Hideyuki Motsumura,

Professor of Mathematics at Nagoya University, received his graduate training
at Kyoto University and was awarded his Ph.D. in 1959. Formerly Associate
Professor of Mathematics at this university, Professor Matsumura was a-- e
research associate at the University of Pisa during 1962 and 1963. He was also
Visiting Associate Professor at the University of Chicago (1962), at Johns
Hopkins University (1963), at Columbia University (1966-1967), and at

Brandeis University (1967-1968).

The author spent 1973 and 1974 as Visiting Professor at the University of
Pennsylvania, 1974 and 1975 as Visiting Professor at the Politecnic of Torino,
and 1977 as Visiting Professor at the University of MUnster.

Commutative Algebra

This book, based on the author’s lectures at Brandeis University in 1967 and
1968, is designed for use as a textbook on commutative algebra by students of
modern algebraic geometry or abstract algebra.

Part | is devoted to basic concepts such as dimension, depth, normal rings, and
regular local rings; Part Il deals with the finer structure theory of noetherian
rings initiated by Zariski and developed by Nagata and Grothendieck.

In this second edition, the chapter on Depth has been completely rewritten. . ,
There is also a new Appendix consisting of several sections, which are almost
independent of each other. The Appendix has two purposes: to prove the '
theorems used but not proved in the text; to record some of the recent
achievements in the areos connected with Part il

For specialists in commutative algebra, this book will serve as an introduction
1o the more difficult and detailed books of Nagata and Grothendieck.
To geometers, it will be a convenient handbook of algebra.

Review of the First Edition:
“This is an excellent book which contains a wealth of material...Part I, for
which the prerequisites are minimal, develops the main concepts, centralto
modern commutative algebra...Part Il is considerably more advanced..”

— American Mathematical Monthly

The Benjamin/Cummings Publishing Company
Advanced Book Program

RINUWINS]RI

NOLLIIA ANOD3S

RIGIS[ Y SAITRINWIIOY)

S3143S 310N 3HNLO3I

SOILYWIHIVIN

A
4
>

a
40834,
3 4
San

MATHEMATICS LECTURE NOTE SERuIL

Commutative Algel
SECOND EDITION

Hideyuki Matsumura

NANG

e <N
: NAL
: )
’ QA * PROOQ
‘ 251 . 3 £ liENJAMIN/CUMMINGS PUBLISHING COMP.
«' : M37 Advanced Book Program
1Q9n



MATHEMATICS LECTURE NOTE SERIES MATHEMATICS LECTURE NOTE SERIES (continued)

0-8053-2367-8

Volumes of the Series published from 1961 to 1973 are not officially ISBN
numbered. The parenthetical numbers shown are designed to aid librarians 0-8053-2420-8  (28) R. Ellis Lectures on Topological Dy-
and bibliographers to check the completeness of their holdi 0-8053-2421-6 namics, 1969
P P ngs. 0-8053-2570-0 (29) J. Fogarty Invariant Theory, 1969
ISBN 0-8053-2571-9
0-8053-3080-1 (30) William Fulton Algebraic Curves: An Introduction
0-8053-5801-3 (1) S. Lang Algebraic Functions, 1965 0-8053-3081-X to Algebraic Geometry, 1969
0-8053-8703-X (2) 1. Serre Lic Algebras and Lie Groups, (5th printing, with
1965 (3rd printing, with cor- corrections, 1978)
rections, 1974) 0-8053-3552-8 (31) M. J. Greenberg Lectures on Forms in Many
0-8053-2327-9 (3 P.J.Cohen St Theory and the Continuum 0-8053-3553-6 Variables, 1969
Hypothesis, 1966 (4th printing 0-8053-3940-X (32) R. Hermann Fourier Analysis on Groups and
1977) ’ 0-8053-3941-8 Partial Wave Analysis, 1969
0-8053-5808-0 (4) S. Lang Rapport sur la cohomologie des 0-8053-4551-5 (33) J. F. P. Hudson Piecewise Linear Topology, 1969
0-8053-5809-9 groupes, 1966 0-8053-5212-0 (34) K. M. Kapp and Completely O-Simple Semi-
0-8053-8750-1 (5) J. Serre Algebres de Lie semi-simples 0-8053-5213-9 H. Schneider groups: An Abstract Treatment
0-8053-8751-X complexes, 1966 of the Lattice of Congruences, 1969
0-8053-0290-5 (6) E. Artin and Class Field Theory, 1967 (2nd 0-8053-5240-6  (35) J. B. Keller and Bifurcation Theory and Non-
0-8053-0291-3 J. Tate printing, 1974) 0-8053-5241-4 S. Antman, (eds.) linear Eigenvalue Problems, 1969
0-8053-0300-6  (7) M. F. Atiyah K-Theory, 1967 O. Loos Symmetric Spaces
0-8053-0301-4 0-8053-6620-2 (36) Volume 1. General Theory, 1969
0-8053-2434-3  (8) W. Feit Characters of Finite Groups, 0-8053-6621-0
0-8053-2435-6 1967 0-8053-6622-9 (37) Volume I1. Compact Spaces and
0-8053-3555-4  (9) Marvin J. Greenber. Lectures on Algebraic Topol 0-8053-6623-7 Classification, 1969
& 1966 (6th prinsing, OB 0-80537024-2  (38) H.Masumura  Commutative Algebra, 1970
with corrections 1'979) 0-8053-7025-0 (2nd Edition—cf. Vol. 56)
0-8053-3757-1  (10) Robin Hartshorne Foundations of P’roj ective 0-8053-7574-0  (39) A. Ogg Modular Forms and Dirichlet
Geometry, 1967 (3rd printing, 0-8053-7575-9 Series, 1969 .
1978) 0-8053-7812-X  (40) W. Parry Entropy and Generators in
0-8053-0660-9 (1) H.Bass  Algebraic K-Theory, 1968 0-8053-7813-8 Ergodic Theory, 1969
0-8053-0668-4  (12) M. Berger and Perspectives in Nonlinearity: 0-8053-8350-6 (41) W. Rudin Function Theory in Polydiscs, 1969
M. Berger An Introduction to Nonlinear 0-8053-8351-4 . .
Analysis, 1968 0-8053-9100-2 (42) S. Sternberg Celestial Mechanics Part I, 1969
0-8053-5208-2  (13) L. Kaplansky Rings of Operators, 1968 0-8033-9101-0
0-8053-5209-0 0-8053-9102-9  (43) S. Sternberg Celestial Mechanics Part I1, 1969
0-8053-6690-3 (1) L. G. MacDonald Algebraic Geometry: Introduc- 0-8053-9254-8  (44) M. E. Sweedler Hopf Algebras, 1969
0-8053-6691-1 tion to Schemes, 1968 0-8053-9255-6
0-8053-6698-9  (15) G. W. Mackey Induced Repres;ntaﬁon of 0-8053-3946-9  (45) R. Hermann Lectures in Mathematical Physics
0-8053-6699-7 Groups and Quantum Mechan- 0-8053-3947-7 Volume 1, 1970
ics. 1968 0-8053-3942-6  (46) R. Hermann Lie Algebras and Quantum
0-8053-7710-7  (16) R.S.Palais  Foundations of Global Non- Mechanics, 1970
0-8053-7711-5 linear Analysis, 1968 0-8053-8364-6  (47) D.L.Russell  Optimization Theory, 1970
0-8053-7818-9  (17) D. Passman Permutation Groups, 1968 0-8053-8365-4
0-8053-7819-7 0-8053-7080-3  (48) R. K. Miller Nonlinear Volterra Integral
0-8053-8725-0  (18) J.Serre Abelian LAdi : 0-8053-7081-1 Equations, 1971
and Ellipric Uc Representations 0-8053-1875-5  (49) J.L Challifour  Generalized Functions and Fourier
0-8053-0116-X  (19) J. F. Adams Lectures on Lic Gr;ups 1969 0-8053-1876-3 Analysis, 1972
0-8053-0550-5  (20) J. Barshay Topics in Ring Theory ‘1969 0-8053-3952-3  (50) R. Hermann Lectures in Mathematical Paysics
0-8053-1021-5  (21) A. Borel Linear Algebraic Groups, 1969 Volume I1, 1972 -
0-8053-1050-9  (22) R. Bott Lectures on K(X), 1969 0-8053-2342-2  (S51) I. Kra Automorphic Forms and Kleinian
0-8053-1430-X  (23) A. Browder Introduction to Function Al- 0-8053-2343-0 Groups, 1972
0-8053-1431-8 gebras, 1969 0-8053-8380-8 (52) G. E. Sacks Saturated Model Theory, 1972
G. Choquet Lect Analvsi - 0-8053-8381-6
i 1956‘)"“ on Analysis (3rd printing, 0-8053-3103-4  (53) A. M. Garsia Martingale Inequalities: Seminar
0-8053-6955-4  (24) Volume 1. Integrati Notes on Recent Progress, 1973
. on and
Topological V::tor Spaces, 1969 0-8053-5664-3  (54) T.Y.Lam The Algebraic Theory of Quadratic
0-8053-6957-0  (25) Volume II. chresemalion’Theory. 1969 0-8053-5666-5 Forms, 1973 (2nd printing, with
0-8053-6959-7  (26) Volume II1. Infinite Dimensional revisions, 1980)
Measures and Problem Solutions, 0-8053-6702-0 55 George W. Mackey Unitary Group Representations
1969 0-8053-6703-9 in Physics, Probability,
0-8053-2366-X  (27) E. Dyer Cohomology Theories, 1969 and Number Theory, 1978



MATHEMATICS LECTURE NOTE SERIES (continued)

ISBN
0-8053-7026-9 S6 Hideyuki Matsumura Commutative Algebra, Second
Edition, 1980
0-8053-0360-X Richard Bellman Analytic Number Theory: An

Introduction, 1980

Other volumes in preparation

COMMUTATIVE ALGEBRA

Second Edition

HIDEYUKI MATSUMURA

Nagoya University, Nagoya, Japan

<
k4
k>

1980
THE BENJAMIN/CUMMINGS PUBLISHING COMPANY, INC,
ADVANCED BOOK PROGRAM
Reading, Massachusetts

London . Amsterdam . Don Mills, Ontario - Sydney . Tokyo



Hideyuki Matsumura
Commutative Algebra

First Edition, 1969
Second Edition, 1980

Library of Congress Cataloging in Publication Data

Matsumura, Hideyuki, 1930-
Commutative algebra.

(Mathematics lecture note series ; 56)

Includes indexes.

1. Commutative algebra. 1. Title.
QA251.3.M37 1980 512°.24 80-11958
ISBN 0-8053-7026-9

Main body of the text reproduced by The Benjamin/Cummings Publishing
Company, Inc., Advanced Book Program, Reading, Massachusetts, from
camera-ready copy prepared by the author.

Copyright © 1980 by The Benjamin/Cummings Publishing Company, Inc.
Published simultaneously in Canada

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior written permission of the publisher, The Benjamin/
Cummings Publishing Company, Inc., Advanced Book Program, Reading,
Massachusetts 01867, U.S.A.

Manufactured in the United States of America

ABCDEFGHIJ-AL-89876543210

To my teacher, Yasuo Akizuki



Contents

Preface to the First Edition
Preface to the Second Edition
Conventions

PARTI

Chapter 1. ELEMENTARY RESULTS
1. General Rings
2. Noetherian Rings and Artinian Rings

Chapter 2. FLATNESS
3. Flatness
4. Faithful Flatness
5. Going-up Theorem and Going-down Theorem
6. Constructibe Sets

Chapter 3. ASSOCIATED PRIMES
7. Ass(M)
8. Primary Decomposition
9. Homomorphisms and Ass

Chapter 4. GRADED RINGS
10. Graded Rings and Modules
11. Artin-Rees Theorem

Chapter 5. DIMENSION
12. Dimension
13. Homomorphisms and Dimension
14. Finitely Generated Extensions

Chapter 6. DEPTH
15. M-regular Sequences
16. Cohen-Macaulay Rings

Chapter 7. NORMAL RINGS AND REGULAR RINGS
17. Classical Theory
18. Homological Theory
19. Unique Factorization

ix

xi
xiii
Xv

17
25
31
38

49
52
57

61
67

71
78
83

95
106

115
127
141



Chapter 8. FLATNESS Il
20. Local Criteria of Flatness
21. Fibres of Flat Morphisms
22. Theorem of Generic Flatness

Chapter 9. COMPLETION
23. Completion
24. Zariski Rings

PART II

Chapter 10. DERIVATION
25. Extension of a Ring by a Module
26. Derivations and Differentials
27. Separability

Chapter 11. FORMAL SMOOTHNESS
28. Formal Smoothness I
29. Jacobian Criteria
30. Formal Smoothness II

Chapter 12. NAGATA RINGS
31. Nagata Rings

Chapter 13. EXCELLENT RINGS
32. Closedness of Singular Locus
33. Formal Libres and G-Rings
34. Excellent Rings

APPENDIX
35. Eakin’s Theorem
36. A Flatness Theorem
37. Coefficient Rings
38. p-Basis

39, Cartier’s Equality and Geometric Regularity
40. Jacobian Criteria and Excellent Rings

41. Krull Rings and Marot’s Theorem
42. Kunz’ Theorems
43. Complement

Index
Index of Symbols

Contents

145
152
156

161
172

177
180
190

197
213
222

231

245
249
258

261
263
265
269
278
281
293
299
306

311
313

Preface

This book has evolved out of a graduate course in algebra I gave at Brandeis
University during the academic year of 1967-1968. At that time M. Auslander
taught algebraic geometry to the same group of students, and so I taught com-
mutative algebra for use in algebraic geometry. Teaching a course in geometry
and a course in commutative algebra in parallel seems to be a good way to intro-
duce students to algebraic geometry.

Part I is a self<ontained exposition of basis concepts such as flatness, dimen-
sion, depth, normal rings, and regular local rings.

Part II deals with the finer structure theory of noetherian rings, which was
initiated by Zariski (Sur la normalité analytique des variétés normales, Ann. Inst.
Fourier 2 1950) and developed by Nagata and Grothendieck. Our purpose is to
lead the reader as quickly as possible to Nagata’s theory of pseudo-geometric
rings (here called Nagata rings) and to Grothendieck’s theory of excellent rings.
The interested reader should advance to Nagata’s book LOCAL RINGS and to
Grothendieck’s EGA, Ch. IV.

The theory of multiplicity was omitted because one has little to add on this
subject to the lucid expositon of Serre’s lecture notes (Algebre locale. Multi-
plicité, Springer-Verlag).

Due to lack of space some important results on formal smoothness (espe-
cially its relation to flatness) had to be omitted also. For these, see EGA.

We assume that the reader is familiar with the elements of algebra (rings,
modules, and Galois theory) and of homological algebra (Tor and Ext). Also, it
is desirable but not indispensable to have some knowledge of scheme theory.

I thank my students at Brandeis, especially Robin Hur, for helpful comments.

Hideyuki Matsumura

Nagoya, Japan
November 1969
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Preface to the Second Edition

Nine years have passed since the publication of this book, during which time
it has been awarded the warm reception of students of algebra and algebraic
geometry in the United States, in Europe, as well as in Japan.

In this revised and enlarged edition, I have limited alternations on the origi-
nal text to the minimum. Only Ch. 6 has been completely rewritten, and the
other chapters have been left relatively untouched, with the exception of pages
37, 38,160, 176, 216, 252, 258, 259, 260.

On the other hand, I have added an Appendix consisting of several sections,
which are almost independent of each other. Its purpose is twofold: one is to
prove the theorems which were used but not proved in the text, namely Eakin’s
theorem, Cohen’s existence theorem of coefficient rings for complete local rings
of unequal characteristic, and Nagata’s Jacobian criterion for formal power series
rings. The other is to record some of the recent achievements in the area con-
nected with PART II. They include Faltings’ simple proof of formal smoothness
of the geometrically regular local rings, Marot’s theorem on Nagata rings, my
theory on excellence of rings with enough derivations in characteristic 0, and
Kunz’ theorems on regularity and excellence of rings of characteristic p.

I should like to record my gratitude to my former students M. Mizutani and
M. Nomura, who read this book carefully and proved Th.101 and Th.99.

Hideyuki Matsumura

Nagoya, Japan
December 1979
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Conventions

. All rings and algebras are tacitly assumed to be commutative with unit
element.

. If F: A B is a homomorphism of rings and if I is an ideal of B, then the ideal
f71(I) is denoted by INA.

. € means proper inclusion.

. We sometimes use the old-fashioned notation I = (@, ..., ay) for an ideal I
generated by the elements a;. .

. By a finite A-module we mean a finitely generated A-module. By a finite
A-algebra, we mean an algebra which is a finite A-module. By an A-algebra of
finite type, we mean an algebra which is finitely generated as a ring over the
canonical image of A.

XV



PART ONE

CHAPTER 1, ELEMENTARY RESULTS

In this chapter we give some basic definitions,
and some elementary results which are mostly
well~known.

1. General Rings

(1.4) Let A be a ring and @i an ideal of A. Then the set
of elements x in A some powers of which lie in 0L is an ideal
of A, called the radical of O

An ideal p is called a prime ideal of A if A/p is an
integral domain ; in other words, if pP#A and if A - p is
closed under multiplication. If p is prime, and if oz and &
are ideals not contained in p, then & & p,

An ideal ¢ is called primary if ¢ # A and if the only
zero divisors of A/q are nilpotent elements, i.e. Xy € q,
x ¢ ¢ implies yne q for some n. If ¢ is primary then its
radical p is prime (but the converse is not true), and p and
q are said to belong to each other. If ¢(# A) is an ideal

containing some powerm«r1 of a maximal idealms, then ¢ is a

1



2 COMMUTATIVE ALGEBRA

primary ideal belonging to .
The set of the prime ideals of A is called the spectrum
of A and is denoted by Spec(A) ; the set of the maximal ideals

of A is called the maximal spectrum of A and we denote it by

Q(A). The set Spec(A) is topologized as follows. For any
subset M of A, put V(M) = { p € Spec(A) | M€ p }, and take
as the closed sets in Spec(A) all subsets of the form V(M).

This topology is called the Zariski topology. If £ € A, we

put D(f) = Spec(A) - V(f) and call it an elementary open

set of Spec(A). The elementary open sets form a basis of open
sets of the Zariski topology in Spec(A).

Let f: A+ B be a ring homomorphism. To each P €
Spec(B) we associate the ideal PnA (i.e. f_l(P)) of A. Since
PnA is prime in A, we then get a map Spec(B) - Spec(A),
which is denoted by 3. The map 8¢ is continuous as one can
easily check. It does not necessarily map 2(B) into Q(A).

When P ¢ Spec(B) and p = PN A, we say that P lies over p.

(1.B) Let A be a ring, and let I, Pis e s P, be ideals
in A. Suppose that all but possibly two of the pi's are
prime ideals., Then, if I ¢ |29 for each i, the ideal 1 is not

contained in the set-theoretical union Lji Pye

Proof. Omitting those pi which are contained in some other

ELEMENTARY RESULTS 3

pj, we may suppose that there are no inclusion relations
between the pi's. We use induction on r. When r = 2, suppose
1€ p;Yp,. Take x € I - P, and s el - Py- Then x € Py
hence s + x ¢ P1s therefore both s and s + x must be in Py-
Then x € Py and we get a contradiction.

When r > 2, assume that p, is prime. Then Ipl...pr_l

Q;pr; take an element x € Ipl...pr_l which is not in P

Put S =1 - (pl\/...k/pr_l). By induction hypothesis S is
not empty. Suppose IQ:pl\/...\/pr. Then S is contained in
P But if s € S then s + x € S and therefore both s and s + x

are in [ hence x € P contradiction.

Remark. When A contains an infinite field k, the condition
that p3,..., pr be prime is superfluous, because the ideals

are k-vector spaces and I = Lji (lf\pi) cannot happen if If\pi

are proper subspaces of 1.

(1.0) Let A be a ring, and I_.,..., I be ideals of A such
1 r
that Ii + Ij =A (i # 3). Then 11!\...r\1r = Il 12...1r
and
A/((\Ii) = (A/Il) X .. X (A/Ir).
(1.D) Any ring A # 0 has at least one maximal ideal. 1In

fact, the set M = { ideal J of A | 1 ¢ J } is not empty since
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(0) € M, and one can apply Zorn's lemma to find a maximal ele-
ment of M. It follows that Spec(A) is empty iff A = 0.

If A # 0, Spec(A) has also minimal elements (i.e. A
has minimal prime ideals). 1In fact, any prime pp € Spec(4)
contains at least one minimal prime, This is proved by revers-
ing the inclusion-order of Spec(A) and applying Zorn's lemma.

If J # A is an ideal, the map Spec(A/J) - Spec(A)
obtained from the natural homomorphism A > A/J is an order-
preserving bijection from Spec(A/J) onto V(J) = { p £ Spec(a)
| p=2J }. Therefore V(J) has maximal as well as minimal ele-
ments. We shall call a minimal element of V(J) a minimal

prime over-ideal of J,

(1.E) A subset S of a ring A is called a multiplicative

subset of A if 1 € S and if the products of elements of S are
again in S.

Let S be a multiplicative subset of A not containing
0, and let M be the set of the ideals of A which do not meet
S. Since (0) € M the set M is not empty, and it has a maximal
element p by Zorn's lemma. Such an ideal p is prime ; in fact,
if x ¢ pand y ¢ p , then both Ax + p and Ay + p meet S, hence
there exist elements a, b € A and s, s' € S such that ax = s,
by = s' (mod p). Then abxy = ss' (mod p), ss' € S, therefore

ss' ¢ p and hence xy ¢ p, Q.E.D. A maximal element of M is

ELEMENTARY RESULTS 5

called a maximal ideal with respect to the multiplicative

set S.

We list a few corollaries of the above result,

i) If S is a multiplicative subset of a ring A and if
0 ¢ S, then there exists a prime p of A with PAS = 8.

ii) The set of nilpotent elements in A,

nil(A)

{aea | a" = 0 for some n > 0},
is the intersection of all prime ideals of A (hence also the
intersection of all minimal primes of A by (1.D)).

iii) Let A be a ring and J a proper ideal of A, Then
the radical of J is the intersection of prime ideals of A

containing J.

Proof. 1) is already proved. ii): Clearly any prime ideal
contains nil(A). Conversely, if a ¢ nil(A), then S =
{1, a, az, ««.} is multiplicative and O ¢ S, therefore there

exists a prime p with a ¢ p. 1ii) is nothing but 1ii) applied

to A/J.

We say a ring A is reduced if it has no nilpotent elements
except 0, i.e. if nil(A) = (0). This is equivalent to saying
that (0) is an intersection of prime ideals. For any ring A,

we put Ared = A/nil(A). The ring Ared is of course reduced.
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. . . . -1
(1.F) Let S be a multiplicative subset of a ring A. Then preserving bijection and homeomorphism from Spec(S™1A) onto

the localization (or quotient ring or ring of fractions) of A

h respe(:t to S den()ted by S A or y s, 1s th by g
Wit 9 l) A e ]n

) (1.6) Let S be a multiplicative subset of a ring A and let
S‘1A={-§|aeA, seS}

M be an A-module. One defines s-lM ={x/s | xeM, ses)
where equality is defined by

in the same way as S-lA. The set S_lM is an S-lA—module, and
- a/s =a'/s'" &> s"(s'a - sa') =0 for some s"e §

there is a natural isomorphism of S-lA—modules

-1 -1
S M=g8 A Q@A M

and the addition and the multiplication are defined by the

-1 .
usual formulas about fractions., We have S "A =0 iff 0 € S.

given by x/s b (1/s) @ x.
The natural map ¢: A > S_lA given by ¢(a) = a/l is a homo-

If M and N are A-modules, we have
morphism, and its kernel is { a€ A |3 s e S : sa=01}. The

-1 -1 1
-1 following universal mapping property: S (MQ%N) = (S M) ® _; (87N,
A-algebra S "A has the following =

if f:A > B is a ring homomorphism such that the images of the

When M is of finite presentation, i.e. when there is an exact

elements of S are invertible in B, then there exists a unique

sequence of the form A" + A" > M > 0, we have also
-1
-1 = :t A>S TA

. R h that £ = f_e¢, where ¢: - - -
homomorphism fs. S "A > B suc g* P g l(HomA(M, N)) = Hom o (s lM, S lN).

is the natural map. Of course one can use this property as a 51,

definition of S-lA. It is the basis of all functorial proper-

(1.1) When § = A - p with p £ Spec(A), we write Ap’ Mp
ties of localization. - S_lA S—lM
If p is a prime (resp. primary) ideal of A such that ’ .
pnS = @, then p(S—lA) is prime (resp. primary). Conversely,
-1 : ; LEMMA 1. 1If an element x of M is mapped to 0 in M_ for all
all the prime and the primary ideals of S “A are obtained in »
-1 -1 p € Q(A), then x = 0. In other words, the natural map
i have I = (IAA)(S "A).
this way. For any ideal I of S "A we
-1 -1, .
If J is an ideal of A, then we have J(S "A) = S A iff JnS # M > I

M
all max.p p
#. The canonical map Spec(S—lA) -+ Spec(A) is an order-

is injective,
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Proof. x = 0 in Mp & s € A-psuch that sx = 0 in M &S

Ann(x) = {a € A| ax = 0} ¢ p. Therefore, if x = 0 in MP for
all maximal ideals p, the annihilator Ann(x) of x 1s not con-
tained in any maximal ideal and hence Ann(x) = A. This implies

x = lex = 0. Q.E.Do

LEMMA 2, When A is an integral domain with quotient field K,
all localizations of A can be viewed as subrings of K. 1In

this sense, we have

A= (—\ Ap .

all max.p
Proof, Given x € K, we put D = {a € A | ax € A} ; we might
call D the ideal of denominators of x., The element x is in A
iff D = A, and x is in Ap iff D € p. Therefore, if x ¢ A,
there exists a maximal ideal P such that D& p, and x ¢ A

P
for this p.

(1.1) Let f: A - B be a homomorphism of rings and S a

multiplicative subset of A; put S' = £(S). Then the locali-

- -1
zation S 1B of B as an A-~module coincides with §' "B :

1 1

(1.1.1) S B=S§ B = (s'lA) ®,B-

In particular, if I is an ideal of A and if S' is the image of

S in A/I, one obtains

(1.1.2) S'_l(A/I) = s”lA/I(s'lA).

ELEMENTARY RESULTS 9

In this sense, dividing by I commutes with localization,

(1.J) Let A be a ring and S a multiplicative subset of A H
f g -1

let A> B+ S "A be homomorphisms such that (1) gof is the

natural map and (2) for any b € B there exists s € § with

£(s)b € £(A). Then S~1

B = f(S)—lB = S-lA, as one can easily
check. 1In particular, let A be a domain, p € Spec(A) and B
a subring of A such that ACB <A . Then A =B =B
8% % p I
where P = pA ~B and B_ = B®A .
"o p p

(1.8) A ring A which has only one maximal ideal # is
called a local ring, and A/ is called the residue field of
A. When we say that " (A,w) is a local ring " or " (A, », k)
is a local ring ", we mean that A is a local ring, that s+ is
the unique maximal ideal of A and that k is the residue field
of A. When A is an arbitrary ring and v € Spec(A), the ring
Ap is a local ring with maximal ideal pAp. The residue field
of Ap is denoted by k(p). Thus <(p) = Ap/pAp, which is the
quotient ield of the integral demain A/p by (1.I.2).

If (A,%e, k) and (B, »', k') are local rings, a homo-
morphism y: A + B is called a local homomorphism if Y()< 4 '.
In this case ¥ induces a homomorphism k + k',

Let A and B be rings and Y: A > B a homomorphism,
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Consider the map aw : Spec(B) > Spec(A). If P € Spec(B) and
aw(P) =Pm~A=p, we have Y(A - p) € B - P, hence ¥ induces

a homomorphism wp : Ap > BP’ which is a local homomorphism
since wp(pAp) - d}(p)BP G_-'PBP. Note that Ibp can be factored

as Ap > Bp = Ap‘kB - BP and BP is the localization of BP by

PBP r\Bp. In general Bp is not a local ring, and the maximal
ideals of Bp which contain po correspond to the pre-images

of p in Spec(B). (Bp can have maximal ideals other than these.)

But if Bp is a local ring, then Bp = BP’ because if (R,m) is

a local ring then R -4 is the set of units of R and hence

(1.L) Definition. Let A be a ring, A # 0. The Jacobson
radical of A, rad(A), is the intersection of all maximal ideals
of A.

Thus, if (A,m) is a local ring then M= rad(A). We

say that a ring A # 0 is a semi-local ring if it has only a

finite number of maximal ideals, say MYyseee, M. (We express
this situation by saying " (A, ., ...,gn%) is a semi-local
ring",) 1In this cass rad(A) = w r\...r\wr = HMVi by (1.C).

Any element of the form 1 + x, x € rad(A), is a unit
in A, because 1 + x is not contained in any maximal ideal.

Conversely, if I is an ideal and if 1 + x is a unit for each

x € I, we have I € rad(A).

ELEMENTARY RESULTS 11

(1.M) LEMMA (NAK)*. Let A be a ring, M a finite A-module
and I an ideal of A, Suppose that IM = M. Then there exists
an element a € A of the form a = 1 + X, X € I, such that

aM = 0, If moreover I rad(A), then M = 0.

Proof. Let M = Awl + ... + Aws. We use induction on s. Put
M' = M/Aws. By induction hypothesis there exists x € I such

that (1 + x)M' = 0, i.e., (1 + x)M EAwS (when s = 1, take

x = 0). Since M = IM, we have (1 + X)M = I(1 + x)M g;I(AwS)

= st, hence we can write (1 + x)ws = yws for some y £ I.

Then (L+ x - y)(1 + x)M =0, and (1 + x - y)(1 + x) 1

il

mod I, proving the first assertion. The second assertion

follows from this and from (1.L).

This Lemma is often used in the following form.

COROLLARY. Let A be a ring, M an A-module, N and N' submodules
of M, and I an ideal of A. Suppose that M = N + IN', and
that either (a) I is nilpotent, or (b) I & rad(A) and N' is

finitely generated. Then M = N.

Proof. 1In case (a) we have M/N = I(M/N) = IZ(M/N) = ... =0,

In case (b), apply NAK to M/N.

*) This simple but important lemma is due to T. Nakayama,

G. Azumaya and W. Krull. Priority is obscure, and although
it is usually called the Lemma of Nakayama, late Prof. Naka-
yama did not like the name.
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(1.N) In particular, let (A, -, k) be a local ring and
M an A-module. Suppose that either m is nilpotent or M is
finite. Then a subset G of M generates M iff its image G in
M/#+M = M®k generates M®k, In fact, if N is the submodule
generated by G, and if G generates M®k, then M = N + M,
whence M = N by the corollary. Since M®k is a vector space
over the field k, it has a basis, say-a, and if we lift G
arbitrarily to a subset G of M (i.e. choose a pre-image for
each element of G), then G is a system of generators of M.
Such a system of generators is called a minimal basis of M,

Note that a minimal basis is not necessarily a basis of M

(but it is so in an important case, cf. (3.G)).

(1.0) Let A be a ring and M an A-module. An element a of

A is said M-regular if it is not a zero-divisor on M, i.e.,

a
if M » M 1is injective. The set of the M-regular elements

is a multiplicative subset of A,

-1
Let S0 be the set of A-regular elements. Then S0 A

is called the total quotient ring of A, In this book we

shall denote it by ¢A. When A is an integral domain, ®A is

nothing but the quotient field of A,

(1.P) Let A be a ring and a: Z > A be the canonical homo-

morphism from the ring of integers Z to A. Then Ker(o) = nZ

ELEMENTARY RESULTS 13

for some n» 0. We call n the characteristic of A and denote

it by ch(A). If A is local the characteristic ch(A) is either

0 or a power of a prime number.

2. Noetherian Rings and Artinian Rings

(2.4) A ring is called noetherian (resp. artinian) if the
ascending chain condition (resp. descending chain condition)
for ideals holds in it. A ring A is noetherian iff every
ideal of A is a finite A-module.

If A is a noetherian ring and M a finite A-moeule,
then the ascending chain condition for submodules holds in M
and every submodule of M is a finite A-module. From this,
it follows easily that a finite module M over a noetherian

ring has a projective resolution ...> Xi > Xi—l F oees X0

+ M > 0 such that each Xi is a finite free A-module. In
particular, M is of finite presentation.

A polynomial ring A[Xl,..., Xn] over a noetherian ring
A is again noetherian. Similarly for a formal power series
ring A[[Xl,...,Xn]]. If B is an A-algebra of finite type
and if A is noetherian, then B is noetherian since it is a

homomorphic image of A[Xl,...,X ] for some n.
n

(2.B) Any proper ideal I of a noetherian ring has a
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primary decomposition, i,e., I = qlr\...r\qr with primary

ideals . (We shall discuss this topic again in Chap. 5)

(2.C) PROPOSITION. A ring A is artinian iff the length

of A as A-module is finite,

Proof., If lengthA(A) < o then A is certainly artinian
(and noetherian). Conversely, suppose A is artinian. Then
A has only a finite number of maximal ideals. Indeed, if
there were an infinite sequence of maximal ideals Pys Pyseee
. d-
then Py 2 PPy D PPyPy Dee. would be a strictly descen
ing infinite chain of ideals, contradicting the hypothesis.
Let Pps eee s B be all the maximal ideals of A (we may
assume A # 0, so r > 0), and put I = pl...pr. The descend-

ing chain I 2 12 2I3 = ... stops, so there exists s > 0

such that I° = Is+1. Put ((O):Is) = J, Then (J:I) =
(((0):15):1) = ((0):Is+l) = J. We claim J = A, Suppose the
contrary, and let J' be a minimal member of the set of ideals
strictly containing J. Then J' = Ax +J for any x € J' - J.
Since I = rad(A), the ideal Ix + J is not equal to J' by NAK
(Cor. of (1L.K)). So we must have Ix + J = J by the minimal-
ity of J', hence Ix &€ J and x € (J:I) = J, contradiction.
Thus J = A, i.e. 1-1° & (0), i.e. I° = (0).

Consider the descending chain
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Aeplgplpz 2D pl...pr_l 21 lel > Iplp2 2

= 212pl:_>... 21° = (0).

Each factor module of this chain is a vector space over the
field A/pi = ki for some i, and its subspaces correspond bijec-
tively to the intermediate ideals. Thus, the descending chain
condition in A implies that this factor module is of finite
dimension over ki’ therefore it is of finite length as A-module.
Since lengthA(A) is the sum of the length of the factor modules
of the chain above, we see that lengthA(A) is finite, Q,E.D.
A ring A # 0 is said to have dimension zero if all

prime ideals are maximal (cf. 12.4),

COROLLARY. A ring A # 0 is artinian iff it is noetherian and

of dimension zero,

Proof. If A is artinian, then it is noetherian since
1engthA(A) < o,
Let p be any prime ideal of A. In the notation of the above
proof, we have (pl...pr)S =1° = (0) € p, hence p = Py for
some i. Thus A is of dimension zero,

To prove the converse, let (0) = er\...f\qr be a
primary decomposition of the zero ideal in A, and let pi =

the radical of qi. Since s is finitely generated over A,
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there is a positive integer n such that ping qi lsi< o).
Then (pl...pr)n = (0), After this point we can immitate the
last part of thepproof of the proposition to conclude that

1engthA(A) < oo,

(2.D) I.S.Cohen proved that a ring is noetherian iff every
prime ideal is finitely generated (cf. Nagata, LOCAL RINGS,
p.8). Recently P.M.Eakin (Math. Annalen 177(1968),278-282)
proved that, if A is a ring and A' is a subring over which A
is finite, then A' is noetherian if (and of course only if)
A is so, (The theorem was independently obtained by Nagata,

but the priority is Eakin's.)

Exercises to Chapter 1.

1) Let I and J be ideals of a ring A, What is the condition
for V(I) and V(J) to be disjoint ?

2) Let A be a ring and M an A-module, Define the support

of M, Supp(M), by
Supp(M) = {p € Spec(A)] My ¢ 0}.

If M is finite over A, we have Supp(M) = V(Ann(M)) so that
the support is closed in Spec(A).

3) Let A be a noetherian ring and M a finite A-module. Let
I be an ideal of A such that Supp(M) € V(I). Then I'M = 0

for some n > 0.

CHAPTER 2. FLATNESS

3. Flatness

(3.4) DEFINITION. Let A be a ring and M an A-module ;
when S: ¢¢+ > N+ N' > N" »> ... 1s any sequence of A-modules
(and of A-linear maps), let S@M denote the sequence =»++ —+

NQM > N'@M > N"®M > +++ obtained by tenmsoring S with M,

We say that M is flat over A, or A-flat, if S@M is exact

whenever S is exact. We say that M is faithfully flat (f.f.)

over A, if S®M is exact iff S is exact.
Examples, Projective modules are flat. Free modules are f.f..
If B and C are rings and A = B X C, then B is a projective

module (hence flat) over A but not f.f. over A,

THEOREM 1. The following conditions are equivalent:
(1) M is A-flat

17
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(2) if 0 -+ N' - N is an exact sequence of A-modules,
then O >~ N'@M » N®M is exact ;

(3) for any finitely generated ideal I of A, the sequence
0> I®M > M 1is exact, in other words we have I®M = IM ;

0 for any finitely generated ideal I

A
(4) Tor) (M, A/I)
of A
(5) Tor[l‘(M, N) = 0 for any finite A-module N ;
. . T
(6) if a, € A, X eM (1 ¢igr) and Zl ax, = 0,

then there exist an integer s and elements bij € A and yj

¢M (1 £3 € s) such that ¥ a =0 for all j and

b, .
i 1]
. =L b,.y. for all i.
i i 1373

Proof. The equivalence of the conditions (1) through (5) is

well known ; one uses the fact that the inductive limit ( =

direct limit) in the category of A-modules preserves exact-

ness and commutes with Tori. We omit the detail. As for (6),

r

first suppose that M is flat and I ax, = 0. Consider the

—

exact sequence

r

g f
> AT > A

K
where f is defined by f(bl, eeey br) =z aibi (bi € A), K=
r fM
Ker(f) and g is the inclusion map., Then KZIM + M —— M

is exact, where fM(tl, cens tr) =z at, (ti € M) ; there-

- .
fore (xl, ceey xr) Zl Bjébyj with Bj € K, yj € M,
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Writi -
riting Bj (bij""’brj) (bij € A), we get the wanted

result, Next let us prove (6) =>» (3). Let al,...,are I and
XiseeesX € M be such that I a;x, = 0. Then by assumption

x; = I bijyj’ I aibij = 0, hence in I®M we have Zi aiy:xi

=7I.a, £.b,.y. = 2 =
134 ® j 1JyJ Zj(ziaibijQ’yj> 0. Q.E.D.
(3.B) (Transitivitz) Let ¢ : A > B be a homomorphism of

rings and suppose that ¢ makes B a flat A-module, (In this

case we shall say that ¢ is a flat homomorphism.) Then a

flat B-module N is also flat over A,

Proof. Let § be a sequence of A-modules. Then SGEAN =
S@A(B ®BN) = (S ®AB)®BN. Thus, S is exact =S ®AB is

exact = S QAN is exact,

(3.C) (Change of base) Let ¢ : A > B be any homomorphism

of rings and let M be a flat A-module. Then M(B)= M®& B is
“A

a flat B-module,

Proof. Let S be a sequence of B-modules. Then SQ&B(BquM) =

SG@AM, which is exact if S is exact.

(3.D) (Localization) Let A be a ring, and S a multiplica-

tive subset of A. Then S 1A is flat over A.
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Proof. Let M be an A-module and N a submodule. We have
M®S—1A = sy and N®S-1A = sy, a typical element of
S-lN is of the form x/s, x ¢ N, s €8S ; if x/s =0 in s—lM,
this means that there exists s' € S with s'x = 0 in M, which

is equivalent to saying that s'x = 0 in N, hence x/s = 0 in

s71, Thus 0 > §”1y > sy is exact. Q.E.D.

(3.E) Let ¢ : A > B be a flat homomorphism of rings, and
let M and N be A-modules. Then Tor?(M, N)QQAB =
B .

. : . . A

Tori(M(B), N(B))° If A is noetherian and M is finite over A,

i i
we also have ExtA(M, N)Q@AB = ExtB(M(B), N(B))'

Proof, Let ... > X1 > XO +M >0 be a Projective resolution
of the A-module M, Then, since B isg flat, the sequence

* cee > xl(B) > xO(B) ->M(B) >0

is a projective resolution of M(B)' We have therefore
A
Tor, (M, N) = H (X.®N),
i i
Tory (M p0, o)) = B (X. @ N, B)
i7°(B)* "(B) i TAT CAT

But the exact functor QbAB commutes with taking homology, so

_ _ A
that Hi(X.®AN®AB) = Hi(X. ®AN)®AB = Tori(M, N) ®AB. If

the Xi's are finite free A-modules, Then HomB(Xi®B, N®B)

= HomA(xi, N)QQAB, and so the same reasoning as above proves

FLATNESS

the formula for Ext,

21

Q.E.D,

In particular, for P € Spec(A), we have

A
Tor.p
i

i
ExtA

p

. A
(Mp, Ny) = Tor| (,

]

(Mp, Np)

Extz(M,

N)p s

N)p s

the latter being valid for A noetherian and M finite,

(3

A-

Proof., As 0 - A > A

(3

an

finite over A,

Proof,
free,

basis of M,

Xis wee , X

in

are linearly independent over A,

n

.F) Let A be a ring and M a flat A~module, Then an

regular element a ¢ A is also M-regular,

.G) PROPOSITION.

a

is exact, so is

a

A-module, Suppose that either #M 1s nilpotent or M is

M is free & M ig pProjective

M/wM = M<8kk are linearly independent over k,

=1, let ax = 0.

Then

For that purpose it suffices to prove that

n € M are such that their images ;i, ceey X

Then there exist

& M is flat,

n

We use induction on n,

yl’ ceey yr € M and

0 » M » M,

Let (A, m, k) be 2 local ring and M

We have only to prove that if M is flat then it is
We prove that any minimal basis of M (cf.(1.N)) is a

, if

then they

When
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b s b, E A such that ab, = 0 for all i and such that
eees b

1? i

X = Zbiyi. Since x # 0 in M/#mM, not all bi are in me,

Suppose b, ¢ s, Then b, is a unit in A and ab, = 0, hence

1

a=0'

Suppose n > 1 and ZT a 0. Then there exist Yy»

%1 T
. = b‘
cres Y, €Mand by e A (1< <) such that x, JZ 1373

and T a

.b,. = 0. Since x ¢ mM we have bn ¢ » for at
i 1 ij n

3

j vee = db ., is a
least one j. Since alblj + + anbnj 0 an nj

unit, we have

n-1
= = -b,,/b _.).
= Iy ey3y (ey 13/Pny’
Then
0= Z; ai%y = al(xl + clxn) et an—l(xn—l + cn—lxn)’
Since the elements ;i + Ei;;, cess X g + ¢ 1%, are linear-

ly independent over k, by the induction hypothesis we get

n-1
= = = = .= 0. .E.D.
a; = «es=a , =0, and a, Zl c.,a.=0 Q

REMARK., If M is flat but not finite, it is not necessarily
free (e.g. A = Z(P) and M = )., On the other hand, any pro-
jective module over a local ring is free (I. Kaplansky: Pro-
jective Modules, Ann. of Math., 68(1958), 372-377). For more
general rings, it is known that non-finitely generated projec-
tive modules are, under very mild hypotheses, free. (Cf. H.
Bass: Big Projective Modules Are Free, Ill. J, Math. 7 (1963)
24-31, and Y. Hinohara: Projective Modules over Weakly Noethe-
rian Rings, J, Math. Soc. Japan, 15 (1963), 75-88 and 474-
475).
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(3.H) Let A > B be a flat homomorphism of rings, and let

I1 and I2 be ideals of A. Then

(1) (I,AL)B =1 B ~L,B,

1
(2) (I1 : 12)8 = IlB : IZB if I2 is finitely generated,

Proof. (1) Consider the exact sequence of A-modules
Ilf\Iz > A > A/IleA/IZ'
Tensoring it with B, we get an exact sequence

(IlnIz)®AB = (IlnIz)B > B > B/IlB G)B/IZB.

This means (Ilr\IZ)B = Ile\IZB.

(2) When 12 is a principal ideal aA, we use the exact
sequence
i f
(Il tad) > A > A/I1

where i is the injection and f(x) = ax mod Il’ Tensoring it

with B we get the formula (Il : aA)B = (IlB ¢ aB), In the

general case, if I2 =a At eee 4 anA, we have (Il : 12) =

N (Il : ai) so that by (1)
i

(I, : 1,)B =N (I; : a,&)B =N (1B : a;B) = (I,B : 1,B).

(3.1) EXAMPLE 1. Let A = k[x, y] be a polynomial ring
over a field k, and put B = A/xA = k{y]l]. Then B is not flat

over A by (3.F), Let I = (x + y)A and 12 = yA, Then Ilr\12

2 2
= + A I.B = = =
(xy + y)4, 1, I,B = yB, (I,A1,)B = y°B # I,BAL,B.
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EXAMPLE 2, Let k, x, y be as above and put z = y/x, A =
k[x,yl, B = k[x, y, z] = k[x, z]. Let I1 = XA, 12 = yA,
Then Iln 12 = XyA, (Iln 12)B = xzzB, IlBr\IZB = x2B, Thus
B is not flat over A. The map Spec(B) -+ Spec(A) corresponds
to the projection to (x, y)-plane of the surface F: xz =y
in the (x, y, z)-space. Note F contains the whole z-axis

and hence does not look 'flat' over the (x, y)-plane.

EXAMPLE 3. Let A = k[x, y] be as above and B = k[x, y, z]
with z2 = f(x, y) € A, Then B = A ® Az as an A-module, so
that B is free, hence flat, over A, Geometrically, the sur-
face 22 = f(x, y) appears indeed to lie rather flatly over

the (x, y)-plane. A word of caution: such intuitive pictures

are not enough to guarantee flatness.

(3.7) Let A > B be a homomorphism of rings. Then the
following conditions are equivalent:

(1) B is flat over A ;

h

(2) B, is flat over Ap (p

p PnA) for all P ¢ Spec(B) ;

(3) B, is flat over Ap (p = PAA) for all P € Q(B).

P

Proof., (1) = (2): the ring Bp = BGDAp is flat over Ap (base

change), and B is a localization of Bp’ so that B_ is flat

P P
over Ap by transitivity. (2) = (3): trivial, (3) = (1):

it suffices to show that Tori(B, N) = 0 for any A-module N.
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We use the following

LEMMA. Let B be an A-algebra, P a prime ideal of B, p = PnA

and N an A-module, Then
A

A = p
(Tori(B, N))P = Tor1 (BP, Np).

Proof. Let X, & ee¢e > Xl -+ XO (+N->0) be a free reso-

lution of the A-module N. We have

A _
Tori(B, N) = Hi(x. ®AB),

A
Tor, (B, N) ® B, = H_(X, ®,B ®; Bp)

Hi(X- B, BP) = Hi(X.®A Ap®A BP),

P

and X‘®Ap is a free resolution of the A -module N , hence
A

p
i (8

the last expression is equal to Tor s Np). Thus the

P

lemma is proved.

Now, if B_ is flat over Ab for all P € Q(B), then

P
(Tor?(B, N))P = 0 for all P € Q(B) by the lemma, therefore

Tor?(B, N) = 0 by (1.H) as wanted,

4. Faithful Flatness

(4.4) THEOREM 2, Let A be a ring and M an A-module, The

following conditions are equivalent:
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(i) M is faithfully flat over A;
(ii) M is flat over A, and for any A-module N # 0 we have
NOM # 0;
(iii) M is flat over A, and for any maximal ideal #1 of A

we have M # M,

Proof. (i) = (ii): suppose N&M = 0, Let us consider the se-
quence 0 > N> 0, As 0+ NQM >0 is exact, so is 0 =
N » 0, Therefore N = 0,

(1i) = (iii): since A/m # 0, we have (A/m)DM =
M/#M # 0 by hypothesis,

(iii) 9 (ii): take an element x € N, x # 0, The sub-
module Ax is a homomorphic image of A as A-module, hence
Ax = A/1 for some ideal I # A, Let s be a maximal ideal
of A containing I, Then M > wmM 2 IM, therefore (A/I)XM =
M/IM # 0. By flatness 0 > (A/I)&M > N@M is exact, hence
NIM #£ 0.

(ii) = (i): 1let S: N' > N > N" be a sequence of A-
modules, and suppose that

, e By X
SOM : N'QM — NOM — N"OM

is exact, As M is flat, the exact functor ®M transforms
kernel into kernel and image into image. Thus Im(gef)®M =
Im(gMofM) = 0, and by the assumption we get Im(gef) = O,

i.e. gof = 0. Hence S is a complex, and if H(S) denotes its
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homology (at N), we have H(S)®M = H(S®M) = 0, Using again
the assumption (ii) we obtain H(S) = 0, which implies that

S is exact. Q.E.D,

COROLLARY. Let A and B be local rings, and Y : A > B a local
homomorphism. Let M (# 0) be a finite B-module. Then
M is flat over A &> M is f.f. over A.

In particular, B is flat over A iff it is f.f. over A,

Proof. Let 4 and ;. be the maximal ideals of A and B respec-
tively, Then M & MM since y is local, and ®wM # M by

NAK, hence the assertion follows from the theorem.

(4.B) Just as flatness, faithful flatness is transitive
(B is f.f. A-algebra and M is f.f. B-module = M is f.f.

over A) and is preserved by change of base (M is f,f., A-module

and B is any A-algebra = M ®@,B is f.f. B-module).

Faithful flatness has, moreover, the following descent
property: if B is an A-algebra and if M is a f.f. B-module
which is also f.f, over A, then B is f.f., over A.

Proofs are easy and left to the reader,

(4.C) Faithful flatness is particularly important in the

case of a ring extension, Let Y: A+ B be a f,.f. homomorph-
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ism of rings, Then:

(1) Bor any A-module N, the map N - N®B defined by
x P x®1 is injective. In particular Y is injective and A
can be viewed as a subring of B,

(1i) For any ideal I of A, we have IBA~A = I,

(iii) aw : Spec(B) » Spec(A) 1is surjective.

Proof. (i) Let 0 # x € N. Then O # Ax € N, hence Ax®8B
€ N®B by flatness of B, Then Ax®B = (x®1)B, therefore
x®L # 0 by Th,2,

(1ii) By change of base, B®A(A/I) = B/IB is f.f. over A/I.
Now the assertion follows from (i).

(iii) Let p € Spec(A). The ring Bp = B®Ap is f.f. over
A}O’ hence po # B . Take a maximal ideal # of Bp which con-

P

tains pB . Then wnA D pA therefore wnA
p "p 2 P p

pAp is maximal, Putting P = wB, we get PnA = (wvnB)NnA

= pA because
P2p

= #nA= (mn Ap)n A= pApnA = p. Q.E.D.

(4.D) THEOREM 3. Let yY: A -+ B be a homomorphism of
rings, The following conditions are equivalent.

(1) ¢ is faithfully flat;

(2) ¢ is flat, and *y: Spec(B) - Spec(A) is surjective;

(3) ¢ is flat, and for any maximal ideal s of A there

exists a maximal ideal yu' of B lying over 4u..
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Proof. (1)=p (2) is already proved.

(2) = (3). By assumption there existsp' € Spec(B)
with P'n A =w, If w' is any maximal ideal of B containing
P', we have M'NA =w as i is maximal.

(3) = (1). The existence of w ' implies +B # B,

Therefore B is f.f. over A by Th. 2,

Remark. In algebraic geometry one says that a morphism f:

X > Y of preschemes is faithfully flat if f is flat (i.e.

for all x € X the associated homomorphisms oY,f(x) -+ OX,x
are flat) and surjective.
(4.E) Let A be a ring and B a faithfully flat A-algebra.

Let M be an A-module. Then:
(1) M is flat (resp. f.f.) over A (=1 M®AB is so
over B,
(1i) when A is local and M is finite over A we have

M is A-free & M®AB is B-free,

Proof, (i). The implication () 1is nothing but a change of
base ((3.C) and (4.B)), while (&) follows from the fact that,
for any sequence S of A-modules, we have (S ®AM) ®AB =
(S&B) ®,M®,B). (i1). () is trivial. (&) follows

from (i) because, under the hypothesis, freeness of M is

equivalent to flatness as we saw in (3.G).
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(4.F) REMARK, Let V be an algebraic variety over € and
let x € V (or more generally, let V be an algebraic scheme
over C and let x be a closed point on V), Let Vh denote the
complex space obtained from V (for the precise definition

see Serre's paper cited below), and let 0 and 0h be the local
rings of x on V and on Vh respectively. Locally, one can
assume that V is an algebraic subvariety of the affine n—-space
An. Then V is defined by an ideal I of R = C[xl, cers X1,
and taking the coordinate system in such a way that x is the
origin we have I & m = (Xl, ceny Xn) and 0 = Ry /IRyn .
Furthermore, denoting the ring of convergent power series in
Xl, ceny Xn by § = C{{Xl, cees Xn}}’ we have Oh = S/IS by
definition, Let F denote the formal power series ring: F =
C[[Xl, coes Xn]]' It has been known long since that 0 and 0P
are noetherian local rings. J.-P. Serre observed that the
completion (Oh)A (cf, Chap, 3) of Oh is the same as the com-
pletion 6 = F/IF of 0, and that 8 is faithfully flat over 0

as well as over Oh. It follows by descent that Oh is faith-
fully flat over 0, and this fact was made the basis of Serre's
famous paper GAGA (Géométrie algébrique et géométrie analyti-
que, Ann, Inst. Fourier, Vol.6, 1955/56). It was in the appen-
dix to this paper that the notions of flatness and faithful

flatness were defined and studied for the first time.
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Exercise. Let A be an integral domain and B an integral domain

containing A and having the same quotient field as A, Prove
that B is f,f. over A only when B = A, (Geometrically, this
means that if a birational morphism f: X - Y is flat at a

point x € X, then it is biregular at x.)

5. Going-up and Going-down

(5.4) Let ¢: A> B be a homomorphism of rings. We say

that the going-up theorem holds for ¢ if the following con-

dition is satisfied:
(GU) for any p, p' € Spec(A) such that p < p', and for any
P € Spec(B) lying over p, there exists P' ¢ Spec(B) lying

over p' such that P < P',

- Similarly, we say that the going—down theorem holds for ¢

if the following condition is satisfied:
(GD) for any p, p' € Spec(A) such that p < p', and for any
P' € Spec(B) lying over p', there exists P e Spec(B) lying

over p such that P € P',

(5.B) The condition (GD) is equivalent to:
(GD') for any p ¢ Spec(A), and for any minimal prime over-

ideal P of pB, we have PnA = P.
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Proof. (GD) = (GD'): 1let p and P be as in (GD'), Then
PAA 2 p since P2 pB. If PnA # p, by (GD) there exists

P1 € Spec(B) such that Plr\A = p and P DPl. Then P> P, 2

1
pB, contradicting the minimality of P.

(GD') = (GD): left to the reader,

Remark. Put X = Spec(A), Y = Spec(B), f = a¢: Y » X, and
suppose B is noetherian. Then (GD') can be formulated geomet-
rically as follows: let p € X, put X' = V(p) € X and let Y'
be an arbitrary irreducible component of f_l(X'). Then f

maps Y' generically onto X' in the sense that the generic

*
point of Y' is mapped to the generic point p of X', )

(5.0) EXAMPLE., Let k[x] be a polynomial ring over a

field k, and put Xy = x(x - 1), X, = xz(x - 1). Then k(x)

= k(xl, XZ)’ and the inclusion k[xl, xz] € k[x] induces
a birational morphism
f: C = Spec( k[x] ) + (' = Spec( k[xl, xz] )

where C is the affine line and C' is the affine curve

3 2 _ . .
X7 mxyT 4 XX, = 0. The morphism f maps the points Ql'

x =0 and Q,: x =1 of C to the same point P = (0,0) of
2

C', which is an ordinary double point of C', and f maps

*) See (6.A) and (6.D) for the definitions of irreducible
component and of generic point,
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C - {Ql, Q2} bijectively onto ¢ - {p}.

Let y be another indeterminate, and put B = k[x, y],
A= k[xl, ¥y yl. Then Y = Spec(B) is a plane and X = Spec(A)
is C' x line; X is obtained by identifying the lines L1:
Xx =0 and LZ: x =1 on Y. Let p3c: Y be the line defined
by y =ax, a # 0. Let g: Y > X be the natural morphism.
Then g(L3) = X' is an irreducible curve on X, and

e (x) = L,V {00, &), @, o).

Therefore the going-down theorem does not hold for A ¢ B.

(5.D) THEOREM 4, Let ¢: A - B be a flat homomorphism of

rings, Then the going-down theorem holds for b,
Proof. Let p and p' be prime ideals in A with p' < p, and
let P be a prime ideal of B lying over p. Then BP is flat

P
local, Therefore Spec(BP) > Spec(Ap) is surjective, Let P'%

over Ap by (3.J), hence faithfully flat since Ap -+ B_ is

be a prime ideal of B, lying over p'Ap. Then P' = P'*~\B is

a prime ideal of B lying over p' and contained in P, Q.E.D,

*
(5.E) THEOREM 5, ) Let B be a ring and A a subring over
which B is integral. Then:

1) The canonical map Spec(B) - Spec(A) is surjective,

%Y This theorem is due to Krull, but is often called the Cohen-
Seidenberg theorem,
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ii) There is no inclusion relation between the prime

ideals of B lying over a fixed prime ideal of A.
iii) The going-up theorem holds for A € B.

iv) If A is a local ring and p is its maximal ideal,
then the prime ideals of B lying over p are precisely the
maximal ideals of B.

Suppose furthermore that A and B are integral domains and
that A is integrally closed (in its quotient field ®A). Then
we also have the following.

v) The going-down theorem holds for A < B,

vi) If B is the integral closure of A in a normal exten-
sion field L of K = QA, then any two prime ideals of B lying
over the same prime p € Spec(A) are conjugate to each other

by some automorphism of L over K,

Proof. iv) First let M be a maximal ideal of B and put m
= MnA. Then B = B/M is a field which is integral over the

subring A = A/m . Let 0 # x € A. Then 1/x € B, hence

(l/x)n + a (l/x)n-l + ¢ee¢ + 2 =0 for some a, € A.
1 n i

Multiplying by xn_l we get 1/x = --(al + a,x + e + a x )

€ A. Therefore A is a field, i.e. M= MAA is the maximal
ideal p of A, Next, let P be a prime ideal of B with PA A =
p. Then B = B/P is a domain which is integral over the field

A= A/p. Let 0 #yeB; let y" + alyn_l +ereta = 0
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(a; € A) be a relation of integral dependence for y, and
assume that the degree n is the smallest possible, Then an
# 0 (otherwise we could divide the equation by y to get a
relation of degree n-1), Then y—'l = -(yn_1 + alyn-2 + ooe
+ an—l)/an € B, hence B is a field and P is maximal.

i) and ii)., Let p € Spec(A). Then Bp =B QkAp =
A - p)—lB is integral over Ap and contains it as a subring.
The prime ideals of B lying over p correspond to the prime
ideals of Bp lying over pAp, which are the maximal ideals of
Bp by iv). Since Ap # 0, Bp is not zero and has maximal
ideals. Of course there is no inclusion relation between
maximal ideals. Thus i) and ii) are proved,

iii). Let p c p' be in Spec(A) and P be in Spec(B) such
that PNA = p, Then B/P contains, and is integral over, Alp.
By i) there exists a prime P'/P lying over p'/p. Then P' is
a prime ideal of B lying over p'.

vi). Put G = Aut(L/K) = the group of automorphisms of
L over K. First assume L is finite over K. Then G 1s finite:
G = {01, cees cn}. Let P and P' be prime ideals of B such

that PNA = P'ANA. Put ci(P) =P (Note that oi(B) =B

i
so that Pi € Spec(B).) If P' # Pi for 1 =1, ..., n, then
P' & Pi by ii), and there exists an element x e P' which is

not in any Pi by (1.B), Put y = (Hoi(x))q, where q = 1 if
i

ch(K) = 0 and q = p¥ with sufficiently large v if ch(K) = p.
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Then y € K, and since A is integrally closed and y € B we get
y € A, But y ¢ P (for, we have x ¢ oi_l(P) hence Oi(x) ¢ P)
while y € P'~A = PAA, contradiction,

When L is indinite over K, let K' be the invariant sub-
field of G ; then L is Galois over K', and K' is purely in-
separable over K. If K' # K, let p = ch(K). It is easy to
see that the integral closure B' of A in K' has one and only
one prime p' which lies over p, namely p' = {x € B'|3 q = pv
such that x3 € p}. Thus we can replace K by K' and p by p'
in this case. Assume, therefore, that L is Galois over K.

Let P and P' be in Spec(B) and let PAA = P'~AA =p, Let L'
be any finite Galois extension of K contained in L, and put

F(L') = {0 € G = Aut(L/K) | o(PAL') = P'AL'}.

This set is not empty by what we have proved, and is closed

in G with respect to the Krull topology (for the Krull topo-
logy of an infinite Galois group, see Lang: Algebra, p.233
exercise 19.) Clearly F(L') 2 F(L") if L' &
L', For any finite number of finite Galois extensions L'i
(1¢ i ¢n) there exists a finite Galois extension L" contain-
ing all L'i, therefore G)F(L'i) 2 F(L") # §. As G is compact

this means F(L') # #. If o belongs to this inter-

M
all L'
section we get o(P) = P',

v) Let L, = $B, K = ¢A, and let L be a normal extension

1

of K containing L let C denote the integral closure of A

13
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(hence also of B) in L. Let P € Spec(B), p = PnA, p' €
Spec(A) and p' C p. Take a prime ideal Q' € Spec(C) lying
over p', and, using the going-up theorem for A C C, take

Q1 € Spec(C) lying over p such that Q'C Ql' Let Q be a
prime ideal of C lying over P. Then by vi) there exists

o € Aut(L/K) such that G(Ql) = Q. Put P' = 0(Q')AB. Then

P'CP and P'AA=0(Q)AA=Q nA=p'. 0.E.D.

Remark. 1In the example of (5.C), the ring B = k[x, y] is

integral over A = k[xl, Xys y] since x2 -x-x, =0.

1
Therefore the going-up theorem holds for A & B while the

going-down does not.

EXERCISES. 1. Let A be a ring and M an A-module. We shall
say that M is surjectively-free over A if A = I f(M) where
sum is taken over f € HomA(M,A). Thus, free = surjectively-
free. Prove that, if B is a surjectively free A-algebra,
then (i) for any ideal I of A we have IBAA = I, and (ii) the
canonical map Spec(B) - Spec(A) is surjective. Prove also
that, if B is an A-algebra with retraction (i.e. an A~linear
map r: B > A such that rei = idA (where 1: A+ B is the
canonical map))is surjectively-free over A.

2. let k be a field and t and X be two independent
indeterminates. Put A = k[t](t). Prove that A[X] is free
(hence faithfully flat) over A but that the going-up theorem

does not hold for A ¢ A[X]. Hint: consider the prime ideal
(kX - 1).
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3. Let B be a ring, A be a subring and p € Spec(4).
Suppose that B is integral over A and that there is only one
prime ideal P of B lying over p. Then BP = Bp' (By Bp we
mean the localization of the A-module B at p, i.e. BD =

B ®A . Show that B_ is a local ring with maximal ideal PBp')
A'p P

6. Constructible Sets

(6.4) A topological space X is said to be noetherian if
the descending chain condition holds for the closed sets in

X. The spectrum Spec(A) of a noetherian ring A is noetherian.
1f a space is covered by a finite number of noetherian sub-
spaces then it is noetherian. Any subspace of a noetherian
space 1s noetherian. A noetherian space is quasi-compact,

A closed set Z in a topological space X is irreducible
if it is not expressible as the sum of two proper closed
subsets. In a noetherian space X any closed set Z is unique-
ly decomposed into a finite number of irreducible closed

sets : Z = 2.V ...\‘Zr such that Zi & z, fori#i.

A

This follows easily from the definitions. The Zi's are

called the irreducible components of Z.

(6.B) Let X be a topological space and Z a subset of X.
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We say Z is locally closed in X if, for any point z of z,

there exists an open neighborhood U of z in X such that Unz
is closed in U, It is easy to see that Z is locally closed
in X iff it is expressible as the intersection of an open

set in X and a closed set in X.

Let X be a noetherian space., We say a subset Z of X
is a constructible set in X if Z is a finite union of locally

closed sets in X :

m

Z = &_} (Ui/\Fi), U; open, Fi closed.
i=]1

(When X is not noetherian, the definition of a constructible

set is more complicated, cf. EGA OIII')

If Z and Z' are constructible in X, so are ZvZ',
ZAZ' and Z - Z', This is clesr for ZUVZ', Repeated use

of the formula

(UnF) - (U'AF")

UAF n(C(U')VC(F"))

[UA{FACUN}] U [{unCE)}AF],
where C( ) denotes the complement in X, shows that Z - 2'

is constructible. Taking Z = X we see the complement of a
constructible set is constructible. Finally, Zn2z' = ¢(C(Z)

UC(Z')) is constructible.

We say a subset Z of a noetherian space X is pro-

constructible (resp. ind-constructible) if it is the inter—

section (resp. union) of an arbitrary collection of construct-—
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ible sets in X.

(6.C) PROPOSITION. Let X be a noetherian space and Z a
subset of X. Then Z is constructible in X iff the following

condition is satisfied.

(*) For each irreducible closed set Xo in X, either Xon Z
i - t
is not dense in Xo’ or XOA Z contains a non-empty open se

of X .
o

Proof. (Necessity.) If Z is constructible we can write
m
X,nz = U WnFy,

where Ui is open in X, Fi is closed and irreducible in X and

Ui,\F is not empty for each i. Then Ui,\Fi =F since Fi

1 i

is irreducible, therefore X nZ = Lji F.. If X NZ is dense

is equal to
in Xo, we have Xo = L)Fi so that some Fi’ say F is eq

l’

X Then Ul(\x = U.NnF, is a non-empty open set of Xo con-
o’ o

1 1

tained in Xor\Z.

(Sufficiency.) Suppose (*) holds. We prove the con-
structibility of Z by induction on the smallness of E, using
the fact that X is noetherian. The empty set being construct-
ible, we suppose that Z # @ and that any subset Z' of Z which
satisfies (*) and is such that Z'CZ is constructible.

Let Z = F_V ...LlFr be the decomposition of Z into the

1

irreducible components, Then Flr\z is dense in Fl as one can
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easily check, whence there exists, by (*), a proper closed

subset F' of Fl such that Fl - F'€ Z. Then, putting F* =
F'VF2 U"'UFr’ we have 2 = (Fl - F')V (ZAF*), The set
Fl - F* is locally closed in X. On the other hand Zn F#*

satisfies the condition (*) because, if Xo is irreducible

-_—
and if Zr\F*f\Xo = Xo’ the closed set F* must contain Xo and

so ZI\F*(\XO = Zr\Xo. Since ZNF*C F* C Z, the set ZAF*

is constructible by the induction hypothesis. Therefore 2

is constructible.

(6.D) LEMMA 1. Let A be a ring and F a closed subset of

X = Spec(A). Then F is irreducible iff F = V(p) for some

prime ideal p. This p is unique and is called the generic

point of F,

Proof. Suppose that F is irreducible. Since it is closed

it can be written F = V(I) with I = Np.

peF
we would have elements a and b of A - T such that ab ¢ I.

If I is not prime

Then F & V(a), F € V(b) and F < V(a)Vv(b) = V(ab), hence
F = (FI\V(a))\/(Fr\V(b)), which contradicts the irreducibility.
The converse is proved by noting p € V(p).

The uniqueness

comes from the fact that p is the smallest element of V(p),.

LEMMA 2, Let ¢: A > B be a homomorphism of rings., Put X =
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spec(A), Y = Spec(B) and f = °¢: Y > X. Then £(¥) is dense

in X iff Ker(¢) € nil(A). 1If, in particular, A is reduced,

£f(Y) is dense in X iff ¢ is injective.

Proof. The closure f(Y) in Spec(A) is the closed set V(I)

- -1 . .
defined by the ideal I = [\ ¢ l(p) = ¢ ({\p), which is equal
peY peY

to ¢-l(nil(B)) by (1.E). Clearly Ker(¢) € I. Suppose that
f(Y) is dense in X, Then V(I) = X, whence I = nil(A) by (1.E).
Therefore Ker(¢) € nil(A). Conversely, suppose Ker(¢) <

nil(A). Then it is clear that I = ¢‘1(ni1(3)) = nil(A),

which means f(Y) = V(I) = X,

(6.E) THEOREM 6., (Chevalley)., Let A be a noetherian ring
and B an A-algebra of finite type. Let ¢: A + B be the canon-
ical homomorphism; put X = Spec(A), Y = Spec(B) and f = ¢:

Y > X. Then the image f(Y') of a constructable set Y' in Y

is constructable in X,

Proof. First we show (6.C) can be applied to the case when
Y' = Y. Let X, be an irreducible closed set in X. Then X
= V(p) for some p € Spec(A). Put A' = A/p, and B' = B/pB.
Suppose that Xor\f(Y) is dense in Xo. The map ¢': A' -~ B'
induced by ¢ is then injective by Lemma 2. We want to show

Xor\f(Y) contains a non-empty open subset of Xo. By replacing
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A, B and ¢ by A", B' and ¢' respectively, it is enough to
prove the following assertion :

(*) 1if A is a noetherian domain, and if B is a ring which
contains A and which is finitely generated over A, there
exists 0 # a € A such that the elementary open set D(a) of
X = Spec(A) is contained in £(Y), where Y = Spec(B) and f:
Y > X is the canonical map.

Write B = A[xl, ceay xn], and suppose that Xps eees X
are algebraically independent over A while each xj (r<jgn)
satisfies algebraic relations over A[xl, veany xr]. Put A* =
A[xl, cesy xr], and choose for each r < j { n a relation

d, d.-1

. J . J =
gjo(x) %y + gjl(x) Xy + ... =0,

* n
where gjv(x) € A*, gjo(x) # 0. Then Hj=r+l gjo(xl, ceny xr)

is a non-zero polynomial in x;, ..., x_ with coefficients in
1 . 4

A, Let a € A be any one of the non-zero coefficients of this

polynomial. We claim that this element satisfies the require-

ment. In fact, suppose p € Spec(A), a ¢ p, and put p* = pA%*

= p[xl, cesy xr]. Then ngo ¢ p*, so that Bp* is integral

over A%

p** Thus there exists a prime P of B lying over

p*
p*A*p*. We have PA A = PAA*XAA = p[xl, ooy xr],\A = p,

therefore p = PAA = (PAB)AA € f(Spec(B)). Thus (*) is

proved.
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The general case follows from the special case treated

above and from the following

LEMMA. Let B be a noetherian ring and let Y' be a construct-
ible set in Y = Spec(B). Then there exists a B-algebra of
finite type B' such that the image of Spec(B') in Spec(B) is

exactly Y'.

Proof. First suppose Y' = UAF, where U is an elementary
open set U = D(b), b € B, and F is a closed set V(I) defined
by an ideal I of B, Put S = {1, b, b2, ee. } and B' =
S_l(B/I). Then B' is a B-algebra of finite type generated
by 1/b, where b = the image of b in B', and the image of
Spec(B') in Spec(B) is clearly UAF,

When Y' is an arbitrary constructible set, we can write
it as a finite union of locally closed sets Uir\Fi (1gigm)
with Ui elementary open, because any open set in the noether-
ian space Y is a finite union of elementary open sets. Choose
a B-algebra B'i of finite type such that Uir\Fi is the image
of Spec(B'i) for each i, and put B' = B'l X see X B'm. Then

we can view Spec(B') as the disjoint union of Spec(B'i)'s,

so the image of Spec(B) in Y is Y' as wanted.

(6.F) PROPOSITION. Let A be a noetherian ring, ¢: A > B
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a homomorphism of rings, X = Spec(A), Y = Spec(B), and f =

a¢: Y + X. Then f(Y) is pro~constructible in X.

Proof. We have B = lig BA’ where the BA'S are the subalgebras
of B which are finitely generated over A. Put YX = Spec(Bx)
and let By * Y » YX and fA: YA =+ X denote the canonical maps.,
Clearly f(Y)¢€ {D fX(YA)' Actually the equality holds, for
suppose that p € X — f(Y). Then po = Bp’ so that there

a

exist elements wa € p, ba €B(lg0ogm and s € A - p such

m

that I hif
a=l o

(ba/s) =1 in B, i.e., s'(Zﬂaba - 8)=01in B

P
for some s' € A - p, If B, contains bl’ ceey bm we have
1le¢ p(BA)p’ therefore p ¢ fA(YA) for such A, Thus we have
proved f(Y) = r\fA(YA)° Since each fA<Yl) is constructible
by Th. 6, £(Y) is pro-constructible. Q.E.D.
(Remark., [EGA Ch.IV, §1] contains many other results on

constructible sets, including generalization to non-noether-

ian case,)

(6.G) Let A be a ring and let p, p' ¢ Spec(A). We say
P

that p' is a specialization of p and that p is a generaliza-

tion of p' iff p ¢ p'. If a subset Z of Spec(A) contains all
specializations (resp. generalizations) of its points, we say
Z is stable under specialization (resp. generalization), A

closed (resp. open) set in Spec(A) is stable under speciali-
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zation (resp. generalization).

LEMMA., Let A be a noetherian ring and X = Spec(A). Let Z

be a pro-constructible set in X stable under specialization.

Then Z is closed in X.

Proof. Let Z = {\El with EA constructible in X. Let W be
an irreducible component of Z and let x be its generic point.
Then WNAZ is dense in W, hence a fortiori WI\EX is dense in
W. Therefore W:\EA contains a non-empty open set of W

by (6.C), so that x € EA' Thus x € (‘EX = Z. This means

W € Z by our assumption, and so we obtain Z = z. Q.E.D.

(6.H) Let ¢: A > B be a homomorphism of rings, and put

X = Spec(A), Y = Spec(B) and £ = a¢: Y + X, We say that f is
(or: ¢ is) submersive if f is surjective and if the topology
of X is the quotient of that of Y (i.e. a subset X' of X is
closed in X iff f_l(X') is closed in Y). We say f is (or: ¢

is) universally submersive if, for any A-algebra C, the

homomorphism ¢C: C->B ®AC is submersive. ( Submersiveness
and universal submersiveness for morphisms of preschemes are

defined in the same way, cf. EGA IV (15,7.8).)

THEOREM 7. Let A, B, ¢, X, Y and £ be as above. Suppose
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that (1) A is noetherian, (2) f is surjective and (3) the

going-down theorem holds for ¢: A > B. Then ¢ is submersive

Remark, The conditions (2) and (3) are satisfied, e.g., in
the following cases:

(a) when ¢ is faithfully flat, or

(B) when ¢ is injective, assume B is an integral domain
over A and A is an integrally closed integral domain.
In the case (a), ¢ is even universally submersive since

faithful flatness is preserved by change of base.*)

Proof of Th. 7. Let X'< X be such that f_l(X‘) is closed.

We have to prove X' is closed. Take an ideal J of B such

that £1(X') = V(J). As X' £CET1(X")) by (2), applica-
tion of (6.F) to the composite map A >+ B > B/J shows X' is
pro-constructible. Therefore it suffices, by (6.G), to prove
that X' is stable under specialization, For that purpose,
let Pys P, € Spec(a), PyDp, € X', Take P1 € Y lying over
pl (by (2)) and P2 € Y lying over Py such that P1 o P2 (by
(3)). Then P2 is in the closed set f-l(X'), so P1 is also

in f_l(X'). Thus by = f(Pl) € f(f-l(X')) = X', as wanted,

—

*) I? algebraic geometry, there are two important classes
of universally submersive morphisms. Namely, the faithfully
flat morphisms and the Proper and surjective ones. The uni-
versal submersiveness of the latter is immediate from the

deflnltlons, Whlle that Of the for
mer 1s eSSentially What we
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(6.1) THEOREM 8, Let A be a noetherian ring and B an

A-algebra of finite type. Suppose that the going-down theorem

holds between A and B. Then the canonical map f: Spec(B) -

Spec(A) is an open map (i.e. sends open sets to open sets).

Proof. Let U be an open set in Spec(B)., Then f(U) is a
constructible set (Th. 6). On the other hand the going-down
theorem shows that f(U) is stable under generalizatiom.
Therefore, applying (6.G) to Spec(A) - f(U) we see that f(U)

is open. Q-E-D-

(6.7) Let A and B be rings and ¢: A + B a homomorphism.
Suppose B is noetherian and that the going-up theorem holds
for ¢. Then a¢: Spec(B) » Spec(A) is a closed map (i.e.

sends closed sets to closed sets),

Proof. Left to the reader as an easy exercise, (It has

nothing to do with constructible sets.)

CHAPTER 3. ASSOCIATED PRIMES

In this chapter we consider noetherian rings

only,

7. Ass(m)

(7.4) Throughout this section let A denote a noetherian

ring and M an A-module. We say a prime ideal P of A is an

associated prime of M

» 1f one of the following equivalent
conditions holds:

(i) there exists an element x ¢ M with Ann(x) = p
(ii)

M contains a submodule isomorphic to A/p

The set of the associated primes of M is denoted by Ass, (M)
A

or by Ass(M).

7.8
(7.8) PROPOSITION. Let P be a maximal element of the

set of ideals {Ann(x)| x e M, x # 0}. Then p & Ass(M)

Proof. We have to show that p is a prime. Let P = Ann(x)

o e 4

and suppose ab ¢ P, b € p. Then bx # 0 and
49

abx = 0,
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Since Ann{bx) 22 Ann(x) = p, we have Ann(bx) = p by the

maximality of p. Thus a € p.

It
=
=

]
o

COROLLARY 1. Ass (M)

COROLLARY 2. The set of the zero-divisors for M is the

union of the associated primes of M.

(7.0C) LEMMA. Let S be a multiplicative subset of A,
- -1
and put A' =S lA, M' = S "M. Then
Ass, (M') = f(Ass,, (")) = Ass, M) N {p|pns = 0},

where f is the natural map Spec(A') -+ Spec(A).

Proof. Left to the reader, One must use the fact that any

ideal of A is finitely generated.

(7.D) THEOREM 9. Let A be a noetherian ring and M an
A-module, Then Ass(M) & Supp(M), and any minimal element

of Supp(M) is in Ass(M).

Proof. 1If p € Ass(M) there exists an exact sequence

0~ A/p M, and since Ap is flat over A the sequence

0~ Ap/pAp > Mp is also exact. As Ap/pAp # 0 we have Mp

# 0, i.e. p € Supp(M). Next let p be a minimal element of
i here-

Supp(M). By (7.C), p € Ass(M) iff pAp € Ass, (Mp)’ ther

fore replacing A and M by Ap and Mp we can assume that (A,p)
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is a local ring, that M # 0 and that Mq = 0 for any prime
¢ c p. Thus Supp(M) = {p}. Since Ass(M) is not empty and

is contained in Supp(M), we must have p € Ass(M), Q.E.D.

COROLLARY. Let I.be an ideal. Then the minimal associated

primes of the A-module A/I are precisely the minimal prime

over-ideals of I,

Remark. By the above theorem the minimal associated primes
of M are the minimal elements of Supp(M). Associated primes

which are not minimal are called embedded primes.

(7.E) THEOREM 10, Let A be a noetherian ring and M a

finite A-module, M # 0. Then there exists a chain of sub-

modules (0) = M € +ee C M M =M such that M,/M.
0 n-1 n i i

1
~ A/pi for some p; € Spec(A) (1 < i < n).

Proof. Since M # 0 we can choose Mlg M such that Ml e A/pl
for some p, € Ass(M). If Ml # M then we apply the same
pProcedure to M/M1 to find MZ’ and so on. Since the ascending

chain condition for submodules holds in M, the process must

stop in finite steps.

(7.F) LEMMA, If O > M' > M > M" ig an exact sequence

of A-modules, then Ass(M) € Ass(M') UAss(M").
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Proof. Take p € Ass(M) and choose a submodule N of M iso-

morphic to A/p.

If NAM' = (0) then N is isomorphic to a

submodule of M", so that p € Ass(M"). If NAM' # (0), pick

0# x € NAM',

Since N = A/p and since A/p is a domain we

have Ann(x) = p, therefore p € Ass(M').

(7.6)

PROPOSITION,

finite A~module. Then

Proof.

by the lemma. On the other hand we have Ass(Mi/Mi_

Let A be a noetherian ring and M a

Ass(M) is a finite set.

Using the notation of Th.10, we have

Ass(M) € Ass(Ml) VAss(MZ/Ml) ~.. VAss(Mn/Mn_

1)

V-

Ass(A/pi) = {pi}, therefore Ass(M) © {pl, caey pn}.

8. Primary Decomposition

(8.4)

As in the preceding section, A denotes a noetherian
ring and M an A-module.

DEFINITIONS,

An A-module is said to be co-primary

if it has only one associated prime, A submodule N of M is

said to be a primary submodule of M if M/N is co~primary.

If Ass(M/N) = {p}, we say N is p-primary or that N belongs

to p.

(8.B)

PROPOSITION,

The following are equivalent:
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(1) the module M is co-primary;
(2) M#0, and if a ¢ A is a zero-divisor for M then
a is locally nilpotent on M (by this we mean that,

for each x €M, there exists an integer n > 0 such

that anx = 0),

Proof. (1) » (2). Suppose Ass(M) = {p}. If 0 #x ¢ M,
then Ass(Ax) = {p} and hence p is the unique minimal element
of Supp(Ax) = V(Ann(x)) by (7.D). Thus P is the radical of
Ann(x), therefore a ¢ P implies ax = 0 for some n > 0,
(2) » (1), Pput p={acea|l ais locally nilpotent on M},
Clearly this is an ideal. Let ¢ € Ass(M). Then there exists
an element x of M with Ann(x) = ¢, therefore p € ¢ by the
definition of p. Conversely, since p coincides with the
union of the associated primes by assumption, we get q < p.

Thus p = q and Ass(M) = {p}, so that M is co-primary,

Remark. When M = A/q, the condition (2) reads as follows:
(2") all zero-divisors of the ring A/q are nilpotent,

This is Precisely the classical definition of a primary

ideal q’ Cf. (l.A)a

Exercise. Prove that, if M is a finitely generated co-primary

A-module with Ass(M) = {p}, then the annihilator Ann(M) is

a p-primary ideal of A,
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(8.C) Let p be a prime of A, and let Q; and Q, be p-primary

submodules of M. Then the intersection Ql,-\Q2 is also p-

primary.

Proof. There is an obvious monomorphism M/Ql,\Q2 »—M/QILDM/QZ.

Hence @ # Ass(M/Ql,\QZ) < Ass(M/Ql)\JAss(M/QZ) = {p}.

(8.D) Let N be a submodule of M. A primary decomposition

of N is an equation N = QI,\...r\Qr with Qi primary in M,
Such a decomposition is said to be irredundant if no Qi can
be omitted and if the associated primes of M/Qi (1 ¢<igr)
are all distinct., Clearly any primary decomposition can be

simplified to an irredundant one.

(8.E) LEMMA., If N = Ql,\...r\Qr is an irredundant
primary decomposition and if Qi belongs to pi, then we have

Ass(M/N) = {pl, ceey pr}.

Proof. There is a natural monomorphism M/N - M/QIEB...EBM/Qr,
whence Ass(M/N) < [Ji Ass(M/Qi) = {pl, ceny pr}. Conversely,
(sz\...,\Qr)/N is isomorphic to a non-zero submodule of M/Ql
so that Ass(er\...;\Qr/N) ={pl}, and since Q, n---(\Qr/N >

M/N we have p, € Ass(M/N). Similarly for other pi's.

(8.F) PROPOSITION. Let N be a p-primary submodule of an
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A-module M, and let p' be a prime ideal. Put M' =M, and
N' = Np' and let v: M > M' be the canonical map, Then

(i) N' = M'" if pskp',

(ii) N = v‘l(N') if pop! (symbolically one may

write N = MAN'),

Proof. (i) We have M'/N' = (M/N)p' and AssA(M'/N') =
AssA(M/N)r.{primes contained in p'} = §, Hence M'/N' = 0,
(11) Since Ass(M/N) = {p} and since p < p', the multi-

plicative set A - p' does not contain zero—-divisors for M/N,

Therefore the natural map M/N - (M/N)p' = M'/N' is injective,

COROLLARY., Let N = er\...r\Qr be an irredundant primary
decomposition of a submodule N of M, let Ql be pl-primary

and suppose Py is minimal in Ass(M/N). Then Q = MAN

1
hence the primary component Ql is uniquely determined by N

and by pl.

Remark, If pi is an embedded prime of M/N then the correspond-

ing primary component Qi is not necessarily unique,

(8.G) THEOREM 11, Let A be a noetherian ring and M an
A-module, Then one can choose a p-primary submodule Q(p)

for each p € Ass(M) in such a way that (Q) = //\\ Q(p).
peAss (M)
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Proof. Fix an associated prime p of M, and consider the set
of submodules N = {N&M| p ¢ Ass(N)}. This set is not empty
since (0) is in it, and if N' = {NA}A is a linearly ordered
subset of N then L)NA is an element of N (because Ass(t)Nx)
= U Ass(NA) by the definition of Ass). Therefore N has
maximal elements by Zorn; choose one of them and call it Q =
Q(p). Since p is associated to M and not to Q we have M # Q.
On the other hand, if M/Q had an associated prime p' other
than p, then M/Q would contain a submodule Q'/Q > A/p' and
then Q' would belong to N contradicting the maximality of Q.
Thus'Q = Q(p) is a p-primary submodule of M. As Ass( EPQ(p))
= Nass(Q(p)) = @ we have N Q(p) = (O).

COROLLARY, If M is finitely generated then any submodule N

of M has a primary decomposition.

Proof. Apply the theorem to M/N and notice that Ass(M/N) is

finite,

(8.H) Let p be a prime ideal of a noetherian ring A, and

let n > 0 be an integer. Then p is the unique minimal prime
over-ideal of pn, therefore the p-primary component of pn is
uniquely determined; this is called the n-th symbolic power

n) n
of p and is denoted by p(n). Thus p( =p Apr\A. It can

happen that pn # p(n). Example: let k be a field and B =
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k{x, y] the polynomial ring in the indeterminates x and Ve
_ 2 3 2 3
Put A = k[x, xy, y°, y~] and P =yBnA = (xy, y°, v7). Then

2 2 3 4
p = &y, xy7, v, ys). Since y = xy/x € A , we have B =

2 _ 2

k =~ A d h A = =
(x, y] < o an ence B y ByBr\A

yB* Thus p
2 2 3 2 . . ‘e
Yy BnA = (y7, y7) # P « An irredundant primary decomposition

2 . 2 2 3 2 3 4 5
of p” is given by p° = (y7, ¥~ (x7, xy s Y s YD,
9. Homomorphisms and Ass

(9.4) PROPOSITION., Let ¢p: A~ B be a homomorphism of

noetherian rings and M a B-module. We can view M as an A-

module by means of ¢. Then

Ass, (M) = acb(AssB(M)) .

Proof, Let P ¢ AssB(M). Then there exists an element x of
M such that AnnB(x) = P. Since AnnA(x) = AnnB(x)r\A = PnA
we have PAA ¢ AssA(M). Conversely, let p € AssA(M) and take
an element x € M such that AnnA(x) = p. Put AnnB(x) = I,

let I = Ql,\...,\Qr be an irredundant pPrimary decomposition
of the ideal I and let Qi be'Pi—primary. Since M 2 Bx = B/I
the set Ass(M) contains Ass(B/I) = {Pl, cees Pr}' We will
prove Pir\A = p for some i, Since I~A = P we have Pi,\A 2
p for all i. Suppose Pir\A # p for all i. Then there exists
a, € Pir\A such that a; ¢ p, for each i. Then aim € Qi for

all i if m is sufficiently large, hence a = Hiaim € INA = p,
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a
contradiction, Thus Pif\A =p for some i and p € ¢(AssB(M)).

(9.B) THEOREM 12. (Bourbaki). Let ¢: A > B be a homo-
morphism of noetherian rings, E an A-module and F a B-module.
Suppose F is flat as an A-module. Then:
(i) for any prime ideal p of A,
a = ={ if F/pF # 0
¢ (Assy (F/pF)) Ass, (F/pF)) {p} 0
¢ if F/pF-= 0.
(ii) AssB(E ®,F) = k_,) AssB(F/pF).
peAss (E)
COROLLARY. Let A and B be as above and suppose B is A-flat,
Then .
AssB(B) = | J AssB(B/pB),
peAss(A)
a
and %9 (ass,(B)) = {p € Ass(A) | pB # B}. We have “¢(Ass (B))

= Ass(A) if B is faithfully flat over A.

Proof of Theorem 12, (i) The module F/pF is flat over Alp

(base change), and A/p 1s a domain, therefore F/pF 1is torsion-
free as an A/p-module by (3.F). The assertion follows from
this, (ii) The inclusion 2 is immediate: if p € Ass(E)

then E contains a submodule isomorphic to A/p, whence EQF
contains a submodule isomorphic to (A/p)C?AF = F/pF by the
flatness of F. Therefore AssB(F/pF) < AssB(ZﬁﬁF). To prove

the other inclusion = is more difficult.
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Step 1. Suppose E is finitely generated and coprimary with
Ass(E) = {p}. Then any associated prime P ¢ AssB(Eé’F) lies
over p, In fact, the elements of p are locally nilpotent
(on E, hence) on E®F, therefore p < PAA. On the other
hand the elements of A - p are E-regular, hence E®F-regular
by the flatness of F, Therefore A - p does not meet P, so
that" PAA = p, Now, take a chain of submodules

E=E;DE D... DE = (0)
such that Ei/Ei+l > A/pi for some prime ideal p;. Then
E-JF = EO-&F 2E1®F 2... 2 ErG’F = (0) and Eif&F/Ei_*_l*?.F
= F/p,F, so that Ass (EQF) & Ui Ass (F/p,F). But if Pe
ASSB(F/piF) and if Py # p then PAA = Py (by (1)) # p, hence
P ¢ AssB(E-&F) by what we have just proved. Therefore
AssB(E®F) < AssB(F/pF) as wanted.,

Step 2. Suppose E is finitely generated. Let (0) = Q,A...

1
N Qr be an irredundant primary decomposition of (0) in E.
Then E is isomorphic to a submodule of E/QliB...G?E/Qr, and
so E®@F is isomorphic to a submodule of the direct sum of
the E/Q,®F 's. Then AssB(E:;zaF)gUAssB(E/Qi®F) = U
AssB(F/piF).

Step 3. General case. Write E = LJX E, with finitely gene-
rated submodules EA' Then it follows from the definition

of the assoclated primes that Ass(E) = U Ass(E,) and

Ass(EQF) = ASS(UEA& F) = UASS(E)‘&F). Therefore the proof
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is reduced to the case of finitely generated E.

(9.C) THEOREM 13. Let A > B be a flat homomorphism of
noetherian rings; let ¢ be a p-primary ideal of A and assume

that pB is prime. Then ¢B is pB-primary.

Proof. Replacing A by A/q and B by B/¢B, one may assume ¢ =
(0). Then Ass(A) = {p}, whence Ass(B) = AssB(B/pB) = {pB}

by the preceding theorem.

(9.D) We say a homomorphism ¢: A + B of noetherian rings is

non-degenerate if a¢ maps Ass(B) into Ass(A). A flat homo-

morphism is non-degenerate by the Cor, of Th.12.

PROPOSITION., Let f: A > B and g: A + C be homomorphisms of
noetherian rings. Suppose 1) B QAC is noetherian, 2) f is
flat and 3) g is non-degenerate. Then 1B®g: B + BR@C is

also non-degenerate, (In short, the property of being non-

degenerate is preserved by flat base change.)

Proof. Left to the reader as an exercise.

CHAPTER 4, GRADED RINGS

10. Graded Rings and Modules

(10.4) aA graded ring is a ring A equipped with a direct

decomposition of the underlying additive group, A = @ A
n30
such that AnAhxsg An+m' A graded A-module is an A-module M,

n’

together with a direct decomposition as a group M = QB M

ne Z
h C
such that Aan,_ Mn+m' Elements of An (or Mn) are called

n

homogeneous elements of degree n, A submodule N of M is said

to be a graded (or homogeneous) submodule if N = QB(N(\Mn).
It is easy to see that this condition is equivalent to
(*) N is generated over A by homogeneous elements,

and also to

x%) { = eoe i
(**) if x x_ + Xt +x_ €N, x; €M, (all i),

then each X is in N,

If N is a graded submodule of M, then M/N is also a graded
61
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A-module, in fact M/N = @Mn /N nM .

(10.B) PROPOSITION., Let A be a noetherian graded ring,
and M a graded A-module. Then

i) any associated prime p of M is a graded ideal, and
there exists a homogeneous element x of M such that p =
Ann(x);

ii) one can choose a p-primary graded submodule Q(p)

for each p € Ass(M) in such a way that (0) =p(;~zss(M)Q(p).

Proof. i) Let p € Ass(M). Then p = Ann(x) for some x € M.
f=f +
Write x = Xy + Xo_1 + ... + Xy s Xy £ Mi' Let .

t all £
f + .00t fO € P, fi € Ai. We shall prove that a i

are in p. We have

= = +£fx )+ ...+ (I £.x,)
0 = fx frxe + (fr—lxe Kool e 1y
+ see t+ foxo .
= + ... +
Hence frxe =0, fr—lxe + frxe-l =0, .cuy r—e¥e

£ %, =0 (veput £, =0 for 1 <0). It follows that frexi
= 0 for 0<i<e. Hence fre x = 0, fre € p, therefore f_ e
p. By descending induction we see that all fi are in p, so
that p is a graded ideal. Then p € Ann(xi) for all i, and

clearly p = (% Ann(xi). Since p is prime this means p =

i=0
Ann(xi) for some i,

1i) A slight modification of the proof of (8.G) Th.ll
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proves the assertion. Alternatively, we can derive it from

Th.11l and from the following Lemma: Let p be a graded ideal

and let Q €M be a p-primary submodule. Then the largest

graded submodule Q' contained in Q (i.e. the submodule gene-

rated by the homogeneous elements in Q) is again p~primary.

Proof: let p' be an associated prime of M/Q'. Since both
p and p' are graded, p' = p iff p'AH = pAH where H is the
set of homogeneous elements of A. If a ¢ PnAH then a is
locally nilpotent on M/Q'., If a ¢ H, a ¢ p, then for x ¢ M
satisfying ax € Q', x = in, X, € Mi’ we have ax, € Q'c Q
for each i, hence X; € Q for each i, hence x € Q'. Thus

atgp'.

(10.C) 1In this book we define a filtration of a ring A
to be a descending sequence of ideals

* =

(*) A JoaJlan

, . x a
satisfying JnJhlg; Jn+m. Given a filtration ( ), we con

2 LI

Struct a graded ring A' as follows. The underlying additive
group is o

A' = ?0 NAVARIIN
and if ¢ ¢ A'n = Jn/Jn+l and n ¢ A'm = Jm/Jm+l’ then choose
X E Jn and y ¢ Jm such that £ = (x mod Jn+l) andn = (y mod

Jm+l) and put &n = (xy mod Jn+m+1)' This multiplication is

well defined and makes A' a graded ring.
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When I is an ideal of A, its powers define a filtration
A= IOZD I :DI2 ... . This is called the I-adic filtra-

I
tion, and its associated graded ring is denoted by gr (A).

(10.D) PROPOSITION., If A is a noetherian ring and I an
ideal, then ng(A) is noetherian.

]
I y - n+1. Then A' =
Proof. Write gr (A) = j?OA'n, A n 1/1 n A)

i = d let
A/1 is a noetherian ring. Let I = alA + ... F arA an
2 I .
a i i A) is generated
ay denote the image of a; in I/I%, Then gr(A) g

a a ' is noetherian.
by Byseeey 8 over AO’ therefore

(10.E) Let A be an artinian ring, and B = A[Xl,...,Xm] the

L
. - b
polynomial ring with its natural grading. Let M szoMn e

a finitely generated, graded B-module. Put FM(n) = Z(Mn)
for n 2 0, where £( ) denotes the length of A-module. The

numerical function FM measures the largeness of M. The

number FM(n) is finite for any n, because there exists a
degree-preserving epimorphism of B-modules

p f

@ B(d,) — M

. i

i=1

= i if M
where B(d) = B as a module but B(d)n = Bn-d (in fact, i
is generated over B by homogeneous elements El, e Ep

: h that
with deg(gi) = di then the map f: GBB(di) > M suc
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f(bl,...,bp) =z bigi satisfies the requirement), so that

K(MU)S 2 z(Bn-d ) < eo. Note that, since the number of the
i

. . . n+m-1

monomials of degree n in Xl’ e Xm is ( me1 ) ,» we have
_ - (ntm-1

Fp(m) = £ = (") pqa).

(10.F) THEOREM 14, Let A, B and M be as above. Then

there is a polynomial fM(x) in one variable with rational

coefficients such that FM(n) = fM(n) for n» 0 (i.e. for all

sufficiently large n).

Proof. Let P(M) denote the assertion for M, We consider
the graded submodules N of M and we will prove P(M/N) by
induction on the largeness of N (note that M satisfies the
maximum condition for submodules). For N = M the assertion
is obvious. Supposing P(M/N') is true for any graded sub-
module N' of M properly containing N, we prove P(M/N).
Case 1, If N = le\N2 with Ni DN (i =1,2), then

using Nl + N, / N. =~ Nz/N we get

F, =F

M/N T fu/m, T Ey N, /N,

2 1

/N, PN T FM/N1+N

1 2

and the assertion P(M/N) follows from P(M/Nl), P(M/Nz) and

P(M/Nl+ N,

Case 2. If N is irreducible (in the sense that it is
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not the intersection of two larger submodules) then N is a
primary submodule of M; let Ass(M/N) = {p}. Put I = XB +

+X B and M' = M/N. If I &p then we claim that Mé =

0 for large n., In fact, if {gl,...,gp} is a set of homoge-
neous generators of M' over B and if d = max(deg gi), then

Mé+ = InMé. On the other hand we have ppM' = (0) for some
n

p > 0. Thus Mé =0 for n > p +d, and P(M') holds with fM'
= 0. It remains to show the case I & p. We may suppose

that X, ¢ p. Then the sequence

X
0+ QUM | —=> (M/N)_ > QUN + XD > 0

is exact for n > 0. Since N + XlM DN there is a polynomial

xd + .00 F a, with rational coefficients satisfying
d
P(M/N + XlM). Thus there is an integer n, > 0 such that

f(x) = a

d
FM/N(n) - FM/N(n-l) = a;n + ...+ a, (n > no).

Then
n n
d-1
F (n) =a,( I id) + ad-l( z i ) +
M/N d i=n +1 i=n,.+1
0 0
vee + ao(n - no) + FM/N(nO) (n > no),

which means (cf. the remark below) that FM/N(n) is a poly-

nomial of degree d + 1 in n for n > ng, as wanted.

Remark 1. Put (:) =x(x -1 " (x-r+ 1) rl, (g )= 1.

Then any polynomial f(x) of degree d in Q[x] can be written

x+d x+d—l) x)
f(x) = Cd( d ) + ey 1\ g1 + ...+ CO(O » C4€ Q.
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Moreover, since (X:r) - (x+:-l) = (x:le) , we have

_ x+d-1 X
80 = £61) = ¢y (T ) + oo+ oy (F). 1t follows by

induction on d that, if f(n) ¢ Z for n ) 0, we have c; € Z
for all i (and so f(n) ¢ Z for all n ¢ Z). 1t also follows
that, if F(n) is a numerical function such that

F(n) - F(n-1) = f(n) for n > nO,

_ fn4d+l n+l
then F(n) = Cd( a+1 ) + ...+ CO( 1 ) + const for n'>n0.

Remark 2. The polynomial fM(x) of the theorem is called the

Hilbert polynomial or the Hilbert characteristic function

of M,

11. Artin=Rees Theorem

(11.A) Let A be a ring, I an ideal of A and M an A-module.

We define a filtration of M to be a descending sequence of

submodules

* =
(%) M=M2M 2M, 2...

2

The filtration is said to be I-admissible if Unig; Mi+1 for

all i, I-adic if M = I'M, and essentially T-adic if it is

I-admissible and if there is an integer i, such that

0

IMi = Mi+l for i » i

0
Given a filtration (*), we can define a topology on M

by taking {x + Mnl n =1,2,...} as a fundamental system of
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neighborhoods of x for each x € M. This topology is separated
iff F:M = (0)., The topology defined by the I-adic filtration
n

is called the I-adic topology of M. An essentially I-adic

i
filtration defines the I-adic topology on M, since I™M E;Mi

= Ii'iOMiog 1% u,

(11.B) LEMMA, Let A, I and M be as above. Let M = MO

> M, DM, > ... be an I-admissible filtration such that

1

all M, are finite A-modules, let X be an indeterminate and
i

2

put A" = II"X" and M' = % Man. Then the filtration is

essentially I-adic iff M' is finitely gmnerated over A',

Proof. A' is a graded subring of A[X] and M' is a subgroup
of M@AA[X] such that A'M' € M', hence M' is a graded A'-
module. If M' = A'El + ...+ A'gr, Ei € Méi, then M; =
(IX)Mr'l__l (hence Mn = IMn—l) for n > max di' Conversely, if
M = IM for n > d, then M' is generated over A' by

n n-1

M Xd“1 + ... + Mlx + MO’ which is, in turn, generated by
da-1

a finite number of elements over A.

(11.¢) THEOREM 15. (Artin-Rees) Let A be a noetherian
ring, I an ideal, M a finite A-module and N a submodule,
Then there exists an integer r > 0 such that

I™MAN = I T (I"™MAN) for n 5> r.
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Proof. In other words, the theorem asserts that the filtra-
tion (I"MAN) _ of N (induced on N by the I-adic
n=0,1,2,..

filtration of M) is essentially I-adic. The filtration is
I-admissible, and N' =3 (I"™MAN)X" is a submodule of the
finite A'-module M' = X InMXn, where A' = X 1"x", 1f 1 =

v L
alA + ...+ arA then A A[alx,...,arX], so that A' is
noetherian, Therefore N' is finite over A'. Thus the

assertion follows from the preceding lemma.

Remark, It follows that the I-adic topology on M induces

the I-adic topology on N. This is not always true if M is

infinite over A,

(11.p) THEOREM 16. (Intersection theorem). Let A, T and

[
M be as in the preceding theorem, and put N = r\InM. Then

we have IN = N,

Proof, For sufficiently large n we get N = InMr\N =

I"T(I"™MAN) € INE N.

(-}
COROLLARY 1. If I & rad(A) then N\I™ = (0). In other words

M is I-adically separated in that case.

COROLLARY 2, (Krull) Let A be a noetherian ring and I =

[+ <]
rad(A)., Then N I" = 0).
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COROLLARY 3. (Krull) Let A be a noetherian domain and let

e n
I be any proper ideal. Then M\ I = (0).

CHAPTER 5. DIMENSION

Proof. Putting N = N 1" we have IN = N, whence there exists
x £ 1 such that (1 + x)N = (0) by (1.M). Since A is an in-

tegral domain and since 1 + x # 0, we have N = (0).

(11.E) PROPOSITION. Let A be a noetherian ring, M a
finite A-module, I and ideal, and J an ideal generated by

M-regular elements. Then there exists r ) 0 such that

™ :J=1""1"™:J) forndr. 12. Dimension

Proof. Let J = alA + ... + a_A where the a; are M-regular. (12.A) Let A be a ring, A # 0. A finite sequence of n+l

Let S be the multiplicative subset of A generated by a;,..., prime ideals Po D Py D+ Dp, is called a prime chain of

as and consider the A-submodules a._lM of SIM. Put L = length n. 1If p € Spec(A), the supremum of the lengths of the

-1 -1 . R i i ; = ;
a, M®... Qap M and let A, be the image of the diagonal prime chains with p = Po 1s called the height of p and denoted
map X + (X,X;...,X) from M to L. Then M = AM’ and by ht(p). Thus ht(p) = 0 means that p is a minimal prime
ideal of A.

™ : J = (j\(I“M tay) = (\(I“aglM,\M) ':I“LAAM ,

Let I be a proper ideal of A. i ig
so that the assertion follows from the Artin-Rees theorem Pro® of & e define the helght of

ropticd o L and AM. I to be the minimum of the heights of the prime ideals con-
taining I: ht(I) = inf{ht(p)lp D 1},
The dimension of A is defined to be the supremum of the
heights of the prime ideals in A:
dim(A) = sup{ht(p)|p € Spec(a)}.

It is also called the Krull dimension of A, If dim(A) is

71
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finite then it is equal to the length of the longest prime
chains in A, TFor example, a principal ideal domain has
dimension one.
It follows from the definition that
ht(p) = dim(Ap) (p € Spec(4)),
and that, for any ideal I of A,

dim(A/I) + ht(I) £ dim(A).

(12.B) Let M # O be an A-module, We define the dimension

of M by
dim(M)

dim(A/Ann(M)).

(Wwhen M = 0 we put dim(M) -1,) Under the assumption that
A is noetherian and M # 0 is finite over A, the following
conditions are equivalent:

(1) M is an A-module of finite length,

(2) the ring A/Ann(M) is artinian,

(3) dim(M) = O.
In fact, (3) € (2) (1) is obvious by (2.C). Let us prove
(1) 2 (3). We suppose £(M) is finite, and replacing A by
A/Ann(M) we assume that Ann(M) = (0), If dim(A) > O, take
a minimal prime p of A which is not maximal. Since M is
finite over A and since Ann(M) = (0), we easily see that
Mp # 0. Hence p is a minimal member of Supp(M), so that

p € Ass(M). Then M contains a submodule isomorphic to A/p,
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and since dim(A/p) > 0 we have £(A/p) = =, contradiction.

Therefore dim(A) (= dim(M)) = 0.

(12.C) Let A be a noetherian semi-local ring, and M =

rad(A). An ideal I is called an ideal of definition o1 A if

wm’ c 1 S M for some v > 0, This is equivalent to saying that
IS M, and A/I is artinian,
Let I be an ideal of definition and M a finite A-modlle. Put

A%

I +1
gro(a) = ®1%/1™,
@ 1™/ 1"y,

Let I = Ax1 + ...+ Axr. Then the graded ring A* is a homo-

and Mx = grlom)

morphic image of B = (A/I)[Xl,...,Xr], and M* is a finite,
graded A*-module, Therefore FM*(n) = K(InM/In+lM) is a
polynomial in n, of degree € r-1, for n >> 0. It follows

that the function
n-1
X(LI5 0) = L/ = T F(9)
def j=0

is also a polynomial in n, of degree ¢ r, for n >> 0. The
polynomial which represents y(M,I; n) for n >>0 is called
the Hilbert polynomial of M with respect to I. If J is
another ideal of definition of A, then J°€ 1 for some s > 0,

so that we have ¥(M,I; n) € x(M,J; sn). Thus, if x(M,I; n)

d da’
= a,n + ...+ a, and x(M,J; n) = bd,n + ... + bO’ then

d £d'. By symmetry we get d = d'. Thus the degree d of
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the Hilbert polynomial i§ independent of the choice of I. Suppose d(A) > (0, As the case dim(A) = 0 is trivial, we
We denote it by d(M). Remember that, if there exists an ideal assume dim(A) > 0. Let Pg2 eee D Pe.i D P, = p be a prime
- e
of definition of A generated by r elements, then d(M) £ r. chain of length e > 0, and take an element x ¢ Po_y Such
e—

that x ¢ p. Then dim(A/xA + p) 2 e - 1. Applying the pre-

(12.D) PROPOSITION. Let A be a noetherian semi-local ceding proposition to the exact sequence
ring, I an ideal of definition of A and 0> A/p X Alp > A/xA + p + 0
0+ M > M>M >0 we have d(A/xA + p) < d(A/p) € d(A). Thus, by induction
an exact sequence of finite A-modules. Then d(M) = max hypothesis we get e - 1 & dim(A/xA + P) € d(A/xA + p) < d(A).
(dM'), d(M")). Moreover, X(M,I; n) - x(M',I; n) - x(M",I; n) Hence e  d(A), therefore dim(A) < d(A).

is a polynomial of degree < d(M') for n >> O.
Remark, The lemma shows that the dimension of A is finite.

Proof. Since K(M"/InM") = 2(M/M'+ 1nm) £ K(M/IHM), we get When A is an arbitrary noetherian ring and p is a prime

d(M") € d(M). Furthermore, y(M,I; n) - y(M",I; n) ideal, we have ht(p) = dim(AP) so that ht(p) is finite,

LM/T™M) - 2(M/M'+ InM) = 2(M'+I™M/I™M) = £(M'/M'n InM), (This was first proved by Krull by a different method.,) Thus
and there exists r > O such that MAT™ ¢I1™ ™ forn>r the descending chain condition holds for prime ideals in a

by Artin-Rees. Thus £(M'/IM') 2 LU /M AT 2 M /I TMYY. noetherian ring. On the other hand, there are noetherian
This means that y(M,I; n) - x(M',I; n) and x(M',I; n) have rings with infinite dimension.

the same degree and the same leading term.

(12.F) LEMMA 2, Let A be a noetherian semi-local ring,
(12.E) LEMMA 1. Let A be a noetherian semi-local ring. M # 0 a finite A-module, and x € rad(A). Then
Then d(A) » dim(A). d(M) > dM/xM) > dM) - 1.
+1
Proof. TInduction on d(A). If d(A) = O then 4 = W= Proof. Let I be an ideal of definition containing x. Then
for some v > 0. By the intersection theorem ((11.D) Cor.l), Xx(M/xM,T; n) = 2(M/xM + InM) = Q(M/InM) - A(xM + InM/InM)

this implies m = (0). Hence £(A) is finite and dim(A) = O. and xM + InM/InM ~ xM/¥M A I™M = M/(InM:x) and In-lM c
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(InM:x), therefore
Y(M/xM,I; n) > LM/I™M) - 2001 I
= y(M,I; n) - x(M,I; n-1),

It follows that d(M/xM) 2> d(M) ~ 1.

(12.G) LEMMA 3. Let A and M be as above, and let dim(M)
= r. Then there exist r elements X seeorX, of rad(A) such

that I_(M/le + ... + er) < 0o,

[
e}

Procof. Let I be an ideal of definition of A, When r
we have £(M) < » and the assertion holds. Suppose r > 0,
and let pl,...,pt be those minimal prime over-ideals of

Ann (M) which satisfy dim(A/pi) = r, Then no maximal ideals
are contained in any Pys hence rad(A) & Py (1¢i&t), Thus

by (1.B) there exists x, € rad(A) which is not contained in

1
any pi. Then dim(M/le) € r -1, and the assertion follows

by induction on dim(M).

(12.H) THEOREM 17. Let A be a noetherian semi-local ring,
M = rad(A) and M # 0 a finite A-module. Thea d(M) = dim(M)

= the smallest integer r such that there exis: elements Xy
+vesx of m satisfying K(M/le + .. er) < oo,

Proof. If I(M/le + ... + er) < oo we have d(M) € r by

Lemma 2. When r is the smallest possible we have r £ dim(M)
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by Lemma 3. It remains to prove dim(M) ¢ d(M). Take a se-

quence of submodules M = Ml D M2 Dee.DOM = (o) such

k+1
that M, /M, . = A/p,, p, € Spec(A). Then p. > Ann(M) and
Ass(M)g{pl,...,pk}. Since Supp(M) = V(Ann(M)) all the
minimal over-ideals of Ann(M) are in Ass(M) (hence also in

{pl,...,pk}) by (7.D). Therefore

d(M)

max d(A/pi) by (12.D)

A\

max dim(A/pi) by Lemma 1

dim(A/Ann(M)) = dim(M),

which completes the proof.

(12.1) THEOREM 18. Let A be a noetherian ring and I =
(al,‘..,ar) be an ideal generated by r elements. Then any
minimal prime over-ideal p of I has height £ r. In particu-

lar, ht(I) € r.

Proof. Since pAp is the only prime ideal of Ap containing

IAp' the ring Ap/IA = Ap/(a

... +aA) is artinian.
rp

A +
14 I'p
Therefore ht(p) = dim(Ap) € r by Th, 17.

(12.J) Let (A,m,k) be a noetherian local ring of dimension
d. In this case, an ideal of definition of A and a primary
ideal belonging to M are the same thing. We know (Th.17)

that no ideals of definition are generated by less than d
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elements, and that there are ideals of definition generated

by exactly d elements, If (xl,...,xd) is an ideal of defi-

nition then we say that {xl,...,xd} is a system of parameters
of A. If there exists a system of parameters generating the

maximal ideal m, then we say that A is a regular local ring

and we call such a system of parameters a regular system of

parameters, Since the number of elements of a minimal basis

2 R
of m is equal to rankkw/m , we have in general

2
dim(a) £ rankkw/”* s

and the equality holds iff A is regular.

(12.¥) PROPOSITION, Let (A,m) be a noetherian local
ring and XypeessXy @ system of parameters of A. Then
dim(A/ (% 500esx))) = d = 1 = dim(A) - 1

for each 1 £ 1 £ d.

Proof. Put A = A/(xqyeeesx;). Then dim(A) € d - i since
xi+l""’xd

other hand, if dim(A)

generate an ideal of definition of A. On the

p and if ;l""’;p is a system of
parameters of A, then xl,...,xi,yl,...,yp generate an ideal

of definition of A so that p + i » d, that is, p 2> d - 1.

13. Homomorphism and Dimension

(13.A) Let ¢: A > B be a homomorphism of rings. Let p €
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Spec(A), and put k(p) = Ap/pAp' Then Spec(B OAK(p)) is
called the fibre over p (of the canonical map a¢: Spec(B) -+
Spec(A)). There is a canonical homeomorphism between a¢—l (p)
and Spec(B@x(p)). If P is a prime ideal of B lying over p,
the corresponding prime of B®@«k(p) = Bp/po is PBp/po; denote
it by P*. Then the local ring (B @AK(p))P* can be identified
with BP/pBP = BPQAK(p); in fact, we have (Bp)PB = BP and

so (BOK(p))P*= (Bp/po)PBp/po = BP/pBP by (l.Ir.JZ). Now

we have the following theorem.

(13.B) THEOREM 19, Let ¢: A > B be a homomorphism of
noetherian rings; let P € Spec(B) and p = Pn A, Then

(1) ht(P) € ht(p) + ht(P/pB), in other words

dim(BP) & dim(Ap) + dim(BPQK(p));

(2) the equality holds in (1) if the going~down theorem
holds for ¢ (e.g. if ¢ is flat);

(3) if %¢: Spec(B) -+ Spec(A) is surjective and if the
going-down theorem holds,then we have i) dim(B) » dim(A),

and 1ii) ht(I) = ht(IB) for any ideal I of A.

Proof. (1) Replacing A and B by Ap and BP, we may suppose

that (A,p) and (B,P) are local rings such that PnA = p.

We have to prove dim(B) £ dim(A) + dim(B/pB). Let Blseeerdy

be a system of parameters of A and put I = ZaiA. Then



80 COMMUTATIVE ALGEBRA

pnc___‘_ I for some n > 0, so that pnB < IB < pB. Thus the ideals
pB and IB have the same radical. Therefore it follows from
the definition that dim(B/pB) = dim(B/IB). If dim(B/IB) = s
and if {—b—l,...,gs} is a system of parameters of B/IB, then
bl,...,bs, Ayseeesd generate an ideal of definition of B.
Hence dim(B) ¢ r + s.

(2) We use the same notation as above, If ht(P/pB) = s
there exists a prime chain of length s, P = PO‘D P1 Dl Ps’
such that PS 2pPB., As p=PnA2 PinA 2 p, all the Pi lie
over p. If ht(p) = r then there exists a prime chain p >
Py D e Dp, in A, and by going~down there exists a prime
chain Ps = Q0 D QlD DQr of B such that Qir\A = pi.
Thus P = POZDPl Do D Ps )Ql b I DQr is a prime chain
of length r + s, therefore ht(P) 2 r + s.

(3) 1) feollows from (2). 1ii) Take a minimal prime over-
ideal P of IB such that ht(P) = ht(IB), and put p = PnA.

Then ht(P/pB) = 0, hence by (2) we get ht(IB) = ht(P) = ht(p)
2 ht(I). Conversely, let p be a minimal prime over-ideal
of T such that ht(p) = ht(I), and take a prime P of B lying
over p. Replacing P 1if necessary we may suppose that P is
a minimal prime over-ideal of pB. Then ht(I) = ht(p) = ht(P)

2 ht(IB).
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(13.0) THEOREM 20, Let B be a noetherian ring, and let
A be a noetherian subring over which B is integral. Then
(1) dim(A) = dim(B),
(2) for any P £ Spec(B) we have ht(P) < ht(PnA),
(3) 1f, moreover, the going—-down theorem holds between

A and B, then for any ideal J of B we have ht(J) = ht(JnA).

Proof. Since Pl < P2 implies Pl,\A c PznA by (5.E) ii),
we have dim(B) € dim(A). On the other hand the going-up
theorem proves dim(B) 2 dim(A)., Thus dim(B) = dim(A). The
inequality ht(P) € ht(P~A) follows from Th.19 (1), since
ht(P/(P~AA)B) = O by (5.E) ii). To prove (3), first take

a prime ideal P of B containing J such that ht(P)

ht(J).

Then ht(P) = ht(PAA) by Th.19 (3), so that ht(J) ht(P) =
ht(PAA) 2 ht(InA). Next let p be a prime ideal of A con-
taining JA A such that ht(p) = ht(JAA). Since B/J is

integral over the subring A/JAA, there exists a prime P of

B containing J and lying over p. Then ht(JmAA) = ht(p) =

ht(P) 2 ht(J).

(13.D) THEOREM 21. Let ¢: A > B be a homomorphism of
noetherian rings and suppose that the going-up theorem holds
for ¢, Let p and g be prime ideals of A such that P Daq.

Then dim(B®AK(p)) 2 dim(B ®AK(Q)).



82 COMMUTATIVE ALGEBRA

Proof., Put r = dim(B OAK(q)) and s = ht(p/q). Take a prime

chain QO c ...C.Qr in B such that
B e Q;nA = q for all i, and a prime
. chain g = Py € Py C-ee P, =P
v in A. By going-up we can find a
Q0 R .
prime chain Qr C Qr+l C aes C’Qr+s
in B such that Qr+j"A = pj. Then
A p=p_>...03¢Q ;
s Qr+s lies over p and ht(Qr+s/Q0)

2r+s. Applying Th.,19 (1) to A/q
> B/Q0 we get ht(Qr+S/QO) <s +
ht(Q,,/Qt PB) € s + ht(Q_, /pB) < s + dim(B®k(p)). Thus

r < dim(B®«(p)), Q.E.D.

(13.E) Remark, The local form of theorem 21 is inconvenient
for applications in algebraic geometry. The global counter-
part of the going-up theorem is the closedness of a morphism.

Thus, we have the following geometric theorem: Let f: X + Y

be a closed morphism (e.g. a proper morphism) between noether-

ian schemes, and let y and y' be points of Y such that y' is
a specialization of y. Then dim f_l(y')-z dim f_l(y).

The proof is essentially the same as above.
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14. Finitely Generated Extensions

(14.4) THEOREM 22. Let A be a noetherian ring and let
A[Xl,...,Xn] be a polynomial ring in n variables. Then
dim A{Xl,...,Xn] = dim A + n.

Proof. Enough to prove the case n = 1. Put B = A[X]. Let

p be a prime ideal of A and let P be a prime ideal of B which

is maximal among the prime ideals lying over p. We claim

that ht(P/pB) 1. In fact, localizing A and B by the multi-

plicative set A - p we can assume that p is a maximal ideal,

and then B/pB (A/p) [X] is a polynomial ring in one variable
over a field. Therefore B/pB is a principal ideal domain and
every maximal ideal has height one. Thus ht(P/pB) = 1.

Since B is free over A we have ht(P) = ht(p) + 1 by Th.19 (2).

As the map Spec(B) > Spec(A) is surjective, we obtain dim B

= dim A + 1.
COROLLARY. Let k be a field. Then dim k[Xl,...,Xn] = n,
and the ideal (xl,...,xi) is a prime ideal of height i, for

1 €«£1i € n.

Proof. Since (0) € (xl) < (xl,xz) < ... C (X1"“’Xi) -
. c:(Xl,...,Xn) is a prime chain of length n and since

dim k[Xl,...,Xn] = n, the assertion is obvious.
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(14.B) A ring A is said to be catenary if, for each pair
of prime ideals p, ¢ with p D g, ht(p/q) is finite and is
equal to the length of any maximal prime chain between p and
q. (When A is noetherian, the condition ht(p/q) < = is
automatically satisfied.) Thus if A is a noetherian domain
the following conditions are equivalent:

(1) A is catenary,

(2) for any pair of prime ideals p,q such that p o q»
we have ht(p) = ht(q) + ht(p/q),

(3) for any pair of prime ideals p»>q such that p >g¢q
with ht(p/q) = 1, we have ht(p) = ht(g) + 1.

If A is catenary, then clearly any localization S-lA
and any homomorphic image A/I of A are also catenary.

A ring A is said to be universally catenary (u.c. for

short) if A is noetherian and if every A-algebra of finite
type is catenary. Since any A-algebra of finite type is
a homomorphic image of A[Xl,...,Xn] for some n, a noetherian
ring A is universally catenary iff A[Xl""’xn] is cate-
nary for every n 2 0.

If A is u.c., so are the localizations of A, the homo-

morphic images of A and any A-algebras of finite type.

(14.0) THEOREM 23. Let A be a noetherian domain, and

let B be a finitely generated overdomain of A. Let P € Spec(B)
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and p = PnA. Then we have

(*) ht(P) < ht(p) + tr.deg.AB - tr.deg. k(P).

k(p)
And the equality holds if A is universally catenary, or
if B is a polynomial ring A[Xl,...,Xn]. (Here, tr.deg.AB
means the transcendence degree of the quotient field of B

over that of A, and «(P) is the quotient field of B/P.)

Proof. Let B = A[xl,...,xn]. By induction on n it is enough
to consider the case n = 1. So let B = A[x]. Replacing A

by Ap’ and B by Bp = Ap[x], we assume that (A,p) is a local
ring. Put k = «(P) = A/p and I = {£(X) ¢ A[X] | £(x) =0 }.
Thus B = A[X]/I.

Case 1. I = (0). Then B = A[X], tr.deg.AB = 1 and
B/pB = k[X]. Therefore ht(P/pB) = 1 or 0 according as P > pB
(then tr.deg.kK(P) =0) or P = pB (then tr.deg.kK(P) =1).

In other words ht(P/pB) = 1 - tr.deg.kK(P). On the other
hand, ht(P) = ht(p) + ht(P/pB) by Th.19. Thus the equality
holds in (*).

Case 2. I # (0). Then tr.deg.AB = 0. Let P* be the
inverse image of P in A(X]}, so that P = P*/I and k(P) = k(P*).
Since A is a subring of B = A[X]/I we have AnI = 0).
Therefore, if K denotes the gquotient field of A then ht(1) =

ht(IK[X]) € dim K[X] = 1. Since I # (0) we have ht(I) = 1.

Hence ht(P) £ ht(p*) - ht(I) = ht(P*) - 1, where the equality
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holds if A is u.c.. On the other hand we have ht(P*) =
ht(p) + 1 - tr.deg. «(P*) by case 1, and kK(P*) = g(P). Our

assertions follow immediately from these.

Definition. We shall call the inequality (*) the dimension
inequality. If B is a finitely generated overdomain of A
and if the equality in (*) holds for any prime ideal of B,

then we say that the dimension formula holds between A and B.

(14.D) COROLLARY. A noetherian ring A is universally
catenary 1ff the following is true: A is catenary.and
for any prime p of A and for any finitely generated over-

domain B of A/p, the dimension formula holds between A/p and B.

Proof. If A (hence A/p) is u.c., then the condition holds by
the theorem. Conversely, suppose the condition holds. Let

B be any A-algebra of finite type and let Q' D Q be prime
ideals of B. We have to show that all maximal prime chains
between Q' and Q have the same length. Replacing B by B/Q
and A by A/AnQ we can assume that B is a finitely generated
overdomain of A. We are going to prove that for any prime
ideals P and P' of B such that P D P' we have ht(P) = ht(P')

+ ht(P/P'). Put p

PnA, p' =P'AnAand n = tr.deg. ,B.

Then ht(P) = ht(p) + n - tr.deg. «(P), ht(P') = ht(p') +

K(p)
n - tr.deg.K(p,)K(P'), and by the assumption applied to B/P'
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and A/p', we also have ht(P/P') = ht(p/p') + tr.deg.K k(P")

(p")

- tr.deg. K(P). Since A is catenary we have ht(p) =

K(p)
ht(p') + ht(p/p'). It follows that ht(P) = ht(P') + ht(P/P').

(14.E) EXAMPLE. All noetherian rings that appear in alge-
braic geometry are catenary. And many algebraists had in
vain tried to know if all noetherian rings are catenary,
until Nagata constructed counterexamples in 1956 (cf. Local
Rings, p.203, Example 2). In particular, he produced a
noetherian local domain which is catenary but not univer-
sally catenary. We will sketch here his construction in

its simplest form.
Let k be a field and let S = k[[x]] be the formal power

series ring over k in one variable x. Take an element z =
©

z aix1 of § which is algebraically independent over k(x).
i=1
(It is well known that the quotient field of S has an infinite

transcendence degree over k(x). Cf. e.g. Zariski-Samuel,

Commutative Algebra, Vol.II, p.220.) Put zj =(z- I a.xl)/
i<j

xJ-l for j = 1,2,... , (note that z, = z), and let R be the

1

subring of S which is generated over k by x and by all the
zj's: R = k{x, Z1s 2y, ...]. Consider the ideals M = (x)

M= (x- . . i =
and (x-1, 205 29, ) of R Since x(zj+l + aj) zj
we have Zj € m for all j, and m is a maximal ideal of R

with R/ = k. The local ring R,y is a subring of $ and
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and wR,, = xR, C xS. Hence fn\an < rn\x“s = (0). Then
it is easy to see that any ideal (# (0)) of R,, is of the

form xiRM&. Thus R, is noetherian, and is a regular local
ring of dimension 1. On the other hand, R is a subring of
the rational function field in two variables k(x,z), and so
we have R/(x-1) = k[x,zl,zz,...]/(x—l) > k[z], hence m =
(x-1, 2z) and R/t =~ k. The local ring R, contains x 1 and

1, z].

hence it is a localization of the ring R[x—l] = k[x, x
This shows that R, 1is noetherian. Clearly R&L is a regular
local ring of dimension 2, Let B be the localization of R
with respect to the multiplicatively closed subset (R -m)N
(R - #4). Then 4B and #4B are the only maximal ideals of B
by (1.B), and the local rings BM»B = R, and BA&B = R,, are
noetherian, It follows easily (using (1.H)) that any ideal

of B is finitely generated. Thus B is a semi-local noetherian
domain, Put I = rad(B) and A = k + I, Then A is a subring

of B, and it is easy to see that (A,I) is a local ring. As
B/I ~ B/MB @ B/MmB =~ k ® k the ring B is a finite A-module.

It follows (e.g. by Eakin's theorem cited in (2.D)) that A

is also noetherian., We have ht(#B) = 1 and ht(#B) = 2,
hence dim A = dim B = 2 by (13.C) Th.20 (1). TIf A were

u.c. then we would have ht(mB) = ht (4B AA) = htA(I) = dim A
= 2 by the dimension formula. Therefore A is not u.c.. But

A is catenary because it is a local domain of dimension 2.
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14.F = i
( ) THEOREM 24, Let A = k[xl,...,xn] be a polynomial

ring over a field k, and let I be an ideal of A with ht(I)

= r. Then we can choose Yl,...,Yn € A in such a way that
l -
) A is integral over k[Y] = k[Yl""’Yn]’ and

2) I =
) Ink[Y] (Yl""’Yr)'

Proof. Induction on r. If r =0 then T = (0) and we can

k = =
take Yi Xi' When r = 1, let Y1 = £(X) be any non-zero
s
element of I, Write f(X) = T -
x) L aiMi(X), where 0 # a; € K
and M, (X isti i i
1( ) are distinct monomials in Xl,...,Xn, and take o

iti . -
positive integers dl 1, d2, ""dn' If M(X) = HXiai then
let i

us call the integer Zaidi the weight of the monomial M(X).
B . .
Yy a suitable choice of d2""’dn we can see to it that ne
two of the monomials Ml,...,Ms that appear in f(X) have the

same weight, (If p is a given prime number, we can take
v
d = 2 = \)S i
2 P seaid = p7S where Vi Vi = 2,000, v, = @
are large integers. This remark will be useful for some

applicati . - d i
PP ions,) Put Yi ;‘Xi X1 i = 2,...,n). Then

= = d
Y, = £(X) £(X, ¥, + X, 2, ..., Y o+ de“) =ax®+

in

g(Xl, Y2’ ceny Yn) where g is a polynomial whose degree in

2

Xl is less than e and a; is the coefficient of the term wi.th

high i i
ghest weight in £(X). Then X, 1is integral over k[Y], and

dy .. _
1 (i =2,...,n) are also integral over

hence X, = Y, + X
i i
K . . . .
(Y] The ideal (Yl) of k[Y] is prime of height 1, (Yl)g;

Ink([Y], and he(IAKk[Y]) = ht(I) = 1 by Th.20 (3). (Note



90 COMMUTATIVE ALGEBRA

that k[Y] is integrally closed and so the going-down theorem
holds between k[X] and k[Y].) Therefore (Yl) = Ink[Y], as
wanted. When r > 1, let J be an ideal of k[X] such that
JcC1I, ht(J) = r - 1. (The existence of such J is easy to
prove for any noetherian ring and for any ideal I of height
r. Take f1 € I from outside of the minimal prime ideals,

and f2 € I from outside of the minimal prime over-ideals of

(fl), and f, € I from outside of the minimal prime over-ideals

3

of (fl,fz), and so on, and put J = (fl""’f ). Th.18 is

r-1

the basis of this construction.) By induction hypothesis
there exist Zl,...,Zn € k[X] such that k[X] is integral over
k[z] and that k[Z]AJ = (Zy,...,Z ;). Put I' = Ink[Z].

). Thus

Then ht(I') = ht(I) = r, and so I' D (Zl""’zr—l

we can choose an element 0 # f(Zr,...,Zn) of I'. Following
the method we used for the case r = 1, we put Yi = Zi (i <),

e
= = - J s 1 < n— .
Yr f(Zr,...,Zn), Yr+j Zr+j Zr (1¢j<n-r) Then, for

a suitable choice of €1scees k[Z] is integral over k[Y].

Moreover, Ink[Y] contains the prime ideal (Yl""’Yr) of

height r and so coincides with it. The proof is completed.

Remark, The above proof shows that we can choose the Yi's

in such a way that Y Yn have the form Yr =X .+

r+l?*°*? +3 r+j

Fj(xl""’xr)’ where Fj is a polynomial with coefficients in

the prime subring kO of k (i.e. the canonical image of Z in
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k). If ch(k) = p > 0 then we can see to it that Fj(xl""xr)
p P .

€ kolX; 75000, X 7] for all j.

(14.G) COROLLARY.1, (Normalization theorem of E.Noether)

Let A = k[xl,...,xn] be a finitely generated algebra over a
field k. Then there exist yl,...,yr € A which are algebraic-
ally independent over k such that A is integral over k{yl,
...,yr]. We have r = dim A, 1If A is a domain we also have

r = tr.deg.kA.

Proof. Write A = k[Xl,...,Xn]/I, and put ht(I) =n - r.

According to the theorem there exist elements Yl,...,Yn of

k[Xl"“’Xn] such that k[X] is integral over k[Y] and that

Ink[Y] = (Y Yn). Putting v = Yi mod I (1<1i€r)

r+l’°° "2
we get the required result. The equality r = dim A follows

from Th.20, The last assertion is obvious, as A is algebraic

over k(yl,...,yr).

COROLLARY 2. Let k be an algebraically closed field. Then

any maximal ideal M+ of k[X Xn] is of the form

120

w = (Xl— A5 eeey Xn- an), a, ¢ k.

Proof. Since 0 = dim(A/m) = tr.deg.kA[Mt, we get A/ = k.,

Hence Xi = ai (M) for some a; € k for each i, Since

(Xl— al,...,Xn- an) is obviously a maximal ideal, it is 4.
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(14 .H) COROLLARY 3. Let A be a finitely generated algebra
over a field k. Then (1) if A is an integral domain, we
have dim(A/p) + ht(p) = dim A for any prime ideal p of A,

and (2) A is universally catenary.

Proof. (1) Take Yyrers¥, € A as in Cor.l, and put p' =
pnklyl. Then dim A = r, dim(A/p) = dim(k[y]/p') and ht(p) =
ht(p'). As k[y] is isomorphic to the polynomial ring in r
variables, we have ht(p') + dim(k[y]/p') = r by the theorem.
(2) 1t suffices to prove that k is universally cate-
nary. This is a consequence of (1) and (14.D), but we will
give a direct proof. We are going to prove k[Xl,...,Xn] is

catenary. Let P D Q be prime ideals of k[X] = k[xl,...,Xn].

Then we have ht(P) = n - dim(k[X]/P)

ht(Q) = n - dim(k[X]1/Q),
and by (1) ht(P/Q) = dim(k[X]/Q) - dim(k[X]/P).
Therefore ht(P/Q) = ht(P) - ht(Q), Q.E.D.
(14 .X) COROLLARY 4, (Dimension of intersection in an
affine space). Let Py and Py be prime ideals in a polynomial

ring R = k[X,,...,X ] over a field k, with dim(R/pl) =r,
1 n

dim(R/pZ) = s. Let ¢ be any minimal prime over-ideal of

p, +p,- Then dim(R/q) > r + s - n.

(In geometric terms this means that, if V1 and V2 are irredu-
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cible slosed sets of dimension r and s respectively, in an
affine n-space Spec(k[Xl,...,Xn]). Then any irreducible

component of Van2 has dimension not less than r + s - n.)

Proof. Let Yl,...,Yn be another set of n indeterminates and

' . . .
let P, be the image of Ps in k[Yl,...,Yn] by the isomorphism
k[X] = k(Y] over k which maps Xi to Yi (1£ign). Let I be
the ideal of k[X,Y] = k[Xl,...,Xn,Yl,...,Yn] generated by Py

' . _ _
and p,'s and D the ideal (Xl Y X Yn) of k[X,Y].

1o
Then kI[X,Y]/I = (R/p1)®k(R/p2), k[X,Y]/D ~ k[X]. Take

g ..,Er € R/p1 and Npseeealy € R/pz such that R/,ol

1
(resp. R/pz) is integral over k[£{] (resp. over k[n]). Then
k{X,Y]/I is integral over k[&,n] which is a polynomial ring
in r+s variables. Thus dim(k{X,Y]/I) = dim k(g,n] = r + s.
Writing Kk[X,Y]/I = k(x,y] we have k[X,Y]/D + I = k(x,y]/
(xl— ERRRTE yn). Since Kk[X,Y]/I + D =~ k[X]/pl+ Py s

the prime ¢ of k[X] corresponds to a minimal prime over-ideal
Q of I +D in k[X,Y] such that k[X]/q = k[X,Y]/Q. Then Q/I
is a minimal prime over-ideal of (xl— Yyreees X = yn) of
k[x,y], hence . ht(Q/I) £ n by Th.18. Therefore dim k{X1/q
= dim k[x,y]/(Q/I) = dim k[x,y] - ht(Q/I) 2 r + s - n by

the preceding corollary.

(14.L) THEOREM 25. (Zero-point theorem of Hilbert),
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Let k be a field, A be a finitely generated k-algebra and I
be a proper ideal of A, Then the radical of I is the inter-

section of all maximal ideals containing I.

Proof. Let N denote the intersection of all maximal ideals
containing I, and suppose that there is an element a € N
which is not in the radical of I. Put S = {l,a,az,...} and
A' = sT'A. Then IA' # (1), so there is a maximal ideal P’
of A' containing IA', Since A' is also finitely generated

over k, we have 0 = dim A"/P' = tr.deg., A'/P', Putting

k
AAP' =P we have k< A/P < A'/P', hence 0 = tr.deg.kA/P

= dim A/P., Thus P is a maximal ideal of A containing I,

and a ¢ P, contradiction,

Remark. The theorem can be stated as follows: if A is a k-
algebra of finite type, then the correspondence which maps
each closed set V(I) of Spec(A) to V(I)NQ(A) is a bijection
between the closed sets of Spec(A) and the closed sets of

(A). When k is algebraically closed and A = k[X Xn]/I

1200

one can identify Q(A) with the algebraic variety in K"

defined by the ideal I (i.e. the set of zero-points of I in

.

CHAPTER €. DEPTH

15. M-regular Sequences

(15.A) Let A be a ring, M be an A-module and a ..,ar be

1°°
a sequence of elements of A. We write (a) for the ideal
(al,...,ar), and aM for the submodule ZaiM = (a)M,

We say S EREETL is an M-regular sequence (or simply

M-sequence) if the following conditions are satisfied:

(1) for each 1$i<%r, a; is not a zero-divisor on

M/(al,...,ai_l)M, and
(2) M # aM.
When all a; belong to an ideal I we say O RERREL. is an

M-regular sequence in I. If, moreover, there is no b € I

such that Byseeesd, b is M-regular, then a ceesd is said

1’
to be a maximal M~regular sequence in I. Notice that the

notion of M-regular sequence depends on the order of the

elements in the sequence.

95



96 COMMUTATIVE ALGEBRA

LEMMA 1. Suppose that al,...,ar is M-regular and
= . € M.
a1£1 + ...+ arEr 0, El

Then Ei € aM for all i.

Proof. Induction on r. TFor r =1, alil = 0 implies El = 0.

Let r > 1. Since a, is M/(al""’ar—l)M - regular we have

r-1 r-1 + = 0. By induction
£ =1L, an;, hence I a; (& a_ng) y

hypothesis, for i < r we get Ei +an, € (al""’ar—l)M’ s0

that Ei € (al,...,ar)M.

THEOREM 26. Let A, M be as above and B1seersdy £ A be an

M-regular sequence. Then for every :equence vl,...,vr of
Y
' ois M- lar
integers > 0, the sequence a; seresdy is regu .

v
Proof. It suffices to prove that a, N EERTL is M-regular,

because then az,...,ar will be M/aiM -regular and we can

repeat the argument. We use induction on v, the case v = 1

Y
being true by assumption. Let Vv > 1 and assume that a; 2,

vV
RETL is M-regular. ay

v i — e.
and assume that a, ,az,...,a is an M-regular sequenc

i-1
v av—l
Let a.w = a, El + azgz

i tion hypothesis. So
a,n, + ...+ a;_ 1M by the induction hyp
V-1 - amn, .J
a; (a8 - an) + a8, -am,) + ...+ a,_1(&; 4 iNi-1’
= 0, hence

is certainly M-regular. Let i > 1

- +
+ ...+ ai_lgi_l. Then 1 Ny
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a.E - a.,n, e (a\)_1 a a, .)M by Lemma 1. It follows
171~ 2™ 1 %2008 y g

that an, € (al,az,...,ai_l)M, hence n, € (al,...,ai_l)M

Vv

and so w € (al,az,...,ai_1

M.
(15.B) Let A be a ring, Xl,...,Xn be indeterminates over A
and M be an A-module. An element of bII?AA[Xl,...,Xn] can
be viewed as a polynomial F(X) = F(Xl""’xn) with coeffi-
cients in M. Therefore we write M[Xl,...,Xn] for MQDAA[Xl,
""Xn]' 1f ayseesa € A then F(a) € M.

Let a1see058 € A, I = (a). We say that ayseeerd

is an M-quasiregular sequence if the following condition

is satisfied.

(*) For every v > 0 and for every homogeneous polynomial

F(X) ¢ M[Xl,...,Xn] of degree v such that F(a) ¢
Iv+1M, we have F e IM[X].
Obviously this concept does not depend on the order of the
elements. But apyeeesay (1 < n) need not be M-quasiregular.
The condition (*) can be stated in the following form.

(**) If F(X) € M[Xl,...,Xn] is homogeneous and
F(a) = 0, then the coefficients of F are in IM.
Define a map ¢ : (M/IM)[X;,...,X ] - grM = D Vw1V

v 30
as follows. If F(X) € M[X] is homogeneous of degree v, let

V(F) = the image of F(a) in ™M/1V*" M. Then Y is a degree-

preserving additive map from M[X] to ng(M), and since it
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I .
maps IM[X] to 0 it induces ¢ : (M/IM)[X] > gr' (M). This is
clearly surjective, and (*) is equivalent to

(***) ¢ is an isomorphism: (M/IM)I[X Xn] = ng(M)-

127

THEOREM 27. Let A be a ring, M an A-module, ajyeeesd € A
and T = aM. Then:
i) if a1seresd) is M-quasiregular and x € A, IM:x = IM,

then IvM 1 X = IvM for all v > 0,
ii) 1if ajsererdy is M-regular then it is M-quasiregular;
iii) if M, M/alM, M/(al,az)M,...,M/(al,...,an_l)M are
separated in the I-adic topology, then the converse of ii)

is also true.

Remark. The separation condition of iii) is satisfied in
either of the following cases:
(@) A is noetherian, M is finitely generated and I& rad(A),

(R) A is a graded ring A = vg% A, ,Misa graded A-

module M = @ M and each a; is homogeneous of degree > 0.
v2,.0

Proof. i) Induction on v. Llet Vv > 1, £ € M and suppose

v=1

xE € IvM. Then £ € 1 M, hence there exists a homogeneous

polynomial F(X) & M[X X_1 of degree v-1 such that & =

1reeeo

F(a). Since x§ = xF(a) ¢ IVM, the coefficients of F are in
V),

IM : x = IM. Therefore § = F(a) € I M.

ii) Induction on n. For m = 1 it is easy to check. Let
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n > 1. By induction hypothesis ajseeesa g is M~-quasiregular.
Let F(X) € M[Xl,...,Xn] be homogeneous of degree v such that

F(a)

0. We will prove F £ IM[X] by induction on v. Write

F(X) G(Xl,...,Xn_l) + XnH(Xl,...,Xn). Then G and H are

homogeneous of degree v and v-1, respectively. By i) we have
v v v
. = < -
H(a) € (al,...,an_l) M : a (al,...,an_l) M € I'M, there
fore by the induction hypothesis on Vv we have H £ IM[X].
. V.
Since H(a) ¢ (al,...,an_l) M there exists h(X) ¢ M[Xl""xn-1]
which is homogeneous of degree v such that H(a) = h(a).
Putting G(X1’°"’xn—l) + anh(xl""’xn—l) = g(X) we have
g(al,...,an_l) = 0, hence by the induction hypothesis on n
we have g € IM[X], hence G ¢ IM[X] and so F ¢ IM[X].
iii) If a1£ = 0 then £ € IM, hence & = Zaini and Zalaini
= 0, hence ni € IM and & € IZM. In this way we see § ¢
v P =
(} I'M =0. Thus a; is M-regular. Put Ml M/alM. If ays
EETL N is Ml—quasiregular then our assertion will be proved
by induction on n. (M # IM follows from the separation con-
dition.) Let F(XZ"'°’Xn) € M[Xz,...,Xn] be homogeneous of
degree v such that F(az,...,an) € alM. Put F(az,...,an) =
alw, and assume w € IlM. Then w = G(al,...,an) for some
homogeneous polynomial of degree i, and
) F(az,...,an) = alG(al,...,an).
If 1 < v-1 then G € IM[X] and so w € Il+lM. We thus conclude

\)_
that w € I M. If 1 = v=1 in (), then F(XysreehX ) = X G(X)
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¢ IM[X], and since F does not contain X1 we have F ¢ IM[X].

Therefore F mod alM[X] € (az,...,an)Ml[X].

The theorem shows that, under the assumptions of iii),

any permutation of an M-regular sequence is M-regular.

Examples. 1. Let k be a field and A = k[X,Y,2]. Put a, =
Xy - 1), a, = Y and ay = Z(Y - 1). Then 31535534 is an
A-regular sequence, while al,a3,a2 is not.

2. There exists a non-noetherian local ring (A,#) such
that m = (xl, x2) where X 5%, is an A-regular sequence but
X, is a zero-divisor in A. (J. Dieudonne, Nagoya Math. J.
27-1 (1966), 355-356.)

(15.Cc) 1f al,az,... € A is an M-regular sequence then the
sequence of submodules alM, (al,az)M,... is strictly increas-
ing, hence the sequence of ideals (al),(al,az),... is also
strictly increasing. If A is noetherian such a sequence must
stop. Therefore each M-regular sequence in I can be extended
to a maximal M-regular sequence in I. The next theorem shows
that any two maximal M-regular sequences in I have the same

length if M is finitely generated.

THEOREM 28. Let A be a noetherian ring, M a finite A-module

and I an ideal of A with IM # M. Let n > 0O be an integer.
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Then the following are equivalent:

(1) Exti(N, M) =0 (i < n) for every finite A-module N

with Supp(N) € V(I);

(2) Exti(A/I, M =0 (i<n);

(3) there exists a finite A-module N with Supp(N) = V(I)
such that Extz(N, M) =0 (i<n) ;
(4) there exists an M-regular sequence apseersdy of

length n in I.

Proof. (1) = (2) =(3) is trivial. (3) = (4): We have
Extg(N, M) = HomA(N, M) = 0. If no elements of I are M-
regular, then I is contained in the join of the associated
primes of M, hence in one of them by (1.B): I € P for some
P € Ass(M). Then there exists an injection A/P > M. Local-
izing at P we get HomAP(k, MP) # 0, where k = AP/PAP' Since
P £ V(I) = Supp(N), we have NP # 0 and so NP/PNP =N G%k #0

by NAK. Then Homk(NQk, k) # 0. Therefore Hom (NP’ PH,) #

A

0. But the left hand side is a localization of HomA(N, M,
which is 0. This is a contradiction, therefore there exists

an M-regular element a; € I. If n>1, put M, = M/alM.

From the exact sequence

a

(%) 0->M—>1M+M1+0

we get the long exact sequence

i i i+l
e ExtA(N,M) > ExtA(N,Ml) > ExtA (N,M) ...
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which shows that Exti(N, Ml) =0 (i < n-1). So by induction

on n there exists an M,-regular sequence Aoy eeesd in I.

1

(4) = (1): Put Ml = M/alM. Then Exti(N, Ml) = 0 (i<n-1)

by induction on n. From (*) we get exact sequences

a

i 1
0 - Eth(N, M) >

Exti(N, M) (4 < ).

But Supp(N) = V(Ann(N)) & V(I), hence I € radical of Ann(N),
and so a;N = 0 for some r > 0. Therefore ai annihilates
Exti(N, M) as well. Thus we have Exti(N, M) =0 (i < n).

Under the assumptions of the theorem, we call the
length of the maximal M-regular sequences in I the I-depth
of M and denote it by depthI(M). The theorem shows that

depth, () = min{i | Exty(A/I, M) # 0}.
When (A, m) is a local ring we write depth M or depthAM
for depthMéM) and call it simply the depth of M. Thus
depth M = 0 iff ame Ass(M). If A is an arbitrary noether-
ian ring and P € Spec(A), we have depth MP = 0 & PAP €
ASSA.P(M'P) &E Pe AssA(M) =] depthP(M) = 0, In general
we have depthAP(MP) ;.depthP(M), because localization pre-
serves exactness. When IM = M we define depthI(M) = ®,
For instance depthI(M) =0 1if M = 0.
(15.D) D. Rees introduced the notion of grade, which is

closely related to depth, in 1957. (The grade of an ideal
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or module, Proc. Camb. Phil. Soc. 53, 28-42.) Let A be a
noetherian ring, M # 0 be a finite A-module and I = Ann(M).
Then he puts

grade M = inf {1 | Exti(M,A) # 0}.
According to the above theorem, we have

grade M = depthI(A), I =Amm(M).
Also, it follows from the definition that

grade M £ proj.dim M.
When I is an ideal of A, grade(A/I) is called the grade of I.
[Thus grade I can have two meanings according to whether I
is viewed as an ideal or as a module. When confusion can
arise, the depth notation should be used.] The grade of an
ideal I is depthI(A), the length of maximal A-sequence in I.
If 8yyeeerd is an A-regular sequence it is easy to see
that ht(al,...,ar) = r. Therefore

grade I £ ht I,

PROPOSITION. Let A be a noetherian ring, M ( # 0 ) and N be
finite A-modules, grade M = k and proj.dim N = £ < k. Then

Exti(M, N) =0 (i<k-28).

Proof. Induction on 2. If £ = 0 then N is a direct summand

of a free module. Since our assertion holds for A by defini-

tion, it holds for N also. If % > 0 take an exact sequence
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0> N'>L~>N=>0 with L free. Then proj.dim N' = & - 1

and our assertion is proved by induction.

(15.E) LEMMA 2. (Ischebeck) Let (A,M) be a noetherian

local ring and M # 0 and N # O be finite A-modules. Put

depth M = k, dim N = r. Then

Exti(N, M) =0 (1i<k-r).

Proof. Induction on r. If r = 0 then Supp(N) = {m} and
the assertion follows from Th.28. Let r > 0. By p.51 Th.10
we can easily reduce to the case N = A/P, P ¢ Spec(A). Since
r = dim A/P > 0 we can pick x € m - P, and then 0 > N kS
N > N' » 0 is exact, where N' = A/(P + Ax) has dimension < r.
Then using induction hypothesis we get exact sequences

X

i i+1
0 - Exti(N, w 3 ExtX(N, M) > Ext, (N',M) =0

for i < k-r, and these Ext must vanish by NAK. Q.E.D.

THEOREM 29. Let (A,#) be a noetherian local ring and let
M # 0 be a finite A-module. Then we have

depth M £ dim(A/P) for every P € Ass(M).

Proof. If P € Ass(M) then HomA(A/P, M) # 0, hence depth M

€ dim(A/P) by Lemma 2.

-~

(15.F) LEMMA 3. Let A be a ring, and let E and F be
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finite A-modules. Then Supp(E®F) = Supp(E)n Supp(F).

Proof. Fot P € Spec(A) we have (E ®F)P = (E ®AF)®AAP =
EP QAPFP. Therefore the assertion is equivalegt to the
following: Let (A,w,k) be a local ring and E and F be
finite A-modules. Then E®F # 0 & E # 0 and F £ 0. Now
=» is trivial. Conversely, if E# 0 and F # 0 then E®k =
E/mE # 0 by NAK. Similarly F®k # 0. Since k is a field

we get (E@F)®k = (E®k) ®k(F®k) # 0, so E®F # 0.

LEMMA 4. Let A be a noetherian local ring and M be a finite
A-module. Let al, .e .,ar be an M-regular sequence. Then

dim M/(al,...,ar)M =dim M - r.

Proof. We have dim M/aM > dim M - r by Th.17. On the
other hand, suppose f is an M-regular element. We have
Supp(M/fM) = Supp(M) A Supp(A/fA) = Supp(M) A V(f) by Lemma 3,
and f is not in any minimal element of Supp(M), in other
words V(f) does not contain any irreducible component of
Supp(M). Hence dim(M/fM) < dim M. This proves dim M/aM £

dim M - r.

PROPOSITION. Let A be a noetherian ring, M a finite A-module

and I an ideal. Then

depth (M) = inf {depth M, | Pev(r?.



106 COMMUTATIVE ALGEBRA

Proof. Let n denote the value of the right hand side. If

n = 0 then depth MP =0 for some P2 I, and then I €P ¢
Ass(M). Thus depthI(M) =0, If 0<n<e, then I is not con-
tained in any associated prime of M, and so there exists by
(1.B) an M-regular element a € I. Put M' = M/aM. Then
depth (M')P = depth MP/aMP = depth My - 1 for P21, and
depthI(M') = depthI(M) - 1. Therefore our assertion is
proved by induction on n. TIf n = « then PMP = MP for all P
€ V(I). If IM # M we would have (M/IM)P # 0 for every P ¢
Supp(M/IM) = V(I)n Supp(M). If P is a minimal element of

Supp(M/IM) then Supp (M/IM)P = {PAP}, hence the A -module

“p

s
_ . . . c
(M/IM)'P MP/IMP is coprimary in M_ and P M, € IM, for some

P
s >0 by (8.B). Hence PMP # MP’ contradiction. Therefore

IM = M and depthI(M) = o,
16. Cohen-Macaulay Rings

(16.A) Let (A, wm) be a noetherian local ring and M a finite
A-module. We know that depth M € dim M provided that M # 0.

We say that M is Cohen-Macaulay (briefly, C.M.) if M = 0 or

if depth M = dim M. 1If the local ring A is C.M. as A-module

then we call A a Cohen-Macaulay ring.

THEOREM 30. Let (A, ) be a noetherian local ring and M a
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finite A-module. Then:
i) 1if M is a C.M. module and P ¢ Ass(M), then we have
depth M = dim A/P. Consequently M has no embedded primes;
ii) if al,...,ar is an M-regular sequence in 4 and M'
= M/aM, then
M is C.M. & M' is C.M. ;
iii) if M is C.M., then for every P £ Spec(A) the AP—

module MP is C.M., and if MP # 0 we have

depthP(M) = depthAPMP.

Proof. i) Since Ass(M) # @, M is not 0 and so depth M =
dim M. Since P & Supp(M) we have dim M »dim A/P, and
dim A/P > depth M by Th.29.
ii) By NAK we have M = 0 iff M' = 0. Suppose M # 0. Then

dim M' = dim M -~ r by Lemma 4, and depth M'

depth M - r.
1ii) We may assume that MP # 0. Hence P 2 Ann(M). We

depthP(M) = dim MP by induction on depthP(M). If depthP(M)

know that dim MP 2 depth Z:depthP(M). So we will prove

= 0 then P is contained in some P' € Ass(M), but Ann(M) < P
€ P' and the associated primes of M are the minimal prime
over-ideals of Ann(M) by i). Hence P = P', and dim MP =0.
Next suppose depthP(M) > 0; take an M-regular element a € P
and put M

1= M/aM. Since localization preserves exactness,

the element a is Mp—regular. Therefore we have
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dim (Ml)P = dim MP/aMP = dim M, - 1 and depthP(Ml) =
i i i by induction hypo-
depthP(M) - 1. Since Ml is C.M. by ii), by

thesis we have dim (Ml)P = depthP(Ml). We are done.

(16 .B) THEOREM 31. Let (A,m) be a C.M. local ring.
Then: i) for every proper ideal I of A, we have

ht I = depthI(A) = grade I, ht I + dim A/I = dim Aj

ii) A is catenary;

iii) for every sequence al,...,ar in #, the following
conditions are equivalent:

(1) the sequence al,...,ar is A-regular,

(2) ht (al,...,ai) =i (1<i<€r),

(3) ht (al,...,ar) =T,

(n = dim A) in m such that

(4) there exist CIVCETERTL

{al,...,an} is a system of parameters of A.

Proof. iii) (1) = (2) is easy by p.77 Th.18. (2) = (3) is
trivial. (3) = (4): trivial if dim A = 1. If dim A > ¢
then #+ is not a minimal prime over—ideal of (al,...,ar), so

nimal prime over-
we can take a4 € # which is not in any mi P

=r + 1, and we
ideal of (al,...,ar). Then ht (al""’ar+l) T

can continue. ([Thus these implications are true for any

noetherian local ring.] (4) = (1): It suffices to show that

- lar
every system of parameters xl,...,xn of A is an A-regu
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sequence. If P € Ass(A) then dim A/P = n, hence X3 ¢ p.
Therefore X is A-regular. Put A' = A/(xl). Then A' is a
C.M. local ring of dimension n-1 by Th.30, and the images of
Koy eeer X in A' form a system of parameters of A'. Thus Xos
e X is A'-regular.

i) Let ht(I) = r. Then one can choose 8150058 € I
in such a way that ht (al,...,ai) =1i holds for 1£igr.

Then the sequence 81seeesd is A~-regular by iii). Hence

r < grade I. Conversely if bl""’bs is an A-regular sequen-

ce in I then ht (b

1,...,bs) = s £ ht I. Hence grade I

ht I. Since ht I = inf { ht P | P € V(I)} and dim A/I

sup { dim A/P | P € V(I)}, if ht P = dim A - dim A/P holds
for all prime ideals P then we will have ht I = dim A -

dim A/I in general. So let P be a prime ideal. Put dim A

= depth A = n, ht P = r. By Th.30 iii) AP is a C.M. ring

and ht P

It

dim = depth (A). So we can find an A-regular
P

sequence a,,...,a in P. Then A/(al,...,ar) is C.M. of

r

dimension n-r, and P is a minimal prime over-ideal of (a).

Therefore dim A/P

n-r by Th.30 i).
ii) If P D Q are two prime ideals of A, since AP is C.M,
we have dim AP = ht QAP + dim AP/QAP » i.e. ht P - ht Q =

ht(P/Q). Therefore A is catenary.
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(16.C) We say a noetherian ring A is Cohen-Macaulay if AP

is a C.M. local ring for every prime ideal of A. By Th.30
this is equivalent to saying that Am is a C.M. local ring
for every maximal ideal m.
Let A be a noetherian ring and I an ideal; let AssA(A/I)

= {P PS}. We say that I is unmixed if ht(P,) = ht(I)

IEERRE

for all i. We say that the unmixedness theorem holds in A

if the following is true: if I = (al,...,ar) is an ideal of
height r generated by r elements, where r is any non-negative
integer, then I is unmixed. (Note that such an ideal is
unmixed iff A/I has no embedded primes.) The condition
implies in particular (for r = 0) that A has no embedded
primes. If I is as above and if it possesses an embedded
prime P, let m be a maximal ideal containing P. Then in Am
the ideal IAm has PAm as embedded prime. Therefore, the
unmixedness theorem holds in A if it holds in Am for all

maximal ideals m.

THEOREM 32. Let A be a noetherian ring. Then A is C.M. iff

the unmixedness theorem holds in A.

Proof. Suppose the unmixedness theorem holds in A. Let P
be a prime ideal of height r. Then we can find aj,.--,a €

P such that ht (al,...,ai) =i for 1£igr. The ideal
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(al,...,ai) is unmixed by assumption, so an lies in no

+
associated primes qf A/(al,...,ai). Thus apseeesa is an
A-regular sequence in P, hence r ¢ depthP(A) € depth AP <

dim AP =71, so that Aj is a C.M. local ring.

P
Conversely, suppose A is C.M.. To prove the unmixed-
ness theorem we may localize, so we assume that A is a C.M.
local ring. We know that the ideal (0) is unmixed. Let
(al,...,ar) be an ideal of height r > 0. Then SERRTLE is

an A-regular sequence by Th.31l, hence A/(al,...,ar) is C.M.

by Th.30 and so (al,...,ar) is unmixed. Q.E.D.

(16.D) THEOREM 33. Let A be a Cohen-Macaulay ring.
Then the polynomial ring A[Xl,...,Xn] is also Cohen-Macaulay.
As a consequence, any homomorphic image of a C.M. ring is

universally catenary.

Proof. Enough to consider the case of n = 1. Let P be a

prime ideal of B = A[{X], and put p = PAA. We want to prove
that the local ring BP is C.M.. Since BP is a localization
of Ap[X] and since Ap is C.M., we may assume that A is a C.M.
local ring and p is the maximal ideal. Then B/pB = k[X],
where k is a field. Therefore we have either P = pB, or P =
pB + fB where f = f(X) € B is a monic polynomial of positive

degree. As B is flat over A, so is BP. It follows that any
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A-regular sequence apseeesay (r = dim A) in p 1s also BP—

regular. If P = pB we have dim B_ = dim A by (13.B) Th.19,

P

and as depth B, > dim A we see that B, is C.M.. If P = pB+

fB then dim Bj, = dim A+ 1 by Th.19, and since any monic

P
polynomial is a non-zero-divisor in A/(al,...,ar)[X] we have

= di i .M. in this case also.
depth BP;p r+1 dim BP. Thus BP is C.M. in

The last assertion is obvious.

(16.E) Example 1. A polynomial ring k[Xl,...,Xn] over a
field k is C.M. by Th.33. (Macaulay proved the unmixedness
theorem for polynomial rings before 1916. Kaplansky says

"In many aspects Macaulay was far ahead of his time, and some
aspects of his work won full appreciation only recently".)
Example 2. Let A = kix,y] be a polynomial ring in two vari-
ables x, y over a field k, and put B = k[xz,xy,yz,x3,x2y,
xyz,ya]. Then A and B have the same quotient field and A is
integral over B. Put m = (xA + yA)/AB. Then we have x4 ¢
X3B and th $;x3B, so that m ¢ AssB(B/x3B). It follows

that the local ring Bm is not Cohen-Macaulay.

(16.F) PROPOSITION. Let A be a C.M. ring, and J = (al,
AV
...,ar) be an ideal of height r. Then A/J is C.M., and

hence Jv is unmixed, for every v > 0.
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Proof. We may assume that A is local. Let k be its residue

field and put d = dim A/J. Since al,...,ar is an A-regular

sequence, J\)/J\)+1 is isomorphic to a free A/J-module by Th.

27. Since A/J is C.M. with depth A/J = d, and since depthA

i
= = < -
A/J depthA/JA/J, we have ExtA(k, A/ 0 (i < d) Then

Exti(k, Jv/Jv+1) =0 (i < d) and by induction on v we get

Exty(k, A/3%) =0 (i < d). Therefore depth A/3" >d-=

dim A/J° , so that A/JY is C.M.

EXERCISES. 1. Find an example of a noetherian local ring A
and a finite A-module M such that depth M > depth A. Also
find A, M and P € Spec(A) such that depth MP > depthP(M).

2. Show that, if A is a noetherian local ring (or noether-
ian graded ring) which is a catenary domain, and if CLREED
a_ are elements of the maximal ideal (resp. homogeneous
elements of positive degree) such that ht (al,...,ar) =r,
then ht (al,...,ai) =1 for each 1£ifr. [The condition
that A is a domain 1is necessary. In fact, if A = k[X,Y,2]/

(X,Y)N(2) = klx,y,2], then ht(x, y+z) = 2 and ht(x) = 0.]

3. Let (A,mM,k) be a local ring and u: M > N a homomor-
phism of finite A-modules. We say that u is minimal if
u®1k: M®k > N®k is an isomorphism. Show that

(1) u is minimal & u is surjective and Ker(u) & smM;

(ii) for any finite A-module M there exists a minimal
homomorphism u: F > M with F free;
(i1i) 4if 0>k ¥Yr ¥y~ 0 1is exact with u minimal and
with K and F free, then the homomorphisms

v, Exti(k, K) » Extz(k, F), i=0,1,2,...
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n m
jnduced by v are zero. [Hint: If K=A", F=A and v is
represented by a n X m matrix (cij)’ Fhen cy €M, and v, is

. i s i n
represented by the same matrix on ExtA(k,K) o ExtA(k,A) <]

4., Let A be a noetherian local ring and M be a finite
A-module having finite projective dimension. Then one has
the following formula due to Auslander-Buchsbaum:

proj.dim M + depth M = depth A.
[Hint: Use induction on proj.dim M. For the case proj.dim M

= 1, use the exercise 3 above.]

5. Let A be as above and let P € Spec A. Show that
i) depth A & depthP(A) + dim A/P,
ii) Put codepth A = dim A - depth A. Then
codepth A 2 codepth AP'

Further References.

The concept of depth has striking applications in

unexpected areas:

1. R. Hartshorne: Complete intersections and connected-
ness. Amer. J. Math. 84 (1962), 497-508.
For instance he proves that, if A is a noeth. local ring and
if Spec(A) - {m} is disconnected, then depth A £ 1.

2. D.Buchsbaum- D.Eisenbud: What makes a complex exact ?
J. of Alg. 25(1973),259-268.

They show that if C. : 0 > Fn > F -+ Fo is a complex

+ e o a
n-1

of finite free modules over a noetherian ring, and if Ei de-

note the matrix of the map Fi - Fi— , then the exactness of

1

C. can be fully expressed in terms of the ranks of the modules

and maps and depth Ii’ where Ii is the ideal generated by
certain minors of the matrix Ei (1£i<n). For applications
of their theorem, cf. D.Eisenbud: Some directions on recent

progress in comm. algebra, in Proc.Symp.Pure Math.29 (1975).

CHAPTER 7. NORMAL RINGS and REGULAR RINGS

17, Classical Theory

(17.A) Let A be an integral domain, and K be its quotient

field. We say that A is normal if it is integrally closed

in K. If A is normal, so is the localization S—lA for every

multiplicatively closed subset S of A not containing 0,

Since A = f’—\\ A by (1.H), the domain A is normal iff
all max.)p P

Ap is normal for every maximal ideal P.

An element u of K is said to be almost integral over A

if there exists an element a of A (a # 0) such that au® € A

for all n > 0, If u and v are almost integral over A, so are

u+v and uv., If u € K is integral over A then it is almost
integral over A. The converse is also true when A is noether-
ian, 1In fact, if a # 0 and au ¢ A (n =1,2,...), then
Afu] is a submodule of the finite A-module a_lA, whence A(u]

115
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itself is finite over A and u is integral over A, We say
that A is completely normal if every element u of K which is
almost integral over A belongs to A. For a noetherian domain
normality and complete normality coincide. Valuation rings
of rank (= Krull dimension) greater than one (cf. Nagata:
LOCAL RINGS or Zariski-Samuel: COMM, ALG, vol.II) are normal
but not completely normal,

We say (in accordance with the usage of EGA) that a ring
B is normal if B is a normal domain for every prime ideal p
of B, A noetherian normal ring is a direct product of a

finite number of normal domains,

(17.B) PROPOSITION. (1) Let A be a completely normal domain.
i i letel
Then a polynomial ring A[Xl,...,Xn] over A is also completely
imi 1 power series ring A[[X,,..,
normal, Similarly for a formal p 1

X 11. (2). Let A be a normal ring. Then A[Xl,...,Xn] is
n

normal.

Proof. (1) Enough to treat the case of n = 1, Let K denote

the quotient field of A. Then the quotient field of A[X]

is K(X). Let u € K(X) be almost integral over A[X]. Since

A[X] € K[X] and since K[X] is completely normal (because of

unique factorization), the element u must belong to K[X].
r+l d

r o 0. Let £(X)
Write u = arx + ar+lx + ... + O.dX , x #
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=b X+ b x4 4 b X € A[X] be such that fu" ¢
s s+1 t

A[X] for all n. Then bsarn € A for all n so that ar € A.

ur+1Xr+1 + ... 1is almost integral over AlX],

Then u - o X*
r
S0 we get ar+l € A as before, and so on. Therefore u & A(X]

The case of A[[X]] is proved similarly,

(2) Let P be a prime ideal and let P = PNA, Then
A[X]P is a localization of Ap[X] and Ap is a normal domain,
So we may assume that A is a normal domain with quotient
field K. Let u = P(X)/Q(X) (P,Q € A[X]) be such that

d

u + fl(x)ud-l + ... 4+ fd(X) =0 with fi € A[X]. 1In order

to prove that u ¢ A[X], we consider the subring AO of A
generated by 1 and by the coefficients of P,Q and all the
fi(X)'s. Then u is in the quotient field of AO[X] and is
integral over AO[X]. The proof of (1) shows that u is a
polynomial in X: u = arXr + ... + adxd, and that each coef-
ficient oy is almost integral over AO. As AO is noetherian,

oy is integral over AO and a fortiori over A. Therefore oy
€ A, as.wanted.
Remark. There exists a normal ring A such that A[[X]] is

not normal (A.Seidenberg).

[e2]

(17.C) Let A be a ring and I an ideal with (ﬁ\In = (0).
n=1

Then for each non-zero element a of A there is an integer

n > 0 such that a € 1® and a s In+l. We then write n = ord(a)
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(or ord (a)) and call it the order of a (with respect to I).
I -
We have ord(a + b) 2 min (ord(a), ord(b)) and ord(ab) 2
ord(a) + ord(b).
Put A' = ng(A) = D In/1n+l. For an element a of A

n30 n, ntl
with ord(a) = n, we call the image of a in I /1 = A'n the
leading form of a and denote it by a*, We define 0% =0

(e A'). The map a® a* is in general neither additive nor

multiplicative, but if a*b* # 0 (i.e. if ord (ab) ord(a) +

ord (b)

ord(b)) then we have (ab)* = a*b*, and if ord(a)
and a* + b* # 0 then we have (a + b)* = a* + b*, It follows
that, for any ideal Q of A, the set Q* of the leading forms
of the elements of Q is a graded ideal of A'., Warning: if

Q = zaA it does not necessarily follow that Q% = Zai*A'.
But if Q is a principal ideal aA and if A' is a domain, then
we have Q% = a*A',

Put A = A/Q and T = (I + Q)/Q. Then it holds that

+1 n
ng(X) = ng(A)/Q*. In fact, we have ™I = (1" + Q/
n,, .n ntl _
™+ @ = TYIPAE™ + @ = 1T + T = AT ek
(17.D) THEOREM 34 (Krull), Let A, I and A' be as above.

Then 1) if A' is a domain, so is Aj
2) suppose that A is noetherian and that I € rad(A),

-hen, if A' is a normal domain, so is A.
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Proof. 1) Let a and b be non-zero-elements of A, Then a* # 0
and b* # 0, hence (ab)* = a*b* # 0 and so ab # 0.

2) The ring A is a domain by 1). Tet a,b € A, b # 0, and
suppose that a/b is integral over A. We have to prove a ¢
bA. The A-module A/bA is separated in the I-adic topology

o
by (11.D) Cor.l, in other words bA = M\ (ba + 1"). Therefore

n=1

it suffices to prove that a € bA + 1" for all n., Suppose

that a € bA + In.l is already proved. Then a = br + a'
with r € A and a' ¢ In_l, and a'/b = a/b - r is integral
over A, So we can replace a by a' and assume that a ¢ In_l.
We are to prove a € bA + In. Since a/b is almost integral
over A there exists 0 # ¢ € A such that ca™ ¢ b"A for all m.
As A' is a domain the map a » a* is multiplicative, hence we
have c*a*" ¢ b*"A' for all m, and since A' is noetherian

(by (10.D)) and normal we have a* ¢ b*A', Let c € A be such

that a* = b*c*., Then n - 1 < ord(a) < ord(a - bc), whence

a-bcelI” sothat ae ba+ I, Q.E.D.

Remark. Even when A is a normal domain it can happen that
A' is not a domain. Example: A = k[x,y,z] = k[X,Y,Z]/

(22 - X2 - Y3), where k is a field of characteristic # 2,

and I = (x,7,2). We have A' = gri(a) = k[X,v,2}/(z% - x2),

s0  (x* - z*)(x* + 2*) = 0. On the other hand A is normal.

In general, a ring of the form k[Xl,...,Xn,Z]/(Z2 - £(X)) is
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normal provided that f(X) is square-free.

(17.E) Let (A, m, k) be a noetherian local ring of dimen-
sion d. Recall that the ring A is said to be regular if MW
is generated by d elements, or what amounts to the same, if
d = rankkMA«/Ma«2 (cf. (12,J)). A regular local ring of dimen-
sion 0 is nothing but a field. The formal power series ring

le of regular
k[[Xl,...,Xd]] over a field k is a typical examp

local ring.

THEOREM 35. Let (A, #, k) be a noetherian local ring. Then
n n+l _

A is regular iff the graded ring gr(A) =@ # /m asso

ciated to the # -adic filtration is isomorphic (as a graded

k-algebra) to a polynomial ring k[Xl,...,Xd].

lar
Proof. Suppose A is regular, and let {xl,...,xd} be a regu
system of parameters. Then gr(A) = k[xl*,...,xd ], henc
gr(A) is of the form k[Xl,...,Xd]/I where I is a graded ideal.
If I contains a homogeneous polynomial F(X) # O of degree n,
then we would have, for n > Ngs

1 n+d n-n +d) _ a polynomial of degree d-1

ea/m™h < 7 - ("o in n.

But the Hilbert function £(A/#") of A is a polynomial in n
I
(for large n) of degree d by (12.H). Therefore the ideal

must be (0).

NORMAL RINGS AND REGULAR RINGS 121

Conversely, suppose gr(A) =~ k[Xl,...,Xd]. Then we get
dim A = d from the consideration of the Hilbert polynomial,

while rankkaw/wbz = rankk(kXl + e + kxd) = d. Thus A is

regular,

(17.F) THEOREM 36, Let A be a regular local ring and
{x,5.00,x.} a regular system of parameters. Then:
1 d
1) A is a normal domain;

2) xl,...,xd is an A-regular sequence, and hence A is

a Cohen-Macaulay local ring;

3) (xl,...,xi) = p; 1is a prime ideal of height i for
each 1 ¢ 1 £ d, and A/pi is a regular local ring of diemnsion
d - i;

4) conversely, if P 1s an ideal of A and if A/p is
regular and has dimension d - 1, then there exists a regular

system of parameters {yl,...,yd} such that p = (yl,...,yi).

Proof. 1) follows from Th.34 and Th.35.

2) follows from Th.27 as well as from 3) below.

3) We have dim(A/pi) =d -1 by (12.K), while the
maximal ideal 4W/pi of A/pi is generated by d - i elements

Xi412°++sXq. Therefore A/pi is regular, and hence p; is a

prime by 1),

4) Put wm = M/p, Then d - i = rankk W/ﬁz =
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2
rankkﬂﬂ/(ﬁnz +p) = rankk-MV4n2 - rankk(z”‘-'2 + p)/#", hence
i= rankk(4”2 + p)/“mz. Thus we can choose i elements y,,

2 .
cees¥y of p which span p + n? mod #+~ over k, and d - 1
elements Yig1r0e0Yg of w which, together with YiseeesYys
span 4 mod ~%? over k. Then {yl,...,yd} is a regular system

' is a prime ideal

of parameters of A, so that (yl,...,yi) =p
of height i by 3). As p 2 p' and dim(A/p) = d - i, we must

have p = p'. Q.E.D.

(17.G) Let A be a regular local ring of dimension 1, and
let P = aA be the maximal ideal of A, Then the non-zerc
ideals of A are the powers P = a"a (n 2 0) of P. (Proof:

if I is an ideal and I # 0, then there exists n 2> O such that
I<P'=a" and I QZPn+l. Then a "I is an ideal of A not
contained in the maximal ideal P, therefore a_nI = A, i.e.

1= anA, as claimed.) Thus A is a principal ideal domain.
Furthermore, any fractional ideal (that is, finitely generated
non-zero A-submodule of the quotient field K of A) is equal
to some anA (n ; 0), If 0 #x e K and xA = anA, then we
write n = ord(x). Then x }—>ord(x) 1is a valuation of K
with Z as the value group, and A is the ring of the valuation.
Conversely, let v be a valuation of K whose value group is

discrete and of rank 1 (i.e. isomorphic to Z); then the valua-

tion ring Rv of v is called a principal valuation ring or a
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discrete valuation ring of rank 1, and is a regular local
ring of dimension 1, Thus a principal valuation ring and a
one-dimensional regular local ring are the same theing., On
the contrary, no other kinds of valuation rings are noetherian.
In the next paragraph we shall learn another characteri-

zation (Th. 37) of the one-dimensional regular local rings.

(17.8) Let A be a noetherian domain with quotient field
K. For any non-zero ideal T of A we put I_l = {x ¢ K] xI €A},

We have A C I_l and I-I-lé A,

LEMMA 1, Let 0 #acA and P ¢ AssA(A/aA). Then P_l £ A,

Proof. By the definition of the associated primes there

exists b € A such that (aA : b) = P. Then (b/a)P <A

and b/a ¢ A.

LEMMA 2, Let (A, P) be a noetherian local domain such that

P #0 and PP_l = A. Then P is a principal ideal, and so

A is regular of dimension 1.

(o0
Proof. Since é:&Pn = (0) by (11.D) Cor.3, we have P # Pz.

Take a € P - PZ. Then aP"lg; A, and if aP_léé P then
aA = aP-lP < Pz, contradicting the choice of a. Therefore
we must have ap ! = A, that is, aA = aP~lp = p.
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THEOREM 37. Let (A, P) be a noetherian local ring of

dimension 1. Then A is regular iff it is normal.

25222, Suppose A is normal (hence a domain), By Lemma 2 it
suffices to show PP_l = A, Assume the contrary. Then PP-l
= P, and hence P(P—l)n = P& A for any n > 0. Therefore
all the elements of P-l are integral over A, whence P-1 = A
by the normality, But, as dim A = 1, we have P € Ass(A/aA)
for any non-zero element a of P so that P-l # A by Lemma 1,

Thus PP—l = P cannot occur. Q.E.D.

THEOREM 38, Let A be a noetherian normal domain. Then
any non-zero principal ideal is unmixed, and it holds that

A= (ﬁ\ A . If dim A € 2 then A is Cohen-Macaulay.
ht(p)=1

Proof. Let a # 0 be a non-unit of A and let P € Ass(A/aA).
Replacing A by AP we may suppose that (A,P) is local. Then
we have P 1 # A by Lemma 1, and if ht(P) > 1 we would have a
contradiction as in the preceding proof. Thus ht(P) = 1.
This implies that aA is unmixed. The other assertions of

the theorem follow immediately from that.

17.1) Let A be a noetherian ring. Consider the follow-

ing conditions about A for k = 0,1,2,... :

Proof., (After EGA IV
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(Sk) it holds depth(Ap).) inf(k, ht(p)) for all p € Spec(A),
and

(Rk) if p € Spec(A) and ht(p) £ k, then Ap is regular.
The condition (SO) is trivial. The condition (Sl) holds iff
Ass(A) has no embedded primes. The condition (SZ)’ which is
probably the most important, is equivalent to that not only
Ass(A) but also Ass(A/fA) for every non-zero-divisor f of A
have no embedded primes., The ring A is C,M. iff it satisfies
all (Sk).

If (RO) and (Sl) are satisfied then A is reduced, and

conversely, The following theorem is due to Krull(1931) in

the case A is a domain, and to Serre in the general case.

THEOREM 39, (Criterion of normality) A noetherian ring is

normal iff it satisfies (SZ) and (Rl).

2 p.108). Let A be a noetherian ring.
Suppose first that A is normal, and let p be a prime ideal,
Then Ap is a field for ht(p) = 0, and regular for ht(p) =1
by Th.37, hence the condition (Rl)' Since a normal local
ring is a domain, Th.38 implies that A satisfies (Sz).

Next suppose that A satisfies (SZ) and (Rl). Then A is

reduced. Let PysesesP, be the minimal prime ideals of A.

Thus we have (0) = PiNeeaNp, . The total quotient ring %A
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(cf. p.12) of A is isomorphic to the direct product Kl XoaaX
K , where K. is the quotient field of A/pi; this follows from
r 1
(1.C) applied to ¢A.

We shall prove that A is integrally closed in ®A. Suppo-
se this is done; then the unit element ei of Ki belongs to A
since e,2 -e, = 0, and we have 1 = e, + ... + & and

i

1 r

eiej =0 (i # j). Therefore A = Ae, X ... X Ae , and Ae
is a normal domain as it is integrally closed in Ki; thus
A is a normal ring., So suppose

(a/p)™ + cl(a/b)n'1 ¥ 4 =0 in 0,
where a, b and the ci's are elements of A and b is A-regular.
This is equivalent to a" + Zcian-ibi = 0. We want to prove
a € bA, Since bA is unmixed of height 1 by (52), we have
only to show that a ¢ prp for all prime ideals p of height
1 (where a_and b_ are the canonical images of a and b in Ap).
But A is normal by (Rl) for such p, and we have apn +
Z(ci)papn_ibpi = 0, therefore a, € DA Q.E.D.
(17.J) THEOREM 40, Let A be a ring such that for every

prime ideal p the localization Ap is regular. Then the poly-

nomial ring A[Xl,...,Xn] over A has the same property.

Proof. As in the proof of (16.D) Th.33, we are led to the

following situation: (A, p) is a regular local ring, n =1
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and P is a prime ideal of B = A[X] lying over P. And we have
to prove BP is regular. In this circumstance we have P 2 pB
and B/pB = k[X], where k = A/p is a field. Therefore either
P = pB, or P = pB + £(X)B with a monic polynomial f£(X) in B.
Put d = dim A. Then p is generated by d elements, so P is
generated by d elements over B if P = pB, and by d+l elements
if P = pB + fB. On the other hand it is clear that ht(pB) >
d, so we have ht(P) = d in the former case and ht(P) = d + 1
in the latter case by (12.I) Th.18. Therefore BP is regular.
Q.E.D.

In particular, all local rings of a polynomial ring

k[Xl,...,Xn] over a fieid are regular,.

18. Homological Theory

(18.4) Let A be a ring., The projective (resp. injective)
dimension of an A-module M is the length of a shortest pro-

jective (resp., injective) resolution of M,

LEMMA 1. (i) An A-module M is projective iff Exti(M, N) =0
for all A-modules N.
(ii) M is injective iff Exti(A/I, M) = 0 for all ideals

I of A.

Proof. Immediate from the definitions. 1In (ii) we use the
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fact (which is proved by Zorn's lemma) that if any homomorph-
ism f: N - M can be extended to any A-module N' containing N

such that N' = N + Af for some £ € N', then M is injective,

LEMMA 2, Let A be a ring and n be a non-negative integer,
Then the following conditions are equivalent:

(1) proj.dim M € n for all A-modules M,

(2) proj.dim M < n for all finite A-modules M,

(3) inj. dim M € n for all A-modules M,

(4) Exti'(M, N) = 0 for all A-modules M and N.

Proof. (1) = (2): trivial. (2) = (3): take an exact sequeﬁce
0->M-> U0 -> Ul > .. > Un—l - C=>0 with_Uj injective for ;
all j. Let I be any ideal. Then we have Exti(A/I, Cc) =
Ext2+1(A/I, M), which;is zero by (2) since A/I is a finite
A-module. (4) = (1) is proved similarly, with "projective" |
instead of "injective" and with the arrows reversed.

(3) = (4) is trivial, as one can calculate Extz(M, N) using

an injective resolution of N,

By virtue of Lemma 2 we have

sup (proj. dim M) = sup (inj. dim M).
M M

We call this common value (which may be « ) the global dimen-

sion of A and denote it by gl. dim A. (In EGA it is denoted
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by dim. coh(a).)

(18.B) LEMMA 3. Let A be a noetherian ring and M a finite
A-module. Then M is projective iff Exti(M,N) = 0 for all

finite A-modules N,

Proof. Take a resolution 0 * R } F+ M5 0 with F finite
and free. Then R is also fihite, hence we have Extl(M,R) =0
Thus Hom(F,R) -+ Hom(R,R) » 0 1is exact, and so there exists
st F> R with sgei = idR, i.e. the sequence 0> R+ F > M

+0 Splits. Then M is a direct summand of a free module.

LEMMA 4. Let (A, s, k) be a noetherian local ring, and M be
a finite A-module, Then

A
3 < @ =
proj. dim M < n Tor 1(M, k) 0.

Proof. (=) Trivial. (<& ) The general case is easily
reduced to the case n = 0, If Torl(M, K) =0, let 0+ R

+ F3¥M> 0 be exact with u minimal (cf. p.113 Ex.3). Then
0+ R®k » Fok E M®k + 0 is exact and u is an isomorph-
ism, hence R®k = 0 and so R = 0 by NAK, Therefore M is free,

as wanted,

LEMMA 5, (I) Let A be a noetherian ring and M a finite A-

module. Then (i) proj. dim M is equal to the supremum of
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proj. dim Mp (as Ap-module) for the maximal ideals p of A,
and (ii) we have proj. dim M £ n iff Torﬁ+l(M, A/p)y = 0
for all maximal ideals p of A,
(IT) The following conditions about a noetherian ring A are
equivalent:

(1) gl. dim A < n,

(2) proj. dim M € n for all finite A-modules M,

(3) inj. dim M € n for all finite A-modules M,

it

(4) Ext}'(M, N) = 0 for all finite A-modules M and N,
(5) Torﬁ+l(M, N) = 0 for all finite A-modules M and N.
(ITI) For any noetherian ring A, we have
gl.dim A = sup gl.dim(Ap).
max.p
Proof. (I) The assertion (i) follows from (3.E) and Lemma 2,
while (ii) follows from (i) and Lemma 4.
(I1) We already saw (2)€ (1) = (3) in Lemma 2, and (3) = (4)
and (2) = (5) are trivial., Moreover, (5) implies (2) by (I)

above, and (4) = (2) is easy to see by Lemma 3.

(I11) follows from (I) and (II).

THEOREM 41, Let (A, M, k) be a noetherian local ring. Then
gl.dim A £ n & Torﬁ+l(k,k) = 0. Consequently, we have

gl.dim A = proj.dim k (as A-module).

NORMAL RINGS AND REGULAR RINGS 131

Proof. Torn+l(k,k) =0 = proj.dim k € n > Torn+l(M,k) =0

for all M = proj.dim M < n for all finite M 2 gl.dim Agn.

(18.C) LEMMA 6. Let (A, M, k) be a noetherian local
ring and M a finite A-module. If proj.dim M = r < ® and
if x is an M-regular element in m\, then proj.dim(M/xM) =

r+1,

Proof. The sequence 0 + M v M/xM + 0 is exact by assump-
tion, therefore the sequences

0> Tori(M/xM, k) > 0 dA>r+1)
and Torr+l(M,k) =0 > Torr+l(M/xM,k) > Torr(M,k) X Torr(M,k)
are also exact. Since k = A/m- is annihilated by x, the A-
module Torr(M,k) is also annihilated by x., Therefore
Torr+1(M/xM, k) = Torf(M,k) # 0 and Tori(M/xM, k) = 0 for

i > r+l. In view of Lemma 5 we then have proj.dim M/xM = r+l,

THEOREM 42. 1Let (A, #4, k) be a regular local ring of dimen-

sion n. Then gl.dim A = n,

Proof, Let {xl,...,xn} be a regular system of parameters.
Then the sequence XiseeesX is A-regular and k = A/inA, hence

we have proj.dim k = n by Lemma 6, So the theorem follows

from Th.41.
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COROLLARY. (Hilbert's Syzygy Theorem) Let A = k[X, ...,X ]
1, n

be a polynomial ring over a field k. Then gl.dim A = n,

Proof. This follows from Th.22, Th.40, Th.42 and Lemma 5.

We are going to prove a converse (due to Serre) of Th.42,

namely that a noetherian local ring of finite global dimension

is regular (Th.45). This is more important than Th.42, and
its proof is also more difficult, Roughly speaking there are
two different proofs: one is due to Nagata (simplified by

Grothendieck) and uses induction on dim A. This proof is

shorter and does not require big tools (cf, EGA IV1 pPP.46-48).

The other is due to Serre and uses Koszul complex and minimal
resolution; it has the merit of giving more information about
the homology groups Tori(k,k). Here we shall follow Serre's
proof. We begin with explaining the necessary homological

techniques, which are useful in other situations also,

(18.D) Koszul Complex, Let A be a ring. A complex (or more

precisely, a chain complex) M, is a sequence

M. : ce* M g»M —d>§>M Sd*0
n n-1 0
of A-modules and A-linear maps such that d2 = 0. The module
Mi is called the i~dimensional part of the complex and the
map d is called the differentiation. If L. and M., are two

complexes, their tensor product L.® M. is, by definition, the
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complex such that (L.@M.)n = PpL

QDAM and such that
ptg=n d

P
d: (L.@M.)tl > (L'®M')n-1 is defined on Lp@Mq by the for-
mula d(x®vy) = dL(x)Qy + (—l)prdM(y).

Let Xqs eeey X € A, and let Aei be a free A-module of

rank one with a specified basis e for i = 1,...,n. Let
X.
K.(xi): 0~ Aei T A-> 0 denote the complex defined by

i (p=1) and = A (p = 0), and

by d(ei) = X, Then HO(K'(xi)) = A/xiA and HI(K'(xi))

K (x;) = 0 (p # 1,0), = Ae

S Ann(xi). For any complex C., we put C.(xl,...,xn) =
C.®K.(x1)®...®l(.(xn). If M is an A-module we view it as

a complex M. with M= 0 (n #0) and M, = M, and we put

0
K. (xl,...,xn, M) = M.®K. (x1)®...®K.(xn). 1f there is no
danger of confusion we denote them by C.(x) and by K.(x, M)

respectively. These complexes are called Koszul complexes.

We have Kp(xl,...,xn, M) = 0 for n < p, while
Pro [Kal(x1)®...®Ka (x )]

Kp(xl,...,x y M) = o

n

p of the ai's are = 1
and the rest are = 0

for 0§ pgn. Put e,

=u ..®u where u, = e
i 1‘0' ®u, »

aendl i i

1
for i € {il,...,ip} and u; = 1 for other i. Then

L CIPRRPR: I M) =M,

i

=

o

H

=
Py
e =]
N

Kp(xl, eee ,xn, M)
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and

P -1
(1) d(me, R -DF xgmey
1% r=1 r 1

n ry
(where m € M, and ir indicates that ir is omitted there).

The formula (1) for the operator d can be put into another

form: let 2 e B i ...i_ be an arbitrary
1.< (< 1 1 1 p
1 P
element of Kp(ﬁ, M), and extend the mil"'ip‘S to an alterna-
ting function of the indices (i.e. such that mo 4T 0
= - . ). Then we have
and W 4. T DO D
(2) ’da( Lz my PaCH 1 )
L <i 1°°" 10y
il< lp p
r )
= I x.( z m, . . e, i .
je1 3 f<i.<i o Atpecipp el

There is another interpretation of the Koszul complex.

Let F = AXl + ... + AXn be a free A-module of rank n with a

. p .
basis {Xl,...,Xn}. Then the exterior product AP F is a
free module of rank (%) with {xi A ...AXE ] 1Sil<...<ipsn]
P 1 P

as a basis, so that there is an isomorphism of A-modules

M® APF > K (x, M) which maps X, A ..AX, to e i
Gk p= i, i, i. i,

Thus we can define K,(x, M) to be the complex M®L. with Lp =
P r-1 §
APF and with d(X; A...AX, ) = I (17 x, X, A AK
i i i r
1 P r=1 r 1
A..AX, . If we adopt this definition then we have to check
i

P
d2 = 0 on L., which is straightforward anyway.
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For any x € A, we have an exact sequence of éomplexes

(3) 0->A>K.(x) >A" >0
where A' is the factor complex K.(x)/A, therefore (A')l > A
and (A')n =0 for n # 1. Let C. be any complex., Then tensor-
ing the exact sequence (3) with C, we get

(4) 0->C., »C,(x) »C", » 0 (C'. =C.®a"),
which is again exact. The complex C' is obtained from C by
increasing the dimension by one: C'p =C and d' =d

p-1 p p-1°
Thus Hp(C') > Hp_l(C), and we get a long exact sequence

8
> p >
6... Hp+l(C.) > Hp+l(C.(x)) > HP(C.) > Hp(C.)

§
I B (C.) » H (C.(x)) » Hy(C.) +0HO(C.) > Hy(C.(x)) > 0.
One immediately checks that the connecting homomorphism 6p

is the multiplication by (-1)Px. Therefore we get

LEMMA 7. 1If C. is a complex with Hp(C.) = 0 for all p > 0,
then Hp(C.(x)) = 0 for all p > 1 and

0+ H(C.(x)) = HyC) 3 Hy(c.) » Hy(C.(x)) > 0
is exact. 1If, in particular, x is HO(C.)-regular, then we

have Hp(C.(x)) = 0 for all p > 0 and HO(C.(X)) = HO(C)/XHO(C)-

THEOREM 43. Let A be a ring, M an A-module and X15 eees X
n

an M-regular sequence in A, Then we have

n
Hp(K.(z, M) =0 (p>0), Hy(K.(x, M)) = M/ i x M
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COROLLARY, Let A be a ring and KpseoosX, be an A-regular
sequence in A, Then K.(xl,...,xn, A) is a free resolution of

the A-module A/(xl,...,xn).

(18,E) Minimal Resolution, Let (A,m k) be a noetherian

local ring, We recall (p.113 Ex,3) that a homomorphism u:
L > M is called minimal if W = u®id : L = L®k > M = M®k
is an isomorphism, or equivalently, if u is surjective with

Ker(u) ¢ mL. Let M be a finite A-module. A free resolution
d, dl d0
St L > 4.. > L. > M>0, is
i i-1

of M, ese > L 0

called a minimal resolution if di: Li > Ker(di_l) is minimal

for each i 2 0. In this case the complex

d, d.
L.®k: > 1 -+ 1 -+ ——£+ L
. : cea i i-1 e 0

where Li =L.®k = Li/MvLi, has trivial differentiation (i.e.
1

all d, = 0 ), Therefore we have Tori(M,k) =~ 71, for all i,

i
and so rank Li = rankkTori(M,k). In particular, all L, are

finite over A.

1EMMA 8, Let M be a finite module over a noetherian local
ring A, Then a minimal resolution of M exists, and is unique

up to (non-canonical) isomorphisms.

Proof. The existence is easy to see: one constructs a mini-

mal resolution step by step, using minimal basis. To prove
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the uniqueness, let L. - M and L'. + M be two minimal resolu-
tions of M. Since L. is a projective resolution there exists

a homomorphism f: L, - L', of complexes over M. Since

~ dl €
L. —8—> L. —> M

lfl lfo 1id
E'
L o L) —>

is commutative and since € and €' are minimal, the map fo

an isomorphism, Since both LO and L'0 are free, the map fO

is then defined by a square matrix T with det T ¢ #. Then

is

f, itself is an isomorphism. Repeating the same reasoning

(@}

we prove inductively that all fi are isomorphisms.

Exercise. Let L, » M be a minimal resolution and P. + M be
an arbitrary free resolution. Then we have P, = L, @ W, with

some acyclic complex W.. -

di dl €
LEMMA 9. Let > L, — L, » > ...—>L,>M>0 be a mini-
mal resolution of M, and
d! d!
> F, — L F, > LoF
i i-1 °t 0

be a complex with an augmentation €': F,. > M, such that

0
i) each Fi is finite and free over A,
ii) €' fb +M is injective, and
iii) di(Fi)Q ¢nFi_1 for each i > 0, and di induces an

injection Fy > (m/m?)®F .
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. 2
Then there exists a homomorphism of complexes over M basis of M /", the formula (2) of (18.D) implies that dp
f: F. » L. induces an injection ?é > *"/M¢269Fp_1. Thus the conditions
such that each fi maps Fi isomorphically onto a direct summand of Lemma 9 are all satisfied, Therefore we have

S ) = rankA F_ < rank Torg(k, k).

of Li. Consequently, we have ( p S K

<
rank F, = rank L, = rankk Toré(M,k).
1 1 1

(18.G) THEOREM 45 (Serre). A noetherian local ring A is
Proof. Since L. is a resolution and since each F, is free,
_— 1 regular iff the global dim:nsion of A is finite.
there exists a homomorphism f: F. - L, over M. We have to

prove that, for each i, there exists an A-linear map 8y L Proof. We have already proved the 'only-if' part in Th.42,

i

-~ F with gifi = id_, . Since both Fi and L, are free, we So suppose that (A,M,k) is a noetherian local ring with

F, 1
1 » - -~ T I3 3 I3 i - 2 A
can easily see that such g, exists iff £ : F, + L, is injec- _ gl.dim A = n < =, Put rank, m/m” = s. Then Tor (k,k) # 0

tive. Using the assumptions we prove inductively that ?; is by Th.44, hence gl.dim A > s. On the other hand, it follows

injective, for i = 0,1,2,... . from the formula proj.dim M + depth M = depth A of Auslander

-Buchsbaum (p.113 Ex.4) and from Th.4l that gl.dim A = proj.

(18,F) THEOREM 44, Let (A,M,k) be a noetherian local ring dim k = depth A, Therefore we get

and let s = rankkAMVAn2. Then we have dim A < rank 1n/M¢2 < gl.dim A = depth A < dim A,

k

e e —— e e

rankk Tor?(k,k) > (%) for 0 < i < s, : Whence dim A = rankk4ﬂJ4“2, which means A is regular.

Proof. Take a minimal basis {xl,...,x } of M, and consider
S COROLLARY. If A is a regular local ring then Ap is regular

the Koszul complex F, = K.(xl,...,x ,A). There is an obvious

s for any p € Spec(A).

augmentation F, = A — k = A/m , which satisfies the condition
ii) of Lemma 9. By the definition of d_: Fp > Fp 1 it is Proof. Let M be an Ap-module. As an A-module it has a pro-
P - =202
clear that d (F_ )< mF 1* Moreover, we have Fé =l(®F5 = jective resolution of finite length: 0 - Pn > iee > PO - M
P P p-
2 _ 2 . .
Kp(xl"“’xs’ k) and M /m QAFp—l = m/m @kl(p_l(z, k). > 0, n < gl.dim A, By flatness of Ap the sequence 0 - (Pn)p

Since the residue classes of the xi's modulo 4M? form a k- T aee > (P> Mp =M~ 0 is exact, and gives a projective

0°p
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resolution of M as Ap-module. Hence gl.dim Ap < gl.dim A < =,

DEFINITION. A ring A is called a regular ring if Ap is a
regular local ring for every maximal ideal p of A. 1In view
of the above Corollary, this is equivalent to saying that Aﬂ

is a regular local ring for every p e Spec(A).

(18.H) THEOREM 46. Let A be a regular local ring, and B a
domain containing A which is a finite A-module. Then B is flat
(hence free) over A iff B is Cohen-Macaulay, In particular,

if B is regular then it is a free A-module,

Proof. Suppose B is flat over A, Then B is C,M. as A is so.
(For, if P is a maximal ideal of B then dim BP < dim A by k13.
C), while any A-regular sequence is also BP—regular by the
flatness and hence depth BP 2 depth A,) Conversely, suppose

B is Cohen-Macaulay. Since A is normal the going-down theorem
holds between A and B by (5.E), so if # is the maximal ideal
of A we have ht(#B) = ht(4n) by (13.B)Th.19(3). By the un-
mixedness theorem in B, any regular system of parameters of A
is a B-regular sequence, Therefore the depth of B as A-module
is equal to dim A = depth A, and by the formula of Auslander-
Buchsbaum (p.ll4 ex.4) we have proj.dimAB =0, i.e. B is A-

free,
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19. Unique Factorization

(19.A) Let A be an integral domain. An element a # 0 of A
is gaid to be irreducible if it is a non-unit of A and if it
is not a product of two non-units of A. The ring A is called

a unique factorization domain (UFD) if every non-zero element

is a product of a unit and of a finite number of irreducible
elements and if such a repfesentation is unique up to order
and units. A noetherian domain in which every irreducible

element generates a prime ideal is UFD.

THEOREM 47, A noetherian domain A is UFD iff every prime

ideal of height 1 is principal,

Proof. Suppose that the condition holds. Let T be an irre-

ducible element and let p be a minimal prime overideal of TA,
Then ht(p) = 1 by Th.18, so that p is principal: p = aA.

Then T = au with some u, which must be a unit by the irreduci-
bility of m, Thus WA = p. As we remarked above, this means

that A is UFD. The converse is left to the reader.

(19,B) LEMMA. Let A be a noetherian domain and let x # 0 be
an element such that xA is prime. Put Ax = S-lA, where S =

{1,x,x2,... }. Then A is UFD iff A 1is so.

Proof is easy and is left to the reader,
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THEOREM 48 (Auslander-Buchsbaum, 1959). A regular local ring

(A,#m) is UFD,

Proof. (Kaplansky) We use induction on dim A. TIf dim A =0
then A is a field, and if dim A = 1 then A is a principal
ideal domain., Suppose dim A > 1, Let x ¢ M - an. Then

XA is prime, hence we have only to prove that Ax is UFD. Let
p' be a prime ideal of height 1 in A and put p = p'nA.

Then p' = pr. Since A is a regular local ring, the A-module
p has a resolution of finite length

@8] 0->Fn—>Fn_->,,,+F0->p+0

1
with Fi finite and free. If P is a prime ideal of Ax, the

local ring (Ax)P = A( is a UFD by induction assumption.

AnP)
Therefore p'(Ax)P is principal. So we have proj.dim p' =

sup (proj.dim p'(Ax)P) =0 by (18.B)Lemma 5, i.e. p' is pro-
P

2
jective. Localizing (1) with respect to S = {1,x,x",.} we see

(2) 0> F; > F;_l P el > Fé >p' >0

is exact, where Fi = F1®Ax are finite and free over Ax. If

we decompose (2) into short exact sequences

(3) 0> Ky~ F6 +p'+0, 0~ Ki - Fi - Ké > 0, vens
0> F > Fl 7K > 0

then each Ki must be projective, Hence the short exact se-

quences of (3) split., It follows that

@Fifz &:) Fi@p.
i even i odd

S linm S e R e
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Thus, we have finite free Ax—modules F and G such that F =
G@p'. Put rank G = r. Since p' is a non-zero ideal of

the integral domain A we have rank p' =1 and rank F =

r + 1. From this we can conclude that p' is free (hence prin-
cipal), in the following way. Take the (r + l)-ple exterior

products of F and G + p', respectively., Then

+1 +1
A= NTF = N E®p") = p!
because ﬁep' = 0 for all 1 > 1 (this last assertion can be

seen by localization: if M is a projective module of rank 1

over a ring B, then (/\:LM)P = A" My = A B, =0 for i >1

and for all P € Spec(B), so /\i M =20, )

REMARKS TO CHAPTER 7.

1. As Th.35 suggests, regular local rings are similar
to polynomial rings or power series rings in many aspects.
In particular, the inequality on the dimension (14.K) can
be extended to an arbitrary regular local ring. Namely, in
the non-local form one has the following theorem (due to
Serre): Let A be a regular ring, Pi(i = 1,2) prime ideals
of A and Q a minimal prime over~ideal of P1+ Pz. Then

ht(Q) £ ht(Pl) + ht(Pz).
For the proof see J.-P. Serre: Algebre Locale. Multiplicité

(2nd ed.) Ch.v, p.18.
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2. A normal domain A is called a Krull ring if (1) for
any non—zéro element x of A, the number of the prime ideals
of A of height one containing x is finite, and (2) A =
h€2;5=1 Ap. Noetherian normal rings are Krull, but not con-
versely. If A is a noetherian domain, then the integral
closure of A in the quotient field of A is a Krull ring
(Theorem of Y. Mori, cf. Nagata: Local Rings). On Krull
rings, cf. Bourbaki: Alg. Comm. Ch.7.

3. P. Samuel has made an extensive study on the subject
of unique factorization. Cf. his Tata lecture note.

4, We did not discuss valuation theory. On this topic
the following paper contains important results in connection

with algebraic geometry. Abhyankar: On the valuations center-

ed in a local domain, Amer. J. Math, 78(1956), 321-348.

CHAPTER 8. FLATNESS II.

20. Local Criteria of Flatness

(20.A) In (18.B) Lemma 4 we proved the following.

Let (A,#M) be a noetherian local ring and M a

Eigite A-module, Then M is flat iff Torl(M,AMn)
The condition that M is finite over A is too strong; in geo-
metric application it is often necessary to prove flatness of
infinite modules. In this section we shall learn several
criteria of flatness, due to Bourbaki, which are very useful.

Let A be a ring, I an ideal of A and M an A-module. We

say that M is idealwise separated (i.s. for short) for I if,

for each finitely generated ideal ¢ of A, the A-module q@%gi

is separated in the I-adic topology.

Example 1. Let B be a noetherian A-algebra such that IB &

rad(B), and let M be a finite B-module. Then M is i.s, for I
145
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as an A-module: since ¢ @AM is a finite B-module and since
the I-adic topology on ¢®M is nothing but the IB-adic topo-

logy, we can apply (11.D) Cor.l.

Example 2. When A is a principal ideal domain, any I-adically

separated A-module M is i.s. for I.

Example 3. Let M be an I-adically separated flat A-module.

Then M is i.s. for I. In fact we have ¢®M = gM & M.

- 1
(20.B) Put gr(A) = ng(A) = @ In/1n+l, gr(M) = gr (M) =
0 n=0
@ 1°w/1% My, Ay = gry(8) = A/T and Mg = gr () = W/IX.

n=0 )
Then gr(M) is a graded gr (A)-module. There are canonical

epimorphisms

vy Y/ TM® oM - 1™/ 1™
n AO 0

for n = 0,1,2,... . In other words, there is a degree-

preserving epimorphism vY: gr(A)éDA MO + gr(M).
0

(20.C) THEOREM 49 (Local criteria of flatness). Let A be a
ring, I an ideal of A and M an A-module. Assume that either
() I is nilpotent,
or (R) A is noetherian and M is idealwise separated for I.
Then the following are equivalent:
(1) M is A-flat;

(2) Tor?(N,M) = (0 for all Ao—modules N
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(3) MO is Aofflat, and ]Z@kM >~IM by the natural map,
(note that, if I is a maximal ideal, the flatness over AO is
trivial);

' . _ A _ n.

3" MO is AO flat and Torl(AO,M) = 0;

(&) MO is Ao-flat, and the canonical maps

® M. > "Wy
A, 0

n, n+l
Yo' I /1
are isomorphisms;

+
(5) Mn = M/1" 1M is flat over An = A/In+l, for each n>0.

(The implications (1) = (2) & (3) >(3") = (4) =>(5) are true

without any assumption on M,)

Proof. We first prove the equivalence of (1) and (5) under
the assumption (a) or (B). The implication (1) => (5) is just
a change of base (cf.(3.C)).
(5) = (1): The nilpotent case (o) is trivial (A = An for some
n)., In the case (B), we prove the flatness of M by showing
that, for every ideal ¢ of A, the canonical map j: Q@M > ﬁ
is injective. Since q®&M is I-adically separated it suffices
to prove that Ker(j) g:In(qQDM) . for all n > 0, Fix an n.
Then there exists, by Artin-Rees, an integer k > n such that
qr\Ik Q;Inq. Consider the natural maps

qou % (q/Iknq)®M E (/1" @M = (@@M) /1" (¢ @M).
Since Mk-l is A, _,-flat, the natural map q/(Ikr\q)Q%gq =

Q/(ka\Q)QDAk M1 7 M _; 1is injective. Therefore
-1
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Ker(j) < Ker(f), and a fortiori Ker(j) < < Ker(gf) = In(q®M).
Thus our assertion is proved.

Next we prove (1) =>(2)&3)&(3') =(4) =(5) for
arbitrary M. (1) = (2) is trivial,
(2)=> (3): Let O -+ N'"-+> N->N"—> 0 be an exact sequence of

A
Ao-modules. Then 0 = Torl(N", M) > N' ®AM N' ®A0MO >

N ®AM =N ®AOMO is exact, so MO is Ao—flat. From the exact
sequence 0 > I » A > AO -0 we get 0= Tori(AO, M) > I®M
+ M exact, which proves I®M 2 IM,

(3) =»(3'): immediate.

(3') =(2): let N be an A -module and take an exact 'sequence

0
of AO—modules 0+ R~> FO > N > 0 where FO is AO—free. Then
AF M)—O+TorA(N M) > R® M > F & M is exact
Tory (Fp, M) = 14N A, 0" F0®a o
A
and MO is AO—flat, hence Torl(N, M) = 0.

(2) 2 (4): consider the exact sequences

0 > In+l - In N In/In+l 5 0

and the commutative diagrams

+
o » ™an » "en - a/1™hew » o

low |

+1
0 » 1™y o+ ™ s w1 > o,

where 0yy O ... are the natural epimorphisms, the first row

2!

is exact by (2) and the second row is of course exact. Since

o, is injective by (3) we see inductively that all o are

1
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injective, Thus they are isomorphisms, and consequently the
Yn are also isomorphisms.

Before proving (4) = (5) we remark the following fact:
if (2) holds then, for any.n » O and for any An—module N,
we have Tor?(N, M) = 0. 1In fact, if N is an An—module and
n > 0, then IN and N/IN are An_l-modules, so that the asser-
tion is proved by induction on n,.
(4) =(5): we fix an integer n 2> 0 and we are going to prove
that Mn is An-rflat. For n = 0 this is included in the assump-
n+1

tions, so we suppose n > 0. Put In = 1I/1

Consider the commutative diagrams with exact rows:

at " hen — @l ™hen — al/rithen - o
l %541 J{ %y lYi
0 — 1i+an = iy S 154 = 1w/ ™y - 1yt — o

for i =1, 2, ..., n. Since the Y; are isomorphisms by
assumption, and since En+l = 0, we see by descending induction

n+l

on i that all &i are isomorphisms, In particular, o, I/I

1
®AM = IAn®AnMn > IMn is an isomorphism, Therefore the
condition (3) (hence also (2)) holds for An’ IAn and Mn.
From this and from what we have just remarked it follows that
A
or n(N, M ) =0 for all A -modules N, hence M is A -flat.
1 n n n n

Q.E.D.
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(20.D) APPLICATION 1 (Hartshorne). Let (B,#) be a noether-
ian local ring containing a field k and let X seeesX be a

B-regular sequence in 44, Then the subring k[xl,...,xn] of B
is isomorphic to the polynomial ring A = k[Xl,...,Xn], and B

is flat over it.

Proof. Considering the k-algebra homomorphism ¢: A » B such
that ¢(Xi) = X, we view B as an A-algebra. It suffices Fo
prove B is flat over A. In fact, any non-zero element y of A
is A-regular, so under the assumption of flatness it is also
B-regular, hence ¢(y) # 0.

n
We apply the criterion (3') of Th.49 to A, I =X XiA and

M = B, The A-module B is idealwise separated for 1 ;s IB <
rad(B). Since A/I = k is a field we have only to prove
Tor?(k, B) = 0. Now the Koszul complex K.(Xl,...,xn;A) is a
free resolution of the A-module k = A/I by Cor. to Th.43. So
we have Tori(k, B) = Hi(K.(Xl,...,Xn;A)QDAB) = Hi(K‘(Xl""’

xn;B)), which is zero for i > 0 as KysesnsX is a B-regular

sequence.

(20.E) APPLICATION 2 (EGA O, (10.2.4)). Let (A, M, k) and
(B,#, k') be noetherian local rings and A + B a local homo-
morphism. Let u: M > N be a homomorphism of finite B-modules,

and assume that N is A-flat, Then the following are equi-
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valent: (a) u is injective, and N/u(M) is A-flat;

(b) u: M®k > N®k is injective.

Proof. (a) = (b). Immediate,

(b) & (a), Let x € Ker(u). Then x®1 =0 in M®k

= M/mM, therefore x € MM, We will show x € f;\4mPM = (0)
by induction. Suppose x € MM, let {al,...,ap} be a minimal

basis of the ideal M." and write x = La;x,, x; € M. Then
i

u(x) = Zaiu(xi) =0 in N, By flatness of N there exists
A — .
Cij € A and xj € N such that ;aicij = 0 (for all j) and

1
such that u(xi) = Zcijxi (for all i). By the choice of a,
h|
...,ap all the cij must belong to #4. Thus u(xi) € MN, in
other words E(xidal) = 0. Since u 1is injective we get x, €

n+l
MM, hence x € #4 M. Thus u is injective and we get an
u
exact sequence 0 ->M > N > N/u(M) > 0, From this and

from the hypotheses it follows that Tor?(k, N/u(M)) = 0, which

shows the flatness of N/u(M) by Th.49.

(20.F) COROLLARY 1. Let A be a noetherian ring, B a noether-
ian A-algebra, M a finite B-module and f € B, Suppose that
(i) M is A-flat, and (ii) for each maximal ideal P of B, the

element f is M/(PAA)M-regular. Then f is M-regular and

M/fM is A-flat,

£

Proof. If K denotes the kernel of M - M, then K = 0 iff
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KP = 0 for all maximal ideals P of B. Similarly, by an ob-
vious extension of (3.J), M/fM is A-flat iff MP/fMP is flat

over A for all maximal P, The assumptions are also

(PAA)
stable under localization. So we may assume that (A, #,k)

and (B,#,k') are noetherian local rings and A + B is a local

homomorphism. Then the assertion follows from (20.E),

COROLLARY 2. Let A be a noetherian ring and B = A[Xl,...,Xn]
a polynomial ring over A, Let f(X) € B be such that its co-
efficients generate over A the unit ideal A. Then f is not

a zero-divisor of B, and B/fB is A-flat,

(20.G) APPLICATION 3. Let A+ B + C be local homomorphisms
of noetherian local rings and M be a finite C-module. Suppose
B is A-flat, Let k denote the residue field of A. Then

M is B-flat & M is A-flat and M@Ak is B ®Ak—flat.

Proof. (=) Trivial. (&) Use the criterion (4) of Th.49.

For more applications of Th.49, cf. EGA OIII (10.2).

21. Fibres of Flat Morphisms

(21,A) Let ¢: A > B be a homomorphism of noetherian rings;

let P € Spec(B), p = PAA and k(p) = the residue field of Ap.
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Then the 'fibre over p' is Spec(B@AK(p)), and 'the local
. fP . [ =
ring o on the fibre' is BP/pBP By ®,k(p)  (cf. p.79).
Suppose B 1s flat over A. Then we have
dim(BP) = dim(Ap) + dim(BP®K(p))

by (13.B) Th.19.

(21.B) THEOREM 50. Let (A,M,k) and (B, #,k') be noetherian
local rings, and let A + B a local homomorphism. Let M be

a finite A-module and N be a finite B-module which is A-flat.
Then we have

depthB(M®AN) = depth,M + depth

A (N®k).

B®k

Proof. Induction on n = depth M + depth N®k.
Case 1l: n = 0. Then mre AssA(M) and M ¢ AssB(N®k), and
we know (p.58) that

Ass (M®,N) = L_) AssB(NéA/p).
peAssA(M)

Hence M € AssB(M®N), i.e. depthB(MQN) = 0.
Case 2: depth M > 0. Easy and left to the reader,
Case 3: depth N®k > 0. Take y € #4 which is N®k-regular.
By (20.E) y is N-regular and N/yN is A-flat. From the exact
sequence 0 + N z N + N/yN > 0 it then follows that

0 + M®N z MON -+ M@®(N/yN) - 0
is exact. Putting N = N/yN we get depthB(M®N) -1-=
depthB(M®ﬁ), and depth

B®k(N®k) -1 = depchwk(ﬁ@k).
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From these and from the induction hypothesis on N we get the

desired formula.

(21.C) COROLLARY 1. Let A »> B be as above and suppose that
B is A-flat. Then we have
depth B = depth A + depth B®Kk,

and )
B is C.M. &= A and B®k are C.M..

COROLLARY 2, Let A and B be noetherian rings and A > B be a
faithfully flat homomorphism. Let i be a positive integer.
Then (1) if B satisfies the condition (Si) of (17.1), so
does A;
(2) if A satisfies (Si) and if all fibres satisfy (Si)
(i.e. B®«k(p) satisfies (Si) for every p € Spec(A))

then B satisfies (Si)°

Proof. (1) Given p € Spec(A), take P € Spec(B) which is mini-
mal among prime ideals of B lying over p , and put k = k(p).
Then dim BPQk = depth BP®k = 0, whence depth BP = depth An

and dim BP = dim Ap' Therefore
- . . X _ , im A ).
depth Ap depth BP 2 inf(i, dim BP) inf(i, dim p)
(2) Given P € Spec(B), put p = PAA and k = k(p).

Then depth B_ = depth Ap+ depth (BP ®k)

P
Z inf(i,dim Ap) + 1nf(i, dim B ®k)
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Y inf(i, dim Ap + dim B ®K)

= inf (i, dim BP). Q.E.D.

(21.D) THEOREM 51. Let (A, M, k) and (B,#, k') be noether-

ian local rings and ¢: A > B a local homomorphism. Then:
(i) if B {s flat over A and regular, then A is regular.
(11) if dim B = dim A + dim B®k holds, and if A and

B®k = B/#MB are regular, then B is flat over A and regular.

Proof. (i) Since a flat base change commutes with homology,

we have Torg(k, k)QDAB = Torz(kQDB, k®B) = 0 for q > dim B,
Since B is faithfully flat over A this implies Torz(k, k) = 0,
hepce gl.dim A is finite, i.e. A is regular.

(ii) 1f {xl""’xr} is a regular system of parameters of A
and if Yyseees¥g € M are such that their images form a regu-
lar system of parameters of B/mB, then {¢(x1),...,¢(xr), Yis
...,ys} generates M, and r + s = dim B by hypothesis. Thus

B is regular, To prove flatness it suffices, by the criterion
(3") of Th.49, to prove Tori(k, B) = 0. The Koszul complex
K.(xl,...xr; A) is a free resolution of the A-module k, hence
we have Tor?(k, B) = Hl(K.(ﬁ; A)Q;AB) = Hl(K~(§; B)). Since
the sequence ¢(xl),...,¢(xr) is a part of a regular system of
parameters of B it is a B-regular sequence. Hence we have

Hi(K.(§5 B)) = 0 for all 1 > 0, and we are done.
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Remark. Even if B is regular and A-flat, the local ring B®k
on the fibre is not necessarily regular, Example: put k =

2

a field, k[x,y] = k[X.Y]/((X—1)2+ Y™ - 1), B =k[x

’y] (x’y)’
A= k[x](x) and M = xA. Then B®A/m) = k[Y]/(Yz) has

nilpotent elements.

(21.E) COROLLARY. Let A and B be noetherian rings and A + B
a faithfully flat homomorphism. Then
i) if B satisfies (Ri)’ so does Aj;
ii) 4if A and all fibres B®«k(p) (p € Spec(A)) satisfy
(Ri), then B satisfies (Ri);
iii) if B is normal (resp. C.M., resp. reduced), so is A.
Conversely, if A and all fibres are normal (resp. ...) then

B is normal (resp. ...).

Proof, i) and ii) are immediate from Th.51. As for iii), it
is enough to recall (17.I) that normal ¢>(Rl) + (SZ)’

C.M. & all (Si)’ and reduced@(RO) + (Sl).

22. Theorem of Generic Flatness

(22,A) LEMMA 1. Let A be a noetherian domain, B an A-algebra
of finite type and M a finite B-module. Then there exists
0 # £ € A such that M = Piﬁqg Ag is A -free (where A is

2

the localization of A with respect to {1,£,£%, ...
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Proof. We may suppose that M # O. Then, by (7.E) Th.1l0 there
exists a chain of submodules 0 = M0<:.M1 C ees c;Mn = M with
Mi/Mi_l:: B/pi, p; € Spec(B). Since an extension of free
modules is again free, it suffices to prove the lemma for the
case that B is a domain and M = B, If the canonical map

A > B has a non-trivial kernel then Bf = 0 for any non-zero
element f of the kernel, and our assertion is trivial. So

we may assume that A is a subring of the domain B. Let K be
the quotient field of A, Then B®K = BK is a domain (con-
tained in the quotient field of B) and is finitely generated
as an algebra over K. Hence dim BK = tr.degKBK < w , Put

n = dim BK. We use induction on n. By the normalization
theorem (14.G), the ring BK contains n algebraically independ-
ent elements Yyseeos¥y such that BK is integral over K[y].

We may assume that y; € B. Since B is finitely generated over
A there exists 0 # g € A such that Bg = B-Ag is integral over
Ag[y]. Replacing A and B by Ag and Bg respectively, and put-
ting C = Aly], we have that B is a finite module over the
polynomial ring C. Let bl""’bm be a maximal set of linearly
independent elements over C in B. Then we have an exact se-

quence
0->c"> B~ B' »+ 0

where B' is a finitely generated torsion C-module. Since

(C/p)® K = CK/pK has a smaller dimension than n = dim CK for
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any non-zero prime ideal p of C, there exists by the induction

assumption a non-zero element f of A such that B'f is Af—free.
m o

Since Cfm = (Af[yl,...,yn]) is also Af—free, the localiza

tion Bf is Af—free. 0.E.D.

An important special case of the Lemma is the following

THEOREM 52. Let A be a noetherian domain and B an A-algebra
of finite type. Suppose that the canonical map ¢: A > B is
injective., Then there exists O_# f € A such that Bf is Af-
free and # 0, Thus, the map a¢: Spec(B) -+ Spec(A) is faith-
fully flat over the non-empty open set D(f) = Spec(A) - V(f)

of Spec(A), that is, ad)_l(D(f)) + D(f) is faithfully flat.

(22.B) LEMMA 2. Let B be a noetherian ring and let U be a
subset of Spec(B). Then U is open iff the following condi-
tions are satisfied.

(1) U is stable under generalization,

(2) 1if P € U then U contains a non-empty open set of

the irreducible closed set V(P).

Proof. Assume the conditions, and let F be the complement of
U and P,(1<i%s) be the generic points of the irreducible

i
components of the closure F of F. Then (2) implies that P,

cannot lie in U, Hence Pi € F, and so F = F by (1), Q.E.D.
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THEOREM 53, Let A be a noetherian ring, B an A-algebra of
finite type and M a finite B-module. Put U = {P ¢ Spec(B)l

MP is flat over A}. Then U is open in Spec(B).

Remark 1. The set U may be empty.
Remark 2. It follows from (6.I) Th.8 that a flat morphism of
finite type between noetherian preschemes is an open map.

Therefore the image of U in Spec(A) is open in Spec(A).

Proof. Let P > Q be prime ideals of B with MP flat over A.

For any A-module N we have N® M = (N® M) B., therefore
AQ A P’'¥B

Q

MQ is flat over A and the condition (1) of Lemma 2 is verified

“for U. As for the condition (2), let P ¢ U and put p = PAA

and” A = A/p. Let Q € V(P). Then pB,.C rad(BQ), SO we can

Q
apply the local criterion of flatness that MQ is flat over A

iff MQ/ pMQ 0

Lemma 1 to (A, B/pB, M/pM) we see that there exists a neigh-

is flat over A and Tor?(M A) =0, Applying

borhood of P in V(pB) such that M /pM_ is flat over A for

QT
each point Q in it. On the other hand, since 0 = Tori(MP,K)
A, — . A, - . s

= Torl(M,A)QDBBP and since Torl(M’A) is a finite B-module,
there exists a neighborhood of P in Spec(B) in which

A J—
Torl(Mq, A) = 0. Therefore there exists a non-empty open set
of V(P) in which M, is A-flat for all points Q, in other words

Q

the set U in question contains a non-empty open set of V(P),

Thus the theorem is proved.
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(22.C) Let P be a property on noetherian local rings and let
P(A) denote the set {p e Spec(A) | Ap has the property P}.
Consider the following statement.
(NC) If A is a noetherian ring and if, for every p €
Spec(A), P(A/p) contains a non-empty open set of

Spec(A/p), then P(A) is open in Spec(A).

While Lemma 2 of (22.B) was topological, (NC) is ring-theoreti-

cal and its validity of course depends on P. Both are inven-
tions of Nagata (NC means Nagata criterion), who proved (NC)

for P = regular (cf. p.245). As an example we prove
PROPOSITION. (NC) is valid for P = CM.

Proof. CM(A) is stable under generalization. We will prove
(2) of Lemma 2. If P ¢ CM(A) and ht P = n, we can take an
Ap—regular sequence yy,...«,¥, from P. Replacing A by Aa with
suitable a ¢ A - P, we may assume that yl,...,yn is an A-
regular sequence and I==Zy&A is a P-primary ideal. Then for
Q e V(P), AQ is CM iff AQ/IA0 is so. Hence we can replace A
by A/I and assume that (0) ié P-primary. So we have PF =0
for some r > 0. Since Pi/Pi+l is a finite A/P-module for
eéch 0<€i<r, we may assume (replacing A by some Aa) that the
P1/Pi+1 are free A/P-modules. Then it is easy to see that

a sequence X;,...,X € A is A-regular if it is A/P-regular.
By the hypothesis of (NC) we may assume further that A/P is
CM. Then depth AQ = depth AQ/PAQ = dim AQ/PAQ = dim AQ,
hence Q € CM(A).

EXERCISE. If A is a homomorphic image of a CM ring, then
CM(A) 1is open.

CHAPTER 9. Completion

23. completion

(23.A) Llet A be a ring, and let F be a set of ideals of A

such that for any two ideals Il’ I2 € F there exists I3 € F
contained in Il,\I2. Then one can define a topology on A by
taking {x + I | I € F } as a fundamental system of neighbor-
hoods of x for each x € A, One sees immediately that in this
topology the addition, the multiplication and the map X +#» —-X
are continuous; in other words A is a topological ring. A
topology on a ring obtained in this manner is called a linear
topology. When M is an A-module one defined a linear topology
on M in the same way, the only difference being that 'ideals'
are replaced by 'submodules', Let M = {MA} be a set of sub~-

modules which defines the topology. Then M is separated (i.e

Hausdor£f) iff{;)MA = (0). A submodule N of M is closed in M

161



162 COMMUTATIVE ALGEBRA

iff f\(MA + N) = N, the left hand side being the closure of N.

(23.B) Let A be a ring, M an A-module linearly topologized
by a set of submodules {MA} and N a submodule of M. Let ﬁ&
be the image of M; in M/N. Then the linear topology on M/N
defined by {ﬁk} is nothing but the quotient topology of the
topology on M, as one can easily check, When we say "the
quotient module M/N ", we shall always mean the module M/N

with the quotient topology. It is separated iff N is closed.

(23.C) For simplicity, we shall consider in the following
only such linear topologies that are defined by a countable
set of submodules, This is equivalent to saying that the
topology satisfies the first axiom of countability, 1If a

linear topology on M is defined by {Ml, M } , then the

Mosees

set {Ml’ M, M, er\MZr\M3,...

Therefore we can assume without loss of generality that M

} defines the same topology.

12

M, =M

2 2... (in other words, the topology is defined by a

3

filtration of M, cf., p.67). A sequence (xn) of elements of M

is a Cauchy sequence if, for every open submodule N of M,

there exists an integer n, such that

(*) x, - x €N foralln, m>n

n o'

Since N is a submodule, the condition (*) can also be written

- . Th £
as x ., - x €N for all n > ng erefore a sequence (xn)
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is Caucy iff X +1 ~ X, converges to zero when n tends tO
infinity. A continuous homomorphism of linearly topologized
modules maps Cauchy sequences into Cauchy sequences, A tOpo-
logical A-module M is said to be complete if every Cauchy
sequence in M has a limit in M. Note that the limit of a

Cauchy sequence is not uniquely determined if M is not sepa-

rated.

(23.D) PROPOSITION, Let A be a ring and let M be an A-module
with a linear topology defined by a filtration Ml;Mz;).- H
let N be a submodule of M. If M is complete, then the quo-

tient module M/N is also complete,

Proof, Let (§;) be a Cauchy sequence in M/N. For each ;;

choose a pre-image x in M. We h x - M ith
P & n ave X +1 *n € Mi(n) v
i(n) » ©, therefore we can write
X - = + .
ntl ~ *n T Vn T %y Yo € Mi(n)’ Z, € N,

and the sequence (yn) converges to zero in M, Let s € M be
a limit of the Cauchy sequence X1 Xy + Vs % + Y1 + yz,---;
then its image s in M/N is a limit of the sequence (x ).

n

Thus M/N is complete.

(23.E) Let A be a ring, I an ideal and M an A-module. The
set of submodules {I"M| n = 1,2,..} defines the I-adic topolo-

gy of M. We also say that the topology is adic and that I is
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an _ideal of definition for the topology. Clearly, any ideal

J such that Ing J and J®"C 1 for some n,m > 0 is an ideal

of definition for the same topology. When both A and M are
I-adically topologized, the map (a,x) +— ax (a ¢ A, X ¢ M)

is a continuous map from A x M to M. When A is a semi-local
ring with rad(A) =#M then it is viewed as an M -adic topolo-

gical ring, unless the contrary is explicitly stated.

(23.F) Let k be a ring, and let A and B be k-algebras with
linear topology defined by J}f= {In} and 7= {Jm} respectively.
Put C = A®kB' Then a linear topology can be defined on C
by meéns of the set of ideals {InC + Jmc}n,m' This is called
the topology of tensor product. If A has the I-adic topology
and B the J-adic topology, where I (resp. J) is an ideal of A
(resp. B), then the topology of tensor product on C is the

(IC + JC)-adic topology, for we have

(¢ + 3™ L 1% + J® and 1% + 3% < (1c + JO) .

(23.G) PROPOSITION. Let A be a ring and I an ideal of A.
Suppose that A is complete and separated for the I-adic topo-
logy. Then any element of the form u + x, where u is a unit
in A and x is an element of I, is a unit in A, The ideal I

is contained in the Jacobson radical of A.
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Proof. We'have u + x = u(l - y), where y = wYx € I. The
infinite series 1 + y + y2 + ... converges in A, and we have
l1-y@A+y+ y2 + ...) =1 since A is separated. Thus

1 - y (hence also u + x) is a unit. The second assertion is

easy.

(23.H) Let A be a ring and M a linearly topologized A-module.
The completion of M is, by definition, an A-module M* with a
complete separated linear topology, together with a continuous
homomorphism ¢: M + M*, having the following universal mapping
property: for any A-module M' with a complete separated linear
topology and for any continuous homomorphism f£: M » M', there
exists a unique continuous homomorphism f*: M* > M' satisfy-
ing f*% = f. The completion of M exists, and is unique up
to isomorphisms. In fact the uniqueness 1is clear from the
definition, while the existence can be proved by several me-
thods. First of all, note that, if K is the intersection of
all open submodules of M, the canonical map §: M > M* must
factor through Mh = M/K (which is called the Hausdorffization
of M) and hence M and Mh have the same completion.

1. Take the completion of the uniform space Mh and call it
M*, The topological space M* becomes a linearly topologized
A-module by extending the A-module structure of Mh to M* by

uniform continuity. The universal mapping property of M*
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follows immediately, continuous homomorphisms f: M 5 M' being
uniformly continuous.

2. Let W be the set of Cauchy sequences in M, and make it
an A-module by defining the addition and the scalar multipli-
cation termwise. Then the set WO of the null sequences (i.e.
the sequences which have zero as a limit) is a submodule of
W. Put M* = W/WO, and define the canonical map P: M > Mk
in the obvious way. For any open submodule N of M, let ﬁ
denote the image in M* of the set of Cauchy sequences in N.
Then ﬁ is a submodule of M*. The set of all such‘ﬁ defines
a linear topology in M*, and N is the closure of P(N) in this
topology. It is easy to see that M* is complete and separated
and has the universal mapping property.

3. Denote by M* the inverse limit of the discrete A-modules
M/Mn’ where (Mn) is a filtration of M defining the topology,
and put the inverse limit topology (i.e. the topology as a
subspace of the product space 1[M/Mn) on it. Let 9: M > M*
be defined in' the obvious way, and let Mn* denote the closure
of ?(Mn) in M*, Then Mn* consists of those vectors of M* of
which the first n coordinates are zero, and the set of sub-
modules {Mn*l n=1,2,..} defines a complete separated linear
topology on M*., Let M' be an A-module with a complete sepa-
rated linear topology and f: M - M' a continuous homomorphism.

For any element x* = ( l’;é"") of M* (;; € M/Mn), choose
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a pre-image X of ;; in M for each n. Then the sequence xl,
Xoyees is a Cauchy sequence in M, hence the image sequence
f(xl), f(xz),... is a Cauchy sequence in M'. Therefore
lim f(xn) exists in M', and this limit is easily seen to be
>0

gndependent of the choice of the pre-images X Putting
fX(x*) = lim f(xn) we obtain f£*: M* , M' as wanted.

These constructions show that ¢ : M » M* is injective

if M is separated.

(23.1) 1If f: M > N is a continuous homomorphism of linearly
topologized A-modules M and N, and if ?M: M > M* and 9N:
N > N* are the canonical homomorphisms into the completions,
then there exists a unique continuous homomorphism f*: M* »
N* with ?Nf = f*?h sy this is a formal consequence of the
definition. The map f* is called the completion of f. Taking

completions is, therefore, an additive covariant functor.

PROPOSITION. Let M be a linearly topologized A-module, N a
submodule and ¢: M + M* the canonical map to the completion.
Then (i) the completion of N (for the topology induced from
M) is the closure W of ®(N) in M*, and (ii) the quotient

module M*/ P (N) is the completion of the quotient module M/N.

Proof. (i) This follows, e.g., from the second construction
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of completion in (23.H).

(ii) The quotient module M*/???ﬁ? is separated by (23.B),
and complete by (23.D). The canonical map M » M* induces a
map M/N - M*/?EET, and the universal property of this map is

easily proved by a formal argument.

Remark 1. Taking N = M we see that ?(M) is dense in M¥%,
Remark 2. If N is an open submodule of M then M/N is dis-

crete, hence complete and separated. Thus M/N erM*/f(N).

THEOREM 54. Let A be a noetherian ring and I an ideal. Let
0+L>M>N-0 be an exact sequence of finite A-modules,
and let * denote the I-adic completion. Then the sequence

0 > L* » M > N* > 0 1is also exact.

Proof. By Artin-Rees theorem, the I-adic topology of L coin-
cides with the topology induced by the I-adic topology of M.

Therefore the assertion follows from the preceding proposi-

tion.

(23.3) Let A be a linearly topologized ring. Then the com-
pletion A* of A is not only an A-module but also a ring, the
multiplication in A being extended to A* by continuity. If

P: A~ A* 1is the canonical map and I is an ideal of A, then

the closure P(I) of P(I) in A* is an ideal of A*, Thus A¥
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is a linearly topologized ring. Example: Let k be a ring

n
Put A = k =
[Xl,...,Xn] and I = ZAXi. Then the ring of formal
1
owe i i
p Tr series k[[Xl,...,Xn]] 1s the I-adic completion of A.

(23.K) Let A be a ring, I a finitely generated ideal of A,
A* the I-adic completion of A and P: A > A* the canonical
map. Then, for any element x* of A* there exists a Cauchy
sequence (xn) = (xo,xl,... ) in A such that x* = 1im ?(x ).
n
R . .
eplacing (xn) by a suitable subsequence we may assume that

X X € I ( 4 Let ree,d enerate I
4 ] Lk Ind RAFA a]
n 0 1 2 ) ’ ’ g »

and put a' = i
p i gkai). Then X+l ~ X, 1s a homogeneous poly-

nomial of degree n in a_,... = N
12°++»3 - Thus x* = Plxy) + Zo?(xn+
n=

) a0 . t (o] ff -
-X has a power Series expan810n in al, s eyd w1l h coe 1

cients in T(A). Consider the formal power series ring A[[X]]
= A . .
[[Xl,...,Xm]], let u(X) € A[[X]], and let u(X) denote the

power seri i
ies obtained by applying §> to the coefficients of

u(X). Since A* is complete and separated, the series ;(a')

= '
u(al,...,aé) converges in A*. The map u(X)t+— C{a') de-
fines a surjective homomorphism A[[X]] + A*. Thus A* ~~

A[[X])/J with some ideal J of A[[X]]. As a consequence, A%

1s noetherian if A is so.

(23.L) Let A be a ring, I an ideal and M an A-module. Let

*
denote the I-adic completion. Then M* is anp A*-module in

1
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a natural way, therefore there exists a canonical map M®AA*

> M*.

THEOREM 55. When A is noetherian and M is finite over A, the
map M@AA* + M* is an isomorphism.

g
Proof. Take an exact sequence of A-modules AP > A% > M > 0.

Since completion commutes with direct sum, we get a commuta-

tive diagram :
AP@Ar 5 A'®RA* ——> MOA* —> 0

v 1 V2 l "31
l f* g*
@nH? — @l — w —— 0

where the vertical arrows v, are the canonical maps and the
horizontal sequences are exact by the right-exactness of
tensor product and by Th.54. Since vy and v, are isomorphisms

v, is also an isomorphism by the Five-Lemma.

3

COROLLARY 1. Let A be a noetherian ring and I an ideal of A.

Then the I-adic completion A* of A is flat over A.

COROLLARY 2. Let A and I be as above and assume that A is

I-adically complete and separated. Let M be a finite A-module.

Then M is complete and separated, and any submodule N of M is

closed in M, for the I-adic topology.
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Proof. Since A = A* we have M*¥ = MQA* = M, i.e. M is its

own completion. Similarly, a submodule N is complete in the
I-adic topology, which coincides with the induced topology

by Artin-Rees. Since a complete subspace of M is necessarily

closed, we are done.

COROLLARY 3. Let A be a noetherian ring, M a finite A-module,
N a submodule of M and I an ideal of A. Let $: MM be

the canonical map to the I-adic completion M*. Then we have

N* 22 ¢(N) = §¢(N)A*, where §(N) is the closure of §(N) in M*.

Proof. Immediate from Th.54 and Th.S5.

COROLLARY 4. Let A and I be as in Cor.3. Then the topology

of the I-adic completion A* of A is the IA*-adic topology.

Proof. By construction, the topology of A* is defined by the

ideals ( @(I") in A%) = I"A* = (1A%)™,

COROLLARY 5. Let A, I and A* be as above and suppose that
m

1= § aiA. Then A% 2x A[[Xl,...,Xm]]/(Xl- al,...,Xn— am).
= v = -

Proof. Put B A[Xl""’xm]’ I ZXiB and J Z(Xi ai)B.

Then B/J =~ A, and the I'-adic topology on the B-algebra B/J

corresponds to the I-adic topology on A. Denoting the I'-
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adic completion by A, we thus obtain

ax &~ B/ =8/5=8/38 = A[[x X 11/ (X - a

1 1"

24. Zariski Rings

(24.A) DEFINITION. A Zariski ring is a noetherian ring
equipped with an adic topology, such that every ideal is

closed in it.

THEOREM 56. Let A be a noetherian ring with an adic topology,
and let I be an ideal of definition. Then the following are
equivalent.

(1) A is a Zariski ring;

(2) 1< rad(A);

(3) every finite A-module M is separated in the I-adic
topology;

(4) in every finite A-module M, every submodule is closed
in the I-adic topology;

(5) the completion A% of A is faithfully flat over A.

Proof. (1) =»(2): Suppose that a maximal ideal 41 does not
contain I. Then I" &% m for all n > 0, so that M+ I" = A
and g\(ﬁﬂv+ I™) = A# M. Therefore MV is not closed, contra-
diction, (2)‘T>(3)I By the intersection theorem (11.D).

(3) = (4): 1f N is a submodule of M, then M/N is separated

.,Xm— am).
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by assumption so that N is closed in M. (4) = (1) Trivial.
(2) = (5) Let #1 be a maximal ideal of A. Then 1 D1,
hence #4 is open in A and so A*/#MA* X A/an. Thus #A* # A*,
Since A* is flat over A by (23.L) Cor.l, this implies by (4.4)
Th.2 that A* is f.f. over A.

(5) = (2) 1If 1 is a maximal ideal of A then there exists,

by assumption, a maximal ideal tﬁ' of A* lying over 4.

Since IA* £ #it’ by (23.G), we have 1€ IA*AA € M'~A =44,

Q.E.D.

COROLLARY. Let A be a Zariski ring and A* its completion.
Then (1) A is a subring of A*, and (2) the map M +—— MA*
is a bijection from the set Q(A) of all maximal ideals in A

to Q(A%*), and we have A/M 2 A*/mA%* and MA*AA =M.

(24.B) A noetherian semi-local ring is a Zariski ring. A
noetherian ring with an adic topology which is complete and
separated is also a Zariski ring.

Let A be an arbitrary noetherian ring and I a proper
ideal of A. Put §=1+1-= {1+x| x € 1}, A' = S_lA and
I' = S_lI. Then all elements of 1 + I' are invertible in A',
and so I' € rad(A'). We equip A with the I-adic topology and

A' with the I'-adic (or what is the same, the I-adic) topology.

Then the canonical map Y: A > A' is continuous, and has the
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universal mapping property for continuous homomorphisms from
A to Zariski rings. In fact, if f: A > B 1s such a homo-
morphism and if J is an ideal of definition for B, then f(In)
C J ¢ rad(B) for some n, hence f(I) & rad(B) and the elements
of £(S) are invertible in B, Therefore f factors through A’.
In particular, the canonical map A + A* of A into the comple-
tion A* of A factors through A', and it follows immediately
that A* is also the completion of A',

For a prime ideal p of A, we have pA~S =0 iff p + 1
# (1), i.e, iff V(P)AV(I) # @. The localization A » A’
has, geometrically, the effect of considering only the "sub-
varieties'" of Spec(A) which intersect the closed set V(I),
Since A* is faithfully flat over A', the set {p £ Spec(A) |
p+ I1# (1)} (= Spec(A )) is also the image of Spec(A*) in
Spec(A). The set of the maximal ideals of A* (resp. the
prime ideals of A* containing IA*) is in a natural 1-1 corres-
pondence with the set of the maximal ideals (resp. prime

ideals) of A containing I.

(24.C) Let A be a semi-local ring and M@l,...,@%f be its
maximal ideals. Put Ai = Aﬂwi’ &wi = AMiAi i=1,...,r),
_ - n _ n _ n
and #= rad(A) = My...M_. Then m” =TT 4" = M\ m,”, hence

n n n n
A/ = A/Mml X .. X A/'wl,r by (1.C). Moreover, A/m,i

= Ai/MNin as A/¢M&n is a local ring. Therefore
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(24.D) Let (A,mM) be a noetherian local ring and A* its com-
pletion. Then A/M" ~ A*/mI'A*  for all n > 0, hence
"'1"'1"/'“'1}“-l e m“A*/m“+lA* and gr(A) o~ gr(A*). It follows
that 1) dim A = dim A*, and 1i) A is regular iff A* is so.

Next, let A be an arbitrary noetherian ring, I an ideal
of A and A* the I-adic completion of A. Let p be a prime
ideal of A containing I. Since p is open in A, the ideal pA¥*
= p* is open and prime in A* and A/p" ~ A*/p*" for all n > 0.
Localizing both sides with respect to p/pn and p*/p*n respec-
tively, we get

A /p"A o~ A% [pxTax |
p’P %p pr' P F
Therefore (Ap)* = lim Ap/pnAp ::(A#p*)*. Two local rings

are said to be analytically isomorphic if their completions

are isomorphic., Thus, if p and p* are corresponding open
prime ideals of A and A*, then the local rings Ap and A*p*
are analytically isomorphic. Since all maximal ideals of A*
are open, it follows that
i') dim A* = sup dim A,
p2I P
ii') if Ap is regular for every prime ideal p containing

I, then A* is regular.

As a corollary of ii') we have the following
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PROPOSITION. Let A be a regular noetherian ring. Then the

ring of formal power series A[{X Xm]] is also regular.

1200

Proof. A[X] = A[Xl,...,xm]] is a regular ring by (17.J),

and A[[X]] is the X XiA[X]—adic completion of A[X].

(24.E) PROPOSITION. Let A be a Zariski ring and A* its
completion, Then:

i) If OL is an ideal of A and if OtA* is principal,
then Ol itself is principal.

ii) If A* is normal, then A is also normal.

Proof. 1) Suppose @A* = qA*, o € A*. Then a = Zaigi with
a; € 0L, Ei € A*, Put I* = IA*, where I is an ideal of defi-

nition of A. By Artin-Rees we have A% A 1*" C T*gA* for

n sufficiently large. Take X, € A such that Xy Ei (I*n)
and put a = Zaixi. Then a = ¢ (I*n), and a € oL C GA¥,
Therefore o = a + B with B € GA* A I*" C I* gA*, hence A%

€ aA* + I*q A*, and by NAK we get QA%

aA*, Then oL =
aA* N A = aA* N A = aA.
ii) is a consequence of faithful flatness and was already

proved in (21.E.iii).

We shall see in Part II that noetherian local (or

semi-local) rings have many good properties.

PART 11

CHAPTER 10. DERIVATION

25. Extension of a Ring by a Module

(25.A) Let C be a ring and N an ideal of C with N2 = (0);
put C' = C/N, Then the C-module N can be viewed as a C'-
module. Conversely, suppose that we are given a ring C' and

a C'-module N. By an extension of C' by N we mean a

triple (C,e,i) of a ring C, a surjective homomorphism of rings
€: C>C' and a map i: N + C, such that: (1) Ker(g) is an
ideal whose square is zero (hence a structure of C'-module on
Ker(e)), and (é) the map 1 is an isomorphism from N onto
Ker(e) as C'-modules. Therefore, identifying N with i(N) we
get C'2< C/N, N2 = (0). An extension is often represented
by the exact sequence 0 > N i C i C' - 0. Two extensions

(Cc, €, 1) and (Cl, €1» il) are said to be isomorphic if there
exists a ring homomorphism f: C > Cl such that Elf =€

177
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and fi = 1 Such f is necessarily unique.

1°
(25.B) Given C' and N we can always construct an extension
as follows: take the additive group C' © N, and define a
multiplication in this set by the formula

(a, x)(b, y) = (ab, ay + bx) (a,be C'; x,y e N).
This is bilinear and associative, and has (1,0) as the unit
element, Hénce we get a ring structure on C' ®N, We denote
this ring by C'sN. By the obvious definitions €(a,x) = a
and i(x) = (0,x) the ring C'«N becomes an extension of C'

by N, which is called the trivial extension.

An extension (C, €, i) of C' by N is isomorphic to C'#N
iff there exists a section, i.e. a ring homomorphism s: C' »

C satisfying €s = id In this case the extension (C, €, i)

c'’

is also said to be trivial, or to be split.

(25.C) Let us briefly mention the Hochschild extensions.

An extension (C, €, i) is called a Hochschild extension if
i €
the exact sequence of additive groups 0 + N> C > C' > 0

splits, i.e. if there exists an additive map s: C' - C such

that s = id Then C is isomorphic to C' @ N as additive

c'’
group, while the multiplication is given by
(a,x)(b,y) = (ab, ay + bx + f(a,b)) <(a,b e C'; x,y € N)

where the map £f: C' x C' » N is symmetric and bilinear and
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satisfies the cocycle condition (corresponding to the associa-

tivity in C)
af(b,c) - f(ab,c) + f(a,bc) -f(a,b)c = 0,

Conversely, any such function f(a,b) gives rise to a Hoch-
schild extension, Moreover, the extension is trivial iff
there exists a function g: C' > N satisfying

f(a,b) = ag(b) - g(ab) + g(a)b.

i £
(25.D) Let A be a ring, and let 0> N> C > C' > 0 be an
extension of a ring C' by a C'-module N such that C and C'
are A-algebras and € is a homomorphism of A-algebras. Then
C is called an extension of the A-algebra Cf by N. The ex~-
tension is said to be A-trivial, or to split over A, if there
exists a hémomorphism of A-algebras s: C' » C with gs = idC,.
i €

(25,E) Let E: 0 > M+ C > C' » 0 be an extension and let
g: M > N be a homomorphism of C'-modules, Then there exists
an extension g, (E): 0 > N+ D > C' > 0 of C' by N and a ring

homomorphism f: C - D such that

) 0 - M > C > C' >0
[8 lf ‘[ id
0 - N > D > C' > 0

is commutative. Such an extension g*(E) is unique up to iso-

morphisms. The ring D is obtained as follows: we view the
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C'-module N as a C-module and form the trivial extension CxN,
Then M' = {(x,-g(x))| x € M} is an ideal of C#N, and we

put D = (CxN)/M', Thus, as an additive grou D is the amal-
gamated sum of C and N with respect to M. The uniqueness of
g*(E) follows from this construction.

Similarly, if h: C" =+ C' is a ring homomorphism then
there exists an extension h*{(E): 0 > M > E > C" > 0 of C"
by M and a ring homomorphism f: E + C such that the diagram

0 - M » E » C" > 0
1id lf ih
0 » M > D > Cc'" » O
is commutative. Moreover, such h¥(E) is unique up to iso-

morphisms.

26. Derivations and Differentials

(26.A) Let A be a ring and M an A-module. A derivation D of
A into M is defined as usual: it is an additive map from A to
M satisfying D(ab) = aDb + bDa, The set of all derivations
of A into M is denoted by Der(A,M); it is an A-module in the
natural way.

For any derivation D, D-l(O) is a subring of A (in par-
ticular, D(1) = 0: this follows from 12 =1.,) If A is a

field, then D—l(O) is a subfield.
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Let k be a ring and A a k-algebra. Then derivations

A » M which vanish on k-lA are called derivations over k.

The set of such derivations is denoted by Derk(A, M), We
write Derk(A) for Derk(A, aA).

Suppose that A is a ring whose characteristic is a prime
number p, and let AP denote the subring {aP| a € A}, Then
any derivation D: A » M vanishes on Ap, for D(aP) = pap—lD(a)

=Oo

(26,B) Let A and C be rings and N an ideal of C with N2 = 0.
Let j: C > C/N be the natural map. Let u, u': A > C be two
homomorphisms (of rings) satisfying. ju = ju', and put D =

u'- u. Then u and u' induce the same A-module structure on N,

and D: A+ N 1is a derivation. In fact, we have

u'(ab) = u'(a)u'(b) (u(a). + D(a)) (u(b) + D(b))

1]

u(ab) + aD(b) + bD(a).
Conversely, if wu: A > C 1s a homomorphism and D: A > N is
a derivation (with respect to the A-module structure on N

induced by u), then u' = u + D is.a homomorphism.

(26.C) Let k be a ring, A a k-algebra and B = A®kA' Con-
sider the homomorphisms of k-algebras

€: B+ A and xl, A A-> X

9t
defined by c(a®a') = aa', Xl(a) = a®l, Xz(a) = 1®a.



182 COMMUTATIVE ALGEBRA

Once and for all, we make B = A®A an A-algebra via Ay We

denote the kernel of € by 1 or simply by I, ané we put

Alk
2 2 .

1/1° = QA/k’ The B-modules I, I° and QA/k are also viewed as

A-modules via Alz A + B, Then the A-module QA/k is called

the module of differentials (or of Kahler differentials) of

A over k.

We have e)\l = s)\z = id Therefore, if we denote the

A
natural homomorphism B - B/I2 by v and if we put d* = )\2- )‘l
and d = vd*, then we get a derivation d: A > QA/k' Note that
we have B = )\l(A) @® I, hence B/I2 = \))\l(A) @QA/k (as A-
module)., Identifying \))\l(A) with A, we get

B/1° = A @9, .
In other words, B/I2 is a trivial extension of A by QA/k'

PROPOSITION. The pair (R d) has the following universal

A/k?
property: if D is a derivation of A over k into an A-module M,
then there is a unique A-linear map f: QA/k + M such that

D = fd.

Proof. In B = A®@A we have x@®y = xy®1 + x(1®y - y®1) =
e(x®y) + xd*y. Therefore, if I xi®yi € I = Ker(g) then
inéayi = ind*yi. Since d*y mod 12 = dy, any element of
Q= I/];2 has the form ):xidyi (xi, y; € A). In other words,

2 is generated by {dy] y € A} as A-module. This proves the
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uniqueness of f, As for the existence of f, take the trivial
extension A%M and define a homomorphism of A-algebras

¢: B = A® A > AxM by ¢(x®y)

(xy, xD(y)). Since ¢(I)<
2
M and M" =0, we have ¢’(12) = 0 so that ¢ induces a homo-

morphism ¢ of A-algebras B/I2

]

AxQ > AxM which maps
dy € @ to ¢(d*y) = ¢(l®y - y®1) = (0, Dy). Thus the restric-
tion of ¢ to Q gives an A-linear map f: Q > M with fed =D,
Q.E.D,

As a consequence of the proposition we get a canonical
isomorphism of A-modules

Derk(A, M) 7~ HomA(QA/k, M),

In the categorical language, the pair (QA/k’ d) represents
the covariant functor M!——Derk(A, M) from the category

of A-modules into itself. The map d: A - QA/k is called the

canonical derivation and is denoted by d if necessary.

Ak

(26.D) Any ring A is a Z-algebra in a unique way. The module

QA/Z is simply written QA. If A contains a field k and if F

is th . £i . - -

is the prlme_ ield in k, then QA/F QA because A®2A A@FA.
The r-th exterior product /\'Q

Alk /k

is called the module of differentials of degree r. 1In this

is denoted by QrA and

. ol
notation we have QA/k =Q A/K"

(26.E) Example 1. Let k be a ring, and let A be a k-algebra
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which is generated by a set of elements {Xx} over k. Then

N is generated by {dxx} as A-module, This is clear since

Alk
d is a derivation,

In particular, if A is a polynomial ring over the ring k
in an arbitrary number of indeterminates {Xk}: A= k[..,XA,..],
then QA/k is a free A-module with {dXX} as a basis. In fact,
suppose I PAdXA =0 (PA € A) and let B/BXX denote the partial

derivations. Then 3/3X, € Derk(A), hence there exists a line-

A

M h h = = . -
ar map f QA/k + A such that f(dxu) BXu/BXA Glu Ap
plying f to EPuqu = 0 we find Py = 0. As A 1s arbitrary we

see that the dX,'s are linearly independent over A. Q.E.D.

A

(Note that Derk(A) = HomA(Q

R z];\[ A, where A, = A.)

(26.F) Example 2. Let k be a field of characteristic p > O,
and let k' be a subfield such that k = k'(t), tP =ac¢ k',
t ¢ k'. Then k = k'[X]/(XP - a), and since 3(xP - a)/3X =
0 the derivation 3/3X of k'[X] maps the ideal (Xp— aYk'[X]
into itself, It thus induces a derivation D of k over k' such
that D(t) = 1.

Next, let k' be an arbitrary subfield such that kpS; k'
< k. A family of elements (xx) of k 1is said to be p-independ-

ent over k' if, for any finite subset {xk }, we have

senesXy
1 n
[k'(xx oo enXy ) s k'] = pn. A family (XX) is called a p-
1 n

basis of k over k' if it is p-independent over k' and if
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k'(ieesX,540.) = k, The existence of a p-basis of k over k'
can be easily proved by Zorn's lemma. Moreover, any p-indep.

family over k' can be extended to a p-basis. Suppose that

we are given a p-basis (Xk)’ Then Qk/k' is a free k-module
with (dxx) as a basis. In fact, putting ki = k'({xulu £21)
we have ki(xk) = k, xlp € ki and X, ¢ ki, so there exists
a derivation DA of k over ki such that Dk<xk) = 1, Therefore
DX € Derk,(k) and Dk(xu) = 6Xu' From this we conclude the

linear independence of the dx,'s as in Example 1.

X

If kS k'€ k and [k : k'] = p" < », then Ry and
Derk.(k) are vector spaces of rank m, dual to each other.

In general,‘if k' is an arbitrary subfield of k and X1
cerX € k, then the differentials dxl,...,dxn in Qk/k' are
linearly independent over k iff the family (xi) is p-indep.
over k'(kp). Proof is left to the reader.

(26.G) Example 3. Let k be a field and K a separable alge-
braic extension field of k. Then QK/k = 0. In fact, for any
0 € K there is a polynomial f(X) € k{X] such that f(a) =0

and £'(a) # 0. ‘Since d: K » QK is a derivation we have

/k

0 = d(f(a)) = £f'(a)da, whence do = 0. As Q is generated

K/k
' =

by the da's we get QK/k 0.

Exercises.

1) 1f is a commutative diagram of rings and
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homomorphisms, then there is a natural homomorphism of A-
modules QA/k > QA'/k" hence also a natural homomorphism of
4
A'-modules QA/kQDAA > QA'/k"
2) If A' = A®kk' in 1), then the last homomorphism is an
. . _ ]
isomorphism: QA'/k' = QA/kQDkk' = QA/k G?AA .

3) If S is a multiplicative set in a k-algebra A and if

1

- -1
A' = S TA, then QA'/k = QA/RQDAA' =S QA/k'

(26.H) THEOREM 57.(The first fundamental exact sequence)
¢

Let k, A and B be rings and let k + A~> B be homomorphisms.

Then i) there is an exact sequence of natural homomorphisms

of B-modules
v u
B o> Qe > Sgp 70

a7k ®a
ii) the map v has a left inverse (or what amounts to the
same, v is injective and Im(v) is a direct summand of QB/A

as B-module) iff any derivation of A over k into any B-module

T can be extended to a derivation B » T.

Proof. i) The map v is defined by v(dA/k(a)be) = b-dB/kw(a),

and the map u by u(b.d ") = b-dB/A(b')) (a € A; b,b'e B).

B/k
It is clear that u is surjective. Since dB/Aw(a)) =0 we
have uv = 0. It remains to prove that Ker(u) = Im(v). To
do this, it is enough to show that

HomB(Q k®AB’ T) « HomB(QB/k, T) « HomB(QB/A, T)

A/
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is exact for any B-module T (take T = Coker(v)). But we have

canonical isomorphisms HomB(QA/kQQAB, T) =~ HomA(Q T) =

A/Kk’
Derk(A, T) etc., so we can identify the last sequence with
Derk(A,T) « Derk(B,T) + DerA(B,T)
where the first arrow is the map D = Doy, This sequence

is exact by the definitions,

ii) A homomorphism of B-modules M' - M has a left inverse
iff the induced map HomB(M',T)-e HomB(M,T) is surjective
for any B-module T. Thus, v has a left inverse iff the
natural map Derk(A,T) « Derk(B,T) is surjective for any

B-module T. Q.E.D.

COROLLARY. The map v: QA/kQQAB > QB/k is an isomorphism
iff any derivation of A over k into any B-module T can be

extended uniquely to a derivation B -+ T.

(26.1I) Let k be a ring, A a k-algebra, # an ideal of A and
B = A/M . Define >
ne a map # QA/k®AB by x HdA/kx®1
(x e)., It sends W%z to 0, hence induces a B-linear map
2 - .
§: /M +QA/R®AB.

THEOREM 58 (The second fundamental exact sequence). Let the

notation be as above,.

i) The sequence of B-modules
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$ v

_ 2 N
() MMimL” > QA/k®AB Q 0

B/k

is exact.

ii) Put A, = A/4w2. Then §

1 B

a/®a® =T /i@
iii) The homomorphism & has a left inverse iff the extension
0~ 4ﬂ/M¢2 > A > B> 0 of the k-algebra B by Aﬂdsz is tri-

vial over k.

Proof. i) The surjectivity of v follows from that of A - B,
Obviously the composite v& = 0. So, as in the proof of the
preceding theorem, it is enough to prove the exactnzss of
T)

HomB(Aﬂ/Mtz, T) « Homy(2, , ®,B, T) < Hom (@

Alk B/A’

for any B-module T. But we can rewrite it as follows:

HomA(4n, T) + Derk(A, T) « Derk(A/ML, T)
where the first arrow is the map D > D|# (D € Derk(A, T)).
Then the exactness is obvious.
ii) A homomorphism of B-modules N' - N is an isomorphism iff
the induced map HomB(N',T) + HomB(N,T) is an isomorphism
for every B-module T, Applying this to the present situation
we are led to prove that the natural map Derk(A,T) « Derk(A/ME,
T) is an isomorphism for every A/#-module T, which is obvious.
i1ii) By ii) we may replace A by A1 in (%), so we assume 4ﬂ?

= 0., Suppose that § has a left inverse w: Q@AB - M.

sk

Putting Da = w(da®1) for a £ A we obtain a derivation D: A

+ M over k such that Dx = x for x € A¥. Then the map
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f: A> A given by f(a) = a - Da 1is a homomorphism of k-
algebras and satisfies f(#) = 0, hence induées a homomorphism
f: B = A/ » A, Since f(a)= a mod #, the homomorphism f
is a section of the ring extension 0 > 4 - A > B > 0. The

converse 1s proved by reversing the argument.

(26.J) Example, Let k be a ring, A a k-algebra and B = A[Xl,
""Xn]' Let T be an arbitrary B-module and let D ¢ Derk(A,T).
Then we can extend it to a derivation B » T by putting

D(P(X)) = PD(X), where PD is obtained from P(X) by applying

D to the coefficients. Thus the natural map @ QQAB > QB/k

Alk

has a left inverse, and we have

Q ®AB) @ del ®...D den.

S0 & Wy y

Let A be an ideal of B = A[X Xn]’ and put C = B/#y, X

AR

= Xi mod M. Then we have the second fundamental exact seque

)

quence M1r/M4/2 - QB/k®BC = (QA/k®AC)@ZCdXi > QC/k+ 0
with n
S(P(X)) = (dPY(x) + I BP/BXi(x)dXi X)) emM),
i=1

where (dP)(x) is obtained by applying d to the coefficients

A/k
of P(X) and then reducing the result modulo 4.

3

Exercise 4. Let B = k[X,Y]/(Y2 - X7) = k[x,y] (= the affine

ring of the plane curve y2 = x3, which has a cusp at the
origin). Calculate QB/k’ and show that it is a B-module with

torsion.
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27. Separability

(27.A) Let k be a field and K an extensionl) of k. A tran-
scendency basis {XX}AEA of K over k is called a separating

transcendency basis if K is separably algebraic over the

field k(..,xx,...). We say that K is separably generated

over k if it has a separating transcendency basis.

Put r(K) = rankK Q Let L be a finitely generated

K/k*

extension of K. We want to compare r(L) and r(K). Suppose

first that L = K(t). There are four typical cases.

Case 1. t is transcendental over K. Then QK[t]/k =
(QK/kQDKK[t])GB K[t]dt by (26.J), so by localization we get
Ui = (O ®L)® Ldt, hence r(L) = r(X) + 1,

Case 2. t is separably algebraic cver K. Let f(X) be the

irreducible equation of t over K. Then L = K[t] = K[X]1/(f),

f(t) = 0 and £'(t) # 0. By (26.J) we have QL/k =

Q kﬁbKL + LdX)/LS8f, where &f = (df)(t) + £'(t)dX in the

K/

notation of (26.J). As f'(t) is invertible in L we have
~n =

QK/k®KL -~ QL/k' Whence r(L) = r(K). From this, or by a

direct computation, one sees that any'derivation of K into L

can be extended uniquely to a derivation of L.

Case 3. ch(k) = p, tP = ac¢ K, t ¢K, dK/k(a) = 0.

|
o

Then L = K[t] = K[X]/(xP - a). We have &P - a) =

1) By an extension of a field we mean an extension field; by
a finite extension, a finite algebraic extension,
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therefore QL/k ~ QK[X]/k®L ~ (QK/k®KL) ® Ldt and
r(L) = r(K) + 1.

Case 4, Same as in case 3 with the exception that d a # 0.

K/k
Then G(Xp - a) #0, and so r(L) = r(K).

(27.B) THEOREM 59. i) Let k be a field, K an extension of
k and L a finitely generated extension of K. Then

rankL QL/k P 1:ankK Q + tr.degKL.

K/k
ii) The equality holds in i) if L is separably generated
over K.

iii) Let L be a finitely generated extension of a field k.
Then rankL QL/k > tr.degkL, where the equality holds iff
L is separably generated over k, In particular, QL/k =0

iff L is separably algebraic over k.

Proof. Since any finitely generated extension of K is obtained

by repeating extensions of the four types just discussed, the
assertions i) and ii) are now obvious. As for iii), the in-
equality is a special case of i). Suppose that QL/k =0, .
i.e. that r(L) = 0. Then r(K) = 0 for any k€ K& L. There-
fore the cases 1,3 and 4 of (27.A) cannot happen for L and

K. This means that L is separably algebraic over k. Suppose,
next, that r(L) = tr.deg L = r, Let Xiseeesx €L be such

that {dxl,...,dxr} is a basis of QL/k over L, Then we have
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= 0 by Th.57, so L is separably algebraic
QL/k(xl""xr) y R p y alg

over k(xl,...,xr). Since r = tr.degk L the elements X

must form a transcendency basis of L over k.,

Remark, Let L = k(xl,...,xn) and tr.degk L =1r, and put

p = {£(X) € k[X xn]l £(x 000k ) = 0}. Let Elrenesf

10000

generate the ideal p. Then L is separably generated over k

S

iff the Jacobian matrix B(fl,...,fs)/a(xl,...,xn) has rank

n - r, as one can easily check, If this is the case, and if
the minor determinant a(fl,...,fn_r)/a(xr+l,...,xn) # 0, then
dxl,...,dxr form a basis of QL/k’ and the above proof shows

that {xl,...,xr} is a separating transcendency basis of L/k.

(27.C) LEMMA 1, Let k be a field and K an algebraic extension
of k. Then the following are equivalent:
(1) K is separably algebraic over k;
(2) the ring K®kk' is reduced for any extension k' of k;
(3) ditto for any algebraic extension k' of k;

(4) ditto for any finite extension k' of k.

Proof. Each of these properties holds iff it holds for any
finite extension K' of k contained in K. So we may assume
that [K : k] < o,

(1) = (2): 1If K is finite and separable over k then K =

k(t) with some t € K. Let f(X) be the irreducible equation

DERIVATION ' 193

of t over k. Then K = k[X]/(f), hence K®k' ~k'[X]/(f),
and since f(X) has no multiple factors in k'[X] (because it
decomposes into distinct linear factors in K[X], where k is
the algebraic closure of k), K®k' is reduced. (More precise-
ly, it is a direct product of finite separable extensions of
k') (2) = (3) = (4) is trivial,

(4) = (1): Suppose that ch(k) = p and that K contains an
inseparable element t over k., Then the irreducible equation
f(X) of t over k is of the form f(X) = g(Xp) with some g ¢
k[X]. Let agseeerd be the coefficients of g(X) and put
k' = k(ao;/p,...,anl/p). Then £(X) = g(XP) = h(X)P with
h(X) € k'[X], and k(t)GDkk' = k'[X]/(h(X)®) has nilpotent
elements., Since k is a field we can view k(t)Qbkk' as a sub-

ring of K®kk', so the condition (4) does not hold,

(27.D) DEFINITION. Let k be a field and A a k-algebra. We
say that A is separable (over k) if, for any algebraic exten-
sion k' of k, the ringAAQDkk' is reduced.
The following properties are immediate consequences of
the definition.
1) 1If A is separable, then any subalgebra of A is also
separable,

2) 1If all finitely generated subalgebras of A are separable,

then A is separable.
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3) 1If, for any finite extension k' of k, the ring A®kk'

is reduced, then A is separable.

(27.E) LEMMA 2, 1If k' is a separably generated extension of
a field k, and if A is a reduced k-algebra, then A®kk' is

reduced.

Proof. Enough to consider the case of a separably algebraic
extension and the case of a purely transcendental extension.
We may also assume that A is finitely generated over k. Then
A is noetherian and reduced, so the total quotient ring $A

of A is a direct product of a finite number of fields, and
A®kk' < oA ®kk" Thus we may assume that A is a field,

Then A®kk' is reduced by Lemma 1 in the separably algebraic
case, and is a subring of a rational function field over A

in the purely transcendental case,

COROLLARY. If k is a perfect field, then a k-algebra A is
separable iff it is reduced. In particular, any extension

field K of k is separable over k.

(27.F) LEMMA 3. Let k be a field of characteristic p, and

K be a finitely generated extension of k., Then the following

are equivalent:
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(1) K is separable over k;

/p

(2) the ring K@kkl is reduced;

(3) K is separably generated over k.

Proof. (3) = (1): If K is separably generated over k, then
k'@kK is reduced for any extension k' of k by Lemma 2,

(1) => (2): Trivial. (2) =(3): Let K = k(xl,...,xn). We
may suppose that {xl,...,xr} is a transcendency basis of K/k.

Suppose that x are separable over k(xl,...,xr)

r+l""’xq

while x is not., Put y = x and let f(Yp) be the irredu-

qt+l qt+l

cible equation of y over k(xl,...,xr). Clearing the denomi-
nators of the coefficients of f we obtain a polynomial
F(Xl""’xr’ Yp), irreducible in lel"“’Xr’Y]’ such that
F(xl,...,xr',yp) = 0. Then there must be at least ome X,
such that E)F/BXi # 0, for otherwise we would have F(X, Yp)

= G(X, Y)p with G € kl/p[X Xr’Y]’ so that k(xl,...,xr,y)

Loeees
Qbkkl/p':: kl/p(Xl,...,Xr)[Y]/(G(X,Y)p) would have nilpotent

elements. Therefore we may suppose that BF/E)Xl # 0. Then
Xy is separably algebraic over k(xz,...,xr,y), hence the

same holds for x

1 ,xq also. Exchanging x

with v = x

1 q+l

we have that x are separable over k(xl,...,xr).

r+l1**°° ’xq+1

By induction on q we see that we can choose a separating

transcendency basis of K/k from the set {xl,...,xn}.
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(27.G) PROPOSITION. Let k be a field and A a separable k-
algebra., Then, for any extension k' of k (algebraic or not),

the ring A®kk' is reduced and is a separable k'-algebra.

Proof. Enough to prove that A®kk' is reduced. We may assume
that k' contains the algebraic closure k of k., Since A®K is
reduced by assumption, and since any finitely generated exten-—
sion of k is separably generated by Lemma 3, the ring Aébkk‘

= (A@kﬁ)®ik' is reduced by Lemma 2.

Exercises. 1 (MacLane). Let k be a field of characteristic
p and K an extension of k. Then K is separable over k iff

K and kl/p are linearly disjoint over k, that is, iff the
1/p

llp)

canonical homomorphism from K®kk onto the subfield K(k

of Kl/p is an isomorphism,

2. Let k and K be as above, and suppose that K is finitely

generated over k. Then there exists a finite extension k' of
-0

k, contained in kP , such that K(k') is separable over k',

CHAPTER 11. FORMAL SMOOTHNESS

28. Formal Smoothness |

(28.A) The notion of formal smoothness is due to Grothendieck
(EGA Ch.IV, 1964). It is closely connected with the differen-
tials, and it throws new light to the theory of regular local
rings. It can also be used in proving the Cohen structure
theorems of complete local rings.

As a motivation for the definition of formal smoothness,
we begin by a brief discussion of a typical theorem of Cohen,

Definition. Let (A,#,K) be a local ring. A coefficient field

K' of A is a subfield of A which is mapped isomorphically onto
K = A/M by the natural map A + A/#..

I.S.Cohen proved that any noetherian complete local ring
which contains a field contains at least one coefficient

field. To find a coefficient field is equivalent to finding

197
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a homomorphism u: K+ A such that ru = idK, where r: A > K

is the natural map. Since A is complete, we have A = %i@

A/, Therefore it is enough to find a system of homomorph-

1 . i i = =

isms u,: K~ A/M™ (1 =1,2,...) such that riuig T Yy for
. i+l i,

all i, where ! Al > A/~ 1is the natural map. Thus,

the natural approach will be to try to 'lift' a given homo-

i i+1
morphism vt K~ A/M" to u : K » A/4Mr1 . If this is

i+l
always possible then one can start with uy = idK: K ~ A/ =

K and construct ug step by step.

(28.B) Convention., Throughout the remainder of the book, we

shall use the phrase topological ring to mean a topological

ring whose topology is defined by the powers of an ideal, and
such ideal will be called an ideal of definition. When A is

a topological ring, by a discrete A-module M we shall mean

an A-module such that IM = (0) for some open ideal I of A.
When A is a local or semi-local ring and # = rad(A), the
topology of A will be the Mt-adic topology unless the contrary

is explicitly stated.

(28.C) DEFINITION. Let k and A be topological rings and
g: k ~ A be a continuous homomorphism. We say that A is

formally smooth (f.s. for short) over k, or that A is a f.s.

k-algebra, if the following condition is satisfied:
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(FS) For any discrete ring C, for any ideal N of C with
N2 = (0) and for any continuous homomorphisms u: k > C and

v: A > C/N (C/N being viewed as a discrete ring) such that

the diagram

v
A — C/N
(*) 1 1
g | ‘q
| u
k — C

(where q is the natural map) is commutative, there exists

a homomorphism v': A > C such that v = qu' and u = v'g.

v
A ———— C/N
0 1
g {. !q
k — % C
u

Remark, If v' exists, then we say that v can be lifted to

A > C over k, and v' is called a lifting of v over k, A lift-
ing v' is automatically continuous, for the continuity of v
implies the existence of an ideal of definition I of A with
v(I) = 0., Thus v'(I) € N and v'(Iz) = 0. But I2 is also an
ideal of definition of Q, so v' is continuous. (Similarly,
the continuity of u in (*) follows from that of vg.) It
follows that, if (FS) holds, then it remains true when we
replace "N2 = 0" by "N is nilpotent"., In fact, if N© = 0,
then we can lift v: A > C/N successively to A » C/Nz, to

3
A > C/N°, and so on, and finally to A - C/N" = C.
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Let now C be a complete and separated topological ring
and N an ideal of definition of C. Consider a commutative
diagram (*) with u and v continuous. Then, if A is f.s. over
k, one can lift v to v': A > C, In fact one can 1lift v suc-
cessively to A > C/Nz, to A » C/N3 and so on, and then to

A+ C = lim C/N".
L

(28.D) DEFINITION. When A is f.s., over k for the discrete
topologies on k and A, we say that A is smooth over k., Thus
smoothness implies formal smoothness for any adic topologies

on A and k such that g: k + A is continuous.

Examples. 1. Let k be a ring and A = k[...,XA,...] be a poly-
nomial ring over k. Then A is smooth over k., This is clear
from the definition.

2. Let A be a noetherian k-algebra with TI-adic topology (I =
an ideal of A) and let A* denote the completion of A. Suppose
A is f,s. over k. Then the IA*-adic ring A* is f.s, over k.
In fact, a continuous homomorphism v from A* to a discrete

C/N factors through A*/I"A* = A/I" for some n, and A > A/I"
+ C/N can be lifted to A » A/I" -~ C for some m > n. Using
A/T™ = A%/T"A%  we get a homomorphism A* - A%/TTAx > c,

which lifts the given A* - C/N,

3. 1In particular, if k is a noetherian ring with discrete
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topology and if B = k[[Xl,...,Xn]] is the formal power series
n

ring with inB -adic topology, then B is f,s. over k, because
1

it is the completion of A = k[Xl,...,Xn] with respect to the

zxiA -adic topology and A is smooth over k.

(28.E) Formal smoothness is transitive: if B is a f,.,s, A-

algebra and A is a f.s. k—-algebra, then B is f.s. over k.

v
_
Proof. B ~ v C/N In the diagram one first
S
T~ lifts vg' to w: A > C,
A----w—-->C
g T ////////)7 and then lifts v to v':
k " B> C.

(28.F) Localization. Let A be a ring and S a multiplicative

set in A. Then S-lA is smooth over A.

v
-1
Proof. Consider a commutative diagram $ A———C/N
I . T
A 4 C

where g and q are the natural maps and N2 = 0, Then v can

1y, CTiff u(s) is invertible in C for

be lifted to v': S~
every s € S. But, since N & rad(C), an element x of C is a

unit iff q(x) is a unit in C/N. And qu(s) = vg(s) is

certainly invertible in C/N as g(s) is so in S—lA.

(28.G) Change of base. Let k, A and k' be topological rings,
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and k ~ A and k » k' be continuous homomorphisms., Let A'
denote the ring A®kk' with the topolegy of tensor product

(cf. (23.F)). 1If A is f.s. over k, then A' is f.s. over k',

Proof. Look at the commutative diagram

P v
A —A' ——> C/N

T T

k —k'——> C .
u

One lifts the continuous homomorphism vp to w: A » C, and

puts v' = w@®u: A@kk' = A' > C to obtain a lifting of v.

(28.H) Let k be a field and A be a k-algebra, Consider a

commutative diagram of rings
\
—— C/N

/
| a
c

with N° = 0, and put E = {(a,c) € A x C |v(a) = q(¢)}. Then

>

—_—

E is a k-subalgebra of A x C, and is an extension of the
k-algebra A by N: 0 » N »~ E EA + 0 with p(a,c) = a. The
homomerphism v: A - C/N lifts to v': A > C iff the extension
0>N->E~>A~>0 splits over k (cf. (25.D)). Since k is

a field, the extension algebra E is isomorphic to A & N as k-

module, so it is a Hochschild extension (cf,(25,C)) and defines

a symmetric cocycle f: A x A > N. We define a complex of A-

modules (the 'modified Hochschild complex') P! = p!(A/k):

L e
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d3 dy

Pé - Pé —_ Pi as follows: Pé = (A @kA @kA ®kA) ®

(A®kA ®kA), Pé = A®kA®kA’ Pi = A®kA (the A-module struc-

ture on P:'L being defined by the first factor),

d3(l®a®b®c + 1®y®z) = a®@b®c - 1®ab®c + 1®a®be

- c®a®b + 19yRz - 1®z@Y,
and d2(1®a®b) = a®b - 1®ab + bR a.
For any A-module N we define the cochain complex
HomA(P!, N): HomA(Pé, N) « HomA(P', N) « HomA(Pi, N)

and we denote its cohomology (at the middle term) by Hi(A,N)S,
the letter s indicating the cohomology with respect to
symmetric cocycles., This cohomology vanishes iff any sym-
metric cocycle f: A X A+ N is a coboundary, i.e.
f(a,b) = ah(b) - h(ab) + bh(a) for some function h: A > N,
Therefore, A is smooth over k iff H]{Z((A,N)S = 0 for all A-
modules N.

Supgpose now that A is a field K. Then every extension
of K-modules splits, so we have P/} /_;-Im(d3) @HZ(P!) (23] Im(dz)

2

as K-module.

\.
L \ Im d3 ~a] Im d2

It follows that Hi(K, N)S o= HomK(Hz(P'.), N). 1If these are

zero for all N then HZ(P") = 0, and conversely.
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(28.1) PROPOSITION. Let k be a field and K an exteusion
field of k, If K is separable over k then it is smooth over

k. (The converse is also true and will be proved in Th.62.)

Proof. Suppose first that K is finitely generated over k.
Then it is separably generated over k by (27.F). 1If K is
purely transcendental over k then it is smooth over k by (28.D)
Example 1, by (28.F) and by (28.E). If K is separably alge-
braic over k then K = k(t) = k[X]/(£(X)) with £(t) = 0, £'(t)
# 0, If C is a k-algebra, if N is an ideal of C with N2 =0
and if v: K = C/N is a homomorphism of k-algebras, then v
can be lifted to K » C iff there exists x € C satisfying f(x)
= 0 and x mod N =v(t). Take a pre-image y of v(t) in C,
and let n be an element of N. Then f(y + n) = £(y) + £'(y)n,
f(y) € N, and £'(y) is a unit in C because f'(v(t)) = v{(f'(t))
is a unit in C/N. Thus, if we put x =y + n with n =
- f(y)/£'(y), then we get f(x) = 0., So K is smoot; over k
in this case also. By the transitivity any separably generat-
ed extension is smooth,
In the general case, we have
K/k is separable

&> L/k is separably generated for any finitely generated

subextension L/k of K/k.

= L/k is smocth for any such L/k
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=N HZ(P'.(L/k)) = 0 for any such L/k.
But, since tensor product and homology commute with inductive
limits, and since K = lim L, we have H_(P'.(K/k)) = lim
phad 2 —

HZ(P'.(L/k)) = 0. Therefore K is smooth over k by (28.H).

Remark, It is also possible to give a non-homological proof
of the proposition. The above proof is due to Grothendieck
and has the merit of treating the cases of ch(k) = 0 and of

ch(k) = p in a unified manner.

(28.J) THEOREM 60 (I.S.Cohen). Let (A,4#,K) be a complete
and separated local ring containing a field.k. Then A has
a coefficient field, 1If K is separable over k then A has a

coefficient field which contains k.,

Proof. If K is separable over k (e.,g. if ch(K) = 0) then it
is smooth over k., Therefore one can lift idK: K~ A/ to
a homomorphism of k-algebras K > A = {ig A/Mﬂvi (cf.(28.4).

In the general case let ko be the prime field in k. Then K

is separable bver k, as the latter is perfect ((27.E) Cor.).

0

Hence A has a coefficient field.

COROLLARY 1. Let (A, #,K) be a complete and separated local
ring containing a field, and suppose that M is finitely

generated over A, Then A is noetherian.
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Proof. If M = (xl,...,xn)' and if K' is a coefficient field
of A, then any element of A can be developed into a formal
power series in X;,...,X_ with coefficients in K'. So A is

a homomorphic image of K[[Xl""’xn]]’ hence noetherian.

COROLLARY 2. Let (A,M,K) be a complete regular local ring

of dimension d containing a field. Then A ZZK[[Xl,..,Xd]].

Proof. By the preceding proof we have A = K[[Xl,..,Xd]]/P
with some prime ideal P. Comparing the dimensions we get

P = (0).

(28.K) THEOREM 61. Let (A,#,K) be a noetherian local ring
containing a field k, and suppose that A is formally smooth

over k., Then A is regtlar.,

Proof. Let k. be the prime field in k., Then k is f.s. over

0

ko, hence A is f.s. over ko also, Thus we may assume that

k is perfect., Let K' be a coefficient field, containing k,
2 e s

of the complete local ring A/#M~; let, {xl,...,xd} be a mini-

mal basis of W . Then there is an isomorphism of k-algebras

2 2
vyt Alwv ﬁiK'[Xl,...,Xd]/J where J = (Xl"°"xd)° Let

v: A > K'[X]/J2 be the composition of vy with the natural

map A ~> AﬁM@Z. By the formal smoothness one can 1lift v to

n+l
a homomorphism of k-algebras v' : A~ K'[X1/J for n =
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2, 3, «.. . Since v(xi) (1€ 1 ¢ d) generate J/J2 = 3[32

n+l

(where J = J/J7 ), the elements v;(xi) generate J by NAK.

’ ntl _ -2 _ ' ' =2
Then X'[X]/J vi(a) + 37 = vi(a) + L vix (v (A) +T7)
=3 -—n+1 1
= VA(A) +J 7= ,.. = V;(A) +J = v;(A), i.e. v; is sur-
jective. Hence we obtain 2(A/ML“+1) P K(K'[Xl,...,Xd]/Jn+l)

d+n . B .
= ( d ), proving dim A > d. As #{ is generated by d elements

the local ring A is regular.

(28.L) THEOREM 62, Let K be a field and k a subfield. Then

K is smooth over k iff it is separable over k.

Proof., The "if" part was already proved in (28.I). To prove
the "only if", let K be smooth over k and let k' be a finite
algebraic‘extension of k. Then Kt@kk‘ is a K-algebra of
finite rank, hence it is a direct product of artinian local
rings: K®kk' = A1 X dae X Ar. Moreover, K@k' is smooth
over k' by base change, and it follows easily that each Ai

is smooth over k'. Then each Ai is regular (hence is a field)

by Th.61, whence K®k' is reduced. Q.E.D.

(28.M) PROPOSITION, Let (A,#,K) be a noetherian local ring
containing a field k, and let A* denote the completion of A.

Suppose K is separable over k., Then the following are equi-

valent: (1) A is regular;
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(2) A*::'K[[Xl,...,x 11 as k-algebras, (d = dim A);

d
(3) A is formally smooth over k.

Proof., (1) = (2). The complete local ring A* is regular and
contains a coefficient field containing k, so (2) follows
from the proofs of Cor. 1 and 2 of (28.7).

(2) = (3). It follows from the definition that A is f.s.
over k iff A* is so. On the other hand K[[Xl,...,Xd]] is

f.s. over K (cf.(28.D)), hence also over k by the transitivi-

ty. (3) = (1) has been proved already.

(28.N) Let (A,4) be a local ring containing a field k., If
B is a finite A-algebra then B/4B is a finite A/#4 - algebra,
hence artinian. Hence B is a semi-local ring., In particular
if k' is any finite extension of k, then A' = A®kk' is a
semi-local ring.

We say that A is geometrically regular over k if the

semi-local ring A' = Aébkk' is regular for every finite
extension k' of k. If the residue field of A is separable
over k, the preceding proposition éhows that
A is regular & A is f.s. over k = A' is f.s, over k'
= A' is regular.
Thus geometrical regularity is equivalent to regularity for

such A, But in general these two are not equal.
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PROPOSITION. Let (A,#/,K) be a noetherian local ring contain-
ing a field k., If A is f.s. over k, then A is geometrically
regular over k., The converse is also true if K is finitely
generated over k.

(Remark: actually the converse is always true, so that geo-
metrical regularity and formal smoothness are the same thing;

. 22.5. .
cf. EGA 0IV (22.5.8))

Proof. The first assertion is immediate from Th.61. As for

D k' of k such

the second, take a finite radical extension
that K(k') is separable over k' (cf. p.196 Ex,2). The ring
A' = A®kk' is a noetherian local ring with residue field
K(k'), and is regular by assumption., Thus A' is f.s. over k'

by the preceding proposition. Thus our proposition is proved

by the following lemma.

(28.0) LEMMA, Let A be a topological ring containing a field
k, and let k' be a k-algebra (with discrete topology). Put
A' = Aébkk'. Then A is f.s. over k if (and only if) A' is

f.s. over k',

Proof., Let C be a discrete k-algebra, N an ideal of C with

N2 =0 and v: A > C/N a continuous homomorphism of k-

1) By a radical extension of a field k we mean a purely inse-
parable extension of k if ch(k)=p, and k itself if ch(k)=0,
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A" > C/N® k' = (C®k')/(N®k');'."'

algebras, Then v' = v@idk,:
is a continuous homomorphism of k'-algebras, so there is a
lifting w: A' > C' = C®k" of v' over k', Choose a k-

submodule V of k' such that k' = k @ V. Then C' =C @ (COV) -

.

and C®V is a C-submodule of C'. Write w(a) = u(a) + r(a)
(u(a) € C, r(a) € CO®V) for a € A, Since w(a) mod N®K' = ..3
v(a) ¢ C/N we have r(a) ¢ N®V. Thus r(a)r(b) = 0 for !
a,b e A. It follows that wu: A+ C 1is a k-algebra homomorph~

ism which 1lifts wv. ' Q.E.D,

(28.P) (Structure of complete local rings: unequal character-
istic case) Let (A,M,k) be a local ring. There are four

possibilities:

I) ch(A) = 0, ch(k)

1]
o

II) ch(A) = p, ch(k) = p;

III) ch(A) = 0, ch(k) p" > p, ch(k) = p.

p; IV) ch(a)
(If A is an integral domain then tﬁe last possibility is ex-
cluded,) 1If I) or II) occurs {so-called equal characteristic
case) then A contains a field, and conversely. A subring R

of A is called a coefficient ring if it satisfies the follow-

ing conditions:

1) R is a noetherian complete local ring with maximal ideal
MANR;
2) we have R/MANAR = A/M = k by the canonical map (i.e.

A =R+ M);

FORMAL SMOOTHNESS 2N

3) RA M= pR, where p = ch(k).
Therefore, R is nothing but a coefficient field in the equal
characteristic case. 1In case III, rad(R) = pR is not nil-
potent, hence R must be a regular local ring of dimension 1,
i.e. a principal valuation ring. In case IV the ring R is

an artinian ring.

THEOREM (I.S.Cohen). Let A be a complete, separated local
ring. Then A has a coefficient ring R. 1In case IV, R is of
the form R = w/p“w, where W is a complete principal valua-

tion ring with maximal ideal pW.

In the equ;1 characteristic case it was proved in Th,60, By
lack of space we omit the proof of the unequal characteristic
case. A concise proof can be found in P.Samuel: ALGEBRE
LOCALE (Paris, 1953) pp.45-48. Grothendieck's proof (which
depends on the theory of formal smoothness) is in EGA OIV19'8'

The above theorem has two important corollaries:

COROLLARY 1. Let (A,#) be a complete, separated local ring
such that M is finitely generated. Then A is a homomorphic
image of a complete regular local ring. Consequently, A is

not only noetherian but also universally catenarian,

(cf. p.84, p.110 Th.33, and p.121 Th.36.)
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COROLLARY 2. Let (A,M) be a noetherian complete local domain.
Then A contains a complete regular local ring A0 over which

A is finite,

Proof of Cor.2. Let R be a coefficient ring of A, Since A is

an integral domain, R is either a field or a principal valua-
tion ring with maximal ideal pR. Choose a system of parame-

Lers Xy ,..e,X_ of A which is arbitrary in the first case and

is such that xl = p in the second case. Put AO = R[[xl,...,
xr]]g; A, (We have AO = R[[xz,...,xr]] if X, =PpE R.)
Then AO is a noetherian complete local ring with maximal

r
ideal AM/O =X xiAO' Since A = R + MV and since W))Q'M/OA

1

for large v, A//m,OA is finite over AO/WO' Then A is finite

over AO by the lemma below. Hence dim A = dim A0 =r by
(13.C) Th,20, and as AM/O is generated by r elements, AO is
regular.,

LEMMA. Let A be a ring, I an ideal of A and M an A-module.
Suppose that (a) A is complete and separated in the I-adic

topology, (b) M is separated in the I-adic topology and (c)
M/IM is finite over A (or what is the same thing, over A/I).

Then M is finite over A.

Proof is easy and left to the reader.
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29. Jacobian Criteria

(29.A) Let k he a field, and I be an ideal of k[Xl,...,Xn].

Let P be a prime ideal containing I, and put A = k[Xl,..,Xn],

B=A/T and p = P/I, Then Bp = AP/IAP ; let « denote the

common residue field of AP and Bp. Put dim AP =m and

ht(IAP) =r, Since A is catenarian we have dim B =m - r,
We know that AP is a regular local ring, and that B is re-
gular iff IAP is a prime ideal generated by a subset of a

regular system of parameters of AP (cf.(17.F) Th.36). We have

2
rankK(P/P ®A|<) = m, and

2 _ 2 2 . _
rankK(p/p ®BK) =m - rankK((P + I)/P ®AK) 2> dim Bp =m-r,
Therefore

rankK((P2+ I)/I’2 ®AK) €r,
and the equality holds iff Bp is regular., The left hand side
is the rank of the image of the natural map v: 1/12®A|< -+
P/P2 ®A|<.
To each polynomial f(X) € P we assign the vector in k"
(af/axl,...,af/axn) mod P, Then we get a x-linear map

2 n n
P/P ®AK + K . If we identify k with QA/k®AK = QAP/k ®APK
n o .
=z KkdX,, the map just defined is nothing but the map § of
1
the second fundamental exact sequence (cf.(26.1))
)
2 2
P/P°®«k = PAP/P AP > QAP/k®K - Qx/k + 0,

If I = (fl(x),...,fs(X)), then the image of &v: I/12®|< ->
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QA/ke)K is generated by the vectors (afi/axl,...,afi/axn)mod
P, 1 €<i<s, so that rankK(Im(év)) = rank( B(fl,...,fs)/
a(Xl,...,Xn) mod P), where the right hand side is the rank
of the Jacobian matrix evaluated at the point P; we write the
matrix (Q(f)/9(X))(P) for short. Thus, if we have

(*) rank (B(fl,...,fs)/a(Xl,...,Xn))(P) = v,
then we must have rank Im(v) = r also, and hence Bp is re-
gular. When the residue field k is separable over k we have

rankK QK/R = tr.degk Kk =n-ht(P) =n-m
by (27.B) Th,59, while rank P/PzébK = m, So the map §:
P/P2€>K > QA/kQDK is injective., 1In this case the condition
(*) is equivalent to the regularity of Bp.

The condition (*) is nothing but the classical definition
of a simple point. The above consideration shows that, when
k 1s perfect, the point p is simple on Spec(B) iff its local
ring Bp is regular. 1In the generai case note that (*) is
invariant under any extension of the ground field k. Thus,
if k' denotes the algebraic closure of k and if P' is a prime
ideal of A' = k'[Xl,...,Xn] lying over P, then p is simple on
P'/iA' is regular,

Since k is finitely generated over k, it is also easy to see

Spec(B) iff the local ring B'p, = (A'/IA")

that (*) is equivalent to the geometrical regularity of Bp

over k.
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(29.B) The results of the preceding paragraph can be more
fully described by the notion of formal smocothness. We begin

by proving lemmas,

LEMMA 1., Let k » B be a continuous homomorphism of topolo-
gical rings and suppose B is formally smooth over k., Then,
for any open ideal J of B, ‘QB/kg(B/J) is a projective B/J-
module,

(In such case we say that the B-module QB/k is formally pro-
jective,)

Proof, Let u: L+ M be an epimorphism of B/J-modules., We
have to prove that HomB(QB/k, L) » HomB(QB/k, M) is sur-
jective, i,e, that Derk(B,L) > Derk(B,M) is surjective, Let

D e Derk(B,M), and consider the commutative diagram

v

B —> (B/J)xM
1 .
| [

K ——-——3 (B/J)*L
where j(x,y) = (x,uy) and v(b) = (b mod J, D(b)). Let
v': B> (B/J)sL be a lifting of v. Then we have v'(b) =

(b mod J, D'(b)) with a derivation D' ¢ Derk(B,L), and uD'= D,

LEMMA 2. Let B be a ring, J an ideal of B and u: L - M a

homomorphism of B-modules. Suppose M is projective. Further-
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more, assume either that (o) J is nilpotent, or that (B) L

ijs a finite B-module and J € rad(B). Then u is left-

jnvertible 1ff u: L/JL > M/JM 1is so.

Proof. "Only if" is trivial, so suppose U has a left-inverse
v: M/IM + L/JL. Since M is projective we can lift v to v:
M > L; put w = vu. Then L = w(L) + JL, hence L = w(L) by
NAK. Then w is an automorphism. [In fact, it is generally

true that a surjective endomorphism f of a finite B-module

L is an automorphism. Here is an elegant proof due to Vas-

concelos: Let B[T] operate on L by T§ = f(§). Then L = TL,
hence by NAK there exists ¢(T) € B[T] such that (1 + To(T))L
= 03 then TE = 0 implies & = 0.] Therefore w_lv is a left-

inverse of u.

(29.0) THEOREM 63. Let k and A be topological rings
(cf. 28.8) and g: k > A a continuous homomorphism. Let Q be
an ideal of definition of A, let I be an ideal of A and put
B = A/1, g = (Q + I)/1.

Suppose that A is noetherian and formally smooth over k.
Then the following are equivalent:

(1) B (with the g-adic tofology) is f.s. over k;

(2) the canonical maps

2 n
8 : (1/1 )®B<B/q“> + QA/k@A(B/q ) (n=1,2,..)

el e e a— i e a ek
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derived from the map &: I/I2 > QA/kGDB of Th,58 are left—

invertible;

(3) the map §,: (I/T)®(B/g) » @, ©(B/g) is left-

A/

invertible., (When g is a maximal ideal, this condition says

simply that 61 is injective.)

Proof. (2) = (3) is trivial, while (3) =>(2) follows from the

preceding lemmas, (2) =» (1) is easy and left to the reader.
We prove (1) =>(2). Put Bn = B/qn. The map Gn is left-
invertible iff, for any Bn-module N, the induced map
Hom(I/IZ, N) « Derk(A, N)

is surjective, So fix a Bn—module N and a homomorphism g ¢
HomB(I/IZ,'N). Since A 1s noetherian there exists, by Artin-
Rees, an integer v > n such that IAQ\) & QnI. Then g induces
amap g : (1+Q)/ T+ Q") » /@ + (@AD) » /(1% + Q"D
+ N, which is a homomorphism of Bv-modules. Let E denote
the extension

0 > 1+’ +Q" > a/i®+QH + B+ O
of the discrete k-algebra BV’ and let

0 - N - C ~» Bv - 0

be the extension gv*(E)'(cf. 25,E), The ring C is a discrete
k-algebra. Since B is f.s. over k, there exists a continuous
B —B

T T

k ———>C

homomorphism wv: B + C such that
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is commutative. On the other hand, by the definition of
gv*(E) we have a canonical homomorphism of k-algebras u:

A~ A/(I2 + QV) -+ C such that

commutes. Denoting the natural map A ~ B = A/I by r, we get
a derivation D = u - vr € Derk(A,N). It is easy to check

that D(x) = u(x) = g(x mod 12) for x e I. Q.E.D.

COROLLARY., If, in the notation of Th.63, B is also f.s. over

k, then the B-module I/I2 is formally projective.

(29.D) LEMMA 3 (EGA OIv 19.1.12), Let B be a ring, L a finite
B-module, M a projective B-module and u: L - M a B-linear
map. Then the following conditions on p € Spec(B) are equi-
valent, and the set of the points p satisfying the conditions
is open in Spec(B).

(1) up: Lp = L®Bp > Mp = M®Bp is left-invertible.

(2) there exist XppeeorX € L and ViresesV € HomB(M,B)
such that Lp = inBp and det(vi(u(xj))) £ p.

(3) there exists f € B - p such that wu_: L. = LOB,

f f

-+ Mf = M®Bf is left-invertible,

Proof, The module M is a direct summand of a free B-module F,

Since L is finitely generated u(L) is contained in a free

IO S e e
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submodule F' of F of finite rank which is a direct summand

of F. Now the conditions (1), (2), (3) are not affected if
we replace M by F, and then F by F'. Therefore we may assume
that M is free of finite rank.

(1) = (2): The assumption (1) implies that Lp is Bp-projec—
tive, hence Bp-free. Let X, € L (1 €ig<m) be such that their
images in Lp (which are denqted by the same letters xi) form
a basis. Then {up(xl),...,up(xm)} is a part of a basis of

M , so there exist linear forms Vv): M_ - B such that
p’ i"p o p

vi(u (x.)) =6,.. Since M is free of finite rank we can
1 p ] 1]

-1
i ' = -
write vy S, Vi» S, € B - p, v, € HomB(M,B). Then

det(vi(u(xj))) £ p. _

(2) "> (3); Since L is finite over B and since L = inBp
1
it is easy to find g € B - p such that Lg = inBg. Put d =

det(vi(u(xj))) and f = gd. Then L_ = inBf, and d is a

f

unit in Bf. It follows that Mf = uf(Lf) + V with V =

f\Ker(vi). Moreover, u(xi) (1<1i3m) are linearly independ-

ent over B_, so that u

£ is injective., Thus u_ is left-

f f

invertible,
(3) “* (1): Trivial. Lastly, the set of the points p which

satisfy (3) is obviously open in Spec(B). Q.E.D.

(29.E) THEOREM 64, Let k be a ring, and A be a noetherian,

smooth k-algebra. Let T be an ideal of A, B = A/I, p ¢
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Spec(B), P = the inverse image of p in A, ¢ = PAk and «(p) i
= the residue field of Bp and AP' Then the following are |
equivalent:

(1) Bp is smooth over k (or what amounts to the same,

over kq); }

(2) the local ring Bp (with the topology as a local ring)
is formally smooth over the discrete ring k or k ;
(2') the local ring Bp is f.s. over the local ring k ;
(3) (I/IZ)QBK(p) > QA/RQAK(p) is injective;
(4) (I/IZ)GOBBp > QA/kﬁbABp is left-invertible;
(5) there exist Fl""’Fr €I and Dl’
T

such that )iFiAP = IA, and det(DiFj) ¢ p;

...,Dr € Derk(A,B)

(6) there exists f € B — p such that B is smooth
over k,

Consequently, the set {p ¢ Spec(B)| Bp is smooth over k} is

open in Spec(B).

Proof. (1) = (2): trivial. (2) = (2') is also trivial (cf.
28.C). (2) =? (3): we know that the local ring AP is (smooth,
hence a fortiori) f.s, over k, and we have Bp = AP/IAP and
QAP/k = QA/k®AAP' So apply Th.63.

(3) = (4): since QA/k is A-projective by Lemma 1, QA/k6be

is Bp—projective. Apply Lemma 2.

(4) = (5): apply Lemma 3 to the B-linear map I/I2 > QA/R@AB'

FORMAL SMOOTHNESS 221

(5) => (6): by Lemma 3 and Th.63.

(6) @ (1): trivial.

Remark 1. The theorem has two important consequences. First,

if, in the theorem, k is a field, then A is smooth over the

prime field k, in k also, and Bp is smooth over k. iff it is

0 0
regular. Therefore the set { p [ Bp is regular} is open in
Spec(B).

Secondly, let k be a noetherian ring and B a k-algebra
of finite type. Then Bp (p € Spec(B)) is smooth over k iff

it is f.s. over k. In fact B is of the form A/I, A = k[Xl,

...,Xn], so we can apply the theorem.

Remark 2. When the conditions of Th.64 hold, the number r

of (5) is equal to the height of IAP.

(29.F) Nagata gave a similar Jacobian criterion for rings
of the form B = k[[Xl,...,Xn]]/I, where k is a field (Il11l. J.
Math. vol.l (1957), 427-432). By lack of space we just quote

the main result in the form found in EGA:

THEOREM (cf. EGA 0IV 22,7.3). Let k be a field, and
let (A,#,K) be a noetherian complete local ring. Let I be
an ideal of A, B = A/I, P a prime ideal containing I and p =
P/I. Suppose that

(1) [k: kP] <o 41if ch(k) = p > O,
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(2) K is a finite extension of a separable extension KO
of k, and
(3) A has a structure of a formally smooth Ko—algebra.
Then the local ring Bp is f.s. over k iff there exist Fl""’

Fm €I and D .,Dm € Derk(A) such that IAP = ZFiAP

10"
and such that Det(Di(Fj)) £ P.

COROLLARY (cf. EGA 0Iv 22.7.6). Let B be a noetherian
complete local ring containing a field. Then the set

{p e Spec(B)IBp is regular} is open in Spec(B).

30. Formol Smoothness Il

g f
(30.A) DEFINITION. Let A > k - A be continuous homomorph-

isms of topological rings (cf. 28.B). We say that A is for-

mally smooth over k relative to A (f.s. over k rel.A, for

short) if, given any commutative diagram

A —Y 5 ¢/N

f |

.t T
A——> k > C

2
where C and C/N are discrete rings, N an ideal of C with N
= 0 and the homomorphisms are continuous, the map v can be
lifted to a k-algebra homomorphism A - C whenever it can be

lifted to a A-algebra homomorphism A + C.
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g f
THEOREM 65. Let A + k - A be as above. Then the follow-

ing are equivalent:

(1) A is f.s. over k rel. A;

(2) for any A-module N such-that IN = 0 for some open
ideal T of A, the map DerA (A,N) > DerA (k,N) in-
duced by f is surjective;

(3) Qk/ﬁgk(A/I) > QA/AG?A(A/I) is left~invertible for

any open ideal I of A.

Proof. (1) = (2): Put C = (A/I)*N, take D g DerA(k,N)

and define i: k> C by i(a) = (vf(a), D(a)) (a e k)

where v: A+ A/I 1is the natural map. Then-v can be lifted
to the A—hbmomorphism at+—> (v(a), 0) ¢ C, hence it can also
be lifted to a k-homomorphism a‘t+» (v(a), D'(a)), and then
D': A+ N is a derivation satisfying D = D'f. (2)=> (1) is

also easy, and (2) &»(3) is obvious.

(30.B) THEOREM 66. Let A > k > A be as above, let J be
an ideal of definition of A and suppose A is formally smooth
over A. Then A is f.s. over k iff

p O B/D > 9, ®, (A1)

is left-invertible.

Proof. By assumption, A is f.s. over k iff it is f.s. over k

rel. A. On the other hand, for any open ideal I of A the
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A/I-module QA/AQD(A/I) is projective by (29.B) Lemma 1.
Thus the condition (3) of the preceding theorem is equivalent

to the present conditiod by (29.B) Lemma 2.

COROLLARY. Let (A,# ,K) be a regular local ring containing
a field k. Then A is f.s. over k 1iff
QOK > @,k

is injective.

Proof. Since A is f.s. over the prime field in k, the asser-

tion follows from the theorem.

(30.C) LEMMA 1. Let k be a field of characteristic p. Let
F = {ka} be a family of subfields of k, directed downwards

(i.e.for any two members of F there exists a third which is

contained in both of them), such that kP c ka < k, Qka = kP,

Let ua: be the canonical homomorphisms.

@ Qk/ka
Then (;\Ker(ua) = (0).

Proof. Let (xi) be a p-basis of k. Then Qk is a free k-

n
module with (dx,) as a basis. Suppose that 0 #Lcdx ¢
v v 1
1 n )
C;\ Ker(ua). Then the monomials {xl ceeX | 0g v < p} must

be linearly dependent over ka for all a. But since they are
linearly independent over kP and since f\ka = kp, it is

easily seen that they are linearly indep. over some ka'
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THEOREM 67. Let (A,#, K) be a regular local ring containing
a field k of characteristic p. Let F = {ka} be as in the
above lemma. Then A is f.s. over k iff A is f.s. over k rel.

ka for all g.

Proof. '"Only-if" is trivial. Conversely, suppose the condi-

tion holds, and look at the commutative diagram

W
Qk&kl(——> QA®K
u'
ol .|

a
Qk/k(;eK — QA/kg?‘('

Here Vo is injective by Th.65 and u& = uaébl Thus Ker(w)

K
g-(\Ker(u&) = (f\Ker(ua))GDK = (0).

(30.D) THEOREM 68 (Grothendieck). Let A be a noetherian
complete local ring and p a prime ideal of A; put B = Ap and
let B* denote the completion of B. Let g' € Spec(B) and

put L =«k(g") = Bq,/q'Bq,. Then, for any prime ideal Q of

B* lying over q', the 'local ring of Q on the fibre' B*QGBL
= B*Q/q'B*Q (cf. 21.A) is formally smooth (hence geometrically

regular) over L.

Proof. Step I. Put g = g'AA, A= Alg, B B/qB = B/q',

B* =(the completion of the local ring B ) = B*/q¢'B* and

6 = Q/q'B*. Then the 'local ring of Q on the fibre' remains
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the same when we replace A, B, B*, Q by K, §, E*, Q respec-
tively. Thus we may assume that A is an integral domain and
QAB =¢' = (0).

Step II (Reduction to the case that B is regular). Take a
complete regular local ring R & A over which A is finite.
Put p, = pP~R, § = Rpo and B' = Apo. Then B' is finite
over S, and B = Ap is a localization of the semi-local ring
B' by a maximal ideal. Hence B* is a localization (and a
direct factor) of B'* = B'®SS*. Let L (resp. K) be the

quotient field of A, B’ and B (resp. R and §).

'k = B'®SS* —> B%

1 1

A——> Ay = B! ——— A =B ——1
1 o1 T
R- - — > Rp0= § ee—e - [

We are given Q € Spec(B*) such that QB = (0). Then B*Q is
a localization of L ®B,B'* = L®SS* = L®K(K®SS*), and L
is a finite extension of the field K. In general if T is a
K-algebra, if M ¢ Spec(L@KT) and m = M~T, and if T, is
f.s. over K, then (L®T)M is a localization of L®KTm and
hence is f.s, over L. Thus it suffices to show that S*th*
is f.s., over K, Thus the problem is reduced to proving that,
if R is a complete regular local ring with quotient field K,
if p € Spec(R) and S = Rp , and if Q is a prime ideal of S*

such that gnS = (0), then S*Q is f.s. over K,
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Step III. The local ring S*_ is regular, so if ch(K) = 0 we

Q
are done. If ch(K) = p we apply the preceding theorem. In

this case R is an equicharacteristic complete regular local
ring, hence R = k[[Xl,...,Xn]] for some subfield k of R.
Let {ka} be the family of all subfields ka of k such that

. P~ e = |% P
[k ka] <o and k& ko;."‘ k. Put R(x ka[[Xl ,...,Xn 11,

= = = - 1% P
Py, Ra/\p, Sa (Ra)p anq Koa <I>Ra ka((xl ,...,Xn )).

o
Then fa\ka = kp, hence it is elementary to see that@l(a = kP
(see below). By the preceding theorem we have only to show

that, for each o, S*Q is f.s, over K rel. Ka.

Since Rpg Ra < R, p is the only prime ideal of R lying

over p . Hence § = R}O = Rpa = R®RaSa, and so S is finite
over 5 . Therefore Sk = S®g S, *. Suppose we are given
a

diagram v

S *—— s 5x —- Y L c/N

& A A

r C

Sa — e § ety

where N2 = (0) and u and v are homomorphisms, and a lifting

v': S* > C of v over S,° Put v* = v' |Sa* and V" = u@®v*:

Sk = S®S Su* + C. Then v" is a lifting of v over S.
a

Thus S* is formally smooth over S rel. Sa with respect to the
discrete topology. Then it follows immediately from the
definition that S*_ 1is f.s. over K rel. Koz as a discrete ring,

Q

hence a fortiori as a local ring. Q.E.D.
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(30.E) A Digression., Let A be a ring and M an A-module,

We say that M is injectively free if, for any non-zero element

x of M, there exists a linear form f € HomA(M,A) with f(x) ¢
0 (in other words, if the canonical map from M to its double

dual is injective).

LEMMA 2. Let B be an A-algebra which is injectively free as
A-module. Then B[Xl,...,Xn] (resp. B[[Xl,...,Xn]]) is injec-

tively free over A[Xl,...,xn] (resp. A[[Xl,...,Xn]]).

Proof. Just extend a suitable A-linear map £: B > A to
B[Xl,...,Xn] (resp. .. ) by letting it operate on the co-

efficients.

LEMMA 3., Let AC B be integral domains, and suppose B is
injectively free over A. Let K and L be the quotient fields
of A and B respectively, and X be an indeterminate. Then

®(BL[X]]) AKR((X)) = d(A[[X]]).

Proof. 2 is trivial. To see < , let £ € $(BI[X]I])AK{(X)).

As an element of K({X)) we can write (the Laurent expansion)

£ = Xm(r0 + X+ r2X2 +...), meZ, r, € K.

We may assume m = O, Since &£ € $(B[[X]]) there exists O # ¢

€ B[[X]] such that ¢§ = ¥ € B[[X]]. Write

¢ = g X, P = g Bk R ai,Bj £ B,

TP L U Y S PUIIP JOSERIE S

S SNSRI JPR-
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Then I a,r, = B8 . Take a linear map £: B » A with £(a,)
i+j=k 13k i

# 0 for some 1, Then I £(a,6)r, = B, .
. =k L1k

z Z(ai)X and £(Y) = I Z(Bk)X we therefore get £(¢) # 0

Writing £(¢) =
and £ = LQP)/L($) € SCALIX]D).

PROPOSITION. Let k be a field and {ka} a family of subfields

f k. =
o Put kO G}ka. Then we have

(kg (Eppee s X)) = ko ((Xp,een,X ),

Proof. When n = 1, the uniqueness of the Laurent expansion

proves the assertion. Induction on n. Put

A

k0[[)('1""’Xn-1]]’ Ba = ka[[xl""’xn-ln’

K

A = ko((XppeeeyX 1)), Lo = ®B = k ((X,..0,X ).
Then we have
(ko (Kppee )X )€ (AL UKD = (L) (X)) = R(UX))
by the induction hypothesis, whence
Qka((xl,...,xn)) S k, (X0t X DAKEX )
= ¢(Ba[[xn]])r\K((Xn))
= ®(AL[X_1D)

= ko((Xl,...,Xn)). Q.E.D.
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CHAPTER 12. NAGATA RINGS

31. Nagata Rings

(31.4) DEFINITIONS. Let A be an integral domain and K its
quotient field. We say that A is N-1 if the integral closure
of A in K is a finite A-module; and that A is N-2 if, for any
finite extension L of K, the integral closure AL of A in L is
a finite A—modﬁle. If A is N-1 (resp. N-2), so is any locali-
zation of A. The fir;t example of a noetherian domain that
is not N-1 was given by Y. Akizuki (Proc. Phys-Math. Soc.
Japan 17(1935), 327-336).

We say that a ring B is a Nagata ringl) if it is noether-
ian and if B/p is N-2 for every p € Spec(B), If B is a

Nagata ring then any localization of B and any finite B-

algebra are again Nagata.

1) pseudo-geometric ring in Nagata's terminology, and (noether-
ian) universally Japanese ring in EGA (cf. EGA IV, 7.7.2).
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(31.B) PROPOSITION. Let A be a noetherian normal domain with
quotient field K, let L be a finite separable extension of K
and let AL denote the integral closure of A in L. Then AL

is finite over A,

Proof, Enlarging L 1If necessary, we may assume L 1s a finite
Galols extension of K. Let G = {01,...,cn} be its group, and

choose a basis wl,...,wn of L from AL. Take o € A, and

L
n
write a = i ujwj, uj € K. Then oi(a) = 7 ujoi(wj) for

1< i< n, and the determinant D = det(oi(w }) is not zero.

h|
The element c = D2 is G-invariant, hence belongs to K. Solv-
ing the linear equations Gi(a) = § ujoi(wj), we get u, = Di/D
= ci/c, where Di € AL and ¢y = DDi € ALr\K = A. Thus

AL is contained in the finite A-module ZA(wi/c). Therefore

AL itself is finite over A,

COROLLARY 1. Let A be a noetherian domain of characteristic

zero, Then A is N-2 iff it is N-1.

COROLLARY 2. Let A be a noetherian domain with quotient
field K. Then A is N-2 if, for any finite radical extension

E of K, the integral closure of A in E 1s finite over A.

LS
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Proof. If L is a finite extension of K, the smallest normal
extension L' of K containing L is also finite over K, and if
E is the subfield of Aut(L'/K)-invariants then L'/E is sepa-
rable and E/K is radical. Thus the assertion follows from

the Proposition.

(31.C) THEOREM 69 (Tate). Let A be a noetherian normal do-
main and let x # 0 be an element of A such that xA is a prime
ideal. Suppose further that A is xA-adically complete and

separated, and that A/xA is N-2. Then A itself is N-2.

Proof. We may assume that ch(A) = p > 0. Let L be a finite

radical extension of the quotient field K of A, and let B be
the integral closure of A in L. Then there exists a power

q= pf of p such that ch__:K, and we have B = {b ¢ L| b9 e A}
by the normality of A. By énlarging L if necessary, we may
assume that there exists y ¢ B with yq = x. Put p = xA, and
let P be a prime ideal of B lying over p. Then we have
P={b¢ B| pd € p} = yB. Thus Ap and BP are local domains
whose maximal ideals are principal and # (0). Hence they
are principal valuation rings. Then it is well known (and
easy to see) that [k(P): k(p)] £ [L: K], where «(P) and k(p)
are the residue fields of BP and Ap respectively. Since B/P

is contained in the integral closure of A/p in k(P), and
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since A/p = A/xA is N-2, the ring B/P is finite over A/xA.

. i, i+l .
Since P = yB, we have P /P ~ B/P for each i, hence B/xB
= B/PY is also a finite module over A/xA. Moreover, B is
separated in the xB-adic topology. In fact, the xB-adic topo-
logy is equal to the yB-adic topology, and since y is not a
zero-divisor in B one immediately verifies that ymBPf\B = ymB

(m =1,2,...). Therefore RymB c ;%ymBP = (0). ©Now the

theorem follows from the lemma of (28.P).

COROLLARY 1. If A is a noetherian normal domain which is N-2,

then the formal power series ring A[[Xl,...,Xn]] is N-2 also.

COROLLARY 2 (Nagata). A noetherian complete local ring A is

a Nagata ring.

Proof. If p € Spec(A) then A/p is also a complete local ring.
Thus we have only to prove that a noetherian complete local
domain A is N-2, But then A is a finite module over a com-
plete regular local ring A

by (28.P), and A, is N-2 by the

0 0

theorem (use induction on dim AO). Hence A is N-2.

(31.D) Let A be a noetherian semi-local ring and A* its com-
pletion. 1If A* is reduced then A is said to be analytically

unramified. A prime ideal p of A is said to be analytically
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unramified if A*/pA* = (A/p)* is reduced.

LEMMA 1. Let A be a noetherian semi-local domain and j
Spec(A). Suppose that (1) Ap is a principal valuation ring,
and (2) p is analytically unramified. Then, for any p* ¢

AssA*(A*/pA*), the ring A* . is a principal valuation ring.

p*

Proof. By (1) there exists T € A such that pA = ﬂAp, and

P

by (2) we get p*A*p* = pA* = (pAp)A*p* = nA*p*. Since ™

p*
is A*-regular by the flatness of A* over A, the local ring

A*p* is regular of dimension 1,

LEMMA 2, ﬂet A be a noetherian semi-local domain and let
0 # x € rad(A). Suppose (1) A/xA . has no embedded primes,
and (2) for each p ¢ AssA(A/xA), Ap is regular and p is

analytically unramified. Then A is analytically unramified.

Proof. Let AssA(A/xA) = {pl,...,pr} and AssA*(A*/piA*) =

* =
{Pil""’Pini}' Then p.A /;\Pij by (2). Let Qij be the

kernel of the canonical map A* - A*P . Since A*P is
ij ij
regular by Lemma 1, Qij is a prime ideal of A*. Therefore,

A* 1 d d if (ﬁ\ = e = | -
s reduced if (; | Qij (0).. Put N f\Qij. The for

1

mula .
AssA*(A*/xA*) = \“_J AssA*(A*/pA*) = {PiJ

peAss (AfxA)

shows that xA* ={, MNP! where P'_  is P, .-primary. We have
i,j "ij ij 1]
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C A
Q3= Fiy

is A*-regular, so that x ¢ Qij' Hence we get N = xN, and

by the definition of Qij‘ Hence N & xA*, But x
since x € rad(A*) we conclude N = (0).

THEOREM 70. Let A be a noetherian semi-local domain. If A

is a Nagata ring then it is analytically unramified,

Proof, We use induction on dim A. Let B be the integral
closure of A in its quotient field. Then B is finite over A,
hence for any P € Spec(B) the domain B/P is finite over
A/P~A which is assumed to be N-2. Thus B is a Nagata ring.
Moreover, if /% = rad(A) then the (rad (B)-adic) topology
of B is equal to the mi-adic topology, hence A is a subspace
of B by Artin-Rees so that A* C B*. Therefore we may assume
that A is a normal domain. Let O # x € rad(A). Since A is
normal the A-module A/xA has ﬁo embedded primes. If p €
AssA(A/xA), then A/p is a Nagata domain and dim A/p < dim A,
hence p is analytically unramified by the induction hypothe-
sis. Moreover, Ap is regular because ht(p) = 1. Thus the
conditions of Lemma 2 are satisfied, and A is analytically

unramified.

(31.E) For any ring R, we shall denote by R' the integral

closure of R in its total quotient ring dR. Let A be a
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noetherian local ring, and suppose A is analytically unrami-

fied., Then (0) = Plf\...r\Pr in A*, where the P are the

1
minimal prime ideals of A*. Hence ¢A* = K1 Xy oeX Kr with K

i
= ¢(A*/Pi), and A*' = (A*/Pl)' X, . .X (A*/Pr)'. Since A*/Pi
is a complete local domain, it is a Nagata ring and (A*/Pi)'
is finite over A*/Pi’ or what amounts to the same, over A%,
Therefore A*' is finite over A*, This property implies, in
turn, that A' is finite over A. Indeed, since A* is faith-
fully flat over A we have A'@AA* < (9A) ®AA*Q dA*, and
hence A'@AA* C A*', Thus A'®A* is finite over A*, and we
can find elements ai (1< 1< m) of A' such that A'®A* =

z aiA*. Then (A'/L aiA)QbAA* = 0, so that A' =% aiA by
the faithful flatness of A*. Summing up, we have the follow-
ing implications for a noetherian local ring A.

A is complete => A is a Nagata ring,
A is a Nagata domain -» A is analytically unramified =)

A*' ig finite over A* -y A' is finite over A, 1i.e. A is N-1.

(31.F) THEOREM 71. Let A be a semi-local Nagata domain,
Let Pl,...,Pr be the minimal prime ideals of the completion
A* of A, and let K (resp. Li) denote the quotient field of

A (resp. of A*/Pi)‘ Then each Li is separable over K.

Proof. Take any finite extension L of K. Since A* is
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reduced by Th.70 we have ¢A* = Ly X ..o xL_ , and it suf- LEMMA 4. Let B be a noetherian domain with quotient field K,
fices to show that QA% ®KL = (L1® L) x .,, X (Lr® L) is such that there exists O # f € B such that B, = B[1/f] is
reduced. Since L is flat over A we have A* ®AL C dA% ®AL normal, Suppose that Bp is N-1 for each maximal ideal p of
= d>A*®KL C d(A* ®AL)’ so it is enough to see that A* ®AL B'. Then B is N-1,

is reduced. Let B denote the integral closure of A in L.
Proof. We denote the integral closure in K by ', Let p be

Then B is finite over A, hence B* = A% ®AB and so ¢B* D n

a maximal ideal of B and write (B )' = IB Wy with w, € B'.
A% @A(I)B = A*®AL. But B is a semi-local Nagata domain, so 1P 1( )

This is possible because (B )' = B' =B [B']. Put C Pl =
that B* is reduced by Th.70. Hence ®B* and A* @AL are P P P

B[wl,...,wn]. Then C(p) is finite over B, hence is noether-

reduced. Q.E.D.

() lying over p. Then (C(p))P

ian., Let P be any prime of C

=Py 2¢P, and Py = (B)' is normal. Thus
(31.G) For any scheme X, let Nor(X) denote the set of points P P P

(C(p)) is a localization of the normdl ring (B )', hence is
x of X such that the local ring at x is normal. P . P

itself normal. Put X = Spec(C(p)), F =X - Nor(X) and
P P p P

X = Xpec(B):; let m : X - X be the morphism corresponding to
LEMMA 3. Let A be a noetherian domain, and put X = Spec(A). i ’ P

the inclusion map B + C(p). Since C(p)[l/f] = Bf, the set

Suppose there exists 0 # f € A such that A_ = A[1/f] is

f
Fp is closed in Xp by Lemma 3. Since C(p) is finite over B,

normal. Then Nor(X) is open in X.
the map 'np is a closed map. Thus 'np(Fp) is a closed set in X,

Proof. If £ ¢ p € X then A, is a localization of Ag, hence 'f and p ¢ m_(F ) by what we have just seen. Therefore the
p € Nor(X). Put E={pce ASSA(A/fA)| either ht(p) = 1 and intersection m ﬂp(Fp) is a closed set in X which
. : all max p
Ap is not regular, or ht(p) > 1}. Then E is of course a contains no closed point (= maximal ideal of B}, so that
finite set, and by the criterion of normality (Th.39) it is we have mﬂP(Fp) = ). As affine schemes are quasi—compact’
e - r
not difficult to see that there exist p,,...,p such that M\m (F ) # #. Put D
Nor(X) = X - J v(p) (py) =2 P Py
or = - . a
P =c " and ¢ =3¢, ..., ¢). Then ¢ is finite over B.

pEE

Therefore Nor(X) is open, We claim that CQ is normal for any Q € Spec(C). In fact we
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have QAB ¢ 7, (F, ) for some i, hence Q/\C(i)
Pi Pi

W

€ Nor(X,,).
(1) w b
Q=q we haveCQ;?‘C * Q’ and since C )q is

(i; =2C, hence C, = C(ié. Thus our claim

Q

is proved and C is normal. Therefore B'= C, so B' is finite

Putting C

normal we have C
over B.
(31.H) THEOREM 72 (Nagata). Let A be a Nagata ring and B

an A-algebra of finite type. Then B is also a Nagata ring.

Proof. The canonical image of A in B is also a Nagata ring,
so we may assume that A< B. Then B = A[xl,...,xn] with

some X, € B, and by induction on n it is enough to consider

the case B = A[x].

Let P € Spec(B). Then B/P = (A/AAP)[x] where A/AnP
is a Nagata domain, and we have to prove that B/P is N-2,
Thus the problem is reduced to prbving the following:

(*) If A is a Nagata domain, and if B = A[x] is an integral
domain generated by a single element x over A, then B is N-2,
Let K be the quotient field of A, It is easy to see
that we may replace A by its integral closure in K. So we

can assume in (*) that A is normal,
Case 1. x 1s transcendental.over A,

Then B is normal., Therefore if ch(B) = O we are done.

Suppose ch(B) = p, and take a finite radical extension L =

e s e e e e i i S i et et 2
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e

R(x,0; 500050, ) Of 9B = K(x). Let q = p° be such that oy

K(x) for all i. Then there exists a finite radical extension
K' of K such that o; € K'(xl/q). If'ﬁf(resp./§3 is the inte-
gral closure of A in K' (resp. of B in L), then’X[xl/q] is
normal and we have B = A[x] C B SlK[xl/q]. Since /K[xllq]

is finite over B,'g'is also finite over B.

Case 2, x 1s algebraic over A.
Let L be a finite extension of $B. Then [L: K] < o, and if
2r(resp.‘§§ is the integral closure of A (resp. B) in L then
A is finite over A, hence A[x] is finite over A[x] = B, and
B = A[x] € A[x] € B. Therefore we have only to prove:

(+) Let A be a normal Nagata domain with quotient field K,
and let B = A[x], x € K. Then B is N-1,

Write x = b/a with a,b € A. Then Ba = B[1/a] = A[1/a]

is normal because it is a localization of the normal ring A.

Thus by Lemma 4 it is enough to prove that B_ is N-1 for any

P
maximal ideal P of B. Put P' = P~A, Then B/P = (A/P')[x]
is a field, so the image x of x in B/P is algebraic over A/P'.
Hence there exists a monic polynomial f(X) ¢ A[{X] such that
f(x) € P. Let K" be the field obtained by adjoining all roots
of £(X) to K, let A" denote the integral closure of A in K"
and put B" = A"[x]. Then A" is Nagata and B" is finite over.

B. Let P" denote any prime of B" lying over P. If B" _,, is

P"
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N-1 for all such P" then B"P is N-1 by Lemma 4 and it follows

easily that BP is N~-1. Thus replacing A, B and P by A", B"

and P" respectively we may assume that f(X) = NI(X - ai) with

a, € A. Then x = ;i for some i, and as we can replace x by

X = a, we may assume that x € P,
Let Q be the kernel of the homomorphism A[X] - A[x] = B

which maps X to x. Then Q is generated by the linear forms

aX - b such that x = b/a. (For, if F(X) = aOXn+ alx“'1+ cee

+ a, € Q, then a.x is integral over A, hence a.x =b € A

0 0
by the normality of A, Then F(X) - (aOX - b)Xn—1 € Q, and

our assertion is proved by induction on n = deg F(X). ) Let

I be the ideal of A generated by such b, in other words

I = xAnA. We have B/xB = A[X]/(XA[X] + Q) = A[X]/(XA[X]+I)

14

A/T,

.We want to apply Lemma 2 of (31.D) to the local ring B,
and to x € PBP. If this is possible then BP is analytically
unramified, so by (31.E) BP is N-1, as wanted., Now the con-
ditions of Lemma 2 are: (1) BP/xBP has no embedded primes,
and (2) if p € Spec(BP) is any associated prime of BP/xBP
then (BP)p is regular and p is analytically unramified. Let
us check these conditionms.

Since A is a noetherian normal ring we have A = (ﬁ\ A .
ht(g)=1 1
Therefore, 1if Gpseeerqy are the prime ideals of height 1 such

8

that x ¢ inq s, then I = XAnA = 1/\1 (XAQ ~ A). Hence
-1 - i
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A/1 = B/xB has no embedded primes, proving (1).

Let p be an associated prime of BP/XBP. Then ht(p) = 1,
and p~A is an associated prime of A/(xBP,\A) = A/I. Thus
A(p/\A) is a principal valuation ring and so (BP)p = A(p/\A)’
Lastly, BP/p is a localization of B/p~B and B/p~B = A/p~A
since x € p. Thus BP/p is a Nagata local domain, hence is

analytically unramified, Thus the condition (2) is verified

and our proof is completed.



CHAPTER 13, EXCELLENT RINGS

32. Closedness of the Singular Locus

(32.,A) Let A be a noetherian ring; put X = Spec(A), Reg(X)
= {p € XIAb is regular} and Sing(X) = X - Reg(X). We ask

whether Reg(X) is open in X.

LEMMA 1, In order that Reg(X) is open in X,

(1) it is necessary and sufficient that for each p € Reg(X),
the set V(p) Reg(X) contains a non-empty open set of V(p);

and (ii) it is sufficient that, if p € Reg(X) and Y = Spec(

A/p), then Reg(Y) contains a non-empty open set of Y,

Proof. (i) This follows from (22,B) Lemma 2.
(11) We derive the condition of (i) from (ii1). Let p €
Reg(X), and choose a

yreesd8, €D which form a regular system

of parameters of Ap; put I = ZaiA. As IAp = pAp, there exists
245
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f € A such that IAf = pAf. Then D(f) = X - V(f)-:rSpec(Af) is

an open neighborhood of p in X. So, replacing A by A_. we may

f

assume that I = p., Now put Y = Spec(A/p), and identify it

with the closed subset V(p) of X. By assumption, there exists

a non-empty open set YO of Y contained in Reg(Y). If g ¢ YO’

r

then A /pA 1s regular and pA = Za A 1is generated by an A -
'™ P T 1% q

regular sequence, Thus dim Aq = dim Aq/pAq + r, so that A

is regular. Therefore YO < YAReg(X), and the condition (i)

is proved.

(32.B) Let A be a noetherian ring. We say that A is J-0 if
Reg(Spec(A)) contains a non-empty open set of Spec(A), and
that A is J-1 if Reg(Spec(A)) is open in Spec(A). Thus J-1
implies J-0 if A is a domain, but not in general. We say that
A is J-2 if the conditions of the following theorem are satis-

fied.

THEOREM 73, For a noetherian:ring A, the following conditions
are equivalent:

(1) any finitely generated A-algebra B is J-1;

(2) any finite A-algebra B is J-1;

(3) for any p £ Spec(A), and for.-any finite radical exten-
sion K' of k(p), there exists a finite A-algebra A' satisfying

A/p < A' < K' which is J-0-and whose quotient field is K',
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Proof. (1) = (2) =>(3): trivial., (3) =>(1): Step I. Let p
and A' be as in (3), and let wl,...,mn € A' be a linear basis
of K' over k(p). Then there exists 0 # f € A/p such that
A'f = %(A/p)fuﬁ. From this and from Th.51 (i) it follows
easily that A/p is J-0. Therefore A/p (and A itself) is J-1
by Lemma 1,
Step II, In view of Lemma 1, the condition (1) is equivalent
to (1'): Let B be a domain which is finitely generated over
A/p for some p € Spec A, Then B is J-0.
We will prove (1'). Replacing A by A/p we may assume A < B.
Since A is J-0 by Step I we may also assume that A is regular.
Let K and K' be the quotient fields of A and B respectively.
Case 1, K' is separable over K. 1In this case we use
only the assumption that A is regular. Let tl,...,tn € B be
a separating transcendency basis of K' over K, and put A, =

1

A[tl,...,tn], Kl = K(tl,...,tn). Then A1 is a regular ring.

There exists a basis Wiseeos, of K' over Kl such that each

1)f (f ¢ Al) and B by Bf, we
r

may assume B is finite and free over A: B = ZwiA. Put d =
1

K,/K(wiwj)). Then 4 # 0 as K' is separably algebraic

W, € B. Replacing A by some (A

det(tr

over K. We claim that Bd is a regular ring. Indeed, if
r

d ¢ p' € Spec(B) and p =p'~A, then B = Tw.A , and
poqrp

‘i/x(p) (wiwj))

=d#0 in K(p). Therefore B = B@«(p) is a product of

r
putting B = B®k(p) = Z_u—)ilc(p) we get det(t
’ 1
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fields, and 80 Bp.Qbk(p) = Bp'/po' is a field, Since Ap is
regular and dim Ap = dim Bp" it follows that Bp is regular.
Case 2. General case, We may suppose ch(K) = p. There

exists a finite purely inseparable extension K, of K such

1

that Ki = K'(Kl) is separable over K Choose A. < K, as in

1° 1= 1

(3). Then Al is J-0, and so Al[B] is J-0 by Case 1. Since

A1[B] is finite over B, B itself is J-0 as in Step I. Q.E.D.

Remark., The condition (3) is satisfied if A is a Nagata ring
of dimension 1. Indeed, A/p is either a field -- in which

case (3) is trivial -- or a Nagata domain of dimension 1, and
then the integral closure A' of A in K' is finite over A and

is a regular ring.

(32.C) THEOREM 74. Let A be a noetherian complete local

ring, Then A is J-2.

Proof. Any finite A-algebra B is a finite product of complete
local rings: B = Bl X sae X Bs, and B is J-1 iff each Bi is
so. Therefore, by Th.,73 and Lemma 2, it suffices to prove
that a noetherian complete local domain A is J-0,

Case I. ch(A) = 0, The ring A is finite over a suitable
subring B which is a regular local ring, and by the case 1

of Step II of the preceding proof we see that A is J-O0.

Case II. ch(A) = p. Then A contains the prime field,
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hence also a coefficient field K, so that A is of the form
K[[Xl""’xn]]/I' Therefore A is J-1 by the Jacobian cri-

terion of Nagata (29.F).

33. Formal Fibres and G-Rings

(33.A) In this section all rings are tacitly assumed to be

noetherian.

DEFINITIONS, Let A be a ring containing a field k. We say
that A is geometrically regular over k if, for any finite
extension k' of k, the ring A@kk' is regular. This is equi-
valent to séying that "Am is geometrically regular over k for
each m € Q(A)", because 1if m' ¢ Q(A®k') and m = m'n A then
(Adbk')m, 1s a localization of Amdbkk'.
We say that a homomorphism ¢: A+ B 1is regular (or

that B is regular over A) if it is flat and if for each p ¢
Spec(A) the fibre BEAK(p) is geometrically regular over k(p).
This is equivalent to saying that

B is flat, and for any finite extension L of

K(p), the ring B®,L = (B ®AK(p))®K(p)L is a

regular ring.
A noetherian ring A is called a G-ring if for any p € Spec(a),

the canonical map Ap > (Ap)* of the local ring Ap into its
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completion is regular. (The fibres of Ap > (Ap)* are called
the formal fibres of Ap') It 1is clear that, if A is a G-
ring, then any localization S_lA and any homomorphic image
A/I of A are G-rings.

Th.68 of (30.D) implies that a noetherian complete local

ring is a G-ring.

(33.B) LEMMA 1. Let A+ B+ C be homomorphisms of rings.
(i) 1If ¢ and Y are regular, so is Y¢.
(ii) If y¢ is regular and if ¢ is faithfully flat, then ¢

is regular.

Proof. (i) Clearly y¢ is flat. Let p € Spec(A), K = «(p)

and I, = a finite extension of K. Put B(L) = B‘@AL and

C =C 8%}. It is easy to see that

(L) _
b =¥ ®Ld: By 2 Cpy

is regular. Moreover, if P' € Spec(C )) and P = P'r\B(L),

(L

then B(L\P is a regular local ring (as ¢ is regular). Then
C(L)P' is regular by (21.D) Th,51(ii) as it is flat over

(ii) Again the flatness of ¢ is obvious. Using the same
notation as above, for any P € Spec(B(L)) there exists P' €

Spec(C )) lying over P (because Y; is f.f.), and the local

(L
ring C(L)P' is regular and flat over B(L)P' Therefore the
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local ring B(L)P is regular by (21.D) Th,51(i).

LEMMA 2. Let ¢: A > B be a faithfully flat, regular homo-

morphism., Then:
(i) A is regular (resp. normal, resp., C.M., resp. reduced)
iff B has the same property,

(ii) 1If B is a G-ring, so is A.

Proof. (1) follows from (21.D) and (21.E).
(i1) Suppose B is a G-ring, and let p € Spec(A). Take a

prime ideal P of B lying over p, and consider the commutative

diagram . £% .
(A% == ms (Bp)
R
f
Ap — > By

where £ is the local homomorphism derived from ¢, and o and B
are the natural maps. Since f and B are flat, f*o = Rf is
flat also, Then, by the local criterion of flatmness Th.49(5),
f* is flat (hence faithfully flat). On the other hand f*q
= Bf is regular as f and B are so, hence by Lemma 1 we see

that o is regular, which was to be proved,

(33.C) THEOREM 75. Let A be a noetherian ring. If, for

every maximal ideal m of A, the natural map Am - (Am)* is

regular, then A is a G-ring.
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Proof. We can assume that A is a local ring with A + A%

regular. Then A* is a G-ring by Th.68, Hence A is a G-ring
by Lemma 2,

(33.D) THEOREM 76f) i) Let A,B be noetherian rings and
f: A > B be a faithfully flat and regular homomorphism. If
B is J-1 (i.e. Reg(B) is open in Spec(B)), so is A.

i11) A semi-local G-ring is J-1.

Proof. 1) Put X = Spec(B) and Y = Spec(A). Then the cano-
nical map f£: X > Y is submersive by (6.H) Th.7. On the other
hand we have f—l(Reg(A))= Reg(B) by Lemma 2 (i). Since
Reg(B) is open in Y, Reg(A) must be open in X.

ii) Apply the above to A + A* and use Th.74.

(33.E) LEMMA 3. A noetherian semi-local ring A is a G-
ring iff, for any local domain C which is a localization of
a finite A-algebra B with respect to a maximal ideal, and

for any prime ideal Q of C* with QnC = (0), the local ring
C*Q is regular.

Proof. '"Only if". Let A be a G-ring. Then the image of A
in B is also a G-ring, hence we may assume that A € B. We
may also assume that B is a domain., Let L = ®B and K = ®A.

Since B* = B QAA* and since C* is a component of B*, we have

T T E@Bq = LRGN )1 = (LB A% ),

with Q' = QC*Qn(L®B*) and g = QnA*., Since A*a is

geometrically regular over K we see that C*_ is regular,

Q
"If". Let p € Spec(A) and let L be a finite extension

*) We may replace J-1 by J-2 in the theorem in view of Lemma
4 below.
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of k(p). Then it is clear that we can find a finite A-algebra
B such that A/y &S B< L and ¢B = L. We have L®AA* =

L®B(B ®AA*) = L®BB*, and the local rings of this ring are
of the form B*Q with Q AB = (0), hence regular. Q.E,D.
LEMMA 4. Let A + B be a regular homomorphism and let A" be
an A-algebra of finite type. Put B' = A'@AB. Then A' »> B'

is regular,

Proof. Let P' e Spec(A'), and put P = P'nA, k = k(P) and
K = k(P'). Let L be a finite extension of K. Then L®A,B'

= L®AB = L®k(k®AB). Since K is finitely generated over k,
L is also finitely generated over k, Thus there exists a
finite radical extension k' of k such that L(k') is separably
generated over k', Put M = L(k'), T = k'®AB. By assump-
tion T 1s a regular ring. We have M@A,B' = M@AB =
M®k'(k'®AB) = M®k'T’ and M is finitely generated and
separable over k'. Then it is easy to see that the homomorph-
ism T » M®k.T is regular, and since T is regular the ring
M® ,B' = H@k,’r is regular by Lemma 2., Since M@A,B' =
M®L(L®A.B') is flat over L®A.B', the ring L®A,B' is

regular by Th.51. Q.E.D.

(33.F) LEMMA 5, Let A be a noetherian ring and put X =
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Spec(A). Let Z be a non-empty, locally closed set in X. : Step II. The map B > B' = BQ?AA* induced by A > A* is regular
1
4
Then Z contains a point p such that dim(A/p) ¢ 1. (Geomet- : by Lemma 4 and f.f., and if P' is a maximal ideal of B' lying
rically speaking, Z contains either a 'point' or a 'curve'.) : over P, the proof of Lemma 2(ii) shows that By + (Bp)* is

regular if B'P. *—(B'P.)* is regular, The ring B' =
Proof. Shrinking Z if necessary, we may suppose that Z is
- A[t]QDAA* is of the form A*[t]., So we may assume that
of the form D(f) AV(P) with f ¢ A and P ¢ X such that f d P.
(AyM) 1s a complete local ring, B = A[t] and P is a maximal
Then Z is homeomorphic to Spec((A/P)?) where f is the image

ideal of B lying over M4, Putting C = BP’ we want to show

of f in A/P. Let m be a maximal ideal of the ring (A/P)— , :
: £ that C » C* 1is regular, in other words (Th.75) that C is

and let p be the inverse image of m in A, Then
a G-ring. By Lemma 3 it suffices to show the following: if
A_/pA. = (A/P)= /m = a field

£/P%¢ £ ’ L D is a finite C-algebra which is a domain, and if Q is a
hence if g is the image of f in A/p then A /pA . = (A/p)lg 7]

iy S AL T e B e

prime ideal of D* with QAD = (0), then the local ring D#*

‘ Q

is a field. This means that all non-zero prime ideals of the !
is regular. The various rings considered are related as

noetherian domain A/p contain g, which is impossible if ;

1 follows, finite
dim A/p > 1 because a noetherian dcmain of dimension > 1 has . A= A% — B = A[t] — C = BP___+ D — D* —> D*Q'
infinitely many prime ideals of height 1 (cf. (1.B) and i Denote the kernel of C > D by I. Since D is a domain, I is
(12.1)). ' ! a prime ideal. Replacing A by A/(AAI), B by B/(BAI) and

P by P/I, we may further assume that A is a complete local

(33.G) THEOREM 77 (Grothendieck), Let A be a G-ring and B X domain.
a finitely generated A-algebra, Then B is a G-ring. _ Step III. Put X = Spec(D) and X' = Spec(D*), and let

f: X' > X be the canonical map. It suffices to prove

Proof. Step I. We may assume that B = A[t], Let P be a

f—l(Reg(X)) Reg(X'). Indeed, since D is a domain we have

maximal ideal of B and put p = PAA., We are to prove that

f(Q) = QAD

(0) € Reg(X), and our goal was Q € Reg(X').
BP > (BP)* is regular. Since BP is a localization of Ap[t] ’ & &
Step IV. Proof of f-l(Reg(X)) = Reg(X').
we may assume that A is a local ring and P~nA = rad(A). Put

Suppose that they are not equal., Since the complete local
M= rad(A).
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ring A is J-2 by Th.74, B = A[t] and C = BP are also J-2,
Hence D is J-1, i.,e. Reg(X) 1s open in X. On the other hand
Reg(X') is open in X' by Th.74. So f-l(Reg(X))/\Sing(X') is
locally closed, and we have assumed that the intersection is
not empty. We want to derive a contradiction from this.

By Lemma 5 there exists p' ¢ f-l(Reg(X))/\Sing(X') such that
dim(D*/p') £ 1. The prime p' of D* is not a maximal ideal,
because otherwise f(p') = DAp' would be a maximal ideal of
D and f(p') € Reg(X) would imply that Df(p') is regular. Then
D*p.- Df(p'f must be regular, contrary to the assumption that
p' € Sing(X). Therefore we have dim(D*/p') = 1,

Put p = p'A D. Then Dp is regular and D*p, is not regu-
lar, and Dp > D*p, is faithfully flat. Hence, by (21.D) Th,
51, D*p. @D(D/p) is not regular. Replacing D* by D*/pD#*,

D by D/p, C by C/Chp etc., we may assume that p = (0).

Thus we have

finite
A=A*c B =A[t)¢csC = B, < > D <5 D*/p’.

We distinguish two cases.

Case 1. D*/p' is finite over A. Then D is also finite over
A, hence D is complete. Thus D* = D, hence p' = (0) and
D*p, is a field, contrary to the assumption p' € Sing(X').
Case 2, D*/p' 1s not finite over A. Put E = D*/p', My, =

rad(4), Aﬂ% = rad(E) etc.. Since P is a maximal ideal of
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B = A[t], lying over W, the residue field CﬁnE is finite over
Ah@g- Moreover, E/n% is .a homomorphic image of D*/n$* = D/ﬁg
and DLMLD is finite over Cﬂuyb. Hence E/MVE is finite over
AAMVA. Therefore, if 4i,E contains a power of 4ij; then

EAMVAE 1s also finite over A/4ﬂk, and E itself must be finite
over A by the Lemma at the end of $28. Thus A“AE does not
contain any power of wwt. But E is a noetherian local domain
of dimension 1, so we must have kaE =2 (0). Hence also MkA

= (0), i.e. A is8 a field. Then we get dim D £ 1 by construc-
tion. Therefore dim D*¥ =1 and p' (not being maximal) must
be a minimal prime of D*, Now D is a Nagata ring by Th.72,

hence D* is reduced. Therefore D*p' is a field and we get

a contradiction again, Q.E.D.

(33,H) THEOREM 78. Let A be a G-ring which is J-2, Then

A 1s a Nagata ring.

Proof. Let p € Spec(A), and let K be the quotient field of
A/p, L a finite extension of K and B the integral closure of
A in L, We have to prove that B is finite over A. Let A'
be a finite A-algebra such that A/p < A' < B and ¢A' = L,
Then A' is a G-ring by Th.76 and is J-2. Thus, replacing A
by A', the problem is reduced to proving that a noetherian

J=2 domain which is a G-ring is N-1 (i.e. the integral closure
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B of A in K = ®A is finite over A). Put X = Spec(A). Then
Reg(X) is non-empty and open in X, and is of course contained
in Nor(X). So, by (31.G) Lemma 4 we have only to show that
AMV is N-1 for each maximal ideal 4 of A. But Amvis reduced
and A, - (A, )* is regular, so by (33.B) Lemma 2 the ring

(Aaw)* is reduced. Therefore AAw,is N-1 by (31.E). Q.E.D.

(33.1) THEOREM 79 (Analytic normality of normal G-rings).
Let A be a G-ring and I an ideal of A. Let B denote the
I-adic completion of A. Then the canonical map A + B is
regular. Consequently, B is normal (resp. regular, resp.

C.M., resp. reduced) if A is so.

Proof. It is clear from the definition that A + B is regular
iff, for any maximal ideal ' of B, the map Agw™ B, (mv
= m'AA) is regular. Now, since ' is maximal, m 1s a
maximal ideal of A containing I by (24.A). Furthermore the
local rings AM~ and va' have the same completion (cf.24.D).

Thus in the diagram h g
Am-———> B/Wr' —_— (Bmv)* = (Am)*)

gh is regular and g is f.f., so that h is regular by (33.B)

Lemma 1. Thus A + B is regular. The second assertion

follows from this by (33.B) Lemma 2.
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34. Excellent Rings

(34.A) DEFINITION. We say that a ring A is excellent (resp.

quasi-excellent) if the following conditions (resp. (1),(3)

and (4)) are satisfied:

(1) A is noetherian;

(2) A is universally catenary (cf. pp.84-86);

(3) A is a G-ring (cf. 33.B);

(4) A is J-2 (cf. 32.B Th.73).
Each of these conditions is stable under the two important
operations on rings: the localization and the passage to a
finitely generated algebra. (Stability of J-2 under locali-
zation follows from the criterion (3) of Th.73.) Thus the
class of (quasi-)excellent rings is stable under these oper-
ations. Note also that (2),(3),(4) are conditions on A/P,
P £ Spec(A). Thus a noetherian ring A is (quasi-)excellent
iff Ared is so.

A quasi-excellent ring is a Nagata ring (Th.78).

If A is a local ring and if it satisfies (1) and (3)
then it is quasi-excellent (Th.76, Th.77 and Th.73). In the
general case, note that the conditions (2) and (3) are of
local nature (in the sense that if they hold for A for all

p € Spec(A), then they hold for A), while (4) is not.
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(34.B) Noetherian complete semi-local rings are excellent
((28.P), Th.68, Th.74). In particular, formal power series
rings over a field are excellent. Convergent power series
rings over R or C are excellent (cf. Th.102 and the remark
after that). It is easy to see that a Dedekind domain (i.e.
noetherian normal domain of dimension one) of characteristic
zero is excellent. On the other hand, there exists a regular
local ring of dimension one and of characteristic p which is
not excellent. [Take a field k of char. p with [k:kp = o,
put R = k[[x]] and let A be the subring of R consisting of
ixi such that [kp(ao,al,...):kp] < oo,
Then A is regular and A* = R. Since R’ A the quotient

the power series Za

field R is purely inseparable over ®A. Thus A is not a G-
ring, not even a Nagata ring by Th.71. ]

Let K be a field, ch(K) # 2. Then there exist a re-
gular local ring R of dimension 2 containing K and a prime
/
whose completion S* has zero-divisors. (Nagata, LOCAL RINGS
p.210, (E7.1)). Thus R is not Nagata.

C. Rotthaus (Math. z. 152 (1977), 107-125) constructed

element z of R such that S = R[z1 2] is a normal local ring

a regular local ring R of dimension three which contains a
field and which 1s Nagata but not quasi-excellent.
The ring A of p.88 is a G-ring which is not u.c..

(34.C) Ome can ask the following questions:
(A) If A is quasi-excellent, is A[[X]] quasi-excellent ?
(A') If A is as above and I is an ideal, is the I-adic
completion A* of A qusi-excellent ?
(B) If (A, I) is a complete Zariski ring with A/I quasi-
excellent, is A also quasi-excellent ?
Of course (A) and (A') are equivalent, and (B) is stronger.

These questions are still open in the general case, cf. §43.

;
!
i
i
i
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35. Eakin's Theorem

A module is said to be noetherian (resp. artinian)
if the aséending (resp. descending) chain condition for
submodules holds. It is easy to see that if 0 > M' > M > M"
+ 0 is exact and if M' and M" are noetherian (resp. artinian),
so 1is M. A module is noetherian iff all submodules are
finitely generated.

A module is called faithful if Ann(M) = (0).

LEMMA. Let A be a ring and M an A-module. If M is faithful

and noetherian, then A is a noetherian ring.

Proof. Let M = Aml + ... + Amn. Then A is embedded in Mn

as A-module by the map a -+ (aw .,amn). Since M" is

12"

noetherian, so is A,
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THEOREM 80 (E. Formanek, Proc. AMS 41 (1973),381-383).
Let A be a ring and B be a faithful and finite A-module. If
the ascending chain condition holds for the submodules of

the form IB, where I is an ideal of A, then A is noetherian.

Proof. It suffices to prove that B is a noetherian A-module.
Assume the contrary. Then the set {IB | I is an ideal of A
and B/IB is a non-noetherian A-module} is not empty, hence
it has a maximal element IOB. Replacing B and A by B/IOB
and A/Ann(B/IOB), we may assume that B is not noetherian but
B/IB is noetherian for every non-zero ideal I of A. Put T =
{N | N is a submodule of B and B/N is faithful}. If B = Awy
+ ... +Aw_ then a submodule N of B belongs to I' 1iff {awl,
...,awn} ¢ N for every 0 # a ¢ A. Therefore we can use Zorn
to conclude that T has a maximal element No. Replacing B by
B/N0 we get the situation where (1) B is not noetherian (for,
otherwise A and our original B would be noetherian), (2) B/IB
is noetherian for every non-zero ideal I of A, and (3) B/N

is not faithful for every non-zero submodule N of B. But
this is absurd. In fact, there exists by (1) a submodule N
of B which is not finite over A. Then there exists 0 # a

€ A such that aB< N by (3). Since B/aB is noetherian, the
A-module N/aB must be finitely generated. Therefore N itself

is finite over A, contradiction.
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COROLLARY (Eakin). If B is a noetherian ring and A is a
subring of B such that B is finite over A, then A is noether-

ian.

36. A Flatness Theorem

(36.4) LEMMA. Let A be a ring and M be an A-module. Let
x be an element of A which is M-regular and A-regular, and N

be an A-module with xN =.0. Put A' = A/xA, M' = M/xM. Then:

R

t
(1D Torﬁ(M, N) Tor: (M',N) for alln 20,

14

(2) Eth(M, N) Extg, (M',N) for alln > O,

(3) Ext2+l(N, M) = Ext:,(N, M') for all n 3> 0, and

HomA(N, M) = 0.
X

Proof. (1) and (2): The exact sequence 0 > A > A > A' >0
is a free resolution of A'. Since 0 - M i M-+>M QkA' +> 0 is
also exact, we have Tor?(M, A'Y =0 for all i > 0. Let L. >
M >0 be a free resolution of M. Since Hi(L'® AA') =
Tor?(M, A"Y =0 (1 >0), L. ehA' is a free resolution of the
A'-module M'. Now (1) and (2) are immediate.
(3): HomA(N,M) =0 is obvious. For n > 0, put Tn(N) =

n+l
ExtA (N, M) and view them as functors on A'-modules. From

X
0>M>M->M >0 we get TO(N) = HomA,(N, M'). Since

proj.dimAA' 1 we have Tn(A') = 0 for n > 0, hence Tn(N)
=0 for n > 0 if N is projective over A'. If 0 + N' >~ N >

N'" - 0 1is an exact sequence of A'-modules, then we have the
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long exact sequence 0 —+ TO(N") > TO(N) +—T0(N') > Tl(N") -
Tl(N) - Tl(N') -+ TZ(N") > .. Thus Tl(—) are the derived

functors of HomA,(-, M"Y, i.e. Ti(—) = Ext:.(—, M").

(36.8) Let (A, m) and (B, n) be noetherian local rings

and ¢ : A> B be a local homomorphism. Put F = B/mB. If
B is flat over A, we have dim B = dim A + dim F by Th.19.

The converse is also true in some case. (Cf. Th.46.)

THEOREM 81. Let the notation be as above. Assume that A is

regular, B is Cohen-Macaulay and dim B = dim A + dim F.

Then B is flat over A.

Proof. Induction on dim A. If dim A = 0 then A is a field.

Suppose dim A > 0, and take x € m - m?. Put A' = A/xA,

B' = B/xB. Then dim B'<& dim A' + dim F = dim A - 1 + dim F

= dimB - 1 by Th.19, but dim B' > dim B - 1 (by (12.F),
or consider system of parameters of B'). Therefore dim B’
= dim B - 1, x is B-regular and B' is CM. Hence B' is flat
over A' by induction hypothesis, and so Tor?'(A/m, B') = 0.
Since x is A-regular and B-regular, we have Tori(A/m, B) =
Torﬁ'(A/m, B') = 0. Therefore B is flat over A by Th.49.

(Cf. EGA IV (6.1.5).)

P Sy
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37. Coefficient Rings

In this section we will prove the Cohen structure
theorem (p.211) in the unequal characteristic case by the

method of Grothendieck.

THEOREM 82. Let (A, ™, k) be a local ring and let B be a
flat A-algebra. Put B, = B/mB = B 8%3. If B, is smooth
over k then B is formally smooth over A with respect to the

mB-adic topology.

Proof. By the definition of formal smoothness we have only
to show that B/4uiB is smooth over A/m.i for every 1. Thus
we can assume that w4 is nilpotent. Then B is free over A
by (3.G), and so any A-algebra extension of B by a B-module
is a Hochschild extension, cf. (25.C). Therefore the proof
of smoothness of B reduces, as in (28.H), to showing that
every symmetric 2-cocycle f: B x B + N with values in a
B-module N is a coboundary. Suppose first that N satisfies
mN = 0. In this case f is essentially a cocycle on BO;
namely, there exists a symmetric 2-cocycle fO: BO X BO -+ N
such that £(x,y) = fo(;,;s. Since BO is smooth over k we
have f0 = Ggo for some k-linear map gp* B0 + N. Putting
g(x) = go(;) we have f = 8g. 1In the general case let ¢:

N -~ N/ N denote the natural map. Then ¢ef: B x B >~ N/mN
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splits, i.e., there exists an A-linear map E} B + N/mN
such that ¢ef = 8;: As B is projective over A the map E
can be lifted to an A-linear map g: B » N, and f - 8g is
a 2-cocycle with values in w#N. Repeating the same argument
we can find h: B > m»aN such that f - §(g+h) has values
in yn?N, and so on. Since M- is nilpotent we see that f is

a coboundary.

THEOREM 83. Let (A,tA,k) be a principal valuation ring and
K be an extension field of k. Then there exists a principal
valuation ring B containing A with maximal ideal generated

by t and with residue field k-isomorphic to K.

Proof. Let {XA}AEA be a transcendency basis of K over k and

put k; = k({xx}). Let {XX}XEA be a set of independent

indeterminates and put A[{XA}I= A', A, = A

1 ]
1 NE Then A" is

a free A-module, so that A' and A1 are separated in the t-
adic topology. Therefore Al is a principal valuation ring

with residue field kl. So we can assume that K is algebraic
over k. Let L be the algebraic closure of the quotient field
of A. Llet 3;denote the set of ‘the pairs (B, ¢) of a subring
B of L containing A and an A-algebra homomorphism ¢: B > K

such that B is a principal valuation ring with rad(B) =

Ker ¢ = tB, and define an order in F by
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(B,d) < (C,¥) &> BCC and ¢ = Y|B.
One can easily check that F satisfy the condition of Zorn's
lemma, therefore there exists a maximal element (B,¢) in F.
If ¢(B) # X, take an element a € K - ¢(B}, let f(X) be the
irreducible equation of a over ¢(B) and lift it to a monic
polynomial £(X) € B[X]. Since B is normal, f is irreducible
over the quotient field of B. Let n be a root of f in L and
put B' = B[a] ; then B' = B[X]}/(f), so that we have B'/tB' =
B[X]/(t,£) = ¢(B)(a). Since B' is integral over B all maxi-
mal ideals of B' must contain tB', therefore B' is a local
ring with tB' as maximal ideal. Clearly B' is a noetherian
domain, so B' must be a principal valuation ring. This
contradicts the maximality of (B,¢) in Ek. Thus ¢(B)

= K.

Remark 1. If (A, tA) is a principal valuation ring and M is
an A-module, then M is flat over A iff t is M-regular. This
is an immediate consequence of (3.A) Th.l (3). 1In particular
the ring B of the above theorem is flat over A.

Remark 2. In EGA 0III (10.3.1) the following more general
theorem is proved: if (A,mv,k) is a noetherian local ring

and K is an extension field of k, then one can find a

noetherian local ring B containing A and flat over A such

that rad(B) = yAB, B/#mB = XK.
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THEOREM 84. Let (A,#,K) be a complete, separated local ring,

(R,pR,k) be a principal valuation ring and ¢0: k > K be a
homomorphism of fields. Then there exists a local homomor-

phism ¢: R > A which induces ¢0.

Proof. Put § = sz and let k) be the prime field in k.
Since ch(K) = ch(k) = p, the canonical homomorphism Z + A
can be extended to a local homomorphism S - A. Similarly
R is an S-algebra, which is flat by Remark 1. Since R/pR =
k is separable (hence smooth) over kO’ R is formally smooth

over S in the pR-adic topology by Th.82. Therefore we can

1ift the map R > k > K to ¢: R »> A.

¢0
R~ k—K
. P )
\\ 6 A/w
\\ T
NN R
a1

§ — > A

THEOREM 85. A complete separated local ring has a coeffi-

cient ring. (Cf. p.211.)

Proof. This follows from Th.83 and Th.84.
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38. p - Basis
(38.A) Let R be a ring of characteristic p > 0, and let RP

denote the subring {xP | x € R}. Let S be a subring of R.

A subset B £ R is said to be p-independent (in R) over § if

e e
the monomials b 1...b n , Wwhere b,,...,b are distinct

1 n 1 n
elements of B and 0 € e, < p, are linearly independent over

i
Rp[S]. When A is a ring 'of characteristic p, a polynomial

(or a monomial) f ¢ A[Xl,...,Xn] is said to be reduced 1if

it is of degree < p in each variable X B is called a p-

T

basis of R over S if it is p-independent over S and Rp[S,B]

R, i.e. if every element a of R can be written uniquely as

a reduced polynomial a = f(b ,bn) in distinct elements

1o
bi of B with coefficients in Rp[S].

If B is a p-basis and M is an R-module, then any map
¢: B + M is uniquely extended to a derivation D: R + M over
S by D(a) = D(f(b)) =L Bf/abi ¢(bi), where a = f(b) is the
unique representation if a € R as a reduced polynomial in

elements of B with coefficients in Rp[S]. It follows that

Qp/g is a free R-module with basis {db | b € B}.

(38.B) If k,k" are subfields of a field K, the subfield
generated by them will be denoted by kk'; thus kk' = k(k'") =

k'(k). Let K be a field of characteristic p and K' be a
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subfield containing KP. 1f [K:Kp] is finite it is a power
pn of p; its exponent n is called the p-degree of K/K' and °
will be denoted by (K:K')p. This is equal to the smallest
number of generators of K over K', and also equal to the
rank of the K-module QK/K"

Let K be a field of characteristic p and k be a sub-
field. Since KP[k] = KP(k) = KPk, a subset B of K is p-
independent over k iff, for every finite subset B' of B, we
have (ka(B'):ka)p = Card(B'). Also B is a p-basis of K/k
iff it is p-independent over k and KPk(B) = K. By Zorn's

lemma any p-independent subset is contained in a p-basis.

THEOREM 86. Let K and k be as above, B be a subset of K and
let dB denote the subset {db | b € B} in U i+ Then:
i) B is p-independent over k & dB is linearly indep./K,

ii) B is a p-basis of K/K <> dB is a basis of gK/k over K.

Proof. If B is a p-basis we have already seen that QK/k is
a free K-module with basis dB. If B is p-independent then
there exists a p-basis containing B, hence dB is lin. indep.
over K. On the other hand if B is not p-independent then
there exist b, bl""’bn € B such that b ¢ ka(bl""’bn)’
and then db € T dei. Therefore if dB is linearly independ-

ent then B is p-independent, and there exists a p-basis B'

p-BASIS 271

containing B. If dB is a basis of QK/k then B = B'.

(38.C) Let K be an arbitrary field and k be a subfield.
The K-module QK/k is generated over K by dK, therefore there
exists a subset B such that dB = {db]| b € B} is a basis of

QK/k' Such a subset B is called a differential basis of K/k.

The concept of differential basis coincides with that of p-
basis in the case of characteristic p as we have just seen.
In case ch(K) = 0 it coincides with that of transcendency

basis by the following theorem.

THEOREM.87. Let K D k be fields of characteristic O. Then:
i) B ¢ K is algebraically dependent over k iff dB is

linearly independent over K in QK/k’

ii) B CK is a transcendency basis of K/k iff 4B is a linear

basis of QK/k over K.

Proof. Similar to the proof of the preceding theorem.

(38.D) THEOREM 88. Let K/k be a field extemsion. Then
the following is equivalent:

(1) K is separable over k,

(2) for any subfield k' of k, the canonical map Qk/k'® kK -+

QK/k' is injective,
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(3) the canonical map Qk<8iK > X is injective,
(4) any derivation D from k to a K-module M can be extend-

ed to a derivation K -+ M.

Proof. It is clear that (2) and (4) are equivalent. But (4)
is also equivalent to (3). If ch(K) = 0 then (3) holds by
the preceding theorem, so (1), (2), (3) and (4) are all true.
If ch(X) = p, (1) is equivalent to K GLkp_l S Kkp-l by
MacLane's theorem (p.196), or what is the same, to linear
disjointness of KP and k over kP, Therefore, K is separable
over k & the reduced monomials in the elements of a p-basis

B of k/kP are linearly independent over K® & dB is linearly

independent over K in QK & Qk ®K ~ O 1s injective.

THOREM 89, Let K be a separable extension of a field k of
characteristic p, and let B be a p-basis of K/k. Then B is

algebraically independent over k.

Proof. Assume the contrary and suppose b ...,bn € B are

1’
algebraically dependent over k. Take an algebraic relation
f(bl,...,bn) =0, fe k[Xl,...,Xn]
of lowest possible degree. Put deg f = d. Write
\)1 \)n

5 g &P xt.ox ",

seessV 1 n
vl,...,vn <p 1 n

£f(X)

(=]

£

where g(v) are polynomials with coefficients in k. Since

S AT e S

SN L e A TR M
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b,s...,b_ are p-independent over k, we must have g, .(bP) = 0
1 n V)
for all (v). By the choice of f this happens only if

= P p
f(Xl,...,Xn) gO,...,O(Xl seeesX 7). L

But then we would have f£f(X) = h(X)p with h £ kP (X ,X 1.

100X,

Hence h(b) = 0. By MacLane's theorem (p.196), however, K and
kp—l are linearly disjoint over k. The monomials of degree
<d in bl,...,bn are liqearly independenflover k, hence

they must be linearly independent over kP also. This is

a contradiction.

(38.E) We defined formal smoothness (p.199) by the condition
of liftability (FS). If we further require that the lifting

v' of v is unique, then we say that A is formally etale over

k. Here we are mainly concerned with field extensions, so
that we consider only discrete topologies.

Let K/k be an extension of fields. If ch(K) = O,
then "formally smooth'" and ''separably algebraic" are the same
thing. If ch(K)= p, however, "formally etale" is weaker than
"separably algebraic". (Consider the case where both K and k
are perfect. Then K is formally etale over k.) In any case,
the following are easily seen to be equivalent:

(1) K is formally etale over k,

(2) K is smooth over k and QK/k = 0,

» 8 QK =
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. 1 ~
(4) for any subfield k' of k, Qk/k‘® K Ql(lk"
(5) any derivation from k into a K-module M can be unique-

1y extended to a derivation K - M.

THEOREM 90. Let K be a separable extension field of a field
k, and let B be a differential basis of K/k. Then k(B) is

purely transcendental over k and K is formally etale over k(B).
Proof. Immediate from Th.87 and Th.89.
(38.F) Let (A,m,K) be a local ring and k be a subfield of

A such that K/k is formally etale. In this case we call k

a quasi-coefficient field of A.

THEOREM 91. Every local ring containing a field contains
quasi-coefficient fields. If k is a quasi-coefficient field
of a local ring A, then the completion A* of A contains a

unique coefficient field K containing k.

Proof. 1f (A,W,K) is a local ring and kO is a perfect field

(e.g. the prime field) contained in A, then let B be a differ-
ential basis of K over kO and choose a representative X, in

A for each bi € B. Since B is algebraically independent over

ko by Th.89, A contains the quotient field k' of ko[{xi}]’

and k' = k.(B). Then K is formally etale over k'. By the
0
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definition of formal etaleness, the identity map K > A/w
can be uniquely lifted to a homomorphism K - ljim A/Mwy= A*

over k', which proves the second half of the theorem.

One can define "quasi-coefficient rings" in the un-
equal characteristic case as follows: a subring I of a local
ring (A, w,K) with ch(K) = p is a quasi-coefficient ring of
Aif (1) 1 is a noetheriaﬂ local ring with rad(I) = pI, and
(2) K is formally etale over I/pI. One can prove that any
local ring of unequal characteristic has quasi-coefficient

rings. Cf. H.Matsumura, Nagoya Math. J. 68 (1977).

(38.G) Not much is known about p-bases for rings. If k is
a field of characteristic p and A is a reduced local ring
containing k, and if A has a p-basis over Ap, then A must be
regular by a theorem of Kunz which will be discussed later.
1f A is a regular local ring essentially of finite type over
k, then A has a p-basis over AP (cf. Kimura—-Niitsuma, to
appear in J. Japan Math. Soc.). The following interesting
conjecture of Kunz (1975) is still open in the general case.
Let R be a regular local ring of characteristic p

and S be a regular subring of R over which R is
finite. Does R have a p-basis over S ?

The answer is yes if p = 2 or 3 (proof is easy). If dim R

= 2 there is a geometric proof by Rudakov-Shafarevich (Izves-
tija Akad. Nauk SSSR, t.40, No.6, 1976).
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The following proposition is a converse of (38.4A) in

the case of noetherian local rings.

PROPOSITION. Let (R,mR) be a noetherian local ring of char-
acteristic p, and S be a subring of R containing RP such that
P = = |-

R is finite over S. Put mg mR(\S, K R/mR and K S/ms.

If @ is a free R-module with dx .,dxr (xi € R) as a

100"

s X form a p-basis of R over S.

R/S

basis, then Xpsee

Proof. First we consider the case QR/S = 0. Suppose K # K'.
Then, since K' > Kp, there would exist 0 # D € DerK,(K), and
composing it with the natural homomorphism R + K we would
have a derivation 0 # D ¢ DerS(R,K). Therefore K = K',i.e.,
R=S5+ me. Then R/(mSR + mRZ) =K + mR/(mSR + mﬁ), and
the right-hand side is a direct sum. Let P, de-ote the pro-
jection onto the second summand’. Then the composition R -+
R/(mSR + mé ) 52 mR/(msR + mﬁ ) 1is a derivation of R over
S, which must be zero. Therefore mR = mSR + mi , and by

NAK we have me = mSR. Therefore R = S + m R, hence R = S

S
by NAK.

In the general case put T = S[x .,xr]. If x

100" 120

X are not p-independent over S, take a reduced polynomial
f(Xl,...,Xr) € S[X] of lowest degree such that f(xl,...,xr)

= 0. Then Z(Bf/axi)dxi =0 in Q g’ contradiction. Thus

R/

RSN S SCHI. . S,

RIETIAT VSRS

PO A
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xl,...,xr is a p-basis of T over S and QT/S is a free T-
module with d basi =
X; as basis, so that QT/SQDTR QR/S' Then

QR/T = 0, and so R = T by what we have already seen.

Remark. In connection with the above proof, it is worthwhile
to note the following more general result of Berger and Kunz.
Let (R, m, K) be a local ring, S a subring of R, mw= mvn S,
k = 8/m. 1If K/k is separable then the following sequence
. 2
is exact: 0 > Mm/(MmR +
/( m) > QR/S@K > Ql(/k - 0,
If ch(R) = p then put m' = Anszp[S]. Then the following
2
sequence is exact: 0 >m/( M'R+ m
q /( > Qg ®K > Q> 0.

For the proof, cf. Berger-Kunz, Math. Z. 77 (1961).
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39. Cartier's Equality and Geometric Regularity

(39.4) Let kC K& L be fields. The kernel of the natural
i d is called

map QK/k.GDI‘ -+ QL/k is denoted by PL/K/k an

the module of imperfection for L/K/k. Thus we have the

following exact sequence:

> > - 0.
0> T * %u®t 2 /x @ /x

LEMMA., If KkECKECL'€L are fields, we have the following

exact sequence.

> > > . (424] L
0> Ty vk Bt T L/R/K TL/Lt 7k 2k

+ + 0.

MERCT, L/L'

Proof. Consider the following commutative diagram with

exact rows:
0
0~ TL'/K/k®L > QK/RQL + QL,/kQL +> QL,/KQL -
i I L |

> > > 0
0 - rL/K/k > QK/k®L S-z]_‘/k s-ZL/K

For simplicity we write 0+X>2Z>A~+B-~>0
Vouode e

0>Y>2->A">B">0
Applying the 'snake lemma' (cf. e.g. Bourbaki, Alg. Comm.,

Ch.1l) to the induced diagram

0 ~ z/X » A > B » O

S ! \

0 » z2/Y > A'> B'~> O
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we get the exact sequence 0 + Y/X + Ker f - Ker g > 0, which
shows the exactness of 0 > X +>Y > Ker f +B -+ B' » Coker g

+ 0. This is what we wanted.

(39.B) THEOREM 92 (Cartier's equality). Let L be a
finitely generated extension of a field K. Then

1:ar1kL QL/K = tr.deg‘.K L + rankL PL/K .

Proof. TIf L=2L'2K and if the theorem holds for L/L' and
for L'/K, then the validity of the theorem for L/K is an
immediate consequence of the lemma. On the other hand any
finitely generated extension is composed of simple extensions
of the foliowing types: (1) L = K(a) with o transcendental
over K, (2) L = K(a) with a separably algebraic over K, (3)

L = K(a), ch(R) = p, of = a ¢ K, o ¢ K. Therefore it suffices
to prove the theorem in each of these cases. Cases (1) and
(2) are easy; cf. p.190. In case (3) we have L = K[X]/(Xp—a),

and then QL = ( QK[X]QL )/ Lda = ( QK/ Kda)®L + Lda ,

do # 0. Since da # 0 in QK » we have rank FL/K = rank QL/K
= 1 and the theorem holds in this case also.
(39.0) THEOREM 93. Let (A, ,K) be a noetherian local

ring containing a field k. Then A is formally smooth over k

in the M -adic topology iff A is geometrically regular over k.
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Proof. The 'only if' part is known (28.N). In order to

28.N), that ch(k) = p.
prove the 'if' part we may assume, by (

cCco to Cor ()i |h.66 1t suf f] ces to sh()w that SZ K >
A rding . ] ®

-independent
0. @K is injective. Therefore let XyseeerX, be p
A

. ] L) 1y
elemerlts in k We will Stlow that dx 90 ,dX are linear

_—— k' = k(0,500

independent in QA§§K. over K. Put a; =X, ‘ 1
P_ weo,T F=x_)

¢ ). Then B = A@kk' = A[Tl,...,Tr] / (T1 X e

T

i imal
is a noetherian local ring. Let s and L denote its max

. . . .
d al and i T due p 9 - (o Sm
ide ts esi fleld respec tlvel Slfl e L iS Ooth

over the prime fleld the sequence 0 > wb/% > %@L > Q.,L > 0

2
K
is exact by Th.58. Similarly the sequence 0> m/m™ > QAﬁb
1s .

Q 0 1is exact Consider the following commutative
> > .
L

diagram: 0 /w/wz . QB®L . QL .o

wlT ¥ T o

0> (m/WH®L > 2OL > QOL > 0

s es
B the Snake 1ema we get an exact Sequence of L modul
y

0 > Ker Yy, > Ker w2-+ Ker ¢3 -+ Coker wl + Coker wz -+ Coker ¢3
1
i the
>0 Since A and B are regular by hypothesis and have

2
pry “2 = 43 = k mfm-"
same dimension, we have rank #/ dim A ran

< ©», Since L is finite
so that rank Ker wl = rank Coker wl

= nk Coker §, <«
algebraic over K we also have rank Ker w3 ra 3

he
i from these and from t
by Cartier's equality. It follows

= rank Coker y,< =,
above exact sequence that rank Ker wz 2
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On the other hand, we have Coker wz = QB/AQDL and QB

/AT
BAT, + ... + BT = B® by Th.58, hence rank Rer ¢, = r.

Putting J = (T; - xl,...,Ts - xr) we have the exact sequence

2
J/J3° > QA[Tl"”’Tr]sB = QA®B+ZBdTi-> QB+0.

It remains exact after tensoring with L over B, so Ker wz is
generated by dxl,...,dxr. Therefore dxl,...,dxr are linearly
independent in S?A®L over L, and a fortiori so in QA®K

over K. QED.

(This proof is due to G.Faltings, Arch. Math.30 (1978.)
40. Jacobian Criteria and Excellent Rings
(40.A) Let A be a ring and let XyseeorX € A, Dl,...,DS £

Der(A). We shall denote the Jacobian matrix (Dixj) by

J(xl,...,xr; Dl""’Ds)' If P is an ideal of A, we shall

write J(xl,...,xr; Dl,...,Ds)(P) for (Dixj mod P). When P

is a prime ideal containing the x's, the rank of the above

matrix depends on the ideal I = ZAxi rather than the elements

X, themselves, so we denote it by rank J(I; Dl""’Ds)(P)'
If A 1is a set of derivations of A we define rank J(I; A) (P)
to be the supremum of rank J(I; Dl""’Ds)(P) when {Dl""’Ds}
runs over the set of all finite subset of A.

When A is an integral domain with quotient field K

and M is an A-module, by rank M we understand rank, M®AK'
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THEOREM 94. Let (R,m) be a regular local ring, P be a prime
jdeal of height r and A be a subset of Der(R). Then:
i) rank J(P; 8)(m) £ rank J(P;A )(P) £ r,

ii) if rank J(fl,...,fr; D ,...,Dr)(1w) =r and f

1 1700
fr € P, then P = (fl""’fr) and R/P is regular.

Proof. 1) The first inequality is trivial, and the second
is a consequence of the fact that PRP is generated by r
elements. ii) The condition implies that the images of fi's
are linearly independent over R/mv in M#Mvz, hence the fi's

generate a prime ideal of height r. Our assertion follows.

THEOREM 95. Let R, P and A be as in the preceding theorem.
Then the following two conditions are equivalent:

(1) rank J(P;A)(P) = ht P,

(2) 1let Q be a prime jdeal contained in P, then RP/QRp

is regular iff rank J(Q;4)(P) = ht Q.

Proof. (1) is the special case Q = P of (2). Conversely,
suppose (1) holds. If rank J(Q;A)(P) = ht Q then RP/QRP is
regular by the preceding theorem., If RP/QRP is regular then

12" 1""’fr)RP = PRP’

= = = . k J(f.,...
(fl,...,fs)RP QR,, r = ht P, s ht Q. Then rank J( 1

there exists f .,fr € P such that (£

fr;A Y(P) = r, and so rank J(fl,...,fs; A) (P) = s.

i aem L

|
ii
}i
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(40.B) We shall say that a subfield k' of a field k is

cofinite if [k:k'] < =,

LEMMA 1. Let k& K be fields of characteristic p and let
F = {ka}aeI be a downwards-directed family of cofinite sub-
fields of K containing k. Then the following are equivalent:
(1) QKK = k&,
(2) The natural map QK/k > %i? QK/ka is injective.
(3) For every finite subset {ul,...,un} of K which is
p-independent over k, there exists ka € F over which this
set is p—independent.
(4) There exists a p-basis B of K over k such that for
each finite subset F of B there exists ka ¢ F over which F is

p—independent.

Proof. (2) & (3) is easy, and (3) = (4) is trivial.

(1) = (3): The proof of (30.C) Lemma 1 applies mutatis mutan-

dis. (4) =>(2): Let 0 # w € QK/k’ Then w = c,db, + ... +

1771

cndbn . bi €B, 0¢ c; € K, and if bl""’

over ka then the image of w in QK/ka is not 0. (3) =2(1):

bn are p-independent

Suppose a ¢ kKP. Then a is p—-independent over k, therefore

it is so over some ka, i.e. a ¢ kaKp.

LEMMA 2. Let k, K and F be as in lemma 1 and let L be a

finitely generated extension over K. If/;\ kaKp = kkP holds,
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P _ x1? holds al
then (;\kaL kL¥ holds also.

pProof. It suffices to check the 4 cases of (27.A). 1) If

= P, Py _
L = K(t) with t transcendental, then N kaLp = f\kaK (t")
ka(tp) = kLP is obvious. ii) If L is separably algebraic
over K then a p-basis of K over k is also a p-basis of L over

k, and we can use the criterion (4) of Lemma 1. 1ii) L =

= - + , d
K(t), tP = a e X, dK/ka = 0. Then QL/k QK/kol‘ Ldt, an
QL/k = Ql(/k @ L + Ldt. Therefore QL/k »> ]‘._1_3 QL/ka is

o o

injective. iv) L = K(t), tP = a €K, dK/ka # 0. Then QL/k
= 3 i '¢Ki ch that {a}¥YB' is
= (QK/kQIJ/LdK/ka + Ldt ; if B s su
a p-basis of K/k and a ¢ B', then {t}VYB' is a p-basis of
L/k. So if b ,...,b € B' and {a, bl,...,bm} is p-indep. in

1
K over ka’ then {t,bl,...,bm} is p-indep. in L over ka'

(40.C) Let k be a field of characteristic p, R = k[[Xl,...,
Xn]]’ P € Spec(R) and A = R/P. Let Yysee ooV, (r = dim A) be
a system of parameters of A and put B = k[[yl,...,yr]].

Then A is finite over B. Let k' be a cofinite subfield of k
and put C' = k'[[yg,...,yz]]. Since every derivation D €
Der(A) is continuous (in any ideal-adic topology), we have
Derk,(A) = DerC.(A), and A is finite over C'. Let L, K, K'
denote the quotient fields of A, B, C'. Then it is easy to

see that rank Derk.(A) = (L:K')p = rank QL/K" and similarly
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rank Derk,(B) = (K:K')p = rank QK/K" If E is a p-basis of
k over k' then E U{yl,...,yr} is a p-basis of B over C'.

Therefore rank QK/K' = dim A + (k:k')p, and in general we

have by Th.59

rank Derk,(A) = rank QL/K' 2 rank QK/K' = dim A + (k:k‘)p.

THEOREM 96. Let k, R and A be as above, and let F = {ka}ael
be a family of cofinite subfields of k, directed downwards,
such that r\ka = kP. Then there exists ka € F such that,
for every cofinite subfield k' of ka’ we have

rank Derk.(A) = dim A + (k:k')p.

Proof. If L = K then the theorem is obvious, so we will
prove the existence of o such that (L:K')p = (K:K')p for
k' ¢ ka by induction on (L:K). Suppose that our claim is
proved for every proper subfield L' of L containing K, and
let L' be maximal among such subfields. If L is separable
1 =

over L' then QL/K' QL'/K'QL and we are done. So we can
suppose L = L'(t), t°P = a g L'. Then a ¢ L'P. Put K, =

P P - 1P((v P Pyy _ P
ka((y1 RN )). Then N Ka k ((y1 sevesY, )) = K¥ by
P-229, hence N\ KaL'p = L'? by Lemma 2. Therefore there
exists a such that a ¢ KaL’p and such that (L':K')p = (K:K')p

1 A ] L 'p
for k' € ka' Then for k' € ka we have a ¢ X'L'Y, 1i.e. dL'/K'a
# 0, hence QL/K' = (QL./K.QDL)/LdL,/K,a + Ldt, and so

rank QL/K' = rank QL'/K' = rank QK/K"
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THEOREM 97 (Nagata). Let k be a field, R = k[[Xl,...,Xn]]

and P £ Spec(R). Then rank J(P; Der(R)) (P) ht P.

Proof. BHere we consider only the case ch(k) = p. The case

ch(k) = 0 is easier, and we will prove a much more general
result soomn.
Put A = R/P and r = dim A. By the preceding theorem
there exists a cofinite subfield k' of k such that
=r + (k:k") .
rank Derk,(A) r + ( )p
- ]
Put s = (k:k')p. If {ul,...,us} is a p-basis of k/k' then
P P
{ul,...,us,Xl,...,Xn} is a p-basis of R over k'[[X ,...,Xn]].
Let ¢ : R > A denote the natural map and put Xi = U oo Di
= ¢+3/%u, (1< i £ nts). Then Derk,(R,A) is a free A-module
1
1,...,1)n+s as a basis. Let now D be an
arbitrary element of Derk,(A), and put D(¢ui) =c, € A.

of rank n + s with D

Then D is induced by D = ZZ;Di € Derk,(R,A) in the sense that
<

De¢ = D. The derivation D is determined by ;g (1L £1 € nts),

and these must satisfy

n+s _

z c.,D.(f) =0 for all £ € P.

ii

i=1
Conversely, if E& satisfy these linear equations then D =
fEiD. induces a derivation of A over k'. Therefore r + s =

i

rank Derk.(A) =n + s — rank J(P; Derk.(R))(P), whence we get
rank J(P; Derk,(R))(P) =n -1 = ht P. Since rank J(P;Der(R))

(P) € ht P by Th.94, we are done.
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(40.D) Let (A,m) be a noetherian complete local ring con-
taining a field. Let k be a coefficient field of A and let
wm = (xl,...,xn). Putting R = k[[Xl,...,Xn]] we then have
A = R/I with some ideal I of R. Let p = P/I € Spec(A). If
Ap = RP/IRP is regular, then IRP = QRP for some Q ¢ Spec(R),
Q € P, and we have rank J(I; Der(R))(P) = ht Q = ht IRP by
Th.95 and Th.97. Put r = ht IRP and let fl,...,fr €I and
Dl""’Dr € Der(R) be such that det(Difj) ¢ P. Then IRP =
QRP = ZfiRP, hence there exists g € R - P such that IRg =
r = ] = 1

21 fiRg . Put h det(Difj). If P'/1 p' € Spec(A) is such
that hg ¢ P', then RP'/IRP' = Ap' is regular by Th.94 (note
that IRP' is generated by r elements). Thus Reg(A) contains
the open neighborhood {p' | EE ¢ p'} of p. Therefore Reg(A)

is open in Spec(A), and we have proved the Cor. on p.222.

(40.E) THEOREM 98. Let (A,m) be a noetherian local
domain containing . Let k be a quasi-coefficient field of
A, i.e. a subfield of A such that A/m is algebraic over k.

Then: rank Derk(A).é dim A.

Proof. We will prove that Derk(A) is isomorphic to a submodule

of An, where n = dim A. Take a system of parameters Xypeens

X of A. We claim that the map ¢: Derk(A) + A" defined by

¢(D) = (Dxl,...,Dxn) is injective. Suppose that D & Derk(A)

and Dx1 = L., = Dxn = 0. By continuity D is uniquely extended
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to the completion A*. Now A* is finite over the subring

i i . Let a € A. As an ele-
k[[xl,...,xn]], on which D vanishes
ment of A* it satisfies a polynomial relation f(a) = 0 with
ial
coefficients in k[[xl,...,xn]]. Choose such a polynom
L
£(T) of lowest degree. Then 0 = D(f(a)) = f'(a)Da and £ (a)

#0 gince Da € A and since the non-zero elements of A are

= D= 0.
not zero divisors in A%, we must have Da = 0. Thus

THEOREM 99. Let (R,#) be a regular local ring of dimension
n containing a field. Let R* be the completion of R and k
be a coefficient field of R¥* containing a quasi-coefficient

tem of parame-
field kO of R. Let X;,...rX, be a regular sys P

ies
ters of R. Then R* = k[[xl,...,xn]], a formal power seri
i *— le with the partial

ring over k, and Derk(R*) is a free R*-module

i he following
derivations 3/8x1,...,3/3xn_as a basis. Then the

conditions are all equivalent:

R);
(D B/BXi (1$i$n) map R into R, i.e. Blaxi £ Derko( )

R
(2) there exist Dl""’Dn e DerkO(R) and ayseeesdy £
such that Diaj = éij;
(3) there exist Dl""’Dn € DerkO(R) and agsecesdy € R
such that det(Diaj) ¢ m;

(€Y Derk (R) is a free R-module of rank n;
0
(5) rank DerkO(R) = n.
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(Remark. Since Derk (k) = 0 we have Derk (R) = Derk(R*)(\

0 0
Der(R). If we define Derk(R) by Derk(R*)r\Der(R) then Th.98
and Th.99 hold for any coefficient field k of R* and the

mention to quasi-coefficient field is superfluous.)

Proof. Let K and L denote the quotient fields of R and R*.
The implications (1) = (2) = (3) and (4) = (5) are trivial.

(3) = (4): Clearly Dl,..‘.,Dn are linearly independent over
R as well as over R*. So every D ¢ DerkO(R) can be written
as D = ZciDi with c, € L. Solving the equations Da, =

h|
ZCiDiaj , We get ¢, € R.

i
(5) 2 (1): Let Dl,...,Dn be linearly independent over R,
This means that there exists dyseee58 € R with det(Diaj) # 0.
Therefore D,,...,D are linearly independent over R* also.
1 n
Hence 8/8xi = Zj ciij with cij in L. Then Gik = Zj ciijxk,
therefore the matrix (cij) is the inverse of (Djxk) and so

Cij € K. Then (B/Bxi)(R) € K ~R* = R,

(40.F) We will say that (WJ) (= weak Jacobian condition)
holds in a regular ring R if rank J(P;Der(R))(P) = ht P for
every P ¢ Spec(R). The reasoning of (40.D) and Th.95 show
that, if A is a homomorphic image of a regular ring R in which
(WJ) holds, then Reg(A) is open in Spec(A). For the defini-
tion and the theory of the strong Jacobian condition sy,

we refer to our article 'Noetherian rings with many deriva-
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dedicated to E. Kolchin),
tions', in Contributions to Algebra (

d. by H. Bass et al., Academic Press, 1977.
ed. .

{men—
THEOREM 100. Let (R, M ,K) be a regular local ring of dime

jon n Contairllrlg a fleld k Of ChaIaCteIiStiC Oa ASSume ttlat
S

R) = n. Then:
(1) K is algebraic over k, and (2) rank Derk( )

i) (WJ) holds in R,

R/P) 1is
ii) if P € Spec(R) then every element of Derk( /P)

induced by an element of Derk(R),

iii) rank Derk(R/P) = dim R/P.
ntially the same as in Th.97.

Proof. The argument is esse
Prool

S ) I >
We use the notation of Th.99. Then there exists Dl’ »D

. R)
De! R axld X X ﬁ"’ SuCh that D X 6 'y and De T (
]:( ) ] L 1 € i j j ]’ k.

is. Put A= R/P
is a free R-module with Dl,....,Dn as a basis

¢ A d ot the [latural map. Tt\en Der (R,A) iS
and 1et . R > en e ]

De Der, (A)
a free A-module with ¢oDi (1¢isn) as a basis. If De "

=D . Then D = Z¢,D, €
let c; € R be such that ¢(ci) = D¢(xi) 191

D = De Uy yeoesl )
Der, (R) induces D in the sense that ¢eD = De¢p. Let ( 17+ 2%
k

] v t i”“ n € Der A iff
s . ( )
€ A - Then Zu i d) D Y. 1nduces a derl a .l

Tu,$(D,f) = 0 for all f € P. Thus
s } R)) (P).
rank Derk(A) = n - rank J(P; Derk(

.98, and the
The left-hand side is € dim A =10 — ht P by Th.98,

we have
right-hand side is > n ~ ht P by Th.94. Therefore

i) and iii).

i et
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THEOREM 101. Let R be a regular ring containing Q. If (WJ)

holds in R, then R is excellent.

Proof. Since R is Cohen-Macaulay it is universally catenary.
We have already remarked that (WJ) implies the openness of
Reg(R/P) in Spec(R/P) for every P € Spec(R), and as R contains
Q this proves that R is J-2 by Th.73(3), p.246. To prove that
R is a G-ring we can assume that R is a regular local ring,
and we have to show that the formal fibres of R are regular.
Let P be a prime ideal of the completion R* and put p = PNR.
Let r = ht p. Then there exist D ’Dr € Der(R) such that

10"

rank J(p; Dl,...,Dr)(p) = r., We can extend the derivations
Di to R* and view the matrix J(p; Dl,...,Dr)(p) as J(pR¥*;
Dl""’Dr)(P)' On the other hand, we have ht pR* = ht p = r

by (13.B). Therefore R*P/pR*P is regular, Q.E.D.

THEOREM 102. Let k be a field of characteristic 0, and R be
a regular ring containing k. Suppose that (1) for any maxi-
mal ideal 4 of R, the residue field R/m is algebraic over

k and ht M = n, and (2) there exist Dl,...,Dn £ Derk(R) and

KyseresX € R such that Dixj = Gij' Then R is excellent.

Proof. By Th,100 it is clear that (WJ) holds in R. Q.E.D.

Remark. Convergent power series rings over R or C, formal
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powe! Series rl“.gs over a fleld k of charaCCEIlstic 0, a'nd

R 4
more generally the rings of type k[Xl,...,Xn][[Yl, s m]]

here k is a field of char. 0, are examples of regular rings
W

i i over
to which the theorem applies. Formal power series rings

s.
a convergent power series ring also belong to the clas

On the other hand there are excellent regular rings containing
R) = 0.
a coefficient field k of char. 0, such that Derk( )

p let £(X) be a formal
: k be a field of char.0 and
Example: Let

i 1
power series such that £(X), £'(X) and X are algebraically

independent over k (e.g. f = exp(exp(X))_will do). Let f =
Eaixi, a € k, and put y. = Z§=i anJ—i {4 =0,1,2,...). Then
Yo = f(X) and vy =y + Xyi+l' Put R = k[X,yO,yl,...]. Then
R/XR = k, so that XR is a prime ideal. Put A = Ryp. Since
A is a subring of k([[X]] it is X-adically separated, so it

is a regular local ring of diﬁension 1 and ch(A) = 0, hence

f
A is excellent. Its completion A* is k[[X]]) and d/dX maps
i . By Th.99 we
to £f' which 1s not in k(X, yo), hence not in A y

see that Derk(A) =0,

THEOREM 103. Let R be a regular ring. If (WJ) holds in

llent.
R[Xl,...,Xn] for every n»0, then R is exce

i B
Proof. The condition implies that Reg(B) is open in Spec(B)

. that R is J-2.
for every finitely generated R-algebra B, i.e. tha

R e S e e

PP S S 200 R s

s

s

KRULL RINGS AMD MAROT'S THECREM 293

To prove that R is a G-ring we may assume that R is local,
and we have to prove that the formal fibres are geometrically
regular. By (33.E) Lemma 3, it suffices to prove that, if

C is a localization of a finite R-algebra which is a domain,
and if Q is a prime ideal of C* such that QnC = (0), then
C*Q is regular. Now C is a homomorphic image of a localiza-

tion of some R[Xl,...,xn],,and our assertion is proved by the

same argument as in the proof of Th.101.

Remark. It is easy to see that, if R contains Q, then (WJ)
in R implies (WJ) in R[X]. But this 1is not so in the case of

characteristic p. 1In fact, the ring A of (34.B) is a counter-

example.

41. Krull Rings and Marot’s Theorem

(41.A) Let A be an integral domain and put P = {p € Spec A |
ht p = 1}. We call A a Krull ring if
@) Ap is a principal wvaluation ring for all p € P, and
(2) every non-zero principal ideal aA is the intersection
of a finite number of primary ideals of height 1.
A normal noetherian domain is a Krull ring by Th.37 and Th.38.
We will give a sufficient condition for the converse to hold.

First we list a few elementary properties of Krull rings.

Let A be a Krull ring with quotient field K.

I) Let a,b e A, a #0, x = b/a. By (2) we have
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ah = er\---r\qr, q; = aApin.A, o, € P. Therefore x € A

& beq for all 1 & be aAp for allpe P & x¢€ Ap for

all p € P. Hence A= (A . Moreover, if 0 # x €K,

P
p €P
then x is a unit in Ap for all but a finite number of p ¢ P.

1I) By (1) each primary ideal ¢ of height 1 is a symbolic
power of its radical. Therefore every principal ideal aA # 0

is of the form (nl) (nr)
ah = p; N NP » P; € P .

111) If p e P, let vp( ) denote the normalized valuation

associated to A (i.e., if pA_ =t A then v (x) = n means
p P = Tpp p

xAp = t;Ap ). Then for each 0 # x € K there exists at most a

finite number of p € P with v (x) # 0. 1If a € A we can write
(vp(a))
aA = /A\p .

1V) If dim A = 1 then A is noetherian. Indeed, let I be
an ideal. If I # (0) pick a € 1, a # 0. It suffices to
prove that I/aA is a finite module. Writing aA as in II),

(n,) (n)

we can embed A/aA in A/p, ®...®A/p, . But ifpeP
then p is maximal and A/p(n) ijs a module of finite length.
This proves our assertion. An integral domain in which
every non-zero ideal is uniquely represented as the product
of a finite number of prime ideals is called a Dedekind do-
main. It is well known thaf an integral domain is Dedekind

iff it is normal, noetherian and of dimension & 1. Therefore

Krull domains of dimension & 1 are nothing but Dedekind

domains.
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V) Suppose we are given Pys-sesh_ € P and €1se.ese € Z
r .
Then there exists x ¢ K satisfying

v (x) =e

pi i (1£ign), vp(x) # 0 for all other pe P,

Proof. (2)
roo Take Yy € Py - (pl Y pzhl...\lpr). Then vi(yl) =

ij
Put P' = P - o
{pli )pr}- There

<4 .
511 (1€ig€r). Similarly, take yj € A such that v (y,) = &

r e 1 j
(1£i€r) and put y = I'[yii

exists at most a finite number of p ¢ P' such that vp(y) <0 :

denote th ' !
em by pl,...,ps. Take t, € p! - (p,v ..~p.) for
J J 1 r
1<ig = n .
j<s, and put x y(tl-..ts) with n sufficiently large.

Then x satisfies our requirement.

(41.B) THEOREM 104 (Y.Mori - J.Nishimura). Let A be a
Krull ring and P be as before. If A/p is noetherian for

every p € P, then A is noetherian.

Proof. We will prove that A/p(n) is noetherian (as a ring,
or what is the same, as an A-module) for every p € P and for
every n > 0. Since a finite sum of noetherian modules is
again noetherian, and since any submodule of a noetherian
module is noetherian by definition, it then follows that A
is noetherian as in the proof of 1IV).

Using V) for e, = -1 we can find x € 9A such that
vp(x> =1, vq(x) £ 0 for all g e P - {p}. Put B = A[x].

I ' -
fyep then y/x € A, hence P & xBnA. Conversely, since
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Bc A and xB & pAp we have p 2 xBnA. Therefore p = XBn A,
- P

n+l
and B = A + xB, hence B/xB = A/p. Since x B/x B

~ B/xB
for all m, it is clear that B/an is noetherian for all n.
But XBNA € x"A_NA = p(n) and B/an is generated by the
images of 1,x,...,xn—l over A/(an/\A). By Eakin's theorem
A/(an/\A) is a noetherian ring, of which A/p(n) is a homo—
morphic image. Therefore A/p(n) is noetherian, as wanted.
MORI-NAGATA INTEGRAL CLOSURE THEOREM. Let A be a noetherian
domain with quotient field X, and L be a finite algebraic
extension of K. Then the integral closure A' of Ain L is
a Krull ring. If P' € Spec A' and P = P'nA, then [x®"):

k(P)] <». IfPE Spec A, there exists only a finite number

of prime ideals of A' lying over P.

For the proof we refer to Nagata, Local Rings or to
Fossum, The Divisor Class Group of a Krull Domain. (In fact
they consider the case 1L = K, but the general case is easily
reduced to this case by enlarging A a little.) They use the
structure theorem of complete local rings. Recently, J. Ni-
shimura (J. Math. Kyoto Univ. 16(1976)) and J. Querré (C.R.
Acad. Sci. Paris 285(1977)) gave different proofs of the first

assertion which do not use the structure theorem.

A e AR . R e K
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(41.C) THEOREM OF KRULL-AKIZUKI. If dim A =1 in the
preceding theorem, every ring between L and A is noetherian.

For the proof see Bourbaki, Algdbre Commutative, Ch.7
or Matijevic, Maximal ideal transforms of noetherian rings,
Proc. AMS 54 (1976).

THEOREM 105, 1If dim A = 2 in the Mori-Nagata theorem, then

A' is noetherian.

Proof. Let P' be a prime ideal of height 1 in A'. Then
A'/P' is integral over A/P, where P = P'nA, [k(P'"):k(P)] is
finite and dim A/P = 1, Therefore A'/P' is noetherian by the

Krull-Akizuki theorem, hence A' is noetherian by Th.104.

(41.D) THEOREM 106 (J. Marot). Let A be a noetherian
ring and T an ideal of A. Suppose that A is complete and
separated in the I-adic topology and that A/I is a Nagata

ring. Then A is a Nagata ring.

Proof. We have to prove that A/p is N-2 for all p e Spec(A).
Assume the contrary. Then there exists a maximal element

py in {p |A/p is not N-2}. The hypotheses on A are inherited
by all homomorphic images of A (note that I & rad(A)). Replac-
ing A by A/pO s we may therefore assume that A is a noetherian
domain, that A/p is N-2 if (0) # p € Spec(A) and that A is

not N-2 (hence I # (0)). Let K be the quotient field of A,
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1 be a finite algebraic extension of K and B be the integral 42. Kunz’ Theorems

closure of A in L. If (0) # P ¢ Spec(B) and PrA = p, then (42.8) Let A be a ring, X;,+--»%X €A and T = Ix,A. The

p # (0) and {k(P):k(p)] < ». Therefore B/P is finite over elements x, are said to be independent if fa,x, = 0 implies

A/p by the N-2 property of A/p, and so B/P is noetherian. all a, € I, or equivalently, if I/I2 is a free A/I-module of

Therefore B is noetherian by Th.104. Let R be the radical rank .

of IB and let R = Plf\ ...NP be its prime decomposition.
r This definition is due to C.Lech, Inequalities related to
Put p, = P.AA. Then p, 21 # (0), hence A/Pi is N-2 and certain couples of local rings, Acta Math. 112 (1964). If
1 1

XpseeesX form an A-regular sequence then they are independ-

. . d
B/Pi is finite over A/pi for all 1. Since B/R can be embedde ent. When A is a regular local ring the converse is also

. true. More precisely, we have the following theorem of Vas-—
in B/P1 e...8 B/Pr and since A is noetherian, B/R is a concelos: ¢
. n, n+l . Let R be a noetherian local ring and I be a proper
finite A-module. Since B is noetherian, R /R is a finite g p g

ideal with finite projective dimension. If I/I
. is free over R/I, then I is generated by an R-
module over B/R, hence also over A, for all n. Using the sequence. ? g y
n, ntl n+l n ‘ For the proof, see W. Vasconcelos, Ideals generated by R-
exact sequence 0 + R'/R > B/R + B/R" > 0 we see sequences, J. Algebra 6 (1967) or I.Kaplansky, Commutative

n Ri Th.199.
inductively that B/R" is finite over A for all n. Since R ngs,

The following two lemmas are due to Lech.
€ IB for n sufficiently large, B/IB is also finite over A.

Since B is noetherian and IB & rad(B), B is separated in the

+ X

LEMMA 1. If YZ,XyseeoyX  are independent, then VoXgseeesX

I-adic topology. Therefore B is finite over A by Lemma of

are also independent.
p.212. This proves that A is N-2, contrary to our assumption.

Proof. Let ay + a)x, + ... + ax = 0, a, € A, Then

a,yz + a,¥%, + ...+ a yx = 0, therefore a) € (yz,xz,..,xn).
. = 2

Write a, byz + C, %, + ...+ c X - Then by“z + (c2y+az)x2

+ ... + (cny + an)xn = 0, hence ¢y + a; € (yz,xz,...,xn)

and so a; € (y,xz,...,xn).
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LEMMA 2. If fl""’fn are independent, if Q(A/(fl,...,fn))

is finite and if fl = gh, then

RAI(E - e £ )

Proof. If ag = blfl + ... + bnfn’ then a - b

and so a € (h,fz,...,fn). Hence

b€ (fl,...,fn)

(g’fz""’fn)/(fl’fz""’fn) o~ A/(h,fz,...,fn).

LEMMA 3. Let (A, m,k) be a local ring and vy > 0 be integers.

Vv AY
If m= (xl,...,xn) and if X1 ,...,xnn are independent, then
AY AY)
1 n
IL(A/(x1 s omees X ) = VyeeeV

Proof. This is a corollary of the preceding lemmas.

(42.B) Let p be a prime number and q = ps, s >0, IfAis
a ring of characteristic p,‘then the map F: A > A defined
by F(x) = 3 is a homomorphism called the (q-th) Frobenius
map. Its image F(A) is written Aq. (Do not confuse it with
the free module of rank q, which will not appear in this
section.) If A is reduced then A > Aq, and F can be identi-

fied with the inclusion map A%¢, A.

THEOREM 107 (E. Kunz). Let A be a noetherian local ring of

characteristic p. Then the following are equivalent:

BCA/(8yEy, e esf)) + R(A/ (R, Epyennsf ).
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(1) A is regular,

(2) A is reduced, and A is flat over A for q = ps for
every s > 0,

(3) A is reduced, and A is flat over A% for q = ps for

at least one s > 0.

Proof. (1) =>(2): Let A* be the completion of A. Then

R S

T T

A —————E——_; A

is commutative, where F is x - x3. The map F: A > A is
flat if its completion F: A* » A* is flat. So we may assume
that A is complete. Then A has a coefficient field k and we
may assume that A = k[[Xl,...,Xn]]. In general if k'C k
is a field extension then the natural map k'[Yl,...,Yn] -
k[Yl""’Yn] is flat, and by localization and completion
(Th.49 guarantees that flatness of a local homomorphism of
noetherian local rings is preserved by completion) we see
that k'[[Yl,...,Yn]] +—k[[Y1,...,Yn]] is flat. Therefore
AP = kP[[xlp,...,xnp]] > k[[xlp,...,xhp]] is flat, and A is
free over k[[X p,...,th]]. Hence A is flat over AP.

(3) = (1): Put A% = B and 1let m , » denote the maximal

ideals of A, B. Let {xl,...,xr} be a minimal basis of .

Since A = B by F, {xlq,...,xrq} is a minimal basis of M,
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Put A = I. Since A is flat over B we have
2 2 _ 2, _ 2
(m/ ) @BA = (M/QBA)/(M QBA) = MA/MTA = T/17,
and (M/%Z)QBA is a free module of rank r over A/I.

q

Therefore x q <X are independent in A in the sense of

1000
Lech. By Lemma 3 we have
r

P, (8l %k M) = g, a8, x D) = o
The completion A* has a coefficient field k, and we can
write A* = k[[x;,...,x 1] = k[[Xy,...,X ]]/0L. Putting R =

b4 ,

k[[X},--.,X 1] we have zR(R/(xlq,...,xrq)) = q%, which

means oL ¢ (X q,...,qu). Since F : A% > A is flat, and

F i
AY ————

S

ad ———-li——ﬁb Al
2 2 2
is commutative, AY > A% ig also flat and F*: AY > A 1s
v

flat. Similarly, F’: A9 5 A is flat for all v > 0. Then

vV V
o cC (\(qu ,...,qu ) = (0), hence A%* is regular and so A
v

is regular.
THEOREM 108 (E. Kunz). Let A be a noetherian ring of charac- ‘
teristic p. If A is finite over AP then A is excellent.

Proof. First we note that the finiteness of A over Ap is

preserved by localization, by taking homomorphic image and
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by ring extension of finite type.

To prove that A is J-2, it therefore suffices to show
that Reg(A) is open in Spec(A) under the additional assumption
that A is an integral domain. Let B = A?, P € Spec(A).
Then P € Reg(A) iff A = A®BBp 1s flat over (AP)p =B,
where p = PnB. Since A 'is finite over B, P € Reg(A) is

equivalent to PAB € { p € Spec(B)| A = A®, Bp is free

P
over Bp}' Since the latter set is open in Spec(B) and since
the map P > PnB 1is a homeomorphism from Spec(A) onto
Spec(B), Reg(A) is open in Spec(A).

To prove that A is a G-ring we use the criterion of
(33.E). We may assume that A is a local domain, and we have
to show that if Q is a prime ideal of the completion A* such
that QAA = (0), then (A*)Q is regular. Let K be the quo-
tient field of A, B = AP and q = QAB. Then A* = A@B* |

and (A%*)_ 1is a local ring of K ® A* = K®_B* = K @ B*,
Q A B XP

Since KP 1s a field it is easy to see that (A*)Q is free
over its p-th power (B*)q. Hence (A*)Q is regular.
Lastly we will show that A is universally catenary.

Again it is enough to show that A is catenary under the

additional assumption that A is a local domain. This will

be done in a series of lemmas.
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LEMMA 4. Let A be a noetherian local ring of characteristic
p such that A is finite over Ap, and let A* denote its com-
pletion. Then A* is finite over (A*)p, and we have (A*)p =

P * = x
(A")*. Moreover, QA* QA®AA .

ggggi. Put B = AP. Since A is finite over B, B is a subspace
of A and B¥* is a subring of A*. The topology of A is equal

to the topology as a B-module, hence A* = A QBB* and so A%

is finite over B*. The Frobenius map F: A > B is a surjective
homomorphism, hence its completion F*: A* + B* is also sur-
jective. It coincides with the p-th power map on A, hence

on the whole A* by continuity, Thus (A*)P = B*, Since QA =
QA/B’ we have QA/B ®AA* = QA/BQBB* =Q

A ®,B*/B* = Qpx/px
=Q

A%”
LEMMA 5. Let A be as above and assume that A is an integral

domain. Then A* is reduced.

Proof. Let F: A > A be the Frobenius map. Since A is re-
duced, F is injective. The completion map F*: A* > A* is
also injective, but F* is the Frobenius map of A*. Hence A*

is reduced.

LEMMA 6. Let A be as in Lemma 5, and let K, k denote the

quotient field and the residue field of A, respectively.
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Then rank QK = rank Qk + dim A.

Proof. Let P be a minimal prime of A*, and put L = (A*)P.
Then L is a field by the preceding lemma. We have

O = B ®pal = {041 = (2, 0,0 8,L ,
hence rank QL = rank QK. Therefore we may replace A by
A*/P and assume that A is a complete local domain. Then A
contains a coefficient field k. Let SSERLETE N (n = dim A)
be a system of parameters of A, and put A' = k[[xl,...,xn]].
Then A is finite over A' and if K' is the quotient field of
A' we have rank QK = rank QK' by Cartier's equality (or
directly: [K:K'p]= [K:Kp][Kp:K'p] = [K:K'][K':K'p], and
[K:K'] = th:K'p] by the Frobenius isomorphism, hence
[K:Kp] = [K':K'p].) Therefore we may replace A by the formal
power series ring A' = k[[xl,...,xn]]. If {al,...,as} is a
p-basis of k then {al,...,as,xl,...,xn} is a p-basis of A'.

Hence rank QK = 8 + n = rank Qk + dim A.

LEMMA 7. Let A be as in Lemma 4, and let P, Q € Spec(A),
P 2Q. Put rank QK(P) = §(P). Then ht(P/Q) = §(P) - S(Q).

Consequently, A is catenary.

Proof. Put R = AP/QAP' Then &(Q) and 8(P) are the quotient

field and the residue field of R, respectively, and dim R =

ht(P/Q). Thus the desired equality is nothing but the pre-
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ceding lemma (applied to R). If P DP'DQ, P' € Spec(A),
then the result just obtained shows ht(P/P') + ht(P'/Q) =

ht(P/Q). Hence A is catenary.

43. Complement

Grothendieck (EGA O,y 19.7.1) proved the following
important theorem:
(*) Let (A,m,k) and (B,#,k') be noetherian local rings
and ¢: A > B be a local homomorphism. Then
¢ is formally smooth 4> B®k is formally smooth
over k, and ¢ is flat.
The most difficult part is the proof of flatmess from formal
smoothness. His proof is quite interesting but too long to
include in this book.
Let A be a ring, B an A-algebra and L a B-module.
The set of isomorphism classes of extensions of B by L (§25)
has a natural structure of A-module, which was denoted by
ExalcomA(B, L) in EGA. The algebra B is smooth over A iff
this module is zero for all B-modules L. When A and B are
topological rings Grothendieck defined a variant of the above
module, called ExalcomtopA(B,L); B is formally smooth over A
iff this last module vanishes for all L.
The functor ExalcomA(B,L) has certain formal proper-

ties, which make it a l-dimensional cohomology functor in some
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sense. So several poeple tried to comstruct the higher co-
homologies that should follow it, After the partial success
of Gerstenhaber, Harrison and others, Michel André succeeded
in constructing a satisfactory theory (Méthode simpliciale
.., Springer LN 32 (1967); Homologie des algébres commuta-

tives, Springer, 1974). Let A, B and L be as above. He de-
fines homology modules Hn(A,B,L) and cohomology modules
E°(A,B,L) for all n % 0. We have Hy(A,B,1) = @, ®.L,
HO(A,B,L) = DerA(B,L) and Hl(A,B,L) = ExalcomA(B,L). When
A >B + C 1is a sequence of ring homomorphisms and M is a
C-module, we have the following long exact sequences called
Jacobi~-Zariski sequences:

oee +—Hn(A,B,M) - Hn(A,C,M) > Hn(B,C,M)

> Hn-l(A’B’M) > .. > HO(B,C,M) -+ 0,

and 0 + HO(B,C,M) » ... > 1% Lea,B,m)

> H(B,C,M) > H'(A,C,M) » H'(A,B,M) ~» ... .
Let J be an ideal of B. The A-module B with J-adic topology
is formally smooth iff Hl(A,B,W) = 0 for all B/J-module W.
A noetherian local ring A is excellent iff Hn(A,A*,W) =0
for all n > 0 and for every A*-module W. |

André's homology and cohomology are connected with
formal smoothness at n = 1, with regularity at n = 2 and
with complete intersection at n = 3 (and up). The theorem

(*) cited above is proved rather naturally in André's theory.
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A noetherian local ring A is called a complete inter-

section (CI for short) if its completion A* is of the form
R/1, where R is a regular local ring and I is an ideal gene-
rated by an R-sequence. This is characterized by H3(A,K,K)

= 0, where K 1s the residue field. Using this criterion it
is easy to see that if A is CI and P € Spec(A), then AP is

CI also. L.L.Avramov (Dokl. Akad. Nauk SSSR 225(1975):; Sovi-
et Math. Dokl. 16(1975), 1413-1417) proved the following
theorem using Andre's theory: Let (A,#W) and B be noetherian
local rings and f: A > B be a flat local homomorphism. Then

) B is CI => A is CI,

A and B/m3B are CI = B is CI.
André (Localisation de la lissité formelle, Manuscripta Math.
13 (1974), 297-307) proved the following useful theorem:

(:) Let f: A> B be a local homomorphism of noetherian
local rings. If f is formally smooth and A is excel-
lent, then f is regular.

The question (B) on p.260 was recently solved by C. Rotthaus

in the case A is semi-local (to appear in Nagoya Math. J.).
André's theorem (;) plays an important role in her proof. In
the general case even the problem (A) is open, but when A is an
algebra of finite type over a field Problem (A') was solved

by P. Valabrega (J. Math. Kyoto Univ. 15(1975), 387-395).

Later he generalized his result to the case where k is a
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l-dimensional excellent domain of characteristic 0. (Nagoya
Math. J. 61 (1976)).

L.J.Ratliff (Catenary rings and the altitude formula,
Amer. J. Math. 94(1972)) proved the following beautiful theo-
rem: A noetherian local domain A is catenary iff ht P +
dim R/P = dim R holds for every P € Spec(R).
He has also characterized pniversally catenary rings in many
different ways. (Cf. his Springer LN 647 for references and
for the definitions of his terminology.)

For excellent rings and Nagata rings, see also
S. Greco, Two theorems on excellent rings, Nagoya Math. J.60
(1976), and many articles by K. Langmann (in German Journals)
and by H. Seydi (mostly in C.R. Acad. Sci. Paris). We also note

that R.Y. Sharp defined acceptable rings by replacing 'regular"

by "Gorenstein'" throughout the definition of excellent rings.
(Acceptable rings and homomorphic images of Gorenstein rings,
J. Algebra 44(1977), 246-261).

Finally, in connection with our Ch.6 we list a few

important recent works:

Northcott, Finite Free Resolutions, Cambridge Tracts 71,
Cambridge Univ. Press, 1976.

Peskine-Szpiro, Dimension projective finie et cohomologie
locale, Publ. IHES 42 (1973), 47-119.

Hochster, Topics in the homological theory of modules over

commutative rings, Regional conference series 24, AMS
1975.
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