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Preface

Basic philosophy

Algebra, as we know it today, consists of many different ideas, concepts and results.
A reasonable estimate of the number of these different “items” would be somewhere
between 50000 and 200000. Many of these have been named and many more could
(and perhaps should) have a “name” or a convenient designation. Even the nonspecialist
is likely to encounter most of these, either somewhere in the literature, disguised as a
definition or a theorem or to hear about them and feel the need for more information.
If this happens, one should be able to find at least something in this Handbook and
hopefully enough to judge if it is worthwhile to pursue the quest. In addition to the
primary information, references to relevant articles, books or lecture notes should help
the reader to complete his understanding. To make this possible, we have provided an
index which is more extensive than usual and not limited to definitions, theorems and
the like.

For the purpose of this Handbook, algebra has been defined, more or less arbitrarily
as the union of the following areas of the Mathematics Subject Classification Scheme:

— 20 (Group theory)

— 19 (K -theory; will be treated at an intermediate level; a separate Handbook of K-
theory which goes into far more detail than the section planned for this Handbook
of Algebra is under consideration)

— 18 (Category theory and homological algebra; including some of the uses of cate-
gories in computer science, often classified somewhere in section 68)

— 17 (Nonassociative rings and algebras; especially Lie algebras)

— 16 (Associative rings and algebras)

— 15 (Linear and multilinear algebra, Matrix theory)

- 13 (Commutative rings and algebras; here there is a fine line to tread between
commutative algebras and algebraic geometry; algebraic geometry is not a topic
that will be dealt with in this Handbook; a separate Handbook on that topic is
under consideration)

— 12 (Field theory and polynomials)

— 11 (As far as it used to be classified under old 12 (Algebraic number theory))

— 08 (General algebraic systems)

— 06 (Certain parts; but not topics specific to Boolean algebras as there is a separate
three-volume Handbook of Boolean Algebras)
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Planning

Originally, we hoped to cover the whole field in a systematic way. Volume 1 would
be devoted to what we now call Section 1 (see below), Volume 2 to Section 2 and
so on. A detailed and comprehensive plan was made in terms of topics which needed
to be covered and authors to be invited. That turned out to be an inefficient approach.
Different authors have different priorities and to wait for the last contribution to a volume,
as planned originally, would have resulted in long delays. Therefore, we have opted for
a dynamically evolving plan. This means that articles are published as they arrive and
that the reader will find in this first volume articles from three different sections. The
advantages of this scheme are two-fold: accepted articles will be published quickly and
the outline of the series can be allowed to evolve as the various volumes are published.
Suggestions from readers both as to topics to be covered and authors to be invited are
most welcome and will be taken into serious consideration.
The list of the sections now looks as follows:

Section 1: Linear algebra. Fields. Algebraic number theory

Section 2: Category theory. Homological and homotopical algebra. Methods from logic

Section 3: Commutative and associative rings and algebras

Section 4: Other algebraic structures. Nonassociative rings and algebras. Commutative
and associative rings and algebras with extra structure

Section 5: Groups and semigroups

Section 6: Representations and invariant theory

Section 7: Machine computation. Algorithms. Tables

Section 8: Applied algebra

Section 9: History of algebra

For a more detailed plan, the reader is reffered to the Outline of the Series following
the Preface.

The individual chapters

It is not the intention that the handbook as a whole can also be a substitute undergraduate
or even graduate, textbook. The treatment of the various topics will be much too dense
and professional for that. Basically, the level is graduate and up, and such material as
can be found in PM. Cohn’s three-volume textbook “Algebra” (Wiley) will, as a rule, be
assumed. An important function of the articles in this Handbook is to provide professional
mathematicians working in a different area with sufficient information on the topic in
question if and when it is needed.

Each chapter combines some of the features of both a graduate-level textbook and a
research-level survey. Not all of the ingredients mentioned below will be appropriate in
each case, but authors have been asked to include the following:

— Introduction (including motivation and historical remarks)
— Outline of the chapter

Preface vii

— Basic concepts, definitions, and results (proofs or ideas/sketches of the proofs are
given when space permits)

— Comments on the relevance of the results, relations to other results, and applications

— Review of the relevant literature; possibly supplemented with the opinion of the
author on recent developments and future directions

— Extensive bibliography (several hundred items will not be exceptional)

The future

Of course, ideally, a comprehensive series of books like this should be interactive and
have a hypertext structure to make finding material and navigation through it immediate
and intuitive. It should also incorporate the various algorithms in implemented form as
well as permit a certain amount of dialogue with the reader. Plans for such an interactive,
hypertext, CD-Rom-based version certainly exist but the realization is still a nontrivial
number of years in the future.

Bussum, September 1995 Michiel Hazewinkel

Kaum nennt man die Dinge beim richtigen Namen,
so verlieren sie ihren gefahrlichen Zauber

(You have but to know an object by its proper name
for it to lose its dangerous magic)

E. Canetti



Outline of the Series

Chapters which have a named author have been written and are ready for publication.
The numbers after the title indicate in which volume the chapter either will appear or has
appeared. Topics printed in italics already have an author commissioned, and are in the
process of being written. For topics printed in roman type no author has been contracted
as yet.

No definite plans have been made for Sections 7, 8 and 9 at this stage.

Section 1. Linear algebra. Fields. Algebraic number theory
A. Linear Algebra

G.P. Egorychev, Van der Waerden conjecture and applications (1)

V.L. Girko, Random matrices (1)

A.N. Malyshev, Matrix equations. Factorization of matrix polynomials (1)

L. Rodman, Matrix functions (1)

Linear inequalities (also involving matrices)

Orderings (partial and total) on vectors and matrices (including positive matrices)
Matrix equations. Factorization of matrices

Special kinds of matrices such as Toeplitz and Hankel

Integral matrices. Matrices over other rings and fields

B. Linear (In)dependence

J.P.S. Kung, Matroids (1)

C. Algebras Arising from Vector Spaces

Clifford algebras, related algebras, and applications

D. Fields, Galois Theory, and Algebraic Number Theory

(There is an article on ordered fields in Section 4)

J.K. Denevey and J.N. Mordeson, Higher derivation Galois theory of inseparable
field extensions (1)
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L.B. Fesenko, Complete discrete valuation fields. Abelian local class field
theories (1)

M. Jarden, Infinite Galois theory (1)

R. Lidl and H. Niederreiter, Finite fields and their applications (1)

W. Narkiewicz, Global class field theory (1)

H. van Tilborg, Finite fields and error correcting codes (1)

Skew fields and division rings. Brauer group

Topological and valued fields. Valuation theory

Zeta and L-functions of fields and related topics

Structure of Galois modules

Constructive Galois theory (realization of groups as Galois groups)

E. Nonabelian Class Field Theory and the Langlands Program

(To be arranged in several chapters by Y. Thara)

F. Generalizations of Fields and Related Objects

U. Hebisch and H.J. Weinert, Semi-rings and semi-fields (1)
G.F. Pilz, Near-rings and near-fields (1)

Section 2. Category theory. Homological and homotopical algebra. Methods from
logic

A. Category Theory

S. MacLane and 1. Moerdijk, Topos theory (1)
R.H. Street, Categorical structures (1)
Algebraic theories

Categories and databases

Categories in computer science (in general)

B. Homological Algebra. Cohomology. Cohomological Methods in Algebra. Homotopical
Algebra

J.F. Carlson, The cohomology of groups (1)

A.L Generalov, Relative homological algebra. Cohomology of categories, posets,
and coalgebras (1)

J.F. Jardine, Homotopy and homotopical algebra (1)

B. Keller, Derived categories and their uses (1)

A. Helemskii, Homology for the algebras of analysis (2)

Galois cohomology

Cohomology of commutative and associative algebras

Cohomology of Lie algebras

Cohomology of group schemes

Outline of the series xi
C. Algebraic K-theory

Grothendieck groups

K, and symbols

Algebraic K-theory of C*-algebras, EXT, etc.
Hilbert C*-modules

Index theory for elliptic operators over C*-algebras
Algebraic K-theory (including the higher K.)
Simplicial algebraic K-theory

Chern character in algebraic K-theory

K K -theory

Noncommutative differential geometry

K -theory of noncommutative rings

Algebraic L-theory

Cyclic cohomology

D. Logic versus Algebra

Methods of logic in algebra

Logical properties of fields and applications
Recursive algebras

Logical properties of Boolean algebras

E. Rings up to Homotopy

Rings up to homotopy

Section 3. Commutative and associative rings and algebras
A. Commutative Rings and Algebras

J.-P. Lafon, Ideals and modules (1)

General theory. Radicals, prime ideals etc. Local rings (general). Finiteness and
chain conditions

Extensions. Galois theory of rings

Modules with quadratic form

Finite commutative rings and algebras

Homological algebra and commutative rings. Ext, Tor, etc. Special properties (p.i.d.,
factorial, Gorenstein, Cohen—Macauley, Bezout, Fatou, Japanese, Excellent, Ore,
Priifer, Dedekind, ... and their interrelations)

Lifting (Hensel properties) and Artin approximation

Localization. Local-global theory

Rings associated to combinatorial and partial order structures (straightening laws,
Hodge algebras, shellability, ...)

Witt rings, real spectra
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B. Associative Rings and Algebras

P.M. Cohn, Polynomial and power series rings. Free algebras, firs and semifirs (1)

V.K. Kharchenko, Simple, prime, and semi-prime rings (1)

V.K. Kharchenko, Fixed rings and noncommutative invariant theory (2)

A.R.P. van den Essen, Algebraic microlocalization and modules with regular singu-
larities over filtered rings (1)

F. van Oystayen, Separable algebras (2)

K. Yamagata, Frobenius rings (1)

Classification of Artinian algebras and rings

General theory of associative rings and algebras

Rings of quotients. Noncommutative localization. Torsion theories

von Neumann regular rings

Lattices of submodules

PI rings

Generalized identities

Endomorphism rings, rings of linear transformations, matrix rings

Homological classification of (noncommutative) rings

Group rings and algebras

Dimension theory

Duality. Morita-duality

Groups acting on associative algebras. Noncommutative invariant theory

Commutants of differential operators

Rings of differential operators

Graded and filtered rings and modules (also commutative)

Goldie’s theo. »m, Noetherian rings and related rings

C. Co-algebras

Co-algebras and bi-algebras

D. Deformation Theory of Rings and Algebras (Including Lie Algebras)

Deformation theory of rings and algebras (general)
Deformation theory of Lie algebras

Section 4. Other algebraic structures. Nonassociative rings and algebras. Commu-
tative and associative rings and algebras with extra structure

A. Lattices and Partially Ordered Sets

Lattices and partially ordered sets
Frames and locales

QOutline of the series xiii
B. Boolean Algebras
C. Universal Algebra
D. Varieties of Algebras, Groups,

V.A. Artamanov, Varieties of algebras (2)
Varieties of groups :
Quasi-varieties

Varieties of semigroups

E. Lie Algebras

Yu.A. Bahturin, M.V. Zaitsev and A.A. Mikhailov, Infinite dimensional super Lie
algebras (2)

General structure theory. Free Lie algebras

Classification theory of semisimple Lie algebras over R and C

The exceptional Lie algebras

Nilpotent and solvable Lie algebras

Universal envelopping algebras

Modular (ss) Lie algebras (including classification)

Infinite dimensional Lie algebras (general)

Kac-Moody Lie algebras

F. Jordan Algebras (finite and infinite dimensional and including their cohomology the-
ory)

G. Other Nonassociative Algebras (Malcev, alternative, Lie admissible, ...)
H. Rings and Algebras with Additional Structure

Ordered and lattice-ordered groups, rings and algebras

A-rings, «y-rings, ...

Difference and differential algebra. Abstract (and p-adic) differential equations. Dif-
ferential extensions

Ordered fields

Graded and super algebras (commutative, associative and Lie)

Topological rings

Hopf algebras

Quantum groups

Formal groups

Rings and algebras with involution. C*-algebras

J. The Witt Vectors



xiv Outline of the series
Section 5. Groups and semigroups
A. Groups

Simple groups, sporadic groups

Abelian groups

“Additive” group theory

Abstract (finite) groups. Structure theory. Special subgroups. Extensions and decom-
positions

Solvable groups, nilpotent groups, p-groups

Infinite soluble groups

Word problems

Burnside problem

Combinatorial group theory

Free groups (including actions on trees)

Formations

Infinite groups. Local properties

Algebraic groups. The classical groups. Chevalley groups

Chevalley groups over rings

The infinite dimensional classical groups

Other groups of matrices. Discrete subgroups

Reflection groups. Coxeter groups

Groups with BN-pair, Tits buildings, ...

Groups and (finite combinatorial) geometry

Probabilistic techniques and results in group theory

B. Semigroups
Semigroup theory. Ideals, radicals, structure theory
Semigroups and automata theory and linguistics
C. Algebraic Formal Language Theory
D. Loops, Quasigroups, Heaps, ...
E. Combinatorial Group Theory and Topology
Section 6. Representations and invariant theory
A. Representations
A.U. Klimyk, Infinite dimensional representations of quantum algebras (2)
Representations of quantum groups

Representation theory of rings, groups, algebras (general)
Modular representation theory (general)

Outline of the series XV

Representation theory of finite groups in characteristic zero

Modular representation theory of finite groups. Blocks

Representation theory of the symmetric groups (both in characteristic zero and mod-
ular)

Representation theory of the finite Chevalley groups (both in characteristic zero and
modular)

Representation theory of the classical groups. Classical invariant theory

Classical and transcendental invariant theory

Finite dimensional representation theory of the ss Lie algebras (in characteristic zero);
structure theory of semi-simple Lie algebras

Infinite dimensional representation theory of ss Lie algebras. Verma modules

Representations of solvable and nilpotent Lie algebras. The Kirillov orbit method

Orbit method, Dixmier map, ... for ss Lie algebras

Modular representation theory of Lie algebras

Representation theory of Kac-Moody algebras

Representations of semigroups

Representations of rings and algebras by sections of sheafs

Representation theory of algebras (Quivers, Auslander-Reiten sequences, almost split
sequences, ...)

Invariants of nonlinear representations of Lie groups

B. Representations, Commutative Algebra and Combinatorics

C. Abstract Representation Theory

Section 7. Machine computation. Algorithms. Tables

Some notes on this volume: Besides some general article(s) on machine computation in
algebra, this volume should contain specific articles on the computational aspects of the
various larger topics occurring in the main volume, as well as the basic corresponding
tables. There should also be a general survey on the various available symbolic algebra
computation packages.

Section 8. Applied algebra

Section 9. History of algebra
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Van der Waerden conjecture and applications 5

Abstract

This chapter gives a proof and applications of the well known van der Waerden conjecture
about minimum permanents of a doubly stochastic matrix. The conjecture was proved in
the early 80s by G.P. Egorychev and the Kiev mathematician D.I. Falikman independently.

1. Basic notations and concepts

Some notation. per(A) is the permanent of a matrix A (for a definition see Section 2
below).

D(Ay,...,A,) is the mixed discriminant of the matrices A, ..., Ap.

V(Ki,...,Ky) is the mixed volume of convex compacts Kj, ..., K, in R™

2,, is the set of all doubly stochastic n x n matrices.

AF is the set of all (0, 1)-matrices of order n which have exactly k£ units in each row
and column.

P, Q are the permutation matrices of order n.

E; ; is the matrix having 1 at place (i,7) and all other elements equal to 0.

e is the n-row of which each element is 1.

aj,a; are the j-th column and the i-th row of the matrix A, respectively.

O, I, are the null and identity n x n matrices, respectively.

Jy, is the (n x n) matrix with each element equal to 1/n.

AT, A, A* are the transpose, adjoint and complex conjugate matrices to the matrix A,
respectively.

A(i/4) is the (n — 1) x (n — 1) matrix derived from A by deleting the i-th row and
the j-th column.

ry
is the matrix of order n derived from A by replacing the i-th column by the n-vector =
and the j-th column by the n-vector y.

Definitions. A matrix of order n with non-negative elements is called doubly stochastic
if eA = e, AeT = €T; a matrix A € £2,, is called minimizing if

Jnin per(X) = per(A).

Let A = (a;;) be a non-negative matrix of order n. The matrix A is called fully
indecomposable if it doesn’t contain a k x (n — k) null submatrix for k =1,...,n— 1.
The matrix A is called partially decomposable if it contains k x (n — k) null submatrix.
Matrix A is called nearly decomposable if it is fully indecomposable and such that for
each positive element of the matrix A the matrix A — a;;E;; is partially decomposable.
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2. Introduction: some words about permanents

The concept of the permanent was first introduced independently and practically simul-
taneously in the well known memoirs of J. Binet (1812) and A. Cauchy (1812). It was
at this time that Binet introduced the term “permanent”.

The permanent of a square n. x n matrix A is defined to be the sum

per(A) := Z Qio(1) " Ono(n), 2.n
g€Sn
where the sum is taken over all permutations of the set {1,...,n} or, which is the same,

over all diagonals of the matrix A.

The permanent as a matrix function has the following characteristic properties (Ego-
rychev, 1980): if f(A) is a complex-valued function of n x n-matrix A over the field C,
then f(A) = per A, iff:

(a) f(A) is a homogeneous polynomial of degree n. from the elements of the matrix A.

(b) f(A) is polyadditive and symmetric with respect to vector-rows and vector-columns
of matrix A.

© f(I) = 1.

For the last decade and a half the theory of permanents has been intensively develop-
ing, undergoing essential structural modifications. Among the most important achieve-
ments of this period are, in our opinion, the proof of the van der Waerden conjecture
on permanents (Egorychev, 1980, 1981; Falikman, 1981), the proof of the Tverberg con-
jecture on permanents (Friedland, 1982); remarkable results by V. Schevelev (1992) and
A. Kamenetsky (1990, 1991) concerned with the problem of calculation of the perma-
nents of cyclic matrices and, finally, the fundamental results by A. Razborov (1985) and
A. Andreev (1985) about lower estimates of complexity for the permanent of logical
matrices.

Many difficult problems of combinatorial analysis, graph theory, linear and polylinear

algebra, other areas of mathematics, statistical physics and physical chemistry can be .

stated and solved in terms of permanents. They basically make use of the major combi-
natorial properties of permanents of (0, 1)-matrices to count the number of systems of
different representatives (transversals) of sets.

It is common knowledge that det A can be computed in poly(n) time. On the other
hand, the fastest algorithm known for computing per A runs in n2"~! time (Wilf, 1968;
Ryser, 1963). Solid grounds for arguing that computing per A even for (0, 1)-matrices is
an inherently difficult problem were first provided by L. Valiant (1979) who showed that
the problem is P-complete. One implication of this result is that if P # NP then there
is no poly(n) time algorithm for computing per A.

From there rises the problem of the development of new fundamental algebraic, ge-
ometric, theoretical-functional and calculating ideas and methods of computation and
estimation of permanents for various classes of matrices. The celebrated van der Waer-
den conjecture giving a precise lower estimate for the permanents on the convex compact
set £2,, for a long time occupied a key position in this circle of questions. This problem,
in spite of many efforts, remained unresolved for over 50 years.
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3. Origin of the van der Waerden conjecture

Biographical data about van der Waerden were given by A.L. Borodin and A.S. Bugai
(1979, p. 95): )

“Barten Leendert van der Waerden is a Dutch mathematician. He was born in Am-
sterdam on February 2, 1903. He was a professor at the universities of Groningem,
Leipzig, Amsterdam, Ziirich and was involved in algebra, algebraic geometry, applica-
tions of methods of group theory to quantum theory and mathematical statistics (van der
Waerden criterion). His work also dealt with the history of mathematics and astronomy
in Ancient Egypt, Babylon and Greece. In 1959 his book “Science Awakening” was
translated into Russian. The book “Modern Algebra” (1930-1931) marked the culmina-
tion of the creative period in “abstract algebra” developed by his teachers E. Noether,
E. Steinitz and E. Artin. This book had major influence in the training of specialists
in algebra everywhere in the world, defining the character and partially the directions
of further research in algebra. An expanded and modernized version titled “Algebra”
was published in 1976. B.L. van der Waerden applied the modern algebraic apparatus
to strong justification of basic concepts in algebraic geometry. His book “Mathematical
Statistics” (1957) is also widely known.

Van Lint, a well-known Dutch mathematician, wrote (1982, p. 72-76) about the pre-
vious history of the van der Waerden conjecture:

“Much of the work on permanents is in some way connected to this conjecture and
about 75% of the work on permanents is less than 20 years old! ... In 1926 B.L. van der
Waerden proposed as a problem (!) to determine the minimal permanent among all doubly
stochastic matrices. It was natural to assume that this minimum is per J, = n!n=". Let
us denote by 2, the set of all doubly stochastic matrices. The assertion

(Ae 2, NA+#J,) = (perA > perJ,)

became known as the van der Waerden conjecture. Sometimes just showing that nln™"
is the minimal value is referred to as the conjecture.

“This note allows me to save for posterity a humorous experience of the late sixties.
Van der Waerden, retired by then, attended a meeting on combinatorics, a field he had
never worked in seriously. A young mathematician was desperate to present his thesis
in 20 minutes. I was sitting in the front row next to van der Waerden when the famous
conjecture was mentioned by the speaker and the alleged author inquired what this famous
conjecture stated!! The exasperated speaker spent a few seconds of his precious time to
explain and at the end of his talk wandered over to us to read the badge of the person
who had asked this inexcusable question. I could foresee what was to happen and yet,
I remember how he recoiled. You needn’t worry — he recovered and now is a famous
combinatorialist. The lesson for the reader is the following. If you did not know of the
“conjecture” then it is comforting to realize that it was 40 years old before van der
Waerden heard that it had this name.

“What is the origin of the problem? Upon my request van der Waerden went far back
in his memory and came up with the following. One day in 1926 during the discussion
that took place daily in Hamburg O. Schreier mentioned that G.A. Miller had proved that
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there is a mutual system of representatives for the right and left cosets of a subgroup H
of a finite group G. At this moment van der Waerden observed that this was a property
of any two partitions of a set of size un into u subsets of size n. This theorem was
published in “Hamburger Abhandlungen” in 1927. In the note, added in the proof, van
der Waerden acknowledged that he had rediscovered the theorem which is now known
as the Konig-Hall theorem. ..

“In the terminology of permanents we can formulate the problem Schreier and van
der Waerden were considering as follows. Let 4; (1 <4 < p) and By (1 < k < p) be
the subsets in two partitions and let as := |A; N Bg|. Then, A = (aik) is a matrix with
constant line sums (= n). The assertion that there is a mutual system of representatives
of the sets A; respectively of the sets By is the same as to say that per A > 0. At this
point van der Waerden wondered what the minimal permanent, under the side condition
that all line sums are 1, is? He posed this as a problem in Jber. d. D.M.V. 35 and thus
the van der Waerden conjecture was born.”

4. Summary of results

Most essential in proving the van der Waerden conjecture were the results obtained by
M. Marcus and M. Newman (1959). They show that:

(a) If A is a minimizing matrix, then per(A(i/j)) = per(A) for ¥i,j € {1,...,n},
where a; j > 0;

(b) If A is minimizing then it is fully indecomposable;

(c) The permanent has a strong local minimum at point Jns

() If all elements of the minimizing matrix are positive, then it is equal to J,,.

Using these results D. London (1971) proved that if A is a minimizing matrix, then
per(A(i/7)) > per(A) for all i,5 € {1,...,n}. In 1976 T. Bang announced and in 1979
T. Bang and S. Friedland proved lower bounds for the permanent on {2;,, which are
essentially of the same order as the bound of van der Waerden.

D. Kénig (1916) stated that the permanent of a doubly stochastic matrix A is always
positive; if A € AX, then per(A) > k. G. Frobenius (1917) proved that perA of a
non-negative matrix is equal to 0 if and only if A contains a null submatrix of order
k x (n—k+1). D. Kénig in his book (1936) devoted to graph theory and its applications
mentioned the van der Waerden problem as an unresolved one. Birkhoff in 1946 showed
that £2,, forms a convex polyhedron with the permutation matrices as vertices. This result
implies that per(A4) > 1/{(n — 1)* + 1)1 for all A € §2,. M. Marcus and H. Minc
improved this bound in 1962 to n™™", in 1974 O. Rothaus improved is to (n)~™", and
S. Friedland (1979) obtained the substantially better bound of 1/n!.

M. Marcus and M. Newman (1959) proved the validity of the van der Waerden conjec-
ture for n = 3; P. Eberlein and G. Mudholkar (1968) and A. Gleason (1970) proved it for
n = 4; P. Eberlein (1969) for n = 5. In 1962 M. Marcus and M. Newman proved the con-
jecture for positive semi-definite symmetric matrices, and D. Sasser with M. Slater (1967)
extended this theorem to normal matrices of a certain type. The last result was somewhat
improved by M. Marcus and H. Minc (1968) and extended to a larger class of matrices
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by S. Friedland (1974). (For other results related to the van der Waerden conjecture until
1977 see the comprehensive bibliography in the book by Minc (1978).)

A proof of the van der Waerden conjecture appeared in 1980-1981. In his article of
1981 D. Falikman, by a method different from that of G. Egorychev (1980, 1981), ob-
tained the answer to the van der Waerden’s question about the minimum of the permanent
on {2,,, but he didn’t prove the uniqueness statement of the conjecture. Another attempt
to prove this hypothesis was made by V. Reva (1981).

The proof of the Marcus-Newman and van der Waerden conjectures given here is
typical for the theory of mixed volumes. It is, on the one hand, connected with the inves-
tigation of the structure of the minimizing matrix based on the results of D. Konig (1916),
M. Marcus and M. Newman (1969), D. London (1971). On the other hand, this proof
uses geometric inequalities for the permanent as a mixed discriminant (mixed volume)
which are a particular case of the well-known Aleksandrov’s inequalities for mixed dis-
criminants (1937-1938). This interpretation of the permanent was used in the work of
Egorychev (1979-1980) dealing with obtaining a series of polynomial identities and
characteristic properties of permanents for plane and space matrices. The role of the
geometric inequalities in the theory of permanents was found to be identical to that of
Aleksandrov-Fenchel inequalities for mixed volumes, which allow the solving of many
important extremal problems and problems of uniqueness for convex bodies in R? (see
Buseman, 1960; Leichtweiss, 1980; Burago and Zalgaller, 1990; Mitrinovic, Petari¢ and
Volenec, 1989).

The proof given here of the permanent conjectures is fairly simple and is accessible
to any reader familiar with the fundamentals of the linear algebra.

5. Structure of the minimizing matrix: the necessary conditions

This section considers several fine assertions on the structure of the minimizing matrix
that led D. London to his result (1971). The reader can find the proofs of the well-
known facts omitted here in, for example, the work of M. Marcus and H. Minc (1972),
A. Marshall, J. Olkin (1983), R. Rockafellar (1970), H. Minc (1978).

THEOREM 5.1 (Birkhoff, 1946). A set of n xn doubly stochastic matrices forms a convex
polyhedron with permutation matrices as vertices. In other words, if A € 2,,, then

A=>"0:P, 6D
i=]

where Py, ..., P, are permutation matrices and 0y, ... ,0s > 0, S0 =1

This theorem has many applications and is one of the main results in the theory of
doubly stochastic matrices. The next theorem is one of the most important results in the
theory of non-negative matrices.

THEOREM 5.2 (Frobenius—Konig, 1917). Let A be an n X n matrix. A necessary and

sufficient condition for every diagonal of A to contain a zero entry is that A contains an

s X t zero submatrix such that s +t =n + 1.
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In other words, if A is an n x n matrix, then per A = 0 iff A contains an s x ¢ zero
submatrix such that s + ¢ = n + 1. (For the history of this theorem see (Minc, 1978,
pp- 31-34).)

THEOREM 5.3 (Kénig, 1916). If A € £2,,, then per A > 0.
ASSERTION 5.4 (London, 1971). If A = (a;;) is a minimizing matrix, then
per(A(i/j)) > per(A) foralli,j€l,...,n. (5.2)

ASSERTION 5.5. A non-negative matrix A of order n, n > 2, is fully indecomposable iff
per(A(i/j)) > O foralli,j € 1,n.

ASSERTION 5.6 (Marcus and Newman, 1959).
(a) If A is a minimizing matrix, then A is fully indecomposable.
(b) If A = (ay;) is a minimizing matrix and some a;; > 0, then per(A(i/j)) = per(A).
(c) If the minimizing matrix is positive, then A = Jy,.

It is easy to see that Theorem 5.3 is equivalent to the following assertion: any matrix
A € 02, contains at least one diagonal with positive terms, thus, Theorem 5.3 follows
from the Birkhoff theorem.

The proof of Assertion 5.6(b) in the work by Marcus and Newman (1959) used to
prove Assertion 5.4 adapted the classical Lagrange multipliers method assuming A € §2,,.

The result of Assertion 5.5 is a direct corollary of the Frobenius—Konig theorem.

Assertion 5.4 is proved by taking derivatives in all directions in a neighborhood of a
minimizing matrix A. For any n X n permutation matrix P = (p;;), 0 < 8 < 1, define
the function fp(6) = per{(1 — 0)A + 6P).

Since A is a minimizing matrix, then f5(0) > O for any P. But

n
f;:.(O) = 2 (_ast + Pst)pcr(A(S/t))

s, t=1

= Z Pyper(A(s/t)) — nper(A)

s,t=1

= Z per(A(s/a(s))) — nper(A),
s=1

where o is the permutation corresponding to P. Hence,
n
Zper(A(s/o(s))) > n per 4, (5.3)
s=1
for every o. Since the matrix A must be fully indecomposable (Assertion 5.6(a)), therefore
(Assertion 5.5) any entry of A lies on a diagonal all of whose other entries are positive.
Thus, for every (i,7) there exists a permutation o such that j = o(i) and asp(s) > O for
allsel,...,n, s#1i.
Now, however, Assertion 5.6(b) ensures that per(A(s/a(s))) = per A for the same s.
Hence, from (5.3) and j = o(i) follows that per(A(i/j)) > per(4).
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6. Mixed discriminants (volumes) and geometric inequalities for permanents

Consider m quadratic forms

n
k
Je= Z @i TiTj
z,5=1

in the variables z1, ..., Z,. Any linear combination

F= ke
k=1

is again a quadratic form with coefficients

m

} : k
al-j = )\kaij.

k=1

The discriminant of the form f is a homogeneous polynomial of degree n with respect
10 Al ..., Ay with coefficients D(f,, ..., fr.) of Ak, ... Ak, chosen not to depend on
the order k), ..., k,. These coefficients, studied by Aleksandrov (1937-1938), are called
mixed discriminants. They are expressed in terms of coefficients of the given forms as
follows

| afl ... aj}
D(fla---afn):m Z det . (6.1

’ o0=(01,...,0n)ESn n On

o ) ary ... aly

Because of (6.1) the mixed discriminants are symmetric and polyadditive functions of
1ts arguments and possess a series of other interesting properties (see also (Bapat, 1987)).
For us the most important is the following

LEMMA 6.1 (Aleksandrov inequalities for mixed discriminants, 1937-1938).
(@) Let (f;), i=1,...,n—1, be n — 1 positive definite quadratic forms and let g be
an arbitrary quadratic form. Then,

DX(a; fn-1,8) 2 D(; fa_1, fa1)D(asg, ), (6.2)

where o= (fy,..., fu_2).
(b) Equality holds in (6.2) iff

8= Afu_1i, A a constant. (6.3)

quing suitable limits in (6.2) of the coefficients in the forms, assertion (a) of Lemma 6.1

carries over to the case in which the (fi), i = 1,...,n — 1, are non-negative definite
Sforms.
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LEMMA 6.2 (Geometric inequalities for permanents, Egorychev, 1980, 1981).
(@) Let (f;), i = 1,...,n — 1, be n-vectors with non-negative components and let g
be an arbitrary n-vector. Then,

per’(at; fn-1,8) = per(a; fa_i, fn-1)per(a; g, g). (6.4)

(b) Let (fi), i = 1,...,n— 1, be n-vectors with positive components and let g be an
arbitrary n-vector. Equality holds in (6.4) iff

g = Afn-1, A a constant. 6.5)

The results of Lemma 6.2 follow directly from formulas (6.2), (6.3) if we note that

per A= n!D(fi,..., fa) (6.6)
where f; is the quadratic form with matrix A; = diag(ais,...,@ni), ¢ = 1,...,n. Indeed,

n

n
f= Z)\kfk = Z()\lail 4+ Anlin) Tt
k=1

i=I

and

n n n n
det A = det (diag<2>\jaij, Y ,\jan])) =11 ( ,\,-aij),
j=1 j=1 i=1 \ j=1
and it is easy to see that (cf. (6.1)) the coefficient at Ay, ... , A, in the last expression is
equal to per(A)/n!.

D. Falikman (1981) obtained an inductive proof of permanent inequalities equivalent
to inequalities (6.4).

Papers by A. Panov (1984, 1985) and R. Bapat (1989) investigated the case of equality
in (6.2) for non-negative definite forms and D. Knuth (1981) corrected the case of equality
in (6.4) by assumptions weaker than in (6.5). R. Bapat also obtained the combinatorial
interpretation of mixed discriminants from (0, 1)-matrices, and proved a generalization
of the well-known Konig theorem.

Let a be a finite-dimensional linear space over R and ¢ be a symmetrical bilinear
form on a. If ¢ has one positive eigenvalue and n — 1 negative eigenvalues we shall
speak of a Minkovsky (Lorentz) space.

ASSERTION 6.3 (van Lint, 1981; Rybnikov, 1985). If the vector-columns ay,...,0n—2
have positive components, then, the quadratic form o(z,z) = per(ay,...,0n-2,%,),
z € R", has the signature of Minkovsky space. Under the same assumptions the inequal-
ities (6.4), (6.5) turn into the Cauchy-Bounjakowsky-Schwarz inequalities in Minkovsky
space.

In conclusion of this section we’ll give the representation of the permanent as a mixed
volume yielding a family of geometric inequalities for the permanent as a mixed volume.
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Let A+ B={a+b: a€ A, be B} denote the vector sum (Minkovsky sum) of the
subsets A and B of Euclidean space R”, and let AA = {Aa: a € A} is the result of the
homothety of A with coefficients A.

THEOREM 6.4 (Minkovsky, 1911). The volume of the linear combination of nonempty
convex compact sets Ky,...,K, (s # n, in general) with non-negative coefficients
A, .. Xs is @ homogeneous polynomial of degree n with respect 10 Ay, ..., As:

V(i,\ix,) =YD K KN A, 6.7)
=1

=1 in=1

where it is assumed that for the products of A; which differ only in the order of the

factors the coefficients have the same numerical value. The coefficients V (K, ..., Ky)
in the expansion (6.7) are called the mixed volumes of convex compact sets K, ..., Ky,
in R™

Let A be a non-negative matrix of order n and let K;, i € 1,...,n, be the family of

rectangular parallelopipeds in R™ induced by it
Ki={z=(z1,...,2,) ER", 0< 2 <ay, j€1,...,n}. (6.8)

In analogy with the representation (6.6) of the permanent as a mixed discriminant it
is easy to see that (Egorychev, 1980-1981)

per(4) = nV(K,..., Ky). 6.9)

Indeed, the volume of a rectangular parallelopiped

n n
K:Z/\iKiz {l‘-: (zl,...,xn) ER”, ng‘j éz&a,]}
i=1 i=1

is equal to the product of the lengths of its sides

VK =]] ( /\iaij>,
1

j=1 Jj=

and the coefficient by A - - - A, is equal to per(A)/n!.

Formula (6.9) allows one to obtain the following assertion for permanents of a non-
negative matrix.

THEOREM 6.5 (cf. Egorychev, 1983). If A is a non-negative matrix, then, for per(A)
there hold the analogs of the Brunn—Minkovsky, Aleksandrov—Fenchel, Shephard, Santalo
and other inequalities, including the vector inequalities for mixed volumes in R™, as well

. as the corresponding analogs of the results for the various cases of equality (see Burago

and Zalgaller, 1984, Ch. 4).
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The papers of G. Ewald (1985), B. Kind and P. Kleinschmidt (1979), P. McMullen
and G. Shephard (1971), M. Hochster (1972), R. Stanley (1980, 1981), L. Billera and
C. Lee (1981), A. Kouchnirenko (1976), D. Bernstein (1976), B. Teissier (1979, 1982)
contain several combinatorial connections of mixed volumes with combinatorial geometry
which by virtue of (6.9) are valid for the permanents of non-negative matrices as well.

7. Structure of the minimizing matrix: uniqueness of the solution and proof of the
conjectures

For the readers’ convenience we repeat the assertions used to prove the conjectures.

LEMMA 7.1 (Egorychev, 1980, 1981 — geometrical inequalities for permanents).
(a) Let a;, i =1,...,n— 1, be a set of n.— 1 n-vectors with non-negative components
and let g be an arbitrary n-vector. Then,

per’(c; an—1,9) > per(a; an—1, an—1)per(a; g, 8), (1.1)

where a == (ay,...,0n-2).
(b) Let (a;),i = 1,...,n — 1, be n-vectors with positive components and let g be an
arbitrary n-vector. Equality holds in (7.1) iff

g = Aan—_1, A a constant. (7.2)
THEOREM 7.2 (Konig, 1916). If A € §2,, then, per(A) > 0.
ASSERTION 7.3 (London, 1971). If A is a minimizing matrix, then

per(A(i/j)) >perA foralli,j=1,...,n. (7.3)

THEOREM 7.4 (Egorychev, 1980). (Proof of the Marcus—-Newman conjecture on perma-
nents (1965).) If A € (2, and the inequalities

per(A(i/j)) = per A foralli,j€{l,...,n}, (7.4
are valid, then,
per(A(i/j)) = perA foralli,j € {1,...,n}. (1.5)

THEOREM 7.5 (Egorychev, 1980). (Proof of the van der Waerden conjecture on perma-
nents (1926).)

. _en 76
Xneurrzln(per(X)) n!/n", (7.6)

X e, and per(X)=n!/n" iff X =Jn. 1.7

PROOF OF THEOREM 7.4. Expanding
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by the Laplace formula, over the j-th and i-th columns, respectively, and using (7.1) we

get
per2A2p6r2 (A (; i)) > per (A <; J )) per (A (t _ ]>>
= (Zakiper(A(k/j))) <Zakjper(A(k/i))>
k C ok

forall 4,5 € {1,...,n}. (7.8)

Inequalities (7.8) combined with assumption (7.4) give a system of n? inequalities for
the n? numbers per(A(i/j)), 1,5 € {1,...,n}.

We show that in this case per(A(i/j)) = per 4,14, j € {1,...,n}. Assume the opposite,
i.e. that there exists a pairr, s € {1,...,n} such that per(A(r/s)) > per A. Since A € {2,
there is some ¢ € {1,...,n} such that a,, > 0. Then, by (7.8),

per? A = per’ <A (8 t ))
as Gt

2(%:aksper (k/t) )(Zaktper k/s))
:<Zaksper(A(k/t))><artper (r/s)) + > areper(A k/s)))

k kAT
> (;aksperm)) (;wedm) — per,

where the strict inequality follows from inequalities (7.4), a,; > 0, per(A(r/s)) >

per(A), per A > 0 (Theorem 7.2), and A € §2,,. The contradiction obtained proves the
theorem. 0

Let A be a minimizing matrix. Then, by London’s result, the inequalities (7.4) hold.
From Theorem (7.4) follows

LEMMA 7.6 (Egorychev, 1980). If A is a minimizing matrix, then
per(A(i/§)) = per A, foralli,je€ {1,...,n}. (7.9)

LEMMA 7.7 (Egorychev, 1980). If A is a minimizing matrix, then for each i,j €

{1,...,n}

Ag=A i J <6<
<9ai+(l—0)aj (1 ~6)a; +8a; )’ O<b<l,

will be also minimizing matrix. Ag is obtained from the matrix A with the help of a
“-transform” of the i-th and j-th columns of the matrix A.
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PROOF. It is easy to see that A’ € §2,,. The equality per(Ag) = per(A) follows immedi-
ately from the fact that per(A) is a multilinear symmetric function of the columns of the
matrix A, the Laplace formulas, the equalities (7.9), and A € (2y,. O

PROOF OF THEOREM 7.5. It is clear that a minimizing matrix cannot be (up to permutation
of rows and columns) a matrix of the form

0 An—l

where A,_; € {2,—1, since in this case (Lemma 7.6) per(A(1/1)) = per(A(1/7)) = 0
for all i € {2,...,n}, Le. per A = 0, a contradiction with Theorem 7.2.

Now we show that if A is a minimizing matrix, then A = J,,. Let some column of
the matrix A, say a,, be different from the n-column eT /n. Then, it is easy to sec that
by Lemma 7.7 for all 4,5 € {1,...,n — 1}, i # j, we can obtain in a finite number of
steps a minimizing matrix B = (by, ..., bn—1,@x), in which every component of the first
n — 1 columns is positive. This follows from the fact that A does not contain a 1. From
the inequalities (7.1), we have

per’ (B (bz :)) > per (B (; :)) per (B (; :)) . (7.10)

By virtue of equalities (7.9) the minimizing matrix B (Lemmas 7.6 and 7.7) we obtain

equality in (7.10). The positivity of the components bi,...,bn—1 allows us to assert

immediately (Lemma 7.1, the case of equality) that'a,, = A;b; forall i € {1,...,n—1}

Since the sum of the components of the vector b; as well as of the vector a,, is equal

to 1, we have a, = b; forallie {1,...,n — 1}. Since B € {2,, we have
hh=by=--= b1 =an = eT/ny

a contradiction. Thus, A = J,, and the proof of the theorem is complete. O

REMARK 7.8. The reduction from Theorem 7.4 to Theorem 7.5 was well known (see, for
example, Minc (1978, p. 101, Problem 18)). Here we gave a simple geometric proof of
this reduction.

The proof of conjectures given here, from the necessary conditions to geometric in-
equalities (7.1), (7.2), is typical for the theory of mixed volumes in the solution of
isoperimetric problems. However, specialists usually use such mixed discriminants (vol-
umes) where only two, sometimes three, forms (convex compacts) are different: in our
proof all forms are used equally.

8. Direct corollaries

As a direct corollary of Theorem 7.5 we obtain the validity of some facts for permanents
(see Conjectures 2, 8, 16 and Problem 9 in the list of conjectures and problems in

Van der Waerden conjecture and applications 17

(Minc, 1978); also a generalization of the van der Waerden conjecture in (Gleason, 1970)).
Another direct corollary of Theorem 7.5 is that we obtain lower estimates for some
important combinatorial quantities previously expressed by other authors assuming the
validity of van der Waerden conjecture. These quantities admit representations in terms
of permanents of block (0, 1)-matrices from AE. Among them are the lower bounds
for the number of Latin rectangles and squares (see also (ErdSs and Kaplansky, 1946;
Yamamoto, 1951, 1956; Gessel 1987; Denes and Keedwell, 1991) etc.) for the number
of nonisomorphic Steiner triples (Wilson, 1974) and for the key constant Mg in the
d-dimensional dimer problem (Hammersley, 1968, 1969; Dubois, 1974; Minc, 1978a,
1980). These bounds are essential improvements of previously known bounds.

The results mentioned above brought about a structural reorganization of sections of
combinatorial theory connected with permanents. We should also note that the problem
of estimating A4 belongs to an extensive class of mathematical and physical problems
connected with finding the number of dimer coverings of the lattice that can be realized
by the permanent of special (0, 1)-matrices (see, for example, the surveys (Percus, 1971)
and (Montroll, 1964) about applications of permanents in statistical mechanics and the
two-dimensional Ising model in ferromagnetism).

9. Further results and new hypotheses

One of the reasons for the interest in computing per(A) is that a (0, 1)-matrix A = (ai;)
can be viewed as an adjacency matrix of a bipartite graph, H = (X,Y, E), where
X corresponds to the rows in A,Y to the columns in A, and a;; = 1 if there is an
edge between X; and Y;. The value per(A) is exactly the number of perfect match-
ings (1-factors) in H. This matter finds numerical applications in operations research.
A. Schrijver (1982, 1983) published a survey on recent developments of lower and upper
bounds for permanents including his interpretation of the van der Waerden conjecture and
the well-known Brégman-Minc upper bound (Brégman, 1973; Minc, 1978, Ch. 6). He
applied these results to obtain a series of new and hypothetical bounds for the number
of perfect matchings, 1-factorizations (edge-colorings), bipartite graphs, and the num-
ber of Eulerian orientations of graphs. The reader can find other applications of the
permanent of (0,1)-matrices in estimating characteristics of various types of graphs in
numerous papers (see, for example, (Caianiello, 1953, 1956; Harary, 1969; Hartfiel and
Spellman, 1972; Dubois, 1974)).

D. London (1982) used the result of Theorem 7.6 to characterize real zeros of a
polynomial defined by the composition of two polynomials and T. Ando (1989) used it
to analyze majorization problems.

The van der Waerden conjecture, proved in the early 80s, generated numerous papers
(van Lint, 1981, 1982, 1983; Janos, 1977; Lagaris, 1982; Minc, 1982, 1983; Schri-
Jver, 1982, 1983; Friedland, 1982; Bapat, 1984, 1986; Rybnikov, 1985; London and
Minc, 1989) etc., discussing the history of the problem and giving improved and modi-
fied versions of the proofs of Egorychev (1980) and Falikman (1981).

. The main result and the method used in the work by Egorychev (1980) were essen-
tially used and developed to solve the problem of the permanent minimum at various
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faces of {2, (see the extensive survey of the current state of the problem in (Seok-Zun
Song, 1988, and Minc, 1987; also Knopp and Sinkhorn, 1982; Chang, 1984a; Minc, 1984;
Brualdi, 1985; Hwang, 1985; Foregger and Sinkhorn, 1986; Foregger, 1987; London and
Minc, 1989) etc.) An elegant conjecture for which the method proposed there didn’t work
was stated by D. London and H. Minc (1989). Let 2% denote a set of n x n doubly
stochastic matrices with zero main diagonal; J) = (1 — 0y;)/(n — 1) € 22, where 0,
is Kronecker symbol. If A € £29, then

n!

per(A) > per(J2) = CED (1 + i(—l)%!). ©.1)
k=1

What’s more, equality in (9.1) holds only for A = JO,

Generalizing the previously obtained results, S. Hwang (1985) introduced for a
(0,1)-matrix A = (a;;) of order n the concept of the barycenter matrix A :=
(ai;per(A(i/7)))/per(A) € £2, and the staircase matrix, and A. Brualdi (1985) stated the
problem of the characterization of these classes of matrices and formulated a question
of the characterization of faces at {2, where the permanent minimum is achieved on the
barycenter matrix (see also (Minc, 1987; Hwang, 1985)).

Finally, the main result and the methods of G. Egorychev (1980), including applications
of the geometric inequalities (7.1), (7.2), were efficiently used in numerous articles to
prove extremal conjectures for the permanent and other matrix functions on (2, and
for other classes of matrices. Most successful in this direction was S. Friedland (1982)
proving the Tverberg conjecture (1963) about the minimum of the function o (A), 1 <
k < n, equal to the sum of the permanents for all £ x k submatrices of a matrix A. That
article efficiently used a representation of function o (A) by the permanent on (2,, faces.

The next nontrivial generalization of the van der Waerden conjecture was proposed by
E. Dittert (Minc, 1983, Conjecture 28): let K,, be the set of non-negative n X n matrices
the sum of whose entries is n. Then,

max{Hci+Hrj — per(A) l AGK"} =2-n!/n", 9.2)
i=1 7=1

where ¢; and r; denote the i-th row and the j-th column sums of the matrix A, respec-
tively. Equality holds in (9.2) iff A = J,,. Partial progress in the proof of this conjecture
was achieved as the basis of Theorem 7.5 and inequalities (7.1), (7.2) (Sinkhorn, 1984;
Hwang, 1986, 1986a, 1987, 1989, 1990; Egorychev, 1994).

Many elegant problems and conjectures for permanents and related matrix functions
on various classes of matrices were published recently (Minc, 1978, 1993; Marcus,
Minc, 1965; Grone and Merris, 1987; Minc, 1978; book “Permanents: theory and appli-
cations”, Krasnoyarsk, 1990; Egorychev, 1994). Among them is an explicit representation
of a “problem of the century” and a dominant conjecture for Schur functions (“domi-
nance conjecture”). The problems and conjectures for permanents have as a rule a simple
formulation but often are very difficult to solve, as is often the case with problems of
discrete mathematics. The difficulty in solving them lies not only and not so much in
enumerating a lot of variants but is inherent in combinatorial analysis as a whole. The
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practice of solving them shows that some conjectures appearing almost obvious from
their formulation turn out to be invalid. Practice shows also that to solve problems and
conjectures it is often necessary to use the apparatus of a series of fundamental models
and methods from various sections of modern mathematics.

10. Prospects for investigation and conclusion

The analysis of the conjectures and problems for permanents allows us to conclude that
research in this field holds much promise in the following interconnected directions:

— to study inequalities for permanents and mixed discriminants, including the case of
equality for (non-negative, symmetrical) matrices of arbitrary signature. These questions
arise in the analysis of necessary conditions in problems of extremality for matrix com-
binatorial functions, and turn out to be immediately connected to various definitions of
convexity as applied to quadratic functions in R™ (see Ponstein, 1967; Cottle and Fer-
land, 1971, 1972; Martos, 1969, 1971; Ferland, 1980). The latter direction emerged, in its
turn, from consideration of the problems of quadratic programming and approximation
theory (Micchelli, 1986) and finds application in probability theory (Bapat, 1988, 1989a).
Making use of several characterizations of the class of subpositive definite quadratic forms
(see, for example, (Ferland, 1980)), Bapat (1984) gave some improvement of the result
of Theorem 7.5. This research belongs to one of the more promising lines of the matrix
combinatorial analysis which has seen rapid progress in recent years (see Maybee, 1988;
Johnson, 1988; Brualdi, 1990 etc.); i

— to pass to space matrices and the consideration of matrix functions. Analysis of
certain problems for permanents shows them to appear more natural when viewed in
terms of a problem for a space matrix permanent. This isn’t surprising if for no other
reason than the representation (6.6) of the permanent as a mixed discriminant from ma-
trices Ay, ..., A, can be considered as a representation of a space matrix with sections
Ay, ..., A, A. Gasparyan (1984) and A. Hovansky (1984) found a series of new in-
equalities for hyperbolic forms (polynomials) for space matrices, while B. Bapat (1986)
wrote down analogs of the inequalities (7.1) for “mixed Schur functions”;

— it was Gilbert who noted that the relations of the mixed volumes with other fields of
mathematics have been settled completely. Aleksandrov (1937-1938) already noted that
the coefficients of the characteristic polynomial of a matrix A are mixed discriminants
f>f it and the unit matrix. However, this relationship remained unexploited in research
in linear and polylinear algebra. G. Egorychev (1990, 1993, 1994a) develops matrix
analysis on numerical fields with nontrivial operations. Introduced and studied are notions
and properties for a certain class of ¢-mixed discriminants, polyadditive relative to the
operations introduced (for numbers and matrices); there are in particular relations with
the operation of parallel summation of matrices and the problem of ordering non-negative
definitc matrices (Meenakshi, 1987; Anderson and Duffin, 1969; Mitra, 1991);
~ — to study definitions, properties, and inequalities of permanents and mixed discrim-
Inants of matrices over different (partially ordered) algebraic systems. Permanents of a

 distributive lattice emerged in the work of Skornyakov and Egorova (1984); for perma-

nents with logical variables, see (Razborov, 1985); permanents over finite fields emerged
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in investigations of the four-color problem (see Shor, 1990); permanents over (partially)
ordered fields turned up in the work of Golovanov, Egorychev and Moiseenko (1987).
Still more permanents arise in studies of many other authors in the most varied fields
of mathematics. Y. Egorychev and Ja. Nuzhin, for example (in press), gave a definition
and studied the properties of permanents over noncommutative rings. Studies of -mixed
discriminants mentioned in the previous paragraph also allow one, in the opinion of the
author, to touch upon different aspects of the theory of matrix functions over different
algebraic systems presented in many articles of Vol. 1 of this series “Handbook of Al-
gebra”. They also reveal relations with the classical spectral theory of matrices, graph
theory and electrical engineering (see, for example, (Egorychev and Moiseenko, 1990a;
the survey by Tsvetkovich, 1984, and Strok, 1990, on spectral theory of matrices; Ando
and Kubo, 1989, 1990));

— and, finally, of promise for the development of the geometric theory of mixed dis-
criminants (and permanents) is the research making use of their representation as the
valuation function in valuation rings (see the survey (MacMillan and Schneider, 1983;
Rota, 1973; Barnabei, Brini and Rota, 1986)). This research based on fundamental studies
of geometric nature going on for the last two centuries can, in my opinion, essentially
enrich the apparatus of enumerative combinatorial analysis as a whole.

The author is grateful to the participants of the seminar on discrete mathematics in
Krasnoyarsk for useful remarks concerning this chapter.
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Random matrices 29
Introduction

In this part of the Handbook of Algebra the main results of the theory of random matrices
are collected. Distributions of random matrices arise in many applications areas; perhaps
the most well-known areas are nuclear physics, multivariate statistics, and test matrices for
numerical algorithms. See [1-34] for references to some of these numerous applications.

Note that applications of random matrix theory are not exhausted by the application
in physics, in multivariate statistical analysis, and in the theory of nonordered structures.
At the moment, the theory of random matrices is also used in the theory of stability of
solutions of stochastic systems, in linear stochastic programming, in molecular chemistry,
in the theory of experiment planning, and in the theory of ring accelerators.

This part of the Handbook of Algebra is designed for statisticians, mathematicians
and physicists, scientists and engineers of different specialities, who use matrix and
probability theoretical methods in their work.

1. Distribution function of random matrices

A random matrix is a matrix with random entries. Its distribution function is a function
of the distributions of all its entries. The majority of formulas for the distribution of some
functions of random matrices contain some integrals with respect to invariant measure;
therefore, in order to study them, one needs to know properties of invariant measure.

Let G be a separable topological locally compact group, and let E be a space on which
the group of transformations G acts. A measure u(A) defined on the Borel o-algebra B
of the space E is called invariant with respect to G if for any A € B and s € G, such
that the sA is measurable, p(sA) = p(A). Here, sA is the set {sg: g € A}.

If the function f(p), p € E, is measurable with respect to the o-algebra B and
non-negative, then, under the assumption that at least one of these integrals exists,

[ 1@ utan) = [ 1) utap).

We call the measure p a left-invariant Haar measure (left Haar measure) if the equations
p(sA) = p(A) and

[ 1@ ntaz) = [ #s0) uia)

hold. If y is a left Haar measure, then the function v defined by. the equality v(K) =
#(K~") on a o-algebra of measurable subsets of K of G elements is a right Haar
measure. By the set K~' we mean {K~': k ¢ E}. Obviously, if 4 is a right Haar
measure, v is a left Haar measure.

We now state the basic results on Haar measures.

A left Haar measure exists on any separable topological locally compact group 7T'. If
p and p' are two left Haar measures on T, then ' = cu, where c is a positive number.

We shall now give some examples of Haar measures on groups of matrices.
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Let G be the locally compact group of invertible real matrices of order n, and B the
o-algebra of Borel sets on it. There are left and right Haar measures defined on the group
G. The density of a Haar measure on G with respect to Lebesgue measure on G is equal
to c|detz|™™, z € G.

Similarly, we consider Haar measure on the group K of complex invertible matrices
of order n. Here the densities of the left and right Haar measures, with respect to the
Lebesgue measure on K, are equal to |detz|™2®, z € K, up to a constant positive
coefficient. Let T be the group of lower real triangular matrices of order n with positive
entries on the main diagonal, and let B be the o-algebra of Borel sets on it. The density
of the left Haar measure is

n
cnmj(nﬂﬂ), zy; > 0,

where ¢ > 0 is some constant. The density of the right Haar measure with respect to the
Lebesgue measure on T, is

n
—1
CH.’IJ“« , Ty >0,

i=1

where ¢ > 0 is an arbitrary constant.

2. Haar measure on the group of orthogonal matrices

Let G be the group of real orthogonal matrices of order n and let x4 be the invariant
normalized Haar measure on it. The entries of a matrix H C G satisfy n(n — 1)/2
equations. Solving these equations, we obtain n(n — 1)/2 independent parameters of the
matrix H. The so-called Euler angles are rather convenient parameters of the group G.
First, the functions by which the entries of the matrix H are expressed in terms of the
Euler angles, are almost everywhere differentiable with respect to these angles. Second,
the Haar measure expressed in terms of the Euler angles has a simple form.

The Haar measure p of the group G of the matrices H, defined by means of the Euler
angles @}, is absolutely continuous with respect to the Lebesgue measure given on a set
of variations of Euler angles Oy, with density

n—-1 n
an H sin™ "¢ (Ok:);
k=11i=1+k
0< B <2m, 0< O <m, ke{l,...,n,}, ie{k+1,...,n—1},
where

n—1

¢, = 27" H r(n—k+ 1)/2)7r‘(n—k+l)/2‘
k=1
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3. Maximum likelihood estimates of the parameters of a multivariate normal dis-
tribution

In this section we consider the mean and covariance matrix formed from a sample from
a multivariate normal distribution. A normal distribution of random vectors is

1 -
(2r) ™2 det R™'/* exp {—E(CE— @) R (7 - a)}-

We will assume throughout Sections 3-5 that R is a positive definite matrix. Let
@, ..., &n be independent Ny, (d, R) observations of a normally N,.(@, R) distributed
random vector. Then the sample mean vector is

n

&:n‘l E .’fk,

k=1
and the sample empirical covariance matrix is
n

R= (n — 1)-] Z (ik — C:i)(:L‘k - &)T.

k=1

The vector & and matrix R are stochastically independent. N R
For n > m the maximum likelihood estimates of @ and R are @ and (n — 1)n"'R.

4. The Wishart density wy(a, R)

If #,,...,&, are independent observations of normally Ny, (d, R) distributed random

vectors and n > m then the Wishart density function of the distribution of the sample
covariance matrix

R n+1 T . n+1
R:n_lZ(i‘i—a(fi—&) , where&:n"lz%,xC
i=1 k=1

-1 mn/2
[Fm (%) detR”ﬂ] (% n> exp{ - %TrnR_'S}(detS)("_m_])/z,

where S is positive definite matrix of order m, and I, (-) denotes the multivariate gamma
function

e 1
Fm(a):wm(m—l)/4nr(a—‘§(7’—1)), Rea > %(m‘ 1)

1=1
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5. Generalized variance

If a multivariate distribution has covariance matrix R then one overall measure of the

spread of the distributions is the scalar quantity det R, called the generalized variance by
Wilks.

If the matrix R has Wishart density w,(d, R,,), where n > m then det R/ det R has
the same distribution as

m

2
Hxn—i+l’
i=1

where the X%—H—l fori = 1,...,m denote independent x? random variables with 7—;+ 1
degrees of freedom respectively.

This result gives a tidy representation for the distribution of generalized variance, it is
not an easy matter to obtain the density function of a product of independent %2 random
variables. It is, however, easy to obtain an expression for the moments

o Ak T (e n—it1 fn-i+1
E detR|" =detR || 20| — DA
[n e } e { [ 3 +k]F [ > ,

i=1

k=1,2,....

6. Moments of random Vandermonde determinants

The determinant of a matrix (ﬁf), i=1,...,n,j=0,...,n—1,where §, i=1,2,...,
are random variables is called a random Vandermonde determinant.
If the random variables &;, i = 1,...,n, are independent, identically distributed, and

have a §-distribution with density
[B(e, )] e (1= 2)%7!, 0<z<1,a>0, 8>0,

then for n =2,3,...,

E [det (¢)]™

& - fj)] ’

E[
1<i<i<n

Il

{r+jk)L(a+ (G- DE)T(B+ (G — 1)k)

1

X [P+ k) (o + B+ (n+5 - 2)k)] ' }B (e, B),

J

where

Rea >0, Re >0, Rek > —min{n~', Rea(n — 1)7!, Re f(n — =
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. —1 ..

The second moments of complex random Vandermond matrices (&), 4,5 =

1,...,n, where & = v, + ipp, Vp, tip, P = 1,...,n, are independent random variables
distributed according to the standard normal law, are equal to

n—1
i—1y12 _ An(n—=1)/2 .
E | det (&7 )|i,j:l,...,n =2" n! H Jt.
j=1
If the random variables 6;,1 = 1,... ,n,rare independent and have a uniform distri-

bution on the interval (0, 2r), then for any integer k > 0,

A . E\1 "
E H |e“’v7e‘9'|k=1‘<1+%n)[1“< +§>] )

pl=1,...,n, p#l

[

7. Polar decomposition of random matrices

Let £ = (&), i=1,...,n, j = 1,...,m, m > n, be areal rectangular random matrix.
We suppose that there is a joint distribution density of the entries &;;, equal to p(X),
where X is a real rectangular matrix. The polar decomposition of = is a representation
of = in the form =& = SU, where S = VEET and U = S™!Z. Let K be the set of
real (rn X n) matrices, K, the set of non-negative definite (n x n) matrices, K the set
of real orthogonal (m x m) matrices, By and B, the o-algebras of Borel sets in K, and
Kj. Let G be the group of real orthogonal (m x m) matrices and p normalized Haar
measure on it. Then the joint distribution of ZZT and (£5T)~1/25 is equal to

P{=="c L, (227) 2 c Ly}
= c",m/ p(VZo H™) det Zz{m""1/2(dH)dZ,
ZneLy, HMel,

where L, € By, L, € B, H= (hij) € G, H® = (hz‘j), i=1,...,n, 5=1,...,m,
n . -1
Cn,m = |:7T"(n"l)/4_"m/2HF<————m +2] — Z>} , dZ = Hdzi,j.
i=1 1,3

If p(v/Z,H™) = ¢q(Z,), in addition to the previous hypotheses, then S=T and
(EET)~1/2Z are stochastically independent and have the distributions

P{EETe M) = cn,m/ q(Zy) det Z{m—"=Y72427,,
ZneM,

P{(2=T)" 2 e MY = dH).
{(z5") € My} H(")EMzu( )
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8. Symmetric and Hermitian random matrices

Let =), be a real symmetric (n x n) random matrix whose entries &Gt 24, 4,5 =
1,...,n, have joint distribution density, which we denote in what follows by p(Z,),
where Z, = (zij) is a real symmetric matrix: let \; > -- - 2 A, be the eigenvalues
of =, and let 8; be the corresponding eigenvectors whose first nonzero component is
positive. If some eigenvalues ); (¢ = 1,...,n) coincide, then we can choose the 6,
uniquely by fixing in addition some of their components.

The eigenvalues X; (i = 1,...,n) of =, are distinct with probability 1.

Let 6, be the random matrix whose column vectors are equal to 0_;-, i=1,...,n; let
G be the group of real n x n matrices: B the o-algebra of Borel sets of orthogonal n x n
matrices on it, and y normalized Haar measure on G.

If a real symmetric random matrix = has density p(Z,), then for any subset E of B
and any real numbers o;, 3; (i =1, ..., n)

P{@nGE, a; < A < By, 1= ],...,n}
= Cin /p(XnYnXZ) H(yl - yj)/*‘(an) dy,,
i>j
where the integral is over the domain
{vi>p> >y, u<yi<B,i=1,...n, o, >0,i=1,...,n
Xn € B},

n
Yo = (045y;), dYp = dei,
i=1

Cin = 2"7r"("+‘>/“ﬁ{r[(n —i+1)/2]} 7"

i=1
Ifp(HnZnH,) = (Z,) forall H, € G and Z,,, then Oy, is stochastically independent
of the eigenvalues of = and has the following distribution:
P(6, € B} = 2 / J(dH,,).
Hn€E, h1;>0,i=1,....n
The distribution density of the eigenvalues of =y, is
27 enp (Vo) [T~ ws), mi > 0> > g
i<y

Let H, = (n:;) be a Hermitian n x n matrix whose entries are complex random
variables, and let X, be a nonrandom Hermitian n x n matrix. We assume that the real
and imaginary parts of entries of the matrix H,, located on the diagonal and above have
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the joint distribution density p(Xy) (the function p(X,,) depends on the imaginary and
real parts of the X, entries). The eigenvalues A; > --- > A, of the matrix are real, do
not coincide with probability 1, and are random variables. The matrix § = (hi5) whose
columns are the eigenvectors of H,, is unitary. The eigenvectors 6; with probability 1
are defined from the system of equations

(Ho = DB =0, (6:,6,) = 1.

The vectors 0-; can be chosen uniquely by fixing an argument of some nonzero element of
each vector 6;. We consider the matrix 6, being chosen so thatarg§y; = ¢;, i = 1,.. ., n,
where c¢; are nonrandom values, 0 < ¢; <27, i =1,...,n.

If a Hermitian random matrix H, has the distribution density p(X,,), then

P{QHEE, a; < X\ < G, i:I,...,n}

= Cop /p(UnYnU,’{) H(y, — y]')2V(dUn larguy; =¢;, i=1,.. .,n) dy,,
>3
where the integration is over the domain y; > --- > y,, U, € EC B, o; < i <
Bi, i =1,...,m v(U | arguy; = ¢, 1 = 1,...,n) is the regular conditional Haar
measure, and

n—1 -1
e = [ T |
7=0

If p(UnYoUy) = p(Yy) for all unitary matrices U, € I, then ©,, is stochastically
independent of the eigenvalues of H,, and has the following distribution

P{O, € E} :/ v(dUn |argu; = ¢, 4 = 1,...,n).
E
The density of the eigenvalues is

np(Ya) [[Wo — )% > > .
p>l

An important special case of Hermitian random matrices are the matrices H,, for which
the real and imaginary parts of their entries are independent and distributed according to
standard normal laws. In this case the density of H,, is

p(X,) =272 exp (— 2_1TanX;),
and the density of the eigenvalues has the form

n n—1 ~1
C’znexp{ —2_1293}1—[(%—%)2, G = (2ﬂ)‘"/2<Hj!)
=1

i>j
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9. Nonsymmetric random matrices

Let =, = (&;) be a real square random matrix with distribution density p(Xy), where
X, = (z”) is a real (n x n) matrix. We introduce some notation: Ay + igg, Ax —

ipk (k=1,...,8), x (Il=s5+1,...,n—2s) are the eigenvalues of =, Z = Tk + ik,
Zr = Tk —1y;c (k=1,...,8), 2 (I =s+1,...,n — 2s) are the eigenvectors of

Zh. We arrange the complex eigenvalues of =, in increasing order of their moduli.
If some of these complex numbers (among which there are no conjugate pairs) have
equal moduli, then we arrange them in increasing order of their arguments. Among
pairs of conjugate complex numbers the first is the number with positive imaginary part.
The real eigenvalues are arranged in increasing order. The eigenvalues thus chosen are
random variables. There are many other ways of ordering the eigenvalues, but we adhere
to this one as the most natural. We require that the vectors Ty, % (k = 1,...,s),
Ty (I =5+1,...,n— 2s) are of unit length and the first nonzero component of every
vector is positive. With probability 1, =, can be represented in the following form:

Eﬂsziag{(_A}L] l)l":), ,(_A;s ﬁz), /\s+l,---7)\n—ls}T_1,

T being a real matrix that is nondegenerate with probability 1 whose column vectors are
the Zx, ¥k (kI 1,...,3), ) (l:s+l,...,n—2.s).
Let K be the group of real nondegenerate (n x n) matrices, B the o-algebra of Borel
subsets of K, and 6; (i = 1,...,n) the eigenvalues of =, chosen as described above.
If a random matrix =, has density p(X,,), then for any subset E C B and any real
numbers ¢;, G; i=1,...,n)

P{T,€E, Reb; <o, Imb; < f;, i=1,...,n}

[n/2]
= Zc/ (XnYe X7 T (Ys)p(Ys) [det X | 7"

xH{( Z l>—l/2}andYs,

Jj=2

where the domain of integration K is

n 1/2 n
X, €E, muz{l—Zx?i] , Zz?igl(izl,...,n),
j=2

<o, 1 < B1 ey Ts <051, —Ys < 025, Tsyl < Q2541

O<,823+1a ceey Tp2s < Qp, O<Bny

T I Yi Ts Ys
Ys‘dlag{(_yl z]) 3ty <—y5 zs)’ x8+11"')mn—25})
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Js(Y H(qp QI)I
p#l
dX,= [ = dey, ¥ =]] desdy,
i=1,...,n, j=1,...,n
the gp (p=1,...,n) are the eigenvalues of Y, and
1 if the eigenvalues xi +1yk, zp—iyx (k=1,...,s) arein in-
creasing order of their moduli and among any two conjugate
Y.) = numbers the first is that with y; > 0, and the eigenvalues
e(Ys) = . . ]
z; ({=s+1,...,n—2s) areordered in increasing order;

0 otherwise

and the ¢, are some constants.

Suppose that =, = (€p +inpl) is 2 complex random n X 7 matrix of random variables
&p and my (p,1 = 1,...,n) which have a joint distribution density, which is denote by
p(Zy,), where Z,, is a Complcx nonrandom (n x7) matrix. We assume that the elgenvalues
i (i =1,...,n) of &, are ordered in mcreasmg order of their arguments. Let 91 e 6"
be the matrlx whose column vectors are 6; (1 = 1,...,n). With probability 1 we can
represent =, in the form =, = 0,4,0; !, where A (A di;). For ©, to be uniquely
determined with probability 1, we require that (0,,, 6,,) =1 and argy, = ¢, (p =
1,...,n), where the ¢, (0 < ¢, < 2) are arbitrary real numbers.

We denote by K the group of nonsingular complex (n x n) matrices and by B the
Borel o-algebra of K.

If =, has density p(Z,), then for any E € B and complex numbers o, §; (i =
N D)

P{@n € E, Reay <ReAdp <Refi, Imar <ImA <Impfy, k= l,...,n}
=cn /p(XnYnX;‘) I lvi — w51 det X, "
i#]

X H Tij d?"i]' d(pij dYn,
i=2,..., n,j=1,...,n

where X, = (rpert), oy =¢ (I=1,...,n),
n 1/2
o8]
j=2
and the integral is over the domain

argy; > argyz > --- > argyn,
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Rear < Reyr <Refr, Imoap <Imyi < ImpBe, k=1,...,n,

n
Xn€E, Y 1% <1, i=1,...,n0<p;<2m i#1,
j=2

n
dYn = H dRe Yk dIm Yk, Y, = (Jplyl)-
k=1

The constant ¢,, is determined by the condition that the integral over the domain
n
on=c, Xp€K, agy > >agyn, » 15 <1
j=2
equals 1.

10. Reduction of random matrices to triangular form

The following theorem of Schur is well known in matrix theory. If A is a complex
(n x ) matrix, then there is a unitary (n x n) matrix Un such that T = U* AU is upper
triangular and the entries on the main diagonal of T are the eigenvalues of A If Ais
real with real eigenvalues, then U can be chosen to be real orthogonal. A is normal if
and only if T is diagonal. If the eigenvalues of A are distinct and arranged in any order
and the arguments of any nonzero component of every column vector of U are fixed,
then the representation A = UTU* of A is unique.

Suppose that =, is a complex (n x n) random matrix and its entries have the distri-
bution density p(X). Let =, = USU* be the Schur representation of =, the diagonal
entries s;; (i = 1,...,n) of S being chosen so that their arguments are arranged in
nonincreasing order, arg u;; = ¢; (i = 1,...,n), where ¢; (0 < ¢; < 2) are arbitrary
real numbers. We denote by I” the group of unitary (n x n) matrices, by B the Borel
o-algebra of I', and by v the normalized Haar measure on I.

For any E € B and any measurable set C of complex upper triangular {(nxn) matrices

P{UcE, SeC}

= c/p(HYH*) H Ypp — vul v(dH | arghip = cp, p=1,...,1)dY,
p#l
where the integration is over the domain argy, > --- > arg¥ynn,

YeC, HeE, dY:H dRey;; dImy;;,

>

-1
n

c= |:(2ﬂ_)—n(nl)/22n(n+l)/2,n! HJ' )
Jj=1
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11. Gaussian random matrices

Let =, = USU* be the Schur representation of =, the diagonal entries s;; (i =
1,...,n) of S being chosen so that their arguments are arranged in nonincreasing order,
argu; = ¢ (i =1,...,n), where ¢; (0 < ¢ < 27) are arbitrary real numbers.

If the distribution density of the random complex matrix =), is invariant under a unitary
transformation X = UTU*, then the distribution density of 5 is

C;LP(Y) H |ypp - yll' , argyp > - > argYnn,
p#l

n -1
Q:QMW””{TWM“Hﬂ};

j=1

further, U is stochastically independent of S and has the distribution
P{Uc E} = / v(dH |arghi, = ¢), p=1,...,n
E

If the real and imaginary parts of the entries of =, are independent and distributed
according to the normal law N(0,1), then the distribution density of the eigenvalues
A, A Oof 2 is

1 n )
C;:CXP{_EZWH }H|ypp_yll!, argyiy > -+ > arg Ynn,
k=1

p#l

n -1
¢ = {ﬂ Hf(j)} 7

the real and imaginary parts of the entries s;;, ¢ > j, of S are independent, do not
depend on s;; and U, and are distributed according to the normal law N(O, 1).

The eigenvalues [Aif, ..., [ Anl, |A] > --- > |Ay], are distributed as corresponding
members of order statistics, as obtained from independent random variables X3, 1=
1,...,n, with 2i degrees of freedom.

Let us consider the distribution of the eigenvalues of an asymmetric real random matrix
=, whose entries are independent and distributed according to the standard normal law.
The density of such a matrix is

1
p(X) = @) exp -3 SHXXT).
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Let A, be the matrix of the eigenvalues of =, whose form is given in Section 9. If
E;, denotes the mathematical expectation or the number of real eigenvalues of random
matrix =, then

lim & e
n—+oo \/ﬁ - T
Let Ar,..., Ax be the real eigenvalues of the matrix Zn, let € be the average real

eigenvalue with distribution function

k

F(z) =E) x(\ < ).

i=1

If £ denotes a real eigenvalue of the random matrix =,,, then as n — 00, &/4/n is
uniformly distributed on the interval [—1, 1].
Exact formulas for E,,, where n is even:

n/2—1

4k — 1)1
b= S
prd (4k)1!
while if n is odd,
(n-1)/2
(4k — 3)1!
E,=1 2 —
+V2 § @k =21

The probability that a random matrix =,, has all real eigenvalues is
Prn = l/zn(n—])/it.

The joint density of the ordered real eigenvalues A; and ordered complex eigenvalue
pairs x; % iy;, y; > 0, given that =, has k real eigenvalues is

n—-k n

2l—n(n+l)/4 ";k

I, TG/ ( IR IEDY A%/Z) [] erte (5v2),

i=1 i=] i=1

where A is the magnitude of the product of the differences of the eigenvalues of A.
Integrating this formula over the A;, z; and y; > 0 gives the probability that a matrix
Sy has exactly k real eigenvalues.

The density of an average random complex eigenvalue of a normally distributed matrix

is »
Pa(z,y) = \/2/myev == erfc (yv/2)en—s (a? + 3?),
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where
en(z) = > _ 2*/k.
k=0

Consider the generalized eigenvalue problem
det(M, - AMz) =0,

where M; and M, are independent random matrices, whose entries are independent and
distributed by a standard normal law. If A denotes an average real generalized eigenvalue
of this pair of independent random matrices, then its probability density is given by

1 27 —1
;(1-{'-)\) y

that is, A obeys the standard Cauchy distribution.

12. Unitary random matrices

The entries of a unitary matrix U, can be expressed as almost everywhere continu-
ously differentiable functions of its Euler angles ¢; (i = 1,...,n%). The set D of
values of the ; can be split into subsets so that in every measurable subset the an-
gles ¢; characterize =, uniquely. Suppose that the random variables ¢; have joint
distribution density p(zi,...,z,2). The density p(zi,...,z,2) can be represented as
p(zi,. .., 2p2) = p(Tn(z1,...,2,2)), where T,, is a unitary matrix determined by the
angles z;, since the Euler angles z; can be expressed in terms of the entries of U,,. The
distribution of U, is

P{Un € B} = ﬁ(Hn) dHn,
H.eB
where B is a measurable subset of I,

n2

dH, = de,v,

i=1

and the z; are the Euler angles of H,. The group I, is compact, therefore, there is
normalized Haar measure y on I, which can be represented as follows:

u(B) = /H AL

where q(H,,) is a function of the z;, which we call the density of p.
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Any unitary matrix U,, can be represented as follows: U, = H,©0H}, where H, is
a unitary matrix, O, = (exp(i,)d,1), and the exp(if,) are the eigenvalues of U,,. We
arrange the arguments of the eigenvalues in nonincreasing order 0 < 8, < 6, < --- <
0, < 2m. The eigenvalues thus chosen are random variables. To fix the eigenvectors h
uniquely we require that arghy, = ¢, (p = 1,...,n), where the ¢p, 0 < ¢p < 2w, are
nonrandom numbers,

Let I' be the group of unitary (n X n) matrices, v normalized Haar measure on it and
B the o-algebra of Borel sets of I

If the Euler angles of a random matrix U,, have the distribution density p(Hp,), then
for any E € B and any real numbers oy, §; (i = 1,...,n)

P{H, € E, ap <Oy < B, k= l,...,n}
= C"/ {ﬁ(XnY"X;)/Q(X7LYnX;)]

x H|eiy‘“ —e”’”]zu(an largziy = cp, p=1,...,n) dYy,,
k<l

where ¢ is the density of the Haar measure v,
n
dy, = H dyi, Y, = (elyp (Spl)y
i=1

and the integration is over the domain

O<yi<yp < <yn <27, ap<yr<pBr, k=1,...,n

X0 € B, ¢ =(n1(2r)") .

If the distribution density of the Euler angles of U, is equal to the density of the Haar
measure v, then the eigenvectors of U, are stochastically independent of its eigenvalues.
The distribution density of the arguments of the eigenvalues of U, is

n‘ 2m" H]e'y"— 'y’ , O<yr <o <yp <27
k<l

The distribution of H,, is

P{H,c E} = v(dX, |argz, = ¢, p=1,...,n).
Xn€E \

If the distribution of the U, is absolutely continuous relative to the Haar measure v
with density p satisfying

P(XnYnXy) = p(Yn), where X, € I, Y, = (€% 6,),
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then the eigenvalues of U,, are stochastically independent of its eigenvectors. The distri-
bution density of the eigenvalues of U, is

H !eiyk - eiy’;zp(Yn)(n!(Zn)")‘l, O<y1 <+ <yn <2m.
k>l

13. Distribution of eigenvalues and eigenvectors of orthogonal random matrices

Let H, be a real orthogonal (n x n) random matrix. Suppose that there is a joint
distribution density p(z, .. » Tn(n— 1y72) of its Euler angles ;. For almost all values of
z; we can write p = p(T,, (11, i1 =1,...,n(n—1)/2)), since the Euler angles y; can be
expressed in terms of the entries of the orthogonal matrix Tp(z;, i1 = 1,...,n{n—1)/2).

It is easy to check that when the distribution density of the Euler angles of H,
exists, then the arguments of the eigenvalues of H, are distinct with probability 1.
The eigenvalues of H, are {e*'*, k = 1,...,n/2} if n is even and {eF** k =
I,...,(n —1)/2} if n is odd, where the )\k are real numbers with 0 < A, < 2.
Let Gk be the eigenvectors that correspond to the eigenvalues e***. The vectors Ok
corresponding to nonconjugate eigenvalues are orthogonal.

We order the eigenvalues as follows:

{ei)\lv e_i}\l 3ty ciAn/Z) e~i>\n/21 2w 2 /\] 2 ot > /\n/Z 2 O}

if n is even, and it can happen that some eigenvalues are *1. Since the eigenvalues
Ak are distinct with probability 1, the case of interest to us is that when two of the
eigenvalues A\; are +1 and —1. In this case we order the eigenvalues as follows:

{ei)\l, e—]Al . ’ei/\(n,z)ﬂ’ e—i)\(n_z)ﬁ, _+_]’ _1’
TZANZ 2 Aoy 2 0}
For odd n we order them as follows

{ei/\]7 c_i)\ly s 7ei)\(nil)/27 e_i/\("_l)/zy {7 2r z A1 Ze 2 A(n‘l)/Z P O}’

the last eigenvalue £ is a random variable which takes the values +1.
The matrix H,, can be represented almost surely in the following form:

_ . cosA;  sin) cosAg  sinlg
H"—Q"dlag{(—sin/\l cos)\l)""’(—sin)\q cosAg J° -l
N CH

for even n and

_ . COSA;  sin CosA,  sin A, T
Hy = Q"dlag{<——sin)\1 cos)q) LR (—sin/\p cos, /’ £ On
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p=(n-1)/2,

for odd n, where @,, is an orthogonal matrix whose column vectors are Re 5k, Im 671:-
In the first of these equalities there may be no eigenvalues +1 or —1. However, such

a representation is not unique. To make it unique we must fix some entries of ©On. Let
0, = &p + iyp. Then

anp = COS Apfp — sin Apgp’ Hn _‘p = sin Apip + cos ’\pgp'
From these equalities we find that z,, and y,, are orthogonal and
[(Hn —cos \pI)? + I'sin® A,] g, = 0.

The matrix (H, = cos A,I)? has real eigenvalues — sin? Ap of multiplicity 2. Therefore,
we can require that (&, 2p) = 1, (4, %) = 1 and 1, = ¢,, where ¢p is a fixed number
with |¢p] < 1.

If nis even and H, has no eigenvalues +1, or —1 then we put z,, = pp=2,...,n)
if n is even, and if H,, has the eigenvalues +1 and —1, then we put

Tip =Cp (p=2’---7n"2)7 Zin—1 20, i, 20,

ifnisodd, weputz;, = ¢, (p=2,...,n—1), £, > 0.
Let G be the group of real orthogonal (n x n) matrices, x the normalized Haar measure
of G, B the o-algebra of Borel subsets of G, and n an odd integer.

If the Euler angles of a random matrix H,, have the distribution density p, then for
any £ € B and real numbers o, §; (i = 1,...,(n ~ 1)/2) where 0 < oy, 5; < 2,

P{O, € F, ap <\ < B, k= L...,(n=-1)/2, £ = %1}
=ct /L (LY, T (TLY,ETY)
1
(n—1)/2 7 5
X H {[sin2 7(1 + 1) + cos? —2—(1 F 1)] |sin ] }
s=1

T — Tm . 4 Ts+
><1—Ism2 ST gip? 2
2 2

s>m

x [[dzaps(@¥n |ty = cp, p=2,...,(n —1), tin >0),
s S

Y = diag {( cos sinz ) v [ sz SinZ(n_1)/2 +1
—sinx; coszx : =SINZT(y_1)/2 COST(n_pyy2 )’

where ¢ are some constant.
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14. Distribution of roots of algebraic equations with random coefficients

In general, the entries of the random matrices can have no distribution density, but in
some cases the coefficients of the characteristic equation do have a distribution density.
Therefore, it is of interest to find the distribution of roots of random polynomials.

Let f(t): t" + &t + -+« + & = 0 be the algebraic equation whose coefficients
&,i=1,...,n, are random variables. Consider the solution of such an equation in the
field of complex numbers. It is known from algebra that the equation f(t) = 0 has n
roots v;, i = 1,...,n, and the roots v;, i = 1,...,n, are continuous functions of the
coefficients &;, ¢ = 1,...,n. Therefore, the roots v;, ¢ = 1,...,n, can be selected in
such a way that they will be random variables.

The roots of the equation f(¢) = 0 have the following form:

vi= A +ip, = =i, ., Vagr = A+ i,
Wk = A —ilky,  Vaky1 =T1, ...y Vn=Tn — 2Kk,
where A;, pi, i =1,...,n, 7;, 5 =1,...,n — 2k, are real variables, and the index & is

a random variable taking values from 0 to [n/2].

Arrange the complex roots in increasing order of their moduli. If the moduli of the
complex roots coincide, then we arrange them in increasing order of their arguments;
among the conjugate pairs of roots, the one with negative imaginary part comes first.
Real roots are arranged in increasing order. Roots selected in such a way are random
variables. Of course, there are many other ways of ordering eigenvalues, but we adhere
to this one as the most natural procedure.

If the random coefficients &;, i = 1,...,n, of the equation f(¢) = O have a joint
distribution density p(zi,...,z,), then for any real numbers o, 8;, 1 = 1,...,n,
P{Rev; < o, Imy; < B;,1=1,...,n}
[n/2]
= Zzs/ p(A1, Agy ..., A) - (21,22, - - - Zn) H(z, - zj)
s=0 JL: i>j
s . n
i=1 i=2s+1 )
where 2351 = Tp +iyp, 22p = Tp —iyp, p=1,...,8 21, L = 25+ 1,...,n, are real
variables, the domain of integration L is equal to
{i,yi, 2zt 21 < an, y1 <Py, 25 < 025, —Ys < Pas,
22541 < 2541, 0 < Pasity ooy 2n < O, 0 < B},
and the
Ak‘—‘(—l)k Z Zi,,Z,'l,...,Zik
1 <ig<--<ip
are the symmetric functions of the variables z;, i = 1,...,n; ¢(21,...,2,) = 1, if the

values z;, i = 1,...,n, are ordered as described above, and ¢(z1, . . ., z,) = 0 otherwise.
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The probability that the equation f(t) = 0 has exactly s pairs of conjugate complex
roots is

I - 2)

i>j

25/ (A1, ., An)p(z, . . .y 20)
Rﬂ

8 n
H dz; dy; H dz;.
i=1

i=2s+1

Let C be some measurable set of the complex plane whose Lebesgue measure given
on this plane is equal to zero and such that the linear measure of the Lebesgue set which
is equal to the intersection of the set C with the real line is also zero. Then the roots of
the equation f(t) = 0 get into C with zero probability. The probability that the roots of
the equation f(t) = O are on the real line is

/ p(Aly---yAn) H(z1, _Zj)HdZi-
21> >2n i=1

i>j

Suppose that the coefficients of the equation f (t) = 0 are complex random variables.
The roots of such an equation v;, i = 1,. . ., n, will be complex. Order the roots Vi, 1=
1,...,n, in increasing order of their arguments. The density of the real and imaginary
parts of coefficients &;, i = 1,...,n, will be denoted by p(Rez;, Imz;, i =1,... ),
where z;, ¢ = 1,...,n, are complex variables. Then the density of the roots v;, i =
1,...,n,is

p(ReAi,ImAi)H|zi - zj|2, argz; > --- > arg z,
(>3]

where the A;, i = 1,...,n, are the elementary symmetric functions of the complex
variables z;, 1 = 1,...,n.

Let the real function f(t) be continuous on the segment & < t < b, let it have
continuous derivatives be on the interval o < ¢ < b, and have a finite number of points
in which the derivative f(t) vanishes. Then the number of zeroes of the function f(@)
on the interval (a, b) is equal to

b
n(a,b) = (2m)~! /dy/ cos [yf(1)]| £/(t)] dt.

Moreover, a multiple zero is counted once but a zero coinciding with a or b gives the
contribution in n(a, b), equal to 1/2. With the help of this formula the following result
was obtained. If E,, denotes the mathematical expectation of the number of real roots
of an algebraic equation with independent normally N (0, 1) distributed coefficients, then
limy, 300 Ep/Inn =271,
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15. The logarithmic law

For each n let the random elements 51(1" ), 1,5 = 1,...,n, of a matrix ,E" be independent,

Egg_‘) =0, Vfi(;) =1,E [51%")]4 = 3, and for some & > 0,

445
sup  sup E|§i(;) " <o

n i,j=1,...,n

Then

lim P{[In det=2 —In(n — 1)!](2Inn)""/* < 2}
n—o00

= (27r)‘1/2 /I exp ( - y2/2) dy,

—00

lim P{signdet=, = +1} = 1/2,
n—oo

lim P{signdet=, = —1} =1/2.
n—oo

16. Limit theorems for random determinants

Let us call a set of random variables 55;‘), 1,7 = 1,...,n, asymptotically constant if

there can be found nonrandom numbers aS?), such that for all € > 0,

lim  sup  P{|e5 —alP| >} = 0.

N0 Li=1,...,n
The random vectors f_;mk, k=1,...,n,n=1,2,..., are called asymptotically con-
stant if there are constant vectors d,x, kK = 1,...,n, such that for all € > 0,

tim sup P{(€wk — Gnk, &nk — Gnk) > €} = 0.

noO L n

Let us consider the random variables z/l(]" ) = .fg.l) - ag’) - pg’), where
pgy) = / :lIdFij (.’E + (15?)),
|z|<T

T > 0 is an arbitrary constant, and F;;(z) = P{{gl) < z}. The square matrix B,, :=

(bg”)) is composed of the bg) = pﬁ?) + aw(;'l ).



48 V.L. Girko

If for each n, the vectors ({i(;'), J(.;‘)), i 23,4,j=1,...,n, are independent and the
column vectors and row vectors of the matrix En=1(¢ -(7')) are asymptotically constant,

ij
n n
S+ 3 ) s h} -0
i=1 i,j=1

h—co n—o0

lim lim P{

sup [ |Tr By| + Tr B, BY] < oo,

then

n

n
det(l + Zn) ~det(I+By) [T (1= vPui) [T (14 (),

iJ “j
>3, 4,5=1 i=1

(13

where the symbol “~

means that for any sequences of random variables £, and 7 and
for almost all z

Jim [P{&, <z} - P{n. < z}] =0.

17. The spectral function of random matrices

Let =), be a complex random matrix. Denote its eigenvalues by \;, i ='1,...,n. By
the spectral function of the matrix =, is meant the expression
n
pn(@,y) = ;' > F(z — Re(Ax/ba)) Fy — Im(Ae/bs)),
k=1
where F(z) =0as 2 < 0,and F(z) =l as z > 0, and ¢, b, are certain nonrandom
numbers. If ¢, = n, then p,(z,y) is the normalized spectral function of the matrix

by 1. If the eigenvalues ); of the matrix Zl are real, then the normalized spectral
function of the matrix =), takes the form

pn(z) =n~! ZF(z - i)
i=1

Obviously, the distribution functions are realizations of the function i, (z).
A random determinant can be represented in the form

;' In det (Z,b;") = // In(z .+‘ iy) dpn(z, ),

assuming that the integral on the right-hand side of the equation exists.
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Let =, be a real random matrix, A;, ¢ = 1,...,n, the eigenvalues of the matrix
=! exp{—2ay,). Denote the spectral function by

vn(z) = (2b2) ™" XH:F(“? = A)e(h),
i=l

where ¢(z) is a continuous function on (—00, 00).
Then :

[In|det 2| — an]b;' = /(; lnar:(cp(:zz))—1 dvy, (),

under the condition that the integral on the right-hand side of the equation exists.

By the notation pn(z) = p(x) {pn(z) ~— p(x)} is meant the convergence of
the finite-dimensional distributions of the random spectral funcnops En () to the corre-
sponding finite-dimensional distributions of random spectral function () (at the points
of the stochastic continuity of the latter function).

Let the function f(z)(—oo < z < o0) be continuous and bounded on the Yvhole real
line Ry, let the p,(z) be the normalized spectral functions of the symmetric .random
matrices =, () = p(z) on some everywhere dense set C of tl}e r;al line .Rl’
pin(—00) = p(—00), pin(+00) = p(+00), where pu(z) is a random distribution function.
Then

[ 1@ dun(a) = [ 1@ aute)

Let the function f(z) be continuous on the real line Ry; pn(x) = p(z) on some
everywhere dense set C of the real line Ry; pn(—00) = u(—00), pn(+00) = p(+00)
for some o > 0,

sn;pE/ |f(x)|l+ad,un(z) < 00.

Then [ fdp, = [ fdp. . . ‘

Let the =), be symmetric random matrices, u, () their normalized spectral functions,
tn(z) = p(r) on some everywhere dense set C of the real line Ry, pn(—oc) =
W(—00), pin(+00) = p(-+o00) for some a > 0,

I+a
< 0.

supn'ETr | In|Zy||
Then

n~!n |det Z,| = /ln |z} dp(z).
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It is convenient to prove limit theorems for u,(z), vn(z) with the help of the Stieltjes
transformation:

[@= 27" dunta) = n7' TE -2,
where z is a complex number, Imz # 0, = is a symmetric random matrix, and p, (z)
is its normalized spectral function.
Write

() = /(1 +itz) N dpn(z), &(2) = /(x —2)" V' dpa(z), Imz#£0.

The inversion formula at points of stochastic continuity z; and z; of the function gy, (x)
has the form

P{pn(22) = tin(21) < u} = ;ij}gl’{"—l /rl Imén(y +ie)dy < U}-

2

Analogously, we obtain the inversion formula for finite dimensional distributions of
the function p, ()

P{pn(z§) —un(:nf) <ug, k=1,...,m}

k
£
= lim P{n“'/ Imé&,(y +ie)dy < ug, k = 1,...,m},
e—0 z;c
where z¥, z¥, k= 1,...,m, are points of stochastic continuity of the function tn ().
Let pn(z) be a sequence of the random spectral functions and with probability 1,

lim supE pu,(h) =0.

h——00 pn

Then, in order that pn{(x) ~— p(z), where p(z) is some random spectral function, it is
necessary and sufficient that £, (z) = £(2), Im z # 0.
Let () be a sequence of the random spectral functions and

lim supE p,(h) = 0.
h——00 p

Then

a) in order that p,(z) ~— p(z), where p(z) is some random spectral function, it is
necessary and sufficient that 7, (t) = n(t);

b) in order that at every point of the continuity of the nonrandom distribution func-
tion p(z)plimp_eo in(x) = p(z), it is necessary and sufficient that for every ¢,
plimy, 00 7 (t) = n(t) where :

n(t) = / (1 + itz) ™" du(z).
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Let i (z) and A (z) be sequences of random spectral functions given on a common
probability space, and with probability 1

lim suppn(h) =0,  lim supA.(h) =0,
h——00 p h——00 pn

mn(t)z/(1+itm)_'dun, pn(t):/(1+itx)—‘dxn.

Then

a) in order that p1,(z) ~ An(z) on some everywhere dense set C, it is necessary and
sufficient that my, () ~ pn(t), —oo0 <t < oo;

b) in order that plim, 0 [ptn(z) — An(z)] = 0 for all z from some everywhere dense
set C, it is necessary and sufficient that for each t, plimp_yo0[mn(t) — pn(t)] = 0.

Let pn(z) and A, () be the sequences of random spectral functions and with proba-
bility 1, limp_, —eo Sup,, Eptn(h) = 0. In order that at every point of continuity of some
nonrandom distribution function p(z) whose Stieltjes transformation equals

w) = [(1+itn) duta), i () = ula),

it is necessary and sufficient that with probability 1 for every #, lim,_c0 m(t) =n(t).

18. Canonical spectral equation

A peculiar feature of the normalized spectral functions of a symmetric random matrix
with independent entries on the diagonal and above is their convergence to some non-
random function of distribution under the condition that the dimension of the matrices
is increasing. Let =, = (51(]")) be a symmetric random matrix and g, () its normalized
spectral function.

If for every n the vectors é; = (fi(?), fgl,.‘.,flg:)), i = 1,...,n, are given by
independent, random values {l(;), i,7,n=1,2,..., on a common probability space, and

there exists a limit

lim n'ETr(I +it=,)"" = m(t)

n—o00
and the function m(t) is continuous at zero, then with probability 1, limy—e0 fin(Z) =

() at every point of continuity of the nonrandom function u(z), whose Stieltjes trans-
formation is equal to

/(1 + itz)~" dun = m(t).
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For every n, let the random entries f{;, 1274, 14,5 =1,...,n, of the matrix =, =
(5(") (")) be independent, infinitesimal,

aij = / zdP{{;; <z}, 7 >0, is an arbitrary constant,
Jel<T

K, (u,v,2) = K(u,v, 2), where

z

Kp(u,v,2)= n/ yz(l + y2)~1 dP{&;; — ai; <y}

im<u<(@i+1)/n; j/n<v<(G+1)/n,

with the K (u, v, z) a nondecreasing function with bounded variation on z and continuous
on u and v in the domain 0 < u, v < 1. Then with probability 1 for almost all z

Jim_pn(z) = F(z),

where F(z) is a distribution function whose Stieltjes transformation equals

11
/(1 +itz) ' dF(z) = lim/ / zdGy(z, 2,t)dz
ald Jo Jo

where Go(z, 2, t) is a distribution functiononz (0 < < 1, 0< 2 < 1, —00 < t < 00),
satisfying the canonical spectral equation at the pomts of contmmty

Ga(,2,t) = P{[1 + t%a(Gal, 1), 2)] ' <z},

and £,(Ga(-,-,t),2) is a random functional whose Laplace transformation of one di-
mensional distributions equals

Eexp { — s£(G(-, -, t),2)}

=CXP{/0]/01 [/Ooo(exp{~syw2(1+alwl)—2}—1)

x(14z72) dK(v,z,a:)}dG(y,v,t) dv}, a>0,5>0.

The solution of the canonical spectral equation exists and is unique in the class L of
the functions G(z, z,t), which are distribution functions on z (0 < z < 1) for any fixed
0 < 2z<1,~-00 <t < oo and such that for any integer k£ > 0 and z the functions
J zkdG4(z, 2,t) are analytical on ¢ (excluding, perhaps, the point zero).
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19. The Wigner semicircle law

Let S, = ({1"))” » n=1,2,..., be symmetric matrices,

pin () =n"! Z L

Ain<z

where Ain, i = 1,...,n, are the eigenvalues of =y, and the random variables £ l(;’), 1,j =
1,...,n, n= 1,2, ..., given on a common probability space. . .

A semicircle law is any assertion which states that the normalized spectral funcqon
pn(z) converges, with probability 1 or in probability, to a nonrandom spectral function

p(z) whose density has the semicircle form:

(27I'0’2) 402 — 22,  |z| <20,
wie) = |z] > 20, 0 > 0.

If the random variables E(") i > j, i,7 = 1,...,n, are independent for each

n, Eg(") 0, and Varf(n) = 0%/n, and 0 < 0% < oo, then liMp 00 pin(z) = p(z)
with probablllty 1 if and only if for every 7 > 0

lim n™! Z E ﬁ(n) |£(n)| >7)=0.

n—>00
i,j=1

20. Limit theorems for determinants of random Jacobi matrices

Many problems of theoretical physics and numerical analysis can be reduced to the.
determination of the distribution function F(z) of the eigenvalues of a random Jacobi
matrix

En = (&0 + mibij—1 + (idija1),

where
_JO, i#47,
sa={1 2

is the Kronecker symbol.

In particular limit theorems for det =,, are very important.

For each n, let the random 3-vectors (&, Mk, Ck), £ = 1,...,n, be independent and
with probability 1,

E’C‘h’ké’kl?l" |’7k—l€k—1|<ly 6"21,"9:1,-"7’”'1 n:1!27"';
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sup sup E In’ (& + [meCel & M1 Cemi]) < o0.

n k=l,...,n
Then

p lim n~'(IndetZ, — E Indet 5,) = 0.
n—oo

21. The Dyson equation
Let the random variables &;, 1 = 1,2,..., of the matrices
En = ((2+&)bi; — 8i5-1 — Sijq1)

be independent, non-negative, and identically distributed, let the sequence of sums

i{k, n=12,...,
k=1

tend in probability to infinity, and let for some § > 0,
E|Ing& '+ < .

Then

oo
p lim n~'indet =, :/ InzdF(z),

=00 1

where the distribution function F(z) satisfies the Dyson integral equation

Flz) = / /2 PG aR(E <),

22. The stochastic Sturm-Liouville problem
Let us study the distribution of eigenvalues of the differential equation
u”(t) + (E@) + Mu(t) = 0;  u(0) =u(1) =0,
where £(t) is a real, continuous and bounded from below random process defined on
[0, L].

Sometimes, instead of boundary conditions, we use the following conditions

u(0) cosa — u'(0) sina = 0,

o
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u(L) cos B — v'(L)sin § = 0.
In the case when such differential equation can be approximately reduced to a difference

equation in order to solve the stochastic Sturm-Liouville problem, it is necessary to use
limit theorems for determinants of random Jacobi matrices

E.(0) = {5,-]- (2 + (g(%) 4 ,\)) — Gyt = Biga }

The matrix =, is a non-negative-positive definite matrix. Consider the random process

An(z) =3 AL F(z = Xin)s
i=1

where Ain = Aan = -+ = Ann are the eigenvalues of the matrix Z,(0). It is obvious
that

{e o] d _
/ (14 Az)'dAq(z) = o7 Indet En(N).
o dA
Let £(t) be a measurable process on [0, L] such that
. -1,
P{,int, 60> 0]

lim P{ sup &(t) = h} =0.

h—o0 o<t<L

Then for all A > 0,

n~lindet Z,()\) = /0 ‘ {E[exp {—% ]0 t (&(z) + Nw(2) dw} /a] }_2dt,

An(z) 2= Az), 0<z <00,

where A(z) is a nondecreasing, random process, bounded with probability 1, whose
Stieltjes transform is

/00(1 +t2)"'dA(x)
0
-2

n  ffmf-4 o]

as m — oo, where w(z) is a Brownian motion process which is indepepdent of &(t),
and o is the minimal o-algebra, with respect to which the process £(z) is measurable,
z € [0,L].
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In order to find the limiting spectral functions of random Jacobi matrices, we have to
invert their Stieltjes transform, which is the solution of the Dyson equation. Note that
such an inversion, in general, is a very difficult task. The Sturm oscillation theorem makes
it possible to avoid this operation in some cases. We shall give one of its generalizations.

Let A, be a symmetric real matrix of order n and let det Aii=1,...,n,(det Ay = 1)
be the sequence of its main minors, det A; # 0, i = 0,...,n.

Then the number of negative eigenvalues of matrix A is equal to the number of changes
of the sign in the sequence det 4;, i =0,...,n.

Let =, = (651" )) be a random real symmetric matrix of order n, let det=y = 1,
detZi, 1=0,...,n, be its main minors, u,(z) the normalized spectral function of =,.

If the random entries {,(]" ) y© 2 J, 4,7 = 1,...,n, are independent and have continuous

distributions for every n,
lim supE p,(h) =0,
h——00 g
then with probability 1 for almost all ,

Jim_(un(2) ~ Epu(z)) =0,

where

Epn(z) =n"! ZP{det(E,-_l — Iz)(det(Z; — Iz)) < 0}.

i=1

23. The central limit theorem for determinants of random Jacobi matrices
Let =5 = (£idi; + midij—1 + (j0ij41), and let o be the minimal o-algebra with respect

to which the random variables &7y, ¢, I =k +1,... , M, are measurable. Suppose that
Eln?|det Z,| exists. Then

In|detZ,| — Eln|detZ,|
) { /
-3 (e[ ]
k=1

—E [In] - m1Gerdiadil, + & - MhCebn—(k42)b7 ] (o p1y /%] }

di— b —(k+2
— 1o =2 + & — nkaI_)u_)
k1 n—(k+1)

where
di = det(&;dij + midij—1 + (bijr), 4,5=1,...,k,
bn—k = det(&ds; + m0ij—1 + (j6ijr1), i,5=k,...,n.

On the basis of such representation the following assertion holds.
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Let the random variables &;, i = 1,2,. .., of the matrix
Zn = (2 + &)8i5 — i1 — 8ij-1)

- ,
be independent, non-negative, identically distributed, and suppose Eln“¢ < oo, and
o? > 0, where

022/1""/0‘” Ulwln(—z*wzm—x—l)dc(x) |

_ /°° /w In(=2"'+2+u—2")dG(z) dF(w)| dF(u)dG(2),
o N1
with the distribution function G(z) satisfying the integral equation
6@ = [ 46(2)dF (), F() = P& <}
24y—z—<z, 221

Then

lim P{n~"?0~!(IndetZ, — E Indet 5] < z}

n—>00

= (2m)~ /2 /z exp (— y*/2) dy.

-~00

24. The Fredholm random determinants

Let =, be a square random matrix. We call the random function det(] +.tE':), where t is
areal or complex variable, the Fredholm random determinant of the ryamx En. Frejdholm
random determinants carry important information about random matrices. With their help,
the limiting distributions for eigenvalues of the random matrices can be f"ou.nd. In this
section, on the basis of limit theorems for Fredholm random determinants, ll{nlt theorems
for the eigenvalues of symmetric and nonsymmetric random matrices are glven.

Let =, = ({g.‘)) be square random matrices of the order n. Arrange the eigenvalues of

the matrix =, =T in nonincreasing order A1, = Aan = + -+ 2 Apn. Consider the random

process /\,,(:c)ﬁt;(l]ual to the sum of eigenvalues belonging to the semi-interval [0, x). If
with probability 1, Tr =,ZT < oo, then

/ (1 + t2)"'dAn(2) = dindet (I + £5,5%) /dt := 1 (2).
[1]

If

lim LimpyooP{An(+00) >R} =0,

h—o0
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then in order that Ap(2) ~— A(z), = > 0, where A(z) is a random function, nonde-
creasing and of bounded variation with probablhty 1, it is necessary and sufficient that
nn(t) = n(t), t > 0, where n(t) is some random function.

25. Limit theorems for eigenvalues of random matrices

Let =), = (f(")) be square random matrices of the order n. Arrange the eigenvalues
of the matrix HnH,T, in nonincreasing order Ajp, > Ao = +-+ 2 Ann. See notation in
Section 16.

For every n let the random entries fw , 1,7 =1,...,n, of the matrix =,, be in-
dependent; let the vector rows and vector columns of the matrix =, be asymptotically
constant,

lim Tr B,Bf =0
n—00

n

Z ~FP @) = K(z), z>0,

where F'i(;L)(z) = P{v} < z}, and the function K (2) is continuous and bounded for all
z>0.

Then for all integers k; > ky > - -+ > ky, > 0 and real numbers z,, > Ty > -+ >
Ty > 0,

lim P{A\en < 1,..., Aepon < Tin}
n—00

= (—1)171[(km_1)!]—1 /oml exp (— K(z1)) dK(z1)

X H {[(k, - ki+1 — 1)']—l

=1

v / " K () - K] dK(ziH)} (K (zm)] ¥
From this formula it follows that
Jim P{Am <o} = ~[(k - 1)1] /0 “exp [ < K(2)][K()* 4K (),
z >0,

and forevery k >m, 0<z <y,

lim P{\g, <z, Apnn < y}
n—oo

=[(m-1)k-m-— 1)!]_1 /Ozexp [— K(21)] dK (21)
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x / Y [K(z1) - K(Z)]* ™' [K(2)] ™ 4K (22).

If the function K (z) is differentiable, then

k—1
lim P{\en < &} = exp (- K(2)) Y (m)~'K™(z).
n—00 foopar

Let Am,, < --+ < Aj be the eigenvalues of the covariance matrix R,,,, and let the vec-
tors &1, ..., ZLn be independent observations of a random vector { distributed according
to the normal law N(@, Ry, ), and Ry, is the empirical covariance matrix:

n+1 . T
Rm, =n7"Y_ (& — @) (% — a)

k=1

and & is the empirical expectation:

k=1

Assume that the conditions limsup,,_, .. man ™' < 1, Ae(Rm,) < ¢ < oo hold. Then

p lim [\ — ] =0, p lim Ay —a1] =0,
n—00 n—>o0
where
1 |
az‘:Vi(l_'Y)_E;’YVZ(’\k“Vi)—la Y=mpn o, 7’:1727
vi = min{y;}, v, = max{y;} and the y; are the real solutions of the equation
-2
1—7- _Z'ﬂh(/\k —y) = —Zm(% — )"
k=1
If, in addition, Ag(Rm,,) =1, k=1,...,m, then
. ) N -
p lim [An(Rm,) = (1= v3)*] =0, p lim [Ai(Bm,) = (1+/7) 1=

p lim [Ak(Rmn) —ck] =0, k#1,m,

n-—-»00

where ¢y, is the unique real solution of the equation

_ m-l: p —1 y —1 (1 — 2
e RN (B LR
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x[(1+ 7?2 —y]}*dy, k=2,...,mn—1.

Consider tl'.le se?:)cm‘:c of s%'nfmetric random matrices =, = ({,(J" ) = n=12,..,
whose entries fij y 127, 4,5=1,...,n, are independent for every n, and let
2

E¢)) =a(s;, E[£M] =o', 0<o?< oo,

and for some 8 > 0
4
sup sup E |§§;‘)n'/2| P < oo,
n i,7=1,...,n

and Sup,, SUp;_.; . n |a$")| < oo. Let A; > --- > A, be the eigenvalues of this random
matrix. Then

plim(A —r) =0, plim(\, — ) =0,
n—>o0

n—00

where

1 & -
i =Y+ ;;Uz(%‘ ~a$")) 1,

y1 = max{y;}, ¥, = min{;}, and v; are the real solutions of the equation
n
D
k=1

If in addition a,(") =0,i=1,...,n, 02 =1, then

plim A, =2, plim A, = -2,

n—oo n—oo

plim[Ag —b| =0, k#n,

n—oo

where the value bg, k= 1,...,n — 1, is the unique real solution of the equation

(27) b (1 — 6/4)"? + 7V arcsin(br/2) + 1/2 = kn~".

26. The systems of linear algebraic equations with random coefficients

By a system of linear random algebraic equations we mean a equality = T(w) = 7j(w),
where £ = (¢;;) is a random matrix, 7j(w) is a random vector, and Z(w) is a desired
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vector from some set D of random vectors whose dimension is the same as that of the
vector T(w). ,

We call the system of equations £&(w) = 7j(w) normal if the entries of matrix = or of
the vector 77 or if the entries of both of them are distributed according to a joint normal
law.

The equation EZ(w) = 7j(w) has a unique solution if =, is a square matrix and
P{det = = 0} = 0. If the square matrix =, and the vector 7 have the joint distribution
density p(Zn, ) then the distribution density of the solution of equations Z% = 7 is
equal to

/ D(Zons Zn)| det Zo| dZn,

on the assumption that this integral exists.

If the vector 77, does not depend on the matrix =, and is distributed according to a
nondegenerate normal law with parameters @y, T, and P{det=, = 0} = 0, then the
distribution density of the solution £, (w) of the system =, &, (w) = 7, (w) is equal to

() := (21) ™2 det T,7V/?E| det =,
x exp{ — 0.5(T,;" (ZnTn — @n), (Znijn — @n)) }-

In this formula, we suppose the distribution of matrix =, to be such that the density
p(¥n) exists. For example, we can require that

E|detZ,| < oo.

In particular the density of the solutions of some systems of normal linear algebraic
equations has an explicit form: .

Let the vector 7, be normally distributed N(0,1), the column vectors & =
(&1,.--,&mn), i=1,...,n, of matrix =, be independent, not depending on the vector
7, and let they be normally N (0, R,,) distributed (the matrix R, nondegenerate). Then
the distribution density of the solution Z,, of the system of equations =,, &, = 7, is equal
to

P(in) = D((n + 1)/2) det RY*n "+ [1 4 (Rofi, )]~ "7

27. The arctangent law

Let us consider systems of linear algebraic equations 5, %, = 7,, where 5, = (5,(; )

is a real random square matrix of order n, and 7, = (1, ...,7,) is a random vector. If
det = # 0, then the solution of this system exists and equals ¥, = =, !7,; if det =,, = 0,
then the solution cannot exist. Suppose, that the components :1:2") of the vector z,, are

equal to some constant if det(=Z,) = 0.
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For every n, let the random variables &;;, n;, 4,7 = 1,...,n, be independent, E&j = for z2 + 2 < 0%, =0, % + y2 > o?,
0,En; =0, Var§;; = Varn, = 02,0 < 02 < 00, 4,5 = 1,...,n, for some § > 0 : :
- n
sup E [|6;1*° + [mi]**%] < oo. n(z,y) =07 ZX(Re A < z)x(Im Ag < y),
n,i,J 1 k=1

Then forany k # 1, k,l=1,...,n, A are the eigenvalues of the matrix H,.

; (n) - L (n) y..(m) _ -1
nli)rr;oP{mk <z}= nlgr;oP{zk [ <z} =1/24+ 7 arctg z,

29. The elliptic law
lim P m(-")<y1,...,z§")<yk n
nreo e ¢ } Assume that the random entries 51(,7) and 51(: ) of the matrix Hy = (f;(zl ') are dependent.

Suppose that for every m = 1,2,... the random vectors (51(,7),51(;’)), p2l(pl=
1,...,n) are stochastically independent,

=~ D20 ((k +1)/2)

u Yk —k)2 T
x/ / (1420 +-+2) Hdz,,
- - i=1

where i1, ..., are any distinct integer numbers from 1 to n.

2 — n
Bl =nt, E6) =p/m 0<lpi<lp#l,

and that the real and imaginary parts of random elements {z(;) {l(; ) have distribution

densities gpi(z1, 2, Y1, ¥2) satisfying the condition
28. The circle law

; sup sup supgp(z,y) < oo,
For every n, let the random entries 557?), l,p=1,...,n, of a complex matrix H, = np p,l:l,l.)..,n U,z i
(51()7)11_‘/2) be independent, E{;?) =0,E |£I(,7)|2 =0?%,0 < 0 < oo and let the quantities i
Re f,(c'll), Im f,(c?) have distribution densities py;(z) and g () satisfying the condition: where

for some 3 > 1,
Qpl(-'B, y) = // q(z1$17yvyl)dzl dyl
sup sup / [Pgl(z) + qft (w)] dz < oo,

n kl=1,..,n Then
and for some § > 0, i
p lim vy (z,y) = Az, 9),
sup sup E |§£7)|2+6 <00
n kl=l,..n where
Then for any z and y, 29 -1
’ ! : (az/axay))\(x,y) ="' [1- (a®+ bz) ]
p Jim vn(z,y) = v(z,v), x x{(be — ay)’(1 — @ = B) (@ + B) 7" + (az + by)’
P x (1+a?+8) (@ +8?) 7 < 1],
where ( +a? + %) ( ) ]

[azv(z,y)/axay] =0 2x7! a=Re pl/z, b= Impl/z.

[
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30. The unimodal law

Suppose that for every n the entries of the random matrices A,, = (5-('-”) Yoty Bn =
() 7o

(m:; ) ;=1 are independent, and

B¢ =Enf) =o,

EeP) =k, E[) =0,

O<c1<afn<c2<oo, 0<c <82 < ¢ < 0o,

n

and that for the random entries 51(77), ng-l), the condition

sup  sup E[|£§;)|4+6 + |n§;)l4+6] < o0

n i,3=1,...,n

is satisfied, § > 0.
Then for almost all z, y,

z oy
pnll)rr;o [pn(:z;,y) —/ / pn(u,v) dudv] =0,

where

n

1 2

[a,zm + (u2 + vz) 5ﬁn] “a,
k=1

n -1
_ -1 —2¢-2
a=|7mn g o, 8, ) ,

k=1

pn(u,v) =n~

n
pn(@,y) =n" Y x(Re A < z)x(Im Ak < ),
k=1

and the )y, are the eigenvalues of the matrix A;; 1B,.

31. The distribution of eigenvalues and eigenvectors of random matrix-valued pro-
cesses

Let Z,,(t) be a random symmetric square matrix of order n, with real random processes

&ij (t)., t > 0, be as its elements. Let A;(2), ..., Ap(t), 0_‘1(t), e ,gn(t), be respectively
the eigenvalues and eigenvectors of the matrix =,(t). We arrange the eigenvalues so

~
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that A (2) > --- > An(t) for every ¢ and choose the eigenvectors 6;(t), i=1,...,n,
in such a way that their first nonzero component be positive. Assume that the finite-
dimensional k-th dimensional distributions of the random process =, (t) have the densi-
ties p(t1,---stk, X1, -, Xk), where t1,..., % are some values of the time parameter,
and the X;, ¢ = 1,...,k, are real symmetric matrices of order n. The density of the
finite-dimensional k-dimensional distributions of the eigenvectors {A1(t), ..., A (t)} is
equal to

qlti,. .t Y1, -, Ya)

/ - /
::ck/---/ p(tl,...,tk,HlylH],.,.,HkYka)
Yra>DYns, B >0, s=1,..,k

k k
X HH(yis - yjs) H [L(st),
s=1

s=11>7

where Y; = (6:;yis), Hs = (hg;l)) are real orthogonal matrices of order n,

= 7rn(n+1)/4f[ {r((n—i+ 1)/2)}_‘.

i=1

32. Perturbation formulas

If we assume the existence of a distribution density of a random matrix, its eigenvalues
with probability 1 will be different. Therefore, we need formulas for the perturbations of
different eigenvalues of matrices.

Let A;(A +¢eB) and ;(A +£B) be the eigenvalues and eigenvectors of the matrix 4,
where £ is some arbitrary real parameter, with the eigenvalues \;(A+¢B), satisfying the
relation lime_,0 A;(A + £B) = A;. The coefficients of the characteristic equation for the
matrix A+ B are analytical functions of €. Therefore, the eigenvalues of such a matrix
are analytical functions of ¢ having only algebraic singularities. Then for ¢ sufficiently
small, the following expansions hold:

oo
AN(A+eB) =3 A A0
=0

[o o]
L(A+eB)=Y 1M, 1Y =1
m=0
If A\ # )\]’, i # 7, then
3™ = > Tr (S;B)* E; B(S;B)* E;B(S; B)*
s1+92+s3=m—2, 5 20

+TrE;B(S;B)™™!, m>2,
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A =1 E;B,

(m) _
E;T = > (S;B)E;B(S;B)"S; + (S;B)""'E;,
si+s2=m—1,s20
where
Si= Y. Ee—-XN)!, Ep=ull.
k#7, k=1,...,n

33. F:orward and backward spectral Kolmogorov equations for distribution densi-
ties of eigenvalues of random matrix processes with independent increments

Let wy (t) be the symmetric matrix process of Brownian motion of order n, i.e. the ele-
ments of the matrix wy(t) are random processes of the form &;;u; + w;; (t)(1 + 6;5)/2,
where the w;;(t), ¢ > j, are independent processes of Brownian motion, and the
{1 > p2 > -+ > jy are arbitrary real nonrandom values. For the Markov process

A(t) ={A(®),..., A (®) 5 M) = Aa(t) = --- = An(2)} the transition probability den-
sity exists,

P(Syfat,?j), f:($],...,l‘n), Z‘7=(yl,---,yn)-

Let f(Z) be continuous and bounded,
u(s, ©) := /R f@)p(s,Z,t,4) dy,

M" = {& z #z;,i#5}.
Then u(s, Z) for £ € M™, s € (0,t) satisfies the equation

(8, E) N, 0u(s,E) 1o Qu(s, 3)
ds _Zai(m)/2 ox; +§Z oz

i=1 i=1

where

ai(@) =Y [1/(z: — zx)]

ki

and the boundary condition limgq: u(s, ) = f(Z).

The function p(s, Z,t, ) in the domain s € (¢,T), £ € Ry, §¥ € M™ satisfies the
equation

n

ap(sy "E,t’w - a - L a
T =-2 lZa_y_[a’i(mp(s’z)tvm] +2-lza—yzp(s’fyt,y_')-
i=1 ot i=1 i

~
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This is the forward Kolmogorov equation for p(s, &, t, %) which is also called the Fokker—
Planck or Einstein—Smoluchowski equation. )

For any fixed s, the solution of this equation exists and is unique for all initial func-
tions p(s, £, 1, ) belonging to the class of functions that are everywhere compact in the
metric of uniform convergence on the space of all continuous and differentiable functions
(s, Z,t,¥), once with respect to s and twice with respectto y;, 1 =1,...,7n.

34. Spectral stochastic differential equations for random symmetric matrix pro-
cesses with independent increments

Let W,,(t) be a symmetric matrix process of Brownian motion. The eigenvalues A (t)
satisfy a system of spectral stochastic differential equations

(t) = 5 3 ((0) = Am(t) 7+ dun(t),
m#k

Ak(o)zﬂk, k=1,...,n,

where wy(t) are independent random processes of Brownian motion. A weak solution
of the system of this equations exists and is unique in a strong sense.

35. Spectral stochastic differential equations for random matrix-valued processes
with multiplicative independent increments

Let w§ be a random matrix-valued process of dimension m X m satisfying the following
conditions; for any 0 < ) <ty <--- <1lg <S5,

s _ .t b s 0 _ t __
wy = wiw? .. .wi,, wy=A, wp=1,

the random matrices wt;'*", i=1,2,..., are independent, and their distributions depend
only on the difference t;,; — ¢;, A is a real deterministic matrix, the eigenvalues «; of
the matrix AA’ are different, o) > ap > -+ > ap,

lim Ew!*t4t = A
Atl0

for any vectors Z and ¥ of dimension m, and

Jim (0 B((wh — )5, 5)" k] = (5,27 (1))

Let Ax(t) and fk(t), respectively, be the eigenvalues and eigenvectors of the process
&(t) := wg(wp)™ ‘
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Let L = {X := A\(X) # X(X), i # 5}, where X are non-negatively definite
matrices of dimension m x m,

v=inf{t>0: w(t) e L}.

By using the perturbation formulas for the eigenvalues, we have that the eigenvalues
Ak(t) satisfy the following system of stochastic differential equations as t < v,

dA(t) = 37 (M) + X)) (Me(®) = As(®)) ™" dt + ndt + duwi (t),
s#k

M0)=ag, k=1,...,n,

where the wy () are independent processes of Brownian motion.

36. The stochastic Ljapunov problem for systems of stationary linear differential
equations

Let #'(t) = A#(t), £(0) = Z, To # O be a system of linear differential equations with
a random matrix of coefficients A. The stochastic Ljapunov problem for such systems is
that of finding the probability of the event

{w: Z(t) - 0, t > co}.

Let us consider a system (d/dt)2"(t) = AZ(t), £(0) = ¢ of linear differential equations
with constant real coefficients, where A is a square matrix of order n, and Z and ¢ are
n-vectors. The solution of such an equation converges to the null vector, as t — oo, for
any vector ¢ # O if and only if ReA; < O where the ); are the eigenvalues of A. A
matrix A for which Re A; < 0 will be said to be stable. To prove the stability of A we
can use Ljapunov’s theorem: A is stable if and only if the matrix Y determined by the
equation A'Y +Y A = —I is positive-definite. However, if A is a random matrix, this
stability criterion is inefficient.

Let = be a random symmetric matrix of order n with probability density p(X) and
let \; be its eigenvalues. Then,

P{A; < 0, 7= 1, .. .,'Il} = C/p( — Zﬂx(n+1)Z’Zx(n+l) dan(n+1),

where Zy,x (n41) is an n x (n + 1) real matrix, and

c= ,T—n(n+3)/4H[‘[(i +1)/2], dZnx(nin = H dz;;.

i=1 i=l,...,n, j=l,...,n+l
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If the entries &;, ¢ > j, of the symmetric matrix = are independent and have
N(aij, afj) distributions (agj # 0}, then

P{\;<0,i=1,...,n}

' B
—n(n+1)/2 =1 - =
= (27[) n(n ) Ha'ij C/ /Cxp{ 2
i2]
n+l 2 ’1 n n+l 2
-2 2
X Za{jz (aij - Z Zikzjk> -3 Zoii (aii - Z zik) }
i>j k=1 i=1 k=1
X H le‘j.
i=1,...,n, j=1,..,n+l

37. Equation for the resolvent of empirical covariance matrices if the Lindeberg
condition holds

Let R, be the covariance matrix of the m,-dimensional random vector ¢, EE =a. The
n
expression

pim, (@ B) = mg ' > Flz = M)
k=1

is called the normalized spectral function of the matrix Rp,,, where F(z - Ak) = 1if
M < z and F(z — A\g) = 0if Ax > x, and Ay are roots of the characteristic equation

det(Iz — R) = 0.

Let £, 23, . . . , £y be the observations of the m-dimensional random vector £. Suppose
this vector has covariance matrix Ry,,,,

&=y i=1,....,m)T = HR,/X(&; - a),

where H = (hi,..., hm), hp is an eigenvector corresponding to the eigenvalue ), and
the random variables &;; are independent,

0<c €A r <00,

lim myn!=¢, O<ec<l.
n—o0

Then, in order that for every t > 0,

p lim Uw(tﬂ)—‘dp(z,ﬁtmn) ——amn(t)} =0,

n—o0 0
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where

R n

Rn=n-10)7"3 (B -2)@ -8, F=n"Y 2,

k=1 k=1
and the am,, (t) are non-negative analytical functions satisfying the equation
o0
ana®) = [ {4 [(1 = mon™ 0 i (O]} i, 0, ),
t>0,

it is sufficient, and in the case of symmetric variables ;;, it is also necessary, that the
Lindeberg condition holds, i.e. for every 7 > 0,

n]iﬂn;om;’ ZZE |€ij(n — I)'l/2|2X(|§ij‘(n -7 > 1) =0.

i=1 j=1
38. Equation for the Stieltjes transformation of normalized spectral functions of the
empirical covariance matrix pencil
Let Ry and R; be nonsingular covariance matrices of two independent m-dimensional

random vectors &; and the &, @) = E§, d = Efz
The expression

pn(z1, R, Ry) = m_, ZF(I - )
k=1

is called the normalized spectral function of the R; and R, covariance pencil, where
F(x — X&) = 1if Ay < z, and F(z — \;) = 0 if Ay > z; )\ are roots of the
characteristic equation

det(Riz— Ry) =0, 0<d; <A <dy<oo.
Letzy,..., Zn,, Y1,...,Yn, be Observations of the random vectors 5-; and fz
&= (&3 =1,...,m)" = Ry }(& - ay),
=My, ji=1.:.,m)" = R{]/z(ﬁi.— ),
let the random variables &;;, 75, 4,7 = 1,2,..., be independent

im ==, lim Z=c, c'4gl<l, el
m—o0 T ’ nooony 2 1 2 v el ’
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and let the Lindeberg condition be fulfilled, i.e. we have

1520 [ZE|€“(n1 - 1)_1/2\zx(|§“|(n1 _ 1)~12 > 7)
i=1 : 7

m
+m;! ZE |71 (2 — 1)_l/2|2X(|7h1|(n2 —1)712 > T)] =0,

i=1

for every 7 > 0. Then

m—00

p lim [/ (t+x)"dum(z,}?1,f22) —am(t)] =0, t>0,
0

where the function an,(t), t > 0, is equal to

am(t) = — /0 ” (%)bm(t,z) dz,

and the function by, (t, ) satisfies the equation
0 -1
bn(t,a) = / [a + t(l + tey b (t, a)) + w[l - +ag
0

X b (t, @) (a + terbm (t, a))—ldpm(x, Ry, Ry).

39. Consistent estimates of generalized variance

Let the independent observations Z1,...,ZTm of the my-dimensional random vector

£, n > my, be given,

n n

= " N [ 6T o — —
R::(n—l)"]Z(zk-—m)(xk—w), Z=n ‘Emk.
k=1 k=1
The expression det R is called a generalized variance. If the vectors z;, i = 1,...,n,

are independent and distributed according to the multidimensional normal law N(a, R),
then

n—1
det R~ detR(n—1)"™ H X2,

i=n—-m

where x? are independent random variables distributed according to the x>-law with
i degrees of freedom. In the general case, the distribution of det R is difficult to find,
and therefore finding consistent estimates for det R is a very complicated problem. It
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is proved, that under certain conditions the G-estimates for the variables c;! Indet R,
where ¢, is a sequence of constants such that

lim ¢ ?Inn(n —m,)"! =
lim ¢ Inn(n = m,) ! =0,

can be represented in the form

n—1

Gi(R) = c,:l{lndetf?+ln [(n—— nH™(Ar )_ln(n—mn)_l}y

where A™

For every value n > my, let the random m,,-dimensional vectors xﬁ"), et ,z&") be in-
dependent and identically distributed with a mean vector @ and nondegenerate covariance
matrices R, such that for a certain § > 0

() 445
sup sup E|1:£J") < 0,

n i=1,...,n, j=1,...,m

where the :Ef]") are the vector components of Z; = Rm/ *(z\™ — a),

lim (n —m,) = o lim nm ! > 1;
n—)oo( ") ? neyoo n = 1)

and .for each value of n > m,,, the random variables :nz(-;), t=1,...,n,7=1,...,my,
are independent.
Then

p lim [G, (Rmn) —¢;'In det Ry, ] = 0.

n—00
If, in addition to the previous condition,
EEP) =3, i=1,..,n =1, ,m,
then
nan;QP{ (chl (Rmn) —Indet Ry, ) ( — 21n (1 — mnn"'))—l/2 <z}

= (27r)-‘/2/ eV /2 dy.

—00

my=(=1) (n-m)

Random matrices 73

40. Consistent estimates of the Stieltjes transform of the normalized spectral func-
tion of covariance matrices

Consider the main problem of statistical analysis of observations of large dimension: the
estimation of the Stieltjes transforms of normalized spectral functions

pma (@) =mz" D Xk < 2)
k=1

of the covariance matrices R, from observations of the random vector E with covariance
matrix Rp,,, where the Ay are the eigenvalues of the matrix Ry, . Note that many analytic
functions of the covariance matrices that are used in multivariate statistical analysis can
be expressed through the spectral functions fim,, (z). For example,

M VT f(R,) = /0 " (&) dpm (),

where f(z) is an analytic function.
The expression

<p(t,Rm,_)=/ (1 + t2)" dpm, = m " Te(I + tRpm,)"™"
0

is called the Stieltjes transform of the function fim,, (). The consistent estimate of the
Stieltjes’ transform (%, Ry,,,) is by definition the following expression: Gy(t,Rm,) =
©(0(t), Rm,.), where 0,,(t) is the positive solution of the equation

9(1 = mn(n—1)"" + ma(n - )78, Rm.)) =t, t>0.

It is obvious that the positive solution of this equation exists and is unique as t > 0,
ma(n—1)"1 < L.

Let the independent observations Z}, . .., L, of the my-dimensional random vector E
be given, and let the G-condition be fulfilled:

limsupmnn_1 <1, 0<ag<h<an<oo, i=1,...,my,
n—o0

— -

let the components of the vector (Mik, ..., NMmak)" = anlﬂ/ 2(§ — E¢) be independent,
and

sup sup sup  Emix|*? <00, 6>0.

n k=l,...,ni=l,....mn
Then
tim P{[G2 = p(t, R, )] V(0 = Dman(t) + ea(t) < :c}
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x
= (2,.—)—1/2/ eV /2 dy,
—00

for ¢ > 0, where a,,(t) and c,(t) are some bounded functions.

41. Stochastic condition of complete controllability

The basis of the theory of linear stationary controllable systems is the following mathe-
matical model,

dz . Lo S
pr = AZ + Bu, Z=C%Z,
where Z(t) = (z1(t),...,2n(t))7 is the state vector; @(t) = (ui(2),...,ur(t))T is the
input of the system, or control; Z(t) = (z1(t), ..., zm(t))T is the output of the system, or

observation; A = (aj;) is an n X n matrix; B = (b;;) is an 7 x r matrix; and C = (eif)
is an m X n matrix.

This system is “in general position” if and only if
det (bi, Ab;,..., A"'5) #£0, i=1,2,...,r

where l_;; is the i-th column of the matrix B.
If B = b is a vector, i.e. 7 = 1, then the condition

det (bAb... A™'B) #£0,

is a criterion for the system’s complete controllability.

Thus the quantity det(b Ab, . A""b) D, plays a central role in the theory of
stationary controllable systems.

However, in real systems, because of a number of always existing factors (obstacles,
noise, inaccuracies in measurings, wrong information), the elements of the matrix A and
of the vector b cannot be regarded as deterministic quantities.

Obviously, if the elements of the matrix A and the vector b are continuous random
variables, then P{D,, # 0} = 1. A much more interesting (but rather complicated)
problem is to find the probability

P{|D,| > €}, e>0.

This problem, in general, is far from being solved. We shall consider only one particular
important case.

Let A be a random symmetric matrix which does not depend on the vector b, and
such that the entries on the main diagonal and above it, are independent and distributed
according to the normal law N(0, 1); and such that the components of the vector b are

N
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also independent and distributed according to the standard normal law. Then for every
k=0,1,2,...

2n(k+2)/2 W;n(n+|)'/4— n [‘(1 + (k‘;l’])
nl(k+1)" T(/2)

E|D,|f =
j=1

42. Random matrices in physics: Spacing of eigenvalues

Energy levels of heavy atomic nuclei under high energy are arranged rather close to one
another, and it is practically impossible to find them even if the Hamiltonian of system is
known. In this connection, Wigner proposed a statistical model of highly excited states
of heavy atomic nuclei in which complex nuclei are regarded as some “black cavity”,
and the particles, which make up a nucleus, interact according to an unknown random
law. The central problem is the choice of a mathematical model for such systems. As
a model of an ensemble of complex nuclei, Wigner chose a Hermitian matrix of large
dimension, the elements of which were independent random variables with zero mean,
identical variances, and bounded moments.

Wigner proposed the following hypothesis: In a sequence of a great numbers of levels,
on the average separated by distance D from one another and having identical values
for all quantum numbers considered for identification such as moments of the amount of
movement and even parity, the probability to find two levels at a distance between £ and
t + At is equal to

Q(t)dt:= (2D) 'ntexp ( — 7rt24_1D'2) dt.

As the mathematical model for checking this Hypothesis, again Wigner’s model was
chosen. Mehta and Gaudin obtained the density p(t) of the distance between two neigh-
boring eigenvalues of a random Hermitian matrix, of which the elements on the diagonal
and above it were independent and distributed according to the standard normal law. This
density differs from the value Q(t) but not too much, |Q(t) — p(t)| < 0.0162.

Let A\ > A, > .-+ > A, be the eigenvalues of a symmetric random matrix = and
suppose = is such that the random variables \; have density p(z1,...,z,), 1 > --- >
Zn, and the function p is symmetric, i.e. p is invariant under a simultaneous permutation
of the variables. We consider the spectral function for spacing of the eigenvalues of the
random matrix =

n—1

On(z) =n~! ZEF(I = (A = X)),

=1

where

F(x):{o, z<0.
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This chapter is devoted to the main results and methods in the theory of matrix
equations. The problem of factorization of matrix polynomials is essentially a problem
concerning special systems of matrix equations. It is not easy to describe the scope of
the theory of matrix equations. Rather the subject consists of a set of concrete equations
and algorithms to solve them. These algorithms are often useful for the theoretical study
of matrix equations and properties of their solutions.

The theory of such highly structured matrix equations as the Lyapunov and Riccati
equations, which are widely used in applications, represents an advanced part of matrix
analysis. A great many books and papers on this subject have already been published,
but the bibliography is still rapidly growing, mainly in publications on automatic control
and scientific computation.

Our attention here will be primarily directed to algebraic aspects of the theory of matrix
equations and matrix polynomials. As a rule, our main tool will be the use of invariant
subspaces of certain associated matrices and linear matrix pencils, thus reducing the
problem of solving matrix equations to certain spectral matrix problems. Nevertheless, it
is worthwhile to point out that more efficient approaches in one or other sense may be
applied to some highly structured problems.

This chapter is organized as follows. Section 1 prepares the ground for the sections that
follow. Mostly attention is paid to the definitions and properties of invariant subspaces
of regular linear matrix pencils, which are a straightforward generalization of invariant
subspaces of matrices.

Linear matrix equations are treated in Section 2. A brief survey of the theory of
linear matrix equations is followed by a summary of the main results on the Lyapunov
equations.

Nonlinear matrix equations are studied in Section 3. First the approaches based on
perturbation theory and iterative methods are discussed. Then the methods of reduction
of quadratic and other nonlinear equations to spectral problems for linear matrix pencils
are presented in detail. Considerable attention is paid to the algebraic Riccati equations.

Section 4 deals with the theory of factorization of matrix polynomials. It includes
a description of necessary and sufficient conditions for the existence of divisors and a
theoretical algorithm for computation of right polynomial divisors. Then the theorems
on symmetric factorization of self-adjoint matrix polynomials are discussed.

All scalars, vectors, and matrices in this chapter are complex.

1. Spectral characteristics of a regular linear matrix pencil

A regular linear matrix pencil is a A-matrix AB — A with N x N matrices A and B
provided that the scalar polynomial p(A) = det(AB — A) is not identically zero.

THEOREM 1 (The Weierstrass canonical form). For any regular matrix pencil AB — A
there exist nondegenerate matrices U and V such that
I —
xBoa=y M-Im0y M
_ 0 Moo — I
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where Jp, Jo are in the Jordan canonical form and J, is nilpotent, i.e. it has only zero
eigenvalues.

THEOREM 2 (The Schur canonical form). For any regular matrix pencil \B — A there
exist unitary matrices U and V such that

AB—A=V(\Tg - Ta)U, @

where T4, Tg are a pair either of upper triangular matrices or of lower triangular ones.

The roots of the polynomial p(A) = det(AB — A) are called the finite eigenvalues of

a pencil AB — A. The set of all finite eigenvalues of a pencil AB — A will be referred

to as the finite spectrum of AB — A. It is clear from (1) that the finite spectrum of

AB — A is precisely the set of all eigenvalues of Jr. The Schur form (2) also yields
finite eigenvalues of the pencil AB— A: let o; and 3; be equally located diagonal elements
of the triangular matrices T4 and T respectively, then the finite spectrum of AB — A
consists of all numbers «;/3; with 3; # 0.

If the degree of the polynomial p(A) is less than N then the pencil AB — A is said to
have an infinite eigenvalue. Strictly speaking, the zero eigenvalues of the pencil B — pA
are the infinite eigenvalues of AB — A and vice versa. Henceforth the matrix pencil
B — pA is referred to as the dual pencil to AB — A. From (1) we derive that Jo
corresponds to the infinite spectrum of AB — A, i.e. all infinite eigenvalues of the pencil
AB — A. The set of all eigenvalues of a pencil AB — A is called the spectrum of AB — A
and consists of the finite and infinite spectra of the pencil.

Let Xp be a finite eigenvalue of a regular matrix pencil AB — A. A sequence of vectors

20, T1,...,T1—1 € CN, zg 5 0, forms a right Jordan chain of AB — A corresponding to
Ao if

()\()B—A)(L‘o =0, (/\()B—A).’L'i'f"B.’L"i_l =0, 1=12,...,1— 1.

Analogously, a sequence of vectors g, Z1, ..., %1 € CN, zg # 0, forms a right Jordan
chain of AB — A corresponding to the infinite eigenvalue if

B.’L‘QZO, B.’I,'i—Axi__1=0, i:1,2,...,l—1.

Left Jordan chains are defined in a similar way.

It is not hard to verify that the columns of the matrix U in (1) are composed of right
Jordan chains of AB — A, and the columns of V consist of left Jordan chains.

Now we introduce the important notion of invariant subspace of a regular pencil
AB — A. A linear subspace £ C C" is called a right invariant subspace of AB — A if

dim(AL + BL) < dim £, ’ 3)

where AC+ BL={z e CN |z =Ay+ Bz, y € L, z€ L} One can show that by
virtue of the regularity of the pencil AB — A only the equality sign occurs in (3). We
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note that a right invariant subspace £ of AB — A is an invariant subspace of the matrix A
if B = I, and is invariant for the matrix B if A = I. Moreover, if @ i§ a nondegenerate
matrix then the pencils AB — A and AQB — QA have the same invrcmant' Su.bspaccs.

Left invariant subspaces of a regular pencil AB — A are defined in a similar way. In
what follows the word “right” before “invariant” will be often omitted. . .

We shall say that an N x d matrix X of rank d is a basis matrix for a d-dimensional
subspace £ C C" if the linear span of the columns of X equals L. ‘

Let X be a basis matrix for a d-dimensional invariant subspace £ of a pencil AB — A
and let the linear span of the columns of an' N x d matrix Y contain the subspace
AL + BL. Since AL C AL + BL and BL C AL + BL, there exist d x d matrices Az
and B such that

Conversely, if (4) holds and rank(X) = d, then for the subspace £ C C™N with basis
matrix X we obtain that dim(AL + BL) < rankY < dim £. Thus, (4) with a matrix X
of full rank is shown to be an equivalent definition of the invariant subspace L of the
pencil AB — A with basis matrix X. N

The spectral characteristics of the d x d matrix pencil AB; — A, are r.estrlctlons of
the spectral characteristics of the regular pencil AB — A. Indeed, the pencil AB, — {15
is regular, the eigenvalues of AB; — A are eigenvalues of the pencil AB — A, ie.

the spectrum of AB. — A is a subset of the spectrum AB — A. If z9,21,...,211 1S
a Jordan chain of the pencil AB; — A corresponding to an eigenvalue Ao, then X 2o,
Xz,...,Xz_ is a Jordan chain of AB — A corresponding to the eigenvalue Aq.

It is clear that full information on an invariant subspace £ and the spectral properties
of the original regular pencil AB — A restricted to £ is given by the four matrices
(X,Y, Az, B.). But this structure is too inconvenient for our purposes, and we introduce
the following

DEFINITION. A pair (X;T) consisting of an N x d matrix X of rank d and a d x d
matrix T is a monic block eigenpair of dimension d for a regular matrix pencil AB — A
if AX = BXT.

This definition implies that AX = YT, BX =Y, ie. Ac =T, Bc = I. Therefore,
X is a basis matrix of an invariant subspace £ of the pencil AB — A. It is obvious that the
invariant subspace £ can be represented by a monic block eigenpair (X;T) if and only
if the matrix B/ of the four matrices (X,Y, Az, B.) satisfying (4) is nondegenerate.

It is important to observe the fact that if two pairs (X;T) and (X',T") generate
the same invariant subspace £ then there exists a nondegenerate matrix @ such that
X' = XQ, T = Q~'TQ. As a consequence, monic block eigenpairs (X;T) and
(X';T') are called similar when X’ = XQ, T’ = Q~'TQ with some nondegenerate
matrix ().

DEFINITION. A pair (X; T') consisting of an N x d matrix X of rank d and a d x d matrix
T is referred to as a comonic block eigenpair of dimension d for a regular matrix pencil
AB — A if AXT = BX.
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In this case, Ac = I, Bt =T, Y = AX. A comonic block eigenpair (X;T) can bé
used if and only if the matrix A, of the four matrices (X,Y, Az, Bc) is nondegenerate.
Two comonic block eigenpairs (X; T') and (X"; T") are called similar when there exists'a
nondegenerate matrix Q such that X' = XQ, T' = Q7'TQ. It is also obvious thﬁiﬂhe
matrix T' of a comonic block eigenpair (X ; T') is nondegenerate then the pair (X;T71)
is a monic block eigenpair for the dual pencil B — pA.

DEFINITION. If the matrix T of a monic (or comonic) block eigenpair (X; T) for a‘pencil
AB — A is a Jordan matrix, then such a matrix pair (X;T) will be called a monic
(comonic) block Jordan pair.

Let (X;T) be a monic block Jordan pair of a regular matrix pencil AB — A and
T = block diag[T}, T3, . .., Ty] be the partition of T into the Jordan blocks T; of order
lj, 7 =1,2,...,k, respectively. Let us also partition X = [X1X5...Xk] into blocks
consistent with the partition of T, i.e. X; will be a matrix of size N x l;. Then the
columns of the matrix X; form a Jordan chain corresponding to an eigenvalue of the
matrix T;. The structure of a comonic block Jordan pair is analogous.

Yet it is not possible to represent all invariant subspaces of an arbitrary regular matrix
pencil AB — A by monic and comonic block eigenpairs only. It is instructive here to

exhibit the structure of an arbitrary invariant subspace £ of a pencil AB — A. Let X .

be a basis matrix of £ and AX = YA,, BX = YB,, We make use of the canonical
Weierstrass decomposition of AB; — Ag: _

AB—Ap=v |[M—IF o 1y,
0 Moo — I

Then

AXU=vVv [F O, Bxu=yv(l °).
~ 0o I 0 J

The matrices XU and Y'V are partitioned consistently with the sizes of the two blocks
JF and Joo: XU = [XFXoo]’ YV = [YFYoo]- Hence, AXF = YpJp,«BXF = YF,
AXo = Yoo, BXoo = YooJoo. Thus, we have defined a_monic block Jordan pair
(XF; Jr) and a comonic block Jordan pair (Xoo; Joo) of the pencil AB — A, with the
columns of the composed matrix [Xr Xoo| being a basis of £. If Jp # 0 and J #0
then, obviously, the subspace £ cannot be described only by means of monic or comonic
block eigenpairs. ‘

DEFINITION. A pair (X1, X5; Tj,T3) consisting of an N x d; matrix X, an N x d
matrix X>, a di x d matrix T} and a d; x dy matrix T} is referred to as a decomposable
block eigenpair of dimension d = d; + d for a regular linear matrix pencil A\B — A if
rank[Xl Xz] =d and AXl = BX]T[, AXsz = BXz.

As was shown above, every invariant subspace of a regular pencil AB — A can be
represented by means of a certain decomposable block eigenpair, and, vice versa, every
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decomposable block eigenpair (X1, X2;Ti,T2) corresponds to the invariant subspace
with the basis matrix [X; X3]. .

Monic and comonic block eigenpairs of a pencil AB — A are, evidently, particular
cases of decomposable block eigenpairs.

As distinct from the case of monic and comonic block eigenpairs, when all the pairs
corresponding to the same invariant subspace £ are uniquely determined with due regard
for similarity, decomposable pairs associated with the same invariant subspace generally
are not uniquely determined up to similarity. However, if for two decomposable pairs
(X1, X2, T1,T2) and (X1, X}, T{,T;) the spectrum of T}, i = 1,2, coincides with the
spectrum of T and the spectrum of T does not intersect with the spectrum of T3 then
there exist nondegenerate matrices @) and @ such that

X|=XQi, X;=XQ2 T =Q'TiQi, T, = Q;' T

Finally, we introduce several more definitions. An invariant subspace £ of a regular
matrix pencil AB — A will be called a spectral invariant subspace if the spectrum of the
pencil AB; — A with the multiplicities taken into account does not intersect with its
complement to the spectrum of AB — A with its multiplicities. In other words, L is a
spectral invariant subspace of a regular pencil AB — A if and only if £ is a root subspace
of AB — A or the sum of several root subspaces. We remind that the root subspace of a
regular pencil AB — A corresponding to an eigenvalue A¢ designates the linear span of
all Jordan chains of AB — A corresponding to the eigenvalue A¢. In view of the above
observations we shall say that a spectral invariant subspace £ corresponds to the part of
the spectrum of AB — A which is equal to the spectrum of ABz — A.. If the spectrum of
AB — A is the union of two disjoint sets A; and A,, then, obviously, there exists a unique
spectral invariant subspace £; of the pencil AB — A corresponding to A;. Respectively,
there exists a spectral invariant subspace £, corresponding to A;, with C" being equal
to the direct sum of the spectral invariant subspaces L, £, of the pencil AB — A. For
instance, the finite and the infinite spectra of AB — A can be used as A; and A,.

We shall say also that (X;T) is a block eigenpair of a matrix A when (X;T) is a
monic block eigenpair for the matrix pencil Al — A.

Notes and references

A proof of Theorem 1, which is really a suitable application of the classical theorem on
the Jordan canonical form of matrices, can be found in [13, 39]. Theorem 2 and methods
to compute the Schur form are discussed in [34]. It should be noted that in the literature
on numerical linear algebra the invariant subspaces for regular linear pencils are often
called the deflating subspaces [40, 41, 10, 27].

Block eigenpairs are intensively used in [18].

We do not discuss at all here the continuity properties of invariant subspaces of A\B— A
with respect to perturbations of the elements of the matrices A, B. These are extremely
important for computational mathematics. General qualitative results on this subject are
presented in [19]; some quantitative estimates of the Lipschitz continuity for spectral
invariant subspaces can be found in [10, 39, 30].
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2. Linear matrix equations
Let us consider the linear matrix equation of a general form with respect to X:
AXB1+ A XBy+---+ A, XB, =C, (5)

where A;, B; are of size M x M, N x N, respectively. The way used to study (5) is
to represent the matrices X and C as vectors in CMN | with the linear operator in the
left-hand side of (5) being an M N x M N matrix.

Denote the columns of the matrix X by z,z,,...,25y € CM and introduce the
operation vec(X) = [z7 zI ... 2|7 to represent a matrix X in column vector form,
Then vec(AX B) = (BT ® A)vec(X), where the Kronecker product M; ® M, is by
definition the following block matrix:

(M)uM, (MM, ... (M)uM,
M, ® M, = (M)uMy (Mi)nM, ... (M))uM,
(M)uMy (MM, ... (M)uM,

Here k x [ is the size of M. Thus,
n n
vec (ZAiXB,-) = Z (B:F ® A;) vec(X),
i=1 =1

i.e. equation (5) is equivalent to the system of linear equations in the usual form:

i=1

The properties of the operator of equation (5) are entirely defined by properties of the
matrix

n
Z B;T ® A,
=1

which are, in general, “hidden” at first glance.
Let us consider the problem in case n = 2, that is the equation

A XB, — A, XB, = C. )

For convenience in the formulations of the subsequent results we put the minus sign in
(7). It is possible to simplify the structure of the matrix B,T ® A — Bgﬂ ® A; by taking
advantage of the triangular canonical forms of the pencils A; — AA; and AB; — B,. We

(Zn: BT ® A,—) vec(X) = vec(C). ©)
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suppose that these pencils are regular and use the Weierstrass canonical form (Theorem 1).
Similar results can be also obtained with the aid of the Schur form from Theorem 2.

So, using
A} = My = Va(Ta, = \Ta,)U;', AB1 = By =VB(ATs, — Tg,)Uz' (8)

with nondegenerate V4, Vg, Ua, Up and triangular Ta,, Ta,, T, Tp,, (7) can be
rewritten as -

VaTa,U;'XVeTpUg' — VATAZbZlXVBTglUEl =C.
Therefore,

Ta,XTs, — T4, XTg, = C, ©)
where X = U;‘XVB, C = VA"CUB. Now

[TE ® Ta, — T8, ® Ta,) vec(X) = vec(C),

vee(X) = [VE @ U;"] vec(X),

vec(é) = [Ug ® VA_l] vec(C).

As a result, we have
Bl ® A - B ® A,
-1 -
= [Ug ® VA—I] [Tgn ®Tas — ng ®TA2] [Vg ® UAI]
with nondegenerate matrices U ® V7!, VA @ U;". If, for instance,
Va =Ua, Vs = Usg,

then UF @ V' = VE ® Uy, and the matrices B ® Aj — B] ® Ay and T} ® Ta, —
TE, ® Ta, are similar.

In any case, the solvability of equation (7) is equivalent to the solvability of equation
(9), i.e. (in general) to nondegeneration of the matrix Tg‘ ® T4, — T};; ® Ta,. Without
loss of generality we assume that the matrices T, and Ta, are upper triangular and that
the matrices T'g,, T, are lower triangular. The matrix Tgl ®Ta, — ng ® T4, is then
upper triangular.

Using the triangularity of the matrices involved we are able to analyze conditions for
the matrix T ®Ta, — T, ® T4, to be nondegenerate. Since T4, — AT'a, and AT, — T,
are in Weierstrass canonical form, any pair of equally placed diagonal elements of the
matrices T4, and Ty, is of the form (A4, 1) for a finite eigenvalue of the pencil A; — A
and (1,0) for an infinite one. Analogously, a pair of equally placed diagonal elements
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of the matrices Tg,, T, is of the form (1,Ap) for a finite eigenvalue of the pencil
AB) — B; and (0, 1) for an infinite one. As a result, we obtain the following table of all
possible cases:

eigenvalue of type of an eigenvalue  type of an eigenvalue

Thus, the matrix B,T ® A - BzT ® A, is nondegenerate if and only if the set of all
eigenvalues of the pencil A; — AA; does not intersect with the set of all eigenvalues of
the pencil AB; — B;.

A particular case of equation (7) is the Sylvester equation frequently arising in matrix
analysis:

Tgl ® TAI - ng ® TA2 of Aj — AA; of AB; — B,
Aa— Mg finite A4 finite Ap

1 finite infinite

1 infinite finite s

0 infinite infinite

AX -XB=C. (10

In order to obtain (10) one has to put Ay = A, Ay = I, By =1, B, = Bin (7).
Hence, V4 = Uy, Vg = Ug, and the Kronecker product matrices /] ® A — BT @I and
I ® T4 — TE ®I are similar. The eigenvalues of the matrix I ® 4 — BT ® I are equal
to all possible differences of the form A4 — Ap, where A4, Ap are eigenvalues of the
matrices A and B respectively. Therefore, (10) is solvable if and only if the spectra of
A and B are disjoint.

There is an integral formula for the unique solution of (10). Indeed, let -y be a rectifiable
finite contour in the complex plane containing the eigenvalues of the matrix A inside
and the eigenvalues of B outside, then ‘

X = —1—./(/\I—A)_10()\I— B)”ld/\
2mi J,

is the unique solution of equation (10).

2.1. The Lyapunov equations

We pay special attention to a particular case of equation (1), which is the so-called matrix
Lyapunov equation X:

A*X + XA=-C. (11)

Here A, X and C are N x N matrices. The previous arguments yield the following
necessary and sufficient condition for the unique solvability of equation (11): A+, #0
for any eigenvalues \; and A; of the matrix A. This condition obviously holds if all
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eigenvalues of the matrix A lie in the open left half-plane, Re A; < 0; in this case, A is
said to be a stable matrix.

THEOREM 3 (Lyapunov). 1) If the matrix A is stable then equation (11) has a unique
solution for every right-hand side C, and the solution can be represented as

X:/ etA et dt.
0

Furthermore, if C = C* > 0, then the solution X of equation (11) satisfies X = X* > 0.
2) If equation (11) holds for some matrix X = X* >0 and C = C* > 0, then the
matrix A is stable.

A more general result is contained in the following

THEOREM 4 (Ostrowsky—Schneider). The matrix A has no pure imaginary eigenvalues
if and only if (11) has a solution for some Hermitian positive definite matrix C. If X is a
Hermitian solution of (11) for some Hermitian positive definite matrix C then the number
of eigenvalues of the matrix A with negative (positive) real part equals the number of
positive (negative) eigenvalues of the matrix X.

There is another important generalization of Lyapunov’s results. Consider the system of
matrix equations with respect to a pair of matrices P and X:

P> -P=0,
AP - PA=0, a2)
XP-P*X =0,

A*X + XA=—P*CP+ (I - P*)C(I - P).

THEOREM 5 (Godunov-Bulgakov). 1) If the matrix A has no pure imaginary eigenvalues,
then (12) has a unique solution (P, X) for every matrix C. Moreover, if C = C* >0,
then X = X* > 0.

2) If the system (12) is satisfied for some P, X and C, where X =X*>0and
C = C* > 0, then the matrix A has no pure imaginary eigenvalues and P is the
spectral projector onto the invariant subspace of the matrix A corresponding to the
eigenvalues in the left half-plane.

We recall that the spectral projector P onto the invariant subspace of a matrix A corre-
sponding to an isolated group of spectrum points is the linear operator

1 -1
13
P 3 i[y(M A)”dA, (13)

- where the integration is carried out along a rectifiable closed contour ~ enclosing the

isolated group of spectrum points and leaving the rest of the spectrum outside -y.
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In the discrete case the Lyapunov equation takes the form
A*XA-X =-C. (14)

This is a particular case of equation (7) with A; = A* B, = A4, 4, = By = I. The
eigenvalues of the matrix AT ® A*—I® I are all possible expressions Aij —1, where the
Ai, Aj are eigenvalues of the matrix A. Hence equation (14) has a solution (for arbitrary
C) if and only if A;A; — 1 # O for any eigenvalues );, A; of A. This condition obviously
holds if all eigenvalues of the matrix A lie in the open unit disk |A;] < 1. A matrix A is
said to be discrete stable if all its spectrum lies in the open unit disk.

In the discrete case there are also analogs of the theorems by Lyapunov and Ostrowsky--
Schneider. Indeed, one has to substitute in the formulations for the continuous case: stable
by discrete stable, the integral

o -
/ et4" Cet4 dt
0

by

Sk,

k=0

the imaginary axis by the unit circle, negative (positive) real parts of eigenvalues by
the condition to lie inside (outside) the open unit disk. Generalizations of the Godunov—
Bulgakov theorem to the discrete case are rather nontrivial.

Notes and references
Linear matrix equations of the form (5) and the Kronecker products of matrices are
considered in most textbooks on matrix analysis [3, 21, 25].

The canonical Schur form is always used in practice instead of the canonical Weier-
strass form for numerical solution of equation (7) and its particular cases. This is ac-
counted for by the instability of the computation of the Weierstrass form. The method of
solution of (7) with the aid of the Schur form is called the Bartels—Stewart method {1].
Some additional developments of the idea of [1] are discussed in [20].

A description of all solutions of the equation AX = X B can be found in [13, 25].

Together with the necessity to solve just the equation (5) or (7), the need to study
and solve more general systems of linear matrix equations often appears. For example,
when studying perturbations of spectral invariant subspaces of regular matrix pencils or
singular subspaces of matrices, the generalized Sylvester equation

A]X - YB[ = Cl,
A X —YBy =0,
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is widely used [10, 39]. The technique of the Kronecker products is also useful for the
generalized Sylvester equation: indeed,

| vec(Ch)

~ |vec(C) |

The continuous Lyapunov equation (11) naturally arises in the study of stability in the
Lyapunov sense of a system of ordinary differential equations

vec(X)

I®A -BlolI
vec(Y)

I®A, -BI®lI

dz
= A

at -
by the Lyapunov method of quadratic functions. The idea of this method consists in the
selection of a self-adjoint positive definite matrix X such that the quadratic form (X z, z)
would decay along the solutions z(t) of the system

dz
Since
d .
a(Xx,x) = ([A*X + X Alz, z),
the self-adjoint matrix C = —[A*X + X A] is necessarily positive definite.

When studying the Lyapunov stability of solutions of a finite difference equation
Zn, = Az, the discrete Lyapunov equation (14) arises. Indeed, since

(XZTnt1,Znt1) — (@Tn, Tn) = ([A*XA - I]:L‘n,mn),

the matrix C' = —[A*X A — I| has to be positive definite.

A thorough study of the Lyapunov equation is found in [13, 25]. The Ostrowsky—
Schneider theorem, published first in [36], is discussed in detail in [25].

The generalized Lyapunov equation (12) appeared for the first time in [14], then in
{6] the ultimate form (12) was derived. Discrete generalized Lyapunov equations were
derived and thoroughly studied in [30].

Special attention should be paid to one of the main directions in modern matrix anal-
ysis: the study of the conditioning of matrix equations. By conditioning in numerical
linear algebra we mean a quantitative characterization of a problem that reflects the de-
gree of continuity of its solution to perturbations (mainly, infinitely small) of the problem
data (coefficients of equations and right-hand sides). For a discussion of the notion of
conditioning see, e.g., [42, 39]. For equations of the form (5) the condition number is
commonly defined as the condition number of the matrix M = 57| BT ® A;:

condM = |M|| | M7} (15)
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with an appropriate matrix norm. However, the condition number (15) is not always easy
for computations, and from time to time a great many attempts were undertaken to find
other condition numbers which are easier for computations; for the Lyapunov equations
see [5, 27].

While developing the approaches from [14, 6], it became possible to obtain condition
numbers for the generalized Lyapunov equations (12) and its discrete analogs [30].

3. Nonlinear matrix equations

It is worthwhile mentioning first a linearization method coupled with a perturbation
theory. This approach is rather general but only permits local, in a certain sense, results.
‘To demonstrate this, consider the equation

LX)+ f(X) =C, (16)

which inherits properties of the quadratic equation AX — XB — XDX — C. The linear
operator L: CMN — CMN s supposed to be invertible. The continuous mapping f
satisfies the following estimates:

a) | f(X)|l < K| X|| with some constant K;

b) I£(X) ~ fF(V)Il < 2K max{|| X |, | Y[} X - Y| with the same constant K.
Any consistent matrix norm will do as the norm || - Il

THEOREM 6 (G.W. Stewart). If k = K||C|| £~ < 1/4, then the matrix sequence

Xo=0, Xpn=LTYC-f(X)), k=01

ydye ey

converges to the unique solution X of equation (16) in the ball

1X1 < === el e~ < 20 127, a7

Furthermore, if equation (16) has a solution that does not belong to the ball (17), then
such a solution must be found outside the ball || X || > (1+ V1 -4k)/2| L~ K).

Now we start to present the method of invariant subspaces for companion linear matrix
pencils which allows one in many cases to obtain global results. This method is applicable
to matrix equations with a certain structure, which, fortunately, include several important
matrix equations.

Consider the matrix equation

(4 =) ()= 2) (1)
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with matrices A4;, Bj, X, A of appropriate size. This equality means that the pencil

\ B B\ (A A
By By Ay Ay
has an invariant subspace with basis matrix
I
x|
Suppose, for instance, that By + B, X is an invertible matrix, then, obviously, A =
(Bl -+ BzX)—l(Al + A2X) and
Az + Ay X = (B3 + BsX) (B, +B2X)—1(A1 +A2X). 19)
Conversely, if equation (19) is satisfied, then equality (18) holds with
A= (Bl + BzX)—l(Al + A2X)

Thus, solving equation (19) is reduced to finding invariant subspaces of the matrix pencil
A B, B, _ A] A2
By B, Ay Al
which possess basis matrices of the form
I
X

for some matrix X. All such matrices X are solutions of equation (19).

Let
B, B, o
By B,
in (19), then (19) turns into a quadratic equation (sometimes called th.e Riccati equation;
but we reserve the name of Riccati for equations of a more special kind):

Az + A4 X — XA — XAX =0. (20)

As was shown above, X is a solution of (20) if and only if the matrix

A A
Az A4
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has an invariant subspace with a basis matrix of the form
I
x|

3.1. The Riccati equation

In applications structured nonlinear matrix equations often arise. One of the most impor-
tant such equations, the Riccati algebraic matrix equation, is widely used in the theory
of optimal control.

3.1.1. Continuous case
Let the state of a linear system be governed by the differential equation

3= (t) = Az(t) + Bu(?), 1)

where A is an N x N matrix, B is an N x M matrix. The cost of a control is defined
by the functional

O(u) = /0 ” [(Qz,z) + (Ru,u)] dt, 22)

where R and Q are self-adjoint matrices, R is positive definite, and @ is non-negative
definite.
The matrix Riccati equation
XBR'B*X —A*X -XA-Q=0 23)
is associated to the system (21), (22).

DEFINITION.
1) A pair of matrices (A, B) is called stabilizable if

rank([A\] — A B]) = N

for all eigenvalues A of A with Re A > 0.
2) A pair of matrices (C, A) is called detectable if

()

for all eigenvalues A of A with Re A > 0.
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THEOREM 7. If the matrix pair (A, B) is stabilizable and the pair (C, A? is detectable,
where C is any matrix satisfying the equality c*C = Q, the.n eguatzon (23) has a
unique self-adjoint solution Xo and the optimal cont.rol u*(t) is gzviri bz the‘ formula
u* = —R-\B*Xyx. In addition, the closed loop matrix A= A — BR™'B" X, is stable,
and the minimal value of the cost equals $min = (Xo2(0), 2(0)).

We also associate to equation (23) the block matrix of order 2N

-1 p*
- A -BR™'B ‘ 24)
-Q —A*
Since

I I

- T
A-BR'B*X-T
= XBR“B*X—A*X—XA—Q+X(A—BR‘1B*X—T) ’

solving (23) is equivalent to finding an invariant subspace of the matrix H with a block
eigenpair of the form

(15]:7)

The matrix H is Hamiltonian, i.e. J-'H*J = —H with

0 I
J= NE
) —-Iy O
This implies that together with every eigenvalue A the matrix H has an eigepvalue -2
of the same multiplicity. The conditions of Theorem 7 imposed on the matrices A, B,

Q guarantee that H has no pure imaginary eigenvalues. Moreover, the matrix H has a
unique invariant subspace with the block eigenpair

()

where A is a stable matrix and X is a solution of equation (23). Thus, solving (2.3) is
reduced to finding a basis matrix of the invariant subspace of the Hamiltonian m'f\trlx H
corresponding to the eigenvalues in the open left half-plane. If, for instance, this basis
matrix is equal to

M
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then, obviously, the matrix X is invertible and X = X,X on
There exists another variant of the reduction of equation (23) to the problem of finding
invariant subspaces of regular matrix pencils. Namely, consider the pencil

I 00 A 0 B
M —-H =>[0 I 0f - |-Q -4* 0 (25)
0 0 0 0 B* R
and note the following identity
A 0 B||I I 0 0]]|I
-Q -A* o] |X|-1]0 I of |X|T
0 B* R||Z 0 0 0|z

A~BR'B*X - T+ B(R™'B*X + 2)
= |-Q-A"X - XA+ XBR™'B*X + X(A— BR™'B*X - T)| .
R(R™'B*X + 2)

Under the conditions of Theorem 7 the pencil AH, — H; has M infinite eigenvalues, N

finite eigenvalues in the open left half-plane and N finite eigenvalues in the open right
half-plane. In fact,

I 0 —BR™! I 00 A —-BR'B* 0
0 I 0 [(MH2—H)=xl|0 I o|-]|-@Q —A* 0f,
00 I 0 0 0 0 B* R

and, therefore, the set of all eigenvalues of the pencil AH, — H; coincides with the
union of the spectra of the pencils Al — H and A0 — R. As a result, finding a solution
X = X* of equation (23) is reduced to finding the unique invariant subspace of the
pencil AH, — Hy with a monic block eigenpair of the form

; A,

N X~

where A is stable.

3.1.2. Discrete case
Let the state of a discrete linear system be governed by the finite difference equation

z(k + 1) = Az(k) + Bu(k), (26)
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where A is an N x N matrix and B is an N x M matrix. The cost of control for (26)
is given by the functional

&(u) = i [(Qx(k), z(k)) + (Ru(k), u(k))] ' @n
k=0

where R = R* is positive definite and Q@ = Q" is non-negative definite.
The discrete algebraic matrix Riccati equation
A*XA— X - A*XB(R+B*XB)"'B*XA+Q =0 (28)
corresponds to (26), (27).

DEFINITION. B .
1) A pair of matrices (A, B) is discrete stabilizable if

rank((A\I - A B]) = N

for all eigenvalues A of A with |[A| > 1. .
2) A pair of matrices (C, A) is discrete detectable if

C
=N
rank([AI*A )

for all eigenvalues A of A with |A| > 1.

THEOREM 8. If the matrix pair (A, B) is discrete stabilizable and the pair (C, A) is
discrete detectable, where C is any matrix satisfying C*C = Q, then there exists a
unique self-adjoint solution Xo of equation (28). Additionally, the optimal control is
expressed by the formula

w*(k) = —(R+ B*XoB) ™' B* XoAz(k),

the closed loop matrix A = A — B(R + B*XoB)~!B*XoA is discrete stable, and the
minimal value of ®(u) is equal to (Xoz(0), 2(0)).

Equation (28) is associated with the regular matrix pencil

I BR™'B* A 0 29
>\52—51:>\(0 e )—(Q _I>, 29

so that the identity

(& 2B ) B
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(I+BR™'B*X)|A~- B(R+B*XB)"'B*XA-T]
F(X)- A*X[A- B(R+ B*XB)™'B*XA - T)

holds, where F(X) stands for @ — X + A*XA - A*XB(R+ B*XB)"'B*XA.
The regular 2N x 2N matrix pencil AB — A will be called symplectic if AJ~!4* =
BJ~'B* with

S [ 0 IN] .
Iy 0

Obviously, the pencil AS; — S} is symplectic. By virtue of this property, if the pencil has
an eigenvalue ), then 1/ is also an eigenvalue of this pencil with taking into account
multiplicities, i.e. the spectrum of a symplectic matrix pencil is located symmetrically
with respect to the unit circle.

Summarizing, finding a solution X = X™* of equation (28) under the conditions of
Theorem 8 is reduced to finding the unique invariant subspace of the pencil (29) with a
monic block eigenpair of the form

(13])

where A is discrete stable.
Finally, let us form the matrix pencil

I 0 O A 0 B
AS; —S51=A(0 -A* O -1Q —-I O (30)
0 -B* 0 0 0 R

for which the identity

A 0 B I I 0 0 I
Q -1 0 X| -0 -4 o}l {X|T
0 0 R Z 0 -B* 0 VA

[A- B(R+B*XB)"'B*XA-T]+ B[(R+B*XB)"'B*XA + Z]
= F(X) - A*X[A— B(R+ B*XB)~'B*XA - T]
_B*X[A-B(R+B*XB)~'B*XA-T)+R[(R+B*XB) 'B*XA + Z]

holds. By virtue of the identity

I 0 —BR™! I BR'B* 0 A 0 O
0 I 0 |(A&:=8)=xrlo -4 o|-|@ -1 of,
00 I 0 -B* 0 0 0 R
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the spectrum of AS, — S is the union of the spectra of AS; — 81 and A0 — R taking i?to
account the multiplicities. Therefore, in order to find a solution X = X * of equation
(28) satisfying Theorem 8 one has to find the unique monic block eigenpair

A

N P4~

with a discrete stable A.

3.2. Polynomial matrix equations

A polynomial matrix equation for an N x N matrix X looks as follows

A+ X+ + A X" =0 31
with N x N matrix coefficients A;,4 = 0,1,...,7n. Let us associate to (31) the companion
regular linear matrix pencil

I 0
I
AC, —Ci=A
I
0 A,
0 I
I
— . (32)
0 I
—Ao —Ay ... —An_2 —An
Since, obviously,
I I
X X
Ch . -G . T
X;-l Xn—]
X-T

X(X ~T)

—Ap — AX—...— A X" +AnX"_|(X —_ T)
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solving equation (31) is equivalent to finding invariant subspaces of the pencil (32) with
monic block eigenpairs of the form

U
)
.4
Un
with an invertible matrix Uj. In this case the matrix X = UZUI_l = U1./1U1“I will be a

solution of equation (31).
To conclude, we mention the following simple result.

THEOREM 9. A matrix X is a solution of (31) if and only if the matrix polynomial
A(X) = Ao+ A A+ - -+ A, ™ has the right divisor \[— X, i.e. A(X) = AA(N(IX-X)
for an appropriate matrix polynomial A,()).

Notes and references
G.W. Stuart’s theorem is proven in, e.g., [39]. Some applications of this theorem are in
[10, 39, 31].

A vast bibliography has been devoted to iterative methods of solution of nonlinear
equations whose particular case is (16). A detailed treatment of such methods is found,
e.g., in [35].

The quadratic equation (20) has been studied in many papers. A thorough treatment
of the theory of this equation, including such questions as continuity and analyticity of
its solution with respect to the coefficients A;, i = 1,2, 3,4, is contained in [19].

The algebraic Riccati equations are probably the most deeply studied structured matrix
equations after the Lyapunov equations. Among the monographs entirely devoted to the
theory of the Riccati equations are [38, 33]. Of the articles on this subject we mention
[26, 37, 40, 32, 27, 15, 17]. Theorems about the Riccati equation are proven, e.g., in [43].
A vast bibliography about the Riccati equations is found in [38].

The use of the pencils (25), (30) is stimulated by the possibility of avoiding the inver-
sion of the matrix R, when forming the pencil. Details of the numerical implementation
of such an approach are discussed in [40].

Polynomial equations, as Theorem 9 (proved in [13]) shows, give rise to a particular
case of the problem of factorization of matrix polynomials. A nice exposition of the
theory of polynomial matrix equations is in [25].

4. Factorization of matrix polynomials

4.1. Spectral characteristics of matrix polynomials

We consider only regular matrix polynomials A(A\) = Ap + A1A + -+ + A, )", ie.
polynomials such that det A(A) # 0. If A, = I, then such a polynomial A(}) is called
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monic. If Ay = I then A(])) is called comonic. In general, we admit the possibility of
A, being equal to the zero matrix, but, usually, A, # 0, and in this latter case n is
referred to as the degree of the polynomial A()), n = deg A()).

The roots of the scalar polynomial det A()) are called finite eigenvalues of A(M).
A polynomial A(}) is said to have infinite eigenvalue if the dual polynomial A(p) =
u™A(1/p) has zero eigenvalue.

Finite elementary divisors of the A-matrix A()) are supplemented by infinite ele-
mentary divisors which are defined as elementary divisors of the form u™ of the dual
polynomial A(y). Thus, the multiplicities of eigenvalues of the polynomial A()\) are
accounted for by the elementary divisors of A()) in a proper way.

A set of vectors Zg,Z1,...,Z1—1 € CN, 2o # 0, is a right Jordan chain of A())
corresponding to a finite eigenvalue Ao if

1 .
AQo)z: + %AU)(AO)m_, ok 2 ADO)z0 =0,
i=0,...0—1. 33)

Here A®)()) stands for the p-th derivative of A(\) with respect to A. Similarly,
Zo,Z1,..., L1 € CN, g # 0, is a right Jordan chain of A() corresponding to the
infinite eigenvalue if

- 1 - 1 -,

A(0)z; + FA<'>(0)gc,~_l +t 5AM (0)zo =0,

1=0,...,0—1. (34)

Left Jordan chains of the polynomial A(A) are defined analogously. Henceforward we
usually omit the word “right” before “Jordan chains”.

One of the main tools for the study of spectral properties of matrix polynomials is the
companion linear matrix pencil

0 -1 I
Ca()) = +| A 35)

0 -I I
Ay ... Ancy Anoy An

which is equivalent to the following A-matrix

T I

I I
AN Al Ay o An i+ AN T
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I 0 I
Al T -I 0
x S Ca(d) M

Al I -1 /\"."I
Due to this equivalence the set of elementary divisors of A inci i
oo o ary (A) coincides with the set of

A decisive reason to introduce the companion li i i i
. . panion linear matrix polynomial C4()) is the
structure of block eigenpairs for C4(\), particularly, that of block Jordan pairsg. )

THEOREM 10. A decomposable block eigenpai i : .
pair of dimension d
the following structure: f ion d for the pencil C4(X) has

X, XZTZ"_l
XiTy X172
. ) . ) Tla TZ ’
Xi T]n_l X,
where
A X+ A X\ Ty +---+ AnXIT]" =0
and

AX T} + A XoT '+ + A, X, = 0.

Here X, X3, T\ and T, are matrices of sizes N xd;, N xd,, dy xdj, dy x dy, respectivel
where dy = d — dj, ' >

The proof of this theorem is obvious.

DEFINITION. A pair (Xl,Xz;Tl,Tz) consisting of an N x d; matrix X, a N x d» matrix
Xg, a 41 x d; matrix T}, a dy x dy matrix T is a decomposable block eigenpair of
dimension d for the matrix polynomial A(}\) if

X Xszn_l
rank : : =d=d +d;
XX

and

Ao X1+ A X\ T+ + A X TV =0,
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AXoTP + AT+ + AnX2 = 0.

If d, = 0, then such a pair is called monic and it is called comonic when d; = 0. Such a
(co)monic eigenpair is denoted by (X;T), where X = Xy, T =T for the former case
and X = X,, T = T, for the latter one.

By Theorem 10, block eigenpairs of A()) are nothing other than generators of the
block eigenpairs for Ca (). :

The decomposable eigenpairs (X1, X2;T1,T2) and (X!,X};T{,T;) for a polynomial
A(X) are said to be similar if there exist @; and @, such that X{ = XiQ, T =
Ql_lTlQl, X3 = X2Qa, T, =05 'T5Q,. 1t is easy to show that similar eigenpairs define
the same invariant subspace of the companion linear pencil.

If the matrices J; and J, in a decomposable block eigenpair (X1, X2; J1, J2) are
Jordan, then such a pair is called a block Jordan pair for the polynomial A()).

Let

Ju
Jy = ,
Jik,

where the Jy; are Jordan blocks, then, partitioning X; = [X11... X Ik;}» We obtain that
the columns of X;; form a Jordan chain of A()) corresponding to the eigenvalue of the
block Jy;. The matrix X5 has an analogous structure corresponding to the Jordan blocks
in J2.

Similar to the case of linear matrix pencils one can define block eigenpairs for a
matrix polynomial A(X) which are associated with isolated parts of the spectrum of
A(N), for instance the finite spectrum, i.e. with all finite eigenvalues of A(A). Indeed, if
the spectrum of A()) is the union of two disjoint sets A, and A, with the multiplicities
taken into account, then a decomposable block eigenpair (X 1, X2, Ty, T») is associated
with A; when the spectrum of the pencil

\ I 0 i 0
0 N 0 I
including the multiplicities coincides with A;.
4.2. The factorization problem

DEFINITION. A matrix polynomial A;(X) = Ao + -+ + A A™ of order n is called
a right divisor of a polynomial A(A) of order n if there exists a matrix polynomial
Ay(\) = Ao + - - + Az, A™ of order na, my 2 n — ny such that AX) = A2(N)AI(N).
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THEOREM 11. Let (X, Tr) be a monic block eigenpair of a matrix polynomial A,()\)
corresponding to the finite spectrum of A;()). The matrix polynomial A,()) is a right
divisor of the polynomial A()) if and only if

Ao Xp + A XpTr+ -+ A XpTE = 0. (36)

PROOF. Since

ny—1
AN = Z Agj(Ag + -+ A AN,

j=0
then

Ao Xp+ A\ XpTp +--- +AnXFTI7,«L
ny—1 ,
=Y Ay (AwXp+ -+ Ain, XpTp') T

=0

The inverse statement is more nontrivial. First of all, we carry out, if necessary, a
change of the variable A by a transformation A = A’ + @, in order that the coefficient
A, = A{(0) of the polynomial Aj(X') = Aj()\ + ) is a nondegenerate matrix. Such
a transformation conserves the property of being a divisor: A(X) = Ay(A\)A;(A) is
equivalent to A'(X') = A5(N)Aj(N). At the same time the pair (Xp,Tr — al) is a
monic eigenpair for the polynomial A{()\’) corresponding to the finite eigenvalues, and
the equality Ao X+ - -+ A, XrTE = 0 holds iff the equality A X p+- - -+ A7 Xp(Tr—
alI)™ = 0 holds. Therefore, without loss of generality, we can suppose in what follows
that A,(0) is a nondegenerate matrix.

By virtue of the nondegeneration of A;(0) the matrix T is also nondegenerate. Hence
the pair (X, T5") is a monic block eigenpair for the dual polynomial A(p) = App™ +
.-+ 4+ Ajp,, corresponding to all nonzero eigenvalues. Let (Xoo; Too) be a monic block
eigenpair for the polynomial A (p) corresponding to the zero eigenvalue, then the matrix
T is, evidently, nilpotent, i.e. T, = 0 for some positive integer v. _

Let us divide the polynomial p”A(p) by Aj(u) with remainder: p*A(u) =
Ay(p)A, (1) + R(p). Here A(u) = Aou™ + --- + A, is the dual to the polynomial
A()) and the degree of the polynomial R(1) = Rop™ + - -+ Ry, is ma, n3 < ny. It fol-
lows from the conditions of Theorem 11 that Ao XrTr™ + - -+ Ap XF = 0. Therefore,
AoXp(TF )™ + -+ + A Xp(TR")” = 0. Since T%, =0,

Ao XTI + -+ Ap X oo (Too)” = 0.
As a result, we obtain from R(u) = ¥ A(u) — Ax(u)A; (1) that

RoXp(Te')™ + -+ RnyXp =0,  RoXoo(Too)™ + - + Ry Xoo =
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It remains now to observe that these two equalities can be rewritten in a block form
as

XpTp™  XooTiH

Rl ... Ry ' '
B Ry Bl XrTr' XooTw

Xr Xos

and that the matrix

XpTi™  XooT

XrT7'  XooToo
XF Xco

is nondegenerate. The nondegeneration of this matrix is a consequence of the fact that

the palr
Xr Xool; 1
[ F oo]y 0 T

is a monic block eigenpair of dimension n;N for the polynomial A, (). As a result,
Ry=R == Ry, =0and R(u) =0. :

From the identity ¥ A(p) = Az () A2(p) it follows that the polynomial Az(A), being
dual to A,(), is the quotient of division of A(A) by A()) with no remainder. The
degree of the polynomial Az()) equals to ny = n+v —ny. ]

Using this theorem we consider the problem of the description of all right divisors for
a given matrix polynomial A(A) = Ao+ - -+ AnA™. Letus choose an invariant subspace
of the companion pencil C4()) with a monic block eigenpair (X;T) of dimension d
such that

[o e}
() Ker(XT*) = 0. 37
k=0
Denote by n; the minimal integer for which
ny—1

ﬂ Ker(XTk) =0,

k=0
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then obviously,

X

XT
rank . =d<nN. (38)

X!

According to Theorem 11 the following auxiliary problem arises: given a pair of
matrices X of size N x d and T of size d x d satisfying (38), one needs to construct
a matrix polynomial A;(A) of degree n;, for which (X;T) will be a monic block
eigenpair corresponding to the finite spectrum of A;()). It turns out that this auxiliary
problem is always solvable. Furthermore, all its solutions are described by the formula
Ar(\) = QA (N, where Aj()) is a particular solution and Q()) is any unimodular
A-matrix, i.e. det Q(A) = const # 0.

By Theorem 11 the polynomial A;()), which is one of solutions to the auxiliary
problem, is a right divisor of A(}).

The most important is the case of d = Nn; in (38). Then a particular solution A, (A)
of the auxiliary problem can be chosen as a monic polynomial By + BjA + - - - + IA™
with coefficients B;, : = 0,1,...,n; — 1, calculated by the formula

-1

X
XT
[Bob By ... Bp_]=-XT™ , 39
X7
which is derived from the identity
0 -I X X
XT XT
’ + . T=0.
0 -1 : :
By ... Bm_z B, - XTm-! XT™m-!

Thus, when d = Nn;, it is possible to find a unique monic right divisor of A(A) with
monic block eigenpair (X;T) of dimension Nn;.

This case also admits the following interesting geometric characterization. Namely,
there is a bijective correspondence between monic right divisors of the matrix polynomial
A()) and invariant subspaces of the companion linear pencil C4(A) which satisfy two
properties:

a) the dimension d of the invariant subspace is a multiple of N, i.e. d = nN for
some integer nj;
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b) if

Xy
X2
is any basis matrix of the invariant subspace, where X is a d X d matrix, then X, is

nondegenerate. . o
The following uniqueness theorem 1s a consequence of this bijective correspondence.

THEOREM 12 (Uniqueness of a monic divisor). Ler A(X) = A2(V)A1(}) = HNAL(N),
where Ay and A\ are monic. Suppose that the spectrum of A, (A) does not intersect with
the spectrum of Ay (), the spectrum of Ai(]) coincides with the spectrum of A|(\), and
the spectrum of Ay()\) coincides with the spectrum of AY(N). Then A(X) = Aj(N).

Now we formulate a theorem about factorization of a monic N x N matrix polynomial
A(X) of degree n into linear monic divisors.

THEOREM 13. Let (X;T) be a monic block eigenpair of dimension nN for a monic
polynomial A(X), where T can be diagonalized by similarity transformations; that is,
all elementary divisors of T are linear as well as elementary divisors of the polynomial
A()) itself. Then there exist matrices T\, Ts, ..., Ty, such that

AN = (IA=T,) - (IX=T)(IX - Th).

The proof of Theorem 13 is based on the fact that out of the matrix

X
XT

XTn—l
where T is diagonal, one can pick out a nondegenerate submatrix

X
XT

ifn—Z

where X is an N x [N(n — 1)] submatrix of X and T is a submatrix of T', thus defining
a left monic divisor of degree n — 1 for A(}).
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Finally, we give a sketch of the solution to the auxiliary problem. We recall that we
are given a matrix pair (X, T') consisting of an N x d matrix X and d x d matrix T and
satisfying the following condition:

X

XT
rank . =d <IN for some [.

Xj;lfl

First, one needs to construct a decomposable block eigenpair (X, Xoo; T, Too) of dimen-
sion /N with a nilpotent matrix T. To this end, we consider a construction where T,
is of the shape of a Jordan matrix with zero eigenvalues.

It is not very hard to understand that it is sufficient to construct a sequence of matrices
Y,_1,..., Yo of full column rank such that Y; = [Y;41 Z;], j = 1,2,...,1, and satisfying
the following properties: the sum of the linear span of the columns of the matrix

Yo 0
Y2

0 Yi-;
and the linear span of the columns of the matrix

X

XT
A; =

XTi!

is equal to all of the space C?V, and the intersection of these two linear spans equals the
null space {0}. Such a sequence Y; is constructed recursively. For j = 1 the columns
of the matrix X must simply be supplemented by a minimal set of vectors, which are
columns of Z;_; = Y;_, to a vector system linearly spanning ch.

Let the matrices Y;_; have been constructed for all ¢ = 1,2,...,5, 1 < j <L Itis
somewhat nontrivial to observe that the intersection of the linear span of the columns of
the matrix

5 0
0 Y

with the linear span of the columns of the matrix A, is equal to the null space {0}. Let
us augment the direct sum of these two linear spans by a minimal set of vectors, which
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are columns of the matrix Z;_ j—1, to a vector system linearly generating CcNG*D Due
to the completeness of the columns of the matrix [4; Z;] in C’ N the matrix Z,_;_ can
be taken to be of the following form

0
0
Zi-j—1

Having concluded the recursive procedure we obtain the following nondegenerate
square matrix

X Y 0
_ XT Yi_»
A == .
XT-! 0 Yo

After a suitable permutation of the columns of the matrix = one can define matrices
Xo and T such that after a column permutation the matrix Z; looks like

XTS5
Koo

The second step in the proof of the auxiliary proposition is to recover the matrix
polynomial A()) = Ao+ AjA+- - -+ A\ from the matrix pair (X, Xoo; T, Too) S0 that
this pair will be a decomposable block eigenpair for A(\). Getting ahead of ourselves,
we remark that this problem is always solvable; furthermore, if A(A) and A’()) are
any two solutions of the problem, then there exists such a nondegenerate matrix Q that
A'(N) = QA().

So, to solve the question at hand one has to find matrices Ao, Ay, ..., A;, W satisfying
the equation

Al -1
M -1
) S
Al -1
Ay A ... A AL+ A

M| Ma-T 0 40
T lw 0 Moo — I’ (40)
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where

X XoTL?

X XoTL!
0T XT X TP

XTH1 Xoo

XT-? X

and the matrix

i

is nondegenerate. There results the equivalent matrix system

-T 0
A A ... A_S=W ,
{0 1 ll] (0 —I)
O o ..o AI]S=W<I 0).

0 Tw

Having solved the latter equation with respect to A; and W, the matrices Ay,
Ay, ..., A are uniquely determined from the former one because S is nondegenerate.
The matrix M is of full rank as S is nondegenerate. Let us choose a matrix V such

that

M
v

is nondegenerate. Define the matrices Z and A; from the equality

I 0\ .
(z Al)=V<0 TOO)S .

As the matrix W we take W =V — ZM. Then with the aid of the obvious identity

I 0
ut 8)-u v

the following chain of equalities is deduced:

I o I o I o I o
oo m)-eemle n)-rle i) 2)

=(Z A)S—(Z 0)S=(0 ... 0 A).
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Since
M| _[1 o [Mm
w -z I{|v]’
the matrix
0]
w

is nondegenerate. ‘
Further, let A()\) satisfy (40) for some W. Assume that M = (L 0)U with nonde-

generate L and U, and, therefore, W = (W; W,)U. By virtue of the nondegeneration

)

the N x N matrix W) is also nondegenerate. The identity

I 0
M(O Tw)=(1 0)S

implies that

I 0 L' 0
S =
u (o Too> (Z. Zz)

for suitable Z;, Z,. Therefore,

0 A)=W <g 7?@) Sl = (W, Wy)U (é Ti) 5

= (W]L_l + WhZ, W2Z2).
From this we have W) = —WLZ,L, W = Wa(-Z,L T)U. As a result,

-T 0

(Ao Ay ... AL} =Wa(—2Z/L I)U ( o -1

>S—1, A = Wy 2.

If A’(X) is another matrix polynomial with the same decomposable block eigenpair, and,
consequently, with the same Z;, Z,, L, U, then

-T 0
(4 A} ... Al_|=Wj(-2,L DU ( 0 4) s-Yy
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A} = W}Z,. Hence A'(\) = QA()) with Q = W, W, .

4.3. Factorization of self-adjoint matrix polynomials

Let A(\) = IN*™ + Ay 1 A1 4 ... + Ay be a monic matrix polynomial, whose
coefficients are self-adjoint matrices, i.e. A}‘ =A;,7=01,...,2n— 1. We also assume
that A()\) has no eigenvalues on the real axis. Since the coefficients of A(A) are self-
adjoint, the spectrum of the polynomial A(A) is symmetric with respect to the real axis.

THEOREM 14. A self-adjoint monic matrix polynomial A()\) which has no eigenvalues
on the real axis factorizes into the product A(X) = L*(X)L(A), where the polynomial

LA)Y=IN"+---+ Ly
has all its spectrum above the real axis and
L*A\) =IXN" +--- + Ly.

PROOF. All arguments are based on the fact that GC = C*G, where

0 —-I A ... A2n—l I
.. . Ay ... I
C= ’ ’ s G=1| . ) . 4D
0 -1 Do
Ay ... Ay A I 0

Let

C=U<J 0>U“
o J

be a Jordan decomposition of the matrix C, with J containing all eigenvalues above the
real axis. Write

U*GU = (P Q),
Q R

where P = P* and R = R* are matrices of size Nn X Nn, and obtain from the identity
GC = C*G the following system of matrix equations:

PJ—J*P =0,
RJ* — JR =0,
QJ* — J*Q =0.
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Since the spectra of the matrices J and J* do not intersect one another, it follows from
the first two matrix equations that P = R = 0. By virtue of the nondegeneration of the
matrix G, the matrix Q is nondegenerate. Introduce the matrix

-1
I 0

J 0 1 {0 I\
= v, G=V V. (42)
cC=V (O QJ*Q“) ([ ())

Let V = [Vi V] be the block partition consistent with the blocks in (42), then
cVy = ViJ, V'GVi = 0. Tt is necessary for the existence of a right monic d.ivisor
having its spectrum coinciding with the spectrum of J that the square matrix V11 in the

representation

Viu
V ==
be nondegenerate. Nondegeneration of Vq; follows from the identity V;*GV; = 0 and the

structure of the matrices G and V;. Indeed, assume the opposite. Let z € KerVii, ¢ #0.
Since

then

X
Vi = : )
XJ2n—1
Yo
Viz=y=| : |,
Yn-—1
where y; = X Jiz; moreover, Yo = y1 = - -+ = Yn—1 = 0. Writing

Gu Gn
G =
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we obtain the equality Vi1G1i Vi1 + V1G12Vay + V351G Vi = 0, and

Yn
0=VGuVaz =[X* JX* .. (J*)"_IX*]GQ

Yoin—-1

Now calculate the scalar product of the latter identity with Jz to obtain

Yn
0= ... 0 y)Gn : = YnYn;

Yon-1

which implies y, = 0. Multiplying then by J>z we obtain y* +1Yn+1 = 0. Proceeding
similarly we find the equality y = 0. This contradicts the condition that rank (V;) = nN.

Finally, let L(A) be a right monic divisor of A()). From the equality A(\) =
Li(A\)L()\) we deduce the equality A(X\) = A*(A) = L*(A\)L}(A). By the uniqueness
theorem L}(A) = L()), therefore, A(A) = L*(A\)L(A). O

There is another important result on self-adjoint matrix polynomials. Given a trigono-
metric self-adjoint matrix polynomial

AB) = > Are'r?,

k=—n

where A_p = A}, and A(¢) is nondegenerate for any real ¢. Then there exists
a unique trigonometric polynomial B(¢) = By + Bje' + --- + B,ei™® such that
A(¢) = [B(¢)]*B(¢) and B(A) = By + By + -+ + B, A" has all its eigenvalues
inside the unit circle.

Notes and references
The main source of references for the theory of matrix polynomials is [18]. Other relevant
publications are [28, 23, 24, 29, 25, 19].

More general results about factorization of self-adjoint matrix polynomials can also
be found in [18] and references therein. A proof of the theorem on factorization of
trigonometric self-adjoint matrix polynomials is given, e.g., in [29].

The questions about continuity and analyticity of monic divisors are discussed in detail
in [19].

A stable algorithm for numerical factorization of matrix polynomials is proposed
in [30].

Additionally, in [18] there are results on the least common multiple and the greatest
common divisor of matrix polynomials.
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1. Introduction

In this chapter we take the point of view according to which matrices are considered
as changing quantities (rather than given and constant). We consider a matrix as an
independent variable and study functions of that matrix; on the other hand we also can
consider the set of matrices as the target space of a function, in which case a matrix
valued function appears. And, of course, one can combine both approaches and study
matrix valued functions of a matrix argument. We encompass all these situations by using
the term “matricial functions”. -

The need for matricial functions and their theory is apparent in many applications in
mathematics, sciences and engineering. The first such instance appears in the study of
systems of first order linear differential equations with constant coefficients

dz

where A is an n X n matrix. The solution is given in terms of the initial value z(0) by the
matrix exponential z(t) = exp{tA}«(0). The theory of vibrating systems (mechanical
or electrical) with a finite number of degrees of freedom involves matrix polynomials
M Az+AA; + Ag, where Ay, Ay, Ap are nxn matrices with certain symmetry properties
(for example, positive definite). In engineering, the transfer function of a linear time
invariant multivariable control system is a matrix valued rational function. In numerical
analysis, one is often interested in the behaviour of various quantities derived from a
matrix (such as eigenvalues, singular values, eigenvectors, invariant subspaces etc.) if
the matrix is subject to small perturbations; in other words, the matrix is considered as
a variable quantity.

Driven by these and many other applications, as well as a simple mathematical interest,
the recent 30 years or so witnessed an explosion of research works on matricial functions,
scattered in mathematical, physical and engineering literature. In particular, several books
devoted solely to various aspects of matricial functions appeared recently. It is clear
therefore that the material selected for this chapter has to be severely restricted and
represents only a small fraction of the material available in the literature. For one thing,
we shall put aside all applications, and focus on the theoretical aspects of matricial
functions. It is hoped, however, that practitioners interested mostly in applications will
be able to relate at least some of the material to their needs. Even so, many interesting and
important theoretical developments are excluded from this chapter as well; in particular,
the perturbation theory of matrices and their derived quantities is not considered here
(the reader is referred to the texts Stewart and Sun (1990), Kato (1982), Bhatia (1987)
for this theory). A reasonably extensive bibliography (again, far from being complete),
should compensate somewhat for these exclusions.

Only finite matrices with entries in a fixed field F' will be considered; since analytical
properties (such as continuity, differentiability etc.) of matricial functions will be impor-
tant here, the field often must be topological in this chapter. Simplicity of exposition and

‘uses in applications make it natural to choose either the real field F' = R or the complex

field F = C.
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Some notation which will be frequently used: I (or I,,) stands for the n x n identity
matrix. The linear space of all m x n matrices with entries in a field F will be denoted
M «n(F). For an m X n matrix A, we write

KerA={z € F*: Az =0}, Range A = {Az: z € F"}.

AT (resp. A*) stands for the transpose (resp. conjugate transpose) of a matrix A.

2. Functions of matrices
2.1. Basic definitions and properties

The simplest functions of an n x n matrix A are polynomials: for
m
fA) =) a;¥, a;€eF,
7=0
define

FA) =Y A =aol + mA+ -+ anA™. @n
J=0

The definition makes good sense for matrices over an arbitrary (commutative) field F,
or, more generally, for matrices over a unital ring (provided the coefficients a; belong
to the center of that ring).

Several basic properties of polynomials of matrices are summarized in the following
theorem. We denote by pa(X) = det(A] — A) the characteristic polynomial of A €
Mo (F). The spectrum, or the set of eigenvalues of A € My (F) will be denoted
o(A); thus,

O'(A) = {)\ € Fy |pA(A) = 0},
where Fj is a fixed algebraic closure of the field F.

THEOREM 2.1. Let F be a field, and let A be a fixed n x n matrix over F.

(a) The map f — f(A) defined by (2.1) is an algebra homomorphism from the algebra
F[)] of polynomials in one variable with coefficients in F into the algebra of all n x n
matrices over F.

(b) f(o(A)) = a(f(A)) for every f € F[A].

(¢) f(T7YAT) = T~ f(A)T for any nonsingular T € Mpxn(Fp), where Fy is a fixed
algebraic closure of F.

(d) pa(A) = 0 (Cayley-Hamilton theorem).
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PROOF. The parts (a) and (c) are easily verified. For part (b), recall a basic result in
linear algebra that for any A € Myuxn(F) there is an invertible T € Mpxn(Fo) such
that T—1AT is in the Jordan normal form: '

T~VAT = Jpn, (M) @ - - @ T (Mk), ' 2.2)

where Aj,..., A are (possibly with repetitions) all the elements in 0(A), and where
Jm (o) stands for the m x m upper triangular Jordan block with eigenvalue Ao:

M 1 0 ... 0
0 X 1 ... 0
IJm(M) =1 R (2.3)
1
0 0 o o

Rewriting the polynomial f(A) in the form
= 9 () ;
A) = ST LMY ),
= 0

it easily follows by the definition of f(T~'AT) that

F(T7AT) = f(JIm, (M) @ -+ @ F(Tme (k) (2.4)
where
Qo Cj1 e Qmy—i
s =| . I a2 20
0 0 ... ap '

In particular, o(f(T'AT)) = {ai0, @20, - --,ok0} = {f(A1),..., f(Ax)}. But in view
of (¢c), o(f(T'AT)) = a(f(A)), and (b) follows.

Finally, to prove (d), let B()) be the algebraic adjoint of AI — A; in other words, the
(4,k) element of B()) is equal to (—1)*** {determinant of the (n — 1) x (n — 1) matrix
obtained from AI — A by crossing out the k-th row and i-th column}. The properties of
the determinant ensure that

(AI — A)B(A) = BOW(MI — A) = pa(W)I. (2.6)

The right-hand side of (2.6) is a polynomial with matrix coefficients which is divisible by
Al — A. The Bezout theorem (which is applicable in this situation as one can easily check
by using long division of polynomials with matrix coefficients) gives [pa(\)I] rea =0,
ie. pa(4) =0. ]
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Observe that the parts (a), (c) and (d) of Theorem 2.1 are valid also for polynomials
of matrices over unital commutative rings (see, e.g., Brewer et al. (1986)).

Let us remark that the Jordan normal form (2.1) is a particular case of a more general
and very useful Kronecker normal form of linear matrix functions AA+ B, under the group
of transformations AA + B — P(AA+ B)Q. Here A, B € Mpxn(F), P € Mpxm(F),
Q € Mpxm(F) and P and Q are invertible. (The field F' is assumed to be algebraically
closed.) We refer the reader to Gantmacher (1959), Gohberg et al. (1982b) for a full
description of the Kronecker normal form.

From now on until the end of Subsection 1.2 we assume F = C.

We now extend the definition of functions of matrices to more general classes of
functions (beyond polynomials). The possibilities for such extensions are suggested by
the formulas (2.4), (2.5). Let A € M, xn(C), and let A(A) be the class of complex
valued functions which are defined and analytic in a neighborhood of o(A). If

T AT = Ty (M) @ -+ @ T, (Ak) 2.7
is the Jordan form of A, then for f € A(A) define
F(A) = T(f (Jms Q) @ -+ & f (T M) T, 23

where f(Jm,{(M)) is given by (2.5). This definition is correct, i.e. does not depend on
the choice of the nonsingular matrix T that reduces A to its Jordan form. Indeed, we
have

FA) = 5 /F FOYOT — 4)~1 ), 29)

where the contour I" consists of a small circle around each eigenvalue of A; to verify
(2.7), use the reduction of A to its Jordan form and the easily verified formula

(A —6\0)—l (i - io)j e §\)‘ _)\)‘Oz;il
(/\I—Jk()\o))_l = . ( —; ? B 0)
6 () B .)\0)_1

Thus, in view of (2.9), f(A) depends on A and f(\) only. The properties (a), (b), (¢} of
Theorem 2.1 remain valid for f € A(A).
As it follows from (2.8), we have f(A) = g(A) for every f,g € A(A) such that

FMO) =g™); m=0,...,r -1 ji=1,...,p (2.10)
where Ay, ..., )p are all the distinct eigenvalues of A and r; is the maximal size of the
Jordan blocks corresponding to A; (j = 1,...,p). This observation allows us to write
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f(A) as a linear combination of certain polynomials of A, as follows. Let
P
g = I =)
=l

be the minimal polynomial of A, with distinct roots Al,..-;Ap. For j = 1,...,p and
k=0,...,r; — 1 denote by ;i ()) the polynomial of minimal degree such that

gag.’fc)(/\j)=1; ‘P;fc)(/\j):o for £ =0,...,r; — 1 and £ #£ k;
<p§.i)()\s)-——0; for{=0,...,7s—land s=1,...,p; s #J.

Clearly, such ;i () exists; in fact, ;% has the form

o) =N [ =A™
s#j

for some polynomial 9;(A) of degree less that r;. Let
Zjk = p5x(A).

The matrices Zjj are called components of A. Being polynomials in A, the matrices
Z,i, commute with every matrix that commutes with A. One can show that Zj (j =
1,...,p; k=0,...,7; — 1) are linearly independent. Now given f € A(A), let g(X) be
the polynomial defined by

Ti—

FOED DI AICHIIEN

j=1 k=0
Because of the construction of ;i (), the equalities (2.10) hold, and we have

;-1

f(4) = i Y BN Z. @.11)

j=1 k=0

This formula is convenient if many functions of the same A are to be studied, as, for
example, is the case when f()\) depends on parameters.

Besides the formulas (2.9) and (2.11), for many important functions a useful power
series representation is available. Thus, let f(\) be an analytic function given by a power
series

FO) =" FH(0= 2oy

=0
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which converges in a disc D = {|A — Xg| < r}. Then for any matrix A € Mpx.(C)
all eigenvalues of which are in the disc D we have f € A(A) and therefore f(A) is
defined. It turns out that in fact

f(A) =" fi(A= oIy (2.12)
=0

and the matrix series in the right hand side is absolutely convergent. One can verify (2.12)
by reduction of A to the Jordan form and by using the formula (2.5). For example, we
have the power series

X An asd A2m]
A _ 2. in A = 1™ _
e —Zm!, smA—Z( 1) Gm T 1)1

m=0 m=0

valid for every n x n matrix A. The algebraic relations for scalar functions continue to
be valid when the variable is a matrix; for example

(sin A)? + (cos A)? = I

for any n X n matrix A.

For many applications the class LA(A) is not sufficiently wide, and one would like
to extend the definition of f(A) to a wider class of functions. To do this in a coherent
fashion, we have to restrict the class of matrices. Let {2 be an open interval of a straight
line in the complex plane, and denote by CP(£2) the class of p times differentiable
complex valued functions on {2 (differentiability is understood in the sense of £2:

f'(to) = lim 1) - flt) (tz:{ G 4 ea).
téfg 0

Then for any A € Myxn(C) with eigenvalues in £2, and any f € CP~!(12), where p
is the biggest size of a Jordan block in the Jordan form of A, we can define f(A) by
the same formulas (2.8), (2.5), where the Jordan form of A is given by (2.7). Again, the
basic functorial properties (Theorem 2.1(a), (b),(c)) are valid for the class Ccr=1(82). The
formula (2.11) is valid also, which proves, in particular, that f(A) is correctly defined
(i.e. is independent of the choice of the order of Jordan blocks in the Jordan form of A,
and of the choice of the similarity transformation that reduces A to its Jordan form).

Literature guide. The material of Section 2.1 is fairly standard and various parts of it
can be found in many texts (see, e.g., Bellman (1970), Wedderburn (1964), Pease (1965),
Gohberg et al. (1986a)). More or less complete and detailed expositions of this and related
material are given in Gantmacher (1959), Lancaster and Tismenetsky (1985), Horn and
Johnson (1991). A thorough exposition of old and new results concerning solutions X
of the equation f(X) = A, where f()) is a given analytic function and A € My xn(F),
F =R or F =C, is a given matrix, is found in Evard and Uhlig (1992).
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2.2. Formulas for the derivative of a function of matrices

Let A(t) be an n x n matrix depending on 2 real parameter ¢ € (a, b). In this subsection
we will give formulas for the derivative of the composite function f(A(t)), where f(})
belongs to a suitable class of functions. )

In the next theorem it will be assumed that A(t) is continuously differentiable.

THEOREM 2.2. (a) Assume that, for a fixed to € (a,b), f(X) is an analytic function in an
open set containing the eigenvalues of Ato). Then

% f(A®) = 517? /F FOV(AT - A(t))“A'(t)(,\I - A(t))‘1 d), (2.13)

for all t sufficiently close to to, where T is a simple closed rectifiable curve that encloses
all the eigenvalues of A(to).

(b) Assume that all eigenvalues of A(t) lie in an open-ended interval 2 C C, and
assume that f()) is a complex valued continuously differentiable function of A € (2.
Assume, in addition, that A(t) is diagonalizable for all t € (a, b). Then

d "0 = FOW) 4
Ef(A(t))=j%=:l——i:—_>\—kLPjA(t)Pk, .14

where A\ = Ai(t), . .-, As = As(t) are all the distinct eigenvalues of A(t) and

1

i = o (M — A)~'dX (e > O sufficiently small),
4 IA—=Ajl=€

is the Riesz projector corresponding to the eigenvalue A;.

The quotient (A; — Ae) ™! (f(A;) — f(Ak)) in (2.14) is interpreted as i) ifj=k.

We emphasize that under the hypothesis of Theorem 2.2(b) the multiplicities of the
eigenvalues \;(t), as well as their number s, may depend on t.

Formula (2.13) is a rather simple consequence of (2.9). Formula (2.14) is a special
case of a general formula for & f(A(t)) obtained in Daleckii (1965) (without the diag-
onalizability assumption). An analogous formula for hermitian operators was obtained
in Daleckii and Krein (1965). Formulas for the second derivative of f(A(t)) are given
in Chapter 6 of Horn and Johnson (1991). The book Rogers (1980) contains formulas
for the derivative of scalar or matrix functions of a matrix variable, and several useful
applications, for example, the derivative of the generalized inverse, and the derivatives
of elementary symmetric functions.

2.3. Entrywise functions of matrices

In this subsection we adopt a completely different approach to define a function of a
matrix. We assume here F' = R, as this is the case studied mostly (if not exclusively)



126 L. Rodman

in the literature. Given a function f: R — R, we define for every m X n real matrix

A = ag]ilr o,

m,mn
FA) = [flan)] 27,y (2.15)
With this definition, a functorial property analogous to Theorem 2.1(a) holds with respect
to entrywise multiplication (also called Hadamard multiplication) of matrices:
lai izt o1 © [bisli2T oy = [aisbislint o)
We present here several results concerning entrywise functions of matrices which are,
in a sense, typical of problems that have been studied for such functions.

THEOREM 2.3. Let A € Mypxn(R) be positive semidefinite with non-negative entries
(n>2), and let f(z) = z* If @ > n — 2, then f(A) defined by (2.15) is positive
semidefinite. If 0 < o < n — 2 and « is not a positive integer, then for some positive
semidefinite Ay € Myxn(R) with non-negative entries the matrix f(Ao) is not semidef-
inite.

Theorem 2.3 was proved in FitzGerald and Horn (1977), (see also Section 6.3 in Horn
and Johnson (1991)).

Observe that (under the hypotheses of Theorem 2.3) f(A) is positive semidefinite for

every integer o > 0. This follows from the general and very important result (due to
Schur (1891)):

THEOREM 2.4. The entrywise product of two positive (semi)definite matrices is again
positive (semi)definite.

A proof can be given by using the spectral theorem for a positive semidefinite 7 x n
matrix A:

A= Zn:,\jpj,
j=1

where A; > 0 and Pj,..., P, are one-dimensional orthogonal projectors which are
orthogonal to each other. For a detailed proof see, e.g., Section 5.2 in Horn and Johnson
(1991) or Section 7.5 in Horn and Johnson (1985).

Another useful result concerns the entrywise exponential. An n X n hermitian matrix
A is called conditionally positive semidefinite if x* Az > 0 for every

z=(21,72,...,2n) €C"

such that

n
Z.’L‘j =0.
j=1
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THEOREM 2.5. Let A = [a;5]7;_, be a hermitian matrix., Then the e.ntryw.ise exp.oventt;clzl
[exp(tai;)]}j=y is positive semidefinite for all t > O if and only if A is conditionally
positive semidefinite. '

PROOE. The proof of the “if” part is found in Section 6.3 of Horn and Johnson (1991). Eor
the “only if” part observe that the positive semidefiniteness of [exp(tas;)]} ;= implies

the conditional positive semidefiniteness of t! [exp(taij) Ti=1- It. remains to pass to the
limit when ¢ — 0. See also Section 1 in Parthasarathy and Schmidt (1972). O

We conclude this subsection with a result concerning spectral radii of entrywise func-
tions of matrices. Denote by p(A) the spectral radius (i.e. the max1ma1.modu1us of
eigenvalues) of an n x n matrix A, and denote f (A) by (2.10), i.e. entrywise.

THEOREM 2.6. A function f: {z € R: z > 0} — {x € R: & > 0} satisfies the inequality

p(f(A)) < f(p(4))

for any n x n matrix A with real non-negative entries, and for any size n, if and only if
the following two conditions are satisfied:

(@) £(@) + f(b) < fla+b) forall a,b>0,

(i) (f(a)f(b)'/* < f((ab)'/?) for all a,b > 0.

Theorem 2.6, as well as its generalization to functions of several real variables, and
a characterization of functions f satisfying the opposite inequality p(f(A)) = f(p(A)),
are proved in Elsner et al. (1990).

Literature guide. For additional information concerning entrywise powers of rpatrices,
with applications to infinitely divisible matrices, see Horn (1967, 19.6.9). Varllous ap-
plications of Theorem 2.5 and related properties of conditionally positive sem'lc'ieﬁmte
matrices are found in Bapat (1988), Parthasarathy and Schmidt (1972). (probabl}lty the-
ory), Donoghue (1974) and Micchelli (1986) (two dimensional data fitting). An in-depth
discussion of Theorem 2.4 and related results is given in Horn (1990).

2.4. Monotone matrix functions

Here we consider functions of hermitian matrices. An n x n hermitian matrix A is
diagonalizable with real eigenvalues; moreover, there exists a unitary matrix U such that

AN O ... O

0 X ... 0
UrAU=UT'AU=| . . .|

0 0 ... A
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where Ap, ..., A, are (not necessarily distinct) eigenvalues of A. These properties allow
us to define f(A) for any complex valued function f()\) whose domain of definition
contains o(A), by a formula analogous to (2.3):

f) o0 ... 0
-v| &I e
0 0 ... fOW)

We assume in this section that f(A) is real valued (this guarantees that f(A) is hermitian
as well) and is defined on a real interval (a,b) (—00 < a < b < ).

There is a natural partial order (sometimes called Loewner partial order) on the set H,,
of all n x n hermitian matrices. Namely, for A, B € H,, we define A < B (or B > A)
to mean that B — A is positive semidefinite. A real function f(A), A € (a,b), is called a
monotone matrix function on H,, with respect to (a,b) if A < B, where A, B € H, and
o(A)Uo(B) is contained in (a, b), implies that f(A) < f(B). Some important examples
of monotone matrix functions on H,, (forall n=1,2,...) are:

1) f(A) = —A~! with respect to (0, 00) as well as with respect to (—oo0,0);

2) f(A) = VX with respect to (0, c0);

3) f(A) = log A with respect to (0, c0), where the branch of the logarithm is chosen
so that f() is real valued for real positive .

Functions that are matrix monotone on H, for all n can be characterized as follows:
THEOREM 2.7. The following statements are equivalent for a real valued function f(\),
A € (a,b).

(i) f(A) is a monotone matrix function on Hy with respect to (a,b), for all n =
1,2,...
(i) f(X) is analytic on (a,b), admits analytic continuation to the open upper halfplane
and the open lower halfplane, and (unless f()) is constant) f(Xo) has positive imaginary
part for every Xy in the open upper halfplane;

(i) f(A) admits an integral representation -
(\) = a)\+ﬁ+/ [E-N0"! ——t(t2+1)—]]dp(t), (2.16)

where A 2 0, 3 real, and u(t) is a positive Borel measure on the real t-axis which has
no mass on (a,b) and such that

/°° (tl + 1) dp(t) < oo.

—O00

The equivalence (i) <> (ii) is known as Loewner’s theorem (Loewner (1934)). The
functions f(A) which are analytic in the open upper halfplane and map this halfplane into
itself are called Pick functions. The formula (2.16) is a well-known integral representation

of Pick functions, taking into account the additional analytic continuation properties stated
in (ii).
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We now restrict the matrix monotonicity property to a fixed Hp:

THEOREM 2.8. Let f()\) be a continuously differentiable real valued function on (a,b).
Then f()\) is matrix monotone on H,, with respect to (a,b) if and only if for all
A, - -, An € (a,b) the matrix .

[ =2 0 SO,
is positive semidefinite. df \i = A, the expression (A — )\j)—l(f (M) — (X)) is
interpreted as f'(Ai).)

Theorem 2.8 is again due to Loewner (1934) (in fact, every r?latrix rpor?o.tone functlo.n
on H,, is (2n—3) times continuously differentiable; thus, the differentiability hypothesis
in Theorem 2.8 is superfluous if n > 2). A relatively easy prf)of of T-heorem 2.8 based on
formula (2.14) and on Schur’s theorem 2.4 is found in Section 6.6 in Horn and Johnson

(1991).

Literature guide. The book Donoghue (1974) contains a full proof of Loewner’s the-
orems, as well as several important related results and subseqvtle'nt developments. l_-“'or
several other criteria (besides Theorem 2.7) for matrix monotonicity on H,, see Section
6.6 in Horn and Johnson (1991) and Bendat and Sherman (1955)..Add1t10na1 SOurces con-
taining information on monotone matrix functions inglude Davis (1963), Horn (1990).
A real function f(z), = € R, is called matrix convex if

F(A=NA+ AB) < (1 - X)f(A) + Af(B)

for every pair of n x n hermitian matrices A and B ar}d every A € [0,1]. This clas.s
of functions is closely related to matrix monotone functions (see Krauss .(1936), Davis
(1963), Bendat and Sherman (1955), Section 16E in Marshall an.d Olkin (1979? and
Section 6.6 in Horn and Johnson (1991) for the basic results on matrix convex functions).

3. Matrices dependent on parameters

Let A(t) be an nxn complex matrix depending on parameters ¢. In apPlications, itis o.ft.en
desirable to find out what is the nature of dependence of ¢ of many important quantities
associated with A(t), such as eigenvalues, eigenvectors, Jordan fom}, triangular (Schur)
form, singular values, basis in Ker A(t), basis in Range A(t) etc. Without attempting to
cover, or even mention, many important results in that area, we present here some basic
facts and ideas.

3.1. Analytic matrix functions

We start with the complex analytic dependence on ¢. Thus, assume that A(t) (i.e. every
entry of A(t)) is an analytic function of the complex variable t € 2, where {2 is a



130 L. Rodman

domain in the complex plane. Easy examples show that the eigenvalues of A(t) need not
be analytic functions of ¢ (even if one allows for an arbitrary permutation of eigenvalues

for each t). Moreover, when the eigenvalues of A(t) are analytic (even constant) the
Jordan form of A(t) need not be analytic:

EXAMPLE 3.1. The Jordan form of

010
Af)={0 0 0], tecC,
t 00
is
010 010
0 0 1) ift#0 and 0 0 0] ift=0.
000 000

The set of points to € {2 at which the continuity of the Jordan form of A(t) breaks

down is at most countable with limit points (if any) on the boundary of §2. Denote this
set 2.

THEOREM 3.1 (see Baumgartel (1985)). The eigenvalues (suitably ordered) \(t),...
An(t) of A(t) are given in a neighborhood U (to) of every to € 12 by the fractional
power series (p is a positive integer)

o0
Ai(t) =gkt —10)*7; oy € C. (3.1)
k=0
A basis x\(t),...,za(t) in C* consisting of chains of eigenvectors and generalized

eigenvectors (Jordan chains) of A(t) exists which is given by fractional Laurent series

(e}

Iﬂj(t) = Z $jk(t — to)k/p; Tk € cr

=—q

for t € U(to)\{to} (here ¢ = O is an integer). Moreover, if to ¢ (2, then p = 1, and
q=0, ie Aj(t) and x;(t) are in fact analytic at 1.

A generalization of Theorem 3.1 to matrices depending analytically on several complex
parameters is obtained in Baumgartel (1974).

Behaviour of eigenvalues and their multiplicities of analytic matrix functions under
small analytic perturbations was studied for hermitian valued function in Gohberg et al.
(1985, 1986b) (see also Gohberg et al. (1983) and references there), and for general
functions in Najman (1986), Langer and Najman (1989) (where the results and proofs
are given using Newton diagrams).

Since the Jordan form of A(t) is not necessarily analytic on {2, a natural question
arises: find a simplest possible form of A(t) (for every ¢t € §2) which is guaranteed to
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be analytic on ¢, at least in a neighborhood of every t € £2. The answer is given by the
following result.

THEOREM 3.2 (Arnold (1971)). Let to € §2, and assume that A(tg) is the Jordan form
A(to) = Jmu()‘l) -0 Jmlrl (Al) DD Jmn(AS) & Jmsrs (’\S):

VAT { >">m(7,=

M,...,\s are the distinct e:genval_ues of A(t), and mi 2 > Mir,
:Vhere .9)1 (Jm ()\50) is defined by (2.2)). Then there exists an invertible maz‘rzx1 S(t) de-
p;;tdi;lg analytically on t in a neighborhood of to such that S(t)A(t)S(t)~" has the

form
SHARSH) ' =K1 & & K. (3.2)
Here K; has the same size as Jm,, M) @& Imy,, (\j) and its structure is given by

_ [P
Kj= [Kj ]p,q=l
] ] 1 i i sible exception
where K ](-pq) is a Mjp X Mjg matftx {uzvmg all entries zero with the pos P
of the bottom min(mp,mj,) entries in the first column.

Theorem 3.2 holds verbatim for matrix functions that are analytic functions of several
complex variables. N

Aprcﬁnerncnt of (3.2) is given in Kashchenko (1988) under additional hypotheses on
A(t). Other special cases are studied in Tovbis (1992). '

In Krein and Tovbis (1990), Tovbis (1992) various forms are described t.hat can be
obtained from A(t) by applying similarities S (t)A(t)S(t)~" or transformations of the
form

A(t) = S(t)"A(t)S(2) — 2"S(8)'S"(2),

where the invertible matrix S(t) is assumed to depend merom(n:phically on t, or have
expansion in fractional powers, in a neighborhood of a giver.x point. The stufiy of these
forms is motivated by transformations of systems of linear differential equations.

Another approach for studying analytic matrix functions concerns characte.rlzatlon.s of
various types of similarities between such functions. We say .tha't n x m matrix functions
A()) and B()) analytic at Ao are pointwise similar if A(X) is similar to B()\) for every
X sufficiently close to Ap; A(X) and B()) are called analytically.szmllar. if A.()\) =
T(A\)~'B(A)T()\) for some matrix function T'(A) which is' an'aly.uc.and mv‘emble at
Xo. The pointwise similarity does not always imply analytic snmllarlty.. An 1.mportant
problem (that arises in the study of singular ordinary differential equatlon.s) is to ﬁ_nd
conditions on A()) that guarantee the equivalence of pointwise and analytic similarity.
This problem was studied in Wasow (1962), Friedland (19804, 1980b). Some of tl}e results
of these papers have been interpreted and generalized in the framework of matrices over
commutative rings Guralnick (1981).
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3.2. Real analytic matrix functions

For some important classes of matrix functions (e.g., hermitian matrix valued) it is natural
to consider dependence on real rather than complex parameter. Here the main result
concerns analytic behaviour of eigenvalues and eigenvectors, and (as a consequence) of
a triangular form:

THEOREM 3.3. Let A(t) be an n X n matrix which is an analytic function of a real
parameter t € (a,b), —oo < a < b < 0o. Assume that all the eigenvalues of A(t), for
all t € (a,b), lie on a differentiable (i.e. having tangent at each point) curve I' C C.
Then there exists an analytic (on t € (a,b))} n x n matrix function U (t) such that

uyoe) =1I
(i.e. U(t) is unitary valued) and

Ut ABU ) = [z:5(2)] (3.3)

n
i,4=1
is triangular: z;;(t) = 0 for i > j.

PROOF. Let ty € (a,b). By Theorem 3.1 the eigenvalues A;(t) of A(t) are given by
fractional power series (3.1) in a neighborhood of f. Assume that p > 2 and that at
least one of the coefficients ok, kK not a multiple of p, is nonzero. Let ko be the smallest
integer, not a multiple of p, such that ok, # 0. Then letting ¢ — Tp firstly for ¢ > £
and secondly for ¢ < to we obtain

lim [/\j(t) — Aj(to)] (t —_ to)-k“/p = Qjky
fim [A;(2) — A; (o)) (¢ — o) /P = (= 1) Payjp,.

Clearly, the numbers a;k, and (—1)k/Pqy, have arguments that either coincide with
the tangential direction to I" at A;(%p), or are opposite to this direction. Hence (~1)ko/P
must be real, a contradiction. We have proved that the eigenvalues (suitably ordered)
of A(t) are analytic in a neighborhood of to. By analytic continuation, the eigenvalues
A(t),- .., An(t) of A(t) are analytic on t € (a,b). Now we use a result (see, e.g.,
Theorem 5.6.1 in Gohberg et al. (1978c)) according to which an analytic (on ¢ € (a, b))
column vector valued function y,(t) can be found such that y;(t) # 0 and (A(t) —
M) Dyi1(t) = 0 for all t € (a,b). In other words, y;(t) is an eigenvector of A(t)
corresponding to A; (£). By the same result, there exists an analytic basis ¥2(2), . . ., yn(t)
in Ker(y;(t))* (at this point we use the fact that ¢ is a real variable and therefore
(y1())* is analytic on ¢ as well). Performing the Gram—-Schmidt orthonormalization on
y1(t), ..., yn(t) (which does not spoil the analyticity) we obtain a unitary analytic (on
t € (a, b)) matrix function U} () whose first column is a scalar multiple of yi(t). Clearly,

oo = (M 40)
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for some (n — 1) x (n — 1) analytic matrix function Ai(t), and so on, until the proof is
completed. O

The most important particular cases of Theorem 3.3 are when I' is a straight line
(e.g., the real axis) or a unit circle, or when A(t) satisfies additiona! hypotheses (e:g.,
being hermitian valued, or unitary valued) that make the hypothesis on the location
of eigenvalues of A(t) satisfied automatically. For hermitian valued A(t) the result of
Theorem 3.3 goes back to Rellich (1937, 1953); see also Porsching (1968), Kato (1966,
1982), Gohberg et al. (1978¢), Gingold and Hsieh (1992).

Note that Theorem 3.3 is false if A(t) depends analytically on more than one real vari-
able. The following well-known example illustrating this fact can be found, for example,
in Section IL.5.7 of Kato (1966):

EXAMPLE 3.2. Let

t t
A= (3 ).

A(t1,t2) is obviously analytic and hermitian as function of (t),t;) € R2. However, the
eigenvalues +(t} + t3)!/? are not analytic at t; =t = 0.

3.3. Matrices with entries in a function algebra

Let K C R" be a connected compact set, and let X be an algebra (over ©) of continuous
complex valued functions on K with the following properties:

(i) X admits partitions of unity: for every relatively open finite covering {V;}7_; of
K there exist non-negative functions ¢ (t), ..., @-(t) in X such that

Z%‘(t) =1

and ;(t) =0 for t € K\V;.

@ii) if f(t) € X and f(t) # 0 for all t € K, then (f)~'e X.
Denote by Mynxp(X) the set of m x p matrices with entries in X.

A typical question one is interested in when studying matrices with entries in X is
whether a certain quantity associated with a matrix can be expressed in terms of the
algebra X. We state here one result in this spirit concerning the kernel and the range of
a matrix.

THEOREM 3.4 (Gochberg and Leiterer (1976)). Let A(t) € Mmxp(X), t € K, and as-
sume that the dimension of Ker A(t) (and therefore also the dimension of Range A(t)
is independent of t € K. If K is contractible, or if n < 2, then there exist a ba-
sis z1(t), ..., xs(t) in Ker A(t) and a basis y(t), . ..,yq(t) in Range A(t)) such that
Tj € Mpy1(X) (for k=1,...,s) and yr € Mmx1(X) (for k= 1,...,9).
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A example is given in Evard (1990) of a 2 x 2 hermitian valued matrix function A(t)
which is infinitely differentiable for parameter ¢ € K, where K is the unit sphere in R3,
and such that rank A(t) = 1 for all t € K; nevertheless, there is no continuous vector
function xz(t) which is a basis in Ker A(t) for all t € K.

Literature guide. The theory of matrices with entries in function algebras is only at the
beginning of its systematic development. Gochberg and Leiterer (1976) is an early paper
on this subject, and some later work in this direction includes Gingold (1979), Evard
(1990), Evard and Gracia (1990). In particular, the following result is proved in Evard
and Gracia (1990): Let A(t) and B(t), t € £2 be two n X n matrix functions of the C?
class, where £2 C RY is an open set CP-diffeomorphic to R?, such that A(t) and B(t)
have constant Jordan structure for all ¢ € £2, and for every fixed to € 2 the matrices
A(to) and B(to) are similar (here p is a non-negative integer or o). Then there is a C?
class similarity between A(t) and B(t). A related result (known as DoleZal’s theorem,
Dolezal (1964)) states that the kernel of a CP-class matrix function A(t), t € [0, c0) with
constant rank can be transformed to a constant subspace by means of a C?-class invertible
matrix function. This theorem and its generalizations are well-known and widely used
in control systems: Silverman and Bucy (1970), Weiss and Falb (1969). A far reaching
generalization of this result was obtained in Guralnick (1991) for matrices over certain
commutative reduced rings R. Without setting up the precise framework for such a
generalization, we just mention that the key property of the ring R needed here is that
every finitely generated projective R-module is free. Many results concerning matrices
whose entries are continuous or analytic functions are exposed in Gohberg et al. (1986a).
A completely different problem — positive semidefinite completions of partial matrices
_ was treated in Johnson and Rodman (1988) from the point of view of matrices over
function rings.

Analytic properties of singular values and singular value decompositions of analytic
matrix valued functions are studied in Boyd and Balakrishnan (1992), Bunse and Ger-
stner et al. (1992), Boyd and De Moor (1990). Derivatives (sensitivities) of eigenvalues
and eigenvectors of matrix functions depending analytically on several real or complex
variables are studied in Sun (1990), Andrew et al. (1992); and sec Burke and Overton
(1991) for analogous questions concerning the maximum real part and the maximum
modulus of eigenvalues. We note also the paper Overton (1992) (and references therein),
devoted to the problem of minimization of the maximum eigenvalue of A(z) subject to
linear constraints and bounds on x € RY; here A(z) is a real symmetric matrix function
of z which is continuously differentiable.

4. Matrix polynomials

Let F be a field, F|)] the algebra of polynomials in one variable A with coefficients in
F. Matrices with entries in F[)] are called matrix polynomials, or polynomial matrices.
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4.1. The Smith form

We start with the Smith canonical form which plays an important role in the analysis of
matrix polynomials. ’
THEOREM 4.1. Let A(X) € Mnxa(F[N]) be a matrix polynomial. Then A()) admits the

representation

A(\) = Ex(A) DN E2 () 4.1

where
4y 0 . .. O
0 dl) ... ... 0
py=| RS\ . 4.2)
0
0 0 .o w0

is a diagonal matrix polynomial with monic (i.e. having leading coefficient 1) scalar
polynomials d;(\) € F[] such that di()) is divisible by di_1(N) (1 =2, ... ) Er(A) €
Momxm(FIN) and Ey(X) € Mnxn(F [A]) have constant (i.e. independent of ) nonzero
determinants. Moreover, the polynomials dy()), d2(}), - .., dr(X) as well as their number
r, are uniquely determined by A(X).

The proof of Theorem 4.1 is accomplished by applying elementary row and column
operations (see, ¢.g., Thrall and Tornheim (1957), MacDuffee (1946), Gantmacher (1959)
or Gohberg et al. (1982a) for the proof). The book Newman (1972) contains a detailed
exposition of the Smith form (4.1) as well as of other related forms.

The polynomials d;()) are called the invariant polynomials of A(X). They can be
determined by A()) as follows: Let r x r be the maximal size of a square submatrix in
A()) with not identically zero determinant, and fori = 1,...,7, let D;()\) be the monic
greatest common divisor of all ¢ X i minors (= determinants of 4 X % submatrices) of
A(A). Then

di(A) = Di(/\)/Di-—l()\), 1= 1,...,7‘,

where we put Dg(A) = 1.

Two matrix polynomials A(A), B(A) € Mumxn(F[X]) are called equivalent if A(\) =
Ei{(A\)B(A)E,(X) for some Ej()) € Mmxm(F[N) and Ex(A) € M xn(F[A]) with
constant nonzero determinants. Theorem 4.1 can be recast in the following alternative
form: A()), B(A) € Mmxn(F[X]) are equivalent if and only if they have the same
invariant polynomials.

The Smith form (4.1) has been studied in the more general framework of matrices
over rings. We call a commutative unital ring R without divisors of zero a Smith domain
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if every matrix A over R has the Smith form: i.e. a representation A = E; DE,, where
E, and E, are invertible matrices (over R) and D = diag(d,,...,d,,0,... ,0), dj € R
is diagonal where d; is divisible by d;_, (i =2,...,r). It is known that every principal
ideal domain is a Smith domain (see Section II1.8 of Jacobson (1964)); on the other hand,
every Smith domain is a Bezout domain, i.e. every finitely generated ideal is principal.
The ring Z[}] is an example of a Smith domain which is not a PID. These and other
properties of Smith domains and related rings are found in Brewer et al. (1986), Den
Boer (1981); see Kaplansky (1949) for results concerning rings admitting the Smith form
(in the general framework of not necessarily commutative rings possibly having divisors
of zero). The question whether every Bezout domain is a Smith domain seems to be still
open.

Since F[)] is a principal ideal domain, the ring My xn(F[A]) enjoys the divisibility
properties common to matrix rings over principal ideal domains (or, more generally,
Bezout domains). Namely, every pair of n x n matrix polynomials A(A) and B(}) has a
greatest common right divisor D()) (which also belongs to M, x,(F[}])), and moreover
D()) can be expressed in the form

D(\) = X(MAN) + Y(\)B(A)

for some X,Y € My,x,(F[)]). Also, every pair of n X n matrix polynomials A()\) and
B(A) which are not divisors of zero in M, x,(F[A]) have a least common left multiple
C(A) € Mpx,(F[)A]); moreover, C(X) is unique up to left factor with constant nonzero
determinant. Proof of these facts can be found, for example, in MacDuffee (1946). In
the next section, we will study divisibility and factorization of matrix polynomials from
a different (geometric) point of view based on invariant subspaces.

4.2. Factorization of matrix polynomials

One of the main problems in the theory of matrix polynomials is the problem of factor-
ization:

A(X) = B(A)C(N), (4.3)

where A(A), B(A) and C(A) are n X n matrix polynomials. In the sequel we consider
factorization of matrix polynomials which are monic, i.e. with the leading coefficient I.

In contrast with scalar polynomials, even when F is algebraically closed, not ev-

ery monic matrix polynomial admits a factorization (4.3) into product if monic matrix
polynomials of smaller degrees:

EXAMPLE 4.1.

wo=(5 1)
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has no factorization (4.3), where B(A) and C()) are monic nonconstant polynomials.
This follows easily from the nonexistence (over any field containing F) of a square root

of the matrix

(6 0)

Let
m—1 )
AN = AT+ S N A, Aj € Muxa(F)- (@.4)
§=0
The mn X nm matrix
0 I 0 .. 0
0 0 I ... 0
Cy= : 4.5
: : : I
—Ay A -A ... —An.

is called the companion matrix associated with A(X). It turns out that the factorizationn%f
A(X) can be described in terms of certain C 4-invariant subspaces. A s_ubspac.e M Q. F

is called Ca-invariant if Caz € M for every x € M, where C4 is considered in the
natural way as a linear transformation F™™ — F™™.

For A(A) € Mpxn(F[))) with the invariant polynomials di (A), .. ., dr (A), the ro'ot.s'of
d;(\) (in some algebraic closure of F) will be called the zeros of A(A); the multiplicities
of ) as a root of di(X), ... ,dr()) are called the partial multiplicities of Ao as a zero of
A(N).

THEOREM 4.2. Let be given monic matrix polynomial A()) (4.4) with its companion ma-
trix (4.6). Then the factorizations (4.3) with monic matrix polynomials B(X) and C(N),
where B()\) has degree k and C()X) has degree m —k, are in one-to-one correspondence
with C s-invariant subspaces M such that M is a direct complement to the subspace

{z € F™: the first (m — k)n components of x are zeros}. (4.6)

Moreover, the zeros of C(\) coincide with the eigenvalues of the restriction Ca| M,
and the partial multiplicities of a zero Xy of C(X) coincide with the multiplicities of Ao
as an eigenvalue of C» | M. Given the subspace M as above, the corresponding matrix
polynomials B()\) and C()) are given by the formulas

COY = Ak (10 ... 0(Ca | M) F[Vi + VaA+ -+ + Ve X571,
where

[‘/1 Va ... Vm—-kl = ((I(m—-k)n O) lM)_l; 4.7
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B\ = XTI — (Zy+ ZoA + -+ + ZiX*~") PCE PY,

where

0

P is the projector on the subspace (4.6) along M (understood as a linear transformation
from F™™ onto (4.6)), and

Z
Z k-1 -1

.| = [PY,PCaPY,...,PC5T'PY] . (4.8)
Zy,

Observe that the existence of inverses in (4.7) and (4.8) is guaranteed by the condition
that M is a direct complement to (4.6).

The proof on Theorem 4.2 is given in Gohberg et al. (1978¢) (see also Chapter 3 in
Gohberg et al. (1982b)) for the case F' = C, the general case is proved in the same way.

Of special interest are right divisors of A()) of the form A\] — Z, Z € M, xn(F). This
happens if and only if Z is a right solvent of A()), i.e.

m-—1
Zm+ > A2 =0.

=0

Right solvents of matrix polynomials are studied in Markus and Mereutsa (1973), Goh-
berg et al. (1978a), Maroulas (1985) using generalized Vandermonde matrices. In this
connection we note a result proved in Krupnik (1991) according to which A()) admits
factorization

1] M\ I-2), Z; € Myxa(F),
7=1

provided all elementary divisors of A(X) are either linear or quadratic (F is assumed
algebraically closed here).

Theorem 4.2 allows one to reduce factorization problems to invariant subspace prob-
lems. This approach is especially useful when F is algebraically closed, or when A(\)
has a special structure. We shall illustrate this approach for an important class of matrix
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polynomials (over C) with hermitian coefficients.

THEOREM 4.3. Let A(X) € Mpxn(C[)])) be a matrix polynomial given by (4.4) and as-
sume that A; (j = 0,...,m—1) are hermitian matrices. Then A(X) admits factorizations

A()\) = B(A)C(N) 4.9)
where C()\) is a monic matrix matrix polynomial of degree [T‘”] such that all zeros
of C(\) have nonpositive imaginary part,- and -all zeros of B(\) have non-negative
imaginary part.

PROOF. We provide only an outline of the proof, and refer the reader to Section I1.3.2 in
Gohberg et al. (1983) for the full proof.
Let C4 be the companion matrix of A()), and let

A A T
Ay 0

Ha=| : © 1 | € Mynxma(C). (4.10)
I 0
I 0 ... 00

Clearly, H 4 is invertible and hermitian. A straightforward calculation shows that
HsCh=CLHgy. (4.11)

This equality can be interpreted in the following way: Introduce the indefinite scalar
product [-,-] on C™"* by

[z,y] =y*Haz, z,ye€C™".
The equality (4.11) means that C4 is selfadjoint with respect to [, -]:

[CAI7y] = [IE, CAy]> T,y € cmn.
Now the theory of linear transformations that are selfadjoint in an indefinite scalar prod-
uct (see, e.g., Gohberg et al. (1983)) guarantees existence of an [mT“]n-dimensional
C s-invariant subspace M C C™" with the additional properties that

[z,2] 20 forall z € M,
and that all eigenvalues of the restriction C4 | M lie in the closed lower halfplane.

Moreover, it turns out that every such M is a direct complement to the subspace (4.6),
where k = [Z2]. It remains to apply Theorem 4.2. a

Under the hypotheses of Theorem 4.3, A(\) also admits factorizations (4.9) with all
zeros of C(A\) having non-negative imaginary part.
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Of special interest are matrix polynomials which are positive semidefinite on the real
line:

THEOREM 4.4. The following statements are equivalent for a matrix polynomial (4.4)
(over C):

(1) A(\) is positive semidefinite for every real \;

(ii) A(X) admits factorization of the form

AQ) = (M) M),

where M() is an n x n matrix polynomial;

(iii) the degree m of A()) is even, and, letting C4 and H,a be matrices defined
by (4.5) and (4.10) respectively, there exists a C a-invariant ™% -dimensional subspace
M C C™ which is Ha-neutral: y*Hax =0 for all x,y € M.

(iv) all partial multiplicities of real zeros (if any) of A()\) are even.

The proof of Theorem 4.4 is found in Section I1.3.2 of Gohberg et al. (1983).

Literature guide. Much of the development of the theory of matrix polynomials (with
real or complex coefficients) was motivated by applications in mechanical and electrical
systems with finite number of degrees of freedom (see, e.g., Whittaker (1952), Frazer
et al. (1955) and especially Lancaster (1966)). Other important applications of matrix
polynomials are found in modern control theory (see the books Barnett (1983), Kailath
(1980), Rosenbrock (1970)). The spectral analysis of matrix polynomials (leading, in
particular, to Theorem 4.2) has been initiated in Gohberg et al. (1978c, 1978d); a com-
prehensive exposition of this theory (including nonmonic matrix polynomials) is given
in Gohberg et al. (1982b); see also Lancaster and Tismenetsky (1985), Gohberg et al.
(1986a). Perturbation theory for divisors of monic matrix polynomials was developed in
Gohberg et al. (1979) in the context of both continuous and analytic perturbations. For
the theory of common multiples and divisors of matrix polynomials from the spectral
analysis point of view, see Gohberg et al. (1978a, 1978b, 1981, 1982a), also the book
Gohberg et al. (1982b). The book Kazimirskii (1981) contains the factorization theory
of matrix polynomials over a general field, from the algebraic point of view.

Matrix polynomials with hermitian coefficients, as well as with other symmetries, are
of special interest because of numerous applications, especially in vibrating systems and
linear control systems: Lancaster (1966), Coppel (1972), Gohberg et al. (1983). The com-
prehensive spectral theory of hermitian matrix polynomials was developed starting with
Gohberg et al. (1980), also Gohberg et al. (1982c, 1982d) (it should be noted, however
that the spectral theory for certain classes of operator polynomials with selfadjoint coef-
ficients was developed before, see Krein and Langer (1978), Langer (1976)). The book
Gohberg et al. (1983) contains an exposition of this theory, as well as many applications;
see also the review papers Lancaster (1982), Rodman (1987).

Matrix polynomials of second degree with hermitian coefficients are especially im-
portant in applications. Besides the above references, we mention here Gohberg et al.
(1986b) and Lancaster and Maroulas (1988), where the behaviour of zeros of such poly-
nomials is studied under analytic perturbations of the linear term, and under feedback,
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respectively, and Lancaster and Maroulas (1987), where the problems conccmi'ng the
determination of such polynomials from the knowledge of their spectral properties are
studied. .

We conclude with a brief mention of some other aspects of the theory of matrix poly-
nomials. The volume Kagstrom and Ruhe (1983) is devoted mainly to the computational
aspects of matrix polynomials; among numerous papers on this subject we mention qnly
Belyi et al. (1989), Khazanov and Kublanovskaya (1988), Van Dooren and Dewilde
(1983) (see also references in those papers), where algorithms are given for comPut-
ing the zero structure of rectangular matrix polynomials. Orthogonal matrix polynomials
have been studied in Delsarte et al. (1978), Fuhrmann (1987) and in the volume Gohberg
(1988a), (among others); in Gohberg and Lerer (1988) the spectral analysis o_f mgtrix
polynomials, and in particular connections with coprime and Wiener—Hopf factorizations,

play a prominent role.

4.3. Bezoutian of matrix polynomials

Let
£ ] m )
ad) = S"a, b)) =Y X (m<O)
i=0 i=0

be scalar polynomials with coefficients in the field F' (we assume a, # 0, by # 0).
The concepts of the resultant and Bezoutian matrices of a(X) and b(}) are classical. The
resultant is the (£ + m) x (£ + m) matrix

a a ... ag 0 ... O
0 ap a1 Qg 0
0 0 ap 477
Res(e,b) =1, 4 . b, 0 ... 0| (4.12)
0 b bm 0
o 0 ... bo ... bm

and the Bezoutian is the £ x £ matrix Bez(a, b) = [m,,]f;lzo defined by

-1
D wNwd = (A= w) 7 a(W)b(k) — a(m)b(V)]. (4.13)

4,j=0

The fundamental property of these matrices is that the dimension of KerRes(a,b), as
well as the dimension of KerBez(a,b) is equal to the degree of the greatest common
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divisor of a()) and b(A). This property has been used, in particular, to prove various root
separation and inertia results for scalar polynomials (with real or complex coefficients).

Recently, the concepts of resultant and Bezoutian matrices and their fundamental prop-
erty have been extended to matrix polynomials. We will focus here on the Bezoutian
matrix.

Let L1(A) and L()) be two nxn matrix polynomials with det L; () % 0, det L(A) # 0.
Since L; and L generally do not commute, we cannot use the same definition as in the
scalar case based on (4.13). However, there exists a common left multiple of L; and
L, ie. n x n matrix polynomials M;(A) and M(A) exist such that det M;()\) # 0,
det M(A) # 0 and the equality

My(\)Li() = M(A)L(A) 4.14)
holds. The Bezoutian associated with the equality (4.14) is defined as the block matrix

B = [[y] 0% (4.15)
where the block entries I'; are given by

m=1¢-1

DY TN = (A= )T M) Ly () - MOV L(w)],

i=0 ;=0

and where £ (respectively, m) is the maximal degree of L and L; (respectively, of M
and M)).
The fundamental property of the matrix Bezoutian can be stated as follows:

THEOREM 4.5. Assume that one of the matrix polynomials L()\) and Li{)) has invertible

leading coefficient, and one of them has invertible constant term. Further assume that
(4.14) holds. Then

dim Ker B = degree ( det Lo(})), (4.16)

where Lo(\) is the greatest common divisor of L()\) and Li()\).

This result as well as its analogue for the case when the hypotheses on the invertibility

of coefficients is omitted (in this case the equality (4.16) should be modified), was proved .

in Lerer and Tismenetsky (1982). (It was assumed there F' = C, the generalization for
any field is immediate.) Furthermore, a description of Ker B in terms of the zeros of
Lo(M\) and the corresponding eigenvectors and generalized eigenvectors is given also in
Lerer and Tismenetsky (1982).

Literature guide. For the theory and applications of resultant and Bezoutian matrices
for scalar polynomials see, e.g., the books Uspensky (1978), Lancaster and Tismenetsky
(1985) and review papers Krein and Naimark (1981), Helmke and Fuhrmann (1989).
The definition of the Bezoutian for matrix polynomials based on (‘4.14) was introduced
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in Anderson and Jury (1976), Bitmead et al. (1978), inspired by some problems in linear
control systems. The theory of Bezoutians for matrix polynomials and its applications and
connections to inertia and root separation of matrix polynomials and to various matrix
equations have been developed in a series of papers Lerer and Tismenetsky (1982, 1984,
1988), Lerer (1989), Lerer et al. (1991) (see also references in these papers). Other
applications of the Bezoutian are found in Barnett (1972), Wimmer (1988) (factorization
of matrices) and in Lerer and Tismenetsky (1986), Gohberg and Shalom (1990) (inversion
of structured matrices; the idea of this application goes back to Lander (1974)). See
Kailath and Sayed (1996), and the extensive bibliography therein, for applications of
Bezoutians and related matrix functions in developing fast computational algorithms for
structured matrices. Another concept of Bezoutian for matrix polynomials L;(\) and
L()) based on the equality

X = (A= )7 L) ® L(p) — Li(w) ® L(N)
ij

was also studied in the literature: Bitmead et al. (1978), Barnett and Lancaster (1980),
Heinig (1979), and see Wimmer (1989) for the concept of Bezoutian based on pairs
of coprime matrix polynomials. Very recently, the notion of the Bezoutian, and its key
properties and applications have been extended to rational matrix functions in Lerer and
Rodman (1996).

For results concerning generalization of the resultant matrix to the case of matrix
polynomials see Barnett (1969), Gohberg and Heinig (1975), Gohberg and Lerer (1976),
Gohberg et al. (1982a), Lerer and Tismenetsky (1982). In Helton and Rodman (1987)
the resultant matrices have been studied from the abstract point of view of matrices over
rings.

5. Rational matrices

In this section we study r X n matrices W () whose elements are rational functions over
a fixed field F. Thus,

W) = [ps N/ a2V o, G.D

where p;;(A) € F[A], gi;(A) € F[)] and g;; are not identically zero. The matrices of the
form (5.1) are called rational matrices (over F).

Rational matrices appear in linear systems theory as follows (in this paragraph we
assume F' = C): Consider a system of linear differential equations

X = Aat) + Bu(t), =(0)=0; £ 0,

y(t) = Cz(t) + Duft);

(5.2)

where A € My xm(C), B € Mpuxn(C), C € Mypxm(C), D € M, xn(C) are constant
(i.e. independent of t), u(t) is an n-dimensional vector function that is at our disposal
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and is referred to as the input (or control), and y(t) is the output. Taking the Laplace
transform

Z(\) = /oco e M 2(s)ds

and denoting by the capital Roman letter the Laplace transform designated by the corre-
sponding small letter, the system (5.2) becomes
AX(A)=AX(X) + BU(N),
Y(A)=CX(\)+ DU(N),

which can be solved for Y ()) in terms of U(A):

Y(A) = [D+C(M - A)~'B]JU(A). 5.3)
The matrix W () = D+C(M—A)~! B, called the transfer function of (5.2), is obviously
rational. Thus, the input-output map of a linear time invariant system of differential
equations is given (after Laplace transforms) in terms of a rational matrix. This fact, and
an analogous fact concerning systems of difference equations, explains the crucial role

the theory of rational matrices is playing in modern linear systems theory.
Let W(A) be a rational r x.n matrix over the field F’. A representation of the form

W(X) = D+ C(M - A)™'B, (5.4

where D € Mpxn(F), C € Myym(F), A € Mpxm(F), D € Mpyxn(F), is called a
realization of W () (cf. formula (5.3)).

THEOREM 5.1. W(A) admits a realization if and only if W () is finite at infinity, i.e.
degree p;; () < degree gi;(A) (5.5)

for every pair of indices i,j (1 < i< 7, 1<j < n)such that p;;(\) # 0.

PROOF. If W()) has a realization (5.4), then the representation

_1_ Adj(A - A)
(- A4)~" = det(\ — A)’

where Adj(AI — A) is the algebraic adjoint of AI — A, shows that (5.5) holds. Conversely,
assume that W () is finite at infinity. Let p(A) be a monic scalar polynomial such
that p(A\)W(X) is a (matrix) polynomial. Denoting H(A) = p(A)(W(A) — W(o0)),
L(\) = p(A) I, we have

W(\) = W(co) + C(A — A)'B, \ 5.7

(5.6) |
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where
0 0 I 0
| a=f @ t |, C=[HoH,... Hel,
B=1o]" o o0 .. I [Ho, H e-i]
I ~Lo —Ly ... L¢

and where the matrices H; and L; are the coefficients of H(A) and L(\):

-1 -1
HN =Y NH;, L) =MJ+Y NI,
j=0

j=0
A full proof of (5.7) is found in Bart et al. (1979) and iﬁ Gohberg et al. (1986a). O

A realization (5.4) is far from being unique. For example, one can replace A, B and C
in (5.4) by S~'AS,S7!B and CS, where S is an invertible matrix (this transformation
is called similarity. There is an important class of minimal realizations (to be defined
below), which enjoy many useful properties, and in particular, any two minimal realiza-
tions are similar. A realization (5.4) is called minimal if the size m of the matrix A is
minimal among all realizations of W()). The basic properties of minimal realizations
are summarized in the following theorem.

THEOREM 5.2. (a) A realization (5.4) is minimal if and only if
C
B CA
rank [B, AB, ..., AP”' B] = rank : =m
Car-!

Sor sufficiently large integers p.
(b) If (5.4) is a (not necessarily minimal) realization of W ()), then, after a suitable
similarity transformation, A, B and C have the form

* * % *

B=|B |, ¢=(0 ¢ *), A=[0 A *|, (5.8)
0 0o o0 =*

where
W) =D+ C (M - A)™'B

is a minimal realization (the stars in (5.8) denote block entries of no immediate interest).
(c) Let e

W(A)=D+C;(\I — 4;)7'B; (j=1,2). ' (5.9)
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be two minimal realizations of W (). Then there exists a unique invertible matrix S such
that

A =814, B =S5"'B;, C =08 (5.10)

The matrix S is given by

¢ \ " Gy
o Cz‘Az Cl‘Al
Co Az CrAP!
=By, A1By, ..., AV ' By] - [B1, A\By,..., AV By R (5.11)

where the subscripts “—L” and “— R” denote left inverse and right inverse, respectively,
and the integer p is large enough so that the existence of the one-sided inverses is
guaranteed (by the part (a)).

PROOF. We prove the part (c) only (see, e.g., Section 7.1 in Gohberg et al. (1986a) for a
complete proof). Using formula (5.6), we develop (A — A;)~! into formal power series

oo
(-4 =) "2 4 (=1,2).
k=1
Write

I=(\—A;)) A 45
k=1

and compare coefficients; it follows that A, = Af_l. Now (5.9) takes the form
Ci1A*B) = C1A5B,, k=0,1,....
For j = 1,2, let

G
.Qj = 5 Aj = [Bj,AjB]‘,...,A;’_lBj].
c;A!

We have 2,4, = (% A,. Premultiplying by 2 L and postmultiplying by 4A,, we verify
the second equality in (5.11). Now define S as in (5.11). The formulas

(@rt2)s=1, Saa;®)=1r (5.12)
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hold; therefore, S is invertible. Furthermore,
ANy = .QzAzA]_RAlAl,

which (in view of (5.12)) implies A5 = SA,. The other two equalitiés in (5.10) can be
verified directly. Finally, if S satisfies (5.10), then

S[Bi, AiBy,..., A" Bi] = [Bo, A2 Bs,..., A3 By]. (5.13)
By the part (a),
rank [Bl,AlBl,...,A’l’_lBl] = {the size of A} = {the size of A,},

and therefore the matrix S satisfying (5.13) is unique. |

We pass to factorization of rational matrices. Here, the concept of a McMillan degree
will be fundamental. Let W()\) be an r x n rational matrix (not necessarily finite at
infinity), and write

W(A) = P(X) + Wo(),
where P()) is a polynomial, and Wy (}\) is finite at infinity. By Theorem 5.1 there exists
minimal realizations
P(A"') =D+ Ci(M — Ai)) "' By,
Wo(A) = D3 + Co(M — A2) ™' By,

where A; (resp. Az) is my Xm; (resp. ma Xmy). The sum my+m2 is called the McMillan
degree of W()) and will be denoted §(W). A factorization W ()) = Wi(A)W2(}) of
rational matrices is called minimal if §(W) = §(W;) + 6(W>). Informally, it means
that there is no pole-zero cancellation between the factors W) and W,, and represents a
natural extension of factorization of matrix polynomials to the class of rational matrices.

It turns out that minimal factorizations can be described in terms of certain subspace
decompositions. For simplicity, we present here such description in case W(A) takes
value I at infinity; then W()) admits a minimal realization

W(\) =I+C0\ - A)7'B,
where A is m x m. Let AX = A — BC. We say that a direct sum decomposition
F"=L+N (5.14)

is a supporting decomposition for W () if the subspace L is A-invariant, and the subspace
N is A*-invariant.

THEOKEM 5.3. Let (5.14) be supporting decomposition for W ()). Then W (X) admits a
minimal factorization

W(A) = [I + Crne(M — A)~'meB) [I + Cra(M ~ A)~'nn B]
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= [I+C(\I ~ A)~"'n.B][I + Crn (M — A)~'B] (5.15)

where mc is the projector on L along N, and npyy = I — wc. Conversely, for every
minimal factorization W(X) = W (A)Wy()) where the factors are rational matrices
with value I at infinity there exists a unique supporting decomposition F™ = L + N
such that

Wi(A) =I+Cne(M - A)'neB, Wy =1+ Crpn(M — A)~'npB.

Note that the second equality in (5.15) follows from the relations meAne = An, and
T ATa = mar A, which express the A-invariance of L.

Theorem 5.3 (for the case F' = C) is proved in Bart et al. (1979); see Section 7.3 of
Gohberg et al. (1986a) for another variant of this result that involves three factors. The
proofs given in these books for the case F' = C are applicable verbatim to any field F.
Other relevant references are Bart et al. (1980) and Gohberg et al. (1984). The importance
of minimal factorizations is widely recognized and used in the modern theory of linear
systems; we refer to Van Dooren and Dewilde (1981), Vanderwalle and Dewilde (1978),
where minimal factorizations are studied from this point of view.

Literature guide. Realization theory is a major tool in modern control systems theory,
and is developed and used in many texts on control systems (Brockett (1970), Barnett
and Cameron (1985), Kailath (1980), Kalman et al. (1969), Rosenbrock (1970), Anderson
and Vongpanitlerd (1973) is a representative sample). The theory of rational matrices, in
particular, problems concerning various types of factorization and interpolation, and the
applications of this theory (notably in Hoo-control) has been extensively developed during
the last twenty years or so. This development is based on the realization representation
of rational matrices. The theory and its applications are to be found in the books Bart
et al. (1979), Gohberg et al. (1983, 1986a), Ball et al. (1990a), several collections of
papers Gohberg (1988a, 1988b, 1990), Gohberg and Kaashoek (1986), and see also the
special issues Ball et al. (1990b), Fuhrmann et al. (1989) where many papers on this
subject appear. Besides these volumes, we will mention here only few selected topics
and references.

Rational matrices which enjoy certain symmetries (such as having hermitian values
on the imaginary axis, having unitary values on the unit circle, or having real coeffi-
cients, etc.) play an important role in applications (see, e.g., Anderson and Vongpanitlerd
(1973)), and therefore attracted considerable attention in the engineering literature. Efi-
mov and Potapov (1973) is an early work on the factorization theory for a certain class
of symmetric matrix functions (motivated by applications in circuit theory). From the
standpoint of realization representations, the factorization and interpolation problems of
rational matrices with various symmetries have been studied in Ran (1982), Fuhrmann
(1983), Genin et al. (1983), Alpay and Gohberg (1988), Alpay et al. (1990, 1992); see
also the books Anderson and Vongpanitlerd (1973), Ball et al. (1990), Gohberg et al.
(1983).

The geometric approach to the minimal factorizations (Theorem 5.3) was extended
in Ball et al. (1987), where they have been described in terms of local pole and zero
structure of the rational matrices. Cascade decompositions of linear systems of the type
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(5.2) correspond to factorizations in a linear fractional form of the corresponding transfer
functions. In Helton and Ball (1982), such minimal linear fractional factorizations have
been characterized in terms of generalized invariant subspaces (see also Gohberg and
Rubinstein (1986)). In another direction, the result of Theorem 5.3 has been extended
to more general classes of rational matrices (not necessarily of square size and having
invertible value at infinity), see Cohen (1983), Van Dooren (1984).

Canonical factorization (defined below) is a very important special case of minimal
factorization (when applied to a rational matrix function). Let I" be a simple closed
rectifiable contour in CU {oo} dividing the set (CU{co0})\I" into two disjoint open sets
I’y and I'_. A matrix function W () is said to admit canonical factorization if it can be
represented in the form W(\) = W_(A)W,.()), where W () is analytic in I'y, and is
continuous and takes invertible values on Iy UI". Canonical factorizations, as well as the
more general Wiener—Hopf factorizations W (A) = W_(A)D(A)W,(A), where D(X) is
a diagonal rational matrix function with poles and zeros allowed only in two preselected
points Ay € I's, are studied in numerous books and papers, of which we mention here
only Bart et al. (1979), Clancey and Gohberg (1981), Gohberg and Kaashoek (1986),
Litvinchuk and Spitkovskii (1987).

For a description of poles and zeros (including multiplicities) of a rational matrix in
module theoretic terms see the expository paper Wyman et al. (1991) and references
therein.

For the purpose of reference, the papers “to appear” are arbitrarily assigned year
(1996). The letters (a), (b) etc., are used to distinguish references having the same year
and the same authors (or the same first author if the number of authors is three or more).
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1. Dependence

Just as group axioms formalize the intuitive notion of symmetry, matroid axioms for-
malize the notion of dependence. Steinitz in 1910 wrote down the defining properties of
a matroid in a recognizable form. His paper [280] was edited and reprinted as a book
in 1930 and through R. Baer (see [6]), it probably exerted a strong influence. Nakasawa
[235] and Whitney [328] postulated axiom systems for matroids in 1935. While Naka-
sawa’s paper fell into obscurity, Whitney’s paper founded a new subject in mathematics.

In this chapter, we will survey matroid theory with an algebraist’s eye. We begin
with the basic axiom systems in Section 2. In Section 3, we take a geometric approach
and introduce exchange closures and geometric lattices. Two fundamental constructions —
minor and orthogonal duality — are the topics of Section 4. Sections 5 and 6 are concerned
with examples. Many important families of matroids are minor-closed. These families are
the subject of Section 6. Matroid theory is related to classical invariant theory through
basis exchange properties: this connection is explained in Section 7. Another connection,
described in Section 8, is with synthetic geometry and “geometric algebra”. In Section 9,
we describe three commonly used categories, weak maps or specializations, strong maps,
and comaps. Finally, in Section 10, we survey enumerative results; these results form a
major area of algebraic combinatorics. Applications of matroids to combinatorics, graph
theory, and optimization will be mentioned briefly. Some books about matroids are [37,
53, 77, 186, 248, 299, 311, 321-323]. Some general survey articles are [52, 66, 76, 118,
253, 297, 340].

2. Cryptomorphisms

One of the distinctive features of matroids is that they have many equivalent axiomati-
zations, or, in Birkhoff’s terminology [15], p- 154, Cryptomorphisms. In [328], Whitney
gave axiom systems for matroids in terms of rank, independent sets, bases, and circuits.

2.1. Rank. A matroid M on the set § is specified by a rank function r from 25, the
collection of all subsets of S, to the non-negative integers N satisfying the following
axioms:

(R]) T(Q) =0.

(Ry) Ifa € S and A C S, then r(A) < r(AU{a}) <7(4) + L.

(R3) Submodularity. If A, B C S, then (AU B) +r(AN B) <7(4) + r(B).
The rank r(M) of a matroid Mon S is the rank (S ) of its set of elements. By definition,
(M) is finite.

2.2. Independent sets. A matroid M on the set S is specified by a collection Z of finite

subsets of S called independent sets satisfying the following axioms:

W) oel

()IfJCIandIeZ thenJ el

(13) Independent set augmentation. If I and J are independent and |I| < |J], then
there exists an element @ in J but not in I such that I U {a} is independent.
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2.3. Bases. A matroid M on the set S is specified by a collection B of finite subsets
of S called bases satisfying the following axioms:

(B1) If By and B, are bases, then By ¢ B,.
(B2) Basis replacement. If By and B, are bases and a is any element in B, then there
exists an element a’ in Bj such that (B;\{a}) U {a’} is a basis.

2.4. Circuits. A matroid M on the set S is specified by a collection C of finite nonempty
subsets of S called circuits satisfying the following axioms:

(Cy) If Cy and C; are circuits, then C; ¢ C;.

(Cy) Circuit elimination. If Cy and C) are circuits and a € C; N C,, then there exists
a circuit C3 contained in (C; U Cp)\{a}.

By rephrasing proofs from linear algebra, it is not hard to prove that these axiom sys-
tems are equivalent. Start with the independent set axioms as the standard axiomatization
and use the following translations: r(A) = size of a maximal independent set contained
in A, bases are maximal independent sets, and circuits are minimal dependent sets.

One of Whitney’s examples in [328] is the linear matroid Mr on the set of columns
of a matrix T" with independent sets the linearly independent sets. Thus, he considered
matroids to be combinatorial variants of matrices and therefore named them “matroids”.
Despite attempts to rename matroids — “independence structures” and ‘“combinatorial
pregeometries” have been suggested — they will perhaps always be called “matroids”.

The other example in [328] arises from graphs. Let I" be a graph on a finite vertex set
V and edge set S. The cycle or polygon matroid M (I") of I' is the matroid on S with
circuits the cycles of I". Cycle matroids suggest the following terminology. A loop is an
element a such that 7({a}) = 0, or, equivalently, {a} is a circuit. In M, the loops are
the columns all of whose entries are zero. Two elements a and b which are not loops
are said to be parallel if r({a,b}) = 1. In M(I"), two edges are parallel whenever they
have the same endpoints. In My, two nonzero columns are parallel if and only if they
are scalar multiples of each other. A (combinatorial) geometry or simple matroid is a
matroid containing no loops or parallel elements.

Another natural way to axiomatize matroids is use the exchange and transitivity prop-
erties of dependence relations [139, 280, 235, 305].

2.5. Dependence relation. A matroid on the set S is specified by a relation in S x 25,
a is dependent on A, satisfying the following axioms:

(D)) If a € A, then a is dependent on A.

(D3) Exchange. If a is dependent on A U {b} but a is not dependent on A, then b is
dependent on AU {a}.

(D3) Transitivity. If a is dependent on A and every element in A is dependent on B,
then a is dependent on B.

(Dy) Finite rank. If a is dependent on A, then there exists a finite subset Ay C A such
that a is dependent on Ag.

A radically different axiomatization for finite matroids was discovered by Ed-
monds [103]. Let S be a finite set, Z a collection of subsets of S containing &, and
w: § — R* a positive real-valued “weight” function on S. If E C S, the weight w(E)
is defined to be the sum ), . , w(a) of the weights of its elements. The greedy algorithm
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attempts to find a subset I in Z of maximum weight in the followigg way: Start with
I = @. Suppose that I has been chosen. Among all the elements in S\I, choosg an
element a such that I U {a} € Z and w(a) is maximum. Replace I by TU{a}. Continue
until I is a maximal subset in Z. -

2.6. Greedy algorithm. A matroid M on the finite set S is specified by a collection 7
of subsets of S called independent sets satisfying (I;), (12)., and ' .

(Gr) The greedy algorithm outputs a subset in Z of maximum weight for every weight
function w: S — R*. _
This axiomatization is one of the reasons why matroids and, more general.ly, su.bmod-
ular functions are important in combinatorial optimization. Key. papers in this area
are [102, 103]; {313, 106] are useful surveys. Greedoids are matroid-like §tructures mo-
tivated originally by how certain maximum-weight sets are constructed using the greedy
algorithm [170, 171]. A greedoid on the set S is speciﬁ_ed by a collectlox} T of subsets
of S satisfying (I;), (I3) and the following weaker version of (Iz): If J is a nonempty
subset in Z, then there exists an element e € J such that J\{e} € Z. Many dependence
structures in algebra which are not matroids are greedoids. Mgch work has been done
on greedoids; see [24] and [172] for an introduction to the subject.

Other axiomatizations of dependence have been studied. A very small sample can be
found in [51, 62, 99, 100, 123, 243]. Model- and recursion-theoretic aspects of depen-
dence structures not having the finite rank property are discussed in the survey [7].

3. Geometric lattices and exchange closures

A geometric way of defining matroids is to abstract the properties of taking ligear span
[217). A closure (operator) on a partially ordered set P is a function z — Z defined
from P to itself satisfying: z < %, Z=Z,andz<y=>Z < ¥

3.1. Exchange closure. A matroid M on the set S is specified b‘y a closure A +— A on
25 (partially ordered by containment) satisfying the following axioms: o

(CL,) MacLane-Steinitz exchange property. Let a and b be elements not in A. Then
a € AU {b} implies that b € AU {a}. .

(CL,) Finite rank. For every subset A C S, there exists a finite subset Ap such that
A=A

A suobset X C S is a flat or closed set if X = X. The flats of a matroid M ~form a
lattice L(M) called the lattice of flats of M under the partial order of set containment.
The meet and joint in L(M) are given by: X V Y=XUY and XAY =XnNY. The
minimum O of L(M) is @ and the maximum 1 is S. A flat Y" covers a flat XifY>X
and there is no flat Z such that Y > Z > X; equivalently, Y covers X if Y = X U {a}
for some element a.

A point or atom is a flat covering 0. A copoint is a flat covered by the maximum ﬁat.S .
A bond or cocircuit is the set-theoretic complement of a copoint. A subset is spanning

" if its closure is the entire set S. A matroid can be completely described in many ways:

by its rank function, its independent sets, its circuits, its copoints, its bonds, its spanning
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sets, etc. The algorithmic complexity of converting from one description to another is
studied in [141].

Lattices of flats satisfy two important properties:

(L) Semimodularity. If X and Y cover X AY, then X VY covers X and Y.

(L) Atomicity. Every flat is a join of points.
A chain Xy < Xj < X3 < --- < X, of flats is saturated if for every i, X;; covers X;.
It follows from semimodularity that if ¥ and X are flats, then every saturated chain
Y=Xo< X1 <X3< - < X;=X fromY to X has the same length [. The rank
r(X) of a flat X in the matroid M equals the length of a saturated chain from 0t X.
Because 7(S) is finite, L(M) satisfies the additional property:

(L3) Finite rank. Every saturated chain from 0 to 1 is finite.
A lattice satisfying (L;), (L2), and (L3) is said to be geometric.

THEOREM 3.1. The lattice L(M) of flats of a matroid M is a geometric lattice. Con-

versely, a geometric lattice L defines a geometry G on the set S of points in L such that
L and L(G) are isomorphic lattices.

The geometry G is defined by the closure relation: for a set A of points,

A= {b: b is a point and b < \/ a}.

a€cA

If M is a matroid, then the geometry G defined on the points of L(M) is called the
simplification of M; G is the unique geometry (up to isomorphism) such that L(M) =
L(G); G can be obtained from M by removing all the loops and all but one element
from each class of parallel elements.

The lattice-theoretic approach to matroids was initiated by Birkhoff [13, 15]; [80-82,
169, 336, 338] are some early papers using this approach. Topological geometric lattices
are studied in [337, 132, 133]. See also [140]. Work has also been done on nonatomic
lattices satisfying semimodularity or analogous properties. See [105, 122, 257, 281, 304].

4. Minors, direct sums, and orthogonal duals

Let M be a matroid on the set S with rank function r,,. If T C S, the restriction M|T
of M to T is the matroid on T with rank function: erT(A) =r1,,(A) for AC T. Three
other ways of describing this situation are: (a) M|T is a submatroid of M, (b) M is an
extension of M|T by the elements in S\T', and (¢) M|T equals the deletion M\(S\T).

Now let U C S. The contraction M/U of M by U is the matroid on S\U with rank
function:

'I'M/U(A) =7y, (AVU) -7\ (U) for AC S\U.
Its lattice L{M/U) of flats is isomorphic to the upper interval

U1 ={ZeLM): z>T}.
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If e is an edge with two distinct endpoints in the graph I, then M (I‘)‘/ {e} is isomorphic
to M(I'/{e}), where I'/{e} is the graph obtained from I" by deleting the edge e and
identifying the endpoints of e. If a is a nonzero column of a matrix T', then Mt / {a} is
the linear matroid of the matrix obtained as follows: (a) Reduce T by row operations so
that all but one of the entries in a, say the entry at row u, are zero, and, (b) Delete row
a.
b ?:nfr(::tlil::l and deletion commute, in the sense that if'T and U are disjoint s'ubsets
of S, then (M/U)\T and (M\T)/U are the same matroid on S\(T v U).'A minor of
M is a matroid obtainable from M by a sequence of contractions and _deletlons [295]1.
If M and N are matroids on disjoint sets S and T with rank functions Y and 7y,
the direct sum M @ N is the matroid on S'U T with rank function 7,0 v given by: for
ACSUT,

ruen(A) =T (ANS) + Ty (ANT).

If M = M, ® M, then the lattice L(M) is the direct product L(M,;) x L(M,) [83].

A subset A C S is a separator of a matroid M on S if M = M|A® MI(S\A). An

clement a is an isthmus if r({a}) = 1 and {a} is a separator. A matr?ld M on S is

connected if M does not have any separators apart from @ and S, or, equn./a!emly, given

any two distinct elements a and bin S, there exists a circuit of M containing @ and b.

Motivated from graph theory, notions of k-connectivity have been defined. See [298].
Let M be a matroid on a finite set S with rank function 7. Then, the formula

rL(A4) = |A| + 7(S\A) ~ (8) for ACS

defines the rank function r* of a matroid M L on S called the (orthogonal) dual of M.
The dual M4 of the linear matroid M of a matrix T is the linear matroid. of any matrix
whose rows span the orthogonal complement of the row space of T. Duality can also be
defined using other cryptomorphisms ([328]). Three such definitions are:

(1) I is an independent set of M < S\I is a spanning set of M L

(2) B is a basis of M < S\B is a basis of Mt

(3) C is a circuit of M < C is a bond of M. o

Minty [231] has given a self-dual axiomatization of matroids in tegns of circuits gnd
bonds. Duality is involutory, i.e. (M 1)+ = M, and interchanges deletion and contraction,
ie.

(M/T)" = (MNT and (M\T)* = (M)/T.

These two properties characterize duality [179, 27]. .
The cocycle or bond matroid M*(I') of I' is the dual of the cycle matroid M (I').
Whitney [325, 327] characterized planarity of graphs using duality.

THEOREM 4.1. A finite graph I can be drawn on the plane if and only if its bond matroid

M-L(I") is isomorphic to the cycle matroid of a graph A

The graph A is the dual graph formed on the regions of a planar drawing of I'.
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A clurter C on the set S is a collection of subsets of S such that if C1 and C, are in
C, then C1 ¢ Cj. The collection of circuits of a matroid is a clutter. Some papers on
matroids as clutters are [68, 203, 250, 265, 266].

5. Some examples

5.1. Projective geometries and modular lattices. Matroid theory differs from projective
geometry in that the intersection of two flats may not have the rank predicted by linear
algebra. A pair X and Y of elements in a lattice is a modular pair — symbolically,
(X,Y)M ~ if for every element Z < X, (XAY)VZ=XA (Y v Z). Symmetry of
the relation of being a modular pair [that is, (X,Y)M implies (Y, X)M] is equivalent
to semimodularity. See [338, 222]. In a geometric lattice, (X, Y)M if and only if

rXVY)+r(XAY)=r(X)+r(Y).

A flat X which forms a modular pair with every flat is said to be modular. A modular
lattice is one in which every element is modular.

The lattice L(n,F) of subspaces of the n-dimensional vector space F™ over a skew
field F is a modular geometric lattice. The matroid defined on the points of L(n,F) is the
projective geometry PG(n — 1, F). Birkhoff [14] showed that a geometry has a modular
lattice of flats if and only if it is a direct sum of projective geometries and points. See
also [58].

5.2. Linear matroids. A representation of a matroid M on S over the skew field F
is a function p defined from S to an F-vector space V such that for all ] cS Iis
independent in M if and only if |p(I)| = |I| and p(I) is linearly independent. A matroid
is said to be (F-)linear if it has a representation (over F).

5.3. Algebraic matroids. Let K be an extension field of the field F. A set {z1, 12, ...,
z,} of elements is algebraically dependent over F if there exists a nonzero polynomial
with coefficients in F such that p(zy,z,...,2,) = 0. If K has finite transcendence
degree over F, then any subset S C K has a matroid structure given by algebraic
dependence. Such matroids are said to be algebraic. Much work has been done on finding
conditions on a matroid to be algebraic [150, 208, 209, 211). The algebraic closure
geometry G(K/F) is the simplification of the algebraic matroid on K. These matroids
are analogues of projective geometries. MacLane [217-219] used them to find invariants
of field extensions. More recent work can be found in [22, 93, 104, 146, 147, 207]. Other
papers on algebraic matroids are {120, 121, 204, 206, 210~213, 308].

5.4. Transversal matroids. Let R C S x T be a relation between S and T =
{1,2,...,m}. A partial transversal in R is a subset I C S for which there exists
an injection f: I — T such that the ordered pairs.(a, f(a)) are in R. The transversal
matroid T(R) of the relation R is the matroid on S with independent sets the partial
transversals. The matroid T'(R) can be represented over every “sufficiently large” field
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F [111, 233). Let {X(a,5): (a,%) € R} be a set of elements algebraically indepengent
over the prime field of F. Then the function S — Fm, a — (a1,az,... ,;ml)\;[\:vr :c(rie
a; = X(a,;) if (¢,%) € Rand 0 otherwise is a representation .of_T(R) olvq . Matroi s1
play a central role in transversal theory. For example, a unifying result in transversal
theory is Rado’s extension of the marriage theorem [254]:

Let M be a matroid on S with rank function r and let R C S x T be a relation.
Then there exists an independent transversal I of size m if and only if for all subsets

JC{1,2,...,m},
r(J_LE)JRm) > 1.

Here, R(j) is the subset of elements in S related to j € T.

See [35, 36, 214, 232, 233] for surveys.

5.5. Arrangements of hyperplanes. A hyperplane H in F™ is a subspace of codimen-
sion 1; equivalently, H is the kernel of a nonzero linear fur.lcnonal. .An arrqngement
of hyperplanes A is a finite collection of hyperplanes. The (m{ersectzon) lattice L(A)
of A is the lattice formed by all intersections of hyperplancs. in A Pnder reverse set-
inclusion. L{A) is a geometric lattice. Its associa.wd geometry is the llpcar geometry on
the hyperplanes in A considered as linear funcuqnals. Many topological invariants of
arrangements (such as the singular cohomology ring of th.c complement of a complex
arrangement {240]) depend only on the lattice of intersection. See [63, 239, 241, 343]

for surveys.

5.6. Simplicial matroids. Simplicial matroids are generalizations of cycle. maFroid§ .of
graphs where the “edges” are k-element subsets of vertices. Dependence in simplicial
matroids is defined using a boundary operator. Two key papers are [78, 70].

6. Minor-closed classes

A minor-closed class C is a collection of matroids satisfying the conditions:

(Min;) If M € C and the lattice L(N) of flats is isomorphic to L(M), then N € C.

(Min,) If N is a minor of M and M € C, then N € C. ‘

Examples of minor-closed classes are the class £(FF) of F-linear métrmds an.d the class
G of cycle matroids of graphs. The class £L(GF(q)), where GF(q) is the finite field of
order g, is usually denoted by £(g). A matroid is regular if it can be repre§cnted over
any field. The class R of regular matroids is minor-closed and equals the intersection
) L(F). Two papers on matroid classes are [273, 303].

6.1. Forbidden minors. Let {N4} be a collection of matroids. Then the class £X (Nq)
"of matroids not having any of the matroids N, as minors is a minor-closed clgss. Cor}—
versely, taking { N} to be all the matroids not in C, every minor-closed class is of this
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form. A matroid N is a forbidden minor for C if N is not in C but every proper minor
of N is in C. The classical forbidden-minor theorem is Kuratowski’s theorem for planar
graphs [194]. In matroid terminology, this states: A graph I" can be drawn on the plane
if and only if its cycle matroid does not contain as minors the cycle matroids M (Ks) and
M (K3 3). (The complete graph K is the graph on {v;,vs,v3,v4,vs5} and all 10 edges
between distinct vertices; the graph K3 3 is the graph on {vi, vz, v3, w1, U2, u3} with all
9 edges between v; and u;.)

A major research area is to determine whether the set of forbidden minors for the
classes £(q) is finite. The answer is known for L(2), the class of binary matroids [295],
and L£(3), the class of ternary matroids [17, 161, 165, 267, 288]. The uniform matroid
U, s is the rank-r matroid consisting of s points “in general position”: more specifically,
it is the matroid with s elements in which all the r-element subsets are bases.

THEOREM 6.1. L(2) has one forbidden minor, the 4-point line U 4.
The Fano plane F; is the binary projective plane PG(2,2).

THEOREM 6.2. L(3) has four forbidden minors: the 5-point line Uy s, its dual Uy s, the
Fano plane F;, and its dual Fi-.

The forbidden minors are also known for the classes R and G. Using a homotopy
theorem on a graph formed from the copoints, Tutte [295] found the forbidden minors
for R. See [16, 117, 267] for shorter proofs or extensions. Some papers on regular
matroids or generalizations are [5, 142, 187, 188, 193, 201, 202, 335].

THEOREM 6.3. R has three forbidden minors: U, 4, 7, and F-,J‘.

It follows from (6.3) that R = £(2) N £(3). Direct proofs can be found in [42, 267].
The next theorem [296] is an extension of Kuratowski’s theorem. See also [268, 306].

THEOREM 6.4. G has five forbidden minors: U, s, Fy, Fib, and the cocycle matroids of
the Kuratowski graphs, M*+(Ks) and M+ (K3 3).

The set of isomorphism classes of matroids is partially ordered by the relation of being
a minor. Robertson and Seymour [259] have shown that graphic matroids under the minor-
order is a well-quasi-order, that is, it is a partial order with no infinite strictly descending
chains or antichains (i.e. sets of mutually incomparable elements). This result shows that
every minor-closed class of graphic matroids has finitely many forbidden minors.

6.2. Gain-graphic matroids. Let ej,e,...,en be a basis in the projective geometry
PG(n — 1, F). The rank-n Dowling geometry Q,(F*) over the multiplicative group F*
is the matroid consisting of the points e, ez, . .., €, and e; — ae; in PG(n — 1,F), for
all pairs 4 # j and all & € F*. Because the points in Qy(IF*) are linear combinations of
at most two basis elements, the dependencies can be specified combinatorially without
using the additive structure of F. Thus, one can define a Dowling geometry Qn(A) for
any group A [86, 87]. See atso [10, 29-31, 164, 193]. A matroid M is said to be gain-
graphic (with gains in the group A) if M is a restriction of Q,(A) for some n. The
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class Z(A) of all gain-graphic matroids over a group A is a minor-closed class. Some
papers in this area are [343, 345, 346} . o

A variety V is a class closed under minors and direct sums satlsfymg:. for every non-
negative integer n, there exists a unique geometry T, such .that the simplification of
every rank-n matroid in V is a submatroid of T,. The geometries T, can be regarded as
“ambient spaces” for V.

CLASSIFICATION OF VARIETIES 6.5 ([163]). There are five families of varieties of finite
matroids: three degenerate varieties constructed from lines, L(q), and Z(A).

Two papers on varieties are [184, 134].

6.3. Regular matroids and decomposition theory. Examples of regular matroids are
cycle and bond matroids of graphs. Seymour [269] proved a decomposition theorem for
regular matroids: every regular matroid can be put together by taking 1-, 2- or 3-sums
(roughly speaking, gluing two matroids together at an empty set, a point, or a lfne) of
graphic matroids, cographic matroids, and copies of a 10-element rank-5 matroid Rjo.
This result is the first of many decomposition theorems [245-2417, 270, 272, 291, 292].

Seymour’s theorem implies that cycle matroids of the complete graph Kp4 are the
rank-n regular matroids having the maximum number ("F1) of points. This was proved
earlier in Heller’s paper [142]. This paper initiated extremal matroid theory which is
concerned with determining the maximum number h(n) of points in a rank-n matroid in
a given class C of matroids. This area is surveyed in [189].

7. Basis exchange, matroid partitions, and determinantal identities

The best known application of the basis replacement axiom is to prove the following
elementary result.

THEOREM 7.1. Bases of a matroid have the same size.

To prove that two bases B and B' have the same size, one starts with B, and, using the
basis replacement axiom, constructs a sequence of bases B = By, Ba,...,Bx = B’ such
that B; and B, differ in one element. The basis graph of a matroid M is the graph
with vertex set the set B of bases of M with two bases B and B’ joined by an edge if
and only if B and B’ differ in exactly one element. See [224] for results (including a
homotopy theorem for paths) on basis graphs.

A deep result which can be proved by using basis exchanges is the following theorem
due to Edmonds [148, 101].

MATROID PARTITION THEOREM 7.2. Let My, My, . .., My, be matroids with rank function
1; on the finite set S. Then there exists a partition SiU---USm = S such that S; is
independent in M; if and only if for every subset A C S,

> ri(4) > |4l
=1
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The basis monomial ring of a matroid M on the set S is the subring of the ring k[X,] of
polynomials in | S| indeterminates X,,a € S, over a field k generated by the monomials
{I1scp Xa: B is a basis of M}. White [319] has used Theorem 7.2 to show that basis
monomial rings are Cohen—Macauley. Applying Theorem 7.2 to the matroids M and
N+, one obtains the matroid intersection theorem [102]:

Let M and N be matroids with rank function r M and Ty on the same finite set S. Then
the maximum size of a subset I independent in both M and N equals

min {r,,(A) + ry(B): AUB = S}.

The basis replacement axiom can be regarded as an abstraction of Laplace’s expansion
for determinants. Let V' be a vector space of dimension n. If 2, z,, . .., T, are n vectors
in V, their bracket is defined by: ‘

[z|,222, R ,:E"] = det(:cij)lg,jgn,

where z; = (z;;) relative to a chosen coordinate system. Brackets satisfy Laplace’s
expansion:

n

[xh"‘v:c‘n][y]v"'vyn] = Z[yi)zZa"wxn][yl)'")yi—laxlyyi+|,'"7yﬂ]'

=l

If {z1,...,2,} and {y1, ..., yn} are bases, then the left hand side of Laplace’s expansion
is nonzero. This implies that for some 1, the i-th term on the right hand side is nonzero,
that is, both {y;, z2,...,2n} and {y1,...,¥i-1,Z1,Yi+1,.-.,Yn} are bases. This is the
(symmetric) basis exchange property, a strong form of the basis replacement axiom
which holds in all matroids. Which determinantal identities translate combinatorially into
exchange properties holding in all matroids? There are two results in this direction: the
multiple exchange property [84, 125, 227, 341] (which allows subsets to be exchanged)
and the alternating exchange property [127, 174] (based on the fact that an alternating
multilinear form is zero on any dependent set of vectors). See [182] for a survey.

The fundamental theorems of classical projective invariant theory [314, 324] say that
(1) Brackets generate the relative invariants of the general linear group GL(V), and
(2) Every identity amongst brackets can be derived algebraically from Laplace’s ex-
pansion. Thus, structures similar to matroids can be defined for other classical group
actions [263]. For GL(V') acting on both vectors and dual vectors in V, one abstracts
the properties of nonsingularity of submatrices of a matrix to obtain a bimatroid or link-
ing system ([173, 264]; see also [64, 145, 234]). Many matrix properties can be carried
over to bimatroids; for example, using the Cauchy-Binet identity for determinants and
matroid intersection, one can define an analogue of matrix multiplication. Two structures
have been proposed for the orthogonal group: symmetric bimatroids [173] and metroids
(or metric matroids) [33, 91, 92]. Both abstract nonsingularity properties of Gramians.
For the symplectic group, one has Pfaffian structures [173]. Another approach, using
greedoids, can be found in {115, 112, 113].
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Over an ordered field, one can also take into account the sign of the bracket.

7.1. Orientation. ~ An rank-n oriented matroid M on the set S is given by a sign function
¢ defined from n-tuples of elements in' S to {—,0,+} (with the usual multiplication)
satisfying the following axioms:

(Org) o is not identically zero.

(Or;) Alternation. For any permutation o,

(p[:l:],:Ez, e ,:En] = sgn(a)tp[z,(l), To(2)s--- ,m,(n)].

(Ory) Signed basis exchange. If p[z1,x2,...,2Za)@{y1,¥2,-..,Yn] = —, then there
exists ¢ such that

w[yiax21---1xn]W[y]7y27‘"ayi—-]axlyyi+l)"wxn] =

This axiomatization was discovered by Gutierrez Novoa [135] in 1965. Oriented matroids
were rediscovered in the 1970’s [110, 28, 196, 198]. See also [98]. Oriented matroids
are used in linear programming [26] and the theory of combinatorial differential mani-
folds [116]. An application of algebraic geometry to oriented matroids can be found in
[2]. See [25] for a comprehensive account of oriented matroids.

8. Geometric algebra and linear representability

8.1. Geometric algebra. The problem of representability was first considered by Whit-
ney in [328]. He showed that the Fano plane F3 is representable over a field [F if and
only if F has characteristic 2. Using a method of von Staudt [279] which converts ad-
dition and multiplication into geometric configurations, MacLane [216] showed that any
algebraic equation can be coded by a configuration. Hence given an algebraic number
a, there exists a matroid representable only over fields containing a.

An easy way to obtain matroids not representable over any field is to code the equa-
tions m = 0, but £ # 0 for 1 < k < m, where m is a positive composite integer
{124, 187, 256]. Another method is to start with a “suitable” theorem of projective ge-
ometry, convert it into a geometric configuration, and modify the configuration so that
it remains a matroid but no longer satisfies the theorem. For example, by declaring the
three points on one of the lines in the Desargues configuration independent, one obtains
a nonrepresentable matroid. The informal method, called “relaxing a circuit”, has yield
many useful examples. Some papers in this area are [149, 199, 220, 119].

8.2. Characteristic sets. The characteristic set x(M) of a matroid M is the set of
characteristic of fields over which M has a representation. Thus, x(M) C P U {0},
where P is the set of primes. Using algebraic number theory, Rado [255] proved that
if M is finite and O € x(M), then x(M) contains all sufficiently large primes. On the
other hand, the compactness theorem in logic implies that for a finite matroid M, x(M)
is infinite implies 0 € (M) [301, 200, 308). Kahn [160] showed that every finite subset
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of primes is the characteristic set of some finite matroid. Related results can be found in
[47, 120, 121, 204, 206].

8.3. Bracket rings and abstract coordinates. Suppose M is a rank-n matroid on the
set S. Let R be the polynomial ring over Z whose variables are symbolic brackets

[z1,22,...,2,), where zy,73,...,2, ranges over all n-tuples of distinct elements in -

S. The bracket ring By is the quotient of R by the relations: (a) [z1,22,...,24] =
sgn(a)[x,(l),xa(z), -++»Tg(n)] for any permutation o, (b) [zy,z,... »Zn] = 0 if
{z1,22,...,2,} is dependent in M, and (c) Laplace’s expansion. A representation
p: § — F™ of M defines a homomorphism n: By — F such that ([, 5, . . . 1 Zn]) #0
if and only if {z1,z,...,2,} is a basis in M, and conversely [318]. There are two other
rings with similar universal properties [300, 108]. These rings allow methods of compu-
tational algebra (such as straightening and Grobner bases) to be applied to the problem of
characterizing linear matroids [59-61, 258). (See also [320, 284].) Any purely matroid-
theoretic characterization must be complicated, since it is known that (a) there does not
exist a finite set of first-order axioms for the theory of linear matroids ([302]; see also
[71), (b) the number of forbidden minors for the class of linear matroids is infinite (the
carliest reference is [216]), and (c) deciding linearity is highly complex algorithmically
[159, 260, 289). Brackets are abstract coordinates; other ways to introduce abstract co-
ordinates can be found in [90, 94-98, 166, 307, 315-317]. Other papers on embeddings
and representations are [41, 48, 54, 82, 162, 167, 168, 252, 290, 309].

9. Categories of matroids

9.1. Weak maps. Weak maps formalize the idea of special position. To allow the ana-
logue of mapping a nonzero vector to the zero vector, we need to add a loop to every
matroid. This is done as follows: Let M be a matroid on the set S. Then M, is the
matroid M & {o} on the disjoint union S U {0}, where {0} is the matroid of rank zero
on the set {o}. Suppose that M is a matroid on the set S and N is a matroid on 7.
A weak map T from M to N is a function 7: SU {0} — T U {0} mapping o to o
and satisfying the following condition: For every subset A C S, Tn,(T(A4)) < 7 (A)
[143]. When S = T and 7 is the identity function, we-say that N is a specialization or
weak map image of M and writt M — N. In particular, M — N if and only if every
N-independent set is also M-independent. The classical example of a specialization is
obtained by imposing extra algebraic relations on the coordinates of a set of vectors.
More precisely, let M be a matroid on a set S of elements in a module U over the
integral domain R under R-linear dependence and let P be a prime ideal in R. Then
the matroid obtained by regarding S as a subset of U ® g R/P is a specialization of M.
Specializations define a partial order, called the weak order, on the set of all matroids
on a given set S by: M > N whenever M — N.

The weak cut of the specialization M — N is defined to be the collection of sets
independent in M but dependent in N. Weak cuts have been characterized. This charac-
terization can be used to construct all the minimal weak cuts containing a given collection
of independent sets. See [176, 191, 238]. A specialization M — N is simple if M covers

i
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N in the weak order. Lucas [215] determined the structure of simple specializations of
binary matroids.

THEOREM 9.1. Let M be a binary matroid on the set S and let N be a simple special-
ization of M having the same rank as M. Then there exists a subset F' C S such that

N = M/F @& M|F.

Other results about weak maps can be found in [215, 237, 284, 316]. Weak maps
can be defined for oriented matroids [116] and are used in combinatorial calculations in

differential geometry.

9.2, Strong maps. Another category is obtained by abstracting the properties of linear
transformations. A strong map o from M to N is a function o: SU {0} = T U {0}
mapping o to o and satisfying the condition: the inverse image of any closed set of N,
is closed in M,. The two basic examples of strong maps are injections and contractions.
Let M be a matroid on S and T C S. The injection T U {0} — S U {0} is a strong
map from the restriction M|T to M. The function o: SU {o} — (S\T) U {0} deﬁr'led
by o(a) equals o if a € T and a otherwise is a strong map from M to the contraction

M/T.

THE FACTORIZATION THEOREM FOR STRONG MAPS 9.2. Every strong map can be fac-
tored into an injection followed by a contraction.

This result [144] implies that injections and contractions generate all strong maps, and
hence, strong maps form the smallest category with minors as subobjects.

When S = T and 7 is the identity function, we say that N is a quotient of M. Quotients
can be represented by bimatroid products [173]. If r(N) > r(M) — 1, then N is said
to be an elementary quotient if M. Elementary quotients have been intensively studied.
Their weak cuts are called modular cuts and there are natural one-to-one correspondences
between elementary quotients, extensions by a single element, and modular cuts [71, 144].
A useful result proved using strong maps is the scum theorem [144}:

Let N be a simple minor of M. Then there exists an upper interval [U, 1] in L(M) such
that N is a submatroid of the simplification of M /U.

Two surveys are [49] on constructions and [183] on strong maps. Some recent papers
are [48, 67, 137, 221, 225, 226, 236, 293, 331, 334]. The automorphism group of a
matroid is studied in [32, 138, 228-230, 311].

9.3. Comaps. The third category has geometric lattices as objects. Let K and L be
geometric lattices. A (normalized) comap is a function v: K — L satisfying the following
conditions:

(Cmo) (0) = 0.

(Cmy) If X covers Y, then y(X) covers or equals y(Y).

(Cmy) If X and Y form a modular pair in K, then y(X AY) = v(X) Av(Y).

Injections of submatroids are comaps. The retraction of K to a modular flat Z in K
is the function p: K — [6, Z)], X — X A Z. Injections and retractions generate all
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comaps; indeed, any normalized comap can be factored into an injection followed by a
retraction to a modular flat [178). The proof uses Crapo’s construction [73] “joining”
two geometric lattices along a comap.

10. Enumeration

10.1. Mébius functions, characteristic polynomials, and Whitney numbers. The Mébius
Sfunction p: P x P — Z of a finite partially ordered set P is defined recursively by:

wz,y) =0 ifzgLy, plz,z)=1

and

z wz,z) =0 forz<y.

z: TLZLY

Mobius functions are used to invert summations. Let f,g: P — R, where R is a
commutative ring with identity. Then

9@ = Y f@W) e fl@) = gwuyxz)

y: y<z y: y<z
Some papers on Mobius functions are [9, 126, 262, 275].

ROTA’S THEOREM 10.1 ([262]). Let X be a flat in a finite geometric lattice. Then
(=170, X) > o.

The characteristic polynomial x(L; A) of a finite rank-n geometric lattice L is the
polynomial in the indeterminate A defined by:

XL = (0, X)Am=TX) = z":(—l)mwm,\"-m.

XeL m=0

The coefficients wy, are called Whitney numbers of the first kind. By Theorem 10.1,
W, is positive. The Whitney numbers w,, have many combinatorial and homological
interpretations. For example, they count the number of m-simplices in the “broken-circuit
complex” [8, 11, 12, 45, 55, 56, 23, 158, 326, 339] and they are the dimensions of the
m-graded part of a quotient of the exterior algebra on the points [107, 240, 287]. (See
also [261].) They also count acyclic orientations and similar objects [69, 130]. In addition,
wo(L) = |u(0,1)|, the Mbius invariant of L, also has homological interpretations [4,
18, 19, 109, 114, 262]. See [21] for a survey. R

Stanley [277] showed that if X is a modular flat of L, then x([0, X1; ) divides x(L; \).
In particular, if L is supersolvable, that is, L contains a saturated chain of modular flats,
then all the roots of x(L;\) are positive integers [278]. Some papers in this area are
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[40, 45, 55, 56, 23, 128, 136, 157, 158, 164, 190, 243, 244, 276, 283, 285, 286, 309, 348
350]. .

Fl)r the lattice L of flats of the cycle matroid of a graph I'" with k connected compo-
nents, c*x(L;c) equals the number of ways of assigning ¢ colors to the vertices of I’
so that no two adjacent vertices are assigned the same color [262]. The critical problem
of Crapo and Rota [77] is a geometric variant of the graph coloring problem. Let S be
a set of nonzero vectors in the finite vector space [GF(g)]™. A c-tuple (L1, Lo, ..., L)
of linear functionals distinguishes S if for all vectors a € S, there exists ¢ such that
Li(a) # 0. The critical exponent of S is the minimum number c such that there exists a
c-tuple of linear functionals distinguishing S.

THEOREM 10.2. Let S be a spanning set of nonzero vectors in [GF(q)|™ and let L be the
lattice of flats of the linear matroid on S. Then x(L;q°) equals the number of c-tuples
of linear functionals distinguishing S.

Finding critical exponents includes the fundamental problem of linear coding theory
(to determine given n and ¢ the maximum dimension & of a code in [GF(q)]" having
minimum weight greater than t) [85] and finding nowhere-zero flows on graphs [151].
Other papers on critical exponents are [34, 50, 152, 177, 185, 192, 223, 242, 310, 312,
329, 330, 332, 333]. )

The Whitney number Wy, of the second kind of a finite geometric lattice L is the
number of rank-k flats in L. There are many quite difficult conjectures about the Whitney
numbers of both kinds, chief among them is the logarithmic unimodality conjecture:
We—1wi+1 < W} and Wi— Wiy < W2 See [282, 271]. For the Whitney numbers W,
Dowling and Wilson has obtained the following inequalities [89]: In a geometric lattice
of rank n,

Wo+Wi+ s We < Wop +Wohprn +- -+ Woy + W,

for all k < n/2. See [1, 131, 181] for surveys of this and related areas. Other papers on
Whitney numbers are [3, 88, 44, 175, 180, 190, 344].

10.2. Tutte invariants. A function f defined from the class of finite matroids to a
ring R is said to be a Tutte or Tutte—Grothendieck invariant if it satisfies the following
conditions: '

(TGo) If M, is isomorphic to M, then f(M;) = f(Ma).

(TGy) Direct-sum rule. f(M, ® M) = f(M;)f(M>).

(TGy) Deletion-contraction rule. For every point e that is neither a loop nor an isthmus,
F(M) = f(M\e) + f(M]e).

The Tutte polynomial t(M;z,y) of a matroid M on S with rank function r is the
polynomial in the variables = and y defined by

UMzz,y) = D _ (2= 17077y - A=,
ACS
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THEOREM 10.3. Every Tutte invariant is an evaluation of the Tutte polynomial.

Theorem 10.3 is due to Brylawski [38, 39]; it is implicit in [75, 294]. (See also [274].)
Theorem 10.3 can be proved by defining a Grothendieck ring. This is the method used
in Tutte’s 1947 paper [294] which is perhaps the earliest paper in K -theory.

Many numerical invariants are Tutte invariants. These include the number of bases of a
matroid and the characteristic polynomial x(L(M); \) of the lattice of flats. The number
of regions and the number of bounded regions in the complement of an arrangement 4
of hyperplanes are Tutte invariants {43, 342]. The weight enumerator of a linear code is
related to a Tutte invariant of the linear matroid of its generator matrix [129]. Finally, the
Tutte polynomial is related to polynomials in knot theory [153, 156, 205, 347]. See [46]
for a survey. Related papers are [65, 72, 74, 154, 155, 177, 195, 197, 244, 251, 347].
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Introduction

Let L/K denote a field extension of characteristic p # 0. If L is inseparable algebraic
over K, then there will not be sufficient automorphisms to construct a complete cor-
respondence between subgroups of Aut(L/K) and the intermediate fields. Indeed, if L
is purely inseparable over K, the group Aut(L/K) will be trivial. This problem was
the motivation for developing derivations and higher derivations, but as we shall see
these maps not only provided information on the correspondence problem, but have led
to an understanding of the structure of inseparable field extensions, both algebraic and
transcendental.

A derivation d on L is an additive map of L into L such that d(ab) = d(a)b + ad(b).
The constants of a set of derivations will be a subfield of L containing L?. It had been
known that Derg (L), the space of derivations on L trivial on K, had field of constants
K(LP) and moreover that any intermediate field of L/K(LP) would be the field of
constants of a subspace. The problem of determining when a subspace was the space
of all derivations over its field of constants was first solved by Jacobson [55] for the
finite dimensional case and Gerstenhaber [38] for the infinite dimensional case. A key
ingredient for the higher exponent theory is the notion of a higher derivation due to Hasse
and Schmidt [45]. A rank ¢ higher derivation on L is a sequence d = {d; | 0 < ¢ < t+1}
of additive maps of K into K such that

dr(ab) = Y {di(a)d;(b) | i +j =7}

and dy is the identity map. For purely inseparable Galois theory, higher derivations of
finite rank are used. Weisfeld [101] characterized the fields of constants of groups of
finite rank ¢ higher derivations as those F over which L has a subbasis C, i.e. C = {24}
and L is the tensor product over F of the simple extensions F(zo). One of the most
useful ingredients in the theory was provided by Sweedler [92]. He established that L
having a subbasis over F' was equivalent to LP" and F being linearly disjoint! over
their intersection for all n. This has proven versatile for two main reasons. Firstly, the
definition applies to arbitrary field extensions of characteristic p > 0, ones satisfying the
condition now being called modular. Secondly, Waterhouse [99] established the principle
that linear disjointness is preserved by intersections. These results have been the keys to
determining the structure of inseparable extensions which we shall discuss shortly.

Let L be a finitely generated purely inseparable modular extension of K. Then, as
noted, any intermediate field over which L is modular will be the field of constants of a
group of higher derivations and the remaining obstruction to establishing a Galois type
correspondence was to determine when a subgroup was actually a full group. This was
established by Gerstenhaber and Zaromp [40] and Heerema and Deveney [53] by deter-
mining certain canonical generating sets. There is also a theory for special intermediate
fields and this is discussed in section two of the paper.

! Two subextensions L/K, IT/K of a containing extension N/K are linearly disjoint over K if there is
a basis of L over K that is still independent over IT (or vice versa). Or, equivalently if the natural map
L ® g IT — LIT of the tensor product to the compositum is an isomorphism.
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Heerema [49] developed a theory which incorporated both the classical Galois theory
and the purely inseparable Galois theory in a single framework. The groups are essentially
groups of higher derivations where the first map of a higher derivation is allowed to
be an automorphism and not just the identity map. The fields of constants F' of such
a group is characterized by the conditions that L is a normal modular extension of
F of bounded exponent. Mordeson [67] has developed a theory relating invariance of
subgroups to the structure of intermediate fields. The concept of linear disjointness and
its intersection preservation is also applied to extend the theory of distinguished subfields
to this setting.

The basic properties of infinite rank higher derivations, especially the iterative ones,
were developed by Zerla [103]. The fields of constants of these higher derivations are
the subfields F' of L over which L is regular (separable and algebraically closed) and

(F(L") =F.

As such, they do not properly belong to the study of inseparable Galois theory. However,
Heerema [51] was able to combine both finite rank and infinite rank higher derivations
in a single group, the group of pencils, by using a direct limit technique. The fields
of constants in this theory are the fields F which are separably algebraically closed
in L and over which L is modular and of finite inseparability exponent. The charac-
terization of the full subgroups is once again in terms of certain canonical generating
sets.

Aside from the intrinsic value of having a Galois type correspondence, the information
obtained on the structure of the fields involved is also important. The Galois theories
of higher derivations and the concepts developed along the way have given a nice pic-
ture of the structure of inseparable field extensions. As an illustration, let L be a finite
dimensional extension of K. If L is modular over K, then = J ®kx D where D
is separable over K and J is a tensor product of simple purely inseparable extensions
of K. In general, one uses Sweedler’s characterization of modularity and Waterhouse’s
results to find a unique minimal intermediate field Q* over which I is modular. If

Q" is separable over K, then Q* is the unique minimal field over which L splits as
above.

1.

Throughout this section L/K denotes an arbitrary field extension of characteristic p>0.
If L/K is not separable, then L/K is called inseparable.

DEFINITION 1.1. If 3 a non-negative integer e such that K (L”")/K is separable, then
the smallest such non-negative integer is called the inseparability exponent of L /K and
is denoted by inex(L/K).

DEFINITION 1.2. If

min {[L : S] | S is a maximal separable intermediate field of L/K } < oo,
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then this number is called the inseparability order of L/K and is denoted by inor(L/K).

Maximal separable intermediate fields of L/K exist. If L/K is finitely generated, then
inor(L/K) exists as does inex(L/K). .

DEFINITION 1.3. If L/K has a maximal separable intermediate field D such that L C
KP (D), then D is called distinguished.

It is shown in [13] that not every field extension has a distinguished maximal separable
intermediate field.

THEOREM 1.4 ([35]). Suppose that L/ K has finite inseparability .expon.en.t e. Then L/K
has distinguished maximal separable intermediate ﬁelceis D.IfD ;f a distinguished max-
imal separable intermediate field of L/ K, then K (LP"y = K(DP").

PROOF. From a relative p-basis? X of L/K select a subset Y such .that Yr i‘s a rel.at:ivc
p-basis of K (LP")/K. Since the latter ex}eqsion is separab}e, Y 11s,ealgebr§;cz;1/1y };1h :‘;
pendent over K and since K (LPY/K(Y?") is separablc? SO 18 K (L )(ll(/i') /f L( Iz .
D = K(L*")(Y) is a distinguished maximal separable intermediate field of L/K.

field extension L/K has a maximal separablg intenne('i{ate field {?‘,
nof;?eigg;:lrgwneed be distinguishc/ad [35]. Necessary and suf.ﬁ.cwnt condmons- fo:1 ttfl(x)i
to be the case can be found in [27, 33]. In [52, 31, 34], conditions are c}c{:te;;mmeh o
the maximal separable intermediate fields to be of bopnded codegree. For : / ZL};K) t
inor(L/K) < oo, intermediate fields L' of L/K .wnh tl}e .property that }n01’1( / arabl;
inor(L/K) are characterized in [24]. Other properties of distinguished maximal sep
intermediate fields are determined in [28, 30, 32, 501.

THEOREM 1.5 ([62]). Suppose that L/K is finitely generated. Then for every distin-
guished maximal separable intermediate field D of L/K, inor(L/K) = [L: D}.

PROOF. Let S be a maximal separable intermediate field of L/K. Let 7 = .inex(L/> ).
Let D be a distinguished maximal separable intermediate field of L/K. Since r > €
where e = inex(L/K), K(S?") C K(D*"). Thus

(L: S)[8: K(D7)] = (L D[ K (D7),
Now with t = trans.deg.(L/K),

D K(D7)] =5 = [$: K(57)) > [s: K(D7)].
Thus {L : S] > [L: D).

relati i i B of L such that for all proper subsets B’ of

2 A relatively p-independent subset B of L/K is a subset . .

B K( z;:ch)’() C K(LP, B). A relative p-basis for L/Kisa relatively p-independent subset B such that
’ ? ES

L= K(L?,B).
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DEFINITION 1.6. L/K is said to split if and only if L = J ®k D, ie. L is the field
composite JD and J and D are linearly disjoint over K, where J and D are intermediate
fields of L/K such that J/K is purely inseparable and D/K is separable.

DEFINITION 1.7. L/K is said to be modular if and only if K and L?" are linearly disjoint
over KNLY fori=1,2,....

As we will see in the next section, finite modular purely inseparable field extensions play
a role like that of finite separable extensions which are their own splitting field.

THEOREM 1.8 ([68]). L/K splits if and only if L/K has a distinguished maximal sepa-
rable intermediate field and L/ J is separable where J is the maximal purely inseparable
intermediate field of L/ K.

PROOF. If L/K has a distinguished maximal separable intermediate field D and L/Jis
separable, then

LK ") =K’ " @, L

and so
LCK? " @x D=KP~ ®;(J ®k D)
CKP”®;LC K"~ ®;(J®k D).
Thus L = J®g D. (]

In [13] an example is given showing that there exist L/K such that L/J is separable,
but L/K does not split.

COROLLARY 1.9 ([63]). If L/J is separable and J/K is of bounded exponent, then L/K
splits.

PROOF. The result here follows from Theorems 1.4 and 1.8. 0

COROLLARY 1.10. Suppose that L/K is modular. Then L/K splits if and only if L/IK
has a distinguished maximal separable intermediate field,

PROOF. Since L/K is modular it follows that L/(K?™* ML) is modular fori = 1,2,... .
Thus L/J is modular and so separable. (m]

THEOREM 1.11 ({54]). If L/J has separating transcendence basis® where J is the max-
imal purely inseparable intermediate field of L/ K, then L/ K splits.

PROOF. Let X be a separating transcendence basis of L/J and let S be the maximal
separable intermediate field of L/ K (X). Then L/J(S) is separable algebraic and purely
inseparable. |

3 A separating transcendency basis for L/J is a transcendency basis B such that L/J(B) is separable.
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THEOREM 1.12 ([54)). L/K is modular if and only if L/J .is separable and J/K is
modular where J is the maximal purely inseparable intermediate field of L /K.

PROOF. J N L = J”i, i = 1,2,.... The result follows from definitions and [56],

Lemma, p. 162. u

THEOREM 1.13 ([68, 97]). Suppose that L/K has a distingtfished mgximal sepfra—
ble intermediate field. Then there exists a unique minimal m.termedlate field J* of
KP 7 /J where J is the maximal purely inseparz.zble intermediate field of L/K such
* lits. J* has the following properties:
thalt. %]E‘Jis)t/hle{:fique minimal pujrrely inseparable field extension of J sr:ch that for every
distinguished maximal separable intermediate field D of L /K , LCJ*®k D. o
2. J* is the unique minimal purely inseparable field extension of J such that L(J*)/J

is separable. .
3. If L/ K has finite inseparability exponent e, then J /K has exponent e.

4. If inor(L/K) < oo, then [J* : K] < .

PROOE. L(K? ") = K?~ ®k D where D is a distinguished maximal separable inter-
mediate field of L/ K. Thus

J = {J'| J'is an intermediate field of KP?™*/J such that L(J')/K splits}
is not empty. It follows that
J* = ﬂ{J’ | J' e T},

i.e. J* is the unique minimal purely inseparable field extension of J such that L(J*) _/ CK
splits. If inex(L/K) = e, then J* /K has exponente since D C L C D(J*) C D(K? ).
If [L : D] < oo, then 3 a finite subset X C J* such that L C D(K(X)). By the
minimality of J*, J* = K(X). a

THEOREM 1.14 ([53, 991). Let K and F, be subfields of some common field and suppose
that K is linearly disjoint from each Fy. Then K is linearly disjoint from N F.

PROOF. Suppose
3:121,...,113" (S ﬂFt

linearly independent over K N F, but linearly dependent over K where F' = N Fi. We
assume 7 is minimal. Now

Zkizi =0

with k; € K not zero. We may take k; = 1. With k; = 1, the k; are unique. Since tl?e T;
are each in F, they are linearly dependent over each K N Fi. Since the k; are unique,
the k; € K N F; and so the k; € K N F, a contradiction. 0
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THEOREM 1.15 ([92, 68)). In any field containing L(KP~

*) 3 a unique minimal field
extension L™ /L such that L™ /K is modular. L™ /Lisn

ecessarily purely inseparable.

PROOF. L(K?"™)/K is modular since L(K? ™)/K?™™ is separable and K?™~ /K is
purely inseparable and modular. Thus

L ={L'| L is an intermediate field of L(KP"™)/L and L'/K is modular}

is not empty.
L™=({L'|L ec)
is the desired field.
We call L™ the modular closure of L/K.

THEOREM 1.16 ([68]). Suppose that L/K has a distinguished maximal separable inter-
mediate field. Let L™ be the modular closure of L/ K. Then every distinguished maximal
separable intermediate field D of L/K is one of L™/K and L™ = J*™ @y D where
J*™ is the modular closure of J* /K. Furthermore,

1) if L/K has finite inseparability exponent e, then L™/K has inseparability expo-
nent e;

2) ifinor(L/K) < o0, then inor(L™/K) < co.

PROOE DCLC L™ CKP " @ DandsoDis a distinguished maximal separable
intermediate field of L™ /K. Since L™ /K is modular and has a distinguished maximal
separable intermediate field D, L™ /K splits, say L™ = J'®x D where J' /K is purely
inseparable and modular. It follows that J*™ = J’, a

THEOREM 1.17 ({18, 531). 3 unique minimal intermediate fields H*, C*, and Q* of L/IK
such that L/ H* is regular, L/C* is separable, and L /Q* is modular. These intermediate
fields satisfy the properties H* 2 C* D Q*, H* = C* = Q~ (the algebraic closure of
C*, Q* in L, respectively), C*/Q* is purely inseparable modular, and H* = S ®g- C*
where S is the maximal separable intermediate field of H*/Q*.

PROOF. Let # = {H | H is an intermediate field of L/K such that L/H is regular}.

Now L € H and LP and H are linearly disjoint over HP for all H € H. An application
of Theorem 1.14 yields L? and

({H|H e}

are linearly disjoint over

<ﬂ{H| HeH})p.
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It follows that
H*=({{H|HeH}
The existence of C* and Q* follow in a similar manner. O

DEFINITION 1.18. 1. If L/K (M) is separable algebraic for every relative p-basis M of

then L/K is called relatively separated. . ‘
L/?,K if If n: Ié (M) for every relative p-basis M of L/K, then L/K is called reliable.

The characterization of relatively separated and reliable field extensions can be found
in [57].

THEOREM 1.19 ([18]). If L*/ K is relatively separated, then C* has the following prop-
erties: .
] ] ] 1 ich is reliable over K;
1. C* is a maximal intermediate field which is re - B .
2. C* is the only intermediate field of L/K such that L/C* is separable and C* | K

is reliable.

THEOREM 1.20 ([54, 18)). Suppose that C* /K is reliable. Then. L/Q* has finite in-
eparability exponent, C*/Q* is purely inseparable modular wn?h. boundefi exponent,
:zerl L = F ®s (S ®q+ C*) where S is the maximal separable intermediate field of
H*/Q* and F is an intermediate field of L /S which is regular over S and separable
over Q*.

The representation of L/K in Theorems 1.17 and 1.20 di.splay the intermediate fields
H*, C*, and Q* which are related to the Galois theories discussed below.

THEOREM 1.21 ([18)). Suppose that L/K is algebraic and le{ S denote t.he r*r‘zajnr;t;lzel
separable intermediate field of L/K. Then L/S is mf)dular if and onl)*z tftchz uz;i e
maximal separable intermediate field of C* /K. If L/ S is modular, then Q™ is the uniq
minimal intermediate field over which L splits.

PROOF. L/Q* splits since L/Q* is modular and algebraic. Suppose thgt L/ Ssxls n;:;cj:lacr’
and L/Q splits where @ is an intermediate field of L/ K , say L.: ®q wd 0
and $’ are intermediate fields of L/Q such that C/Q is .purely 11?separable an 519
is separable algebraic. Let Q' be the maximal separz.lble mtcrmedlatelﬁeld 01f1 Q {g ”kK
follows that L = C ®¢ S” where S” is an intermediate field Of”S/ Q sucf/h t ag T 1K
is separable algebraic. Since L/S” is purely inseparable and S” C S, 5" = 5. 1ncEJ
L/S is modular, Q* C SNC* C SNC = Q. Thus Q* C Q.

Results concerning the transitivity of modularity can be found in [54]. A discussion
of modularly perfect fields, i.e. fields which have only modular extensions can be found

in [63, 25].
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2.

DEFINITION 2.1. A derivation on a field L is an additive map d: L — L such that
d(ab) = d(a)b + ad(b).

An element c such that d(c) = 0 is called a constant of d. Since d(z") = nz"~'d(z),
elements of LP are always constants. If S is a set of derivations on L, the set of constants

of Sis {z | d(z) = 0 for all d in S}. It is straightforward that the set of constants of S
is a subfield of L which contains L?.

THEOREM 2.2 ([47]). Let L/K be a field extension and let B be a relative p basis of
L/K. Let 6: B — L be an arbitrary map from B to L. Then there is one and only one
derivation d of L over K such that d(z) = §(z) for every z € B.

Let L be purely inseparable exponent one over a subfield K and suppose B is a finite
relative p-basis for L over K. If z is an element of L not in K, then z is part of a
relative p-basis B’ of L over K and hence by the last theorem is not a constant for
some derivation of L over K. Thus K is the field of constants of D(L/K), the set
of all derivations of L over K. However, K could also be the field of constants of a
smaller set of derivations. Thus to establish a Galois type correspondence it is necessary
to determine when a set of derivations is as large as possible.

DEFINITION 2.3. A set of derivations D is called a restricted p-Lie algebra if
1) D is closed under addition;
2) D is closed under left multiplication by elements of L;
3) D is closed under pth powers;
4) D is closed under Lie commutation, [did;] = didy — dad;.

THEOREM 2.4 ([55]). Let L be a field of characteristic p # 0 and let D be a restricted
Lie algebra of derivations on L which is of finite dimension m as a vector space over
L. If K is the field of constants of D, then L is purely inseparable of exponent < 1 over
K and [L : K| = p™. If d is any derivation of L over K, then d € D.

Gerstenhaber [38] has generalized this Galois theory to the infinite case and showed
that with the natural Krull-topology on Der L, there is a bijective correspondence between
closed restricted Lie algebras of derivations and subfields of L containing L?. Ojanguren
and Sridharan [74] show that a subspace which is closed under pth powers is automatically
closed under Lie product.

DEFINITION 2.5. A rank t higher derivation on a field L is a sequence
d:{di|0Si<t+1}

of additive maps of L into L such that

dr(ab) =Y {di(a)d;(b) | i +j =r}
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and dp is the identity map.

Let z be an indeterminate and form Liz]/(z**'). There is a 1-1 cc.)rrespo.ndence
between finite rank ¢ higher derivations d of L and algebra. homomorphlsms p: L —
Liz]/(z**") such that p(a) — a has zero constant term. If p is given by

plap) —a+az+ -+ oz

then d is specified by d;(a) = a;. For infinite rank d one uses homomorphisms as above

from L to L{[z]]. .
If S is a set of rank t higher derivations, the field of constants of S is

{aeL|dia)=0,i>0, (d) €S}

THEOREM 2.6. 1. ([47]). Let B be a p-basis for Landlet f: Z x B —~ Lbean ar‘bitrary
function. There is a unique (d:) such that for each b € B and i € Z, d;(b) = f(i,b).
2. ([101]). dip(aP) = (di(a))P and if p and j are relatively prime, then d;(a?) = 0.

THEOREM 2.7 ([92]). Let L be a purely inseparable extension of K of finite exponent.
The following are equivalent. .

1. L is the tensor product of simple extensions of K -

2. K is the field of constants of a set of hignher derivations on .L.

3. LP" and K are linearly disjoint over LP" N K for all positive n.

PROOF. (1) implies (2). Since the field of constants of a set of highc?r derivations i§ the
intersection of the respective fields of constants, it suffices to show if L = K (z) with

" =K
then K is the field of constants of a higher derivation on L. Let
{mp" }uUB

be a p-basis of K and define a higher derivation (d;) on L where {11(3;)’ =1, dl(.b) = 0
forall b € B, di(y) = 0,y € {g} UB, i # 1. The rank p™~' higher derivation
d={d; | 0<i<p* '+ 1} will have field of constants K. - .
(2) implies (3). If they are not linearly disjoint, we can find a minimal length rilatlon
of the form 0 = z; + ayz2 + - - - + a;x¢ where {z;} C K is indEpendent over L NK
and a; € LP" with t > 2. Since {z;} is independent over L?" N K, we can assume
az ¢ LP"NK. Thus there is a higher derivation (d) with dp, (a2) 7é 0, m > 1. Theorem 2.6
shows LP" is invariant under (d) and applying d», to the relation we get onc of shorter
length. o o ,
(3) implies (1). If n > 1, the linear disjointness condition 1mP11+¢:ls that if S is a ﬁ-zbasm
for KP~" NL over K* ML, then SP is p-independent in K? NL over K? NL.
This condition allows one to construct a set of elements which will be the generators for
the single factors in the tensor product. O
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[101] provides the following example which shows not every purely inseparable ex-
tension is modular. Let Zp be the prime field, and z, Y, z be indeterminates. Let
K = Zp(x”,y”,z”z) and L = K(z,zz + y). L has exponent 2 over K and is not
modular.

If modularity for purely inseparable extensions is to correspond to normality for sep-
arable extensions, then there should be a minimal extension of a purely inseparable
extension which is modular. This is the content of the next result due to Sweedler.

THEOREM 2.8 ([92]). Let L be a purely inseparable extension of K of exponent n. There
is a unique minimal field extension M of L which is modular over K. M is purely
inseparable of exponent n over K. If [L : K| < o, [M: K] < .

PROOF. KP~" can be seen to be modular over K by using the linear disjointness condition
of Theorem 2.7. K" D L and the intersection of all subfields of K" which contain
L and are modular over K will be M. If (L : K] is finite, then a set of generators of L

over K will involve only a finite number of tensor product generators of K?~ " over K, . -

and L will be contained in a finite dimensional modular extension of K.

The maps which give the Galois correspondence when the exponent is greater than one
are the higher derivations. The set H*(L) of all rank ¢ higher derivations of L is a group
with respect to the composition d o e = f where fi=2{dmen | m+n = j} [48). The
first nonzero map of positive subscript is a derivation, If d = (d;) is a higher derivation
of rank ¢, the s-section of d is the higher derivation e = {dili=0,1,....8}, 1<s<t.

O

DEFINITION 2.9. The index i(d) for a nonzero higher derivation is either 1 or, if d has

the property d; # 0 and d; = 0 if ¢ {j,theni(d) = ¢q. Ade H*®(L) is iterative of
index q if

7
. di=did i—7
<]>q qi%q(i—j)

for all 4 and j < 4, whereas d,,, = 0 if q1m. A finite rank ¢ higher derivation is iterative
if it is the ¢-th section of an infinite higher derivation. If d has index g, and a € L, then
ad = e where e;; = a'dy; and ej =0if g¢4j.

A complete description of iterative higher derivations has been given by Zerla [103].
However, it should be noted that his finite rank iterative higher derivations are only
required to satisfy the combinatorial identity and not be sections of infinite ones. This
extra requirement is needed to control the last map in a finite rank iterative higher
derivation. A set F' = {d* | a € A} of higher derivations is abelian if dedf = dldg
for all o, 8 € A. A set of nonzero higher derivations is independent if the set of first
nonzero maps of F with positive subscript is independent over L.

Before beginning the higher derivation Galois theory, we give a reformulation of the
exponent one theory which follows the intended approach.
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THEOREM 2.10 ([40, 53}). Let F = {p, ..., pn} be derivations on L. The following are

equivalent. .
1. F is abelian, independent, and p¥ =0, 1 <i < n. s
2. L=K(zy,...,2,) where K is the field of constants of F' and pi(x;) = b5
The set {x1,...,Zy} is a relative p-basis of L/ K.

PROOF. (1) implies (2). The idea is to induct on n. For a sillgle derivation filchooT éc
with p(z) # 0. Since p? = 0, there is an n<p sugh that p™(z) # 0 and.p X (E)ld_ f
Then p(p"2(z)/p" ' (z) = 1, so there is a y with p(y) = I. If K is the fie fo
constants of p, then L = K(y). For if z is a nonconstant, let p” be the least power of p

which does not map z to 0. Then

Continuing this approximation process will express x as a linear combination of
P11 with p-constant coefficients.

{ligétllé:ii’v?ily, (})n‘zltzarf find zy,...,Z,-; a relative p-basis of L over K 1 th? field o_f

constants of py, . .., pn—1. By commutativity, p, (K1) C K, and hence.b?/ induction K 1]( =

K(x,) with pp(zn) = 1 and p;(x,) = O for i # n. Also by commutativity, pn(fz})( Ef ,;n

By a similar approximation process as above, one can sybtrgct an 'element z; of K, fro

each z; to force p,(z; — z;) = 0. The reverse implication is straightforward. m]

DEFINITION 2.11. A relative p-basis for L over K as in Theorem 2.10 will be called a
dual p-base with respect t0 {p1,...,pn}.

The group generated over L by a subset F' of higher derivations (or derivations) is the

subgroup generated by {ad |a € L, d € F}. ' ‘
Ig viepw of Theorem 2.10, the exponent one Galois theory could be restated as: a

finite-dimensional subspace of Der(L) is Galois if and only if it is genergted by a set
{p1,..-,pn} of commuting independent derivations such that pf =0, 1 <i < n.

DEFINITION 2.12. For d # 0 in H*(L) with first nonzero map d.,
p(d) = min{s | p°r > r}.

An iterative d of rank ¢ is normal if for some j > 0, i(d) is [t/p7] + 1, where [t/p7] is
the greatest integer less than one equal to ¢t/p’.

THEOREM 2.13 ([53]). Let F = {d(l), . ,d(")} be an abelian set of independent itera-
tive derivations of finite rank t and let K be the field of constants of F. Then

(L K] = POl

PROOF. The proof is by induction and the consequence of Theorem 2.6 that for any d 76 0
in H*(L), p(d) is the exponent of L over the field of constants of d. For an iterative
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higher derivation the first nonzero map is a derivation d with dP = 0. Thus if K; is
the field of constants of d, L = K(z) and [L : K] = p. Since the higher derivation is
abelian, K is an invariant field and if the first nonzero map has subscript r, the first
nonzero map of the higher derivation restricted to K has subscript pr. (]

DEFINITION 2.14. Let F = {d(,...,d(™} be a set of rank ¢ higher derivations on L.
{z1,...,zn} is a dual basis for F if

1) L = K(xy,...,2,), K the field of constants of F,

2) dsf;) (z:) = 1, where d&? is the first nonzero map of d*) and all other maps in F
with nonzero subscript take x; to zero.

THEOREM 2.15 ([53]). Let F = {d1,...,d™} be a subset of H*(L). The following are
equivalent.

1. F is an abelian set of independent iterative higher derivations.

2. F has a dual basis {z1,...,zp}. If {z1,...,2s} is a dual basis, then

L=K(z)® - ®K(z,),
K;=K(z\,...,%i,...,Ty) is the field of constants of d.

PROOF. The proof proceeds by induction. For a single abelian iterative higher derivation
d = {dy,...,d:} with first nonzero map d, d, is a derivation with d2 = 0. A lengthy
approximation process [103], Theorem 2, p. 411, is used to determine a dual basis for a
single higher derivation. Commutativity of the maps allows the induction to proceed.
Given d € H*(L) of index ¢, v(d) = e € H*(L) where e(q41); = dg; for (g +1)i < ¢
and e; = 0 if ¢ + 11 j. The v closure %(F) of a set F in H*(L) is F U {vi(d) | d €
F, i > 1}. A subgroup G of H*(L) with field of constants K, [L : K| < oo, will be
called Galois if G is the group of all higher derivations in H!(L) which contain K in
their fields of constants. O

THEOREM 2.16. A subgroup G of H*(L) is Galois if and only if G is generated over L
by O(F) where F is a finite normal independent iterative subset of H*(L).

PROOF. Let G have field of constants K. By Theorem 2.7,
L=K(x)®K(z)® - & K(zp).

Let F' be a normal set of higher derivations with dual basis {zi,...,z,}. Normality
insures that the first nonzero map of d®) has lowest possible positive subscript for a map
which does not map x; to zero. The idea of the proof is to show that all higher derivations
can be obtained from F' by using the v operation, scalar multiplication, and the group
operation. If d is an arbitrary higher derivation on L over K, the first nonzero map of
d is a derivation and as such is uniquely determined by where it maps {z,...,z5}.
By using the v operation, scalar multiplication and product of elements in F' one creates
a higher derivation e which has the same first nonzero map as d. The process is then
applied to de~! which has first nonzero map of higher subscript. 0
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Intermediate theory

If the higher derivation theory were to exactly parallel the classical Galgis theony of au-
tomorphisms, the distinguished intermediate fields F should be those \"vhu‘:h are invariant
under all higher derivations of L over K and such that all higher derivations on F' over
K could be extended to L.

THEOREM 2.17 ([11]). Let F be a Galois subfield of a Galois extension L/ K. Then F
is invariant under H' (L) of and only if F = K(L?") for some 7.

PROOF. Theorem 2.6 shows K(LP") is an invariant subfield. To show the convgﬁe,
assume F C K(LP" but ¢ K(LP™"") (otherwise F = K and let z € L\ K(L?" ")
Using the generating set F' one constructs a higher derrivation (d) of index s such that
dspr(z) # 0. For any a € L, (ad) has sp” map a? dypr. F being invariant forces
a? € F,ie. F=K(L*). 0

THEOREM 2.18 ([11]). Let F be a Galois subfield of a Galois extension L/K and assume
F is modular over K. Then every rank t higher derivation on F/K extends to L if and
only if L = F ®x J for some modular extension J of K.

DEFINITION 2.19. Let F' be a Galois subfield of L containing K. F is distinguished if
and only if there exists a standard generating set for H 1. (L) which leaves F' invariant.

DEFINITION 2.20. L is an equiexponential modular extension of K if and only if L has
a subbasis over K all of whose elements have the same exponent over K.

THEOREM 2.21. Assume L is an equiexponential modular extension of K. If L is modular
over an intermediate field F, then F is also modular over K.

PROOF. For a modular extension a subbasis is a relative p-basis of minimal total exponent
and hence for an equiexponential modular extension any relative p-basis is a subbasis. Let
{z1,...,7,} be a subbasis of L over F' where z; has exponent r;. Let {yti,..., 4y C F

be such that {z;,..., T, ¥i,..., Y} is a relative p-basis, hence subbasis, of L over K.
A dimension argument shows

T Tr
{zpl 7"')zpr vyl)"')yt}
is a subbasis of F' over K. ]

THEOREM 2.22 ({11]). An intermediate field F is distinguished if and only if L has a
subbasis Ty U --- UT, over K, the elements of T; being of exponent i over K, and

F=FNK(T)® - ®FNK(T,)

and K(T;) is modular over F 0 K(T}) for all 1.
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3.

In this section we exhibit an automorphism group invariant field correspondence which
incorporates both the Krull infinite Galois theory [56], p. 147, and the purely inseparable
theory of the second section. The invariant subfields K of L are those for which L/K
is algebraic, normal, modular and the purely inseparable part has finite exponent. The
associated automorphism groups are subgroups of the automorphism group of the local
ring described below. They can also be described as groups of rank p® higher derivations
with the modification that dy is an automorphism of L rather than restricting dy to be
the identity map. Let A denote the group of all automorphisms « of the local ring

L{z] = Lia}/z*"" L[z

such that a(Z) = Z where z is an indeterminate over L, e is a non-negative integer,
e41 . . . e+1 .
xP  Llz] is the ideal in L{z] generated by P, and % is the coset

x+ a:peHL[x].
We use the following notation: For a subgroup G of A,
GL={aeG|a(L)C L}
Go={a€G|afc)—ce zL[x] Vce L},
and

LY ={ceL]|alc) =cVaeG}.
For K a subfield of L,

GK ={aeG|alc)=cVce K}.

For f(z) in L[z], let ((f(Z)) = f(0). Then, for & € A, of(= Calr) is an auto-
morphism of L. For 8 an automorphism of L, ¢ will denote its unique extension to
A. The map a — a“® is a homomorphism of A onto Ar. With a subgroup G of A
we associate the groups G¢ = {a° | @ € G} and G** = {a*® | @ € G}. Recall that

d = {d; | 0 < i < p°} denotes a rank p° higher derivation of L into L. Let A denote
the group of all rank p® higher derivations on L.

PROPOSITION 3.1. The map 6: H — Ay given by

sy = {z'di|i=0,1,...,p°}

and §(d)(Z) = Z is an isomorphism of H with Ay.
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PROOF. For a € Ag and c € L,

afc) = Zciii

and ¢o = c. For i = 0,...,p% let di(c) = ci. Then d = {d; | O_S i<pteH at}d
6(d) = . This and the fact that S #d; is an isomorphism for d in H can be found in
[45]. Also

§(d)s(d)=Y_ {z'd:(a'd;) |0 < 4,5 <p°}
= Z{a‘ci(dod’)i |0<i<p?}=6(dod)L.
For K a subgroup of #, let
LF={ceL|dfc)=0,i>0,Vde K}.
For K a subfield of L, let
HK = {de H|di(c)=0, i >0, Ve € K}.

PROPOSITION 3.2. For K a subgroup of H, L* = L%, and for K a subfield of L,
s(HK) = AL

Let L® = LC where G is the group generated by a in G.
PROPOSITION 3.3. LP*"' C L* for o € Aq.

PROPOSITION 3.4. Each o € A has a unique rep{esentation as a product vy, B €
Ay, v € Ap. In fact, B = a%® and thus v = (@) .

PROPOSITION 3.5. L& = L& n L) 'e,

COROLLARY 3.6. For G a subgroup of A, let H be the group generated by G and G.
Then L = LG = LHr 0 L,

PROPOSITION 3.7. If L/K is normal and LP° C 8 for some non-negative integer e, then
L= S®x J where J”" C K.

PROOF. The proof follows from Corollary 1.9 and [56], Theorem 13, p. 52. O

PROPOSITION 3.8. Let K be a subfield of L such that L/ K is algebraic.

1. o(LG%) = L% for o € G“.

2. L is a normal extension of LE.

3. LG = J where G, is the group of extensions to A of the automorphism group of
S/K and J is the maximal purely inseparable intermediate field of L/ K.
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PROOF. 1. Suppose for some o € G¢ and ¢ € L% that o(c) =b ¢ LC. Choose a € Gy
for which a(b) # b. Then 8 = (0¢)~'ao® € G, while B(c) # ¢, a contradiction. Thus
o(L%) C LG and o~Y(L%) C LG Hence o(LG0) = LG,

2. By (1), the restriction to LS of « in G€ is an automorphism. Let H be the group
of all such automorphisms on L% Since LG = LGr L% and G = G, the subfield
of L% invariant under H is LS. Thus L /LS is normal separable. By Proposition 3.3,
LP™" C LS from which we conclude that L is the separable closure of LS in L. Let
¢ € L and let f(x) be its minimal polynomial over LG. Then f(z) = g(z*") where r is
the exponent of inseparability of ¢ over LE and so g(z) is separable over LE. Since g(z)
has ¢ in L% as a root, g(z) splits over LS, It thus follows that f(z) splits over K.

3. Clearly J C LS. If ¢ € L, then since K(LP"™"') C S, ™' ¢ SNLO — K.
Hence c € J and so LG = J.

LEMMA 3.9. Suppose L/K is an algebraic field extension such that L = J ®K S where
S is the maximal separable intermediate field of L/K and J is the maximal purely
inseparable intermediate field of L/ K. Then the Jollowing conditions are equivalent:

1. L/K is modular;

2. L/S is modular;

3. J/K is modular.

PROOF. One first shows that (K NLP')(SP') = SNL¥", i = 1,2,... . Then an application
of [56], Lemma, p. 162, yields the equivalence of (1) and (2). The equivalence of (1)
and (3) follows from [72}], Lemma 1.61 (c), p. 56.

We now give the Galois correspondence.

THEOREM 3.10 ([49)). Let K be a subfield of L such that L/ K is algebraic. The Sollow-
ing four conditions are equivalent.

1. K = L€ for a subgroup G of A.

2. L is a normal modular extension of K such that K(L***")/ K is separable.

3. There are intermediate fields S and J such that J**' C K, J /K is modular, S/ K
is normal separable, and L = S Qg J. ‘

4. There are intermediate fields S and J such that S/K is normal separable, J is
the tensor product over K of simple purely inseparable extensions of K having degree
<ptland L=S®kJ.

If L satisfies one of (1)-(4) and G = AK, then S'= LS and J = LG~ where S and
J are given by (3) or (4).

PROOF. (1) implies (2): L/K is normal by Proposition 3.8 (2). The field of constants of the
group §~'(Gy) of higher derivations is LS and thus L/L% is modular by Theorem 2.7.
An application of Proposition 3.7 and Lemma 3.9 yield the modularity of L/K.

(2) implies (3): The result here follows from Proposition 3.7 and Lemma 3.9.

(3) implies (4): The result here follows from Theorem 2.7 and Lemma 3.9.
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(4) implies (1): Let %, represent the group of all rank p® hi_gher dcr_iv_ations of J
into J which are trivial on K. Each d € #; has a unique extension to L since L/J is
separable algebraic [47], Theorem 3. Then

H = {d | d is an extension to L of an element of #,}

is a group of rank p® higher derivations on L with the property S C L*. Let G be the
subgroup of A generated by G and 6H. By Corollary 3.6,

L6 =[G NG =JnL* =K.

In establishing that (1) implies (2) it was shown that LG = S. Proposition 3.8 (3)
yields LCL = J.

DEFINITION 3.11. A subgroup G of A is Galois if G = AX for a subfield K of L such
that L/K is algebraic.

DEFINITION 3.12. A subfield K of L is Galois if
1) L/K is algebraic, and
2) K = L€ for a subgroup G of A.

Theorem 3.10 identifies those subfields of L which are Galois. The Kr'ull infinite Qalois
theory asserts that a subgroup G of Ay, is Galois if and only if G is compact in .thc
finite topology [56], Example 5, p. 151. For [L : K] < oo, tho.se subgroups.of ‘H having
the form HX and hence, via J, those subgroups of Ay which are Galois have been
characterized in [7-9].

THEOREM 3.13 ([49]). A subgroup G of A is Galois if and only if
1) G¢ C G, and
2) G°¢ and Gy are Galois.

PROOF. Suppose that G is Galois. Then G D AS and G D A/ whereHIjl =J®pe S. For
a € A5, a° is an automorphism on L which is the identity on LP gs S and henc§
the identity on L. Thus a € Ag or AS C Go. By Theorem 3.10, Gy C A°. Leta € A
and B = (a®¢)~'a. Then L/LP is separable algebraic since J C L? by Proposition 3.5.
Since LA is the field of constants of a finite higher derivation, L = L?, @ € Ap, or
A7 C Ap NG = Gr. Hence G¢ = G, = A7 and G is Galois. Converff}y, suppos'e
that G satisfies (1) and (2). Using Proposition 3.8 (1) and the fact that LP = C LG it
follows that L/LC is algebraic. Let K = LS and H = AX. Then G C H, g - 11{{
and Gy C Hy. By Theorem 3.10, L = J®k S, J = L¢L = LHL and S = L.0 =L "
But LG and LE: are the fields of invariants of G¢ and H*, respectively, and since G€ is
Galois. G¢ D H¢. Hence G¢ = H¢. Similarly, Gy = Hpand G = G**Go = H°®Hy = H.
O

DEFINITION 3.14. Given subgroups H; and H, of a group H, we say H, is H; invariant
if for « € Hy, o™ 'Hia C H;.
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Let H; be a subgroup of Ar, and H, a subgroup of Aq. Then H; and H, are compatible
in the sense that there is a group G in A for which Gy, = H, and Gy = H, if and only
if HyH; is such a group, and since H, must be an invariant subgroup of G, H, and H,
will be compatible if and only if H, is H; invariant.

Let G be the set of groups of automorphisms on L and D the set of groups of rank p¢
higher derivations on L.

DEFINITION 3.15. A pair (H, D) in G x D is compatible if there is a subgroup G of A
such that G¢ = H and Gy = §(D). A pair (H, D) is Galois if it is compatible and
H*§(D) is Galois.

Given (H,D) in G x D, D is invariant under H if given ¢ € H and d = {d;} € D,
then 0~!do = {o~'d;0} € D.

PROPOSITION 3.16. A pair (H, D) in G x D is compatible if and only if D is H invariant.
A compatible pair (H, D) is Galois if and only if H® and §(D) are Galois.

We now consider the subgroup subfield correspondence. Let H C G be Galois subgroups
of A. We consider the consequences for L¥ /L of invariance of Hy in G, and of Hj,

in Gr. The objective is the identification of conditions on H relative to G equivalent to
LH/LC being Galois.

THEOREM 3.17 ([49]). Let G be a Galois subgroup of A. Then G, is Gy invariant if and
only if Gy, is G or {1}.

PROOF. If G, is Gy invariant, then G, is invariant in G. Hence since G;, N Gy = {1},
G is the direct product of Gy, and Go. Thus for d € 671(Gy) and « € G, ad; = d;a,
i=1,...,p°% Assume that G, and G are nontrivial. By Theorem 3.10 (4), J/K, where
K = L, has a subbasis B and C = {b"" | b € B, i is the exponent of b over K} is
p-independent in K. Extend C to a p-basis C U C| of S. Then B U C; is a p-basis of
L. By Theorem 2.6, a higher derivation d is determined by its action on a p-basis and
this action may be arbitrarily prescribed for each d. We defined d by the requirement
di(c) = 0 forc e BUC) and i < p°. For ¢; € B, we let dpe(c;) = s € S, s ¢ J,
and let dpc map every other element of B U Cj to 0. Clearly d is trivial on B U C|
and hence 6(d) € Gy since Gy is Galois. However, a(c) # ¢ for some ¢ in G and
adpe(c1) = a(c) # ¢ = dpeafc;). Thus if G, is Gy invariant, either Go or Gz, must be
the trivial group.

THEOREM 3.18 ([49]). Let H C G be Galois subgroups of A. Let L = J Q¢ S as in
Theorem 3.10. Then L¥ = J, ® ¢ Sy with S; C S and J, C J if and only if Hy is G,
invariant. Moreover, ifLH = J| ®pc S, then LH — ®rc S and LHL = J®pc S).

PROOF. Suppose that L7 = J; ® ¢ S;. Then Lo D J; ® S and LFL D J ® §). But
L=L%gu LH = (J;® S)®pn (J® S).

Hence Lo = Jy ® S and Lt = J® 8. If a € G, then o(L) C L and aly is
the identity. Hence a(LH0) = Lo from which it follows that if d € 6~'(Hy), then
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a~'da € 6~ (Hp) or Hp is G, invariant. Conversely, assume that Ho cl: Gy igvanant.
By Theorem 3.13, Gt and H, are Galois. Since (GrHo)* =H (GL)*(Ho) :hG’L
and (GLH())() = Hy, GLHp is also Galois. It fO’llOVLS ﬂ’latGL ° = J; ®r¢ S where
J, = LN LGt and LHE = J ®pc Sy where 51 = LHL N [G0 [49], Lemma 3, p. 199.

Now

LH=rpHn L =(J®8)®(Ji®S)=J1®5; .

it i in [49] that if H is an invariant subgroup
As a Corollary to Theorem 3.18, it is shown in [ .
of G, then L¥ /LE is normal, but not conversely. Let H C G be G?lms ‘subgroups of
A V\}e determine a necessary and sufficient condition for H to be G invariant.

LEMMA 3.19. Let E/K be a field extension and F an intermediate field. If E/K and
E/F are modular, then E/K(FN EP"Y is modular for j = 0,1,. ...

PROOF. Let j be a fixed non-negative integer. Suppose i is an integer such that ¢ > j.
Then

FAE" = FNE” nEY CK(FNEP)NE" C FNEY.
Thus
K(FNE')nEP =FNE".

Since also F 2 K(F N EP’) and E/F are modular, K(F N E") and EP are linearly
disjoint over F NEP" . Now suppose i < j. That K (FﬂEp’ ) and EP are linearly disjoint
over (K N EP')(F N EP’) follows from the modularity E/K and use of [56], Lemma,

O
p. 162.

LEMMA 3.20. Let J/K be a purely inseparable field extension of bounded expon.ent e
and let F be an intermediate field of J/K. If J/K and F/K are modular.and if for
every subbasis B of J/K every b € B has the same exponent over F that it has over
K, then F = K.

PROOF. We first prove the result when F/K has exponent < 1. There does not exist
ce (FNJP)y— K(K?™ nJP"") else it follows that ¢® " is in a subbasis of J/K [72],
Proposition 1.55 (c), p. 49, and has exponent i + 1 over K and exp?nent 1 over F. Since
J/K is modular, K and F'N JP are linearly disjoint over KnJr,i=01, o A'lso
since J/F is modular, F' and K(J”m) are linearly disjoint over K(FNJP ), i =
0,1,..., by [72], Lemma 1.60 (c), p. 55. It follows that

K(Fn"ycK(Fn) K7
and so K(FNJP)=K(FnJ?") fori=0,1,...,e Thus

FeK(FAJP) =...= KIFN.IP) = K
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Now suppose F has arbitrary exponent (< e) over K and F D> K. Clearly every subbasis
of J/K has the same property concerning exponents over any intermediate field of F/K.
There exists a non-negative integer ¢ such that K (FNJ?') ¢ K and K (F N me) CK.

Then K (F N J?')/K has exponent 1 and J/K(F N JP') is modular by Lemma 3.19.
By the exponent 1 argument, K (F N JP) = K, a contradiction. Thus F = K.

THEOREM 3.21 ([67]). Let H C G be Galois subgroups of A and let S denote the
maximal separable intermediate field of L/LC. Then H is G invariant if and only if
either L C S and Hy, is Gy, invariant, or L¥ 2 S, LH /LG splits, and Hy is Gy
invariant.

PROOF. Suppose that L/L is inseparable, but not purely inseparable. Let J denote the
maximal purely inseparable intermediate field of L/LC. Assume H is G invariant. Then
LH /LS is normal by [49], Corollary 4.4, p. 200, and so L /LE splits. Also Hy is G
invariant and Hy, is G, invariant. Suppose L? ¢ S and L¥ 2 S. Since L¥ ¢ &,
LHNJ > LS. Since H is Galois, L¥ J is modular over L by Theorem 3.10. Thus
J/(L¥ N J) is modular by Lemma 3.9. By Lemma 3.20, there exists a subbasis M of
J/LS and an element mm of M such that m has exponent n over LS and exponent ¢
over L¥ N J with n > t. There exists a subset X of L& such that X UM is a p-basis
of J. Since L/J is separable algebraic, X U M is a p-basis of L. Set B = X UM and
C = {b” | b€ B, i is the exponent of b over L¢}. Then C is a p-basis of LC by
[72], Proposition 1.22, p. 14. Since L¥ 2 S, S D LENS. Letse€ S— LN S. Let
q be an integer such that p*~" < ¢ < p*™*!. Then 3d = {d; | i = 0,1,...,p°} in
H such that di(m) =0, i = 1,...,9 — 1, dg(m) = s, and d;(b) = 0(i = 1,...,p®)
for all b € B— {m}. Forall c € C — {mP"}, di(c) = 0 for i = 1,...,p°. Now
di(mP") = (dj(m))?" if i = jp" for some j and d;(mP") = 0 otherwise. Consider those
i such that ¢ = jp". Then 1 < j < p°™ < g Wwhence d;(m?") = 0. Thus d € HLC,
Since s ¢ L, there exists hy € Hy, such that hi(s) = s’ € S with &' # s. Now
peTMH < gpt < peTmHH! < p® and 50 dype s defined. Also mP* € LHNJ, mP* ¢ LG,
and dq},t (mP') = (dq(m))”t = s7". For any integer i such that 1 < i < gp*, we have that
di(m?") = (d;(m))P" if i = jp* for some j and d;(mP") = 0 otherwise. For those i such
that i = jpt, jp' < gp' so j < q. Thus d;(m?’) = 0 when 1 < i < gpt. One can show
hy go(mpt) # go(m”t) where go = d(d) and thus H is not G invariant, a contradiction.
Thus either L C S or L¥ 2 S. Conversely, suppose L¥ C S and Hy, is G, invariant.
One uses Proposition 3.4 to show H is G invariant. Now suppose L# D S, L#/L¢
splits, and Hy is Gy invariant. Since LH /L€ splits, we have that Hy is G, invariant by
Theorem 3.18. From this and the fact that Hy is Gy invariant, it follows that Hy = H is
G invariant. ]

[20], Theorem, p. 277, can be applied to Theorem 3.21 to give a necessary and suffi-
cient condition concerning group invariance.

Let H C G be Galois subgroups of A. Let Gy denote the group of all automorphisms
gu for

LH(z] = LH|z)/z*"" LH ]
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such that g5 (Z) = T and gy is the identity on LS. The proof of the next result follows
along lines similar to that of classical Galois theory.

THEOREM 3.22 ([67]). Let H C G be Galois subgroups of A. If H is G invariant and
H() = Go, then G/H ~ Gy.

PROPOSITION 3.23. Let H C G be Galois subgroups of A. If H is G invariant and
Hy = H, then G ~ (GH)LH.

Let G’ = {g € G | g(L*[z]) = L¥[Z]} where H C G are Galois subgroups of A. Then
G' is a subgroup of G and H C G'.

PROPOSITION 3.24. Let H C G be Galois subgroups of A such that H is G invariant
and Hy = H. If L = LH ®g J' for some intermediate field J' of LS such that L¥ /S
and J'| S are modular, then G'/H ~ Gg.

LEMMA 3.25. Let F/K be an inseparable but not purely inseparable, algebraic field
extension such that F = S ®x J where S is the maximal separable intermediate field of
F/K and J is the maximal purely inseparable intermediate field of F' /K and J/K has

a subbasis. Then there exists an intermediate field of F/K over which F is mOfiular and

which is an exceptional [86] and reliable extension of K if and only if (KP" nJ)/K
is not simple.

THEOREM 3.26 ([67]). Suppose K is a Galois subfield of L. Then the following conditions
are equivalent.
1. Every Galois intermediate field of L/ K splits over K.
2. Every intermediate field of L/ K splits over K.
3. Every intermediate field of L/ K is Galois and splits over K.
4. Every intermediate field of L/ K is Galois, splits over K, and is modular over K.
5. L/S is simple where S is the maximal separable intermediate field of L/ K.

COROLLARY 3.27. Suppose G is a Galois subgroup of A. Then L/S is simple where S
is the maximal separable intermediate field of L/ LC if and only if for every subgroup
H of G which is Galois, Hy is G, invariant.

The description of a necessary and sufficient condition for every intermediate field of
L/K to be Galois where K is a Galois subfield of L can be found in [67], Section 4.

We now give a new characterization of the distinguished subfields for the purely insep-
arable case in terms of linear disjointness properties to incorporate the purely inseparable
intermediate theory as a special case of the inseparable theory developed here.

Throughout the remainder of this section, K will be a given Galois subfield of L with
Galois group G. Let LG = S8, L¢= = J, and §(H5) = Go. We assume [L : S] < oo in
order to apply the Galois theory in Section 2. In particular, S is normal over K and is
the maximal separable intermediate field of L/K, and J is a finite dimensional purely
inseparable modular extension of K.
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LEMMA 3.28. Assume L/K is purely inseparable modular of exponent e. Let

TeUT.;U---UT

be a subbasis for L/K where the elements of T; are of exponent i over K. Let
{b1,...,br} C L be such that {0,..., b7} is relatively p-independent in K?" N L
over (KP" "' 0 L)(LP" N KP™"). Then there exist T, 2 {b1,...,br} such that

TeU - UTsqi41 UTSI+1-U-"UT]
is also a subbasis for L/ K.

PROOF. T, is a relative p-basis for L/(K P A L). Since T, U---UTj is assumed to

be a subbasis for L/ K, we can proceed to the stage of constructing a relative p-basis for

KP " A L over KP "7 A L. Since L/K is modular,
e~ (it+s) D
Tep U"'UTi+s+l

is p-independent [92], Theorem 1, p. 403, and in fact is a relative p-basis for

(Kp—(i+s)+1 ﬂL) (L" n K”_“H))

(its)+1

over KP~ N L. The set {by,...,b.} is in KP """ A L since

(o', @Y CK? L.

Moreover, it is p-independent over
(Kp—(i+5)+1 n L) (Lp n Kp—(i-Fﬂ)).

Thus {b1,...,b,} can be completed to a relative p-basis T,,, for K?" " AL over
(K7 A L) (Len kP,

Thus T U---UT/, , is part of a subbasis for L/K. In constructing a relative p-basis for
KP"NLover K "' N L where h < i + s,

e—h (i+3)—h

P p
U uTh U UT,

h+

will be a relative p-basis for (K """ N L)(L?»NK?™ ") over K "*' N L and hence can
be completed to a relative p-basis with T},. v O
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LEMMA 3.29. Assume L O M D K where L is purely inseparable modular of exponent
e over K. If ]

1) KP"" N L and M are linearly disjoint over K N M for.all r, and

2) (K* N L)IP nK? 7" and (KT 0 LYLP N KP ' N M) are linearly
disjoint over (KP~" N L)(L”M Nk 'n M) for all i and v, then any relative p-basis

for (KP" N M)(LP NK?" "N M) over (KP~ n MY(LP™ 0N KPTTT' 0 M) remains
p-independent over (KP~™ N L)(L?

i41 )'

PROOF. The proof here uses [56], Lemma, p. 162. O

r—

r—

r—1

NKrP’

THEOREM 3.30 ({23]). Assume L 2 M D K where L is purely inseparable modular of
exponent e over K. Then there is a subbasis B of L over K and a subset B' of B such
that C = {b"" | b€ B', r is the exponent of b over M} is a subbasis of M over K if
and only if B

1) KP" N L and M are linearly disjoint over K* N M for all r;

2) (kP N L)L n K™™'y and (KP"" N L)(LP' N KP"""' N M) are linearly
disjoint over (K?~ ' N LI KT M) forall T, .

r—

PROOF. The idea of the proof is to simultaneously construct subbases for L/K and M/K
with the desired property. Assume conditions (1) and (2) hold. Then M is modular over
K, [99], Proposition 1.4, p. 41. Let A, be a relative‘p-basis for M over K? “"'nM. By
(1), A, remains p-independent over K P"“"'NL and hence can be completed to a relative
p-basis for KP"“NL = L over K" NL with B,;. We now construct a relative p-basis
for KP~°"' 0 M over K*~°" N M. AP is p-independent in

e+ et e

(K* " nM)(LPnK? " nM) /(K7 0 M)

since L/K is modular. Using Lemma 3.29, there exists Ce1 C L such that A2 U C?, is
p-independent in (K7 N L)(LP N K?™**") over

e

K nL= (k7T aM)(LP nK?

“n M)
and hence by Lemma 3.28, A, U B, can be replaced with A, UC¢; U Bey. Let Aq_ be
a relative p-basis for K~ N M over

et .

(k? " M) (LPnK? T N M),

By Lemma 3.29, A,_; is p-independent in K "' NL over (K? " NL)(LPnK? "),
and hence APUCY, UB?,UA,_, is p-independent over K »"*** L and can be completed

to a relative p-basis for K»~°"' N L over K? *" N L with Be—1.1. Thus we now have
Te = Ac UCey UBey, Teey = Aej U Be—y, as part of a subbasis for L/K and
T, = A., T._, = CP U A._ as part of a subbasis for M/K. We assume that after the
completion of the (i — 1) stage, we have constructed partial subbases

Tr = Ar U Crl U---u Cr,i—e+r—2 U Br,i—-e+r—l
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and
T} = AUCl. U---UCP_, |,

e > r > e—i+2. We now construct a relative p-basis for K?~"*" o+

This is done in 7 steps via the intermediate fields

NM over KP " 'NM.

(K" oM (L kP A M) /(KPT 0 m) (LR
NKP""'nM), i-12j3>0,

and is done in descending order of j. Since L/K is of bounded exponent e, the desired
subbases are constructed in a finite number of steps.

DEFINITION 3.31. Let G = AK and let B = {Ti, - Ty, o Tty ., T } be a
subbasis for L/S where z;; has exponent i over S. Let

B’ ={d7|1<n, 1<j <y}

be the set of rank p° higher derivations defined on L by d¥(z,,) = 8(i,g).(rs) if u =
p°* + 1 and O otherwise, and &(; ) (rs) = 1 if ¢ = 7, j = s, and is O otherwise. Let
H’ = §(B’). Then GLH’ = {0d(d") | o € GL, §(d”) € H'} is called a standard
generating set for G with respect to B. An intermediate field F is distinguished if and
only if F[Z] is invariant under some standard generating set.

The linear disjointness conditions of Theorem 3.30 yield a characterization of the dis-
tinguished subfields. We now derive a characterization of the distinguished subfields for
the inseparable Galois theory.

THEOREM 3.32 ([23]). Let K be a Galois subfield of L such that [L : S] < oco. Let
G = AK and let F be a Galois intermediate field of L/K. Then the following conditions
are equivalent.

1. F/K is normal and F 0\ J is homogeneous in J/ K.
2. F(Z] is invariant under a standard generating set for G.
3. F/K is normal and SF is homogeneous in L/S.

PROOF. (1) implies (2): Let

B={131[,..,,.'111_7'],...,IEn],...,.’Enjn}
be a subbasis of J/K such that for k; < ji,...,kn < jn,
_ pelt ek ptnl penkn
C—{z“ oo sy v Ty aee s Ty

is a subbasis of (FNJ)/K.Let GLH” be a standard generating set for G with respect to
B and of% € GLH’ where fi/ = §(d¥). Since C generates F over SN F, it suffices to
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show o f7(zP."") € F[Z] and o f*(s) € F where s € SN F. Clearly 0f*(s) € SNF
since f* is the identity on S and (S N F)/K is necessarily normal. It follows that
ofi(zPT") € (F N J)[z] since o is the identity on J(Z]. ‘ o .

(2) implies (3): Let GLH 7 be the standard generating set. Since the 1qent1ty map is
in G, F[Z] is invariant under H”. Thus F[Z] is invariant under G'. Since ‘alSO Lis
invariant under G, F[Z]NL = F is invariant under G, and F/K is normal. Since F'[Z]
is invariant under H” and every element of H is the identity on S, SF(Z] is invariant
under HY. Thus SF is invariant under 61 (H”) which is a standard generating set for
L/S. Thus SF is homogeneous in L/S.

(3) implies (1): We show that F'NJ = M satisfies conditions (1) and (2) of Theo-
rem 3.30. Condition (1) follows using the fact that SF is homogeneous in L/S. 'll"o show
condition (2), we have (SP N L)(LP" NSP™"') and (SP"" NL)(L¥ NSP” N SF)
are linearly disjoint over (SP" N L)(LP"' N8P N SF) since SF is homogeneous
in L/S. Since #"NL=S(K?"NJ)and S = SP" @1 K, it follows that

r—1

i+ it

(s nL) (P NPT nSF) = S(Kk?T nJ) (P Nk nm).

Similarly,

i+

1 ﬂ Sp—r-l) — S(Kp—r nJ) (Jpz

it

(s*" nL)(L? Nk

and

(P NL) (L NPT A F) = S(KP nJ)(JP KT nM).

T T— -

It follows that (K? " N J)(J*" N KP™" ") and (K? N J)(J* NKP"" N M) are
—r i —r—1 .

linearly disjoint over (K? N J)(J? “nKe N M). Thus M = F N J satisfies (1)

and (2) of Theorem 3.30. Hence F' N J is homogeneous in J/K. O

COROLLARY 3.33. Let K be a Galois subfield of L. Let G = AKX, S = L%, anfl
J = LC=. Let F be a Galois intermediate field. Then F is distinguished if and only if

F = 8, ®k Jy where S, is normal over K and there exists a subbasis {z1,...,Zn} for
J over K such that {z’l’"‘ v+, 22"} is a subbasis of Jy over K, s < n.
4.

THEOREM 4.1 ([53)]). Let H be the field of constants of a set of infinite rank higher
derivations on L. Then L is regular over H.

PROOF. We show LP and H are linearly disjoint over HP. Let {z1,...,2zn} C H be
independent over H? and assume we can find a relation of the form 2, +a’2’ 22+ -+abz,
of minimal length with a; € L, a; ¢ H. If d; is a map of some higher derivation with
d;(az) # 0, applying djp to the relation yields a shorter one. Thus L is separable over
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H. An element of L separable algebraic over H can be expressed as an arbitrarily high
p"-th power, and hence is mapped to zero by any map in a higher derivation. n|

The dimension of an infinite rank higher derivation is the transcendence degree of L
over its field of constants.

The following result is the infinite analogue of Theorem 2.10.

THEOREM 4.2 ([53]). Let P = {d,...,d™} be an abelian set of one-dimensional
higher derivations on L over M and let their field of constants be H. Then

1) trd(L/H)Y < n;

2) if F is independent, then tt.d(L/H) = n.

PROOF. For (1) we use induction. Let H; be the field of constants of d(!) and H,, _1 the
field of constants of {d®,...,d™}. By induction the transcendence degree of L over
H, is one and over H,_; is at most n — 1 and H = H, N H,,_;. The abelian condition
is used to show H; and H,_, are linearly disjoint, and hence free. Let H 1,» be the field
of constants of the first p” maps of d® and fet H,_1,=H ,NH,_ . Then H,_, is
purely inseparable over H,_; , and since {d?,.. d(")} restricted to Hj , have field
of constants H,_ ., Hi, is a regular extension of H,_i,. Thus H;, and H,_; are
linearly disjoint for all r and hence (\H,,, = H; and H,_, are linearly disjoint. (2)
follows since the dimension of the space of derivations of L over H is n. O

We assume L is finitely generated over M.

The fields of constants in this section will be the fields of constants of sets of higher
derivations of finite or infinite rank. If S is such a set and S,, denotes the set of n-th
sections of S, the field of constants of S will be the intersection of the fields of constants
of the Sy,. Since L is modular over L5~ L is modular over LS. Since L/LS is finitely
generated and modular, L = H®p,s M where L/ H is regular, H/ Lg is purely inseparable
modular of finite exponent.

DEFINITION 4.3. A set {x1,...,2n,} C L will be called a tensor basis of L/M if
L=M(L")(x)® - ®M(LP (z.))

for all t > 1, tensor product being over M (L?").

THEOREM 4.4 ([49]). If M is separably algebraically closed in L then M is a field of
constants if and only if L/M has a tensor basis. The tensor basis of L/M are the sets

SUT where S is a tensor basis (subbasis) for M /M and T is a separating transcendence
basis of L/ M.

PROOF. The idea of the proof is that L is modular over H and as such splits as a tensor
product M ®g R where M is purely inseparable with a subbasis over H and R has a
separating transcendence basis over H. ]

To establish a Galois type correspondence it is necessary to make a group gener-
ated by H*(L/M) and H*(L/M). For simplicity, [49] uses only the HP"(L/M).

Galois theory of inseparable field extensions 215

Define the maps Vi p : H" (L/M) = HP™ (L/M) where m > n by Vi n(d) = (f);
fm_n,—d for1 <i<p*and fj=0for1 <j<p™ and j tp™~ ™. Then

1) Vi n(fg) mn(f)Vm »(9);

2) Vinn is mjectlve

3) Vr me n = r n-

Thus {H?" (L/M), Vi n|n >0, m > 1} is a directed set of groups. Let H(L/M)
be the direct limit of this system. Let d be the element of H(L/M) containing d. d is
called the pencil of d. A d in H ?" (L/M) is noncontractible if d does not have the form
Vinn(f) for some n and f. The rank of the unique noncontractible d in any pencil is
the rank of the pencil.

A higher derivation d of rank n is the n-th section of f if rank f > n and d; = f;,
1 < i< n. disasectionof fifeachd € disa secuon of some f € f. The extended rank
of d = sup{rankf | d is a section of F}. Let H (L/M) = {d € H(L/M)| extended
rank d = oo}.

THEOREM 4.5 ([49)). If H(L/M) is nontrivial, H(L/M) = H(L/H), where as usual
H is the unique minimal intermediate field of L/M over which L is regular.

PROOF. If z is purely inseparable over M of exponent m, then

0=djpm (a7") = (d(2))""

for any map d;,.. of a higher derivation. Thus if d; is a section of f € HP" (L/M) for
arbitrary m > 0, d;(z)} = 0. Thus H H™(L/M) c H(L/H). The other containment is
straightforward. O

The fields of constants of our subgroups will be the subfields M over which L has
a tensor basis. Thus it remains to determine when a subgroup will be a full group. The
characterization will be similar to that in Section 2. However, in this section iterative
higher derivations are required to have index 1 or to be normal, i.. di # 0. A higher
derivation d on L with constant field M is one dimensional if L has a tensor basis of 1
element. The proofs of the next two results are similar to those of Section 2.

PROPOSITION 4.6. Let d be an iterative higher derivation on L with constant field M.
The following are equivalent.

1. d is one dimensional.

2. The constant field of the p™-th section of d is M (" ) foralln > 0.

3. The constant field of the p™-th section of d is M(LP" ) for some n > 0.

If A is a finite set of normal one dimensional higher derivations, let A; = {d|d € A
and rank d < p? or d is the p’-th section of some f in A}.

THEOREM 4.7 ([49]). Let A be a finite set of one dimensional higher derivations on L.
The following are equivalent.
1. A is an abelian independent set of iterative higher derivations.
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2. Ay has a dual basis A} (see Section 2) for all t > 0. If A satisfies (1) or (2), then
A} is a tensor basis of L over the constant field of As.

DEFINITION 4.8. A finite set of higher derivations satisfying the conditions of Theo-
rem 4.7 is called a standard set of generators.

Obtaining a set of generators of a Galois group from a standard set of generators
requires the following constructions and definitions. If d has rank ¢ and g > 0is an
integer then v,(d) = f where rank f = gt, f;; = d; and f; = 0 if ¢ 1. Ifp™ < ¢
then dg,m) is the p™-th section of vy(d). Given a in L and a higher derivation d, then
ad = {a'd;} is a higher derivation. Given a set D of higher derivations on L, let (LD)p,
be the group of rank p™ higher derivations generated by the set of all (ad) (g,m) for
a € L, d € D and any allowable q. (LD) represents the group of pencils generated by
{d| d € (LD)y, for some m > 0}.

THEOREM 4.9 ([49]). Let L/K be finitely generated. A subgroup H of H(L/K) has
the form H(L/M) if and only if H = (LA) where A is a standard set of generators
constant on M. Let F = {M | L > M > K with L/M Galois} and G = {(LA) | A
a standard set of generators on L with constant field L4 > K Y Themap o: F - ¢
where o(M) = H(L/M) and 7: G — F where 7((LA)) = L 4 are inverse bijections.

PROOF. The proof is an approximation process similar to that of Theorem 2.16, with
however many more technical obstacles to be overcome. [}

Heerema developed the theory in the situation where L is finitely generated over M.
He also proved the following results on the intermediate theory in this situation.

THEOREM 4.10 ([49Y). Let L/M be Galois. An intermediate field H is invariant under
H(L/M), the set of all higher derivations on L/M if and only if H = M (LP") for some
r20.

THEOREM 4.11 ([49]). Given L/H and H/M Galois, every higher derivation on H /M
into L extends to a higher derivation on L if and only if there is a finite purely inseparable
modular extension T of M in K such that H(T) = H ®y T and L/H(T) is regular.

It is natural to attempt to extend the Galois theory of pencils of higher derivations to
the situation where L/M is not finitely generated.

PROPOSITION 4.12 ([21)). Let K be a subfield of L. K is the field of constants of a set
(and hence a group) of pencils on L if and only if L/ K is modular and N, K(L*") = K.

COROLLARY 4.13 ([21]). Let K be any subfield of L. The field of constants of the group
of all pencils on L over K is (\Q*(LP") where Q* is the unique minimal intermediate
field over which L is modular. '

The following result gives the most general situation where a complete theory could
be developed. :
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THEOREM 4.14 ([21]). Suppose L/K is modular. Then every intermediate field F such
that L/ F is modular and F is separably algebraeically closed in L is the. field of constants
of a group of pencils on L if and only if K(L?") has a finite separating transcendence
basis over K for some non-negative e.

PROOF. The essence of the proof is to construct two examples. The first is to show if L
is purely inseparable modular over K with a subbasis of unbounded exponent, then there
is a proper intermediate field F° with L modular and relatively perfect, (L = F(LP)),
over F. Let B = |J B; with the elements of B; of exponent i over K.Letzij € B be
such that z;; has exponent i; over K, ij < i1, 1 < j < 00. Then

pi2—i

F=K(B\ {zij,z; —af, ...}

is the desired proper intermediate field since [72], p. 20, shows the intermediate fields
are chained and infinite in number. a

The second is to show that if L is regular over K with an infinite separating tran-
scendence basis, then there is a proper intermediate field F' with L regular and relatively
perfect over F. We can assume L has {z; | 1 < i < oo} as a separating tr'anscendence
basis. The {z;} is a relative p-basis of L over K. But {z;z},zy2%,...} is also a rel-
ative p-basis. Thus L is separable over K({zi2},z,2%,...}). But {z25,z22%,...} is
algebraically independent over K, and hence L is regular and relatively perfect over the
algebraic closure of K ({z12},z225,...}) in L.

Let K C F be Galois subfields of L. [21] and [22] examine the question of when the
group of pencils of L/F will be a normal subgroup of the group of pencils of L /K . ;f
the characteristic of L is not 2, {22] shows that a necessary and sufficient condition is
that F = K(LP") for some n.

Let K be a Galois subfield of L and K the algebraic closure of K in L. It is always
true that K is Galois over K. In the situation where K (LP") has a finite separating
transcendence basis over K, it is also true that L/K is Galois and L/K splits as a tensor
product of a purely inseparable modular extension and a regular extension. However., ip
a general setting this is no longer true. L need not be Galois over K [22] and even if it
is, L/ K need not split as a tensor product [22].
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Local behaviour of a 1-dimensional scheme X near a “nice” point z is described by
the local ring Ox  whose completion is a complete discrete valuation ring with residue
field k(z). When the latter is finite this ring is the ring of integers of a local field.

The first local fields in characteristic zero — the p-adic fields Q, and their finite
extensions for a prime p were introduced by Hensel in a series of papers beginning from
1897. These fields possess some properties similar to those of formal power series fields
F,((X)) over a finite field Fqoq= p’, f > 1. Though there are essential distinctions,
common features are crucial. Numerous profound theories were borned as an attempt
to translate an existing theory from positive characteristic to characteristic zero and
conversely.

In general, the class of complete discrete valuation fields seems to be the next in
importance and comparatively simple after the class of finite fields. It is closely connected
with global fields — algebraic number and rational function fields. The famous Hasse
local-global principle solves global problems by appealing to local ones.

Local class field theory is one of the highest tops of classical algebraic number theory.
It establishes a 1-1 correspondence between abelian extensions of a complete discrete
valuation field F whose residue field is finite and subgroups in the multiplicative group
F*. Historically this theory appeared as a consequence of the global one in the 1930’s
in the work of Hasse. Later EK. Schmidt and Chevalley found an independent of global
exposition. Postwar period of the theory may be characterized as comprising the incor-
poration of cohomological methods. A modern statement of class field theory employs
calculations in cohomology groups (see, e.g., [Se2]).

One can now observe a new period in evolution of class field theory. The first work
in this direction was a paper of Dwork [Dw]. He pointed out a way to compute values
of the reciprocity map. This trend was continued by Hazewinkel [Hazl, Haz2], who
gave a noncohomological exposition of the theory. A still more simple construction
for local and global fields was proposed by Neukirch [N3, N4]. The Hazewinkel and
Neukirch constructions were generalized for the case of arbitrary residue field of positive
characteristic (perfect [Fe5] and imperfect [Fe7]). As corollaries utmost generalizations
of classical results follow.

Proper objects which describe local behaviour of an n-dimensional scheme near a
closed point are so-called n-discrete valuation fields studied by Parshin and Kato in the
middle of the 1970-s. They developed two independent approaches to higher local class
field theory. Abelian extensions of complete n-discrete valuation fields are described
by closed subgroups in topological K-groups. Later Koya found by using Lichtenbaum
complex a 2-dimensional formation classes approach. An easy and explicit higher local
class field theories is yielded if one extends the Hazewinkel and Neukirch constructions
[Fe3, Fed, Fe9].

We discuss in this review only main topics connected with local fields. For proofs and
details see [FV]. For more details about higher local fields see [Fe7]. The bibliography
gives references to some topics uncovered in this review.

I am grateful to many mathematicians for their remarks on a preliminary version of
this work [Fe8] published in 1992.
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1. Discrete valuation fields
1.1. Definitions and examples

1.1.1. Let I" be an additively written totally ordered group. Denote I'" = I' U {+00},
where +o0 is a formal element with properties: a < +00, +00 < +00, a+{+00) = +00,
(+00) + (+00) = +o0. Let F be a field. A map v: F — I'' with the properties:

v(a) =400 & a=0,
v(ef) =v(a) + (),

v(a+ B) > min (v(e), v(B))
is called a valuation on F, F is called a valuation field. The map v induces a homomor-
phism of F* to I'. If v(F*) = {0} then v is called a trivial valuation.
1.1.2. For any valuation v one can define the ring of integers

9, ={a e F*: v(a) >0}
and its ideal

Mm, = {aE F*: v(a) >0}.

Then 90, is the unique maximal ideal of O, and the field F, = O,/M, is called the
residue field of F with respect to v. The image of an element & € O, in F, is denoted by
@ and is called the residue of & in F,. The set U, = 9, — 90, forms the multiplicative
group of invertible elements of O, and is called the group of units.

1.1.3. Let (my,...,my) < (m,...,m}) if m; < m] for the least index ¢ with m; # m].
Then the group

2z =70 --0L
—————

n times

is ordered lexicographically. A valuation v is called n-discrete if the group I is iso-
morphic as an ordered abelian group with (Z)™ for some n > 1. The classical case is
n = 1, then v is called 1-discrete or discrete. It is convenient to assume that the map
v: F* — (Z)™ is surjective.

1.1.4. Examples. 1. For an integer n put up(n) = k, where k is the highest integer such
that p* divides n. For rational m/n # 0 with integer m, n put vp(m/n) = vy(m)—vy(n).
Then v, is well defined and the map v,: Q* — Z is 1-discrete valuation which is called
p-adic. The ring of integers is

D, = {m/n: m,n€Z, (n,p)=1}
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and the residue field is Fp,. The well-known Ostrowsky’s theorem asserts that any metric
on Q is equivalent to the usual absolute value | | or to a metric |a|, = p~*»{*) induced
by the p-adic valuation for some prime p.

2. Let F be a field of rational functions over a coefficient field K, F = K(X). Then
there is the 1-discrete valuation vy, x on F:

vy x (p(X)/g(X)) = deg p(X) — deg (X) for p(X),q(X) € K[X].

The ring of integers with respect to v;,x is K{X] and the residue field is isomorphic
with K. For each monic irreducible polynomial p(X) of positive degree over K there is
the 1-discrete valuation v, x) on F' which is an analog of the p-adic valuation:

vpex) (F(X)) =k,

where k is the highest integer such that p(X)* divides f(X). The residue field with
respect to vp(x) is the field K[X]/p(X)K[X] which is a finite extension of K. It is
obtained by adjoining a root of p(X). Any discrete valuation on F which is trivial on
K coincides with some v,(x) or vy x.

3. Let v;: F* — (Z)™, 1 < i < k be nj-discrete valuations. Then

v=(v1,...,0): F* = (Z)"

is n-discrete valuation with n = n; + - - - + nyg.

4. Letv = (v™,...,0()): F* - (Z)" be an n-discrete valuation. Then F is 1-dis-
crete with respect to the first component v of v and the residue field F},_; = Fym) is an
(n—1)-discrete valuation field with respect to the induced valuation from v ()
Continuing in this way we get a tower of discrete valuation fields F = Fy,, Fy,_y1,..., F}
such that F; is the residue field of F;4, with respect to a 1-discrete valuation and the
residue field Fyy of F} coincides with Fy,.

5. Let F' be a field with a valuation v.

a) For a polynomial f(X) = amX™+ -+ au XM € F[X] with am #0,m < M
put

v*(f(X)) = (m,v(am)) € Z x v(F*).

One can naturally extend v* to F((X). Ordering the group Z x v(F™*) lexicographically
we get a valuation v* on F(X) with residue field isomorphic with F,.

b) For a polynomial f(X) = amX™+ -+ ay XM € F[X] with am #0,m< M
put

w(f(X)) = min_v(a).

m<isM

The residue field of the extension w to F(X) is F,{X).
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¢) For a polynomial f(X) = amX™ + - + ap, XM € F(X]witha, #0,m< M
put

v. (f(X)) = mgxiisnM (v(a),i) € v(F*) x Z,

where v(F*) X Z is ordered lexicographically. Then the map Vs can be extended to F(X)
and the residue field with respect to v, is isomorphic with F,.

6. A valuation v on F is said to be p-valuation of rank d for a prime p if char(F) = 0,
char(F) = p > 0 and 9, /pO, is of order p?. F is said to be a formally p-adic field if
it admits a nontrivial p-valuation. See [PR, Po].

1.1.5. Prime elements. Let F be a field and v be an n-discrete valuation. Let

U(mn,...,m) = (1,...,1) € (Z)". Then the elements Tn, ..., m are called local param-
eters of F' with respect to v. The maximal ideal 9N, coincides with the ideal generated by
Ty« .., M. For n = 1 such an element 7 = m is called a prime (uniformizing) element

of F'. The ring of integers 9, is a principal ideal ring only for n = 1 and in this case
any proper ideal of O, can be written as 79, m > 0.
Any element o € F* can be uniquely written as

a.

Tt eeemile witha; € Z, € € Uy,

and we get a noncanonical decomposition F* ~ (z)» x U,.

1.2. Completion

1.2.1. Let F be discrete valuation field with respect to v. A sequence (@ )mzo of
elements in F' is called Cauchy if for any integer c there exists m such that viag—ay) > ¢
for k,1 > m. Then there exists lim v(a,,) € ZU{+00}. The set of all Cauchy sequences
forms a ring R with respect to componentwise addition and multiplication. The set of
all Cauchy sequences (atm)m>o such that lim v(@m) = 400 forms a maximal ideal I.
The field F, = F = R/I admits the discrete valuation o: 9((am)) = limv(eyy, ). This
field F, is called the completion of F with respect to v. F can be identified with a dense
subfield in F,, under the map: o — (@)m>0 € ﬁv. The ring of integers £, is dense in
D;, the residue field F,, coincides with the residue field of ﬁ, with respect to 7.

A field F'is called complete if any Cauchy sequence (Qum )m>0 is convergent, i.e. there
exists a = lima,, € F with respect to v. The completion of F' can be treated as the
minimal up to an isomorphism over F complete field which contains F.

An n-discrete valuation field F for n > 1 is called complete if it is complete with
respect to the first component v(™) of v and the residue field Fony is complete. The

completion of F' is the minimal (up to an isomorphism over F) complete n-discrete
valuation field.

1.2.2. Examples. 1. (See Example 1 in 1.1.4.) The completion of Q with respect to p-
adic valuation v, is denoted by Qp and is called the p-adic field. Note that the completion
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of Q with respect to | | is R. Imbedding Q in Q, for all primf:s p and in R pvermxts
the solving of many problems. The famous Hasse local-globa‘l pr1f1c1ple for a vz?.rlety V
over Q declares that the existence of nontrivial R- and Qp-points in V for. au prime p 1’s
equivalent to the existence of a nontrivial Q-point in V. In general thxs.prmf:lp?e doesn’t
hold but there are important instances where it works. For example, this p.rlnc:lple‘ holds
for conics defined by an equation Y a;; X;X; = 0. Note that from the point of view of
model theory the complex number field C is locally equivalent for any prime p with the
algebraic closure Q:,lg of Qp, see [Rog2]. ‘ . o

The ring of integers of Q,, is denoted by Z, and is calle'd the ring of p—a.dlc integers.

2. (See Example 2 in 1.1.4.) The completion of K (X) with respect to vx is the formal
power series field K ((X)) of all formal power series

+o00
Y anXa,
-0

an = 0 for n < ng. . .
3. (See Example 5 in 1.1.4.) Let F be a field with an n-discrete valuation v, and let
F, be its completion. Then the field F,, (X)) and the field F,, {{X}} of all formal power

series

+o0
Z omXm,
—00

am € F* such that inf{¥(am)} > —o0 and ¥(am) — 00 when m ~ —00 are com-
plete (n + 1)-discrete with respect to v*, vy. The field F,,(X) is an n-discrete complete
valuation field with respect to w.

1.2.3. The completion F, of F with respect to a 1-discrete valuatiqn v coincides with
the completion of F' with respect to the 91,-adic topology (i.e. regard.mg mr, m 2 0as
a basis of neighborhoods of 0). In this case the ring of '{ntegers Do is 1somorph1cmalge-
braically and topologically to 1(21 0, /7m0, with the discrete topology on O, /7™O,,.

1.2.4. Let F be a n-discrete valuation field with the residue field F,. Let r: F_v —) Dy,
7(0) = 0 be a map such that its composition with the residue map_Dv- — F, is the
identity map. The set R = r(F,,) is called a set of representatives (of F, in F). If n = 1

and F is complete then there is a map
SR — F, (ai)i>i0 — Z a,-7ri,

where 7 is prime in F. This map is a topological bijection with respect to the discrete
topology on R. In general, one can introduce, following Parshin [Pa4], a topology on
a complete n-discrete valuation field F', which takes into consideration the topologies
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on the residue fields F,,_y, ..., F|. Assume that char(F ) # 0. This topology is the
strongest one in which any element o € F is uniquely expressed as a convergent sum

— i3 - i .. il
a § : E : E : bi.,...0sTr -y,

in in_12In_1(in) 121 (in,...,02)

where 7y, ..., m are local parameters, 0;,, i, € R, (in, .. 311) 2 (@n, ..., a1) € (Z)™
The multiplicative group F* ~ (Z)™ x U, is equipped with the product of the discrete

topology on (Z)" and the induced one from F on U,. Forn > 2 F* is not a topological

group with respect to this topology but the multiplication is sequentially continuous.

From now on we confine our attention to discrete (1-discrete) valuation fields until
Sections 6 and 7.

1.3. The group of units

Let F be a discrete valuation field, U = U,, © = 9,, M = 9, F = F,. Put

Ui =1+ 9. Uy is called the group of principal units.

1.3.1. Fix a prime element 7 and introduce maps Ay: U — F, A;: U; — F by the

formulas Xo(@) = @, Ai(1 + 7°8) = B for a € U, B € 9. They induce isomorphisms
Ao: U/U] ’L“F*, Ai U,‘/UH_] ’;"F
Therefore, the group U, is uniquely I-divisible for (I, char(F)) = 1.

1.3.2. We are interested in a description of the raising to p-th power, 1 p, with respect

to the filtration U;. If char(F) = p then (1 + a)? = 1 + aP and therefore the following
diagram

Ui/Uis —T—p>Upi/Um+1

A,.J l/\

—_ T —_
F — F
is commutative.

If char(F) = O then (1 4+ a)? =1+ P + pa + - - -, a € M, where dots denote terms
of higher order than the preceding. Put e = v(p), e; = e/(p — 1). Let p — gne € Ime+!
for a suitable 7 € ©. Then the following diagrams are commutative:

U;/Uipi 7, Upi/Upiti
fori < e ,\,1 l,\m. ,

1P -

F

F
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Uel/Uel+l _T_p’Upex/Upeaﬂ

fori=e; )\gil Ape;
96" +70 —
—_— F

Ui/Uit ——&Ui+e/Ui+e+1

fori > e ,\,-l Aite
—_ 6—76 -F

1.3.3. Assume that F is complete with respect to its discrete valuation. Then it follows
from 1.3.1 that any element a € U can be uniquely expressed as a convergent product

a= H(1 +6;7%), 6;€R.

i1

If char(?) = p > 0 then the group of principal units'U | can be seen as a rr.xultip'licative
Zp-module: for a = limay, € Zp, an € Z put €* = lim €% . The commutative dlagrgms
of 1.3.2 imply that Uy is a free Zp-module of infinite rank when chm(F) =pandisa
Z,-module of rank n (resp. n + 1 with one relation) if F is a p-adic field of degree n
over Q, and a primitive p-th root of unity doesn’t belong (resp. belongs) to F.

1.3.4. Assume ‘that F is complete with respect to a discrete valuation and char(F) =
p > 0. A representative o € O of @ € F is called multiplicative if

o€ ﬂgpm-

m21

The set of nonzero multiplicative representatives forms a group which is isomorphically
mapped onto the maximal perfect subfield

Fo=F

in F. If the residue field F is perfect then any element @ € F has a mult.iplicative
representative a € R in F. The correspondiggﬁ map 7. @ — « is called 'the Tezchmiiller
map. Tt induces an isomorphism of groups F' ~ r(F*) = R* and an isomorphism of
fields F ~ R when char(F) = p. The group U is canonically decomposed as the product
R*xU 1-

1.4. The Witt ring

Let a = Y 6;x%, B = Y. mn* be expansions with 6;,7; € R. Then a description of
coefficients of & + 3, af naturally leads to the notion of the Witt vectors (see [Se2],
Chapter 2, §6).
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1.4..1. Let S be an arbitrary commutative ring with unity. For (ai)iz0, a; € S, put
(@) = (wo(ao), wi(ao,ay),...), where

n

wn(X01 - -aXn) = Zpin"*"
=0

The map (a;) — (a'?) is a bijection of (8)g°° with (S)§°° if p is invertible in S. In this

case one can transfer the ring structure from (a(?)) € (8)¢ ™ under the componentwise
addition and multiplication to (a;) € (S)g . Then for (ai), (b:) € (S)F>

(ag) * (by) = (wé*)(aoybo),wf*)(ao, a1,bo,b1),...), *=+4orx=x.

Here wf*) is the image of the polynomial ui(*) € Z[Xo, X,...,Yy,Y1,...] under the
canonical homomorphism Z — S, where I/i*) are defined by the equations

wp(Xo, ..., X)) *wp(Yo,..., Y,.)
:wn(ué*),...,ufl*)(Xo,...,Xn;YO,.‘.,Yn)) (*)

The sequences (a;);>o are called Witt vectors and the a(®) for i > 0 are called the ghost

components of (a;);»o. The set of Witt vectors is then a commutative ring. This is still
the case if p is not necessarily invertible. Indeed one shows without much trouble that

the polynomials ui(*), * = +, x defined by () above have their coefficients in Z. Thus,

the set of Witt vectors is a commutative ring with unity (1,0,...). This ring is called

the ring of Witt vectors W(S) of S. For ramified Witt vectors see [Haz4] and [FV],
Chapter I, Section 7.

1.4.2. Assume that p = 0 in S. Then one can define maps
ro: S — W(S),
V: W(S) —» W(S) (the “Verschiebung” map),
F: W(S) — W(S) (the “Frobenius” map)

by the formulas

T’()(a) = (a, O, 0, .. .), V(ao,al, . . ) = (O, ap, ay, . . .),
F(ao,ar,...) = (a,af,...).

Then F is a ring homomorphism and VF(a) = FV(a) = pa. The ring W,(S) =
W(S)/V"W (S) consists of the Witt vectors (ao, ..., an-1) of length n.
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1.4.3. Assume that S = K is a perfect field of characteristic p. For a Witt vector
a = (ag,a1,.--) € W(K) put

v(e) = min{i: a € VIW(K), a ¢ ViH'W(K)}, v(0) = +oo.
Then the field of fractions Fy of W(K) is a complete discrete valuation field of char-

acteristic 0 with respect to the extension of v. The element j2 '%s a prime element. of };‘g
and its residue field is isomorphic with K. The set of multiplicative representatives

coincides with ro(K). In particular, W(Fy) = Zj.
2. Extensions of discrete valuation fields

2.1. The Hensel Lemma
Let F be a valuation field with ring of integers £, maximal ideal 90t and residue field F.
For a polynomial f(X) = an X"+ --- + ap € O[X] we shall denote by f(X) € FIX]
the polynomial &, X™ + - -+ + 0. We shall write

F(X) = g(X) (mod Bﬁm)
if f(X) - g(X)e MmOX].

j luation field. Let f(X), go(X),
2.1.1. PROPOSITION. Let F' be a complete discrete va : .
ho(X) be polynomials over O and let f(X), go(X) be monic polynomials. Let the
resultant R(go(X), ho(X)) ¢ D! and

F(X) = go(X)ho(X) (mod 9M*+!)

for' an integer s > 0. Then there is a polynomial h(X ) and a monic polynomial g(X)
over O such that f(X) = g(X)h(X) and

9(X) = go(X) (mod 9°*),  A(X) = ho(X) (mod et
deg g(X) = deggo(X).

The proof is carried out by constructing polynomials g:(X), hi(X) over O with tbe
properties: the g;(X) are monic polynomials, deg g;(X) = deg go(X),

gi(X) = gi1(X) (mod M*),
hi(X) = hi—1(X) (mod 900+*),

F(X) = g:i(X)hs(X) (mod M+25+1)
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and proceeding by induction on 4. Then g(X) = lim 9i(X), h(X) = lim h;(X) are the
desired polynomials.

2.1.2. COROLLARY (Hensel Lemma). Let F be as in 2.1.1 and F be the residue field of
F. Let f(X), go(X), ho(X) be monic polynomials over O and f(X) = Fo(X)ho(X).
Let go(X), ho(X) be relatively prime in F|X]. Then there are monic polynomials g(X),
h(X) with coefficients in O such that f(X) = 9(X)(X) and g =g,, h = hy.

Valuation fields satisfying the assertion of this corollary are called Henselian.

2.1.3. COROLLARY. Let F' be as in 2.1.1 and f(X) be a monic polynomial over ©). Let

flao) € MEHL, f'(ag) ¢ M+ for some ag € O, 5 > 0. Then there is o € O such
that o — ag € M**! and f(a) = 0.

Other characterizations of Henselian fields can be found in [Bou, Ra].

2.2, Extensions

2.2.1. Let F' be a field and L be an extension of F with a valuation w: L* — I". Then w

induces a valuation wo: F* — I' on F. In this context the extension L/Fissaidtobean’
extension of valuation fields. The group wo(F*) is a totally ordered subgroup of w(L*)

and the index of w(F™) in w(L*) is called the ramification index e(L/F,w). The ring of

integers O,,, is a subring in O, and My, coincides with M, N O,,,. Hence the residue

field Fwo can be regarded as a subfield of the residue field L,,. The residue of an element

@ € Dy, in Fy, can be identified with the image of a € 9y, in L. The degree of

the extension L., /F, is called the residue degree f(L/F,w). This immediately implies

that for F*C M C L and the induced valuation wg on M from w on L

e(L/F,w) =e(L/M,w)e(M/F,wy),
f(L/F,w) = f(L/M,w)f(M/F,w).

If L/F is a finite extension and wy is discrete for a valuation w on L then w is discrete.
In what follows we shall consider discrete valuations.

2.2.2. Let F and L be fields with discrete valuations v, w, F C L. The valuation w is
said to be an extension of v if the topology defined by wy is equivalent with the topology
defined by v. In this case we write w|v and use the notations e(w|v), f(w|v) instead of
e(L/F,w), f(L/F,w). Then e(w|v) = |Z: w(F*)| and if m,, m, are prime elements
with respect to v, w then T, = 7£™“)¢ with ¢ € Us.

If L is a finite extension of F then e(w|v) f(w|v) < |L: F|.

For instance if L is a finite extension of F in the completion F, then e(wlv) =
f(wl|v) = 1. Therefore, in general the inequality is not an equality. However, if L is a
finite extension of a complete discrete valuation field F' then L is complete and

e(wlv) f(w|v) = |L : F|. '
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Moreover, if 8, . . ., 8 are elements of O, of which the residues fom} a basis‘ of L, over
F, and my, is prime in L then O, = D, [{:im},}], L = F({8in],}) with 1 <i < f(w|v),
0<j<e(wpv)-1

2.2.3. Complete discrete valuation fields also possess the fol]ow?ng prope.rty: there is
exactly one extension w of the discrete valuation v of F to a finite extension L f’f F.
It is defined by the formula w = (1/f)v o Ny p with f = f(wl|v), where N/ is the
norm map from L to F, see [CF, Bou]. ’

A general case now can be deduced from this one.

2.2.4. PROPOSITION. Let F be a field with the discrete valuation v, F the completio‘n
of F with respect to v. Let L = F(a) be a finite extension of F' and f(X) the monic
irreducible polynomial of o over F. Let

k
£x) = [[a(X)®
i=1

be the decomposition of the polynomial f(X) into irreducible monic factors in FIX ].‘Let
; be a root of the polynomial g;(X) (an = ) and L; = F (o). Let W; be the unique
extension of U to L;. Then L is embedded as the dense subfield in z:i\te compllete dz'screte
valuation field L; under F — F, o — a;. The restriction w; of W; to L is a fizscrete
valuation on L which extends v. The valuations w; are distinct and any extension of v
on L coincides with some w; for 1 <i < k.

Thus, this assertion establishes a connection between extensions of a discrete valuation
and the decomposition of the irreducible polynomial over the completed field.

In particular, there is a unique extension of a discrete valuation v of F on L for purely
inseparable extension L/F. Indeed, in this case L = F(«) and f(X) decomposes as
(X — a)?™ in the fixed algebraic extension of F', therefore k = 1. .

Now we are able to describe extensions of discrete valuations on Henselian fields.

2.2.5. PROPOSITION. The following conditions are equivalent:

1) F is a Henselian field with respect to a discrete valuation v. .

2) The discrete valuation extends uniquely to a finite algebraic extension L of F.

3) If L is a finite separable extension of F of degree n then n = e(w|v) f(w|v), where
w is the extension of von L.

4) F is separably closed in F.

A proof follows from 2.2.4. The separable closure of a discrete valuation field F‘ in
Fis called the henselization F* of F, it is the minimal Henselian field which contains
F. For instance, the elements in Q, algebraic over Q form a Henselian countable field,
but Q, is uncountable.

2.2.6. COROLLARY. Let F be a Henselian discrete valuation field and L an algebraic
extension of F. Then there is a unique valuation w: L* — Q (not necessarily discrete)
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such that the restriction w|p coincides with the discrete valuation v on F. Moreover, w
is Henselian.

2.2.7. COROLLARY. Let F be a Henselian discrete valuation field and L/ F a finite sep-
arable extension. Let w be a discrete valuation on L and o: L — F™8 be an imbedding
of L in a fixed algebraic closure F¥8 over F. Then w o o~ is a discrete valuation on
oL and My, = oMy, Oor = 0L

2.3. Unramified and ramified extensions

Let F be a Henselian discrete valuation field and L be an algebraic extension over F.
If the unique extension w of the valuation v on F is discrete on L then we shall write
e(L|F), f(L|F) instead of e(w|v), f(w|v). We shall write O or O, MM or Mg, U or
Up, w or p, and F instead of O, M, Uy, 7, and F.

2.3.1. A finite extension L of F' is called unramified if L/F is separable of the same
degree as L/F. A finite extension L/ F is called totally ramified if f(L|F) = 1. A finite
extension L/F is called tamely unramified if L/F is separable and if p = char(F) > 0
then (p,e(L|F)) = 1, e(L|F) < 0.

Then it follows from 2.2.2, 2.2.3 that f(L|F) = |L : F| when L/F is unramified and
e(L|F) < |L: F|if L/F is totally ramified. ’

2.3.2. We first treat the case of unramified extensions. The next assertion follows from
the Hensel Lemma.

PROPOSITION. 1) Let L/F be an unramified extension and L = F(8) for some 6 € L.
Let o € Oy, be such that & = 0. Then L = F(«) is separable over F and 01, = Orlal.
8 is a simple root of the irreducible over F polynomial f(X), where f(X) € Op[X] is
the monic irreducible polynomial of o over F.

2) Let g(X) be a monic separable polynomial over F and f(X) a monic polynomial
over Op, f(X) = g(X). If a is a root of f(X) in F¥¢ then the extension L|F for
L = F(a) is unramified and L = F(0) for a root § = @ of the polynomial g(X).

COROLLARY. 1) If M/F, L/M are unramified then L/F is unramified.
2) If L1 /F, L,/ F are unramified then L L,/ F is unramified.

2.3.3. An algebraic extension L of a Henselian discrete valuation field F is called un-
ramified if L/F, L/F are separable extensions and e(L|F') = 1. The compositum of all
finite unramified extensions of F' in a fixed algebraic closure F' 2l is unramified and this
field is a Henselian discrete valuation field (not complete in general). This field is called
the maximal unramified extension F** of F. For instance, Qp is obtained from Q, by
adjoining of all roots of unity of order relatively prime to p.

2.3.4. By using Corollary 2 in 2.2.7 and the Hensel Lemma we deduce’
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PROPOSITION. 1) Let L/F be unramified and L/F be Galois. Then L/F is Galois.

2) Let L/F be unramified Galois. Then_?/_f is Galois. Let for an automorphism
o € Gal(L/F) the automorphism & in Gal(L/F) satisfy the relation (@) = o(a) for
a € O Then the map o+ @ induces an isomorphism of Gal(L/F) ento Gal(L/F).

COROLLARY. The residue field of F™ coincides with the separable closure F® of F and
Gal (F*/F) =~ Gal (F*" /F).

If L is an algebraic extension of F and L is a discrete valuation field then L* = LF™
and Lo = L N FY is the maximal unramified subextension of I in L.

2.3.5. Now we consider tamely ramified extensions.

PROPOSITION. 1) Let L be a finite separable tamely ramified extension of a Henselian
discrete valuation field F and Lo/ F be the maximal unramified subextension in L/ F.
Then L = Lo(n) and Op = Oy, (n] with a prime element 7 in L satisfying an equation
X¢ — my = 0 for a proper prime element o in Lo, where e = e(L|F).

2) Let L/F be a finite unramified extension and L = Lo(a) with o® = 3 € Ly,
(p,e) = 1 if p= char(F) > 0. Then L/ F is separable tamely ramified.

The proof follows from writing 7 = 7§¢ for prime elements 7z, in L, my in Lo and
€ € Uy, and the e-divisibility of the group of principal units.
The field Ly is called the inertia subfield of the extension L/F.

COROLLARY. 1) If M/F, L/M are separable tamely ramified then L/F is also tamely
ramified.
2) If Ly/F, L,/ F are separable tamely ramified then so is LyLy/F.

2.3.6. The last and most complicated case concerns totally ramified extensions.
Let F be a Henselian discrete valuation field. A polynomial

FX) = X"+ i X" 4 b ag
over £ is called an Eisenstein polynomial if o, ..., an—1 € M, o ¢ M2,

PROPOSITION. 1) An Eisenstein polynomial f(X) is irreducible over F. If a is a root of
f(X) then F(a)/F is a totally ramified extension of degree n and « is a prime element
in F(a), Opa) = OF[al].

2) Let L/F be a separable totally ramified extension of degree n and © be a prime
element in L. Then 7 is a root of an Eisenstein polynomial over F' of degree n.

Note that properties analogous to those in Corollary 2.3.2, 2.3.5 don’t hold for totally
ramified extensions.
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2.4. Galois extensions and ramification groups

Let F' be a Henselian discrete valuation field.
2.4.1. Let L be a finite Galois extension of F', G = Gal(L/F). Put for an integer i > —1
G; = {U €EG oca—a€ zm";‘ for all a € DL}.

Then G-y = G and G; is a normal subgroup of G. If L/F is separable then the
subgroup Gy corresponds to the field Ly which was defined in 2.3.5 and is called the
inertia subgroup of G. In this case the group G, corresponds to the maximal tamely
ramified extension of F'in L.

The definitions imply that G; = {0 € G: or — 7 € M} for a prime = in L,
G, = {1} for sufficiently large 1.

2.4.2. Let L be a finite Galois extension of F, L separable over F. Let 7 be prime in
L. Introduce maps

’lpo: Go —)Z*, 'Lbii G; - L (Z > 0)

by the formulas ;(g) = A\;(om/7), where the maps A; were defined in 1.3.1. Then the
i, i > 0, induce injective homomorphisms Go/G; — L, G;/Giy1 — L for i > 0. By
the structure of the groups I", T this implies that the group Go/G; is cyclic of order
relatively prime with char(F') if char(F) > 0. If char(F) = 0 then G; = 1 and Gy is
cyclic. If char(F) = p > 0 then G;/G; are abelian p-groups and G, is the maximal

p-subgroup of Go. Therefore, Gy is a solvable group and G is solvable if Gal(L/F) is
solvable.

2.4.3. For further properties of ramification groups see [Se2], Chapter 4, [Senl, Sen2].
There exists a metatheorem which claims that an assertion about properties of ramification
groups of totally ramified extensions which holds for a perfect residue field is true for a
finite residue field as well, see [Laul]. A case of an imperfect residue field is treated in
[Lo, Hy, Kat5].

2.5. Structure theorems for complete fields

Let F be a discrete valuation field. If char(F") = p > 0 then p = 0 in F and char(F) = p.
Therefore, there are the equal-characteristic cases char(F) = char(F) = 0 or char(F) =
char(F) = p > 0 and the unequal-characteristic case char(F) = 0, char(F) = p. For
proofs of the following assertions see [Coh].

Now let F' be a complete discrete valuation field.

2.5.1. The simplest case is char(F) = char(F) = 0. In this case there exists a (not
unique in general) field in O which isomorphically mapped onto F. This field is a
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maximal one which is contained in O and its existence is verified by using the Hensel
Lemma. Therefore, the field F is isomorphic algebraically and topologically to the field
F((X)), where X corresponds to a prime element 7 in F.

2.5.2. The next case is char(F) = char(F) = p. If F is perfect then the set of mul-
tiplicative representatives as was noticed in 1.3.3 is a 'ﬁeld in D F which is mapped
isomorphically onto F'. This field is the unique one which has this property. By using
the notion of a p-basis the existence of such a field can also be proved for F' not perfcf:t
(in this case there are many such fields). Therefore, in this case the field F is isomorphic
and homeomorphic with the field of formal power series F'((X)).

2.5.3. The most complicated case is char(F) = 0, char(F)) = p. In this case e(F) = v(p)
is called the absolute index of ramification of F'.

The preceding assertions show that in the equal-characteristic cases for an arbitrary ﬁelld
K there exists a complete discrete valuation field F', whose residue field is isomorphic
to K. The same assertion holds for the unequal-characteristic case: if K is a field of
characteristic p then there is a complete discrete valuation field F of characterist?c 0 with
prime element p and residue field K. If K is perfect then one can take the quotient field
of W(K) by using 1.4.3. If K is imperfect, let

K = U Kl/p"

n20

be its extension. Then K is perfect and one can take the subring S in W(K N generat'ed
by the multiplicative representatives of K. Then the quotient field of S is complete with
prime p and its residue field is K.

2.5.4. Now let F, L be complete discrete valuation fields of characteristic 0 with the
residue field F of characteristic p and F = L. Let p be prime in F. Then there is a
homomorphism ¢: F — L such that v, o ¢ = e(L)vr and ¢(e) = @ We deduce thz}t
L can be regarded as a totally ramified extension of degree e over F.In paﬂiculaf, if
T is perfect then L can be regarded as a finite totally ramified extension of the qgotlent
field of W (T). If p is prime also in L then ¢ is an isomorphism. For more details see
[FV], Chapter II, Section 5.

3. The norm

From now on we treat complete discrete valuation fields.

3.1. Cyclic extensions of prime degree

To describe the action of the norm map Ny, p with respect to the filtration of 1.3 there
are four cases to consider: L/F is unramified, L/F is tamely and totally ramified,
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L/F is totally ramified of degree p = char(F) > 0, L/F is inseparable of degree
p = char(F) > 0 and e(L|F) = 1. We confine our attention to the first three cases.

3.1.1. For the proposition to follow it is convenient to use the next assertion: If L /Fis
a separable finite extension and y € O, then

NL/F(I +’Y) =1+ NL/F('Y) -+ T’I‘L/F(’)’) + TTL/F((S)

for some ¢ € O with v(8) > 2vur(y), where N, is the norm map, Trp/r is the
trace map.

3.1.2. PROPOSITION. Let L/F be an unramified extension of degree n. Then a prime
element wp in F is prime in L. Let Uy, = 1+ 7501, Upp = 1 + 7O p and AiF,
Ai,L for F and L be as in 1.3.1. Then the following diagrams are commutative:

L* vL 7 UL Xo,L —x
NL/Fl lx‘n NL/Fl lNL/F
J L N U Ao, F —

F > F
oY —
Ui, —t >T*
NL/Fl 1T'I‘L/F , 1> 1.
AiF —_
Uir — T

3.1.3. PROPOSITION. Let L/F be a totally and tamely ratified Galois extension of degree
n. Then for some prime element y, in L the element mp = w7 is prime in F. Let
Uir=1+7 0L, Uip =1+ 7LOp and X\ p, Ai,L for F and L be as in 1.3.1. Then
the following diagrams are commutative:

L —% 7 Uy —25 T _F
NL/FJ lid NL/Fl lTn
F* —UL) Z UF ﬂ) F*
ifi>1
Ani [
Unip —25F _ F
NL/F\j lx'ﬁ
Uir L F

where id is the identity map, T n is raising to the n-th power, X7 is multiplication by
neckF.
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3.1.4. PROPOSITION. Let L/F be a totally ratified Galois extension of deg_ree p =
char(F) > 0. Let o be a generator of Gal(L/F) and for a prime element 7, in L

o(rp)/mL =1+nny, withn€ UL, s 2 1.
Then s doesn’t depend on the choice of m. Let 7p = Ny 7L, then TF is prime in F.

LetUpp =1+ 7O, Uprp =1+ m%OF and N F, Ni1, for F and L be as in 1.3.1.
Then the following diagrams are commutative:

Ao, —x
L * vL UL L L

Z
NL/Fl tid NL/F[ lNTP
Z

pY —
F* VF Up 0, F «

if1<i<s

Ui,r —— F s, F F
ifi>0
Aspi,L — —
Us+pi,L AL L=F
NL/Fl lx(_ﬁp—l)
Asti, _
Us+i,F lj‘) F

where £(8) =0 — o7P~ L.

In particular, Usy1,r € Np pUsti,L-

3.2. The Hasse~Herbrand function

We now assume that F is a complete discrete valuation field whose residue field is
perfect.

3.2.1. Let the residue field F of F be infinite. Let L/F be a finite Galpis exter.lsion,
N = Np,p. The commutative diagrams of 3.1 and the solvability of Gy in 2.4.2 imply
that there exists the unique function h = hy/p: N — N such that h(0) = 0 and

N (Up@y,L) CUir, N (Un@,) € Uis1,r, N (Ungy+1,) € Uisr,p-
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Then hp r = hyp/L,. For the case of finite residue fields we put hp/p = him P
where F is the completion of the maximal unramified extension F** of F. If M is a
subextension in L/F then hy, /F = hp pm o hpgyp. Consequently, for a finite separable
extension L/F we put hy, JF = h;;} Lohg ,F for a finite Galois extension E/F,LCE.
Then hp,,p is well-defined.

3.2.2. It is more convenient to extend the Hasse—-Herbrand function to be defined not
only for natural numbers. For real a > 0 one sets h(a) = a, h(a) = |L : Fla,

<
ha) = { % s s
s(1-p)+pa, a>s,

for L/ F unramified, Galois totally ramified of degree prime to p = char(F)) if char(F) >
0, Galois totally ramified of degree p = char(F') > 0, respectively. Then

h'L/F: R;o - R;o

is determined by employing these building block functions for any Galois or separa-
ble extension. The function hj,p is a well-defined, piecewise linear, continuous and
increasing [FV], Chapter II1.

3.2.3. Let L/F be a finite Galois extension, G = Gal(L/F), h = hp/r. Let G, for a
real a > 0 denote the ramification group G,,, where m is the smallest natural > a. Let
1» hi. be the left and the right derivatives of h. Then

Bj(a) = 1Go : Gria)l,  W(a) = G0 G| if Ala) ¢ N,
h.’,.(a) = |G() : Gh(a)+l| if h(a) € N.

3.2.4. The traditional notation for hryr is ¥p r. We call it Hasse-Herbrand, since
Hasse introduced it in this form and Herbrand was the first who studied it (in a different
form). This is the inverse function to ¢,/r which plays a central role in expositions of
ramification theory, see [Kawl, Kaw2, Se3, Senl, Sen2, CF, Laul, Lau2, Lau3, Marl,
Mar2, Maul, Mau2, Mau3, Mau4, Mau5, Winl, Win2]. Introduce an upper numbering
of the ramification groups by setting G* = Gj(a), @ > 0. Then for a normal subgroup
H in G one can deduce by using the properties of A that (G/H)* = G*H/H fora > 0.
For an infinite Galois extension L/F with group G the upper numbering is defined as
G* = 1331 G(M/F)®, where M/F runs over all finite subextensions in L/F.

3.3. The norm and ramification groups

Let F be as in 3.2. o
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3.3.1. Let L/F be a finite Galois totally ramified extension, G =Gal(L/F), h=hgF.
Then for any integer i > 0 the sequence

Pr Ni
1 = Gr(i)/Grp+1 28 Ungiy,n/Unyer,L —> Ui p [Uisr,F
is exact, where (i) is induced by the homomorphisms of 2.4.2, N; is induced by Ny, /.
3.3.2. Abelian extensions have some additional properties.

THEOREM (Hasse-Arf). Let L/ F be a finite abelian extension with group G = Gal(L/F).
Then G; = Gjy1 for j € N such that j ¢ hy/p(N).

For an assertion converse to the Hasse—Arf theorem see [Fe6].

3.4. The Fontaine—Wintenberger fields of norms

Let F be as in 3.2.

3.4.1. Let L be a separable extension of F' with a finite residue field extensioq L/F.
Let L be the union of an increasing directed family of subfields L;, ¢ > 0, which are
finite extensions of F. The extension L/F is said to be arithmetical}y proﬁm:te if ‘the
composition - - -0 hy,/z,_, - - - can be defined. In other words, taking into consideration
3.2.3 for any real ¢ > O there is an integer j such that

hLi/LJ.(a):a fOl'a<th/F(C), 1> 7.

Weputhp /g =---ohp /L, 0 . Then the function hp/p doe.sn’tdepend on the. choice
of L; and is piecewise linear, continuous, increasing. If M/F is a subextension in L/F
then M/F is arithmetically profinite. If, in addition, M, /Fis ﬁpite then hy r = hr /MZ
hary - An extension L/ F is arithmetically profinite if and only if G(F*?/L)G(F**[F)
is of finite index in G(F*?/F) for any a > 0. ‘ .

An important example of infinite arithmetically profinite extensions is a Ga1.01s exter.I—
sion L/F with a finite residue field extension whose Galois group Gal(L/F) is a p-adic
Lie group, see [Sen2, Winl]. ) .

A Galois totally ramified extension L of a local field F' with finite residue field is
arithmetically profinite if and only if G(L/F) has a discrete set of breaks with respect
to the upper numbering.

3.4.2. Let L be an infinite arithmetically profinite extension of F' and L; be an increasing
directed family of subfields which are finite extensions of F, L = {J L;. Let

N(L|F)* = lim L}

be the projective limit of the multiplicative groups with respect to norm homomorphisms
Npi,» i 2 j. Put N(LIF) = N(L|F)* U {0}. Then N(L|F)* doesn’t depend on
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the choice of L;. Let A = (ar,)i» B = (BL,); be elements of N(L|F). Then the
sequence N, /r,(ar; + BL;), j — oo is convergent in L;. Let ~yr, be its limit. Then
put C = (yr,): = A+ B. The set N(L|F) possesses the structure of a field under the
multiplication and addition thus defined.

For A = (ar,); put v(A) = v(ar,), where Ly is the maximal unramified subextension
in L/F. Then the map v is a discrete valuation and N(L|F) is complete of character-
istic p. There is an isomorphism of L onto a subfield in N(L|F) which is mapped
isomorphically onto the residue field of N(L|F).

3.4.3. If M/F is a finite subextension in L/F then N(L|F) = N(L|M). On the other
hand, if E/L is a finite separable extension then N (L|F) can be identified with a subfield
of N(E|F) and N(E|F)/N(L|F) is an extension of complete discrete valuation fields.

3.4.4. For an arbitrary separable extension E/L denote by N(E,L|F) the injective
limit of N(E'|F) for a finite separable subextension E’'/L in E/L. If E/L is finite
then N(E, L|F) = N(E|F). If E/L is Galois extension then Gal(F/L) is isomorphic
with the Galois group of N(E, L|F) over N(L|F). Moreover, the group Gal(F*P/L)
is isomorphic with the Galois group of N(L|F)*P over N(L|F).

Further properties of fields of norms can be found in [Winl, Win2, Win3, Lau4, Ke].
For some connections between complete discrete valuation fields of characteristic 0 and
p see [Del]. The objects that have been discussed are closely related with the theory of
p-adic representations and p-adic periods, see [Win3, Fol, Fo2, FI].

4. Local class field theory

We describe here abelian extensions of some classes of discrete valuation fields. In 4.1—
4.5 we assume that F' is a complete discrete valuation field with finite residue field.

4.1. Complete discrete valuation fields with a finite residue field

For a finite field F, its absolute Galois group Gal(F?/IF,) is isomorphic with Z and
topologically generated by the automorphism 7: F3? — Fy®, %(8) = 69.

4.1.1. Let F = F, for ¢ = p/, p = char(F). f is called the absolute inertia degree of F.
It follows from 2.5 that either char(F) = 0 or char(F') = p. In the first case e = v(p) > 0
and the restriction of v to Q is equivalent to p-adic valuation by 1.1.4. Then F' can be
regarded as containing the field Q, and F//Q, is a finite extension of degree n = ef.
Such a field is called a p-adic field. Fields of the second class are called local function
fields, they are isomorphic with F,((X)). Complete discrete valuation fields with perfect
residue fields are often called local.

4.1.2. The ring of integers © of F and the unit group U are compact with respect to the
valuation topology, F' is locally compact. The commutative diagrams of 1.3.2 imply that
subgroups of finite index n in F* are open if char(F) = 0 or if char(F') = p, (n,p) = 1.
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Thus, topological properties of p-adic fields are determined by their algebraic structure.
This is not the case for local function fields.

4.1.3. One can deduce from 2.3.2 that there exists a uniquely dete@ined unramified
extension I of F of degree n > 1: L = Fugr—1), wl.lere Hgn-1 i the group of all
(g™ — 1)-th roots of unity in F*P. The extensiqn L/Fis cyc'hc and.by .2.3.4 and the
previous remark the maximal unramified extension F™" of F' is Galois with the group
isomorphic to 7 and topologically generated by an automorphism @r such that

pr(a) = a? (mod Mpw) for o € Opw.
The automorphism ¢ is called the Frobenius automorphism of F.

4.1.4. By using 1.3.2 one can deduce that if char(F) = p then any element @ € U, can
be uniquely expressed as a convergent product

a= [T JTC+6ymt)

(i,p)=1 5€J
121

with the index-set J enumerating f elements in O of whicfh the residut.zs form a basis
of F over Fp, the elements 0;; belonging to this set, 7 is a prime element in F aij € Zp.

‘Denote the polynomial X? — X by p(X ). Note that the subgroup p(F) is of index p
in F. If char(F) = O then any element & € U can be expressed as a convergent product

a= [T+ 67wl

i€l jeJ

with I = {1 <i < pe/(p—1), (i,p) = 1}, the’im?ex-set J and 6;; being as abm;f,
aij € Zyp. If there is no primitive p-th root of unity in F then w, = 1, a = Opil;((ipE 1(;,
writing is unique. If there is a primitive p-th root of unity in F then’w* = 14+0,m

such that w, ¢ F*P, a € Zj. In this case the expression above isn’t unique.

4.1.5. The commutative diagrams of 3.1 imply that the norm group Np/pL* is of index
l=|L: F|in F* for a cyclic extension L/F of degree .

4.2. The Neukirch construction of the reciprocity map

4.2.1. Let L/F be a finite Galois extension. Denote by @¢(L|F) the set of those auto-
morphisms & in Gal(L*/F) for which 7|pw is a positive integer power of ¢ . Then
the set ¢(L|F) is closed with respect to multiplication, but 1 ¢ di(LlF ). The map
¢(L|F) — Gal(L/F): o — &l is surjective. The ﬁx;d field X of 7 € u(f)(LlF) is of
finite degree over F and & is the Frobenius automorphism of X, X% = L™.
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4.2.2. Let L/F be a finite Galois extension. Introduce the map
T/p: §(LIF) - F* /Ny pL*

by the formula
T /F(é) = Ny/prg (mod Ny pL*),

where X is the fi G o . )
defined, is the fixed field of G € ¢(L|F), ny is prime in £. Then the map Ty, is well

The next assertion is of great importance in this exposition: let 1. &
_ The ne position: let 71,5, € ¢(L|F) and
03 = 0201 € $(L|F) then b2 € GLLIF) an

NE_;/F'”B = NZA/F’”INZ‘;/FWZ (mod NL/FL*),

wher§ 7; is a prime element in the fixed field X of o;. This assertion is verified by
tect.lmca] but not complicated computations, see [N3]. The congruence can be proved
easier if the Hazewinkel construction of the reciprocity map (4.3) comes into play. It
shows that the map 17,z induces a homomorphism '

TL/F: Gal(L/F) - F*/NL/FL*,
where 1,/p(0) = fL/F(G) and & be any element of ¢(L|F) such that ol =0."

4.2.3. The homomorphism 17, /F has natural properties. If L/F is an unramified finite

exFension then X7,/p is an isomorphism and Y1/r(pr|L) = mF (mod Np,rL*) for a
prime element 7g in F.

If M/F is a finite separable extension and L/M a finite Galois extension,
o € Gal(F**/F)

then the diagram

T;
Gal(L/M) L M* /Ny p L*

a* o

TG o
Gal(cL/o M) —=£22 (oM)*/Ngp/om(cL)*

is commutative, where 6*(7) = o710~} |1, for 7 € Gal(L/M ). .
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If M/F, E/L are finite separable extensions and L/F, E/M are finite Galois exten-
sions then the diagram

Gal(E/M) —=2M ~ M*/NgmE"

| i

Gal(L/F) —XE — F*/Ny/pL*

is commutative, where the left vertical homomorphism is the restriction oz of o €
Gal(E/M) and the right vertical homomorphism is induced by the norm map Ny, .
As the image of X/ is abelian, one can define a homomorphism

Ty/p: Gal(L/F)® — F*/NppL*,

where Gal(L/F)® is the maximal abelian quotient of Gal(L/F).
If L/ F is a finite Galois extension and M/F a subextension in L/F then the diagram

T,
Gal(L/F)® ——=*— F*/N,pL*

- |

T,
Gal(L/M)®» ——~ M* /Ny L*

is \commutative, where the right vertical homomorphism is induced by the imbedding
F < M and Ver is the transfer map (Verlagerung) for finite groups.

4.2.4. It is easy to verify by using 4.1.5 that Ty, /p is an isomorphism for a cyclic
extension L/F. By induction on degree one can show that Xy, is an isomorphism for
an abelian extension L/F. Thus, the Neukirch map

Ti/r: Gal(L/F)® — F*/Nyp/pL*

is an isomorphism.

4.2.5. The inverse to 27,/ homomorphism induces a surjective homomorphism
( ,L/F): F* - Gal(L/F)®.

Denote by F® the maximal abelian extension of F' in F*P. Passing to the projective
limit via 4.2.3 we get a well defined homomorphism

Pp: F* - Gal(F™®/F),

which is called the reciprocity map. Its image is dense in Gal(F®™/F) and its kernel
coincides with the intersection of all norm subgroups Ny, rL* in F* for finite Galois
extensions L/F.
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If L/F is a finite Galois extension then ¥r(a) for « € F* acts trivially on L N F2b
if and only if a € Ny, pL*. :
For o€ F*

vr(a)

Pr(a)|pe = pp .

The reciprocity map possesses natural functorial properties analogous to those in 4.2.3.

4.3. The Hazewinkel construction of the reciprocity map

Let, for simplicity, L/F be a cyclic totally ramified extension. Let £ € Up. By using the
surjectivity of the norm map N: Um — Uz where Lur , B are the completions of L',

ur ?

F™, it can be verified that there exists an element 3 € U—~ such that N3 = ¢. Let pbea

ur

continuous extension of the Frobenius automorphism ¢, on L. Then N (e(B)/B) = 1.
By the Hilbert 90 theorem there exists an element o € L¥ such that ala)/a = o(B)/8,
where ¢ is a generator of Gal(L/F). Moreover, if = is prime in L then o(a)/a can be
written as (7(n)/) (o(e)/¢) for some 7 € Gal(L/F), € € U~ Then the map € — 7

induces the homomorphism

Ur /Ny pUy, — Gal(L/F)

which is an isomorphism and inverse to 77, /F» see [Hazl, Haz2, Iw5].

4.4. Cohomological approach

Another construction of the reciprocity map follows also from considerations of the

Brauer group Br(F). A Theorem of Hasse asserts that Br(F)) ~ Q/Z. There is a pairing
for char(F) = 0:

Hom ( Gal(F*?/F),Q/Z) x F* — H'(F,Q/Z) x lim HY(F, pn) —
11‘_1>n Hz(Fyl‘n) ~Q/Z

where the injective limit is taken with respect to the natural maps fn — fpm, m = 1
(there is also a pairing for char(F) = p, see 7.2.4). This pairing induces a homomorphism

F* — Hom (Hom (Gal(F*?/F),Q/Z),Q/Z) = Gal(F*/F),

which coincides with the reciprocity map. For details see [Se3, Se4, CF].

4.5. Existence theorem

This theorem makes the description of abelian extensions more precise: there is a one-
to-one correspondence between open subgroups of finite index in F*’and the norm
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subgroups N pL* of finite abelian extensions L/F. If Ly, L, are fmite abelian ex-
tensions over F' then L; C Ly if and only if NLz/FLz* C NpyrLi*. If Ly = LL,,
L4 = LN L, then

Np,rLs® = Npy/rLi™ 0 NLz/éLz*, NL4/FL4* = Ny, /rL1"Np,pLy™

The proof employs the fact that any open subgroup of prime index in F* is a norm
group N pL* for a suitable cyclic extension L/F, see be.lo?v .5.1:2, 5.3.2, 5.4:1.
Existence Theorem implies that the reciprocity map ¥ is injective and continuous.

4.6. Generalizations

4.6.1. Existence Theorem can be extended to the case of abelian (not necessarily finite)
extensions of F. For an abelian extension L/F put

NL/FL* = ﬂNM/FM*a
M

where M runs over all finite subextensions in L/F. In particular, ¥ maps the group U; »

isomorphically onto the ramification group Gal(F®/ F)i, where the upper numbering was
defined in 3.2.4. See also 5.4.1 below.

4.6.2. The same theory can be established for a complete discrete valuation field F
whose residue field is quasi-finite, i.e.

Gal (P /) ~ .

see [Mol, Mo2, Mo3, Wh1, Wh2, Wh3, Wh4]. A distinction is that there are no canonical
generators of Gal(F*?/F) as in the case of a finite residue field ar_nd an open subgroup
of finite index in F* isn’t in general a norm subgroup and one has introduce a notion of
a normic subgroup, see [Wh1].

4.6.3. If F is an infinite separable extension of F with finite residue extensi-on .then'pu-t
FX = lim M*, where M runs all finite subextensions of F in F and the projective limit
—

is taken with respect to the norm maps. For a finite separable extension £/F one can
define the norm map N, z: £* — F*. There is an isomorphism

Tr 7 Gal(L/F)® — F* /N rLx.

For more details see [Sch, Kaw2, N3], Chapter 2, §5. This isomorphism is compatible
with the construction of fields of norms in 3.4.

4.6.4. The same theory can be established for Henselian discrete valuation fields with a
quasi-finite residue field (existence theorem is different!), see [FV], Chapter V.
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4.6.5. Let F be a complete discrete valuation field with an algebraically closed residue
field. Serre’s geometric class field theory describes abelian extensions of F' in terms

of the fundamental subgroup (Ur) regarding Ur as a pro-algebraic group, see [Se2,
Hazl].

4.6.6. Generalizations for the case of a perfect residue field can be found in [Hazl]
(via Serre’s theory). Another approach is described in [FeS]. Let F be a local field
with perfect residue field F of characteristic p. Denote by F the maximal abelian un-
ramified p-extension of F. Then for a finite abelian totally ramified extension L/F
the group Homeow (G(F/F), G(L/F)) of continuous homomorphisms from the profinite

group G(F'/F) (we assume F # F) to the discrete finite group G(L/F) is canonically
isomorphic to the quotient group Uy /Ny, rU,, 1 [Fe5].

4.6.7. For the case of imperfect residue field see [Fe7] and Section 7 below.

4.6.8. Let K be a local field with finite residue field and let L be a Galois totally
ramified extension of K. Let F' be a formal group over Ok which is isomorphic to G¢,
over the maximal unramified extension. Let N(F),L/K be the formal norm from F(90,)

to F(9Mg) (see Subsection 5.4.1 below). Then, according to Mazur [Maz] there is a
canonical isomorphism of the group F(9k )/N(ry L x F (ML) onto the group

(G(L/KY™)*/(E - M)(G(L/K)™®)",

where M € GL4(Zyp) is a twisted matrix of F. Its construction (see also [LR]) is a
generalization of the Hazewinkel homomorphism.

4.6.9. Using the theory of fields of norms one can derive (Koch, de Shalit) overcoming

technical difficulties the so-called metabelian local class field theory which describes a
maximal abelian extension of the maximal abelian extension of F.

5. Pairings on the multiplicative group

We assume that F is a complete discrete valuation field with a finite residue field.

5.1. The Hilbert symbol

5.1.1. Let the group p, of all n-th roots of unity in F* be contained in F and n
be relatively prime with p if char(F) = p > 0. The Hilbert norm residue symbol
(, Jn: F* x F* = p, is defined by the formula

(a,8)n =7 '¥r(a)(y), where 4" =8, v € F*P,

PROPOSITION. The Hilbert symbol is well defined. It possesses the following properties:
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1) (, )n is bilinear; ‘ .

) (1—a,a)p=1fora€ F*, a # 1 (Steinberg property);

3) (—a,a)n =1 for la e F*;

4) (avﬂ)'n = (ﬁv a)y—g ; ) o . . . )

5) (,B)n = l*if and only if a € NF('{/E)/FF(\/B) and if and only if B €
Np(yayrF(3/0)"; _ "

6) (o, B)n = 1 forall B € F* if and only if o € F*";

7 (a, B)%, = (o, B)n for m 2 1; . .

8) (aaﬂ)n,L = (NL/Fay,B)n,F for a€ L ﬂ [S F s ] .

9 (ca,0B)neL = o(a, B)n,L, where L is a finite separable extension of F, o €
Gal(F*®/F), pn C L*.

Thus, the Hilbert symbol induces a nondegenerate pairing
(, )t F*[F*™ x F*[F*™ = pn.

5.1.2. Let g, C F* and n be as in 5.1.1. The theory of Kummer cx'tcnsi‘ons (see
[Lal], Chapter 8) asserts that abelian extensions L/F of exponent n are in orie-to-one
correspondence with subgroups B, C F* with F** C By

L=F(%/BL) = F(ys" € BL)

By /F*" has the same structure as Gal(L/F). ‘
an%:)h; lil;o:pbe : éubgroup in F* such that F** C A. Denote by *B = Atits 0rtho\§/o£al
supplement with respect to the Hilbert symbol. Then A=Ng, FL , where L = F(V/B).
Conversely, if B is a subgroup in F'* such that F*" C B then its orthogonal supplement
A = B coincides with Ny pL* for L = F( {/B). 1t follows that any subgroup of a
prime index I in F*, | # char(F) if char(F) > 0, is a norm subgroup.

5.1.3. Hilbert’s 9th Problem is to find explicit formulas for the global norm re:sidue
symbol. In the case under consideration this means to discover a formula for the Hilbert
i field F.
symbol (a, B), in terms of elements a, 3 of the : _ _ . .
There is a :imple answer to this question when n is relatively prime with char(F')
Then (o, B)n = t(a, B)(@ D/ where t: F* x F* = pig—1 1 the tame symbol defined
by the formula

t(a, B) = p,,.(IB'UF(OL)a‘UF(ﬁ)(__I)UF(Q)UF(ﬁ))
with the projection pr: Ur — pq-1 induced by the decomposition Up = pg—1 X Up,F
as in 1.3.3.
5.2. Explicit formulas for the Hilbert p™-th symbol

In his celebrated work [Sha2] Shafarevich proposed an explicit forrr.ml_a for the Hilbert
p-th symbol in terms of his basis of the group of principal units. His idea was then to



250 I.B. Fesenko

apply this formula pairing for an independent construction of local class field theory. At
the end of the 70°s Vostokov obtained explicit formulas for the Hilbert p™-th symbol,
p>2.

Let F be a p-adic field, {,~ a primitive p™-th root of unity which is contained in F,
n > 1. Let 9 be the ring of integers of the field Fo = FNQY. Let w be a fixed prime
element in F.

For an element a € F* let /(X)) € 1+ XDo[[X]] be such that ™8y (m) = a, where
meZ, 8 € uy. Put o X) = X™0P(X).

Put

Ix (a(X)) = (1 - %") log (X)),

where

log(1+X) =) (-1)'"'X*/i,  Ax ( ZaiX") = ela)X?,

i1

a; € Oy, and ¢ is the Frobenius automorphism of Q.
For a, 3 € F* put

B 5(X) = Ix (a(X))Ix (B(X)) — Ix (a(X))B(X)'/B(X)
+ix (B(X))a(X)' | a(X).

Let 2(X) € 1 + XDo[[X]] be such that z(m) = (pm. Put s(X) = 2(X)*" — 1.

Let p > 2. Employing Shafarevich’s canonical basis of the group of principal units,
Vostokov ([V1, V2]) established the following explicit formula for the p™-th Hilbert
symbol:

Trres®a g(X)/s
(c, By = (L7 7e0 Pos CO/5X),

where

res < Z aixi) =a_1;, Tr=Trgu,

For p = 2 the formulas are more complicated, see [VF, Fel, Fe2]. Details are in [FV],
Chapter VIIL.

Among various applications of the explicit formulas there is an exposition of the
correspondence between Kummer’s extensions of F and open subgroups in F* that is
independent of class field theory, see [FV], Chapter VIL Independently, approximately
the same formula was obtained by Briickner [Brul, Bru2} by using different methods.

This formula can be generalized for complete discrete valuation fields with quasi-finite
residue field. For other formulas for the Hilbert symbol in general and spe'cial cases see
[AH1, AH2, Kn, Iw3, Hennl, Henn2, Sen3].
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5.3. Pairings using the Witt vectors

Let F be a local function field with F = F,. We shall consider an analog of the Hilbert
symbol for such a field.

5.3.1. Define a map
(,) F*xF-TF

by the formula (c, 8] = Up(a)(y) — 7, where p() =" —-71=B7€ FsP, see 4.1.4.
PROPOSITION. This map is well defined and has the following properties:

1) (maz, 8] = (1, 8] + (a2, B8], (. B1 + B = (o, B1] + (o, Ba);

2) (—a,a] =0forac F*; .

3) (a, 8] = 0 if and only if @ € Np(yypF(7)", where p(y) = 6:

4) (o, ) =0 forall a € F* ifand only if B € p(F);

5) (o, 8] =0 forall B € F if and only if a € F*P.

Thus, this map determines the nondegenerate pairing

F*/F*? x F/p(F) = Fp.

5.5.2. Any open subgroup A in F* of index p coincides with Np, gL*, where L =
F(v: p(y) € B) and B = AL is the orthogonal supplement of A with respect to (]
This assertion is applied for the proof of the Existence Theorem in 4.5.

5.3.3. There is a formula for the pairing (, 1
(o, B) = Trr, /¥, TES (,B(X)oz(X)’/a(X)),

where a(X) € Fq((X)), B(X) € F,((X)) such that a(m) = o B(m) = B, w prime in
F. Compare this formula with 5.2.

5.3.4. The pairing ( , | can be generalized using the ring of Witt vectors:
() Jn: F* x Wo(F) = Wi (Fp) ~ Z/p"Z,
(see 1.4.2) by the formula (o, yln = ¥F (@)(2) — 2, where z € Wa(F*P), p(z) = y.

By using this pairing one can construct the reciprocity map independently, see [Sek1,
Sek?2].

5.4. Pairings using formal groups

5.4.1. Let K be a p-adic field, K = Fg, 7 be prime in K.



252 LB. Fesenko
Denote by 7y the set of formal power series f(X) € XOk|[X]] such that f (Xx)=
mX + X29(X) with g(X) € Ok|[X]] and f(X) = X+ 7h(X) with h(X) € Ok[[X]).

Then there exists a unique formal power series F(X,Y) € Ok[[X,Y]] (Lubin-Tate
formal group) such that F(f(X), f(Y)) = f(F(X,Y)) and

F(X,0)=F(0,X)=0, F(X,F(Y,Z))=F(F(X,Y), 2),
F(X,Y)=F(Y,X).

In particular, if 7 = p then there is the multiplicative formal group Fa(X,)Y)=X +
Y + XY, which corresponds to multiplication.
Denote by Endg , (F) the set

{9(X) € Ok[IX]l: F(9(X),9(Y)) = g(F(X,Y))}.

There is a ring homomorphism D — Endo, (F): & — [a] such that
[dFr(X)=aX +---,

f = [7]F, see [CF], Chapter 6, [Iw5], §7.3, [N4], Chapter 3.

Let L be an algebraic extension of K. One can define on the set My a structure of
O g-module F(9M):

a+f=F(e,p), ex=alr(a), a€Dk, a,feM,.
Denote by &, the group of 7™-division points {& € Myw: [1"]p(a) = 0}.

Then the field L,, = K(x5) is a totally ramified abelian extension of degree g" ! (g—1)

over K and corresponds to the subgroup (m) x Up k in K*. Gal(L,,/K) is isomorphic
with Uk /U, k. Put

K, = ULn.

n2l1

Then the field K corresponds to the subgroup generated by 7 and

Gal(K™/K) =~ Gal(K*/K) x Gal(Ky/K),
Pk (re)(C) = [e7r(¢) for (e gl Kn, @6 €Z, €€ Ug.

In particular, putting K = Q,, F' = F,,, we deduce the local Kronecker—Weber theorem:
Q? is generated by all roots of unity.

5.4.2. Let mo be prime in K, F(X,Y) be a formal Lubin-Tate group for f(X ) € Fro-
Let L/K be a finite extension such that k,, C L. Define the generalized Hilbert pairing

( s )F,n: L* x F(SUIL) — Kp,
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by the formula

(@, B)Fn = F(Zr(a)(7), -1l (M),

. n -

Whlg)rci)l’iycﬁ fo(rmmtﬁa’: )f(v)?t? ,[7;(;],?21[;1 z.pplications can b.e fon'n'ld in [V2, V3, VE, Fe2,
CW1, Wil, Kol, Coll, Col2, Col3, dSh1, dSh2, Sue]. This pairing can be generalized to
the case of Honda formal groups with corresponding explicit formulas, see [BeV}.
6. The Milnor K-groups of local fields
6.1. The Milnor K-groups
6.1.1. Let F be a field. The n-th Milnor K-group of a field F is defined as

K (F)=(F*®-- ® F*)/I,,

where I, is the subgroup generated by the elements a; ® -+ ® o, With @ +a; =1
for some i # j. Put Ko(F) = Z. The image of &) ® - -+ ® o, in K, (F) is denoted by
{ai,...,an}. There is a natural map K, (F) X Ku(F) = Knym(F).

An imbedding of fields F — L induces a map jr/: Kn(F) = Kn(L). The norm
map Ny p: L* — F* for a finite extension L/F induces a norm map

Np/p: Kn(L) = Kn(F)

with the following properties: Ny acts on Ko(L) = Z as multiplicatiqn by |L: F|, on
K (L) = L* as the norm map; Ny/p o jg/r, = |L : FJ; if L/F is Galois then

JriLo Npyp = z 03,
m;eGal(L/F)

where ¢;: K, (L) = Kn(L) is induced by o; € Gal(L/F).

6.1.2. If F'is a discrete valuation field, v its valuation, F, its residue field then there is
a homomorphism

On: Kn(F) = Kn(Fy) ® Kn-1(Fo)
defined by the formula

O0r ({en, - s} +{mm, .. smna}) = ({El,...,En},{'ﬁl,...,ﬁn_l}),
where 7 is prime in F, &;,7; € U,. The second component 9, of 9, doesn’t depend on

the choice of w. If F is a complete discrete valuation field with finite residue field then
9,{a, 8} = t(e, B), where t is the tame symbol defined in 5.1.3.
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6.2. The Milnor K-groups of a complete discrete valuation field

Let F' be a complete discrete valuation field, F = F,, ¢ = p/. A new role of the Hilbert
symbol consists in its application for a description of the Milnor X -groups.

6.2.1. The properties in 5.1.1 imply that the Hilbert symbol (', }n induces a surjective
homomorphism H,,: K>(F) — u,.

PROPOSITION (C. Moore). Let m be the cardinality of the torsion group in F*. Then H,,
induces an exact splitting sequence

0= mKy(F) = K2(F) = ptyn, — 1.
The group mK,(F) is divisible.

6.2.2. Let a primitive I-th root of unity {; be contained in F. A general conjecture of
Tate for arbitrary field F asserts that if Iz = 0 for z € K,(F) then = = {¢;}y for some
y € Kn_1(F). It was proved for n = 2 by Suslin ([Sus3]). For a field F such as under
consideration here this assertion for { relatively prime with p was elementarily verified by
Carroll ([Car]) and for [ = p was deduced by Tate from a similar result for global fields
([T6]). Employing this assertion Merkurjev proved that mK,(F) is a uniquely divisible
uncountable group ([Me]).

Sivitskii showed that K, (F) for n > 3 is a uniquely divisible uncountable group
([Si]). For details and proofs see [FV], Chapter IX.

6.3. The Milnor K-groups of a complete n-discrete valuation field

6.3.1. Let F' be a complete n-discrete valuation field with a finite residue field (see
1.2.1). Let 7 be the strongest topology on K,,{F) for which the map

F*x...x F* 5 K, (F)
N————

m times

is sequentially continuous with respect to the topology on F* defined in 1.2.4 and z; +
Yyi > +y, —z; = —xin K (F) if z; - x, y; — y. Let A,,(F) be the intersection
of all neighborhoods of 0 in K,,,(F'). Parshin introduced the topological K-groups as

K:;)lp(F) = Km(F)/Am(F)

for fields of characteristic p. The same definition is valid for char(F) = 0, char(F,_;) =
p. In the general case

-

A (F) = [ 1Km(F)

i>1
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is the maximal divisible subgroup of Kn,,(F), scem[fe9].

Then KP(F) = Ko(F), K\ (F) = Ki(F), Kp%(F) ~ pr, where pp is the torsion
group of F*, Kt (F) =0if m > n+2.

6.3.2. Let v be n-discrete valuation on F. For elements a , 3 € 9, the following equality
holds:

{1-a1-}=-{1+af(1-a)"" o} = {I+ap(l —a)” ' 1-p}.

Then the definition of KioF(F') and 1.2.4 imply that this group is topologically generated

by the elements {1467} -~ 7', Wy o, Mjp } where Tnye -, T AT local parameters,
9 € R, R is a set of representatives of Fo =Fg in F, 1 <ji,...,Jm-1 <7

6.3.3. If char(F") = O then the conjecture of 6.2.2 holds for K:ZP(F), see [Fe3,_ F§4]. If
char(F') = p then there is no nontrivial p-torsion in KnP(F) and a full description of
these groups can be obtained by generalizing the pairings of 5.3, see [Pad].

6.3.4. One can define surjective homomorphisms
wp: KP(F) = KpF (Foo1) = - — Ko(Fo) ~ Z,

induced by dy: Km(F) = Kpo1(Fy), see 6.1.2.

7. Higher local class field theory

7.1. Origins

Let k be a finite field. Then there is an injective homomorphism
Ko(k) = Z — Gal(k® /k) ~ Z,

where k®® = k%P is the maximal abelian extension of k. . o
Let K be a 1-dimensional complete discrete valuation field. Then there is an injective
homomorphism (the reciprocity map)

K\(K) = K* = Gal(K®/K),

and the image of K}?(K) is dense in Gal(K**/K). . '
We shall show that for a complete n-discrete valuation field there is a homomorphism

K®(F) — Gal(F®/F),
which is injective and such that the image is dense in Gal(F®/F).

The K -theoretic generalization of class field theory (not only local but global too) was
first studied by Parshin ([Pal, Pa2, Pa3, Pa4, PaS]). A cohomological approach to such
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a theory was proposed by Kato ([Katl, Kat2, Kat3, KtS}]). For another construction of
the reciprocity map via an extension of the Neukirch map, see [Fe3, Fed, Fe9)].

Note that the residue field of a complete n-discrete valuation field F when regarding
it as 1-discrete is imperfect if n > 1, char(F,_y) = p > 0. So higher local class field
theory may imply a description of abelian extensions of a complete discrete valuation
field with arbitrary residue field. For a class field theory of such fields without K -groups
see [Fe7].

7.2. The reciprocity map
Let F' be a complete n-discrete valuation field with the residue field Fq, g=p/.

7.2.1. For any finite extension I of F there is a unique extension of the n-discrete
valuation to L. A separable extension L/F is called purely unramified if its degree
coincides with those of L/F. There is an analog of the assertion of 2.3.2 for purely
unramified extensions. The compositum of all finite purely unramified extensions of F'
in a fixed separable closure is denoted by FP¥. Then

= J Fo,

p)=1

where (; is a primitive I-th root of unity. A generator pr of Gal(FP"/F) which is
mapped on the generator ¢ of Gal(Fy”/F,) is called the Frobenius automorphism of F.

7.2.2. Let L/F be a finite Galois extension, ¢ € Gal(L/F). Let G be an element of
Gal(LP™/F) such that 5|, = o and &| g is a positive integer power of the Frobenius
automorphism . Let X be the fixed field of & and 75 € K (2) be a “prime” element
of KnP(X), ie. wx(nrg) =1 (see 6.3.3).

Then the map

g — NE/FWE (mod NL/FK:SP(L))

is well defined and is a homomorphism, where Ny, for topological K-groups is in-

duced by the norm map for the Milnor K- -groups. Moreover, this map determines an
isomorphism

Gal(L/F)™ ~ KiX*(F) /Ny, r K\ (L).

This isomorphism possesses natural functorial properties analogous to 4.2.3. The inverse
homomorphism induces a reciprocity map

Pp: K\P(F) — Gal(F®/F).

-

It is injective and continuous. This shows that An(F) is exactly the kernel of the homo-
morphism K, (F) — Gal(F®/F).
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In particular, the diagram

K9 (F) £ > Gal(F™/F)

| |

— U=
K (F) > Gal(F"/F)

is commutative, where the left vertical homomorphism is induced by 0,c), see 6.1.2,

and v(™ is the first component of v. o f
Existence Theorem for the fields under consideration asserts that any open subgroup o

finite index in K ?(F) is a norm subgroup Ny, K P (L) for a suitable abelian extension
L/F, see [Fe3, Fed].
7.2.3. Parshin constructed the reciprocity map for the fields of positive characteristic

{Pa4, PaS] especially elegant via his generalization of Artin-Schneider-Witt pairings and
Kawada—Satake’s theory [KwS].

7.2.4. Another construction of the reciprocity map follows from cohomological consid-
erations due to Kato ([Katl, Kat2, Kat3, Kat4}).
If char(F) = 0 put

H™(F) = lim H™(F, p@™-1),
—
®(m—1)

where 1y, is the group of all n-th roots of unity in F*%P, un o %s the (m— 1)-tl.1 tensor
power over Z/nZ, n > 1, and the homomorphisms of the injective system are induced

by the canonical injections ,L%("‘“) - u?(m_l) when n divides d. If char(F) =p > 0
put

H™(F) = lim H™(F,u3""Y) @ lim H3(F),
where n runs over all positive integers prime to p, d runs over all positive integers. Here
(F)=Wy(F)®(F*®---®F")/J,
e —
m—1 times

where J is the subgroup generated by the elements (Fy — y) ® 81 ® - - - ® Bim—1, where
y€ Wu(F),Bi€ F*,Fasin 142, 4i(51) ® 61 ® - - - ® Bm—1, Where
w(B) = (0,...,0,6.0,...,0) € Wa(F), 0<i<d;
1 times

Y® L1 ®- - @ PBm—1, where §; = §; for some i # j. ‘
For any field F' the group H'(F) is isomorphic to the group of all continuous homo-

morphisms Gal(F?/F) — Q/Z and H?(F) is isomorphic to Br(F).
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If F' is a complete n-discrete valuation field with a finite residue field then the canonical
homomorphism H™*+!(F) ~ Q/Z is an analog of 4.5. Then by using the canonical pairing

H'(F) x Kn(F) = H'(F) x H™(F) = H"™(F) ~ Q/Z

one obtains a homomorphism K,(F) — Gal(F®/F), which coincides with the reci-
procity map up to the projection K, (F) — KiP(F).

7.2.5. The Kato theory can be treated as a generalization of Tate’s approach in classical
class field theory. Koya found a generalization of class formations to higher class field
theory using bounded complexes of Galois modules and their modified hypercohomology
groups [Koyl, 2]. For a 2-dimensional field a shifted Lichtenbaum complex satisfies

generalized axioms of formation classes, and thus 2-dimensional class field theory fol-
lows.

7.2.6. For a description of abelian totally ramified p-extensions of an n-dimensional
complete field with arbitrary perfect residue field see [Fe9].

8. Absolute Galois group of a local field

Let F' be a complete discrete valuation field with residue field Fy.

8.1. The maximal tamely ramified extension

Let F*® be a fixed separable closure of F' and Gr = Gal(F*?/F). Let F' be the
maximal tamely ramified extension of F' in F*®P, Then

Ft — U Fur(\l/7_l'),

(l,p)=1

where 7 is a prime element in F.

Let n; < ny < --- be a sequence of natural numbers such that niy1 is divisible by
n; and for any natural m there exists an index i for which n; is divisible by m. Put

=1

l; = g™ —1. Choose primitive [;-th roots of unity i; and roots §/w such that (ll;l“ = {,,
/il = Y/ for j > i. Take o € Gal(F*/F) such that o( /7)) = Y/, o(G.) = ¢
and 7 € Gal(F"/F) such that 7( §/7) = {;, ¥/, 7(¢1;) = ¢, Then o| pw coincides with
the Frobenius automorphism of F' and oro~! = 79. The theorem of Hasse-Iwasawa

(see [Has12, Iw1]) asserts that G\y = Gal(F™/F) is topologically generated by o and 7
with a relation 7o~ ! = 79,
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8.2. Absolute Galois group

8.2.1. Now let I be an index-set and Fy be the free profinite group wglll\xgvba]sdlstz;i
i € I. Let Fy * Gy be the free profinite product of Fr and Gy, see [N2, > h]. e;m !
be the normal closed subgroup of Fy * Gy generated by .(z,-)ie I anq K1 eft tc: norou

closed subgroup of H such that the quotient group H/K is th'e maximal p- acForI gG )p
of H. Put F(I,Gy) = (Fut1 * G)/K and denote by zi.the image of izq in ( G-
The group F(I,Gy) has topological generators o, 7, Ti, ¢ € I with a relation o707" =

79,

8.2.2. Assume first that char(F) = p (the function field case). Then Koch’s Theo-
re;rr; (see [Ko3]) asserts that the group G is topologically isomorphic Wllth F(N, G‘%)I .
Note that in this case Ujr is a free Z,-module of rank = cardinality of N,

see 1.3.3.

8.2.3. Assume next that char(F') = 0 and there is no a nontriv.ial p—torsi9n in F*.
Shafarevich’s Theorem ([Sha2, JW]) implies that the group G F is topologically iso-
morphic to F(n, Gy), where n = |F @ Qp|. See also. [Se4, Mikl, Mar%] f(;r a ;a:c:
of a perfect residue field. Note that in this case Uy r is a free Zp-module of rank n,

see 1.3.3.

8.2.4. Assume finally that char(F) = 0 and 7 > 1 is the maximal in?egcr such that
ppr C F*. This is the most complicated case. Let xo be the homomorphism of Gy onto

(Z/p"Z)* such that p((pr) = Cz’ff(p ) for p € Gy, where (pr is a primitive p”-th root of
unity. Let x: Gy — Z} be a lifting of xo. Let ! be prime, {pl,pg,";. N bema 7s'<:,t of :}1
primes # [. For m > 1 there exist integers am, by, such that 1 = ap ™ 4bmp" Py - - Pin-
Put

m = lim byp* Py - - - P € Z
For an element p € Gy and £ € F(I,Gy) put

P—2 wp/(p—1)
(&, 0) = (gx(l)pgx(ﬂ)p...gx(p )p) )

p—2 ”P/(p-])
{€,0} = ({X(l)pZEX(P)p2 X )pz) .

If n = |F : Q| is even, put

-t op" -1, -1 —1,-1_ . -1 =1
)\:amgla'l(xo,r)X(") 2P 11 7ax] Ty T3T4T3 Ty o Tn—1Taly 1Ty

If n = |F : Qpl is odd, let a, b be integers such that —xo(o7®) is a square mod p and
—xo(o7?) isn’t. Put
A =7'2”+1m17'2—(p+l)02'r§{w1,Tfﬂ}T{“+b{{x1,T§’+l},azTg}

—b_—1_(p+1)/2 p+1 oy —(p+1)/2
x 75005 7P 2Ly, 724 Y, oarg } 1) ,
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where 0y = 0™, 1, = 77 Pyt

A=cz o (g, 7)X() 7 o7 +1 —1y-1 -1,—1
0 (2o, 1) Ty Az A Tz z; --‘xn_,znx;llz;].

For n + 1 we choose the index set I = {0, .. ., n}.
Jakovlev’s theorem and Jannsen-Wingberg’s theorem
Ja5], Koch [Kol, Ko2, Ko4, Ko5), [Jan, Wig, JW], Demushkin [Deml, Dem2]
Labute [Lab]) assert that for P > 2 the group Gp is topologically isom;) hic t’
F(n + 1,Gy)/(A), where ()) is the closed normal subgroup of F(n + l,Gr:) gen(3

erated by A. i \
see ]'3.3? Note that Upr is a Z,-module of rank n + 1 with one relation,

(see [Jal, Ja2, Ja3, Jad,

8.2.5. Eor tl¥e cas; P =2,v—1¢€ F see [Di, Ze]. See also [Gor, JR2] and [Mik2, Kom]
for a brief discussion of proofs. Jarden and Ritter ([JR1, Rit]) showed that two absolute
Galois groups Gr and G, for p-adic fields F and L are topologically isomorphic if

and only if [F: Qpl = |L: Q, and FNQ,® = LN Q. =
Ter p o Q, Qp (forp >2o0rp =2

’
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Galois groups of local fields: [Shal, Iwl, Iw2. Iw4 K
: , , s » Kol, Ko2, Ko3, Ko5, Dem1l
Dem2, Lab, Jal, Ja2, Ja3, Jad, Ja5, Jan, JW, Wie. Di M i il i ,
» Jal, Jaz, Ja3, Jad, Ja5, Jan, JW, » D1, Mar2, Mikl,
Sekl, Gor, Ze, Kom]. ’ el Mk it MSh,
Ramification theory: [Her, Kaw1, Laul, Lau2, Lau3, Laud L
_ [Her, , , , , , Lau5, Marl, Mau2, Mau3,
Mau4, MauS, Mik5, Mik6, Sa, Senl, Sen2, ST, Tam, Fe6, Hy, Kat5, Lo].
pjperlods and Galois representations: [Fo2, FI, T1, FM].
Fields of norms and related subjects: [Fol, FW, Winl, Win2, Win3, Del, Lau4, Ke].
Symbols and explicit formulas: [AH], AH2, Hasl, Has2, Has3, Has4, Has5, Has6,
Has7, Has8, Has9, Has10, Sha2, Kn, Brul, Bru2, Rot, V1, V2, V3, V4, V5, V6, V7
iel,}FeZ, Iw3, Coll, Col3, Wil, CW1, dSh1, dSh2, Henn1, Henn2, Sen3, Shi, Sue, Kol,
uz).
Mi]n'or. K-groups of local fields: [BT, Mil2, T5, Car, Me, MS, Si, Bog].
Explicit constructions of the reciprocity map: [Yal, Dw, Hazl, Haz2, N3]
Local class field theories: [Mik4, Kur, Fe5, Fe7, LR].
Higher local class field theory: [Pal, Pa2, Pa3, Pa4, Pa5, Katl Kat’2 Kat3
» PaZ, Pa3, Pa4, Pa5, , ) K
Kol, Ko2, Fe3, Fe4, Fe9, FVZ]. ’ wh Kass
Diophantine problems over local fields via logic: [AxK, Erl, Er2].
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Introduction

The main problem of Galois theory is to find out whether or not each finite group
occurs as a Galois group over the field Q of rational numbers. The solution of this one
hundred years old problem is still out of reach. Yet one hopes for an affirmative solution.
This hope is based on a long list of finite groups which have been realized over Q.
Cyclotomic extensions supply all finite abelian groups as Galois groups over Q. The
Hilbert irreducibility theorem combined with-the Riemann existence theorem gives many
nonabelian simple groups and quasi simple groups.

To go beyond this list, one has to solve ‘embedding problems’. Here one starts with
a finite Galois extension L/Q and an epimorphism a: G — G(L/Q) with G finite, and
one looks for a Galois extension N of @ which contains L and for an isomorphism
v: G(N/Q) — G such that o oy = resy. Not every embedding problem over Q is
solvable. So, in order to realize G one has to find another Galois extension L'/Q with
the same Galois group as L/Q such that the corresponding embedding problem has a
solution.

This method has led Scholz, Reichardt and Shafarevich to realize each finite {-group
(I is a prime) and eventually each finite solvable group over Q.

Solving embedding problems with a nonabelian kernel is in some cases simpler. If a
finite nonabelian group C can be realized with some extra conditions (GAR-realization),
then each embedding problem as above with Ker(a) = C" is solvable. For example, all
A, with n > 5 and n # 6 and all sporadic groups with the possible exception of My
have GAR-realization over Q.

One therefore faces the possibility to continue solving embedding problems infinitely
many times. In this way one arrives at infinite Galois extensions IV of Q and eventually
at the algebraic closure Q of Q. We call G(Q/Q) the absolute Galois group of Q and
denote it by G(Q). This group is the inverse limit of all Galois groups of finite Galois
extensions L/Q. It is a profinite group. As such it is compact, Hausdorff, and totally
disconnected. In particular, G(Q) carries a natural unique Haar measure. Since not each
finite embedding problem over Q is solvable, G(Q) is not a free profinite group E,
on countably many generators (Iwasawa). The main problem of Galois theory becomes
therefore a partial problem of the more general problem about the structure of G(Q) as
a profinite group. Namely, are all finite groups quotients of G(Q)?

We are very far from understanding G(Q). Nevertheless, we know quite a bit about it:

(1a) The only elements of finite order of G(Q) are involutions. They are conjugate to
each other. The closed subgroup generated by the involutions is isomorphic to the free
product of groups of order 2 over the Cantor set.

(1b) Each open subgroup of G(Q) (i.e. each absolute Galois group of a number field)
which contains no involutions has cohomological dimension 2.

(1c) The only closed abelian subgroups are procyclic (i.e. generated as profinite groups
by one element).

(1d) Almost all e-tuples (o1, . . ., 0.) of G(Q) generate a free profinite group of rank e.
Moreover, the closed normal subgroup generated by almost all (o4,...,0.) is E,, which
is the free profinite group on countably many generators.
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(le) The maximal abelian quotient of G(Q) (i.e. G(Qa/Q)) is isomorphic to the
direct product [ Z), where { ranges over all primes [, and where Z; is the ring of l-adic
integers.

(1f) There is a short exact sequence

1—F,— 6@ — [[5—1.

n=2

(1g) G(Q) has no closed normal nontrivial prosolvable subgroup. In particular, its
Frattini group and its center are trivial.

(1h) Every isomorphism between open subgroups of G(Q) is induced by an inner
automorphism. In particular every automorphism of G(Q) is inner. So, every closed
normal subgroup of G(Q) is characteristic.

Infinite Galois theory extends the question about the structure of G(Q) to a question
about the structure of absolute Galois groups of other distinguished fields. In some cases
we have the full answer:

(2a) G(R) & Z/2Z if R is real closed;

(2b) G(K) Z if K is a finite field or if K = C((t)) with C algebraically closed of
characteristic 0;

(2¢) For each prime p, G(Q,) is generated by 4 elements. If p # 2, generating relations
between them are explicitly given;

(2d) If C is an algebraically closed field, then G(C(t)) is the free profinite group of
rank card(C);

(2e) G(R(t)) is real free;

(2f) Let S be a finite set of rational primes and possibly co. Denote the maximal
Galois extension of Q in which each p € S totally splits by Qior,s. If S consists of one
finite prime p, we write Q;;, instead of Qo s. If S = {co}, we also write Q,, for Qtor,s-
Then G(Qua,s) is the free product of the groups G(Qy,), p € S, and each G(Qyp) is a
free product of isomorphic copies of G(Q,), p € S (and where Q. = R).

We have a partial knowledge about few other absolute Galois groups. They should be
next in line to be studied.

(3a) The maximal prosolvable quotient of G(Qy) is the free prosolvable group on
countably many generators. Shafarevich’s conjecture says that G(Qgp) = E,.

(3b) Each finite group occurs as a Galois group over Q,(t) but the cohomological
dimension of G(Q,(t)) is 3.

(3c) Again, each finite group occurs as a Galois group over C(t,%,) and the cohomo-
logical dimension of C(¢,,1;) is 2.

(3d) The same goes for C((t1,12)).

(3¢) The field F,((t)) plays the analog to Q, in characteristic p. Its absolute Galois
group is prosolvable, and of infinite rank.

The theory of finite groups partially emerged out of Galois theory and has become
a subject of research in its own right. The theory of profinite groups is an outcome of
infinite Galois theory. As for finite groups, each profinite group occurs as a Galois group
of some Galois extension. The inverse problem of infinite Galois theory is to characterize
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those profinite groups which occur as absolute Galois groups of ﬁelds: .
There exist several partial results in this direction. They play off projectivity of groups
i seudo finiteness of fields:
agzr;s)tlz profinite group G is isomorphic to the absolute Qal?is group of a PA(; (r-esp.
PRC, PpC) field'if and only if G is projective (resp. real projective, p-adically projective).
In particular, every free profinite group is projective and therefore occurs as the absolute
Galois group of a PAC field. N ' .

(4b) A profinite group G of at most countable rank is 1so¥n0rph1c to .the absolute‘Galqs
group of a PAC (resp. PRC, PpC) field which is algebraic over Q if and only if G is
projective (resp. real projective, p-adically projective). ' '

A good knowledge of the absolute Galois group of a field or of a fz'imlly of fields is a
vital ingredient in the study of their model theory. For example, the Riemann h‘ypothe.sm
for function fields of one variable over finite fields (= Weil’s theorem) combm.ed V&.’lth
G(F,y) = 7, are the basic facts in the decidability of the theory of finite fields. Likewise,
the indecidability of the theory of PAC fields is based on (4a).

The purpose of this survey is to expand the above mentioned points to the story
of infinite Galois theory as it stands when these lines are written. We have put the
main emphasis on the absolute Galois group of fields. Therefore, we have. not cov;red
interesting results on relative Galois groups, like Wingberg’s work on Galois extensions
of number fields and I'-extensions of number fields or the Galois groups of maximal
pro-2 extensions and their connection to quadratic forms.

Acknowledgement. The author is indebted to Ido Efrat, Wulf-Dieter Geyer, Dan Haran,
and Aharon Razon for thorough reading and constructive criticism. He also thanks Helmut
Volklein and Michael Fried for useful remarks.

1. Infinite Galois theory

Consider a Galois extension N of a field K. This is the splitting field of a set of separable
polynomials in K[X] over K. Let G = G(N/K) be the group of all automorphisms of
N that fix each element of K. This is the Galois group of N/K. For each subgroup H
of G let

N(H)={zx € N| gz =z foreach 0 € H}

be the fixed field of H in N. Unlike in the case where N/K is a finite extension, there
need not exist an intermediate field M between K and N such that G(N/M) = H [Rib],
p- 3. Krull restored the Galois correspondence between subgroups and intermediate fields
by introducing a topology to G. A basis for the neighborhoods of 1 in this topology are
all the subgroups G(N/L), where L ranges over all finite Galois extensions of K which
are contained in N. Under this Krull topology G is a Hausdorff, totally disconnected,
compact group [Rib], p. 7. It turns out that the fundamental theorems of Galois theory
of finite extensions remain unchanged if we replace each occurrence of ‘subgroup’ by
‘closed subgroup’:
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1.1. THEOREM ([FrJ], Proposition 1.8). Let N be a Galois extension of a field K. Then
the map M — G(N/M) is a bijection from the Jamily of fields lying between K and N
onto the family of closed subgroups of G(N/ K )- The inverse map is given by H +s N (H).

As in finite Galois theory [La2], pp. 192-199, Theorem 1.1 gives the following rules
for the Galois correspondence:

(1a) M; C M, if and only if G(N/My) < G(N/My)

(1b) H, < Hj if and only if N(H,) C N(Hy);

(1) N(H1) N N(H,) = N((Hy, H,)), where (Hh, Ha) is the closed subgroup of G
generated by the closed subgroups H; and H,;

(ld) N(H] n Hg) = N(HI)N(Hz),

(le) G(N/My N M) = (G(N/My), G(N/My));

(1f) G(N/MyMy) = G(N/My) N G(N/My);

(1) N(oHo™') = oN(H);

(1h) G(N/oM) = 6G(N/M)a~", for each o € G

(1i) A closed subgroup H of G is normal if and only if L = N(H) is a Galois
extension of K

(1j) If M is a Galois extension of K and M C N, then the map

’

res: G(N/K) — G(M/K)

that assigns to each o € G(N/K) its restriction to M is a continuous open epimorphism
with kernel G(N/M) and we have G(M/K) = G(N/K)/G(N/M);

(1k) If E is any extension of K, then res: G(NE/E) — G(N/N N E) is an isomor-
phism; and

(1D If in (1k), E is also a Galois extension of K, then the map o — (resyo,resgo)
is an isomorphism

G(NE/NNE)=G(N/NNE)xG(E/NNE),
where the right hand side is equipped with the product topology, and
G(NE/K) = {(0,7) € G(N/K) x G(E/K)| resnnpo = reSNAET ),
that is, G(NE/K) is the fiber product G(N/K) Xg(NnE/K) G(E/K).

This correspondence holds in particular in the case where N is the separable closure
K, of K. We denote G(K,/K) by G(K) and call it the absolute Galois group of K.

We also denote the algebraic closure of K by K and the maximal purely inseparable
extension of K by Kjp. If char(K) is p, then
Kinsz{al/”"[aeK,n=0,1,2,...}. !

It is a perfect field and res: G(Kin) — G(K) is an isomorphism. So, when studying
absolute Galois groups of a field we may assume that it is perfect.
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2. Profinite groups

Profinite groups are intimately connected to general Ga!ois theory in the same way tl}at
finite groups are linked to Galois theory of finite extensions. On'e cqnglders a set .I with
a partial order such that for each i,j € I there exists ke I withij S k. Ap inverse
system of finite groups over (I, <) is a system (Gi{ ﬂji}i,jel where G is a finite group
and 7j;: Gj = Giis a homomorphism whenever j > 2 These .ob.Jects s'atlsfy the ‘ru]es
m;; = Identityg, and T = mji0m; if 1 < 7 <.k. The inverse limit of this system is the
subgroup G = (llrg G; of the direct product (equipped with the product topology) [, ; G:

consisting of all elements g = (g;)ies such that m;,9; = g; if j > 4. 'I.'hls is a profinite
group. The group G is closed in [[;c; G; and is therefore compact. It is also Hausdorff
and totally disconnected [FrJ], Lemma 1.2. More precisely, the closed subgroups .of G
of a finite index (= open subgroups) form a basis for the open neighborhoods of 1 in G

The case where I consists of one element shows that each finite group is also a profinite
group. The simplest infinite profinite group is the group

Zp = (ll_mZ/pzZ

of p-adic integers. The direct product of all Z,, is the Priifer group

~

Z = lim Z/nZ
(_

[FrJ], Lemma 1.12. Here we order the set of positive integers N by divisibility. If m | n,
then we take the map Z/nZ — Z/mZ as the natural homomorphism.

The diagonal embedding embeds Z as a dense subgroup of Z. Thus Z is the closed
subgroup generated by 1. Moreover, for each profinite group G and each element g€ G,
the map 1 ~ ¢ uniquely extends to a homomorphism of Z into G. Thus., Z is the
free profinite group generated by one element. Here and in general for proﬁnltc? groups,
whenever we use the term ‘homomorphism’ we mean ‘continuous homomorphism’.

In general, a profinite group which is generated by one element is pr'ocyclic. It is the
direct product [ Z,, where p ranges over all primes and each Z, is either Z/p"Z for
some 1 2> 0 or Zy. .

However, the most prominent example for a profinite group is the Galois group of a
Galois extension N/K. Indeed, we order the finite sub-Galois extensions L/K of N / K
by inclusion. If L C L', then we take res;: G(L'/K) — G(L/K) as the corresponding
homomorphism. We find that G(N/K) 2 (llﬂ G(L/K), as topological groups.

Conversely, generalizing a construction of Emil Artin, Waterhouse constructed for each
profinite group G a Galois extension N/K with G(N/K) = G [Fr]], Corollary 1.11.

The inverse problem of (finite) Galois theory is to determine which finite groups occur
as Galois groups over the field Q of rational numbers, and more generally over other
distinguished fields K. In terms of infinite Galois theory this problem can be rephrased
as “which finite groups are quotients of G(K)?”

Infinite Galois theory deals with two basic problems:

1. Given a distinguished field K, describe G(K) in group theoretic terms.
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2. Give a necessary and sufficient group theoretic conditions on a profinite group G
to be isomorphic to the absolute Galois group of some field K.

Both problems are very far from being settled. However, there are already quite a few
interesting results that shed light on both problems. This article surveys some of them.

3. Separably closed fields, real closed fields, and finite fields
There are three classes of fields with absolute Galois groups which are easy to describe.

3.1. Separably closed fields. A field K is separably closed if every irreducible separable
polynomial has a root in it. If char(K) = 0, then separably closed and al gebraically closed
are the same. If char(K) = p, then these notions may differ. For example, the separable
closure of Fy(¢) (¢ is transcendental over Fp) is different from its algebraic closure. The
fundamental theorem of algebra says that the field C is algebraically closed. This theorem
has been proved in many ways, e.g., in the theory of analytic functions as a consequence
of Cauchy’s integral formula [Car], p. 80, or by Galois theory, as a consequence of Sylow
theorems [La2], p. 202. Finally, K is separably closed if and only if G(K) is trivial.

3.2. Real closed fields. A field K is formally real if —1 is not a sum of squares in K.
Alternatively, K admits an ordering [La2], p. 274. For example, Q and Q(t) are formally
real but Q(v/—1), C and F,, are not. If K is formally real, then char(K) = 0.

We say that a field K is real closed if it is formally real but no proper algebraic
extension of K is formally real. Then K admits a unique ordering. For example, R and
QN R are real closed fields. If K is a real closed field and K is a subfield which is
algebraically closed in K, then Kj is also real closed [La2], p. 280.

The theory of Artin and Schreier says that K is a real closed field if and only if
G(K) is of order 2, i.e. G(K) 2 Z/2Z. Moreover, if K is an arbitrary field such that
[Ks : K] < oo, then K is either separably closed or real closed [La2], pp. 223 and 224.

The latter theorem gives the first necessary condition on a profinite group G to be
isomorphic to the absolute Galois group of a field K: The only elements of G of finite

order are involutions (i.e. elements of order 2). Moreover, if char(K) # 0, then G(K)
is torsion free.

3.3. Finite fields. So, we are forced now to consider fields with infinite absolute Galois
group. The easiest to handle among them are the finite fields. Recall, that if K is a finite
field, then it has g elements, where ¢ is a power of p = char(K'). Moreover, K is the
splitting field over F,, = Z/pZ of the polynomial X7 — X. In particular, there is, up to
an isomorphism, a unique field with ¢ elements. We denote it by F,.

For each . the field F, has a unique extension Fyn of degree n. This extension is cyclic
(i.e. Galois with a cyclic Galois group). The map z —> z? is a canonical generator of
G(Fgn /Fy). It is the Frobenius automorphism and we denote it by Frob(F,~ /F,) [La2],
p. 185. It follows that

G(F,) % Jim G(Fn /Fy) = lim Z/nZ = Z.
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The inverse limit of the relative Frobenius automorphisms is the absolute Frobenius
automorphism Frobg. It is a (topological) generator of G (Fq).

3.4. Quasifinite fields. Unlike in the case of separably closed 'ﬁelds‘ and real clols(;d
fields, the absolute Galois group of finite fields does' not'chara'lcterl'ze this cla‘ss of fie i
For example, the compositum K of all Fy with [ prime is an mﬁmt'e field with G(K) &
7. More interesting, by a theorem of Puiseux, if C is an algebraically closed ﬁe]d'of
characteristic 0, then the absolute Galois group of the field C((t)) of fomal p‘ower senef
over K is isomorphic to Z [Sell, p. 199. In Se'cti‘on 12 we explain that almostﬁallld
o € G(Q) generate a subgroup of G(Q) which is isomorphic to Z. Each perfect fie
with an absolute Galois group isomorphic to Z is quasifinite.

3.5. Model theory of algebraically closed fields. The simple structure of tht? absolute
Galois groups of the three classes that we have descrlbeq here .h?s a favorable {mpac.t on
their elementary theories. Here we assume that the reader is fam1411ar with the basic notions
and results of Model theory and ultraproducts, say as presented in [Frl], Flhapters 6' and 7.
We consider the first order language, £(ring), of the theory of rings. Given a basic field
K, we also add a constant symbol for each element of K to L(ring) and denote the
resulting language by L(ring, K). The elementary theory of a 'class F of fields (resp‘
that contain K) is the set of all sentences in £(ring) (resp. L(ring, K)) that are true in
eai? ti‘r:s];lt that the elementary theory of algebraically closed fields (re.sp. of fixed
characteristic) is decidable. Moreover, the division algorithm for polyno.rmals leads to
a primitive recursive elimination of quantifiers procedure‘for these theonés [FrJ], Sec-
tion 8.2. Thus, there is an effective procedure that determines wh’ether a given geqtencle
of L{ring) is true in all algebraically closed ﬁel_ds ‘(resp. of fl given char:?\cterlstlc). ;
follows that this theory is model complete, that is, if F C F' are algebraically close
fields, then F’ is an elementary extension of F.

3.6. Model theory of real closed fields. Similarly, the theow of real closed ﬁelds. is
decidable and model complete. Moreover, if one adds a binary symbol for thc. or_dcr%ng
relation to L(ring), then, by a theorem of Tarsky, the Lheor?' even has an elimination
of quantifiers [Pr1], p. 48, or [Coh], Section 1. As an application one proves th'at an
absolutely irreducible variety V' which is defined over a r.eal closed field R has a simple
R-rational point if and only if its function field over R is formally real [Pr1], p. 59, or
[La2], p. 282.

3.7. Pseudo finite fields. Let C be either the class of algebraically closed fields of alﬁxed
characteristic or the class of real closed fields. Then C has a complete thcc.>ry. Thz.1t is, all
the fields in C satisfy exactly the same sentences (i.e. they are elementarily eq.unfalen't).
This is obviously not the case for the class of finite fields. Moreover, there exist infinite
models of the theory of finite fields. They are called pseudo finite fields. For example,
each nonprincipal ultraproduct of finite fields is pseudo 'ﬁni'te. o ' '

Ax [Ax1], p. 262, proves that a field K is pseudo finite if and only if it satisfies:
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(1a) Each nonempty absolutely irreducible variety defined over K has a K-rational
point;

(1b) G(K) 2 Z; and

(1c) K is perfect.

These conditions are then used to establish a (recursive) decision procedure for the the-
ory of finite fields, for the theory of pseudo finite fields, for the theory of statements true
in all but finitely many fields F,, and for some more related theories [Ax1], Section 11.

A field which satisfies Condition (1a) is said to be pseudo algebraically closed (abbre-
viated PAC). In Section 12 we put these decidability results in the more general context
of decidability and undecidability results for PAC fields.

4. More about profinite groups

Several concepts and results of the theory of finite groups can be carried over to profinite

groups by ‘taking limits’. Among those are the Sylow theorems, the Frattini subgroup,
and cohomology.

4.1. Pro-p groups. A profinite group G is a pro-p group if each of its finite quotients
is a p-group. If

1—A—>B—C-—1 )

is a short exact sequence of finite groups, then B is a p-group if and only if A and C
are. The same is true for pro-p groups. Each profinite group G has a p-Sylow group G,
By definition, G, is a closed subgroup of G' which is pro-p and which is maximal with
this property. Every pro-p subgroup of G is contained in a p-Sylow subgroup and every
two p-Sylow groups of G are conjugate. Finally, an epimorphism of G onto a profinite
group H maps G, onto a p-Sylow group of H [FrJ], Section 20.10.

4.2. Full families. In general, if C is a family of finite groups, then a pro-C group is a
profinite group all of its finite quotients belong to C. If in (1), B belongs to C if and only
if A and C belong to C, then this is the case for pro-C groups. We then say that C is full.
For example, the family abelian groups or of all finite groups, the family of p-groups,
and the family of solvable groups are full but the family of nilpotent groups is not full.

4.3. The Frattini group. The intersection of all closed maximal proper subgroups of
a profinite group G is a closed characteristic subgroup of G called the Frattini group
of G and denoted by &(G). As for finite groups, #(G) is the set of all nongenerators
of G. That is &(G) is the set of all g € G with the following property: for each subset
S of G, the relation (g, S) = G implies (S) = G. Here (S) is the,closed subgroup of G
generated by S [FrJ], Section 20.1.

For example, if G is a pro-p group, then $(G) is the intersection of all open subgroups
of index p. Thus $(G) = GP[G,G] is the closed subgroup generated by all p-powers
and the commutators of G' [FrJ], Lemma 20.36. In general $(G) is the direct product of
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its p-Sylow groups. This is equivalent to saying that &(G) is. an inverse limit of ﬁnit.e
nilpotent groups. In other words, &(G) is pronilpotent. Likewise, a prosolvable group is
an inverse limit of finite solvable groups.

4.4. Finitely generated profinite groups. Obviopsly, every finite group .has a ﬁlmte s:,t
of generators. We say that a profinite group G_1§ [finitely generqted if it hgs ehemen Z
1,...,T. such that G = (z1,... ,Ze). The minimal e with this property is the (arlz
of G. If G is a finitely generated profinite group, then for each n, G has on!y ﬁmfte]);
many open subgroups of index at most n [FrJ], Lemma 15.1. The {ntersectl'on of a]l
these subgroups is a characteristic open subgroup_ G, of G, and the mtersecm;n % ?[
G, is 1. The former property implies, like for finite set§ or for vector spaces 0 a finite
dimension, that if & G — G is an epimorphis;nSOf finitely generated profinite groups,
i hism [FrJ], Proposition 15.3.

thelgo?el:c?lnﬁililtt: I;lr(:)r:p G ar[ld a]ﬁeld F}( the statement G occurs as a Galois group over
K’ is equivalent to the truth in K of a sentence in L(}'lng) [FrJ], proof of Proposition
18.12. Hence, for each e, the statement ‘the finite Galols'groups over K have at most e
generators’ is equivalent to the truth in K of a conjuflctlon of a sequence of sentenceli
of L(ring). It follows that any ultraproduct of fields with absolute Galois groups of ran
at most e also has a Galois group of rank at most e.

4.5. Rank of a profinite group. A theorem of Douady, says that every profinite gr(;up bG
has a system of generators X which converges to 1. That is, for each open norma 551; l-
group H of G, all but finitely many elements of X belong t.o H [Fr], Prop031t19n 1 . f
If G is not finitely generated, then the cardinality of X is equal to the cardmal-ltylo
the set of all open normal subgroups of G. This is then the rank of G. In partlctlll ar,
if rank(G) < Ro, then G has a descending sequence of open ngrmal supgroups whose
intersection is 1. Also, if G is a pro-p group, then &(G) is the intersection ‘of 2'111 open
subgroups of index p, and G/$(G) is a vector space over I, whose dimension is equal
to the rank of G [FrJ], Lemma 20.36.

4.6. Free profinite group. Given a set X, one constructs the free discrete group F' on X 1
Then one considers the inverse limit F = <11_m F/N, where N ranges over all norma

subgroups of F of finite index which contain almost all elements of X. This is the free

profinite group with basis X. The group F natural}y embeds in F sucfh that X becom'es
a set of generators which converges to 1. The pair (F, X ) has a um’versal property u;
the category of profinite groups similar to the one that (F,X) has in the category o

discrete groups. Each map « of X into a profinite group G such that (Ax(‘X ) conv?rges to
1 uniquely extends to a homomorphism of F into G. In partif:ular, F is determined by
the cardinality of X up to an isomorphism. So, for each cgrd.mal number m we denote
the free profinite group of rank m by Fr,. In particular, F,, is the free profinite group
on countably many generators.

4.7. Embedding problems. The universal property of (ﬁ, X)) is responsible for the sol'v-
ability of ‘embedding problems’ for F'. In general, an embedding problem for a profinite
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group G is a pair
(p: G—= A, a: B— A), @)

where ¢ and « are epimorphisms of profinite groups. If ¢ is only a homomorphism, we
call (2) a weak embedding problem. The kernel of the embedding problem is the kernel
of a. If B is finite, then the embedding problem is finite. A weak solution to 2)is a
homomorphism : G — B such that a o Y = w. We say that v is a solution if it is
surjective (then necessarily ¢ is surjective).

4.8. Characterization of E, by embedding problems. Each embedding problem
(p: F - A, a: B — A) for F in which rank(B) < rank(F) has a solution. The
proof of this result uses an argument of Iwasawa if rank(F') = oo [Fr]], Lemma 24.14,
and a Lemma of Gaschiitz if rank(F) is finite [FrJ], Proposition 15.31. Iwasawa used
this argument to characterize F., as a profinite group of rank Ry for which every finite
embedding problem is solvable [FrJ], Corollary 24.2.

4.9. Free pro-C groups. Let C be a full family of finite groups. If we put the extra
condition on N (in §4.6) in the construction of F that F/N € C, then the resulting
inverse limit is the free pro-C group on X. We denote it by Fx (C) or also by F,, Cyifx
is of cardinality m. The notation and results of the preceding paragraph hold if we restrict
them to the category of pro-C groups. If C is the family of all p-groups (resp. solvable
groups), then we also write Fx (p) and Fy, (p) (resp. Fix (solv) and Fy, (solv)) for Fx(C)
and F,,(C), respectively.

4.10. Index and order. Like for finite groups one may speak about an ‘index’ and an
‘order’ for profinite groups. Let M be a closed subgroup of a profinite group G. Then
(G : M) is defined as J]I*®), where I ranges over all primes and for each [, A(l) is
the maximal power of { which divides the index (G : H) of an open subgroup H of G
which contains M. If these powers are not bounded, we put A(l) = oo. Note that A(l)
may be different from 0 for infinitely many {’s. So, (G : M) is a super natural number.
The index is multiplicative: (G : N) = (G : M)(M : N) if N < M < G. The order of
G is defined as #G = (G : 1). For example, the order of an infinite pro-p group is p*.
Finally, one translates indices of profinite groups to degrees of infinite algebraic field
extensions. If L/K is an algebraic extension, then [L:K]=(G(K):G(L))

5. Cohomology of profinite groups

The action of profinite groups and in particular Galois groups on discrete abelian groups
and the cohomology groups attached to this action capture valuable information about
them. In this section we briefly survey the main concepts and results of the cohomology
of profinite groups which enter into the study of Galois groups.

5.1. Cohomology groups. Let G be a profinite group. A G-module is a discrete abelian

group A (usually additive) on which G acts continuously (usually from the left). Con-
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i -cochains [Rib], p. 95.
i s functions from G™ to A are called (nonhomogeneous) n coc ‘
'tll“rlll‘;;)uform an additive abelian group C™(G, A). For each n there is a homomorphism
dnt1: C™(G, A) = C™Y(G, A), known as the coboundary operator:
n+l- )

(an+1f)(017027---70n) =01f(02,03,. 1 0n41)

n
—}—Z(—l)if(ol,o’z,. ey OO,y - -;0n+l)
i=1

+(;1)n+1f(01, 02y -vvy Un).

It satisfies the rule: 9,42 © 041 = 0. One considers the subgroup
B™(G, A) = Ker(0n41)

of n-coboundaries and the subgroup
Z™"(G,Z) =0, (C"‘1 (G, A))

of n-cocycles. The n-th cohomology group of the G-module A is the quotient
H"(G,A) = Z"(G,A)/B"(G, A).

5.2. Low dimensions. In low dimensions, these groups have useful interpr_etatloq, F;:r
n =0 we have H(G,A) = A® = {ac A| ca=aforalloc € G}.In pax(;tlcular, 1£tAe
action of G on A is trivial (i.e. ca = a for all 0 € G and a € A), Fhen H°(G, A/)l_ h
For n = 1, the cocycles are crossed homomorph?sms. That is functions f: G — f2ucd
that f(or) = f(o) + of(7). A l-coboundar){ is a map o oa=a f_orHsomeG ):)

a € A. In particular, if the action of G on A is trivial, then H'(G, A) = f (&mf4 , d
Finally, for n = 2, there is a natural bijection between the elements of H (G, A) an

equivalence classes of short exact sequences

0—A—G—G—1, M

where the action of G on A through conjugation induces the given a'ction of G on A.
Under this bijection, the zero element of H*(G, A) corresponds to a splllt exact scquepcea
In particular, if H2(G, A) = 0, then each short exact sequence (1) with the prescribe

action of G on A splits.

5.3. Functorial properties. The n-cohomology group H™(G, A) is a contravalr_}an;
functor in G and covariant functor in A. That is, to each homomorphlsmn f:G— h.oh
profinite groups there corresponds a homomorphism f*: H"(H,A) — H '(G ) A) W] 1(}3
satisfies the rules id* = id and (fog)* = g*o f*. Also, to each homomorphism f: A —

of G-modules there corresponds a homomorphism f,: H*(G, A) = H™(G, B) such that
id, =id and (f 0 g)x = f« © g«. Accordingly, we can present tl?e cohomology groups of
a profinite group as a direct limit of cohomology groups of finite groups:

H™(G, A) = lim H"(G/N, AN)
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with IV ranging over all open normal subgroups. Similarly, for direct limits of G-modules
we have the rule: H*(G, !@)Az) = h_m) H™(G, A;) [Rib], p. 109.

5.4. Exact sequences. Each short exact sequence of G-modules
0—A—B—>C-—0

naturally induces a long exact sequence
o+ — H"(G,A) — H"(G,B) — H™(G,C)

L (G A) —s .
The map § is called the connecting homomorphism.
On the other hand, if NV is a closed normal subgroup of G and A is a G-module, then
AN is a G = G/N-module. If in addition H'(N,A) =0 forall 0 < i < n, then we
have the 5-term exact sequence of Hochschild and Serre [Rib], p. 177:

, n=0.

0 — H™(G,AY) ™ H™(G, A) =% H™(N, A)C
—5 B, AN) 2 g, A).

Here inf (inflation) is the homomorphism that corresponds to the canonical map G — G,
res (restriction) is the homomorphism that corresponds to the inclusion map N — G,

tr is a special map called rransgression, and see [Rib], p. 173, for the action of G on
H™(N, A). One derives this sequence from a spectral sequence whose initial elements

are the groups E"? = HP(G, H%(N, A)) and which converges to H™(G, A) (see also
[Sht], Section 1I4).

5.5. Cup products. Another operation that connects cohomology groups of different
dimensions is the cup product. Given G-modules A and B there is for each m and 7 a
natural homomorphism a ® b — a U b:

H™(G,A) ®z H"(G, B) — H™ (G, A ®z6 B)

that for m = n = O is the identity map, and as a functor of both A and B commutes with
the connecting homomorphism. Moreover, the cup product is associative, it commutes
with restriction and inflation, and satisfies @ U b = (=1)™"p U a [Rib], pp. 178-195.

5.6. Induced modules. A lemma of Shapiro connects the cohomology groups of a profi-

nite group G and those of a closed subgroup H of G. Each H-module B induces a
G-module

A=nd$B = {f: G— B| f(no) =nf(c) foralln e H and 0 € G}.

The action of G on A is given by (7f)(c) = f(o7). The lemma of Shapiro then states that
H™(G, A) = H™(H, B) for all n. In particular, for H = 1, we have H"(G, Ind$B) =0
for all abelian groups B [Rib], p. 146.
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5.7. Cohomological dimension. An important invariant that c9homology theory sup-
plies is the cohomological dimension of a profinite group G. Given a prime p, cq,,(g)
is the least positive integer n such that H %G, A) = O. for z.ill g > n and all finite G-
modules A of a p-power order. (Note that the definition in [Rib], p. 196, asks A to range
over all torsion G-modules, but the proof of (iii) = (ii) on page 201 of [Rib] show;
that it suffices to consider only finite G-modules.) Then c¢d(G) is the supremum over a
d G ) .- . . . .
‘ Ié(evz,ral rules help to compute the cohomological dimension of a profinite group [Rib],
Chapter 4: S .

(2a) cdp(G) = cdy(Gp), where Gp is a p-Sylow group of G;

o . _ 1

(2b) ¢d,(G) =0 if and only if Gp = 1; ' . o

(2¢) if 2‘ has an element of order p, then cd,(G) = oo; in particular, cd(G) = oo if
G is a nontrivial finite group;

(2d) H < G implies that cd,(H) < cdp(G);

2¢) equality holds in (2d) if p1 (G : H);

220) iqu isyan open subgroup of G and G has no element of order p, then cd,(H) =
c¢d,(G) [Se2], Theorem, or [Hal], Theorem A.

5.8. Projective groups. The interpretation of the second cohomology group as a col-
lection of equivalence classes of short exact sequences allov;s us to draw an 1mportapt
consequence from the assumption ¢d(G) < 1. In this case H (G, C) = 0 for each finite
G-module C. Hence, each short exact sequence

1—+C—G—G—1
splits. Suppose now that

(p: G A, @ B— A) @

is a finite embedding problem with an abelian kernel C. Then the fiber product G =
B x 4 G gives rise to a commutative diagram of short exact sequences:

RN

The splitting of the upper exact sequence gives a homomorphism 7: G - B such that
a o~y = . Thus, (2) is weakly solvable. If this happens for each finite embedding
problem of G, we say that G is projective. The above argument can be. reve¥sed to prove
that, conversely, if G is projective, then cd(G) < 1. It turns out that if G is projective,
then each weak embedding problem for G (i.e. one in which A, B, and C are arbltr‘ary
profinite groups) is weakly solvable [FrJ], Lemma 20.8. In particular, each eplmorphlsm
7 G — G has a section, i.e. a homomorphism 6: G — G such that 7 0 6 = id.
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If only cd,(G) < 1, then each weak embedding problem for G with a pro-p kernel is
weakly solvable [Rib], p. 211, Proposition 3.1. In particular, every epimorphism 7: G-
G with a pro-p kernel has a section.

In Section 4, we pointed out that each finite embedding problem for a free profinite
group F is solvable. Hence, F' is projective. By (2d), each closed subgroup G of F is
projective. Conversely, each profinite group G is a quotient of some free profinite group
F (Douady [FrJ], Corollary 15.20). In particular, if G is projective, the conclusion of the
preceding paragraph implies that G is isomorphic to a closed subgroup of F. This gives
us the third characterization of projective groups.

The fourth characterization of projective groups comes from a theorem of Tate: Every
projective pro-p group is free pro-p [FrJ], Proposition 20.37. This, together with (2a) and
(2b), implies that a profinite group G is projective if and only if its p-Sylow groups are
free pro-p for all primes p.

Note that the intersection of all open normal subgroups H of a profinite group G such
that G/H is a p-group is a closed normal subgroup N and G/N is the maximal pro-p
quotient of G. That is, each epimorphism of G onto a pro-p group factors through G/N.
If ¢d,(G) < 1, then G/N is a free pro-p group [Rib], Corollary 3.2.

5.9. Cohomology of pro-p groups. Cohomology is most useful to analyze pro-p groups.
If G is a pro-p group, then cd(G) is the minimal number n such that H*"*(G, Z/pZ) = 0,
where G acts trivially on Z/pZ. In general, each of the groups H*(G,Z/pZ) is an-
nihilated by p and can therefore be considered as a vector space over F,. We have
HY(G,Z/pZ) = Hom(G,Z/pZ) = G/®(G) and dimp, H'(G,Z/pZ) = rank(G).
Also, dimg, H*(G,Z/pZ) is the relation rank of G. Thus, if e = rank(G) and k =
relation rank(G) are finite, then F, (p) has k elements ry, .. ., 4 such that G = F, (p)/R,
where R is the smallest closed normal subgroup of E, (p) that contains 7y, ..., 7. This
is a presentation of G by e generators and k relations r; = 1.

6. Galois cohomology

Galois cohomology is the theory that applies cohomological methods to Galois groups
and their action on various modules which come up in a natural way in field theory.

6.1. The additive group of a field. Denote the additive group of a field by K+ and its
multiplicative group by K*. The normal basis theorem for finite Galois extensions and
Shapiro’s lemma (Section 5.6) imply that

H™(G(L/K),L*) =0 1)

for an arbitrary Galois extension L/K and each n > 1 [Rib], p. 246. In particular for
char(K) = p, we may use the long exact sequence that corresponds to the short one

0 — Z/pZ — K, £» K, — 0
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with p(z) = zP — z, to conclude that H"(G(K)ZZ/pZ) =0 f(zlr))allgz f 2. eTt}ll;;st
cdp(G) < 1. Now denote the maximal pro-p-extension of K by K Ka(x; ) c}{ serv that
G(K® /K) is the maximal pro-p quotient of G(K). It follows that G ( / 1) is afr 1
pro-p group (last paragraph of §5.8). Moreover, the t;irst part of the aboveKc();x)g ;{xag
sequence shows that Hom(G(K),Z/pZ) = K+/Q(K ). So, the r'ank of G( : / ]2 1s(
the dimension d of K¥/p(K™*) over Fy. In particular, every ﬁn.lte p-group of rank a
most d occurs as a Galois group over K. This is a theorem of Witt [Wit], p. 237.

6.2. The multiplicative group of a field. The multiplicative c_ounterpart of (1) is known
as Hilbert’s theorem 90 [Rib], p. 246: For each Galois extension L/K

H'(9(L/K),L*) = 1.

(One uses 1 instead of 0, because L* is a multiplicative module.) If L/K is a finite
cyclic extension with generator o, one obtains as a consequence that the norm of an
element @ € L is 1 if and only if there exists b € L such that a = Ul?/b. Also, if n
is prime to char(K) and the group gn of m-th roots of 1 is contained in K, we may
consider the short exact sequence

1 — pn — KX S KX — 1,
where 7 is the map  +— z". The beginning of the corresponding long exact sequence
gives Kummer’s correspondence: K>/ (K*)y» = Hom(G(K ), in)- ' .
For arbitrary Galois extensions N 2 L 2 K we may write the following special case
of the Hochschild—Serre exact sequence:
i N/L
| — HAG(L/K), L¥) ™ HAG(N/K), N*) = HX(G(N/L), N*)9®/D)
=y HYG(L/K, LX) = H* (G(N/K),N*).
In particular the first inflation map is injective. . .
'?'he Brauer group of a field K is the group Br(K) of all equivalence cla/sses of fimte
dimensional central simple K-algebras. Here two such algebras A and. A are said to
be equivalent if there exist division rings D and D’ over K and pomtlve integers n
and n such that A & Mpxn(D), A’ = Myxw (D), anFi D =g D'. The prodlgt
of the equivalence classes of two such algebras A and B is represented by A ® K'b .
There is a canonical isomorphism Br(K) & H*(G(K), st) [Sel}, X5, p. 165, or [Ri l
pp. 250-252. The latter group is the direct limit of the relative quuer groups Br(L/K) =
H2(G(L/K), L*), where L ranges over all finite Galois extensions of K.
If L/K is a finite cyclic extension of degree n and o is a generator of G(L/K), then
the following sequence is exact:

| — K% — L* =8 < TE gx 2 Br(K) =5 Br(L).

Here z!~° = z/z°, Nk is the norm map, and o associates with each a€ K?< the
factor system c defined by c(o*,07) = 1if i +j < mn and c(ot,0f) =aifi+jzn
[Deu], p. 64.
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If Br(L) = O for each finite separable extension of K, then cd(G(K)) < 1. Conversely,
if K is perfect and cd(G(K)) < 1, then Br(L) = 0 for each finite extension L of K
{Rib], p. 263. It follows that in this case, the norm map Ny /x: L* — K™ is surjective
for each finite Galois extension L/K.

6.3. Cohomological dimension. The rule (2) of Section 5.7 for arbitrary profinite groups
applies also to absolute Galois groups. In particular, since elements of order p appear i

G(K) only if p = 2 and K is formally real, Condition (2f) of Section 5 improves to the' “

following one:

(2a) If L/ K is a finite extension, then cd,(K) = cdp(L), unless p = 2, K is a formally
real field but L is not.

In addition we have: B

(2b) If ¢ is transcendental over a field K and p # char(K), then cd,(G(K(t)) =
1 + c¢d,(G(K)) [Rib], p. 271, and [Ax2], p. 1221.

(2¢) Let (K, v) be a Henselian valued field with value group I" and residue field K.

If p # char(K), then cd,(G(K)) = dimg, (I'/pI") + cdp(G(K)). In particular, if v is "

discrete, then cd,(G(K)) = 1 + cdp(G(K)) [Me2], Theorem 3.

Recall that a valued field (K, v) is Henselian if it satisfies the lemma of Hensel and
Rychlik: Let O be the valuation ring of (K, v). If f € O[X] and a € O satisfy v(f(a)) >
2v(f'(a)), then there exists a unique = € O such that f(z) = 0 and v(z—a) > v(f'(a)).
Equivalently, v has a unique extension to each finite extension of K [CaF], p. 56, or
[Jal], Proposition 11.1. For example, Q, and the field Ko((t)) of formal power series
over an arbitrary field Ko are Henselian. ‘

If K is separably closed, then G(K) = 1 and therefore cd, (G (X)) = 0 for each p. By
(2b), cd,(G(K(t))) = 1 for p # char(K). Hence cd(G(F)) = 1 also for all algebraic
extensions of K (t), except those which are separably closed.

If K is a finite field, then G(K) = Z is free and . therefore projective. By (2b), -

cd,(G(K (¢))) = 2 for all primes p # char(K). By (2¢), cdp(G(K((t)))) = 2, and
cdp(G(Qp)) = 2. It follows from (2a), that if F is a finite extension of any of these
three fields, then cd,(F) = 2.

Finally, we explain in §8.2 that if K is a number field, then c¢d,(K) = 2, unless p = 2
and K is formally real. In the latter case cdy(K) = co.

6.4. Connection to Milnor’s algebraic K-theory. Milnor’s n-th K-group of a field F
is the quotient

KMF)=(F*® - @ F¥)/I,
with n factors F* and where I is the additive subgroup generated by all elements
T Q- ® Ty, wWith z; + z; = 1 for some 1 <i < j < n (one writes Milnor’s groups

additively). Milnor’s conjecture states that if F’ contains a primitive root of 1 of order p,
then

KM(F)/pKY(F) = H"(G(F),Z/pZ).
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For n = 1, this is the classical isomorphism FXJ(F*)pP = H! (G(F),Z/pZ))( g§6.2)r;
Denoting the element of H Y(G(F),Z/pZ) which cor-rcsponds to a coset x - (F*)P wit
z € F* by (x), the conjectured isomorphism for arbitrary 7 maps

1 ® - Q@xn+ 1 mod p

to the cup product (zj)U---U (24). So, if Sp(F) denotes the subgroup of
H'(G(F),Z/pZ) ®---® H' (G(F),Z/pZ)

generated by all (z1)®: - .®(zy) with z; € F* and 2+ = 1forsomel <i<j<mn,
then the following short sequence should be exact:

Xy H™(G(F),Z/pZ) — O.

Merkurjev and Suslin [MeS] prove Milnor’s conjecture 'for n = 2. For n = 3, partial
results have been obtained by Merkurjev and Suslin and independently by Rost.

7. The field of p-adic numbers

¢ ion’ ith the study of ‘local questions’ associated
A study of a ‘global question often starts with t : .
with it. In particular, a good understanding of G(Q,) leads to information about G(Q).
The former group is much simpler than the latter. Nevertheless, the structure of G (Qp)
is complicated enough to be the subject of numerous pieces of research.

7.1. The field Qp. The field Qp is the completion of Q with respect to the p-adic
valuation vp:

“P(%Pn) =n

if a,b,n are integers and p t a,b. In particular, its value group isZ (59 the yaluatlon is
discrete), its valuation ring is Zp, its unique maximal id@l is pZp, a}nd its residue ﬁel.d is
F,. The completeness of Q, implies that Qp is Henselian. The finiteness of the residue
field is responsible for the compactness of Z,, and hence for the local compactness of Qp
under the p-adic topology [CaF], p. 50. Consequently, Q,, has for each n only finitely

many extensions of degree at most n [La3], p. 54.

7.2. Henselian fields. Let (K,v) be a Henselian field with residue' field K of char-
acteristic p (which may be 0). Each finite extension L of K satlsﬁ:s the foimu1.a
[L: K] = def, where f = [L : K] is the residue degree, € = (U(L ) v(K~ )) is
the ramification index, and d is a p-power, called the defect of L /‘K . This formula is due
to Ostrowski [Rbn], p. 236. Ifd =1 for each L, we say that K is defectless.
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Denote the unique extension of v to K, als
. : s also by v and let O, be the i
valuation ring. Define the inertia group of G(K) as ) comesponding

I(K)={0 € G(K)| viox —z) >0forall z ¢ O,}.

It is a closed normal subgroup of G(K) and we denote its fixed field in K by K. For
each o € G(Kw/K) define 5 € G(K) by 6a = 5a for each a € K, w:th v(a;r.>
Here @ is the image of a under the residue map. The map o +— & isran isomo l;sﬁx
g(K.,,/K ) ’—‘_—‘ G(K) [End], Theorem 19.13. In particular, K, is the compositumq:)f all
ﬁmtg extensions L of K for which [L : K] = f is the residue degree. If K is defectless
K\ is the maximal unramified extension of K. That is, Ky is the compositum of ali
finite extensions L of K for which L/K is separable and e = 1.
The ramification group of G(K) is

R(K) = {06 G(K) } v(%— 1> >Of0ralla:€st}.

It is a closed normal subgroup of G(K') which is contained in I(K). We denote its fixed
field in K by K. If K is defectless, then K, is the maximal tamely ramified extension

of K. That is, Ky is the compositum of all finite extensions L of K for which E/T{‘

is separable and p t e. Combined with the preceding paragraph, we have the following
exact sequence: |

1 — G(Ky/Ku) — G(Ky/K) — G(K) — 1. 6))
Let I' = v(K™) = v(K)) and let A = v(K\X). For each
0 € G(Ku/Ku) = I(K)/R(K)
we define a homomorphism h,: A/I' — K, by
ho(v(z) + T') = ox/z, ze KX

Then the map ¢ — h, gives an isomorphism G(Ky/Ky) = Hom(A/l",FX) [End],
Theorem 20.12, or [ZaS], p. 75, (18). Moreover, ’

Hom(4/IK;) =[]z},
l#p

where [ ranges over all primes # p and & = dimg, I'/IT". Thus [Me2], Theorem 1,

G(Ke/Ku) = [[ 2.
l#p '

In particular, g({(,, /Ku) is an abelian group of order prime to p. Moreover, the exact
sequence (1) splits. To describe the action of G(K) on G(Ky/Ku) let u(K,) be the

7
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group of roots of unity of K, and let x: G(K) — Aut(u(K)) be the cyclotomic
character: ¢° = (<9). Then the action of each 7 € G(K) (viewed also as an element
of G(Ky/K)) on G(Ki/Ku) is given by the following formula:

ror~ ! =X, o € G(Ky/Ku)-

If p =0, then Ky = K. Suppose therefore that p > 0. Then group G(Ky) is a
pro-p group {Za$], p. 77, Theorem 24. Since the order of G(Ki/Kuyr) is prime to p, the
Schur—Zassenhaus theorem [FrJ], Lemma 20.45, implies that the short exact sequence

11— G(Ktr) — G(Kur) - g(K"/K‘“’) — 1

splits.

pFor the same reason the p-Sylow subgroup of G(Ky/K) are isomorphic to those of
G(Ky/K), hence to those of G(K). It follows that they are pro-p free (§6.1). Conclude
that cd,(G(K«/K)) < 1 (fourth paragraph of §5.8). Since G(K) is a pro-p group the
second paragraph of §5.8, implies now that the short exact sequence

1 — G(Ky) — G(K) — G(K¢/K) — 1
splits [KPR], Theorem 2.2. It follows that also the short exact sequence
1 — G(Ku) — G(K) — G(K) — 1

splits.

7.3. Finite extensions of Qp. We specialize now the results of §7.2 to a finite exten-
sion K of Q. It is defectless [CaF], p. 19, and K = F, where g is a power of p.
Hence G(Ky/K) = 7. Moreover, the Frobenius automorphism Frob, of G(F,) lifts
to a generator Frob(Ku/K) of G(Ky/K). It is uniquely determined by the condition
vp(Frob(Ky/K)a — a?) > 0, for all a € Ky with v(a) > 0.

Since the valuation of K is discrete, G(Ky/Ky) is also procyclic. More precisely, it is
isomorphic to [],,, Z: [CaF], p. 31. The group G(K/K) is generated by two elements
o, T, where o is a lifting of Frob(Ky/K) (as such (o) & 7Z), T generates G(Ky/Kur)
and

oro~ ! =71 2)
Indeed, G(K;/K) is the free profinite group with two generators and the above relation.
That is, if 7,5 are elements of a profinite group G and 573~ ! = 79, then the map
(0,7) — (5,7) extends to a homomorphism G(Ky/K) — G. Relation (2) is known as
the Hasse-Iwasawa relation. '
By (5b) below, cd(G(Ky)) = 1. It follows that G(Ky) is a free pro-p group (Section
4.9). Tts rank is Ro. Since each of the three factors G(Ku/K), G(K/Kur), and G(Ky)
of G(K) is prosolvable, so is G(K).
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74. G(K) is finitely generated. Consider now the maximal abelian extension Kb
of Ky. Iwasawa proves that G(Ky,a»/K) is generated by n + 3 elements, where n =
[K : Qp] [Iw3], Theorem 3 and use of local class field theory. Moreover, G(Kyap) is
contained in the Frattini subgroup of G(K) and therefore also of G(K). Hence, G(K)
itself is generated by n + 3 elements [JaR], Introduction.

Jannsen [Jan], SatAz 3.6, goes one step further and presents G(K) as a quotient of a
semidirect product Fy, 11 (p) % G(K/K) by a subgroup N which is the closed normal
subgroup generated by one element. Thus, in addition to the Hasse—Iwasawa relation of
G(K«/K), the generators of G(K) satisfy only one additional profinite relation.

71.5. Explicit presentation of G(K) by generators and relations. Jannsen and Wingberg
[JaW] improve earlier results of Jakovlev and Koch and give the exact structure of G(K)
by generators and relations in the case where p # 2. This depends on several invariants
of K. The first two are n = [K : Qp] and g = |K|. Then one proves that the group of
roots of unity of a p-power order in Ky is finite. So, it is cyclic and generated by an
element ¢ of order p°. The Iwasawa generators o and T act on ¢ and define two positive
integers g and h modulo p*:

Ca = ng CT = Ch'

Also, let 7 be the element of Z with I-coordinate 0 for each prime [ # p and with
p-coordinate 1. In particular 7 is divisible (in the ring Z) by p — 1. Then G(K) is the

free profinite group on the generators o, 7, Zo, . . . , T, With the following conditions and
relations:

(3a) The closed normal subgroup which is generated by x,...,z, is a free pro-p
group;

(3b) The elements o and 7 satisfy o70~! = 79;

(3¢) If n is even, then 2§ = f(=o, T)ngs (1, 22)(23,T4) - - - (Tm—1, Tn);
(3¢’) If n is odd, then

zg = f(@o, 7)Y (x1, y1) (22, 73) (T4, T5) - - (Tp_y, ),
where,

_ _ -1 -2 —
(z,y) = zyx ly ! f(mo,r):(x(’)’p Tx(',‘p 7'--~ng)”"1,

and y; is an element in (z(,0,7) which is given in [JaW], p. 74.

Diekert [Die] completes the work of Jannsen and Wingberg in the case p = 2 and
s > 1 (that is, K (v/~1)/K is unramified). He proves that G(K) is generated by n + 3
generators with relations (3a), (3b) and (3c) as above. Note that in this case n = [K : Q]
is even (argue with the index of ramification). The structure of G(K) if v/—1 ¢ K and
in particular if KX = @Q, is not known yet. l

7.6. Characterization of finite extensions of Q, by their absolute Galois groups. The
description of the absolute Galois group of finite extensions of Q, by generators and
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relations leads to characterizations of these fields by their absolute Galois groups [JaR]
and [Rit]: ) _ ~

Let K and L be finite extensions of Q. Suppose that v—1 eN Kifp = 2 (acuiall');
we could assume that K (y/—1)/K is unramified). Then G(K) = G(L) if and only i
[K:Qp| =[L:Qp}and KN Qpab = LN Qp,ab-

7.1. Demushkin groups. A forerunner to the results of 7.5 and an importapt ingredient
in their proof is the determination of the structure of the maximal pro'-p-quotlent of G (K )
by Demushkin and Labute. In other words, we let K () be the maximal pro-p extension
of K and study G = G(K® /K). Denote a primitive root of unity of order n by (. If
¢ ¢ K, then G = ﬁn“(p) [Sh1] and [Se3], 4.1. In particular, if K = Qp and p +2,
then G = F(p). .
If ¢, € K, then G is isomorphic to a Demushkin group of rank n + 2. This means that
(4a) dimp, (H'(G,Z/pZ)) = n+2; _ ‘
(4b) dimg, (H(G, Z/pZ)) = | (thus H*(G,Z/pZ) = L/pL);
(4c) the cup product U: H'(G,Z/pZ) X HY(G,Z/pZ) — Z[pZ is a nondegenerate
bilinear alternating form. .
It follows that rank(G) = n+2, and G is generated by elements xy, 2, . . ., Tnt2 With
a single relation. Moreover, cd(G) =2 [Se3}, 9.1. . . p
In order to write down this relation we consider the maximal power ps of p such thz:LtH
contains (pe . Then the maximal abelian quotient of G has the form (Z/p*Z)® (Z/pZ)™".
If p* # 2, then the relation is:
3375 [z1,22] - [Tn41: Tni2] = 1,

where [z,y] = g~y lzy. If p° = 2 and n is odd, then
wizy(za, 3] - - [Zntts Tnga) = 1

1], Theorems 7 and 8.
[Siillkfe; i;:er gll:)er]e p* = 2 and n is even, Labute co.nsiders L = K(¢,C,Ci65- - )
Then G(L/K) is isomorphic to the group U, of inve.mble elements of Z,. Moreover,
L C K® and so restriction gives rise to the cyclotomic character x: G - U,. For each
o € G, x(0) is the element a € U, such that (7 = (* for each root of unity of 2-power
order. Consider the image A of x in U,. There are two cases [Lbl]., Th‘eorem 9:
Case 1: A= (1 +27Z,) with f > 2. In this case the single relation is:

ac%+2’ (X2, 3]+ [Tng1, Tnga] = 1

Case 2: A = {£1} x (1 +2/Z;) with f > 2. Then the single relation of G has the
form:

$ﬂx1, :L'Z].’E%f [m;, .’E4] (R [.’L‘n+l, $n+2] =1.
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In particular, if K = Q, then G is generated by 3 elements z, y, z with the single relation

x2y4[y, z] = 1.

If we replace the condition (4a) on G by “rank(G) = Ry”, we get a Demushkin group
on ranl;1 k&,. Labutef[LbZ], Theorem 5, proves that the p-Sylow group of G(K) is a
emushkin group of rank Ry and determines the single profinite relation th ]
group [Lb2], Corollaries 2 and 3. P o hat defines tha‘t

Minac and.Ware [MW1] and [MW2] determine all Demushkin groups G of a count-
able rank which appear as the maximal pro-p Galois group over of some field F'. The
anatogous problem for Demushkin groups of finite rank is still open.

7.8. Local cla.ss field theory. A central tool in the proof of the above statements on the
absolute Galois group of K a.nd its maximal p-quotient is the reciprocity law of local
class field theory. For each finite abelian extension L of K there is an exact sequence

1 — Np/gL* — KX VLK G(LJK) — 1,

where Np, is the norm map [Nel), p. 42, or [CaF], p. 140. The reciprocity map'
Yr/K behaYes ‘well’ under extensions of L and therefore gives rise to a continuous
hOfl’lOmOl"phlsm Yr: K* — G(Ku/K), which is injective. Note that K, C K. If
7 is a prime element of K, then ¢k (7) is a lifting of Frob(Ky/K). Let O—K bz .the
valuatlo_n ring of K, let Uk be its group of units, and let Uk ; = 1+ 7O be the group
.of 1-units of K. Then 9k (Uk) is the inertia group of g(kab/K) while Yx (Uk 1) is
its ramification group [CaF], pp. 142-145. ’ !
The reciprocity map has good functorial properties. If L is a finite extension of K
then KL C Ly, and we have a commutative diagram: ’

[x— % G(La/L)
NL/K[ res
Y

KX

G(Ka/K)
IfoeG(K), K =K', and € K*, then ¥k (2°) = ¥k (z)? [Nel], p. 26.

7.9. The center of G(K). The latter property may be used to extend the power of local
class field theory beyond abelian extension. As an illustration we repeat here an argument
of Tkeda [Ike], proof of Lemma 2.1.8, which proves that the center of G(K ) is trivial.

Let o be an element of the center of G(K) and let £ € K*. Find a finite Galois
extension L of K which contains x. Then Ly, is a Galois extension of K and v, (z°) =
P1(x)? = ¢ (z). Hence 7 = . Conclude that ¢ = 1.

1 5
Note that Neukirch Nel} p 22, uses the term ‘reci i ’ ‘inve T Ed
b P- > 1procity map for the ’ N g
x/N ) K. mverse’ map 7: (L/K)

—
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7.10. Cohomological dimension. The cohomological dimension of an arbitrary alge-
braic extension L of Q, obeys the following rules [Rib], p. 291:

(5a) c¢d;(G(L)) = 0 if and only if [ { [@p : L;

(5b) cdy(G(L)) = 1 if and only if I | [Qp : L) and I* | [L: Qypl;

(5¢) cdi(G(L)) = 2 if and only if I°° { [L:Qyp)

They are used to prove that I' = G (K) is in some sense determined by a finite ‘big’
quotient [Ja2], Theorem 74

(6) T has a finite quotient I such that if a closed subgroup H of I is a quotient of
I’ and T is a quotient of H, then H = I. 7

7.11. The field Fy((t)). Let q be a power of a prime number p. Then K = Fg((t)) is
the field of all formal power series in ¢ with coefficients in F,. It is the completion of
IF,(t) with respect to the zero of t and shares many properties with Q.

For example, let K, be the maximal tamely ramified extension of K. Then G(K/K)
is the free profinite group with the generators o, T and a unique defining relation (2).
The ramification group G(Ky) is isomorphic to F,(p). The restriction map G(K) —
G(K«/K) splits and therefore G(K) = F,(p) % G(K«/K). Moreover, the action of
G(K«/K) on G(Ky) is free in the following sense: G(K:) contains a closed subgroup
E such that (a) E = F,(p), (b) G(Ky) is the closed normal subgroup of G(K') generated
by E, (c) if G = F x G(Ky/K) is a semidirect product and F is a pro-p group, then
each homomorphism E — F uniquely extends to a homomorphism G(K) — G whose
restriction to G(Ky/K) is the identity map [Koc], Satz 3.

7.12. Arithmetically profinite extensions of a local field. A valued field K is local if it is
locally compact under the topology which is determined by the valuation. If char(K) =0,
then K is a finite extension of Q. If char(K) = p, then K = F,4((t)), for some power
q of p [Bou], p. 433.

Let K be a global field with a residue field K of characteristic p. Using the closed sub-
groups of G(K) with the “upper numeration”, Wintenberger [Win], p. 62, distinguishes
among all algebraic separable extensions of K those which are strictly arithmetically
profinite (SAPF). We do not repeat here the definition of APF extensions but rather
quote some of its properties:

Let M and N be separable algebraic extensions of K such that M C N.

(6a) If M/K is finite, then it is SAPF [Win], 1.2.2.

(6b) If M/K is finite, then N/K is SAPF if and only if N/M is SAPF [Win], 1.2.3(}).

(6¢) If N/M is finite, then N/K is SAPF if and only if M/K is SAPF [Win], 1.2.3(ii).

(6d) If N/K is SAPF, then so is M/K.

(6e) If N/K is a Galois extension, N is a finite field, and G(N/K) is a p-adic Lie
group,? then N/K is SAPF [Win], 1.1.2.

(6f) If L/K is a SAPF extension, then the maximal tamely ramified subextension of
L/K has a finite degree [Win], 2.1.2. In particular, L is a finite field and the value group
of L is isomorphic to Z.

2 For a definition of a p-adic Lie group see, €.g., [DMS], Definition 9.17.
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(6g) For each infinite SAPF extension L/K there is a local field X (L) of charac-
teristic p [Win], Theorem 2.1.3(ii), with residue field isomorphic to L and with absolute
Galois group isomorphic to G(L) [Win], Corollary 3.2.3. Thus G(L) = G(L((t))).

7.13. Infinite extensions of Qp with isomorphic Galois groups. Consider the field N =
Qp(Cp, G2, Gt - - ), where (i is the p-th root of unity. Then N/K is a totally ramified
infinite Galois extension and G(N/K) = Zx [Sel], Chapter IV, Proposition 17. In
particular G(N/Q,) is a p-adic Lie group. By (6e), N/Q, is a SAPF extension. By
(6g), G(N) = G(Fp((t))). Also, ZX = Zp x A, where A = Z/2Z if p = 2 and
A2Z[/(p—1)Zif p> 2. Let M be the fixed field of A in N. By (6d) (or by (6e)),
M/Q, is also SAPF and therefore G(M) = G(Fp((t))) = G(N), Since M is a proper
subextension of N/Q,, it is not isomorphic to N over Q, [FrJ], end of proof of Lemma
18.19.

7.14. CONJECTURE. For every infinite algebraic extension M of Qg which is not @p there
exists another algebraic extension M' of Qp, such that G(M) = G(M') but M %q, M.

8. Number fields

Our knowledge of the absolute Galois group of a number field K is a consequence of
the arithmetic of K and of the Hilbert irreducibility theorem, which K satisfies. In this
section we survey the consequences of the arithmetic and deferthe discussion of Hilbert
irreducibility theorem to Section 11.

8.1. Primes. A prime p of K is either an equivalence class of valuations of K or of
archimedean absolute values. The latter correspond to the embeddings of K in C. We

denote the completion of K at p by K, embed K in I~(p, and let Kp a5 = Kn K, If
p is nonarchimedean, and lies over a rational prime p, then K, is a finite extension of
Qp and K, 4 is the Henselian closure of K with respect to p. If p is archimedean, then
Ky g is either a real closure of K or the algebraic closure of K. In all cases K|, i is
determined by p up to a K-isomorphism. Also, K K, = I~{p (by Krasner’s lemma if p is
nonarchimedean). Hence res: G(K,) — G(Kp ) is an isomorphism. So, we may and
we will identify G(K,) with a closed subgroup of G(K).

8.2. Global class field theory. Local class field theory teaches us that the group K
controls the abelian extensions of K. To control the abelian extensions of the number
field K, global class field theory combines all groups K, to the group of ideles of K:

Ig = {a € l_IK;< | ap € Uy for all but finitely many p}.

Here Uy, is the group of units of K. The multiplicative group K™ embeds diagonally in
Ik and Cg = Ix /K™ is the group of idele classes of K. There is a natural topology on
Ck which makes it a locally compact group. The,quotient map I — Ck is injective on
each K| ,f. We can therefore view K;‘ as a closed subgroup of Ck. To each finite abelian
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extension L/K global class field theory associates an Artin map Yr/x: Cx — G(L/ K )
which is surjective and with kernel Ny /¢ Cr, [CaF], p. 172. The good functorial prgpertles
of the Artin map allow us to take inverse limits on all ¥1,/x and to obtain an Artin map
Yx: Cx — G(Ka/K). This map is surjective and its kernel is the connected corqponent
of 1. The restriction of ¥ x tO K¢ maps it into the decomposition group of p in Ky,
that is into G(Ka/Kap N Kp). It coincides then with the local Artin map. .

One approach to class field theory is via Galois cohomology [CaF] (the other one is
through analytic methods [Gol]). The cohomology of number fields is partly associated
to the cohomology of its completions through the local global principle for the Brauer
groups: The map

HG(R),B*) = [] B2 (G(K,), K M

where p ranges over all primes p of K and res is the product of all local restriction maps
is injective [Ned], p. 244. This extends also to the case where K is an arbitrary algebraic
extension E of Q [Rib], p. 296. Similarly, the map

H*(G(E),z/pz) <> || H*(G(Ey), Z/pZ) @

is injective for each algebraic extension E of Q and each prime p (see [Sed], p. 12, for
the case E = Q and [GJ2], proof of Lemma 4.3, for the general case). As a consequence,
one gets the following rules for the cohomological dimension of G (E) [Rib], p. 302:

(3a) cdp(G(E)) = oo if and only if p=2 and E embeds into R;

(3b) Assume that either p # 2 or E does not embed into R. Then

(i) cdp(G(E)) =0 if and only if p{ [Q: E};

(ii) cdp(G(E)) = 1if and only if p | [Q : E] and p* | [E : Q| for every extension
p of pto E; _

(iii) c¢dp(G(E)) = 2 if and only if p | [Q : E] and there exists an extension p of p to
E such that p®° { [Ey : Qp].
In particular the cohomological dimension of each number field which does not embed
into R is 2. Also, cd,,(G(Qub)) = 1 for each prime p. Thus G(Qzp) is a projective group.

8.3. Closed abelian subgroups. Geyer uses the information about the cohomological
dimension of closed subgroups of G(Q) to prove that each closed abelian subgroup of
G(Q) is procyclic [Rib], p. 306.

8.4. Z;-extensions. Class field theory becomes concrete in the case K = Q. The Kro-
necker—Weber theorem states that the maximal abelian extension Q, of Q is obtained
by adjoining all roots of unity to @ [Nel], p. 46. Consequently

G(Quw/Q) = Z* =] zy.
i

In particular, for each prime [, Q has a unique Galois extension N such that G(N/Q) = Z,
(we call N a Z;-extension of Q). Iwasawa [Iw2], Theorem 2, considers the compositum
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N of all Z,;-extensions of an arbitr:

ary number field K. He proves that G(N/K) is a free
Zl—module. whose': ranl.< a(K) satisfies 1, + 1 < a(K) < [K : Q], where r; is th)c number
of nonconjugate imaginary embeddings of K into C.

8.5. Characterization of a number field by its absolute Galois group. The real closures
_Of Q and the p-adic closures of Q are characterized by their absolute Galois groups. If E
is an algebraic extension of Q and G(E) is isomorphic to G(R), then E is isom(;rphic
over Q to ]R‘a]g = Q N R (because Q has only one ordering). Similarly, Neukirch [Ne2]
proves that 1f. G(E) = G(Qyp), then E = Q, 4. He also proves that if K and L are
Galois extensions of Q such that G(K) = G(L), then K = L. It follows that every open
nom'lal subgroup and hence every closed normal subgroup of G(Q) is characteristic
Uchida [Uc1] and Iwasawa [Iwl] independently generalize Neukirch’s result: If K anci
L are number fields and G(K) = G(L), then K and L are conjugate over Q. Moreover, if
o: G(X) — G(L) is an isomorphism, then & can be extended to an inner automorphi;m
of G(Q). In particular, every automorphism of G(Q) is inner. Since G(Q) has a trivial
center (a result of EK. Schmidt; see also Section 12), this means that G(Q) is a complete
group. The latter result is also proved by Ikeda [Ike]. ?

8.6. Releigation of finite solvable groups. Each embedding problem for G(K) induces
by' regnctnon an embedding problem for G(K,) for each prime p of K. The local global
principle (2) for the groups H?(x,Z/IZ) implies that a weak embedding problem for
G (K) with a finite abelian kernel has a weak solution if and only if it has locally a weak
solution [GJ2], Lemma 4.3. Scholz used this principle to realize each finite [-group with
1 # 2 over Q [Sed], Chapter 2. Shafarevich extends this result to arbitrary number field
K and also to [ = 2 [Sh2], p. 96, and finally proves that each split embedding problem
for G(K') with a nilpotent kernel is solvable [Sh2], p. 205. As a consequence he is able
to realize each finite solvable group over K [Sh2], p. 180.

9. p-adically closed fields

The field Q{, of p-ad.ic numbers behaves in many respects like the field R of real numbers.
The ‘p-adic’ theory is an analog of the ‘real theory’, which is however more complicated.

9.1. .D.eﬁnitio‘ns. To define ‘formally p-adic field’ one replaces —1 and squaring in the
definition of ‘formally real’ (§3.2), respectively, by p and the Kochen operator:

V(z) = 1_ -z
p(2p—2)* =1

A ﬁeld K is then formally p-adic if p~' does not belong to the ring Z[y(K)]. Alter-

natively, K is formally p-adic if it admits a p-adic valuation v. That is, 'u(p). is the

leastv positive element of v(K*) and K, = F,. For example, Q and Q,, are formally

p-adic fields. A formally p-adic field K is p-adically closed if it has no proper algebraic

formall'y p-adic extensions. In this case K has a unique p-adic valuation v and (K, v) is
Henselian. ! ’
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9.2. Model theory. A natural language for valued fields is obtained from L(ring)
by adding a unary predicate for the valuation ring. We denote this language by
L(valued ring). As in the real case, the elementary theory of p-adically closed fields is
model complete in this language. Moreover all p-adically closed fields K are elementarily
equivalent in £(valued ring) to Qp (Ax, Kochen and Ershov [PiR], Theorem 5.1). In par-
ticular, since G(Q,) is finitely generated, G(K) = G (Qp) (Section 4.4). Moreover, if Ko
is algebraically closed in K, then K is also p-adically closed and res: G(K ) — G(Ko)
is an isomorphism. .

Again, as for real closed fields, an absolutely irreducible variety V which is defined
over a p-adically closed field K has a simple K -rational point if and only if its function
field over K is formally p-adic [PrR], Theorem 7.2.

9.3. p-adic closure. Zorn’s lemma implies that each p-adically valued field (K, v) has a
p-adic closure (K, ). That s, (K, ©) is a p-adically closed field and K /K is an algebraic
extension. For example, Qa1 is the unique (up to isomorphism) p-adic closure of Q.
Unlike in the real case, two p-adic closures of (K, v) need not be isomorphic. Macintyre’s
isomorphism theorem says that if (E,v) and (F,v) are p-adic closures of (K,v), then
(E,v) =k (F,v) if and only if KN E" = Kn F™ for all positive integers n (here
E = {z"| z € E}) [PIR], Corollary 3.11. As a result, the theory of p-adically closed
fields has an elimination of quantifiers in an extension of £(valued ring) which contains
an n-ary predicate symbol P, for each positive integer n (Macintyre [PrR], Theorem 5.6).
For a p-adically closed field (K, v) one interprets P, as the set of all n-powers of elements
of K.

As for real closed fields, G(Qp) characterizes Qp up to an elementary equivalence. In
other words, if K is a field such that

G(K) = G(Qy), )

then K is p-adically closed and is therefore elementarily equivalent to Q, (89.1).

We have already mentioned (§8.5) that Neukirch proved this theorem for algebraic ex-
tensions of Q. Pop [Po3], Theorem E9, proves that if in addition to (1), K is Henselian,
then K is p-adically closed. Efrat [Ef5], Proof of Theorem A, (for p # 2) and Koenigs-
mann [Koe], Proposition 4.4, (for arbitrary p) prove that indeed, (1) implies that K is
Henselian. Hence, (1) implies that p-adically closed.

The concept of ‘p-adically closed field” has been extended by Prestel and Roquette
[PrR] to take care of finite extensions of Qp. A valuation v of a field K of characteristic
0 is generalized p-adic® of rank d if its valuation ring O satisfies dimg, O /pO = d. We
say that K is generalized p-adically closed if it admits a generalized p-adic valuation
but no proper algebraic extension of K admits a generalized p-adic valuation with the
same rank. For example, every finite extension K of Q, is generalized p-adically closed
with rank [K : Qp)] (This follows from the formula d = ef [PrR], p. 15.) :

Most of the results for p-adically closed fields generalize to generalized p-adically
closed fields. For example, if K is a finite extension of Q, and L is another field

3 prestel and Roquette use the term ‘p-adic’.
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with G(L) = G(K), then L is a generalized p-adically closed field of rank (K : Q.
However, there exist pairs (E, F) of finite extensions of Q,, such that G (E) =% G(F) but
E % F; hence E and F are not isomorphic [JaR], p- 10, and therefore not elementarily
equivalent. (One has to use here [FrJ], Lemma 18.19, Krasner’s Lemma, and a theorem
of FK. Schmidt.)

By the Chebotarev density theorem and a group theoretic argument [Fr]], Lemma
12.4, the intersection of Q, a5, Where p ranges over all primes and Qp,aig is a p-adic
closure of Q (one for each p), is Q. Suppose that K is a field with G (K) = G(Q). Then
char(K) = 0 (because cd,(G(K)) < 1 if char(K) = p while cd,(G(Q)) > 2). By the
theorem of Neukirch, Pop, Efrat and Koenigsmann, @ NK=Q.

CONJECTURE. Let K be a field of characteristic 0. Suppose that G(L) = G(K) implies
that L is elementarily equivalent to K. Then K is an algebraically closed field, a real
closed field, or a finite abelian extension of Q.

!

The assumption that char(K) = 0 is necessary. Indeed, Efrat [Ef5], Proposition 4.7,
proves that for every field K of positive characteristic there exists a field L of charac-
teristic O such that G(L) = G(K). Of course, K and L are not elementarily equivalent.

Similarly, for each field K there exists an algebraic extension L of K((t)) such that
L/K is regular and G(L) = G(K) [GJ1], Proposition 4.1. In particular L is Henselian,
It follows that L is non-Hilbertian (§11.5).

A theorem of Prestel [Pr3], p. 200, gives another evidence to Conjecture: Let K be
an algebraic extension of Q. Suppose that ‘G(L) & G(K) and LQ = L’ implies that
L is elementarily equivalent to K. Then K is isomorphic to @ or to @ N R, or to an
algebraic extension of Qy, 4y for some prime number p.

10. Function fields of one variable

A function field of one variable over a field K (which we shorten in this section to just a
Jfunction field over K) is a finitely generated regular extension F of K of transcendence
degree 1. The elements of K are referred to as constants.

10.1. General field of constants. The arithmetic of F is due in the first place to the
set of discrete valuations which are trivial on K. A prime p of F/K is an equivalence
class of such valuations. The completion F,, of F with respect to p is isomorphic to the
field of formal power series L((u)), where L = F', is the residue field and u is a prime

clement of F" with respect to p. It is a discrete Henselian valued field, which is defectless
[CaF], p. 19. '

Here F, o = K Fy,. By 7.2,

res: g(Fp,ur/FP) - G(L)
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is an isomorphism. If char(K) = 0, then Fy . is the algebraic closure of F, and
G(Fyu/Fp) = Z. 1f char(K) = p > 0, then

G(Fpu/Fpur) = HZI
l#p

and the restriction map res: G(Fp) = G(Fp«/Fy) has a sec?ion‘ (§7.2). o

In the latter case one checks that the set {u™*| p t i} is lmea'rly disjoint over F,
modulo the additive group {zF —z | € K F,}. By 6.1- the maxnpal pro-p quot.u‘ants
of G(F,) and of G(Fp,u) are free pro-p groups of 1nﬁn1te ran!(. Since, by definition,
p1 [Fpu : Fpu), the maximal pro-p quotient of G(Fp,u) is a quotient of G(Fy ). Hence,
rank(G(Fp,«)) = 00.

10.2. Finite field of constants. We now assume that K is a finite field. Clz}ss field th;ory
works for F in the same way as for number fields [CaF], 162-203. I.n pgrtlcular the idele
class group of F controls the abelian extensions of F. Ope application of clz_xss field
theory follows Scholz and Reichardt and realizes every finite l—grgup over F,if I #p
and if ¢; ¢ F [GJ2]. One can probably follow Shafarevich and realize each [-group over
F also in the case where (; € F.

10.3. Function fields with isomorphic absolute Galois groups. One of the distinctions
between number fields and function fields over finite fields is that the latter have no
smallest subfield. Thus, K(t) = K(v/t) although these fields do not have .the same
degree over a common field, as is the case by number fields. Nevert.heless, Uchida [Up2]
proves that if F and F’ are function fields of one variable over finite fields (gf poss'1bly
different characteristic) and @: G(F) — G(F") is an isomorphism, then there is a unique
isomorphisms of fields ¢: F; — F such that $(o) = cpocp.‘ll for each o € G(F'). In
particular o(F) = F”, and so every automorphism of G(F) is inner.

Pop [Pol] proves the same result for function fields of one variable over number. fields.
He falls short however in proving the conjecture that if I and F' are fields \thlCh are
finitely generated over their prime fields and G(F) = G(F'), then F = F’. Instead
he adds in [Po2], Theorem 2, a certain structure to G(F) and proves that if G(F') and
G(F") have isomorphic structures, then F' = F.

10.4. The absolute Galois group of C(t). Algebraic topology teaches us that the fun-
damental group of a sphere punctured in 7 points is generated by 7 element§ Tiy--s0r
with the single relation o - - - o, = 1. The theory of Riemann surfaces anq in particular
Riemann existence theorem translates this result to a theorem about Galois groups over
C(t): .

(L)e't F be a finite Galois extension of C(t). Let py,...,p, be the prime divisors .of
C(t) which are ramified in F. Then there exist generators a1, ...,07 of § (F/C(t)) with
o1 -0, = 1 such that o; generates an inertia group over p;, i = 1,...,7. Converse_ly,
if G is a finite group generated by o1,...,0, With 0y ---0. = 1, then C(t) has a finite
Galois extension F' over C(t) which is unramified outside S = {p1,...,p,} such that
o; generates an inertia group over p;, i=1,...,r [Mal], p. 31, Satz 1.
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It is not difficult to replace C in this theorem by an arbitrary algebraically closed
field C of characteristic 0. One then works with profinite groups to prove that the Galois
group of the maximal extension C(t)s of C(t) which is unramified outside § is generated
by r elements oy,...,0, with a single relation oy --- ¢, = 1 [Vo2], Theorem 2.12. In
particular G(C(t)s/C(t)) is isomorphic to the free profinite groups on r — 1 generators.
Finally, one lets S range over all finite sets of prime divisors of C(t) and proves that
G(C(t)) is isomorphic to the free profinite group of rank equal to the cardinality m of
C [Rib], pp. 70-80, or [Dou]. In particular, each finite group occurs as a Galois group
over C(t). Since open subgroups of Fy, are isomorphic to F,, [JaL], p. 217, we have
G(F) = F,, for each finite algebraic extension F of C(t).

One may also start directly from a finite extension F' of C(t). Let g be the genus
of F and let § = {py,...,p,} be a set of r prime divisors of F. Denote the maximal
extension of F* which is unramified outside S by Fs. Then Fg /F is a Galois extension
and G(Fs/F) is the group generated by f + 2g generators gy, ..., 0p, T(, 7, . . . 1Tgs Tg
with the single relation

(o2} "‘0'1'{7'177'11]"'[7'9,7';] =1,

Moreover, for each 4 between 1 and r there exists a prime divisor B; of Fgs lying over

pi such that o; generates the inertia group of B; over F' [Mal], p. 31, Satz 1 and p. 34,
Satz 2.

10.5. The absolute Galois group of R(t). Krull and Neukirch [KrN] consider a finite
set S of prime divisors of R(t) and the maximal Galois extension Fg of R(t) which is
unramified outside S. They present G(Fs/R(t)) by generators and relations. Schuppar
[Sch] replaces R in this result by an arbitrary real closed field R. If one lets S range over
all finite sets of prime divisors of R(t), one presents G(R(t)) as a real free profinite
group. More precisely, the set of involutions of G(R(t)) contains a closed subset X
which bijectively corresponds to the space of orderings of R(t) and there exists a closed
subset ¥ of G(R(t)) which is disjoint to X, contains 1 and bijectively corresponds to
the set {a +bv/~1|a,b € R and b > 0}, such that the following holds [HJ1]:

Every continuous map ¢ from X UY into a profinite group G such that ¢(z)? = 1
for each z € X and ¢(1) = 1, uniquely extends to a homomorphism of G(R(t)) into
G. The set X UY is said to be a basis for G(R(t)). One also says that G is the free
product of the groups in {(z) |z € X}U {(y) | y € Y} [Ha2], p. 274.

10.6. Realization of finite groups over F p(t). Let now C be an algebraically closed
field of positive characteristic p. Grothendieck [Grt], XIII, Corollary 2.12, proves the
analog of the Riemann existence theorem (10.4) for C instead of C in the case where
p 1 [F : C(t)]. Raynaud [Ray] (for » = 1) and Harbater [Hr2] (for r > 1) prove a
conjecture of Abhyankar [Abh]: Let S = {py,...,p,} be a set of prime divisors of C(t).
Consider a finite group G and denote the subgroup generated by all p-Sylow subgroups
of G by p(G). Suppose that rank(G/p(G)) < r — 1. Then C(t) has a Galois extension
F with G(F/C(t)) = G which is unramified outside S. In particular, each finite group
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occurs as a Galois group over C(t). Nevertheless, unlike in characteristic 0, the structure
of G(C(t)s/C(t)) (in the notation of 10.4) is still unknown.

10.7. The absolute Galois group of F,(t). By 6..3.and ‘in the notat.lfog gf 10.6,t g’ geC E}?a)t
is projective. Since C(t) is Hilbertian (by 1 1.3)_, this implies, at least i g (t:;)un/c(t,)) al
the maximal prosolvable quotient of G(C(t)) is free. In other words, G(C (£)solv o
Fw‘gsc(;:x‘;)llg'b)\;v; }(r:g\?v now much more. Harbater [Hr3], Theorem 4..1, uses formal [.)at.chmgf
to prove tt,xat if C is an algebraically closed field (of an arbitrary ‘chara';:lei?i::)ﬁzs
cardinality m, then each finite embedding problem for C(t) has m solun:ris. Dhis i Emar
that G(C(t)) is the free profinite group of rank m [Hr3], Theorem 4.4. In p

~

G(F,(t)) = Fo. . ' .
(P(f[g %1)305] ;roves the latter result by methods of rigid analyu.c geometry. The 1';1:112
tool in his proof is a certain strengthening of his % Riemann existence theorem whic

sent below. ' ' o s
Werarrzn and Volklein [HaV] give a third proof to the isomorphism G(C(t)) & F,,

where C is a countable algebraically closed field. In additi(?n to .algcbraic argume(;xt.s,
only basic properties of convergent power series with coefficients in C((t)) are used in

the proof.

10.8. Function fields over Henselian fields. Pop’s .‘ % Rlemam"n ex1ster;ce tk;f(;rer;h :toir;-
siders a Henselian field K with respect to a nontrivial vall_latlon v of ran d'.VisorS o%
v(K*) is isomorphic to a subgroup of R. Let S be a finite §et of prime I}lt -
K (t), none of them is a pole of ¢. Denote the set of all extensions of S to F (t) by S.
Suppose that the set of residues of the primes in S at t. can_be ordered ut\‘ palrs'd(a: ,ﬁyeil)(i
i=1,...,n such that v(z; — y;) > v(z; — ;) for all i # ],. Let K be the r.es1lu‘ field
of K’at v. If char(K) = 0 and char(K) = p > 0, define e; to be the maximal intege

satisfying

1 L
v(z; — ys) > (e’i + P 1>v(p) +v(z; —z;) foralli#j,

and let e; = max{0, ¢;}. Then K (t) has a Galois extension N which is ramified at mos;
(2 bt B ’ .

in S and contains K ;. The Galois group G(N/K(t)) is th'e free profinite gro.ug gleneratc;

by elements 0z, Ty,, - -0z, Ty, Subjected to the relations 05,7y, = 1, ¢ = 1,...,7,

and to the condition

Z if char(K) = char(K),
(ry:) = {Z/pe"Z x [I;4p 21 if char(K) =0 and char(K) =p > 0.

The element o, (resp. 7y,;) belongs to an inertia group corresponding to x; (resp. yi),

i=1,...,n
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Moreover, G(N/K(t)) is isomorphic to the semidirect product G (N/K,(t)) x G(K)
and the action of G(K') on G(N/K(t) is defined by

8 _ - -
(UI:‘) = (UU*'L‘)X(B )a (Tyi)ﬁ = (Ttr“yi)X(ﬂ 1)7 Be G(K)

Here x: G(K) — Z* is the homomorphism defined by the action of the elements of
G(K) on the roots of unity.

The theorem describes a group which has approximately half of the rank of
G(K(t)5/K(t)) ~(where K (t)5 is the maximal Galois extension of K (t) which is ram-
ified at most at S). Also, S is not an arbitrary finite subset of K. So, it is not the full
analog of Riemann existence theorem in characteristic 0.

Nevertheless, this theorem is strong enough to deduce that each Hilbertian PAC field
F is w-free (§12.9) and to describe the absolute Galois group of totally p-adic numbers
as a free profinite product of copies of G(Q,) (§13.12).

11. Hilbertian fields

Elementary Galois theory teaches us that the Galois group of the general polynomial of
degree n,

LX) =X"+T) X" '+...4T,

is the symmetric group Sy,. To explain this statement consider a polynomial g of degree
n with coefficients in a field F' and assume that it has n distinct roots T1,...,Zpn. Then
F = F(z1,...,z,) is a Galois extension of F' and g(ﬁ/F) permutes Z,. .., Z,. This
gives a permutation representation of g(ﬁ/ F) into S,,. We denote the image of G(F /F)
in S, by G(g, F). This is the Galois group of g over F. The opening statement of this
section then means that if K is an arbitrary field, then G(f(T, X), K(T)) & S,,.

11.1. Hilbert irreducibility theorem. Hilbert [Hil] proved in 1892 that it is possible to
specialize T to an n-tuple a € Q™ such that G(f(a, X),Q) 2 S,,. By this he realized S,,
over Q More generally, he proved that given a polynomial f € Q[T, X] with distinct
roots it is possible to specialize T to an n-tuple a € Q™ such that

9(f(a, X),Q) = G(f(T, X),Q(T))

as permutation groups. This is one form of what we now call the Hilbert irreducibility
theorem. It turns out that this theorem alone is responsible for much of the structure of
G(Q).

Hilbert himself and then others found that the same theorem holds for many other
fields. Consequently, all of them share common features of their absolute Galois groups.
They were therefore given the name ‘Hilbertian fields’.
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11.2. Separable Hilbert sets. ~Actually, the notion which is responsible for the structure
of the Galois group is ‘separably Hilbertian field’. To make a precise definition let K be
a field and consider separable irreducible polynomials fi,..., fm € K(T,...,T;)[X]
and a nonzero polynomial g € K[T},:..,T,]|. Denote the set of alt a € K7™ such that
fi(a, X) is a separable irreducible polynomial in K[X),i=1,...,m, and g(a) # 0
by Hg(fi,--.,fm;g) and call it a separable Hilbert subset of K™ (or just separable
Hilbert set of K). The field K is separably Hilbertian if each of its separable Hilbert
sets is nonempty.

If one omits the condition on the f; above to be separable, one obtains Hilbert sets
of K. Then K is Hilbertian if each of its Hilbert sets are nonempty. It turns out that
K is Hilbertian if and only if K is separably Hilbertian and imperfect [Fr]], Propo-
sition 11.16. Also, denote the maximal purely inseparable extension of K by Kiy. A
simple observation shows that if K is Hilbertian, than Kins is separably Hilbertian. Since
res: G(Kins) = G(K) is an isomorphism, one may always assume for the study of the
absolute Galois group that K is perfect.

11.3. Examples of Hilbertian fields. The following fields are Hilbertian: Q (Hilbert
[FrJ], Corollary 12.8, or [Lal], p. 148), Ko(T') [FrJ], Theorem 12.9, and Ky((Th,...,T3))
for r » 2 (Weissauer [FrJ], Example 14.3) for an arbitrary field Ko. If L is a finite
extension of a separably Hilbertian field, then each separable Hilbert subset of L” contains
a separable Hilbert subset of K™ [FrJ], Corollary 11.7. The same is true if L is a Galois
extension of K and G(L/K) is finitely generated [FrJ], Proposition 15.5. In particular
L is separably Hilbertian. If N is a Galois extension of a separably Hilbertian field
and M is a finite proper extension of N, then M is separably Hilbertian (Weissauer
[FrJ], Corollary 12.15). If L is an abelian extension of a separably Hilbertian field, then
L is separably Hilbertian (Kuyk [FrJ], Theorem 15.6). The compositum of two Galois
extensions of a separably Hilbertian field neither of which contains the other is Hilbertian
[HJ3]. If L is an algebraic extension of a separably Hilbertian field K whose degree is
divisible by at least two primes and L is contained in a pronilpotent extension N of K,
then L is separably Hilbertian [Uc3], Theorem 3.

11.4. Regular realization of finite groups. Hilbert himself proves in [Hil] that if f €
K|[T, X] is a separable polynomial, then the set of all a € K™ such that

G(f(a, X),K) = G(f(T,X), K(T))

contains a Hilbert set of K [FrJ], Lemma 12.12. Thus, if K is a separably Hilbertian
field, each finite group which occurs over K (T) as a Galois group also occurs over K as
a Galois group. More interesting is the case where f(T, X) is an absolutely irreducible
polynomial which is Galoeis in X. The latter means that the splitting field F of f(T, X)
over K(T) is already generated by each single root of f(T, X). Hence

G = G(f(T, X), K(T)) = G(f(T, X), L(T))
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for each algebraic extension L of K. Equivalently, Fisa regular extension of K, i.e. F

is linearly disjoint from K over K.4 We then say that f is stable with respect to X and
that G is regular over K. (One may also say that G has a K-regular realization over
K(T).) In this case K has a linearly disjoint sequence of Galois extensions Ly, Ly, L3, . . .
such that G(L;/K) = G [FtJ], Lemma 15.8. This rule applies in particular to Sy, to A,
[Sed], Section 5.5, (at least if p { n(n— 1) where p = char(K)) and to each finite abelian
group [FrJ], Lemma 24.46. Note also, that if G is regular over a field K , then G is also
regular over every extension of K.

11.5. On the absolute Galois group of a Hilbertian field. In particular G(K) has an
infinite rank and G(K) is not prosolvable. It follows that K ,, the maximal pro-p extension
K®), and the maximal prosolvable extension Ko, of K are not Hilbertian. Hence, by
11.3, none of these fields is the compositum of two Galois extensions of K neither
of which contains the other. Moreover, Weissauer’s theorem implies that G(K) has no
normal prosolvable closed subgroup. In particular, the Frattini subgroup of G(K) is
trivial, i.e. the compositum of all minimal separable algebraic extensions of K is K.
Here a proper algebraic extension of K is said to be minimal if there exists no field K"
such that K C K’ C L. Also, the center of G(K) is trivial [FrJ], p. 186, Theorem 15.10.

Note also, that no Henselian field can be separably Hilbertian [Fr]], p. 181, Exer-

cise 8. In particular local fields and fields of formal power series of one variable are not
Hilbertian.

11.6. Embedding problems. Let K be a field and let ¢, . .. ,tn be independent inde-
terminates. Let L be a finite Galois extension of K. Then each epimorphism «: H —
G(L/K) gives rise to two embedding problems:

(res: G(K) = G(L/K), 1 — C — H -5 G(L/K) — 1) (1a)
(res: G(K(t) » G(L/K), 1 — C — H -% G(L/K) —> 1) (1b)

We call (1a) an embedding problem for K. We call (1b) a constant field extension
embedding problem for K(t). If « is a solution of (la) and M is the fixed field in
K of Ker(7), then M is a Galois extension of K which contains and v induces an
isomorphism ¥: G(M/K) — H such that a0 = res. We call M a solution field for
(1). Note that the map res: G(L(t)/K(t)) — G(L/K) is an isomorphism. A solution
field for (1b) is therefore a Galois extension F of K (t) which contain L(t). We say that
it is regular if F/L is a regular extension.

If K is Hilbertian, and (1b) has a solution F, then so does (1a). If in addition the
solution F is regular, then it can be specialized to an infinite sequence M;, My, M, . ..
of solutions of (1a) which are linearly disjoint over L.

11.7. Abelian kernels. Suppose now that the embedding problems (1) split and their
kernel C is abelian. Then (1b) has a regular solution [FrJ], Lemma 24.46, and therefore

4 Some authors (e.g., Serre [Se4], Section 4.1) use the expression ‘Fis regular over K (T)’ to mean that
is regular over K.
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(1a) has a solution. In particular, every finite Abelian group appears as a Galois group
ovisljconsequence consider an automorphism & of G(K ) which maps each o € G(K)
to a conjugate of o. That is, @ is locally inner. The proof of [Uc1], Lemma 3, then shows
that & is an inner automorphism. . .

Nonsplit finite embedding problems with an abelian kernel for a H11§ert1an field K are
not always solvable. For example, Q has no Galois group L that contains Q(V/-1) with
G(L/Q) = Z/4Z. In general, for an arbitrary field K .of charactenstlc. #2,a qua'drat%c
extension K (1/a) can be embedded in a cyclic extension of degree 4 if and only if a is
a sum of two squares in K [Se4], Theorem 1.2.4.

11.8. Wreath products. Let G and C be finite groups. Consider the direct product

CG___HCU

0€G

of |G| copies of C. Let G acts on C® by (c”)™ = ¢°7. Then, the semidirect pr.oduct
CG x G is known as the wreath product H = C wr G of C and G. In the notation of
(11.6) (with C replaced by C%) let G = G(L/K) and o: H — G be the projection on
the second factor. Assume that C' is regular over K. Then (1b) has a regular solution
(e.g., [Ku2], p. 114, [Mal], p. 228, or [HJ2], the proof of Part B of Lemma 2.1). In
particular, if K is Hilbertian, then (1a) has a solution. .

Kuyk [Kul], Theorem 3, uses this construction to prove that e.ach embefidmg probl‘em
(1a) over a Hilbertian field K can be solved after a certain ‘shift’. That is, there exists
a finite extension K’ of K which is linearly disjoint from L over K such that the
embedding problem (res: G(K') - G(LK'/K'), a: H — (_}(LK’/K’.)) is solvable
(see also [Ja3], Theorem 15.1). He then applies it to prove that each profinite group G of
rank at most Ry occurs as a Galois group of a Galois extension F/E for some separable
algebraic extension E of K [Kul], Theorem 4.

11.9. GAR realizations. If the kernel C = Ker(ca) of the embedding problem (1b) is
regular over K with some additional properties,