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Abstract. The aim of this publication (this paper together with several its
continuations) is to present algebra as a branch of mathematics treating the contents
close to the usual teaching matter. The whole exposition presupposes not a large
frame of knowledge: operations with integers and fractions, square roots, removing of
parentheses and other transformations of literal terms, properties of inequalities. The
exposition clusters round a number of main themes: \Number", \Polynomial", \Set",
each of which is treated in a series of chapters listed in Preface.

Preface

In the school mathematical education algebra has the role of Cinderella and
geometry of Beloved Daughter. The extent of the geometrical knowledge, studied
in school, coincides approximately with the development in this �eld attained in
Ancient Greece and embodied in Euclid's \Elements" (III century B.C.). For long,
geometry had been taught after Euclid and, only at a later time, some simpli�ed
versions appeared. In spite of all changes introduced into geometry course, the
inuence of Euclid and the spirit of the grandiose scienti�c revolution of Hellenic
era continued to last. More than once I met people saying: \I have not chosen
mathematics to be my profession, but I will remember forever all the beauty of
logical construction of geometry with the precise derivations of more and more
complex statements starting with the simplest".

Unfortunately, not even once I heard a similar reaction concerning algebra.
The school course of algebra is a strange mixture of useful rules, logical reasonings,
practices of how to use such auxilliary tools as tables of logarithms or a microcal-
culator. In its spirit, such a course is closer to the type of mathematical knowledge
formed in Ancient Egypt or Babylon than to the direction of development which
started in Ancient Greece and was continued in Western Europe, in the Renais-
sance period. None the less, algebra is a fundamental, deep and beautiful branch
of mathematics as much as geometry is. Moreover, from the point of view of the
contemporary classi�cation of mathematics, the school course of algebra contains
the elements of several subdivisions of mathematics: algebra, number theory, com-
binatorics and a small part of probability theory.

This paper is an English translation of: I. R. Xafareviq, Izbranye glavy algebry,
Matematiqeskoe obrazovanie, 1, 1, apr.{jun 1997, Moskva, str. 5{27. In the opinion of the edi-
tors, the paper merits wider circulation and we are thankful to the author for his kind permission
to let us make this version.
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The aim of this publication (this paper together with several its continuations)
is to exhibit algebra as a branch of mathematics treating the contents close to
the usual teaching matter. The whole exposition resupposes not a large frame
of knowledge: operations with integers and fractions, square roots, cancellation
of brackets and other transformations of literal terms, properties of inequalities.
And all these practices are very well settled until the 9th class. The complexity
of mathematical reasonings somewhat increases as we proceed with the matter. In
order to help the reader digest the text with more ease, we also include some simple
exercises.

The exposition clusters round a number of the main themes: \Number", \Poly-
nomial", \Set", each of which is treated in more than one chapter, and the chapters
related to di�erent themes do not overlap. In the form of appendices, some more
complex questions are selected, which are related to the rest of the text and which
comprise no new facts besides those already in the reader's mind. In the �rst
chapters they do not appear.

An expected list of chapters:

Chapter 1. Number.

(Irrationality of
p
2 and other radicals. Unique factorization of a positive

integer as the product of primes.)

Chapter 2. Polynomial.

(Roots and linear factors. Common roots. Interpolation. Multiple roots.
Derivative of a polynomial. Newton's binomial.)

Chapter 3. Set.

(Finite sets and their subsets. Combinatorics. Some concepts from probability
theory.)

Chapter 4. Number (continued).

(Axioms of real numbers. Properties of polynomials as continuous functions.)

Chapter 5. Polynomial (continued).

(Separation of roots of a polynomial. Sturm's theorem.)

Chapter 6. Set (continued).

(In�nite sets, countable and uncountable sets.)

Chapter 7. Number (continued).

(In�nite set of prime numbers. Density of the set of prime numbers.)

Appendix I.

(Chebyshev's estimations of the number of primes less than the given bound.)

Chapter 8. Number (continued).

(Complex numbers.)

Chapter 9. Polynomial (continued).

(The existence of complex root of a polynomial with complex coe�cients.)
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Chapter 10. Number (continued).

(Arithmetic of Gauss numbers, number-theoretical applications.)

Chapter 11. Polynomial (continued).

(Constructions by means of compasses and ruler and the solution of equations
by square radicals.)

Chapter 12. Polynomial (continued).

(Symmetric functions.)

Chapter 13. Polynomial (continued).

(Solutions of cubic and biquadratic equations. Nonsolvability by radicals of
equations of degree n > 5.)

Appendix II.

(Equations of degree 5, icosahedron, problem of resolvents.)

Chapter 14. Number (ended).

(Finite �elds and �nite geometries.)

Appendix III.

(Construction of regular 17-gon.)

Chapter 15. Polynomial (ended).

(Formal power series and in�nite products. Applications to number theory.)

CHAPTER I. NUMBER

1. Irrational numbers

Natural numbers arose as a result of counting. The cognition of the fact that
two eyes, two men walking side by side and two oars of a boat have something
in common, expressed by the abstract concept \two", was an important step in
the logical development of mankind. The step to follow was not made so easily.
Consonance, in many languages, of the word \three" and the words \many" (orig.
\mnogo") or \much" (orig. \slixkom") bears a record to it. And only step by step,
the idea of in�nite series of natural numbers arose.

Gradually, the concept of number was related not only to counting, but also to
measuring of length, area, weight etc. To be more concrete, we will only consider
the length of line segments in the following. First of all, we have to choose a unit
of length: cm, mm, km, light-year, . . . Thus, a segment E is �xed and may be
used for measuring of another segment A. If E is contained in A exactly n times,
then we say that the length of segment A is equal to n (Fig. 1,a). But, as a rule,
it will not happen (Fig. 1,b).
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a) b)

Fig. 1

Then, the unit lessens, breaking up E into m equal segments E0. If E0 is contained

in A exactly n times, then we say that the length of A is equal to
n

m
(relative to

the unit E). Thousands of years, men, in di�erent parts of the world, had applied
this procedure in a variety of situations until the question: is this breaking really

possible?, arose. This completely new setting of question already belongs to the
historical epoch|Pythagoras' School, in the period of VI or V century B.C. The
segments A and E are called commensurable if there exists a segment E0 exactly
m times contained in E and n times in A. Thus the above question modi�es to
the following: are each two segments commensurable? Or further: is the length of

each segment (a unit being �xed) equal to a rational number
n

m
? The answer is

negative and an example of a pair of incommensurable segments is simple. Consider
a square, its side being E and its diagonal A.

THEOREM 1. The side of the square is incommensurable with its diagonal.

Before we proceed with the proof, we give this theorem another form. Accord-
ing to the famous Pythagorean theorem, the area of the square over the hypotenuse
of a right triangle is equal to the sum of areas of the squares over the other two
sides. Or, in other words, the square of the length of the hypotenuse is equal to
the sum of squares of the lengths of the other two sides. However, the diagonal
A of our square is the hypotenuse of the isosceles triangle whose other two sides
coincide with the sides E of the square (Fig. 2) and hence in our case A2 = 2E2,

and if A = nE0, E = mE0, then
� n

m

�2
= 2 or

n

m
=
p
2. Therefore, Theorem 1 can

be reformulated as

THEOREM 2.
p
2 is not a rational number.

Fig. 2 Fig. 3

We shall give a proof of this form of the theorem, but �rst we make the
following remark. Although we have leaned on the Pythagorean theorem, we have
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actually used it only for the case of an isosceles right triangle, when the conclusion
is evident. Namely, it is enough to complete the Fig. 2 by constructing the square
over the side A (Fig. 3). From known criterions of congruency it follows that all �ve
small right isosceles triangles in Fig. 3 are congruent. Hence they have the same
area S. But the square whose side is E consists of two such triangles and its area
is E2. Thus, E2 = 2S. Similarly, A2 = 4S. Hence, A2 = 2E2, i.e. (A=E)2 = 2,
which is all we need.

We can now proceed with the proof of Theorem 2. Since our task is to prove

the impossibility of representing
p
2 in the form

p
2 =

n

m
, it is natural to start with

the converse, i.e. to suppose that
p
2 =

n

m
, where n and m are positive integers.

We also suppose that they are relatively prime, for if they have a common factor,

it can be cancelled without changing the ratio
n

m
. By de�nition of the square root,

the equality
p
2 =

n

m
means that 2 =

� n

m

�2
=

n2

m2
. Multiplying both sides by m2

we obtain the equality

(1) 2m2 = n2;

where m and n are relatively prime positive integers, and it remains to prove that
it is impossible.

Since there is a factor 2 on the left-hand side of (1), the question is naturally
related to the possibility of dividing positive integers by 2. Numbers divisible by
2 are said to be even, and those indivisible by 2 to be odd. Therefore, every even
number k can be written in the form k = 2l, where l is a positive integer, i.e.
we have an explicit expression for even numbers, whereas odd numbers are de�ned
only by a negative statement|that such an expression does not hold for them. But
it is easy to obtain an explicit expression for odd numbers.

LEMMA 1. Every odd number r can be written in the form r = 2s+ 1, where
s is a natural number or 0. Conversely, all such numbers are odd.

The last statement is evident: if r = 2s+1 were even, it would be of the form
r = 2l, which implies 2l = 2s+ 1, i.e. 2(l � s) = 1, which is a contradiction.

In order to prove the �rst statement, notice that if the odd number r 6 2, then
r = 1 and the representation is true with s = 0. If the odd number r > 1, then
r > 3. Subtracting 2 from it, we obtain the number r1 = r� 2 > 1, and r1 is again
odd. If it is greater then 1, we again subtract 2 and put r2 = r1 � 2. In this way
we obtain a decreasing sequence of numbers r, r1, r2, . . . , where each member is
less than its predecessor by 2. We continue this procedure as long as ri > 1, and
since positive integers cannot decrease inde�nitely, we shall arrive at the situation
when we cannot further subtract the number 2, i.e. when ri = 1. We obtain that
ri = ri�1� 2 = ri�2� 2� 2 = � � � = r� 2� 2 � � �� 2 = r� 2i = 1. Hence r = 2i+1,
as stated.

We can now prove the basic property of even and odd numbers.

LEMMA 2. The product of two even numbers is even, the product of an even

and an odd number is even and the product of two odd numbers is odd.
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The �rst two statements follow directly from the de�nition of even numbers: if
k = 2l, then no matter whether m is even or odd, we always have km = 2lm which
is an even number. However, the proof of the last statement requires Lemma 1.
Let k1 and k2 be two odd numbers. By Lemma 1 we can write them in the form
k1 = 2s1 + 1, k2 = 2s2 + 1, where s1 and s2 are natural numbers or 0. Then
k1k2 = (2s1+1)(2s2+1) = 4s1s2+2s1+2s2+1 = 2s+1 where s = 2s1s2+s1+s2.
As we know, any number of the form 2s+ 1 is odd and so k1k2 is odd.

Notice the following particular case of Lemma 2: the square of an odd number
is odd.

Now we can easily �nish the proof of Theorem 2. Suppose that the equality
(1) is true where m and n are positive integers, relatively prime. If n is odd, then
by Lemma 2, n2 is also odd, whereas from (1) follows that n2 is even. Hence, n is
even and can be written in the form n = 2s. But m and n are relatively prime, and
so m must be odd (otherwise they would have common factor 2). Substituting the
expression for n into (1) and cancelling by 2, we obtain

m2 = 2s2;

i.e. the square of the odd numberm is even, which is in contradiction with Lemma 2.
Theorem 2, and hence Theorem 1, are proved.

Under the supposition that the result of measuring the length of a segment
(with respect to a given unit segment) is a number and that the square root of a
positive number is a number, we can look at Theorems 1 and 2 from a di�erent
point of view. These theorems assert that in the case of the diagonal of a square or
in the case of

p
2, these numbers are not rational, that is to say they are irrational.

This is the simplest example of an irrational number. All the numbers, rational and
irrational, comprise real numbers. In one of the following chapters we shall give a
more precise logical approach to the concept of a real number, and we shall use it
in accordance with the school teaching of mathematics, that is to say we shall not
insist too much on the logical foundations.

Why did such a simple and at the same time important fact, the existence of
irrational numbers, have to wait so long to be discovered? The answer is simple|
because for all practical purposes, we can take, for instance,

p
2 to be a rational

number. In fact, we have

THEOREM 3. No matter how small is a given number ", it is possible to �nd

a rational number a =
m

n
, such that a <

p
2 and

p
2� a < ".

All practical measurements can necessarily be carried out only up to a certain
degree of accuracy, and up to that degree of accuracy we may take

p
2 to be rational.

Hence, we can say that our measurements give us
p
2 as a rational number.

In order to prove Theorem 3 it is enough to write our arbitrarily small number

" in the form
1

10n
for su�ciently large n, and to �nd a positive integer k such that

(2)
k

10n
6
p
2 <

k + 1

10n
:
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Then we may take a =
k

10n
, for

p
2� k

10n
<

1

10n
. The inequalities (2) are equivalent

to
k2

102n
6 2 <

(k + 1)2

102n
or k2 6 2 � 102n < (k + 1)2. Since the number n, and so

2�10n, is given, there exists the largest positive integer k whose square is not greater
than 2 � 10n. This is the number we want.

Obviously, the conclusion of Theorem 3 holds not only for the number
p
2,

but also for any positive (for simplicity's
sake we con�ne ourselves to them) real
number x. This becomes evident if we
represent x by a point of the number axis,
if we divide the unit length E into small

segments
1

10n
E and cover the entire line

by these segments (Fig. 4). Fig. 4

Then the last of those points which is not right from x gives the required

rational number: if it is the k-th point, then a =
k

10n
6 x and x� a <

1

10n
.

Now please consider the depth of the assertion contained in Theorems 1 and 2.
This assertion can never be veri�ed by an experiment, since an experiment can
be carried out up to a certain degree of accuracy, and

p
2 can be expressed as

a rational number with any given degree of accuracy. It is an accomplishment
of pure reasoning which could not be achieved even as a result of thousands of
years of experience. It had to wait for the revolution in mathematics carried out
in Ancient Greece in VII{V centuries B.C. No wonder that in the Pythagorean
School those facts were considered to be holy, secret knowledge, not to be shared
with ordinary people. The legend says that Hyppas, a Pythagorean, died in a
shipwreck as a punisment for revealing this secret. A hundred years later Plato
in his book \Laws" narrates how he was astonished when he found that it is not
always possible \to measure a length by a length". He speaks of his \shameful
ignorance": \It seemed to me that it is not appropriate for men, but rather for
swine. And I was ashamed not only for myself, but for all Greeks."

The Theorems 1 and 2 may throw some light onto the question often posed to
mathematics: why prove theorems? The answer that �rst comes to mind is: in order
to be sure that a statement is true. But sometimes a statement has been veri�ed in
so many particular cases that no one doubts its truth (and physicists often snigger
at mathematicians who prove undoubted truths). But we have seen that a proof
sometimes leads mathematicians into a completely new world of mathematical ideas
and concepts, which would not be discovered otherwise.

Problems

1. Prove that the numbers
p
6 and 3

p
2 are irrational.

2. Prove that the number
p
2 +

p
3 is irrational.

3. Prove that the number 3
p
3 +

p
2 is irrational.
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4. Determine
p
2 with accuracy not less than

1

100
.

5. Prove that every positive integer can be written as a sum of terms of
the form 2k, where all the terms are di�erent. Prove that for each number this
representation is unique.

2. Irrationality of other square roots

It would be interesting to generalize the results of the preceding section. For
example, is it possible to prove in the same way that

p
3 is irrational? Clearly, we

have to adapt the reasoning from the previous section to the new situation.

We want to prove the impossibility of the equality 3 =
� n

m

�2
, or

(3) 3m2 = n2;

where, as in section 1, we may take that the fraction
n

m
cannot be further cancelled,

i.e. that the positive integers m, n are relatively prime. Since in (3) we have the
number 3, it is natural to examine the properties of division by 3. We adapt
Lemmas 1 and 2 to the new case.

LEMMA 3. Every positive integer r is either divisible by 3 or it can be repre-

sented in one of the following forms: r = 3s+1 or r = 3s+2, where s is a natural

numbers or 0. The numbers 3s+ 1 and 3s+ 2 are not divisible by 3.

The last statement is evident. If, for example, n = 3s + 1 were divisible
by 3, we would have 3s + 1 = 3m, i.e. 3(m � s) = 1, which is a contradiction. If
n = 3s+ 2 were divisible by 3 we would have 3s+ 2 = m. i.e. 3(m� s) = 2, again
a contradiction. We prove the �rst statement of Lemma 3 by the same procedure
used to prove Lemma 1. If r is not divisible by 3 and is less than 3, then r = 1 or
r = 2 and the given representation holds with s = 0. If r > 3, then subtracting 3
from it we get r1 = r � 3 > 0 and r1 is again not divisible by 3. We continue to
subtract the number 3 and we obtain the sequence r, r1 = r � 3, r2 = r � 3 � 3,
. . . , rs = r�3�3�� � ��3, where we cannot subtract 3 any more, since as noticed
above, rs = 1 or rs = 2. As a result we have two possibilities: r � 3s = 1, i.e.
r = 3s+ 1 or r � 3s = 2, i.e. r = 3s+ 2, as stated.

In the formulation of the following lemma we take from the formulation of
Lemma 2 only that part which we shall use later.

LEMMA 4. The product of two positive integers not divisible by 3 is itself not

divisible by 3.

Let r1 and r2 be two positive integers not divisible by 3. According to Lemma 3
for each one there are two possibilities: the number can be written in the form 3s+1
or in the form 3s+ 2. Hence, there are altogether four possibilities:

1) r1 = 3s1 + 1; r2 = 3s2 + 1; 2) r1 = 3s1 + 1; r2 = 3s2 + 2;

3) r1 = 3s1 + 2; r2 = 3s2 + 1; 4) r1 = 3s1 + 2; r2 = 3s2 + 2;
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The cases 2) and 3) di�er only in the numerations r1 and r2 and it is enough
to consider only one of them (for instance, 2). For the remaining three cases we
multiply out:

1) r1r2 = 9s1s2 + 3s1 + 3s2 + 1 = 3t1 + 1; t1 = 3s1s2 + s1 + s2;

2) r1r2 = 9s1s2 + 6s1 + 3s2 + 2 = 3t2 + 2; t2 = 3s1s2 + 2s1 + s2;

3) r1r2 = 9s1s2 + 6s1 + 6s2 + 4 = 3t3 + 1; t3 = 3s1s2 + 2s1 + 2s2 + 1

(in the last formula we put 4 = 3+1, and group 3 with the numbers divisible by 3).
As a result we obtain numbers of the form 3t+1 and 3t+2 which are not divisible
by 3 (Lemma 3).

Now we can easily carry over Theorem 2 to our case.

THEOREM 3.
p
3 is not a rational number.

The proof follows closely the lines of the proof of Theorem 2. We have to
establish a contradiction starting with the equality (3): 3m2 = n2, where m and n
are relatively prime. If the number n is not divisible by 3, according to Lemma 4
its square is also not divisible by 3. But it is equal to 3m2, which means that n
is divisible by 3: n = 3s. Substituting this into (3) and cancelling by 3 we get
m2 = 3s2. But since n and m are relatively prime and n is divisible by 3, m cannot
be divisible by 3. In view of Lemma 4 its square is also not divisible by 3, but it is
equal to 3s2. This contradiction proves the theorem.

The close parallel between the reasonings used in the two cases we proved
leads us to think that we can carry on. Of course, we do not consider

p
4, sincep

4 = 2, but we may apply the same line of reasoning to
p
5. Clearly, we shall

have to prove a lemma analogous to Lemmas 2 and 4, but the number of products
which have to be evaluated will increase. We can verify all of them and conclude
that

p
5 is irrational. We can continue and consider

p
6,
p
7, etc. In each new case

the number of checkings in the proof of the lemma which corresponds to Lemmas
2 and 4 will increase. Considering all natural numbers n, for instance up to 20, we
can conclude that

p
n is irrational, except in those cases when n is the square of an

integer (n = 4, 9 and 16). In this way, having to do more and more calculations,

we can infer that
p
2,
p
3,
p
5,
p
6,
p
7,
p
8,
p
10,

p
11,

p
12,

p
13,

p
14,

p
15,

p
17,p

18 and
p
19 are irrational numbers. This leads to the following conjecture:

p
n is

irrational for all positive integers n which are not squares of positive integers. But
we cannot prove this general conjecture by the reasoning applied up to now, since
in one step of the proof we have to analyse all possible cases.

It is interesting that the road covered by our reasoning was actually covered by
mankind. As we have said, the irrationality of

p
2 was proved by the Pythagoreans.

Later on irrationality of
p
n was proved for some relatively small numbers n, until

the general problem was formulated. About its solution we read in Plato's dialogue
\Theaetetus", written in about 400 B.C. The author narrates how the famous
philosopher Socrates met with Theodor, mathematician from Cyrene and his young,
very talented pupil by the name of Theaetetus. Theaetetus had the age of today's
schoolboy, between 14 and 15 years. Theodor's comment on his abilities reads: \he
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approaches studying and research with such ease, uency, eagerness and peace as oil
ows form a pot and I wonder how can one achieve so much at that age". Further
on, Theaetetus himself informs Socrates about the work he did with a friend, also
called Socrates, a namesake of the philosopher. He says that Theodor informed
them about the incommensurability (to use contemporary terms) of the side of a
square with the unit segment if the area of the square is an integer, but not the
square of an integer. If this area is n, this means that

p
n is irrational. Theodor

proved this for n = 2, 3, 5, and \solving one case after the other, he came up to 17".
Theaetetus became intersted in the problem and, together with his friend Socrates,
solved it, as it is recorded at the end of the dialogue. We shall not go into the
reasoning of Theodor (there are several hypotheses), but we shall give the proof of
the general statement, following the exposition of Euclid which is, very probably
analogous to the proof of Theaetetus (with a simpli�cation given by Gauss 2000
years later).

We �rst prove an analog of Lemmas 1 and 3.

THEOREM 4. For any two positive integers n and m there exist integers t
and r, positive or 0, such that r < m and

(4) n = mt+ r:

For given n and m this representation is unique.

Representation (4) is called division with remainder of n by m, the number t
is the quotient and r is the remainder.

The proof follows the known line of reasoning. If m > n, the equality (4)
holds with t = 0, r = n. If n > m, then put n1 = n � m. Clearly, n1 > 0. If
n1 > m, put n2 = n1�m. We keep on subtracting m until we arrive at the number
nt = n �m � � � � �m = r, where r > 0 but < m. Thus we obtain the required
representation n�mt = r, i.e. n = mt+ r.

We now prove its uniqueness for given n and m. Let

n = mt1 + r1; n = mt2 + r2:

Let t1 6= t2, e.g. t1 > t2. Subtracting the second equality from the �rst we get:
m(t1 � t2) + r1 � r2 = 0, i.e. m(t1 � t2) = r2 � r1. Since r1 < r2 on the right-hand
side we have a positive number which is less than m, and on the left-hand side a
number divisible by m. This is impossible.

Before we prove an analog of Lemmas 2 and 4 we have to introduce (or rather
to recall) an important concept.

A positive integer, di�erent from 1, is said to be prime if it is divisible only
by itself and by 1. For example, among the �rst twenty numbers the following are
prime: 2, 3, 5, 7, 11, 13, 17, 19.

Although obvious, the following property is important: every positive integer,

di�erent from 1, has at least one prime divisor. Indeed, if the number n has no
divisors except itself and 1, it is by de�nition prime and is its own prime divisor. If
n has other divisors, then n = ab, where a < n, b < n. Consider a which again can



Selected chapters from algebra 11

be prime (and hence a prime divisor of n) or it has two factors: a = a1b1. Then
n = a1(b1b) where a1 < a, i.e. a1 is a divisor of n. Continuing this procedure we
obtain a decreasing sequence of divisors of n: ar < � � � < a1 < n. This sequence
has to end somewhere. If it ends at ar, then ar is a prime divisor of n.

We are now able to prove an analog of Lemmas 2 and 4.

THEOREM 5. If the product of two positive integers is divisible by a prime,

then at least one of them is divisible by that prime.

Suppose that we want to prove the theorem for a prime p. We will prove it for
all primes in the increasing order (as, in fact, we did it in the case of Lemma 2 for
p = 2 and Lemma 4 for p = 3). Therefore, when we arrive at p, we can suppose
the theorem has already been proved for all primes q smaller than p. Let n1 �n2 be
divisible by p and neither n1 nor n2 is divisible by p. Then

(5) n1 � n2 = pa:

Applying Theorem 4 to the pairs n1, p and n2, p, we get

n1 = pt1 + r1; n2 = pt2 + r2;

where r1 and r2 are naturals less than p (and di�erent from 0, for, otherwise, one
of them would be divisible by p). Substituting in (5) and grouping the numbers
divisible by p, we obtain

r1r2 = p(a� t1r2 � t2r1 � pt1t2);

or

(6) r1r2 = pb; b = a� t1r2 � t2r1 � pt1t2

where, now, not alike in (5), r1 < p and r2 < p. If r1 = 1 and r2 = 1, the
contradiction 1 = pb is obtained. Let r1 > 1. We know that r1 has a prime factor
q not greater than r1 and, by that, less than p. Let r1 = qa1. The equality (6),
now, implies

(7) q(a1r1) = pb:

As already said, the theorem can be considered proved for all primes less than p
and, in particular, for q. Being pb divisible by q, one of its factors must also be
divisible by q. Since p is prime, b is divisible by q: b = qb1. Substituting in (7) and
after cancellation, we obtain

a1r2 = pb1

and a1 < r1, b1 < b. If a1 6= 1, proceeding again in the same way, another prime
will be cancelled in the last equality. As the sequence a, a1, . . . of so obtained
numbers is decreasing, we eventually come to an end, �nishing with the number 1.
Then, we have r2 = pb0, which is impossible, being r2 < p (and r2 > 0). Thus, the
theorem has been proved.
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You have noticed that the above reasoning is similar to the proofs of Lemmas 2
and 4: the statement reduces to the case when in (5), n1 and n2 (or better to
say r1 and r2) are less than p. But here, consideration of all possible cases and
direct checking are replaced by an elegant reasoning, by which, the theorem can be
taken to be true for smaller values than p. (Euclid proved Theorem 5 somewhat
di�erently. Most probably, the here presented reasoning belongs to Gauss.)

Now, to prove irrationality in general, no new ideas are needed.

THEOREM 6. If c is a positive integer which is not the square of any positive

integer, then c is not the square of any rational number, i.e.
p
c is irrational.

We may again verify our statement, going from a positive integer to the bigger
one, and thus, we can suppose the theorem has been proved for all smaller c's.
In that case, we can assume that c is not divisible by the square of any positive
integer greater than 1. Indeed, if c = d2f , d > 1, then f < c and f is not the
square of positive integer, since f = g2 would imply c = (dg)2 which contradicts
the assumption of the theorem. Thus we can assume the theorem has already
been proved for f , and accordingly, take that

p
f is irrational. But then

p
c is

not rational, either. In fact, the equality
p
c =

n

m
, in view of

p
c = d

p
f , yields

n

m
= d

p
f ,
p
f =

n

dm
, which would mean

p
f is rational.

Now we proceed to the main part of the proof. Suppose
p
c is rational andp

c =
n

m
, where n and m are taken, as we already did it before, to be relatively

prime. Then m2c = n2. Let p be a prime factor of c. Put c = pd and d is not
divisible by p, otherwise c would be divisible by p2 and now we consider the case
when c is not divisible by a square. From m2c = n2, it follows that n2 is divisible
by p and, according to Theorem 5, n is divisible by p. Let n = pn1. Using n = pn1
and c = pd and substituting in the relation m2c = n2, we get m2d = pn21. Being m
and n relatively prime and n divisible by p, m is not divisible by p. Then, according
to Theorem 5, m2 is not divisible by p, either. And, as we have seen it, d is not
divisible by p because it would imply that c is divisible by p2. Now, the equation
m2d = pn21 is contradictory to Theorem 5.

Notice that, in this section, we have more than once derived this or that
property of positive integers taking them one after the other and, �rst, checking
the property for n = 1 and, then, after supposing its validity for numbers less
than n, we proved it for n.

Here we lean upon a statement which has to be considered as an axiom of
arithmetic.

If a property of positive integers is valid for n = 1 (or n = 2) and if from
its validity for all positive integers less than n, the validity for n follows, then the
property is valid for all positive integers. This statement is called the Principle of
Mathematical Induction or of Total Induction. Sometimes, instead of supposing
the validity for all numbers less than n, only the validity for n� 1 is supposed. A
statement which corresponds to the case n = 1 or n = 2, with which the reasoning
starts (sometimes n = 0 is more convinient) is called the basis of induction and
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the statement corresponding to n � 1, the inductive hypothesis. The Principle
of Mathematical Induction is also used to produce a type of de�nitions, when a
concept involving a positive integer n is de�ned by supposing that it has already
been de�ned for n � 1. For example, when we de�ne an arithmetic progression
using the property that each term is obtained from the preceding one by adding a
constant d, called the common di�erence, then we have the type of a de�nition by
induction. To express the de�nition symbolically, we write

an = an�1 + d:

And to determine the entire progression we only need to know the initial term: a1
or a0.

In one of his treatise, French mathematician and physicist H. Poincar�e consid-
ers the question: how is it possible that mathematics, which is founded on proofs
containing syllogisms, that is statements expressed in a �nite number of words, does
lead to theorems related to in�nite collections (for example, Theorem 6 holds for
in�nite set of numbers c; Theorem 2 asserts that 2n2 6= m2 for all positive integers
n and m, the number of which is also in�nite). Possibilities for it, Poincar�e sees in
the Principle of Mathematical Induction, which, in his words, \contains an in�nite
number of syllogisms condensed in a single formula".

Problems

1. Prove the irrationality of
p
5 by the same method used in the proofs of

Theorems 2 and 3.

2. Prove that the number of positive integers divisible by m and less than n
is equal to the integer part of the quotient, when n is divided by m.

3. Prove that if a positive integer c is not the cube of any positive integer,
then 3

p
c is irrational.

4. Replace the reasoning, connected with succesive subtracting of the num-
ber m in the proof of Theorem 4, by a reference to the Principle of Mathematical
Induction.

5. Using the Principle of Mathematical Induction, prove the formula

1 + 2 + � � �+ n =
n(n+ 1)

2
:

6. Using the Principle of Mathematical Induction, prove the inequality n 6 2n.

3. The prime factorization

In the previous section we have seen that every natural number has a prime
divisor. Starting with this, we can get much more:

THEOREM 7. Every natural number greater than 1 can be expressed as a

product of prime numbers.
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If the number p is itself prime, then the equality p = p is considered as a prime
factorization containing only one factor. If the number n > 1 is not prime, it has
a prime divisor, di�erent from itself: n = p1 � n1 and (since by de�nition p1 6= 1),
n1 < n. Now we can apply the same reasoning to n1 and continue. We obtain the
factorization n = p1 � . . . � pk �nk, where p1, . . . , pk are primes and the quotients nk
decrease: n > n1 > n2 > � � � . Since our process must come to an end, we obtain
nr = 1 for some r and the factorization is n = p1 � . . . � pr. Of course, the reader
can easily formulate this proof in a more \scienti�c" way|using the method of
mathematical induction.

The process used in the proof of Theorem 7 is not uniquely determined: if
the number n has several prime factors, then any of them could be the �rst one.
For example, 30 can be expressed �rst as 2 � 15 and then as 2 � 3 � 5 and it is
also possible to express it �rst as 3 � 10 and then as 3 � 2 � 5. The fact that two
resulting factorizations di�er only by the order of their factors, was unpredictable.
If for number 30 we could easily foresee all possibilities, is it so simple to convince
oneself that the number

740037721 = 23623 � 31327
has no other prime factorizations?

In school curricula it is usually assumed, as a self-evident fact, that every given
natural number has only one prime factorization. However, this claim has to be
proved, as the following example shows. Suppose that we know only even numbers
and do not know how to use odd numbers. (It is possible that this is a reection of
the real historical situation, since in English the term \odd" has also the meaning
\strange"). Repeating literally the de�nition of the prime number, we should call
\prime" all even numbers which do not factorize into product of two even factors.
For instance, the \prime" numbers would be 2, 6, 10, 14, 18, 22, 26, 30, . . . Then
a given number may have two di�erent \prime" factorizations, for example

60 = 2 � 30 = 6 � 10:
It is also possible to �nd numbers with more di�erent factorizations, such as

420 = 2 � 210 = 6 � 70 = 10 � 42 = 14 � 30:

Therefore, if the prime factorization is indeed unique, then in the proof of this
statement we must use some properties which express that we are dealing with all
natural numbers and not, say, with even numbers.

Since we are convinced that the uniqueness of the prime factorization is not
self-evident, let us prove it.

THEOREM 8. Any two prime factorizations of a given natural number di�er

only by the order of their factors.

The proof of the theorem is not really slef-evident, but all the di�culties have
been already overcome in the proof of Theorem 5. From this theorem everything
follows easily.
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First, let us note an obvious generalization of Theorem 5.

If a product of any number of factors is divisible by a prime number p, then at

least one of them is divisible by p.

Let
n1 � n2 � . . . � nr = p � a:

We shall prove our statement by induction on the number of factors r. When r = 2,
it coincides with Theorem 5. If r > 2, write the equality in the form

n1(n2 � . . . � nr) = p � a:
According to Theorem 5, either n1 is divisible by p|and then the statement is
proved|or n2 � . . . � nr is divisible by p|and then the statement is again true by
the induction hypothesis.

We now prove Theorem 8. Suppose that a number n has two prime factoriza-
tions:

(8) n = p1 � . . . � pr = q1 � . . . � qs:
We see that p1 didvides the product q1 � . . . � qs. By the generalization of Theo-
rem 5, proved earlier, p1 divides one of the numbers q1, . . . , qs. But qi is a prime
number and its only prime divisor is itself. Hence, p1 coincides with one of the qi's.
Changing their numeration we can take p1 = q1. Cancelling the equality (8) by p1
we get

(9) n0 =
n

p1
= p2 � . . . � pr = q2 � . . . � qs:

This is a statement concerning a smaller number n0 and using mathematical
induction we can take it to be true. Hence the number of factors in the two
factorizations is the same, i.e. r�1 = s�1, implying r = s. Besides, the factors q2,
. . . , qs can be written in such an order that p2 = q2, p3 = q3, . . . , pr = qr. Since
we have already established that p1 = q1, the theorem is proved.

The theorem we just proved can be found in Euclid. Although simple, it was
always considered to be an abstract mathematical theorem. However, in the last
two decades it found an unexpected practical application which we shall shortly
comment. The application is connected with coding, i.e. writing an information in
such a form that it cannot be understood by a person who does not know some
additional information (the key of the code). Namely, it turns out that the problem
of prime factorization of large numbers requests an enormous amount of operations;
this problem is much more involved than the \inverse" problem|multiplication of
prime numbers. For example, it is possible, though tedious, to multiply two prime
numbers, each one having tens of digits (30 or 40 digits, say) in a day and to write
down the result (which will have about 70 digits) in the evening. But factorization
of this number into two primes would take more time, even if we use the best
contemporary computer, than the time which elapsed since the formation of the
Earth. Hence, a pair of large numbers p and q on one hand, and their product
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n = pq on the other, give, in view of Theorem 8, the same information, written in
two di�erent ways, but the transition from the pair p, q to the number n = pq is
easy, whereas the transition from n to the pair p, q is practically impossible. This
is the underlying idea of coding; we omit technical descripiton.

In the prime factorization of a number, certain primes may appear several
times, for insatnce, 90 = 2 � 3 � 3 � 5. We can group together the equal factors and
write 90 = 2 � 32 � 5. Hence, for each positive integer n we have the factorization

(10) n = p�11 � p�22 � . . . � p�r

r ;

where all the primes p1, . . . , pr di�er from one another and the exponents �i > 1.
This factorization is said to be canonical. Of course, such a factorization is unique
for every n.

Knowing the canonical factorization of a number n, we can �nd out whatever
we want about its divisors. First, if the canonical factorization has the form (10),
then it is obvious that the numbers

(11) m = p�11 � . . . � p�rr ;

where �1 6 �1, �2 6 �2, . . . , �r 6 �r, are divisors of n, where �i may have the
value 0 (i.e. some of the pi's which are divisors of n need not be divisors of m).
Conversely, any divisor of n has the form (11). Indeed, if n = mk, then k is a
divisor of n, i.e. it has the form (11): k = p11 � . . . � prr . Multiplying the canonical
factorizations of m and k and grouping together the powers of equal primes, we
have to arrive at the factorization (10), since this factorization is, by Theorem 8,
unique. When two powers of a prime number are multiplied, their exponents add
up which implies that �1 + 1 = �1, i.e. �1 6 �1 and similarly �2 6 �2, . . . ,
�r 6 �r.

For example, we can �nd the sum of the divisors of n. We also take the number
itself, n and also 1 to be its divisors. For instance, n = 30 has the divisors 1, 2,
3, 5, 6, 10, 15, 30 and their sum is 72. Consider �rst the simplest case when n is
a power of a prime number: n = p�. Then its divisors are the numbers p� where
0 6 � 6 �, i.e. the numbers 1, p, p2, . . . , p�. We therefore have to �nd the sum
1 + p + p2 + � � � + p�. There is a general formula (which you may already know)
which gives the sum of consecutive powers of a number:

s = 1 + a+ � � �+ ar:

The derivation of the formula is quite simple: we multiply both sides of the above
equality by a:

sa = a+ a2 + � � �+ ar+1:

We see that the expressions for s and sa consist of almost the same terms, but in
s we have 1 which does not �gure in sa, whereas in sa we have ar+1 which does
not �gure in s. Hence, after subtracting s from sa, all the terms cancel out, except
those two:

sa� s = ar+1 � 1;
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i.e. s(a� 1) = ar+1 � 1, and

(12) s = 1 + a+ a2 + � � �+ ar =
ar+1 � 1

a� 1
:

Since we have divided by a� 1, we must suppose that a 6= 1.

Therefore, if n = p� the sum of its divisors is 1 + p + � � � + p� =
p�+1 � 1

p� 1
.

Consider now the next case when n has two prime divisors p1 and p2. Its canonical
factorization has the form n = p�11 p�22 . In view of formula (11), the divisors of n

are p�11 p�22 , where 0 6 �1 6 �1, 0 6 �2 6 �2. Split them up into groups, one
group for each value of �2. So, for �2 = 0 we obtain the divisors 1, p1, p

2
1, . . . ,

p�11 whose sum is
p�1+1
1 � 1

p1 � 1
. For �2 = 1 we obtain the group p2, p1p2, p

2
1p2,

. . . , p�11 p2. In order to �nd the sum of those divisors, we notice that it is equal

to (1 + p1 + p21 + � � � + p�11 )p2 =
p�1+1
1 � 1

p1 � 1
p2. Similarly, for any value of �2 we

obtain the sum (1 + p1 + p21 + � � �+ p�11 )p�22 =
p�1+1
1 � 1

p1 � 1
p�22 . Hence, the total sum

of divisors is

p�1+1
1 � 1

p1 � 1
+

p�1+1
1 � 1

p1 � 1
p2 +

p�1+1
1 � 1

p1 � 1
p22 + � � �+

p�1+1
1 � 1

p1 � 1
p�22

=
p�1+1
1 � 1

p1 � 1
(1 + p2 + p22 + � � �+ p�22 ):

We evaluate the sum in the parentheses by another application of the formu-
la (12). As a result we conclude that the sum of all divisors of n = p�11 p�22 is

p�1+1
1 � 1

p1 � 1
� p

�2+1
2 � 1

p2 � 1
.

We now pass on to the general case. Consider the product

S0 = (1+ p1+ p21+ � � �+ p�11 )(1+ p2+ p22 + � � �+ p�22 ) � . . . � (1+ pr + p2r + � � �+ p�r

r )

and remove the parentheses. How do we do that? If we have one pair of parentheses,
i.e. an expression of the form (a + b + � � � )k, we multiply each of the summands
a, b, etc. by k and the result is the sum of ak, bk, etc. If we have two pairs
of parentheses (a1 + b1 + c1 + � � � )(a2 + b2 + c2 + � � � ) we multiply each term
from one parentheses by each term from the other and the result is the sum of
all terms a1a2, a1b2, a1c2, b1a2, b1b2, etc. Finally, for any number of parentheses
(a1 + b1 + c1 + � � � )(a2 + b2 + c2 + � � � ) � . . . � (ar + br + cr + � � � ) we take one term
from each, multiply them and then evaluate the sum of all such products. Apply

this rule to our sum S0. The terms in the parentheses have the form p�11 , p�22 ,

. . . , p�rr (0 6 �i 6 �i). Multiplying them we get p�11 p�22 � � � p�rr , which is, in view
of (11), a divisor of n, and according to Theorem 8, each one appears only once.
Hence the sum S0 is equal to the sum of the divisors of n. On the other hand, the
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i-th parentheses, according to (12), is equal to
p�i+1
i � 1

pi � 1
, and the product of all

parentheses is

S =
p�1+1
1 � 1

p1 � 1
� p

�2+1
2 � 1

p2 � 1
� . . . � p

�r+1
r � 1

pr � 1
:

This is the formula for the sum of all divisors. But we have also found the
number of divisors. Indeed, in order to determine the number of divisors we have
to replace each summand in the sum of divisors by 1. Returning to the previous
proof, we see that it is enough to replace each summand in each parentheses of the
product S0 by 1. The �rst parentheses is then equal to �1+1, the second to �2+1,
. . . , the r-th to �r+1. Hence, the number of divisors is (�1+1)(�2+1) � � � (�r+1).
For example, the number of divisors of the number whose canonical factorization
is p�q� is equal to (�+ 1)(� + 1).

In the same way we can derive the formula for the sum of squares or cubes or
generally k-th powers of the divisors of n. The reasoning is the same as the one
applied for �nding the sum of the divisors. Verify that the formula for the sum of
k-th powers of all divisors of the number n with the canonical factorization (10) is

(13) S =
p
k(�1+1)
1 � 1

pk1 � 1
� p

k(�2+1)
2 � 1

pk2 � 1
� . . . � p

k(�r+1)
r � 1

pkr � 1
:

We can also investigate common divisors of two positive integers m and n. Let
their canonical factorizations be

(14) n = p�11 � . . . � p�r

r ; m = p�11 � . . . � p�rr ;

where in any pair of numbers (�i; �i) one of them may have the value 0|this is
the case when a prime number divides one of the numbers m, n, but not the other.
Then on the basis of what we know about divisors we can say that the number k
is a common factor of m and n if and only if it has the form

k = p11 � . . . � prr ;

where 1 6 �1, 1 6 �1, 2 6 �2, 2 6 �2, . . . , r 6 �r, r 6 �r. In other words
if �i denotes the smaller of the numbers �i, �i, these conditions become 1 6 �1,
2 6 �2, . . . , r 6 �r. Put

(15) d = p�11 � . . . � p�rr :

The above reasoning proves that the following theorem is true.

THEOREM 9. For any two numbers with canonical factorization (14), the

number d, de�ned by (15), divides both n and m, and any common factor of n and

m divides d.

The number d is called the greatest common divisor of n and m and is denoted
by g: c: d:(n;m). It is clear that among all divisors of n and m, d is the greatest,
but it is not obvious that all other common divisors divide it. This follows from
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Theorem 8 (about the uniqueness of prime factorization). That is why we proved
those properties which are usually given in school courses without proof.

As we said earlier, �nding the prime factorization of a number is a very di�cult
task. Hence we give a di�erent method for �nding the greatest common divisor
which does not use prime factorization|this method is often taught at schools. It
is based on Theorem 4. Let n and m be two positive integers and let n = mt+ r,
0 6 r < m be the representation eastablished in Theorem 4.

LEMMA 5. If r 6= 0, then g: c: d:(n;m) = g: c: d:(m; r).

More than that: all common divisors of the pairs (n;m) and (m; r) are equal,
and so are the greatest which are divisible by the others. Indeed, any common
divisor d of numbers n and m is a divisor of m and of r, because r = n�mt, and
a common divisor d0 of m and r is a divisor of m and of n, because n = mt+ r.

The transition from the pair (n;m) to the pair (m; r) is fruitful since r < m.
We can now apply the same reasoning to the pair (m; r). Let m = rt1 + r1,
0 6 r1 < r. If r1 6= 0, then g: c: d:(m; r) = g: c: d:(r; r1). We continue this process
as long as we can. But the process ends when we get the remainder 0, for example
ri = ri+1ti+2+0 (ri+2 = 0). But then ri+1 divides ri and clearly g: c: d:(ri; ri+1) =
ri+1. Therefore, the last nonzero remainder in the process of dividing n by m, m
by r, r by r1, etc. is equal to g: c: d:(n;m). This method of �nding the g: c: d: is
called Euclid's algorithm, and it can be found in Euclid. For instance, in order to
�nd g: c: d:(8891; 2329) we make the following divisions:

8891 = 2329 � 3 + 1904; 2329 = 1904 � 1 + 425;

1904 = 425 � 4 + 204; 425 = 204 � 2 + 17; 204 = 17 � 12 + 0;

and conclude: g: c: d:(8891; 2329) = 17.

The numbers n and m are said to be relatively prime if they have no common
divisor other than 1. This means that g: c: d:(n;m) = 1. Hence, using Euclid's
algorithm we can �nd whether two numbers are relatively prime, without knowing
their prime factorizations.

At the end of this chapter we return to the question with which we started:
the question of irrationality. We shall prove a very wide generalization of our �rst
assertion regarding the irrationality of

p
2. It is in connection with the concept to

which we devote the next chapter and so this can be treated as a kind of introduction
to that chapter.

An expression of the form axk, where a is a number, x is unknown and k a
natural number or 0 (in which case we simply write a), is called monomial. The
number k is its degree, and a is its coe�cient. In general, we can consider monomials
in several unknowns, such as ax2y8, but at the moment we are concerned only with
monomials in one unknown. A sum of monomials is a polynomial. If a polynomial
contains several monomials of the same degree, for example axk and bxk, we can
replace them by one monomial, namely (a + b)xk. Having this in mind, we shall
always assume that a polynomial contains only one member of a given degree k
and we write it in the form akx

k; for k = 0 we simply have the number a0. The
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greatest degree of all monomials which comprise a polynomial is the degree of the
polynomial. For example, the degree of the polynomial 2x3 � 3x + 7 is 3 and its
coe�cients are a0 = 7, a1 = �3, a2 = 0, a3 = 2. Thus, a polynomial of degree n
can be written in the form

f(x) = a0 + a1x+ a2x
2 + � � �+ anx

n;

where some of ak's can be zero, but an 6= 0, because otherwise the degree of the
polynomial would be less than n. The term a0 is called the constant term of the
polynomial, an is its leading coe�cient. The equation f(x) = 0 is called an algebraic

equation with one unknown. A number � is called its root if f(�) = 0. A root of
the equation f(x) = 0 is also called a root of the polynomial f(x). Degree of the
polynomial f(x) is the degree of the equation. Obviuosly, the equations f(x) = 0
and cf(x) = 0, where c is a number, distinct from 0, are equivalent.

Now we shall treat such equations f(x) = 0 whose coe�cients a0, a1, . . . ,
an are rational numbers, some of which may be equal to 0 or negative. If c is
the common denominator of all, distinct from 0, coe�cients, we can pass from the
equation f(x) = 0 to the equation cf(x) = 0 having integer coe�cients. In the
sequel we shall treat only such equations. In this connection we shall have to deal
with the divisibility of (not only nonnegative) integers. Recall that an integer a is,
by de�nition, divisible by an integer b if a = bc for some integer c.

THEOREM 10. Let f(x) be a polynomial with integer coe�cients and with

leading coe�cient equal to 1. If the equation f(x) = 0 has a rational root �, then
� is an integer and it is a divisor of the constant term of the polynomial f(x).

Let us represent � in the form � = �a

b
, where the fraction

a

b
is irreducible,

i.e. positive integers a and b are relatively prime. By the condition, the polynomial
f(x) = a0 + a1x + a2x

2 + � � � + an�1x
n�1 + xn has integer coe�cients ai. Let us

substitute � into the equation f(x) = 0. By the assumption,

(16) a0 + a1

�
�a

b

�
+ � � �+ an�1

�
�a

b

�n�1

+
�
�a

b

�n
= 0:

Multiply the equation by bn and transfer (�a)n to the right-hand side. All the
terms remaining on the left-hand side will be divisible by b:

(a0b
n�1 + a1(�a)bn�2 + � � �+ an�1(�a)n�1bn�2)b = (�1)n�1an:

We see that b divides an. If � were not an integer, b would be > 1. Let p be some
of its prime divisors. Then it has to divide an, and by Theorem 5, p divides a, too.
However, by the assumption, a and b are relatively prime and we have obtained a
contradiction. Hence, b = 1 and � = a.

In order to obtain the second assertion of the theorem, let us leave just a0 on
the right-hand side, and transfer all the other terms to the right-hand side (recall
that b = 1). All the terms on the right-hand side are divisible by a:

a0 = a(�a1 � a2(�a)� � � � � an�1(�a)n�2 � (�a)n�1):

Obviously, it follows that a devides a0.
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Theorem 10 allows us to �nd rational roots of equations of the given form:
in order to do that we have to list all the divisors of the constant term (with
signs + and �) and check whether they are roots. For example, for the equation
x5 � 13x+6 = 0 we have to check the numbers �1, �2, �3, �6. Only x = �2 is a
root.

In such a way, all the roots of a polynomial f(x) with integer coe�cients
and the leading coe�cinet equal to 1 are irrational, except integer roots which are
included as divisors of the constant term. That is just what we have proved in the
beginning of this Chapter: �rstly for f(x) = x2 � 2 (Theorem 2), then for f(x) =
x2�3 (Theorem 3) and �nally for f(x) = x2�c, where c is an integer (Theorem 6).
Now we have obtained the widest generalization of all these assertions. It has a lot
of other geometrical applications, besides Theorems 1, 2, 3, 6.

Consider, e.g., the equation

(17) x3 � 7x2 + 14x� 7 = 0:

By Theorem 10, its integer roots can be just divisors of the number �7, i.e. one of
the numbers 1, �1, 7,�7. Substitutions show that neither of these numbers satis�es
the equation. We can conclude that the roots of the equation are irrational numbers.
As a matter of fact, we do not know whether the equation (17) has roots at all.
But, we shall show later that it has roots and even very interesting ones. One of its
roots appears to be the square of the side of the
regular heptagon, inscribed in the circle of radius 1.
Moreover, the equation (17) has three roots, lying:
between 0 and 1, between 2 and 3 and between
3 and 4. They are the squares of the diagonals of
the regular heptagon, inscribed into the unit circle.
Here by a diagonal we mean an arbitrary segment,
joining two vertices of a polygon, so that sides are
included as diagonals. The regular heptagon has
three diagonals of di�erent length|AB, AC and
AD (�g. 5). In such a way, all these lengths are
irrational numbers. Fig. 5

Problems

1. Show that Theorem 5 is not valid if concepts of a number and a \prime" are
understood as applied just to even numbers as has been discussed in the beginning
of this section. Which part of the proof of Theorem 5 appears to be wrong in that
case?

2. Prove that if integers m and n are relatively prime, then divisors of mn
are obtained multiplying divisors of m by divisors of n, and each divisor of mn
can be obtained in this way exactly once. Deduce that if S(N) denote the sum of
k-th powers of all divisors of N , m and n are relatively prime and N = mn, then
S(N) = S(m)S(n). Derive the formula (14) in that way.
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3. A positive integer n is called perfect if it is equal to the sum of its proper
divisors (i.e. the number itself is excluded from the set of its divisors). E.g. numbers
6 and 28 are perfect. Prove that if for some r the number p = 2r� 1 is prime, then
2r�1p is a perfect number (but recall that the formula on the sum of divisors S we
have deduced, includes the number n itself). This proposition was already known
to Euclid. Nearly 2000 years later Euler proved the inverse assertion: each even
perfect number is of the form 2r�1p, where p = 2r�1 is a prime. Proof does not use
any facts other than the ones presented previously, but is by no means easy. Try
to rediscover this proof! By now, it is not known whether there exist odd perfect
numbers.

4. If for two positive integers m and n there exist such integers a and b so that
ma+ nb = 1, then obviously m and n are relatively prime: each of their common
divisors is divisible by 1. Prove the converse: for relatively prime numbers m and
n there always exist integers a and b such that ma + nb = 1. Use the division
algorithm and mathematical induction.

5. Using the result of problem 4 prove Lemmas 6 and 7 without using the
theorem on uniqueness of prime factorization. Show that in such a way a new
proof of this theorem (Theorem 8) can be obtained. This was just the way Euclid
proved it.

6. Find integer values of a such that the polynomial xn + ax+ 1 has rational
roots.

7. Let f(x) be a polynomial with integer coe�cients. Prove that if a reduced

fraction � = �a

b
is a root of the equation f(x) = 0, then b divides the leading

coe�cient and a divides the constant term. This is a generalization of Theorem 10
to the case of a polynomial with integer coe�cients where the leading coe�cient
need not be equal to 1.

I. R. Shafarevich,

Russian Academy of Sciences,

Moscow, Russia
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CHAPTER II. POLYNOMIAL

1. Roots and divisibility of polynomials

In this chapter we shall be concerned with equations of the type f(x) = 0,
where f is a polynomial. We have already met with them at the end of the previous
chapter. The equation f(x) = 0 should be understood as the problem: �nd all
the roots of the polynomial (or the equation). But it may happen that all the
coe�cients of the polynomial f(x) are 0 and the equation f(x) = 0 turn into an
identity. We then write f = 0 and in that case we agree that the degree of the
polynomial f is not de�ned.

In order to add up two polynomials we simply add the corresponding members.
Polynomial are multiplied using the bracket rules. If f(x) = a0+ a1x+ � � �+ anx

n,
g(x) = b0+b1x+� � �+bmx

m, then f(x)g(x) = (a0+a1x+� � �+anx
n)(b0+b1x+� � �+

bmx
m). Eliminating the brackets we obtain members akblx

k+l, where 0 6 k 6 n,
0 6 l 6 m. After that we group together similar members. As a result we obtain
the polynomial c0 + c1x+ c2x

2 + � � � with coe�cients

(1) c0 = a0b0; c1 = a0b1 + a1b0; c2 = a0b2 + a1b1 + a2b0; . . .

The coe�cient cm is equal to the sum of all products akbl, where k + l = m.

Polynomials share many properties with integers. The representation of a
polynomial in the form f(x) = a0 + a1x + � � � + anx

n can be considered to be an
analog of the representation of a positive integer in the decimal (or some other)
system. The degree of a polynomial has the role analogous to the absolute value

This paper is an English translation of: I. R. Xafareviq, Izbranye glavy algebry,
Matematiqeskoe obrazovanie, 1, 2, i�l~{sent. 1997, Moskva, str. 3{33. In the opinion of
the editors, the paper merits wider circulation and we are thankful to the author for his kind
permission to let us make this version.
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of an integer. For example, if we prove a property of integers by induction on the
absolute value, then in the proof of the analogous property of polynomials we use
induction on the degree. Notice the following important property: the degree of
the product of two polynomials is equal to the sum of their degrees. Indeed, let
f(x) = a0 + a1x+ � � �+ anx

n and g(x) = b0 + b1x+ � � �+ bmx
m be polynomials of

degree n and m, that is to say an 6= 0, bm 6= 0. If we calculate the coe�cients of
f(x)g(x) using (1), we obtain members of the form akblx

k+l where k + l 6 n+m.
Clearly, the greatest degree we get is m + n and there is only one such member:
anbmx

n+m. It di�ers from zero, since anbm 6= 0, and it cannot be cancelled with
some other member, since it has the greatest degree. This property is analogous to
the property jxyj = jxjjyj of the absolute value jxj of a number x.

The theorem on division with a remainder for polynomials is formulated and
proved almost in the same way as for positive integers (Theorem 4, Chapter I).

THEOREM 1. For any polynomials f(x) and g(x), where g 6= 0, there exist

polynomials h(x) and r(x) such that

(2) f(x) = g(x)h(x) + r(x)

where either r = 0, or the degree of r is less than the degree of g. For given f and

g, the polynomials h and r are uniquely determined.

If f = 0, then the representation (2) is obvious: f = 0 � g + 0. Suppose that
f 6= 0 and apply the method of mathematical induction on the degree of f(x).
Suppose that the degree of f(x) is n and that the degree of g(x) is m:

f(x) = a0 + a1x+ � � �+ anx
n; g(x) = b0 + b1x+ � � �+ bmx

m:

If m > n, the representation (2) has the form f = 0 � g + f , with h = 0, r = f .

If m 6 n, put f1 = f � an
bm

xn�mg (remember that bm 6= 0, since the degree of

g(x) is m). Clearly, in the polynomial f1 the members having xn cancel out (that

is how we chose the coe�cient � an
bm

), which means that its degree is less than n.

Hence, we can take that the theorem is true for that polynomial and that it has
the representation of the form (2): f1 = gh1 + r, where r = 0 or its degree is less

than m. This implies f = f1 +
an
bm

xn�mg =

�
h1 +

an
bm

xn�m
�
g + r, and we have

obtained the representation (2) with h = h1 +
an
bm

xn�m. Let us prove that the

representation (2) is unique. If f = gk + s is another such representation (which
means that s = 0 or its degree is less than m), then subtracting one from the other
we get

g(h� k) + r � s = 0; g(h� k) = s� r:

If the polynomial s� r is 0, then s = r and h = k. If s� r 6= 0, then its degree is
less than m and we arrive at a contradiction, since s� r is equal to the polynomial
g(h�k), obtained by multiplying g by h�k, and hence its degree cannot be smaller
than the degree of g which is m.
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Now please read the proof of Theorem 4 of Chapter I in order to see that
the above proof is perfectly analogous to it. On the other hand, if we do all the
operations which should be done in the application of the mathematical induction
(i.e. transition from f1 to the polynomial f2 with even smaller degree, etc. until
we arrive at the remainder r whose degree is less than m), we obtain the rule for
the so called \corner" division of polynomials used in schools. For example, if
f(x) = x3 + 3x2 � 2x+ 5, g(x) = x2 + 2x� 1, then the division is done according
to the scheme:

x3 + 3x2 � 2x+ 5 j x2 + 2x� 1

x3 + 2x2 � x x+ 1

x2 � x+ 5

x2 + 2x� 1

� 3x+ 6

This means that we choose the leading term of the polynomial h(x) so that
when it is multiplied by the leading term of g(x) (that is x2) the result is the leading
term of f(x) (that is x3). Therefore the leading term of h(x) is x. In the �rst row
of the above table we have f(x) and in the second g(x)x (the product of g(x) and
the leading term of h(x)). Their di�erence is in the third row. We now choose the
next term of the polynomial h(x) so that when multiplied by the leading term of
g(x) (that is x2) it becomes equal to the leading term of the polynomial in the third
row (that is x2). Hence the next term of h(x) is 1. We now repeat the procedure.
In the �fth row we obtain a polynomial of degree 1 (which is less than 2, the degree
of g(x)) and so the procedure stops. We see that

x3 + 3x2 � 2x+ 5 = (x2 + 2x� 1)(x+ 1)� 3x+ 6:

As in the case of numbers, the representation (2) is called division with re-

mainder of the polynomial f(x) by the polynomial g(x). Polynomial h(x) is the
quotient and polynomial r(x) is the remainder in this division.

The division of polynomials is analogous to the division of numbers and it is
even simpler, since when we add two terms of a certain degree we obtain a term of
the same degree, and we do not transform into tens, hundreds, etc., as in the case
of number division.

Repeating the reasoning given in Chapter I for numbers, we can apply The-
orem 1 to �nd the greatest common divisor of two polynomials. In fact, using
the notation of Theorem 1 we have the following analog of Lemma 5 from Chap-
ter I: g: c: d:(f; g) = g: c: d:(g; r); more precisely, the pairs (f; g) and (g; r) have
the same common divisors. We can now use Euclid's algorithm as in Chapter I:
divide with reaminder g by r: g = rh1 + r1, then r by r1, and so on, to obtain the
following sequence of polynomials: r, r1, r2, . . . , rn whose degrees decrease. We
stop at the moment when we obtain the polynomial rk+1 = 0, i.e. when rk�1 =
rkhk. From the equalities g: c: d:(f; g) = g: c: d:(r; r1) = � � � = g: c: d:(rk�1; rk) we
see that g: c: d:(f; g) = g: c: d:(rk�1; rk). But since rk is a divisor of rk�1, then
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g: c: d:(rk�1; rk) = rk and so g: c: d:(f; g) = rk | the last nonzero remainder in the
Euclid's algorithm. It should be remarked that g: c: d:(f; g) is not uniquely de�ned,
which was not the case when we dealt with positive integers. Namely, if d(x) is a
common divisor of f(x) and g(x), then so is cd(x), where c 6= 0 is a number. Hence,
g: c: d:(f; g) is de�ned up to a multiplicative constant.

Theorem 1 becomes particularly simple and useful in the case when g(x) is a
�rst degree polynomial. We can then write g(x) = ax + b, with a 6= 0. Since the
properties of division by g are unaltered if g is multiplied by a number, we multiply
g(x) by a�1, so that the coe�cient of x is 1. Write g(x) in the form g(x) = x � �
(it will soon become evident why it is more convenient to write � with a minus).
According to Theorem 1, for any polynomial f(x) we have

(3) f(x) = (x� �)h(x) + r:

But in our case the degree of r is less than 1, i.e. it is 0: r is a number. Can we
�nd this number without carrying out the division? It is very simple|it is enough
to put x = � into (3). We get r = f(�), and so we can write (3) in the form

(4) f(x) = (x� �)h(x) + f(�):

Polynomial f(x) is divisible by x�� if and only if the remainder in the division
is 0. But in view of (4) it is equal to f(�). We therefore obtain the following
conclusion which is called B�ezout's theorem.

THEOREM 2. Polynomial f(x) is divisible by x�� if and only if � is its root.

For example, the polynomial xn � 1 has a root x = 1. Therefore, xn � 1 is
divisible by x�1. We came across this division earlier: see formula (12) of Chapter I
(where a is replaced by x and r + 1 by n).

In spite of its simple proof, B�ezout's theorem connects two completely di�er-
ent notions: divisibility and roots, and hence it has important applications. For
instance, what can be said about the common roots of polynomials f and g, i.e.
about the solutions of the system of equations f(x) = 0, g(x) = 0? By B�ezout's
theorem the number � is their common root if f and g are divisible by x � �.
But then x � � divides g: c: d:(f; g) which can be found by Euclid's algorithm. If
d(x) = g: c: d:(f; g), then x� � divides d(x), i.e. d(�) = 0. Therefore, the question
of common roots of f and g reduces to the question of the roots of d, which is,
in general, a polynomial of much smaller degree. As an illustration, we shall de-
termine the greatest common divisor of two second degree polynomials, which we
write in the form f(x) = x2+ax+ b and g(x) = x2+ px+ q (we can always reduce
them to this form after multiplication by a number). We divide f by g according
to the general rule:

x2 + ax+ b j x2 + px+ q

x2 + px+ q 1

(a� p)x+ (b� q)

The remainder is r(x) = (a � p)x + (b � q) and we know that g: c: d:(f; g) =
g: c: d:(g; r). Consider the case a = p. If we also have b = q, then f(x) = g(x) and
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the system of equations f(x) = 0, g(x) = 0 reduces to one equation f(x) = 0. If
b 6= q, then r(x) is a nonzero number and f and g have no common factor. Finally,

if a 6= p, then r(x) has unique root � =
b� q

p� a
. We know that g: c: d:(f; g) =

g: c: d:(g; r) and it is enough to substitute this value of � into g(x), in order to �nd
out whether g(x) is divisible by x� �. We obtain the relation

�
b� q

p� a

�2
+ p

�
b� q

p� a

�
+ q = 0;

or, multiplying it by nonzero number (p� a)2, the equivalent relation

(4') (b� q)2 + p(b� q)(p� a) + q(p� a)2 = 0:

The second and the third member of this equality have common factor p�a. Taking
it out we can rewrite the relation (4') in the form

(q � b)2 + (p� a)(pb� aq) = 0:

The expression D = (q � b)2 + (p � a)(pb � aq) is called the resultant of the
polynomials f and g. We have seen that the condition D = 0 is necessary and
su�cient for the existence of a common factor of f(x) and g(x), provided that
p 6= a. But for p = a the condition D = 0 becomes q = b, and that is, as we have
seen, equivalent to the existence of a common non-constant factor of f(x) and g(x).
In general, it is possible to �nd for any two polynomials f(x) and g(x) of arbitrary
degrees an expression made up from their coe�cients, which equated to zero gives
necessary and su�cient condition for the existence of their common nonconstant
factor, but of course, the technicalities will be more di�cult.

Another important application of B�ezout's theorem is considered with the num-
ber of roots of a polynomial. Suppose that the polynomial f(x) is not identically
zero, i.e. f 6= 0, and that f(x) has, besides �1, another root �2 such that �2 6= �1.
By B�ezout's theorem, f(x) is divisible by x� �1:

(5) f(x) = (x� �1)f1(x):

Put x = �2 into this equality. Since �2 is also a root of f(x), we have f(�2) = 0.
This means that (�2 � �1)f1(�2) = 0, and hence (since �2 6= �1) that f1(�2) = 0,
i.e. that �2 is a root of f1(x). Applying B�ezout's theorem to the polynomial f1(x)
we obtain the equality f1(x) = (x � �2)f2(x) and substituting this into (5) we
obtain

f(x) = (x� �1)(x� �2)f2(x):

Suppose that the polynomial f(x) has k di�erent roots �1, �2, . . . , �k. Repeating
our reasoning k times we see that f(x) is divisible by (x� �1) � � � (x� �k):

(6) f(x) = (x� �1) � � � (x� �k)fk(x):

Let n be the degree of f(x). On the right-hand side of (6) we have a polynomial
whose degree is not less than k, and on the left-hand side a polynomial of degree n.
Hence n > k. We formulate this as follows.
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THEOREM 3. The number of di�erent roots of a polynomial which is not

identically zero is not greater than its degree.

Of course, if a polynomial is identically equal to 0, all the numbers are its
roots. Theorem 3 was proved in the 17th century by philosopher and mathematician
Descartes.

Using Theorem 3 we can answer the question we have avoided up to now:
what is the meaning of the phrase equality of polynomials? One way is to write the
polynomials in the form

f(x) = a0 + a1x+ � � �+ anx
n; g(x) = b0 + b1x+ � � �+ bmx

m

and to say that they are equal if all their coe�cients are equal: a0 = b0, a1 = b1,
etc. This is how we think of the equality f = 0|all the coe�cients of f are zero.
Another way to understand the term \equality" is as follows: polynomials f(x) and
g(x) are equal if they take the same values when x is substituted by an arbitrary
number, i.e. if f(c) = g(c) for all c. We shall prove that these two meanings of
the notion \equality" coincide. But, at �rst we have to make a distinction between
them and in the �rst case we say that \f(x) and g(x) have equal coe�cients" and
in the second that \f(x) and g(x) have equal values for all values of x".

Evidently, if f(x) and g(x) have equal coe�cients, then they have equal values
for all x. The converse will be proved in a stronger form: we do not have to suppose
that f(x) and g(x) coincide for all values x|it is enough to suppose that they have
the same values for any n + 1 values of x, where n is not less than the degrees of
both polynomials.

THEOREM 4. Suppose that the degrees of the polynomials f(x) and g(x) are
not greater than n and that they have same values for some n+ 1 di�erent values

of x. Then the coe�cients of f(x) and g(x) are equal.

Proof. Suppose that the polynomials f(x) and g(x) have equal values for n+1
values of x: x = �1, �2, . . . , �n+1, i.e. that

f(�1) = g(�1); f(�2) = g(�2); . . . ; f(�n+1) = g(�n+1):

Consider the polynomial h(x) = f(x) � g(x) (here \=" denotes the equality of
coe�cients). We have seen that this implies that h(�) = f(�) � g(�) for any �,
and, in particular, that h(�1) = 0, h(�2) = 0, . . . , h(�n+1) = 0. But the degrees
of f and g are not greater than n, and so the degree of h is not greater than n.
This is a contradiction with Theorem 3, unless h = 0, i.e. unless all the coe�cients
of h are 0. This implies that the coe�cients of f and g are equal.

From now on we can apply the term \equality" to polynomials without em-
phasizing in which one of the two senses.

Theorem 4 shows an interesting property of polynomials. Namely, if we know
the values of a polynomial f(x) of degree not greater than n for some n+1 values
of the variable x, then its coe�cients are uniquely determined, and so are its values
for all other values of x. Notice that in the above sentence \coe�cients are uniquely
determined" means only that there cannot be two di�erent polynomials with the
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given property. Hence, it is natural to raise the question of the existence of such
a polynomial. Namely, suppose that we have n+ 1 di�erent numbers x1, x2, . . . ,
xn+1 and also n + 1 numbers y1, y2, . . . , yn+1; is there a polynomial f(x) of
degree not greater than n such that f(x1) = y1, f(x2) = y2, . . . , f(xn+1) = yn+1?
Theorem 4 states only that if such a polynomial exists, then it is unique. The
problem of constructing such a polynomial is called the problem of interpolation.
It often appears in the processing of experimental data, when a quantity f(x) is
measured only for certain values x = x1, x = x2, . . . , x = xn+1 and it is necessary
to make a plausible aasumption about its values for other values of x. The data
are given by the table

(7)

x j x1 x2 . . . xn+1

f(x) j y1 y2 . . . yn+1

One of the plausible assumptions would be to construct a polynomial of degree
not greater than n such that f(x1) = y1, f(x2) = y2, . . . , f(xn+1) = yn+1 and to
assume that the required quantity is equal to f(x) for all values of x. But does such
a polynomial exist? We shall prove that it does and we shall �nd its formula. It is
called the interpolation polynomial corresponding to table (7). In order to �nd the
formula for the interpolation polynomial in the general case, we shall �rst consider
the simplest interpolation problem, when in table (7) all the values y1, y2, . . . yn+1

are 0, except one of them. Let y1 = y2 = � � � = yk�1 = yk+1 = � � � = yn+1 = 0, so
that the table becomes

x j x1 x2 . . . xk�1 xk xk+1 . . . xn+1

f(x) j 0 0 . . . 0 yk 0 . . . 0

This means that the required interpolation polynomial fk(x) has the following roots:
x1, x2, . . . , xk�1, xk+1, . . . , xn+1 (i.e. all the numbers x1, . . . . xn+1 except xk).
But then it must be divisible by the product of the corresponding factors x � xi.
Since there are n factors, and since the degree of the polynomial cannot be greater
than n, it can di�er from this product only by a multiplicative constant. That is
to say, we have to put

(8) fk(x) = ck(x� x1) � � � (x� xk�1)(x � xk+1) � � � (x� xn+1):

Conversely, any polynomial of that form satis�es the required conditions for all x1,
. . . , xn+1, except perhaps for x = xk . If it is to satisfy the condition for xk , we
put x = xk into (8) and from the obtained equality we get the value of ck. Since
fk(xk) has to be equal to yk, we obtain

ck =
yk

(xk � x1) � � � (xk � xk�1)(xk � xk+1) � � � (xk � xn+1)

fk(x) = ck(x� x1) � � � (x� xk�1)(x� xk+1) � � � (x � xn+1):

Using the auxiliary polynomial F (x) = (x � x1) � � � (x � xn+1) of degree n + 1 we
can write the above formula in a di�erent way. Namely, in that case the product
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(x�x1) � � � (x�xk�1)(x�xk+1) � � � (x�xn+1) is equal to
F (x)

x� xk
. Putting

F (x)

x� xk
=

Fk(x), we get

(9) ck =
yk

Fk(xk)
; fk(x) =

yk
Fk(xk)

Fk(x):

Passing on to the general interpolation problem with the table (7) we only have
to notice that its solution is the sum of all polynomials fk(x) which correspond to
all the simplest interpolation problems:

f(x) = f1(x) + f2(x) + � � �+ fn+1(x):

Indeed, if we put x = xk then all the members on the right-hand side become 0,
except fk(xk), and since fk(x) is the solution of the k-th simplest interpolation
problem, we have fk(xk) = yk. Finally, the degrees of f1(x), . . . , fn+1(x) are
not greater than n and the same holds for their sum. We can write the obtained
formula in the form

(10) f(x) =
y1

F1(x1)
F1(x) +

y2
F2(x2)

F2(x) + � � �+ yn+1

Fn+1(xn+1)
Fn+1(x);

where Fk(x) =
F (x)

x� xk
, F (x) = (x � x1)(x � x2) � � � (x � xn+1).

There is an unexpected identity which follows from the formula for the in-
terpolation polynomial. Consider the interpolation problem corresponding to the
table

x j x1 x2 . . . xn+1

f(x) j xk1 xk2 . . . xkn+1

where k is a positive integer not greater than n or k = 0. On one hand it is evident
that the polynomial f(x) = xk is the solution of this interpolation problem. On
the other hand, we can write it down using formula (10) and we obtain that

xk =
xk1

F1(x1)
F1(x) +

xk2
F2(x2)

F2(x) + � � �+ xkn+1

Fn+1(xn+1)
Fn+1(x);

where F (x) = (x�x1)(x�x2) � � � (x�xn+1) and Fi(x) =
F (x)

x� xi
. The polynomials

Fi(x) have degree n and the coe�cient of xn is 1. If k < n, then the polynomial
on the right must also have degree less than n which means that all members with
degree n must cancel out. In other words we have

xk1
F1(x1)

+
xk2

F2(x2)
+ � � �+ xkn+1

Fn+1(xn+1)
= 0:

for k < n. If k = n, the coe�cient of xn must be equal to 1 and we have

xn1
F1(x1)

+
xn2

F2(x2)
+ � � �+ xnn+1

Fn+1(xn+1)
= 1:

Notice that here F (x) = (x � x1) � � � (x � xn+1), Fk(x) =
F (x)

x� xk
, so that we have

identities for arbitrary numbers x1, . . . , xn+1.
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Problems

1. Write down the last identities for n = 1 and 2, i.e. for F (x) = (x�x1)(x�x2)
and F (x) = (x� x1)(x� x2)(x � x3), and then verify them by direct calculation.

2. Divide xn+1 � 1 by x � 1 in order to obtain another derivation of the
formula (12), Chapter I.

3. Divide with remainder xn�a by xm� b. (Hint: the answer depends on the
division of n by m.)

4. In deducing the formula (6) why was not possible to reason as follows:
since f(x) is divisible by all x��i, it is divisible by their product? Verify that the
assertion: if n is divisible by a and b then n is divisible by ab does not hold for
numbers. Verify that it also does not hold for polynomials.

5. Prove that any polynomial can be written as the product of binomials x��i
and a polynomial which has no roots. Prove that such a representation for a given
polynomial is unique.

6. Let F (x) = (x � x1) � � � (x � xn) where x1, . . . , xn are di�erent from one
another and let f(x) be a polynomial of degree less than n. Prove that the fraction
f(x)

F (x)
is equal to the sum of fractions of the form

ak
x� xk

, k = 1; . . . ; n. Find the

formula for ak.

7. If g(x) is a polynomial of degree less than n and if x1, . . . , xn+1 and the
polynomial F (x) have the same meaning as at the end of Section 1, prove that

g(x1)

F1(x1)
+ � � �+ g(xn+1)

Fn+1(xn+1)
= 0:

8. Let everything be the same as in Problem 7, except that the degree of g(x)
is n and the coe�cient of xn is a. Prove that

g(x1)

F1(x1)
+ � � �+ g(xn+1)

Fn+1(xn+1)
= a:

2. Multiple roots and derivative

The equation x2 � a = 0 for a > 0 has two roots, given by x =
p
a and

x = �pa, where pa is the arithmetic value of the square root of a. For a = 0 this
gives two equal values. Similarly, the formula for the solution of an arbitrary qua-
dratic equation sometimes gives two equal roots. Can similar situation happen for
equations of arbitrary degree? At �rst the question itself seems to be meaningless.
What does it mean that the equation f(x) = 0 has two equal roots? We can write
any root of an equation on the paper as many times as we please, and all these
numbers will be equal! But when we spoke of equal roots of the quadratic equation
we used the formula for its solution. In the general case we shall also use some
additional considerations in order to give a reasonable de�nition of what does it
mean that the equation f(x) = 0 has two equal roots x = � and x = �.
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Such considerations are based on Bezout's theorem (Theorem 2). Let x = �
be a rooot of f(x). By Bezout's theorem f(x) is divisible by x � � and we have
f(x) = (x��)g(x), where g(x) is a polynomial whose degree is less than the degree
of f(x) by 1. If the polynomial g(x) again has a root x = �, we shall say that f(x)
has two roots equal to �. By Bezout's theorem, g(x) can be written in the form
g(x) = (x� �)h(x) and hence

(11) f(x) = (x� �)2h(x):

We can say that in the representation (6) there are two factors x � �. This is in
accordance with the intuitive notion of what are two equal roots.

If in (11) h(x) again has a root �, we shall say that f(x) has three roots equal
to �. In general, if f(x) can be written in the form f(x) = (x � �)ru(x), where
u(x) is a polynomial whose root is not �, we shall say that f(x) has r equal roots �.
If r > 2, then � is said to be a multiple root. Hence, � is a multiple root if f(x)
is divisible by (x� �)2. If the polynomial f(x) has exactly k roots equal to �, we
say that k is the multiplicity of the root �. Then f(x) can be written in the form
f(x) = (x� �)kg(x), where � is not a root of g(x), i.e. g(�) 6= 0.

For example, suppose that x = � is a root of the quadratic equation x2+ px+
q = 0. Dividing x2 + px+ q by x� � we get

x2 + px+ q j x� �

x2 � �x x+ p+ �

(p+ �)x + q

(p+ �)x � �(p+ �)

q + p�+ �2

i.e. x2+px+q = (x��)(x+p+�)+(�2+p�+q). Since � is a root of the equation
x2 + px+ q = 0, we have �2+ p�+ q = 0, and so x2 + px+ q = (x��)(x+ p+�).
By our de�nition, this equation has two roots equal to � if � is a root of x+ p+�,
i.e. if 2�+ p = 0. Hence, � = �p=2. Since �2+ p�+ q = 0, then putting � = �p=2
we obtain that �p2=4+ q = 0. This is the known condition which ensures that the
equation x2 + px+ q = 0 has equal roots.

For the third order equation x3 + ax2 + bx + c = 0 the calculation is only a
little more involved. Divide x3 + ax2 + bx+ c by x� �:

x3 + ax2 + bx+ c j x� �

x3 � �x2 x2 + (a+ �)x + b+ a�+ �2

(a+ �)x2 + bx+ c

(a+ �)x2 � �(a+ �)x

(b+ a�+ �2)x+ c

(b+ a�+ �2)x� �(b+ a�+ �2)

c+ b�+ a�2 + �3
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Since by supposition �3 + a�2 + b� + c = 0, then x3 + ax2 + bx + c =
(x � �)(x2 + (a + �)x + b + a� + �2). According to our de�nition the equation
x3 + ax2 + bx + c = 0 has two roots equal to � if � is a root of the equation and
also if � is a root of the polynomial x2 + (a + �)x + b+ a� + �2. In other words,
�2 + (a + �)� + b+ a� + �2 = 0, i.e. 3�2 + 2a� + b = 0. We see that a multiple
root of the equation x3 + ax2 + bx+ c = 0 is the common root of the polynomials
x3 + ax2 + bx+ c and 3x2 +2ax+ b. As we saw in Section 1, they are the roots of
the polynomial g: c: d:(x3 + ax2 + bx+ c; 3x2 + 2ax+ b) and the greatest common
divisor can be found by Euclid's algorithm.

We now apply the same reasoning to the polynomial f(x) = a0+a1x+� � �+anxn
of arbitrary degree. When we divide f(x) by x � � we obtain as the quotient a
polynomial g(x) of degree n � 1 whose coe�cients depend on � and so we shall
denote it by g(x; �). We know (formula (3)) that the remainder is f(�):

(12) f(x) = (x � �)g(x; �) + f(�):

Putting x = � into the polynomial g(x; �) we obtain the polynomial in � which is
called the derivative of f(x) and is denoted by f 0(�). Hence, by de�nition,

(13) f 0(�) =
f(x)� f(�)

x� �
(�):

The above formula may cause some doubt, since after the substitution x = � both

the numerator and the denominator in the expression
f(x) � f(�)

x� �
become 0 and we

get
0

0
. This formula therefore needs to be explained: we �rst (before substituting

x = �) divide the numerator by the denominator and we substitute x = � into
their quotient which is a polynomial. For example, the meaning of the expression
x2 � 1

x� 1
(1) is: we �rst get

x2 � 1

x� 1
= x+ 1, and then (x+ 1)(1) = 2.

Those of you who will continue to study mathematics will meet the derivative
for other functions, such as f(x) = sinx or f(x) = 2x. In essence they are de�ned
by the same formula (13), but in general case it is more di�cult to give the exact
sense to the expression on right-hand side. In the case of polynomials everything
is cleared by applying B�ezout's theorem to the polynomial f(x)� f(�).

If � is a root of the polynomial f(x) in (12), i.e. if f(�) = 0, then we get
f(x) = (x � �)g(x; �) and by our de�nition � is a multiple root of f(x) if � is a
root of g(x; �), i.e. if g(�; �) = 0. But this means that f 0(�) = 0. We have proved
the assertion:

THEOREM 5. A root of a polynomial f(x) is multiple if and only if it is also

a root of the derivative f 0(x).

We see that a multiple root � is the common root of the polynomials f(x)
and f 0(x). In other words, � is a root of g: c: d:(f(x); f 0(x)); the greatest common
divisor can be found by Euclid's algorithm and it is, as a rule, a polynomial of
much smaller degree.
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We shall now carry out the division of f(x) by x � �, we shall �nd the poly-
nomial g(x; �) in (12) and we shall �nd the explicite formula for the derivative of
a polynomial.

We could make the usual division of f(x) by x�� and �nd the quotient g(x; �)
and the remainder f(�). But it is better to do it another way. Recall that f(x) is
the sum of the terms akx

k and hence f(x)�f(�) is the sum of the terms ak(x
k��k).

The polynomial (xk � �k) has a root x = � and by B�ezout's theorem it is divisible
by x � �. We have noticed (after the formulation of B�ezout's theorem) that we
have already done this division earlier. True, only for � = 1, but the general case is
easily reduced to it. We shall use formula (12) of Chapter I (where r+1 is replaced
by k):

(xk � 1) = (x� 1)(xk�1 + xk�2 + � � �+ x+ 1):

Replace x by x=�:

�
xk

�k
� 1

�
=
�x
�
� 1

��xk�1

�k�1
+

xk�2

�k�2
+ � � �+ x

�
+ 1

�
:

Multiplying both sides of this equality by �k we get

(14) xk � �k = (x� �)(xk�1 + �xk�2 + � � �+ �k�2x+ �k�1):

This formula was obtained for � 6= 0 (since we had x=�) but it is clearly true for
� = 0 also.

Consider the polynomial f(x) = a0 + a1x + � � � + anx
n and the di�erence

f(x)� f(�). It is equal, as we saw, to the sum of the following terms ak(x
k � �k).

Divide each such term by x� �, using formula (14). We get

ak(x
k � �k)

x� �
= ak(x

k�1 + �xk�2 + � � �+ �k�2x+ �k�1):

If we put x = � (into the right-hand side!) we obtain the term kak�
k�1. Hence

for the polynomial g(x; �) in (12) for x = � we get that g(x; �)(�) = g(�; �)
is the sum of terms kak�

k�1, i.e. a1 + 2a2� + 3a3�
2 + � � � + nan�

n�1. In other
words, we have deduced the formula for the derivative f 0(x) of the polynomial
f(x) = a0 + a1x+ � � �+ anx

n:

(15) f 0(x) = a1 + 2a2x+ � � �+ nanx
n�1:

Compare this with what we obtained for polynomials of degree 2 and 3 and convince
yourself that those were special cases of (15) for n = 2 and n = 3.

The derivative of a polynomial is important not only in connection with mul-
tiple roots; it has many other applications. We shall therefore prove the basic
properties of the derivative. All the proofs follow from the de�nition, i.e. from (12).

a) The derivative of a constant polynomial. If f(x) = a0 then, by de�nition,
f(x) = f(�) and g(x; �) = 0. Hence f 0(�) = 0, i.e. f 0(x) = 0.
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b) The derivative of a sum. Let f1 and f2 be two polynomials and let f =
f1 + f2. We have

(16)
f1(x) = f1(�) + (x� �)g1(x; �);

f2(x) = f2(�) + (x� �)g2(x; �)

and therefore f 01(�) = g1(�; �), f
0

2(�) = g2(�; �). Adding the formulas (16) we
get f(x) = f(�) + (x � �)g(x; �), where g(x; �) = g1(x; �) + g2(x; �). Therefore,
f 0(�) = g(�; �) = g1(�; �) + g2(�; �) = f 01(�) + f 02(�), i.e.

(f1 + f2)
0 = f 01 + f 02:

Using induction on the number of summands we easily obtain

(f1 + f2 + � � �+ fr)
0 = f 01 + f 02 + � � �+ f 0r:

c) Multiplication by a number. Let f1(x) = af(x). Then from the equalities
f(x) = f(�) + (x� �)g(x; �) and g(�; �) = f 0(�), multiplying by a we get

f1(x) = af(x) = af(�) + (x� �)ag(x; �);

i.e. f1(x) = f1(�) + (x� �)ag(x; �) and f 01(�) = af 0(�):

(af)0 = af 0:

d) The derivative of a product. Let f = f1f2. Multiplying the equalities (16)
we get

f1(x)f2(x) = f1(�)f2(�) + (x� �)g(x; �);

where g(x; �) = g1(x; �)f2(�) + g2(x; �)f1(�) + (x� �)g1(x; �)g2(x; �). Therefore
f(x) = f(�)+(x��)g(x; �) where g(x; �) is given above. Hence, f 0(�) = g(�; �) =
g1(�; �)f2(�) + g2(�; �)f1(�) = f 01(�)f2(�) + f 02(�)f1(�), i.e.

(17) (f1f2)
0 = f 01f2 + f 02f1:

If f1 is a constant (polynomial of degree 0) then in view of a) from (17) we again
get c).

By induction on the number of factors we obtain

(18) (f1f2 � � � fr)0 = f 01f2 � � � fr + f1f
0

2 � � � fr + f1f2 � � � f 0r
(on the right-hand side in the product f1 � � � fr each factor is succesfully replaced
by its derivative).

Indeed, according to (17):

(f1f2 � � � fr)0 = ((f1 � � � fr�1)fr)
0 = (f1 � � � fr�1)

0fr + f1 � � � fr�1f
0

r:

Applying to (f1 � � � fr�1)
0 the expression (18) which can be taken to be already

proved, we obtain the required formula.

An important special case occurs when all the factors in (18) are equal:

(19) (fr)0 = rfr�1f 0:
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From the d�nition of the derivative it is easily veri�ed that x0 = 1. Hence, (xr)0 =
rxr�1. Combining the above rules, we can give a di�erent proof of the explicite
formula (15) for the derivative.

Return now to the question of multiple roots of polynomials. Suppose that � is
a root of multiplicity k of f(x). This means that f(x) = (x��)kg(x) where � in not
a root of g(x). According to (17) we have f 0(x) = ((x� �)k)0g(x) + (x� �)kg0(x),
and according to (19) we have ((x � �)k)0 = k(x � �)k�1 (since (x � �)0 = 1, by
(15)). Therefore, f 0(x) = k(x��)k�1g(x)+(x��)kg0(x) = (x��)k�1p(�x), where
p(x) = kg(x)+(x��)g0(x). But � is not a root of p(x): p(�) = kg(�) 6= 0. Consider

the polynomials d(x) = g: c: d:(f(x); f 0(x)) and '(x) =
f(x)

d(x)
(since d(x) is a divisor

of f(x), '(x) is a polynomial). The polynomial d(x) is divisible by (x��)k�1 since
f(x) and f 0(x) are divisible by (x � �)k�1. But d(x) is not divisible by (x � �)k ,
since p(�) 6= 0 which means that p(x) is not divisible by x � �. We conclude that
'(x) is divisible only by x�� (and no higher power, e.g. (x��)2, etc). Since '(x)

is de�ned independently from the root (namely '(x) =
f(x)

g: c: d:(f(x); f 0(x))
) the

above conclusion is true for all the roots of f(x), and we see that '(x) has the same
roots as f(x), but none of them is multiple. In view of this, we can always reduce a
question regarding the roots of a polynomial to the case when the polynomial has
no multiple roots.

Notice that we have implicitly met with the derivative in connection with the
formula for the interpolation polynomial. Indeed, let F (x) = (x�x1) . . . (x�xn+1).
From (14) we see that (x� xi)

0 = 1. Therefore, formula (18) gives:

F 0(x) = (x� x2) � � � (x� xn+1) + (x� x1)(x � x3) � � � (x� xn+1)+

+ � � �+ (x� x1)(x� x2) � � � (x� xn):

If we use the notation Fk(x) =
F (x)

x� xk
from Section I, then F 0(x) = F1(x) + � � �+

Fn+1(x). Substituting now for x one of the values x = xk , since all Fi(x) for i 6= k
contain the factor x� xk , we see that Fi(xk) = 0. Therefore F 0(xk) = Fk(xk) and
the formula (10) can be written in the form

f(x) =
y1

F 0(x1)
F1(x) +

y2
F 0(x2)

F2(x) +
yn+1

F 0(xn+1)
Fn+1(x):

Problems

1. Polynomial x2n�2xn+1 clearly has a root x = 1, and by B�ezout's theorem
it is divisible by x� 1. Find the quotient.

2. For which values of a, b does the polynomial xn+axn�1+ b have a multiple
root? Find this root.

3. For which values of a, b does the polynomial x3 + ax + b have a multiple
root?
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4. Prove that the polynomial xn + axm + b cannot have nonzero root of
multiplicity 3 or more.

5. The derivative of the polynomial f 0(x) is called the second derivative of the
polynomial f(x) and is denoted by f 00(x). Find the formula for (f1f2)

00, analogous
to (17), but which will be, of course, somewhat more complicated.

6. Prove that the derivative of a polynomial is identically equal to 0 if and
only if the polynomial is constant (i.e. when its degree is 0).

7. Prove that for a polynomial f(x) there exists a polynomial g(x) such that
g0(x) = f(x) and that all such polynomials g(x) (for a given f(x)) can di�er from
each other only in the constant term.

8. Prove that the number of roots of a polynomial cannot be greater than its
degree, each root being counted k times if k is its multiplicity.

3. The binomial formula

In this section we shall be concerned with an important formula which express-
es the polynomial (1 + x)n in the usual form a0 + a1x + � � � + anx

n. In order to
�nd the formula we have to multiply out all the factors (1 + x)(1 + x) � � � (1 + x).
Working out these brackets we shall obtain terms of the form xk, but such terms
will appear several times, and by grouping them together we shall arrive at the
required formula. For instance, if n = 2, it is well known that

(1 + x)2 = (1 + x)(1 + x) = 1(1 + x) + x(1 + x) = 1 + x+ x+ x2 = 1 + 2x+ x2:

For n = 3 the formula is also probably known. If not, it is easily obtained when
the formula for (1 + x)2 is multiplied by 1 + x:

(1 + x)3 = (1 + x)2(1 + x) = (1 + 2x+ x2)(1 + x)

= (1 + 2x+ x2) + (1 + 2x+ x2)x = 1 + 3x+ 3x2 + x3:

The coe�cient ak of x
k in the polynomial (1+x)n depends on the index k, but

also on the degree n. In order to indicate this dependence on n and k, we denote
this coe�cien by Ck

n. Therefore, C
k
n are by de�nition the coe�cients in the formula

(20) (1 + x)n = C0
n + C1

nx+ C2
nx

2 + � � �+ Cn
nx

n:

For example, C0
2 = 1, C1

2 = 2, C2
2 = 1; C0

3 = 1, C1
3 = 3, C2

3 = 3, C3
3 = 1. The

coe�cients Ck
n are called binomial coe�cients. Our aim is to write them in an

explicit form. Notice that some of them are easy to �nd. It is clear that when we
multiply all the x's by one another in the product (1+x)n, we get xn, which means
that the leading term of the polynomial (1 + x)n is xn, i.e.

(21) Cn
n = 1:

Similarly, multiplying the constant terms (values for x = 0) in the product (1+x)n

we see that the constant term of the polunomial (1 + x)n is 1, i.e.

(22) C0
n = 1:
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In the general case consider the derivatives of both sides of (20). On the left,
according to (19), we get n(1 + x)n�1, since (1+ x)0 = 1, by (15). We evaluate the
derivative on the right using (15). We obtain

n(1 + x)n�1 = C1
n + 2C2

nx+ � � �+ kCk
nx

k�1 + � � �+ nCn
nx

n�1:

But we can apply (20) for n � 1 to the left-hand side of the above equality. The

coe�cient of xk�1 will be nCk�1
n�1 on the left and kCk

n on the right. Therefore,

kCk
n = nCk�1

n�1, or

Ck
n =

n

k
Ck�1
n�1 ;

i.e. the coe�cient Ck
n can be expressed in terms of the coe�cient Ck�1

n�1 with smaller

indices. Applying this formula to Ck�1
n�1 we get C

k
n =

n(n� 1)

k(k � 1)
Ck�2
n�2, and repeating

the process r times we obtain the formula

Ck
n =

n(n� 1) � � � (n� r + 1)

k(k � 1) � � � (k � r + 1)
Ck�r
n�r

(we take away from n in the numerator and from k in the denominator r consecutive
values: 0; 1; . . . ; r � 1). Finally, let r = k. Since we know that C0

m = 1 for any m,
we obtain the formula for Ck

n:

(23) Ck
n =

n(n� 1) � � � (n� k + 1)

k(k � 1) � � � 1 :

This is the formula we looked for.

Formula (20) with the explicit expression (23) for the binomial coe�cients Ck
n

is called the binomial formula (or \Newton's binomial").

The binomial formula has a large number of applications and it is useful to
have the coe�cients (23) written in various forms. In the denominator we have the
product of all positive integers from 1 to k. The product of the form 1 � 2 � . . . �m
is called m factorial and denoted by m!. In the numerator we have the product of
all positive integers from n to n � k + 1. If we multiply it by the product of the
numbers from n� k to 1 (i.e. by (n� k)!) we obtain n!. Therefore, multiplying the
numerator and the denominator in (23) by (n� k)!, we get

(24) Ck
n =

n!

k! (n� k)!
;

and this implies that

(25) Ck
n = Cn�k

n :

Notice that in formulas (23) and (24) it is not immediately clear that the denomi-
nator divides the numerator, although we know that this is so having in mind the
meaning of the coe�cients Ck

n in the formula (20). We can express the fact that
the expression on the right-hand side of (23) is an integer, by simply saying that
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the product of any k consecutive integers is divisible by k!. We shall see later that
the fact that right-hand sides of (23) and (24) are integers implies some interesting
properties of prime numbers.

We now establish some important properties of the coe�cients Ck
n. The �rst

one follows from the obvious equality (1+x)n = (1+x)n�1(1+x) after expanding
(1 + x)n and (1 + x)n�1 on the basis of (20). We obtain

C0
n + C1

nx+ C2
nx

2 + � � �+ Cn
nx

n = (C0
n�1 + C1

n�1x+ � � �+ Cn�1
n�1x

n�1)(1 + x):

The coe�cient of xk on the left is Ck
n and on the right is obtained from the sum of

the terms Ck
n�1x

k � 1 and Ck�1
n�1x

k�1 � x, i.e. it is Ck
n�1 + Ck�1

n�1. Therefore

(26) Ck
n = Ck

n�1 + Ck�1
n�1:

This is a very useful formula for evaluating coe�cients Ck
n by means of the coe�-

cients of index n � 1. In order to get a better visual representation, we write the
coe�cients Ck

n in the form of a triangle, where Ck
n are in the n-th row. Using the

formulas (21) and (22), which say that at the beginning and at the end of each row
is 1, the triangle has the form

1

1 1

1 2 1

. . . . . . . . . . . .

1 C2
n�1 . . . Cn�2

n�1 1

1 C1
n C2

n . . . Cn�1
n 1

. . . . . . . . . . . . . . . . . . . . .

Formula (26) shows that each binomial coe�cient Ck
n is equal to the sum of the

coe�cients which are situated above on the left and right of it. Taking the �rst
two rows as given, we easily obtain for the subsequent coe�cients:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

. . . . . . . . . . . . . . . . . . . . .

This triangle is called \Pascal's triangle".

The second property is obtained by putting x = 1 into the formula (20) which
de�nes the binomial coe�cients. On the left we get 2n and on the right the sum of
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all binomial coe�cients Ck
n for k = 0; 1; . . . ; n. Therefore, the sum of all numbers

from the n-th row of Pascal's triangle is equal to 2n.

Finally, consider two neighbouring members from one row: Ck�1
n and Ck

n.

According to (24) we have Ck
n =

n!

k! (n� k)!
, Ck�1

n =
n!

(k � 1)! (n� k + 1)!
. Since

k! = (k � 1)! k, (n� k + 1)! = (n� k)! (n� k + 1), we get

Ck
n =

n� k + 1

k
Ck�1
n :

It is evident that
n� k + 1

k
> 1 when n � k + 1 > k, i.e. k <

n+ 1

2
and in that

case Ck
n > Ck�1

n . Conversely, if k >
n+ 1

2
, we obtain Ck

n < Ck�1
n . Therefore,

the numbers in one row of Pascal's triangle increase up to the middle of the row,

and after that they decrease. If n is even, then in the middle of the row we have

the greatest number C
n=2
n , and if n is odd, then there are two neighbouring equal

greatest numbers: C
(n�1)=2
n and C

(n+1)=2
n . In that case, for k =

n+ 1

2
we have

Ck
n = Ck�1

n .

The formula (20), where the binomial coe�cients are de�ned by (23) can be
written in a somewhat more general form. In order to do that, put x = b=a and
multiply both sides of (20) by an. We obtain the formula

(27) (a+ b)n = C0
na

n + C1
na

n�1b+ C2
na

n�2b2 + � � �+ Cn
nb

n:

This formula was proved for a 6= 0 (since we divided by a), but it is obviously true
also for a = 0. It is also called the binomial formula.

We shall now consider some consequences of the binomial formula and their
applications. As a rule, the simpler a result is, the more applications it has. So, in
the binomial formula we often use the values of the �rst coe�cients. We already
know that the �rst coe�cient C0

n is 1. The next one C1
n, according to (23) is n.

Notice that in view of (25) it follows that Cn
n = 1 (which we already know) and

that Cn�1
n = n. Hence,

(a+ b)n = an + nan�1b+ � � �+ nabn�1 + bn:

This can be applied to equations. We write an equation of order n in the form
a0 + a1x + � � � + an�1x

n�1 + anx
n = 0. The fact that its degree is n means that

an 6= 0 and we can divide the equation by an to obtain an equivalent equation in
which an = 1. In further text we shall suppose that this has been done and we
write the equation in the form f(x) = a0+a1x+ � � �+an�1x

n�1+xn = 0. We shall
now make another transformation of this equation into an equivalent equation. In
order to do so, put x = y + c, where y is the new variable and c is a number.
Substituting into our equation this value of x, from each term amx

m we obtain the
term am(y + c)m which can be, by the binomial formula, written as a polynomial
in y, and then we collect together corresponding terms. As a result we obtain a
new polynomial in y which we denote by g(y) = f(y + c). Since y is expressed in
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terms of x: y = x � c, the equations f(x) = 0 and g(y) = 0 are equivalent: to the
root x = � of f(x) = 0 corresponds the root y = �� c of g(y) = 0, and to the root
y = � of this equation corresponds the root x = � + c of the equation f(x) = 0.
Let us examine how the coe�cients change in this transformation. First of all, the
degree of the equation g(y) = 0 is n and the coe�cient of its leading term is 1. This
follows from the fact that when am(y+c)m is expanded by the binomial formula, it
gives rise to terms in y with degrees 6 m. Therefore, the term of degree n can only
be obtained from (y + c)n and (again by the binomial formula) it is equal to yn.
Let us look at the term of degree n� 1. It can be obtained from the term (y+ c)n

and the term an�1(y + c)n�1. From the last one we get an�1y
n�1, and in (y + c)n

we have to take the second term in the binomial expansion. As we know it is equal
to nyn�1c. Hence, the term of degree n� 1 in the polynomial g(y) = f(y + c) has
the form (an�1 + nc)yn�1.

This can be used to simplify the equation by chosing c so that the term of
degree n � 1 vanishes: we put an�1 + nc = 0, i.e. c = �an�1=n. We proved the
following

THEOREM 6. The substitution x = y�an�1=n transforms the equation f(x) =
a0 + a1x + � � �+ an�1x

n�1 + xn = 0 into equivalent equation g(y) = 0 of degree n
whose coe�cient of the leading term is 1 and which has no term of degree n� 1.

Notice that Theorem 6 gives the formula for the solutions of second degree
equations. Indeed, the polynomial g(y) has the form y2 + b2 and its roots are
therefore y = �p�b2. Make the substitution indicated in Theorem 6, evaluate b2
and the roots of f(x) and verify that in this way we obtain the standard formula
for the solutions of a quadratic equation. In the case of polynomials of arbitrary
degree we only get a certain simpli�cation, which is sometimes useful. For example,
we see that any third degree equation is equivalent to an equation of the form
x3 + ax+ b = 0.

At the end we shall apply the binomial formula to the evaluation of the sums
of powers of integers. We shall be concerned with the sums

(28) Sm(n) = 0m + 1m + 2m + � � �+ nm

of m-th powers of all nonnegative integers not greater than n. You probably know

the formula S1(n) =
n(n+ 1)

2
(see Problem 5 in Section 1 of Chapter I). We start

with a few remarks on the evaluation of sums in general. Let a0, a1, a2, . . . , an, . . .
be an arbitrary in�nite sequence of numbers, and consider the following sequence
of their sums: a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + a2 + � � �+ an, . . . Denote
the �rst sequence by the letter a; its (n + 1)-st term is an (it is more convenient
to write the (n+ 1)-st term and not the n-th, and to start the sequence with a0).
The above sequence of sums will be denoted by Sa, and its (n+ 1)-st term is

(Sa)n = a0 + a1 + a2 + � � �+ an; n = 0; 1; 2; . . .

For example, if an = nm, n = 0; 1; 2; . . . , then Sa is the sequence of sums Sm(n).
Clearly, if we know the sequence Sa we can �nd the sequence a. Namely, by
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substracting the n-th from the (n+ 1)-st term of Sa, we obtain an. Indeed, let

bn = (Sa)n = a0 + a1 + � � �+ an;(29)

bn�1 = (Sa)n�1 = a0 + a1 + � � �+ an�1;(30)

and subtracting (30) from (29) we get bn � bn�1 = an. We introduce another
important construction. Together with an arbitrary sequence b0, b1, b2, . . . , bn,
. . . consider the sequence b0, b1 � b0, b2 � b1, . . . , bn+1 � bn, . . . If the �rst
sequence is denoted by b, then the second is denoted by �b. Its (n+ 1)-st term is

(�b)0 = b0; (�b)n = bn � bn�1; n = 1; 2; . . .

The established connection between the sequences a and Sa can be expressed by
the formula �Sa = a. It turns out that there is a formula completely symmetrical
to this one, namely both equalities

(31) �Sa = a; S�b = b

are true. It can be said that the operations S and � applied to sequences are
inverse to each other. We have already established the �rst formula. In order to
prove the second, write the equalities which de�ne the numbers ak = (�b)k for
k = 0; 1; . . . ; n� 1:

a0 = b0

a1 = b1 � b0

a2 = b2 � b1

. . .

an = bn � bn�1

and add them up. On the left we obtain a0+ � � �+an, i.e. (Sa)n, and on the right all
the numbers cancel out, except bn in the last formula, so that we get (Sa)n = bn,
that is to say the second formula (31).

The above relations are useful, since it is often simpler not to evaluate a sum
directly, i.e. not to �nd the sequence Sa directly, but instead to �nd a sequnce b
such that �b = a, and from the second relation (31) to obtain Sa = b.

This idea will now be applied to the sums (28). We have seen that Sm(n) =
(Sa)n, where an = nm. How can we write the sequence a, an = nm in the form
a = �b? This follows from the following assertion.

THEOREM 7. For any polynomial f(x) of degree m there exists a unique

polynomial g(x) of degree m+ 1 such that

(32) g(x)� g(x� 1) = f(x)

and the constant term of g(x) is 0.

The uniqueness of the polynomial g(x) with the given property is easily shown.
Let g1(x) be another polynomial such that g1(x) � g1(x � 1) = f(x) and whose
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constant term is 0. Subtract (32) from the last equality. Putting g1(x) � g(x) =
g2(x), we see that g2(x) � g2(x � 1) = 0 and the constant term of g2(x) is 0, i.e.
g2(0) = 0. For x = 1, the above equality gives g2(1) = 0. Putting x = 2 we get
g2(2) = g2(1) = 0, . . . and by induction that g2(n) = 0 for all positive integers n.
In other words, all positive integers are roots of g2(x). According to Theorem 3
this is possible only if g2 = 0, which means that g = g1.

The existence of the polynomial g will be proved by induction on m, the degree
of f(x). For m = 0, the polynomial f is a constant a and we see that g(x) = ax
satis�es (32). Suppose that the assertion is true for polynomials f of degree less
than m. Let amx

m be the leading term of f . Choose the number a so that the
leading term of the polynomial axm+1 � a(x � 1)m+1 is equal to the leading term
amx

m of f . In order to do this, apply the binomial formula

(x� 1)m+1 = xm+1 � (m+ 1)xm + � � � ;
where the dots stand for terms of degree less than m. This implies

xm+1 � (x� 1)m+1 = (m+ 1)xm + � � � :
Clearly we have

(33) a =
am

m+ 1
:

Then, in the di�erence f(x)� am
m+ 1

(xm+1�(x�1)m+1) the terms of degreem can-

cel out and this di�erence will have degree less than m. Denoting this polynomial
by h(x), by the induction hypothesis we can take that there is a polynomial g1 of de-
gree less than m+1 and with zero constant term such that h(x) = g1(x)�g1(x�1),
i.e.

f(x)� am
m+ 1

(xm+1 � (x� 1)m+1) = g1(x)� g1(x� 1):

The above equality can be written in the form f(x) = g(x)� g(x� 1), where

g(x) =
am

m+ 1
xm+1 + g1(x);

and the theorem is proved. Of course, in practical construction we do not apply
induction, but we repeat the same procedure of subtraction to the polynomial h(x),
and so on until we arrive at a polynomial of degree 0.

Return now to the evaluation of the sum Sm(n). We have seen that this sum
is equal to bn, where b is such that �b = a, an = nm. Apply Theorem 7 to the
polynomial xm. We obtain the polynomial g(x) of degree m+ 1 such that

g(x)� g(x� 1) = xm

and the constant term of g(x) is 0. Putting x = n into the above equality, we see
that the sequence bn = g(n) for n > 1 and b0 = g(0) = 0 satis�es the condition
�b = a, i.e. Sa = b. Therefore we have proved the following
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THEOREM 8. The sums Sm(n) can be expressed in the form gm(n) where gm
is the polynomial of degree m+1 such that gm(x)�gm(x�1) = xm and its constant

term is 0.

Notice that the proof of Theorem 7 provides us with a method of construct-
ing the polynomial gm(x) for any m. For instance, let m = 2. By analogy
with sequences, we denote the polynomial g(x) � g(x � 1) by �g, i.e. we put
(�g)(x) = g(x) � g(x � 1). We �rst have to �nd the monomial ax3 so that the

leading term of �(ax3) is equal to x2. In view of (33), a =
1

3
(in this case m = 2,

a2 = 1). By the binomial formula, �

�
1

3
x2
�
=

1

3
x3 � 1

3
(x� 1)3 = x2 � x+

1

3
and

x2��

�
1

3
x3
�
= x� 1

3
. Now we have to �nd the monomial bx2 so that the leading

coe�cient of �(bx2) is equal to x. In view of (33), b =
1

2
(in this case m = 1,

a1 = 1) and by the binomial formula �

�
1

2
x2
�
=

1

2
x2 � 1

2
(x � 1)2 = x � 1

2
, and

x2��

�
1

3
x3
�
��

�
1

2
x2
�
= �1

3
+
1

2
=

1

6
. Finally,

1

6
= �

�
1

6
x

�
=

1

6
x� 1

6
(x�1).

At the end we get that x2 = �

�
1

3
x3 +

1

2
x2 +

1

6
x

�
and so g(x) =

1

3
x3+

1

2
x2+

1

6
x =

(2x2 + 3x+ 1)x

6
=

(2x+ 1)(x+ 1)x

6
. Therefore S2(n) =

(2n+ 1)(n+ 1)n

6
.

We conclude with two more remarks.

Remark 1. The obtained formula for the sum Sm(n) can be summarized
as follows. For each m there exists the unique polynomial gm(x) with constant
term 0 such that gm(x) � gm(x � 1) = xm. The method of its construction is
contained in the proof of Theorem 7. Its degree is m+1. The formula for Sm(n) is:
Sm(n) = gm(n). Hence the question reduces to the investigation of the important
polynomials gm(x). They are called Bernoulli's polynomials. In the Appendix we
shall give a much more explixit expression for these polynomials, using an important
sequence of rational numbers, called Bernoulli's numbers.

Remark 2. (Historical) The introduced operations S and � which transform
the sequences a and b into Sa and �b are very similar to the fundamental operations
of Analysis which de�ne for a function f(x) (but not for every function!) the
inde�nite integral

R
f dx, and for a function g its derivative g0. Our operations S

and � are elementary analogs of the operations
R
f dx and g0. Sums and di�erences

are also present in the de�nitions of the integral and the derivative, but in a more
complicated way (in our de�nition of the derivative of a polynomial di�erences
were also present|see formula (13)). As in the case of S and �, the operations of
forming the derivative and the integral are inverse to each other. As in our case,
the evaluation of the derivative is simpler than the evaluation of the integral, and
the integral of a function f(x) is mainly evaluated by �nding a function whose
derivative is equal to f(x).

However, the operations for sequences and functions are not only analogous;
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Fig. 1

their connection is deeper. Evaluating the integral of a function f(x) is equivalent
to evaluating the area of the surface bounded by the graph of that function, the
x-axis and by two vertical lines starting at x = a and x = b (Fig. 1).

Of course, we shall not prove this, as we have not de�ned the integral, but
we shall show, on a simple example, how such an area can be evaluated, and its
connection with the problems we considered earlier.

We shall try to determine the area bounded by the parabola which is the graph
of the function y = x2, by the x-axis and by the line x = 1 (Fig. 2).

Fig. 2

In order to do that, divide the segment between 0 and 1 into a large number n of

equal parts with coordinates 0,
1

n
,
2

n
, . . . ,

n� 1

n
, 1 and evaluate the corresponding

values 0,

�
1

n

�2
,

�
2

n

�2
, . . . ,

�
n� 1

n

�2
, 1 of the function y = x2. Construct the

rectangles whose bases are segments from
i

n
to

i+ 1

n
and whose heights are

�
i

n

�2
.

The polygon made up from these rectangles is contained in that part \under the
parabola" whose area we wish to determine and by \looking at the picture" we see
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that if n is very great, then the area sn of this polygon di�ers very little from the
area of the part under the parabola (we cannot be more precise, since we have not
precisely de�ned what area is). The area of the polygon is the sum of the areas
of the rectangles which make it up. The area of the i-th rectangle is equal to the

product of its basis
1

n
and its height

�
i

n

�2
, i.e. it is

i2

n3
. Therefore, the area sn of

the polygon is

sn =
02

n3
+

12

n3
+

22

n3
+ � � �+ (n� 1)2

n3
=

S2(n� 1)

n3
:

We have already found that S2(n) =
1

3
n3 +

1

2
n2 +

1

6
n, and so (replacing n by n�1

in the formula for S2(n)) we get

sn =
1

3
� 1

2
� 1
n
+
1

6
� 1

n2
:

It is clear that as n becomes greater and greater, then the terms �1

2
� 1
n
and

1

6
� 1
n2

become smaller and smaller, and the area of the polygon approaches
1

3
. Hence,

this is the area of the �gure bounded by the parabola.

We have presented here the lines of thought followed, in principle, by Archi-
medes (3rd century B.C.) who was the �rst to solve this problem. (Archimedes
devised a rather arti�cial method which allowed him to use the sum of a geometrical
progression, instead of the sum S2(n). But he knew the formula for S2(n) and used
it for the evaluation of other areas and volumes).

Mathematicians of the new period were obsessed by the dream to \surpass
the ancients" (that is to say, the Ancient Greek mathematicians) and Archimedes
was considered to be the most important of them. They were therefore very much
interested in solving the problem considered above for the function y = xn, where
n is greater than 2. It seems that the �rst to obtain the solution was French mathe-
matician Fermat (17th century) who used practically the same method we outlined
above (it was later somewhat simpli�ed). At that time the mentioned connection
between the integral and the derivative was not known and the integral (i.e. the
area) was calculated directly from the de�nition. It was later discovered that (to use
contemporary terminology) the operations of forming derivatives and integrals are
inverse to each other. This was established by Newton's teacher Barrow. (Newton
worked together with Barrow when he studied at the university, and later on took
over Barrow's chair when the latter decided to take orders). Systematic evaluation
of the integral of a function f by �nding a function g such that the derivative of g
is f was initiated by Newton. After that the calculation of integrals and areas by
the method we exposed became unnecessary. Nowadays students of higher classes
can easily �nd the integral of xm for any m without caluclating the sum Sm(n).

In this way, if in Chapter I we moved in the circle of ideas of Ancient Greek
mathematicians (Pythagoras, Theaetetus, Euclid), in this chapter we have encoun-
tered the ideas of the mathematicians from the new period (17th century).
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Problems

1. Notice that the area sn of the polygon which we calculated at the end of the
section is less than the area of the given �gure, bounded by the parabola y = x2,
since the polygon is situated inside that �gure. Construct the polygon made up

from rectangles whose bases are segments from
i

n
to

i+ 1

n
and whose heights are�

i+ 1

n

�2
which contains the given �gure. Its area s0n will therefore be greater than

the area of the �gure. Calculate the area s0n and prove that as n increases, it
approaches 1=3. This gives a more convincing (i.e. more \strict") proof of the fact
that the required area is 1=3.

2. Try to solve the analogous problem for the \m-th degree parabola", given
by the equation y = xm. Verify that in order to obtain the result it is not necessary
to know the Bernoulli's polynomials gm(x) completely, but that is enough to know

the coe�cient of the leading term am+1x
m+1. Prove that am+1 =

1

m+ 1
and hence

�nd the area of the �gure bounded by the parabola whose equation is y = xm, by
the x-axis and by the line x = 1.

3. Prove that the area of the �gure bounded by the parabola y = xm,

x-axis and the line x = a is equal to
1

m+ 1
am+1. Notice that the derivative of

the polynomial
1

m+ 1
xm+1 is xm. This is indeed an instance of Barrow's theorem

that integration and �nding derivatives are operations inverse to each other.

4. Prove that the sum of the binomial coe�cients with even upper indices
C0
n +C2

n+ � � � and with odd indices C1
n +C3

n + � � � are equal and �nd their mutual
value.

5. Find the relation between binomial coe�cients which expresses that
(1 + x)n(1 + x)m = (1 + x)n+m. For n = m deduce the formula for the sum
of the squares of binomial coe�cients.

6. If p is a prime number, prove that all binomial coe�cients Ck
p for k 6= 0; p,

are divisible by p. Deduce from this that 2p � 2 is divisible by p. Prove that for
any integer n, the number np � n is divisible by p. This theorem was �rst proved
by Fermat.

7. What can be said about the sequence a if all the terms of the sequence �a
are equal? What does formula (31) give in this case?

8. Find the sum S3(n) and verify that S3(n) = (S1(n))
2.

9. Let a be any sequence a0, a1, a2, . . . Apply the operation � once more to
the sequence �a. The obtained sequence �(�a) will be denoted by �2a. De�ne
�ka by induction as �(�k�1a). When can we solve the so-called \in�nite inter-
polation problem", that is to say when is there a polynomial f(x) of degree not
greater than m such that f(n) = an for n = 0; 1; 2; . . . ? Prove that a necessary and
su�cient condition is given by (�m+1a)n = 0 for n > m. This condition shows that
if we write the sequence a, and under it the sequence whose terms are di�erences
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of the two terms above, and so on:

a0 a1 a2 . . . an an+1

a1 � a0 a2 � a1 . . . . . . an+1 � an . . .
. . . . . . . . . . . . . . .

then in the (m+ 1)-st row we only have zeros.

Is there a polynomial f(x) such that f(n) = 2n for all positive integers n?

10. Prove that if an = qn, then (�a)n = an�1(q�1). Use this to give another
proof of the formula (12) from Chapter I.

11. Let m1 < m2 < � � � < mn+1 be positive integers and let f(x) be a
polynomial of degree n, where the coe�cient of xn is 1. Prove that at least one of
the numbers f(mk) is not less than n!=2n.

Hint. Use the result of Problem 8 of Section 1. Notice (with the notation of
Section 1) that Fk(mk) > k! (n � k)! and use some known relations for binomial
coe�cients.

12. Apply the formula (12) from Chapter I to the sum 1+(1+x)+ (1+x)2+
� � �+(1+x)n. Equating the coe�cients of terms with equal degrees on the left and
right, �nd the formula for the sum

Ck
k + Ck

k+1 + � � �+ Ck
n:

APPENDIX1

Bernoulli's polynomials and numbers

In Section 3 we showed that the values of the sums of powers of consecutive
positive integers, i.e. the sums Sm(n) coincide with the values gm(n) of Bernoulli's
polynomials gm(x), which have the properties

(1)
1) gm(x)� gm(x� 1) = xm;

2) the constant term of gm(x) is 0.

For any m there is only one polynomial of degree m+ 1 with these properties.

We have given a method for constructing the polynomials gm(x). However,
we would like to have a more explicit formula for these polynomials. In order
to achieve this, we shall follow the same path we took in deducing the binomial
formula. Namely, we shall �rst �nd the derivative of both sides of (1). But we �rst
have to see how to �nd the derivative f(x� 1)0 of the polynomial f(x� 1).

LEMMA 1. f(x� 1)0 = f 0(x� 1).

1Starting with Chapter II, each chapter will have an Appendix. In these appendices we shall
only use those facts which have been exposed earlier, but the text will be somewhat harder than
the basic text. This means that we shall apply the same arguments as before, but in proving
a theorem we shall have to keep in mind a larger number of them. The level of these texts
approaches the level of a simple professional mathematical book.



Selected chapters from algebra 27

At �rst sight this equality may seem obvious, but it is not really so. The
equality means that when in the polynomial f(x) we �rst substitute x � 1 for x,
then write it as the sum of powers of x, and then �nd its derivative, the obtained
result is the same as when in the derivative f 0(x) we substitute x� 1 for x.

The proof follows directly from the de�nition of the derivative of a polynomial,
i.e. from (11). Let

f(x)� f(�) = (x� �)g(x; �):

Substituting x� 1 for x and �� 1 for � in this equality, we get

f(x� 1)� f(�� 1) = (x� �)g(x� 1; �� 1):

By de�nition we have f(� � 1)0 = g(� � 1; � � 1) and f 0(�) = g(�; �). Hence,
f(�� 1)0 = f 0(�� 1), which was to be proved.

Lemma 1 could be proved by the use of formulas (16){(19) and reduction to
monomials (verify this).

We can now �nd the derivatives of both sides of (1). Having in mind Lemma
1 and the rule (13) for derivatives, we obtain

g0m(x)� g0m(x� 1) = mxm�1:

On the other hand, replacing m by m� 1 in (1) we get

gm�1(x) � gm�1(x� 1) = xm�1:

Multiply the second equality by m and subtract it from the �rst. Putting hm =
mgm�1 � g0m we �nd that

hm(x) = hm(x� 1):

But this implies that the polynomial hm is constant (of degree 0). Indeed, putting
in this equality x = 1, 2, etc. we obtain hm(0) = hm(1) = hm(2) = � � � . In
other words the polynomial hm(x) and the constant hm(0) have equal values for all
positive integers x, and in view of Theorem 4 they must be equal: hm(x) = hm(0).
(We have already met with this kind of reasoning at the beginning of the proof of
Theorem 7.) Hence, the polynomial hm(x) is equal to a constant which we shall
denote by ��m. Having in mind the de�nition of hm(x) we obtain the relation

(2) g0m = mgm�1 + �m:

As in the derivation of the binomial formula, we now write the polynomial gm(x)
as the sum of powers of x. As before, the lower index indicates the polynomial
in question, and upper index corresponds to the degree of x. The coe�cients are
denoted by Ak

m and gm(x) has the form

gm(x) = A1
mx+A2

mx
2 + � � �+Ak

mx
k + � � �+Am+1

m xm+1:

(Remember that the constant term of gm is 0.) Write down the derivative of gm(x),
using the formula (13):

gm(x)
0 = A1

m + 2A2
mx+ � � �+ kAk

mx
k�1 + � � �+ (m+ 1)Am+1

m xm:
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On the other hand, write down the analogous formula for gm�1(x) (replacing m by
m� 1):

gm�1(x) +A1
m�1x+A2

m�1x
2 + � � �+Ak

m�1x
k + � � �+Am

m�1x
m;

and substitute these two formulas into (2). Equating the coe�cients of xk�1, we
�nd:

kAk
m = mAk�1

m�1 for k > 2;(3)

A1
m = �m for k = 1:(4)

(Notice that in the above formulas there is no �0; we only have �k where k > 1.)
We have obtained the formula similar to the formula for the binomial coe�cients
Ck
m, the di�erence being that formula (3) holds only for k > 2, and for k = 1 it is

replaced by (4).

Again, we continue to follow the case of binomial coe�cients. We have:

Ak
m =

m

k
Ak�1
m�1. Applying this formula to Ak�1

m�1 we get: Ak
m =

m(m� 1)

k(k � 1)
Ak�2
m�2.

Continuing this procedure, after k � 1 steps we �nd

Ak
m =

m(m� 1) � � � (m� k + 2)

k(k � 1) � � � 2 A1
m�k+1 =

m(m� 1) � � � (m� k + 2)

k(k � 1) � � � 2 �m�k+1

(for A1
m�k+1 we use formula (4)).

The coe�cient of �m�k+1 very much resembles the binomial coe�cient. It
di�ers from Ck

m (see formula (21)) in so much that the numerator does not have
the last factor m� k+1 (and the denominator does not have the last factor 1, but
this has no e�ect on the product). However, in the formula for Ck

m+1 the product
in the numerator ends with m�k+1, but it begins with m+1, which is not present

here. Hence, we can write the coe�cient of �m�k+1 in the form
1

m+ 1
Ck
m+1, and

the formula for Ak
m becomes:

Ak
m =

1

m+ 1
Ck
m+1�m+1�k:

(We write �m�k+1 as �m+1�k so that the factors look more similar.)

In this way we have obtained the following formula for the polynomials gm(x):

(5) gm(x) =
1

m+ 1
(C1

m+1�mx+ C2
m+1�m�1x

2 + � � �+
+ Ck

m+1�m+1�kx
k + � � �+ Cm+1

m+1�0x
m+1):

The obtained formula resembles the binomial formula. Suppose that we have a
new variable a and expand the binomial (x + a)m+1. We then obtain the same
terms as in the brackets in the above formula (5), except that ak is replaced by �k
and it has no term corresponding to C0

m+1�m+1. We can compensate for this by

considering the di�erence (x + a)m+1 � am+1 in which case the terms with am+1
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cancel. In order to emphasize this analogy, introduce the following notation. Let a
be the sequence �1, �2, . . . and let f(t) be the polynomial a0 + a1t + � � �+ akt

k.
Then f(a) denotes the number a0 + a1�1 + � � � + ak�k, i.e. t

k is replaced by �k.
In particular, am = �m, since replacing tm by �m we obtain �m. Analogously,
(x+a)m = xm+C1

mx
m�1�1+ � � �+Cm

m�m: we expand (x+a)m in powers of t and
replace tk by �k. The relation (5) with this notation can be written in the form

(6) gm(x) =
1

m+ 1

�
(a+ x)m+1 � am+1

�
:

Remark that am+1 = �m+1. Notice that we cannot establish that the polynomial
given by (6) satis�es the relation (1). In fact, we have found the general form
of the polynomials which satisfy the relations (2), but those relations are only
consequences of the relation (1). Indeed, the result depends upon the sequence �m,
which can in (6) be arbitrary, whereas Theorem 7 states that the polynomial gm(x)
is unique for each m. Therefore, we have not yet solved the problem.

Among the polynomials gm(x) given by (6) we have to choose those which
satisfy the relation (1). Since we already know that such polynomials exist and
they are unique (for each m) we only have to �nd the unique sequence a which
de�nes them. This is quite simple: it is enough to put x = 1 into (1). Since
gm(0) = 0 (the constant term of gm is 0), we get gm(1) = 1. The notation of the
formula (6) yields (a+ 1)m+1 � �m+1 = m+ 1 for m = 0; 1; 2; . . . or

(a+ 1)m � �m = m; m = 1; 2; 3; . . .

Definition. The numbers B1, B2, B3, . . . are called Bernoulli's numbers if
the sequence B formed by them satis�es the relations

(B + 1)m �Bm = m for m = 1; 2; 3; . . .

The above relations uniquely de�ne the sequence of Bernoulli's numbers. In-
deed, expanding the above formula, by de�nition we get

(10) 1 +mB1 + C2
mB2 + � � �+mBm�1 = m; m = 1; 2; . . .

(Bm cancels). From this relation for m = 1 we get that B1 = 1=2, and every
relation that follows allows us to �nd Bm�1 provided that we know all Br's with
indices r < m� 1.

Polynomials

Bm(x) =
1

m+ 1
((B + x)m+1 �Bm+1)

where B is the sequence of Bernoulli's numbers are called Bernoulli's polynomials.
We have proved that if the polynomial gm(x) satisfying (1) is written in the form
(6), then the sequence a which corresponds to it has to coincide with the sequence
B of Bernoulli's numbers. But we know, according to Theorem 7, that such a
polynomial exists. Hence it must coincide with Bernoulli's polynomial Bm(x), i.e.

Bm(x)�Bm(x � 1) = xm;

and so Sm(n) = Bm(n). Our problem is solved.
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Bernoulli's polynomials and numbers were discovered by Jacob Bernoulli (there
was a large family of mathematicians of that name). His main results belong to the
second half of the 17th century, but this particular discovery appeared in a book
published after his death at the beginning of the 18th century. The numbers Bn

were named Bernoulli's numbers by Euler (18th century) who found many other
applications of those numbers.

Putting k = 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13 into (10) we obtain the following
values for the numbers Bn (verify this yourself!)

B1 =
1

2
; B2 =

1

6
; B3 = 0; B4 = � 1

30
; B5 = 0; B6 =

1

42
;

B7 = 0; B8 = � 1

30
; B9 = 0; B10 =

5

66
; B11 = 0; B12 = � 691

2730

etc. Then we easily establish:

S1(n) =
n(n+ 1)

2
; S2(n) =

n(n+ 1)(2n+ 1)

6
; S3(n) =

n2(n+ 1)2

4
;

S4(n) =
n(n+ 1)(2n+ 1)(3n2 + 3n� 1)

30
; S5(n) =

n2(n+ 1)2(2n2 + 2n� 1)

12
;

etc.

Problems

1. Find Bm(�1).
2. Prove the formula Bm = (B � 1)m for m > 2.

3. Derive a relation, analogous to (10), which holds for Bernoulli's numbers
Bm with odd indices m > 3. Prove that all Bernoulli's numbers Bm with odd
indices, except B1, are equal to 0.

4. Find S6(n).

5. Prove the formula for the derivative of a polynomial of a polynomial: if
f(x) and g(x) are polynomials, then

f(g(x))0 = f 0(g(x))g0(x):

6. Find (a+ x)n if the sequence a has the form an = qn for some number n.

I. R. Shafarevich,

Russian Academy of Sciences,

Moscow, Russia
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CHAPTER III. SET

1. Sets and subsets

The notion of a set has a somewhat di�erent meaning in mathematics than
in everyday language. The ordinary word \set" usually means a large number of
certain objects1. In mathematics a set is an arbitrary collection of objects de�ned
by a certain property which they all have. The objects which comprise a set are
called its elements. So, for instance, we may talk about sets of one or two elements.
A set is usually denoted by a capital letter (for example, M) and its elements by
small letters (for example, a, b, . . . , �, �, . . . ). The fact that a is an element of
the set M is written in the form a 2M and we also say that a belongs to M . If M
consists of elements a1, . . . , an, we write M = fa1; . . . ; ang.

A set containing a �nite number of elements is called a �nite set, while a set
containing an in�nite number of elements is called an in�nite set. The number of
elements of a �nite set M is denoted by n(M).

In this chapter we shall mainly be concerned with �nite sets. The �nite sets
M and M 0 are said to be equivalent (equipotent) if they have the same number
of elements, i.e. if n(M) = n(M 0). We shall now describe the method which is
usually used to establish the equivalence of two sets. One-to-one correspondence
between two sets M and M 0 is coupling, or pairing o�, their elements into pairs
(a; a0), where a 2 M , a0 2 M 0, so that each element a of M is coupled with one
and only one element a0 of M 0, and each element a0 of M 0 is coupled with one and

This paper is an English translation of: I. R. Xafareviq, Izbranye glavy algebry,
Matematiqeskoe obrazovanie, 3, okt.{dek. 1997, Moskva, str. 2{45. In the opinion of the editors,
the paper merits wider circulation and we are thankful to the author for his kind permission to
let us make this version.

1This is not so much true for the English language as it is for Russian. The Russian word
for the set mno�estvo has the same root as the word mnogo (many).
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Fig. 1

only one element a of M . If we represent the sets M and M 0 graphically and draw
lines connecting those elements which belong to one pair, we see that each element
of M is connected to one and only one element of M 0 and vice versa (Fig. 1).

For instance, if n(M) = n and if we numerate the elements of M as follows:
M = fa1; . . . ; ang, we have established a one-to-one correspondence between the
set M and the set N of numbers 1, 2, . . . , n.

If we choose two points O and E on a straight line, then to each point A which

lies on that line we can correspond the real number
jOAj

jOEj
with the + sign if A is

on the same side of O as E, and with � sign in the opposite case. This establishes
a one-to-one correspondence between the set of the points of the straight line and
the set of all real numbers which is usually denoted by R. We shall consider this
in more detail in one of the subsequent chapters.

If we have a one-to-one correspondence between the sets M and M 0, and if
the elements a 2 M and a0 2 M 0 are coupled in the pair (a; a0) we say that the
element a corresponds to the element a0, and that the element a0 corresponds to
the element a.

Two �nite sets are equivalent if and only if it is possible to establish a one-to-
one correspondence between them.

This statement is so ovious, that it can hardly be called a theorem. If n(M) =
n(M 0) = n, we can write our sets as follows: M = fa1; . . . ; ang, M

0 = fa01; . . . ; a
0

ng,
and by forming pairs (ai; a

0

i) of elements with the same index we establish a one-
to-one correspondence between M and M 0. Conversely, if there exists a one-to-
one correspondence between M and M 0, and if we write M in the form M =
fa1; . . . ; ang, then each ai belongs to a pair with one and only one element a0 2M 0,
and we can give it the same index, i.e. we can put a0 = ai. By the de�nition of
a one-to-one correspondence, we can numerate in this way all the elements of M 0,
and we obtain that M 0 = fa01; . . . ; a

0

ng.

R. Dedekind (the second part of the 19th century) who did a lot to clear the role
which sets have in mathematics, thought that the above statement gives, in a hidden
form, the de�nition of a positive integer. According to him, it is �rst necessary to
de�ne the notion of one-to-one correspondence, and then a positive integer is the
general property possessed by all �nite sets among which it is possible to establish
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one-to-one correspondence. This is probably how the notion of a positive integer
was formed historically (of course, without the present terminology). For example,
the notion \two" was formed, as we said in Section 1 of Chapter I, by abstracting,
i.e. by considering the general property shared by the sets consisting of: two eyes,
two oars in a boat, two travellers walking along the road, and more generally by all
the sets which can be put into a one-to-one correspondence with one of the above.

This means that the notion of a set is the most fundamental notion of math-
ematics, since the notion of a positive integer is founded upon the notion of a
set.

In further text we shall often construct new sets, starting with two given sets.

The product of sets M1 and M2 is the set whose elements are all the pairs
(a; b), where a is an arbitrary element of M1 and b is an arbitrary element of M2.
The product of M1 and M2 is denoted by
M1 �M2.

For example, if M1 = f1; 2g, M2 =
f3; 4g, then M1�M2 consists of the pairs
(1; 3), (1; 4), (2; 3), (2; 4).

If M1 = M2 is the set R of all real
numbers, M1 �M2 is the set of all pairs
(a; b), where a and b are real numbers.
The coordinate method in the plane es-
tablishes a one-to-one correspondence be-
tween the set M1 �M2 and the set of all
points of the plane (Fig. 2). Fig. 2

As another example, suppose thatM1 consists of the numbers 1, 2, . . . , n, and
M2 of the numbers 1, 2, . . . ,m. Introduce two new variables x and y and correspond
to a number k 2M1 the monomial x

k and to the number l 2M2 the monomial y
l.

An element of the set M1 �M2 has the form (k; l) and we can correspond to it
the monomial xkyl. In this way we obtain a one-to-one correspondence between
the set M1 �M2 and the set of monomials of the form xkyl, where k = 1; . . . ; n;
l = 1; . . . ;m. In other words this is the set of monomials which stand on the
right-hand side of the equality

(1) (x+ x2 + � � �+ xn)(y + y2 + � � �+ ym) = xy + x2y + xy2 + � � �+ xnym:

Hence, the set of these monomials is equivalent to the set M1 �M2.

Analogously, let M1, M2, . . . , Mr be arbitrary sets. Their product is the
set consisting of all sequences (a1; . . . ; ar) where the i-th place is taken by an
arbitrary element of the set Mi. The product of the sets M1, . . . , Mr is denoted
by M1 � � � � �Mr.

For example, ifM1 =M2 =M3 is the set of all real numbers R, the coordinate
method in the space establishes a one-to-one correspondence between the points of
the space and the set M1 �M2 �M3.

But in this chapter we are considered with �nite sets.
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THEOREM 1. If the sets M1, . . . , Mr are �nite, then the set M1 � � � � �Mr

is also �nite, and n(M1 � � � � �Mr) = n(M1) � � �n(Mr).

We shall �rst prove the theorem for the case of two sets, i.e. when r = 2; this
will be the induction basis. If M1 = fa1; . . . ; ang, M2 = fb1; . . . ; bmg, then all the
pairs (ai; bj) can be written in the form of a rectangle

(2)

(a1; b1) . . . (an; b1)
(a1; b2) . . . (an; b2)
. . . . . . . . .

(a1; bm) . . . (an; bm)

The j-th row above contains pairs whose last element is always bj . In each row the
number of pairs is equal to the number of all ai's, i.e. it is n. The number of the
rows is equal to the number of all bj 's, i.e. it is equal to m. Hence, the number of
pairs is nm. Notice that the rectangle (2) resembles, in a way, Fig. 2. (A di�erent
line of reasoning would be to say that the set M1 is equivalent to the set f1; . . . ; ng
or to the set of monomials fx; x2; . . . ; xng and that M2 is equivalent to the set
fy; y2; . . . ; ymg. Then, n(M1 �M2) is, as we have seen, the number of terms in
the right-hand side of (1). Putting x = 1, y = 1, we conclude that this number of
terms is nm.)

The proof of the general case of r sets M1, . . . , Mr will be carried out by
induction on r. In each sequence (a1; . . . ; ar) we introduce two more brackets, and
write it in the form ((a1; . . . ; ar�1); ar). Clearly, this does not alter the number
of the sequences. But the sequence ((a1; . . . ; ar�1); ar) is the pair (x; ar), where
x = (a1; . . . ; ar�1) can be considered to be an element of the set M1 � � � � �Mr�1.
Hence, the set M1 � � � � �Mr is equivalent to the set P �Mr, where P = M1 �
� � � �Mr�1. We have proved that n(P �Mr) = n(P )n(Mr), and by the induction
hypothesis we have n(P ) = n(M1) � � �n(Mr�1). Therefore, n(M1 � � � � �Mr) =
n(M1) � � �n(Mr�1)n(Mr) and the proof is complete.

Using Theorem 1 we can once more form the expression for the number of
divisors of a positive integer n. Suppose that n has the cannonical representation

n = p�11 � � � p�rr :

In Section 3 of Chapter I we saw that the divisors of n can be written in the form

m = p�11 � � � p�rr ;

where �i can take any integral value between 0 and �i (formula (11) of Chapter I).
In other words, the set of divisors is equivalent to the set of sequences (�1; . . . ; �r)
where �i takes the above mentioned values. But this is exactly the product M1 �
� � � �Mr of the sets Mi where Mi is the set f0; 1; . . . ; �ig. Since n(Mi) = �i + 1,
according to Theorem 1 the number of divisors is (�1+1)(�2+1) � � � (�r+1). This
formula was derived in a di�erent way in Section 3, Chapter I.
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If the sets M1, . . . , Mr coincide, i.e. if M1 = M2 = � � � = Mr = M their
product M1 � � � � �Mr is denoted by Mr. Consider the case when M1 = � � � =
Mr = I , and the set I has two elements a and b. An element of Ir is a sequence
of r symbols, each one being a or b, e.g. aababbba (for shortness sake we omit the
commas). This can be considered as a word of r letters written in the alphabet of
two letters, a being a dot and b a dash. Therefore, n(Ir) is equal to the number
of words of length r, written in Morse's alphabet. As we see, it is equal to 2r (all
ni = 2).

In further text we consider sets contained in a given set M . They are called its
subsets. This means that a subset N of a set M contains only elements of M , but
not necessarily all of them. The fact that N is a subset of M is written as N �M .
We also take that M is a subset of itself. As we shall see later, it is very convenient
to consider the subset of M containing no elements|this simpli�es greatly many
de�nitions and theorems. This subset is callled the empty subset and is denoted
by ?. By de�nition we take n(?) = 0.

If N �M , the set of all elements of M which do not belong to N is called the
complement of N and is denoted by N . For instance, if M is the set of all positive
integers, and if N is the set of all even positive integers, then N is the set of all
odd positive integers. If N =M , then N = ?.

If N1 and N2 are two subsets of M (i.e. N1 �M and N2 �M) then the set of
all elements which belong to N1 and N2 is called their intersection and is denoted
by N1 \N2. For example, if M is the set of all positive integers, if N1 is the subset
of all those divisible by 2, and N2 the subset of all those divisible by 3, then N1\N2

is the set of all positive integers divisible by 6.

If N1 and N2 do not have common elements, then by de�nition N1 \N2 = ?,
the empty set. So, if M and N1 are the same as in the previous example, and N2

is the set of odd positive integers, then N1 \N2 = ?.

The set containing elements which belong to the subset N1 or the subset N2 is
called their union and is denoted by N1 [N2. For example, if M is again the set of
all positive integers, and N1 and N2 are the subsets of all even and odd numbers,
respectively, then N1 [N2 =M .

a) b)
Fig. 3
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Intersections and unions of sets can be represented graphically as in Figure 3.
In Fig. 3a) M1 [M2 is hatched by horizontal and M1 \M2 by vertical lines. In
Fig. 3b) the set (M1 [M2) \M3 is hatched.

In this chapter we shall consider subsets of a �nite setM , which satisfy certain
conditions and we shall derive formulas for the number of all such subsets. The
branch of mathematics concerned with such questions is called combinatorics.

Therefore, combinatorics is the theory of arbitrary �nite sets. We do not use
notions such as distance or the magnitude of an angle, equation or its roots, but
only the notion of a subset and the number of its elements. Hence, it is very
surprising that, using only such miserly material, we can �nd many regularities
and connections with other branches of mathematics which are not at all obvious.

Problems

1. Let M = M 0 be the set of all positive integers. Couple into pairs the
number a 2M with b 2M 0 such that b = 2a. Is this a one-to-one correspondence
between M and M 0?

2. Let N be the set of all positive integers, let M = N � N and let M 0 be
the set of positive rational numbers. Couple into pairs (n1; n2) 2 M with a 2 M 0

if a = n1=n2. Is this a one-to-one correspondence?

3. How many di�erent one-to-one correspondences exist between two sets M
and M 0 if n(M) = n(M 0) = 3? Draw them analogously as in Fig. 1.

4. Every one-to-one correspondence between the sets M and M 0 de�nes the
set of those pairs (a; a0), where a 2 M and a0 2 M 0 correspond to each other, i.e.
it de�nes a subset � � M �M 0 which is called the graph of correspondence. Let
�1 and �2 be graphs of two one-to-one correspondences. Prove that �1 \ �2 is a
graph of a one-to-one correspondence if and only if �1 = �2 and the two given
correspondences coincide.

5. Let n(M) = n(M 0) = n and let � be the graph of a one-to-one correspon-
dence between M and M 0 (see Problem 4). Evaluate n(�).

6. Let M be the set of all positive integers, let N1 � M be the subset of
all numbers divisible by a given number a1 and let N2 � M be the subset of all
numbers divisible by a given number a2. Describe the sets N1 [N2 and N1 \N2.

7. Prove that (N) = N , i.e. that the complement of the complement of a
subset N is exactly N .

2. Combinatorics

We start with the simplest question: determine the number of all subsets of a
�nite set.

We �rst solve the problem for small values of n(M). We will write down the
subsets N ofM writing in one row all the subsets with the same number of elements
(i.e. with the same value of n(N)). The rows are arranged in the ascending order
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of n(N).

1: n(M) = 1; M = fag

n(N) = 0; N = ?

n(N) = 1; N =M = fag

2: n(M) = 2; M = fa; bg

n(N) = 0; N = ?

n(N) = 1; N = fag; N = fbg

n(N) = 2; N =M = fa; bg

3: n(M) = 3; M = fa; b; cg

n(N) = 0; N = ?

n(N) = 1; N = fag; N = fbg; N = fcg

n(N) = 2; N = fa; bg; N = fa; cg; N = fb; cg

n(N) = 3; N =M = fa; b; cg

Table 1

We see that if n(M) = 1, the number of subsets is 2, if n(M) = 2 it is 4 and
if n(M) = 3 it is 8. This suggests the general statement.

THEOREM 2. The number of all subsets of a �nite set M is 2n(M).

There is a general method which reduces the investigation of an arbitrary �nite
set to the investigation of sets with smaller number of elements. The setM is called
the sum of its two subsets M1 �M and M2 �M if M1 [M2 =M , M1 \M2 = ?.
Clearly, this is equivalent to M2 =M1 and M1 =M2. In this case each element of
M belongs to one of the subsets M1 or M2 (since M1 [M2 = M) and only to one
of them (since M1 \M2 = ?). Hence, n(M) = n(M1) + n(M2). The fact that M
is the sum of M1 and M2 is written as M = M1 +M2. Such a representation is
also called a partition of M into M1 and M2.

Let M =M1 +M2 and let N �M be an arbitrary subset. Then any element
a 2 N belongs either to M1 (in this case a 2 N \ M1) or to M2 (in this case
a 2 N \M2), and only one of these cases can take place (since M1 \M2 = ?).
HenceN = (N\M1)+(N\M2). Conversely, ifN1 �M1 andN2 �M2 are arbitrary
subsets, then N1 � M , N2 � M and N = N1 [ N2 � M , whereas N \M1 = N1

and N \M2 = N2. In this way we establish a one-to-one correspondence between
the subsets N of M and the pairs (N1; N2) where N1 and N2 are arbitrary subsets
of M1 and M2, respectively.

We now formulate this result in terms of sets. Denote by U(M) the set of all
subsets of a setM . One should not be alarmed because we consider here subsets as
elements of a new set. So, for example, associations of civil or electrical engineers
are elements of the general association of engineers. In Table 1 we decribed the sets
U(M) when n(M) = 1, 2 or 3. The result obtained above can be formulated as
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follows: if M =M1+M2 is a partition of M , then the set U(M) is in a one-to-one
correspondence with the set U(M1) � U(M2). Denote the number n(U(M)) by
v(M)|this is the required number of all subsets. Applying Theorem 1 we deduce
that

(3) v(M1 +M2) = v(M1)v(M2):

The equality (3) reduces the evaluation of v(M) to the evaluation of v(M1)
and v(M2) for the sets M1 and M2 with smaller number of elements. In order
to obtain the �nal result, consider the partition of M not into two, but into an
arbitrary number of subsets. We can de�ne this concept inductively, saying that
M = M1 + � � � + Mr if M = (M1 + � � � + Mr�1) + Mr, where the expression
M1 + � � � +Mr�1 is taken to be already de�ned. In fact, when we say that M =
M1+� � �+Mr, this means thatM1, . . . ,Mr are subsets ofM and that every element
of M belongs to one and only one of the subsets M1, . . . , Mr. For example, if M
is the set of all positive integers, then M =M1+M2+M3, where M1 is the subset
of all numbers divisible by 3, M2 is the subset of all numbers of the form 3r + 1
and M3 is the subset of all numbers of the form 3r + 2.

From (3), for �nite sets Mi we obtain, by induction

(4) v(M1 + � � �+Mr) = v(M1) � � � v(Mr):

If n(M) = n, then there exists the \tiniest" partition of M into n subsets Mi,
each having only one element, i.e. M =M1 + � � �+Mn. If M = fa1; . . . ; ang, then
Mi = faig. The one element set Mi has two subsets: the empty set ? and Mi

itself (see Table 1, �rst row). Hence, v(Mi) = 2 and applying formula (4) to the
partition M =M1 + � � �+Mn we obtain that v(M) = 2n, as stated in Theorem 2.

The question of the number of all subsets of a given set appears in connection
with certain problems regarding numbers. For example, consider the following
question: in how many ways can a positive integer n be written as a product of
two relatively prime factors? Let n = ab, where a and b are relatively prime and let
n = p�11 � � � p�rr be the canonical prime factorization. Then a and b are divisors of n

and, as we saw in Section 3 of Chapter I, each one of them has the form p�11 � � � p�rr
where 0 6 �i 6 �i. But since a and b are relatively prime, then if some pi divides a,
then it cannot divide b and hence appears in a with degree �i. Therefore, in order
to obtain the required factorization n = ab, it is necessary to choose an arbitrary
subset N of the set M = fp1; . . . ; prg and to equate a to the product of p�ii for
pi 2 N . Then a divides n and n = ab is the required factorization. According to
Theorem 2, the number of all factorizations of n into products of two relatively
primer factors is 2r, where r is the number of di�erent prime factors of n.

It should be noted that in the above evaluation we considered the factorization
n = ab and n = ba to be di�erent. In fact, if a, and hence the factorization
n = ab, corresponds to the subset N � fp1; . . . ; prg, then b corresponds to the
subset consisting of those pi 2 M which do not belong to N , i.e. which belong
to the complement N of N . Therefore, in our evaluation we corresponded the
factorizations n = ab and n = ba to two di�erent subsets N and N . Hence, if we
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do not want to make a di�erence between the factorizations n = ab and n = ba,
then the two subsets N and N should be treated as one, and then the number of
all factorizations in this sense would be 2r�1.

We now pass on to a more subtle problem: �nd the number of subsets of a
given �nite set M which contain m elements and m is a given number. In order to
do this, we again collect all the subsets N � M such that n(N) = m into one set
denoted by U(M;m). If we put n(U(M;m)) = v(M;m), then this is the number
which we wish to �nd. In Table 1 we wrote the sets which belong to U(M;m) on
one row. Hence, we obtain the values of v(M;m) for small values of n(M):

n(M) = 1 : v(M; 0) = 1; v(M; 1) = 1

n(M) = 2 : v(M; 0) = 1; v(M; 1) = 2; v(M; 2) = 1

n(M) = 3 : v(M; 0) = 1; v(M; 1) = 3; v(M; 2) = 3; v(M; 3) = 1

Table 2

THEOREM 3. If n(M) = n, the number of subsets N �M of the set M which
contain m elements (i.e. such that n(N) = m) is equal to the binomial coe�cient
Cm
n . In other words, v(M;m) = Cm

n .

The proof is based upon the same idea as the proof of Theorem 2. Namely,
suppose that the set M is the sum of two subsets: M = M1 +M2 and we shall
express the number v(M;m) in terms of the numbers v(M1;m) and v(M2;m). If
M =M1+M2, then each subset N �M can be written in the form N = N1+N2,
whereN1 = N\M1, N2 = N\M2. If we take into account the condition n(N) = m,
then we must have n(N1) + n(N2) = m. Let k and l be two nonnegative integers
such that k + l = m. Consider all subsets N � M such that n(N \M1) = k, and
n(N \M2) = l, denote the set of all these subsets by U(k; l) and put n(U(k; l)) =
v(M;k; l). Then in the same way as in the proof of Theorem 2 we see that

(5) v(M;k; l) = v(M1; k)v(M2; l):

The set U(M;m) can clearly be partitioned into sets U(M;k; l) for various
pairs of numbers k, l, such that k + l = m. Therefore the number of its elements
v(M;m) is equal to the sum of all numbers v(M;k; l) for all k and l such that
k+ l = m, i.e. for all the values: k = 0, l = m; k = 1, l = m� 1; . . . ; k = m, l = 0.
From the relation (5) we obtain

(6) v(M;m) = v(M1;m)v(M2; 0)+v(M1;m�1)v(M2; 1)+� � �+v(M1; 0)v(M2;m):

Of course, if in the product v(M1; k)v(M2; l) it turns out that k > n(M1), we have
to take v(M1; k) = 0 and the same holds for v(M2; l).

We have obtained a relation analogous to the relation (3), although it is more
complicated.

We have met the relation (6) in connection with a completely di�erent problem.
This is, in fact, the coe�cient of xm in the product of two polynomials f(x) and
g(x) if the coe�cient of xk in f(x) is v(M1; k) and the coe�cient of xl in g(x)
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is v(M2; l); see formula (1) od Chapter II. In order to establish the connection
between these two statements, de�ne for an arbitrary �nite set M the polynomial
fM (x) whose coe�cients are v(M; s):

(7) fM (x) = v(M; 0) + v(M; 1)x+ � � �+ v(M;n)xn;

where n = n(M).

For instance, according to Table 2, if n(M) = 1, then fM (x) = 1 + x, if
n(M) = 2 then fM (x) = 1+2x+x2, if n(M) = 3, then fM (x) = 1+3x+3x2+x3.
Now comparing the relations (6) and (7) we can write

(8) fM (x) = fM1
(x) � fM2

(x); if M =M1 +M2:

Hence, if we introduce polynomials fM (x) instead of the numbers v(M) we obtain
a complete similarity with the formula (3). We see that the polynomial fM (x)
turns out to be a just replacement for the number v(M) in our more complicated
problem. This is not a rare thing to happen. If we have to deal not with one
number, but with a �nite sequence of numbers (a0; . . . ; an), then its properties are
often well expressed by means of the polynomial a0 + a1x + � � � + anx

n. We shall
see that later, in other examples.

It remains literally to repeat the end of the proof of Theorem 2. If M =
M1 + � � �+Mr, then from (8) we obtain, by induction,

fM (x) = fM1
(x) � � � fMr

(x):

Now put n(M) = n and partition the set M into n subsets each containing one
element: M =M1+ � � �+Mn, n(Mi) = 1. The one element setMi has two subsets:
the empty set ? with n(?) = 0 and Mi with n(Mi) = 1. Therefore, v(Mi; 0) = 1,
v(Mi; 1) = 1, v(Mi; k) = 0 for k > 1, fMi

= 1 + x and we conclude that for any
�nite set M we have

fM (x) = (1 + x)n(M):

The expression (1+x)n(M) can be written in the form of a polynomial in x by
means of the binomial formula. We have seen (formulas (20) and (24) of Chapter II)
that for n = n(M):

(1 + x)n = C0
n + C1

nx+ C2
nx

2 + � � �+ Cn
nx

n; where Cm
n =

n!

m! (n�m)!
.

Therefore, recalling the de�nition of the polynomial fM (x) (formula (7)), we obtain

(9) v(M;m) = Cm
n =

n!

m! (n�m)!
for n = n(M):

This is the answer to our question.

By counting the subsets of M containing 0, 1, 2, . . . , n elements where n =
n(M), we have counted all the subsets of M . Therefore, v(M; 0) + v(M; 1) + � � �+
v(M;n) = v(M), or using (9) and Theorem 2, C0

n + C1
n + � � � + Cn

n = 2n. This
relation for the binomial coe�cients is easily obtained from the binomial formula,
as we have done in Section 3 of Chapter II.
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A subset of m elements of the set fa1; . . . ; ang is sometimes called a combina-
tion of n elements, taken m at a time. Hence, the binomial coe�cient Cm

n is the
number of all such combinations.

The above question of the number of subsets N �M , if n(M) = n, n(N) = m,
is connected with some questions regarding positive integers. For example, consider
the question: in how many ways can we write a positive integer n in the form of
r summands, where r is a given number? In other words, what is the number of
solutions of the equation x1+� � �+xr = n in positive integers x1, . . . , xr? Solutions
with di�erent order of the unknowns are considered to be di�erent. For example,
if n = 4, r = 2, we have 4 = 1 + 3 = 2 + 2 = 3 + 1, and hence there are three
solutions: (1; 3), (2; 2), (3; 1).

Consider the segment AB of length n. Its points whose distance from the initial
point A are integers will be called integral. Clearly, to each solution of the equation
x1 + � � �+ xr = n corresponds a partition of the segment AB into r segments with
integral end points of length x1, x2, . . . , xr (Fig. 4).

Fig. 4

In its turn, such a partition is de�ned by the end points of the �rst r � 1
segments (the end point of the last one is B). These end points de�ne a subset
N of the set M of integral points of the segment AB which are di�erent from B.
Clearly, n(N) = r�1, and in this way we have de�ned a one-to-one correspondence
between the integer solutions of the equation x1 + � � � + xr = n and the subsets
N �M , where n(N) = r�1, n(M) = n�1. Therefore, the number of such solutions
is equal to the number of such subsets. Applying formula (9) we conclude that the
number of these subsets is Cr�1

n�1. If we do not �x the number of summands into
which the number n is decomposed, then the number of all partitions is evidently
equal to the sum of partitions into r summands for r = 1; 2; . . . ; n. Therefore, the
number of partitions is equal to the sum of all binomial coe�cients Cr�1

n�1 where

r = 1; 2; . . . ; n. We know that this sum is 2n�1. In other words, a positive integer
n can be partitioned into integer summands in 2n�1 ways (if we allow arbitrary
number of summands, and take into account their order).

Return now to the derivation of formula (9). The method used|the introduc-
tion of the polynomials fM (x)|turns out to be very useful in other cases, and we
shall come back to it later. But formula (9) which connects the numbers v(M;m)
with binomial coe�cients can be derived in another way. Consider the expression
(1 + x)n as the product of n equal factors

(10) (1 + x)n = (1 + x)(1 + x) � � � (1 + x)

and let us expand the product on the right-hand side of (10). We numerate its
factors, i.e. we give them numbers 1, 2, . . . , n which form the setM = f1; 2; . . . ; ng.
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In order to expand the product (10) we have to multiply each time n terms 1 or x,
taking them from one of the brackets. Hence, each term of the expanded expression
(10) is de�ned by indicating from which brackets with m numbers i1, i2, . . . , im.
Then 1 is taken from the remaining n�m brackets, and as a result we obtain the
term xm. We see that each term of the expanded expression (10) is de�ned by the
subset N = fi1; . . . ; img of M which gives the number of brackets from which x
is taken. From the remaining brackets we take 1. The remaining brackets have
those numbers which belong to the complement N of N . Therefore, the number of
appearences of the term xm is equal to the number of subsets N � M containing
m elements, and this is v(M;m). Hence, the expression (10) in the expanded form
is the sum of the terms of the form v(M;m)xm:

(1 + x)n = v(M; 0) + v(M; 1)x+ � � �+ v(M;n)xn:

Comparing this with the de�nition of binomial coe�cients (formula (20) of Chap-
ter II) we obtain a new proof of the equality v(M;m) = Cm

n .

The same reasoning can be applied to a more general case. Consider the
product of �rst degree polynomials x + ai, where the coe�cient of x is 1. Let us
try to write the product

(11) (x+ a1)(x + a2) � � � (x+ an)

in the form of a polynomial in x. As before we numerate the n factors. Then each
term in the expanded product (11) is obtained by taking ai1 , ai2 , . . . , aim from the
factors numerated i1, i2, . . . , im and taking x from the remaining n �m factors.
The obtained term has the form ai1ai2 � � � aimx

n�m and if all the terms of degree
n � m are collected together we get �m(a1; . . . ; an)x

n�m where �m(a1; . . . ; an) is
the sum of all products of the form ai1 � � � aim where fi1; . . . ; img runs over all
sets of indices formed from 1, . . . , n. Hence, the polynomial �m(a1; . . . ; an) has
Cm
n terms. For example, �1(a1; . . . ; an) = a1 + � � � + an, and �2(a1; . . . ; an) =

a1a2 + a1a3 + � � � + a2a3 + . . . an�1an|it is the sum of all products aiaj with
i < j. The last polynomial �n has the form �n(a1; . . . ; an) = a1 � � �an. This is
the �rst time that we encounter polynomials in an arbitrary number n of variables.
Polynomials �1, . . . , �n have a very important role in algebra. In particular, we
have proved the formula

(12) (x+ a1) � � � (x+ an) =

xm + �1(a1; . . . ; an)x
n�1 + �2(a1; . . . ; an)x

n�2 + � � �+ �n(a1; . . . ; an):

It is called Vi�ete's formula.

Vi�ete's formula expresses an important property of polynomials. Suppose that
the polynomial f(x) of degree n has n roots �1, . . . , �n. Then, as we have seen
more than once, it is divisible by the product (x � �1) � � � (x � �n), and since this
product is also of degree n, then f(x) = c(x��1) � � � (x��n), where c is a number.
Suppose that the coe�cient of the leading term of f(x) is 1. Then the number c
must also be 1, and we have

f(x) = (x� �1) � � � (x� �n):
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We can apply Vi�ete's formula (12) to it by putting ai = ��i. Since all the terms
of the polynomial �k are products of k variables taken from a1, . . . , an, then
replacing ai by ��i gives rise to a factor (�1)k, namely: �k(��1; . . . ;��n) =
(�1)k�k(�1; . . . ; an). Hence, from (12) we obtain

(13) (x��1) � � � (x��n) = xn��1(�1; . . . ; �n)x
n�1+ � � �+(�1)n�n(�1; . . . ; �n):

This formula expresses the coe�cients of the polynomial f(x) = (x��1) � � � (x��n)
in terms of its roots and it is also called Vi�ete's formula. You know its special case
for the quadratic equation: in that case there are only two polynomials �1 and �2,
�1 = �1 + �2, �2 = �1�2.

In conclusion, consider again formula (9) for the number of subsets (or the
number of combinations). We deduced it from the binomial formula, which was,
in turn, proved in Section 3 of Chapter II using the properties of the derivative.
That is a rather involved method. It would be desirable to have another proof of
this formula based only upon combinatorial reasoning. We shall give such a proof
of an even more general formula. Notice that each subset N of the set M de�nes
a partition M = N + N where N is the complement of N . We consider a more
general case: an arbitrary partitionM =M1+� � �+Mr into subsets with prescribed
number of elements: n(M1) = n1, . . . , n(Mr) = nr. The sequence (n1; . . . ; nr) will
be called the type of the partition M = M1 + � � �+Mr. We suppose that none of
the sets Mi is empty, i.e. that all ni > 0.

Since we are dealing all the time with one and only set M where n(M) = n, it
shall not always be present in our notations. Denote the number of all possible par-
titions of our set M which have the prescribed type (n1; . . . ; nr) by C(n1; . . . ; nr).
Of course, we must have n1 + � � � + nr = n. Notice also that we are taking into
account the order of the sets M1, . . . , Mr. For instance, for r = 2 and given n1
and n2, n1 + n2 = n, we take the partitions M = M1 +M2 and M = M2 +M1,
with n(M1) = n1 and n(M2) = n2, to be di�erent. Indeed, if n1 6= n2 these
partitions are of di�erent types. Owing to this, each partition M = M1 +M2 de-
�nes one subset M1 (the �rst one) and we have a connection with the previously
considered problem: C(n1; n2) = v(M;n1). In other words, for any m < n, we
have v(M;m) = C(m;n � m). We shall now derive an explicit formula for the
number C(n1; . . . ; nr). Consider an arbitrary partition M = M1 + � � � + Mr of
type (n1; . . . ; nr). Suppose that at least one of the numbers n1, . . . , nr is di�er-
ent from 1. For instance, suppose that n1 > 1 and choose an arbitrary element
a 2 M1. Denote by M 0

1 the set of all elements of M1 di�erent from a (this is
the complement of the set fag taken as a subset of M1). Then we have the par-
tition M1 = M 0

1 + fag and to our partition M = M1 + � � � + Mr corresponds
a new partition M = M 0

1 + fag +M2 + � � � +Mr of type (n1 � 1; 1; n2; . . . ; nr).
In this way from all partitions of type (n1; n2; . . . ; nr) we obtain all partitions of
type (n1 � 1; 1; n2; . . . ; nr): the partition M = M 0

1 + fag +M2 + � � � +Mr is ob-
tained from the partition M = M1 + � � � +Mr, where M1 = M 0

1 + fag. Moreover,
one partition of type (n1; n2; . . . ; nr) gives rise to n1 di�erent partitions of type
(n1 � 1; 1; n2; . . . ; nr), depending on the choice of a 2M1. Hence, we have

(14) n1C(n1; n2; . . . ; nr) = C(n1 � 1; 1; n2; . . . ; nr):
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Applying the same method to partitions of type (n1 � 1; 1; n2; . . . ; nr) we ob-
tain that (n1 � 1)C(n1 � 1; 1; n2; . . . ; nr) = C(n1 � 2; 1; 1; n2; . . . ; nr), i.e. that
n1(n1 � 1)C(n1; n2; . . . ; nr) = C(n1 � 1; 1; 1; n2; . . . ; nr) and

n1!C(n1; n2; . . . ; nr) = C(1; . . . ; 1
| {z }

n1 times

; n2; . . . ; nr):

We now apply the same reasoning to the parameter n2 in C(1; . . . ; 1; n2; . . . ; nr).
In the same way as before we obtain the relation n2!C(1; . . . ; 1; n2; n3; . . . ; nr) =
C(1; . . . ; 1; n3; . . . ; nr) where 1 appears in the �rst n1 + n2 places, that is to say

n1!n2!C(n1; n2; . . . ; nr) = C( 1; . . . ; 1
| {z }

n1+n2 times

; n3; . . . ; nr):

Finally, if we apply the procedure to all the parameters n1, n2, . . . , nr we
obtain the formula

(15) n1!n2! � � �nr!C(n1; n2; . . . ; nr) = C(1; 1; . . . ; 1
| {z }

n times

);

since n1+n2+� � �+nr = n. It remains to �nd the value of the expression C(1; . . . ; 1).
In order to do so notice that the above formula was proved for partitions of all types
(n1; . . . ; nr). Apply it to the simplest type (n). There is only one partition of this
type, namely M =M , and so C(n) = 1. On the other hand, formula (15) gives

n!C(n) = C(1; 1; . . . ; 1
| {z }

n times

):

Therefore C(1; . . . ; 1) = n! and substituting this into (15) we obtain the �nal ex-
pression

(16) C(n1; . . . ; nr) =
n!

n1!n2! � � �nr!
; where n = n1 + � � �+ nr:

For n = 2 instead of (n1; n2), n1+ n2 = n it is more usual to write (n;m� n).
Since C(m;n�m) = v(M;m), formula (16) reduces to the relation (9).

Remark 1. Consider again the expression C(1; . . . ; 1) which appeared at the
end of the above proof. What is a partition of type (1; . . . ; 1)? It is a partition ofM
into one element sets. But recall that we must take into account the order of the sets
in the partitionM =M1+ � � �+Mr. Hence, a partitionM = fa1g+ � � �+fang gives
a numertaion of the elements of M . The number C(1; . . . ; 1) shows in how many
ways we can numerate the elements of M . It can be said that C(1; . . . ; 1) gives the
number of di�erent arrangements of the elements of M . As we know, the number
of such arrangements is n!. Various arrangements are also called permutations. For
example, if M = fa; b; cg, which means that n = 3, we have 6 permutations

(a; b; c); (a; c; b); (b; a; c); (b; c; a); (c; a; b); (c; b; a):
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Remark 2. In the case r = 2, the expression C(n1; n2) coincides with the
binomial coe�cient|we have already given two proofs of this fact. An analogous
interpretation has the expression C(n1; . . . ; nr) for any r. It can be proved that
if x1, . . . , xr are variables, then in the expansion of (x1 + � � � + xr)

n we obtain
terms of the form xn11 � � �xnrr with n1 + � � �+ nr = n, ni nonnegative integers, and
that the coe�cient of xn11 � � �xnrr is C(n1; . . . ; nr). We have only to return to our
�rst de�nition of a partition, allowing the empty set to appear among Mi's and
hence allowing zero to be among the numbers ni. It is easily seen that (16) remains
valid in this case also, provided we take 0! = 1. The proof of this generalization
of the binomial formula to the case of r variables is perfectly analogous to the
second (combinatorial) proof of the relation v(M;m) = Cm

n (where n = n(M))
given above.

For instance, this formula gives that (x1 + x2 + x3)
3 is equal to the sum of

terms C(n1; n2; n3)x
n1
1 xn22 xn33 where (n1; n2; n3) runs over all triplets of nonnegative

integers such that n1+n2+n3 = 3, and C(n1; n2; n3) is evaluated by formula (16)
(with the condition 0! = 1). Substitution gives

(x1 + x2 + x3)
3 =

x31 + x32 + x33 + 3x21x2 + 3x1x
2
2 + 3x21x3 + 3x1x

2
3 + 3x22x3 + 3x2x

2
3 + 6x1x2x3:

Problems

1. Let I = fp; qg be a set containing two elements and let M = fa1; . . . ; ang
be a set of n elements. To each subset N � M correspond the following element:
a word from In where on the i-th place stands p if ai 2 N , and q if ai does not
belong to N . Prove that this establishes a one-to-one correspondence between the
sets U(M) and In. Use this to derive Theorem 2 from Theorem 1.

2. How can the intersection and the union of subsets N1 and N2 of the set M
be expressed in terms of their corresponding words from In (see Problem 1)?

3. Find the number of all partitions M1+ � � �+Mr of all types, but for a �xed
number r. Verify that for r = 2 the answer is given by Theorem 2.

4. Find the sum of all numbers C(n1; . . . ; nr) for all ni > 0, n1+ � � �+nr = n,
for given r and n. Give two solutions: one based upon Problem 3 and the other
based upon the statement given in Remark 2.

5. Find the number of factorizations of a given positive integer n into a product
of r factors: n = a1 � � � ar, which are mutually relatively prime.

6. What is the number of solutions of the equation x1+ � � �+xr = n, for given
n and r, in integers xi > 0? Use the following graphic interpretation of solutions,
which is a modi�cation of the interpretation given in Fig. 4. Let AB be a segment
of length n+ r. Correspond to a solution (x1; . . . ; xr) the partition of this segment
consisting of the segment of length x1 starting at A, the segment of length x2,
starting at the �rst integral point after the end of the �rst segment, etc; see the
�gure in which we have x3 = 0.
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7. Find the number of di�erent partitions M = M1 + M2 of type (m;m)
if n(M) = 2m and the partitions M = M1 + M2 and M = M2 + M1 are not
taken to be di�erent. The same question for the partitions M = M1 +M2 +M3

of type (m;m;m) if n(M) = 3m and if partitions with di�erent order of M1, M2,
M3 are not taken to be di�erent. Finally, the same question for the partitions of
type (k; k; l; l; l), n(M) = 2k + 3l and partitions in which equivalent subsets have
di�erent order are not taken to be di�erent.

8. What is the form of the term of the polynomial (x1+ � � �+xn)
2? The same

question for the polynomial (x1 + � � �+ xn)
3.

9. How many terms are there in the polynomial (x1 + � � � + xr)
n, supposing

that similar terms are grouped together?

10. Express the polynomial a21 + a22 + � � � + a2n in terms of polynomials �1
and �2. Suppose that the polynomial x

n + axn�1 + bxn�2 + � � � has n real roots.
Prove that a2 > 2b. When does the equality a2 = 2b take place? Hint: use B�ezout's
theorem from Section 1 of Chapter II and the fact that a sum of squares of real
numbers cannot be negative.

11. Give a combinatorial proof of the relation Ck
n = Ck

n�1+Ck�1
n�1 for binomial

coe�cients (formula (26) of Chapter II), interpreting Ck
n as v(M;k) where n(M) =

n. Generalize this relation to the numbers C(n1; . . . ; nr).

12. Give a combinatorial proof of the relation Cm
n = Cn�m

n for binomial
coe�cients.

(to be continued in the next issue)

I. R. Shafarevich,

Russian Academy of Sciences,

Moscow, Russia
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CHAPTER III. SET (continued)

3. Algebra of sets

If the intersection of two subsets M1 � M and M2 � M is empty (i.e. M1 \
M2 = ?), then the union M1 [M2 consists of elements which belong either to M1

or toM2, and any element ofM1[M2 can belong only to one of the setsM1 orM2.
Hence, M1 [M2 =M1 +M2, and so n(M1 [M2) = n(M1) + n(M2).

The case when M1 \M2 is not empty can be reduced to the previous one.
Denote by M 0

1 the complement of M1 \ M2 with respect to M1, that is to say
the set of those elements of M1 which do not belong to M1 \M2. Then M1 =
(M1 \M2) +M 0

1 and

(17) n(M1) = n(M1 \M2) + n(M 0
1):

Analogously,

(18) n(M2) = n(M1 \M2) + n(M 0
2);

where M 0
2 is the complement of M1 \M2 with respect to M2. Adding up (17) and

(18) we obtain

(19) n(M1) + n(M2) = 2n(M1 \M2) + n(M 0
1) + n(M 0

2):

But the sets M1 \M2, M
0
1 and M 0

2 do not have common elements and their union
is M1 [M2. Therefore M1 [M2 = M1 \M2 +M 0

1 +M 0
2 and so n(M1 [M2) =

This paper is an English translation of the second part of: I. R. Xafareviq, Izbranye
glavy algebry, Matematiqeskoe obrazovanie, 3, okt.{dek. 1997, Moskva, str. 2{45. In the
opinion of the editors, the paper merits wider circulation and we are thankful to the author for
his kind permission to let us make this version.
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n(M1 \M2) + n(M 0
1) + n(M 0

2). Using this, we can rewrite the equality (19) as:
n(M1) + n(M2) = n(M1 \M2) + n(M1 [M2), that is to say

(20) n(M1 [M2) = n(M1) + n(M2)� n(M1 \M2):

This is the relation we wanted. Our further aim is to generalize it and to obtain
the expression for the number of elements of the union of an arbitrary number of
sets n(M1[� � �[Mr), and not only the union of two sets. We shall have to establish
some more or less evident properties of intersections and unions of several sets.

First of all notice that the union M1 [M2 [ � � � [Mr of several subsets M1,
M2, . . . , Mr can be de�ned by means of unions of only two subsets. For instance,

M1 [M2 [M3 = (M1 [M2) [M3;

and also for arbitrary k

M1 [M2 [ � � � [Mk = (M1 [M2 [ � � � [Mk�1) [Mk:

The second formula we need has the form

(M1 [M2 [ � � � [Mk) \N = (M1 \N) [ (M2 \N) [ � � � [ (Mk \N):

Both formulas are obvious; it is enough to ask oneself: what does it mean that
an element a 2 M belongs to the left or to the right-hand side? For example, in
the last formula a 2 (M1 [M2 [ � � � [Mk)\N means that a 2M1 [M2 [ � � � [Mk

and a 2 N . The second statement is merely that a 2 N and the �rst that a 2 Mi

for some i = 1; . . . ; k. But then a 2 Mi \ N for the same i, and this means that
a 2 (M1 \N)[ (M2 \N)[ � � � [ (Mk \N). Notice that this property resembles the
distributivity of numbers. Indeed, if we replace the sets M1, M2, . . . , Mk and N
by the numbers a1, a2, . . . , ak and b, if we replace the sign [ by + and \ by �, we
obtain the equality (a1 + � � �+ ak)b = a1b+ � � �+ akb, i.e. the distributivity law for
numbers. There are other properties which show an analogy between the operations
union and intersection of subsets on one side, and addition and multiplication of
numbers on the other (see Problem 1). Investigation of system of subsets of a given
set M with respect to the operations [ and \ is called the algebra of sets.

We now derive the formula for n(M1 [M2 [M3). Since M1 [M2 [M3 =
(M1 [M2) [M3, we can apply formula (20) to obtain

n(M1[M2[M3) = n((M1[M2)[M3) = n(M1[M2)+n(M3)�n((M1[M2)\M3):

We can apply formula (20) to the term n(M1 [M2) and since (M1 [M2) \M3 =
(M1\M3)[ (M2 \M3), we can also apply formula (20) to the last term above. We
get

n(M1 [M2 [M3) = n(M1) + n(M2) + n(M3)

� n(M1 \M2)� n(M1 \M3)� n(M2 \M3)

+ n((M1 \M3) \ (M2 \M3)):
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Clearly, (M1 \M3) \ (M2 \M3) = M1 \M2 \M3 and so the last term can be
written as n(M1 \M2 \M3). We obtain the formula

n(M1 [M2 [M3) = n(M1) + n(M2) + n(M3)

� n(M1 \M2)� n(M1 \M3)� n(M2 \M3)

+ n(M1 \M2 \M3):

Now we can guess what should be the form of the formula for n(M1 [ � � � [Mr).
It must contain the terms n(Mi1 \ � � � \Mik) where Mi1 , . . . , Mik are any k sets
taken among the sets M1, . . . , Mr for all k = 1; 2; . . . ; r and if k is even we take
the sign �, while if k is odd we take +. In other words, the sign of the term
n(Mi1 \ � � � \Mik) is (�1)k�1.

We shall now prove this formula by induction on r in the same way as we proved
it for r = 3. The induction basis will be formula (20). Write M1 [M2 [ � � � [Mr

in the form (M1 [M2 [ � � � [Mr�1) [Mr, and use formula (20):

n(M1 [M2 [ � � � [Mr) = n(M1 [M2 [ � � � [Mr�1) + n(Mr)

� n((M1 [M2 [ � � � [Mr�1) \Mr):

By the induction hypothesis, the formula is true for n(M1 [ � � � [Mr�1) and gives
those terms of n(M1 [ � � � [Mr) which do not contain Mr. Now we have

(M1 [M2 [ � � � [Mr�1) \Mr = (M1 \Mr) [ (M2 \Mr) [ � � � [ (Mr�1 \Mr)

and by the induction hypothesis we can also apply the formula to the expression
n((M1 \Mr) [ � � � [ (Mr�1 \Mr)). The intersection

(Mi1 \Mr) \ � � � \ (Mik \Mr)

is obviouslyMi1\� � �\Mik\Mr and so we obtain all the terms of the formula which
containMr. Moreover, if the term of the formula for n((M1\Mr)[� � �[(Mr�1\Mr))
had the sign (�1)r�1, it has the sign (�1)r in the formula for n(M1 [ � � � [Mr)
and it will depend on k + 1 sets Mi1 \ � � � \Mik \Mr.

The formula for n(M1 [ � � � [Mr) can be written down more conveniently if
we consider the number of elements of the complement M1 [ � � � [Mr of the set
M1 [ � � � [Mr, i.e. the number of elements of the set M which do not belong to
any of the subsets Mi. Since for any subset N �M we always have M = N +N ,
then n(N) = n(M) � n(N). In our case n(M1 [ � � � [Mr) will be the sum of the
terms (�1)kn(Mi1 \ � � � \Mik ), where Mi1 , . . . , Mik are any k subsets taken from
M1, . . . , Mr. For k = 0 we take the term n(M). In other words,

n(M1 [ � � � [Mr) = n� n(M1)� � � � � n(Mr)(21)

+ n(M1 \M2) + � � �
+ (�1)rn(M1 \ � � � \Mr);

where n = n(M).
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This formula consists of expressions n(Mi1 \ � � � \Mik) where i1, . . . , ik are
any k elements of the set f1; 2; . . . ; ng. We have met such expressions in connection
with Vi�ete's formula (formula (12)). It is worthwhile to compare these two formulas.
Formula (21) follows from (12) if we put x = 1, ai = �xi in (12) and then replace
everywhere xi1 , . . . , xik by n(Mi1 \ � � � \Mik). Indeed, it is sometimes written in
this \symbolic" way

(22) n(M1 [ � � � [Mr) = n(1�M1) � � � (1�Mr);

where we suppose that the product on the right-hand side is expanded by Vi�ete's
formula as if Mi were variables, and then the expression n �Mi1 � � �Mik (which is
meaningless) is replaced by the expression n(Mi1 \ � � � \Mik ), and n � 1 is replaced
by n = n(M).

Formula (22) can serve as a means for remembering formula (21), but in al-
gebra, whenever two relations, concerned with di�erent questions, have the same
form, it is always possible to devise such a de�nition so that one formula coincides
with the other. We shall show this on the example of formulas (21), (22) and Vi�ete's
formula (12).

In order to do this we shall have to consider functions on a setM . Undoubtedly,
you must have already met with the concept of a function|in one way or another.
By a function we shall mean any way of corresponding to each element a 2 M a
certain number. The actual process of corresponding will be denoted by f , and the
number corresponded to the element a by this process will be denoted by f(a). It
is also called the value of the function f at the element a. Although the concept
of a function is de�ned for arbitrary sets, we shall at the moment be interested
only in the case when the set M is �nite. Then a function can be represented by
writing with each element a its corresponding number f(a). For example, here are
two functions f and g, de�ned on the set of three elements M = fa; b; cg (Fig. 5).

Fig. 5

Therefore, if M = fa1; . . . ; ang, then a function on M is the sequence
(f(a1); . . . ; f(an)). Functions can be added up and multiplied, these operations
being de�ned by the values of the functions. In other words, the functions f + g
and fg are de�ned by (f + g)(a) = f(a) + g(a) and (fg)(a) = f(a)g(a) for arbi-
trary a. For example, if f and g are represented by Fig. 5, then f + g and fg are
represented by Fig. 6.
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Fig. 6

Since the operations with functions are de�ned by their values, they have
the same properties as the operations with numbers: commutativity, associativity,
distributivity, etc. We can apply any identity, proved for numbers, if we replace
numbers by functions on a given set M . The function fM (a) which to any element
a 2 M corresponds the number 1 is denoted by 1. Clearly, 1 � f = f for any
function f .

We now connect the notion of a function with the notion of a subset. For any
subset N � M there exists the function de�ned as follows: the values of elements
which belong to N are 1, and the values of those which do not belong to N are 0.
This function is called the characteristic function of the subset N and is denoted
by fN . Thus, fN (a) = 1 if a 2 N and fN (a) = 0 if a 2 N . Conversely, it is clear
that the function fN (a) de�nes the set N|it consists of all elements a 2 M such
that fN (a) = 1. (In this way we obtain a one-to-one correspondence between the
subsets N � M and those functions which take only two values 0, 1. This is the
same relation which enables us to deduce Theorem 1 from Theorem 2. See Problem
1 from Section 2, where p and q should be replaced by 0 and 1.)

Some properties of subsets are simply expressed in terms of their characteristic
functions. For example, the characteristic function of the whole setM has all values
equal to 1, and hence fM = 1. If N is the complement of N , then fN = 1 � fN :
indeed, if a 2 N , i.e. fN(a) = 1, then (1�fN)(a) = 0, as it should be. Analogously
for a 2 N . If N1 and N2 are arbitrary subsets then fN1\N2

= fN1
� fN2

, since if
a 2 N1 and a 2 N2 then fN1

fN2
(a) = 1 � 1 = 1. If a does not belong to one of the

sets N1 or N2, then one of the factors fN1
or fN2

is 0 and so fN1
fN2

(a) = 0, and
also fN1\N2

(a) = 0. Clearly, this is also true for several subsets:

(23) if N 0 = N1 \ � � � \Nr; then fN 0 = fN1
� � � fNr

:

We can now rewrite formula (21) in the language of characteristic functions.
First of all, notice that the considered set M1 [ � � � [Mr is equal to M1 \ � � � \Mr.
This is evident: an element a does not belong to the set M1 [ � � � [Mr if it does
not belong to any of Mi, i.e. if it belongs to all Mi. Now using formula (23) we can
write the characteristic function of the set M1 [ � � � [Mr in the form

fM1[���[Mr
= fM1\���\Mr

= fM1
� � � fMr

:

Besides, we know that fMi
= 1� fMi

and we obtain

fM1[���[Mr
= (1� fM1

)(1� fM2
) � � � (1� fMr

):
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We can now apply Vi�ete's formula (13), by setting into it x = 1, ai = fMi
. We

have already explained why this is possible. We obtain

fM1[���[Mr
= 1� �1(fM1

; . . . ; fMr
) + �2(fM1

; . . . ; fMr
)

� � � �+ (�1)r�r(fM1
; . . . ; fMr

):

Moreover, �k(fM1
; . . . ; fMr

) is the sum of all products fMi1
� � � fMi

k
for all dif-

ferent indices (i1; . . . ; ik) taken from (1; . . . ; n). We know that fMi1
� � � fMi

k
=

fMi1
\���\Mi

k
and we obtain that

(24) fM1[���[Mr
= 1� fM1

� � � � � fMr
+ fM1\M2

+ � � �+ (�1)rfM1\���\Mr
;

i.e. the sum of all functions fMi1
\���\Mi

k
which are taken with the + sign if k is

even and with the � sign if k is odd.

Notice that we have obtained something essentially more than the formula (21):
we found the expression not for the number of elements n(M1 [ � � � [Mr) of the
subset M1 [ � � � [Mr, but for its characteristic function which does not determine
only the number of elements of the subset, but the subset itself. In particular,
formula (21) has sense only when the set M is �nite, while the relation (24) is true
for a �nite number of subsets of an arbitrary set M .

In order to deduce the relation (21) from it, we have to return from functions
back to numbers. It is essential here that M be �nite. For any function we de�ne
the number Sf as the sum of all values f(a) of the function f at all elements
a 2 M : if M = fa1; . . . ; ang, then Sf = f(a1) + � � � + f(an). For example, for
the functions f and g from Fig. 5 we have Sf = 2, Sg = 1, Clearly, for any two
functions f , g we have S(f + g) = Sf + Sg. Indeed, the value of f + g at ai is
f(ai) + g(ai). Therefore, S(f + g) = (f(a1) + g(a1)) + � � � + (f(an) + g(an)) =
(f(a1) + � � �+ f(an)) + (g(a1) + � � �+ g(an)) = Sf + Sg. If fN is the characteristic
function of the subset N , then fN (a) = 1 is true for the elements a 2 N , and for
the other elements a it is 0. Hence, SfN = n(N).

If we now �nd the number Sf for the functions on the left and right-hand side
of (24), using the established properties, we obtain exactly the relation (21).

Consider now two applications of formula (21). The �rst is a question studied
long time ago by Euler, and it concerns the permutations of a set. We said at the
end of the last Section (Remark 1) that this is the name for the arrangements of
elements of a setM in a given order. The number of permutations is n! if n(M) = n.
At the end of Section 2 we wrote down, as an example, all the six permutations of
the three element set M = fa; b; cg. In the general case we also write down all the
n! permutations of the setM and denote by (a1; . . . ; an) the �rst one. The question
is: how many permutations do we have in which no element takes the same place
as in the �rst one? This is precisely Euler's question. Solve it for the case n = 3
and the six permutations written at the end of Section 2. Verify that only two
permutations satisfy the given condition, namely: (c; a; b) and (b; c; a).

In the general case we shall apply formula (21). Denote by P the set of all
permutations of the elements of the set M = fa1; . . . ; ang. We have
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n(P) = n!. Consider those permutations in which ai stands at the same place as in
the �rst permutation, i.e. at the i-th place. Denote the set of all such permutations
by Pi. Then our question becomes: �nd n(P1 [ � � � [ Pn). Hence we have the same
situation as we had before for the set P and its subsets P1, . . . , Pn (in formula (21)
the set was denoted by M and its subsets by Mi). In order to apply the formula,
we have to �nd the numbers n(Pi1 \ � � � \ Pik ). But the set Pi1 \ � � � \Pik contains
exactly those permutations in which ai1 , . . . , aik take the same place as in the
�rst permutation, namely they are the places i1, . . . , ik, respectively. Such a per-
mutation di�ers from the �rst permutation only in the arrangement of elements in
other places. In other words, the number of such permutations is equal to the total
number of permutations of the set fai1 ; . . . ; aikg. Since n(fai1 ; . . . ; aikg) = n � k,
applying the general formula we get n(Pi1 \ � � � \ Pik ) = (n � k)!. All the sets
Pi1 \ � � � \ Pik for a �xed k give one term in the formula (21), and the number
of such terms is equal to the number of subsets fai1 ; . . . ; aikg � fa1; . . . ; ang for a
given k, that is to say, according to Theorem 3 it is Ck

n. Hence, the contribution of
the terms which correspond to a given value of k is Ck

n(n�k)! and substituting the

value of the binomial coe�cient we get
n!

k! (n� k)!
(n� k)! =

n!

k!
and formula (21)

in our case becomes

n(P1 [ � � � [ Pn) = n!� n!

1!
+
n!

2!
� � � �+ (�1)nn!

n!

= n!

�
1� 1

1!
+

1

2!
+ � � �+ (�1)n

n!

�
:

This is the formula founded by Euler. He was actually interested in the ratio
of the founded number with the number of all permutations n!. This ratio is

1 � 1

1!
+

1

2!
+ � � � + (�1)n

n!
, which, as n increases, can be shown to approach a

�xed number, namely 1=e, where e is the basis of natural logarithms (for those who
already know what that is). The number 1=e is irrational and approximately equal
to 0,36787 . . . .

The second application of formula (21) is related to the properties of positive
integers. Let n be a positive integer, and let p1, . . . , pr be its prime divisors,
di�erent from each other. How many positive integers exist which are not greater
than n and which are not divisible by any of the numbers pi? This is again an
application of formula (21). Denote by M the set of positive integers 1, 2, . . . , n
and by Mi its subset whose elements are divisible by pi. Clearly, our problem is
equivalent to the evaluation of n(M1 [ � � � [Mr). Let us �nd the values of the
terms n(Mi1 \ � � � \Mik) in formula (21). The set Mi1 \ � � � \Mik consists of all
positive integers t 6 n which are divisible by prime numbers pi1 , pi2 , . . . , pik . This
is equivalent to the fact that t is divisible by their product pi1pi2 . . . pik . Let m
be a divisor of n. How many are there positive integers t 6 n which are divisible
by m? Such numbers have the form t = mu, where u is a positive integer and
the condition t 6 n is equivalent to u 6 n=m. Hence, u may take the values 1,
2, . . . , n=m and the number of such numbers is n=m. If m = pi1 � � � pik this gives
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that n(Mi1 \ � � � \Mik) =
n

pi1 � � � pik
and formula (21) becomes

n(M1 [ � � � [Mr) = n� n

p1
� � � � � n

pr
+

n

p1p2
+ � � �+ (�1)r n

p1 � � � pr :

The right-hand side can be written in the form

n

�
1� 1

p1
� 1

p2
� � � �+ 1

p1p2
+ � � �+ (�1)r 1

p1 � � � pr

�
:

The expression in brackets can be transformed by Vi�ete's formula (applied simply
to numbers), if we set x = 1, �i = �1=pi. By (13) this expression will be�

1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pr

�
:

Therefore, for the number of positive integers not greater than n and not divisible
by p1, p2, . . . , pr we obtain

(25) n

�
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pr

�
:

We often meet the case when p1, . . . , pr are all the prime divisors of n. In this case
t is not divisible by any of pi's if and only if it is relatively prime to n: if it had
a common factor d with n, then this factor would have a prime divisor pi which
would divide both t and n. Therefore, formula (25) gives the number of all positive
integers not greater than n and relatively prime to n, if we take p1, . . . , pr to be
all prime divisors of n. The expression (25) was found in this form by Euler, it is
denoted by '(n), and is called Euler's function. For example, for n = 675 = 33 � 52
we have n(1� 1

3
)(1� 1

5
) = 32 � 5(3� 1)(5� 1) = 360 numbers which are not greater

than 675 and which are relatively prime to 675.

Suppose now that p1, . . . , pr need not necessarily divide n. What is the number
of positive integers t 6 n which are not divisible by p1, . . . , pr? We can repeat
the previous reasoning, but with one alternation. We have to �nd the number
of positive integers t 6 n divisible by pi1 � � � pir . Let m be an arbitrary positive
integer. How many are there positive integers t 6 n which are divisible by m?
Again put t = mu with the condition mu 6 n. Hence, we have to take all numbers
u = 1; 2; . . . , such that mu 6 n. Let u be the last of them. Then r = n�mu < m,
for in the opposite case such a number would also be mu + m = n(u + 1). But
then n = mu + r where 0 6 r < m|which is the formula for the division with
remainder of n by m (see Theorem 4 of Chapter I). Hence the number u is equal
to the quotient in the above division and it shall be denoted by [n=m]. Therefore,
the number of positive integers not greater than n and divisible by m is [n=m]. We
can now literally repeat the preceding argument and apply the formula (21). For
the number of positive integers not greater than n and not divisible by p1, . . . , pr
we obtain the expression

(26) n�
�
n

p1

�
�
�
n

p2

�
� � � �+

�
n

p1p2

�
+ � � �+ (�1)r

�
n

p1 � � � pr

�
:



Selected chapters from algebra 23

It is not as explicit as the expression (25) but we can write it in the form of (25), as
an approximation. Recall the formula for the division with a remainder: n = mu+r,

where 0 6 r < m and u = [n=m]. Dividing this by m we obtain
n

m
= u+

r

m
and

since 0 6 r < m, we get
n

m
� 1 <

h n
m

i
6

n

m
. In other words, we can replace [n=m]

by n=m with an error less than 1. Make this replacement in all the terms of (26).
What is the total error? Each term of (26) corresponds to a subset fi1; . . . ; ikg
of the set f1; . . . ; rg. According to Theorem 2, the number of such subsets is 2r.
Hence this is the number of terms in (26). Since each replacement produces an error
less than 1, the total error will be less than 2r. That is to say that the expression
(26) di�ers from

(27) n� n

p1
� n

p2
� � � �+ n

p1p2
+ � � �+ (�1)r n

p1 � � � pr
by less than 2r. We have met with the last expression before, and we know that it
is equal to

n

�
1� 1

p1

�
� � �

�
1� 1

pr

�
:

In this way we obtain that for the number N of positive integers not greater than n
and not divisible by given prime numbers p1, . . . , pr the following inequality holds

(28)

����N � n

�
1� 1

p1

�
� � �

�
1� 1

pr

����� < 2r:

For example, if we have three prime numbers p, q, r then N is equal to

n

�
1� 1

p

��
1� 1

q

��
1� 1

r

�
with an error less than 8.

Problems

1. Verify the relations M1 \ � � � \Mk = (M1 \ � � � \Mk�1) \Mk and (M1 \
� � �\Mk)[N = (M1 [N)\ � � �\ (Mk [N). The second of these is again analogous
to the distribution law for numbers (a1 + � � �+ ak)b = a1b+ � � �+ akb, but now the
role of multiplication is taken by [ and the role of addition by \.

2. Verify that for each relation between subsets involving the operations [
and \, there exists another relation in which these two operations change places.
In order to do this, prove that M1 [M2 =M1 \M2 and M1 \M2 =M1 [M2.

3. How many times does the function sin ax take the value 0 on the segment
from 0 to 2�b, where 0 < a < b and a, b are positive integers?

4. For positive integers a1, . . . , am the expression max(a1; . . . ; am) denotes the
greatest and min(a1; . . . ; am) the smallest one of them. Let N = max(a1; . . . ; an).
For the set M = f1; . . . ; Ng de�ne Mi as the subset consisting of those j's for
which aj < ai. Applying formula (21), �nd the relation between max(a1; . . . ; an)
and min(ai1 ; . . . ; aim) where fai1 ; . . . ; aimg is a subset of fa1; . . . ; ang.

5. Apply formula (21) for the case when Mi = f�ig. By evaluating directly
all the terms which appear in it, obtain the relation

n� C1
n(n� 1) + C2

n(n� 2) + � � �+ (�1)n�1Cn�1
n � 1 = 0:
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6. Let M be a �nite set and let h be an arbitrary function on M . For a subset
N � M de�ne the number Sh(N) as the sum of all values h(a), for all a 2 N .
Prove the formula analogous to (21) where n(M) is replaced everywhere by h(N).
Hint: multiply the relation (24) by the function h.

7. Find the sum of all positive integers not exceeding n and relatively prime
to n. Hint: apply the result of Problem 6 with h(k) = k.

8. The same question for the sum of squares of these numbers.

9. Prove that in the right-hand side of inequality (28) we may replace 2r by
2r�1.

4. The language of probability

The theory of probability, like any other branch of mathematics, has its basic
concepts which are not de�ned|like points or numbers. The �rst such a concept
is the event. In this Section we shall consider the case when the number of events
is �nite. Usually, an event is the result of the occurrences of some simpler events
which are said to be elementary. For instance, when we throw dice there are 6
possible elementary events: the appearance of number 1, number 2, number 3,
number 4, number 5, number 6 on the top face. The event that we obtain an even
number consists of three elementary events: either we obtain 2, or 4, or 6. The set
of elementary events is simply a set (in this Section a �nite set) whose elements have
special names (elementary events). An event is a subset of the set of elementary
events. The second basic concept is probability : it is a real number assigned to
each elementary event. Therefore, if M = fa1; . . . ; ang is the set of elementary
events, then to de�ne a probability means assigning to each element ai 2M a real
number pi, which is called the probability of the event ai. Probabilities should
satisfy two conditions: they should be nonnegative and the sum of probabilities of
all elementary events should be equal to 1:

(29) pi > 0; p1 + � � �+ pn = 1:

In other words, probability is a function p(a) on the set of elementary events M
with real values, satisfying the conditions p(a) > 0 for all a 2 M and the sum
of all the numbers p(a) for a 2 M is 1. These conditions play the role of axioms
of probability. If N is an arbitrary event (recall that an event is a subset of the
set M) then its probability is the sum of the numbers p(a) for all a 2 N . This
probability is denoted by p(N). In the special case when N =M , the corresponding
event is said to be certain. The condition (29) shows that the probability of the
certain event is 1. The condition p(M) = 1 is not as essential as the condition
p(M) > 0. The arbitrary case can be reduced to the case p(M) = 1, by dividing all
the probabilities by p(M). We simply choose the probability of the certain event to
be the unit of measuring other probabilities. We emphasize that the object studied
by the theory of probability is the set (in our case �nite) of elementary events with
prescribed probabilities. This set and the probabilities are chosen according to the
speci�c conditions of the considered problem. Afterwards, when they are de�ned,
we can evaluate probabilities of other events. That is why the specialists in the
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theory of probability say that their task is to �nd probabilities of certain events
using probabilities of other events.

If the two events are given|and we recall that they are simply two subsets
N1 and N2 of the set M|then their union N1 [N2 and intersection N1 \N2 are
also events. From the de�nition it follows that p(N1 [N2) 6 p(N1) + p(N2). The
strict inequality may take place since in the sum p(N1) + p(N2) the term p(a) will
appear twice if a 2 N1 \N2. In fact we have

p(N1 [N2) = p(N1) + p(N2)� p(N1 \N2):

We came across this relation earlier (see Problem 6 of Section 3). In particular, if
N1\N2 = ?, i.e. if N1 and N2 do not intersect, then the events N1 and N2 are said
to be mutually exclusive. In that case p(N1 [N2) = p(N1) + p(N2). A particular
case is when N1 = N is an arbitrary subset and N2 = N is its complement. We
obtain that p(N) + p(N) = 1 or p(N) = 1 � p(N). The event N is said to be
opposite to N .

The basic object: the setM and the given function onM satisfying the axioms
of probability (29) is called a probability scheme. It is denoted by (M ; p).

An important case of de�ning probability schemes is when all the elements of
the set M have the same probability, i.e. when all the numbers pi are equal. From
the condition (29) it follows that all pi's are equal to 1=n. If N �M is an arbitrary
event then p(N) = n(N)=n. For example, this is the case when we throw dice,
if the dice is considered to be homogeneous. In this case, all 6 elementary events
which correspond to the possible appearances of the numbers 1, 2, . . . , 6 on the
top face have the same probability 1=6, and the event that an even number appears
on the top face has probability 3 � 1=6 = 1=2.

If the dice is not homogeneous, we have no reason to give all elementary events
equal probabilities. In this case we may de�ne the probabilities experimentally,
by throwing dice many times and noting the result. If after a large number n
of throwing the number i appears ki times, then the probability of the elementary
event|the appearance of the number i|is taken to be ki=n. Clearly, the conditions
(29) will be satis�ed. The number n depends on the accuracy we wish to attain.
This gives another probability scheme (M ; p).

Analogous to the case of dice throwing is the popular problem of drawing balls
from a bag. Suppose that the bag contains n identical balls and that we draw out
one of them without looking. The drawing out of a ball is an elementary event.
The phrase \identical balls" mathematically means that the probabilities of these
events are equal. Hence, they are equal to 1=n. Suppose now that in the bag we
have balls of di�erent colours: a black, and b white balls, where a + b = n. Then
the event \a white ball is drawn from the bag" is a subset N �M . Since n(N) = b,
we have p(N) = b=n|this is the probability that a white ball is drawn out.

Somewhat more involved is the dice problem, if dice is thrown twice. In this
case an elementary event will be given by two numbers (a; b), where 1 6 a 6 6,
1 6 b 6 6 which show that in the �rst throwing we get a, and in the second b.
The number of elementary events is 36. This can be represented by the Table 3,
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where on the horizontal we write all the possible outcomes of the �rst throwing,
and on the vertical the outcomes of the second. For example, to the elementary
event that the �rst throwing gives 5 and the second 4 corresponds the cell marked
with an asterisk. The event that the �rst throwing gives 5 again has the probability
1=6. But it is no longer elementary: it is comprised of six elementary events which
correspond to the cells of the vertical column above the number 5. They correspond
to the appearance of any number i, 1 6 i 6 6 on the top face of the dice in the
second throwing, if 5 appeared in the �rst. Since the �rst throwing has no e�ect
on the second, and the dice is supposed to be homogeneous, we conclude that all
the six elementary events have equal probabilities, and since the probability of the
event which they make is 1=6, then the probability of each one of them must be
1=36. Hence, we see that the probability of any elementary event is 1=36.

Table 3 Table 4

Consider the event Nk: \the sum of the numbers obtained at the �rst and the
second throwing is equal to k" (\the score is k"). For each pair (a; b) write in the
corresponding cell the sum a+ b (Table 4). We see that 12 appears in one cell and
so n(N12) = 1 and also n(N11) = 2, n(N10) = 3, n(N9) = 4, n(N8) = 5, n(N7) = 6,
n(N6) = 5, n(N5) = 4, n(N4) = 3, n(N3) = 2, n(N2) = 1. The greatest value
has n(N7), and since p(Nk) = n(Nk)=36, we see that p(N7) has the greatest value
among all p(Nk)'s. In other words, the event that the score 7 will be obtained in
two throwing is the most probable.

And what is the answer in the case of n throwing? Here the elementary events
are given by sequences of n numbers (a1; . . . ; an) where each one can take the values
1, . . . , 6. The same reasoning as before shows that their probabilities are 1=6n.
The event Nk: \the total score after n throwing is k" consists of those sequences
which satisfy a1 + � � � + an = k. Hence, we have to �nd which number k has the
greatest number of representations of the form

(30) k = a1 + � � �+ an; 1 6 ai 6 6:

In order to do this, consider the polynomial F (x) = (x + x2 + � � � + x6)n.
Expanding it, we take from the i-th bracket the term xai and as the result we
obtain the term xa1+���+an . There are several terms of this form, and we collect
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them together. Therefore, the number of various representations (30) is equal to
the coe�cient of xk in the polynomial F (x), and our problem reduces to �nding
which term has the greatest coe�cient. Since F (x) = xnG(x), where G(x) =
(1 + x+ � � �+ x5)n, the coe�cient of xk in F (x) is equal to the coe�cient of xk�n

in G(x), and it is enough to �nd the term with the greatest coe�cient in G(x).

Polynomial G(x) has two properties from which the answer to the above ques-
tion follows.

An arbitrary polynomial f(x) = c0+ c1x+ � � �+ cnx
n is said to be reciprocal if

its terms, equidistant from its ends, have equal coe�cients, i.e. if ck = cn�k. If the
coe�cients ci are represented by points with coordinates (i; ci) in the plane, this
property means that these points will be arranged symmetrically with respect to
the middle: the line x = n=2. On Fig. 7a) we represent the case when n is even,
and on Fig. 7b) the case when n is odd.

a) b)
Fig. 7

The polynomial xnf
�1
x

�
has the same coe�cients as the polynomial f(x),

but in the reversed order. Indeed, if f(x) = a0 + a1x + � � � + anx
n, then

f
�1
x

�
= a0+a1

1

x
+� � �+an

1

xn
and xnf

�1
x

�
= a0x

n+a1x
n�1+� � �+an. Therefore,

the fact that f(x) is a reciprocal polynomial, means that xnf
� 1
x

�
= f(x). This

implies that the product of two reciprocal polynomials is also reciprocal. Indeed, if

f(x) and g(x) are reciprocal polynomials of degree n and m, then xnf
�1
x

�
= f(x),

xmg
� 1
x

�
= g(x). Multiplying these equalities we get xnf

�1
x

�
xmg

�1
x

�
= f(x)g(x),

i.e. xn+mf
�1
x

�
g
�1
x

�
= f(x)g(x), which means that the polynomial f(x)g(x) is re-

ciprocal. By induction we conclude that the product of any number of reciprocal
polynomials is also reciprocal. Finally, since the polynomial 1 + x + � � � + x5 is
reciprocal, so is the polynomial G(x) = (1 + x+ � � �+ x5)n.

The polynomial f(x) = c0 + c1x + � � � + cnx
n is called unimodal if for some

m 6 n the following inequalities hold: c0 6 c1 6 . . . 6 cm > cm+1 > . . . > cn. That
is to say, the coe�cients ci at �rst do not decrease, and from a certain moment
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they do not increase. If they are again represented by the points (i; ci) then they
will have \one hump" (Fig. 8).

Fig. 8

For example, polynomial (1 + x)n is reciprocal: this follows from the property
Cm
n = Cn�m

n of binomial coe�cients (see Section 3 of Chapter II). It is also uni-
modal: this follows from the property of binomial coe�cients proved in Section 3
of Chapter II.

It can be proved that if the polynomials f(x) and g(x) have nonnegative co-
e�cients, if they are reciprocal and unimodal, then f(x)g(x) is unimodal. The
proof is quite elementary, but a little involved. From this theorem it follows that
the polynomial G(x) is unimodal. However, you can easily prove yourself this spe-
cial case (Problem 3). Now, it is easy to determine the term with the greatest
coe�cient in a reciprocal unimodal polynomial. Namely, if the term ckx

k has the
greatest coe�cient, since the polynomial is reciprocal we have cn�k = ck and there
is the symmetric term ckx

n�k. We can take that k 6 n=2 and n � k > n=2.
Since the polynomial is unimodal, none of the terms cix

i where k 6 i 6 n� k can
have smaller coe�cient, for otherwise there would be two \humps" on the graph.
Hence, the greatest coe�cient must be the middle coe�cient cn=2 if n is even or
two \equally middle" coe�cients cn�1

2

= cn+1
2

if n is odd (though there may be

other coe�cients equal to them). In particular, we see that if n is even, then in

G(x) the term x
5n
2 has the greatest coe�cient, and if n is odd then there are two

terms of G(x), x
5n�1
2 and x

5n+1
2 with equal greatest coe�cients.

In the polynomial F (x) this term is multiplied by xn and has degree
5n

2
+ n =

7n

2
if n is even. If n is odd, there are two terms with equal coe�cients with degree

5n� 1

2
+ n =

7n� 1

2
and

5n+ 1

2
+ n =

7n+ 1

2
. Therefore, if dice is thrown n

times the most probable score is
7n

2
if n is even, and if n is odd there are two scores

which are both most probable:
7n� 1

2
and

7n+ 1

2
.

Consider one more problem of the same type. A certain quantity of m physical
particles are registered by n instruments, so that each particle can be registered
by any instrument, and the registration of a particle by all instruments are taken
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to be equally probable. What is the probability that all instruments register at
least one particle? An elementary event here is the registration of a particle by an
instrument. Let the instruments be denoted by the elements a of the set M . We
have n(M) = n. Numerate the particles by 1, 2, . . . , m. Then an elementary event
is the sequence (a1; . . . ; am) where ai 2M and this sequence indicates that the i-th
particle is registered by the instrument ai. In other words, the set of elementary
events is Mm in the sense of the de�nition given in Section 1. The condition of
the problem states that all elementary events have equal probabilities. Since by
Theorem 1, n(Mm) = nm, the probability of each elementary event is 1=nm. We
are interested in the subset N �Mm which contains the sequences (a1; . . . ; am) in
which all the elements of M appear. For example, if M = fa; b; cg, m = 4, then
(a; b; c; a) 2 N , but the sequence (a; b; a; b) does not belong to N , since it does not
contain c. Our problem is to �nd n(N).

Denote by Ma the subset of Mm which consists of the sequences (a1; . . . ; am)

in which none of the ai's is equal to a. Then clearly N =
S
Ma, i.e. N is the

complement of the union of all setsMa for all a 2M . Therefore, n(N) = n(Mm)�
n(
S
Ma) and the values of the numbers n(

S
Ma) are given by formula (21). Let us

�nd the number n(Ma1 \Ma2 \ � � � \Mar), where a1, . . . , ar are di�erent elements
of the set M . Hence, we are dealing with the sequences (c1; . . . ; cm) in which none
of the ci's equals any of a1, . . . , ar. In other words, ci are arbitrary elements of the

set fa1; . . . ; arg, where fa1; . . . ; arg is the complement of fa1; . . . ; arg with respect

to M . The set of all such sequences is the set (fa1; . . . ; arg)m and the number of

elements of this set is, by Theorem 1, (n(fa1; . . . ; arg))m. Since n(fa1; . . . ; arg) = r,

n(M) = n, we have n(fa1; . . . ; arg) = n�r and n(Ma1\Ma2\� � �\Mar ) = (n�r)m.
Hence, each term n(Mi1 \Mi2 \ � � � \Mir) in formula (21) in our case is (n� r)m.
The number of terms for a given r is equal to Cr

n, as we know. Therefore, formula
(21) gives

n(
[

Ma) = C1
n(n� 1)m � C2

n(n� 2)m + � � �+ (�1)nCn�1
n � 1m:

For N =
S
Ma we obtain

n(N) = n(Mm)� n(
[

Ma) = nm � C1
n(n� 1)m + � � �+ (�1)n�1Cn�1

n � 1m:
The requested probability is

(31)
n(N)

nm
= 1� C1

n

�
n� 1

n

�m
+ � � �+ (�1)n�1Cn�1

n

�
1

n

�m
:

In all the previous examples elementary events had equal probabilities 1=n,
where n is the number of elementary events. As a result, the evaluation of prob-
abilities of other events reduced to the counting of the number of subsets|i.e.
to a problem of combinatorics. We shall now consider examples which are more
characteristic for the theory of probability.

Let (M;p) and (N; q) be two probability schemes. Suppose that they are de-
�ned by many times repeated experiments|di�erent experiment for each scheme.
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The experiment used to de�ne the probability scheme (M;p) will be called experi-
ment A, and the one used for the scheme (N; q) will be called experiment B. Con-
sider now the experiment consisting of consecutive experiments A and B, and let
us try to use it to de�ne a new probability scheme. A similar situation was encoun-
tered in connection with consecutive throwing dice (see Table 3). Let n(M) = m,
M = fa1; . . . ; amg, p(ai) = pi, n(N) = n, N = fb1; . . . ; bng, p(bi) = qi. Then the
new experiment de�nes the following elementary events: in the �rst experiment we
have the event a 2 M and in the second b 2 N . Hence, new elementary events
correspond to the pairs (a; b), where a 2 M , b 2 N , or to elements of the set
X = M � N . What probabilities can be assigned to these elements? They can
be reasonably de�ned if we introduce one more supposition. We shall take that
the experiments A and B, used to de�ne probability schemes (M;p) and (N; q) are
independent. This means that the result of the second experiment (i.e. B) does
not depend on the outcome of the �rst experiment (i.e. A). Using this condition
it is possible to de�ne the probabilities p(a; b) of the events (a; b). Our reasoning
will closely follow the one applied in connection with throwing dice two times (see
Table 3).

As in that case (and as we did in Section 1), we represent the elements of the
set in the form of the rectangular table

Table. 5

The event that the event ai takes place in the �rst experiment has, by condition,
probability pi. It is not an elementary event, since it consists of elementary events
(ai; b1), (ai; b2), . . . , (ai; bn), displayed in the i-th column of Table 5. As we agreed
the probabilities of these events should not depend on the experiment A, but should
be like the probabilities of b1, . . . , bn in the scheme (N; q). But here we arrive at a
contradiction: the sum of probabilities of the events (ai; b1), (ai; b2), . . . , (ai; bn) is
equal to pi, and the sum of the probabilities of the events b1, . . . , bn is 1. In other
words, the i-th column is itself a probability scheme, which must be \the same"
as the scheme (N; q). But in this scheme the condition (29) is not ful�lled. We
therefore have to make the following \correction": we divide the probabilities of
all elementary events by the probability of the events pi. We therefore obtain the

probability scheme with probabilities
p((ai; bj))

pi
. Since it should coincide with the
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probability scheme (N; q), we arrive at the equality
p((ai; bj))

pi
= qj , i.e. p((ai; bj)) =

piqj . Hence, we have, by de�nition

(32) p(ai; bj) = piqj :

In this way we obtain the new probability scheme: the sum of probabilities of
elementary events which appear in the i-th column of Table 5 is equal to piq1 +
� � �+piqn = pi(q1+ � � �+qn) = pi, and the sum of the probabilities of all elementary
events is p1 + � � �+ pm = 1. Hence, the condition (29) is ful�lled.

This new probability scheme (X; r) is called the product of probability schemes
(M;p) and (N; q). We can write it as follows: if the given schemes are (M;p) and
(N; q), then X = M � N and p((a; b)) = p(a)q(b). The product of probability
schemes corresponds to the intuitive idea of the probability scheme de�ned by two
consecutive experiments, independent from each other. The above reasoning was
necessary to explain the motivation for the given de�nition. Formally, the de�nition
is given by the simple equality (32).

Now for several probability schemes (M1; p1), . . . , (Mr; pr) we de�ne the prod-
uct by induction

(33) M1 � � � � �Mr = (M1 � � � � �Mr�1)�Mr;

where M1 � � � � �Mr�1 is taken to be known, and the product of two schemes
M1 � � � � �Mr�1 and Mr is de�ned above. Let us decipher this de�nition. As a
set, M1 � � � � �Mr is the product of sets M1, M2, . . . , Mr, de�ned in Section 1.
Hence, it consists of arbitrary sequences (a1; . . . ; ar) where ai can be any element
of Mi. The probability of the elementary event (a1; . . . ; ar) is

(34) p((a1; . . . ; ar)) = p1(a1)p2(a2) � � � pr(ar):
This can also be veri�ed by induction on r. Indeed, according to de�nitions (33)

and (32), we have p((a1; . . . ; ar)) = p(((a1; . . . ; ar�1); ar)) = p((a1; . . . ; ar�1))p(ar)
and by induction hypothesis p((a1; . . . ; ar�1)) = p1(a1)p2(a2) � � � pr�1(ar�1) and
this implies (34). This equality can be described as follows: in the sequence
(a1; . . . ; ar) replace each element by its probability and multiply the obtained num-
bers. This is the probability of the sequence.

We now apply the general construction to the special case of the probability
scheme In where i = fa; bg is the probability scheme consisting of two elementary
events with probabilities p(a) = p, p(b) = q, with necessary conditions p > 0,
q > 0, p + q = 1. We have already de�ned In as a set in Section 1. It consists
of all possible \words" of the type (a; a; b; b; b; a; b; . . . ) in the \alphabet" of two
letters: a and b. Hence, they will be the elementary events. Their probabilities are
de�ned, according to the above reasoning, as follows: if the letter a appears in the
\word" k times and the letter b appears n�k times, then its probability is pkqn�k.
Such a probability scheme is called Bernoulli's scheme. As we saw, it gives the
probabilities of the events a and b in n times repeated experiment, when in each
one the event a has probability p and the event b has probability q. Besides, we
suppose that the outcome of an experiment does not a�ect the outcomes of later
experiments.
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For example, for n = 3 we have 8 elementary events (a; a; a), (a; a; b), (a; b; a),
(a; b; b), (b; a; a), (b; a; b), (b; b; a), (b; b; b). Their respective probabilities are p3,
p2q, p2q, pq2, p2q, pq2, pq2, q3. Notice that here the letter p does not denote
the probability, but a �xed number, where 0 < p < 1. The probability of the
elementary event which corresponds to the sequence having k letters a and n � k
letters b is pkqn�k. These notations are too standard to be changed, but we have
to pay attention to what the letter p denotes.

Let us �nd the probability of the event Ak which consists of a series of n
experiments in which the event a occurs k times. These events consist of elementary
events given by \words" (b; a; b; b; b; a; a; . . . ) in which a appears in exactly k places.
The remaining n � k places are occupied by b. By the general formula, such an
elementary event has probability pkqn�k. Now how many elementary events make
up the event Ak? This is the number of ways in which k elements can be chosen
among n indices 1, 2, . . . , n, i.e. the number of subsets with k elements of a set of
n elements. According to Theorem 3, this is the binomial coe�cient Ck

n. Therefore
for the probability of the event Ak we obtain

(35) p(Ak) = Ck
np

kqn�k =
n!

k! (n� k)!
pkqn�k:

Using this we can �nd the most probable number of occurrences of the event a.
It is the value of k for which the expression in (35) has the greatest value. Write
down the expressions (35):

1 � qn; npqn�1;
n(n� 1)

2
p2qn�2; . . . ; 1 � pn

and consider the ratio of two neighbouring terms:

p(Ak+1)

p(Ak)
=

n!

(k + 1)! (n� k � 1)!
pk+1qn�k�1

�
n!

k! (n� k)!
pkqn�k =

(n� k)p

(k + 1)q

(after the cancellations, which you can easily check).

If this ratio is greater than 1, then the (k+1)-st number is greater than the k-th;
if it is 1, then the two numbers are equal, and if it is less than 1, then the (k+1)-st

number is less than the k-th. The ratio will be greater than 1 if
(n� k)p

(k + 1)q
> 1, i.e.

(n�k)p > (k+1)q or np > k(p+q)+q. Having in mind that p+q = 1, we can write
this inequality in the form np > k+1� p, i.e. (n+1)p� 1 > k. If k > (n+1)p� 1,
then the ratio p(Ak+1)=p(Ak) is smaller than 1. Finally, if k = (n + 1)p� 1, then
p(Ak+1) = p(Ak). Therefore, as k takes values less than (n + 1)p� 1, as we move
from the k-th number to the (k+1)-st, we obtain greater numbers. We distinguish
between two cases.

a) The number (n+1)p�1 is not an integer. Then the greatest number p(Am)
is obtained for the greatest integer m which does not exceed (n + 1)p. Moreover,
m 6= (n+1)p� 1 and for greater values of k such number p(Ak) is smaller than the
preceding one. Therefore, there is one most probable number of occurrences of the
event a|that is the greatest integer m which does not exceed (n+ 1)p� 1.
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b) The number (n+1)p� 1 is an integer. Then the number p(Ak) increases if
k < m = (n+ 1)p� 1. Further, p(Am+1) = p(Am) and for k > m+ 1 the numbers
p(Ak) decrease. Hence, the numbers p(Ak) increase until they reach a maximum,
then we have one or two numbers equal to this maximum, and then they decrease.
In other words, they have \one hump" as in Fig. 8. This means that the polynomial

generated by them, namely qn+npn�1qt+
n(n� 1)

2
pn�2q2t2+� � �+pntn is unimodal.

Using the binomial formula, we can write this polynomial in the form (q + pt)n.
How can one detect that it is unimodal when it is written in such a simple form?
I do not know that such a method exists.

In the simplest case, when p = q =
1

2
, we obtain that if (n + 1)

1

2
� 1 is not

an integer, i.e. if n is even, then (n + 1)
1

2
� 1 =

n

2
� 1

2
and m =

n

2
. Therefore,

there is one most probable number of occurrences of the event a|this is m =
n

2
.

This means that it is most likely that both events a and b occur n times. It is
not surprising, since such an answer is suggested by symmetry. If n is odd, then

m = (n+1)
1

2
�1 = n� 1

2
is an integer, and there are two most probable occurrences

of the event a:
n� 1

2
(in which case b occurs

n+ 1

2
times) and

n+ 1

2
(in which

case b occurs
n� 1

2
times) and this is also quite natural. But for all other values

of p we obtain the answer which would be di�cult to predict. Here is a problem
from a textbook on probability.

After many years of observations it was concluded that the probability that it
will rain on the July 1st is 4=17. Find the most probable number of rainy July 1st's
in the next 50 years. We have n = 50, p = 4=17, m = (n+1)p�1 = 11. Hence, the
most probable numbers of rainy July 1st's are 11 and 12 (with equal probabilities).

The values of probabilities Ck
np

k(1� p)n�k, k = 0; 1; . . . ; n have many impor-
tant properties. On Fig. 9, taken from a course of the theory of probability, these
values are represented for the cases p = 1=3, n = 4, 9, 16, 36 and 100.

You see that as n increases, they are not arranged chaotically, but rather they
approach a smooth curve. In order to see this better, modify each �gure as follows:
move the greatest number to the y-axis, decrease the distance between the points
on the x-axis (this change of scale was done in Fig. 9) and �nally decrease all the
numbers proportionally with respect to the greatest number. After this, it turns
out that as n increases our points more and more closely approach a certain curve|

namely, the graph of the function y =
1p
2�

cx
2

, where � is the ordinary ratio of

the perimeter and the diameter of a circle and c (for those who know that e is the
basis of natural logarithms) is equal to 1=

p
e.

This assertion, called Laplace's theorem, gives, in essence, a more subtle prop-
erty of binomial coe�cients. But in order to prove this theorem we would have
to explain the phrase \approaches more and more closely", i.e. we would have to
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Fig. 9

introduce the concept of the limit, and we shall not go into this.

Problems

1. In an arbitrary probability scheme (M;p) consider k events: M1 �M , . . . ,
Mk �M . Express the probability p(M1 [M2 [ � � � [Mk) of the event M1 [M2 [
� � �[Mk in terms of the probabilities p(Mi1\� � �\Mir ) of the eventsMi1\� � �\Mir .

2. Prove that if the polynomial f(x) is reciprocal and unimodal, then the
polynomial f(x)(1 + x) also has these two properties.

3. Prove that if the polynomial f(x) is reciprocal and unimodal, then so is
the polynomial f(x)(1 + x+ x2 + x3 + x4 + x5). Deduce then that the polynomial
(1 + x+ x2 + x3 + x4 + x5)n is unimodal.

4. Verify that the answer to the problem of m particles and n instruments is
n!

nn
if n = m. What relation between binomial coe�cients is obtained if the formula

(32) is applied in this case?

5. There are n identical balls in a bag, m white and n �m black balls. We
draw out at random r balls. What is the probability that we draw k white and
r � k black balls? Hint: \at random" means that the probabilities of any draws of
r balls are equal.

6. Prove that if the probability p in Bernoulli's scheme is an irrational number,
then there exists exactly one most probable number of occurrences of the event a.

7. The ratio of the most probable number of occurrences of an event a in
Bernoulli's scheme and the number n is called themost probable section. Prove that,
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as the number n increases inde�nitely, then the most probable section approaches
more and more closely the probability p of the event a.

APPENDIX

Inequalities of Chebyshev

We shall again consider a question regarding Bernoulli's scheme which was
treated at the end of Section 4. As we said there, Bernoulli's scheme practically
arises in the situation when we have several times repeated experiment which can
have only two outcomes. For example, suppose that we have an asymmetric (non-
homogeneous) coin. The question we pose is: if this coin is spun onto the ground
will the top face be \head" or \tail"? In order to arrive at an answer, we make
a large series of spins|say, 1000|and if \head" appears k times, we say that the
probability of its appearance is p = k=1000. After that we can apply our de�nition
of Bernoulli's scheme (In; p) and we can �nd other probabilities within that scheme,
e.g. formula (35). But is our abstraction satisfactory? Does it represent su�ciently
accurately the reality with which we started: a long series of independent spins?
In our abstraction|Bernoulli's scheme|we cannot ask: how many times will the
event a occur in the scheme In? Since we only operate with the language of proba-
bility, we can only pose questions regarding certain probabilities. But the concept
of probability is connected with reality by our conviction that an event which has a
very small probability practically does not occur. In other words, if the probability
of a certain event is su�ciently small, we can in practice proceed as if we knew
that it will not occur. Of course, the sense of the words \su�ciently small" has to
be made precise in each concrete situation. According to this, we can �x a certain
number " > 0 and consider the following event A": in our Bernoulli's scheme (In; p)

the event a occurred k times where

����kn � p

���� > ". That is to say, the occurrence of

the event A" means that the \frequency" k=n of occurrences of the event a di�ers
from the supposed probability by more than ". It is natural to expect that for a
�xed " the probability p(A") of the event A" will become smaller and smaller as n
increases inde�nitely. It would mean that the di�erence between the \frequency"
k=n and the probability p for large n can be ignored. Jacob Bernoulli considered
this problem already at the beginning of the 18th century, and he realized that
�nding the probability p(A") is a purely mathematical problem connected with the
properties of binomial coe�cients. He proved that the probability p(A") indeed
becomes su�ciently small as n increases. In the 19th century Chebyshev proved
not only this particular Bernoulli's statement, but he also found a simple explicit
inequality for the probability p(A"). We shall expose here his theorem. This is the
�rst time in our text that we come across the work of a Russian mathematician.
P. L. Chebyshev lived in the period from 1821 till 1894, and was the founder of the
Petersburg mathematical school.

Let us write now in the form of an algebraic formula the expression we are
investigating. In Section 4 we considered Bernoulli's scheme (In; p) and we found
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the probability of the event Ak which takes place if in the series of experiments the
event a, for which p(a) = p occurs k times (formula (35)):

(1) p(Ak) = Ck
np

kqn�k:

We now have a given number " and we are interested in the event A" which takes

place if an event Ak with index k occurs where k satis�es the inequality

����kn � p

���� > ".

We want to �nd the probability p(A") of the event A". Recall that an event (in
particular, Ak or A") is a subset of the set In. It is clear that the subsets Ak

with di�erent indices do not intersect and that A" is the union of all subsets Ak

for those k's for which

����kn � p

���� > ". Therefore, the probability p(A") is the sum

of probabilities p(Ak) with such indices k. Since p(Ak) is given by (1), this means
that we have obtained an explicit, although a bit complicated, expression for the
probability p(A") of the event A". It is more convenient to write the condition����kn � p

���� > ", which de�nes our indices k in the equivalent form

(2) jk � npj > "n:

In this way we arrive at the sum
(3)

S" � the sum of all expressions Ck
np

kqn�k for all k, 1 6 k 6 n, satisfying (2):

We see that the probability p(A") of the event A" is equal to S".

Now we can formulate Chebyshev's theorem.

CHEBYSHEV'S THEOREM. For the probability p(A") of the event A" that the
number of occurrences of k events a in Bernoulli's scheme (In; p), satisfying the

condition

����kn � p

���� > ", the following inequality holds

(4) p(A") <
pq

"2n
:

The inequality (4) is sometimes written in the form

p

�����kn � p

���� > "

�
<

pq

"2n
:

It is clear that for given p (q = 1�p) and ", the right-hand side of the inequality
(4) decreases as n increases, which is what we wanted to prove. This particular
result is called Bernoulli's theorem.

As we saw, the probability p(A") is equal to the S", de�ned by (3), and so
inequality (4) is equivalent to the inequality

S" <
pq

"2n
:

The proof of Chebyshev's theorem is based upon explicit evaluation of certain
sums which we formulate in the form of a lemma.
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LEMMA For the probabilities p(Ak), de�ned by the relation (1), we have

p(A0) + p(A1) + p(A2) + � � �+ p(An) = 1(5)

p(A1) + 2p(A2) + 3p(A3) + � � �+ np(An) = np(6)

p(A1) + 22p(A2) + 32p(A3) + � � �+ n2p(An) = n2p2 + npq:(7)

Proof. Denote the left-hand sides of the equalities (5), (6) and (7) by �0, �1 and
�2, respectively. We have already seen in Section 4 that, according to the binomial
formula, the probabilities p(Ak) are the coe�cients of the polynomial (pt + q)n.
That is to say, if we put

(8) p(A0) + p(A1)t+ � � �+ p(An)t
n = f(t);

then

(9) f(t) = (pt+ q)n:

Setting t = 1 into (8) and (9), and using the fact that p+ q = 1, we obtain �0 = 1,
i.e. equality (5).

Consider the derivative f 0(t) of the polynomial f(t). From the formula (9),
using the rule (19) of Section 2 of Chapter II we obtain that

(10) f 0(t) = np(pt+ q)n�1

since (pt + q)0 = p, by formula (15) of Chapter II. On the other hand, applying
formula (15) of Chapter II for f 0(t) to the polynomial f(t) given by (8), we obtain

(11) f 0(t) = p(A1) + 2p(A2)t+ 3p(A3)t
2 + � � �+ np(An)t

n�1:

Formulas (10) and (11) together lead to:

(12) p(A1) + 2p(A2)t+ 3p(A3)t
2 + � � �+ np(An)t

n�1 = np(pt+ q)n�1:

Set t = 1 into both sides of (12). Since p+ q = 1, we obtain the equality (6).

Now multiply both sides of (12) by t. We �nd

(13) p(A1)t+ 2p(A2)t
2 + 3p(A3)t

3 + � � �+ np(An)t
n = np(pt+ q)n�1t:

Let us �nd the derivatives of both sides of (13). The derivative of the left-hand
side is found by means of formula (15) of Chapter II. We obtain the polynomial

p(A1) + 22p(A2)t+ � � �+ n2p(An)t
n�1:

The derivative of the right-hand side can be evaluated by the rule d) for the deriva-
tive of a product from Section 2, Chapter II. Write the right-hand side of (13) in the
form of a product: (np(tp+q)n�1) � t. By rule d) the derivative of this expression is
(np(tp+q)n�1)0 �t+(np(tp+q)n�1)�t0. By formula (15) of Chapter II, we have t0 = 1;
by rule c) of Section 2 of Chapter II we have (np(tp + q)n�1)0 = np((tp + q)n�1)0

and by formula (19) of Chapter II we have ((tp+q)n�1)0 = (n�1)(tp+q)n�2p since
(tp+ q)0 = p, by formula (15) of Chapter II. Therefore, equating the derivatives of
the left and right-hand sides of (13) we obtain

(14) p(A1)+22p(A2)t+ � � �+n2p(An)t
n�1 = np(pt+q)n�1+n(n�1)p2(tp+q)n�2:
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Set t = 1 into (14). On the left we get �2. On the right (in view of p+ q = 1) we
get np+ n(n� 1)p2 = n2p2 + np(1� p) = n2p2 + npq (since 1� p = q).

We can now turn to the proof of Chebyshev's theorem. Chebyshev's device
was to write inequality (2), which de�nes the necessary indices, in the form����k � np

"n

���� > 1;

i.e. �
k � np

"n

�2
> 1;

and then to multiply each term p(Ak) in the sum S" by
�k � pn

"n

�2
, which is greater

than 1, and therefore increases the sum. After that he considered the total sum

S" of all terms
�k � pn

"n

�2
p(Ak), k = 0; 1; . . . ; n, and not only those for indices k

which satisfy (2). It is clear that the sum S" di�ers from the sum S" by a certain
number of positive terms, and so it must be greater than S".

Hence, S" < S". Now, by quite elementary transformations (using the Lemma)
we can evaluate the sum S" exactly, and thus we obtain the wanted inequality for
the sum S".

Therefore, we have to �nd the sum S" of all terms
�k � pn

"n

�2
p(Ak) for k =

0; 1; . . . ; n. Their common denominator ("n)2 can be taken out and the expressions
(k � pn)2 can be expanded: (k � pn)2 = k2 � 2npk+ p2n2. Every term in the sum
S" (after ("n)

2 has been taken out) gives three terms. The sum of the �rst terms
is �2 on the left of (7). The sum of the second terms, after the common factor
�2pn has been taken out, is the sum �1 de�ned by (6). Finally, the sum of the
third terms, after p2n2 has been taken out is �0, de�ned by (5). Adding up all the
obtained equalities, we �nd the expression for the sum S":

S" =
1

"2n2
(�2 � 2pn�1 + p2n2�0):

Substituting the values obtained for �2, �1 and �0 in the Lemma, we �nd

(15) S" =
1

"2n2
(n2p2 + npq � 2p2n2 + p2n2) =

pq

"2n
:

As we saw, S" < S" and therefore S" <
pq

"2n
and the proof of Chebyshev's inequality

is �nished.

Let us briey analyse the method which lies in the essence of this proof. The
sum S" which we want to estimate has a perfectly simple form. The di�culty lies
in the fact that the sum is formed by terms which are chosen according to a rather
strange criterion (the indices k have to satisfy (2)). The �rst thing that comes to
mind is to ignore these conditions and to take the sum of all terms. This sum is
easily evaluated: according to the Lemma, it is equal to 1. But it is too large and
does not lead to the equality we want. Chebyshev's device was to introduce the
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additional factor
�k � np

"n

�2
and only after that to consider the sum of all terms,

ignoring the restriction (2). In this process the terms which appear in the sum S"
are increased, but those which do not are decreased so much that the total sum
S" becomes su�ciently small (namely, for the terms which do not appear in S" we

have
�k � np

"n

�2
< 1).

We have met here with a phenomenon which is very often present in mathemat-
ics. Namely, important and interesting inequalities usually follow from an identity
after an obvious estimate. This obvious estimate in our case is the inequality
S" 6 S" and the identity is the relation (15) which gives the explicit expression for
the sum S". This is how inequalities of fundamental importance in mathematics
are proved. But sometimes they are proved in a di�erent way|this might indicate
that there is an underlying identity which we do not yet know.

Return once more to the formulation of Chebyshev's theorem. As we already
explained, we are considering the event that in Bernoulli's scheme In the event a
occurs k times, where either k > np + n", or k < np � n"; in other words, we
do not consider the event that in Bernoulli's scheme the event a occurs k times
where np� n" 6 k 6 np+ n". We found that the �rst event has small probability
(for large n), not exceeding pq="2n. This means that the second event has greater
probability, not less than 1 � (pq="2n). For example, consider a series of large
number of repetitions of one experiment under constant conditions. Suppose that
one experiment can have only two outcomes|a and b, where the probability of a
is p. This situation (if the number of experiments is n) is described, as we saw, by
Bernoulli's scheme (In; p). The experiment may be, for instance testing a large set
of objects (animals, technical details, etc) for a given property, knowing that p-th
part of the set has this property. The scheme In describes the possible results of
the testing. According to Chebyshev's theorem, in the series of n experiments the
number of occurrences of the outcome a will be between np� n" and np+ n" with

a probability greater than 1� p(1� p)

"2n
. Here, " can be any number which we can

choose as we like. For example, let p =
3

4
. Choosing " =

1

100
, we see that in the

series of n experiments the number k of occurrences of the event a will satisfy the

inequality
3

4
n� n

100
6 k 6

3

4
n+

n

100
with the probability not less than

1�
3

4
� 1
4�

1

100

�2
n
:

Since
3

42
<

2

10
, this probability is not less than

1�
2

10�
1

100

�2
n
= 1� 2000

n
:

For n = 200 000, this probability will be not less than 0,99. The number of oc-
currences of the event a after 200 000 experiments which have this large proba-
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bility will be between 148000 and 152 000 (since
3

4
n = 150 000, n � 1

100
= 2000,

np� n" = 148 000, np+ n" = 152 000).

Conversely, using Chebyshev's theorem we can estimate the number of experi-
ments to be made in order to obtain the probability p accurately enough. Suppose
that we want to determine it with accuracy up to 1=10 and that the probability it
is equal to the obtained number is not less than 0,99. According to Chebyshev's
theorem we have to put " = 1=10 and to use the inequality

pq�
1

10

�2 � n < 0;01:

Notice that q = 1�p, and for any p such that 0 6 p 6 1, we have pq = p(1�p) 6 1=4.
This follows from the fact that the geometric mean is not greater than the arithmetic
mean of the numbers p, q, which is 1=2. Therefore, it is enough that n should satisfy
the inequality

1

4�
1

10

�2 � n < 0;01

which implies n > 2500.

Problems

1. In the set of some objects, 95% of them have a certain property. Prove that
among 200000 objects, the number of those which have this property is between
189000 and 191000 with probability not less than 0,99.

2. Modify Problem 1 so that the portion of objects which have a certain
property is not known. What is the probability that after testing 100 objects we
can determine it with accuracy up to 0,1?

3. For any positive integer r 6 n �nd the sum of all terms

k(k � 1) � � � (k � r + 1)p(Ak)

for k = 1; . . . ; n.

4. For r 6 4 evaluate the sums �r consisting of terms krp(Ak) for all k =
0; 1; 2; 3; 4. Do this in two di�erent ways: a) by the reasoning of the proof of the
Lemma, and b) by expressing the sums �r in terms of sums evaluated in Problem 3
for r = 1; 2; 3; 4.

5. Try to improve the inequality (4) in Chebyshev's theorem, applying the

factor
�k � np

n"

�4
instead of

�k � np

n"

�2
. The improvement will be that n2 will

appear in the denominator of the right-hand side of the inequality instead of n.

I. R. Shafarevich,

Russian Academy of Sciences,

Moscow, Russia
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CHAPTER IV. PRIMES

1. In�nity of the number of primes

In this chapter we return to the question which we have already dealt with in
Chapter I. It was proved there that each natural number can be uniquely repre-
sented as a product of primes. Therefore, when the multiplication is concerned, the
primes are the simplest elements and all the natural numbers can be obtained by
multiplying primes, similarly to the fact that they can be obtained by the operation
of addition starting from the number 1. From this point of view, the interest for
the set of all primes can be easily understood. There are four primes among the
�rst ten natural numbers: 2, 3, 5, 7. Further primes can be found by dividing each
of the consequent numbers by previously found primes, in order to decide whether
it is a prime itself. In this way we �nd the following 25 primes among the �rst one
hundred natural numbers:

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71; 73; 79; 83; 89; 97:

How far does this sequence continue? The question arose already in the antique
times. The answer was given by Euclid:

THEOREM 1. The number of primes is in�nite.

We give several proofs of this theorem.

First proof|the one contained in Euclid's \Elements". Suppose we have found
n primes: p1, p2, . . . , pn. Consider the number N = p1p2 � � � pn + 1. As we saw

This paper is an English translation of: I. R. Xafareviq, Izbranye glavy algebry. Glava
IV. Prostye qisla, Matematiqeskoe obrazovanie, N 1(4), �nv.{mar. 1998, Moskva, str. 2{21.
In the opinion of the editors, the paper merits wider circulation and we are thankful to the author
for his kind permission to let us make this version.
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in x2 of Chapter I, each number has at least one prime divisor. In particular, N
has a prime divisor. But none of the numbers p1, p2, . . . , pn can divide N . To
see this, let pi be a divisor of N . Then N � p1 � � � pn must be divisible by pi, but
since N � p1 � � � pn = 1, this is impossible. It follows that this prime divisor must
be di�erent from each pi, i = 1; . . . ; n, which means that after each n primes there
must be at least one additional prime. This proves the theorem.

Second proof. According to the theorem of the section \Set algebra" of Chap-
ter III, the number of numbers which are smaller than the given number N and
relatively prime with it, is given by the formula

(1) N

�
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pn

�
;

where p1, . . . , pn are all prime divisors of N . We shall prove the theorem by
contradiction. Suppose that the number of primes is �nite and that p1, . . . , pn
are all of them. Set N = p1 � � � pn. Substituting in formula (1) we obtain for each
factor pi(1� 1

pi
) the expression pi�1, and for the whole product (1) the expression

(p1� 1)(p2� 1) � � � (pn� 1). As we know that there exist primes greater than 2 (for
example, 3), the number obtained is greater than 1. Hence, there exists a number
a, smaller than N , relatively prime with N and di�erent from 1. But a has at least
one prime divisor which must be contained among the numbers p1, . . . , pn, and
so a cannot be relatively prime with N . We obtained a contradiction which proves
the theorem.

The in�nite sequence of primes is, on the other hand, very sparsely distribut-
ed among natural numbers. For example, there are arbitrary big \gaps" in this
sequence, i.e., one can �nd (successively further away) any given number of consec-
utive numbers which are not prime. For example, n numbers (n+1)!+2, (n+1)!+3,
. . . , (n+ 1)! + n+ 1 are obviously not primes|the �rst one is divisible by 2, the
second by 3, the last by n+ 1.

For some time mathematicians have searched for a formula expressing primes.
For example, Euler found an interesting polynomial x2 + x + 41, which, for 40
values of x|from 0 to 39|obtains prime values. However, it is obvious that for
x = 40 its value is a nonprime number 412. It is not hard to conclude that there
cannot exist a polynomial f(x) which takes prime values for all natural values
x = 0; 1; 2; . . . (not even speaking about the possibility that its values are all of
the primes). We shall show this on an example of a polynomial of second degree
ax2+ bx+ c with integer coe�cients a, b, c. Suppose that for x = 0 the polynomial
has a prime value c. Then for each x = kc its value ak2c2 + bkc + c is divisible
by c. This value can be equal to c for at most one additional value of k (besides
k = 0), which can be easily checked. Moreover, there does not exist a polynomial
f(x) = ax2+bx+c having prime values for each integer x, starting from some limit.
Indeed, suppose that the values of the polynomial f(x) are prime for each x > m.
Set x = y+m, f(y+m) = g(y); then all the values of the polynomial g(y) are prime
for all integers y > 0, by the assumption, and its coe�cients are also integers, since
g(y) = a(y +m)2 + b(y+m) + c. The same reasoning also applies to a polynomial
of an arbitrary degree n: f(x) = a0+a1x+ � � �+anx

n. If all of its values for integer



Selected chapters from algebra 65

x > 0 are prime, it means that f(0) = a0 = p is prime, too. Then for each integer
k the values f(kp) = p+a1kp+ � � �+an(kp)

n are divisible by p. They can be equal
to p only if p + a1kp + � � � + an(kp)

n = p, i.e., a1 + a2kp + � � � + an(kp)
n�1 = 0,

and the last equation in k is of the degree n � 1, and according to Theorem 3 of
Chapter II it has at most n� 1 roots. For all other values of k the number f(kp)
is divisible by p and di�erent from p, i.e., it is not a prime.

If we suppose that the values of the polynomial f(x) are prime only for integer
values of x > m, for a certain number m, then we can set x = y+m and f(y+m) =
g(y). The polynomial g(y) = a0 + a1(y + m) + � � � + an(y + m)n is obtained by
expanding all the parentheses by the binomial formula and reducing similar terms.
Therefore its coe�cients are again integers, but it obtains prime values for all

integers y > 0, which again is a contradiction.

It can be also proved that for an arbitrary number k no polynomial in k
variables with integer coe�cients exists such that all of its values for all natural
values of its variables are primes. Nevertheless, it appears that there is a polynomial
of degree 25 with 26 variables, having the following property: if we select those
values of that polynomial which are obtained for nonnegative integer values of its
variables and which are positive themselves, then the set of such values coincides
with the set of primes. Since 26 is equal to the number of letters of the Latin
alphabet, it is possible to denote the variables by the letters: a, b, . . . , x, y, z.
Then the polynomial is of the form:

F (a; b; c; d; e; f; g; h; i; j; k; l;m; n; o; p; q; r; s; t; u; v; w; x; y; z) =

= (k + 2)f1� [wz + h+ j � q]2 � [(gk + 2g + k + 1)(h+ j) + hz]2�
�[2n+ p+ q + z � e]2 � [16(k + 1)3(k + 2)(n+ 1)2 + 1� f2]2�

�[e3(t+ 2)(a+ 1)2 + 1� o2]2 � [(a2 � 1)y2 + 1� x2]2�
�[16r2y4(a2 � 1) + 1� u2]2 � [(a+ u2(u2 � a2)� 1)(n+ 4dy)2 + 1� (x+ cu)2]2�

�[n+ l + v � y]2 � [(a� 1)l2 + 1�m2]2 � [ai+ k + 1� l� i]2�
�[p+ l(a� n� 1) + b(2an+ 2a� n2 � 2n� 2)�m]2�
�[q + y(a� p� 1) + s(2ap+ 2a� p2 � 2p� 2)� x]2�

�[z + pl(a� p) + t(2ap� p2 � 1)� pm]2g:
This polynomial has been written here just to impress the reader. Its number of
variables is too big. It can be proved that it takes also negative values �m, where
m is not prime. Hence, it does not give us information about the sequence of primes
either.

Long trials convinced the majority of mathematicians that there is no easy
formula describing the sequence of primes. There exist \explicit formulae" describ-
ing the primes, but they use objects which are even less known than the primes
themselves. That is why mathematicians concentrated on the characteristics of the
sequence of primes \in total" and not \in parts". We will deal with this kind of
questions in the next sections.
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Problems

1. Prove that there are in�nitely many primes of the form 3s+ 2.

2. The same for the primes of the form 4s+ 3.

3. Prove that each two numbers 22
n

+ 1 and 22
m

+ 1 are relatively prime.
Deduce once more the in�nity of the number of primes. [Hint. Assuming that p is
a common divisor of two such numbers, �nd the remainders of division of 22

m

and
22

n

by p.]

4. Let f(x) be a polynomial with integer coe�cients. Prove that there exist
in�nitely many distinct prime divisors of its values f(1), f(2), . . . . (If you do not
succeed immediately, solve the problem for the polynomials of the �rst and of the
second degree.)

5. Denote by pn the n-th prime in the natural order. Prove that pn+1 < pnn+1.

6. Using the notation of Problem 5, prove that pn < 22
n

. Deduce the similar
inequality pn 6 22

n

+ 1 from the result of Problem 3.

7. Using the notation of Problem 5, prove that pn+1 < p1p2 � � � pn.

2. Euler's proof of the in�nity of the number of primes

We shall give another proof of the in�nity of the number of primes, which is
due to Euler, and which clari�es some general properties of this sequence.

Let us start with the \prehistory", that is, with some simple facts which had
been known before Euler started dealing with questions about primes. The question
is about how big the following sums can be:

1; 1 +
1

2
; 1 +

1

2
+

1

3
; . . . ; 1 +

1

2
+ � � �+ 1

n
; . . .

Using notation from section 3 of Chapter II, these are the sums (Sa)n, where a is
the sequence of the inverses of natural numbers 1, 1

2 ,
1
3 , . . . . Since we denoted the

sums of the m-th powers of natural numbers from 1 to n� 1 by Sm(n) (cf. formula
(28) of Chapter II), it is natural to denote our sums by S

�1(n).

We have come to a concept which we shall often deal with later, so we consider
it now in more detail. It refers generally to properties of an in�nite sequence of
positive numbers s1, s2, . . . , sn, . . . (in our case it appeared as the sequence of
sums of another sequence, but for the moment that is of no importance). One
type of such sequences is called bounded. This means that there exists a number
C (the same for the whole sequence), such that sn < C for all n = 1; 2; 3; . . . . If
the sequence does not have this property, it is called unbounded. This means that
no number C can possess this property, i.e., for each number C there exists an
index n such that sn > C. Finally, it may happen that for each number C there
exists an index n such that sm > C for all m = n, n + 1, . . . . In other words,
for n su�ciently large, the numbers sn become arbitrary large. In that case the
sequence is called unboundedly increasing. For example, the sequence 1, 2, 1, 3, 1,
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4, . . . , where 1 stands on odd places, and natural numbers stand on even places in
succession, is unbounded, but not unboundedly increasing, since one can �nd the
number 1 arbitrarily far in it.

If a sequence a = a1; a2; . . . ; an; . . . of positive numbers is given, and s = Sa,
then sn+1 > sn (since sn+1 = sn+an+1, an+1 > 0), and, generally, sm > sn form >
n. Therefore, such a sequence will be unboundedly increasing if it is unbounded.
For example, if all ai = 1, then sn = n and the sequence s1; s2; . . . is unbounded.
But in other cases it may be bounded.
An example can be visualised on Fig. 1,
where we �rst divide the segment between
0 and 1 in half and set a1 =

1
2 , then divide

again the segment between 0 and 1
2 in half

and set a2 = 1
4 , etc. In this way, an =

1
2n . The result of adding such numbers
is represented on Fig. 1 and it is obvious
that the sums Sn stay inside our initial
segment, i.e., Sn < 1. Fig. 1

It is easy to check the last assertion by calculation. If an = 1
2n , then

(Sa)n =
1

2
+

1

4
+ � � �+ 1

2n
=

1

2

�
1 +

1

2
+ � � �+ 1

2n�1

�
;

and by formula (12) of Chapter I

(Sa)n =
1

2

1
2n � 1
1
2 � 1

= 1� 1

2n
;

so that (Sa)n < 1 for each n.

We shall show now that in the case of the sequence 1, 1
2 ,

1
3 , . . . the �rst case

appears: although the terms of the sequence decrease, they do not decrease fast
enough, and their sums (i.e., S

�1(n)) increase unboundedly.

LEMMA 1. The sum S
�1(n) is, for n su�ciently large, greater than an arbi-

trary given number.

Let the number k be given. We assert that for some n (and so also for all
greater integers) S

�1(n) > k. Take n such that n� 1 = 2m for some m. Divide the
sum

S
�1(n) = 1+

�
1

2

�
+

�
1

3
+

1

4

�
+

�
1

5
+

1

6
+

1

7
+

1

8

�
+� � �+

�
1

2m�1 + 1
+ � � �+ 1

2m

�

in parts as it is shown: in groups contained between two consecutive powers of two.
Each parenthesis has the form 1

2k�1+1
+ � � � + 1

2k
, and the number of parentheses

is equal to m. In each parenthesis we replace each summand by the smallest one
entering that parenthesis, that is by the last one. Since the number of summands in
such a parenthesis is equal to 2k�2k�1 = 2k�1, we obtain that the k-th parenthesis
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is greater than 2k�1

2k
= 1

2 . As a result, we obtain that S
�1(n) > 1 + m

2 . This
inequality is valid for each n if n � 1 = 2m. It remains to put 1 + m

2 = k, i.e.,

m = 2k � 1 and n = 22k�1 + 1. Then S
�1(n) > k.

Now we come to Euler's proof. His idea is connected with the method of
computing the sums of powers of the divisors of a natural number, which was
described in section 3 of Chapter I (cf. formula (13) in Chapter I). Denote the
sum of k-th powers of all divisors (including 1 and n) of a natural number n by
�k(n). According to formula (13) of Chapter I, for the number n having canonical
factorisation n = p�11 � � � p�rr ,

(2) �k(n) =
p
k(�1+1)
1 � 1

pk1 � 1

p
k(�2+1)
2 � 1

pk2 � 1
� � � p

k(�r+1)
r � 1

pkr � 1
:

Formula (2) had been known since the antique times, but it was implicitly
assumed that the number k in it was positive. Finally, Euler got interested in it
and he posed the question|what would happen if k was integer, but negative?
The answer is, of course, that there is no di�erence, the derivation of formula (2)
is completely formal and the same for negative as well as for positive values of k.
In particular, it is valid for k = �1. The sum of (�1)-st powers (i.e., the inverses)
of the divisors of a given number n will be denoted, as before, by �

�1(n). Formula
(2) gives

�
�1(n) =

1� 1

p�1+1
1

1� 1

p1

� . . . �
1� 1

p�r+1
r

1� 1

pr

(we interchanged the order of summands in numerators and denominators in each
of the fraction). From here (since all the expressions in numerators are less than 1),

(3) �
�1(n) <

1�
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pr

� :

Let us now replace n in this formula by n! (p1, . . . , pr are now prime divisors
of n!). The numbers 1, 2, . . . , n are all contained among the divisors of n!. There-
fore, the sum �

�1(n!) de�nitely contains summands 1, 1
2 ,

1
3 , . . . ,

1
n , whose sum is

equal to S
�1(n+1). According to Lemma 1, already the sum S

�1(n+1) is greater
than any given number k for n su�ciently large. Since other summands in the sum
�
�1(n!) are positive, the same conclusion is valid for it. If the number of primes

were �nite and p1, . . . , pr were the whole list of them, we would obtain that

1�
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pr

� > k;

where k is an arbitrary number. This is, of course, a contradiction.

The value of the above proof is not that the assumption of �niteness of the
number of primes has led to a contradiction, but that it, when the in�nity of that
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number has already been proved, gives some quantitative characteristics of the
sequence of primes. Namely, reformulating the result obtained, we can now say
that if p1, p2, . . . , pn, . . . is the in�nite sequence of primes, then the expression

1�
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pn

� becomes greater than any arbitrary number for n

su�ciently large. This is, of course, equivalent to the fact that the denomina-
tor of the last fraction becomes smaller than an arbitrary positive number for n
su�ciently large. We have proved

THEOREM 2. If p1, p2, . . . , pn, . . . is the sequence of all primes, then the

product

�
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pn

�
, for n su�ciently large, becomes smaller

than any given positive number.

This is a �rst approximation to our goal. Let us try now to give a more useful
form of the characteristic obtained.

THEOREM 3. If p1, p2, . . . , pn, . . . is the sequence of all primes, then the

sequence of sums
1

p1
+

1

p2
+ � � �+ 1

pn
increases unboundedly.

Derivation of Theorem 3 from Theorem 2 is purely formal: it does not use the
fact that p1, p2, . . . , pn, . . . is the sequence of primes|it could be an arbitrary
sequence of natural numbers which satis�es the conditions of Theorem 2.

LEMMA 2. For each natural number n > 1 the inequality

(4) 1� 1

n
>

1

41=n

is valid.

Since both sides of inequality (4) are positive, rasing them to the power of n,
we obtain an equivalent inequality

(5)

�
1� 1

n

�n

>
1

4
;

which we are going to prove. Expanding the left-hand side by the binomial formula
we obtain

(6)

�
1� 1

n

�n

= 1� n
1

n
+

n(n� 1)

2

1

n2
� n(n� 1)(n� 2)

3!

1

n3
+ � � �+ (�1)n 1

nn
:

Absolute values of the summands on the right-hand side of formula (6) form the
sequence Ck

n
1
nk
. We examined such a sequence in connection with the Bernoulli

scheme in the section \Language of probability" in Chapter III (formula (35)).

More precisely, if in that formula we put p =
1

n+ 1
, q = 1� 1

n+ 1
=

n

n+ 1
, then

we obtain that p+q = 1, pkqn�k = (n+1)�nnn�k and the numbers obtained di�er

from the ones examined in formula (6) just by the common factor
�

n
n+1

�n
. The
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expression (n + 1)p � 1 is in our case equal to zero. In the section \Language of
probability" of Chapter III we proved that if k > (n+ 1)p� 1 (in our case k > 0),
then the (k+1)-st term is smaller than the k-th one. This means that the numbers
of the sequence Ck

n
1
nk
, k = 1; 2; . . . ; n decrease monotonously. (We referred here to

Chapter III just to stress the connection between di�erent problems that we are
dealing with. It would, of course, be easy to write down the ratio of the (k + 1)-st
term of the sequence to the k-th one and conclude that it is less than 1). We can see
that in formula (6), the �rst two terms on the right-hand side cancel. The next two
terms (after cancellation which can be done easily) give 1

3 � 1
3n2 . This number is

not less than 1
4 for n > 2 (check it yourself!). The rest of the terms can be grouped

in pairs, where in each pair the �rst term is positive and the next negative, but, as
we have seen, by absolute value less than the �rst one. Therefore each pair gives
a positive contribution to the sum (6). If n is odd, then the number of summands
on the right-hand side of formula (6) is even (it is equal to n + 1) and the sum
is partitioned into n+1

2 pairs. If n is even, then after grouping into pairs, there

remains the summand 1
nn . In such a way, in any case the right-hand side consists

of a summand which is not less than 1
4 , and some additional positive summands.

This proves inequality (5), and so the lemma itself.

Theorem 3 is now evident. For each pi we have, according to the Lemma:

1� 1

pi
>

1

41=pi
:

Multiplying these inequalities for i = 1; . . . ; n we obtain�
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pn

�
>

1

4

�
1
p1

+ 1
p2

+ � � �+ 1
pn

� :

If the sums 1
p1

+ 1
p2

+ � � �+ 1
pn

were for each n less than a certain value k, it would

follow that �
1� 1

p1

��
1� 1

p2

�
� � �

�
1� 1

pn

�
>

1

4k
:

This contradicts Theorem 2.

We run here into a problem of a new kind. If N is a subset of a �nite set M ,
then we can tell how much \smaller" N is than M , comparing the number of their
elements, e.g., computing the ratio n(N)=n(M). But now we have two in�nite sets:
the set of all natural numbers and the set of all primes contained in it. How can
we compare them? Theorem 3 o�ers one way of comparing, not very easy at �rst
sight. It can be applied to each sequence of natural numbers a: a1, a2, . . . , an,
. . . . According to Lemma 1, for the sequence of all natural numbers, the sums of
their inverses (i.e., the sums S

�1(n)) increase unboundedly. We can think of the
sequence a to be \tightly" distributed among natural numbers if it has the same
property, i.e., if the sums 1

a1
, 1
a1

+ 1
a2
, . . . , 1

a1
+ 1

a2
+ � � � + 1

an
, . . . unboundedly

increase. This means that in the sequence a enough natural numbers remained
so that the sums of their inverses are not too much less than the sums S

�1(n) of
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the inverses of all natural numbers. If, on the other hand, the sums of inverses of
the sequence a remain bounded, we can think of it as \loosely" distributed in the
natural row. Theorem 3 states that the sequence of primes is \tight". The most
\loose" case is the case of a sequence a having only a �nite number of terms.

But there are intermediate cases. For instance, the sequence of squares: 1, 4,
9, . . . , n2, . . . . It is natural to denote the corresponding sums 1+ 1

4 +
1
9 + � � �+ 1

n2

by S
�2(n). We shall prove that they are bounded by a number not depending on n.

We use the same idea as in the proof of Lemma 1. Let m be such that 2m > n.
Then S

�2(n) 6 S
�2(2

m). We divide the sum S
�2(2

m) = 1 + 1
22 +

1
32 + � � � + 1

22m

into parts:

(1) +

�
1

22

�
+

�
1

32
+

1

42

�
+ � � �+

�
1

(2m�1 + 1)2
+ � � �+ 1

22m

�
:

Each part
1

(2k�1 + 1)2
+ � � � + 1

22k
again contains 2k�1 terms and the �rst term

is the greatest. Therefore this part cannot be greater than 2k�1 1

(2k�1 + 1)2
<

2k�1 1

(2k�1)2
=

1

2k�1
. Therefore, S

�2(2
m) 6 1 + 1 +

1

2
+

1

22
+ � � � + 1

2m�1
=

1 +
1� 1

2m

1� 1
2

6 1 +
1

1� 1
2

= 3. So, none of the sums S
�2(n) is greater than 3.

In such a way, Theorem 3 shows that, for example, the primes are distributed
more \tightly" in the natural row than the squares.

Problems

1. Prove that for each given integer k > 2 and for all natural n, the sums
S
�k(n) =

1
1k +

1
2k + � � �+ 1

nk are bounded.

2. Let the sequence a be an arithmetic progression: a0 = p, a1 = p + q,
a2 = p + 2q, . . . , an = p + nq for some natural p and q. Prove that the sums 1

a0
,

1
a0

+ 1
a1
, . . . , 1

a0
+ 1

a1
+ � � �+ 1

an
, . . . become unboundedly large for n su�ciently

large.

3. Let the sequence a be a geometric progression: a0 = c, a1 = cq, a2 = cq2,
. . . , an = cqn, . . . , where c and q are natural numbers. Is it \tight" or \loose" in
the natural row?

4. Let p1, . . . , pn, . . . be the sequence of all primes. Prove that the expressions
1�

1� 1
p2
1

��
1� 1

p2
2

�
� � �

�
1� 1

p2
n

� are bounded for each n.

3. The function �(n)

In this section we will try once more to estimate how much the sequence of
primes di�ers from the sequence of all natural numbers. We will replace the more
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elaborate method of comparing \tight" and \loose" sequences from the previous
section by a more naive one, which can be understood more easily. Namely, we
will try to answer the naive question|\which portion of the sequence of natural
numbers is covered by the primes"| by �nding how many primes there are smaller
than 10, how many smaller than 100, how many smaller than 1000, etc. For each
natural number n, denote by �(n) the number of primes not greater than n, so that

�(1) = 0, �(2) = 1, �(4) = 2, . . . . What can be said about the ratio �(n)
n when n

increases?

First of all, consider what can be learned from tables. Each assertion or ques-
tion concerning natural numbers can be checked for all natural numbers not exceed-
ing a certain limit N . This fact plays a role in the number theory, which investigates
properties of natural numbers, similar to that of the possibility of experimenting
in theoretical physics. in particular, one can compute the values �(n) for n = 10k,
k = 1; 2; . . . ; 10. The following table is obtained.

n �(n)
n

�(n)

10 4 2.5

100 25 4.0

1000 168 6.0

10000 1229 8.1

100000 9592 10.4

1000000 78498 12.7

10000000 664579 15.0

100000000 5761455 17.4

1000000000 50847534 19.7

10000000000 455059512 22.0

Table 1.

We see that the ratio n
�(n) is constantly increasing, which means that �(n)

n is

decreasing all the time. In other words, the portion of primes among the �rst n
numbers becomes close to zero when n increases. According to the tables, it could
be said that \the primes constitute a zero portion among all natural numbers".
That was the way Euler formulated this fact, although his reasoning did not contain
a full proof. We will now give the precise formulation and then the proof.

THEOREM 4. The ratio
�(n)
n becomes smaller than any given positive number

for n su�ciently large.

In order to prove the theorem we have to estimate somehow the function �(n).
For actual calculation of its values we start with the prime 2, then we cancel all
the numbers which are multiples of 2 and not exceeding n. Then we take the
�rst remaining number|this will be 3|and repeat the process. We continue till
we have exhausted all the numbers not exceeding n. The numbers which are not
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cancelled (2, 3, etc.) are all primes not exceeding n. This method was used already
in the antique times; it is called \the sieve of Eratosthenes".

We will apply the same process in our reasoning. Suppose we have already
found the �rst r primes: p1, p2, . . . , pr. Then the remaining primes, not exceed-
ing n, are contained among \noncancelled" numbers, not exceeding n, i.e., among
those numbers m 6 n which are not divisible by any of the numbers p1, p2, . . . ,
pr. But the number of numbers not exceeding n and not divisible by any of the
primes p1, p2, . . . , pr was explored in Chapter III|it is given by the formula in
the section Set algebra of Chapter III. As we showed there, the expression in the

formula can be replaced with the easier one n
�
1� 1

p1

�
� � �

�
1� 1

pr

�
, where the er-

ror is less than 2r (formula (28) of Chapter III). Hence, the number s of numbers
m 6 n not divisible by any of the primes p1, p2, . . . , pr satis�es the inequality

(7) s 6 n

�
1� 1

p1

�
� � �

�
1� 1

pr

�
+ 2r:

All �(n) primes not exceeding n are contained either among r primes p1, p2, . . . , pr,
or among s numbers accounted for by inequality (7). In such a way, �(n) 6 s+ r,
and

(8) �(n) 6 n

�
1� 1

p1

�
� � �

�
1� 1

pr

�
+ 2r + r:

Inequality (8) is remarkable because it contains the product
�
1� 1

p1

�
� � �

�
1� 1

pr

�
which can be estimated using Theorem 2.

Now we can pass to the proof of Theorem 4. Let an arbitrary small positive

number " be given. We have to �nd a numberN , depending on ", such that �(n)
n < "

is valid for each n > N . In the inequality (8) we replace r by a greater number 2r

(cf. Problem 6 in section 2 of Chapter I), in order to obtain a simpler inequality

(9) �(n) 6 n

�
1� 1

p1

�
� � �

�
1� 1

pr

�
+ 2r+1:

In the inequality (9) there are two summands and we shall choose N so that for
each n > N each of the summands will not exceed "n=2. Then from the inequality

(9) we will conclude that �(n) < "n, and so �(n)
n < ". Recall that till now the

number r in our reasoning was arbitrary. We choose it so that the �rst summand
does not exceed "n=2, and then we choose N such that the second summand does
not exceed "n=2. The �rst choice is possible according to Theorem 2. It states that

for r su�ciently large, the product
�
1� 1

p1

�
� � �

�
1� 1

pr

�
is less than any arbitrary

given positive number. We can take "=2 to be such a number. Then the �rst
summand in the inequality (9) does not exceed "n=2. The second summand can be
dealt with even more easily. Now r has already been chosen. Choose N such that

2r+1 < eN=2. For this it is enough to choose N >
2r+2

"
. Then 2r+1 <

"N

2
6

"n

2
for each n > N . Theorem 4 is proved.
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Note that if we choose an arithmetic progression am+ b even with a very big
di�erence a, i.e., being very \sparse", then the number of terms of this progression
not exceeding n is the same as the number of integers m satisfying am 6 n � b,
i.e.,

�
n�b
a

�
. We saw in section 3 of Chapter III that

�
n�b
a

�
di�ers from n�b

a by not
more than 1. Hence, the number of terms of the progression not exceeding n is not
less than n�b

a � 1. Its quotient with n is not less than 1
n (

n�b
a � 1) = 1

a � 1
n
b
a � 1

n .

When n increases, this number approaches 1
a and is not becoming arbitrarily small.

Thus, Theorem 4 would become false if we replaced the sequence of primes in it by
an arbitrary arithmetic progression. This shows that primes are distributed more
sparsely than any arithmetic progression.

Problems

1. Let pn denote the n-th prime. Prove that for an arbitrarily large positive
number C the inequality pn > Cn is valid for n su�ciently large. [Hint. Use the
fact that �(pn) = n.]

2. Consider natural numbers having the property that, when written in deci-
mal form, they do not contain a certain digit (e.g., 0). Let q1, q2, . . . , qn, . . . be
those numbers, written in ascending order, and let �1(n) denotes the number of

such numbers not exceeding n. Prove that the ratio �1(n)
n becomes smaller than

any arbitrary given positive number, for n su�ciently large. Prove that the sums
1
q1
, 1
q1

+ 1
q2
, . . . , 1

q1
+ 1

q2
+ � � � + 1

qn
, . . . are bounded. [Hint. Do not try to copy

the proof of Theorem 4. Split the sum to parts, where in each part denominators
are contained between 10k and 10k+1. Then �nd the number of numbers qi in such
intervals. The answer depends on the digit which is excluded: r = 0 or r 6= 0.]

APPENDIX

Inequalities of Chebyshev for �(n)

We have put this text in the Appendix mainly for formal reasons, because we
have to use logarithms, the knowledge of which is not assumed in the rest of the
text. Recall that the logarithm with basis a of the number x is a number y such
that

ay = x:

This is written as y = loga x. In the sequel it will always be assumed that a > 1
and that x is a positive number. Basic properties of logarithms, following directly
from the de�nition, are:

loga(xy) = loga x+ loga y; loga c
n = n loga c; loga a = 1:

loga x > 0 if and only if x > 1. Logarithm is a monotonous function, i.e., loga x 6
loga y if and only if x 6 y.

In this text, if the basis of a logarithm is not indicated, it is supposed that it
is equal to 2; logx means log2 x.
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The second reason for putting this text in the Appendix is the following. In
the rest of the book, the logic of reasoning was clear, namely, why do we follow
a certain road (at least I hope it was so). Here we encounter the case, not rare
in mathematical investigations, when it looks as if some new consideration has
\jumped in from nowhere", when even the author cannot explain how he came to
the conclusion. About such situations Euler used to say: \Sometimes it seems to
me that my pencil is smarter than myself". Of course, these are results of long
trials and unknown work of psyche.

We are going now to continue our investigations concerning the ratio �(n)
n when

n is increasing unboundedly. Take another look at Table 1, showing the values of
�(n) for n = 10k, k = 1; 2; . . . ; 10. The last column of the table contains the values
of the ratio n

�(n) for some values of n. We see that when we pass from n = 10k to

n = 10k+1, that is when we go down by one row, the value of n
�(n) increases always

approximately by the same value. Namely, the �rst number is equal to 2.5; the
second di�ers from it for 1.5, and the further di�erences are: 2; 2.1; 2.3; 2.3; 2.3;
2.4; 2.3; 2.3. We see that all of these numbers are close to the one: 2.3. Not trying
at the moment to explain the meaning of this particular value, let us suppose that
also beyond the range of our table the numbers n

�(n) , when passing from n = 10k to

n = 10k+1, increase by amounts which are closer and closer to a certain constant �.
This would mean that n

�(n) for n = 10k would be very close to �k. But, if n = 10k,

then by the de�nition k = log10 n. It is natural to assume that also for other values

of n the ratio n
�(n) is very close to � log10 n. Thus, �(n) is very close to c

n

log10 n
,

where c = ��1.

A lot of mathematicians where attracted by the secret of distribution of primes
and tried to solve it using tables. In particular, Gauss got interested in this question
almost as a child. His interest in mathematics started, it seems, from the child's
interest in numbers and forming tables. In general, a lot of great mathematicians
showed virtuosity in calculations and were capable of doing immense ones, often by
heart (Euler was even �ghting insomnia in that way!). When Gauss was only 14,
he constructed a table of primes (in fact, a smaller one than our Table 1) and came
to the conclusion we have formulated. Later on this conclusion was considered by
many mathematicians. But the �rst result in that direction was proved only half a
century later, in 1850, by Chebyshev.

Chebyshev proved the following assertion.

THEOREM. There exist constants c and C such that for all n > 1

(10) c
n

logn
6 �(n) 6 C

n

logn
:

Before we proceed with the proof, we give some remarks concerning the for-
mulation of the theorem. What is the basis of the logarithms we are using? The
answer is: arbitrary. From the de�nition of logarithms it immediately follows
that logb x = logb a loga x: it is enough to substitute a by blogb a in the relation
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aloga x = x, to obtain blogb a loga x = x, which shows that logb x = logb a loga x.
Hence, if the inequality (10) is proved for loga n, then it is true also for logb n, with
the substitution of c and C by c

log
b
a and C

log
b
a .

Inequalities (10) express the idea inspired by tables that �(n) is \close" to
c n
logn for some c. The question why in our hypothetical reasoning there appeared

one constant c, and in the theorem there appear two of them|c and C|and
whether it is possible to use only one constant, will be discussed after the proof of
the theorem.

The key to the proof of Chebyshev's theorem are properties of binomial coef-
�cients Ck

n: mostly the fact that they are integers and some properties about their
divisibility by primes. We shall recall these properties before we pass to the proof.

First of all, there is a proposition proved in section 3 of Chapter II which says
that the sum of all binomial coe�cients Ck

n for k = 0; 1; . . . ; n is equal to 2n. Since
the sum of positive summands is greater than any of them, we deduce that

(11) Ck
n 6 2n:

We shall particularly need large binomial coe�cients. We saw in Chapter II that
for even n = 2m the coe�cient Cm

2m is greater than all the others, and for odd
n = 2m+ 1 there exist two equal coe�cients Cm

2m+1 and Cm+1
2m+1 which are greater

than the others. We draw our attention to them, particularly to

(12) Cn
2n =

2n(2n� 1) � � � (n+ 1)

1 � 2 � . . . � n :

If we group the factors of the numerator with the factors of the denominator taken
in reverse order, we obtain

Cn
2n =

2n

n
� 2n� 1

n� 1
� . . . � n+ 1

1
:

Obviously, no factor in the last formula is less than 2, so

(13) Cn
2n > 2n:

Consider now properties of divisibility of binomial coe�cients by primes. Fac-
tors in the numerator in the expression (12) are obviously divisible by all primes
greater than n and not exceeding 2n. These primes cannot divide any factor in the
denominator, and so they do not cancel and they are divisors of Cn

2n. The number
of primes between n and 2n is equal to �(2n) � �(n) and all of them are greater
than n, hence

(14) Cn
2n > n�(2n)��(n):

An analogous assertion is valid for the \middle" coe�cients Cn
2n+1 = Cn+1

2n+1 with
an odd lower index. If we write them as

Cn
2n+1 =

(2n+ 1) � � � (n+ 2)

1 � 2 � . . . � n ;
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we see that �(2n + 1)� �(n + 1) of primes, greater than n+ 1 and not exceeding
2n+1, enters the numerator and cannot be cancelled with the denominator. Since
they are greater than n+ 1, we have

(15) Cn
2n+1 > (n+ 1)�(2n+1)��(n+1):

The inequalities (14) and (15) already reveal important connections between bino-
mial coe�cients and prime numbers.

Finally, we state the last of the properties of binomial coe�cients which we
need for the proof; although it is quite easy, it is not as obvious as the previous
ones.

LEMMA. For an arbitrary binomial coe�cient Ck
n, any power of a prime di-

viding it does not exceed n.

We draw the attention to the fact that we are not speaking about the exponent
of the power but about the power itself. In other words, we assert that if pr divides
Ck
n, where p is a prime, then pr 6 n. For example, C2

9 = 9 � 4 is divisible by 9 and
by 4, and both of these numbers do not exceed 9.

Write the binomial coe�cient in the form

(16) Ck
n =

n(n� 1) . . . (n� k + 1)

1 � 2 � . . . � k :

The prime p we are dealing with has to divide the numerator of this fraction.
Denote by m the factor in numerator which contains the maximal power of p (or
one of those having such a property), and by pr this maximal power. Obviously,
n > m > n � k + 1. Set n�m = a, m � (n � k + 1) = b, then a+ b = k � 1 and
Ck
n can be written in the form

(17) Ck
n =

(m+ a)(m+ a� 1) � � � (m+ 1)m(m� 1) � � � (m� b)

k!
:

The factorm is now the most important for us and we write down the product in the
numerator as having a factors to the left and b factors to the right of it. Rearrange
the denominator analogously: k! = (1 � 2 � . . . � a)(a+1) � � � (a+ b)(a+ b+1). Since
(a+1)(a+2) � � � (a+ b) is divisible by b!, this product (denominator) has the form
a! b! l, where l is an integer. Now we can rewrite Ck

n in the following form

(18) Ck
n =

m+ a

a
� m+ a� 1

a� 1
� . . . � m+ 1

1
� m� 1

1
� . . . � m� b

b
� m
l
;

where we transferred the factor m
l to the end.

Note that in each of the factors m+i
i or m�j

j (i = 1; . . . ; a, j = 1; . . . ; b) the

power of p entering the numerator completely cancels with the denominator, and
hence after cancellation only the denominator could be divisible by p (though it
can also be relatively prime with p). Really, consider, for instance, fractions m+i

i

(factors of the type m�j
j can be treated in the same way). Let i be divisible exactly

by ps, i.e., i = psu, where u is relatively prime with p. If s < r, then m + i is
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also divisible exactly by ps: setting m = prv (recall that m is divisible by pr), we
obtain that m + i = ps(u + pr�sv). If s > r, then for the same reasons m + i is
divisible by pr and taking into account the way m was chosen (it is divisible by
the greatest power of p of all the numbers between n� k+1 and n and this power
is pr), we conclude that the number m + i cannot be divisible by a greater power
of p than the r-th. Thus, pr cancels and in the numerator there remains a number
not divisible by p. As a result we see that among all the factors in the expression
(18), only the last one can contain p as a factor. But the power of p which divides
m is pr, and this means the product (18) cannot be divisible by a greater power of
p than pr. Since pr divides m, and m 6 n, it is pr 6 n. The Lemma is proved.

Let us see what it says about the canonical factorisation Ck
n = p�11 � � � p�mm .

First of all, the primes p1, . . . , pm can appear just from the numerator of the
expression (16), therefore all pi 6 n and so m 6 �(n). According to the Lemma,
p�ii 6 n for i = 1; . . . ;m. As a result we obtain that

(19) Ck
n 6 n�(n):

Now we can proceed with the proof of the Chebyshev's theorem itself, i.e.,
with the proof of the inequalities (10). Note that it is enough to prove these
inequalities for all values of n starting with a certain �xed limit n0. For all n < n0
these inequalities can then be obtained by decreasing the constant c and increasing
the constant C. If we wanted to obtain values of these constants explicitly and
in the most economic way, then we could check, using tables of primes, that the
inequalities (10) are valid for values n 6 n0 (in our arguments n0 will not be a large
number).

We start with juxtaposition of inequalities (13) and (19) for the binomial co-
e�cient Cn

2n. We obtain that 2n 6 Cn
2n 6 (2n)�(2n) and hence

(20) 2n 6 (2n)�(2n):

Taking logarithms with basis 2 of both sides (recall that we will write log2 x = logx)
and using monotonicity of the logarithm, we obtain that n 6 �(2n) log 2n and so

�(2n) >
n

log 2n
=

1

2

2n

log 2n
;

i.e., the left of the two inequalities (10) with the constant c = 1
2 . But for the time

being it is proved only for even values of n. For odd values of the form 2n+ 1 we
use the monotonicity of the logarithm and of the function �(n). It follows that

�(2n+ 1) log(2n+ 1) > �(2n) log 2n:

Substituting here the obtained inequality for �(2n), we see that

�(2n+ 1) >
n log 2n

log(2n) log(2n+ 1)
=

n

log(2n+ 1)
:

Since it is always n > 1
3 (2n+ 1), it follows that

�(2n+ 1) >
1

3

2n+ 1

log(2n+ 1)
:
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Thus, the left inequality (10) is proved for odd n with the constant c = 1
3 . So, the

left inequality (10) is valid for all n and c = 1
3 .

We proceed to the proof of the right inequality in (10). We shall prove it by
induction on n. Let, �rst of all, n be even. We will write 2n instead of it. Taking
the inequality (11) for the coe�cient Cn

2n (i.e., substitute in Ck
n n by 2n and k by n)

together with the inequality (14), as a consequence we obtain

n�(2n)��(n) 6 22n

and, passing to logarithms,

(21) �(2n)� �(n) 6
2n

logn
; �(2n) 6 �(n) +

2n

logn
:

In accordance with the inductive hypothesis, suppose that our inequality has been
proved: �(n) 6 C n

logn with a constant C whose value we shall make more precise

later. Substituting in the formula (21), we obtain:

�(2n) 6 C
n

logn
+

2n

logn
=

(C + 2)n

logn
:

We would like to prove the inequality �(2n) 6 C�2n
log 2n and for that we have to choose

the constant C in such a way that the inequality

(22)
(C + 2)n

logn
6

2Cn

log 2n

is valid for all n, starting from some limit.

This is just a simple school exercise. Cancel in the inequality both sides by n,
remark that log 2n = log 2 + logn = logn + 1 and denote logn by x. Then the
inequality (22) takes the form

C + 2

x
6

2C

x+ 1
:

Multiplying both sides by x(x+ 1) (as x > 0) and transforming, we write it in the
form (C � 2)x > C +2. Obviously, C has to be chosen so that C � 2 > 0. Setting,
e.g., C = 3, we obtain that it is valid for C = 3 and all x > 5. Since x denotes logn,
this means that the necessary inequality would be valid if n > 25 = 32, 2n > 64.

It remains to consider the case of odd values of the form 2n+1. Compare the
inequality (11) (substituting in it n by 2n+1 and k by n) with the inequality (15).
We obtain the inequality

22n+1
> (n+ 1)�(2n+1)��(n+1)

and, taking logarithms, the inequality

2n+ 1 > (�(2n+ 1)� �(n+ 1)) log(n+ 1):
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From here, using the inductive hypothesis about �(n+ 1), we obtain, as before

�(2n+ 1) 6 C
n+ 1

log(n+ 1)
+

2n+ 1

log(n+ 1)
:

The inequality that we need: �(2n+1) 6 C 2n+1
log(2n+1) will be proved if we can check

that

(23) C
n+ 1

log(n+ 1)
+

2n+ 1

log(n+ 1)
6 C

2n+ 1

log(2n+ 1)

for a suitable choice of the constant C and for all n starting from some limit. This
is again an exercise of purely school type, though a bit harder than the previous
one. In order to compare various terms in the inequality more easily, replace on
the left-hand side 2n+ 1 by a greater value 2(n+ 1):

(24) C
n+ 1

log(n+ 1)
+

2n+ 1

log(n+ 1)
6

(C + 2)(n+ 1)

log(n+ 1)
:

In order to transform the right-hand side, note that 2n+ 1 > 3
2 (n + 1) for n > 1,

log(2n+ 1) 6 log(2n+ 2) = log(n+ 1) + 1. Hence,

(25)
2n+ 1

log(2n+ 1)
>

(3=2)(n+ 1)

log(n+ 1) + 1
:

Comparing inequalities (24) and (25) we see that the inequality (23) will be proved
if we prove that

(C + 2)(n+ 1)

log(n+ 1)
6

(3=2)C(n+ 1)

log(n+ 1) + 1
:

Cancelling both sides by n+1 and putting log(n+1) = x, we arrive at the inequality

C + 2

x
6

(3=2)C

x+ 1
;

which can be solved completely in the same way as in the previous case. It is
enough to multiply both sides by x(x+1) and reduce similar terms. We obtain the
inequality (C + 2)x + C + 2 6 3

2Cx, i.e., (
1
2C � 2)x > C + 2. Setting C = 6, we

see that the inequality is valid for x > 8, i.e., for n+ 1 > 28, 2n+ 1 > 511. Thus,
the right inequality (10) is proved with the constant C = 6 and for all values of n
starting with 511. The Theorem is proved.

Note that Theorem 4 appears as an easy consequence of the Theorem just

proved. Really, since �(n) < C n
logn , we have �(n)

n 6 C
logn . And as a logarithm

changes monotonously and increases unboundedly (log 2k = k), �(n)
n becomes less

than any arbitrary positive number. But, the proof of the theorem of Chebyshev
was based on completely di�erent considerations than the proof of Theorem 4.

At the end, we return once more to assertions which can be made by considering
Table I. Starting from it, we came to the claim that n

�(n) is close to log10 n with

a certain value of the constant C: the �rst decimal �gures of the number C�1 are
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2.3. Hence it can be concluded that �(n) is close to C�1 n
log

10
n . This expression

can be given a simpler form n
log

e
n , if we use a new basis of logarithms e such that

C log10 n = loge n. But, as it was said earlier, it is always logb x = logb a � loga x,
and so our relation will be ful�lled if C = loge 10. Substituting the value x = b
into the relation logb x = logb a � loga x, we obtain that logb a � loga b = 1 and the
relation C = loge 10 which we are interested in can be rewritten as C�1 = log10 e.

14-year-old Gauss turned his attention to these relations and tried to guess
which number e could be, so that log10 e is close to (2:3)

�1. Such a number at that
time was well known, thanks to the fact that the logarithm with such a basis has
a lot of useful properties. This number is commonly denoted by e. The logarithm
with the basis e is called natural and is denoted by ln: loge x = lnx. Here, to the
end of this page, we have to consider that the reader is familiar with the concept
of the natural logarithm.

In such a way, a natural assertion which can be deduced from tables is that �(n)
becomes close to n

lnn when n increases unboundedly. The theorem of Chebyshev
which has been just proved states (if we use natural logarithms) that there exist
two such constants c and C, that c n

lnn < �(n) < C n
lnn , starting from some n. The

hypothetical re�nement deduced from tables asserts that the inequalities c n
lnn <

�(n) < C n
lnn are valid for n large enough whichever constants c < 1 and C > 1

we take. This assertion is called the asymptotical law of distribution of primes.
It was stated by Gauss and some other mathematicians at the end of XVIII and
the beginning of XIX century. After the proof of the inequalities of Chebyshev in
1850 it seemed that all that was needed was a better choice and approaching of the
constants c and C. However, the asymptotical law of distribution of primes was
proved just half a century later, at the end of XIX century, using completely new
ideas, proposed by Riemann.

Problems

1. Prove that pn > an logn for a certain constant a > 0 [Hint. Use the fact
that �(pn) = n.]

2. Prove that logn <
p
n, starting from some limit (�nd it). [Hint. Reduce the

problem to proving the inequality 2x > x2 for real x, starting from some limit. Let
n 6 x 6 n+1, where n is an integer. Reduce to proving the inequality 2n > (n+1)2

and use the induction.]

3. Prove that pn < Cn2 for some constant C. [Hint. Apply the inequality of
the previous problem and use the fact that n = �(pn).]

4. Prove that pn < An logn for some constant A.

5. Prove that that the largest exponent a for which pa divides n! is equal tohn
p

i
+
h n
p2

i
+ � � �+

h n
pk

i
. Here

hr
s

i
is the incomplete quotient of dividing r by s,

the sum extends to all k for which pk 6 n, p denotes an arbitrary prime and n an
arbitrary natural number.
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6. Using the result of Problem 5 give a new proof of the Lemma in the
Appendix.

7. Prove that if p1, . . . , pr are all the primes between m and 2m + 1, then
their product does not exceed 22m.

8. Determine the constants c and C such that the inequality (10) is valid for
all n.

9. Try to �nd as large as possible a constant c and as small as possible a
constant C, for which the inequality (10) is valid for all n, starting from some
limit.

I. R. Shafarevich,

Russian Academy of Sciences,

Moscow, Russia
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CHAPTER V� REAL NUMBERS AND POLYNOMIALS

�� Axioms of real numbers

In the present chapter we shall try to make our idea of real numbers more
precise� Our tendency will not be towards very rigorous reasoning� but we shall
only try to give enough accuracy to our notions and reasoning in this �eld� so that
we are able to prove statements about real numbers�

If we choose an origin and a unit on a line� we can represent real numbers as
points on the line� Thus� if we make our idea of real numbers more precise� we give
at the same time a more precise description of a line and points lying on it� In the
sequel we shall often� as an illustration� use this bijective correspondence between
real numbers and points on a line�

Let us try to take geometry as an example and bring the precision of de�nitions
and arguing to the level which already exists in the school geometry courses� There�
some axioms appear as the basis of all the construction� and starting from these
axioms all other statements are proved� Axioms themselves are not proved� we
take them on the basis of experiment or intuition�

In order to be more concrete� let us look at the construction of plane geom�
etry based on axioms� We can distinguish three types of logical notions� First of
all� there are basic geometrical notions�points and lines� Then� there are basic
relations� a point lies on a line� a point lies on a line between other two points�
Neither of these are de�ned� We think as if a �list� of all points and all lines exists

This paper is an English translation of� I� R� Xafareviq� Izbranye glavy algebry� Glava
V� De�stvitel�nye qisla i mnogoqleny� Matematiqeskoe obrazovanie� N ����� apr��i�n�
����� Moskva� str� 	��
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somewhere� and we know which points lie on which lines or which triples of points
A� B� C on the line l are such that B lies between A and C� And only in third
place there are axioms� i�e�� statements about basic notions and relations among
them� For instance� each two distinct points belong to exactly one line� Or� among
three distinct points on a line� there is exactly one lying between other two�

There is a complete analogy with real numbers� The basic notions here are
real numbers themselves� This means that� for the moment� we do not assume
anything more about real numbers� but only that they constitute a certain set�
Basic relations between real numbers are of two di
erent types� operations and
inequalities� Let us describe them in more detail�

�� Operations with real numbers

For every two real numbers a and b we de�ne a third number c� called the sum
of a and b� We write this as� a� b � c�

For every two real numbers a and b we de�ne a third number d� called the
product of a and b� We write this as� ab � d�

�� Inequalities between real numbers

For some pairs of real numbers a and b we have that a is less than b� We write
this as� a � b� The same relation is also written as b � a� If we want to say that
a � b or a � b� we write a � b or b � a��

Before we pass to the formulation of axioms connecting basic notions with
basic relations among them� let us emphasize once more the analogy with geometry�
Write analogous notions in the table�

Algebra Geometry
Basic notions

Real numbers Point� line� � � �
Basic relations

sum� a� b � c A point lies on a line�
product� ab � d Point C lies between
inequality� a � b points A and B�

� � �
Axioms

� � � � � �

There is no need to list geometrical axioms here� and axioms on real numbers shall
be listed now� They will be formulated in terms of basic notions and relations
between them� listed in the table� We group the axioms according to the basic
relations they deal with�

I �axioms of addition�

I�� Commutative law� a� b � b� a for arbitrary real numbers a and b�

I�� Associative law� a�b� c� � a� b�� c for arbitrary real numbers a� b and c�

I�� There exists a number called zero� denoted by �� such that a� � � a is valid
for each real number a�
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Remark� There exists exactly one such number� If �� were another number
with the same property� we would have �� � � � ��� by the de�nition of �� �� � � �
� � �� by the commutative law and � � �� � �� by the de�nition of ��� Finally� we
obtain �� � �� � � � � � �� � �� i�e�� �� � ���

I�� For each real number a there exists a number called opposite� denoted by �a�
such that a� �a� � ��

Remark� For the given number a there exists exactly one such number�
If a� were another number with the same property� a � a� � �� we would have
a� �a�� � a� � � � a� � a�� Also� a� �a�� � a� � �a� � a� � a�� and by the
associative law� �a� � a� � a� � �a� � a� a��� By the property of number a��
a � a� � � and �a� � � � �a� Taking these equalities together� we obtain that
a� � �a��

II �axioms of multiplication�

II�� Commutative law� ab � ba for arbitrary real numbers a and b�

II�� Associative law� abc� � ab�c for arbitrary real numbers a� b and c�

II�� There exists a number called unit� denoted by �� such that a � � � a for an
arbitrary real number a�

Remark� There exists only one such number� It can be proved in the
same way as the remark following axiom I��we only have to replace addition by
multiplication� and � by ���

II�� For each real number a� di
erent from �� there exists a number called inverse�
denoted by a��� such that a � a�� � ��

Remark� For each real number a di
erent from �� there exists only one such
number� The proof is exactly the same as in the remark following axiom I���

III �axiom of addition and multiplication�

III�� Distributive law� a� b�c � ac� bc for arbitrary real numbers a� b and c�

IV �axioms of order�

IV�� For any two real numbers a and b exactly one of the following three relations
holds� a � b or a � b or b � a�

IV�� If for some three real numbers a� b and c we have a � b and b � c� then a � c�

IV�� If a � b� then a� c � b� c for arbitrary three real numbers a� b and c�

IV�� If a � b and c � �� then ac � bc for arbitrary three real numbers a� b and c�

V �real and rational numbers�

Rational numbers are contained among real numbers� and operations and
inequalities� de�ned for real numbers� when applied to rational ones� give
usual operations and inequalities�

VI �axiom of Archimedes�

For each real number a there exists a natural number n such that a � n�
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VII �axiom of embedded segments�

Let a�� a�� a�� � � � and b�� b�� b�� � � � be two sequences of real numbers�
satisfying a� � a� � a� � � � � � b� � b� � b� � � � � and bn � an for each n�
Then there exists a real number c� such that bm � c and c � an for all m
and n�

If we use representation of real numbers on a line� then numbers x satisfying
the condition a � x and x � b a � x � b for short� are represented by the set which
is called a segment and denoted by �a� b�� So� the premises of the last axiom state
that the segments In � �an� bn� are embedded one into another� I� � I� � I� � � � � �
The axiom states that there exists a point i�e�� a number� which is common for all
these embedded segments hence the name of the axiom��

All the usual properties of real numbers easily follow from the listed axioms� It
would be too boring to devote several pages to these completely obvious arguments�
Hence� we shall only formulate some assertions which we shall need later�and give
just some remarks in connection with their proofs see also problems 	� �� ���

It follows from the axioms of group II that for each number a di
erent from
� and each number b� the number c � a��b is the unique solution of the equation
ax � b� It is called the quotient of b and a and denoted by b

a
� All the usual rules

about dealing with parentheses and fractions follow from the axioms�

Since for a natural number n the equality n � � � � � � � � n summands� is
valid� it follows from the axioms of group III that for each number a� the number
na product of n and a� is equal to the sum a� � � �� a n summands��

Axiom IV� implies that if a � b and c � d� then a � c � a � d � b � d� If
a � �� then �a � � because from �a � � it would follow � � ��� As a result we
conclude that each real number is either positive a � ��� has the form �b� where
b � �� when we say that it is negative� or it is equal to �� Multiplication obeys the
usual �rule of signs�� As usual� we write jxj � x if x � � and jxj � �x when x � ��

Axiom of embedded segments axiom VII� is particularly useful when the
length of segment In i�e�� the di
erence bn � an� becomes arbitrary small when
n increases� In other words� if for an arbitrary real number � � � there exists an
index N such that bn�an � � for all n � N � In such a case one can conclude more
than just what is said in the axiom�

LEMMA �� If di�erences bn � an become arbitrary small with increasing of
the index n� then number c� whose existence is guaranteed by axiom VII� is unique�

Proof� Suppose that there exist two such numbers� c and c� and� for example�
c � c�� Then an � c � c� � bn and c��c � bn�an�c�an��bn�c�� � bn�an� We
obtain for n su�ciently large� that c�� c � � for an arbitrary given number � � ��

For instance� such a relation has to be valid for � � c
�
�c

�
� whence �

�
c�� c� � �� but

this contradicts the fact that c� � c � �� �

�
� ��

We meet exactly this situation when we intend to measure the given real
number approximately� with de�ciency or excess� using rational numbers� In that
case an and bn are rational numbers� An example is the construction of

p
	 we spoke
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about in Section � of Chapter I� Thus� axiom VII formulates what we intuitively
have in mind when we speak about �better and better measuring�� Together with
the preceding Lemma it gives us the possibility of constructing real numbers with
the prescribed properties� We shall often use this observation later�

Concerning axioms V and VI we just remark that we assume here natural and�
more generally� rational numbers to be known� We shall not analyse these notions
in detail�

Let us remark at the end that the given axioms are not independent� This
means that some of them could be proven as theorems� relying on other axioms see�
e�g�� problem ��� We have just gathered those properties of real numbers which we
are used to and which are intuitively convincing� Taking greater number of axioms
we obtained the right to skip not very interesting proofs of some intuitively obvious
facts�

Problems

�� Which of the axioms I�VII are also valid in the set of rational numbers�
and which are speci�c for real numbers�

�� Prove� using axioms I�III� that for each real number a� �a � ��

�� Prove that for arbitrary real numbers a and b the equation a� x � b has a
solution and that it is unique�

�� Prove that for arbitrary real numbers a �� � and b the equation ax � b has
a solution and that it is unique�

�� Consider the set of rational numbers as a subset of the set of real numbers�
on the basis of axiom V� Prove that rational number � coincides with the real
number � whose existence is based on axiom I�� Do the same for rational number
� and the real number � whose existence is based on axiom II��

	� Not using axiom V� prove that numbers �� �� � � �� � � � � � � � � � � � � �
n summands� are di
erent for all natural n� Here � denotes the number whose exis�
tence is guaranteed by axiom II�� Hence� prove that natural numbers are contained
amongst the reals� and that operations and inequalities� de�ned for real numbers�
when applied to natural ones� give usual operations and inequalities� Prove after
that the assertion of axiom V� In that way� this axiom is in fact super�uous in our
list� since it could be proven on the basis of other axioms�


� Instead of the operation of multiplication� given by de�nition for real num�
bers� de�ne a new operation � given by the formula a � b � a � b � ab� Does it
obey the axioms of group II�

�� Limits and in�nite sums

In order to illustrate the role of axiom of embedded segments as a method of
construction of new real numbers� we shall introduce several notions which will also
be useful later�
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We met in Chapter IV sequences which were bounded as well as sequences
which increased unboundedly� Consider now sequences which are decreasing� For
the sake of simplicity� consider �rst sequences of positive numbers and call such a
sequence unboundedly decreasing if its terms unboundedly approach zero� The exact
de�nition can be made analogously to the de�nition of unboundedly increasing
sequences� given in Section 	� Chapter IV�

A sequence an of nonnegative real numbers is said to approach zero unboundedly
if for each arbitrary small positive number � there exists a natural number N such
that an � � for all n � N � In such a case we also say that the sequence an tends
to � and denote it by� an � � when n�� �when n tends to in�nity���

A typical example of such a sequence is the sequence an � �

n
�

Consider now a less obvious example�

LEMMA �� If a is an arbitrary positive number smaller than �� then the
sequence an � an unboundedly approaches �� i�e�� an � � when n���

Really� put a � ��A� Then A � � and it can be written in the form A � �� x
with x � �� Using binomial formula� An � � � x�n � � � nx � y� where y is a
sum of positive numbers� so y � �� Thus� An � � � nx and so for each � � � there
exists such N that An � ��� for all n � N this N can be found explicitly�� Hence�
an � � which means that an � � when n���

We can generalize the previous de�nition to sequences a�� a�� � � � � an� � � � �
whose terms can also be negative� Then the numbers ja�j� ja�j� � � � � janj� � � �
are nonnegative and we can apply the previous de�nition to them� We shall say
that the sequence an approaches zero unboundedly� if the sequence of numbers janj
unboundedly approaches �� In that case one also writes an � � when n���

Now we have come to our main de�nition� If for a sequence a �
a�� a�� � � � � an� � � � � there exists a number �� such that an � � � � when n � ��
then � is called the limit of the sequence a� One also says that the sequence an
tends to � and one writes an � � when n���

Not every sequence has a limit� For example� if a sequence has a limit� then it
is bounded� Really� let �n � � when n � �� Then there exists an N � such that
j�n � �j � � for n � N � Since �n � � � �n � ��� it follows that j�nj � j�j � �
for n � N and therefore j�nj � C for all n� where C is the maximum of numbers
j��j� � � � � j�N j� j�j��� But even if a sequence is bounded� it can have no limit� An
example is the sequence �� �� �� �� � � � � where � and � alternate� If it had a limit ��
we could take in the de�nition of the limit � � �

�
and we would have jan � �j � �

�

for all n � N � But among an�s with n � N there are both � and �� Therefore we
would have j�j � �

�
and j�� �j � �

�
� Clearly� such a number � does not exist�

But if a sequence has a limit� this limit is unique� Namely� suppose that a
sequence a�� a�� � � � � an� � � � � has two limits� � and �� � �� �� Then for each � there
exist numbers N and N �� such that for n � N it is jan � �j � � and for n � N �

it is jan � �j � �� Let n � N and n � N �� then jan � �j � � and jan � �j � ��
wherefrom j� � �j � 	�� But � in our reasoning is an arbitrary positive number�
and we can choose it so that � � �

�
j�� �j� hence a contradiction�
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As not every bounded sequence has a limit� considering just such sequences
would not lead us to the construction of new real numbers� Our main result will
be that there is a simple special type of sequences which always have limits and
therefore they will give us a method of constructing new real numbers�

A sequence a�� a�� � � � � an� � � � � is called increasing� if an � an�� for all n� i�e��
a� � a� � a� � a� � � � � �

THEOREM �� Each bounded and increasing sequence of positive numbers has
a limit�

The proof will follow the logic of an anecdote which was popular when I was
a student i�e�� before the war�� The story was about di
erent ways to catch a
lion in a desert� There was a French method� method of NKVD�investigators�
mathematician�s method� � � � Mathematician�s method went like this� He divides
the desert into two parts� The lion is situated in one of these parts� He divides this
part again in two parts�and he continues like this till the lion appears in a part of
the desert whose dimensions are less than the dimensions of the cage� It remains to
put the cage around it� This was a parody to a way of proving existence theorems�
one of which we are going to demonstrate now�

Let a � a�� a�� � � � � an� � � � � be an increasing sequence of positive numbers� By
the assumption it is bounded� so there exists a constant C such that all an � C�
Divide the segment I� � ��� C� into two equal parts by the number C�	� Then one
of the following is valid� Either there exists an m� such that am � C�	� and then
all an with n � m are contained in the segment �C�	� C� since the sequence is
increasing�� or an � C�	 for all n� and then all terms of the sequence belong to
the segment ��� C�	�� Denote by I� one the segments� ��� C�	� or �C�	� C�� namely
the one which contains all the terms of sequence a� starting from some place�
After that� divide the new segment into two parts� Obviously� we can continue
the process unboundedly and we will obtain a sequence of embedded segments
I� � I� � I� � � � � � Im � � � � � where segment Ik has the length C�	k� and which
possesses the property that each segment Ik contains all the terms of sequence a�
starting from some place� By the axiom of embedded segments axiom VII� there
exists a real number �� belonging to all the segments Ik� It is indeed the limit
of sequence a� Really� as we have seen� all the terms of sequence a� starting from
some place� belong to segment Ik� This means that for each natural number k there
exists an N such that an � Ik for all n � N � But also a � Ik� Since the length of
segment Ik is equal to C�	k� it follows that jan ��j � C�	k for n � N � This gives
us the property which appears in the de�nition of the limit� if we choose k so that
C�	k � �� In particular� note that such a choice is always possible the sequence�
�� C

�
� C
�
� C
�
� � � �

�
tends to ���

Theorem � is particularly useful when the sequence a � a�� a�� � � � � an� � � � � is
the sequence of sums of a sequence of nonnegative numbers c � c�� c�� � � � � cn� � � � �
cn � ��� i�e�� when a� � c�� a� � c� � c�� � � � � an � c� � c� � � � � � cn� In such a
case� obviously� the sequence a is increasing� But it has to be checked and it could
by no means be easy� whether it is bounded� For example� if in the sequence c all
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cn � �� then an � n and the sequence a is unbounded� We considered a less trivial
example in Section 	 of Chapter IV� in the sequence c all cn � ��n� We saw that in
that case the sequence a is also unbounded� But if we can check that the sequence
a of sums is bounded� then according to Theorem � it has a unique limit �� This
limit is called the sum of the sequence c�� c�� � � � � cn� � � � �� which is denoted by

c� � c� � � � �� cn � � � � � ��

Sometimes the in�nite sum c is called a series and its sum�the sum of the series�

If the sequence of sums an is bounded� then� as we have seen� the sum of the
series c� � c� � � � �� cn � � � � exists� If it is unbounded� then we say that the sum
of the series does not exist� Hence� Lemma �� Section 	� Chapter IV� states that

the sum of the series � �
�

	
�

�

�
� � � � does not exist�

Consider an example� Let a nonnegative number a� less than �� be given� and
let c � �� a� a�� � � � � an� � � � �� Then an � � � a� a� � � � �� an�� in the n�th place
in the sequence c there appears an���� The sum � � a � a� � � � � � an�� can be
evaluated using the formula for the sum of a geometric progression�formula �	�
of Chapter I�

�� an � � � a� a� � � � �� an�� �
�� an

�� a
�

�

�� a
� an

�� a
�

We have seen that an � � when n � �� wherefrom it follows immediately that
an

�� a
� � when n ��� Thus� formula �� gives that an � �

�� a
� We can write

this as�

	� � � a� a� � � � �� an � � � � � �

�� a
for a � ��

The series on the left�hand side of relation 	� is called an in�nite geometric pro�
gression� and formula 	� itself�the formula for the sum of an in�nite geometric
progression�

But there are examples of series where existence of sums is not hard to prove�
but the explicit evaluation of the sums is much harder� For example� in Section

	 of Chapter IV we proved that the sums
�

��
�

�

	�
� � � � � �

n�
are bounded� This

means that the sum of the series
�

��
�

�

	�
� � � �� �

n�
� � � � exists� But what is its

value� This problem attracted mathematicians in the middle of XVIII century� It
was Euler who solved it� when he found an interesting equality

�� � �
�

	�
�

�

��
� � � �� �

n�
� � � � � 	�

�
�

This was one of the most sensational Euler�s discoveries� Euler went even further�

evaluating the sum of the series � �
�

	k
�

�

�k
� � � �� �

nk
� � � � for arbitrary even k�

It appeared that these sums were connected with the numbers of Bernoulli� which
we described in the Appendix of Chapter II� Namely� the following formula is valid
for each even k�

�� � �
�

	k
�

�

�k
� � � �� �

nk
� � � � � 	k���k���Bk

	
k��
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We know nearly nothing about analogous sums with odd k� It was proved only

recently in � ��� that the sum ��
�

	�
�

�

��
� � � �� �

n�
� � � � is an irrational number�

This remains probably the only known fact about these sums for odd values of k�

Let us remark that just knowing the fact that a series c� � c� � � � �� cn � � � �
has a sum� one can deduce useful corollaries even if the value of the sum is not
known�

LEMMA �� If the sum of the series c� � c� � � � � � cn � � � � exists� then the
sequence of numbers dn � cn � cn�� � � � � unboundedly approaches ��

We shall use an easy property of the limit� Suppose that a sequence a�� a��
� � � � an� � � � has a limit �� i�e�� an � � when n��� Then for each number � the
sequence ��a�� ��a�� � � � � ��an� � � � has the limit ���� Really� the di
erence
������an� � an��� and the di
erence an��� �� hence ������an�� �
when n � �� Denote the sum of the series c� � c� � � � � � cn � � � � by � and the
number c�� c�� � � �� cm by am� By the de�nition of the sum of an in�nite series�
the sum � of the series c� � c� � � � �� cn� � � � is equal to the limit of the sequence
a�� a�� � � � � am� � � � � In the same way the sum dn of the sequence cn���cn��� � � �
is equal to the limit of the sequence an�� � an� an�� � an� � � � an�k � an� � � � � By
the remark from the beginning of the proof� the last limit is equal to ���an� where
�� is the limit of the sequence an��� an��� � � � � an�k� � � � for �xed n�� But the
limit of the sequence an��� an��� � � � is the same as the limit of the sequence a��
a�� � � � � i�e�� �

� � �� We obtain that dn � � � an� But� by the de�nition of limit�
�� an � �� i�e�� dn � � when n���

As an example� put dn �
�

n�
�

�

n� ���
� � � �� We see that dn � � when

n���

Considering limits of in�nite sums leads us away from algebra� which is mainly
concerned with �nite expressions� These questions are closely related with another
branch of mathematics� called analysis� That is why we are not going to consider
them in more detail� Let us remark only that the most interesting results�such as
formulas �� and ���appear on borders of these areas�

Problems

�� Prove that if the sum of the series c��c�� � � ��cn� � � � exists� then cn � �
when n���

�� Prove that if an � C for each n and an � � when n � �� then � � C�
Give an example when equality is obtained�

�� Let an � � when n � �� Put bn � a�n� Does the sequence b�� b�� � � �
have a limit and what is its value� Is it possible� from the existence of the limit
of this sequence� to conclude that the sequence a�� a�� � � � itself has a limit� If it
does have a limit� what is its value�
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�� Does there exist a limit of the sequence a�� a�� � � � where

an �
�

	
� �

�
� � � �� ���n

n
�

Hint� Group consecutive terms in pairs�

�� Let fx� be a polynomial of degree d� Prove that an � � when n � ��
where an � fn��nd���

	� Find the sum of the series b� ba� ba� � ban � � � � � where jaj � � and b is
arbitrary� Usually� the sequence b� ba� ba�� � � � � is also called an in�nite geometric
progression�


� In a square with side b� centres of the sides are joined by segments� In the
new square which is obtained in that way the same procedure is done� etc� Find
the sum of areas of all squares that can be obtained in this way�

�� Find the sum of the series
�

� � 	 �
�

	 � � � � � �� �

n � n� ��
� � � � �

� Construct a sequence of positive rational numbers smaller than �� such that
an has the denominator n and which does not have a limit�

��� Prove that if the sequence a�� a�� � � � has a limit �� and the sequence
b�� b�� � � � has a limit �� then the sequence of sums a� � b�� a� � b�� � � � has the
limit �� ��

�� Decimal representation of real numbers

In Section � we described real numbers using a system of axioms� Now we are
going to show how real numbers can be given concretely� Here we shall not say
anything new�we shall speak about justi�cation of the well known representation
of real numbers by in�nite decimal fractions� But now we shall show how the
existence of such a representation can be deduced from axioms listed in Section ��

We shall use the usual representation in which integer part can be either pos�
itive or negative� while fractional part sometimes called the mantissa� is always
nonnegative�

Let A be an arbitrary integer of either sign� and a�� a�� � � � � an� � � � an in�nite
sequence of numbers� each of which can take one of �� values� �� �� 	� �� �� �� ��
�� ��  � All this together will be denoted by A� a�a�a� � � � and called an in�nite
decimal fraction� For the time being it is just an in�nite sequence� written in a
di
erent way� Now we are going to show how a real number can be corresponded
to it� We de�ne� for each index n� a number

�� �n � A�
a�
��

� � � �� an
��n

�

Obviously� the sequence ��� ��� � � � � �n� � � � is increasing� Let us prove that it is
bounded� Really� since all ai �  � we have

a�
��

�
a�
���

� � � �� an
��n

�
 

��

�
� �

�

��
� � � �� �

��n��

�
�
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We apply the formula about the sum of geometric progression�

� �
�

��
� � � �� �

��n��
�

�� �

��n

�� �

��

�
��

 

and as a result we obtain that

��
a�
��

�
a�
���

� � � �� an
��n

� �

so that �n � A� ��

By Theorem �� the sequence ��� ��� � � � � �n� � � � has a limit �� Real number
� will be called the number corresponded to the in�nite decimal fraction� and this
will be denoted by

�� � � A� a�a� � � �an � � �

Sometimes it is said that � is equal to the decimal fraction A� a�a� � � � an � � � � This

simply means that � is equal to the sum of the in�nite series A�
a�
��

�� � �� an
��n

�� � � �
Our next goal is to explore this correspondence between decimal fractions and

real numbers� Is it bijective� In other words� can a real number correspond to two
di
erent decimal fractions� And is each real number corresponded to some decimal
fraction�

Consider the �rst question� First of all� remark that the answer is sometimes
positive� Take� e�g�� the in�nite decimal fraction ��     � � � � where each decimal
after the comma is equal to  � Which real number does it represent� According

to general de�nition we have to consider the sequence �n �
 

��
�

 

���
� � � ��  

��n
�

This sum is easy to evaluate� according to the formula about the sum of geometric
progression formula �	� in Chapter I� it is equal to

 

��

�
� �

�

��
� � � �� �

��n��

�
�

 

��

�� �

��n

�� �

��

�
 

��

�� �

��n

�

��

� �� �

��n
�

Obviously� the limit of the sequence ��� ��� � � � � �n� � � � is equal to �� so that
� � ��     � � � � But� on the other hand� surely � � �� �� � � � � where in front of the
comma there is just �� and after it all zeros� In such a way� the same real number
� is corresponded to two distinct in�nite decimal fractions�

It is clear that one can construct a lot of examples of the same kind� In general�
such an example has the following form� Let an in�nite decimal fraction has the
form A� a� � � � ak  � � � � i�e�� suppose that starting form some place in our case from
the k � ���st one� all the decimals are equal to  � We can assume that ak ��  �
i�e�� k�th is the �rst place after which all the  �s follow� Then� literally repeating
previous reasoning� one can conclude that this fraction is equal to the same number
as the fraction A� a� � � � ak��ak������ � � � � in which all the decimals after the k�th
one are equal to �� A fraction having all the decimals  � starting from some place�
is said to have  as a period� We have seen that for such fractions one�to�one
correspondence between fractions and real numbers is violated�

It is a bit of a surprise that such violation appears only in those cases�
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THEOREM �� Two distinct in�nite decimal fractions� neither of which has �
as a period� are corresponded to distinct real numbers�

The proof can be obtained easily if we connect our construction of a real
number� de�ned by a decimal fraction� with the usual measuring of numbers with
accuracy of ����m� with de�ciency and excess� One has to divide the line into
segments of the length ����m� whose endpoints are rational numbers with denom�
inator ��m� Then each point from the line� that is� each real number� falls in one
of the segments� The endpoints of the segment give a measure of the number� with
de�ciency and excess and accuracy of ����m� However� violating of one�to�one cor�
respondence appears because of the endpoints of segments themselves� To which of
the segments� left or right� is each of these points corresponded� This is the same
problem which appears in connection with number  in the period� We are going
to show that our choice without  in periods� corresponds to the case when the
endpoints of segments are always attached to segments on the right�hand side� In
other words� the constructed numbers �m and the number � which they de�ne are
connected by the relation

�� �m � � � �m �
�

��m
�

The fact that numbers �m are rational with the denominators of the form ��m

follows from their form ����

Remember that number � was de�ned as the limit of the sequence ��� ��� � � � �
�n� � � � � All numbers �n with n � m� obviously satisfy the condition �n � �m�
Hence� such an inequality is valid for their limit �� Really� from the assumption
� � �m we could deduce that �n�� � �n��m���m��� � �m�� for all n � m�
But� by the de�nition of limit� the absolute value of the number �n � � is smaller
than an arbitrary given positive number for n large enough� This contradicts the
fact that it is not smaller than the �xed positive number �m�� see Problem 	 in
Section 	��

In this way the left�hand inequality in �� is proved� The right�hand one can
be proved similarly� if the sign � is replaced by �� Namely� for each n � m we
have

 � �n � �m �
am��

��m��
� � � �� an

��n
� �m �

�

��m

�am��

��
� � � �� an

��n�m

�
and applying inequality �� we conclude that �n � �m � �

��m
� Repeating the

previous reasoning we obtain that � � �m � �

��m
�

But� if we want to obtain the right�hand inequality in �� with the sign �� we
have to use the fact that the fraction A� a�a� � � � does not have  as a period� The
proof is only a bit more complicated� Let us prove the right�hand inequality in ��
for �xed index m� We shall use the fact that the decimal fraction does not have  
as a period� That means that somewhere after am there has to appear a digit ak
di
erent from  � For an arbitrary n � k we can write

�n � �m � am�����
m�� � � � �� ak���

k� � ak�����
k�� � � � �� an���

n��
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As before� we see that

ak�����
k�� � � � �� an���

n
� ����k

and so
�n � �m � am�����

m�� � � � �� ak � �����k��

Since ak ��  � the digit ak � � is one of the digits �� 	� � � � �  � Put

c � am����� � � � �� ak � �����k�m�

We can repeat our reasoning once more and obtain that c � �� Number c depends
only on the choice of m and k� and not on n� Hence� replacing �n by its limit ��
we obtain� as before� � � �m � c���m � �m � ����m�

That proves inequality ���

It follows right away from the inequality �� that to each two distinct decimal
fractions� not having  as a period� there correspond two distinct real numbers�
Let� to the contrary� the same number � corresponds to fractions A� a�a� � � � and
A�� a��a

�

� � � � � Then together with inequalities �� we have relations

��m � � � ��m �
�

��m
�

where ��m � A��
a��
��

�� � �� a�m
��m

� Let ��m �� �m and ��m � �m� From these relations

it follows that ��m � �m � �

��m
� i�e�� ��m � �m � �

��m
� But this contradicts the

fact that �m and ��
m

are distinct rational numbers having the same denominator
��m� Hence� ��m � �m for all m� But numbers am are uniquely determined by the
numbers �m� since �m � �m�� � am���

m� Thus� they coincide in both fractions�
too�

We pass now to the second question� does every real number correspond to
some in�nite decimal fraction� As well as the answer� the method of proof is already
known to us� We just want to convince ourselves that the reasoning can be based
on the axioms we formulated�

First of all� let us remark that each real number � is situated between two
consecutive integers� i�e�� there exists an integer A� such that A � � � A� �� Let�
for start� � be positive� Applying Archimedes� axiom� we conclude that there is an
integer n such that � � n� Obviously� n � �� and since there exist only a �nite
number of natural numbers not exceeding n� there also exists the last the smallest�
one with that property� Denote this number by m� Then � � m� but m � � does
not possess this property� that means m � � � � � m and A � m � � has the
desired properties� If � is negative� we put �� � ��� Then �� � � and we can apply
our procedure� there exists n such that n � �� � n � �� Axiom IV� implies that
�n� �� � � � �n� If �� �� n� we can put A � �n � �� and A � � � A � �� If
�� � �n� then we have to put A � �n� And so� for each real number � there exists
an integer A such that A � � � A � �� hence � can be represented as � � A � ��
where � � � � ��

Now observe that if some three numbers a�� a�� a� satisfy a� � a� and a� � a��
then for each � satisfying conditions a� � � � a�� one of the following conditions
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must be satis�ed� either a� � � � a� or a� � � � a�� The fact is demonstrated
in Fig� � where the interval �a�� a�� is simply the union of the intervals �a�� a�� and
�a�� a��� Formally� it is a consequence of the fact that for each � exactly one of the
relations � � a�� a� � � and a� � � holds�

Fig� �

Consider a more general case� Let the following conditions be satis�ed for n
numbers ��� � � � � �n� �� � ��� �� � ��� � � � � �n�� � �n� Then for each number
�� satisfying �� � � � �n� one of the conditions �i�� � � � �i i � 	� �� � � � � n� is
valid� In order to prove it one just has to apply the previous assertion to the case
of three numbers ��� ��� �n� Then either �� � � � �� and our statement is valid
for i � 	�� or �� � � � �n� In the latter case consider numbers ��� ��� �n� etc�
For some i we come to the desired condition �i�� � � � �i�

We can return now to our original question� We have already proved that
each real number � can be represented in the form A � �� where A is an integer

and � � � � �� Consider now numbers
k

��
� k � �� �� � � � � ��� According to the

previous result� we can conclude that
k

��
� � �

k � �

��
for some k� � � k � ���

Denoting this number by a�� we can write � �
a�
��

� ��� where � � �� �
�

��
�

Hence� � � A �
a�
��

� ��� Continuing the process� we obtain numbers a�� � � � �

an� � � � � where always � � ai �  � and the sequence ��� ��� � � � � �n� � � � � where

�n � A �
a�
��

� � � � � an
��n

� has the limit �� i�e�� the number � is corresponded to

the in�nite decimal fraction A� a�a� � � � an � � � �

Summing up� one can say that forming in�nite decimal fractions for real num�
bers does not establish a one�to�one correspondence between in�nite decimal frac�
tions and real numbers� but such a correspondence becomes one�to�one if we exclude
those decimal fractions which have � as a period�

Problems

�� Prove that a real number � corresponds to an in�nite decimal fraction
having � as a period if and only if � is a rational number a�b where a and b are
integers such that just 	 and � can be prime factors of b�

�� When �nding the in�nite decimal fraction which corresponds to a rational
number a�b� it is enough to �nd the mantissa� so we can assume that � � a � b�

Let �n �
a�
��

�
a�
���

� � � �� an
��n

� where �� a�a� � � � is the in�nite decimal fraction
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corresponding to the number a�b� Prove that
a

b
� �n �

rn
��nb

� where � � rn � b

and the numbers rn are connected by the relation ��rn�� � ban � rn� i�e�� an is
the quotient and rn the remainder when ��rn�� is divided by b� Convince yourself
that this method of successive evaluation of digits an of a decimal fraction agrees
with the usual division algorithm�

�� Prove that the in�nite decimal fraction corresponding to a rational number
is periodic� i�e�� it has the form 		 � � � �P�P� � � � � where 		 � � � � denotes a certain
�nite group of symbols� after which the group of symbols P�� called the period�
repeats� Hint� Use Problem 	 i�e�� the division algorithm� and note that the
possible number of remainders when ��rn�� is divided by b is �nite not greater
than b��

�� Prove that if the denominator b of the fraction a�b is relatively prime with
��� then the period begins immediately after the comma�

�� Under the assumptions of Problem �� prove that the number of digits in
the period is equal to the smallest number k for which ��k � � is divisible by b�

	� Under the assumptions of Problems � and �� prove that the number of digits
in the period is not greater than the number of natural numbers not exceeding b
and relatively prime with b� This number is given by formula 	�� of Chapter III�


� Prove that each periodic in�nite decimal fraction corresponds to a rational
number A� Namely� if A� a�a� � � � an stays in front of the period p�� p�� � � � � pm����

and A�
a�
��

� � � �� an
��n

� Q� p���
m�� � p���

m�� � � � � � pm�� � P � then the

rational number corresponding to the given fraction is Q�
P

��n��m � ��
�

�� Prove that the in�nite decimal fraction �� ���������� � � � � where the number
of zeros between two consecutive ��s increases by � each time� corresponds to an
irrational number�

�� Real roots of polynomials

Having made a �rmer basis for the theory of real numbers� we can now obtain
some new results about real roots of polynomials with real coe�cients� In order
to do this� we have to investigate �rst the behaviour of a polynomial fx� in the
neighbourhood of a value x � a�

THEOREM �� For each polynomial fx� and each number a there exists a
constant M � such that the inequality

��� jfx�� fa�j �M jx� aj
is valid for all x such that jx� aj � ��

Remember that jAj read as �absolute value of number A��� by the de�nition�
is equal to A if A � � and to �A if A � �� It follows that jAj is always a nonnegative
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number� From school courses it is known that

jA�Bj � jAj� jBj���

jA�Bj � jAj � jBj�	�

jABj � jAj � jBj����

Theorem � gives a quantitative estimate of how much fx� di
ers from fa�
if x slightly di
ers from a� In order to prove the theorem� put y � x � a� i�e��
x � a � y and substitute this value into the polynomial fx�� Each term akx

k of
the polynomial fx�� after the substitution� gives the expression aka� y�k� which
can be written as a sum of powers of y and then similar terms in fa� y� can be
reduced� As a result we obtain that fa� y� is a polynomial in y� which we denote
by gy� � c� � c�y � � � �� cny

n� Then fx� � fa� y� � gy�� fa� � fa� �� �
g�� � c�� x� a � y and inequality ��� which we intend to prove becomes

��� jgy�� g��j �M jyj
for all y satisfying jyj � ��

In the transformed form� the expression gy� � g�� acquires a simple form
c�y� � � ��cny

n since g�� � c��� Inequality ��� can be applied also to a sum with
an arbitrary number of summands which can be proved directly by induction� and�
in particular� to our sum c�y � � � �� cny

n� We obtain that

jgy�� g��j � jc�y � � � �� cny
nj � jc�yj� � � �� jcnynj�

Using equality ��� also applied to an arbitrary number of factors�� jckykj � jckj �
jyjk� so that

jgy�� g��j � jc�jjyj� � � �� jcnjjyjn�
Since� by the assumption� jyj � �� we have jyjk � jyj and

jgy�� g��j � jc�j� � � �� jcnj�jyj
for jyj � ��

It is enough to put M � jc�j� � � �� jcnj to obtain inequality ���� which also
means inequality ����

Now we are able to prove an important property of polynomials�

THEOREM �� Bolzano�s theorem� If a polynomial for x � a and x � b takes
values with opposite signs� then it takes the value � somewhere between a and b�

In other words� if for a polynomial fx� values fa� and fb� are numbers of
opposite signs and a � b� then there exists c� such that a � c � b and fc� � ��

Theorem � appears rather obvious if one looks at the graph of the polynomial
fx� Fig� 	�� It states that the graph cannot �jump� across the x�axis without
intersecting it� On the other hand� it is completely possible to draw such a graph
Fig� ��� So� we have to prove that such a graph cannot be the graph of a polyno�
mial� For more general functions it is connected with a rather involved property
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Fig� � Fig� �

which is called continuity� In the case of polynomials it is enough to use the easy
inequality ���� proved in Theorem ��

The proof is based on the same principle of �catching a lion in a desert�� we
have already used for proving Theorem ��

Suppose� for example� that fa� � �� fb� � �� Consider the segment �a� b�
i�e�� the set of real numbers x satisfying a � x and x � b�� Denote this segment by
I� and divide it into two segments of equal length by the point r � a�b

�
� If fr� � ��

then the theorem is proved c � r�� If fr� �� � and� for example� fr� � �� then
the polynomial fx� takes values of opposite signs for x � r and x � b� Denote
then by I� the segment �r� b�� If that fr� � �� then the segment �a� r� will be
denoted by I�� In any case we obtain a segment I� contained in I�� having two
times smaller length� and having again the property that the polynomial fx� has
values of opposite signs at its endpoints�namely� positive at the left�hand end and
negative at the right�hand one�

This process can be continued� Either we shall at some moment reach a root of
the polynomial fx� and the theorem will be proved�� or the process shall continue
unboundedly� It remains to consider the latter case� We obtain an in�nite sequence
of embedded segments I� � I� � � � � � In � � � � � In � �an� bn�� such that each of
them is of half�a�length of the previous one� and the polynomial fx� takes values
of opposite signs at the endpoints an and bn of each segment In� more precisely�
fan� � �� fbn� � �� Now we are going to use the more precise de�nition of real
numbers we gave in Section �� Segments In satisfy the prepositions of Axiom VII
axiom of embedded segments� and Lemma � of Section �� Really� segments In are
embedded one into another� by their construction� and since In is half�of�length of

segment In��� its length is equal to
b� a

	n��
� and so this length becomes unboundedly

small when n increases� Hence� according to Axiom VII and Lemma �� there exists
a unique number c� belonging to all segments In� i�e�� such that

��� an � c � bn�

In this way we have constructed the number c which we searched for� Namely� we
now prove that fc� � ��

Consider the values fan� of the polynomial fx� at the left�hand endpoints
of segments In� By the assumption� all fan� � �� Inequality ��� implies that the
sequence a�� a�� � � � approaches the number c unboundedly� really� an � c � b and
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� � c � an � bn � an� where� by the assumption� bn � an �
b� a

	n��
� Therefore the

inequality jan � cj � � will be satis�ed if
b� a

	n��
� �� and this will be valid for each

� � � if n is chosen large enough� Let us prove that it follows from this that the
values fan� approach the value fc� unboundedly� Really� in order to prove that
jfam�� fc�j � � for m large enough� we can use inequality ��� from Theorem ��
Since am approaches c unboundedly� we have jam � cj � � for m large enough�
and we can apply inequality ���� We see that jfam�� fc�j � M jam � cj and so
jfam��fc�j � � if M jam� cj � �� i�e�� if jam� cj � ��M � But we have convinced
ourselves that this inequality is valid for m large enough since ��M can again be
denoted by ����

What can be said about the number fc�� which is known to be the limit of
the sequence of positive numbers fan�� Clearly� fc� � �� Really� if fc� were
negative� than for positive fan� we would have fan� � fc� � �fc�� and hence
jfan�� fc�j � �fc�� but this would contradict the fact that jfan� � fc�j � �
if � � �fc��

We have thus proved that fc� � �� Following exactly the same arguments�
considering numbers bn satisfying fbn� � �� we can prove that fc� � �� Therefore�
for the number fc� only one possibility remains�fc� � �� The theorem is proved�

One should pay attention to a completely new way of reasoning in proving this
theorem� We have proved in fact under certain conditions� the existence of a root
of the polynomial fx�� But we have not done it using any kind of formula as�
for example� when solving a quadratic equation� but using the axiom of embedded
segments� But� at the same time� it is by no means a pure �theorem of existence��
where we know only that a certain quantity exists�and nothing more than that�
For example� we can in fact �nd the root c with de�ciency and excess and with
an arbitrary prescribed accuracy� constructing numbers an and bn such that c lies
between them inequality ���� and which get closer and closer to each other�

Bolzano�s theorem gives us the possibility to know a lot about concrete poly�
nomials� Consider� for example� the polynomial fx� � x� � �x � � and make a
table of its values for integer values of x� with small absolute values Table ��� One
can see from the table that the polynomial fx� takes values of opposite signs at
the ends of the segments �	� ��� ��� �� and �����	�� By Bolzano�s theorem it has a
root in each of these segments� Hence� the polynomial fx� has at least three roots�
But its degree is equal to � and by Theorem � of Chapter II it cannot have more
than � roots� We have proved that the polynomial fx� has exactly � roots and
they lie in segments �	� ��� ��� �� and �����	��

x �� �	 �� � � 	 �

fx� �� �� �� � �� �� ��

Table ��

There are some other polynomials for which Bolzano�s theorem gives the precise
answer� too� An important case is the polynomial xn � a whose roots are called
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�roots of a of degree n� denoted as n
p
a�� Consider �rst the case when a � �� Then

the polynomial fx� � xn�a takes for x � � negative value �a� On the other hand�
it is easy to �nd a value x � c such that fc� � � Really� by Archimedes� axiom
Axiom VI� there exists a natural number m such that m � a� Then mn � m and
mn� a � m� a � �� Using Bolzano�s theorem� we can state that there is a root of
the polynomial in the segment ���m�� If� on the other hand� a � � and n is even�
then such polynomials obviously do not have roots� xn � � as an even power of
a real number� and xn � a � �� If n is odd� then putting x � �y we obtain that
xn� a � �yn� a � �yn� a�� The polynomial yn� a for a � ��� as we have just
proved� has a root� and so the same is true for the polynomial xn � a� In school
courses these arguments are usually omitted because of the lack of a precise theory
of real numbers�� but it is proved very easily� that for n odd the polynomial xn�a
does not have more than one root as we have seen�it has exactly one� and that
for n even and a � ��not more than two roots which di
er only in the sign which
means it has exactly two roots��

But in the case of other polynomials� it can happen that Bolzano�s theorem
does not give anything� Take as an example the polynomial x� � x� 	� Using the
formula for solutions of quadratic equation we can conclude that this polynomial
has no real roots� But if we tried to give values �� 
�� 
	� � � � to the argument x�
we would obtain only positive values� and Bolzano�s theorem wouldn�t give us
anything� Therefore� we will try now to explore polynomials more thoroughly�

Theorem � estimates values of a polynomial for values of x being close to
a certain value a� We shall prove now a similar assertion about values of the
polynomial for large by absolute value� values of x�

THEOREM �� For the polynomial fx� � a� � a�x� � � �� anx
n there exists a

constant N � � such that

��� ja� � a�x� � � �� an��x
n��j � janxnj

for all values of x such that jxj � N �

The theorem states that for su�ciently large values of x� the absolute value
of the leading term exceeds the absolute value of the sum of all other terms� In
order to prove this� we use inequality ��� for an arbitrary number of summands�
and equality ���� It follows from them that ja� � a�x� � � �� an��x

n��j � ja�j�
ja�jjxj� � � �� jan��jjxjn��� and janxnj � janjjxjn� In order to prove inequality ���
it is enough to convince oneself that ja�j � ja�jjxj � � � � � jan��jjxjn�� � janjjxjn�
and this will be proved if we show that

��� jakjjxjk � �

n
janjjxjn

for each k � �� �� � � � � n� � and jxj � N for N large enough� Then� summing up all
the inequalities ��� for k � �� �� � � � � n� � we obtain the inequality we needed�

Inequality ��� can be solved in the usual way� It is equivalent to
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jxjn�k � njakj
janj � i�e��

��� jxj � n�k

s
n
jakj
janj �

Therefore� it is enough to choose for N an arbitrary number larger than all the

numbers
n�k

s
n
jakj
janj � k � �� �� � � � � n � �� and it will satisfy the assertion of Theo�

rem ��

Theorem � has a lot of useful corollaries� Note �rst that under the assump�
tions of the theorem i�e�� for jxj � N� we always have jfx�j � �� which follows
immediately from inequality �	�

jfx�j � ja� � a�x� � � �� anx
nj � janxnj � ja� � a�x� � � �� an��x

n��j�
But this means that the polynomial fx� does not have roots x with jxj � N �
In other words� roots of a polynomial if they exist� have to be contained in the
segment jxj � N � where� as we have shown inequality ���� N can be chosen as

the greatest of the numbers
n�k

s
n
jakj
janj � One calls such a number N the bound of

roots of the polynomial� So� for the polynomial x� � �x� � one can take for N an
arbitrary number greater than �

p
� � � and

p
� � �� For example� N � ��� satis�es

the conditions� This means that all roots of the polynomial are distributed between
���� and ���� We have convinced ourselves earlier that they are in fact contained
between �� and �� Table ���

Theorem � implies more that just the assertion that fx� �� � if jxj � N � for
the found value of N � To evaluate the value of a� � a�x � � � �� an��x

n�� � anx
n

means to sum up two real numbers a� � a�x � � � � � an��x
n�� and anx

n� �rst of
which is smaller by absolute value� than the other for jxj � N�� But then the
sign is determined by the sign of the second summand� We come to the following
conclusion�

COROLLARY �� For jxj � N � where N is the bound of roots de�ned in Theo�
rem 	� values of the polynomial fx� have the same sign as the leading term anx

n�

Suppose that the degree n of the polynomial is odd� Then the sign of the
leading term anx

n for x � � agrees with the sign of the coe�cient an� and for
x � � it is opposite� Corollary � shows that for x � N and x � �N the polyno�
mial itself acquires values of opposite signs namely� the signs of an and of �an��
Bolzano�s theorem implies that between these values there is at least one root of
the polynomial� We obtained the following proposition�

COROLLARY �� Each polynomial of odd degree has at least one root�

This is really an unexpected result� In fact� you know that a polynomial of
the second degree may have no roots e�g�� the polynomial x� ���� One may think
that the same could happen to polynomials of greater degrees� �� etc� But here�
according to the corollary� a polynomial of the third degree always has a root� The
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situation appears more complicated� it depends not on how large the degree of the
polynomial is� but on its parity�

Finally� consider one more property of polynomials� which can make inves�
tigations in some cases much easier� Theorem � gave us information about the
absolute value of the di
erence fx�� fa� when the di
erence x� a is small� We
shall investigate now the sign of the di
erence fx� � fa�� Here we shall exclude
the cases when the value x � a appears to be a root of the derivative f �x� of the
polynomial fx�� These special values of a could be investigated easily in the same
manner� but we will not need this at the moment�

THEOREM 	� Let a polynomial fx� be given and take a value x � a which
is not a root of its derivative f �x� 
i�e�� f �a� �� ��� If f �a� � �� then the values
fx� for x close� but to the left of a� are smaller than fa�� and for x close� but
right of a� are greater than fa�� If f �a� � �� then the situation is opposite�

f �a� � � f �a� � �

Fig� � Fig� �

This means that there exists su�ciently small � � � depending on fx� and
on a�� such that when f �a� � �� for a � � � x � a we have fx� � fa�� and for
a � x � a� �� we have fx� � fa�� If� however� f �a� � �� then for a� � � x � a
we have fx� � fa�� and for a � x � a � �� we have fx� � fa� see graphs of
fx� on Figs� � and ���

The proof is quite easy� We know by Bezout�s theorem that the polynomial
fx�� fa� is divisible by x� a� Therefore

� � fx� � fa� � x� a�gx� a��

where the coe�cients of the polynomial gx� a� depend on a� For x � a the poly�
nomial gx� a� takes the value f �a� this was just our de�nition of the derivative
of a polynomial� see formula ��� of Chapter II�� By the assumption� f �a� �� ��
and so ga� a� � f �a� �� �� Denote by � an arbitrary number� smaller than the
distance from a to the nearest root of the polynomial gx� a� here� a is �xed and
x is the unknown�� so that the polynomial gx� a� does not vanish on the segment
�a� �� a� ��� Then it preserves the same sign on this segment as it has for x � a� if
it acquired two values of opposite signs� then by Bolzano�s theorem it would vanish



		 I� R� Shafarevich

somewhere inside the segment� which would contradict the choice of the number ��
This contains in fact the assertion of Theorem �� Let� for example� f �a� � ��
Then ga� a� � f �a� � �� too� and according to what was said� gx� a� � � for
a�� � x � a��� The other factor x�a in formula � � also behaves in the known
way� x � a � � for a � � � x � a and x � a � � for a � x � a � �� Multiplying�
we obtain from formula � � that fx� � fa� � � for a � � � x � a � � and
fx�� fa� � � for a � x � a� �� This is really the assertion of the theorem� The
case f �a� � � is treated completely analogously�

The theorem we have just proved has an interesting corollary�

THEOREM 
� Rolle�s theorem� Between two adjacent roots of a polynomial�
not having multiple roots� there is always a root of its derivative�

We assume that our polynomial does not have multiple roots only to make
argument shorter� Anyway� this will be the only case that we shall need later�

f ��� � �� f ��� � � � impossible f �a� � �� f ��� � � � possible

Fig� � Fig� �

Let � and �� � � �� be two adjacent roots of the polynomial fx�� so it has
no roots lying between them� Since we have assumed that the polynomial has no
multiple roots� � and � are not multiple roots and by Theorem � of Chapter II�
f ��� �� �� f ��� �� �� Let� for example� f ��� � �� Let us prove that then f ��� � ��
Really� if f ��� � �� then by the preceding theorem we would have fx� � f�� � �
for � � � � x � � and fy� � f�� � � for � � � � y � �� Then� for arbitrary
x satisfying � � � � x � � and for arbitrary y� satisfying � � � � y � �� we
would have fx� � � and fy� � �� Then Bolzano�s theorem would imply that the
polynomial f had a root lying between x and y� i�e�� in the segment ��� ��� But this
would contradict the fact that � and �� as we assumed� were adjacent roots of the
polynomial fx�� We see that there remains the only possibility that f ��� � ��
but then by Bolzano�s theorem the polynomial f �x� has a root between � and ��
On Figs� � and � an impossible and a possible case of signs for f ��� if f ��� � ��
are demonstrated� The case when f ��� � � can be considered literally in the same
way�

At the end of this Section we shall show that the theorems we have proved
are already su�cient to solve completely the question about the number of roots
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for a polynomial of the third degree� In Section � of Chapter II we saw that each
equation of the third degree can be replaced by an equivalent equation of the form
x� � ax� b � �� We shall investigate such a form in the sequel�

First of all let us solve the question about multiple roots� We proved in section
	 of Chapter II that multiple roots of a polynomial are in fact joint roots of the
polynomial and its derivative� According to formula ��� of Section II� for the
polynomial fx� � x� � ax� b the derivative is equal to f �x� � �x� � a� If a � ��
then the derivative has no roots and this means that the polynomial fx� has no
multiple roots� If a � �� then denote by 
 the positive root of the polynomial
�x� � a i�e�� 
 �

p
�a���� Then the polynomial fx� can have as a multiple root

only one of the numbers 
 or �
� Since the polynomial fx� can be written in the
form fx� � x� � a�x� b and for x � 

� x� � �a�� and x� � a � 	a��� then the
condition that fx� has a multiple root takes the form 

 �a

�
� �b� i�e�� 
� �a

�
� b��

and since 
� � �a��� the condition becomes � �a
�

�	
� b�� i�e�� �a� � 	�b� � �� If

this condition is satis�ed� then the polynomial has a multiple root � and may be
represented in the form fx� � x � ���gx�� Here the polynomial gx� has to be
of the �rst degree which means that it has a single root �� Thus� the polynomial
fx� has two roots equal to �� and one root equal to ��

Consider now the remaining case when the polynomial fx� does not have
multiple roots� i�e�� �a� � 	�b� �� �� According to Corollary 	 of Theorem �� the
polynomial fx� has at least one root �� If it has another root �� then it must be
divisible by x � ��x � ��� i�e�� it has the form fx� � x� ��x � ��gx�� where
gx� is a polynomial of the �rst degree and therefore it has a root �� In such a way�
the polynomial fx� has three roots� �� � and �� It cannot have more than three
roots� We conclude that only two things can happen� either the polynomial fx�
has � root or the polynomial fx� has � roots� Our problem is to �nd out which of
the cases takes place for given coe�cients a and b��

Fig� �

Suppose that the polynomial fx� has three roots� �� � and �� where � � � �
�� This means that the polynomial does not have roots smaller than � and larger
than �� But according to Corollary � of Theorem � there exists a number N such
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that for x large enough more precisely� for x � N�� the values of the polynomial
have the same sign as the values of the leading term x��i�e�� they are positive� and
for x � �N they are negative� for the same reason� Hence� for x � � it is always
fx� � �� and for x � � it is always fx� � � Fig� ���

Since we have fx� � � for � � � � x � � and arbitrary � � �� according to
Theorem �� f ��� � � and so fx� � � for � � x � �� �� Since fx� has no roots
between � and �� by Bolzano�s theorem its values are of the �xed sign� so fx� � �
for � � x � �� Analogously� we obtain that fx� � � for � � x � �� According to
Theorem �� between the roots � and �� and also between the roots � and �� there
is a root of the derivative f �x� of the polynomial fx�� Since f �x� � �x� � a�
for a � � the derivative has no roots and such a case existence of three roots
of the polynomial fx�� is impossible� For a � �� fx� � x� � b� As we have
seen earlier� such a polynomial has only one root� Finally� if a � �� the derivative
f �x� � �x� � a has two roots� 
 � � and �
 � � here� 
 �

p
�a���� Obviously�

� � �
 � � � 
 � ��

Since the polynomial takes positive values on the interval �� ��� and negative
values on the interval �� ��� we have

	�� f�
� � �� f
� � �

under the preposition that the polynomial fx� has three roots��

Conversely� if conditions 	�� are satis�ed� then by Bolzano�s theorem the
polynomial fx� has a root lying between �
 and 
� Denote this root by �� Besides�
according to Corollary � of Theorem �� for x su�ciently large� the polynomial
takes positive values� and for x su�ciently small it takes negative values� Bolzano�s
theorem implies then that the polynomial has a root smaller than �
� and also a
root greater than 
� Denote these roots by � and �� respectively� Thus� conditions
	�� imply that the polynomial has � roots� �� � and �� In other words� conditions
	�� are necessary and su�cient for the polynomial fx� to have � roots� In all
other cases it has � root�

The assertions we have just proved solve our problem� We will only transform
conditions 	�� into a simpler form� Since fx� � x� � a�x � b and �
� � a � ��

� � �a��� we have f

� � 
� � a�

� � b � 

 �a

�
� b and so conditions 	��

acquire the form

�	a

�

 � b � ��

	a

�

 � b � ��

i�e��
	a

�

 � b � �	a

�

� These inequalities are equivalent to just one� b� �

�a�

��

��

Since
�a�

��

� � � �a�

	�b�
� conditions 	�� are equivalent to the inequality �a��	�b� �

�� This is in fact the �nal answer� if �a��	�b� � �� then the polynomial x��ax�b
has � roots� if �a� � 	�b� � �� it has two equal roots and one other root� and if
�a� � 	�b� � �� then it has only � root�

Clearly� all that has been said applies only to a polynomial of the third degree�
For polynomials of arbitrary degrees analogous investigations can be done� but
arguments are a bit more complicated� so we shall leave them for the Appendix�



Selected chapters from algebra 	�

Problems

�� We proved at the end of Chapter I that the polynomial x� � �x� ���x� �
has no rational roots� so its roots�if they exist�are irrational numbers� Determine
the number of roots of this polynomial� their signs and also� for each of the roots�
two consecutive integers such that this root is lying between them�

�� Prove that the polynomial x� � ax � b either has no roots� or it has two
roots and �nd conditions on coe�cients a and b� such that the �rst or the latter
case takes place�

�� Prove that the number of roots of a polynomial of even degree is even and
of odd degree is odd�

�� Prove that the polynomial xn� ax� b� for n even� has � or 	 roots� and for
n odd�� or �� Determine conditions on coe�cients a and b� such that the �rst or
the latter case takes place�

�� Determine the number of roots of the polynomial xn�axn���b depending
on n� a and b��

	� Prove that each polynomial fx� takes arbitrarily large values by absolute
value�� for su�ciently large values of x by absolute value��


� Prove that as a bound of roots N the number
M

janj � � can be taken�

where M is the largest of the numbers ja�j� � � � � jan��j� Hint� Use the inequality
ja� � � � �� an��z

n��j �M� � jzj� � � �� jzjn��
�� Prove that the polynomial fx� � a� � a�x � � � � � an��x

n�� � anx
n�

where an � �� ai � � for i � �� � � � � n � �� a� � �� has exactly one positive root�

Hint� Write fx� in the form anx
n

�
� �

an��
anx

� � � �� a�
anxn

�
and �nd whether the

expressions
an�k
anxn

increase or decrease when x increases� remaining positive�

� Let a polynomial fx� have all the coe�cients at even powers of x equal
to �� and all the coe�cients at odd powers positive� Prove that it has a unique
root�

APPENDIX

Sturm�s Theorem

We shall present now a method allowing to determine for each polynomial fx�
the number of its roots lying in a given segment �a� b��

The idea of the method is based on the fact that� although for a single polyno�
mial fx� there is no simple method which could connect its properties with some
properties of polynomials with smaller degree� for a pair of polynomials fx�� gx�
such a method is well known� it consists of divison with remainder of the polynomi�
al fx� by gx�� fx� � gx�qx� � rx�� and passing from the pair of polynomials
f� g� to the pair of polynomials g� r�� Repeating this process leads us to the al�
gorithm of Euclid for �nding the greatest common divisor of polynomials f and g�
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For example� the question of the existence of common roots of polynomials f and
g can be reduced to the question of the existence of common roots of the polyno�
mials of smaller degree g and r and� as a result� to the question of the existence of
roots of the polynomial of smaller degree g� c� d�f� g�� The method can be applied
to the case of the pair of a polynomial and its derivative and then we obtain the
answer to the question of the existence of multiple roots of the polynomial� That is
how we proceeded in Chapter II� and we shall also proceed like that now� we shall
�rst consider a certain property of roots of the pair of polynomials f� g�� which
can be treated using division with remainder� Applying then this property to the
pair consisting of a polynomial and its derivative� we shall �nd the answer to our
question�

Let us start with a simple observation� related to a single polynomial F x��
Let x � � be its root and let this root have the multiplicity k� Then we can write
down by the de�nition of the multiplicity of roots� given in Section 	 of Chapter II�

�� F x� � x� ��kGx��

where G�� �� �� Thus� if a number � is smaller than the distance from � to the
nearest root of the polynomial Gx�� then Gx� takes the values of the same sign
in the segment �� � �� �� ��� Really� if for any two numbers x and y lying in this
segment the polynomial G had values Gx� and Gy� of opposite signs� then� by
Bolzano�s theorem� there would exist a root of the polynomial between x and y�
But this would contradict the way how � had been chosen�that there had been no
root of the polynomial G lying in the segment ��� �� �� ��� In particular� all the
values of the polynomial Gx� for x in the segment ����� ���� have the same sign
as G��� Formula �� implies now that if multiplicity k is even� then the values of
the polynomial F x� for x lying in the segment ��� �� �� �� have the same sign as
G��� The graph could be situated as in Fig� ��

G�� � � G�� � �
Fig� �

If� on the other hand� the multiplicity k is odd� then for G�� � � we have
F x� � � for ��� � x � � and F x� � � for � � x � ���� and for G�� � ��the
opposite� F x� � � for � � � � x � � and F x� � � for � � x � � � �� In the
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former case i�e�� for G�� � �� � is a root with increasing� and in the latter for
G�� � ���root with decreasing� Possible graphs of the polynomial F x� in both
cases are displayed in Fig� 	�

G�� � � G�� � �
Fig� �

DEFINITION� Let F x� be a polynomial having as roots neither a nor b� Char�
acteristics of the polynomial F x� on the segment �a� b� is the di
erence between
the number of its roots with increasing and the roots with decreasing� lying in that
segment� Here� roots having even multiplicity are not counted� The characteristics
is denoted by �F x��ba� For example� the polynomial represented in Fig� � has �
roots with increasing and 	 roots with decreasing� so we have �F �b

a
� ��

Fig� �

Since after each root with increasing there must follow a root with decreasing
roots with even multiplicity do not count�� the characteristics is determined by
the signs of numbers F a� and F b�� namely�

�F x��ba � � if F a� and F b� are of the same sign

�F x��ba � � if F a� � �� F b� � �

�F x��ba � �� if F a� � �� F b� � �

Table �
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Thus� the characteristics of the polynomial F x� on the given segment is de�
termined by its signs at the endpoints of the segment and so it can be evaluated
easily� although by the de�nition it is connected with its roots which are ususally
hard to �nd�

Our situation can be visually demonstrated as if a passenger is travelling�
crossing several times the border between two states� say France and Germany�
What is the di
erence between the number of crossings the border from France to
Germany and from Germany to France� Obviously� it is equal to � if the passenger
started and �nished his travel in the same state� it is equal to � if he started in
France and �nished in Germany and to �� if he started in Germany and �nished in
France� His itinerary can be demonstrated as a line similar to the graph in Fig� ��
where France is the area below the x�axis and Germany is above�

Consider now two polynomials� f and g� and assume that� �rst of all� they
have no common roots� and� secondly� that the former i�e�� f� does not vanish at
x � a� nor at x � b� The characteristics of the polynomial f with respect to the
polynomial g on the segment �a� b� is the di
erence between the number of roots of
the polynomial f contained in the segment �a� b� and being roots with increasing of
the polynomial fg and the number of its roots being roots with decreasing for fg�
The characteristics is denoted by f� g�b

a
�

The main example� which was the reason to introduce this notion is given by
the following proposition�

THEOREM �� If a polynomial fx� has no multiple roots and neither it nor
its derivative vanishes at the endpoints a and b of the segment �a� b�� then the
characteristics f� f ��ba is equal to the number of roots of the polynomial f contained
in the segment �a� b��

The theorem is an easy consequence of Corollary of Theorem �� Section �� We
simply state that all the roots of the polynomial fx� are roots with increasing of the
polynomial ff �� Really� according to Theorem � of Chapter II� the polynomials f
and f � have no common roots� If � is a root of the polynomial fx� with f ��� � ��
then according to Theorem � of Section � � is a root with increasing for fx�� and
so also for fx�f �x�� since f �x� � � in a neighbourhood of �� If� on the other
hand� f ��� � �� then � is a root with decreasing for fx�� and so again a root with
increasing for fx�f �x�� since f �x� � � in a neighbourhood of ��

The characteristics f� g�ba is in fact an expression which can be evaluated using
division with remainder� Note �rst the following simple properties�

a� f��g� � �f� g��
This is obvious since when multiplying the polynomial g by ��� the roots with

increasing and the roots with decreasing of the polynomial fg interchange�

b� If ga� �� � and gb� �� �� then f� g�ba � g� f�ba � �fg�ba�

This is also obvious since� by the assumption� the polynomials f and g have
no common roots� Hence� the roots of the polynomial fg split into the roots of the
polynomial f and those of the polynomial g� The number of roots with increasing
and similarly for roots with decreasing� of the polynomial fg is equal to the sum
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of the numbers of such roots of the polynomial f and of the polynomial g� which
gives us the equality b��

c� If polynomials g and h take the same values at the roots of a polynomial f
i�e�� if g�� � h�� whenever f�� � ��� then

f� g�ba � f� h�ba�

Really� if g�� � h��� then a root � of the polynomial fx� is at the same
time a root with increasing decreasing� for the polynomials fg and fh�

d� If a polynomial f is divisible by a polynomial g� then

f� g�b
a
� �fg�b

a
�

Really� the polynomial g has no roots� since its roots would be common roots
for the polynomials f and g� Therefore� g� f�b

a
� � and from the property b� it

follows that f� g�ba � �fg�ba�

We shall describe now the process of evaluating the characteristics f� g�b
a
�

Divide f by g with remainder�

	� f � gq � r�

According to property b�� we have f� g�ba � �g� f�ba��fg�ba� On the other hand� it
follows from relation 	� that f�� � r�� whenever g�� � �� Hence� by property
c� we obtain that f� g�ba � g� r�ba� The obtained equalities together show that

�� f� g�ba � �g� r�ba � �fg�ba�

As a matter of fact� relation �� solves our problem� since it reduces the evaluation
of the characteristics f� g�b

a
to the evaluation of the characteristics g� r�b

a
for the

polynomials g and r of smaller degree� because the expression �fg�ba is determined
by the values of the polynomials f and g at the endpoints a and b of the segment
�a� b� see Table ���

Our process of passing from the pair f� g� to a pair of polynomials with smaller
degree is the same as in the process of determining the greatest common divisor
of the polynomials f and g� In such a case the characteristics is determined by
property d��

We intend to improve our result in two directions� Firstly� we shall present
in a uni�ed form the �nal answer which can be obtained after passing from the
pair f� g� to g� r� and then executing all the divisions in the consecutive steps
of the Euclid�s algorithm� Secondly� our inductive reasoning needs that conditions
imposed on the polynomials f and g fa� �� �� fb� �� �� are then imposed to
the polynomials g� r etc� We shall show how one can get rid of these additional
restrictions�

First of all� we shall transform a bit the answer we have obtained formula ����
We start with changing the notation� The polynomial f will be denoted by f�� g by
f� and �r by f�� Taking into account condition a� of the characteristics� formula
�� obtains the form

�� f�� f��
b

a � f�� f��
b

a � �f�f��
b

a�
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and the formula of division with remainder formula 	�� the form

f� � f�q� � f�

we have denoted here q by q��� Now it is clear how to apply formula ��� reducing
degrees of polynomials considered� Starting from f� and f� de�ne polynomials fi
by induction�

�� fi�� � fiqi�� � fi���

where the degree of fi�� is smaller than the degree of fi assuming that fi�� and
fi are already de�ned�� Clearly� fi�� are just those plynomials which appear as re�
mainders in the Euclid�s algorithm� only with the changed signs� After several steps
we come to a polynomial fk� di
ering eventually only by sign with the gcdf�� f���

Applying formula �� to f� and f� instead to f� and f�� we obtain that
f�� f��

b
a � f�� f��

b
a � �f�f��

b
a� Substituting this value for f�� f��

b
a into formula

��� we get

f�� f��
b

a � f�� f��
b

a � �f�f��
b

a � �f�f��
b

a�

Repeating this process k times and noting that �fkfk���
b
a
� � as a result we obtain�

�� f�� f��
b

a
� �f�f��

b

a
� �f�f��

b

a
� � � �� �fk��fk�

b

a
�

However� in order that we have the right to apply formula ��� we have to assume
that fia� �� �� fib� �� � for all i � �� 	� � � � � k�

Consider carefully the expression �fg�ba which can be evaluated using Table �
for F � fg� In our case it can be rewritten as

�fg�ba �

��	
�


�� if fa�ga� � � and fb�gb� � �� or fa�ga� � � and fb�gb� � ��

�� if fa�ga� � � and fb�gb� � ��

��� if fa�ga� � � and fb�gb� � ��

Table �

If two numbers A and B� distinct from �� are given� then one says that in the
pair A�B� there exists one change of sign if A and B are of opposite signs� and
that there is no change of sign if they are of the same sign� Using this terminology�
one can reformulate information of Table 	� denoting by n the number of changes
of sign in the pair fa�� fb�� and by m the number of changes of sign in the pair
fb�� gb��� Table 	 obtains the form�

�fg�ba m n

� � �

� � �

� � �

�� � �

We see that in all the cases we have �fg�ba � m� n�
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We shall apply now the last remark to formula ��� Denote by mi the number
of changes of sign in the pair fia�� fi��a��� and by ni the number of changes
of sign in the pair fib�� fi��b��� As a consequence of the remark� formula ��
obtains the form

�� f�� f��
b

a
� m� � n� �m� � n� � � � ��mk � nk�

What is the meaning of the number m� �m� � � � � �mk� One has just to write
down the numbers f�a�� f�a�� � � � � fka� and �nd out how many changes of sign
are there in this sequence�the number of these changes will be m��m�� � � ��mk�
In general� if a sequnce of numbers A�� � � � � Ak� distinct from �� is given� then by
the number of changes of sign in this sequence� we shall mean the number of places
where numbers of opposite signs stay� For example� in the sequence �� ��� 	� �� ��
�	 there are � changes of sign� We can say that m��m�� � � ��mk is the number of
changes of sign in the sequence f�a�� f�a�� � � � � fka�� and that n��n�� � � ��nk
is the number of changes of sign in the sequence f�b�� f�b�� � � � � fkb�� Formula
�� can be interpreted now in the following way�

THEOREM �� If none of the terms f�� � � � � fk of Sturms sequence of poly�
nomials f�� f� vanishes� either in a� or in b� and the polynomials f�� f� have no
common roots� then the characteristics f� g�ba is equal to the di�erence between the
numbers of changes of sign in the sequences of values of polynomials in Sturms
sequence at the points a and b�

We have now to get rid of the restrictions fia� �� �� fib� �� � for i � �� � � � � k�
which can be uncomfortable in applications� we shall assume just that f�a� �� �
and f�b� �� �� In order to do that we have to generalize a bit the notion of the
number of changes of sign� If some of the terms in the sequence A�� � � � � Ak are
equal to �� then the number of changes of sign in it is de�ned as the number of
changes of sign in the sequence which is obtained by deleting all the zeros in the
given sequence� For example� deleting zeros in the sequence �� �� 	� ��� �� �� �� the
sequence �� 	� ��� �� � is obtained� and the latter has two changes of sign� Hence�
the given sequence has two changes of sign� by de�nition�

Denote now by � the distance from a to the nearest root distinct from a� of
any of the polynomials fix�� Thus� fix� �� � for a � x � a� �� Choose any such
value a�� a � a� � a� �� A value b� is chosen analogously� Let us state a lemma�

LEMMA� The number of changes of sign in the sequence f�a�� � � � � fka� is
equal to the number of changes of sign in the sequence f�a

��� � � � � fka
��� The

same is true when a and a� are replaced by b and b��

First of all� let us show that the Lemma can really help us to extend Theorem 	
to arbitrary polynomials f�� f� with the only conditions that f�a� �� �� f�b� �� �
and that f� and f� have no common roots�

Really� by the assumption� the polynomial f� has no roots in the segments
�a� a�� and �b�� b�� Hence� all of its roots contained in the segment �a� b�� are already

contained in the segment �a�� b��� Therefore� f�� f��
b
a � f�� f��

b
�

a�
� Theorem 	 can

now be applied to the characteristics f�� f��
b
�

a�
� The number of changes of sign in
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the sequence f�a
��� � � � � fka

��� as well as in the sequence f�b
��� � � � � fkb

��� is
determined by the Lemma� Thus� we obtain the wanted result�

THEOREM �� If polynomials f� and f� have no common roots� f�a� �� � and
f�b� �� �� then the characteristics f�� f��

b
a
is equal to the di�erence between the

numbers of changes of sign in the sequence f�a�� � � � � fka� and in the sequence
f�b�� � � � � fkb�� where f�x�� � � � � fkx� is Sturms sequence corresponding to the
pair of polynomials f�� f��

We shall show now that the Lemma is valid� Consider� for example� the value
x � a� Suppose that fia� � � for some i � �� � � � � k� By the assumption� i �� �
since f�a� �� �� Also� i �� k since the polynomial fkx� can di
er from gcdf�� f��
only by sign and so it is a number distinct from �� Note that then fi��a� �� �
and fi��a� �� �� Really� if we had� for example� fia� � �� fi��a� � �� then it
would follow from formula �� that fi��a� � �� In exactly the same way� this
would imply that fi��a� � � etc�� and �nally f�a� � �� which would contradict
the original assumption� But we can say even more�not only that the numbers
fi��a� and fi��a� are distinct from �� but they have opposite signs�it follows
immediately by substituting x � a into equality �� and taking into account the
assumption that fia� � ��

Compare now the sequences f�a�� � � � � fka� and f�a
��� � � � � fka

��� Let
fia� � �� Then� as we have seen� fi��a� �� � and fi��a� �� �� and fi��a�
and fi��a� have opposite signs� But then fi��a

�� �� � and fi��a
�� �� �� and

fi��a
�� has the same sign as fi��a�� while fi��a

�� has the same sign as fi��a��
This follows from the fact that the polynomials fi�� and fi�� have no roots in the
segment �a� a��� and so by Bolzano�s theorem� they can have no values of opposite
signs� Write down the respective parts of our sequences� Suppose that fi��a� � ��
Then we obtain the following table�

fi��x� fix� fi��x�

x � a � � �
x � a� � � �

The characteristics f�� f��
b
�

a�
depends on the number of changes of sign in the lowest

row� But we see that it coincides with the number of changes of sign in the row
above it�whatever the unkown sign� denoted by �� is� there will be exactly one
change of sign in each of the rows� The case when fi��a� � � can be treated
exactly in the same way� The Lemma is proved�

Combining Theorem � with Theorem � we obtain the basic result�

THEOREM �� Sturm�s Theorem� If a polynomial fx� has no multiple roots
and does not vanish for x � a and x � b� then the number of its roots in the segment
�a� b� is equal to the di�erence between the number of changes of sign of the values
of polynomials in the Sturms sequence� formed for the polynomials fx� and f �x�
at x � a and x � b�
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One has only to note that the lack of multiple roots of the polynomial fx� is
equivalent to the lack of common roots of the polynomials fx� and f �x��this is
just the assertion of Theorem � of Chapter II� Therefore we can apply Theorem �
to the polynomial fx� and then Theorem � to the pair of polynomials fx� and
f �x��

Sturm�s theorem gives a possibility to answer the basic questions about dis�
tribution of roots of a polynomial� First of all� using the theorem� the number of
roots can be determined� In order to do that� it is enough to remember Theorem �
of Section �� which indicates a number N such that all the roots of the polynomial
lie between �N and N � After that it is su�cient to apply Sturm�s theorem to the
segment ��N�N �� However� it is remarkable that in order to determine the number
of roots it is neither necessary to evaluate the number N using Theorem ��� nor
to evaluate the values of polynomials in Sturm�s sequence for x � �N and x � N �
Really� for applying Sturm�s theorem it is not necessary to know the values fi
N�
themselves� but only their signs� That is why it is su�cient to choose a number N
large enough� such that the segment ��N�N � contains not only all the roots of the
polynomial f�x�� but also all the roots of all the polynomials fix� of the Sturm�s
sequence i�e�� we can choose a respective number Ni for each polynomial fix� and
take for N the largest of them�� According to Corollary � of Theorem �� Section ��
the sign of the value fiN�� resp� fi�N�� coincides with the sign of the leading
term of the polynomial fix� for x � N � resp� x � �N � They are determined by
the sign of the leading coe�cient of the polynomial fix� and by the parity of its
degree� Therefore� there is no need to evaluate N and the values fiN� and fi�N��

When the number of roots is determined� it is possible to indicate segments�
each of which contains exactly one root� In order to do that it is already necessary
to evaluate the number N � indicated in Theorem � of Section �� After that the
segment ��N�N � is divided into two equal parts and using Sturm�s theorem the
number of roots in each part is found� Then the same is done with the segments
��N� �� and ��� N � and the process is continued till each of the segments contains
only one root�

If it is known that a segment �a� b� contains exactly one root of the polynomial
fx� and the polynomial has no multiple roots� then the values fa� and fb� must
be of opposite signs� Really� if the root is equal to �� then� according to Theorem
� of Section �� for � small enough� the values f�� �� and f�� �� have the same
sign� But f���� and fa� have to be of the same sign�otherwise the polynomial
would have one more root in the segment ����� ��� The same is true for the values
f� � �� and fb�� Thus� fa� has the same sign as f� � ��� fb� the same as
f����� and f���� and f���� have opposite signs� Hence� fa� and fb� have
opposite signs� Knowing that� it is possible to evaluate the root � with arbitrary
level of accuracy� It is su�cient to divide the segment �a� b� into two parts by a
point c and evaluate fc�� Either fa� and fc�� or fc� and fb� have opposite
signs� In the former case � is contained in the segment �a� c�� and in the latter�in
the segment �c� b�� After that we continue the process with the segment containing �
until we include � in a segment of arbitrary small length� This means that we have
evaluated it with arbitrary level of accuracy�
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Consider� for example� the polynomial fx� � x� � �x � �� Applying the
criterion from Section �� we have to evaluate the expression �a��	�b� � � �	��	��
Since it is positive� the polynomial has one root� Applying Theorem � of Section ��
we �nd the value N � �� Therefore� the root is contained between �� and ��
where f��� � �� f�� � �� Since f�� � �� the root is contained between �
and �� Since f�� � � and f	� � ��� the root is contained between � and �� In
order to �nd its �rst decimal� we have to determine in which of the �� segments
between � and �!��� �!�� and 	!��� � � � �  !�� and �� it lies� Put �rst x � ��	�
then fx� � ���� Since f�� and f��	� are of opposite signs� the root is contained
between � and �!	� Put now x � ����� Since f �

��
� � �	

����
� �

��
�� � �	

����
� �

��
� ��

the root is contained between �!�� and �!��� Finally� f �

��
� � 
�

����
� ��

��
� � � ��

Hence� the root lies between �!�� and �!�� and it has the form � � ��� � � � �

Since Sturm�s theorem has an elegant formulation and a lot of applications�
it became widely known immediately after it had been proved� Jacques Sturm� a
French mathematician who had proved it� when teaching about the theorem in his
lectures� used to say� �Now I will prove a theorem� the name of which I have the
honor to bare��

Problems

�� Construct Sturm�s sequence for the polynomials fx� and f �x� if fx� �
x�� ax� b or fx� � x�� ax� b� Using Sturm�s theorem deduce again the results
about the numbers of roots of these polynomials� obtained already at the end of
Section �� Hint� In the case of fx� � x� � ax � b consider separately di
erent
cases of possible signs for a and D � �a� � 	�b��

�� Determine� using Sturm�s theorem� the number of roots of the polynomial
xn � ax� b� depending on n more precisely� on its parity�� a and b�

�� Find the number of roots of the polynomial x� � �ax� � �a�x � 	b� Hint�
The answer depends on the sign of the expression a� � b��

�� Let a be a root of the derivative f �x� of a polynomial fx�� Put f�x� �
fx�� f�x� � f �x��x�a�� Let fx� has no multiple roots� and f�x�� � � � � fkx� is
Sturm�s sequence for the polynomials f�x� and f�x�� Express the number of roots
of the polynomial fx� in terms of the number of changes of sign in the sequences
fiN�� fia� and fi�N�� i � �� � � � � k where N is a su�ciently large number�

�� Let two polynomials f� and f� be given� with degrees n and n� �� respec�
tively� and suppose that in their Sturm�s sequence the degree of the polynomial
fix� is n� i� � and its leading coe�cient is positive� Prove that the polynomial
f�x� has n roots� Moreover� each of the polynomials fix� has n� i�� roots� and
between each two adjacent roots of the polynomial fix� there lies a root of the
polynomial fi��x��

	� Let a polynomial fx� of degree n has n roots� Prove that in the Sturm�s
sequence for the polynomials f and f �� each polynomial has the degree which
is smaller exactly by � than the degree of the previous one� and all the leading
coe�cients are positive� Prove that these conditions are su�cient in order that a
polynomial of degree n has n roots�
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