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PREFACE

The present volume represents a unique blending of two fields only recently
recognized as related. On one hand lies the field of Combinatorics with roots (at least
immediately traceable via generating functions to Umbral Calculus, the specialty at
hand) in the 19th century writings of Boole on operator calculus. Both the founda-
tions and much of the history of the Umbral Calculus are explored in great clarity
in [R-K-0 and R-R] which have extensive bibliographies. On the other hand is the
field of Hopf Algebras, which is usually traced to the paper of Milnor and Moore
[M-M] but whose first general exposition is little more than a decade old [S].

For some vyears, Gian-Carla Rota wrote that this theory should be directly ap-
plicable to Combinatorics, especially the Umbral Calculus, but the first distinct at-
tention given by specialists is probably the lecture Moss Sweedler save at the 13-th
Dennison Algebra Conference, Dennison College, 1978. This did not really appear in
print, nor did Sweedler’s Hopf Algebra colleagues sieze the subject and carry it fur
ther forward.

Both Rota and Sweedler, therefore, were pleased when the University of
Oklahoma was able to support their joint appearance at a conference funded by the
J. C. Karcher Foundation in May, 1978. The conference centered on lectures they
gave, with S. A. Joni assisting Rota. Sweedler lectured first on elementary coalgebra
theory aimed at combinatorists, Rota on elementary combinatorics aimed at the
algebraists. Both lectures converged toward those who were or would work at the
intersection. Sweedler and Warren Nichols prepared notes of Sweedler’s talks and
Joni and Rota of Rota’s and a mimeographed version was circulated by the Okla-
homa Mathematics Department. The present volume represents an attempt to make
these more accessible.

The Sweedler notes here are essentially unchanged from those distributed by
Oklahoma. They aim, in a direct and elementary way, to give the reader sufficient
knowledge of coalgebra theory to understand the coalgebra formulation of special
sequences of polynomials.

The Rota notes are reproduced with permission from [J-R], and represent a
reworking of the original, with corrections and a few additions. They contain de-
tailed applications not only to Umbral Calculus, but to partition studies, incidence
algebras, lattice theory, and other traditional spheres of combinatoric interest. The
notes form a broad survey for anyone who would like detailed and concrete examples
of the areas already known to be amenable to a coalgebraic approach.

vii

viii PREFACE

REFERENCES

[J-R] S. A. Joni and G.-C. Rota, Coalgebras and Bialgebras in Combinatorics,
Studies in Applied Math. 61 (1979), pp. 93—139.

{M-M] J. Milnor, and J. C. Moore, On the Structure of Hopf Algebras, Annals of
Math. 81 (1965), pp. 211-264.

[R-K-0] G. C. Rota, D. Kahaner, and A. Odlyszko, Finite Operator Calculus, J.
Math. Appl., 42 (1978), pp. 685—760.

[R-R] S. Roman and G.-C. Rota, The Umbral Calculus, Advances in Mathematics,
27 (1978), pp. 95—188.

[S] M. E. Sweedler, Hopf Algebras, W. A. Benjamin, New York, 1968.

Robert Morris

University of Massachusetts
at Boston

September 1981




Contemporary Mathematics
Volume 6, 1982

Coalgebras and Bialgebras in Combinatorics

By S.A. Joni* and G.-C. Rotat

The following material is discussed in this paper: Incidence Coalgebras for PO
sets; Reduced Boolean Coalgebras; Divided Powers Coalgebra; Dirichlet Coal-
gebra; Eulerian Coalgebra; Faa di Bruno Bialgebra; Incidence Coalgebras for
Categories; The Umbral Calculus; Infinitesimal Coalgebras; Creation and
Annihilation Operators; Point Lattice Coalgebras; Restricted Placements;
Cleavages: and Hereditary Bialgebras.

Dedicated to William T. Tutte on his 60th birthday.
Forse altri cantera con miglior plettro
—Ariosto
I. Introduction

A great many problems in combinatorics are concerned with assembling, or
disassembling, large objects out of pieces of prescribed shape, as in the familiar
board puzzles. Even in the seemingly simple case of finite sets, very little is
known on, say, the structure of families of sets subject to restrictions. The oldest
result in this direction is Sperner’s theorem, which gives the structure of all
maximum size families of subsets of a finite set, subject to the restriction that no
set in the family may be contained in another. On the blueprint of Sperner’s
theorem, a host of similar results have been developed, largely in the last fifteen
years, but the proofs rely more on ingenuity than on general techniques.

In more complicated cases, our understanding is even more limited; rarely,
except perhaps in number theory, has a branch of mathematics been so rich in
relevant problems and so poor in general ideas as to how such problems may be
attacked.

This paper grew out of an attempt to make some of the combinatorial
problems of assemblage available to a public of algebraists. It originated from

Address for correspondence: Professor G.-C. Rota, Room 2-351, M.L.T., Cambridge, MA 02139.
*Research partially supported by NSF Contract No. MCS 7820264.
tResearch partially supported by NSF Contract No. MCS 7701947
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the realization that the notions of coalgebra, bialgebra, and Hopf algebra,
recently introduced into mathematics, may give in a variety of cases a valuable
formal framework for the study of combinatorial problems. Armed with this
realization, we have assembled in this paper a variety of coalgebras and
bialgebras which arise in combinatorics, in the hope of interesting both the
combinatorist in search of a theoretical horizon, and the algebraist in search of
examples which may point to new and general theorems.

The modesty of our undertaking cannot be overemphasized. We have simply
given a list of coalgebras and bialgebras as possible objects of investigation, and
proved only a few elementary results whenever the proofs were indispensable to
the understanding of the examples.

Several of the coalgebras described below are presented here for the first
time, notably puzzles, closure coalgebras, infinitesimal coalgebras, hereditary
bialgebras, rook coalgebras, and cleavages. Others are drawn from previous
work on the subject by P. Doubilet, M. Henle, R. W. Lawvere, S. Roman, R.
Stanley, and ourselves. -

It must be stressed that the coalgebras of combinatorics come endowed with
a distinguished basis, and many an interesting combinatorial problem can be
formulated algebraically as that of transforming this basis into another basis
with more desirable properties. Thus, a mere structure theory of coalgebras—or
Hopf algebras—will hardly be sufficient for combinatorial purposes.

Most of the content of this paper was developed from the Hopf Algebras and
Combinatorics lectures presented by G.-C. Rota during the Umbral Calculus
Conference at the University of Oklahoma on May 15-19, 1978. The authors
take this opportunity to thank Professor M. Marx and Professor Robert Morris
of the Mathematics Department of the University of Oklahoma for giving them
an opportunity to present these ideas to a responsive audience of coalgebraists,
as well as for their gracious hospitality.

I1. Notation and terminology

Very little knowledge is required to read this work. Most of the concepts basic
enough to be left undefined in the succeeding sections will be introduced here.
A partial ordering relation (denoted by <) on a set P is one which is reflexive,
transitive, and antisymmetric (that is, a<b and b<a imply a=b5). A set P
together with a partial ordering relation is a partially ordered set, or PO set for
short. For x<y in P, the segment (or interval) [x,y] is the collection of all
elements z in P such that x <z <y. A PO set is said to be locally finite if every
segment is finite. All the PO sets we shall consider will be locally finite.

A PO set P is said to have a 0 or a 1 if it has a unique minimal or maximal
element. An element y is said to cover x if the segment [x,y] has two elements.
An atom of P is an element which covers a minimal element.

An ordered ideal in a PO set P is a subset J which has the property that if
y€J and x<y, then x€J.

The product P X Q of two PO sets P and @ is the set of all ordered pairs (p,q)
where pE P and g€ Q, with (p,q)>(r,s) if and only if p >r and g >s..The
product of any number of PO sets is defined similarly.

A lattice is a PO set where the max and min of two elements (we call them
join and meet, and write them \/ and A\) are defined. A sublattice L’ of a lattice
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L is a subset of L which is a lattice under the induced partial ordering such that
the join and meet of any two elements in L' are the same as those in L. A
distributive lattice is one in which for all p,q,7 in L, pA(g\V =P ANIV(PAQ)
and p\V/(gAr)=(p\/ NPV 9)-

A partition 7 of a set S is a collection of pairwise disjoint nonempty subsets of
S, called the blocks of =, whose union is S. The lattice of partitions TI(S) is the
set of all partitions of S ordered by refinement: a partition = is less than or equal
to a partition o (or 7 is a refinement of o) if each block of 7 is contained in a
block of ¢. The 0 of II(S) is the partition having all blocks of size one, and the 1
is the partition with one block. For further study of lattices, the reader is
referred to Birkhoff.

We come now to the definition of the incidence algebra $(P) of a locally
finite PO set P over a field K. We shall assume throughout that K has
characteristic zero. The members of §(P) are functions of two variables f: P X P
—K such that f(x,y)=0 unless x <y. The sum of two functions, as well as
multiplication by scalars, is defined as usual. The product (or convolution)
f*g=h is defined by

h(x,y) = Epf(x,Z)g(z,y)-

z€E
Since P is locally finite, the variable z in the above sum ranges over the finite
segment [x,y). It is immediate that this product is associative, and the unit
element § is
_ {1 if x=y,

8(x.y) { 0 otherwise
No further knowledge of the incidence algebra is required in the present paper;
the reader is referred to {4] and [12] for studies of this algebra.

A coalgebra is a triple (C.A,¢) with C a K-vector space, A:C—»C ®C a map
called diagonalization or comultiplication, and e: C— K a map called the counit or
augmentation, where A and ¢ satisfy the following commutative diagrams:

a
C—>»CR®C

A l \L 2®1 (coassociativity), 21

194
CRC— > CRCRC

C
P
kec lA COK (counitary property). (2.2)

eQI\ /I®:
C®C

Thus, coassociativity says (/ ®A)oA=(A® )< A, or in words, after diagona-
lizing once, we can next diagonalize in either factor and obtain the same result.
When we write “a coalgebra C,” we mean “a coalgebra (C, A,¢).”

A subcoalgebra of a coalgebra C is a subspace W such that A(W)C W@ W. A
coideal of C is a subspace J such that A(J)CJ®C+ C®J and e(/)=0. If ~ is
an equivalence relation on a basis of C such that the subspace J spanned by
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{f—g:f~g) is a coideal, then the quotient space C /~ can be endowed with the
coalgebra structure of the quotient coalgebra of C modulo J.

A space B which is simultaneously an algebra and a coalgebra is said to be a
bialgebra if the diagonalization A and counit ¢ are algebra maps.

Let C be a coalgebra, 4 an algebra, and set for c€C

Ac =2 ¢, ®cy-

We give Hom(C,4) an algebra structure by defining the product or convolution
f+g=nh as follows:

h(c)= fsg(c) = Zf(cli)g(cm‘)-

The unit of this algebra is ue, where u is the unit of 4.

Let H be a bialgebra, and let us define I in Hom(H,H) to be map I(h)=h
for all 4 in H. If it exists, the unique element S in A which is inverse under * to
I (i.e., S»I=1%S=ue) is the antipode of H. A bialgebra with an antipode is a
Hopf algebra. For a further study of bi-, co-, and Hopf algebras, the reader 1s
referred to [27].

III. Section coefficients

We begin with the abstract concept of section coefficients. This concept arises as
a natural generalization of the binomial coefficients. We shall see many exam-
ples in the later sections, particularly in Sec. IV-IX. Using section coefficients,
one can give an alternative definition of coalgebras (with a specified basis) that
does not involve commutative diagrams. Let § denote a set. Section coefficients
(ilj,k) of § arise by specifying and counting the number of ways an element i in
9 can be “cut up” into the ordered pair of pieces j.k(with j,k in §). The
multisection coefficients (i|j,p.q) count the number of ways we can “cut” / into
the ordered triple of pieces j,p,q. To get (i|j,p,q) we could cut i into pieces j,k
and then cut & into pieces p,q in all possible ways, and we want to get the same
number if we cut i into pieces s,¢ and then cut s into pieces j,p in all possible
ways. More precisely, section coefficients are a mapping

(i k) (ilj.k) €L

satisfying
Given i,
the number of ordered pairs j, & 3.1
such that (i|/,k)#0 is finite

and

% (il ) (k| p.q) = g (ils,q)(slJp)- (32)

The common value of the two sides of (3.2) is denoted (i|/,p,q). Iterating (3.2)
allows us to define more general multisection coefficients (7|, k,...,p,q).
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Often, there exists a function ¢:$ — X such that
S (i1, K)e(i) = 8,4
J
g (ilj. k)e(k) = &, ,. (33)

If ¢ is a commutative semigroup (written additively), the section coefficients
are called bisection coefficients if they satisfy

(+jle.)= 2 (ilp1a)UlPra)- (34)
Prtpy=p
@tqr=q

In words, cutting up i+ is the same as cutting / and j individually and piecing
back together.

Example 3.1 (Binomial coefficients): The binomial coefficients are defined by

n! . .
(nljk) =] jigr T n=i+k,

0 otherwise.

They count the number of ways a set with n element can be “cut up” into two
disjoint sets of size j and k(= n— ;). Usually, we write (;) for these coefficients.
The condition (3.2) is easily seen to be satisfied, since
n! e .
(ljop.q) ={ Tipigt T Irera=m
0 otherwise,

and forj+p+g=n,

nt__(pta) _  a' (j+p)!

nljp,q) = - - -
(nl)p.q) Jp+q) plq! (+p)q! Jjip!

The well-known Vandermonde convolution identity

(), 2, (3)7)

shows that the binomial coefficients are bisection coefficients.

Each collection of section coefficients satisfying (3.1), (3.2), and (3.3) gives
rise to a coalgebra C in the following way: we associate to each i in § the
variable x; and let C be the free vector space spanned by the x;’s. The counit e is

6 S. A. Joni and G.-C. Rota

the function defined in (3.3), and the diagonalization A'is defined by

Ax; =3 (ilj.k)x® x,. 3.5)
ik

In our examples it is often the case that there exists a unique “0” in ¢ such that
(il0./)=(i] j,0)= 8, and the counit & is given by

1 if j=0

0 otherwise.

e(x) = {

iti i i iati i tative if and only
The condition (3.2) gives that C is coassociative. _C is cocommu if
if for all ij,k, (ilj,k)=(ilk.)). In addition, if me_sectx?n coeffncxextlts- are
bisection coefficients, and we set x,x;=x,,, then C is a bialgebra. This is so
because

8()805) = £ (1pra, ®x,)( 2 Ulpaeds,8x,)

y 1 1 X, ® x
2
=‘2 2 ('|P|,‘I|)(J|P2:‘Iz) o +p Q+a
P:g Prtp2=p
Qitq=q

= 2 (‘+j‘p’q)xp ® xq
rq
= Ax,
Good references for this section include [4), 11}, [16], and [17].

IV. Incidence coalgebras for partially ordered sets

Many of the coalgebras arising from the study of ct_m?binatorial problems are
incidence or reduced incidence coalgebras of locally t'l_mtg PO sets. The duals of
these coalgebras, namely the incidence and reduced lncldeqce algebras for PO
sets, have been objects of intensive study during the last flftgen years. In this
section, we give the abstract setting, definitiolns, and lsome basic results. In Sec.
- rk out some of the fundamental examples.
Y (;i):e:ea‘:l(‘:cally finite PO set (P, <), the incidence coalgebra C(P) (over‘K, a
field of characteristic zero) is the free vector space spannefl by the .mde-
terminates [x,y], for all intervals (or segments) [x,y] in P. The diagonalization A

and counit € are given by

E NP INESLIC @
and

i x=y, 42

e([xy]) = {() otherwise. “r
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Here, the section coefficients are

_[1 i xy=y, x,=zandy,=z,
([Xl,xz]|[y.,y2],[z,,zz]) {0 otherwise.

It is immediate that C(P) is coassociative. Moreover, it is cocommutative if and
only if the order relation is trivial, i.e., no two elements of P are comparable.

Note that €*(P)=Hom(C(P),K) is isomorphic to §(P), the incidence alge-
bra of P, since if f,g € C*(P), then

jeslxr]= 3 flxz]g[sr]

xX<z<y

which is precisely the definition of f*g in $(P).

It is frequently the case in enumeration problems that the full incidence
coalgebra is not required; rather, we want to work with a smaller quotient
coalgebra of (C(P). These quotient coalgebras, called reduced incidence
coalgebras, are obtained by taking suitable equivalence relations on P.

DEFINITION 4.1. An equivalence relation ~ on the segments of P is said to be
order compatible if the subspace spanned by the collection {[x,y]—[u,v]|[x,y]~
{u,v]} is a coideal.

Whenever ~ is order compatible, the quotient space C(P)/~ is isomorphic
to a quotient coalgebra of C(P) (see {27, p.22]). In general, there is no simple
criteria expressible in terms of the partial ordering to decide when an equiva-
lence relation on P is order-compatible. A useful sufficient condition due to
D.A. Smith {4, p. 276] is the following.

PROPOSITION 4.1. An equivalence relation ~ on the segments of P is order
compatible if whenever [ x,y]~[u,v] there exists a bijection ¢, depending in general
on [x,y], of [x,y] onto [u,v] such that [x,y |~[¢(x,).¢(y))] for all x<x <y;<y.

Note that the linear dual (C(P)/~)* is isomorphic to the reduced incidence
algebra $(P)/~.

If ~ is an order compatible equivalence relation on P, we call the nonempty
equivalence classes of C(P)/~ types, and we think of C(P)/~ as the vector
space spanned by the variables x, associated to each type a. Each such reduced
incidence coalgebra gives rise to a collection of section coefficients (a| 8,v),
where (a| 8,v) counts the number of distinct z in any interval [x,y] of type a
such that [x,z] is of type B8 and [z,y] is of type y, and the diagonalization in
C(P)/~ is given by

Ax, = D (qf B.Y)xs ® x,,

where the sum ranges over all ordered pairs of types 8,y.
The standard reduced incidence coalgebra is obtained from the equivalence
relation

[x,y}~[u,v] if and only if [x,y] is isomorphic to [¥,v].

8 S. A. Joni and G.-C. Rota

One way of obtaining bialgebras of combinatorial interest is to form reduced
incidence coalgebras. We shall return several times to the question of when a
reduced incidence coalgebra is a bialgebra.

The following definition is motivated by the fact that the lattice of closed
ideals of an incidence algebra is distributive [4].

DEFINITION 4.2. A combinatorial coalgebra is a coalgebra whose lattice of
subcoalgebras is distributive.

The characterization of all combinatorial coalgebras is an opening problem.
At present, we can prove

THEOREM 4.1. Every (full) incidence coalgebra is a combinatorial coalgebra.

Proof- Let W be a subcoalgebra of C(P). If [x,y] is in W, then for all
x<w<&z<y, [w,z]is in W. This is seen as follows: If x<z<y, then the term
[x,2]®[z,y] occurs in A[x,y). The occurrence of the segment [x,z] (and [z,y]) is
unique, and all segments are linearly independent. Thus, we must have [x,z] and
[z,y] in W. Since [x,z]€ W, the same argument applies and gives that for all
x<w<z<y, we must have [w,z] in W. Thus the collection of segments of W
forms an order ideal in the PO set of all segments of P, Seg(P), ordered by
inclusion. Conversely, if J is an order ideal in Seg(P),, then AJ CJ ®J, so that
the linear span of J forms a subcoalgebra of C(P). Therefore, the lattice of
subcoalgebras of C(P) is isomorphic to the lattice of order ideals of Seg(P). A
well-known theorem of Birkhoff states that the lattice of order ideals of any PO
set is distributive, and our proof is complete.

V. Reduced Boolean coalgebras

The Boolean PO set (lattice) B consists of all finite sets of positive integers
ordered by inclusion. The minimum element of this lattice is the empty set. The
Boolean incidence coalgebra C(®) is spanned by all segments [4, B] with

A[4,B]= 2% [AC]®[CB].

1. Boolean coalgebras

The Boolean coalgebra B is the coalgebra spanned by all sets of (positive)
integers, with (for 4 €B)

AA= D A,®4, (5.1)
ANA;=D
AUAy=4

and

_ 1 if A=0,
“(4) = {0 otherwise.
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Note that in (5.1), 4,4, is an ordered pair. This coalgebra is isomorphic to the
reduced Boolean incidence coalgebra obtained by setting [4,B]~[C,D] if and
only if B—A=D- C. Thus, each set A represents the equivalence class of all
segments [B,C] such that C— B=4.

2. Binomial coalgebras

For each integer s>>0, we define the binomial coalgebra B, to be vector space
K[x,x5...,x,] with

AXI""'*X""= 2 (n')---(n‘)x,’"“--x,"*@x,""""»--x’""”"

(52)
and

n n _{l if ny=---=n=0,

E.('xl‘“.'xs’). .
0 otherwise.

Each binomial coalgebra is seen to be the Boolean incidence coalgebra
modulo the coideal generated by a compatible ~ as follows: For s=1, the
(univariate) binomial coalgebra B, = K[x] is obtained by setting [4, B]~| C,D]
if and only if |B—A|=|D—C|. This is the standard reduced incidence
coalgebra. Here the section coefficients are the binomial coefficients (")

For s=2, we set [4,B]~[C, D] if and only if the numbers of even and odd
integers in B—A and D — C are equal. For general s, we set {4, B]~[C, D] if
and only if for all k=1,2,...,s,

[{i€ B—A|i=k mod s}|=|{j €D~ C|j=k mod s}|.

It is easy to verify that the binomial coalgebras are cocommutative bialgebras,
and in fact, Hopf algebras with the antipode S given by S(x,)= - x,. In addition,
the dual B} is isomorphic to the algebra of formal exponential power series in s
variables. A final heuristic remark: “B_=%.”

3. Polynomial sequences of Boolean and binomial type

A polynomial sequence p,(x) is said to be of binomial type if

degp,(x) = n for all n, (5.3)
and
pax+3) = 2 (7)2l)Pu_il2). (54)
k=0

10 S. A. Joni and G.-C. Rota

Let us rephrase (5.4) in the landuage of bialgebras. The polynomial ring
K[x,y] is seen to be isomorphic to K[x}® K[x] under the mapping x->x®1 and
y—1®x. By linearity, for any polynomials ¢(x) and r(y), g(x)~q(x)®1 and
r(y)—1®r(x). Thus, (5.4) can be restated

n

PA(x®@1+18x) = 3, (1 )pu(x) @, (). (:5)

k=0

A map p mapping the binomial coalgebra K[x] to itself is a coalgebra map if
Aep=(p®p)-A. Thus, a polynomial sequence is of binomial type if and only if
it is the image of {x"} under an invertible coalgebra map p. This is seen as
follows. Let p_(x) denote the image of x” under p. Since K[x] is a bialgebra, we
have

(Aop)x” = Ap,(x) = p,(Ax) = p,(x@1+1®x), (5:6)
and clearly
((p®P)o8)x" = 3 (7 )p(x) ®p,_(x). (5.7)
k=0

Therefore, if p is an invertible coalgebra map, deg p,(x)=n and (5.5) holds, and
conversely.

Multivariate polynomial sequences of binomial type, { Pry..n(X15- 05 X)}, are
similarly seen to correspond to invertible coalgebra maps of B, to itself.

Examples of sequences of polynomials of binomial type include x”, (x),=
x(x=1)-+-(x~n+1), x(x—na)""', and the Laguerre, Gould, and exponential
polynomial sequences. The reader is referred to [3] and (5] for further examples,
and to [18] for their multivariate analogs.

A polynomial sequence indexed by the finite subsets of a set { p,(x)} is said
to be of Boolean type if

Pax+p) = X p () (¥), (5.8)

Ay+Ay=A

or equivalently, if p,(x) is the image of 4 under a coalgebra map from B to
K[x). [Usually, we require that deg p,(x)=|A|.] Chromatic polynomials of
graphs provide combinatorially interesting examples of polynomials of Boolean
type. Given a graph G, the chromatic polynomial of G, %;(x), counts the
number of proper colorings (i.e. assignments of colors to the vertices of G so that
no edge connects two vertices of the same color) of G with x colors. Given a
subset H of the vertex set of G, we think of H as the full subgraph of G obtained
by restricting the vertex set of G to H. Similarly, we denote by G\ H the graph
obtained by restricting the vertex set of G to G— H. Tutte, in [28], states

No(x+y) = % Ky (x) K (3)- (5.9)
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This is not difficult to verify, since every proper coloring of G in x +y different
colors decomposes uniquely into the proper colorings of the subgraph H colored
with the x colors and G\ H colored with the y colors, and conversely. Polynomi-
als of Boolean type were first studied by J. P. S. Kung and T. Zaslavsky,

4. Puzzles

Everyone is familiar with solitaire games where several flat pieces of wood or
cardboard are to be assembled into a required shape, for example, a square, as
in the following figure:

und B §
g

Little is known at present of the underlying mathematical theory that might
lead, for example, to an algorithm for verifying that an assigned shape can be
assembled out of a given set of pieces. We shall develop here the very first step
in such a program, namely, the precise definition of a puzzle as a very special
type of coalgebra. The definition of comultiplication is in fact a natural
rendering of the combinatorial operation of cutting up an object into a set of
pieces.

Before introducing the general definition, we shall describe the coalgebra
associated with the puzzles in the above picture. We shall develop the construc-
tion in two steps. In the first step we define the placement coalgebra; in the
second step we decribe a quotient coalgebra of the placement coalgebra, modulo
a certain coideal. The quotient coalgebra will be called the puzzle or the piece
coalgebra, and we shall see that the difficulty of the puzzle is carried in the
structure of this coideal.

The pieces of the puzzle are

a F 2 pieces
b CER) 3 pieces (5.10)
c = 1 piece,

The board is the four-by-four square

12 S. A. Joni and G.-C. Rota

on which pieces are to be placed. The squares are labeled by Cartesian
coordinates.

A placement of some of the pieces on the board is a subset of the board
obtained by placing some of the pieces on the board without overlapping. For
example the placement

(5.11)

]
- .—-—1

is obtained by placing two pieces of shape a, a piece of shape b, and a piece of
shape ¢, as indicated. In a placement, no more than the alloted number of pieces
is allowed.

Two placements covering the same squares by distinct sets of pieces, or by
pieces placed in different positions are considered to be different, for example,

and —td

are distinct, as are

and

The pieces in a placement need not be adjacent. To every placement p,
specified by the occupied squares and the position of the pieces, we associate a
variable x(p), and we denote by V the free module over the integers spanned by
the variables x(p) and the variable 1, which denotes the trivial placement of no
pieces.

We now define a comultiplication on the module V, as follows. If p and g are
placements, it is clear what is meant by saying that ¢ is a subplacement of p. The
pieces used in ¢ are a submultiset of the pieces in p, and they are placed in the
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same positions. For example,

!

. .'—J

is a subplacement of the placement given in (5.11), whereas

is not a subplacement. Thus, there is a partial ordering of placements, and we
denote this PO set by P. P has a unique minimal element, the empty placement,
but in general, it has no maximal element. Furthermore, for any placement p,
the segment {q|q < p} is a Boolean algebra; therefore, the PO set P is a simplicial
complex. We are now ready to define the placement coalgebra. For any place-
ment p, list all ordered pairs (g,r) such that

g and r are subplacements of p, (5.12a)

g and r do not overlap, (5.12b)

the union of ¢ and r is the placement p. (5.12¢)
Now set

Ax(p) = 3 x(q) ® x(r) (5.13)

where the sum ranges over all such pairs. For example, if p is the placement

] > 1 (5.14)

and x),x,,...,Xs are the placements shown in Fig. 1, then
Ax(p) = 1@ x(p) + x, @ xs+ x, B x, + x; @ x5+ X, ® x, + x5® x,

+x4®@ x4+ x(p)®1.

14 8. A. Joni and G.-C. Rota

X, X
(] 1
3 H

X Xy X X,
. o e o [}
o Hoy= s

Figure 1.

It is intuitively clear that the comultiplication just defined is coassociative, in
fact, it follows from the coassociativity of the Boolean coalgebra. The counit ¢ is
defined by

e(1) =1 and e(x(p)) =0 forall x(p) # 1. (5.15)

We now come to the definition of a puzzle, at least in the special case we are
considering. To this end, we begin by defining an equivalence relation on
placements. We shall say that p~g¢g when:

p and q are obtained by placing,
possibly in different positions, the same pieces
with the same multiplicity, (5.16a)

and
the placement g can be obtained from the placement p

by rigidly sliding and rotating (and possibly turning over,
depending on the rules of the game) placement p. (5.16b)

For example, any two placements of single pieces of the same shape are
equivalent. As another example,

and

]
—H

are equivalent.
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It is immediate that the relation ~ is an equivalence. An equivalence class
will be called a shape. The equivalence classes corresponding to placements of a
single piece will be called, appropriately enough, pieces.

The most important remark is that the submodule C of V generated by all
elements

x(p) - x(q).

where p~g, is a coideal. Again, this is intuitively clear, but we shall verify it in
detail. We have

Ax(p) = 2 x(21)® x(py,)

i

and

Ax(q) = 2 x(9,,) ® x(q,),

i

and it follows from the definition of equivalence that the families {(p,;.p,,)} and
{(41:92)} of ordered pairs can be put into one-to-one correspondence in such a
way that the entries are respectively equivalent. We can therefore write

x(p)® x(py) — x(q,,) ® x(qy)
= [X(Pli) - x(qli)] ® x(py) + x(q,)® [X(Pzi) - x(q2i)]'

Thus, if p~gq, then

Alx(p)—x(q)) = 2 [x(pli)_x(qli)] ® x(py)

+ x(qli) ® [X(le') - x(qZI)]'

In other words, this shows that ACC C® V+ V®C, and thus proves that C is a
coideal (see [27, p. 18]). We can therefore take the quotient coalgebra ¥/ C. This
coalgebra generated by shapes is called a puzzle. If p is the placement given in
(5.14), then in the puzzle (or quotient coalgebra) we have x,~x, and x,~x,.
Thus (if we represent each equivalence class by its placement of smallest index)
in the puzzle

Ax(p) = 1@ x(p) +2(x,®x) + ;@ x5+ xs® x;+ 2(x,®x,) + x(p) R 1.

From the preceding example it is now easy to extract the general definition of
a puzzle. One begins with a finite simplicial complex P, and one associates to P
a placement coalgebra in the same way as we have done above: to every p in P,
one associates the set of ordered pairs (g,r) such that g\/r=p and gAr=0.

16 S. A. Joni and G.-C. Rota

From this, one obtains the definition of the placement coalgebra in exactly the
same way. A puzzle is now generally defined as the quotient of the placement
coalgebra by a coideal defined by an equivalence relation among the elements of
P.

The basic problem about puzzles is to determine how many distinct shapes
cover the entire board. At present, too little is known about the structures of
puzzles to even hazard a conjecture on how one might approach the problem.

VL. Divided powers coalgebra

Let N denote the lattice of nonnegative integers under natural ordering. The
incidence coalgebra C(N) is spanned by all segments [, /] with

Alijl= 3 [ik]®[ 4]

i<k<j

The divided powers coalgebra D is the vector space K[x] with

n
Ax" = 2 xk®xn—k
k=0

and
e(x") =8,

It is the standard reduced incidence coalgebra of G(N), and its dual D* is
isomorphic to the algebra of formal power series k[[x]] (with the usual multi-
plication). Multivariate divided powers coalgebras are similarly defined to be the
standard reduced incidence coalgebra of

C(N*) =C(NX--- xN).

5 times

VII. Dirichlet coalgebra

Let Z* denote the lattice of positive integers ordered by divisibility, i.e., m <n if
and only if m divides n. The 0 of this lattice is 1. The equivalence relation on the
segments of C(Z *) which gives the Dirichlet coalgebra is [#,/]1~[k,{]) if and only
if j/i=1/k. Alternatively, the Dirichlet coalgebra D is the vector space spanned
by the variables {n*:n=0,1,2,...}, with

A(n*)= ¥ p*®q*

pPg=n
and

e(n*) =6,




Coalgebras and Bialgebras in Combinatorics 17

D has a natural algebra structure given by n*m*=(nm)*, While D is not a
bialgebra, the comultiplication is an algebra map when n and m are coprime,
that is,

A(n*m*™) = A(n*)A(m*)

whenever the gcd of n and m equals 1.
The linear dual D* is isomorphic to the algebra of formal Dirichlet series, the
isomorphism being given by

sl = 3 420

Multivariate Dirichlet coalgebras are obtained from the same equivalence rela-
tion on the incidence coalgebra C(Z*x--- X Z *).

The standard reduced incidence coalgebra is a subcoalgebra of the Dirichlet
coalgebra. Let {i,/] and [k,/] be two segments, and let

Jj/i=pie--pd and [/k = gf ,..,q’lf,

be their respective prime factorizations. The segments [/.;] and [k, /] are isomor-
phic if and only if s=r, and as multisets, the collections {a;} and { 8} are the
same. In other words, given n, let shape(n)=(A,,A,...) where A, is the number
of distinct primes in the factorization of n which occur precisely k times. Then
[i.j]~[k, 1] if and only if shape(j/i)=shape(//k).

VIII. Eulerian coalgebra

Let ¥ denote the lattice of all finite-dimensional subspaces of a vector space of
countable dimension over GF (g), ordered by inclusion. The minimal element of
V is the trivial subspace. The standard reduced incidence coalgebra of C(V) is
obtained by setting

[X.Y]~[S,T] if and only if dimY —dimX = dim7T - dimSS.

The section coefficients count the number of subspaces of dimension & con-
tained in a subspace of dimension n, which is given by the Gaussian coefficient

[n] _ (-g)1-4%)---(1-¢") ‘
@ (1-¢)--(1-¢")1-¢)- - (1-¢"7*)

If we set [n] ! =(1—g)(1—g% --(1—q"), then

n (7]}
[k]f (k] Mn=k],!
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The Eulerian coalgebra E is the vector space K[x] with
n

Ax"=2 {:} xk@xnk
q

k=0

and
e(x") = 8o

It is cocommutative, and E* is isomorphic to the algebra of formal Eulerian
power series, the isomorphism being given by

f(x") .
[n] !u .

feo o(u) = 2

IX. The Faa di Bruno bialgebra

The Faa di Bruno coalgebra ¢ is the standard reduced incidence coalgebra for
the full lattice of partitions, II. As such, it bears the same relationship to the
lattice of partitions as does the binomial coalgebra to the lattice of subsets and
the Eulerian coalgebra to the lattice of subspaces of a vector space over a finite
field. In this section we shall show that this coalgebra is a bialgebra. (The proof
is due to Doubilet [11].) Moreover, this bialgebra serves as a blueprint for the
formulation and understanding of the general class of hereditary bialgebras
presented in Sec. XVIIL.

The full lattice of partitions, II, is the lattice of all set partitions of z*
(positive integers) having exactly one infinite block and finitely many finite
blocks, ordered by refinement (see Sec. II).

Every segment [0, 7] of I1 is isomorphic to I x X - - o X Iy, where I,
is the lattice of partitions of an n-set, and A, equals the number of blocks of 7
which consist of k blocks of a. (This isomorphism can be seen by thinking of the
ith block of o as the “element™ B,, and [0.7] as a partition on the collection of
B;’s, with o as the finest partition.) To each segment [o.7] of I1, we associate the
sequence A=(1,1,....1,2,...,2....) of A, ones. A, twos..... sometimes written
A=(1"2%- ) or equivalently, x}x}?...=x" X, or x*, is the type of [o,7], and
clearly [o,,7,] is isomorphic to [6,,7,] if and only if they have the same type. The
type A=(192°---n'...)=x, is often written as n. We shall use the symbols
a,B,A, v, to denote types.

The section coefficients anﬁ count the number of partitions 7 contained in

[0,(1,2,...,m)]=TII, such that [0,7] is of type « and [7.(1,2,..., n)) is of type B.
Note that if a=x{x32 -« x™ we must have o, +2a,+ ... +na,=n and B=

Xy +a.s..+a- These section coefficients, known as the Faad di Bruno coefficients,
@ a®

are given exi)licilly by

[ n ]= n! . ©O.1)

OB g (1)) (n)™
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The explicit coalgebra structure of ¥ is as follows. As a vector space, F is
isomorphic to K[x),x,,...]= K[x]. The diagonalization A and counit ¢ are given
by

2 A
AX)‘ - a B [G;B}x ®Xﬁ (9.2)
and
_ |1 if A=(0,0,0,...) or (1,0,0,...)
) {0 otherwise. (93)

If o<7 and B is a block of 7, then by 6N B we mean the partition of B
consisting of the blocks of ¢ contained in B. Let [0, 7] be of type x,,x,, i.€., T has
two blocks B and B’, where B contains m blocks of o, and B’ contains n.
Suppose 7 is such that s <7 <1, [6N B,7N B] is of type xx$2,..., and [oN
B’,mN B']is of type x{ixs?- - -. Then clearly [a,7] is of type x{ *x2+%:. .. =
x*x*. Similarly, if [N B,7N B] is of type x® and [# B',7n B'] is of type x#',
then {7,7] is of type x*x#". Thus, for all m,n,,u,

XX, | _ Xom n
e 2 lallarl e
ata'=p,B+f =p

where addition of sequences is defined by (1%12%...)+(182f: )=
(13+Bu+h 1y e x*xP=x"*A_ It follows that [x;,ﬁ,,] is the coefficient of

>

x" ®x* in A(x,)A(x,,). This is equivalent to

Z“ [";‘2 }x"@x“ - (2 [ :’;3 ]x"®xﬁ)( > [ :"B]x"‘®xﬂ). (9.5)

af L a.f

AigAa. L
More generally, {X' "2“ ] is the coefficient of x*®x* in A(x,MA(x)M: -+ .

]

But this is just
A(xxyre ) = AQx )M A(x) - (9.6)
In addition, it is clear from (9.3) that
e(xdxde...) = e(x, ) e(xy) - -

Hence, we have shown

THEOREM 9.1. ¥ is a bialgebra under ordinary multiplication and the coalgebra
structure obtained from the standard reduced incidence coalgebra of C(II).
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Note that F is non-cocommutative. By Theorem 9.1, the space of all K-liner
maps from & to itself, Hom(%, %), is an algebra with multiplication (or convolu-
tion) + defined by

Sog() = [ s }f(x")g(x%. ©7)

a.f3

A function f in Hom(%, %) is said to be multiplicative if and only if for all A,
FOM o xM )y =f(x)M...f(x,).... Any such function is determined by the
values it takes on the segments I1,. Let O (%) denote the class of multiplicative
functions. The following elementary result is fundamental [4].

PROPOSITION 9.1. The convolution of two multiplicative functions is multiplica-
tive.

Thus, 9M(F) is a subsemigroup of the multiplicative semigroup Hom(%, %).
If f€OM(F), let f(n) denote f(IL,), that is, f([o,7]) for all [0,7] of type n. For
f[,8€M(F), we get from (9.1) and (9.7) that

» ORI (O (R R

al e (I (n)™

frg(n) =

ay+2ay+ ...+ na,=n

THEOREM 9.2 (Doubilet, Rota, Stanley). The semigroup ON(F) is anti-isomor-
phic to the algebra of all formal power series with zero constant term over K([x] in
the variable u under the operation of functional composition. The anti-isomorphism
is given by fi>f(u), where

Jw=> Z%u (9.9)

n=]

Thus f+g(u)=g(f(x)).

Proof: Clearly the map defined by (9.9) is a bijection, so we need only check
that multiplication is preserved. Now

00 © k
s = 3 5y ( > <,)) . 0.10)

p=|

~—

|

=

The coefficient of u” in the expansion of

3]

fr)-fn) _ KU F()®L L f(n)*
y|+_2y"_" vl,!...v,(! = 2 al...a,! (... (a)>"’
wal
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where the summation is taken over a;+2a,+ ... + na,=n and a;+ ... +a, =k,
since there are k! /a,!...a,! ways of ordering the partition a, +2a,+ ... + na, =
n. When we multiply (9.11) by g(k)/k! and sum over all &, we obtain (9.8), and
the proof follows.

% is not a Hopf algebra, since A(x,)=x,®x,. It can be realized as a Hopf
algebra in K{[x] localized at x,, with

A(L)bl_@_'_.

X, X X

A proof of the existence of the antipode is given by demonstrating that a certain
recursion can be carried out. An explicit formula can be obtained using the
Lagrange inversion theorem [19].

In K[x] localized at x,, YR(%) is anti-isomorphic to the group of all invertible
(under functional composition) formal power series. The inverse of any function
can be obtained by composition of this function with the antipode S. For a
more detailed discussion of the Hopf-algebra aspects of %, we refer the reader to

(1], 19].

X. Incidence coalgebras for categories

Certain enumeration problems (see [4, p. 283]) lead to counting over structures
more complicated than a single PO set. The concept of a Mobius category [21],
gives one such structure. To extend the notion of incidence and reduced
incidence coalgebras for PO sets to these situations, we are led to define
incidence coalgebras for categories.

A locally finite category is a category in which for each morphism f, the
collection of pairs of morphisms {(f,.f,):f, of,=f} is finite.

Given a locally finite category M, the incidence coalgebra C(M) is the free
vector space over K spanned by the indeterminates f, where f is a morphism of
M with coalgebra structure given by

s= 3 £,8% (10.1)
frofa=S
and
e(f) = { 1 if f=id, for somei object p in M, (102)
0 otherwise.

Let ~ denote an equivalence relation on the morphisms of M. The subspace
generated by ~ is the subspace of C(M) spanned by the collection { f—g: f~g].
We say ~ is compatible if the subspace generated by ~ is a coideal. A reduced
incidence coalgebra C(M)/~ is the quotient coalgebra of C(M) modulo the
coideal generated by a compatible ~ relation.
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Given two morphisms f,g in M, we say that g divides f if there exists
morphisms h,k in M such that f=hogok. Let [f] denote the subcategory
generated by {g|g divides f}. The standard reduced incidence coalgebra is
obtained via the following equivalence on the morphisms: We set f~g if and
only if [f] is isomorphic (as a subcategory) to [g]. Clearly the subspace
generated by this equivalence relation is a coideal.

The range of meaningful reduced incidence coalgebras for categories is much
larger than those of PO sets. For example, the inner reduced incidence coalgebra
arises by setting f~g if and only if there exists an invertible morphism 4 in M
such that [f]=he[g]oh™", and the strongly reduced incidence coalgebra arises
by setting f~g if and only if there exists a category isomorphism ¢: [f]—[g]
such that p(f)=g.

Example 10.1: Every locally finite PO set P can be viewed as a locally finite
category as follows: the objects of M are the elements (or vertices) of P, and
there is a unique morphism f,  x—y if and only if x<y. Clearly, if x<z<y,
then f, ,of, ,=f., and [f, ] corresponds to the interval [x,y]. There are no
invertible morphisms (other than the trivial ones, i.e. £, ), so that in this case,
the inner reduced incidence coalgebra is the full incidence coalgebra. Moreover,
in this case the standard reduced and strongly reduced incidence coalgebra are
isomorphic.

Example 10.2: Every finite group G can be viewed as a locally finite category.
The category has only one object, and each morphism f, corresponds to an
element of G. Composition of morphisms is given by f, ° Jou=Js, 0 @nd if € is the
identity element of G.,f, is the identity morphism. In contrast to the case of PO
sets, the standard reduced incidence coalgebra for this category is isomorphic to
the trivial category (consisting of one object and one morphism), whereas the
inner reduced incidence coalgebra is isomorphic to the category of conjugacy
classes of G. Indeed, in the inner reduced coalgebra, we have f~g if and only if
there exists an 4 such that f=hgh ™', that is, f is conjugate to g. Let J denote the
subspace generated by ~. If f~g, then to each pair (f,,f;) such that f, f,=f
there correspond a unique pair (g,,8,) such that g, g,=g and f,~g. The
correspondence is given explicitly by g, =h~'f,h. Therefore

A(f-g) = Efu ®fr — 2 h"j“h®h"f2,h

= 2 [(fn —h" ]fnh)®fz. +h _lflih®(f2i —h" lfz.‘h)]

CIREM)+C(M)RJ.

Hence J is a coideal and C(M )/~ is isomorphic to the category of conjugacy
classes of G, as asserted. In the strongly reduced incidence category we have
f~g if and only if there exists a group automorphism g such that () =g.

As we have seen in Sec. IV (Theorem 4.1), the lattice of subcoalgebras of the
incidence coalgebra for PO sets is distributive. This is also trivially true for the
lattice of subcoalgebras of the incidence coalgebra for a group G, because there
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are no proper subcoalgebras. It is, however, in general false. For example, let M
be the category

. 4
Lq, m 3
S
{

2

'where i,of;=f and f o4, =/, j=1,2. The lattice of subcoalgebras of this category
is not a distributive lattice. This is easily seen as follows: Let L(A4) denote the
linea. span of 4, and set M, = L(i,,iy); My=L(f,,i,,4,); My=L(fpi,.iy); My=
L( +f5i,i,). Then each M, is a subcoalgebra of @(M), and

MZ/\(M3\/M4) = MZ'
whereas
(MaAM) N (M AM,) = M,

In fac.t, the segment [M,,C(M)] is isomorphic to the lattice of subspaces of a
two-dimensional vector space over K, and it is well known that this lattice is not
distributive.

XI. The umbral calculus

The binomial bialgebra has been studied in great detail, in particular with regard
to applications to combinatorics, in a series of papers beginning with Mullin and
Rota [2), followed by Kahaner, Odlyzko, and Rota [3] and finally Roman and
Rota [5). Elegant expositions of the results of Mullin and Rota were given by
Aigner [6], Garsia {14], Liu [22], and several others. We shall summarize the
main lines of this theory, keeping in mind that these results should act as
blueprints for yet to be carried out generalizations to the more complex
bialgebras and coalgebras arising in combinatorics, some of which are described
in the rest of the present paper.
The comultiplication

axn = (F)x @ xk, ().

k

on the algebra of polynomials p(x) of one variable, defines a bialgebra structure.
Th; dual algebra on linear functions L—where we denote by (L|p(x)) the
action of the linear functional L on the polynomial p(x)—is seen to be

CLyLyxmy = 3 (7 KLalx <L x5 (11.2)
k
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The dual algebra, with the augmentation ¢ acting as the identity, has been called
the umbral algebra by Roman and Rota. The umbral algebra is isomorphic to
the algebra of formal power series under the map

LoD (Lix" % (11.3)

even in a topological sense. The formal power series thus associated to a linear
functional is said to be its indicator.

The algebra of shift-invariant operators on polynomials is the algebra of all
linear operators 7 mapping polynomials into polynomials, such that TE® = E“T,
where E° is the shift operator mapping p(x)—p(x + a), for all a. It turns out that
the umbral algebra is also isomorphic to the algebra of shift invariant operators
under the map sending the linear functional L to the operator Q given by

Ox" = 2(2)<L|x">x""‘.
&

A coalgebra isomorphism U, that is, a one-to-one onto linear operator on
polynomials such that

sUx" = 2 (7 )ux @ ux"k (11.4)
k

has been called an umbral operator by Mullin and Rota. The adjoint of an
umbral operator is an isomorphism of the umbral algebra, and conversely, with
due respect to topology. The sequence p,(x)= Ux", where U is an umbral
operator, is said to be of binomial type, and is characterized by the identity

pa(x+a) = 2 1 )pu@pa-i(x). (115)

k

Sequences of binomial type are of frequent occurrence in combinatorics, and
have motivated much of the work on the umbral calculus. For example the
sequences (x),=x(x—1)--(x—n+1), x(x—na)"~ ! and the Laguerre poly-
nomials are of binomial type.

A delta functional L is a linear functional such that (Z|1)>=0 and (L|x) #0.
To every delta functional one can associate two polynomial sequences of
binomial type: the associated sequence p,(x) uniquely defined by the biortho-
gonality requirements

LK) pa(x)> = n'8y (11.6)

and the conjugate sequence g,(x), defined by

k
an(x) = 2 LA™ 5 (11.7)
- !
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Conversely, every sequence of binomial type, p,(x), is the associated sequence
and the conjugate sequence of unique delta functionals, say L and L, which are
said to be reciprocal.

A shift-invariant operator Q associated to a delta functional L is said to be a
delta operator. If p,(x) is the associated sequence of the linear functional L, then
the identity Op,(x)=np,_,(x) shows that the sequence p,(x) is related to the
delta operator Q in a manner analogous to D and x”. This leads to the
generalization to delta operators of several classical formulas of the calculus; as
the simplest example, Taylor’s formula generalizes to

A0}

plx+a) = o

0"(x). (11.8)

For example, for the sequence p,(x)=(x),, the delta operator Q is the difference
operator A defined by Ap(x)=p(x + 1)—p(x). Every delta operator Q equals the
product DP, where Dp(x)=p’(x) is the ordinary derivative, and the inverse
operator P! exists. The operator P is called the transfer operator of the
sequence p,(x). We come now to the first basic fact of the umbral calculus,
which is the transfer formula:

Pu(x) = xP " "x"", (11.9)

where P is the transfer operator of the sequence of binomial type p,(x). This
formula is closely related to the Lagrange inversion formula for formal power
series [15).

To introduce the next basic fact, we consider the operator X mapping p(x) to
xp(x). The operator Q'=0x—xQ is called the Pincherlé derivative of the
operator Q, and is also shift-invariant if Q is. Now, if Q is the delta operator of
the sequence p,(x), then the recurrence formula

Pa(x) = x(Q") " 'p,_1(x) (11.10)

gives another way of explicitly computing a sequence of binomial type.
We now come to the fundamental fact of the umbral calculus. If p,(x)is a
sequence of binomial type, then its generating function is of the form

P,.(x) n a, \?
ZT! =exp[x(a,t+—2—!tz+ }J = X" (11.“)

for some formal power series f(¢) such that a,=0 and a,0, (a delta series, for
short) and conversely. If p,(x) is the associated sequence for the delta functional
L with indicator g(¢), then the series f(r) and g(?) are inverse in the sense of
functional composition, that is, f( g(1))=g( f(1))=1. Furthermore, if p,(x) is the
conjugate sequence of the delta functional £, then f(9) is the indicator of L.
Functional composition is also related to umbral operators. It turns out that

every umbral operator U is uniquely related to a delta series u(t), and if L has
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indicator f(#), then the linear functional U*(L) has the indicator f(u(¢)); the
converse is also true.

The coalgebraic statement of this fact leads to the interpretation and rigoriza-
tion of the classical technique of treating indices as exponents, from which the
umbral calculus derives its name. If p,(x)=2,4, «x* and g,(x) are sequences of
polynomials of binomial type, then the polynomial sequence

ra(x) = % a, 19k (x) = p.(q(x)) (1.12)

is called the umbral composition of the sequences p,(x) and g,(x). It turns out
that the sequence r,(x) is also of binomial type; furthermore, if the indicators of
the delta functionals L and M with respect to which p,(x) and g,(x) are the
associated sequences are, respectively, f(z) and g(¢), then the corresponding
indicator of the sequence r,(x) is the functional composition f{ g(?)).

Among many other facts of the umbral calculus which cannot be mentioned
here—but some of which will be found in the memoir of Roman and Rota—we
mention the extension of the preceding results to other module actions of the
umbral algebra; in fact, it would be of the utmost interest to classify all such
module actions. For example, a natural action is defined on the ring of inverse
formal power series

=3 =

n>1

by sending ™" to (1+a)™", thus defining the operator E“, and then taking a
suitable closure. In this way, one can define “inverse” analogs of all sequences
of binomial type; for example,

(x)-n = ‘ :
(x+D(x+2)---(x+n)

leading to a generalization of the classical theory of factorial series.

XII. Infinitesimal coalgebras; the Newtonian coalgebra

Recall that a bialgebra 4 is a vector space which is simultaneously an algebra
and a coalgebra such that the comultiplication A is an “endomorphism” of 4 (as
an algebra). The analogy between endomorphisms and derivations leads us to
define an infinitesimal coalgebra A to be a vector space which is simultaneously
an algebra and a coalgebra (possibly without a counit) such that the comultipli-
cation A is a derivation of 4 in the sense that for p,q in A4,

A(pq) = (8p)(¢®1) + (1®p)(4q). (12.1)
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In this section we shall present only one infinitesimal coalgebra, the Newtonian
coalgebra. The study of this coalgebra should provide a prototype for the
general study of infinitesimal coalgebras.

Let us recall the definition of the Newton divided differences. The Oth
divided difference is

[f:xo] = f(x,)-
The first divided difference is

_ Hxo) = f(xy)

Xo— X,

[f3x0axl]

the second

[f:xoixl)xz} = [flxo,xl]—[f:xl,xz] '
Xog— X5

and the kth divided difference [f: x,,...,x,] is obtained by iteration.
A polynomial sequence {p,(x)} [with po(x)=1] is said to be of Newtonian
yype if

_ n—1
Pa(x) _p..(y) = 3 ()P r(¥). (122)
xX—y k=0

Two examples of such sequences are {x"}, and {(x +a)"} for any a. There are
two coalgebras within which we can study these polynomial sequences. As
vector spaces and as algebras, both are isomorphic to K{x]. The first coalgebra
we shall consider is the Newtonian coalgebra, denoted N. The comultiplication in
N is

Ap(x) = A’%)[—:f@ (12.3)

and is easily checked to be coassociative. There is no counit in N. Moreover, it is
immediate to verify that

A(pq) = 8p(q®1) +(1®p)Aq,
so that N is an infinitesimal coalgebra. The kth divided difference [p: xg,...,x;]

=A%(x). This coalgebra setting gives an elegant proof of Newton’s formula,
namely

f(x) = kéo(x—xo)‘ (= x ) [ frxg ]
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In the dual algebra, the following striking relationship between divided
differences and ordinary differentiation is seen. Let us set, for all p,

el Ax)> = A(p).
Then
= fr)-fa9)
(g el flx)) = =g
and

gl f(x)> = f(p).

An extensive study of the theory within this setting has been pursued by S.
Roman [25).

A different approach was taken by Garsia and Joni. Using the umbral
machinery with the “differentiation” operator 4 defined by

Ax" = xn—l

and the “multiplication” operator B defined by

xn+l

Bx =n+1

+

they define a polynomial sequence {g,(x)} [g4(x)=1]) to be of Newjonian type if
xqn(x) —rg.(¥) _ <&
qxf( = 3 %(x)q.-i(»)- (124)
y k=0
Note that ¢,(0)=0 for all n> 1. Examples of such sequences are {x"}, {x(x+

a)" ).
Here, the underlying coalgebra structure is given by

_ xp(x)~yp(y)
Ap(x) = ey

and

ny — l, ’l=0,
e(x") {0 otherwise

(that is, € is evaluation at zero).
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In this setting, all of the results within the umbral calculus, appropriately
modified (see [13]) for the “differentiation” 4 and “multiplication” B, apply. For
example it is not difficult to show that {g,(x)} is of Newjonian type if and only
if

00 . l
2, = Ty

where f(u) is ag invertible (under functional composition) formal power series.
It turns out that polynomial sequences of Newtonian and Newjonian type are
essentially the same class of polynomial sequences. Indeed, we have

THEOREM 12.1. A polynomial sequence { p,(x))} is of Newtonian type if and only
if the polynomial sequence {q,(x)} defined by

1, n=0,
%(x) = {xp"-.(x), n>1

is of Newjonian type.

The Newjonian coalgebra setting provided the machinery for the explicit
computation of the “Newtonian analogs™ of many of the classical polynomial
sequences (e.g. Laguerre, Abel, exponential, Gould, etc.).

XIIL. Creation and annihilation operators

The creation and annihilation operators we present here generalize those of
quantum field theory.

Let {(i|/,k)} be a collection of section coefficients satisfying the extra
condition that for each ordered pair (/, k), the set {i:(i|j,k)70)} is finite, and let
C be the coalgebra defined by these section coefficients and a given counit ¢ (see
Sec. III). Creation and annihilation operators are linear maps from C to itself
defined as follows:
for each j €49, the creation operator K is

Kx, = 2 (ilj,k)x, (13.1)
i
and the annihilation operator A ; is

Ax, = Z(ku,i)x,.. (13.2)

If the section coefficients are all equal to zero or one, and if, in addition, for
each j, k there is at most one i such that (i|j,k) =1, then the creation operator K
acting on x, gives the “piece” i obtained by piecing k and j together if it exists,
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and zero otherwise. Similarly, the annihilation operator A; acting on x; givcs the
piece i which when added to the piece j is the piece , if such a piece exists, and

zero otherwise. _ o
For example, let us look at the situation when C is an incidence coalgebra for

a PO set. An easy computation gives

[y,0] if x=uandx<y<y,

Ay w0] = {0, otherwise.

Similarly

x,0] if y=u

K ]| = [ .

[0 [ 0 otherwise.

In a puzzle, K;x, gives a list (with multiplicities) of all possible X; obt_a_inable by

piecing together x; and x,. Similarly, 4,x, gives a list (with multiplicities) of all

possible pieces x; such that x; and x, can be pieced together to form x,.
Straightforward computations give

K A;x, = 2 (klj,i)(qlp.i) %,
6“q

and

A K,x, = 3 (il p. k)il ). 9) %,
hLq

If the section coefficients are bisection coefficients, then C is a bialgebra, and in
addition,

Apxiy; = 2 (Ap.xi)(AszJ')‘

Pi+pr=k

PROPOSITION 13.1. If § is a commutative semigroup (written additively), then
KK = KK =K., and AA = AA =4,
if and only if for all j,k,l,q
S (klip)(pita) = % (k.p)(pli.9)
?

= (k|j+1,q). (13.3)
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Proof:
KKix, = K( S (plLa)x,)
= 2 (pll@)(kl).p)x,
p.k
and

l(j-o—lxq = % (kl./+ I’q)xk'
Therefore, K,K,= K., if and only if
(klj+1q) = 2 (plh.q)(kl).p)-

The same argument using K, K; completes the proof for creation operators, and
the analogous argument holds for annihilation operators.

The coalgebra C, considered as a vector space, has a natural inner product:

THEOREM 13.1. The bilinear form
$xilxde = 2 (ilj.a)e(x,)
q

on C is symmetric and nondegenerate.

Proof: Since ¢ is the counit of C, we have
% = 3 (il),q)e(x)x, (13.4)
59
Equating coefficients of the x’s on both sides gives

<x.‘|xj>c = ; (ilj,q)e(xq) =&,

THEOREM 13.2. Relative to the symmetric form  , >, A; and K; are adjoint
operators.

Proof: We show that
<Ailexk>c = <xj|KixI¢>C

for all i,j, k. Expanding the left side gives

{Aix|xde = ; (j'i’p)<xy’xk>c = (jli,k)
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since {x,, % )¢ =0, . Similarly, the right-hand side gives
(x| Kixede = g (pli, k)X x;. %, > = (Jli, k),

as desired.

In the following examples we see how creation and annihilation operators cut
up and piece together sets and partitions.

Example 13.1: For the binomial coalgebra, the creation and annihilation
operators are easily seen to be

Kx* = (jfk)x“f
J

and

K\ wy o
ijk=‘(j)x if j<k,

0 otherwise.

Example 13.2: Let X and Y be subsets. The creation and annihilation
operators for the Boolean coalgebra are

XuY if Xnry=g
K, Y= { . ’
X 0 otherwise

and

_JY-Xx if XY,
AY { 0 otherwise.

Example 13.3: The creation and annihilation operators for the Faa di Bruno
coalgebra are a bit more complicated than those of the previous two examples.
Let «, B, and A denote types of partitions. The creation operators K, are, by
definition,

K.x? = (Ala, 8)x*.
A

Since (Ala,B)#0 only if B, +28,+...+nB8,=a;+ay+...+a, A +2A,
+...+nA, =a;+2a,+ ... +na,, and A\ +A+ ... +A=8,+8,+...+ 8, the
types x* occurring in K,x? [with multiplicites (Aja, )] are seen to be the types
obtainable by merging, in all possible ways, the blocks of a partition of type a so
that the resulting partition has the same number of blocks as 8. The multiplici-
ties count the number of ways in which a given type can occur.
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The annihilation operators 4, are
AaxB = 2 (ﬁla'k)xky
A

so here we must have a;+2a,+...+na, =8 +28,+...+n8,, A +2A,
+... 40, =a,+...+a, and A\ +A,+ ... +A =8+ B,+ ... + B, for the type
x* to occur in 4 x#. Thus we obtain a list of all the types of partitions (with
appropriate multiplicities) of a set of size a, + ... + a, with the same number of
blocks as 8.

XIV. Point-lattice coalgebras

Let £ be a finite point lattice, that is, a lattice in which every element is the
supremum of a set of atoms. It is well known and easily proved that £ is
isomorphic to the lattice of closed sets relative to the closure operation defined
on subsets of the set & of atoms by

A= (pe@|p<supd) for 4 CQ.

The closure operation enjoys the properties

ACA, (14.1a)
A=A, (14.1b)
if ACB, then ACBH (14.1¢)

(but not, in general 4 U B=A U B). The complements of closed sets, called open
sets, can be characterized even more simply by

(1) the union of any family of open sets is an open set,
(2) every open set is the union of the minimal nonempty open sets it
contains.

Thus, every point lattice can be represented as the family of all open sets in a
closure relation where the join in the lattice is set-theoretic union. In the
following we shall assume that £ is so represented by a fixed set @. We shall
further assume that £ has a unique minimal clemer?t, which is represented by
the empty set. This representation of £ allows us to define a very interesting
coalgebra structure on &. As a vector space, this coalgebra € (£) is isomorphic
to the free vector space over K with basis consisting of all open sets of @. For
each open set A C @, the diagonalization is

Ad = Y A, ®A4,, (14.3)
Ay, Ay open
ANA; =2
A yUAy=A
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and the counit is

1 if A=J
= 144
e(4) { 0 otherwise. ( )

Since the union of open sets is again an open set, it follows immediately that-the
above diagonalization (14.3) is coassociative. Since point lattices occur in many
combinatorial investigations, the study of this class of coalgebras should prove
very interesting. We give three examples of point-lattice coalgebras.

Example 14.1 (The Boolean coalgebra): Finite-dimensional Boolean
coalgebras arise from the point lattice of subsets of {1,2,...,n}. This lattice can
be represented as follows: the minimal nonempty open sets are the sets consist-
ing of one element, i.c., the sets {/}, for 1 <j<n. Thus, every subset is an open
set. Hence, for each 4,

AA = 2 A|®A29
ANA=
A\WUA=A

so that these coalgebras are isomorphic to subcoalgebras of the Boolean coal-
gebra defined in Sect. V.

Example 142 (The nX n board): Let @ denote the collection of the n? squares
{a;}7;=1 on an nXn square board. Our point lattice £ is represented by the
following family of open subsets of &: the minimal nonempty open sets are the
lines of the board, where a line, by definition, is either a row or column. The
open sets consist of all possible unions of lines, so each open set 4 is uniquely
determined by the two subsets of {1,2,...,n}

R(A) = {ijrowiisin4) and C(4) = {jlcolumn,isinA}.

Two open sets A, and A, can have 4N A4,=& if and only if either |R(A)|=
| R(4,)| =0 or |C(A4,)}=|C(A4,)|=0. Thus, our comultiplication 4 breaks up open
sets which are unions of rows or unions of columns, and leaves intact any open
set which is a combination of both rows and columns.

Example 14.3 (Graphs): Let § =(V, E) be an undirected graph with vertex set
V, | V| < o0, and edge set E. Here, our point lattice is the family of open subsets
of V defined as follows: the minimal nonempty open sets are (unordered) pairs
of vertices p and ¢ such that there is an edge in E connecting p and g. We shall
sometimes write (p,q) to denote such an edge. An open set A is a subset of V
such that for each p € 4, there exists a ¢ E A such that (p,q) is an edge in E.
(Note that ¢ need not be unique.) Our comultiplication gives all ways of dividing
an open vertex set A into two disjoint sets 4, and A, such that each vertex in 4,
i= 1,2, remains connected to some other vertex in A,. For example, let 8 be the
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graph given by the following figure:

2 3 ¥
5 3 ?
v={12..,7}

Then {1,5,2}®(3,6,4,7} occurs in AV, whereas {1,2,3,5)®{4,6,7} does not.

An element p in any lattice £ is said to be a join-irreducible element if it
cannot be expressed as the join of two incomparable elements of . Every
element in £ is the supremum of a set of join irreducibles, and £ is isomorphic
to the lattice of closed sets relative to the closure operation defined on subsets of
the set of join irreducibles J by

4 ={pEJ|p<supd} for A CJ.

Thus, the construction given for the point-lattice coalgebras extends in the
obvious way to a construction for general lattices.

XV. Restricted placements

A fundamental concept in the study of permutations with restricted positions is
that of a non-taking subset of a board. A non-taking subset of a board is a
collection of squares {a,;} such that no two squares have the same row or
column index. They are best visualized as follows: if we place a rook on each
square in a given set A, then A is non-taking if and only if no rook can “take”
any other rook, that is, no two rooks are in the same row or column.

In this section we shall give a very general setting for the construction of
non-taking sets; non-taking sets of boards arise as one special case. Another
special case gives totally unconnected collections of vertices in graphs, which are
closely related to the problem of colorings of graphs. Within this context we are
lead to a very natural interpretation of Mébius inversion for a large class of
lattices, and a coalgebra closely associated with enumerations of non-taking sets.

In order that this paper may be reasonably self-contained, we give a brief
sketch of Mobius inversion for an arbitrary locally finite PO set P. The reader is
referred to [1] for a more complete discussion. In enumeration, we often wish to
calculate f(»), a function on P, and it turns out to be much easier to calculate

g(x) = Exf(y)-

As an example, if P is the lattice of subsets of {1,2,...,n}, and f(A) is the
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number of permutations of {1,2,...,n} whose set of fixed points is precisely 4,
then it is easy to see that

g(A) = E f(B) = the number of permutations whose set of
fixed points contains A

= (n—|A.

We obtain the values of f (in terms of the values of g) via Mobius inversion.
The zeta function is the function in the incidence algebra ¢ (P) defined by

I if x<
g' X, - { ya
(x.) 0 otherwise.

The inverse of { (under «), p, is the Mobius function. That is, u satisfies, for all
x<y,

2 wx2)8zy)= 2 $(x2)pzy)

x<z<y x<z<y

1 if x=
=5, = { " I5.
> 0 otherwise. (1s.h

THEOREM 15.1 (MG0bius inversion). Let f and g be functions on a given PO set
P such that

glx) = E fO)- (152)
Then
f(x) = % w(x.p)e(y). (15.3)

Proof: Equation (15.2) states that
8(») = ,%f(z) =282 ().
Thus, multiplying both sides by u(x,y) and summing over y gives
g mx.y)g(y) = 3 g w(x.»)$(»,2) f(2)

= 5 8.,1(2) = f(x).
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As in Sec. XIV, we shall assume that we are given a point lattice &,
represented as a family of open subsets of a set €. We shall call nonempty
minimal open sets forbidden sets. Given £, we construct a new lattice S{(). the
lattice of stars of C, as follows: for each p € @, the star of p, st(p), is the union of
all forbidden (minimal nonempty open) sets containing p. If 4 is any subset of
@, we set

st(4) = U st(p).

PEA

We say that an element S in £ is a szar if and only if S=st(4) for some 4 C .
(Note that A4 is, in general, not unique.) If 4 C B, then st(4) Cst(B). We say that
A generates S if st(4)=S and for all 4’ 9C{= A, st(A4’) ; st(A4). The lattice St(I)

consists of all stars of £, ordered by inclusion, where the join is set-theoretic
union. St(€) is, in general, not a sublattice of £. Indeed, the meets in the two
lattices are not necessarily the same, since if S and 7 are stars, then in St(£).
their meet will be the maximal star contained in S N T, whereas in 12, their meet
is the maximal open set contained in S N 7. Moreover, St(£) need not be a point
lattice. We shall give an example of this later in this section.

A subset 4 of @ will be said to be non-taking when for all p#q in 4, p&s1(q)
and g &st(p). We define two functions f and g on St(£) as follows: given a star
S, let g(S) be the number of non-taking sets whose star contains S, and let f(.5)
be the number of non-taking sets whose star equals S. Clearly,

g(s)= X f(T), (15.4)

T2S

where T ranges over all stars. Hence, by Mdbius inversion,

f(8)= 2 u(s,T)g(T) (15.5)
72s

and we have exhibited a combinatorial interpretation of Md&bius inversion over
any lattice of stars.

For our first example, let us return to the problem of rooks on an n X n board.
As in Example 14.2, our point lattice £ is represented by the family of open
subsets of @ (where @ is the collection of squares {g,;} of the board) whose
forbidden sets are lines. The minimal nonempty stars of £ are the unions of the
two lines through each square g;;. Thus, the number of atoms of St(L) is n2, and
since every star is a union of these minimal stars, St(£) is a point lattice. A
non-taking set 4 C @ is, by definition, a set such that for each g;%a,, in 4,
a,,&st(a;;) and a; &Est(a,,). Clearly there is a bijection between these sets and all
possible placements on the nX n board of non-taking rooks. Recall that for an
open set A, R(A)=(ilrow i is in A} and C(A)={j|column j is in A}. Let
r(A)=|R(A)| and c(A4)=|C(4)|. If A generates the star S, then |4|=
max(r(S),c(S)). The number of sets generating S equals the number of maps
from a set with max(r(S),c(S)) elements onto a set with min(r(S),c(S)) ele-
ments. Moreover, A4 is non-taking if and only if r(st(4))= c(st(4)). Thus, if Sisa
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star such that r/(§)=c(S)=m, then S is generated by m! non-taking sets of size
m. Therefore, we have shown

_[m i r(S)=c(S)=m, 156
f(5) { 0 otherwise. (156)
For n > 3, the lattice St() does not satisfy the chain condition. This is easily
seen, since
7 2 0
// # \'4 % = / // (15.7)
1/ A4 L////
while
//// / . /f /// /// /
v v /4= VA ; 7/ j7 (158)
diid Z 4 A/
In general, T is a successor of § in St(€) if and only if
r(S) < r(T) <r(S+1), (159)

and
c(S) <c(T) <c(S+1).

Thus the number of successors of § is given by
[n—r(S)]+[n—c(S)] +[n—r(8)][n—c(S)]

=[n+1—r(S)][n+l—c(S)] -1

Moreover, if for S C W, we set Succ(S,W)={(TC WI|T is a successor of S},
then |Succ(S, W) is

WS, W) =[r( W)+l—r(S)][c(W)+1—c(S)] -1 (15.10)
Let us set, for S C W and 2<k <»(S, W), -
o(S,W;k) = |{ Y CSucc(S,W):|Y|=kandsupY=W}|.  (15.11)

The cross-cut theorem [1] for Mdbius functions of lattices gives

(S, W) =3 (= D*c(S, W;k). (15.12)
k>»2
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While the constants in (15.11) are not tremendously difficult to calculate in any
given interval, no closed formula is known at this time.

Finally, let us calculate the values of g(S). If T is a star generated by a
non-taking set and 72 S, then r(7T)=c(T)=m > max(r(S),c(S)), and there are

precisely
( n—r(S) )( n-c(S))
m—r(S) ]\ m—c(S)

such 7. Hence, there are

n—r(S) (n—c(S) !
m—r(S)Y\m—c(8)) "
non-taking sets of size m whose star contains S. Therefore, we have

g(s) = 2 (’:__'r((‘z,)))(;__cc((“;)))m' (15.13)

m=max(r(S),c(S))

Let us now turn to the case of graphs. As in Example 14.3, given a finite
graph § =(V, E), our lattice £ is represented by the family of open subsets of V
whose forbidden sets consist of two-point subsets { p,q} such that (p,q) is an
(undirected) edge in E. The minimal nonempty stars will be a collection of
st(p)’s, but not every st(p) is necessarily minimal. A two-subset {p,q} is
nontaking if and only if p &st(q) and g &st(p), that is (p,q) is not an edge of §.
Thus, nontaking subsets correspond to collections of vertices where no two are
connected by an edge of §.

A proper coloring of a graph is a placement of colors, one on each vertex
of G, such that no edge connects two vertices of the same color. Clearly,
the maximum number of vertices we can color with one color is equal to
max, {|4|:4 in non-taking}. The minimum number of colors needed to prop-
erly color a graph is equal to the smallest k£ such that there exists a collection of
pairwise disjoint non-taking subsets 4,,4,,...,4, whose union is V.

Since the class of all finite graphs is extremely general, one would not expect
to be able to obtain general formulas for the functions f and g. However, in
many specific cases, they are very simple. As an example, let § be the graph

U
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There are six stars in ¥, and St(£) is

3¢65)

S6G) 3¢y

©
The non-taking subsets are &, {1}, {2}, {3}, {4}, {5}, {1,3}, and {2,4}. Thus,

], 0<,<4,
N=1" 15.14
sson={y 0% (15.14)
and
8 Jj=0,
g(st()) =14, 1</<4, (15.15)
3, j=5.
Now consider the graph
d 5
i
4
3 (4

Here the lattice St(£) is not a point lattice. Indeed the minimal nonempty stars
are {1,2,3), {1,2,4}, (1,3,4}, {4,5}, and {4,6}. Thus, st(4)={2,3,4,5,6} is not a
minimal star, and is not the join of the minimal nonempty stars contained in it.

Let us recall that our point lattice £ is represented by a family of open
subsets of the set &. For some sets 4 C &, the enumeration of the non-taking
subsets contained in 4 can be reduced to counting the number of non-taking
subsets contained in certain subsets of A. The precise determination of when this
occurs leads us to the following definition. We say that two subsets 4 and B split
(or form a splitting of) a subset W if AU B=W, ANst(B)=4, and s{(4)N B=
&. Let A and B split W, and suppose S is a non-taking subset of W. Clearly,
SN A and SN B are non-taking subsets of 4 and B, respectively. Conversely, if
S is a non-taking subset of 4, and T is a non-taking subset of B, then SU T is a
non-taking subset of W. To see this let s€S, €7, and sEst(t). Then s€AN
st(B), but ANst(B) is empty. Let r(W;k) denote the number of non-taking
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subsets of W of size k. Then for any splitting 4, B of W, we have shown

r(W,n) = 2 (:)r(A,k)r(B,n—k). (15.16)
k=0

This identity is a generalization of those given by Henle for morphs relative to
certain dissects [17]. If @ itself admits a nontrivial splitting 4, B, then £ is the
direct product of the lattices of open subsets of 4 and B.

The Henle coalgebra 3 (£), associated to a point lattice £, studies the splits
of @. More precisely, 3C (£) is the vector space over K with basis consisting of
all subsets of @. The diagonalization A and counit ¢ are given by

M= 2 A4, (15.17)
(A4,.4,) ordered
splits of 4
and
1 if A=0Q
A) = ) .
=(4) {0 otherwise (15.18)

That the comultiplication A is coassociative is easily verified. The full n X n rook
board admits no nontrivial splittings. However, if W is the subset shown in Fig.
2, then

AW =W+ W, QW,+ W,3W,+ WRUJ.

A graph § with admit a splitting if and only if it has more than one connected
component.

W= vn
r////
M/
s
A
.
%
V,

Figure 2.
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XVI. Cleavages

We shall next discuss a class of coalgebras that generalizes the classical notion
of the shuffle algebra to partially ordered sets. A family 2 of PO sets is called an
SBC family (suitable for building cleavages) when it satisfies the following
condition:

if P is a partially ordered set in Z,
and if Q is a partially ordered subset of P in 2,
then the partially ordered subset P-Q also belongs to 3. (16.1)

Under this condition we define a cleavage of a PO set P in = as an ordered
pair (Q, R) of subsets of P—with the inherited partial order—such that N R=
, QU R=P, and Q and R belong to =.

The cleavage coalgebra of the family Z, C (), is now defined as follows.
Associate a variable x, to each P in 2, including 1 for the empty PO set, and let
C (2) be the vector space having the X,’s as a basis. Set

Axp= Xp @ xp, (16.2)
(Q.R)

where the sum ranges over all cleavages (Q,R) of P. The counit e(x,) is zero
unless x, =1, and e(1)=1; the verification of coassociativity is immediate.

We shall call a family £ of types (i.e. isomorphism classes) of partially ordered
sets a reduced SBC family when it satisfies the following condition:

if ais a type in S,

if P is a partially ordered set of type a,

if Q is a partially ordered subset of P,

and if the type 8 of Q belongs to Z, then the type y

of the partially ordered subset P — Q belongs to X. (16.3)

Clearly, if 2 is an SBC family, and if 3 is the family of types (or isomorphism
classes) of Z, then % is a reduced SBC family. The reduced cleavage coalgebra of
the family S is the vector space C(S) freely spanned by the variables X,
associated to each type «, including 1 for the empty PO set, with

Ax, = 2 (a| B.¥)x; ® x,, (16.4)

where the sum ranges over all ordered pairs (8,y) of types in S such that a
partially ordered set P of type a contains a cleavage of type (8,v).

The section coefficients (a] B,y) are integers counting the number of clea-
vages of type (8,v) in a partially ordered set of type a. The counit is the obvious
one, and again the verification of coassociativity is immediate.

If = is an SBC family and £ is the family of types of =, then the reduced
cleavage coalgebra C (i) is isomorphic to the quotient of the cleavage coalgebra
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C(Z) modulo the coideal generated by x, — x,, for all isomorphic PO sets P,Q in
=

Exampies of SBC and reduced SBC families are not abundant, and we shall
only give three.

Example 16.1. Let = be the family of all finite linearly ordered subsets; $is
the family of all types of finite linearly ordered subsets. The cleavage coalgebra
C(Z) is isomorphic to the Boolean coalgebra. The reduced cleavage coalgebra
C(Z) turns out to be isomorphic to the shuffle coalgebra. It is well known that
this coalgebra is a bialgebra, where the noncommutative multiplication is simply
juxtaposition.

Example 16.2. Let 3 be the family of all finite forests, and $ the reduced
family consisting of all types of finite forests, considered as PO sets. Clearly X is
an SBC family. 3 defines an interesting reduced cleavage coalgebra, the tree
coalgebra, which does not seem to have been studied. We do not know whether
the tree coalgebra can be significantly turned into a bialgebra.

Example 16.3; Let £ be the family of all finite PO sets; f:, the reduced family
of all types of PO sets. The associated reduced cleavage coalgebra, we conjec-
ture, should have some notable universal mapping characterization, generalizing
the universal properties of the shuffle coalgebra.

Several SBC subfamilies (reduced SBC subfamilies) of PO sets defined by
restricting the length or width of the PO sets (types) allowed give subcoalgebras
of the cleavage (reduced cleavage) coalgebra. For example, one can take all PO
sets (types of PO sets) with the property that in each P, no chain exceed in
length an integer n prescribed in advance.

The cleavage and reduced cleavageé coalgebras can be viewed as generaliza-
tions of the incidence and reduced incidence coalgebras. Very probably, other
coalgebras “in between” these two extremal cases can be defined.

XVII. Hereditary bialgebras

We come now to the description of a class of bialgebras—indeed, of Hopf
algebras—which are probably the richest in structure and combinatorial ap-
plications. They are obtained from hereditary classes of matroids, a notion
which we proceed to discuss briefly.

Recall that a matroid M(S) on a (finite) set S is a closure relation defined on
the subsets of S which enjoys the MacLane-Steinitz exchange property: if A4is
any subset of S, 4 its closure, and p,q elements of S such that g€ AU p but
q& A, then p€ A U ¢q. We shall need only a few elementary concepts from the
theory of matroids; further details can be found in the books by Crapo and
Rota [9] and by Welsh. The direct sum of two matroids M(S,) and M(S,) on
disjoint sets S, and S, is defined as M(S,+S,) by setting A, U A,=A4,U A,
where A, C S;. A matroid is said to be connected when it is not isomorphic to a
nontrivial direct sum of two matroids. Every matroid M(S) is umquely the
direct sum of connected matroids M(S;) obtained from the blocks S; of a
suitable partition of the set S. A segment of a matroid is defined as follows. Let
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A and B be closed sets of M(S), and let A C B. The segment M(A,B;S) is the
n}atroid defined as the set B— A4 with, for C C B— A4, the closure C of C to be
C=CUA—-A.

In the following we denote by Greek letters isomorphism classes, or types, of
matroids. The lattice of closed sets of a matroid is called a geometric lattice. Two
non-isomorphic matroids may have isomorphic geometric lattices. In fact,
among all non-isomorphic types of matroids having isomorphic geometric latt-
ices, there is one which is canonically associated with the geometric lattice L as
follows: the set S is the set of atoms of the lattice L (that is, elements covering
the minimum element), and for 4 CS, one sets }1_={pES:p<supA}. This
matroid is called the combinatorial geometry associated to the geometric lattice
L.

The geometric lattice of the segment matroid M(A, B; S) is isomorphic to the
segment [A, B] in the geometric lattice L of the matroid M(S).

We come now to our main notion. A hereditary class H of matroids is a
family of types of combinatorial geometries with the following properties:

(1) If « and B belong to H, then the direct sum a+ 8 is a combinatorial
geometry, and it belongs to H. The geometric lattice of a + 8 is the product, in
the sense of partially ordered sets, of the geometric lattices of a and 8.

(2) If M(A,B;S) is a segment of a matroid M(S) and the type of M(S) is in
H, then the combinatorial geometry of the type of the matroid M(4, B; S) also
belongs to H.

(3) If a belongs to H and « is isomorphic to the nontrivial direct sum
a = a, + a, of combinatorial geometries, then o; € H.

Let H be a hereditary class, with types «, 8,y in A. The section coefficient
(a| B,Y) of H is defined to be the number of closed sets A in a matroid M(S) of
type a such that the segment M(J,4;S) is of type B8 and the segment
M(A,S;S) is of type y. It is easy to see that this number depends only on the

types a, 8,7.
We have the important

PROPOSITION 17.1. The section coefficients of a hereditary class of matroids are
section coefficients.

Proof: We have to prove the identity
% (a| B.¥)(v|7.0) = (a| B.7,0)
= 563 («[8,0)(8} B, ).

Let (| B,7,0) be the number of pairs of closed sets 4 C B of a matroid M(S) of
type a such that M(J,4; S) is of type 8, M(A, B; S) is of type 7, and M(B, S, S)
is of type o. The first sum is obtained by fixing 4 and letting B vary, whereas the
second sum is obtained by fixing B and letting 4 vary.

More important is the
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THEOREM 17.1. The section coefficients associated with a hereditary class of
matroids H are bisection coefficients.

Proof: We define a semigroup structure on the hereditary class 4 by taking
direct sums as addition. For clarity, we shall prove the bilinear identity for the
special case (a|B8,y) where a=a;+a, and the «; are connected (nontrivial)
types; the general case is similar. Thus, we need to show that

(y+ay|By) = 2 (| Bry)(aal Borva)-

Bit+p=8
Y+ 2=y

To this end, let A C S be a closed set of M(S), and let M(S) be the direct sum of
M(S,) and M(S,). Then the matroid M(3,4;S) is isomorphic to the direct sum
of the matroid M(,4,;S,) and M(B,A,;S,) where A,=ANS,. Similarly, the
matroid M(A4,S;S) is isomorphic to the direct sum of M(4,,S;;S,) and
M(A4,,S,; Sy). Counting, we obtain the desired identity.

Thus, associating the variable x, to each type of the hereditary class H, we
obtain a bialgebra where the underlying algebra is the polynomial algebra in the
variables x, for which «a is a connected type, and the comultiplication is defined
by

Ax, = Z(al B,7)x; ® x,.

The augmentation is defined in the obvious way.
The bialgebras obtained by this construction will be called hereditary bialge-
bras. We list some of the examples previously discussed.

(1) The Boolean algebra of subsets of finite sets turns out to be a hereditary
bialgebra, which is in fact the binomial bialgebra.

(2) The Faa di Bruno bialgebra is the hereditary bialgebra obtained by taking
the bond closure (see [1]) on graphs which are direct sums of complete graphs.

(3) The Eulerian coalgebra is also associated—although rather trivially—
with a hereditary bialgebra. One takes all direct sums of matroids whose
geometric lattices are the lattices of all subspaces of a vector space over a finite
field. If a is connected, then A(x,) agrees with the definition already given.

Other notable hereditary classes of matroids are (4) all finite sets of points in
projective space over a fixed field; (5) all series-parallel networks, (6) all graphs,
(7) all planar graphs; (8) all unimodular matroids.

Each hereditary bialgebra leads to a generalization of the umbral calculus, for
which the umbral calculus in one variable, outlined in Sec. XI, is the blueprint.
We believe the development of such “hereditary” calculi to be one of the most
promising prospects of present-day combinatorics.

In the preceding theorem (Theorem 17.1), an essential role is played by the
very special factorization properties of matroids. Thus, the notion of hereditary
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bialgebras can be extended to any family of PO sets where one can prove the
factorization properties required to make the above proof work. One such class
is the class of semimodular lattices. The discovery of the most general such class,
if any, may well lead to a class of bialgebras sharing a simple axiomatic
definition.

In closing, we remark that the detailed study of hereditary bialgebras should
have as some of its goals the extension to hereditary bialgebras of the exponen-
tial formula of the binomial bialgebra, as well as generalizations of the Lagrange
inversion formula.
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ITI. Coalgebras from formulas

We first encounter coalgebras as their dlagonalization A arises
from generic addition formulas. Some examples are: (1) the
trigometric identities  sin(x+y) = sin(x)cos(y) + cos(x)sin(y),
cos(x+y) = cos(x)cos(y) - sin(x)sin(y); (11) the exponential
1aw . XY = XY (i11) sequences {pn(x)} of polynomials in
one variable, with degree P, =N satisfying the relations
pn(a+b) = E;:O (g)pi(a)pn_i(b), these are known as. sequences of
binomial type; and (iv) the divided power sequences of poly-
nomials {d,(x)} , satisfylng d (a+b) = 2‘1;0 4, (a)a, _4(p),
which can be obtained in characteristic zero by replacing pn(x)
with pn(x)/h! .

Let k be any field. There is an algebra map
Atk[x] > k[x]®k[x] defined by sending x to x®1 + 1®x; we
then have A(1l) = 181, and A(x?) = (6x)® = (x®1 + lex)" . For
any polynomial f{(x), we have A(f(x)) = f(a(x)). Note that
f(xel) = £f(x)®l, and f£(iex) = lef(x) .

Give k[x] the ideal topology determined by {x>, (i.e. an
element of Xk[x] is "small" if it is divisible by a large power
of x). Give Xx[x] ® k[x] the ideal topology determined by
<x®l,l®x> . Then A 1s continuous, and passing to the completion
yields a map

Ak[[x]] »m =k[[x®1 1@ x]]

which extends A. Write A for &. Note that
k[[x]1ek[[x]] < k[[x®1,1®x]].

If k has characteristic zero, using the power serles
expansion of sin(x) and cos(x) we have

Alsin(x)) = sin(A(x)) = sin{x®1 + 1&x)
sin(x®1)cos{ 18 %) + cos(x@l) sin( 18x)
(sin(x)®1) (18cos(x)) + (cos(x)®l)(1®sin(x))
sin( x)®cos(x) + cos(x)®sin(x) .

]

Similarly, A(cos(x)) = cos(x)®cos(x) - sin(x)®sin(x) . For

the power series expansion of eX: A(ex) = eA(x) = ex®l+l®x =

Rl lex (e¥el) (12e¥) = eXgeX . (More generally,
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A Ax

A(exx) = e ¥@e for any M ¢ k.)

With sequences of binomial type, we need not pass to the
. — —-— n -—
completion:  A(p (x)) = p (x@1+1lex) = fil=o ({)py(x@1)p, _;(10x) =
2?=o (?)pi(x)®pn_i(x) . The calculation for sequences of divided

powers is similar. The upshot is that each addition formula
naturally gives a formula for the action of A.

Next we view coalgebra diagonalization A arising from
operator formulas. The first of these is the formula for an
algebra map o from algebras A to B: o(aa) = o{la)o(a) for
all a,a ¢ A. Another formula arises from the derivations of an
algebra A-- the maps d:A > A which satisfy
d(ac) = d(a)a + ad(a) for all a,a € A. More generally,

consider the higher derivations {d(n)} which satisfy the
Leibnitz formula d(n)(aa) = 22=0 d(i)(a)d(n-i)(a). If
d:tA > A 1s a derivation and the characteristic is zero, setting
d(n) = a"/n! gives (d(n)}, a higher derivation.

Let H be a vector space, and A,B algebras. Suppose we
are given a map "-":% > Hom(A,B), sending W e T to h:A > B.
Define two evaluation maps: HeA » B by h®a > h(a), and

Aefeags > B by Hl®H2®a®a to hl(a)h a).

2(
A map A:H > H® H which makes the dlagram commute:

Teaeal®l®ly FoHeana
I ® mult levaluation
TeA evaluation > B

glves an operator formula as follows: if A(H) = zﬁi 1® Ei 59
s ?
then

OPERATOR h(aa) = th

(a)n
FORMUTA 1,1

i’2(oc) for all a,a € A .
In this situation, we say that H measures A to B.

An example, suppose that o:A > B 1is an algebra map. Let
T be a one dimensional space with basis o0 . Define
AE>He T by A(9) =0 ® ¢ . Then the formula
olaa) = ola)o(a) shows that H measures A to B 1if
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H » Hom(A,B), © > o.

When A =B, and d:A > A is a derivation, let H have
basis TI,d and define A(T) = I ® I, and
A(d) =T@d+d®T. Then H measures A to itself if
" > Hom(A,A), T~>1I, T>d . Here I is the identity map in
Hom(A,A).

Given a higher derivation {d(“)} of A, let (a1 ve a

basis for ¥, and set A(d:nj) = :?=O d[lj ® d{n_l:. Then H

measures A to itself if H - Hom(4,A), d:n: > d(n) . Higher

derivations are especially useful in characteristic p > ¢,
where derivations vanish on pth powers.

As you can see from the examples measuring unifies homo-
morphisms, derivations and higher derivations. A technique
afforded by measuring is to turn operator statements into
coalgebra statements and then to deduce facts about the operators
from coalgebra results.

Of particular importance in the study of coalgebras are
elements g satisfying the conditions Alg) = gegg and (¢ to be
explained shortly) e(g) = 1. The elements are called grouplike.
Their existence may depend in part upon the field k; for

instance, if 1 = /T e k, then cos(x) #i sin(x) = e*'* are

grouplike. Also, primitive elements are important. An element
d is g-primitive if A(d) = god + d®g where g 1is grouplike.

III. Coalgebra definitions and examples

A coalgebra is a vector space C over a field K, together with
linear maps A : C > C8C (the coproduct) and e:C > k (the
counit), making the diagrams commute:

c —2 5 cec keC = C = Csk
A 881  and o A Ime
one—188 5 omomC cec

The first diagram says that A 1s coassociative; the second,
that ¢ 1s a left and right counit for A .
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An important tool for coalgebra manipulations is the
T notation. When working with elements Xl’x2""’xn of an

assoclative algebra, it 1s convenient to write XqXpe e e X in

place of Xl(xe("'xn~l(xn)"')) and to think of XyXjee X as

denoting the result of multiplication performed in any associa-
tion whatsoever. I notation is the appropriate dual procedure
for coalgebras.

n
Write ® C for the n-fold tensor product of C with itself.
n+1l
Define A  : C=> ® C by: Ay =4, and 4 = (88I8...81)es ;-

Thus, An(c) is obtained from An_l(c) by applying A to the
first factor. Write An(c) = 2(C) cy®..® . - We emphasize
that the ¥ 1s a dummy summation sign serving merely to remind
us that An(c) is a sum of elements of the form X;@X®...®X .,
where each X € C. The symbols CyseessCpiy do not denote

particular elements, but are merely place-holders.
T notation is often used in connection with multilinear

functions. Suppose that V 1is a vector space, and
n n
f @+ XxXC=0Cx...xC >V a multilinear map. Let F : ® C - V Dbe

the induced map. Write 2(0) f(cl,...,c ) for F(An_l(c)).

n
Again, the T 1is dummy and the ci's are place-holders. If we

express An_l(c) =7 c1’3®c2,J®..®c where ¢ e C for

J n, j’ i,J

all i,j, then F(An_l(c)) = 2J f(cl,j"“’cn,j) .
For example, let C be a coalgebra, A an algebra, and

g,h:C > A linear maps. The notation (o) g(cl)h(ce) is

interpreted as follows: CxC » A sending (d,e) to g(d)h(e)
is a bilinear map. This induces a linear map F : O®C - A,

given by F = mult o(g®h). Then () g(cl)h(ce) = F(a(e)) .
More explicitly, if we write A(c) = 22=1 cy,3®, 4 Where
Cy 45Cp 4 € C for all i, then
2 ’
T(o) &lep)nlcy) = i) eley ;)n(e, 4) -
¥ notation can be used to convey concisely the information
in commutative diagrams. For example, A:C > C®C is
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coassociative iff I A(ey)®e, = I, c,®(c,) for all c e C.
Also, e:C >k 1s a counit for A& 1ff
(o) e cl)c2 =c = I(q) cle(c2) .

We will say that C 1s cocommutative if A=Te.A, where
T : cgC > 09C 1s the "twist" map sending dge to e®d. In T

= . f

notation this condition is z(c) c8C, = z(c) co®Cy Many o
the coalgebras important in combinatories are cocommutative.

Here are a number of examples of coalgebras.

1. The trigonometric coalgebra 9’ . This coalgebra has basis
s,c with A(s) = s®c + c@®s, Ale) = c®c - s®s, e(s) =0, elc)=1.
(Think of s,c as the functions sin(x), cos(x), then e
corresponds to evaluation at zero.)

N © ©
2., The divided power coalgebras @ » P . Here IO has

basis {dg}yy o+ With a(d,) = Thoo 9484, 40 €(d) =8, -
To get OF take only dg,dy,.-.,Oy. Notice that d; 1is

grouplike and d1 is do-primitive.

3. The coalgebras g, 8% of binomial type. These are
similar to the divided power coalgebras. 8" has basis

n = . ain
(o1 y o With (b)) = 2o (Dogev, ; , e(d) = 8 o Again,

istic
bo is grouplike and bl is bo-primitive. In characteris

Zero, g” 41s isomorphic to ﬁ)m , with dn corresponding to
v /ol . To get gV take only bg,...by -

4, For any set S form a coalgebra with the elements s of S
as a basis by setting A(s) = s®s, e(s) = 1.

c
5. For each positive integer n, the comatric coalgebra M gn!k)

n = and
has basis {xij}i,j=l’ with A(xij) E;=1 X3 x®%ye ;
les above, M (n,k) 1is
c(xij) = 84 In contrast to the example , ,
not cocommutative if n 2_2 .

6. We can form a coalgebra C with basis g,h,4 by declaring
g,h  to be grouplike, and setting A(4) = g3t +416h, e(1) = 0.

This coalgebra lives inside M%(2,k), with g = xq7, b = X55
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L = Xyoe It is not cocommutative.

7. The incidence coalgebra. Let 3 be a partlally ordered set.
Let C have basis {(x,¥) € d x3:«x <y, x near y},

"x near y" means that {z ¢ J T X g z g ¥y} is finite.

Define A((x,y)) =x SFZ S v (x,2)®(z,y), and e((x,y)) = sx,y .

Note that example 6 is an incidence coalgebra, with
l = {x,¥}, x < Y, & = (x,%x), hs= (y:y): 4L = (x:y) .

8. Let V %be any vector space. Let C = k@V. Declare
g = (1,0) to be grouplike. Identifying v ¢ V with (0,v) € C,

set A(v) = g®v + v@g, and e(v) = O . Thus the elements of V
are g-primitive.

IV. Coalgebra Maps

Let C,D be coalgebras. A coalgebra map f : C > D is a linear
transformation which makes the diagrams below commute:

¢ ———> c—Lf 5y
€ €
A JaY \\\EJ Q(///
"
coc—L8L >DeD

This can be written A(f(c)) = z(c)f(°1)®f(°2): and

e(f(c)) = e(c). Subcoalgebras correspond to injective coalgebra
maps; a subspace V of CC defines a subcoalgebra of C 1if
A{(V) € V8V, for in this case the A and e for C can be used
to define a coalgebra structure on V. A coalgebra quotient of
C 1s given by a surjective coalgebra map; the kernel of such a
map 1s called a colideal. A subspace K of C 1is a coideal if
and only 1f A(K) c K®C + C8K and ¢(XK) = 0; in this case,
C/K has a unique coalgebra structure so that the canonical
projection C » C/K is a coalgebra map. In general, any
coalgebra map f : C > D has a unique factorization:

i' | >' j
¢/Ker f = Coker ( f)———————> Im(f) .




56 W. Nichols and M. Sweedler

Now & digression for budding coalgebraists to point out
difficulties when Kk 1is not a field but merely a commutative
ring. Others please skip this digression by proceeding to the
beginning of section V, page 57.

Since the tensor product of injections may fail to be
injective, wWe cannot identify the tensor product of submodules of
C with a submodule of C®C .

First an example where V 1is a submodule of a coalgebra C,
and there may be more than one coalgebra structure on V with
the natural inclusion V< C a coalgebra map. Take
k=2, C=2 ®zZ/iZ, with g = (1,0) grouplike, and x=(0,1)
g-primitive. Let V be the submodule spanned by g and 2x.
Then V = Z&Z/2Z as a Z-module. V can be made into a coalgebra
by letting g be grouplike, and 2x g-primitive. Alternatively
define a coproduct A' on V, with g still grouplike, but
now with A'(2x) = go{2x) + (2x)®(2x) + (2x)®g in V&V, and
e(2x) = 0. This second coalgebra structure has an additional
grouplike element g+(2x), and thus is not isomorphic to the
first structure. However, for each coalgebra structure on V
the inclusion V = C 1is a coalgebra map, since in C®C the
term 2x®2x = 4x®x = 0®x = O.

Second, an example where V 1is a submodule of C with
A(V) ¢ Im(VeV > C®C), yet V has no coalgebra structure with
Ve C a coalgebra map. This example was supplied by
Warren Nichols. The example is without a counit. (A counit could
easily be adjoined.) Let k =2, C =&/820¥/2Z, x = (1,0},

z = (0,1). Define A : C~> C®C by: A(x) =0, A(z) = Uxex .

(Since U4x®x has order 2 in O08C, A is well-defined.) Let

y=2%x, V=28y + &z cC. Since A(z) = y®y, we have

a(V) ¢ Im(vev > 0®C). However, the map A:V » C®C has no lifting

to V8V, since every preimage of A(z) in VeV has order 4.
Turning to quotients, let K be a submodule of C. The

kernel of the natural map 08®C > C/X®C/K  1is

Im(XK®C > C®C) + Im(C®K > C®C). Thus, a submodule K of C 1is

the kernel of a surjective coalgebra map iff

A(K) ¢ Im(K®C > ©8C) + Im(CeK > c®C), and e(K) =0, so the

characterization of coideals is still correct. However, the

kernel of a non-surjective coalgebra map may not be a coideal.

Agein with k =2, let D=Z @Z/22 ®Z, with

ds = (1,0,0), d) = (0,1,0), d, = (0,0,1) being a sequence of

0
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divided po . = =
powers. Take E =2 ® Z/4Z, with eo = (1,0), e, =(0,1)

also a sequence of divided powers. Define f£:D > E by:
f(do) = ey f(dl) = 2eq, f(d2) = 0. Then f is a coalgebra

map; we check only (f@f)A(d2) = (f@f)(do®d2 + d;®d; + dégdo) =

0+ 2el®2el + 0 = 4el®el =0 = A(f(dg)). Ker f = Zd, is not a
coideal of C, since A(d2) £ d,8C + c®d,, .

V. The convolution algebra

Returning to the setting k a field, let C be a coalgebra, A
an algebra. ("An algebra is defined by taking the defining
diagrams for a coalgebra and reversing arrows." -- old
coalgebraists joke.) Algebras are assumed to be associative and
have unit.

Hom(C,A) has an algebra structure, with the product (called
"convolution" =

volution") defined by (f*g)(c) = z(c) f(cl)g(CQ) for

f,g ¢ Hom(C,A) and c ¢ C. 1In terms of maps,
f*g = (mult) «(f®g) *A. The unit e of Hom(C,A) is given by
e(c) = ¢(c)l. The algebra structure is functorial: if o:A > B
is an algebra map, and Y: C > T 1is a coalgebra map, then
Hom(Y,c) 1is an algebra map where Hom( Y, 0) : Hom(D,A) > Hom(c,B),
1s defined by Hom(Y,0)(f) = ocefeY, for f ¢ Hom(D,A). When
A 1is the grownd field k, we get the dual algebra C* =Hom(C,k).
There is a natural algebra injection C*®A » Hom( C,A), defined
by (fea)(c) = f(c)a for fec, aeA, ceC. This map is an
algebra isomorphism when C or A 1is finite dimensional.

Let A be an algebra, f:C > D a coalgebra map. (The case
A =k 1s the most important.) We have an algebra map
Hom(f,A) : Hom(D,A) > Hom(C,A), sending h e Hom(D,A) to
hefeHom(C,A). Identify the kernel of this map as (Im(f))L ’
the maps from D to A which vanish of f£(C). The image of
Hom(f,A) 1is (Ker fTL s the maps from C to & vanishing on
Ker £ . Thus if C is a subcoalgebra of D, C‘L is an ideal
of Hom(D,A); and if K 1is a coldeal of C, K* is a
subalgebra of Hom(C,A).

We take A --perp-- of both subspaces of € and subspaces
of Hom(C,A). For a subspace X of C :
4
X" = {g ¢ Hom(C,A) : X c Ker g} c Hom(C,A) . For a subspace
PR

Y or : =
of Hom(C,A) : Y = ner Ker y . 1In general some subspaces
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of Hom(C,A) will not be the L. of any subspace of C. Taking
the J1t's of finite dimensional subspaces of C as a basis of
open neighborhoods of zero in Hom(C,A) 1induces a topology of a
topological group on Hom(C,A). In this topology L 's of
subspaces of C are closed and if A = k, the ground fleld,
then the closed subspaces of Hom(C,A) are precisely the .1 's
of subspaces of C.

For general algebras A if J ¢ Hom(C,A) is an ideal,
then J is a subcoalgebra of C. If U c Hom(C,A) is a
subalgebra, then UL' is a coideal in C 1f A =k but U'L
need not be a coideal in C when A # k. In fact for C = t)2

and A = k[x1/ < x° > , the subspace U of Hom(C,A) spanned
by € and the linear map f:C > A determined by

d, > 0, dy > X, d, > 0 is a subalgebra where ut

and UL is not a coideal in C.

When A =k A-ing gives a bljJective correspondence between
the set of subcoalgebras of C and the set of closed ideals in
Hom( C,k). X -ing also gives a bijective correspondence between
the set of coideals of C and the set of closed subalgebras of
Hom( C, k).

Checking our examples:

= kd2 c C

First D% . Define elements {t"} of Hom( & ®,A) by:

t™d.) =6 1. Then Hom( O ®,A) TA[[t]] as vector spaces.
m n,m
s
We have (t™*t%)(q,) = £f_, t7(a)t%(dy ) = 6, 1. Thus
tT*t5 = t¥7% | and Hom( AJ®,A) = A[[t]] as algebras. Note

that Hom( A Y,a) = are]/(¢¥Y) .

Similarly, Hom(B”,A) = A{{t}} as algebras. Here we write
i
the formal symbol §T for the element in Hom(R7,A) with
i 13 geq ¢l
%T (bj) = 6ij; we have %T - %T = ( id) o When
characteristic Xk = O,
i

i
t 1
A{{t}} = A[[t]), 7 <—>1-!- T .
Let J be the trigonometric coalgebra. Write
Hom{ J” ,A) = Ae@As*, where e 1s the unit and s* is defined
by: s*(c) 0, s*(s) = 1. We have
(s*%s*)(s) s*(s)s*(c) + s*(c)s*(s) = 0, and

]
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(s*xs*)(c) = s*(c)s*(c) - s*(s)s*(s) = -1. Thus, s*xs* = -e.

This shows that Hom(J" ,A) = AeA/-T

If i=,/Tek, T =k(ctis)ek(c-is) is the sum of
one-dimensional subcoalgebras. ("The dual of a coalgebra tends
to contain what is needed to split it."--old coalgebraists
proverb.)

If C 1s a coalgebra with a basis of grouplike elements

indexed by the elements of a set S, then Hom(C,A) = 10 A
seS

as algebras.
We now take C = Mc(n,k), the comatric coalgebra. C has
basis {xij}l <1,3¢<n Hom(C,A) has dual A-basis {eij}

We have Hom(C,A) 2 M(n,A) = M(n,k)®A, where M(n,-) is the

nxn matrix algebra over "-" . Note that duality allows us to
identify certain important subspaces of C . For example, the

subspace J = zi > j kxij 1s the 4 of the upper-triangular

matrices, and thus a coldeal. The upper-triangular matrices
are isomorphic to Hom(C/J,A) as an algebra.

When C has basis g,h,4 with g,h grouplike and
A{4)=get+48h, we can realize Hom(C,A) as upper-triangular
matrices over A, with g,h,4 dual to the matrix elements

€117 ®222 €12 *
VI. The coproduct of subspaces

Let C be a coalgebra, U,V c¢ C subspaces. Define

UAV = Ker(C 2-> ceC > c/Ue ¢A) =a"XHceVv+UsC). (UavV

is often written UAV 1in the literature, and called the wedg .)
The coideal condition A(U) cU® C+ C ® U can be written

Uc U A U. The significance of the operation is clear from its
dual: in Hom(C,A), we have (UAV)'L L

T (sums of
products). The wedge will be useful later in describing the
coradical filtration.

VII. Comodules

Let C be a coalgebra. A right C-comodule is a pair (M, V),
where M 1is a vector space, and ¥:M > M ® C 1is a linear map
such that the diagrams commute:
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M—Y SMecC M—t SMec
¢ Vo1 N Ie
M®C~—e———>M @ C ® C M®k

Write ¥(m) = z(m) m,&m, . (This is the I notation for
comodules.) The lowest number in ¢n(m) = Z(m) m®...em  , holds

an M-place.) Note that (C,A) 1is a right C-comodule.
For UcM, VcC write

UW = Ker(M —&> MeC > M/U ® CAV).
Let M,N be right C-comodules. Then f:M > N 1is a
comodule map if the diagram commutes:
M ___E;____> N

M N

Mec —I8L > wec .

We look at some examples of comodules.
Let C be the comatric coalgebra M%(n,k). Let M have

basis {vi}?=l . set ¥(vy) = 2?=1 V48X - Note that, for each
t we have a comodule injection ft:M*C defined by ft(vj) = xtj'
Let C De the incidence coalgebra on the partially
ordered set l . For each t e_ﬁ , let Mt be a vector space
with basis {(u):u e 3, u > t, u near t}. Define
VM > M8C by: v ((w) =t£§£u(v)®(v,u). Then (M., ¥,)
is a right C-comodule. We have a comodule injection ft:M > C,
defined by ft((v)) = (t,v).

Here is an example related to factor sequences. The

coalgebra is 8 . The comodule Q° has basis {Q_n};=o .

Set 4
¢(q_n) = 32=0 (n—i)q-i®bn-i

0y

- +k-1
where as usual ( E) = (-l)K & X ) and (k The

= 80,k
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tie-in with factor sequences will be described at the end of this
section and at the end of (XI,3).

VIII. Sheffer sequences and comodule maps

Consider R~ with the usual basis {bi}g and let {ei]g c 8

be a sequence satisfying:

bey = T (Pey ® Dy 4. *
Thils is the notion of [ei} being Sheffer with respect to {bi}.
Defining f:8° > 8° , f(bn) = e, , (*) insures that f is

a comodule map where 8~ 1is considered as a right 8~ -comodule.

Conversely if g:8" > 8° 1is a right g°-comodule map and
e; = &(by) then (*) dis satisfied. Hence Sheffer sequences may

be identified with comodule maps from 8” to itself. 1In fact if
[bi} is any basis for 8" which is a sequence of binomial type
and g:aeo > g8° a comodule map then {g(bi)] is the Sheffer
sequence for {bi} equivalent to g.

All this carries over to £ © . cCall {f43c ©% Sheffer
for {di} if

a(f) = z‘i‘=o £,8d, . x

In characteristic zero (*) and (%) relate by the corres-
pondence ei/i! < > £ys bJ/J! (—> dJ. As with 8° the

Sheffer sequences correspond to the comodule maps from O ® to

itself, with K considered as a right AN ®_comodule.
Turning to duality considerations. Let M Dbe a right

C-comodule. Recall that C*

Homk(c,k) is an algebra. For
feC*, meM, define f-m = () mlf(m2) = (Ief) ¥(m) e Mok =M.

This makes M intc a left C*-module.

Note that M 1is a locally finite C*-module i.e. M 1is the
union of its finite-dimensional submodules. Indeed, if
¥(m) = z?=l m @, , then fom= 2?:1 mif(ci) € C*.m c E?=l km, .

It is true for C =0 % - but not for coalgebras in general
-- that every locally finite C¥-module arises in the above
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manner from a C-comodule.

Let M,N YbYe right C-comodules. A map f:M > N 1is a
comodule map iff it is a C*-module map. A subspace K of M
is a C*-submodule iff it is a C-subcomodule i.e. ¥(K) < KaC.
(There are problems when not working over a field.) If K 1is a
subcomodule, then M/K has a natural comodule structure, and
the isomorphism theorems hold.

If U 1is a left C*-module, then U has a largest C¥-sub-
module U® which arises from a C-comodule structure.

Recall that C 1is a right C-comodule, and thus a left
C*-module. For c*eC*, ceC write this action as

c*ac = z(c) clc*(cz) = I() cl‘ C*lcé>. (The "a" notation avoids

confusion with other actions which will be introduced; the star
on an element of C* 1s purely decorative, and should not be
confused with the notation for a dual basis.) Note that

<c*|c> = <e|c*ac>. More generally, the following "econtragra-
dience"” formula holds: for c*,d* ¢ C*, ¢ € C we have

M *a" > =< )a"ac>. Indeeq, M 1d%aed = <c*]z(c) cl<d*]c2>>
= 5oy <Tlepdatle) = <Ml

Left C-comodules are analogous to right C-comodules. C 1is
»*
a left C-comodule, and thus a right C -module; write the action

* * " 1"
as cac = z(c)<c lc1>c2. This gives the "contragradience

formula <c*d*lc>

*
z(c)<d |cec™. The coassociativity of A
gives that C 1is a C*-bimodule: we have
* * * * * *
¢ 3ced ) = z(c)<d lcl>c2<c |c3> = (¢ 3c)ed .
Suppose that V 1s a sub-bimodule of C. Since V 1is a
left C*-module, we have A(V) € VeC. Similarly A(V) c o8V, so

A(V) < (vec) N (ceV) = VeV. Thus, V is a subcoalgebra.
Conversely, subcoalgebras are sub-blmodules.

Local finiteness shows that if W 1s a finite-dimensional
subspace of C, then the submodules C*AW and W¢C* are
finite-dimensional. For ¢ € C, we have that c ¢ C*A c 4.0*

a finite-dimensional sub-bimodule. Thus C 1is the union of its
finite-dimensional subcoalgebras; this is often called the
Fundamental Theorem of Coalgebras. C*JcLC* is the subcoalgebra

generated by c; we see that it can be recovered from &(c)
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If A is an algebra, N a left A-module, then N* 1is a
right A-module via <n*a|n> = {n*|and> for n* ¢ N*, a € A,
n € N. This is called the contragradient action of A on N*,
In particular, if M is a right C-comodule, then M* is a
right C*-module. This action can be cobtained more directly as
follows: given our structure map :M > M® C, form
¥#: (M® C)* > M. In general, for any vector spacec V,W we
have an injection o:V* ® W* > (V ®W)*, induced by
o(v* o w¥)(ve w) = v¥|v){w*|w) . (@ is an isomorphism if
either V or W is finite-dimensional.) Then
¢*'w:M*®C* > (M®C)* > M is the contragradient action. When
M = C (as a right C-comodule) the contragradient action of ¢
on M* = C* is simply right multiplication.

When M 1is a right C-comodule so that M is a right
¢*-module then M'* 1is a left C -module. For M c M = the

* * *
left action of C 1is the original c¢ am =(z) m,{c |m2> .
m
If M >N 1is a right C-comodule map, then N* > M is a

right C*-module map. In particular, if V is a right sub-
comodule of C, then V* = Ker(C' » V') 1is a right ideal of
C* . Conversely, the 1 of a right ideal of C* is a right
subcomodule of C. The analogous results hold on the left.

The left and right C*-module structure on C interplay to
give umbral theorems on shift-invarlant operators. Here is an
example.

If M is an A-bimodule, there is a map R from A to

the set EndAM of endmorphisms of M as a left A-module, given

by R(a)(m) =ma for a e A, me M

Let C Dbe a coalgebra, and consider Endc*c . (Recall
that f:C > C 1lles in Endc*c iff f 1is a map of right
C-comodules iff A(f(c)) = T(¢) f(cq) @ ¢, for all c e c.)
We assert: R:C* e d Endc*c is an isomorphism. The inverse map

E:End.,C > C  1is given by E(f) = cof.

C*
If ¢ e C, then CER(ST) | = {elR(eM)e> = {eleec™ =
<c*]c>. Thus ER(C') = e

If f e End C, ¢ € C, then RE(f)(c) = c<E(f) =

C*
Z(c) e(f(cl))c2 = (ewid)Aa(f(c)) = f(c). Thus RE(f) = T
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~

>End.,C. We can describe R by R(c?) = <o for
C

*
and R:C
* »*

c € C .

Apply the above to the specific case C = VR s ¢t = k[[t]].
3*

Since C 1is cocommutative, the left and right C -module
structures on C coincide; i.e. ta = «t,

We have tsd, = %j_o &,<tld > =d ;. (tsdg=0). If

n
we formally write d = %T then K ®° = k{x} and %3 is the

operator é% . An operator T:k[x] = k[x] 1s called ghift-
invariant if it commutes with é% .

Tf an operator f : 9% > K9 commutes with t> , then it
commutes with t"s for all n . Since tnAdm =0 if nDm,
it follows that f commutes with the action of every element
of Xx[[t]]. Thus Endk[[t]] K ® consists precisely of the
ghift-invariant operators. Our results thus tell that every

shift-invariant operator f: A ® > 0‘” can be realized as

f=(ef)a=<(¢ef) .
Let f: 0% > O ° be a comodule map i.e. shift-invariant

operator. Since f = e¢f> we have that f must satisfy
f(dn) = 2?=O dic(f(dn_i)). Conversely, this relation

characterizes the comodule maps.
Restating our results, every L e k[[t]] = o =¥ defines

a shift-invariant operator L» on K ° . Each shift-invariant
operator f arises in this manner from a unique L, glven by

L= eof = Do e(£(a))td .

Recall that Sheffer sequences correspond to comodule maps.
Thus, each sequence {en} which is Sheffer relative to {dn}
is defined by a unique L € k[[t]], given by the condition

L->dn = en.

Let us now look at the factor sequence example where Q" is

a right comodule for 8%, with {q_.1°_, {by}5 the respect-
-n-‘n=0 i’o

-1

ive bases and W(q_n) = 2?=O (n_i)q_i ®b, 4 -
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Dualize. Let {A_n} be the (topological) basis dual to
i
{q_n]. and {§T} dual to {bi}. Q" 1is a right Bm*—module,
with the action glven by

4 2 <
t t t
<A_m'IT | q_n> = (A_ ®ZTJ *q_n = <A-m]ZT S q_n> =

]

4-n _ (4-n _ (—m
e <aplay = (6 g pon = () 8y, n

-m
(7)) <A lay -
Thus
EA
tv _ /-m
Am zr= ( L)A-m-L
A typical element of " can be written z?=o MA_y - I we

think of A_, as U™"
is not a locally finite sw*-module. In fact kA_o is the only
non-zero finite dimensional submodule. This shows that when M

is a C-comodule, M 1s a locally finite C¥-module but M* may

then t acts as gy . Note that

not be.
IX. Coalgebra maps to AM” and the coradical filtration

Let C be a coalgebra, a:C > A a coalgebra map. Write
*

ale) = z?=o ai(c)di, where a, € C . Since ela(e)) = elc),

we have ey = €. Since a 1s a coalgebra map, we must have

(e ® a) A(c) = A(a{e)) for all ¢ e C. Thus,

o0 00

I7, y=0 I(e) @slep)agler)dy @ a4y =2 o By 4., o4(c)dy @ dy

Comparing coefficlents of di®dj » shows that ai+J = ai*aJ

for all 1i,Jj. Thus a, = ag

Note that since for each c¢ € C, a{c) 1is an actual element
of [9%® -- not an infinite sum --we must have an(c) =0 for

large n. Thus (al)n(c) = Q0 for some n -- n depending on c.

Call such « locally nilpotent. The above calculation shows

1
*
that any locally nilpotent ay € C determines a coalgebra map

a:C » * via the formula afc) = t:=o (al)i(c)di, and conversely.

Here is another interpretation. We shall characterize the
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coalgebra maps C > N ° as certain exponentials. For an
algebra A let A{x} be the divided polynomial ring over A

which has free A-module basis consisting of the formal symbols

] o
{§r} which commute with elements of A and multiply
* 1=0

i 0.J i+
xTyx9y _ 1Hdy X
(KTJ(BTJ = ( 3 ) T A{{x}} denotes the divided powir
series ring over A which is similar to A{x} except g}
, T
is a topological basis, i.e. infinite sums T{_; a4 %T e A{fx1}
are permitted. A{x} c A{{x}} as a subalgebra. For a ¢ A
define exp ax = T ai %r € A{{x}}. If a,a ¢ A commute then

(exp ax)(exp ax) = exp(ata)x. If a e A 1s nilpotent then

exp ax € A{x} . s
Let us identify 0 ° with k(x} by d; <—>Fy . There

are "blalgebra" reasons for this which will appear in (X1.1).
For a coalgebra C there is a natural algebra map

E:Hom( C, k{x]) <> C {{x}}
x1
where for f e Hom(C,k{x}), {f3}¢c ¢* 1s defined by
i
flc) = ¢ fi(c)¥r ceC.

f ¢ Hom(C,k{x]) 1s a coalgebra map if and only if f, = £
and fl is locally nilpotent. In this case E(f) = exp flx
and exp fix "almost" 1ies in C {x} in that the local
nilpotence of f, implies that £i(e) ?ﬁ- is only a finite
sum for each ¢ € C. In particular if C 1is finite dimensilonal
then exp flx does lie in C*{x}. So the coalgebra maps
C > k{x} = P® are precisely the exponentials exp f;x with

f locally nilpotent.

1
When we write a coalgebra map o:C > % = k{x} as
i
a = exp hx = ﬁz=o hi %r for h locally nilpotent then h
can be recovered from a by h(c) = é% a(c)lo . Also the dual

algebra map a*:p‘”* = k[[t]} > ¢" sends t to
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h € C* and this determines a* or recovers h from a*.

Still another view of coalgebra maps C - P*® is given in
section XIIT.

What are the locally nilpotent elements of ¢’? The
answer depends (in large part) upon the coradical of C.

A coalgebra is called "simple" if it has no proper
subalgebras. By the fundamental theorem of coalgebras, every
simple coalgebra is finite-dimensional. The coradical CO of

a coalgebra € 1is the sum of the simple subcoalgebras of C.
Co is the sum of the simple left subcomodules of C, and also

i
the sum of the simple right subcomodules. C is the Jacobson

0
*
radical of C . The coradical of P> is kdo. The coradical

of 8”7 1is kbo.

_ _ A1
Define inductively C, = C,_18C, = A (Cn_1®<3+ C®(}o).

Then each Cn is a subcoalgebra. Cn+1 po Cn’ and C = g Cn .

a(c,) € Tig € ® Cpy - (C,) 1is called the coradical filtra-

tion of C.
If g e C 1s grouplike then kg is a simple subcoalgebra-=-
being one dimensional--so that g e kg © CO . If de C 1is

g-primitive then d ¢ Cl, in fact d e kg A kg.

If M is a right C-module the coradical filtration on M

is given by

M, = [O}WCO

Mi = Mi-lwco .
The filtration satisfies Mo c Ml [ M2 c ... each Mi is a
subcomodule, M = g M, and W(Mn) c z?=o My ® Cpye

Incidentally the coNakayama lemma for comodules goes: 1if M

is a right C-comodule with subcomodule N and N¢CO = N then
N = M.
For the coalgebra 9% the coradical filtration is given

vy k?: = PP, the subspace of /D% with basis {do,...dn}-

0

In characteristic zero the picture is the same for B

i.e. Bn = g". This follows from the characteristic zero
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coalgebra isomorphism of K?w and g° . 1In positive character-
istic p the element b n has diagonalization
p

n n
_ P p
Ab =% (1 ) b, @b

pn 1=0 = bo ® b n® b since the

n 0

p -1 p
"intermediate" binomial coefficients are zero mod p. Hence b
is by-primitive and lies in ﬁ? . We go no further with the
coradical filtration of 8% in positive characteristic.

Back to a general coalgebra C and locally nilpotent

elements. The coradical filtration satisfies

A .(c) e T C  ®..8C
n-1'"n eyt te =n € €m
eizp

If m>n then CO must appear in each term of the sum.
Thus if h ¢ Hom(C,A) for some algebra A and h(co) = (0}
1t follows hn™(C,) = {0} for m> n. Thus the condition

CO c Ker h 1is sufficient to insure that h 1is locally nilpotent.
However, the condition is not necessary: M°(2,k) is a simple

coalgebra so M°(2,k) = M°(2,k), gives the coradical filtration.

The matrix element eq (dual to Xy 2) does not vanish on
td

52

Mc(2,k)o yet e1’22 = 0. When C 1is cocommutative an element
of C* 1s locally nilpotent 1f and only if it vanishes on CO.
The reason is that if h e C  "lives" on Co 1t must "live”
on some simple subcoalgebra D < CO. Thus the inclusion D > C

* *
inducing an algebra map C > D maps h to a non-zero element

of D*. Since D* is a finlte dimensional simple commutative
algebra it is a field and contalns no non-zero nilpotents. If

*
h € C were locally nilpotent it would map to a nilpotent in

D' since D is finite dimensional.

In general an element h € Hom( C,A) 1s locally nilpotent
if and only if for each finite dimensional coalgebra D c C
there 1s n -- depending on D -- with D c Ker M,

When g 1s a grouplike in C we have n(g) = n(g)™.

Hopf Algebras and Combinatorics 69

Thus the condition h(g) = O for g grouplike in ¢ 1s clearly
needed for h to be locally nilpotent. Remember grouplikes

in C 1lie in CO .
X. ConJjugate sequences and assoclated sequences

Let us now consider the specilal case C = A%, We have a coalge~
bra map a: O® > 0%, given by of d,) = e,. Then

A(en) = A(a(dn)) = (a®a)A(dn) = 22=O e;® 4 . a may not be
injective. 1In general if C 1is a coalgebra with CO = kg where

g 1s grouplike then a coalgebra map a:C > D is injective 1iff
it is injective on the g-primitives. Thus our o: B ° > Q%
is injective iff e, # 0.
By previous considerations a is given by d ~» zz_o Li(d)di
*
where L e M™ =k[[t]] and L(d,) =0 i.e. Le<t> the
Y

o0
maximal ideal. We have e = a(dn) = %o L

n dn)di' This is the

formula for a conjugate sequence although 1t 1is usually assumed

that L 4s a delta, which means that L e <t>, L ¢ <t®>. Thus
a conjugate sequence of {di} is the image of {di} under a

coalgebrs map. I.e. {a(di)} is the conjugate sequence to {d;}

arising from a.
Conversely if {ci} c O® 1s a not necessarily linearly
independent sequence of divided powers, 1l.e.
_ _ . [-.] [+ ]
Ae, = 22:0 cy ® ¢ g e(ci) = 61,0 , then g: R® > B®, dy > ¢y
is a coalgebra map and (ci} is the conjugate sequence to {di}

arising from pB. We have established the bijective correspon-

dences
Conjugate sequences. Coalgebra maps The
Sequences of divided) {(———> (from K ® to X—) set
powers in K%, itself. <.
*
fa(a,)) (e & > d (1)

Thus each L ¢ {t> defines a sequence of divided powers. This
sequence of divided powers 1is linearly independent iff ey #0

irf Lx <tD .
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o0 A9 [ *
For a coalgebra map a: M > set L, =a(t) <.
Here La may not be a delta; 1l.e. perhaps Ih € <t2> . For

F e k[[t]] and L e <t> the functional evaluation F(L)
converges and gives a well defined element of k[[t]]. So it

makes sense to describe a*:k[[t]] > k[[t]] by a*(F) = F(Ih) .
Let p: O® > K™ be another coalgebra map. Then

* * * *
(Bea) (t) =a (B (t)) =a (Iﬁ) = LB(La). Thus Lg,, = Lﬁ(La).

In general if VY:C > D 1s a coalgebra map it may happen

that y( Cn) X D,. For example let Y be the dual of the
inclusion of the 3x3 upper-triangular matrices into M(3,k).
M°(3,k) = C 1is simple implies C = C,. Being dual to an
inclusion implies Y is onto. But D = Dg # Dy. However

¥( Cn) c D, when C is cocommutative. The first step

Y(CO) c Dy follows from the fact that a subalgebra of a finite-
dimensional simple commutative algebra is simple; the other
inclusions follow from this. In particular any coalgebra map

a: A9 ® > P® will preserve the coradical filtration. Thus if

{en} is a sequence of divided powers we must have degree e S n

from all n.
Let a: AY® » BF® be a coalgebra map. Then a is of the

form a(d) = i:=o Li(d)d1 where L e R® = x[[t]] and

n+l
n+lt £ N

where n 2 1 and a # 0. It is easy to see that Li(dm) =0

L(dy) = 0. If L#O we canwrite L= antn + a

if niD>m and Li(d = (an)i . Thus a(dni) = (an)id1

ni)
+ lower terms and a 1s surjective unless L = O. 1In this case

a(d) = e(d)do for all d. Recall that a::k[[t]] > K[[t]] sends
t to Le<td . The dual fact is that a 1is injective unless
L =0.

Now turning to assoclated sequences.

Let a:®® > 8™ bve a coalgebra map. Write
ala) = B_, Li(d)di. Then a 1is injective iff a is bijective

iff L 4is a delta. 1In this case we have an inverse coalgebra
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-1 -
map a ~. Define f =a l(dn). Then ({f } is a linearly
independent sequence of divided powers to the delta L. We
i *
nave <tts) =<a (ti)lfj> = <ti|a(fj> = <ti]dj> = 855 . Thus

{f,] 1s the basis of K ™ which is aual to (19}

The picture for associated sequences 1s given by the bijective
correspondences

Associated sequences. Cocalgebra The
Sequences of divided isomorphisms
powers in A)® which are {—> from A% (—> set
linearly independent. to itself. < -<t2>
-1 *
e Hay)) —> a (—> a'(t)

XI. Algebra-ccalgebra interactions

Let A be an algebra. Then A®A is an algebra with unit 181
and multiplication determined by (a®b)(c®d) = acgbd. If A 1is
equipped with algebra maps A:A > A®A and e:A > k so that
(A,A,¢) 1s a coalgebra, then A is called a bialgebra. Dually,
a bialgebra is a coalgebra equipped with multiplication and unit
maps which are coalgebra maps.

For example IO ® 1is a bialgebra with didj = mult(diadj)

- (1;J)di+d + The unit is d, . The identification

di = -’{(-,- provides an algebra isomorphism D° o k{x}. The

corresponding coalgebra structure on k{x} is given by

=1
xn

i n

Xty Xy _ X
eIr) = 8,00 8D = Bo fre {mmyr - Thus kix} s
bialgebra with this coalgebra structure. This identification

of A9‘n with k{x} appeared in section IX in the exponential

o

interpretation of coalgebra maps C - O*, g is a bialgebra

with byby = mult(byeb) = by, ..

teristic zero the coalgebra isomorphism K © = g°, di(-—> bi/il

=D The unit is bo. In charac-

is a bialgebra isomorphism.
The algebra k[x] can be given a blalgebra structure by
declaring A{x) = x®1 + lex and e(x) = 0. Since A and ¢
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are to be algebra maps they extend uniquely to all of k[x]. In
any characteristic x[x] T a° , xn(-——>'bn and we take this for

an ldentification.

2. Measuring

Let A,B Dbe algebras, C a ccalgebra. Let p:C®A>B be a map.
There is a vector space isomorphism Hom(C®A,B) = Hom(A, Hom(C,B)
in which p corresponds to the map Po defined by

pe(a) = p(-®a) ¢ Hom(C,B) where pe(a):c > B, c#+ plcea).

Say that (C,p) measures A to B Iif poih > Hom( C,A) is an
algebra map.

We can give this condition in terms of the map p itself.
Let us write p(c®a) = c(a) € B. The unit condition for an

algebra map gives us c(lA) = e(c)lB. The multiplicative

condition shows that for all a,a € A the operator formula
claa) = z(c) cl(a)cz(a) holds.

Note that if c¢ 1is grouplike, then c¢ acts as a homomor-
phism from A to B. If ¢ is g-primitive (with g grouplike)
then ¢ 1s a derivation from A to B with respect to the
homomorphism given by g.

For an example let A be an algebra in characteristic zero
and 3:A > A a derivation. Define p: A9 %A > A by

p(di®a) = ai(a)/il . O ® measures A to A.

For another example let H be a bilalgebra. H acts on
itself by right and left translation. This gives us contragrad-
ient actions on H*: for g,h e H, f ¢ H*, we have

(e eglnd & £ gn = <nat’ | .

This action f ¢g of H on H must not be confused with
¥* * *
the action f 3g = ¢ gl<f |g2> of H on H which is the

contragradient action of H* on Hc H**.
¥*
Let us verify that H measures H to itself. Let
*
g,h € H. Recall that the unit 1H* of H is ¢. We have

<naele = elgw by definition of -
= <e|g><e|h> since € 1s an algebra map
=<e(n)el

Thus hsly, = e(h)ly, .
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* * *
Now let f ,4 € H

<na(£ e ) 1 = <" e

= <" |a(gn)>

by definition of o
by definition of mult-
plication in H*

<f* *'z n N
& 1%(g),(n) E1M1%8> 2 ;igce A is an algebra

Z(g),(n) <f*131h1><4*|52h2>

»* *
% g),(n) $hy>f lgXnyat’|gy by definition of a

by definition of multi-
plication in H*

<g(y) (ny3r")(nys") ]

* ¥ * *
Thus ha(f ¢ ) = t(h)(hlif )(heﬂc ) and we are done.

3. Comeasuring

This 1s useful for factor sequences. Let C,D be coalgebras,
*
A ean algebra and Y:C > D8A. Define Y,:D - Hom( C,A) dby

Yl(d*)(c) = (d*QI)Y(c) € k@A = A. Say that (A,Y) comeasures
C to D if Yq is an algebra map. This is equivalent to
requiring the following diagrams to commute:

¢ —Y—> Dea c X >D®A
\\:\\\s K/////eal lA
A cec
lvsv A®id
D@AGDRA
lI@twist@I ,
DeDEAGA IgIgmult > DeDeA

This can be interpreted in the following way. For any
vector space M let us consider M®A to be an A-bimodule via

a-{mea) = me(ac) = (m®a):a for meM, a,qeh
If N is another vector space, identify (Msﬂ)eh(N@A) with
MeNeA via
(m®a)eh(n®0) {————> m®n®aa

For any coalgebra E deflne
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s, = 08T : E8A ——> EQE®A = (E®A)®,(E®A)
e, = 8L : EQA ——> k8A = A

When A 1is commutative this 1s the base extension of
coalgebra structure from k to A.
For the comeasuring Y:C = D8A define
Y' : C®A > D@A by Y'(c®a) = Y(c)a

y!' : cgA ——> D@k Y"(c®a) = aY(c)

Yy' 4is a right A-module map, Y" is a left A-module map and so

Y'@Y":(C@A)®A(C®A) > (D@A)@A(DQA) is well defined. Note Y'=Y

if A 1is commutative.
Commutativity of the first comeasuring diagram is equivalent

to commutativity of the dlagram

] 11m
CceA Y' or Y > D®A
A

DN,

By the "or" in the diagram we mean that commutativity of the
above diagram with the top arrow Yt is equivalent to commuta-
tivity of the first comeasuring diagram and commutativity of the
above diagram with the top arrow Y"' 4is equivalent to commuta-
tivity of the first comeasuring diagram. We shall use "or" in
the same fashion in the next diagram. Commutativity of the

second comeasuring diagram is equivalent to commutativity of:

L
¢ {c~>c®l) > oA Yt or Y N pen

T
cel
ceA A,
- y
(can)e, ( can) — 2 > (DeA)®,(DeA)

In case A 1is commutative the second comeasuring diagram
being commutative is equivalent to commutativity of the diagram:
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CeA y'=y" S Dea
8y By
(02)®,(Cen) Yigy! > (Deh)e, (Der)

Thus when A 1s commutative Y:C »> D®A being a comeasuring
is equivalent to Y':C@A > DR Dbeing a coalgebra map of
coalgebras defined over A, 1.e. an A-coalgebra map.

In the factor sequence example A 1is commutative.

o0
Recall @ has basis {q-n]d>o and is a comodule for

8 = k[x] where ¥(q_) = z§=o (;fi)q_i®xn'i. Give Q° a
coalgebra structure by declaring {q-n}d>0 to be a sequence of
divided powers, i.e. = L) =

» e e( Q_n) 60,1’1 A( Q_n) _zz:;=0 q-i®qi-n *
If fA_ 1} is a (topological) dual basis to {a_,}» then
Ap*Ay = A_(pem) Thus we may identiry ¢ with K[[UT}])

-n
with (U }n>O a topclogical dual basis to {q n}n>0'
® — - = —

Hom(Q ,k[x]) = k[x][[U 1]] as an algebra. The map

. oo¥* )
Wl : i > Hom(Q7, k[ x])
) i
x[[u™1]] K[x1[[U7H)]
is given by
-n J— -Nn -l
(U™ = g, (TPuTTd
which is the same as the usual factor sequence definition
-Nn - -N-
(U+x) ™ = z§=o ( ?)U n-JyJd . As observed earlier -- for
*
K{x]" = k{{t}} where t e k[x]" satisfies <t|x™ =8 | --t
-1 d ’
ct
acts on X[[U™7]] as T
It is sometimes useful to think of k[[U'l]] as being a

"complete" K[x]-comodule, with structure map
-, -1 -1y14 ~ -
byt K[(UTH] > k(U™ 18Kx) ¥ x(xI[[UTY]]  defined by
(U™ = (TPUT e
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XII. Hopf algebras and formulas

A Hopf algebra is a bialgebra H which is equlpped with a map
S:H > H such that X h,8(h,) = ¢(h) = Z(p) S(hy)h, for all

he H. S 1is an algebra and a coalgebra anti-homomorphism
[p. 7T4]. It plays the role for a Hopf algebra that the inverse
map plays for a group; indeed, 1f H 1s a Hopf algebra and

g ¢ H 1is grouplike, then S(g) = g'l. S 1is called the antipode

of H.
Let ¢ e H, g*, h* € H*. If c¢ 1s grouplike then since
*
the contragradient action of H on H is a measuring, ca

is an algebra map and

» e 7la((csg ) *n’)

[e™ls(cag™)1*[c™tan™] =

g *(c™Lan")

1]

Using £ notation here gives a generalization of this
result when ¢ 1s not necessarlly grouplike. The technique

more-or-less consists of writing in the appropriate "Z(c)" and

subscripts and changing the "(cfl)” to "s(e)" 4in (*). This
is a powerful method of generalizing to Hopf algebras, formulas
and constructions for groups. It is one of the useful aspects
of I notation.

The first and last terms of (*) Ybecome

XII.1 T(o) S(ey)3l{e,2e )*h") = g *(s(c)n")

Here 1s the verification following the line of reasoning at
(*). Using that 2 1is a measuring and that S 1s a coalgebra
antihomorphism, the left side becomes

£(o)[8(e )3 (eq38 ) 1¥(S(ey) ']
= z(c)[s(ce)c3ég*]*[s(cl)Ah*]
= Z(c)[c(ce)lég*]*[s(cl)Ah*] by the antipode condition

£(o) {1987 1*[5(c ) el ) 0] = g *(s(e)an").

A second genreal formula 1s

* ¥* * *
XII.II (h2a)b = Z(p) (s(bE)Ah )A(abl) for a,beH, h eH
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It has been used to develop a theory of the integral for Hopf
algebras. The proof is similar to that of (XII.I).

Let us now consider @” = k[x] where X is a field of
characteristic zero so 8° £ H®. The antipode is glven by

S(x) = -x thus S(x™) = (-1)2x" . Note that
{xat?] x®/med = <tn!(m+1)xm+l/(m+l)!> = (m+1)6n me1c Thus
’
xt? = nt?1 and for any H e k[[t}] = k[x]* xaH =é% H.

Write #@ for anH the nth derivative of H with respect to &
*
With x*=¢, L=g, M=h, (XII.I) becomes
£ (DI anm) = L((-1)%M) = (- (KL .

Thus 2;;0 (-l)i(ril)(l@vi)®= (—l)npr . This gives
W&, = bl (_1)n-i(n)(ﬁ§:3%f3 and hence by switching index
1=0 i

WO, = Tieo (-1)3(3‘)(@4)© XIT.1T1

For (XII.II), let b =x", h = L. Then

(Loa)x™ = £f_ (-1 HD (P an) 5 (axh

Switching index and using x-» =é%
(1ea)a = £1_o(-1)3(Y @ axn-d) XTT. TV

Recall that Ls 1is a shift-invariant operator -- it
commutes With D =g . Recall that every shift invariant

operator U 1s uniquely of the form L+ where L = ¢oU. Write

xL for the operator on k[x] which multiplies each element

by x. It is easily checked that DxL - xéD = I and using
this i1t is easily checked that Ux% - x*U 1is shift-invariant
for any shift invariant operator U. Define CJU as

Ux* - x*U. This is the Pincherle Derivative of U. By what

we have already observed cJU is shift-invariant if U is.
For U = La

e( DU( ™) = e{u( xn+l)) = <1 Xy =<{xsL| x™ =<aclt— L] ™

This shows that if U = La then Ovu = (a('iE L)s . Let us write

By for the n™® Pincherle derivative of U. Thus if U = Lo
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then U = L-\ . Formula XII.IV now becomes

X11.V u(a)x® = 2, (135 Duax=)

for any a e k[x] and any shift invariant operator U.
Now some standard combinatorial proofs in the new language.
Let [ei} be the assoclated sequence of divided powers

to a delta L. Let a Dbe the coalgebra map corresponding to
I; thus, a(d) = ﬁ:=o Li(d)xi/il and f{e;} 1s the unique
sequence of divided powers with a(ei) = xi/i! . Recall that
<t |e > = 8,5 1ee- {1} 1s the topological dual basis to
{e;} - Since $% |e > =<t l]L-he > , this characterization

of [en} is equivalent to:

e(en) =6 and ILoe = e

O,n n-1

Sie B

XII.VI Recurrence Formula: e, = x(L'”

where L' = EEL' To verify this we apply Li

- - 1
Kitlx(rttse, ) 2> = Kxattinrlae D2

<i 1-1

-1, 1 1 1
gL L' ®n- 1 <

-1
L'L! Ien_i>

111 _
=G LT e = 8y

This completes the verification that {Li} is a topological
dual basls to the sequence defined inductively by the recurrence
formula XII.VI with initial term e, = 1. Hence the sequence
defined by XII.VI 1is the original {ei} sequence.

Since L 1s a delta it lies in e - <t2> and L = tP
for invertible P e k{[t]].

Nne-
1 -n_ X
XII.VII Transfer Formula: e, = HJ((P N TH:ITI)

-n n-1
For verification using (XII.IV) with P for L, X

for a and x for e glves

x(p ol - gl 3hpn@aned

= P Paxl . P-n,_xn-l
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Divide by n! and apply Li which equals tiPi:
. n . n-1
izl o-n x 1 1,1y 5-n X
PP ) - 2 <eTR P "I—IT— >

- CelptpmEDs | elpt BN Ty
- <P1-nl tiJgi:-) " <Pi~n-lp,'ti_\%(_I) N

When 1 > n this yields zero and when i=n this yields <ell>+o
which equals 1. Assume i< n and use

tiAxL/L! = x{'i/(t-i)! for i S,é- The last term set off above
becomes

n-i-1
n"('——i"'> + (Pl -n= 1P"r—i—I">
K- i-1 n-i-1
-n -n-1 X
= & P + U ey
i-n . i-n-1 n-1-1 i-n-1 n-i-
= a1 PP ey - TR ey
This is zero showing that the transfer formula XII.VII gives
a dual basis to (L%}

XIII. The dual coalgebra

If C 1is a coalgebra then C* is an algebra. Beginning with
an algebra A to what extent 1s the dual a coalgebra? If A
is finite dimensional then A~ is a coalgebra. If A is
infinite dimensional there 1s a canonlcal largest subcoalgebra
of A which is denoted A° and is called the coalgebra dual
of A.

The concept of the coalgebra dual is necessary for an

understanding of why ta acts as a derivation on £f°=k[x] or

8" =k[x], where o= K[[t]] and @&°° = k{ft}}. 1In the factor
sequence example at the end of (XI.3) t acts on k[[U"l]] as

the derivation é% . The coalgebra dual provides the reason.

If B 1s a finite dimensional algebra the full dual B* has
a natural coalgebra structure in this manner: dualize the multi-
plication map B®B - B to get a map B > (B@B) Since the natural
map B @B" > (BaB) is an isomorphism when B _1s finite
dimensional we have the composite B - (BaB)*—:i> B @B  which
is our coproduct A. The counit is the dual of the algebra
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unit map k > B.
Now assume that A 1s possibly infinite dimensional. If

B 1is a finite dimensional algebra and f:A %B 1is an algebra
* *

surjection then the dual map B < A is injective and allows

us to define a coalgebra structure on the subspace

* A *
Im(B ).= (Ker f) of A . By taking other choices for B
and f we obtain other coalgebra structures on subspaces of
*
A . We would like to show that this process is consistent i.e.

that any two such coalgebras agree on their intersection.
Let f:A ®B and g:A *D be surjections to finite dimen-

sional algebras. BxD 1is a finite dimensional algebra and

aw (£(a),gla)) defines an algebra map from A to BxD. Let

E Dbe the image of this map and h:A »E the algebra surjection
defined by the above rule. We now have a commutative diagram

7%
N

E

of surjective algebra maps where the maps out of E < BxD are
induced by the projections: B&— BxD —> D .
Dualizing we obtain the compatibility diagram

* *
Both B > E* and D*‘* E are coalgebra maps; hence the
*
coalgebra structures on subspaces of A are consistent.

We can define a coalgebra structure on A% = Ua 1t < A*
where ¥ = {I c A:I is a two sided ideal and A/I 1s finite
dimensionel} by giving each IJ' the coalgebra structure dual
to A/I. A° 1s called the coalgebra dual to A. The duality
is not perfect. For example if A 1s a field which is infinite
dimensional as a vector space over k then A® = {0} since
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{01 1s the only finite dimensional quotient algebra of A.
If* A* and* B are algebris and f:A > B 1s an algebra map
then £ :B > A  satisfies £ (B®) cA®. Let f° denote f"
restricted from B° to A®°. The map ° 1s a coalgebra map.
Begin with a coalgebra C to obtain an algebra C* and
form C °. The natural map C ~» C** has image in c*o. The
map C > C*O is a coalgebra map.

The natural pairing A'eA —SLZ> k induces a map

ACea —S%2—> k and A®° measures A to k. If A is a bialgebra
then A is an algebra from the coalgebra structure on A and
A° is not only a coalgebra but a subalgebra of A*. With 1its
algebra and coalgebra structures A° is a bialgebra. If A

is a Hopf algebra with antipode S then the transpose S :A® > A"
carries A° to itself. S |A® makes A° into a Hopf algebra.

When A 1is a blalgebra A 1s a left A -module via = from
tge coalgebra structure on A. Since A° is a subalgebra of
A S gives A a left A®-module structure. A° measures A
to A.

Y
Suppose C —>D®A, where (A,Y) comeasures C to D,
*
as in (XI. 3). Dualizing gilves (D@A)* —lLéc*. Form the

composite ne
*

*
x:D @a° > D'ea” » (pea)* Y>c*

* *
c and D are algebras since C and D are coalgebras. By

* le) *
wD@® " > C, A° measures D* to C*.

First example take A = £ = k[[t]]. Every non-zero
ideal I of A 1is of the form <tn> for some n. There is the

natural vector space embedding DT> i)”** = A*. Within

* <n.L
A £ = span{dy,+..,d__;}. The coalgebra structure on
e
*
<™ induced by the map (A/I) < A" 1is the usual divided
power structure. Thus D ° = A° = D=,

*
The fact that £ ° = % enables us to say still more
about cgalgebia mags c»> O If a 1is such a coalgebra map
then a : D% > ¢ is an algebra map. The composite

*
C_)C*o (10>800*0=Dm
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* *
is a. Beginning with an algebra map f£: 9 % = k[[t]] » C
yields a coalgebra map B:C > % as the composite

(o]
crco iy 9= o=

and ﬁ* = f. Hence there is a bijective correspondence

coalgebra algebra*maps
maps from C ¢ > {(from O :k[[t]]
to D% to C
»*
a —— a
o
(c~» ¢ —f——>£)°°) (— f

This ties in with the "exponential" characterization of
coalgebra maps C to $OF 4n section IX. A coalgebra map
a:C > £ was shown to be of the form exp hx with he C, h
locally nilpotent. The corresponding algebra map S)“*=k[[t]]->c*
is determined by t - h.

The second example of the dual coalgebra is the case
A =k[x] = 8°. Identify AY with k{{t}] as before.
ke = k1 = 3O~ cA® and A(1) = 181. A = k[x] » X[ x]A<x*D =B

* .
dualizes to B*‘* A* and actually B % A® since B is a*finlte
dimensional algebra. If B has basis 1, f,...in and B has

dual basis e=TO,T1,...,Tn then ATm = :?=O TiaTm-i' Under

* * ™ £ o
B > A, Tm maps to wT which shows ¥ € A and
m i m-1
£t t t
5 §r = Ty Tr ®(FIT! -
divided polynomial algebra k{t}.
As already mentioned A© measures A to A under the 2

ti o
The span of {IT} in A is the

1
action of A° on A. Since t = vy ¢ A° and At = st +tel

it follows that t-» acts as a derivation. It is easily checked
that tax = 1 from which it follows that ts must be the
derivation é% .

Turn to the comeasuring example at the end of (X1, 3).
* *
#:¢° > Q¥ek[x] ylelds the measuring Q° ek[x]° » Q° i.e.

K[ [U"1]]ek[x]° > X[[U™1]]. Since t e k[x]® with At=1et+tel
it follows that t acts as a derivation. It 1s easily checked
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-1 -2

that t carries U to -U and t acts continuously

from which it follows that t acts as é% .

The grouplike elements of A° act as algebra maps from
A = k[x] to k. There is one such element for each A ¢ k; it
is the unique algebra map which sends x to A, and is repre-

ekt o @

i
sented by the power series oo ki(§r ). Grouplike

elements are always linearly independent. The k-span T of

A
{e t:?\e ) 1s the group algebra of k" the underlying additive

group of K.

If k 1s algebraically closed A° is generated by k{t}
and T; in fact A° = k{t}®r as Hopf algebras. This follows
from the Kostant structure theorem for cocommutative pointed
Hopf algebras [pp. 176-7]. However A° is larger in the non-
algebraically closed case. TFor example in characteristic zero

@+
if 1= /~T£k then <x%#1D =k cos t +k sin t is not in
k{t]}T. Of course if 1 € k we have sin t = % (et % ang
cos t = % (elt 1% ¢ 1,

In characteristic zero 0% ¥ 8” = k[x] and the previous
analysls applles. In positive characteristic P each d is

1
p-power nilpotent for i > 0. Hence &% is local with unique
maximal ideal spanned by {d1]°£=1 - This implies that the

coradical of ©%° 1s ke = k1 c D = k[[t]]. 1In a fashion
similar to the demonstration for 8° 1t follows that ¢t lies

in P%° with At = 18t + t®1 and t act as ad; on OH=k{x}.

Since D™° is a subalgebra of k[[t]] = D" it follows that
k{t] ¢ D%, However k[t] is not all of £%° for example

2 3
v=t+tP+ P 4 tPT 4+ ... lies in B%° and Av = lev + vel.

XIV. Epilogue

In my opinion the umbral calculus Hopf algebra interplay has the
-- as yet unrealized -~ potentlial to prove its worth in a major
way. The coalgebra polnt of view helps to explain what is
happening in many umbral calculus situations. Yet the verifi-
cations of the recurrence formula XII.VI and transfer formula
XII.VII were merely the old proofs in the new language. The
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formulas XII.I, XII.II and resulting XII.III, XII.IV and
XII.V do take advantage of the Hopf algebra setting for their
proofs but I don't know what they help count.

This is not meant to be discouragement but rather encourage-
ment for work demonstrating the value of the combinatorics
coalgebra interplay. An important application of the umbral
calculus in which coalgebra or Hopf algebra techniques are
essential would do the trick just fine.

ABCDEFGHII ~AMS—898765432




