Applied Analysis

John K. Hunter
Bruno Nachtergaele

Department of Mathematics
University of California at Davis
September 12, 2000

Copyright (© 2000 John K. Hunter and Bruno Nachtergaele



To Shelley and Marijke, Caitlin and Lauren, and Sigrid and Shanti.



Preface

Mathematical knowledge and sophistication, computational power, and areas of
application are expanding at an enormous rate. As a result, the demands on the
training of applied mathematicians are increasing all the time. It is therefore not
easy to decide what should constitute the core mathematical training of an applied
mathematician. We take the view that every applied mathematician, whatever his
or her ultimate area of interest may turn out to be, should have a grounding in the
fundamentals of analysis.

The aim of this book is to supply an introduction for beginning graduate students
to those parts of analysis that are most useful in applications. The material is
selected for its use in applied problems, and is presented as clearly and simply as
we are able, but without the sacrifice of mathematical rigor.

We focus on ideas of central importance, and attempt to avoid technicalities
and detours into areas of more specialized interest. While we make every effort
to motivate the ideas introduced, and include a variety of examples from different
fields, this book is first and foremost about analysis.

We do not assume extensive mathematical prerequisites of the reader. The book
is intended to be accessible to students from a wide variety of backgrounds, includ-
ing undergraduate students entering applied mathematics from non-mathematical
fields, and graduate students in the sciences and engineering who would like to
learn analysis. A basic background in calculus, linear algebra, ordinary differen-
tial equations, and some familiarity with functions and sets should be sufficient.
We occasionally use some elementary results from complex analysis, but we do not
develop any methods from complex analysis in the text.

We provide detailed proofs for the main topics. We make no attempt to state
results is maximum generality, and instead illustrate the main ideas in simple, con-
crete settings. We often return to the same ideas in different contexts, even if this
leads to some repetition of previous definitions and results. We make extensive use
of examples and exercises to illustrate the concepts introduced. The exercises are at
various levels; some are elementary, although we have omitted many of the routine
exercises that we assign while teaching the class, and some are harder and are an
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excuse to introduce new ideas or applications not covered in the main text. One
area where we do not give a complete treatment is Lebesgue measure and integra-
tion. A full development of measure theory would take us too far afield, and, in any
event, the Lebesgue integral is much easier to use than to construct.

In writing this book, the material has expanded beyond what can be covered
in a year long course for beginning graduate students. When teaching a three
quarter course, we usually cover Chapters 1-5 in the first quarter, which provide a
review of advanced calculus and discuss the basic properties of metric and normed
spaces, followed by Chapters 6-9 in the second quarter, which focus on Hilbert
spaces, including Fourier series and bounded linear operators. In the last quarter,
we cover a selection of topics from Chapters 10-13, which discuss Green’s functions,
unbounded operators, distribution theory, the Fourier transform, measure theory,
function spaces, and differential calculus in Banach spaces. The choice and emphasis
of the topics depends on the backgrounds and interests of the students.

The material presented here is standard. Many of the sources we have drawn
upon are listed in the bibliography. The bibliography is not comprehensive, however,
and is limited to books that we feel will be useful to the intended audience of this
text, either for background reading, or to pursue in greater depth some of the topics
treated here.

We thank the students who have taken this course and contributed comments
and suggestions on early drafts of the course notes. In particular, Scott Beaver,
Sergio Lucero, and John Thoo were helpful in the preparation of figures and the
proofreading of the manuscript.
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Chapter 1

Metric and Normed Spaces

We are all familiar with the geometrical properties of ordinary, three dimensional
Euclidean space. A persistent theme in mathematics is the grouping of various kinds
of objects into abstract spaces. This grouping enables us to extend our intuition
of the relationship between points in Euclidean space to the relationship between
more general kinds of objects, leading to a clearer and deeper understanding of
those objects.

The simplest setting for the study of many problems in analysis is that of a metric
space. A metric space is a set of points with a suitable notion of the distance between
points. We can use the metric, or distance function, to define the fundamental
concepts of analysis, such as convergence, continuity, and compactness.

A metric space need not have any kind of algebraic structure defined on it. In
many applications, however, the metric space is a linear space with a metric derived
from a norm that gives the “length” of a vector. Such spaces are called normed
linear spaces. For example, n-dimensional Euclidean space is a normed linear space
(after the choice of an arbitrary point as the origin). A central topic of this book
is the study of infinite-dimensional normed linear spaces, including function spaces
in which a single point represents a function. As we will see, the geometrical in-
tuition derived from finite-dimensional Euclidean space remains essential, although
completely new features arise in the case of infinite-dimensional spaces.

In this chapter, we define and study metric spaces and normed linear spaces.
Along the way, we review a number of definitions and results from real analysis.

1.1 Metrics and norms

Let X be an arbitrary nonempty set.

Definition 1.1 A metric, or distance function, on X is a function

d: X xX =R,
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Fig. 1.1 A family tree used in the definition of the ultrametric in Example 1.3.

with the following properties:

d(z,y) > 0 for all z,y € X, and d(z,y) = 0 if and only if z = y;
(b) d(z,y) = d(y,z), for all z,y € X;
d(z,y) < d(z,2) +d(z,y), for all z,y,z € X.

A metric space (X,d) is a set X equipped with a metric d.

When the metric d is understood from the context, we denote a metric space
simply by the set X. In words, the definition states that:

(a) distances are nonnegative, and the only point at zero distance from z is z
itself;

(b) the distance is a symmetric function;

(c) distances satisfy the triangle inequality.

For points in the Euclidean plane, the triangle inequality states that the length of
one side of a triangle is less than the sum of the lengths of the other two sides.

Example 1.2 The set of real numbers R with the distance function d(x,y) =
|z — y| is a metric space. The set of complex numbers C with the distance function
d(z,w) = |z — w| is also a metric space.

Example 1.3 Let X be a set of people of the same generation with a common
ancestor, for example, all the grandchildren of a grandmother (see Figure 1.1). We
define the distance d(z,y) between any two individuals z and y as the number of
generations one has to go back along female lines to find the first common ancestor.
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For example, the distance between two sisters is one. It is easy to check that d is a
metric. In fact, d satisfies a stronger condition than the triangle inequality, namely

d(z,y) < max{d(z, z),d(z,y)} for all z,y,z € X. (1.1)

A metric d which satisfies (1.1) is called an ultrametric. Ultrametrics have been
used in taxonomy to characterize the genetic proximity of species.

Example 1.4 Let X be the set of n-letter words in a k-character alphabet A =
{a1,az,...,a;}, meaning that X = {(z1,%2,...,2,) | ; € A}. We define the
distance d(z,y) between two words = (z1,...,2,) and y = (y1,...,yn) to be the
number of places in which the words have different letters. That is,

d(z,y) = #{i | =i # vi}-

Then (X, d) is a metric space.

Example 1.5 Suppose (X, d) is any metric space and Y is a subset of X. We define
the distance between points of Y by restricting the metric d to Y. The resulting
metric space (Y,d|y), or (Y,d) for short, is called a metric subspace of (X,d), or
simply a subspace when it is clear that we are talking about metric spaces. For
example, (R, |-|) is a metric subspace of (C,|-|), and the space of rational numbers
(Q,] - ]) is a metric subspace of (R, | - |).

Example 1.6 If X and Y are sets, then the Cartesian product X xY is the set of
ordered pairs (z,y) with z € X and y € Y. If dx and dy are metrics on X and Y,
respectively, then we may define a metric dx xy on the product space by

dxxv ((%1,y1), (X2,92)) = dx (x1,22) + dy (Y1,¥2)

for all 1,22 € X and y1,y2 € Y.

We recall the definition of a linear, or vector, space. We consider only real or
complex linear spaces.

Definition 1.7 A linear space X over the scalar field R (or C) is a set of points, or
vectors, on which are defined operations of vector addition and scalar multiplication
with the following properties:

(a) the set X is a commutative group with respect to the operation + of vector
addition, meaning that for all z,y,z € X, we have x +y = y + x and
z+ (y+2) = (x+vy) + 2z, there is a zero vector 0 such that x + 0 = z
for all z € X, and for each x € X there is a unique vector —x such that
z+(—z) =0;

(b) for all z,y € X and A\, € R (or C), we have 1z = z, (A + p)x = Az + ux,
Apz) = M)z, and A(z +y) = Az + Ay.
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We assume that the reader is familiar with the elementary theory of linear spaces.
Some references are given in Section 1.9.

A norm on a linear space is a function that gives a notion of the “length” of a
vector.

Definition 1.8 A norm on a linear space X is a function || - || : X — R with the
following properties:

(a) ||z]| > 0, for all x € X (nonnegative);

(b) [|Az|| = |All|z]|, for all z € X and A € R (or C) (homogeneous);
©) llz+yll < llz|l + |y, for all z,y € X (triangle inequality) ;

(d) ||z|| = 0 implies that z = 0 (strictly positive).

A normed linear space (X, || -||) is a linear space X equipped with a norm || - ||

A normed linear space is a metric space with the metric

d(z,y) = llz = yll. (1.2)

All the concepts we define for metric spaces therefore apply, in particular, to normed
linear spaces. The metric associated with a norm in this way has the special prop-
erties of translation invariance, meaning that for all z € X, d(z+z,y+ z) = d(=z,y),
and homogeneity, meaning that for all A € R (or C), d(Az, Ay) = |Ald(z,y).

The closed unit ball B of a normed linear space X is the set

B={zeX:|z| <1}.
A subset C of a linear space is convex if
tr+(1—-t)yeC (1.3)

for all z,y € C and all real numbers 0 < ¢ < 1, meaning that the line segment
joining any two points in the set lies in the set. The triangle inequality implies that
the unit ball is convex, and its shape gives a good picture of the norm’s geometry.

Example 1.9 The set of real numbers R with the absolute value norm ||z|| = |z|
is a one-dimensional real normed linear space. More generally, R”, where n =
1,2,3,..., is an n-dimensional linear space. We define the Fuclidean norm of a
point = (z1,Za,...,%,) € R* by

el = /o +03 44 22,

and call R” equipped with the Euclidean norm n-dimensional Fuclidean space. We
can also define other norms on R™. For example, the sum or 1-norm is given by

lzllr = |z1] + |z2| + -+ - + |Zn]-
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Fig. 1.2 The unit balls in R? for the Euclidean norm (Bz), the sum norm (B;), and the maximum
norm (Bmax).

The maximum norm is given by
]| max = max{|a1], [z2],- -, |[2n]}-

We also call the maximum norm the co-norm, and denote it by ||z||co- The unit
balls in R? for each of these norms are shown in Figure 1.2. We will equip R® with
the Euclidean norm, unless stated otherwise.

Example 1.10 A linear subspace of a linear space, or simply a subspace when it
is clear we are talking about linear spaces, is a subset that is itself a linear space.
A subset M of a linear space X is a subspace if and only if Az + py € M for all
A u€R (or C) and all z,y € M. A subspace of a normed linear space is a normed
linear space with norm given by the restriction of the norm on X to M.

We will see later on that all norms on a finite-dimensional linear space lead to
exactly the same notion of convergence, so often it is not important which norm
we use. Different norms on an infinite-dimensional linear space, such as a function
space, may lead to completely different notions of convergence, so the specification
of a norm is crucial in this case.

We will always regard a normed linear space as a metric space with the metric
defined in equation (1.2), unless we explicitly state otherwise. Nevertheless, this
equation is not the only way to define a metric on a normed linear space.

Example 1.11 If (X,||-||) is a normed linear space, then

_ -yl
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Fig. 1.3 A sequence (z,) converging to x.

defines a nonhomogeneous, translation invariant metric on X. In this metric, the
distance between two points is always less than one.

1.2 Convergence

We first consider the convergence of sequences of real numbers. A sequence of real
numbers is a map from the natural numbers N = {1,2,3,...} to R That is, with
each n € N, we associate a real number x,, € R. We denote a sequence by (z,),
or (z,)52; when we want to indicate the range of the index n. The index n is a
“dummy” index, and we may also write the sequence as () or (zx)5 .

Another common notation for a sequence is {z,}. This notation is a little
ambiguous because a sequence is not the same thing as a set. For example,

(0,1,0,1,0,...) and (1,0,0,0,0,...)

are different sequences, but the set of terms is {0, 1} in each case.

A subsequence of a sequence (z,) is a sequence of the form (z,, ), where for
each £ € N we have ny € N, and ny < ngqq for all k. That is, k — ny is a
strictly increasing function from the set of natural numbers to itself. For example,
(1/k%)%2, is a subsequence of (1/n)52;.

The most important concept concerning sequences is convergence.

Definition 1.12 A sequence (z,) of real numbers converges to z € R if for every
€ > 0 there is an N € N such that |z, — z| < € for all n > N. The point z is called
the limit of (x,,).

In this definition, the integer N depends on e, since smaller €’s usually require
larger N’s, and we could write N(e) to make the dependence explicit. Common
ways to write the convergence of (z,) to = are

Ty — T aS N — 00, lim z, = .
n—oo

A sequence that does not converge is said to diverge. If a sequence diverges
because its terms eventually become larger than any number, it is often convenient
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to regard the sequence as converging to co. That is, we say x, — oo if for every
M € R there is an N € N such that z, > M for all n > N. Similarly, we say
z, — —oo if for every M € R there is an N € N such that z,, < M for alln > N.

Example 1.13 Here are a few examples of the limits of convergent sequences:

1 . e . \"
lim — =0, limnsin{—)=1, lim (1+—)] =e.
n—oo N n—0o00 n n—oo n

The sequence (logn) diverges because logn — oo as n — co. The sequence ((—1)")
diverges because its terms oscillate between —1 and 1, and it does not converge to
either co or —oc.

A sequence is said to be Cauchy if its terms eventually get arbitrarily close
together.

Definition 1.14 A sequence (z,) is a Cauchy sequence if for every € > 0 there is
an N € N such that |z, — z,| < € for all m,n > N.

Suppose that (z,) converges to z. Given € > 0, there is an integer N such that
|zn —z| < €/2 whenn > N. If m,n > N, then use of the triangle inequality implies
that

[T — Tn| < |Tm — 2| + | — 25| <€,

8o () is Cauchy. Thus, every convergent sequence is a Cauchy sequence. For the
real numbers, the converse is also true, and every Cauchy sequence is convergent.
The convergence of Cauchy sequences is a fundamental defining property of the
real numbers, called completeness. We will discuss completeness for general metric
spaces in greater detail below.

Example 1.15 The sequence (z,,) with z,, = logn is not a Cauchy sequence, since
logn — oo. Nevertheless, we have

1
|Znt1 — zn| = log (1 + E) -0

as n — oo. This example shows that it is not sufficient for successive terms in a
sequence to get arbitrarily close together to ensure that the sequence is Cauchy.

We can use the definition of the convergence of a sequence to define the sum of
an infinite series as the limit of its sequence of partial sums. Let (z,) be a sequence
in R . The sequence of partial sums (s,) of the series > x,, is defined by

Sp = Zxk. (1.5)
k=1
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If (sn) converges to a limit s, then we say that the series > z,, converges to s, and
write

o
E Ty = S.
n=1

If the sequence of partial sums does not converge, or converges to infinity, then we
say that the series diverges. The series ) z,, is said to be absolutely convergent
if the series of absolute values ) |z,| converges. Absolute convergence implies
convergence, but not conversely. A useful property of an absolutely convergent series
of real (or complex) numbers is that any series obtained from it by a permutation
of its terms converges to the same sum as the original series.
The definitions of convergent and Cauchy sequences generalize to metric spaces
in an obvious way. A sequence (x,) in a metric space (X, d) is a map n — =z, which
associates a point z,, € X with each natural number n € N.

Definition 1.16 A sequence (z,) in X converges to z € X if for every € > 0 there
is an N € N such that d(zn,z) < € for all n > N. The sequence is Cauchy if for
every € > 0 there is an N € N such that d(x.,,z,) < € for all m,n > N.

Figure 1.3 shows a convergent sequence in the Euclidean plane. Property (a)
of the metric in Definition 1.1 implies that if a sequence converges, then its limit
is unique. That is, if z, - = and x,, = y, then z = y. The fact that convergent
sequences are Cauchy is an immediate consequence of the triangle inequality, as be-
fore. The property that every Cauchy sequence converges singles out a particularly
useful class of metric spaces, called complete metric spaces.

Definition 1.17 A metric space (X, d) is complete if every Cauchy sequence in X
converges to a limit in X. A subset Y of X is complete if the metric subspace
(Y,d|y) is complete. A normed linear space that is complete with respect to the
metric (1.2) is called a Banach space.

Example 1.18 The space of rational numbers Q is not complete, since a sequence
of rational numbers which converges in R to an irrational number (such as v/2 or
m) is a Cauchy sequence in Q, but does not have a limit in Q.

Example 1.19 The finite-dimensional linear space R™ is a Banach space with re-
spect to the sum, maximum, and Euclidean norms defined in Example 1.9. (See
Exercise 1.6.)

Series do not make sense in a general metric space, because we cannot add points
together. We can, however, consider series in a normed linear space X. Just as for
real numbers, if (z,) is a sequence in X, then the series Y o x, converges to
s € X if the sequence (s,) of partial sums, defined in (1.5), converges to s.
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Fig. 1.4 The number M is an upper bound of A and m is a lower bound of A. The number z is
neither an upper bound nor a lower bound. The number S is the supremum of A, but does not
belong to A. The number ¢ is the infimum of A, and since ¢ € A it is also the minimum of A.

1.3 Upper and lower bounds

The real numbers have a natural ordering which we can use to define the supremum
and infimum of a set of real numbers, and the lim sup and lim inf of a real sequence.
Even a metric space as simple as the Euclidean plane cannot be ordered in a way
that is compatible with its metric structure. Thus, the definitions in this section
are restricted to real sets and sequences. We begin with the definitions of upper
bound and lower bound.

Definition 1.20 Let A be a subset of R. We say that M € R is an upper bound of
Aifx < M for all x € A, and m € R is a lower bound of A if m < z for all x € A.
The set A is bounded from above if it has an upper bound, bounded from below if it
has a lower bound, and bounded if it has both an upper and a lower bound.

If A has an upper bound M, then A has many upper bounds. For example, any
number M' > M is an upper bound.

Definition 1.21 A number M is the supremum, or least upper bound, of a set
A C Rif M is an upper bound of A and M < M’ for all upper bounds M’ of A. A
number m is the infimum, or greatest lower bound, of A if m is a lower bound of A
and m > m' for all lower bounds m' of A. We denote the supremum of A by sup 4,
and the infimum of A by inf A.

If A is given in the form A = {z, | o € A}, where A is an indexing set, we also
denote the supremum of A by sup,c 4 %o, Or sup z, for short.

The supremum and infimum are unique if they exist. For example, if M; and M,
are both least upper bounds of a set A, then the definition implies that M; < M
and My < My, so My = Ms. The existence of the supremum of every set bounded
from above, or the existence of the infimum of every set bounded from below, is a
consequence of the completeness of R, and is in fact equivalent to it.

Example 1.22 The subset A = {z € Q | z < V/2} of the rational numbers Q is
bounded from above by 2, but has no supremum in Q. The supremum in R is the
irrational number /2. In this example, the supremum of A does not belong to A.
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If A does not have an upper bound, we define sup A = oo, and if A does not
have a lower bound, we define inf A = —oo. The convention that every number is
both an upper and a lower bound of the empty set () is sometimes convenient, so
that sup® = —oo and inf ) = .

The supremum of a set A may, or may not, belong to A itself. If it does, then
sup A is called the mazimum of A, and is also denoted by max A. Similarly, if the
infimum belongs to A, then inf A is called the minimum of A, and is also denoted
by min A. The illustration in Figure 1.4 shows an example.

Thus, provided we allow the values +o0, every set of real numbers has a supre-
mum and an infimum, but it does not necessarily have a maximum or a minimum.

Next, we define the liminf and limsup of a real sequence. First, we consider
monotone sequences. A sequence (z,) is said to be monotone increasing if z, <
ZTnt1, for every n, and monotone decreasing if x,, > 1, for every n. A monotone
sequence is a sequence that is monotone increasing or monotone decreasing. A
monotone increasing sequence converges to its supremum (which could be oc), and a
monotone decreasing sequence converges to its infimum (which could be —o0). Thus,
provided that we allow for convergence to £oo, all monotone sequences converge.

Now suppose that (z,,) is an arbitrary sequence of real numbers. We construct a
new sequence (y,) by taking the supremum of successively truncated “tails” of the
original sequence, y, = sup {zy | k > n}. The sequence (y,) is monotone decreasing
because the supremum is taken over smaller sets for larger n’s. Therefore, the
sequence (yp) has a limit, which we call the lim sup of the sequence (x,), and denote
by lim sup z,,. Similarly, taking the infimum of the successively truncated “tails” of
(zn), we get a monotone increasing sequence. We call the limit of that sequence, the
liminf of (x,), and denote it by liminf z,,. Thus, we have the following definition.

Definition 1.23 Let (z,) be a sequence of real numbers. Then

limsupz, = lim [sup{zy | k > n}],
n—oo

n—oo
liminf 2, = lim [inf {z} | k > n}].
n—oo n—oo

Another common notation for the lim sup and liminf is
lim sup z,, = lim z,,, liminf z,, = lim z,,.
We make the natural convention that if
sup{zy |k >n} =00, or inf{xy|k>n}=—o0,

for every n, then limsupz, = oo, or liminfz, = —oo, respectively. In contrast
to the limit, the liminf and limsup of a sequence of real numbers always exist,
provided that we allow the values +0o. The lim sup of a sequence whose terms are
bounded from above and the liminf of a sequence whose terms are bounded from
below are finite.



Continuity 11

It follows from the definition that

liminf z,, < limsup z,,.
n—oo n—oo

Moreover, a sequence (x,) converges if and only if

liminf z,, = lim sup z,,
n—0o0 n—00

and, in that case, the limit is the common value of liminf z,, and lim sup z,,.

Example 1.24 If z, = (—1)", then

liminf 2, = -1, limsup z,, = 1.
n—00 n— 00

The lim inf and lim sup have different values and the sequence does not have a limit.

Example 1.25 If {z,, € R|n € N,a € A} is a set of real numbers indexed by
the natural numbers N and an arbitrary set .4, then

sup [lim inf xn’a] < liminf [sup mn,a] .

See Exercise 1.10 for the proof, and the analogous inequality with inf and lim sup.

Suppose that A is a nonempty subset of a general metric space X. The diameter
of A is

diam A = sup{d(z,y) | z,y € A}.

The set A is bounded if its diameter is finite. It follows that A is bounded if and
only if there is an M € R and an zg € X such that d(zo,z) < M for all z € A. The
distance d(z, A) of a point £ € X from the set A is defined by

d(x, A) = inf{d(z,y) | y € A}.

The statement d(x, A) = 0 does not imply that z € A.

We say that a function f: X — Y is bounded if its range f(X) is bounded. For
example, a real-valued function f : X — R is bounded if there is a finite number M
such that |f(z)] < M for all x € X. We say that f : X — R is bounded from above
if there is an M € R such that f(z) < M for all x € X, and bounded from below if
there is an M € R such that f(z) > M for all z € X.

1.4 Continuity

A real function f: R — R is continuous at a point zq € R if for every € > 0 there
is a § > 0 such that |z — x¢| < 0 implies |f(z) — f(zo)| < €. Thus, continuity of f
at xo is the property that the value of f at a point close to xq is close to the value
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of f at xg. The definition of continuity for functions between metric spaces is an
obvious generalization of the definition for real functions. Let (X,dx) and (Y,dy)
be two metric spaces.

Definition 1.26 A function f: X — Y is continuous at g € X if for every € > 0
there is a 0 > 0 such that dx (z,x¢) < 0 implies dy (f(z), f(xo)) < €. The function
f is continuous on X if it is continuous at every point in X.

If f is not continuous at x, then we say that f is discontinuous at x. There are
continuous functions on any metric space. For example, every constant function is
continuous.

Example 1.27 Let a € X, and define f : X — R by f(z) = d(z,a). Then f is
continuous on X.

We can also define continuity in terms of limits. If f : X — Y, we say that
f(z) = yo as ¢ — =g, or

lim f(‘r) = Yo,

Tr—>To

if for every € > 0 there is a § > 0 such that 0 < dx (z,20) < ¢ implies that
dy (f(z),y0) < €. More generally, if f : D C X — Y has domain D, and zg is a
limit of points in D, then we say f(z) = yo as ¢ = zo in D if for every € > 0 there
is a § > 0 such that 0 < dx (z,z0) < ¢ and = € D implies that dy (f(x),y0) <e€. A
function f : X — Y is continuous at xg € X if

lim f(x) = f(o),

T—T0
meaning that the limit of f(x) as x — ¢ exists and is equal to the value of f at xo.

Example 1.28 If f: (0,a) —» Y for some a > 0, and f(z) = L as z — 0, then we
write

lim f(z)=L.

z—0t

Similarly, if f : (—a,0) = Y, and f(z) — L as x — 0, then we write

lim f(z)=L.

z—0—

If f: X =Y and FE is a subset of X, then we say that f is continuous on E
if it is continuous at every point x € E. This property is not equivalent to the
continuity of the restriction f|g of f on E.

Example 1.29 Let f : R — R be the characteristic function of the rationals, which

is defined by
[ 1 ifzeqQ,
f(x)_{ 0 ifz¢Q.
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The function f is discontinuous at every point of R, but f|g : @ — R is the constant
function f|g(z) =1, so f|g is continuous on Q.

A subtle, but important, strengthening of continuity is uniform continuity.

Definition 1.30 A function f: X — Y is uniformly continuous on X if for every
€ > 0 there is a § > 0 such that dx(z,y) < ¢ implies dy (f(z), f(y)) < € for all
z,y € X.

The crucial difference between Definition 1.30 and Definition 1.26 is that the
value of ¢ does not depend on the point z € X, so that f(y) gets closer to f(z) at
a uniform rate as y gets closer to x.

In the following, we will denote all metrics by d when it is clear from the context
which metric is meant.

Example 1.31 The function r : (0,1) — R defined by r(z) = 1/z is continuous on
(0,1) but not uniformly continuous. The function s : R — R defined by s(z) = 2
is continuous on R but not uniformly continuous. If [a,b] is any bounded interval,
then s|[, 3] is uniformly continuous on [a, b].

Example 1.32 A function f: R® — R™ is affine if
fz+ (1 —-ty)=tf(z)+(1—t)f(y) forall z,y € R" and t € [0,1].

Every affine function is uniformly continuous. An affine function f can be written
in the form f(z) = Az +b, where A is a constant m X n matrix and b is a constant
m-vector. Affine functions are more general than linear functions, for which b = 0.

There is a useful equivalent way to characterize continuous functions on metric
spaces in terms of sequences.

Definition 1.33 A function f: X — Y is sequentially continuous at x € X if for

every sequence (z,) that converges to z in X, the sequence (f(z,)) converges to
f(z)inY.

Proposition 1.34 Let X, Y be metric spaces. A function f : X — Y is continuous
at z if and only if it is sequentially continuous at x.

Proof. First, we show that if f is continuous, then it is sequentially continuous.
Suppose that f is continuous at z, and z,, — z. Let € > 0 be given. By the
continuity of f, we can choose d > 0 so that d(z,z,) < 0 implies d(f(z), f(zn)) < €.
By the convergence of (x,), we can choose N so that n > N implies d(z,z,) < 4.
Therefore, n > N implies d(f(z), f(zn)) < €, and f(z,) = f(z).

To prove the converse, we show that if f is discontinuous, then it is not sequen-
tially continuous. If f is discontinuous at z, then there is an € > 0 such that for
every n € N there exists z,, € X with d(z,z,) < 1/n and d(f(z), f(z,)) > €. The
sequence (x,) converges to z but (f(z,)) does not converge to f(x). O
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FR) oo

X

Fig. 1.5 The function f is upper semicontinuous, but not continuous, at the point x.

There are two kinds of “half-continuous” real-valued functions, defined as fol-
lows.

Definition 1.35 A function f : X — R is upper semicontinuous on X if for all
z € X and every sequence x,, — x, we have

limsup f(z,) < f(z).

n—oo

A function f is lower semicontinuous on X if for all x € X and every sequence
T, — x, we have

liminf f(z,) > f(x).

n—o0

The definition is illustrated in Figure 1.5. A function f : X — R is continuous
if and only if it is upper and lower semicontinuous.

1.5 Open and closed sets

Open sets provide another way to formulate the concepts of convergence and con-
tinuity. In this section, we define open sets in a metric space. We will discuss open
sets in the more general context of topological spaces in Chapter 3.7.

Let (X, d) be a metric space. The open ball, B,(a), with radius r > 0 and center
a € X is the set

B.(a) ={z € X | d(z,a) < r}.
The closed ball, B,(a), is the set

B,(a) = {z € X | d(z,a) <7}
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Definition 1.36 A subset G of a metric space X is open if for every x € G there
is an 7 > 0 such that B,(z) is contained in G. A subset F' of X is closed if its
complement F¢ = X \ F is open.

For example, an open ball is an open set, and a closed ball is a closed set. The
following properties of open and closed sets are easy to prove from the definition.

Proposition 1.37 Let X be a metric space.

(a) The empty set @ and the whole set X are open and closed.
(b) A finite intersection of open sets is open.

(¢) An arbitrary union of open sets is open.

(d) A finite union of closed sets is closed.

(e) An arbitrary intersection of closed sets is closed.

Example 1.38 The interval I,, = (—1/n,1) is open in R for every n € N, but the
intersection

ﬁ] =10,1)

is not open. Thus, an infinite intersection of open sets need not be open.

Example 1.39 Let {g, | n € N} be an enumeration of the rational numbers Q,
and € > 0. We define the open interval I, in R by

€ €
In:(Qn__qn+_>-

an’ on

Then G = |J,., I, is an open set which contains Q. The sum of the lengths of
the intervals I, is 2¢, which can be made as small as we wish. Nevertheless, every
interval in R contains infinitely many rational numbers, and therefore infinitely
many of the intervals T,.

A subset of R has Lebesgue measure zero if for every € > 0 there is a countable
collection of open intervals whose union contains the subset such that the sum of
the lengths of the intervals is less than e. Thus, the previous example shows that
the set of rational numbers Q, or any other countable subset of R, has measure zero.
A property which holds everywhere except on a set of measure zero is said to hold
almost everywhere, abbreviated a.e. For example, the function xg : R — R that
is one on the rational numbers and zero on the irrational numbers is zero almost
everywhere.

Every open set in R is a countable union of disjoint open intervals. The structure
of open sets in R for n > 2 may be much more complicated.



16 Metric and Normed Spaces

Example 1.40 We define a closed set F; in R by removing the “middle third”
(1/3,2/3) of the interval [0, 1]. That is,

F, =[0,1/3]U[2/3,1].
We define F5 by removing the middle thirds of the intervals in Fj, so that
F, =[0,1/9]1U[2/9,1/3]U[2/3,7/9]U[8/9,1].

Continuing this removal of middle thirds, we obtain a nested sequence of closed sets
(F,). The intersection F' = (2, F,, is a closed set called the Cantor set. A number
z € [0,1] belongs to the Cantor set if and only if it has a base three expansion that
contains no 1’s. The endpoints of the closed intervals in the F,’s do not have a
unique expansion. For example, we can write 1/3 € F in base three as 0.1000. ..
and as 0.0222.... The Cantor set is an uncountable set of Lebesgue measure zero
which contains no open intervals, and is a simple example of a fractal. Heuristically,
any part of the set — for example, the left part contained in the interval [0,1/3]
— is a scaled version of the whole set. The name fractal refers to the fact that,
with a suitable definition of the Hausdorff dimension of a set, the Cantor set has a
fractional dimension of log2/log3 = 0.631. The Hausdorff dimension of the Cantor
set lies between that of a point, which has dimension 0, and an interval, which has
dimension 1.

Closed sets in a metric space can be given an alternative, sequential characteri-
zation as sets that contain their limit points.

Proposition 1.41 A subset F' of a metric space is closed if and only if every
convergent sequence of elements in F' converges to a limit in F'. That is, if z,, — =
and z,, € F for all n, then z € F.

Example 1.42 A subset of a complete metric space is complete if and only if it is
closed.

The closure A of a set A C X is the smallest closed set containing A. From
property (e) of Proposition 1.37, the closure A is the intersection of all closed sets
that contain A. In a metric space, the closure of a set A can also be obtained by
adding to A all limits of convergent sequences of elements of A. That is,

A = {z € X | there exist a,, € A such that a,, — z}. (1.6)

The closure of the set of rational numbers Q in the space of real numbers R is
the whole space R. Sets with this property are said to be dense.

Definition 1.43 A subset A of a metric space X is dense in X if A = X.
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It follows from (1.6) that A is a dense subset of the metric space X if and only if
for every x € X there is a sequence (a,) in A such that a,, — z. Thus, every point
in X can be approximated arbitrarily closely by points in the dense set A. We will
encounter many dense sets later on. Theorem 2.9, the Weierstrass approximation
theorem, gives one example.

Definition 1.44 A metric space is separable if it has a countable dense subset.

For example, R with its usual metric is separable because Q is a countable dense
subset. On the other hand, R with the discrete metric d(z,y) = 1 when = # y is
not separable.

Definition 1.45 Let z be a point in a metric space X. A set U C X is a neigh-
borhood of x if there is an open set G C U with z € G.

Equivalently, a set U is a neighborhood of z if U contains a ball B,.(x) centered
at x for some r > 0. Definition 1.16 for the convergence of a sequence can therefore
be rephrased in the following way. A sequence (z,) converges to x if for every
neighborhood U of x there is an N € N such that z,, € U for all n > N.

The following proposition characterizes continuous functions as functions that
“pull back” open sets to open sets.

Proposition 1.46 Let X, Y be metric spaces and f : X — Y. The function f is
continuous on X if and only if f~1(G) is open in X for every open set G in Y.

Proof. Suppose that f is continuous and G C Y is open. If a € f~1(G), then
there is a b € G with b = f(a). Since G is open, there is an € > 0 with B((b) C G.
Since f is continuous, there is a § > 0 such that d(z,a) < ¢ implies d(f(z),b) < €
It follows that Bs(a) C f~1(G), so f~1(Q) is open.

Conversely, suppose that f is discontinuous at some point a in X. Then there
is an € > 0 such that for every § > 0, there is an ¢ € X with d(z,a) < § and
d(f(x), f(a)) > e. It follows that, although a belongs to the inverse image of the
open set B.(f(a)) under f, the inverse image does not contain Bs(a) for any ¢ > 0,
so it is not open. O

Example 1.47 If s : R — R is the function s(z) = 22, then s~ ((—4,4)) = (-2,2)
is open, as required by continuity. On the other hand, s((—2,2)) = [0,4) is not
open. Thus, continuous functions need not map open sets to open sets.

1.6 The completion of a metric space

Working with incomplete metric spaces is very inconvenient. For example, suppose
we wish to solve an equation for which we cannot write an explicit expression for
the solution. We may instead construct a sequence (z,) of approximate solutions,
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for example, by use of an iterative method or some kind of numerical scheme. If
the approximate solutions get closer and closer together with increasing n, meaning
that they form a Cauchy sequence in a metric space, then we would like to conclude
that the approximate solutions have a limit, and then try to show that the limit is
a solution. We cannot do this unless the metric space in which the approximations
lie is complete.

In this section we explain how to extend an incomplete metric space X to a larg-
er, complete metric space, called the completion of X. We construct the completion
of X as a set of equivalence classes of Cauchy sequences in X which “ought” to con-
verge to the same point. For a brief review of equivalence relations and equivalence
classes, see Exercise 1.22. A point z € X is naturally identified with the class of
Cauchy sequences in X that converge to x, while classes of Cauchy sequences that
do not converge in X correspond to new points in the completion. In effect, we
construct the completion by filling the “holes” in X that are detected by its Cauchy
sequences.

Example 1.48 The completion of the set of rational numbers Q is the set of real
numbers R. A real number z is identified with the equivalence class of rational
Cauchy sequences that converge to . When we write a real number in decimal
notation, we give a Cauchy sequence of rational numbers that converges to it.

In order to give a formal definition of the completion, we require the notion of
an isometry between two metric spaces (X,dx) and (Y, dy).

Definition 1.49 A map ¢: X — Y which satisfies
dy (1(z1),4(22)) = dx (21, 22) (1.7)

for all x1,zo € X is called an isometry or an isometric embedding of X into Y.
An isometry which is onto is called a metric space isomorphism, or an isomorphism
when it is clear from the context that we are dealing with metric spaces. Two metric
spaces X and Y are isomorphic if there is an isomorphism 2 : X — Y.

Equation (1.7) implies that an isometry ¢ is one-to-one and continuous. We
think of ¢ as “identifying” a point x € X with its image 2(z) € Y, so that 2(X) is a
“copy” of X embedded in Y. Two isomorphic metric spaces are indistinguishable
as metric spaces, although they may differ in other ways.

Example 1.50 The map ¢ : C — R2? defined by 1(z + iy) = (z,y) is a metric
space isomorphism between the complex numbers (C, | - |) and the Euclidean plane
(R2,|| - ||)- In fact, since s is linear, the spaces C and R? are isomorphic as real
normed linear spaces.

We can now define the completion of a metric space. The example of the real
and rational numbers is helpful to keep in mind while reading this definition.
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Definition 1.51 A metric space (X,d) is called the completion of (X,d) if the
following conditions are satisfied:

(a) there is an isometric embedding s : X — X;
(b) the image space 1(X) is dense in X
(c) the space (X,d) is complete.

The main theorem about the completion of metric spaces is the following.

Theorem 1.52 Every metric space has a completion. The completion is unique
up to isomorphism.

Proof. First, we prove that the completion is unique up to isomorphism, if it
exists. Suppose that ()?1,(71) and ()?2,672) are two completions of (X,d), with
corresponding isometric embeddings +; : X — X 1and 1y : X — )?2. We will use ¢;
to extend 22 from X to the completion X’l and obtain an isomorphism 7 : X 1= )?2.

To define 7on @ € X, we pick a sequence (z,,) in X such that (11 (,,)) converges
to T in )?1. Such a sequence exists because 11 (X) is dense in )Z'l. The sequence
(11(zy)) is Cauchy because it converges. Since ¢ and 12 are isometries, it follows
that (z,,) and (12(z,)) are also Cauchy. The space X, is complete, hence (12(z,,))

converges in Xo. We define

(@) = lim 12(2n). (1.8)

n—oo

If (z])) is another sequence in X such that (+1(z),)) converges to Z in X1, then
d (12(},),12(xn)) = d (@, 20) = di (1 (x},), 11 (2n)) = 0
as n — oo. Thus, (12(2))) and (12(z,)) converge to the same limit, and (%) is
well-defined. N
If 2, y belong to X5, and
%) = lim 42(zn), Wy) = nlggo 12(Yn),

n—0o0

then

dy (1(Z),1(®¥)) = lim da(12(xn),22(yn)) = lim d(z,,y,) = di(Z,7).
n— o0 n—oo
Therefore 7 is an isometry of X, into X. By using constant sequences in X, we see
that 7011 (z) = 12(z) for all z € X, so that 7 identifies the image of X in X; under
11 with the image of X in )2'2 under 75.

To show that 7 is onto, we observe that )?1 contains the limit of all Cauchy
sequences in 41 (X), so the isomorphic space 7()? 1) contains the limit of all Cauchy
sequences in 15(X). Therefore 15(X) C 7(X;). By assumption, 45 (X) is dense in
)?2, 50 12(X) = X’g, and 7()?1) = X,. This shows that any two completions are
isomorphic.
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Second, we prove the completion exists. To do this, we construct a completion
from Cauchy sequences in X. We define a relation ~ between Cauchy sequences
z = (zn) and y = (yn) in X by

z ~y if and only if nh_}rr;o d(zn,yn) = 0.

Two convergent Cauchy sequences z, y satisfy x ~ y if and only if they have the
same limit. It is straightforward to check that ~ is an equivalence relation on the
set C of Cauchy sequences in X. Let X be the set of equivalence classes of ~ in C.
We call an element (zn,) € T of an equivalence class T € X , a representative of T.

We define d: X x X — R by

d(F,§) = Tim d(n,yn), (19)

where (z,,) and (y,) are any two representatives of Z and y, respectively. The limit
in (1.9) exists because (d(zn,¥yn)),., is a Cauchy sequence of real numbers. For
this definition to make sense, it is essential that the limit is independent of which
representatives of Z and g are chosen. Suppose that (z,,), (z},) represent Z and (yy,),
(y!) represent y. Then, by the triangle inequality, we have

d(-rna yn) < d(xna x;) + d(xlna y;) + d(y;, yn)a
d(Tn,yn) > d(@y,ypn) — d(@a, 73,) — d(Yp, Ya)-

Taking the limit as n — oo of these inequalities, and using the assumption that
(zn) ~ (27,) and (yn) ~ (y;,), we find that

lim d(zp,yn) = lim d(z,,yy,).
Thus, the limit in (1.9) is independent, of the representatives, and d is well-defined.
It is straightforward to check that d is a metric on X.

To show that the metric space (X' ,J) is a completion of (X,d), we define an
embedding » : X — X as the map that takes a point x € X to the equivalence
class of Cauchy sequences that contains the constant sequence (z,) with z,, = z for
all n. This map is an isometric embedding, since if (z,) and (y,) are the constant
sequences with z,, = = and y, =y, we have

d(u(z),(y)) = nh—{%o d(Tn,yn) = d(z,y).

The image (X)) consists of the equivalence classes in X which have a constant
representative Cauchy sequence. To show the density of +(X) in X, let (z,) be a
representative of an arbitrary point € X. We define a sequence (yn) of constant
sequences by Un = (Yn,k)5>, Where y, r = x,, for all n,k € N. From the definition
of (¥,) and the fact that (z,) is a Cauchy sequence, we have

i, 4G, ®) = Jim, Jim d(@n,20) =0
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Thus, 2(X) is dense in X.

Finally, we prove that ()Z' , c?) is complete. We will use Cantor’s “diagonal”
argument, which is useful in many other contexts as well. Let (Z,) be a Cauchy
sequence in X. In order to prove that a Cauchy sequence is convergent, it is enough
to prove that it has a convergent subsequence, because the whole sequence converges
to the limit of any subsequence. Picking a subsequence, if necessary, we can assume
that (Z,) satisfies

~ ~ 1
d (T, Tp) < N for all m,n > N. (1.10)

For each term Z,, we choose a representative Cauchy sequence in X, denoted by
(Tn,k)72 ;. Any subsequence of a representative Cauchy sequence of Z, is also a
representative of z,,. We can therefore choose the representative so that

S|

d(Tnk,2Tn1) < for all k,1 > n. (1.11)
We claim that the “diagonal” sequence (xk,k)zil is a Cauchy sequence, and that
the equivalence class # to which it belongs is the limit of (%,) in X. The fact that
we can obtain the limit of a Cauchy sequence of sequences by taking a diagonal
sequence is the key point in proving the existence of the completion.

To prove that the diagonal sequence is Cauchy, we observe that for any i € N,

d(zpr,t11) < d(Trks Thi) + d(Thi, T1,4) +d (20,6, 21,) - (1.12)

The definition of d and (1.10) imply that for all k,1 > N,

d(@, %) = lim d(zp,;, 21,5) <

1
lim e (1.13)

Taking the lim sup of (1.12) as ¢ — oo, and using (1.11) and (1.13) in the result, we
find that for all k,1 > N,

3
< —.
d(xpk,21,1) < N

Therefore (x,x) is Cauchy.
By a similar argument, we find that for all k,n > N,

2| e

d(Zn ks Trok) <limsup {d (znk,Zn,:) + d(Tni Th,i) + d (This Thok) } <

i—00

Therefore, for n > N, we have

~ i 3
d(Zn,7) = kll>nolo d(Tnk, Thk) < N

Hence, the Cauchy sequence (Z,) converges to T as n — oo, and X is complete. O
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It is slightly annoying that the completion X is constructed as a space of equiv-
alence classes of sequences in X, rather than as a more direct extension of X. For
example, if X is a space of functions, then there is no guarantee that its completion
can be identified with a space of functions that is obtained by adding more functions
to the original space.

Example 1.53 Let C([0,1]) be the set of continuous functions f : [0,1] - R. We
define the L2-norm of f by

1= @) )

The associated metric d(f,g) = ||f — g|| is a very useful one, analogous to the
Euclidean metric on R”, but the space C([0,1]) is not complete with respect to
it. The completion is denoted by L?([0,1]), and it can nearly be identified with
the space of Lebesgue measurable, square-integrable functions. More precisely, a
point in L2([0,1]) can be identified with an equivalence class of square-integrable
functions, in which two functions that differ on a set of Lebesgue measure zero are
equivalent. According to the Riesz-Fisher theorem, if (f,,) is a Cauchy sequence with
respect to the L2-norm, then there is a subsequence (f,, ) that converges pointwise-
a.e. to a square-integrable function, and this fact provides one way to identify an
element of the completion with an equivalence class of functions. Many of the
usual operations on functions can be defined on equivalence classes, independently
of which representative function is chosen, but the pointwise value of an element
f € L?([0,1]) cannot be defined unambiguously.

In a similar way, the space L?(R) of equivalence classes of Lebesgue measurable,
square integrable functions on R is the completion of the space C.(R) of continuous
functions on R with compact support (see Definition 2.6) with respect to the L2-

norm
1= ([ 11 dm)m-

We will see later on that these L? spaces are fundamental examples of infinite-
dimensional Hilbert spaces. We discuss measure theory in greater detail in Chap-
ter 11.14. We will use facts from that chapter as needed throughout the book,
including Fubini’s theorem for the exchange in the order of integration, and the
dominated convergence theorem for passage to the limit under an integral sign.

1/2

1.7 Compactness

Compactness is one the most important concepts in analysis. A simple and useful
way to define compact sets in a metric space is by means of sequences.
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Definition 1.54 A subset K of a metric space X is sequentially compact if every
sequence in K has a convergent subsequence whose limit belongs to K.

We can take K = X in this definition, so that X is sequentially compact if every
sequence in X has a convergent subsequence. A subset K of (X,d) is sequentially
compact if and only if the metric subspace (K, d|k) is sequentially compact.

Example 1.55 The space of real numbers R is not sequentially compact. For
example, the sequence (z,) with x,, = n has no convergent subsequence because
|Zm — xn| > 1 for all m # n. The closed, bounded interval [0, 1] is a sequentially
compact subset of R, as we prove below. The half-open interval (0,1] is not a
sequentially compact subset of R, because the sequence (1/n) converges to 0, and
therefore has no subsequence with limit in (0,1]. The limit does, however, belong
to [0,1].

The full importance of compact sets will become clear only in the setting of
infinite-dimensional normed spaces. It is nevertheless interesting to start with the
finite-dimensional case. Compact subsets of R” have a simple, explicit characteri-
zation.

Theorem 1.56 (Heine-Borel) A subset of R” is sequentially compact if and only
if it is closed and bounded.

The fact that closed, bounded subsets of R” are sequentially compact is a con-
sequence of the following theorem, called the Bolzano-Weierstrass theorem, even
though Bolzano had little to do with its proof. We leave it to the reader to use this
theorem to complete the proof of the Heine-Borel theorem.

Theorem 1.57 (Bolzano-Weierstrass) Every bounded sequence in R™ has a
convergent subsequence.

Proof. We will construct a Cauchy subsequence from an arbitrary bounded se-
quence. Since R" is complete, the subsequence converges.

Let (zx) be a bounded sequence in R™. There is an M > 0 such that z €
[-M, M]™ for all k. The set [-M, M]™ is an n-dimensional cube of side 2M. We
denote this cube by Cy. We partition Cy into 2™ cubes of side M. We denote by Cy
one of the smaller cubes that contains infinitely many terms of the sequence (zy),
meaning that zp € C; for infinitely many & € N. Such a cube exists because there
is a finite number of cubes and an infinite number of terms in the sequence. Let
k1 be the smallest index such that xx, € Ci. We pick z, as the first term of the
subsequence.

To choose the second term, we form a new sequence (y;) by deleting from (z,)
the term zy, and all terms which do not belong to C;. We repeat the procedure
described in the previous paragraph, but with (xy) replaced by (yx), and Cy replaced
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Fig. 1.6 A set with a finite e-net for it.

by Ci. This procedure gives a subcube Cs of C; of side M/2, which contains
infinitely many terms of the original sequence, and an element yi,. We pick zx, =
Yk, as the second element of the subsequence.

By repeating this procedure, we obtain a subsequence (zr,;)$2,. We never “ex-
haust” the original sequence, because every cube in the construction contains in-
finitely many terms. We have zy, € Cj for all i > j where C; is a cube of side
M /23~ Therefore (zy,) is a Cauchy sequence, and hence it converges. O

The following criterion for the sequential compactness of a metric space is often
easier to verify than the definition. Let A be a subset of a metric space X. We say
that a collection {G, | @ € A} of subsets of X is a cover of A if its union contains
A, meaning that

Ac | Ga.
acA
The number of sets in the cover is not required to be countable. If every G, in the
cover is open, then we say that {G,} is an open cover of A.
Let € > 0. A subset {z, | @ € A} of X is called an e-net of the subset A if
the family of open balls {B(z,) | @ € A} is an open cover of A. If the set {z4} is
finite, then we say that {z4} is a finite e-net of A (see Figure 1.6).

Definition 1.58 A subset of a metric space is totally bounded if it has a finite e-net
for every € > 0.

That is, a subset A of a metric space X is totally bounded if for every € > 0
there is a finite set of points {1, %2,...,z,} in X such that A C J}_, Be(z;).
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Theorem 1.59 A subset of a metric space is sequentially compact if and only if it
is complete and totally bounded.

Proof. The proof that a complete, totally bounded set K is sequentially compact
is the same as the proof of the Bolzano-Weierstrass theorem 1.57. Suppose that (x,,)
is a sequence in K. Then, since K is totally bounded, there is a sequence of balls
(Bg) such that By, has radius 1/2* and every intersection Ay = ﬂle B; contains
infinitely many terms of the sequence. We can therefore choose a subsequence
(zn,) such that x,, € Ay for every k. This subsequence is Cauchy, and, since K is
complete, it converges.

To prove the converse, we show that a sequentially compact space is complete,
and that a space which is not totally bounded is not sequentially compact.

If (z,) is a Cauchy sequence in a sequentially compact space K, then it has a
convergent subsequence. The whole Cauchy sequence converges to the limit of any
convergent subsequence. Hence K is complete.

Now suppose that K is not totally bounded. Then there is an € > 0 such that
K has no finite e-net. For every finite subset {z1,...,2,} of K, there is a point
Tpt1 € K such that z,41 ¢ U, Be(z;). Consequently, we can find an infinite
sequence (z,) in K such that d(x,,,z,) > € for all m # n. This sequence does not
contain a Cauchy subsequence, and hence has no convergent subsequence. Therefore
K is not sequentially compact. d

Another way to define compactness is in terms of open sets. We say that
a cover {G,} of A has a finite subcover if there is a finite subcollection of sets
{Gay,-..,Gaq, } such that A C UL, Ga,-

Definition 1.60 A subset K of a metric space X is compact if every open cover of
K has a finite subcover.

Example 1.61 The space of real numbers R is not compact, since the open cover
{(n—1,n4+1) | n € Z} of R has no finite subcover. The half-open interval (0,1]
is not compact, since the open cover {(1/2n,2/n) | n € N} has no finite subcover.
If this open cover is extended to an open cover of [0, 1], then the extension must
contain an open neighborhood of 0. This open neighborhood, together with a finite
number of sets from the cover of (0,1], is a finite subcover of [0, 1].

For metric spaces, compactness and sequential compactness are equivalent.

Theorem 1.62 A subset of a metric space is compact if and only if it is sequentially
compact.

Proof. First, we prove that sequential compactness implies compactness. We will
show that an arbitrary open cover of a sequentially compact set has a countable
subcover, and that a countable cover has a finite subcover.
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Lemma 1.63 A sequentially compact metric space is separable.

Proof. By Theorem 1.59, there is a finite (1/n)-net A, of a sequentially compact
space K for every n € N. Let A = J;2; A,. Then A is countable, because it is a

countable union of finite sets, and A is dense in K by construction. d

Suppose that {G, | a € A} is an arbitrary open cover of a sequentially compact
space K. From Lemma 1.63, the space K has a countable dense subset A. Let B
be the collection of open balls with rational radius and center in A, and let C be
the subcollection of balls in B that are contained in at least one of the open sets
G«. The collection B is countable because it is a countable union of countable sets.
Hence, the subcollection C is also countable.

For every z € K, there is a set G, in the open cover of K with z € G. Since
G, is open, there is an € > 0 such that B.(z) C G,. Since A is dense in K, there is
a point y € A such that d(z,y) < €/3. Then z € B,/3(y), and By /3(y) C Go. (It
may help to draw a picture!) Thus, if ¢ is a rational number with €/3 < ¢ < 2¢/3,
then z € B,(y) and B,(y) C G,4. It follows that B,(y) € C, so any point z in K
belongs to a ball in C. Hence C is an open cover of K. For every B € C, we pick an
ap € A such that B C G,,,. Then {G,, | B € C} is a countable subcover of K,
because |Jgcec Gap contains |Jgzco B, which contains K.

We will show by contradiction that a countable open cover has a finite subcover.
Suppose that {G,, | n € N} is a countable open cover of a sequentially compact
space K that does not have a finite subcover. Then the finite union ngl G, does
not contain K for any N. We can therefore construct a sequence (zy) in K as
follows. We pick a point z; € K. Since {G,} covers K, there is an N; such that
xz1 € GN,. We pick z5 € K such that zo ¢ Ug; G, and choose N> such that
z2 € Gn,. Then we pick z3 € K such that z3 ¢ |J,,2; G», and so on. Since

Ni_1
zr € Gn,, and zp ¢ U Gn,
n=1
the open set G, is not equal to Gy, for any n < Nj_;. Thus, the sequence (Ng)
is strictly increasing, and N — oo as k — oo. It follows that, for any n, there
is an integer K, such that zj ¢ G, when k > K,,. If z € G,,, then all points of
the sequence eventually leave the open neighborhood G, of z, so no subsequence
of (z) can converge to z. Since the collection {G,} covers K, the sequence (z,)
has no subsequence that converges to a point of K. This contradicts the sequential
compactness of K, and proves that sequential compactness implies compactness.
To prove the converse, we show that if a space is not sequentially compact,
then it is not compact. Suppose that K has a sequence (z,) with no convergent
subsequence. Such a sequence must contain an infinite number of distinct points,
so we can assume without loss of generality that z,, # x, for m # n.
Let x € K. If the open ball B, (z) contains a point in the sequence that is distinct
from z for every € > 0, then z is the limit of a subsequence, which contradicts the
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assumption that the sequence has no convergent subsequence in K. Hence, there is
an €, > 0 such that the open ball B,_(x) contains either no points in the sequence,
if z itself does not belong to the sequence, or one point, if  belongs to the sequence.

The collection of open balls {B._(z) | z € K} is an open cover of K. Every
finite subcollection of n open balls contains at most n terms of the sequence. Since
the terms of the sequence are distinct, no finite subcollection covers K. Thus, K
has an open cover with no finite subcover, and K is not compact. a

In future, we will abbreviate “sequentially compact” to “compact” when refer-
ring to metric spaces. The following terminology is often convenient.

Definition 1.64 A subset A of a metric space X is precompact if its closure in X
is compact.

The term “relatively compact” is frequently used instead of “precompact.” This
definition means that A is precompact if every sequence in A has a convergent
subsequence. The limit of the subsequence can be any point in X, and is not
required to belong to A. Since compact sets are closed, a set is compact if and only
if it is closed and precompact. A subset of a complete metric space is precompact
if and only if it is totally bounded.

Example 1.65 A subset of R™ is precompact if and only if it is bounded.

Continuous functions on compact sets have several nice properties. From Propo-
sition 1.34, continuous functions preserve the convergence of sequences. It follows
immediately from Definition 1.54 that continuous functions preserve compactness.

Theorem 1.66 Let f : K — Y be continuous on K, where K is a compact metric
space and Y is any metric space. Then f(K) is compact.

Since compact sets are bounded, continuous functions on a compact set are
bounded. Moreover, continuous functions on compact sets are uniformly continuous.

Theorem 1.67 Let f : K — Y be a continuous function on a compact set K.
Then f is uniformly continuous.

Proof. Suppose that f is not uniformly continuous. Then there is an € > 0 such
that for all § > 0, there are z,y € X with d(z,y) < § and d(f(x), f(y)) > €. Taking
0 =1/n for n € N, we find that there are sequences (z,,) and (y,) in X such that

Alonyn) < 0 d(F), flon) > e (1.14)

Since K is compact there are convergent subsequences of (z,) and (y,) which,
for simplicity, we again denote by (z,) and (y,). From (1.14), the subsequences
converge to the same limit, but the sequences (f(z,)) and (f(y,)) either diverge or
converge to different limits. This contradicts the continuity of f. O



28 Metric and Normed Spaces
1.8 Maxima and minima

Maximum and minimum problems are of central importance in applications. For
example, in many physical systems, the equilibrium state is one which minimizes
energy or maximizes entropy, and in optimization problems, the desirable state of
a system is one which minimizes an appropriate cost function. The mathematical
formulation of these problems is the maximization or minimization of a real-valued
function f on a state space X. Each point of the state space, which is often a metric
space, represents a possible state of the system. The existence of a maximizing, or
minimizing, point of f in X may not be at all clear; indeed, such a point may
not exist. The following theorem gives sufficient conditions for the existence of
maximizing or minimizing points — namely, that the function f is continuous and
the state space X is compact. Although these conditions are fundamental, they are
too strong to be useful in many applications. We will return to these issues later
on.

Theorem 1.68 Let K be a compact metric space and f : K — R a continuous,
real-valued function. Then f is bounded on K and attains its maximum and mini-
mum. That is, there are points z,y € K such that

f@) = inf f(z),  f(y) = sup f(2). (1.15)
Proof. From Theorem 1.66, the image f(K) is a compact subset of R, and there-
fore f is bounded by the Heine-Borel theorem in Theorem 1.56.

It is enough to prove that f attains its infimum, because the application of this
result to — f implies that f attains its supremum. Since f is bounded, it is bounded
from below, and the infimum m of f on K is finite. By the definition of the infimum,
for each n € N there is an z,, € K such that

1
m < f(z,) <m+ﬁ.
This inequality implies that

lim f(z,) =m. (1.16)

n—oo

The sequence ()52 ; need not converge, but since K is compact the sequence
has a convergent subsequence, which we denote by (z,,)52,. We denote the limit
of the subsequence by z. Then, since f is continuous, we have from (1.16) that

f(z) = lim f(zn,) =m
k—o0
Therefore, f attains its infimum m at z. O

The strategy of this proof is typical of many compactness arguments. We con-
struct a sequence of approximate solutions of our problem, in this case a minimizing
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sequence (z,,) that satisfies (1.16). We use compactness to extract a convergent sub-
sequence, and show that the limit of the convergent subsequence is a solution of our
problem, in this case a point where f attains its infimum. The following examples
illustrate Theorem 1.68 and some possible behaviors of minimizing sequences.

Example 1.69 The function f(z) = 2*/4 — 2?/2 is continuous and bounded on
[-2,2]. It attains its minimum at # = +£1. An example of a minimizing sequence
(x,) is given by z, = (—=1)". In fact, f(z,) = inf f(z) for all n. This minimizing

sequence does not converge because its terms jump back and forth between x = —1
and x = 1. The subsequences (2241) and (x2)) converge, to x = —1 and « = 1,
respectively.

As this example shows, the compactness argument does not imply that a point
where f attains its minimum is unique. There are many possible minimizing se-
quences, and there may be subsequences of a given minimizing sequence that con-
verge to different limits. If, however, the function f attains its minimum at a
unique point, then it follows from Exercise 1.27 that every minimizing sequence
must converge to that point.

Example 1.70 The function f(z) = e~ * is continuous and bounded from below
on the noncompact set R. The infimum of f on R is zero, but f does not attain
its infimum. An example of a minimizing sequence (z,,) is given by z,, = n. The
terms of the minimizing sequence “escape” to infinity, and it has no convergent
subsequence.

Example 1.71 The discontinuous function f on the compact set [0, 1] defined by

[ logz if0<z<1,
f(‘”)_{ 0 ifz=0,

is not bounded from below. A sequence (z,) is a minimizing sequence if z, — 0 as

n — oco. In that case, f(z,) - —o0 as n — oo, but f is discontinuous at the limit
point x = 0.

Some of the conclusions of Theorem 1.68 still hold for semicontinuous functions.
An almost identical proof shows the following result.

Theorem 1.72 Let K be a compact metric space. If f : K — R is upper semicon-
tinuous, then f is bounded from above and attains its supremum. If f : K — R is
lower semicontinuous, then f is bounded from below and attains its infimum.

Example 1.73 We define f,g:[0,1] - R by

) = z if0<z<1, (z) = z if0<z<1,
=Vt ife=o, IE=1 21 ifz=o0.

The function f is upper semicontinuous, and does not attain its infimum, while g
is lower semicontinuous and attains its minimum at x = 0.
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1.9 References

For introductions to basic real analysis, see Marsden and Hoffman [37] or Rudin
[46]. Simmons [49] gives a clear and accessible discussion of metric, normed, and
topological spaces. For linear algebra, see Halmos [19] and Lax [30]. Two other
books with a similar purpose to this one are Naylor and Sell [40] and Stakgold [51].

1.10 Exercises

Exercise 1.1 A set A is countably infinite if there is a one-to-one, onto map from A
to N. A set is countable if it is finite or countably infinite, otherwise it is uncountable.

(a) Prove that the set Q of rational numbers is countably infinite.
(b) Prove that the set R of real numbers is uncountable.

Exercise 1.2 Give an e-6 proof that

> 1
;m": 1—z’

when |z| < 1.
Exercise 1.3 If z, y, z are points in a metric space (X, d), show that
d(z,y) > |d(z,z) — d(y, 2)| -

Exercise 1.4 Suppose that (X,dx) and (Y,dy) are metric spaces. Prove that the
Cartesian product Z = X x Y is a metric space with metric d defined by

d(z1,22) = dx (z1,22) + dy (y1,y2),

where z; = (z1,y1) and 22 = (z2,y2).

Exercise 1.5 Suppose that (X, || - ||) is a normed linear space. Prove that (1.2)
and (1.4) define metrics on X.

Exercise 1.6 Starting from the fact that R equipped with its usual distance func-
tion is complete, prove that R” equipped with the sum, maximum, or Euclidean
norm is complete.

Exercise 1.7 Show that the series

oo 1)
Z:l(n)

is not absolutely convergent. Show that by permuting the terms of this series one
can obtain series with different limits.
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Exercise 1.8 Let (z,) be a sequence of real numbers. A point ¢ € RU {£o0} is
called a cluster point of (z,,) if there is a convergent subsequence of (z,) with limit
c¢. Let C denote the set of cluster points of (x,). Prove that C is closed and

limsupz, = maxC and liminfz, = minC.
Exercise 1.9 Let (z,) be a bounded sequence of real numbers.

(a) Prove that for every ¢ > 0 and every N € N there are ny,no > N, such that

limsupz, < xp, +€, Tpn, —€<liminfz,.
n—oo n—oo

(b) Prove that for every € > 0 there is an N € N such that

Ty <limsupz, +€, x> liminfz, —¢
n—00 n—00

for allm > N.
(c) Prove that (z,) converges if and only if

liminf 2, = lim sup z.,.
n—00 n—oco

Exercise 1.10 Consider a family {z, 4} of real numbers indexed by n € N and
a € A. Prove the following relations:

lim sup (inf mn,a) < inf (lim sup :L'n’a) ;
o

n—o00 @ n—00

sup (lim inf :cn,a) < liminf (sup xn,a> .
(o4

o n— 00 n— 00

Exercise 1.11 If (z,,) is a sequence of real numbers such that

lim z, =z,
n—o0

and a, < z, < by, prove that

limsup a, <z < liminfb,.
n—o0o n—oo

Exercise 1.12 Let (X,dx), (Y,dy), and (Z,dz) be metric spaces and let f: X —
Y, and g : Y — Z be continuous functions. Show that the composition

h=gof:X = Z,
defined by h(z) = g(f(z)), is also continuous.

Exercise 1.13 A function f : R — Ris said to be differentiable at z if the following
limit exists and is finite:

fle+h) - f(z)
- :

/() = lim
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(a) Prove that if f is differentiable at x, then f is continuous at z.
(b) Show that the function

o= { o) et

is differentiable at £ = 0 but the derivative is not continuous at z = 0.
(c) Prove that if f is differentiable at 2 and has a local maximum or minimum
at z, then f'(z) = 0.

Exercise 1.14 If f : [a,b] — R is continuous on [a,b] and differentiable in (a,b),
then prove that there is a a < £ < b such that

f) = f(a) = f'(§) (b—a).

This result is called the mean value theorem. Deduce that if f'(z) = 0 for all
a < x < bthen f is a constant function.

Exercise 1.15 Prove that every compact subset of a metric space is closed and
bounded. Prove that a closed subset of a compact space is compact.

Exercise 1.16 Suppose that F' and G are closed and open subsets of R", respec-
tively, such that F' C G. Show that there is a continuous function f : R — R such
that:

(@) 0< f(z) <L
(b) f(z) =1for z € F;
c) f(z)=0for xz € G°.

HINT. Consider the function

f@) = g

—~

d(z, G°)
z,G¢) +d(z,F)’

This result is called Urysohn’s lemma.

Exercise 1.17 Let (X,d) be a complete metric space, and ¥ C X. Prove that
(Y,d) is complete if and only if Y is a closed subset of X.

Exercise 1.18 Let (X,d) be a metric space, and let (z,) be a sequence in X.
Prove that if (z,) has a Cauchy subsequence, then, for any decreasing sequence of
positive e, — 0, there is a subsequence (z,, ) of (z,) such that

AT, , Tn,) < € for all k <.

Exercise 1.19 Following the construction of the Cantor set C' by the removal of
middle thirds, we define a function F' on the complement of the Cantor set [0,1]\ C
as follows. First, we define F(z) = 1/2 for 1/3 < < 2/3. Then F(z) = 1/4 for
1/9 <2 <2/9and F(x) =3/4for 7/9 < x < 8/9, and so on. Prove that F' extends
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to a unique continuous function F : [0,1] = R. Prove that F' is differentiable at
every x € R\ C and F'(z) = 0. This function is called the Cantor function. Its
graph is sometimes called the devil’s staircase.

Exercise 1.20 Let X be a normed linear space. A series Yz, in X is absolutely
convergent if > ||zp|| converges to a finite value in R. Prove that X is a Banach
space if and only if every absolutely convergent series converges.

Exercise 1.21 Suppose that X is a Banach space, and (2,,,,,) is a doubly indexed
sequence in X such that

o0 oo
> 5 el < .

m=1n=1
Prove that
> (o) =3 (o).
m=1 \n=1 n=1 \m=1

Exercise 1.22 Let S be a set. A relation ~ between points of S is called an
equivalence relation if, for all a,b,c € S, we have:

(a) a~a;
(b) a ~ b implies b ~ a;
(¢) a~band b~ cimplies a ~ c.

Define the equivalence class C, associated with a € S by
Co={beS|a~b}.

Prove that two equivalence classes are either disjoint or equal, so ~ partitions S into
a union of disjoint equivalence classes. Show that the relation ~ between Cauchy
sequences defined in the proof of Theorem 1.52 is an equivalence relation.

Exercise 1.23 Suppose that f : X — R is lower semicontinuous and M is a real
number. Define fj; : X — R by

fu(z) = min (f(z), M).
Prove that fas is lower semicontinuous.

Exercise 1.24 Let f : X — R be a real-valued function on a set X. The epigraph
epi f of f is the subset of X x R consisting of points that lie above the graph of f:

epif = {(&,) € X xRt > f()}.

Prove that a function is lower semicontinuous if and only if its epigraph is a closed
set.



34 Metric and Normed Spaces

Exercise 1.25 A function f: R® — R is coercive if

lim f(z) = oc. (1.17)
llzll—o0
Explicitly, this condition means that for any M > 0 there is an R > 0 such that
[|z|]| > R implies f(x) > M. Prove that if f : R* — R is lower semicontinuous and
coercive, then f is bounded from below and attains its infimum.

Exercise 1.26 Let p : R2> — R be a polynomial function of two real variables.
Suppose that p(z,y) > 0 for all z,4y € R. Does every such function attain its
infimum? Prove or disprove.

Exercise 1.27 Suppose that (z,) is a sequence in a compact metric space with
the property that every convergent subsequence has the same limit x. Prove that
Tp — X aS N — 00.



Chapter 2

Continuous Functions

In Chapter , we introduced the notion of a normed linear space, with finite-di-
mensional Euclidean space R as the main example. In this chapter, we study
linear spaces of continuous functions on a compact set equipped with the uniform
norm. These function spaces are our first examples of infinite-dimensional normed
linear spaces, and we explore the concepts of convergence, completeness, density,
and compactness in this context. As an application of compactness, we prove an
existence result for initial value problems for ordinary differential equations.

2.1 Convergence of functions

Suppose that (f,) is a sequence of real-valued functions f,, : X — R defined on a
metric space X. What would we mean by f, — f? Two natural ways to answer
this question are the following.

(a) The functions f, are defined by their values, so the functions converge
if the values converge. That is, we say f, — f if fo(z) — f(z) for all
x € X. This definition reduces the convergence of real-valued functions to
the convergence of real numbers, with which we are already familiar. This
type of convergence is called pointwise convergence.

(b) We define a suitable notion of the distance between functions, and say that
fn — [ if the distance between f, and f tends to zero. In this approach, we
regard the functions as points in a metric space, and use metric convergence.

Both of these ideas are useful. It turns out, however, that they are not compat-
ible. For most domains X — for example, any uncountable domain — pointwise
convergence cannot be expressed as convergence with respect to a metric. The next
example shows that pointwise convergence is not a good notion of convergence to
use for continuous functions because it does not preserve continuity.

35
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Fig. 2.1 Left: the sequence of functions fr(z) = z™ converges pointwise but not uniformly

on [0,1]. Right: graphically, uniform convergence means that for an arbitrarily narrow tubular
neighborhood of the limiting function, the functions f, will be contained in it for all sufficiently
large n.

Example 2.1 We define f, : [0,1] = R by
fn(z) = 2™

As illustrated in Figure 2.1, the sequence (f,) converges pointwise to the function
f given by

0 ifo<z<1,
f(x)_{l fr=1

The pointwise limit f is discontinuous at x = 1.

In view of these somewhat pathological features of pointwise convergence, we
consider metric convergence. As we will see, there are many different ways to
define a distance between functions, and different metrics or norms usually lead to
different types of convergence. A natural norm on spaces of continuous functions is
the uniform or sup norm, which is defined by

11l = sup |f(z)]- (2.1)
zeX

The norm ||f]| is finite if and only if f is bounded. The uniform norm is often
denoted by || - |lsup o || * ||co- The reason for the latter notation will become clear
when we study L? spaces in Chapter 11.14. In this chapter, we only use the uniform
norm, so we denote it by || - || without ambiguity.

As illustrated in Figure 2.1, two functions are close in the metric associated with
the uniform norm if their pointwise values are uniformly close. Metric convergence
with respect to the uniform norm is called uniform convergence.

Definition 2.2 A sequence of bounded, real-valued functions (f,) on a metric
space X converges uniformly to a function f if

Jim || fn — fII =0,
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where || - || is defined in (2.1).

Uniform convergence implies pointwise convergence. The sequence defined in Ex-
ample 2.1 shows that the opposite implication does not hold, since f,, — f pointwise
but ||fn — fl| = 1 for every n. Unlike pointwise convergence, uniform convergence
preserves continuity.

Theorem 2.3 Let (f,,) be a sequence of bounded, continuous, real-valued functions
on a metric space (X, d). If f,, — f uniformly, then f is continuous.

Proof. In order to show that f is continuous at x € X, we need to prove that for
every € > 0 there is a 6 > 0 such that d(z,y) < d implies | f(z) — f(y)| < e. By the
triangle inequality, we have

[f(@) = f)] < | (@) = fa@)] + | fu(@) = (W) + | fa(y) = F(Y)]-

Since f,, — f uniformly, there is an n such that

€ €
If(@) = fal@) <3, |faly) = fW)I <3  forallz,yeX.
Since fy, is continuous at z, there is a § > 0 such that d(z,y) < & implies that
€
Fa) = Fala)| < 5.

It follows that d(z,y) < § implies |f(z) — f(y)| <€, so f is continuous at z. O

The “e/3-trick” used in this proof has many other applications. The proof fails
if f, = f pointwise but not uniformly.

2.2 Spaces of continuous functions

Let X be a metric space. We denote the set of continuous, real-valued functions
f: X = R by C(X). The set C(X) is a real linear space under the pointwise
addition of functions and the scalar multiplication of functions by real numbers.
That is, for f,g € C(X) and A € R, we define

(f+9) (@) = fl@) +9(x),  (Af)(z) =A(f(2))-

From Theorem 1.68, a continuous function f on a compact metric space K is bound-
ed, so the uniform norm || f|| is finite for f € C(K). It is straightforward to check
that C(K) equipped with the uniform norm is a normed linear space. For example,
the triangle inequality holds because

lf +gll = sup | f(z) + g(z)| < sup |f(z)| + sup [g(z)| = [|f]| + llgl-
zeK zeK zeK

We will always use the uniform norm on C(K), unless we state explicitly otherwise.
A basic property of C(K) is that it is complete, and therefore a Banach space.
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Theorem 2.4 Let K be a compact metric space. The space C(K) is complete.

Proof. Let (f,) be a Cauchy sequence in C'(K) with respect to the uniform norm.
We have to show that (f,) converges uniformly. We do this in two steps. First,
we construct a candidate function f for the limit of the sequence, as the pointwise
limit of the sequence. Second, we show that the sequence converges uniformly to f.

First, the fact that (f,) is Cauchy in C'(K) implies that the sequence (f,(x)) is
Cauchy in R for each x € K. Since R is complete, the sequence of pointwise values
converges, and we can define a function f : K — R by

f@) = Tim_fu(z).

For the second step, we use the fact that (f,,) is Cauchy in C'(K) to prove that

it converges uniformly to f. Since f,,(xz) — f(x) as m — oo, we have

Ifo = fIl = sup|fu(z) - f(2)]

reK
= sup lim |fn($)_fm(m)|

zeK m— 00
< liminf sup |fn($) _fm(x)l (22)
m—»0o0 zeK
The fact that (f,) is Cauchy in the uniform norm means that for all € > 0 there is
an N such that

sup |fn(z) — fm(z)| <€ for all m,n > N.
zeK

It follows from (2.2) that || f,, — f|| < € for n > N, which proves that ||f,— f|| = 0 as
n — oo. By Theorem 2.3, the limit function f is continuous, and therefore belongs
to C(K). Hence, C(K) is complete. O

Example 2.5 Suppose K = {z1,...,z,} is a finite space, with metric d defined
by d(z;,xz;) = 1for i # j. A function f : K — R can be identified with a point
y=(y1,.-.,yn) € R*, where f(z;) = y;, and

171l = ma [y
Thus, the space C(K) is linearly isomorphic to the finite-dimensional space R™
with the maximum norm, which we have already observed is a Banach space. If

K contains infinitely many points, for example if K = [0,1], then C(K) is an
infinite-dimensional Banach space.

The same proof applies to complex-valued functions f : K — C, and the space
of complex-valued continuous functions on a compact metric space is also a Banach
space with the uniform norm (2.1).
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The pointwise product of two continuous functions is continuous, so C(K) has
an algebra structure. The product is compatible with the norm, in the sense that

I£gll < 1711 lgll- (2.3)

We say that C(K) is a Banach algebra. Strict inequality may occur in (2.3); for
example, the product of two functions that are nonzero on disjoint sets is zero.

Equation (2.1) does not define a norm on C(X) when X is not compact, since
continuous funtions may be unbounded. The space Cy(X) of bounded continuous
functions on X is a Banach space with respect to the uniform norm.

Definition 2.6 The support, supp f, of a function f : X - R (or f : X — C) on
a metric space X is the closure of the set on which f is nonzero,

supp f = {z € X | f(z) # 0}.

We say that f has compact support if supp f is a compact subset of X, and denote
the space of continuous functions on X with compact support by C.(X).

The space C.(X) is a linear subspace of Cy(X), but it need not be closed, in
which case it is not a Banach space. We denote the closure of C.(X) in Cy(X)
by Co(X). Since Co(X) is a closed linear subspace of a Banach space, it is also
a Banach space. (We warn the reader that the notation Co(X) is often used to
denote the space C.(X) of functions with compact support.) We have the following
inclusions between these spaces of continuous functions:

C(X) D Cp(X) D Co(X) D C.(X).

If X is compact, then these spaces are equal.

Example 2.7 A function f : R® — R has compact support if there is an R > 0
such that f(z) = 0 for all z with ||z|| > R. The space Cy(R) consists of continuous
functions that vanish at infinity, meaning that for every € > 0 there is an R > 0 such
that ||z|| > R implies that |f(z)| < e. We write this condition as limz|| s f(z) = 0.

Example 2.8 Consider real functions f : R — R. Then f(z) = #? is in C(R)
but not Cp(R). The constant function f(z) = 1 is in Cy(R) but not Cy(R). The
function f(z) = e=®" isin Co(R) but not C.(R). The function

[ 1-2* if|z|<1,
f(m)_{o if o] > 1.

is in C.(R).
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2.3 Approximation by polynomials

A polynomial p : [a,b] = R on a closed, bounded interval [a, b] is a function of the
form

n
p(.’L‘) = Z ckmka
k=0

where the coefficients ¢ are real numbers. If ¢, # 0, the integer n > 0 is called the
degree of p. The Weierstrass Approximation Theorem states that every continuous
function f : [a,b] — R can be approximated by a polynomial with arbitrary accuracy
in the uniform norm.

Theorem 2.9 (Weierstrass approximation) The set of polynomials is dense in

C([a,b]).

Proof. We need to show that for any f € C([a,b]) there is a sequence of polyno-
mials (p,) such that p, — f uniformly.

We first show that, by shifting and rescaling z, it is sufficient to prove the
theorem in the case [a, b] = [0, 1]. We define T : C([a,b]) — C([0,1]) by

(Tf)(@)=f(a+ (b—a)z).

Then T is linear and invertible, with inverse

(T1f) @) = f (fj:a).

a

Moreover, T is an isometry, since [|Tf|| = ||f||, and for any polynomial p both
Tp and T~ !'p are polynomials. If polynomials are dense in C([0,1]), then for any
f € C([a, b]) we have polynomials p,, such that p,, — T'f in C([0, 1]). It follows that
the polynomials 7~ 'p, converge to f in C([a,b]).

To show that polynomials are dense in C([0,1]), we use a proof by Bernstein,
which gives an explicit formula for a sequence of polynomials converging to a func-
tion f in C([0,1]). These polynomials are called the Bernstein polynomials of f,
and are defined by
Balei )= 3 Sik/) (3)ara=ar. (2.4

0

Notice that each term z*(1 — )" *, attains its maximum at x = k/n. This is
illustrated in Figure 2.2 for n = 20 and some values of k. The value of B,(z; f)
for x near k/n, is therefore predominantly determined by the values of f(z) near
xz = k/n. In (2.4), we use the standard notation for the binomial coefficients,

(1) =
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Fig. 2.2 The polynominals z*(1 — z)»~* for the case n = 20, appearing in the definition of the
Bernstein polynomials (2.4). Note that they attain their maximum at z = k/n.

The binomial theorem implies that

i (:)xk(l — )k =1.

k=0

Therefore, the difference between f and its nth Bernstein polynomial can be written
as

B - 0 =3 [ (1) 1] ()a-or e

Taking the supremum with respect to x of the absolute value of this equation, we

get
/ (S) - 1@ ()0 - w)"k] .26

Here, we use By,(z; f) to denote the value of the Bernstein polynomial at z, and
B, (-; f) to denote the corresponding polynomial function.

Let € > 0 be an arbitrary positive number. From Theorem 1.67, the function f
is uniformly continuous, so there is a § > 0 such that

|z —y| <& implies |[f(z) - f(y) <e (2.7)

|1Bn(-; ) = Il < sup lz

0<z<1 k=0
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for all z,y € [0,1]. To estimate the right hand side of (2.6), we divide the terms in
the series into two groups. We let

I(z) ={k|0< k<mnand |z — (k/n)| <8},
J()={k|0<k<mnand |z — (k/n)| > d}. (2.8)

From (2.6), (2.7), and (2.8), we get the following estimate,

x (e
(Z) (1 - m)"_k]

> |7 (%) s
3 (Z)mk(l—x)”k:|. (2.9)

keJ(z)
keJ(z)

0<z<1

IBa(-5f) = fll < € sup [

+ sup
0<z<1

< e+ 2[|f]l sup l

0<z<1

Since [z — (k/n)]? > &2 for k € J(z), the sum on the right hand side of (2.9) can be
estimated as follows:

ny & n—k
sup E ( )m (1-2)
O<z<l [keJ(z) k

1 - 2k k2 n
< 2 __av r k(1 _ »\n—k
52 o 1;};) E (ZC r + n2> <k>.’lf (1 .CC) ]

s
<<l k=0
1
< = sup [2°Bp(z;1) — 22By(z;2) + Bn(z;2%)] . (2.10)
6% 0<a<i1

To find an expression for the Bernstein polynomials B,,(x; 1), B, (z; z), and B, (x; z?)
of the polynomials 1, z, and x?, we write out the binomial expansion of (z + y)",
compute the first and second derivatives of the expansion with respect to y, and
rearrange the results. This gives

(@+y)" = i(:)mky"_k
et = )

(”T—l 1) (@ +y)" 7 + (%) a(z+y)" = jo (%)2 (Z) Ryt
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Fig. 2.3 Some approximations of the function x + cos(4z) by its Bernstein polynomials.

Evaluation of these equations at y = 1 — z, and the use of (2.4) gives
Bn(z;1) = 1,
B,(z;z) = =, (2.11)
()= ()
r+ |- )=,
n n
for all n > 1. Using (2.10) and (2.11) in (2.9), we obtain the estimate

£l
2nd?’

Taking the lim sup of this equation as n — oo, we get

lim_;sup 1Bn(-5 f) — fll <e

By (x;27)

1Bn(-5 f) — fll < e+

Since e is arbitrary, it follows that lim sup,,_, . ||Bn(-; f)—f|l = 0, so the polynomials
B,(-; f) converge uniformly to f. O

The first few approximations by Berstein polynomials of the function f(z) =
cos(4z) are graphed in Figure 2.3. Note that we could have formulated the theorem
for complex-valued functions with the same proof.

The Weierstrass approximation theorem differs from Taylor’s theorem, which
states that a function with sufficiently many derivatives can be approximated locally
by its Taylor polynomial. The Weierstrass approximation theorem applies to a
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continuous function, which need not be differentiable, and states that there is a
global polynomial approximation of the function on the whole interval [a, b].

An analogous result is the density of trigonometric polynomials in the space of
periodic continuous functions on the circle, which we prove below in Theorem 7.3.
Both of these theorems are special cases of the Stone-Weierstrass theorem (see
Rudin [47]).

2.4 Compact subsets of C(K)

The proof of the Heine-Borel theorem, that a subset of R is compact if and only
if it is closed and bounded, uses the finite-dimensionality of R™ in an essential
way. Compact subsets of infinite-dimensional normed spaces are also closed and
bounded, but these properties are no longer sufficient. In this section, we prove the
Arzela-Ascoli theorem, which characterizes the compact subsets of C(K). To state
the theorem, we introduce the notion of equicontinuity.

Definition 2.10 Let F be a family of functions from a metric space (X,d) to a
metric space (Y,d). The family F is equicontinuous if for every z € X and € > 0
there is a 6 > 0 such that d(z,y) < 0 implies d (f(z), f(y)) < e for all f € F.

The crucial point in this definition is that § does not depend on f, although it
may depend on z. If § can be chosen independent of x as well, then the family is
said to be uniformly equicontinuous. The following theorem is a generalization of
Theorem 1.67.

Theorem 2.11 An equicontinuous family of functions from a compact metric space
to a metric space is uniformly equicontinuous.

Proof. Suppose that K is a compact metric space, and F is a family of functions
f : K = Y that is not uniformly equicontinuous. We will prove that F is not
equicontinuous.

Since F is not uniformly equicontinuous, there is an € > 0, such that for every
n € N there are points z,,y, € K and a function f, € F with

A(enyn) <y and d(fulun), fulrn) > 26 (2.12)

Since K is compact, the sequence (z,) has a convergent subsequence, which we
also denote by (z,). Suppose that =, — = as n — oo. Then (2.12) implies that
yn — = as well. Hence, for all § > 0, there are points z,,, y, such that d(z,,z) < §
and d(yn,z) < 6. But, from (2.12), we must have either d (f,(z,), fn(z)) > € or
d(fn(yn), fu(x)) > €, so F is not equicontinuous at x. O

Next, we give necessary and sufficient conditions for compactness in C(K).
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Theorem 2.12 (Arzela-Ascoli) Let K be a compact metric space. A subset of
C(K) is compact if and only if it is closed, bounded, and equicontinuous.

Proof. Recall that a set is precompact if its closure is compact, and that a set is
compact if and only if it is closed and precompact. We will prove that a subset of
C(K) is precompact if and only if it is bounded and equicontinuous.

We divide the proof into three parts. First, we show that an unbounded subset
is not precompact. Second, we show that a precompact subset is equicontinuous.
Third, we show that a bounded, equicontinuous subset is precompact.

For the first part, suppose that F is an unbounded subset of C(K). Then there
is a sequence of functions f, € F, with ||foy1|| > ||fnll + 1, so that ||fr — fie]] > 1
for all n # m. It follows that (f,) has no Cauchy subsequence, and therefore no
convergent subsequence, so F is not precompact.

For the second part, suppose that F is a precompact subset of C(K). Fix € > 0.
Since F is dense in F, we have

? C U Be/3(f)

fer

Since F is compact, there is a finite subset {fi,..., fr} of F such that

k

i=1
Each f; is uniformly continuous by Theorem 1.67, so there is a §; > 0 such that
d(z,y) < §; implies that |f;(z) — fi(y)] < ¢/3 for all z,y € K. We define § by

6 = min 6;.
1<i<k

Since 4 is the minimum of a finite set of §; > 0, we have § > 0. For every f € F,
there is an 1 <4 < k such that ||f — fi]| < /3. We conclude that for d(z,y) < 0

|F(z) = fW)l < |f (@) = filz)| + |fi(@) = fi)| + [ fily) — FW)] <e.

Since € is arbitrary and 9§ is independent of f, the set F is equicontinuous.

For the third part, suppose that F is a bounded, equicontinuous subset of C'(K).
We will show that every sequence (f,) in F has a convergent subsequence. By
Lemma, 1.63 there is a countable dense set {z1,x2, 3, ...} in the compact domain K.
We choose a subsequence (f1,,,) of (f) such that the sequence of values (fi (1))
convergesin R. Such a subsequence exists because (f,(z1)) is bounded in R, since F
is bounded in C(K). We choose a subsequence (f2 ,,) of (f1,n) such that (f2,(z2))
converges, which exists for the same reason. Repeating this procedure, we obtain
sequences (frn)oo, for k =1,2,... such that (fr41,,) is a subsequence of (f,n),
and (fx,n(zr)) converges as n — co. Finally, we define a “diagonal” subsequence
(9%) by gr = fr,x- By construction, the sequence (gi) is a subsequence of (f,,) with
the property that gg(z;) converges in R as k — oo for all z; in a dense subset of K.
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So far, we have only used the boundedness of F. The equicontinuity of F is
needed to ensure the uniform convergence of (gx). Let € > 0. Since F is equicontin-
uous and K is compact, Theorem 2.11 implies that F is uniformly equicontinuous.
Consequently, there is a § > 0 such that d(z,y) < § implies

€
l9k (@) — g (y)| < 3

Since {x;} is dense in K, we have

K C Ej B(S(.’L'z)

i=1
Since K is compact, there is a finite subset of {z;}, which we denote by {z1,...,2,},
such that
n
K C | Bs(x).
i=1
The sequence (gr(x;)) is convergent for each ¢ = 1,...,n, and hence Cauchy, so

there is an N such that
95(@) = gulei)| < g
forall j,k > Nandi=1,...,n. For any z € K, there is an i such that z € Bs(z;).
Then, for j,k > N, we have
195 (%) = gr(2)| < 1g;(x) — g (i)| + 195 (i) — gr(:)| + gr (i) — gr(2)| <e.

It follows that (gx) is a Cauchy sequence for the uniform norm and, since C'(K) is
complete, it converges. O

In the proof of this theorem, we again used Cantor’s diagonal argument, and
the “e/3-trick.” The same proof applies to a more general situation. Let C(K,Y")
be the space of all continuous functions f : K — Y, where (K,dk) is a compact
metric space and (Y, dy) an arbitrary metric space. Define a metric d on C(K,Y")
by

d(f: g) = sup dy(f(d?),g(.’l:))

zeK

Then (C(K,Y),d) is a complete metric space, and a subset is compact if and only
if it is closed, bounded, and equicontinuous.

Example 2.13 For each n € N, we define a function f, :[0,1] = R by

0 fo<z<2™,
2n+1(m _ 2—n) if 2—n S T S 3. 2—(n+1)7
fn(m) - 2n+1(27(n71) _ (E) if 3- 2*(n+1) <z< 27(7171)7 (213)

0 if 21 < ¢ < 1.
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Fig. 2.4 The sequence of bounded continuous functions defined in Example 2.13 is not equicon-
tinuous.

The first two functions are shown in Figure 2.4. Let F = {f, | n € N}. Then
[|falloo = 1 for all n > 1, so F is bounded, but ||fm — frl| = 1 for all m # n, so
the sequence (f,,) does not have any convergent subsequences, and the family F is
not precompact in C([0,1]). The closure F is a closed, bounded subset of C(K)
which is not compact. The family F is not equicontinuous because the graph of
fn becomes steeper as n gets larger. The same phenomenon occurs for the family
F = {sin(nnz) | n € N}.

Heuristically, a subset of an infinite-dimensional linear space is precompact if it is
“almost” contained in a bounded subset of a finite-dimensional subspace. Without
making this statement more precise at the moment (but see Theorem 9.17), we
illustrate it with the following example.

Example 2.14 Let F be the subset of C([0,1]) that consists of functions f of the
form

f(z) = Z an sin(nrz) with ananl <L
n=1

n=1

The series defining f converges uniformly, so f is an element of C([0,1]). The set
F is bounded in C(K), since for any f € F we have

oo oo
A<D lan] <> nlan| < 1.
n=1 n=1

By the intermediate value theorem, for any x < y € R there is a ¢ < £ < y with
sinx —siny = (cos€) (x — y).
Hence, for all z,y € R we have

[sing —siny| < |z —y|.
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Fig. 2.5 The graph of two continuous functions on [0, 1]: f(z) = x2, and g(z) = /. [ is Lipschitz
n [0,1], but g is not Lipschitz at the point 0. The ratio Af/Axz is bounded for arbitrarily small
Az everywhere in [0, 1]), but Ag/Ax is unbounded for small Az near z = 0.

Thus, every f € F satisfies

o o
F@) = f@)] < 3 lanl [sin(nmz) — sin(nry)| < S mnlan] |z — g < 7l — g
n=1 n=1
Therefore, given € > 0, we can pick § = €¢/m, and then |z — y| < ¢ implies |f(z) —
f(y)| < efor all f € F. From the Arzeld-Ascoli theorem, F is a precompact subset
of C([0,1]). For large N, the subset F is “almost” contained in the unit ball in the
finite-dimensional subspace spanned by {sin7z,sin2nz,...,sin Nwz}.

The previous example illustrates a useful sufficient condition for equicontinuity,
which we now describe. We begin by defining Lipschitz continuous functions.

Definition 2.15 A function f : X — R on a metric space X is Lipschitz continuous
on X if there is a constant C' > 0 such that

[f(z) — f(y)| < Cd(z,y) for all z,y € X. (2.14)

We will often abbreviate the term “Lipschitz continuous” to “Lipschitz.” Ev-
ery Lipschitz continuous function is uniformly continuous, but there are uniformly
continuous functions that are not Lipschitz.
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Example 2.16 As illustrated in Figure 2.5, the square function f(z) = 22 is

Lipschitz continuous on [0, 1], but the uniformly continuous square-root function
g(z) = v/z is not, because

i 19@) —9(0)] _
z—=0+ |z — 0|

If f: X — Ris a Lipschitz function, then we define the Lipschitz constant
Lip(f) of f by

() = sup L E) = fW)]
=

Equivalently, Lip(f) is the smallest constant C' that works in the Lipschitz condition
(2.14),

Lip(f) = inf {C'| |f(2) — £(y)| < Cd(, y) for all 2,y € X}.

Suppose that K is a compact metric space and M > 0. We define a subset s
of C(K) by

Fum = {f | f is Lipschitz on K and Lip(f) < M}. (2.15)
The set Fyr is equicontinuous, since if € > 0 and § = ¢/M, then
d(z,y) < d implies |f(z)— f(y)| <e forall f € Fp.

The set Fps is closed, since if (fy,) is a sequence in Fjs that converges uniformly to
fin C(K), then

. I F (€O KD
Lip(f) = oy dz,y)
_ i (@) = Fa()]
- p [nl—wo d(z,y) ]
. [fn(z) = fn(y)]
< | mp 150

< M.

Thus, the limit f belongs to Fas. The set Fjs is not bounded, since the constant
functions belong to Fas and their sup-norms are arbitrarily large. Consequently,
although F,, itself is not compact, the Arzelad-Ascoli theorem implies that every
closed, bounded subset of Fjs is compact, and every bounded subset of Fjs is
precompact.

Example 2.17 Suppose that xo is a point in a compact metric space K. Let

By ={f € Fum | f(xo) = 0}.
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Then Bjs is bounded because for every f € By we have

l£1l = sup |f(z) = f(z0)| < M sup |z — zo| < Mdiam K,
zeK zeK

where diam K is finite since K is compact, and hence bounded. The set Bjs is
closed, since if f,(zg) =0 and f, — f in C(K), then

f(zo) = lim fn(zo) = 0.
Therefore, the set By is a compact subset of C(K).

Lemma 2.18 Suppose that f : C — R is a continuously differentiable function on
an open, convex subset C' of R", and that the partial derivatives of f are bounded
on C. Then, for all z,y € C, we have

|f(z) = fy)| < Mllz -yl (2.16)
where || - || denotes the Euclidean norm and
M = sup [[Vf(2)]- (2.17)
zeC

Proof. Since C is convex, the point tz + (1 — t)y lies in C for all z,y € C and
0 <t < 1. The fundamental theorem of calculus and the chain rule imply that

f@-10) = [ Gftera-opd

1
= / Vfiz+ (1 -1t)y)- (z—y)dt, (2.18)
0
where
_(9f of
vi= (8.7:1""’63:”)
is the gradient of f with respect to x = (x1,...,z,). We take the absolute value of

equation (2.18), and estimate the resulting integral, to obtain
[f(z) = f(y)l < sup {[|[Vf (tz+ (1 —t)y) (I} |lz — yll.
0<t<1

The use of (2.17) in this equation gives (2.16). O

From Lemma 2.18, a continuously differentiable function with bounded partial
derivatives is Lipschitz. A Lipschitz continuous function need not be differentiable
everywhere, however, since its graph may have “corners.”

Example 2.19 The absolute value function f(z) = |z| is Lipschitz continuous,
with Lipschitz constant one, because

|F (@) = f@W) = ]| =yl | < |z —yl.
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The absolute value function is not differentiable at z = 0.

Lemma 2.18 implies that a family of continuously differentiable functions with
uniformly bounded derivatives is equicontinuous. If the family is also bounded, then
it is precompact. The idea that a uniform bound on suitable norms of the derivatives
of a family of functions implies that the family is precompact will reappear when
we study Sobolev spaces in Chapter 12.9.

Example 2.20 Let C'([0,1]) denote the space of all continuous functions f on
[0,1] with continuous derivative f’. For constants M > 0 and N > 0, we define the
subset F of C([0,1]) by

F={feC(0,1) | Ifll <M(If|I <N},

where || - || denotes the sup-norm. Then F is precompact in C(K). It is not closed,
however, because the uniform limit of continuously differentiable functions need not
be differentiable. Thus, F is not compact. Its closure in C([0,1]) is the compact
set

F={feC(0,1) | Ifll < M,Lip(f) < N}.

2.5 Ordinary differential equations

A differential equation is an equation that relates the values of a function and its
derivatives at each point. We distinguish between ordinary differential equations
(ODEs) for functions of a single variable, and partial differential equations (PDEs)
for functions of several variables. In this section, we discuss the existence and
uniqueness of solutions of ODEs.

To focus on the central ideas in the simplest setting, we consider a scalar, first
order ODE for a real-valued function u(t) of the form

i = f(t,u). (2.19)

In (2.19), we use u(t) to denote the derivative of u(t) with respect to ¢, and f :
R? — R is a given continuous function. We say that (2.19) is a linear ODE if
f(t,u) is a linear (strictly speaking, we should say “affine”) function of u of the
form f(t,u) = a(t)u + b(t). Otherwise, we say that (2.19) is a nonlinear ODE.

A solution of (2.19), defined in an open interval I C R, is a continuously differ-
entiable function u : I — R such that

w(t) = f(t,u(t)) forallt € I.

If the solution is defined on the whole of R, then we call it a global solution. If the
solution is defined only on a subinterval of R, then we call it a local solution.



52 Continuous Functions

We will refer to the independent variable ¢ in (2.19) as “time.” Equation (2.19)
determines the rate of change of the function u at each time in terms of the value of
u. We expect that if we know the value of u at some time, then the ODE determines
the values of u at nearby times, and by repetition of this process, we expect that
there is a unique solution of the initial value problem (IVP)

u = f(t,u), (2.20)
u(to) = uo-
Here, to is a given initial time, and ug is a given initial value. As the following

examples show, however, the question of the existence and uniqueness of solutions
(2.20) is not always as straightforward as this naive discussion might suggest.

Example 2.21 Consider the linear initial value problem,

u = au, (221)
U(O) = Uo,
where a € R is a constant. This initial value problem has a unique, global solution
u(t) = uge®. Equation (2.21) has a simple interpretation in terms of population
growth. It states that the growth rate @ of a population is proportional to the

population u. If the per capita growth rate &/u = a is positive, then the population
grows exponentially in time, as Malthus observed in 1798.

Example 2.22 Consider the nonlinear initial value problem,

0= u?, (2.22)
u(0) = uo.
The unique solution is

B 1 —Uot-

u(t)

This solution becomes arbitrarily large as t — 1/ug. For ug > 0, the initial value
problem in (2.22) has a local solution defined in the interval —oco < ¢t < 1/ug,
but it does not have a global solution. This phenomenon is called “blow-up,”
and is a fundamental difficulty in the study of nonlinear differential equations.
When interpreted as a population model, equation (2.22) describes the growth of a
population in which the per capita growth rate is equal to the population. Thus,
as the population increases the growth rate increases both because the population
is larger and because the per capita growth rate is larger. As a result, the solution
tends to infinity in finite time.
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Example 2.23 Consider the initial value problem

a=/lul, (2.23)

u(0) = 0.

The zero function u(t) = 0 is a global solution, but it is not the only one. The
following function also satisfies (2.23) for any a > 0,

() = 0 ift <a,
o= (t—a)?/4 ift>a.

In this example, the function f(u) = /|u| is a continuous function of w, but it is
not Lipschitz continuous at the initial value u = 0.

These examples show that the most we can hope for, if f is an arbitrary contin-
uous function, is the existence of a local solution of the initial value problem (2.20).
If f is smooth, the solution is unique, as we will see, but it may not exist globally.

For general f, we cannot prove the existence of a solution by giving an explicit
analytical formula for it, as we did in the simple examples above. Instead we use
a compactness argument, analogous to the one used in the proof of Theorem 1.68.
We construct a family {u. | 0 < € < 1} of functions that satisfy (2.20) in a suitable
approximate sense. Since the functions are approximate solutions of the ordinary
differential equation, their derivatives are uniformly bounded, and the Arzela-Ascoli
theorem implies that they form a precompact set. Consequently, there is a subse-
quence of approximate solutions that converges uniformly to a function u. We then
show that u is a solution of (2.20).

Theorem 2.24 Suppose that f(t,u) is a continuous function on R?. Then, for
every (tg,uo), there is an open interval I C R that contains 9, and a continuously
differentiable function u : I — R that satisfies the initial value problem (2.20).

Proof. We say that uc(t) is an e-approzimate solution of (2.20) in an interval I
containing tg if:

(a) ue(to) = uo;

(b) uc(t) is a continuous function of ¢ that is differentiable at all but finitely
many points of ;

(c) at every point t € I where 4,(t) exists, we have

|e (£) — f (£, ue(B))] < €.
To construct an e-approximate solution u., we first pick 77 > 0, and let
L= {t|lt—tol <Ti}.
We partition I; into 2N subintervals of length h, where T3 = Nh, and let
ty =to + kh for —-N <k<N.
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We denote the values of the approximate solution at the times t; by uc(tx) = ag.-
We define these values by the following finite difference approximation of the ODE,

w = f (tx,ax) ,

ag = Ug-

This discretization of (2.20) is called the forward Euler method. It is not an accurate
numerical method for the solution of (2.20), but its simplicity makes it convenient
for an existence proof.

Inside the subinterval t <t < txy1, we define u(t) to be the linear function of
t that takes the appropriate values at the endpoints. That is,

uf(t):ak +bk (t—tk) for tk Ststk—f—l;
where the parameters a; and by are defined recursively by

ag = uo, ap = ag—1 + bp_1h,
bO = f(t()auo)a bk = f(tk;ak)

Thus, u,(t) is a continuous, piecewise linear function of ¢ that is differentiable except
possibly at the points ¢t = ¢, and 4.(t) = b, for tx < t < tg41. For ¢, <t < tgy1,
we have

lie(t) — f(t,ue(®))| = |f (tr, ar) — f (£, ar + bi(t — tr)) |, (2.24)
|t—tk| < h, |ak+bk(t—tk) —ak| < |bk|h (2.25)

We choose an L > 0, and a T' < T3 such that the graph of every u, with |t —to| < T
is contained in the rectangle R C R? given by

R={(t,u) | [t —to| < T, |u—uo| < L}.

To do this, we consider the closed rectangle R; C R2?, centered at (to,uq), defined
by

Ry ={(t,u) | [t —to| <T1, |[u—uo| < L}.
We let
M =sup {|f(t,u)|| (t,u) € R1}, T = min (T1,L/M).

It follows that, for |t — to| < T, the slopes by, of the linear segments of u, are less
than or equal to M, and the graph of u. lies in the cone bounded by the lines
u—ug=M(t—ty) and u —ug = —M(t — to). Figure 2.6 shows why this is true.

Since R is compact, the function f is uniformly continuous on R. Therefore, for
every € > 0, there is a § > 0 such that

17 (s,u) = f(t,0)[ <€
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T

t

Fig. 2.6 The construction of the rectangle R used in the proof of Theorem 2.24.

for all (s,u), (t,v) € R such that |s —t| < § and |u — v| < . Using (2.24)—(2.25),
we see that u. is an e-approximate solution when h < é and Mh < 4.

Each u. is Lipschitz continuous, and its Lipschitz constant is bounded uniformly
by M, independently of e. We also have u.(ty) = ug for all e. From Example 2.17,
the set {u.} is precompact in C([to — T,to + T]). Hence there is a continuous
function v and a sequence (e,,) with €, — 0 as n — oo such that u., — v asn — oo
uniformly on [to — T, to + T

It remains to show that the limiting function u solves (2.20). Since u, is piecewise
linear, we have

t
w(t) = ue(t0)+/tou€(s)ds
t

t

= w0t [ Sluds)ds+ [l fsus) ds. (220)
to tO

Here, 1. is not necessarily defined at the points ¢, but this does not affect the value

of the integral. We set € = ¢, in (2.26), and let n — co. Using Exercise 2.2 to take

the limit, we find that

¢
u(t) =uo+ | f(s,u(s))ds. (2.27)

to
The fundamental theorem of calculus implies that the right hand side of (2.27) is

continuously differentiable. Therefore, the function u is also continuously differen-
tiable in |t — to| < T, and 4(t) = f (¢, u(?)). O
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More generally, the same proof applies if f is continuous only in some open set
D C R? which contains the initial point (¢, ug), provided we choose the rectangles
R; and R so that they are contained in D (see Figure 2.6).

This proof shows the existence of a local solution in some interval about the
initial time, but the solution need not be global. A solution has, however, a maximal
open interval of existence that contains ¢g.

As shown by Example 2.23, the continuity of f does not guarantee uniqueness,
but if f(¢,u) is Lipschitz continuous in u, then the solution is unique. The condition
that f is Lipschitz continuous is a mild one, and is met in nearly all applications,
where f is typically a smooth function. To prove this fact, we use the following
result, called Gronwall’s inequality.

Theorem 2.25 (Gronwall’s inequality) Suppose that w(t) > 0 and p(t) > 0

are continuous, real-valued functions defined on the interval 0 <t¢ < T and ug > 0
is a constant. If u satisfies the inequality

t
u(t) < ug +/ p(s)u(s) ds for t € [0,T], (2.28)
0
then
¢
u(t) < ugexp (/ o(s) ds) for t € [0,T].
0
In particular, if up = 0 then u(t) = 0.
Proof. Suppose first that ug > 0. Let
¢
U(t) =ug + / p(s)u(s) ds.
0
Then, since u(t) < U(t), we have that

U = pu < U, U(0) = up.

Since U(t) > 0, it follows that

d U
1 == .
aoeU=g sy
Hence
logU(t) < logug + / s) ds,
SO

u(t) < U(t) < ugexp ( / ) (2.29)
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If the inequality (2.28) holds for ug = 0, then it also holds for all ug > 0, so (2.29)
holds for all ug > 0. Taking the limit of (2.29) as ug — 0%, we conclude that
u(t) = 0, which proves the result when ug = 0. O

Theorem 2.26 Suppose that f(¢,u) is continuous in the rectangle
R={(t,u) [ |t —to| <T, |u—uo| <L},
and that
[ftu)| <M if (t,u) € R.
Let 6 = min(7T, L/M). If u(t) is any solution of (2.20), then
|u(t) —uo| < L when |t — o] < 4. (2.30)

Suppose, in addition, that f is a Lipschitz continuous function of u, uniformly in ¢,
meaning that there is a constant C' such that

|f(t,u) = f(t,v)] < Clu—| for all (¢,u) € R.

Then the solution of (2.20) is unique in the interval |t — t| < 4.

Proof. The result in (2.30) is intuitively obvious: if a solution u(t) stays inside
the interval |u(t) — uo| < L, then its derivative is bounded by M, so the solution
cannot escape the interval in less time than L/M. To avoid circularity in the proof,
we use a “continuous induction” argument. We consider the set D defined by

D={0<n<d]|u(t)—uo| <Lforall |t —to] <n}.

Then 0 € D, and if n € D, then ' € D for all 0 < n' <n. Thus, D is a nonempty
interval. Moreover, D is closed in [0, d] because u(t) is a continuous function of ¢.
If n € D and n < 6, then f (¢, u(t)) < M for [t — to| <7, so

|u(t) — up| < <Mn<Mé=L.

t f(s,u(s)) ds

Since we have strict inequality, and w is continuous, it follows that there is an € > 0
such that |u(t) —uo| < L when |t —t9| < n+e. Thus, D is open in [0, d], from which
we conclude that D = [0,4]. This proves the first part of the theorem.

To prove the uniqueness part, we use a common strategy: we derive an equation
for the difference of two solutions which shows that it is zero. Suppose that v and
v are solutions of (2.20) on a interval I that contains t3. Then subtraction and
integration of the ODEs satisfied by v and v implies that
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Taking the absolute value of this equation, and estimating the result, we find that
w = |u — v| satisfies the inequality

w(t) < ) |f (s, u(s)) = f (s,0(s))| ds. (2.31)

By the first part of the theorem, the graph of any solution remains in R for [t —tg| <
0. The Lipschitz continuity of f in R therefore implies that

|f (& u(®) — f (£0(8) | < Clu(t) —v(t)] = Cw(t).

The use of this inequality in (2.31) implies that w > 0 satisfies

w(t) <C tw(s)ds.

to
Therefore, from Gronwall’s inequality, we have w = 0, and u = v. O

We will see a second proof of existence and uniqueness of solutions of the initial
value problem for ODEs in the next chapter, as a consequence of the contraction
mapping theorem. The existence theorem above, based on compactness, is often
called the Peano existence theorem, while the theorem in the next chapter, based
on the contraction mapping theorem, is called the Picard existence theorem.

2.6 References

Most of the material in this chapter is also covered in Rudin [46] and Marsden and
Hoffman [37]. For an introduction to the theory of ordinary differential equations,
see Hirsch and Smale [21].

2.7 Exercises

Exercise 2.1 Define f :[0,1] — R by

T if z is irrational,
psin(1/q) if x = p/q, where p,q are relatively prime integers.

@) ={
Determine the set of points where f is continuous.

Exercise 2.2 Let f, € C([a,b]) be a sequence of functions converging uniformly
to a function f. Show that

n—oo

b b
lim fn(x) dx:/ f(z)dz.
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Give a counterexample to show that the pointwise convergence of continuous func-
tions f, to a continuous function f does not imply convergence of the corresponding
integrals.

Exercise 2.3 Suppose that f : G — R is a uniformly continuous function defined
on an open subset G of a metric space X. Prove that f has a unique extension to
a continuous function f : G — R defined on the closure G of G. Show that such an
extension need not exist if f is continuous but not uniformly continuous on G.

Exercise 2.4 Give a counter-example to show that f, — f in C([0,1]) and f,
continuously differentiable does not imply that f is continuously differentiable.

Exercise 2.5 Consider the space of continuously differentiable functions,
C"' ([a,b]) = {f : [a,b] = R| f, f'" are continuous},
with the C'-norm,

Ifll= sup |f(z)|+ sup |f'(z)]-
a<z<b a<lz<b

Prove that C' ([a,b]) is a Banach space.

Exercise 2.6 Show that the space C ([a,b]) equipped with the L'-norm || - ||; de-
fined by

b
11l = / (@) de,

is incomplete. Show that if f, — f with respect to the sup-norm || - ||, then
fn — f with respect to || - ||;. Give a counterexample to show that the converse
statement is false.

Exercise 2.7 Prove that the set of Lipschitz continuous functions on [0, 1] with
Lipschitz constant less than one and zero integral is compact in C([0, 1]).

Exercise 2.8 Prove that C([a,b]) is separable.

Exercise 2.9 Let w : [0,1] — R be a nonnegative, continuous function. For f €
C([0,1]), we define the weighted supremum norm by

Ifllw = sup {w(@)|f(z)[}.
0<z<1

If w(z) > 0 for 0 < z < 1, show that || - || is @ norm on C([0,1]). If w(z) > 0 for

0 <z <1, show that || - || is equivalent to the usual sup-norm, corresponding to
w = 1. (See Definition 5.21 for the definition of equivalent norms.) Show that the
norm || - ||, corresponding to w(z) = z is not equivalent to the usual sup-norm. Is

the space C([0,1]) equipped with the weighted norm || - ||, a Banach space?
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Exercise 2.10 Let Co(R™) be the closure of the space C.(R") of continuous, com-
pactly supported functions with respect to the uniform norm. Prove that Co(R™)
is the space of functions that vanish at infinity.

Exercise 2.11 Suppose f, € C([0,1]) is a monotone decreasing sequence that
converges pointwise to f € C([0,1]). Prove that f,, converges uniformly to f. This
result is called Dini’s monotone convergence theorem.

Exercise 2.12 Let {f, € C([0,1]) | n € N} be equicontinuous. If f, — f point-
wise, prove that f is continuous.

Exercise 2.13 Consider the scalar initial value problem,

u(t) = |u(®)|®,
u(0) = 0.

Show that the solution is unique if & > 1, but not if 0 < a < 1.

Exercise 2.14 Suppose that f(¢,u) is a continuous function f : R2 — R that is
globally Lipschitz with respect to u, meaning that there is a constant K such that

|[f(t,u) — f(t,v)] < K|u—v| for all t,u,v € R.
Also suppose that
M =sup {[f(t,uo)| | [t —to| <T}.
Prove that the solution u(#) of the initial value problem
w=f(t,u),  ulto)=uo
satisfies the estimate
|u(t) — uo| < MTeXT for [t —to| < T.
Explicitly check this estimate for the linear initial value problem

u= Ku, u(to) = uo-



Chapter 3

The Contraction Mapping Theorem

In this chapter we state and prove the contraction mapping theorem, which is one
of the simplest and most useful methods for the construction of solutions of linear
and nonlinear equations. We also present a number of applications of the theorem.

3.1 Contractions

Definition 3.1 Let (X,d) be a metric space. A mapping T : X — X is a con-
traction mapping, or contraction, if there exists a constant ¢, with 0 < ¢ < 1, such
that

d(T(x),T(y)) < cd(z,y) (3.1)

for all z,y € X.

Thus, a contraction maps points closer together. In particular, for every z € X,
and any r > 0, all points y in the ball B,.(z), are mapped into a ball Bs(Tx), with

Fig. 3.1 T is a contraction.

61
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s < r. This is illustrated in Figure 3.1. Sometimes a map satisfying (3.1) withc¢ =1
is also called a contraction, and then a map satisfying (3.1) with ¢ < 1 is called
a strict contraction. It follows from (3.1) that a contraction mapping is uniformly
continuous.

If T:X — X, then a point z € X such that

T(z)=x (3.2)

is called a fized point of T'. The contraction mapping theorem states that a strict
contraction on a complete metric space has a unique fixed point. The contraction
mapping theorem is only one example of what are more generally called fixed-point
theorems. There are fixed-point theorems for maps satisfying (3.1) with ¢ = 1,
and even for arbitrary continuous maps on certain metric spaces. For example,
the Schauder fized point theorem states that a continuous mapping on a convex,
compact subset of a Banach space has a fixed point. The proof is topological in
nature (see Kantorovich and Akilov [27]), and we will not discuss such fixed point
theorems in this book.

In general, the condition that c is strictly less than one is needed for the unique-
ness and the existence of a fixed point. For example, if X = {0,1} is the discrete
metric space with metric determined by d(0,1) = 1, then the map T defined by
T(0) =1, T(1) = 0 satisfies (3.1) with ¢ = 1, but T does not have any fixed points.
On the other hand, the identity map on any metric space satisfies (3.1) with ¢ =1,
and every point is a fixed point.

It is worth noting that (3.2), and hence its solutions, do not depend on the
metric d. Thus, if we can find any metric on X such that X is complete and T is a
contraction on X, then we obtain the existence and uniqueness of a fixed point. It
may happen that X is not complete in any of the metrics for which one can prove
that T is a contraction. This can be an indication that the solution of the fixed
point problem does not belong to X, but to a larger space, namely the completion
of X with respect to a suitable metric d.

Theorem 3.2 If T : X — X is a contraction mapping on a complete metric space
(X,d), then there is exactly one solution z € X of (3.2).

Proof. The proof is constructive, meaning that we will explicitly construct a
sequence converging to the fixed point. Let xg be any point in X. We define a
sequence (z,) in X by

Tnt1 =Tz, forn > 0.

To simplify the notation, we often omit the parentheses around the argument of a
map. We denote the nth iterate of T by T™, so that x, = T"x,.
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First, we show that (z,) is a Cauchy sequence. If n > m > 1, then from (3.1)
and the triangle inequality, we have

d(Tp,Tm) = d(T"zo, T™xp)

cmd(T"™ ™xg, o)

™ [d(T™ ™ mo, T ™ ag) + d(T™ ™ wo, T ™ *zg)
+ -+ d(Txo,0)]

5

IN IA

S

ck] d(x1,0)

cm
cm

IA

m
k=0

k=0
cm
< (1_0) d($17x0)7

ck] d(z1,x0)
which implies that (z,) is Cauchy. Since X is complete, (x,,) converges to a limit
z € X. The fact that the limit x is a fixed point of T follows from the continuity
of T

Tx=T lim z, = lim Tz, = lim z,4; = =.
n— 00 n— 00 Tn— 00

Finally, if 2 and y are two fixed points, then
0 <d(z,y) = d(Tz,Ty) < cd(z,y).

Since ¢ < 1, we have d(z,y) = 0, so £ = y and the fixed point is unique. O

3.2 Fixed points of dynamical systems

A dynamical system describes the evolution in time of the state of some system.
Dynamical systems arise as models in many different disciplines, including physics,
chemistry, engineering, biology, and economics. They also arise as an auxiliary tool
for solving other problems in mathematics, and the properties of dynamical systems
are of intrinsic mathematical interest.

A dynamical system is defined by a state space X, whose elements describe the
different states the system can be in, and a prescription that relates the state z; € X
at time ¢ to the state at a previous time. We call a dynamical system continuous
or discrete, depending on whether the time variable is continuous or discrete. For
a continuous dynamical system, the time ¢ belongs to an interval in R, and the
dynamics of the system is typically described by an ODE of the form

i = f(z), (3.3)
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where the dot denotes a time derivative, and f is a vector field on X. There is little
loss of generality in assuming this form of equation. For example, a second order,
nonautonomous ODE

i=g(ty,9)

may be written as a first order, autonomous system of the form (3.3) for the state
variable = (s,y,v), where s = ¢ and v = g, with

$=1, Y=, 19:9(&%”)-

For a discrete dynamical system, we may take time ¢ = n to be an integer, and the
dynamics is usually defined by a map T : X — X that relates the state z,41 at
time ¢t = n + 1 to the state z,, at time t = n,

Tn+1 = Txy. (3.4)

If T is not invertible, then the dynamics is defined only forwards in time, while if T
is invertible, then the dynamics is defined both backwards and forwards in time. A
fixed point of the map T correponds to an equilibrium state of the discrete dynamical
system. If the state space is a complete metric space and T is a contraction, then
the contraction mapping theorem implies that there is a unique equilibrium state,
and that the system approaches this state as time tends to infinity starting from
any initial state. In this case, we say that the fixed point is globally asymptotically
stable.

One of the simplest, and most famous, discrete dynamical systems is the logistic
equation of population dynamics,

Tyl = dpzy, (1 — ), (3.5)

where 0 < p < 1 is a parameter, and z,, € [0,1]. This equation is of the form (3.4)
where T : [0,1] — [0, 1] is defined by

Tz =4pz(l — ).

See Figure 3.2 for a plot of x — Tz, for three different values of . We may
interpret x, as the population of the nth generation of a reproducing species. The
linear equation 41 = 4ux, describes the exponential growth (if 4u > 1) or decay
(if 44 < 1) of a population with constant birth or death rate. The nonlinearity in
(3.5) provides a simple model for a species in which the effects of overcrowding lead
to a decline in the birth rate when the population increases.

The logistic equation shows that the iterates of even very simple nonlinear maps
can have amazingly complex behavior. Analyzing the full behavior of the logistic
map is beyond the scope of the elementary application of the contraction mapping
theorem we give here.

When 0 < p < 1/4, the point 0 is the only fixed point of T in [0,1], and T
is a contraction on [0, 1]. The proof of the contraction mapping theorem therefore
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Fig. 3.2 The logistic map for three different values of the parameter u. For g = 0.2, 0 is the only
fixed point and it is stable. For y = 0.5, 0 is an unstable fixed point and there is a nonzero, stable,
fixed point. For u = 1, the two fixed points are unstable and more complex (and more interesting)
asymptotic behavior of the dynamical system occurs.

implies that T"zq — 0 for an arbitrary initial population zg € [0, 1], meaning that
the population dies out. When 1/4 < p < 1, there is a second fixed point at
x = (4p — 1)/4u. The appearance of a new fixed point as the parameter p varies
is an example of a bifurcation of fixed points. As p increases further, there is an
infinite sequence of more complicated bifurcations, leading to chaotic dynamics for
pn>0.89....

As a second application of the contraction mapping theorem, we consider the
solution of an equation f(x) = 0. One way to obtain a solution is to recast the
equation in the form of a fixed point equation x = Tz, and then construct approx-
imations x,, starting from an initial guess ¢ by the iteration scheme

Tn4+1 = T.CL'n

In other words, we are attempting to find the solution as the time-asymptotic state
of an associated discrete dynamical system which has the solution as a stable fixed
point. Similar ideas apply in other contexts. For example, we may attempt to con-
struct the solution of an elliptic PDE as the time-asymptotic state of an associated
parabolic PDE.

There are many ways to rewrite an equation f(z) = 0 as a fixed point problem,
some of which will work better than others. Ideally, we would like to rewrite the
equation as a fixed point equation in which T is a contraction on the whole space,
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or at least a contraction on some set that contains the solution we seek.

To provide a simple illustration of these ideas, we prove the convergence of an
algorithm to compute square roots. If a > 0, then x = /a is the positive solution
of the equation

" —a=0.

We rewrite this equation as the fixed point problem

1(+a)
r=—-(xz+—).
2 x

The associated iteration scheme is then

1 + a
x ==\ —_—
n+1 2 n T, )

corresponding to a map T : (0, 00) — (0, 00) given by

Tz = % (a: + %) . (3.6)
Clearly, z = y/a is a fixed point of T'. Moreover, given an approximation z,, of 1/a,
the average of z,, and a/z, should be a better approximation provided that z,, is
not too small, so it is reasonable to expect that the sequence of approximations
obtained by iteration of the fixed point equation converges to v/a. We will prove
that this is indeed true by finding an interval on which 7' is a contraction with
respect to the usual absolute value metric on R.
First, let us see whether T' contracts at all. For z1,z2 > 0, we estimate that

1 a 1 a
[Tz —Tzs| = |z {z14+— ) — {22+ —
2 1 2 Z2
1 a
= -|1- — o).
2 ‘ HARID) |:L-1 3&'2|

It follows that T' contracts distances when 3ziz2 > a. To satisfy this condition, we
need to exclude arguments z that are too small. Therefore, we consider the action
of T on an interval of the form [b, 00) with b > 0. This is a complete metric space
because [b, >) is a closed subset of R and R is complete.

In order to make a good choice for b we first observe that

Tx=\/6+%z\/5 (3.7)

for all z > 0. Therefore, the restriction of T to [/a, >0) is well-defined, since

T ([Va,0)) C [Va,o0),

and T is a contraction on [/a,c0) with ¢ = 1/2. It follows that for any z¢ > +/a,
the sequence z, = T™xo converges to \/a as n — oo. Moreover, as shown in the
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proof of Theorem 3.2, the convergence is exponentially fast, with

|Tn.’170 — \/E| S |Tn."L'0 — Tm.’L'0|
< ¢t |T.730 - .Z‘0|
- 1—-c¢
< L i — Xg| -
- 9n—1 o

If 0 < g < +/a, then z; > y/a, and subsequent iterates remain in [\/a, ), so the
iterates converge for any starting guess zg € (0, 00).

Newton’s method for the solution of a nonlinear system of equations, discussed
in Section 13.5, can also be formulated as a fixed point iteration.

3.3 Integral equations

A linear Fredholm integral equation of the second kind for an unknown function
f :[a,b] = R is an equation of the form

b
f(z) - / k() (4) dy = (), (3.8)

where k : [a,b] X [a,b] — R and g : [a,b] = R are given functions. A Fredholm
integral equation of the first kind is an equation of the form

b
/ k()1 () dy = 9(2).

The integral equation (3.8) may be written as a fixed point equation T'f = f, where
the map T is defined by

b
T(2) = g(z) + / k() f(4) dy. (3.9)

Theorem 3.3 Suppose that k : [a,b] x [a,b] = R is a continuous function such
that

b
sup { / |k(x,y)|dy} <1, (3.10)
a<z<b a

and g : [a,b] = R is a continuous function. Then there is a unique continuous
function f : [a,b] — R that satisfies (3.8).

Proof. We prove this result by showing that, when (3.10) is satisfied, the map T
is a contraction on the normed space C([a, b]) with the uniform norm || - ||co-
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From Theorem 2.4, the space C([a, b]) is complete. Moreover, T is a contraction
since, for any f1, f2 € C([a,b]), we have

b
IThi-Thle = s | [ K@o)(h@) - ) dy
a<lz<b|Ja
b
< sw [ k@ w)l1fi0) - ) dy
alz<bJa
b
< Nfi - folloo sup { / |k<x,y)|dy}
a<lz<b a
< dlfi = folloos
where
b
c= sup /|k(:c,y)|dy < 1.
a<z<b a
The result then follows from the contraction mapping theorem. d

From the proof of the contraction mapping theorem, we can obtain the fixed
point f as a limit,

f= lim T"fo, (3.11)

for any fo € C([a,b]). It is interesting to reinterpret this limit as a series. We define
amap K : C([a,b]) = C([a,b]) by

b
Kf= / k() () dy.

The map K is called a Fredholm integral operator, and the function k& is called the
kernel of K. Equation (3.8) may be written as

(I-K)f=g, (3.12)

where [ is the identity map, meaning that If = f. The contraction mapping 7T is
given by T'f = g + K f, which implies that

T"fo = g+K(g+...+K(g+ Kfp))
= g+Kg+...+K"g+ K" f,.

Using this equation in (3.11), we find that

f=>_K"g.

n=0
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Since f = (I — K)~1g, we may write this equation formally as

(I-K)™!'= iK” (3.13)
n=0

This series is called the Neumann series. The use of the partial sums of this series
to approximate the inverse is called the Born approzimation. Explicitly, we have

(I+K+K*+..) f(z)
b b b
= f@) + / k(o) (v) dy + / / ke, 9)k(y, 2) [ (2) dydz + ...

The Neumann series resembles the geometric series,
(o ]
1-2)t= Zm" for |z| < 1.
n=0

In fact, (3.13) really is a geometric series that is absolutely convergent with respect
to a suitable operator norm when [|K|| < 1 (see Exercise 5.17). This explains why
we do not need a condition on g; equation (3.10) is a condition that ensures I — K
is invertible, and this only involves k.

3.4 Boundary value problems for differential equations

Consider a copper rod or pipe that is wrapped with imperfect insulation. We use
the temperature outside the rod as the zero point of our temperature scale. We
denote the spatial coordinate along the rod by z, nondimensionalized so that the
length of the rod is one, and time by ¢. The temperature u(z,t) of the rod then
satisfies the following linear PDE,

Ut = Uggy — Q(x)u7 (314)
where the subscripts denote partial derivatives,
ou _ 0%
o T o
The lateral heat loss is proportional to the coefficient function ¢(x) and the temper-
ature difference u between the rod and the outside. If the rod is perfectly insulated,
then ¢ = 0 and (3.14) is the one-dimensional heat or diffusion equation.

Equation (3.14) does not uniquely determine u, and it has to be supplemented
by an initial condition

Uy =

u(z,0) = ug(x) for0<z<1

that specifies the initial temperature ug(z) of the rod, and boundary conditions at
the ends of the rod. We suppose that the ends £ = 0 and x = 1 of the rod are kept
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at constant temperatures of Ty and 77, respectively. Then
u(0,t) = To, u(1,t) =Ty for all ¢ > 0.

As t — oo, the system “forgets” its initial state and approaches an equilibrium
state u = u(z), which satisfies the following boundary value problem (BVP) for an
ODE:

—u"(z) + g(x)u(z) =0, 0<z<l, (3.15)
w(0) =To, wu(l)="Ti. (3.16)
If ¢ is a constant function, then (3.15) is easy to solve explicitly; but if ¢(x) is not
constant, explicit integration is in general impossible. We will use the contraction
mapping theorem to show that there is a unique solution of this BVP when ¢ is not
too large.
First, we replace the nonhomogeneous boundary conditions (3.16) by the corre-
sponding homogeneous conditions. To do this, we write u as

u(x) = v(z) + up(x),

where v is a new unknown function and u, is a function that satisfies the nonho-
mogeneous boundary conditions. A convenient choice for u, is the linear function

up(:c) =T+ (T1 - To) xX. (317)

The function v then satisfies

—v" + q(z)v(z) = f(2), (3.18)
v(0) =0, (1) =0, (3.19)
where f = —qu,. The transfer of nonhomogeneous terms between the boundary

conditions and the differential equation is a common procedure in the analysis of
linear boundary value problems. The boundary value problem (3.18)—(3.19) is an
example of a Sturm-Liouville problem, which we will study in Chapter 9.8. We will
use the following proposition to reformulate this boundary value problem as a fixed
point problem for a Fredholm integral operator.

Proposition 3.4 Let f:[0,1] — R be a continuous function. The unique solution
v of the boundary value problem

" = f, (3.20)
v(0) =0, wv(1)=0, (3.21)

is given by
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where

[ x(l—-y), f0<z<y<l1,
9(@) ‘{ yl-2), f0<y<s<l. (3.22)

Proof. Integrating (3.20) twice, we obtain that

v(z) = —Aw/lyf(s)dsdy+01$+02,

where C; and Cs are two real constants to be determined later. Integration by parts
of the integral with respect to y in this equation gives

v = = [of s d] + [T+

1 x
- m/ f(y)dy+/0 yf(y)dy + Crz + Co.

We determine C; and Cj from (3.21), which implies that

1
Cr=- / yf@)dy,  Cy=0.
0

It follows that

x 1
v@) = [ v -2 dy+ [ 0= d,
which is what we had to prove. O

The function g(z,y) constructed in this proposition is called the Green’s function
of the differential operator A = —d?/dz? in (3.20) with the Dirichlet boundary
conditions (3.21). The inverse of the differential operator A is an integral operator
whose kernel is the Green’s function. We will study Green’s functions in greater
detail in Chapter 9.8.

Replacing f by —qu + f in Proposition 3.4, we may rewrite (3.18) as an integral
equation for v,

1 1
o@) == [ g newewds+ [ o@)iw)dy
0 0
This equation has the form
(I — K)v=h,

where the integral operator K and the right-hand side h are given by:

Kou(x)

1
—/0 9(z,y)q(y)v(y) dy,

he) = - / o, 9)a(w)up(y) dy. (3.23)
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Theorem 3.3 now implies the following result.

Theorem 3.5 If ¢ : [0,1] — R is continuous, and

1
sup { [ lotapawldn} <1 (3.21)
0<z<1 0

where g(z,y) is defined in (3.22), then the boundary value problem (3.15)—(3.16)
has a unique solution.

Using (3.22), we find the estimate

s { [ lote.nawlan} < Sl

0<z<1

Thus, there is a unique solution of (3.15)—(3.16) for any continuous g with ||g||cc <
8. Existence or uniqueness may break down when ||g||o is sufficiently large. For
example, if ¢ = —n272, where n = 1,2,3,..., then the BVP

—u" —n?rtu =0,
u(0) =0, u(1l) =0,

has the one-parameter family of solutions u = csinnwz, where ¢ is an arbitrary
constant, and no solution may exist in the case of nonzero boundary conditions.
Since 72 > 8, this result is consistent with Theorem 3.5.

The nonuniqueness breaks down only if ¢ is negative. This is not physically
realistic in the heat flow problem, where it would correspond to the flow of heat
from cold to hot, but the same equation arises in many other problems with negative
coefficient functions gq.

If () > 0in 0 < =z < 1, we may prove uniqueness by a simple maximum
principle argument. Suppose that —u" + ¢(z)u = 0 and u(0) = u(1) = 0. Since u is
continuous, it attains its maximum and minimum on the interval [0,1]. If u attains
its maximum at an interior point, then u” < 0 at that point, so v = v /¢ < 0.
Since u = 0 at the endpoints, we conclude that

max u(z) < 0.
0<z<1

Similarly, at an interior minimum, we have u"” > 0, so u > 0, and therefore

min u(z) > 0.

0<z<1
It follows that w = 0, so the solution of the boundary value problem is unique.
Generalizations of this maximum principle argument apply to scalar elliptic partial
differential equations, such as Laplace’s equation.
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3.5 Initial value problems for differential equations

The contraction mapping theorem may be used to prove the existence and unique-
ness of solutions of the initial value problem for ordinary differential equations. We
consider a first-order system of ODEs for a function u(t) that takes values in R”,

u(t) = f(t,u(t), (3.25)
U(to) = ug. (326)

The function f(t,u) also takes values in R”, and is assumed to be a continuous
function of ¢ and a Lipschitz continuous function of u on a suitable domain. The
initial value problem (3.25)—(3.26) can be reformulated as an integral equation,

u(t) = ug + t f(s,u(s)) ds. (3.27)

By the fundamental theorem of calculus, a continuous solution of (3.27) is a con-
tinuously differentiable solution of (3.25)—(3.26). Equation (3.27) may be written
as a fixed point equation

u=Tu (3.28)

for the map T defined by
¢
Tu(t) =uo+ [ f(s,u(s))ds. (3.29)
to

We want to find conditions which guarantee that T is a contraction on a suitable
space of continuous functions. The simplest such condition is given in the following
definition.

Definition 3.6 Suppose that f: I x R® — R", where I is an interval in R. We say
that f(t,u) is a globally Lipschitz continuous function of u uniformly in t if there is
a constant C' > 0 such that

| f(t,u) — f(t,0)|| < Cllu— for all u,v € R® and all t € I. (3.30)

Theorem 3.7 Suppose that f : I x R* — R", where [ is an interval in R and ¢tg is
a point in the interior of I. If f(¢,u), is a continuous function of (¢,u) and a globally
Lipschitz continuous function of u, uniformly in ¢, on I x R™, then then there is a
unique continuously differentiable function w : I — R™ that satisfies (3.25).

Proof. We will show that T is a contraction on the space of continuous functions
defined on a time interval to < t < tg + 9§, for sufficiently small §. Suppose that
u,v : [to, to + 6] = R™ are two continuous functions. Then, from (3.29) and (3.30),
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we estimate

[Tu—Tolle = sup [[Tu(t)—Tov(®)]l
to<t<to+d
t
= sup f(s,u(s)) — f(s,0(s)) ds
to<t<to+d to
t
< sup 17 (s,u(s)) — f(s,v(s))]| ds
to<t<to+d Jito
t
< sup Cllu(s) —v(s)l| ds

to<t<to+0 Jtq
< Cdllu = vl|oo-

It follows that if § < 1/C, then T is a contraction on C([to,to + ¢]). Therefore,
there is a unique solution w : [tg, o + 0] = R™. The argument holds for any ¢, € I,
and by covering I with overlapping intervals of length less than 1/C, we see that
(3.25) has a unique continuous solution defined on all of I. The same proof applies
for times tg — & < t < tg. O

We may have I = R in this theorem, in which case the solution exists globally.

Example 3.8 Linear ODEs with continuous coefficients have unique global solu-
tions. Since higher order ODEs may be reduced to first-order systems, it is sufficient
to consider a first-order linear system of the form

a(t) = A(tyu(t) + b(t),
U(O) = Uo,

where A : R — R®*" is a continuous matrix-valued function (with respect to any
matrix norm — see the discussion in Section 5.2 below) and b : R — R” is a
continuous vector-valued function. For any bounded interval I C R, there exists a
constant C such that

[[A()ul| < C|lull forallt € I and u € R™.
Therefore,
[A®)u — A(t)v]| < Cllu — vl],

for all u,v € R® and t € I, so the hypotheses of Theorem 3.7 are satisfied, and we
have a unique continuous solution on I. Since I is an arbitrary interval, we conclude
that there is a unique continuous solution for all ¢t € R.

The applications of Theorem 3.7 are not limited to linear ODEs.
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Example 3.9 Consider the nonlinear, scalar ODE given by

u(t) = va(t)? +u(t)?,

u(0) = o,
where @ : R — R is a continuous function. Here,
f(t,u) =va(t)? + u?.
This function is globally Lipschitz, with
|f(t,u) = f(t,v)] < |u— v for all t,u,v, € R,

since

|(a® +4?) = (a® +07)]

Va2 +u? + Va2 + 02
[ul + [v]

VvaZ +u? + a2 +12?

lu —v]|.

‘\/a2+u2—\/a2+fu2‘

IN

u— o]

IN

Theorem 3.7 implies that there is a unique global solution of this ODE.

The global Lipschitz condition (3.30) plays two roles in Theorem 3.7. First, it
ensures uniqueness, which may fail if f is only a continuous function of u. Second,
it implies that f does not grow faster than a linear function of u as ||u|| = oo. This
is what guarantees global existence. If f is a nonlinear function, such as f(u) = u?
in Example 2.22, that satisfies a local Lipschitz condition but not a global Lipschitz
condition, then “blow-up” may occur, so that the solution exists only locally.

The above proof may be modified to provide a local existence result.

Theorem 3.10 (Local existence for ODEs) Let f : I x Bg(ug) — R*, where
I={teR|[|t—t| <T}

is an interval in R, and

Br(uo) = {u € R* | [lu —uo|| < R}

is the closed ball of radius R > 0 centered at ug € R™. Suppose that f(t,u) is
continuous on I x Br(ug) and Lipschitz continuous with respect to u uniformly in
t. Let

M = sup [[f(t,u)]| < oo.
(t,u)€Ix Br(uo)

Then the initial value problem
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has a unique continuously differentiable local solution u(t), defined in the time
interval |t — to| < 6, where 0 = min (T, R/M).

Proof. We rewrite the initial value problem as a fixed point equation u = Tu,
where

Tu(t) = up + tf (s,u(s)) ds.

For 0 < n < & we define
X ={u:[to—n,to + 1] = Br(uo) | u is continuous},
where X is equipped with the sup-norm,

llulloo = sup [fu(®)]].
[t—to|<n
We will show that T maps X into X, and is a contraction when 7 is sufficiently
small.
First, if u € X, then

(| Tu(t) — uol| = < Mn<R.

tf (s,u(s)) ds

Hence Tu € X sothat T : X — X.
Second, we estimate

t
ITu~Tvl|looc = sup [f (5,u(s)) = f (s,v(s))] ds
[t—to|<n [ /to
< Onllu = ||,

where C is a Lipschitz constant for f. Hence if we choose = C/2 then T is a
contraction on X and it has a unique fixed point.

Since 1 depends only on the Lipschitz constant of f and on the distance R of
the initial data from the boundary of Bg(ug), repeated application of this result
gives a unique local solution defined for |t — o] < 4. O

A significant feature of this result is that if f(¢,u) is continuous for all ¢t € R,
then the existence time § only depends on the norm of u. Thus, the only way in
which the solution of an ODE can fail to exist, assuming that the vector field f is
Lipschitz continuous on any ball, is if ||u(t)|| becomes unbounded. There are many
functions that are bounded and continuous on an open interval which cannot be
extended continuously to R; for example, u(t) = sin(1/#) is bounded and continuous
on (—o0,0) but has no continuous extension to (—o0,0]. This kind of behavior
cannot happen for solutions of ODEs with continuous right-hand sides, because the
derivative of the solution cannot become large unless the solution itself becomes
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large. If we can prove that for every T' > 0 any local solution satisfies an a priori
estimate of the form

lu@| <R for [f <T,

then the local existence theorem implies that the local solution can be extended to
the interval (=T, T, and hence to a global solution.

Example 3.11 A gradient flow is defined by a system of ODEs of the form
u=-VV(u), (3.31)

where V : R® — R is a smooth real-valued function of u, and V denotes the gradient
with respect to u. The component form of this equation is

_ov
6‘u,~ )

u; =

Solutions of a gradient system flow “down hill” in the direction of decreasing V. It
follows from (3.31) and the chain rule that

V(u) =VV(u)-4=—||VV(u)|?* <0.
Thus, if Vo = V (u(0)), we have
Vut) <V fort>0

for any local solution. Therefore, if the set {u € R” | V(u) < Vu} is bounded (which
is the case, for example, if V(u) — oo as ||u]| = 00), then the solution of the initial
value problem for (3.31) exists for all ¢ > 0. The function V is an example of a
Liapounov function.

Most systems of ODEs cannot be written as a gradient system for any potential
V(u). If f is a smooth vector field on R™, then f = —VV if and only if its
components f; satisfy the integrability conditions that arise from the equality of
mixed partial derivatives of V,

ofi _ 9f;
an 6u, )

With a suitable definition of the gradient of functionals on an infinite-dimensional
space (see Chapter 12.13), a number of PDEs, such as the heat equation, can also
be interpreted as gradient flows.

Example 3.12 A Hamiltonian system of ODEs for ¢(t),p(t) € R" is a system of
the form

¢=VpH, p=—V¢H, (3.32)
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where H(q,p) is a given smooth function, H : R?" — R, called the Hamiltonian.
The chain rule implies that

H=V,H-¢+V,H -p=0,

so H is constant on solutions. If the level sets of H are bounded, then solutions of
(3.32) exist globally in time.

3.6 References

General references for this chapter are Simmons [49] and Marsden and Hoffman [37].
For more about the logistic map and chaotic dynamical systems, see Devaney [8],
Guckenheimer and Holmes [18], and Schroeder [50]. Hirsch and Smale [21] discusses
gradient flows.

3.7 Exercises
Exercise 3.1 Show that 7' : R — R defined by

T(z) = g +z—tan 1z

has no fixed point, and
|T(z) —T(y)| < |z —y| for all z,y € R.
Why doesn’t this example contradict the contraction mapping theorem?

Exercise 3.2 (a) Show that for any y > 0, the convergence of T"y to /x is
in fact faster than exponential. Start from (3.7) to obtain a good estimate
for [Ty — \/x|.

(b) Take y = 1 and = = 2. Find a good estimate of how large n needs to be
for T™1 and /2 to have identical first d digits. For example, how many
iterations of the map T are sufficient to compute the first 63 digits of /2?

Exercise 3.3 The secant method for solving an equation f(z) = 0, where f : R —
R, is a variant of Newton’s method. Starting with two initial points xg, z1, we
compute a sequence of iterates (z,) by:

Ty, — Ty
xnﬂ:xn_f(m")f(w’;—f?zwl " forn=1,2,3,....
n n—

Formulate and prove a convergence theorem for the secant method with f(x) =
2
e — 2.
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Exercise 3.4 If T satisfies (3.1) for ¢ < 1, show that we can estimate the distance
of the fixed point x from the initial point x¢ of the fixed point iteration by

1
d(z,x0) < I—_Cd(xl, Zg).

Exercise 3.5 An n X n matrix A is said to be diagonally dominant if for each row
the sum of the absolute values of the off-diagonal terms is less than the absolute
value of the diagonal term. We write A = D — L — U where D is diagonal, L is
lower triangular, and U is upper triangular. If A is diagonally dominant, show that

[ Llloc + IUlloe < [ Dlloo,

where the co-norm ||-||eo of & matrix is defined in (5.9). Use the contraction mapping
theorem to prove that if A is diagonally dominant, then A is invertible and that the
following iteration schemes converge to a solution of the equation Az = b:

Tpyr =D Y (L+U)z, +D 1, (3.33)
Zny1 =D - L) " Uz, +(D—-L)""b. (3.34)

What can you say about the rate of convergence?
Such iterative schemes provide an efficient way to compute numerical solutions

of large, sparse linear systems. The iteration (3.33) is called Jacobi’s method, and
(3.34) is called the Gauss-Seidel method.

Exercise 3.6 The following integral equation for f : [—a,a] — R arises in a model
of the motion of gas particles on a line:

1/ 1
f(ay)zl—}-;/_amf(y)dy for —a <z <a.

Prove that this equation has a unique bounded, continuous solution for every 0 <
a < 00. Prove that the solution is nonnegative. What can you say if a = 0o?

Exercise 3.7 Prove that there is a unique solution of the following nonlinear BVP
when the constant A is sufficiently small,

—u" + Asinu = f(z),
u(0) =0, u(1) =0.
Here, f : [0,1] — R is a given continuous function. Write out the first few iterates

of a uniformly convergent sequence of approximations, beginning with ug = 0.
HiNT. Reformulate the problem as a nonlinear integral equation.
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Chapter 4

Topological Spaces

In the previous chapters, we discussed the convergence of sequences, the continuity
of functions, and the compactness of sets. We expressed these properties in terms
of a metric or norm. Some types of convergence, such as the pointwise convergence
of real-valued functions defined on an interval, cannot be expressed in terms of a
metric on a function space. Topological spaces provide a general framework for
the study of convergence, continuity, and compactness. The fundamental structure
on a topological space is not a distance function, but a collection of open sets;
thinking directly in terms of open sets often leads to greater clarity as well as
greater generality.

4.1 Topological spaces

Definition 4.1 A topology on a nonempty set X is a collection of subsets of X,
called open sets, such that:

(a) the empty set @ and the set X are open;
(b) the union of an arbitrary collection of open sets is open;
(c) the intersection of a finite number of open sets is open.

A subset A of X is a closed set if and only if its complement, A° = X \ A, is open.

More formally, a collection T of subsets of X is a topology on X if:

(a) 0,X € T;
(b) if G € T for a € A, then |J,c 4 Ga € T;
(c) ifG; €T fori=1,2...,n,then N, G; € T.

We call the pair (X, T) a topological space; if T is clear from the context, then we
often refer to X as a topological space.

Example 4.2 Let X be a nonempty set. The collection {@), X}, consisting of the
empty set and the whole set, is a topology on X, called the trivial topology or

81
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oy o

Fig. 4.1 The Hausdorff property.

indiscrete topology. The power set P(X) of X, consisting of all subsets of X, is a
topology on X, called the discrete topology.

Example 4.3 Let (X,d) be a metric space. Then the set of all open sets defined
in Definition 1.36 is a topology on X, called the metric topology. For instance, a
subset G of R is open with respect to the standard, metric topology on R if and
only if for every x € G there is an open interval I such that z € I and I C G.

Example 4.4 Let (X, T) be a topological space and Y a subset of X. Then
S={HCY|H=GNY for some G € T}

is a topology on Y. The open sets in Y are the intersections of open sets in X with
Y. This topology is called the induced or relative topology of Y in X, and (Y,S)
is called a topological subspace of (X, 7). For instance, the interval [0,1/2) is an
open subset of [0, 1] with respect to the induced metric topology of [0,1] in R, since
[0,1/2) = (-1/2,1/2)N[0,1].

A set V C X is a neighborhood of a point z € X if there exists an openset G C V
with z € G. We do not require that V itself is open. A topology 7 on X is called
Hausdorff if every pair of distinct points =,y € X has a pair of nonintersecting
neighborhoods, meaning that there are neighborhoods V, of z and Vj, of y such
that V, NV, = 0 (see Figure 4.1). When the topology is clear, we often refer to X
as a Hausdorff space. Almost all the topological spaces encountered in analysis are
Hausdorff. For example, all metric topologies are Hausdorff. On the other hand, if
X has at least two elements, then the trivial topology on X is not Hausdorff.

We can express the notions of convergence, continuity, and compactness in terms
of open sets. Let X and Y be a topological spaces.

Definition 4.5 A sequence (z,) in X converges to a limit x € X if for every
neighborhood V' of z, there is a number N such that z,, € V for all n > N.

This definition says that the sequence eventually lies entirely in every neighbor-
hood of z.
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0 1P Q) 2nt

Fig. 4.2 The interval and the circle are not homeomorphic. There are arbitrarily close points on
the circle, P and @ in the figure, which have inverse images near the left and right end points of
the interval respectively. Hence, the inverse images are not close and the inverse map cannot be
continuous.

Definition 4.6 A function f : X — Y is continuous at x € X if for each neigh-
borhood W of f(z) there exists a neighborhood V of x such that f(V) C W. We
say that f is continuous on X if it is continuous at every x € X.

Theorem 4.7 Let (X,7) and (Y,S) be two topological spaces and f : X - Y.
Then f is continuous on X if and only if f~1(G) € T for every G € S.

Thus, a continuous function is defined by the property that the inverse image
of an open set is open. We leave the proof to Exercise 4.4.

Definition 4.8 A function f : X — Y between topological spaces X and Y is a
homeomorphism if it is a one-to-one, onto map and both f and f~! are continuous.
Two topological spaces X and Y are homeomorphic if there is a homeomorphism
f: X—=Y.

Homeomorphic spaces are indistinguishable as topological spaces. For example,
if f: X — Y is a homeomorphism, then G is open in X if and only if f(G) is open
in Y, and a sequence (z,) converges to z in X if and only if the sequence (f(zy))
converges to f(z) in Y.

A one-to-one, onto map f always has an inverse f~!, but f~! need not be
continuous even if f is.

Example 4.9 We define f : [0,27) — T by f(#) = ¢, where [0,27) C R with the
topology induced by the usual topology on R, and T C C is the unit circle with the
topology induced by the usual topology on C. Then, as illustrated in Figure 4.2, f
is continuous but f~! is not.

Definition 4.10 A subset K of a topological space X is compact if every open
cover of K contains a finite subcover.
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It follows from the definition that a subset K of X is compact in the topology
on X if and only if K is compact as a subset of itself with respect to the relative
topology of K in X. This contrasts with the fact that a set G C Y may be relatively
open in Y, yet not be open in X. For this reason, while we define the notion of
relatively open, we do not define the notion of relatively compact.

4.2 Bases of open sets

The collection of all open sets in a topological space is often huge and unwieldy.
The topological properties of metric spaces can be expressed entirely in terms of
open balls, which form a rather small subset of the open sets. In this section we
introduce subsets of a topological space that play a similar role to open balls in a
metric space.

Definition 4.11 A subset B of a topology 7 is a base for T if for every G € T there
is a collection of sets B, € B such that G = |J, Ba. A collection N of neighborhoods
of a point z € X is called a neighborhood base for z if for each neighborhood V' of
x there is a neighborhood W € N such that W C V. A topological space X is first
countable if every x € X has a countable neighborhood base, and second countable
if X has a countable base.

Example 4.12 The collection of all open intervals (a,b) with a,b € R is a base for
the standard topology on R. The collection of all open intervals (a,b) C R with
rational endpoints a,b € Q is a countable base for the standard topology on R.
Thus, the standard topology is second countable.

Example 4.13 Let X be a metric space and A a dense subspace of X. The set of
open balls By /,(x), with n > 1 and z € A is a base for the metric topology on X.
A metric space is first countable, and a separable metric space is second countable.

Example 4.14 If X is topological space with the discrete topology, then the col-
lection of open sets

B={{z} |z e X}

is a base. The discrete topology is first countable, and if X is countable, then it is
second countable.

It is often useful to define a topology in terms of a base.

Theorem 4.15 A collection of open sets B C 7T is a base for the topology 7 on a
set X if and only if B contains a neighborhood base for z for every z € X.

Proof. Suppose B is a base for 7. If N is a neighborhood of € X, then there is
an open set G € T such that x € G C N. Since B is a base, there are sets B, € B
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such that |J, Bo = G. Therefore, there is an « such that v € B, and B, C N. It
follows that B contains a neighborhood base for z.

Conversely, if a collection of open sets B contains a neighborhood base for every
x € X, then for every open set G € T and every x € G there exists B, € B such
that © € B, C G. Therefore, | J, B, = G, so B is a base for the topology. d

Example 4.16 Suppose that X is the space of all real-valued functions on the
interval [a, b]. We may identify a function f : [a,b] = R with a point Hze[a,b] f(x)
in R*? 5o X = RI*! is the [a, b]-fold Cartesian product of R. Let 2 = {z1,...,2,},
where z; € [a,b], and y = {y1,...,yn}, Where y; € R, be finite subsets of [a, b] and
R, respectively. For € > 0, we define a subset By , . of X by

Byye={fe€X ||f(z;)—yi| <efori=1,...,n}. (4.1)

The topology of pointwise convergence is the smallest topology on X that contains
the sets B, y . for all finite sets « C [a,b], y C R, and € > 0. We have f, — f with
respect to this topology if and only if f,(z) — f(x) for every z € [a,b]. If f € X
and y; = f(z;), then the sets B, , . form a neighborhood base for f € X. This
topology is not first countable.

The set B,y in (4.1) is called a cylinder set. It has a rectangular base

-6y +e)xy2—€6ya+e) X... X (Yp — €yn +e)

in the x1,%2,...,2, coordinates, and is unrestricted in the other coordinate di-
rections. More picturesquely, By 4 . is sometimes called a “slalom set,” because it
consists of all functions whose graphs pass through the “slalom gates” at x; with
radius € and center y;.

A base for the topology of pointwise convergence is given by all finite inter-
sections of sets of the form B, , .. In fact, it is sufficient to take the sets of the
form

(feX||f(z:)—yi| <efori=1,...,n} (4.2)

where n € N, {z1,...,z,} C [a,b], {y1,.--,yn} C R, and ¢; > 0. The sets of
functions in (4.2) with intervals of variable width €; > 0 generate the same topology
as the sets with intervals of a fixed width because By . with € = mine; > 0 is
contained inside the set in (4.2).

We say that a topological space (X, 7)) is metrizable if there is a metric on X
whose metric topology is 7. For a metrizable space, we can give sequential char-
acterizations of compact sets (Theorem 1.62), closed sets (Proposition 1.41), and
continuous functions (Proposition 1.34). These sequential characterizations may
not apply in a nonmetrizable topological space. There is, however, a generalization
of sequences, called nets, that can be used to express all of the above properties in
an analogous way [12]. We will not make use of nets in this book.
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For example, the closure A of a subset A of a topological space X is the smallest
closed set that contains A. If X is metrizable, then 4 is the set of limits of convergent
sequences whose terms are in A (see Section 1.5), but if X is a not metrizable, then
this procedure may fail. We call the set of limit points of sequences in A the
sequential closure of A and denote it by ZS. The sequential closure is a subset of
the closure, but it may be a strict subset, as illustrated by the following example.

Example 4.17 Consider the space of all functions f : [0,1] = R with the topology
of pointwise convergence. For each m,n > 1, we let

Fmn(z) = [cos(mlmz))*™.

We define functions f,, and f by the pointwise limits,

fn(z) = lim fm,n(x):{ 1 ifz=k/ml, k=0, . .,ml,

n—o00 0 otherwise,
. [ 1 ifzeQn]0,1],
f(=) = Tr}l—rgloo fm(@) = { 0 otherwise.

Let A = {fm,n | m,n >1}. Then these limits show that

—=5

f€ A fed .

It is possible to show that the pointwise limit of a sequence of continuous functions

on [0, 1] is continuous on a dense subset of [0,1]. Since f is nowhere continuous in

[0,1], it is not the pointwise limit of any subsequence of the continuous functions

fmn- Therefore, f € A but f ¢ A°. This example shows that the topology of
pointwise convergence on the real-valued functions on [0, 1] is not metrizable.

A linear space with a topology defined on it, which need not be derived from a
norm or metric, such that the operations of vector addition and scalar multiplication
are continuous is called a topological linear space, or a topological vector space. The
space of real-valued functions on a set with the topology of pointwise convergence
is an example of a topological linear space. Topological linear spaces, such as the
Schwartz space, also arise in connection with distribution theory (see Chapter 10.8).

4.3 Comparing topologies

Let 71, 72 be two topologies on the same space X. Then 7 is said to be finer or
stronger than Ty if 71 C T2, meaning that 72 has more open sets; we also say that
T1 is coarser or weaker than 7. If 77 is stronger than 75, then z,, — x with respect
to 71 implies that z,, — = with respect to 7. For example, the strongest topology
on any set is the discrete topology, and a sequence converges with respect to the
discrete topology if and only if it is eventually constant. The weakest topology
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on any set is the trivial topology, and every sequence converges with respect to
the trivial topology. It is possible that two topologies 71, T2 are not comparable,
meaning that 77 is neither finer nor coarser than 7.

Proposition 4.18 Let X and Y be two spaces, each with two topologies, 71, 72
and 81, S respectively. Suppose that f: (X,71) — (Y,S1) is a map from X to YV
that is continuous with respect to the indicated topologies.

(a) If 73 is finer than Ty, then f: (X, 72) — (Y,S1) is continuous.
(b) If S, is coarser than Sy, then f: (X, 71) — (Y,S2) is continuous.

Proof. These statements are a direct consequence of the general definition of
continuity in Definition 4.6. O

The identity map I : (X,7T) — (X,T), where I(z) = z, is a homeomorphism
when we use the same topology 7 on the domain and range. This is not true when
we use two different topologies on X. For example, the identity map from a set X
containing at least two elements equipped with the trivial topology to the set X
equipped with the discrete topology,

I:(X,{0,X}) = (X,P(X)),

is discontinuous at every point x € X. As the following theorems show, the identity
map is a useful tool for comparing topologies on a set.

Theorem 4.19 Let 7; and 73 be two topologies on X. Then the identity map
I:(X,T1) — (X,7Tz) is continuous if and only if 77 is finer than 75.

Proof. This is a direct consequence of Theorem 4.7. O

Corollary 4.20 The identity map I : (X,7;) = (X, 7Tz2) is a homeomorphism if
and only if 73 = 75.

Theorem 4.21 Let 71 and 73 be two topologies on X. Then the equality of Ty
and 7Tz is equivalent to the following condition: for all topological spaces (Y,S), a
function f : (X,71) — (Y,S) is continuous if and only if the function f : (X, 732) —
(Y,S8) is continuous.

Proof. 1If 71 = T3, then the condition about continuous functions f : X — Y is
trivial. Conversely, taking (V,S) = (X, 71) and (Y,S) = (X, T2), we see that the
condition implies that I : (X,71) — (X, 72) is a homeomorphism, so 7; = 7> from
Corollary 4.20. O

A topology is often defined by the specification of a neighborhood base at each
point. We therefore want to compare topologies in terms of their neighborhood
bases.
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Theorem 4.22 Let 7; and 75 be two topologies on X. Suppose that for each
z € X there are neighborhood bases A7 and N> of z for 71 and 7z, respectively,
such that for every V1 € N; there is a V5 € A with V5 C V4. Then 73 is finer than
Ti.

Proof. The hypothesis of the theorem implies that I : (X,73) — (X, 71) is con-
tinuous, so the result follows from Theorem 4.19. O

Corollary 4.23 Let 7; and 73 be two topologies on X. Then 71 = 7> if and only
if for each x € X there are neighborhood bases M; and My of z for 71 and T,
respectively, such that for every V3 € M there is a V5 € M» with Vo C V3, and
there are neighborhood bases N7 and N3 of x for 7; and 75, respectively, such that
for every Wa € Ny there is a Wy € N with Wy C Wo.

Different metrics, or norms, on a space X can lead to the same topology. For
example, this is certainly the case if d; and ds are two metrics on X such that
di(z,y) = 2ds(z,y) for all x,y € X. More generally, if two metrics lead to the same
set of convergent sequences, then all their topological properties are the same.

Theorem 4.24 Two metric topologies, defined by two metrics on the same space,
are equal if and only if they have the same collection of convergent sequences with
the same limits.

Proof. The proof is a direct application of Corollary 4.20 and the sequential
characterization of continuity on metric spaces. d

4.4 References

In this chapter, we have limited our discussion to the basic definitions of point set
topology. For more information, see Kelley [28] and Rudin [47].

4.5 Exercises

Exercise 4.1 Suppose that K is a compact subspace of a Hausdorff space. Prove
that K is closed. Show that this result need not be true if X is not Hausdorff.

Exercise 4.2 If A is a subset of a topological space, then the interior A° of A is
the union of all open sets contained in A, the closure A of A is the intersection of all
closed sets that contain A, and the boundary OA of A is defined by 0A = A A¢.
Show that a set is closed if and only if it contains its boundary, and open if and only
if it is disjoint from its boundary. What are the closure, interior, and boundary of
the Cantor set in R with its usual topology?
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Exercise 4.3 Let (X,d;) and (Y,dz) be metric spaces. Prove that the topolog-
ical definitions of convergence and continuity are equivalent to the metric space
definitions in Definition 1.12 and 1.26.

Exercise 4.4 Prove Theorem 4.7.

Exercise 4.5 A topological space is connected if it is not the disjoint union of two
open sets.

(a) What are the connected subsets of R?
(b) Show that X x Y is connected if X and Y are connected.

Exercise 4.6 Show that R is homeomorphic to (0, 1), but not to R2.
HINT. Show that R? remains connected when one point is removed. Note that

there are space filling curves, that is continuous, one-to-one, onto maps from R to
R2.
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Chapter 5

Banach Spaces

Many linear equations may be formulated in terms of a suitable linear operator
acting on a Banach space. In this chapter, we study Banach spaces and linear oper-
ators acting on Banach spaces in greater detail. We give the definition of a Banach
space and illustrate it with a number of examples. We show that a linear operator
is continuous if and only if it is bounded, define the norm of a bounded linear op-
erator, and study some properties of bounded linear operators. Unbounded linear
operators are also important in applications: for example, differential operators are
typically unbounded. We will study them in later chapters, in the simpler context
of Hilbert spaces.

5.1 Banach spaces

A normed linear space is a metric space with respect to the metric d derived from
its norm, where d(z,y) = ||z — y||-

Definition 5.1 A Banach space is a normed linear space that is a complete metric
space with respect to the metric derived from its norm.

The following examples illustrate the definition. We will study many of these
examples in greater detail later on, so we do not present proofs here.

Example 5.2 For 1 < p < oo, we define the p-norm on R" (or C*) by
(@1, @2, - - 20)llp = (|21 |7 + |22[P + ... + |2, |7) 7.
For p = oo, we define the co, or maximum, norm by
[[(z1,Z2,- .., 2n)|lco = max {|z1], |Z2|,---,|Zn]}-

Then R™ equipped with the p-norm is a finite-dimensional Banach space for 1 <
p < oo.

91
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Example 5.3 The space C([a,b]) of continuous, real-valued (or complex-valued)
functions on [a, b] with the sup-norm is a Banach space. More generally, the space
C(K) of continuous functions on a compact metric space K equipped with the
sup-norm is a Banach space.

Example 5.4 The space C*([a,b]) of k-times continuously differentiable functions
on [a, b] is not a Banach space with respect to the sup-norm || - || for k£ > 1, since
the uniform limit of continuously differentiable functions need not be differentiable.
We define the C*-norm by

I£llox = Nflloo + 11 lloo + - - + 11f P loo-

Then C*([a,b]) is a Banach space with respect to the C¥-norm. Convergence with
respect to the C*-norm is uniform convergence of functions and their first k& deriva-
tives.

Example 5.5 For 1 < p < oo, the sequence space ¢P(N) consists of all infinite
sequences ¢ = (z,)2,; such that

oo

Z |zn|P < oo,

n=1

) 1/p
llll, = (Z Iwnl”> :
n=1

For p = oo, the sequence space £°(N) consists of all bounded sequences, with

with the p-norm,

lz]|oo = sup{|za| | n =1,2,...}.

Then ¢P(N) is an infinite-dimensional Banach space for 1 < p < co. The sequence

space ¢P(Z) of bi-infinite sequences z = (2,)%L _, is defined in an analogous way.

Example 5.6 Suppose that 1 < p < 00, and [a, b] is an interval in R. We denote
by LP ([a,b]) the set of Lebesgue measurable functions f : [a,b] = R (or C) such
that

/ (@) do < s,

where the integral is a Lebesgue integral, and we identify functions that differ on a
set of measure zero (see Chapter 11.14). We define the LP-norm of f by

b 1/p
171l = (/ If(m)l”dw> -
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For p = oo, the space L* ([a,b]) consists of the Lebesgue measurable functions
f :]a,b] = R (or C) that are essentially bounded on [a,b], meaning that f is
bounded on a subset of [a,b] whose complement has measure zero. The norm on
L™ ([a,b]) is the essential supremum

[|flloc = inf{M | |f(z)| < M a.e.in [a,b]}.

More generally, if 2 is a measurable subset of R, which could be equal to R™ itself,
then LP(€2) is the set of Lebesgue measurable functions f : = R (or C) whose
pth power is Lebesgue integrable, with the norm

i1 = ([ o da:)l/p.

We identify functions that differ on a set of measure zero. For p = oo, the space
L>(9) is the space of essentially bounded Lebesgue measurable functions on
with the essential supremum as the norm. The spaces LP(f2) are Banach spaces for
1<p< 0.

Example 5.7 The Sobolev spaces, W*P, consist of functions whose derivatives
satisfy an integrability condition. If (a,b) is an open interval in R, then we define
WkP ((a,b)) to be the space of functions f : (a,b) — R (or C) whose derivatives of
order less than or equal to k belong to L? ((a,b)), with the norm

1/p

f(j)(x)‘p dr

k b
I llwwr =
wer = |2 /

The derivatives ) are defined in a weak, or distributional, sense as we explain
later on. More generally, if € is an open subset of R”, then W*?(Q) is the set of
functions whose partial derivatives of order less than or equal to k belong to LP(2).
Sobolev spaces are Banach spaces. We will give more detailed definitions of these
spaces, and state some of their main properties, in Chapter 11.14.

A closed linear subspace of a Banach space is a Banach space, since a closed
subset of a complete space is complete. Infinite-dimensional subspaces need not
be closed, however. For example, infinite-dimensional Banach spaces have proper
dense subspaces, something which is difficult to visualize from our intuition of finite-
dimensional spaces.

Example 5.8 The space of polynomial functions is a linear subspace of C ([0, 1]),
since a linear combination of polynomials is a polynomial. It is not closed, and
Theorem 2.9 implies that it is dense in C ([0, 1]). The set {f € C ([0,1]) | f(0) = 0}
is a closed linear subspace of C (]0,1]), and is a Banach space equipped with the
sup-norm.
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Example 5.9 The set £.(N) of all sequences of the form (z1,zs,...,z,,0,0,...)
whose terms vanish from some point on is an infinite-dimensional linear subspace
of £P(N) for any 1 < p < oo. The subspace £.(N) is not closed, so it is not a Banach
space. It is dense in /P(N) for 1 < p < 0. Its closure in £*°(N) is the space co(N)
of sequences that converge to zero.

A Hamel basis, or algebraic basis, of a linear space is a maximal linearly in-
dependent set of vectors. Each element of a linear space may be expressed as a
unique finite linear combination of elements in a Hamel basis. Every linear space
has a Hamel basis, and any linearly independent set of vectors may be extended
to a Hamel basis by the repeated addition of linearly independent vectors to the
set until none are left (a procedure which is formalized by the axiom of choice,
or Zorn’s lemma, in the case of infinite-dimensional spaces). A Hamel basis of an
infinite-dimensional space is frequently very large. In a normed space, we have a
notion of convergence, and we may therefore consider various types of topological
bases in which infinite sums are allowed.

Definition 5.10 Let X be a separable Banach space. A sequence (z,,) is a Schaud-
er basis of X if for every x € X there is a unique sequence of scalars (c,) such that

T=3 00 Cnlp.

The concept of a Schauder basis is not as straightforward as it may appear.
The Banach spaces that arise in applications typically have Schauder bases, but
Enflo showed in 1973 that there exist separable Banach spaces that do not have
any Schauder bases. As we will see, this problem does not arise in Hilbert spaces,
which always have an orthonormal basis.

Example 5.11 A Schauder basis (f,),-, of C([0,1]) may be constructed from
“tent” functions. For n = 0,1, we define

For 2¥—1 < n < 2% where k > 1, we define

2k [z — (27%(2n - 2) - 1)] if z € I,
fal@)=q 1=2"[z—(27%@2n—-1)-1)] ifze€Jy,,
0 otherwise,
where
I, = [27%2n-2)-1,27%2n-1)-1),
Jo = [27F@en-1)-1,27%@2n) -1).

The graphs of these functions form a sequence of “tents” of height one and width
27F+1 that sweep across the interval [0,1]. If f € C([0,1]), then we may compute
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the coeflicients ¢, is the expansion
oo
F@) = cafulx)
n=0

by equating the values of f and the series at the points * = 27 %m for k € N
and m = 0,1,...,2%. The uniform continuity of f implies that the resulting series
converges uniformly to f.

5.2 Bounded linear maps

A linear map or linear operator T between real (or complex) linear spaces X, Y is
a function T : X — Y such that

T Az + py) = ATz + uTy forall \,p € R (or C) and z,y € X.

A linear map T : X — X is called a linear transformation of X, or a linear operator
on X. f T: X — Y is one-to-one and onto, then we say that T is nonsingular or
invertible, and define the inverse map T-! : Y — X by T~'y = z if and only if
Tx =y, so that TT—! = I, T-'T = I. The linearity of T implies the linearity of
T

If X, Y are normed spaces, then we can define the notion of a bounded linear
map. As we will see, the boundedness of a linear map is equivalent to its continuity.

Definition 5.12 Let X and Y be two normed linear spaces. We denote both the
X and Y norms by || - ||. A linear map T : X — Y is bounded if there is a constant
M > 0 such that

[|Tz|| < M||z|| for all z € X. (5.1)

If no such constant exists, then we say that T is unbounded. f T : X — Y is a
bounded linear map, then we define the operator norm or uniform norm ||T|| of T

by
[|T|| = inf{M | ||Tz|| < M||z|| for all z € X}. (5.2)
We denote the set of all linear maps T : X — Y by L(X,Y), and the set of all
bounded linear maps T : X — Y by B(X,Y). When the domain and range spaces
are the same, we write £(X, X) = £(X) and B(X, X) = B(X).
Equivalent expressions for ||T|| are:
Tl
IT|| =sup 5—=; [T = Sup, ITzll; |IT||= sup [Tz (5.3)
Z|>

s#0 ||zl ll]|=1

We also use the notation R™*™ or C™*" to denote the space of linear maps from
R™ to R™, or C" to C™, respectively.
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Example 5.13 The linear map A : R — R defined by Az = ax, where a € R, is
bounded, and has norm ||A|| = |al.

Example 5.14 The identity map I : X — X is bounded on any normed space X,
and has norm one. If a map has norm zero, then it is the zero map 0z = 0.

Linear maps on infinite-dimensional normed spaces need not be bounded.

Example 5.15 Let X = C*([0,1]) consist of the smooth functions on [0,1] that
have continuous derivatives of all orders, equipped with the maximum norm. The
space X is a normed space, but it is not a Banach space, since it is incomplete.
The differentiation operator Du = ' is an unbounded linear map D : X — X. For
example, the function u(z) = e*? is an eigenfunction of D for any A € R, meaning
that Du = Au. Thus ||Dul|/||u]| = |A\| may be arbitrarily large. The unboundedness
of differential operators is a fundamental difficulty in their study.

Suppose that A : X — Y is a linear map between finite-dimensional real linear
spaces X, Y with dim X = n, dimY = m. We choose bases {e1,ez,...,ep} of X
and {f1, f2,.--, fm} of Y. Then

m
Aes) =) aijfi,
i=1
for a suitable m x n matrix (a;;) with real entries. We expand 2 € X as
n
= inei, (5.4)
i=1

where z; € R is the ith component of z. It follows from the linearity of A that

n m
A E zje; :E Yifis
j=1 =1
where
n
Yi = E ;5.
j=1

Thus, given a choice of bases for X, Y we may represent A as a linear map A :
R™ — R™ with matrix A = (a;;), where

)1 a11 a2 -+ Qin Z1
Y2 a21 Q22 - G2pn T2

Ym Aml Am2 - Amn Tn
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We will often use the same notation A to denote a linear map on a finite-dimensional
space and its associated matrix, but it is important not to confuse the geometrical
notion of a linear map with the matrix of numbers that represents it.

Each pair of norms on R” and R™ induces a corresponding operator, or matrix,
norm on A. We first consider the Euclidean norm, or 2-norm, ||A||2 of A. The
Euclidean norm of a vector z is given by ||z||2 = (z, ), where (z,y) = #7y. From
(5.3), we may compute the Euclidean norm of A by maximizing the function || Az||3
on the unit sphere ||z||2 = 1. The maximizer z is a critical point of the function

f(z,A) = (Az, Az) — A {(z,z) — 1},

where )\ is a Lagrange multiplier. Computing V f and setting it equal to zero, we
find that = satisfies

AT Az = Az (5.6)

Hence, z is an eigenvector of the matrix AT A and ) is an eigenvalue. The matrix
AT A is an n x n symmetric matrix, with real, nonnegative eigenvalues. At an
eigenvector z of AT A that satisfies (5.6), normalized so that ||z||; = 1, we have
(Az,Ar) = X. Thus, the maximum value of ||Az||? on the unit sphere is the
maximum eigenvalue of AT A.

We define the spectral radius r(B) of a matrix B to be the maximum absolute
value of its eigenvalues. It follows that the Euclidean norm of A is given by

4]l2 = /7 (AT A). (5.7)

In the case of linear maps A : C* — C™ on finite dimensional complex linear
spaces, equation (5.7) holds with AT A replaced by A*A, where A* is the Hermitian
conjugate of A. Proposition 9.7 gives a formula for the spectral radius of a bounded
operator in terms of the norms of its powers.

To compute the maximum norm of A, we observe from (5.5) that

lyil < laallzi] + |ai||z2] + .. + |ain||za]
< (laal +lai| + - .. +ain|) [|2]|co-

Taking the maximum of this equation with respect to ¢ and comparing the result
with the definition of the operator norm, we conclude that

l[Allo < max (lai|+ |ai|+ ...+ |ain]) -
1<i<m

Conversely, suppose that the maximum on the right-hand side of this equation is
attained at ¢ = 9. Let = be the vector with components z; = sgn a;,;, where sgn
is the sign function,

1 ifz >0,

sgnz = 0 ifz=0, (5.8)
-1 ifz <0.
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Then, if A is nonzero, we have |||/ = 1, and
|4zl = |ai01| + |ai02| +..oF |ai0n|'
Since ||Al|co > ||AZ||c0, We obtain that

|A]|co > r<naX (|a,1| + |a,2| + ...+ |ain|) .

Therefore, we have equality, and the maximum norm of A is given by the maximum
row sum,

||A||Oo_ max. Z|a”| . (5.9)

A similar argument shows that the sum norm of A is given by the maximum column
sum

Al = max {Z\am}

For 1 < p < 00, one can show (se Kato [26]) that the p-matrix norm satisfies
1 _
141l < 141714l .

There are norms on the space B(R",R™) = R™*"of m X n matrices that are not
associated with any vector norms on R” and R™. An example is the Hilbert-Schmidt
norm

1/2

1AL = Y03 Jayf?

i=1 j=1

Next, we give some examples of linear operators on infinite-dimensional spaces.

Example 5.16 Let X = ¢>°(N) be the space of bounded sequences {(z1,2,...)}
with the norm

(@1, 2, )lloo = sup |24
ieN

A linear map A : X — X is represented by an infinite matrix (a;;) where

oo
)i = E aij ;-
=1

In order for this sum to converge for any x € £*°(N), we require that

00
Z |a,-j| <
Jj=1

s3]
i,j=1>
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for each i € N, and in order for Az to belong to £*°(N), we require that

o0
sup Zlaij| < 0.

ieN | 75

Then A is a bounded linear operator on £*°(N), and its norm is the maximum row
sum,

oo
[Alleo = sup$ > |as|
1EN j=1

Example 5.17 Let X = C([0,1]) with the maximum norm, and
k:[0,1]x[0,1] » R

be a continuous function. We define the linear Fredholm integral operator K : X —
X by

Kf(z) = / k(. 9) £ (y) dy.

Then K is bounded and

1
11 = g { [ kGl dv}.

This expression is the “continuous” analog of the maximum row sum for the co-norm
of a matrix.

For linear maps, boundedness is equivalent to continuity.
Theorem 5.18 A linear map is bounded if and only if it is continuous.

Proof. First, suppose that T : X — Y is bounded. Then, for all z,y € X, we
have

ITz =Tyl = IT(z —y)ll < Mllz —yl|,

where M is a constant for which (5.1) holds. Therefore, we can take § = ¢/M in
the definition of continuity, and T is continuous.

Second, suppose that T' is continuous at 0. Since T is linear, we have T'(0) = 0.
Choosing € = 1 in the definition of continuity, we conclude that there is a § > 0
such that ||Tz|| < 1 whenever ||z|| < §. For any z € X, with x # 0, we define Z by

T
T=0-—.
[l
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Then ||Z|| < 0, so ||TZ|| < 1. It follows from the linearity of T' that
]l
el = ST < Mol

where M =1/6. Thus T is bounded. O

The proof shows that if a linear map is continuous at zero, then it is continuous
at every point. A nonlinear map may be bounded but discontinuous, or continuous
at zero but discontinuous at other points.

The following theorem, sometimes called the BLT theorem for “bounded linear
transformation” has many applications in defining and studying linear maps.

Theorem 5.19 (Bounded linear transformation) Let X be a normed linear
space and Y a Banach space. If M is a dense linear subspace of X and

T:-MCX=>Y

is a bounded linear map, then there is a unique bounded linear map T : X — YV
such that Tz = Tz for all z € M, and ||T| = ||T||.

Proof. For every x € X, there is a sequence (z,) in M that converges to z. We
define

Tz = lim Tz,.
n—o0

This limit exists because (Tz,) is Cauchy, since T is bounded and (z,) Cauchy,
and Y is complete. We claim that the value of the limit does not depend on the
sequence in M that is used to approximate z. Suppose that (z,) and (z!,) are any
two sequences in M that converge to x. Then

1z = 2ol < Nz — 2| + [l — 27, I,
and, taking the limit of this equation as n — 0o, we see that
li —z || =0.
Tim 2, — o)l =0
It follows that

| Txy, — Tzl || < |T|| ||zn — x| = 0 as n — 0o.

Hence, (T'z,) and (Tz!,)) converge to the same limit.

The map T is an extension of T', meaning that Tx = Tz, for all € M, because
if € M, we can use the constant sequence with z,, = z for all n to define Tz. The
linearity of T follows from the linearity of 7T

The fact that T is bounded follows from the inequality

[Tl = Y [Tmall < Jim 171 ) = 171 ]

It also follows that |T'|| < ||T||. Since Tz = Tz for z € M, we have ||T|| = ||T||.
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Finally, we show that T is the unique bounded linear map from X to Y that
coincides with 7" on M. Suppose that T is another such map, and let = be any
point in X, We choose a sequence (z,,) in M that converges to z. Then, using the
continuity of 7~“, the fact that T is an extension of T, and the definition of T, we see
that

Tz = lim fa:n = lim Tz, =Tz.
n—0o00 n—0o0 O

We can use linear maps to define various notions of equivalence between normed
linear spaces.

Definition 5.20 Two linear spaces X, Y are linearly isomorphic if there is a one-
to-one, onto linear map 7' : X — Y. If X and Y are normed linear spaces and
T, T~ are bounded linear maps, then X and Y are topologically isomorphic. If
T also preserves norms, meaning that ||[Tz|| = ||z|| for all z € X, then X, Y are
isometrically isomorphic.

When we say that two normed linear spaces are “isomorphic” we will usually
mean that they are topologically isomorphic. We are often interested in the case
when we have two different norms defined on the same space, and we would like to
know if the norms define the same topologies.

Definition 5.21 Let X be a linear space. Two norms || - || and || - ||2 on X are
called equivalent if there are constants ¢ > 0 and C > 0 such that

cllzllr < |zl < Cllz||1 for all z € X. (5.10)

Theorem 5.22 Two norms on a linear space generate the same topology if and
only if they are equivalent.

Proof. Let | - |y and || - ||2 be two norms on a linear space X. We consider the
identity map

(X0 M) = G l2))-

From Corollary 4.20, the topologies generated by the two norms are the same if and
only if I and I~! are continuous. Since I is linear, it is continuous if and only if it
is bounded. The boundedness of the identity map and its inverse is equivalent to
the existence of constants ¢ and C such that (5.10) holds. O

Geometrically, two norms are equivalent if the unit ball of either one of the
norms is contained in a ball of finite radius of the other norm.

We end this section by stating, without proof, a fundamental fact concerning
linear operators on Banach spaces.

Theorem 5.23 (Open mapping) Suppose that T : X — Y is a one-to-one, onto
bounded linear map between Banach spaces X, Y. Then 7! : Y — X is bounded.
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This theorem states that the existence of the inverse of a continuous linear map
between Banach spaces implies its continuity. Contrast this result with Example 4.9.

5.3 The kernel and range of a linear map

The kernel and range are two important linear subspaces associated with a linear
map.

Definition 5.24 Let T : X — Y be a linear map between linear spaces X, Y. The
null space or kernel of T, denoted by ker T', is the subset of X defined by

kerT ={z € X | T2 =0}.
The range of T, denoted by ran T, is the subset of Y defined by

ranT = {y € Y | there exists z € X such that Tz = y}.

The word “kernel” is also used in a completely different sense to refer to the
kernel of an integral operator. A map T : X — Y is one-to-one if and only if
kerT = {0}, and it is onto if and only if ranT =Y.

Theorem 5.25 Suppose that 7' : X — Y is a linear map between linear spaces X,
Y. The kernel of T is a linear subspace of X, and the range of T is a linear subspace
of Y. If X and Y are normed linear spaces and T is bounded, then the kernel of T’
is a closed linear subspace.

Proof. 1If z1,22 € kerT and A1, 2 € R (or C), then the linearity of T' implies
that

T()\l.Z'l =+ /\2.’E2) =MTz1 + Tz = 0,

SO A1x1 + A2xo € ker T'. Therefore, ker T is a linear subspace. If y1,y2 € ranT, then
there are 1,22 € X such that Tx; = y; and Txy = y2. Hence

T(Az1 + Aox2) = M Tz + XTze = Aiyr + Aayo,

S0 A\1y1 + A2ys € ranT. Therefore, ranT is a linear subspace.

Now suppose that X and Y are normed spaces and T is bounded. If (x,) is a
sequence of elements in ker 7' with z,, — = in X, then the continuity of 7" implies
that

Te=T ( lim mn) = lim Tz, =0,

n—oo n—oo

so x € ker T, and ker T is closed. d

The nullity of T is the dimension of the kernel of T', and the rank of T is the
dimension of the range of T. We now consider some examples.
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Example 5.26 The right shift operator S on £>°(N) is defined by
S(z1,z2,23,...) = (0,21, 22,...),

and the left shift operator T' by
T(x1,22,23,...) = (T2, T3,Z4,...).

These maps have norm one. Their matrices are the infinite-dimensional Jordan
blocks,
010
0 01
, [Tl=10 0 o
The kernel of S is {0} and the range of S is the subspace

ranS = {(0, z2,13,...) € £°(N)}.

The range of T is the whole space £°°(N), and the kernel of T is the one-dimensional
subspace

kerT = {(.’13'1,0,0,...) |.’L’1 S ]R} .

The operator S is one-to-one but not onto, and 7' is onto but not one-to-one. This
cannot happen for linear maps T : X — X on a finite-dimensional space X, such
as X = R". In that case, ker T = {0} if and only if ranT = X.

Example 5.27 An integral operator K : C([0,1]) — C([0,1])
1
Kf(z) = / k(z,y)f(y) dy
0
is said to be degenerate if k(z,y) is a finite sum of separated terms of the form
n
i=1
where ¢;,1; : [0,1] = R are continuous functions. We may assume without loss of
generality that {¢1,...,¢n} and {¢1,...,9,} are linearly independent. The range

of K is the finite-dimensional subspace spanned by {¢1,¢2,..., s}, and the kernel
of K is the subspace of functions f € C([0,1]) such that

1
/0 F@Wi(y)dy =0 fori=1,...,n.

Both the range and kernel are closed linear subspaces of C([0, 1]).
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Example 5.28 Let X = C([0,1]) with the maximum norm. We define the integral
operator K : X — X by

Kf(z) = / " ) dy. (5.11)

An integral operator like this one, with a variable range of integration, is called a
Volterra integral operator. Then K is bounded, with ||K|| < 1, since

T 1
1A s / 1F )] dy < / F@)ldy < £

In fact, ||K|| = 1, since K(1) = z and ||z|]| = ||1||. The range of K is the set
of continuously differentiable functions on [0,1] that vanish at £ = 0. This is a
linear subspace of C([0,1]) but it is not closed. The lack of closure of the range
of K is due to the “smoothing” effect of K, which maps continuous functions to
differentiable functions. The problem of inverting integral operators with similar
properties arises in a number of inverse problems, where one wants to reconstruct
a source distribution from remotely sensed data. Such problems are ill-posed and
require special treatment.

Example 5.29 Consider the operator T'= I + K on C([0,1]), where K is defined
in (5.11), which is a perturbation of the identity operator by K. The range of T
is the whole space C([0,1]), and is therefore closed. To prove this statement, we
observe that g = T f if and only if

f@+ [ 10)dy = g(o)
Writing F(z) = [ f(y) dy, we have F' = f and
F'+F=g, F(0)=0.
The solution of this initial value problem is
F(z) = /Oz e Vg (y) dy.
Differentiating this expression with respect to z, we find that f is given by
f@) = (@)~ [ e g0)dy
Thus, the operator T' = I + K is invertible on C([0, 1]) and
(I+K)'=I-1L,

where L is the Volterra integral operator

Lg(z) = /0z e~ g(y) dy.
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The following result provides a useful way to show that an operator T has closed
range. It states that T has closed range if one can estimate the norm of the solution
z of the equation Tz = y in terms of the norm of the right-hand side y. In that
case, it is often possible to deduce the existence of solutions (see Theorem 8.18).

Proposition 5.30 Let 7' : X — Y be a bounded linear map between Banach
spaces X, Y. The following statements are equivalent:

(a) there is a constant ¢ > 0 such that
clz]| < ||Tz|| for all z € X

(b) T has closed range, and the only solution of the equation Tz = 0 is z = 0.

Proof. First, suppose that T satisfies (a). Then Tz = 0 implies that ||z|| = 0, so
z = 0. To show that ranT is closed, suppose that (y,) is a convergent sequence in
ranT, with y, — y € Y. Then there is a sequence (z,) in X such that Tz, = y,.
The sequence (x,) is Cauchy, since (y,,) is Cauchy and

1 1
[#n = 2mll < 2T (@0 = zm)ll = —llyn — yumll-

Hence, since X is complete, we have z,, = x for some z € X. Since T is bounded,
we have
Tx = lim Tz, = lim y, =y,
n—o0 n—o00
soy €ranT, and ranT is closed.

Conversely, suppose that T satisfies (b). Since ranT is closed, it is a Banach
space. Since T : X — Y is one-to-one, the operator T : X — ranT is a one-to-
one onto map between Banach spaces. The open mapping theorem, Theorem 5.23,
implies that 7! : ranT — X is bounded, and hence that there is a constant C' > 0
such that

1T~ "y|| < Cllyll for all y € ranT.

Setting y = T'z, we see that c||z|| < ||Tz|| for all z € X, where c=1/C. O

Example 5.31 Consider the Volterra integral operator K : C([0,1]) = C([0,1])
defined in (5.11). Then

sinnnmx

xz
K [cosnmz] = / cosnmy dy =
0 nm

We have || cosnrz|| = 1 for every n € N, but ||K [cosnnz] || = 0 as n — oo. Thus,
it is not possible to estimate ||f|| in terms of ||K f||, consistent with the fact that
the range of K is not closed.
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5.4 Finite-dimensional Banach spaces

In this section, we prove that every finite-dimensional (real or complex) normed lin-
ear space is a Banach space, that every linear operator on a finite-dimensional space
is continuous, and that all norms on a finite-dimensional space are equivalent. None
of these statements is true for infinite-dimensional linear spaces. As a result, topo-
logical considerations can often be neglected when dealing with finite-dimensional
spaces, but they are of crucial importance when dealing with infinite-dimensional
spaces.

We begin by proving that the components of a vector with respect to any basis
of a finite-dimensional space can be bounded by the norm of the vector.

Lemma 5.32 Let X be a finite-dimensional normed linear space with norm || - ||,
and {ej,ey,...,e,} any basis of X. There are constants m > 0 and M > 0 such
that if z = Y"1 | w;e;, then

n n
mS il < llzll < MY Jail. (5.12)
=1 =1

Proof. By the homogeneity of the norm, it suffices to prove (5.12) for x € X such
that 7, |z;| = 1. The “cube”

C = {(ml,...,mn) eR” Z|$,| =1}

i=1

is a closed, bounded subset of R™, and is therefore compact by the Heine-Borel
theorem. We define a function f: C — X by

n
f((xla"'axn))zzxiei-
i=1
For (x1,...,2,) € R® and (y1,...,yn) € R®, we have

If (@1, 2n)) = (v, ya))ll < Z |z — yilllesll,

so f is continuous. Therefore, since || - || : X — R is continuous, the map

(@155 n) = 1f (@155 20)) |l

is continuous. Theorem 1.68 implies that ||f|| is bounded on C and attains its
infimum and supremum. Denoting the minimum by m > 0 and the maximum by
M > m, we obtain (5.12). Let (Z1,...,%,) be a point in C' where || f|| attains its
minimum, meaning that

|Z1e1 + ... + Tnen|| =m.
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The linear independence of the basis vectors {ey,...,e,} implies that m # 0, so
m > 0. a

This result is not true in an infinite-dimensional space because, if a basis consists
of vectors that become “almost” parallel, then the cancellation in linear combina-
tions of basis vectors may lead to a vector having large components but small norm.

Theorem 5.33 Every finite-dimensional normed linear space is a Banach space.

Proof. Suppose that (x)72; is a Cauchy sequence in a finite-dimensional normed
linear space X. Let {e1,...,en} be a basis of X. We expand zj, as

n
Tp = E T k€,
=1

where z; ;, € R For 1 < i < n, we consider the real sequence of ith components,
(zi k)5, Equation (5.12) implies that

1
25,5 = zil < —llej =z,
0 (z4,k)7>, is Cauchy. Since R is complete, there is a y; € R, such that
lim Tik = Yi-
k—o0

We define y € X by

k
y= Zyz’ei-
i=1
Then, from (5.12),

n
lzk = yll < MY ik —yil lleill,

i=1
and hence z — y as k — oo. Thus, every Cauchy sequence in X converges, and X
is complete. d

Since a complete space is closed, we have the following corollary.

Corollary 5.34 Every finite-dimensional linear subspace of a normed linear space
is closed.

In Section 5.2, we proved explicitly the boundedness of linear maps on finite-
dimensional linear spaces with respect to certain norms. In fact, linear maps on
finite-dimensional spaces are always bounded.

Theorem 5.35 Every linear operator on a finite-dimensional linear space is bound-
ed.
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Proof. Suppose that A: X — Y is a linear map and X is finite dimensional. Let
{e1,...,en} be abasisof X. If 2 = Y"1 | x;e; € X, then (5.12) implies that

n n
1
| Az|| < Zl |z || Aes|| < lrgz.asxn{IlAez'II}_Z1 s < — lrgz.asxn{llAeill} ll|l,
1= =
so A is bounded. O

Finally, we show that although there are many different norms on a finite-
dimensional linear space they all lead to the same topology and the same notion of
convergence. This fact follows from Theorem 5.22 and the next result.

Theorem 5.36 Any two norms on a finite-dimensional space are equivalent.

Proof. Let ||- |1 and || - ||2 be two norms on a finite-dimensional space X. We
choose a basis {e1, €2, ...,en} of X. Then Lemma 5.32 implies that there are strictly
positive constants mq, ms, My, M> such that if z = )7 | z;e;, then

n n
my Yy |zl <llzlly < MiY il
i=1 i=1

n n
ma Y |zl < lalla < Mz Y i -
=1 i=1

Equation (5.10) then follows with ¢ = mo/M; and C = M /m;. O

5.5 Convergence of bounded operators

The set B(X,Y) of bounded linear maps from a normed linear space X to a normed
linear space Y is a linear space with respect to the natural pointwise definitions of
vector addition and scalar multiplication:

(S+T)z =Sz + Tz, (AD)z = A\(T'z).

It is straightforward to check that the operator norm in Definition 5.12,

T
1T = sup 1220
z#0 ||$||

defines a norm on B(X,Y), so that B(X,Y") is a normed linear space.
The composition of two linear maps is linear, and the following theorem states
that the composition of two bounded linear maps is bounded.

Theorem 5.37 Let X, Y, and Z be normed linear spaces. If T € B(X,Y) and
S e B(Y,Z), then ST € B(X, Z), and

ISTI < [ISIHIT- (5.13)
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Proof. For all x € X we have

1ST|| < [[SIITl| < [ISIHIT]|{|]- O

For example, if T € B(X), then T" € B(X) and ||T"|| < ||T||™. It may well
happen that we have strict inequality in (5.13).

Example 5.38 Consider the linear maps A, B on R? with matrices

A0 0 0
=(00) 7=(03)
These matrices have the Euclidean (or sum, or maximum) norms ||A|| = |A| and
1B|l = |ul, but ||AB[| = 0.

A linear space with a product defined on it is called an algebra. The composition
of maps defines a product on the space B(X) of bounded linear maps on X into itself,
so B(X) is an algebra. The algebra is associative, meaning that (RS)T = R(ST),
but is not commutative, since in general ST is not equal to T'S. If S,T € B(X), we
define the commutator [S,T] € B(X) of S and T by

[S,T] = ST — TS.

If ST =TS, or equivalently if [S,T] = 0, then we say that S and T commute.
The convergence of operators in B(X,Y") with respect to the operator norm is
called uniform convergence.

Definition 5.39 If (T,,) is a sequence of operators in B(X,Y") and
lim |7, —-T| =0
n—oo

for some T' € B(X,Y), then we say that T,, converges uniformly to T, or that T,
converges to T' in the uniform, or operator, topology on B(X,Y).

Example 5.40 Let X = C([0,1]) equipped with the supremum norm. For k,(z,y)
is a real-valued continuous function on [0,1] x [0,1], we define K,, € B(X) by

1
Knf(@) = [ kale,)f(0)dy. (5.14)
0
Then K,, — 0 uniformly as n — oo if
1
K| = max {/ |kn(a:,y)|dy} 50 asn— oo (5.15)
z€[0,1] 0

An example of functions k,, satisfying (5.15) is k(z,y) = zy™.

A basic fact about a space of bounded linear operators that take values in a
Banach space is that it is itself a Banach space.
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Theorem 5.41 If X is a normed linear space and Y is a Banach space, then
B(X,Y) is a Banach space with respect to the operator norm.

Proof. We have to prove that B(X,Y) is complete. Let (7},) be a Cauchy se-
quence in B(X,Y). For each z € X, we have

”an - men < ||Tn - Tm” ||$||a

which shows that (T,x) is a Cauchy sequence in Y. Since Y is complete, there is
a y € Y such that T,z — y. It is straightforward to check that Tz = y defines a
linear map 7' : X — Y. We show that 7" is bounded. For any € > 0, let N, be such
that ||T, — Tl < €/2 for all n,m > N,. Take n > N,. Then for each z € X, there
is an m(x) > N, such that ||Tp, )7 — Tx|| < €/2. If ||z]| = 1, we have

|Thz — Tx|| < [|[Thz — Ty zl| + | Tin(zyr — Tx|| < e (5.16)
It follows that if n > N, then
T[] < [|Tnz|| + [| Tz — Tl < | Tall + €

for all z with ||z]] = 1, so T is bounded. Finally, from (5.16) it follows that
lim, || — T|| = 0. Hence, T;, — T in the uniform norm. O

A particularly important class of bounded operators is the class of compact
operators.

Definition 5.42 A linear operator T': X — Y is compact if T'(B) is a precompact
subset of Y for every bounded subset B of X.

An equivalent formulation is that T is compact if and only if every bounded
sequence (z,) in X has a subsequence (z,, ) such that (Tz,,) converges in Y. We
do not require that the range of T is closed, so T'(B) need not be compact even if B
is a closed bounded set. We leave the proof of the following properties of compact
operators as an exercise.

Proposition 5.43 (a) A compact operator is bounded.
(b) A linear combination of compact operators is compact.
(c) The composition of a compact operator with a bounded operator, in either
order, is compact.
(d) The uniform limit of a sequence of compact operators is compact.
(e) An operator with finite-dimensional range is compact.

It follows from parts (a)—(c) of this proposition that the space K(X,Y") of com-
pact linear operators from X to Y is a closed linear subspace of B(X,Y"). Part (d)
implies that (X)) is a two-sided ideal of B(X), meaning that if K € K(X), then
AK € K(X) and KA € K(X) for all A € B(X).
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From parts (c)—(d), an operator that is the uniform limit of operators with finite
rank, that is with finite-dimensional range, is compact. The converse is also true for
compact operators on many Banach spaces, including all Hilbert spaces, although
there exist separable Banach spaces on which some compact operators cannot be
approximated by finite-rank operators. As a result, compact operators on infinite-
dimensional spaces behave in many respects like operators on finite-dimensional
spaces. We will discuss compact operators on a Hilbert space in greater detail in
Chapter 8.8.

Another type of convergence of linear maps is called strong convergence.

Definition 5.44 A sequence (7,) in B(X,Y) converges strongly if

lim Thz=Tx for every z € X.
n—oo
Thus, strong convergence of linear maps is convergence of their pointwise values

with respect to the norm on X. The terminology here is a little inconsistent: strong
and norm convergence mean the same thing for vectors in a Banach space, but
different things for operators on a Banach space. The associated strong topology
on B(X,Y) is distinct from the uniform norm topology whenever X is infinite-
dimensional, and is not derived from a norm. We leave the proof of the following
theorem as an exercise.

Theorem 5.45 If T, — T uniformly, then T,, — T strongly.

The following examples show that strong convergence does not imply uniform
convergence.

Example 5.46 Let X = ¢2(N), and define the projection P, : X — X by

P (x1,%2, s Ty Ty 15, Trng2, - --) = (L1, T2, - - -, Tp, 0,0,...)

Then ||P, — Py,|| = 1 for n # m, so (P,) does not converge uniformly. Nevertheless,
if z € £2(N) is any fixed vector, we have P,z — x as n — oo. Thus, P, — I
strongly.

Example 5.47 Let X = C([0,1]), and consider the sequence of continuous linear
functionals K,, : X — R, given by

1
K,.f :/ sin(nrz) f(x) dz.
0
If p is a polynomial, then an integration by parts implies that

Knp _ p(O) — COS(TL’iT)p(]-) + i /1 COS(’I’LTF.’L') pl(x) de.
0

nm nm
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Hence, K,p - 0 as n — oo. If f € C(]0,1]), then by Theorem 2.9 for any € > 0
there is a polynomial p such that ||f — p|| < €/2, and there is an N such that
|K,p| < €/2 for n > N. Since ||K,|| <1 for all n, it follows that

|Kn f| < [[Enlllf = pll + [ Knp| <€

when n > N. Thus, K,f — 0 as n = oo for every f € C([0,1]). This result is a
special case of the Riemann-Lebesgue lemma, which we prove in Theorem 11.34. On
the other hand, if f, = sin(nnz), then ||f,|| = 1 and ||K, fn|| = 1/2, which implies
that || K,|| > 1/2. (In fact, ||K,|| = 2/7 for each n.) Hence, K,, — 0 strongly, but
not uniformly.

A third type of convergence of operators, weak convergence, may be defined
using the notion of weak convergence in a Banach space, given in Definition 5.59
below. We say that T, converges weakly to T in B(X,Y) if the pointwise values
T,z converge weakly to Tz in Y. We will not consider the weak convergence of
operators in this book.

We end this section with two applications of operator convergence. First we
define the exponential of an operator, and use it to solve a linear evolution equation.
If A: X — X is a bounded linear operator on a Banach space X, then, by analogy
with the power series expansion of e?, we define

1 1 1
A 2 3 n
e —I+A+—2!A +—3!A +...+—!A + ... (5.17)

A comparison with the convergent real series
M = 14 LA+ AR + AR + .+ Al +
n 2! 3! ol Y

implies that the series on the right hand side of (5.17) is absolutely convergent in
B(X), and hence norm convergent. It also follows that

o] < 4

If A and B commute, then multiplication and rearrangement of the series for the
exponentials implies that

€A6B = €A+B .

The solution of the initial value problem for the linear, scalar ODE z; = az with
x(0) = z¢ is given by z(t) = zoe®. This result generalizes to a linear system,

zy = Az, z(0) = xg, (5.18)

where z : R — X, with X a Banach space, and 4 : X — X is a bounded linear
operator on X. The solution of (5.18) is given by

z(t) = et?ay.
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This is a solution because

d
EetA — AetA,
where the derivative is given by the uniformly convergent limit,
A(t+h) _ otA
Dopa _ gy (0
dt h—0 h
Ah _
= ¢ lim (e I)
h—0
oo
- A tA 1 A"H
ehwzmﬂy
n=0
= Aeth.

An important application of this result is to linear systems of ODEs when z(t) €
R™ and A is an n X n matrix, but it also applies to linear equations on infinite-
dimensional spaces.

Example 5.48 Suppose that k : [0,1] x [0,1] — R is a continuous function, and
K : C([0,1]) — C([0,1]) is the integral operator

Ku@r:A k(z, y)u(y) dy.

The solution of the initial value problem

1
m@m+mmm=/k@mwmm% u(z,0) = uo (@),
0
with u(-, ) € C([0,1]), is u = e(K=ADiyq.

The one parameter family of operators T'(t) = e'4 is called the flow of the
evolution equation (5.18). The operator T'(t) maps the solution at time 0 to the
solution at time ¢. We leave the proof of the following properties of the flow as an
exercise.

Theorem 5.49 If A : X — X is a bounded linear operator and T'(t) = e'4 for
t € R, then:

(a) T(0)=1;
(b) T(s)T'(t) =T (s+t) for s,t € R;
(¢) T(t) — I uniformly as ¢t — 0.

A family of bounded linear operators {T'(t) | t € R} that satisfies the proper-
ties (a)—(c) in this theorem is called a one-parameter uniformly continuous group.
Properties (a)—(b) imply that the operators form a commutative group under com-
position, while (c) states that 7' : R — B(X) is continuous with respect to the
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uniform, or norm, topology on B(X) at ¢t = 0. The group property implies that T
is uniformly continuous on R, meaning that ||T(t) — T'(to)|| — 0 as t — to for any
to € R.

Any one-parameter uniformly continuous group of operators can be written as
T(t) = e* for a suitable operator A, called the generator of the group. The
generator A may recovered from the operators T'(t) by

A=y (PO1), 519

t—0

Many linear partial differential equations can be written as evolution equations of
the form (5.18) in which A is an unbounded operator. Under suitable conditions
on A, there exist solution operators T'(t), which may be defined only for ¢ > 0, and
which are strongly continuous functions of ¢, rather than uniformly continuous. The
solution operators are then said to form a Cy-semigroup. For an example, see the
discussion of the heat equation in Section 7.3.

As a second application of operator convergence, we consider the convergence of
approximation schemes. Suppose we want to solve an equation of the form

Au =, (5.20)

where A : X — Y is a nonsingular linear operator between Banach spaces and
f €Y is given. Suppose we can approximate (5.20) by an equation

Acue = £, (5.21)

whose solution u. can be computed more easily. We assume that A, : X —» Y
is a nonsingular linear operator with a bounded inverse. We call the family of
equations (5.21) an approximation scheme for (5.20). For instance, if (5.20) is a
differential equation, then (5.21) may be obtained by a finite difference or finite
element approximation, where € is a grid spacing. One complication is that a
numerical approximation A, may act on a different space X, than the space X.
For simplicity, we suppose that the approximations A, may be defined on the same
space as A. The primary requirement of an approximation scheme is that it is
convergent.

Definition 5.50 The approximation scheme (5.21) is convergent to (5.20) if ue — u
as € = 0 whenever f. — f.

We make precise the idea that A, approximates A in the following definition of
consistency.

Definition 5.51 The approximation scheme (5.21) is consistent with (5.20) if A;v —
Av as e = 0 for each v € X.
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In other words, the approximation scheme is consistent if A, converges strongly
to A as € — 0. Consistency on its own is not sufficient to guarantee convergence.
We also need a second property called stability.

Definition 5.52 The approximation scheme (5.21) is stable if there is a constant
M, independent of €, such that

A7 < M.

Consistency relates the operators A, to A, while stability is a property of the
approximate operators A, alone. The Lax equivalence theorem states that an ap-
proximation scheme is convergent if and only if it is consistent and stable. Stability
plays a crucial role in convergence, because it prevents the amplification of errors
in the approximate solutions as € — 0.

Theorem 5.53 (Lax equivalence) An approximation scheme is convergent if and
only if it is consistent and stable.

Proof. 1If Au= f and A.u. = f., then
u—ue=A7" (Au—Au+ f - f.).

Taking the norm of this equation, using the definition of the operator norm, and
the triangle inequality, we find that

llw = uell < AT (| Acu = Aul| + (| f = fell) - (5.22)
If the scheme is stable, then
llu —uel| < M ([[Acu — Aull + [|f = fell),

and if the scheme is consistent, then A.u — Au as € — 0. It follows that u, — v if
fe = f, and the scheme is convergent.

Conversely, if the approximation scheme is not convergent, then there are f. € Y
such that (f.) converges to f as € = 0 but (u) does not converge to u. Equation
(5.22) then implies that either ||AZ!|| is unbounded as € — 0, so the scheme is
unstable, or A.u does not converge to Au, so the scheme is inconsistent. a

An analogous result holds for linear evolution equations of the form (5.18) (see
Strikwerder [52], for example). There is, however, no general criterion for the
convergence of approximation schemes for nonlinear equations.

5.6 Dual spaces

The dual space of a linear space consists of the scalar-valued linear maps on the
space. Duality methods play a crucial role in many parts of analysis. In this section,
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we consider real linear spaces for definiteness, but all of the results hold for complex
linear spaces.

Definition 5.54 A scalar-valued linear map from a linear space X to R is called
a linear functional or linear form on X. The space of linear functionals on X is
called the algebraic dual space of X, and the space of continuous linear functionals
on X is called the topological dual space of X.

In terms of the notation in Definition 5.12, the algebraic dual space of X is
L(X,R), and the topological dual space is B(X,R). A linear functional ¢ : X —» R
is bounded if there is a constant M such that

lp(z)] < M||z]| for all z € X,

and then we define ||¢|| by

loll = sup 22 (5.23)
0 el

If X is infinite dimensional, then £(X,R) is much larger than B(X,R), as we illus-
trate in Example 5.57 below. Somewhat confusingly, both dual spaces are commonly
denoted by X*. We will use X* to denote the topological dual space of X. Either
dual space is itself a linear space under the operations of pointwise addition and
scalar multiplication of maps, and the topological dual is a Banach space, since R
is complete.

If X is finite dimensional, then £(X,R) = B(X,R), so there is no need to
distinguish between the algebraic and topological dual spaces. Moreover, the dual
space X * of a finite-dimensional space X is linearly isomorphic to X. To show this,
we pick a basis {e1,e2,...,e,} of X. The map w; : X — R defined by

Wi (Z miei) =I; (524)
i=1
is an element of the algebraic dual space X*. The linearity of w; is obvious.
For example, if X = R" and
e1 =(1,0,...,0), e =(0,1,...,0),...,e, =(0,0,...,1),
are the coordinate basis vectors, then
wi (L1, T2, .., Tpn) P Ty

is the map that takes a vector to its ith coordinate.
The action of a general element ¢ of the dual space ¢ : X — R on a vector
x € X is given by a linear combination of the components of z, since

n n
=1 =1
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where ¢; = p(e;) € R. It follows that, as a map,

n
Y= Z Pii-
i=1

Thus, {w1,ws,...,wy} is a basis of X*, called the dual basis of {ej1,ea,...,e,}, and
both X and X* are linearly isomorphic to R"”. The dual basis has the property that

wi(ej) = dij,

where §;; is the Kronecker delta function, defined by

= 2 629
Although a finite-dimensional space is linearly isomorphic with its dual space,
there is no canonical way to identify the space with its dual; there are many iso-
morphisms, depending on an arbitrary choice of a basis. In the following chapters,
we will study Hilbert spaces, and show that the topological dual space of a Hilbert
space can be identified with the original space in a natural way through the inner
product (see the Riesz representation theorem, Theorem 8.12). The dual of an
infinite-dimensional Banach space is, in general, different from the original space.

Example 5.55 In Section 12.8, we will see that for 1 < p < oo the dual of LP(2)
is L (Q), where 1/p+ 1/p' = 1. The Hilbert space L?(Q) is self-dual.

Example 5.56 Consider X = C([a,b]). For any p € L'([a,b]), the following for-
mula defines a continuous linear functional ¢ on X:

b
o(f) = / f@)p(e) de. (5.26)

Not all continuous linear functionals are of the form (5.26). For example, if zo €
[a, b], then the evaluation of f at z is a continuous linear functional. That is, if we
define 4, : C([a,b]) = R by

Oz (f) = f(20),

then d,, is a continuous linear functional on C([a, b]). A full description of the dual
space of C([a,b]) is not so simple: it may be identified with the space of Radon
measures on [a, b] (see [12], for example).

One way to obtain a linear functional on a linear space is to start with a linear
functional defined on a subspace, extend a Hamel basis of the subspace to a Hamel
basis of the whole space, and extend the functional to the whole space, by use
of linearity and an arbitrary definition of the functional on the additional basis
elements. The next example uses this procedure to obtain a discontinuous linear
functional on C([0,1]).
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Example 5.57 Let M = {2" | n =0,1,2,...} be the set of monomials in C([0, 1]).
The set M is linearly independent, so it may be extended to a Hamel basis H. Each
f € C(]0,1]) can be written uniquely as

f=chi+---+cenhy, (5.27)

for suitable basis functions h; € H and nonzero scalar coefficients ¢;. For each
n=0,1,2,..., we define ¢, (f) by

_ C; if hi = SE”,
on(f) = { 0 otherwise.

Due to the uniqueness of the decomposition in (5.27), the functional ¢, is well-
defined. We define a linear functional ¢ on C([0,1]) by

o(f) =3 npalf).
n=1

For each f, only a finite number of terms in this sum are nonzero, so ¢ is a well-
defined linear functional on C([0,1]). The functional is unbounded, since for each
n=0,1,2,... we have [|2"|| =1 and |p(z")| = n.

A similar construction shows that every infinite-dimensional linear space has
discontinuous linear functionals defined on it. On the other hand, Theorem 5.35
implies that all linear functionals on a finite-dimensional linear space are bounded.

It is not obvious that this extension procedure can be used to obtain bounded
linear functionals on an infinite-dimensional linear space, or even that there are
any nonzero bounded linear functionals at all, because the extension need not be
bounded. In fact, it is possible to maintain boundedness of an extension by a
suitable choice of its values off the original subspace, as stated in the following
version of the Hahn-Banach theorem.

Theorem 5.58 (Hahn-Banach) IfY is alinear subspace of a normed linear space
X and ¥ : Y — R is a bounded linear functional on Y with [|¢)|| = M, then there is
a bounded linear functional ¢ : X — R on X such that ¢ restricted to Y is equal
to ¢ and ||¢|| = M.

We omit the proof here. One consequence of this theorem is that there are
enough bounded linear functionals to separate X, meaning that if o(z) = ¢(y) for
all p € X*, then z = y (see Exercise 5.6).

Since X* is a Banach space, we can form its dual space X **, called the bidual of
X. There is no natural way to identify an element of X with an element of the dual
X*, but we can naturally identify an element of X with an element of the bidual
X**. If x € X, then we define F, € X** by evaluation at z:

F.(p) = o(x) for every ¢ € X*. (5.28)
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Thus, we may regard X as a subspace of X**. If all continuous linear functionals
on X* are of the form (5.28), then X = X** under the identification z — F, and
we say that X is a reflexive.

Linear functionals may be used to define a notion of convergence that is weaker
than norm, or strong, convergence on an infinite-dimensional Banach spaces.

Definition 5.59 A sequence (z,) in a Banach space X converges weakly to x,
denoted by x, = z as n — oo, if

p(zn) = (z)  asn — oo,

for every bounded linear functional ¢ in X*.

If we think of a linear functional ¢ : X — R as defining a coordinate ¢(z)
of z, then weak convergence corresponds to coordinate-wise convergence. Strong
convergence implies weak convergence: if 2, — x in norm and ¢ is a bounded linear
functional, then

lp(zn) — @(@)| = lp(zn — 2)| < llellllzn — ]| = 0.

Weak convergence does not imply strong convergence on an infinite-dimensional
space, as we will see in Section 8.6.

If X* is the dual of a Banach space X, then we can define another type of weak
convergence on X*, called weak-* convergence, pronounced “weak star.”

Definition 5.60 Let X* be the dual of a Banach space X. We say ¢ € X* is the
weak-x limit of a sequence (p,) in X* if
on(z) = o(z) as n — 0o,
for every z € X. We denote weak-* convergence by
Pn = .
By contrast, weak convergence of (p,) in X* means that
F(pn) = F(p) as n — oo,

for every F' € X**. If X is reflexive, then weak and weak-* convergence in X* are
equivalent because every bounded linear functional on X* is of the form (5.28). If
X™* is the dual space of a nonreflexive space X, then weak and weak-* convergence
are different, and it is preferable to use weak-* convergence in X* instead of weak
convergence.

One reason for the importance of weak-* convergence is the following compact-
ness result, called the Banach-Alaoglu theorem.

Theorem 5.61 (Banach-Alaoglu) Let X* be the dual space of a Banach space
X. The closed unit ball in X* is weak-x compact.
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We will not prove this result here, but we prove a special case of it in Theo-
rem 8.45.

5.7 References

For more on linear operators in Banach spaces, see Kato [26]. For proofs of the
Hahn-Banach, open mapping, and Banach-Alaoglu theorems, see Folland [12], Reed
and Simon [44], or Rudin [47]. The use of linear and Banach spaces in optimization
theory is discussed in [34]. Applied functional analysis is discussed in Lusternik and
Sobolev [33]. For an introduction to semigroups associated with evolution equations,
see [4]. For more on matrices, see [24]. An introduction to the numerical aspects
of matrices and linear algebra is in [53]. For more on the stability, consistency,
and convergence of finite difference schemes for partial differential equations, see
Strikwerder [52].

5.8 Exercises

Exercise 5.1 Prove that the expressions in (5.2) and (5.3) for the norm of a bound-
ed linear operator are equivalent.

Exercise 5.2 Suppose that {e,es,...,e,} and {€1,€2,...,8,} are two bases of
the n-dimensional linear space X, with

n
e; = ZLijej, e; = Zfijéj,
j=1
where (L;;) is an invertible matrix with inverse (L;;), meaning that
n
ZL,’ijk = 6ik-
j=1

Let {w1,ws,...,wn} and {w1,ws,...,ws} be the associated dual bases of X*.

(a) Ifx = x;e; = Y T;€; € X, then prove that the components of z transform
under a change of basis according to

T; = Lijx;. (5.29)

(b) If ¢ = > piwi = >.P;w; € X*, then prove that the components of ¢
transform under a change of basis according to

?i = Ljip;- (5.30)
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Exercise 5.3 Let ¢ : C([0,1]) — R be the linear functional that evaluates a func-
tion at the origin: 6(f) = f(0). If C([0,1]) is equipped with the sup-norm,

Iflleo = sup |f(z)l,
0<z<1

show that ¢ is bounded and compute its norm. If C([0,1]) is equipped with the
one-norm,

1
Il = [ @)z,
show that d is unbounded.
Exercise 5.4 Consider the 2 x 2 matrix
0 a?
A - ( b2 0 ) 3

where a > b > 0. Compute the spectral radius r(A) of A. Show that the Euclidean
norms of powers of the matrix are given by

||A2nH — a2nb2n’ “AZn+1|| — a2n+2b2n‘
Verify that r(A) = lim,_, [|4"]|'/™.

Exercise 5.5 Define K : C([0,1]) — C([0,1]) by

Kf(z) = /0 k(z,y) f(y) dy,

where k : [0,1] x [0,1] — R is continuous. Prove that K is bounded and

1
11 = g { [ kGl dv}.

Exercise 5.6 Let X be a normed linear space. Use the Hahn-Banach theorem to
prove the following statements.

(a) For any x € X, there is a bounded linear functional ¢ € X* such that

lloll = 1 and p(z) = ||2|-
(b) If z,y € X and ¢(z) = ¢(y) for all p € X*, then x = y.

Exercise 5.7 Find the kernel and range of the linear operator K : C([0,1]) —
C([0,1]) defined by

Kf(e) = [ sinnta—1)f) dy.

Exercise 5.8 Prove that equivalent norms on a normed linear space X lead to
equivalent norms on the space B(X) of bounded linear operators on X.
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Exercise 5.9 Prove Proposition 5.43.

Exercise 5.10 Suppose that & : [0,1] x [0,1] — R is a continuous function. Prove
that the integral operator K : C([0,1]) — C([0,1]) defined by

1
Kf(@) = [ Kao)fw)dy
0
is compact.
Exercise 5.11 Prove that if T,, — T uniformly, then ||T5,|| — ||T||-

Exercise 5.12 Prove that if T, converges to T uniformly, then 77, converges to T
strongly.

Exercise 5.13 Suppose that A is the diagonal n x n matrix and N is the n x n
nilpotent matriz (meaning that N* = 0 for some k)

1
N0 0 010 0
0 X ... O

A= . |, N=] i o0
000 ... 1
0 0 o 000 ...0

(a) Compute the two-norms and spectral radii of A and N.
(b) Compute et and e,

Exercise 5.14 Suppose that A is an n x n matrix. For t € R we define f(t) =
det et4.

(a) Show that

t)—1
lim 1) =tr A,
t—0 t

where tr A is the trace of the matrix A, that is the sum of its diagonal

elements.
(b) Deduce that f : R — R is differentiable, and is a solution of the ODE

f=(rAyf.
(c) Show that

det e? = '™ 4,

Exercise 5.15 Suppose that A and B are bounded linear operators on a Banach
space.

(a) If A and B commute, then prove that eAef = eA+B,
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(b) If [A, [A, B]] = [B,[A4, B]] =0, then prove that

eAeB — ¢A+B+AB]/2.
This result is called the Baker-Campbell-Hausdorff formula.

Exercise 5.16 Suppose that A and B are, possibly noncommuting, bounded op-
erators on a Banach space. Show that

| gt(A+B) _ tAtB 1

Hm 12 =3Bl
| gl(A+B) _ gtA/2,tB gtA[2

lim =0
=0 12

Show that for small ¢ the function e*4/2etBet4/24(0) provides a better approxima-
tion to the solution of the equation z; = (A + B)x than the function e!4eZz(0).
The approximation e!(A+B) s tA/2¢tBetA/2 called Strang splitting, is useful in the
numerical solution of evolution equations by fractional step methods.

Exercise 5.17 Suppose that K : X — X is a bounded linear operator on a Banach
space X with [|K|| < 1. Prove that I — K is invertible and

I-K)'=T+K+K>+K>+...,

where the series on the right hand side converges uniformly in B(X).
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Chapter 6

Hilbert Spaces

So far, in increasing order of specialization, we have studied topological spaces,
metric spaces, normed linear spaces, and Banach spaces. Hilbert spaces are Banach
spaces with a norm that is derived from an inner product, so they have an extra
feature in comparison with arbitrary Banach spaces, which makes them still more
special. We can use the inner product to introduce the notion of orthogonality in a
Hilbert space, and the geometry of Hilbert spaces is in almost complete agreement
with our intuition of linear spaces with an arbitrary (finite or infinite) number
of orthogonal coordinate axes. By contrast, the geometry of infinite-dimensional
Banach spaces can be surprisingly complicated and quite different from what naive
extrapolations of the finite-dimensional situation would suggest.

6.1 Inner products

To be specific, we consider complex linear spaces throughout this chapter. We use
a bar to denote the complex conjugate of a complex number. The corresponding
results for real linear spaces are obtained by replacing C by R and omitting the
complex conjugates.

Definition 6.1 An inner product on a complex linear space X is a map
(-, ): X xX—>C

such that, for all z,y,z € X and A\, u € C:

(a) (z, Ay + pz) = Mz,y) + p(z, z) (linear in the second argument);
(b) (y,z) = (x,y) (Hermitian symmetric);

(¢) (z,x) > 0 (nonnegative);

(d) (z,z) =0if and only if z = 0 (positive definite).

We call a linear space with an inner product an inner product space or a pre-Hilbert
space.

125
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From (a) and (b) it follows that (-, -) is antilinear, or conjugate linear, in the
first argument, meaning that

Az + py, z) = Mz, 2) + Ay, 2).

If X is real, then (-, -) is bilinear, meaning that it is a linear function of each
argument. If X is complex, then (-, -) is said to be sesquilinear, a name that
literally means “one-and-half” linear.

There are two conventions for the linearity of the inner product. In most of the
mathematically oriented literature (-, -) is linear in the first argument. We adopt
the convention that the inner product is linear in the second argument, which is
more common in applied mathematics and physics.

If X is a linear space with an inner product (-, -), then we can define a norm
on X by

llzll = v/ (2, ). (6.1)

Thus, any inner product space is a normed linear space. We will always use the
norm defined in (6.1) on an inner product space.

Definition 6.2 A Hilbert space is a complete inner product space.

In particular, every Hilbert space is a Banach space with respect to the norm in
(6.1).

Example 6.3 The standard inner product on C" is given by
n
(@,y) =Y T5y;,
j=1

where £ = (21,...,2,) and y = (y1,...,Yn), with z;,y; € C. This space is com-
plete, and therefore it is a finite-dimensional Hilbert space.

Example 6.4 Let C([a,b]) denote the space of all complex-valued continuous func-
tions defined on the interval [a,b]. We define an inner product on C([a,b]) by

b
(f.9) = / F@g(e) de,

where f,g : [a,b] — C are continuous functions. This space is not complete, so it
is not a Hilbert space. The completion of C([a,b]) with respect to the associated

norm,
b 1/2
171l = ( / @) dm> ,

is denoted by L?([a,b]). The spaces LP([a,b]), defined in Example 5.6, are Banach
spaces but they are not Hilbert spaces when p # 2.
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Similarly, if T is the circle, then L?(T) is the Hilbert space of square-integrable
functions f : T — C with the inner product

(f.9) = / F@)o(x) da.

Example 6.5 We define the Hilbert space £2(Z) of bi-infinite complex sequences
by

(7)) = {(zn)zo__oo Z |2a)? < oo}.

The space ¢2(Z) is a complex linear space, with the obvious operations of addition
and multiplication by a scalar. An inner product on it is given by

(@,9) = Y Tayn

n=—oo

The name “/?” is pronounced “little ell two” to distinguish it from L? or “ell two”

in the previous example. The space £%(N) of square-summable sequences (2,,)52; is

defined in an analogous way.

Example 6.6 Let C™*™ denote the space of all m x n matrices with complex
entries. We define an inner product on C™*"™ by

(A, B) = tr (A*B),

where tr denotes the trace and * denotes the Hermitian conjugate of a matrix — that
is, the complex-conjugate transpose. In components, if A = (a;;) and B = (b;;),
then

(A,B)=)"

i=1j

m n
E,’jb,’j.
=1

This inner product is equal to the one obtained by identification of a matrix in
C™*™ with a vector in C™"™. The corresponding norm,

1/2

4= (S ayP)

i=1 j=1

is called the Hilbert-Schmidt norm.

Example 6.7 Let C*([a, b]) be the space of functions with k continuous derivatives
on [a,b]. We define an inner product on C*([a,b]) by

k b '
(f9)=3 / F () (z) da,
j=0va
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where f(9) denotes the jth derivative of f. The corresponding norm is

1/2

k b
=3 [ 10@pa) (6.2

j=0"¢
The space C*([a, b]) is an inner product space, but it is not complete. The Hilbert
space obtained by completion of C*¥([a, b]) with respect to the norm || - || is a Sobolev

space, denoted by H* ((a,b)). In the notation of Example 5.7, we have
H* ((a,b)) = W*? ((a,1)).

The following fundamental inequality on an inner product space is called the
Cauchy-Schwarz inequality.

Theorem 6.8 (Cauchy-Schwarz) If z,y € X, where X is an inner product
space, then

(@, )| < [l=[lllyll, (6.3)

where the norm || - || is defined in (6.1).

Proof. By the nonnegativity of the inner product, we have
0 < (A\z — py, Az — py)

for all z,y € X and A\,u € C. Expansion of the inner product, and use of (6.1),
implies that

Au(@,y) + iy, @) < IAPll2] + [yl
If (z,y) = re’?, where r = |(z,y)| and ¢ = arg (z,y), then we choose
A= lylle,  p= izl
It follows that
2l (lllylll(z, )| < 2llzIly]1%,
which proves the result. d

An inner product space is a normed space with respect to the norm defined in
(6.1). The converse question of when a norm is derived from an inner product in
this way is answered by the following theorem.

Theorem 6.9 A normed linear space X is an inner product space with a norm
derived from the inner product by (6.1) if and only if

e +ylI” + llz — ylI* = 2l|z]|* + 2lly|*  for all 2,y € X. (6.4)
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X
Fig. 6.1 The geometric interpretation of the parallelogram law (6.4).
Proof. Use of (6.1) to write norms in terms of inner products, and expansion

of the result, implies that (6.4) holds for any norm that is derived from an inner
product. Conversely, if a norm satisfies (6.4), then the equation

1 . . , .
(@,9) = 7 {llz + yll* = llz = ylI* —dllz + iyll® + illz — iy} (6.5)

defines an inner product on X. We leave a detailed verification of this fact to the
reader. O

The relation (6.4) is called the parallelogram law. Its geometrical interpretation
is that the sum of the squares of the sides of a parallelogram is equal to the sum
of the squares of the diagonals (see Figure 6.1). As the polarization formula (6.5)
shows, an inner product is uniquely determined by its values on the diagonal, that
is, by its values when the first and second arguments are equal.

Let (X, (-, -)x) and (Y, (-, -)y) be two inner product spaces. Then there is a
natural inner product on the Cartesian product space

XxY={(z,y)|z€e X,yeY}
given by
(#1,91); (T2,92)) x v = (@1, 22)x + (Y1, ¥2)v-

The associated norm on X x Y is

I, 9)|l = VIl=ll* + llylI”

Unless stated otherwise, we will use this inner product and norm on the Cartesian
product of two inner product spaces.

Theorem 6.10 Let X be an inner product space. The inner product is a continu-
ous map from X x X — C.
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Proof. For all x1,x2,y1,y2 € X, the Cauchy-Schwarz inequality implies that

|(@1,91) = (®2,92)] = |(#1 — 22,91) + (T2, 91 — ¥2)|
< len = @2 [lya |l + 22l lyr — y2l-

This estimate implies the continuity of the inner product. O

6.2 Orthogonality

Let H be a Hilbert space. We denote its inner product by (-,-), which is another
common notation for inner products that is often reserved for Hilbert spaces. The
inner product structure of a Hilbert space allows us to introduce the concept of
orthogonality, which makes it possible to visualize vectors and linear subspaces of
a Hilbert space in a geometric way.

Definition 6.11 If z, y are vectors in a Hilbert space H, then we say that z and
y are orthogonal, written z L y, if (z,y) = 0. We say that subsets A and B are
orthogonal, written A | B, if x 1 y for every x € A and y € B. The orthogonal
complement AL of a subset A is the set of vectors orthogonal to A,

At ={zeH|z Lyforally € A}.

Theorem 6.12 The orthogonal complement of a subset of a Hilbert space is a
closed linear subspace.

Proof. Let H be a Hilbert space and A a subset of H. If y,z € At and A\, u € C,
then the linearity of the inner product implies that

(z, Ay + pz) = Maz,y) + p{z,z) =0 for all z € A.

Therefore, Ay + uz € A+, so A+ is a linear subspace.

To show that AL is closed, we show that if (y,,) is a convergent sequence in A+,
then the limit y also belongs to ALt. Let z € A. From Theorem 6.10, the inner
product is continuous and therefore

{z,y) = (&, Im y,) = lim (z,y,) =0,
since (z,y,) = 0 for every x € A and y,, € A*. Hence, y € A™. O

The following theorem expresses one of the fundamental geometrical property
of Hilbert spaces. While the result may appear obvious (see Figure 6.2), the proof
is not trivial.

Theorem 6.13 (Projection) Let M be a closed linear subspace of a Hilbert space
H.
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Fig. 6.2 y is the point in M closest to .

(a) For each x € H there is a unique closest point y € M such that

ll# =yl = min ||lz — 2| (6.6)
(b) The point y € M closest to x € H is the unique element of M with the
property that (z —y) L M.
Proof. Let d be the distance of z from M,
d=inf{||z—z2| |z € M}. (6.7)

First, we prove that there is a closest point y € M at which this infimum is attained,
meaning that ||z — y|| = d. From the definition of d, there is a sequence of elements
Yn € M such that

lim ||z —ya|| =d.
n—oo
Thus, for all € > 0, there is an N such that
|z —ynl| < d+e

when n > N. We show that the sequence (y,) is Cauchy. From the parallelogram
law, we have

[ym = ynll* + 122 = ym = yull* = 2l — yml|* + 2llz — ynll*.
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Since (Ym + yn)/2 € M, equation (6.7) implies that

lz = (ym +yn)/2] > d.

Combining these equations, we find that for all m,n > N,

lym = yal® = 2]z = ymll® + 2z — yall* = (122 = ym — yal®
< 4(d+e€)? —4d®
< 4de(2d+e).

Therefore, (y,) is Cauchy. Since a Hilbert space is complete, there is a y such that
Yn — Yy, and, since M is closed, we have y € M. The norm is continuous, so
lz =yl = limneo (|2 — yull = d.

Second, we prove the uniqueness of a vector y € M that minimizes ||z — y]|.
Suppose y and y' both minimize the distance to z, meaning that

le—yll=d, llz—y|=d.
Then the parallelogram law implies that
2w —yll” + 20z - y'II* = 122 —y = ¢'I” + [ly — 'II*-
Hence, since (y +y')/2 € M,
ly = 'l = 4d* = 4llz — (y +y")/2I]” < 0.

Therefore, ||y — ¢'|| = 0 so that y = y'.

Third, we show that the unique y € M found above satisfies the condition that
the “error” vector x — y is orthogonal to M. Since y minimizes the distance to z,
we have for every A € C and z € M that

llz = ylI* < llz -y + Azl
Expanding the right-hand side of this equation, we obtain that
2Re Mw — y,2) < \PIJ2]

Suppose that (z —y,2) = |{(z —y,2)|e?. Choosing A\ = ee~, where € > 0, and
dividing by €, we get
2[(x —y,2)| < €ll2]*.

Taking the limit as € — 0%, we find that (x —y,2) =0, so (z —y) L M.

Finally, we show that y is the only element in M such that x —y L M. Suppose
that gy’ is another such element in M. Then y —y' € M, and, for any z € M, we
have

(z,y—y)=(zy—vy)—(zy—y)=0.

In particular, we may take z = y — ', and therefore we must have y = y'. O
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The proof of part (a) applies if M is any closed convex subset of H (see Exer-
cise 6.1). Theorem 6.13 can also be stated in terms of the decomposition of H into
an orthogonal direct sum of closed subspaces.

Definition 6.14 If M and A are orthogonal closed linear subspaces of a Hilbert
space, then we define the orthogonal direct sum, or simply the direct sum, M & N
of M and N by

MeN={y+z|lye Mand ze N}.

We may also define the orthogonal direct sum of two Hilbert spaces that are not
subspaces of the same space (see Exercise 6.4).

Theorem 6.13 states that if M is a closed subspace, then any x € H may be
uniquely represented as x = y + z, where y € M is the best approximation to z,
and z L M. We therefore have the following corollary

Corollary 6.15 If M is a closed subspace of a Hilbert space H, then H = M@ M= .

Thus, every closed subspace M of a Hilbert space has a closed complementary
subspace M=. If M is not closed, then we may still decompose H as H = Mo M.
In a general Banach space, there may be no element of a closed subspace that is
closest to a given element of the Banach space (see Exercise 6.2), and a closed linear
subspace of a Banach space may have no closed complementary subspace. These
facts are one indication of the much murkier geometrical properties of infinite-
dimensional Banach spaces in comparison with Hilbert spaces.

6.3 Orthonormal bases

A subset U of nonzero vectors in a Hilbert space H is orthogonal if any two distinct
elements in U are orthogonal. A set of vectors U is orthonormal if it is orthogonal
and ||u|| = 1 for all u € U, in which case the vectors u are said to be normalized. An
orthonormal basis of a Hilbert space is an orthonormal set such that every vector
in the space can be expanded in terms of the basis, in a way that we make precise
below. In this section, we show that every Hilbert space has an orthonormal basis,
which may be finite, countably infinite, or uncountable. Two Hilbert spaces whose
orthonormal bases have the same cardinality are isomorphic — any linear map that
identifies basis elements is an isomorphism — but many different concrete realiza-
tions of a given abstract Hilbert space arise in applications. The most important
case in practice is that of a separable Hilbert space, which has a finite or countably
infinite orthonormal basis. As shown in Exercise 6.10, this condition is equivalent
to the separability of the Hilbert space as a metric space, meaning that it contains
a countable dense subset.

Before studying orthonormal bases in general Hilbert spaces, we give some ex-
amples.
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Example 6.16 A set of vectors {e1,...,e,} is an orthonormal basis of the finite-
dimensional Hilbert spaces C" if:

(a) (ej,er) =3 for 1 < j,k <m;
(b) for all z € C" there are unique coordinates x; € C such that

= Z Tk, (6.8)
k=1

where d;, is the Kronecker delta defined in (5.25). The orthonormality of the basis
implies that z; = (eg,x). For example, the standard orthonormal basis of C"
consists of the vectors

er =(1,0,...,0), ex=1(0,1,...,0),..., en=1(0,0,...,1).

Example 6.17 Consider the Hilbert space ¢2(Z) defined in Example 6.5. An or-
thonormal basis of £2(Z) is the set of coordinate basis vectors {e, | n € Z} given
by

€n = (5]9”)20:_00 .
For example,

e.1=(..,0,1,0,0,0,...), e = (...,0,0,1,0,0,...), e = (...,0,0,0,1,0,...).

Example 6.18 The set of functions {e,(z) | n € Z}, given by

1 .
en(z) = e,

V2
is an orthonormal basis of the space L?(T) of 2m-periodic functions, called the
Fourier basis. We will study it in detail in the next chapter. As we will see, the
inverse Fourier transform F~1 : £2(Z) — L?(T), defined by

[ ;
FHer) = Wir > ke,
k=—oc0

is a Hilbert space isomorphism between ¢2(Z) and L?(T). Both Hilbert spaces are
separable with a countably infinite basis.

Example 6.19 A function that is a sum of finitely many periodic functions is said
to be quasiperiodic. If the ratios of the periods of the terms in the sum are rational,
then the sum is itself periodic, but if at least one of the ratios is irrational, then the
sum is not periodic. For example,

f(t) — eit + ei7rt
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is quasiperiodic but not periodic. Let X be the space of quasiperiodic functions
f : R = C of the form

n
f(t) — z akez’wkt,
k=1

where n € N, ay € C, and w, € R are arbitrary constants. We may think of
t as a time variable, in which case f is a sum of time-harmonic functions with
amplitudes |ag|, phases argay, and frequencies wy. When some of the frequencies
are incommensurable, the function f “almost” repeats itself, but it is not exactly
periodic with any period, although it is uniformly bounded.

We define an inner product on X by means of the time average,

(f,9) = lim %Kng(t) dt.

If f(t) =Y p_; are™*! and g(t) = > p_, bre'**, where w; # wy, for j # k, then

n
k=1
The inner product may also be written as

1 to+T -
(o= Jim £ [ Tt ae
where t( is any fixed time independent of T'. The set of functions
{e“!|w e R} (6.9)

is an orthonormal set in X. The space X is an inner product space, but it is not
complete. We call the completion of X the space of L?-almost periodic functions.
This space consists of equivalence classes of functions of the form

f)= i ape’*?, (6.10)
k=1

where >, |ag|* < co. The sum converges in norm, meaning that for any to € R,
" 2
f@) —Zakei“”“t dt -0 asn— co.

k=1

The set in (6.9) is an uncountable orthonormal basis of this Hilbert space, so the
space is not separable.

Although in the future we will mainly consider separable Hilbert spaces, it is
worth postponing this restriction for a little while. First, we say what we mean by
a sum with a possibly uncountable number of terms. This definition also clarifies



136 Hilbert Spaces

the sense in which our infinite sums converge, which is stronger than the sense in
which infinite series converge.

Definition 6.20 Let {z, € X | @ € I} be an indexed set in a Banach space X,
where the index set I may be countable or uncountable. For each finite subset J of
I, we define the partial sum S; by

SJ = Zxa.

acJ

The unordered sum of the indexed set {z, | @ € I} converges to z € X, written

T=> za, (6.11)
acl
if for every € > 0 there is a finite subset J¢ of I such that ||S; — z|]| < € for
all finite subsets J of I that contain J¢. An unordered sum is said to converge
unconditionally.

All the sums in this chapter are to be interpreted as unordered sums. The
convergence of finite partial sums Sy, indexed by finite subsets J of I, is a special
case of the convergence of nets [12]. One can show that an unordered sum converges
if and only if any permutation of its terms converges, and the sum is independent
of the ordering of its terms.

A sum ) ;% is said to converge absolutely if the sum ), [|za| of non-
negative numbers converges unconditionally. The unordered sum of a sequence of
real or complex numbers exists if and only if the corresponding series is absolute-
ly convergent. An absolutely convergent sum in an infinite-dimensional Banach
space converges unconditionally, but an unconditionally convergent sum need not
converge absolutely (see Exercise 6.8 for an example).

If an unordered sum ) _; x, converges to z, then for each n € N there is a
finite subset J,, of I such that Sy, = )" c; za satisfies [|Sy, —z|| < 1/n. It follows
that 2, = 0 if @ ¢ U,cn Jn, S0 a convergent unordered sum has only countably
many nonzero terms. Moreover, there is a sequence (S, ) of finite partial sums that
converges to z as n — 0o. The continuity of the inner product implies that

<zxa,zyﬁ> - T

a€el BeJ a,B)eIxJ
There is a generalization of the Cauchy criterion for the convergence of series to

unordered sums.

Definition 6.21 An unordered sum ) ;2o is Cauchy if for every € > 0 there is
a finite set J¢ C I such that ||Sk|| < € for every finite set K C I'\ J°.

Proposition 6.22 An unordered sum in a Banach space converges if and only if
it is Cauchy.
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Proof. First, suppose that the unordered sum ) ., 2, converges to z. Let € > 0.
By the definition of convergence, there is a finite set J¢ such that ||Sy — z|| < €/2
for all finite sets J that contain J¢. If K is any finite subset of I \ J¢, then we let
J=J¢UK. Since J contains J¢, we have

ISkl = IS; — Sy <e.

<187 ==l + [l = S,

Hence, the sequence is Cauchy.

Conversely, suppose that an unordered sum is Cauchy. Let J,, be finite subsets
of I such that ||Sk|| < 1/n for every K C I\ J,. Without loss of generality,
we may assume that J, C Jp41 for all n. It follows that for all n < m we have
1S, —Ss.l| < 1/n, which shows that the sequence (Sy,) is Cauchy; hence, since
a Banach space is complete, it converges to a point z. To complete the proof, we
show that the unordered sum converges to . Given € > 0, we pick n such that
1/n < €/2 and put J¢ = J,. If J is a finite set that contains J¢, then the Cauchy
criterion for the set J, and the convergence of the sequence (Sy,) to x imply that

2
1S — || <|ISs = Ss. ||+ ISy, — 2| < = <e.
n (|
We may use the Cauchy criterion to give a simple necessary and sufficient con-
dition for the unconditional convergence of a sum of orthogonal terms in a Hilbert
space.

Lemma 6.23 Let U = {u, | @ € I'} be an indexed, orthogonal subset of a Hilbert
space H. The sum ) .  uqs converges unconditionally if and only if Y/ [luall* <
00, and, in that case,

= 3" llual (6.12)

acl

D ua

acl

Proof. For any finite set J we have
2

Zua = Z <ua7u[‘3> = Z(Ua;ua> = Z ||’U,a||2.

a€J a,BET a€eJ acJ

It follows that the Cauchy criterion is satisfied for )" ., uq if and only if it is
satisfied for 3~ .; [lual|?>. Thus, one of the sums converges unconditionally if and
only if the other does. Equation (6.12) follows because the sum is the limit of a
sequence of finite partial sums and the norm is a continuous function. d

When combined with the following basic estimate, this lemma will imply that
every element of a Hilbert space can be expanded with respect to an orthonormal
basis.

Theorem 6.24 (Bessel’s inequality) Let U = {uy | @ € I} be an orthonormal
set in a Hilbert space H and x € H. Then:
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(@) Yaer [(ua, o) < Izl
(b) zuv =3, eI(ua, Z)u, is a convergent sum;
(c) z —zy € UL

Proof. We begin by computing ||z — 3" ;(ta,T)ue|| for any finite subset J C I:

x— Z(ua,m)ua < (:1: - Z(ua,m)ua> sz — Z(Uﬁ,x)'ltﬁ >

a€J a€J BeJ
= <$,$>—-j£:<UB,$><$,Ug)'— 2{:(ua,w)<ua,w)
peJ acJ
+ D (e, @) (up, ) (i, up)
a,BeJ
= lzll” = ) (ua, )|
acJ
Hence
2
D e, @) = Izl = |2 = D (o, Dhua| < llz>.

acJ a€J

Since Y s [{uq, z)|? is a sum of nonegative numbers that is bounded from above by
||z||?, it is Cauchy. Therefore the sum converges and satisfies (a). The convergence
claimed in (b) follows from an application of Lemma, 6.23.

In order to prove (c), we consider any uq, € U. Using the orthonormality of U
and the continuity of the inner product, we find that

<w - Z(ua,m)ua,uao> = (2, Uap) = Y (Ua, T)(ta; Ua)

acl acl
(mauao)__<xauao>::0'

Hence, £ — >, c;(Ua, T)uq € UL. O
Given a subset U of H, we define the closed linear span [U] of U by

[U] = {Z Cull ‘ cy € Cand ), iy cyu converges unconditionally} . (6.13)
u€eU

Equivalently, [U] is the smallest closed linear subspace that contains U. We leave
the proof of the following lemma, to the reader.

Lemma 6.25 If U = {u, | o € I} is an orthonormal set in a Hilbert space H, then

Ul= {anua

acl

o € Csuch that Y o |cal® < oo} :
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By combining Theorem 6.13 and Theorem 6.24 we see that xy;, defined in part
(b) of Theorem 6.24, is the unique element of [U] satisfying

r— xzy|| = min ||z — u||.
e~ avll = min Iz — ul

In particular, if [U] = H, then zy = z, and every x € H may be expanded in
terms of elements of U. The following theorem gives equivalent conditions for this
property of U, called completeness.

Theorem 6.26 If U = {u, | a € I} is an orthonormal subset of a Hilbert space
H, then the following conditions are equivalent:

T = Za61<ua,$)ua for all z € 'H;
sz = Zae] |<Ua,.'ll)|2 for all x € H;

Proof. We prove that (a) implies (b), (b) implies (c), (c) implies (d), (d) implies
(e), and (e) implies (a). The condition in (a) states that U+ = {0}. Part (c) of The-
orem 6.24 then implies (b). The fact that (b) implies (c) follows from Lemma 6.23.
To prove that (c) implies (d), we observe that (c) implies that U+ = {0}, which
implies that [U]+ = {0}, so [U] = H. Condition (e) means that if V is a subset of H
that contains U and is strictly larger than U, then V is not orthonormal. To prove
that (d) implies (e), we note from (d) that any v € H is of the form v =} ; catta,
where ¢, = {uq4,v). Therefore, if v L U then ¢, = 0 for all @, and hence v = 0, so
U U {v} is not orthonormal. Finally, (e) implies (a), since (a) is just a reformulation
of (e). O

In view of this theorem, we can make the following definition.

Definition 6.27 An orthonormal subset U = {u,, | @ € I'} of a Hilbert space H is
complete if it satisfies any of the equivalent conditions (a)—(e) in Theorem 6.26. A
complete orthonormal subset of H is called an orthonormal basis of H.

Condition (a) is often the easiest condition to verify. Condition (b) is the prop-
erty that is used most often. Condition (c) is called Parseval’s identity. Condition
(d) simply expresses completeness of the basis, and condition (e) will be used in
the proof of the existence of an orthonormal basis in a arbitrary Hilbert space (see
Theorem 6.29).

The following generalization of Parseval’s identity shows that a Hilbert space H
with orthonormal basis {u, | @ € I} is isomorphic to the sequence space ¢2(I).

Theorem 6.28 (Parseval’s identity) Suppose that U = {u, | @ € I} is an
orthonormal basis of a Hilbert space H. If z = EaeI aqug and y = Zael oy,
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where a, = (uq, z) and by = (uq,y), then

(@,y) = Taba-

acl

To show that every Hilbert space has many orthonormal bases, we use Zorn’s
lemma, which states that a nonempty partially ordered set with the property that
every totally ordered subset has an upper bound has a maximal element [48].

Theorem 6.29 Every Hilbert space H has an orthonormal basis. If U is an or-
thonormal set, then H has an orthonormal basis containing U.

Proof. 1If H = {0}, then the statement is trivially true with U = (), so we assume
that # # {0}. We introduce a partial ordering < on orthonormal subsets of H by
inclusion, so that U < V if and only if U C V. If {U, | @ € A} is a totally ordered
family of orthonormal sets, meaning that for any «, 8 € A we have either U, < Ug
or Ug < Uy, then |J,c4 Ua is an orthonormal set and is an upper bound, in the
sense of inclusion, of the family {U, | @ € A}. Zorn’s Lemma implies that the
family of all orthonormal sets in ‘H has a maximal element. This element satisfies
(e) in Theorem 6.26, and hence is a basis. To prove that any orthonormal set U
can be extended to an orthonormal basis of H, we apply the same argument to the
family of all orthonormal sets containing U. O

The existence of orthonormal bases would not be useful if we did not have
a means of constructing them. The Gram-Schmidt orthonormalization procedure
is an algorithm for the construction of an orthonormal basis from any countable
linearly independent set whose linear span is dense in H.

Let V be a countable set of linearly independent vectors in a Hilbert space
H. The Gram-Schmidt orthogonalization procedure is a method of constructing
an orthonormal set U such that [U] = [V], where the closed linear span [V] of V
is defined in (6.13). We denote the elements of V' by wv,. The orthonormal set
U = {u,} is then constructed inductively by setting uq = v1/||v1]|, and

n
Unt1 = Cnti (vn+1 - E (uk,vn+1)uk>

k=1

for all n > 1. Here ¢,41 € C is chosen so that ||u,y1|| = 1. It is straightforward to
check that [{vi,...,vn}] = [{v1,..-,un}] for all n > 1, and hence that

V1= U lots s o} = | Hus -y uad] = [U]:

n

Example 6.30 Let (a,b) C R be a finite or infinite interval and w : (a,b) = R a
continuous function such that w(z) > 0 for a < x < b. We define a weighted inner
product on

Cy([a,b]) = {f : [a,b] = C | f continuous and fabw(:z:)|f(:zz)|2 dx < oo}
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b [
(f,g):/ w(z) f(x)g(x) dx.

Let L2 ([a,b]) be the Hilbert space obtained by the completion of Cy([a,b]) with
respect to the norm derived from this inner product. The Gram-Schmidt procedure
applied to the set of monomials {z" | n > 0} gives an orthonormal basis of polyno-
mials for this Hilbert space. The simplest case is that of the space L?([—1, 1]), with
the usual unweighted inner product, which leads to the Legendre polynomials (see
Exercise 6.12). The Tchebyschev polynomials are obtained from Gram-Schmidt

orthonormalization of the monomials in L2,([—1,1]) where w(z) = (1 — 3:2)1/ % (see
Exercise 6.13). The Hermite polynomials are obtained by Gram-Schmidt ortho-
normalization of the monomials in the space L2 (R) with the Gaussian weight func-
tion w(z) = e=2"/2 (see Exercise 6.14). For a description of other polynomials that
arise in this way, such as the Jacobi and Laguerre polynomials, see [5].

6.4 Hilbert spaces in applications

In this section, we describe several applications in which Hilbert spaces arise natu-
rally.

The first is quantum mechanics. The introduction of quantum mechanics in the
1920s represents one of the most profound shifts in history of our understanding
of the physical world. The theory developed at a feverish pace, and people hardly
had time to pause to think about the mathematical structures they were inventing
and using. Only later was it realized, by von Neumann, that Hilbert spaces are the
natural setting for quantum mechanics.

One of the simplest quantum mechanical systems consists of a particle, such
as an electron, confined to move in a straight line between two parallel walls: the
“particle in a box.” Quantum effects are important when the kinetic energy of the
particle is comparable with E = h?/(2mL?), where m is the mass of the particle, &
is Planck’s constant, and L is the distance between the walls. Planck’s constant has
the dimensions of action, or energy times time, so E has the dimensions of energy.

In quantum mechanics, the state of the particle at each instant in time ¢ is de-
scribed by an element (-, t) € L2([0, L)), that is, a vector in the Hilbert space of
square-integrable, complex-valued functions on the interval [0, L]. The function
is called the wavefunction of the particle. This description contrasts with classical,
Newtonian mechanics, where the state of the particle is described by just two num-
bers: the position 0 < z < L and the velocity v € R. The physical interpretation
of the wavefunction is that || is a probability density. If the position = of the
particle is measured at some time ¢, then the probability of observing the particle
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in some interval [a, b], where 0 < a < b < L, is given by

b
J, W@, t) dz
T
Jo ¥(@,1)? do
The dynamics of the quantum mechanical particle is described by a partial

differential equation for the wavefunction, called the Schrédinger equation. For the
particle in a box, the Schrédinger equation is

Pr [particle is in the interval [a, b] at time t] =

. 2
ltht = _%¢zwa T € [OJL]7 te RJ (614)

with the boundary conditions 1(0,t) = ¢(L,t) = 0 for all t € R.
A second way in which L?-spaces arise naturally is as “energy’
quantity

)

spaces. The

/ \f(2)[2 dz (6.15)

often represents the total energy of a physical system, or some other fundamental
quantity, and one often wants to restrict attention to systems for which this quantity
is finite. For example, in fluid mechanics, if u(x) is the velocity of a fluid at the
point x, then

] mGoP ax,

where | - | denotes the Euclidean norm of a vector, is proportional to the kinetic
energy of the fluid in V. This energy should be finite for any region V' with finite
volume. An electromagnetic field is described by two vector fields, the electric field
E and the magnetic field B. In suitable units, the energy of the electromagnetic
field in a region V is given by

/ (E@P + B)P)} dx.
vV

The requirement of finite energy leads naturally to the requirement that E and B
belong to appropriate L2-spaces.

A third area in which Hilbert spaces arise naturally is in probability theory.
As we discuss in greater detail in Chapter 11.14, a random experiment is modeled
mathematically by a space (2, called the sample space, and a probability measure P
on Q. Each point w € Q corresponds to a possible outcome of the experiment. An
event A is a measurable subset of 2. The probability measure P associates with
each event A a probability P(A), where 0 < P(4) <1 and P(Q) = 1.

A random variable X is a measurable function X : @ — C, which associates
a number X (w) with each possible outcome w € €. The expected value EX of a
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random variable X is the mean, or integral, of the random variable X with respect
to the probability measure P,

EX = / X (w) dP(w).
Q
A random variable X is said to be second-order if
ElX|* < oo.

The set of second-order random variables forms a Hilbert space with respect to the
inner product

(X,Y) =E[XY],

where we identify random variables that are equal almost surely. Here, “almost
surely” is the probabilistic terminology for “almost everywhere,” so that two random
variables are equal almost surely if they are equal on a subset of Q which has
probability one. The space of second-order random variables may be identified with
the space L?(12, P) of square-integrable functions on (£2, P), with the inner product

<xn=£f@wwww.

The Cauchy-Schwarz inequality and the fact that E1 = 1 imply that a second-order
random variable has finite mean, since

[EX| = |(1,X)| <E[|X]]"”.

Thus, the Hilbert space of second-order random variables consists of the random
variables with finite mean and finite variance, where the variance Var X of a random
variable X is defined by

VarX = E [|X - EX|2] .
Two random variables X, Y are uncorrelated if
E[XY] = EX EY.

In particular, two random variables with zero mean are uncorrelated if and only if
they are orthogonal.

6.5 References

The material of this chapter’s introduction to Hilbert space is covered in Chapter
4 of Rudin [48], and also in Simmons [49]. Halmos [20] contains a large number of
problems on Hilbert spaces, together with hints and solutions. For an introduction
to probability theory, see Grimmett and Stirzaker [17].
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6.6 Exercises

Exercise 6.1 Prove that a closed, convex subset of a Hilbert space has a unique
point of minimum norm.

Exercise 6.2 Consider C([0,1]) with the sup-norm. Let

1
v={recqu| [ =0
0
be the closed linear subspace of C([0,1]) of functions with zero mean. Let

x={recq)| s =0}
and define M = N N X, meaning that

Mz{feC([O,l])‘f(O)zo, /Olf(x)dx:O}.

(a) If u € C([0,1]), prove that
N) = inf |[u—n|=u
A(uw, N) = inf [~ = fal,
where |[g| = fol u(z) dz is the mean of u, so the infimum is attained when

n=u—ué€N.
(b) If u(xz) = z € X, show that

d(z,M) = inf - =1/2
(e, M) = inf [u—mi|=1/2,
but that the infimum is not attained for any m € M.

Exercise 6.3 If A is a subset of a Hilbert space, prove that
AL =7t
where A is the closure of A. If M is a linear subspace of a Hilbert space, prove that
M =M.
Exercise 6.4 Suppose that H; and Hs are two Hilbert spaces. We define
Hi @ Ha = {(z1,22) | 21 € H1, T2 € Ha}
with the inner product
((@1,72), (W1, y2))r10m> = (T1,Y1)H: + (T2, Y2) o

Prove that H; @ H. is a Hilbert space. Find the orthogonal complement of the
subspace {(z1,0) | 1 € Hi1}.
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Exercise 6.5 Suppose that {#,, | n € N} is a set of orthogonal closed subspaces of
a Hilbert space H. We define the infinite direct sum

DHa = {an 2 € Hy and Y22, [fonll? < °°} |
n=1

n=1

Prove that @, , H, is a closed linear subspace of .
Exercise 6.6 Prove that the vectors in an orthogonal set are linearly independent.

Exercise 6.7 Let {z,}acs be a family of nonnegative real numbers. Prove that

zxazsup{zma

acl a€eJ

JcCIandJis ﬁnite} .

Exercise 6.8 Let {z, | n € N} be an orthonormal set in a Hilbert space. Show
that

1
—z

converges unconditionally but not absolutely.
Exercise 6.9 Prove Lemma 6.25.

Exercise 6.10 Prove that a Hilbert space is a separable metric space if and only
if it has a countable orthonormal basis.

Exercise 6.11 Prove that if M is a dense linear subspace of a Hilbert space H,
then H has an orthonormal basis consisting of elements in M. Does the same result
hold for arbitrary dense subsets of H?

Exercise 6.12 Define the Legendre polynomials P,, by

1 dr n

Py(z) = — (22 =-1)".

n(2) 2! dzn (x )

(a) Compute the first few Legendre polynomials, and compare with what you
get by Gram-Schmidt orthogonalization of the monomials {1,z,z2,...} in
L2([-1,1)).

(b) Show that the Legendre polynomials are orthogonal in L?([—1,1]), and that

they are obtained by Gram-Schmidt orthogonalization of the monomials.
(c) Show that

2
n+1°

/_11 P,(z)*de =
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(d) Prove that the Legendre polynomials form an orthogonal basis of L?([—1, 1]).
Suppose that f € L?([—1,1]) is given by

f@) =3 caPula).
n=0

Compute ¢,, and say explicitly in what sense the series converges.
(e) Provethat the Legendre polynomial P, is an eigenfunction of the differential
operator

d
_5(

with eigenvalue A\, = n(n + 1), meaning that

1—3:2)i

L =
dx

LP, =\, P,.

Exercise 6.13 Let # be the Hilbert space of functions f : [-1,1] — C such that

1 2
/()]
————dx < 0,
_1\/1—.7}2 v o

with the inner-product

—
f(z)g(x)
,g) = ———dz.
(f,9) llﬁfﬁ
Show that the Tchebyshev polynomials,
Tn(z) = cos(nb), where cosf =z and 0 < 4 <,

n=0,1,2,..., form an orthogonal set in #, and

T
Tl = VA ITl= 3 w21
Exercise 6.14 Define the Hermite polynomials H,, by

n o2 dar g2
m@:pne%ﬂe).
(a) Show that
pn(@) = €= /2 Hy(a)

is an orthogonal set in L?(R).
(b) Show that the nth Hermite function ¢, is an eigenfunction of the linear
operator

2
H=—— +2°
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with eigenvalue

HINT: Let

Show that
Apn =2npn_1, A'pn=¢ny1, H=AA"-1

In quantum mechanics, H is the Hamiltonian operator of a simple harmonic
oscillator, and A* and A are called creation and annihilation, or ladder,
operators.
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Chapter 7

Fouriler series

What makes Hilbert spaces so powerful in many applications is the possibility of
expressing a problem in terms of a suitable orthonormal basis. In this chapter,
we study Fourier series, which correspond to the expansion of periodic functions
with respect to an orthonormal basis of trigonometric functions. We explore a
variety of applications of Fourier series, and introduce an important related class of
orthonormal bases, called wavelets.

7.1 The Fourier basis

A function f: R — C is 27-periodic if
flz+2m) = f(x) for all z € R.

The choice of 27 for the period is simply for convenience; different periods may be
reduced to this case by rescaling the independent variable. A 27-periodic function
on R may be identified with a function on the circle, or one-dimensional torus,
T = R/(27Z), which we define by indentifying points in R that differ by 27n for
some n € Z. We could instead represent a 2m-periodic function f : R — C by a
function on a closed interval f : [a,a + 27] — C such that f(a) = f(a + 27), but
the choice of a here is arbitrary, and it is clearer to think of the function as defined
on the circle, rather than an interval.

The space C(T) is the space of continuous functions from T to C, and L?(T) is
the completion of C'(T) with respect to the L2-norm,

= ([ |f<x)|2dx)1/2-

Here, the integral over T is an integral with respect to = taken over any interval of
length 27. An element f € L?(T) can be interpreted concretely as an equivalence
class of Lebesgue measurable, square integrable functions from T to C with respect
to the equivalence relation of almost-everywhere equality. The space L?(T) is a

149
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Hilbert space with the inner product

- / F@(e) dz
T

The Fourier basis elements are the functions

eine, (7.1)

Our first objective is to prove that {e, | n € Z} is an orthonormal basis of L?(T).
The orthonormality of the functions e, is a simple computation:

1 .
emr "% (g

(em,en) = \/2—7_‘_ \/ﬂ

1 27

- i(n—m)z
- e dx

_ 1 ifm=mn,

N 0 ifm#n.

Thus, the main result we have to prove is the completeness of {e, | n € Z}. We
denote the set of all finite linear combinations of the e,, by P. Functions in P are
called trigonometric polynomials. We will prove that any continuous function on
T can be approximated uniformly by trigonometric polynomials, a result which is
closely related to the Weierstrass approximation theorem in Theorem 2.9. Since
uniform convergence on T implies L2-convergence, and continuous functions are
dense in L?(T), it follows that the trigonometric polynomials are dense in L?(T),
so {en} is a basis.

The idea behind the completeness proof is to obtain a trigonometric polynomi-
al approximation of a continuous function f by taking the convolution of f with
an approximate identity that is a trigonometric polynomial. Convolutions and ap-
proximate identities are useful in many other contexts, so we begin by describing
them.

The convolution of two continuous functions f,g : T — C is the continuous
function f x g : T — C defined by the integral

(f+9)@ /fa:— (7.2)

By changing variables y — = — y, we may also write

(f *9)(& /f y) dy,

so that fxg=gx* f.



The Fourier basis 151

Definition 7.1 A family of functions {¢, € C(T) | n € N} is an approzimate
identity if:

() on(z) 20; (7.3)

(b) / pn(x)dx =1 for every n € N; (7.4)
T

(¢) lim on(z)dz =0 for every § > 0. (7.5)

=0 Jo<|z|<m

In (7.5), we identify T with the interval [—m,x].

Thus, each function ¢,, has unit area under its graph, and the area concentrates
closer to the origin as n increases. For large n, the convolution of a function f with
n, therefore gives a local average of f.

Theorem 7.2 If {p, € C(T) | n € N} is an approximate identity and f € C(T),
then ¢, * f converges uniformly to f as n — oo.

Proof. From (7.4), we have

We also have that

(on+ (@) = / on(0)f(z — ) dy.

T

We may therefore write

(on * f)(@) — f(2) = /Tson(y) [f(z —y) — f(x)] dy. (7.6)

To show that the integral on the right-hand side of this equation is small when n
is large, we consider the integrand separately for y close to zero and y bounded
away from zero. The contribution to the integral from values of y close to zero is
small because f is continuous, and the contribution to the integral from values of y
bounded away from zero is small because the integral of ¢, is small.

More precisely, suppose that € > 0. Since f is continuous on the compact set
T, it is bounded and uniformly continuous. Therefore, there is an M such that
|f(z)] < M for all z € T, and there is a 6 > 0 such that |f(z) — f(y)| < € whenever
|z — y| < 8. Then, estimating the integral in (7.6), we obtain that

l(pn * f)(z) = f(2)] < /7r en(y) |f(z —y) — f(2)| dy

-

< /ydgon(y) F( —y) - F(=)] dy
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+ /lylzéson(w f@—y) — ()] dy

< e /|y|<6"”"(y)d“ /mf"(y) 1@ — )|+ £ (@)] dy
< e+2M on(y) dy.

ly|>6
Taking the sup of this inequality over z, the lim sup as n — o0, and using (7.5), we
find that
limsup [|¢n * f — fllo <€
n—oo

Since € > 0 is arbitrary, it follows that ¢, * f — f uniformly in C(T). O

Theorem 7.3 The trigonometric polynomials are dense in C(T) with respect to
the uniform norm.

Proof. For each n € N, we define the function ¢,, > 0 by
on(z) =cn (1 +cosz)”. (7.7)

We choose the constant ¢, so that

/gon(x) dr = 1. (7.8)
T

Since 1 + cosz has a strict maximum at z = 0, the graph of ¢, is sharply peaked
at x = 0 for large n, and the area under the graph concentrates near x = 0.
In particular, {p,} satisfies (7.5) (see Exercise 7.1). It follows that {¢,} is an
approximate identity, and hence ¢, * f converges uniformly to f from Theorem 7.2.

To complete the proof, we show that ¢, * f is a trigonometric polynomial for
any continuous function f. First, ¢, is a trigonometric polynomial; in fact,

n
, 2
on(z) = Z anke®®, where anp =2 "cp (n fk)

k=—n

Therefore,

pnrf@) = [ 3 awe () dy

k=—n

> ame™ [ e 5y dy

k=—n

n
E: ikz
bke s

k=—n
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where
b, = ank/e_ikyf(y) dy.
T

Thus, ¢, * f is a trigonometric polynomial. O

From the completeness of the Fourier basis, it follows that any function f €
L?(T) may be expanded in a Fourier series as

where the equality means convergence of the partial sums to f in the L?-norm, or
2

lim dx = 0.
N—oo Jr

1 4L
En:Z—ane _f(x)

From orthonormality, the Fourier coefficients fn € C of f are given by fn = (en, [),
or

N 1 —inx
o= \/—Z—W/Tf(a:)e dz.

Moreover, Parseval’s identity implies that

oo

/T @@ dr= S Fudn.

n=—oo

In particular, the L?-norm of a function can be computed either in terms of the
function or its Fourier coefficients, since

o0 2

[ir@ra= 3 |F

n=—oo

(7.9)

Thus, the periodic Fourier transform F : L?(T) — ¢?(Z) that maps a function to
its sequence of Fourier coefficients, by
Fr=(Rh)_
n—=-—oo
is a Hilbert space isomorphism between L?(T) and ¢?(Z). The projection theorem,
Theorem 6.13, implies that the partial sum

1 X
fN(ilU)Z\/—2—7r > Fae™
n=—N

is the best approximation of f by a trigonometric polynomial of degree N in the
sense of the L2-norm.
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An important property of the Fourier transform is that it maps the convolution of
two functions to the pointwise product of their Fourier coefficients. The convolution
of two L2-functions may either be defined by (7.2), where the integral is a Lebesgue
integral, or by a density argument using continuous functions, as in the following
proposition.

Proposition 7.4 If f,g € L?(T), then f x g € C(T) and
£ * gllec < (I £1l2llgll2- (7.10)

Proof. 1If f,g € C(T), then application of the Cauchy-Schwarz inequality to (7.2)
implies that

[f*g(@)| < I ll2llgll-

Taking the supremum of this equation with respect to z, we get (7.10). If f,g €
L?(T), then there are sequences (fx) and (gj) of continuous functions such that
|f = frll2 = 0 and ||g — gkll2 = 0 as kK — oo. The convolutions fj * g are
continuous functions. Moreover, they form a Cauchy sequence with respect to the
sup-norm since, from (7.10),

1(f5 = fr) * gill o + 1fx * (95 — 9r)ll
1£5 = felly llgslly + (1 fells 195 — grll,
M (|15 = frlls + llg; — gklly) -

Here, we use the fact that || f;]|, < M and [|gx||, < M for some constant M because
the sequences converge in L?(T). By the completeness of C(T), the sequence ( fi,*gx)
converges uniformly to a continuous function f*g. This limit is independent of the
sequences used to approximate f and g, and it satisfies (7.10). O

£ * g — fr * grll

INIA A

The inequality (7.10) is a special case of Young’s inequality for convolutions (see
Theorem 12.58).

Theorem 7.5 (Convolution) If f,g € L?(T), then
(f % 9)y, = V27 foGn- (7.11)

Proof. Because of the density of C(T) in L?(T), and the continuity of the Fourier
transform and the convolution with respect to L2-convergence, it is sufficient to
prove (7.11) for continuous functions f, g. In that case, we may exchange the order
of integration in the following computation:

\/%_W /Tf * g(x)e” "% dg
\/%—W/T (/Tf(w —)g(y) dy) e~ dx

—

(f*9),
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[ o= ([ 1= e ae) giye=m ay
fn /T g(y)e ™ dy

= 271'.)‘/';;9\”.

This proves the theorem. a

Alternatively, we may prove Theorem 7.5 directly for f, g € L'(T). The exchange
in the order of integration is justified by Fubini’s theorem, Theorem 12.41.

The L2-convergence of Fourier series is particularly simple. It is nevertheless
interesting to ask about other types of convergence. For example, the Fourier series
of a function f € L?(T) also converges pointwise a.e. to f. This result was proved
by Carleson, only as recently as 1966. An analysis of the pointwise convergence of
Fourier series is very subtle, and the proof is beyond the scope of this book. For
smooth functions, such as continuously differentiable functions, the convergence of
the partial sums is uniform, as we will show in Section 7.2 below.

The behavior of the partial sums near a point of discontinuity of a piecewise
smooth function is interesting. The sums do not converge uniformly; instead the
partial sums oscillate in an interval that contains the point of discontinuity. The
width of the interval where the oscillations occur shrinks to zero as N — 0, but
the size of the oscillations does not — in fact, for large N, the magnitude of the
oscillations is approximately 9% of the jump in f at the jump discontinuity. This
behavior is called the Gibbs phenomenon. As a result, care is required when one
uses Fourier series to represent discontinuous functions.

It is often convenient to modify the orthonormal basis {e,(z)} in (7.1) slight-
ly. First, if we use the non-normalized orthogonal basis {e"*}, then the Fourier
expansion of f € L?(T) is

e ~
f@ =3 Fuem,

n=—oo
where
7 1 —inz
fon= %/Tf(a:)e dz.
Second, the real-valued functions
{1,cosnz,sinnz | n=1,2,3,...}
also form an orthogonal basis, since
eint 4 o—ine £inT _ p—inz

cosng = ———— sinnx = -
2 ’ 2
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The corresponding Fourier expansion of f € L%(T) is

1 oo
f(z) = 200 + Z {an cosnz + by, sinnzx},

n=1

where
1 1 1 .
ap = —/f(x)d:c, ap = —/f(:c)cosna:da:, by, = —/f(m)smn:cd:c.
T JT m™JT T JT

This basis has the advantage that a real-valued function has real Fourier coefficients

an, bp- A second useful property of this basis is that its elements are even or odd.

A function f is even if f(—x) = f(z) for all z, and odd if f(—x) = —f(x) for all z.
Even functions f have a Fourier cosine expansion of the form

flz) = %ao + i an, cos(nz),

n=1

while odd functions f have a Fourier sine expansion of the form
o
fz) = Z by, sin(nx).
n=1

If a function is defined on the interval [0, 7], then we may extend it to an even or an
odd 27 periodic function on R. The original function may therefore be represented
by a Fourier cosine or sine expansion on [0, 7] (see Exercise 7.3). The quality of
the approximation of a function by the partial sums of a Fourier series sometimes
depends significantly on the basis used for the expansion. This is illustrated in
Figure 7.1.

Fourier series of multiply periodic functions are defined in an entirely analogous
way. A function f:R? — C is 27-periodic in each variable if

flxi, 2, ...,z +2m,...,xq) = f (21, T2, .-, T4y e oo, Tq) fori=1,...,d.

We may regard a multiply periodic function as a function on the d-dimensional
torus T¢ = R?/(27Z)%, which is the Cartesian product of d circles. An orthonormal
basis of L?(T¢) consists of the functions

1 in-x
en(x) = We’ )
where x = (21,...,24) € T, n = (ny,...,nq) € Z% and

n-xX=n1r + -+ ngrq.

The Fourier series expansion of a function f € L?(T?) is

1 7 inx
f(X):W Z fae™,

neZd
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Fig. 7.1 Fourier sine (left) and cosine (right) series for two piecewise linear functions. Note the
difference in the quality of the approximations.

where the series converges unconditionally with respect to the L2-norm, and

~

fn:

W a (X)€7 dx.

7.2 Fourier series of differentiable functions

There is an important connection between the smoothness of a function and the
rate of decay of its Fourier coefficients: the smoother a function (that is, the more
times it is differentiable), the faster its Fourier coefficients decay. Heuristically, a
smooth function contains a small amount of high frequency components.

If f € C(T) is continuously differentiable, then we can relate the Fourier coef-
ficients of f' to those of f using an integration by parts:

~

3 _ 1 27re—inz I.Z' T
1 1 2w
= m[f(Qw)_f(O)]_m 0

= inf,. (7.12)

(—in)e™™2 f(z) dx

Thus, differentiation of a function corresponds to multiplication of its Fourier coef-
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ficients by in. It follows by induction that if f € C*(T), then
) = (in)k §,.

Equation (7.12) may be used to define the notion of the derivative of a function
whose derivative is square integrable, but need not be continuous. Such a derivative
is called a weak derivative. The space of functions in L? whose weak derivatives are
in L? is denoted by H*, and is an example of a Sobolev space.

Definition 7.6 The Sobolev space H'(T) consists of all functions

1 & 4 A
z) = — e ¢ L2(T
@)=z 3§ ()
such that
> 2
Z n?|fn| < oo.

The weak L2-derivative f' € L*(T) of f € H'(T) is defined by the L?-convergent
Fourier series

o

f@)= = 3 infue.

n=—oo

The space H'(T) is a Hilbert space with respect to the inner product

fa)m = [ {T@ata) + P @)} do.

By Parseval’s theorem, the H!-inner product of two functions may be written in
terms of their Fourier coefficients as
oo

oy = 3 (1+1°) Fugn-

n=—oo

Convergence with respect to the associated H!'-norm corresponds to mean-square
convergence of functions and their derivatives.

A continuously differentiable function belongs to H'(T) and its weak derivative
is equal to the usual pointwise derivative. It follows from the density of C(T) in
L?(T) that H'(T) is the completion of the space C''(T) of continuously differentiable
functions (or the space of trigonometric polynomials) with respect to the H'-norm.

If f,g € H(T), then the definition of f’ and Parseval’s theorem implies that

oz = S infagn=— 3 FuinGn=—(f.9") 1.

n=-—0oo =
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After replacing f by f, we see that weak derivatives satisfy integration by parts:

/Tf'gdz':—/ng'da:. (7.13)

There are no boundary terms in the integration by parts formula for periodic func-
tions. We can use (7.13) to give an equivalent definition of the weak L>-derivative
of a function in terms of its integral against a smooth test function. If f € H'(T),
then the linear functional F : C1(T) C L?(T) — C defined by

F(g) = - /]r foldz,  @eCi),

is bounded. Conversely, if F is bounded for a given function f € L2(T), then, since
C*(T) is dense in H!(T), the bounded linear transformation theorem, Theorm 5.19,
implies that F extends to a unique bounded linear functional on L?(T). The Riesz
representation theorem (see Theorem 8.12 below) therefore implies that there is a
unique function f' € L*(T) such that F(y) = (F , ) holds for all ¢ € C*(T). This
leads to the following alternative definition of a weak L2-derivative.

Definition 7.7 A function f € L?(T) belongs to H'(T) if there is a constant M

such that
[ 1¢'ds
T

If f € HY(T), then the weak derivative f' of f is the unique element of L?(T) such
that

< M||g|lz for all ¢ € CH(T).

/f'cpd:c =- / fo'de  for all p € CH(T).
T T

More generally, for any & > 0, we define the Sobolev space
oo . o0
HM(T) = {f € L*(T) ‘ flz) = Z cne'™, Z In|?*|cn|? < oo}.
n=—o0o n=-—oo

If k is a natural number, the space H* consists of functions with k square-integrable
weak derivatives, but the Fourier series definition makes sense even when k is not
a natural number.

Lemma 7.8 Suppose that f € H¥(T) for k > 1/2. Let
. &

SN(;c)zx/—z_7r " Fue (7.14)
n=—N

be the Nth partial sum of the Fourier series of f, and define

] = ( > | )/
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Then there is a constant Cy, independent of f, such that

||SN f”oo

= Nk— 1/2)

and (Sn) converges uniformly to f as N — oo.

Proof. Since Sy € C(T) for every N € N and C(T) is complete with respect to
the supremum norm, it is sufficient to prove that for all M > N,

- sl < i ]

This equation follows from (7.12) and the Cauchy-Schwarz inequality:
1

> |

A

1SN — Swll

CVET e
1 ~1 1
S
\/2_7TN<|n\§M I
1/2 1/2
1 ~ |2 1
< N Z n|?* ‘fn Z [n|2F

N<|n|<M N<|n|<M

IA
i
)

~5

=

\

<

[\3

?S"

| S
-
S~
[V

which proves the result with

Cp = —F—v——.
2w (2k — 1) O

A corollary of this lemma is a special case of the Sobolev embedding theorem,
which implies, in particular, that if a function on T has a square-integrable weak
derivative, then it is continuous.

Theorem 7.9 (Sobolev embedding) If f € H*(T) for k > 1/2, then f € C(T).

Proof. From Lemma 7.8, the partial sums of the Fourier series of f converge
uniformly, so the limit is continuous. d

More generally, if f € H*(T), then the Fourier series for the derivatives f)
converge uniformly when k > j + 1/2, so f € C*(T), where £ is the greatest integer
strictly less than k — 1/2. For functions of several variables, one finds that f €
H*(T?) is continuous when k > d/2, and j-times continuously differentiable when
k> j+d/2 (see Exercise 7.5). Roughly speaking, there is a “loss” of slightly more
than one-half a derivative per space dimension in passing from L? derivatives to
continuous derivatives.
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7.3 The heat equation

Fourier series are an essential tool for the study of a wide variety of problems in
engineering and science. In this section, we use Fourier series to solve the heat, or
diffusion, equation which models the flow of heat in a conducting body. This was
the original problem that led Jean-Baptiste Fourier to develop the series expan-
sion named after him, although similar ideas had been suggested earlier by Daniel
Bernoulli. The same equation also describes the diffusion of a dye or pollutant in a
fluid.

We consider a thin ring made of a heat conducting material. In a one-dimen-
sional approximation, we can represent the ring by a circle. We choose units of
space and time so that the length of the ring is 27 and the thermal conductivity of
the material is equal to one. The temperature u(z,t) at time ¢ > 0 and position
z € T along the ring satisfies the heat or diffusion equation,

Ut = Ugyg, (715)
u(z,0) = f(z),

where f : T — R is a given function describing the initial temperature in the ring.
If u(z, t) is a smooth solution of the heat equation, then, multiplying the equation
by 2u and rearranging the result, we get that

u?), = (2uu — 22,
( )t ( Z)w T

Integration of this equation over T, and use of the periodicity of u, implies that

i/uz(w,t) dz = —2/ |ug(x,t)|? dz < 0.

Therefore, ||u(-,t)|| < ||£(-)||, where ||-|| denotes the L?-norm in z, so it is reasonable
to look for solutions u(-,t) that belong to L2(T) for all ¢t > 0.

To make the notion of solutions that belong to L? more precise, let us first
suppose that the initial data f is a trigonometric polynomial,

N
fl@)y="Y_ faem™. (7.16)
n=—N
We look for a solution
N
u(@,t) = > up(t)e™, (7.17)
n=—N

that is also a trigonometric polynomial, with coefficients ., (t) that are continuously
differentiable functions of ¢. Using (7.17) in the heat equation, computing the ¢ and
z derivatives, and equating Fourier coefficients, we find that u,,(t) satisfies

U + nu, =0, (7.18)
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un(o) = fns

where the dot denotes a derivative with respect to t. Thus, the PDE (7.15) reduces
to a decoupled system of ODEs. The solutions of (7.18) are

Un(t) = fae ™t

Therefore, the solution of the heat equation with the initial data (7.16) is given by

N
u(z,t) = Z foe™™ teine (7.19)
n=—N

We may write this solution more abstractly as

u( ) =T@)f(),

where T'(t) : P — P is the linear operator on the space P of trigonometric polyno-
mials defined by

T(t)

N N
. 2 .
§ : fnezmc — § fne—n teznw_
n=—N n=—N

Parseval’s theorem (7.9) implies that, for ¢ > 0,

N N
ITWFR= D 1l < 3 |fal? = 11
n=—N

n=—N

Thus, the solution operator T'(t) is bounded with respect to the L2-operator norm
when ¢ > 0. The operator T'(¢) is unbounded when ¢ < 0.

By the bounded linear transformation theorem, Theorem 5.19, there is a u-
nique bounded extension of T'(t) from P to L?(T), which we still denote by T'(t).
Explicitly, if

f@)y= Y fae™ € LX(T)

then u(-,t) = T'(t)f € L*(T) is given by

u(z,t) = i fne_"Ztei"z. (7.20)

n=—oo

We may regard this equation as defining the exponential
T(t) — et82/8z2

of the unbounded operator A = 82/ dz? with periodic boundary conditions. Rather
than consider in detail when this Fourier series converges to a continuously differen-
tiable, or classical, solution of the heat equation that satisfies the initial condition
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pointwise, we will simply say that the function w obtained in this way is a weak

solution of the heat equation (7.15). In Chapter 10.8, we will see that this point of

view corresponds to interpreting the derivatives in (7.15) in a distributional sense.
The operators T'(t) have the following properties:

(a) T(0) =T;
(b) T(s)T'(t) =T(s+t) for s,t > 0;
(c) T(t)f — f ast — 0T for each f € L*(T).

In particular, T'(t) converges strongly, but not uniformly, to I as t — 0. We say
that {T'(t) | t > 0} is a Co-semigroup, in contrast with the uniformly continuous
group of operators with a bounded generator defined in Theorem 5.49.

The action of the solution operator T'(¢) on a function is given by multiplica-
tion of the function’s nth Fourier coefficient by e~"’t. The convolution theorem,
Theorem 7.5, implies that for ¢ > 0 the operator has the spatial representation
T(t)f = gt * f of convolution with a function g¢, called the Green’s function, where

o0

gt(ZE) — i Z einzfn2t_ (721)

Using the Poisson summation formula in (11.43), we can write this series as an
infinite, periodic sum of Gaussians,

(z—27n)? /4t

gl@)= FZ,

We can immediately read off from (7.20) several important qualitative properties
of the heat equation. The first is the smoothing property. For every t > 0, we have
u(-,t) € C°(T), because the Fourier coefficients decay exponentially quickly as
n — 0o. This holds even if the initial condition has a discontinuity, as illustrated
in Figure 7.2 for the case of a step function. In more detail, we have

o0
Z |n|2k‘fne—n t‘ <m€ax{ n2ke—n t}2|fm|2<00

n=—oo

for each k > 0, so u(-,t) € H¥(T) for every k € N. The Sobolev embedding theorem
in Theorem 7.9 implies that u(-,t) € C*¥~1(T) for every k € N, and therefore u(z, t)
has continuous partial derivatives with respect to x of all orders. It then follows
from the heat equation that w has continuous partial derivatives with respect to ¢
of all orders for ¢ > 0.

The second property is irreversibility. A solution may not exist for ¢ < 0, even
if the “final data” f is C'*°. For example, if

oo

flz) = Z e~ IMlein® ¢ 0(T),

n=—oo
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then the Fourier series solution (7.20) diverges for any ¢ < 0. Equivalently, letting
t — —t, we see that the initial value problem for the backwards heat equation,

Ut = —Ugg, U(.’L’,O) = f(m)a

may not have a solution for ¢ > 0, and is said to be ill-posed. This ill-posedness
reflects the impossibility of determining the temperature distribution that led to a
given observed temperature distribution because of the rapid damping of tempera-
ture variations that fluctuate rapidly in space.

The third property is the exponential decay of solutions to an equilibrium state
as t = +oo. It follows from the heat equation that the mean temperature,

W =5 [ 1@
is independent of time since

i/u(:c,t)dx:/ut(x,t)d:c:/um(m,t)d:czo.
dt Jy T T

The solution u(z,t) converges exponentially quickly to its mean value, because

oo

sup Z fn€7”2t€inz _ <U> S Z |fn|€7n2t
ze€T |, " n#£0
vz oo 1/2
2
< Tur| [xe]
n#0 n=1
< Cllfllzee™,

where C is a suitable constant. The exponential decay is a consequence of a spectral
gap between the lowest eigenvalue, zero, of the operator %/0z? on T and the rest
of its spectrum.

Heat diffusion on a ring leads to periodic boundary conditions in z. Other
types of problems may be analyzed in an analogous way. An interesting example
is the modeling of seasonal temperature variations in the earth as a function of
depth. If we neglect daily fluctuations, a reasonable assumption is that the surface
temperature of the earth is a periodic function of time with period equal to one year,
and that the temperature at a depth = below the surface is also a periodic function
of time. We further require that the temperature is bounded at large depths.

We choose a time unit so that 1 year = 27, and a length unit so that the thermal
conductivity of the earth, assumed constant, is equal to one. The temperature
u(z,t) then satisfies the following problem in z > 0, ¢t > 0:

Ut = Ugy,

u(0,8) = f(t),
u(-,t) € L¥([0,00)),
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Fig. 7.2 The time evolution of the temperature distribution on a ring. The initial distribution
is a step function. A truncated Fourier series is used to approximate the step function, and the
Gibbs phenomenon can be seen near the points of discontinuity. The final distribution is uniform.

u(z,t) = u(z, t + 27).

Here, f(t) is a given real-valued, 27-periodic function that describes the seasonal
temperature variations at the earth’s surface.
We expand the temperature u(x,t) at depth z in a Fourier series in ¢,

oo
u(z,t) = Z un(2)e™,
n=-—oo
Use of this expansion in the heat equation implies that the coefficients u, () satisfy
—ull 4+ inu, = 0, (7.22)
Un (0) = fns

Uy € L™,

where the prime denotes a derivative with respect to x, and f, is the nth Fourier
coefficient of f,

1 —in
nzﬂAmktﬁ
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The solution of (7.22) is
foexp(£yv/n(l +i)z/vV2) ifn>0
un(Z) =< fo ifn=0.
frnexp(£/In[(1 = i)z/v2) ifn <0

The solutions with the plus sign in the exponent are excluded because they are
unbounded as £ — oo. The solution for u(z,t) is therefore

00
u(z,t) = fO+Zfne_|n/2|1/2wei("t—|n/2|1/2$)
n=1
-1
n Z fne—\n/2\1/2mei(nt+|n/2|1/2iﬂ) (723)

For example, suppose that the surface temperature is given by a simple harmonic
function

u(0,t) = a + bsint.

Then (7.23) may be written as

u(z,t) = a+bexp (—%) sin (t— %) .

See Figure 7.3 for a graph of this solution. The exponential damping factor in front
of the sine function describes a reduction in the magnitude of the variations in the
earth’s temperature below the surface. The argument of the sine function indicates
that there is a depth-dependent phase shift in the temperature variations. At a
depth = /27, the variations are reduced by a factor of e~™ ~ 0.04, and are
opposite in phase to the surface temperature. For realistic numerical values of the
thermal conductivity of the soil, this happens at a depth of about 13 feet. Thus, 13
feet below the surface the maximum temperature is reached in winter and minimum
in summer! At this depth, the difference between winter and summer temperatures
is reduced by a factor of about 25, as compared with the temperature difference
at the surface. This reduction explains the usefulness of wine cellars, since it is
important to store wine at a cool, uniform temperature.

7.4 Other partial differential equations

Fourier series may be used to study periodic solutions of any linear, constant coef-
ficient partial differential equation. In this section, we consider a number of exam-
ples, including the wave equation and Laplace’s equation, the two other classical
linear partial differential equations of applied mathematics, in addition to the heat
equation. The Fourier series may be interpreted either as classical solutions if they
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Fig. 7.3 The temperature of the earth as a function of time and depth. The time unit is one
year divided by 2w. The unit of depth is roughly 1 meter. The temperature unit is arbitary. The
maximum and minimum temperature at the surface (z = 0) represent the maximum and minimum
mean soil temperatures attained during summer and winter respectively.

converge sufficiently quickly to have continuous derivatives, or as weak solutions if
they do not.
The one-dimensional wave equation is

U = Cgy. (7.24)

This equation describes the propagation of waves with a constant speed ¢, such
as waves on an elastic string, sound waves, or light waves in a vacuum. The wave
equation (7.24) is second order in time ¢, so we expect that two initial conditions are
required to specify a unique solution. The initial value problem for wave propagation
on a circle is

Ut — Uy = 0,
u(x,0) = f(x),
ut(x,O) = g(x)a

where f,g € L?(T) are given functions.
The separated solutions of the wave equation (7.24), proportional to e"®, are

u(z,t) — (aeinct + be—z’nct) eimv



168 Fourier series

for n # 0, and
u(z,t) = a+ bt
for n = 0. Superposing these solutions, the general solution is of the form
u(z,t) = ag + bot + Z {anei"(z+0t) + bnei"(m’d)} . (7.25)
n#£0

The constants a,, and b, can be determined from the initial conditions as
1 i 1 i
ao = fo, bo=go, an=5\fn——9n)> bn=5{fnt+—0n),
2 nce 2 ne

where f, and g, are given by

fo=ge [ £@e™ g0 = o [ g

=27TT

In contrast with the heat equation, the solution exists for both ¢ > 0 and ¢ < 0,
there is no smoothing of the initial data, and the solution does not converge to a
stationary solution as ¢ — oo.

The two-dimensional Laplace equation is

Ugg + Uyy = 0. (7.26)

We will use Fourier series to solve a boundary value problem for Laplace’s equation
in the unit disc

Q={(z,y) | 2* +y* < 1}.
The Dirichlet problem consists of (7.26) in  with the boundary condition
u=f on 012, (7.27)

where f : T — R is a given function. In polar coordinates (r,6) we may write
(7.26)—(7.27) for u(r,6) as

1 1 .
. (rur), + U = 0 inr<1,
u(1,6) = f(0).

The Laplace equation in polar coordinates has the separated solutions
u(r,0) = (ar™ +br ") e? for n € Z.

The general solution of Laplace’s equation that is bounded inside the unit disc is
therefore
oo

u(r,8) = Z anr!™ e, (7.28)

n=—oo
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The boundary condition implies that

1 ,
"= f)e " de.
0 = 5= [ 1)
Using the convolution theorem, we may write (7.28) in r < 1 as

u(r,0) = (9" x )(9),

where g" : T — R is the Poisson kernel,

oo

1 .

- |n| jind

9" (0) = o E ri™e™”.
n=—oo

The geometric series for n > 0 and n < 0 may be summed to give

oy L 1—1r2
9'(6) = 271 —2rcosf + 12
The series in (7.28) converges to an infinitely differentiable — in fact, analytic —
function in r < 1 for any f € L?(T), so the Laplace equation smoothes the boundary
data.
In 1895 Korteweg and de Vries introduced a nonlinear PDE to describe water
waves in shallow channels:

Ut = UUp + Uggg- (7.29)

This KdV equation has exact localized traveling wave solutions called solitary waves,
or solitons. A remarkable fact is that, in spite of its nonlinearity, the KdV equation
can be solved exactly by the inverse scattering method introduced by Gardner,
Greene, Kruskal, and Miura in 1967. This method depends on a surprising connec-
tion between the nonlinear KdV equation and a spectral problem for an associated
linear operator (see Exercise 9.15). We will not discuss the inverse scattering method
here, but we will use Fourier analysis to describe the dispersive property of the KAV
equation.

If u is sufficiently small, then we do not expect the nonlinear term wuu, to
influence the solution significantly, so we omit it in a first approximation. We
therefore consider the linearized KdV equation,

Ut = Uggg- (7.30)
The general solution that is a 27-periodic function of z is
oo
u(z,t) = Z anen(@=n’t)
n=—oo

Notice that the speed of propagation of e”® depends on n, that is, on the wave-
length. Since the components in the wave with different wavelengths propagate at
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Fig. 7.4 The effect of dispersion is illustrated here with the solution (7.30) of the linearized KdV
equation on a ring for times t = 0,e~19,e=2, and ¢t = e. The initial condition is a step function.

different speeds, a wave generally spreads out or disperses; hence the name disper-
sive waves. In particular, a wave front does not maintain its shape while propagat-
ing. See Figure 7.4 for an illustration. Contrast this with the solution of the wave
equation (7.25), where different Fourier components propagate at the same speed.
The wave equation is said to be nondispersive. Another example of a dispersive
wave equation, the Schrédinger equation from quantum mechanics, is discussed in
Exercise 7.12.

7.5 More applications of Fourier Series

The use of Fourier series is not restricted to differential equations. In this section,
we consider two other applications.

The first is a solution of the isoperimetric problem, which states that of all closed
curves of a given length, a circle encloses the maximum area. This result can also
be stated as an inequality: for any closed curve of length L enclosing an area A, we
have

4TA < L2 (7.31)

with equality if and only if the curve is a circle. Equation (7.31) is called the
isoperimetric inequality. There are many different proofs of this result; the one we
give, using Fourier series, is due to Hurwitz.
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In order to state and prove a precise result, we reformulate the problem analyt-
ically. Without loss of generality, we consider curves whose lengths are normalized
to 27, and that are parametrized by arclength, s, positively oriented in the counter-
clockwise direction. We may represent such a smooth, closed curve I' in the plane
R? by

(z,y) = (f(s),9(s)), (7.32)
where f,g: T — R are continuously differentiable functions such that
f(s)? +4(s)?=1. (7.33)

Here, the dot denotes a derivative with respect to s.

Green’s theorem states that if {2 is a region in the plane with a smooth, positively
oriented boundary 89 and u,v : @ — R are continuously differentiable functions,
then

/ {ugs + vy} dedy = / {udy — vdz} .
Q 80

If T does not intersect itself, then the use of Green’s theorem with v = z/2 and
v = y/2 implies that the area A enclosed by I is given by

A= / {19)i() = 9(5)/(s) )} ds. (7.34)

The expressions in (7.33) and (7.34) make sense for general functions f,g € H(T).
Thus, an analytical formulation of the isoperimetric problem is to find functions
f,9 € HY(T) that maximize the area functional A in (7.34) subject to the constraint
(7.33).

Theorem 7.10 Suppose that a curve I is given by x = f(s), v = g(s), where
f,g9 € HY(T) are real-valued functions that satisfy (7.33), and the area A enclosed
by T is given by (7.34). Then A < 7, with equality if and only T is a circle.

Proof. We Fourier expand f and g as
[ == 3 R )= Y g™ (1)
= on e n ) g\s) = o n:,oogn . .

Since f and g are real valued, we have f,n = z and §_,, = g, for all n. Integration
of (7.33) over T gives

21 = /T {f'(s)2 + g(s)2} ds.

From Parseval’s theorem, this equation implies that

oo

2r= > n2{

n=—oo

fn

2
+ |§n|2} : (7.36)
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and equation (7.34) implies that
0 —~ ~
2= in{fufn — Fun}
n=-—oo

Subtracting these series and rearranging the result, we find that
1 ~ 2 2
27r—2A=§§){‘nfn—zgn +(n2—1)< +|gn|2)}.

Since the terms in the series on the right hand side of this equation are nonnegative,
it follows that A < w. Moreover, we have equality if and only if f, = g, = 0 for
n > 2, and f; = ig;. Equation (7.36) implies that |fi1| = y/7/2, so that

Jz’-\l:\/geié’ ’gl:_i\/geié’

for some 6 € R. Writing fo = V2mxy and gy = V27yo, where zg,y9 € R, we find
from (7.35) that

2 ~ ~
+‘n§n+ifn fn

f(s) = xg + cos(s +6), 9(s) = yo + sin(s + 9).
Thus, if A =7, the curve z = f(s), y = g(s) is a circle. O

Our final application is an ergodic theorem for one of the simplest dynamical
systems one can imagine, namely, rotations of the circle. We will prove another
ergodic theorem for more general dynamical systems later on, in Theorem 8.37.

Let v € R. We define a map F, : T — T on the circle T by

F,(z) = z + 2my. (7.37)

This map is called the circle map or the rotation map. For every xg € T, the iterated
application of F, generates a sequence of points (z,);2q, where z,, = FJ}(zo). The
set {x,} is called the orbit or trajectory of xo under F.,. If v is rational, then these
points eventually repeat, and each orbit contains finitely many distinct points. If
is irrational, then z,, # x, for m # n, and there are infinitely many points in each
orbit (see Figure 7.5).

If f: T — Cis a continuous function on T, we define two averages of f, a time
average

N
(iloo) = Jim 5y 3 Slow)

and a phase-space average,

(Pon = 55 [ F1e) e
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This phase-space average may be regarded as a probabilistic average with respect
to a uniform probability measure on T. The following ergodic theorem, proved by
Weyl in 1916, states that time averages and phase-space averages are equal when ~
is irrational. This result is false when + is rational.

Theorem 7.11 (Weyl ergodic) If « is irrational, then
(He(zo) = (fpn (7.38)
for all f € C(T) and all zg € T.

Proof. First, we show that (7.38) holds for the functions ™ for each m € Z.
If m = 0, then both averages are equal to 1. If m # 0, then (™)., = 0, and the
time average may be explicitly computed as follows:

N
. 1 .
imx _ : E : im(zo+2mny)
(™ = Jim 5 +1&~ ¢

N
eimwo Z [627rim’y]n
n=0

eim:co (1 _ [eQWim'y]N—i-l)

1 — e2mimy

li
NI—IE(IDON—FI
li 1
m
Nosoco N +1
= O’

where we use the fact that e2™™ £ 1 for irrational . Since both averages are
linear in f, it follows that (7.38) holds for all trigonometric polynomials.

The trigonometric polynomials are dense in C(T). Therefore, if f € C(T) and
€ > 0, then there is a trigonometric polynomial p such that ||f — p||c < €, and

1 X 1 2w 1 X 1 e
N—an::of(wn)_§~/0 f(z)dz N—ng(xn)—%/o p(z) dz| .

Taking the lim sup of this equation as N — oo, we obtain that

<2+

N
1
1 N1 - < Ze.
ljﬂn_ffop N+1 T;)f(xn) (f)pn| < 2e
Since € > 0 is arbitrary, this proves (7.38) for all f € C(T) and all zo € T. O

A consequence of this ergodic theorem is the following result, which says that
the points in an orbit {z, | n > 0} are uniformly distributed on the circle.

Corollary 7.12 Suppose that + is irrational and [ is an interval in T of length A.
Then

lim #{n|0<n<N,z, €I} A
N5oo N+1 2’

(7.39)

where #S denotes the number of points in the set S.
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Fig. 7.5 The repeated images of the origin under the circle map, F,;‘(O), for 1 <mn < 100. On the
left, ¥ = 2/7 is rational. On the right, ¥ = (v/5 — 1)/2 is the golden ratio, which is irrational.

Proof. Let x5 be the characteristic function of the interval I. Then (7.39) is
equivalent to the statement that

{(xr)t = (X1)ph- (7.40)

This equation does not follow directly from Theorem 7.11 because 7 is not contin-
uous. We therefore approximate x; by continuous functions. We choose sequences
(fx) and (gx) of nonnegative, continuous functions such that f < xr < g and

/1rfk($)d$—>/1rX1(m)dw, /Tgk(x)d:v—)/jrxf(x)dm as k — oo.

We leave it to the reader to construct such sequences. Since fr < xr1 < g,

1 N 1 N 1 N
- < - < _ - )
N+1 ;}f’“(m”) = N+1nz:;]x’(m") S N+1 ;gk(xn)

Taking the limit as N — oo of this equation, and applying Theorem 7.11 to the
functions fx and gr, we obtain that

N
1 1
1 < limi
27T/Tfk(a:) de < 1}\rrn1nf —N+1nE:0X1(mn)

N
1 1

< i <= da.

< ljifnjgopN+IT;)XI(xn) < 27T/Tgk(a:) ar

Letting &k — oo, we find that

N
1 1
- < liminf ——
37 J i@ e < Nl 5oy 3 xaen)
N
<

1
lim sup z
P g 2 (o)
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1
< o= [ xi(z)de.
27 T
It follows that the limit defining the time average of x exists and satisfies equation

7.40) for all zg € T. O
(7.40)

Theorem 7.11 actually holds for every f € L!(T), except possibly for a set of
initial points z¢ in T with zero Lebesgue measure. The proof, however, requires
additional results from measure theory.

One application of the ergodic theorem is to the numerical integration of func-
tions by the Monte Carlo method, in which one approximates the phase average, or
integral, of f by a time average. This method is not required in the simple case
of functions defined on a circle, but it is useful for the the numerical integration of
functions that depend on a large number of independent variables, where standard
numerical integration formulae may become prohibitively expensive.

7.6 Wavelets

In this section, we introduce a special class of orthonormal bases of L?([0,1]) and
L2(R), called wavelets. These bases have proved to be very useful in signal analysis
and data compression. With this application in mind, we will refer to the indepen-
dent variable as a “time” variable. Wavelet bases in several independent variables
are equally useful in image compression and many other applications.

Fourier expansions provide an efficient representation of stationary functions
whose properties are invariant under translations in time. They are not as efficient
in representing other types of functions, such as transient functions that vanish on
most of their domain, or functions which vary much more rapidly at some times than
at others. In the case of periodic functions, Parseval’s identity in Theorem 6.26,

I7IP ="

n

2

’

fn

suggests that a large number of terms in a Fourier series expansion of f is needed if
the quantity || f|| is distributed over a large number of coefficients . which are not
too small. For example, from Lemma 7.8, this happens when f is discontinuous,
so that its Fourier coefficients decay slowly as n — oco. Signals with sharp, or
almost discontinuous, transitions and transient signals supported on a relatively
small portion of the relevant time interval, such as the short beeps transmitted by
a modem, are very common.

It is often useful to compress a signal before transmission or storage. To represent
a function f(t) accurately on the interval 0 < ¢ < 1 by storing a finite number of
values f(nAt), where n = 0,..., N with N = 1/At, we need to choose At small
enough that all rapid transitions can be reconstructed from this list of values. If
the changes are rapid, then At has to be small and N has to be large. Suppose,
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however, that we have an orthonormal basis of L%([0,1]) with the property that a
finite linear combination of basis elements with M terms, where M is much smaller
than N, yields a good approximation of the function f. Then we can store or
transmit the function with M instead of N numbers without significant loss of
information. Roughly speaking, we would then have compressed the data with a
compression ratio of N : M. One reason for the use of wavelets in representing
signals, or images, is that they allow for large compression ratios. There are many
different kinds of wavelets, but all of them share the property that they describe a
function at a sequence of different time, or length, scales. This allows us to represent
a function efficiently by using wavelets whose local rate of variation is adapted to
that of the function. We begin by describing a simple example, the Haar wavelets.
We define the Haar scaling function ¢ € L*(R) by

w(@) = {

The function ¢ is the characteristic function of the interval [0,1), and is often
referred to as a “box” function because of the shape of its graph. The basic Haar
wavelet, or mother wavelet, 1 € L*(R) is given by

1 if0<z<l,

. (7.41)
0 otherwise.

1 if0<z<1/2
Ylx)=4¢ -1 if1/2<z<1, (7.42)
0 otherwise.

These functions satisfy the scaling relations

p(z) = o(22) + o2z — 1), (7.43)
P(z) = o(22) — (22 — 1). (7.44)
For n, k € Z, we define scaled translates ¢, , ¥nr € L*(R) of ¢, 1 by
oni(@) =270 (20 — k), Ynnrla) =27 (2" — k). (7.45)
First, consider the Hilbert space L*([0,1]) with its usual inner product. For
n=0,1,2,..., let V,, be the finite-dimensional subspace

Vi ={f | f is constant on [k/2",(k + 1)/2") for k=0,...,2" —1}. (7.46)

Elements of V,, are step functions that are constant on intervals of length 27". The
value of f € V,, at the right endpoint z = 1 is irrelevant, since functions in L2([0, 1])
that are equal a.e. are equivalent. Clearly, we have V,, C Vj,41.

The function ¢y,  is the characteristic function of the interval [k2™ ", (k+1)2™).
The set

is therefore a basis of V,, for each n > 0. Since 4,41 D A,, the sets A, are not
disjoint, and we cannot form a basis of | J,,cy Vi by taking their union. Instead, for
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Fig. 7.6 Some members of the sets of functions By, defined in (7.47).

n=20,1,2,..., we define subsets B, of V,, by
BO = {‘P0,0} y Bn+1 = {'mek | k‘ = 0, 1, .. .,2" — 1} . (747)

The subsets B,, and B,, are disjoint for n # m. The union of these sets, B =
U Bn, or

B= {000} U{thni |n=0,1,2,...,k=0,1,...,27 — 1}, (7.48)

is called the Haar wavelet basis of L?([0,1]). Some of these basis functions are
illustrated in Figure 7.6.
Solving (7.43)—(7.44) for ¢(2z) and ¢(2z — 1), we get

0(22) = 1 (p(z) + (),
022~ 1) = 3 (pla) — ¥())

It follows by induction from dyadic dilations z + 2z of these equations that ¢y,
is a linear combination of ¢g ¢ and ¥, with m < n. Hence the linear span of B
contains bases A,, of V,, for every n € N. Using this fact, we can prove that B is a
basis of L?([0,1]).

Lemma 7.13 The set B in (7.48) is an orthonormal basis of L?([0, 1]).

Proof. It follows from Exercise 7.16 that B is an orthonormal set, so we just have
to show that it is complete. Suppose that f € C([0,1]) and € > 0. By Theorem 1.67,
f is uniformly continuous, so there is an n such that |f(z) — f(y)| < e for all
x,y € [0,1] with |z — y| < 27™. We define the step function approximation g € V,,
of f by

on_1

g@) = Y 7 (k27) pui(@).
k=0
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Then g is in the linear span of Uzl_:lo B,,, and

sup |f(z) —g(z)| <e (7.49)

0<z<1
Thus any f € C([0,1]) is the uniform limit of finite linear combinations of functions
in B. Since the continuous functions are dense in L?([0,1]), and the sup-norm is
stronger than the L?-norm, the orthonormal set B is complete in L?([0, 1]). O

We define the Haar wavelet basis B of L?(R) in a similar way, as
B={Ynr|n€l,kelL}, (7.50)

where 1, 1 is defined in (7.45). This basis includes wavelets supported on intervals
of arbitrarily large length, when n is large and negative, as well as on intervals of
arbitrarily small length, when n is large and positive. The wavelet basis of L2(R)
does not include a scaling function ¢, in contrast with the wavelet basis (7.48) of
L2([0, 1)).

Lemma 7.14 The set B in (7.50) is an orthonormal basis of L?(R).

Proof. The set B is orthonormal , so we just have to show that it is complete.
Suppose that f € L?(R) is orthogonal to B. Then f is orthogonal to all wavelets
¥,k that are supported on any compact interval [—2V,2V]. Since we can transform
the interval [—2%V,2V] to [0,1] by a translation z — x + 2V and a dyadic dilation
z — 2Nz and the basis B is invariant under such translations and dilations,
it follows from Lemma 7.13 that f is constant on every compact interval [—2V,2V].
Therefore f is constant on R. Since the nonzero constant functions do not belong
to L?(R), we conclude that f = 0, so B is complete. O

The Haar wavelets are very simple, compactly supported, orthonormal, step
functions that take only three different values. Each wavelet is obtained by dilation
and translation of a single basic wavelet v, derived from a scaling function ¢.
These properties make the Haar wavelets especially suitable for the representation
of localized functions, as well as functions that vary on different lengthscales at
different locations, and functions with a self-similar, fractal structure.

A drawback of the Haar wavelets is that they are discontinuous, so the par-
tial sums approximating a continuous function are also discontinuous. It is often
desirable to have continuous approximations of continuous functions, and C? ap-
proximations of C? functions. This is one motivation for the introduction of other
wavelet bases. For definiteness, we consider wavelet bases of L?(R). The follow-
ing azioms of multiresolution analysis capture the essential properties of the Haar
wavelet basis that we want to generalize.

Definition 7.15 (Multiresolution analysis) A family {V,, | n € Z} of closed
linear subspaces of L*(R) and a function ¢ € L?(R) are called a multiresolution
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analysis of L?(R) if the following properties hold:

(a) f(z) € V,, if and only if f(2z) € V41 for all n € Z (scaling); (7.51)
(b) V;, C V41 for all n € Z (inclusion); (7.52)
(€) Unez Vo = L2(R) (density); (7.53)
(d) Npez Vo = {0} (maximality); (7.54)
(e) there is a function ¢ € L%(R) N L'(R) such that

{p(z — k) | k € Z} is an orthonormal basis of Vo (basis).  (7.55)

The five properties required in this definition are not independent. One can
prove that (d) follows from (a), (b), and (e), and that, under the assumption that
(a), (b), and (e) hold, (c) is equivalent to the property that $(0) # 0, where @ is
the Fourier transform of ¢. For brevity, we do not prove these statements here.

The spaces V,, defined in (7.46) and the function ¢ defined in (7.41) satisfy these
axioms. We call ¢ the scaling function of the multiresolution analysis. We will ex-
plain how to obtain an orthonormal wavelet basis of L?(R) from this structure.
When the scaling function ¢ is the box function, defined in (7.41), this procedure
will reproduce the Haar wavelets, but other scaling functions lead to different or-
thonormal wavelet bases.

From (7.51) and (7.55) it follows that

A, ={2"2p(2"x — k) | k€ Z}

is an orthonormal basis of V,, for each n € Z. Since V,, C V,,41, each function in
A, is a linear combination of functions of 4,1, so the sets A, are not linearly
independent. To obtain linearly independent sets of functions, we define closed
linear subspaces W, of V41 by

Vn+1 = Vn ® Wn

The subspaces W,, are called wavelet subspaces. From their definition and the
inclusion property (7.52), we see that W,, and W,, are orthogonal subspaces for
m # n. Moreover, from Exercise 7.15, properties (7.52)—(7.54) imply that

Pw, = L*(®. (7.56)

nez

Now suppose that we have a function 1) € L?(R), called a wawvelet, such that
{¢(z — k) | k € Z} is an orthonormal basis of Wy.

Equation (7.58) below shows how the wavelet 1) is obtained from the scaling function
. It then follows from the scaling axiom (7.51) that for each n € Z the set

B, = {2"/2¢(2"m —k)|ke Z}
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is an orthonormal basis of W, so, from (7.56), their union
B= {2"/2¢(2"x —k) | nke Z}

is an orthonormal basis of L?(R).

The axioms of multiresolution analysis impose severe restrictions on the scaling
function. Translates of the scaling function must be orthogonal, and the function
must be a linear combination of scaled translates of itself, meaning that there are
constants ¢ such that

p(r) = Z crp(2z — k). (7.57)
kezZ
For example, the Haar scaling function satisfies (7.43), so in that case ¢o =¢; =1
and ¢ = 0 otherwise. For simplicity, we assume that ¢, € R and all but finitely
many of the coeflicients ¢, are zero.
The basic wavelet 1 belongs to V7 and is orthogonal to V5. The following
function satisfies these conditions:

¥(z) = D (-1 *er_rp(2z — k). (7.58)

kEZ

For example, in the case of the Haar wavelets, this equation gives (7.44). The
function ¢ in (7.58) clearly belongs to Vi, since it is a linear combination of the
orthonormal basis elements 2'/2p(2z — k) of Vi. Moreover, for j € Z, we find from
(7.57) and (7.58) that

(p(x = j),¥(=) = 3 Z(_l)kck—2jcl—k-

kEZ

This sum is zero for every j € Z, since the change of summation variable from k—2j
to 1 — k implies that

Z(—l)kck_gjcl_k = Z(—1)2j+1_k01—kck—2j = - Z(_l)kck—Qjcl—k-
kEZ kEZ kEZ

Hence 1) is orthogonal to Vg. The translates {¢)(z — k) | k € Z} form a basis of W,
but we omit a proof of this fact here.

Next, we derive restrictions on the coefficients ¢, in the scaling equation (7.57).
We assume that the integral of ¢ is nonzero. It can, in fact, be shown that this is
necessarily the case. By rescaling ¢ and z, we may assume without loss of generality

that
[e@ds=1 [ je@Pdo=1.
R R

Changing variables  — 2z, we see that

/cp(2:c) dr = %, / lo(2z) | dz = %
R R
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Integration of (7.57) over R therefore implies that

=2 (7.59)

kEZ

Since {¢(2x — k)|k € Z} is an orthogonal set, an application of Parseval’s identity
to (7.57) implies that

Y =2 (7.60)

kEZL

The orthogonality of ¢(xz — j) and ¢(z) for j # 0, together with (7.57), further
imply that

> ck_sjer =0  for j€Zand j#0. (7.61)
kEZ

Finally, it is often useful to require that several moments of the wavelet ¢ vanish,
meaning that

/wmzﬁ(w)dxzo form=0,1,...,p—1. (7.62)
R

The scaling coeflicients ¢; and the wavelet ¢ must therefore satisfy (7.59)—(7.61).
For example, the Haar wavelet coefficients cg = 1, ¢; = 1, and ¢ = 0 for k # 0,1
satisfy these conditions, and (7.62) with p = 1, but there are many other possible
choices of the scaling coeffients.

One interesting choice, that satisfies (7.62) with p = 2, is due to Daubechies:

Co =

1+V), o= ;6+VE),
(-3, e=30-V3)

Cy =

I N

and ¢ = 0 otherwise. We call the corresponding wavelet the D4 wavelet. We can
find the scaling function ¢ by regarding (7.57) as a fixed point equation and solving
it iteratively, starting with the box function, for example, as an initial guess:

Pnt1(z) = Z arpn (2 — k), n >0,
kEZ

wo(z) = X[0,1)(5U)-

It is possible to show that ¢, converges to a continuous function ¢ whose support
is the interval [0, 3]. There is no explicit analytical expression for ¢, which is shown
Figure 7.7. As suggested by this figure, the D4 scaling and wavelet functions ¢ and
1 are Holder continuous (see Definition 12.72) but not differentiable.



182 Fourier series

Fig. 7.7 The scaling function ¢ for the D4 wavelets.

7.7 References

Beals [3] gives an elegant discussion of Fourier series, Hilbert spaces, and distri-
butions. Rauch [43] discusses Fourier solutions of linear constant coefficient PDEs
in more detail. See Whitham [55] for more on dispersive and nondispersive waves.
Dym and McKean [10] contains a discussion of the Gibbs phenomenon, a proof of
the isoperimetric inequality, and much more besides. Korner [29] is a wide-ranging
introduction to the theory and applications of Fourier methods. In particular, it has
a discussion of the Monte Carlo integration techniques mentioned in Section 7.5.
There are many accounts of wavelets: for example, see Mallet [35]. Some algorithms
for the numerical implementation of wavelets are described in [42].

7.8 Exercises

Exercise 7.1 Let ¢, be the function defined in (7.7).

(a) Prove (7.5).

(b) Prove that if the set P of trigonometric polynomials is dense in the space of
periodic continuous functions on T with the uniform norm, then P is dense
in the space of all continuous functions on T with the L?-norm.

(c) IsP dense in the space of all continuous functions on [0, 27] with the uniform
norm?
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Exercise 7.2 Suppose that f : T — C is a continuous function, and
N

1 ~ .
S — eznz
N V2 n;N In

is the Nth partial sum of its Fourier series.

(a) Show that Sy = Dy * f, where Dy is the Dirichlet kernel

1 sin[(N+1/2)x]
P e

(b) Let T be the mean of the first N + 1 partial sums,

1

Ty = ——
NTNf1

{So+S1+...+Sn}.

Show that Ty = Fiy x f, where Fiy is the Fejér kernel

1 (sin [(N + 1):1:/:2])2
N+1) sin(z/2) ’

(=) = 27 (

(c) Which of the families (Dy) and (Fv) are approximate identities as N — oo?
What can you say about the uniform convergence of the partial sums Sy
and the averaged partial sums Ty to f?

Exercise 7.3 Prove that the sets {e, | n > 1} defined by

en(z) =1/ 2 sinnz,
7r
and {f, | n > 0} defined by

folz) = \/%, fo(z) = \/gcosn;c forn > 1,

are both orthonormal bases of L%([0,7]).

Exercise 7.4 Let T,S € L*(T) be the triangular and square wave, respectively,
defined by

1 if0<z<m,

T(z) = |z|, if|z] <, S(x):{ -1 if -7 <z <0.

(a) Compute the Fourier series of T' and S.
(b) Show that T € HY(T) and T" = S.
(c) Show that S ¢ H'(T).
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Exercise 7.5 Consider f : T? — C defined by
f(X) — Z anein-x7
ncZd

where x = (z1,%2,...,%4), n = (n1,n2,...,M4), and n-x = N1 +nNoZo+. . . +N4%q-
Prove that if

Y Inlanf* < oo

neZd

for some k > d/2, then f is continuous.

Exercise 7.6 Suppose that f € H'([a,b]) and f(a) = f(b) = 0. Prove the Poincaré

inequality
b N2 b
/ |f(z)) dz < (b=a) / | (2)|? d.

2

Exercise 7.7 Solve the following initial-boundary value problem for the heat equation,

Ut = Ugy,
u(0,t) =0, wu(L,t)=0 for t > 0,
u(z,0) = f(x) for0<z <1

Exercise 7.8 Find sufficient conditions on the coefficients a,, and b,, in the solution
(7.25) of the wave equation so that u(z,t) is a twice continuously differentiable
function of z for all t € R.

Exercise 7.9 Suppose that u(z,t) is a smooth solution of the one-dimensional wave
equation,

Upt — gy = 0.
Prove that
(u% + C2ui)t - (2c2utuz)$ =0.

If u(0,t) = u(l,t) = 0 for all ¢, deduce that
1
/ lug(2,t)|* + 2 |ug (z,t)|> dz = constant.
0

Exercise 7.10 Show that
u(z,t) = f(x +ct) + g(x — ct)
is a solution of the one-dimensional wave equation,

2 _
Ut — C Uz = 0,
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for arbitrary functions f and g, This solution is called d’Alembert’s solution.

Exercise 7.11 Show that there is initial data f € C°°(T) for which the initial
value problem for Laplace’s equation,

Utt + Ugy = 07
u(z,0) = f(z),
ug(x,0) =0,

has no solution with u(-,¢) € L*(T) in any interval |t| < §, where § > 0. (The
initial-value problem for Laplace’s equation is therefore ill-posed.)

Exercise 7.12 Use Fourier series to solve the following initial-boundary value prob-
lem for the Schrédinger equation (6.14), that describes a quantum mechanical par-
ticle in a box:

U = —Ugg (763)
w(0,t) = u(1,6) =0 for all t, (7.64)
u(z,0) = f(x) (7.65)

Derive the following two conservation laws from your Fourier series solution and
directly from the PDE:

d ! d !
E/ lu(z, 8)[2 dz = 0, E/ |2 dzr = 0.
0 0

Exercise 7.13 Consider the logistic map

Tny1 = 4pxn(l — z4,),

where z,, € [0,1], and g = 1. Show that the solutions may be written as z,, = sin?6,,
where ™ € T, and

en—l—l = 20n

What can you say about the orbits of the logistic map, the existence of an invariant
measure, and the validity of an ergodic theorem?

Exercise 7.14 Consider the dynamical system on T,
ITpn41l = Ay,

where o = (1 4+ v/5)/2 is the golden ratio. Show that the orbit with initial value
zo = 1 is not equidistributed on the circle, meaning that it does not satisfy (7.39).

HINT: Show that
1+v5\ [1-v5)
Uy = 2 + 2
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satisfies the difference equation
Upt1 = Up + Up—1

and hence is an integer for every n € N. Then use the fact that

(=

) )—)0 as n — oo.

Exercise 7.15 If {V,, | n € Z} is a family of closed subspaces of L%(R) that satisfies
the axioms of multiresolution analysis, and V,,41 = V,, & W,,, prove that

L*(R) = @ W

neEZ

(See Exercise 6.5 for the definition of an infinite direct sum.)

Exercise 7.16 Let B, and V,, be as defined in (7.46) and (7.47). Prove that
ngo B,, is an orthonormal basis of V.
HINT. Prove that the set is orthonormal and count its elements.

Exercise 7.17 Suppose that B = {e,(z)},-, is an orthonormal basis for L*([0, 1]).
Prove the following:

(a) For any a € R, B, = {e,(z — a)},—, is an orthonormal basis for L*([a,a +

1]).
(b) Forany ¢ > 0, B¢ = {y/ce,(cz)},-, is an orthonormal basis for L2([0, c™1]).
(c) With the convention that functions are extended to a larger domain than
their original domain by setting them equal to 0, prove that B U B; is an
orthonormal basis for L2([0,2]).

(d) Prove that (J,cz B is an orthonormal basis for L*(R).



Chapter 8

Bounded linear operators on a Hilbert
space

In this chapter we describe some important classes of bounded linear operators on
Hilbert spaces, including projections, unitary operators, and self-adjoint operators.
We also prove the Riesz representation theorem, which characterizes the bounded
linear functionals on a Hilbert space, and discuss weak convergence in Hilbert spaces.

8.1 Orthogonal projections

We begin by describing some algebraic properties of projections. If M and N are
subspaces of a linear space X such that every z € X can be written uniquely as
z =y+z with y € M and z € N, then we say that X = M @ N is the direct sum of
M and N, and we call N a complementary subspace of M in X. The decomposition
x =y+ 2z withy € M and z € N is unique if and only if M N N = {0}. A given
subspace M has many complementary subspaces. For example, if X = R® and
M is a plane through the origin, then any line through the origin that does not
lie in M is a complementary subspace. Every complementary subspace of M has
the same dimension, and the dimension of a complementary subspace is called the
codimension of M in X.

If X = M & N, then we define the projection P : X — X of X onto M along N
by Pz =y, where £ = y 4+ z with y € M and z € N. This projection is linear, with
ranP = M and ker P = N, and satisfies P2 = P. As we will show, this property
characterizes projections, so we make the following definition.

Definition 8.1 A projection on a linear space X is a linear map P : X — X such
that

P2 =P (8.1)
Any projection is associated with a direct sum decomposition.

Theorem 8.2 Let X be a linear space.

187
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(a) If P: X — X is a projection, then X = ran P @ ker P.
(b) If X = M ® N, where M and N are linear subpaces of X, then there is a
projection P : X — X with ran P = M and ker P = N.

Proof. To prove (a), we first show that € ran P if and only if z = Pz. If
x = Pz, then clearly z € ran P. If € ran P, then x = Py for some y € X, and
since P2 = P, it follows that Pz = P?y = Py = z.

If + € ran PNker P then ¢ = Pz and Pz =0,soran PNker P = {0}. If z € X,
then we have

xz = Pz + (z — Px),
where Pz € ran P and (x — Pz) € ker P, since
P(z — Px) = Pt — P?’z = Px — Pz = 0.

Thus X =ran P ® ker P.

To prove (b), we observe that if X = M @ N, then z € X has the unique
decomposition x = y + z with y € M and z € N, and Pz = y defines the required
projection. d

When using Hilbert spaces, we are particularly interested in orthogonal sub-
spaces. Suppose that M is a closed subspace of a Hilbert space 4. Then, by
Corollary 6.15, we have H = M @ M*. We call the projection of % onto M along
M- the orthogonal projection of H onto M. If x = y + 2 and ' = ¢’ + 2', where
v,y € M and z, 2 € M=, then the orthogonality of M and M+ implies that

(Pz,2') = (y,y' + 2') = (y,y) = (y + 2,¥) = (z, Pz). (8.2)

This equation states that an orthogonal projection is self-adjoint (see Section 8.4).
As we will show, the properties (8.1) and (8.2) characterize orthogonal projections.
We therefore make the following definition.

Definition 8.3 An orthogonal projection on a Hilbert space H is a linear map
P : H — H that satisfies

P’ =P, (Pz,y) = (z, Py) forall z,y € H.
An orthogonal projection is necessarily bounded.
Proposition 8.4 If P is a nonzero orthogonal projection, then ||P|| = 1.

Proof. 1If x € H and Pz # 0, then the use of the Cauchy-Schwarz inequality
implies that
(Pz,Pz) (z,P?z) (z,Pz)
1Pzl = = = < [l
(| Pz]] (| Pz]| (| P=]|
Therefore ||P|| < 1. If P # 0, then there is an z € H with Pz # 0, and ||P(Pz)|| =
[|Pz||, so that ||P|| > 1. O
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There is a one-to-one correspondence between orthogonal projections P and
closed subspaces M of H such that ranP = M. The kernel of the orthogonal
projection is the orthogonal complement of M.

Theorem 8.5 Let H be a Hilbert space.
(a) If P is an orthogonal projection on #, then ran P is closed, and
H =ran P ® ker P

is the orthogonal direct sum of ran P and ker P.
(b) If M is a closed subspace of #, then there is an orthogonal projection P
on H with ran P = M and ker P = M*.

Proof. To prove (a), suppose that P is an orthogonal projection on H. Then, by
Theorem 8.2, we have H =ran P ® ker P. If x = Py € ran P and z € ker P, then

(Z‘,Z) = (Py7z> = (y,PZ)ZO,

so ran P 1 ker P. Hence, we see that H is the orthogonal direct sum of ran P and
ker P. Tt follows that ran P = (ker P), so ran P is closed.

To prove (b), suppose that M is a closed subspace of #. Then Corollary 6.15
implies that H = M @ M. We define a projection P : H — H by

Pr =y, where z = y + z with y € M and z € M= .

Then ran P = M, and ker P = M=. The orthogonality of P was shown in (8.2)
above. O

If P is an orthogonal projection on H, with range M and associated orthogonal
direct sum H = M @ N, then I — P is the orthogonal projection with range A/ and
associated orthogonal direct sum H = N & M.

Example 8.6 The space L?(R) is the orthogonal direct sum of the the space M
of even functions and the space A/ of odd functions. The orthogonal projections P
and Q of H onto M and N, respectively, are given by
f@)+ f(—= f@) — f(==
Py = 1O 1) (0~ f(s)

Note that I — P = Q.

Qf(z) =

Example 8.7 Suppose that A is a measurable subset of R — for example, an
interval — with characteristic function

(z) = 1 ifzeA,
XA =00 ifz g A

Then
Paf(z) = xa(z)f(z)
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is an orthogonal projection of L?(R) onto the subspace of functions with support
contained in A.

A frequently encountered case is that of projections onto a one-dimensional
subspace of a Hilbert space H. For any vector u € H with |Ju]| = 1, the map P,
defined by

Pz = {u,z)u

projects a vector orthogonally onto its component in the direction u. Mathemati-
cians use the tensor product notation u ® u to denote this projection. Physicists,
on the other hand, often use the “bra-ket” notation introduced by Dirac. In this
notation, an element = of a Hilbert space is denoted by a “bra” (z| or a “ket” |z),
and the inner product of z and y is denoted by (z | y). The orthogonal projection
in the direction u is then denoted by |u){u|, so that

(lu)(ul) [z} = (u | 2)|u).

Example 8.8 If # = R", the orthogonal projection P, in the direction of a unit

vector u has the rank one matrix uu”. The component of a vector x in the direction

uis Pux = (uTx)u.

Example 8.9 If # =1%(Z), and u = e,,, where

€n = (6137")/;“;—007
and ¢ = (x), then P, x = zpe,.
Example 8.10 If # = L?(T) is the space of 27-periodic functions and v = 1/v/27

is the constant function with norm one, then the orthogonal projection P, maps a
function to its mean: P, f = (f), where

27
) 1/0 f(z) d.

T or
The corresponding orthogonal decomposition,
fl@) =)+ f'(x),

decomposes a function into a constant mean part (f) and a fluctuating part f' with
Zero mean.

8.2 The dual of a Hilbert space

A linear functional on a complex Hilbert space H is a linear map from H to C. A
linear functional ¢ is bounded, or continuous, if there exists a constant M such that

lp(z)] < M||z|| for all z € H. (8.3)
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The norm of a bounded linear functional ¢ is

llell = Sup, lp()]- (8.4)
If y € H, then
py(z) = (y,2) (8.5)
is a bounded linear functional on #, with [|¢y|| = ||y||-

Example 8.11 Suppose that # = L%(T). Then, for each n € Z, the functional
o : L2(T) = C,

1 —ine
on(f) = E/Tf(l")e dz,

that maps a function to its nth Fourier coefficient is a bounded linear functional.
We also have ||@n|| = 1 for every n € Z.

One of the fundamental facts about Hilbert spaces is that all bounded linear
functionals are of the form (8.5).

Theorem 8.12 (Riesz representation) If ¢ is a bounded linear functional on a
Hilbert space #, then there is a unique vector y € H such that

p(r) = (y,x) for all z € H. (8.6)

Proof. 1If ¢ = 0, then y = 0, so we suppose that ¢ # 0. In that case, ker ¢ is
a proper closed subspace of H, and Theorem 6.13 implies that there is a nonzero
vector z € H such that z L ker p. We define a linear map P : H — C by

Pr = v(z) z

o(2)
Then P? = P, so Theorem 8.2 implies that # = ran P & ker P. Moreover,

ran P = {az | a € C}, ker P = ker ¢,
so that ran P L ker P. It follows that P is an orthogonal projection, and
H={az|aeC} dkerp
is an orthogonal direct sum. We can therefore write z € H as
T =oaz+mn, a € Cand n € kerp.
Taking the inner product of this decomposition with 2z, we get

(2,7)

o= ——
1211
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and evaluating ¢ on x = az + n, we find that

p(z) = ap(z).

The elimination of a from these equations, and a rearrangement of the result, yields

o(z) = (y,z),
where
YRS

Thus, every bounded linear functional is given by the inner product with a fixed
vector.

We have already seen that ¢, (z) = (y, ) defines a bounded linear functional on
H for every y € H. To prove that there is a unique y in H associated with a given
linear functional, suppose that ¢,, = ¢,,. Then ¢, (y) = ¢y, (y) when y = y1 —ya,
which implies that ||y, — y2||> = 0, s0 y1 = ya. O

The map J : H — H* given by Jy = ¢, therefore identifies a Hilbert space H
with its dual space H*. The norm of ¢, is equal to the norm of y (see Exercise 8.7),
so J is an isometry. In the case of complex Hilbert spaces, J is antilinear, rather than
linear, because ¢y, = chy. Thus, Hilbert spaces are self-dual, meaning that H and
H* are isomorphic as Banach spaces, and anti-isomorphic as Hilbert spaces. Hilbert
spaces are special in this respect. The dual space of an infinite-dimensional Banach
space, such as an LP-space with p # 2 or C([a,b]), is in general not isomorphic to
the original space.

Example 8.13 In quantum mechanics, the observables of a system are represented
by a space A of linear operators on a Hilbert space H. A state w of a quantum
mechanical system is a linear functional w on the space A of observables with the
following two properties:

w(A*A) >0 forall A€ A, (8.7)
w(I) = 1. (8.8)

The number w(A) is the expected value of the observable A when the system is
in the state w. Condition (8.7) is called positivity, and condition (8.8) is called
normalization. To be specific, suppose that H = C* and A is the space of all n x n
complex matrices. Then A is a Hilbert space with the inner product given by

(A,B) = tr A*B.

By the Riesz representation theorem, for each state w there is a unique p € A such
that

w(A) =trp*A forall A€ A.
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The conditions (8.7) and (8.8) translate into p > 0, and tr p = 1, respectively.

Another application of the Riesz representation theorem is given in Section 12.11,
where we use it to prove the existence and uniqueness of weak solutions of Laplace’s
equation.

8.3 The adjoint of an operator

An important consequence of the Riesz representation theorem is the existence of
the adjoint of a bounded operator on a Hilbert space. The defining property of the
adjoint A* € B(H) of an operator A € B(H) is that

(z,Ay) = (A*z,y) for all z,y € H. (8.9)
The uniqueness of A* follows from Exercise 8.14. The definition implies that
(A" = A, (AB)* = B*A™.

To prove that A* exists, we have to show that for every z € H, there is a vector
z € H, depending linearly on z, such that

(z,y) = (z,Ay)  forally eH. (8.10)
For fixed z, the map ¢, defined by

vz (y) = (z, Ay)

is a bounded linear functional on H, with [|¢z|| < ||4]|||z]|. By the Riesz represen-
tation theorem, there is a unique z € H such that ¢, (y) = {(z,y). This z satisfies
(8.10), so we set A*xz = z. The linearity of A* follows from the uniqueness in the
Riesz representation theorem and the linearity of the inner product.

Example 8.14 The matrix of the adjoint of a linear map on R® with matrix A is
the matrix A7, since

x - (Ay) = (ATx) -y.
In component notation, we have

Zwi zaijyj = Z (Z az‘ﬂi) Y-
1 j =1

=1 j= j=1

The matrix of the adjoint of a linear map on C" with complex matrix A is the
Hermitian conjugate matrix,

A* = AT,
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Example 8.15 Suppose that S and T are the right and left shift operators on the
sequence space £2(N), defined by

S(l’l,mz,mg,.. ) = (0,:13‘1,:82,1’3,. ..), T(.Z'l,.’L'Q,.'L'g,.. ) = (1'2,1'3,.7;'4,. )
Then T = S*, since
(z,Sy) = Tay1 + T3y2 + Tays + ... = (Tz,y).

Example 8.16 Let K : L?([0,1]) — L?([0,1]) be an integral operator of the form

Kf(z) = / k(. 9) f () dy,

where £ : [0,1] x [0,1] - C. Then the adjoint operator

1
K*f@) = [ R/ dy
0
is the integral operator with the complex conjugate, transpose kernel.

The adjoint plays a crucial role in studying the solvability of a linear equation
Az =y, (8.11)

where A : H — H is a bounded linear operator. Let z € H be any solution of the
homogeneous adjoint equation,

A*z =0.

We take the inner product of (8.11) with z. The inner product on the left-hand side
vanishes because

(Az, z) = (=, A*2) = 0.

Hence, a necessary condition for a solution z of (8.11) to exist is that (y,z) = 0
for all z € ker A*, meaning that y € (ker A*)*. This condition on y is not always
sufficient to guarantee the solvability of (8.11); the most we can say for general
bounded operators is the following result.

Theorem 8.17 If A:H — H is a bounded linear operator, then
ran A = (ker A*)", ker A = (ran A*)" . (8.12)

Proof. If x € ran A, there is a y € H such that x = Ay. For any z € ker A*, we
then have

(z,2) = (Ay,z) = (y, A*z) = 0.
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This proves that ran A C (ker A*)1. Since (ker A*)! is closed, it follows that
ran A C (ker A*)*. On the other hand, if 2 € (ran A), then for all y € H we have

0=(Ay,z) = (y, A"z).

Therefore A*z = 0. This means that (ran A)* C ker A*. By taking the orthogonal
complement of this relation, we get

(ker A*)* C (ran A)** =ran 4,

which proves the first part of (8.12). To prove the second part, we apply the first
part to A*, instead of A, use A** = A, and take orthogonal complements. O

An equivalent formulation of this theorem is that if A is bounded linear operator
on H, then # is the orthogonal direct sum

H =ran A @ ker A*.

If A has closed range, then we obtain the following necessary and sufficient condition
for the solvability of (8.11).

Theorem 8.18 Supppose that A : H — H is a bounded linear operator on a
Hilbert space H with closed range. Then the equation Az = y has a solution for z
if and only if y is orthogonal to ker A*.

This theorem provides a useful general method of proving existence from unique-
ness: if A has closed range, and the solution of the adjoint problem A*z = y is
unique, then ker A* = {0}, so every y is orthogonal to ker A*. Hence, a solution of
Az = y exists for every y € H. The condition that A has closed range is implied by
an estimate of the form ¢||z|| < ||Az||, as shown in Proposition 5.30.

A commonly occuring dichotomy for the solvability of a linear equation is sum-
marized in the following Fredholm alternative.

Definition 8.19 A bounded linear operator A : H — H on a Hilbert space H
satisfies the Fredholm alternative if one of the following two alternatives holds:

(a) either Az = 0, A*z = 0 have only the zero solution, and the equations
Ax =y, A*x = y have a unique solution z € H for every y € H;

(b) or Az = 0, A*z = 0 have nontrivial, finite-dimensional solution spaces of
the same dimension, Az = y has a (nonunique) solution if and only if y L 2
for every solution z of A*z = 0, and A*x = y has a (nonunique) solution if
and only if y L z for every solution z of Az = 0.

Any linear operator A : C* — C” on a finite-dimensional space, associated with
an n X n system of linear equations Ax = y, satisfies the Fredholm alternative.
The ranges of A and A* are closed because they are finite-dimensional. From
linear algebra, the rank of A* is equal to the rank of A, and therefore the nullity
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of A is equal to the nullity of A*. The Fredholm alternative then follows from
Theorem 8.18.

Two things can go wrong with the Fredholm alternative in Definition 8.19 for
bounded operators A on an infinite-dimensional space. First, ran A need not be
closed; and second, even if ran A is closed, it is not true, in general, that ker A and
ker A* have the same dimension. As a result, the equation Az = y may be solvable
for all y € H even though A is not one-to-one, or Az = y may not be solvable for
all y € H even though A is one-to-one. We illustrate these possibilities with some
examples.

Example 8.20 Consider the multiplication operator M : L2([0,1]) — L2([0,1])
defined by

Then M* = M, and M is one-to-one, so every g € L?([0,1]) is orthogonal to
ker M*; but the range of M is a proper dense subspace of L*([0,1]), so M f =g is
not solvable for every g € L%(]0,1]) (see Example 9.5 for more details).

Example 8.21 The range of the right shift operator S : £2(N) — ¢2(N), defined
in Example 8.15, is closed since it consists of y = (y1,¥2,¥3,...) € £2(N) such
that y1 = 0. The left shift operator T = S* is singular since its kernel is the
one-dimensional space with basis {(1,0,0,...)}. The equation Sz =y, or

(07'771:1'2’ .. ) = (y17y27y31 .. ')7

is solvable if and only if y; = 0, or y L ker T, which verifies Theorem 8.18 in this
case. If a solution exists, then it is unique. On the other hand, the equation Tz = y
is solvable for every y € £2(N), even though T is not one-to-one, and the solution is
not unique.

These examples motivate the following definition.

Definition 8.22 A bounded linear operator A on a Hilbert space is a Fredholm
operator if:

(a) ran A is closed;
(b) ker A and ker A* are finite-dimensional.

The indezx of a Fredholm operator A, ind A, is the integer
ind A = dimker A — dim ker A*.
For example, a linear operator on a finite-dimensional Hilbert space and the
identity operator on an infinite-dimensional Hilbert space are Fredholm operators

with index zero. The right and left shift operators S and T in Example 8.21 are
Fredholm, but their indices are nonzero. Since dimker S = 0, dimkerT = 1, and
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S = T*, we have indS = —1 and ind7T = 1. The multiplication operator in
Example 8.20 is not Fredholm because it does not have closed range.

It is possible to prove that if A is Fredholm and K is compact, then A + K
is Fredholm, and ind (A + K) = ind A. Thus the index of a Fredholm operator
is unchanged by compact perturbations. In particular, compact perturbations of
the identity are Fredholm operators with index zero, so they satisfy the Fredholm
alternative in Definition 8.19. We will prove a special case of this result, for compact,
self-adjoint perturbations of the identity, in Theorem 9.26.

8.4 Self-adjoint and unitary operators

Two of the most important classes of operators on a Hilbert space are the classes
of self-adjoint and unitary operators. We begin by defining self-adjoint operators.

Definition 8.23 A bounded linear operator A : H — H on a Hilbert space H is
self-adjoint if A* = A.

Equivalently, a bounded linear operator A on H is self-adjoint if and only if

(x, Ay) = (Az,y) for all z,y € H.

Example 8.24 From Example 8.14, a linear map on R with matrix A is self-
adjoint if and only if A is symmetric, meaning that A = AT, where AT is the
transpose of A. A linear map on C" with matrix A is self-adjoint if and only if A
is Hermitian, meaning that A = A*.

Example 8.25 From Example 8.16, an integral operator K : L2([0,1]) — L*(]0, 1]),

Kf(z) = / k(. 9) £ () dy,

is self-adjoint if and only if k(z,y) = k(y, ).
Given a linear operator A : H — H, we may define a sesquilinear form

a:HxH—-C

by a(z,y) = {(z, Ay). If A is self-adjoint, then this form is Hermitian symmetric, or
symmetric, meaning that

a(z,y) = a(y,z).
It follows that the associated quadratic form ¢(z) = a(x,z), or

q(z) = (z, Az), (8.13)
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is real-valued. We say that A is nonnegative if it is self-adjoint and {z, Az) > 0 for
all z € H. We say that A is positive, or positive definite, if it is self-adjoint and
(z, Az) > 0 for every nonzero x € H. If A is a positive, bounded operator, then

(z,y) = (=, Ay)

defines an inner product on H. If, in addition, there is a constant ¢ > 0 such that

(z, Az) > c||z||? for all z € H,

then we say that A is bounded from below, and the norm associated with (-,-) is

equivalent to the norm associated with (-, -).

The quadratic form associated with a self-adjoint operator determines the norm

of the operator.

Lemma 8.26 If A is a bounded self-adjoint operator on a Hilbert space H, then

Proof. Let

a = sup [{z,Az)|.
llzll=1

The inequality a < ||4|| is immediate, since
[z, Az)| < || Az l|lz[] < [IA]| ||z
To prove the reverse inequality, we use the definition of the norm,

1Al = Sup [|Az].

lef|=1

For any z € ‘H, we have

Izl = sup [(y,z2)|-
llyll=1

It follows that

1Al = sup {[{y, Az)| | llz]| = 1, [|ly[| = 1} .
The polarization formula (6.5) implies that
1
4

(y,Az) = Z{(@+y, Az +y)) —(z -y, Az —y))

— i{z + iy, A(z + iy)) + i{z — iy, A(z —iy))}.

(8.14)

Since A is self-adjoint, the first two terms are real, and the last two are imaginary.
We replace y by ey, where ¢ € R is chosen so that (e?¥y, Az) is real. Then the
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imaginary terms vanish, and we find that

1
l(y, Ax)]* = 1—6($U+Z/az4($+y))—<$—y,A($—y))|2
1
< 6@ (e +yll” +llz — i)

1
= 7=l + lyl*)?,

where we have used the definition of @ and the parallelogram law. Using this result
in (8.14), we conclude that ||A|] < a. O

As a corollary, we have the following result.

Corollary 8.27 If A is a bounded operator on a Hilbert space then || A*A|| = ||4]|?.
If A is self-adjoint, then ||A2|| = [|A|]%.

Proof. The definition of ||4]|, and an application Lemma 8.26 to the self-adjoint
operator A* A, imply that

IAlI* = sup [(Az,Az)| = sup |(z,A"Az)| = [|A*A||.

llz||=1 |z||=1
Hence, if A is self-adjoint, then ||A|> = || A?]]. O

Next, we define orthogonal or unitary operators, on real or complex spaces,
respectively.

Definition 8.28 A linear map U : H; — Hs between real or complex Hilbert
spaces H1 and H is said to be orthogonal or unitary, respectively, if it is invertible
and if

<U$:Uy>7{2 = <$ay>’H1 for all z,y € H,.

Two Hilbert spaces H; and Hz are isomorphic as Hilbert spaces if there is a unitary
linear map between them.

Thus, a unitary operator is one-to-one and onto, and preserves the inner product.
A map U : H — H is unitary if and only if U*U = I, meaning that U is invertible
and U~! =U*.

Example 8.29 An n x n real matrix () is orthogonal if QT = Q~!. Ann xn
complex matrix U is unitary if U* = U~

Example 8.30 If A is a bounded self-adjoint operator, then

o0

, 1.
et = Z H(zA)

n=0
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is unitary, since
(ez'A)* — oA (ez'A)—l_

A bounded operator S is skew-adjoint if S* = —S. Any skew-adjoint operator S
on a complex Hilbert space may be written as S = 14 where A is a self-adjoint
operator. The commutator [4,B] = AB — BA is a Lie bracket on the space of
bounded, skew-adjoint bounded operators, and we say that this space is the Lie
algebra of the Lie group of unitary operators.

Example 8.31 Let H be a finite dimensional Hilbert space. If {ej,ea,...,en} is
an orthonormal basis of H, then U : C* — H defined by

U(z1,22,---,2n) = 2161 + 2262 + ... + zZpey,
is unitary. Thus, any n-dimensional, complex Hilbert space is isomorphic to C™".
Example 8.32 Suppose that H; and Hs are two Hilbert spaces of the same, pos-

sibly infinite, dimension. Let {u,} be an orthonormal basis of H; and {v,} an
orthonormal basis of Hs. Any x € H; can be written uniquely as

T = E Cala,
o

with coefficients ¢, € C. We define U : H; — Ha by

U (; caua) = ;cava

Then U is unitary. Thus, Hilbert spaces of the same dimension are isomorphic.
More generally, if A\, = e?= are complex numbers with |\,| = 1, then U : H; —
Ho defined by

Uz = Z)\a(ua,x)va

is unitary. For example, the periodic Hilbert transform H : L*(T) — L?*(T) is
defined by

o o
H ( Z fnemz> = Z i (sgnn) fne™,

n=-—00 n=—0oo
where sgn is the sign function, defined in (5.8). The Hilbert transform is not a uni-
tary mapping on L?(T) because H(1) = 0; however, Parseval’s theorem implies that
it is a unitary mapping on the subspace H of square-integrable periodic functions
with zero mean,

H:{feL2(']I‘)‘/Tf(x)dx:0}.
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Example 8.33 The operator U : L?(T) — ¢%(Z) that maps a function to its Fourier
coefficents is unitary. Explicitly, we have

1 2 .
Uf = (cn)nez Cn = \/—2—7r‘/0 f(z)e " dx.

Thus, the Hilbert space of square integrable functions on the circle is isomorphic to
the Hilbert space of sequences on Z. As this example illustrates, isomorphic Hilbert
spaces may be given concretely in forms that, at first sight, do not appear to be the
same.

Example 8.34 For a € T, we define the translation operator 7, : L*(T) — L*(T)
by

(Tof)(z) = f(z — a).
Then T, is unitary, and
Tovy =T,T.

We say that {T,, | a € T} is a unitary representation of the additive group R/(27Z)
on the linear space L?(T).

An operator T : H — # is said to be normal if it commutes with its adjoint,
meaning that TT* = T*T. Both self-adjoint and unitary operators are normal. An
important feature of normal operators is that they have a nice spectral theory. We
will discuss the spectral theory of compact, self-adjoint operators in detail in the
next chapter.

8.5 The mean ergodic theorem

Ergodic theorems equate time averages with probabilistic averages, and they are
important, for example, in understanding the statistical behavior of determistic
dynamical systems.

The proof of the following ergodic theorem, due to von Neumann, is a good
example of Hilbert space methods.

Theorem 8.35 (von Neumann ergodic) Suppose that U is a unitary operator
on a Hilbert space #. Let M = {& € H | Uz = z} be the subspace of vectors that
are invariant under U, and P the orthogonal projection onto M. Then, for all
z € ‘H, we have

N
. 1 n.

That is, the averages of U™ converge strongly to P.
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Proof. 1t is sufficient to prove (8.15) for z € ker P and z € ran P, because then
the orthogonal decomposition H = ker P @ ran P implies that (8.15) holds for all
x € H. Equation (8.15) is trivial when z € ran P = M, since then Uz = x and
Pz = z.

To complete the proof, we show that (8.15) holds when x € ker P. From the
definition of P, we have ran P = ker(I — U). If U is unitary, then Uz = z if and
only if U*z = x. Hence, using Theorem 8.17, we find that

ker P = ker(I — U)* = ker(I — U*)* =ran (I = U).

Therefore every = € ker P may be approximated by vectors of the form (I — U)y.
If x = (I —U)y, then

N N

1 n — L n _ grn+l
N+1T;Ux = N+1HZB(U Uty
_ 1 _ 77N41
= i w-UT)

— 0 as N = oo.

If x € ker P, then there is a sequence of elements z = (I — U)yg with zx — .
Hence,

N N
1 1

li —_ un < 1 —_— Um(x —

N PP B e RETP IR
1 XN
+limsup || —— Urx
N—)oop N+17;) g
< lw — |-

Since k is arbitrary and z; — =z, it follows that (8.15) holds for every z € ker P. O

Next, we explain the implications of this result in probability theory. Suppose
that P is a probability measure on a probability space {2, as described in Section 6.4.
A one-to-one, onto, measurable map T : Q — Q is said to be measure preserving if
P (T~1(A)) = P(A) for all measurable subsets A of Q2. Here,

T-1(4) = {w e Q| T(w) € A}.

The rotations of the unit circle, studied in Theorem 7.11, are a helpful example
to keep in mind here. In that case, 2 = T, and P is the measure which assigns a
probability of /27 to an interval on T of length . Any rotation of the circle is a
measure preserving map.

If f is a random variable (that is, a measurable real- or complex-valued function
on ) then the composition of T' and f, defined by f o T(w) = f (T'(w)), is also a
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random variable. Since T is measure preserving, we have Ef =Ef o T, or

/QfdP:/QfonP.

If f = foT, then we say that f is invariant under T'. This is always true if f is a
constant function. If these are the only invariant functions, then we say that T is
ergodic.

Definition 8.36 A one-to-one, onto, measure preserving map 7" on a probability
space (€, P) is ergodic if the only functions f € L?(Q, P) such that f = f o T are
the constant functions.

For example, rotations of the circle through an irrational multiple of 27 are
ergodic, but rotations through a rational multiple of 27 are not. To make the
connection between ergodic maps and Theorem 8.35 above, we define an operator

U:L*Q,P) = L*(Q,P)
on the Hilbert space L?(f), P) of second-order random variables on Q by
Uf=foT. (8.16)

Suppose that f,g € L2(f), P). Then, since T is measure preserving, we have

(Uf,Ug)=/Qf(T(w))g(T(w)) dP(w) =/ng(w) dP(w) = (f,9),

so the map U is unitary. The invariant subspace of U consists of the functions that
are invariant under 7. Thus, if T is ergodic, the invariant subspace of U consists of
the constant functions, and the orthogonal projection onto the invariant subspace
maps a random variable to its expected value. An application of the von Neumann
ergodic theorem to the map U defined in (8.16) then gives the following result.

Theorem 8.37 A one-to-one, onto, measure preserving map 7' : @ — € on a
probability space (2, P) is ergodic if and only if for every f € L?(1, P)

N
. 1 "
J\}gnmN—H;foT _/QfdP, (8.17)

where the convergence is in the L?-norm.

If we think of T': QO — Q as defining a discrete dynamical system z, 11 = Tz,
on the state space {2, as described in Section 3.2, then the left-hand side of (8.17) is
the time average of f, while the right-hand side is the probabilistic (or “ensemble”)
average of f. Thus, the theorem states that time averages and probabilistic averages
coincide for ergodic maps.
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There is a second ergodic theorem, called the Birkhoff ergodic theorem, which
states that the averages on the left-hand side of equation (8.17) converge almost
surely to the constant on the right-hand side for every f in L(Q, P).

8.6 Weak convergence in a Hilbert space

A sequence (z,) in a Hilbert space H converges weakly to z € H if

lim (2,,y) = {z,y) for all y € H.

n—oo

Weak convergence is usually written as
Tp =T as n — oo,

to distinguish it from strong, or norm, convergence. From the Riesz representation
theorem, this definition of weak convergence for sequences in a Hilbert space is
a special case of Definition 5.59 of weak convergence in a Banach space. Strong
convergence implies weak convergence, but the converse is not true on infinite-
dimensional spaces.

Example 8.38 Suppose that H = ¢?(N). Let
en = (0,0,...,0,1,0,...)
be the standard basis vector whose nth term is 1 and whose other terms are 0. If
v = (y1,Y2,¥3,...) € £2(N), then
(ensy) =9yn =0  asn— oo,

since Y |yn|? converges. Hence e,, — 0 as n — co. On the other hand, |le,, —en,|| =

V2 for all n # m, so the sequence (e, ) does not converge strongly.

It is a nontrivial fact that a weakly convergent sequence is bounded. This is a
consequence of the uniform boundedness theorem, or Banach-Steinhaus theorem,
which we prove next.

Theorem 8.39 (Uniform boundedness) Suppose that
{on: X - C|neN}

is a set of linear functionals on a Banach space X such that the set of complex
numbers {p,(z) | » € N} is bounded for each z € X. Then {|lpn| |n € N} is
bounded.

Proof. First, we show that the functionals are uniformly bounded if they are
uniformly bounded on any ball. Suppose that there is a ball

B(zo,r) = {z € X | [l — 2ol <7},
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with » > 0, and a constant M such that
lon(z)| < M for all x € B(zg,r) and all n € N.

Then, for any z € X with x # x¢, the linearity of ,, implies that

[l — 2ol

[en@] < F

r — Xg M
< —llx— .
on (rp= 2 )|+ lonta)l < 2l = aall + lpu(an)

Hence, if ||z|] < 1, we have
M

= (1+ [l2oll) + a(20)l

lon(2)] <

Thus, the set of norms {||¢x|| | » € N} is bounded, because {|¢n(z0)| | n € N} is
bounded.

We now assume for contradiction that {||¢,||} is unbounded. It follows from
what we have just shown that for every open ball B(xg,r) in X with r > 0, the set

{lon(x)| | z € B(zo,r) and n € N}

is unbounded. We may therefore pick ny € Nand z; € B(0, 1) such that |p,, (z1)| >
1. By the continuity of ¢,,, there is an 0 < r; < 1 such that |¢n, (z)| > 1 for all
x € B(x1,r1). Next, we pick no > nq and zo € B(x1,r1) such that |pn,(x2)] > 2.
We choose a sufficiently small 0 < 7o < 1/2 such that B(z2,72) is contained in
B(z1,7m1) and |¢n,(z)| > 2 for all z € B(z2,72). Continuing in this way, we obtain
a subsequence (¢n, ) of linear functionals, and a nested sequence of balls B(zy,7,)
such that 0 < 7 < 1/k and

|on, (@) > K for all z € B(xg, ).

The sequence (zy) is Cauchy, and hence z, — T since X is complete. But T €
B(zy,ry) for all k € N so that |¢n, (T)| = oo as k — oo, which contradicts the
pointwise boundedness of {y,(T)}. O

Thus, the boundedness of the pointwise values of a family of linear functional
implies the boundedness of their norms. Next, we prove that a weakly convergent
sequence is bounded, and give a useful necessary and sufficient condition for weak
convergence.

Theorem 8.40 Suppose that (x,) is a sequence in a Hilbert space 1 and D is a
dense subset of #. Then (z,) converges weakly to z if and only if:

(a) ||zn|| £ M for some constant M;
(b) (xn,y) = (z,y) as n — oo for all y € D.

Proof. Suppose that (x,) is a weakly convergent sequence. We define the bound-
ed linear functional ¢, by ¢n(z) = (Tn,x). Then ||p,|| = ||zn]|- Since (¢n(zx))
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converges for each ¢ € H, it is a bounded sequence, and the uniform bounded-
ness theorem implies that {||¢n||} is bounded. It follows that a weakly convergent
sequence satisfies (a). Part (b) is trivial.

Conversely, suppose that (z,) satisfies (a) and (b). If z € H, then for any € > 0
there is a y € D such that ||z —y|| < €, and there is an N such that [(z, — z,y)| < €
for n > N. Since ||z,|| < M, it follows from the Cauchy-Schwarz inequality that
forn >N

(o —z,2)] < [(zn =29+ [(2n — 2,2 — )|
< e llen —allllz -yl
< (I1+M+|z||)e.
Thus, {(x, — x,2) = 0 as n — oo for every z € H, so z, — x. O

Example 8.41 Suppose that {eq }aer is an orthonormal basis of a Hilbert space.
Then a sequence (x,) converges weakly to z if and only if it is bounded and its
coordinates converge, meaning that (z,,e,) = (z,e4) for each a € I.

The boundedness of the sequence is essential to ensure weak convergence, as the
following example shows.

Example 8.42 In Example 8.38, we saw that the bounded sequence (e,) of stan-
dard basis elements in £2(N) converges weakly to zero. The unbounded sequence
(ney), where

ne, = (0,0,...,0,n,0,...),

does not converge weakly, however, even though the coordinate sequences with
respect to the basis (e,) converge to zero. For example,

— (n-3/4\"
z=(n )nzl
belongs to £2(N), but (nen,z) = n'/* does not converge as n — oc.

The next example illustrates oscillation, concentration, and escape to infinity,
which are some typical ways that a weakly convergent sequence of functions can fail
to converge strongly.

Example 8.43 The sequence (sinnmz) converges weakly to zero in L2(]0, 1]) be-
cause

1
/ f(@)sinnrzdr — 0 asn — oo
0

for all f € L*([0,1]) (see Example 5.47). The sequence cannot converge strongly to
zero since || sinnmz|| = 1/4/2 is bounded away from 0. In this case, the functions
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oscillate more and more rapidly as n — oo. If a function
o
flz) = Z ay sinnwx
n=1

in L%([0,1]) is represented by its sequence (a,) of Fourier sine coefficients, then this
example is exactly the same as Example 8.38.
The sequence (fy,) defined by

fn(ac):{ vn if0<z<1/n,

0 ifl/n<z<1,

converges weakly to zero in L2([0,1]). To prove this fact, we observe that, for any

polynomial p,
1/n
/ p(z) dx
0
1

1/n
W n/o p(x) dz

- 0 asn — oo

/0 p@)falz)ds| = VA

IA

since, by the continuity of p,

1/n 1/n
n/ p(z) dz = p(0) + n/ {p(z) — p(0)} dz — p(0) as n — oo.
0 0

Thus, (p, fn) — 0 as n — oo for every polynomial p. Since the polynomials are
dense in L?([0,1]) and ||f,|| = 1 for all n, Theorem 8.40 implies that f,, — 0. The
norms of the f,, are bounded away from 0, so they cannot converge strongly to zero.
In this case the functions f,, have a singularity that concentrates at a point.

The sequence (f,) defined by

fol@) = 1 ifn<z<n+l,
"1 0 otherwise,

converges weakly, but not strongly, to zero in L?(R). In this case, the functions f,,
escape to infinity. The proof follows from the density of functions with compact
support in L?(R).

As the above example shows, we may have strict inequality in (8.18), caused by
the loss of “energy” in oscillations, at a singularity, or by escape to infinity in the
weak limit. In each case, the expansion of f, in any orthonormal basis contains
coefficients that wander off to infinity. If the norms of a weakly convergent sequence
converge to the norm of the weak limit, then the sequence converges strongly.
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Proposition 8.44 If (z,,) converges weakly to x, then
||z|| < lim inf ||z,]|. (8.18)
n— o0
If, in addition,
Tim [l | = [,
then (z,,) converges strongly to z.

Proof. Using the weak convergence of (z,,) and the Cauchy-Schwarz inequality,
we find that

lell? = (@,2) = lim (z,2n) < |}z liminf |}z
which proves (8.18). Expansion of the inner product gives
l2n = all” = llzall* = (zn, 2) = (@, z0) + [l2]*.

If £, — =z, then (z,,2) — (z,z). Hence, if we also have ||z,|| — ||z||, then
||z, — z||* = 0, meaning that z,, — z strongly. O

One reason for the utility of weak convergence is that it is much easier for sets
to be compact in the weak topology than in the strong topology; in fact, a set is
weakly precompact if and only if it is bounded. This result provides a partial analog
of the Heine-Borel theorem for infinite-dimensional spaces, and is illustrated by the
orthonormal sequence of vectors in Example 8.38. The sequence converges weakly,
but no subsequence converges strongly, so the terms of the sequence form a weakly
precompact, but not a strongly precompact, set.

Theorem 8.45 (Banach-Alaoglu) The closed unit ball of a Hilbert space is
weakly compact.

Proof. We will prove the result for a separable Hilbert space. The result remains
true for nonseparable spaces, but the proof requires deeper topological arguments
and we will not give it here. We will use a diagonal argument to show that any
sequence in the unit ball of a separable, infinite-dimensional Hilbert space has a
convergent subsequence. Sequential weak compactness implies weak compactness,
although this fact is not obvious because the weak topology is not metrizable.

Suppose that (x,) is a sequence in the unit ball of a Hilbert space H. Let
D = {y, | n € N} be a dense subset of H. Then ({x,,y1)) is a bounded sequence
in C, since

zn, y1)| < llnllllya]l < llyall-

By the Heine-Borel theorem, there is a subsequence of (x,), which we denote by
(®1,k), such that ((z1,,y1)) converges as k — oco. In a similar way, there is a
subsequence (22%) of (21,5) such that ((x2k,y2)) converges. Continuing in this
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way, we obtain successive subsequences (x;x) such that ({z;,y;)) converges as
k — oo for each 1 < ¢ < j. Taking the diagonal subsequence (z) of (z,), we see
that ((xr,k,y)) converges as k — oo for every y € D. We define the linear functional
p:DCH—Chby

oly) = Jim (Thk,Y)-
—00

Then |p(y)| < |ly|| since ||zxkl] < 1, so ¢ is bounded on D. It therefore has a
unique extension to a bounded linear functional on A, and the Riesz representation
theorem implies that there is an € #H such that ¢(y) = (z,y). It follows from
Theorem 8.40 that zj; — = as k — co. Moreover, from Proposition 8.44,

loll < Timin Jog 4ll < 1,
k—o0

so z belongs to the closed unit ball of H. Thus every sequence in the ball has a
weakly convergent subsequence whose limit belongs to the ball, so the ball is weakly
sequentially compact. a

An important application of Theorem 8.45 is to minimization problems. A
function f : K — R on a weakly closed set K is said to be weakly sequentially lower
semicontinuous, or weakly lower semicontinuous for short, if

f(@) < liminf f (z,)

n—oe

for every sequence (z,) in K such that z,, — z. For example, from Proposition 8.44,
the norm || - || is weakly lower semicontinuous.

Theorem 8.46 Suppose that f : K — R is a weakly lower semicontinuous function
on a weakly closed, bounded subset K of a Hilbert space. Then f is bounded from
below and attains its infimum.

The proof of this theorem is exactly the same as the proof of Theorem 1.72.
Weak precompactness is a less stringent condition than strong precompactness, but
weak closure and weak lower semicontinuity are more stringent conditions than their
strong counterparts because there are many more weakly convergent sequences than
strongly convergent sequences in an infinite-dimensional space.

A useful sufficient condition that implies weak lower semicontinuity, or closure,
from strong lower semicontinuity, or closure, is convexity. Convex sets were defined
n (1.3). Convex functions are defined as follows.

Definition 8.47 Let f : C — R be a real-valued function on a convex subset C' of
a real or complex linear space. Then f is conver if

flte+ (1 =t)y) <tf(z)+ (1 -1)f(y)

for all x,y € C and 0 < ¢ < 1. If we have strict inequality in this equation whenever
z#yand 0 <t<1,then fis strictly convex.
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The following result, called Mazur’s theorem, explains the connection between
convexity and weak convergence, and gives additional insight into weak convergence.
We say that a vector y, in a real or complex linear space, is a convex combination of
the vectors {x1,x2,...,2,} if there are nonnegative real numbers {A;, Aa,..., A\n}
such that

n n
yzz)\kwk, Z/\kzl-
k=1 k=1

Theorem 8.48 (Mazur) If (z,) converges weakly to z in a Hilbert space, then
there is a sequence (yj,) of finite convex combinations of {z,} such that (y,) con-
verges strongly to x.

Proof. Replacing z,, by =, — x, we may assume that z,, = 0. We will construct
yn as a mean of almost orthogonal terms of a subsequence of (z,). We pick ny =1,
and choose ny > ny such that (z,,,z,,) <1. Given nq,...,ng, we pick ng41 > ng
such that

(8.19)

|<xn1axnk+1>| < ’|<xnk’$nk+1>| <

==
==

This is possible because, by the weak convergence of (z,), we have (z,,,z,) — 0
asn — oo for 1 <4 <k. Let

1
ykzg(:vm—i—xm—}—...—kxnk).

Then

Jj—

k 1
llyell® = %2 Z ||$"k||2 + %2 Re Z (Tni» Tn; )-

j=11i=1

Since (z,) converges weakly, it is bounded, and there is a constant M such that
[|zn|| < M. Using (8.19), we obtain that

k j—1
2 +2
llyxl” < —+ DI < -
k ]—1
j=11i=1
Hence, yr, — 0 as k — oo. O

It follows immediately from this result that a strongly closed, convex set is
weakly closed. This need not be true without convexity; for example, the closed
unit ball {z € 2(N) | ||z|]| < 1} is weakly closed, but the closed unit sphere {z €
2(N) | ||z|| = 1} is not. It also follows from Exercise 8.19 that a strongly lower
semicontinuous, convex function is weakly lower semicontinuous. We therefore have
the following basic result concerning the existence of a minimizer for a convex
optimization problem.
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Theorem 8.49 Suppose that f : C — R, is a strongly lower semicontinuous,
convex function on a strongly closed, convex, bounded subset C' of a Hilbert space.
Then f is bounded from below and attains its infimum. If f is strictly convex, then
the minimizer is unique.

For example, the norm on a Hilbert space is strictly convex, as well as weakly
lower semicontinuous, so it follows that every convex subset of a Hilbert space has
a unique point with minimum norm. The existence of a minimizer for a nonconvex
variational problem is usually much harder to establish, if one exists at all (see
Exercise 8.22).

As in the finite dimensional case (see Exercise 1.25), a similar result holds if
f:H — Rand fis coercive, meaning that

f(@) = oo.
llzl|—o0
Theorem 8.50 Suppose that f: H — R, is a coercive, strongly lower semicontin-
uous, convex function on a Hilbert space H. Then f is bounded from below and
attains its infimum.

Proof. Since f is coercive, there is an R > 0 such that

f(z) > 12%]‘(3/) +1  forall z € H with ||z|]| > R.
y

We may therefore restrict f to the closed, convex ball {z € H | ||z|| < R}, and
apply Theorem 8.49. d

The same theorems hold, with the same proofs, when C is a convex subset of
a reflexive Banach space. We will use these abstract existence results to obtain a
solution of Laplace’s equation in Section 13.7.

8.7 References

For more about convex analysis, see Rockafellar [45]. For bounded linear operators
in Hilbert spaces see, for example, Kato [26], Lusternik and Sobolev [33], Naylor
and Sell [40], and Reed and Simon [44].

8.8 Exercises

Exercise 8.1 If M is a linear subspace of a linear space X, then the quotient space
X/M is the set {x + M | x € X} of affine spaces

t+M={z+y|lye M}

parallel to M.
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(a) Show that X/M is a linear space with respect to the operations
Mz + M) = z+ M, (x+M)+y+M)=(z+y)+ M.

(b) Suppose that X = M @& N. Show that N is linearly isomorphic to X/M.
(c¢) The codimension of M in X is the dimension of X/M. Show that a subspace
of a Banach space with finite codimension is closed.

Exercise 8.2 If ## = M @ N is an orthogonal direct sum, show that M+ = N
and Nt = M.

Exercise 8.3 Let M, A be closed subspaces of a Hilbert space H and P, @ the
orthogonal projections with ranP = M, ran@ = N. Prove that the following
conditions are equivalent: (a) M C N; (b) QP = P; (¢) PQ = P; (d) ||Pz|| < ||Qx]|
for all z € H; (e) (z, Px) < (z,Qz) for all z € H.

Exercise 8.4 We define the direct sum #H; @ H, of two Hilbert spaces H; and Ho
to be the space of ordered pairs

Hi D He = {(.Z'l,xg) | z1 € Hi,22 € H2},

with the obvious componentwise definitions of scalar multiplication, vector addition,
and inner product. For example,

((m1,22), (Y1,92)) = (1, Y1) + (T2, y2)-
Prove that H; @ H- is a Hilbert space.

Exercise 8.5 Let H = L?(T?;R®) be the Hilbert space of 27-periodic, square-
integrable, vector-valued functions u : T®> — R?, with the inner product

(u,v):/ u(x) - v(x) dx.
T3
We define subspaces V and W of H by
V = {veC™(T%R) |V -v=0},
W = {weC®(T*R®) | w= Ve for some ¢ : T> —» R}.

Show that # = M @ N is the orthogonal direct sum of M =V and N' = W.

Let P be the orthogonal projection onto M. The velocity v(x,t) € R® and
pressure p(x,t) € R of an incompressible, viscous fluid satisfy the Navier-Stokes
equations

vi+v-Vv+ Vp=rvAv,
V.-v=0.

Show that the velocity v satisfies the nonlocal equation

vi+ P[v-Vv] = vAv.
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Exercise 8.6 Show that a linear operator U : H; — Hs is unitary if and only if it
is an isometric isomorphism of normed linear spaces. Show that an invertible linear
map is unitary if and only if its inverse is.

Exercise 8.7 If ¢, is the bounded linear functional defined in (8.5), prove that
eyl = llyll-

Exercise 8.8 Prove that H* is a Hilbert space with the inner product defined by
(P, Py = (Y, 2)n-
Exercise 8.9 Let A C H be such that
M = {z € H | z is a finite linear combination of elements in A}

is a dense linear subspace of H. Prove that any bounded linear functional on H
is uniquely determined by its values on A. If {u,} is an orthonormal basis, find a
necessary and sufficient condition on a family of complex numbers ¢, for there to
be a bounded linear functional ¢ such that p(uq) = cq.

Exercise 8.10 Let {uy} be an orthonormal basis of H. Prove that {¢,,} is an
orthonormal basis of H*.

Exercise 8.11 Prove that if A:H — H is a linear map and dim H < oo, then
dimker A + dimran A = dim H.

Prove that, if dimH < oo, then dimker A = dimker A*. In particular, ker A = {0}
if and only if ker A* = {0}.

Exercise 8.12 Suppose that A : H — H is a bounded, self-adjoint linear operator
such that there is a constant ¢ > 0 with

cllz|| < ||Az]| for all z € H.
Prove that there is a unique solution z of the equation Az =y for every y € H.

Exercise 8.13 Prove that an orthogonal set of vectors {u, | @ € A} in a Hilbert
space H is an orthonormal basis if and only if

Zua@)ua:I.

acA
Exercise 8.14 Suppose that A, B € B(H) satisfy

(z, Ay) = (z, By) for all z,y € H.
Prove that A = B. Use the polarization equation to prove that if
(z, Az) = (z, Bz) for all x € H,
then A = B.
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Exercise 8.15 Prove that for all A, B € B(H), and A € C, we have: (a) A** = 4;
(b) (AB)* = B*A%; (c) (AA)* = AA%; (d) (A+ B)* = A" + B*; (e) [|47[| = [|A]].

Exercise 8.16 Prove that the operator U defined in (8.16) is unitary.

Exercise 8.17 Prove that strong convergence implies weak convergence. Also
prove that strong and weak convergence are equivalent in a finite-dimensional
Hilbert space.

Exercise 8.18 Let (u,) be a sequence of orthonormal vectors in a Hilbert space.
Prove that u,, — 0 weakly.

Exercise 8.19 Prove that a strongly lower-semicontinuous convex function is weak-
ly lower-semicontinuous.

Exercise 8.20 Let H be a real Hilbert space, and ¢ € H*. Define the quadratic
functional f : H — R by

1
f(z) = §|lwll2 — ¢(y).
Prove that there is a unique element € ‘H such that

f(@) = inf f(z).

zEH

Exercise 8.21 Show that a function is convex if and only if its epigraph, defined
in Exercise 1.24, is a convex set.

Exercise 8.22 Consider the nonconvex functional
f:W([0,1]) = R,
defined by

fw = [ - @) da,

where W14(]0,1]) is the Sobolev space of functions that belong to L*([0,1]) and
whose weak derivatives belong L*([0, 1]). Show that the infimum of f on W4([0, 1])
is equal to zero, but that the infimum is not attained.



Chapter 9

The Spectrum of Bounded Linear
Operators

In Chapter 6.6, we used Fourier series to solve various constant coefficient, linear
partial differential equations, such as the heat equation. Consider, as an exam-
ple, the following initial boundary value problem for a variable coefficient, linear
equation

Ut = Ugy — q(T)U 0<z<1,t>0,
u(0,t) =0, w(1,t)=0 t>0,
u(z,0) = f(z) 0<z<1,

where ¢ is a given coefficient function. This equation describes the temperature of
a heat conducting bar with a nonuniform heat loss term given by —q(z)u. What
would it take to express the solution for given initial data f as a series expansion
similar to a Fourier series?

If we use separation of variables and look for a solution of the form

u(z,t) = i an(t)un(z),

where {u, | n € N} is a basis of L?([0, 1]), then we find that the a,, satisfy

da
G T Tman
for some constants \,, and the u, satisfy
d*u
- d.’L‘2n + qup = )\nun

Thus, the u, should be eigenvectors of the linear operator A defined by

d?u
Ay = _ﬁ + qu,

u(0) =0, wu(l)=0.

215
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We therefore want to find a complete set of eigenvectors of A, or, equivalently, to
diagonalize A. The problem of diagonalizing a linear map on an infinite-dimensional
space arises in many other ways, and is part of what is called spectral theory.

Spectral theory provides a powerful way to understand linear operators by de-
composing the space on which they act into invariant subspaces on which their
action is simple. In the finite-dimensional case, the spectrum of a linear operator
consists of its eigenvalues. The action of the operator on the subspace of eigen-
vectors with a given eigenvalue is just multiplication by the eigenvalue. As we will
see, the spectral theory of bounded linear operators on infinite-dimensional spaces
is more involved. For example, an operator may have a continuous spectrum in
addition to, or instead of, a point spectrum of eigenvalues. A particularly simple
and important case is that of compact, self-adjoint operators. Compact operators
may be approximated by finite-dimensional operators, and their spectral theory is
close to that of finite-dimensional operators. We begin with a brief review of the
finite-dimensional case.

9.1 Diagonalization of matrices

We consider an n x n matrix A with complex entries as a bounded linear map
A:C* - C*. A complex number A is an eigenvalue of A if there is a nonzero
vector u € C* such that

Au = du. (9.1)

A vector u € C™ such that (9.1) holds is called an eigenvector of A associated with
the eigenvalue .

The matrix A is diagonalizable if there is a basis {u1,...,u,} of C* consisting
of eigenvectors of A, meaning that there are eigenvalues {\1,...,A,} in C, which
need not be distinct, such that

Auk = )\kuk for k = 1, B I8 (9.2)

The set of eigenvalues of A is called the spectrum of A, and is denoted by o(A).
The most useful bases of Hilbert spaces are orthonormal bases. A natural question
is therefore: When does an n X n matrix have an orthonormal basis of eigenvectors?

If {u1,...,un} is an orthonormal basis of C", then the matrix U = (uy, ..., up),
whose columns are the basis vectors, is a unitary matrix such that

Uek = Uk, U*uk = €,

where {e1,...,e,} is the standard basis of C*. If the basis vectors {u1,...,u,} are
eigenvectors of A, as in (9.2), then

U*AUek = )\kek.
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It follows that U* AU is a diagonal matrix with the eigenvalues of A on the diagonal,
so A =UDU* where

A 0 - 0
0 Xy --- 0
D= .. )
0 0 - A

Conversely, if A = UDU* with U unitary and D diagonal, then the columns of U
form an orthonormal basis of C" consisting of eigenvectors of A. Thus, a matrix A
can be diagonalized by a unitary matrix if and only if C* has an orthonormal basis
of eigenvectors of A.

If A= UDU*, then A* = UDU*. Since any two diagonal matrices commute, it
follows that A commutes with its Hermitian conjugate A*:

A*A=UDU*UDU* =UDDU* =UDDU* =UDU*UDU* = AA*.

Matrices with this property are called normal matrices. For example, Hermitian
matrices A, satisfying A* = A, and unitary matrices U, satisfying U*U = I, are
normal. We have shown that any matrix with an orthonormal basis of eigenvectors
is normal. A standard theorem in linear algebra, which we will not prove here, is
that the converse also holds.

Theorem 9.1 An n X n complex matrix A is normal if and only if C* has an
orthonormal basis consisting of eigenvectors of A.

A normal matrix N can be written as the product of a unitary matrix V', and a
nonnegative, Hermitian matrix A. This follows directly from the diagonal form of
N. If N = UDU* has eigenvalues \; = |\;|€!?*, we can write D = ®|D|, where ®
is a diagonal matrix with entries e?#* and |D| a diagonal matrix with entries |\|.
Then

N=VA, (9.3)
where V = U®U™ is unitary, and A = U|D|U* is nonnegative, meaning that,
u*Au >0 for all u € C".

It is straightforward to check that VA = AV. Equation (9.3) is called the polar
decomposition of N. It is a matrix analog of the polar decomposition of a complex
number z = re? as the product of a nonnegative number 7 and a complex number
e? on the unit circle. The converse is also true: if N = VA, with V unitary, A
Hermitian, and VA = AV, then N is normal.

The eigenvalues of a matrix A are the roots of the characteristic polynomial py
of A, given by

pa(N) = det(A — ).
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If pa(A) = 0, then A — AI is singular, so ker(A — AI) # {0} and there is an
associated eigenvector. Since every polynomial has at least one root, it follows that
every matrix has at least one eigenvalue, and each eigenvalue has a nonzero subspace
of eigenvectors.

It is not true that all matrices have a basis of eigenvectors, because the dimension
of the space of eigenvectors associated with a multiple root of the characteristic
polynomial may be strictly less that the algebraic multiplicity of the root. We call
the dimension of the eigenspace associated with a given eigenvalue the geometric
multiplicity of the eigenvalue, or the multiplicity for short.

Example 9.2 The 2 x 2 Jordan block

Al
A=
(5 3)
has one eigenvalue A. The eigenvectors associated with A are scalar multiples of

u = (1,0)7 so its multiplicity is one, and the eigenspace does not include a basis
of C2. The matrix is not normal, since

4, A" = (é _01 )

9.2 The spectrum

A bounded linear operator on an infinite-dimensional Hilbert space need not have
any eigenvalues at all, even if it is self-adjoint (see Example 9.5 below). Thus,
we cannot hope to find, in general, an orthonormal basis of the space consisting
entirely of eigenvectors. It is therefore necessary to define the spectrum of a linear
operator on an infinite-dimensional space in a more general way than as the set of
eigenvalues. We denote the space of bounded linear operators on a Hilbert space H
by B(H).

Definition 9.3 The resolvent set of an operator A € B(H), denoted by p(A), is
the set of complex numbers A such that (A — AI) : H — H is one-to-one and onto.
The spectrum of A, denoted by o(A), is the complement of the resolvent set in C,
meaning that o(A4) = C\ p(4).

If A — A is one-to-one and onto, then the open mapping theorem implies that
(A — XI)~! is bounded. Hence, when A € p(A), both A — Al and (A — XI)~! are
one-to-one, onto, bounded linear operators.

As in the finite-dimensional case, a complex number A is called an eigenvalue of
A if there is a nonzero vector u € H such that Au = Au. In that case, ker(A—AI) #
{0}, so A — AI is not one-to-one, and A € o(A). This is not the only way, however,



The spectrum 219

that a complex number can belong to the spectrum. We subdivide the spectrum of
a bounded linear operator as follows.

Definition 9.4 Suppose that A is a bounded linear operator on a Hilbert space H.

(a) The point spectrum of A consists of all A € 6(A) such that A — AT is not
one-to-one. In this case A is called an eigenvalue of A.

(b) The continuous spectrum of A consists of all A € 0(A) such that A — Al is
one-to-one but not onto, and ran (A — AI) is dense in H.

(c) The residual spectrum of A consists of all A\ € o(A) such that A — A is
one-to-one but not onto, and ran (A — AI) is not dense in H.

The following example gives a bounded, self-adjoint operator whose spectrum is
purely continuous.

Example 9.5 Let H = L%([0,1]), and define the multiplication operator M : H —
H by

Mf(z) = zf(x).

Then M is bounded with ||[M|| = 1. If M f = Af, then f(z) =0 a.e.,s0 f =01in
L2([0,1]). Thus, M has no eigenvalues. If A ¢ [0,1], then (z — A)~! f(z) € L?([0,1])
for any f € L?([0,1]) because (z — \) is bounded away from zero on [0, 1]. Thus,
C\ [0,1] is in the resolvent set of M. If A € [0,1], then M — AI is not onto, because
c(z=X)"t ¢ L?([0,1]) for ¢ # 0, so the nonzero constant functions ¢ do not belong to
the range of M —AI. The range of M — AI is dense, however. For any f € L*([0,1]),
let

| f(z) if|z—A>1/n,

fnl@) = { 0 iflz—A<1/n
Then f,, — f in L?([0,1]), and f,, € ran (M — XI), since (z — \) ™! f,.(z) € L*([0,1]).
It follows that o(M) = [0,1], and that every A € [0,1] belongs to the continuous

spectrum of M. If M acts on the “delta function” supported at A, which is a
distribution (see Chapter 10.8) with the property that for every continuous function

f’
f(@)or(z) = f(A)dr(2),

then M§) = Ady. Thus, in some sense, there are eigenvectors associated with points
in the continuous spectrum of M, but they lie outside the space L%([0,1]) on which
M acts.

If X belongs to the resolvent set p(A) of a linear operator A, then A — AT has an
everywhere defined, bounded inverse. The operator

Ry=0W—-A)" (9.4)



220 The Spectrum of Bounded Linear Operators

is called the resolvent of A at A, or simply the resolvent of A. The resolvent of A is
an operator-valued function defined on the subset p(A) of C.

An operator-valued function F' : Q — B(#H), defined on an open subset 2 of the
complex plane C, is said to be analytic at zg € Q if there are operators F,, € B(H)
and a 0 > 0 such that

o

F(z) = (z—20)"Fn,

n=0
where the power series on the right-hand side converges with respect to the op-
erator norm on B(#) in a disc |2 — 29| < ¢ for some 6 > 0. We say that F is
analytic or holomorphic in 1 if it is analytic at every point in . This definition is a
straightforward generalization of the definition of an analytic complex-valued func-
tion f: Q C C — C as a function with a convergent power series expansion at each
point of . The fact that we are dealing with vector-valued, or operator-valued,
functions instead of complex-valued functions makes very little difference.

Proposition 9.6 If A is a bounded linear operator on a Hilbert space, then the
resolvent set p(A) is an open subset of C that contains the exterior disc {A € C |
[A| > ||A]|}. The resolvent Ry is an operator-valued analytic function of A defined
on p(A).

Proof. Suppose that Ao € p(A4). Then we may write
M—A=NI—A)[I—(No—AN(NI—-A4)"].

If Ao — Al < [|(Aof — A)~ |71, then we can invert the operator on the right-hand
side by the Neumann series (see Exercise 5.17). Hence, there is an open disk in the
complex plane with center )¢ that is contained in p(A). Moreover, the resolvent Ry
is given by an operator-norm convergent Taylor series in the disc, so it is analytic
in p(A). If |A| > ||A||, then the Neumann series also shows that Ry = A (I — A/)\)
is invertible, so X € p(A). O

Since the spectrum o(A) of A is the complement of the resolvent set, it follows
that the spectrum is a closed subset of C, and

o(4) c{z e Cl|z| < [IA]l}.

The spectral radius of A, denoted by r(A), is the radius of the smallest disk centered
at zero that contains o (A4),

r(A) = sup{|A\| | A € 6(4)}.
We can refine Proposition 9.6 as follows.

Proposition 9.7 If A is a bounded linear operator, then

BERT nl/n
P(4) = lim (|47, 9.5)



The spectrum 221
If A is self-adjoint, then r(A) = ||A4]].

Proof. To prove (9.5), we first show that the limit on the right-hand side exists.
Let

an, =log||A™]| .

We want to show that (a,/n) converges. Since ||A™+"|| < ||A™|||A"||, we have
an < nay and

Am+n S m + Qp.

We write n = pm + q where 0 < g < m. It follows that

a 1
I B+ Za,
n

n n

If n — oo with m fixed, then p/n — 1/m, so

. Qan a
limsup — < 2.
n—oc N m

Taking the limit as m — 0o, we obtain that

lim sup n < liminf a—m,
n—oco N m—o0 M
which implies that (a,/n) converges.
Equation (9.5) implies that the Neumann series

T+ A+A2+ . .+ A"+ ...

converges if r(4) < 1 and diverges if 7(A) > 1: if r(4) < 1, then there is an
r(A) < R < 1 and an N such that ||[A"|| < R" for all n > N; while if r(4) > 1,
there is an 1 < R < r(A) and an N such that ||A"|| > R"™ for all n > N. It follows
that AI — A may be inverted by a Neumann series when |\| > r(A4), so the spectrum
of A is contained inside the disc {A € C | |\| < 7(A)}, and that the Neumann series
must diverge, so AI — A is not invertible, for some A € C with |\| = r(A4). For more
details, see Reed and Simon [44], for example.

From Corollary 8.27, if A is self-adjoint, then ||A2|| = ||A]|?. The repeated use of
this result implies that || 42" || = ||4]|>", and hence (9.5), applied to the subsequence
with n = 2™, implies that r(A4) = || A]|. O

Although the spectral radius of a self-adjoint operator is equal to its norm, the
spectral radius does not provide a norm on the space of all bounded operators. In
particular, r(A) = 0 does not imply that A = 0, as Exercise 5.13 illustrates. If
r(A) =0, then A is called a nilpotent operator-

Proposition 9.8 The spectrum of a bounded operator on a Hilbert space is nonemp-
ty.
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Proof. Suppose that A € B(#H). Then the resolvent Ry = (A — A)~! is an
analytic function on p(A). Therefore, for every z,y € H, the function f : p(4) — C
defined by

f(X) = (z, Rxy)

is analytic in p(A), and limy_,+ f(X) = 0. Suppose, for contradiction, that o(4) is
empty. Then f is a bounded entire function, and Liouville’s Theorem implies that
f : C — Cis a constant function, so f = 0. But if f = 0 for every x,y € H, then
Ry =0 for all A € C, which is impossible. Hence, o(A) is not empty. O

The spectrum of a bounded operator may, however, consist of a single point (see
Exercise 9.7 for an example).

9.3 The spectral theorem for compact, self-adjoint operators

In this section, we analyze the spectrum of a compact, self-adjoint operator. The
spectrum consists entirely of eigenvalues, with the possible exception of zero, which
may belong to the continuous spectrum. We begin by proving some basic properties
of the spectrum of a bounded, self-adjoint operator.

Lemma 9.9 The eigenvalues of a bounded, self-adjoint operator are real, and eigen-
vectors associated with different eigenvalues are orthogonal.

Proof. 1If A:H — H is self-adjoint, and Az = Az with z # 0, then
Mz, z) = (r, Az) = (Az, x) = Xz, ),

so A=\, and A € R If Az = Az and Ay = py, where X and p are real, then
Mz, y) = (Az,y) = (=, Ay) = p(z,y).

It follows that if A # u, then {(z,y) =0 and = L y. O

As we will see in the next chapter, self-adjoint operators are a rich source of
orthonormal bases.

A linear subspace M of H is called an invariant subspace of a linear operator
Aon Hif Ax € M for all x € M. In that case, the restriction A|p4 of A to M
is a linear operator on M. Suppose that X = M @ N is a direct sum of invariant
subspaces M and A of A. Then every x € H may be written as x = y + 2, with
y € Mand z € N, and

Az = Almy + A|nvz. (9.6)

Thus, the action of A on # is determined by its actions on the invariant subspaces.
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Example 9.10 Consider matrices acting on C? = C™ @ C" whered = m +n. A
d x d matrix A leaves C™ invariant if it has the block form

B D
A=
(o)
where B is an m x m matrix, D is m X n, and C is n X n. The matrix A leaves
both C™ and the complementary space C* invariant if D = 0.

An invariant subspace of a nondiagonalizable operator may have no comple-
mentary invariant subspace. However, the orthogonal complement of an invariant
subspace of a self-adjoint operator is also invariant, as we prove in the following
lemma. Thus, we can decompose the action of a self-adjoint operator on a linear
space into actions on smaller orthogonal invariant subspaces.

Lemma 9.11 If A is a bounded, self-adjoint operator on a Hilbert space H and M
is an invariant subspace of A, then M is an invariant subspace of A.

Proof. 1If x € M+ and y € M, then
(y, Az) = (Ay,z) = 0
because A = A* and Ay € M. Therefore, Az € M*. O
Next, we show that the whole spectrum — not just the point spectrum — of a

bounded, self-adjoint operator is real, and that the residual spectrum is empty. We
begin with a preliminary proposition.

Proposition 9.12 If X belongs to the residual spectrum of a bounded operator A
on a Hilbert space, then X is an eigenvalue of A*.

Proof. 1If X belongs to the residual spectrum of A € B(H), then ran (A4 — \I)
is not dense in ‘H. By Theorem 6.13, there is a nonzero vector x € H such that
z L ran (A — XI). Theorem 8.17 then implies that = € ker (4* — XI). O

Lemma 9.13 If A is a bounded, self-adjoint operator on a Hilbert space, then the
spectrum of A is real and is contained in the interval [—||A]|, || A4]|]-

Proof. We have shown that r(4) < ||A]|, so we only have to prove that the
spectrum is real. Suppose that A = a + ib € C, where with a,b € R and b # 0. For
any z € ‘H, we have

(A= ADzl]> = {((A—ADz,(A—\)z)
{(A=al)z,(A—al)zx) + ((—ib)x, (—ib)x)
+(Az, (—ib)z) + ((—ib)z, Ax)
(A — aD)z|* + b?||2||?

b[||*.

Vv
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It follows from this estimate and Proposition 5.30 that A — AI is one-to-one and
has closed range. If ran (A — AI) # #, then X belongs to the residual spectrum
of A, and, by Proposition 9.12, A\ = a — ib is an eigenvalue of A. Thus A has an
eigenvalue that does not belong to R, which contradicts Lemma 9.9. It follows that
A € p(A) if A is not real. O

Corollary 9.14 The residual spectrum of a bounded, self-adjoint operator is emp-
ty.

Proof. From Lemma 9.13, the point spectrum and the residual spectrum are
disjoint subsets of R, so the result follows immediately from Proposition 9.12. O

Bounded linear operators on an infinite-dimensional Hilbert space do not always
behave like operators on a finite-dimensional space. We have seen in Example 9.5
that a bounded, self-adjoint operator may have no eigenvalues, while the identity
operator on an infinite-dimensional Hilbert space has a nonzero eigenvalue of infi-
nite multiplicity. The properties of compact operators are much closer to those of
operators on finite-dimensional spaces, and we will study their spectral theory next.

Proposition 9.15 A nonzero eigenvalue of a compact, self-adjoint operator has
finite multiplicity. A countably infinite set of nonzero eigenvalues has zero as an
accumulation point, and no other accumulation points.

Proof. Suppose, for contradiction, that A is a nonzero eigenvalue with infinite
multiplicity. Then there is a sequence (e,) of orthonormal eigenvectors. This se-
quence is bounded, but (Ae,) does not have a convergent subsequence because
Ae,, = \e,, which contradicts the compactness of A.

If A has a countably infinite set {\,} of nonzero eigenvalues, then, since the
eigenvalues are bounded by ||A||, there is a convergent subsequence (A, ). If
An, = A and XA # 0, then the orthogonal sequence of eigenvectors (f,,), where
frw = Anten, and |len, || = 1, would be bounded; but (Af,,) has no convergent
subsequence since Afn, = en,. O

To motivate the statement of the spectral theorem for compact, self-adjoint
operators, suppose that z € H is given by

z = chek + 2z, (9.7)
k

where {e} is an orthonormal set of eigenvectors of A with corresponding nonzero
eigenvalues {A;}, z € ker A, and ¢, € C. Then Az = )", Apcrer. Let Pp denote
the one-dimensional orthogonal projection onto the subspace spanned by e,

Pz = (e, x)e. (9.8)
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From Lemma 9.9, we have z L ey, so ¢, = (e, x) and

Az =) M\ Pio. (9.9)
k
If Ay has finite multiplicity mj > 1, meaning that the dimension of the associated
eigenspace Ey C H is greater than one, then we may combine the one-dimensional
projections associated with the same eigenvalues. In doing so, we may represent A
by a sum of the same form as (9.9) in which the )\, are distinct, and the Py are
orthogonal projections onto the eigenspaces Ej,.
The spectral theorem for compact, self-adjoint operators states that any = € ‘H
can be expanded in the form (9.7), and that A can be expressed as a sum of
orthogonal projections, as in (9.9).

Theorem 9.16 (Spectral theorem for compact, self-adjoint operators) Let
A :H — H be a compact, self-adjoint operator on a Hilbert space H. There is an
orthonormal basis of H consisting of eigenvectors of A. The nonzero eigenvalues of
A form a finite or countably infinite set {\x} of real numbers, and

A=\, (9.10)
k

where Pj is the orthogonal projection onto the finite-dimensional eigenspace of
eigenvectors with eigenvalue Ag. If the number of nonzero eigenvalues is countably
infinite, then the series in (9.10) converges to A in the operator norm.

Proof. First we prove that if A is compact and self-adjoint, then A = ||A]| or
A = —||4]| (or both) is an eigenvalue of A. This is the crucial part of the proof. We
use a variational argument to obtain an eigenvector.

There is nothing to prove if A = 0, so we suppose that A # 0. From Lemma 8.26,
we have

Hence, there is a sequence (z,) in H with ||z,|| = 1 such that
1A = Tim_[(zn, Az,

Since A is self-adjoint, (x,, Az,) is real for all n, so there is a subsequence of (z,),
which we still denote by (z,,), such that
lim (z,, Az,) = A, (9.11)

n—oo

where A = ||A]| or A = —||A]|

The sequence (z,,) consists of unit vectors, so it is bounded. The compactness
of A implies that there is a subsequence, which we still denote by (z,), such that
(Az,) converges. We let y = lim,,_,o, Az,,. We claim that y is an eigenvector of
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A with eigenvalue . First, y # 0, since otherwise (9.11) would imply that A = 0,
which is not the case since |A| = ||A]| and A # 0. The fact that y is an eigenvector
follows from the following computation:

IA=ADYIP = Jim [[(A = AD)Az,
< JAJP Tim [[(4~ Az
n—0o0

JAIP Tim_ [ Azal® + X2[2all> — 20 (2n, Aza)]
IAIP Tim (APl 2 + N[kl — 27(zn, Az,)]
|47 [)\2 + 2% - 2)\2]

= 0.

IA

To complete the proof, we use an orthogonal decomposition of H into invariant
subspaces to apply the result we have just proved to smaller and smaller subspaces
of H. We let N; = H and A; = A. There is a normalized eigenvector of A,
which we denote by e;, with eigenvalue A1, where |A1| = ||A1]|. Let M3 be the one-
dimensional subspace of N generated by e;. Then M, is an invariant subspace of
A;. We decompose N; = Mo ® N>, where Ny = M3, Lemma 9.11 implies that N5
is an invariant subspace of A;. We denote the restriction of A; to N2 by As. Then
A, is the difference of two compact operators, so it is compact by Proposition 5.43.
We also have that ||As|| < ||A1]|, since Vo C M.

An application of the same argument to A, implies that As has a normalized
eigenvector ea with eigenvalue A2, where

o] = [[Ao]| < [l Al = [M].

Moreover, e; L e;. Repeating this procedure, we define A, inductively to be the
restriction of A to N, = M-, where M,, is the space spanned by {ei,...e,—1}, and
en to be an eigenvector of A, with eigenvalue A,. By construction, |A,| = [|Ax||
and (|A,|) is a nonincreasing sequence.

If A,41 =0 for some n, then A has only finitely many nonzero eigenvalues, and
it is given by a finite sum of the form (9.10). If dim A > n, then the orthonormal
set {eg | K =1,...n} can be extended to an orthonormal basis of 7. All other basis
vectors are eigenvectors of A with eigenvalue zero.

If A, # 0 for every n € N, then we obtain an infinite sequence of nonzero
eigenvalues and eigenvectors. From Proposition 9.15, the eigenvalues have finite
multiplicities and

lim A, = 0. (9.12)

n—o

For any n € N, we have

A= MNP+ Anya,
k=1
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where A, is zero on the subspace spanned by {e1,...,en}, and ||[Any1]] = [Ant1]-
By (9.12), we have

lim
n—oo

A— Z )\k<ek; -)ek
k=1

= nh—{réo |)‘n+1| = 07

meaning that

A= i A P,
k=1

where the sum converges in the operator norm.
If A has an infinite sequence of nonzero eigenvalues, then the range of A is

ranA = Crek ‘ <00,
> crer | X p
The range is not closed since A, — 0 as n — oo. The closure of the range,

M = ran A, is the closed linear span of the set of eigenvectors {e, | n € N}
with nonzero eigenvalues,

oo oo
M= {chek ‘ Z|ck|2 < oo}.
k=1 k=1

If € ML, then Az = A,z for all n € N, so that

[Az|| < [[An|lllz]| =0 asn — oco.

Therefore, M=+ = ker A consists of eigenvectors of A with eigenvalue zero, and we
can extend {e, | n € N} to an orthonormal basis of # consisting of eigenvectors by
adding an orthonormal basis of ker A. O

A similar spectral theorem holds for compact, normal operators, which have or-
thogonal eigenvectors but possibly complex eigenvalues. A generalization also holds
for bounded, self-adjoint or normal operators. In that case, however, the sum in
(9.10) must be replaced by an integral of orthogonal projections with respect to an
appropriate spectral measure that accounts for the possibility of a continuous spec-
trum. We will not discuss such generalizations in this book. Non-normal matrices
on finite-dimensional linear spaces may be reduced to a Jordan canonical form, but
the spectral theory of non-normal operators on infinite-dimensional spaces is more
complicated.

We will discuss unbounded linear operators in the next chapter. The above
theory may be used to study an unbounded operator whose inverse is compact or,
more generally, an unbounded operator whose resolvent is compact, meaning that
(M — A)~! is compact for some X € p(A). For example, a regular Sturm-Liouville
differential operator has a compact, self-adjoint resolvent, which explains why it has
a complete orthonormal set of eigenvectors.
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9.4 Compact operators

Before we can apply the spectral theorem for compact, self-adjoint operators, we
have to check that an operator is compact. In this section, we discuss some ways
to do this, and also give examples of compact operators.

The most direct way to prove that an operator A is compact is to verify the
definition by showing that if F is a bounded subset of H, then the set A(E) = {Az |
x € E} is precompact. In many examples, this can be done by using an appropriate
condition for compactness, such as the Arzela-Ascoli theorem or Rellich’s theorem.
The following theorem characterizes precompact sets in a general, separable Hilbert
space.

Theorem 9.17 Let E be a subset of an infinite-dimensional, separable Hilbert
space H.

(a) If E is precompact, then for every orthonormal set {e, | n € N} and every
€ > 0, there is an N such that

oo

> Kemz)><e forallzeE. (9.13)
n=N+1
(b) If E is bounded and there is an orthonormal basis {e,} of H with the
property that for every € > 0 there is an N such that (9.13) holds, then E
is precompact.

Proof. First, we prove (a). A precompact set is bounded, so it is sufficient to
show that if E is bounded and (9.13) does not hold, then E is not precompact. If
(9.13) does not hold, then there is an € > 0 such that for each N there isan zy € E
with

o0

S Keman)* > e (9.14)

n=N+1

We construct a subsequence of () as follows. Let N3 = 1, and pick N, such that

o0

Z |<6n,$N1>|2 <

n=Nz+1

Given Ny, pick Ngy1 such that

oo

Z |<en7$Nk)|2 <

n=Ngt1+1

L]

. (9.15)

[N e

We can always do this because the sum

9]
> len an|* = llan?
n=1
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converges by Parseval’s identity.
For any N > 1, we define the orthogonal projection Py by

N

Pyz = Z(en, z)e,.

n=1

For k > I, we have

I(I = Pr,) (o, — 2

lzn, —oml® >
> (I = Pw,) 2wl = (I = P) 2 )

o0 o0
2 2
= Y KemandP =] D Kemzn,)l
n=Np+1 n=Np+1
2
> [e2 — (e/a)/?]
> £
- 4

where we have used (9.14), (9.15), and the fact that N, > Ny;1. It follows that
(zn,) does not have any convergent subsequences, contradicting the hypothesis that
FE is precompact.

To prove part (b), suppose that {e, | n € N} is an orthonormal basis with the
stated property, and let (z,) be any sequence in E. We will use a diagonalization
argument to construct a convergent subsequence, thus proving that E is precompact.
Without loss of generality we may assume that ||z|| < 1 for all x € E. We choose
n1 = 1. Then

I(I=Pa)zal|<1 forallmeN.

Since P, x, is in the finite-dimensional Hilbert subspace spanned by e, ..., ey, for
each n € N, there is subsequence (z1%) of (z,) such that that P,,z1 s converges.
Therefore, we can pick the subsequence such that (see Exercise 1.18)

1
1Py @ — 2| < 3 for k<L
Next, we choose ny such that
5 1
(I = Pp,) z1,5]|” < 2 for all kK € N.

This is possible because of (9.13). We then pick a subsequence z2j of 1 such
that (P,22,) is Cauchy and

| Py (2,5 — 2,) || < for all k < 1.

el
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Continuing in this way, we choose n; such that

1
(I = Po) zi_ i) < 7 forallkeN,

and then pick a subsequence (z;1) of (z;_1,) such that (P, 21k) satisfies

1 .
| Py (w10 — $l,j)||2 < z for all k < j.

The diagonal sequence (zy, ) is Cauchy, since

I2mam = 2l = 1Pe(@man = 2l + 10 = P 2mam = 2l < 7
for all m,n > k. O
Example 9.18 Let # = ¢2(N). The Hilbert cube
C={(z1,22,.--,Zn,...) | |zn] < 1/n}
is closed and precompact. Hence C is a compact subset of H.
Example 9.19 The diagonal operator A : £2(N) — (?(N) defined by
A(z1,T2,T3,- -, Tny--.) = (A1T1, AoTo, - oo, An Ty - - -), (9.16)

where A\, € C is compact if and only if A, — 0 as n — co. Any compact, normal
operator on a separable Hilbert space is unitarily equivalent to such a diagonal
operator.

Proposition 5.43 implies that the uniform limit of compact operators is compact.
An operator with finite rank is compact. Therefore, another way to prove that A is
compact is to show that A is the limit of a uniformly convergent sequence of finite-
rank operators. One such class of compact operators is the class of Hilbert-Schmidt
operators.

Definition 9.20 A bounded linear operator A on a separable Hilbert space H is
Hilbert-Schmidt if there is an orthonormal basis {e, | n € N} such that

> lldenl? < 0. (9.17)
n=1

If A is a Hilbert-Schmidt operator, then

lAllms = (9.18)

fe's}
> Nl Aenl?
n=1

is called the Hilbert-Schmidt norm of A.
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One can show that the sum in (9.17) is finite in every orthonormal basis if it is
finite in one orthonormal basis, and the norm (9.18) does not depend on the choice
of basis.

Theorem 9.21 A Hilbert-Schmidt operator is compact.

Proof. Suppose that A is Hilbert-Schmidt and {e, | n € N} is an orthonormal
basis. If Py is the orthogonal projection onto the finite-dimensional space spanned
by {e1,...en}, then Py A is a finite-rank operator, and one can check that Py A —
A uniformly as N — oo. O

Example 9.22 The diagonal operator A : ¢2(N) — (2(N) defined in (9.16) is
Hilbert-Schmidt if and only if

[o°]
D Anf? < oo
n=1

We say that A is a trace class operator if

oo
Z |An| < oo.
n=1

A trace class operator is Hilbert-Schmidt, and a Hilbert-Schmidt operator is com-
pact.

Example 9.23 Let 2 C R®. One can show that an integral operator K on L?(),
K1) = [ k@) ) d (919)
is Hilbert-Schmidt if and only if & € L2(2 x Q), meaning that
/ |k(z,y)|* dedy < .
QxQ
The Hilbert-Schmidt norm of K is

\ 1/2
|Klrs = (/ |k(z,v)| dz‘dy) .
QxQ

If K is a self-adjoint, Hilbert-Schmidt operator then there is an orthonormal basis
{pn | n € N} of L2(2) consisting of eigenvectors of K, such that

/Q k(2,9)0n(y) dy = Anion(2).
Then

k(z,y) = Z Anon(2)Pn(y),
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where the series converges in L?(Q2 x Q):

2

N
lim k(z,y) — Z Anen(@)en(y)| dazdy. =0
n=1

N—o0 Qx0

For a proof, see, for example, Hochstadt [22].

Another way to characterize compact operators on a Hilbert space is in terms
of weak convergence.

Theorem 9.24 A bounded linear operator on a Hilbert space is compact if and
only if it maps weakly convergent sequences into strongly convergent sequences.

Proof. First, we show that a bounded operator A : H — H on a Hilbert space H
maps weakly convergent sequences into weakly convergent sequences. If x,, — z as
n — oo, then for every z € H we have

(Az,, — Az, 2) = (z, —x,A%2) > 0 as n — oo.

Therefore, Az, — Az as n — oco. Now suppose that A is compact, and z,, — z.
Since a weakly convergent sequence is bounded, the sequence (Az,) is contained in
a compact subset of H. Moreover, each strongly convergent subsequence is weakly
convergent, so it converges to the same limit, namely Az. It follows that the whole
sequence converges strongly to Az (see Exercise 1.27).

Conversely, suppose that A maps weakly convergent sequences into strongly
convergent sequences, and E is a bounded set in #H. If (y,) is a sequence in A(E),
then there is a sequence (z,) in E such that y,, = Az,. By Theorem 8.45, the
sequence (z,) has a weakly convergent subsequence (z,, ). The operator A maps
this into a strongly convergent subsequence (y,, ) of (y,). Thus A(E) is compact
for any bounded set E, so A is compact. d

9.5 Functions of operators
The theory of functions of operators is called functional calculus. In this section,
we describe some basic ideas of functional calculus in the special case of compact,

self-adjoint operators.
If ¢ : C — C is a polynomial function of degree d,

d
q(z) = Z crak,
k=0

with coefficients ¢; € C, then we define an operator-valued polynomial function
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q : B(H) — B(#) in the obvious way as

d
g(A) =) cp Ak, (9.20)
k=0

There are several ways to define more general functions of a linear operator than
polynomials. We have already seen that if A is a bounded operator and the function
f : € — C is analytic at zero, with a Taylor series whose radius of convergence is
strictly greater than ||A||, then we may define f(A) by a norm-convergent power
series. For example e/ is defined for any bounded operator A, and (I — A)~! is
defined in this way for any operator A with r(A4) < 1.

An alternative approach is to use spectral theory to define a continuous function
of a self-adjoint operator. First suppose that

N
A= 2_:1,\”19”

is a finite linear combination of orthogonal projections P,, with orthogonal ranges,
and ¢ is the polynomial function defined in (9.20). Since {P,} is an orthogonal
family of projections, we have

Pt=pP, P,P,=0 forn#m.

It follows that 4% = > AEP, and

If A is a compact, self-adjoint operator with the spectral representation

A= M\P, (9.21)
n=1
then one can check that (see Exercise 9.18)
q(4) = Z q(An) Pp. (9-22)
n=0

If f:0(A) —» Cis a continuous function, then a natural generalization of the
expression in (9.22) for g(A) is

f(A) =D f(n)Pn. (9.23)

This series converges strongly for any continuous f, and uniformly if in addition
f(0) = 0 (see Exercise 9.19). An equivalent way to define f(A) is to choose a
sequence (g,) of polynomials that converges uniformly to f on o(A), and define
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f(A) as the uniform limit of ¢, (A) (see Exercise 9.18). If f is real-valued, then the
operator f(A) is self-adjoint, and if f is complex-valued, the f(A) is normal.

As a consequence of the spectral representation of A in (9.21) and f(A) in (9.23),
we have the following result.

Theorem 9.25 (Spectral mapping) If A is a compact, self-adjoint operator on
a Hilbert space and f : 6(A) — C is continuous, then

Here, o (f(A)) is the spectrum of f(A), and f (o(A)) is the image of the spectrum
of A under f,

fo(A) ={ueC|pu= f(A) for some A € 6(4)}.

A result of this kind is called a spectral mapping theorem. A spectral mapping
theorem holds for bounded operators on a Hilbert space, and many unbounded
operators, but there exist nonnormal, unbounded operators for which it is false (see
Exercise 10.19). Thus, in general, unlike the finite-dimensional case, a knowledge of
the spectrum of an unbounded operator is not sufficient to determine the spectrum
of a function of the operator, and some knowledge of the operator’s structure is also
required.
Consider a linear evolution equation that can be written in the form

x = Az, z(0) = =, (9.24)

where A is a compact, self-adjoint linear operator on a Hilbert space . The solution
is

z(t) = e*txy.

A A

If o is an eigenvector of A with eigenvalue ), then ety = e*zy. The so-
lution decays exponentially if ReA < 0, and grows exponentially if ReA > 0.
From the spectral mapping theorem, if the spectrum o(A) is contained in a left-
half plane {\ € C | Re A < w}, then the spectrum of e4? is contained in the disc
{AeC| A <ev'}

If {e, | n € N} is an orthonormal basis of eigenvectors of A, then we may write
the solution as

z(t) = Z erte,, zo)en.
n=1
If A\, <w for all n, it follows that
o« oo
le@ll = | D lerten, z0)2 < e, | D [en, z0)|? = e*|lzo]l-
n=1 n=1




Perturbation of eigenvalues 235

When w < 0, any solution decays exponentially to 0 as ¢ — co. In that case, we say
that the equilibrium solution z(t) = 0 is globally asymptotically stable.

9.6 Perturbation of eigenvalues

Suppose that A(e) is a family of operators on a Hilbert space that depends on a
real or complex parameter €. If we know the spectrum of A(0), then we can use
perturbation theory to obtain information about the spectrum of A(e) for small e.
In this section, we consider the simplest case, when A(e) is a compact, self-adjoint
operator depending on a real parameter €.

Before doing this, we prove a preliminary result of independent interest: the
Fredholm alternative for a compact, self-adjoint perturbation of the identity.

Theorem 9.26 Suppose that A is a compact, self-adjoint operator on a Hilbert
space and A € C is nonzero. Then the equation

(A-X)z=y (9.25)
has a solution if and only if y L 2 for every solution z of the homogeneous equation
(A=AI)z=0.

The solution space of the homogeneous equation is finite-dimensional.

Proof. 1If A:H — H is compact and self-adjoint, then there is an orthonormal
basis {e,, | n € N} of H consisting of eigenvectors of A, with Ae,, = Ape, for A, € R.
We expand z and y with respect to this basis as

) %)
xr = E Tn€n, Y= E Ynén,
n=1 n=1

where z,, = (e, z) and y,, = (e,,y). With respect to this basis, equation (9.25) has
the diagonalized form

A =N Ty, = Yn for n € N. (9.26)

If A, # A for all n, then A\, — X is bounded away from zero, since A # 0 and there are
no nonzero accumulation points of the eigenvalues of a compact operator. Hence,
equation (9.25) is uniquely solvable for every y € H, with the solution

o i (en ),

>
S

|
>

If A = A, for some n, then there is a finite-dimensional subspace of eigenvec-
tors with the nonzero eigenvalue A. Suppose the corresponding eigenvectors are
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{€ny)€ny,---€n, }- Then we can solve (9.26) if and only if
Yng =Yng = --- = Yn, =0,
meaning that y is orthogonal to the kernel of (A — AI). O

Suppose that A(e) is a compact, self-adjoint operator depending on a parameter
€ € R. We assume that A is a real-analytic function of € at € = 0, meaning that it
has a Taylor series expansion

Ae) = Ag + €A1 + 245 + O(€%)

that converges with respect to the operator norm in some interval |¢] < R. The
coeflicient operators A,, are given by

. 1 . 1 d»
Ag=A A=A A== A viry, Ap=—=—A yeen
0 (0); 1 (6) 6207 2 2 (6) e=0’ ) n! den (6) —o
where the dot denotes a derivative with respect to e.
We look for eigenvalues A(e) and eigenvectors z(e) of A(e) that satisfy
[A(e) — A(€)] z(e) = 0. (9.27)

It can be shown that the eigenvalues and eigenvectors of A(e) have convergent Taylor
series expansions

AE) = Ao + eAp + €2X2 + O(€%), (9.28)
z(€) = zo + ex1 + €225 + O(€%), (9.29)

where A\g = A\(0), Ay = A(0), and so on. We will not prove the convergence of these
series here, but we will show how to compute the coefficients.
Setting € = 0 in (9.27), we obtain that

(Ao - )\()I) o = 0. (930)

Thus, A¢ is a nonzero eigenvalue of Ag and x is an eigenvector. For definiteness,

we assume that Ag is a simple eigenvalue of Ag, meaning that has multiplicity one,

although eigenvalues of higher multiplicity can be treated in a similar way.
Differentiation of (9.27) with respect to e implies that

(A=ADi+ (d-AT)z=0.
Setting € equal to zero in this equation, we obtain that
(Ao — )\0[) I = )\1.750 — Al.’L‘(). (931)

Since {z0} is a basis of ker (A9 — AoI), Theorem 9.26 implies that this equation is
solvable for z; if and only if the right-hand side is orthogonal to zq. It follows that

(SUO, Alxo)

AL =
[ENR
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Continuing in this way, we differentiate equation (9.27) n times with respect to €
and set € equal to zero in the result, which gives an equation of the form

(A() - )\0.[) Ty = ApZo + frn-1 (330, iy Xp—1, A0, - - -;An—l) . (932)

The Fredholm alternative implies that the right-hand side must be orthogonal to
zo. This condition determines \,, and we can then solve the equation for x,,. Thus,
we can successively determine the coefficients in the expansions of A(€) and z(e).

The solution of (9.32) for x,, includes an arbitrary multiple of zo. This nonunique-
ness is a consequence of the arbitrariness in the normalization of the eigenvector.
If c(e) = 1+ ecy + €2c2 + O(€?) is a scalar and x(€) = zo + €x1 + €222 + O(€?) is an
eigenvector, then

c(e)z(€) = zg + € (x1 + c120) + €2 (z2 + 121 + co20) + O(€3)

is also an eigenvector. Each term in the expansion contains an arbitrary multiple
of Zo-

An alternative way to derive the perturbation equations (9.30)-(9.32) is to use
the Taylor series (9.28)—(9.29) in (9.27), expand, and equate coefficients of powers
of € in the result.

Example 9.27 Consider the eigenvalue problem
—u" + V(z,e)u = Iu, (9.33)
where u € L?(R) and
V(z,e) =2° +e(z* - 43:2)6_%2. (9.34)

In quantum mechanics, this problem corresponds to the determination of the en-
ergy levels of a slightly anharmonic oscillator. See Figure 9.1 for a graph of the
potential for four different values of €. For definiteness, we consider the energy of
the ground state only, that is, the smallest eigenvalue, although the perturbation of
other eigenvalues can be computed in exactly the same way.
The eigenvalue problem is of the form Au = Au, where A = Ag + €A; with

d? d?
—— 4V, Ay=-——

dx? TV A dx?
From Exercise 6.14, the unperturbed ground state ug and the associated eigenvalue
Ao of Ay are given by

A= 22, Ay = (zf —42%)e 2.

uo(x) = e /2, Ao =1.
The operator A is unbounded. We will assume that the perturbed operator has
a ground state close to that of the unperturbed operator, and apply the above
expansion without discussing the validity of the method in this case. See the book
by Kato [26] for a comprehensive discussion.
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1.5 -1 -0.5

Fig. 9.1 The perturbed harmonic potential V (z,¢€), defined in (9.34), for €e=-0.3, 0, 0.2, and 0.4.

The perturbed eigenvalue has the expansion A = 1+ e\; + O(€?), where

(ug, (z* — 4m2)e_2w2u0) _ ffooo($4 - 493'2)6_%2 dz
(o] [ e dx

e
— 00

AL =

(9.35)

The expression in (9.35) for A; may be evaluated in the following way. First, note
that

1= z"e=3" dy T e z"e=?" dy
[ e=etdr  3tD/2 [ -2 dy
—0o0 —0o0

for n > 0. We need to compute this ratio of integrals for n = 2 and n = 4. Let
o0 2
J(a) = / e @ 297 . (9.36)

Differentiating this expression n times with respect to a, we obtain that

J™(a) = 2" /00 ghe~T T20% g

—0o0

Hence, setting a = 0, we have

17 z"e~" dx _ 1.J™(0)
[Z e =de 27 J(0)

e
oo

To evaluate the right-hand side of this equation, we complete the square in the
exponent of the integrand in (9.36) and change the integration variable from z +—
z — a. This gives

J(a) = e* J(0).
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It follows that

oo n . —x2 n a2
f_ooa: e 7 dx 1 d"

foooo e~®der 27 da®

a=0
In particular, for n = 2,4, we compute

2
d*e®

da*

d2es”
da?

= (4a% +2) = (16a* + 484> + 12) e* .

From these computations it follows that A\; = —7/(24v/3), and

7
A=1———e+ O0().
24+/3 ()
If € > 0, corresponding to an oscillator that becomes “softer” for small amplitude
oscillations, then the ground state energy decreases, while if € < 0, corresponding
to an oscillator that becomes “stiffer” for small amplitude oscillations, then the
ground state energy increases.

9.7 References

For additional discussion of the spectra of bounded and compact, normal operators,
see Naylor and Sell [40]. The terminology of the classification of the spectrum is
not entirely uniform (see Reed and Simon [44] for a further discussion). With
the definitions we use here, the spectrum of a bounded operator is the disjoint
union of its point, continuous, and residual spectrums. For an introduction to
complex analysis and a proof of Liouville’s theorem, see [36]. See Kato [26] for the
perturbation theory of spectra.

9.8 Exercises

Exercise 9.1 Prove that p(A*) = p(A), where p(A) is the set {A € C | X € p(A4)}.

Exercise 9.2 If ) is an eigenvalue of A, then X is in the spectrum of A*. What
can you say about the type of spectrum X belongs to?

Exercise 9.3 Suppose that A is a bounded linear operator of a Hilbert space and
A, 1 € p(A). Prove that the resolvent Ry of A satisfies the resolvent equation

Ry—R, = (1— \) RAR,.

Exercise 9.4 Prove that the spectrum of an orthogonal projection P is either {0},
in which case P =0, or {1}, in which case P = I, or else {0,1}.
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Exercise 9.5 Let A € B(#H) be a nonnegative operator such that (z, Az) > 0 for
all z € H. Prove that o(A) C [0, +00).

Exercise 9.6 Let G be a multiplication operator on L?(R) defined by

where g is continuous and bounded. Prove that G is a bounded linear operator on
L?(R) and that its spectrum is given by

o(G) ={g(z) | = € R}.
Can an operator of this form have eigenvalues?

Exercise 9.7 Let K : L([0,1]) — L?([0, 1]) be the integral operator defined by

Kf(w)=/0zf(y)dy-

(a) Find the adjoint operator K*.
(b) Show that | K|| = 2/=.
(c) Show that the spectral radius of K is equal to zero.

Exercise 9.8 We define the right shift operator S on £2(Z) by
S(x)r = Tp—1 for all k € Z,

where z = ()32 _ is in £%(Z). Prove the following facts.

(a) The point spectrum of S is empty.

(b) ran (A\I — S) = £%(Z) for every X € C with |\| > 1.

(c) ran (A — S) = ¢2(Z) for every X € C with |\ < 1.

(d) The spectrum of S consists of the unit circle {A € C | |\] = 1} and is purely
continuous

Exercise 9.9 Define the discrete Laplacian operator A on (2(Z) by
(Az)) = Tp—1 — 2Tk + Tit1, (9.37)

where = (2)72_ - Show that A =S+ §* —21. Prove that the spectrum of A
is entirely continuous and consists of the interval [—4,0].

HiNT: Consider z, = e*¢ where —7 < ¢ < 7. Finite difference schemes for
the numerical solution of differential equations may be written in terms of shift
operators, and a study of their spectrum is useful in the stability analysis of finite

difference schemes (see Strikwerder [52]).
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Exercise 9.10 Define the right shift operator S on ¢?(N) by

S ((z1,22,23,...)) = (0,21, 22, . ..), (9.38)
and the left shift operator T on ¢2(N) by

T ((z1,22,3,...)) = (2,23, T4, . ..). (9.39)
Prove the following.

(a) The resolvent set of S is the exterior of the unit disc {A € C | |A| > 1}.

(b) Every A € C with |A\| =1 belongs to the continuous spectrum of S.

(c) ran (A — S) is not dense in 2 for every A € C with |\| < 1, meaning that
the interior of the unit disc is contained in the residual spectrum of S.

(d) The resolvent set of T consists of all A € C such that |A| > 1.

(e) The continuous spectrum of 7T is the unit circle.

(f) The point spectrum of T is the interior of the unit disc.

(g) The residual spectrum of T is empty.

Exercise 9.11 A complex number A belongs to the approzimate spectrum of a
bounded linear operator A : H — H on a Hilbert space #H if there is a sequence
(zn) of vectors in H such that ||z,]| = 1 and (A — M)z, — 0 as n — co. Prove
that the approximate spectrum is contained in the spectrum, and contains the point
and continuous spectrum. Give an example to show that a point in the residual
spectrum need not belong to the approximate spectrum.

Exercise 9.12 Let H be a separable Hilbert space with an orthonormal basis
{en}, and A € B(H) such that

Z||Aen||2 < 00.
n

(a) Prove that the Hilbert-Schmidt norm defined in (9.18) is independent of
the basis. That is, show that for any other orthonormal basis {f,} one has

S IALIZ =D llAenll®.
(b) Prove that
|Allrs = [|A*||ms-

Exercise 9.13 Suppose that L : R — B(H) and A : R — B(H) are smooth,
operator-valued functions of ¢t € R, where L(t) is self-adjoint and A(t) is skew-
adjoint. If L(¢) satisfies the ODE

L=[L,A], (9.40)
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show that
L(t) = U*(t)L(O)U (),

where U = UA and U(0) = I. Show that U(t) is unitary, and deduce that the
eigenvalues of L(t) are independent of ¢.

An equation that can be written in the form (9.40) for suitable operators L(t)
and A(t) is said to be completely integrable because it possesses a large number of
conserved quantities, namely, the eigenvalues of L. The pair of operators {L, A} is
called a Laz pair for the equation.

Exercise 9.14 Show that the n x n matrices

b1 ai 0 e 0 0 ay 0 e 0
ai b2 as ... 0 —aq 0 as ... 0
0 as b3 N 0 0 —Qas9 0 N 0
0 0 O An—1 0 0 0 An—1
0 0 O bn 0 0 0 0

form a Lax pair for the Toda lattice equations

ilk=ak(bk+1—bk) fOI‘k'=1,...,7’L—1,

by =2 (a} —a}_,) fork=1,...,n,

where a9 = a, = 0 and ay > 0. Write out the equations for n = 2, and determine
explicitly their conserved quantities.

Exercise 9.15 Show that the KdV equation for u(z,t),
ut = 6uly — Ugga,

can be written in the form (9.40), where L and A are the following differential
operators acting on smooth functions of z:

L=-04+u, A=-48%+ 3ud, + 30,u.
Exercise 9.16 Prove that (9.20) and (9.22) define the same operator g(A).

Exercise 9.17 Let A be a compact, self-adjoint operator, on an infinite-dimensional
separable Hilbert space, and ¢ : 6(A) — C a continuous function.

(a) Prove that the series in (9.22) converges in norm if and only if ¢(0) = 0.
(b) For an arbitrary value ¢(0), prove that the series in (9.22) converges strongly.
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Exercise 9.18 Let f € C (0(4)), and consider f(A) defined by (9.23). Prove that
I1F (A = sup{|f(An)[ | n}

Let (gn) be a sequence of polynomials of degree N, converging uniformly to f
on o(A). The existence of such a sequence is a consequence of the Weierstrass
approximation theorem. Prove that (gn(A)) converges in norm, and that its limit
equals f(A) as defined in (9.23).

Exercise 9.19 Prove that the series in (9.23) is convergent in the strong operator
topology for any f € C (c(A)), and that it converges uniformly if in addition f(0) =
0.

Exercise 9.20 Let A be a self-adjoint compact operator on a Hilbert space H, and
let f:0(A) — C be a continuous function. When is f(A) compact?

Exercise 9.21 Consider the evolution equation z; = Az, where A is a bounded
operator on a Hilbert space such that

Re (z, Az) < 2ol

for some a € R By taking the inner product of the evolution equation with =z,
derive the energy estimate

le@®Il < e*[|lz(0)]]-

Compare this result with that of the spectral method for self-adjoint and non-self-
adjoint operators A.

Exercise 9.22 Suppose that A is a nonnegative, self-adjoint, compact operator on
a Hilbert space, meaning that

(z,Az) >0 for every z € H.

Prove that there is a unique nonnegative, self-adjoint bounded linear operator B =
A'/? such that B2 = A. Prove that A'/2 is compact.
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Chapter 10

Linear Differential Operators and Green’s
Functions

We have seen that linear differential operators on normed function spaces are not
bounded. Differential operators are important for the study of differential equations
and we would like to analyze them in spite of their lack of continuity. There are two
main approaches to this problem. One is to use a weak toplogy, not derived from
a norm, with respect to which differential operators are continuous. This is what
is done in distribution theory, studied in Chapter 10.8. The other approach, which
we follow in this chapter, is to consider special classes of unbounded operators that
are defined on dense linear subspaces of a Hilbert, or Banach, space.

The inverse of a linear differential operator is an integral operator, whose kernel
is called the Green’s function of the differential operator. We may use the bounded
inverse to study the properties of the unbounded differential operator. For example,
if the inverse is a compact, self-adjoint operator, then the differential operator has
a complete orthonormal set of eigenfunctions.

We begin by giving some general definitions for unbounded operators. We will
consider unbounded linear operators acting in a Hilbert space, although similar
ideas apply to unbounded operators acting in a Banach space.

10.1 Unbounded operators

One of the main new features of unbounded operators, in comparison with bounded
operators, is that they are not defined on the whole space. For example, a general
continuous function does not have a continuous derivative, so differential operators
are defined on a subspace of differentiable functions. The definition of an unbounded
linear operator

A: DA CH—-H

acting in a Hilbert space H therefore includes the definition of its domain D(A).
We will assume that the domain of A is a dense linear subspace of H, unless we
state explicitly otherwise. If the domain of A is not dense, then we may obtain a

245
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densely defined operator by setting A equal to zero on the orthogonal complement
of its domain, so this assumption does not lead to any loss of generality.

An operator A is an extension of A, or A is a restriction of A, if D(A) D D(A)
and Az = Az for all z € D(A). We write this relationship as A D A4, or A C A.
From Theorem 5.19, if A is a bounded linear operator on a dense domain D(A) in
H, then A has a unique bounded extension to H. Consequently, it is only useful to
consider densely defined operators when the operator is unbounded.

The domain of a differential operator defines the somewhat technical property
of the smoothness of the functions on which the operator acts. More importantly, it
also encodes any boundary conditions associated with the operator. The following
example, which we discuss in greater detail later on, illustrates differential operators
and their domains.

Example 10.1 Let Ayu = v with k = 1,2, 3, 4 be differential operators in L2([0, 1])
with domains

D(41) = {u € C*([0,1]) | u(0) = u(1) = 0},
D(4:) = C*([0,1)),

D(A3) = {u € H?((0,1)) | u(0) = u(1) = 0},
D(Ag) = H?((0,1))

Here, H? ((0,1)) is the Sobolev space of functions whose weak derivatives of order
less than or equal to two belong to L2([0,1]). The Sobolev embedding theorem
implies that H2((0,1)) C C([0,1]), so it makes sense to use the pointwise values of
u in defining D(A3). Then A; C Ay C A4, and A; C A3 C Ay.

The adjoint of an unbounded operator A : D(A) C ‘H — H is an operator
A* :D(A*) CH - H.

Generalizing the basic property in (8.9) of the adjoint of a bounded linear operator,
we want

(Az,y) = {z, A™y) for all z € D(A) and all y € D(A*), (10.1)

where D(A*) is the largest subspace of H for which (10.1) holds. In more detail,
if y € H, then ¢,(z) = (y, Az) defines a linear functional ¢, : D(4) - C. We
say that y € D(A*) if ¢, is bounded on D(A). In that case, since D(A) is dense
in ‘H, the bounded linear transformation theorem in Theorem 5.19 implies that
¢y has a unique extension to a bounded linear functional on #, and the Riesz
representation theorm in Theorem 8.12 implies there is a unique vector z € H such
that ¢y (z) = (z,2). Then (y, Az) = (2, ) for all x € D(A), and we define A*y = 2.
Summarizing this procedure, we get the following definition.
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Definition 10.2 Suppose that A : D(A) C H — H is a densely defined unbounded
linear operator on a Hilbert space . The adjoint A* : D(A*) C H — H is the
operator with domain

D(A*) = {y € H | there is a z € H with (Az,y) = (z, 2) for all z € D(A)}.

If y € D(A*), then we define A*y = z, where z is the unique element such that
(Az,y) = (z,2) for all z € D(A).

Tt is possible that D(A*) is not dense in H, even if D(A) is dense, in which case
we do not define A** (see Exercise 10.15 for an example).

As we will see below, the adjoint of a differential operator is another differential
operator, which we obtain by using integration by parts. The domain D(A) defines
boundary conditions for A, and the domain D(A*) defines adjoint boundary condi-
tions for A*. The boundary conditions ensure that the boundary terms arising in
the integration by parts vanish.

A particularly important class of unbounded operators is the class of self-adjoint
operators. Self-adjointness includes the equality of the domains of A and A*. For
differential operators, this equality of domains corresponds to the self-adjointness
of the boundary conditions.

Definition 10.3 An unbounded operator A is self-adjoint if A* = A, meaning
that D(A*) = D(A) and A*z = Az for all x € D(A). An unbounded operator A is
symmetric if A* is an extension of A, meaning that D(A*) D D(A) and A*zx = Az
for all z € D(A).

It is usually straightforward to show that an operator is symmetric, but it may
be more difficult to show that a symmetric operator is self-adjoint.

Example 10.4 For the differential operators defined in Example 10.1, we will see
that A} = As, so A; is symmetric but not self-adjoint, while A3 = As, so A3 is
self-adjoint. We will also see that Ay = A} = A5 where Asu = " with domain

D(4s) = {u € H*([0,1)) | u(0) = u(1) = u'(0) = u'(1) = 0}.

Since Aj; is not an extension of Ay or A4, neither Ay nor Ay is symmetric. We also
have A} = A4, so As is symmetric, but not self-adjoint.

Although differential operators are not continuous, they have a related property
called closedness.

Definition 10.5 An operator A : D(A) C H — H is closed if for every sequence
(zn) in D(A) such that z, - = and Az, — y, we have z € D(A) and Az =y.
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Note carefully the difference between continuous and closed operators. For a
continuous operator A, the convergence of the sequence (z,,) implies the convergence
of (Az,), and

"h_{réo Az, =A (nlgréo a:n) . (10.2)

For a closed operator A, the convergence of (z,) does not imply the convergence of
(Azy,); but if both (x,) and (Ax,) converge, then (10.2) holds. The graph I'(A) of
an operator A : D(A) C H — H is the subset of H x H defined by

I'(A) = {(z,y) | x € D(A) and y = Az}.

An operator is closed if and only if its graph is a closed subspace of H x H.

An operator A is closable if it has the following property: for every sequence
() of elements in D(A) such that x,, = 0 and Az, — y for some y € H, we have
y = 0. We define the closure A of a closable operator A to be the operator with
domain

D(A) = {z € H | there is a sequence (z,) in D(A) and ay € H
such that z,, —» = and Az, — y}.

If 2, = 2 and Az, — y, then we define Az = y. Since A is closable, the value
y does not depend on the sequence (z,) in D(A) that is used to approximate x.
The graph of A is the closure of the graph of A in H x H, and A is the smallest
closed extension of A. If A is not closable, then the closure of the graph of A is not
the graph of an operator, and A has no closed extensions (see Exercise 10.8 for an
example). Every symmetric operator is closable (see Exercise 10.2). We say that a
symmetric operator A is essentially self-adjoint if its closure is self-adjoint.

Example 10.6 The operators A; and As in Example 10.1 are not closed because
we may choose a sequence of functions u,, € C?([0, 1]) such that u,, — u and u, — v
in L?([0,1]), where v is not continuous. Hence u is not C?, and therefore does not
belong to the domain of A; or A;. The operators As and A, are closed. Both
A; and A, are closable, with A; = Az, and Ay = A4. Thus, A; is essentially
self-adjoint, but A, is not.

If A: D(A) C H — H is one-to-one and onto, then we define the inverse operator
A1 :H - Hby A~'y = z if and only if Az = y. The range of A~! is equal to the
domain of A. If A is closed, then the closed graph theorem, which we do not prove
here, implies that A~! is bounded.

Proposition 10.7 If A:D(A) C H — H is a densely defined linear operator on a
Hilbert space H with a bounded inverse A=! : H — H, then (4*)~! = (A~1)*.



The adjoint of a differential operator 249

Proof. Since A~! is bounded, it has a bounded adjoint. If z € D(A*) and y € H,
then

(A7) Arz,y) = (A%z, A7) = (2, AA™Ny) = (z,y).

Therefore (A~1)* A*z = z for x € D(A*). Moreover, if z € H and y € D(A), then
(A* (A z,y) = (A 1)z, Ay) = (2, A Ay) = (z,y).

Since D(A) is dense in H, it follows that (A~1)*z € D(A*) and A* (A~ 1)*z =2. O

The definitions of the resolvent set, spectrum, and resolvent operator for an
unbounded operator A : D(A) C H — # are analogous to those for a bounded
operator. The resolvent set p(A) of A consists of the complex numbers A such that
A — ) is a one-to-one, onto map from D(A) to H, and (A — M)~ ! is bounded. The
spectrum o (A) is the complement of the resolvent set in C. If A € p(A), then we
define the resolvent operator Ry : H — H by

Ry=(\—A)".

If A is closed, then the closed graph theorem implies that Ry is bounded whenever
A — X is one-to-one and onto. Unlike bounded operators, unbounded operators
may have an empty spectrum (see Exercise 10.13 for an example).

10.2 The adjoint of a differential operator

In this section, we consider differential operators acting on smooth functions, and
explain how to determine their adjoints. We discuss the domain of the adjoint in
more detail in Section 10.4.

A linear ordinary differential operator of order n is a linear map A that acts on
an n-times continuously differentiable function u by

Au = Z aju?,
=0

where u(9) denotes the jth derivative of u, and the coefficients a;j(z) are real or
complex-valued functions. Our goal is to study BVPs (boundary value problems)
for ODEs of the form

Au=f, Bu =0, (10.3)

where Bu = 0 denotes a set of linear boundary conditions.
For concreteness, we assume that all functions are defined on the interval [0, 1],
and we consider second-order ordinary differential operators A of the form

Au = au" +bu' + cu, (10.4)
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where a, b, and c are sufficiently smooth functions on [0, 1]. The same ideas apply to
linear ordinary differential operators of arbitrary order. We assume, unless stated
otherwise, that a(xz) > 0 for all 0 < z < 1, so that A is second-order at every point.

For a second-order differential equation, we expect that we need to impose two
boundary conditions to obtain a unique solution, although this is not always suffi-
cient to guarantee uniqueness. Sometimes we may want to consider overdetermined
or underdetermined boundary value problems with a larger or smaller number of
boundary conditions. We always assume that the boundary condition Bu = 0 is a
homogeneous system of linear equations that involves the values of 4 and «' at the
endpoints x = 0,1. Higher derivatives of u may be expressed in terms of u and u'
by use of the differential equation.

Some common types of boundary conditions are:

u(0) =0, w(l)=0 Dirichlet;
w'(0)=0, «+/'(1)=0 Neumann;
w(0) = u(l), «'(0)=4'(1) periodic;
aou(0) + Bou'(0) =0, au(l)+ F1u'(1) =0 mixed.

In the mixed boundary condition, ag, a1, B9, and B; are complex constants.
Instead of imposing conditions that involve the solution at both endpoints, we can
impose two conditions at one of the endpoints:

(0) =0,
0,

u u'(0) =0 initial;
u(l) = u’ 0

(1) final.

For linear problems, nonhomogeneous boundary conditions may be reduced to
homogeneous ones by subtraction of any function that satisfies the nonhomogeneous
conditions: if Au = f, Bu = b, and Bu, = b, then v = u — u,, satisfies Av = g
and Bv = 0, where g = f — Au,. In practice, it may be convenient to retain
nonhomogeneous boundary conditions when using Green’s formula below, but in
developing the general theory it is simplest to assume that all boundary conditions
have been reduced to homogeneous ones.

We begin by formulating the adjoint boundary value problem, using the following
result.

Proposition 10.8 (Green’s) Suppose that A is given by (10.4), where a € C2([0, 1)),
b e C([0,1]), and ¢ € C([0,1]). Let (-,-) denote the usual L?-inner product,

1
(v,u) = / v(z)u(z) dz,
0
and define A* by

A*v = (@v)" — ()" + ev. (10.5)
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Then, for every u,v € C?([0,1]), we have
(v, Au) — (A*v,u) = [a (Tu' —T'u) + (b— a')Bul, . (10.6)

Proof. Integration by parts implies that

1
(v, Auy = / U (au" + bu' + cu) dx
0

1
[avu’ + bou; +/ {—(a0)' v’ — (D) u + cvu} dz
0

1
[avu’ — (aD)"u + bﬁu](l) +/0 ((Ev)” - (511)[ + Ev)udm,
which gives (10.6). O

We call A* in (10.5) the formal adjoint of A (“formal” because we have not
specified its domain). The adjoint A* depends on the inner product as well as on A
(see Exercise 10.10). We will use the standard L2-inner product, unless explicitly
stated otherwise.

Example 10.9 Let D be the differentiation operator,

_4d
T de’

Then D* = —D, (iD)* =iD, and (Dz)* = D2, s0 D is formally skew-adjoint, while
iD and D? are formally self-adjoint.

(10.7)

Given boundary conditions B for A, we define adjoint boundary conditions B*
for A* by the requirement that the boundary terms in (10.6) vanish. Thus, for
v € C?%([0,1]), we say that B*v = 0 if and only if

(v, Au) = (A*v,u)  for all u € C?([0,1]) such that Bu = 0.
For A given by (10.4), we have B*v = 0 if and only if
[a(vu' —7'u) + (b—a') Eu](l) =0  for all u such that Bu = 0.
We say that the BVP (10.3) is self-adjoint if A = A* and B = B*.
Example 10.10 Suppose that A = D2. Then Green’s formula may be written as
(v,u") = (" u) = [ou' — E'u]é .
If Bu = 0 is the Dirichlet conditions u(0) = (1) = 0, then we have
[ou’ — v'uly = w(D)w'(1) — v(0)u'(0).

This vanishes for all values of «'(0) and v'(1) if and only if v(0) = v(1) = 0. Thus,
the Dirichlet boundary value problem for D? is self-adjoint. Neumann, mixed, and
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periodic boundary conditions are also self-adjoint. For initial conditions «(0) =
u'(0) = 0 the boundary terms reduce to

[ou' — 'u]y = o()u' (1) — o' (Du(1).

These terms vanish if and only if v(1) = v'(1) = 0, so final conditions are the adjoint
of initial conditions, and the initial or final value problem for D? is not self-adjoint.

If we impose no boundary conditions on u, then we must require that v(0) =
v'(0) = v(1) = 2'(1) = 0. The adjoint of an undetermined boundary value problem
is therefore overdetermined, and conversely.

Let us find all of the formally self-adjoint second-order differential operators.
Expanding the expression for A* in (10.5) and equating it with the expression for
A in (10.4), we find that

au' +bu' +cu=au’ + (2@ —b)u' + @' —b +o)u
for every u € C?([0,1]). We must therefore have
a=ad, b=2a b, c=a' —b +¢.

These relations are satisfied if and only if a is real, Reb = a', and Im¢ = —Im b/2,
where Re z and Im 2z denote the real and imaginary parts of z € C, respectively.
The coefficients of a self-adjoint, second-order ordinary differential operator A are
therefore determined by three real functions: a, Im b, and Rec. For operators with
real coefficients, there are only two independent real-valued coefficient functions,
which we denote by p and ¢, where a = —p, b = —p', and ¢ = q. The resulting
formally self-adjoint operator, called a Sturm-Liouville operator, is given by

Au = —(pu')' + qu, (10.8)

or A= —D(pD) + q. For example, if p =1 and ¢ = 0, we get the second-derivative
operator A = —D?2. By imposing self-adjoint boundary conditions on functions in
the domain of a Sturm-Liouville operator, we obtain a self-adjoint operator.

For operators with imaginary coefficients, we find that a = 0, b = 2ir and
¢ = ir', which gives

Au=1i(2ru' +r'u),

or A =1i(rD + Dr), since Dr = rD + r'. Any real linear combination of these real
and imaginary formally self-adjoint operators is formally self-adjoint.
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10.3 Green’s functions

For concreteness, we consider the Dirichlet boundary value problem for the second-
order differential operator A defined in (10.4),

Au = f, u(0) = u(l) =0, (10.9)

where f :[0,1] — C is a given continuous function.
We look for a solution of (10.9) in the form

u(z) = / o(=,9) (W) dy, (10.10)

where g : [0,1] x [0,1] — C is a suitable function, called the Green’s function of
(10.9). If we regard

A:D(4) C C([0,1]) = €([0,1])
as an operator in C([0,1]) with domain
D(A) = {u e C*([0,1]) | u(0) = u(1) = 0},

then the integral operator G : C([0,1]) — D(A) given by

Gi(z) = / 9@ ) f ) (10.11)

is the inverse of A.

We can write an equation for the Green’s function g in terms of the Dirac delta
function §. We give a heuristic discussion here, and use it to motivate the classical
definition of the Green’s function in Definition 10.11 below. In Chapter 10.8, we
will show that the delta function has a mathematically rigorous interpretation as a
distribution.

We regard § as a “function” on R that has unit integral concentrated at the
origin, meaning that

/ 0(z)dr =1, 4(x) =0 for z #0.
More generally, for any continuous function f, we have
| se-niwar= @)

Formally, we also have
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where H is the Heaviside step function, defined by

0 ifz<0,
H(w)_{ 1 ifz>0.

The step function is constant on any interval that does not contain the origin and
has a jump of one at zero. Conversely, the delta function,

§=H (10.12)

is the derivative of the step function. We will give a precise meaning to these results
when we study distribution theory in Chapter 10.8.

The Green’s function g(z,y) associated with the boundary value problem in
(10.9) is the solution of the following problem:

Ag(z,y) =6z —y),  g(0,y) =g(1,y) =0. (10.13)

Here, A is a differential operator with respect to z, and y plays the role of a
parameter. If u is given by (10.10), then formally differentiating under the integral
sign with respect to x, we find that for 0 <z < 1

Au(z) = / Ag(z,y)f(y)dy = / 5z —y)f(y) dy = f(z).

Moreover, u satisfies the boundary conditions, since

1 1
w(0) = / 90,9 f(@)dy =0,  u(l) = / 9(L,y)f(y) dy = 0.

Thus, (10.10) provides an integral representation of the solution of (10.9).

We may reformulate (10.13) in classical, pointwise terms. From (10.4), (10.12),
and (10.13), we want g(z,y) to satisfy the homogeneous ODE (as a function of x)
when z # y, and we want the jump in a(z)g,(z,y) across z = y to equal one in
order to obtain a delta function after taking a second z-derivative. We therefore
make the following definition.

Definition 10.11 A function g: [0,1] x [0,1] — C is a Green’s function for (10.9)
if it satisfies the following conditions.

(a) The function g(z,y) is continuous on the square 0 < z,y < 1, and twice
continuously differentiable with respect to = on the triangles 0 <z <y <1
and 0 < y < z < 1, meaning that the partial derivatives exist in the interiors
of the triangles and extend to continuous functions on the closures. The left
and right limits of the partial derivatives on z = y are not equal, however.

(b) The function g(z,y) satisfies the ODE with respect to z and the boundary
conditions:

Ag=0 nd<z<y<landlO<y<z<l, (10.14)
9(0,y) =g(1,y) =0  for0<y<1. (10.15)
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(¢) The jump in g, across the line x = y is given by

9 (v y) —9. (v ,y) = ﬁ (10.16)

where the subscript  denotes a partial derivative with respect to the first
variable in g(z,y), and

9:(",y) = lim go(z,y),  gu(y™,y) = lim ga(z,y).
Ty Y

We will discuss the existence and construction of the Green’s function below.
First we show that if a function g satisfies the conditions in this definition, then the
expression in (10.10) gives a solution of (10.9).

Proposition 10.12 Let A be given by (10.4), where a,b,c € C([0,1]) and a(z) >0
for all 0 < z < 1. If g satisfies (10.14)—(10.16) and f € C([0,1]), then Gf given by
(10.11) is a solution of (10.9).

Proof. The proof is by direct computation. The only non-trivial part to check is
that the function

1
w(z) = / o(e,9)f () dy

satisfies the ODE Au = f. We split the integration range into 0 < y < z and
z<y<l

2

) = [ty 0.8 o] [ [o@nrw s [ ownrwa]. o

Leibnitz’s formula for the differentiation of an integral with variable limits states
that if a(z) and B(x) are continuously differentiable functions of z, and h(z,y) is
a continuous function of (z,y) on a(z) < y < B(x) that has a continuous partial
derivative hy(z,y) with respect to z on a(z) <y < B(z), then

4 8@ B(z)
&, M =B E@he @)~ @ha@) + [ h
(10.18)
Using this formula to compute the derivatives in the expression on the right-hand
side of (10.17), we find that

%= [ st o@a i@+ [ o) d - @

/0 0 (2,9) () dy,

du

) /0 gzz(xay)f(y) dy + [gw(m,m_) - gw(x,a:"')] f(x)
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Thus,

A( / g(a:,y)f<y)dy)= / Ag(e,9)f () dy + a(a) [g2(,57) — ga(o, )] £(2).

Since g(z,y) is smooth in z < y and x > y, we have g,(z,77) = g,(z%,z) and
gz(z,2") = g, (27, ). Tt follows from the properties of g that Au = f. O

Thus, we can give an integral representation of the solution of (10.9) if we can
construct the associated Green’s function. We may write the Green’s function
in terms of the solutions of the homogeneous equations. When a, b, and c¢ are
continuous functions and a(z) # 0, the homogeneous ODE

au'" +bu' +cu=0 (10.19)

has a two-dimensional space of solutions spanned by any linearly independent pair
of solutions. For example, we may construct a basis {u1,us} of the solution space
by solving (10.19) subject to the initial conditions u(0) = 1, v'(0) = 0 for u = u;
and u(0) = 0, u'(0) = 1 for u = us. The solutions exist by the existence theorem
for ODEs in Theorem 3.7. The uniqueness of solutions of the initial value problem
implies that if u is a solution of (10.19), then u = u(0)u; + u'(0)us, so u is a linear
combination of {u1,us}.

In order to construct a function g satisfying the conditions of Definition 10.11,
we choose solutions v; and vy of Av = 0 such that

V1 (0) = 0, '1)2(1) =0. (1020)

The pair {v1,v2} is linearly independent if and only if the only solution of the
homogeneous Dirichlet problem, Au = 0 with u(0) = (1) = 0, is u = 0. The
Green’s function g then has the following form:

_{ Cu(@)u(y) if0<z<y,
20 ={ Glmipte) Hyoss (1021

It is clear that g is continuous, satisfies Ag = 0 whenever z # y, and ¢(0,y) =
g9(1,y) = 0. The jump condition in (10.16) is satisfied if C(y) is given by

Cly) = ———, 10.22
W= owm (1022)

where W is the Wronskian of v; and va:
W = U,l U,2 = vV — Vo). (10.23)

V1 Uy

If a is nonzero at every point, then the Wronskian of two linearly independent
solutions is nonzero at every point, so C in (10.22) is well-defined.
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Thus, if the homogeneous Dirichlet problem has only the zero solution, then
g defined by (10.21) has all of the properties required in Proposition 10.12 and is
unique.

Example 10.13 The stationary temperature distribution in a rod of unit length
that has both ends kept at a constant zero temperature, with heat loss through its
surface proportional to u, and that is subject to a given nonuniform heat source per
unit length f, is the solution of

—u" +u=f, u(0) = u(1) = 0. (10.24)

To construct the Green’s function we need two linearly independent solutions vy,
v9 of the homogeneous version of (10.24) that satisfy v1(0) = 0 and v2(1) = 0. The
general solution of the homogeneous equation is of the form

u(z) = c1e® + coe™ 7.

For v; and vy we choose the solutions

v1(z) = sinh z, va(z) = sinh(1 — z),
where
T _ e
sinha: = -
2
The Wronskian, W = —sinh 1, of these solutions is a nonzero constant, so the

solutions are linearly independent combinations of e and e~ ®. The Green’s function
is given by

(2,y) = sinhzsinh(1 —y)/sinhl f0<z<y<1,
IWY) = sinhysinh(1 — z)/sinh1 f0<y <z <1.

We may also write this equation as

sinh (z<) sinh (1 — )
sinh 1 ’

g(z,y) =
where
e =min(z,y), s = max(z,y).

The Green’s function is a symmetric function of (z,y), as is always the case for real,
self-adjoint boundary value problems.

We can use the Green’s function to study the relationship between the solvability
of the direct and adjoint BVPs. The following argument shows that the Fredholm
alternative in Definition 8.19 applies to linear BVPs for ODEs.

Suppose that the homogeneous BVP,

Au =0, Bu =0,
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has only the zero solution and the coefficient a of the highest derivative never vanish-
es. Then we can construct its Green’s function, and therefore the nonhomogeneous
BVP,

Au = f, Bu =0,
has a unique solution u € C%([0,1]) for every f € C([0,1]). If
A*v =0, B*v =0,
then for every f € C([0,1]) we have
(f,v) = (Au,v) = {u, A*v) = 0.

Hence, v = 0, and the homogeneous adjoint BVP has only the zero solution. We can
then construct the adjoint Green’s function ¢g*(z,y), and the adjoint BVP A*v = h,
B*v = 0 has a unique solution v € C?([0,1]) for every h € C([0,1]).

Since (A*)~! = (A 1)*, the direct and adjoint Green’s functions are related by

9" (z,y) = 9(y,z). (10.25)

If A is self-adjoint, then g is Hermitian symmetric.

If A is singular, then A* is also singular. In that case, it it is possible to define
a generalized inverse of A, whose kernel is called the modified Green’s function of
A, and show that the direct BVP is solvable if and only if the right-hand side
is orthogonal to the kernel of the adjoint (see Exercise 10.9 for an example, and
Stakgold [51] for further discussion).

Finally, we describe the Green’s function representation of the solution of a BVP
with nonhomogeneous boundary conditions. We begin by giving a formal derivation
of the representation. For definiteness, we consider the Dirichlet problem for a real,
second-order ODE,

Au = f(x), u(0) = ap, u(l) =ay, (10.26)

where A is defined in (10.4). A similar derivation applies to other types of boundary
conditions. The adjoint Green’s function g*(z,y) satisfies

A*g* =é(z —y), g*(0,y) = g*(1,y) =0,

where A* is a differential operator in z, and y plays the role of a parameter. Using
Green’s identity (10.6), we find that

/0 (6" (@, 9) Au(z) — A*g* (2, y)u(2)} do
= [a

(@)9" (@, y)us(2) = a(@)g; (@, y)u(@) + {b(z) = as(@)} ¢* (@, y)u(@)],—o »
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where the z-subscript denotes a derivative with respect to z. We have formally that

/ A*g* (2, y)u(e) do = / 5(z — y)u(z) do = u(y).
0 0

Hence, using the equations satisfied by g* and u, and rearranging the result, we get

u(y) = / 6" (@,9) (@) d + [a(2)g% (@, y)u(@)] o

Exchanging = and y in this equation, and using (10.25) to replace g* by g, we obtain
the following Green’s function representation of the solution of (10.26):

u(z) = / o(2,9) 1 () dy + a(L)gy (z, Der — a(0)g, (z,0)ap.

The above derivation of this representation does not constitute a proof. We can,
however, verify the correctness of the result directly. From Proposition 10.12, the
function

up(z) = /0 9(z,y) f(y) dy

is the solution of the nonhomogeneous equation Au, = f that satisfies the homoge-
neous boundary conditions u,(0) = u,(1) = 0. On the other hand, it follows from
(10.20)—(10.23) that

un(z) = a(l)gy(z, ar — a(0)gy (2, 0)ao

is the solution of the homogeneous equation Auy = 0 that satisfies the nonhomoge-
neous boundary conditions uy(0) = ag, up(l) = a;.

10.4 Weak derivatives

In the previous sections, we considered “classical” differential operators that act
on continuously differentiable functions. The resulting differential operators lack a
number of desirable properties; for example, they are not closed or self-adjoint. To
obtain such operators, we need to extend the domains of the classical differentiation
operators to include functions whose weak derivatives belong to L2. In this section,
we define the notion of a weak L2-derivative in terms of integration against test
functions. We show that weakly differentiable functions can be approximated by
smooth functions, and we use this fact to study some of their basic properties. We
also define the Sobolev spaces H* of functions with k square-integrable derivatives,
and use them to give a precise description of the domains of some simple self-adjoint
ordinary differential operators.

We begin by considering functions defined on R. We say that ¢ : R -+ C is a
test function if it has compact support and continuous derivatives of all orders. We
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denote the space of test functions by C° (R). The following example shows that
there are many test functions.

Example 10.14 The function

_ Jexp[-1/(1—2?)] if 2| <1,
“O(m)_{o | | if 2] > 1,

belongs to C°(R). All its derivatives exist and are equal to zero at £ = £1. This
function is not analytic at x = %1, however, since its Taylor series at these points
converge to zero, rather than to the function itself. Rescaling this function,

v =ep (252,

we obtain a test function ¢ supported on the interval |z — x| < § whose integral
has any desired value.

Before defining weak derivatives, we show that C°(R) is dense in L?(R). To do
this, we approximate an L2-function by its convolution with a smooth approximate
identity, a technique called mollification.

Let ¢ € C(R) be a nonnegative test function with support [—1,1] and

/Rgo(a:) dx = 1.

For € > 0, we let
1 T
Pe(T) = —p (—) -
e \e
We call such a function ¢, a mollifier or averaging kernel. The family {p. | € > 0}
is an approximate identity as e — 0% since the support of . shrinks to the origin

and each ¢, has unit integral. If u € L?(R), we define the mollification u. = p. * u
of u, meaning that

1um=4%m—mmw@. (10.27)

The function u, belongs to C*°(R) because

@W@=/¢@@—mmm@. (10.28)
R

The differentiation under the integral sign is justified by the dominated convergence
theorem.

Lemma 10.15 If v € L?(R) and u,. is defined by (10.27), where ¢, is a mollifier,
then |luc|| < ||u||, where || - || denotes the L?-norm.
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Proof. Using the fact that ¢, is nonnegative and has unit integral over R, we
find from the Cauchy-Schwarz inequality that

(@) = \ [0 =t a = yyute) dy\

(/R pelz =) dy) " (/R Pe(z = y)lu(y)® dy)
([ o= as) "

Squaring this equation and integrating the result with respect to z, we obtain that

[ur iz < [ ([ oo -t ay) ae

Exchanging the order of integration, which is justified by Fubini’s theorem, we find

that
< [ ( [oda-v dw) (@) dy = [Jull”.
R \JR 0

Using this lemma, we prove that the mollifications u. converge to u in L2.

1/2

IA

Theorem 10.16 The space C2°(R) is dense in L?(R). If u € L?(R), then u, — u
strongly in L*(R) as € — 07.

Proof. Suppose that u € L?(R). Let n > 0 be arbitrary. The space C.(R) of
continuous functions with compact support is dense in L?(R) (see Theorem 12.50),
so there is a v € C,(R) such that ||u —v|| < /3. We define v, = ¢, xv € C*(R).
Then, from Lemma 10.15, we have

l[te = vell < flu —ol| <n/3.

The supports of v and v, are contained in a compact set. The argument in the proof
of Theorem 7.2 implies that v. — v uniformly as € — 0%, and therefore v. — v in
L?(R). There is a § > 0 such that ||v — v|| < 7/3 for 0 < € < §, and then

llu = uell < flu = vl + [l = vell + llve — uell <.
It follows that ue — u in L?(R). O

To motivate the definition of a weak L?-derivative, we first consider u € C*(R)
with a “classical” pointwise, continuous derivative

v(z) = u'(z). (10.29)

The use of this formula, followed by an integration by parts, implies that

/ vpdr = — / up'dx  for all p € C(R). (10.30)
R R
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The boundary terms are zero because ¢ vanishes outside a compact set. Conversely,
if u € C1(R) satisfies (10.30) for some v € L?(R), then another integration by parts
implies that

/Ugod:c:/u'tpda: for all p € C*(R).
R R

Hence, v = u' because C°(R) is dense in L?*(R). Thus, (10.29) and (10.30) are
equivalent when u is continuously differentiable. Equation (10.30) makes sense,
however, if u and v are only square-integrable, because the derivative acts on the
test function. Rewriting the integrals as inner products, we obtain the following
definition of a weak derivative.

Definition 10.17 A function u € L?(R) has a weak derivative v = v/ € L?(R) if
(0,0) = —(w)  forall p € C2(R).

The Sobolev space H*(R) consists of the functions with k square-integrable weak
derivatives,

H*R) = {u € L2(R) | u,o,...,u® € LQ(JR)} ,

equipped with the following norm and inner product:

1/2
ol g = (/ {lul? + 1w+ + [u®} da:) :
R

() = / {ao+av +.. +a®u® ] @z,
R

Proposition 10.18 The differentiation operator D : H'(R) C L?(R) — L?*(R)
defined by Du = v’ is closed.

Proof. Suppose that u, — u and Du, — v in L*(R). It follows from this
convergence and the definition of the weak derivative that for every test function ¢,

(v,) = lim (uy,, ) = — lim (un, ¢') = —(u,¢').
Hence u € H'(R), and Du = v, so D is closed. O

The closedness of D implies that H*(R) is complete and therefore a Hilbert
space. If a sequence (u,) is Cauchy in H¥, then (ug)) is Cauchy in L? for each
j < k. Since L? is complete, there are functions v,v; € L? such that u, — v and
u%j) — vj as n — o0o. Since D is closed, it follows that v; = v for each j < k, so
un, = v in HY.

An alternative, but equivalent, way to define L2-derivatives is as the L2-limit
of smooth derivatives. Thus, we say that u' = v if there is a sequence of smooth

functions f, such that u, — u and u!, — v in L?. The equivalence of these
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definitions follows from the following theorem, which shows that any H*-function
can be approximated in the H*-norm by a test function.

Theorem 10.19 The space C®°(R) is dense in H¥(R). If v € H*(R) and u, =
©e * u, where ¢, is a mollifier, then u, — u strongly in H*(R) as € — 0.

Proof. Suppose that u € H*(R), and ue = ¢, * u, where ¢ is a mollifier. The
function ¢, , : R = R defined by

‘Pe,w(y) = pe(r —y)

is a test function in C¢°(R). It therefore follows from (10.28) and the definition of
the weak derivative that

w9 (z) = /R%[soe(w—y)]uw)dy

(-1) /R (% (e — y)] u(y) dy

/ pe(z —y)u (y) dy
R

for every j < k and € R. Theorem 10.16 implies that u&) — u( in L2(R), so
ue — u in H*¥(R).

If u does not have compact support, then u. does not have compact support
either. To show that C°(R) is dense in H*(R), we truncate u before mollification.
We choose ¢ € C2°(R) such that

_ 1 ifz| <1,

ple) = {0 if |z] > 2,
and define ¥, (z) = ¢(x/n). Then u,, = 1¥,u has compact support, and u,, € H¥(R)
when v € H¥(R). One can show that u, — u in H*¥(R) as n — oo, and we have

just proved that ¢¢ * u, — u, as € = 0. Since ¢, * u, € C*(R), the density
follows. .

As an illustration of the use of mollification, we show that integration by parts
holds for H'-functions.

Proposition 10.20 Suppose that u,v € H'(R), then

/uv' dr = —/u'vdm. (10.31)
R R

Proof. From Theorem 10.19, there are sequences (un) and (v,) in C°(R) such
that u,, = u and v,, — v in H*(R). Since u,, and v, vanish outside a compact set,

we have
/unv;1 dr = — / up vy, dz.
R R
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Taking the limit of this equation as n — oo, and using the continuity of the L?-inner
product with respect to L2-convergence, we obtain (10.31). a

Example 10.21 Let A : H'(R) C L*(R) — L?*(R) be the operator A = iD,
meaning that Au = ju’. We claim that A is self adjoint. For every u,v € H(R),
we have

(Au,v) = —i/ﬂ'vda::i/ﬂv'dm: (u, Av).
R R

Hence, A is symmetric and D(A*) D HY(R). Ifv € D(A*), then thereis aw € L?(R)
such that

(i, v) = {u,w) for all u € H'(R).
Since H!(R) contains C>°(R), it follows that
(¢',0) = (pyiw)  for all p € C°(R),

which means that v € H'(R) and w = iv'. Thus, D(A*) C H'(R), so D(A*) =
H(R), and A is self-adjoint.

We now consider functions defined on a bounded open interval (0,1). The space
of test functions C$°((0, 1)) consists of smooth functions that vanish outside a closed
interval contained strictly inside (0,1). A function v € L%([0,1]) is the weak L>-
derivative of u € L?([0,1]) if

1 1
/ vodr = —/ up'de  for all p € C=((0,1)).
0 0

The Sobolev space H*((0,1)) consists of the functions in L2([0,1]) with k weak
derivatives in L*([0,1]).

Theorem 10.22 The space C*°([0,1]) is dense in H*((0,1)).

Proof. We would like to obtain a smooth approximation of v € H*((0,1)) by
extending u to a function

~ _ Ju(z) ifze(0,1),
“(‘”)_{0 if z # (0,1),

in L2(R), and mollifying the extension %. However, & need not belong to H*(R)
because it may be discontinuous at the endpoints of (0, 1), so we cannot conclude
immediately that the restriction of ¢ *% to (0, 1) converges to u in H*((0,1)). The
proof therefore requires a more complicated argument, which we outline without
giving all the details. For § > 0, we define the stretching map Ls : (0,1) — (=4, 1+9)
by

Ls(z) = (1 + 2) (x - %) + %
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We define us € H¥((—8,1 + 8)) by us = uo Ly'. Then one can show that the
restriction of us to (0,1) converges to u in H*((0,1)) as § — 07. We extend us by
zero to obtain 5 € L?(R). Let ¢, be a mollifier, and

Pez(y) = pe(z —y).

For z € (0,1) and € < §, we have ¢, , € C°((—0d,1+0)). The restriction of ¢, * us
to (0,1) is therefore a C* function on [0, 1] that converges to the restriction of us
to (0,1) in H*((0,1)) as € = 0F. The result then follows. O

Although C°(R) is dense in H*(R) and C2°((0,1)) is dense in L2([0,1]), it is
not true that C2°((0,1)) is dense in H*((0,1)) for k > 1.

Definition 10.23 The Sobolev space
Hg((0,1)) = C=((0,1)) € H*((0,1))
is the closure of C°((0,1)) in H*((0,1)).

It follows from the Sobolev embedding theorem below that HE((0,1)) consists
of the functions in H*((0, 1)) whose derivatives of order less than or equal to k — 1
vanish at the endpoints of (0,1).

In Section 7.2, we proved the Sobolev embedding theorem for periodic functions
by using Fourier series. Here we give a different proof, for which we need the
following lemma.

Lemma 10.24 Suppose that h : [0,1] = R is a continuous function such that

1
/ h(z)dz = 1.
0
Define £ : [0,1] x [0,1] = R by

_ JUnt)dt if0<y<uz,
k(w,y)—{ _fylh(t)dt ifr<y<l

If w € C([0,1]), then

u(z) = /0 u(y)h(y) dy +/0 k(z,y)u'(y) dy forall 0 <z <1.

Proof. If u € C*([0,1]), the fundamental theorem of calculus implies that, for
every z,y € [0,1],

(@) = uly) + / " () dt.
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Multiplying this equation by h(y) and integrating the result, we obtain that

ue) = [ u(y)h(y) dy + / 1 ( / "0 dt) 1) dy

Exchanging the order of integration, we find that

/0 1 ( /y ") dt) hy) dy /0 ’ ( / "hw) dy) ol (t) dt
—/; (/tlh(y)dy> (8 dt

/ k(e by (8)

and the result follows. O

Theorem 10.25 (Sobolev embedding) The space H!((0,1)) is a subset of
C([0,1]). There is a constant C' > 0 such that

[]|oo < Cllul| g for every u € H1((0,1)). (10.32)

Proof. First, suppose that u € C*([0,1]). Then, from Lemma 10.24 and the
Cauchy-Schwarz inequality, we find that

1 1
Wl < |[ wwrma]+| [ Ko al
0 0
< Wl ol + G, g
< Clull,

since ||k(z, -)||z2 is bounded uniformly in z for a continuous function h. Taking the
supremum of this inequality with respect to x, we obtain that ||u||c < C||u||g for
every u € C([0,1]). Since C* is dense in H!, it follows that this inequality holds
for every u € H!. Furthermore, every u € H'! is the uniform limit of a sequence of
C*°-functions, and is therefore continuous. O

Strictly speaking, an element of H' is an equivalence class of square-integrable
functions that are equal almost everywhere, and the embedding theorem states that
each such equivalence class contains a continuous function. An alternative way to
state this result is that there is a continuous map, or embedding,

J: H'((0,1)) = C([0,1))

that identifies a function u, regarded as an element of H'((0,1)), with the same
function u, regarded as an element of C([0,1]). The following theorem shows that
this embedding is compact.

Theorem 10.26 (Rellich) A bounded subset of H((0,1)) is a precompact subset
of C([0,1]).
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Proof. Since C*°([0,1]) is dense in H*((0,1)), it is sufficient to show that a subset
of C*°([0,1]) that is bounded in H'((0,1)) is precompact in C([0,1]). Suppose that
F is a subset of C*°([0,1]) such that there is a constant M with

||l < M for all u € F.

From (10.32), the set F is bounded in C([0,1]). Moreover, by the fundamental
theorem of calculus and the Cauchy-Schwarz inequality, we have for every u € F
and z,y € [0,1] that

ju(z) —u(y)] = /:u'(ndt‘
- ‘ / o (000 dt‘
< o —y? (/01 ! () dt) .
< Miz- y|1/2 .

Here, X[4,y] is the characteristic function of the interval [z,y]. Thus F is equicon-
tinuous, and therefore the Arzela-Ascoli theorem implies that it is precompact in
c([o,1]). O

A function u € C ([0,1]) that satisfies
lu(z) —u(y)| < M|z —y|”  for all 2,y €[0,1]

for constants M > 0 and 0 < r < 1 is said to be Hélder continuous with exponent
r. Thus, the proof of Theorem 10.26 shows that every u € H' ((0,1)) is Holder con-
tinuous with exponent 1/2. For a generalization of this result, see Theorem 12.73.

Proposition 10.27 If A is the second-order ordinary differential operator defined
in (10.4), where a, b, ¢ are smooth coefficient functions, then Green’s formula (10.6)
holds for all u,v € H?((0,1)).

Proof. 1fu,v € H%((0,1)), then there are sequences (uy), (v,) in C*°([0,1]) such
that u,, — u and v, — v in H%((0,1)). From Green’s formula, we have
(Atp, vy) — (U, A*v,) = [a (Un'vn — Unol) + (¢ — a')ﬁvn]é .

Letting n — oo, we obtain Green’s formula for u and v, because Au, — Au,
Av,, — Av in L?, and, from the Sobolev embedding theorem, the boundary terms
converge pointwise. d

Example 10.28 Let us prove that the second derivative operator A = —D? with
domain

D(A) = {u € H*((0,1)) | u(0) = u(1) = 0}
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is self-adjoint. If v € D(A*), then there is a w € L*([0, 1]) such that
(—u",v) = {u,w) for all u € D(A).
Since D(A4) D C((0,1)), it follows from the definition of the weak derivative that
v € H?((0,1)) and w = —v". Hence, D(A*) C H?((0,1)), and A* = —D? on its
domain. If u € D(A) and v € H2((0,1)), then an integration by parts implies that
(—u"0) = {u, ") + [T

Thus, v belongs to D(A*) if and only if v(0) = v(1) = 0, so D(A) = D(A*) and
A= A*

As the previous example illustrates, the direct verification of self-adjointness

may be nontrivial even for the simplest unbounded operators. The following result,
which we state without proof, gives a basic criterion for self-adjointness.

Theorem 10.29 Let A be a closed, symmetric operator on a Hilbert space H.
Then the following statements are equivalent:

(a) A is self-adjoint;

(b) ker (A* £4I) = {0};

(c) ran (A +4l) = H.

If m = dimker (A* —4I) and n = dimker (A* +¢I), then the pair (m,n) is
called the deficiency index of A. Thus, a closed, symmetric operator is self-adjoint
if and only if its deficiency index is (0, 0).

10.5 The Sturm-Liouville eigenvalue problem

In this section, we study the Sturm-Liouville eigenvalue problem

— (pu')' + qu = \u, (10.33)
u(0) =u(l) =0,
where the coefficients p, ¢ are given real-valued functions, and A € R. For definite-
ness, we consider the Dirichlet problem, but other self-adjoint boundary conditions

can be analyzed in a similar way. Equation (10.33) is the spectral problem for the
self-adjoint Sturm-Liouville operator A : D(A) C L?([0,1]) — L?([0,1]) defined by

Au = — (pu") + qu, (10.34)
D(A) = {u € H?((0,1)) | u(0) = u(1) = 0}. (10.35)
Theorem 10.30 Suppose that p € C*([0,1]), ¢ € C([0,1]) are real-valued functions
and p(z) > 0 for all z € [0,1]. There is an orthonormal basis of L? ([0,1]) that

consists of eigenfunctions of the Sturm-Liouville eigenvalue problem (10.33). The
eigenvalues \; < Ay < ... are real and simple, and A\, — 00 as n — 0.
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Proof. We begin by showing that if A is real and sufficiently negative, then the
only solution of (10.33) is u = 0, so A is not an eigenvalue of A. We take the inner
product of (10.33) with u, and integrate the result by parts. This gives:

1 1
/ {p|u'|2 +q|u|2} dr = /\/ lul? dz. (10.36)
0 0
We let
o = miy P@), B= 02221‘1(“’)' (10.37)

Since p > 0, we have a > 0; if ¢ > 0, then 8 > 0 also, but we may have g < 0.
Using (10.37) in (10.36), and rearranging the result, we find that

1 1
a/ /| d:c+(ﬂ—)\)/ lul? dz < 0.
0 0

It follows that if A < 3, then

L 1
/ |u'|” dz =/ lu|* dz =0,
0 0
so u = 0.

This result shows that the kernel of A — A is zero when A < 3. From what we
have shown previously, the Green’s function gy of A — AI exists. Therefore, A is in
the resolvent set of A, and the self-adjoint resolvent operator Ry is given by

Ry = (A = A)~": L*([0,1]) — L*([0,1]),

Ryf(z) = - /0 ox(9) 1 () dy.

Since gy is continuous, we certainly have

/01 /01 [gx(z,9)]2 dady < oo,

so R, is Hilbert-Schmidt and hence compact. The spectral theorem for compact,
self-adjoint operators implies that there is an orthonormal basis of L%([0,1]) con-
sisting of eigenvectors {u, | n € N} of Ry with eigenvalues {y,, | n € N} such that
tn — 0 as n — oo. Since (AI — A)Ry) = I, we have u, € D(A) and Au,, = Ayun,
where

1
B<An=A——,
Hn
S0 A, = 00 as n — oo. The Sturm-Liouville operator A therefore has a complete
orthonormal set of eigenvectors that forms a basis of L?([0, 1]).
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If an eigenvalue A is not simple, then (10.33) has a pair of linearly independent
solutions. It follows that every solution of the Sturm-Liouville equation

—(pu") + qu = Iu

vanishes at z = 0, 1 since it is a linear combination of eigenvectors. This contradicts
the existence of a solution of the initial value problem with nonzero initial data for
u(0). O

The compactness of the resolvent may also be obtained as a consequence of
Rellich’s theorem, in Theorem 10.26. We define a symmetric, sesquilinear form a
on Hg ((0,1)) by

1
a(u,v) = / {pu'v' + quv} dz, (10.38)
0
We call a the Dirichlet form of A. For u,v € D(A), we have
a(u,v) = (Au,v) = {u, Av).

The set D(A) x D(A) is dense in H] ((0,1)) x H} ((0,1)), and the form extends
continuously to the larger space. The associated quadratic form a(u,u) on Hy ((0,1)
is given by

! 2
atww) = [ {pl+alu} do.
0

As we saw above, we have the estimate

1 1
a(u,u) > a/ lu'|* da +,8/ [ul® da.
0 0

It follows that if u € D(A), then

((A = X)u,u) > a/l [u'|” dz + (8 — \) /1 lul® de.
0 0

If A < 3, this estimate implies that (A\I — A)~! maps bounded sets in L? to bounded
sets in H}, which are precompact in L? by Rellich’s theorem. Hence, A has a
compact resolvent.

The operator A is diagonal in a basis of eigenvectors. We may therefore solve
the Sturm-Liouville BVP

—(pu") + qu = Iu+f,
u(0) = u(1) =0,
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by expanding u and f with respect to the orthonormal basis of eigenvectors. As-
suming that A is not an eigenvalue of A, the solution is

o) = 3 P o),

where the series converges in L%(]0,1]). We may write the operator A as

oo oo o
A= Mg ®@u,, D(A) = {chun et ‘ D+ X)) fenl® < oo} :
n=1 n=1 n=1
where the sum converges strongly on the domain of A. The resolvent operator of A
is
= Up @ Uy,

Ry=) ———
n=1 A= )\"

where the sum converges uniformly for A € p(A4), and the Green’s function g, of
A — A is given by

g)\(xay) = A — N

n=1
where the sum converges in L?([0, 1] x[0, 1]). The resolvent operator and the Green’s
function, regarded as functions of A, have poles at the eigenvalues of A.

Example 10.31 The simplest example of a Sturm-Liouville eigenvalue problem is
—u" = du, u(0) = u(1) = 0.
The eigenfunctions u,, and eigenvalues \,,, where n = 1,2,3, ..., are given by
un(z) = V/2sin (nwz) An = n’r?

The associated eigenfunction expansion is a Fourier sine expansion. Neumann
boundary conditions lead to a Fourier cosine expansion. Thus, Theorem 10.30
provides another proof of the completeness of the Fourier basis. In this example,
the nth eigenfunction has n — 1 zeros inside the interval (0,1). This property holds
for all regular Sturm-Liouville eigenvalue problems (see Coddington and Levinson

[6])-

A Sturm-Liouville problem is said to be regular if it is posed on a bounded
interval [a,b] and p(z) # 0 for every a < = < b; otherwise, it is said to be sin-
gular. We have just proved that a regular Sturm-Liouville eigenvalue problem has
a complete orthonormal set of eigenvectors. The resolvent operator of a singular
Sturm-Liouville operator may or may not be compact and, if it is not compact,
then the corresponding Sturm-Liouville eigenvalue problem may have a continuous
spectrum as well as, or instead of, a point spectrum.
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Example 10.32 The function p(z) = 1 — z? vanishes at the boundaries of the
interval [—1,1]. The corresponding singular Sturm-Liouville eigenvalue problem on
[-1,1], with ¢ =0, is

— (A=) =xu  for —1<z <1,

[1 (1= 2%) [/ + [uf?} do < oo, (10.39)

This eigenvalue problem has a complete orthogonal set of eigenvectors, the Legendre
polynomials, with eigenvalues A\, = n(n + 1) (see Exercise 6.12).  Since A\, =
n(n +1) = oo as n — oo, the resolvent operator (—I — A)~! is compact. No
boundary conditions are required at the singular endpoints. The condition in (10.39)
rules out singular solutions which are unbounded at z = £1.

More generally, if m € N is a positive integer, then the singular Sturm-Liouville
problem,

m2

- [(1 - .CEZ)'LLI]I + m

! 2\ 1,112 Jul?
. (1-3}')|U|+m dl’<00,

has eigenvalues A\, = n(n + 1), where n = m,m + 1,.... The corresponding eigen-
functions are the Legendre functions uw = P*. They may be expressed in terms of
the Legendre polynomial P, = P? as

U= Au for —-1<z<1,

m m m/2 dm
Pz = (—)™(1-22)" —=Pa(@)
mz 1 dmtn

2npl dgmtn \T DA

= (-)™(1-2?%

Example 10.33 An example of a Sturm-Liouville operator on the whole of R with
a compact inverse is the quantum harmonic oscillator,

Au = —u" + z?u, D(A) = {u € H*(R) | z*u € L*(R)} .

Its eigenvectors are the Hermite functions (see Exercise 6.14), which form a complete
orthonormal set in L?(R).

Example 10.34 An example of a Sturm-Liouville operator on L?(R) with a non-
compact inverse is given by

Au = —u" + u, D(A) = H*(R).

The inverse of A is given by
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The spectrum of A is [1,00) and is continuous. For A € C\ [1,00), the resolvent
operator Ry = (A\I — A) " is given by

Ryu(z) = / VI Ne=uly(y) dy,
R

1
T2/I—A

where we use the branch of the square-root with Re+/z > 0 in order to ensure that
the kernel decays at infinity. The resolvent operator has a branch cut along the
continuous spectrum of A.

10.6 Laplace’s equation

Adjoint operators and Green’s functions can be defined for partial differential equa-
tions as well as ordinary differential equations. If the partial differential operator
has a compact, self-adjoint inverse (or resolvent), then it has a complete orthonor-
mal set of eigenvectors. In this section, we discuss Laplace’s equation, which is
one of the most important linear PDEs. We will consider classical solutions in this
section. Weak solutions are discussed further in Section 12.11.

Let © be a bounded, open, connected set in R", with a sufficiently regular
boundary 0f2. We will not make the required regularity assumptions precise here
(see Gilbarg and Trudinger [15] for a detailed discussion). We denote by C*(Q) the
space of functions that are k-times continuously differentiable in 2, and by C* ()
the space of functions whose partial derivatives of order less than or equal to k exist
in  and extend to a continuous function on the closure €.

If F: Q = R" is a continuously differentiable vector field on 2, then the
divergence theorem states that

/V-de:/ F - nds, (10.40)
Q o0

where n is the unit outward normal to 9Q, and dS is an element of (n — 1)-
dimensional surface area on 0f).

The Laplacian operator —A acting on a function u(z) where z = (x1,...,z,) €
R™ is given by

n
8%u

—Auy = — g
5 -
i1a$i

It is convenient to introduce a minus sign in the definition of the Laplacian operator

because A is a negative operator. The Dirichlet problem for the Laplacian on Q is

—Au=f in Q, (10.41)
u=nh on 0f.
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Other types of boundary conditions, such as Neumann conditions

%zh on 01,

where du/On = Vu - n is the outward normal derivative of u, can be treated in a
similar way. First, we show that the Laplacian is formally self-adjoint.

Theorem 10.35 (Green’s) If u,v € C%(Q) then

ov Ou
/Q(uAv — vAu) dx = /asz (ua—n _Ua_n> ds.

Proof. The result follows from an integration of the vector identity
uA —vAu =V - (uVv —vVu)
over {2 and an application of the divergence theorem. d

If Bu = 0 is a boundary condition for the Laplacian, then we define the adjoint
boundary condition B*v = 0 by the requirement that the boundary terms in Green’s

formula vanish. If
(u,v) = / uv dx
Q

is the L?-inner product on €2, then we have that
{(Au,v) = (u, Av) for all u,v € C%(Q) such that Bu = B*v = 0.

For example, the adjoint boundary condition to v = 0 is v = 0, so the Dirichlet
problem for Laplace’s equation is self-adjoint.
The n-dimensional é-function has the formal properties

6(x) =0 forz#y, 6(x)de =1, 6z —y)f(y)dy = fy)
R™ R™
for any continuous function f : R* — C. The Green’s function g(z,y) of the
Dirichlet problem for the Laplacian is the distributional solution of
—Ag=46(z—-vy) for z € Q, (10.42)
g9(z,y) =0 for z € 09
The self-adjointness of the boundary value problem implies that g is symmetric,
meaning that g(z,y) = g(y, ).

The Green’s function representation of the solution of (10.41) follows formally
from Green’s formula:

_ ou 0g
/Q{gAu—uAg} dr = /BQ {g% —u%} ds.
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Using (10.41) and (10.42) in this equation, and indicating the integration variable
explicitly, we obtain that

99(z,y
[ (=o01@) +u@t - do = - [ 1@ L2 as(a),
Q aQ on(z)
Evaluating the integral involving the delta function, exchanging x and y, and using
the symmetry of the Green’s function, we find that

99(z,y)
u(z) = z, dy — h(y)—=—==dS(y).
@ = [ seafea— [ nwGrtase
Thus, we can represent the solution of (10.41) for general data f : @ — R and
h: 002 = R in terms of the Green’s function.

To give a nondistributional characterization of the Green’s function, we integrate
(10.42) over a small ball B,(y) of radius € centered at y, use the divergence theorem,
and let € — 0*. This gives

99

li Yzy)de=-1 * €q, 10.43
Jim, o5(y) O (z,y)dz or every y ( )

where 9/0n is the unit outward normal derivative to the ball. We also have

—Ag=0 for xz,y € Q and z # y,
g(z,y) =0 for x € 0 and y € Q.

For most domains 2, it is not possible to obtain an explicit analytical expression
for g. A simple solvable case is that of the free-space Green’s function g; defined
on R™. In view of the rotational invariance of the Laplacian, we look for a solution
g7 = g¢(r) that depends only on r = |z — y|, where | - | denotes the Euclidean norm
on R™. The polar form of Laplace’s equation implies that

1 d 1 dgf
— (12 = £ . 10.44
T gy (r I 0 orr >0 (10.44)

The solution of (10.44) is

1
gr = co2log (—) when n = 2,
T

Cn
—2

9= when n > 3, (10.45)

where ¢, is a constant, and we omit an arbitrary additive constant.
The radial derivative of g is constant on any sphere centered at y, so the singu-
larity condition in (10.43) implies that

1
lim 1990 - _ L (10.46)
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where w,, is the area of the unit sphere in R"™. This area is given by

271-"'/2

“rn = Tn/2)

where the Gamma function T is defined, for z > 0, by
o«
I(x) :/ ettt dt.
0
One can show that
1
I(z+1) =2l (x), ra) =1, r (—) =+/T.

Hence, for each n € N,

T(n) = (n— 1), r(m%) - (k—%) (k—%)(%)ﬁ

which gives wa = 27 (the length of the unit circle), and w3 = 47 (the area of the
unit sphere).
Using (10.45) in (10.46), we find that

1 1
Ccp = —, Cp = ———— Wwhenn > 3.
wa (n — 2)wy
Thus, the free-space Green’s function gy of Laplace’s equation in two and three
space dimensions is given by

1 1
gr(z,y) = by log (m) when n = 2,
1
9¢(z,y) g e when n = 3

In contrast to the one-dimensional case, the Green’s function is unbounded at x = y.
Returning to the Green’s function for Laplace’s equation on a bounded domain,
we may write the solution of (10.42) in the form

9(z,y) = g5 (x —y) + ¢(2,9),
where ¢(x,y) satisfies

—Ap=0 z €N,

o(z,y) = —gs(z —y) =z €N

If y € Q, then the boundary data —g¢(z —y) is smooth for z € Q. The solution of
an elliptic PDE, like Laplace’s equation, on a smooth domain with smooth boundary
data is smooth, and therefore p(z,y) is a C* function on Q x 2. We have used the
free-space Green’s function to “subtract off” the singularity in the Green’s function
on a bounded domain.
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The eigenvalue problem for the Laplacian is

—Au=\u in Q, (10.47)
u=0 on Of).

We again assume Dirichlet boundary conditions for definiteness, when the eigen-
values are strictly positive. If  is a bounded domain with a sufficiently regular
boundary, then one can show that the Green’s operator is a compact, self-adjoint
operator on L2(f2). Consequently, it has a complete orthonormal set of eigenfunc-
tions.

Using the divergence theorem, we find that

/Qu(—A—)\I)ud:v /Q{—V-(uVu)+|Vu|2 —)\uQ} dz

Vul> = M2} da.
| {var =)

The boundary terms vanish because u = 0 on 9f2. Hence, if X is an eigenvalue of
the Dirichlet problem for —A with eigenfunction u, then

/Q {qu|2 - )\uz} dz = 0.

Since u # 0, it follows that A > 0. If A = 0, then Vu = 0 in 2, so u = constant.
The boundary condition implies that v = 0, so A = 0 is not an eigenvalue of the
Dirichlet problem. A similar argument applies to the Neumann problem for the
Laplacian, with boundary condition du/0n = 0 on 0, except that A = 0 is an
eigenvalue with constant eigenfunction v = 1.

It is not possible to compute the eigenvalues and eigenfunctions of the Laplacian
explicitly unless the domain €2 has a special shape. For example, if the boundary of
1 is made up of coordinate surfaces of a coordinate system in which the Laplacian
separates, then we may use the method of separation of variables illustrated in the
next two examples.

Example 10.36 The eigenvalue problem for the Laplacian with Dirichlet boundary
conditions on the rectangle Q = [0, a] x [0,b] C R? is

_(Uzz+uyy)=/\u, 0<.’L’<a, 0<y<b7
u(0,y) = u(a,y) =0,
u(z,0) = u(z,b) = 0.

The eigenfunctions v = u,, ,, and eigenvalues A = A, ,, where m,n = 1,2,3,...,

are given by
2 . /mmx\ . (nTY
thnn(@,9) = = sin (2 ) sin ()
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2 2
o fm n
Amn =7 (?+b—2>-

The corresponding eigenfunction expansion is a Fourier sine expansion. The lowest
eigenvalue is simple, but higher eigenvalues need not be. For example, in the case
of a square, a = b, the eigenvalue A = 5072 /a® has multiplicity 3 corresponding to
(m,n) = (5,5),(1,7),(7,1). The Green’s function g(z,y; £, n) satisfies

= (9zz + gyy) = 6(z = €)o(y —n),
9(0,y;&,m) = g(a,y;&,m) =0,
9(z,0;€,m) = g(z,b;€,m) =0

The eigenfunction expansion of the Green’s function is

4 XN & sin (marz/a) sin (nwy/b) sin (maé /a) sin (nan/b)
g(z,y;&,m) _b Z: g 2 (mz/a2 +n2/b2) ’

where the series converges in L?(Q x Q).

Example 10.37 The Dirichlet eigenvalue problem for the Laplacian in the three-
dimensional unit ball

Q={zeR ||z| <1}
may be solved using spherical polar coordinates (r, 6, ), where
xz =rsinfcosyp, y=rsinfsiny, 2z =rcosb,

and 0<r,0<6 <7, 0<p < 2r. The eigenvalue problem (10.47) for Laplace’s
equation is

19 Bu -i-#2 smﬁa—u +#82—u =k%u, forr<1
2or\" or r2sinf 06 00 r2sin®0 0p? | ’ ’
u=~0 for r = 1.

Here, we write A = k2, since A\ > 0. First, we separate the radial and angular
dependence, and look for solutions of the form u(r, 8, ) = R(r)Y (0, ). This gives

S 0PR) + (k- BYR=0, r<1,  RO)=0, (104

1 0 12)4 1 9%y
- [—sinﬁﬁ (s1n6 60) + —sin203—902] = uy, (10.49)

where p is a constant. Equation (10.49) is the eigenvalue problem for the Laplace-
Beltrami equation on the unit sphere. The nonzero, square-integrable solutions
that are 27-periodic in ¢ are parametrized by two integers (I,m), where [ > 0 and
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m=—l,—l+1,...,1—1,l. The eigenvalues are yu = [(l + 1) and the eigenfunctions
are the spherical harmonics Y = Y™, given by

1/2 .
] P (cos§)e'™?.

Here, P/"(z) is the Legendre function defined in Example 10.32. The set
{Y/"|1>0and |m| <1}

forms a complete orthonormal basis of L?(82), where 0Q = {z € R? | |z| = 1} is
the two-dimensional unit sphere in R3.

Up to an arbitrary multiplicative constant, the solution of the radial equation
(10.48) that is bounded at r = 0 is given by

R(r) = ji(kr),
where j;(z) is the Ith order spherical Bessel function that satisfies

1(z+1)]u=0_

xr2

2
u' + = + [1 -
T

The boundary condition R(1) = 0 implies that j;(k) = 0, so that k¥ = z,, where
x = 2, with n = 1,2,... is the nth positive zero of j;(z). The corresponding
eigenvalues are therefore A = A, where A\, = zlz’n, and A;, has a multiplicity
of (21 + 1) corresponding to the different possible choices of —I < m < I. The
eigenfunctions,

Ulm,n(T,0,0) =51 (\//\l,nr) P (cos§)e™?, 1>0,m|<Il,n>1,
form a complete orthogonal basis of L2(f2).

Finally, we consider two examples of partial differential operators that are not
formally self-adjoint.

Example 10.38 The advection-diffusion operator is
A=a -V+A

where a is a smooth vector field. The equation Au = 0, or
Au+a-Vu=0

describes the steady state of a quantity u, such as temperature or the density of a
pollutant, subject to diffusion and advection by a velocity field a. We consider A
as acting on C2(f2), where (2 is a smooth, bounded domain in R”. For simplicity,
we suppose all functions are real-valued. Then, using the vector identity

V-(ua) =Vu-a+uV -a,
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and the divergence theorem, we find that

/Q(a-Vu+Au)vda: = /Qu(—V-(av)thv) dz

ou ov
+/(99 (uva-n+va—n—ua—n) ds.

Thus, the formal adjoint of A is
A*=-V-a+A.

Example 10.39 The heat operator is
A=-0;+A.

We consider A as acting on real-valued functions u(z,t) in C?( x [0,77]), where
is a smooth, bounded domain in R”, and 7" > 0. Then

/OT/Q(—ut+Au)vdmdt = /T/u(v”LAU) ddt
/[““ //69(22 >det

Thus, for example, the adjoint problem to the initial-value problem for the heat
equation,
=Au+f in Q x [0,T1,
u(z,t) =0 for z € 09,
u(z,0) = uo(w),

is the final value problem for the backward heat equation,

—n=Av+g in Q x [0,T7],
v(z,t) =0 for z € 09,
v(z,T) = vp(z).

10.7 References

For more on unbounded operators and a proof of the closed graph theorem, see Kato
[26] or Reed and Simon [44]. For Sturm-Liouville problems, see Coddington and
Levinson [6]. For an introduction to Green’s functions for PDEs, see Zauderer [56].
An extensive collection of Green’s functions for various boundary value problems for
linear PDEs is given in Morse and Feshbach [39]. Mikhlin [38] gives a detailed and
careful analytical discussion of Green’s functions for Laplace’s equation. Further
analysis of spectral problems for ODEs and PDEs is given in Vol. 3 of Dautry
and Lions [7]. For the definition and properties of special functions, such as the
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Gamma function, Bessel functions, and spherical harmonics, see Hochstadt [23] or
Lebedev [31]. For a summary of formulae and integrals, including ones that involve
special functions, see Gradshteyn and Ryzhik [16].

10.8 Exercises
Exercise 10.1 Prove that if A** exists, then it is an extension of A.
Exercise 10.2 Prove that a symmetric operator is closable.

Exercise 10.3 Show that the operator A on H = L?(T), with domain

D(A) = {f(:v) =3 ane™ | 3 a2 < oo} ,

neZ nez

defined by

A (Z aneim“') = Z nla,e™.

nez nEL

is a self-adjoint extension of the classical differentiation operator —d?/dz* with
domain C%(T).

Exercise 10.4 Let M : D(M) C L?*(R) — L*(R) be the multiplication operator
Mf = xf with

D(M)={feL*R) |zf € L*R)}.

Show that M is self-adjoint.

Exercise 10.5 Suppose that {e, | n € N} is an orthonormal basis of a separable
Hilbert space H, and A, € R. For z € H, let z, = (ep,x) € C, so

oo
T = E Tnn-
n=1

Define an operator A : D(A) C H — H by

D(A) = {a: cH ‘ ia +A2)|@al? < oo} :

=1

A (i acnen) = i AnTn€n.
n=1 n=1

Prove that A is self-adjoint.
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Exercise 10.6 Let A and B be two linear operators on a Hilbert space H with
domains D(A) and D(B), respectively, and assume D(A) N D(B) is dense. Define
an operator C by D(C) = D(A)ND(B) and Cx = Az + Bz for all z € D(C). Prove
that C* is an extension of A* + B*. Define D(AB) and D(B*A*) by

D(AB) = {ze€D(B)|BzeD(A)}
D(B*A*) = {z € D(A*)|A*z € D(B*)}

and assume that D(AB) and D(B*A*) are dense. Define operators AB and B* A*
on their respective domains in the obvious way. Prove that (AB)* is an extension
of B*A*.

Exercise 10.7 Prove that the adjoint of a densely defined, unbounded operator in
a Hilbert space is closed.

Exercise 10.8 Let {z,, | n € N} be an orthonormal basis of a separable Hilbert
space H, and let y an element of A that is not a linear combination of a finite
number of basis elements z,,. Define a linear operator A in H, whose domain D(A)
consists of finite linear combinations of the z,, and y, as follows:

N N
A (Z AnTn + by) =by, D(4)= {Z anTn + by ‘ an,b € (C} .

n=1 n=1

Show that A is not closable.

Exercise 10.9 Consider a singular self-adjoint BVP,

_(pul)l+qu=fa
u(0) =u(1) =0.

Suppose that the null space of the homogeneous problem is one-dimensional with
orthonormal basis {¢}. Define the modified Green’s operator G : L%([0,1]) —
L2([0,1]) where u = G if and only if u satisfies the problem

—(pu) +qu=f— g, o,
u(0) = u(1) =0, (p,u) = 0.

Prove that G is well defined, and show that G is an integral operator of the form

1
Gf(z) = /0 o(e,9)f () dy.

Compute the modified Green’s function g in terms of .
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Exercise 10.10 Let r : [0,1] & R be a smooth, nonnegative function. Let #
be the Hilbert space of (equivalence classes) of Lebesgue measurable functions u :
[0,1] — C such that

/ r(2)u(@)|? dz < oo,
0

with the inner product

1
(u,v) = / r(z)u(z)v(r) de.
0
Determine the formally self-adjoint second-order differential operators on H.

Exercise 10.11 Prove that the Wronskian W (z) of the Sturm-Liouville operator
(10.8) satisfies p(z)W(x) = constant. Verify directly that the Green’s function is
symmetric.

Exercise 10.12 The following linearized BBM (Benjamin-Bona-Mahoney) equation
for u(z,t), where z,t € R, arises in the analysis of water waves:

—Uggt + Ut = Ug,

u(z,0) = uo(x).
Use a Green’s function to reformulate this equation as an evolution equation
upy = Ku,

for a suitable integral operator K : L?(R) — L?(R), and deduce that there is a
global in time solution with u(-,t) € L?(R) for any initial data ug € L?(R). Show
that the L2-norm of u is conserved.

Exercise 10.13 For k = 1,2,3, let Ay : D(A;) C L*([0,1]) — L2([0,1]) be the
first-order differential operators Ayu = iu’ with domains

D(Al) = Hl((oa 1))7
D(4:) = {ueH'((0,1) |u(0) =u(1)},
D(4) = {ue HY((0,1)|u(0)=0}.

Show that the spectrum of A; is C, the spectrum of A, is the set {2n7 | n € Z},
and the spectrum of Az is empty.

Exercise 10.14 Consider the operators A;, As defined by Azu = v/, with

D(41) = {u € H'((0,1)) | u(0 ) u()},
D(A2) = {u € H'((0,1)) | u(0) = u(1) = 0}
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Show that both operators are closed and symmetric. Compute ran (4 £ ¢) and
ker(Aj £14). Use Theorem 10.29 to determine whether or not these operators are
self-adjoint.

Exercise 10.15 Let ¢ be a nonzero function in L?*(R) and define an operator
A:D(A) C L>(R) —» L*(R) by

Au = ( /R u(z) d:v) o, D(4) = L\(R).

Show that A is a closed, unbounded operator that is densely defined in L?(R). Show
that

D(4") = {¢}"
and A* = 0 on D(A*), so the domain of A* is not dense in L?(R).

Exercise 10.16 If u € H' ((0,00)) and u(0) = 0, prove Hardy’s inequality:

00|u|2 o0

/—dx<4/ [u'|? de.
2 p—

o Z 0

Exercise 10.17 Suppose that u; and uy are two solutions of the Dirichlet problem
for Laplace’s equation

—Au=f x €,
u=nh z € 09,

where 2 is a smooth, bounded domain in R” and f: Q@ — R and h : 92 — R are
given functions. Show that if v = w3 — us then

/ |Vo|? dz = 0,
Q

and deduce that the solution is unique. What can you say about solutions of the
Neumann problem, with boundary condition

ou
—_— = ?
o h z € 001

Exercise 10.18 According to Maxwell’s equations, the magnetic field B generated
in three-dimensional space by a steady current distribution J satisfies

curl B =17, divB = 0.

A mathematically identical problem arises in fluid mechanics in reconstructing an
incompressible velcity field u, with divu = 0, from the vorticity w = curl u. Derive

the Biot-Savart law,
B(y) x (x —y)
Bx)= | —————~dy.
(x) / dr[x —y| v
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HINT. Write B = curl A and derive a Laplace equation for A.

Exercise 10.19 Let N, be the n x n Jordan block

010 ... 0

0 01 ... 0
Ny = oL .o >

0 0 0 ... 1

0 00 ... 0

and let ¢, =n~1/2(1,1,...,1)" € C". Show that for each n € N and t > 0:
||etN" H <el; || Npen —enll <n™2; HetN"cn - etcn” < n~ 1%l

Let H = @2, C*, meaning that = € H is of the form
oo
2
T = (T1,T2,...,Tn,---), zn € C, Z|mn| < 0.
n=1

Here, |-| denotes the Euclidean norm on C*. Let A,, = N,, + inl,, where I,, is the
n X n identity, and define A : D(A) C H — H by

A= @Ana A(x17m27-"5$n5"') = (A1$17A2$2;---;Anxn7"')7
n=1

where D(A) = {z € H | Az € H}. We define the associated Cp-semigroup T'(t) =
et/ for t > 0, where T'(t) : H — H, by

T(t) (z1,Z2,y .y Tyy...) = (etAlarl,etAQa:g, et ).

Show that the spectrum of A is {in € C | n € N}, and consists entirely of eigenval-
ues, so it is contained in the left-half plane {A € C | Re A < 0}. Show, however, that
the spectral radius of T'(t) is greater than or equal to e, so the spectral mapping
theorem does not hold for A.

HinT. Consider the action of T'(¢) on the vectors (0,0,...,0,¢,,0,...) € X. This
example of an operator with arbitrarily large Jordan blocks illustrates some of the
pathologies that can arise for unbounded, nonnormal operators on a Hilbert space.

Exercise 10.20 Consider heat flow in a rod with rapidly varying thermal conduc-
tivity a,(z) = a(nz), where n € N and a(y) is a strictly positive periodic function
with period one, assumed continuous for simplicity. If the ends of the rod are held
at an equal fixed temperature, and there is a given heat source f(x) per unit length,
the temperature u,(x) satisfies the boundary value problem

4 (an(w)%un) — (@), 0<z<l,  un(0) = un(1) = 0.
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Integrate this ODE and solve for u,(z). Let H}([0,1]) be the Sobolev space
Hy([0,1]) = {u:[0,1] = R [ u,u’ € L*([0,1]), u(0) = u(1) = 0},

with the inner product

1
{u, v) :/ u'v' dx.
0

Show that u, — u weakly in Hg ([0, 1]), where u is the solution of the homogenized
equation

—% (ah%u) =f(z), 0<z<1, u(0) = u(1) =0,

and the effective conductivity a” is the harmonic mean of the original conductivity,

1 /1 1
— = ——dy.
ah  Jo al(y)



Chapter 11

Distributions and the Fourier Transform

A distribution is a continuous linear functional on a space of test functions. Dis-
tributions provide a simple and elegant extension of functions that clarifies many
aspects of analysis. For example, the delta function may be interpreted as a dis-
tribution. An advantage of distributions is that every distribution is differentiable,
and differentiation is a continuous operation on spaces of distributions. Moreover,
every tempered distribution has a Fourier transform, and a function whose Fouri-
er transform is not defined as a function may nevertheless have a distributional
transform. One limitation on the use of distributions is that there is no product of
distributions that preserves the usual properties of the pointwise product of func-
tions. Therefore, when studying nonlinear problems involving distributions, one
must make sure that any products of distributions that appear are well defined.

11.1 The Schwartz space

In this section, we define a space of test functions on R™ called the Schwartz space
that consists of smooth, rapidly decreasing functions.
We begin by introducing a concise notation for partial derivatives. Let

Zy={n€Z|n>0}
denote the nonnegative integers. A multi-index
a=(al,...,0n) €LY

is an n-tuple of nonnegative integers «; > 0. For multi-indices a = (a1,...,a,)
and 8 = (B1,-.-,0n), we define

n n
|af :Zai, al :Ha,-!,
i=1 i=1

a+B=(1+pb1, -, an+ Brn),
a>f ifandonlyifa; > g;fori=1,...,n.

287
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If 2 = (x1,...,2,) € R" and a = (au,...,a,) € Z7}, then we define

o [ 8\™ 8 \*
7 =(om) ~(am)

n

o (673
2 = [[ 8,

i=1

|| = \/af + ...+ 22.

We use the notation z*f to denote the function whose value at z is z% f(z).
The Taylor remainder theorem for f € C*(R?) may be written as

f@=Y é@af(xo)(m — 50)® + (), (11.1)

la|<k
where the remainder term 7, satisfies

lim LG ()

=0.
z—wo |x — To|¥

The Leibnitz rule for the derivative of the product of f,g € C*(R") may be written
as
al

U= Y g

B+r=a

(0°F) (079)- (11.2)

For multi-indices o, 3 € Z%, and ¢ € C*°(R"), we define

Pap(p) = sup [2°0%p(c)]. (11.3)

We also write pa, () as [|¢]|a,8-

Definition 11.1 (Schwartz space) The Schwartz space S(R™), or S for short,
consists of all functions ¢ € C*°(R™) such that p, g(¢) in (11.3) is finite for every
pair of multi-indices a, 8 € Z7.

If ¢ € S, then for every d € N and a € Z} there is a constant Cy o such that

Cd,a

0% (z)| < ——=——
10%¢(x)] < RENNOE

for all x € R™.

Thus, an element of S is a smooth function such that the function and all of its
derivatives decay faster than any polynomial as |z| — co. Elements of S are called
Schwartz functions, or test functions. There are many functions in §. For example,
every function of the form

—clz—zo 2

q(z)e ,
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where ¢ > 0, g € R?, and

is a polynomial function on R", is a Schwartz function.

In order to define a notion of the convergence of test functions, we want to put
a topology on S. As we will see, the appropriate topology is not derived from a
norm, but instead from the countable family {p, s} of seminorms. We therefore
first discuss topologies defined by seminorms in more generality.

Definition 11.2 Suppose that X is a real or complex linear space. A function
p: X — Ris a seminorm on X if it has the following properties:

(a) p(z) > 0 for all z € X;

(b) p(z +y) < p(z) + p(y) for all z,y € X;
(¢) p(Az) = |Alp(z) for every z € X and X € C.

A seminorm p has the same properties as a norm, except that p(z) = 0 need
not imply z = 0. Suppose that {p,}aca is a countable or uncountable family of
seminorms, indexed by a set A, defined on a linear space X. Then X is a topological
linear space with the following base N of open neighborhoods:

N ={Nzoy, ane|lT€X,1...,an € A, and € > 0},
Naiar,ysomse = {Y € X | pas(® —y) <efori=1,...,n}.

A sequence (z,,) converges to z € X in this topology if and only if py(z — z,) = 0
as n — oo for each a € A.

We say that a family {p,}aca of seminorms separates points if p,(x) = 0 for
every a € A implies that z = 0. In that case, the associated topology is Haus-
dorff. A topological linear space whose topology may be derived from a family of
seminorms that separates points is called a locally convez space.

If the family of seminorms {py,...,p,} is finite and separates points, then

l|z|| = pr(x) + - .. + pp(x)

defines a norm on X. Thus, there is no additional generality in using a finite family
of seminorms instead of a norm. The main case of interest to us here is that of a
locally convex space X whose topology is generated by a countably infinite family
of seminorms {p, | n € N}. In that case, the topology is metrizable because

1 (T —
d(z,y) = % 27% (11.4)

defines a metric on X with the same collection of open sets as those generated by
the family of seminorms (see Exercise 11.2). A metrizable, locally convex space that
is complete as a metric space is called a Fréchet space.
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The function p, g in (11.3) is a seminorm on S. We equip S with the topology
generated by the countable family of seminorms

{Pays |, B € LY} (11.5)

This family separates points, since pg o is just the sup-norm. The following propo-
sition shows that S is a Fréchet space.

Proposition 11.3 The Schwartz space S with the metrizable topology generat-
ed by the countable family of seminorms (11.5), where pq g is given by (11.3), is
complete.

Proof. Let (¢n) be a Cauchy sequence in S. We have to prove that (p,,) converges
in the topology of S to a function ¢ € S. The sequence (¢,,) is Cauchy with respect
to the sup-norm py . Since the space of bounded continuous functions on R with
the supremum norm is complete, there is a bounded continuous function ¢ such
that ¢, — ¢ uniformly. For each multi-index «, the sequence 0%y, is Cauchy with
respect to the sup-norm, and hence converges uniformly to a bounded continuous
function v¢,. We claim that

Yo = 0% for every multi-index a. (11.6)

We prove (11.6) by induction on |a|. The equation holds for |a| = 0. Suppose we
have proved (11.6) for every a with |a| < m. Then, if || = m + 1, there exists an
a € 77 such that |a| = m and 3 = a + e; for some j, where e; is the jth standard
basis vector of Z™. The fundamental theorem of calculus implies that

t
0%pn(z + tej) — 0%ppn(z) = / 0% 0%pp(x + se;) ds.
0
Clearly, 8% 0 = 0°. Letting n — 0o, we obtain that

t
0%p(x +tej) — 0%p(z) = /0 Yp(x + sej) ds.

We divide this expression by ¢ and take the limit of the resulting expression as
t — 0%, Using the definition of derivative and the continuity of g, we find that

p(z) = Y ().

Finally, for every pair of multi-indices (c, ), the sequence (z®8%¢,) is Cauchy
with respect to the uniform norm, so it converges uniformly. The uniform limit is
equal to the pointwise limit 298¢, so Pa,s(pn — ) — 0 for all multi-indices, and
therefore (¢,) converges in S. O

One main motivation for the use of this topology on § is that differentiation is
a continuous operation.



Tempered distributions 291

Proposition 11.4 For each a € Z, the partial differentiation operator 9% : & —
S is a continuous linear operator on S.

Proof. The fact that 0% is a linear map of S into S is obvious. To prove the
continuity, suppose that ¢, — ¢ in S. Then pg,(pn —¢) = 0 as n — oo for all
B,7 € Z%. Therefore,

P3.~+(0%pn —0%) = pg.atry(pn —¥) =0
as n — oo for all 8,y € Z7}, so 0%pp, — 0%p in S. O

The Schwartz space is not the only possible space of test functions. Another
useful choice is the smaller space D = C°(R"™) of smooth functions with compact
support. The appropriate topology on D is, however, harder to describe than the
topology on S because it is not metrizable.

11.2 Tempered distributions

The topological dual space of S, denoted by §* or &', is the space of continuous
linear functionals 7' : § — C. Elements of $* are called tempered distributions. The
space S* is a linear space under the pointwise addition and scalar multiplication of
functionals.
Since S is a metric space, a functional 7' : S — C is continuous if and only if for
every convergent sequence o, — ¢ in S, we have
lim T(,) = T(%).

n—oo
The continuity of a linear functional 7" is implied by an estimate of the form
IT(¢)| < Z Ca,ll#lla,p
lal,|8|<d

for some d € Z and constants c,g > 0. Conversely, one can show that if T is
continuous, then such an estimate holds for some d and cq,g.

Example 11.5 The fundamental example of a distribution is the delta function.
The name “delta function” is a misnomer because it is not a function on R", but a
functional on §. We define § : S — C by evaluation at 0:

3(p) = ¢(0).

The linearity of ¢ is trivial. To show the continuity, suppose that ¢, — ¢ in S.
Then ¢, — ¢ uniformly, and therefore ¢,(0) — ¢(0). Hence, 6(p,) = d(¢), so
d € §* is a continuous linear functional. Similarly, for each z¢ € R", we define the
delta function supported at xg by evaluation at xo:

320 () = @(20).
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Example 11.6 Suppose that f is a continuous, or Lebesgue measurable, function
on R™ such that

/(@) < g(@) (1+|22) ¥

a.e. in R” for a nonnegative integer d > 0 and a nonnegative, integrable function
g:R* -5 R. Then

Ty(p) = - f(@)p(z) dz (11.7)

defines a tempered distribution, as follows from the estimate:
/2
Tl < [ o) (1+1aP)" lola)| do

/2

< | [ st@rds] sup [0+ 1) o]
n TzER™

Moreover, the function f is uniquely determined, up to pointwise-a.e. equivalence,

by the distribution Tf. To see this, let {¢¢ | € > 0} be an approximate identity in

S(R™), for example the Gaussian approximate identity,

pelz) = Wexp (—;’—) .

Then for each € > 0 and z € R, the function ¢, , defined by

‘Pe,z(y) = 906('%' - y)

is an element of S(R™), and

Ty (pe,e) = (pe * f) (2).

Since we can recover f pointwise-a.e. from its convolutions with an approximate
identity, we see that f is determined by T}.

Distributions of the form (11.7) that are given by the integration of a test func-
tion ¢ against a function f are called regular distributions, and distributions, such as
the delta function, that are not of this form are called singular distributions. Thus,
we may regard tempered distributions as a generalization of locally integrable func-
tions with polynomial growth.

A function that has a nonintegrable singularity, or a function that grows faster
than a polynomial (such as e°l®l” where ¢ > 0), does not define a regular tempered
distribution since its integral against a Schwartz function need not be finite.

Example 11.7 The function (1/z) : R\ 0 — R has a nonintegrable singularity at
z = 0, so it does not define a regular distribution. We can, however, use a limiting
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procedure to define a singular distribution called a principal value distribution,
denoted by p.v.(1/z). We define its action on a test function ¢ € S(R) by

1

p.v.— (p) = lim ¢lz) dz.

T e—0t lz|>e T
The limit is finite because of a cancellation between the nonintegrable contributions
of 1/z for z < 0 and z > 0:

1 oo _ _ [ee) _ —
p(x) w(@M:/ plz) —p(=2) .
0

V.— = li
pv.o () = lim | 2 z

The integrand is bounded at = 0 since ¢ is smooth. For z > 0, we have

1 T
<7 [ 10 d <2

R —

so the continuity of p.v.(1/z) on S follows from the estimate

1 _ _ [e’e]
[ et x)‘dﬁ/
0 T 1
2/|¢'lloo + 2[lz¢lloo

= 2(llello + lleollo) -

z[p(z) — o(=2)]|

X
22

o]

“

|
S
IN

IN

Example 11.8 The function 1/|z|? : R* \ {0} — R has an integrable singularity
at the origin when n > 3 since the radial integral

1
/ r 2l
0

1 _ w@)x
@ = [ TR

defines a regular distribution in §*(R™). If n = 2, the function is not integrable, but
we can define an associated singular distribution, called a finite part distribution,
denoted by f.p.(1/|z|?):

RIS p(x) — ¢(0) o(x)
f.p.|$|2(go) = /|x<1 7d:c+/| dx.

|| ai>1 |2)?

is finite. In that case

The action of the elements of the dual space $* on § may be represented by a
duality pairing, which resembles an inner product:

(n): 8" xS —>C.
We write the action of a distribution T on a test function ¢ as

T(p) = (T, ¢)-
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If ‘H is a Hilbert space, then the duality pairing on H* x H can be identified with
the inner product on H by the Riesz representation theorem. Note, however, that
in the case of an inner product on a Hilbert space, the duality pairing is antilinear
in one of the variables, whereas the duality pairing on $* x § is linear in both
variables.

Another notation for the action of T € $* on p € S is

T(p) = / T()p(z) dr,

as if S* were a function space. If T} is the regular distribution defined in (11.7),
then this notation amounts to the identification of Ty with f. The action of the
distribution d,, is then written as

520() = / 5@ — 20)p(x) de = p(xo).

Since the pairing on $* xS shares a number of properties with inner products defined
through an integral, this notation is often convenient in computations, provided one
remembers that it is just a way to write continuous linear functionals.

The tempered distributions are a subspace of the space D* of distributions that
are continuous linear functionals on the space D of smooth, compactly supported
test functions. Unlike tempered distributions, distributions in D* can grow faster
than any polynomial at infinity. The Fourier transform of a distribution in D* need
not belong to D*, however, whereas we will see that every distribution in §* has
a Fourier transform that is also in §*. To be specific, we therefore restrict our
discussion to tempered distributions, although similar ideas apply to distributions
defined on other spaces of test functions.

11.3 Operations on distributions

We say that a continuous function f : R* — C is of polynomial growth if there is
an integer d and a constant C' such that

If@)|<C O+ forallzeRe

T € 8 and f € C*(R"™) is such that f and 0%f have polynomial growth for
every a € Z7, then we define the product fT' € S* by

(fT,0) =(T,fp) forallpeS.

This definition makes sense because fo € S when ¢ € S. It is straightforward to
check that fT is a continuous linear map on § if T is.

Example 11.9 If T = § is the delta function, then
(£0,0) = (8, o) = F(0)p(0) = (f(0), ).
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Hence, fé = f(0)J.

The definition of products may be extended further; for example, the product
f8 = £(0)d makes sense for any continuous function f. It is not possible, however,
to define a product ST € S* for general distributions S,7T € S* with the same
algebraic properties as the pointwise product of functions (see Exercise 11.7).

Next, we define the derivative of a distribution. To motivate the definition,
we first consider the regular distribution 7 associated with a Schwartz function
f. Integrating by parts, we find that the action of the regular distribution T,
associated with the ath partial derivative of f, on a test function ¢ is given by

(Toes,0) = / (0°f) pdz = (-1)l°! / £(@°9) dz = (=1)*I(T}, 0%).

The following definition extends the differentiation of functions to the differentiation
of distributions.

Definition 11.10 Suppose that T is a tempered distribution and « is a multi-
index. The ath distributional derivative of T is the tempered distribution 0*T
defined by

(0T, p) = (=1)/°NT,8%p)  forallp € S. (11.8)

Equation (11.8) does define a distribution. The linearity of the map 0*T : S —
C is obvious. The continuity of *T follows from the continuity of 7" and 0% on S.
If p, = ¢ in S, then 0%p,, = 0% in S, so

(0°T, pn) = (=1) T, 0%n) = (~1)!°(T, %) = (9°T, ).

Thus, every tempered distribution is differentiable. The space of distributions is
therefore an extension of the space of functions that is closed under differentiation.
The following structure theorem, whose proof we omit, shows that S is a mini-
mal extension of the space of functions of polynomial growth that is closed under
differentiation.

Theorem 11.11 For every T' € S* there is a continuous function f : R* — C of
polynomial growth and a multi-index o € Z? such that T' = 0°f.

If Ty is a regular distribution whose distributional derivative is also a regular
distribution T}, then

/ godz = (—1)° f0%pdx for all p € S.
n Rn

In this case, we say that the function g is the weak or distributional derivative of
the function f, and we write g = 0% f. Thus, the weak L?-derivatives considered in
Section 10.4 were a special case of the distributional derivative. If f does not have
a weak derivative g, then the distributional derivative of T still exists, but it is a
singular distribution not associated with a function.
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Example 11.12 Let f : R — R be the function

0 ifz<0,
f(a:)—{ z ifz>0.

Then f is Lipschitz continuous on R, but it is not differentiable pointwise at = = 0,
where its graph has a corner. Integrating by parts, and using the rapid decrease
of a test function, we find that the action of the distributional derivative of f on a
test function ¢ is given by

(f's0) = —=({f,¢') = —/Oow'dw = /Ooosodw = (H, ),

0
where H is the step function,

0 ifz<0,
H(x)_{ 1 ifz>0.

Thus, f is weakly differentiable, and its weak derivative is the step function H.

Example 11.13 The distributional derivative of the step function is given by

(' o) = —(H, ) = — / " (@) do = 0(0) = (5, 0).

Hence, the step function is not weakly differentiable. Its distributional derivative is
the delta function, as stated in (10.12).

Example 11.14 The derivative of the one-dimensional delta function § is given by

(0, 0) = —(3,¢") = —¢'(0).

More generally, the kth distributional derivative of § is given by
(6, 0) = (=1)**) (0).

Example 11.15 The pointwise derivative of the Cantor function F', defined in
Exercise 1.19, exists a.e. and is equal to zero except on the Cantor set. The function
is not constant, however, and its distributional derivative is not zero. One can
show that the distributional derivative of F' is the Lebesgue-Stieltjes measure up
associated with the Cantor function, described in Example 12.15, meaning that

7o) = [ o) dur (o)

The use of duality to extend differentiation from test functions to distributions
may be applied to other operations. Suppose that K, K’ : S — S are continuous
linear transformations on S such that

/ (Kf)pdx = / f(K'p)dz  forall f,p€S. (11.9)
Rn Rr
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We call K' the transpose of K. The transpose K' differs from the L2-Hilbert space
adjoint K* of K because, unlike the L2-inner product, we do not use a complex-
conjugate in the duality pairing. If T is a tempered distribution, then we define the
tempered distribution KT by

(KT, ) =(T,K'p) forall p € S.

If T} is the regular distribution associated with a test function f € S, then we have
KTy = Tky, so this definition is consistent with the definition for test functions.

Example 11.16 For each h € R", we define the translation operator 1, : § - S
by

f(z) = f(z = h).
We then have that

/ (T f)pdx = flr—pp)dz for all f,p € S.
n Rn

We therefore define the translation 7,7 of a distribution T' by
(o T, ) = (T, T—pp) for all p € S.
For instance, we have 0, = 75,9.
Example 11.17 Let R : § — S be the reflection operator,
Rf(z) = f(-=).
Then
/ (Rf)pdx = A f(Ry)dz for all f,p € S.

Thus, for T € §*, we define the reflection RT € S§* by

(RT, ) ={T, Rp) for all p € S.

We end this section by defining the convolution of a test function and a distri-
bution. The convolution ¢ * 1 of two test functions ¢, € S is defined by

(p*¢) (z) =/ o(z — y)Y(y) dy. (11.10)

n

The following properties of the convolution are straightforward to prove.

Proposition 11.18 For any ¢p,9¥,w € S, we have:

(&) pxp =9 x*yp;
(b) (px9) xw=9px(Y*w),
(c) T *v) = (Thep) * ¢ = @ x (1Y) for every h € R".



298 Distributions and the Fourier Transform

It is clear from (11.10) that the definition of convolution can be extended from
test functions to more general functions provided that the integral converges. For
example, the convolution of a continuous function with compact support and an
arbitrary continuous function exists, and the convolution of two L!-functions exists
and belongs to L'. On the other hand, the convolution of two functions neither of
which decays at infinity need not be well defined.

Using the translation and reflection operators defined in Example 11.16 and
Example 11.17, we may write the convolution in (11.10) as

(0% 9) (x) = / (Rra0) () (y) dy.

n

We therefore define the convolution ¢ * T : R* — C of a test function ¢ € S and a
tempered distribution 7' € §* by

(¢ *T) (z) = (T, Rrzp)-
One can prove that ¢ * T € C°(R™), and is of at most polynomial growth.

Example 11.19 The convolution of a test function with the delta function is given
by

(¢ % 0)(x) = (6, Rraip) = (R72¢0)(0) = (Rep)(—2) = (),

meaning that ¢ x § = . This fact provides a distributional interpretation of the
formula

[ 3= we)dy = o(o)
Similarly, the convolution with a derivative of the delta function is
(0 ¥ 8°6) () = (—1)!°I(6,0% Rrpp) = 0% ().

More general convolutions of distributions may also be defined (for example,
0% x T = 0%T for any T € §*), but we will not give a detailed description here.

11.4 The convergence of distributions

Let (T},) be a sequence in S*. We say that (T},) converges to T in 8* if and only if

lim (T, ) = (T, p) for every ¢ € S. (11.11)

n—oo

We denote convergence in the space of distributions by

T,—~T as n — 0o.
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Example 11.20 Let T}, be the distribution in S(R) defined by
Tovip) =n* [ = p(a) da.
R

Integrating by parts four times, and using the rapid decrease of ¢ € S, we find that

einw
T =
(Tl =| [ <

Thus, we have T;, — 0 in $*(R). The cancellation of oscillations for large n in
the integration of n®ei™® against a smooth test function outweighs the polynomial
growth in n.

oW (z) da

—0, asn— 0.

For each ¢ € S, the map
T — (T, p) (11.12)

is a linear functional on S*. The convergence of distributions defined in (11.11)
corresponds to convergence with respect to the weakest topology such that every
functional of the form (11.12) is continuous. This topology, called the weak-* topol-
ogy of §*, is the locally convex topology generated by the uncountable family of
seminorms {p, | ¢ € S}, where

po(T) = (T, ¢)|  for T € S*. (11.13)

Sequences of distributions that converge to the delta function are particularly
important. Such sequences are called delta sequences. We have already encoun-
tered several examples of delta sequences, without thinking of them in terms of
distributions.

Example 11.21 A simple delta sequence in S(R) is given by

1/n
nwzgjummm

For any continuous function ¢, we have
Th(p) — »(0) =6(p) as n — 00,

so T,, — 6. Any approximate identity gives a delta sequence; for example, the
Gaussian approximate identity

on(z) = T g—na®/2 (11.14)

is a delta sequence that consists of elements of S(R).
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The following proposition gives a useful delta sequence of oscillatory functions.
We define the sinc function by

. _ [ sinz/z ifx#0,
Smw‘{ 1 if 7 = 0.

The integral of the absolute value of the sinc function does not converge, since it
decays like 1/z as |z| — oo, but a contour integral argument gives the following
improper Riemann integral

R
lim sincx dx = 7. (11.15)
R—o0 R
Proposition 11.22 For n € N, let
sin nz
() = . 11.16
on(z) = T (11.16)

Then o, — § in S*(R) as n — oo.
Proof. From (11.15), we see that
on(z) = P sinc na
™

has unit integral for every n € N. To avoid difficulties caused by the lack of absolute
convergence of the integral of o,, at infinity, we split the integral of o, against a
test function ¢ € S into two terms:

/ s1nna:(p($) da::/ s1nnx(p($) dar—}—/ smn:c(p(m) . (11.17)
—o0 |z|>1

T I lz|<1 T

An integration by parts implies that the first integral on the right-hand side tends
to zero as n — 00, since

sinnz 1 o(z) 1" 1 o(z)\’
p(z)dr = = [cosnz——=| + = cosnx | —= | dzx.
|z|>1 L n T 1 n |z|>1 Zr

We write the second term on the right-hand side of (11.17) as

/<1 sinmv(p(w)dx:/<1 sin nx (@) — (0)] dm+(,0(0)/ sin nx d

™ T |z|<1 ™

We may write o(z) = ¢(0) + z¢p(z) where p € C*°. The first integral on the
right-hand side is therefore given by

1 / sinnz y(z) dz,
lz|<1

™

and an integration by parts shows this approaches zero as n — o0o. Making the
change of variable nz — x and using (11.15), we see that the second term approaches
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»(0) as n — 0o, which proves the result. Note that the proof shows that o, *xp — ¢
uniformly for every ¢ € S. O

The identification ¢ — T, continuously embeds the Schwartz space S into the
space §* of tempered distributions. This embedding is clearly not onto, but the
next result, whose proof we only outline, states that S is dense in S*.

Theorem 11.23 The Schwartz space is dense in the space of tempered distribu-
tions.

Proof. Let (p,) be an approximate identity in S. Then (¢, *x T) is a sequence

of C'*°-functions of polynomial growth that converges to 7' in §*. The Schwartz
2

functions (¢, * T)e /I therefore converge to T in S* as n — oo and € — 0F. [

11.5 The Fourier transform of test functions

In this section, we define the Fourier transform of a Schwartz function, and show
that the Fourier transform is a continuous, one-to-one map from S onto S. In the
next section, we will extend the transform by duality to a continuous, one-to-one
map from S&* onto S*.

Definition 11.24 If ¢ € S(R"), then the Fourier transform ¢ : R* — C is the
function defined by

1

o(k) = W/ o(z)e 7 dy for k € R". (11.18)

There are many different conventions for where to place the factors of 27 and the
signs in the Fourier transform. In the next proposition, we show that the transform
of a rapidly decaying function is smooth, and the transform of a smooth function is
rapidly decaying. As a result, the Fourier transform maps the Schwartz space into
itself. We define the Fourier transform operator F : S — S by Fp = ¢.

Proposition 11.25 If ¢ € S(R™), then:
(a) ¢ € C*(R"), and
8% = F [(=i)*¢) (11.19)
(b) k*¢ is bounded for every multi-index o € Z7, and
(ik)*¢ = F[8%p]. (11.20)

The Fourier transform F : S(R®) — S(R™) is a continuous linear map on S(R™).
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Proof. Equation (11.19) follows by differentiation under the integral sign in (11.18).
This differentiation is justified by the dominated convergence theorem and the in-
tegrability of z%¢ for every a € Z%. Equation (11.20) follows from an integration
by parts in the formula

o) = s [ €0 el do
= W/(ik)ae_ik'ch(w) dx
= (h) (k).

Thus, for every a, 8 € Z”}, we have
(ik)*8Pp = F [0%(~iz)Py] - (11.21)
If p € S, then

. 1
lp(k)| = @

/e‘ik'wcp(a:) dz
1 [ +aP) o)
< (27T)n/2/ (1+|$|2)n/2+1

C sup [(L+o)" " fe@)]]
TER™

dx

IN

where the constant C' is given by

1 1
C = L /" i+ |$|2)n/2+1 dxr < co.

Taking the supremum of (11.21) with respect to k, using the Leibnitz rule to expand
the function on the right-hand side, and estimating the result, we find for the
seminorms in (11.3) that

[@llass < D Carprllillsr,ar
al’ﬁl

for suitable constants Cyr g, where || < |a| and |8'| < |B] + n + 2. Hence, the
Fourier transform is a continuous linear map on . O

An important example of the Fourier transform of a Schwartz function is the
transform of a Gaussian, which is another Gaussian.

Proposition 11.26 Suppose that A is an n xn symmetric, positive definite matrix.
The Fourier transform of the n-dimensional Gaussian

o(z) = exp (—%x - Aw) (11.22)
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is given by

o(k) = \/dlﬂ exp (—%k : A—1k> : (11.23)

Proof. First, we consider the one-dimensional Gaussian

o(z) = exp (—%) ,

where a > 0. We claim that

2
(k) = % exp <_’2“_a) _ (11.24)

To prove this result, it suffices to consider the case a = 1. The formula for a > 0
then follows from the change of variables z — \/axz. Thus, we just need to show
that

1 / —z?/2 —ikz —k2/2
— | e e de=c¢e .
V2T
The left-hand side of this equation may be written as

1 —kZ/z/ —(a+ik)2/2
- rt+1 d X
me ¢ o

So we want to show that

1 N2

—(z+ik)*/2 _
— | e dxr = 1. 11.25
V2 / ( )

This integral is independent of &, since

d 1 2 1 N2
el —(z+ik) /2d - ik —(z+ik) /2d
dk (\/27r/e m) Z\/27r /(m+z Je ?

1 d 2
- i & —(z+ik) /2d
i _27T/dxe T
— iLe‘(z+z’k>2/2|°°
\/27T — o0
= 0,

so (11.25) follows from the standard Gaussian integral,
/ e /2 dy = /2.

Now we consider the n-dimensional case. The Fourier tranform of the Gaussian
in (11.22) is given by
1

@(k) = W/e—z-Am/2e—ik~z dx. (1126)
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Since A is positive definite, there is an orthogonal matrix () such that QTAQ = A,
where A = diag()\, ..., \) is a diagonal matrix with the eigenvalues A; > 0 of A on
the main diagonal. We make the change of variables z = Q7 and k = QFk in (11.26).
The Jacobian of the transformation z — T is det () = 1. The resulting expression
factors into a product of one-dimensional Fourier integrals, which we may evaluate
using the one-dimensional computation:

. _ 1 —TAT/2 —ikT
QO(k) = W/e e dT

n
1 —\;jT2)2 —ik;T;
- e i/ %e iTi d7 .
I/ )

n 1 o

= H e ki/(2x;)
o1 VA

Rewriting this result in terms of k, and using the facts that det A = (A1 X2 ... \y)

and A~! = QTA1Q, we obtain (11.23). O

The covariance matrix A of the transform of a Gaussian is the inverse of the
covariance matrix of the Gaussian. Thus, the transform of a Gaussian that is
localized near the origin is delocalized, and conversely. The intuitive explanation
of this behavior is that more high-frequency Fourier components are required to
represent a rapidly varying, localized function than a slowly varying, delocalized
function. For example, the Fourier transform of the Gaussian approximate identity

is given by

€lzf?

oek) = exp( ! )

Ase = 0T, wehave p, — 6 and $, — (27)~™/2? in S*. The spectrum of the Gaussian
becomes flatter as it concentrates at the origin. These limits are consistent with
the result below that § = (2r) /2.

The following proposition, whose proof we leave to Exercise 11.13, gives the
formulae for the Fourier transform of translates and convolutions. An important
result is the fact that the Fourier transform maps the convolution product of two
functions to their pointwise product. We will see in Section 11.9 that this is related
to the translational invariance of the convolution.

Proposition 11.27 If ¢,¢ € S and h € R, then:

The = e M hg, (11.27)

e hp =10, (11.28)
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@+ = (21)" 2@ (11.29)
Finally, we prove that F is invertible on & with a continuous inverse. First, we
give a formula for the inverse.
Definition 11.28 If ¢ € S, then the inverse Fourier transform ¢ is given by

x 1 ik-x
o) = a7 | € oek) .

We define 7*: S = S by F o = ¢.
We will prove that F* = F !, meaning that
p=p=¢ foreveryp€S. (11.30)

To motivate the proof of the inversion formula, we first give a formal calcula-
tion, based on the completeness formula in (11.33) below. Writing out F*@, and
exchanging the order of integration, we find that

Fo(z) = #/ei’” [/ e~k Vp(y) dy] dk

- [aleral o

/ 5z — y)p(y) dy
o(z).

The exchange of integration in this calculation is not justified by Fubini’s theorem
because the integral is not absolutely convergent. To make the argument rigorous,
we introduce an “ultraviolet cut-off” in the integral before exchanging the order of
integration.

Proposition 11.29 The map F* is a continuous linear transformation on S, and
F* = ]_'—1_

Proof. Wehave F* = RoF, where R is the reflection defined by Rp(z) = p(—1x),
so the continuity of 7* on S follows from the continuity of R and F.

The n-dimensional Fourier transform is the composition of one-dimensional
Fourier transforms in each of the components z; of x € R*, ¢ = 1,...,n, so it
suffices to prove the result for n = 1. Introducing a cut-off in the k-integral, and
using Fubini’s theorem to exchange the order of integration, we find that

1 oo . oo 3
Froplx) = e'k? [ / e Mop(y) dy] dk

27 —o0 —oo

1 R co
= — lim [/ e @Y o (y) dy] dk

2T R—oo "R s
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— lim / / ek (@=v) gg,
27'[' R— oo oo "R

e(y) dy

= lim

R—o0 — oo

From Proposition 11.22, the sequence (sin Rz)/7z is a delta sequence as R — oo,
so F*¢ = . An identical argument shows that F¢ = ¢. Therefore F,F*:S — S
are one-to-one, onto continuous maps, and F* = F~L, O

We could have instead introduced a Gaussian regularization,
1 o o
F*@(x) = 0— lim gikz—ek?/2 [/ e*op(y) dy] dk,
oo

27 e—0+ — oo

exchanged the order of integration, and passed to the limit in the resulting Gaussian
approximate identity.

11.6 The Fourier transform of tempered distributions

In this section, we define the Fourier transform of a tempered distribution. First,
suppose that f,¢ € S. Using the definition of the transform and exchanging the
order of integration, which is justified by Fubini’s theorem, we find that the action
of the Fourier transform f on a test function ¢ is given by

/W (/f(x)e_ik"” d:z:) p(k) dk
/ f(x)W ( / (k) dk) da

[ 1@t da. (11.31)

In the notation of (11.9), this result means that F' = F. We therefore define the
Fourier transform of tempered distributions as follows.

/RMﬂMM

Il

Definition 11.30 The Fourier transform of a tempered distribution T is the tem-
pered distribution T' = FT defined by

N

(T, ) =(T,p) for all p € S. (11.32)

The inverse Fourier transform 7' = F~'T on S* is defined by

(T, ) =(T,p) for all p € S.

The linearity and continuity of the Fourier transform on S implies that 7' is a
tempered distribution. The map F : §* — S* is a continuous, one-to-one trans-
formation of S* onto itself. The fact that F~! is the inverse of F on S* follows
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immediately from the corresponding result on S, since
(T,p) =(T,$) = (T,p) forallpes.

The formulae for the Fourier transform of derivatives, translates, and convolutions
carry over directly to distributions (see Exercise 11.13). For example,

doT = (ik)°T.
We also write the Fourier transform using the integral notation,

(k) = W / T(w)e=* da,

as if T were a function, with an analogous expression for the inverse. This notation
should be interpreted simply as a short-hand for the definition in (11.32).

Example 11.31 Let us compute the Fourier transform of the delta function. From
(11.32), we have

(8,9) = (8,8) = $(0).
From the formula for the Fourier transform on S, we have

1 1
W/@(l") dr = W(L@)-
Hence, the Fourier transform of the delta function is a constant,

1
(271')"/2 )

¢(0) =

5=

Using the integral notation, we get from the inversion formula the following Fourier
representation of the delta function:

§(z) = (271r)” /R ] e*? dk. (11.33)

The formula for the transform of the derivative implies that the transform of the
ath derivative of the delta function is a monomial,
— 1

0% = o (ih)°

11.7 The Fourier transform on L!

The Fourier integral

1

—ik-x

\>
—
S
~—
|
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converges if and only if f € L*(R™), meaning that

/n|f(m)|d;c<oo.

We define the Fourier transform f of an L'-function f by (11.34). This definition
is consistent with the distributional definition, since Fubini’s theorem justifies the
exchange in the order of integration in (11.31) when f € L!(R").

Example 11.32 Let f = x|_g,gr] be the characteristic function of the interval
[ R, R], sometimes called a “box” function. Then

wk

Thus, the Fourier transform of a box function is a sinc function. The slow rate
of decay of the Fourier transform as k — oo, of the order k™!, is caused by the
discontinuities in f. Although f belongs to L!, the transform f does not. Thus, we
cannot recover f from f by use of the inverse Fourier integral, but we can use the
distributional definition of the inverse Fourier transform.

Example 11.33 For a > 0, let f(z) = exp(—alz|). Then

A 2
1(k) = \/;az -Cll- k2’

The following result, called the Riemann-Lebesgue lemma, gives a basic prop-
erty of the Fourier transform of L!-functions. We denote by Co(R™) the space of
continuous functions f that approach zero at infinity, meaning that for every ¢ > 0
there is an R such that |f(z)| < € when |z| > R. This space is the completion of
C.(R™) with respect to the supremum norm, and is a Banach space.

Theorem 11.34 (Riemann-Lebesgue) If f € L'(R") then f € Co(R"), and
@)™ flloo < I £ll1-

Proof. To prove the claim, we first observe that if ¢ € S, then

@m)"2(p(k)| = ‘ [eeptay o

[ 10 ds.

Taking the supremum of this inequality over k, we find that

IN

@m)"™* [1¢ll < llell; -
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The Schwartz space S is dense in L'. Hence, if f € L!, there is sequence (¢,,) in
S that converges to f with respect to the L'-norm. Then (¢,,) is Cauchy in the
supremum norm, since

2m)™2 [1gm — @ello < llom — ell; -

Since S is contained in Cy, and Cy is complete, there is a function g € Cy such that
¢m — ¢ uniformly. Moreover, § = f because

o0 - f®| = @0 lim \som K) = f0)

hm ‘/[g@m — f(@)] e *®da
tim inf ||y, — flly = 0.
m—0o0

(QW)"/Q

IA

O

The Fourier transform is therefore a bounded linear map from L! into Cy. We
may make L' into an algebra with the convolution product, and Cj into an alge-
bra with the pointwise product. The following proposition shows that the Fourier
transform maps the convolution product into the pointwise product, up to a factor
of (27r)"/?, which depends on the normalization of the Fourier transform. Thus the
Fourier transform is an algebra isomorphism of L' and its image F(L') C Cy. The
image F(L') is strictly smaller than Cy, but a precise description of it is difficult.

Theorem 11.35 (Convolution) If f,g € L'(R"), then f x g € L'(R") and
Frg= @0 f.
Proof. Fubini’s theorem implies that

/If*g(w)l dz /‘/f(w—y)g(y)dy‘ dz

/ [/'f(””—y)l dw] l9(y)| dy
(Jisena) (f1 ).

which shows that f*g € L'(R™). Moreover, the absolute covergence of this integral
implies that we can exchange the order of integration in the integral for the Fourier
transform of f x g:

Froth) = 275n/2 e"“[/fw— ]dw

/
- 277;"/2 /e " [/ - )d:c] ow)de
: ( ‘“”f ) (/e""“'yg(y) dy)

27T)"/2

IA
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= (2m"?fg.
O

One use of the convolution theorem is the computation of the inverse Fourier
transform of the product of two functions whose inverse Fourier transform we know.

Example 11.36 For a > 0, we have that

1 a _ 1 —alk|
f[waz—ka:?] = onl

Taking the inverse Fourier transform of the equation

1 1 1
—(a+b)|k| — /o —alk| _ = —blk|
—c€ = ™ e e R
\/_

27 27 27

where a,b > 0, and using the convolution theorem, we obtain the semigroup relation

1 a+b (1 a 1 b
7 (a+b)2+22 <;a2 +x2) * (;b2 +a:2) '

Finally, we make a few comments about the extension of the Fourier transform
to a function of a complex variable, called the Fourier-Laplace transform. If f :
R" — C is an integrable function with compact support, then (11.34) defines an
entire function f : C* — C (meaning that f(k) is a differentiable, or analytic,
function of the complex variable k for all kK € C"), since the integral obtained by
differentiation under the integral sign converges for every k € C*. The Paley- Wiener
theorem, which we do not state here, gives a precise characterization of the Fourier
transforms of compactly supported functions. Similarly, considering the case of one
variable for simplicity, if f is integrable and the support of f(z) is contained in
the half-line > 0, then the Fourier transform f (k) is an analytic function of k in
the lower-half plane Imk < 0, because in that case the exponential e~** decays
as ¢ — +o00. Setting k = —iz, and omitting the normalization factor of /27, we
obtain the Laplace transform of f,

fer= [ " f@)e da,

which is analytic in the right-half plane Re z > 0. More generally, if supp f C [0, o)
and f(z)e * is integrable for some a € R, then f(z) is analytic in the right-half
plane Rez > a. Methods from complex analysis, such as contour integration, may
be used to study and invert the Fourier-Laplace transform.

The space of Fourier transforms of test functions in D = C¢° is a space £ of
entire functions. Continuous linear functionals on £, equipped with an appropriate
topology, are called wultradistributions. The space L£* of ultradistributions contains
the space &* of tempered distributions, and the Fourier transform of an arbitrary
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distribution in D* may be defined as an ultradistribution, even if it has exponential
growth at infinity. For example, the Fourier transform

n!

= 2, g2n =, §(2n)

n=0 n=0

is well-defined as an ultradistribution. The series on the right-hand side does not
converge in 8*, however, since Schwartz functions need not have convergent Taylor
series expansions.

11.8 The Fourier transform on L2

We have seen that the Fourier transform is an isomorphism on both the Schwartz
space and on the space of tempered distributions equipped with their appropri-
ate topologies. In this section, we will see that the Fourier transform is also an
isomorphism on the Hilbert space L?(R") of square-integrable functions. To avoid
confusion with our notation for the duality pairing on S* xS, we denote the L2-inner
product by

(f,9) = /R ) F(x)g(z) da.

The duality pairing and inner-product of f € L? and ¢ € S are related by

Not every square-integrable function on R” is integrable; for example, the func-
tion (1 4+ 2?)~'/2 belongs to L*(R) but not L'(R). Thus, we cannot define the
Fourier transform of a general L2-function directly by means of its Fourier integral.
Instead, we will use the L2-boundedness of the Fourier transform to extend it from
S(R") to L2(R™).

If p € S, then ¢ = P, since

7(27;;"/2/%:6)6_%% dz = 7(275”/2 /me“” dz.

Using (11.30) and (11.31), we see that for every p,9 € S

@0 = [ i@ = [ s@i@ds = [ payb@ds= (o0,

n

Thus, the Fourier transform is an isometric map
F:ScL*-SclI’

The Schwartz space S is dense in L2, so the bounded linear transformation theorem
implies that there is a unique isometric extension F : L2 — L?. Moreover, F~! =
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F*, where F* is the Hilbert space adjoint of . Consequently, we have the following
theorem.

Theorem 11.37 (Plancherel) The Fourier transform F : L?(R") — L*(R") is a
unitary map. For every f,g € L?(R"), we have

(f,9) = (£,9), (11.35)

where f = Ff. In particular,

| i@ = [

To compute the Fourier transform of a general function f € L2, we choose any
sequence (,,) in S (or, more generally, in L' N L?) that converges to f in L2. Then
f is the L?-limit of ($,,). For example,

‘ 2

f(K)

dk. (11.36)

f(k) = lim fx)e * " dz (11.37)
= lim (w)e*"k'z*‘zpdx,
e—0t Jpn

where the limits are understood in the L?-sense. The inverse transform may be
computed in a similar way.

The Fourier transform is a unitary operator on L2(R"), so its spectrum lies on
the unit circle in C. The spectrum turns out to consist entirely of eigenvalues.
We will describe it, without proof, in the one-dimensional case. Multi-dimensional
eigenfunctions may be constructed from products of one-dimensional eigenfunctions
in each of the coordinates.

Since RF~! = F, where R is the reflection operator on L?, we have F? = R,
and F* = I. It follows that if A € C is an eigenvalue of F, then \* = 1, so
A € {1,i,—1,—i}. Each of these values is an eigenvalue of infinite multiplicity. A
complete orthonormal set of eigenfunctions is given by the Hermite functions,

1 ar 2

— 2?2 & -z 11.38
n (T e e " .
onle) = ez (11.38)
where n = 0,1,2,.... One can prove that

Fon = (=1)"on.

From Exercise 6.14, the Hermite functions are eigenfunctions of the differential
operator

Au = =" + 2%u.
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Taking the Fourier transform of this expression, we find that the terms involving
derivatives and multiplication by powers exchange places, so

FAu = k>0 — 4" = AFu.

Thus, A and F commute, which explains why they share a common set of eigen-
functions.

Once we know that the Hermite functions form an orthonormal basis of L?(R),
we can give an alternative definition of the L2-Fourier transform as

F (Z cn‘Pn) = Z(_i)ncn‘;on-
n=0 n=0

The unitarity of the Fourier transform on L? can be seen immediately from this
formula.

Just as we used Fourier series to define Sobolev spaces of periodic functions, we
can use the Fourier transform to define Sobolev spaces of functions with square-
integrable derivatives on R™. Since

daf = (ik)*f,

the partial derivatives of f of order less than or equal to s are square-integrable if
and only if (ik)®f is a square-integrable function for |k| < s. This is the case if the
function

(1+ k)% f

is square-integrable. More generally, we can define Sobolev spaces of distributions
with fractional, or even negative, order L2-derivatives.

Definition 11.38 Let s € R. The Sobolev space H?(R™) consists of all distribu-
tions f € §* whose Fourier transform f: R® — C is a regular distribution and

[ apkey

A similar proof to the proof of the Sobolev embedding theorem for periodic
functions, in Theorem 7.9, shows that if f € H*(R") for s > n/2, then f € Co(R™)
(see Exercise 11.12).

f(/g)‘2 dk < oo.

11.9 Translation invariant operators

There is a close connection between the Fourier transform and the group of trans-
lation operators 75, defined in Example 11.16. Since

The—zk-z — ezk-he—zk-w’
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the exponential functions e~ 2 with k € R", are eigenvectors of 7, in S* with
eigenvalues e*". The Fourier transform is therefore an expansion of a function
or distribution with respect to the eigenvectors of 7. If A : §* — S§* is a linear
translation invariant operator, meaning that A7, = 7, 4, then we expect that there
is a basis of common eigenvectors of 7, and A, so that A can be diagonalized by
use of the Fourier transform. In that case, the action of A on a distribution is to
multiply the Fourier transform of the distribution by a C'*°-function a of polynomial
growth,

AT = aT.

The function a is called the symbol of the operator A. Inverting the transform, we
find from the convolution theorem that

1
= @ttt

with a suitable definition of the convolution a xT'. Since 1p(a *T) = a x (7,T), the
convolution is translation invariant.

Example 11.39 A constant coefficient linear differential operator P : $* — S* is
translation invariant, and is given by

PT = Z co 0T

lo|<d
for constants c,. The Fourier representation is PT = pT’, where

k) = 3 calik)™

la|<d

Thus, the symbol of a differential operator is a polynomial. The convolution form
of the operator is

PT={ ) cad% | *T.

loe|<d

It can be much simpler to define an operator in terms of its symbol than by an
explicit formula for its action on a function.

Example 11.40 The symbol of the differential operator (—A + I) is the quadratic
polynomial (|k|?> 4+ 1). The square-root (—A + I)!/? is the nonlocal operator with
symbol (|k|?> + 1)'/2. Tts action on a distribution T is given by

(=A + D)7 = F1 [(|k|2 +1)V27]
The inverse operator (—A + I)~! has symbol (|k|? + 1)71, so
(—A+D)"'T = g+T,
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where g is the Green’s function of (—A + I), given by

1 1
= Ft .
7 e [|k|2 + 1]
For n = 3, where n is the number of space dimensions, computation of the inverse
Fourier transform gives

1 e_‘m‘

)= ——.

For n = 2, the Green’s function may be expressed in terms of Bessel functions. We
will study some other examples of Green’s functions in the next section.

We may also consider translation invariant operators defined on a subspace of
S*. For example, any bounded function a € L*(R") is the symbol of a translation
invariant operator A : L?(R") — L?(R") defined by Af =af.

Example 11.41 For g € L'(R"), we define the convolution integral operator G :
L?(R*) — L%(R™) by
1

__EEA;Q@—yV@ﬁ@- (11.39)

The symbol of G is §. Since g € L', the Riemann-Lebesgue lemma (Theorem 11.34)
implies that § € Cy. Thus, the Fourier transform F diagonalizes G, and G = F*§F
is unitarily equivalent to multiplication by §. Unless § = constant on a set of
nonzero measure, the multiplication operator has a continuous spectrum, given by
the closure of the range of g, so this is also the spectrum of G.

More generally, the map G is well defined on L? whenever §j € L™ is bounded.
For example, suppose that fR is the function obtained by truncating the Fourier
transform of f € L?(R) at wavenumbers k with |k| < R:

;[ f(k) if k[ <R,
h@_{o if k| > R.

Then fp = X[,R,R]f. Since
1 2.
F (X[—R,R]) = ;Rsmc(Rm),
the function fr = F~! [ fR] is given by
R
fr= ;sinc(R:c) x f.
Example 11.42 The symbol of the translation operator 7, itself is e~**. The

translation operators {7, | h € R"} form a unitary group acting on L?(R"). If
h # 0, then the spectrum of 7, is the unit circle in C and is purely continuous.
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Example 11.43 The operator H : L2(R) — L?(R) with symbol

h(k) = isgnk
is called the Hilbert transform. Since the modulus of the symbol is equal to one,
Plancherel’s theorem implies that H is a unitary map of L?(R) onto itself. Since
h? = —1, we have H? = —I. From Exercise 11.22 and the convolution theorem,

Hf = —% <p.vé) % f.

The Hilbert transform is one of the simplest examples of a singular integral operator.
Its properties are much more transparent from the Fourier representation than the
convolution form.

Example 11.44 The operator R,, : L>(R") — L?(R") with symbol
L kpky

= e

is called the Riesz transform. Since |fpq| < 1, Rp, is a bounded linear map on
L?(R™). The Riesz transform recovers the second derivatives of a differentiable
function from its Laplacian:

o’ f
—F— = R, Af.
O0z,0x, vl
One can also define pseudodifferential operators, whose symbol a(z, k) is a func-
tion belonging to a suitable class that is allowed to depend on both z and k, so

that

Af(z) = W / a(w, k) Fk)e™ di
1

= (27‘[’)" /a(x7k)61k(z7y)f(y) dydk

These operators are not translation invariant, and they allow the use Fourier meth-
ods in the analysis of variable coefficient, linear partial differential equations.

11.10 Green’s functions

Constant coefficient, linear differential operators on R™ may be solved by use of the
Fourier transform. In particular, we can use the distributional Fourier transform to
compute their Green’s functions.

The Green’s function g of the Laplacian on R is a distributional solution of the
equation

—Ag=34. (11.40)
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The delta function has the physical interpretation of the density of a point source
located at the origin, and the Green’s function g is the potential of the point source.
Taking the Fourier transform of (11.40), we find that

1

25

A complication in solving this equation for g is that the symbol |k|? of the Laplacian
vanishes at k = 0. We therefore need to interpret division by |k|? in an appropriate
sense. From Example 11.8, if n > 3, then a solution for § is the regular distribution

o101
1) = Gayr Tk

and the Green’s function is

1 (1
o) = et ()
The solution is not unique. We may add an arbitrary linear combination of § and
first-order partial derivatives of § to §. The inverse transform of this distribution is
a linear polynomial in x, which is a solution of the homogeneous Laplace equation.
We omit this function of integration for simplicity.

We will compute the inverse transform of § explicitly when n = 3; the computa-
tion for n > 4 is similar. Since §(k) decays too slowly as |k| — oo to be integrable,
we introduce a cut-off, as in (11.37). Using spherical polar coordinates (7,6, ) in
k-space, with the z-direction corresponding to § = 0, we find from the inversion
formula and the sinc integral in (11.15), that

1 eik-z

= li dk
g(m) (271’)3 R1—r>noo |z|<R |.’IS'|2

27 zr\w|c030
= 27T 3 Rgnoo / / / —— r%sin Odpdddr

B 2sinr|x|
= — lim —_—
(27r) R—oo g r|z]

_ 1 =
— @m)?faf

It follows that the three-dimensional, free-space Green’s function for Laplace’s
equation is

1
Ar|z|’

g(x) =

as we found in Section 10.6 by a different method. For n = 2, a solution for § is

1 1
i(k) = —f.p. —
g(k) 2 P TR
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where the finite part distribution is defined in Example 11.8. One can show that
the inverse Fourier transform of this distribution is of the form

o(z) = % log <i> +C

||

for a suitable constant C, also in agreement with our previous result.
Next, we consider the initial value problem for the heat or diffusion equation.
The Green’s function g(z,t) is the solution of the following initial value problem:

1
gtziAg forz e R*, t >0,
g(-,t) € S*(R™) for t > 0,
9(z,0) = 6(x) for z € R".

Taking the Fourier transform F, with respect to z of this equation, we find that
g(k,t) = Frg(x,t) satisfies the ODE

1

R T
gt = |k| ) g(k70) - (271')n/2

2

The solution is given by

A 1 —t|k|2/2

Using Proposition 11.26 to invert the transform, we obtain that

1

R S P
(2mt)n/2

g(z,t) =
The solution u(x,t) of the heat equation with initial condition

u(z,0) = f(z),
is given by a convolution with the Green’s function:

1

U(.T, t) = W

/ e~/ £ () .

Rn

Since the Green’s function is a Schwartz function, this expression makes sense as a
convolution for any initial data f € §*. The solution is C* in both z and ¢ when
t > 0. This is the smoothing property of the heat equation. It can be shown that
the solution of the initial value problem for the heat equation is not unique (see
Exercise 11.24). There is, however, a unique solution of polynomial growth, and
this is the one obtained by use of the Fourier transform.



The Poisson summation formula 319
11.11 The Poisson summation formula

The Poisson summation formula states that a large class of functions f : R — C
satisfy the following identity:

> f(2mn) = Z f(n (11.41)

n=—oo n——oo

The presence or absence of factors 27 in this equation depends on the normalization
of the Fourier transform. This formula may be used to derive identities between
infinite series, or even permit one to sum a series explicitly. It can also be used to
connect the Fourier series of a periodic function with the Fourier transform.

Theorem 11.45 Suppose that f € C1(R), and there exist constants C > 0, € > 0
such that

[(+2) " f@l <o (140 r@l<o (1142)

for all x € R. Then we have the identity

Z f(z+2mn) = \/_ Z e f(n (11.43)

n=—0oo n=—0oo

Proof. The condition in (11.42) implies that the sum

i f(@+ 2mn) (11.44)

n=—oo

converges uniformly, and g is a continuously differentiable 2n-periodic function.
Therefore, from Lemma 7.8, the Fourier series of g converges uniformly, and

1 e 27 Cin
9(@) = o _Z (/0 e ™g(y) dy) ¢
n=-—oo
Since g is related to f by (11.44), we can rewrite this as (11.43). O

Evaluation of (11.43) at = 0 gives the Poisson summation formula (11.41).

Example 11.46 The Jacobi theta function is defined for ¢ > 0 by

oo

o) = > e

The Poisson summation formula implies that the theta function has the following
symmetry property:

o(t) = —0(1/%). (11.45)

1
Vi
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Theta functions have important connections with Riemann surfaces and the theory
of integrable systems. They also arise in the solution of the heat equation on the
circle, as in (7.21).

The Poisson summation formula holds, in particular, for Schwartz functions.
The convergence of the series on the left-hand side of (11.41) for every f € S
implies that the series 2 d2n converges in S*. The series on the right-hand
side of (11.41) may be written as:

=Y fn=5 ¥ [emi@e

Hence, the series Y oo e~ also converges in S*. Changing n to —n in this
sum, we obtain the following identity of tempered distributions:

> 62m(x):% D e (11.46)

n=—oo n=—oo

This equation may be interpreted at the Fourier series expansion of a periodic array
of delta functions (sometimes called the “delta comb”). Its Fourier coefficients are
constants, independent of n.

More generally, we say that a distribution T € S(R) is periodic with period 27
if 79T = T. In that case, one can show that

. 1 & -
T=—— Tné2xn
V2or n;m >

for suitable Fourier coefficients 7,, € C. The Fourier coefficients have polynomial
growth in n, meaning that there are constants C > 0 and d € N such that

Tl <C(1+n?)".

Thus, the Fourier transform of a periodic function or distribution is an $*-convergent
linear combination of delta functions supported at 27n. The strengths of the delta
functions give the Fourier coeflicients of the periodic function. The distribution T
is given by the S*-convergent Fourier series

I = &
T(x)zﬁ Z T,em".

n=—oo

11.12 The central limit theorem

A random variable describes the observation, or measurement, of a number associat-
ed with a random event. We say that a real-valued random variable X is absolutely
continuous if its distribution may be described by a probability density function
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p € L}(R), meaning that for any a < b, the probability that X has a value between
a and b is given by

b
Pra< X <b) = / p(z) do. (11.47)
Since a probability is a number between zero and one, the density function p is
nonnegative and

/00 p(z)de = 1. (11.48)

—0o0

If X is not absolutely continuous (for example, because it takes integer values with
probability one), then its distribution is decribed by a probability measure on R
that does not have a probability density function. We consider absolutely continuous
random variables for simplicity, but the central limit theorem does not depend on
this restriction.

The expected value of a function f(X) of X is given in terms of the density p
by

Bl/C01 = [ " H@)p(a) d,

provided that this integral converges. The mean p and the variance o2 of X are
given by

u=E[X], 02:1E[(X—EX)2].

The expected deviation of X from its mean is therefore of the order of the standard
deviation o. If the mean and variance of X are finite, then the random variable Y
defined by X = p + oY has mean zero and variance one, so we can normalize the
mean of X to zero and the variance of X to one by an affine transformation. In
that case,

o o
/ zp(z) dz =0, / ?p(z) dr = 1. (11.49)

—0o0 —o0
Example 11.47 We say that a real random variable X is a Gaussian, or normal,

random variable with mean u and variance o? if it is absolutely continuous and its
probability density p is given by

]. 2 2
— —(z—p)7/(207)
x) = e .
(@) = —7—
If u = 0 and 02 = 1, then we say that X is a standard Gaussian.
We say that N random variables {X1, Xs,..., Xy} are independent if

Pr(a; < X1 <bi,a2 < X3 < by,...,an < Xn < bw)
:Pr(a1 SXI Sbl)Pr(az SX2 Sbg)PI’(aNSXNSbN)
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In that case,

E[fi(X1)f2(X2) ... fN(XN)] = E[f1(X1)]E[fo(X2)] ... E[fN(XN)]-

Suppose that {X;, Xs,..., Xx} have a joint probability density p(z1,z2,...,zN),
meaning that

(1<X1<b1,2<X2<b2, (lNSXNSbN)

bN b2 bl
/ / / 1’1,1‘2, ..7.’L'N)d.’ll'1d$2...d.’ll']v.

Then the random variables are independent if and only if p has the form

(21,2, .., oN) = p1(z1)p2(22) - . . PN (TN)-

Intuitively, independence means that the value taken by one of the random variables
has no influence on the values taken by the others.

In many applications it is important to consider the sum of a large number of
independent, identically distributed random variables. For example, a standard way
to reduce nonsystematic errors in the experimental measurement of a given quantity
is to measure the quantity many times and take the average. The central limit
theorem explains how this error reduction works, and also gives an estimate of the
expected difference between the measured value of the quantity and its true value.
As we will see, if the experimental measurements are independent and randomly
distributed with mean equal to the true value and with a finite variance o2, then as
N — oo the averaged value of N measurements approaches a Gaussian distribution
with mean equal to the true value and variance 02 /N. Thus, one needs to take four
times as many measurements in order to double the accuracy. This example is the
original application that led Gauss to introduce the Gaussian distribution.

A second example is the discrete-time random walk. Considering the case of one
space dimension for simplicity, we suppose that a particle starts at the origin at
time zero and moves a random distance X,, € R at time n € N, where X, and X,,
are independent, identically distributed random variables for m # n. The particle
then takes random steps up and down the real line. The total distance moved by
the particle after N steps is

Sn=) X (11.50)

A natural question is: What is the probability distribution of the position Sy of
the particle after N steps, given the probability distribution of each individual
step? The central limit theorem describes the limiting behavior of Sy as N — oo.
For instance, if each individual step has mean zero and variance one, then the
distribution of Sy approaches a Gaussian distribution with mean zero and variance
N. The corresponding v/ N-growth of Sy is characteristic of sums of N independent
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random variables: the sum does not remain bounded as N — o0, but there is a
large amount of cancellation, so the sum grows at a slower rate than the number of
its terms.

The Gaussian distribution is universal, in the sense that any sum of a large
number of independent, identically distributed random variables with finite mean
and variance has a Gaussian distribution, whatever the details of the probability
distribution of the individual random variables. The central limit theorem remains
true for sums of non-identical, independent random variables, under a suitable, mild
condition (such as the Lindeberg condition) that ensures the distribution of the sum
is not dominated by the distribution of a small number of the individual random
variables. Moreover, some weak dependence between the variables may also be
permitted.

Suppose that X and Y are independent random variables with probability den-
sity functions px and py, respectively. Then

/ / px (z)py (y) dzdy
a<lz+y<b

/ab (/m px (2 = y)py (y) dy) dz.

Thus, the probability density of X +Y is the convolution of the probability densities
of X and Y. Hence, the convolution theorem implies that the Fourier transforms
of the densities multiply:

Pra<X+Y <))

Dx+y = V21pxpy-

We can obtain the same result by an equivalent probabilistic argument. The char-
acteristic function px of a random variable X is defined by

(px(k) =E [eikX] -

What we have called the characteristic function x4 of a set A is then referred to
as the indicator function of the set. If X is absolutely continuous with probability
density p, then

ox(®) = [ " R p(a) dr = VETP(—K).

Thus, up to normalization conventions, the characteristic function is the Fourier
transform of the probability density. If X and Y are independent, then we have

pxry (k) = B[] = E[*XTE[e#Y] = oy ()py (B),

which agrees with the previous result. Because the Fourier transform maps convo-
lutions to products, in studying sums of independent random variables it is much
simpler to consider the characteristic functions rather than the densities themselves,
and we shall use this observation to prove the central limit theorem.
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Example 11.48 If X is a Gaussian random variable with mean u and variance o2,
then the formula for the Fourier transform of a Gaussian implies that

E [eikX] — itk g—0?k?/2

The product of such characteristic functions is another function of the same form, in
which the means and variances add together. Consequently, the sum of independent
Gaussian random variables is a Gaussian whose mean and variance is the sum of the
individual means and variances, and problems involving Gaussian random variables
are stochastically linear. The product of two independent Gaussians is not Gaussian,
however.

Suppose that {X;,X5,...,Xn} is a sequence of independent, identically dis-
tributed, random variables with finite mean and variance, and probability density
p. By making an affine transformation, we may assume that the mean is zero and
the variance is one without loss of generality. The probability density py of the
sum Sy = X7 + Xo + ...+ Xn is given by

PN =p¥p*---*p.
—_——

N times

Anticipating the v/ N-growth of Sy, we set

SN
Ty = —. 11.51
N= N (11.51)
Denoting the probability density of Ty by qn, we have
an(z) = VNpy (\/N:c) . (11.52)

The central limit theorem states that gy converges to a standard Gaussian density
as N — oo. The sense in which this convergence occurs depends on the properties
of p, and there are many versions of the central limit theorem. Here, we will prove
that

—z2/2

e as N — oo in §*. (11.53)

@) > —
1- —\

N V2
Theorem 11.49 (Central limit) Let gy be the probability density of Sy/v/N,
where Sy is the sum of N independent, identically distributed, absolutely continu-
ous, real random variables with mean zero and variance one. Then

lim [ gn(z)p(z)dz = \/% /e*z2/2cp($) dx for every ¢ € S. (11.54)
™

N—oo

Proof. Since the Fourier transform maps S onto S, an equivalent statement to
(11.54) is that

N—oo

1
lim [ qn(k)p(k) dk = Wr /e_k2/2g5(k) dk for all p € S.
7r
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From Plancherel’s theorem (11.36), and the formula for the Fourier transform of a
Gaussian (11.24), this statement is equivalent to

1 2
lim [ gn(k)p(k)dk = N /e*k P2p(k)dk, forall p € S. (11.55)
m

N—oo
Taking the Fourier transform of (11.52), we find that
k
av(k) =pn | ——= | -
qn(k) = PN ( \/N)

Since py is the N-fold convolution of p, the convolution theorem, Theorem 11.35,

implies that
() e )

We Taylor expand e~ % as
—1iz : 1 2
e :1—zz—§z [1+7r(2)],

where r(z) is a continuous function that vanishes at z = 0 and is uniformly bounded
on the real line. Using the conditions in (11.48) and (11.49), we find that

d\%) = \/LQ_W/e—ikw/Wp(x)dm
e

- \/%_7{[1—%(1+RN)],

where

Ry = / 22 (%) p(z) da.

The integrand converges pointwise to zero as N — oo, and the dominated con-
vergence theorem implies that limy_,oo Ry = 0. Computing the Nth power of

p(k/v/N) we obtain

lim (2r)V-1/2 |p k. : = lim L 1- k—2(1 + Rn) " = L67k2/2
N—co \/N N—oo /27 2N \/ﬂ '
This pointwise convergence of the integrand, however, does not immediately imply
the convergence of the integral against an arbitrary Schwartz function. To finish
the proof we proceed as follows. Without loss of generality we may assume that
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(k) > 0, since we will not use the differentiability of ¢. Let Kny = \/2N/(1 + Rn).
Clearly, we have limy_,o, Ky = co. From Lemma 11.50 below, we have the bound

X n
0< (1——) <e @ for0<z<n.
n
The dominated convergence theorem implies that

lim
N—o0 —Kn

Kn k2 N o k20
- gL+ Ry)| e(k)dk = [ e™F/ (k) dk.

It remains to show that

2

. k N
Jim_ . [1 — oy (l+ RN)] o(k) dk = 0.

We observe that this limit can be written as

lim | qn(@)[¥(z) — (0xy *¥)(z)] dz = 0, (11.56)

N—oo

where ¢ = ¢, and o, is the delta sequence defined in terms of the sinc function
in Proposition 11.22. It follows from the proof of that proposition that, for every
Schwartz function

lim_ ([~ (o # %)l = 0.

This uniform convergence and the fact that gy is a probability distribution imply
(11.56). d

Lemma 11.50 For every n € N, we have the inequality

n 2
0§e_$—(1—£) Sx— for 0 <z <n.
n 2n

Proof. We define the function

and observe that

z\"-1zg
' _ =z e hd
fl(x)=e (1 n) nzo for0 <z <m.

Hence, since f(0) = 0, we have for 0 < z < n that

@ 2 t\"' ¢ z o 1
ogf(x)g/ f’(t)dtz/ el (1——) —dtge—/ tdt < —az%e”.
0 0 n n n Jo 2n

The lemma follows by multiplication of this inequality by e~~. O
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Approximating the characteristic function of the interval [a, b] by test functions,
we can then show that

. SN 1 /b 2
lim Prla< —=<b) = — e " /2 dg.
N—o0 ( VN T > V2 Ja

This type of convergence of the density is called weak convergence in probabili-
ty theory. The random variable Sy is then said to converge in distribution to a
standard Gaussian random variable.

We can rescale the discrete random walk (11.50) to obtain a continuous-time
stochastic process W (t), called Brownian motion, or the Wiener process, that sat-
isfies

. SNt
W) = Jm 8
Here, we extend Sy to a function S; of a continuous time variable ¢ by supposing,
for example, that the particle moves at a constant velocity from its position at time
N to its position at time N + 1. This limit has to be interpreted in an appropriate
probabilistic sense, which we will not make precise here.

As the central limit theorem suggests, Brownian motion W (t) is a Gaussian
process of mean 0 and variance ¢. Its sample paths are continuous, nowhere differ-
entiable functions of time with probability one. The probability density p(z,t) of
finding the particle at position W (t) = z at time ¢, assuming that W(0) = 0, is
given by

1 2
z,t) = —e ° /)
plat) = —oo—
The density p is the Green’s function of the heat equation
1
bt = Epmza p(z,0) = d(z).

Brownian motion is the simplest, and most fundamental, example of a diffusion
process. These processes may also be described by stochastic differential equations,
and they have widespread applications, from statistical physics to the modeling of
financial markets.

11.13 References

See Hochstadt [22] for proofs and further discussion of the eigenfunctions of the
Fourier transform. Distributions are discussed in Reed and Simon [44].

11.14 Exercises

Exercise 11.1 Let X be a locally convex space. Prove the following.
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(a) The addition of vectors in X and the multiplication by a scalar are contin-
uous.

(b) A topology defined by a family of seminorms has a base of convex open
neighborhoods. Such a topological space is called locally convex.

(c) If for all z € X there exists a € A such that p,(z) > 0, then the topology
defined by {p, | @ € A} is Hausdorff.

Exercise 11.2 Suppose that {p1,p2,ps, ...} is a countable family of seminorms on
a linear space X. Prove that (11.4) defines a metric on X, and prove that metric
topology defined by d coincides with the one defined by the family of seminorms

{plap27p3a .. }

Exercise 11.3 Let (x,) be a sequence in a locally convex space whose topology
is defined by a countably infinite set of seminorms. Prove that (z,) is a Cauchy
sequence for the metric d defined in (11.4) if and only if for every a € A and € > 0,
there is an N such that ps(x, — 2,,) < € for all n,m > N.

Exercise 11.4 If ¢ € S(R), prove that
pd' = p(0)d" — ¢'(0)0.
Exercise 11.5 Prove that

L _ p.v% —imd(z) in S*(R).

im -
e—0+ = + i€

Exercise 11.6 Show that the distributional derivative of log |z| : R — Risp.v.1/z.
Exercise 11.7 Show that there is no product - : $* x §* — S* on the space of
tempered distributions that is commutative, associative, and agrees with the usual
product of a tempered distribution and a smooth function of polynomial growth.

HINT. compute the product z - 6(z) - p.v.(1/z) in two different ways.

Exercise 11.8 Suppose that w € S(R) is a test function such that

/Rw(:ﬂ) de = 1.

Show that every test function ¢ € S(R) may be written as

ola) = (@) [ o)) +v'(@)

for some test function ¢ € S(R). Deduce that if T' is a tempered distribution such
that T' = 0, then T is constant.
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Exercise 11.9 Let k € S and define the convolution operator

Kf(x)z/k(a:—y)f(y)dy for all f € S.
Prove that K : § — S is a continuous linear operator for the topology of S.

Exercise 11.10 For every h € R” define a linear transformation 7, : S — S by
m(f)(x) = f(z - h).

(a) Prove that for all h € R", 73, is continuous in the topology of S.
(b) Prove that for all f € S, the map h — 75, f is continuous from R” to S.

HiNT. For (b), prove that for f € C(R™) one has limp_o ||7hnf — f|leo = 0 if and
only if f is uniformly continuous. Also, note that it is sufficient to prove continuity
in h =0, due to the group property of 73.

Exercise 11.11 The density p of an array of N point masses of mass m; > 0
located at z; € R” is a sum of § functions

N
p(z) = ij5($ - ;).

Compute the Fourier transform p of p. Show that for any ¢ € S, and for any
ki,...,kny € R", z1,...,2n € C we have

N
[ 5@k - 0p@ dkie 20, Yzl — k)2 20

p,q=1
The Fourier transform p is said to be of positive type.

Exercise 11.12 Prove that if s > n/2, then H*(R") C Cy(R"), and there is a
constant C such that

Ifllec < Clifllas  for all f € H(R").

Exercise 11.13 Prove equations (11.27)—(11.29) for the Fourier transform of trans-
lates and convolutions. Prove the corresponding results for derivatives, translates,
and convolutions tempered distributions.

Exercise 11.14 The Airy equation is the ODE

u'" —2u=0.

The solutions, called Airy functions, are the simplest functions that make a transi-
tion from oscillatory behavior (for z < 0) to exponential behavior (for z > 0). Take
the Fourier transform, and deduce that

u(z) = c/e“”“r“#/3 dk,
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where ¢ is an arbitrary constant. This nonconvergent integral is a simple example
of an oscillatory integral. Here, it may be interpreted distributionally as an inverse
Fourier transform. Why do you find only one linearly independent solution?

Exercise 11.15 Let f, : R — R be the function

n? if —1/n <z <0,
fal@) =X —-n? if0<z<1/n,
0 otherwise.

Show that the sequence (f,) converges in S*(R) as n — oo, and determine its
distributional limit.

Exercise 11.16 Let f € L'(R®) be a rotationally invariant function in the sense
that there is a function g : Rt — C such that

f(@) = g(|=))-

Prove that the Fourier transform of f is a continuous function f that is also rotation
invariant, and f(k) = h(|k|). where

h(k) = %\/g/ooorsin(kr)g(r) dr

Exercise 11.17 Show that

1 1
Al = TORE / T ® T exp <—§:c . Aw) dz.
Rn

We therefore call A~! the covariance matriz of the n-dimensional Gaussian proba-
bility distribution with density (27) /2 exp (—z - Az/2)

Exercise 11.18 Prove that if g € L? satisfies g(—z) = g(z), then § is real-valued.

Exercise 11.19 Give a counterexample to show that the Riemann-Lebesgue lem-
ma does not hold for all functions in L2.

Exercise 11.20 Show that 6 € H*(R"™) if and only if s < —n/2.

Exercise 11.21 Show that the integral equation
o0
u(z) + / e Pufy) dy = ()
—o0

has a unique solution u € L2(R) for every f € L?(R), and give an expression for u
in terms of f.

Exercise 11.22 Show that
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Exercise 11.23 Show that the solution of the heat equation on a one-dimensional
semi-infinite rod,

1
ut:§um 0<zr<oo,t>0,
w(0,8) =0 t>0,
u(z,0) = f(z) 0<z<oo,

is given by

_— /oo e—(2=9)?/(2t) _ o—(z+y)?/(2t) () d
u(z,t) = u
| Jont oly)ay

This solution illustrates the method of images.

Exercise 11.24 Let

[ exp(=1/t?) ift>0,
f(t)_{o if t <O0.

Show that

is a nonzero solution of the one-dimensional heat equation u; = u,, with zero initial
data u(z,0) = 0.

Exercise 11.25 Find the Green’s function g(z,t) of the one-dimensional wave
equation,

git — Gz = 07
g(m,()) =0, gt(.'U,O) = 6(5[;)

Exercise 11.26 Consider the wave equation
uy = Au
for u(z,t), where t > 0 and z € R”, with initial data
u(z,0) =0, wu(z,0)=uvo(x).

For simplicity, assume that vg € S(R™). Find the equation satsified by the Fourier
transform of w,

. 1 —ikex
u(k,t) = W/e b2y (x,t) de.
and show that
_ 1 sin([k[t) ik.on
u(z,t) = (27r)”/2/ ] e vy (k) dk,
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where 0y is the Fourier transform of vg and | - | denotes the Euclidean norm.
For n = 3, let df); denote the surface integration measure on the sphere of radius
t, so f‘w‘:t dQ; = 4wt?. Prove that the solution can be written as

1

/ vo(z +y) dQy.
ly|=t

For n = 2, prove that the solution is

1 vo(z + y) Y
21 Jiy i<t /12 = yl?

Interpret these formulae physically.

u(z,t) =

Exercise 11.27 Prove (11.45).

Exercise 11.28 Prove the following identity for all a > 0:

> 1

Z _7T].+€_27m‘
n2+a? al-—e 27’

n=—oo

By consideration of the limit a — 0%, show that
—2 = —.
—n 6

Exercise 11.29 We define the Wigner distribution W (z, k) of a Schwartz function
(), where z, k € R™, by

Wz, k) = ﬁ /(p (:c - %) ® (x—i— %)ei’“'”‘ dy.

Compute the Wigner distribution of a Gaussian exp (—z - Ax), where A is a positive
definite matrix. Show that W is real-valued and

[ Wk de = o),

so that W has some properties of a phase space (that is, (z, k)-space) density of the
Fourier transform of ¢. Show, however, that W is not necessarily nonnegative.

Exercise 11.30 Let ¢ : R — C be any Schwartz function such that

| le@ids =1,
and define
B= [ @l Bo= [ Rip0Pk

—00
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Prove the Heisenberg uncertainty principle:
E,Ey > L
c vk 2 4’

Show that equality is attained when ¢ is a suitable Gaussian.
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Chapter 12

Measure Theory and Function Spaces

In this chapter, we describe the basic ideas of measure theory and LP spaces. We
also define Sobolev spaces and summarize some of their main properties. Many
results will be stated without proof, and we will not construct the most important
example of a measure, namely, Lebesgue measure. Nevertheless, we hope that this
discussion will allow the reader to use the concepts and results of measure theory
as they are required in various applications.

12.1 Measures

The notion of measure generalizes the notion of volume. A measure p on a set X
associates to a subset A of X a nonnegative number u(A), called the measure of A. It
is convenient to allow for the possibility that the measure of a set may be infinite. It
is too restrictive, in general, to require that the measure of every subset of X is well
defined. Some sets may be too wild to define their measures in a consistent way. Sets
that do have a well-defined measure are called measurable sets. Thus, a measure y is
a nonnegative, extended real-valued function defined on a collection of measurable
subsets of X. We require that the measurable sets form a o-algebra, meaning that
complements, countable unions, and countable intersections of measurable sets are
measurable. Moreover, as suggested by the properties of volumes, we require that
the measure is countably additive, meaning that the measure of a countable union
of disjoint sets is the sum of the measures of the individual sets. First, we give the
formal definition of a o-algebra.

Definition 12.1 A o-algebra on a set X is a collection A of subsets of X such
that:

(a) D e A;
(b) if A€ A, then A°= X\ A € A;
(¢) if {A; | i € N} is a countable family of sets in A, then [J;°, 4; € A.

A measurable space (X,.A) is a set X and a o-algebra A on X. The elements of .4

335
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are called measurable sets.

It follows from the definition that X € A, and A is closed under countable

intersections, since
oo oo ¢
— c
NAi=(U45]) -
i=1 i=1

Example 12.2 The smallest g-algebra on an arbitrary set X is {(), X }. The largest
o-algebra is the power set P(X), that is, the collection of all subsets of X.

If F is an arbitrary collection of subsets of a set X, then the o-algebra A(F)
generated by F is the smallest o-algebra on X that contains F. This o-algebra is
the intersection of all o-algebras on X that contain F.

Example 12.3 Suppose that (X, T) is a topological space, where T is the collection
of open sets in X. The o-algebra on X generated by 7 is called the Borel o-algebra
of X. We denote it by R(X). Since a o-algebra is closed under complements, the
Borel g-algebra contains all closed sets, and is also generated by the collection of
closed sets in X. Elements of the Borel o-algebra are called Borel sets.

Example 12.4 The Borel o-algebra of R, with its usual topology, is generated by
the collection of all open intervals in R, since every open set is a countable union of
open intervals. The collection of half-open intervals {(a,b] | a < b} also generates
R(R) (see Exercise 12.1). More generally, the Borel o-algebra of R” is generated
by the collection of all cubes C' of the form

C= (al,bl) X (a2,b2) X ... X (an,bn), (121)

where a; < b;. It is tempting to try and construct the Borel sets by forming the
collection of countable unions of closed sets, or the collection of countable intersec-
tions of open sets. The union of these collections, however, is not a o-algebra. It
can be shown that an uncountably infinite iteration of the formation of countable
intersections and unions is required to obtain the Borel o-algebra on R", starting
from the open sets. Thus, the structure of a general Borel set is complicated. This
fact explains the nonexplicit definition of the o-algebra generated by a collection of
sets.

Next, we define measures and introduce some convenient terminology.

Definition 12.5 A measure p on a set X is a map p: A — [0,00] on a o-algebra
A of X, such that:
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(b) if {A; | i € N} is a countable family of mutually disjoint sets in .4, meaning
that A; N A; =0 for i # j, then

% <U Ai) = ZM (A;). (12.2)

The measure is finite if u(X) < oo, and o-finite if there is a countable family
{4, € A|i=1,2,...} of measurable subsets of X such that u(4;) < oo and

= {Ja.
i=1

A measure space is a triple (X, A, u) consisting of a set X, a o-algebra A on X,
and a measure p: A — [0, 00].

In the countable additivity condition (12.2), we make the natural convention that
the sum of a divergent series of nonnegative terms is co. This countable additivity
condition on g makes sense because A is closed under countable unions. We will
often write a measure space as (X, u), or X, when the o-algebra A, or the measure
i, is clear from the context. It is also useful to consider signed measures, which
take positive or negative values, complex measures, which take complex values, and
vector-valued measures, which take values in a linear space, but we will not do so
here.

Example 12.6 Let X be an arbitrary set and A the o-algebra consisting of all
subsets of X. The counting measure v on X is defined by

v(A) = the number of elements of A,

with the convention that if A is an infinite set, then v(A) = co. The counting
measure is finite if X is a finite set, and o-finite if X is countable.

Example 12.7 We define the delta measure d,,, supported at o € R” on the Borel
o-algebra R(R") of R™ by

_ 1 if.?IQEA,
(st(A)_{ 0 1f.fL'0¢A

This measure describes a “mass” distribution on R” corresponding to a unit mass
located at zg. The formal density of this distribution is the delta function supported
at zo.

If a o-algebra A is generated by a collection of sets F, then we would like to
define a measure on 4 by specifying its values on F. The following theorem gives a
useful sufficient condition to do this. A separate question, which we do not consider
here, is when a function p : F — [0,00] may be extended to a measure on the
o-algebra A(F) generated by F.



338 Measure Theory and Function Spaces

Theorem 12.8 Suppose that A is the o-algebra on X generated by the collection
of sets F. Let p and v be two measures on A such that

u(A) = v(A) for every A € F.

If there is a countable family of sets {A;} C F such that |J; A; = X and p(4;) < oo,
then pu = v.

The following example of Lebesgue measure is fundamental.

Example 12.9 The Borel o-algebra of R, defined in Example 12.3, is generated
by the collection of cubes C in (12.1). Lebesgue measure is the measure A on the
Borel o-algebra R(R™) such that A\(C) = Vol(C), meaning that

/\((al,bl) X (az,bz) X ... X (an,bn)) = (bl — al)(bg — a2) - (bn — an).

Lebesgue measure is o-finite, since

As we discuss in Example 12.14 below, Lebesgue measure may be extended to the
larger o-algebra L(R™) of Lebesgue measurable sets, which is the completion of the
Borel g-algebra with respect to Lebesgue measure.

We have not explained why Lebesgue measure should exist at all, but The-
orem 12.8 implies that it is unique if it exists. One can prove the existence of
Lebesgue measure by construction, although the proof is not easy. The construc-
tion shows the following result.

Theorem 12.10 A subset A of R is Lebesgue measurable if and only if for every
€ > 0, there is a closed set F' and an open set G such that F C A C G and
MG\ F) < e. Moreover,

A(4) = inf{\NU)|U isopen and U D A}
= sup{\K) | K is compact and K C A}.

Thus, a Lebesgue measurable set may be approximated from the outside by
open sets, and from the inside by compact sets.

Lebesgue measure has several natural geometrical properties. It is translational-
ly invariant, meaning that for every A € L(R™) and h € R", we have A\(1,4) = A(A),
where

ThA={y€R" |y=x+hfor somez € A}.
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The space R” is a commutative group with respect to addition. An invariant mea-
sure on a locally compact group, such as Lebesgue measure, is called a Haar measure.
IfT:R* - R” is a linear map and

TA={y e R"|y="Tx for some z € A},

then A(T'A) = |det T|A\(A). Thus, Lebesgue measure is rotationally invariant, and
it has the scaling property that A(tA) = t"A(A) for ¢ > 0.

If (X, A, u) is a measure space, a subset A of X is said to have measure zero if
it is measurable and u(A) = 0. Sets of measure zero play a particularly important
role in measure theory and integration.

Example 12.11 A subset A of R" is of measure zero with respect to the delta-
measure d;, defined in Example 12.7 if and only if A is a Borel set and zq ¢ A.

Example 12.12 For each z € R, the Lebesgue measure of the set {z} is equal to
zero, since

A({a}) = lim A({y [ |o =] <) = lim 2 =0.

Hence every countable subset A = {z; | i € N} of R has measure zero, since the
countable additivity of Lebesgue measure implies that

MA) = 3 Az =o0.

One can show that a subset A of R"® has Lebesgue measure zero if and only if for
every € > 0, A is contained in a not necessarily disjoint union of open cubes, the
sum of whose volumes is less than e.

It follows from the additivity and nonegativity of a measure that any measurable
subset of a set of measure zero has zero measure. We may extend a measure in a
unique fashion to every subset of a set of measure zero by defining it to be zero.

Definition 12.13 A measure space is complete if every subset of a set of measure
zero is measurable. If (X, A, ) is a measure space, the completion A of the o-
algebra A with respect to a measure p on A consists of all subsets A of X such that
there exists sets E and F in A with

ECACEF, and u(F\ E) =0.

The completion 7 of p is defined on A by

The complete measure space (X, A4, ) is called the completion of (X, A, p).
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Example 12.14 The Borel o-algebra R(R™) is not complete. Its completion with
respect to Lebesgue measure is the g-algebra £(R™) of Lebesgue measurable sets.
We will use the same notation A to denote Lebesgue measure on the Borel sets and
the Lebesgue measurable sets.

A property that holds except on a set of measure zero is said to hold almost
everywhere, or a.e. for short. When we want to make explicit the measure p with
respect to which a set has measure zero, we write p-a.e.We define the essential
supremum of a set of real numbers A C R by

ess sup A = inf{C |z < C for all z € A\ N, where u(N) = 0}.

A Borel measure is a measure defined on the Borel o-algebra of a topological
space. Thus, the delta-measure and Lebesgue measure defined on R(R") are exam-
ples of Borel measures. The following example gives a useful class of Borel measures
on R

Example 12.15 Let F': R — R be an increasing, right-continuous function, mean-
ing that F(z) < F(y) for z <y, and

F(z) = lim F(y).

y—azt

There is a unique measure pr on the Borel o-algebra of R such that
pr ((a,b]) = F(b) — F(a).
From Exercise 12.3, if b,, — bT is a decreasing sequence and a < b, then

ur ((a,ba]) = pr ((a,8) 7,

which explains why F' must be right-continuous. This measure is called a Lebesgue-
Stieltjes measure, and F' is called the distribution function of the measure. For
example, if F(x) = x, then we obtain Lebesgue measure. If F' is the right-continuous
step function,

1 ifz >0,
F(w)_{ 0 ifz<0,

then we obtain the delta measure supported at the origin. If F' is the Cantor
function, defined in Exercise 1.19, then we obtain a measure such that the Cantor
set C' has measure one and R\ C has measure zero. Despite the fact that up is
supported on a set of Lebesgue measure zero, we have pp({z}) = 0 for every z € R.

Kolmogorov observed in the 1920s that measure theory provides the mathemat-
ical foundation of probability theory.

Definition 12.16 A probability space (2, A, p) is a measure space such that u(Q) =
1. The measure p is called a probability measure.
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In modeling a random trial or experiment, we form a sample space  that
consists of all possible outcomes of the trial, including outcomes that may occur
with probability zero. An event is a measurable subset of (2, and the collection
of events forms a o-algebra A on Q. The probability 0 < pu(A) < 1 of an event
A € Ais given by an appropriate probability measure defined on 4. The o-algebra
of a probability space has a natural interpretation as the collection of events about
which information is available.

Example 12.17 Let Q = {n € Z | n > 0} be the nonnegative integers and A the
set of all subsets of Q. Let p be the measure on A such that

p(nh) = 2re A ()= e

This measure is called the Poisson distribution.

Example 12.18 Suppose that @ = R™ and A is the Lebesgue o-algebra. The
standard Gaussian probability measure on R" is given by

1 .
— le2/2 g
A = Gy /A !

Here, the integral is the Lebesgue integral, defined below.

12.2 Measurable functions

Measurable functions are the natural mappings between measurable spaces. They
play an analogous role to continuous functions between topological spaces.

Definition 12.19 Let (X, .4) and (Y, B) be measurable spaces. A measurable func-
tion is a mapping f : X — Y such that

f'(B)e A forevery B € B.

The measurability of f : X — Y depends only on the o-algebras on X and Y,
and not on what measure, if any, is defined on X or Y. When a measure p is defined
on X, we say that two measurable functions f: X - Y and g : X — Y are equal
a.e. if

p({z e X | f(z) # g(x)}) =0

Two functions on a measure space that are equal a.e. will often be regarded as
equivalent.

Example 12.20 A measurable map 7 : X — X on a measure space (X, A, u) is
said to be measure preserving if
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for all measurable sets A. Measure preserving maps arise naturally in physics and
other applications. Ergodic theory studies the general properties of various kinds
of measure preserving maps (see Theorem 7.11 and Theorem 8.35, for example).

Example 12.21 A measurable map X : Q — R on a probability space 2 is called
a random variable.

If B is the o-algebra generated by JF, then the condition that
fFY{F)eA forall FeF

is sufficient to ensure that f is measurable. This follows from the fact that {f~'(B) |
B € B} is the o-algebra generated by {f '(F) | F € F}, and is therefore contained
in A.

Example 12.22 Every continuous function between topological spaces is Borel
measurable. A continuous function f : R* — R is measurable with respect to the
Lebesgue o-algebra on the domain R” and the Borel o-algebra on the range R.

From now on, we will restrict our attention to real-valued functions defined on
a measure space (X, A, u). Complex-valued functions may be treated by splitting
them into their real and imaginary parts. The fact that the real numbers are totally
ordered makes it particularly easy to develop the integral in this case. The theory
applies to real-valued functions defined on a general measure space X, but it is
helpful to keep in mind the case when X is R" equipped with Lebesgue measure.

It is often convenient to allow measures and functions to take on the values —oco
or co. We therefore introduce the extended real numbers R = [—o00,00]. We make
the following definitions of algebraic operations involving z € R and oo:

r+00 =00, ¥—O00=—00,

Z-00=00, x-(—00)=—00 ifz >0,
T-00=—00, «-(—00)=00 if z <0,
|oo| = | — oo = o0

We also define
0-00=0-(—00)=0.

For example, we will define the integral of a function that is infinite on a set of
measure zero, or the integral of a function that is zero on a set of infinite measure,
to be zero. We do not define oo — oo, and any expression of this form is meaningless.

We use the natural ordering and topology on R; as far as its ordering and
topology are concerned, R is isomorphic to the closed interval [-1, 1]. Any monotone
sequence {z,} of points in R has a limit. The limit of a monotone increasing
sequence is sup{z,} if the sequence is bounded, and oo if it is unbounded. The
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limit of a monotone decreasing sequence is inf{z,} if the sequence is bounded, and
—oo if it is unbounded. We equip R with the Borel o-algebra R(R). This o-algebra
is generated by the semi-infinite intervals of the form {[—o0,¢) : ¢ € R}, so we have
the following criterion for the measurability of a function f : X — R.

Proposition 12.23 Let (X,.A) be a measurable space. A function f: X — R is
measurable if and only if the set {z € X | f(z) < ¢} belongs to A for every c € R.

In this proposition, the sets {f(z) < ¢}, {f(z) > ¢}, or {f(z) > ¢} could be
used equally well. A complex-valued function f : X — C is measurable if and only
if f =g+ ih where g,h: X — R are measurable.

We say that a sequence of functions (f,) from a measure space (X, A, u) to R

converges pointwise to a function f: X — R if
lim fp(z) = f(z) for every z € X.
n—00

The sequence converges pointwise-a.e. to f if it converges pointwise to f on X \ N,
where N is a set of measure zero. The following result explains why all functions
encountered in analysis are measurable.

Theorem 12.24 If (f,) is a sequence of measurable functions that converges point-
wise to a function f, then f is measurable. If (X, A, u) is a complete measure space
and (f,) converges pointwise-a.e. to f, then f is measurable.

A measurable function that takes on finitely many, finite values is called a simple
function. Any measurable function may be approximated by simple functions.

Definition 12.25 A function ¢ : X — R on a measurable space (X,.A) is a simple

function if there are measurable sets Ay, As, ..., A, and real numbers ¢y, ¢, ..., ¢y
such that
n
Y= Z CiXA; - (12.3)
i=1

Here, x4 is the characteristic function of the set A, meaning that

(z) = 1 ifzeA,
XA =00 ifx g A

The representation of a simple function as a sum of characteristic functions is not
unique. A standard representation uses disjoint sets A; and distinct values ¢;. In
that case, we have p(z) = ¢; if and only if z € A;. Since the sets A; are required to
be measurable, a simple function is measurable.

Theorem 12.26 Let f : X — [0, 00] be a nonnegative, measurable function. There
is a monotone increasing sequence {y, } of simple functions that converges pointwise

to f.
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Proof. For each n € N, we subdivide the range of f into 22 + 1 intervals

[k—l k

L I TET

)

) for k=1,2,...,2°", I, 92,1 = [2", 00]
of length 27". We define the measurable sets

Apk = Tnr) for k=1,2,...,22" +1.
Then the increasing sequence of simple functions

22n+1
k-1
o= 3 () as

k=1

converges pointwise to f as n — oo. |

An arbitrary measurable function f : X — R may be written in a canonical way
as the difference of two nonnegative measurable functions,

f=f+_f—5 f+:ma‘x{f70}a f— :max{—f,O}. (124)

We call f, the positive part of f and f_ the negative part. We may then approximate
each part by simple functions.

12.3 Integration

The Lebesgue integral provides an extension of the Riemann integral which applies
to highly discontinuous and unbounded functions, and which behaves very well with
respect to limiting operations. To construct the Lebesgue integral, we first define
the integral of a simple function. We then define the integral of a general measurable
function using approximations by simple functions.

Suppose that

n
Y= Z CiXA;
i=1

is a simple function on a measure space (X, .4, u). We define the integral of ¢ with
respect to the measure p by

/sodu = Zcm(Ai)-

The value of the sum on the right-hand side is independent of how ¢ is represented
as a sum of characteristic functions.

This definition is already well outside the scope of the Riemann integral. For
instance, the characteristic function of the rationals is not Riemann integrable, but
its Lebesgue integral is zero. The Riemann integral of a function f : [a,b] - R
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is based upon the approximation of the function by simple step functions ¢, in
which the sets A; are intervals. It may not be possible to approximate a highly
discontinuous function by step functions, and then the Riemann definition of the
integral fails. The Lebesgue integral uses approximations of the function by simple
functions in which the sets A; are general measurable sets. Because of the way the
approximating simple functions are constructed in Theorem 12.26, the Lebesgue
approach to integration is sometimes contrasted with the Riemann approach by
saying that it subdivides the range of the function instead of the domain.

Definition 12.27 Let f : X — [0, 00] be a nonnegative measurable function on a
measure space (X, A, u). We define

/fdpzsup{/godu‘cpissimpleandgagf}.

If f: X > Rand f = fy — f_, where f; and f_ are the positive and negative
parts of f defined in (12.4), then we define

[tan= [ teau- [ s-an

provided that at least one of the integrals on the right hand side is finite. If

/mw=/hw+/ﬁw<m

then we say that f is integrable or summable. A complex-valued function f : X — C
is integrable if f = g + ih where g,h : X — R are integrable, and then

/fdp:/gd,u—}-i/hd,u.

If A is a measurable subset of X, we define

/Afdu=/fodu.

The Lebesgue integral does not assign a value to the integral of a highly oscil-
latory function f for which both [ fi dp and [ f_ du are infinite.

Example 12.28 The function

f(z) = % [azQ sin (xi?)] = —% cos (a;iz) + 2z sin (x_lz) ,

is not Lebesgue integrable on [0, 1]. The function is not Riemann integrable on [0, 1]
either, since it is unbounded. Nevertheless, the improper Riemann integral

1
lim / f(z)dz =sinl

e—0t
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exists, because of the cancellation between the large positive and negative oscilla-
tions in the integrand.

Depending on the context, we may write the integral in any of the following

ways
[+ [raw  [r@au@, [ 1@ as).

We will also write the integral [ fd\ of a function defined on R™ with respect to

Lebesgue measure A as
/fd:c, /f(a:) dz.

Example 12.29 If §,, is the delta-measure, and f : R® — R is a Borel measurable
function, then

[ #dbiy = 1(z0).
We have f = g a.e. with respect to 0, if and only if f(zo) = g(zo)-

Example 12.30 Let v be the counting measure on the set N of natural numbers
defined in Example 12.6. If f : N —» R, then

/fdu=n;fm

where f, = f(n). This integral is well defined if f is nonnegative, or if the sum
on the right converges absolutely, in which case f is integrable with respect to v.
Thus, nonnegative and absolutely convergent series are a special case of the general
Lebesgue integral.

Example 12.31 We denote the integral with respect to the Lebesgue-Stieltjes mea-
sure pg on R defined in Example 12.15 by

[ fdue = [ sar.

If F is a piecwise smooth, monotone increasing function with a countable number
of jump discontinuities, then the Lebesgue-Stieltjes integral includes a continuous
integral from the smooth parts of F', and a discrete sum from the jumps.

12.4 Convergence theorems

Suppose that a sequence of functions (f,,) converges pointwise to a limiting function
f- When can we assert that [ f, du converges to [ fdu? The following example
shows that some condition is required to ensure the convergence of the integrals.
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Example 12.32 Define f,, : [0,1] = R by

[ n if0<z<1/n,
fnl®) = { 0 otherwise.

Then we have f,(z) = 0 as n — oo for every z € [0, 1], but

1
| fa@rdz =1
0
for every n, so fol fn(z) dx does not tend to 0 as n — oc.

Two simple conditions that ensure the convergence of the integrals are the mono-
tone convergence of the sequence, and a uniform bound on the sequence by an in-
tegrable function. The corresponding theorems, called the monotone convergence
theorem and the Lebesgue dominated convergence theorem, are among the most
important and frequently used results in integration theory.

A sequence of functions (f,,), where f, : X — R, is monotone increasing if

fi@) <. < fama(2) < ful@) < fapa(z) < ... forevery z € X.

Theorem 12.33 (Monotone convergence) Suppose that (f,) is a monotone in-
creasing sequence of nonnegative, measurable functions f,, : X — [0,00] on a mea-
sure space (X, A, u). Let f: X — [0,00] be the pointwise limit,

f(x) = lim f,(z).

n—oo

Then
lim fndu=/fdu-
n—oo

The convergence of the sequence in Example 12.32 is not monotone. A general-
ization of this result, called Fatou’s lemma, is the following.

Theorem 12.34 (Fatou) If (f,) is any sequence of nonnegative measurable func-
tions f, : X — [0, 00] on a measure space (X, A, u), then

/ <liminf fn) dp < liminf / o dpi. (12.5)
n—o0 n—oo

Example 12.32 shows that we may have strict inequality in (12.5). Intuitively,
“mass” may “leak out to infinity” as n — 0o, so the integral of the lim inf may be
less than or equal to the liminf of the integrals.

The crucial hypothesis in the next theorem is that every function in the sequence
(fr) is bounded independently of n by the same integrable function g. This theorem
is the one of the most useful for applications.
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Theorem 12.35 (Lebesgue dominated convergence) Suppose that (f,) is a
sequence of integrable functions, f, : X — R, on a measure space (X,.A, ) that
converges pointwise to a limiting function f : X — R. If there is an integrable
function g : X — [0, o] such that

| fn(2)] < g(z) forallz € X andn € N,

then f is integrable and
lim [ fp,du= /f dp.
n—o0
The sequence in Example 12.32 is bounded uniformly in n by the function

_ [ 1z o<z <1,
g(“’)_{o if & =0,

but this function is not integrable on [0,1]. The same result applies if X is a
complete measure space, f, — f pointwise-a.e., and |f,(z)| < g(z) pointwise-a.e.

A corollary of the dominated convergence theorem is the following result for
differentiation under an integral, which is proved by approximation of the derivative
by difference quotients.

Corollary 12.36 (Differentiation under an integral) Suppose that (X, A, p)
is a complete measure space, I C R is an open interval, and f : X x I = Ris a
measurable function such that:

(a) f(-,t) is integrable on X for each t € I;

(b) f(z,-) is differentiable in I for each € X \ N where u(N) = 0;
(c) there is an integrable function g : X — [0, co] such that

0
Fiw

s < g(z) a.e. in X for every ¢t € I.

Then
wwzﬁfmwwm

is a differentiable function of ¢ in I, and

do . of
0= . 5¢ (& 1) du(@).

12.5 Product measures and Fubini’s theorem

One of the most elementary geometrical facts is that the area of a rectangle in
the plane is the product of the lengths of its sides. From the point of view of
measure theory, this means that Lebesgue measure on R? is the product of Lebesgue
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measures on R. We will describe a general construction of product measures here.
A closely related result from elementary calculus is that the double integral of a
continuous function over a smooth region in R? can be computed as two iterated
one-dimensional integrals. Fubini’s theorem provides a generalization of this result,
which states that an integral of a function on a product space can be computed
as iterated integrals over the individual components of the product space. Fubini’s
theorem is another of the most useful results in the theory of Lebesgue integration.
The key hypothesis in Fubini’s theorem is that the function is integrable on
the product space. The following example shows that the equality of double and
iterated integrals is not true, in general, without an integrability condition.

Example 12.37 Define f : [0,1] x [0,1] = R by

22 —y?

f(xay)Zm-

Then a straightforward computation shows that

/01 </01f(a:,y)dy) da::/oll_’_%da::%,
[ ([ o) o= [ o=

The function f in this example is not integrable, meaning that

/01 /01 |f(z,y)| dedy = .

First, we define the product of two o-algebras.

N

Definition 12.38 Let (X,.4) and (Y, B) be measurable spaces. The product o-
algebra A ® B is the o-algebra on X x Y that is generated by the collection of
sets

{AxB|A€ A BeB}. (12.6)

The collection of sets in (12.6) does not form a o-algebra, since the union of
two such sets is not, in general, another such set. Next, we state a theorem which
defines the product of two o-finite measures.

Theorem 12.39 Suppose that (X, A4, u) and (Y, B,v) are o-finite measure spaces.
There is a unique product measure p ® v, defined on A ® B, with the property that
for every A€ A and B € B

(1 ® v)(A x B) = p(A)v(B).
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Example 12.40 Suppose that X = R™ and Y = R” are equipped with the Borel
o-algebras A = R™ and B = R"™ and the Lebesgue measures y = A™ and v = \".
The product o-algebra is R™ @ R™ = R™*t", and the product measure is ™ @ \* =
A"+ Thus, Lebesgue measure on R” is the n-fold product of Lebesgue measure
on R

Let f: X xY — R. We denote by f¥: X — R and f, : Y — R the functions

fUzx) = f(z,y),  fo(y) = f=,p).

If (X,A,pn) and (Y,B,v) are o-finite measure spaces and f : X x Y — R is an
A ® B-measurable function, then one can prove that f¥ is A-measurable for ev-
ery y € Y and f, is B-measurable for every x € X. Furthermore, the function
I(z) = [y f+(y) dv(y) is p-measurable, and the function J(y) = [y f¥(x)du(z) is
v-measurable. All the integrals appearing in the following statement of Fubini’s
theorem are therefore well defined.

Theorem 12.41 (Fubini) Let (X, A, 1) and (Y, B,v) be o-finite measure spaces.
Suppose that f: X x Y — R is an (A ® B)-measurable function.

(a) The function f is integrable, meaning that

/ |fldp ® dv < oo,
XxY

if and only if either of the following iterated integrals is finite:

[ ([ 1501 a)) dua),
[ ([ 1@l ) avo.

(b) If f is integrable, then
[ ([ rwarw) aue)

[ tena@ere) = [ ([ peae) o)

To apply this theorem, we usually check that one of the iterated integrals of | f|
is finite, and then compute the double integral of f by evaluation of an iterated
integral.

/ f (@) d(u(z) © v(y))
XxY

Example 12.42 Suppose that z,,, is a doubly-indexed sequence of real or complex
numbers, with m,n € N. The application of Fubini’s theorem to counting measure

on N implies that if
o0 oo
Z < |xmn|> < 00,
=1

m=1 \n
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then

5 (S5 (5

n=1

The product of two complete measures is not necessarily complete, and this
leads to some technical complications in connection with Lebesgue measure.

Example 12.43 Suppose that X = R™ and Y = R", with m,n > 1, are equipped
with the Lebesgue o-algebras £™ = R™ and L™ = R7, respectively. It is not true
that £™ ® L™ = L™, Rather, we have

L =Lm g Ln.

For example, if £ C R™ is any non-Lebesgue measurable set (which cannot be a
subset of a set of m-dimensional Lebesgue measure zero) and y € R”, then the set
E x{y} C R™*" does not belong to L™® L". It is, however, an (L™*")-measurable
set, since it is a subset of R™ x {y} which has (m+n)-dimensional Lebesgue measure
zZero.

The following version of Fubini’s theorem applies in this context.

Theorem 12.44 Suppose that (X, A, u) and (Y, B,v) are complete o-finite mea-
sure spaces, and let (X x Y,L£,)\) be the completion of the product space. If
f: X xY = R is a nonnegative or integrable £-measurable function, then f,
is B- measurable ,u—a e. in zeX and fYis A—measurable v-a.e. in y € Y. Further-
more, I(z) = [ fo(y ) and J(y) = [ f¥(z) du(x) are measurable, and

/XXdeA= /X ( /Y fz(y)d'/(y)) ntz) = /Y ([ o) .

12.6 The LP spaces

The LP-spaces consist of functions whose pth powers are integrable. The space L*>
requires a separate definition.

Definition 12.45 Let (X, .4, u) be a measure space and 1 < p < oo. The space
LP(X,u) is the space of equivalence classes of measurable functions f : X — C,
with respect to the equivalence relation of a.e.-equality, such that

[ 1817 du < .

The LP-norm of f is defined by
1/p
1£ll, = ( [ st du) | (12.7)
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The space L>(X, ) consists of equivalence classes of functions f : X — C such
that there is a finite constant M with

F@I <M pae.
The L°-norm is defined by

Ifllc = esssup {|f(2) |z € X}
inf{M | |f(z)| < M p-a.e.}.

We are mainly interested in the case when X is a Lebesgue measurable subset of
R™, but most results below apply to arbitrary measure spaces. When the measure p
is understood, we often abbreviate LP(X, u) to L?(X), or simply LP. For example,
we write LP(R™) for LP(R™, \), where )\ is Lebesgue measure.

Theorem 12.46 If (X, A, i) is a measure space and 1 < p < oo, then LP(X) is a
Banach space.

Proof. We will only prove the result for 1 < p < co. We abbreviate LP(X) to LP
and || - ||p to || - ||. The verification that L? is a linear space and that || - || is a norm
is straightforward, with the exception of the triangle inequality, which we prove in
Theorem 12.56 below. We therefore just have to show that LP is complete.

From Exercise 1.20, a normed linear space is complete if and only if every ab-
solutely convergent series converges. Suppose that f, € LP with n = 1,2,...1is a
sequence of functions such that

Do lfall =M,
n=1

where M < oo. We need to show that there is a function f € LP such that

N
f_ an
n=1

First, we consider the sequence of nonnegative functions gy defined by

N
gN = Z |fn|
n=1

The sequence (gn) is monotone increasing, so it converges pointwise to a nonnega-
tive, measurable extended real-valued function g : X — [0, 00]. We have ||gn|| < M
for every N € N, so

=0.

lim
N—oo

/Igzvl”du = |lgn|IP < MP.
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The monotone convergence theorem, Theorem 12.33, implies that
lgll” = lim_lgn[|” < MP.
—00

In particular, ||g|| < oo, so g € LP. Therefore, g is finite p-a.e., which means that
the sum > | fn(z) is absolutely convergent p-a.e. We can then define a function
f pointwise-a.e. by

The partial sums of this series satisfy

< g(x)P.

Since g € L? and |f(z)| < g(z), we have that f € LP. Furthermore, g € L' and

V4
‘ Z fala

< (29(2))".
The dominated convergence theorem, Theorem 12.357 implies that

li n =
i [ -3 5] =0
so the series converges to f in LP, which proves that LP is complete. |

The following example shows that the LP-convergence of a sequence does not
imply pointwise-a.e. convergence. One can prove, however, that if f, — f in LP,
then there is a subsequence of (f,) that converges pointwise-a.e. to f.

Example 12.47 For 2¥ <n < 2¥+!1 1 where k = 0,1,2,.. ., we define the interval
I, by

I, = [(n—2%)/2%, (n + 1 - 2%)/2*]
and the function f, : [0,1] —» R by

fn = Xx1,-

The sequence (f,) consists of characteristic functions of intervals of width 27* that
sweep across the interval [0,1]. We have f, — 0 in L?([0,1]), for 1 < p < oo,
but f,(z) does not converge for any = € [0,1]. The subsequence (fx) converges
pointwise-a.e. to zero.

As we have seen, it is often useful to approximate an arbitrary element in some
space as the limit of a sequence of elements with special properties. Every LP-
function may be approximated by simple functions.
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Theorem 12.48 Suppose that (X, .4, u) is a measure space and 1 < p < oo. If
f € LP(X), then there is a sequence () of simple functions ¢, : X — C such that

Jlim || f = @nllp = 0.

Proof. 1t is sufficient to prove the result for nonnegative functions, since we may
approximate a general function in LP by approximating its positive and negative
parts. We consider only the case 1 < p < oo for simplicity. If f > 0, then
from Theorem 12.26 there is a monotone increasing sequence of nonnegative simple
functions (¢,) that converges pointwise to f. The sequence (g,) defined by

gn:fp_(f_‘pn)p

is a monotone increasing sequence of nonnegative functions. The monotone conver-

gence theorem implies that
/ gn dp — / fPdp
b'¢ b'¢

as n — 00, from which it follows that ¢, — f in LP. O

As an application of this theorem, we prove that LP(R™) is separable for p < co.

Theorem 12.49 If 1 < p < oo, then LP(R") is a separable metric space.

Proof. We have to show that LP(R™) contains a countable dense subset. The
set S of simple functions whose values are complex numbers with rational real and
imaginary parts is dense in the space of simple functions. Hence, Theorem 12.48
implies that S is dense in LP(IR™). The set S is not countable because there are
far too many measurable sets, but we can approximate every simple function by a
simple function of the form (12.3) in which each set A4; is chosen from a suitable
countable collection F of measurable sets. For example, we can use the collection of
cubes of the form [a1, b1] X [az, b2] X - - - X [an, by, where aq, by, a2,ba,...,an, by € Q.
We omit a detailed proof. The result then follows. d

This theorem also applies to LP(Q), with 1 < p < oo, where  is an arbitrary
measurable subset of R”. The space L (R") is not separable (see Exercise 12.13).

For p < oo, we can approximate functions in LP(R"™) by continuous functions
with compact support.

Theorem 12.50 The space C.(R™) of continuous functions with compact support
is dense in LP(R™) for 1 < p < oo.

Proof. 1If f € LP(R"), then the Lebesgue dominated convergence theorem implies
that the sequence (f,) of compactly supported functions,

_f f(x) ifl|z[ <,
Fol@) = { 0 if |z| > n,



The basic inequalities 355

converges to f in LP as n — 0o. Each f,, may be approximated by simple functions,
which are a finite linear combination of characteristic functions. It therefore suffices
to prove that the characteristic function x4 of a bounded, measurable set A in
R™ may be approximated by continuous functions with compact support. From
Theorem 12.10, for every € > 0 there is an open set G and a compact set K C G
such that K C A C G and A(G\ K) < €. By Urysohn’s lemma (see Exercise 1.16),
there is a continuous, real-valued function f such that 0 < f(z) <1, f=1on K,
and f =0 on G°. Then

1/p
If = xallp = (/ I =xal da:) <G\ F)VP < e
G\K _

We can use an approximate identity to smooth out C.-approximations, thus
obtaining C2°-approximations.

Theorem 12.51 If 1 < p < 0o, then C°(R") is a dense subspace of LP(R").

Proof. For e >0, let p. € C(R™) be an approximate identity. If f € C.(R"),
we define f, = ¢, x f. Then f. € C*°(R™) for every € > 0. Moreover, f. — f
uniformly, and hence in L?, as e — 0F. Since C.(R™) is dense in LP(R™), the result
follows. d

12.7 The basic inequalities

It has been said that analysis is the art of estimating. In this section, we give the
basic inequalities of LP theory.

Many inequalities are based on convexity arguments. We first prove Jensen’s
inequality, which states that the mean of the values of a convex function is greater
than or equal to the value of the convex function at the mean. We recall from
Definition 8.47 that a function ¢ : C'— R on a convex set C' is convex if

e (tr+ (1 =t)y) <tp(x) + (1 —-t)o(y)

for every z,y € C and t € [0,1]. We define the mean of an integrable function f on
a finite measure space (X, u) by

1
(Fu= ) /X fdp. (12.8)

Theorem 12.52 (Jensen) Let (X, u) be a finite measure space. If p : R — R is
convex and f: X — R belongs to L' (X, u1), then

e ((fHu) <(pof),- (12.9)
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Proof. From Exercise 12.9, there is a constant ¢ € R such that

oY) > e((Hu) +cly —(flu)  foreveryy e R. (12.10)

Setting y = f(z) in this inequality and integrating the result over X, we obtain

that
/Xswfdu > w((f)u)/x du+0(/deu—<f)u/X du)
= () m(X).
Dividing this equation by p(X) < oo, we obtain (12.9). O

The right-hand side of (12.9) may be infinite. Although ¢ o f need not be in L!,
its negative part is integrable from (12.10), so its integral is well defined.

Example 12.53 Suppose that {z1,z2,...,2,} is a finite subset of R, and p is a
discrete probability measure on R with p({z;}) = A;, where 0 < A; <1 and

M+X+--+ A, =1.

Then Jensen’s inequality, with f(z) = x, implies that for any convex function
¢ : R — R we have

ez + Aoxe + ..o+ Apzn) < Ap(z1) + Aop(x2) + ..o+ Anp(zn).

Holder’s inequality is one the most important inequalities for proving estimates
in LP-spaces. We say that two numbers 1 < p,p’ < oo are Holder conjugates or
conjugate exponents if they satisfy

1 1
-+ —==1, (12.11)
p 7
with the convention that 1/0o = 0. For example, p = 1 and p' = oo are Holder
conjugates, and p = 2 is conjugate to itself. Holder’s inequality applies to a pair of
functions, one in L? and one in L¥'.

Theorem 12.54 (Hélder) Let 1 < p,p' < oo satisfy (12.11). If f € LP(X, u) and
g€ LV (X, ), then fg € L'(X, p) and

‘ / fgdu‘ < 11l lglly- (12.12)

Proof. For the conjugate pair of exponents (p,p') = (1, 0c), Holder’s inequality
is the obvious inequality

‘/ngdu‘ < ||g||oo/X|f|du_

We therefore assume that 1 < p,p’ < oo.
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The set Y = {z € X | g(z) # 0} is measurable, and

‘ [ 1@ dutz)

We also have

- ‘ [ @) duto

< /Y 1£(@)] 9(@)] du().

1= [ 1> [ 1rPde

Therefore, replacing X by Y if necessary, it is sufficient to prove (12.12) under the
assumption that f(z) > 0 and g(z) > 0 for every z € X.
We define a new measure v on X by

v(A) = /Agp’ du.

The function ¢ : R — R defined by ¢(z) = |z|P is convex for p > 1. An application
of Jensen’s inequality (12.9) to the function h : X — R defined by

_f
- gr'/p

implies that

©((h)y) <{(pohy),.

Writing out this equation explicitly, we obtain

1 f

P P
——dv 1 f
v(X) Jx g?'/?

<—= ;
~v(X) Jx 97
Rewriting the integrals with respect to v as integrals with respect to p, and using
the assumption that p and p’ are dual exponents, we obtain that

d p
fog, 2 < 1, / fPdp.

Jx 97 dul = [x g7 du Jx
Taking the pth root of this equation, rearranging the result, and using the fact that
p and p' are conjugate exponents again, we get (12.12). Since the right-hand side
of this inequality is finite, it follows that h € L'(X,v) and fg € L' (X, ). O

dv.

In the special case when p = p’ = 2, Holder’s inequality is the Cauchy-Schwarz
inequality for L2-spaces. As an application of Holder’s inequality, we prove a result
about the inclusion of LP-spaces.

Proposition 12.55 Suppose that (X, u) is a finite measure space, meaning that
w(X) <oo,and 1 < g < p<oo. Then

LYX,p) D LY(X, ) D LP(X, ) D L¥(X, ).
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Proof. We define 1 <r < oo by
1 1 1

p r 4q

Then p/q and r/q are Holder conjugates. Moroever, if f € L?, then |f|P/9 € L9 and
1€ L™/4 since u(X) < co. Hélder’s inequality therefore implies that

17l = [ i tdu
X
a/p a/r
< ([ampna) ([ a)
b'e b's
= ()T
Hence, || f||q is finite for every f € LP, which proves the claimed inclusion. O

For these inclusions to hold, it is crucial that p(X) < oo, as illustrated in
Exercise 12.14. Minkowski’s inequality is the triangle inequality for the LP-norm.

Theorem 12.56 (Minkowski) If 1 < p < o0, and f,g € LP(X, ), then f+ g €
LP(X,p), and

1 +gllo <1 fllp + llgllp- (12.13)
Proof. We have
\f+gl" < (fI+19D”
< 22max(|f”,1g/")
< 22(f17 +19) -

Hence, f+g € LP if f,g € LP.
If f+ge€LP, then |f + glp_1 € L? , where p' is the Holder conjugate of p, and

-1 -1
17 +art) = s +al

Hence, using Holder’s inequality followed by this result, we find that

17+ gll” / F+gllf +9P " du

< /Ifl If + gl du+/|g||f+g|”_1 du
< 7l 17 +ol 7| +lial, 17 +07
< (1711, + gl ) 1S + gli2™"

If ||f + gll, # O, then division of this inequality by ||f —{—g||£_1 gives (12.13). If
lf +gll, = 0, then the result is trivial. O
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For 0 < p < 1, nonnegative functions satisfy the reverse triangle inequality

N7+ gllp = 1£1lp + llgllp,

which explains why LP is only a normed linear space for p > 1.
Tchebyshev’s inequality is an elementary inequality that is especially useful in
probability theory.

Theorem 12.57 (Tchebyshev) Suppose that f € LP(X), where 0 < p < co. For
every € > 0, we have

ple € X 115 > ) < SIfIE

Proof. Define S; € A by
Se={z e X ||f(z)| > €}
Then

171z = /X P dp > /S FPdu > eu(S.),

which is what we had to prove. a

The following inequality for the LP-norm of convolutions is called Young’s in-
equality. This inequality shows that convolution is a continuous operation when
defined on an appropriate choice of Banach spaces.

Theorem 12.58 (Young) Suppose that 1 < p,q,r < oo satisfy
1 1 1
S+ S=1+4-.
b q r

If f € LP(R™) and g € LY(R™), then f xg € L"(R"), and

I *gll- <1 f1lp1lglla-

(12.14)

Proof. We leave it to the reader to check that it is sufficient to prove the result
for nonnegative functions f, g such that || f|l, = ||gllq = 1.

We first consider the special case p = ¢ = r = 1. Using Fubini’s theorem to
exchange the order of integration, we have

ifeals = [|[ 169 -0)ds] do
- [fswa] e

= [ fllllgll, (12.15)

which proves the result in this case.
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For general values of p, ¢, we observe from (12.14) and the definition of the
Holder conjugate that

An application of the generalized Holder inequality in Exercise 12.12 therefore im-
plies that

fro@) = [ [P ot -0 [1w) ] [ot@ -] dy

[Jomsc-sra]" [ ror-enia]

, 1/p'
[/g(x _ y)(l—q/r)p dy] .

Since (1 —p/r)¢' =p, (1 —q/r)p' = ¢, and ||fl|, = llgll = 1, it follows that

IN

frgla) < / F)Pe(z — )7 dy,

meaning that (f *xg)" < f? x g?. The use of this inequality and (12.15) then implies
that

If gl = 1)l < 17+ g%l = 1£71l, 19?1y = IFII5 lgllg = 1,
which proves the theorem. a

Two common special cases of this result are:

IF*glls < fllxllglls NIF * gllee < NIFll2119ll2-

12.8 The dual space of LP

In Section 5.6, we gave the general definition of the dual space of a Banach space.
In this section, we describe the dual space LP(X)* of bounded, linear functionals
on LP(X), where X is a measure space equipped with a measure p.

Suppose that 1 < p < oo and g € L? (X), where p' is the Hélder conjugate of p.
We define ¢, : LP(X) — C by

@y (f) = /X fgdp  for every f € LP(X). (12.16)

Holder’s inequality implies that ¢, is a bounded linear functional on LP, with

||Sog||(LP)* < llgllza-
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Here, || - [|(z»)+ is the norm of a bounded linear function defined in (5.23). The next
theorem states that if 1 < p < 0o, then all linear functionals on L? are of the form
(12.16).

Theorem 12.59 If 1 < p < oo, then every ¢ € LP(X)* is of the form
p(f) = / fgdu
b'e

for some g € L?' (X), where 1/p+ 1/p’ = 1. Moreover,

lgllzry- = llgll Lo

We will not give the proof. According to Theorem 12.59, we may identify the
dual of LP with LP . When p=p' =2, we recover the result of the Riesz represen-
tation theorem that the dual of the Hilbert space L? may be identified with itself.
The dual of L! is L®, but the dual of L* is strictly larger than L' (except in trivial
cases, such as when X is a finite set). The full description of (L*)* is complicated
and rarely useful, so we will not give it here. If 1 < p < oo, then (LP)** = LP and
L? is reflexive, but L' and L™ are not reflexive.

The continuous linear functionals define the weak topology. From Definition 5.59,
Definition 5.60, and Theorem 12.59, we have the following definition of weak LP-
convergence.

Definition 12.60 Suppose that 1 < p < co. A sequence (f,) converges weakly to
fin LP, written f,—f, if

li_>m /fng dp = /fg dp for every g € LP (12.17)

where p' is the Holder conjugate of p. When p = oo and p' = 1, the condition in
(12.17) corresponds to weak-* convergence f, — f in L.

As in the case of Hilbert spaces, discussed in Section 8.6, weak LP-convergence
does not imply strong LP-convergence, meaning convergence in the LP-norm. The
following example illustrates three typical ways in which a weakly convergent se-
quence of functions can fail to be strongly convergent.

Example 12.61 Let g € LP(R) be a fixed nonzero function, where 1 < p < oo.
For each of the following three sequences, we have f,, — 0 weakly as n — oo, but
not f, — 0 strongly, in LP(R).

(a) fn(z) = g(x)sinnzx (oscillation);
(b) fn(z) = n'/Pg(nz) (concentration);
(¢) fa(z) = g(z —n) (escape to infinity).

The Banach-Alaoglu theorem, in Theorem 5.61, leads to the following weak
compactness result for LP.
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Theorem 12.62 Suppose that (f,) is a bounded sequence in LP(X), meaning that
there is a constant M such that ||f,|]] < M for every n € N. If 1 < p < oo, then
there is a subsequence (f,,) and a function f € LP(X) with ||f|| < M such that
fr. = f as k — oo weakly in LP(X). If p = oo, then f,, = f converges weak-* in
L>(X).

12.9 Sobolev spaces

Many problems in applied analysis involve differentiable functions. Sobolev spaces
are Banach spaces of functions whose weak derivatives belong to LP spaces. They
provide the simplest and most useful setting for the application of functional analytic
methods to the study of differential equations. We have already discussed several
special cases of Sobolev spaces in the chapters on Fourier series and unbounded
linear operators. Here, we give more general definitions of Sobolev spaces, and
describe some of their main properties. We use the multi-index notation introduced
in Section 11.1, and consider real-valued functions for simplicity.

We will define Sobolev spaces of functions whose domain is an open subset 2 of
R™, equipped with n-dimensional Lebesgue measure. In particular, we could have
Q = R". As usual, LP(2) denotes the space of of Lebesgue measurable functions
f :Q — R whose pth powers are integrable. We also introduce the local LP spaces,
denoted by L? (). A function f belongs to LY. (Q) if it is measurable and

loc loc

/ |fIP dz < o0
K

for every compact subset K of Q. For example, 1/x belongs L. ((0,1)), but not to

loc
L' ((0,1)) or LL . (R). For every 1 < p < oo, we have the inclusions

LL.(Q) D LE (Q) D LP(Q).

loc

Thus, L () is the largest space of integrable functions. We adopt the following

loc
definition of a test function for the purposes of this chapter.

Definition 12.63 A test function ¢ : 2 — R on an open subset ) of R” is a
function with continuous partial derivatives of all orders whose support is a compact
subset of . We denote the set of test functions on Q by C°(Q).

Definition 12.64 If f, g, € L. (Q) are such that
/gagodx = (=1)l / fo%pdz  for all p € C°(9),
Q Q
then we say that g, = 0%f the ath weak partial derivative of f.

The weak derivative is only defined pointwise up to a set of measure zero.
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Example 12.65 The function

1
|z]e

flz) =

belongs to Li, .
x; is given by

(R™) if and only if a < n. The weak derivative of f with respect to

_ Ty 1
g9i(z) = _GMW

provided that g; is locally integrable which is the case when a < n—1. For example,
in one space dimension, if f' € Lf (R) for some p > 1, then a < 0 and f is
continuous. In fact, the Sobolev embedding theorem below implies that any function
on R whose weak derivative belongs to LI, (R) for some p > 1 is continuous. In
higher space dimensions, a function may be weakly differentiable but discontinuous.
The strength of an allowable singularity in a weakly differentiable function increases
with the number of space dimensions n.

Definition 12.66 Let k be a positive integer, 1 < p < 00, and {2 an open subset
of R®. The Sobolev space W*P(Q) consists of all functions f : @ — R such that
0°f € LP(Q) for all weak partial derivatives of order 0 < |a| < k. We define a norm
on WkP(Q) by

1/p

1 lwerey = | 30 / 0P de

0<|a|<k

when 1 < p < o0, and by

Ilhwemioy = s, {sup o)

when p = oo. Here, the supremum is to be interpreted as an essential supre-
mum. For p = 2, corresponding to the case of square integrable functions, we write
Wk2(Q) = H*¥(Q), and define an inner product on H*(Q) by

(fs9) e ) = Z /8°‘f80‘gdx

0<|al<k

The space W*P(Q) is a Banach space and H*(f) is a Hilbert space.

Next, we define a Sobolev space of functions that “vanish on the boundary of
Q-”

Definition 12.67 The closure of C2°(Q2) in W¥?(Q) is denoted by
Wy () = C&(Q).
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We also define
HE(Q) = W (9).

Informally, we can think of Wé“ () as the WkP(Q)-functions whose derivatives
of order less than or equal to & — 1 vanish on the boundary 92 of 2. Compactly
supported functions are dense in W*?(R"), so that Wg? (R?) = Wk»(R").

The definition of the boundary values of Sobolev functions which do not vanish
on the boundary is non-trivial. The boundary of a smooth set has measure zero, but
Sobolev functions are not necessarily continuous and they are are defined pointwise
only up to sets of measure zero. The trace theorem, in Theorem 12.76 below, gives
a way to assign boundary values to Sobolev functions.

Sobolev spaces of negative orders may be defined by duality.

Definition 12.68 Let k be a positive integer, 1 < p < oo, and p' the Holder
conjugate of p. The Sobolev space W~*7(Q) is the dual space of Wg'* (). That
is, f € W~%P(Q) is a continuous linear map

FWEP Q) =R frue (fu).
We define a norm on W~%?(Q) by

u
fllwoew = sup L2
Tl

u;éOO

In particular, H—*(Q) is the dual space of Hf(2). Elements of W~%P(Q) are
distributions whose action on test functions extends continuously to an action on
functions in W(f’pl(ﬂ). The dual space of W*# (Q) is not a space of distributions,
because the action of a continuous linear functional on functions in W*#' (Q) de-
pends on the values of the W*#' (Q)-functions on the boundary 89, and therefore it
is not determined by its action on compactly supported test functions. It is possible
to show that any distribution f € W~%?(Q)) may be written (nonuniquely) as

f=3 0

la|<k

where g, € L?(Q). The action of this distribution f on a Wg*%-function u is given
by

(fyu) = Z (—l)la‘/gga@audx.

la|<k

More generally, it is possible to define Sobolev spaces WP of fractional order for
any s € R and p € [1,00]. These spaces arise naturally in connection with the trace
theorem below, but we will not describe them here. For p = 2, the Hilbert spaces
H?3(R™) may be defined by use of the Fourier transform (see Definition 11.38).
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12.10 Properties of Sobolev spaces

In this section, we summarize the main properties of Sobolev spaces without proof.
These properties include the approximation of Sobolev functions by smooth func-
tions (density theorems), the integrability or continuity properties of Sobolev func-
tions (embedding theorems), compactness conditions (the Rellich-Kondrachov the-
orem), and the definition of boundary values of Sobolev functions (trace theorems).
Depending on the context, there are many different regularity conditions that the
domain 2 on which the Sobolev functions are defined must satisfy, and the differ-
ences between them are sometimes quite subtle. We will say that a domain is reqular
if it satisfies an appropriate regularity condition, without stating the precise condi-
tion that is required. Any domain bounded by a smooth hypersurface (meaning that
the boundary is locally the zero set of a smooth function with nonzero derivative)
satisfies the regularity conditions for all the results stated in this section. Domains
with outward pointing cusps or needle-shaped protrusions are typical examples of
domains with insufficient regularity, and some of the properties stated below do not
hold on such domains.

We use C(Q) to denote the space of uniformly continuous functions on 2, and
Co(R™) to denote the space of continuous functions on R” that tend to zero as
x — oo. This space is the closure of C2°(R") in L>(R"). The space C*(Q) consists
of functions whose partial derivatives of order less than or equal to k are uniformly
continuous in Q, and C*°(Q) consists of functions with uniformly continuous deriva-
tives of all orders in 2. If a function is uniformly continuous in the open set 2, then
it has a unique continuous extension to the closure .

In the theorems stated below, we consider two types of domains: 2 = R”; and Q
a regular, bounded, open subset of R” with boundary 012. It is frequently possible
to consider more general domains, but this complicates the statements of some of
the theorems. The order k is a positive integer and 1 < p < oo, unless stated
otherwise.

Theorem 12.69 (Density) The space C°(R") is dense in WP (R?). If Q is an
open subset of R", then C°(Q) is dense in Wé“ P(€), and if  is regular, then C>°(Q)
is dense in WkP(Q).

Meyers and Serrin proved for general domains that C*(Q) N W*P(Q) is dense
in W*?(Q), but functions in C*°(£2) need not be smooth up to the boundary.

Among the most important properties of Sobolev spaces are the embedding the-
orems, which provide information about the integrability or continuity of a function
given information about the integrability of its derivatives. To motivate the embed-
ding theorems, we first consider functions u : R* — R, and ask when it is possible
to have an estimate of the form

l[ullze < C[[Vul|re (12.18)
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for a constant C' that is independent of u. Here,

vu:<8u Ou - ﬂ)

Ox1’ Oxs’ " Oxy,

is the gradient, or derivative, of u and

ou ||P
||VU||LP = (Ha—l‘l - + ‘

We also use the notation Du for Vu.
For t > 0, we define the rescaled function

p

A
6.’E2

ou

Oz

p N\ 1l/p
L)

+...+‘

Lp

ug(z) = u(tz).
A simple calculation shows that
ludlle =t Nullps,  [IVuellor = ~"/P(|Vul|s. (12.19)

These norms must scale according to the same exponent if the estimate in (12.18)
is to hold. This occurs if and only if p < n and q = p*, where

«_ _Tp

n—p

This equation may also be written as

111 (12.20)
p p n
We call p* the Sobolev conjugate of p. The inequality in (12.18) does in fact hold
for every u € C°(R™) when ¢ = p*, and it follows by a density argument that every
function in W?(R") belongs to L? (R") when p < n.
The inclusion W?(R"?) C L¥" (R™) is equivalent to the existence of an embed-
ding

J: WHP(R™) — LP” (R™),

where Jf = f. The estimate (12.18) is implies the continuity of J.

If O C R" is a bounded domain, then we have W"?(Q) C L? (Q) and L?" (Q) C
L9(Q) for 1 < q < p*. Thus, there is a continuous embedding J : W1?(Q) — L7(Q).
Summarizing these results, we get the following theorem.

Theorem 12.70 (Embedding) Suppose that  is a regular, bounded, open set
in R™, p < n, and p* is the Sobolev conjugate of p, defined in (12.20).

(a) If u € WHP(R™), then u € LP" (R"). There is a constant C' = C(p,n) such
that

llull o+ ®my < ClIVul|Lr@n).
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(b) If w € WHP(Q) and 1 < ¢ < p*, then u € LI(Q). There is a constant
C = C(p,q, Q) such that

lull o) < Cllullwreq)-

To prove this theorem, one uses the Holder inequality to show that the estimate
holds for test functions. The result follows for arbitrary Sobolev functions by the
density of test functions in Sobolev spaces (see Adams [1] for complete proofs).

The above embedding theorem applies if p < n. If p > n, then functions in
WP are continuous and one can estimate their uniform norm in terms of their
WlP-norm.

Theorem 12.71 (Embedding) Suppose that n < p < oo, and 2 is a regular
bounded open subset of R”.

(a) If u € WHP(R"), then u € Co(R"™). There exists a constant C = C(p,n)
such that

llul| Lo (mmy < ClIVullLe@ny-

(b) If u € WHP(Q) then u € C(Q) and there exists a constant C = C(p, Q)
such that

llull o (@) < Cllullwrr)-

A more refined version of this embedding theorem states that the functions are
Hélder continuous.

Definition 12.72 A function v : Q — R is Holder continuous in the open set {2,
with exponent 0 < r < 1, if

p 1D =0
z,yed |3;' - y|
TFY

If u is Holder continuous with exponent » = 1, then u is Lipschitz continuous.
Any Holder continuous function is continuous, but not conversely. The Banach
space C*7(Q) consists of all bounded Hélder continuous functions in © with the
norm

lu(z) — u(y)|
lullgo.r @y = sup |u(z)| + sup ———==.
con@) z€Q z,yeN |'Z' - le
TFy
For each positive integer k and 0 < r < 1, we define C*"(Q) to be the space of
functions that are k times continuously differentiable in 2, with uniformly contin-
uous derivatives whose kth-order derivatives are Holder continuous with exponent
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r. This space is a Banach space with the norm

o — e
el @y =  mavs {sup|6au(w)|}+max sup 1274() = O%uly)],
0<al<k |zen lal=k 4 yeq |z —y|"
TFY

Theorem 12.73 (Morrey) Suppose that n < p < co. Let

r=1- E.
p
(a) Ifu € WHP(R™), then u € C%"(R™) and there exists a constant C = C(p, n)

such that
llullco.rmny < ClIVullLe®n)-

(b) If w € WP(Q), then u € C%"(2) and there exists a constant C' = C(p, 2)
such that

llullcor o) < Cllullwie(q)-

Spaces of continuous functions form an algebra with respect to the pointwise
product, since the pointwise product of continuous functions is continuous, but the
LP-spaces do not form an algebra; for example, the product of two L2-functions
belongs to L', but not in general to L2. The Sobolev spaces form an algebra when
they consist of continuous functions.

Theorem 12.74 Suppose that (2 is an open subset of R”, including the possibility
Q = R™. If kp > n, then W*P(Q) is an algebra and there is a constant C such that

luv||wre < Cllullwre |[v]lwre for all u,v € WkP(Q).

It is a general principle that a set of functions whose derivatives are uniformly
bounded is compact. The Sobolev-space version of this principle is the Rellich-
Kondrachov theorem which states that W*?(Q) is compactly embedded in L4(f)
for ¢ < p*. The boundedness of the domain {2 and the condition that q is strictly
less than the Sobolev conjugate p* of p are both essential for compactness. In the
critical case, ¢ = p*, the embedding is continuous but not compact.

Theorem 12.75 (Rellich-Kondrachov) Let Q be a regular bounded domain in
R™.

(a) Suppose that 1 < p < m and 1 < ¢ < p*. Then bounded sets in W1?(Q)
are precompact in L2((2).

(b) Suppose that p > n. Then bounded sets in W!P(f2) are precompact in
c(Q).
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In particular, suppose that (uy) is a sequence of functions in W(Q) such that
lukllwsr <C

for a constant C that is independent of k. If p < n and 1 < ¢ < p*, then there is
a subsequence of (ug) that converges strongly in LI(2). If p > n, then there is a
uniformly convergent subsequence.

If p>mnand 0 < 7 < 1—n/p, then the embedding of W1P(Q2) into C%"(Q)
is compact. General compactness theorems follow by repeated application of this
result. For example, if kp < n then W*P(Q) is compactly embedded in L9(Q) for
any 1 < g < np/(n — kp), while if kp > n then W*?(Q) is compactly embedded in
c(@).

There is no sensible way to assign boundary values u|gq to a general function
u € LP(Q). Functions in L? are defined only pointwise-a.e., and the boundary 99 of
a regular domain has measure zero. The situation is different for Sobolev functions.
If u € W*P(Q), then one can assign boundary values to the derivatives of u of order
less than or equal to k — 1/p. It is not possible to define boundary values of kth
order derivatives, however, since they are just LP functions.

Theorem 12.76 (Trace) There is a surjective bounded linear operator
v WHP(Q) = WITH/PP(9Q)
such that

yu=ulpsa  ifue WLP(Q)NC(Q).

There is a “loss of 1/p derivatives” in restricting a Sobolev function to the
boundary. For example, the boundary values of a function in H'(2) belong to
H'/2(89). Conversely given an element of H'/?(91), there is a function in H*(Q)
which takes those boundary values.

Our last result is the Poincaré inequality, which has many variants. The common
theme is that, after removing nonzero constant functions, one can estimate the LP-
norm of a function in terms of the LP-norm of its derivative.

Theorem 12.77 (Poincaré) Suppose that 2 is a bounded domain. Then there is
a constant C' such that

llullze < ClIVullz

for every u € Wy P(9).

More generally, this estimate holds if €2 is bounded in one direction. The
Poincaré estimate is false for nonzero constant functions, so the assumption that
u € WO1 P rather than u € WP, is essential. A useful consequence of this estimate
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is that ||Vul|z» provides an equivalent norm on Wy**(Q). When p = 2, it follows
that we can use

(u,v) = / Vu(z) - Vu(z) dz
Q
as an inner product on H}(Q). Another Poincaré inequality is the following.

Theorem 12.78 (Poincaré) Suppose that  is a smooth connected bounded do-
main. There exists a constant C' such that

llu = (WMlz» < ClIVullLs (12.21)

for every u € WHP(Q), where (u) is the mean of u over (,

1
) = /Q u(z) d,

and |Q| is the volume of Q.

12.11 Laplace’s equation
The Dirichlet problem for the Laplacian is

—Au=f x €1, (12.22)
u(z) =0 x € 0.

Here, f : @ — R is a given function (or distribution) and Q is a smooth bound-
ed open set in R”. We assume homogenous boundary conditions for simplicity;
nonhomogeneous boundary conditions may be transferred to the PDE in the usual
way.

To formulate any PDE problem in a precise way, we have to specify what function
space solutions should belong to. We also have to specify how the derivatives are
defined and in what sense the solution satisfies the boundary conditions and any
other side conditions. There is often a great deal of choice in how this is done. A
classical solution of (12.22) is a twice-continuously differentiable function u that
satisfies the PDE pointwise, wheras a weak solution satisfies it in a distributional
sense.

To motivate the definition of a weak solution, we suppose that u is a smooth
solution. Let ¢ € C°(12) be any test function. Then multiplication of (12.22) by ¢
and an integration by parts imply that

/Vu(a:)-Vgo(x) da::/f(a:)go(m) dzx. (12.23)
Q Q
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Conversely, if u is a smooth function that vanishes on 0 and satisfies (12.23) for
all test functions ¢, then wu is a classical solution of the original boundary value
problem.

Let us require that the solution u and the test function ¢ belong to the same
space. Then Vu and V¢ must both be square-integrable, so it is natural to look
for solutions in the space H}(Q). Since ¢ € Hg(2), we can make sense of the
right-hand side of (12.23) provided that f € H~1(Q2). This leads to the following
definition.

Definition 12.79 Given a distribution f € H 1(Q), we say that u is a weak solu-
tion of (12.22) if u € H} () and

/ Vu-Vodz = {f,p) for every ¢ € HJ (1),
Q

where (-,-) denotes the duality pairing between H '(Q) and Hj ().

If we define a quadratic functional I : H}(Q2) — R by

Iw) =5 [ 1VuP do = (fu),

then, as we will see in Section 13.9, a function u that minimizes I is a weak solution
of (12.22). As a result of this connection, the present approach to the study of the
Laplacian is often called the variational method. The boundary condition u = 0 on
09 is replaced by the condition that u € H} (). The precise sense in which weak
solutions satisfy boundary conditions or initial conditions often requires careful
attention. Definition 12.79 is not the most general definition of weak solutions. For
example, we could consider distributional solutions of (12.22) when f ¢ H~1(Q).
The definition given is the natural one for the following existence theorem.

Theorem 12.80 There is a unique weak solution u € Hg () of (12.22) for every
f € H71(Q). There is a constant C = C(Q) such that

lullgs < Clifllg-r  for all f € H-1(Q),

Proof. By the Poincaré inequality, we can use
(u,v) = / Vu - Vudz
Q

as an inner product on Hg (Q2). Since f € H~1(Q) = H}(Q)*, and H}(Q) is a Hilbert
space, the Riesz representation theorem implies that there is a unique u € Hg (f2)
such that

(u,0) = (f, )

for every ¢ € H}(2). This function u is the unique weak solution of (12.22).
Moreover, we have ||ul[gz = || f[|z-1- O
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This theorem implies that
—~A:H}(Q) = H (D)

is a Hilbert space isomorphism; in fact, it is the isomorphism between H{(£2) and
its dual space H (), in which the dual space is represented concretely as a space
of distributions.

The proof of Theorem 12.80 gives a solution u of (12.22) that belongs to H} ().
This is the best regularity one can hope for in the case of a general right hand side
f € H™. If, however, f € H* is smooth, then elliptic regularity theory shows that
the solution v € H**? and that

lull e+ < CllF Il zre-

This gain of derivatives is typical of elliptic equations. One can estimate the L?-
norm of all second derivatives of u in terms of the L?-norm of the single combination
of second derivatives Au. If f € H*¥(Q) with k¥ > n/2, then it follows from the
Sobolev embedding theorem that u € H¥*2(Q) C C2?(12), so u is a classical solution,
and if f € C®(Q), then u € C=(Q).

If f € C(Q), then it is not necessarily true that u € C%(Q). If, however,
f € C*7(Q) is Holder continuous, where 0 < r < 1, then there is a unique Holder
continuous solution u € C*¥+27(€Q)), and one can estimate the Holder norms of the
second derivatives of u in terms of the Holder norm of f. Analogous existence,
uniqueness, and regularity results hold in LP(Q) for 1 < p < oo, but not for p =1
or p = 0.

The idea in Theorem 12.80 of using the Riesz representation theorem to prove
the existence and uniqueness of a weak solution applies to more general linear PDEs.
Consider a linear equation that can be written in the abstract form

Au=f, (12.24)

where A : H — H* is a bounded linear operator from a Hilbert space H to its
dual space H*, and f € H*. In the case of Laplace’s equation, we had A = —A,
H = H§(Q), and H* = H~1(Q). Evaluation of (12.24) on a test function v € H,
gives an equivalent weak formulation:

a(u,v) = {f,v) for allv € H,
where a : H x H — R is defined by
a(u,v) = (Au,v).

This bilinear form a is called the Dirichlet form associated with A. In the case of
Laplace’s equation, we have

a(u,v) = / Vu - Vudz.
Q
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The Dirichlet form of a Sturm-Liouville ordinary differential operator is given in
(10.38). If a is a symmetric, positive definite, sesquilinear form, and there exists a
constant a > 0 such that

a(u,u) > af|ul|? for all u € H,
then the energy norm
llulla = Va(u, u)

is equivalent to the original norm on H, and the Riesz representation theorem
implies the existence and uniqueness of a weak solution u of (12.24) for every f € H*.

If a is not symmetric, then it does not define an inner product on #, and the
Riesz representation cannot be used directly to establish the existence of a weak
solution. Nevertheless, a similar result, called the Lax-Milgram lemma, still applies.
The proof is outlined in Exercise 12.23.

Theorem 12.81 (Lax-Milgram) Suppose that a : H x H — R is a sesquilinear
form on a Hilbert space #, and there are constants a > 0, § > 0 such that

allzl* < la(z,z)|,  la(z,y)| < Bll=] Iyl

for all z,y € H. Then, for every bounded linear functional f : H — R, there is a
unique element xz € H such that

a(z,y) = (f,y) forallyeH.

Finally, we mention that (12.23) is a useful starting point for numerical methods
of solving Laplace’s equation, especially the finite element method.

12.12 References

Jones [25] gives a clear and well-motivated introduction to the Lebesgue integral.
For a detailed account of measure theory, see Folland [12]. A concise, concrete
introduction to the subject, including a discussion of LP-spaces, is in Lieb and Loss
[32]. For a detailed account of Sobolev spaces, see Adams [1]. For Sobolev spaces
and elliptic PDEs, see Evans [11] and Gilbarg and Trudinger [15]. An extensive
discussion of Sobolev spaces, variational problems, and related analysis of linear
PDEs is contained in Dautry and Lions [7].
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12.13 Exercises

Exercise 12.1 Prove that the Borel o-algebra on R is generated by the following
families of sets:

{(a,b] | a < b}, {[a,b) | a < b}, {[a,b] | a < b}, {(a,) | a € R}.

Exercise 12.2 Let A be a o-algebra of subsets of {2, and suppose p is a measure
on ). Prove the following properties:

(a) If A,B € A, then A\ B € A4
(b) If A,B € A, and A C B, then u(A) < p(B);
(¢) If A,B € A, then u(AU B) < u(A4) + p(B).

Exercise 12.3 If (4;) is an increasing sequence of measurable sets, meaning that
AjCAC...CA; CA1C...,
then prove that
oo
7 (g Ai) = lim 41 (4;).
If (A;) is a decreasing sequence of measurable sets, meaning that
A1 DAD...DA DA D ...,
and p(A41) < oo, prove that
Iz (z_ﬂl Az’) = lim 1 (4;).

Give a counterexample to show that this result need not be true if u(4;) is infinite
for every i.

Exercise 12.4 Give an example of a monotonic decreasing sequence of nonnega-
tive functions converging pointwise to a function f such that the equality in Theo-
rem 12.33 does not hold.

Exercise 12.5 Check that the counting measure defined in Example 12.6 is a mea-
sure.

Exercise 12.6 Use the dominated convergence theorem to prove Corollary 12.36
for differentiation under an integral sign.

Exercise 12.7 Prove that f ~ g if and only if f = g pointwise-a.e. defines an
equivalence relation on the space of all measurable functions.
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Exercise 12.8 Let f,, : X — C be a sequence of measurable functions converging
to f pointwise-a.e.Suppose there exists g € LP(X) such that |f,| < g a.e.Then
fn — f in the LP-norm.

Exercise 12.9 Let ¢ : R — R be a convex function. Prove the following properties:

(a) for all x € R the left- and right-derivatives, ¢’ (x) and ¢/, () exist and
satisfy

@' (z) < ¢\ (2);

(b) ¢ is continuous on R;
(c) for all z € R, there exists a constant ¢ € R such that

P(y) > p(x) + c(y — ) for all y € R. (12.25)
The graph of the function y — c¢(y — x) satisfying (12.25) is called a support line of
@ at x.

Exercise 12.10 If z,y > 0 and € > 0 is any positive number, show that
€ . 1
zy < -2 + —9>.
YSgT t oY

This estimate is sometimes called the Peter-Paul inequality, since one robs Peter
(z) to pay Paul (y).

Exercise 12.11 Let py,ps, ..., p, be positive numbers whose sum is equal to one.
Prove that for any nonnegative numbers x, x5, . . ., Z,, we have the inequality
o ab? aPr < prxy 4 paza ..+ PuZn.

Exercise 12.12 Prove the following generalization of Holder’s inequality: if 1 <
p; > 00, where i = 1,...,n, satisfy

n
1
> 5=

i=1

and f; € LP (X, u), then f; --- f, € L*(X, u) and

\ / f1---fndu‘ < il = 1l

Exercise 12.13 Prove that L™ ([0,1]) is not separable, and that C ([0,1]) is not
dense L ([0, 1]).

Exercise 12.14 Prove that for any pair of distinct exponents 1 < p,q < oo, we
have LP(R) ¢ LI(R). Show that the function

f(z) = L

|z[1/24/1 + log® ||
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belongs to L?(R), but not to LP(R) for any 1 < p < oo that is different from 2.

Exercise 12.15 If f € LP(R") N LY(R™), where p < ¢, prove that f € L"(R") for
any p < r < g, and show that

Lr=1/q Yp=1/r
1£1l> < (1£1lp) 7717 (| fllg) 72=77%

This result is one of the simplest examples of an interpolation inequality.

Exercise 12.16 A function f : R* — C is said to be L?-continuous if 7, f — f in
LP(R"™) as h — 0 in R™, where 75, f () = f(x — h) is the translation of f by h. Prove
that, if 1 < p < oo, every f € LP(R™) is LP-continuous. Give a counter-example to
show that this result is not true when p = co.

HinT. Approximate an LP-function by a C.-function.

Exercise 12.17 Prove that the unit ball in LP([0,1]), where 1 < p < o0, is not
strongly compact.

Exercise 12.18 Give an example of a bounded sequence in L*([0, 1]) that does not
have a weakly convergent subsequence. Why doesn’t this contradict the Banach-
Alaoglu theorem?

Exercise 12.19 Let 1 < p < oo. Prove that if f € LP(R), and its weak derivative
is identically zero, then f is a constant function.

Exercise 12.20 Which of the following functions belongs to H'([—1,1])?

(a) flz) = |=[;
(b) g(z) =sgnuz;
(c) h(z) =302, (1/n)*/? sinnz.

Exercise 12.21 Prove a Poincaré inequality of the form (12.21) for periodic func-
tions defined on the n-dimensional torus T™.

Exercise 12.22 Use the Riesz representation theorem to prove that there is a
unique weak solution u € H!(R") of the equation

—Au+tu=f

for every f € H='(R"). Show that (—A + I) : H'(R*) - H~'(R") is an isomor-
phism. Is —A : H(R*) - H~!(R") an isomorphism?

Exercise 12.23 Suppose that a : H x H — R is a sesquilinear form on a Hilbert
space H that satisfies the hypotheses of the Lax-Milgram lemma in Theorem 12.81.
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(a) Show that there is a bounded linear map J : H — H such that Jz is the
unique element satisfying
a(z,y) = (Jzx,y) for all y € H,

where (-, -) denote the inner product on H.
(b) Show that al|z|| < ||Jz||. Deduce that J is one-to-one and onto.

HiNT. Show that ranJ is closed and use the projection theorem to show
that J is onto.

(c) Show that there is a unique solution z of the equation

(Jz,y) = F(y) for all y € H,

and prove the Lax-Milgram lemma.
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Chapter 13

Differential Calculus and Variational
Methods

In many of the preceding chapters, we studied linear spaces of functions and linear
operators acting on them. This theory provides a natural framework for the major-
ity of linear equations that arise in applied mathematics. Many problems lead to
nonlinear equations that may be formulated in terms of nonlinear maps acting on
Banach spaces. There is no general theory of nonlinear maps that is as powerful as,
for example, the spectral theory of linear operators. If, however, we can approxi-
mate a nonlinear map locally by a linear map, then we can reduce various questions
about nonlinear problems to ones about associated linear problems. The lineariza-
tion of nonlinear maps is one of the most useful and widely applicable methods for
the study of nonlinear problems, and accounts for the importance of linear analysis
in nonlinear settings.

13.1 Linearization

Linearization is closely connected with differentiation: the central idea of differ-
entiation is the local approximation of a nonlinear map by a linear map. A map
f : X = Y between Banach spaces X, Y is differentiable at x € X if there is a
bounded linear map f'(z) : X — Y such that

flx+eh) = f(z) +ef' (x)h + ole) (13.1)

as € — 0 for every h € X. Here, o(e€) stands for a term that approaches zero faster
than € as € = 0. We call the linear map f'(z) the derivative of f at x.

In this section, we describe some problems where the linearization of a nonlinear
map is useful. First, suppose that we want to find solutions z € X of a nonlinear
equation of the form

f(z) =y, (13.2)
where f: X — Y is a map between Banach spaces X, Y, and y € Y is given. If we

379
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know a solution zy € X for a particular yo € Y, meaning that

f(@o) = yo, (13.3)

then we can try to solve (13.2) when y is close to yo by looking for a solution x that
is close to zg. We write y as

Y = Yo + €Y1, (13.4)

where € is a small real or complex parameter. If f is differentiable at zy, we may
look for a solution z(e) of the form

z(€) = o + €x1 + 0(€). (13.5)
Then, using (13.1), (13.4), and (13.5) in (13.2), we get

f(@o) + ef'(xo)z1 = yo + ey1 + o(e).

From (13.3), the leading order terms in € are equal. Cancelling the leading order
terms, dividing the equation by €, and letting € — 0, we find that z; and y; satisfy

f'(@o)zr =y (13.6)

If f'(zo) is nonsingular, then we can solve (13.6) for z;. It is then reasonable to
expect that we can also solve the nonlinear equation (13.2) when y is sufficiently
close to yo. The inverse function theorem states that this expectation is correct,
provided that f is continuously differentiable at xg.

A second application of linearization concerns the stability of solutions of a
nonlinear evolution equation of the form

2 = f(z),  2(0) = o, (13.7)

where the solution z : [0,00) — X takes values in a Banach space X,and f : X - X
is a vector field on X. For some equations, such as partial differential equations,
the vector field f may only be defined on a dense subspace of X. A point T € X is
an equilibrium solution, or stationary solution, or fized point of (13.7) if

f@=o.

In that case, the constant function z(t) = is a solution of (13.7). Even though an
equilibrium solution is an exact solution of (13.7), it may not be observed in practice
if it is unstable, meaning that a small perturbation of the equilibrium grows in time.

To study the effect of a small perturbation on the equilibrium state, we look for
solutions of (13.7) of the form z(t) = T + ey(t), where € is small, and linearize the
right hand side of (13.7) about = Z. Neglecting higher order terms, we find that
y satisfies the linear evolution equation

ye = ' (@) y. (13.8)
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It is reasonable to expect that, under suitable conditions on f, the study of solutions
of (13.8) will provide information about the stability of the equilibrium solution  of
(13.7). Similar ideas may be used to study the stability of time-dependent solutions
— for example, time-periodic solutions — of (13.7), but we will not describe them
here.

As a third example of linearization, we consider the minimization of a functional
I: X — R We suppose that I is bounded from below and look for a minimizer
T € X such that

I(Z) = inf I(x). 13.9

() = int I(x) (13.9)
We have already discussed the direct method for solving variational problems, in
which we choose a minimizing sequence and attempt to show that it has a subse-
quence that converges to a minimizer. An alternative approach, called the indirect
method, is to look for critical points of I, which are solutions of the equation

I'(z) = 0. (13.10)

If I is differentiable, then any minimizer that is an interior point of the domain of
I is a critical point of I. A point z at which I'(z) # 0 is called a regular point.
Conversely, if an equation f(z) = 0 can be written in the form (13.10) for some
functional I, then we may be able to use the associated variational principle (13.9)
to construct solutions. When applicable, variational methods are one of the most
powerful methods for analyzing equations.

The above examples illustrate the need for a notion of the derivative of a map
between Banach spaces. There are many different definitions of the derivative.
The most important is the Fréchet derivative, which generalizes the notion of the
derivative or differential of a vector-valued function of several variables. We will
also introduce the Gateaux derivative, which generalizes the notion of the directional
derivative.

13.2 Vector-valued integrals

In this section, we define the derivative and the Riemann integral of a vector-valued
function of a real variable, and prove some of their basic properties. The definitions
are essentially identical to the ones in elementary calculus for a real-valued function.
We will need these tools, especially the estimate in Theorem 13.4, to prove results
about differentiable functions, such as the inverse function theorem.

A vector-valued function of a real variable is a mapping from a subset of the
real numbers into a Banach space, which could be finite- or infinite-dimensional.
Geometrically, such a function defines a parametrized curve in the Banach space.
The derivative of the function is the tangent, or velocity, vector of the curve.
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Definition 13.1 A function f : (a,b) — X from an open interval (a,b) into a
Banach space X is differentiable at a < ¢t < b, with derivative f'(t) € X, if the
following limit exists in X:
1y = i JE+R) = f(?)
F1(#) = fim, h ‘

The function f is differentiable in (a, b) if it is differentiable at each point in (a,b),
and continuously differentiable in (a,b) if f': (a,b) — X is continuous.

Next, we define the Riemann integral of a vector-valued function f : [a,b] —» X
defined on a closed, bounded interval [a,b]. We say that ¢ : [a,b] = X is a step
function if there is a partition a = tg < t; < ... < t, = b of the interval [a, ], and
constant vectors ¢; € X, with ¢ = 1,...,n, such that

p(t) =¢ for t;_1 <t < t;. (13.11)

We denote the space of step functions from [a,b] into X by S([a,b]), and regard
it as a subspace of the Banach space B([a, b]) of bounded functions f : [a,b] = X
equipped with the sup-norm

lfllc = sup [If(®)Il-
a<t<b

We define a linear map
A:S([a,b]) = X

that takes a step function ¢, defined in (13.11), to its Riemann integral by
n
Ap = Z (ti — ti—1) ci.

i=1
Thus, the integral of a step function is a finite linear combination of the values ¢;
of the step function. The vectors ¢; need not be parallel, and the integral need
not be parallel to any of the ¢;’s, but it does lie in the linear subspace spanned by
{c1...,¢n}. The map A is well defined, since its value does not depend on how the
step-function is represented. From the triangle inequality, we have

n
11 < (g, lel) 3= =) = o6 =),
so A is bounded. We denote the closure of S([a, b]) in B([a, b]) by R([a,b]). Elements
in the space R([a, b]) of uniform limits of step functions are sometimes called regulat-
ed functions. Theorem 5.19 implies that there is a unique bounded linear extension
of A to R([a,b]), which we also denote by A : R([a,b]) = X. For f € R([a,b]), we
call Af the Riemann integral of f, and write it as

b
M:/f@#
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The uniform continuity of a continuous function on the compact interval [a, b]
implies that R([a,b]) contains the space C([a, b]) of continuous functions from [a, b]
to X, so every continuous function is Riemann integrable (see Exercise 13.11). The
space R([a,b]) also contains the piecewise continuous functions, which have a finite
number of jump discontinuities in [a,b], meaning that the left and right limits of
the function exist at its points of discontinuity. In fact, it is possible to show [9]
that a function f is in R([a, b]) if and only if the left and right hand limits,

lim f(t+h lim f(t+h
Jim f(¢+h),  lim f(E+h),

exist at every point of [a,b] (except, of course, for the left limit at a and the right
limit at b). The Riemann integral can be defined on a larger class of functions
than the regulated functions, but once one has to deal with functions that are less
regular than continuous or piecewise continuous functions, it is preferable to use
the Lebesgue integral. One can also define integrals of functions taking values in an
infinite-dimensional Banach space for which the Riemann sums, or the integrals of
approximating simple functions, converge weakly instead of strongly. We will not
consider such integrals in this book.

The estimate
b b
/ f()de]| < / 17 (0)] dt < M(b—a), (13.12)

where
M = sup [[f()ll,
a<t<b

follows from the continuity of A and the corresponding estimate for step functions.
The usual algebraic properties of the Riemann integral also follow by continuity
from the corresponding properties for step functions.

Next, we prove that if the derivative of a function is zero, then the function is
constant. To do this, we use linear functionals on X to reduce to the real-valued
case.

Proposition 13.2 If f : (a,b) — X is differentiable in (a,b) and f' = 0, then f is
a constant function.

Proof. Let ¢ : X — R be a bounded linear functional on X. We define f, :
(a,b) = R by
fo@®) =@ (f(1))-

The chain rule (see Theorem 13.8 below) implies that f,, is differentiable and has
zero derivative. The mean value theorem of elementary calculus (see Exercise 1.14)
implies that f, is constant. Hence, for every ¢ € X* and s,t € (a,b) we have

o (f(s) = f(t) = fo(s) — fo(t) =0.
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It follows from the Hahn-Banach theorem and Exercise 5.6 that f(s) = f(¢) for all
s,t € (a,b), so f is constant. O

The fundamental theorem of calculus holds for vector-valued maps.

Theorem 13.3 (Fundamental theorem of calculus) Suppose that X is a Ba-
nach space.

(a) If f: [a,b] = X is continuous, then

F(t) = /atf(s)ds

is continuously differentiable in (a,b) and F' = f.
(b) If f is continuously differentiable in an open interval containing [a, b], then

b
f@—ﬂ@z/fwm. (13.13)

Proof. To prove the first part, suppose that a < t < b and h is sufficiently small.
Then
t+h

F(t+h)-F(t) = f(s)ds.
¢

It follows that

3 t+h
E@i%_ﬂﬁ—ﬂﬂzél [£(5) = £(0)] ds.

Taking the norm of this equation, and using (13.12), we obtain that

H F(t+h) — F(t)

=0~ o) < s 170 - fON £ <5 < ey 50

as h — 0, by the continuity of f. Thus F is differentiable in (a, b), with continuous
derivative f.

To prove the second part, suppose that f is continuously differentiable, and
define

t
g@z/ﬁ@w

Then, from the first part, we have that g is continuously differentiable and ¢’ = f’,
so that the derivative of (f — g) is zero. Since g(a) = 0, Proposition 13.2 implies
that f(t) — g(¢t) = f(a). Evaluation of this equation at ¢t = b gives (13.13). O

The mean value theorem for real-valued functions does not hold for vector-
valued functions, but the following estimate substitutes for the mean value theorem
in many contexts.
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Theorem 13.4 (Mean value) If f is continuously differentiable in an open inter-
val that contains the closed, bounded interval [a, b], with values in a Banach space,

then

1£(®) = f(a)| < M (b—a) where M = sup [|f'(t)]-
a<t<b

Proof. Using (13.12) and (13.13), we have

/a b fl(t)dt

As an application of vector-valued integrals, we briefly consider the solution of
a linear evolution equation

b
1£(8) = fa)ll = S/ I @)l dt < M(b—a).

O

x = Az, z(0) = zo, (13.14)
where A : X — X is a bounded linear operator on a Banach space X. For example,
if X = R", then (13.14) is an n X n system of ODEs. Similar ideas apply to

PDEs, where A : D(A) C X — X is an unbounded linear operator that generates
a Cp-semigroup. Let

y(A\) = /000 e Mx(t) ds

denote the Laplace transform of z : [0,00) — X. Then, taking the Laplace trans-
form of (13.14), and integrating by parts, we find that

(M — A)y = =.
Thus, for A € p(A), we have
y(A) = R(N)zo,

where R(X) = (M — A) ! is the resolvent operator of the generator A. The resol-
vent operator is related to the solution operator T'(t) = e4* by

R(\) = /00o e~ T (s) ds,

meaning that the solution operator is the inverse Laplace transform of the resolvent.
A nonhomogeneous linear evolution equation may be solved in terms of the solution
operator of the homogeneous equation (see Exercise 13.12).
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13.3 Derivatives of maps on Banach spaces

In this section, we define the derivative of a map between Banach spaces. The
dimensions of the Banach spaces play little role in what follows, and a geometric
understanding of the derivative is essential for a clear understanding of multivariable
calculus on R™.

In order to generalize the notion of the derivative of a function of a real variable
to a function defined on a Banach space, it is important to view the derivative in a
slightly different way than is usual in elementary calculus. There, the derivative of
a differentiable function f : (a,b) — R is typically thought of as another function
f": (a,b) = R. Instead, we think of the derivative f'(z) of f at a point z as a
linear map that approximates f near z. For real-valued functions, this linear map
is just multiplication by the value of the derivative at x.

Definition 13.5 A map f : U C X — Y whose domain U is an open subset of a
Banach space X and whose range is a Banach space Y is differentiable at x € U if
there is a bounded linear map A : X — Y such that

£+ h) — f(a) — AR _

lim

Jimy ] 0-

This definition of the derivative is sometimes called the Fréchet derivative, to
distinguish it from the directional, or Gateaux, derivative in Definition 13.9 below.
When we refer to the derivative of a function, without other qualifications, we will
mean the Fréchet derivative, but there is little consistency in the literature in the
usage of the words “derivative,” “differential,” and “differentiable.”

We can restate the definition using the following o-notation. Suppose that

r:UCcX—>Y

is a function whose domain U is a neighborhood of the origin in a Banach space X,
with values in a Banach space Y. We write

r(h) = o(h™) as h — 0,
pronounced r is “small oh” of A", if

NI
N T

)

meaning that ||r(h)|| approaches zero as h — 0 faster than ||h||”. We also write
r(h) = O(h"™) as h = 0,
pronounced r is “big oh” of h™, if there are constants § > 0 and C > 0 such that

7l < ClIR[I"  when ||h]| < 4.
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If f,g:UCX =Y, we write

f(h) =g(h) +o(h™) if f(h)—g(h)=o0(h") ash—0
F(h) = g(h) + O(h™) if f(h) — g(h) = O(h™) as h— 0.

Thus, o(h™) denotes a term that approaches zero faster than [|h||™, and O(h")
denotes a term that is bounded by a constant factor of ||h||™ near 0.

The function f is differentiable at x if and only if there is a bounded linear map
A: X =Y such that

f(x+h) = f(z)+ Ah +o(h) as h — 0.

If such a linear map exists, then it is unique (see Exercise 13.1), and we write it as
A = f'(z). If f is differentiable at each point of U, then

fl U= B(X,Y)

is the map that assigns to each point 2 € U the bounded linear map f'(z) : X - Y
that approximates f near x. We say that f is continuously differentiable at x if
the map f' is continuous at x, where the domain U is equipped with the norm
on X and the range B(X,Y) is equipped with the operator norm. We say that f
is continuously differentiable in U if it is continuously differentiable at each point
x € U. Other common notations for the derivative are df, Df, and f,.

Example 13.6 Suppose that f : U C R* — R™. We use coordinates (z1, Z2,---,Zn)

on R” and (y1,¥2,-.-,Ym) on R™. Then the component expression for f is
Yy = f1($17m27"'7xn)7
y2 = fo(z1,22,...,20),
Ym = fm(xl,.Z'Q,...,.Z'n),

where f; : R — R. We assume that the partial derivatives of the coordinate
functions f; exist and are continuous in U. Then it follows from the remark below
Theorem 13.11 that f is differentiable, and the matrix of f' : U — B(R",R™) is
the Jacobian matriz of f:

8f1 /63&'1 8f1/63&'2 e 8f1/6arn
o O0f2/0x1 Ofz/0xs ... 0Ofs/0xy
Ofn)Ozr Ofn)Ozs ... Ofn/Omn

Example 13.7 Let 2 be a smooth domain in R*, X = H*(), and Y = L}(Q).
We consider real-valued functions u : 2 — R for simplicity. We will show that the
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quadratic map f : X — Y defined by

_lo 2. Lo

is differentiable, and find its derivative. We have
flu+h) = f(u) + A(wh + f(h),
where A(u) : H'(Q) — L'(Q) is defined by
A(u)h = Vu - Vh + uh.
From the Cauchy-Schwarz inequality, we have
ARl L < lull g ] 22

so A(u) is a bounded linear map. The term f(h) = o(h) as h — 0, since

1 1
17l = 5 [ (VAP +12) do = 3 lhl,
Q

SO

17 ()l _
Tl

Thus, f is differentiable in H'(Q2), and f'(u) = A(u).

[|hllgr — O as h — 0.

One of the most important results concerning derivatives is the chain rule. Ge-
ometrically, the chain rule states that the linear approximation of the composition
of two differentiable maps is the composition of their linear approximations.

Theorem 13.8 (Chain rule) Suppose that X, Y, Z are Banach spaces, and
f:UCcX->Y, g:VCY = Z

where U and V are open subsets of X and Y, respectively. If f is differentiable at
z € U and g is differentiable at f(z) € V, then g o f is differentiable at z and

(g0 f) (2) =g (f(2)) f' ().
Proof. By the differentiability of f, we have
f@+h) =f@)+ f'(@)h+rh),
where r(h)/||h]| = 0 as h — 0. Let y = f(z) and k = f'(z)h + r(h). Then
9y +k) =g(y) + 9'(y)k + s(k),
where s(k)/||k|| = 0 as k — 0. Hence,

g(f(x+h) =g +4g ) f(@)h+th),
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where

tth) = g ()rh) +s(k)
= ¢ (f@)rh) +s(f'(@)h+rh).

Since f'(z) and ¢' (y) are bounded linear maps, we have

It llg" @) LM (sl (Ilf'(w)ll||h||+||T(h)||)_
1] — 1] Il 1]
It follows that ||t(h)||/||k|| = O as h — 0, which proves the result. O

A useful way to compute the derivative of a function is in terms of its directional
derivative, or Gateauz derivative. For example, the matrix of the derivative of a
map on R” is the Jacobian matrix of its partial derivatives.

Definition 13.9 Let X and Y be Banach spaces, and f : U C X —» Y, where U
is an open subset of X. The directional derivative of f at x € U in the direction
h € X is given by
th) —
5f(wsh) = lim L&+ = (@), (13.15)

t—0 t

If this limit exists for every h € X, and ff,(z) : X — Y defined by fi(x)h = 6 f(z; h)
is a linear map, then we say that f is Gdteaur differentiable at x, and we call f,
the Gateauz derivative of f at x.

The directional derivative may also be written as

d
0f(z;h) = —f(z +th)
dt =0
If f is Fréchet differentiable at x, then it is Gateaux differentiable at z (Exer-
cise 13.4), and the Fréchet derivative f'(x) is given by

f'@)h = 6f(z; ).

The converse is not true. Even for functions defined on R?, the existence and
linearity of directional derivatives does not imply the differentiability, or even the
continuity, of the function (see Exercise 13.5). To give a sufficient condition for
the existence of directional derivatives to imply differentiability, we first prove the
following immediate consequence of the mean value theorem in Theorem 13.4.

Theorem 13.10 Suppose that f : U C X — Y is a Gateaux differentiable function
from an open subset U of a Banach space X to a Banach space Y. If x,y € U and
the line segment {tz + (1 —t)y | 0 < ¢t < 1} connecting z and y is contained in U,
then

If(z) = fWIl < Mllz —yl| where M = sup ||fg(tz+(1—t)y)ll-
0<t<1
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Proof. The definition of the Gateaux derivative implies that the function

h(t) = f (tz + (1 - t)y)

is differentiable in an open interval that contains [0, 1] and

W(t) = fg (te + (1 = t)y) (= — y).

The result then follows from an application of Theorem 13.4 to h: [0,1] =Y. O

Theorem 13.11 Suppose that f : U C X — Y is a Gateaux differentiable function
from an open subset U of a Banach space X to a Banach space Y. If the Gateaux
derivative ff; : U C X — B(X,Y) is continuous at z € U, then f is Fréchet
differentiable at « and f'(z) = f§(x).

Proof. For sufficiently small ||h||, we define

r(h) = f(x + h) — f(z) — f&(z)h. (13.16)

The Géateaux differentiabity of f implies that r is Gateaux differentiable, and
ra(h) = fo(z + h) = fo(@).
From Theorem 13.10, we have that
lIr(R)Il < M(R)IIR,
where

M(h) = sup [rg(th).
0<t<1
The continuous Géteaux differentiability of f implies that M(h) — 0 as h — 0, so
r(h) = o(h) as h — 0. Equation (13.16) implies that f is Fréchet differentiable at

z, and f'(z) = fi(z). O

A more refined argument shows that f is Fréchet differentiable at a point if
its directional derivatives §f(z;h) exist in a neighborhood of the point and are
uniformly continuous functions of z and continuous functions of h (see Lusternik
and Sobolev [33], for example).

Next, we consider some examples of directional derivatives.

Example 13.12 Let X = L?(Q), where 1 < p < co. We will compute the Gateaux
derivative of the LP-norm. We define F': X — R by F'(u) = [|u[|}. Then

0F (u;h) = %/|u+th|p

t=0
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First, we show that we can interchange the derivative and the integral by the dom-
inated convergence theorem (Theorem 12.35). For each z € X we have

d p —1i 1 P _ p
7 14(®) +th(z)| tzo—}l_fg;(lﬂ(w)ﬂh(w)l |u(2)[?) .

Since the function z — |z|P is convex for p > 1, we have
|u(z) + th(z)|? < tlu(z) + h(z)|P + (1 — t)|u(z)|P for 0 <t < 1.

Hence

|u(z) + th(z)[” — [u(2)|
t

p
< lu(z) + h(z)P — |u(z)]?,
and similarly

» p o (@) +th(@)|P — |u(z)?
u(@)|P = |u(z) — h(2)|” < ; :

These two inequalities imply that

lu(z) + th(z)|P — |u(z)?
t

<lu(@)P + |u(z) + h(@) [P + |u(z) — h()P. (13.17)

The left-hand side of (13.17) converges pointwise a.e. as t — 0, since

lim, ~ [lu(a) + h@)F ~Ju@P| = % llu(z) + th@)P ~ ()]

t=0

= D@ ? (W@ (o) + u(@F@)

where we write |z|? as (2%)P/? before differentiating. The right-hand side of (13.17)
is in L'. Therefore, the dominated convergence theorem implies that

tim 7 [ lu(e) + th@P = lu(@)| = 5 [ lu(a)~? (s@h(o) + u(@i(@)

t—0

Hence, the directional derivative is given by
2y P =2 (7 h
O0F (u;h) = 2 [u[P~* (uh + uh) .

Since |u[P~! € L? when u € L? where p' is the Holder conjugate of p, Holder’s
inequality implies that § F'(u; -) is a bounded linear functional on L?. It follows that
F is Gateaux differentiable.

Example 13.13 Suppose that ¢ : R — R is a continuous function such that

lo(t)] < a+ b|t|P/? (13.18)
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for suitable constants a,b > 0 and p,q > 1, and 2 is a bounded, measurable subset
of R”. We define a nonlinear map N,, : LP(Q) — L(Q2) by

(Nou) (z) = ¢ (u(z)) .

Thus, N, is the operation of composition with the function ¢, regarded as a map
on LP. Such an operator is called a Nemitski operator. It follows from (13.18) that
N, is bounded, meaning that it maps bounded sets in L? into bounded sets in L.
It is also possible to show that if u, — w in L?, then N, (u,) = Ny(u) in L?, so N,
is continuous. This continuity does not follow from the boundedness of N, because
N, is nonlinear.

Now suppose that ¢ : R — R is continuously differentiable. The pointwise
calculation

(u(z) +eh(z))| = ¢ (u(x)) h()

%SO e=0

suggests that, when it exists, the derivative of N, at u is multiplication by the
function ¢’ (u). To give conditions under which this is true, suppose that p > 2 and

I’ ()| < a+ b|t[P~2. (13.19)

Then, if u,h € LP(2), we have ¢' (u) h € L1(Q2), where ¢ is the Holder conjugate
of p. Thus the map h — ¢’ (u)h is a bounded linear map from L? to L?. It is
possible to show that, in this case, the Nemitski operator N, : LP — L9 is Fréchet
differentiable, and

(Ny)' (wh =" (u) h.

In the limiting case, when p = 2 and |¢'(t)| < a, the Nemitski operator N, : L? —
L? is Gateaux differentiable, but not Fréchet differentiable, unless o(t) = a + bt
is a linear function of ¢. The proof of these facts requires some measure-theoretic
arguments which we omit.

If f: X XY — Z is a differentiable map on the product of two Banach spaces,
then we have

f(z+h,y+k)=F(z,y) + Ah + Bk + o(h, k)

for suitable linear maps A: X — Z and B:Y — Z. We call A and B the partial
derivatives of f with respect to x and y, repectively, and denote them by

A:Dmf(:l’.ﬂy)J Bszf(ny)

Other common notations for the partial derivatives (D, f, D, f) are

(dwfadyf)a (D1f7D2f)a (fwafy)
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We may define higher order derivatives as multilinear maps in a similar way
to the definition of the first derivative as a linear map. For example, we say that
f:U C X =Y is twice differentiable at € U if there is a continuous, bilinear
map f"(z): X x X = Y such that

Ja+h) = @)+ ['@h+ 5@ h) +o(h?)  ash 0.

If f: U C X — Y is k-times continuously differentiable at each point of U, then
we say that f belongs to C*(U).

Example 13.14 If f = (f1, fo,..-, fm) : R* = R™, where f; : R* — R is twice
continuously differentiable, and h = (hy, ha, ..., hy) € R, then

n

[f" (@) Z amk hjhy.

Jk=

Just as we defined the equivalence of the topological properties of two spaces in
terms of homeomorphisms, and the equivalence of metric space properties in terms
of metric space isomorphisms, we may define the equivalence of the smoothness
properties of two spaces in terms of diffeomorphisms.

Definition 13.15 If f: U C X — V CY is a one-to-one, onto map from an open
subset U of a Banach space X to an open subset V of a Banach space Y such that
f€CkU) and f~! € C*¥(V), where k > 1, then f is called a C*-diffeomorphism,
or a diffeomorphism. Two open sets U C X, V C Y are diffeomorphic if there is a
diffeomorphism f: U — V.

13.4 The inverse and implicit function theorems

In this section, we prove the inverse function theorem, which states that a continu-
ously differentiable function is locally invertible if its derivative is invertible.

Theorem 13.16 (Inverse function) Suppose that f: U C X — Y is a differen-
tiable map from an open subset U of a Banach space X to a Banach space Y. If f
is continuously differentiable in U and f’(z) has a bounded inverse at = € U, then
there are open neighborhoods V C U of z and W C Y of f(z) such that f: V — W
is a one-to-one, onto continuous map with continuous inverse f~! : W — V. More-
over, the local inverse is continuously differentiable at f(z) and

(Y (f@) =1f @) (13.20)

Proof. We want to show that for a given sufficiently small ¥ € Y there is a
solution h € X of the equation

fz+h)=f(z)+ k. (13.21)
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The idea of the proof is to use the contraction mapping theorem to show that there
is a solution of the nonlinear equation close to the solution of the linearized equation.
We write

fl@+h) = f(z) + f(z)h +r(h),

where r(h) = o(h) as h — 0. Since f is continuously differentiable at z, we see that
r is continuously differentiable at 0, and »/(0) = 0. Since f'(z) is invertible, we may
rewrite (13.21) as a fixed point equation

h=T(h)  where T(h)=[f'(@)] " (k—r(h)). (13.22)

The vector k occurs in this equation as a parameter.
First, we show that T' contracts distances when ||h|| is sufficiently small. From
(13.22), we have

1T () = T < 17 @) [l ) = (B2l
Theorem 13.10 implies that
() = (B2l < sup " (tho + (1 = k) || |x = o]
0<¢<1

Since 7'(0) = 0 and r is continuously differentiable at 0, there is a § > 0 such that

||<;
2|

We denote the closed ball in X of radius § and center zero by

ll" () for |[A]| < 4.

B; ={he X |[n]| < 4}.

It follows that
[lh1 — hal|

[l (h1) — r(h2)|| < T
21717

for hi,hs € Bs, (13.23)

and therefore that
1
IT(h1) =T (h)l < 5 lhy = hall - for b, hy € Bs.

To apply the contraction mapping theorem, we need to show that 7" maps B
into itself when k is sufficiently small. Taking the norm of T'(h) in (13.22), we get

~1
I <1 @] AL+ (I (R - (13.24)
Equation (13.23), with A1 = h and hy = 0, implies that
() < ——2 for h € By.

2177
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It therefore follows from (13.24) that if ||h|| < ¢ and

0
2/ [f (@) I
then ||T'(h)|| < 6. Thus T : By — Bj is a contraction on the complete set By
when k € B,, where B, is the closed ball in Y of radius  and center zero. The
contraction mapping theorem implies that 7" has a unique fixed point in Bs. We
may therefore define g : B,y = Bs by the requirement that h = g(k) is the unique

solution of (13.22) belonging to Bs. From (13.21), the function g provides a local
inverse of f, with

||l <n where 7 = (13.25)

FH(fx)+ k) =z + g(k). (13.26)

To complete the proof, we need to show that f~! is continuously differentiable.
From (13.22), if h = g(k), then

h=[f'@)] " (k—rh). (13.27)

Subtracting the equations corresponding to (13.27) for hy = g(k1) and hy = g(k2),
taking the norm of the result, and using (13.23), we find that

@17 U = Rall + 11 () = 7))

[/ | s = kol + 5 1 = ol

Iy = ol < |

A

Rewriting this inequality, we obtain that
llg(ks) = g(ka)l| < 20 [f'@)] " ks — kol for ki, ks € By, (13.28)

Thus, g is Lipschitz continuous in B,.
Setting h = g(k) in (13.27), we find that

g(k) = [f'(@)] ™" k + s(k), (13.29)
where the remainder s : B;, =Y is defined by
s(k) = —[f'(@)] " r (g(k)).
From (13.28), with k; = k and k2 = 0, we have
lg®)| < 21kl [f' @) || for k € B,

Hence, s(k) = o(k) as k — 0 because

ls@ll 1AL @I B o e o1 ol
e R e S AP @ T =0 sk =0

Equation (13.29) therefore implies that g is differentiable at k¥ = 0 with ¢'(0) =
[f'(z)]~". Tt follows from (13.26) that ! is differentiable at f(z), and its derivative
is given by (13.20).
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The continuous differentiability of f~! follows from the continuous differentia-
bility of f, and the continuity of inversion on the set of bounded, nonsingular linear
operators. O

The fact that the derivative of the inverse is the inverse of the derivative may also
be deduced from the chain rule. Exercise 13.7 shows that the continuity requirement
on the derivative of f in the hypotheses of the inverse function theorem cannot be
dropped.

Example 13.17 The map s : R — R given by s(z) = z? is locally invertible at
every ¢ # 0. If z > 0, a local inverse is r : (0,00) — (0,00) where r(y) = /y.
If # < 0, a local inverse is r : (0,00) = (—00,0) where r(y) = —/y. The map
s is not locally invertible at 0 where its derivative vanishes. The map ¢: R — R
given by c(x) = z? is globally invertible on R, with continuous inverse ¢! : R — R
where ¢~!(z) = z'/3. The inverse function is not differentiable at z = 0 where
the derivative of ¢ vanishes. Thus, ¢ : R — R is a homeomorphism, but not a
diffeomorphism.

Example 13.18 Consider the map exp : C — C defined by exp z = e*. This map
may also be regarded as a map exp : R? — R? defined by exp(z,y) = (u,v), where

u = e” cosy, v = e"siny.

The derivative of exp is nonsingular at every point, so it is locally invertible. The
map is not globally invertible, however, since exp(z + 2min) = exp z for every n € Z.

Example 13.19 Suppose that f : U C R* — R" is a continuously differentiable
map. From Example 13.6, the matrix of the derivative f' is the Jacobian matrix of
f. The determinant of this matrix, J : U C R* — R,

_ Ofi
J = det ( 8.7:,-)

is called the Jacobian of f. The inverse function theorem implies that the map f is
locally invertible near z if its Jacobian is nonzero at x. Moreover, the local inverse
f~1 is differentiable, and its Jacobian matrix is the inverse of the Jacobian matrix
of f.

Example 13.20 The hodograph method is a method for linearizing certain non-
linear PDEs by exchanging the role of independent and dependent variables. As
an example, we consider the transonic small disturbance equation, which provides
a simplified model of the equations for steady fluid flows near the speed of sound
(such as the flow around an aircraft flying at a speed close to the speed of sound):

Uy + vy =0,
Uy — Uy =0, (13.30)
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where u = u(z,y), v = v(z,y). If the Jacobian

Uy Uy

J=

= UgUy — UyUy
v vy Y Y

is nonzero, then we may locally invert the map (z,y) — (u,v) and write z = z(u,v),
y = y(u,v). Moreover, we have

-1

(o )=C ) =5
Vg Uy Yu Yo J

where
. 1
J = TulYv — ToYu = 7
Hence,
Yo —Ty _ Yy Ty
uw:T, Uy = i Uy = i vy_T.

The use of these equations in (13.30) implies that

uy’U +$u = 07

Ty — Yu = 0.

The Jacobian j cancels, because all terms are linear in a first order derivative of u
or v, and consequently the resulting system for z = z(u,v), y = y(u,v) is linear.
From the second equation, we may write x = ¢,, and y = ¢, for some function ¢.
The first equation then implies that ¢ = ¢(u,v) satisfies

Puu + UPyy = 0.

This PDE is called the Tricomi equation. It is one of the simplest equations of mixed
type, being elliptic when u > 0 (corresponding to subsonic flow) and hyperbolic
when u < 0 (corresponding to supersonic flow). Despite the greater simplicity of
the linear equations for (z,y) than the nonlinear equations for (u,v), the hodograph
method has a significant drawback: solutions may contain curves or regions where
the Jacobians j or J vanish, and then the local invertiblity between (z,y) and (u,v)
is lost.

Example 13.21 Neglecting friction, the angle of u(t) of a forced pendulum satisfies
i+ sinu = h, (13.31)

where h(t) is a given forcing function. We suppose that h is a T-periodic function,
where T > 0, and ask if (13.31) has T-periodic solutions. When h = 0, (13.31) has
the trivial T-periodic solution v = 0, and we can use the implicit function theorem
to prove the existence of T-periodic solutions for small, nonzero h. Let

X={ueC’WR) |ut+T)=u®)}, Y={ueCMR) |ut+T)=u(t)}.
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Then we may write (13.31) as f(u) = h where f: X — Y is defined by
f(u) =i+ sinw.

The map f is continuously differentiable, and its derivative f'(0) : X — Y is given
by

(0w =70+wv.

The linear map f'(0) : X — Y is nonsingular if and only if T # 2nx for some
n € N. In that case, there is a unique T-periodic solution of (13.31) when ||h||oo
is sufficiently small. The case T' = 2nm corresponds to a resonance of the external
forcing with the linearized oscillator.

The implicit function theorem is a generalization of the inverse function theorem.

Theorem 13.22 (Implicit function theorem) Suppose that X, Y, Z are Ba-
nach spaces, and F : U C X xY — Z is a continuously differentiable map defined
on an open subset U of X x Y. If (z9,y0) € U is a point such that F(zo,yo) = 0,
and Dy F(zo,y0) : Y — Z is a one-to-one, onto, bounded linear map, then there is
an open neighborhood V' C X of zg, an open neighborhood W C Y of y, and a
unique function f :V — W such that

F(z,f(z))=0 forallz e V.

The function f is continuously differentiable, and
f'(&) = = [DyF (x, f(2))] "' D F (=, f(x)) -

The proof of this theorem is similar to the proof of the inverse function theorem,
so we will omit it. The implicit function theorem reduces to the inverse function
theorem when F(z,y) =z — f(y).

Example 13.23 If F = (F, F,,..., Fy) : R* x R™ — R™ is a continuously differ-
entiable function, then the matrix of the partial derivative DyF is

6F1/6y1 BFl/ayz 8F1/6ym
O0F5/0 O0F5/0 ... OFy/0ym

2_/ o 2_/ o 2/_ (13.32)
OF,,/0y1 OF;,,/0y2 ... OF.,/0ym

The m x m system of nonlinear equations
F(z,y)=0

has a unique local solution for y in terms of z near any point where F(z,y) = 0
and the determinant of the Jacobian matrix in (13.32) is nonzero.
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Many problems lead to an equation that depends on a parameter y € R. For
example, u may be a dimensionless parameter characteristic of the system being
modeled by the equation. For a time-independent problem, we may write such an
equation in the abstract form

F(z,u) =0, (13.33)

where F': X xR — Y and X, Y are Banach spaces. The study of how the solution
set of (13.33) varies as p varies is part of bifurcation theory. We assume that F is
a smooth function. A solution branch of (13.33) is a smooth mapZ: I CR — X
from an open interval I in R into X such that

F@(p),un) =0 for all p € I.

We say that p, is a bifurcation point of (13.33) from the solution branch Z, if there
is a sequence of solutions (z, un,) in X x I such that

F(zn, pn) =0, Tn # T(pn),
Tn = T(ls),  fon —> Mx as n — oo.

The implicit function theorem implies that if the derivative
D, F (z(p), ) (13.34)

is a nonsingular, bounded linear map from X to Y, then there is a unique local
solution branch. Thus, a necessary condition for u. to be a bifurcation point is that
the derivative in (13.34) is singular at g = p.

Example 13.24 Consider the equation
3 — pr =0,

where z, u € R, corresponding to F(x, ) = 23 — px. The trivial solution z = 0 is
a solution branch. We have F,(0,u) = —pu, so the only possible bifurcation point
from the trivial solution is at 4 = 0. The solutions in this case are x = 0, and
x = +,/p when p > 0. Thus, a new branch of solutions appears at p = 0. This
bifurcation is called a pitchfork bifurcation.

The next example shows that the singularity of the derivative in (13.34) is a
necessary but not sufficient condition for a bifurcation to occur.

Example 13.25 Consider the following system of equations for (z,y) € R?:

Y’ —pz =0,
23+ py = 0.
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The zero solution (z,y) = (0,0) satisfies this system for all y € R. The derivative
of the left-hand side with respect to (x,y) has the matrix

—u 3y*
322 u )’

This matrix is singular at z = y = 0 if and only if g = 0, in which case it has a
two-dimensional null space. Elimination of u from the original system of equations
implies that z* 4+ y* = 0. Therefore, the zero solution is the only solution, and
= 0 is not a bifurcation point.

The same ideas apply to bifurcation problems for equations on infinite-dimensional
spaces.

Example 13.26 Consider the following nonlinear Dirichlet problem on a smooth,
bounded domain Q C R”:

—Au = psinu in Q,
u=20 on Of).
We write this equation in the form (13.33), where F': X x R — Y with
F(u,p) = —Au+ psinu,
X={ueC> (Q)|u=0o0n00}, Y =C%" (Q).

Here 0 < r < 1, and C*7 (Q) denotes a space of Hélder continuous functions. One
can show that F' is differentiable at v = 0, and

D,F(0,u)h = —Ah — ph.

The theory of elliptic PDEs implies that D, F(0,u) : X — Y is a bounded, nonsin-
gular map unless y is an eigenvalue of —A. Thus, the possible bifurcation points
from the trivial solution u = 0 are the eigenvalues of the Laplacian operator on 2.
It is possible to show that a bifurcation occurs at a simple eigenvalue, but one need
not occur at a multiple eigenvalue.

13.5 Newton’s method

Newton’s method is an iterative method for the solution of a finite or infinite-
dimensional system of nonlinear equations,

f(z) =0, (13.35)

where f is a smooth mapping between Banach spaces. Suppose that z, is an
approximate solution. As x — z,, we have

f(@) = f(zn) + f’(iEn)(JE —Tp) + 0o(x — Tp).
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If f'(x,) is nonsingular and z,, is sufficiently close to a solution of (13.35), then it
is reasonable to expect that the solution z = z,41 of the linearized equation,

fzn) + f’(.’En)(.Z' —zn) =0,

is a better approximation to the solution of the nonlinear equation than z,,. The
resulting iteration scheme, called Newton’s method, is given by

Tng1 = Tn — [f(@n)]” flzn)  forn > 0. (13.36)

After the choice of a starting point, o, Newton’s method generates a sequence (x,)
of iterates, provided that f'(z,) is nonsingular for every n. The Newton iterates
may be obtained from an iteration of the fixed point problem

z=2=[f'@)" f()

which is clearly equivalent to (13.35) when f'(z) is nonsingular. A basic ques-
tion concerning Newton’s method is: When does the sequence of Newton iterates
converge to a solution of (13.35)?

There are many variants of Newton’s method. One of the simplest is the modified
Newton’s method:

Tni1 =T — [f(@0)] " flwn)  forn>0. (13.37)

This method has the numerical advantage that the derivative f'(zo) only has to
be computed and inverted once, at the starting point z¢; the sequence of approx-
imations, however, does not converge as rapidly as the sequence obtained from
Newton’s method. The modified Newton’s method is simpler to analyze than New-
ton’s method, and, following Lusternik and Sobolev [33], we will prove a convergence
result for it here. A proof of the convergence of Newton’s method, under suitable
assumptions on f and x¢, may be found in Kantorovich and Akilov [27].

In order to prove convergence, we will assume that f’ satisfies a Lipschitz condi-
tion. If f: U C X = Y is a differentiable function, then we say that the derivative
f':UCX — B(X,Y) is Lipschitz continuous in U if there is a constant C, called
a Lipschitz constant, such that

If'(@) = fWI<Cllz—yll  forallz,yel. (13.38)

Theorem 13.27 Let f : U C X — Y be a differentiable map from an open subset
U of a Banach space X into a Banach space Y such that f’ is Lipschitz continuous
in U with Lipschitz constant C'. Suppose that xo € U, f'(x0) is nonsingular, and

h=c| o) | 1 @™ s < 7 (13.39)
Define § > 0 by

1-vi-dh ”_‘”L) , (13.40)

o e o] (2
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and suppose further that the closed ball By of radius § centered at zg,
Bs={z € X | ||z — zo|| <6}, (13.41)

is contained in U. Then there is a unique solution of the equation f(x) = 0 in By,
and the sequence (z,,) of modified Newton iterates, defined in (13.37), converges to
the solution of f(z) =0 in Bs as n — oo.

Proof. The modified Newton iterates are obtained from the fixed point iteration
Zny1 = T'(zp), where

T(z) =z — [f'(z0)] ' f(z).

First, we show that T': Bs — Bs. We may write

T(z) — w0 = — ['(20)] " [r(x) + f(20)], (13.42)
where
r(z) = f(z) — f(z0) — f'(x0) (z — o). (13.43)
Taking the norm of (13.42), we find that
1T (z) = @oll < M Ir(z)l| + n, (13.44)
where
M = H[f’(wo)]71| N ES H[f’(mo)]*lf(xo)H. (13.45)

Computing the derivative of r, and using the Lipschitz condition (13.38) for f’, we
obtain that

7' @)l = [If' () = f' @)l < C'llz — zol| -
Since 7(zo) = 0, the mean value theorem implies that

2
lIr(@)[] = lIr(2) — r(zo)ll < e 7" (tz + (1 = t)zo)|| [l& — @ol| < C'lz = o” .

Using this result in (13.44), we find that
IT(2) = zoll < CM ||z — zo||* + 1.
Hence, T maps the ball {z | ||z — z¢|| < €} into itself provided that
CMe +n<e (13.46)

This inequality can be satisfied for some € > 0 if

1
h=CMn< . (13.47)
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Using (13.45), we see that this is the condition in (13.39). In that case, the smallest
value § of € for which (13.46) holds is

§ =, (13.48)

where 7 is the smallest root of the equation h72 — 7+ 1 =0, or

1—-+v/1-4

Using (13.45) and (13.49) in (13.48), we find that ¢ is given by (13.40). This proves
that T : Bs — Bs.

Next, we prove that T is a contraction on By. Differentiating (13.42) and (13.43),
we find that

T'(x) = = [f'(20)] " [/'(@) = f'(wo)].
Hence, using (13.45) and the Lipschitz condition on f’ in (13.38), we have
1T ()| < M||f'(z) = f'(zo)l| < CM||lz — 2ol < CMS  for all z € Bs.
It follows from (13.47), (13.48), and (13.49) that

1—+1—-4h

CMo = 5

1
< -
-2
We therefore have ||T"(z)|| <1/2 in Bs, so from the mean value theorem
1
IT(@) =TIl < Sllz—yll  forall z,y € Bs.

The theorem now follows from the contraction mapping theorem. O

Note that the conditions (13.39) and Bs C U in the hypotheses of the theorem
are satisfied when zg is sufficiently close to a solution of f(z) = 0 at which the
derivative of f is nonsingular.

A significant practical difficulty in the implementation of Newton’s method, and
its modifications, is that the iterates may diverge unless the starting point is very
close to the solution. For this reason, Newton’s method is often used in conjunction
with continuation methods, in which one slowly varies a parameter in the equation,
and uses the solution for a previous parameter value as an initial guess for the
Newton iterations for the next parameter value.

13.6 Linearized stability

We consider an equilibrium of the evolution equation

ur = f(u), (13.50)
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where f : D(f) C X — X is a vector field on a Banach space X. We assume that
the initial value problem for (13.50) is well posed, meaning that there is a unique
solution w : [0,00) — X for every initial condition u(0) = ug € X, and u(t) depends
continuously on ug with respect to the normed topology on X. A state w € X is an
equilibrium of (13.50) if f(u) = 0. There are many inequivalent ways to define the
stability of an equilibrium. We only consider the two most common ways here.

Definition 13.28 An equilibrium @ of (13.50) is stable if for every neighborhood
U of @ there is a neighborhood V of @ such that if u(0) € V, then u(t) € U for
all t > 0. If @ is not stable, then it is unstable. An equilibrium % is asymptotically
stable if it is stable and there is a neighborhood W of @ such that u(t) — w as
t — oo whenever u(0) € W.

Thus, if a stable equilibrium is perturbed, the perturbation remains small, and
if an asymptotically stable equilibrium is perturbed, then the perturbation remains
small and eventually dies out.

The linearization of (13.50) about @ is

vy = Av, where A = f' (w). (13.51)

We define the linear stability of an equilibrium @ of (13.50) in terms of the stability
of the equilibrium v = 0 of (13.51).

Definition 13.29 The equilibrium u = @ of (13.50) is linearly stable, or linearly
asymptotically stable, if v = 0 is a stable, or asymptotically stable, equilibrium of
(13.51), respectively.

In the case of ODEs, we have the following result.

Theorem 13.30 Suppose that f : R* — R” is continuously differentiable and
f (@) = 0. If all the eigenvalues of f’(w) have a strictly negative real part, then @
is an asymptotically stable equilibrium of the system of ODEs o = f(u). If one of
the eigenvalues of f' (u) has a strictly positive real part, then = is unstable.

The stability part of this theorem is proved by the construction of a suitable
quadratic Liapounov function V : X — R for (13.50) that has a minimum at @ and
the property that V; < 0 on solutions of (13.50) in a neighborhood of @ (see [21]).

Example 13.31 Consider a 2 x 2 system of ODEs for (u,v) € R?:
U= f(ua ’U), U= g(u, U)- (1352)

The eigenvalues of the derivative

— fU(EJ ) fU (ﬂa
A‘(gm,) g0 (@

SIS

~—

) ) (13.53)

SRS

Y



Linearized stability 405

have strictly negative real parts if and only if

trA = f, (w,v) + g, (u,?) <O,
det A = fu (W, ?) gv (@, ?) — fo (W, ?) gu (4, ) > 0. (13.54)

Thus, an equilibrium (@, v) of (13.52) is asymptotically stable when the condition
in (13.54) holds.

If the spectrum of f' (u) touches the imaginary axis, meaning that all points in
the spectrum have nonpositive real parts and the real part of at least one point is
equal to zero, then the equilibrium % may be linearly stable, but we cannot draw
conclusions about the nonlinear stability of & from its linearized stability alone.

Example 13.32 Consider the following 2 x 2 system of ODEs for (u,v) € R?:

u:,uu—v—a(u2+1)2)u,

v=u+pmw —a (v +v*)v,

where «, p are real parameters. It is convenient to write this equation in complex
form for w =u +iv € C as

W= (u+ i) w— a|w|?w. (13.55)

This equation may be solved by writing it in the polar form

F=pr —ard, 9:1,

where
i0 2 1 2 v
w=re’, r=+\vu?2+v% tanf=—.
u

If p < 0, then the equilibrium w = 0 is asymptotically stable, and if g > 0 it is
unstable. If g = 0, then the eigenvalues of the linearization are purely imaginary,
and the equilibrium w = 0 is linearly stable. It is asymptotically stable if a > 0,
stable if & = 0, and unstable if o < 0.

When o and p have the same sign, (13.55) has a periodic limit cycle solution

_ [H
w(t) = o€
As p increases through zero, the equilibrium w = 0 becomes unstable. If a > 0,
then a stable limit cycle appears for g > 0, while if & < 0, then an unstable limit
cycle shrinks down to the equilibrium w = 0 and disappears for g > 0. This
type of bifurcation is called a Hopf bifurcation. The Hopf bifurcation is said to be
supercritical if o > 0 and subcritical if o < 0.
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For PDEs, the relationship between different types of stability, and between
linear and nonlinear stability, can be rather subtle. It is usually true that if the
spectrum of f’(w) is contained in a left-half plane {\ € C | Re\ < w} for some
w < 0, then @ is linearly asymptotically stable (see the discussion of (9.24)), and
that linear asymptotic stability implies nonlinear asymptotic stability, but there
are exceptions. Moreover, the linearized equation may have continuous or residual
spectrum in addition to, or instead of, the pure point spectrum that occurs for
ODE:s.

We will illustrate the linearization of nonlinear PDEs by considering an impor-
tant class of examples called reaction-diffusion equations. These nonlinear PDEs
describe the dynamics of spatially dependent chemical concentrations and temper-
ature in the presence of chemical reactions and the diffusion of reactants and heat.
They also model the population of spatially distributed species in ecology. The
general form of a reaction-diffusion equation for u(z,t) € R™, where z € R" and
t>0,is

ug = DAu + f(u). (13.56)

The effect of diffusion is described by the linear term DAw, where D is a positive
definite, symmetric m X m matrix, called the diffusion matrix. In most applications,
D is diagonal, and, for simplicity, we assume that D is constant. The effect of
reactions is described by the term f(u), where f : R™ — R™ is a given nonlinear
function. For models of chemical reactions, f is often a polynomial in the chemical
concentrations, as follows from the law of mass action, with coefficients that depend
exponentially on the temperature. To be specific, we consider a reaction-diffusion
equation for a function u defined on a regular, bounded domain 2 C R" subject to
Dirichlet boundary conditions. In that case, we supplement (13.56) with the initial
and boundary conditions

u(z,t) =0 for x € 90 and ¢ > 0,
u(z,0) = ug(x) for z € Q.

An equilibrium solution @ : Q@ C R™ — R™ of (13.56) satisfies the elliptic system
of PDEs

DAw + f(u) =0,
u(z) =0 for z € 99.

To study the linear stability of u, we have to compute the Fréchet derivative of the
map F' given by

F(u) = DAu + f(u). (13.57)

The derivative of the linear term is trivial to compute, so we only need to compute
the derivative of the nonlinear term, defined on a suitable space of functions.
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Lemma 13.33 Suppose that @ C R” is a regular, bounded open domain, and
f:R™ —» R™ is a twice continuously differentiable function with derivative f’ :
R™ — R™*™. Then the map Ny : H*(Q) — L2(Q) defined by Ny(u) = f(u)
is differentiable for every k > n/2, and its derivative N (u) : H k(Q) — L2(Q) at
u € H%(Q), is given by

Nj(u)(0) = f(u)o.

Proof. Let |u| denote the Euclidean norm of w € R™. Since f is twice continu-
ously differentiable, for each R > 0 there is constant C'(R) such that

|f(u+h) = f(u) = f'(wo] < C(R)[vf?

for all u,v € R™ such that |u| < R and |u + v| < R. By the Sobolev embedding
theorem (Theorem 12.70) and the assumption that k > n/2, there is a constant M
such that

llulloo < MJwl|pe-

By combining these inequalities and integrating the result over 2, we obtain for
[|lv]|ge < 1 that

1f(u+v) = fu) = f(uw)oll2 Cl|v?|
Cvlloollvllz2

C"lvll3

ININ A

where C = C(R) with R = ||u|lec + M, C', and C" are constants depending on
the bounded domain Q and u, but not on v. The result follows by dividing this
equation by ||v||g+ and taking the limit of the result as ||v||g+ — 0. O

The Laplacian maps H* into L? if k > 2. Thus, it follows that if £ > 2 and
k > n/2, then the map F defined in (13.57), where

F:D(F)C H* Q) - L*(Q), D(F)={ue H*Q)|u=0o0n00},
is differentiable, and the derivative of F' at @ € D(F)) is given by
F' (W)v = DAv + Av,
where A = f' (u). The linearization of (13.56) is therefore
vy = DAv + Awv. (13.58)

As for the Laplacian on a regular bounded domain, the spectrum of F' (u) consists
entirely of eigenvalues. The matrix A need not be symmetric, and if it is not, then
F' (mw) is not self-adjoint, so its eigenvalues need not be real. The equilibrium % is
linearly asymptotically stable if every eigenvalue of F” (@) has strictly negative real
part.
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In general, the equilibrium % is a function of z, so that F' (w) is a variable
coefficient elliptic differential operator. It is usually not possible to compute its
eigenvalues explicitly, although the eigenvalues with the largest real parts can be
computed numerically. If, however, @ is a constant state and the reaction-diffusion
equation is posed on R", or T", then we can use Fourier analysis to study the
spectrum of the linearization. We illustrate this procedure with a discussion of the
Turing instability, which was proposed by Turing in 1952 as a mechanism for the
development of spatial patterns from a spatially uniform state, and in particular as
a possible mechanism for morphogenesis.

The state u € R™ is a spatially uniform equilibrium of (13.56) if and only if
f (@) = 0. We look for solutions of the linearization (13.58) of (13.56) at @ of the
form

v(z,t) = et TG, (13.59)

where k € R*, A € C, and ¥ € C™ \ 0. General solutions of the IVP for (13.58)
may be obtained from these solutions by use of the Fourier transform. The solution
(13.59) grows exponentially in time if ReA > 0. Thus, u is linearly unstable if
Re A > 0 for some k € R™. The use of (13.59) in (13.58) implies that

(—|k]>D + A) ¥ = 0. (13.60)

It follows that A is an eigenvalue of —|k|?D + A. Turing observed that —|k|?D + A
may have an eigenvalue with positive real part for some |k| > 0 even though all the
eigenvalues of A have negative real part. In that case, @ is an asymptotically stable
equilibrium of the reaction equations 4 = f(u), and is therefore stable to spatially
uniform perturbations, but is unstable to spatially nonuniform perturbations. The
growth of spatially unstable perturbations, and the possible saturation of the growth
by nonlinear effects, leads to the formation of spatial patterns from a spatially
uniform state. This instability is called a Turing instability or a diffusion-driven
instability.

The simplest system that exhibits Turing instability is a 2 x 2 system of reaction
diffusion equations for (u,v) € R? with a diagonal diffusion matrix D = diag(u, v),
where u,v > 0:

Uy = HAU + f(uav)a
v = VAV + g(u,v). (13.61)

Here, f,g : R?> — R are given functions that describe the reaction equations. The
eigenvalue problem (13.60) for (13.61)is
)= (%)

( —kPp+ fu fo ) (
Gu _|k|2’/+gv

where we do not indicate explicitly that the derivatives of f, g are evaluated at
u=T,v="7.

<) )
<) )
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The eigenvalues A are solutions of the quadratic equation
N = [futgo— kP (w+v)] X+ R (k) =0, (13.62)
where
h(|k?) = polkl* = (pgo + vfu) [k + fugo — fogu-

From (13.54), the equilibrium state is stable to spatially uniform perturbations with
kE=0if

fu + Gu < Oa fugv - fvgu > 0. (1363)

The quadratic equation (13.62) for A then has a root with positive real part if and
only if h (|k|?) < 0, and this can occur for some |k| > 0 only if

1g + v fu > 0. (13.64)

In that case, h (|k|?) has a minimum at |k| = &, where

2 = Mgy Vi
2uv ]
and h (x?) < 0 if and only if
Ngv + Vfu > 2\//J/V (fugv - fvgu) (1365)

Thus, the conditions (13.63)—(13.65) imply that a Turing instability occurs in the
system defined by (13.61).

At first sight, it may seem surprising that diffusion can cause instability in a state
that is stable to spatially uniform perturbations, but there is a simple explanation.
It follows from (13.63) and (13.64) that f, and g, have opposite signs and p #
v. This difference between the diffusivities is essential for the Turing instability.
Exchanging v and v, if necessary, we may assume that f, < 0 and g, > 0, when
p > v. Furthermore, replacing v by —w, if necessary, we find that the sign structure
of the entries in the matrix A of the derivative of the reaction terms in a system
that is subject to a Turing instability can always be put in the form

=(20)

In this case, we call v an activator because, in the absence of diffusion, it grows
exponentially in time when v = 0, and we call u an inhibitor because positive values
of u reduce the growth of v. If v = 0, then the inhibitor u decays exponentially
to its equilibrium state. The equilibrium is a stable state of the reaction equations
because a positive perturbation in the activator from its equilibrium value causes
a growth in the inhibitor, and this in turn stabilizes the activator. We have seen
that u > v, which means that the diffusivity of the inhibitor is greater than the
diffusivity of the activator. If a spatially nonuniform perturbation in the activator
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begins to grow at some point, then the inhibitor diffuses away faster than than the
activator, and as a result the generation of inhibitor may not be sufficient to prevent
the continued growth of the activator.

Morphogenesis is too complex to be explained by a Turing instability. It has been
suggested, however, that some biological patterns, such as coat pigmentations, are
the result of a Turing instability. Turing instability has been observed in chemically
reacting systems in gels, although the first successful experimental observations took
place almost forty years after Turing’s original theoretical work.

13.7 The calculus of variations

The calculus of variations is an enormous subject, with applications to physics, ge-
ometry, and optimization theory, among many other areas. The following discussion
is therefore only a brief, and incomplete, introduction.

A basic problem in the calculus of variations is the minimization of a functional.
Suppose that I : X — R is a real-valued functional defined on a Hilbert or Banach
space X . If I has alocal minimum at Z, then for each h € X, the function I(Z+eh) of
the scalar parameter € has a local minimum at € = 0. Therefore, if I is differentiable
at =, then

A r@teh)| =r@h=o,

de o
so the derivative of I at T is zero. We call a point where the derivative of a functional
I vanishes a critical point or stationary point of I. Thus, a necessary condition for a
differentiable functional I to have a minimum at an interior point T of its domain is
that 7 is a critical point of I. In searching for the minimizers of I, we may therefore
restrict attention to the critical points of I, as well as any boundary points of the
domain of I, and points where I fails to be differentiable. A critical point need not
be a local minimum. For example, it could be a local maximum or a saddle point.
We will not discuss here sufficient conditions for a critical point to be a minimum,
but critical points of functionals are often of interest in their own right.

In this section, we introduce the fundamental ideas in the calculus of variations

by a study of functionals of the form

1
I6) = [ L(z,u(x), Du(w)) do, (13.66)
0
where u : [0,1] = R™ is a continuously differentiable function of one variable, and
L:[0,1]]xR™ xR™ - R

is a given smooth function, called the Lagrangian. It is convenient to use the
notation D for the derivative with respect to z, so Du = /.
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We will derive an ordinary differential equation, called the Fuler-Lagrange equation,
that is satisfied by any sufficiently smooth critical point of I. Abusing notation
slightly, we write

Ly (&, u(e), Du(z)) = 5~ L(z,3,v)

y=u(z), v=Du(z)

Lo (z,u(z), Du(@) = 2L L(z,y,v)

6?] y=u(z),v=Du(z)
Lou(z,u(@), Du(x)) = o L(z,y,v) .
v y=u(2), v=Du(x)
If u = (u1,us,...,uny,) takes values in R™, then these partial derivatives denote the

gradient, and
L,= (LU17Lu27 .- -;Lum) ’ Lp, = (LDUULDuz; . -aLDum)
also take values in R™. If ¢ = (¢1,92,-- -, @m) : [0,1] = R™, then we write
m m
LuQO:ZLu,‘pu LDu"P:ZLDu;(pi-
i=1 i=1
For example, the chain rule implies that
DL (z,u(z), Du(z)) = Lz (z,u(z), Du(z)) + Ly (z,u(z), Du(z)) - Du(z)
+Lpu(z,u(z), Du(z)) - D*u(z).

There are many possible choices for the space X of admissible functions on which
I is defined, and the “correct” space in which to look for a minimizer, if one exists
at all, depends in general on the functional. For definiteness, we first suppose that
u is a continuously differentiable function that satisfies the boundary conditions
u(0) =u(1) = 0. Then I : X — R, where

X ={ue C'([0,1]) | u(0) = u(1) = 0}.

The functional I is differentiable on X, and I'(u) : X — R is given by

d
I'u)p = Zelutep)

e=0

d 1
= —/ L(z,u + ep, Du + eDy) dx
de 0 =0

1

/ {Ly(z,u,Du) - ¢ + Lpy(z,u, Du) - Dy} dz.
0

Thus, if u is a critical point of I, we have

1
/ {Ly(z,u,Du) - ¢ + Lpy(z,u, Du) - Do} dz =0 for all p € X.
0
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Suppose that the critical point u belongs to C?([0,1]). We may then integrate by
parts in this equation to obtain

1
/ {Ly(z,u, Du) — D [Lpy(z,u, Du)]} - odz =0 for all p € X. (13.67)
0

The boundary terms vanish because ¢ is zero at the endpoints. To obtain the
differential equation satisfied by u, we use the following fundamental lemma of the
calculus of variations, or du Bois-Reymond lemma.

Lemma 13.34 (Fundamental) If f : [a,b] — R is a continuous function such
that

b
/ f@)p(x)de =0 for every ¢ € C® ((a, b)),
then f(z) =0 for every a <z < b.

Proof. Suppose that f is not identically zero. Then there is an zy € (a,b) such
that f(zo) # 0. Multiplying f by —1, if necessary, we may assume that f(zo) > 0.
Since f is continuous, there is an interval I C (a,b) such that

£(@) — flao)| < 3f(z0)  foreveryz e,

which implies that f(z) > f(zo)/2 for every z € I. Let ¢ € C* ((a,b)) be a
nonnegative function with integral equal to one and support contained in I. Then

b 1
/ f(@)pla)da > L f(a0) > 0.

This contradiction proves the lemma. O

Applying the fundamental lemma componentwise to (13.67), we see that every
C?-critical point u of the functional I defined in (13.66) satisfies the following Euler-
Lagrange equation:

—DLpy+ Ly, =0. (13.68)

If u = (u1,uz,...,un) is an m-vector-valued function, where u; : [0,1] = R, then
the component form of the Euler-Lagrange equation (13.68) is

_DLDui+Lu;:0, i:1,2,...,m.

Using the chain rule to expand the derivative, we may write this equation as

m
- Z {LDu,-DujDzuj + LD’LH’UJ‘DUJ'} - LDuia: + Lu,’ = 07 P = 1a2a ceey M.

=1
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If the second derivative Lpyp, of L with respect to Du, with matrix

m

(LD’U,,,' DuJ- )

ij=1"

is nonsingular, then we may solve this equation for D?u to obtain a second-order
system of equations of the form D?u = f(z,u, Du).

Exactly the same argument applies if we minimize I over the affine space of
functions u that satisfy the nonhomogeneous boundary conditions

u(0) = a, u(l) = b, (13.69)

since u + ey satisfies the same boundary conditions as u if and only if ¢(0) =
©(1) = 0. A C?-critical point of I on the space of functions u € C*([0,1]) such
that 4(0) = a and u(1) = b therefore satisfies the ODE (13.68) and the boundary
conditions (13.69).

Example 13.35 Suppose that a curve y = u(x) connects the origin (0,0) and a
point (a, b) in the (z, y)-plane. The length I(u) of the curve is given by the arclength

integral
I(u) = / \/1+4 (Du)? de.
0

The corresponding Euler-Lagrange equation is
-D & =0,
1+ (Du)?

D?>u=0.

which simplifies to

The solution is a linear function of x, and the shortest curve connecting two points
is a straight line.

Example 13.36 One of the original problems in the calculus of variations was the
brachistochrone problem, first formulated by Galileo in 1638, who suggested incor-
rectly that the solution is a circular arc. The problem was formulated independently
and solved correctly by Johann Bernoulli in 1697. Suppose that a frictionless par-
ticle, or bead, slides along a curve y = u(z) under the influence of gravity. We
choose the y coordinate downwards, so that gravity acts in the positive y-direction.
If the particle starts at the origin O = (0,0) with zero velocity, then conservation
of energy implies that after it has dropped a vertical distance y, the velocity v of
the particle satisfies

1

5'02 = gy,
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where g is the acceleration due to gravity. Therefore, v = 1/2gy. The time I(u)
taken by the particle to move from the origin O to a point P = (a,b) on the curve
is given by the integral of arclength divided by velocity, or

[ [1+ (Du)®
I(u)—/0 de.

The brachistochrone problem is to find the curve connecting given points O and
P such that a particle starting at rest slides from O to P along the curve in the
shortest possible time. The curve should be steep initially, so the particle accelerates
rapidly, but it should not be too steep, because this increases its arclength. The
required curve satisfies the Euler-Lagrange equation associated with I, which is

Du 1 [1+ (Du)? _
P ( 2gu [l + (Du)2]> "o\ T agwr (13.70)

In order to solve (13.70), we will show that the Euler-Lagrange equation has a
first integral whenever the Lagrangian does not depend explicitly on the independent
variable z. This result is one of the simplest instances of Noether’s theorem, which
connects symmetries of the Lagrangian with conservation laws of the Euler-Lagrange
equation.

Proposition 13.37 If L = L(u, Du) is independent of x, then any solution u of
the Euler-Lagrange equation (13.68) satisfies the conservation law

Lpy (u, Du) - Du — L (u, Du) = constant.
Proof. We define H : R x R™ — R by
H(u, Du) = Lpy(u, Du) - Du — L(u, Du).
Then, using the chain rule, we find that
DH = (DLpy — Ly) - Du.
Hence, if u satisfies (13.68), then H is constant. O

Example 13.38 The Lagrangian for brachistochrone problem in Example 13.36,

1+ (Du)?

L(u,Du) = 594

Y

is independent of z. Proposition 13.37 therefore implies that (13.70) has the first

integral
(Du)* _ L @w’
A 2 7
29u [1 + (Du)z] 9
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where ¢ is a constant of integration. This equation simplifies to
2gcu [1 + (Du)2] =1.

Writing the curve y = u(z) in the parametric form z = z(t), y = y(t), where
y(t) = u(x(t)) so Du = /&, and setting y(t) = k(1 — cost) where k = 1/(4gc?), we
find that
Z = k(1 — cost).
The solution through the points (0,0) and (a, b) is therefore the cycloid
z(t) = k(t —sint), y(t) = k(1 — cost)
for 0 <t < T. The constants of integration k, T" are chosen so that
k(T —sinT) =a, k(1 —cosT) =b.

In view of the importance of the expression on the left-hand side of the Euler-
Lagrange equation (13.68), we make the following definition.

Definition 13.39 The variational derivative, or functional derivative, of the func-
tional T in (13.66) at a smooth function u is the function

oI
— = —DLpy + L,.
ou

The Fuler operator Ly of I is the operator

i

- u

that maps a function u to the variational derivative of I at w.

L](U)

Using this notation, we may write the Euler-Lagrange equation for I as

oI
S0 0.
If u and ¢ are sufficiently smooth, and ¢ is compactly supported in (0, 1), then
1
oI
i[(u + €p) = —(z) - p(z) d. (13.71)
d€ =0 0 éu

We may think of the L2-inner product

(u,v) = /1 u(z) - v(z) dz
0

as a continuous analog of the Euclidean inner product on R”,

n
<u7 U) = Z UiV;,
=1
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in which an integral over the continuous index x replaces a sum over the discrete
index . Equation (13.71) is the continuous analog of the formula for the directional
derivative of a function I : R* = R:

d
—1I
7 (u + €p)

", oI

Thus, the variational derivative of a functional defined on a suitable subspace of L?
is a formal continuous analog of the gradient of a function defined on R". From
(13.71), we may write the value of the variational derivative at z formally as

€

oI d
@(a:) = al(u + €dy)

e=0

where ¢, is the delta-function supported at z. Thus, heuristically, the value of
0I/0u at the point x measures the sensitivity of I to changes in u at z.

In the above analysis, we looked for critical points of the functional I in (13.66),
defined on a restricted class of admissible functions that satisfy prescribed Dirichlet
conditions at the endpoints. Suppose, instead, we look for critical points of I(u)
without imposing any boundary conditions on the admissible functions u, so that
I: X — R where X = C'(]0,1]). If a critical point u belongs to C2([0,1]), then
exactly the same argument as before implies that

1
/ {Ly(z,u,Du) — DLpy(z,u, Du)} - pdx = — [Lpy(z,u, Du) - cp](l), (13.72)
0

for all ¢ € C1([0,1]). The boundary terms arising from the integration by parts
need not vanish, since ¢ is not required to vanish at the endpoints. If, however, we
first consider (13.72) for functions ¢ that do vanish at the endpoints, then we see,
as before, that v must satisfy the Euler-Lagrange equation (13.68). It then follows
from (13.72) that

[Low(z,u,Du)-¢lg =0  for all p € C([0,1]).

Choosing a smooth function ¢ : [0,1] = R™ such that ¢;(0) = 1, ¢;(1) = 0, or
i(0) =0, ¢;(1) = 1, with all other components zero at both endpoints, we see that
the critical point u must satisfy the boundary conditions

Lpy(x,u,Du) =0 when z =0, 1.

These boundary conditions are called natural boundary conditions or free boundary
conditions for I, since they are the ones picked out automatically by the variational
principle.

A function N(z,y,v) is called a null Lagrangian if the functional

F(u) = /N(a:,u,Du) dz
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has the property that Lg(u) = 0 for all smooth functions w. If L and L are
two Lagrangians that differ by a null Lagrangian, then the associated variational
principles have the same Euler-Lagrange equations, but they may have different
natural boundary conditions. Null Lagrangians are also of interest in other contexts.

Example 13.40 If v : R — R, the Lagrangian N = Du is a null Lagrangian, since
the Euler operator of the associated functional F' = [ N dz is

Ly(u) = —DNp, = —D1 = 0.

The Euler-Lagrange equation of the functional

L
I,(u) = / (§(Du)2 + aDu — fu> dz
0
is independent of a:
-D*u—f=0;
but the natural boundary conditions do depend on a:

Du+a=0 when z =0, 1.

13.8 Hamilton’s equation and classical mechanics

If the Lagrangian L(z,y,v) is a convex function of v, we may use a Legendre trans-
form to rewrite the second-order Euler-Lagrange equation (13.68) as a first-order,
Hamiltonian system of ODEs. We begin by describing the Legendre transform.
Let f : Q@ C R* — R be a twice continuously differentiable function defined on
a convex, open set 2. We say that f is uniformly convex if the second derivative

f'(z) R xR* - R
is positive definite for every z € (2, meaning that
f"(z) (h,h) >0  for all he R™\ {0}.
This condition is equivalent to the positive definiteness of the Hessian matriz of f,
(05
0z;0z;)

A uniformly convex function is strictly convex (see Exercise 13.16). We define the
gradient mapping ¢ : Q — Q* associated with f by

o(z) = f'(z), QO ={z* € R"|z* = p(x) for some z € N}. (13.73)

Geometrically, f'(z) : R® — R, so z* belongs to the dual space of R". Here, we will
use the Euclidean inner product - to identify R™ with its dual.
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Lemma 13.41 If f : © — R is a uniformly convex function on a convex, open
subset Q) of R" that belongs to C?(Q), then the gradient map ¢ : @ — Q* defined
in (13.73) is a C'-diffeomorphism of € onto *.

Proof. Since ¢' = f" is nonsingular, the inverse function theorem implies that
¢ is a locally invertible C'-map. By the definition of Q*, the gradient map ¢ is
onto, so we only have to show that ¢ is globally one-to-one. Suppose that z,y € 2.
Then, since 2 is convex, we have

@) = el -) = |[ Felo+a-ond|@-y

1
| £+ =t @ -z ) d.
0

Using the positive definiteness and continuity of f, we see that

[p(@) —pW)](z—y) >0 ifz#y.
Hence ¢(z) # ¢(y) if z # y, so @ is globally invertible. O

It follows from this lemma that ¢! : Q* — Q is a C'-diffeomorphism. The
following Legendre transform is therefore well defined.

Definition 13.42 Let f : & — R be a uniformly convex function on a convex,
open subset ) of R” that belongs to C%(f2). The Legendre transform of f is the
map f* : 0* — R defined by

@)=z 2" - f(), where z = ¢! (z*).

Here, z - z* denotes the Euclidean inner product of  and z* in R, and ¢ : Q@ — Q*
is the gradient map associated with f defined in (13.73).

We call z, * dual variables or conjugate variables, and f, f* dual functions or
conjugate functions.

Example 13.43 If f : R — R is uniformly convex, then z* = ¢(z) is the slope of
the graph of f at z, which is a strictly increasing function of z. The value of f* at
x* is the difference between the values of the linear function whose graph is a line
through the origin of slope z* and f at the point where the slope of f is equal to
T*.

We now return to the variational principle for the functional I in (13.66). We
assume that the Lagrangian L(z,y,v) is a uniformly convex function of v, and we
define the Hamiltonian H(x,y,p) to be the Legendre transform of L(x,y,v) with
respect to v, meaning that

H(z,y,p) =p-v—L(z,y,v), p=Ly(z,y,v). (13.74)
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It follows from (13.74) that L, = —H,. The Euler-Lagrange equation (13.68) may
therefore be written as a first-order system of ODEs:

Du = Hy(z,u,p), Dp = —H(z,u,p).

We call such a system a Hamiltonian system.

Variational principles provide a general formulation of the laws of classical me-
chanics, which may be written in either the Lagrangian or Hamiltonian forms. This
formulation is essential in understanding the connection between classical and quan-
tum mechanics. As an example, we consider the equations for a particle of mass m
moving in R™, acted on by a conservative force field F' = —VV, where V : R* —+ R
is a smooth potential energy function. We change notation, and write the inde-
pendent variable as ¢, instead of z, and the dependent variable as ¢, instead of w.
We use a dot to denote the derivative with respect to t. A particle path for times
0 <t < T is given by a function ¢ : [0,T] - R". We define the action S(q) of a
path g to be the time-integral of the difference between the particle’s kinetic and
potential energies along the path:

ﬂ@=ATGmf—V@>M

Here, ¢2 = ¢ - ¢. The corresponding Lagrangian is

L(gd) = ymd® ~ V(a)
Thus, the action S : C*([0,T]) — R is a functional defined on the space of possible
particle paths. Hamilton’s principle of stationary action states that the actual path
traveled by a particle with given positions at ¢t = 0 and ¢ = T is a stationary point
of the action. The path therefore satisfies the Euler-Lagrange equation associated
with S, which is

mi = —VV. (13.75)

This equation is Newton’s second law.
The Lagrangian L is independent of ¢, and Proposition 13.37 implies that

1
imq'2 + V(q) = constant (13.76)

on a solution, which expresses the conservation of energy. The correspondence be-
tween the invariance of the Lagrangian under time translations and the conservation
of energy is a very general one.

Conservation of energy may be verified directly from (13.75). Taking the scalar
product of (13.75) with ¢, we obtain that

mq-G§+VV(g)-¢=0.
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Using the chain rule, we find that

% [ +vi| =0
which implies (13.76).

The reason why classical mechanics is given by a principle of stationary action is
not at all clear at the classical level, but the principle may be derived from quantum
mechanics. For example, in Feynman’s path-integral formulation of quantum me-
chanics, the action is the phase of the quantum-mechanical amplitude of a particle
path, and the classical paths are paths of stationary phase.

The Legendre transform (13.74) implies that the momentum p = mw is the dual
variable to the velocity v = ¢, and the Hamiltonian H is the total energy of the
particle:

1
H(g,p) = %zf + V(q).

The Hamiltonian form of the Euler-Lagrange equation is

1 .
q = —p, p = —VqV
m

Hamilton’s equation may itself be given a variational formulation, as the Euler-
Lagrange equation of the functional

T
Sar = [ i~ He0) d.
0
The Lagrangian function is not a uniformly convex function of the derivatives, since

it is a linear function of ¢ and is independent of p. This explains why the associated
Euler-Lagrange equation is first-order, rather than second-order.

13.9 Multiple integrals in the calculus of variations

The Euler-Lagrange equation for a functional of functions of several variables is a
PDE, rather than an ODE. Suppose that

I(u) = / L (z,u, Du) dz, (13.77)
Q
where 2 is a smooth bounded domain in R?, u :  C R® — R™, and
Du = (Dyu, Dau, . ..,Dyu)

is the derivative of u, where D; is the partial derivative with respect to z; keeping
z; fixed for j # 4. A similar calculation to the one in Section 13.7 shows that the
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Euler-Lagrange equation for I is
—> DiLp,u+ L, =0.
i=1
Example 13.44 The Euler-Lagrange equation associated with the functional

1 1
Q

is the sine-Gordon equation,

—ug + Au — sinu = Q.

We will consider the variational principle for Laplace’s equation. Similar ideas
apply to variational principles of the form (13.77) in which L is a convex function
of Du. We define a quadratic functional I : Hj(Q2) — R by

I@)zélgDm%m—fwx

where f : H}(Q) — R is a bounded linear functional on H¢(f2), meaning that
f € H1(Q2). From the Poincaré inequality in Theorem 12.77, we may use

(u,v) :/Du-Dvdx
Q
as the H}-inner product. Then

() = ¢ Jull* ~ f ()

It follows from Theorem 8.50 (see Exercise 8.20) that I has a unique minimizer
on H}(Q). This minimizer is a critical point of I, so that I'(u)(¢) = 0 for all
¢ € H}(Q), meaning that

/Du-Dgod:c+f(go)=0 for all p € H}(Q).
Q

From Definition 12.79, the minimizer u is a weak solution of Laplace’s equation,
—Au = f7

providing another proof of the existence of weak solutions.

In many problems, we are interested in minimizing a functional I : X — R
subject to a nonlinear constraint J(z) = 0, where J : X — R A constrained
minimization problem may often be replaced by an unconstrained problem by the
introduction of a Lagrange multiplier . We define F': X x R — R by

F(z,\) = I(z) — A (x).
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If (7, A) is a critical point of F', then taking the partial derivatives of F' with respect
to x and A, we see that

I'@) -\ (z) =0, J(Z) =0.

It follows that Z is a critical point of I on the constraint manifold J (z) = 0 (see
Giaquinta and Hildebrandt [14] for a detailed discussion).

Example 13.45 Consider the problem of minimizing I : H}(Q) — R given by

1
I(u) = 2 /Q |Du|? dx

1
i/QUQdHI:l.

A constraint on the value of an integral of an admissible function is called an
isoperimetric constraint. Introducing a Lagrange multiplier A € R, we consider
critical points of the functional

1 1
F(1L,)\):§‘/Q|Du|2 dx—)\(i/gu%ia:—l).

Taking the derivative of F' with respect to u, we find that a smooth critical point
satisfies

subject to the constraint

—Au = Au.

Thus, u is an eigenfunction of the Laplacian, and the Lagrange multiplier X is an
eigenvalue.

Example 13.46 Consider a function
= (uy, Uz, ..., Umy1) : Q C R - S§™ c R

from a subset 2 of n-dimensional Euclidean space into an m-dimensional sphere.
We use the notation

R m+1 ) n m+1l 6U' 2
W= D=3 Y (52) -
j=1 i=1 j=1 g

A function u that minimizes the functional
1
I(w) =+ / \Duf? da, (13.78)
2 Jo

subject to the constraint that u(z) € S™, meaning that

lu(z)]> = 1, (13.79)
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is called a harmonic map from R™ into S™. A constraint on the pointwise values of
an admissible function and its derivative is called a holonomic constraint.

In this case, the Lagrange multiplier is a function A : 2 C R® —+ R. We consider
critical points of the functional

Fu,\) = %/Q|Du|2 dx—/QA|u|2 da.

The Euler-Lagrange equation is
—Au = \u. (13.80)

Differentiating the constraint |u|> = 1, we find that u - Du = 0. Hence, taking the
scalar product of (13.80) with u, and rearranging the result, we find that

A=—u-Au=—D-(u-Du)+ |Dul’ = |Dul”.

Thus the Euler-Lagrange equation for harmonic maps from Euclidean space into a
sphere is the following nonlinear elliptic system of PDEs:

—Au = |Du|’ u.

Such harmonic maps provide a simple model for the steady state configuration of
systems with orientational order, such as liquid crystal director fields. An interesting
feature of the solutions is the possible presence of topological defects in the field u
of unit vectors.

13.10 References

Newton’s method is discussed in Kantorovich and Akilov [27]. For a discussion
of evolution equations and Liapounov functions, see Walker [54]. For more on
symmetries and variational principles, see Olver [41]. For classical mechanics, see
Arnold [2] and Gallavotti [13]. The Legendre tranformation in convex analysis is
described in Rockafellar [45]. The classical calculus of variations is discussed in
much more depth in Giaquinta and Hildebrandt [14]. An indication of the extent
of the subject is that, despite the fact that these two volumes have a total length
of over 1,000 pages, the authors state that their account is an introduction to the
subject, and is not encyclopaedic!

13.11 Exercises
Exercise 13.1 Prove that the derivative of a differentiable map is unique.

Exercise 13.2 Prove that if A : X — Y is a bounded linear map, then A is
differentiable in X, with constant Fréchet derivative equal to A itself.
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Exercise 13.3 Suppose that f,g : X — Y are two differentiable maps between
Banach spaces X, Y. Show that f + g is differentiable, and (f +¢)' = f' +¢'.

Exercise 13.4 Prove that a Fréchet differentiable map is Gateaux differentiable.

Exercise 13.5 Define the function f : R? = R by

2

fay)= s for (o) #00)

and f(0,0) = 0. Show that the directional derivatives of f at the origin exist in
every direction, but f is not continuous or Fréchet differentiable at the origin.

Exercise 13.6 Let £ : R x [0,1] = R be a continuous function such that for each
t € [0,1], the function k(-,t) is in C*(R). Define a functional f : C([0,1]) = R by

1
fw = [ k(o0
0
Determine the differentiability properties of f.

Exercise 13.7 Let f: R — R be an increasing function such that

_ [ 1/n if 1/n—1/(4n?) <z < 1/n+1/(4n?),
/(@) _{ z+O0(x?) asz — 0,

where n € N. Show that f/(0) # 0, but f is not locally invertible at 0. Why doesn’t
this example contradict the inverse function theorem?

Exercise 13.8 Consider the BVP

2

v’ = p?sinv, " = p*ucosv,
ul

0) =u(1) =0, v(0)=uv'(1)=0.

Show that there are no solutions that bifurcate off the trivial solution u = v = 0
unless p € R is a solution of

1+ cos pcosh u = 0.

Exercise 13.9 Suppose that H is a Hilbert space and F' : H x R — H is a con-
tinuously differentiable operator such that F(0,u) =0 forall py € R, sou =01is a
solution branch of the equation F'(u,pu) = 0. Suppose that D, F(0,0) : H — H is a
singular Fredholm operator (see Definition 8.22), assumed self-adjoint for simplicity.
Then H = M®N where M = ran D, F(0,0) and N' = ker D,,F(0,0). Let P denote
the orthogonal projection of H onto M and @ the orthogonal projection onto N.
Prove that there is are open neighborhoods U C H, V C M, and I C R of 0 and a
continuously differentiable function ¢ : V' x I — M such that (u,u) € U x [ is a
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solution of F'(u,u) = 0 if and only if u = (v, u) + v where v € V is a solution of
G(v,p) =0 with G: V x R = N defined by

G(v,p) = QF (¢(v, ) + v, 1) -

The finite-dimensional system of equations G(v,u) = 0 for v € ker D,F(0,0)
is called the bifurcation equation associated with the original, possibly infinite-
dimensional, system of equations F'(u, ) = 0 . This procedure is called Liapounov-
Schmidt reduction. With appropriate modifications, a similar procedure applies to
a continuously differentiable map F': X x R — Y between Banach spaces X, Y.

Exercise 13.10 Suppose that f : H — R is a differentiable functional on a Hilbert
space H. Show that there is a function Vf : H — H, called the gradient of f, such
that

f'(@)h = (Vf(z),h).
Compute the gradient of the function f(z) = ||=||?.

Exercise 13.11 Prove that the closure R([a,b]) of the space S([a, b]) of step func-
tions in the space B([a, b]) of bounded functions f : [a,b] — X on a compact interval
[a,b] into a Banach space X, equipped with the sup-norm, includes all continuous
functions. Show that the characteristic function of the rationals in [a,b] does not
belong to R([a,b]).

Exercise 13.12 Let A: X — X be a bounded linear operator on a Banach space
X, and f: R — X a continuous, vector-valued function. Show that the solution of
the nonhomogeneous linear evolution equation

xy = Az + f, z(0) = =g

is given by

o(t) = T(t)zo + /0 T(t - 5)f(s) ds,

where T'(t) = e*4 is the solution operator of the homogeneous equation. This result
is called Duhamel’s formula.

Exercise 13.13 Suppose that 7' > 0 and T # 2nnw for any n € N. Write out the
iteration scheme of the modified Newton method for finding T-periodic solutions of
the forced pendulum,

U+ sinu = h.

where h is a given T-periodic function. Assume that the initial point for the modified
Newton’s method is ug = 0. Find an estimate on ||h|| that is sufficient to ensure
convergence of the modified Newton iterates, and estimate the norm ||ul|c2 of the
corresponding T-periodic solution.
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Exercise 13.14 Derive the Euler-Lagrange equation satisfied by C*-critical points
of a functional I : C?%([0,1]) — R defined by

1
I(u) =/ L (m,u,Du,Dzu) dz,
0

where the Lagrangian L : R x R™ x R™ x R™ — R is a continuously differentiable
function.

Exercise 13.15 The area of a surface obtained by revolving the graph y = u(x)
about the z-axis, where 0 < z < 1, is given by

I(u) = 27 / " w@W/1+ [Du)] de.
0

Write out the Euler-Lagrange equation, and the first integral that follows from the
independence of the Lagrangian of z. Show that the curve with smallest surface
area of revolution connecting given endpoint u(0) = a, u(1) = b is a catenary.

Exercise 13.16 Prove that a uniformly convex function f : @ C R® — R on an
open, convex set (2 is strictly convex.

Exercise 13.17 Compute the Legendre transform of:

(a) f(z) =¢€®—1, where f: R = R;
(b) f(z) = 27 Az/2 where A is an n x n positive definite matrix, and f : R* —
R.

Exercise 13.18 Compute the Euler-Lagrange equation of the quadratic functional

"1 ou Ou
i,j=1 L

where a;; = aj; without loss of generality. Show that the resulting linear PDE is
formally self-adjoint.

Exercise 13.19 Let 2 be a regular, bounded open subset of R™. Show that

2d
M= inf {M}

uweHL(Q) fg |u|?dz
u#0
is the smallest eigenvalue of the Dirichlet problem for the Laplacian on {2, and that
the infimum is attained at the corresponding eigenfunctions. Use the trial function
u(z,y) = zy(1l — z — y) to obtain an upper bound on the lowest eigenvalue of the
Dirichlet Laplacian on the triangle @ = {(z,y) e R* |[0<z<1,0<y<1—z}.
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Co-semigroup, 114, 163 backwards heat equation, 164
L' norm, 4 Baker-Campbell-Hausdorff formula, 123
L* norm, 5 ball
LP spaces, 351 closed, 14
local, 362 open, 14
e-net, 24 unit, 4
o-algebra, 335 Banach algebra, 39
Borel, 336, 338 Banach space, 8, 91
o-finite, 337 of linear operators, 110

Banach-Alaoglu theorem, 119, 208
Banach-Steinhaus theorem, 204

absolute convergence, 8
base of open sets, 84

in a normed linear space, 33

action, 419 basis
activator, 409 Halflnel, 94 |
adjoint orthonormal, 133

Schauder, 94
Bernstein polynomials, 40
Bessel function, spherical, 279
Bessel’s inequality, 137
bifurcation equation, 425
bifurcation theory, 399
o - Biot-Savart law, 284
almost' periodic function, 135 Birkhoff ergodic theorem, 204
analytic, 220 Bolzano-Weierstrass theorem, 23

of a bounded operator, 193

of an unbounded operator, 246
advection-diffusion equation, 279
Airy’s equation, 329
algebra, 109
almost everywhere, 15, 340

annihilation operator, 147 Borel
antilinear, 126 o-algebra, 336, 338
approximate identity, 151 set, 336
approximate spectrum, 241 Born approximation, 69
approximation scheme, 114 boundary, 88
consistent, 114 boundary conditions, 250
convergent, 114 boundary value problem, 69, 249
stable, 115 bounded
Arzela-Ascoli theorem, 45 from above, 9
asymptotically stable, 235, 404 from below, 9
averaging kernel, 260 function, 11
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linear operator, 95
set, 9

bounded linear transformation theorem,
100

brachistochrone problem, 413

Brownian motion, 327

calculus of variations, 410, 420
Cantor function, 32
Cantor set, 16
Cartesian product, 3
Cauchy

sequence, 7

unordered sum, 136
Cauchy-Schwarz inequality, 128, 357
Central limit theorem, 320
chain rule, 388
characteristic function

of a random variable, 323

of a set, 343
characteristic polynomial, 217
circle map, 172
classical solution, 370
closed

ball, 14

operator, 247

set, 15
closure, 16, 88

sequential, 86
cluster point, 31
codimension, 187, 212
coercive, 34, 211
commutator, 109
compact

metric space, 25

operator, 110

relatively, 27

support, 39

topological space, 83
compact resolvent, 227
complete measure space, 339
complete metric space, 8

of continuous functions, 38
complete orthonormal set, 139
completion

of a measure space, 339

of a metric space, 19
complex measure, 337
conjugate exponent, Sobolev, 366
conjugate linear, 126
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connected, 89
continuous
extension, 100
function, 12
in LP, 376
random variable, 320
spectrum, 219
topological space, 83
uniformly, 13, 27
contraction, 61
contraction mapping theorem, 62
convergence
absolute, 8
of a sequence, 6
of series, 8
pointwise, 35
topological space, 82
unconditional, 136
uniform, 36
weak in Hilbert space, 204
convex
function, 209
set, 4
convolution, 150, 298, 359
operator, 329
theorem, 154, 309
countable, 30
countably additive, 335
counting measure, 337
covariance matrix of a Gaussian, 330
cover, 24
creation operator, 147
critical point, 381, 410
cylinder set, 85

d’Alembert’s solution, 185
deficiency index, 268
delta function, 253, 291
derivative of, 296
delta sequence, 299
dense, 16
derivative
distributional, 295
Fréchet, 386
functional, 415
Gateaux, 389
variational, 415
weak, 158, 295, 362
devil’s staircase, 32
diagonal argument, 46
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diagonalizable matrix, 216
diagonally dominant matrix, 79
diameter, 11
diffeomorphism, 393
differentiable, 31
differentiable map, 386
differential equation
existence and uniqueness, 73, 74
existence of solutions, 53
nonlinear, 52
differential operator, 249
diffusion equation, 161
diffusion-driven instability, 408
Dini’s monotone convergence theorem, 60
Dirac delta function, 253
direct method in the calculus of
variations, 381
direct sum, 133, 187
directional derivative, 389
Dirichlet boundary conditions, 250
Dirichlet form, 270, 372
Dirichlet kernel, 183
discrete Laplacian operator, 240
dispersive waves, 170
distance, 11
distance function, 1
distribution function, 340
distributional derivative, 295
distributions, 287, 294
tempered, 291
divergent series, 8
domain
of a linear operator, 245
regular, 365
dominated convergence theorem, 348
du Bois-Reymond lemma, 412
dual basis, 117
dual space
algebraic, 116
of LP, 361
topological, 116
duality pairing, 293
Duhamel’s formula, 425
dynamical system, 63

eigenvalue, 216
of a linear operator, 219
eigenvalue problem
Laplace’s equation, 277
Sturm-Liouville, 268

eigenvector, 216
energy norm, 373
epigraph, 33
equicontinuous, 44
equilibrium solution, 380
equivalence relation, 33
equivalent norms, 101
ergodic map, 203
ergodic theorem, 172
Birkhoff, 204
von Neumann’s mean, 201
Weyl, 173
essential supremum, 340
essentially self-adjoint, 248
Euclidean norm, 4
Euclidean norm of a matrix, 97
Euclidean space, 4
Euler operator, 415
Euler-Lagrange equation, 412
even function, 156
event, 341
exponential, 112
extended real numbers, 342
extension of an operator, 246

Fatou’s lemma, 347
Fejér kernel, 183
final conditions, 250
finite element method, 373
finite part distribution, 293
first countable, 84
fixed point, 62, 380
flow, 113
Fourier
coefficients, 153
cosine expansion, 156
series, 149
sine expansion, 156
Fourier basis, 134
Fourier transform, 301
eigenfunctions, 312
inverse transform, 305
of a characteristic function, 308
of a convolution, 304
of a delta function, 307
of a derivative, 301
of a distribution, 306
of a Gaussian, 302
of a rotationally invariant function, 330
of a Schwartz function, 301
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of a tempered distribution, 306
of a translated function, 304
of an exponential function, 308
of positive type, 329
on L', 307
on L2, 311
Fourier-Laplace transform, 310
Fréchet derivative, 386
Fréchet space, 289
fractal, 16
Fredholm alternative, 195
Fredholm integral equation, 67
Fredholm integral operator, 68
Fredholm operator, 196
free boundary conditions, 416
Fubini’s theorem, 350
function
even, odd, 156
of an operator, 232
functional, 116
linear, on Hilbert space, 190
functional calculus, 232
functional derivative, 415
fundamental lemma of the calculus of
variations, 412
fundamental theorem of calculus, 384

Géateaux derivative, 389
Gamma, function, 276
Gauss-Seidel method, 79
Gaussian, 302, 321, 341
generalized Holder inequality, 375
generator, 114
Gibbs phenomenon, 155
gradient, 425
gradient flow, 77
gradient mapping, 417
Gram-Schmidt procedure, 140
graph of an operator, 248
Green’s function, 70, 245, 253, 254, 316
of Laplace’s equation, 276
of the heat equation, 163
Green’s theorem, 250, 274
Gronwall’s inequality, 56

Holder continuous, 181, 267, 367
Holder’s inequality, 356

Haar measure, 339

Haar scaling function, 176

Haar wavelet basis, 177
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Hahn-Banach theorem, 118
Hamel basis, 94
Hamiltonian operator, 147
Hamiltonian system, 77, 419
Hardy’s inequality, 284
harmonic map, 423
Hausdorff, 82
heat equation, 69, 161
Green’s function, 318
smoothing property, 318
Heaviside step function, 254
Heine-Borel theorem, 23
Heisenberg uncertainty principle, 332
Hermite
functions, 272
polynomials, 146
Hermitian, 197
Hessian matrix, 417
Hilbert cube, 230
Hilbert space, 126
separable, 133
Hilbert transform, 316
Hilbert-Schmidt
integral operator, 231
matrix norm, 98, 127
operator, 230
hodograph method, 396
holomorphic, 220
holonomic constraint, 423
homeomorphism, 83
homogenized equation, 286
Hopf bifurcation, 405

ill-posed, 104, 164, 185
implicit function theorem, 393
independent random variable, 321
index of Fredholm operator, 196
indicator function, 323
indirect method in the calculus of
variations, 381
inequality
Cauchy-Schwarz, 357
generalized Holder, 375
Gronwall’s, 56
Holder, 356
Hardy’s, 284
isoperimetric, 170
Jensen, 355
Minkowski, 358
Poincaré, 369, 370
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Tchebyshev, 359
triangle for L? norm, 358
Young’s, 359
infimum, 9, 28, 29
inhibitor, 409
initial value problem, 52
inner product, 125
standard, 126
inner product space, 125
integrable function, 345
integral
Lebesgue, 344
Riemann, 382
interior, 88
interpolation inequality, 376
invariant subspace, 222
inverse function theorem, 380, 393
isometric embedding, 18
isometry, 18
isomorphic
Hilbert spaces, 133, 199
metric spaces, 18
isoperimetric constraint, 422
isoperimetric inequality, 170

Jacobi theta function, 319
Jacobi’s method, 79
Jacobian, 396

Jacobian matrix, 387
Jensen's inequality, 355

KdV equation, 169, 242
kernel, 102
Kronecker delta function, 117

ladder operator, 147

Lagrange multiplier, 421

Lagrangian, 410

Laplace transform, 310, 385

Laplace’s equation, 168, 273, 370
eigenvalue problem, 277
Green’s function, 276

Laplace-Beltrami equation, 278

Lax pair, 242

Lax-Milgram lemma, 373, 376

Lebesgue dominated convergence
theorem, 348

Lebesgue integral, 344

Lebesgue measure, 338

Lebesgue-Stieltjes integral, 346
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Lebesgue-Stieltjes measure, 340
Legendre functions, 272
Legendre polynomials, 145, 272
Legendre transform, 417, 418
Liapounov function, 77, 404
Liapounov-Schmidt reduction, 425
limit cycle, 405
linear asymptotic stability, 404
linear form, 116
linear functional, 116
on Hilbert space, 190
linear operator, 95
unbounded, 245
linear spaces
finite-dimensional, 106
linear stability, 404
linear subspace, 5
Lipschitz continuous, 48, 73
local L? space, 362
locally convex space, 289, 328
lower bound, 9
lower semicontinuous, 14
weakly, 209

maximum, 10, 28
maximum norm, 5
maximum principle, 72
Mazur’s theorem, 210
mean ergodic theorem, 201
mean of a function, 355
mean of a random variable, 321
mean value theorem, 32, 385
measurable
function, 341
set, 335, 336
measure, 335
o-finite, 337
complex-valued, 337
counting, 337
definition of, 336
Lebesgue, 338, 340
signed, 337
vector-valued, 337
measure preserving map, 202
measure space, 337
measure theory, 335
measure zero set, 15, 339
method of images, 331
metric, 1
metric space, 2
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complete, 8
metrizable topological space, 85
minimum, 10, 28
Minkowski’s inequality, 358
mixed boundary conditions, 250
modified Green’s function, 258
modified Newton’s method, 401
mollifier, 260
monotone, 10
monotone convergence theorem, 347
Dini’s, 60
Monte Carlo method, 175
multi-index, 287
multiplicity, 218
multiresolution analysis, 179

natural boundary conditions, 416
Navier-Stokes equations, 212
neighborhood, 17, 82
neighborhood base, 84
Nemitski operator, 392
nets, 85
Neumann boundary conditions, 250
Neumann series, 69
Neumann, von

mean ergodic theorem, 201
Newton’s method, 400
nilpotent

matrix, 122

operator, 221
Noether’s theorem, 414
nonlinear ODE, 52
nonnegative operator, 198
nonsingular linear map, 95
norm, 4

L' 4

L™ 5

equivalent, 101

Euclidean, 4

Hilbert-Schmidt, 230

maximum, 5

operator, 95

sum, 4

supremum, 36

uniform, 36, 95
normal matrix, 217
normal operator, 201
null Lagrangian, 416
null space, 102
nullity, 102
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odd function, 156
ODE
blowup, 52
existence and uniqueness, 73, 74
existence of solutions, 53
nonlinear, 52
uniqueness theorem, 57
open ball, 14
open cover, 24
open mapping theorem, 101
open set
metric spaces, 15
topological spaces, 81
operator
bounded, 95
bounded from below, 198
closed, 247
compact, 110
differential, 249
functions of, 232
Hilbert-Schmidt, 230
self-adjoint, 247
Sturm-Liouville, 252
symmetric, 247
topology, 109
trace class, 231
unitary, 199
operator
closable, 248
orbit, 172
orthogonal, 199
complement, 130
direct sum, 133
projection, 188
set, 133
vectors, 130
orthonormal basis, 133, 139
oscillatory integral, 330

parallelogram law, 129

Parseval’s identity, 139

partial derivative of a map, 392
Payley-Weiner theorem, 310
Peano existence theorem, 58
periodic boundary conditions, 250
Picard existence theorem, 58
pitchfork bifurcation, 399
Poincaré inequality, 184, 369, 370
point spectrum, 219

pointwise convergence, 343
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pointwise-a.e. convergence, 343
Poisson distribution, 341
Poisson kernel, 169
Poisson summation formula, 319
polar decomposition, 217
polarization, 129
polynomial
Bernstein, 40
Hermite, 146
Legendre, 145, 272
Tchebyshev, 146
trigonometric, 150
polynomial growth, 294
population dynamics, 64
positive definite operator, 198
positive operator, 198
power set, 82
pre-Hilbert space, 125
precompact, 27
subset of Hilbert space, 228
principal value distribution, 293
probability measure, 340
probability space, 340
product o-algebra, 349
product measure, 349
projection, 187, 188
projection theorem, 130
pseudo-differential operator, 316

quasiperiodic, 134
quotient space, 211

random variable, 142, 320, 342
Gaussian, 321

random walk, 322

range, 102

rank, 102

reaction-diffusion equation, 406

reflection operator, 297

reflexive Banach space, 119

regular distribution, 292

regular domain, 365

regular point, 381

regular Sturm-Liouville problem, 271

regulated functions, 382
Rellich’s theorem, 266
Rellich-Kondrachov theorem, 368
residual spectrum, 219

of a self-adjoint operator, 224
resolvent equation, 239
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resolvent operator, 219, 220
resolvent set, 218

resonance, 398

restriction of an operator, 246
Riemann integral, 382
Riemann-Lebesgue lemma, 308
Riesz Representation Theorem, 191
Riesz transform, 316

right shift, 240

rotation map, 172

sample space, 341
Schauder basis, 94
Schauder fixed point theorem, 62
Schwartz function, 288
Schwartz space, 287, 288
secant method, 78
second-order random variable, 143
self-adjoint
boundary conditions, 247, 251
boundary value problem, 251
operator, 197, 247
semicontinuous, 14
seminorm, 289
separable
L? spaces, 354
Hilbert space, 133
metric space, 17
sequence
Cauchy, 7
convergent, 6
divergent, 6
sequentially compact
metric space, 23
series, 7, 33
uncountable, 136
sesquilinear, 126
shift operator, 103
spectrum, 240
sign function, 97
signed measure, 337
simple eigenvalue, 236
simple function, 343
sinc function, 300, 308
sine-Gordon equation, 421
singular distribution, 292
singular integral operator, 316
skew-adjoint operator, 200
Sobolev conjugate, 366
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Sobolev embedding theorem, 160, 266,
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Sobolev space, 93, 128, 158, 362, 363
space filling curve, 89
spectral gap, 164
spectral mapping theorem, 234, 285
spectral radius, 97, 220
spectral theorem
compact operator, 225
for Sturm-Liouville operators, 268
spectrum, 218
approximate, 241
continuous, 219
of a linear operator, 218
of a matrix, 216
point, 219
residual, 219
spherical Bessel function, 279
spherical harmonics, 279
stability, 404
stable, 404
standard deviation, 321
stationary point, 410
stationary solution, 380
step function, 254
Strang splitting, 123
strictly convex function, 209
strong convergence, 111
strong operator topology, 111
structure theorem
for distributions, 295
Sturm-Liouville operator, 252
spectral theorem for, 268
Sturm-Liouville problem
regular, 271
singular, 271
subsequence, 6
subspace, 5
sum norm, 4
sum, unordered, 136
summable function, 345
support, 39
support line, 375
supremum, 9, 28, 29
essential, 340
symbol, 314
symmetric
form, 197
matrix, 197
operator, 247
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Tchebyshev polynomials, 146
Tchebyshev’s inequality, 359
tempered distributions, 291
test function, 288, 362
theta function, 319
Toda lattice, 242
topological linear space, 86
topological space, 81

dual, 116
topology, 81

discrete, 82

indiscrete, 82

induced, 82

operator, 109

relative, 82

strong operator, 111

trivial, 82

uniform, 109

weak, 119, 204

weak-%, 299
totally bounded

metric space, 24
trace class operator, 231
trace theorem for Sobolev functions, 369
trajectory, 172
translation invariant operator, 313
translation operator, 297
transonic small disturbance equation, 396
triangle inequality, 2, 4

for the L? norm, 358
Tricomi equation, 397
trigonometric polynomials, 150
trivial topology, 82
Turing instability, 408

ultradistribution, 310

ultrametric, 3

unconditionally convergent, 136
uncorrelated random variables, 143
uncountable, 30

uniform boundedness theorem, 204
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uniformly convex, 417
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unitary, 199
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upper bound, 9

upper semicontinuous, 14
Urysohn’s lemma, 32
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variational derivative, 415
vector-valued measure, 337
Volterra integral operator, 104

von Neumann ergodic theorem, 201

wave
dispersive, 170
equation, 167
wavelets, 175
weak convergence
in L?, 361
in Banach space, 119
in Hilbert space, 204
of operators, 112
of probability distributions, 327
weak derivative, 158, 295, 362
weak solution, 163, 370
weak topology, 119, 204
on LP, 361
weak-* convergence, 119
weak-# topology, 299
Weierstrass approximation theorem, 40
weighted norm, 59
Weyl ergodic theorem, 173
Wiener process, 327
Wigner distribution, 332
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Young’s inequality, 154, 359

Zorn’s lemma, 140



