £ p. Then the limit
lim u,(z) = u(2) (11.42)

exists for every z in |z| £ p.

First we show that if this limit is infinite for some point z of the disk
|z| < p then it is infinite for every point of the disk, and that in fact 1,(z) —
uniformly in every disk |z| £ r; < p. To show this, we apply the bound (11. 41)
to the funetion u, — u; = O:

P (w(® — u(®) £ @) — @)

“ A

éyp i :(u,,(O) —u(0)) (z=re?). (11.43)

Let us assume that u,(z,) — © as n — « for some z, in |z| < p. It follows
from (11.43) that
f® - (0) 2 L (o) - o).

This implies that for any large positive M there exists an n, such that #,(0) > M
whenever n 2 n,. From (11.43) it follows that

u,(2) 2 mm uy(2) + l(un(O) — u,(0))

for every point z of the dlsk lz] . Thus our assertion is established.

On the other hand, if the limit (11.42) is finite at a single point, then the
above argument shows that it is finite everywhere in the disk |z| < p. In this
case (11.42) holds uniformly in every disk |z| < r, < p. To verify this asser-
tion we apply the right-hand inequality of (11.41) to the function
Unp(2) — u(z) (p = 1, 2, .. .) and obtain the inequality

p+|Zl

0 = un+D<z) - un(z) = Izl

[un+ p(O) ,,(0)]

< 20 [y0,0) — 0)]
p—n
which is valid for |z| £ r,. Since the sequence u, converges at z = 0, this
expression is less than e for p = 1, 2, . . . if nis sufficiently large. The uniform
convergence now follows from the Cauchy criterion.
The limit function u(z) is harmonic. To show this we apply Poisson’s
formula for the disk |z| £ r, to the functions u,(z):

2m
u,(2) = il; f . u,(r, e)K(r, ', z) db.
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Since the sequence u,(z) converges uniformly, Poisson’s formula also holds
for the function u(z). Therefore u(z) is harmonic.
The result we have just proved can be generalized to an arbitrary domain
G. Every compact subset of G can becovered by a finite number of disks lying
entirely in G. Since the above result holds for every disk, it is also valid for G.
- We have thus obtained Harnack’s theorem:

If the functions u,(z), ux(2), . . ., u,(2), . . . are harmonic in a domain G, and
if at every point of G

A
A

U é U Uy,

A

then
lim u,(2)

n—»c0

is either infinite at every point of the domain, or finite at every point of the
domain. In either case {u,(z)} converges uniformly on every compact subset
of G. In the second case u(z) = lim u,(2) is harmonic in G.

n—>wn

We make a final remark. If the real parts u,(z) of the analytic functions
wi(2) = u,(2) + iv,(2) (n=1,2,...) converge uniformly on every compact
subset of a simply connected domain G, and if the functions w,(z) themselves
converge at some point z, € G, then the sequence w,(z) converges to a finite
limit uniformly on every compact subset of G (cf. Exercise 24, p. 211).

EXERCISES ON CHAPTER 11

1. Let the functions M(x, y) and N(x, y) be continuously differentiable in a
domain G. Prove Stokes’s formula

oy (M dx + N dy) = ”4 N, — M,) dx dy,

where 4 is a triangle lying in G and 24 is its positively oriented boundary.
Hint. Apply Goursat’s method (Section 11.7) to the difference
J(d) = jM (M dx + Ndy) — ”4 (N, — M,) dx dy.

2. Prove Cauchy’s theorem starting from the theorem proved in Sections
11.5-11.7 on the integrability of real differentials.
Hint. Split | w dz into real and imaginary parts.

3. Find an analytic function in the disk |z — 1| < 1 whose real part is
log V'x2 + y2.

4. Prove that the angle subtended at a point z of the half-plane Im z > 0
by a given segment of the real axis is a harmonic function of z.

5. Suppose that the equations x = x(¢, ), y = y(§, n) define a conformal
mapping of a domain in the (x, y)-plane onto a domain of the (¢, n)-plane
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which‘transforms the harmonic function u(x, y) of x and y into a function
u(x(€, m), y(€, 7)) = @€, n) of ¢ and 5. By computing the Laplacian 47,
show that # is a harmonic function of £ and 7.

6. If u(z) and v(z) are conjugate harmonic functions, prove that the product
uv is harmonic.

7. Find a harmonic function u(x, y) for which the product xu is harmonic.
Solution. u = ay + b, where a and b are constants.

8. Let u(x, y) = u(z), z = x + iy, be harmonic in the domain ¢. Find a
harmonic function u,(x, y) for which uu, is harmonic.

Hint. If u is a constant, then u, is an arbitrary harmonic function. If u is
not a constant, then 2 + u2 > 0 in some subdomain of G, and the analytic
function w(z) = u(z) + i v(z), where v is the harmonic conjugate of u, is
invertible. Let the inverse function be z = z(w) = x(u, v) + i y(u, v), where
x and y are harmonic functions of u and v. Consequently the function
u,(u, v) = u,(x(u, v), y(u, v)) is also harmonic. By the previous exercise, uu,
is harmonic only if #,(x, y) = av(x, y) + b. This is the general solution of the
problem.

9. Let the function u(z) (z = r e'¥) be harmonic in the disk |z| < p. By means
of Exercise 38, Chapter 1, prove that

d 2n 6
E’fo u(r e'*)dé =0,
and derive Gauss’s mean-value theorem from this.

10. Carry out in detail the proof of the maximum principle for harmonic
functions.

11. Prove the generalized maximum principle (Section 11.13) in the case
when the number of exceptional points ¢, is countably infinite.

Hint. Instead of the finite sum in (11.15), form the infinite series

"Z“"gl 7

where A > 0, and the coefficients A, are chosen so that the series converges.

12. If a Jordan curve v is a level curve of a (non-constant) harmonic function,
then the function cannot be harmonic everywhere in the domain bounded
by y.

13. Prove that the maximum principle for analytic functions is a consequence
of the maximum principle for harmonic functions.

Hint. If w(z) is regular in the domain G, then log |w(z)| is harmonic in the
domain obtained from G by removing the zeros of w(z); at these points
lim sup log |w(z)| = —<.
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14. What forms do Poisson’s formula and Schwarz’s formula take when the
center z, of the circle is not the origin?
15. Prove the following assertion: If the real function u(x, y) is continuous in
the domain G, and the mean-value identity

2n

uz) = 517—7 fo u(z + p ey db : (@)

holds for each z € G whenever p > 0 i; sufficiently small, then u is harmonic.

Hint. Choose p > 0 so small that (a) holds for z = a, and consider the
function ‘

_ 1 16 p> —1? _ 16
U(z)—z—rfo ula+pe )p2+r2—2prcos(0—¢»)d0 (z=a+re"

in the disk |z — a| £ p. This function is harmonic in the disk |z — a| < p,
and, hence, it satisfies Gauss’s mean-value theorem. The same applies to the
difference U — u. This difference satisfies therefore the maximum and
minimum principles. Since U = u for |z — a| = p, we therefore have U = u.
Hence, u is harmeonic at the point z = a.

16. Let the function w(z) = u + iv be analytic in the half-plane Imz = 0
(including the point «). Prove that
; 1 [+ dt ,
W(Z) = ‘771 J—m u(t) ?——2' + lC,

where C is a real constant.

17. The harmonic measure of a circular arc « at the point z of the disk can
be determined in the following way. At each end-point of the arc o draw
the orthogonal circle which passes through the point z. Show that if A is
the angle formed at z by these two circles and lying opposite the arc «, then
(1/2m)A is the harmonic measure of .

18. Show that the harmonic measure of the segment a < x < b of the real
axis with respect to the half-plane Im z > 0 at the point z is 6(z)/w, where
0(2) is the angle at z subtended by the segment ab.

19. Find the harmonic measure of the diameter y = 0 with respect to the
semicircle |z| < r, y > 0.

Hint. By the previous exercise, 26(z)/= is a harmonic function in the half-
plane y > 0 which takes the value 2 on the segment —r < z < r, and is zero
on the remainder of the real axis. Thus (20(z)/7) — 1 is harmonic in the
half-plane y > 0, is 1 on the segment —r < z < r, and —1 on the rest of the
real axis. This is the harmonic measure we are looking for.

20. The union U « of disjoint boundary segments «.of a half-plane G has
the harmonic measure
w(z, Vo)=Y w(z a)
()
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(cf. Section 11.18). Prove that w(z, U «) is harmonic in G, satisfies the condi-
tion 0 = w(z, V) £ 1, and tends to 1 as z tends to an interior point of one
of the segments «.

21. Let the function w(z) be analytic in the annulus r, < |z| S r,. Let
M(r) = max |w(z)| on |z| = r. Then the following inequality (Hadamard’s
three-circle theorem) holds

logr, — logr
log M(r) <  Togr, —logr, log M(r,)
logr —logr,

logr, — logr, log M(r) (i <r<r). (a)

Hint. Suppose, for instance, that M(r,) < M(r,). Omitting those points of

the open annulus r, < |z| < r, at which |[w(z)] £ M(r,), we have in the
domain that remains the inequality

M(ry) I
lo log —=
S0 R 2
M(r 2) rp o
lo log =
8y B

This follows from the maximum principle for harmonic functions, and yields
(a). Inequality (a) remains valid if r, and r, are replaced by arbitrary values
ry and r; suchthat r, < rj <r <r, £r,  This means that log M(r) is a
convex function of logr, i.e., the segment joining two arbitrary points of
the graph (over the interval r;, < r < r,) lies above the graph.

22. Let 6, be a point of discontinuity of the (piecewise continuous) boundary
value function U(6) in the Poisson integral (cf. Section 11.22). Show that if
z tends to the point {, = €'% along a path making an angle A= with the positive
tangent to the unit circle at {,, then the function u(z) defined by the Poisson
integral tends to the limit AU(6, + 0) + (1 — HU(@, — 0).

23. What is the solution of the Dirichlet problem for the disk |z — zo] < p?

24. Suppose that the analytic functions w,(z) = u,(z) + i v,(z) are regular ina
simply connected domain G, and that the sequence u,(z) converges uniformly
on every compact subset of G, while the sequence w,(z) converges at some
point z5 € G. Show that the sequence w,(z) converges uniformly on every
compact subset of G.

Hint. Apply Schwarz’s formula (Section 11.16).

25. Assume that (1) the functions w,(z) (n = 1, 2, . . .) are single-valued and
analytic in a domain G; (2) [w,(2)] £ ... S |wu(2)] £ ... at every point
z € G; (3) For some point z, € G the limit lim w,(z,) exists and is finite.

n—> o
Prove that lim w,(2) exists at every point of G.

n—>0

Hint. Apply Harnack’s principle and the preceding exercise to the functions
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log |w,(2)| in the domain obtained from G by the removal of the zeros of
wy(2).

26. A real function u(z) defined in the domain G is said to be subharmonic if
for every z = a € G and every sufficiently small » > 0, the inequality

u@) < 2i1r fzn u(a + r e'%) dp

is satisfied. Show that a subharmonic function satisfies the maximum principle.

27. Let the boundary of the domain G be the union of two Jordan arcs o
and B which have no common interior points. Let u(z) be harmonic and
bounded in G. Prove that if lim sup u < m, at the interior points of « and
lim sup u < m, at the interior points of §, then

uz) = mw(2) + mywy(2),
everywhere in G, where w,(z) is the harmonic measure of « and w,(z) is the

harmonic measure of 8. When does equality hold ?

28. Prove that if w(z) is regular and bounded in the domain G of the preceding
exercise, and that if lim sup |w| £ M, at the interior points of «, and
lim sup |w| £ M, at the interior points of 8, then for every z € G,

W) = My @Mg,
This is the so-called two-constant theorem.

29. Prove the Phragmen-Lindeldf theorem:

Let w(z) be regular in the half-plane Imz > 0. Further let (1)
lim sup [w| < 1 at finite points of the real axis, (2) lim inf (log M(r))/r < 0
as r — o, where M(r) = sup |w(z)| on the upper semicircle |z| =r, y > 0.
Show that [w(z)| = 1 in the whole half-plane.

Hint. Apply the two-constant theorem (Exercise 28) in the semicircle [z| < r,
y>0.



CHAPTER 12

ANALYTIC CONTINUATION

§1. THE PRINCIPLE OF ANALYTIC CONTINUATION
12.1. Analytic Continuation of a Function

Let the function w,(2) be regular in a domain G,, and let the function w,(2)
be regular in a domain G, such that the intersection G, N G, is non-empty
and connected. Further, let us suppose that w,(z) = w,(z) on an infinite set
of points of G, N G, having a limit point in G, N G,. Then w,(z) = wy(2)
in the whole domain G, N G, (cf. Section 9.9). We now define a function
w(z) as follows:

wi(2) for z € G,

wy(2) for z € G,

w(z) = {

In the domain G; N G, we have w = w, = w,. The function w(z) so defined
is regular in the domain G, U G,. In view of Section 9.9, w(z) is the only
function regular in G, U G, which is equal to w,(z) in G,. The function w(z)
is called the analytic continuation of the function w,(z) into the domain
G, U G,

If the function w,(2) can be continued analytically into the domain G, U G,,
then it is possible in only one way: the analytic continuation therefore is
unique.

12.2. Analytic Continuation along a Path

We have seen in Section 9.4 that an analytic function which is regular in a
domain G can be expanded into a convergent power series in the neighborhood
of any point of G. Conversely, any power series defines an analytic function
in the interior of its circle of convergence.

For example, the series

o z"
iy
converges in the disk |z| < 1 and defines in this disk the analytic function
log (1 + z). It can be analytically continued to the domain z # —1, . The
analytic continuation is defined by the function log (1 + z).

We shall now start with a given analytic function w(z, K) defined in a
213
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disk K; we shall call w(z, K) an element of a general analytic function or a
Sfunction-element.

In the theory of analytic continuation we seek to construct a function
which is analytic in a larger domain and which coincides with the given
function in the original domain.

Suppose that K, and K, are intersecting disks. Let a function-element
w(z, K;) be given in the disk K;, and let w(z, K,) be its analytic continuation
to the disk K,. These function-elements are said to be direct analytic continua-
tions. We consider a chain of n disks, X, K, ..., K,, where any two con-
secutive disks have a non-empty intersection. We assume that in each disk
K, w=1,2,...,n) there is a corresponding function-element w(z, K,)
defined and that w(z, K,_;) and w(z, K,) are direct analytic continuations.
Then the function-element w(z, K,) is said to be the analytic continuation of
w(z, K,) along this chain, and conversely.

If the disks K, and K, have a non-empty intersection, the function-element
w(z, K;) can be continued back to the initial disk K; along the chain K|,
K,, ..., K, K,. In general the function-element obtained in this way differs
from the function-element w(z, K)).

If the disks K, K, and K; have a non-empty intersection K; N K, N Kj,
and if the function-element w(z, K,) is continued along this chain to the disk
K, then the function-element w(z, K3) so obtained will be a direct analytic
continuation of w(z, K,) as well. In fact, this function-element will coincide
with w(z, K)) in the domain K; N K, N K.

Figure 37

In the chain K|, K, .. ., K, we choose the points zy, z;, . . ., Z, in such
awaythatzye K,,z, e K, N K,,, w=1,2,...,n—1)and z, € K, (Fig.
37). We join these points by a continuous arc y such that the arc z,_,z, lies
entirely in the disk K, (v = 1, ..., n). Conversely, given an arbitrary con-
tinuous arc y, we can always construct a chain of disks covering .
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Let K|, K3, .. ., K,, be another chain covering the arc y. Further, let
Z1, Z3s «+- Zm_1» Zm = Z, be points of y chosen in such a way that
z,eK, N K, (v=1,2,...,m—1). We assume that the function-element
w(z, K,) can be continued along this chain too, and assert that we obtain the
same value for the function at the point z,, that we obtained at the point
z, = z,, by continuation along the first chain.

Let us suppose that z,, 2, z, (in this order) are the first points encountered
when the arc vy is described, starting from z,. The point z, then belongs to the
disks K,, K, and K,; therefore, the function-elements w(z, K,) and w(z, K;)
are direct analytic continuations. On the other hand, the point z; belongs to
the disks K|, K; and K,, which implies that w(z, K,) and w(z, K;) are direct
analytic continuations. Proceeding in this way, we see that w(z, K,) and
w(z, K,,) are also direct analytic continuations. Therefore they have the
same value at the point z,. This value is thus uniquely determined by the arc y.
We say that the function-element w(z, K;) has been continued analytically
along the arc y.

We now start with a given function-element w(z, K;) and continue it
analytically in all possible ways. All elements obtained in this way constitute
a well-defined function in the following sense.

If w(z, K') and w(z, K") are any two such function-elements, then there
exists a path y along which the analytic continuation of w(z, K') leads to the
function-element w(z, K”). The totality of these function-elements is called
a complete analytic function. In general the analytic function defined in this
way is not single-valued. In fact, if a function-element is continued along a
closed path, the final function-element need not be the same as the initial
one. Examples are provided by the functions log (1 + z) and V/z.

Consequently the single-valued character of an analytic function “in the
large,” which we assumed in the definition in Section 1.14, is no longer
required by this generalization of an analytic function (as an aggregate of
function-elements).

It may happen that a function-element w(z, K;) cannot be continued
analytically at all beyond its disk of definition. In this case we say that the
circumference of K is the natural boundary of the function. Such an example
is given in Exercise 3, p. 223.

If a function w(z) is regular in a domain G, and if K is a disk in G, then
w(z) restricted to the disk K defines a function-element w(z, K). This function-
element can be continued freely throughout the domain G without restriction
and every function-element obtained by such continuation will coincide in its
disk of definition with the function w(z).

12.3. Singular Points

Suppose that the disk K, is contained in the disk K: |z — a] < p. If the
function-element w(z, K) can be continued analytically everywhere in the
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disk K except to the point a, then a is said to be a singular point of the function.
If y is a closed curve in K which winds around the point @ once, and if after
analytic continuation along y the function w returns to its initial value, then
the function (or at least this branch of it) is single-valued in K. In this cdse
a is a pole or an essential singularity of the function. On the other hand, if w
does not return to its initial value after a single circuit around a, .one of the
following two situations must occur.

1) After encircling a a finite number of times, w returns to its initial
value. In this case we say that a is an algebraic singularity.

2) w never returns to its initial value no matter how many times a is
encircled. In this case we say that a is a logarithmic singularity.

§2. THE MONODROMY THEOREM

12.4.

We start with an arbitrary function-element w(z, K;;) and assume that it can
be continued analytically along every possible path lying in a simply connected
domain G containing K,,. We assert that the resulting function is single-valued.

We first prove our assertion for the simple case in which the given domain
G is convex. It is sufficient to show that there exists a single-valued regular
function w(z) in G which contains the function-element w(z, Kj).

Let z, be the center of K,, We define a single-valued function w(z) in G by
setting up a correspondence between every point z, of this circle and the well-
defined value w(z,) which the analytic continuation of w(z, K,) along the
straight-line segment z,z, assumes at the point z;. We wish to show that the
single-valued function w(z) so defined is analytic.

The analytic continuation of w(z, K;) along the segment zyz, requires a
chain of disks covering this segment. If the neighborhood T of z, is chosen
in such a way that all segments leading from z, to a point of T belong entirely
to the chain we started with, then we can use this chain to continue w(z, K,)
to any point of 7. At every point of 7, therefore, w(z) is defined by the same
function-element. It follows that the function w(z) is analytic in the domain T.
Since z, is an arbitrary point of the domain G, w(z) is analytic everywhere in G.

In view of the remarks at the end of Section 12.2, the analytic continuation
of w(z, K,) coincides everywhere with the function w(z). Thus a function
obtained by arbitrary analytic continuation of an initial function-element
w(z, K,) is single-valued in the convex domain G.

Let now G be an arbitrary simply connected domain. Suppose that the
function-element w(z, K,) is continued from the point z, to the point z, along
a pathy in G. If the path y is subjected to an elementary deformation (cf.
Section 8.16), then, as we have just seen, the analytic continuation of w(z, K,)
to the point z, remains unaltered. Therefore, if we analytically continue the
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function-element w(z, K) along two homotopic paths y and 9" from z, to z,,
the analytic continuations will have the same value at the point z,.

Since the domain G is simply connected, any two paths joining z, and z,
are homotopic. The function obtained from the function-element w(z, K;)
by analytic continuation is therefore single-valued. We have thus proved the
monodromy theorem.

If a function-element can be continued analytically along every path in a
simply connected domain, then the resulting function is single-valued.

v
w

12.5. Meromorphic Function-Elements

In addition to regular function-elements we may also consider meromorphic
function-elements in a disk K. By this we mean function-elements which are
either regular in X or have a finite number of poles in XK. Everything said up
to now can be applied to meromorphic function-elements. The monodromy
theorem also remains valid: if a function can be meromorphically continued
along every path in a simply connected domain, then it is single-valued. The
function is then meromorphic in the domain.

A neighborhood of the point at infinity can also be treated, for this may
be reduced to the finite case by an inversion.

§3. THE INVERSE OF A RATIONAL FUNCTION

12.6 Construction of the Inverse Function

As an application of the monodromy theorem we shall investigate the inverse
z = z(w) of a rational function w = w(z) as a complete analytic function.

Suppose the rational function w = w(z2) is of order n (cf. Chapter 2 and
Chapter 9, Section 7). The mapping z — w maps the extended z-plane onto
a covering surface R,, of the extended w-plane composed of n complete sheets.
Its branch-points correspond to the finite points z where the derivative
w'(z) = 0 and to the multiple poles of w(z). Letw = w, (v = 1, .. ., q) denote
the distinct w-points over which the branch-points are situated. We join the
points wy, . . ., w,, w, by a simple closed polygon y,,, which divides the extended
w-plane into two simply connected polygonal regions P,, and P}.

Let us choose z = z! in such a way that w! = w(z!) # o is in the interior
of P,. Then, by Section 9.24, there exists a well-defined regular function-
element z = z!(w) of the inverse function of w = w(z) with the property that
zl = z!(w!). The function-element z!(w) can be continued analytically or
meromorphically along every path in P,, and by the monodromy theorem
the branch of the inverse function so obtained is single-valued. Since w(z)
is single-valued, this branch z = z(w) maps the interior of P,, one-to-one
conformally onto a simply connected domain P} of the z-plane. The mapping
is also conformal on the boundary y,, except at the points w,, . . ., w,. These
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exceptional points are branch points of z(w). In the neighborhood of a branch
point w,, z(w) has an algebraic function-element which can be expanded into
powers of (W — w,)!/" or (in case w, = =) into powers of (1/w)!/™, where
r,— 1 (1 £ r, S n) denotes the order of the branch point w, (cf. Section
9.30).

The function z,(w) can be analytically continued into the domain P}
across each side w,w,,, (v = 1,...,¢; w,y; = w;) of the polygonal domain
P,. The branches of the inverse function so obtained (which may partially
coincide) map P¥ conformally onto mutually disjoint subdomains of the
z-plane. If these branches are again continued analytically across v, into
the domain P,,, and if the process is repeated again, then after a finite number
of repetitions, we obtain the complete analytic function of the inverse function
z(w). This function is single-valued on a connected Riemann surface R,
composed of n “half-sheets” P,, and n half-sheets P}. The image of R,, is
the entire schlicht (i.e., one-sheeted) z-plane which is completely and simply
covered by the polygonal regions P!, P2, ..., P and P}!, ..., P}" which are
the images of P, and P},

12.7. The Graph or Line-Complex of the Surface R,,

An overall view of the structure of the covering surface R,, can be obtained
by the method described in Section 6.14. We take a point w in the region
P,, and a point w* in PJ; let us denote their images in the regions P, and
Pfbyzl, ... z"and z*!, ..., z*" respectively. In our diagram the points
z!, ..., z" will be represented by small circles, the points z'*, ..., z"™* by
crosses. If, as in Section 6.14, we now join these points by means of segments
across the separating sides of the respective polygons P, P}*, we obtain a
“graph” (or line-complex), which gives a good picture of the structure of the
covering surface R,,. The graph divides the plane into a number of “‘elementary
polygons” which correspond to the branch points of the surface in such a
way that a branch point of order.r — 1 corresponds to an elementary polygon
with 2r sides.

As an example we consider the Riemann surface of a cubic polynomial.
These surfaces fall into two classes which are represented by the graphs of
Fig. 38. Here the elementary polygons containing no branch points (r = 1)
are represented by double segments (cf. Exercise 7, p. 224).
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Figure 38
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§4. HARMONIC CONTINUATION. THE REFLECTION PRINCIPLE

12.8. Harmonic Continuation

We now consider the continuation of harmonic functions which corresponds
to analytic continuation. First we prove the following theorem.

If the function u(z) is harmonic in the domain G and if u(z) = 0 in a sub-

domain G* of G, then u(z) = 0 in the whole domain G.

Suppose first that G is a disk. If v(z) is the harmonic conjugate of u(z),
then the function £ (z) = u(z) + iv(z) is analytic in G. In view of the Cauchy-
Riemann equations, it follows from the hypothesis that v(z) is identically
equal to a real constant C in the domain G*, and therefore f(z) = iC. It
follows. from the principle of analytic continuation that f(z) = iC in the
whole domain G, and hence u(z) = 0. For arbitrary domains the theorem
may now be proved by using a chain of disks.

Now let G, and G, be two domains with a common subdomain G, N G,.
We assume that the function u,(z) is harmonic in G, and that the function
u,(z) is harmonic in G,, and also that u,(z) = u,(z) in the domain G, N G,.
These conditions determine the function wu,(z) uniquely. Indeed, if v,(2) is
another harmonic function satisfying the same conditions, then v, — u, = 0
in Gy N G,. In view of the theorem just proved, this implies that v, = u,
in the domain G,.

The function u, 1s called the harmonic continuation of the function u, into
the domain G,.

12.9. The Reflection Principle for Harmonic Functions
For harmonic continuation we prove the Schwarz reflection principle.

Let G be a domain in the half-plane Im z > O whose boundary contains a
segment | of the real axis as a free arc (that is, every interior point of | has
a circular neighborhood whose upper half lies entirely in G).
Suppose that the function u(x, y) = u(z), z = x + iy is harmonic in G and
tends to zero as z tends to an arbitrary point of the segment I. Then u(z)
can be continued harmonically into the domain G which is symmetric to G
with respect to the real axis. The harmonic continuation is defined by the
Sfunction U(z) which is u(z) in the domain G, O on the segmentl and u(?) in
the domain G.
We must prove that U(z) is harmonic in all of the domain G U G U I
By definition, U is harmonic in the domain G. In the domain G we have, by
the definition of U, that
U(x9 y) = "'u(x’ _y)
Using for a moment the notation

x=£’ y=-,

U(x, )’) = _u(f, 7]):

we have
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where (¢, n) belongs to G if (x, y) is in G. Differentiation yields
PU__Pu PU__ o

x? o

%u 0%
40 = (3 + g3) =0

whence

Therefore U is harmonic in G.

To show that U is also harmonic on the segment /, we consider a disk K:
|z — a] < p whose center lies on /, and whose radius p is so small that the
disk belongs entirely to G U G U I. We use the Poisson integral to define
the function

_ iy _ 1 2 10 pt —r?
Ve = Via+ret) =5 [ Uarpet) o B,
which is harmonic in the whole disk K.

To prove that U(z) is harmonic on the real axis, we will show that
U(z) = V(z) in K. Suppose first that z is in the upper half of K. On the
boundary arcIm z > 0, |z — a| = p, the function V(z) takes the boundary
values U(a + p €'%). If z lies on the real axis, the contributions to the integral
from the upper and lower semi-circles cancel; hence, ¥ = 0 = U on that part
of I which lies in K. By the maximum and minimum principles, V' (z) = U(z)
in the upper half of K. By the same argument V(z) = U(z) in the lower half
of K. Thus V = U in the whole disk K. Since ¥V is harmonic in K, so is U;
consequently, U is harmonic on the segment /. The proof of the theorem is
now complete.

12.10. The Reflection Principle for Analytic Functions

We shall now prove the analogous theorem for analytic functions.
Suppose that the function w(z) = u(z) + i v(2) is regular in a domain G for
which the conditions of Section 12.9 are fulfilled, and that v(z2) tends to the
limit zero as z tends to any point of the segment l. Under these assumptions
w(z) may be continued analytically across linto the domain G. The function
so obtained assumes conjugate complex values at points that are symmetric
with respect to the segment .

Proof. In the domain G we define the function

f(2) = w@) = ulx, —y) — iv(x, -y), ,
which is an analytic function of z. Indeed, if we substitute x = £, y = —,
we have

Ou du o-v) o
"% ox %
ou  Ou a-v) v

E A T
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By hypothesis, the Cauchy-Riemann equations are valid in G; by the above
identities they are also satisfied in G, so that f(z) is analytic in G.

We now assert that £ (z) is the analytic continuation of w(z) into the domain
G. Let K be a disk whose center lies on / and which belongs to the domain
G Ul U G. In view of Section 12.9, the function v(z) = Im w(z) can be
continued harmonically into the whole disk XK. The harmonic continuation
is given by the function ¥V (z), which is equal to v(z) for z € G N K, equal to
Oforz €l N K, and equal to —v(Z)forz € G N K. The function V(z) defines
in K an analytic function

F@2) = U() + iV(2),

which is unique up to a real additive constant. We choose this constant so
that F(z,) = w(z,) at some arbitrarily fixed point z; € K N G. Then
F(z) = w(z) in the whole domain G N K. We show that F(z) = f(2) in
G N K. Infact, in this domain we have

Im F(z) = V(z) = —o(z) = Im £ (2),

which implies that the functions F(z) and f(z) coincide in G N K up to a
real additive constant C. To show that this constant is zero, we let z tend to
an arbitrary point {, € I N K from within the domain G N K. Then

Re f(2) = u(Z) = Re F(2) - Re F({),

because F(z), as an analytic function, is continuous in K. Hence, C = 0 and
f(@) = F(2) in G n K. Therefore f(z) is the analytic continuation of w(z)
into the domain G.

12.11. Generalization of the Reflection Principle

If we apply the properties of bilinear transformations, together with the
reflection principle of the preceding section, we obtain the following
generalization.

Let G be a domain whose boundary contains an arc I' of the circle C as a
free arc and which lies in the interior of C. Let G* be the domain obtained
from G by reflection in the circle C. Further let w(z) be a function which is
analytic in G and which satisfies the following condition: If z tends to any
point {y € I, then the image w = w(z) of z tends to a circular arc K. Under
these assumptions, w(z) may be continued analytically across the arc I
The analytic continuation is effected by a function f (z) which assumes at
the point z*—the reflection of z in I'—the value w* which is the reflection
of wz)in K.

We consider finally the more general case in which the boundary of G contains
a regular analytic arc. An arc y is said to be analytic if it is defined by a
parametric equation

A

z=12(7), T ST=Ty (12.1)
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T2
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Figure 39

and if, in the neighborhood of any interior point 7, of the interval (7, 75),
the function z(7) can be expanded into a power series

zZ(r)=co+ et —7g) + -+ (12.2)
which converges in some interval
|7 — 7| < 8. (12.3)

If ¢, = z'(7y) # O, the curve is said to be regular at the point z, = z(7g). We
shall now prove the following generalization of the reflection principle.

Let the function f (2) be regular in a domain G whose boundary contains a
regular analytic arc y as a free arc: z = z(7) (1, £ 7 = 7). If Imf(z)
tends to zero as z tends to an arbitrary interior point of the arc v, then
f(2) can be analytically continued across the arc . ‘

Proof. If 7 is allowed to assume complex values, the series (12.2) converges
in the disk (12.3) and defines an analytic function in this disk. This function
maps a disk C, with center 7, one-to-one conformally onto a certain neighbor-
hood C, of z, (Fig. 39). Let us assume that the point z describes the arc y
in the positive sense (with respect to G) as 7 increases from =, to 7,. Then
the intersection of C, with the upper half-plane corresponds to that part of
C, which lies in the domain G. The composite function

w = f(z(7)) (12.9)

is regular in the upper half of the disk C,. If Im + — 0, then z approaches the
arc y, so that Im w tends to zero. If we apply the Schwarz reflection principle,
we see that (12.4) may be continued analytically into the whole disk C,.
Since 7 is a regular function of z in the domain C,, the same is true of the
function w in the domain C,. Thus f(z) can be continued analytically across
the arc y. The theorem is thereby proved.

EXERCISES ON CHAPTER 12

1. Show that on the circle of convergence of a power series there is always
at least one point with the following property: the function defined by the



EXERCISES ON CHAPTER 12 223

series cannot be continued analytically to the exterior of the disk along any
curve passing through the point.

2. Suppose that the coefficients of the power series
@
w(z) = X a,z"
n=0

are non-negative. Show that the function w(z) cannot be continued analytically
along the positive real axis across the circle of convergence.

Hint. Let the radius of convergence be R > 0. If |zy| = ry < R, it follows
from the assumption a, = 0 that |[w®(z5)| £ w®(ry). By expanding w(z) into
powers of z — z, on the one hand, and into powers of z — r, on the other
hand, one can show that if the function w(z) could be continued analytically
along the positive real axis across the circle of convergence, then it could be
continued along any other radius as well. The radius of convergence would
then be greater than R.

3. The function w(z) defined by the power series
w(z) = 5] a,z", a,>0 n=0,1,..)
n=0

cannot be continued analytically beyond its circle of convergence.

Hint. Let R > 0 be the radius of convergence. If z = ¢*"'?/4], where p and
q are relatively prime integers, then z"' = {* for n = ¢q. Thus w(z) and w({)
differ only by a rational function. If it were possible to continue w(z)
analytically across the circle of convergence along a radius arg z = 2mp/q,
then it could also be continued along the positive real axis. By Exercise 2 this
is impossible. Since the points R e*7'?/2 are everywhere dense on the circle
|z| = R, w(z) cannot be continued along any path across the circle of con-
vergence.

4. Let the power series Y, a,z” have radius of convergence R > 0. Substitute
z = Zy + (z — z,) and show that the radius of convergence of the resulting
power series in z — z, is not less than R — |z].

5. Show that the results obtained for analytic continuation are also valid
for meromorphic continuation (i.e., using meromorphic function-elements),
and are also valid if the path of continuation goes through the point . Prove
the monodromy theorem under these more general assumptions.

6. Let M be a polyhedral surface of spherical type in three-dimensional
Euclidean space (that is, a surface which can be continuously deformed into
a sphere). By Euler’s formula we have k — s + ¢ = 2, where k is the number
of vertices, s the number of edges, and 7 the number of faces of the polyhedron.
Show that Riemann’s formula (9.58) is a consequence of Euler’s formula.

Hint. Let w = w(z) be a rational function of order n. Every branch-point
of R, of order r, — 1 corresponds in the associated graph (Section 12.7) to
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an elementary polygon with 2r, sides. Each side belongs to two polygons, so
that the total number of sides is 3 r,. Since k = 21 and since ¢ is the number
of elementary polygons, the Euler formula gives

k—2=2n—-2=s—t=%r,—t=%@—1.

7. For any cubic polynomial P(z), the equation w = P(z) can always be
transformed either to the form w = z3 or to the form w = z3 — 3z by suitable
bilinear transformations of z and w. Construct the corresponding graph (cf.
Fig. 38.)

8. Let the function w(z) be analytic in the whole plane, real on the real axis,
and purely imaginary on the imaginary axis. Show that w(z) is an odd function.

9. Let the function w(z) be analytic, apart from a finite number of poles,
in the disk |z| £ 1. Further, let |w(z)] = 1 for |z| = 1. Show that w(z) is a
rational function.

10. If it is assumed that the function w(z) is continuous on the segment /,
show that one can give a shorter proof of the reflection principle based upon
Cauchy’s integral formula.



CHAPTER 13

ENTIRE FUNCTIONS

§1. INFINITE PRODUCTS
13.1. Definition

Letay, a,, ..., a, ... be an infinite sequence of non-zero complex numbers,
and set

P, = I'L[av.

v=1
0
The infinite product T] a, is said to converge if the limit
v=1

lim P, =P

n—»00

exists and has a finite non-zero value.

We then define
P=T]a.
v=1
If the product ﬁ a, converges, then
v=1
P,
a, = -1 as n —> o, (13.1)
P n—1

This necessary condition is not sufficient for the convergence of the product.
For example, ifa, = 1 + 1/n = (n + 1)/n, then

23 n+1
——TE...—"'——‘—'I"I'I.

P,
The corresponding product is therefore divergent (not convergent).

13.2. A Convergence Criterion
We shall derive an important criterion for the convergence of the product

1""’[1 A+w) (@#-lv=12..). (13.2)
225
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From the equation
it follows that

log P, = log |P,| + iarg P, = 3 log (1 + u,). (13.3)
1

On the right-hand side we take the branch of the logarithm that satisfies
—nm<Imlog(l +u)=arg(l+u)==

for each v. This determines the branch of log P,. We shall now show that if
the product (13.2) converges, that is, if

lim P, =P # 0, , (13.9)

n—w0

then the series

S=73 log(l +u) (13.5)
v=1

also converges. By (13.4) for every € > 0 there exists an n, such that
argP, = arg P + (e + k,* 27 (k, an integer) (13.6)
whenever n = n.. For these values of n
arg Py, — arg P, = arg (1 + tyy) = 2€) + (kyyy — k)27
Since the product (13.2) converges, we have, in view of (13.1),

lim #,,, = O,

n—»0

so that arg (1 + u,) — 0 asn — . It follows that k, = k,,; the integer k,
is therefore independent of #» whenever n = n, and |u,,,| < 1. Accordingly,
by (13.6), arg P, and therefore also log P, converge to a finite limit as # — .
Because of (13.3), this implies the convergence of the series (13.5).

Conversely, if the series (13.5) converges, then the sequence P, converges
to a finite non-zero limit as n — . Hence, the product (13.2) converges and
logP = S,or P — é5.

A necessary and sufficient condition for the convergence of the product
(13.2) is the convergence of the series (13.5).
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13.3. Absolute Convergence
We prove the following proposition.

The series (13.5) converges absolutely if and only if the series
i u, (13.7)
1

converges absolutely.

If one of the two series (13.5) and (13.7) converges, then, from a certain
ng onwards, |u,] < 4. Consequently,

W u u, u?
log (1 + ) =, =3+ 5= —u (1= 55— ),
so that
[log (1 + uy)| = [un| |1 + 04,
where
U | U7 | |, |ual? | 1 1
=y W < Ml HMnl” L (el < .
o 2 t3 =yttt 2 T—Ju] =2
Hence,
Hua| = log (1 + )| = 3| (n 2 np).

Therefore, the absolute convergence of either of the series (13.5) and (13.7)
implies the absolute convergence of the other. If the series (13.5) converges
absolutely, its sum is independent of the order of its terms. In this case the
value of the product (13.2) is likewise independent of the order of its factors.

If (13.5) converges absolutely, then so does the series (13.7). Therefore
the product T] (1 + |u,|) also converges. In this case the product (13.2) is
said to be absolutely convergent.

13.4. Functions Defined by Infinite Products
We now investigate the product

ﬂ] (1 + u(), (13.8)

where each u,(z) is regular and different from —1 ina simply connected domain
G. If we denote

P@ =TI (1 + u@),
we have

log P,(z) = 21 log (1 + u,(2)) (13.9)
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for suitably chosen branches of the logarithms. If at some point of the domain
G the branches on the right-hand side of (13.9) are fixed, the branch on the
left-hand side is fixed at this point. If the functions log (1 + u,(z)) are con-
tinued analytically from this point along an arbitrary path in the domain G,
then, by the monodromy theorem, we obtain s1ng1e-va1ued functions, and
Eq. (13.9) is valid throughout G. If the series

S(z) = ? log (1 + u,(2)) l (13.10)

converges uniformly on every compact subset of G, then it defines an analytic
function regular in G. At the same time the product (13.8) also converges, and
its value

P(z) = &5

is also regular in G.
If we apply the inequalities derived in Section 13.3, it follows that if the
series

i:: |u,(2)| (13.11)

converges uniformly on every compact subset of G, then so does the series
(13.10). The product (13.8) will then define a regular analytic function in G.
We thus have the following theorem.

If the functions u,(z) (#—1) are regular in a simply connected domain G,
and if the series (13.11) converges uniformly on every compact subset of G,
then the infinite product (13.8) defines a regular analytic function in the
domain G.

§2. PRODUCT REPRESENTATION OF THE FUNCTION w = sin nz
13.5.

We return to the partial-fraction expansion of the function cot 7z derived in
Chapter 10, Section 3:

wTcot wz =

S

© 2 .
+ Z " (13.12)

If we restrict z to the disk |z| £ R and write

1 2z - 2z
- = < 13
T cot 7z z+v§122"”2+v=§+122_”2 m=R<n+1l), (13.13)

then the last series converges uniformly in the disk and its terms are regular
functions of z. We can therefore integrate it term by term along any path in
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|z] £ R joining the origin to the point z. Integration of the individual terms
yields
o E a=1o (1—2—2
I g 2]’

where we choose that branch of the logarithm which vanishes at the origin.
The sum of the series under consideration is therefore the derivative of the

function
@ Zz
log (1 - —) .
v=-nz+l Vz

On the other hand, the sum of the first two terms on the right-hand side of
(13.13) is the derivative of the function

i 2
log 7z + Zlog(l ——5—2) >
v=1

while the left-hand side is the derivative of log sin =z. Hence,

© 2
log sin 7z = log 7z + Z]og (1 - %) + C,

v=1

where C is a constant, or
sinmz < z?
lo ————=Zlo 1 - C.
8z “— g( 1/2) +

Both sides are regular in the disk |z] < 1. If we set z = 0 and choose every-
where that branch of the logarithm which vanishes at the origin, it turns out

that C = 0. By the principle of analytic continuation, the two sides are
identically equal, so that

sinmz < z?
log e Zlog(l — ;2—) .

For z # 4 v this identity can be written in the form

) 2
sinwz = mz | (1 _ 55) : (13.14)

v=1 14

This formula is also valid for z = 4w, if we assign the value zero to an infinite
product whenever one factor is zero.

13.6.
In formula (13.14) we may write
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However, this factorization does not permit us to write the product in the
form

11 (1 - 5) (13.15)

V=—00 14
#0

14
since by Section 1 this product diverges at least for all real values of z. Never-
theless, the convergence can be restored by the following modification.
We start from the divergent series

ilog (1 - f) (13.16)

v=

and construct a convergent series from it. We restrict z to the disk |z| < R
and choose n, = 2R. Then, for every v = n,

z z 1(z\* 1/(z\}
]08(1—;)=—;—§<;) —5(;) -t (13.17)

zZ[\2  1/]z]\} 1z]2 1 R?
(A L) oL R

14

and, hence,
log (1 - E) +2
14 1 4

Therefore, the series

i [log (1 - j) + f] (13.18)

1 4
v=no

converges absolutely and uniformly in the disk Jz| £ R. Thus, by Section

13.3, the product
= — E Z/V
(-3

converges absolutely in the disk |z| < R.
In the same way we see that the product

T3]

also converges absolutely for |z| < R, and, hence, the same is true of the

product
T [(1 - i) e’/"] : (13.19)

V=—00
if a finite number of factors is omitted. Here a prime has been added to the
product sign to indicate that » takes all values except v = 0. A corresponding
notation will also be used for summations.
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If we combine in pairs those factors of the product (13.19) for which the
v-values have opposite signs, we see that the product has the same value as

the product
00 22
fi(-3)

v=1 vV

The product representation (13.14) of the function sin 7z can therefore be
written in the form

V=00

sinwz=mz I’ [(1 - f) e’/”]- (13.20)

§3. THE WEIERSTRASS FACTORIZATION THEOREM

13.7. Entire Functions without Zeros
If g(z) is an entire function, then
w(z) = 2@ (13.21)

is an entire function without zeros. We shall prove that the converse is also
true.

An entire function w(z) without zeros can always be represented in the form

(13.21), where g(2) is an entire function.

By assumption, an arbitrary branch of the function log w(z) can be
continued analytically along any path in the finite plane. By the monodromy

theorem this function is single-valued. If we denote the entire function so
defined by g(z), we obtain for w(z) the expression (13.21).

13.8. Generalization of the Factorization Theorem for a Polynomial
To any given finite set of points {a,, a,, . . ., a,} there always exists an entire
function with the zeros a,, a,, . . ., a,, for example, the polynomial

-20-3)(-2)

We now consider an infinite sequence of points

a,ay ... .. (13.22)
such that

O<lg| Sla) 2... 8@}l =..., lim |a,| = o,
n—>0
and pose the problem of constructing an entire function which vanishes at
the points (13.22) and nowhere else. If the point a, appears as a multiple zero,
we write it in the sequence (13.22) as many times as its order indicates. Let us
consider now the infinite product

I (1 - i) : (13.23)

v=1 a,
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If the series

converges, then the series

converges uniformly on every bounded set. The product (13.23) then defines
an entire function of z which vanishes at the points (13.22) and at no other
points.

13.9. The General Case

If the product (13.23) does not converge, we construct the entire function
corresponding to it by the same method which we used for the product
representation of sin z.

We restrict z to the disk |z| < R and choose n, so large that

la,] 2 2R for v X n,.

For these values of v we have

We set

z 1/z\2 1 /z\™
Pv(2)=;+§(;) *”'*z(z)

and show that, by a suitable choice of the numbers #,, the series

i [log (1 - ai) + P,,(z)] (13.24)

converges in the disk [z] £ R.
For the general term of the series (13.24) we have the estimate

z 1 Zn.,+l 1 Z""+2
1 _— < — |— —
og(l ay)+P”(z)*n,,+1a,, +n,,+2a,,
ny+1 2
§_ 1 i {1+_Z_+£ +}
n,+1\a, Y a,
ny+1 y+1
LT (R
n,+1la, l_i_”"+l la,|
a,
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The series (13.24) is therefore majorized by

© 1 R \m+l
2 Z n, + 1 (I—a_l) ’
v=no
which certainly converges if the numbers n, are sufficiently large (for example,
n, = v will ensure convergence). In this case the series (13.24) converges
absolutely and uniformly in the disk |z| £ R. This implies that the infinite
product

Il {(1 - ai) em)} (13.25)

AN V=no v,

converges absolutely in the disk |z] £ R, and defines an analytic function in
this disk. If we multiply the expression (13.25) by the product

w Z\ e
f{(r-2) )

the resulting function is regular in the disk |z| = R, and, hence, in the whole
plane, since R was arbitrary.
As an abbreviation, we shall use the notation

E (ai , n,,) - (1 - i) P, (13.26)
The infinite product
T1E (5- , n,,) (13.27)
v=1 v

is an entire function which vanishes at the points (13.22) and at no other
points. If, in addition to the points (13.22), z = 0 is also a zero (of order m),
we have to introduce the factor z™ into the product (13.27). We have therefore
the following result.

Ifa, a,, ..., a,...isan arbitrary sequence of complex numbers such that

O<|g| Slay] =... L |a) £.., lim |a,| = o,
n—>-0
then the infinite product
o z
TTE(=,n
. v=1 a,
defines an entire function whose only zeros are at the points 0, ay, ay, . . ..

For the convergence of the product (13.27) it is not necessary that the sequence
n, should increase as rapidly as the sequence n, = v. For example, the product
will always converge if we choose

n, = [log v],
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where [log v] denotes the greatest integer not exceeding log v (Exercise 8,
p. 240).

13.10.

Now let w(z) be an arbitrary entire function with the prescribed zeros. The
quotient

w(z)

is then an entire function without zeros. By Section 13.7, this function is of
the form e*®, where g(z) is an entire function. We therefore obtain the
following representation for the function w(z):

w(z) = e zm [T E (ai , n,,) : (13.28)
v=1 v
Conversely, whenever g(z) is an entire function, (13.28) defines a function
satisfying the prescribed conditions.

All entire functions w(z) with prescribed zeros at the points 0, a,, a,, . . .
are given by the formula (13.28), where g(z) is an arbitrary entire function.

Formula (13.28) constitutes the Weierstrass product representation of an entire
function in terms of its zeros.

13.11. The Case n, = const.

Finally, we want to mention the important case where a fixed number of
terms in the exponent of (13.26) suffices for the convergence of the product
(13.27). If there exists an integer p such that

< 1
Z L (13.29)

converges, then we may choose n, =p — 1 (v =1,2,...). Then, for suffi-
ciently large values of v (Section 13.9), we have

b4 14
logE(_z.,nv) é.z_(__g_) =2_12__ _1_
a, r\la)

r lal”’

and therefore the convergence of the series (13.29) implies the convergence
of the series (13.24), which, in turn, implies the convergence of the product
(13.25).

If we wish to expand a given entire function into a Weierstrass product,
then the function g(z) appearing in (13.28) cannot, of course, be chosen
arbitrarily. Its determination presents very often the principal difficulty of
the problem. We refer to Exercises 7 and 10, p. 240.
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The series (13.29) associated with the function sin 7z converges for p = 2,
and thusn, = 1(v = 1, 2, .. .) is an appropriate choice. This is also apparent
from the representation derived in Section 2 (13.20).

The Weierstrass product formula can also be used to represent a mero-
morphic function with given zeros and poles as a quotient of two entire
functions (Exercise 9, p. 240).

13.12. The Mittag-Leffler Theorem
If we differentiate the function (13.28) logarithmically, we obtain

W@ _ o MmN Lz
w(z)—g(z)+?+;(z~:—ap+av+a£+ +a;'")' (13.30)

Since w(z) is an entire function, the left-hand side of (13.30) is regular every-
where except at the zeros of w(z). At each of these points (13.30) has a simple
pole with residue 1 (cf. Section 10.8). (If some of the numbers a, coincide, the
residue is not equal to 1, but in any case it is a positive integer.)

Formula (13.30) thus provides the partial-fraction representation for the
function
w'(2)

f(Z) = W(Z) ‘

(13.31)

This representation converges uniformly on every compact set which does
not contain any poles of the function f(z).

Conversely, if f(z) is a meromorphic function with simple poles at the
points @, (v = 1, 2, .. .), all of whose residues are positive integers, then the
function

w(z) = exp ( f | @) dz} ,

which is related to f(z) by (13.31), is an entire function with zeros a,. Hence,
the Weierstrass factorization theorem (13.28) is valid for w(z), so that the
partial-fraction expansion (13.30) holds for f'(z).

In the general case we have the following theorem of Mittag-Leffler:

Let z, (v =1, 2,...) be an arbitrary sequence of points having no points
of accumulation in the finite plane. If, to each point z,, a rational function

P,( 1 )= By By B g3y

z—z, z—1z, (z-—2z)° (z —z,)™

is assigned, then there always exists a meromorphic function f (z), which
is uniquely determined up to an additive entire function, such that f(z) has
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poles at the points z,, and such that the principal part of the Laurent expan-
sion of f(z) about the point z, is the given function (13.32). The function
[ (2) has the form

16 = Z (P.(;25) - @) + 20 (13.33)

where the functions p(z) are polynomials

pA2) = o’ + &Pz + -+ + a2
obtained by expanding P,(1/(z ~ z,)) into powers of z and taking a certain
number of terms of this expansion.

The proof of this theorem is left as an Exercise (Exercise 11, p. 240).
An example is provided by the partial-fraction expansion of the function
cot wz given in Section 10.7.

§4. JENSEN’S FORMULA. THE GROWTH OF ENTIRE FUNCTIONS
13.13. Jensen’s Formula

If the function w(z) is regular and non-zero in the disk |z| < p, then log |w(z)|
is harmonic in this disk. Thus, by Gauss’s mean-value theorem

27
log |w(0)| = 51; fo log |w(p e'%)| dé.

Assume now that w(z) has the zeros ,, a,, . . ., a, in the disk |z| < p, but that
w(z) # 0 on |z| = p and that w(0) # 0. Multiple zeros are to be included
in the sequence of zeros with distinct subscripts The function

@) = w) H ” )

is regular and non-zero in the disk |z| < p, and | f(2)] = |w(z)] on the circle
|z| = p, since each factor of the product is of modulus 1 for |z| = p. If Gauss’s
mean-value theorem is applied to the function log | £(z)|, it yields

1 27
log | £(0)| = 2—7rf0 log |w(p €'%)| dé.

If we substitute the value of f(0) obtained from formula (13.34), we obtain
Jensen’s formula

(13.34)

n 1 27
log |w(0)| = — z log ﬁ + 5 f | loglw(pe)| b, (133)
v=1 4

This formula establishes a connection between the moduli of the zeros of

w(2) in the disk |z| < p and the values of |w(z)| taken on the circle |z| = p
and at the point z = 0.
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In the proof of formula (13.35) we assumed that w(z) # 0 for |z| # p.
However, formula (13.35) is still valid if w(z) has a finite number of zeros on
the circle |z| = p. The left-hand side of the formula does not depend on p,
and the right-hand side is a continuous function of p. That the sum appearing
on the right-hand side is continuous is obvious. The continuity of the integral
can be seen in the following way. If w(z) has one zero of order pat z, = p, €'%
on the circle |z| = pg, then

w(z) = (z — 20)"g(2),
where g(z) is regular at the point z, and g(z,) # 0. Hence,
log |w(z)| = plog |z — zo| + log [g(2)].

It can be seen from this that the integral
[ z log [w(p )| d6 (13.36)

also converges for p = p,, and that one can enclose 6, in an interval
0, < 0, < 6, such that

U: log |w(p e'%)| dB] <e

if p is sufficiently close to p,. For the @-values outside the interval (6, 6,)
we have, uniformly in 0,

lim w(p €'%) = w(p, '%).

p—>po
We conclude that the integral (13.36) is continuous for p = py. The proof is
similar if there are several zeros of w(z) on the circle |z| = pg.

The right-hand side of Eq. (13.35) is therefore a continuous function of p.

Thus the equation is also valid for p = p,.

13.14. The Order of an Entire Function

Let w(z) be a non-constant entire function and let M (r) denote the maximum
of |[w(z)| on |z| = r. By the maximum principle M (r)is a monotone increasing
function of r. Moreover, M(r) is continuous (cf. Exercise 15, p. 240).

We saw in Section 9.21 that if M(r) < r* for some constant & and for all
large values of r, then w(z) is a polynomial. Thus, if w(z) is not a polynomial,
M (r) increases more rapidly than any power of r as r — .

For the simplest transcendental entire function, the exponential function
e?, we have M(r) = ¢". It is convenient to classify the entire functions by
comparing their maximum modulus function M(r) with the exponential
functions e’ (¢ > 0). Let us assume that there exists a positive number ¢
for which the inequality

‘ M@r)<e (13.37)
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is satisfied for large values of r. We denote by A the greatest lower bound of
all numbers o for which (13.37) holds for sufficiently large values of r:

A = info. (13.38)

The number A is called the order of the function w(z). If (13.37) does not
hold for any finite o, we say that the order of w(z) is infinite. For example,
the order of e® is 1, while that of a polynomial is 0. The condition (13.38)
may be expressed more concisely by the formula

A = ]lim sup.lggl_o%:n_[_@

0 s og (13.39)

(Exercise 17, p. 241).

13.15. The Connection between the Order and the Zeros of an Entire Function

We shall now prove that if w(z) is an entire function of finite order A, then it
can be represented by a Weierstrass product (13.28) with a fixed number of
terms in the expression for E (13.26) in the exponent. It suffices to establish
the existence of an integer p for which the series (13.29) converges (cf. Section
13.11).

We assume that in the sequence a,, a,, . . ., @,, . . . of zeros of the function
w(z), each zero occurs as many times as its multiplicity and that the sequence
is ordered in such a way that

O<|gy| SEla| ... S la) £....

Applying Jensen’s formula (13.35) to the function w(z) in the disk [z] £ 2[a,],
we obtain, for large values of #,
logz—‘a—"i < (2]a,))° — log |w(0)], (13.40)

lav] < 2|an| Iavl a

where o is an arbitrary number greater than A. If we omit on the left-hand
side all the terms with v > n and observe that each remaining term is greater
than or equal to log 2, we obtain from (13.40) the inequality

nlog2 £ 2%a,|? — log |w(0)].

Hence,
2° log |w(0)]
< 2 gl — 210
n= fog2 la,] Tog 2 (13.41)
On the right-hand side only the modulus |a,| depends on n, and it tends to
infinity as n — . Thus, if 7 is any number greater than o, the right-hand
side of (13.41) is less than |a,|” for all sufficiently large values of n. Hence,
for such values of n,

n<lal™, |a,| >n'". (13.42)
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Hence, for p > 7 we have
1 1

Tap <

which implies the convergence of the series

Clearly, any number greater than A can be taken for p. Subsequently we can
choose o and 7 sothat A < o < v < p.

Thus, if w(z) is of order A, then we may take for p in the Weierstrass
product the smallest integer greater than A. Conversely, if the product repre-
sentation of w(z) holds for a constant number of terms in the exponent, then
w(z) is of finite order. We shall not go deeper into this question here.

-~

EXERCISES ON CHAPTER 13
1. Derive Wallis’s formula
il <
2 3
by substituting z = } into the product formula (13.14) for sin =z.
2. Show that the following infinite products converge, and find their values:

© 1 25 nr41

n=1 n

2
1

N
Wi
il

Wl N

Hint for (b). Use the product formula for sin #z.

3. Find the regions of absolute convergence for the following infinite
products:

9 [Ta-2, v [Ja+a, o [T+,

assuming that 3; |c,| converges.
4. Prove that the so-called Blaschke product

o z—a, ,

He““" T a, = |a,| e, 0<lal| <1 v=12,..) (a)
b az—1

converges if and only if the series

2 a-lab ®)

converges. If the series (b) converges, show that the product (a) defines a
function which is analytic in the disk [z|] <1 and has the zeros z =g,
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(v=1,2,...). However, if the series (b) diverges, show that the product is
identically zero.

Hint. Consider first the convergence at the point z =0, and then apply
Harnack’s principle.

5. Assume that the series (b) of the preceding exercise converges and that
the numbers arga, (v =1,2,...) are everywhere dense in the interval
0 £ arga, < 27. Show that the circle |z| = 1 is the natural boundary of the

function (a), that is, the function cannot be continued analytically across the
unit circle.

6. Construct an entire function with simple zeros at the points a, = v?
¢=12..).

7. Derive the product formula of sin 7z from the Weierstrass formula.

Hint. The entire function g(z) occurring in formula (13.28) can be determined
(for example) by comparing the expansion obtained for the logarithmic
derivative of sin 7z by means of formula (13.28) with the expansion of cot mz.

8. Prove that the Weierstrass product converges whenever n, = [log v].
9. Construct a meromorphic function with given zeros and poles.

10. Find the infinite-product representation of the following entire functions:
a) ef—1, b) e — ¢&*, c) coswz.
11. Prove the Mittag-Leffler theorem.

Hint. Show that the polynomials p,(z) may be always chosen in such a way
that the series (13.33) converges uniformly on every finite region and that
this expansion is uniquely determined up to an additive entire function.

12. What form does Jensen’s formula take whenever w(0) =

13. Let w(z) be regular for |z] < p. Apply Poisson’s formula to the logarithm
of the modulus of the function (13.34) to derive the Poisson-Jensen formula

log [w(z)| = Zl og

P(z - av)
pi—r?

27
1 10
+ 5 fo log |w(p )| p? + r? — 2prcos (6 — ¢)

14. Generalize the Poisson-Jensen formula to functions meromorphic in the
disk |z] = p.

15. Given an entire function w(z), show that

M () = max |wz)]

is a continuous function of r.
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16. Let M(r) be the maximum modulus function (cf. previous exercise) of an
entire function of order A, let o > A, and let 4 and a be arbitrary positive
constants. Show that the inequality

M@E)<Ae™

holds for all sufficiently large r.

17. Prove the following assertion: If A = inf o, where ¢ assumes all values
satisfying (13.37) for sufficiently large values of 7, then

A= lim sup M .
>0 logr



CHAPTER 14

PERIODIC FUNCTIONS

§1. DEFINITIONS OF SIMPLY AND DOUBLY PERIODIC FUNCTIONS
14.1. Simply Periodic Functions

A meromorphic function w(z) (i.e. an analytic function which is regular in
the finite plane except possibly for isolated poles) is said to be periodic (cf.
Section 5.4) if for every complex z there exists a constant w # 0 such that

w(z + w) = w(2).

The number w is called a period of the function w. If w is a period, the numbers
nw (n = %1, £2, .. .) are also periods of w. The question arises whether the
function w has any other periods. We exclude the special case where the
function w(z) is a constant. First we prove some auxiliary theorems.

Theorem 1. The moduli of all periods have a positive lower bound.

To prove the theorem we argue by contradiction. If the assertion were
false, w(z) would have arbitrarily small periods, from which we could choose
a sequence w, wy, . . ., Wy, . .. such that lim w, = 0. At a regular point z,
of the function we then have w(z,) = w(zy + w,) (n = 1, 2, .. .). The function
w(z) — w(z,) therefore has infinitely many zeros zy + w, (n=1,2,...)
which converge to the point z,. Hence, w(z) — w(z,) is identically 0 and w(z)
must be a constant. This contradicts the assumption that w(z) is not constant.
Thus the theorem is proved.

Theorem 2. The periods have no point of accumulation in the finite plane.

We first observe that if w,, w,, ..., w, are periods of w(z), then the
expression

nwy + mywy + * 0 My (ny, ny, . . ., B, integers)

is also a period of w.

Suppose that w, is a finite point of accumulation of the periods. Then
for every € > 0 we can find two distinct periods w, and w, in the neighborhood
|z — wg| < € of wy. The difference w, — w, is also a period. Since
|wy — w,| < 2¢, it follows that w(z) has arbitrarily small periods, which
contradicts Theorem 1, so that Theorem 2 is proved.

242
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It follows from Theorems 1 and 2 that the moduli of the periods have a
positive minimum m. Let w, be a period with |w,| = m. Each of the numbers
nw, (n=41,+2,...) is also a period, and points corresponding to these
periods all lie on the same straight line /: arg z = arg w,. No other points
on this line can correspond to a period. For if w were another period on /
lying between vw, and (v + Dw,, then w — vw,; would also be a period.
But |w — vw;| < |w,| = m, which would contradict the definition of m.

If the function w(z) has no other periods it is said to be simply periodic.
The number w, is called the primitive period of the function (Section 5.4).

14.2. Doubly Periodic Functions

Let us see whether w(z) can have any other periods. We shall prove that if
there are other periods, their distances from the straight line / has a positive
minimum. If w is some period which is not on /, then w + nw, (n = 0, %1,
+2,...)is also a period of the function. It follows that there is a period on
the line passing through w and parallel to / which lies in the strip G bounded
by two arbitrary parallel lines through the points 0 and w,. Now if the distances
of the periods w from the line / do not have a positive minimum, we can
find an infinite sequence of periods in G whose distances from / have a non-
negative lower bound and which have at least one finite point of accumulation.
However, this contradicts Theorem 2. Hence, the distances of the periods w
from the line / must have a positive minimum d.

Let w, be a period for which the minimal distance d is attained. Then
w = mw, + myw, is also a period for arbitrary integers m; and m,. All
such points form the vertices of a parallelogram mesh (Fig. 40). Conversely,

P
P,
Tl
4T
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it follows that all periods of w(z) are of the form w = m,w, + m,w,, where
m, and m, are integers. For if there were other period points, then one of
them would have to lie in the fundamental parallelogram with vertices 0, w,,
w; + w,, w,. This would contradict the facts derived above, so that our
assertion is proved. The numbers w; and w, are called the primitive periods
or fundamental periods of the function. We have thus proved the following
theorem.

Theorem 3. A non-constant meromorphic function has at most two primitive
periods whose ratio cannot be real.

A function with two primitive periods is said to be a doubly periodic or
elliptic function. It will be shown in Section 4 that such functions actually
do exist. .

§2. REDUCTION OF SIMPLY PERIODIC
FUNCTIONS TO THE EXPONENTIAL FUNCTION

14.3.
Earlier we discussed the exponential function as the simplest example of a
simply periodic function. The other periodic functions which have appeared
so far, such as cos z, sin z, cot z, and tan z, are rational functions of the
exponential function e’z (Sections 6.1 and 6.4). Conversely, every rational
function of e**, where « is a constant, is periodic with period 2mi/a. This
suggests the following question: Under what conditions can a given periodic
function be expressed as a rational function of an exponential function e*??

Let w(z) be a simply periodic function with the primitive period w. By
drawing parallel lines through the points 0, 4w, +2w, . . ., we can divide the
plane into parallel strips, so that each strip contains one and only one of the
points congruent mod w. Since w(z) is meromorphic, its poles can only have
z = « as a possible point of accumulation.

Besides the function w(z), we consider the exponential function

C — ez-21ri/w’ ) (141)

which is also periodic with the primitive period w. Equation (14.1) defines
z as a function of {:

w
27ri

The function w(z) becomes a composite function of {:
wz)=w (f’— log C) = w¥*({). (14.3)
2mi

We show first that w*({) is a single-valued function of {. If { describes a
closed path which does not pass through the origin, then in view of (14.2)

z= log ¢. (14.2)
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z increases by kw (k = 0,+1,42,...). At the same time, because of the
periodicity of w(z), w returns to its original value.

The function w*({) is therefore a single-valued function of {. In view of
(14.3) this function is regular everywhere except at { =0, { = © and the
points of the {-plane which correspond to the poles of w(z). These points
have no points of accumulation except possibly at { = 0 and { = c.

Let z = b be a pole of w(z) of order k. Then (Section 9.19)

lim w(z)(z — b)* = B # 0, =, (14.9)
z—b
By (14.1) the point z = b corresponds to the point { = 8 = ¢27®/®_ There-
fore {(z) has the expansion
[=B+CG=B+ -,  C#0,
from which it follows (for the notation [z — b], see footnote, p.153) that
(& - By =Ciz— 541 + [z — b]},

(£ = Bfw*()) = Ciz — b)w(2){1 + [z — b]}.

By (14.4) this expression tends to the limit C¥B # 0, « as z — b and
{ — B. The function w*({) has therefore a pole of order k at the point { = B.
We have thus proved the following result.

and also

The function w*({) is single-valued and analytic. Each pole of w(z) corre-
sponds to a pole of w*({) of the same order. The points { =0 and { = =
can be limit points of poles, isolated essential singularities, poles, or points
of regularity of the function w*({).

14.4.

We now investigate the question: Under what conditions are the points
{ =0 and { = « poles or points of regularity of the function w*({)? We
may assume without loss of generality that the primitive period is 2w, for
the substitution z, = 2miz/w transforms a function with period w into a
function with period 27i. With this choice of w, (14.1) takes the form

{=e (14.5)

By Section 9.19, the point { = 0 is a pole or a regular point of w*({) if and
only if there exists a positive constant M and an integer £ = 0 such that

x M
W (0| < HE

for sufficiently small values of |{|. If we use (14.5) and (14.3), and write
z = x + iy, the above inequality takes the form

W@ < Me™  for x<—x, (14.6)
where x, is positive.
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In order that { = « be a pole or a point of regularity it is therefore neces-
sary and sufficient that there should exist an M > 0 and a £ = 0 such that
w*()l < M|L|*

for all sufficiently large values of |{]. In view of (14.5) and-(14.3), this is
equivalent to the condition

[wz)] < Me>*  for x> x,. (14.7
We may combine (14.6) and (14.7) into the form
[wz)] < M e for  |x| > x,. (14.8)

Our result is then the following:

If w(z) is simply periodic with primitive period 2wi, then w(z) is a rational
Sfunction of €® if and only if (14.8) is satisfied.

This condition also implies that w(z) may have at most a finite number
of poles in a period strip.

§3. THE BASIC PROPERTIES OF DOUBLY PERIODIC FUNCTIONS

14.5. Poles
We now turn to the investigation of doubly periodic functions. Let w(z) be
doubly periodic, that is, let w be a non-constant meromorphic function such
that
w(z + myw, + myw,) = w(2) (m,my=0,+1,42,...)

for every z, where w;, w, is a pair of primitive periods. The only possible
finite singularities of w are a finite number of poles in each period parallelo-
gram. We can therefore choose the mesh of period parallelograms in such a
way that there are no poles on the sides of the period parallelograms. We shall
label the periods in such a way that Im w,/w; > 0.

We prove first some theorems about the poles of doubly periodic functions.

Theorem 1. There are no doubly periodic entire functions.

If w(z) is regular in the whole period parallelogram, then {w(z)| is bounded
in the period parallelogram and, hence, in the whole plane. But then, by
Liouville’s theorem, w must be a constant. However, this trivial special case
was excluded from the start.

Theorem 2. The sum of the residues of w(z) at the poles in a period parallelo-
gram is zero.

Proof. If we apply the residue theorem to a period parallelogram ABCD
whose boundary is denoted by P, we obtain

f W@ dz =2mi 5 R, (14.9)
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where 3 R denotes the sum of residues of w(z) at the poles enclosed by P.
Since the function is periodic, we have (Fig. 41)

f WD dz= [ wz)dz

or

[ W@ dz+ [ we)dz=o.
Similarly,

[pe@dz+ [ w2 dz =0,
so that

fP w(z) dz = 0.

Our assertion now follows from (14.9).
If w(z) has only one simple pole at the point z= b in the period parallelo-
gram, and if at this point w(z) has the expansion

W)= At B b) (A0,

where the notation P(z — b) is that of Section 9.22, then we have a contra-
diction to Theorem 2. We have thus proved

D
Theorem 3. The sum of the orders of ¢
the poles of a doubly periodic function in

w
a periodic parallelogram is at least 2. y
Wy
. 4 >B

14.6. The Order of a Doubly Periodic Figure 41
Function
Let w(z) have poles of orders v,, v,, .. ., v, at the points b,, b,, .. ., b, and
zeros of orders py, py, - .., uy at the points a,, a,, ..., @, in the period

parallelogram. Let w(z) # 0 on the boundary of the parallelogram.
We now show that the sum of the orders of the zeros is equal to the sum of
the orders of the poles. By the argument principle

h k
dpargw = (2 = vi) 2. (14.10)
i=1 i=1
On the other hand (Fig. 41), we have
Adpargw = A gargw + dpcargw + dcpargw + dp, arg w. (14.11)
Because of the periodicity we have

dpargw = dpcargw = —depargw
and
Agcargw = —A,, arg w.
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Hence, (14.11) implies that 4, arg w = 0, whence, by (14.10), it follows that
Z i = 2 Vi.

If we apply this result to the function w(z) — «, where « is an arbitrary constant,
we obtain

Theorem 4. A doubly periodic function assumes every value the same
number of times in a period parallelogram.

By this we mean that every point at which w(z) assumes the value « must be
counted according to the multiplicity as indicated by the order. Only a part
of the boundary of the period parallelogram, for example, the vertex 4 and
the open segments 4B and A4 D, will be included.

If w(z) assumes every value n times. in a period parallelogram, we say
that w(z) is a function of order n.

14.7. A Relation between the Zeros and Poles

We shall prove a theorem concerning the position of the zeros and poles.
The derivative of w(z) is itself doubly periodic and has at least the same
periods w = m,w, + m,w, as w(z) (Exercise 6, p. 276).

We apply the residue theorem to the function zw'(z)/w(z), which is regular
on the boundary of the period parallelogram. Its only possible singularities
are the zeros a; and the poles b; of w(z). At a zero g, the function zw'(z)/w(z)
has a simple pole with residue p;o;. At a pole b, it has again a simple pole
with residue —v;b;. The residue theorem implies that

f ((Z)) dz = 2mi(S a; — 3 b)), (14.12)

where each term a; and b; must be counted according to multiplicity.
On the other hand, we have

fzzv—dz=f zmdz+f zmdz—kf zﬁdz+J zmdz.
p W 4 W Bc W cp W pa W

(14.13)

By the periodicity of w(z), we have (Fig. 41)

w'(2) w(z + wy)
fcn W(z)dz fBA(z+ «@2) w(z + 2)d

W e,
‘LAM)d+ LAU
and hence

W) e @), _
f“’ w(z) “+ z w(z) 4 = fBA w(z) dz = J.BA log w(2).
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Since the function w(z) is periodic, it has the same value at the points 4 and B.
The increase of log w(z) from B to A is therefore 27im,, where m, is an integer.
The value of (14.4) is then 27im,w,. Similarly,

’ ’
w w )
f z—dz + f z— dz = 2mimw,,
Bc W pa W

where m, is an integer.

It follows from (14.13) that
f z 'v'v“ dZ = 27Ti(mlwl + mzwz) = 27Tiw.
P W

Combining this with (14.12), we have that

Ya,—2b=ow.
We have thus established the following result.

Theorem 5. If a;and b; are the zeros and poles of a doubly periodic function
in a period parallelogram, then

Ya,—3b = o,

where w is a period, and where each a; and b; is counted according to
multiplicity. :

§4. THE WEIERSTRASS p-FUNCTION
14.8. Expansion of the p-Function about its Poles

By Theorem 3 of the preceding section, the sum of the orders of the poles in
a period parallelogram is at least 2, and this suggests the question whether
there exists a doubly periodic function which has one pole of order precisely
two and is otherwise regular in the period parallelogram. In what follows
we shall construct such a function.

If we place the pole at the origin, the remaining poles will be situated
at the points w = mw, + m,w,, where m,; and m, run over all integers.

Let us now assume that there exists a function p(z) with the desired
properties. In the neighborhood of a pole w, the function p(z) will have an
expansion of the form

0() = o + 2

z_w)2+z_w+ao+al(z—cu)+---.

Since 4, is the sum of the residues at the poles in a period parallelogram, it
follows that 4, = 0. In the expansion corresponding to the pole w = 0 we
may assume that 4, = 1 and a, = 0; this can be achieved by multiplying ¢
by a constant and then adding a constant. Since p is periodic, it follows
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that 4, = 1 and ay = 0 in the expansion about an arbitrary pole w, so that
at each pole w we have the expansion

p(2 =

G- )2+a1(z @)+ (14.15)

14.9. Expansion of the Derivative ¢'(z)

We now derive a series expansion for the derivative of the function g (z)
under the assumption that such a function exists.

To this end, we shift the period parallelogram so that its center lies at
the origin. Let us denote its boundary by P,. By adjoining to P, all the period
parallelograms whose boundaries touch P, we obtain a new parallelogram
whose boundary we denote by P,. Continuing in this manner, we adjoin to
P, all parallelograms whose boundaries touch P, and obtain a parallelogram
whose boundary we denote by P,, and so on.

Let z, # w be an arbitrary point in the interior of the parallelogram
bounded by P,. By the residue theorem we have

f °G@ 4 omiz R (14.16)

P2~ 29
where 3 R is the sum of the residues at the poles of the function f(z2) =
9 (2)/(z — z,) which lie in the interior of the parallelogram bounded by P,.
The function f(z) is regular everywhere except at the points z = z, and
Z=w = muw; + mw,.
At the point z = z, the residue of f(z) is R,, = ¢(2,), and at the point
z = w theresidueis R, = —1/(zo — w)?. Substituting these values into (14.16)

we obtain
p (2) . 1
fr,. —— dz = 2mi {{P(Zo) - Z.. m} s (14.17)

where the sum is taken over all the poles w of p(z) inside the parallelogram
bounded by P,.
If we differentiate both sides of (14.17) with respect to z,, we obtain

(@) ' -
fp"(z~zo>2dz 2’”{ (Z")*z(z ] (419
14.10.

We now let n tend to o and show that the left-hand side of (14.18) then tends
to zero. If we exclude the poles of p(z) by means of disks |z — w| < p,
then |p(z)| £ M everywhere else in the plane, where M is a finite con-
stant. If p is sufficiently small, the contours P, lie exterior to these disks.
We then obtain for the left-hand side of (14.18) the estimate

e (2) |dz| ML,
P (2 — 20)? dzl pr.. (2| — lZol)2 = (du — [2])*’
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where L, is the length of P, d, is the shortest distance of the origin from P,,
and » is so large that d, > |z,|. Since P, and P, are similar, we have

L, d,
! (14.19)
so that
p(2) . MQ@n — 1)L,
e (2 — 20)* T[@n -1 d, — |z

This last expression tends to zero as # — «. Hence, it follows from (14.18)
that

¢'(z) = lim (—Z (?‘"—z'w_y) ) (14.20)
Lina Pn

Thus p '(z) may be expressed as a sum extended over all the periods w; in this
sum the terms are grouped in such a way that the n-th group contains those
terms for which the w lie in the region bounded by P,_, and P,.

14.11. Absolute Convergence of the Expansion of p'(z)

We now show that the above arrangement of terms is irrelevant. It suffices
to prove that the series
+c0 1

1
2 =y D CRr———— (14.21)

m1, m2=—cw

converges absolutely.
Let us restrict z to the disk |z] £ p and omit the finite number of terms

of the series (14.21) for which |w| < 2p. For the remaining terms we have
1 1 < 2

lz — o] T o] =]z T |
and
! 1,21
|z —w| ~ |z| + |w| T 3 |o|
so that
21 |t |8
3) o|* Tz~ w7 |of?

Therefore the series (14.21) converges absolutely for every z # w provided

that the series
|
E l—w—P (14.22)

converges. The prime on the summation symbol means that the summation
is taken over all the numbers w = m,w, + m,w, with the exception of w = 0.
It will now be shown that the series (14.22) does in fact converge.
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14.12. Investigation of the Series 3'1/|w|*
We ask, generally, for what values of k does the series

z' lwil" (14.23)

converge. For k = 1 the series clearly diverges, for if w, is an arbitrary period,
and if we consider only those termsin (14.23) for whichw = nw, (n = 1,2, .. ),
we obtain the divergent series
1 1
for] 2

The condition k > 1 is therefore necessary for the convergence of (14.23).
Let us now group the terms of (14.23) in such a way that the n-th group
contains the terms corresponding to the periods which belong to the region
IT, bounded by P, and P,_,. The region II, consists of

@n—-1)2—-@2n—-32=8n-1

period parallelograms. The number of corresponding terms is therefore
8(n — 1).

Let d, be the least and D, the greatest distance of the origin from P,.
Then, for any point w in the region I7,, we have

n(2 —’-3) d =@2n—-3)d, <|w| <@n-1)D, <n2D,.
If we observe that 2 — 3/n = 4 whenever n 2 2, we have

n% < |w| < n2D,.

1\1 1 (2\1
(z50) << @) & 1429

Since there are 8(n — 1) terms corresponding to the region I, it follows
from (14.24) that

8(21))";1 zl ( )";1. (14.25)

Forn = 2wehave (n — D)/n* = (1 — 1/n)/n*" = 1/2n*1,
By addition, it follows from (14.25) that

m2%<zﬁ%‘<szk—{, (14.26)
V= Pn V=,

where m and M are positive constants. The sum in the middle is extended
over all mesh points w inside the parallelogram P, with the exception of
w=0,

Hence,
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It then follows from (14.26) that the series 3’1 /lwf" converges if and only
if the series
i 1
T
va=]
converges, that is, if and only if £ > 2.
z’ L
|ewl*”
in which w = myw, + myw, and m, and m, assume independently all

integer values (with the exception of m, = m, = 0), converges if and only
ifk > 2.

The series

In particular the series (14.22) converges, and therefore the series (14.21)
converges absolutely and uniformly on every compact set not containing any
mesh points. The same is true of any bounded set if a finite number of terms
is omitted. v

In view of (14.20), the function g '(z) has the expansion

p@ = (z—:—zw—), . (14.27)

Here w = mw, + m,w,, where m; and m, range over the integers in any
order.

14.13. Expansion of the p-Function

We now integrate (14.27) for |z| < p. If we write the right-hand side of the
equation in the form

-2 -2 -2

———y = — + — (14.28)

— w)? — w)3 w3’
2 (z w) lwlzsp (Z w) Ia%p (z w)

then the last series converges uniformly in the domain |z| < p. Therefore it

can be integrated term by term between the limits 0 and z:

L2.ee 2 e

lwl>p

This series converges uniformly, and even absolutely, in the disk |z] = p,
since it has a majorant of the form

K

3
lw|>p le
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where K is a constant. The first sum on the right-hand side of (14.28), which
has only a finite number of terms, is the derivative of the function

1y l____l__ _ L}
22 0<%Sp (z— w)? w?

The entire right-hand side of (14.27) is therefore the derivative of the function

St {(Z—_—l—w? ~ 515} : (14.29)

while the left-hand side is the derivative of p(z). Thus the difference of ¢ (2)
and (14.29) is a constant C. If we expand (14.29) into powers of z, it follows
from (14.15) that C = 0. Thus we have shown that p(z) has the expansion

p(2) = }13 + Z {(7_1;)—2 - —13} ; (14.30)

w
this is the Weierstrass p-function. To sum up, we have the following result.

If there exists a doubly periodic function ¢(z) with primitive periods w,
and w, which has a second-order pole at each of the points w = m;w, +
myw, and which has the expansion (14.15) at each such pole, then the
Sfunction o (2) is uniquely determined and has the expansion (14.30) at every
point z # w.

14.14.

It now remains to show that the function p(z) defined by (14.30) has in fact
the required properties, that is, that p(z) is a doubly periodic function with
the primitive periods w, and w, which has double poles at the points
w = mw, + myw, (m,;, m, = 0, +1, £2, . . .), where it possesses the expansion
(14.15).

Since the series (14.30) converges uniformly on every compact set which
does not contain any of the points w, p(z) is regular everywhere except at the
points z = w. About each point z = w the function (14.30) has the required
expansion

0(2) = (2—_1;)7 + [z — ] (14.30)

To prove that p(2) is a doubly periodic function with primitive periods w;
and w,, we first show that w, and w, are periods of ’(z), that is, that
p'(z+ w) = p'(2) (i = 1,2). For the function p'(z) we have the expansion
(14.27). Hence,

’ ) —2
'+ w)= Z (@ - o))’
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which differs from (14.27) only in the ordering of its terms. Since we have
established that (14.27) is absolutely convergent, it follows that

P+ w) =90
The derivative of the function
@ =9+ w)—p(@) (14.31)
is therefore identically zero, and so f(z) is a constant:
f@=_C (14.32)

To complete the proof we show that C = 0.
By Eq. (14.30), we have

#9-3+ 3 oo

a2 {(z - (l—w))z - (—«1»)2} '

This sum differs from (14.30) only in the arrangement of terms. Since (14.30)
is absolutely convergent, it follows that p(—z) = p(2) for all values of z, so
that p is an even function.

Hence, for z = w,/2, we have

On the other hand, it follows from (14.31) and (14.32) that

(7)) e (5) e
'3)=el5) e

which implies C = 0. Therefore p(z + w,) = p(z). In the same way we can
show that p(z + w,) = p(2).

Therefore p(z) is a doubly periodic function having as periods all the
numbers w. On the other hand, w, and w, are necessarily primitive periods,
because every parallelogram determined by w, and w, contains just one pole
of the function. We have thus proved that ¢ (z) has all the required properties.

If we form the higher derivatives of the function p(z), we obtain new
functions which are also doubly periodic.

and, hence,
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§5. THE WEIERSTRASS ¢- AND o-FUNCTIONS

14.15. The {-Function

We now investigate the function obtained from the p-function by integration.
We denote by {(z) a function which satisfies the condition

@) =—p ().
If we integrate term by term the uniformly convergent series (14.30) for p (2),
and if we choose the constant of integration suitably, we obtain

C(z)=§+zl{ ! +£+wiz}. (14.33)

Z— W

This series converges absolutely; in fact, for a fixed value of z, we have the

estimate
S £

=
o (1)
|
whenever |w| > |z|.

The function {(2) is regular everywhere except at the points z = w. These
exceptional points are simple poles of {(z), with the expansions

() =

Z—w
Since {(z) has only one simple pole in every period parallelogram of g (z),
{(z) cannot be a doubly periodic function with primitive periods w, and w,.
It follows, as in Section 14.14, that the expression {(z + w;) — {(z) (i = 1, 2)
has a value 27, which is independent of z, so that {(z) increases by 27, whenever
z increases by w;. Hence, for all z- we have

iz + w) = {2) + 27,, Uz + wy) = {(2) + 27,. (14.34)

Since {(z) is not doubly periodic, the case ; = 7, = 0 cannot occur. The
function {(z) is “‘doubly additively periodic” or quasi-periodic.

| 1 1 z

zZ— w w 0)2

+ P(z — w).

14.16. The Legendre Relation

The constants %, and 7, are connected by an important relation. To find this
relation, we place the period parallelogram so that the pole z = 0 lies at the
center. Applying the residue theorem, we obtain

f U(z) dz = 2ui. (14.35)
ABCDA
On the other hand, the relations (14.34) imply that (Fig. 41, p. 247)

., l@dz = f L e+ wy)dz = f L@ dz + f o 202 d2

= [, {@ dz = 2np0,,
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so that
fAB {(z)dz + f b {(z) dz = 2n,w,.
Similarly,
f L@z + f L @) dz = 2,0,
If we combine these identities with (14.35), we obtain the Legendre relation
MWy — Nwy = mi.
The constants 7, and 5, can be expressed in terms of the values of the function
{(z). It follows from (14.33) that
1 1 -z
+ =+
—Z — W w w

U=t >

1 1 1 z
-2 lz—(—Z)Jr:;*(—w)z}'
The last sum, however, is equal to the last sum in (14.33) except for the ordering
of terms. We conclude from this that {(z) is an odd function:

~{(@) = {(-2).
In particular, if we set z = w,/2, we have
¢ (%) - ;(_ %) , (14.36)

On the other hand, it follows from (14.34) that

bad 8 WY R s
0(%)-t(-% +a) = 1(-%) + 2m
which, together with (14.36), implies that

"71=C(%‘).

One can prove in the same way that

=1 (923) .
14.17. The o-Function
The function obtained by integrating the {-function is no longer single-valued,
because the form of (14.33) shows that the integral will contain logarithmic
terms. We first restrict z to the disk |z] £ p, and split up the expansion (14.33)
in the following way:

1 ’ 1 1 z ' 1 1 z
@=g+ > =z_w+;+;ﬁ]+ >, {z_w+;+;z}-

lwlsp
(14.37)




258 PERIODIC FUNCTIONS §5

The second series converges uniformly in the disk |z| £ p, so that we may
therefore integrate it term by term. The integral of the general term is

z 1 1 z z z?
fo(z—w+—+ )dz log(l—;)+;+2—w2.

Here we must choose that branch of the logarithm which vanishes at the origin.
If we now integrate the rational function formed by the initial terms of the
right-hand side of (14.37) and choose the constant of integration suitably,
we obtain finally

@ =[t@dz=logz+ > {,og(l )+ +_22_}

2w?
lwlsp

+ > {log (1 - —) +Z4 ;:2} (14.38)
jw|>p

The last term is a series whose sum is single-valued and regular for |z| < p.
The function (14.38) is therefore regular everywhere in this disk, except at
the points z = w. It is multiple-valued, so that whenever z describes a closed
path, f(2) increases by n2mi, where n is an integer.

We may obtain a single-valued function by forming

a(z) = @), (14.39)

which is regular everywhere and which does not vanish except at the
singularities z = w of (z). In a neighborhood of the origin we have

f(@) =logz + P(2),

0(z) = e'87+ @) = 7 P = 7 FO) 4 [52],

and therefore

The function o(z) is therefore regular at z = 0 and has a simple zero at this
point. The same argument shows that all the points z = w are simple zeros
of o(z). It is therefore an entire function. By means of (14.39) and (14.38) we
find the product representation

o= T (1 - Z) ] (1440

14.18.

We now examine the behavior of o(z) as z increases by w, or w,. If we write
F(z) = f(z + w) — f(2), (14.41)

it follows from (14.38) and (14.34) that
F'(2) = {z + w)) — U2) = 27y,

F(Z) = 21)12 + Cl’

so that
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where C, is a constant. It follows from (14.41) that
[+ w)=f@2)+ 2z + C,
and from (14.39) that
0(z + w,) = efEFON = FEFIMIICL _ g(7) g2MmzHCL, (14.42)

To determine C;, we set z = —w,/2:

o (%) —_ (— %) e M ¢C1, (14.43)

It is a consequence of (14.40) that o(z) is an odd function. For if we replace
z by —z in (14.40), the only change in the product ]’ is in the order of the
factors of the product. Since the product converges absolutely, its value
remains unchanged (Exercise 14, p. 276). Therefore (14.43) reduces to

€€l = —eMwt,
If we substitute this value into (14.42) we obtain the relation
o(z + w,) = —a(z) e2mEFter2)
and in the same way we obtain

o(z + w,) = —o(z) e2Mztw2l2),

§6. REPRESENTATION OF DOUBLY
PERIODIC FUNCTIONS BY MEANS OF THE ¢-FUNCTION

14.19. Formulation of the Problem

In Section 14.6 we saw that the total number of zeros of a doubly periodic
function inside its period parallelogram is equal to the total number of poles
in the same region. If a, a,, ..., @, are the zeros and b, b,, ..., b, are the
poles, then & = k, if the zeros and poles are counted according to multiplicity.
Furthermore, we found in Section 14.7 that

h

h
a—Xb=ow, (14.44)
i=1 i=1

where w = m,w; + myw, is a period.

Let us now assume, conversely, that g, and b, (i = 1, 2, . . ., h) are given
numbers belonging to the parallelogram determined by w, and w, and satisfy-
ing the condition (14.44). We ask whether there exists a doubly periodic
function with the primitive periods w; and w,, which has zeros at the points
a, and poles at the points b, i = 1,2, .. ., h).

Let us assume first that there exist two functions f)(z) and f,(z) with the
required properties. Then f,(z)/ f3(2) is a doubly periodic function which has
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neither zeros nor poles. Therefore, by Theorem 1 (Section 14.5), it must be a
constant, so that ‘

£1(2) = ¢(2).

Therefore, if there exists a function f(z) with the required properties, it is
uniquely determined up to a constant factor.

14.20. Construction of the Solution

We now show that there actually exists a function f (z) satisfying the required
conditions. If the right-hand side w of formula (14.44) is w = wy # 0, then
we replace the zero g, by the number a; = a, — w,, which causes the right-
hand side to vanish:

ay+ay+- - +ay=b +by+- - +b, (14.44)
The new zero a; does not lie in the same period parallelogram as the others.
We now make use of the o-function which, according to (14.40), has simple

zeros atthe points z = w = m,w, + myw,(m,;, m, = 0, £1, . ..). Thefunction
o(z — a) then has simple zeros at the points z = a + w. Therefore, the function

_ a0(z—apoz—ay)...0(z—ay)
fe=co = bi)a(z - b;) oz — b:)’ (14.45)

where C is an arbitrary constant, has zeros at the points a; + w, a; + @
(i=23,...,h) and poles at the points b, + w (i=1, 2, ..., h) for every
period w. Except for poles just mentioned, the function is regular. We assert
that f'(z) is a doubly periodic function with the periods w, and w,.

It follows from (14.42) that

O'(Z + w; — ai) — U(Z — ai) e2m(z—at)+Cl — O'(Z — ai) eanz+C1 eoanat,

o(z + w, — b)) = o(z — b;) e3M**C1 g72Mb,

Hence, v
O'(Z _ a;) . a(z _ ah) (e2n1z+C1)h e—2n1(a|’+az+~--+an)
fz+ w)= CO'(Z —b,)...0(z — by) (e3mz+Cryh g=2m1(b1+ba+ "~ +bh) :
By (14.44)’ we have

[z + w)=1Q).
By a similar argument we find that
f(z+ w)=f(2).

The function f(z) defined by (14.45) is therefore doubly periodic. It has all
the required properties and we have the following result.

There exists a doubly periodic function with prescribed periods and with
prescribed zeros and poles satisfying (14.44), which is unigque up to a constant
factor.
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Every doubly periodic function can therefore be represented in the form
(14.45) by means of the o-function.

§7. THE DIFFERENTIAL EQUATION OF THE p-FUNCTION

14.21.
In Section 14.15 we derived for the function {(z) the expansion

1 ! 1 1 z
()= + > (z_—w + =+ E) . (14.46)
The sum appearing in this formula is regular in a neighborhood of the point
z = 0, so that it can be expanded into a power series whose radius of con-
vergence is the smallest of the numbers |w|.
If we restrict z to the region |z| < |w|, we have

1 1 z 22z

TR N — . (14.47)

zZ—w w w

The series (14.46) still converges if each term in (14.47) is replaced by its
modulus. One can therefore rearrange the terms without changing the value
of the sum. Hence, we obtain the identity

z’(zjw+cl_v+a%)=—zzz'$*;3zla_§2“242'5§“°"'

The coefficients of this power series will be denoted by

c‘v=z'$ (v=134,..).

Since —w is also a period whenever w s, it follows thatc,,,, = 0(n =1, 2,...).
The function {(z) therefore has the following expansion in the neighborhood
of the origin:

1
{(2) = P c4z® — ce2® — cgz” — .

Hence,
p(@=-0() = 212 + 3c422 + Scez* + - -, (14.48)
and

p'(2) = —;12—3 + 6¢,z + 20c6z3 + - - -, (14.49)
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By means of rational operations on p and ¢’ we can construct a function
without poles. Let us consider the expression

0'(2)* — {49 (2)* — 60c,p (z) — 140cg) = [22]. (14.50)

On the left-hand side we have a doubly periodic function with periods w, and
w, whose only possible pole in the period parallelogram is the pole z = 0 of
#(2). But, in view of (14.50), it is regular at this point. Therefore it must be a
constant, and since it vanishes at z = 0, it is identically zero. Hence,

p'(2)* = 4p(2)® — 60c, p (z) — 140cs. (14.51)
We adopt the notation

) Il ’
82=6004=602 i 8 =140, = 1402 a_l)g

The function ¢ (z) satisfies the differential equation

dp\?2 ,
() -4 -av-s (14.52)
or
dp e
5~ VAP - e e (14.53)

In the neighborhood of every point where p’(z) # O the function p(2) is
invertible and z may be expressed as a well-defined function of p. From (14.53)
we have

dz 1
dp \/4ﬁ’3“ng’“gs’
whence
d
—z+ f .. S— (14.54)
PoVapP — g0 — &

The inverse function of the p-function is therefore the elliptic integral (14.54).

§8. REPRESENTATION OF DOUBLY PERIODIC
FUNCTIONS AS RATIONAL FUNCTIONS OF p AND g’

14.22. Representation of Even Functions

Let f(z) be an even, doubly periodic function with primitive periods w, and
w,. Then the roots of the equation

f2)=c (14.55)

may be grouped in opposite pairs. We choose the fundamental parallelogramin
such a way that its center is at the origin, and we make the convention that the
fundamental parallelogram contains the vertex (w; + w,)/2 and the two open
sides meeting at this vertex, but not the other two sides. If z; is a root of (14.55),
then so is —z;, and if z; lies in the fundamental parallelogram, so does —z;.
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On the other hand, if z; is on the boundary of the period parallelogram, so
is —z;, but —z; does not belong to the fundamental period parallelogram.
In this case one of the points —z, + w;, —z; + w,, —2z; + w, + w, will lic on
the boundary of the fundamental parallelogram; this point will be denoted
by z;.

The points z; and z; coincide if and only if z; = —z, + wy, z; = —z, + w,,
or z; = —z; + w; + w,, so that z, is one of the points w,/2, w2/2 (w; + wy)/2.
In this case z, is a root of even order of Eq. (14.55).

Let z, and z; (i=1,2,...,k) be the roots of Eq. (14.55) in the
fundamental parallelogram.

Along with (14.55) we also consider a second equation

f@=

and denote its roots by u;, u; (i = 1, 2, . . ., k).
The function
f(@)—c

f@ -
is then doubly periodic with primitive periods w, and w,. Its zeros in the
fundamental parallelogram are the points z,, z;, and its poles are the points
u,ui=1,2,...,k).

A doubly periodic function with the same properties can also be con-
structed by means of the p-function, which is a function of order two. Now
z; and z; are both zeros of the function p(z) — p(z;), which can have no other
zeros in the fundamental parallelogram. The function

0z) = PG —#@)lp(2) — p(2)] . . . [9(2) — p(z)]
[p(2) — p()lle(2) — pu)] - . . [p(2) — ()]’
like (14.56), has z;, z; as zeros and u,, u; as poles. The function
[f(z) — clilf(2) — d]
0(2) ’

which is also doubly periodic, is regular everywhere. This function must
therefore be a constant K, so that

2= soo

(14.56)

We see from this that f(z) is a rational function of ¢ (z), f = R(p). Therefore:
Every even doubly periodic function is a rational function of the p-function.

14.23. The General Case

Let now f(z) be an odd doubly periodic function. Since p’(z) is odd, the
quotient f(2)/p’(z) is even. We have just seen that such a function can be

y
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expressed as a rational function of p(z). The function f(z) is therefore a
rational function of g (z) and ¢ '(z) of the form f(z) = p'R(p).

Every doubly periodic function f (z) can be written as the sum of an even
and an odd doubly periodic function:

f@+f2) f@)-f(2)
2 2 )

It then follows that f(z) can be expressed as a rational function of p(z) and
9'(2), f= Ry(p) + p'Ry(p). We have thus proved the following general
theorem.

f@=

Every doubly periodic function can be expressed as a rational function of
¢ (2) and 9’ (2).

§9. ADDITION THEOREM FOR DOUBLY PERIODIC FUNCTIONS

14.24. Algebraic Equation between Two Doubly Periodic Functions

Let f,(2) and f5(z) be two arbitrary doubly periodic functions with primitive

periods w, and w,. Both can be written as rational functions of ¢ and p":
fi@) = Ry(p, 9),  f2(2) = Ry(p, ).

In addition, we have at our disposal the relation between p and p’ (Section
14.21):
P2 =49’ — g0 — g3

If p and ¢’ are eliminated from these three equations, we obtain an equation

of the form
G(f1,/2) =0,
where G is a polynomial in f; and f,. Therefore:

Any two doubly periodic functions with the same periods are connected by an
algebraic equation.

If we apply this theorem to a doubly periodic function and its derivative,
which is also doubly periodic, we have the following theorem.

Every doubly periodic function f(z) satisfies an algebraic differential
equation of the first order:

G(f(,f'@@)=0.

14.25. Addition Theorem for the p-Function

We shall prove that the p-function possesses an algebraic addition formula.
The function

d (z

@ =2 108 (o) ~ p@) = 2
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is doubly periodic. It has simple poles at the points z = 4,z = —y,and z = 0
with the residues 1, 1, and —2, provided that p’(u) # 0. Whenever p ‘() = 0
the denominator has a double zero at the point z = u and the residue of
f(2)is 2. The function

z—w+ iz +uw—22) (14.58)

has the same simple poles with the same residues as the function f(z). The
function (14.58) is also doubly periodic with primitive periods w; and w,,
which follows from the fact that {(z) is quasi-periodic. The difference of the
functions (14.57) and (14.58) is therefore a doubly periodic function which
is regular everywhere. Hence, it must be a constant C, and we have

9'(2)
———t—— = C + {(z — w) + Uz + u) — 2{(2). 14.59
0@ — o@D Uz —w) + Uz + u) — 2{(2) ) (14.59)
If we replace z by —z and observe that p(z) is an even function, while

#'(z) and {(z) are odd functions, we have that C = 0. If we interchange z
and u in (14.59) and add the resulting formula to (14.59), we obtain

1) = 10+ Lo+ LD =2,

If we differentiate this equation with respect to z, we have

Pz + u) = p(z) — % a_az ‘%8:—%‘). (14.60)

In view of the differential equation (14.52) for the p-function, the right-hand
side of (14.60) is a rational function of ¢ (z), ¢ '(2), ¢ (w) and p'(v). Thus we
have obtained for the p-function the following addition formula:

p(z + w) = R(p(2), p(u), 9'(2), p'(w)),

where Ris a rational function. Moreover since p ‘(z) and p '(#) can be expressed
algebraically in terms of p(z) and p(u), we obtain an algebraic addition
formula for the p-function. Carrying out the calculations, we finally arrive
at the formula

2
(1 + 02 + 03)4p 0205 — &3) = (@w: + 9103 + 0205 + %3) , (14.61)

where p, = p(z), p, = p(), and p; = p(z + u) (Exercise 18, p. 277).

14.26. Generalization
We shall prove the following general theorem.

Every doubly periodic function has an algebraic addition formula.
Let us write

o(z;) = g1, ©(22) = 92, ¢'(z) = o1, p'(z2) = 3.
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If f(2) is an arbitrary doubly periodic function with primitive periods w,
and w,, then it follows from Section 14.23 that

fGy + 2) = R(p(z) + 2), 9'(2, + 23)), (14.62)
where R is a rational function. The addition formula of the p-function yields
0(z1 + z) = Ry(py, 1, 02, 02), (14.63)

where R, is a rational function. If we differentiate (14.63) with respect to z,,
we have

oR, JR
'z + z5) = 80871‘*‘6@

where the rational function R, is obtained by the substitution

9"(z1) = 691 — 3g..
If we substitute (14.63) and (14.64) into (14.62), we obtain

) ©"(z1) = Ry(p1s 015 925 02) (14.64)

Sf @+ 23) = Ry(p1, 91, 02, 92), (14.65)
where R, again denotes a rational function. In addition, we also have
f(z1) = R(py, p1)s f(z2) = R(p2, p3),
i’ =401 — &201 — &3, p2° = 4p3 — 8,0, —

If we eliminate p,, 9,, 91, ©; from these equations and from (14.65), we
obtain an equation of the form

G(f(zl + z2))f(zl)’f(22)) =0,

where G is a polynomial. This shows that the function f(z) possesses an
algebraic addition formula.

§10. DETERMINATION OF A DOUBLY PERIODIC
FUNCTION WITH PRESCRIBED PRINCIPAL PARTS

14.27.
We now consider the problem of constructing a doubly periodic function,

whose poles b, b,, . . ., b, and principal parts at these poles are prescribed in
the period parallelogram. At the polez = b let

B B l
(z—-by

According to Section 14.5, a necessary condition for the existence of such a
function is that

w(z) =

+ .

b).

2B =0. (14.66)

®)
We are going to show that this condition is also sufficient.
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As auxiliary functions we shall use the p-function and its derivatives.
At z = 0 these functions have the expansions (cf. Section 14.21)

p(2) = + PB(2) = wy(2),
14.6
o1 0 (Z) 1 (1467
1 T B@D = W@  (k=23,..)

All these functions are doubly periodic. At the origin they have a pole of order
at least two.

We also need a function with a simple pole at the origin. We shall use
here the {-function although it is not doubly periodic. By Section 14.21 its
expansion at z = 0 is

= i—+ B(2) = w,(2). (14.68)

By means of the functions w,, w,, ... we form the expression

B_w(z — b) + - + B_ywy(z — b) + B_yw(z — b),

whose only singularity in the fundamental parallelogram is at z = b. This
point is a pole of order v with the required principal part.

Constructing the corresponding expressions for each of the given poles
by, b,, . . ., b,, and adding them all together, we obtain the function

W) = 2Bz =) + o+ fawa(z — B) + fywi(z — b)) (14.69)

This function has poles at the points b,, b,, ..., b, and at these poles it has
the prescribed principal parts. It remains to show that w(z) is doubly periodic.
Since the functions w,, w;, . . . are doubly periodic, it suffices to show that
the function

8() = (zb) B-iwi(z — b) = (z\;; B-1l{(z — b)

is doubly periodic.
-From (14.34) we have

Uz + w; — b) = {(z — b) + 2n;.
Using this relation, and taking into account the condition (14.66), we have that

8z + w) =% Bz + @ — b) = g(2) + 21 2 B-1 = &(2).

Hence, w, is a period of the function (14.69). One can show in the same way
that w, is also a period. The function w(z) is therefore doubly periodic; thus
it has all the required properties.
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If f(2) is any other doubly periodic function with the same properties,
then f(z) — w(z) is a constant (Exercise 8, p. 276).
We have thus obtained the following result.

There exists a doubly periodic function, which is unique up to an additive
constant, with prescribed poles in its period parallelogram and with pre-
scribed principal parts such that the sum of the residues is zero. The general
Jorm of this function is given by (14.69), where the functions wy, Wy, . ..
are defined by (14.68) and (14.67).

§11. MAPPING BY A DOUBLY PERIODIC FUNCTION OF ORDER 2

14.28. Branch Points

Since the function p (z) assumes every complex value twice in a period parallelo-
gram, it maps the period parallelogram onto a two-sheeted Riemann surface
with a slit. The edges of the slit correspond to the boundary of the parallelo-
gram. The slit Riemann surface is a simply connected region.

To investigate the mapping more closely, we determine first of all the
points at which the mapping is not conformal. These include all the zeros of
#'(2), and, in addition, the poles of p(z), which are all double poles.

To determine the zeros of the equation p‘(z) = 0 we shall use the fact
that p '(z) is odd. If we note that any period w of p(z) is also a period of p '(z),

we obtain
o' (C) = o (%) = '(1')

and hence

provided that w/2 is not a pole of ¢ (z).

The only points of the form w/2 which belong to the fundamental parallelo-
gram P, are the points w,/2, (w, + w,)/2, and w,/2. Since the function p '(z)
is a doubly periodic function of order 3, it can have no other zeros in P,.
From this it follows that all the zeros of p'(z) are simple. The only pole of
p(2)in Pyis z = 0. We shall write

w; +w Hw
9 (%) =e, P (———‘ 5 ’) =e, (72) =e.  (1470)

The numbers e, e, and e, are all distinct, for if, for example, w,/2 is a double
zero of p(z) — e,, then the p-function, which is of order 2, cannot assume
the value e, at any other point of P,. Hence, e, # e, and e¢; # e,.

Since p’ has a simple zero at z = w,/2, p(z) maps a neighborhood of the
point w,/2 onto a two-sheeted Riemann surface which has a first-order branch
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point at p = e, (Section 9.25). For the same reason, e, and e; are also first-
order branch points. At the origin ¢ has a double pole, so that its image
ey = p(0) = o is again a first-order branch point of the Riemann surface
(Section 9.26).

14.29. The Mapping by the p-Function

Again we choose the fundamental parallelogram in such a way that its center
is at the origin. By means of straight lines through the origin parallel to the
sides, we decompose the parallelogram into four congruent parts (Fig. 42).

W)+ w2

Figure 42

Since p is an even function, it assumes the same values in the regions 1 and
1’, so that these regions have the same image domain. The same applies to
the parallelograms 2 and 2’. The function g (z) therefore maps the domain
consisting of parallelograms 1 and 2 onto one sheet of the Riemann surface
and the domain consisting of 1’ and 2’ onto the other sheet.

Figure 43

We now let the point z describe the boundary of parallelogram 1 once
in the positive sense. If z moves from z = 0 to z = w,/2, p moves along a
simple arc from c to the point e,. If z describes the segment joining w,/2
to the point (w, + w,)/2, p moves from e, to e,. Next, if z goes from
(@) + wy)/2t0 w,f2, p moves from e, to e;. Finally, if z returns from z = w,/2
to the origin, p moves from e; to infinity. Thus, as the point z describes the
boundary of parallelogram 1 in the positive sense, p describes a simple
curve /, which extends to infinity in both directions (Fig. 43).
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If z describes the boundary of parallelogram 2 in the positive sense, then
p describes the curve / in the opposite sense.

It follows from Section 10.13 that the function p = p(z) maps parallelo-
gram 1 one-to-one conformally onto that domain I bounded by the curve /
which is on the left as / is described in the sense e,, e,, ;. Parallelogram 2 is
mapped one-to-one conformally onto the second domain IT bounded by /
which is connected with I along the arc of / from e, to .

The region consisting of parallelograms 1’ and 2’ is mapped onto the
second sheet of the Riemann surface. The two sheets are connected along the
arc of / which joins e; to «. The entire fundamental parallelogram is thus
mapped onto a two-sheeted Riemann surface whose sheets are joined together
crosswise along the arc (w, e;). Both sheets are slit along the arc e, e,e;.
The surface has a branch point of the first order at infinity.

Every period parallelogram of the z-plane is mapped onto such a two-
sheeted Riemann surface slit along the arc e e,e;. These surfaces are joined
to one another along the slits e;e, and e,e;.

The whole z-plane therefore is mapped onto a Riemann surface with infinitely
many sheets which has infinitely many first-order branch points over the
points ©, e,, é,, ;.

If the opposite sides of the parallelograms are identified, we obtain a
surface of torus-type. This is mapped in a one-to-one way onto a two-sheeted
Riemann surface with first-order branch points at the points «, e, e,, e;.

-14.30. The Case Re w,fw, = 0

If the fundamental parallelogram is a rectangle, then the boundary curve /
of the domains I and Il is a straight line. We prove this whenever one of the
periods w, is real and the other w, is purely imaginary. A suitable rotation
will reduce the general case to this special one.

To each period w = m w, + myw, corresponds its complex conjugate

» which is also a period. If z is real, the terms of the expan- W =mw; — Myw
are pairwise complex conjugate numbers. It follows that sion (14.30) of p

1 z. 9 (z) is real for rez
imaginary, we substitute z = iy into the expansion of p, If z is purely
1 greater than 0, and we obtain where y is real anc

P(iy)=—;,li+zl{(zy——l‘$)_2—wizj
SR e

erms are again pairwise complex conjugate and that p (iy) We see that the t
: is therefore real.
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It can be shown by the same method that p (z) is also real on the remaining
sides of the rectangle (Exercise 23, p. 277).

Thus, in the case we have been considering,  (z) maps the rectangle 1
onto the half-plane Im p < 0.

14.31. The Legendre Modular Function

By a bilinear transformation of the p-plane three branch points of the Riemann
surface, for example, «, e,, e,, may be transformed into the points «, 0, 1.
The mapping function is of the form

e

w .
ez_el

The fourth branch point e; is thus mapped into the point

€; — €
e, — e’

A=

In view of (14.70), A depends only upon w, and w,. One can prove that A in
fact depends only upon the ratio ¢ = w,/w,: A = Mw,/w,) = A(¢) and that
this function (the so-called Legendre modular function) is an automorphic
JSunction of the variable ¢. By an automorphic function we mean a meromorphic
function which is invariant under a group of bilinear substitutions. Later on
we shall meet the function A(z) in another context (Section 17.35).

14.32. The Mapping by an Arbitrary
Doubly Periodic Function of Second Order

Any bilinear function of p(z) is a doubly periodic function of order two. We
now show the converse: Every doubly periodic function w(z) of second order
with primitive periods w; and w, is a bilinear function of p.

Since w'(z) is also a doubly periodic function, there exists a point z, in the
fundamental parallelogram where w'(z,) = 0. In the neighborhood of this
point w(z) has an expansion

w(z) = w(zg) + ez — zg)2 + -+ - (14.71)

Here ¢ # 0; otherwise w(z) — w(z,) would have a triple zero at z,, and this is
impossible, since w(z) is of second order. By (14.71) we have

c 1 1 A,
w—w, (E—2zl1+[z—-2] (-2 z-—2

+ PB(z — zp).
This function also is doubly periodic and of second order. Its only pole in the
fundamental parallelogram is therefore z,. It follows that 4_, = 0 and hence

1
w —c wo  (z — zg)? + P - 20)
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This function differs from p (z — z,) only by additive constant:

4 o
@(Z—Zo)—m—-c-
Hence it follows that w(z) is a bilinear function of p, as asserted.

Therefore every second-order doubly periodic function maps the z-plane
onto a Riemann surface with infinitely many sheets whose branch points are
all of the first order and lie over four base points. The sheets of this surface
are connected the same way as the sheets of the Riemann surface of the
p-function.

§12. ELLIPTIC INTEGRALS

14.33. Change of the Variable of
Integration by Means of a Bilinear Transformation

We now consider the elliptic integral of the first kind

v dw

wo V(W — e)(w — e))(w — e3)(w — e,) '
The integrand is a two-valued function, and e,, e,, e; and e, are the branch

points of the associated surface. By means of a bilinear transformation we
now introduce a new variable of integration

(14.72)

, _aw+ B .
gy (28 — By # 0) (14.73)
and we write ’
,_ae, +B _
&= s (v=123,4).

Since the cross-ratio is invariant under a bilinear transformation, we have for
corresponding values of w and w’ the identity

(W’ €3, €, ez) = (W', e:;’ e;’ eé)

or
(W = eDftw = &) _ (v = W’ = e3)
(e3 —e))/(es —e) (e3 —e))/(e3 — &)
Differentiation yields
€ — € € —& - e — e e;—eédw’
(Ww—e)e;—e (W' —e)* e; — e )

If we multiply this equation by the three equations obtained by cyclic permuta-
tion and integrate, we obtain, finally,

w aw
wo V(W — e)(w — e)(w — e;)(w — ey)
a4 dw’ . (14.74)

wor VW — e)(W' — )W’ — e3)(w' — ef)
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where

A= A/(el — e))(e; — e3)(e; — el)(es — €))

(ey — e3)(ex — e4)

and where A’ is the analogous expression.

14.34. The Casee, = «

We consider the special case when the transformation (14.73) takes one of
the points e, to infinity, for example, let e; = «. If we isolate all the factors
on the right-hand side of (14.74) which contain e;, we obtain a factor whose
value for ey = o is i. In the present case the transformation formula (14.74)
therefore reduces to

w daw

wo V(W — e))(w — e)(w — e3)(w — e)

w’ daw’

= A’ ,
wor V(W' — e))(w' — &)W’ — €3)

where now

/\/(el 92)(92 - ez)

e

Thus every elliptic integral of the first kind containing a polynomial of degree
four in the radicand can be transformed into another one with a cubic
polynomial in the radicand. One only has to apply a bilinear transformation
which takes one of the branch points to infinity. Conversely, a cubic polynomial
can be replaced by a polynomial of degree four by means of a bilinear trans-
formation which maps the branch point at infinity into a finite point.

14.35. Normal Forms of the Integral of First Kind

For elliptic integrals of the first kind, one may employ any one of several
normal forms.

If we choose the branch points e,, e,, e;, and e, so that e, = « and
e, + e, + e; = 0, we obtain the Weierstrass normal form

dw

wo VAW? — g,w — g5 °

If wesete; = A, e; = 1, e53 = 0, and e, = », we obtain the Riemann form

w dw

wo Vw(w — D(w — A)
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The branch points may be mapped by a bilinear transformation into the points

e, =1, e, =—1, e = 1/k and e, = —1/k. The integral is then transformed
into the Legendre normal form
w aw

wo V(I — w3)(1 — k?w?) "

14.36. Mapping by an Elliptic Integral

We proved in Section 14.32 that every elliptic function of second order maps
the z-plane conformally onto a Riemann surface with infinitely many sheets,
whose branch points lie over four points. If the period parallelogram is a
rectangle, then the branch points lie on a circle. By a bilinear transformation
the branch points can then be mapped into the points 1, —1, 1/k, —1/k with
0 < k < 1. The inverse function of the resulting elliptic function is an elliptic
integral in the Legendre form (cf. Exercise 19, p. 277).

Conversely, we now start from the elliptic integral

;= J’W dw
o V(I — w1 — k2w?)’

where 0 < k < 1, and investigate its mapping properties. First let us deter-
mine the image of the real axis.

Each branch of the root is single-valued in the half-plane Im w > 0. We
choose that branch which has the value +1 for w = 0. If we let w increase
from O to 1 along the real axis, then the integrand remains positive so that
dz/dw > 0. The point z therefore moves in the same direction as w, that is,
along the positive real axis from z = 0 to the point

(14.75)

= J’ ! dw
o V(I — w1 — k*w?)’
which is clearly finite.
We now consider the interval 1 < w < 1/k. To determine which branch
of the square root we have to choose, we let w describe a small semicircle ¢ in
the upper half-plane about the point w = 1. Along this semicircle we have

dz 1 1 1_ .2
arg%_—iarg'(l—w)—i{arg(l+w)+arg(k2 w)}

The expression in brackets returns to its initial value O as w returns to the
real axis to the right of w = 1. On the other hand, the increment of arg (1 — w)
is —m and hence

dz m
aw 2’
If w now moves along the segment (1, 1/k), then arg dz/dw remains unchanged,
so that it is equal to =/2. Hence, if w moves along the segment (1, 1/k), the

4, arg
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point z describes a segment in the direction of the positive imaginary axis
Its length is given by the modulus of the following integral:

1/k dw . Lk dw
L VA=A k) ) VorR— D = kew)

We see in the same way that when w circumscribes the point 1/k, the argument
of dz/dw again increases by =/2. Thus in the interval 1/k < w we have
arg dz/dw = =. Hence, as w increases from 1/k to « along the real axis, z
describes a segment in the direction of the negative real axis whose length is

f” dw
e VWE — DEW? - 1)

This segment has the same length as the segment which corresponds to the
interval (0, 1). In fact

(14.76)

J" dw _ J‘“’ dw
o V(I — wi( — k*w?) e VW = DEW? = 1)

as can be seen easily if we make the substitution w = 1/ku in the integral on
the right-hand side. The image of the point w = « therefore lies on the
imaginary axis.

In the same way we find that if w moves along the negative real axis from
0 to o, z will describe a polygonal path which is symmetric with respect to
the imaginary axis to the polygonal path obtained above. The entire real
axis therefore is mapped onto the boundary of a rectangle with vertices
+w,/4 and +w /4 + w,/2, where

1 aw . 1/k dw
“r = 4f VA= w1 = kwd’ 2T 2 f L V= )1 = Ewd)

The upper half-plane (Im w > 0) is mapped onto the interior of the rectangle
(Section 10.13).

If we pass from the upper to the lower half-plane (Im w < 0) across the
segment (—1, 1), we obtain that branch of the function (14.75) which, by the
reflection principle, maps the lower half-plane onto a rectangle that is sym-
metrical with respect to the segment (—w,/4, w,/4) to the rectangle obtained
above. Repeated application of the reflection principle leads us to the
conclusion that the infinite-sheeted Riemann surface with its infinitely many
first-order branch points over the points —1/k, —1, 1, 1/k is mapped in a
one-to-one way onto the whole z-plane. The half-planes of the Riemann
surface are mapped onto a lattice of congruent rectangles in the z-plane.

From the foregoing discussion we conclude that the inverse function of
the elliptic integral (14.75) is a doubly periodic function of second order.
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EXERCISES ON CHAPTER 14

1. Show that a rational function cannot be periodic (unless it reduces to a
constant).

2. Let w(z) be a simply periodic function with the primitive period 2xi, and
let w(z) remain bounded as z goes to infinity in one direction in the period
strip. Show that w(z) then tends to a finite limit.

3. Let w(z) be a simply periodic function with the primitive period 2wi, and
let it satisfy condition (14.8). Show that if w(z) is unbounded as z goes to
infinity in one direction in the period strip, then w(z) — o.

4. Let w(z) be a simply periodic entire function with the primitive period
2ari, and let w(z) satisfy condition (14.8). Show that w(z) can then be expressed
as a polynomial in e and e™=.

5. Prove that a simply periodic entire function with the primitive period
27i can be expanded into an everywhere convergent series of the form

+c0 nz
n=—c An € .

6. Prove that if w(z) is doubly periodic, then so is w'(z).

7. Letf(z) be an odd doubly periodic function and let w be one of its periods.
Show that w/2 is then either a zero or a pole of f (z), and that the order of
f(2) is odd in both cases.

8. Let f(z) and w(z) be doubly periodic functions with the same periods and
the same poles. Suppose further that at each pole the two functions have the
same principal parts. Prove that f(z) = w(z) + const.

9. According to Section 2 every periodic function with the period w can be
expressed as a single-valued function g({) of the variable { = €2™#/, What
can be said about g({) whenever f(z) is a doubly periodic function with the
primitive periods w and w’?

10. Prove that if 4, = 1 in the expansion of p(z) (Section 14.8) about one

particular pole, then the same is true for the expansion about every other
pole.

11. Derive the partial-fraction expansion of the function 1/sin? 7z by applying
to cot 7z/(z — a) the same method which was used in Sections 14.9 and
14.10 to derive the expansion of p '(z).

12. Show that it follows from the expression (14.30) for p(z) that p(z) has
the expansion (14.30)’ in the neighborhood of every point w.

13. Prove that the infinite series appearing as the last term on the right-hand
side of (14.38) converges absolutely and uniformly in the disk |z] = p.

14. Prove that the product expansion (14.40) of the function o(z) converges
absolutely at every point z # w.



EXERCISES ON CHAPTER 14 277

15. Show that the series (14.46) remains convergent if each term in the series
(14.47) is replaced by its absolute value.

16. Derive the series (14.48) for the p-function directly from the partial-
fraction expansion of the p-function.

17. Let the coefficients ¢, be defined as in Section 14.21. Prove that ¢g = 3¢3/7.

Hint. Derive two expressions for p “(z), one from the power series of p'(z)
and the other from the differential equation of p (z).

18. Prove the addition formula (14.61) for the p-function.

19. Show that the inverse function of a second-order doubly periodic function
is an elliptic integral.

20. Prove that the inverse function of a doubly periodic function is an Abelian
integral, i.e., a function of the form

z=1z +fw —di
ST S Ay’

where A(w) is an algebraic function of w.

21. Show that if the primitive periods of a doubly periodic function f(z) of
second order are integer multiples of the primitive periods of another doubly
periodic function w(z), then w(z) can be expressed as a rational function of
f(2)and f'(2).

22. Describe in detail how the sheets of the Riemann surface obtained by a
mapping by the p-function are joined together.

23. Suppose that the fundamental parallelogram of the p-function is a
rectangle whose sides are parallel to the real and imaginary axes. The per-
pendicular bisectors of the sides of the parallelogram divide the rectangle
into four congruent rectangles. Show that g(z) maps the boundary of any
one of these rectangles onto the real axis (cf. Section 14.30).

24. Show that if the period parallelogram of the p-function is a rectangle,
then p(z) maps a quarter of the period parallelogram onto a half-plane, even
though none of the periods is real.

25. Transform the elliptic integral in Riemann normal form into the Legendre
normal form.

26. Construct the line complex or graph associated with the Riemann surface
of the elliptic integral (14.75) (cf. Section 6.14).



CHAPTER 15

THE EULER r-FUNCTION

§1. DEFINITION OF THE I'-FUNCTION

15.1. The Euler Integral
We shall consider the so-called Euler integral of the second kind,

'@ = f " el dr. (15.1)

The integral converges for all real positive values of z. For complexz = x + iy
we have

e—ttz—l — e—ttx-—l efy log l’
where log ¢ is to be taken real, so that
Ie—!tz-]| — e—ltx—l.
The integral (15.1) therefore converges absolutely everywhere in the half-plane

x > 0. Furthermore, if x; is any positive number, the convergence is uniform
in the half-plane x = x,. For

7= £ et for t<],
and the integral of the last expression converges.

15.2. Analyticity of the Function I'(z) in the Half-plane x > 0

To show that the function defined by (15.1) is analytic in the half-plane x > 0,
we prove first the following general theorem.
If we assume:

1) The function f (¢, z) is continuous in t and z for
—wSa<t<bzw and ze@G; (15.2)

2) The partial derivative f,(t, z) is a continuous function of t and z for the
values (15.2); "
3) The integral

ﬁf@@m

converges uniformly on every compact subset of G;
278
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Then the function
w(z) = f " £, 2)dt (15.3)
is regylar in the domain G.

Proof. Let us consider two sequences a,, d, . . . and b, b,, . . . such that

a<... <@g <...<@p<a <b <b<...<b,<...<b,
and
lim g, = q, lim b, = b.
n-—-»>o N>

According to Section 9.7, the integral

w(z) = f " £, 2)dt (15.4)

is an analytic function with the derivative

W) = [ £t 2) di

for every value of n. By assumption (3) the functions (15.4) converge uniformly
to the function (15.3) on every compact subset of G. By Weierstrass’s theorem
(Section 9.8) the function w(z) in (15.3) is therefore regular in G, and its deriva-
tive is
. ) b
w'(z) = lim w,(z) = f [, 2) dr.
n—> a

If we apply the theorem we have just proved, it follows that the function
I'(2) defined by (15.1) is analytic in the half-plane x > 0 and that its derivative
is given by

I'(z) = f : e~t*"!log t dt.

'15.3. The Relation between the I'-Function and the Factorial
If we integrate (15.1) by parts, we obtain for x > 0 the identity

r@ - f “etmtdr =L f “ewd=1TG+1. (55
0

0
If we apply this formula # times, we find that

IF'+n=zz+n...z+n— DIQZ). (15.6)
Substituting z = 1 and observing that

rq) = f "etdr =1
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we obtain the formula
I'n+1)=n! (15.7)

Thus the function I'(z) generalizes the expression n!, which has been defined
only for integer values of ».

15.4. Analytic Continuation of the I'-Function
The identity (15.6) enables us to extend the definition of the function I'(z)
to the left half-plane. At the moment, the left-hand side of the identity

I'(z+n)

F(Z)=z(z+l)...(z+n—l)

(x>0) (15.8)

is defined only in the half-plane x > 0. On the other hand, I'(z + ) is defined
for x > —n, so that the right-hand side of (15.8) is regular in the half-plane
x > —n, with the exception of the points 0, —1, -2, ..., —(n — 1) which are
simple poles of the function. Because equality holds in (15.8) for x > 0, the
right-hand side of (15.8) is the analytic continuation of I'(z) into the half-
plane x > —n. Here n can be chosen arbitrarily and I'(z) therefore admits
a continuation into the whole plane.

The resulting function I'(z) is analytic in the whole finite z-plane, and is
regular everywhere except at the points 0, —1, —2, . . ., which are simple poles
of I'(z), so that I'(z) is a meromorphic function.

To determine the residue of the I'-function at the point z = —n, we replace
n by n + 1 in the identity (15.8); this yields the value (—1)"/n! for the residue
at the point z = —n.

The formula (15.5) was derived above for x > 0. However, since both
sides of the formula are analytic in the whole plane, it follows from the prin-
ciple of analytic continuation that the formula is valid for all z.

§2. STIRLING’S FORMULA

15.5.

We now investigate the behavior of the I'-function as z tends to infinity along
the positive real axis. We set z = x > 0 and form the expression

Tx+1)= f Rat? (15.9)

The integrand assumes its maximum e *x* at the point 1 = x. As x — «,
the point at which the maximum is assumed tends to infinity; at the same
time the corresponding maximum also tends to infinity.

We write the integral (15.9) in the form

Fx+1)= e"‘x"f e~ (%) (E) dr,
0 X
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and, after a change of variable # — x = u, we obtain

I(x+ 1) = e>x f et (1 ¥ ;) du. (15.10)
We now estimate the integral
I(x) = f e (1 + g) du (15.11)

for large values of x.
The integrand assumes its maximum 1 at v = O and tendstoO as u — —x

or u —> oo,
We choose an arbitrary number y in the interval 0 < y < x; its value
will be fixed later. We then split the integral (15.11) into four parts

-y y x 0
I=f_x+f_y+fy+fx=Ix+12+13+14, (15.12)
which we shall estimate separately for large values of x.

15.6.

We show first that I, — 0 as x — . To estimate the real branch of the
logarithm of the integrand '

-u A W u
log[e (1 +x)] u+xlog(l +x)

X u
= —u {l -—;log (1 +)_c)}’ (15.13)
we substitute
u
log (1 + ;) =g
and obtain
X u s
;log (1 +;) =5_1 (15.14)

As u increases from x to oo, s increases from log 2 to «. The derivative of
the function (15.14) is negative in this interval. Hence, the function assumes
its largest value log 2 at the initial point s = log 2 of the interval. Hence,

log [e‘“ (1 + 1‘) ] < —u(l —log2)=—u logf.
x 2
Therefore the integrand in (15.11) satisfies the inequality

u x
e (1 + _) < e log (e/2 ).
x =
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From this we obtain the following bound for the integral I,:

0< 14 < J‘m e-uloe (el2) gy e log (e_/i) .
* log (e/2)

This upper bound tends to 0 as x — o, so that

lim I, = 0.

X—»0

- x
I =f e"‘(l +§) du

15.7.
In the expression

77
[3e3

the integrand assumes its greatest value e’(1 — y/x)* at the end-point u = —y
of the interval of integration. Thus we have the following estimate for /,:

0<I,<ey(l—£) (x — ).

Here
(1 22Y] - N\ y_r
log[e (1 )] y+xlog(1 ) y+x( ol o
__r_y _...__r
T 2x  3x? ST

By (15.15) we therefore have the estimate

0<I, <xeP

I3=f e"‘(l+1—l) du
v x

The integrand in

(15.15)

(15.15)'

decreases as u increases from y to x. Therefore its greatest value is attained

for u = y. Hence,

0<I3<e‘y(1+;1—:) x - y),

and
SN o2 2 LY
log[e (1+x)] 2 T3 ST T
_rr_r
ST thRT T

It follows from (15.16) that

0<I; <xelex

(15.16)
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We now determine y in such a way that I; and I; tend to zero as x — .
For this purpose, we set

y2

~=x with 0<i<l, (15.17)

which gives
y = x{1+d2, . (15.18)

From (15.15) we now obtain for I, the upper bound x e~*2, which tends
to zero as x — . Similarly, we see that I; — 0 as x — oo,

15.8.

Of the four integrals in (15.12), it only remains to estimate the integral

I, - f T e (1 +3) du. (15.19)
— X

Since |u/x| < 1 throughout the interval of integration, we have

. W\l W W W
togfe (14 2 | == 4 g = =gl 4/

rw=-52+3(Y -

X

where

The function f (u) satisfies the inequality
2 [|u] Iul)2 y 1
< 27 id | RN R 4
sl =3 () <
x

so that it follows from (15.18) that

1
|f(u)| < x~a-di2 TT_HW = o(x). (15.20)

Hence, o(x) — 0 as x — o, For the logarithm of the integrand we have

log [e"“(l + ;)] = 23; (1 + <o), (15.21)

where (o> denotes a number whose modulus is less than o. Since 0 <o < 1
for large values of x, we have

—(1+0)=—~(1+<)=—(1~o). (15.22)
It follows from (15.21) and (15.22) that

[l ewomngy <L g [ eumomnxgy, (15.23)
-y

-y
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If we introduce a new variable 7 into the right-hand side by the substitution

the integral then becomes

y t
f e—(l—-o)ui 12x du — A/ 2x f ! e—:l dt,
—y l1-0J)_,

where (cf. Eq. 15.17)
1—o i=

We transform the lower bound in (15.23) in a similar way:

y 12
f e~ UHou22x gy — A/__Z_x__ f e dr,
-y l+o)_4,

_ l+o_ z\/zA/l._":'_
tz—yA/ o =% 5

Thus we have for /, the bounds

1 fu e"’dt<—I2— <—_l__ fu e dt
V1+ol-n TV2x T V1-0J-n '

As x — o (whence #, — o and 7, — ), both sides tend to the limit
J”_r: e dt = V',
so that I,/v/2mx tends to the limit 1. Therefore we have
I, = V2mx (1 + (}—lc))

where (1/x) denotes a function of x which tends to zeroas 1/x — 0.
Combining our results, we find that the integral (15.11) has the expansion

I=L+L+L+1,= v%c(l +(—1))+ (—1) = x/%c(l + (1))
x x x
Equation (15.10) now yields Stirling’s formula
I'(x + 1) = x*e*V2nx (1 + (;lc)) , (15.24)

where

the asymptotic formula to be proved. For integer values x = n we obtain

I'(n+1)=n! =n"e™V2mn (1 + (1)) . (15.25)

n
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§3. THE PRODUCT REPRESENTATION OF THE I'-FUNCTION
15.9.

We should like to derive another representation for the I'-function as an
infinite product. We assume that z is real and positive and begin with the
formula (15.6):

1 zz+1D...(z+n) n! z z

'z T(@E+n+1) ~I"(z+n+1)z(l+l)"'(l_*ﬂn)
_ I'n+1) z z
—mz(l+l—)...(l+n). (15.26)

It follows from (15.25) and (15.24) that
IT'(n+1)=n"e™/2m (1 + (_rl_z)) s
n
= n"n* (1 + E)n (1 + E) e e"VﬁJl + E(1 + (l)) .
n n n n

From the fact that

(e e G)) (=16 Sreim ()

it follows that

T+n+1) =@+ 2 eV 2a(n + 2) (1 + (1))

Lz +n+ 1) = n"n* eV 2mn (1 + (%)) ,

whence

1
T+ 1) _”(ﬁ)
'CG+n+1)  n

If we combine this with (15.26) we have

_1_=1J;z(’l’)z(1+5)...(1+5),

n

which can also be written in the form

j,%= z exp {ix log (l +§) —zlogn + (%)}, (15.27)

where the real branch of the logarithm must be chosen.



286 THE EULER ] -FUNCTION §3

15.10.

If we let n tend to infinity in (15.27), then both the sum and the term z log n
tend to infinity in the exponent. We rearrange these expressions in such a
way that, as n —> o, we obtain a convergent series. Thus we write

c z . z z 1
l)Zl{log(l +;) —zlogn=Z{log(l + ;) - ;’ + z(;;——logn).
(15.28)
If we omit a finite number of terms, the first series

i {log (1 + f) - g’ (15.29)

v=1

converges absolutely and uniformly in every bounded region of the z-plane
(Section 13.6). Since the left-hand side of (15.27) is finite for every positive
z and does not depend on n, the whole expression (15.28) must tend to a
finite limit as n — . It follows that the expression

n

Z%—logn,

v=1]

which appears on the right-hand side of (15.28), tends to a finite limit as
n — oo, This limit is called Euler’s constant and is denoted by C:

C = lim (2 % — log n) . (15.30)

n—co
1

A comparison of the sum in (15.30) with the integral

['5
L X
shows that 0 < C < 1 (Exercise 5, p. 228). An approximate value of the

constant C is 0.5772.
If we now let n — o« in formula (15.27), it follows from what has been

shown that
1 = z z
@ = 2% [Z {log (1 + ;) - ;} + CZ] . (15.31)

If we write this expression as an infinite product (Section 13.2), we obtain
the formula

le;) i {(1 + g) e""’} , (15.32)

v=1l

whose validity has been proved until now for positive values of z.
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To show the general validity of formula (15.32), we write it in the form

L ey {(1 + 5) e"/”} 1I {(1 + 5) e"/": (15.33)
r (Z) v=1 v v=no+1 14 ) ’

The second product defines an analytic function in the disk |z| £ ng (Section
13.4). The remaining part of the right-hand side is regular in the whole plane.
Since ny may be chosen arbitrarily, the right-hand side of (15.33) is regular
in the whole plane, and because Eq. (15.33) holds on the positive real axis, it
holds everywhere.

The function 1/I'(z) is therefore an entire function. Hence, the I'-function
has no zeros anywhere. We mention without proof that 0 is the only value not
assumed by the I™-function.

EXERCISES ON CHAPTER 15

1. Another method for the analytic continuation of I'(z) into the left half-
plane is the following. Write
I'(@) = fi(2) + £2(2),

where ‘
! 0
f@=[lertar and £ = [T et

Then f,(z) is an entire function. To continue f;(z) into the half-plane Re z < 0,
expand the integrand into powers of ¢, and integrate the resulting series term
by term. Carry out the details of this argument.

2. There exists a third method for the analytic continuation of I'(z). Consider
the function

H(z) = f et

where the path of integration y consists of the positive real axis from « to
the point a > 0, the circle K: |t| = a, described in the negative sense, and the
positive real axis from the point a to «. If, to begin with, z is positive, we
have

H(z) = (1 — &2"2) f : e~'t="ldr + f LerTtat
If we let @ — 0 we obtain a relation between H(z) and I'(2),
H(z) = (1 - &")I'(2),

which is valid in the whole plane since H(z) is an entire function. Carry out
the details of this proof.
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3. Show that the function H(z) introduced in Exercise 2 has zeros at the
points 1,2, . . ..
4. Show that I'(z) takes complex conjugate values at the points z and .
5. Give a geometric interpretation to the expression
< 1 -1 ["dx
Z ~—logn = 2 -— | —=
— 14 1 14 1 X
and show directly that this expression tends to the limit C as n — co.

6. Prove the formula
w

sin 77z

I'eorda —z) =

7. Prove Gauss’s formula for the I-function:

. nln?
r@=lm oy ctm

8. Using the product formula for I'(z), expand log I'(1 + z) into powers
of z.



CHAPTER 16

THE RIEMANN ¢{-FUNCTION

§1. DEFINITION AND THE EULER PRODUCT FORMULA
16.1. Definition of the C-Function
The Riemann {-function is defined as the sum of the series

U= nl (16.1)

n=1
To find the region in which this definition is valid, we set s = o + it and
consider the absolute value

1

ns

1 1 1

i 1
na
n=1
converges for o > 1, the series (16.1) converges absolutely in the half-plane

o > 1. The convergence is uniform in every half-plane ¢ 2 o, > 1, since
the series (16.1) is majorized in this half-plane by the convergent series

0
>
ao
n=ln

The terms of the series (16.1) are analytic functions in the whole plane. It
follows from Weierstrass’s theorem (Section 9.8) that the sum {(s) is analytic
in the half-plane ¢ > 1.

Since the series

16.2. The Euler Product Formula

We now derive a representation for the function {(s) which reveals an interest-
ing connection between the {-function and the prime numbers. For any prime
number p (2, 3, 5,...) and any real s > 1 we set

1 1 1
kgt (16.2)

289
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Let us denote the v-th prime number by p = p, (p; =2, p, =3, ...) and

form the product
m ]

1

v=1
oy
For m = 2 it follows from Cauchy’s product formula that

1 1 1

P RN
pi P
where v, and v, independently run through all non-negative integers. It then
follows by induction that
mo ] °° 1
_—= e . 16.3
H— Z @3 - ..oy (6.3)

0

R — vi,v2, ..., vm=0

In the summation v, v,, ..., v, independently assume all non-negative
integer values from O to .

Since every positive integer can be represented in one and only one way
as a product of primes, (16.3) may be written as

—-=3"1 (64

Here n assumes precisely those positive integral values which have no prime
factor greater than p,,.

Since the sum (16.4) does not contain all the terms of the expansion for
{(s), its value is less than {(s). On the other hand, the sum contains the terms
1, 1/25, 1/3% ..., 1/p5. Hence, for every m we have the following double
inequality:

Z-l—<ﬁ ! 1<Zj(s).

s
n=1 n v=1 1

o
If m — «, p, tends to infinity, and the left-hand side then approaches the
limit {(s). It follows that the product

© ]
II 1
Vel
I — =
)2
converges, and that its value is {(s):

6 =TI — (16.9

(P)l_

PS
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Here p runs through the set of all prime numbers.
Formula (16.5) is the so-called Euler product formula for the {-function.
16.3.

To investigate the convergence of the Euler product for complex values of s,
we write it in the form

1
1+ T‘“) . (16.6)
E ( p-1

This product converges whenever the series

>

G P 1

converges. Now this series converges uniformly in every half-plane
o = oy > 1, from which it follows that the product (16.6) defines an analytic
function in the half-plane o > 1 (Section 13.4). Both sides of (16.5) are
therefore regular functions in the half-plane ¢ > 1, and since they coincide
for real values of s, they must be equal throughout the entire half-plane.

The Euler product formula (16.5) is therefore valid in the entire half-plane
o> 1. ‘

§2. INTEGRAL REPRESENTATION OF THE {-FUNCTION
16.4.

We now establish a connection between the functions {(s) and I'(s). We take
the integral representation of I'(s) as our starting point:

I'(s) = j Seel (16.7)

this is valid for o > 0. In what follows we shall assume that s is real and
greater than 1.

If we substitute ¢ = vx into the integral (16.7), we obtain

I'(s)=»* f : e x5~ dx.

Hence, it follows that

R s EL

1% l—e™
v=1

1 1 © g8l © gmmxxs—1
2Tl ame- ST as

or
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since both these integrals converge. We now let # — c and show that the
last integral tends to 0. We choose an « > 0 and write

© e—nxxs—l -4 e—nxxs—l © e—nxxs—l
—dx =] ———d ——— dx. 16.9
fo ef—1 * fo ef—1 x+fa er—1 * (16.9)
For € > 0 there exists an «y > 0 such that
4 e—nxxs—l o xs-l
fo Py dx < fo e dx < e whenever o S ag.
We now choose a fixed positive « < «; and bound the second integral in

(16.9) by -
© ,=NX 451 © s—1
f € X dx < e"""f X dx.

e —1 € —1

Since the integral on the right-hand side is finite, we conclude that the integral
(16.9) tends to zero as n — .

Since the left-hand side of Eq. (16.8) tends to the limit {(s)asn — «, we
obtain the representation

1 © g5l

whose validity is now established for real values of s greater than 1.

Actually, the equation is valid in the entire half-plane o > 1, for the
function 1/I'(s) is analytic everywhere in the finite plane. The integral on the
right-hand side is regular in the half-plane ¢ > 1, since the assumptions of
the theorem in Section 15.2 are fulfilled in the half-plane o = o, > 1 (Exercise
2, p. 304). The entire right-hand side of formula (16.10) is therefore regular
in the half-plane ¢ > 1. The same applies to the left-hand side. Since the two
sides coincide on the real axis, they are equal in the half-plane o > 1. Therefore
(16.10) is valid throughout the half-plane o > 1. ‘

§3. ANALYTIC CONTINUATION OF THE {-FUNCTION

16.5. Hermite’s Method of Analytic Continuation

As was shown by Ch. Hermite (1822-1901), formula (16.10) enables us to
continue {(s) analytically into the half-plane ¢ < 1.
We write the integral

© s—1
£(s) = f FT e = £i(s) + £i(6), (16.11)

0 e* — 1
where

1 s—1 © -1
fl(S) == J‘ —{C*l'] dx, 2(3) = f efs_ 1 dx. (1612)

X
0¢€ 1
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It follows from the theorem in Section 15.2 that f,(s) is an entire function
(Exercise 3, p. 304). On the other hand, the integral defining f,(s) is divergent
foro = 1.

In order to continue f;(s) to the half-plane o < 1, we first assume that s is
real and greater than 1. If we expand 1/(e* — 1) into powers of z, we obtain

1 1 1
e’—l—}_§+[z]’

and, further, since 1/(e* — 1) + % is an odd function,

1 1 1 3
e—z—_—l——g—i + Az + A;2° + . (16.13)
The coeficients are given by
B
— (—_1WV—1 v ,
A2v—l —( l) (21/)!

where the B, are the so-called Bernoulli numbers (Exercise 10, p. 182).
These expressions for the coefficients 4,,_, will not be needed in what follows.
The function (16.13) is regular everywhere except at the points 0, +2i,
+4i, . . .. The series (16.13) therefore converges in the disk |z| < 2.
It follows from (16.13) that the integrand of the first integral in (16.12)
has the expansion

xs——l N xs—l

ex_l=xs 2 - 3 + A xS+ AxStE 4,
which converges uniformly in the interval of integration (0, 1). We may
therefore integrate this series term by term, and in this way obtain for s > 1
the expansion

o= A S e

We shall show that the series on the right-hand side of (16.14) converges
absolutely and uniformly in every disk |s| £ R (< «). If n is the smallest
integer for which 2n — 1 > R, then for |s| £ Rand v = n we have

_ s+2v—12z2n—1—-—R=4>0.
The series

< A2v—l
Z:s el (16.15)

therefore has as a majorant the series

1 o0
52, 1 il. (16.16)

v=n
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Since the radius of convergence of the series (16.13) is 27, the series converges
absolutely for z = 1. This implies the convergence of the series (16.16). The
series (16.15) is therefore absolutely and uniformly convergent in the disk
|s| £ R, and, hence, it defines in this disk a regular function. Thus the sum of
the series (16.14) represents the analytic continuation of the function f,(s) to
the whole plane. The function f,(s) so obtained is regular everywhere with the
exception of the points

1,0,—-1,-3,-5,.. ., (16.17)

where it has simple poles.
The function

S (s) = £1(5) + fa(s) : (16.18)
is now regular in the whole plane, except for the points (16.17), where it has

simple poles. On the other hand, 1/I'(s) is an entire function. If, in view of
(16.10) and (16.11), we now set

1
{(s) = I_w(_gf (5), (16.19)
we obtain the analytic continuation of {(s) to the whole plane.

16.6. Singularities of the {-Function

It follows from the preceding investigation that {(s) is a meromorphic function
whose only possible singularities are poles at the points (16.17). However, it
can be shown that not all the points (16.17) are actual poles of {(s). It follows
from (16.18) and (16.14) that in the neighborhood of s = 1, f(s) has the
expansion

f6) = = + Bls — 1)

On the other hand, I'(s) is regular at s = 1, and its value at this point is 1
(Section 15.3). Hence, in view of (16.19), {(s) has the following expansion:

4s) = ;—1—1 + PBis— 1), (16.20)

Therefore {(s) has a simple pole with residue 1 at s = 1.

At the remaining points (16.17), s = 0, —1, =3, ..., I'(s) has simple
poles. Hence, in view of (16.19), {(s) is regular at these points (cf. Exercise 4,
p- 304).

Thus, we have the following result.

The function {(s) is regular everywhere in the finite plane except at the
point s = 1. At this point it has a simple pole with residue 1.

The function I'(s) has poles not only at the points s = 0, s = —(2v — 1)
(v=1,2,...), but also at the points s = —2v (v = 1,2, ...). Since f(s) is
regular at these points, it follows from (16.19) that {(s) has zeros at these points.
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In the half-plane o > 1, {(s) is represented by the convergent Euler
product (Section 16.3). Hence, {(s) does not vanish in this half-plane.

§4. RIEMANN’S FUNCTIONAL EQUATION
16.7.

Lets > 1 be afixed real number. We apply the residue theorem to the function

77 cot mz
ZS

(16.21)

in the domain G,: |z] S n+4, x=Rez 2a (0 <a<1). We denote the
boundary of G, by y,, and choose that branch of the function (16.21) which
is real on the positive real axis. This branch
is single-valued in G,. In the domain G, the
poles of the function (16.21) are at the
points 1, 2, .. ., n. The residue atz = v is
1/v%, so thatif we apply the residue theorem, Ly,,
we have

1 coth = 1 - n
Zf T dz Z;—s. (1622)

v=1

~

We break up the integral on the left-hand
side of (16.22) in two parts

lJ‘ cotarzdz=lj‘ cotn-zdz
n Kn

2i z5 2i zs
1 e cot mz |
+ 2 J‘amn pr dz. (16.23) Figure 44

Here a — iy, and a + iy, are the points of intersection of the circle |z| = n + }
with the line x = a, K, is the circular arc contained in y,, and the last integral
in (16.23) is taken along the straight line x = a (Fig. 44).

We shall show that the first integral on the right-hand side tends to zero
as n — . Since [cot mz| is bounded on every circle |z| = 1 + % by a fixed
finite number M (Section 10.7), we obtain

1 cot'rrz T
2‘f 4 < <20

This expression tends to zero asn — .
We write the second integral on the right-hand side of formula (16.23) as
1 (o cotnz 1 (et cot 7z 1 [eim cot "z 4

5;, ——dz = — -2— dz +

atiyn 2% iJ)a zs 2i

+ 3

. (16.24)
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If we note that

lim coth___l m 1
vt 20 27 e 20 2°

we substitute into the first integral on the right-hand side of (16.24) the
expression
cot 7z

1 1
2 2 e
and into the second the expression

cotwmz 1 1

2i _2+e2m‘z_1'

The first integral becomes

1 a+iyn cot 7z a+iyn 7= zs
“uf. e [ (G ) e

__1_ al~s 1((1 + 'l'yn)l—s + atiyn z7s
T 2s—-1"2 1-s ez — ]

Asn — oo, which implies that y, — o, the middle term on the right-hand side
tends to zero, since s > 1. We may therefore write this equation in the form

‘__1_ a+iyn (Et 7z dr — 1 al—s + atiyn z~s & + 1
2i . zs T 2s-—-1 . ez _1 n)’

where (1/n) — Oasn — . In the same way, we obtain for the second integral
on the right-hand side of (16.24) the expression

1_ a—iyn cot 7z dz _ 1 al—s 4 a—iyn z~S B dz + 1
2i ), z5 T 2s—1 . e 1 n/’

On the strength of these results we may write (16.22) as

21 al—s a+iyn 7S a-iyn s d 1
Z:s:s_ﬁf,, e L M T E )

dz,

a

(16.25)
Both of these integrals converge as n — o, since
z=s |Z|—s
ie-anz _— 1¥ é e2ny _ 1 fOI' y > 03
z™s |z|~®
e2ﬂiz _ 1{ é e—Zny . 1 fOI‘ y < 0’

and since the integrals

a+ico - a—io —s
f 2™ 14 and f L

e — 1 . €™ 1
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are convergent. Asn — o, Eq. (16.25) becomes

l—s a+ico z=s a—ico z~s
{(s) = fa é_:m——l dz + fa e—zﬁ dz. (16.26)
We derived this formula under the assumption that s > 1. We now show that
it is valid in the whole plane. The first term on the right-hand side is a mero-
morphic function of s whose only pole is at s = 1. In view of the theorem
proved in Section 15.2, both of the integrals are regular (cf. Exercise 6, p. 304),
so that the formula is valid for every s # .

16.8.

We now assume that s is a fixed negative number in the interval —1 < s < 0,
and we investigate Eq. (16.26) as a — 0.

The first term on the right-hand side tends to 0. We now show that the
first integral on the right-hand side,

a-+tico z™s
f —— dz, (16.27)

—2mi
a € -1

converges uniformly in a certain interval 0 < a < p (p > 0).
First we estimate the integrand for small values of z. We have

z~s i
pe Bl i s U gl 12

There exists a disk |z| £ 2p in which |1 + [z]| < 2, so that

z” -1 1
e—217tz — 1' é Izl_s é Iyl—s— *

Since the integral
1
J‘ . y—s-l dy

converges, the integral (16.27) converges uniformly for 0 < a < p. It follows
from the uniform convergence of the integral that

a+ico -8 —8 ,—ins/2
. z y e
lim —:m_— dz =i f 2——— dy
a>0Ja. € 0
It can be shown in the same way that

a—ioo —s —c0 —s pins[2
. z (e
lim ————dz = e
as0J a ezniz -1 0 e—2rry -1 ).

Thus as a — 0, formula (16.26) becomes

C(S) = j g~ims/2 fo eZVJ; — dy 4 f elmsl2 fo e_lfy—%l dy. (1628)
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In the second integral we introduce the new variable y = —u. We can then
combine the two integrals and obtain, instead of (16.28), the formula

1 i mtmsy (YT
C(S) - l (e € ) 0 eZny _ 1 dy

—asn ™ (T
2 sin 2 fo o 1dy.
If we then substitute 27y = x, we obtain the formula
Us) = 22ny sin 2 f X7, (16.29)
2 Joer—1 »

This formula has been derived for —1 < s < 0. Since, however, both sides
are analytic functions in the half-plane o < 0, the formula is valid in this
whole half-plane.

16.9.

We now relate (16.29) to the formula (16.10) obtained earlier for ¢ > 1. Let
s lie in the half-plane o < 0. Then Re (1 — s) > 1, and (16.10) yields

1 R
{ —s)=1,(1 —S)fo pe 1dx.

Since o < 0, we can replace the integral here by the expression involving the
integral in (16.29). We then obtain

c(l - S) = I‘!(l 1_ S) C(S) ’

227y~ sin %s

or

(s) = 2Q2m)! sin%s (1 — )1 = s). (16.30)

This is Riemann’s functional equation. We have proved this formula for the
half-plane ¢ < 0. However, since both sides of (16.30) are analytic functions
for s # «, the functional equation holds for all values of s.

§5. THE ZEROS OF THE {-FUNCTION
AND THE DISTRIBUTION OF PRIME NUMBERS

16.10. The Riemann Conjecture

If s lies in the half-plane ¢ < 0, the functions {(1 — s) and I'(1 — s) on the
right-hand side of (16.30) are both regular and non-zero, and the same is
true of (2m)*~!. Consequently {(s) has the same zeros in this half-plane as
the function sin #s/2, which vanishes at the points s = -2, —4, —6, ... (cf.
Section 16.6). All these zeros are simple. In the half-plane o > 1 we have
{s) # 0.
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The only zeros of {(s) in the half-planes o > 1 and o < 0 are the simple
zeros at —2, —4, -6, . . ..

In the half-plane o > 1 we have {(s) # 0. Thus if {(s) has any zeros other
than these so-called trivial zeros —2, —4, ..., then they must all lie in the
strip0 <o £ 1.

Riemann asserted in 1859 that, aside from the trivial zeros, the {-function
also has infinitely many zeros in the strip 0 < o < 1. This assertion was first
proved by J. Hadamard in 1893. Riemann gave, also without proof, the
following asymptotic formula for the number N(T') of zeros in the rectangle
0<o=10<t=ZTY%:

1 + log 2w
27

A rigorous proof of this formula was first given in 1905 by H. v. Mangoldt.
If the “Riemann conjecture” mentioned below is correct, then the O(log T)
estimate for the remainder term of the formula can be replaced by the sharper

estimate
log T
0 (log log T) )

The famous Riemann conjecture asserts that all non-trivial zeros of the {-function
lie on the straight line o = %. To this date, no one has yet succeeded in proving
this conjecture. G. H. Hardy proved (1914) that there are infinitely many
zeros on the line o = 4, and E. C. Titchmarsh showed in 1935-1936 that there
are 1041 zeros in the region 0 = o £ 1, 0 < ¢ < 1468, all of which lie on the
“critical” line o = 4. With the help of electronic computers, it has been
possible to extend these calculations much further in recent years. All the zeros
found so far lie on the line o = 3.

1
N(T)= 5 Tlog T — T + O(log T). (16.31)

16.11. Distribution of Prime Numbers
In his famous work published in 1859, Riemann showed that there exists an
interesting connection between the Riemann conjecture and the distribution
of primes.

The problem of determining =(x), the number of primes not exceeding x,
was posed rather early. Obviously #w(x) < x. In 1808 A. M. Legendre con-
jectured that #(x) is asymptotic to x/log x as x — «:

X X
W(X) = ljg—.—x + 0 (@) . (1632)

This formula is called the prime number theorem.

+ In the notation of E. Landau, O(f(x)) denotes a function whose ratio to f (x)
remains bounded as x — o, and o( f (x)) stands for a function whose ratio to f(x)
tends to zero as x — . The same notation is also applied when describing the
growth of a function as x tends to a finite singular point.
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Before Legendre, Gauss had been led to the conjecture that

m(x) = I(x) + o(I(x)), (16.33)
where /(x) is the so-called integral-logarithm:
* dt

For I(x) we have the asymptotic formula

X X

whose proof is left to the reader as an exercise (Exercise 8, p. 304). Thus
formula (16.33) contains the prime number theorem (16.32).

The prime number theorem was first proved in 1896 almost simultaneously
by C. de La Vallée Poussin and Hadamard. For the difference

r(x) = m(x) — I(x),

de La Vallée Poussin derived the estimate
|r(x)| < x e=cViesx (16.36)

where ¢ denotes a positive constant. This estimate implies (16.33), since the
ratio of the right-hand side of (16.36) to /(x) tends to 0 as x — .

The proofs of de La Vallée Poussin and Hadamard are based on the
methods of complex analysis. The first elementary proof of the prime number
theorem, that is, not using the methods of function theory, was found in 1948
by A. Selberg and P. Erdos. ;

As x increases, the right-hand side of the inequality (16.36) increases more
rapidly than any power x'~¢ of x, where € > 0. There are good reasons to
believe that r(x) increases much more slowly than it would appear from the
estimate (16.36). It is probably true that

|r(x)] < cvVxlogx (¢ > 0). (16.37)

This estimate is equivalent to the Riemann conjecture concerning the zeros
of the {-function. J. E. Littlewood proved in 1914 that there exist arbitrarily
large values of x for which the absolute value of the remainder term r(x) is
greater than ¢V/x/log x, with both positive and negative values of r(x). If we
draw the curves

Vx

y=cVxlogx and y=chg—;,

(16.38)

which lie above and below the parabola y = ¢V/x, then if the Riemann
conjecture is true, all the points y = |r(x)| lie under the first curve of (16.38).
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On the other hand, there exist arbitrarily large values of x for which y = |r(x)|
lies above the second curve of (16.38).

16.12. The Connection between the
Riemann Conjecture and the Distribution of Primes

To make clear the connection between the Riemann conjecture and the
distribution of prime numbers, we show that if
[r(x)] < xt/3*=, (16.39)

where 0 < o < 1, then the {~function has no zeros in the half—plane o>%+4 o
We assume first that ¢ = Re s > 1. From the Euler product (16 5) we have

log (s) = —Z log (1 —;—5) ,

r)

where we choose that branch of the logarithm which is real whenever s > 1.
If we expand each term in powers of 1/p*, we obtain

log {(s) = Z (i ’—11 ;l,g)
(p) \n=1

Since this double series converges absolutely, we can interchange the order of
summation to obtain

1ogg(s)=z 22 - 32 g (16.40)

(p) (p)

We now let s tend to 1. At the point s = 1, {(s) has the expansion (cf. Eq.
16.20) :

i) =

=D,

which implies that

1
log {(s) = logs -1t log {1 + [s — 11}.
As s — 1 in formula (16.40), the left-hand side tends to «. The second series
on the right-hand side of (16.40) converges for o > %, the next series converges
for o > %, and so on. All the series on the right-hand side, except for the first
series, converge for ¢ > 1, and their sum is finite, because

1 1 © dx 1
sl L ke S| e T a1
;p (Z)p" L X ko — 1

and because the series

< 1
;k(ko -1
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converges. If we write

22 ~ —Z . (16.41)

@ P
then, by (16.40),

1
log L(s) = > = + /(). (16.42)
@ 7
The function f(s) is regular in the half-plane ¢ > . The sum in (16.42),

1
é(s) = » (16.43)

(»)

will now be continued analytically to the left of the line o = 1.
First, let s be real and greater than 1. Then ¢(s) may be represented by a
Stieltjes integral:

$(s) = — f " () dx. (16.44)
In fact,

—f (%) dx~* =—zf

pnt1

7(x) dx~*

—— S [ = B - st = 3 o
n=1 n=1 =1
If we replace m(x) in (16.44) by the expression

w(x) = I(x) + r(x)
we obtain

$(s) = — j " i) dx — f  r(x) dx .
If we integrate by parts the first integral, we have

#(s) = f :’ X~ di(x) — f () dx.

By (16.34) we have
[ dx r(x)
$(s) = fz Flogx " * f 1 4 (16.45)
The function
® dx

is regular in the half-plane ¢ > 1. Its derivative is

©dx 21°s 1
! = — e o p(l-s)log2
w(s) 22X 1—=-5 1- se

=i_i_s{1+(1—s)log2+"‘}=“s—_li+$(s_l)'
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Hence, we have the following representation for u(s) in the half-plane ¢ > 1:

u(s) = log + H(s), (16.47)

s—1
where H(s) is an entire function.

If we combine Eqs. (16.42)-(16.47), we obtain for log {(s) the ex-
pression
® rx)

+ H(s) +f(s)+sf pr dx,

2

log {(s) = log P

which can be also written as

® r(x)
2 xs+l

log [{(s)(s — D] = sJ dx + H(s) + f(s). (16.48)
This formula is valid whenever s is real and greater than 1. Let us investigate
(16.48) for complex values of s. The function H(s) + f(s) is regular in the
half-plane ¢ > 1. Now {(s) (s — 1) is an entire function (Section 16.6), so
that log [{(s)(1 — s)] is regular everywhere except for the points at which
{(s) = 0. We show now that the first term on the right-hand side of (16.48),

R(s)=s f ) o, (16.49)
2 X
is regular for
oc>4%+ a (16.50)
By the assumption (16.39), the inequality
r(x)| _ x!/e —o—1/2+4c
| < e =%

holds for the integrand of (16.49). The integral

©
fz x-—a—l/2+a dx

converges uniformly in the half-plane
cZo0y>% + a

Hence, R(s) is regular in the half-plane (16.50). It now follows that (16.48)
is valid in whole half-plane (16.50), so that {(s) cannot have any zeros in this
half-plane.

If the estimate (16.39) holds for every « > 0, then {(s) has no zeros in
the half-plane o > 1.

For recent work on the {-function, see the book of Karl Prachar,
Primzahlverteilung, Springer, Berlin-Gottingen-Heidelberg, 1957.
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EXERCISES ON CHAPTER 16

1. Prove that the integrals in formula (16.8) converge for s > 1.
2. Prove that the integral
© xs-—l
fo pept dx

defines an analytic function in the half-plane ¢ > 1.
3. Show that

© xs—-l
fz(s)=fl e"-ldx
is an entire function of s.
4. Evaluate {(0)and {(— @2n— 1) (n=1,2,...).

Hint. Expand both factors on the right-hand side of (16.19) into powers of
sand s + 2n — 1, respectively.

5. Show that the constant term in the expansion (16.20) is Euler’s constant
C (cf. Section 15.10).
Hint. Compafe the series expansion of {(s) with the integral f g-? and let

1

s — 1.

6. Prove that the integrals

a+ico z=s a—ico z=s
fa ;:iﬁz‘:—l dz and fa éErTz—___] dz (0 <a< 1)

are entire functions of s.

7. Derive the following formula:

101 - 5) = g cos (35) T

8. Prove formula (16.35).

Hint. Integrate (16.34) term by term and split the interval of integration into
the intervals (2, V/x) and (V/x, x).



CHAPTER 17

THE THEORY OF CONFORMAL MAPPING

§1. THE RIEMANN MAPPING THEOREM
17.1. The Main Problem

In investigating the behavior of the elementary functions, we encountered a
variety of special conformal mappings. It is now our object to consider
conformal mapping from a more general point of view.

Let G, and G, be two open, simply connected domains. Our goal is to
solve the following general problem, which was posed by Riemann.

Find a one-to-one and (directly) conformal mapping of G, onto G,.

17.2. Special Cases ‘
In two special cases, the problem can be solved immediately.

1) Suppose that one of the domains, G, for example, coincides with the
extended plane |z| £ .

Then the requirement that the mapping G, <> G, be ropological (that is,
one-to-one and continuous) implies that the domain G, also consists of the
extended plane.

The proof of this fact is based upon the compactness of the domain G,:
Every infinite sequence of points in G, has a point of accumulation in G,.
As the topological image of a compact set, G, is also compact, for an arbitrary
infinite sequence of points (b) in G, has as its image an infinite sequence of
points (a@) in G, which in turn has a point of accumulation a, € G,; the
image b, € G, of ay is then a point of accumulation of the sequence (b).

Since G, is an open, compact subset of the closed plane, it must contain
the entire plane, for if there were a point B not in G,, there would be at least
one boundary point { of the domain G, on the line segment joining the point
B with an arbitrary interior point of G,. A sequence b, € G, having { as
limit would than have no interior accumulation point in this domain.

If the Riemann problem has a solution in this special case, then G, must
consist of the entire closed plane. The one-to-one (directly) conformal map-
pings of the plane onto itself are just the linear transformations (cf. Sections
9.16 and 9.21):

- % (ad — be # 0). 7.1)

305
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2) For the second case, we suppose that one of the domains, say G,,
consists of the entire closed plane with the exception of a single point z = {,,
which is therefore a boundary point (indeed, the only boundary point) of the
domain. The inversion 1/(z — {;) maps this domain topologically and
conformally onto the plane z # ». Thus we may assume from the start
that G, is the plane z # . ;

If the function w = w(z) effects the conformal mapping G, <> G,, then
it is regular in the plane z # « unless G, contains the point w = . If G,
contains this point, then there exists a well-defined point z, # c at which
w(zg) = o, and w(z) — « as z — z,, since the mapping is continuous. The
point z, is therefore a pole of the function w(z).

In order to analyze the behavior of the function w = w(z) in the neighbor-
hood of the point z = o, we fix a point z = z; # ©. The image domain
K in G, of the disk |z — z,] < r contains the point w, = w(z,); otherwise
the points w = w(z) for r £ |z — z;| < = lie in the exterior of K. In the
latter domain the difference |w(z) — w,| has a positive lower bound.
Weierstrass’s theorem (Section 9.20) then implies that z =  cannot be an
essential singularity of the function w = w(z). Since this function has no
essential singularities in the plane |z| £ «, it must be a rational function of
z (cf. Section 9.23). Since it assumes no value more than once, it is of order 1.
The function w(z) must therefore be of the form (17.1). This linear trans-
formation maps the domain G, (z # «) onto the domain w # {, = a/c and
the point w = {, is the only boundary point of the domain G,. The boundary
points z = {; = « and w = {, must therefore correspond, and the mapping
is conformal even at these points. Thus we have proved:

If one of the two domains has only a single boundary point, then the
Riemann problem has a solution only if the other domain has the same
property. The general solution of the mapping problem is given by formula
(17.1), where the coefficients must be chosen in such a way that the boundary
points {, and {, correspond.

Remark. If the domain G, coincides with the closed plane |z| £ «, then a
domain of the type treated in (2) can be obtained from G, by removing a

point z,. Hence, the solution found for the second case also leads us to the
solution of the first case.

17.3. The General Case

Having dealt with the special cases in which one of the two domains G, and
G, has at most one boundary point, we proceed to the general case and
assume that both domains have af least twot boundary points.

t If a simply connected domain has two boundary points,y then it has an infinite
number of boundary points which form a continuum. We shall not need this
property, however, when we solve the Riemann problem later on.
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To solve this problem, we prove the Riemann Mapping Theorem.

A simply connected domain with at least two boundary points can be
mapped one-to-one conformally onto the unit disk E.

Once this particular problem is solved, we can obtain the required mapping
G, < G, by carrying out first the individual mappings G, «» E and G, < E.
The composite mapping G, <> E <> G, then provides a particular solution
of the mapping problem G, < G,.

The general solution then follows easily. First we determine the general
solution for the mapping G, < E. If w = w(z) effects the mapping G, & E,
then we map E conformally onto itself. By Sections 9.16 and 3.10, the latter
mappings are given by linear transformations

aw+ b

S(wy = wrd’ c=0>b,d=4d,|b| <|a|. (17.2)
Every transformation in this group maps the disk |w| = 1 onto itself, and,
conversely, every self-mapping of the disk belongs to the group (17.2). Hence,
we can obtain all the conformal mappings G, <> E from formula (17.2) by
replacing w by any particular mapping w = w(z).

The general solution of the mapping problem G, <> G, can now be
constructed once any two mappings G, «> E and G, <> E have been found:
we first carry out the mapping G, <> E, then apply an arbitrary mapping
E < E (with the aid of Eq. 17.2) and finally go over from E to G, by means
of the mapping E < G,.

17.4. Normalization of the Mapping

If w = w(z) maps the domain G onto the unit disk, there exists (Sections 3.9~
3.10) a mapping of the form
S(w) = e'*

W“WO
1 — wow

which takes the image w, = w(z,) of any arbitrary point z = zy € G into the
origin. This mapping is unique up to a rotation factor e'*. If the real number
« is chosen appropriately, then a given direction through the point z, can be
made to correspond to a given direction through the point w = 0 (for example,
the direction of the positive real axis). This means that if we have an arc
whose tangent is defined at the point z, then we can find a mapping such that
the tangent to the image curve at the point w = 0 has a prescribed direction.
This requirement determines the value of «, and we have the following
conclusion.

If there exists a conformal mapping G, <> G,, then two prescribed points
z, € G, (v=1,2) and two prescribed directions at these points may be
made to correspond, and the mapping is uniquely determined.
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§2. CONSTRUCTION OF THE SOLUTION
17.5. Preliminary Mapping

We now proceed to the construction of the conformal mapping of a domain
G onto the unit disk |w| < 1 under the hypothesis already mentioned earlier.

G is a simply connected domain of the z-plane whose boundary contains
more than one point.

We show first that G can be mapped one-to-one conformally onto a
domain inside the unit disk |z| < 1.

1) If there is a point z = g exterior to G, then the disk |z — a| < p lies
exterior to G for p > O sufficiently small. The transformation p/(z — a) = {
maps this disk conformally onto the domain || = 1, and maps G conformally
onto a schlicht subdomain of the disk |{| < 1.

2) If G has no exterior points, we first use an inversion to bring the
domain into such a position that one of its boundary points lies at z = .
By hypothesis, the domain G has another boundary point; let us denote it
by z = a # ©. We now choose an arbitrary point z = z;, € G and form the

integral
w— J‘ Zodt o z—a
- - g z a )

z0 0o

where the path of integration zyz lies in the domain G. Since the integrand
1/(t — a) is regular in G, which is simply connected, the integral represents a
single-valued, analytic function of z which is independent of the path z,z.
Its inverse function

z=a+ (‘zo —a)e” (17.3)

is also single-valued, so that the function w(z) maps the domain G one-to-one
conformally onto some domain G,, in the w-plane. The point z = z, corre-
sponds to the origin w = 0.

We now claim that the points w = n-2mi (n = +1, 42, .. .) are exterior
to the image domain G,. To show this, we choose a number p(0 < p < 7)
so small that the disk |w| < p belongs to the domain G,. The disks
|w — n-27i| £ p (n # 0) then lie outside of G,,. For, if a point w = w; of
the disk |w — n-2mi| £ p (n # 0) should belong to the domain G,,, we could
find a point z, in G corresponding to it. The function (17.3) would then
assume the same value at two distinct points w = w;andw = w, — n-2ai # w,
in G,, namely, the value z, € G. This contradicts the univalence (or topo-
logical character) of the mapping G <> G,,.

Hence, there are points exterior to G,,. As we showed in (1), we may map
G,, conformally onto a schlicht subdomain of the unit disk |{{| <1 by an
inversion; by an appropriate linear transformation, we may assume that this
subdomain contains the point { = 0.
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17.6. An Auxiliary Mapping

Our problem now is to map a simply connected domain G lying inside the
unit disk |z| < 1 and containing the point z = 0 conformally onto the whole
disk |w| <1 in such a way that the origin remains fixed and such that a
prescribed direction through the point z = 0 corresponds to a prescribed
direction through the point w = 0. If we choose these two directions to be
the direction of the positive real axis, then we may simply assume that the
derivative dw/dz is to be real and positive at the origin. As we have seen (cf.
Section 17.4), the mapping z <» w, whenever it exists, is uniquely determined.

In order to construct the solution, we apply an iteration method due to
Constantin Carathéodory (1873-1950) and Paul Koebe (1882-1945). We
may describe it as follows. The given domain is mapped successively onto
subdomains G,, G,, ... of the unit disk in such a way that the origin remains
fixed and the other points of the domain move towards the boundary of the
unit disk; as » — o, the subdomains G, converge to the full unit disk.

A sequence of mappings of this sort, G < G,, G, «+> G,, ... may be
constructed in many ways. The method of Carathéodory and Koebe is
particularly elementary, for it is based upon the use of the inverse of a simple
rational function of second order.

17.7.

It was shown in Chapter 4 that a rational function of second order z = z(w)
in the variable w may be written in the form

z—zlzk(w—w,):"

z— 2z, w—w,

This transformation maps the schlicht w-plane onto a two-sheeted Riemann
surface which covers the z-plane. The values w = w;, w, correspond to the
branch points z = z,, z,; at all other points the mapping is conformal. The
transformation sets up a correspondence between the pencils or bundles of
Steiner circles associated with these pairs of points.

We now choose these four base points and the constant k in such a way
that the unit circles |z| = 1 and |w| = 1 correspond. To this end we choose
each pair of base points to be reflections in the unit circle, z;, = r (0 <r < 1),
z,=1/r and w; = p (0 < p < 1), w, = 1/p. Now if the origin is invariant
under the mapping, then k¥ = 1 and p = V7, and the mapping assumes the
form

2

z=r_[w=vr\ (17.4)
-1 oL
r Vr

Moreover, the direction of the positive real axis remains fixed at the origin.
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The disk |w| = 1 is thereby mapped onto a two-sheeted covering of the
unit disk |z| £ 1. If we cut both sheets along the segment (r, 1), then the
edges of the cut go over into a circular arc through w = V/r which is orthogonal
to the unit circle and to the real axis. This arc divides the disk |w| < 1 into
two circular lunes which correspond to the two sheets of the slit disk |z| < 1
(Fig. 45). The origin in one of the sheets corresponds to the point w = 0
while the origin in the other sheet corresponds to the point

2v'r
<L

w=2A=

1+r

(17.4y

The factor (A — w)/(1 — Aw) maps the disk |w| < 1 onto itself in such a way
that w = A goes into the origin. Hence,
A—w
1—_—)“;)1 < ‘WI, (17.5)
whenever 0 < {w| < 1. The mapping w — z therefore takes the points w
closer to the origin.

We remark that the derivative at the point w = 0, which corresponds to
z = 0, is real and positive:

dz z A—w 2Vr

%=lﬁfv=l‘_‘ﬂ, 1—xww " 1+r

2] = {w]

(17.6)

17.8. The Mapping G — G,

If the domain G = G, which is a subdomain of the unit disk |z| < 1 and
contains the point z = 0, does not coincide with the unit disk, its boundary
I’ has a minimum distance r < 1 from the origin. This minimum is achieved
for atleast one boundary point; let z = re'? be one such point. We first rotate
the z-plane by z — z ™%, so that this boundary point goes into the point
z = r. We denote by G the domain obtained by rotating G,,.
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The equation (17.4) for the mapping defines w as a double-valued algebraic
function of z. At w = 0, we fix that branch which vanishes for z = 0. This
function-element can be continued throughout the domain G since the domain
does not contain the branch points z = r, 1/r. Because G is simply connected,
it follows from the monodromy theorem that the resulting function w = w(z)
is single-valued and regular in G, in addition, the function is continuous on
the boundary I" of G. If we bear in mind the properties of the transformation
(17.4) mentioned earlier, we can further conclude that

1) [w2)| < 1forz e G.
2) w(0) = 0 and (dw/dz),_o = (1 + r)/2V'r.
3) |w(z)| > |z| for 0 # z € G.

4) the mapping z — w is univalent (schlicht).

The last property follows from the fact that z is a single-valued function (17.4)'
of w. The mapping z — w is therefore one-to-one in the domain G.

If we go from the variable w to the variable e!#w, then the domain G, is
mapped onto a schlicht subdomain G, of the unit disk. The shortest distance
r, of the boundary I'; of G, from the origin satisfies the condition 0 < r <
ry < 1. The origin remains fixed under the mapping G, — G, and the deriva-
tive of the mapping function at the origin is real and positive (= (1 + r)/2v/r).
In this way we have carried out the first step in the iteration method.

17.9. The Mapping G, — G,

In a similar way, we map the domain G, by the transformation described
above which differs from (17.4) only by a rotation of the z-plane and w-plane;
it is only necessary to replace » by r;. We obtain a schlicht domain G, as the
image of G, under the transformation. By repeating this process, we obtain
a sequence of schlicht subdomains Gy, . . ., G,, ... of the unit disk.

The function z, = f,(z) which maps the domain G, onto G, is regular in
G, and continuous on the boundary. As a consequence of (1)-(4), the function
has the following properties:

Dzl 2 1A@| S ... 2 /)| <1inG,.
2) £.(0) = 0 and

dz dz =l] 4r
"0) = {—=1... 2°n ) = —r
fn( ) (dz dZu—l z=0 ;I;g 2\/’7
where r, is the shortest distance of the boundary of G, from the origin
O<rpg<rn<...<r,<l).

3) The mapping G, — G, is conformal and schlicht.
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We now prove that

4) limr, = 1.

n—co

To prove (4) we form the sequence

‘ F(z) =J%z) .

The function f, vanishes at the point z = 0 in G,. Therefore F,(z) is regular
in Gy and
IF@)| £ K| S ... 2 Q) (17.7)

We show next that this sequence is bounded. On the boundary I" of the
domain Gy, | f,| £ 1 and |z] Z r,; hence,

4@ _ 1

F, = <. 17.8
' n(z)l |Zl = ro ( )
By the maximum principle, this inequality holds throughout the domain G,,.

In particular, for z = 0 we obtain

n=1] 4 p 1
F0) = f,(0) = — < —,
0) =10 ovr =h
From this it follows that the limit
. © 147 1
n—->oof ( ) nl;[o 2\/r,, Yo

exists. On the other hand, it follJows from the monotonicity of the sequence
f0) that lim f,(0) > 0.
1t follows from the theory of infinite products (cf. Section 13.1) that

_ a/p )2
Ltrm_,_0=vVr)?

2Vr, 2V'r,

Since the denominator 24/r, is less than 2, 1 — 4/r, tends to zero, and assertion
(4) is proved.

0 as n— o,

17.10. The Convergence Proof

It follows from properties (1) and (2) of the sequence f,(z) that the functions
F(2) = f(2)/z are regular in the domain G, and different from zero. At the
origin we choose that branch of the function log F,(z) which assumes the real
value log F,(0) = log f,(0). Analytic continuation of this branch defines a
single-valued regular function in G,. Hence, log |F,(2)| is harmonic in this
domain and, by (17.8), is bounded (= log 1/ry). It follows from Harnack’s
principle (cf. Section 11.24 and Exercises 24 and 25 of Chapter 11) that the
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sequence F,(z), and therefore the sequence f,(z), converges in the domain G,
and uniformly on any closed subset. The limit function

lim f(2) = f (2)

n—»o

is a regular analytic function in the whole domain G,

17.11. The Mapping w = f(z)

The value of the limit function f(z) at the origin is
f(0) = lim £,(0) = 0.
Its derivative at the origin has the value

f'(0) = lim £,(0) > 0,
from which it follows that £ (z) is not constant.
It follows from property (1) of the sequence f,(z) that | f(z)| = 1 for
z € Gy. Actually,

/@] <1

in this domain, for if | £ (z)| were to assume its maximum value 1 in G,, then
f(2) would be a constant, in contradiction to what has just been proved.

As the non-constant limit of a sequence of schlicht functions f,(z), the
function w = f(z) is itself schlicht (cf. Section 9.28). Therefore it maps the
domain G, one-to-one conformally onto a subdomain G,, of the unit disk
Iw| <1 in such a way that the origin and the direction of the positive real
axis at the origin remain invariant.

It remains to show that G,, coincides with the unit disk |w| <1. Asa
first step, we prove:

At every point { of the boundary I’ of G,
lim /@] = 1.

To establish this result, we have to show that for every € > 0 there exists a
p > 0 such that for z in the intersection G, of the domain G, and the disk
|z —¢| <p we have 1 > | f(z)] > 1 — e. We start by fixing a number n,
such that r,, > 1 — €/2 (cf. Section 17.9, (4)). Then the function f,,(z), which
is continuous at the point { (cf. Section 17.9), satisfies the condition
| /(D] > 1 — €/2. Next we choose p > 0 in such a way that | f,,({) —
Jwo(2)| < €/2 for z € G,. In this domain we have 1 > | f,,(z)| > 1 — ¢, and,
since | f,| is a monotone increasing sequence, it follows that | f(z)] > 1 — ¢,
which is what we wished to prove.

If the image domain G,, does not coincide with the entire unit disk
{w| < 1, then G,, must have a boundary point w, inside the disk |w| < 1.
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We consider a sequence of points w, € G,, with lim w, = w,. This must
correspond to a sequence z, € Gy such that f(z,)=w, (v =1,2,...) from
which we may select a subsequence z,, (u = 1, 2, ...) which converges to a
point z, in G, or on its boundary. If z, were to lie in G, then f(z) would be
regular there and f(z,) = w, would belong to G,, contrary to assumption.
On the other hand, if z, were a boundary point, then, by what we proved
earlier, | f(z,,)| — lasz,, — z,,and this contradicts the fact that ' (z,) — w,
|[wo] < 1. Hence, f (z) must assume every value w in the disk |w} < 1.

The image domain G,, therefore coincides with the disk |w| < 1, and the
proof of the mapping theorem is thereby completed.

17.12. A Second Proof

We give now a second proof, based upon the argument principle, to show
that the function w = f(z) maps the domain G, onto the entire disk |w| < 1.
What we must establish is that to any given point wy with |wy| < 1, there
exists a point z, € G, for which f(zy) = wy.

|z] < 1 w] <1

Figure 46

Let 1 > R > |wg|. Since lim r, = 1, there exists an n, so large that the
function e
w = foo(2) (17.9)
maps G, onto a domain G,, whose boundary has a minimum distance r,, > R
from the origin. The domain G,, therefore contains the disk |w| < R. The
boundary |w| = R corresponds to a Jordan curve yg in G, and the domain
Gy bounded by yi (see Fig. 46) is mapped by the function (17.9) onto the
disk {w| < R. On the curve y; we have

| foo@)] = R > |wq, (17.10)
and on the subdomain of G, outside this curve we have
| fuo(2)] > R > [wo|. (17.11)
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Since | £(2)] > | f1,(2)| for n > ny, it follows from (17.10) and (17.11) that

| f(2)| = R > |wy (17.12)

for n 2 ny and z € Gy — Gg. From this it follows that the function f,(z),
which maps G, onto a domain G, containing the disk |w| < R (r,, < r, for
ny < n), assumes the value wy at some point in Gg.
Wenow assert that there is a point z, in the domain G at which £ (z,) = w,.

Let us write

F @) — wo = [£u2) — wol + [f(2) — fu2)].
On the curve yr we have

| fu(2) — wo| > R — |wy] for n > Ry

Since f,(z) converges uniformly to f(z) on the curve yx as n — o, there exists
ann; = ngsuch that, on yg,

|f(2) — £i2)] < R — |wq|
whenever n = n,. By Rouché’s theorem (Section 10.10), the functions
f(z) — wy and f,(2) — w, have the same number of zeros in the domain G
whenever n = n,. But the function f,(z) — w, has only a single zero in this
domain. Hence, the function f(z) assumes the value w, precisely once in the
domain Gy, which proves our assertion.

§3. BOUNDARY CORRESPONDENCE UNDER CONFORMAL MAPPING
17.13. Boundaries and their Correspondence

By the Riemann mapping theorem, a simply connected domain G in the z-plane
whose boundary I” contains at least two points can be mapped conformally
onto the unit disk E: |w| < 1, and this mapping is unique up to a conformal
mapping of the unit disk onto itself. The group of such mappings consists
of the linear transformations (17.2). In what follows, we shall study the
behavior of the mapping w = w(z) when the point z € G approaches the
boundary I.

From the single fact that the mapping G < FE is topological, we have
first the following property.

If a point z of the domain G tends to a point { on the boundary I, then its
image w = w(z) tends to the boundary of the unit disk.

Proof. Letz,,..., 2, ...beasequence of points in the domain G for which
z, - L asn — . We must prove that |w,| = |[w(z,)] = 1 as n — «, where
w = w(z) is the function mapping G onto the unit disk.

To begin with, we choose an arbitrary positive ro < 1. The disk |w| < r,
then corresponds to a compact subset G, of G. The shortest distance of the
point { from G is a positive number 8. We choose n so large that |z, — {| < §
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for n = ny. The points z, (n = np) lie outside G,, and, from the one-to-one
nature of the mapping it follows that the corresponding points w, lie outside
the circle |w| = r,. Hence, ry < |w,| <1 for n = ny, and this is what we
wanted to prove.

17.14. Examples

The theorem we have just proved shows that the modulus |w(z)| of the map-
ping function w = w(z) is continuous on the boundary of the domain G.
However, it does not follow from this that the mapping function w(z) itself
is continuous at the boundary I'; for this to be the case, the argument arg w(z)
must be continuous in the approach to the boundary. In what follows, we
shall see that this does not always happen. Let us consider some examples.

1) Let G be the domain bounded by the positive real axis I': x = 0,
z = x + iy, of the z-plane. That branch of vz which assumes the value i
for z = —1 maps G onto the upper half-plane Im (Vz) > 0. This half-plane
is then mapped by a linear transformation onto the unit disk |w| < 1 in such
a way that the positive real axis corresponds to the semicircle |w| = 1,
Im w > 0, and the negative real axis corresponds to the semicircle |w| = 1,
Imw < 0. If a point z= x + iy tends towards a boundary point x > 0,
y = 0 of G from the half-plane y > 0, then w = » + iv tends to a well-defined
point w (jw] = 1, v > 0); if, however, z tends to the same point x > 0,y = 0
from the half-plane y < 0, w(z) tends to the complex conjugate W of the limit
value w found previously. The mapping w = w(z) is therefore discontinuous
at every boundary point x > 0, y = 0.

2) A more complicated example may be constructed in the following
way. The exponential function z = e¥ = e“(cos v + i sin v) maps the half-
plane u < 0 onto an infinite-sheeted Riemann surface lying over the disk
|z] £ 1 and having z = 0 as a branch point. We now restrict the points w
to the domain G,,: u <0, —(1/u) < v <—(1/u) + 27, whose boundary consists
of branches of the hyperbolas uv + 1 = 0 and uv + 1 — 27u = 0 (the second
one is obtained from the first by a translation of 27 in the direction of the
v-axis (Fig. 47)). The function z = e¢* maps this domain G, one-to-one
conformally onto a domain G, obtained from the disk |z| < 1 by removing
the spiral z = e*(cos (1/u) — i sin (1/u)) (—» < u < 0) corresponding to points
on the bounding hyperbolas.

If the point w in the domain G, now tends continuously towards the
boundary point u = 0, v = 4o, then its image point z winds infinitely often
about the origin in such a way that |z| — 1 (Fig. 48). Therefore the boundary
correspondence under the mapping w < z is not continuous.

In this example the image of the domain G, is not the disk E, but a domain
G,, bounded by two hyperbolas. By the Riemann mapping theorem, this
simply connected domain can be mapped conformally onto the unit disk.
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Since the boundary of the domain G, is a piecewise analytic curve, the map-
ping G,, <> E is one-to-one and continuous on the boundafies (cf. Exercise 3,
p. 339). In particular, there is a well-defined point P on the unit circle corre-
sponding to the boundary point # = 0, v = +w of G,.. The composite con-
formal mapping E < G, is therefore discontinuous in the neighborhood of
this point P: A continuous curve in E terminating at the point P corresponds
to a curve in the domain G, which spirals to the boundary |z| = 1 in such a
way that every point of the boundary is a cluster point of the curve.

Figure 47 Figure 48

Y

3) If we remove the segments 0 < x <4, y=1n (n=2,3,...) from
the square 0 < x < 1, 0 < y < 1, we have left a simply connected domain
G.t If we map G conformally onto the unit disk |w| < 1, we get an analytic
function which is discontinuous on the missing segments. The nature of this
mapping as it approaches the boundary segment 0 < x < 4, y = 0 is par-
ticularly complicated. To show this, we consider a sequence of points
zZ,=x+in/(n* + 1) in G, where n =2, 3, ..., and where x is a constant
satisfying the inequality 0 < x < 1. As n —> o, the sequence z, converges
to the boundary point z = x. Under the mapping G < E, the image points
w, of the points z, tend to the boundary |w| = 1. We may choose an infinite
subsequence {w,} from the sequence w, which converges to a boundary point

t The simple connectivity of G follows from the fact that this domain can be mapped
topologically onto an open square (Exercise 2, p. 339).
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w = w,. If we join successive points in the sequence by line segments, we
obtain a polygonal path /, in E with infinitely many sides terminating at the
point w,. The image of this path in G is a curve consisting of infinitely many
analytic arcs. It passes through the image points {z,} of the points {w,} and
oscillates as w tends to w, along /,,. Hence every point of the interval (x, %) of
the real axis is a cluster point.

17.15. Boundary Correspondence under
Conformal Mapping of Domains Bounded by Analytic Curves

As the above examples show, that fact that a domain G may be mapped
conformally onto the unit disk does not in itself imply that the boundaries
of the domains may be put into one-to-one correspondence in the sense that
when a point z € G approaches an arbitrary point on the boundary, its image
w € E tends to a definite boundary point of E, and conversely. Nevertheless,
it is easy to see that if we make certain special assumptions about the boundary,
the mapping will also be continuous on the boundary. This is the case, for
example, when the boundary I of G is an analytic Jprdan curve. For it follows
from Section 12.11 that the mapping function can then be continued
analytically across I', which implies that it is analytic on I" and therefore
continuous at every point of I". The same result also holds when the boundary
is a piecewise analytic Jordan curve (cf. Exercise 3, p. 339).

In what follows, we shall examine in more detail the nature of the boundary
correspondence under conformal mapping. These considerations, which are
not altogether simple, are not required for the solution of the special mapping
problems presented later on in Sections 5-7.

17.16. Accessible Boundary Points

Let { be a boundary point of the domain G. If there exists a continuous path
z=12z(1) (0 £ 7 £ 1), which lies in the domain G for 0 £ 7 < 1 and ter-
minates at the point {, z(1) = {, then the boundary point { is said to be
accessible. Accessible boundary points have particularly simple properties
under conformal mapping, as we shall presently see.

To illustrate what we mean by an accessible boundary point, we consider
the examples given above. In case (1) all boundary points of the domain G
are accessible. In example (2), those boundary points { lying in the disk
|z| < 1 are accessible, but none of the boundary points with |{| = 1 have
this property. All boundary points of the domain G in example (3) are
accessible, with the exception of those lying on the segment0 < x < 4,y = 0.

17.17. Classes of Boundary Elements

The notion of an accessible boundary point { involves not only the point {
in the complex plane, but also a continuous path /: z = z(7), lying in the
domain G for 0 £ 7 < 1 and terminating at the point { when = = 1. Hence,
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we denote an accessible boundary point { by the pair ({, /;) and call such
pairs boundary elements. (It would really be enough to use the notation I,
since this already determines the end-point .)

Now let G be a simply connected domain and (, /;) a boundary element.
To every value r of the interval 0 < r £ |{ — z(0)| there corresponds a well-
defined parameter value 7 = 7, (0 £ 7, < 1) such that |{ — z(7,)] = r and
0<|{—z(r)] <rfor 7, <7 <1 Let the corresponding subarc of /; be
.. The disk |z — {| < r and the domain G have a non-empty open inter-
section consisting of a countable set of disjoint connected subdomains or
components. One of these subdomains contains the arc /,; let us denote it
by G,(Ip).

Suppose now that ({,, I,) and ({,, I,) are two boundary elements. It
follows from the definition that:

If {; # {5, the domains G,(/;,) and G,(I;,) are disjoint for all sufficiently
small values of 7.

If {; = {,, then either the domains G,(/;,) and G,(I;,) are disjoint, or they
coincide.

If G.(ly,) and G,(I;,) coincide for every value of r > 0, the boundary
elements (¢, Iy,) and ({,, I;,) will be said to be equivalent. This relation has
all the properties of an equivalence relation (cf. Section 8.16): it is reflexive,
symmetric and transitive. The set of boundary elements corresponding to
accessible boundary points admits a partition into disjoint equivalence classes
such that two boundary elements are equivalent if and only if they belong
to the same class.

For two boundary elements ({;, I;,) and ({;, I;,) to be equivalent, it is

necessary for the “end-points” ¢, and ¢, to coincide, but this condition is
not sufficient. Thus, every boundary point { = x > 0 in Example (1) defines
two different classes of elements, while the boundary point { = 0 belongs to
only one class. Similarly, in example (2), the points {(0 < || < 1) define
two distinct classes of elements, while the point { = 0 defines only one. In
example (3), each of the boundary points { =x+iln 0 S x<4, n=2,
3,...) belongs to two different classes, but the points { =% + i/n (n = 2,
3,...) and the other accessible boundary points of the bounding square
belong to only one class.
' The number of classes belonging to the same boundary point can also be
infinite. Such is the case, for example, with the boundary point { = 0 of the
domain G obtained by removing from the plane z # o« the segments r e'®
O=2rslL,¢=mnn=12..).

17.18. The Mapping of the Domains G,(/)

Let us examine the behavior of a boundary element (¢, /) of a (bounded)
simply connected domain G under the conformal mapping of G onto the
unit disk E: |w] < 1. We may suppose that the point z = 0 is mapped into
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the point w = 0. For each positive number r < |{|, let G(I;) = G, be the
corresponding (connected) subdomain of G (cf. Section 17.17), and let
D, < E be the (schlicht) image of G,. As r — 0, the domain G, shrinks to
the point {. We prove that D, then tends to a well-defined point of the unit
circle |w| = 1.

For this purpose, we consider (for a given r) two arbitrary points w; and
w, of D, which do not lie on the same ray through the origin, and we join
them in D, by a simple polygonal path. This contains as a subset at least
one polygonal path A which joins two points P, and P, of D, lying on the
rays ¢ = argw, and ¢ = arg w,, but which does not otherwise intersect
these rays. The polygonal path A lies in one of the two angular sectors bounded
by the rays Ow, and Ow,; we shall denote the one it lies in by 09,0, and
denote by « (0 < « < 27) the value of the angular opening of 00,0, at 0
(Figs. 49 and 50).

U

Figure 49

The simple closed polygonal path 0P,P,0 bounds a (simply) connected
domain E, < E. We consider the harmonic function

u(w) = log |z(w) — {| — log M

defined in E;, where M is the diameter of the domain G and where z = 2(w)
effects the conformal mapping E — G. Now u(w) < 0 on the rays bounding
E,, and u(w) £ logr — log M (< 0) on the polygonal path A.

On the other hand, we form the harmonic measure A(w) of the arc 0,0,
with respect to the sector Q,0Q,t; it vanishes on the bounding radii and
is equal to 1 at the interior points of the arc Q,Q,. Hence, A(w) = 0 on the

+ This function can be determined in an elementary way (cf. Section 11.19 and
Exercise 19, p. 210).
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segments OP;, OP, bounding the domain E,, while #(w) < 1 on the (closed)
polygonal path A.
It follows that the harmonic function

Uw) = u(w) + (log M — log r)h(w)

is less than or equal to 0 on the segments 0Q, and 0Q, and that the same is
true at the points of A. It then follows from the maximum principle that
U(w) = 0in the entire domain E,. Hence, at every point w of this domain,

M M

We now fix a number po (0 < py < 1) such that

2w — ¢ 2 I

in the disk |w| = p,. Let w, be the midpoint of the subarc of |w| = p, which
lies in the sector 00,0,. At the point wy, h(w,) is a positive number which
depends only upon the magnitude of the angle «. Its value h(w,) = f(«) > 0
decreases monotonically with « (see Exercise 4, p. 340).
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It follows from inequality (17.13) that

f(o) = logglg—ll—/log]g

Since the right-hand side vanishes when r — 0, f(«), and therefore « itself,
tends to zero with r. This means that the oscillation of the function arg w in
the domain D, must vanish when r — 0. If we observe that D, < D, for
r’ < r, we see that arg w(z) tends to a limit as r - 0, z € G,. This proves
our assertion.

In particular, it follows that

If (L, Ip) is a boundary element, and if the point z tends to the boundary
point { along I, then the image point w = w(z) tends to a well-defined limit
w (Jw| = 1). The limit point w remains unchanged whenever the element
(&, Iy) is replaced by an equivalent element (, I7).

Therefore, to every given class of elements ({, /;) there corresponds a
uniquely determined point w on the boundary of the unit disk.

17.19. The One-to-One Character of the Correspondence (§, k) — w
We now prove the converse.

If (1, Iy,) and (85, I;,) belong to distinct classes, then they correspond to
distinct boundary points wy and w,.

Proof. Suppose that the boundary elements ({,, /;) and ({,, [,) belong to
different classes, and let w, and w, be the corresponding points on the circle
[w| =1. We assume that w, = w, = w and show that this leads to a
contradiction.

The paths /;, and /,, which we may assume are Jordan arcs (Exercise 5,
p. 340), lead to two domains G,(/,) and G.(/;) (Section 17.17) which are
disjoint for all sufficiently small values of r (0 < r < ry). Let /;(r) be that
part of the arc /; which lies in the domain G,(/,) and connects the circumference
|z — {;| = r with the point {;, and, similarly, let /,(r) denote the terminal
part of /,. Under the mapping w = w(z), the arcs /,(r) (v = 1, 2) correspond
to two Jordan arcs A,(r) which terminate at the point w = w and which are
disjoint except for this point.

We now apply Theorem 3 of Lindel6f (Section 11.21) to the function
z = z(w). This function is regular and bounded in the domain D bounded
by the arcs A,(rg) (v = 1, 2) and by an arbitrary Jordan arc A, lying within
the disk |w| < 1 and joining the initial points of A,(r,). It follows from this
theorem that the limits {, to which z(w) tends as w tends to w along the arcs
A, are equal, {; = {, = {, and that z(w) tends to { as w € D tends to w.
Moreover, the convergence is uniform: To every value r (0 < r < r,) there corre-
sponds a value p such that |z(w) — {| < r whenever w lies in the intersection
D, of the domain D with the disk |w — w| < p.
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The circle |w — w| = p then contains a boundary arc A of D, joining
two points w; and w, on the arcs A,(r) and A,(r). The corresponding points
z, = z(w,) (v = 1, 2) lie on /,(r), so that z, € G(l,) < G,,(l,) (v = 1,2). The
image curve / of the arc A joins the points z, and z,. Since G,(/,) and G,,(/,)
are disjoint, the arc / which runs from the initial point z; to the end-point z,,
must intersect the boundary of the domain G, (/;). But since / and the
boundary I" of G do not intersect, there must then be a point z, on the arc /
which lies on the circle |z — {| = r,.

On the other hand, the inequality |z(w) — {| < rholds on A. In particular,
this is valid at the image point wy € A of zy, so that |z(wg) — {| = |z — | <
r < r,, contrary to the previous assertion that |z, — {| = ry. The assump-
tion w, = w, therefore leads to a contradiction, so that w, # w,, which was
to be proved.

17.20. The Conformal Mapping of Jordan Domains

The foregoing theorems yield a particularly simple result whenever the
‘boundary of G is a Jordan curve I,

If a Jordan domain G (that is, a domain bounded by a Jordan curve) is
mapped conformally onto the unit disk E (|w| < 1), then the mapping is
continuous and one-to-one on the boundaries I" and |\w| = 1.

The proof is based upon the following facts.

1) Every boundary point { of a Jordan domain G is accessible, and it
defines a single class of boundary elements (Exercises 6 and 7, p. 340).

2) Let (£, ) be a boundary element and G,(/) the associated “neighbor-
hood” (cf. Section 17.17). As r — 0, the image of G,(/) approaches a par-
ticular point w of the circle |w| = 1 (as was shown in Section 17.18). To
different boundary elements there correspond different image points. The
boundary I'is therefore mapped in a one-to-one manner onto a point-set (w)
on the circle |w| = 1.

3) The mapping I" <> (w) is continuous (Exercise 8, p. 340). As the
point { varies on the boundary curve I, arg w varies continuously. From the
one-to-one character of the mapping I" — w it follows that arg w is a mono-
tone function of , that is, if { = {(7) (7o £ 7 = 75 (7o) = {(ry)) is the
equation of I, then arg w is a monotone increasing or monotone decreasing
function of 7.

4) To the parameter interval 7y < 7 < 7, there corresponds a closed
arc of the circle |w| = 1. Its end-points w({(ry)) and w({(r;)) coincide, since
otherwise two distinct points on |w| =1 would correspond to the point

{= U(ro) = &)
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The mapping G < E therefore can be extended to the boundaries of the

domains, and the correspondence between the boundaries I" and |w| = 1 is
topological. Q.E.D.

§4. THE CONNECTION BETWEEN

" CONFORMAL MAPPING AND THE DIRICHLET PROBLEM

17.21. The Solution of the Dirichlet
Problem by Means of the Riemann Mapping Theorem

The Riemann mapping theorem has a close connection with the Dmchlet
problem. In Chapter 11 we saw that a bounded harmonic function in a
domain G is completely determined if its values on the boundary I" of the
domain are known. Suppose, then, that we are given an arbitrary, piecewise
continuous function on I', and we seek to determine a bounded function
which is harmonic in the interior of the domain G and assumes the given
values on its boundary I. In Chapter 11 we have already given the solution
to this problem whenever the domain G is a disk;; it was constructed by means
of the Poisson formula.

In the more general case of a Jordan domain G we can obtain the solution
with the aid of the Riemann mapping theorem. Thus let G be a simply con-
nected domain whose boundary is a Jordan curve I', and let U({) be a piece-
wise continuous real function of the boundary point {. We seek a bounded
harmonic function #(z) in the domain G which assumes the value U({) at
each point of continuity of U({).

By the Riemann mapping theorem, the domain G can be mapped one-
to-one conformally onto the unit disk |¢[ < 1. The mapping is continuous
on the boundary (cf. Section 17.20). The function U({) is thereby transformed
into a function T(6) of the point ¢ on the unit circle, and the function u(z),
which we are seeking, goes over into a function #(¢) which is harmonic in the
disk |¢| < 1 and which possesses the boundary values U(6).

From these boundary values U(6) we can construct the function (¢) by
means of the Poisson integral. If we return to the z-plane, #(¢) is transformed
into a function u(z), harmonic in the domain G, which possesses the given
boundary values U(Z). This solves the Dirichlet problem for a Jordan domain
G.

17.22. The Green’s Function
Conversely, whenever the boundary-value problem admits a solution for
harmonic functions, the Riemann mapping problem may also be solved.

Let w = w(z, a) be an analytic function which maps the simply connected
domain G of the plane z # « conformally onto the unit disk |w| < 1 in such
a way that z = a is mapped into the point w = 0. The single-valued function

g(Z, a) = log lW(Z, a)l (17'14)
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then has the following properties:

1) g(z, a) is harmonic in G except at z = a, where it has a logarithmic
pole: I
g(z,a) = logl—;_—ai + u(z, a); (17.15)
here, the function u(z, a) is harmonic throughout G.
2) g(z, a) is continuous and equal to 0 on the boundary I" of G.

The function g defined by (1) and (2) is called the Green’s function of the
domain G with pole z = a. Hence, there exists a Green’s function for every
simply connected domain G for which the Riemann problem can be solved.
The uniqueness of the function g(z, a) can be proved directly. For the difference
of two such functions is harmonic everywhere in G and vanishes on the
boundary. By the maximum and minimum principles, however, such a
function must then be identically zero.

Conversely, let us now assume that the boundary-value problem can be
solved for a given domain G in the plane z # «.} In order to construct the
Green’s function g(z, a), we first solve the boundary-value problem for the
boundary-values log |{ — a] ({ € I'). Denote the solution by u(z, a). Then
the sum (17.15) has both the defining properties (1)-and (2) of the Green’s
‘function g(z, a).

17.23. Solution of the Riemann Mapping
Problem by Means of the Boundary-Value Problem

Formula (17.14) now permits us to construct the mapping function w(z, a)
from the Green’s function g(z, a) if we assume that G is simply connected.

We show first that there exists a single-valued analytic function w(z, a),
which is defined up to a constant factor of modulus 1 and which satisfies the

relation log |w(z, @)| = —g(z, a).

To construct this function w, we first form the harmonic conjugate of the
function g. The conjugate function of the first term in (17.15) is —arg (z — a).
If we fix an arbitrary branch of —arg (z — a) at any point z = z, € G (z, # a),
then the continuation of this branch for z # a yields a multiple-valued
function with periods n-2m, when » is an integer. On the other hand, by the
monodromy theorem, the conjugate function v(z, @) of u(z, a) is single-valued
once its value at z = z, has been fixed. Hence, the conjugate harmonic
function A(z, a) of g is uniquely determined up to the periods n- 2, so that

the function Ww(z, @) = e~ = (z — g) e~ (17.16)

is a single-valued analytic function in G.

+ For the moment, it is not necessary to assume that the domain G is simply connected,



326 THE THEORY OF CONFORMAL MAPPING §4

17.24.

Now we shall prove that the function w(z, a) defined by (17.16) maps the
domain G one-to-one conformally onto the unit disk |w| < 1.

We remark that it follows from (17.16) that the following properties
hold. \

1) w(z, a) has a simple zero at z = «, and does not vanish elsewhere in G.
2) |w(z, a)] = e® < 1, since the Green’s function is positive in G. On

the boundary I', |w(z, a)| is continuous and is equal to 1. ‘
Further, we shall prove that

3) The function w(z, @) is one-to-one: it assumes different values at
different points z € G.

Proof of (3). Leta # b € G. We shall show that w(z, @) # w(b, a) for z # b.
For this purpose, we form the linear transformation
w(z, a) — w(b, a)
1 — w(b, a)w(z, a)
of w(z, a). Since |w(z, a)] < 1 in G, the same is also true for w(z, a, b) (cf.
Section 3.10). The latter is therefore regular for z € G and satisfies

lw(z, a, b)| < 1.

On the other hand, let us consider the function w(z, b) obtained from
(17.16) by replacing the pole a by b. Since this function has the point z = b
as its sole (simple) zero in G, the quotient

w(z, a, b)
w(z, b)

is regular in G. On the boundary I' it has absolute value 1. Hence, by the
maximum principle,

w(z, a,b) =

|w(z, a, b)|
I 17179

at every point in G.

If equality occurs in this relation at ore point of G, then it holds identically
in G. We shall show that equality does in fact hold at z = a.

It follows from (17.17), for z = a, that

Wb, a)| _
wa,B) =

for w(a, a, b) = —w(b, a). However, since a and b are arbitrary points of G,
this relation also holds if @ and b are interchanged. Accordingly, we have

|w(a, b)| = |w(b, a)|.
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But then equality must hold identically in (17.17):
|w(z, a, b)| = |w(z, b)|.

However, since w(z, b) vanishes only for z = b, we have w(z, a, b) # 0 for
z # b. From the definition of the function w(z, a,b) it follows that
w(z, a) — w(b, a) # 0 for z # b, which proves our assertion.

Finally, we prove

4) The range of w(z, a) is the full unit disk |w| < 1.

Proof. Suppose that there were a value wy, |wo| < 1, which is not assumed
by w(z, a). Form the expression

w(z, a) — wo
1 — wew(z,a)’

which defines a regular non-vanishing function for z € G. On the boundary
I' its absolute value is continuous and is equal to 1. From the maximum and
minimum principles it then follows that its absolute value is the constant 1.
But for z = a the absolute value is |wy| < 1. This contradiction proves
assertion (4).

Properties (1)-(4) show that w = w(z, a) is the conformal mapping of G
onto the unit disk |w| < 1 which we were seeking.

§5. THE CONFORMAL MAPPING OF POLYGONS
17.25. Analytic Continuation of the Mapping

Let P be a simply connected polygon in the w-plane whose boundary is a
simple polygonal path with vertices at w, w,, . . ., w,. Let the angles at these
vertices be denoted by «,7, a,7, . . ., a7, so that

21 «,=n—2.

By the Riemann mapping theorem the interior of the polygon P can be
mapped conformally onto the half-plane Im z > 0. The mapping function is
uniquely determined up to a linear transformation of the half-plane onto itself.
Since the boundary curves of the domain are piecewise analytic, the mapping
is also continuous on the boundary. Consequently there exist points z,,
Z,, . . ., Z, on the real axis in the z-plane corresponding to the vertices w,,
W, . .., W, of the polygon. Three of these points may be chosen arbitrarily.
If we take, say, z, = o and two others arbitrarily, the mapping is then uniquely
determined. We denote the mapping function by z = z(w) and its inverse
by w = w(z).

By the reflection principle the function w = w(z) may be continued
analytically across each segment z,z,,, (v = 1,2, ..., n) into the half-plane
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Imz < 0. When w(z) is continued across z,z,, points which are symmetric
with respect to the real axis are mapped into points which are symmetric
with respect to the side w,w,. The function therefore maps the half-plane

Im z < 0 conformally onto a polygon P’ which is symmetric to the original
polygon P with respect to the side w,w, (Fig. 51).
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This branch of the function may be reflected back to the upper half-
plane across any segment z,z,,,. The resulting function maps points which
are symmetric with respect to the real axis into points which are symmetric
with respect to the side w,w, ., of P’ corresponding to the side w,w,,, of P.
It maps the entire half-plane Im z > 0 onto a polygon P” which is symmetric
to P’ with respect to the side w,w,,,. The polygon P” is congruent to P and
may be obtained from P by a translation and a rotation.
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If we continue the mapping function w(z) analytically in all possible
ways, we obtain a multiple-valued analytic function whose branches are
related by congruence transformations. From this it follows that any two
branches, w(z) and W(z), satisfy the equation

W(z) = aw(z) + b, (17.18)

where a and b are constants with |a] = 1.
From (17.18) we have

so that the function

() (17.19)

is single-valued in the entire plane. It is regular everywhere except at the
points z, (v = 1, 2, . . ., n), since apart from these points, w(z) is regular and
w'(z) = 0.

17.26. Singularities of the Function £ (z)

We now examine the behavior of the function (17.19) at the points z,. At these
points, the function w(z) is not regular since it has branch-points. With w,
as center we draw a small circle such that the sides of P emanating from w,
determine a sector G,, of this circle which lies entirely in P. We map this
sector conformally onto the semicircle G; by the function

{=(w— w)tla, (17.20)

Under the function z = z(w) the sector G,, corresponds to a bounded domain
G which lies in the half-plane Im z > 0 and which adjoins a segment of the
real axis. Since w = w(z) is regular in the domain G,, it foltows from (17.20)
that { is also regular in G, and

L =2 —w)'™ = {(2). (17.21)

Now {(z) maps this domain onto the semi-circle G;. By the reflection

principle, the function (17.21) may be continued analytically across the real

axis; it therefore is regular even at the point z,. Hence, it may be expanded

into a power series in z — z,, in the neighborhood of the point z,. From

(17.20) and (17.21) we obtain the expansion
(W - wv)”aw = CI(Z - zv) + CZ(Z - zv).2 +oee

—G@—z)e + -2, (7.2

where ¢, # 0, since the mapping from the z-plane into the {-plane is conformal
at the point z, (for the notation [z — z,] see Section 9.22). Hence,

w—w,=(z~— zv)av{cl + [z - zv]}ow_
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Since the expression in braces does not vanish in a sufficiently small neighbor-
hood of z,, every branch of its power is regular there and admits an expansion
into powers of z — z,. Thus we obtain

w—w,=(z—2z)b+ [z- 2]} (17.23)
where again b # 0. By differentiating we obtain 4
w(z) = ez — 2, Hb + [z — z,]}.

Consequently, we obtain the logarithmic derivative

f@=— 10g w'(z) =

- zv)a

where P(z — z,) is a series in positive powers of z — z,. The function
(17.19) therefore has a pole of first order with residue «, — 1 at the point
z,(v=12,..,n—1).

We must still investigate the function (17.19) in the neighborhood of the
point z = z, = ». The transformation

=1
t .

maps the upper half-plane onto itself in such a way that the origin corresponds
to the point z = . The function w(z) = w(—1/t) maps the half-plane Im ¢ > 0
onto the polygon P in such a way that the point ¢ = 0 goes into the point w,.
From (17.23), the function w(—1/t) has the expansion

WPS”%=WWO (P(0) # 0),

from which it follows that
-4
w(z) — w, = (1) P (-;) . (17.249)

V4
For the function (17.19) we then have

z z?

1 1
f(z)———logw(z)——ac + +[~—].
Hence, f(z) is regular at the point z = « and vanishes there.

17.27. The Schwarz-Christoffel Formula
We have seen that the function f(z) is regular everywhere except at the points
Z15 Z2 « + .» Zn—1, Where it has poles of first order. By Section 9.23, it must be
a rational function, and, since it vanishes at z = o,

n—1 1

F@ =L logwe) = > 2=

Lz—1z,

(17.25)
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If we integrate this equation, we have
n—1
logw'(z) = X (o, — D 1og(z — z,) + logc,
v=1

where cis a constant. Going over to w'(z) and integrating once more, we obtain
the so-called Schwarz-Christoffel formula

w(z) = ¢ f:o (z—z)" N z—2z)2 ...z =z )" Vdz + . (17.26)

Here z, is an arbitrary point and ¢’ = w(z,).

We have derived formula (17.26) under the assumption that z, = o,
The point z, then does not appear explicitly in the formula. If all the image
points of the vertices are finite, a factor (z — z,)*! would then appear in
the integrand in (17.26). The function w(z), as well as the function f(z2),
‘would then be regular at infinity.

17.28. The Mapping of a Polygon onto a Disk

If we map the half-plane Im z > 0 conformally onto the disk || < 1 in such
a way that, for instance, the point z = i goes into { = 0, the mapping formula
(17.26) is transformed into the formula

w=c[ @ - L - L G- AL L (17.26)

Here the points {,, {,, . . ., {, are the images on the unit circle of the vertices
of the polygon. The proof of formula (17.26)' is left as an exercise (Exercise
17, p. 341).

The image points of three of the vertices of the polygon may be chosen
arbitrarily (Section 17.25). The remaining images are then completely deter-
mined. In general they cannot be calculated explicitly in terms of the given
vertices. In certain special cases, however, their positions can be computed,
for example, if the given polygon is regular.

17.29. The Mapping of a Triangle

For a triangle we have
oy -+ 0ty + a3 = 1. (17.27)

Let z = z(w) be a function which maps the triangle onto the half-plane
Im z > 0. Let us investigate the conditions under which z(w) can be continued
analytically into the entire w-plane as a single-valued analytic function.

We start from a point z, in the half-plane Im z > 0 which corresponds to
the point w, inside the triangle. If z winds once in the positive direction about
the point z;, we arrive at that branch of the function w(z) which maps the upper
half-plane onto a triangle P”. We obtain P” by rotating P about the point
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w, through an angle of 2« 7. If z makes another circuit about z,, the triangle
is rotated once again through the same angle (Fig. 53). After a sufficient
number of circuits the resulting branch of the function w(z) maps the upper
half-plane onto a triangle which covers the triangle P either completely
or at least partially. ,

Let m denote the number of circuits made by z. If z returns to the point
2, in this process, its image point w returns to the point wy if and only if the
triangle returns to its initial position after m circuits.

Figure 53

Therefore, in order that the function z(w) be single-valued in the neighbor-
hood of w,, it is necessary and sufficient that the triangle be returned to its
original position by an integer number m of rotations by the angle 2e;7 about
the point w;. This means that «; must satisfy the condition

2 1
, oy = —.

oyT = —
! 2m m

If we repeat this argument for the other two vertices, we obtain «; = 1/n,
a3 = 1/p, where n and p are positive integers. By (17.27), these numbers must
satisfy the condition

L 1. (17.28)
p
The solutions of this equation in positive integers are easily determined:
m=2, n=4, p=4
m=2, n=3, p==6

m=n=p=
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17.30.

We consider the first case in detail; the given triangle is an isosceles right
triangle. If we map the triangle onto the half-plane Im z > 0 in such a way
that its vertices are mapped into the points —1, 1, «, it follows from (17.26)
that the mapping function assumes the form

w=c¢ fz 4z + ¢
)L a=ART e
where z = o is the image of the vertex with the right angle. If z, is the image

of the origin, then ¢’ = 0; if the hypotenuse has the direction of the real axis,
then c is real.

TR
K
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Figure 54

If we continue the mapping function analytically across the segment
(=1, 1) into the lower half-plane, the resulting mapping carries the plane, slit
from the points —1 and 1 out to infinity, onto a square, half of which is the
given triangle. By repeated analytic continuation we obtain, as images of the
half-planes, triangles which come from the original triangle by successive
reflections in the sides. In this way we obtain a network of triangles covering
the entire w-plane once (Fig. 54). The function z = z(w) is single-valued and
maps the entire w-plane one-to-one conformally onto an infinite-sheeted
Riemann surface whose branch points lie over —1, 1 and «. The branch
points over —1 and 1 are of third order, those over « of first order.

In the square w,w3w,w; (see Fig. 54, where the triangles corresponding
to the half-plane Im z > 0 are shaded), the function z(w) assumes every value
once. This square is therefore a fundamental domain of the function if we
include a suitable portion of its boundary. The points of the w-plane where
the function z(w) assumes the same value may be obtained from the linear
transformations w = aw + b, which form a group.
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We see from the figure that z(w) is doubly periodic. The period-parallelo-
gram is a square which is made up of four smaller squares. The function
assumes every value four times within the period-parallelogram. It is therefore
a doubly periodic function of fourth order.

In the remaining cases mentioned at the end of Section 17.29, m = 2,
n=3,p=6and m =n = p = 3, the function also turns out to be doubly
periodic.

17.31. The Mapping of a Rectangle

We now consider the corresponding question for the case n > 3. We want
to know when the function z(w) mapping an n-polygon onto the half-plane
Im z > 0 is single-valued. The line of reasoning used in Section 17.29 remains
valid. The necessary condition for single-valuedness turns out to be

o, = — v=12,...,n),

where the numbers m, are positive integers = 2 and

1 .2 (17.29)

vel Y

Since every m, = 2, the left-hand side of (17.29) is less than or equal to n/2,
and this is less than n — 2 whenever n > 4. The function z(w) can therefore
be single-valued only if n=4. In this case, Eq. (17.29) holds if and only if
every m, = 2. The given polygon is therefore a rectangle.

We map the rectangle onto the half-plane Im z > 0 in such a way that its
vertices map into the points z = 1, —1, 1/k, ~1/k (k < 1). According to the
Schwarz-Christoffel formula, the mapping is then given by

w==¢C ) dz + ¢
20 '\/(1 — 22)(1 —_ kzzz) ’

where ¢ and ¢’ are constants. On the right-hand side we have an elliptic
integral. We have already encountered this mapping function in another
connection (Section 14.35).

The function z = z(w) is a doubly periodic function whose period-
parallelogram is made up of four smaller rectangles. The function is therefore
of second order.

§6. TRIANGLE FUNCTIONS
17.32.

We now turn to a more general mapping problem. It is the question of map-
ping a circular curvilinear triangle conformally onto the half-plane Im z > 0.
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Let w,, w,, w; be the vertices of the triangle, and let «, 7, a7, 37 be the angles
at these vertices. We assume first that each of the angles is different from
zero. By the Riemann mapping theorem, the triangle can be mapped one-to-
one conformally onto the half-plane Im z > (. Let the mapping function
be z = z(w) and let its inverse be w = w(z). In view of Section 17.15, the
mapping is continuous on the boundary. We may choose the images of the
vertices to be three arbitrary points on the real axis; let these be the points
0, 1, ©. The mapping function may be continued analytically into the lower
half-plane. By repeated continuation, we obtain a function which maps the
Riemann surface lying over the z-plane and having branch points over z = 0,
1, © onto a Riemann covering surface of the w-plane

We now look for the conditions under which the inverse z = z(w) of the
function w(z) is single-valued.

As in Section 17.29, we conclude at once that a necessary condition that
z(w) be single-valued is that

T T T (17.30
where m, n and p are positive integers.

In order to see that condition (17.30) is also sufficient, we must examine
more closely the nature of the mapping at the vertices w,,

The sides of the triangle emanating from the vertex w, have a second
point of intersection w, which lies outside the triangle. If we perform a linear
transformation { = {(w) which takes the point w = w,, into the point { = =,
the triangle w,w,w; will be mapped onto a triangle such that the two sides
emanating from the vertex {; = {(w,) are line segments. The third side is a
circular arc through the points {, = {(w,) and {; = {(w;). Its center lies
either on the same side of the line {,{; as the point {,, or on the opposite
side, according as the sum of the angles of the triangle is greater than = or less
than . The third side is a straight line if and only if the sum of the angles
is 7. We must therefore distinguish three cases:

1 1

— =+
m

1
p oS L (17.31)

VIA

17.33

In the first case, 1/m + 1/n + 1/p < 1, it is easy to show that the sides of the
triangle possess a common orthogonal circle containing the triangle in its
interior. If we return from the {-plane to the w-plane by a linear transforma-
tion, we may conclude that the sides of the original triangle likewise have a
common orthogonal circle C containing the triangle.

If we continue the mapping function analytically into the exterior of the
given triangle by means of the reflection principle, we obtain a single-valued
function. After two reflections, z returns to its original value. We have thus
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performed a linear transformation in the w-plane. The interior of the circle
C is invariant under each of the reflections, while the sides of the triangle
are mapped onto circles orthogonal to C.

By using the fact that the hyperbolic measure (the non-Euclidean length)
of every arc is invariant under a conformal mapping of C onto itself (cf.
Section 3.11), we conclude that the interior of C is completely covered once
by the reflection of a network of triangles. The function z = z(w) therefore
maps the interior of C in a one-to-one manner onto an infinite-sheeted
Riemann surface whose branch points lie over the points z = 0, 1, ©. The
mapping is conformal everywhere except at the branch points.

We leave the details of the proof to the reader (Exercise 23, p. 342).

In the circle C, z = z(w) is a single-valued analytic function, with no
singularities except for poles, which is invariant with respect to a certain
group of linear transformations. It is an automorphic function under this
group (cf. Section 14.31).

In the second case in (17.31), we get an ordinary rectilinear triangle as
the image in the {-plane of the triangle w,w,w;. The question of the single-
valuedness of the mapping function z = z(w) has already been answered in
Sections 17.29 and 17.30.

17.34.

In the third case, the integers m, n, p satisfying the inequality 1/m + 1/n+
1/p > 1are:

m n J/)
2 2 Arbitrary
2 3 3
2 3 4
2 3 5

In these cases, the triangle w,w,w; may be mapped stereographically
onto the Riemann sphere in such a way that all the sides of the image triangle
are arcs of great circles. From this it follows that under repeated reflections
of the triangle in its sides the surface of the sphere is covered once by finitely
many triangles. In the first case, the number of triangles is 4p, in the second,
24, in the third, 48, and in the last, 120. In the first case two vertices of the
network of triangles lie at the poles of the sphere and the others lie on the
equator. In the second case we obtain the network by projecting a regular
inscribed tetrahedron onto the sphere from the center and then by drawing
the altitudes (circular arcs) in each triangle. In the third and fourth cases the
network of triangles leads to a regular octahedron and a regular icosahedron.
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The domain consisting of two neighboring triangles is always mapped
onto a full replica of the z-plane which has been suitably slit. The w-values
belonging to the same point of the z-plane are obtained by substitutions of a
group of linear transformations. The mapping function is therefore an
automorphic function. Since it has no singularities other than poles, it is a
rational function whose order, in the particular cases, is equal to 2p, 12, 24,
and 60. The reader is referred to Exercise 23, p. 342.

The investigations in this section and in the preceding sections were first
carried out by H. A. Schwarz (1843-1921). The mapping by curvilinear
triangles in the case treated in this section and its connection with the theory
of regular polyhedra was investigated extensively by Felix Klein (1849-1925).
The triangle functions constitute a particularly simple class of automorphic
functions. A systematic general theory of automorphic functions was
developed by Klein and, in particular, by Poincaré.

§7. THE PICARD THEOREM

17.35. Legendre’s Modular Function

We have assumed up to now that all the angles of the circular triangles are
positive. The investigation may be extended to the case where one or more
of the angles is zero. In particular, we consider the conformal mapping of a
triangle all of whose angles are equal to zero.

Let G be the domain 0 < Rew < 1, |w — 4| >4, Im w> 0. By the
Riemann mapping theorem, G can be mapped one-to-one conformally onto
the half-plane Im { > 0 in such a way that the points w = 0, 1, © go over
into the points { = 0, 1, . Let the mapping function be denoted by { = {(w).

Just as in the previous sections, we continue this function analytically
by means of the reflection principle. If we reflect G in one of the two sides
parallel to the imaginary axis, we obtain a triangle which is congruent to G.
By repeated reflections of this sort we obtain a simple covering of the upper
half-plane which includes all points except those which lie in the interior
of the circles

w—m+dH =% @=..,-1,01,...).

AN s
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Now we reflect G in the semicircular arc on its boundary. The image of
G is then a circular triangle with vertices at 0, 4, 1, whose sides are orthogonal
to the real axis. If we now reflect this triangle in the smaller circular arc
which emanates from the origin and continue this process, the vertices will
approach the origin and the radii of the circles will tend to zero. This we can
see by first mapping the domain G onto itself in such a way that the side
(0, 1) goes over into the side («, 0). The mapping will be effected by a linear
transformation ¢ = ¢(w) which maps the half-plane Im w > 0 onto the half-
plane Im ¢ > 0. The semicircular arcs emanating from w = 0 go over into
the rays Ret=n (n =0, +1,...), Im ¢ > 0, and reflections in these semi-
circles go over into reflections in the lines Re # = n. The images under these
reflections of the points ¢ = 0 and ¢ = 1 have © as a cluster point. If we
return to the half-plane Im w > 0 by the inverse transformation w = w(t),
the rays Re ¢ = n, Im ¢ > 0 go over into semicircular arcs emanating from
w = 0. Hence, the end-points of these arcs have the origin as a cluster point.

We can proceed in the same way with every curvilinear triangle. The radii
of the circles then tend to zero. The circular triangles resulting from repeated
reflections ultimately cover the entire half plane Im w > 0 just once without
leaving any gaps. The real axis intersects all the sides of the triangles ortho-
gonally.

The mapping function { = {(w)is single-valued in the half-plane Im w > 0
and maps it onto an infinite-sheeted Riemann surface with infinitely many
branch points of infinite order over the points 0, 1, «. Every sheet of this
surface corresponds to a curvilinear quadrilateral in the w-plane composed
of two neighboring circular triangles. The function {(w) has a singularity
at every point of the real axis, so that it cannot be continued analytically
across this axis.

The function {(w) is called the Legendre modular function.

If we make a linear transformation of the half-plane Im w > 0 onto the
disk |w| < 1, then the modular function is defined in this disk, and it cannot
be continued into the exterior of the disk. We denote this function by
{ = Mw) and its inverse function by w = w({).

17.36. The Picard Theorem

In conclusion, we shall use the modular function to prove Picard’s theorem
(Section 9.21).

An entire function w(z) which does not reduce to a constant assumes every
finite complex value with at most one exception.

The proof is indirect. Let us assume that w(z) has two finite exceptional
values a and b, w(z) # a, b, and show that the function then reduces to a con-
stant. We may assume, without loss of generality, that a = 0 and b = 1, for
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otherwise we may replace w by the function (w — a)/(b — a). The latter
function we shall still denote by w(z).

We substitute { = w(z) into the inverse function w({) of the modular
function. Every branch of the function w({) is regular except for the points
{ =0, 1, . However, the inner function { = w(z) is regular everywhere and
does not assume the values 0, 1. It follows that the function w(w(z)) can be
continued analytically throughout the whole plane. By the monodromy
theorem, this function is single-valued. Since it is regular and bounded in the
entire plane, it is a constant by Liouville’s theorem. From this it follows that
w(z) is also constant. But this contradicts our assumption, and thereby com-
pletes the proof of Picard’s theorem.

EXERCISES ON CHAPTER 17

1. Prove that a simply connected domain G having two distinct boundary
points must have infinitely many boundary points.

Hint. First map G onto a domain which lies inside the unit disk, as in Section
17.5.

2. Map the rectangle 0 < x < 1, « < y < 8 topologically onto itself by the
functions u = u(x, y), v = v(x, y), defined as follows: v = y, and

B-y 1 B—y
u=4 x for O0=x=ss+4+7—,
B—a+2B-1y) 2 B-a
1 B—vy
-y — - <x<
u=2x-—1 for 2+ﬁ—°‘=x=l’

when (« + B)/2 £ y < B, while

= y_—« < <1 y_—«

u 4B_a+2(y_a)x for 0=x=2+/9—a’
1 y—«o

= -— — < <

u=2x-—1 for 2+’3__o‘=x=1,

when « <y £ (« + B)/2. Apply this mapping to the case « = 1/(n + 1),
B=1/m (n=1,2,...) and prove that the square 0 <x <1, 0<y<1,
from which the segments 0 <x <4, y=1/n (n=2,3,...) have been
removed, can be mapped topologically onto the square0 < u < 1,0 <v < 1.
Investigate the behavior of the mapping when the point (x, y) approaches the
segment) £ x < 4,y=0.

3. Show that if a domain whose boundary is a piecewise analytic Jordan
curve is mapped conformally onto the unit disk, the mapping is continuous
on the boundary.
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Hint. Make use of the reflection principle (Section 12.11) and Theorem 3
of Lindelof (Section 11.21).

4. Let G be the circular sector |z| < r, Jarg z| < «/2 and let w(zy) be the
harmonic measure of the circular arc|z| =r, |argz] < /2 at the point
2, (0 < z5 < r). Show that w(z,) increases monotonically with «.

5. Let (g, I;) be an accessible boundary element of the domain G. Prove that
Iy can be replaced by a Jordan arc which defines the same boundary element.

6. Prove that all boundary points of a Jordan domain are accessible.

Hint. Letr,>...>r,>...>0,r, > 0asn— «. The intersection of
the disk X,,: |z — {| < r; (§{ € I" = 0G, the boundary of G) with the domain
G consists of at least one domain G,, which has [ as a boundary point. In the
intersection of the disk K,, with G there is a subdomain G,, of G,, which has
{asaboundary point, and so on. If z, is an arbitrary point of G,, (v = 1,2, .. .),
then z, can be joined to z, by a continuous path which does not leave G,,.
Continuing in this manner, one obtains a path belonging to G and terminating
at Z.

7. Prove that every point { of the boundary I" of a Jordan domain G defines
a single class of boundary elements.

Hint. Let [, and [, be two simple arcs in G which terminate at the point {
but otherwise have no common points. Join the points z, € /; and z, € [,
by a Jordan arc / = G which, except for its end-points, has no points in
common with /; or ,. The path /{,], where /, denotes the subarc z,{ of /,
(v=1,2), is a Jordan curve which, by the Jordan curve theorem, bounds a
domain D. We show that D < G. If there were a boundary point of Gin D,
then there would also be exterior points of G in D, since in the neighborhood
of every boundary point of a Jordan domain there are both interior points and
exterior points of the domain. The boundary I" of G would then bound three
distinct domains which, in view of the Jordan curve theorem, is impossible.

8. Prove that the correspondence I” <> (w) between the boundary I" of a
Jordan domain and the set of points (w) of the circle |w| = 1 (Section 17.20)
is continuous.

9. Show that there is one and only one way of mapping a given Jordan
domain conformally onto the unit disk in such a way that three given boundary
points on the Jordan curve are mapped into three given points on the unit
circle.

10. Show that a given Jordan domain can be mapped conformally onto a
rectangle in such a way that four given boundary points go over into the
vertices of the rectangle.
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11. Prove that the Green’s function g(z, a) of an arbitrary domain G satisfies
the symmetry relation

g(a: b) = g(b9 a)'
Hint. Compare Section 17.24.
12. Form the Green’s function g(z, @) of the annulus 1/R < |z] < R(R > 1).

Hint. Assume that g(z, a) exists, and take { = log z as a new variable. The
Green’s function is a single-valued periodic function of { for |Re {| < log R.
The solution is obtained by continuing g harmonically into the whole {-plane
according to the reflection principle. The result can be expressed with the aid
of the Weierstrass p-function.

13. Discuss the mapping effected by the analytic function e™~"*, where g is
the Green’s function constructed in Exercise 12.

14. Does the domain 0 < |z| < 1 possess a Green’s function ?

15. Let0 <o, <1 (v=1,2,...,n), oy + a3 + ...+ o, = n — 2. Prove
directly from the Schwarz-Christoffel formula (17.26) that w = w(z) maps
the half-plane Im z > 0 in a one-to-one way onto a polygon whose angles
area,7r(v=1,2,...n).

16. Prove directly (without the Riemann mapping theorem) that a given
triangle can be mapped conformally onto a half-plane.

Hint. Make use of the Schwarz-Christoffel formula.

17. Derive formula (17.26)’ for the function which maps a disk conformally
onto a polygon (cf. Section 17.28).
18. Map a regular polygon of n sides conformally onto a disk, and treat the
square as a special case.
Hint. Divide the polygon into central triangles and map each triangle onto
a circular sector with central angle 27/n.
19. Show that the mapping function in Section 17.29 is a doubly periodic
functioninthecasesm =2,n=3,p=6andm=n=p = 3.
20. Let z = z(w) be a function which maps a triangle with angles =/m, =/n,
7/p conformally onto the half-plane Im z > 0. Determine the fundamental
substitutions of those groups of linear substitutions which leave the function
z(w) invariant, if

aym=2,n=4,p=4

bm=2,n=3,p=6

) m=n=p=23.
21. Discuss the integral in the Schwarz-Christoffel formula (17.26) for n = 2

and n = 1, and determine the associated mapping function. What is the result
inthecasen =3, a; =, =4,2, + 2z, =0?
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22. Prove that in the case 1/m + 1/n + 1/p < 1, the sides of the circular
triangle have a common orthogonal circle containing the triangle in its
interior.
23. Prove the theorems about the mapping of circular triangles announced
in Sections 17.33 and 17.34.
24. If the function w = w(z) maps the half-plane Im z > 0 conformally onto
a circular triangle, the so-called Schwarzian derivative of w(z),
w” 3 (w"\?

{W’Z} __‘47_5(;17) >

is a rational function. Find it.

Solution.
l—oc2+ 1-p? +1-—oc2—)32+'y2
222 21 — z)? 2z(1 — 2) g

{W, Z} =

where am, B7 and y= are the angles of the triangle.

25. Find the Schwarzian derivative (see Exercise 24) of the inverse function
of the Legendre modular function.
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Measure, harmonic, 197, 320
hyperbolic, 336
Mercator projection, 76
Meromorphic function, 83, 154,173,217,
235, 242, 271, 280, 294
Minimum principle, 192
Mittag-Leffler theorem, 235
Modular function, 271, 337
Module of a domain, 56
Modules of periodicity, 126
Modulus, 74
of a complex number, 6
of a domain, 56
of a vector, 2
de Moivre’s formula, 7, 67
Monodromy theorem, 216,228,231, 311,
339
Monotone function, 323
Monotonicity, 312
Morera’s theorem, 165
Multiply connected domain, 126

Natural boundary, 215
Non-Euclidean geometry, 50
Norm, 2

Null-homotopic path, 134
Null path, 123

Null sequence, 96

0Odd function, 259, 263
Open set, 9



Order, 238
of differentiation, 186
of a doubly periodic function, 248
of entire function, 237
of a group, 28
of a rational function, 33
Oricycle, 48, 52
Orientation of a curve, 46, 108, 118
Orthogonal, 2

Parabolic transformation, 44, 52
Parallel axiom, 51
Parallelogram rule, 7
Partial-fraction expansion, 33, 173
Period, 68, 242
parallelogram, 246, 249, 334
strip, 69, 80
Phragmén-Lindelof theorem, 212
Picard, Emile, 152
Picard’s method of successive approxi-
mation, 156
Picard’s theorem, 337
Pick’s theorem, 144
Piecewise regular, 108
Poincaré, Henri, 49, 337
Poincaré model, 51
Points
exterior, 10
fixed, 42
at infinity, 9
of singularity, 245
symmetric, 41
Poisson’s formula, 195, 204-10
integral, 197, 204, 211, 220, 324
kernel, 196
Poisson-Jensen formula, 240
Poles, 31, 149, 216, 246
Polygonal path, 320
Polynomials, 29
Positive direction, 46, 108, 118
Power, general, 73
series, 100-6
as an analytic function, 103
expansion of analytic function to,
132 ,
expansion of elementary functions,
105, 136
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Prachar, K., 303

Prime number theorem, 299

Prime numbers, distribution of, 299
Primitive function, 114-17, 124
Primitive period, 69, 79, 83, 243
Principal branch, 87

Principal parts, 266

Product, see Infinite products
Productrule, 98, 106

Radius of convergence, 102
Rational function, 31, 63, 162, 217
Real number, 6
Recursion formula, 156
Rectifiable, 111 »
Reflection principle, 219-21, 275
Regular curve, 108
Regular function, 150
Removable singularity, 150
Residue theorem, 167-73, 248, 256, 295
application to definite integrals, 169
derivation, 167
Riemann, Bernhard, 14
Riemann conjecture, 298
Riemann formula, 164
Riemann ¢-function, 289-303
analytic continuation, 292
functional equation, 295
integral representation, 291
singularities, 294
zeros, 298
Riemann mapping theorem, 305, 315, 327
and Dirichlet problem, 324
general case, 306
normalization, 307
special case, 306
Riemann sphere, 52, 62
Riemann surface, 26, 74
of cos z, 89
of cot z, 85
of cubic polynomial, 218
of exponential function, 70
of logarithm, 72
of rational function, 62, 217
infinite-sheeted, 70, 86, 316
two-sheeted, 62, 88, 268, 270, 309
Rouché’s theorem, 178, 315
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Scalar product, 2, 6
Schlicht domain, 311
Schlicht function, 161
Schlicht plane, 72, 91
Schwarz, H. A., 337
Schwarz’s formula, 196, 210
Schwarz’s inequality, 2, 18
Schwarz’s lemma, 143-5
Schwarz reflection principle, 222
Schwarz’s theorem, 187
Schwarz-Christoffel formula, 330, 334,
341
Schwarzian derivative, 342
Selberg, A., 300
Series, 95
integration of, 114
Similarity transformation, 16, 43
Simple pole, 83, 267
Simple zero, 61
Simply connected, 124,134,216
Simply periodic functions, 69, 79, 242-6
Sine, 78, 106, 228
Single-valued function, 216, 244
Singular points, 149, 215
Singularity, algebraic, 216
essential, 150, 216, 245
logarithmic, 216
Smooth curve, 108
Steiner circles, 39-43, 63, 144, 309
Stereographic projection, 52-5, 336
Stirling’s formula, 280-84
Streamlines, 45
Stokes’s formula, 208
Subharmonic, 212
Successive approximation, 156
Symmetric points, 41

Tangent, 82, 153
Taylor expansion, 135-8, 147
Three-circle theorem, 211

Titchmarsh, E. C., 299
Topological mapping, 27, 130, 305, 315
Torus-type surface, 270
Transformation, bilinear, 37, 194, 272
elliptic, 43
homothetic, 43
hyperbolic, 43
linear, 4, 37-45, 144
parabolic, 44, 52
Translation, 44
Triangle functions, 334-7
Triangle inequality, 2, 18, 110
Two-constant theorem, 212

Uniform convergence, 99, 103, 106
Uniformly continuous function, 110
Unimodular, 47

Unit disk, 50, 145

Unit vector, 4

Vallée Poussin, C. de la, see La Vallée
Pousin, C. de

Vector algebra, 3

Vector space, 3

Wallis’s formula, 239

Weierstrass, K., 105

Weierstrass factorization theorem, 231-6
Weierstrass normal form, 273
Weierstrass p-function, 249-55, 341
Weierstrass product representation, 234
Weierstrass theorem, 150, 161, 279, 306
Weierstrass o-function, 257

Weierstrass {-function, 256

Winding number, 121, 168, 178

Zeros, 24, 31
of {-function, 298
simple, 61
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