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Foreword

This book brings together two streams of research in mathematics and com-
puting that were begun in the nineteenth century and made possible through
results brought to fruition in the twentieth century.

Methods for indefinite integration have been important ever since the in-
vention of the calculus in the 1700s. In the 1800s Abel and Liouville began
the earliest mathematical research on algorithmic methods on integration in
finite terms leading to what might be considered today as an early mathe-
matical vision of a complete algorithmic solution for integrating elementary
functions. In an 1842 publication Lady Ada Augusta, Countess of Lovelace,
describing the capabilities of Babbage’s analytical engine put forth the vision
that computational devices could do algebraic as well as numerical calcula-
tions when she said that “[Babbage’s Analytical Engine] can arrange and
combine its numerical quantities exactly as if they were letters or any other
general symbols; and in fact it might bring out its results in algebraical nota-
tion were provisions made accordingly.” Thus these two visions set the stage
for a century and a half of research that partially culminates in this book.

Progress in the mathematical realm continued through out the nineteenth
and twentieth centuries. The Russian mathematician Mordukhai-Boltovskoi .
wrote the first two books on this subject in 1910 and 19131,

With the invention of electronic computers in the late 1930s and early
1940s, a new impetus was given to both the mathematical and computation-
al streams of work. In the meantime in the mathematical world important
progress had been made on algebraic methods of research. Ritt began to
apply the new algebraic techniques to the problem of integration in finite
terms, an approach that has proven crucially important. In 1948 he pub-
lished the results of his research in a little book, Integration in Finite Terms.
The use of these algebraic ideas were brought to further fruition by Kolchin,
Rosenlicht, and, particularly for problems of symbolic integration, by three
of Rosenlicht’s Ph.D. students — Risch, Singer, and Bronstein?.

! On the Integration in Finite Terms of Linear Differential Equations. Warsaw,
1910 (in Russian) and On the Integration of Transcendental Functions. Warsaw,
1913 (in Russian).

? Let me hasten to add that there have been important contributions by many
others and it is not my intention to give a complete history of the field in this
short paragraph, but to indicate some of main streams of work that have led to
the current book.
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On the computational side, matters rested until 1953 when two early pro-
grams were written, one by Kahrimanian at Temple University and another
by Nolan at Massachusetts Institute of Technology, to do analytic differen-
tiation — the inverse of indefinite integration. There was active research in
the late 1950s and early 1960s on list processing packages and languages that
laid the implementation foundations for today’s computer algebra systems.
Slagle’s 1961 thesis was an early effort to write a program, in Lisp, to do
symbolic integration. With the advent of general computer algebra systems,
some kind of symbolic integration facility was implemented in most. These
integration capabilities opened the eyes of many early users of symbolic math-
ematical computation to the amazing potential of this form of computation.
But yet none of the systems had a complete implementation of the full al-
gorithm that Risch had announced in barest outline in 1970. There were a
number of reasons for this. First and foremost, no one had worked out the
many aspects of the problem that Risch’s announcement left incomplete.

Starting with his Ph.D. dissertation and continuing in a series of beauti-
ful and important papers, Bronstein set out to fill in the missing components
of Risch’s 1970 announcement. Meanwhile working at the IBM T. J. Wat-
son Research Center, he carried out an almost complete implementation of
the integration algorithms for elementary functions. It is the most complete
implementation of symbolic integration algorithms to date.

In this book, Bronstein brings these mathematical and computational
streams of research together in a highly effective manner. He presents the al-
gorithmic details in pseudo-code that is easy to implement in most of the gen-
eral computer algebra systems. Indeed, my students and I have implemented
and tested many of the algorithms in MAPLE and MACSYMA. Bronstein’s
style and appropriate level of detail makes this a straightforward task, and I
expect this book to be the standard starting place for future implementers of
symbolic integration algorithms. Along with the algorithms, he presents the
mathematics necessary to show that the algorithms work correctly. This is a
very interesting story in its own right and Bronstein tells it well. Nonetheless,
for those primarily interested in the algorithms, much of the mathematics can
be skipped at least in a first study. But the full beauty of the subject is to
be most appreciated by studying both aspects.

The full treatment of the subject is a long one and it is not finished in
this volume. The longer and more difficult part involving the integration of
algebraic functions must await a second volume. This volume serves as a good
foundation to the topic of symbolic integration and as a nice introduction to
the literature for integration of algebraic functions and for other aspects such
as integration involving non-elementary functions. Study, learn, implement,
and enjoy!

B. F. Caviness

Preface

The integration problem, which is as old as calculus and differentiation, can
be informally stated very concisely: given a formula for a function f(z), deter-
mine whether there is a formula for a differentiable function F(z) satisfying

dF

d—zzf(z)

and compute such an F(z), which is called an antiderivative of f(z) and is
denoted

F(z) = / f(z)do

if it exists. Yet, while symbolic differentiation is a rather simple mechani-
cal process, suitable as an exercise in a first course in analysis or comput-
er programming, the inverse problem has been challenging scientists since
the time of Leibniz and Newton, and is still a challenge for mathematicians
and computer scientists today. Despite the many great strides made since
the 19*" century in showing that integration is in essence a mechanical pro-
cess, although quite more complicated than differentiation, most calculus and
analysis textbooks give students the impression that integration is at best a '
mixture of art and science, with flair in choosing the right change of variable
or approach being an essential ingredient, as well as a comprehensive table
of integrals.

The goal of this book is to show that computing symbolic antideriva-
tives is in fact an algorithmic process, and that the integration procedure
for transcendental functions can be carried out by anyone with some famil-
iarity with polynomial arithmetic. The integration procedure we describe is
also capable of deciding when antiderivatives are not elementary, and prov-
ing it as a byproduct of its calculations. For example the following classical
nonelementary integrals

/szd.’l: ’ / dz , /sin(m)dz ’
log(z) x

can be proven nonelementary with minimal calculations.

The algorithmic approach, pioneered by Abel and Liouville in the past
century, eventually succeeded in producing a mechanical procedure for decid-
ing whether an elementary function has an elementary antiderivative, and for



VIII  Preface

computing one if so. This procedure, which Risch described in a series of re-
ports [58, 59, 60, 61], unfortunately not all of them published, forms the basis
of most of the symbolic integration algorithms of the past 20 years, all of them
loosely grouped under the appellation Risch algorithm. The procedure which
we describe in this book also has its roots in the original Risch algorithm [60]
and its improvements, our main sources besides Risch being [11, 12, 68, 74].

We have tried to keep the presentation as elementary as possible, with
the minimal background for understanding the algorithm being an introduc-
tory course in algebra, where the topics rings and fields, polynomial greatest
common divisors, irreducible polynomials and resultants are covered®. Some
additional background in field theory, essentially algebraic and transcendental
extensions, is occasionally used in the proofs associated with the algorithm.
The reader willing to accept the algorithm without proof can skip those sec-
tions while learning the algorithm.

We have also generalized and extended the original Risch algorithm to a
wider class of functions, thereby offering the following features, some of them
new, to the reader already familiar with symbolic integration:

— The algorithms in this book use only rational operations, avoiding factor-
ization of polynomials into irreducibles.

— Extensions by tangents and arc-tangents are treated directly, thereby real
trigonometric functions are integrated without introducing complex expo-
nentials and logarithms in the computations.

— Antiderivatives in elementary extensions can still be computed when ar-
bitrary primitives are allowed in the integrand, e.g. Erf(x), rather than
logarithms.

— Several subalgorithms are applicable to a large class of non-Liouvillian
extensions, thereby allowing integrals to be computed for such functions.

The material in this book has been used in several courses for advanced
undergraduates in mathematics or computer science at the Swiss Federal
Institute of Technology in Zurich:

— In a one-semester course on symbolic integration, emphasizing the algo-
rithmic and implementation aspects. This course covers Chap. 2 in depth,
Chap. 3 and 4 superficially, then concentrates on Chap. 5, 6, 7 and 8.

— In the first part of a one-semester course on differential algebra. This course
covers Chap. 3, 4 and 5 in depth, turning after Liouville’s Theorem to other
topics (e.g. differential Galois theory).

— In the last part of a one-semester introductory course in computer algebra,
where some algorithms from Chap. 2 and 5 are presented, usually without
proofs.

In all those courses, the material of Chap. 1 is covered as and when needed,
depending on the background of the students. Chap. 9 contains complete

3 Those topics are reviewed in Chap. 1.

Preface IX

proofs of several structure theorems and can be presented independently of
the rest of this book.

By presenting the algorithm in pseudocode in various “algorithm boxes”
throughout the text, we also hope to make this book useful for programmers
implementing symbolic integrators: by following the pseudocode, they should
be able to write an integrator without studying in detail the associated theory.

The reader will notice that several topics in symbolic integration are miss-
ing from this book, the main one being the integration of algebraic func-
tions. Including algorithms for integrating algebraic and mixed algebraic-
transcendental functions would however easily double the size of this book,
as well as increase the mathematical prerequisites, since those algorithms
require prior familiarity with algebraic curves and functions. We have thus
decided to cover algebraic functions in a second volume, which will hope-
fully appear in the near future. In the meantime, this book is an adequate
preparation to the extensive literature on the integration of algebraic func-
tions [8, 9, 13, 14, 26, 58, 59, 61, 76]. Another related topic is integration
in nonelementary terms, i.e. with new special functions allowed in the an-
tiderivatives. Here also, the reader should have no difficulty moving on to the
research literature [5, 6, 20, 21, 38, 39, 55, 79] after completing this book.
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1. Algebraic Preliminaries

We review in this chapter the basic algebraic structures and algorithms that
will be used throughout this book. This chapter is not intended to be a re-
placement for an introductory course in abstract algebra, and we expect the
reader to have already encountered the definitions and fundamental proper-
ties of rings, fields and polynomials. We only recall those definitions here and
describe some algorithms on polynomials that are not always covered in intro-
ductory algebra courses. Since they are well-known algorithms in computer
algebra, we do not reprove their correctness here, but give references instead.
For a comprehensive introduction to constructive algebra and algebraic algo-
rithms, including more efficient alternatives for computing greatest common
divisors of polynomials, we recommend consulting introductory computer al-
gebra textbooks [2, 29, 31, 50, 82]. Readers with some background in algebra
can skip this chapter and come back to it later as needed.

1.1 Groups, Rings and Fields

An algebraic structure is usually a set together with one or more operations
on it, operations that satisfy some computation rules called axioms. In order
not to always list all the satisfied axioms for a given structure, short names
have been given to the most common structures. Groups, rings and fields are
such structures, and we recall their definitions in this section.

Definition 1.1.1. A group (G,o) is a nonempty set G, together with an
operation o : G x G — G satisfying the following azioms:

(i) (Associativity) Va,b,c € G,ao(boc) =(aob)oc.
(i1) (Identity element) Je € G such that Va € G,eoca =aoe=a.
(ii3) (Inverses) Va € G,3a~! € G such thataoa™ =a~loa=e.

In addition, o is called commutative (or Abelian) if aob = boa for all
a,b € G, and (G,o) is called a commutative group (or Abelian group) if it
is a group and o is commautative.

Ezample 1.1.1. Let G = GL(Q,2) be the set of all the 2 by 2 matrices with
rational number coefficients and nonzero determinant, and let o denote the
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usual matrix multiplication. (G,0) is then a group: associativity can easily
be checked, the identity element is the identity matrix, and the inverse of a
matrix in G is given by

a b\7' 1 d -b
c d Tad-bc\ ¢ a

which is in G since the determinant of any element of G is nonzero. Note
that (G, o) is not a commutative group since

(01)°(70)=(3s)
™ (93)(31)=(2 1)

Ezample 1.1.2. Let G = M22(Q) be the set of all the 2 by 2 matrices with
rational number coefficients, and let o denote the usual matrix addition. It
can easily be checked that (G, o) is a commutative group with the zero matrix
as identity element.

Definition 1.1.2. A ring (R, +,-) is a set R, together with two operations
+:RxR— Rand-: Rx R — R such that:

(i) (R,+) is a commutative group.
(ii) (Associativity) Va,b,c € R,a-(b-c)=(a-b)-c.
(i1i) (Multiplicative identity) 3i € R such thatVa € R,i-a=a-1=a.
(iv) (Distributivity)
Ya,b,c€ R,a-(b+c)=(a-b)+(a-c) and (a+b)-c=(a-c)+(b-c).

(R, +,-) is called a commutative ring if it is a ring and - is commutative. In
addition, we define the characteristic of R to be 0 if ni # e for any positive
integer n, the smallest positive integer m such that mi = e otherwise. Let R
and S be rings. A map ¢ : R = S is a ring-homomorphism if ¢(er) = es,
G(ir) = is, and ¢(a +b) = ¢(a) + ¢(b) and ¢(ab) = §(a) - $(b) for any
a,b € R. A ring-isomorphism is a bijective ring-homomorphism.

In the rest of this book, whenever (R, +,-) is a ring, we write 0 for the
identity element of R with respect to +, 1 for the identity element of R with
respect to -, and for a,b € R, we write ab instead of a - b.

Ezample 1.1.3. Let R = M3 2(Q) be the set of all the 2 by 2 matrices with
rational number coefficients, and let + denote matrix addition and - denote
matrix multiplication. (R, +,-) is then a ring, but not a commutative ring
(see example 1.1.1). Since

e (5 9= (3 )

is nonzero for any positive integer n, R has characteristic 0.
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Ezample 1.1.4. Let R = Zg¢ (the integers modulo 6) with + and - being the
addition and multiplication of integers modulo 6. (R, +, ) is then a commu-
tative ring, and the map ¢ : Z — Zg defined by ¢(n) = n (mod 6) is a
ring-homomorphism. Since 1+1+1+1+1+4+1=0in Zg, and nl # 0 for
0 < n < 6, Zg has characteristic 6. Note that 2-3 = 0 in Zg, while 2 # 0 and
3 # 0, so we cannot in general deduce from an equation ab = 0 that either
a or b must be 0. Commutative rings where we can make this simplification
are very useful and common, so they receive a special name.

Definition 1.1.3. An integral domain (R, +,-) is a commutative ring where

0#1 and
Va,be R,a-b=0=a=00rb=0.

Ezample 1.1.5. Let R = Z[v/-5] = {a+bV/-5;a,b € Z} with + and - denot-
ing complex addition and multiplication. (R, +, ) is then an integral domain.

We now come to the problem of factoring, i.e. writing elements of an
integral domain as a product of other elements.

Definition 1.1.4. Let (R, +,-) be an integral domain, and z,y € R. We say
that = divides y, and write z | y, if y = xt for some t € R. An element
z € R is called a unit if | 1. The set of all the units of R is written R*. We
say that z € R is a greatest common divisor (ged) of zy,...,T, and write

z = ged(zy, ..., Zn) if

(i) z|zifor1<i<m,
(i) Vte Rt |z; forl<i<n==>t]z.

In addition, we say that z and y are coprime if there ezists a unit u € R*,
which is a gcd of x and y.

Ezample 1.1.6. Let R = Z [\/=5] as in example 1.1.5, z =6 and y = 2 +
2v/=5. A norm argument shows that z and y havenogedin R.Let N: R -+ Z
be the map given by N(a + by/=5) = a® + 5b? for a,b € Z. It can easily be
checked that N(uv) = N(u)N(v) for any u,v € R, so u | v in R implies that
N(u) | N(v) in Z. Suppose that z € R is a greatest common divisor of
and y, and let n = N(2) > 0. Then, n | N(z) = 36 and n | N(y) = 24, so
n|12in Z. We have 2|z and 2 | y in R, s0o 4 = N(2) | n in Z. In addition,
1++v/=5|yin R, and

6=2-3=(1+vV-5)(1-V-5) (1.1)

s0 1+ /=5 | z in R, hence 6 = N(1 + v/=5) | n in Z. Thus, 12 | n in
Z,so n = 12. Writing z = a + by/—5 for some a,b € Z, this implies that
N(z) = a® + 5b% = 12, hence that a> = 2 (mod 5). But the squares in Zs
are 0,1 and 4, so this equation has no solution, implying that z and y have
no ged in R.
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Although ged’s do not always exist, whenever they exist, they are unique
up to multiplication by units.

Theorem 1.1.1. Let (R, +,-) be an integral domain, and z,y € R. If z and
t are both gcd’s of z and y, then z = ut and t = vz for some u,v € R*.

Proof. Suppose that both z and ¢ are ged’s of z and y. Then, ¢ | z since t | ,
t |y, and z = ged(z,y). Thus, z = ut for some u € R. Similarly, z | t, so
¢ = vz for some v € R. Hence z = ut = uvz, so (1 —uv)z = 0. If z # 0, then
1=uv,sou,v€ R*. If2=0, thent =vz=0,s0 z= 1t and ¢t = 12. m]

Definition 1.1.5. Let R be an integral domain. A nonzero element p € R\
R* is called prime if for any a,b € R, p| ab=>p | a orp|b. A nonzero
element p € R\ R* is called irreducible if for any a,b € R, p = ab=ac€
R* orb € R".

Ezample 1.1.7. Let R = Z [\/=5] as in example 1.1.5, and check that 2,3, 1+
V=5 and 1 — /=5 are all irreducible elements of R. Equation (1.1) then
shows that the same element can have several different factorizations into
irreducibles. Therefore, integral domains where such a factorization is unique
receive a special name.

Definition 1.1.6. A unique factorization domain (UFD) (R,+,") is an in-
tegral domain where for any nonzero z € R \ R*, there are u € R", co-
prime irreducibles p;,...,pn € R and positive integers ey, ..., en such that
z = upf' - pir. Furthermore, this factorization is unique up to multiplica-
tion of u and the p;’s by units and up to permutation of the indices.

Ezample 1.1.8. Let R = Q[X,Y] be the set of all the polynomials in the
variables X and Y and with rational number coefficients. It is a classical re-
sult ([40] Chap. V §6, [77] §5.4) that (R, +, -) is a unique factorization domain
where + and - denote polynomial addition and multiplication respectively.

In any integral domain, a prime is always irreducible. The converse is
not always true, but it holds in unique factorization domains. Thus, we can
use interchangeably “prime” or “irreducible” whenever we are in a unique
factorization domain, so, “the prime factorization of ” and “the irreducible

factorization of z” have the same meaning.

Theorem 1.1.2 ([40] Chap. II §4). Let (R, +,) be an integral domain. Then
every prime p € R is irreducible. If R is a unique factorization domain, then
every irreducible p € R is prime.

In addition, gecd’s always exist in UFD’s, and can be obtained from the
irreducible factorizations.

Theorem 1.1.3. If R is a UFD, then any =,y € R have a ged in R.
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Proof. Let z,y € R, and suppose first that z = 0. Then y | y, ¥ | 0, and any
t € R that divides z and y must divide y, so y is a ged of z and y. Similarly,
z is a ged of z and y if y = 0, so suppose now that z # 0 and y # 0, and
let z=u[],cxp"™ and y = v[],cyp™" be the irreducible factorizations of
z and y, where X and Y are finite sets of irreducibles. We choose the units
u and v so that any irreducible dividing both = and y is in A N ). Let then

7= H pmin(n,,,m,,) €R. (12)
peXNY
We have
T=zu H pn,—min(np,mp) H pn,,
pEXNY pEX\Y

so z | z. A similar formula shows that z | y. Suppose that ¢ [ z and ¢ | y for
some ¢ € R, and let ¢ = w [] 7 p° be its irreducible factorization where T
is a finite set of irreducibles. For p € 7, we have z = tb = p°»ab for some
a,b € R, so sp € X for some s € R*. Replacing w by ws™°», we can assume
that p € X, and e, < n, by the unicity of the irreducible factorization.
Similarly, we get p € Y and e, < m,, since t | y. Hence, T C AN Y and
ep < min(ny, myp) for any p € 7. Thus,

z=tw™! H pmin(np‘mp)-ep H pmin(n,,m,,)
pET PE(XNYN\T

which means that ¢ | z, hence that z = ged(z, y). 0

It is a classical result due to Gauss that polynomials can be factored
uniquely into irreducibles.

Theorem 1.1.4 ([40] Chap. V §6, [77] §5.4). If R is a UFD, then the poly- -
nomial ring R[X,,..., Xy] is ¢ UFD.

Definition 1.1.7. Let (G, o) be a group with identity element e. We say that
H C G is a subgroup of (G, o) if:

(i) e€ H.
(ii)) Va,b€e Hyaobe H.
(i) Va € Hya ' € H.

In practice, given a subset H of a group G, it is equivalent to check the
above properties (i), (ii) and (iii), or that H is not empty and that acb™! € H
for any a,b € H.

Ezample 1.1.9. Let G = GL(Q, 2) as in example 1.1.1 with o denoting matrix
multiplication, and let H = SL(@Q, 2) be the subset of G consisting of all the
matrices whose determinant is equal to 1. The identity matrix is in H, so H is
not empty, and for any a,b € H, the determinant of ao b~! is the quotient of
the determinant of a by the determinant of b, which is 1, so H is a subgroup
of G.
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Definition 1.1.8. Let (R,+,) be a commutative ring. A subset I of R is
called an ideal if (I,+) is a subgroup of (R, +) and za € I for any z in R
and a in I. Let T1,...,Tn € R. The ideal generated by {z1,...,Zn} is the
smallest ideal of R containing {z1,...,%n}, and i denoted (zy,...,Zn). An
ideal I C R is called principal if I = (z) for some z € R.

In fact, the ideal generated by {1,...,Za} is just the set of all the linear
combinations of the z;’s with coefficients in R.

Theorem 1.1.5. Let (R,+,-) be a commutative ring, and z1,...,Tn € R.

Then,
(z1,..-,Tn) = {@171 + - + anZTn;01,-..,0n € R}.

Proof. Let I = {a1z1 + -+ + GnTn,01,...,8n € R}. Then z; € I fc:lr any i.
Leta=Y 1,0z € [ and b= Sh bizi € I. We have a — b= 1 ,(a;—
b;)z; € I, s0 (I,+) is a subgroup of (R,+). For any = € R, we have za =
Sr  (zai)z; € I, 50 I is an ideal of R containing {z1, = ,Tn}. Let now J be
any ideal of R containing {1, ... ,Zn}, and let a = 3 ., a;x; € I. For each
i, z; € J, 50 a;z; € J since RJ C J,s0a € J since (J,+) is a group. Hence
ICJ,sol=(z1,...,%n)- O
Ezample 1.1.10. Let R = Q[X,Y] asin example 1.1.8, and let [ = (X,Y?.
It can be checked that I is not principal, hence that not every ideal of R is
principal. Naturally, this means that integral domains where every ideal is
principal receive a special name.

Definition 1.1.9. A principal ideal domain (PID) (R,+,-) is an integral
domain where any ideal is principal.

Ezample 1.1.11. Let R = Q[X] be the set of all the univariate polynomials
in X with rational number coefficients. (R,+,-) is then a principal ideal
domain ([40] Chap. V §4, [77] §3.7) where + and - denote polynomial addition
and multiplication respectively.

The last, and most useful, type of ring that we use in this book, is an
integral domain in which Euclidean division can be carried out.

Definition 1.1.10. A Euclidean domain (R,+,-) is an integral domain to-

gether with a map v : R\ {0} = N such that:

(i) Va,be R\ {0},v(ab) > v(a).

(ii) (Euclidean division) For any a, be R, b#0, there are ¢,r € R such that
a=bq+r and either r =0 or v(r) < v(b).

The map v is called the size function of the Euclidean domain.

Ezample 1.1.12. Thering (Z,+,) of the integers with the usual addition and
multiplication is a Euclidean domain with v(a) = |a|, a fact that was known
to Euclid, and which is the origin of the name.

1.1 Groups, Rings and Fields 7

Even though the notions of principal ideal domains and Euclidean do-
mains are defined for an arbitrary integral domain, there is in fact a linear
hierarchy of integral domains.

Theorem 1.1.6 ([77] §3.7). Every Euclidean domain is a PID.
Theorem 1.1.7 ([40] Chap. II §4, [77] §3.8). Every PID is a UFD.

Since every PID is a UFD, and gcd’s always exist in UFD’s by Theo-
rem 1.1.3, then ged’s always exist in PID’s. We show that in PID’s, the ged
of two elements generates the same ideal than them.

Theorem 1.1.8. If R is a PID, then (z,y) = (gcd(z,y)) for any z,y € R.

Proof. Let x,y € R and z € R be a generator of the ideal (z,y), i.e. (2) =
(z,y). Then, z € (z), so £ = zu for some u € R, which means that z | z.
Similarly, y € (2), so z | y. In addition, z € (z,y), so z = az + by for some
a,b€ R.Let t € R be such that ¢t | z and ¢ | y. Then z = ¢t and y = dt for
some c,d € R. Hence, z = act + bdt = (ac + bd)t so t | z, which implies that
z = ged(u, v). O

We finally recall some important definitions and results about fields.

Definition 1.1.11. A field (F,+,) is a commutative ring where (F \ {0}, ")
is a group, i.e. every nonzero element is a unit (F* = F \ {0}).

Ezample 1.1.13. Let F = Zs (the integers modulo 5) with + and - being the
addition and multiplication of integers modulo 5. (F, +, ') is then a field.

Erample 1.1.14. Let R be an integral domain and define the relation ~ on
R x R\ {0} by (a,b) ~ (c,d) if ad = bc. It can easily be checked that ~ is an
equivalence relation on R x R\ {0} and that the set of equivalence classes is
a field with the usual operations

a E_ad+bc

4 ¢
573" bd ™ vd T b
where a/b denotes the equivalence class of (a,b). This field is called the quo-
tient field of R. For example, the quotient field of Z is Q and the quotient
field of the polynomial ring D[z] is the rational function field D(x) when D
is an integral domain.

Definition 1.1.12. Let F C E be fields. An element o. € E is called algebra-
ic over F if p(a) = 0 for some nonzero polynomial p € F{X], transcendental
over F otherwise. E is called an algebraic extension of F' if all the elements
of E are algebraic over F.

Definition 1.1.13. A field F is called algebraically closed if for every poly-
nomial p € K[X]\ K there exists a € F such that p(a) = 0. A field E is called
an algebraic closure of F if E is an algebraically closed algebraic extension
of F.
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Note that if F' is algebraically closed, then any p € K [X]\ K factors
linearly as p = ¢ [[1=, (X — a;)¢ over F: p must have one root a in F by
definition, and p/(X — a) factors linearly over F' by induction. The funda-
mental result about algebraic closures is a result of E. Steinitz which states
that they exist and are essentially unique.

Theorem 1.1.9 ([40] Chap. VII §2, [77] §10.1). Every field F has an alge-
braic closure, and any two algebraic closures of F' are isomorphic.

In view of the above theorem, we can refer to the algebraic closure of a field
F, and we denote it F. The last result we mention in this section is Hilbert’s
Nullstellensatz, which is not needed in the algorithm, but is needed in order
to eliminate the possibility of new transcendental constants appearing in
antiderivatives. We present it here in both its classical forms.

Theorem 1.1.10 (Weak Nullstellensatz, [77] §16.5). Let F' be an alge-
braically closed field, I an ideal of the polynomial ring F[Xi,...,Xn] and
V(I) be the subset of F™ given by

V() = {(z1,...,2a) € F" s.t. p(z1,..-,Tn) =0 forallpe I}. (1.3)
Then, V(I) =0 <= 1€l.

Theorem 1.1.11 (Nullstellensatz, [40] Chap. X §2, (77] §16.5). Let F be
an algebraically closed field, I an ideal of the polynomial ring F[X1,...,X4]
and V(I) be given by (1.3). For any p € K[X1,..., Xa)], if p(z1,---,2n) =0
for every (z1,...,%) € V(I), then p™ € I for some integer m > 0.

1.2 Euclidean Division and Pseudo-Division

Let K be a field and z be an indeterminate over K. We first describe the
classical polynomial division algorithm ([77] §3.4), which, given A, B € K|z},
B # 0, produces unique @, R € K[z] such that A = BQ+R and either R =0
or deg(R) < deg(B). This shows that the polynomial ring K (z] is a Euclidean
domain with the degree for size function when K is field. @ and R are called
the quotient of A by B, and the remainder of A modulo B respectively.

PolyDivide(A, B) (* Euclidean Polynomial Division *)
(* Given a field K and A, B € K[z] with B # 0, return @, R € K|z]
such that A = BQ + R and either R = 0 or deg(R) < deg(B). *)

Q+—0, R+ A

while R # 0 and § « deg(R) — deg(B) > 0 do
T 282 Q- Q+T R R-BT

return(Q, R)

1.2 Euclidean Division and Pseudo-Division 9

Ezample 1.2.1. Here is the Euclidean division of A = 3z% + z? + = + 5 by
B =5z% — 3z + 1 in Q[z]:

Q | R |6 | T

0 33 +2?+z+5| 1 |3z

iz a2 +2z45 | 0 | 38
r+ 4 Br+ -1

Thos, 3 14 2 111
5
=B (2z+— LA
A (53‘+ 25) + (25"”r 25)

This algorithm requires the coefficients to be from a field because it makes
the quotient in K of the two leading coefficients. If K is an integral domain,
the leading coefficient of B does not always divide exactly the leading coef-
ficient of A, so Euclidean division is not always possible. For example it is
not possible in the above example to do a Euclidean division of A by B in
Z[z]. But it is possible to apply PolyDivide to 254 and B in Z[z] since all
the divisions in Z will then be exact. In general, given an integral domain
D and A, B € Diz], applying PolyDivide to b+' 4 and B where b = Ic(B)
and 6 = max(—1,deg(A) — deg(B)) only generates exact divisions in D, and
the Q and R it returns are respectively called the pseudo-quotient of A by
B and pseudo-remainder of A modulo B. They satisfy 6°+'A = BQ + R and
either R = 0 or deg(R) < deg(B). We write pquo(A, B) and prem(A, B) for
the pseudo-quotient and pseudo-remainder of A and B. It is more efficient
in practice to multiply A by b iteratively, as is done in the algorithm below,
rather than once by b%+1.

PolyPseudoDivide(A4, B) (* Euclidean Polynomial Pseudo-Division *)

(* Given an integral domain D and A, B € D[z] with B # 0, return
pquo(A, B) and prem(A4, B). *)
b+ lc(B), N « deg(A) —deg(B)+1,Q+ 0, R+ A
while R # 0 and & « deg(R) — deg(B) > 0 do
TRz, N-N-1,Q«bQ+T, R bIVR-TB
return(b” Q, bV R)

Ezample 1.2.2. With the A and B of example 1.2.1, we get b = 5, N = 2,

and Q | R | 6§ |T|N
0 3z +22+z+5 1 |3z 1
3z 1422 +2z+25 | 0 | 14| 0

15z + 14 52x + 111 -1

so 25A = B(15z + 14) + (52z + 111).
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1.3 The Euclidean Algorithm

Let D be a Euclidean domain and v : D \ {0} — N its size function. The
Euclidean division in D can be used to compute the greatest common divisor
of any two elements of D. The basic idea, which goes back to Euclid who used
it to compute the ged of two integers, is that if @ = bg + 7, then ged(a, b) =
ged(b, 7). Since ged(x,0) = z for any z € D, the last nonzero element in the
sequence (a;)i>o defined by
ap=a, a1 =>b, and (gia;) = PolyDivide(a;—2,ai-1) fori > 2

is then a ged of a and b. Since for a; # 0 and 4 > 1, either aiyy = 0 or
v(aip1) < v(ai), that sequence can only have a finite number of nonzero

clements. This yields an algorithm for computing ged(a, b) by repeated Eu-
clidean divisions.

" Euclidean(a, b) (* Euclidean algorithm *)
(* Given a Euclidean domain D and a,b € D, return ged(a, b). *)

while b # 0 do
(g,7) « PolyDivide(a, b) (*a=0bg+r*)
a+b
ber

return a

Ezample 1.3.1. Applying the Euclidean algorithm to
a=z'-22% -6z +12z+15 and b=z*+z°—-4z-4

in D = Qz] gives:

a [ b | ¢ | T
' —22% 622+ 122415 |28+ 22 -4z -4 | z-3 |22 +4z+3
2} +2? —4r -4 22 +4z+3 -3 5z + 5
22 +4z +3 5z +5 lz 43 0
St +5 0

so 5z + 5 is a ged of @ and b in Q[z].

The Euclidean algorithm can be easily extended to return not only a gcd
of a and b, but also elements s and ¢ in D such that sa + tb = gcd(a, b). Such
elements always exist since ged(a, b) belongs to the ideal generated by a and
b by Theorem 1.1.8.
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ExtendedEuclidean(a, b) (* Extended Euclidean algorithm *)

(* Given a Euclidean domain D and a,b € D, return s,t,g € D such
that g = gcd(a, b) and sa+tb = g. *)

a14—1,a2(-0,b14—0,b2(—1
while b # 0 do
(g,7) + PolyDivide(a,b) (*a=0bg+r*)
a+bber
T1 & ar —gbi, T2 & az — gba
ar « by, a2 by, b1 &1y, b2 12
return(a;,az,a)

Ezxample 1.3.2. Using the same a and b as in example 1.3.1:

a | b [ q ’ r
2t -223 622+ 122 +15 (2P +22 —dr—-4| -3 |22 +42+3
3+ 2% -4z -4 z2+4z+3 r-3 52+ 5
2 +4z+3 5z 45 gz + ¢ 0
5T + 5 0
a; | az | b ] ba
1 0 0 1
0 1 1 -z +3
1 ~z+3 —z+3 z? -6z + 10

-2+3|2?-62+10 | $22 -2 | -1+ 322+ $2 -3
Thus, 5z + 5 is a ged of a and b in Q[z], and
(~z+3)a+ (z2 -6z +10)b=5z+5. (1.4)

If only one of the coefficients s or t is needed, a variant of the extended
Euclidean algorithm that computes only that coefficient can be used:

HalfExtendedEuclidean(a, b) (* Half extended Euclidean algorithm *)

(* Given a Euclidean domain D and a,b € D, return s,g € D such that
g = ged(a,b) and sa =g (mod b). *)

a) 1, b1 +«~0

while b # 0 do
(g,r) + PolyDivide(a,b) (*a=bg+r ¥
a+—bber
T ¢ ai -qbl, ay bl, bl —~ T

return(a;,a)
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This “half” variant of the algorithm is also used as a more efficient alter-
native to the extended Euclidean algorithm, since the second coefficient can
be obtained from the first via
g—sa

b

t =

where the division is always exact.

ExtendedEuclidean(a, b)
(* Extended Euclidean algorithm - “half/full” version *)

(* Given a Euclidean domain D and a,b € D, return s,¢t,g € D such
that g = gcd(a,b) and sa +tb=g. *)
(s,9) « HalfExtendedEuclidean(a,b)
(t,r) « PolyDivide(g — sa,b)
return(s,t,g)

(* sa=g (modb) *)
(* v must be 0 *)

Ezample 1.3.3. Recomputing the extended gcd of the a and b of exam-
ple 1.3.1, we get:

1. (s,g9) = HalfExtendedEuclidean(a,b) = (—z + 3,5z + 5)
2. g - sa=z° -5z + 3022 - 16z
3. (t,7) = PolyDivide(g — sa,b) = (z* — 6z + 10,0)

so we recover (1.4).

The extended Euclidean algorithm can also be used to solve the diophan-

tine equation
sa+th=c (1.5)

where a,b,c € D are given and s,t € D are the unknowns. For (1.5) to have
a solution, it is necessary and sufficient that ¢ be in the ideal generated by
a and b, i.e. that ¢ be a multiple of ged(a,b) in D. The extended Euclidean
algorithm first solves the equation sa + tb = gecd(a,b), and there remains
only to multiply the solutions by c/ gcd(a,b) to get a solution of (1.5). It
should be noted that when ¢ is in the ideal generated by a and b, then (1.5)
has as many solutions as the number of elements of D (when a and b are
nonzero), since sa + tb = (s + bd)a + (¢t — ad)b for any d € D. Since there
can be no confusion with the previous extended Euclidean algorithm, which
has only two parameters, we also call this algorithm the “extended Euclidean
algorithm”. As before, a half-extended version exists when only one of the
coefficients is needed. We remark that the versions of the algorithm that we
present here, and use extensively in the sequel, all return a solution s or (s, t)
such that either s = 0 or v(s) < v(b). An important consequence of this in
polynomial rings (where v(p) = deg(p)) is that if deg(c) < deg(a) + deg(b),
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then we also get either ¢ = 0 or deg(t) < deg(a). Indeed, if we had deg(s) <
deg(b) and deg(t) > deg(a), then we would have deg(c) = deg(sa + tb) =
deg(tb) = deg(t) + deg(b) > deg(a) + deg(b).

ExtendedEuclidean(a, b, ¢)
(* Extended Euclidean algorithm -~ diophantine version *)

(* Given a Euclidean domain D and a,b,c € D with ¢ € (a,b), return
s,t € D such that sa + tb = ¢ and either s = 0 or v(s) < v(b). *)

(s,t,9) + ExtendedEuclidean(a,b) (* g = sa+tb )

(g,7) « PolyDivide(c, g) (x*c=gg+r+*)

if r # 0 then error “c is not in the ideal generated by a and b”

g gqs,t gt

if s # 0 and v(s) > v(b) then
(g,7) + PolyDivide(s,b)
s¢—r,t+t+qa

return(s,t)

(»s=bg+r*)

Ezample 1.3.4. Suppose that we want to solve sa + tb = 2% — 1 in Q[z] with
the a and b of example 1.3.1. Applying ExtendedEuclidean we get:
1. (s,t,9) = ExtendedEuclidean(a,b) = (-z + 3,z% - 6z + 10,5z + 5)
2. (g,7) = PolyDivide(z? — 1,5z + 5) = ((z — 1)/5,0)
3. s qs=(—2%>+4z-3)/5
4. t + qt = (23 — 722 + 16z — 10)/5

So we get the following solution:

2 _ 3 _ 7.2 -
‘ ( z* + 4z 3)a+<w 7z + 16z 10)1):.12_1. (1.6)

5 )

HalfExtendedEuclidean(a, b, c)
(* Half extended Euclidean algorithm — diophantine version *)

(* Given a Euclidean domain D and a,b,c € D with ¢ € (a,b), return
s € D such that sa =c¢ (mod b) and either s =0 or v(s) < v(b). *)

(s,9) + HalfExtendedEuclidean(a,b) (*xsa=g (modb) *)

(g,7) « PolyDivide(c, g) (xc=gg+rx*)

if r # 0 then error “cis not in the ideal generated by a and b”

s+ gs

if s # 0 and v(s) > v(b) then
(g,7) « PolyDivide(s,b)
ST

return s

(xs=bg+r %)
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As earlier, the “half” variant yields a more efficient alternative to the
extended diophantine version, since the second coefficient can be obtained
via

_c—sa

b=

where the division is always exact.

ﬁixtendedEuclidean(a, b,¢c)
(* Extended Euclidean algorithm - “half/full” diophantine version *)

(* Given a Euclidean domain D and a,b,c € D with ¢ € (a,b), return
s,t € D such that sa + tb = c and either s = 0 or v(s) < v(b). *)

s + HalfExtendedEuclidean(a, b, ¢) (* sa=c (mod b) *)
(t,r) « PolyDivide(c ~ sa,b) (* r must be 0 *)
return(s, t)

Ezample 1.3.5. Solving sa + tb = 2% — 1 in Q[z] with the a and b of exam-
ple 1.3.1, we get

1. s = HalfExtendedEuclidean(a,b,z? — 1) = (—2? + 4z — 3)/5

2. c—sa=1z%—-1-sa= (2%~ 62° + 5z + 302% — 462% — 24z + 40)/5

3. (t,r) = PolyDivide(c — sa,b) = ((z® — 7z* + 16z — 10)/5,0)

so we recover (1.6).

Since the extended Euclidean algorithm can be used to solve diophantine
equations, it is also useful for computing partial fraction decompositions. Let
d € D\ {0} and let d = d; - - - d,, be any factorization of d (not necessarily
into irreducibles) where ged(d;, d;) = 1 for i # j. Then, for any a € D \ {0},
there are ag,a1,...,a, in D such that either a; = 0 or v(a;) < v(d;) for
1>1,and

B n

a a a;
d H?:ldi —ao+gdi.
Such a decomposition is called the partial fraction decomposition of a/d with
respect to the factorization d = [];__, di, and computing it reduces to solving
equations of the form (1.5), so to the extended Euclidean algorithm. Indeed,
write first @ = dag + r by the Euclidean division, where either r = 0 or
v(r) < v(d). If n = 1, then a/d = ap + r/d is already in the desired form.
Otherwise, since ged(d;, d;) = 1 for ¢ # j, we have ged(dy,dy -+ - dn) = 1, so
by the extended Euclidean algorithm, we can find a; and b in D such that

r=aj(dz---dp) + bdy (17)

and either a; = 0 or v(a;) < v(d;). We can recursively find bg,as,...,a, € D
such that either a; = 0 or v(a;) < v(d;), and
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b =\ a;
e = bg + z iy
-y
Dividing (1.7) by d and adding ag, we get

r a; b
S=a+5 =6+ 5+

n a;
v _ b 8.
d d 4 " dp---d, (“°+°)+§di

We note that in the case of polynomial rings, since deg(r) < deg(d) =
deg(d;) + deg(ds---dp) and deg(a;) < deg(di) in (1.7), then deg(b) <
deg(dg © -dn), so bp = 0.

PartialFraction(a, dy,...,dn) (* Partial fraction decomposition *)

(* Given a Euclidean domain D, a positive integer n and a,d1,...,dn €
D\ {0} with ged(di,d;) = 1 for i # j, return ag,ai,...,an € D such

that .
a a;
dy---dn ‘a0+;a.—'

and either a; = 0 or v(a;) < v(d;) fori > 1. *)

(ao,r) « PolyDivide(a,d; ---dn) (*a=(dy- -dn)ag +r *)
if n = 1 then return(ao,r)

(a1,t) « ExtendedEuclidean(d; - dn,d1,1) (* v(a1) < v(d1) %)
(bo,az,...,a,) « PartialFraction(t,dz,...,dn)

return(ao + bo,a1,az,...,an)

Ezample 1.3.6. We compute the partial fraction decomposition of
a z? + 3z
f=l= 2R equ)

—-z2-z+1

with respect to the factorization d = (z + 1)(z? — 2z + 1) = didz. Applying
PartialFraction to a, d; and ds, we get:

1. (ap,r) = PolyDivide(a,d) = (0,22 + 3z)
2.

(a1,t) = ExtendedEuclidean(z? — 2z + 1,z + 1,22 + 3z)

_ (_13z+1
B 2’ 2

3. (bo,az) = PartialFraction((3z + 1)/2,2% — 2z + 1) = (0, (3z + 1)/2)
so the partial fraction decomposition of f is

z? + 3z _=1/2  (3z+1)/2
B—z2—z+1 z+1 22-2zx41"
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We can combine this with the Euclidean division to get a refinement of
the partial fraction decomposition: let m > 1 and d € D \ {0}. Then, for
any a € D\ {0}, there are ag,a1,...,a, € D such that either a;j = 0 or
v(a;) < v(d) for j > 1, and

m

Such a decomposition is called the d-adic expansion of a/d™. Write a =
dq + a, by the Euclidean division, where either a,, = 0 or v(am) < v(d).

Then,
a dgtam _ ¢ am
an = Tgm T gni T gme
If m = 1, then the above is in the desired form with ag = ¢. Otherwise, we

recursively find ag,ay,...,am-1 € D such that either a; = 0 or v(a;) < v(d)
for j > 1, and
q m~—1 a
- J
dm-1 "~ ao + 4’
j=1
Thus,
a q i a;
am dT—T = Z 4

Let now d € D\ {0} and let d = d}' ---d» be any factorization of d, not
necessarily into irreducibles, where ged(d;,d;) = 1 for ¢ # j, and the e;’s are
positive integers. Then, for any a € D\ {0}, we can first compute the partial
fraction decomposition of a/d with respect to d = by - - - b, where b; = d;*:

n n
a a; a;
— =q —_= —_
a 0+i—§1 b ao+i=El df‘

and then compute the d;-adic expansion of each summand to get

g_ de-= ZZGU

i=1 j=1

where @ € D and either a;; = 0 or v(a;;) < v(d;) for each ¢ and j. This
decomposition is called the complete partial fraction decomposition of a/d
with respect to the factorization d = []i_, df*, or simply the complete partial
fraction decomposition of a/d when the factorization of d into irreducibles!
is used.

! We show in Sect. 2.7 how to compute that decomposition for linear factors with-
out factoring d.
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PartialFraction(a, ds,...,dn,e1,...,€n)
(* Complete partial fraction decomposition *)

(* Given a Euclidean domain D, positive integers n,ei,...,en and
a,di,...,dn € D\ {0} with ged(di,d;) = 1 for i # j, return
@0,81,1,---5Gl,e1y--+,8n,ly---)8n,e, € D such that

d aO‘*‘iZa,]

tlJl'

and either a;; = 0 or v(ai;) < v(d:). *)

(ao,a1,...,as) « PartialFraction(a,d;!,...,d3*)
for i < 1 to ndo
for j « e; to 1 step —1 do

(g,ai;) « PolyDivide(a:,d;) (* ai = dig + ai; *)
a; &« ¢q
ag — ap + a;
return(@o, @1,1,--,Gl,e1y- -y qnly---,8nyen)

Ezample 1.3.7. We compute the complete partial fraction fraction decompo-
sition of 23

a ¢ + 3z

=-=————¢€cQz

f d z3-22-z+1 Q=)

with respect to the factorization d = (z + 1)(z — 1)2 = d;d%. Applying
PartialFraction to a, d;, da, and the exponents 1 and 2, we get:

(ag,ai,...,an) = PartialFraction(z®+3z,z+1,(z—1)%) = (0, - 1 _?’IZLI)
and then:

i I J ' ai di q Qij l ag

11 -1/2 |z+1| 0 |-1/2} 0

2|2 @Bz+1)/2|z~13/2] 2 |0

2|1 3/2 z-1| 0|32 1|0

so the complete partial fraction decomposition of f is

?+3c _-1/2 . 2 3/2
B-z2-z4+1 z+1 (z-1)2 =z-1°

The algorithm for computing partial fraction decompositions that we pre-
sented here dates back to Hermite in the 19" century. There are alterna-
tive and faster approaches for rational functions that we do not detail here.
See [1, 36] for other approaches and their complexities.
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1.4 Resultants and Subresultants

We describe in this section the fundamental properties of the resultant of
two polynomials. Although they originate from 19t"-century work on solving
systems of nonlinear equations, resultants play a crucial role in integration.
Throughout this section, let R be a commutative ring and z be an indeter-
minate over R.

Definition 1.4.1. Let A, B € R[z]\ {0}. Write A=anz" +---+a1T +ao
and B = byz™ + -+ + b1z + by where an # 0, by, # 0 and at least one of n
or m is nonzero. The Sylvester matrix of A and B is then+m by n+m
matriz defined by

a" e e .. al ao \
m rows

an . oo .. al ao
bm o+ b bo
S(A,B) = .

n rows

by - b bo )
where the A-rows are repeated m times and the B-rows are repeated n times.
The resultant of A and B is the determinant of S(A, B).

Ezample 1.4.1. Let R = Z[t], A = 3tz —t*~4 € R(z],and B = 22 +32-9 €
R[z]. The Sylvester matrix of A and B is

3t 0 -t2-4 0

0 3t 0 —~t3 -4
S(4,B) = 1 ¢ -9 0
0 1 ¢ -9

and the resultant of A and B is
det(S(A, B)) = —3t'0 — 1247 + % — 54t* + 8t° + 729t — 216t + 16.
The first useful property of the resultant of two polynomials is that it can
be expressed in terms of their roots.

Theorem 1.4.1 ([40] Chap. V §10, [77] §5.9). Letay,...,an, b1,...,0m, a
and b be in R witha # 0, b # 0, A = a(z — 1) - (z —an) and B =
b(x — B1) - (z = Bm). Then,

resultant(A,B) = a™bd" H H(a,- -B;)=a™ H B(a;)
i=1

i=1j=1

(=1)"mp” ﬁ A(B;) = (—1)™"resultant(B, A).

=1
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As a consequence, the resultant of two polynomials over an integral domain
R is 0 if and only if they have a common zero in the algebraic closure of the
quotient field of R.

Corollary 1.4.1 ([40] Chap. V §10, [77] §5.8). Suppose that R is an integral
domain. Let K be the quotient field of R and K the algebraic closure of K
Then, for any A, B € R[z] \ {0},

resultant(4, B) =0 <= 3y € K such that A(y) = B(y) =0.
Proof. Let A, B € R[z]\ {0}, and let

3

A= aH(m —a;)% and B=b[[(z-8,)"

i=1 7

I

be the prime factorizations of A and B in K[z]. We have a # 0 # b since
A #0 # B, so by Theorem 1.4.1 we get

C= resultant(A, B) = aMbN H H(ai _ ﬂj)&'fj

i=1j=1

where M = 70, fj and N = 3771, e;. Since K is a field, if C = 0 then
@i, — Bj, = 0 for some o and jo. But then A(y) = B(7) =0 where v = a;, =
Bj, € K. Conversely, if A(y) = B(y) = 0 for some 7y € K, then, since K is a
field, v = a;, = Bj, for some ig and jo, s0 i, — B, = 0,50 C = 0. (n]

Another property is that the resultant of two polynomials is in the ideal
that they generate.

Theorem 1.4.2 ([40] Chap. V §10, (77] §5.8). For any A, B € R[z] \ {0},
there are S,T € R[z] such that resultant(A4,B) = SA+TB.

As a consequence, the resultant of two polynomials over a unique factorization
domain is 0 if and only if they have a non-trivial common factor.

Corollary 1.4.2 ([77] §5.8). Suppose that R is a unique factorization do-
main. Then, for any A, B € R[z]\ {0},

resultant(A4, B) = 0 <= deg(gcd(4, B)) > 0.
Subresultants are polynomials obtained from submatrices of the Sylvester

matrix.

Definition 1.4.2. Let A, B € R[z]\ {0}, n = deg(A),m = deg(B), S be the
Sylvester matriz of A and B, and j be an integer such that0 < j < min(n,m).
Let ;S be the n + m — 2j by n + m matriz obtained by deleting from S:

(i) rowsm —j+ 1 tom (i.e. the last j rows corresponding to A),
(ii) rowsm+n—j+1tom+n (ie. the last j rows corresponding to B).



20 1. Algebraic Preliminaries

Furthermore, for 0 <1 < j, let ;S; be the square matriz obtained by deleting
columns m +n — 2j tom +n (i.e. the last 2j + 1 columns) of ;S except for
column m +n —i — j. The j** subresultant of A and B is then

S]'(A, B) = idet(,-S,-)z:i € R[m] .
=0

It is clear from the definition that deg(S;(A, B)) < j for each j. Following the
standard terminology [46], we call S;(A, B) defective if deg(S;(4, B)) < j,
reqular otherwise. In addition, ¢So = S, so So(4, B) = resultant(4, B).

Ezample 1.4.2. Let A = z?+1and B = 2% — 1 in Z[z]. The Sylvester matrix
of Aand B is

10 1 0
01 0 1
S4B =17 o 1 o
01 0 -1

and the submatrices of Definition 1.4.2 are ¢S = ¢So = S(4, B),

/10 1 0 (11 (10

15 = (1 0 -1 o)’ 150 = (1 —1) and 151 = (1 0)

so the subresultants of 4 and B are Sg = det(pSo) = 4 = resultant(A, B)
and S; = det(3S0) + det(;S1)z = —2, which is defective.

Another useful property of subresultants is that they commute with ring
homomorphisms when the degrees do not decrease, and that they specialize
in a predictable way when only one degree decreases: any ring homomorphism
o : R = S induces the homomorphism of polynomial rings 7 : R[z] — S[z]

given by
T (Z aja:j) = Z o(aj)a’ . (1.8)

The following theorem describes how S;(3(A),(B)) can be computed from
S;(A, B), when at least one of the leading coefficients of A or B is not taken

to 0 by o.

Theorem 1.4.3 ([50] §7.8). Let o : R —+ S be a ring homomorphism, 7 :
R[z] - S[z] be given by (1.8), and A, B € R[z]\ {0}. If deg(7(A)) = deg(A)
then

7(S;(A, B)) = o(lc(A4))e8(B)~4s(B)) 5,(5(A4), 57(B))

for 0 < j < min(deg(A), deg(a(B))).

Note in particular that 3(S;(A4, B)) = Sj(7(A),7(B)) when either A or B is
monic, or when deg(5(A)) = deg(A) and deg(z(B)) = deg(B).

Theorem 1.4.3 will be used for specialization homomorphisms, when R is
of the form R = DI[ty,...,1n] where the t;’s are independent indeterminates,
S is a ring containing D, a,...,an are given elements of S, and 0 : R—> S
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is the ring homomorphism that is the identity on D and that takes each ¢;
to a;. In this case, Theorem 1.4.3 states that under certain circumstances,
evaluating a subresultant for given values of the parameters t; yields the
corresponding subresultant of the two initial polynomials evaluated with the
same values.

Ezample 1.4.3. Let A = 3tz®> — t* —4 and B = 2% + t3z — 9 in Z[t][z]. The
Sylvester matrix of A and B is
3 0 —t2-4 0

0 3t 0 —t3 -4
SA4B=11 5 g 0
0 1 t3 -9

and the submatrices of Definition 1.4.2 are oS = ¢Sp = S(A4, B),

(3 0 -t3-4 0 _ (3t -t3-4 _ (3 0
15—(1 £ _9 0),150——(1 ~9 )and151_<1 £

so the subresultants of A and B are

So(A, B) resultant, (A, B) = det(oS0) =
—3t10 — 12¢7 + 5 — 54t* + 8° + 729¢* — 216t + 16,
Si1(A4,B) = det(;S1)z + det(;Sp) = 3t'z +° — 27t + 4.

Consider now the evaluation map ¢ — 1, i.e. the homomorphism ¢ : Z[t] - Z
given by o(t) = 1 and o(n) = n for n € Z. We have 5(A) = 3z% — 5, and
(B) = 22 + = — 9, so Theorem 1.4.3 implies that

So(a(A),7(B)) resultant; (3z2 — 5,2% + z — 9) = 5(So(A, B)) = 469,
S1(a(A),7(B)) F(3tic +° - 27t +4) = 3z — 22.

1.5 Polynomial Remainder Sequences

We now introduce polynomial remainder sequences, which are generalizations
of the Euclidean algorithm for computing ged’s and resultants. Let D be an
integral domain and z be an indeterminate over D throughout this section.

Definition 1.5.1. Let A, B € D{z] with B # 0 and deg(A4) > deg(B). A
Polynomial Remainder Sequence (PRS) for A and B is a sequence (R;)i>o
in D[z] satisfying
(i) Ro=A, R =B,
(ii) Fori>1,

B.R; _{0 ifRi =0
LT prem(Ri-1,Ri) ifRi#0

where (8;)i>1 is a sequence of nonzero elements of D.
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It is clear from the definition that either Riy; = 0 or deg(Riy1) < deg(R:)
for 1 > 1, hence,

(i) A PRS has finitely many non-zero elements.
(i) If R; #0, R; # 0, deg(R;) = deg(R;) and i,j > 1, then i =j (i.e. only
Ro and R; may have the same degree).

Definition 1.5.2. Let A,B € D[z]. A is similar to B if there are a,b €
D\ {0} such that aA = bB.

From the definition of a PRS, we see that various choices for the 8;’s yield
different types of PRS. For example, the PRS obtained with §; = 1 is just
the sequence of the successive pseudo-remainders of A and B, and is called
the Euclidean PRS of A and B. The PRS obtained with f; set to the gcd in
D of the coefficients of prem(R;_1, R;) is called the primitive PRS of A and
B. An important fact is that if D is a unique factorization domain, then the
last nonzero element of a PRS is similar to a gcd of A and B.

Theorem 1.5.1. Suppose that D is a unique factorization domain, and let
A, B € Dlz] with B # 0 and deg(A) > deg(B). Let (Ro, R1,...,R:,0,...)
be any PRS of A and B with R, # 0. Then gcd(Ri, Riy1) 15 similar to
gcd(Rj, Rj+1) for 0 < i,j < k. In particular (i =0,j = k), Ry is similar to
ged(A, B).

Proof. Let i be such that 0 < i < k, G = gcd(Ri, Riy1) and H =
gcd(Riy1, Rita)- Since i < k, Riy1 # 0, so, from the definitions of a PRS and
of a pseudo-remainder, there are a, 8 € D\ {0} and Q € D[z] such that

aR; = Ri;1Q + BRit2 .

Hence H | aR;, but H | aRi4, so H | oG since oG is a ged of aR; and
aR;1. From the above equation we also get G | SRiy2. But G | BRi4+1 so
G | BH. So there are Q1,Q2 € D[z] such that G = HQ, and BH = GQs.
This implies that a8G = GQ1Q2, hence that Q1,Q2 € D, so G is similar to
H. Thus, the theorem holds for j = i+1. Since similarity is transitive, it holds
for 0 < i < j < k. Since similarity is symmetric, it holds for 0 <1 # j < k.
It is trivial for ¢ = 7, so it holds for 0 < 4,5 < k. 8]

Thus, any PRS of A and B contains ged(4, B). In addition, all the nonzero
subresultants of A and B are similar to some element in the PRS. The fol-
lowing fundamental theorem of PRS gives explicit formulas for the similarity
coefficients.

Theorem 1.5.2 (Fundamental PRS Theorem,[31] Chap. 7,[46]). Let A
and B # 0 be in D[z] with deg(A) > deg(B), and let (Ro, Ry, ..., Ri,0,.. J)
be any PRS of A and B with Ry #0. Fori=1,...,k, letn; = deg(R;) and
r; be the leading coefficient of R;. Then, for any j in {0, ... ,deg(B) — 1},
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Ry fj=ni1 -1
S;(4,B)={ wRi ifj=n;

0 otherwise
where
i—1 3 14+n;~ni
ni = (_1)¢sri1_—1"s—x+n.- H (._117,——]_1———"7) T;j—l—nj'f'l
g=1 [ \Tj
i-1 nj—ni
mi= (-prre [(—-—Hﬂ’) r} 19
j=1 [ \Tj
and

i—1 i-1
¢ = Z(";‘ —ni1 +)(nj—ni +1), o= Z(nj—l ~ni)(n; —ni).
j=1 j=1
(1.10)

The Subresultant PRS of A and B is a particular PRS, introduced by
Collins [22] and Brown [16], for which 7; = 1 in Theorem 1.5.2. It is ob-
tained with the following recursion for f;:

RO = Ay Rl = By "= '—la ﬂl = (_1)61+1

and

Bir1 = —lc(f‘fi)’ﬁsl}’;l

for 1 > 1 where §; = deg(R;-,) — deg(R;). Its key property is given by the -
following theorem.

Theorem 1.5.3 ([16] §7, [22, 46]). Let A and B be in D(z] with deg(A) >
deg(B), (Ro,R1,Ra,...,R,0,...) be the subresultant PRS of A and B
with Ry # 0, and n; = deg(R;) for i = 1,...,k. Then, for any j in
{Oa' . 1deg(B) - 1}:

{’Yi+1 = (—lc(Ri))6e7i1—6.-

R, ifj=n;i -1
Si(A,B)=<¢ R, ifj=mny
0 otherwise

where 1; is given by formula (1.9).

This theorem yields the so-called subresultant algorithm for computing the
resultant of A and B: if deg(A4) > deg(B), then resultant(A4, B) = So(A, B) by
definition, so we compute the subresultant PRS of A and B. If deg(Ry) > 0,
then A and B have a common factor, so resultant(4, B) = 0. Otherwise
Theorem 1.5.3 implies that Sp(A, B) is equal to either Ry if deg(Rx—1) = 1,
or 11 Ry if deg(Rk—1) > 1. In that last case, the computation of 7, can be
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simplified since nx = 0: (1.10) becomes ox = Zf;ll nj_1nj, so (—=1)7 =
;?;11(—-1)":‘-1"1‘ . A factor of —1 appears in this product whenever both n;_;
and n; are odd. Furthermore, since deg(Ri) =0, 7 = Ry and (1.9) becomes

k-1 ﬂ nj
L (_1\ok pTk-1—1 H 3 Tj—1—Nj+1
= (-1) Rk [<T;+nj_1—nj) Tj '

i=1 J
If deg(A) < deg(B), we compute the subresultant PRS of B and A, and
resultant(A, B) = (—1)d¢8(4) de&(B)resultant(B, A) by Theorem 1.4.1.

SubResultant(A, B) (* Subresultant algorithm *)

(* Given an integral domain D and A,B € Dlz] with B # 0 and
deg(A) > deg(B), return resultant(A, B) and the subresultant PRS
(Ro,Ri,...,Ri,0) of A and B. *)

Ro+ A R+ B
i1,y « —1
81 + deg(A) — deg(B)

B+ (~1)71*!
while R; # 0 do
T ¢ lC(R.‘)
(Q,R) «+ PolyPseudoDivide(R;_1, R;)
Riy1 + R/B: (* this division is always exact *)

tei1+1
i b (=rima)Bimty T
6 « deg(Ri_1) - deg(R.-)
Bi — -1y
ke—i-1
if deg(Rx) > 0 then return(0, (Ro, R1, ..., Rx,0))
if deg(Rk-1) = 1 then return(R«,(Ro, Ri, ..., Rk,0))
s¢1,ce1 (* s will be (—=1)7%, s {17 ¢ will be 7, *)
for j«1tok—1do (* compute TR *)
if deg(R;-1) is odd and deg(R;) is odd then s « —s

cec (ﬂj/T;Mj ydes(R;) T;“S(R"_”_deg(}ij“) (* exact division *)

return(schGS(R"“), (Ro, R1,...,Re,0))

Ezample 1.5.1. Here is the subresultant algorithm for A = z2+4+1and B =
z? - 1in Z[z]:
i| R |y |6 Bi|m[r™™
0|z?+1 1
1|z2-1{-1|0|-1]1 1
2 -2 -1(2]-1{-2| -8
3 0
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We get k = 2, deg(Rz) = 0 and deg(R;) = 2, so we compute s and c:

j | deg(R;—1) | deg(R;) [ s]c
1 2 2 171
2 2 0 111

so R = sc R} = 4 = resultant(z? + 1,22 — 1).

Ezample 1.5.2. Here is the subresultant algorithm for A = 3tz? —¢3 —4 and
B =z?+t3z - 9 in D[z] where D = Z[t]:

i R; vi |8 Bi | ri [rith
0 A 3t

1 B -1 70 (|-1}1 1
213tz +3-27t+4| -1 | 1| 1 [3t1] 9¢8
3 R 3t 1|9 R R?
4 0

where
R = —3t19 — 12¢7 + ¢ — 54¢* + 8t% + 729¢% — 216t + 16 € D.

We get k = 3, deg(R3) = 0 and deg(R2) = 1, so R = resultant, (A, B), as in
example 1.4.3.

1.6 Primitive Polynomials

Let D be a unique factorization domain, and z be an indeterminate over D.
Then, ged’s always exist in D by Theorem 1.1.3, and we study in this section
the properties of the gcd of the coefficients of an element of D[z].

Definition 1.6.1. Let A= Y7 ;a;z' € D[z] \ {0}. The content of A is
content(A) = gcd(ao,...,an) € D.

We also say that A is primitive if content(A) € D*. Finally, the primitive
part of A is given by
A

~ content(A) € Diz].

pp(4)

By convention, content(0) = pp(0) = 0 and 0 is not primitive.
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Note that the content and primitive part are defined, like the gcd,
up to multiplication by a unit. We make the convention throughout this
book however that the choice of unit is made consistently in order that
A = content(A)pp(A) for any A € D[z]. In addition, primitivity depends
on the ring D, and nonprimitive polynomials can become primitive when D
is embedded into a larger UFD: 4z + 6 is not primitive as an element of Z[z],
but becomes primitive as an element of Q[z]. In fact, if D is a field, then
every nonzero polynomial is primitive. Let P € D[z]\ D be irreducible. Since
P = content(P)pp(P) and pp(P) is not a unit, it follows that content(P)
must be a unit, hence that P is primitive.

The main property of contents is that they are multiplicative. This clas-
sical result is due to Gauss and is known as Gauss’ Lemma:

Lemma 1.6.1 ([40], Chap. V, §6, [77], §5.4).
content(AB) = content(A) content(B)  for any A, B € D]z].

As a result, a product of primitive polynomials is itself primitive. This has an
effect on the leading coefficients of prime factorizations in D{z]: let A € D(z]
be nonzero, and A = u[[}, p;l’ [T, P’ be its prime factorization where
u € D*, each p; is an irreducible of D, and each P; is an irreducible of
D[X]\D. Each P, is primitive as noted above, hence [, P{* is primitive, so
content(A4) = uv H;’;l pj" for some v € D* by Lemma 1.6.1. If A is primitive,
the unicity of the prime factorization over D implies that m = 0, so we can
choose an appropriate unit for the content so that the prime factorization
of pp(A) is of the form pp(A) = [, Pf* where the P; are coprime and
deg(P;) > 0. We use this fact in the following definition, as well as whenever
we use primitive parts in the integration algorithm.

Definition 1.6.2. Let A € D[z] and pp(A) = [, P{* be the prime factor-
ization of its primitive part where e; > 1 for each i. We define the squarefree

part of A to be
n
A =]~
i=1
and for k € Z, k > 0, the k-deflation of A to be

A~k = ﬁPimax(O,e.-—k) - H Pie_v.* )

i=1 ile; >k

Note that A=° = pp(A). For convenience we call A~ simply the deflation of
A, and denote if by A7, i.e.

A" =4 = ﬁPf"“ .
i=1

As consequences of the definition we have the following useful relations:
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A*A~ = pp(4), (1.11)
A" = A=/ wherei,j >0andi+j=k.
A special case of the above relation is
AT+l = A7 (1.12)
which together with (1.11) implies that

e A
AT = s fork20. (1.13)

Although the squarefree part and deflations are defined in terms of the
prime factorization, it turns out that they can be computed by gcd computa-
tions in D[z]. The basic idea is that a prime factor of A divides dA/dz once
less than A.

Theorem 1.6.1. Let A,P € D[z]\ D and n > 0 be an integer. Then,

(i) P"*!'| A= P"|gcd(A,dA/dz),
(ii) if P is prime and char(D) = 0, then P™ | gcd(A,dA/dz) = P™*! | A.
Proof. (i) Suppose that P"*! | A, then there exists B € Df[z] such that
A = P"*1B. Hence,

dA ny1dB dP

ke = ngZl
o P — +(n+1)P o
so P" | dA/dz, which implies that P™ | gcd(A4,dA/dx).
(ii) Suppose that D has characteristic 0, P is prime, and P™ | gcd(A4,dA/dz).
Let m > 0 be the unique integer such that P™ | A and P™*! / A. Then,
there exists B € D[z] such that A = P™B and P JB. As in part (i), we have

dA dB ~1,dP
— =P"— pPm™"*B—.
dx P dz +m dz
We have m > n since P™ | A. Suppose that m = n. Then,
dA ndB _ a1 pdP
E P dz =nP B dz .

We have P" | dA/dz, so P™ | nP""!B(dP/dz), hence P | nB(dP/dz). But
P is prime and P f B, so P | n(dP/dz). In characteristic 0, n(dP/dxr) is
nonzero and has a smaller degree than P, so P yn(dP/dz). Hence m # n, so
m > n, which implies that P"t! | A. a

An immediate consequence of Theorem 1.6.1 is that when D has characteristic
0, then A
A =ged <A, E) (1.14)
for any primitive A, and A* can then be computed by (1.11). The further
deflations of A can be computed recursively with (1.12). Squarefree parts
and deflations are thus easier to compute than prime factorizations. We use
this fact in the next section where we introduce the notion of squarefree

factorization.
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1.7 Squarefree Factorization

Let D be a unique factorization domain, and z be an indeterminate over D.
D|z] is then a unique factorization domain, so every A € D|z] has a factor-
ization into irreducibles. Such a factorization is usually difficult to compute
in general, but there are other factorizations that are easier to compute and
that can be used instead for many purposes. We introduce in this section
the squarefree factorization, which is the one primarily used by integration
algorithms.

Definition 1.7.1. A € D[z] is squarefree if there ezists no B € D[z} \ D
such that B* | A in D[z].

Equivalently, A is squarefree if e; = 1 fori =1,...,n in any prime factoriza-
tion of A over D.

Definition 1.7.2. Let A € Dlz]. A squarefree factorization of A is a
factorization of the form A = [T, A} where each A; is squarefree and
ged(Ai, Aj) € D fori # 5.

Note that there is no need to require a separate leading coefficient in D* and
prime factors in D as in the prime factorization, since the elements of D are
automatically squarefree by our definition. In addition, if we have a squarefree
factorization of the primitive part of A of the form pp(A4) = [T, A%, then

A = (content(A4) 4)) H Al

i=2

is a squarefree factorization of A, so it is sufficient to compute squarefree fac-
torizations of primitive parts. In addition, we assume that D has characteris-
tic 0 (see [31, 32, 82] for squarefree factorizations in positive characteristic).
In characteristic 0, a squarefree factorization of A separates the zeroes of A
by equal multiplicities, since a zero of A must be a zero of exactly one A;,
and its multiplicity in A is then i. We use this fact in order to express the
A;’s in terms of the deflations of A and vice-versa.

Lemma 1.7.1. Let A € D[z]\D, pp(A4) = [Ii=, P{* be a prime factorization
of pp(A), m = max(ey,...,en) and A; = Hj|ej=i131' for 1 <i < m. Then,

?z)) A7k = H:’;Hl A:‘k = Akp1A% 0 .-+ Am=k for any integer k > 0.
i
A-i—”

(iii) pp(A) = [Tie, Al is a squarefree factorization of pp(A4).
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Proof. (i) We have

m

oae= T I pt= I =i

t=k+1 i=k+1 jle; =i le;j >k

(i) From (i) we have

A,’Ai+1"'Am _ A1t
Aig1--Am oA

(iii) Each A; is squarefree, since it is a product of coprime irreducibles. In
addition, ged(A;, 4;) € D for i # j since each prime factor of pp(A) appears
in its factorization with a unique exponent. Finally, using k = 0 in (i), we get
pp(A) = A~ =[], Af, which is a squarefree factorization of pp(A). a

Ai=

Since deflations and squarefree parts can be computed by ged’s as ex-
plained in the previous section, we get the following squarefree factorization
algorithm for a primitive A: by (1.14), we have A™' = A~ = ged(A, dA/dz),
which gives us A™°" = A* = pp(4)/A~. Once we have A~*" and A™*+ for
k > 0, the sequence can be continued by

ged (A—”’ A_k“) = ged (Ak+l oo Am, Ak+2Ai+3 o Am_k_l) = A" s

and Agsp and A~*+2 are obtained by (1.15) and (1.13) respectively. We
continue this sequence until A7+ € D, which implies that A~* is squarefree,
in which case k = m — 1, and A, = A™*. This squarefree factorization
algorithm uses only rational operations plus ged computations in Dlz].

( Squarefree(A) (* Musser's squarefree factorization *)

(* Given a unique factorization domain D of characteristic 0 and A €
D[z], return Ay,...,Am € D[z] such that A = [Thes A} is a squarefree
factorization of A. *)

¢ + content(A), S « A/c (* S = pp(A) *)

S™ ¢ ged(S,dS/dz)

S* « S/S™

ke1

while deg(S™) > 0 do (*S =ATkS =AU H)
Y ged (S7,57) (x*Y =A% %)
Av « S']Y (# A= A1 [ATF %)
S Y (x 5" =A% %)
S™«S7)Y (# 8™ = A7+ x)
k+—k+1

A+ S

return((cS”) Ar, ..oy Ak)
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Ezample 1.7.1. Applying Squarefree to A = z8 + 62° + 12z* + 822 € Q[z],
wegetc=1,8=4,dS/dz= 8z7 + 36z° + 48z + 16z,

S~ =ged (S’E) =1° 4+ 45 + 4z

and S* = S/S— = .'133 + 2z. Then,

k| S | S [ Y | 4
1|23 +2z |25 +423 + 4z | 2% + 22 1
2| z8+2z z? +2 z2 +2 T
3| 2242 1 z°+2

Hence,
A =28+ 625 + 127 + 822 = 2%(z® + 2)°.

Yun [80] showed that it is possible to be more efficient than the above algo-
rithm by reducing the degree of the polynomials appearing in the ged inside
the loop. His idea is to consider the following sequence of polynomials:

dA Ar1*
Z(z -k+1) A
dA;

Z(i — kD) Ag Ay A A fork 21 (1.16)
i=k

Yy

whose properties are summarized in the following lemma.

Lemma 1.7.2. With the above notation,

ged(4™1",Y;) € D,

dA~i-1

= ATY;, 1.1

and with A; as defined in Lemma 1.7.1,
—i-1*
vi- 7 Ay (1.18)

for1<i<m.
Proof. Let 1 < < j <m. Then,

dA;

ng(A]‘,A,' AJ 1— - AJ+1 m) €D

dz

since A; is squarefree and the A; are pairwise relatively prime. Since

dA .
Alei"'Ak—l—’iAk-;-y"Am for j # k,

dz
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this implies that gcd(A;,Y;) € D, hence that ged(A™-1",Y;) € D.
Let 1 <4 < m. Using Lemma 1.7.1 and (1.11) we get

dA=i-+  d T it _m _ dA; A=
& ?E(HAJ' Ui DGt

j=i i=t

= Z(]—z+1)

dA; A7 A“" 1t

= dA; A="
. i—-1 — 2 _] pa— i-1
= A ;(J )G =AY
From
dA~+"  d [ Z dA; AT
= — A1 =3 =
dz z(g J) oodr A
we get
dA=i- = L dA; AT N dA; AT
Yi-—f— = ;("HI)T y) _;E 4,
“ dA; A"
= Y -0t
= dz A
= dA; A="
= _)=L =A
Az]§1(1 Z) dz A] 1Yz+l

0

Since A=i-1* = A;A~*" and gcd(A™",Yi41) € D, we conclude from (1.18)
that

—i-1*
god (A_i"*,lff ~ dAdx ) = 4 (1.19)

which yields Yun’s squarefree factorization algorithm: assuming as before
that A is primitive, we have A~ = gcd(A,dA/dx), which gives us

dA/dz
A-

A™°" = A* =pp(A)/A~ and Y= by (1.17).

Once we have A=*-1" and Y}, Ay is computed by (1.19), and Yj4; and A"
are obtained by (1.18) and (1.15) respectively. We continue this sequence
until Y, = dA™*-! / dz, which 1mp11es that A—*-1 is squarefree, in which case
k=m, and Ay = A7t = A7k~ 1* The difference between thlS squarefree
factorization algorithm and the previous one, is that Y —dA™*-! * /dz appears
in the main ged computation instead of A7%.
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Squarefree(A) (* Yun's squarefree factorization *)

(* Given a unique factorization domain D of characteristic 0 and A €
D(z], return A, ..., Am € D[z] such that A = [, A% is a squarefree
factorization of A. *)

¢ + content{A), S « A/c (* S = pp(A4) *)

S’ + dS/dz

S™ « gecd(S,S)

S* « §/S”

Y «8§'/S”

ke1

while (Z « Y —dS5*/dz) # 0 do (58" =A" 1" Y Y %)
Ai + ged(S*, 2) (* (1.19) *)
S« S'/A;c (* S* = A"%" *)
Y « Z/Ak (* Y = Yk+1 *)
k—k+1

Ap & S*

return(c Ay, ..., Ax)

Ezample 1.7.2. Here is a step-by-step execution of Yun’s algorithm on the A
of example 1.7.1. We get c = 1, S = A, S' = dS/dz = 82" + 3625 +48z% + 16z,
and S~ = gcd(S, S') = z° + 473 + 4z. Then,

k| S | Y | Z | 4
1|23 +2z |82 +4|522+2 1
2|3 +2z 522 +2| 2z? T
3| z2+2 2z 0 2 +2

Hence,
A =28 +62°% + 122* + 82% = £%(2? + 2)°.

The second arguments to the repeated gcd computations inside the loop are
in the Z-column, and their degrees are smaller than in the corresponding
S~ -column of example 1.7.1.

Exercises

Exercise 1.1. Use the Euclidean Algorithm to compute the gcd of 217 and
413 in Z.

Exercise 1.2. Find integers z,y such, that
(a) 12z4+19y=1.
(b) 3z+2y=>5.

Exercise 1.3. Find the inverse of 14 in Z3;.
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Exercise 1.4. Compute the ged of 22° — 22?2 —z + § and 2% + jz - % in

Qfz]-
Exercise 1.5. Compute the pseudo-quotient and pseudo-remainder of z* —
7z + 7 by 322 — 7 in Z[z].

Exercise 1.6. Compute the quotient and remainder (or pseudo-quotient and
pseudo-remainder) of 7z° + 4z + 2z + 1 by 223 + 3 in Zs[z], Z:[z], Z[z] and
Qz]. In each case determine over which kind of algebraic structure you are

computing.

Exercise 1.7. Compute the primitive PRS and the subresultant PRS of
2t + 2% — t and 7% + 22% + 3tz — t + 1 in Z[¢][z].

Exercise 1.8. Compute the ged of 4z + 1323 + 1522 + 7z + 1 and 22° +
z? — 4z — 3 in a) Qz] and b) Z{z].

Exercise 1.9. Compute a squarefree factorization of z® — 52° +6z* +4z% - 8.
Exercise 1.10. Prove that 2 is irreducible but not prime in Z [\/—5 .

Exercise 1.11. Prove that similarity as defined in Definition 1.5.2 is an
equivalence relation.

Exercise 1.12. Provethat if a, b are in a Euclidean domain D, and a = gb+r
for some q,r € D, then ged(a,b) = ged(b, 7).

Exercise 1.13. Use the Extended Euclidean algorithm and Theorem 1.4.1
to prove Theorem 1.4.2.

Exercise 1.14. Use a loop invariant to prove that the Extended Euclidean
algorithm is correct.



2. Integration of Rational Functions

We describe in this chapter algorithms for the integration of rational func-
tions. This case, which is the simplest since rational functions always have el-
ementary integrals, is important because the algorithms for integrating more
complicated functions are essentially generalizations of the techniques used
for rational functions. Since the algorithms and theorems of this chapter are
special cases of the Risch algorithm, we postpone the proof of their correctness
until the later chapters on integrating transcendental functions. Throughout
this chapter, let K be a field! of characteristic 0, = an indeterminate over K,
and ' denote the derivation d/dz on K(z), so z is the integration variable.
By a rational function w.r.t. x, we mean a quotient of two polynomials in
z, allowing other expressions provided they do not involve z. For example,
log(y)/(z — e — 7) is a rational function w.r.t. z, where K = Qlog(y),e, ).
We see from this example that computing in the algebraic closure K of K,
while possible in theory, is in general ineffective or impractical. Thus, modern
algorithms try to avoid computing in extensions of K as long as possible.

Introduction

The problem of integrating rational functions seems to be as old as differenti-
ation. According to Ostrogradsky [53], both Newton and Leibniz attempted
to compute antiderivatives of rational functions, neither of them obtaining a
complete algorithm. Leibniz’ approach was to compute an irreducible factor-
ization of the denominator over the reals, then a partial fraction decomposi-
tion where the denominators have degree 1 or 2 in z, and then to integrate
each summand separately. However, he could not completely handle the case
of a quadratic denominator. In the early 18" century, Johan Bernoulli per-
fected the partial fraction decomposition method and completed Leibniz’
method (Acta Eruditorum, 1703), giving what seems to be the oldest inte-
gration algorithm on record ([47] Chap. IX p. 353). Amazingly, it remains the
method found in today’s calculus textbooks and taught to high-school and
university students in introductory analysis courses. The major computation-
al problem with this method is of course computing the complete factorization

! The reader unfamiliar with algebra can think of K throughout this chapter as
either the set of rational, real or complex numbers.
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of a polynomial over the reals. This problem was already an active research
area in the 19t" century, and as early as 1845, the Russian mathematician
M. W. Ostrogradsky [53] presented a new algorithm that computes the ratio-
nal part of the integral without factoring whatsoever. Although his method
was taught to Russian students, and appears in older Russian analysis text-
books ([30] Chap. VIII §2), it was not widely taught in the rest of the world,
where competing or similar methods were independently discovered?. Thus,
Hermite [34] published in 1872 a different algorithm that achieved the same
goal, namely computing the rational part of the integral without factoring.
And more recently, E. Horowitz independently discovered essentially Ostro-
gradsky’s method and presented it with a detailed complexity analysis (36].
The problem of computing the transcendental part of the integral without
factoring remained open for over a century, and was finally solved in recent
papers (42, 68, 74].

2.1 The Bernoulli Algorithm

This approach, both the oldest and simplest, is not often used in practice
because of the cost of factoring in Rz}, but it is important since it provides
the theoretical foundations for all the subsequent algorithms. Let f € R(z) be
our integrand, and write f = P+ A/D where P, A, D € Rlz], gcd(4, D) = 1,
and deg(4) < deg(D). Let

n m
D =c[J(z - a)* [[(@® + bz +¢;)"
i=1 j=1

be the irreducible factorization of D over R, where ¢, the a;’s, b;’s and ¢;’s
are in R and the e;’s and f;’s are positive integers. Computing the partial
fraction decomposition of f, we get

n e A m
f=P+ZZ'(-;:—25F+Z

i=1 k=1 j=1k=1

/i Bjk:lf'f-Cjk

(22 + bj.’E + Cj)k’
where the A;’s, Bji’s and Cjy’s are in R Hence,

L m i
—_ - Aik B'kI-f—C'k
/f—/P+ZZ (z“ai)k+;Z/($2:—bjz+]c,-)k‘

i=1 k=1 =1 k=1
Computing [ P poses no problem (it will for any other class of functions),

and for the other terms we have

2 [ would like to thank Prof. S. A. Abramov, Moscow State University, for bringing
this point to my attention.
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A _ { Ai(z —a)"*F/(1-k) ifk>1 1)

(:L‘ - ai)k - A,‘l 10g(.'17 - a,-) ifk=1
and, noting that b? — 4¢; < 0 since z? + b,z + ¢; is irreducible in R[z],

Bz +C;; B;
/ (z? ]+ bjx +]Cj) _Ej—l log(z” + bjz + ;)

2C;1 - b;B; -
+ 2L 59 arctan 2z +b;

\/4ci — b2 m

(2Cjk -~ bijk)x + bjCjk — 2¢jBji
(k- 1)(4Cj - b?)(.’ltz +bjz + Cj)k_l

+/ (2k - 3)(2Cjx — bijk)
(k —1)(4¢j — bf)(a:"’ +bjz + i)kl

and for k > 1,

Bjiz + Cjy,
(22 + bjz + Cj)k

This last formula can be used recursively until & = 1, thus producing the
complete integral.

Ezample 2.1.1. Consider f = 1/(z® + z) € Qz). The denominator of f
factors over R as 3 4+ = = z(z? + 1), and the partial fraction decomposition

of fis
1 1 T

+z z 2+1°

So from the above formulas we get

dx 1 2 .
/ 2 = log(s) - 3 log(a* +1). (2.2)
Ezample 2.1.2. Consider f = 1/(z% + 1)? € Q(z). The denominator of f
factors over R as (z? + 1)?, and the partial fraction decomposition of f is
1/(z® +1)2, so from the above formulas with j = 1, k =2, b; = By2 = 0 and
¢y =Ci2 =1, we get

/ dz _ 2z +/ 2dr z +1 ¢
@ i@ s D) T D @y e

A variant of Bernoulli’s algorithm that works over an arbitrary field K
of characteristic 0, is to factor D linearly over the algebraic closure of K,
D =[]1_,(z — a;)%, and then use (2.1) on each term of the following partial
fraction decomposition of f:

q e Aij
f=P+ZZ————(z_ai)j. (2.3)
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We note that this approach is then equivalent to expanding f into its Laurent
series at all its finite poles, since at = a;, the Laurent series is
Aje; A Aq

(—ai)s (T — ;)2 (:v—a,-)+m

f:

where the A;;’s are the same as those in (2.3). Thus, this approach can be
seen as expanding the integrand into series around all its poles (including o),
then integrating the series termwise, and then interpolating for the answer,
by summing all the polar terms, obtaining (2.3).

Ezample 2.1.3. Consider f = 1/(z® + z) € z). The denominator of f
factors over Q(v/—1) as z3 + z = z(z + v/=1)(z — v/~1), and the partial
fraction decomposition of f is

11 1/2 1/2
B+ T r+/—-1 z-v-1
So an integral of f is

/ da =log(z)—%log(m+\/—_1)—%log(m—-\/—_l).

s+

Note that there exists an integral of f expressible without /=1, namely (2.2).

Since this algorithm can be based on power series expansions, we call it
a local approach. Its major computational inconvenience is the requirement
of computing with algebraic numbers over K that might not appear in the
integral, namely the coefficients of the Laurent series. This is the case in the
previous example, in which the algorithm computes in Q(v/—1), but there
exists an integral that is expressible over (z) only. On the other hand,
there are integrals that cannot be expressed without the introduction of new
algebraic constants, like [(dz/(z? — 2)), which cannot be expressed without
using v/2 ([60] Prop. 1.1), so in general we may need to introduce an algebraic
extension of K at some point.

In order to have a complete and efficient algorithm, we have to answer
the following questions:

Q1. How much of the integral can be computed with all calculations being
done in K(z)?

Q2. Can we compute the minimal algebraic extension of K necessary to
express the integral?

An algorithm that never makes an unnecessary algebraic extension and does
not compute irreducible factorizations over K will be called “rational”.
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2.2 The Hermite Reduction

We can see from the variant of Bernoulli’s algorithm discussed above, that
any f € K(z) has an integral of the form

m
/f =v+ Z ci log(u;) (24)
i=1
where v,u;,...,um € K(z) and ¢y,...,cm € K. v is called the rational part

of the integral, and the sum of logarithms is called the transcendental part of
the integral. Hermite [34] gave the following rational algorithm for computing
v: write the integrand as f = A/D where A,D € K]z] and gcd(A, D) = 1.
Let D = DyD%--- D" be a squarefree factorization of D. Using a partial

fraction decomposition of f with respect to Dy, D32,..., D?, write
n
Ak
f=P+3 ¢
k=1 "k

where P and the Ay’s are in K[z] and either Ay = 0 or deg(Ax) < deg(D})

for each k. Then,
n Ak
[i=]r+3 ] 5
k=1 k

so the problem is now reduced to integrating a fraction of the form Q/V*
where deg(Q) < deg(V*) and V is squarefree, which implies that ged(V, V') =
1. Thus, if £ > 1 we can use the extended Euclidean algorithm to find B,C €
K|[z] such that
Q o
T %~ BV'+CV

and deg(B) < deg(V). This implies that deg(BV') < deg(V?) < deg(V*),
hence that deg(C) < deg(V*~!). Multiplying both sides by (1 — k)/V* we

get
Q _ _(k-1BV' (1-kC

VE~ vk VT
Adding and subtracting B'/V*~! to the right hand side we get

Q _( B (k—l)BV’>+(l—k)C—B’.

VE T \yk-1 T VEk VE-1

And integrating both sides yields

Q B (1-k)C-B

VE T yk-1 + Vk-1 )
Since deg((1 — k)C — B') < deg(V*~!), the integrand is thus reduced to
a similar one with a smaller power of V in the denominator, so, repeating
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this until £ = 1, we obtain y € K(z) and E € K[z] such that deg(E) <
deg(V) and Q/V* = y' + E/V. Doing this to each term A;/Dj, we get
g,h € K(z) such that f = g’ + P+ h and h has a squarefree denominator
and no polynomial part, so [k is a linear combination of logarithms with
constant coefficients. The v of (2.4) is then merely g + [ P. Hermite did not
provide any new technique for integrating h, so question Q2 remained open
at that point.

HermiteReduce(A, D) (* Hermite Reduction - original version *)

(* Given a field K and A, D € K[z] with D nonzero and coprime with
A, return g,h € K(z) such that £ = gﬁ- + h and h has a squarefree
denominator. *)

(D1, ..., D,) + SquareFree(D)
(P, Ay, A2, ..., An) « PartialFraction(A4, D1, D%,...,D})
g+ 0
he P+ A,/D,
for k « 2 to n such that deg(Dx) > 0 do
V « Dy
for j « k—1to 1step —1do
(B,C) « ExtendedEuclidean(2%,V, —A./j)
g—g+B/V
Ap « —jC — 48
h+ h+ Ax/V
return(g, h)

Ezample 2.2.1. Here is HermiteReduce on

f= z7 — 24z — 42® + 8z — 8
T z8 4 625 + 1224 + 8z2

A squarefree factorization of the denominator of f is

€ Qz).

D =z® +62% + 122 + 822 = 2%(2® + 2)* = D} D3
and the partial fraction decomposition of f is:

f_x—1+z4—6z3—18m2—12z+8
Tz (22 +2)° )

Here is the rest of the Hermite reduction for f:

il Vo oli] A; | B | C
2 z 1 z—1 1 -1
3/22+2(2|z*—62%—1822-12z+8| 6z —%3+3:c—2
3|z2+2]1 z%2 -6z — 2 -z+3 1
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Thus,
/x7—24z4—4z2+8z—8 1 6z z-3 dz

78 + 626 + 12z + 822 z_;+(z2+2)2—z2+2+ z
We also mention the following variant of Hermite’s algorithm that does
not require a partial fraction decomposition of f:let D = D1D2---D™ bea
squarefree factorization of D and suppose that m > 2 (otherwise D is already
squarefree). Let then V = D,, and U = D/V™. Since ged(UV',V) =1, we
can use the extended Euclidean algorithm to find B,C € K|[z] such that

A

——— =BUV'+CV

1-m
and deg(B) < deg(V). Multiplying both sides by (1 — m)/(UV™) gives

A (1-m)BV' + (1-m)C
vvm ym yym-1
so, adding and subtracting B’/V™~! to the right hand side, we get
A__( B__(m-1BV'\,K (1-m)C-UB
Uuvm — Uym-1

ym-1 ym
and integrating both sides yields

A B (1-m)C-UB
Uyvm =~ ym-1 + Uym-1
so the integrand is reduced to one with a smaller power of V' in the denomi-
nator. This process is repeated until the denominator is squarefree. Since the
exponent of one of the squarefree factors is reduced by 1 at every pass, the

number of reduction steps in the worst case is 1 +2+ - -+ (m — 1), which is
O(m?) so we call this variant the quadratic Hermite reduction.

HermiteReduce(A, D) (* Hermite Reduction - quadratic version *)

(* Given a field K and A, D € K[z] with D nonzero and coprime with
A, return g, h € K(z) such that 4 = 5—3 + h and h has a squarefree
denominator. *)

9«0, (D1,...,Dm) — SquareFree(D)
for i + 2 to m such that deg(D:) > 0 do
V4 D;, U« DJV'
for j«i—1to 1step ~1 do
(B,C) « ExtendedEuclidean(U4%%,V,~A4/;j)
ge—g+B/VI Ae—jC-UE
D« UV

return(g, A/ D)
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Ezample 2.2.2. Given the same integrand as in example 2.2.1, the quadratic
Hermite reduction makes the following steps, where D3 = 2 +2:

i|v|Ulil B | c l A
2| z |D3|1 1 —28 — 2%+ 182 —8z — 8 | 28 +2° — 182° + 8z +8
3! D3| z |2 6z -—%—2,;+:r2—2z—2 ' +1° -2z -2z +4
3{D3| z |1]|—-z+3 —?+z -2 242
Thus,
27 ~ 24z — 422 + 8z — 8 _1+ 6z +3—z dz
78 + 626 + 12z + 8z2 Tz (22+2)2 2242 T

as in example 2.2.1, but no partial fraction decomposition was required.

Suppose that the denominator D of the integrand has a squarefree factor-
ization of the form D = D, D% - -- DI* where each D; has positive degree (this
is the worst case for the Hermite reduction). In both of the above versions,
the number of reduction steps needed is quadratic in m. There is however an-
other variant, due to Mack [48], which requires only m — 1 reduction steps, so
we call this variant the linear Hermite reduction. In addition, Mack’s variant
does not require either a partial fraction decomposition of f or a squarefree
factorization of its denominator (which is computed during the reduction).
Let D = D;D?--- DI be a squarefree factorization of the denominator of f
(we do not need to actually compute it), and recall the notations defined in
Definition 1.6.2, namely

n n
P =][P and P+ =][pRM0=7Y

i=1 i=1

for any P € K[z) \ K, where pp(P) = [[i=, Pi* is a prime factorization
of pp(P). Since we are working over a field K, we can assume that D =
pp(D). As in the squarefree factorization algorithms, we first compute D~ =
ged(D,D') and D* = D/D~.1f deg(D~) = 0, then D is squarefree, otherwise,
since D~ = D—"D~2 by (1.11), D~' = D™?Y; by Lemma 1.7.2 where Y is
given by (1.16), and D; = D*/D~" by Lemma 1.7.1, we get

D*D-' D*D™*Y, D*D7?Y, D*

= = = =D Kiz]. 2.5
D- D- 5=p= = p =D €Kkl (29
Furthermore, ged(D;,D~) = 1 as a consequence of Lemma 1.7.1, and
ged(Ya, D~*) = 1 by Lemma 1.7.2, which implies that

« =1
god (DDLZ ,D") = ged(D1Y, D™ =1.
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Therefore, we can use the extended Euclidean algorithm to find B,C € K|z]

such that
D*D~'
A=B| - -*
( D )+CD .

As previously, dividing both sides by D = D*D~ = D; D~ "D~ gives
A _ BD”' C

D~ D2 DD
so, adding and subtracting B'/D~ to the right hand side, we get

A ﬂ_BD" C -D,B
D D- p-2 D,D-

and integrating both sides yields

JE Ry
D~ D- D,D-

Since Dy D~ = (D D2)D3--- D71, the integrand is reduced to one whose
denominator has a squarefree factorization with at most m —1 different expo-
nents, as opposed to m for the initial integrand. Thus, repeating this process
at most m — 1 times yields an integrand with a squarefree denominator.
A further optimization is that the parameters of the next iteration can be
computed from the current ones: the new integrand is

C-D,B _ z
DlD_ - 5
where
— , D*
A=C—D1.B =C—_,B’
D_
and

D= D\D™ = D1D2D§ .. .Dm_l .

We then have
D =D,D,...D,, =D*

which means that D* remains unchanged throughout the reduction. In addi-
tion,
D™ =D3D:... p,",}‘z =D"?

which means that D~ is replaced by its deflation at each step throughout
the reduction.

We remark that it is possible to perform all the variants of Hermite’s
reduction over a UFD rather than a field, the result being expressed over
its quotient field. In that case, it is necessary for Mack’s variant that the
denominator D be primitive (this is not necessary for the previous variants).
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WlermiteReduce(A, D) (* Hermite Reduction - Mack'’s linear version *)

(* Given a field K and A,D € K([z] with D nonzero and coprime with
A, return g, h € K(z) such that 4= gi- + h and h has a squarefree
denominator. *)
g+ 0
D™ ¢ gecd (D, %—g)
D"« D/D~
while deg(D~) > 0 do
D™ « ged (D-, 4D )

D"« D" /D? )

(B,C) + ExtendedEuclidean(-D" &L_/p~,D77,A)

A«C- %ﬁD‘/D" (* new numerator *)

g+g+B/D” .

D™« D"? (* D =D7% %)
return(g, A/D") J

Ezample 2.2.3. Consider the same integrand as in example 2.2.1. Mack’s al-
gorithm proceeds as follows:

1. ¢g=0
2. gD" = ged(D,dD/dz) = z° + 42° + 4z
3. D*=D/D” =z*+2z
4. First reduction step:
-2 = ged(z® + 4a° + 4z,52% + 1227 +4) =27 +2
.D*=D"/D2=2+22z

(941

ExtendedEuclidean(—5z% — 2,z° + 2z, A)
(822 + 4,z* — 22 + 162 +4)

(B,C)

it

7 A=z% -2z + 16z +4 — 16z =z — 227 +4

_ 8P +4
g—g+D_ T g5 4473 + 4z

9. D-=D"2=1z*+2
10. Second reduction step:
D2 =ged(z? +2,2z) =1
11. D~"=D"/S; =2? +2
12. (B,C) = ExtendedEuclidean(—2z2, 2% +2,z* — 22° +4) = (3, z? +2)
13. A=2%+2

4.
! B 822 +4 3

g=g+_bt—m5+4z3+4z 2 + 2
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15. D" =D"?=1
Thus,

/:r7—24:c4—4:c2+89:—8 = 822 + 4 3 dr
28 + 68 + 1224 + 8z2 TS+ 43 4+4r 2242 z

which is equivalent to the result obtained from the Hermite reduction, but
only 2 reduction steps were needed instead of 3.

2.3 The Horowitz—Ostrogradsky Algorithm

Ostrogradsky’s algorithm also computes rationally the rational part of the
integral, but it reduces to solving systems of linear algebraic equations over
K instead of solving polynomial diophantine equations of the form (1.5). Let
the integrand f be of the form A/D and suppose in addition that deg(A) <
deg(D). As previously, let D = DD} --- D% be a squarefree factorization of
the denominator of f (the algorithm does not actually compute it). Using
the notations P* and P~ of Definition 1.6.2, we have D~ = ged(D, D)
and D* = D/D~. From looking at the steps in the Hermite reduction, it
is clear that if f = ¢’ + h where h has a squarefree denominator, then the
denominator of g divides D~ and the denominator of h divides D*, so we
can write ¢ = B/D~ and h = C/D* where B,C € K|z] are unknown.
Furthermore, since deg(A4) < deg(D), we can assume that deg(B) < deg(D~)
and deg(C) < deg(D*). Writing f = g' + h, we get

A_B _BD' C
D~ D- )2 D

and multiplying by D = D*D~,

D~D~’ .
A:B’D‘—B( D= )+CD“. (2.6)
Since D~ | D*D~' by (2.5), the above is a linear equation for B and C with
polynomial coefficients. Furthermore, it must always have a solution in K[z},
since the Hermite reduction returns such a solution. Since we have bounds
on the degrees of B and C, we can replace B and C in this equation by

deg(D7)-1 deg(D*)—1
g
Z bz’ and 2 c;jz’
=0 j=0

where the b;’s and c;’s are undetermined constants in K. Equating both sides
of (2.6) yields a system of linear algebraic equations for the b;’s and c;’s, and
any solution of this system gives B and C, hence g and h.
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HorowitzOstrogradsky(4, D) (* Horowitz-Ostrogradsky algorithm *)

(* Given a field K and A,D € K[z] with deg(4) < (ilteg(Dd), D nonzero
and coprime with A, return g,h € K(z) such that 4 = £ +h and h
has a squarefree denominator. *)

D~ «ged (D, 42)

D* «+ D/D~

n + deg(D7) -1

m + deg(D") -1

B« Y i bz

C +« Z?:O Cj.’L']

He A-BD +BD'D”'/D” -CD~ (* exact division *)
(boy -y bnyCoyervsCm) solve( coeﬂicient(H,zk) = 0,0 < k <
deg(D)) . N )

return(zz;o biz'/D™, Zi=0 cjz’ /D*)

Ezample 2.3.1. Given the same integrand as in example 2.2.1, the Horowitz—
Ostrogradsky algorithm proceeds as follow:

1. D~ = ged(D,dD/dz) = z° + 42° + 4z

2. D*=D/D" =z°+2z

3. n=deg(D") —1=4,m=deg(D*)-1=2

4. n ' n D‘D”l m .
A-D* (Z b,'x‘) + (Z b,-x’) 5~ D™ Y ¢
j=0

1=0 =0
(1—co)z” + (ba —c1) z8 + (2b3 —co — 4¢y) x°
+(3by — 6bg — 4 — 24) z* +4(b1 — b3 — co — ¢2) z3
+(5bo — 2by — dey — 4) &% + 4(2 = co) T + 2(bo — 4)

H

5. The system obtained from equating H to 0 has the unique solution

(b07b17b2yb3ab43607cl» CZ) = (41678’37072a0a 1) .

Thus,
z7 — 2471 — 422 + 8z — 8 323 4+ 8z% + 6z + 4 /z2+2dm
/ 78 4 626 + 1214 + 822 x5 + 428 + 4x 3 +z
323 +8z%2 + 61 +4 dz
= z5 + 413 + 4z z

which corresponds to the result returned by the Hermite reduction.

While the complexity of this algorithm is very good for rational func-
tions [36], it does not generalize as easily as the Hermite reduction to larger
classes of functions, so we use the linear Hermite reduction in the general

algorithm later.
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2.4 The Rothstein—Trager Algorithm

Following the Hermite reduction, we consider now the integration of fractions
of the form f = A/D with deg(A) < deg(D) and D squarefree. If ay,...,an €
K are the zeros of D in K, the partial fraction decomposition of f must be

of the form
a;
f - Z T —Q;

i=1

where ay, .. .,a, € K. By analogy with complex-valued functions, a; is called
the residue of f at £ = ;. From the naive algorithm, we know that

/f = iailog(az—ai).
i=1

The problem is thus to compute the residues of f without factoring D.
Trager [74) and Rothstein [68] independently proved the following theorem.

Theorem 2.4.1 ([68, 74]). Let t be an indeterminate over K(z) and A,D
be in K[z) with deg(D) > 0, D squarefree and gcd(A, D) = 1. Let

R = resultant, (D, A —tD') € K[t]. (2.7

Then,

(1) the zeros of R in K are ezactly the residues of A/D at all the zeros of
DinK,

(ii) let a € K be a zero of R, and G, = ged(D, A — aD') € K(a)[z]. Then,
deg(G,) > 0, and the zeros of G, in K are exactly the zeros of D at
which the residue of A/D is equal to a.

(i1i) Any field containing an integral of A/D in the form (2.4) also contains

all the zeros of R in K.

Since this theorem is a special case of results that will be proven in
Chaps. 4 and 5, we delay its proof until then. A direct consequence of this
theorem is that

/ % = Y alog(ged(D, A - aD")) (2.8)

a|R(a)=0

where the sum is taken over the distinct roots of R. The Rothstein-Trager
algorithm for integrating rational functions with a squarefree denominator
and no polynomial part is given by formulas (2.7) and (2.8). With appro-
priate modifications, the Rothstein—Trager algorithm can, like the Hermite
reduction, be applied to rational functions over a UFD rather than a field.
Part (iii) of Theorem 2.4.1 shows that the splitting field of R is the mini-
mal algebraic extension of K necessary to express the integral of A/D using
logarithms, thereby essentially answering question Q2. Of course it may be
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possible to express an integral over a smaller constant field using other func-
tions than logarithms, for example [ dz/(z? + 1) = arctan(z), but since an
antiderivative of a function can be formally adjoined to a field (Chap. 3),
question Q2 is meaningful only when related to specific forms of the integral.
If inverse trigonometric functions are allowed in the integral, then Rioboo’s
algorithm (Sect. 2.8) shows that the integral can be expressed in a field con-
taining the real and imaginary parts of all the roots of R. This result, together
with part (iii) of Theorem 2.4.1, provides a complete answer to question Q2
for elementary integrals of rational functions (elementary integrals will be
defined formally in Chap. 5). Note that this algorithm requires a gcd com-
putation in K (a)(zx] where a, a zero of R, is an algebraic constant over K. A
prime factorization R = u R;* - -- R¢™ over K is thus required, and we must
compute the corresponding ged for a zero of each R;. Since the answer can
be presented as a formal sum over the zeros of each R;, there is no need to
actually compute the splitting field of R.

rIntR,ationalLogPart:(A, D) (* Rothstein—Trager algorithm *)

(* Given a ficld K of characteristic 0 and A, D € K[z] with deg(4) <
deg(D), D nonzero, squarefree and coprime with A, return fA/D dz.
*)
t + a new indeterminate over K
R « resultant, (D, A —t 42)
uwR'--- Ri™ « factor(R) (* factorization into irreducibles *)
for i + 1 to m do
aealRif{a)=0
G: + ged (D, A — a 42)
return(3;7) 300 5. a)=0 2108(Gi))

(* algebraic ged computation *)

Ezample 2.4.1. Consider

4 -3z +6
70 — 524 + 522 +4

f= € Qz).

The denominator of f, D = 2% — 5z* + 522 + 4 is squarefree (and in fact
irreducible over Q), and the Rothstein-Trager resultant is

resultant, (z® — 5z + 522 + 4,z — 322 + 6 — t (62° — 20z% + 102)) =
45796(4t2 + 1)°.

Let a be an algebraic number such that 4a? + 1 = 0, we find

Gs = ged(z® — 5z +52° + 4,z* — 322 + 6 — a(6z° — 20z° + 10z))

= 2%+ 2az%’ -3z —4a.
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Thus,

4 - 322 +6 s \
/26—5m4+5z2+4 = ) alog(e® +2as’ - 3z - da)
al4a?+1=0

V-1
= 5 log(s® +2°V=1-3z -2V~
v-1
—+5— log (z” - 2?V=1- 32+ 2V=1) .

2.5 The Lazard-Rioboo—-Trager Algorithm

While the Rothstein-Trager algorithm computes in the smallest algebraic
extension required to express the integral, Trager? and Rioboo [42] inde-
pendently discovered that the prime factorization of the Rothstein—Trager
resultant, and the gcd computations over algebraic extensions of K can be
avoided, if one uses the subresultant PRS algorithm to compute the resultant
of (2.7). Their algorithm is justified by the following theorem.

Theorem 2.5.1 ({42, 52]). Let K be the algebraic closure of K, t be an in-
determinate over K(z), and A,B,C € K[z]\ {0} be such that gcd(A,C) =
ged(B,C) =1, deg(A) < deg(C) and C is squarefree. Let

R = resultant,;(C, A — tB) € K[t

and (Ro,Ry,..., Ry #0,0,...) be the subresultant PRS with respect to = of
C and A — tB if deg(B) < deg(C), or of A—tB and C if deg(B) > deg(C).
Let o € K be a zero of multiplicity n > 0 of R. Then, either

(1) n =deg(C), in which case
ged(C, A —aB) =C € K(a)[z].

(i) n < deg(C), in which case there ezists a unique m > 1 such that
deg,(Rm) = n, and

ged(C, A — aB) = pp,(Rm)(a, z) € K(a)z]
where pp,(Rm) is the primitive part of R, with respect to .

Proof. Let R = resultant,(C,A —~ tB) and (Ro,R;,...,Rx # 0,0,...) be
the subresultant PRS with respect to z (i.e. in K[t][z]) of C and A — tB if
deg(B) < deg(C), or of A — tB and C if deg(B) > deg(C). Let ¢ = deg(C),
¢ € K* be the leading coefficient of C, and C = ¢ [[{_, (z — 3;) be the linear

3 Although he did not publish it, Trager programmed this algorithm in his
axiom implementation of rational function integration.
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factorization of C over K, where the 3;’s are distinct since C is squarefree.
By Theorem 1.4.1 we have

q
R=c" [[(A(8:) - t B(B)

i=1

where p = deg,(A—tB). Hence, the leading coefficient of R is :l:c”]'[ , B(B),
which is nonzero since gcd(B,C) = 1. Thus R # 0, so let a € K be a zero
of multiplicity n > 0 of R. We note that the trailing monomial of R is
¢ 1%, A(B:), which is nonzero since ged(4,C) =1, s0 a # 0. Since a has
multxpllClty n, then there is a subset I, C {1,...,q} of cardinality n such
that A(B;) — aB(B;) = 0 if and only if i € I,. Hence Go = [lies, (& — Bi)
divides A — aB in K[z]. But z — i f A— aB for i ¢ I, so Gq is a ged of
C and A — aB in K(a)[z]. Hence, deg,(gcd(C, A — aB)) = n, which implies
that n < deg(C).
(i) If n = deg(C), then gcd(C, A — aB) is a divisor of C' of degree deg(C),
hence gcd(C, A —aB) =C.
(ii) Suppose that n < deg(C). Then, A — aB # 0, otherwise we would
have ged(C, A — aB) = ged(C,0) = C which has degree greater than n. Let
S, € K[t]iz] be the n*" subresultant of C' and A — ¢tB with respect to z,
o : K[t] - K(a) be the ring-homomorphism that is the identity on K and
maps t to @, and @ : K[t][z] & K(a)[z] be given by 7 (¥ a;z7) = ¥ a(a;)a’.
Since A4, B,C do not involve ¢, 7(C) = C and (A ~ tB) = A — aB, hence
deg(@ (C)) = ¢, and Theorem 1.4.3 implies that (S,) = ¢"S, where r is a
nonnegative integer and S, is the n'? subresultant of C' and 4 — aB. Let
(Qo,Q1,.--,Q1 # 0,0,...) be the subresultant PRS in K(a)[z] of C and
A — aB if deg(B) < deg(C’) or of A~ aB and C if deg(B ) > deg(C). B
Theorem 1.5.1, Q; is a ged of C and A — aB, so deg,(Q:) = n. Hence, E(Sn)
is similar to @; by Theorem 1.5.2, which implies that 7(S,) # 0 and it is a
ged of C and A — aB, and in particular deg(7(S,)) = n. Since deg,(Sn) <
n by definition, and deg((S.)) < deg,(Sn), we have deg,(Sn) = n. By
Theorem 1.5.2, S, is similar to some R for m > 0, which implies that
deg,(Rm) = n. Since deg(Ro) > deg(C) > n, we have m > 1, which implies
that m is unique, since deg(R;) > deg(R ,+1) for i > 1 in any PRS. Write
p1Sn = papp.(Rm) with p1,p2 € K[t] satisfying ged(p1,p2) = 1. Then,
(p1)7(Sn) = 0(p2)7(pp(Rm)). Note that 5(Sn) # 0 and 7(pp;(Em)) # 0
since pp, (Rym) is primitive. In addition we cannot have o(p1) = o(p2) =0
since ged(p1, p2) = 1. Hence, o(p1) # 0 and a(p2) # 0, so o(pp;(Rm)) =
pp.(Rm)(a,z) is a ged of C and A-aB. O

Now let A, D € K[z]\{0} with gcd(4, D) = 1, D squarefree and deg(A) <
deg(D). Applying Theorem 2.5.1 with A = A, B = D' and C = D, we get
R = resultant, (D, A — tD') and for any root  of R of multiplicity ¢ > 0, we
have ¢ < deg(D) and:

(i) if i = deg(D), then ged(D, A —aD') =D
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(ii) if ¢ < deg(D), then ged(D, A — aD') = pp,(Rm)(a,z) where m > 1is
the unique strictly positive integer such that deg,(Rnm) = i.

Thus, it is not necessary to compute the gcd’s appearing in the logarithms
in (2.8), we can use the various remainders appearing in the subresultant
PRS instead. Since deg(D') < deg(D), we are in the case where deg(B) <
deg(C), so we use the subresultant PRS of D and A — tD’'. As long as the
result is returned as a formal sum over the roots of some polynomials, all
the calculations are done over K, no algebraic extension is required, and the
formal algebraic numbers introduced by the sum are in the smallest possible
algebraic extension needed to express the integral.

In practice, we perform a squarefree factorization R = [, Q¢, so the
roots of multiplicity ¢ of R are exactly the roots of @;. Evaluating pp,(Rm)
for t = a where a is a root of Q; is equivalent to reducing each coefficient
with respect to z of pp,(Rm,) modulo @;. We do not really need to compute
pp;(Rm), it is in fact sufficient to ensure that Q; and the leading coefficient
with respect to = of R, do not have a nontrivial gcd, which implies then that
the remainder by Q; is nonzero®.

Since multiplying the argument of any logarithm in (2.8) by an arbitrary
constant does not change the derivative, we can make pp_ (R, )(a, z) monic in
order to simplify the answer, although this requires computing an inverse in
K{a], but not computing a gcd in K[a][z]. Since the Q;’s are not necessarily
irreducible over K, K[a] can have zero-divisors, but the leading coefficients
of the pp,(Rm)(a,z)’s are always invertible in K[a] (Exercise 2.7). This
normalization step is optional.

IntRationalLogPart(A, D) (* Lazard-Rioboo-Trager algorithm *)

(* Given a field K of characteristic 0 and A, D € K{z] with deg(A4) <
deg(D), D nonzero, squarefree and coprime with A, return f A/Ddzx.
*
)
t «+ a new indeterminate over K
(R,(Ro,Ry,...,Rk,0)) « SubResultant. (D,A—t42)
(@1,...,Qn) + SquareFree(R)
for i « 1 to n such that deg,(Q:) > 0 do
if i = deg(D) then S; + D
else
Si ¢~ R where deg,(Rm) =13, 1<m<n
(A1,...,Ay) « SquareFree(ic.(S;))
for j « 1to gdo S: «+ Si/ged(4;,Q:)  (* exact quotient *)

return(} ZalQ;(a):OG log(Si(a,x)))

* This requirement, which was overlooked in the original publication of Theo-

rem 2.5.1, has been pointed out by Mulders [52] (see Exercise 2.5).



52 2. Integration of Rational Functions

Ezample 2.5.1. Consider the same integrand as in example 2.4.1. D is square-
free, and the subresultant PRS of D and A — tD' is

i R;

28 — 5z + 522 + 4
—6tz5 + 2! + 20tx® — 3z% — 10tz + 6
(=60t + 1) z* + 2tz® + (120t — 3) 22 + 26tz + 144t +6

(800t3 — 14t) z3 — (400t — 7) 2? — (2440¢® — 32t) x + 792t* — 16

(—=11200t* — 2604t + 49) 2 + 25600¢* + 5952t — 112

(—119840t° — 59920t — 7490t) = — 23968t* — 11984¢% — 1498
29309445 + 2198208t* + 549552t + 45796

S Ut AW = O

The Rothstein-Trager resultant is R = Rg, and its squarefree factorization is
R = 2930944¢° + 2198208t" + 549552t2 + 45796 = 45796 (4> +1)® = 45796 Q3
and the remainder of degree 3 in z in the PRS is

R3 = (8003 — 14t)z® — (400t* — 7)z® — (2440¢° — 32t)z + 792> — 16.

Since
ged(leg (R3), Q3) = ged(800% — 14¢,4¢% +1) =1,

S3 = Rj3. Evaluating for t at a root a of Q3(a) = 4a® + 1 =0 we get

S3(a,z) = —214az’ + 107z? + 642az — 214

so an integral is

1:4 - 312 +6 3 2
= log(~214az® + 107z* + 642azx — 214) .
/z6—5z4+512+4 Z @ log(
al4a2+1=0
Making S3(a, ) monic we get S3(a,z) = —214a (z3 + 2az? - 3z — 4a) so the
integral is then as that in example 2.4.1.

IntegrateRationalFunction(f) (* Rational function integration *)
(* Given a field K of characteristic 0 and f € K(z), return [ f dz. *)

(9,h) « HermiteReduce(numerator(f), denominator(f))

(@, R) + PolyDivide(numerator(h), denominator(h))

if R =0 then return(g + [ Qdxz)

return(g + dea: + IntRationalLogPart(R, denominator(h)))
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Ezample 2.5.2. Let us compute the integral of

A 36
f_B—x5—2x4—2x3+4z2+z——2EQ(:B)'

1. HermiteReduce(A, D) returns g = (12z + 6)/(z% ~ 1) and h = 12/E
where E = 2% — z - 2,

2. PolyDivide(12, E) returns Q@ = 0 and R = 12,

3. IntRationalLogPart(12, E) returns 3_ |42 -0 @log(z — 1/2 ~ 3a/8),

so we have

/ 36 . =
-2zt — 23t 4tz 20 T
12z + 6 1 3a
=2 L A
+ Z alog(z 5 8) (2.9)

z2 -1
a|la?—16=0

A simpler form for the logarithmic part will be obtained by the algorithm of
Sect. 2.7.

2.6 The Czichowski Algorithm

Czichowski has pointed out that the resultant and subresultant computa-
tions of the Rothstein-Trager and Lazard-Rioboo-Trager algorithms can be
replaced by a Grobner basis computation in Kz, z]. Since Grébner bases
are beyond the scope of this book, we do not present a proof of his theorem
here, but give it without proof together with the corresponding algorithm.
Interested readers can consult [7, 23] for an introduction to Grobner bases,

and [24] for a proof of the following theorem. '

Theorem 2.6.1 ([24]). Let t be an indeterminate over K(z), A,D be in
K{z] with deg(D) > 0, D squarefree and gcd(A, D) = 1, and B be the reduced
Grobner basis with respect to pure lezicographic ordering with x > t of the
ideal generated by D and A —tD' in K[t,z]. Write B={Py,..., Py} where
each P; is in K[t,z] and for each i the highest term of P,y, is greater than
the highest term of P; in the pure lezicographic ordering with = > t. Then,

(i) lea(pp,(Pi)) =1 for1<i<m.
(i1) content,(P;y1) divides content,(P;) in K[t] for 1 <i < m.

(iii)

S dr=Y Y alog(pp.(Pur)(an)
@ H @

where Q; = content, (P;)/content,(P;+) € K|[t].

Note that part (i) implies that this algorithm yields monic polynomials
inside the logarithms.
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IntRationalLogPart(4, D) (* Czichowski algorithm *)

(* Given a field K of characteristic 0 and A, D € K{z] with deg(A4) <
deg(D), D nonzero, squarefree and coprime with A, return f A/Ddzx.
*

)

(* Compute the reduced Grobner basis *)
(P,...,Pm) « ReducedGrébner (D, A-t djg, pure lex,z > t)
(* (P,...,Pm) must be sorted by increasing highest term *)
for i+ 1tom~—1do
Q: + content, (P:)/contentz (P;+1)
S  ppg(Pit1)
rel:urn(E:::1 Zuloi(a)ﬂalo%(si(a’z)))

(* exact quotient *)

Ezample 2.6.1. Consider the same integrand as in example 2.4.1. The re-
duced Grébner basis of

(D, A —tdD/dz) = (z° — 5z* + 5% + 4, ~6tz° + z* + 20tz> — 32° — 10tz + 6)
w.r.t. pure lexicographic ordering with z > ¢ is

B={P, P} = {4t + 1,2° + 2ta® - 3z — 4t}
Thus, Q1 = 42 + 1/1 = 4t + 1 and S; = P, which yields the integral

4 _ 9.2
/ 23 +6 Z a log(z® + 2az® — 3z — 4a)

6 __ 5pd 2 -
T 5r% + 52% + 4 al4asT1=0

which is the same integral that was obtained in example 2.4.1.

2.7 Newton-Leibniz—Bernoulli Revisited

We have seen that the difficulty with using formula (2.1), which dates back to
Newton and Leibniz, was the computation of the Laurent series expansions at
the poles of the integrand. However, Bronstein and Salvy [15] gave a rational
algorithm for computing those series. That algorithm can be then used to
make the full partial fraction approach rational, so we describe it here. The

basic result is that the A;;’s of

f“———ﬁ!—"——-!---'-i- Aix Air
T (x - ap)® (z—0ai)?  (z—a)

can be computed as functions of the a;’s without factoring.
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Theorem 2.7.1. Let A, D € K[z] with D monic and nonzero, gcd(A, D) =
1, and let D = D, D%--- D7 be a squarefree factorization of D. Then, using
only rational operations over K, we can compute H;; € K{z] for 1 <j <i <
n such that the partial fraction decomposition of A/D is

A = Hii(a) Hj (a)
Z-p LA\ L U
D +Z Z ((:z:—a)’+ +:c—a)
i=1 a|Di(a)=0
where P is the quotient of A by D.

Proof. We first describe the construction of the Hy;’s: let ¢ € {1,...,n},
E; = D/D;, and

1)

A

hi = 'U,—'_E'l € K(CI))(U)
where u is a differential variable over K(z) (i.e. u and all its derivatives
u',u",... are independent indeterminates over K (z)). Each D; is squarefree

and coprime with the other Di’s by the definition of squarefree factoriza-
tion, so ged(E;, D;) = ged(D}, D;) = 1. Thus, use the extended Euclidean
algorithm to compute B;,C; € K{z] such that

B;E;=1 (mod D;) and C;D;=1 (mod D;). (2.10)

For j =1,...,%, compute hsi_j)/(i — 7)! and write it as

-9 p. RV U )

W Pulmuw oo wT) (2.11)

(1‘ - .7) UZE—JEi
where P;; is a polynomial with coefficients in K. Let then

D" D(3) D(i‘j+1)
Qij=Pij<$,D2,—2—l, é ,...,iij+1 EK[.’E]

and finally let o o

Hi; = Qi BT CP™7 (mod D) (2.12)

where B; and C; are given by (2.10).
We prove now that the Hj;'s given by (2.12) satisfy the theorem. Let K
be the algebraic closure of K, o € K be a root of D;, D; o = D;/(z — o), and

hia A A

= Di E plE—a)

Since h; o is just h; evaluated at u = D; o, we have

h(j—j) B;; (ziDi,aiD;,avD;:m""Dt('.i(:j))

i,a _

(i =) - D?,ia—jE:'—J#l
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where P;; is the same polynomial as in (2.11). We have D; = (z — @) Di,qa, 80
for k > 0,

k
k . —; : -
o =3 ()@ - 90? = (o -l 4 kDI
Jj=0
since (z — a)?) =0 for j > 1. Hence,

(k)
2 _ pii i)

for k > 0, which implies that

D) D¥@  DI*(a)
. = - ! i i i
Qij(a) = Py (a,D,(a), T3 U i+l

= Py (@ Dial@), Di(@), Diala),.-, D" (@) -

In addition, (2.10) implies that B;(a) = 1/Ei(a) and Ci(a) = 1/Dj(a), so

(1) (4
H{j(a) = Qij(a)Bi(a)i‘j“C,-(a)”“j = %—_—%)- .

Since z — a does not divide the denominator of h; o, hi o has a Taylor series
at ¢ = a, and by Taylor’s formula,

(k)
h; ,(a
hio = E 174:'( )(z - a)*
k>0 )

so the Laurent series of A/D at z = ar is

A ha Mol 1 g i@,

D™ -ay & (-9 @-oy  HE-op
which proves the theorem. (]

This theorem yields an algorithm for computing Laurent series expansions
of rational functions. We can make an additional improvement: it is possible
that for given i and j’s, Gij = ged(Hyj, Di) is nontrivial. This means that for
a root a of Gyj, the coefficient of 1/(z — a)? in the expansion of A/D is 0.
When this happens, we replace D; by D;; = D;/Gjj, and return the partial
fraction decomposition of A/D in the form

A n Hi;(a)
=P 2 w-ap
i=1 j=1 a|Di;(a)=0

where all the summands are guaranteed to be nonzero.
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LaurentSeries(A, D, F,n)
(* Contribution of F' to the full partial fraction decomposition of A/D *)

(* Given a field K of characteristic 0 and 4, D, F € K[z] with D mon-
ic, nonzero, coprime with 4, and F the factor of multiplicity n in the
squarefree factorization of D, return the principal parts of the Laurent
series of A/ D at all the zeros of F. *)

if deg(F) = 0 then return 0
u « a differential indeterminate, o < 0
E « D/F", h+ A/(v"E)

(B,G) + ExtendedEuclidean(E, F,1) (* BE+GF =1x)
(C,G) « ExtendedEuclidean(F’, F,1) (* CF' +GF =1 )
for j «— 0ton—1do

Pyt EYih (* P € K[z,u,u',u",...,u"] *)

v« FOHD /(5 +1)

Q « eval(P,u— vo,...,u) = v;)

heh/G+1)
F* « F/gcd(F, Q)
if deg(F") > 0 then
H « QB'C™* mod F* _
T T+ pe(aymo H)/(x =)™
return o

Ezample 2.7.1. Consider

f= 30 5 € Yz) .

(z - 2)(z2-1)

Applying LaurentSeries to A = 36, D = (z — 2)(z® = 1)?, F = z” — 1 and
n = 2 we get: ’

1.o=0,E=z-2, h=36/(u*(z - 2)),

2. (22 -1)/3 - (z/3+2/3)(z—2) =1,50 B=—(z +2)/3,
3. (z/2)2z - (2% - 1) =1,s0 C = /2,

4. P =u?(z - 2)h = 36,

5. vg = F' =2z,

6. Q = eval(36,u = vo) = 36, so ged(z* — 1,Q) = 1,

7. F* =2% -1,

8

. H=-36(z+2)/3(z/2)’mod z®> — 1= -3z -6,
S0 o= Ea’—l:o(_3a - 6)/(2: - a)21 .
9. h=Hh = ((-72z + 144)u’ — 36u)/(u3(z - 2)?),
10. P = u3(z — 2)%h = (=722 + 144)u’ — 36u,
11. U]_IF”/ZZL .
12. Q = eval(P,u = vo,u’ = v1) = —144z + 144, s0 ged(2® - 1,Q) =z — 1,
13. F*=(2-1)/(z-1)=z+1,
14. H = (-144z + 144) ((z + 2)/3)? (z/2)* mod (z + 1) = ~4,50 0 = 0 +
Ea+1=0 —4/(31 —a)
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Hence, the sum of the Laurent series of f at the roots of z2 —1=101s

36 -3a—-6 4
= —_ +---
z% — 224 — 273 + 422 + . — 2 a=-zl=o(x—a)2 z+1
-

FullPartialFraction(f)
(* Full partial fraction decomposition of f *)

(* Given a field K of characteristic 0 and f € K(z), return the full
partial fraction decomposition of f. *)

D + denominator(f)

(@, R) « PolyDivide(numerator(f), D)
(Di,..., D) « SquareFree(D)

return(Q + > .-, LaurentSeries(R, D, D;, 1))

Ezample 2.7.2. Applying FullPartialFraction to

36

x5—2m4—2z3+412+z—2€@(z)

f=

we get:

1. D=x5-22* — 223 +42® + - 2,

. (@, R) = PolyDivide(36, D) = (0, 36),

. D, D} = SquareFree(D) = (z — 2)(z® — 1)?,
LaurentSeries(36, D,z — 2,1) returns 4/(z — 2),
LaurentSeries(36, D,z% — 1,2) returns

AR

Z —3a—-6) 4
(z - a)? z+1

a?—-1=0

as seen in example 2.7.1.

Hence, the full partial fraction decomposition of f is

36 -3a-6 4 4
25 — 221 — 23 + 422+ -2 Z (z — a)? TSRy
(2.13)

a?-1=0
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IntegrateRationalFunction(f) (* Full partial fraction integration *)

(* Given a field K of characteristic 0 and f € K(z), return the full
partial fraction decomposition of f fdz. *)

P+Y 5 Y Hy(@)  pullPartialFraction(f)
et £ (z —a)
i=1 j=1 a|D;(a)=0

return/P + i Z H;i(a)log(z - a)

i=1l o|D;y(a)=0

SR Hij(a)
PSR e

i=2 j=2 a|D;;(a)=0

Ezample 2.7.3. For the fraction f of example 2.7.2, FullPartialFraction
returns (2.13), so the integral of f is

/ 36 dr =
‘ z5 — 274 — 213 + 422 + -2 -
3a+6

4log(z — 2) —4log(z + 1) + Z et
a2—-1=0

Compare with the algorithm of the previous sections, which returns (2.9) for
the same integrand.

Since the resulting integral is returned in the form (2.4) with the fraction v
also expanded into partial fractions with linear denominators, this algorithm
is not a better alternative than the other rational algorithms in this chapter,
but it makes the partial fraction algorithm factor-free nonetheless. Thus, all
the approaches to rational fraction integration can be implemented using only
rational operations.

2.8 Rioboo’s Algorithm for Real Rational Functions

The algorithms of this chapter give the integral of a rational function in
the form (2.4), i.e. using logarithms whose arguments may involve algebraic
quantities over the ground field. In the case where the ground field K is a
subfield of the reals, those algebraic numbers can be complex, so complex
arithmetic is necessary for computing a definite integral. This may cause
branch problems in the numerical computation, since the arguments to the
logarithms may have complex zeros, while the initial integrand has no pole in
the path of integration. As a result, a direct application of the fundamental
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theorem of calculus can yield an incorrect value, since the antiderivative is not
necessarily continuous on the interval of integration. For example, consider
the definite integral

(2.14)

2 4 -322+6
/; R Iy R R
It is easily checked that the integrand is continuous and positive on the
real line, hence that the above integral must be a positive real number. The
indefinite integral as computed by the algorithms of this chapter is

4_q.2
/ z¢t - 3z°+6 dz Z a log(z® 4 2az? — 3z — 4a). (2.15)

6 _Fr4 2 =
6 — 5z + 522 + 4 altar =0

The zeros of 4a% + 1 are a = %i/2 where i2 = —1, so, applying (incorrectly)

the fundamental theorem of calculus to the above integral with z = 2 and
z = 1, we would get for the definite integral

(5 log(2 + 27) — 3 log(2 - 21)) - (5 log(—2 —1) — 3 log(-2 + 1))
om 1
= —'4— + arctan (5) ~ —-3.46.

As explained above, this result cannot be the correct area. Thus, it is prefer-
able to return a real function given a real integrand. We describe in this
section an algorithm of Rioboo [57] that expands a result of the form (2.4)
into a real function without introducing new real poles, provided that the
initial integrand is real. We use the following properties of fields which do
not contain /—1: if z2 + 1 is irreducible over K, then, for any P,Q € K|z],

P2+Q’=0=P=Q=0. (2.16)

Indeed, if P2 + Q% = 0 and Q # 0, then (P/Q)? = —1, s0 Q | P, which
implies that P/Q € K is a square root of —1, in contradiction with z? +
1 irreducible over K. We first present the classical algorithm for rewriting
complex logarithms as real arc-tangents.

Lemma 2.8.1. Let u € K(z) be such that u?> # —1. Then,
d u+v-1 d
-1—1 ——— |} =2 —arct . .
V 7p 108 (u - \/__1) 7z ¢ an(u) (2.17)

Proof. Writing i = v/—1, an immediate calculation yields

iilo v+ - u—1\ d fu+i

dz t\u—i - u+i) dr \u—i
fu—i\ du (u—1) —(u+1i)
‘\uvi) dz = (w-ip
dufdz __ d
2u2+1—2£,arctan(u).

2.8 Rioboo’s Algorithm for Real Rational Functions 61

Directly using (2.17) for rewriting complex logarithms with real arc-tangents
is possible, but does not eliminate the problem of obtaining discontinuous
antiderivatives, since the resulting integral always has singularities at the
poles of u, while its derivative does not. For example, applying it to the
integral (2.15) gives (we write f ~ g for df /dz = dg/dz):

)" alog(z® +2as’ - 3z — 4a)
al4a2+41=0

N e,

~ %log (z° - 3z +i(z? — 2)) — ; log (¢* — 3z — i(z? - 2))

i -3z +i(z? - 2) 2% - 3z
N—l ~ t e . 2.1
20g<z3—3x——i(x2—2)) arca“(z2—2) (2.18)

Using this to compute the definite integral (2.14) via the fundamental theo-
rem of calculus we get m/4 — arctan(2) a —0.32, which is also incorrect. The
reason is that (2.17) introduced discontinuities at +v/2, as can be seen from
the graph of arctan((z® — 3z)/(z? — 2)) (Fig. 2.1).

ol

0 12 i ¥ 3

1724

. . . : z4-32246
Fig. 2.1. A discontinuous formal integral of ;gm%zt!ﬁ.
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To avoid this problem, Rioboo gave an improvement to Lemma 2.8.1
where the argument of the arc-tangent is a polynomial in z instead of a
fraction.

Theorem 2.8.1 ([57])). Let A,B € K|[z]\ {0} be such that A® + B*> # 0.

Then,

., (A+iBY _d, (-B+id

dz e\A4—iB) " dz B\"B-iA
and, for any C,D € K|z] such that BD — AC = gcd(A,B), C # 0 and
C?+D?#0,

4 (A+iB)_2iarctan AD+BC\ . d  (D+iC
g B)  ‘dr gcd(4,B) ) " dz B\D-iC

Proof. We have
A+iB _(-i)(-B+iA) -B+iA

A-iB~ i(-B-iA) = -B-iA

so0, taking logarithmic derivatives on both sides,

4, (A+iB\_d (-B+id
dz e\A—iB) "4z B\ZB-id)"
Let now G = gcd(4, B) and C,D € K|z] be such that C #0, C?2 + D2 # 0

and BD — AC = G. Write P = (AD + BC)/G. We note that P € K[z] since
G| A and G| B. We have

A+iB (D~z’CA+z’B) D +iC

AZiB D+iCA—iB)D-iC
_ (AD+BC+i(BD~AC) D +iC
-~ \AD+BC-i(BD-AC)) D~iC

(P+i D +iC
P—1 D-iC)’

d. [A+iB\ .d. (P+i\ .d. [D+iC
—1 - 1 — y —
Ydz °8 (A—-z'B) ‘iz l°g<P—i> T log(D—iC) '

Hence, by Lemma 2.8.1,

. d A+1B d d D +:iC 1
=1 =9= j—
i— log < ; ) 2— arctan(P) + i— log (D iC) .
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Note that (2.16) implies that Theorem 2.8.1 is always applicable in fields
not containing v/—1. Furthermore, it provides an algorithm for rewriting

f=ilog (%t—zg) (2.19)

as a sum of arc-tangents with polynomial arguments: since G = gcd(4, B),
we have deg(G) < deg(B). If deg(B) = deg(G), then B | A, so G = B, which
implies that D = 1 and C = 0, hence that P = (AD+BC)/G = A/B € K|[a}
and that

af

d
o 2 . arctan(P)

by Lemma 2.8.1. If deg(A) < deg(B), then

d _.d (-Btid
dz  'dz Og(—B—iA)

by Theorem 2.8.1, so we can assume that deg(A) > deg(B) > deg(G). By the

extended Euclidean algorithm, we can find C, D € K(z] such that BD—AC =

G and deg(D) < deg(A). In addition, D # 0 since deg(A) > deg(G). This

implies that C # 0, since deg(B) > deg(G), hence that C? + D? # 0 as we

have seen earlier. Hence, by Theorem 2.8.1, the derivatives of f and of

AD+BCY (D +iC
G : D—iC

2 arctan (

are equal. We can apply the algorithm recursively to the remaining logarithm,
and max(deg(C),deg(D)) < max(deg(A),deg(B)) guarantees that this pro-
cess terminates.

LogToAtan(A, B)
(* Rioboo’s conversion of complex logarithms to real arc-tangents *)

(* Given a field K of characteristic 0 such that v/—1 ¢ K, and A,B €
K|z] with B # 0, return a sum f of arctangents of polynomials in K{z]
such that

daf _ iilo (A+1'B)

dr ~ dz A-iB/’

*
)
if B | A then return(2 arctan(A/B)) .
if deg(A) < deg(B) then return LogToAtan(-B, A)
(D, C,G) + ExtendedEuclidean(B,—A) (* BD- AC =G *)
return(2 arctan((AD + BC)/G) + LogToAtan(D,C))
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Ezample 2.8.1. Plugging in a = /2 in (2.15), we get

. 3—3:1:)+i(.’1:2—-2)
alog(z® + 2az® - 3z — 4a) = i log ((-"3 ’ )
"'4“22;1=° ) 2 (23 ~3z) —i(z? - 2)

Applying LogToAtan to A = z° — 3z and B = z? — 2, we get

A | B |cl| D |G| (AD+BC)G
-3z |z22-2|z/2|2%/2-1/2| 1 |25/2-32%/2+z/2
z2/2-1/2| z/2 2 2 1 z3
2z 2

so the integral is

/ zt - 322 +6 i = arct -3z +z 3
z6 — 5z4 + 5% + 4 r = arctan 3 +arctan(z”) + arctan(z)
(2.20)

which differ from (2.18) only by a step function (Fig. 2.2).

2t

0 12 1 2 2

Fig. 2.2. A continuous formal integral of ;5%43:—2“*33 .
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Using (2.20) to compute the definite integral (2.14), we get the correct
answer:

2 4 2
zt ~3z°+6
/1 P - dx arctan(5) + arctan(8) + arctan(2)

1
— arctan (— 5) — arctan(1) — arctan(1)

T w7
t. e - — =
arctan(5) + arctan(8) + 5 171

arctan(5) + arctan(8) ~ 2.81.

It

The above algorithm returns a real primitive given an expression of the
form (2.19). But the integration algorithms return a sum of terms of the form

Y alog(S(a,z)) (2.21)

a|R(a)=0

where R € K[t] is squarefree, and S € K¢, z]. In order to complete Rioboo’s
algorithm, we need to convert such a sum to one where all the complex
logarithms are in the form (2.19). This conversion can be done whenever K
is a real field, which is an algebraic generalization® of the subfields of the real
numbers.

Definition 2.8.1 ([3]). Let K be a field. K is a real field if —1 cannot be
written as a sum of squares of elements of K. K is a real closed field if any
real algebraic extension of K is isomorphic to K. E is a real closure of K if
E is a real closed algebraic extension of K.

Ezample 2.8.2. R, Q, Q(,/p) for any prime number p > 2, and Q(a) where
a is an indeterminate over Q, are all real fields. Q(v/—2) is not a real field
since —1 = 12 + \/—22 is a sum of squares. If K has characteristic p > 0,

then —1 = Zf;ll 12, so any real field must have characteristic 0.

Theorem 2.8.2 ([40], Chap. XI, §2). Any real field has a real closure.

This theorem is also proven in [77},§11.6 but for countable real fields only.
Note that the real closure of K is not unique, even up to isomorphism, unless
K is already ordered.

Theorem 2.8.3 ([40], Chap. XI, §2, [77], §11.5]. Let L be a real closed field.
Then,

(i) L has a unique ordering, given by: x >0 < = y? for somey € L.
(it) L(v/-1) is the algebraic closure of L.

5 The reader wishing to avoid this extra algebraic machinery can skip this defini-

tion and the following theorems, and think of K in the rest of this section as a
given subfield of the real numbers, with real closure K =R.
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Let K be a real field for the rest of this section, and let K be a real closure
of K, and K = = K(i) where i2 = —1. With a slight abuse of language, we
say that o € K is “real” if a € K Let f be a sum of the form (2.21)
where R = 3. rjz) € K[z], § = }_; e siktizt € K[t 7], and let u,v be
indeterminates over K (z). We first separate the sum (2.21) into one over the
real roots of R and one over the other roots:

f=9+ Y, alog(S(a2). (2.22)
agK R(a)=0
where
g= Y,  alog(S(az)
a€K R(a)=0
is a real function. We then compute P,Q € K[u,v] such that
R{u +iv) = er(u-i-iv)j = P(u,v) +iQ(u,v), (2.23)

J
and A, B € K|u,v, z] such that
S(u+iv,z) = E sjk(u+ivyzF = A(u,v,z) + i B(u,v,1). (2.24)
gk

Since K = K(i), it is a vector space of dimension 2 over K with basis (1,7),
so for a € K, R(e) = 0 if and only if P(a,b) = Q(a,b) = 0 wherea = a +1ib.
Furthermore, o ¢ K if and only if b # 0. Hence, we can rewrite (2.22) as

f=g+ > (a +ib)log(S(a+ib,z)) (2.25)
a,beK,b#0

P(a,b)=Q(a,b)=0

Let o be the field-automorphism of F__such that o(i) = —i and o(2) = 2
for any z € K, and define 7 : K[z] = K|[z] by 3(}_a;z?) = )} o(a;)z’. Let
a,b € K Applying 7 to (2.24) we get

A(a,b,z) —iB(a,b,x) = &(A(a,b,z)+iB(a,b,z)) =5(S(a+1ib,z))
S(o(a+ib),z) =S(a—1ib,z).

Applying o to (2.23) we get

P(a,b) —=iQ(a,b) = o(P(a,b)+iQ(a,b))
o(R(a +1b)) = R(s(a+ib)) = R(a —1b)
which implies that R(a + ib) = 0 if and only if R(a —ib) = 0. Hence, for

any pair (a,b) appearing in the sum (2.25) with b # 0, the pair (a, —b) must
appear also, and is a different pair, so we can rewrite (2.25) as

il
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f o= g+ Y, {(a+ib)log(S(a+ib,z))+ (a—ib)log(S(a—ib,x))}
a,beK,b>0
P(a,b)=Q(a,b)=0
g+
)" {a (log(A(a,b,z) +i B(a,b,z)) + log(A(a, b, z) - i B(a,b,)))
a,beK.b>0
P(a,b)=Q(a,b)=0
+1b (log(A(a,b,z) + i B(a,b,z)) — log(A(a, b,z) — i B(a,b,z)))} .

Hence,
_  (A(a,b,3) +iB(a,b2)
f=g+h+ > zblog(A(a’b,z)_z,B(a,b,z) (2.26)
a,beK,6>0
P(a,b)=Q(a,b)=0
where
h= Z a log (A(a,b,z)? + B(a, b, )?)
a,beK,b>0

P(a,b)=Q(a,b)=0

is a real function. Since the remaining nonreal summands in (2.26) are all
of the form (2.19), we can use Theorem 2.8.1 and its associated algorithm
to convert them to real functions. Note that, since converting (2.19) to real
functions requires computing the gcd of A and B, we have, in theory, to
use algorithm LogToAtan over an algebraic extension K (a,b) of K where
P(a,b) = Q(a,b) = 0, which means that we have to solve this nonlinear
algebraic system. However, the following theorem of Rioboo shows that, when
the complex logarithms to expand arise from the integration of a real rational
function, it is not necessary to solve this system.

Theorem 2.8.4 ([57]). Let K be a real field, K be a real closure of K, C,D €
K[z] with deg(D) > 0, deg(D) > deg(C), D squarefree and ged(C, D) = 1.
Suppose that the R and S of (2.21) are produced by the Rothstein-Trager
or Lazard-Rioboo-Trager algorithm applied to C/D, and let P,Q be given
by (2.23) and A, B by (2.24). If a,b € K satisfy P(a,b) = Q(a,b) = 0 and
b #0, then gcd(A(a, b, z), B(a,b,z)) = 1 in K(a,b)[z].

Proof. Let a,b € K be such that P(a,b) = Q(a,b) = 0 and b # 0 where
P and Q are given by (2.23). Then, R(a + ib) = 0 where i = ~1 and
R = P+iQ is a squarefree factor of the Rothstein-Trager resultant of C —¢D’
and D. Furthermore, since A and B are given by (2.24), S(a + ib,z) =
A(a,b,z) + iB(a,b,z) is a ged in K(a + ib)[z] of C — (a + ib)D’ and D, so
there exist £ and F in K(a + 1b)[z] such that

C(z) — (a +ib)D'(z) = E(a + tb,z)S(a + ib, z)
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and
D(z) = F(a+1b,z)S(a +1ib,z).

Writing E = Ey + iE; and F = Fy +iF, where Ey, Ey, Fy, F, € K(a,b)[z],
we get

C(JJ) - (a' + 'Lb)D,(m) = (El (a’b7 (II) + iE?(arb) a:))(A(a, b) Z) + 'iB((l, b7$))

(2.27)
and
D(z) = (F\(a,b,z) +iF(a,b,7))(A(a,b,7) + iB(a,b,z)) . (2.28)
Taking the imaginary part of (2.27) and the real part of (2.28) we get
- bD'(z) = E(a,b,)B(a,b,z) + E2(a,b,z)A(a, b, 7) (2.29)
and
D(z) = Fi(a,b,7)A(a,b,z) — Fa(a,b,z)B(a,b,z) . (2.30)

Since D is squarefree, ged(D, D') = 1, so there exist G1,G» € K{z] such that
G D +G,D' = 1. Multiplying (2.30) by G}, (2.29) by —G2 and adding both
yields
b = (GiD+G2D")
= bG1F(a,b,z)A(a,b,z) — bG F2(a,b,z)B(a,b,z)
~G2E(a,b,z)B(a,b,z) — G2E2(a,b,x)A(a, b, )
= (bG1Fi(a,b,z) — G2E3(a,b,1))A(a, b, z)
—(G2E;(a,b,z) + bG1F2(a,b,z))B(a, b, z)

which is a linear combination of A(a,b,z) and B(a, b, z) with coefficients in
K(a,b)[x]. Since b # 0, this implies that gcd(A(a, b,z),B(a,b,z)) = 1in
K(a,b)[z]. O
As a consequence, we can perform Rioboo’s conversion to arc-tangents

generically, i.e. expand once

) A(u,v,z) + 1 B(u,v, z))

i log -

A(u,v,z) — i B(u,v, 1)

where © and v are independent indeterminates, obtaining a real function
#(u,v,z). We can then rewrite (2.26) as

a,beK,b>0
P(a,b)=Q(a,b)=0

where Theorem 2.8.4 guarantees that ¢(u,v,z) specializes well, i.e. that no
division by 0 occurs when we replace u and v by the various solutions a and
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b > 0in K of P(u,v) = Q(u,v) = 0. By presenting the answer in terms of for-
mal sums, we do not need to actually solve this system, or to introduce any al-
gebraic number. In practice, whenever the real roots of P(u,v) = Q(u,v) =0
can be computed efficiently (for example if they are all rational numbers),
then it can be more efficient to first compute the roots, and then call Log-
ToAtan, rather than perform the reduction with generic parameters.

LogToReal(R, S)
(* Rioboo’s conversion of sums of complex logarithms to real functions *)

(* Given a real field K, R € K[t] and S € K|t, z], return a real function

f such that

dj d

é =4 Z alog(S(a, x)).
a|R(a)=0

*)
write R(u+iv) as P(u,v) +1Q(u,v)
write S(u +iv,z) as A(u,v,z) + 1 B(u,v, z)
return
z alog (A(a,b, z)? + B(a, b, :c)z) + b LogToAtan(A, B)(a,b, )

a,beK b>0
P(a,6)=Q(a,b)=0

+ Z alog(S(a,x)).

a€K,R(a)=0

Ezample 2.8.3. Applying LogToReal to the integral (2.15), we have R(t) =
4t? + 1 € Qt], S(t,z) = z* + 2tz? — 3z — 4t € Q[t, z], and

1. Ru+iv) =4(u+iv)?+1 =4u® —~4v? +1+8iuv,s0 P = 4u? —4v? +1
and Q = 8uv,

2. S(u+iv,z) =23 +2u+iv)r? -3z~ 4(u+iv) = 2% +2uz’ -3z —4u+
i(2uz? — 4v), so A = 2% + 2uz? - 3z — 4u and B = 2vz’® — 4v,

3. H = resultant,(p,q) = 256u® + 64u® whose only real root is 0. P(0,v) =
1 — 4v?%, whose only real positive root is 1/2,

4. A(0,1/2,z) = z*® — 3z, B(0,1/2,z) = z* — 2, and LogToAtan(z® —
3z,z? — 2) returns

25 -33 4+ 2

2
arctan ( 2

) + 2arctan(z®) + 2 arctan(z)

as seen in example 2.8.1, so multiplying by b = 1/2 we get the same
integral as in example 2.8.1.
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Instead of solving the system P(u,v) = Q(u,v) = 0 in step 3, we can call
LogToAtan(z® + 2uz? — 3z — 4u, 2vz® — 4v), which returns

#(u,v,r) = 2arctan (;_v + %)
(333 u o, du+4?-1 u)
+2arctan | — + —22 4 ——————— 1 — —
2U v 2’U v
5 221 3 82 24
anan (4 Bt Oy By SIS0, )
v v v v 4'U v
and the integral would be returned formally as
z' - 322 + 6
do = bé(a,b,
/Z6—5z4+5z2+4 o Z ¢(a,b,z)

a,bER,6>0
4a%—4b*4+1=8ab=0

which is a real function. Plugging in a = 0 and b = 1/2 in this result, we get
the same integral as previously.

IntegrateRealRationalFunction(f) (* Real rational function integration *)

(* Given a real field K and f € K(z), return a real function g such that
dg/dz = f. *)

v+ Z E a log(Si(a,)) + IntegrateRationalFunction(f)
i=1 a|R;(a)=0

return(v+ Y .. LogToReal(R;, S:))

2.9 In-Field Integration

We outline in this section minor variants of the integration algorithms that
are used for deciding whether a rational function is either a

— derivative of a rational function,
— logarithmic derivative of a rational function.

Those problems are important because they arise from the integration of
more general functions. Furthermore, deciding whether a rational function
is a logarithmic derivative is useful when solving linear ordinary differential
equations with rational function coefficients®.

6 The differential Galois group of y™ + an—1(z)y™~V +... is unimodular if and
only if an—1 is the logarithmic derivative of a rational function.
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Recognizing Derivatives

The first problem is, given f € K(z), to determine whether there exists u €
K(z) such that du/dz = f. To compute such an u, we simply apply either the
Horowitz—Ostrogradsky algorithm, or any variant of the Hermite reduction,
to f, obtaining g € K(z) and A,D € K[z] such that D is squarefree and
f = dg/dzr + A/D. At that point, f = du/dz for u € K(z) if and only if
D | A, in which case u = g + [(A/D)dz.

There are also a couple of criterions that can determine whether f is the
derivative of a rational function without computing an integral of f:

— Compute the squarefree factorization D; D2 ... D7 of the denominator of
f, and for each i the polynomial H;; € K{z] of Theorem 2.7.1, using the
LaurentSeries algorithm. Write D; = G;E; where G; = gcd(H;1, D;) and
gcd(E;, Hi1) = 1. Since the residues of f at the roots of G; are all 0, and
the residue of f at a root a of E; is Hi(a) # 0, f is the derivative of a
rational function if and only if E; = 1 for each 4, which is equivalent to
D; | H; for each 1.

— Compute the squarefree factorization D1 D3 ... D} of the denominator of

f, and write f as a sum
n A
EDY Dt
i=1 "t

If f is the derivative of a rational function, then D; | Ay, since the residues
of f at the roots of D; would be nonzero otherwise. If D; | A, then f is the
derivative of a rational function if and only if each A;/D} is the derivative
of a rational function for ¢ > 1, and we can use Mafik’s criterion (49], which
states that A/D™ is the derivative of a rational function for m > 1 if and
only if D divides the Wronskian of dD/dz,d(D?)/dz,...,d(D™!)/dz and °
A.

While those criterions are not practical alternatives to either the Hermite
reduction or the Horowitz—Ostrogradsky algorithm, they are of theoretical
interest. No generalization of those criterions is known for more general func-
tions, which makes the problem of recognizing derivatives more difficult in
general (see Sect. 5.12).

Recognizing Logarithmic Derivatives

The second problem is, given f € K(z), to determine whether there exists
u € K(z)* such that du/dz = uf. It will be proven later (see Exercise 4.2)
that f is the logarithmic derivative of a rational function if and only if f can
be written as f = A/D where D is squarefree, gcd(4, D) = 1, and all the
roots of the Rothstein—Trager resultant are integers. In that case, any of the
Rothstein-Trager, Lazard-Rioboo-Trager or Czichowski algorithm produces
u € K(z) such that du/dz = uf.
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Exercises

Exercise 2.1. Compute

/zs—x4+4z3+w2—z+5
dr

24 — 203 + 522 —4r + 4
using the Hermite reduction and the Rothstein-Trager algorithm.
Exercise 2.2. Compute

82° + 8 — 1227 — 428 — 262° — 6% + 302> + 23z% — 22 - 7 de
/ 210 — 228 — 277 — 4125 + Tzt + 1023 + 322 — 4z - 2

using the Lazard-Rioboo-Trager algorithm.
Exercise 2.3.
a) Compute
/ 7227 + 2562 — 192z° — 1280z — 3122° + 1440z° + 576z — 96

z
928 + 3627 — 3226 — 25225 — 78z + 468z3 + 288x2 — 108z + 9

using the Rothstein-Trager or the Lazard-Rioboo-Trager algorithm. With
that integral compute the symbolic definite integral for —2 < z < -2/3
and compare it with the result obtained by direct numerical integration.

b) Apply the Rioboo algorithm to the above result and compute again the
definite integral for -2 < z < -2/3.

/ dz
14+z4°

b) Find a closed form for [dx/(1+ z") forn € N.
Exercise 2.5 ([52]). Compute
/ 4t +ri+z+1 di
5+t +223 4222 -2+ 4V 143

using the Lazard-Rioboo-Trager algorithm. What happens if the subresul-
tants are not made primitive before evaluating them?

Exercise 2.4.

a) Compute

Exercise 2.6. Write procedures for the Hermite Reduction, the Lazard-
Rioboo-Trager algorithm and the Rioboo algorithm using your favourite pro-
gramming language or computer algebra system.

Exercise 2.7. Modify the Lazard-Rioboo-Trager algorithm so that in the
result, the polynomials inside the logarithms are monic in z. Note that the
polynomials Q;(t) indexing the sums of logarithms are not necessarily irre-
ducible (show first that the leading coefficients of the polynomials inside the
logarithms must be units in K [t]/(Q:(t)))-

3. Differential Fields

We develop in this chapter the algebraic machinery in which the integration
algorithms can be presented and proved correct. The main idea, which orig-
inates from J. F. Ritt [63], is to define the notion of derivation in a pure
algebraic setting (i.e. without using the notions of “function”, “limit”, and
“tangent line” from analysis) and to study the properties of such formal
derivations on arbitrary objects. This way, we can later translate an integra-
tion problem to solving an equation in some algebraic structure, which can be
done using algebraic algorithms. Since an arbitrary transcendental function
can be seen as a univariate rational function over a field with an arbitrary
derivation, we first need to study the general properties of derivations over
rings and fields. This will allow us to generalize the rational function integra-
tion algorithms to large classes of transcendental functions (Chap. 5).

3.1 Derivations

Although the integration algorithm we present in later chapters works only .
over differential fields of characteristic 0, the rings and fields in the first two
sections of this chapter are of arbitrary characteristic. Given a map in any
ring, we call it a derivation if it satisfies the usual rules for differentiating
sums and products.

Definition 3.1.1. Let R be a ring (resp. field). A derivation on R is a map
D : R — R such that for any a,b € R:

(i) D(a+b) = Da+ Db,
(1) D(ab) = aDb + bDa.

The pair (R, D) is called a differential ring (resp. field). The set
Constp(R) = {a € R such that Da = 0}

is called the constant subring (resp. subfield) of R with respect to D. A subset
S C R is called a differential subring (resp. subfield) of R if S is a subring
(resp. subfield) of R and DS C S.
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When there is no ambiguity about the derivation in use, we often say that
R is a differential ring (field) rather than the pair (R, D). We first show that
the usual algebraic properties of the derivations of analysis are consequences

of the above definition.
Theorem 3.1.1. Let (R, D) be a differential ring (resp. field). Then,

(i) D(ca) = cDa for any a € R and c € Constp(R).
i) If R is a field, then
W1 DE_bDa—an
b b?
for any a,b€ R, b# 0.
(i) Constp(R) is a differential subring (resp. subfield) of R.
(iv) Da™ = na™ ' Da for any a € R\ {0} and any integer n > 0 (resp. any

integer n).
(v) Logarithmic derivative identity:
D(u$t ... ur Du Du
Dl u) _ o DUy e, 2
u; .. un" U1 Un
for any uy,...,un € R* and any integers ey, ..., €qn.
(vi)
)
= —(u1,...,Un) Du;
DP(“‘I) 1un) pme BX,( 1 n) i
for anyui,...,un in R and polynomial P with coefficients in Constp(R).

Proof. (i) Let a € R and ¢ € Constp(R). Then, D{ca) = cDa + aDc = cDa
since D¢ = 0.

(ii) Suppose that R is a field, and let a,b € R with b # 0, and ¢ = a/b. Then,
a = be, so by property (ii) of Definition 3.1.1,

Da = D(bc) = bDe + cDb = bD% + 95 Db.

Hence,
1

a a bDa — aDb

D=5 (Pa-5Db) = =F—
(iii) Let C = Constp(R). From property (i) of Definition 3.1.1, D(0) =
D(0 4+ 0) = D(0) + D(0), so 0 € C. From property (ii) of Definition 3.1.1,
D(1) = D(1 x 1) = D(1) + D(1), so 1 € C. Since DC = {0}, this implies
that DC C C. Let a € R. Then, Da+ D(—a) = D(a + (—a)) = D(0) = 0, so
D(-a) = —Da. Let ¢,d € C. Then, D(c —d) = Dc+ D(~d) = Dc— Dd =
0-0=0,s0c—d e C. Also, D(cd) = cDd+dDc=0+0=0,s0cd € C,
hence C is a differential subring of R. Suppose that R is a field and that
d # 0. Then, D(1/d) = —Dd/d? = 0, so 1/d € C, which implies that C is a
differential subfield of R.
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(iv) Let a € R\ {0}. For n = 1, Da! = Da = 1a°Da. Suppose that Da™ =
na™ 1 Da for some n > 1. Then,

Da™*! = D(a™a) = a"Da + aDa™ = a"Da + a(na" "' Da) = (n + 1)a"Da

so (iv) holds for any integer n > 1. Suppose that R is a field. Then, Da® =
D(1) =0 = 0a~!Da, so (iv) holds for n = 0. For n < 0 we have

1 Da™" —na~"" ' Da _
Da"=D— = — =- =na" ! Da.
a-n a—2n a—2n

(v) is left as Exercise 3.1 at the end of this chapter.
(vi) Let Xi,...,X, be indeterminates, P € Constp(R)[X1,...,X,] and

write n
P= Z C(e) HX:‘
i=1

(C)=(El,.~..8n)

where a(.) € C' = Constp(R). Using property (ii) of Definition 3.1.1 and the
fact that D is C-linear, we get

(e)=(81 v-“veﬂ)

n n

w8 Dy €

E Cle) E eiu;' " Du; H u;
i=1 =1

DP(uy,. .., un)

(e)=(e1,...,en)
J#i
n
oP
= 2 5;\—;;(111, ceytn)Du; .

]

In general, a ring can have more than one derivation defined on it. For
example, Q[X, Y] has at least the derivations 0,d/dX and d/dY. But it has
a lot more derivations, for instance D = d/dX + d/dY . In fact, any linear
combination of derivations with coefficients in R is again a derivation on R.

Lemma 3.1.1. The set 2(R) of all the derivations on R is a left-module
over R.

Proof. Let D1,D; € 2(R) andc€ R. Let D =cDy) + D3,i.e. D: R— R is
defined by Da = ¢D)a + Dqa for any a € R. Let a,b € R. Then,

D(a+b) = cDi(a+b) + Da(a+b) = cDia+ cDyb+ Dya + D2b = Da + Db,

and
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caDb+ cbDyia + aDsb+ bDsa
a(chb + ng) + b(cha + DQG)
aDb+ bDa

so D € 12(R). Since the zero-map on R (which maps every element of R to
0) is a derivation on R, this implies that 2(R) is a left-module over R. O

Definition 3.1.2. Let (R, D) be a differential ring. An ideal I of R is a
differential ideal if DI C I.

Lemma 3.1.2. Let (R, D) be a differential ring, I be a differential ideal of R,
and 7 : R = R/I be the canonical projection. Then, D induces a derivation
D* on R/I such that D* ow =mwo D.

Proof. Define D* as follows: for z € R/I, let a € R be such that n(a) = z,
and set D*z = m(Da). Suppose that m(a) = n(b) = z for a,b € R. Then,
a—be€l, soD(a—b) € Isince I is a differential ideal. This implies that
Da — Db € I, hence that n(Da) = m(Db), so D* is well-defined. We have
D* o = mo D by the definition of D*. Let z,y € R/I and let a,b € R be
such that 7(a) = = and 7(b) = y. Then, n(a +b) = z +y and 7(ab) = zy, so

D*(z +y) = n(D(a + b)) = n(Da + Db) = n(Da) + n(Db) = D*a + Db

D(ab) = cDy(ab) + D3 (abd)

and
D*(zy) = n(D(ab)) = n(aDb+ bDa)
= w(a)7(Db) + n(b)x(Da) = zD"y +yD*z

so D* is a derivation on R/I. o

Ezample 8.1.1. Let R be any ring and D be the zero-map on R. Then any
ideal of R is a differential ideal, and the induced derivation D* is the zero-map
on R/I.

Ezample 3.1.2. Let X be an indeterminate and D be d/dX on R = Q[X].

The only differential ideals of R are (0) and (1), and the induced derivations
are D and the zero-map respectively.

Ezample 3.1.3. Let (R, D) be a differential ring, X be an indeterminate and
A : R[X] — R[X] be the map defined by

A(Z anX™) = E(Dan +nap) X" .

n

It can be checked that A is a derivation on R[X] and that for any integer
m > 0, the ideal I, = (X™) is a differential ideal. For m = 1, the map
7 : R[X] = R[X]/(X) ~ R is the substitution X — 0, and the induced
derivation A* on R satisfies

A*n(p) = 7(Ap) = D(p(0)) for any p € R[X]
so A* = D on R.
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3.2 Differential Extensions

We study in this section the problem of extending a given derivation to a
larger ring or field. As in the previous section, the rings and fields in this
section can have arbitrary characteristic. In classical algebra, roots of equa-
tions or new indeterminates are added to a given ring in order to create a
larger ring. An obvious question is then, if the initial ring admits a derivation
D, can it be extended to a new derivation on the larger ring? If this is the
case, and the new derivation is compatible with D, we say that the larger
differential ring is a differential extension of the initial one. The following
definition formalizes the notion of “compatibility with D”.

Definition 3.2.1. Let (R, D) and (S, A) be differential rings. We say that
(S, Q) is a differential extension of (R, D) if R is a subring of S and Aa = Da
for any a € R.

We first show that any derivation on an integral domain has a unique
extension to its quotient field, and this extension is given by the usual rule
for differentiating quotients.

Theorem 3.2.1. Let R be an integral domain, F the quotient field of R and
D a derivation on R. Then there exists a unique derivation A on F such that
(F, Q) is a differential extension of (R, D).

Proof. Define A : F — F as follows: for any z € F, write £ = a/b where
a,b€ R, b#0, and let Az = (bDa — aDb)/b%. Suppose that z = a/b = ¢/d
for a,b,c,d € R. Then, ad = be, therefore:

bDa—aDb  dDc—cDd _ d?bDa — d?aDb — b3*dDc + b*cDd
b2 d? B b2d?
(b6Dd + dDb) (b — ad) + abdDd — bedDb + bd(dDa — bDc)

- b242
_ D(bd)(be — ad) + bd(dDa + aDd — bDc — cDb)
- b2d?
_ D(vd)(be — ad) + bdD(ad — be) _
= o =

which implies that A is well defined. Let now z,y € F and write = a/b,y =
c/d where a,b,c,d € R. By a calculation similar to the one above, we get:

ad+bc _ bdD(ad + bc) — (ad + be) D(bd)

Alz+y)=4 > P
_ bd? Da + abdDd + bedDb + b2dDc — abdDd — ad? Db — bed Db — b2¢Dd
- b2d?

_ bDa—aDb  dDc~cDd

B 7 = Ar + Ay

and
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ac _ bdD(ac) — acD(bd)

_abdDc + bedDa - abcDd — acdDb
- b2d?
a(dDc ~ ¢Dd) = c(bDa—aDb)
= ¥ + o) =zly +yaz

so A is a derivation on F. Take a € R, and write a = a/1. This implies that
Aa = (1Da — aD1)/1%2 = Da, so (F, 4) is a differential extension of (R, D).
Suppose that there are two derivations 4; and 4, on F such that (F, A,)
and (F, 4;) are both differential extensions of (R, D), and let z € F. Write
z = a/b where a,b € R and b # 0. From part (ii) of Theorem 3.1.1 we have

a _bAja—a4, b bDa —aDb bAsa —alzb a
Alx = Al b b2 ® = b2 = Azg = Ag.’L‘
so A; = Ay, which shows that A as defined above is the only derivation on
F such that (F, A) is a differential extension of (R, D). O

Definition 3.2.2. Let R be a ring and X an indeterminate over R. For
any derivation D on R, we define the coefficient lifting of D to be the map
kp : R{X] = R[X] given by

nD(Z a; Xt = Z Da))X

=0 =0
The map kp simply applies the derivation D to every coefficient of a poly-
nomial over R. Note that the degree is not necessarily preserved under £p.

Lemma 3.2.1. kp is a derivation on R[X].

Proof. Let p,q € R[X] and write p= Y"1 ;a;X* and ¢ = > i b;X*. Then,
n

kp(P+q) =Y D(a; +b)X' = (Da) X'+ (Dbi)X* = kp(p) +£p(q)

i=0 i=0 i=0
and
kp(pg) = ZD( Y ab Z 3" D(aib;
1,720 i,j20
i+j=k i+j=k
= Z > anX“+Z > bjDa;X
k=0 1,520 i,j>0
i+j=k i+j=k

pep(q) + gkp(p)

so kp is a derivation on R[X]. o
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If R is an integral domain, then R[X] is an integral domain, so, by Theo-
rem 3.2.1, kp can be extended uniquely to a derivation on its quotient field
R(X) (example 1.1.14), and we also write kp for this extension to R(X).

Lemma 3.2.2. Let (R, D) be a differential ring, (S, A) a differential exten-
sion of (R, D), and X an indeterminate over R. Then,

A(P(@) = xp(P)(a) + (42) T (@)

for any a € S and any P € R[X].

Proof. This follows directly from the sum and product derivation rules: write
P= Z?:o a; X* where the a;’s are in R. Then Aa; = Da; for cach i, so

A(P(a (Z a;a ) Zn:(Aa,-)ai + z": ia;0t " Aa
i=0 i1

=0
kp(P)(@) +(4a) T¢ (@)

]

* We can now prove the main result about differential extensions: given a
simple extension F(t) of a differential field (F, D), if t is algebraic over F, then
D can be extended in a unique way to F(t), otherwise D can be extended in
several ways to F(t) but choosing a value for Dt makes the extension unique.
We prove this in two theorems, one for the transcendental and one for the
algebraic case.

Theorem 3.2.2. Let (F,D) be a differential field, and t be transcendental
over F. Then, for any w € F(t), there ezists a unique derivation A on F(t)
such that At = w and (F(t), Q) is a differential extension of (F, D).

Proof. By Lemma, 3.2.1, xp is a derivation on F[t], and by Theorem 3.2.1, it
has a unique extension to a derivation on F(t). Since d/dt is also a derivation
on F(t), the map A = kp + w d/dt is a derivation on F(t) by Lemma 3.1.1.
We have, At = kpt + w dt/dt = D(1)t + w1 = w, and for a € F, we
get Aa = kpa +w da/dt = Da+ w-0 = Da, so (F(t),4) is a differential
extension of (F, D).

Suppose that there are two derivations A; and A; on F(t) such that
(F(t), ;) and (F(t), A;) are both differential extensions of (F, D), and that
At = Ayt = w. Let z € F(t) and write £ = a/b where a,b € F[t] and b # 0.
Using part (ii) of Theorem 3.1.1 and Lemma 3.2.2 applied to both a and b
with o = t, we get

Az =0,2 a _bAja—adb - b(kpa + w da/dt) — a(kpb + w db/dt)
b b? b2
bAgab2 alzb - A2% — Ayz
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so A; = Ay, which shows that A as defined above is the only derivation on
F(t) such that At = w and (F(t),4) is a differential extension of (F, D). O

Ezample 8.2.1. Let F be any field, O be the map that sends every element
of F to 0, and z be transcendental over F. Let D be an extension of Of
to F(z) satisfying Dz = 1. Since (F(z),d/dz) is a differential extension of
(F,0r) and dz/dz = 1, Theorem 3.2.2 implies that D = d/dz, i.e. the only
derivation on F(z) that is 0 on F' and maps z to 1 is d/dz.

Ezample 3.2.2. Let (F, D) be a differential field and ¢ be transcendental over
F. Let A be an extension of D to F(t) satisfying At = 0. Since (F(t),xp)
is a differential extension of (F, D) and xpt = 0, Theorem 3.2.2 implies that
A = kp, i.e. the only extension of D to F(t) for which ¢ is constant is Kp.

We now turn to algebraic extensions of differential fields. The assump-
tion that E is separable over F' in the next theorem is needed for the case
where F has nonzero characteristic, and E separable over F' means that the
minimal irreducible polynomial over F for any element of E has no multiple
roots. In characteristic 0, algebraic extensions are always separable, so the
reader interested in this case only can ignore the separability hypothesis. In
addition, we use Zorn’s Lemma in the proof to allow for non-finitely gener-
ated extensions. That part of the proof can be skipped if one considers only
finitely generated algebraic extensions.

Theorem 3.2.3. Let (F,D) be a differential field, and E a separable alge-
braic extension of F. Then, there exists a unique derivation A on E such
that (E, 4) is a differential extension of (F, D).

Proof. Suppose first that E = F(a) for some a € E. Let X be an indeter-
minate over F, and P € F[X) be the minimal irreducible polynomial for a
over F. Then, since E is separable over F, dP/dX(a) # 0, so let
xp(P)(a)
=-——"=ckE.
W= gpjdX(a) ©
Since E ~ F[a], there exists Q € F[X] such that w = Q(a). By Lemma 3.2.1,
kp is a derivation on F[X]. Since d/dX is also a derivation on F[X], the
map A = kp + Q - d/dX is a derivation on F(X] by Lemma 3.1.1. Let
7 : F{X] = F[X]/(P) ~ E be the canonical projection. We have

dP
7(AP) = n(kpP + Q ax

kp(P)(a) +v F(@)

xp(P)(a) - sp(P)(a) =0

hence AP € ker(r) = (P), so ker(w) is a differential ideal, which implies by
Lemma 3.1.2 that A induces a derivation A* : E =+ E such that ro A =
A* o 7. Finally, for a € F, we get
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da

aX

so (E, A*) is a differential extension of (F, D).

Let now E be any algebraic extension of F, and let S be the set of all
pairs (K, A) such that (K, A) is a differential extension of (F, D) and K C
E. Define a partial ordering on S by (K1,4,) < (K2, 4;) if (K2,42) is a
differential extension of (K, 4;). Since (F,D) € S, S is not empty, so let
C = {(Ki, A;)} be a totally ordered subset of S, and let K = |J; K; and
define A on K by Az = A;z if z € K;. Since C is totally ordered, (K, A)
is a well-defined differential extension of (F, D). (K, 4) is also a differential
extension of (K;, A;) for each i, so (K,4) € S is an upper bound for C
with respect to <. Hence every totally ordered subset of S has an upper
bound in S, so there exists a maximal element (Kmax, Amax) € S by Zorn’s
Lemma, ([40] App. 2, §2, [77] §9.2). By the definition of S, Kmax C E and
(Kmax, Amax) is a differential extension of (F, D). Let z € E. By what we have
just proven, there exists a derivation A on Kmax(z) such that (Kmax(z), 4)
is a differential extension of (Kmax, Amax), 50 (Kmaxs Amax) < (Kmax(z), 4)
in S, which implies that Kmax = Kax () since (Kmax; Amax) is @ maximal
element. Hence € Kmax, 0 E = Kmax, hence (E, Amax) is a differential
extension of (F, D).

Suppose now that there are two derivations A; and A on E such that
(E,4A;) and (E, A,) are both differential extensions of (F, D). Let z € E and
P € F[X] be its minimal irreducible polynomial over F. Since P(z) = 0, we
have by Lemma. 3.2.2:

A*a = A*na = tla = w(kpa+ Q } = w(Da) = Da

0= AP(@)) = ro(P)(x) + (4i2) 33 (@)

Since E is separable over F, dP/dX (z) # 0, so

kp(P)(z) _ As(z).

AT == IpdX(a)

Since this holds for any z € E, A; = A,, so there exists a unique derivation
A on E such that (E, A) is a differential extension of (F, D). 0

Ezample 3.2.3. Let (F,D) be a differential field of characteristic 0 and
C = Constp(F). Let a be algebraic over C and P € C[X] be its mini-
mal irreducible polynomial over C. Then D has a unique extension to F(a)
and we must have
dP dP
0=D(P = P ——(a) = =
(P(a)) = xp(P)(e) + (Da) 1(@) = (Da) T (a)

so Da = 0, which means that any algebraic element over the constants is
itself a constant w.r.t D.
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Ezample 3.2.4. Let F = Q(z) and a be a root of Y2 —z € F[Y), ie a
represents the function +/z. Then, d/dz has a unique extension to Q(z, @)

and we must have

d do d(Y2-1z), . da

= a—;(az —z)= rc,,,l/d,:(Y2 - z)(a) + e T(a) =-1+2a e
S0 do 1
dz = 2

which is the usual derivative w.r.t. z for a = £V/z.

As a consequence of Theorem 3.2.3, we can always replace any field in
a tower of differential extensions by a separable algebraic extension, and we
still have a valid tower of differential extensions.

Corollary 3.2.1. Let (K,D) be a differential field, (F,A) be a differential
extension of (K, D), F be the algebraic closure of F and E C F be a separable
algebraic eztension of K. Then, D can be extended uniquely to E, A can be
extended uniquely to EF, and (EF,A) is a differential extension of (E, D).

Proof. The picture is as follows:

EF
AN

(F,4)

N/

(K, D)

D can be extended uniquely to E by Theorem 3.2.3. Similarly, EF is a sep-
arable algebraic extension of F ([40] Chap. VII, §4), so A can be extended
uniquely to EF. Let X be an indeterminate over F, and @ € K[X]. Con-
sidering Q as an element of F[X], we have ka (Q) = kp(Q) since A extends
D. Let z € E and P € K[X] be its minimal irreducible polynomial over K.
Since E is separable over K, dP/dX (z) #0 and we have

0 = D(P(z)) = kp(P)(z) + Z—;(x) Dz

so Dz = —kp(P)(z)/(dP/dX)(z). Considering P as an element of F[X], we
get similarly Az = —ka(P)(z)/(dP/dX)(z), so Dz = Az since kp(P) =
xa(P). Hence, (EF,4A) is a differential extension of (E, D). 0

It turns out that in an algebraic extension of a differential field, deriva-
tion commutes with conjugation. This technical point implies that the trace
map commutes with the derivation, and gives a formula for the trace of a
logarithmic derivative.
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Theorem 3.2.4. Let (K, D) be a differential field.

(i) Let F be a separable algebraic extension of K. Then, any field automor-
phism of F over K commutes with D.

(ii) Let E be a finitely generated separable algebraic extension of K, and
Tr:E — K and N : E = K be the trace and norm maps from E to K.
Then, Tr commutes with D and

Tr (—]'Z—a) = —_DN]\E((:)Z) for any a € E*.

Proof. (i) Let F be a separable algebraic extension of K. By Theorem 3.2.3,
D extends uniquely to a derivation of F. Let o be a field automorphism of
F over K and D, = 6~! 0o Dog. Since ¢ is an automorphism, it follows that
D, is a derivation of F. In addition, o is the identity on K, so Dz = D,z for
any z € K. By the unicity clause of Theorem 3.2.3, D = D,, which implies
that coD=0o0D, =Doo.

(ii) Let E be a finitely generated separable algebraic extension of K, and
Tr:E - K and N : E > K be the trace and norm maps from E to K.
Let K be an algebraic closure of K containing E, 01, ...,0, be the distinct
embeddings of E in K over K, and F = (01E)---(0n,E) be the normal
closure of E in K. F is also separable over K ([40] Chap. VII, §4), and
for each i, o; can be extended to a field automorphism of F' over K. By
Theorem 3.2.3, D extends uniquely to a derivation on F such that (F, D) is
a differential extension of (K, D). Let a € E. By part (i) applied to F' we
have D(a°) = (Da)’, so

D(Tr(a)) = D(3_a%) =Y _ D(a%) = ) (Da)** =Tr(Da)
=1 i=1

i=1
so D oTr = Tr o D. Furthermore,
D n a; n ai
r(2) 235 ()" - S
a i=1 a i=1 a”

= D(@%) _ D([Ti,a%) _ D(N(a)
- Z o~ Jlien N

I

i=1

3.3 Constants and Extensions

We study in this section the effect of extending differential fields on their
constant subficlds. We first mention the obvious fact that constants remain
constants in an extension.
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Lemma 3.3.1. Let (F,D) be a differential field and (E,A) a differential
extension of (F, D). Then, Constp(F) C Consta(E).

Proof. Let ¢ € Constp(F). Then ¢ € E and Ac = Dc = 0 since A extends
D, so c € Consta(E). O

In the next few lemmas, we consider the new algebraic constants that can
appear in a differential extension. We first show that an algebraic constant
must in fact be algebraic over the initial constant field, and conversely that
any separable algebraic element over the initial constant field must also be a
constant.

Lemma 3.3.2. Let (F,D) be a differential field and (E,A) a differential
extension of (F, D). Then,

(i) c€ Consta(E) is algebraic over F = c is algebraic over Constp(F).
(ii) ¢ € E is algebraic and separable over Constp(F) == c € Consta(E).

Proof. (i) Suppose that ¢ € Consta(E) is algebraic over F, and let
P=X"+b,1 X" 4+... +b

be the minimal polynomial for ¢ over F. We have P(c) = 0, so

1l

kp(P)(c) + (4¢) T2 (0
kp(P)(c) = (Dbn_1)c"* + ... + Dby

0= A(P(c))

so Db; = 0 for i = 0...n — 1 by the minimality of P. Hence P is in
Constp(F)[X], so c is algebraic over Constp(F).

(ii) Let ¢ € E be algebraic and separable over Constp(F), and let P €
Constp(F)[X] be its minimal polynomial over ConstD(F). Then,

dP
0= = —
DP(e)) = kp(P)e) + (D) 32:(e) = (DA ().
Since c is separable over Constp (F), dP/dX (c) # 0, so Dc = 0, which means
that ¢ € Consta(E). ]

As a consequence, when making a separable algebraic extension of a dif-
ferential field, the new constants are exactly the elements of the extension
that are algebraic over the initial constant subfield. In particular, the con-
stants of the algebraic closure of a differential field of characterisric 0 form
exactly an algebraic closure of the initial constant subfield.

Corollary 3.3.1. Let (F, D) be a differential field a.nd E a separable algebra-
ic extension of F. Let also C = Constp(F) and C? be the algebraic closure
of C in E, i.e. the subfield of all the elements of E that are algebraw over C.
Then D can be extended uniquely to E and Constp(E) = . In addition,
if E is algebraically closed, then Constp(E) is an algebraic closure of C.
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Proof. The picture is as follows:

/E

E

Ql

(F,D)
~

Q

D can be extended uniquely to E by Theorem 3.2.3. Let ¢ € Constp(E).
Since E is algebraic over F, c is algebraic over F, so ¢ € C by Lemma 3.3.2.
Hence, Constp(E) € C N E Conversely, let ¢ € C N E. Then, since E is
separable over F, ¢ € Constp(E) by Lemma 3.3.2, so Constp(E) = CNE.
Suppose that E is algebraically closed. Then, C C EsinceC C F CE.
Hence, Constp(E) =CNE=C. 0

As a consequence of Corollary 3.2.1, we can always replace any field in a
tower of differential extensions by its algebraic closure if the latter is separa-
ble. We show now that if the constant fields were equal in the initial tower,
then they remain equal after such a replacement. The hypothesis that F' is
perfect in the next lemma just ensures that its algebraic closure is separable
over it. All fields of characteristic 0 are perfect, so the reader interested in
the characteristic 0 case only can ignore that hypothesis.

Lemma 3.3.3. Let (F, D) be a perfect differential field, (E, A) be a differ-
ential extension of (F, D), E be an algebraic closure of E, and FCE bean
algebraic closure of F. Then, (EF,A) is a differential extension of (F, D),

and
Constp(F) = Const 4 (E) = Constp(F) = Consta(EF).

Proof. Since F' is perfect, F is separable over F, so (EF,A) is a differ-
ential extension of (F, D) by Corollary 3.2.1. Suppose that Constp(F) =
Consta(E) = C, and let C be the algebraic closure of C. Since F is al-
gebraically closed, ConstD(F) =C by Corollary 3.3.1. Since EF is alge—
braic over E, ConstA(EF) = C N EF by Corollary 3.3.1. But CCF
Consta(EF) = C = Constp(F). E]

As expected, adjoining a constant to a differential field extends the con-
stant field by that constant only.

Lemma 3.3.4. Let (F,D) be a differential field and (E,A) be a differ-
ential extension of (F,D). Then, Consta(F(t)) = Constp(F)(t) for any
t € Consta(E).

Proof. Let C = Constp(F). Since Consta(F(t)) is a field containing C and
¢, it contains C(t). Since At = 0, we have A = kp on F[t] by Lemma 3.2.2.
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Suppose first that ¢ is algebraic over F and let m = [F(¢) : F]. Then, any

u € F(t) can be written as u = Z"iola,t‘ with a; € F, so Au = kpu =
21_0 (Da;)tt. Since 1,¢,...,t™" ! are linearly independent over F, Au =0
if and only if a; € C for each i, s0 Consta(F(t)) = C(t). ‘
Suppose now that ¢ is transcendental over F, and let u = 31, a;t* € F[t].
Then, Au = kpu = 3 _o(Da;)t!, so Au = 0 if and only if a; € C for each i.
This implies that ConstA(F[t] = C[t]. Let now c¢ € Consta(F(t)) and write
¢ = u/v where u,v € F[t}, gcd(u,v) = 1 and v # 0. Dividing v and v by the
leading coefficient of v if necessary, we can assume that the leading coefficient
of v is 1, which implies that either Av = 0 or deg(Av) < deg(v). Suppose
that Av # 0. Since u/v is a constant, we have

u _ vdu—udv

0=A;_ v?

0 z = vAu = uAv is a common multiple of u and v in F{t]. Since
deg(z) = deg(u) + deg(Av) < deg(u) + deg(v) = deg(uv)

and lem(u, v) | z, we have deg(lem(u,v)) < deg(uv). But lem(u, v) ged(u, v) =
uv, so deg(ged(u,v)) > O in contradiction with gcd(u,v) = 1. Hence
Av = 0, which implies that vAu = 0, hence that Au = 0. Therefore
u,v € Consta(F[t]). But Consta(F[t]) = C[t], so c =u/v € C(t). m)

Finally, we need a few results from differential algebra about properties
involving constants which are preserved under differential extensions.

Definition 3.3.1. Let (F, D) be a differential field and y,,...,yn € F. The
Wronskian of y1,...,Yn 18 W(y1,...,yn) = det(M(y1,...,yn)) where

yl y2 PR gn
Dy, Dy, .- Yn
M@yi, - Yn) = : : . (3.1)
Dn—ly1 D"'—lyz . Dn—-ly

The vanishing of the Wronskian is a well-known test in analysis for linear
dependence of functions over the constants. It turns out to have the same
property in arbitrary differential fields.

Lemma 3.3.5 ([37]). Let (F, D) be a differential field. Then, y1,...,yn € F
are linearly dependent over Constp(F) if and only if W(y1,...,yn) = 0.

Proof. We have W(y1,...,y) = 0 if and only if ker(M) # {0} where M
is the matrix given by (3.1). Write C = Constp(F) and suppose first that
Y1,---,Yn are linearly dependent over C. Then there are ¢1,...,cn, € C, not
all 0 such that 3., ¢;y; = 0. Differentiating this an arbitrary number of

times, we get that
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Xn: c;D™y; =0
i=1

for any m > 0. This implies that (cy, ..., ¢n) € ker(M), hence that ker(M) #
{0} and W (y1,...,¥ya) = 0.

We proceed by induction on n for the converse. For n = 1, we have
W(y1) = 3 so if W(y;) = 0, then y; = 0 is linearly dependent over C.
Suppose now that n > 1, that the lemma holds for any n — 1 elements in F,
and that W(y,,...,yn) = 0. Then, ker(M) # {0}, so let (zi,...,z,) be in
ker(M) where z; # 0 for some i. Renumbering the y;’s if necessary, we can
assume that z; # 0, hence that z; = 1 since ker(M) is a vector space over
F. Since (z1,...,z,) € ker(M), we have Y z;Diy; = 0for 0 < j < n.
Differentiating those equations for 0 < j < n — 1 and using them together
with Dz; = D1 =0, we get

0=D (Z x,-DJ'y,-) =Y DDy + Y z:D'y; = DDy,

i=1 i=1 i=1 i=2
o (Dz3,...,Dz,) € ker(M(y2,...,yn)). If Dzg = ... = Dz, = 0, then
Z1,...,Zn € C, 50 y1,...,yn are linearly dependent over C. If Dz; # 0
for some i > 1, then ker(M(y2,...,yn)) # {0}, s0 ya,...,yn are linearly
dependent over C' by induction, which implies that y;,...,y, are linearly
dependent, over C. a

As a consequence, linear independence over the constants is independent
of the constant field, hence preserved under differential extensions.

Corollary 3.3.2. Let (F, D) be a differential field and (E, A) be a differen-
tial extension of (F,D). If S C F is linearly independent over Constp(F),
then S is linearly independent over Consta(E).

Proof. Let S C F be linearly independent over Constp(F) and {s1,...,8,}
be any finite subset of S. Then, W(s;,...,s,) # 0 by Lemma 3.3.5. But
81,...,8n € E, so by Lemma 3.3.5 applied to (E, 4), {s1,...,x} is linearly
independent over Const (E). Since this holds for any finite subset of S, S is
linearly independent over Consta (E). 0

The following lemma states that if an algebraic system of equations and
inequations is satisfied by constants, then it is also satisfied by algebraic
constants.

Lemma 3.3.6 ([37]). Let (F,D) be a differential field with algebraically
closed constant field, (E, A) be a differential extension of (F, D), X1,...,Xm
be independent indeterminates over F, g € F[Xy,...,Xm] and S be any
subset of F[X1,...,Xm]. If there are cy,...,c;m € Consta(E) such that
g9(cty ..., em) # 0 and f(c1,...,cm) = 0 for any f in S, then there are also
such cy,...,cm tn Constp(F).
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Proof. Let C = Constp(F) and
V(S) = {(a1,---,am) € C™ such that f(ai,...,am) = 0 for all feS}.

Since F is a field containing C, it is a vector space over C, so let B be a
vector space basis for F over C. Then, B generates F[X 1,-++,Xm) as a free
module over C[X1, ..., Xm] so write each f in S as f = 3 ,cp hysb where
hsp € C[X1,...,Xm] and all but finitely many of the Ay, are identically 0.
Let I C C[X1,...,Xm] be the ideal generated by all the hyp and

V() = {(a1,...,am) € C™ such that h(a1,...,am) =0for all h e I}.

By construction, we have V(I) C V(S). Let ¢1,...,cm € Const 4 (F) be such
that g(ci,...,cm) # 0, which implies that g # 0, and f(c1,...,cm) = 0 for
all f € S. Then, for each f € S,

th,b(cl,...,cm)bzo

beB

which implies that hgy(ci,...,cm) = 0 for each b € B, since B is linearly
independent over Consta(E) by Corollary 3.3.2. Suppose that 1 € I. Then,
there are polynomials asp € C[X1,...,Xm], all but finitely many of which
identically 0, such that

1= Zaf'bhf'b .

beB

Evaluating that equality at (Xi,...,Xm) = (c1,..-, cm) yields 1 = 0. There-
fore 1 ¢ I, so by Hilbert’s Nullstellensatz (Theorem 1.1.10) V(1) # 0.

Write now g = ), 9bb where gy € C[X1,...,Xm) and all but finitely
many of the g, are identically 0. Suppose that glay,...,am) = 0 for ev-
ery (a1,...,am) € V(I). As previously, this implies that gs(a1,...,am) =0
for every b € B and every (ai,...,am) € V(I), hence, by Hilbert’s Null-
stellensatz (Theorem 1.1.11), that there exist positive integers n, such that
g™ € I for each b € B. Since h(ci,...,cm) = 0 for every h € I, we get

g,*(c1,---,cm) = 0, hence gs(c1,..-,cm) = 0 for every b € B, in contradic-
tion with g(ci,...,cm) # 0. Hence there exist (a1,...,am) € V(I) such that
g(ay,...,an) # 0. Since V(I) C V(S), this proves the lemma. a

3.4 Monomial Extensions

We want to study simple transcendental differential extensions of the form
k(t) where there is some amount of similarity between the deri\{ations ‘D
and d/dt, which will allow us to apply the algorithms for integrating ratio-
nal functions to such extensions. Recall that if k is a differential field, K a
differential extension of k, and t an element of K, then k(t) is a differential
field itself if it is closed under the derivation D of K. A condition for some
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similarity with d/dt is that D transforms polynomials in ¢ into polynomials
in t, i.e. that k[t] is closed under D!. Therefore, we study here differential
extensions where the derivatives of polynomials are polynomials. In addition,
we now restrict our study to fields of characteristic 0, so for the rest of this
chapter, k is a differential field of characteristic 0, K is a differential extension
of k, and D denotes the derivation on K. We first show that the requirement
that Dt € k[t] is equivalent to k[t] being a differential subring of k(t).

Lemma 3.4.1. Lett € K. Then, Dt € k[t] <= k(t] is closed under D.
Proof. Suppose that Dt € k[t], and let p € k[t]. By Lemma 3.2.2,

d
Dp = ro(p) + (DY) € kit
so k[t] is closed under D. Conversely, if k[t] is closed under D, then Dt € kt]
since t € k[t]. o

Note that we did not require that ¢ be transcendental over k in the above
lemma. We can now define the class of differential extensions for which the
integration algorithm will be presented later. This class is general enough to
model the usual elementary transcendental functions of calculus. It consists
of simple transcendental extensions for which k(t] is closed under D.

Definition 3.4.1. We say that t € K is a monomial over k (w.r.t. D), if

(i) t is transcendental over k,
(it) Dt € k[t].

In addition, we define then the D-degree of t to be 6(t) = deg,(Dt), and the
D-leading coefficient of t to be A(t) = lc,(Dt). We call t linear if §(t) < 1,
nonlinear otherwise. Furthermore we let H, € k[X] be the polynomial such
that Dt = H,(t).

Since the derivative of polynomials are polynomials in monomial exten-
sions, we often need to know the degree and leading coeflicient of a derivative.

Lemma 3.4.2. Let t be a monomial over k, and p € k[t].

(1) deg(Dp) < deg(p) + max(0,4(t) — 1).
(ii) If t is nonlinear and deg(p) > 0, then equality holds in (i), and the
leading coefficient of Dp is deg(p) lc(p) A(t).

Proof. If p = 0, then Dp = 0 and (i) is satisfied under the convention that
deg(0) = —o0, so suppose that p # 0 and let n = deg(p).

(i) We have Dp = &p(p) + (Dt)(dp/dt) by Lemma 3.2.2. If n = 0, then
dp/dt = 0, so deg(Dp) = deg(kp(p)) < n < n + max(0, 6(t) — 1). Otherwise

! This condition is probably not even necessary (Exercises 3.6 to 3.10) but the
integration algorithms have not been generalized to such extensions as described
in [56].
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n > 0, so deg(dp/dt) = n—1, which implies that deg((Dt)dp/dt) = n+4(t)-1,
hence

deg(Dp) < max (deg(no(m),deg((m) 4 ) < max(n,n+8(t) - 1)
n + max(0,4(t) — 1).

(ii) Suppose that ¢ is nonlinear and n > 0. Then, 6(t) > 1 and
deg((Dt) dp/dt) =n + &(t) — 1 > n > deg(xp(p))

so deg(Dp) = n + 6(t) — 1. Furthermore, the leading coefficient of dp/dt is
na, where a is the leading coefficient of p, so the leading coefficient of Dp is

naA(t). o

Let ¢t € K be a monomial over k for the rest of this section. It is well-known
that for D = d/dt, every squarefree polynomial has no common factor with its
derivative, and this fact forms the basis of the various squarefree factorization
algorithms. This fact is not always true for more arbitrary derivations, so we
introduce a name for the polynomials for which it still holds.

Definition 3.4.2. We say that p € k[t] is normal with respect to D if
ged(p, Dp) = 1. We say that p is special with respect to D if ged(p, Dp)=p
i.e. p| Dp.

In addition, we introduce the following notations for the sets of special
and special monic irreducible polynomials:

Skiej:x = {p € k[t] such that pis special},
S}:’[’E]:k = {p € Sit:+ such that pis monic and irreducible} .

When the monomial extension is clear from the context, we omit the sub-
scripts and simply write S and S, A polynomial is not necessarily normal
or special, but an irreducible polynomial p € k(t] must be either normal or
special, since ged(p, Dp) is a factor of p. Note that k C S, and that p € k[t]
is both normal and special if and only if (p) = (1), which is equivalent to say
that p € k*. Special polynomials generate differential ideals, so there is an
induced derivation on the quotient rings (Lemma 3.1.2). More importantly,
this induced derivation turns out to be an extension of D.

Lemma 3.4.3. Let p € S\ k. Then, (p) is a differential ideal of k(t] and
(k[t]/(p), D*) is a differential extension of (k,D) where D* is the induced
derivation.

Proof. Let p € k[t] \ k be special. Then, p | Dp by definition, so (p) is a
differential ideal of k[t]. By Lemma 3.1.2, D* om = mo D, where D* is
the induced derivation on k[t]/(p) and = : kft] — k[t]/(p) is the canonical
projection. Hence, D*a = D*n(a) = m(Da) = Da for any a € k, which
implies that (k[t]/(p), D*) is a differential extension of (k, D). 0
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Lemma 3.4.4. Let py,...,pm € k[t] be such that ged(pi,p;) =1 for i # j,
and let p = [[2, p{* where the e;’s are positive integers. Then,

ged(p, Dp) = (H pi"‘) [ [ ecd(p:, Dps)-
i=1

i=1
Proof. Let a,b € k[t] and suppose that gcd(a,b) = 1. Then,
ged(ab, D(ab)) ged(a, D(ab)) ged(b, D(ab))
ged(a, aDb + bDa) ged(b, aDb + bDa)
= gcd(a,bDa) ged(b, aDb) = ged(a, Da) ged(b, Db).

So by induction, ged(p, Dp) = [Ti~, ged(p§*, D(p;*)). In addition,

ged (pF, D(p%)) = ged(p',epf ' Dpi)
e;—1 e;—1

ps ! ged(pi,esDpi) = pi'~ ged(pi, Dpi)

It

which proves the lemma. O

As a consequence, any normal polynomial must be squarefree. In addition,
we get the multiplicative properties of special and normal polynomials, in
particular that S is a multiplicative semigroup generated by k and S frr,

Theorem 3.4.1.

(i) Any finite product of normal and two by two relatively prime polynomials
is normal. Any factor of a normal polynomial is normal.

(ii) pry...,pn €S = [l Pi €S.

(i) pe S\ {0} = q € S for any q € k[t] which divides p.

Proof. (i) Let py,...,pm € k[t] be normal and such that ged(ps, pj) = 1 for
i # j, and let p = [[;~, pi- By Lemma 3.4.4 we have

ged(p, Dp) = (H p?) I ged(pi, Dpi) =1
i=1 i=1

since each p; is normal. Hence, p is normal.

Let p € k[t] be normal and write p = gh where ¢,h € k[t]. Since p is
squarefree, we have ged(g, h) = 1, hence by Lemma 3.4.4, 1 = ged(p, Dp) =
ged(g, Dq) ged(h, Dh), so ged(q, Dg) = 1, which implies that g is normal.
(ii) Let a,b € S, then Da = ap and Db = bq for some p, g € k{t]. Hence,

D(ab) = aDb+ bDa = abg + bap = ab(p + q)

so ab € S. Part (ii) follows by induction.

(iii) Let p € S\ {0}, r € k[t] be an irreducible factor of p, and n be the
maximal exponent such that r™ | p. Then, n > 1, since r | p, and p = r"h for
some h € k[t] with ged(r, h) = 1, so by Lemma 3.4.4,
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r*h = p = ged(p, Dp) = ged(r™h, D(r™h)) = r"~! ged(r, Dr) ged(h, Dh) .

Hence rh = ged(r, Dr) ged(h, Dh), which implies that gcd(h, Dh) = h and
ged(r, Dr) = r, hence that r € S. Therefore, every irreducible factor of p
must be special. Let now ¢ € k[t] be any factor of p. If g € k, then g € S by
definition. Otherwise, ¢ is a nonempty finite product of irreducible factors of
p, so it is special by part (ii). 0

As mentioned above, every normal polynomial must be squarefree. The
converse is not always true however, and there is an important connection be-
tween the normality of a squarefree polynomial and the differential properties
of its roots. This relationship is described by the following two theorems.

Theorem 3.4.2. Let k be the algebraic closure of k, and p € kt] be square-
free. Then,

p normal < Da # Hi(a) for all roots a € k of p.

Proof. Let p € k{t] be squarefree, and let a1,...,0n € E_be the distinct roots
of p, where n = deg(p) > 0. The factorization of p over k is then

p=c|J¢t-)

i=1

where ¢ € k* is the leading coefficient of p. By Lemma 3.4.4 we have

ged(p, Dp) = ¢ ﬁ ged(t —ai, D(t —a;)) = ¢ ﬁ ged(t — a;, He(t) — Day) .

i=1 i=1

Hence p is normal if and only if ged(t — ai, H.(t) — Da;) =_1 for each i.
This is equivalent to ¢t — a; does not divide H,(t) — De; in k[t], hence to
Da; # Hi(a;) for all 1. m]

Theorem 3.4.3. Let k be the algebraic closure of k, and p € k[t]\ {0}. Then,
p €S &= Da = Hi(a) for all roots a € k of p.
Proof. Let p € k[t] \ {0}, and let

p=cJ¢t-a)
=1

be the irreducible factorization of p over k, where ¢ € k* is the leading
coefficient of p and e; > 0 for each i. By Lemma 3.4.4 we have

n n

c H(t — )%t chd(t —a;, D(t — ay))

i=1 i=1

—a;)%! chd(t — a;, H(t) — Do) .

i=1 =1

ged(p, Dp)

I
(9]
=
o~
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Hence p is special if and only if ged(t — a;, Hi(t) — Da;) = t — a for each 4.
This is equivalent to t — a; | H(t) — Da; in kft], hence to Da; = Hy(a;) for
all <. O

We make frequent use in the future of the trivial remark that special and
normal polynomials remain such when we make an algebraic extension of k.

Corollary 3.4.1. Let E be an algebraic extension of k. Then, t is a mono-
mial over E. Furthermore, Syjy).x C Spyye and f p€ k[t] is normal, then it
remains normal when viewed as an element of E[t].

Proof. t is transcendental over k and E is algebraic over k, so t is tran-
scendental over E. Also, Dt € kft] C E[t] so t is a monomial over E. Let
p € k[t], k be the algebraic closure of k containing E, and ay,...,am be the
distinct roots of p in k. If p is normal (resp. special), then Da; # He(a)
(resp. Da; = H;(a;)) for each i by Theorem 3.4.2 (resp. Theorem 3.4.3),
so p is normal (resp. special) when viewed as an element of E[t] again by
Theorem 3.4.2 (resp. Theorem 3.4.3). 0

As a consequence, in the case where all the elements of k are constants,
the special irreducible polynomials are exactly the factors of H;, and the
normal polynomials are exactly the squarcfree polynomials that are coprime
with Ht.

Corollary 3.4.2. Suppose that Da =0 for any a € k.

(i) Let p € k[t] be monic and irreducible. Then, p € ST o= p| He.
(ii) Let p € k[t] be squarefree. Then, p normal <= gecd(p, Hy) = 1.

Proof. (i) Let p € k[t] be monic and irreducible, and suppose first that p €
Sirr. Let a € k be any root of p. Then, Da = H,(«) by Theorem 3.4.3. But a
is algebraic over k, so Do = 0 by Lemma 3.3.2, hence H;() = 0. Since this ~
holds for any root of p and p is irreducible, p | H;. Conversely, let p € k[t]
be a monic irreducible factor of H;, and let a € k be any root of p. Then,
H,(a) = 0. But « is algebraic over k so Da = 0 as before, hence Da = H,(a)
so p € S by Theorem 3.4.3.

(ii) Let p € k[t] be squarefree. Suppose first that p is normal and let a € k be
any root of p. Then, Da # H;(a) by Theorem 3.4.2. But Da = 0 as before
since a is algebraic over k, so H;(a) # 0. Since this holds for any root of p,
ged(p, H,) = 1. Conversely, suppose that ged(p,H;) = 1 and let a € k be any
root of p. Then H;(a) # 0. But Da = 0, so p is normal by Theorem 3.4.2. O

In particular, applying the above corollary to the case D = d/dt, we have
Dt = 1 = H,, so every squarefree polynomial in k[t] is normal with respect
to d/dt.

We have made no assumptions on the possible extensions of the constant
field in a monomial extension, so we now look at the possible new constants
of k(t). It turns out that new constants and special polynomials are closely
related. Recall that a monomial ¢ is called nonlinear when deg,(Dt) > 2.
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Lemma 3.4.5. If ¢ € Constp(k(t)) then both the numerator and denomi-
nator of ¢ are in S. Furthermore, if ¢ # 0 and t is nonlinear, then both the
numerator and denominator of ¢ have the same degree.

Proof. Let ¢ € Constp(k(t)) and write ¢ = a/b where a,b € k[t], b # 0 and
ged(a,b) = 1. Then,
bDa ~aDb

b2
so bDa = aDb, which implies that a | Da and b | Db, hence that a,b € S.
Suppose now that ¢ # 0, ¢ is nonlinear, and that deg(a) # deg(b). Since 1/c €
Constp(k(t)), we can assume that deg(a) > deg(b). Write then c =p+e/b
where p, e € k[t], deg(p) = deg(a) —deg(b) > 0, and e = 0 or deg(e) < deg(b).
Then,

0=Dc=

O=Dc:Dp+EQ—ebTe‘D——D +q+b2
where g, 7 € k[t], (bDe —eDb) = gb® +r and either 7 = 0 or deg(r) < 2 deg(b).
Since ¢ is nonlincar, we have 8(t) > 1 and deg(Dp) = deg(p) + 4(t) —
by Lemma 3.4.2, so deg(Dp) > &(t) — 1, which means in particular that
Dp # 0. Hence, e # 0, so deg(b) > 0, which implies that deg(eDb) = deg(e) +
deg(b) + 6(t) — 1 by Lemma 3.4.2, so deg(eDb) < 2deg(b) + é(t) — 1. Either
e € k, in which case deg(bDe) < deg(b), or e ¢ k, in which case deg(bDe) =
deg(b) + deg(e) + d(t) — 1 by Lemma 3.4.2, so deg(bDe) < 2deg(b) +4(t) — 1
in both cases. Hence deg(bDe — eDb) < 2 deg(b) +4(t) — 1, which implies that

(3.2)

deg(q) = deg(bDe — eDb) — 2degb < §(t) — 1 < deg(Dp)
in contradiction with (3.2), so deg(a) = deg(b). O

Thus, the existence of new constants in k(t)\ k implies that S’ is nonemp-
ty. The converse, whether the existence of nontrivial special polynomials im-
ply the existence of a new constant, is a more difficult problem. A theorem of
Darboux [25, 70, 78] essentially states that if ST is large enough, then there
exists a new constant in k(t) \ k. The situation is easier for the key monomial
extensions of the integration problem, where any element of Sir produces a
new constant, as the next lemmas show.

Lemma 3.4.6. Suppose that Dt € k, and let p € k[t] be nonzero. Then,

peES & D ( p )
le(p)
Proof. Let p € kft] be nonzero, and write ¢ = p/lc(p). If Dg = 0, then ¢ | Dgq,
so ¢ € S, which implies that p € S by Theorem 3.4.1. Conversely, suppose
that p € S. Then, g € S by Theorem 3.4.1, and write ¢ = [T, (t—as) where
the a;’s are in the algebraic closure of k and the e;’s are positive integers.
Then, Da; = H;(a;) = Dt for each i by Theorem 3.4.3, so
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Dq =3 Dt - Da)(t - ags [ (t - ;)% = 0.

i=1 J#
a

Lemma 3.4.7. Suppose that Dt/t € k, and let p € k[t] be nonzero. Then,

p _
pES & D( e )tdeg(p)>

Proof. Let p € k[t] be nonzero, and write ¢ = p/lc(p). We have deg(q) =
deg(p) and
q\ _ Dq—ngDt/t
b (t—") - tn

for any integer n. Suppose that D(q/t4¢8(@)) = 0. Then, Dq = deg(q)qDt/t,
so q | Dq, which implies that ¢ € S, hence that p € S by Theorem 3.4.1.
Conversely, suppose that p € S, and write ¢ = [T, (t — ;)% where the
a;’s are in the algebraic closure of k and the e;’s are positive integers. Then,
Da; = (Dt/t)a; for each i by Theorem 3.4.3, so

Dq = iei(Dt - Daj)(t — ;)% ™! H(t - ;)

i=1 J#i
= Ze,Dtt—a, | (D
J#i
Dt Dt
= <Z ei) ¢ = deg(q)g—-
i=1
which implies that D(q/t4°&®)) = 0. o

We need for later use to define one particularly interesting class of special
polynomials. We first define some useful terminology.

Definition 3.4.3. We say that u € k is a logarithmic derivative of a k-
radical if there exist v € k* and an integer n # 0 such that nu = Dv/v.

Note that if n < 0, then we can write (—n)u = Dw/w where w = v™!, so we

can always assume that the coefficient n is positive in the above definition.

Ezample 3.4.1. Let k = Q(z) with derivation D = d/dz, and v = 1/(2z) € k.
Since 2u = Dz/z, u is a logarithmic derivative of a Q(z)-radical. In fact, u is
the logarithmic derivative of \/z, which is a radical over Q(z). On the other
hand, Dv/v ¢ Z for any v € k*, so 1 is not a logarithmic derivative of a
Q(z)-radical.
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It is clear from the definition that if we extend k to some extension field E,
then the logarithmic derivatives of k-radicals become logarithmic derivatives
of E-radicals. However, when FE is algebraic over k, then an element of & that
is not a logarithmic derivative of a k-radical cannot become a logarithmic
derivative of an E-radical.

Lemma 3.4.8. Let E be algebraic over k, and a € k. If a is not a logarithmic
derivative of a k-radical, then it is not a logarithmic derivative of an E-

radical.

Proof. Suppose that a € k is not a logarithmic derivative of a k-radical, and
that there exist « € E* and an integer n # 0 such that na = Da/a. Since E
is algebraic over k, let p € k[X] be the minimal polynomial of a over k, and
write p = X™ + Z;':Ol a; X* where the a;’s are in k and m > 1. Then,

m-1 )

0=D(p(a)) =mnaa™ + Z(Da,- +inaa;)a’ = g(a)

i=0
where g = mna X™+Y. "5 (Da; +inaa;)X* € k[X]. Since p is the minimal
polynomial for o over k, p | ¢, s0 ¢ = mnap, which implies that Da; +

inaa; = mnaa; for i = 0,...,m — 1. Since p is irreducible and o # 0,
a;j # 0 for some j in {0,...,m — 1}. We then have,

B% — nim —j)a

a;

in contradiction with a not a logarithmic derivative of a k-radical since n # 0
and m # j. a

Definition 3.4.4. We say that q € k[t] is special of the first kind (with
respect to D) if ¢ € S and for any root a of g in the algebraic closure of k,
Pala) is not a logarithmic derivative of a k(a)-radical, where

Dt — Da

—— € k(@)[t].

Pa =
In addition, we introduce the following notations:
S1kt:k = {P € Skiy):x such that p is special of the first kind},

S}:‘I‘c[t}:k = {p € S\ k[¢):+ such that p is monic and irreducible} .

When the monomial extension is clear from the context, we omit the exten-
sion subscripts and simply write S; and Si". Note that since a is a root of the
polynomial Dt — Da, t — o | Dt — Da in k(a)[t], so pa(a) is always defined.
In addition, we remark that k* C &) by definition, and that we could have
replaced “k(a)-radical” by “k-radical” in the above definition in view of Lem-
ma 3.4.8. Theorem 3.4.1 and Corollary 3.4.1 are easily generalized to special
polynomials of the first kind, showing that &) is a multiplicative semigroup
generated by k* and Sir.
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Theorem 3.4.4.

(i) P, Pn €St = [, pi € S1.
(i) p€ Sy = q €S for any q € k[t] which divides p.
(i) If E is algebraic over k, then Sy x():x C S1,5(:E

Proof. Let k be the algebraic closure of k.

(i) Let py,...,pn € S1. Then, ¢ =p, ---p, € S by Theorem 3.4.1. Let a € k
be a root of g. Then, a is a root of p; for some i and p; € S1, so p,(c) is not
a logarithmic derivative of a k(a)-radical, which implies that ¢ € S;.

(ii) Let p € S1 and q € k[t] be any factor of p. Then, ¢ € S by Theorem 3.4.1.
If ¢ € k, then ¢ # 0 (since p # 0), so ¢ € S;. Otherwise, ¢ ¢ k, so let a € k
be a root of ¢. Then, a is a root of p, so ps(e) is not a logarithmic derivative
of a k(a)-radical, which implies that ¢ € S;.

(iii) Let p € S; and E be an algebraic extension of k. Then, p is special
in E[t] by Corollary 3.4.1. Let a € k be a root of p. Then, pa(a) is not a
logarithmic derivative of a k(a)-radical, so it is not a logarithmic derivative
of an E(a)-radical by Lemma 3.4.8. Hence, p is special of the first kind when
viewed as an element of E[t]. a

3.5 The Canonical Representation

Given p € k[t], we want to separate the special and normal components of p.
The following definition formalizes that separation.

Definition 3.5.1. Let p € k[t]. We say that p = p,pn is a splitting fac-
torization of p if pn,ps € k(t], ps € S, and every squarefree factor of p, is
normal.

A consequence of Theorems 3.4.2 and 3.4.3 is that a splitting factorization
of p over k is also a splitting factorization of p over any algebraic extension
of k, since Da = H.(«) for all the roots of p; and Da # H;(a) for all
the roots of p, in k. For the same reason, we always have gcd(pn,p,s) = 1
in a splitting factorization of p, and such a factorization is unique up to
multiplication by units in k, like a prime factorization. It is clear that a
prime factorization of p yields a splitting factorization of p, but it turns out
that a splitting factorization can always be computed by gcd’s only, like a
squarefree factorization.

Theorem 3.5.1. Let p € k[t]. Then,

(i)
ged(p, Dp)
ged(p, dp/dt)

is the product of all the coprime special irreducible factors of p.
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(ii) If p is squarefree, then p = pspn 15 @ splitting factorization of p, where
ps = ged(p, Dp) and pn = p/ps.

Proof. (i) Let p € kl[t], N1,...,Nm be all its coprime normal irreducible

factors, and Si,...,Sn be all its coprime special irreducible factors in k[t].

The prime factorization of p has then the form p = u 1= S; i1, Ni¥, so

by Lemma 3.4.4 applied to both D and d/dt, we have

ged(p, Dp)
ged(p, dp/dt)
d;— i—

H?:l Sj ' H:r;l Nie ! H;L=1 ng(Sj’DS]') I—I:,-]_—l ged(Vi, DN;)
5y 877 Ty N7 T3y ged(S5, dS;/dt) [TiZ, ged(Ni, dNy/dt)
[1}-, gcd(S;, DS;) [Tiz, ged(IVi, DNV:)
1—[;':1 ged(S;,dS;/dt) [Tie, ged (N;, dN;/dt)
Each N; and Sj is irreducible, so ged(Ni,dN;/dt) = ged(S;,dS;/dt) = 1.
Each N; is normal with respect to D, so ged(N;, DN;) = 1. Each S; is
special, so ged(S;, DS;) = Sj. Therefore, 5 = H;‘___l S;, which is the product

of all the coprime special irreducible factors of p.

(ii) Suppose that p € k[t] is squarefree. Then ged(p, dp/dt) = 1, so, by (i),
ps = ged(p, Dp) is the product of all the coprime special irreducible factors
of p. But p is squarefree, so p, = p/ps has no special irreducible factor, which
implies by Theorem 3.4.1 that pn is normal. O

S

This theorem gives us two algorithms for computing splitting factoriza-
tions: the first is to compute S = gcd(p, Dp)/ ged(p, dp/dt) and ¢ = p/S. If
S € k, then p has no special irreducible factor, so return p, = p,ps = 1.
Otherwise deg(q) < deg(p), so recursively compute a splitting factorization
¢ = qngs Of ¢ and return pp = ¢n, Ps = Sq,.

SplitFactor(p, D) (* Splitting Factorization *)

(* Given a derivation D on k[t] and p € k[t], return (pn,ps) € k[t]? such
that p = pnps, Ps is special, and each squarefree factor of p, is normal.

")

S « ged(p, Dp)/ ged(p, dp/dt) (* exact division *)
if deg(S) = 0 then return(p,1)
(gn,gs) & SplitFactor(p/S, D) (* exact division *)

return(gn, Sq.)

Ezample 3.5.1. Let k = Q(z) with D = d/dz, and let t be a monomial over

k satisfying ‘ 3 1

Dt = —t% - 5t+5m (3.3)
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ie t .represents a transcendental function solution of the above differential
equation. Applying SplitFactor to

p = 4zt® - 423 (2 +1)t* + 22 (22— 3)t3 + 2 (22 + Tz 4 2)t% — 4z +4z - 1)t + 221

we get:
1.
Dp = —20z*t% + 20%(8z + 1)t° + 322 (4z + 7)t*
~(1223 + 2522 - gz)t:’ + (722 - g:z —5)t?
3 1
+(222 +5r +4— —)t - —
( T + 22)t 2z + 52

2. ged(p, Dp) = ¢ — (27 + 3)t/(42?) + (2z — 1)/(42®)

3. dp/dt = 20z*t* — 1623(z + 1)t3 + 322 (2z — 3)t? + 2x(2z% + Tz + 2)t -
4z -4z +1

4. ged(p,dp/dt) =t —-1/z

5. S=t+t/z — (22 — 1)/(42?)

6. p1 = p/S = 4zt — 423 (z + 2)t% + 42%(2z + 1)t — 422

7. recursive call, SplitFactor(p, D):

a) Dp; = —12zt* + 223 (4z + 7)t3 — 222(3z + 2)t? — 22(22% — 2z — 1)t +
42% - 6z
b) ged(p1,Dp1) =t - 1/x
c) dpy/dt = 1222 — 82%(z + 2)t + 8z + 422
d) ged(pi,dpi/dt) =t ~1/z
e) §y=1
8 gn=p1,¢=5-1=5

So a splitting factorization of p is

P = DPnDs
= (42 — 42 (z + 2)t* + 42°(2z + 1)t — 42?) <t2 + lt 2l
T 4x2 )
In addition, the roots of p, are
1,1 /2
a=——=+-4/-
2r 2Vz

which are indeed algebraic functions solutions of (3.3
iich are inde (3.3), as expected from

;I‘he second algorithm is to compute first a squarefree factorization p =
P1P; - - Py of p, and then compute S; = ged(p;, Dp;) and N; = p;/S;. By The-
orem 3.5.1, p = pypy, is a splitting factorization of p, where p, = 5,57 --- S™
and p, = N1 N} --- N This approach has the advantage of also giving l’:;
squarefree factorizations for p, and p,. Furthermore, Yun’s algorithm can be
used for the initial squarefree factorization.



100 3. Differential Fields

SplitSquarefreeFactor(p, D) (* Splitting Squarefree Factorization *)

(* Given a derivation D on k[t] and p € k[tl, return (Nl’z'"’N,','.‘) .and
(S1,...,5m) in k[t]™ such that p = (N1]V. - NIY(S185 - Sm) isa
splitting factorization of p and the N; and S; are squarefree and coprime.
*)
(p1,...,pm) + Squarefree(p)
for i + 1 to m do

Si + ged .',Dpi

N; (—gp; / g: ) (* exact division *)
return((N1,..., Nm),(S1,...,5m))

Ezample 3.5.2. Applying SplitSquarefreeFactor to the polynomial p of the
previous example with the same monomial extension, we get:

1. p=pip} = (4223 — dz(z — 1)t2 — (6z — 1)t + 2z — 1) (at — 1)
2.

3 1
Dpy = —122%t* + 2z(4z — 9)t* + (162 — 9)t* — (42: -7+ 5—5) -1+

Sy = ged(py, Dpy) =t + t/z — (22 — 1)/(4z?%)

. N1 = p1/51 = 4.’1,‘2t —4.’52

. Dpy = —zt? ~t/24+1/2

. S3 = ged(p2, Dp2) =1

. Nz =p2/52 =zt-1

So we get the splitting factorization p = pnps With squarefree factorizations
of p, and p,:

NO LW

pn = N\ N2 = 42%(t — 1)(at - 1)*

and , 1. 22—1
p,=51:t+;t-— o

We can now define a decomposition of the elements of k(t) that generalizes
the canonical representations f = p + a/d of rational functions. Let f €
k(t) \ {0} and write f = a/d where a,d € k[t], gcd(a,d) = 1 and d is monic
(such a representation is unique). Let d = d,d, be a splitting factorization
of d with respect to D with d, and d,, monic, which makes this factorization
unique. Then, there are unique p,b,c € k[t] such that deg(b) < deg(d,),
deg(c) < deg(d,), and

a b c
=—=p+—+ .
f=3=r+g*a;
We call this decomposition, which is unique, the canonical representation .of
f with respect to D. We also introduce the notations fp = p (the polynomial

part of f), fs = b/d, (the special part of f), and fn = ¢/dy (the normal part
of f).
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CanonicalRepresentation(f, D) (* Canonical Representation *)

(* Given a derivation D on k[t] and f € k(t), return (fp, fs, fn) € k[t] x
k(t)? such that f = fp + fs + fn is the canonical representation of f. *)

(a,d) « (numerator(f), denominator(f)) (* d is monic *)
(g,7) «+ PolyDivide(a,d)

(dn,ds) « SplitFactor(d, D)

(b,¢) + ExtendedEuclidean(d.,d,,r) (* deg(b) < deg(d,) *)
return(q,b/d,,c/d»)

We need to define a few more terms that are often used later. A rational
function over C is called simple if it has only simple affine poles, i.e. poles of
order one only. This is equivalent to having a squarefree denominator. Since
normal polynomials are the analogue of squarefree polynomials in monomial
extensions, it is natural to call an element of k(t) simple if it has a normal
denominator. Similarly, a usual polynomial can be seen as a rational function
with no affine poles, or a rational function with no denominator. The useful
analogue in monomial extensions is a function with no normal affine poles,
t.e. with poles at most at infinity and at special polynomials. This means a
function whose denominator is special.

Definition 3.5.2. Let f € k(t). We say that f is simple with respect to D
if the denominator of f is normal w.r.t. D. We say that f is reduced with
respect to D if the denominator of f is special w.r.t. D. In addition we write
k(t) for the set of all the reduced elements of k(t).

Obviously, k[t] C k(t). It will be shown in the next chapter that, like k[¢],
k(t) is a differential subring of k(t).

There is an application of splitting factorization that will be useful in the
sequel: its use in separating the constant from the nonconstant roots of a
polynomial over a differential field. Let K be a differential field of charac-
teristic 0, X an indeterminate over K, p € K[X] and suppose that we want
to separate the constant roots of p from the others. It turns out that this is
just a splitting factorization with respect to the coefficient lifting xp of D on
K[X].

Theorem 3.5.2. Let (K, D) be a differential field of characteristic 0, K the
algebraic closure of K and X an indeterminate over K. For any p € K[X]\
{0}, let p = pspn be a splitting factorization of p w.r.t. kp. Then, for any
root o of p in K,

Da=0 <= ps(la)=0,
Da#0 <<= pn(a)=0.

Proof. Let o € K be a root of p. Then, by Theorems 3.4.2 and 3.4.3,
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Da=Hia) <<= ps(a) =0,
Da # Hi(a) <= pn(a)=0.

But kpX =0, so H; = 0, which proves the theorem. O

Exercises

Exercise 3.1 (Logarithmic derivative identity). Let (R, D) be a differ-
ential ring, uy,...,u, € R* and ey,...,e, € Z be integers. Show that
D(uf*---ug) Dy Du,,

=e;— 4 +en
uf - --ug uy Un

Exercise 3.2. Let Q be the field of rational numbers, z be an indeterminate
over Q, and D be the derivation d/dz on Q(z). Let P = Y2 —2z? € Q(z)[Y],
and y be a root of P, which is irreducible over (). Show that

Constp(Qz,y)) = Qo) where a = %

Exercise 3.3. Let (F, D) be a differential field and (F, A) a differential ex-
tension of (F, D). Show that if S C Consta(E) is algebraically independent
over Constp(F), then S is algebraically independent over F.

Exercise 3.4. Let (k, D) be a differential field of characteristic 0, and u € k
be such that u2 # —1. Let E be a differential extension of & such that /-1 €
E, and let ¢;,t, € E be solutions of the following differential equations:

D +v-1
Dtl = —;g where v= 5‘_—\/-_—1-

i.e. t; is a logarithm of v, and

Du

Dta =72

i.e. ty is an arc-tangent of u. Show that t;v/—1—2¢ is a constant with respect
to D.

Exercise 3.5. Let (k,D) be a differential field of characteristic 0, ¢ be a
monomial over k, and E be an algebraic extension of k. Show that

(Compare with Corollary 3.4.1).
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Although we have defined normal and special polynomials in monomi-
al extensions only, Rao [56] has defined them in any simple transcendental
differential extension as follows: let (k, D) be a differential field of charac-
teristic 0 and (k(t), A) be a differential extension of (k, D) where ¢ is tran-
scendental over k. Then, At € k(t), so let a,b € k[t] be such that b # 0,
ged(a, b) = 1 and At = a/b. Define then p € k[t] to be normal with respect to
A if ged(p, bAp) = 1, and special with respect to A if p | bAp. The following
exercices all relate to this definition.

Exercise 3.6. Prove that if At = a/b for a,b € k[t], then bAp € k[t] for any

p € k[t].

Exercise 3.7. Prove that all the parts of Theorem 3.4.1 remain true with
the above definition.

Exercise 3.8. Prove the following analogue of Theorem 3.4.2: let k be the
algebraic closure of k, and p € k[t] be squarefree. Then,

pnormal <= b(a)Aa # a(a) for all roots a € k of p.

Exercise 3.9. Prove the following analogue of Theorem 3.4.3: let k be the
algebraic closure of k, and p € k[t] \ {0}. Then,

p special <= b(a)Aa = a(a) for all roots a € k of p.

Exercise 3.10. Prove that if p € k[t] is special, then ged(p,b) = 1.



4. The Order Function

We introduce in this chapter the order function at an element, which will be
our main tool later when we prove the correctness of the integration algo-
rithm. The usefulness of this function is that it maps elements of arbitrary
unique factorization domains into integers, so applying it on both sides of
an equation produces equations and inequalities involving integers, making
it possible to either prove that the original equation cannot have a solution,
or to compute estimates for the orders of its solutions. Therefore it is used
in many contexts besides integration, for example in algorithms for solving
differential equations. While we use only the order function at a polynomial
in the integration algorithm, we introduce it here in unique factorization do-
mains of arbitrary characteristic, and study its properties in the general case
when the order is taken at an element that is not necessarily irreducible.

4.1 Basic Properties

Throughout this section and the next one, let D be a unique factorization
domain of arbitrary characteristic, D* be its group of units (Definition 1.1.4),
F be its quotient field (example 1.1.14), and a € D be such that a # 0 and
a¢ D*.

Definition 4.1.1. The order at a is the map v, : D = ZU {400} given by:

(i) va(0) = +oo,
(ii) for x € D\ {0},v,(z) = max{n € N such that a™ | z}.

Even though the map v, takes only nonnegative values, we define it as a map
into Z U {+0oc} in order to extend it eventually to the quotient field of D.
We first show that the set S,(z) = {n € N such that o™ | z} is finite and
nonempty for z € D \ {0}. Since a # 0 and a is not a unit in D, let p € D
be an irreducible factor of a. Then there is an irreducible factorization of z
in which p appears with some exponent e > 0. Let n > e and suppose that
p" | z. Then z = p"y for some y € D. Let y = u [/, p{* be the irreducible
factorization of y, where the p;’s are coprime and u is a unit. We have then
a factorization z = up™ H:’;l pst of z-where p appears with exponent at least
n > e, in contradiction with D being a unique factorization domain. Thus
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any q in S,(z) satisfies ¢ < e, so Sy(z) is finite. In addition 0 € Sa(z), s0 v,
is well-defined on D.

Lemma 4.1.1. Let z,y € D. Then,

(i) va(zy) > va(z) + va(y) and equality holds if a is irreducible.

(ii) vo(z +y) > min(v,(z),va(y)) and equality holds if vo(x) # va(y).
(i) If x|y, then vo(z) < va(y).

(iv) va(ged(z,y)) = min(va(z),va(y))-

Proof. All the statements are trivial if either z or y is 0, so suppose that
z#0+#vy. Let n = v,(z) and m = vy(y). Then z = ca™ and y = da™ for
some ¢,d € D, and a divides neither ¢ nor d. .

(i) we have zy = cda™™ s0 vo(zy) 2 n +m. Suppose that a is i‘rrec!umb.le.
Then a / cd since it does not divide c or d, so artm+l ¥y which implies
that v.(zy) =n+m.

(ii) we can assume without loss of generality that n < m. We have then
£ +y = a™(c+da™ ") so vs(z +y) > n = min(n,m). Suppose that n # m,
then m —n > 0, so a | da™", which implies that a [ (c + da™ ™) since a fc.
Hence, vo(z + y) = n.

(iii) Suppose that z | y. Then y = zz for some z € D. Hence vo(y) = va(z2) >
va(z) + va(2) by part (i), s0 va(y) > va(2).

(iv) Let g = ged(z,y). Then g | z and g | v, so va(g) < va(z) and
va(g) < va(y) by part (iii). Hence va(g) < min(va(z),va(y)). Let z =
gmin(va(@)wa(¥)) € D. Then, z |  and z | y, 50 z | g. Hence, v4(g) > va(2) =
min(ve(z), va(y)) by part (iii), so va(g) = min(ve(z), va (v))- a

Ezample 4.1.1. In Z we have v(12) = v5(18) = 1 and vg(12 X 18) =
vg(216) = 3, which shows that the equality in (i) above does not always
hold if a is not irreducible. On the other hand, v3(12) = 1,»3(18) = 2 and
v3(216) = 3 = 1+2, as well as 15(12) = 2,1,(18) = 1 and 1»(216) =3 = 1+2.

The following lemma shows that multiplying a or the argument of‘ v, by a
unit does not change the order function. This property is necessary in order
to extend the definition of v, to F.

Lemma 4.1.2. Let u € D* and z € D. Then:

(1) va(uz) = ve(x) = vye(z).

(i) ve(u) =0.

Proof. (i) If z = 0, then vg(uz) = v4(z) = vua(z) = +00, S0 suppose that
z #0. Then a*=(® | z, so a=(®) | uz 50 va(x) < vo(uz). Since this inequality
holds for any unit, and v~ is also a unit in D, we have v,(uz) < ua(u‘luaf) =
Va(z), 50 Va(T) = Vg (uz). Similarly, a*(®) | z implies that (ua)*=(®) | @ since
u¥(®) s a unit, 50 va(z) < vyua(z). As previously, this inequality applied to
ua and u~' implies that vuq(z) < Vyu-1ua(®) = va(x), 50 Va(2) = Vua(2).

(ii) By (i), va(u) = va(u?). But v4(u?) > 2v4(u) by Lemma 4.1.1, s0 v, (u) €
{0, +00}. Since u # 0, we must have ve(u) = 0. O
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In the following definition and the rest of this chapter, we say that any
two elements y and z in D have no common factor when ged(y, 2) is a unit
in D.

Definition 4.1.2. Let x € F* and write x = y/z where y,z € D have no
common factor and z # 0. We then define v,(z) = va(y) — va(2).

Let z € F* and y, z,t,w € D be such that y and z have no common factor,
t and w have no common factor, and z = y/z = t/w. Then y/t = z/w =u €
D*, 50 v,(y) = va(ut) = v4(t) and v,(2) = ve(uw) = v, (w) by Lemma 4.1.2,
80 VoY) — Va(2) = v,o(t) — vo(w), which shows that v, is well-defined on F.
In addition, v,(1) = 0 by Lemma 4.1.2, so choosing y = z and z = 1 when
z € D, we see that the above definition is compatible with the definition of
v, on D. We note that parts (i) and (ii) of Lemma 4.1.1 do not remain valid
over F: v6(5/3) = v5(1/2) = 0, but v(5/3 x 1/2) = v5(5/3+1/2) = -1 < 0.
Those statements remain however true when a is irreducible.

Theorem 4.1.1. Let z,y € F and suppose that a is irreducible in D. Then,
(1) va(zy) = va(z) + va(y).

(ii) if x # 0 then v,(x™) = my,(x) for any m € Z.

(1i1) vo(z + y) > min(v,(z), va(y)) and equality holds if vo(z) # va(y).
Proof. Let z,y € F and write z = b/c,y = d/e where b,c,d,e € D, b and
¢ have no common factor, d and e have no common factor and ¢ # 0 # e.
Since a is irreducible, we have v,(fg) = vo(f) + va(g) for any f,g € D by
Lemma 4.1.1.

(i) Let h = ged(bd, ce), f = bd/h and g = ce/h. We have f,g,h € D, f and
g have no common factors, and zy = bd/ce = f/g, so

va(zy) = val(f) — val(g) = val(f) + va(h) — (Va(g) + va(h))
Vo (fh) — va(gh) = va(bd) — ve(ce)
(va(b) — va(c)) + (va(d) — val(e)) = va(z) + va(y) -

(ii) z° = 1 is a unit in D, so v,(1) = 0 by Lemma 4.1.2. Suppose that the
statement holds for m > 0. Then,

V(™) = 1, (™) = va(2™) + va(z) = muy(z) + val(z) = (M + Drg(z)

so it holds for m + 1. Thus (ii) holds for all m > 0. For m < 0 we have
0=v,(1) = va(z™z™™) = 1 (™) — MVe(Z), 50 Vo (™) = my,(z). Thus (ii)
holds for all m € Z.

(ili) z + y = (be + cd)(ce)™!. Although be + cd and ce may have common
factors, we have

vo(z +y) = va(be + cd) + v, ((ce)™") = va(be + cd) — va(ce)

by parts (i) and (ii). We can suppose without loss of generality that v,(x)

<
va(y), which implies that v4(b) — ve(c) < va(d) — va(e), hence that v, (b) +
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va(e) € va(d) + va(c). Thus, va(be) < Va(dc) so va(be + cd) > vq(be) by
Lemma 4.1.1, 50 va(z+7Y) > va(be) —va(ce) = va(b) —vg(c) = vo(x). Suppose
that ve(z) < va(y), then v, (be) < va(dc) as above, so vg(be + cd) = ve(be)
by Lemma 4.1.1, so vo(z + y) = va(be) — vo(ce) = va(z). a

Parts (i) and (ii) of the above theorem show that the restriction that y and
2 have no common factor in Definition 4.1.2 can be removed if a is irreducible:
for any y, z € F such that z = y/z, we have Va(z) = Va(yz™!) = va(y)—va(2).

In the case of polynomial rings, we need to study the effect of enlarging
the constant field on the order function. It turns out that when an irreducible
polynomial splits in an algebraic extension, then the order at the new irre-
ducible factors remains the same as before for arguments that are defined

over the ground field.

Theorem 4.1.2. Let F be a field, E be a separable algebraic extension of F
and = be an indeterminate over E. If p € Flz] is irreducible over F, then
vp(f) = vg(f) for any irreducible factor q¢ € Elz] of p in E[z], and any
f € F(z).

Proof. Let g € E[z] be any irreducible factor of p in E[z] and write p = gr
with € E[z]. Let h € F[z] and n = vy(h) > 0. Then p" | h,so h=p's =
g"r™s with s € F[z], which implies that ¢" | k. In addition, p*tt fh,sop
does not divide s, which implies that ged(p, s) = 1 since p is irreducible in
F[z]. Thus, 1 = ap + bs = arq + bs for some a,b € F[z], so ged(q,s) = 1.
Suppose now that ¢™ | h for some m > n. Then, h = p*s = q"r"s = ¢t
for some t € E[z], so r"s = ¢™~"t, which implies that ¢ | r"s in E[z]. Since
q is irreducible in E{z] and ged(g,s) = 1, ¢ | ¥, which implies that n > 0
(otherwise ¢ would be a unit) and that ¢ | 7, hence that ¢? | p, in contradiction
with p squarefree in E[z] (since E separable over F). Hence g™ [h for m > n,
0 vq(h) = n.

Let now f € F(z) and write f = a/b for a,b € Fz] and b # 0. Then, by
Theorem 4.1.1 and the above proof,

vp(f) = vp(a) — vp(b) = ve(a) — ve(b) = ve(f).

4.2 Localizations

Definition 4.2.1. We define the localization at a to be
O, = ﬂ {z € F such that vp(z) 2 0}
pla

where the intersection is taken over all the irreducible factors of a in D.
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Intuitively, the localization at a is the set of all the fractions in F' that
can be written with a denominator having no common factor with a. If @ is
irreducible, the localization, which is then a local ring, can also be seen as
the set of all the fractions in F with nonnegative order at a.

Lemma 4.2.1.

(i) O, is a subring of F containing D.

(ii) z € Of = vo(z) > 0.

(iii) T € a0y <= v,(z) > 1, where aQ, is the ideal generated by a in O,.
(iv) If a is irreducible, then € O, <= v,(z) > 0.

(v) If a is irreducible, then za~v=(@) € O, for any x € F*.

(vi) If A is any derivation on D, then AO, C O..

Proof. (i) Let p € D be any irreducible factor of @, and z,y € Oa. Then
vp(z) > 0 and vp(y) > 0. By Lemma 4.1.2, vp(—y) = vp(y), so vp(z ~—y) >0
and v,(zy) > 0 by Theorem 4.1.1. Since this holds for any irreducible factor p
ofa,z—y € O, and zy € O,. Let ¢ € D. Then, vp(c) > 0 for any irreducible
factor p of a, hence D C O,, so in particular 0,1 € O,, and O, is a subring
of F containing D.

(ii) Let z € O, and write z = b/c where b,c € D have no common factor. Let
p € D be any irreducible factor of a. Then vy(z) > 0, s0 vp(b) — vp(c) > 0.
Since v,(b) and vp(c) cannot be both nonzero (otherwise p would divide both
b and c) and since they are both nonnegative, this implies that vp(c) = 0,
hence p J ¢, s0 a f ¢, s0 va(c) = 0, which implies that ve(z) = vo(b) > 0.

(iii) Let € aQ,, then £ = ay for some y € O,. Write y = b/c where
b,c € D have no common factor. From the proof of part (ii) we have p fc
for any irreducible factor p of a, so ¢ and ab have no common factor. Hence,
Va(z) = va(ab/c) = va(ab) — va(c). But va(c) = 0 from the proof of part (i),
and v,(ab) > va(a)+v,(b) > 1 by Lemma4.1.1. Hence, v4(z) > 1. Conversely,
let z € F* be such that vo(z) > 1, and write £ = b/c where b,c € D have
no common factor. At most one of v,(b) and v,(c) can be nonzero, and
Va(T) = v (b) — valc) > 1, 50 va(c) = 0 and v,(b) > 1, which implies that
a|b,sob=adforde D.Let p € D be any irreducible factor of a. Then,
p| b, so pJe, hence vp(d/c) = vp(d) — vp(c) = vp(d) > 0. Since this holds for
any irreducible factor of a, we get d/c € Oq, hence z = b/c = ad/c € a0,.
(iv) We have z € O, = v,(z) > 0 by part (ii). Conversely, suppose that a
is irreducible and let z € F be such that v,(z) > 0. Let p be any irreducible
factor of a in D. Then p = ua for u € D*, 50 vp(z) = vua(z) = va(z) by
Lemma 4.1.2. Thus vp(z) > 0,50 € O,.

(v) Suppose that a is irreducible, and let z € F*. Then, Vo(za"()) =
Va(z) — ve(z) =0, so za~*+(®) € O, by part (iv).

(vi) Let A be any derivation on D. Then, A can be extended uniquely to
a derivation on F by Theorem 3.2.1. Let z € O, and write z = b/c where
b,c € D have no common factor and ¢ # 0. Let p € D be any irreducible
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factor of a. Then, vp(z) = vp(b) — vp(c) > 0 since z € O, 50 ¥p(c) = 0, which
implies that

v,(Az) = v, (CALC‘Z"-A—Q) = v,(cAb — bAc) — 2up(c) = vy(cAb - bAc) > 0.
Since this holds for any irreducible factor of a, we get Az € O,, hence
A0, C O,. a

Ezample 4.2.1. In D =Z,
O = O, N O3 = {z € Q such that z = b/c where b,c € Z,2c and 3 f c}

so 1/3 ¢ Os although v5(1/3) = 0, which shows that parts (iv) and (v) of
the above lemma do not always hold if a is not irreducible. This makes it
worth noticing that both directions of part (iii) of the lemma hold for non-
irreducible a’s.

When D is a principal ideal domain, for any proper nonzero ideal I of
D, the canonical projection 7; : D — D/I can be extended naturally to the
localization O, for any generator a of I. The next definition constructs this

extension.

Definition 4.2.2. Let D be a principal ideal domain, and I be a proper
nonzero ideal of D, i.e. I # D and I # (0), and a € D be a generator of I,
i.e. I = (a). We define the value at a to be the map 7o : Op = D/I given
by: let z € O, and write z = b/c where b,c € D have no common factor. We
define 7, () to be my(bd) where d,e € D are such that cd+ae =1 and 7/ is
the canonical projection from D onto D/I.

In order to show that 7, is well-defined, we need to show that such d and e
always exist, and that the value of m,(x) is independent of the choice of b, ¢, d
and e. First, a # Osince I # (0),and a ¢ D* since I # D, so O, is defined. Let
z € O, and write z = b/c where b, ¢ € D have no common factor. Let p be any
irreducible factor of a. Since £ € O, we have vy(z) = vp(b) —vp(c) > 0. But at
least one of v,(b) and vp(c) must be 0 since b and ¢ have no common factor, so
vp(c) = 0, which implies that p Jc. Since this holds for any irreducible factor
p of a, we have gcd(a,c) = 1, so there are d,e € D such that cd + ae = 1.
Suppose now that cd + ae = cf + ag = 1 for some d,e, f,g € D. Then,
a(g — e) = ¢(d — f). Let p be any irreducible factor of a. We then have

vp(c) +vp(d — f) = vp(c(d - f)) = vp(a(g —e)) = vp(a) +vp(g —€) 2 1(a).

But v,(c) = 0 as previously, so vp(d — f) > vp(a), which implies that any
irreducible p € D that appears in the factorization of a with a positive
exponent n must appear with an exponent m > n in the factorization of
d— f,hence that a | d — f, i.e. d— f € I, s0 my(d — f) = 0. Since n; is a
ring-homomorphism, we get 7;(bd) = 7;(bf) so the value of m,(z) does not
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depend on the choice of d and e. Suppose finally that z = b/c = b'/c’ where
b,c,b',c’ € D and ged(b,c) = ged(b', ') = 1. As previously, this implies that
b = ub and ¢’ = uc for some u € D*. Let d,e € D be such that cd + ae = 1.
Then, c'd' + ae = 1 for d = u~'d € D, and we have b'd' = ubu~'d = bd,
so the value of 7,(z) does not depend on the choice of b and ¢, so =, is
well-defined on O,.

We next show that 7, is an extension of =y to O, which induces an isomor-
phism between O, /a0, and D/I, i.e. that we have the following diagram:

X

O, 0. /a0,
D L+ p/r

Theorem 4.2.1. Let D be a principal ideal domain, I be a proper nonzero
ideal of D and a € D be a generator of I. Then,

(i) 7a(b) =m(b) for any b€ D (i.e. m, extends ny).

(i) ker(m,) = aQ,.

(1i1) m, is a surjective ring-homomorphism from O, onto D/I, hence a ring-
isomorphism between O, /a0, and D/I (a field-isomorphism if I is maz-
imal).

(iv) If A is a derivation of D and AI C I, then A* om, = ma 0 A where A*
is the induced derivation on D/I (Lemma 3.1.2).

Proof. (i) Let b € D and write b = b/c with ¢ = 1. Then c¢d + ae = 1 for
d=1and e =0, so n,(b) = m;(bd) = mr(b).

(ii) Let ¢ € O, and write z = b/c where b,c € D have no common factor.
Let d,e € D be such that cd + ae = 1. Suppose first that x € aO,. Then,
Vo(z) = va(b) — v4(c) > 0 by Lemma, 4.2.1, 50 v4(b) > v4(c) > 0,s0 a | b,
hence b € I, which implies that bd € I, therefore that m,(z) = w(bd) = 0.
Conversely, suppose that w,(z) = 0. Then =n;(bd) = 0, so bd € I, which
implies that a | bd. But ged(a,d) = 1 since c¢d + ae = 1, hence a | b, so
v.(b) > 0. Also, ged(a,c) =1 since cd + ae = 1, s0 a [ ¢, s0 v,(c) = 0, hence
Va(T) = va(b) — va(c) > 0, so € a®, by Lemma 4.2.1.

(iii) Since n; is surjective and 7, is an extension of 7y by (i), it follows that 7,
is surjective. Another consequence of (i) is 74(1) = n7(1) = 1. Let z,z’' € O,
and write x = b/c,z' = b'/c’ where b,c,b',c’ € D, b and ¢ have no common
factor, and b’ and ¢’ have no common factor. Write also zz' = b"/c" where
b",c" € D have no common factor. Then, bb' = gb" and cc’ = g¢” for some
g € D. Let d,e,d',e’ € D be such that ¢d + ae = 1 and ¢'d’ + ae’ = 1.
Multiplying those two equalities together, we get cc'dd’ + ah = 1 where
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h=cd'e+cde' +aee' € D. Hence, ¢’ (gdd’) + ah = 1, so, using the fact that
7t is a ring-homomorphism:

"

To(zz') = wa(%) = (b gdd') = m(bb'dd') = m;(bd)m;(b'd") = ma(2)Ta(2') .

Write now z + z' = b"/c" where b"”,¢"” € D have no common factor. Then,
b’ +b'c = gb" and cc’ = gc” for some g € D. Let d,e,d', e’ € D be such that
cd +ae = c'd' + ae’ = 1. As above, this implies that ¢”(gdd') + ah = 1 for
some h € D, so

1"

m(z+ 1) = Wa(%) = m;(b"gdd') = mr((bc’ + b'c)dd')
= m(bd)mi(c'd') + m(b'd")m (cd)
= w(x)m(cd') + ma(a)ms(cd) .

From 1 = cd + ae, we get 1 = 7(1) = ns(cd) + n7(ae) = my(cd) since a € 1.
Similarly, m/(c'd’) = 1, hence m,(z + z') = ma(z) + Ta(z'), 50 7, is a ring-
homomorphism. Since ker(w,) = aOQ, by part (ii), this implies that =, is a
ring-isomorphism between O,/a0, and D/I. If I is maximal, then D/I is a
field, so m, must be a field-isomorphism.

(iv) Let A be a derivation on D and suppose that AT C I. Then, the induced
derivation A* on D/I satisfies A* om; = 7y o A by Lemma 3.1.2. Since
AO, C O, by Lemma 4.2.1, m, o A is defined on O,. Let z € O, and
write £ = b/c where b,c € D have no common factor. Then, ged(a,c) = 1
as explained earlier, so 1 = ad + ce for some d,e € D, which implies that
1 = 7,(1) = ma(a)ma(d) + ma(c)ma(e) = ma(c)ma(e), hence that m4(c) is a unit
in D/I. In addition, b = ¢z, s0 7, (b) = ma(cx) = ma(c)ma(2), s0 applying A*,
we get

A*m,(b) = A* (7o (€)7o (7)) = ma(€) A 7o (z) + ma(T) A% ma(c) - (4.1)
From b = cz also follows Ab = cAz + zAc, and applying 7., we get
7o (Ab) = ma(c)ma (Az) + 7o (z) 7o (Ac) . (4.2)

But m,(Ab) = w7(Ab) = A*mi(b) = A*ma(b) and 7,(Ac) = A*my(c) in a
similar way, so (4.2) becomes

A* 7o (b) = ma(c)ma (Az) + 7o (2) A% ma(c) - (4.3)

Equating (4.1) and (4.3) yields m,(c)A*ma(z) = ma(c)ma(Ax). Since m4(c) is
invertible in D/I, we get A* o, = ma 0 A. 0

In the case when D is a Euclidean domain, we call m,(z) the remainder
of z at a. It can be computed by the following algorithm, which has the same
complexity as the extended Euclidean algorithm in D.
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Remainder(z, a) (* Local remainder at a point *)

(* Given a Euclidean domain D, a € D\ {0} with a ¢ D" and z € O,
return m,(z) as an element of D. *)

(b,c) « ExtendedEuclidean(a,denominator(x),1)
(g,7) « PolyDivide(numerator(z) c,a)
return r

4.3 The Order at Infinity

In the case of polynomial rings, we introduce an extra order function, called
the order at infinity, which has properties similar to the order functions of
the previous sections. While the usual degree function for polynomials can be
used instead, the properties of the order at infinity can be generalized later to
points at infinity on algebraic curves for which the degree is not defined. Let
D be an integral domain of arbitrary characteristic and z an indeterminate
over D throughout this section. For a € D[z], we use Ic(a) to denote the
leading coefficient of a, i.e. if a = ag + a1z + - - - + a,z™ with an # 0, then
lc(a) = an-

Definition 4.3.1. The order at 0o is the map Vo, : D(z) = Z U {400} given
by Veo(0) = +00, and veo(b/c) = deg(c) — deg(b) for b,c € D[z] \ {0}.

Suppose that f = b/c = d/e for b, c,d, e € D[z]. Then be = cd, so deg(b) +
deg(e) = deg(c) + deg(d), so deg(c) — deg(b) = deg(e) — deg(d), which implies
that vy is well-defined on D(z). We show next that v, satisfies the same
properties than v, for an irreducible a € D{z].

Theorem 4.3.1. Let f,g € D(z). Then,

(i) Voo(fg) = Vo (f) + Vo(9)-
(1) voo(f + 9) 2 min(veo(f), Voo(g)) and equality holds if veo(f) # Voo(9)-
(i11) if f #0 then voo(f™) = mu(f) for anym € Z.

Proof. Let f,g € D(zx) and write f = b/c,g = d/e where b,c,d,e € D and
c#0#e.

(i) fg = bd/ce s0 veo(fg) = deg(ce) — deg(bd) = (deg(c) — deg(b)) + (deg(e) —
deg(d)) = voo(f) + Voo (9)-

(ii) f+ g = (be + cd)/ce, 50 voo(f + g) = deg(ce) — deg(be + cd). We can
suppose without loss of generality that veo(f) < veo(g), which implies that
deg(c) — deg(b) < deg(e) — deg(d), hence that deg(c) + deg(d) < deg(b) +
deg(e). Thus, deg(cd) < deg(be) so deg(be + cd) < deg(be), so Voo (f + g) >
deg(ce) — deg(be) = deg(c) — deg(b) = voo(f). Suppose that v (f) < Voo(g),
then deg(cd) < deg(be) as above, so deg(be + cd) = deg(be), so Voo (f + g) =
deg(ce) — deg(be) = voo(f)-

(iii) This is trivial for m = 1. Suppose that it holds for m > 0. Then,
Voo (f™1) = voo(f™f) = Voo(f™) + voo(f) = (m + 1)veo(f) so it holds
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for m + 1. Thus (iii) holds for m > 1. For m =0, f® =1 = 1/1, 80 veo(1) =

deg(1) — deg(1) = 0. For m < 0 we have: 0 = veo(1) = veo(f™f™™) =

Voo (f™) = Moo (f), 50 Voo (f™) = mueo(f). Thus (iii) holds for any m € Z.
a

Since v, satisfies properties similar to v, it is natural to define the notions
of the localization and value map at infinity in a manner similar to what was
done in the previous section at a point.

Definition 4.3.2. We define the localization at oo to be
Ow = {f € D(z) such that vo(f) > 0}.

Intuitively, O, which is a local ring, is the set of all the rational functions in
D(x) for which the degree of the denominator is at least that of the numera-
tor, i.e. which have no pole at infinity. As expected, O satisfies properties
similar to O, for an irreducible a € D[z].

Lemma 4.3.1.
(i) O is a subring of D(x).
(i1)
FET 00 = voo(f) 21
where 2710y is the ideal generated by 7! in Ouo.
(i1i) fz*={) € Oy for any f € D(z)*.

Proof. (i) Let f,g € O, and write g = b/c for b,c € D[z]. Then v(f) >0
and Veo(g) > 0, so deg(b) < deg(c). But deg(~—b) = deg(bh), so veo(—g) =
Voo(=b/c) > 0, 50 Voo (f — g) > 0 and veo(fg) > 0 by Theorem 4.3.1. Hence,
f—9 € Oy and fg € Ou. In addition, 0 € Oy since vu(0) = +00, and
1 € Oy since v (1) =0, so Oy is a subring of D(z).
(ii) Let f € 2710w, then f = g/z for some g € O, S0 Voo (f) = Voo(g) —
Voo (Z) = Veo(g) + 1 > 1. Conversely, let f € D(z) be such that v (f) > 1,
and let g = fz. If f = 0, then 2f = 0 € Oy, 50 f € 27 100. Otherwise,
f #0s0g# 0 and we have Voo (g) = Voo (f) + Voo (T) = Veo(f) —1 > 0, which
implies that g € O, hence that f = g/z € 27 On.
(iii) Let f € D(z)*. Then, Voo (f2*=() = 1o (f) = Voo(f) = 0, s0 fz¥=/) €
- o
Definition 4.3.3. Let F be the quotient field of D. We define the value at
00 to be the map mo, : Oo — F given by:

_ | le(b)/1c(e), if Vo (f) =0,
(i ={ " if veolf) > 0.

where b,c € D[z] and f = b/c.
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Suppose that f = b/c = d/e where b,¢,d,e € D[z] and that v..(f) = 0.
Then, be = cd, so lc(b)lc(e) = lc(c)le(d), so le(b)/Ic(c) = le(d)/Ic(e), which
implies that 7o, is well-defined on O.

Theorem 4.3.2.

(i) ker(Teo) = 271 0.
(1) T s a surjective ring-homomorphism from Oy onto the quotient field
F of D, hence a field-isomorphism between O /21Oy and F.

Proof. (i) Let f € Ox. If f € 2710y, then voo(f) > 1 by Lemma 4.3.1, so
Teo(f) = 0 from the definition of . Conversely, suppose that f ¢ 27Oy,
which implies that vo(f) = 0, and write f = b/c where b,c € D[z]. The
leading coefficients of b and ¢ are never 0 by definition, so 7« (f) # 0. Hence
ker(feo) = 271 00o.

(ii) Let F be the quotient field of D and w € F. If w = 0, then w = m(0).
Otherwise, write w = b/c with b,c € D and b # 0 # c. Then, deg(b) =
deg(c) =0, 50 v (b/c) =0, 50 Too(b/c) = b/c = w. Hence, Ty is surjective.

Taking w = 1 yields 7o(1) = 1. Let f,9 € Ox. Then, voo(f) > 0 and
Veo(g) 2 0. Suppose that voo(f) > 0. Then, veo(fg) = Voo (f) + veo(g) > O,
80 Too(f9) = 0 = 7o (f)Too(g) since moo(f) = 0. Similarly, 7(fg) = 0 =
Too (f)Too(g) if Yoo (g) > 0 so suppose that v (f) = veo(g) = 0. Write f = b/c
and g = d/e where b,¢,d,e € D[z]. Then, voo(fg) = 0 by Theorem 4.3.1, so

le(bd) _ le(b) le(d)
T (f9) = 1oy = ie(@ Tele)

Suppose that voo(f) > 0 and ve(g) > 0. Then, voo(f + g) > 0 by Theo-
rem 4.3.1, 50 Moo (f + g) = 0 = Too(f) + oo (g) since mo(f) = moo(g) = 0.
We can now assume without loss of generality that v..(f) = 0, i.e. that
deg(b) = deg(c). Suppose first that ve(g) > 0. Then, deg(d) < deg(e), so
deg(cd) < deg(be), so deg(be + cd) = deg(be) = deg(ce) and lc(be + cd) =
le(be) = lc(b)lc(e). We also have veo(f + g) = voo((be + cd)/ce) = 0, so

_le(b)lc(e)  le(d)
~le(o)le(e) ()

since oo(g) = 0. Suppose finally that v (g) = 0. Then, deg(d) = deg(e), so
deg(cd) = deg(be), so deg(be + cd) < deg(be) = deg(ce). If deg(be + cd) =
deg(be), then veo(f + g) = 0 and Ic(be + cd) = lc(b)lc(e) + lc(c)le(d), so
_lc(be +cd)  Ic(b) | le(d)
Woo(f"'g)— lC(Ce) - lC(C) +1C(€) "'7r00(f)+1r00(g)
If deg(be + cd) < deg(be), then veo(f + g) > 0 and lc(b)lc(e) = lc(c)lc(d), so
Too (f) = To0(g), 50 Moo (f) + Too(g9) = 0 = 7o (f + g). Hence, mo is a ring-
homomorphism. Since ker(moo) = 71Oy by part (i), this implies that me is
a field-isomorphism between Oy, /27Oy and the quotient field of D. a

= Too(f)Teo(9) -

Teo(f + 9) Too(f) + Moo (9)
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ValueAtInfinity(f) (* Value at infinity *)
(* Given a Euclidean domain D, and f € Oo, return Too (). *)

if f =0 then return 0

o + numerator(f), b +- denominator(f)
if deg(b) > deg(a) then return 0
return(lc(a)/lc(b))

4.4 Residues and the Rothstein—Trager Resultant

We present in this section the properties of the order function that are used
for integration, namely the relation between the orders of a function and
its derivative at a point, and the basic theory of residues in monomial ex-
tensions, up to the fundamental property of the Rothstein-Trager resultant.
This relation and the various residue formulas let us connect the poles of a
function to the poles of the functions that appear in its integral. Throughout
this section, let K be a differential field of characteristic 0 with derivation
D, and t be a monomial over K. We first define the notion of a residue at a

normal polynomial.

Definition 4.4.1. Let p € K[t]\ K be normal, and R, be the set
Rp = {f € K(t) such that pf € Op}.

We define the residue at p to be the map residue, : R, — K[t]/(p) given by
. p
residue,(f) = wp(fﬁl;) .

Let ¢ € K|[t] be any irreducible factor of p. Then ¢ A Dp since p is
normal, so 1/Dp € O,. Since this holds for any irreducible factor of p, we
have 1/Dp € O,. For f € Ry, pf € Op, so fp/Dp € Op, which means that
residue, is well-defined. Since m,(a) = a for any a € K, we identify K and
mp(K) C K[t]/(p) when dealing with residues. Thus, when we say in the rest
of this section that f has a residue a € K, we mean the residue of f is the
image of an element of K by mp.

Theorem 4.4.1. Let p € K|[t]\ K be normal. Then, R, is a vector space
over K, ker(residuey) = Op, and residue, is a K -vector space isomorphism

between R,/0, and K|[t]/(p).

Proof. We have 0,1 € R, since 0,p € Op. Let f,g € Rpandc € K C 0.
Then, pf,pg € Op, s0 cpf + pg € Oy since O, is a ring. Hence, cf + g € Ry,
so R, is a vector space over K.

Let f € O, We have 1/Dp € O, as earlier, so f/Dp € O, so
pf/Dp € pO,, which implies that residue,(f) = mp(pf/Dp) = 0 by The-
orem 4.2.1. Hence, O, C ker(residue,). Conversely, let f € ker(residuep).
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Tt.len, mp(fp/Dp) = 0, so pf/Dp € pO, by Theorem 4.2.1, which im-
plies that f/Dp € O,. But Dp € Op, so f = Dp(f/Dp) € O,. Hence
ker(residue,) = Op.

Let f,9 € R, and ¢ € K. Since 7, is a ring-homomorphism by Theo-
rem 4.2.1 we have

residuey (cf + g) = mp((cf + g)ﬁ”;) = wp(c)wp(fl—%;) + n(gﬁ”;)
= 7p(c)residuepy(f) + residue,(g) .

But ¢ € K, so my(c) = c, hence residuey(cf + g) = c residue,(f) + residue,(g)
in K[t]/(p), so residue, is a K-vector space homomorphism. Let w € K|[t]/(p).
Since 7, is surjective by Theorem 4.2.1, there exists g € Op, such that 7,(g) =
wmp(Dp). Let f = g/p. Then pf € Op so f € R, and

residue,(f) = m,(f D%) = :_p((‘z% -
P

hence residue, is surjective. Since ker(residue,) = Op, this implies that
residue,, is a K-vector space isomorphism between R,/O, and K[t]/(p). O

Ezample 4.4.1. Let K = Q, t be a monomial over K with Dt =1 (i.e. D =
d/dt), and p = t € K[t] is normal and irreducible. We have f = 1/t € R, but
f2=1/t* ¢ R,, so R, is not a ring, even when p is normal and irreducible.

The following formula gives a useful relation between the residue at a
normal polynomial and at any of its nontrivial factors.

Lemma 4.4.1. Let p € K[t]\ K be normal, and g € K[t]\ K be a factor of
p. Then, Ry, C Ry and residuey(f) = my(residuey(f)) for any f € R,.

Proof. Since q | p, we have O, C O, and my(mp(g)) = n4(g) for any g € O,.
Write p = gr with r € K[t]. Since p is normal, p is squarefree, so ged(q,7) = 1,
which means that 1/r € O,. Let f € R,. Then, pf € Oy, 50 ¢f = pf/r € Oy,
which implies that f € R,. Since p is normal, ged(p, Dp) = 1,s0let a,b € K[t]
be such that aDp + bp = 1. We have

arDq + (aDr + br)g = a(rDq + qDr) + brq =aDp+bp =1,
so ged(rDg, q) = 1 and 7g(a) = my(1/(rDq)). Then,

nq(residuey(f))

(7 (12)) = matra(fap)) = mo(faar)

e (f;%;) =7, (fDiq) = residue, (f) .
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Ezample 4.4.2. Let K =Q, ¢t be a monomial over K with Dt =1 (i.e. D =
d/dt),and f=(t-2)/(t* - 1) € K|t]. Then,

t—2 1-2¢
residueta_l(f) = M2 -1 —E-i— = -——2—-— s

1 1-2t
i

t—2 3 1-2¢
residueHl(f) = Tt+1 (t———1> = '2' = Wt4+1 —2—— .

Theorem 4.4.2. Let f € K(t)\ {0} and p € K[t] be irreducible.

(i) If p is normal, then vp(Df) = vp(f) -1 ifvp(f) #0, vp(Df) > 0 if
vp(f) = 0. Furthermore,

”p(pl_u"(f)Df) = Vp(f)”p(p-U’(f)f)“p(Dp) .

while

Il

. t—-2
resxduet_l(f) = Mt-1 m

and

i) peS =>vy(Df) 2 vp(f)-
%) 2 €S andyf),,( 1) #0 = vp(Df) = vp(f)-

Proof. Let p € K[t] be irreducible, f € K@)\ {0} and n = wp(f). Let
g = fp™". By Lemma 4.2.1, g € Op. Also,

Df =ngp" 'Dp+p"Dyg. (4.4)

Write g = b/c where b,c € K[t] and ged(b, ¢) = 1. We have vp(g) = vp(f) +
vp(p~™) =n—n=0,s0vp(b) - vp(c) = 0. But at most one of vp(b) and vp(c)

can be nonzero since ged(b, ¢) = 1, 50 vp(b) = vp(c) = 0. We have

_ ¢Db—bDc

2

Dg -

50 vy(Dg) = vp(bDc—cDb) — 2vp(c) = vp(bDc— cDb) > 0 since bDc—cDb €
K|t]. By Lemma 4.2.1, this implies that Dg € Op. Suppose tha‘t n ='0.
Then f = g, s0 Df = Dg € Op, s0 vp(Df) = vp(Dg) 2 0. Th{s }mphfes
that v,(pDf) > 0, hence that mp(pDf) = 0 by Theorerr‘l.4.2.1. This is valid
regardless of whether p is normal or special, so (i) and (ii) hold when n = 0.
Suppose now that n # 0. o

(i) p is normal, so ged(p, Dp) = 1, s0 v,(Dp) = 0. This implies that Dp € O,
and
vp(ngp" ' Dp) = vp(g) +n—1=n-1<n< vp(p" Dg)

so from (4.4) and Theorem 4.1.1 we get vp(Df) = n—1. We then have

4 et m,(p'~"Df) =
p!~"Df € O, by Lemma 4.2.1, and from (4.4) we g p(P'” )
np(ngDp + pDg). Since g,Dp,p and Dg are all in O, and 7y is a ring-
homomorphism, we have
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mp(p' "D f) = nmy(g)my(Dp) + my(p)mp(Dg) = nmy(p™" f)mp(Dp)

since mp(p) = 0.

(ii) p € S so p| Dp, which means that v,(Dp
n. Since v,(p"Dg) = n + vy(Dg) > n, from (
vp(Df) 2 m.

(iii) Let p € &1, and suppose that n # 0. Assume first that p = t — a for
a € K. Then, po(a) is not a logarithmic derivative of a K-radical, where
pa = (Dt — Da)/(t — @) = Dp/p. Let h = Dg+ npeg. Since p|Dp, po € K[t],
hence p, € O,. In addition, g € Op and Dg € O, as seen above, so h € Op.
Since m, is a ring-homomorphism, we have

) > 1. Hence, v,(ngp™~'Dp) >
4.4) and Theorem 4.1.1 we get

Tp(h) = 1p(Dg + npag) = Tp(Dg) + n7p(g)7p(Pa) -

We have v,(g) = 0, so g ¢ pO, by Lemma 4.2.1, which implies that m,(g) # 0
by Theorem 4.2.1. Suppose that m,(h) = 0. Then, using the facts that (p) is
a differential ideal of K[t] (Lemma 3.4.3) and that D* o m, = mp 0o D (The-
orem 4.2.1) where D* is the induced derivation on K[t]/(p) (Lemma 3.1.2),

we get:
no(Dg) _ D*my(g) _ D*u

5(9) p(9) u
where u = m,(g) € K[t]/(t—a). But K[t]/(t—a) ~ K, and D* is an extension
of D by Lemma 3.4.3, so u € K and D*u = Du, which implies that p, () is
a logarithmic derivative of a K-radical, in contradiction with p being of the
first kind. Hence m,(h) # 0, so vp(h) = 0 since h € Op. From (4.4) we have
Df = (Dg + npag)p™ = hp®, so vp(Df) = vp(h) + v,(p") = n.

Let now p have arbitrary degree m > 0, let K be the algebraic closure
of K,and p = (t — 1) (t — am) be the factorization of p in K[t]. tis a .
monomial over K and p and the t — ;s are in 81,7('[:]:?{' by Theorem 3.4.4.
Then, v4_q,(f) = n for each i by Theorem 4.1.2, 50 v4—q, (Df) = n by the
previous proof. Hence, v,(Df) = n by Theorem 4.1.2. a

~npa(@) = ~ny(pa) =

Ezample 4.4.3. Let K = Q, t be a monomial over K with Dt =1 (i.e. D =
d/dt), p = t € K[t] is normal and irreducible, and f = t™ + 1 € K(¢t)
for an arbitrary integer m > 0. We have v,(f) = 0, but Df = mt™~!, so
v (D f) = m — 1. This shows that one cannot give a general upper bound on
vp(Df) when vp(f) = 0.

Theorem 4.4.2 has several useful consequences: K (t) must be a differential
subring of K (t), and we get formulas for the orders and residues of logarithmic
derivatives, and for the residue at a given p.

Corollary 4.4.1. Let f € K(t).

(i) f simple w.r.t D => v,(f) > —1 for any normal irreducible p € K|t].
(i) fe K(t) <= vp(f) >0 for any normal irreducible p € K|t].
(iti) K(t) is a differential subring of K (t).
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Proof. Let f € K(t) and write f = a/b with a,b € K|t], ged(a,b) = 1, and
b # 0. Let p € K[t] be normal irreducible.

(i) If f is simple, then b is normal hence squarefree. If p | b, then p [ a, so
vp(f) = —vp(b) > —1 since b is squarefree.

(i) If f € K(t), then b € S, so p [ b, which implies that vp(f) = vp(a) > 0.
Conversely, suppose that v4(f) > 0 for any normal irreducible ¢ € K[t], and
let p € K][t] be a normal irreducible factor of b. Then, p £ a, so v(f) =
—v,(b) < 0 in contradiction with our hypothesis. Hence, all the irreducible
factors of b are special, so b € S by Theorem 3.4.1, which implies that f €
K(t).

(iii) K (t) is not empty since K[t] C K(t). Let f,g € K(t) and p € K[t] be
normal irreducible. Then, v,(f) > 0 and vp(g) > 0 by part (ii). We have
vy(—g) = vp(g) by Lemma 4.1.2, so vp(f—9) 2 min(vp(f), vp(—9)) > 0.
Hence, f — g € K(t) by part (ii). In addition, vo(fg) = vp(f) +vp(g) 2 0, 50
fg € K(t), hence K(t) is a subring of K(t). If vo(f) = 0, then vp(Df) >0
by Theorem 4.4.2. Otherwise, v(f) > 0, so vp(Df) = vp(f) =1 > 0 by
Theorem 4.4.2. Thus Df € K (t) in any case, so K(t) is a differential subring
of K(t). O

Corollary 4.4.2. Let f € K(t)\ {0} and p € K[t] be irreducible. Then,

() ve(Df/f) 2 -1
(ii) vp(Df/f)=—1 <= vp(f) #0andpis normal.
(iii) If p is normal, then vp(Df) # —1 and residue, (D f/ f) = vp(f)-

Proof. Let p € KJt] be irreducible, f € K(t) \ {0}, n = vp(f) and m =
vp(Df).

(i) By Theorem 4.4.2, either m > norm =n-1, 50 vp(Df/f)=m-n2> -1
in any case.

(ii) Suppose that n # 0 and p is normal. Then, by Theorem 4.4.2, m = n—1,
so v,(Df/f) = —1. Conversely, suppose that v,(Df/f) = —1, then m =
n — 1 < n. By Theorem 4.4.2, m > n if either p € S orn =0, so p must be
normal and n # 0.

(iii) Suppose that p is normal. If n > 0, then m > 0 by Theorem 4.4.2. If
n < 0, then m = n —1 < —1 by Theorem 442, som # —-1. If n = 0,
then v,(Df/f) > —1 by parts (i) and (i), so Df/f € Op, which implies
that residue,(Df/f) = 0 by Theorem 4.4.1. Suppose now that n # 0. By (ii)
we have vp(Df/f) = —1, hence vp(pDf/f) = 0 so pDf/f € Op. By Theo-
rem 4.4.2, we have v,(Df) = n—1 and mp(p!""Df) = nmp(p~" f)mp(Dp).
Since p, Dp,p' "D f and p~" f are all in Op and 7, is a field-homomorphism
by Theorem 4.2.1 (p is irreducible), we have

l-np
residuep(%‘i) = 7rp(—Dfi -BPE) = Wp(;%—_"f_bip)

mp(p'"Df) _ _ nmp@~"Nmp(Dp) _
mp(p~" f)mp(Dp) mp(p~" f)mp(Dp)
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]

Lemma 4.4.2. Let p € K|[t] be normal irreducible, g € Op and d € K[t] be
such that vp(d) = 1. Then, residue,(g/d) = mp(g/Dd).

Proof. Since v,(d) = 1, v,(Dd) = 0 by Theorem 4.4.2, so vp(g/Dd) = v,(g) >
0, which implies that g/Dd € O, by Lemma 4.2.1. In addition, v,(pg/d) =
1+ vp(g9) = 1 =v,(g) >0, s0 g/d € Ry, so both residue,(g/d) and n,(g/Dd)
are defined. Write d = pq for some ¢ € K{t], and let h = gpDq/qDpDd.
Then, vp(g) = vp(d) — v(p) = 0, vp(Dp) = 0 since p is normal, v,(Dd) =
vp(d)—1 = 0 by Theorem 4.4.2, s0 vp(h) = vp(g)+1+vp(Dq) > 1. This implies
that h € pO, by Lemma 4.2.1, hence that 7,(h) = 0 by Theorem 4.2.1. In
addition, we have

1 pDgq g¢Dp+pDg _ 1

g
I th=g(—+ = =g——=1
Dd 9(5q* sDppd) =9 qDpDd ~93Dp ~ d

2
Dp
SO

st (3) = (335) = =0+ 53)

it o7 () = ().

0O

Lemma 4.4.3. Let g € K|[t] be normal irreducible and f € K(t) be such that
ve(f) = —1. Write f = p+a/d where p,a,d € K|[t], d # 0, deg(a) < deg(d)
and ged(a,d) = 1. Then, for any o € K,

q| ged(a — aDd,d) < residue,(f) = a.

Proof. Since v,(f) = —1, we have v,(a) = 0 and y4(d) = 1, so vo(Dd) =0
by Theorem 4.4.2. This implies that Dd € O, and that v4(1/Dd) = 0, hence
that 1/Dd € O,. Furthermore, a,p € O, and f = (a+pd)/d, so residue,(f) =
7q((a + pd)/Dd) = m4(a/Dd) by Lemma 4.4.2.
Suppose that ¢ | ged(a — aDd,d). Then,

0 = mg(a — aDd) = mg(a) — amy(Dd)
)

_ me(a) _ ayN _

o= —wq(Dd) =, (m) = residueg(f) .

Conversely, suppose that a = residuey(f) = mg(a/Dd). Then,
a
Dd
so q | a — aDd, hence q | gcd(a — aDd, d). O

me(a — aDd) = mg(a) — amg(Dd) = mg(a) — 7q(5)me(Dd) =0
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We can now state the fundamental property of the Rothstein-Trager resul-
tant, namely that from any simple function, one can construct a polynomial
over K whose nonzero roots in K are exactly the residues of f that are in
K. Note that in general, not all the residues of f are in K, expect when K

is algebraically closed.

Theorem 4.4.3. Let f € K(t) be simple w.r.t D, and write f = p +a/d
where p,a,d € K[t], d # 0, deg(a) < deg(d), and ged(a,d) = 1. Let

r = resultant,(a — 2Dd, d) € K|[z] (4.5)
where z is an indeterminate over K. Then, for any a € K,
r(a) =0 <= residue,(f) = a for some normal irreducible g € K[t].
We call the polynomial v given by (4.5) the Rothstein—Trager resultant of f.

Proof. For any 8 € K*, let rg = resultant,(a — 8Dd, d) € K, and o3 :
K[z] = K be the ring homomorphism given by os(z) = B and op(z) = z for
any z € K. Define 55 : K[z][t] = K][t] by 55(2 a;t’) = Y op(a;)t!. Since
73(d) = d, deg,(F3(d)) = deg,(d), so r(8) = 7p(r) = tlc(d)™?rg for some
nonnegative integer mg by Theorem 1.4.3.

Recall that f simple means that d is normal, hence squarefree, i.e. that
vp(f) > —1 for any normal irreducible p € K (] Let @ € K* be such that
r(a) = 0. Then, ro = 0, so deg(g) > 0 by Corollary 1.4.2 where g = ged(a —
aDd,d). Let then g € K[t] be an irreducible factor of g. Since ¢ | d and f is
simple, g is normal. Also, v,(d) = 1 since d is squarefree, so a = residueg (f)
by Lemma 4.4.3.

Conversely suppose that residue,(f) = a € K* for some normal irre-
ducible ¢ € K[t]. Then, residue,(f) # 0, so f ¢ Oy by Theorem 4.4.1, which
implies that v(f) = —1. Hence, v4(d) = 1, so ¢ | ged(a — aDd, d) by Lem-
ma 4.4.3. Therefore, ro = 0 by Corollary 1.4.2, so r(a) = 0. 0

Let F be a field of characteristic 0, z be an indeterminate over F, and
D be the derivation d/dz on F(z). Since every irreducible ¢ € F[z] is nor-
mal with respect to d/dz, applying the above result to K = F, we see that
Theorem 4.4.3 and Lemma 4.4.3 respectively prove parts (i) and (ii) of The-

orem 2.4.1.
There are similar results relating the order at infinity of an element of

K (t) and its derivative.

Theorem 4.4.4. Let f € K(t) \ {0}. Then,

(i) Voo(Df) > Voo(f) — max(0,4(t) — 1).

(i) If t is nonlinear and Vo (f) # 0, then equality holds in (i), and

s DI _
oo (tl : f) Voo (F)A(H) -
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(iii) If t is nonlinear and voo(f) = 0, then the strict inequality holds in (i),
i.e. Vo(Df) > 1-4(t), and

Too (tl"s(t)—DTj:> =0.

Proof. Write f = a/d where a,d € K|[t], d # 0 and gcd(a,d) = 1. Then,
Df = (dDa — aDd)/d?, 0 voo(Df) = 2deg(d) — deg(dDa — aDd). Let m =
max(0,4(t) — 1).

(i) By Lemma 3.4.2, deg(Dd) < deg(d)+m and deg(Da) < deg(a)+m. Hence,
deg((d)Da—aDd) < deg(a) +deg(d) +m, 0 voo (D f) > deg(d) —deg(a) —m =
Voo (f) — m.

(ii) Suppose that ¢ is nonlinear and veo (f) # 0. Thenm = é(t)—1and Df #0
by Lemma 3.4.5. Suppose that deg(d) = 0, then deg(a) # 0 since vo(f) # 0,
so deg(dDa — aDd) = deg(Da) = deg(a) + m by Lemma 3.4.2, which implies
that veo(Df) = —deg(a) — m = voo(f) — m, hence that voo(t™™Df/f) = 0.
Furthermore, lc(dDa — aDd) = lc(dDa) = ddeg(a)lc(a)A(t) also by Lem-
ma 3.4.2. Hence,

_mD ddeg(a)lc(a)A(t) d
o (17 5L ) = ZEEZR s — deg@(®) = (DA
Suppose now that deg(a) = 0, then deg(d) # 0 since v(f) # 0, so
deg(dDa — aDd) = deg(Dd) = deg(d) + m by Lemma 3.4.2, which implies
that veo(Df) = deg(d) — m = veo(f) — m, hence that v (t~™Df/f) = 0.
Furthermore, lc(dDa — aDd) = lc(—aDd) = —a deg(d)lc(d)A(t) also by Lem-
ma 3.4.2. Hence,

-mDFf adeg(d)lc(d)A(t) lc(d)
oo | —_—) = - = — = —
o (17 5F) (DADNO LD — — deg(d)ae) = vl DA
Suppose finally that deg(a) # 0 and deg(d) # 0. Then, by Lemma 3.4.2, the ‘
leading term of dDa — aDd is

lc(d) deg(a)lc(a)A(t)tdes(a)+deg(d)+m
~lc(a) deg(d)lc(d) A(t)tleB(@) +aes(@)+m
= —eo (f)lc(a)lc(d)A(t)desle) Hdea(dm (4 6)

Since voo(f) # 0, this gives deg(dDa — aDd) = deg(a) + deg(d) + m, hence
Voo (Df) = Voo (f) — m, 50 Voo (t ™™D f/ f) = 0. Furthermore,

o (17D - DN D _ 5.

7 lc(d)? le(a)

(iii) Suppose that ¢ is nonlinear and vo(f) = 0. Then m = 4(t) — 1 and
deg(a) = deg(d). If Df = 0, then veo(Df) = 400 > —m, so suppose that
Df # 0. If deg(a) # 0, then deg(dDa —aDd) < deg(a) + deg(d) + m by (4.6),
80 Veo(Df) = 2deg(d) — deg(dDa — aDd) > —m. If deg(a) = deg(d) = 0,
then f € K, so Df € K, which implies that voo(Df) = 0 > —m. Hence,
Voo ("D f]f) > 0, 50 1o (t™™Df/f) = 0. O
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Exercises

Exercise 4.1. Let (k, D) be a differential field of characteristic 0, ¢ a mono-
mial over k, and f € k(t) be simple. Show that if there are h € k(t) and
g € k(t) such that Dg = f + h, then f € k[t].

Exercise 4.2. Let (k, D) be a differential field of characteristic 0, ¢ a mono-
mial over k, and f € k(t).

a) Show that if f is the logarithmic derivative of a nonzero element of k(t),
then f is simple and can be written as
a

f=prty7
where p,a,d € kit], deg(p) < max(1,6(t)), d # 0, deg(a) < deg(d),
ged(a,d) = 1, and d is normal. Furthermore, all the roots in k of
r = resultant,(a — 2Dd, d) are integers.

b) Show that if f is the logarithmic derivative of a k(t)-radical, then f is
simple and can be written as

a
f=p+5

where p,a,d € klt], deg(p) < max(1,6(t)), d # 0, deg(a) < deg(d),

ged(a,d) = 1, and d is normal. Furthermore, all the roots in k of

r = resultant;(a — 2Dd, d) are rational numbers.

Exercise 4.3 (Indicial equation of a linear differential operator).
Let (k, D) be a differential field of characteristic 0, ¢ a monomial over k,
p € k[t] be normal and irreducible, and f € k(t) be such that v,(f) <0.

a) Show that vp(D"f) = v,(f) — n for any n € N.
b) Show that

n—1

mp (92007 f) = my (7D (Op)" £) T] (wal) )

=0
for any n € N.
¢) Let n € N and ag,a1,-..,a, € k(t) be such that n > 0 and a, # 0. Let
= maxo<i<n (i — vp(ai)),

i-1
PR = Y m (e 0p)e) [[z-1) € HH/@]
0<i<n =0
i—vp(ai)=p

and R(z) = resultant,(p, P) € k[z]. Show that either

Vp (Z aiDif> =vp(f) — 1

i=0

or P(vp(f)) = R(vp(f)) = 0.

5. Integration of Transcendental Functions

Having developped the required machinery in the previous chapters, we can
now describe the integration algorithm. In this chapter, we define formally
the integration problem in an algebraic setting, prove the main theorem of
symbolic integration (Liouville’s Theorem), and describe the main part of the
integration algorithm.

From now on, and without further mention, all the fields in this book are
of characteristic 0. We also use the convention throughout that deg(0) = —oo.

5.1 Elementary and Liouvillian Extensions

We give in this section precise definitions of elementary functions, and of the
problem of integrating functions in finite terms. Throughout this section, let
k be a differential field and K a differential extension of k.

Definition 5.1.1. t € K is a primitive over k if Dt € k. t € K* is an
hyperexponential over k if Dt/t € k. t € K is Liouvillian over k if t is either
algebraic, or a primitive or an hyperezponential over k. K is a Liouvillian
extension of k if there are ty,...,tn in K such that K = k(ty,. .., tn) and t;
is Liouvillian over k(ty,...,ti—1) foriin {1,...,n}.

We write ¢ = [a when ¢ is a primitive over k such that Dt = a, and t =

ef“ when ¢ is an hyperexponential over k such that Dt/t = a. Given that t is
Liouvillian over k, we need to know whether ¢ is algebraic or transcendental
over k. We show that there are simple necessary and sufficient conditions that
guarantee that a primitive or hyperexponential is in fact a monomial over k.

Lemma 5.1.1. Ift is a primitive over k and Dt is not the derivative of an
element of k, then Dt is not the derivative of an element of any algebraic
extension of k.

Proof. Let t be a primitive over k, a = Dt, and suppose that a is not the
derivative of an element of k. Let E be any algebraic extension of k, and
suppose that Da = a for some a € E. Let T be the trace map from k(a) to
k, n = [k(a) : k], and b = Tr(a)/n € k. By Theorem 3.2.4,
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Db = %D(Tr(a)) = —:;Tr(Da) = %Tr(a) =a

in contradiction with Du # a for any u € k. B

Theorem 5.1.1. If t is a primitive over k and Dt is not the derivative of
an element of k, then t is a monomial over k, Const(k(t)) = Const(k), and
S =k (i.e. S = Si'" = ). Conversely, if t is transcendental and primitive
over k, and Const(k(t)) = Const(k), then Dt is not the derivative of an

element of k.

Proof. Let t be a primitive over k, a = Dt, % be the algebraic closure of k,
and suppose that a is not the derivative of an element of k. Then, Da #a
for any a € k by Lemma 5.1.1, so ¢ must be transcendental over k, hence it
is a monomial over k. Suppose that p € S \ k. Let then 8 € k be a root of
p. Then, DB = Dt = a by Theorem 3.4.3, in contradiction with Da # a for
any a € k, so p € k. Conversely, k C S by definition. Let c € Const(k(t)).
By Lemma 3.4.5, both the numerator and denominator of ¢ must be special,
hence in k, so ¢ € k, which implies that Const(k(t)) C Const(k). The reverse
inclusion is given by Lemma 3.3.1, so Const(k(t)) = Const(k).

Conversely, let ¢t be a transcendental primitive over k and suppose that
Const(k(t)) = Const(k). If there exists b € k such that Dt = Db, then
c=t—be Const(k(t)), so ¢ € k in contradiction with ¢ transcendental over
k. Hence Dt is not the derivative of an element in k. O

Theorem 5.1.2. If t is an hyperezponential over k and Dt/t is not a loga-
rithmic derivative of a k-radical, then t is a monomial over k, Const(k(t)) =
Const(k), and S'" = Si = {t}. Conversely, if t is transcendental and hy-
perezponential over k, and Const(k(t)) = Const(k), then Dt/t is not a loga-
rithmic derivative of a k-radical.

Proof. Let t be an hyperexponential over k, a = Dt/t, k be the algebraic
closure of k, and suppose that a is not a logarithmic derivative of a k-radical.
We have Dt/t = a and a is not a logarithmic derivative of a k-radical by
Lemma 3.4.8, so t must be transcendental over k, hence it is a monomial over
k since Dt = at.

Let p = bt™ for b € k and m > 0. Then, Dp = (Db + mab)t™, so p | Dp,
which means that p € S. Let now p € S and suppose that p has a nonzero
root B € k. Then, DB/B = Dt/t = a by Theorem 3.4.3, in contradiction
with Da/a # a for any a € %" . Hence the only root of pin k is 0, so p = t.

We have Sif C S by definition. Conversely, let p € §™. Then p = t,
so the only root of p in k is 3 = 0. We have ps = po = Dt/t = a, which
is not a logarithmic derivative of a k-radical, so p € Sirr, which implies that
Sll‘l‘ —_ Sll’l‘.

1 Let ¢ € Const(k(t)). By Lemma 3.4.5, both the numerator and denomina-
tor of ¢ must be special, hence ¢ = bt? for b € k and ¢ € Z. Suppose that b # 0
and ¢ # 0. Then, 0 = Dc = (Db+ gab)t?, so Db/b = ga, which implies that a
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is a logarithmic derivative of a k-radical, in contradiction with our hypothesis.
Hence, b = 0 or ¢ = 0, so ¢ € k, which implies that Const(k(t)) C Const(k).
The reverse inclusion is given by Lemma 3.3.1, so Const(k(t)) = Const(k).
Conversely, let ¢ be a transcendental hyperexponential over k and suppose
that Const(k(t)) = Const(k). If there exist b € k* and an integer n # 0 such
that nDt/t = Db/b, then ¢ = t"/b € Const(k(t)), so ¢ € k in contradiction
with ¢ transcendental over k. Hence Dt/t is not a logarithmic derivative of a
k-radical. 0

In practice, we only consider primitives and hyperexponentials that sat-
isfy the hypotheses of Theorems 5.1.1 or 5.1.2. As we have seen, such prim-
itives and hyperexponentials are monomials that satisfy the extra condition
Const(k(t)) = Const(k). Those monomials are traditionally called Liouvillian
monomials in the literature.

Definition 5.1.2. t € K is a Liouvillian monomial over k if ¢ is transcen-
dental and Liouvillian over k and Const(k(t)) = Const(k).

One should be careful that our definition of monomial in Chap. 3 does not
require Const(k(t)) = Const(k), so it is possible for a monomial in the sense
of Chap. 3 to be Liouvillian over k and yet not a Liouvillian monomial in
the sense of Definition 5.1.2 (for example log(2) over Q). Theorems 5.1.1
and 5.1.2 can be seen as necessary and sufficient conditions for a primitive or
hyperexponential to be a Liouvillian monomial. Furthermore, those theorems
describe all the special polynomials in such extensions, and they are all of
the first kind. We also have:

kt], if Dt € k,
kt) ={ k{t!t‘l], if Dt/t € k. (5.1)

The fact that k and k(t) have the same field of constants allows us to refine
the relationship between the degree of a polynomial and its derivative in a
Liouvillian monomial extension, and to strenghten Theorem 4.4.4.

Lemma 5.1.2. Lett be a Liouvillian monomial over k, f € k(t) be such that
Df # 0, and write f = p/q where p,q € k[t] and ¢ is monic. If voo(f) =0,
then veo (D f) > 0. Otherwise, voo(f) # 0 and

_ | veo(f)s if Dt/t € k or D(lc(p)) #0,
veo(Df) = { veo(f) + 1, if Dt € k and D(lc(p)) =0.

Proof. If veo(f) = 0, then voo(Df) > 0 by Theorem 4.4.4, so suppose from
now on that v (f) # 0. Then, n —m # 0 where n = deg(p) and m = deg(q).
We have

- 30p —pDq

= e

hence voo (D f) = 2m — deg(¢Dp — pDq), so we need to compute deg(qDp —
pDgq). Write p = bt™ + r and ¢ = t™ + s where b € k* and r, s € kt] satisfy

Df
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deg(r) < n and deg(s) < m. We treat the primitive and hyperexponential
cases separately.
Primitive case: Suppose that Dt = a € k. Then,
Dp = (Db)t" + nabt™™' + Dr (5.2)
and
Dq = mat™ ! + Ds

so deg(Dgq) < m since deg(Ds) < m by Lemma 3.4.2.

Suppose first that Db # 0. Then, deg(Dp) = n since deg(Dr) < n by Lem-
ma 3.4.2, so deg(¢Dp) = m + n and deg(pDq) < m + n, which implies that
deg(¢Dp — pDq) = m + n, hence that

Vo(Df)=2m —(m+n)=m—n=vx(f).
Suppose now that Db = 0, and write 7 = ¢t" ! +u and s = dt™~! +v, where
¢,d € k and u,v € k[t] satisfy deg(u) < n — 1 and deg(v) < m — 1. We then
have
gDp —pDq = (Dc+nab)t" ™ ! + (n — Dact™ ™2 + t™ Dy
+(dt™ ! + v)Dp — b(Dd + ma)t" ™!
—(m — 1)abdt™*™~2 — bt"Dv — (ct"~! +u)Dq
= (Dc—bDd+ (n —m)ab) t"t™!
+((n = 1)c = (m — 1)bd) at™*™2
+(dt™ + v)Dp + t™Du — bt"Dv — (ct™! +u)Dgq.
Since n—m # 0 and b # 0, c—bd+(n—m)bt ¢ k,so0 D (¢ — bd + (n — m)bt) # 0
since Const(k(t)) = Const(k). But
D(c—-bd+ (n —m)bt) = Dc —bDd + (n — m)ab

since b € Const(k), hence Dc — bDd + (n — m)ab # 0. In addition, (5.2) and
Db = 0 imply that deg(Dp) < n, and Lemma 3.4.2 imply that deg(Du) <
n — 1 and deg(Dv) < m — 1. Hence, (dt™"! + v)Dp, t™Du, bt"Dv and
(ct™ ! +u)Dq all have degrees strictly smaller than n +m — 1, which implies
that deg(¢Dp —pDq) =n+m ~1, hence that v (Df) =2m~(n+m—1) =
m-n+1=ve(f)+1.

Hyperezponential case: Suppose that Dt/t = a € k. Then,

¢Dp —pDq = (Db + nab)t"*t™ +t™Dr + sDp — bmat™*™ — bt"Ds — rDgq
(Db + (n — m)ab) t"*™ + (sDp — rDq + t™ Dr — bt"Ds) .

Sincen—m #0and b # 0, bt"~™ ¢ k, so D (bt"~™) # 0 since Const(k(t)) =
Const(k). But D (bt"~™) = (Db + (n — m)ab) t*~™, so Db+ (n — m)ab # 0.
In addition, deg(Dp) < n, deg(Dq) < m, deg(Dr) < n and deg(Ds) < m
by Lemma 3.4.2, so sDp, rDgq, t™Dr and bt"Ds all have degrees strictly
smaller than n + m, which implies that deg(¢Dp — pDq) = n + m, hence that
Voo(Df) =2m — (n+m) =m —n = v (f). 0
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Note that when applied to polynomials p € k[t] when ¢t is a Liouvillian
monomial over k, Lemma 5.1.2 implies that

_ | deg(p), if Dt/t € k or D(Ic(p)) # 0,
deg(Dp) = { deg(p) — 1, if Dt € k and D(lc(p)) =0

whenever Dp # 0, and we often use it in this context in the sequel.

We now introduce the particular Liouvillian extensions that define the
integration in finite terms problem, namely the elementary extensions.

Definition 5.1.3. t € K is a logarithm over k if Dt = Db/b for some
b€ k*. t € K* is an exponential over k if Dt/t = Db for someb€ k. t € K
is elementary over k if ¢ is either algebraic, or a logarithm or an ezponential
over k. t € K is an elementary monomial over k if t is transcendental and
elementary over k, and Const(k(t)) = Const(k).

We write t = log(b) when ¢ is a logarithm over k such that Dt = Db/b, and
t = eb when t is an exponential over k such that Dt/t = b. Since logarithms
are primitives and exponentials are hyperexponentials, elementary monomials
are Liouvillian monomials and all the results of this section apply to them.

Definition 5.1.4. K is an elementary extension of k if there are t;, ..., t, in
K such that K = k(ty,...,t,) andt; is elementary over k(t1,...,t;_1) foriin
{1,...,n}. We say that f € k has an elementary integral over k if there ezists
an elementary extension E of k and g € E such that Dg = f. An elementary
function is any element of any elementary extension of (C(x),d/dx).

We can now define precisely the problem of integration in closed form:
given a differential field k and an integrand f € k, to decide in a finite number
of steps whether f has an elementary integral over k, and to compute one if it
has any. Note that there is a difference between having an elementary integral
over k and having an elementary antiderivative: consider k = C(z,t;,t2)
where z,t;,t; are indeterminates over C, with the derivation D given by
Dz =1,Dt; =t, and Dty = t,/z (i.e. t; = €® and t; = Ei(z)). Then,

/e’Ei(:c) dz = Ei(z)? ck

T 2

so e*Ei(z)/z has an elementary integral over k even though its integral is
not an elementary function. The two notions coincide only when k itself is a
field of elementary functions.

Remark that the elementary functions of Definition 5.1.4 include all
the usual elementary functions of analysis, since the trigonometric func-
tions and their inverses can be rewritten in terms of complex exponen-
tial and logarithms by the usual formulas derived from Euler’s formula
efV=1 = cos(f) +sin(f)v/—1. Those transformations have the computational
inconvenience that they introduce v/—1, and it turns out that they can be
avoided when integrating real trigonometric functions (Sections 5.8 and 5.10).
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5.2 Outline and Scope of the Integration Algorithm

We outline in this section the integration algorithm so that the structure
of the remaining sections and chapters will be easier to follow. Given an
integrand f(z)dz, we first need to construct a differential field containing f,
and the integration algorithm we describe requires that f be contained in
a differential field of the form K = C(t1,t2,...,tn) where C = Const(K),
Dt, =1 (i.e. t; = z is the integration variable), and each ¢; is a monomial over
C(ty,...,ti—1). If the formula for f(z) contains only Liouvillian operations,
this requirement can be checked by integrating recursively the argument of
each primitive or hyperexponential before adjoining it!, and verifying using
Theorem 5.1.1 or Theorem 5.1.2 that it is a Liouvillian monomial. Another
alternative, which is in general more efficient, is to apply the algorithms that
are derived from the various structure theorems, whenever they are applicable

(Chap. 9).
Ezample 5.2.1. Consider

/log(z) log(z + 1) log(2z” + 2z)dz .

We construct the differential field K = Q(z,t1,t2,t3) with

1 1 2r+1
Dr=1, Dty ==, Dty=—— d Dtz = .
r=5 T 2 z+1 T 24z

As we construct K, we integrate at each step and make the following verifi-
cations:
- [dz¢Qsozisa Liouvillian monomial over Q;

~ [dz/z ¢ Q(z), so t; is a Liouvillian monomial over Q(z);
~ [dz/(z+1) ¢ Qz,t1) sotzis a Liouvillian monomial over Q(z,%1);

2z +1

- dz =t +t; € Qz,11,1

/ PR 1+t € Qz, by, 12)
so t3 is not a Liouvillian monomial over Q(z, t1,t2), and K is isomorphic
as a differential field to Q(c)(z,t1,t2) wherec =tz —t; —t2 € Const(K).

— Alternatively, applying the Risch structure Theorem (Corollary 9.3.1), we
find that the linear equation (9.8) for @ = 2z% + 2z becomes

rn r+2 2z+ 1

z T+l z22+7
which has the rational solution 7y = ro = 1. This implies that Dt3 is the
derivative of an element of K and that c=1#3 —t; —#2 € Const(K).

! A simpler version of the integration algorithm can be used for those verifications,
see Sect. 5.12
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Ezample 5.2.2. Consider

/(ezz +ez+log(x)/2) dr.

We construct the differential field K = =z, t;, t2,t3) with
1
Dzx=1, Dty =2t;,, Dty =- and Di;3= (] + l) t3.
T 2z

As we construct K we integrate at each step and make the following verifi-
cations:

— [ dz ¢ Q so z is a Liouvillian monomial over Q;

- f 2fi:c ;6 log(v)/n for any v € Q(z) and n € Z, so 2 is not the logarithmic
derivative of a Q(z)-radical, which implies that ¢, is a Liouvillian monomial
over ((z);

— [dz/z ¢ Qz,t,), so t, is a Liouvillian monomial over Q(z,t);

1 1
/ (1 + E) dz = Elog(ztl)

80 1 + 1/(2z) is the logarithmic derivative of a Xz, ¢,,)-radical, so t3
is not a Liouvillian monomial over Xz, t;,t2), and K is isomorphic as a
differential field to Q(z,t),t2, /Zt1).
— Alternatively, applying the Risch structure Theorem (Corollary 9.3.1), we

find that the linear equation (9.9) for b = = + t5/2 becomes

7‘_2 + 27‘1 =1+ l

z 2z
Yvhich has the rational solution ry = r, = 1/2. This implies that Dt3/t3
is the logarithmic derivative of a K-radical, and that ¢ = t3/(zt,) €
Const(K).

. Note that the requirement that each ¢; be a monomial eliminates expres-
sions containing algebraic functions from the algorithm presented here. Al-
though the problem of integrating elementary functions containing algebraic
functions is also decidable, the algorithms used in the algebraic function case
are beyond the scope of this book [8, 9, 13, 14, 26, 58, 59, 61, 76].

Once we have a tower of monomials K = C(ti,...,t,), the algorithms of
Fhis chapter reduce the problem of integrating an element of K to various
m.tegra.tion-related problems involving elements of C(t1,...,tn—1), thereby
ghminating the monomial t,,. Since the reduced problems involve integrands
in a tower of smaller transcendence degree over C, we can use the algorithm
recursively on them, and termination is ensured. In order to avoid writing
the full tower of extensions throughout this book, we write K = k(t) where
k=C(t,...,tam1) and t = t, is a monomial over k, and the task of the
algorithms of this chapter is to reduce integrating a given element of k(t) to
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integration-related problems over k. If ¢ is elementary over k, then having an
elementary integral over k(t) is equivalent to having an elementary integral
over k, so the algorithms we present in this book provide a complete decision
procedure for the problem of deciding whether an element of a purely tran-
scendental elementary extension of (C(z),d/dz) has an elementary integral
over C(z). For more general functions, when ¢ is not elementary over k, it
can be proven that if ¢ is either an hyperexponential monomial or nonlin-
ear monomial over k with S = S', then having an elementary integral
over k(t) is equivalent to having an elementary integral over k (Exercise 5.5),
so the algorithm is complete for integrands built from transcendental loga-
rithms, arc-tangents, hyperexponentials and tangents. The only obstruction
to a complete algorithm for Liouvillian integrands is the case where t is a
nonelementary primitive over k: even though we can reduce the problem to
an integrand in k, the problem becomes however to determine whether f € k
has an elementary integral over k(t), and although there are algorithms for
special types of primitive monomials (5, 20, 21, 38, 39, 79], this problem has
not been solved for general monomials (Exercise 5.5 f)). As will be seen from
numerous examples in this book, the algorithm can still be used successfully
on many integrands involving nonelementary monomials. It cannot however
always provide a proof on nonexistence of an elementary integral over k(t)
when ¢ is a nonelementary primitive over k. The reduction from k(t) to tis
also incomplete for general nonlinear monomials, but is complete for tangents
and hyperbolic tangents.

The general line of the integration algorithm is to perform successive
reductions, which all transform the integrand to a “simpler” one, until the
remaining integrand is in k (Fig. 5.1):

— The Hermite reduction (Sect. 5.3), which can be applied to arbitrary mono-
mials, transforms a general integrand to the sum of a simple and a reduced
integrand;

— The polynomial reduction (section 5.4), which can be applied to nonlinear
monomials, reduces the degree of the polynomial part of an integrand;

— The residue criterion (Sect. 5.6), which can be applied to arbitrary mono-
mials, either proves that an integrand does not have an elementary integral
over k(t), or transforms it to a reduced integrand (i.e. an integrand in k(t));

— Reduced integrands are integrated by specific algorithms for each case of
Liouvillian or hypertangent monomial (Sect. 5.8, 5.9 and 5.10). Those algo-
rithms either prove that there is no elementary integral over k(t), or reduce
the problem to various integration-related problems over k. Algorithms for
solving those related problems are described in Chap. 6, 7 and 8.

Except for the last part, the various reductions are applicable to arbitrary
monomial extensions.

5.2 Outline and Scope of the Integration Algorithm

fek()

Hermite Reduction

f =g+ h,gsimple, h € k(t)

Polynomial Reduction

f =g+ h,gsimple, h € k(t)

esidue Criterion No elementary

integral
f e k)
Primitive Case Exponential Case Tangent Case
Limited Integration Risch D.E. Coupled D.E. System
No elementary

integral

fEek

Fig. 5.1. General outline of the integration algorithm

133
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5.3 The Hermite Reduction

We have seen in Sect. 2.2 that the Hermite reduction rewrites any rational
function as the sum of a derivative and a rational function with a squarefree
denominator. In this section, we show that the Hermite reduction can be
applied to the normal part of any element of a monomial extension. Let (k, D)
be a differential field and ¢ a monomial over k for the next two sections.

Definition 5.3.1. For f € k(t), we define the polar multiplicity of f to be
p(f) = - min (vp(f))-

peEk{ti\k
Note that x(0) = —oo and that p(f) > 0 for any f # 0, since in that case
there is always some polynomial p € kt] for which vp(f) = 0. Also, the
minimum in the above definition can be taken over all the irreducible or
squarefree factors of the denominator of f. It is easy to see that for f # 0,
u(f) is exactly the highest power appearing in any squarefree factorization
of the denominator of f (Exercise 5.1).

Theorem 5.3.1. Let f € k(t). Using only the extended Euclidean algorithm
in k[t], one can find g,h,r € k(t) such that h is simple, v is reduced, and
f = Dg + h + r. Furthermore, the denominators of g,h and r divide the
denominator of f, and either g = 0 or u(g) < p(f).

Proof. Let f = fp + fs + fn be the canonical representation of f, and write
fn = a/d with a,d € k[t] and ged(a,d) = 1. We proceed by induction on
m = p(fa)- Let d = did} - - - dj be a squarefree factorization ofd. fm<1,
then either fn = 0 or d is normal. In both cases, fa is simple, so g = 0,
h = f and 7 = f, + fs € k(t) satisfy the theorem.

Otherwise, m > 1, so assume that the theorem holds for any nonzero
g = gp + gn + g with pu(gs) < m, and let v = d,, and u = d/v™. Since
every squarefree factor of d is normal by the definition of the canonical rep-
resentation, v is normal, so gcd(Dv, v) = 1. In addition, ged(u,v) = 1 by the
definition of a squarefree factorization, so ged(uDv,v) = 1. Hence, we can
use the extended Euclidean algorithm to find b, ¢ € kt] such that

a
1-m

=buDv+cv.

Multiplying both sides by (1 —m)/(uv™) gives
a (1 = m)bDv + (1 =m)c

fn - uy™ - pm upm—1

so, adding and subtracting Db/y™~! to the right hand side, we get
fo= ( Db (m-— 1)bDv) + (1-m)c—uDb _ Dgo +w

vm—l pm uvm—l
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where go = b/v™~! and w = ((1 — m)c — uDb)/(uv™~!). Since the denomi-
nator of w divides uv™~!, w has no special part, so let w = w, + wy, be the
canonical representation of w. Since p(w) < m — 1, we have p(w,) <m -1,
so by induction we can find g1, h; and r; in k() such that w,, = Dgl—+ h+ry,
h is simple, 7 is reduced, the denominators of g;, h and r; divide uv™~!, and
w(g1) < p(w) if g1 # 0. Let then g = go+g¢y and r = fp+wp+ f,+71, and write
e for the denominator of f. Note that d | e by the definition of the canonical
representation. The denominator of g; divides uv™! and go = b/v™ %, so
the denominator of g divides d hence e. The denominator of h divides uv™ !,
so it divides d hence e. The denominator of w divides d and the denominator
of r; divides uv™ "1, so the denominator of r divides e. In addition, fp,wp, fs
and r, are in k(t), which is a subring of k(t) by Corollary 4.4.1, so r € k(t).
Finally, we have

f=fotfstfn fo+ fs+Dgo+w
= fo+ fs+Dgo+w,+Dgi+h+r,=Dg+h+r
which proves the theorem. a

Although we have used the quadratic version of the Hermite reduction
in the above proof, the other versions are also valid in monomial extensions
(Exercise 5.2). Instead of splitting a rational function into a derivative and a
simple rational function, the Hermite reduction splits any element of k(t) into
a derivative, a simple and a reduced element. Thus, it reduces any integration
problem to integrands that are the sum of a simple and a reduced element.

HermiteReduce(f, D) (* Hermite Reduction - quadratic version *)

(* Given a derivation D on k(t) and f € k(t), return g, h,r € k(t) such
that f = Dg+ h +r, h is simple and r is reduced. *)

(fp, fs) fa) & CanonicalRepresentation(f, D)
(a,d) « (numerator(f.), denominator(fn))
(di,...,dm) + SquareFree(d)
g+ 0
for i « 2 to m such that deg(d;) > 0 do

v« d;

u — d/v’

for j«i—1to lstep —1 do

(b,¢) + ExtendedEuclidean({u Dv,v, —a/j)

(* d is monic *)

g g+b/
a ¢« —jc—uDb
d ¢+ uv

(¢,7) + PolyDivide(a, uv)
return(g,r/(uwv),q+ fp + fs)
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Ezample 5.9.1. Let k = Q(z) with D = d/dz, and let ¢ be a monomial over

k satisfying Dt = 1 + 2, i.e. t = tan(z), and consider

f= z—tan(r) -1
" tan(z)? @ 82

€ k(t).

Since f has no polynomial part and ¢ is normal in k[t], the canonical repre-
sentation of f is (fp, fs, f2) = (0,0, f) soweget a =z —t and d = t2 = d?
where d2 = t. We then have:

ilv[u[j[ b| c [ a
2|t|l|1|—x|zt+1|—zt

and a/uv = —zt/t = —z, so the Hermite reduction returns (—z/t,0, —z),

which means that
z — tan(z) T /
T2\ g — _ d
/ tan(z)? dz tan(z) raz

and the remaining integrand is in k(t).

The Hermite reduction can also be iterated, yiclding a decomposition of
f into a sum of higher-order derivatives of reduced and simple elements of

k(t) (Exercise 5.3).

5.4 The Polynomial Reduction

In the case of nonlinear monomials, another reduction allows us to rewrite
any polynomial in k[t] as the sum of a derivative and a polynomial of degree
less than &(t).

Theorem 5.4.1. Ift is a nonlinear monomial, then for any p € k[t], we can
find g, € k[t] such that p= Dq +r and deg(r) < 4(t).

Proof. We proceed by induction on n = deg(p). If n < é(t), then ¢ = 0 and
r = p satisfy the theorem. Otherwise n > &(t) so assume that the theorem
holds for any a € k[t] with deg(a) < n. Let
le(p)
= k

=+
g = ct" 8+ and 1y = p — Dgo. Since t is nonlinear and deg(go) > 0,
Lemma 3.4.2 implies that deg(Dgo) = deg(go) + 6(t) — 1 = n, and that the
leading coefficient of Dqq is (n—4&(t)+1) c A(t) = lc(p). Hence, deg(ro) < n, so
by induction we can find g;,7 € k[t] such that ro = Dgq, +r and deg(r) < 4(t).
Therefore,

p=Dgo+ro=Dg+Dg+r=Dg+r
where ¢ = go + @1 € Kk[t]. O
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PolynomialReduce(p, D) (* Polynomial Reduction *)

(* Given a derivation D on k(t) and p € k[t] where ¢ is a nonlinear
monomial over k, return ¢, € k[t] such that p = Dg + r, and deg(r) <
6(t). %)

if deg(p) < 4(t) then return(0, p)

m « deg(p) — 8(¢) +1

g0 + (le(p)/(mA(2))) t™
(g,r) + PolynomialReduce(p — Dgo, D)
return(qo + q,r)

Ezample 5.4.1. Let k = Q(z) with D = d/dz, and let ¢t be a monomial over
k satisfying Dt = 1 + t2, i.e. t = tan(z), and consider

p =1+ ztan(z) + tan(z)? = 1 + zt + t* € k[t].

We have 6(t) = 2, A(t) = 1, and applying PolynomialReduce, we get
m=deg(p)—1=1,q =t, Dgo = 1+1t2, so p— Dgo = zt, which has degree
1. Thus,

/(l + ztan(z) + tan(z)?) dz = tan(z) + /ztan(z)d:z:

and it will be proven later that the remaining integral is not an elementary
function.

If S # k, i.e. S # (), then any nontrivial element of S can be used to
eliminate the term of degree é(t) — 1 from a polynomial.
Theorem 5.4.2. Suppose that t is a nonlinear monomial. Let p € k[t] with -
deg(p) < 8(t), a € k be the coefficient of t*)=! in p, and ¢ = a/A(t). Then,
¢ Dg
deg(q) ¢

deg (p ) <4é(t)-1

for any g € S\ k.

Proof. Let ¢ € S\ k, then Dq/q € k[t] and by Lemma 3.4.2, deg(Dgq/q) =
deg(Dq)—deg(q) = 6(t)—1, and the leading coefficient of Dgq is deg(q)lc(q)A(t).

Hence,
_ ¢ Dg\ _ ¢ deg(q)lc(q)A(t) _ 3
(deg@) g ) =cAt) =a

~deg(e)  le(q)
which implies that the degree of p — ¢/ deg(q) Dq/q is at most §(t) —2. O
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5.5 Liouville’s Theorem

Given a differential field K and an integrand f € K, if an elementary integral
is found, it can be easily proven correct by differentiation. Furthermore, there
are usually several ways to find elementary integrals when they exist. Prov-
ing that f has no elementary integral is however quite a different problem,
since we need results that connect the existence of an elementary integral
to a special form of the integrand. The first such result is Laplace’s princi-
ple [41], which states roughly that we can simplify the integration problem by
allowing only new logarithms to appear linearly in the integral, all the other
functions must be in the integrand already?. Liouville was the first to state
and prove a precise theorem from this observation, first in the case of alge-
braic integrands [43, 44], then for more general integrands [45]. See Chap. IX
of [47] for the fascinating history of Liouville’s Theorem in the 19*" century.
This theorem has become the main tool used in proving that no elementary
integral exists for a given function. Furthermore, since it provides an explicit
class of elementary extensions to search for an integral, it forms the basis
of the integration algorithm. While Liouville used analytic arguments, it is
now possible to prove it algebraically in the context of differential fields. Al-
gebraic techiques were first used by Ostrowski [54], who presented a modern
proof of Liouville’s Theorem, together with an algorithm that reduces inte-
grating in k(t) to integrating in k when ¢t is a primitive monomial over k. The
first complete algebraic proof of Liouville’s Theorem was then published by
Rosenlicht [64] and the first proof of the strong version of Liouville’s Theorem
by Risch, who published it together with a complete integration algorithm
for purely transcendental elementary functions [60]. We follow both of them
here, first presenting essentially Rosenlicht’s proof of the weak Liouville The-
orem, and then progressively removing the restrictions on the constant fields,
obtaining Risch’s proof of the strong Liouville Theorem. We remark that Li-
ouville’s Theorem has been extended in various directions [17, 56, 66, 71},
but those extensions go beyond the scope of this book. Integration algo-
rithms that yield nonelementary integrals {20, 21, 38, 39] are based on such
extensions [71].

Theorem 5.5.1 (Liouville’s Theorem). Let K be a differential field and
f € K. If there exist an elementary extension E of K with Const(E) =
Const(K) and g € E such that Dg = f, then there are v € K, up,...,un €
K* and cy,...,cn € Const(K) such that

n
D’u.,'
=Dv+ ci—. 5.3
f PIL (5:3)
i=1
2 « . la différentiation laissant subsister les quantités exponentielles et radicales,

et ne faisant disparaitre les quantités logarithmiques qu'autant qu’elles ont mul-
tipliées par des constantes, on doit en conclure que I'intégrale d’une fonction
différentielle ne peut contenir d’autres quantités exponentielles et radicales que
celles qui sont contenues dans cette fonction...”

5.5 Liouville’s Theorem 139

Proof. Write C = Const(K) and let E be an elementary extension of K with
Const(E) = C and g € E besuch that Dg = f. Then, therearet,,...,t, € E
such that E = K(¢;,...,tn) and each t; is elementary over K(¢;,...,t;-).
We proceed by induction on m. For m = 0, we have £ = K, so letting
v=g€ K, we get f = Dv, which is of the form (5.3) with n = 0. Suppose
now that m > 0 and that the theorem holds for any elementary extension
generated by m — 1 elements. Let t = ¢; and F = K(t). Since K C F C E,
then C C Const(F) C Const(E) = C, so Const(F) = C. In addition, f € F,

and E = F(ty,...,ty) is an elementary extension of F' generated by m — 1
elements, so by induction there arev € F, u;,...,u, € F* and¢y,...,¢c, € C
such that
i Du,-
f=Dv+ ci—. 54
; ,ui (5.4)

Case 1: t transcendental over K. Then, since Const(F) = C, ¢ is Liouvil-
lian monomial over K by Theorems 5.1.1 and 5.1.2. Let p € K|[t] be nor-
mal and irreducible. We have vp(Du;/u;) > —1 by Corollary 4.4.2, hence
vp(3ir, ciDu;/u;) > —1 by Theorem 4.1.1. Suppose that vp(v) < 0. Then,
vp(Dv) = vp(v) — 1 < —1 by Theorem 4.4.2, so vp(f) = min(vp(Dv),-1) <
—1 by Theorem 4.1.1, in contradiction with f € K. Hence vy(v) > 0, so,
since this holds for any normal irreducible p, v € K(t). Hence, Dv € K(t) by
Corollary 4.4.1. Write now u; = w; [—[] 1 p”" where w; € K*, each p;; € K|t]
is monic irreducible, and the e;;’s are integers. Then, using the logarithmic
derivative identity and grouping together all the terms involving the same
Dij, we get

D qf (5.5)

f= Dv+Zc,

where the g;’s are in K[t], monic, irreducible and coprime. Write

9= Zcz

and suppose that one of the g;'s, say gk, is normal. We have v, (qx) = 1
and vy, (g;) = 0 for j # k, so vy, (dxDgx/qx) = —1 and v, (d;Dg;/q;) = 0
by Corollary 4.4.2. This implies that vg, (3", d;Dgj/g;) > 0, hence that
v, (h) = —1. But gx is normal and Dv € K(t), hence v, (Dv) > 0, so
vq, (f) = —1, in contradiction with f € K. Hence all the g;’s in equation (5.5)
are special.

Case la: t is a logarithm over K. Then, Dt = Da/a for some a € K*,
and every irreducible p € K[t] is normal by Theorem 5.1.1, so N = 0 in
equation (5.5) and v, Dv € K|[t]. From (5.5) we get Dv = f — g € K. By
Lemma 5.1.2, this implies that or v = ct + b where b,c € K and Dc = 0
(otherwise deg(Dv) > 1). Hence,

‘€K, h= Zd Dq’
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. Duwj
f= Db+c-—+z :

which is of the form (5.3).

Case 1b: ¢ is an exponential over K. Then, Dt/t = Da for some a € K, and
the only special monic irreducible p € K{t] is p = t by Theorem 5.1.2, so
N =1 in equation (5.5) and q; = t (with d; possibly 0). Hence, diDq1/q1 =
d,Dt/t = diDa, so f = Dw + g where w = v + dia € K(t). Suppose that
v(w) < 0, then v (Dw) = v (w) < 0 by Theorem 4.4.2 since t € S, so
u(f) < 0 in contradiction with f € K. Hence, vy(w) > 0 so w € K[t]. By
Lemma 5.1.2, Vo (Dw) = veo(w), so deg(Dw) = deg(w), which implies that
deg(w) = 0 since f = Dw + g € K. Hence w € K and

. Duw
f=Dw+ Zci :
i=1 Wi

which is of the form (5.3).

Case 2: t algebraic over K. Let Tr : F — K and N : F = K be the trace
and norm maps from F to K and d = [F : K]. Applying Tr to both sides of
equation (5.4) we get:

Tr(f) = Tr(Dv+Zc,——)—Tr(Du +Zc,TrDu )

since Tr is K-linear and the ¢;’s are in K. We have Tr(f) = df since f € K,

and
Du;\ _ DN(u;)
ui / N(u)

Tr(Dv) = D(Tr(v)) and Tr (

by Theorem 3.2.4, so
l D 1
f=Duw+ § Rl

which is of the form (5.3) with w = Tr(v)/d € Kand w; = N(u;) € K*. 0O

Of course, in practice we may have to adjoin new constants in order
to compute integrals, as we have seen in Chap. 2. We first show that new
transcendental constants are not necessary in order to express an elementary
integral.

Theorem 5.5.2. Let K be a differential field with algebraically closed con-
stant field and f € K. If there exist an elementary eztension E of K and
g € E such that Dg = f, then there are v € K, uy,...,un € K* and
C1,---,cn € Const(K) such that

" Du
f= Dv+2c,~—zﬁ
1=
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Proof. Suppose that there exist an elementary extension E of K and g € E
such that Dg = f. Write Const(K) = C, Const(E) = C(ay,...,am) for some
constants ay,...,a;, in E, and let F = K(ai,...,am). Since C(a1,...,am) C
F CE, C(ay,..-,am) C Const(F) C Const(E), so F and E have the same
constant subfield. In addition, f € F and E is elementary over F, so by
Theorem 5.5.1, there are v € F, uy,...,u, € F* and ¢1,...,c, € Const(F)

such that
" Du
=Dv + ci 5.6
Let Xi,...,Xm be independent indeterminates over K. Since the elements
of F are rational functions in a4, ..., a,, we can write
_ p(al,...,am), = ri(a1,...,am) and u; = pi(ay,...,am) (5.7)
q(al""!am) 31(a177am) Qi(al,..-,am)

where p,q,p;,q; are in K[X,...,Xn], and r;,8; are in C[X,,..., Xpm) In
addition, g(a1,...,am) # 0, where

g9=q (fISi) (ﬁpi> (f[q,) EK[Xl,...,Xm].

Replacing v, c1,...,cm and uy,...,un by the fractions (5.7) in (5.6), and
clearing denominators, we obtain a polynomial f € K[Xj,..., Xn] such that
fl(ai,...,am) = 0. By Lemma 3.3.6 applied to g and S = {f}, there are
bi,...,bm € C such that g(by,...,bm) # 0 and f(by,...,bn) = 0. But this
implies that

Dwl
where
p(bl,...,bm) ’I‘i(bl,...,bm) pi(bl,...,bm)
== di=—"""2 andw=—"""-=.
q(bl,...,bm) t S,;(bl,...,bm) t qi(bly---,bm)
Since p,q,pi,qi € K[X1,...,Xm] and r;,8; € C[X1,...,Xm], we get w € K,
wy,...,wn € K* and dy,...,d, € C, which proves the theorem. ]

We can finally remove all the constant restrictions in Liouville’s Theorem,
showing that for arbitrary constant subfields, v in (5.3) can be taken in K,
and the u;’s can be taken in K(cy,...,cn).

Theorem 5.5.3 (Liouville’s Theorem — Strong version). Let K be a
differential field, C = Const(K), and f € K. If there exist an elementary
ezstension E of K and g € E such that Dg = f, then there are v € K,
€1,...,¢cn € C, and u1,...,un € K(c1,...,cn)* such that

. Du
f =Dv+ ZC,‘ :
i=1 Ui
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Proof. Suppose that there exist an elementary extension E of K and g €
E such that Dg = f. Since CK is s _algebraic over K, Const(CK) = Cn
CK =C by Corollary 3.3.1. Hence, CK has an algebraically closed constant
subfield, f € CK, g € CE, which is an elementary extension of CK, so by
Theorem 5.5.2, there are v € CK, uy,...,Un € (CK)* and ¢y,...,¢n € o}

such that " p
f=Dv+ Z Ci Ui

F =K(v,u1,...,%n,C1,---,Cn) I8 ﬁmte algebralc over K, so let TrK F—- K
be the trace from F to K K be the algebraic closure of K and 01,...,0m
be the distinct embeddings of F in K over K. Each o; can be extended toa
field automorphism of K over K, and since Tr§ and each o; commute with
D by Theorem 3.2.4, we have

o

m n .. Du
mf = Zf"’ _TT‘K Dv)+ZZci’ ua:

i=1 j=1i=1

SO n

f= Dw+22d,,

j=1i=1

Dw,]

with
1 o, — R
wler,’“;(v)eK, dij=;cf’ €K and wij=u’ €K .

In addition, Const(K) = CNK = C by Corollary 3.3.1, and Ddi; =

D(c/m) = (Dc;)%/m = 0, so dij € C for each i and j. Let now
L= K(du, ..,dmn) and M = L(wy1,. .., Wmn)- Since L is algebraic over
K, K is the algebralc closure of L. Smce M is finite algebraic over L, let
TrM M = Land N : M = L be the trace and norm maps from M to L.
Slnce di; € L and Tr¥ is L-linear, we have

Duw;; Dw;; DN (w;;)
TrM ( d.. ”):d--TM( ”):di-————’—
TL ( 4wy i 4TL Wi I TN (wi;

by Theorem 3.2.4, so

m n D i
kf=TrM(f) = TrM(Dw)+Tri (3 diy=—2)

j=1i=1 wij

U DN(w,J)
N(wij)

1]
ol
(w}
e
+
t'M
i
&

hence

which is of the form (5.3) with w
K(dyy, .., dmn)*. D
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5.6 The Residue Criterion

Now that Liouville’s Theorem gives us a way of proving that a function has
no elementary integral over a given field, we can complete the integration
algorithm. For the rest of this chapter, let (k, D) be a differential field and
t a monomial over k. From the Hermite reduction, we can assume without
loss of generality that the integrand is given as the sum of a simple and a
reduced element of k(t).

We have seen in Sect. 2.4 that the Rothstein-Trager algorithm expresses
the integral of a simple rational function with no polynomial part as a sum
of logarithms. In this section, we show that this algorithm can be generalized
to any monomial extension, where it will either prove that a function has no
elementary integral, or reduce the problem to integrating elements of k(t).
Rothstein had already generalized this algorithm to elementary transcenden-
tal extensions in his dissertation [68].

Lemma 5.6.1. Let f € k(t) be simple. If there are h € k(t), an algebraic
extension E of Const(k), v € k(t), c1,...,¢n € E, and uy,...,u, € Ek(t)

such that
. Duy
f+h=Dv+ _;_ —

i=1
then n
residue,(f) = Ec,-up(u,-)
i=1

for any normal irreducible p € Ek(t].

Proof. Let f € k(t) be simple, and suppose that there are h € k(t), an
algebraic extension E of Const(k), v € k(t), c1,...,¢n € E, and uy,...,un €
Ek(t) such that f + h = Dv + Y&, ciD(u;)/u;. Note that f + h is simple
since h € k(t). Let p € Ek[t] be normal and irreducible. Then, for each i,
vo(Du;i/u;) > —1 and residuep(Du;/u;) = vp(u;) by Corollary 4.4.2. Suppose
that v,(v) < 0. Then v,(Dv) = vp(v) — 1 < =1 by Theorem 4.4.2, which
implies that v,(f + h) < ~1 in contradiction with f + h being simple. Hence
vp(v) > 0, s0 vp(Dv) > 0, which implies that residue,(Dv) = 0. Furthermore,
vy(h) > 0, so residue,(h) = 0. Since residue, is Ek-linear, we get

residuep(f) = residuey(f) + residue,,(h) = residue, (f + h)

residue,(Dv) + Z ¢; residue, ( - ) Z i vp(ui).

i=1

a

Lemma 5.6.2. Suppose that Const(k) is algebraically closed and let f € k(t)
be simple. If there exists h € k(t) such that f + h has an elementary integral
over k(t), then residuep(f) € Const(k) for any normal irreducible p € kft].
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Proof. Let C = Const(k), and suppose C is algebraically closed and that
f + h has an elementary integral over k(t) where f € k(t) is simple and
h € k(t). By Theorem 5.5.1, there are v,uy,...,un € k and ci,...,¢cn € C

such that
Du;

Ui

n
f+h=Dv+) c
i=1

Let p € k[t] be normal and irreducible. By Lemma 5.6.1 we have

residue,(f) = Zc,— vp(ui) € C.
i=1
a

Ezample 5.6.1. Let k = Q, t be a monomial over k with Dt =1 (i.e. D =

d/dt), and
f= 2t —2 € k[t]
2+ '

Then, f has an elementary integral over k(t):

/2t_2dt:(1+\/—_l)log(l+t\/_-—1_)+(1—\/—_l)log(l—t\/——l).

t2+1

On the other hand, 2 + 1 is irreducible over Q, but

2t—2
residueyz 1 (f) = mez 4y < 5 ) =t+1

which is not a constant. This shows that the hypothesis that the constant
field of k be algebraically closed is required in Lemma 5.6.2. If we replace Q

by C, then t2 +1 = (t — vV=1)(t + V—1),

. 2t —2
reSlduet—\/—_l(f) =M1 (T_ ,-_--1-) =1++v-1

and
. 2t -2 —
residue, /=7(f) = 7y =1 (:/___1) =1-v-1

which are constants. This shows that the hypothesis that p be irreducible is
also required in Lemmas 5.6.1 and 5.6.2.

Theorem 5.6.1. Let f € k(t) be simple, and write f = p + a/d where
p,a,d € k[t], d # 0, deg(a) < deg(d), and ged(a,d) = 1. Let z be an in-
determinate over k,

r = resultant,(a — 2Dd, d) € k[z],

r = ry,7y be a splitting factorization of r w.r.t. the coefficient lifting kp of
D to k[z], and
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9= Y o D9 (5.8)

rs(a)=0 9

where go = ged(a — aDd,d) € k(a)[t] and the sum is taken over all the
distinct roots of rs. Then,

(i) g € k(t), the denominator of g divides d, and f — g is simple.

(i) If there exists h € k(t) such that f + h has an elementary integral over
k(t), thenr, € k and f — g € k[t].

(ii3) If there are h € k(t), an algebraic extension E of Const(k), v € k(t),
Cl,.-.,¢n € E, and uy,...,u, € Ek(t) such that

. Du;
f+h=Dv+Zc,- :
=1

Ui

then r5 factors linearly over E.

Proof. (i) Let r, = cr{' ---r& be the irreducible factorization of r4 in k[z].
Then, g can be rewritten as

. Dga
APIPI
=1 ri(a)=0

For each i, let k; be k(t) extended by all the roots of r;, and o; be a given
root of r;. Since k; is a finitely generated algebraic extension of k(t), the field
automorphisms of k; over k(t) commute with D by Theorem 3.2.4, so we get

n
9= Tn <ae Dgo,,.>

i=1 Joxs

by Theorem 3.2.4 where T'r; is the trace map from k(t)(a;) to k(t). Hence,
g € k(t). Furthermore, since g, | d for each root a of 4, lem,, (4)=0(ga) | d, sO
the denominator of g also divides d. Hence the denominator of f — g divides
d, which implies that f — ¢ is simple since d is normal.
(ii) Suppose that f+ h has an elementary integral over k(t) for some h € k(t),
and let k be the algebraic closure of k. By Corollary 3.4.1, ¢ is a monomial over
k, and simple (resp. reduced) elements of k(t) remain simple (resp. reduced)
when viewed as elements of k(t). Furthermore f+h has an elementary integral
over k(t), so we work with k(t) in the rest of this proof. Let € k be any
root of r. If & = 0, then Da = 0. Otherwise a # 0 and a = residuey(f)
for some normal irreducible ¢ € k[x] by Theorem 4.4.3, hence Da = 0 by
Lemma 5.6.2. Thus rs;(a) = 0 in both cases by Theorem 3.5.2, so rp(a) # 0
since ged(rn, s) = 1. Since this holds for all the roots of r, we have r,, € k.
For any « € k, write g, = ged(d,a — aDd). Note that all the irreducible
factors of g, must be normal, since g, | d, which is normal. Let «a, 8 € ¥,
and ¢ € k[t] be a normal irreducible common factor of g, and gs. Then
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a = residuey(a/d) = B by Lemma 4.4.3, so ged(ga, 9s) = 1 when a # . Let
now q € k[t] be irreducible and normal, and B = residue,(f). If § =0, then ¢
does not divide d, so ¢ does not divide any ga, which implies that v4(g) > 0,
hence that residue,(g) = 0 = residue,(f — g). If 3 # 0, then r(8) = 0 by
Theorem 4.4.3, and q | gg by Lemma 4.4.3, so r4(8) = 0 since r,, € k. Since
d is squarefree, gg is squarefree, so vq(gg) = 1. By Theorem 4.4.1, residue, is
%-linear, so we get

residue,(f —g) =B — Z aresidue, (l;ga) =8~ Z avy(ga)

r,(a)=0 @ ra(a)=0

by Corollary 4.4.2. Since v4(gs) = 0 for a # B, this gives residuey(s) =
B — B = 0. Since this holds for any normal irreducible g € k[t] and f — g is
simple, we have f — g € k[t], hence f — g € kt].

(iii) Suppose that there are h € k(t), an algebraic extension E of Const(k),
v € k(t), ¢1,-..,¢n € E,and uy,...,un € Ek(t) such that

n
Du;

f+h=Dv+Zci (5.9)
i=1

Ui

Let k be the algebraic closure of k. As explained in part (i), we can replace
k(t) by k(t) and view (5.9) as an equality in k(t). Let o € k be any root of
rs. By Theorem 4.4.3, a = residuey(f) for some normal irreducible p € k[t],
so by Lemma 5.6.1

a = residuey(f),= Ec;up(u;) €E.
=1

Hence, E contains all the roots of 7, in k, so r, factors linearly over E. O

Note that since the roots of r, are all constants by Theorem 3.5.2, g as
given by (5.8) always has an elementary integral, namely

/g = Z alog(ged(d, a — aDd))

r,(a)=0

which is the Rothstein-Trager formula in the case of rational functions.
Part (iii) of Theorem 5.6.1 applied to the rational function case proves
part (iii) of Theorem 2.4.1, thereby completing the proof of that theorem.
As in the rational function case, a prime factorization r, = usi'---sgr is
required, as well as a gcd computation in k(a;)[t] for each i, where o; is a
root of s;. There is no need however to compute the splitting field of r,.
Furthermore, the monic part of r, always has constant coefficients.
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ResidueReduce(f, D) (* Rothstein-Trager resultant reduction *)

(* Given a derivation D on k(t) and f € k(t) simple, return g elementary
over k(t) and a Boolean b € {0,1} such that f — Dg € k[t] if b =1, or
f+hand f+ h — Dg do not have an elementary integral over k(t) for
any h € k(t) if b=0. *)

d + denominator(f)
(p,a) « PolyDivide(numerator(f),d) (* f=p+afd=*)
z + a new indeterminate over k(t)
r + resultant.(d,a — zDd)
(ra,7s) + SplitFactor(r,xp)
usst .- 5™ « factor(rs) (* factorization into irreducibles *)
for i + 1 to m do

a+alsi(a)=0

gi + ged(d,a — aDd) (* algebraic gcd computation *)
if [[,ni€kthenb« lelse b+ 0

return(357 ) 371, (ay=0 @ 108(9:),)

Ezample 5.6.2. Consider

2log(x)? — log(z) — z®
/ log(z)? — 22 log(z) d

Let k = Q(z) with D = d/dz, and let t be a monomial over k satisfying
Dt = 1/x, i.e. t = log(x). Our integrand is then
-t —2?

f=——g €k

which is simple since t3 — z?t is squarefree. We get
d=t—-z%, p=0, a=22-t—2a?
and

2z -3
—x—x——z—t2 + (2zz — 1)t +z(z - 1:))

=
1l

resultant, ((t3 - %t

1 T
41— [P — 22— 22+
z°( z:)(z zz 4z+4)

which is squarefree. Then,
kpr = —z2(4(52% + 3)2° + 8z(3z% — 2)2% + (527 - 3)z — 2z(3z% - 2))
so the splitting factorization of r w.r.t. kp is

1

re = ged(r, kpr) = 2° (z2 - Z)
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nd
: rn:L:—4z(z2—1)(z—z)¢k.

Ts
Hence, f does not have an elementary integral. Proceeding further we get

2z - 3

g1 = ged (t3 + zt, L%y (2za — 1)t + z(a — m)) =t+ 20z
x .

where a? —1/4 =0, so

1 1
g= Z a log(t + 2az) = 3 log(t + =) — 3 log(t — ).
ala?—1/4=0

Computing f — Dg we find

2log(z)? — log(z) — * 1 log(z) + = dz
[ e = 28 (log(m - m) log(z)
1 log(z) + = .
= 3 log (m) + Li(z)

where Li(z) is the logarithmic integral, which has been proven to be nonele-
mentary since mn, ¢ k.

With the notation as in Theorem 5.6.1, we have gcd(rs,mn) = 1, so any
root a of r, with multiplicity n is also a root of r with multiplicity n. Since
ged(a, d) = ged(d, Dd) = 1 and deg(a) < deg(d), we can apply Theorem 2.5.1
with A = a, B = Dd and C = d, and we get that for any root o of r of
multiplicity ¢ > 0,

ng(dva - ClDd) = ppt(Rm)(a:t)

where deg,(Rm) = i and R, is in the subresultant PRS of d and a — 2Dd
if deg(Dd) < deg(d), or of a — 2Dd and d if deg(Dd) > deg(d). Thus, the
Lazard-Rioboo-Trager algorithm is applicable in arbitrary monomial exten-
sions, and it is not necessary to compute the prime factorization of rs, or
the go’s appearing in (5.8), we can use the various remainders appearing
in the subresultant PRS instead. As in the case of rational functions, we
use a squarefree factorization of r, = [T, ¢! to split the sum appearing
in (5.8) into several summands, each indexed by the roots of ¢;. We can al-
so avoid computing pp,(Rm), ensuring instead that its leading coefficient is
coprime with the corresponding ¢;. And since multiplying any ga in (5.8)
by an arbitrary nonzero element of k(a) does not change the conclusion of
Theorem 5.6.1, we can make pp,(Rm)(a,t) monic in order to simplify the
answer. This last step requires inverting an element of k[] and is optional.
As in the rational function case, it turns out that the leading coefficients of
the pp,(Rm)(a,t)’s are always invertible in k[e] (Exercise 2.7).
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ResidueReduce(f, D)
(* Lazard-Rioboo-Rothstein-Trager resultant reduction *)

(* Given a derivation D on k(t) and f € k(t) simple, return g elementary
over k(t) and a Boolean b € {0,1} such that f — Dg € k[t] if b = 1, or
f+hand f 4+ h — Dg do not have an elementary integral over k(t) for
any h € k(t) if b= 0. *)

d « denominator(f)
(p,a) « PolyDivide(numerator(f),d) (* f=p+a/d*)
z + a new indeterminate over k(t)
if deg(Dd) < deg(d)
then (r,(Ro, Ry, ..., Rq,0)) &« SubResultant.(d,a — zDd)
else (r,(Ro, R1,...,Rq,0)) — SubResultant.(a — zDd,d)
((n1,...,7m0),(81,--.,8:)) + SplitSquarefreeFactor(r,kp)
for ¢ + 1 to n such that deg(s:) > 0 do
if ¢ = deg(d) then S; « d
else
S; « R, where deg,(Rm) =1, 1<m<g
(A1,...,A,s) « SquareFree(lc:(S:))
for j « 1to sdo S; « Si/ged,(A;,8:) (* exact quotient *)
if [[[_,ni€kthenb+ lelse b+ 0

return(}°7 Zaln;(a):(’ alog(Si(a,t)),b)

Ezample 5.6.3. Consider the same integrand as in example 5.6.2. We have
deg(Dd) < deg(d) and the subresultant PRS of d and a — 2Dd is

i R;

0 t3 — %t

1 (2 -3z/7)t? + (2z2 — 1)t + z(2 — z)

2 | (422 — 6)2% + 37z — 22 + 1)t + z(2 — z)(2zz — 1)
3 4z%(1 - z2) (2% — z2% — {2z + }2)

The Rothstein-Trager resultant is 7 = R3, and its split-squarefree factoriza-
tion w.r.t. kp is

1
1 = ged(r, kpr) = 22 (zz - Z) , ny = sl =—dz(x’-1)(z—-z) ¢ k.
1

Hence, f does not have an elementary integral. Proceeding further we find
that s; is squarefree, and the remainder of degree 1 in ¢ in the PRS is

Ry = ((42% — 6)2® + 3z2 — 222 + 1)t + z(2 — z)(2z2 — 1).

Since

ged(lcy(Rz), 51) = ged ((41:2 —6)2% + 3z2 — 222 + 1,27 (z2 - i)) =1,
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S, = R,. Evaluating for z at a root o of z2 — 1/4 = 0 we get

Si(a,t) = —%((23}2 - 6az + 1)t + 4az® - 32° + 20x)

s0
g = Z a log (—%((212 — 6az + 1)t + z(daz’® — 3z + 2a)))
ala?-1/4=0
1 (222 — 3z + 1)(¢t + z) 1 (222 + 3z + 1)(t — z)
= 3 log { — 5 -3 log | — 2 .

Computing f — Dg we find
/‘ 2log(z)? — log(z) — z* de 1 . ((2:52 — 3z + 1)(log(z) + z))

log(z)3 — z2 log(x) 2 (222 + 3z + 1)(log(z) — )

1 6x2 -3 ) dz
+/ log(z) 4z*-5z2+1
where the remaining integral has been proven to be nonelementary. In fact,

it is the integral of a rational function plus the logarithmic integral Li(z).
If we had decided to make S)(a,t) monic, we would have obtained

S1(a,z) = —%(2:52 - 6az + 1)(t + 20z)

so the integral is then the same as in example 5.6.2.

5.7 Integration of Reduced Functions

From the results of the previous sections, we are left with the problem of
integrating reduced elements of a monomial extension. We use a specialized
version of Liouville’s Theorem for such elements.

Theorem 5.7.1. Let k be a differential field, t be a monomial over k, C =
Const(k(t)), and f € k(t). If there exist an elementary ertension E of k(t)

and g € E such that Dg = f, then there are v € k(t), ¢1,...,Cn € C, and
Ul Un € Sk(cy,....en)lt]:k(cr,.ncn) SUCh that

2, Dy
1
f—Dv+iE—lc, o

Proof. Suppose that there exist an elementary extension E ofk(t)andg € E
such that Dg = f. Then, by Theorem 5.5.3, there are v € k(t), c1,.--,¢n € C,
and uy,...,un € k(c1,...,¢q)(t) such that f = Dv+ 37, ¢;D(u:)/ui. Write
g =1, ciD(u)/u;. Since g = f — Do, it follows that g € k(). Let p € k[t)
be normal and irreducible, and g € k(ci, . - - ,¢n)[t] be any irreducible factor of

5.7 Integration of Reduced Functions 151

p over k(cy,...,cq). Then, v,(f) > 0 by Corollary 4.4.1, and v,{(c; Du;/u;) >
—1 for each ¢ by Corollary 4.4.2, so v,(g) > —1. Since this holds for any
irreducible factor g of p and g € &(t), Theorem 4.1.2 implies that vp(g) > —1.
Suppose that v,(v) < 0. Then, vp(Dv) = vp(v) — 1 < —1 by Theorem 4.4.2,
which implies that v,(Dv+g) < —1, hence that vp(f) < —1, in contradiction
with f reduced. Hence, v,(v) > 0 for all normal irreducible p € k[t], which
means that v € k(t) and Dv € k(t) by Corollary 4.4.1.

Write now u; = w; I'[;'=l pf'i" where w; € k(cy, ..., cn), each p;; is a monic
irreducible element of k{ci,...,cn)[t], and the e;;’s are integers. Then, us-
ing the logarithmic derivative identity and grouping together all the terms

involving the same p;;, we get

2. Duw; N Dy,
f:Du+§ ci ’+§ d; —L 5.10
pr ] w; — ] (I]' ( )
= ]—_
where the g¢;’s are in k(cy, ..., cn)[t], monic, irreducible and coprime. Each
w; is special since it is in k(cy, ..., ¢, ). Suppose that g, is normal for some s.

Then, Lemma 5.6.1 applied to (5.10) implies that
n n

residueg, (f) = Y civg, (wi) + Y _ d;vg,(;)-
i=1 j=1

But residue,, (f) = 0 since f € k(t), and v, (w;) = 0 since w; € k(ci,...,¢n),
and v, (g;) = O for j # s since the g;'s are coprime. Hence, 0 = d,vg, (¢s) =
ds, so d; = 0 whenever g; is normal. Keeping only the nonzero summands
in (5.10), we get that each g; is special, which proves the theorem. a

In the case of nonlinear monomials, we have seen that we can always -
rewrite a polynomial p € k[t] as the sum of a derivative and a polynomial
of degree less than 4(¢). We then have an analogue of the residue criterion
that either proves that such a reduced function does not have an elementary
integral, or eliminates the term of degree §(t) — 1 from its polynomial part.

Theorem 5.7.2. Suppose that t is a nonlinear monomial. Let f € k(t) and
write f = p + a/d where p,a,d € k[t], d # 0, deg(p) < (t) and deg(a) <
deg(d). Let b € k be the coefficient of t*9=1 in p, and ¢ = b/A(t). If f has
an elementary integral over k(t) then Dc = 0.

Proof. Let C' = Const(k). Replacing C by its algebraic closure, we can assume
without loss of generality that C is algebraically closed. Suppose that f has
an elementary integral over k(t). Then, by Theorem 5.7.1, there are v € k(t),
C1,-..,¢p € C, and uy,...,u, € S such that

. Dy
f=Dv+ZCif- (5.11)
=1 i
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By Theorem 4.4.4, voo(Dui/u;) > —m and Too (8™ Duifui) = —Veo(ui)A(t)
for each i where m = 6(t) — 1. Furthermore, vo(a/d) > 0 since deg(a) <
deg(d), 50 Voo(f) > —deg(p) > —m and Too(@/d) = Too(t™™a/d) = 0, which
implies that m.o(t~™f) = b. Suppose that veo(v) < 0, then v (Dv) < —m
by Theorem 4.4.4, 50 Voo (Dv + }::;1 ¢;Du;/u;) < —m, in contradiction with
Voo(f) > —m. Hence veo(v) > 0. If veo(v) > 0, then Voo (Dv) > —m by Theo-
rem 4.4.4. Otherwise, voo(v) = 0 and voo(Dv) > —m also by Theorem 44.4.
Hence v {t™™Dv) > 0 in any case, so Too(t"™Dv) = 0. Multiplying both
sides of (5.11) by =™ and applying 7o, We get

n Du; -
=T M = i Moo M) =- i Voo \Ui At
b=moltT") =D ¢ (t w) 2 civeol1) AE)

hence ¢ = b/A(t) = — 3_i; Ci Voo (ui), 50 De = 0. a

If ¢ is a constant, then Theorem 5.4.2 implies that

f—D(&éabdw)

has degree at most §(t) — 2 for any ¢ € S \ k, so in the case of nonlinear
monomials, we are left with reduced integrands with polynomial parts of
degree at most §(t) — 2, provided that we know at least one nontrivial special
polynomial. If we know that there are no nontrivial special polynomials, then
integrating reduced elements of such nonlinear extensions is in fact easier, and
an algorithm for that purpose will be presented in Sect. 5.11.

We have now all the necessary tools to complete the integration algorithm.
In the following sections, we give algorithms that, given an integrand f in k(t)
for a monomial ¢, either prove that f has no elementary integral over k(t),
or compute an elementary extension E of k(t) and an element g € E such
that f — Dg € k. This process eliminates ¢ from the integrand, thus reducing
the problem to integrating an element of k, which can be done recursively,
i.e. the algorithms of this chapter can be applied to elements of k until we are
left with constants to integrate. Note that when ¢ itself is not elementary over
k, then the problems of deciding whether an element of k has an elementary
integral over k or over k(t) are fundamentally different, so our algorithms will
produce proofs of nonintegrability only if the integrand is itself an elementary
function. They can be applied however to much larger classes of functions.

It turns out that it will also be necessary to assume that some related
problems are solvable for elements of k. Those problems depend on the kind
of monomial we are dealing with, so we need to handle the various cases
separately at this point. Algorithms for all those related problems will be
presented in later chapters.
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5.8 The Primitive Case

In the case of primitive monomials over a differential field k, the related
problem we need to solve over k is the limited integration problem: recall
that the problem of integration in closed form is, given f € k to determine
whether there exist an elementary extension E of k and g € E such that
Const(E) is algebraic over Const(k) and Dg = f. Let wy,...,w, € k be
fixed. The problem of limited integration with respect to wy,...,wy is: given
f € k, determine whether there are g € k and ¢y, ...,cn € Const(k) such that
Dg = f —cqwy — ... — Chwn, and to compute g and the ¢;’s if they exist. It
is very similar to the problem of integration in closed form, except that the
specific differential extension k([ wi,..., [ wyn) is provided for the integral.
We present in this section an algorithm that, with appropriate assumptions
on k, integrates elements of k(t) when ¢ is a primitive monomial over k. We
first describe an algorithm for integrating elements of [t].

Theorem 5.8.1. Let k be a differential field and t a primitive over k. If the
problem of limited integration w.r.t. Dt is decidable for elements of k, and Dt
is not the derivative of an element of k, then for any p € k[t] we can either
prove that p has no elementary integral over k(t), or compute q € k[t] such
that p— Dq € k.

Proof. We proceed by induction on m = deg(p). If m = 0, then p € k and
g = 0 satisfies the theorem, so suppose that m > 0 and that the theorem holds
for any polynomial of degree less than m. Since Dt is not the derivative of an
element of k, t is a monomial over k, Const(k(t)) = Const(k), and S =k by
Theorem 5.1.1. Thus, Theorem 5.7.1 says that if p has an elementary integral
over k(t), then there are v € k[t], c1,...,¢n € Canduy,...,u, € k(cr,..-,Cn)
such that

"\ Du;

=D ;— 12
p=Duv+ Y e (512)
where C = Const(k). K = k(cy, ..., cn) is an algebraic extension of k, so ¢ is
transcendental over K. Furthermore, Dt is not the derivative of an element of
K by Lemma 5.1.1, so ¢ is a monomial over K and Const(K(t)) = Const(K).
Equating degrees in (5.12) we get deg(Dv) = deg(p) = m > 0, so deg(v) <
m+1 by Lemma 5.1.2, so write p = at™ + s and v = ct™*! + bt™ + w where
a,b,c € k, s,w € k[t], deg(s) < m and deg(w) < m. Equating the coefficients
of t™*! and t™ in (5.12) we get Dc = 0 and

a=Db+ (m+1)cDt. (5.13)

Since we can solve the problem of limited integration w.r.t. Dt for elements
of k and a € k, we can either prove that (5.13) has no solution b € k,c €
Const(k), or find such a solution. If it has no solution, then (5.12) has no
solution so p has no elementary integral over k(t). If we have a solution b, ¢,
letting go = ct™*! + bt™, we get
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p—Dqo = (at™ + 5)—((m + 1)cDt + Db) ™ —(mbDt)t™ ' = s—(mbDt)t™ !

hence deg(p — Dgo) < m. By induction we can either prove that p — Dqo has
no elementary integral over k(t), in which case p has no elementary integral
over k(t), or we get g1 € k[t] such that p— Dgo — D1 € k, which implies that
p — Dg € k where ¢ = qo + q1. o

TltegratePrimitivePolynomial(p, D) ‘
(* Integration of polynomials in a primitive extension *)

(* Given a is a primitive monomial t over k, and p € k[t], return g € k[t]
and a Boolean 3 € {0,1} such that p— Dg € k if 8 =1, or p— Dq does
not have an elementary integral over k(t) if 8= 0. *)

if p € k then return(0,1)

a « lc(p)

(* LimitedIntegrate will be given in Chap. 7 *)

(b,c) « LimitedIntegrate(a, Dt, D) (* a = Db+ cDt %)
if (b,c) = “no solution” then return(0, 0)

m « deg(p)

qo « ct™ 1/ (m +1) +bt™

(g,8) « IntegratePrimitivePolynomial(p — Dqo, D)

return(q + g0, 8)

Ezample 5.8.1. Consider

/ ((log(:c) + l—ogl(?)_) Li(z) - Eg%ls) dz

where Li(z) = [ dz/log(z) is the logarithmic integral. Let k = Q(z,to) with
D = d/dz, where {p is a monomial over Q(z) satisfying Dto = 1/z, i.e. to =
log(z), and let ¢ be a monomial over k satisfying Dt = 1/to, i.e. t = Li(z).
Our integrand is then

p= (t0+—1—>t—£ek[t].
to to

We get
l.a= lc(p) =g + 1/t0
2.
1 1 d
—_— - — = = = — 1 _ = D xlg — T

so (b,c) = LimitedIntegrate(to + 1/to, 1/to, D) = (zto — =, 1)
3. go = ct?/2 + bt = t*/2 + (zto — z)t
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4. p— Dgy = —z € k so the call IntegratePrimitivePolynomial(—z, D)
returns (g, 8) = (0,1).

Hence,
1 . z
(s + ) 1o~ ey ) =
Li(z)? .
= — + (zlog(x) — z)Li(x) - /zdz
2
Li(z)? . z?
=— 7 (zlog(z) — z)Li(z) — 5

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).

Theorem 5.8.2. Let k be a differential field and t a primitive over k. If the
problem of limited integration w.r.t. Dt is decidable for elements of k, and Dt
is not the derivative of an element of k, then for any f € k(t) we can either
prove that f has no elementary integral over k(t), or compute an elementary
extension E of k(t) and g € E such that f — Dg € k.

Proof. Suppose that Dt is not the derivative of an element of k, then ¢ is a
monomial over k and Const(k(t)) = Const(k) by Theorem 5.1.1. Let f € k(¢).
By Theorem 5.3.1, we can compute g1, h,7 € k(t) such that f = Dg1 +h+r,
h is simple and r is reduced. From h, which is simple, we compute g2 €
k(t) given by (5.8) in Theorem 5.6.1. Note that go = g1 + [ g2 lies in some
elementary extension of k(t). Let p = h — g2 and ¢ = p+r, then f=Dgo+qg
so f has an elementary integral over k(t) if and only if ¢ has one. If p ¢ k[t],
then p+r does not have an elementary integral over k(t) by Theorem 5.6.1, s0
f does not have an elementary integral over k(t). Suppose now that p € k[t]. .
We have k(t) = k[t] by (5.1), so r € k[t], hence ¢ € k[t]. By Theorem 5.8.1
we can either prove that ¢ has no elementary integral over k(t), in which
case f has no elementary integral over k(t), or compute s € k[t] such that
g — Ds € k, in which case f — Dg € k where g = go + s- a

IntegratePrimitive(f, D) (* Integration of primitive functions *)

(* Given a is a primitive monomial ¢ over k, and f € k(t), return g
clementary over k(t) and 8 € {0,1} such that f — Dg € kif g =1, or
f — Dg does not have an elementary integral over k(t)if 3=0.%)

(g1, h, ) — HermiteReduce(f, D)

(g2, 8) «+ ResidueReduce(h, D)

if 8 = 0 then return(g: + g2,0)

(¢,8) + IntegratePrimitivePolynomial(h — Dg: +, D)
return(g: + g2 +¢,0)
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5.9 The Hyperexponential Case

In the case of hyperexponential monomials over a differential field k, the
related problem we need to solve over k is the Risch differential equation
problem: given f, g € k, determine whether there exists y € k such that

Dy+fy=g (5.14)
and to compute y if it exists. It may happen in general that (5.14) has more
than one solution in k, so we first need to examine when this can happen.

Lemma 5.9.1. Let (K, D) be a differential field and o € K. If there are
y,z € K such that y # z and Dy + ay = Dz + az, then a = Du/u for some
u € K*.

Proof. Let u=1/(y — z) € K*. Then,

Dy-Dz o (Dz + az) — (Dy + ay)

W-2F v-z EDE =0

Du—-oau=—
0

We present in this section an algorithm that, with appropriate assump-
tions on k, integrates elements of k(¢) when ¢ is a hyperexponential monomial
over k. We first describe an algorithm for integrating elements of k(t).

Theorem 5.9.1. Let k be a differential field and t an hyperezponential over
k. If we can solve Risch differential equations over k, and Dt/t is not a
logarithmic derivative of a k-radical, then for any p € k(t) we can either
prove that p has no elementary integral over k(t), or compute q € k(t) such
that p — Dq € k.

Proof. Since Dt/t is not a logarithmic derivative of a k-radical, { is a mono-
mial over k, Const(k(t)) = Const(k), and S = {t} by Theorem 5.1.2.
Thus k(t) = k[t,t7!] by (5.1), and Theorem 5.7.1 says that if p has an

elementary integral over k(t), then there are v € k(t), ¢1,...,¢n € C,
bi,...,bn € k(c1,...,¢n), and my,...,my, € Z such that
n ; n n
Db;t™: Dt Db;
p=D’U+ZC,‘ bitmi =DU+TZmiCi+ZC,’b—i (515)
i=1 i=1 i=1
where C = Const(k). K = k(cy,...,c,) is an algebraic extension of k, so ¢ is

transcendental over K. Furthermore, Dt/t is not a logarithmic derivative of
a K-radical by Lemma 3.4.8, so t is a monomial over K and Const(K(t)) =
Const(K). Since p,v € k[t,t™}], write p = Z:‘im a;ittandv = Zir v;t* where
ai,v; €Ek,mM,r,ReEZ,m< Mandr < R.Letp = E?zmaiti. IfM=0,
then p — Dgo = p; where go = 0 € k(t). If M > 0, then voo(p) = —M < 0,
which implies that v (Dv) = —M < 0, 50 Voo(v) = —M by Lemma 5.1.2,
hence R = M. Equating the coefficients of ¢,...,t™ in (5.15) we get
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a; = Dv; + i%vi for1<i< M. (5.16)

Since we can solve Risch differential equations over k and a;, Dt/t € k, we
can either prove that (5.16) has no solution v; € k, or find such a solution?
If it has no solution for some i, then (5.15) has no solution so p has no
elementary integral over k(t). If we have solutions v; for 1 <i < M, letting
go = vit + ... uptM, we get
M0 M Dt 0 .
p—Dgo = Zaitz + E a;t' — Z <D'U,' +’i—t—'l),') tt = Z ait' =p;.
i=1 i=m i=1 i=m
If m = 0, then p; € k so ¢ = go satisfies the theorem. If m < 0, then
u(p1) = —m < 0, which implies that »(Dv) = —m <0, so y(v) = -m
by Theorem 4.4.2 (since t € S'™™), hence r = m. Equating the coefficients of
t=1,...,t7™ in (5.15) we get

Dt .
a,-=Dv,-+i—t—v,- form<i<-1. (5.17)

Since we can solve Risch differential equations over k and a;, Dt/t € k, we
can either prove that (5.17) has no solution v; € k, or find such a solution.
If it has no solution for some i, then (5.15) has no solution, so p; and p have
no elementary integrals over k(t). If we have solutions v; for m < i < -1,
letting gy =v—1t"!+...v_mt™ ™ and g=qo +q1 € k(t), we get

-1

-1
; .Dt :
p—Dg=p —Dq = Zait'+ao— Z (Der—t—vi) tt=ao€k.
=m

i=m

IntegrateHyperexponentialPolynomial(p, D)
(* Integration of hyperexponential polynomials *)

(* Given an hyperexponential monomial ¢ over k and p € k[t,t™!] return
q € k[t,t™"] and a Boolean (8 € {0,1} such that p—Dg € kif f =1, or
p — Dq does not have an elementary integral over k(t) if 8 =0. *)

g+ 0,81
for i « vi(p) to —voo(p) such that i # 0 do
a + coefficient(p, t*)
(* RischDE will be given in Chap. 6 *)
v + RischDE(iDt/t,a) (* a=Dv +ivDt/t *)
if v = “no solution” then 8 + 0 else ¢ + g + vt!
return(q, 8)

3 Although this fact is not needed by the algorithm, we remark that Lemma 5.9.1
implies that (5.16) has at most one solution in k.
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Ezample 5.9.1. Consider

1
/ ((tan(z)3 + (2 + 1) tan(z)? + tan(z) + = + 2) e'*"(®) 4 o 1) dz .
Let k = @z, to) with D = d/dz, where t¢ is a monomial over Q(z) satisfying
Dty = 1+ t3, i.e. to = tan(z), and let ¢t be a monomial over k satisfying
Dt = (1 +t3)t, i.e. t = e2"(®), Our integrand is then

1
=8+ (@+ Dt +to+z+ + —— .
p ( 0 (:l: )to to T 2) t 2 1 € k[t]

We get

l.¢g=0,8=1

2. u(p) = —veo(p) =1

3.i=1

4d.a=le(p)=t3+(@+ D)2 +to+z+2

5. D(to +z) + (1 + t2)(to + ) = a, so v = RischDE(1 + t3,a) = to + =
6. g=vt=(to + )t

7.p—Dg=1/(z*+1).

Hence,

/ ((t;,,,n(ac)8 + (z + 1) tan(z)? + tan(z) + ¢ + 2) e'*"(®) 4 pe 1+ 1) dz

= (tan(z) + z)e'*"(®) 4 / z2df_ 7

= (tan(z) + x)e'*(®) + arctan(z) .

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).

Theorem 5.9.2. Let k be a differential field and t an hyperexponential over
k. If we can solve Risch differential equations over k, and Dt/t is not a
logarithmic derivative of a k-radical, then for any f € k(t) we can either
prove that f has no elementary integral over k(t), or compute an elementary
extension E of k(t) and g € E such that f — Dg € k.

Proof. Suppose that Dt/t is not a logarithmic derivative of a k-radical, then
t is a monomial over k and Const(k(¢)) = Const(k) by Theorem 5.1.2. Let
f € k(t). By Theorem 5.3.1, we can compute g, h,7 € k(t) such that f =
Dg, +h+r, his simple and r is reduced. From h, which is simple, we compute
g2 € k(t) given by (5.8) in Theorem 5.6.1. Note that go = g1 + [ g» lies in
some elementary extension of k(t). Let p = h — g2 and ¢ = p + r, then
f = Dgo + q so f has an elementary integral over k(t) if and only if ¢ has
one. If p ¢ k[t], then p + r does not have an elementary integral over k(t) by
Theorem 5.6.1, so f does not have an elementary integral over k(t). Suppose
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now that p € k[t]. We have k(t) = k[t,t™!] by (5.1), so r € k[t,t™!], hence
q € k[t,t"!]. By Theorem 5.9.1 we can either prove that ¢ has no elementary
integral over k(t), in which case f has no elementary integral over k(t), or
compute s € k[t,t~!] such that ¢ — Ds € k, in which case f — Dg € k where

g=go+s. ]

IntegrateHyperexponential(f, D)
(* Integration of hyperexponential functions *)

(* Given an hyperexponential monomial ¢ over k and f € k(t), return g
elementary over k(t) and a Boolean 8 € {0, 1} such that f — Dg € k if
B =1, or f — Dg does not have an elementary integral over k(t) if 3 = 0.
*

)
(91, h,7) + HermiteReduce(f, D)
(g92,8) + ResidueReduce(h, D)
if 3 = 0 then return(g; + g2,0)
(g,8) + IntegrateHyperexponentialPolynomial(h — Dg; +r, D)
return(g: + g2 + ¢, )

5.10 The Hypertangent Case

Tangents and trigonometric functions can be integrated by transforming them
to complex logarithms and exponentials, but the theory of monomial exten-
sions allows us to integrate them directly without introducing the algebraic
number /—1. We start by defining tangent monomials and computing the
special polynomials. Let k be a differential field and K a differential extension
of k.

Definition 5.10.1. Let t € K be such that t* + 1 # 0. ¢ is a hypertangent
over k if Dt/(t*+1) € k. t is a tangent over k if Dt/(t2+1) = Db for some b €
k.t is a hypertangent (resp. tangent) monomial over k if ¢ is a hypertangent
(resp. tangent) over k, transcendental over k, and Const{k(t)) = Const(k).

We write t = tan( [ a) when ¢ is a hypertangent over k such that Dt/(t*+1) =
a, and ¢ = tan(b) when t is a tangent over k such that Dt/(¢? + 1) = Db.

Lemma 5.10.1. Let (F, D) be a differential field containing /-1, a € F be
such that a® +1#0, and b= (v/=1 — a)/(v/—1 +a). Then, b # 0 and

Db Da
5 S WolaT

Proof. b# 0 since a® + 1 # 0, and we have
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ERRICE ikeer

b
Da v=1+4+a Da
= =2v-1 =2v-1 .
(V-1+a)2V-1-a 1+ a?

O

Theorem 5.10.1. If t is an hypertangent over k and v—=1Dt/(t* +1) is not
a logarithmic derivative of a k(v/—1)-radical, then t is a monomial over k,
Const(k(t)) = Const(k), and any p € SiT divides t2 + 1 in k[t]. Furthermore,
Sirr = S, Conversely, if ¢ is transcendental and hypertangent over k, and
Const(k(t)) = Const(k), then /=1Dt/(t* +1) is not a logarithmic derivative
of a k(v/=1)-radical.

Proof. Let t be an hypertangent over k, a = Dt/(t? + 1), and suppose that
av/=T is not a logarithmic derivative of a k(v/—1)-radical. Let 6 = ::;i €

k(v/=1)(t). By Lemma 5.10.1, we have
D—;)- = 2\/—11-%5 = 2av/~1 € k(V-1)

so 6 is hyperexponential over k(v/=1). Since av/—1 is not a logarithmic
derivative of a k(v/—1)-radical, 2ay/—1 is not one either, so by Theorem 5.1.2,
8 is a monomial over k(v/—1), and Const(k(v=1)(8)) = Const(k(v/—1)). But
t = /=1(8—1)/(6+1), so t is transcendental over k(v/—1), hence a monomial
over k since Dt = a + at®. Furthermore, k(v/—1)(8) = k(v/=T)(t), so

Const(k(v=1)(t)) = Const(k(v=1)(8)) = Const(k(v-1)) =Cn k(vV~-1)

by Corollary 3.3.1 where C is the algebraic closure of Const(k). This im-
plies that Const(k(t)) € C N k(v=1) Nk(t) C k since ¢ is transcendental
over k. Hence, Const(k(t)) C Const(k). The reverse inclusion is given by
Lemma 3.3.1, so Const(k(t)) = Const(k), which implies that Const(k(t)) =

Const(k) by Lemma 3.3.3.
We have D(t? + 1) = 2tDt = 2at(t? + 1) so t* + 1 € S, hence any factor

of £2 + 1 is special by Theorem 3.4.1. Suppose now that p € S, and let § € k
be any root of p. DB = af8? + a by Theorem 3.4.3, so

t-B\ _ (2=p)Bt+1) - (- BB +t+pt2+ D)
D(ﬂH—l) = (Bt + 1)
_ (ﬁt2+t+ﬂ2t+ﬂ)—(tﬂ2+t+ﬂt2+ﬂ)_
= a(t-p) BT =0

which implies that ¢ = (t — 8)/(8t + 1) € Const(k(t)) C k. Since t is tran-
scendental over &, (¢8 — 1)t + (¢ + B) = 0 implies that c8—1=c+ 8 =0,
so 32 + 1 = 0. Since this holds for every root of p, this implies that every
irreducible factor of p divides t2 + 1 in kft].
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We have Si* C S'** by definition. Conversely, let p € Sirt, Then p divides
t2 + 1, so all the roots of p in k satisfy 32 = —1. Hence,

oy = DE=DB _ £2 41
T T %t-p

which implies that ps(8) = 2a8 = +2v/-1la, which is not a logarithmic
derivative of a k(v/—1)-radical, hence not a logarithmic derivative of a k(8)-
radical. Thus, p € SI" which implies that Si'* = §'™.

Conversely, let t be a transcendental hypertangent over k and suppose that
Const(k(t)) = Const(k). Then, Const(k(t)) = Const(k) by Lemma 3.3.3. If
there exist b € k(v/—1)* and an integer n > 0 such that

= a(t + )

Dt Db
Ji-Z -2
TETLT b
then, taking
vV-1-t "
0= — - _
e Y and ¢ = € k(vV-1)(¢)
we get
Dc  D§ Db Dt Db
c =" Ry T lEe i
so ¢ € Const(k(t)) C k in contradiction with ¢ transcendental over k. Hence,
Vv—=1Dt/(t? + 1) is not a logarithmic derivative of a k(v/—1I)-radical. ]

As a consequence, we have
k(t) = {f € k(t) such that (¢t* + 1)™ f € k{t] for some integer n > 0}

when t is a hypertangent monomial over k. We now present an algorithm
_that, with appropriate assumptions on k, integrates elements of k(t) when t
is a hypertangent monomial over k. Note first that if the polynomial X2 + 1
factors over k, then V=1 € k, s0 k(t) = k() where § = (v/—1—t)/(vV/~-1+1)
is a hyperexponential monomial over k. Hence we can use the algorithm
for integrating elements of hyperexponential extensions in this case, so we
can assume for the rest of this section that X2 + 1 is irreducible over k, in
9ther words that v/—1 ¢ k. Since hypertangents are nonlinear monomials,
integrating elements of k[t] is straightforward.

Theorem 5.10.2. Let k be a differential field not containing /—1, and t an

hypertangent over k. If /=1Dt/(t* + 1) is not a logarithmic derivative of a

ic’(\{——l-)—mdical, then for any p € k[t] we can compute q € k[t] and ¢ € k such
La

D(t* + 1)
t2+1

Furthermore, if Dc # 0, then p has no elementary integral over k.

p—-Dg-c €k.
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Proof. Let o = Dt/(t* + 1) € k. Since ayv/—1 is not a logarithmic derivative
of a k(v/=1)-radical, t is a monomial over k, Const(k(t)) = Const(k), and all
the special irreducible polynomials divide t? + 1 in k[t] by Theorem 5.10.1.
Since v/—1 ¢ k, t* + 1 is irreducible over k, so Sirr = {t? 4 1}. Since 6(t) = 2,
Theorem 5.4.1 shows how to compute ¢,7 € k{t] such that p— Dg =7 and
deg(r) < 1. Write r = at + b where a,b € k, and let ¢ = a/(2a) € k. Since
h =t +1€ S, Theorem 5.4.2 says that deg(r — cDh/h) <1, hence that

D(t? +1)
t2+1
Suppose now that Dc # 0, and that r has an elementary intg_gral over k(t).
Then, by Theorem 5.7.1, there are v € k(t), c1y---1¢n € C, b1,...,bn €

p-Dg-c €k.

k(ci,.--sCn), and my,...,mq € Z such that
n . n n
Dbi(£2 + 1)™ Db
at+b=DU+§C;—bl—(t—2:‘1—);’T:D'U+2ta§m;c;+§c1“l;‘ (518)

If voo(v) < 0, then voo(Dv) = Veo(v) — 1 < —1 by Theorem 4.4.4, in con-
tradiction with (5.18), hence voo(v) > 0, which implies that veo(Dv) > 0 by
Theorem 4.4.4. Let ¢ = a/(2c) € k. Equating the coefficients of ¢ in (5.18),

we get @ = 20y 1, TiCi, SO

a n
c= -2—a' = Zm,-c,- € Const(k)

i=1

in contradiction with Dc # 0. Hence (5.18) has no solution if Dc # 0, which
implies that r, and hence p, have no elementary integral over k(t). O

IntegrateHypertangentPolynomial(p, D)
(* Integration of hypertangent polynomials *)

(* Given a differential field k such that v/—1 ¢ k, a hypertangent
monomial ¢t over k and p € k[t], return g € k[t] and ¢ € k such that
p—Dq—cD(t* + 1)/(t? +1) € k and p — Dq does not have an elementary

integral over k(t) if Dc # 0. *)

(g,7) « PolynomialReduce(p, D)
a+ Dt/(t* +1)
¢  coefficient(r,t)/(2a)

(x deg(r) <1+%)

return(g,c)

Ezample 5.10.1. Consider

/ (tan(z)? + ztan(z) + 1) dz
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Let k = Q(g) hwith D = d/dz, and and let ¢ be a monomial over k satisfying
Dt =1+1t%, i.e. t = tan{z). Our integrand is then

p=t>+zt+1€klt].
We get

1. (g,r) = PolynomialReduce(t? + zt + 1) = (¢, zt)
2. a=Dt/(t*+1)=1
3. ¢c= Z/Z

Since D¢ = 1/2 # 0, we conclude that
/ (tan(z)? + z tan(z) + 1) dz = tan(z) + /ztan(x)dz

and the latter integral is not an elementary function.

For reduced elements in an hypertangent extension, the related problem
we need to solve over k is the coupled differential system problem: given
fi, f2,91,92 € k, determine whether there are y;,y2 € k such that

(Be)+ (5 ()= (2)

and to compute y; and y. if they exist.

Theorem 5.10.3. Let k be a differential field not containing v/—1, and t an
hypertangent over k. If we can solve coupled differential systems over k, and
V—=1Dt/(t* +1) is not a logarithmic derivative of a k(v/—1)-radical, then for
any p € k(t) we can either prove that p has no elementary integral over k(t)

or compute q € k(t) such that p — Dq € k[t]. ’

Proof. Let a = Dt/(t? + 1) € k. Since ay/—1 is not a logarithmic derivative
of a k(v/—1)-radical, ¢ is a monomial over k, Const(k(t)) = Const(k), and all
t:}.le special irreducible polynomials divide 2 + 1 in k[t] by Theorem 5.10.1
Since /=1 ¢ k, t? + 1 is irreducible over k, so §'™ = Si" = {2 + 1}. Thus,
Theorem 5.7.1 says that if p has an elementary integral over k(t), then there’
are v € k(t), ¢1,...,¢n € C, by,...,bn € k(c1,...,¢n), and my,... ,m, € Z
such that o
T\ Db;(t2 +1)™

p = Dv+ Cj e —
; bi(t2 + 1)™

DU+2taZm,~c,~ +Zci-—b—‘- =Dv+w (5.19)
i=1 i

i=1

where C = Const(k), and
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n 2. Db;
w = 2taZm,~ci + ZciT}' € k(Cl,u-,Cn)[t]-
i=1 i=1 t

K = k(c1,. . .,cn) is an algebraic extension of k, so ¢ is transcendental over K.
Furthermore, ay/—1 is not a logarithmic derivative of a K (vV=1)-radical by
Lemma 3.4.8, so t is a monomial over K and Const(K(t)) = Const(K). We
proceed by induction on —v4241(p). If ¥241(p) > 0, then p—Dq € k[t] where
g = 0 € k(t), so suppose that m = —vy241(p) > 0 and that the theorem holds
for all h € k(t) with —v,2,1(h) < m. Since p € k(t) and m = ~v;24:1(p) > 0,
we have p = r/(£2+1)™ where r € k[t] and ged(r, t?+1) = 1. Since vz (p) =
—m < 0, (5.19 implies that v,24,(Dv) = —m <0, hence that v (V) = —m
by Theorem 4.4.2, since t? +1 € S;. Thus, v = s/(t> +1)™ where 5 € k[t] and
ged(s, t2 + 1) = 1. Dividing r and s by t* + 1, we get r = ro(t? + 1) +at+b
and s = so(t? + 1) + ct + d, where o, 0 € k[t}, a,b,c,d € k, at + b # 0, and
ct +d # 0. From (5.19), we get

at+b T0 _ ct+d So
RS e i ((t2 TO7 @ 1)m~1) o

tDc+ca(t’ +1) + Dd 2mat(t? + 1)(ct + d)

G CES A
tDc+ Dd ct? + dt 1

= ==t D
@+ )m Zma @+ + e r 1yt + Dwo +w
tDc+Dd_2 o dt —c +ea 1-2m + Dwy +w
@+rnm Y E (¢ +1)m-t ’

where wg = so/(82 4+ 1)™~1. Since vyay1(wo) > —m, V241 (Dwo) > —m by
Theorem 4.4.2, so, equating the coefficients of (t2 + 1)™™ we get

at + b = (Dc — 2mad)t + Dd + 2mac

which implies that

Dc 0 —2ma c a
(Dd>+(2ma 0 )(d)_(b) (5-20)
Since we can solve coupled differential systems over k and q, b,a € k, we can
either prove that (5.20) has no solution c,d € k, or find such a solution. If
it has no solution in k, then (5.19) has no solution, so p has no elementary
integral over k(t). If we have a solution c,d € k, letting go = (ct +d)/(t* +
1)™ € k(t), we get
— Dag = ————
P—Lq = @ + 1)m1

for some u € k[t], so V241 (p — Dgo) > —m. By induction we can either prove
that p — Dgo has no elementary integral over k(t), in which case p has no
elementary integral over k(t), or we get q; € k(t) such that p— Dqo — Dq, €
k[t], which implies that p — Dq € k[t] where ¢ =qo + q1- 0
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IntegrateHypertangentReduced(p, D)
(* Integration of hypertangent reduced elements *)

(* Given a differential field k such that /=1 ¢ k, a hypertangent mono-
mial ¢ over k and p € k(t), return g € k(t) and a Boolean 8 € {0,1}
such that p — Dq € k[t] if 8 = 1, or p — Dq does not have an elementary
integral over k(t) if 3 =0. *)

m ¢ —vy2,,(p)

if m <0 then return(0,1)

he({#*+1)™p (* h € K[t] *)
(g,7) « PolyDivide(h,t? +1) (*h=("+1)g+r,deg(r) <1%)
a « coefficient(r,t), b+ r — at (*r=at+b%)
(* CoupledDESystem will be given in Chap. 8 *)

(¢,d) « CoupledDESystem(0,2mDt/(t? + 1),a,b)

(* Dc —2mDt/(t* + 1)d = a, Dd + 2mDt/(t* + 1)c = b *)

if (c,d) = “no solution” then return(0, 0)

go  (ct+d)/(t2+1)™

(g,8) + IntegrateHypertangentReduced(p — Dqo, D)

return(q + qo, 8)

Ezample 5.10.2. Consider

/@;E—de.

Let k = Q(z) with D = d/dz, and and let ¢t be a monomial over k satisfying
Dt = (1+12)/2, i.e. t = tan(z/2). Using the classical half-angle formula, our
integrand is then

_sin(z)  2tan(z/2)  2t/z
Tz z(tan(z/2)2+1) 241 € k(t) .

We get Dt/(t? + 1) = 1/2 and

Lm=—-yez(p) =1
2. h=p(t?+1) =2t/x
3. (¢,r) = PolyDivide(2t/z,t? + 1) = (0,2t/z), so (a,b) = (2/x,0)

4. Since (g;> . ((1) —01) (Z) = <2(/)z>

has no solution in Q(z), CoupledDESystem(0,1,2/z,0) returns “no

solution”.
/' sin(z) dz
z

Hence,

is not an elementary function.
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Ezample 5.10.3. Consider
/ tan(z)’ + tan(z)® + z? tan(z) + 1 e
(tan(z)? +1)°

Let k = Q(z) with D = d/dz, and and let t be a monomial over k satisfying
Dt =1+1t2, i.e. t = tan(z). Our integrand is then

4+ 2t 4]

€ k(t).
(2 +1)° (
We get Dt/(t> + 1) = 1 and

1. m= —Vg2 4 (p) =3

2 h=p(?+1)° =t* + 2 + 2%t +1

3. (¢,r) = PolyDivide(h,t? + 1) = (t3,z%t + 1), so (a,b) = (z,1)
4

. Since )
Dc + 0 -6 c\ _(=z
Dd 6 0 d) — \\'1
has the solution ¢ = z/18 4+ 1/6 and d = 1/108 — z2/6 in Q(z),
(¢c,d) = CoupledDESystem(0,6,z?,1) = (z/18 +1/6,1/108 — 2%/6).

> ct+d _ (1+z/3)t— (2 —1/18)
*EEry T 6 (t2 +1)° ’
— Dao = t3 +5x/18 + 15/18
por0= (2 +1)°

6. Recursively calling (¢,8) = IntegrateHypertangentReduced(p —
Dqp), we get 8 =1 and
_5(L+a/3)t+T77/12  5(1+z/3)t - 43/6
T 2q(2+1)? 16 (2 + 1)

p-Dla+w) =15 (1+3)

Hence,

/ tan(z)® + tan(z)® + z? tan(z) + 1 dp =
(tan(z)? + 1)
(1+ z/3)tan(z) — (z2 —1/18) = 5(1 + z/3)tan(z) + 77/12

6 (tan(z)? + 1)° 24 (tan(z)? + 1)°
5(1+x/3)tan(z) —43/6 5 z
6(tan(@)? +1) ' 16 (1 + 3) dz

and the remaining integral is of course z + z?/6.
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Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).

Theorem 5.10.4. Let k be a differential field not containing v/—1, and t an
hypertangent over k. If we can solve coupled differential systems over k, and
V—1Dt/(t? + 1) is not a logarithmic derivative of a k(v/—1)-radical, then
for any f € k(t) we can either prove that f has no elementary integral over
k(t), or compute an elementary extension E of k(t) and g € E such that
f—-Dge€k.

Proof. Suppose that /—1Dt/(t* + 1) is not a logarithmic derivative of a
k(v/—1)-radical, then t is a monomial over k and Const(k(t)) = Const(k) by
Theorem 5.10.1. Let f € k(t). By Theorem 5.3.1, we can compute g;,h,r €
k(t) such that f = Dg; + h +r, h is simple and r is reduced. From h, which
is simple, we compute g, € k(t) given by (5.8) in Theorem 5.6.1. Note that
9o = g1 + [ g2 lies in some elementary extension of k(t). Let p = h — g, and
g =p+r, then f = Dgo + ¢ so f has an elementary integral over k(t) if and
only if ¢ has one. If p ¢ k[t], then p + r does not have an elementary integral
over k(t) by Theorem 5.6.1, so f does not have an elementary integral over
k(t). Suppose now that p € k[t]. Then p € k(t) so ¢ € k(t). By Theorem 5.10.3
we can either prove that ¢ has no elementary integral over k(t), in which
case f has no elementary integral over k(t), or compute s € k(t) such that
u = ¢ — Ds € k[t], in which case by Theorem 5.10.2, we compute v € k[t]
and ¢ € Const(k) such that u — Dv — cD(t? + 1)/(t2 + 1) € k. If Dc # 0,
then u, and hence f, have no elementary integral over k(t), otherwise Dc = 0
so f — Dg € k where g = go + s+ v +c¢ [ D(t? + 1)/(t* + 1) lies in some
clementary extension of k(t). O

IntegrateHypertangent(f, D) (* Integration of hypertangent functions *)

(* Given a differential field k such that /=1 ¢ k, a hypertangent mono-
mial ¢ over k and f € k(t), return g elementary over k(t) and a Boolean
B € {0,1} such that f — Dg € k if 8 = 1, or f — Dg does not have an
elementary integral over k(t) if 8 = 0. *)

(91,h,7) « HermiteReduce(f, D)

(92,8) + ResidueReduce(h, D)

if 8 = 0 then return(g; + g2,0)

p+—h—Dgs+r

(¢1,8) « IntegrateHypertangentReduced(p, D)

if 3 = 0 then return(g;, + g2 + q1,0)

(g2,¢) « IntegrateHypertangentPolynomial(p — Dg;, D)
if Dc = 0 then return(g; + g2 + q1 + g2 + clog(t? + 1), 1)
else return(g: + g2 + q1 + ¢2,0)
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5.11 The Nonlinear Case with no Specials

In the case of nonlinear monomials over a differential field k, we have seen
that we can reduce the problem to integrating reduced elements of the form
p + a/d where p,a € k[t], d € S\ {0}, deg(p) < é(¢) and deg(a) < deg(d).
Furthermore, Theorem 5.7.2 provides a criterion for nonintegrability, and if an
element of S\ k is known, allows us to reduce the problem to deg(p) < 8(t)—1.
We address in this section the case S = k, i.e. S* = @, which corresponds
to interesting classes of functions as will be illustrated in the examples. Note
that if S'* = 0, then k(t) = k[t], so as a result of the polynomial reduction
(Sect. 5.4), we consider integrands of the form p € k[t] with deg(p) < 4(t). It
turns out that if such elements are integrable, then they must be in k.

Corollary 5.11.1. Suppose that t is a nonlinear monomial and that S''* = 0.
Let p € k{t] be such that deg(p) < 8(t). If p has an elementary integral over
k(t), thenp € k.

Proof. Let C = Const(k(t)), p € k[t] be such that deg(p) < 6(t), and suppose
that p has an elementary integral over k(t). By Theorem 5.7.1 there are
v € k[t], a1,...,¢n € C and u1,...,Un € Sk(cr,.cn)(t]:k(c1,mrCn) such that
p= Dv+g where g = Y1, ¢;D(u;)/u;. Note that g = p — Dv € kft]. Since

\ipe = 0.t follows that ST, ¢ yik(er,ca) = @ (Exercise 3.5), hence that
Sk(crronen)[lik(crrnen) = k(ci,-..,cn). This implies that g € k(e,... ¢n)-
Since g € kit], we get that g € k. Suppose that deg(v) > 1, then,

deg(p) = deg(Dv + g) = deg(Dv) = deg(v) + &(t) — 1 > &(¢)
in contradiction with deg(p) < &(t). Hence, v € k,sop=Dv+g € k. O

This provides a complete algorithm for integrating elements of k(t).

Theorem 5.11.1. Let k be a differential field and t be a nonlinear monomial
over k be such that S''* = 0. Then, for any f € k(t) we can either prove that
f has no elementary integral over k(t), or compute an elementary eztension
E of k(t) and g € E such that f — Dg € k.

Proof. Suppose that ¢ is a nonlinear monomial over & and that S** = @. Then,
Const(k(t)) = Const(k) by Lemma 3.4.5. Let f € k(t). By Theorem 5.3.1,
we can compute gy, h,7 € k(t) such that f = Dgi + h +r, h is simple and r
is reduced. From h, which is simple, we compute g> € k(t) given by (5.8) in
Theorem 5.6.1. Note that go = g1 + [ g2 lies in some elementary extension
of k(t). Let p = h— g2 and ¢ = p+r, then f = Dgo + ¢ so f has an
elementary integral over k(t) if and only if ¢ has one. If p ¢ k[t], then p +r
does not have an elementary integral over k(t) by Theorem 5.6.1, so f does
not have an elementary integral over k(t). Suppose now that p € k[t]. We
have k(t) = k[t] by (5.1), so r € k[t], hence ¢ € k[t]. By Theorem 5.4.1 we
compute q1,g2 € k[t] such that ¢ = Dqy + g2 and deg(q2) < §(t). We now
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have f — Dg = g2 where g = go + q1. If g2 € k, then the theorem is proven,
otherwise 0 < deg(qz) < 6(t), so gz, and therefore f, have no elementary
integral over k by Corollary 5.11.1. o

IntegrateNonLinearNoSpecial(f, D)
(* Integration of nonlinear monomials with no specials *)

(* Given a is a nonlinear monomial ¢ over k with & = 0, and f €
k(t), return g elementary over k(t) and a Boolean 8 € {0,1} such that
f-Dgekif f=1,or f— Dg does not have an elementary integral
over k(t) if 3 =0. *)

(g1,h,r) + HermiteReduce(f, D)

(92,8) + ResidueReduce(h, D)

if 3 =0 then return(g: + g2,0)

(q1,92) + PolynomialReduce(h — Dgz + 1, D)
if g2 €k then 8+ lelse 0

return(gi + g2 + q1, )

Ezample 5.11.1. Let v € Z be any integer and consider

Jv+1(-7")
/ 7.() dz
where J,(z) is the Bessel function of the first kind of order ». From
dJ,(z v
*‘a% = =Jus1(2) + ~Ju(2)
we get
Jo+1(z) / dz dJ,(z)/dz
v\ e = o LT g = -
7. () z v 7,() dz = vlog(z) /qb., (z)dz

where ¢, (z) is the logarithmic derivative of J,(z). Since J,(z) is a solution

of the Bessel equation
V2

y"(z) + %y'(:’:) + (1 - zz) y(z) =0 (5.21)

it follows that ¢,(z) is a solution of the Riccati equation
1 2 1 l/2
¥'(@) +y@)?* + _y(@) +(1- =) =0. (5.22)

Let £ = Q(z) with D = d/dz, and let ¢t be a monomial over k satisfying
Dt = —t? —t/z— (1—v?/z?), i.e. t = ¢, (z). It can be proven that S = @ in
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this extension? so Corollary 5.11.1 implies that ¢ has no elementary integral
over k, hence that

Jos1(z) =v - z
20t dr = vlog(z) / b ()

where the remaining integral is not elementary over (z, o, (2)).
Ezample 5.11.2. Let v € C be any complex number and consider
265 + 268 — V2% — a(e? + \gh — (& = V) — 04
2+ 22 (5 + 295 + 7 + 2 + 2/

where ¢, (z) is the logarithmic derivative of J,(z), the Bessel function of t‘he
first kind of order v. Let k = Q(z) with D = d/dz, and let ¢ be a r'nonomlal
over k satisfying Dt = —t* —t/z — (1 - v?/z?), i.e. t = ¢, (x). Our integrand
is then

2265 + ztt — 1213 — z(a? + 1)t — (z? — Vi)t - % /4

f= 2% + z2(22 + 2)t2 + 22 + zt + 78 /4
and we get
1. Calling (g1, h,7) = HermiteReduce(f, D) we get
2 2 4 3 1
o= 1+2%/4 _ W +x/2)t+:i tT ondr=t+ .
t2+1+22/2’ z2t2 + 22 + z4/2 T

2. Calling (g2,8) = ResidueReduce(h, D) we get B =1and
= Lig e +1+ e
g2 = 3 og 7 ]

3. We have h — Dga + 7 =0, s0 (q1,42) = (0,0).
Hence f = Dg1 + Dga, which means that

23 + vdh — V2 — z(z? + 1)¢2 — (2 - vi)o, —z°/4 dr =
/ 2248 + z2(x? + 2)¢2 + z° + 2 +25/4

1+x2/4 —1 2 2/9) .
—¢V($)2+l+z2/2 2log(¢”($) +1+z /)

Note that the above integral is valid regardless of whether ST is empty.

The above examples used Bessel functions, but in fact the algorithm of
this section can be applied whenever the integrand can be expressed in terms
of the logarithmic derivative of a function defined by a second-order linear
ordinary differential equation. If the defining equation is known not to have
solutions in quadratures (for example for Airy functions), then S = 0, as
explained in note 4 of this chapter.

—“—Tmthat (5.21) has no solutions in quadratures for v € Z

SL»(C)) implies that (5.22) has no algebraic function solution,

in k. Theorem 3.4.3 then implies that """ = 0.

its Galois group is
hence no solution
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5.12 In—Field Integration

We outline in this section minor variants of the integration algorithm that
are used for deciding whether an element of k(t) is either a

~ derivative of an element of k(t),
~ logarithmic derivative of an element of k(t),
— logarithmic derivative of a k(t)-radical.

As we have seen in Sect. 5.2, such procedures are needed when building the
tower of fields containing the integrand. Furthermore, they will be needed
at various points by the algorithms of the remaining chapters, in particular
when bounding orders and degrees.

Note that the structure Theorems of Chap. 9 provide efficient alternatives
to the use of modified integration algorithms, and in some cases the only
complete algorithms for recognizing logarithmic derivatives.

Recognizing Derivatives

The first problem is, given f € k(t), to determine whether there exists u €
k(t) such that Du = f, and to compute such an wu if it exists. We first
perform the Hermite reduction on f, obtaining g € k(t), a simple h € k(t),
and r € k(t) such that f = Dg + h + r. At that point, we can prove (see
Exercise 4.1) that if f = Du for some u € k(t), then h € k[t], so we are
left with integrating h + r which is reduced. The algorithms of Sects. 5.7
to 5.11 can then be applied (with a minor modification in the nonlinear case,
to prevent introducing a new logarithm), either proving that there is no such
u, or reducing the problem to deciding whether an element a € k has an
integral in k(2).

If ¢ is a primitive over k, then it follows from Theorem 4.4.2 and Lem-
ma 5.1.2 that if a has an integral in k(t), then @ = Dv + ¢Dt where v € k
and c € Const(k), and we are reduced to a limited integration problem in k.
Otherwise, d(t) > 1, and it follows from Theorem 4.4.2 and Lemmas 3.4.2
and 5.1.2 that if @ has an integral in k(t), then a = Dv where v € k, and we
are reduced to a similar problem in k.

When f = Da/a for some a € k(t)*, then Corollary 9.3.1, 9.3.2 or 9.4.1
provide alternative algorithms: f = Du for u € k(t) if and only if the lin-
ear equation (9.8), (9.12) or (9.21) has a solution in Q. Corollary 9.3.2 also
provides an alternative algorithm if f = Db/(b? + 1) for some b € k(t),
t.e. f = arctan(b).

It is obvious that the solution u is not unique, but that if f = Du = Dv
for u,v € k(t), then u — v € Const(k(t)).

Recognizing Logarithmic Derivatives

The second problem is, given f € k(t), to determine whether there exists a
nonzero u € k(t) such that Du/u = f, and to compute such an u if it exists.
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We can prove (see Exercise 4.2) that if f = Du/u for some nonzero u € k(t),
then f is simple and that all the roots of the Rothstein—Trager resultant are
integers. In that case, the residue reduction produces

g= > o202 _ Pl @=0%) (H"(")=°gg) D
9a I1r,(a)=09a v

r,(a)=0

where v € k(t) since the o’s are all integers. Furthermore, Theorem 5.6.1
implies that if f = Du/u for u € k(t), then f—g € k[t], so we are left
with deciding whether an element p of k[t] is the logarithmic derivative of an
element of k(t). If p = Du/u for u € k(t), then it follows from Exercise 4.2
that deg(p) < max(1,d(t)) and from Corollary 4.4.2 that u = pi'...p3"
where p; € S and e; € Z.

If t is a primitive over k, then both p and ¢ must be in k since S = k, so
we are reduced to a similar problem in k.

If t is an hyperexponential over k, then p € k and u = vt for v € k* and
e € Z, since S = {t}. We are thus reduced to deciding whether p € k can

be written as Do Dt

=T

for v € k* and e € Z. This is a special case of the parametric logarithmic
derivative problem, a variant of the limited integration problem, which is

discussed in Chap. 7.

If t is a hypertangent over k and V=1 ¢ k, thenp=a+ bt for a,b € k,
and u = v(t2 + 1)¢ for v € k* and e € Z, since ™ = {t* + 1}. We are thus
reduced to deciding whether a + bt can be written as

Dv D(t?*+1) Dv Dt
= e — = — 42—t
a+bt= v+e 21 v+et2+1
which is equivalent to
Dv bt?+1
=— ———€Z
a ” and 5 Dt

The second condition can be immediately verified, while the first is the prob-
lem of deciding whether an element of k is the logarithmic derivative of an
element of k.

When f = Db for some b € k(t), then Corollary 9.3.1, 9.3.2 or 9..4.1
provide alternative algorithms: f is the logarithmic derivative of a k:gt)-r‘a,dlcal
if and only if the linear equation (9.9), (9.13) or (9.22) has a solution in Q.

The solution w is not unique, but if f = Du/u = Du/v for u,v € k(t)\{0},
then u/v € Const(k(t)) (this is the case n =m = 1 of Lemma 5.12.1 below).
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Recognizing Logarithmic Derivatives of k(t)-radicals

The third problem is, given f € k(t), to determine whether there exist a
nonzero n € Z and a nonzero u € k(t) such that Du/u = nf, and to compute
such an n and u if they exist. We can prove (see Exercise 4.2) that if nf =
Du/u for some nonzero n € Z and u € k(t), then f is simple and that all
the roots of the Rothstein-Trager resultant are rational numbers. In that
case, let m be a common denominator for the roots of the Rothstein—-Trager
resultant. Then, the residue reduction produces

y= 3 oDte 12 (wot) _ 1o

ro(a)=0 Y m Hr.(a):O 95 m v

where v € k(t) since the ma is an integer for each . Furthermore, The-
orem 5.6.1 implies that if f = Du/(nu) for n € Z and u € k(t), then
f — Dg € k[t], so we are left with deciding whether an element p of k[t]
is the logarithmic derivative of a k(t)-radical. If p = Du/(nu) for n € Z and
u € k(t), then it follows from Exercise 4.2 that deg(p) < max(1,4(¢)) and
from Corollary 4.4.2 that u = pi' ...p¢* where p; € Sand e; € Z.

If ¢ is a primitive over k, then both p and v must be in k since § = k, so
we are reduced to a similar problem in k.

If t is an hyperexponential over k, then p € k and u = vt® for v € k* and
e € Z, since S'™ = {t}. We are thus reduced to deciding whether p € k can
be written as

n v nt
for v € k* and n, e € Z. This is the parametric logarithmic derivative problem,
a variant of the limited integration problem, which is discussed in Chap. 7.
If t is a hypertangent over k and v/—1 ¢ k, then p = a + bt for a,b € k,
and u = v(t2 + 1) for v € k* and e € Z, since S = {¢? + 1}. We are thus

reduced to deciding whether a + bt can be written as
1 2

a+bt=_2_y+f._l_)_§t_+l_2= 122+_2_6_D_t.

nv n t2+1 n v nt+1

which is equivalent to

Dv bt® +1
na=-=~ and S—p—€Q.

The second condition can be immediately verified, while the first is the prob-
lem of deciding whether an element of k is the logarithmic derivative of a
k-radical.

When f = Db for some b € k(t), then Corollary 9.3.1, 9.3.2 or 9.4.1
provide alternative algorithms: f is the logarithmic derivative of a k(t)-radical
if and only if the linear equation (9.9), (9.13) or (9.22) has a solution in Q.

The solution (n,u) is not unique, but any two solutions are related by the
following lemma.
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Lemma 5.12.1. Let (K, D) be a differential field and u,v € K*. If |

for nonzero n,m € Z, then
ulcm(n,m)/n

W € COIlSt(K) .

Proof. Let ¢ = ulem(mm)/n jylem(nm)/m Then,

Dc _ lem(n,m) Du _ lem(n,m) Dv _ lem(n, m) (l_D_u 3 _1-_[_)_1)_) _0
c n u m

so ¢ € Const(K). 0

Exercises

Exercise 5.1. Let k be a differential field of characteristic 0, ¢ a monomial
over k, and d € k[t] \ {0}. Let d = d;d% - - - d? be a squarefree factorization of
d. Show that p(a/d) < n for any a € k[t], and that u(a/d) = n if and only if
ged(a,d) = 1.

Exercise 5.2. Rewrite the proof of Theorem 5.3.1 using Mack’s linear ver-
sion of the Hermite reduction instead of the quadratic version.

Exercise 5.3. Let k be a differential field of characteristic 0, ¢ a monomial
over k, and f € k(t) \ {0}. Show that using only the extended Euclidean
algorithm in k[t], one can find ho, h1, ..., hq and r € k(t) such that ¢ < p(f),
each h; is simple, r is reduced, and f = r + hg + Dhy + D%hy + ... + D%,

Exercise 5.4 (In-field integration). Let k be a differential field of char- !
acteristic 0 and £ be a monomial over k. Write an algorithm that, given any

f € k(t), returns either g € k() such that Dg = f, or “no solution” if f has

no antiderivative in k(t) (see Exercise 4.1).

Exercise 5.5 (Generalizations of Liouville’s Theorem). Let k be a dif-
ferential field of characteristic 0, C = Const(k), f € k, t be a monomial over
k and suppose that there exist an elementary extension E of k(t) and g € E
such that Dg = f.

a) Prove that
D’U.i

Us

(5.23)

n
f=Dv+Zc,-
=1

has a solution v € k(t), ¢1,...,¢n € C, and uy,...,un € SEk[t]:Ek \ {0}.
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b) Prove that if ¢ is a nonlinear monomial over k, then (5.23) has a solution
v € k(t), c1,...,¢n € C, and uy,...,u, € Ck*.

c) Prove that if Si' =S¥, then (5.23) has a solution v € k[t], ¢y, ..., cn € C,
and uy,...,u, € S@k[t]:@k \ {O}

d) Prove that if ¢ is a nonlinear monomial over k and Si*f = S'**, then f has
an elementary integral over k.

e) Prove that if ¢t is an hyperexponential monomial over k, then f has an
elementary integral over k.

f) Prove that if ¢ is a primitive monomial over k, then (5.23) has a solution
v=at+b cy,...,cn € C, and u1,...,un € Ck*, where a € C and b € k.

Exercise 5.6. Decide which of the following integrals are elementary func-
tions, and compute those that are elementary. Since the recursive problems in-
volving the procedures LimitedIntegrate, RischDE and Coupled DESys-
tem are trivial in these exercices, perform the portions allocated to those
procedures by elementary methods.

a)

/tan(az)sd:r, aeC.
b)

/z"e’dz, nezZ,n#o0.
c)

log(z + a)
/ P dz, a,beC,a #b.
d)
(x+ l)ezz +1
———d
/ (e))? —1 T

e)

2—-n _

/<1+:c +n l)e’dz, nez,n#?2.
2-n "
f)
2
/ 2 + tan(z) _do
1+ (tan(z) + x)

g

/ 3z — 2) log(z)® + (z — 1) log(z)? + 2z(z — 2) log(z) + 2
z log(x)8 — 422 log(z)® + 6283 log(z)* ~ 44 log(z)3 + z° log(z)?



6. The Risch Differential Equation

We describe in this chapter the solution to the Risch differential equation
problem, i.e. given a differential field K of characteristic 0 and f,g € K, to
decide whether the equation

Dy+fy=g (6.1)

has a solution in K, and to find one if there are some. We only study equa-
tion (6.1) in the transcendental case, i.e. when K is a simple monomial ex-
tension of a differential subfield k, so for the rest of this chapter, let k be a
differential field of characteristic 0 and ¢ be a monomial over k. We suppose
that the coefficients f and g of our equation are in k(t) and look for a solution
y € k(t). The algorithm we present in this chapter proceeds as follows:

1. Compute the normal part of the denominator of any solution. This re-
duces the problem to finding a solution in k(t).

2. Compute the special part of the denominator of any solution. This re-
duces the problem to finding a solution in k[¢].

3. Bound the degree of any solution in k[t].

4. Reduce equation (6.1) to one of a similar form but with f, g € k[t].

5. Find the solutions in k[t] of bounded degree of the reduced equation.

6.1 The Normal Part of the Denominator

We show in this section that the normal part of the denominator of any
solution of a Risch differential equation in a monomial extension is given
by an explicit formula in terms of the coefficients of the equation, provided
that the equation is adequately preprocessed. We describe first the required
preprocessing.

Definition 6.1.1. We say that f € k(t) is weakly normalized with respect
to t if residue,(f) is not a positive integer for any normal irreducible p € k|t
such that f € R,.

The motivation behind that definition is the following lemma, which gives
a formula for the order of Dy + fy at a normal polynomial whenever f is
weakly normalized:
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Lemma 6.1.1. Let f € k(t) \ {0} be weakly normalized with respect to t,
y € k(t)\ {0}, andp € k[t] be normal irreducible. Then,

vp(y) < 0= vp(Dy + fy) =vpy) + min(vp(f), 1)

Proof. Let n = v,(y), m = vp(f) and suppose that n < 0. Then, v,(Dy) =
n — 1 by Theorem 4.4.2, and vp(fy) =n+m by Theorem 4.1.1. If m < -1,
then min(m,—1) = m and vp(Dy + fy) = vp(fy) by Theorem 4.1.1, so
vp(Dy + fy) = n + min(m, —1). If m > —1, then min(m,—1) = —1 and
vp(Dy+ fy) = v,(Dy) by Theorem 4.1.1, so vpo(Dy+ fy) =n + min(m, —1).
Suppose now that m = —1. Then vp(pf) =050 f € Ry, and vp(Dy + fy) 2
n—1by Theorem 4.1.1. By Corollary 4.4.2, Dy/y € Rp and residue,(Dy/y) =
n. Since R, is a vector space over k and residue, is a linear map by Theo-
rem 4.4.1, we get Dy/y+ f € Rp and residue,(Dy/y+ f) = residue, (Dy/y) +
residue,(f) = n + residue,(f). Since f is weakly normalized, residue,( f)is
not a positive integer, hence residue,(f) # —n, so residue,(Dy/y+f) # 0. By
Theorem 4.4.1, this implies that Dy/y+f ¢ Op, hence that vp(Dy/y+f) <0,
so vp(Dy + fy) < n. Therefore, vp(Dy + fy) =n—-1=n+ min(m,-1). O

Of course, the next step is, given f € k(t), testing whether f is weakly
normalized with respect to ¢, and finding an adequate transformation other-
wise. The following theorem shows that adding an appropriate logarithmic
derivative to any f € k(t) makes it weakly normalized, and gives an explicit
change of variable that transforms equation (6.1) into a similar one with a
weakly normalized coefficient.

Theorem 6.1.1. For any f € k(t), we can compute g € k[t] such that f=
f — Dq/q is weakly normalized with respect to t. Furthermore, for any g,y €
k(t),

Dy+fy=g & Dz+fz=4q9

where z = qy.

Proof. Let d = dsdn, be a splitting factorization of the denominator of f, and
d, = dydi---dp be a squarefree factorization of dn. Write f = a/d; + b/c
where a, b, ¢ € k[t] and ged(dy,c) = 1, and let z be a new indeterminate over
k and r = resultant,(a — zDdy,d;) € k[2]. Let ..., s be all the distinct
positive integer roots of r, and

qg= H ged(a — n;Ddy,dy)™ € k[t] .

i=1

We now show that f = f — Dg/q is weakly normalized with respect to . Let
p € k[t] be normal irreducible and suppose that f € R,. By Corollary 4.4.2,
Dgq/q € Ry and residuep(Dq/q) = vp(q). Since Ry is a vector space over k and
residue, is a linear map by Theorem 4.4.1, we get f € R, and residuep(f )=
residuep(f) — vp(q)- Let p = residue,(f). If p is not a positive integer, then
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residue,(f) = p — vp(q) is not a positive integer. Thus, suppose that p is a
positive integer. Then p # 0, so f ¢ Op by Theorem 4.4.1, which implies that
p | d. Since p is normal, this means that p | d,, so vp(f) = —vp(dn) < 0. Since
f € Ry, wehave vy(pf) > 0,50 vp(f) > —1, hence vp(f) = —1,s0 vp(dy) = 1.
This implies that p | d; and ged(p, d/d;) = 1, hence that b/c € O, and a/d; €
?2,. Thus, residue,(b/c) = 0, so p = residuey(a/d,). Since d; is normal, a/d,
is simple. In addition p € k since p is an integer, hence residue,(a/d;) is a
root of 7 by Theorem 4.4.3. Thus, p = n; for some j, so p | gcd(a—n;Ddy, d;)
by Lemma 4.4.3, which implies that vp(gcd(a — njDdy,d;1)) = 1. For i # j,
we have residuep(a/d1) # ni, so p /ged(a—n;Dd;,d;) by Lemma 4.4.3, hence
vp(ged(a — niDdy, dy)) = 0. Therefore,

8
vp(g) = Y navp(ged(a — niDdy,dy)) =n;.

i=1

Hence, residue,(f) = p—v,(q) = nj—n; =0, so f is weakly normalized with
respect to t.
Let g,y € k(t) and 2z = gy. Then,

i} D
Dz + fz=qDy+yDq+ fqy — 7qqy =q(Dy + fy)

soDy+fy=g <> Dz+ fz=qg. 0

We n_ote that in practice a full squarefree factorization of d, is not nec-
essary, since only d, is needed for computing q. The above proof gives an
algorithm for weak-normalizing any element of k(t).

WeakNormalizer(f, D) (* Weak normalization *)

(* Given a derivation D on k[t] and f € k(t), return g € k[t] such that
f — Dq/q is weakly normalized with respect to t. *)

(dn,ds) « SplitFactor(denominator(f), D)

g + ged(da, ddn/dt)

d* «dn/g

dy ¢ d’/ged(d", g)

(a,b) + ExtendedEuclidean(denominator(f)/d\,d, numerator(f))
r + resultant:(a — 2Dd, d1)

(ni,...,n,) + positive integer roots of r

return([];_, ged(a — n:Ddi,d1)™)

W'e can assume now that f is weakly normalized with respect to ¢ in
equation (6.1). Then, the following theorem gives an explicit formula for the
normal part of the denominator of a solution.
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Theorem 6.1.2. Let f € k(t) be weakly normalized with respect to t and
g € k(t). Let y € k(t) be such that Dy + fy = g. Let d = d,d,, be a splitting
factorization of the denominator of f, and e = e, ey, be a splitting factorization
of the denominator of g. Let ¢ = ged(dy, en) and

_ ged(en, den /dt)

ged(c, de/dt) € klt]-

Then,
()
yh € k(t).
(i)
y_qh_ ¢ k(t) for any q € k{t]\ k such that ¢ | h.

Proof. (i) Let ¢ = yh € k(t). In order to show that ¢ € k(t), we need to
show that v,(q) > 0 for any normal irreducible p € k[t]. We have vp(q) =
vp(y) + vp(h) by Theorem 4.1.1. If v,(y) > 0, then v,(q) > vy(h) > 0 since
h € k[t]. So suppose now that n = vp(y) < 0.

Case 1: vp(f) > 0. Then, v,(Dy + fy) = vp(y) — 1 by Lemma 6.1.1. Since
g = Dy + fy, this implies that v,(g) < 0, hence that p | e. Since p is normal,
ged(p,es) = 1, 50 vp(en) = ~vp(g) =1 —n.

Also, p does not divide d since vp(f) > 0, so vp(c) = 0, so vp(ged(c, dc/dt)) =
0. Hence vp(h) = vp(ged(en, den/dt)) = vp(en)—1 = —n,s0 1p(q) = n—n = 0.
Case 2: v,(f) < 0. Then, vp(g) = vp(Dy + fy) = vp(f) +n by Lemma 6.1.1,
so n = vp(g) — vp(f). Since n < 0, this implies that v,(g) < vp(f) < 0, hence
that p | d and p | e. As above, since p is normal, gcd(p,ds) = ged(p,e,) = 1,
50 vp(dn) = —vp(f) < —vp(g) = vp(en). Thus, vp(c) = min(vy(dn), vp(en)) =
Vp(dn) = —1vp(f) >0, 50

vp(h) vp(ged(en, den/dt)) — vp(ged(c, dc/dt))
(vp(en) = 1) = (¥p(c) — 1) = ~vp(9) + ¥p(f) = —n,

i

i

sovp(q) =n—n=0.

(i) Let g € k[t] \ k and suppose that g | h. Let p be any irreducible factor of
g in k[t]. Then p | h, so p | en, so p is normal with respect to D. In addition,
min(v,(Dy), vp(fy)) < vp(Dy + fy) = vp(g) = —vp(en) < 0, s0 at least one
of vp(Dy) or vp(fy) must be negative. If vp(f) > 0, then v,(Dy) < 0 or
vp(y) < 0, so vp(y) < 0 in any case by Theorem 4.4.2. If v,(f) < 0, then
p | d,sop| cand vp(h) = (vp(en) — 1) — (vp(c) = 1) > 0, which implies
that vy(en) > vp(c) = min(vp(dn), vp(en)), hence that vp(dn) < vp(en), so
vp(f) > vp(g). Since vp(g) = vp(Dy + fy) = vp(f) + vp(y) by Lemma 6.1.1,
we must have v,(y) < 0 in this case also.

Thus, vp(y) < 0. From the proof of part (i), this implies that v,(yh) = 0,
hence that v,(yh/q) = —vp(g) <0, so yh/q & k(t). O
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Corollary 6.1.1. Let f € k(t) be weakly normalized with respect to t, g €
k(t), and d,,e, and h be as in Theorem 6.1.2. Then,

(i) For any solution y € k(t) of Dy + fy =g, ¢ = yh € k(t) and q is a
solution of

dnhDq + (dnhf — dnDh) q = dph%g. (6.2)

Conversely, for any solution q € k(t) of (6.2), y = q/h is a solution of

Dy + fy=g.
(ii) If Dy + fy = g has a solution in k(t) then e, | d,h?.

Proof. (i) Let y € k(t) be a solution of Dy + fy = g, and let ¢ = yh. q € k(t)
by Theorem 6.1.2, and

Dh
Dq + (f—T)q=hDy+th+hfy—th=h(Dy+fy)=hg.

Multiplying through by d,h yields d,hDq + (dnhf — d,Dh)q = d,h?g, so
q is a solution of (6.2). Conversely, the same calculation shows that for any
solution ¢ € k(t) of (6.2), y = q/h is a solution of Dy + fy = g.

(ii) Suppose that Dy + fy = g has a solution in k(). Then, (6.2) must have
a solution ¢ € k(t). The denominator of d,f is d;, which has no normal
irreducible factor, so d,, f € k(t). Since k{t] C k(t) and k(t) is a differential
subring of k(t) by Corollary 4.4.1, this implies that d,hDq+(d,hf—d,Dh)q €
k(t), hence that d,h%g € k(t). Let p € k[t] be any irreducible factor of
en. Then p is normal, so we must have Vp(dnhzg) > 0. Hence, up(dnh2) >
—vp(g) = vp(en). Since this holds for any irreducible factor of e,, we have
en | dnh?. (]

The above theorem and corollary give us an algorithm that either proves
that a given Risch differential equation has no solution in a given monomial -
extension, or that reduces the equation to one over k(t).

RdeNormalDenominator(f, g, D)
(* Normal part of the denominator *)

(* Given a derivation D on k[t] and f, g € k(t) with f weakly normalized
with respect to ¢, return either “no solution”, in which case the equation
Dy + fy = g has no solution in k(t), or the quadruplet (a,b,c, h) such
that a, h € k[t], b,c € k(t), and for any solution y € k(t) of Dy+ fy = g,
q = yh € k(t) satisfies aDg + bg = c. *)

(dn,d.) + SplitFactor(denominator(f), D)
(en,e,)  SplitFactor(denominator(g), D)
p + gcd(dna, en)

h « gcd(en,de, /dt)/ ged(p, dp/dt)

if e, /dnh? then return “no solution”
return(d,h,d.hf — d.Dh,d.h%g, h)
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Ezample 6.1.1. Let k = Q and let ¢ be a monomial over k satisfying Dt = 1,
i.e. D = d/dt, and consider the equation

1
Dy+y= (6.3)

which arises from the integration of e/t. We have f = 1 and g = 1/t so:

1. (dn,d,) = SplitFactor(1,d/dt) = (1,1)

2. (en,es) = SplitFactor(t,d/dt) = (t,1)

3. p=gcd(l,t) =1

4. h=ged(t,1)/ged(1,1) =1
Since t [/1, we conclude that (6.3) has no solution in Q(t), hence that [e‘/t dt
is not an elementary function.

Ezample 6.1.2. Let k = Q(z) with D = d/dz, and let t be a monomial over
k satisfying Dt = 1+ t?, i.e. t = tan(z). Consider the equation

1
Dy+(t+ 1)y = & (6.4)

which arises from the integration of e'*"(®)/ tan(z)?. We have f = t* +1 and
g = 1/t% so:
. (dn,d,) = SplitFactor(t® +1,D) = (1, t2+1)
(en,€s) = SplitFactor(t?, D) = (t*,1)
.p=ged(1,t3) =1
. h=ged(t?,2¢)/ ged(1,1) =t
d.h? = t2 is divisible by ¢2
. dnh?g=1
7. Dohf — DaDh = t(£2 +1) = (2 +1) = (¢t - 1)(t* + 1)
so any solution y € k(t) of (6.4) must be of the form y = g/t where ¢ € k(t)
is a solution of

O U W

tDq+ (t —1)(t2 + 1)g=1. (6.5)

6.2 The Special Part of the Denominator

As a result of Corollary 6.1.1, we are now reduced to finding solutions ¢ € k(t)
of (6.2), which we rewrite as

aDg+bg=c (6.6)

where a € k{t] has no special factor, b,c € k(t), a # 0, and ¢ is a monomial
over k. We give in this section algorithms that compute the denominator of
any solution in k(t) of (6.6) for specific types of monomials, starting with a
result valid for arbitrary monomial extensions.
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Lemma 6.2.1. Let t be a monomial over k, p € S'™ and a,b,y € k(t) with
a #0 and vp(y) # 0. Then,

(’) If vp(b) < vp(a), then vy(aDy + by) = vp(b) + vy(y).
(n} If p € 81" and v,(b) > vy(a), then vy(aDy + by) = vp(a) + vp(y).
(ii) If vy (b) = vp(a), then either vp(aDy + by) = vp(a) + vp(y), or

m(-2) =wtm (2) + 2

for some nonzero u € k[t]/(p), where D* is the induced derivation (Lem-
ma 3.1.2).

Proof. Since p is irreducible, we have vp(aDy) = vy(a) + vp(Dy) and
vp(by) = vp(b) + vp(y) by Theorem 4.1.1. Furthermore, v,(Dy) > v,y(y) by
Theorem 4.4.2, which implies that Dy/y € O,. B

(i) Suppose that vp,(b) < vp(a). Then,

vp(by) = vp(b) + vp(y) < vp(a) + vp(y) < vp(a) + vp(Dy) = vy(aDy)

zv};ich implies that vp(aDy + by) = vp(by) = vp(b) + vp(y)-

ii) Suppose that p € Si'* and that v,(b) > vp(a). Then, v,(Dy) =

Theorem 4.4.2, so ' ’ () (D) = vlu) by
vp(aDy) = vyp(a) + vp(Dy) = vp(a) + vp(y) < vp(b) + vp(y) = vp(by)

V\./.l.xich implies that v,(aDy + by) = vp(aDy) = vp(a) + vp(y).
(iii) Suppose that v,(b) = v,(a) and that @ # 0. Then, vy(b/a) = vp(b) —
vp(a) =0, so b/a € Op. Furthermore,

vp(aDy) = vp(a) + vp(Dy) > vp(b) + vp(y) = vp(by)

so vp(aDy + by) > vp(by) = vp(ay). Suppose that vy(aDy + by) > vp(ay).
Then, (aDy + by)/ay € pO,, so ’ Haw)

aDy +b Dy b
o=n ()= (50 = (3)+= ()
[4]

since both Dy/y and b/a are in Op, and mp is a field-homomorphism. Write
now y = p*(¥z where z € O, and v,(z) = 0. Then, Dz € O, by Lem-
ma 4.2.1, and since Dp/p € Op, we get

o2) = () on (2 2)

y
Dp mp(D2z) D D*
(5 52) 5 =i () + 22
since D* o wp = mp o D by Theorem 4.2.1. 0
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Since a € k{t] and has no special factor in (6.6), this means that v5(a) =0
for any p € S, so Lemma 6.2.1 provides a lower bound for v,(q) where g € k(t)
is a solution of (6.6) in the following cases:

(i) If wy(b) < 0, then v,(g) € {0,vp(c) — vp(b)}-
(i) If vp(b) > 0 and p € Si", then v,(q) € {0,vp(c)}.

For p € S, once we have a lower bound v,(g) > n for some n < 0, replacing
g by hp" in (6.6) yields

a(p"Dh + np™ 'hDp) + bhp™ = ¢

hence D
aDh + (b + na—z—f—)) h=cp™™. (6.7)

Furthermore, h € k(t) since g € k(t), and h € Oy since vy(q) > n. Thus we are
reduced to finding the solutions h € k(t) N O, of (6.7). Note that cp™" € k(t)
since ¢ € k(t), and b+ naDp/p € k(t) since b € k(t), a € k[t] and p € S.
The eventual power of p in the denominators of b 4+ naDp/p and cp™™ can
be cleared by multiplying (6.7) by p¥ where N = max(0, —v,(b),n — vp(c)),
ensuring that the coefficients of (6.7) are also in k(t) N O.

Since all the special polynomials are of the first kind in the monomial
extensions we are considering in this section, we only have to find a lower
bound for v,(g) in the potential cancellation case, i.e. vp(b) = 0. We consider
this case separately for various kinds of monomial extensions.

The Primitive Case

If Dt € k, then every squarefree polynomial is normal, so k(t) = k[t], which
means that a,b, ¢ € k[t] and any solution in k(t) of (6.6) must be in k[t].

The Hyperexponential Case

If Dt/t € k, then k(t) = k[t,t™'], so we nced to compute a lower bound on

v (q) where g € k(t) is a solution of (6.6). In order to compute such a bound,

we need to be able to decide whether an arbitrary element f of k can be

written as D
u

f=mn+ —u— (68)

for some integer m and u € k*, where n = Dt/t € k. As explained in
Scct. 5.12, this is the parametric logarithmic derivative problem, a variant
of the limited integration problem, which is discussed in Chap. 7. Since the
integer m in a solution of (6.8) can appear in the lower bound computation,
we first need to ensure that m is the same in all the solutions of (6.8).
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Lemma 6.2.2. Let K be a differential field of characteristic 0, and suppose
that ) € k* is not the logarithmic derivative of a K-radical. Then, for f € K,
and any solutions (m,u) and (n,v) in Z x K* of (6.8), we have n = m and
v/u € Const(K).

Proof. Suppose that (m,u) and (n,v) are both solutions of (6.8). Then,

Du Dv
f=mn+ — =+ —

u v

which implies that
Dw ( )
o = (m-n)y

where w = v/u. Since 7 is not the logarithmic derivative of a K-radical, the
above implies that m = n and that Dw = 0. a]

Lemma 6.2.3. Suppose that t is an hyperezponential over k such that n =
Dt/t is not the logarithmic derivative of a k-radical. Let a € k[t],b,q € k(t)
be such that gcd(a,t) = 1, v (b) = 0, and vi(q) # 0. Then, either

vi(aDq + bq) = v(q)

or

b(0 D
_—(—)=ut(q)n+7u for some u € k*.

a(0)
Proof. Suppose that v;(aDq + bq) # v¢(q). Then, Lemma 6.2.1 implies that

() -uion (25

for some nonzero u € k[t]/(t), where D* is the induced derivation. But
k[t]/(t) ~ k and D* is an extension of D by Lemma 3.4.3, so v € k* and
D*u = Du. Furthermore, m;(p) = p(0) for any p € k{t], so m(Dt/t) = m(n) =
n, m¢(a) = a(0) and 7, (b) = b(0), which proves the lemma. a

Since t € Si"™ by Theorem 5.1.2, Lemmas 6.2.1 and 6.2.3 always provide
a lower bound for v;(q) where g € k(t) is a solution of (6.6): if »;(b) # 0, then
Lemma 6.2.1 provides the bound as explained earlier. Otherwise, v;(b) = 0,
so either —b(0)/a(0) = m#n + Du/u for some m € Z and u € k*, in which
case v(q) € {0,m,v(c)}, or v,(q) € {0, v(c)}. Note that such an m is unique
by Lemma 6.2.2 applied to k. Since S'™ = {t}, k(t) N O; = k[t], so having
d;zt(%rr;l)ined a lower bound for v;(gq), we are left with finding solutions h € k[t]
of (6.7).
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RdeSpecialDenomExp(a, b, ¢, D)
(* Special part of the denominator — hyperexponential case *)

(* Given a derivation D on k[t] and a € k[t], b,c € k(t) with Dt/t € k,
a # 0 and ged(a,t) = 1, return the quadruplet (@,b,¢,h) such that
a,b, ¢, h € k[t] and for any solution g € k(t) of aDg+bg = ¢, r = gh € kt]
satisfies aDr + br = C. *)

pet (* the monic irreducible special polynomial *)
ny  Vp(b), nc & vp(c)

n « min(0, n. — min(0, ny)) (*n <0 %)
if ny = 0 then (* possible cancellation *)

a + Remainder(—b/a,p) (* @ = —b(0)/a(0) € k *)
if @ = mDt/t + Dz/z for z € k* and m € Z then n « min(n, m)
N + max(0, —np,n — nc) (* N >0, for clearing denominators *)

return(ap", (b + naDp/p)p™,cp" ",p7")

Ezample 6.2.1. Let k = Q(z) with D = d/dz, and let ¢ be a monomial over
k satisfying Dt = t, i.e. t = €%, and consider the equation

1 2
(t* + 2zt + 2?) Dg + ((1+-z—2) t2 + (23:—1— ;) t+z"~’) q=
t 2
——-14 - (6.9
z? t3 (6:9)
which arises from the integration of
€ =22+ 2% (2 1)/41/(e )
(e + z)°x?
We have a = t2 + 2zt + 22, b = (1 + 1/2%)t? + (22 — 1 — 2/z)t + 22, and
c=t/z? — 1+ 2/z, hence

.np =1(b) =0, n, = 1(c) =0

. n=min(0,n, — min(0,ns)) =0

ny =0, so a = —b(0)/a(0) = z%/z%? = -1
—1=-Dt/t,som = —1 and n = min(n,m) = —1
5. N = max(0, —ns,n —n;) =0

Hence, any solution g € k(t) of (6.9) must be of the form ¢ = p/t for p € k[t]
satisfying

t2 2 t2 2
(t* + 2zt + 2°) Dp+ (:T?“ (;—1> t>p= ol (;—l)t. (6.10)

B o

6.2 The Special Part of the Denominator 187

The Hypertangent Case

If Dt/(t* +1) € k and /-1 ¢ k, then the only monic special irreducible is
t? + 1, so we need to compute a lower bound on vy24;(q), where ¢ € k(t) is a
solution of (6.6).

Lemma 6.2.4. Suppose that /—1 ¢ k and that t is an hypertangent over
k such that 7 = Dt/(t> + 1) is not the logarithmic derivative of a k(v/=1)-
radical. Let a € k[t],b,q € k(t) be such that ged(a,t? +1) =1, vp24,(b) =0
and vi241(q) # 0. Then, either

vizy1(aDq + bg) = vy211(q)
or, writing —b(v/—1)/a(v/-1) = ay/=1+ 8 for o, B € k, we have
b(v/-1) Du Dv
- (—],-%—\/-—;ﬁ = 2Vt2+l(q) nv -1+ —’l_l,_ and 2,@ = T (611)
for some u € k(v/=1)* and v € k*, and D is exstended to k(v/—1) via
Dyv-1=0.

Proof. Suppose that vg24y(aDg + bg) # v(g). Then, Lemma 6.2.1 implies

that
b D(*+1)\ , D'u
ron (=5 ) =ren@ren (S ) + 5

for some nonzero u € k[t]/(t® + 1), where D* is the induced derivation.
But k[t}/(t? + 1) ~ k(v/-1), and (k(v/—1),D*) is an extension of (k,D)
by Lemma 3.4.3, and D* is the unique extension of D to k(+/—1) by Theo-
rem 3.2.3. Since v/—1 is algebraic over Const(k), D*v/—1 = 0 by Lemma 3.3.2,
so Du = D*u. Furthermore,

D(t*+1) . Dt
Tl g1 A
so we get ()
_y) Du,
a() = 2vpa 1 (g)ny + .,

for any 4 € k(v/=1) such that ¥2 + 1 = 0. Taking v = /=1 yields the first
equality in (6.11). Let o : k(v/—=1) = k(+/—1) be the automorphism that is
the identity on k and that takes /=1 to —y/—1. Applying 1 + o to the first
equality in (6.11) we get

28 = (aV-1+p)+(-avV-1+5)
= (2"t2+1(0)77\/—_1+ %) + (—2”t’+1(‘1)7l\/——1+ Lto))

u
Du D(u’) D(uu®) Dv
—_ + = = e——
u u? uu? v

where v = uu’ € k*. 0
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Since t? + 1 € Si by Theorem 5.10.1, Lemmas 6.2.1 and 6.2.4 always
provide a lower bound for vj2,,(q) where ¢ € k(t) is a solution of (6.6): if
vi241(b) # 0, then Lemma 6.2.1 provides the bound as explained earlier.
Otherwise, vz, (b) = 0, so either —b(v/=1)/a(v/=1) = mnv/-1 + Du/u for
some m € Z and u € k(v/—1)*, in which case v2,,(g) € {0,m,v24,(c)}, or
vi241(q) € {0,v4241(c)}. Note that such an m is unique by Lemma 6.2.2 ap-
plied to k(v/—1). We also remark that the verification of (6.11) implies solving
a parametric logarithmic derivative problem over k(y/—1). This adjunction
of /=1 is however temporary since only the integer v;2,,(q) is used from
the result, so the algorithm proceeds over k once this bound is determined.
Since the necessary condition 28 = Dv/v is defined over k, it can be checked
first, and v/—1 needs to be introduced only if that condition is satisfied. Since
S = {t2 + 1}, k(t) N Opz41 = k[t], so having determined a lower bound for
ve241(q), we are left with finding solutions h € k{t] of (6.7).

There are analogues of Lemma 6.2.4 and the corresponding algorithm for
fields containing /=1 (Exercise 6.1).

RdeSpecialDenomTan(a, b, ¢, D)
(* Special part of the denominator — hypertangent case *)

(* Given a derivation D on k{t] and a € k[t], b, ¢ € k(t) with Dt/(t*+1) €
k, /=1 ¢ k,a # 0 and gcd(a,t*+1) = 1, return the quadruplet (a, b,& k)
such that a,b,¢, h € k[t] and for any solution q € k(t) of aDq + bg = c,
r = gh € k[t] satisfies aDr + br =¢. *)

pe—ti+1 (* the monic irreducible special polynomial *)

ny  vp(b), ne + vp(c)

n ¢ min(0, n. — min(0, ny)) (*n <0 %)

if n, = 0 then (* possible cancellation *)
av—=1 + B + Remainder(-b/a,p) (x a,B € k %)
n ¢+ Dt/(t* +1) (xn€kx)

if 28 = Dv/v for v € k*
and av/—=14 8 =2mnV/=1 + Dz/z for z € k(v/-1)* and m € Z
then n + min(n,m)
N « max(0, —ns,n — nc) (* N >0, for clearing denominators *)

return(ap”, (b + naDp/p)p",cp™ ", p™")

Ezample 6.2.2. Continuing example 6.1.2, let k = Q(z) with D = d/dz, t be
a monomial over k satisfying Dt = 1+t¢2, i.e. t = tan(z), and consider the so-
lutions q € k(t) of (6.5), which arises from the integration of e**™®) / tan(z)?.
We havea =t, b= (t — 1)(t> + 1) and ¢ = 1, hence

1. ny = Ut2+1(b) = 1,nc = l/t2+1(b) =0
2. n = min(0,n, — min(0,ny)) =0
3. ny #0,s0 N = max(0, —np,n ~n.) =0

Hence any solution of ¢ € k(t) of (6.5) must be in k(t) N Oy = kt].
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6.3 Degree Bounds

As a result of the previous sections, we are now reduced to finding solutions
q € k{t] of (6.7), which we rewrite as

aDg+bg=c (6.12)

where a,b,c € k[t], a # 0, and t is a monomial over k. We give in this section
algorithms that compute an upper bound on the degree in ¢ of any solution
in k[t] of (6.12) for specific types of monomials, starting with a result valid
for arbitrary monomial extensions.

Lemma 6.3.1. Let t be a monomial over k and a,b,q € k[t] with a # 0 and
deg(q) > 0. Then,

(i) If deg(b) > deg(a) + max(0,d(t) — 1), then
deg(aDq + bg) = deg(b) + deg(q) -
(i) Ift is nonlinear and deg(b) < deg(a) + 6(t) — 1, then
deg(aDq + bq) = deg(a) + deg(p) +4(t) — 1.
(iii) If 6(t) > 1 and deg(b) = deg(a) + 6(t) — 1, then either
deg(aDgq + bq) = deg(b) + deg(q)
o le(b) Dq

Proof.
(i) We have deg(Dq) < deg(g) + max(0,4(t) — 1) by Lemma 3.4.2, hence

deg(aDq) = deg(a) + deg(Dq) < deg(q) + deg(a) + max(0,4(t) — 1)
< deg(q) + deg(b) = deg(bq)

which implies that deg(aDgq + bq) = deg(bg) = deg(b) + deg(q).
(i) If ¢ is nonlinear, then deg(Dgq) = deg(q) + d(t) — 1 by Lemma 3.4.2, hence

deg(aDg) = deg(a) + deg(Dq)
= deg(q) + deg(a) + 6(t) — 1 > deg(g) + deg(b) = deg(bq)

which implies that deg(aDq + bq) = deg(aDgq) = deg(a) + deg(q) + d(t) — 1.
(iit) If 6(¢) > 1, then deg(Dgq) < deg(q) + d(t) — 1) by Lemma 3.4.2, hence

deg(aDq) = deg(a) + deg(Dq)
< deg(q) + deg(a) + 6(t) — 1 = deg(q) + deg(b) = deg(bq)
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which implies that deg(aDq+ bq) < deg(b) +deg(g). Suppose that deg(aDgq +
bq) < deg(b) + deg(q). Then deg(aDq + bg) < deg(a) + deg(q) + d(t) — 1, so
(aDq + bg)/(agt®®~1) € t =104, which implies that

_ aDq + bq _ b Dq
0= 1o (ath(t)-—l ) = Too (ato(z)—1 + 0T

b Dgq
oo \ =1 | + Moo g1

since Ty is a ring-homomorphism and both b/até(‘)‘1 and Dq/qt’®¥-1 are
in O . Since deg(b) = deg(a) + §(t) — 1, we have

b\ L) le(b)
oo (atd(‘)‘l) " le(at¥®-1) T Ic(a)

and the lemma follows. 0

Lemma 6.3.1 provides an upper bound for deg(gq) where ¢ € k[t] is a
solution of (6.12) in the following cases:

(i) If deg(b) > deg(a) + max(0,4(t) — 1), then deg(q) € {0, deg(c) — deg(b)}.
(ii} If deg(b) < deg(a) + 8(t) — 1 and 4(t) > 2, then

deg(q) € {0,deg(c) — deg(a) + 1 —4(t)} -

As a result, we only have to consider the cases deg(b) < deg(a) for Louvillian
monomials, and deg(h) = deg(a) + 6(t) — 1 for nonlincar monomials. We
consider those cases separately for various kinds of monomial extensions.

The Primitive Case

If Dt € k, then, in order to compute an upper bound on deg(q), we need to
decide whether an arbitrary element f of k can be written as

f=mn+ Du (6.13)

for some integer m and u € k, where n = Dt € k. Note that (6.13) is a limited
integration problem in k, so it can be solved by applying the algorithm of
Chap. 7 to f and 7. Since the integer n in a solution of (6.13) can appear in
the upper bound computation, we first need to ensure that m is the same in
all the solutions of (6.13).

Lemma 6.3.2. Suppose that t is a primitive over k such that n = Dt is
not the derivative of an element of k. Then, for f € k(t), and any solutions
(m,u) and (n,v) in Z x k of (6.13), we have n = m and v — u € Const(k).
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Proof. Suppose that (m,u) and (n,v) are both solutions of (6.13). Then,
f=mn+Du=nn+ Dv

which implies that
Dw=(m—n)y

where w = v — u. Since 7 is not the derivative of an element of k, the above
implies that m = n and that Dw = 0. a

Lemma 6.3.3. Suppose that t is a primitive over k such that 1 = Dt is
not the derivative of an element of k. Let a,b,q € k[t] be such that a # 0,
deg(b) < deg(a), and deg(q) > 0. Then,

(i) If deg(b) < deg(a) — 1, then
deg(aDq + bg) € {deg(a) + deg(q), deg(a) + deg(q) —~ 1} .
(i) If deg(b) = deg(a) — 1, then either
deg(aDq + bq) € {deg(a) + deg(q),deg(a) + deg(q) - 1}
or
le(b)
" Ic(a)
(i11) If deg(b) = deg(a), then either
deg(aDg + bg) € {deg(a) + deg(q), deg(a) + deg(q) — 1}

= deg(q)n + Du for some u € k.

or

le(b) _ Dlc(g)) . _ le(aDlle(g)) +ble(g))

Tia) T Tl ic(a)lc(q)

for some u € k.

= deg(g)n + Du

Proof. Since deg(q) > 0, we have deg(Dq) € {deg(g),deg(q) — 1} by Lem-
ma 5.1.2.
(i) If deg(b) < deg(a) — 1, then

deg(aDq) = deg(a) + deg(Dq)
> (deg(b) + 1) + (deg(q) — 1) = deg(b) + deg(q) = deg(bq)

which implies that
deg(aDq + bq) = deg(aDq) € {deg(a) + deg(q), deg(a) + deg(q) ~ 1} .
(ii) Suppose that deg(b) = deg(a) — 1. If deg(Dq) = deg(q), then

deg(aDgq) = deg(a) + deg(Dq) = deg(b) + 1+ deg(q)
> deg(b) + deg(g) = deg(bq)
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which implies that deg(aDg + bq) = deg(aDq) = deg(a) + deg(q). Otherwise,
deg(Dq) = deg(q) — 1, so D(lc(g)) = 0 by Lemma 5.1.2, which implies that

le(Dq) = deg(q) nlc(q) + Dv
where v € k is the coefficient of $4¢8(9)~1 in ¢. In addition, we have
deg(aDq) = deg(a) + deg(Dq) (deg(b) + 1) + (deg(q) - 1)
deg(b) + deg(q) = deg(bg)

which implies that deg(aDq + bg) < deg(a) + deg(q) — 1. Suppose that
deg(aDg + bg) < deg(a) + deg(q) — 1. Then, (aDq + bg)t/(aq) € t~10,
which implies that

Dq + bg)t tb tD
0= n, ({2DLF b0 D) < (5 +220) = (2) 47 (420
aq a q a q

since 7o is a ring-homomorphism, and both tb/a and tDq/q are in O.
Since deg(b) = deg(a) — 1 and deg(Dgq) = deg(q) ~ 1, we have

- (g) _le(th) _ le(b)

a

"~ le(a) T lc(a)
and
. (@) _ le(tDq) _ lc(Dg) _ deg(q)nlc(q) + Dv
“\ ¢ le(g) — le(g) le(q)
where u = v/lc(q) € k.
(iii) Suppose that deg(b) = deg(a). If deg(Dq) = deg(q) — 1, then
deg(aDq) = deg(a) + deg(Dq) = deg(b) + deg(q) — 1
< deg(b) + deg(q) = deg(bq)

= deg(g)n + Du

which implies that deg(aDq + bg) = deg(bg) = deg(a) + deg(g). Otherwise,
deg(Dq) = deg(q), which implies that

deg(aDq) = deg(a) + deg(Dq) = deg(b) + deg(q) = deg(bq)

hence that deg(aDgq + bq) < deg(a) + deg(q). Suppose that deg(aDq + bg) <
deg(a) + deg(q). Then, (aDq + bg)/(aq) € t~'Ou, which implies that

D
0=me (229F5) _p (21 D9 o (0 4n (P
aq a q a q

since 7o is a ring-homomorphism, and both b/a and Dq/q are in Oy Since
deg(b) = deg(a) and deg(Dq) = deg(q), we have

b\ _ lc(b) Dq\ _le(Dq)  D(lc(gq))
oo <5) “l(@ M e (T) O TC)
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which implies that

lc(b)  Du
Tie) - w (6.14)

where u = lc(g). Write p = u~!q € k[t]. Then, deg(p) = deg(q) and
aDq + bq = aD(up) + bup = ADp + Bp

where A = ua and B = aDu + bu. Note that deg(A) = deg(a), and deg(B) <
deg(A), since (6.14) implies that the coefficient of t4°&(@) in B is 0. Suppose
first that deg(B) < deg(A4) — 1. Then, (i) implies that

deg(ADp + Bp) € {deg(A) + deg(p), deg(A) + deg(p) — 1}
hence that

deg(aDq + bq) € {deg(a) + deg(q), deg(a) + deg(q) — 1} .
Suppose finally that deg(B) = deg(A) — 1. Then, (ii) implies that either

deg(ADp + Bp) € {deg(A) + deg(p), deg(A) + deg(p) — 1}

or

le(B)
A2 D
o(A) deg(p)n + Dv
for some v € k. Noting that deg(p) = deg(q), deg(A) = deg(a), and lc(4) =
le(a)lc(q) completes the proof. : o

Lemmas 6.3.1 and 6.3.3 always provide an upper bound for deg(q) where
q € k[t] is a solution of (6.12): if deg(b) > deg(a), then Lemma 6.3.1 implies
that deg(q) € {0,deg(c) — deg(b)}. If deg(b) < deg(a) — 1, then Lemma 6.3.3
implies that deg(q) € {0,deg(c) — deg(a),deg(c) — deg(a) + 1}. If deg(b) =
deg(a) — 1, then either —lc(b)/lc(a) = mn+ Du for some m € Z and u € k, in
which case deg(g) € {0,m,deg(c) — deg(a), deg(c) — deg(a) + 1}, or deg(q) €
{0, deg(c) — deg(a), deg(c) — deg(a) + 1}. Note that such an m is unique by
Lemma 6.3.2.

Finally, if deg(b) = deg(a), then either —lc(b)/lc(a) = Du/u for some
u € k* and —lc(aDu + bu)/(ulc(a)) = mn + Dv for some m € Z and v €
k, in which case deg(q) € {0,m,deg(c) — deg(a),deg(c) — deg(a) + 1}, or
deg(q) € {0, deg(c) — deg(a), deg(c) ~ deg(a) + 1}. We can compute such an
u by a variant of the integration algorithm (Sect. 5.12). Although it is not
unique, if —lc(b)/Ic(a) = Duf/u = Dv/v for u,v € k*, then u = cv for some
c € Const(k) by Lemma 5.12.1, which implies that

lc(aDu + bu) _ lc(acDv +bev) _ c(lc(aDv + bv)  lc(aDv + bv)
le(a)u Ic(a)cv B cle(a)v T Ie(a)v

so the solution we use does not affect the bound m, which is unique by
Lemma 6.3.2.
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i RdeBoundDegreePrim(a, b, ¢, D)
(* Bound on polynomial solutions — primitive case *)

(* Given a derivation D on k] and a,b,c € k[t] with Dt € k and
a # 0, return n € Z such that deg(q) < n for any solution g € k[t] of
aDg+bg=c *)

da + deg(a), dy « deg(b), d. + deg(c)
if dy > da then n + max(0,d. — ds) else n « max(0,d. — da +1)
if dy =do — 1 then (* possible cancellation *)
a + —lc(b)/ic(a)
if @ = mDt + Dz for z € k and m € Z then n + max(n,m)
if dy = d. then (* possible cancellation *)
a + —lc(b)/Ic(a)
if « = Dz/z for 2 € k" then
B + —lc(aDz + bz)/(zlc(a))
if 3= mDt + Dw for w € k and m € Z then n « max(n,m)

return n

Ezample 6.3.1. Let k = Q(z,to) with D = d/dz, where to is a monomial over
Q(z) satisfying Dto/to = 1/2?, i.e. to = exp(—1/z), and let ¢ be a monomial
over k satisfying Dt = 1/z, i.e.t = log(z). Consider

tot+z,s _tot 4z?
T

2
.1
5 t? +xt (6.15)

1 1
t*Dy - <;—5t2 + ;) y=(2z-1t'+

which arises from the integration of

-1/z —1/z 4 42
2, € +z _€ +4z z 1/log(z)+1/z
(<2z— 1)log(a)? + " log(a) ~ S + ,Og(z)) e

Theorem 6.1.2 gives h = 1, so any solution in k(t) must be in k(t) = k[t]. We
have a = t2, b = ~t?/z% — 1/z and

to + 4z
2z

3 t2 4zt

to +
c=(2z - 1)t* + °zz

hence

1. d, = deg(a) = 2, dp = deg(b) = 2, d. = deg(c) =4
2. n=max(0,d. —d, +1) =3
3. d, is equal to dp, so
a) a = —lc(b)/lc(a) = 1/z?
b) a is equal to D(to)/to, 50
i. 8 = —~lc(aDty + bto)/(tolc(a)) = —1/z
ii. B is equal to —Dt, son = max(n,—1) =3

So any solution in k[t] of (6.15) must have degree at most 3.
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In the specific case where D = d/dt, then Du = 0 for any u € k, so
in particular, —lc(b)/lc(a) is not of the form Du/u for u € k. This yields a
simpler form of Lemma 6.3.3 for that case, together with a simpler algorithm.

Corollary 6.3.1. Suppose that t is transcendental over k and that D = d/dt.
Let a,b,q € k[t] be such that a # 0 and deg(q) > 0. Then,

(i) If deg(b) > deg(a) — 1 then, deg(aDq + bg) = deg(b) + deg(q).

(it) If deg(b) < deg(a) — 1, then deg(aDq + bg) = deg(a) + deg(q) — 1.
(iii) If deg(b) = deg(a) — 1, then either deg(aDgq + bq) = deg(b) + deg(q), or

= deg(q) -

RdeBoundDegreeBase(a, b, ¢)
(* Bound on polynomial solutions — base case *)

(* Given a,b,c € k[t] with a # 0, return n € Z such that deg(q) < n for
any solution g € k{t] of adg/dt + bg = c. *)

d. « deg(a), dy « deg(b), d. « deg(c)

n + max(0,d. — max(ds,da — 1))

if dy = da — 1 then (* possible cancellation *)
m + —lc(b)/lc(a)
if m € Z then n « max(0, m,d. — ds)

return n

Ezample 6.3.2. Let k = Q and let ¢ be a monomial over k& satisfying Dt =1,
i.e. D = d/dt, and consider the equation

Dy-2ty=1

which arises from the integration of e~t’dt. Theorem 6.1.2 gives h = 1, so
any solution in k() must be in k(t). Lemma 6.2.1 shows that v;(y) > 0 for
any solution, hence any solution in k(t) must be in k[t]. We havea =c =1
and b = —2t, hence

1. d, = deg(a) =0, dy = deg(b) = 1, d. = deg(c) =0
2. n = max(0,d, — max(dy,d, — 1)) = 0.

So any solution in k(t) must be in k = Q. Since ¢t is transcendental over Q,
—2ty # 1 for any y € Q, which implies that

/e"‘zdt

is not an elementary function.
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The Hyperexponential Case

Lemma 6.3.4. Suppose that t is an hyperezponential over k such that n =
Dt/t is not the logarithmic derivative of a k-radical. Let a,b,q € k(t] be such
that a # 0, deg(b) < deg(a), and deg(q) > 0. Then,

(i) If deg(b) < deg(a), then deg(aDq + bg) = deg(a) + deg(q).
(i) If deg(b) = deg(a), then either deg(aDq + bq) = deg(b) + deg(q), or
Ic(b) D(ic(q))

_lc(a) = deg(q) n+ lc(q) .

Proof. Since deg(g) > 0, we have deg(Dgq) = deg(q) by Lemma 5.1.2.
(i) If deg(b) < deg(a), then

deg(aDq) = deg(a) + deg(Dq) > deg(b) + deg(q) = deg(bg)

which implies that deg(aDq + bg) = deg(aDq) = deg(a) + deg(q)-
(ii) Suppose that deg(b) = deg(a) and deg(aDq+bq) # deg(b) +deg(q). Since
§(t) = 1, Lemma 6.3.1 implies that

- ()

Ie(Dg) _ Dllc(a)) + deg(@)nle(a) _ g, o1, P0(@)

le(q) le(q) le(q)

o

Lemmas 6.3.1 and 6.3.4 always provide an upper bound for deg(q) where
q € k[t] is a solution of (6.12): if deg(b) > deg(a), then Lemma 6.3.1 implies
that deg(q) € {0,deg(c) — deg(b)}. If deg(b) < deg(a), then Lemma 6.3.4
implies that deg(q) € {0,deg(c) — deg(a)}. Finally, if deg(b) = deg(a), then
either —lc(b)/Ic(a) = mn + Du/u for some m € Z and u € k*, in which case
deg(q) € {0,m,deg(c) — deg(b)}, or deg(q) € {0, deg(c) — deg(b)}. Note that
such an m is unique by Lemma 6.2.2.

RdeBoundDegreeExp(a, b, ¢, D)
(* Bound on polynomial solutions - hyperexponential case *)

(* Given a derivation D on k[t] and a,b,c € kft] with Dt/t € k and
a # 0, return n € Z such that deg(g) < n for any solution ¢ € k[t] of
aDg+bg=c. *)

d, « deg(a), dy « deg(b), d. + deg(c),n + max(0,d. — max(ds,da))
if d. = d, then (* possible cancellation *)

o + —lc(b)/ic(a)
if « = mDt/t + Dz/z for z € k* and m € Z then n « max(n,m)

return n
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Ezample 6.3.3. Continuing example 6.2.1, let k¥ = Q(z) with D = d/dz, t be
a monomial over k satisfying Dt = t, i.e. t = e*, and consider the solutions
in k[t] of (6.10). We have a = t2 + 2zt + 22, b = ¢ = t*/2® — (2/z — 1)t, hence

l.d,=dy=d. =2

2. d, = dy, s0 a = —lc(b)/lc(a) = —1/z?

3. n = max(0,d. — max(dy,d,)) =0

4. —1/z? cannot be written in the form m + Dz/z for m € Z and z € Q(z)

Hence any solution p € kt] of (6.10) must be of degree 0, i.e. in Q(z).

The Nonlinear Case

Lemma 6.3.5. Suppose that t is a nonlinear monomial over k, and let
a,b,q € k[t] be such that a # 0, deg(b) = deg(a) + (t) — 1, and deg(q) > 0.
Then, either deg(aDq + bg) = deg(b) + deg(q), or

lc(b)

- = Alt).

@) ~ deg(q) A(t)
Proof. Suppose that deg(aDq + bq) # deg(b) + deg(g). Then, Lemma, 6.3.1
implies that

le(b) Dq _ le(Dg) _ le(Dq)
Tlef@) T (q,m)_l) " le(qf®1) T le(q)

Furthermore, lc(Dq) = deg(g)lc(g)A(t) by Lemma 3.4.2, so —lc(b)/lc(a) =
deg(q) A(t)- O

Lemmas 6.3.1 and 6.3.5 always provide an upper bound for deg(g) where
q € k[t] is a solution of (6.12): if deg(b) # deg(a)+d(t) — 1, then Lemma 6.3.1 -
provides the bound as explained earlier. Otherwise, either —lc(b)/lc(a) =
mA(t) for some m € Z, in which case deg(q) € {0,m,deg(c) — deg(b)}, or
deg(q) € {0, deg(c) — deg(b)}.

RdeBoundDegreeNonLinear(a, b, c, D)
(* Bound on polynomial solutions - nonlinear case *)

(* Given a derivation D on k[t] and a,b,c € k[t] with deg(Dt) > 2 and
a # 0, return n € Z such that deg(q) < n for any solution g € k{t] of
aDg +bg=c. *)

d. + deg(a), dy « deg(b), dc + deg(c),d + deg(Dt), A « Ic(Dt)
n « max(0,d. — max(d. + 6 — 1,ds))
ifdy =da+6—1 then

m + —lc(b)/(Alc(a))

if m € Z then n « max(0,m,d. — ds)

(* possible cancellation *)

return n
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Ezample 6.3.4. Continuing examples 6.1.2 and 6.2.2, let k = Q(x) with D =
d/dz, t be a monomial over k satisfying Dt = 1+¢2, ie. t = tan(z), and
consider the the solutions g € k] of (6.5). We havea =1t, b= (¢ - 1(t2+1)
and ¢ = 1, hence

1. dg = deg(a) = 1, dy = deg(b) = 3, d. = deg(c) =0

2.6=0(t)=2,A=1c(1+t*) =1

3. n = max(0,d, — max(d, + 0 — 1,d3)) =0

4. dy #da +6-1

Hence any solution g € k[t] of (6.5) must be of degree 0, i.e. in Qz).

6.4 The SPDE Algorithm

We are now reduced to finding solutions ¢ € k[t] of (6.12) and we have an
upper bound n on deg(g). We present here an algorithm of Rothstein [68] that
either reduces equation (6.12) to one with a = 1, or proves that it has no
solutions of degree at most n in k[t]. This algorithm is based on the following

theorem.
Theorem 6.4.1. Leta,b,c € k[t] witha # 0 andged(a,b) = 1. Let 2, € klt]

be such that c = az + br and either r = 0 or deg(r) < deg(a). Then, fo_r any
solution q € k[t] of aDg +bg = c, h = (g —7)/a € klt], and h is a solution of

aDh + (b+ Da)h =2z~ Dr. (6.16)
Conversely, for any solution h € k[t] of (6.16), ¢ = ah +7 is a solution of
aDq+bg =c.

Proof. Let q € k[t] be a solution of aDg + bg = c. Then, aDg+bq = az + br,
so b(g — ) = a(z — Dq), so a | b(g —r). Since ged(a,b) = 1, this implies that
a|q - r, hence that h = (¢ —)/a € k[t]. We then have:
(Dq -Dr (g- r)Da) blg—r)+(g—r)Da
a - 2 +
a a a

aDh + (b + Da)h

—7)

b
= Dq-Dr+
= gﬂ_br)__—_bg_pr+2q_—ﬂ=z_pr.

a a
Conversely, let h € k[t] be a solution of (6.16), and let ¢ = ah + r. Then,
aDg+bg = a’*Dh+ahDa+aDr +abh+ br

= a(aDh+ (b+ Da)h) +aDr +br
= a(z—-Dr)+aDr+br=az+br=c.
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Theorem 6.4.1 reduces (6.12) to (6.16), which is an equation of the same
type. However, if (6.12) has a solution ¢ of degree n, then the corresponding
solution h of (6.16) must have degree at most n — deg(a) since ¢ = ah +r
and deg(r) < deg(a). Thus, if deg(a) > 0 and gcd(a,d) = 1, we can use The-
orem 6.4.1 to reduce the degree of the unknown polynomial. The hypothesis
that ged(a,b) = 1 is not a restriction: if (6.12) has a solution in kt], then
¢ € (a,b), so g = ged(a, b) must divide ¢, in which case we can divide a,b and
¢ by g in order to get an equivalent equation with gcd(a, b) = 1. Note that this
step reduces the degree of a. If ged(a, b) [ ¢, we can conclude that (6.12) has
no solution in k[t]. We can repeat this until either we have proven that (6.12)
has no solution of degree at most n in k[t], or until deg(a) = 0 i.e. a € k*,
at which point we divide the equation by a and we get an equation of the
type (6.12) with a = 1. This is the SPDE! algorithm of Rothstein [67, 68].

SPDE(a,b,c, D,n) (* Rothstein’s SPDE algorithm *)

(* Given a derivation D on k[t], an integer n and a, b, ¢ € k[t] with a # 0,
return either “no solution”, in which case the equation aDq +bg = c has
no solution of degree at most n in k[t], or the tuple (b,¢, m,a,3) such
that b,¢, a, 8 € k[t], m € Z, and any solution ¢ € k[t] of degree at most
n of aDq + bg = c must be of the form g = ah + 3, where h € k[t],
deg(h) < m and Dh + bh =¢. *)

if n <0 then
if ¢ = 0 then return(0, 0,0, 0,0) else return “no solution”
g + ged(a, b)
if g fc then return “no solution”
a+afg,bebl/g,c+c/g
if deg(a) = 0 then return(b/a,c/a,n,1,0)
(r,2) + ExtendedEuclidean(b,a,c)(* br +az = ¢, deg(r) < deg(a) *)
u +— SPDE(a,b+ Da,z — Dr,D,n — deg(a))
if u = “no solution” then return “no solution”
(b, &, m,a,B) « u
(* The solutions of (6.16) are h = as + 3 where Ds +bs =  *)
return(b, ¢, m,ac,af + 1) (*ah+r =aas+aB+r1*)

Ezample 6.4.1. Continuing examples 6.1.2, 6.2.2 and 6.3.4, let £ = ((z) with
D = d/dz, t be a monomial over k satisfying Dt = 142, i.e. t = tan(z), and
consider the the solutions in k[t] of (6.5). We havea =¢,b= (t—1)(t2+1) =
t3—t2+t—-1,c=1and n =0 from example 6.3.4, hence

1. g = ged(a,b) =1
2. (r,z) = ExtendedEuclidean(t® — 2+t —1,¢,1) = (=1,t2 =t + 1)
3. b+Da=3~t2+t-1+Dt=t3+t¢t

! Special Polynomial Differential Equation
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4. z-Dr=t2 -t +1
5. recursive call, SPDE(t, ¢ + ¢,t> —t +1,D, ~1):
a) —1<0andt?—t+1#0,soreturn “no solution”

Thus (6.5) has no solution in k[¢], hence it has no solution in k(t). This implies
that (6.4) has no solution in k(t), hence that

etan(z)
—_—d
/tan(:::)2 o

Ezample 6.4.2. Continuing examples 6.2.1 and 6.3.3, let k = Q(z) with D =
d/dz, t be a monomial over k satisfying Dt = ¢, i.e. t = €%, and consider the
solutions in kt] of (6.10). We have a = t?+2zt+2%,b=c = t*/z? - (2/z-1)t
and n = 0 from example 6.3.3, hence

1. g = ged(a,b) =1
. (r,z) = ExtendedEuclidean(b,a,c) = (1,0)
. b+ Da = (22 + 1)t2/2® + (2z° + 3z° — 2z)t/2% + 2z
z—=Dr=0
. recursive call, SPDE(t,b + Da,0,D, -2):
a) —2 < 0 so return (0,0,0,0,0)

6.b=¢=m=a=8=0

7. return (0,0,0,0,1)
Thus any solution in k[t] of degree at most 0 of (6.10) must be of the form
0h+1 =1 where Dh = 0. It follows that p = 1 is a solution of (6.10). Going
back to example 6.2.1, this implies that ¢ = 1/t is a solution of (6.9), hence
that

is not an elementary function.

TUs o N

/ e — @+ 2 2y jzbi/(e el gy = Lol at1/( ) |
eI

(e® + z)’x?
Ezample 6.4.3. Continuing example 6.3.1, let k = Q(z,to) with D = d/dz,
where to is a monomial over Q(z) satisfying Dto/to = 1/z?, i.e. to =

exp(—1/z), ¢ be a monomial over k satisfying Dt = 1/z, i.e.t = log(z), and
consider the solutions in k[t] of (6.15). We have a = t2, b = —t*/2? — 1/,

4 2
c=(2z—1)t4+t°+zt3—t°+ T 2 4ot
z 2z
and n = 3 from example 6.3.1, hence
1. g = ged(a,b) =1
2.
(r,z) = ExtendedEuclidean(b,aq,c)
t to + 42?
= —? 24 0, TR
= ( z’t, (22 — 1)¢* + 2t o )
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z 9
b+Da=-2 +2t— 2
T T x

to+2z2  to+22°
t_
T 2z
5. recursive call, SPDE(a;, = t,b; = b+ Da,¢; = 2 — Dr,D,1):
a) g =ged(ai,b1) =1
b)

z—Dr =2z -1t* +

3
(r1,21) = ExtendedEuclidean(b;,a;,61) = (:::2 + _téo_, 4‘7:2:; to)

c)
2 1
by + Da, =—t—2+ét——,21 —Dri =0
2z =z
d) recursive call, SPDE(t?, —t?/z% + 4t/z — 1/z,0,D, -1):
_i. =1 <0 so return (0,0, 0,0,0)
e) =G =my=a1=0 =0
_f) return (0,0,0,0,2% +t/2)
6. b=c=m=a=0,8=12+1t/2
7. return (0,0,0,0, (z2 + to/2)t? — zt)
Thus any solution in k[t] of degree at most 3 of (6.15) must be of the form
Oh + (z? + to/2)t? — 2%t where Dh = 0. It follows that

t .
y= (3°+z2)t2—z2t

is a solution of (6.15), hence that

—1/x
/¢(z)cl/log(2)+l/zdz — ((8 2/ + 172) lOg(-’B)Z _ 12 lOg(IL')) el/log(z)+l/z

where

Yz 4z e~/ 4 4g? z
= (2z — 1)log(z)? + ——T2 - .
$(z) = (22 — 1) log(z)" + —— log(z) 5 + log(z)

Ezample 6.4.4. Let k = Q and ¢t be a monomial over k satisfying Dt = 1,
i.e. D = d/dt, and consider the solutions in k[t] of arbitrary degree n of

1
(t2+t+1)Dq—-(2t+1)q=§t5+%t4+t3—t2+1. (6.17)

Wehavea=1t>+t+1,b=—2t—1,and c = t5/2 + 3t4/4 + 3 — £2 + 1 so

1. g =gcd(a,b) =1
2. (r,z) = ExtendedEuclidean(b,a,c) = (5¢/4,t%/2+t2/4 + t/4 + 1)



202 6. The Risch Differential Equation

3.b+Da=-2t—1+D({t2+t+1)=0
4. recursive call, SPDE(t? +t + 1,0,t3/2+ t*/4 + t/4 — 1/4,D,n - 2):
a) g=gcd(t2+t+1,0) =2+t +1
b) glcsoa=1,b=0,c=t/2-1/4
c) deg(a) =0, so return (b,¢,m,a,B) = (0,t/2 - 1/4,n —2,1,0)
5. return (0,¢/2 —1/4,n — 2, + ¢t + 1,5t/4)
so any solution ¢ € k[t] of degree at most n of (6.17) must be of the form
q = (2 +t + 1)h + 5t/4 where h € k[t] has degree at most n — 2 and satisfies
1 1

=—t—--. 6.18
Dh=zt-+ (6.18)

6.5 The Non-Cancellation Cases

We are now reduced to finding solutions in k[t] of the following equation:
Dg+bg=c (6.19)

where b, ¢ € k[t] and ¢ is a monomial over k. Furthermore, we have an upper
bound n on deg(q). We describe in this section an algorithm that can be
used in any monomial extension whenever the leading terms of Dq and bq do
not sum to 0. Sufficient conditions for this are either D = d/dt, or deg(b) >
max(0,4(t) — 1), or t is nonlinear and either deg(b) # §(¢t) — 1 or deg(b)/A(t)
is not a negative integer. Since there is no cancellation between the leading
terms of Dq and bq in those cases, we call them the non-cancellation cases.

Lemma 6.5.1. Let b,q € k[t] with ¢ # 0.

(i) Ifb# 0 and either D = d/dt or deg(b) > max(0,d0(t) — 1), then the
leading monomial of Dq + bq is

lc(b)lc(q)tdeg(q)+des(b) .

(i) If deg(q) > 0, deg(b) < 8(t) — 1, and either 6(t) > 2 or D = d/dt, then
the leading monomial of Dq + bq is

deg(q)lc(g)A(p)gles(@+oE -1,

(i) If 8(t) > 2, deg(b) = &(t) — 1, deg(q) > O and deg(q) # —lc(b)/A(%),
then the leading monomial of Dq + bq is

(deg(q)A(t) + lc(b)) le(q)tdesta+8(B) -1
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Proof. (i) Suppose that b # 0. If D = d/dt, then
deg(Dq) < deg(q) < deg(q) + deg(b) = deg(bq)

so deg(Dq +bq) = deg(b) +deg(q) and the leading coefficient of Dg + bgq is the
leading coefficient of bg, which is the product of the leading coefficients of b
and q. If t is an arbitrary monomial and deg(b) > m = max(0, 6(¢) — 1), then,
by Lemma 3.4.2, deg(Dq) < deg(q) + m, so so deg(Dq) < deg(g) + deg(b) =
deg(bq). Hence, deg(Dq + bq) = deg(bq) = deg(b) + deg(q) as previously, and
the leading coefficient of Dq + bq is the leading coefficient of bg, which is the
product of the leading coefficients of b and q.

(i) Suppose that deg(q) > 0, deg(b) < 4(¢) — 1, and either 4(t) > 2 or
D = d/dt. If §(t) > 2, then deg(Dq) = deg(q) + 6(t) — 1 by Lemma 3.4.2,
so deg(Dq) > deg(q) + deg(b) = deg(bq). Hence, deg(Dq + bq) = deg(Dq) =
deg(q)+6(t)—1, and the leading coefficient of Dg+ bq is the leading coefficient
of Dgq, which is deg(g)lc(g)A(t) by Lemma 3.4.2. If D = d/dt, then é(t) = 0, so
deg(b) < 0 which implies that b = 0, so deg(Dg+bq) = deg(Dq) = deg(g) -1,
and the leading coefficient of Dg + bq is the leading coefficient of Dg which
is deg(q)lc(g)A(t) since A(t) = 1.

(ii) Suppose that 6(t) > 2, deg(b) = &(t) — 1, deg(q) > 0 and deg(q) #
—lc(b)/A(t). Then, deg(Dq) = deg(q)+6(t)—1 by Lemma 3.4.2, so deg(Dgq) =
deg(bq). The leading coefficient of Dq is deg(q)lc(g)A(t) by Lemma 3.4.2, and
the leading coefficient of bq is lc(b)lc(g). Since deg(g)A(t) + lc(b) # O by
hypothesis, we get that the leading coefficient of Dq + bq is (deg(g)A(t) +
le(b))lc(q) and the degree of Dq + bq is deg(q) + (¢) — 1. O

Lemma 6.5.1 yields the following algorithms for finding the solutions of
equation (6.19) whenever one of its hypotheses is satisfied.

When deg(b) is Large Enough

Suppose that b # 0, and that either D = d/dt or deg(b) > max(0,4(¢) — 1).
Then, for any solution g € k[t] \ {0} of Dg + bg = ¢, we must have deg(q) +
deg(b) = deg(c), so deg(q) = deg(c) — deg(b) and lc(b)ic(q) = Ic(c). This gives
the leading monomial ut™ of any such ¢, and replacing g by ut™ + h in (6.19),
we get

D(ut™) + Dh + but™ + bh = ¢

SO
Dh + bk = ¢ — D(ut™) — but™

which is an equation of the same type as (6.19) with the same b as before.
Hence the hypotheses of part (i) of Lemma 6.5.1 are satisfied again, so we
can repeat this process, but with a bound of n — 1 on deg(h). This bound
will decrease at every pass through this process, guaranteeing termination.
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PolyRischDENoCancell(b, ¢, D, n) (* Poly Risch d.e. — no cancellation *)

(* Given a derivation D on k[t], n either an integer or +00, andb,c € k[t]
with b # 0 and either D = d/dt or deg(b) > max(0, §(t)—1), return elther
“no solution”, in which case the equation Dg + bg = c has no solution

of degree at most n in k[t], or a solution ¢ € K[t} of this equation with
deg(q) < n. *)

g+ 0
while ¢ # 0 do
m + deg(c) — deg(b)
if n < 0 or m <0 or m > n then return “no solution”
p « (Ic(c)/lc(b)) t™
ggq+p
nem-—1
ct—c—Dp-bp
return ¢

Ezample 6.5.1. Let k = Q(z) with D = d/dz, and let ¢ be a monomial over
k satisfying Dt = 1 + 2, i.e. t = tan(z), and consider the equation

Dy+ (@ +1l)y=+ @+ +t+z+2 (6.20)
which arises fom the integration of
(tan(a:)3 +(z+1) tan(z)? + tan(z) + = + 2) gtan(@) |

Theorem 6.1.2 gives h = 1, so any solution in k(t) must be in k(t). Lem-
ma 6.2.1 shows that v42.,,(y) > 0 for any solution, hence any solution in k(t)
must be in k[t], so looking for solutions in k[t] of arbitrary degree we get:
b=t2+1,c=t3+(z+1)t* +t+z+2,n=+oo and

|

m p‘ q lnl c
1]t t 0 |zt? +x+1
Olzlt+z| -1 0

so y =t + z is a solution of (6.20), hence

/(tam(:t:)3 + (z + 1) tan(zx)® + tan(z) + =+ 2)et*"(®) dz = (tan(z) + z)et*n (),

When deg(b) is Small Enough

Suppose that deg(b) < &(¢)—1 and either D = d/dt, which implies that b = 0,
or §(t) > 2. Let g € k[t] be a solution of Dq + bg =c.

If deg(g) > O, then deg(q) + 6(¢) —1 = deg(c), so deg(g) = deg(c) +1 — 4(t)
and deg(g)lc(g)A(t) = lc(c). This yields the leading monomial ut™ of ¢, and
replacing g by ut™ + h in the equation yields a similar equation with a lower

degree bound on its solution.
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If ¢ € k, then: if b € k*, then Dgq + bg € k, so either ¢ € k, in which case
we are reduced to solving a Risch differential equation of type (6.1) over k,
or deg(c) > 0 and (6.19) has no solution in k, hence in k[t]. If deg(b) > O,
then the leading term of Dq+ bq is glc(b)t4e€®) so either deg(c) = deg(b), in
which case g = Ic(c)/Ic(b) is the only potential solution, or deg(c) # deg(b)
and (6.19) has no solution in k, hence in k[t].

PolyRischDENoCancel2(b, ¢, D, n) (* Poly Risch d.e. - no cancellation *)

(* Given a derivation D on klt], n either an integer or +00, and b, ¢ € k[t]
with deg(b) < &(t) — 1 and either D = d/dt or §(t) > 2, return either
“no solution”, in which case the equation Dg + bg = c has no solution
of degree at most 7 in k[t], or a solution g € kft] of this equation with
deg(g) < mn, or the tuple (k, bo, co) such that h € k[t], bo, co € k, and for
any solution g € k[t] of degree at most n of Dg+bg=c,y=qg—hisa
solution in k of Dy + boy = co. *)

g0
while ¢ # 0 do
if n = 0 then m « 0 else m « deg(c) — 8(t) +1
if n <0 or m <0 or m>n then return “no solution”
if m > 0 then p « (Ic(c)/(m A(t)))t™
else (*m=0%)
if deg(b) # deg(c) then return “no solution”
if deg(b) = 0 then return(g, b,c)
p + lc(c)/le(b)
geq+p
néem-—1
c+—c—Dp—-bp
return ¢

Ezample 6.5.2. Continuing example 6.4.4, let k = Q, ¢ be a monomial over
k satisfying Dt = 1, i.e. D = d/dt, and consider the solutions h € k[t] of
arbitrary degree n of (6.18). We get ¢ = t/2 — 1/4, n = +00 and

m|l p | ¢ [n| e

2| t2/4 t2/4 1]-1/4
1| —t/4|t2/4~t/4]0| O

so h = t?/4 — t/4 is a solution of (6.18). Going back to example 6.4.4, this
implies that

1 1
g=(*+t+1) (th-zt)a-gt:}lt‘u

is a solution of (6.17). This example illustrates that in the case b = 0, the
algorithm PolyRischDENoCancel2 is computing exactly an integral of c,
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taking into account the degree constraints. Using the integration algorithm
for that purpose would not be more efficient.

When 6(t) > 2 and deg(b) = 6(t) — 1

In that case, we have cancellation only when deg(q) = —lc(b)/A(t), which
implies in particular that —lc(b)/A(t) is a positive integer. Let ¢ € k[t] be a
solution of Dg + bg = c.

If deg(q) > 0 and deg(q) # —lc(b)/A(t), then deg(q) + 6(t) — 1 = deg(c), so
deg(q) = deg(c) + 1 — &(t) and (deg(q)A(t) + lc(b))lc(g) = lc(c). This yields
the leading monomial ut™ of ¢, and replacing g by ut"™ + h in the equation
yields a similar equation with a lower degree bound on its solution. We can
repeat this as long as the new degree bound is greater than —lc(b)/A(t), or
until we have a complete solution if —lc(b)/A(t) is not a positive integer.

If g € k, then the leading term of Dq + bq is qle(b)t?® -1 5o either deg(c) =
8(t)—1, in which case q = lc(c)/lc(b) is the only potential solution, or deg(c) #
5(t) — 1 and (6.19) has no solution in k, hence in k[t].

PolyRischDENoCancel3(b, ¢, D, n) (* Poly Risch d.e. - no cancellation *)

(* Given a derivation D on k[t] with §(t) > 2, n either an integer or
+00, and b, ¢ € k[t] with deg(b) = 6(t) — 1, return either “no solution”,
in which case the equation Dq + bg = ¢ has no solution of degree at most
n in k[t], or a solution g € kft] of this equation with deg(q) < n, or the
tuple (h, m,¢) such that h € k[t], m € Z, ¢ € k[t], and for any solution
q € k[t] of degree at most n of Dg + bg = ¢, y = ¢ — h is a solution in
k[t] of degree at most m of Dy + by = €. *)

g+« 0
if —lc(b)/A(t) € N then M « —lc(b)/A(t) else M « —1
while ¢ # 0 do
m + max(M,deg(c) —&(t) +1)
if n <0 or m < 0or m>n then return “no solution”
u < mA(t) + lc(b)
if v = 0 then return(q, m,c)
if m > 0 then p « (lc(c)/u) t™
else (*m=0%
if deg(c) # &8(¢) — 1 then return “no solution”
p + lc(c)/Ic(b)
q&q+p
nem-—1
ce—c—Dp-bp
return q

Ezample 6.5.3. Let k = Q(z) with D = d/dz, and let ¢t be a monomial over
k satisfying Dt = 1 + t2, i.e. t = tan(z), and consider the equation
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Dy+(1—tyy=t3+t* -2zt -2z (6.21)

which arises from the integration of

(tan(z)® + tan(z)® — 2z tan(z) — 2z) e=los(1+tan(2)%)/2

Theorem 6.1.2 gives h = 1, so any solution in k() must be in k(t). Since
—b(v/=1) = /=1 —1 and -2 is not the logarithmic derivative of an element
of k, Lemma 6.2.4 implies that v;2,,(y) > 0 for any solution, hence any
solution in k() must be in k], so looking for solutions in k[t] of arbitrary
degree we get: b=1—t, c =13+ t> — 22t — 2z, n = o0, M = 1 and

mlulplgln] e
2} 2 ¢ 1}—2(:r+1)t—22:
1

O =

so any solution of (6.21) must be of the form y = t* + ¢ where ¢ € k[t] is a
solution of degree at most 1 of

Dg+(1—-t)g=-2(z+ 1)t —2z. (6.22)

6.6 The Cancellation Cases

We finally study equation (6.19) whenever the non-cancellation cases do not
hold, i.e. in one of the following cases:

1. 6(t) <1,b€ kand D #d/dt,
2. §(t) > 2, deg(b) = 6(t) — 1, and deg(q) = —lc(b)/A(t).

We present in this sections algorithms for the above cases for specific types
of monomials.

The Primitive Case

If Dt € k, then §(t) = 0, so the only cases not handled by Lemma 6.5.1 are
b=0orbe k*. If b = 0, then (6.19) becomes Dg = c for ¢ € k[t], which
is an integration problem in k[t], and deciding whether it has a solution in
k[t] can be done by the in-field integration algorithm (Sect. 5.12), so suppose
now that b € k*.

If b = Du/u for some u € k*, which can also be checked by a variant of
the integration algorithm (Sect. 5.12), then (6.19) becomes Dq +¢Du/u = c,
i.e. D(uq) = uc which is as earlier an integration problem in k[t].

If b is not of the form Du/u for some u € k*, then D(lc(g)) + blc(q) # 0,
so the leading monomial of Dgq + bq is (D(lc(q)) + blc(q))tde(9), This implies
that deg(q) = deg(c), and that lc(g) is a solution in k* of
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Dy + by = 1c(c) (6.23)

which is a Risch differential equation in k. If it has no solution in k, then (6.19)
has no solution in k[t]. Otherwise, Lemma 5.9.1 implies that it has a unique
solution which must then be lc(g). This gives the leading monomial y¢des(c)
of any solution ¢, and as earlier, replacing q by yt4¢&(®) 4 b in (6.19) yields
an equation of the same type with a lower degree bound on its solution, and
a lower degree right hand side.

PolyRischDECancelPrim(b, ¢, D, n)
(* Poly Risch d.e., cancellation - primitive case *)

(* Given a derivation D on k[t], n either an integer or +00, b € k and
¢ € k(t] with Dt € k and b # 0, return either “no solution”, in which
case the equation Dg + bg = ¢ has no solution of degree at most n in
k[t], or a solution g € k[t] of this equation with deg(q) < n. *)

if b= Dz/z for z € k* then
if zc = Dp for p € k[t] and deg(p) < n then return(p/z)
else return “no solution”
if ¢ =0 then return 0
if n < deg(c) then return “no solution”
g0
while ¢ # 0 do
m + deg(c)
if n < m then return “no solution”
s «+ RischDE(b,lc(c)) (* Ds + bs = lc(c) *)
if 3 = “no solution” then return “no solution”
g+ q+stT
ne—m-—1
¢ ¢ c—bst™ — D(st™)
return q

(* deg(c) becomes smaller *)

The Hyperexponential Case

If Dt/t = n € k, then §(t) = 1, so the only cases not handled by Lemma 6.5.1
areb=0or b€ k*. If b = 0, then (6.19) becomes Dq = ¢ for ¢ € k[t], which is
an integration problem in k{t], and deciding whether it has a solution in k[t]
can be done by a variant of the integration algorithm (Sect. 5.12), so suppose
now that b € k*.

If b = Du/u + mn for some u € k* and m € Z, then (6.19) becomes
Dq + (Dufu + mn)qg = ¢, i.e. D(ugt™) = uct™ which is an integration
problem in k(t), and deciding whether it has a solution in k() can be done
by a variant of the integration algorithm (Sect. 5.12).

Suppose finally that b is not of the form Du/u + mn for some u € k* and
m € Z. Then D(ic(q)) + deg(q) nlc(g) + ble(g) # 0, so the leading monomial
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of Dg + bq is (D(lc(g)) + deg(q) nlc(q) + blc(g))tde8@). This implies that
deg(q) = deg(c), and that lc(q) is a solution in k* of

Dy + (b+deg(q)n)y = le(c) (6.24)

which is a Risch differential equation in k. If it has no solution in k, then (6.19)
has no solution in kft]. Otherwise, Lemma 5.9.1 implies that it has a unique
solution which must then be Ic(g). This gives the leading monomial ytdes(c)
of any solution g, and as earlier, replacing q by yt3¢8() + h in (6.19) yields
an equation of the same type with a lower degree bound on its solution, and
a lower degree right hand side.

PolyRischDECancelExp(b, c, D, n)
(* Poly Risch d.e., cancellation — hyperexponential case *)

(* Given a derivation D on k[t], n either an integer or +o0, b € k and
c € k[t] with Dt/t € k and b # 0, return either “no solution”, in which
case the equation Dg + bg = ¢ has no solution of degree at most n in
k[t], or a solution g € k[t] of this equation with deg(q) < n. *)

if b= Dz/z+ mDt/t for z € k" and m € Z then
if cz2t™ = Dp for p € k(t) and ¢ = p/(2t™) € k[t] and deg(q) < n
then return(q)
else return “no solution”
if ¢ = 0 then return 0
if n < deg(c) then return “no solution”
g+« 0
while ¢ # 0 do
m « deg(c)
if n < m then return “no solution”
s «+ RischDE(b+ mDt/t,lc(c)) (* Ds+ (b+ mDt/t)s = Ic(c) *)
if s = “no solution” then return “no solution”
g q+st™
nem-—1
cc—bst™ — D(st™)
return q

(* deg(c) becomes smaller *)

The Nonlinear Case

If 6(t) > 2, then we must have deg(b) = 6(t) — 1 and lc(b) = —nA(t) where
n > 0 is the bound on deg(g). There is no general algorithm for solving
equation (6.19) in this case. If however S # {, then the following can be
done: for p € S’ applying mp to (6.19) and using the fact that D* om, =
mp o D where D* is the induced derivation on k{t]/(p) (Theorem 4.2.1), we

get
D*q* + mp(b)g* = mp(c) (6.25)
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where ¢* = m,(g). Assuming that we have an algorithm for solving (6.25)
in k[t]/(p), we can then solve (6.19) as follows: if (6.25) has no solution in
k[t]/(p), then (6.19) has no solution in k[t]. Otherwise, let ¢* € k[t]/(p) be
a solution of (6.25), and let r € k[t] be such that deg(r) < deg(p) and
mp(r) = ¢*. Note that m,(Dr + br) = my(c), sop | c— Dr - br. In addition,
mp(q) = mp(r), so h = (¢ —r)/p € k[t] and we have

c=Dq+bq=p<Dh+<b+%’2)h) + Dr + br

so h is a solution in k[t] of degree at most deg(q) — deg(p) of

Dh + (b+ %) h= c_"_i)z_:;ﬂ (6.26)

which is an equation of type (6.19), but with a lower bound on the degree of
its solution.

There are cases when (6.25) can be solved, for example if there exists
p € S with deg(p) = 1. Then, k[t]/(p) =~ k, so (6.25) is a Risch differential
equation in k. Another possibility is if S** N Const(k)[t] # 0, in which case
taking p = t — a where a is a constant root of an irreducible special, we get
k[t]/(p) = k(a), so (6.25) is a Risch differential equation in k(). This is the
case when t is an hypertangent monomial with a = +y/=1. Takingp=t—a
can also be done with a not constant, but (6.25) is then a Risch differential
equation in a nonconstant algebraic extension of k(t), and no algorithms
are known for such curves when ¢ is a nonlinear monomial. Although the
techniques of [13, 58] are probably generalizable to such curves, they would
not yield a practical algorithm in their current form.

The Hypertangent Case

If Dt/(t? + 1) = n € k, then §(t) = 2, so the only case not handled by
Lemma 6.5.1 is b = by — nnt where by € k and n > 0 is the bound on deg(q).
In such extensions, the method outlined above provides a complete algorithm:
if V=1 € k, then S'F = {t — /=1,¢t + v/—1}, and (6.25) is simply a Risch
differential equation over k.

If =1 ¢ k, then taking p = t*> + 1 € S, (6.25) becomes

Dg* + (bo — npv/=1)g" = e(vV-1) (6.27)

where D is extended to k[t]/(p) ~ k(v/=1) by Dv/=1 = 0. One possibility
is to view (6.27) as a Risch differential equation in k(+/=1) and to solve it
recursively. If it has no solution in k(v/~1), then (6.19) has no solution in
k[t]. Otherwise, if u +vv/—1 is a solution of (6.27) with u,v € k, then letting
r = u+wt, h = (g—r)/pis a solution in k[t] of degree at most n — 2 of (6.26).
1t is also possible however to avoid introducing v/—1 by considering the real
and imaginary parts of (6.27): writing ¢* = u + vy/~1, we get
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Du bp np\_ (o
(50)+ (5 %)= (2) 629
where ¢g + ¢1t is the remainder of ¢ by ¢2 + 1. This is the coupled differential
system introduced in Sect. 5.10. If it has no solution in k, then (6.19) has no

solution in k[t]. Otherwise, if (u,v) € k? is a solution of (6.28), then letting
r = u+ut, h = (g—r)/pis a solution in k[t] of degree at most n — 2 of (6.26).

PolyRischDECancelTan(bo, ¢, D, n)
(* Poly Risch d.e., degenerate cancellation ~ tangent case *)

(* Given a derivation D on k{t], n € Z, b € k and ¢ € kft] with D¢/(t* +
1) € k, V=1 ¢ k and n > 0, return either “no solution”, in which case
the equation Dq+ (bo — ntDt/(t> +1))g = c has no solution of degree at
most n in k[t], or a solution g € k[t] of this equation with deg(q) <n. *)

if n =0 then
if ¢ € k then
if bo # 0 then return RischDE(bo, c)
else if f ¢ = q € k then return(g) else return “no solution”
else return “no solution”

pti+1 (* the monic irreducible special polynomial *)
n ¢ Dt/p (+ t = tan([ n) *)
(é,c1t + co) + PolyDivide(c, p) (* e(vV-1) =a1vV/—1+co *)

(* CoupledDESystem will be given in Chap. 8 *)
(u,v) «+ CoupledDESystem(bo, —n1, co, 1)
(* Du + bou + nqv = co, Dv — nqu + bov = ¢1 *)

if (u,v) = “no solution” then return “no solution”

if n = 1 then return(ut + v)

r=u+vt

¢+ (c—=Dr — (bo —nn)r)/p (* this division is always exact *)

h « PolyRischDECancelTan(bo,c, D,n — 2)
if h = “no solution” then return “no solution”
return(ph +r)

Ezample 6.6.1. Continuing example 6.5.3, let k = Q(z) with D = d/dz, t be
a monomial over k satisfying Dt = 1 + ¢2, i.e. t = tan(z), and consider the
solutions ¢ € k[t] of degree at most 1 of (6.22). We have b = 1~ ¢, bp = 1,
c=-2(z+ 1)t —2z,n =1 and:

L.p=t>+1
2.n=Dt/p=1
3. (¢,c1t + co) = PolyDivide(—2(z + 1)t — 2z,p) = (0, —2(z + 1)t — 27)

4. Since
(50)+ (4 1) ()= ()
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has the solution © = 0 and v = 2z,
(u,v) = CoupledDESystem(l, -1, -2z, -2(z + 1)) = (0, —2z).

Thus, ¢ = —2xt is a solution of degree at most 1 of (6.22). Going back to
example 6.5.3, this implies that y = ¢ — 2zt is a solution of (6.21), hence
that

/ (tan(z)® + tan(z)? — 2z tan(z) — 2z) ez -los(1+tan(@)")/2 g =
(tan(z)? — 2z tan(z)) = log(1+tan(2)*)/2
Note that the above can also be written as
/ (tan(z)® + tan(z)? — 2z tan(z) — 2z) cos(z)e®dr =

(tan(z)? — 2z tan(z)) cos(z)e” .

Exercises

Exercise 6.1. Prove the following analogue of Lemma 6.2.4 for fields con-
taining v/—1: let k be a differential field of characteristic O containing v/~1,
t be a hypertangent over k such that 5 = Dt/(t? + 1) is not the log-
arithmic derivative of a k-radical. Let a € k[t],b,q € k(t) be such that
ged(a, t? +1) = 1, y,_ s=y(b) = v,y y=7(b) = 0. Let ¢ = £1 and suppose
that v, . ,~—7(q) # 0. Then, either

v,_ey=ilaDq+bq) = v,_, /—1(q)

or

b(ev/—1 Du
_%\/\/;1-)5 = 2Vt—¢\/—_1(Q)77€\/——1+ T

for some u € k*.

7. Parametric Problems

We describe in this chapter solutions to several integration-related problems
involving parameters. Those problems arise as subproblems in the integra-
tion algorithm: the limited integration problem, which arises from integrating
polynomials in a primitive extension (Sect. 5.8) and the parametric logarith-
mic derivative problem, which arises from recognizing logarithmic derivatives
(Sect. 5.12) and from bounding orders and degrees of solutions of the Risch
differential equation (Sects. 6.2 and 6.3). The common thread between those
problems is that they ask whether there exists constants for which a given
parametric differential equation has a solution in a given differential field.

7.1 The Parametric Risch Differential Equation

We present first the classical parametric problem, namely the parametric
Risch differential equation, which is a Risch differential equation where we
replace the right hand side g € K by the linear combination S, cigi with
gi € K. The problem is then to determine all the constants ¢; € Const(K)

for which the equation )

m
Dy+fy=) cigi (7.1)
=1
has a solution in K, and of course to compute such solutions. This prob-
lem, which does not arise when we integrate only transcendental elementary
functions, shows up in the integration of nonelementary functions, or in in-
tegration in terms of nonelementary functions [5, 20, 21, 38, 39]. In addition,
the problem of limited integration can be seen as a special case of this prob-
lem. Note that the set of constants (cy, ..., cn) for which (7.1) has a solution
in K forms a linear subspace of Const(K)™. This motivates the following
formal definition of the parametric Risch differential equation problem: given
a differential field K of characteristic 0 and f,g;,...,9m € K, to compute
hi,...,hr € K, a matrix A with m +r columns and entries in Const(K) such
that (7.1) has a solution ¢1,...,cm € Const(K) and y € K if and only if

y=) djh;
ji=1
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where dy,...,d, € Const(K) and
A(C],...,Cm,dl,...,dr)T =0.

As in Chap. 6, we only study equation (7.1) in the transcendental case,
i.e. when K is a simple monomial extension of a differential subfield k, so for
the rest of this section, let k be a differential field of characteristic 0 and ¢ be
a monomial over k. We assume in addition that Const(k(t)) = Const(k). We
suppose that the coefficients f and g1, . .., gm of our equation are in k(t) and
look for solutions ¢, . ..,cm € Const(k) and y € k(t). It turns out that the
algorithms of Chap. 6 can be easily generalized to the parametric problem.

The Normal Part of the Denominator

Since vp(Yir, ¢igi) > minjci<m(vp(gi)) for any irreducible p € k[t], part
(i) of Theorem 6.1.2 generalizes to parametric equations. Of course, part (ii)
does not generalize since the above inequality can be strict.

Theorem 7.1.1. Let f € k(t) be weakly normalized with respect to t and
gi,---,9m € k(t). Letc1,...,cm € Const(k) and y € k(t) be such that Dy +
fy =31, cigi. Let d = dsdn be a splitting factorization of the denominator
of f, e be a least common multiple of the denominators of the g;’s, and
e = e,e, be a splitting factorization of e. Let ¢ = gcd(dn,en) and

_ ged(en, den/dt)
" ged(c, dc/dt) € k]

Then, yh € k(t).

Proof. Let ¢ = yh € k(t). In order to show that g € k(t), we need to show that
vp(g) > 0 for any normal irreducible p € k[t]. We have v,(q) = vp(y)+vp(h) by
Theorem 4.1.1. If v, (y) > 0, then vp(q) > vp(h) > Osince h € k(t]. So suppose
now that n = v,(y) < 0. Let g = Y1) cigi € k(t) and p = mini<icm (¥p(9i))-
We then have v,(g) > u. In addition, eg € k[t] since e is a least common
multiple of the denominators of the g;’s, so v,(e) +vp(g) = vp(eg) 2 0, which
implies that vp(e) > —vp(g)-

Case 1: v,(f) > 0. Then, vp(Dy + fy) = vp(y) — 1 by Lemma, 6.1.1. Since
g = Dy + fy, this implies that v,(g) < 0, hence that p | e. Since p is normal,
gcd(p, €4) = 1, 50 vp(en) = vp(e) > ~vp(g) =1 - 1.

Also, p does not divide d since vp(f) > 0, so vp(c) = 0, so vp(ged(c,dc/dt)) =
0. Hence v,(h) = vp(ged(en,den/dt)) = vp(en) —1 2 —7, 5O vp(g) = n +
vp(h) 2n—-n=0.

Case 2: vp(f) < 0. Then, vp(g) = vp(Dy + fy) = vp(f) +n by Lemma 6.1.1,
s0 1 = vp(g) — vp(f)- Since n < 0, this implies that vp(g) < vp(f) <0, hence
that p | d and p | e. As above, since p is normal, ged(p,ds) = ged(p, e5) = 1,
s0 Vp(dn) = —p(f) < —vpg) 2 vp(en). Thus, vp(c) = min(vy(dn), vp(en)) =
vp(dn) = —1p(f) > 0, s0
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vp(h) = vp(ged(en,den/dt)) — vp(ged(c,dc/dt))
= (vp(en) —1) = (p(c) - 1)
= wp(e) +vp(f) 2 —vplg) + vp(f) = -m,

so vp(g) =n+vp(h) >n-n=0. a

Corollary 7.1.1. Let f € k(t) be weakly normalized with respect to t,
g1,.-,9m € k(t), and dn,e, and h be as in Theorem 7.1.1. Then, for
any solution cy,...,c, € Const(k) and y € k(t) of Dy + fy = Y v, Cigi,
q = yh € k(t) and q is a solution of

m
dnhDgq + (dnhf — dnDh) g =Y ci(dnh?g:) . (7.2)

i=1
Conversely, for any solution cy,...,cm € Const(k) and g € k(t) of (7.2),
y = q/h is a solution of Dy + fy = Y v, Cigi-

Proof. Let ci,...,cm € Const(k) and y € k(t) be a solution of Dy + fy =g,
and let ¢ = yh. ¢ € k(t) by Theorem 7.1.1, and

Dh =
Dq + (f - T) q=hDy+yDh+ hfy—yDh=h(Dy+ fy) = hZcigi.
. i=1
Multiplying through by d,h yields d.hDg+(dnhf—dnDh)g = duh® Y (v, cigi,
50 ¢ is a solution of (7.2). Conversely, the same calculation shows that for any
solution ¢;,...,cm € Const(k) and q € k(t) of (7.2), y = ¢/h is a solution of

Dy + fy=31", cigi- o

The above theorem and corollary give us an algorithm that reduces a .
given parametric Risch differential equation to one over k(t).

ParamRdeNormalDenominator(f, g1, ..., gm, D)
(* Normal part of the denominator *)

(* Given a derivation D on k[t] and f,g1,...,9m € k(t) with f weak-
ly normalized with respect to t, return the tuple (a,d,G1,...,Gm,h)
such that a,h € k[t], b € k(t), G1,...,Gm € Kk(t), and for any so-
lution ¢i,...,cm € Const(k) and y € k(t) of Dy + fy = 3 .-, cigi,
g = yh € k(t) satisfies aDg+bg =Y - ¢:iGi. *) -

i=1
(da,ds) « SplitFactor(denominator(f), D)
(en, €s) + SplitFactor(lcm(denominator(g: ), . . ., denominator(gm)), D)
p « ged(dn, en) :
h « gcd(en, den /dt)/ ged(p, dp/dt)

return(dnh,dohf — duDh,dnh?gy, ... ,dnh?gm, h)
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The Special Part of the Denominator

As a result of Corollary 7.1.1, we are now reduced to finding solutions
€1,...,¢m € Const(k) and q € k(t) of (7.2), which we rewrite as

m
aDg +bq =) cgi (7.3)

i=1

where a € k[t] has no special factor, b € k(t), g1,...,9m € k(t), a # 0,
and ¢ is a monomial over k. Since v,(} 1%, cigi) > mini<i<m(vp(gi)) for any
irreducible p € k[t], and since a € k[t] and has no special factor in (7.3),
Lemma, 6.2.1 provides a lower bound for v,(g) as in the nonparametric case:

(i) If vy(b) <O, then vp(q) > min(0, min; <i<m (¥p(gi)) — vp(d)).
(i) If v,(b) > 0 and p € S, then vp(g) > min(0, min<i<m(¥p(9:)))-

For p € S', once we have a lower bound vp(g) > n for some n < 0, replacing
g by hp™ in (7.3) yields

m
a(p"Dh + np™~'hDp) + bhp™ = Z Cigi
=1

hence
Dp = -
aDh + (b + na?> h= Zc,- (9ip7") - (7.4)
i=1

Furthermore, h € k(t) since ¢ € k(t), and h € O, since vy(q) > n. Thus we
are reduced to finding the solutions cy, ..., ¢, € Const(k) and h € k(t) N Op
of (7.4). Note that b+ naDp/p € k(t) since b € k(t), a € k[t] and p € S.
The eventual power of p in the denominator of b + naDp/p can be cleared
by multiplying (6.7) by p" where N = max(0, —v,(b)), ensuring that the
coefficients of the left hand side of (7.4) are also in k(t) N O,.

Since all the special polynomials are of the first kind in the monomial
extensions we are considering in this section, we only have to find a lower
bound for v,(g) in the potential cancellation case, i.e. vp(b) = 0. We consider
this case separately for various kinds of monomial extensions.

The Primitive Case. If Dt € k, then every squarefree polynomial is nor-
mal, so k(t) = k[t], which means that a,b € k[t] and any solution in g € k(t)
of (7.3) must be in kft].

The Hyperexponential Case. If Dt/t = n € k, then k(t) = k[t,t™], so
we need to compute a lower bound on v¢(g) where ¢y, ..., cn € Const(k) and
q € k(t) is a solution of (7.3). Since t € S{" by Theorem 5.1.2, Lemmas 6.2.1
and 6.2.3 always provide a lower bound for v¢(g): if v (b) # O, then Lem-
ma 6.2.1 provides the bound as explained earlier. Otherwise, v¢(b) = 0, so
either —b(0)/a(0) = sn + Du/u for some s € Z and u € k*, in which case
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(@) 2 min (0,5, min (4(a0))
Otherwise,
(@ > min (0, min (v(s))

Note that such an s is unique by Lemma 6.2.2 applied to k. Since S = {t},
k(t) N O = k[t], so having determined a lower bound for 1;(q), we are left
with finding solutions ¢y, ..., cn € Const(k) and h € k[t] of (7.4).

ParamRdeSpecialDenomExp(a, b, g1,...,9m, D)
(* Special part of the denominator — hyperexponential case *)

(* Given a derivation D on k[t] and a € k[t], b € k(t) and g1,...,9m €
k(t) with Dt/t € k, a # 0_and gcd(a,t) = 1, return the tuple
(a,b,97,...,9m, h) such that a,b, h € k[t], g1,...,9m € k(t), and for any
solution ci,...,cm € Const(k) and q € k(t) of aDg+bg = 3 " cigi,
r = gh € kit] satisfies aDr + br = 3" cigi. *)

pet ' (* the monic irreducible special polynomial *)
np 4= vp(b), ne + minicicm (vp(g:))

n « min(0, n. — min(0, ny)) (*n <0 %)
if n, =0 then (* possible cancellation *)

o + Remainder(-b/a,p) (* a = —b(0)/a(0) € k *)
if a =sDt/t+ Dz/z for z € k* and s € Z then n < min(n, s)

N + max(0, —np) (* N >0, for clearing denominators *)

return(ap”, (b + naDp/p)p", g1p™ ", ..., gmp" ", p7")

The Hypertangent Case. If Dt/(t> + 1) = n € k and /-1 ¢ k, then
the only monic special irreducible is t? + 1, so we need to compute a lower
bound on vz4,(q), where ¢1,...,cn € Const(k) and ¢ € k(t) is a solution
of (7.3). Since t> + 1 € Si by Theorem 5.10.1, Lemmas 6.2.1 and 6.2.4
always provide a lower bound for vy2.,1(q): if v24,(b) # 0, then Lemma 6.2.1
provides the bound as explained earlier. Otherwise, vz, (b) = 0, so either
=b(v/=1)/a(v/=1) = sn/=1 + Du/u for some s € Z and u € k(v/—1)*, in

which case
vies(0) 2 min (0,5, min (o100 )
Otherwise,
Ve241(g) > min (0, min (Vt=+1(9i))) .
1<i<m

Note that such an s is unique by Lemma 6.2.2 applied to k(v/—1). The
remarks made in the nonparametric case about adjoining /=1 temporarily
remain valid in this case. Since S''* = {t2 + 1}, k(t) N O, = k[t], so having
determined a lower bound for v24,(q), we are left with finding solutions
€1,-.-,¢cm € Const(k) and h € k[t] of (7.4).
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ParamRdeSpecialDenomTan(a, b, g1,. - ., gm, D)
(* Special part of the denominator - hypertangent case *)

(* Given a derivation D on k[t] and a € k[t], b € k(t) and g1,...,9m €
k(t) with Dt/(t> +1) € k, v/—1 ¢ k, a # 0 and ged(a,¢* +1) = 1, return
the tuple (a,b,31,...,9m,h) such that a,b,h € k[t], g1,...,Gm € k(t),
and for any solution ci,...,cm € Const(k) and g € k(t) of aDg +bq =
S cigi, T = qh € k[t] satisfies aDr +br = Y g *

peti+1 (* the monic irreducible special polynomial *)

np « vp(h), ne minls.‘s,,.(llp(g.‘))

n « min(0, nc — min(0, ns)) (*n <0 %)

if n, =0 then (* possible cancellation *)
ayv/—1+ B « Remainder(-b/a,p) (* a,BEk *)
n+ Dt/(t* +1) (*n€k*)

if 28 = Dv/v for v € k*
and av/—1 + B8 = 2snV/—1 + Dz/z for z € k(v/-1)* and s € Z
then n « min(n, s)
N « max(0, —ns) (* N >0, for clearing denominators *)

return(ap”, (b + naDp/p)p" ,g1p" ", ..., gmp" ", p7")

The Linear Constraints on the Constants

As a result of the previous paragraphs, we are now reduced to finding solu-
tions ¢y, ...,cm € Const(k) and g € k[t] of (7.4), which we rewrite as:

aDg+bg=cigi+...+Cmgm (7.5)

where a,b € k[t], g1-..,9m € k(t), a # 0, and ¢ is a monomial over k. In
addition, dividing (7.5) by gcd(a, b) if needed, we can assume without loss
of generality that gcd(a,b) = 1. We show that if any v; is not in k{t], then
we can obtain linear constraints on the c¢;’s, and reduce (7.5) to a similar
equation with the right hand side in k[t].

Lemma 7.1.1. Leta,b,q € k[t], 91,---,9m € k(t) andcy, ..., cm € Const(k)
be such that aDq + bg = c1g1 + ... + Cmgm. Let d; be the denominator of g;
for1 <i<m,d=lm(dy,...,dn), and q1,..-,gm,T1,---,Tm be such that
dg; = dg; + r; and either r; =0 or deg(r;) < deg(d) for each i. Then,

> eiri=0 (7.6)
i=1
and
aDg+bg=ciq1 + ...+ Cmdm - (7.7)

Proof. Since g; = ¢; + r;/d for each 4, we obtain from (7.5) that

it “
——‘E‘;—— =aDq+ bq — Zc.-q.' € k[t].
i—1
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Since deg (3°in, ciri) < deg(d), it follows that 37" ¢;r; must be equal to 0,
hence that aDq + bg = .1, cigi- 0

Equating the coefficients of the powers of ¢ on both sides of (7.6) yields
a homogeneous system of linear equations for the ¢;’s, i.e. a matrix M with
coefficients in k(t) such that

M| |=o. (7.8)

Cm

LinearConstraints(a, b, g1,. . ., gm, D)
(* Generate linear constraints on the constants *)

(* Given a derivation D on k(t), a,b € k[t] and g1,...,gm € k(t), return
q1,--.,0m € k[t] and a matrix M with entries in k(t) such that for any
solution ¢i,...,cm € Const(k) and p € kft] of aDp+bp =cig1 +... +
Cm@m, (C1,...,Cm) is a solution of Mz = 0, and p and the c; satisfy
aDp+bp=ciqi+ ...+ CmGm. *)

d + lcm(denominator(g1), . . ., denominator(gm))
for i « 1 to m do (gi,r:) « PolyDivide(dvi,d) (* dvi = qid+ ;i *)
ifr) =...=rm =0 then n = —1 else n « max(deg(r1),...,deg(rm))

for i — 0 to n do for j « 1 to m do M;; coefficient(r;, t*)
return(qy,...,qm, M)

Ezample 7.1.1. Let k = Q, t be a monomial over & satisfying Dt = 1, i.e. D =
d/dt, and consider the equation

263 + 3t + 1 1 1

p-1 "1 %y (7.9)

Dp=c
Wehavea =1,b=0,g, = (23 +3t+1)/(t*—1), g2 = 1/(t-1), 93 = 1/(t+1)
and:

l.d=lem(t? - 1,t - 1,t+1) =¢t2 -1

2.dg, =28 +3t+1=2td+5t+1,dgp =t+1,dgs =t—-1,50q =2t
@=q@p=0,rn=58+1,rn=t+landr;=t-1.

3. Equation (7.6) becomes ¢ (5t + 1) + c2(t + 1) + c3(t — 1) = 0, which yields

the linear system
C1
5 1 1
(1 1 _1> c2 | =0 (7.10)

which has the solution space (¢, c2,¢3) = (A, —3A, —2]) for any A € Q.
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4. Replacing ¢, c2 and c3 by the above solution in (7.9) yields

23 + 3t + 1 3 2
— — — = 2\t .
Dp ’\( -1 i1 t+1) A (7.11)

which is now a parametric Risch differential equation with polynomial
right-hand side.

Since we are interested only in the constant solutions of (7.8), we need to
reduce it to an equivalent system with coefficients in Const(k). An algorithm
for this reduction is provided in the following lemma.

Lemma 7.1.2. Let (K, D) be a differential field, A be a matriz with coef-
ficients in K, and u be a vector with coefficients in K. Then, using only
elementary row operations on A and u, we can either prove that Az = u has
no constant solution, or we can compute a matriz B and a vector v, both
with coefficients in Const(K'), such that the constant solutions of Ax = u are
ezactly all the solutions of Bx = v. Furthermore, if u =0, then v = 0.

Proof. Let C = Const(K), and write R; for the i*! row of A, and a;; for the
j* entry of R;. By applying the usual Gaussian elimination, we can compute
an equivalent system in row-reduced echelon form, so suppose that A is in
that form. If all the entries of A are in C, let B = A and v = u. Otherwise,
let j be the smallest index such that the j** column of A has a non-constant
entry, and let ¢ be such that a;; ¢ C. Then, Da,; # 0, so we add the row

DRi < D(Lil Da,-r )

R 1 = = e
m+ Dai]_ ) 3 Daij

Da,‘j

at the bottom of A, and the entry um41 = Du;/Da;j at the bottom of u. By
our choice of j, the first nonzero entry in R+ is a 1 in column j, so we add
adequate multiples of R4 to all the other rows to ensure that ai; = 0 for
i=1...m. We now have a new matrix A and a new vector ii with one more
row, but with only constant entries in columns 1 through j. Repeating this,
we eventually obtain a matrix B and a vector v such that all the entries of
B are in C. By construction, v = 0 if u = 0. Since we have only added extra
rows to A and performed elementary row operations to A4, any solution of
Az = u must be a solution of Bz = v.

Cuse 1, v has a nonconstant entry: let = be a constant solution of Az = u.
Then all the entries of Bx are constant, in contradiction with Bz = v. Hence
Az = u has no constant solution if v has a nonconstant entry.

Case 2, all the entries of v are in C: we have already seen that any constant
solution of Az = u must be a solution of Bz = v. Conversely, let = be
a solution of Bz = v. Then all the entries of z are in C, since B and v
are both constant. In order for = to satisfy Az = u, it only has to satisfy
Ryt1T = Umy1, where R4 is the extra row added in the reduction step.
But,
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R I = (Dail)l'l +...+ (Dair)zr — D(a,-lrcl +...+a,~r:c,)
m+1 Da,-]- Da,-]-
D(R,':L') _ D’U,,‘ —u
Da.',- - Da,']- T omtl
so z is a constant solution of Az = u. a

{ ConstantSystem(M, u, D)
(* Generate a system for the constant solutions *)

(* Given a differential field (K, D) with constant field C, a matrix A and
a vector u with coeflicients in K, returns a matrix B with coefficients in
C and a vector v such that either v has coefficients in C, in which case
the solutions in C of Az = u are exactly all the solutions of Bz = v, or
v has a nonconstant coefficient, in which case Az = u has no constant
solution. *)

(A,u) «+ RowEchelon(A,u)
m + number of rows of A
while A is not constant do
j + minimal index such that that the 5*" column of A is not constant

i + any index such that a;; ¢ C,
Ri « i*" row of A
Rmy1 = D(R:)/D(ai;), um+1 & D(ui)/D(ai;)
for s +1to m do
R, «+ R, —asjRm+1
Us € Us — QyjUm+1
A~ AURm41,u & ulU tmtr (* vertical concatenation *)

return(A4, u)

Ezample 7.1.2. Let k = Q(z) with D = d/dz, and consider the system

_z+3 z+1 1 zii
-1 z-1 z—
Az =uwhere A= [ -2-3 z+1 z-1)| andu= | z+1 (7.12)
2243 0 0 0

1. RowEchelon(A4, u) yields

10 0 0
A=10 1 z—jr} and u={1
00 0 0
2.j=3i=2R=(0 1 Z3),
3.
DRQ Du2
= 1’ = =
B © 0 Vw5 vy’

" D(E-1/(z+1)
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4. Adding (R4, u4) to (A,u) yields

10 O 0
0 1 zt 1
= F1 =
A= 0 0 10 and u 0
00 1 0
5. Finally, adding —(z — 1)/(z + 1)R4 to R; yields
1 00 0
010 {1
A= 00 0 and u= 0
0 01 0

which both have constant entries. The above constant system has the

unique solution
0
= |1
0

which is thus the unique constant solution of (7.12). Note that (7.12) has
a one-dimensional affine space of solutions over (z), namely

0 0
z:(l)ﬁ—w(i;—:) for any w € Q(z).
0 1

Using Lemmas 7.1.1 and 7.1.2, we can produce a constant homogeneous
linear system for the ¢;’s. If its kernel has dimension 0, then the only solution
of 7.5isg=1¢, = ... =cm = 0. Otherwise, a basis of its kernel allows us to
express some of the ¢;’s in terms of others, thereby decreasing m and reducing
the problem to solving equation (7.7).

Degree Bounds

As aresult of Lemma 7.1.1, we are now reduced to finding solutions ¢y, . . ., ¢m
in Const(k) and g € k[t] of (7.7) where a,b,q1,...,qm € k[t],a # 0, and t is a
monomial over . Since deg(}"i~, ¢ig:) < maxi<i<m(deg(g:)), Lemma 6.3.1
provides an upper bound for deg(q) as in the nonparametric case:

(i) If deg(b) > deg(a) + max(0,4(t) — 1), then
deg(g) < max(0, max (deg(q:)) — deg(?))
(i) If deg(b) < deg(a) + 6(t) — 1 and &(t) > 2, then
deg(q) < max(0, max (deg(g:)) — deg(a) +1—4(t)).

As a result, we only have to consider the cases deg(b) < deg(a) for Louvillian
monomials, and deg(b) = deg(a) + §(¢) — 1 for nonlinear monomials. We
consider those cases separately for various kinds of monomial extensions.
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The Primitive Case. If Dt = 7 € k, then Lemmas 6.3.1 and 6.3.3 always
provide an upper bound for deg(g) as in the nonparametric case: if deg(b) >
deg(a), then Lemma 6.3.1 implies that

deg(q) > max(0, \Jax (deg(q:)) — deg(b)) -

If deg(b) < deg(a) — 1, then Lemma 6.3.3 implies that
deg(g) > max(0, max (deg(q:)) — deg(a) +1).
1<i<m
If deg(b) = deg(a) — 1, then either —lc(b)/lc(a) = s + Du for some s € Z
and u € k, in which case

deg(g) > max(0, s, ,max (deg(g:)) — deg(a) +1).

Otherwise, deg(q) > max(0, max; <i<m(deg(g:)) — deg(a)+1). Note that such
an s is unique by Lemma 6.3.2. Finally, if deg(b) = deg(a), then either
—lc(b)/1c(a) = Du/u for some u € k* and —lc(aDu+bu)/(ulc(a)) = sn+ Dv
for some s € Z and v € k, in which case

deg(q) > max(0, s, lgﬁ?m(deg(q")) - deg(a) +1).

Otherwise, deg(q) > max(0, max;<i<m(deg(g;)) — deg(a) + 1). We can com-
pute such an u by a variant of the integration algorithm (Sect. 5.12). Lem-
ma 6.3.2 implies that the choice of u does not affect s.

ParamRdeBoundDegreePrim(a,b,qi,-..,qm, D)
(* Bound on polynomial solutions — primitive case *)

(* Given a derivation D on k[t] and a,b,q1,...,qm € k[t] with Dt € k and
a # 0, return n € Z such that deg(g) < n for any solution ¢;,...,cm €
Const(k) and g € kft] of aDg+bg =3 7. cigi. *)

do + deg(a), d» « deg(b), dc + maxi<i<m(deg(q:))
if dy > da then n + max(0,d. — d;) else n + max(0,d. — da + 1)
if dy =d, — 1 then (* possible cancellation *)
a « —lc(b)/Ic(a)
if a = 3Dt + Dz for z € k and s € Z then n < max(n, s)
if dy = d, then (* possible cancellation *)
a + —lc(b)/lc(a)
if « = Dz/z for z € k* then
B « —lc(aDz + bz)/(z1c(a))
if = sDt+ Dw for w € k and s € Z then n + max(n, s)
return n

In the specific case where D = d/dt, Corollary 6.3.1 yields a simpler
algorithm, as in the nonparametric case.
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ParamRdeBoundDegreeBase(a,b,q1,...,qm)
(* Bound on polynomial solutions — base case *)

(* Given a,b,q1,...,gm € k[t] with @ # 0, return n € Z such that
deg(q) < n for any solution c1,...,cm € k and g € k[t] of

g, N

ag +bg = Z_;c.q..

*)

do « deg(a), dy + deg(b), dc — maxi<i<m(deg(q:))

n + max(0,d. — max(dy,d. — 1))

if dy =d. — 1 then (* possible cancellation *)
s + —lc(b)/Ic(a)
if s € Z then n « max(0, s,dc — d»)

return n

Ezample 7.1.3. Let k = Q, t be a monomial over k satisfying Dt = 1,1.e. D =
d/dt, N be a positive integer, and consider the parametric Risch differential

equation
Dy+y=cltN +c2. (713)

We have f = 1, gy = tV¥ and g» = 1, so by Theorem 7.1.1, any solution
y € k(t) must be in k(t) = k[t]. We then havea = b =1,s0d, = dp =0,
d. = max(N,0) = N and n = max(0, N — max(0,—1)) = N, which implies
that any solution y € k[t] of (7.13) has degree at most N.

The Hyperexponential Case. If Dt/t = n € k, then Lemmas 6.3.1
and 6.3.4 always provide an upper bound for deg(q) as in the nonparametric
case: if deg(b) > deg(a), then Lemma 6.3.1 implies that

deg(q) > max(0, max (deg(g;)) — deg(b)).
1<i<m
If deg(b) < deg(a), then Lemma 6.3.4 implies that
deg(q) > max(0, max (deg(q:)) - deg(a)) .

At last, if deg(a) = deg(b), then either —Ic(b)/lc(a) = sn+ Du/u for some
s € Z and u € k*, in which case

deg(q) > max(0, s, max (deg(gy)) — deg(8))

or
deg(q) > max(0,  max (deg(g:)) — deg(d)) -

Note that such an s is unique by Lemma 6.2.2.
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ParamRdeBoundDegreeExp(a,b,q1,...,qm, D)
(* Bound on polynomial solutions - hyperexponential case *)

(* Given a derivation D on k[t] and a,b,q1,...,qm € k[t] with Dt/t €
k and a # 0, return n € Z such that deg(q) < n for any solution
c1,y...,cm € Const(k) and q € k[t] of

m
aDg+bg = Zc;q; .

i=1

*)

do + deg(a), dy « deg(b), d. « maxi<i<m(deg(g:))

n + max(0,d. — max(ds,d,)) (*n2>04%)
if d; = d then (* possible cancellation *)

a « —lc(b)/lc(a)
if a = sDt/t+ Dz/z for z € k* and s € Z then n « max(n, s)
return n

The Nonlinear Case. If §(t) > 2, then Lemmas 6.3.1 and 6.3.5 always
provide an upper bound for deg(q) as in the nonparametric case: if deg(b) #
deg(a) + 46(¢) — 1, then Lemma 6.3.1 provides the bound as explained earlier.
Otherwise, either —lc(b)/Ic(a) = sA(t) for some s € Z, in which case

deg(g) > max(0, s, max (deg(q) ~ deg(t)),

or
deg(q) > max(0,  max (deg(g:)) — deg(b)) -

ParamRdeBoundDegreeNonLinear(a, b, q1, .. .,qm, D)
(* Bound on polynomial solutions — nonlinear case *)

(* Given a derivation D on k{t] and a,b, q1,...,qm € k[t] with deg(Dt) >
2 and a # 0, return n € Z such that deg(q) < n for any solution
¢1,...,cm € Const(k) and q € k[t] of aDg+bg =3 " cigi. ¥)

de + deg(a), do ¢+ deg(b), d. « max;<i<m(deg(q:))
8 « deg(Dt), A « lc(Dt)
n + max(0,d. — max(d, + 8 — 1,ds))

ifdy=ds+6—1 then (* possible cancellation *)

L if s € Z then n + max(0, s,d. — ds)

s ¢ —le(b)/(Alc(a))

return n
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The Parametric SPDE Algorithm

We are now reduced to finding solutions c;, ..., cn in Const(k) and ¢ € k[t]
of (7.7) and we have an upper bound n on deg(g). Theorem 6.4.1 and the
SPDE algorithm of Sect. 6.4 generalize to the parametric case.

Theorem 7.1.2. Let a,b,qy,...,qm € k[t] with a # 0 and gcd(a,b) = 1. Let

Z1yeeryZmyT1, -+ Tm € k[t] be such that for each i, ¢; = az; + br; and either
m

r; = 0 or deg(r;) < deg(a), and let r = Y., ciri. Then, for any solution
¢1,. .. cm € Const(k) and q € k[t] of aDg+bg= Y12, ciqi, p=(g—r1)/a €
k[t], and p is a solution of

aDp+ (b+ Da)p = c1(z1 — Dr1) + ... + cm(2m — Drm) - (7.14)

Conversely, for any solution c1,...,cm € Const(k) and p € k[t] of (7.14),
g = ap +r is a solution of (7.7).

Proof. Let cy,...,¢m € Const(k) and g € kft] be a solution of (7.7). Then,
m
aDqg + bg = aZc,-zi+br
i=1

so b(g — ) = a(Xo0, cizi — Dg), so a | b(g — ). Since ged(a,b) = 1, this
implies that a | ¢ ~ r, hence that p = (¢ — 7)/a € k[t]. We then have:

Dg-Dr (q——r)Da) 4 blg—r)+(¢—r)Da

aDp+ (b+ Da)p = a<

a a? a
b(q —
= Dq—Dr+———(qa r)
_ (azglcizi+br)—bq_Dr+bq;br
a

m

= ic;zi —Dr= ZC,’(Z,‘ - DT,‘) .
i=1

i=1

Conversely, let ¢y, ..., cm € Const(k) and p € k{t] be a solution of (7.14), and
let ¢ = ap + r. Then,

aDg+bg = a’Dp+apDa+ aDr + abp+ br
= a(aDp+ (b+ Da)p) + aDr + br

= aZci(z,- — Dri) +aDr +br

i=1

m m m
= aZcizi +br = Zc,-(az,- +br;) = Elc,-qi .
=1 i=1 i=
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Theorem 7.1.2 reduces (7.7) to (7.14), which is an equation of the same
type. If the coefficients a and b of the new equation have a nontrivial ged,
we divide it by that gcd, obtaining an equation of type (7.5) and reapply the
linear constraints algorithm, obtaining a new equation of type (7.7). However,
in all cases if (7.7) has a solution ¢ of degree n, then the corresponding solution
of the new equation must have degree at most n — deg(a) since ¢ = ap + 7
and deg(r) < deg(a). Thus, if deg(a) > 0, we can use Theorem 7.1.2 and
Lemma 7.1.1 to reduce the degree of the unknown polynomial. We can repeat
this until deg(a) = 0 i.e. a € k*, at which point we divide the equation by a
and we get an equation of type (7.7) with a = 1.

ParSPDE(a,b,qi,...,qm,D,n) (* Parametric SPDE algorithm *)

(* Given a derivation D on k[t], an integer n_and a,b,q1,...,qm € kt]
with deg(a) > 0 and ged(a,b) = 1, return (@,b,q1,...,qm,T1,. .., Tm, 7t)
such that for any solution ci,...,cm € Const(k) and ¢ € k[t] of degree
at most nof aDg+bg=ciqi+... +Cmg@m, p=(g—c1ir1—...—cmTm)/a

has degree at most 7 and satisfies
aDp+bp=ciqi + ... + cmGm -
*)

for i «— 1 to m do (* bri + az; = gi,deg(r;) < deg(a) *)
(74, 2zi) « ExtendedEuclidean(b,a,¢:)
return(a,b+ Da,z1 — Dr1,...,2m — Drm,r1,...,Tm,n — deg(a))

Ezample 7.1.4. Let k = Q(z) with D = d/dz, t be a monomial over k satis-
fying Dt = 1/=z, i.e. t = log(z), and let us search for a polynomial solution
of arbitrary degree n of

1
tDq — ZI=az- caxt. (7.15)

We havea=1t, b= ~1/z, m =2, ¢ =z and g» = —xt so:
1. (r,21) = ExtendedEuclidean(-1/z,t,z) = (—z2%,0),
(ro, z2) = ExtendedEuclidean(-1/z,t, —zt) = (0, —z)
2.
1 1 1
b+Da=—--+Dt=—-=-+4+—-=0,2, — Dry =2x,20 — Dry = —z.
z z =z

So (7.15) is reduced to
tDp = 2¢c)x — ¢cox

where p = (¢ + z%)/t € k[t] and deg(p) < 0. We have gcd(a,b) = ¢ in the
above equation, so it becomes
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2z z
Dp=c¢ T - 62?
which is of type (7.5). Calling LinearConstraints(1,0, 2z/t, —z/t) gives:
1. d =lem(t,t) =1t
2. (q1,m) = PolyDivide(2z,t) = (0, 2z),
(g2,72) = PolyDivide(—z,t) = (0,-x)
3. n = max(deg(r,),deg(r2)) =1

4. 0 o
M= (2:5 —z)

so we are reduced to the equation Dp = 0 and the linear constraints
M(cy,c2)T = 0. Calling ConstantSystem(M,0) yields the constant system

0 0 c
0 0 (Cl ) =0
2 -1 2
which has the 1-dimensional solution space (e1,¢2) = (A,2X). Since Dp = 0

has the 1-dimensional solution space p = ¢ for any ¢ € Q, we get the 2-
dimensional solution space

(q = [l,t - /\1172,01 = /\,C2 = 2A)
of (7.34). Given the formal definition of the parametric Risch differential

equation problem, this solution space is represented by ¢ = dih1 + dah
where hy =t, hy = 2% and

C1
2 -1 0 0 @ | _g
1 0 01 dy ’

da

The Non-Cancellation Cases

We are now reduced to finding solutions cy,...,cm € Const(k) and g € k[t]
of the following equation:

m
Dg+bg=)_cig (7.16)

i=1

where b,q1,...,qm € k[t] and ¢ is a monomial over k. Furthermore, we have
an upper bound n on deg(g). As in the nonparametric case, Lemma 6.5.1
provides algorithms for all the non-cancellation cases.
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When deg(b) is Large Enough. Suppose that b # 0, and that either
D = d/dt or deg(b) > max(0,4(t) — 1). Then, for any solution g = y,t" +
...+Yyo € k[t] of (7.16), Lemma 6.5.1 implies that deg(Dgq + bg) < n + deg(b)
and equating the coefficients of ¢"+9¢8() on both sides yields

m
le(b) yn = Z ci coefficient (g;, £ T9e8(%)) |
i=1
Replacing ¢ by h+ ¥, cisint™ in (7.16), where

o = coefficient(g;, t*+4°8(%))
" Ic(b)

€k, (7.17)

we get

m m m
Dh + Z ciDsin + Z cibsin + bh = Z Cigi
i=1 =1

i=1

which is equivalent to

m
Dh+bh =" ci(gi — D(8int") = bsint™)

i=1

which is an equation of the same type as (7.16) with the same b as before.
Hence the hypotheses of part (i) of Lemma 6.5.1 are satisfied again, so we can
repeat this process, but with a bound of n — 1 on deg(h). Note that although
b remains the same, the right side of (7.16) changes at every pass, so we must
recompute the g;’s that appear in (7.17). The bound on deg(g) will decrease
at every pass through this process, guaranteeing termination. After finishing
the case n = 0, we get that any solution ¢ € k[t] of the initial equation with °
deg(g) < n must be of the form ¢ = Y"1~ ¢;h; where

h; = Zsijtj € k[t] .
=0

Replacing ¢ by that form in (7.16) with the original g¢;’s yields

Ci(qi - Dhi - bh,) =0.

i=1

The left side is an element of k{t], so setting all its coefficients to 0 yields a
homogeneous linear system of the form M(cy,...,cm)T = 0, where M has
entries in k. The same system can also be obtained from the last ¢;’s when
n = 0 and the equation Y 7~ ci(gi — Dsio — bsig) = 0, and this is how it
is obtained in the algorithm below. By Lemma 7.1.2, we can compute an
equivalent system of the form A(cy,...,cm)T = 0 where A has entries in
Const(k). The solution of the initial problem is then ¢ = Y-, d;h; where
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the additional equations d; = ¢; for 1 < ¢ < m are added to A, i.e. an m x2m
block of the form

1 0 -+ - 0 -1 0 0 --- 0
o1 0 -+ -« 0 =10 --- 0
.o . . . . . (7.18)
0O -+ ««- 0 1 0 -+ -~ 0 -1

is concatenated to the bottom of A, as well as a zero block to its right. The
final system of linear constraints is then A(cy,...,¢m,d1, .., dm)T = 0.

( ParamPolyRischDENoCancell(b, c, D, n)
(* Parametric Poly Risch d.e. — no cancellation *)

(* Given a derivation D on k[t], n € Z and b,q1,...,gm € k[t] with b # 0
and either D = d/dt or deg(b) > max(0,é(t) — 1), returns hi,...,h, €
k[t] and a matrix A with coefficients in Const(k) such thatif¢y,...,cm €
Const(k) and g € k[t] satisfy deg(q) < nand Dg+bg =/ citheng =
Z;zl d;jh; wheredy,...,d. € Const(k) and A(cy,...,cm,d1, ... ,d )T =
0. *)

dy + deg(b), ba + lc(b)
fori+-1tomdoh; «0
while n > 0 do
for i « 1 to m do
i — coefficient(g;,t"+%)/by

hi + hi + sit™
gi + qi — D(s;t") — bsit"
nen-—-1
(* The remaining linear constraints are 3 ;- cigi =0 *)
ifqn=...=gm =0 then d. + —1 else d. + maxi<i<m(deg(g:))
for i « 0 to d. do for j + 1 to m do M1, « coeflicient(q;,t*)
(A,u) + ConstantSystem(M,0) (*u=20%)

(* Add the constraints ¢; —d; =0 for 1 <i < m *)
Tleq & number of rows(A)

for i 1tomdo Aitn.i ¢ 1, Aitnggmi ¢+ —1
return(hy,..., hm, 4)

Ezample 7.1.5. Continuing example 7.1.3, let £ = Q, t be a monomial over
k satisfying Dt = 1, i.e. D = d/dt, N be a positive integer, and consider
the solutions y € k[t] of degree at most NV of (7.13). We have b =1, m = 2,
q1 =tV and q; = 1. Then,

l.dy=0,bg=1,hy =hy =0
2.n=N,s1=1h =tN, g1 =-NtN"1,5,=0,hy=0,¢2 =11
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= - hy = tN — NtN_l, ¢ = N(N - l)tN_z,

It is easy to prove by induction that after r steps through the loop (r < N)
we get

r—1
hy = Z(—-l)j NitN_j,ql = (—-l)rNLtN_r,hz =0and ¢g; =1
j=0
where NI = Hf;é (N —1). Thus, after N iterations we get n = 0,

N-1
b= 30 (-1 NIV,
=0
@1 = (=1)"Y N&, hy = 0 and g, = 1. The last iteration then gives

1. 8 = (—I)N NI—V—
2. hy =h; + 5 = Ejyzo(—l)j NLgN-i
3. qy = (—I)NNH- —D31 — 8] = 0
4. 82:1,h2=1,QQ:0

Proceeding with the algorithm, we get
1. d: = -1, M and A are 0 by 0 matrices

2. ngg =0
{1 0 -1 0
A_<O 1 0 —1)'

3.
So the algorithm returns the above matrix, ho = 1 and

N
hy = (-1 NLtN=T =¥ - NN N(N = )tV =2 4+ (-1)V L.

=0
The general solution of (7.13) is y = d1h; + dz where
1
1 0 -1 0 C2 =0
01 0 -1 di |

ds
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When deg(b) is Small Enough. Suppose that deg(b) < 6(t) —1 and either
D = d/dt, which implies that b = 0, or §(t) > 2. Let ¢ = ynt™ +...+yo € k[t]
be a solution of (7.16).

If n > 0, then Lemma 6.5.1 implies that deg(Dq + bg) < n + 4(t) — 1 and
equating the coefficients of t"+(Y)~1 on both sides yields

m
nA(t) yn = Z ¢; coefficient (g;, t"H® 1) .

=1
Replacing ¢ by b+ Y "i%, ciSint™ in (7.16), where

coefficient(g;, t"+5(-1)

8in = 0] €k, (7.19)

we get
m
Dh+bh =Y ci(q: — D(sint™) — bsint™)

i=1

which is an equation of the same type as (7.16) with the same b as before.
Hence the hypotheses of part (ii) of Lemma 6.5.1 are satisfied again, so we
can repeat this process, but with a bound of n — 1 on deg(h). Note that
although b remains the same, the right-hand side changes at every pass, so
we must recompute the ¢;’s that appear in (7.19). The bound on deg(g) will
decrease at every pass through this process, until we reach n = 0, i.e. we
are looking for solutions ¢ = yo € k. At this point, the algorithm proceeds
differently for deg(b) > 0 and for b € k.

If deg(b) > 0, then equating the coefficients of tde8(®) on both sides yields
m
le(b) yo = Z ¢; coefficient(g;, t9°5()) |
i=1
so any solution yo € k must be of the form yo = 2:7—.1 ciSio where

~_ coefficient(g;, ¢deg(b))
Sio = Ic(b)

€k.

This implies that any solution g € k[t] of the initial equation with deg(g) < n
must be of the form ¢ = Y ., cihi where

n
h; = Zst’jtj € k[t] .
—o

Replacing ¢ by that form in (7.16) with the original ¢;’s yields
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Zci(‘h — Dh; — bh;) =0.

i=1

As we have seen earlier, this can be converted to a homogeneous system of
the form A(cy,...,cm)T = 0 where A has entries in Const(k). The solution
of the initial problem is then ¢ = E:’;l d;h; where the additional equations
d;i = ¢; for 1 < ¢ < m are added to A as earlier. The final system of linear
constraints is then A(cy,...,cm,d1,...,dm)T = 0.

If b € k, then any solution yo € k of (7.16) satisfies

Dyo +byo = Y _ ci q:(0). (7.20)

i=1

This is a parametric Risch differential equation of type (7.1) over k. Assuming
that we can solve such problems over k, we obtain fy,..., fr € k and a matrix
B with coefficients in Const(k) such that any solution yo € k of (7.20) is of

the form .
vo=_d;f;
=1

where di,...,d; € Const(k) and B(ci,...,Cm,d1,--- ,d-)T = 0. This implies
that any solution ¢ € k[t] of the initial equation with deg(g) < n must be of
the form ¢ = 37, d; f; + 3°i%, cih:i where

n
h; = Zsijtj € k[t] .
Jj=1

Replacing g by that form in (7.16) with the original g;’s yields

ci(gi — Dhi —bhs) = > d;(Df; +bf;) = 0.

i=1 j=1

In a similar way than in the previous cases, this can be converted to a ho-
mogeneous system of the form A(cy,...,cm,d1,...,dr)T = 0 where A has
entries in Const(k). The solution of the initial problem is then

q= Zd]’f]‘ +Ze,~h,-
j=1 i=1

where the additional equations B(cy,...,Cm,di,-..,d-)T = 0 are added to
A, as well as the equations e; = ¢; for 1 < ¢ < m. The final system of linear
constraints is then A(ci,...,Cm,d1,---,dr, €1,-..,m)T =0.
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ParamPolyRischDENoCancel2(b, ¢, D, n)
(* Parametric Poly Risch d.e. - no cancellation ¥)

(* Given a derivation D on k[t], n € Z and b,q1,...,qn € k[t] with
deg(b) < 8(t) — 1 and either D = d/dt or &(t) > 2, returns hi,...,h. €
k{t] and a matrix A with coefficients in Const (k) such that ifc1,...,cm €
Const(k) and g € k[t] satisfy deg(q) < nand Dg+bg =) .. citheng=
Z;‘=1 d;hj wheredy,...,d, € Const(k) and A(c1,...,Cm,d1,... ,d)T =
0. %)

8+ 0(t), A « A(t)
for i 1tomdo h; <0
while n > 0 do
for i +- 1 to m do
si ¢ coefficient(g;, t""*~1)/(n))
hi — hi + 8;t", q: & gi — D(8:t™) — bs;t"™
nen-—1
if deg(b) > 0 then
for i « 1 to m do
s; + coefficient(q;, t4¢®)/lc(b)
hi < h; +8i, ¢i + qi — Ds; — bs;
if g1 =... = gm = 0 then d. « —1 else dc « maxicigm(deg(q:))
for i + 0 to d. do for j « 1 to m do Mi4,,; + coefficient(g;,t")
(A,u) «+ ConstantSystem(M,0) (*u=0 %)
Neq +— number of rows(A)
for i « 1 to m do A,'+"¢q,i « 1, Ai+neq.m+i « -1
return(hy,...,Am, A)

else *bek™
(f1,..., fr, B) & ParamRischDE(b,q(0),...,gm(0))
ifq1=...=¢m =0 then
if Dfi +bfi=...=Df +bfr =0then d. + —1 else d. + 0

else d. « maxi<i<m(deg(q:)) .
for i « 0 to d. do for j « 1 to m do Mi;1,; + coefficient(g;,t")
for j < 1tordo My tm < —Df; —bf;

(A,u) + ConstantSystem(M,0) (* u=0 %)
A+ AUB (* vertical concatenation *)
(* Add the constraints ¢; —e; =0 for 1 <i<m *)

Nleg + number of rows(A4)

for i « 1 to m do Ai+neq,i « 1, Ai+neq.m+'+i — —1
return(fi,..., fr h1,.. ., hm, A)

Ezample 7.1.6. Continuing example 7.1.1, let £ = Q, ¢t be a monomial over k
satisfying Dt = 1, i.e. D = d/dt, and consider the solutions p € kft] of (7.11).
We have a = 1, b = 0 and q, = 2z, so the degree bound algorithm for the
base case yields an upper bound of n = 2 on deg(p). Then,

1.§=0,A=1,h =0

2. 31=2/2=1,h1=t2,q1=0,n=1
3. 31=0,h1=t2,q1=0,n=0

4. 31=0,h1=t2,¢h:0,ﬂ=—1
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At this point, since b € k, we recursively find the solutions y € k of Dy = 0.
This returns f; = 1 and the linear constraint dy = A, i.e. B=(1 -1). We
then have

1. g =Df; =0so0d. =—1, hence M and A are 0 by 0 matrices

2. A=AUB=(1 -1)
(1 -1 0
a=(1 3 9)

3. neg =1
4.

So the algorithm returns the above matrix, fi = 1 and h; = 2. The general

solution of (7.11) is p = d; + e, t®> where

A
1 -1 0
(1 0 —1) d | =0.

€1

Going back to example 7.1.1, Since we had (¢, ¢2,¢3) = (A, —3X, —2]), the
general solution of (7.9) is p = d) + e;t? where

310 0 0 @

201 0 0 02_0

100 -1 0 ;3"

100 0 -1 !
€1

Since the above constraints imply that di = e; = ¢;, the general solution can
also be simplified to p = ¢;(1 + ¢%) subject to the constraints (7.10).

When §(t) > 2 and deg(b) = 8(t) — 1. In that case, we have cancellation
only when deg(q) = —lc(b)/A(t), which implies in particular that —lc(b)/A(t)
is an integer between 1 and our degree bound n. Let ¢ = ynt™ + ... yo € kt]
be a solution of (7.16). If n # —lc(b)/A(t), then Lemma 6.5.1 implies that
deg(Dq + bq) < n+6(t) — 1 and equating the coefficients of t*+4¢&(%) on both
sides yields

(RA(t) +1c(b) yn = Z ¢i coefficient(g;, t"+5 (M -1y |
i=1
Replacing g by h + 300 ) cisint™t3(0=1 in (7.16), where

_ coefficient(g;, t" () -1)

Sin = 30 +150) €k, (7.21)

we get

m
Dh+bh="ci (g — D(sint™) = bsint™)

=1
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which is an equation of the same type as (7.16) with the same b as before, but
with a bound of n — 1 on deg(h). As long as the degree bound is not equal to
—lc(b)/A(t), the hypotheses of part (iii) of Lemma 6.5.1 are satisfied again,
so we can repeat this process until either we have finished the case n = 0, or
we reach the case n = —lc(b)/A(2).

If we have finished the case n = 0, then any solution g € k[t] of the initial
equation with deg(g) < n must be of the form ¢ = Y~ ¢;h; where

n
h; = Zsijtj € k[t] .
s
Replacing ¢ by that form in (7.16) with the original g;’s yields
> ci(gi ~ Dhi = bhi) = 0.
i=1

As we have seen earlier, this is equivalent to homogeneous system of the
form A(cy,...,cm)T = 0 where A has entries in Const(k). The solution of
the initial problem is then ¢ = Z:’;l d;h; where the additional equations
d; = ¢; for 1 < i < m are added to A as earlier.

If we reach the case n = —lc(b)/A(t) > 0, then the algorithm of the next
section on the cancellation cases produce fi,...,fr € k[t] and a matrix B
with coefficients in Const(k) such that any solution g € kf{t] of degree at most

n must be of the form .
g=Y d;f
i=1

where dy, ...,d; € Const(k) and B(c1,...,Cm,d1,...,dr)T = 0.This implies
that the solutions of the initial equation must be of the form

q= Zdjfj + Ecihi
=1 i=1

where
n

h; = Z sijtj € k[t].
i=1-lc(b)/A(t)

Replacing ¢ by that form in (7.16) with the original ¢;’s yields

Zci(‘h‘ — Dh; — bh;) — Zdj([)fj +bf;) =0.
t=1

j=1
As we have scen earlier, this is equivalent to homogeneous system of the form
Alcr,...,¢m,d1,...,d.)T = 0 where A has entries in Const(k). The solution
of the initial problem is then
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q= Zdjfj + Zeih,’
j=1 i=1

where the additional equations B(c,,...,cm,di,...,d,)T = 0 are added to
A, as well as the equations e; =¢; for 1 <i < m.

If deg(g) > 0 and deg(q) # —lc(b)/A(t), then deg(q) + 6(¢) — 1 = deg(c), so
deg(g) = deg(c) + 1 — 4(t) and (deg(q)A(2) + lc(b))lc(q) = lc(c). This yields
the leading monomial ut™ of ¢, and replacing q by ut™ + h in the equation
yields a similar equation with a lower degree bound on its solution. We can
repeat this as long as the new degree bound is not equal to —lc(b)/A(t).

If g € k, then the leading term of Dq + bq is glc(b)t*(¥ =1, 50 either deg(c) =
6(t)—1, in which case g = lc(c)/lc(b) is the only potential solution, or deg(c) #
4(t) — 1 and (6.19) has no solution in k, hence in k[t].

The Cancellation Cases

We finally study equation (7.16) whenever the non-cancellation cases do not
hold, i.e. in one of 'the following cases:

1. 6(t) <1,b€ k and D # d/dt,
2. 6(t) > 2, deg(b) = 4(¢) — 1, and deg(q) = —lc(b)/A(t).

The Liouvillian Case. If D # d/dt and Dt € k or Dt/t € k, then 6(t) < 1,
so the only case not handled by Lemma 6.5.1 is b € k. Then, for any solution
q = Ynt™+...+yo € kt] of (7.16), Lemma 5.1.2 implies that deg(Dg+bq) <n
and equating the coefficients of ¢” on both sides yields

m
Dy, + by, = E ¢ coefficient(g;, t™) (7.22)
i=1
if Dt € k, and
Dt - .
Dy, + [ b+ nr )= Zci coefficient(g;, t™) (7.23)

i=1

if Dt/t € k. Both (7.22) and (7.23) are parametric Risch differential equations
of type (7.1) over k. Assuming that we can solve such problems over k, we
obtain fin,..., fr, n € k and a matrix A,, with coefficients in Const(k) such
that y, is of the form

Tn

Yn = Z djn fjn

j=1
where dyp,...,dr, n € Const(k) and An(c1,...,¢m,d1n,...,dr, )T = 0. Re-
placing g by h+ 377", djn fiat™ in (7.16), we get
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Dh+bh= cigi— Y din(D(fint") = bfjnt")

i=1 j=1

which is an equation of the same type as (7.16) with the same b as before.
Hence, we can repeat this process, but with a bound of n — 1 on deg(h). Note
that although b remains the same, the right side of (7.16) changes at every
pass, so we must recompute the g¢;’s that appear in (7.22) or (7.23). Note
also that the number of undetermined constants in the right side increases
at each step. The bound on deg(q) will decrease at every pass through this
process, guaranteeing termination. After finishing the case n = 0, we get that
any solution q € k[t] of the initial equation with deg(q) < n must be of the

form
n

= szﬁhﬁ where h]',' = fjiti . (7.24)
i=0 j=1

Replacing g by that form in (7.16) with the original g¢;’s yields

ZCzQz Z Z d]z Dh]z - bh]z) =

i=0 j=1

As we have seen in the non-cancellation cases, this can be converted to a
homogeneous system of the form A(cy,...,Cm,d11,-- -, d,mn)T = 0 where A
has entries in Const(k). The solution of the initial problem is then given
by (7.24) where the additional equations A;(ci,...,Cm,d1i,---,dr )T =
are added to A for 0 < i < n.

The Nonlinear Case. If §(¢) > 2, then we must have deg(b) = 4(¢) — 1 and
le(b) = —nA(t) where n > 0 is the bound on deg(q). As in the nonparametric
case, there is no general algorithm for solving equation (7.16) in this case. If
however S'T 3 @, then projecting (7.16) to k[t]/(p) for p € S' can be done as
in the nonparametric case. Since k[t]/(p) is a finite algebraic extension of k,
Const(k[t]/(p)) is a finite algebraic extension of Const(k) by Corollary 3.3.1,
so let b1,...,b, be a vector space basis for Const(k[t]/(p)) over Const(k).
Now, with D* being the induced derivation on k{t]/(p), we get

D*q" + mp(b)g" = ) _ cimp(qi) (7.25)

i=1

where ¢* = m,(g). Assuming that we have an algorithm for solving (7.25)
in k[t]/(p), we obtain hy,...,h, in k[t]/(p) and a matrix B with coeffi-
cients in Const(k[t]/(p)) such that any solution in k[t]/(p) of (7.25) must
be of the form ¢* = Y7_ d;h; where di,...,d, € Const(k[t]/(p)) and
Blel, .- em,dy,...,d)T = 0. Expanding formally the constants d,,...,d,
and the entries of B with respect to the basis by, ..., b; we obtain a matrix 4
with coefficients in Const(k) such that the system B(cy, ..., cm,d1,...,d.)T =
0 is equivalent to A(cy,...,Cm,d11,---,drs)T =0 where
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8
dj=Y dub for 1<j<r
=1

and any solution in k[t]/(p) of (7.25) must now be of the form
Z (Z d,,b,) h; = Z Zd,,h], (7.26)
j=1 =1

where hj; = bh; € k[t]/(p). For each j and [, let rj; € k[t] be such that
deg(rji) < deg(p) and mp(r;1) = hji, and let

r 8
u= Z Zdﬂrﬂ € k[t]
j=1l1l=1
We have deg(u) < deg(p) and (7.26) implies that m,(¢g) = m,(u), hence that
= (¢ — u)/p € k[t]. Replacing q by ph + u in (7.16) we get
m
Dp
Y cias =Dq+bq=p(Dh+ <b+ —p—) h) + Du + bu

so h is a solution in k[t] of degree at most deg(q) — deg(p) of

g =Y v, di(Drj + br;
Dh+ (b+l;p)h Lim 6%~ Ljm %‘—1 a(Drjs +briv) o

Write now ¢; = pg; + @ and Drj; + bry; = pFj + 7;1 where §;,7;; € k[t],
deg(g;) < deg(p) and deg(7;;) < deg(p). The right hand side of (7.27) be-
comes

Yim1 G = Yoy Yy dit(Drju +brig)

P
mah - S dara
Zcz‘h - ZZd]ﬂ‘J[ + 1 1 i EI;—I Zl_l T jl ‘

F=1 =1

Since 7,(u) = ¢* is a solution of (7.25), we have
r s
(Z ¢iq; — Du — bu) = Z cidi — Z Z dyrii | .
j=1lI=1
Since deg(¢;) < deg(p) and deg(7;;) < deg(p), it follows that
zct(h szlrﬂ—o
j=1 =1

0 (7.27) becomes
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r 8

Dh+ <b+ 2])2) h=Y cmi—-) Y dufqt
i=1

j=1li=1

which is an equation of type (7.16), but with a lower bound on the degree of
its solution. Repeating this process until the lower bound becomes negative,
and grouping all the linear constraints obtained at each step yields a complete
solution of the initial parametric problem.

The remarks made in the nonparametric case about when (7.25) can be
solved, for example when we can find an element of degree one, or an element
with constant coeficients, in '™, remain valid in the parametric case.

The Hypertangent Case. If Dt/(t? + 1) = n € k, then §(t) = 2, so the
only case not handled by Lemma 6.5.1 is b = by — nnt where by € k and
n > 0 is the bound on deg(q). In such extensions, the method outlined above
provides a complete algorithm: taking p =t +1¢€ Sirr, (7.25) becomes

Dg* + (bo — mvV=T)g" = Y _ cigi(V=1) (7.28)

=1

where D is extended to k[t]/(p) =~ k(v/—=1) by Dv/=1 = 0. One possibility is to
view (7.28) as a parametric Risch differential equation in k(v/=1) and to solve
it recursively. After expanding the result with respect to the basis {1, Vv=1}
(only if /=1 ¢ k), we obtain hy, ..., h, € k(v/=1) and a matrix A with entries
in Const(k) such that all the solutions in k(v/—1) of (7.28) must be of the
form ¢* = Z]r.zl d;h; where d; € Const(k) and Aler, ... Cm,di,...,d)T =
0. Write h; = hjo + hj1v/—1 for each j with hjo,hj1 € k. Then, letting
r; = hjo + hj1t € k[t], @ be the quotient of g; by p and 75 be the quotient of
Drj+brj by p, h=(g— E;’;l d;r;)/p is a solution in kt] of degree at most
n —2 of

m T

Dh+(bo—(n—2)nt)h =3 cgi— Y diT;.
i=1 j=1
If V=1 ¢ k, it is possible to avoid introducing /=1 by considering the

real and imaginary parts of (7.28): writing ¢* = u + vv/—1, we get

Du bo nny\ _ - | Qo 7.29
(5)+ (o W)=2a(i) o

where g;o + g1t is the remainder of ¢; by t2 + 1. This is the parametric version
of the coupled differential system introduced in Sect. 5.10, and the algorithm
of Chap. 8 can be generalized to the parametric case, in a manner similar to
what is done for the Risch differential equation in this chapter.
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7.2 The Limited Integration Problem

We describe in this section a solution to the limited integration problem,

i.e. given a differential field K of characteristic 0 and f,w;,...,w, € K, to
decide whether there are constants ¢, ..., ¢, € Const(K) such that
f=Dv+cquw +...+cpwn (7.30)

has a solution v € K, and to find one such solution if there are solutions. As
we have seen in Chap. 5, this problem arises from integrating polynomials in
primitive extensions. There are several possible approaches to this problem:

— If all the w;’s are logarithmic derivatives of elements of K, then the exis-
tence of a solution of (7.30) implies that f has an integral in an elementary
extension of K, so equation (7.30) can be seen as an elementary integration
problem, and the algorithm of Chap. 5 can be used, followed by a step that
attempts to rewrite the resulting integral in terms of the w;’s.

— Equation (7.30) can be considered a parametric Risch differential equation
for v and can be solved by the algorithm of Sect. 7.1.

The first approach is applicable only when integrating elementary functions,
since the only primitive monomials appearing in the integrand are then log-
arithms, and it is in fact the approach originally taken by Risch [60] and
in most computer algebra systems and texts [27, 29, 31]. How to rewrite an
elementary integral in terms of the w;’s is however never made explicit! and
adds new difficulties and complexities to the algorithm. The second approach
is applicable for arbitrary w;’s, so it allows arbitrary primitives in the inte-
grand. Furthermore, algorithms for integrating in terms of some nonelemen-
tary functions, like Erf, Ei, Li and dilogarithms [20, 21, 38, 39], first produce
candidate special functions and then solve the limited integration problem for
those special functions. Because of those advantages, we essentially use that
method here. However, the parametric Risch differential equation algorithm
is made simpler by the fact that cancellation at the poles of v (including
infinity) cannot occur since only Dv appears in the equation and no multi-
ple of v, so bounding orders and degrees is significantly easier. We present
in this section an simplified version of the algorithm of Sect. 7.1 that takes
advantage of this fact.

We only study equation (7.30) in the transcendental case, i.e. when K is
a simple monomial extension of a differential subfield k, so for the rest of this
section, let k be a differential field of characteristic 0 and ¢ be a monomial
over k. We assume in addition that Const(k(t)) = Const(k). We suppose
that the coefficients f and wy, ..., wn of our equation are in k(t) and look
for solutions ¢y,...,cm € Const(k) and v € k(t).

! In (60], Risch only has the following remark about the hypothesis that we can
integrate elements of k: ‘‘...vwe assume that the simpler variants, which
occur when some of the c; and v; are given, have been established.’’.
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Because of the special form of equation (7.30), Theorem 7.1.1 can be
strengthened to yield not only the normal part of the denominator, but also
its special part whenever Si'" = S, and the degree bound whenever ¢ is
either a Liouvillian or nonlinear monomial.

Theorem 7.2.1. Let v, f,w;,...,wy € k(t) and ¢1,...,cm € Const(k) be
such that f = Dv+ cywy + ... + cpWn. Let d = dydy, be a splitting fac-

torization of the denominator of f, and e; = es;en,; be splitting factor-
izations of the denominators of the w;’s. Let ¢ = lcm(dn,ent,...,€nm),
hs =lem(d,, €51, ..,€5m), and

dc
hn, = ged (c, E) .
Then,

(i) vha € k(t),
(ii) If ST = S, then vh,hy € kft].
(iii) If t is nonlinear or Liouvillian over k, then either voo(v) =0 or

Voo (V) 2 min (Voo (f), Voo (W1), - - - s Yoo {wWm)) +0(t) — 1.

Proof. (i) Let ¢ = vhy, € k(t). In order to show that ¢ € k(t), we need to
show that v,(¢q) > 0 for any normal irreducible p € kft]. We have v,(q) =
vp(v) + vp(hn) by Theorem 4.1.1. If vp(v) > 0, then v,(q) > vp(hn) > 0 since
hn € k[t]. So suppose that n = v,(v) < Oand let w = cyw; +. .. +Cmwm. Then
vp(Dv) = n — 1 by Theorem 4.4.2, so vp(f — w) =n ~ 1, which implies that
vp(f) <n—1or vp(w;) < n—1for some i. Hence p' =" | ¢, so v,(c) > 1 —n,
which implies that vp(hn) = vp(c) —1 > —n, hence that v,(q) = n+v,(h,) >
0.
(ii) Suppose that Si'" = S'** and let ¢ = vhnh, € k(t). Since h, € k[t] C k(t),
and we have from (i) that vh, € k(t), we get that ¢ € k(t), so in order to
show that ¢ € kft], we need to show that v,(g) > O for any ¢ € Si'". We
have vp(q) = vp(v) + vp(ha) + vp(hs) by Theorem 4.1.1. If vp(v) > 0O, then
vp(q) > vp(hn)+vp(hs) > Osince hn, hy € k[t]. So suppose that n = vp(v) < 0
and let w = cywy + . .. + €y We. Since SiF = S, p € S, s0 v, (Dv) = n by
Theorem 4.4.2, so vp(f —w) = n, which implies that v,(f) < nor yp(w;) < n
for some i. Hence p™™ | hy, 50 vp(hs) > —n, which implies that

Vp(q) = n + vp(hn) + vp(hs) 2> vp(ha) 2 0.

(iii) Let g = min (Voo (f), Yoo w1), - - - Yoo (Wm)). Then veo(Dv) = vool(f —
ST, cwi) > p by Theorem 4.3.1. Suppose now that ve(v) # 0 and that
t is either nonlinear or Liouvillian over k. If ¢ is nonlinear, then vo,(Dv) =
Voo (V) — 8(t) + 1 by Theorem 4.4.4. If ¢t is hyperexponential over k, then
8(t) = 1, 50 vo(DV) = Veo(v) = Veo(v) — 6(t) + 1 by Lemma 5.1.2. If ¢
is primitive over k, then 6(t) = 0 and Voo(DV) € {Voo(v),Veo(v) + 1} by
Lemma 5.1.2. Hence v (Dv) < voo(v) — 0(t) + 1 in all cases, so
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Voo (V) 2 Voo (DV) +6(t) —1>pu+d-1.
O

Corollary 7.2.1. Let f,wi,...,Wn,¢ hy and h, be as in Theorem 7.2.1.
Then,

(i) For any solution ¢y, ...,cm € Const(k) and v € k(t) of (7.30), ¢ = vh, €
k(t) and q is a solution of

m
hnDg — qDhn = hLf = cih2w;. (7.31)

i=1

Conversely, for any solution with ¢ € k(t) of (7.31), v = q/h, yield a
solution of (7.30).

(i) If S = S, then for any solution cy,...,cm € Const(k) and v € k(t)
of (1.80), p = vh,hs € k[t] and p is a solution of

Dh e
hnhsDp — (Dh,, +hn— ) p=hihf - cihlhow;.  (7.32)
8

i=1
In addition, if t is nonlinear or Liouvillian over k, then either
deg(p) = deg(hn) + deg(hs),
or
deg(p) < deg(hp)+deg(hy)+1—8(t)—min (Voo (f), Yoo (1), -+ -y Yoo (Wm)) -

Conversely, for any solution with p € kit] of (7.32), v = p/(hnh,) yield
a solution of (7.50).

Proof. (i) Let v € k(t), c1,...,cm be a solution of (7.30), and let ¢ = vhy,.
q € k(t) by Theorem 7.2.1, and

i D Dh,
f:Dv+Zc,"w,' = —}—lf—q—hT"-+Zc.-w,-.
=1 n =1

Multiplying through by h? yields (7.31). Conversely, the same calculation
shows that for any solution with ¢ € k(t) of (7.31), v = g/ h, yield a solution
of (7.30).

(ii) Let v € k(¢), ¢1,...,cm be a solution of (7.30), and let p = vhyh,. Since
Sirr = 8 p € k[t] by Theorem 7.2.1, and

B = _ Dp Dh, Dh, &
f—Dv+;Cz‘wi—hnhs—Ph¥1hs—phnh3+;c¢wi.
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Multiplying through by h2h, yields (7.32). Conversely, the same calculation
shows that for any solution with p € k[t] of (7.32), v = q/(hnhs) yield a
solution of (7.30).

Suppose additionally that ¢ is nonlinear or Liouvillian over &, and let
g = min (Voo (f), Voo (W1), - - -, Voo (wm)). We have voo(v) = veo(p/(hnhs)) =
deg(hy,)+deg(h,) —deg(p). So if v (v) = 0, then deg(p) = deg(h,)+deg(hs).
And if veo(v) # 0, then veo(v) > p + 6(t) — 1 by Theorem 7.2.1, so
deg(p) < deg(hn) + deg(hs) +1 —6(t) — p. 8]

This gives us an algorithm that reduces a limited integration problem to
one over k(t), or kft] if Sir = §'rr.

LimitedIntegrateReduce(f, wi,...,wm, D)
(* Reduction to a polynomial problem *)

(* Given a derivation D on k(t) and f,wi,...,wm € k(t), return
(a,b,h,N,g,v1,...,um) such that a,b,h € k[t}, N € N, g,v1,...,vm €
k(t), and for any solution v € k(t), c1,...,em € C of f = Dv +
awy +...CmWm, p = vh € k(t), and p and the c; satisfy aDp + bp =
g+ c1v1 + ... + CmUm). Furthermore, if §{" = §'", then p € k[t], and if
t is nonlinear or Liouvillian over k, then deg(p) < N. *)

(dn,d,) + SplitFactor(denominator(f), D)
for i « 1 to m do (en,i,e,,:) + SplitFactor(denominator(w;), D)
¢+ lem(dn,€n,1,. .., €0,m)
hn « gcd(c, de/dt)
@ ¢ hp,b & —Dhp, N 0
if Si'f = §'F then
hs « lcm(d,s,es,1,...,€5,m)
a « hohy,b < —Dhy — hoDh,/h,
p#— min (Voo (f), Voo (w1), - - -, Yoo (Wm))
N « deg(hn) + deg(h,) + max(0,1 — §(¢) — u)
return(a, b,a, N,ah. f, —ahnw,..., —ah,wym)

(* exact division *)

Ezample 7.2.1. Let k = Q(z) with D = d/dz and let ¢t be a monomial over
k satisfying Dt = 1/z, i.e. t = log(z), and consider the limited integration
problem

t% =Dv+c % (7.33)
which arises when asking whether [ z/log(z)?dz is expressible in terms of
,log(z) and Li(z?). We have f = z/t? and w, = z/t, so:

1. (dn,ds) = SplitFactor(t?, D) = (t%,1)
. (en,1,€5,1) = SplitFactor(t,D) = (t,1)
. ¢ = lem(t?,t) = t2

. hp =ged(t?,2t/z) =t
a=tb=-Dt=-1/z

I3 IO
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6. hs =lem(1,1) =1

7. p=min(2,1) =1

8. N =deg(t) + deg(1l) + max(0,1 - p) =1
9. ah,f =z, —ah,w; = ~1t

so any solution ¢; € Const(k) and v € k(t) of (7.33) must be of the form
v = g/t where ¢ € k[t] has degree at most one and is a solution of

1
tDq — S9=z- azt. (7.34)

In the case of Liouvillian or hypertangent monomials, we are reduced
to finding solutions ¢y, ...,c, € Const(k) and p € k[t] of (7.32), which we
rewrite as:

m
aDp+bp =gy + Zcigi (7.35)
. i=1
where a,b € kft], a # 0 and go,...,9m € k(t). In addition, we have an
upper bound n on deg(p) by Corollary 7.2.1. This is equivalent to looking for
solutions cg, ¢y, . ..,cm € Const(k) and p € k[t] of

m
aDp+bp=)_ cigi (7.36)

i=0

with the additional constraint ¢g = 1. Since (7.36) is an equation of type (7.5),
we can use the algorithms of the previous section to find all its solutions. This
produces hi,..., h, € k[t] and a matrix A with coefficicnts in Const(k) such
that any solution of (7.36) must be of the form

p=)_dsh;
j=1

where dy,...,d, € Const(k) and A(co,...,Cm,d1,---,d-)T = 0. If this linear
system has no solution with ¢g = 1, then (7.35) and the original limited
integration problem have no solution, otherwise any solution with ¢ = 1
yields a solution of (7.35), hence of the original limited integration problem.

Several modifications can be made to the parametric Risch differential
equation algorithm for the equations that arise from limited integration prob-
lems: if the linear constraints algorithm produces a 0-dimensional nullspace,
then there are no solutions with ¢o = 1 and we can stop. If it produces a
1-dimensional nullspace, then there is a unique solution with ¢y = 1, so re-
placing ¢;,...,cm by that unique solution in (7.35) yields a nonparametric
problem to which the SPDE algorithm of Sect. 6.4 is applicable. It is also
possible to replace cy, . .., cm by that unique solution in (7.30) and apply the
in-field integration algorithm of Sect. 5.12, but that would imply recomput-
ing the denominator of v. Finally, we can use the upper bound on deg(p)
provided by Corollary 7.2.1 rather than recomputing it.
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Ezample 7.2.2. Continuing example 7.2.1, let & = Q(x) with D = d/dz and
let ¢t be a monomial over k satisfying Dt = 1/z, i.e. t = log(z), and consider
the solutions ¢ € k[t] with degree at most 1 of (7.34). Solving that equa-
tion is equivalent to finding a solution with ¢g = 1 of the parametric Risch
differential equation

1 .
tDg — ;q: coT —cirt.
That equation was solved in example 7.1.4, the general solution being
(q = pt —Az%,co = A\,c; = 2)).

Setting co = 1, we find that (7.34) has a 1-parameter solution space, namely
c1 = 2 and q = ut — z? for any p € Const(k). This means that the solutions
of (7.33) are
2
z
c1 =2 and v=%=p—7
for any p € Const(k) (it is of course normal for v to be defined up to an

additive constant). As a consequence, we get

zdzx z?
= — 2Li(z?).
log(z)? log(z) +2Liz")

7.3 The Parametric Logarithmic Derivative Problem

We describe in this section a solution to the parametric logarithmic derivative
problem, i.e. given a differential field K of characteristic 0, an hyperexpo-
nential monomial § over K and f € K, to decide whether there are integers
n,m € Z with n # 0 such that
Dv Dé

nf = " +m 7 (7.37)
has a solution v € K, and to find one such solution if there are solutions.
As we have seen in Chap. 5, this problem arises from determining whether
elements of K () are logarithmic derivatives of elements of K (8) or logarith-
mic derivatives of K(8)-radicals. We can thus assume that we are able to
determine recursively whether elements of K are logarithmic derivatives of
K-radicals. Even though equation (7.37) is very similar to (7.30), the limited
integration algorithm of Sect. 7.2 is not directly applicable to this problem.
However, because the unknown constants are restricted to be integers, the
structure theorems of Chap. 9 provide a complete solution to this problem
whenever they are applicable. In fact they provide the only known complete
solution, but we present first a variant of the linear constraints algorithm,
which is often able to yield a unique potential solution for m/n, thereby solv-
ing the problem. This method is not a complete algorithm since it may fail
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to determine m/n, in which case we must revert to the structure theorems
and their associated algorithms.

As previously, we only study equation (7.37) in the transcendental case,
i.e. when K is a simple monomial extension of a differential subfield k, so for
the rest of this section, let k be a differential field of characteristic 0 and ¢
be a monomial over k. We assume in addition that Const(k(t)) = Const(k).
We suppose that the coefficients f and D8/ of our equation are in k(t) and
look for solutions n,m € Z and v € k(t).

Lemma 7.3.1. Let u,v,w € k(t) and ¢, € Const(k) be such that v # 0,
¢#0, and
_Dv
u=c7+cw. (7.38)

Write u = p+ a/d and w = q + b/e where p,q,a,b,d,e € k[t], d #0, e £ 0,
ged(a,d) = ged(b,e) = 1, deg(a) < deg(d) and deg(b) < deg(e). Then,

deg(p - cq) < max(0,4(t) —1). (7.39)

Furthermore, let | = I,l, be a splitting factorization of | = lem(d, e), and I
be the deflation of l,, (Definition 1.6.2). Then,

lu—clw=0 (modll;).

Proof. Since u = ¢Dv/v + cw, it follows that u — ciw = ¢Dv/v, hence that

Voo (1 = cw) = vy (e%‘i) = Voo (%’-’) > — max(0,6(t) — 1)

by Theorem 4.4.4. Since u — cw = p—cq + a/d — cb/e, either deg(p —cq) = 0,
OF Voo (u — cw) = — deg(p — cq), in which case deg(p — cq) < max(0,48(t) —1). ~
Since | = lem(d, e), we have lu — clw € k[t]. Let p € S be any special
irreducible factor of ls. From v — cw = ¢Dv/v we get

to-en) = (+22) =1y (22) 20

by Theorem 4.4.2. Therefore, vp(lu — clw) = vp(1) + vp(u — cw) > y(l) =
vp(ls) since p is special. Since this holds for every irreducible factor of I,
ls | lu—clw. Let p € k(t] be any irreducible factor of I . From u—cw = éDv/v

we get
vp(u —cw) = v, (5%?) = v (%) > -1

by Corollary 4.4.2. Therefore,
vp(lu — clw) = vp(l) + vp(u — cw) > vp(1) — 1= vp(ln) — 1 = (1)

since p | l,. Since this holds for every irreducible factor of {7, I | lu — clw.
Finally, {,{; | lu — clw since ged(l,,1;) = 1. O
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Given u,w € k(t), Lemma 7.3.1 either proves that (7.38) has no solution
v € k(t) and ¢, & € Const(k), or it yields a unique candidate c € Const(k) for
the solution in the following cases:

— If deg(q) > max(0,48(t) — 1): then equating all the terms of p — cg of degree
higher than max(0, §(t) — 1) to 0 yields an overdetermined linear algebraic
system for c. If this system has no solution in Const(k), then (7.38) has no
solution, otherwise we get a unique candidate for c.

— If deg(p) > max(0,8(t)—1) > deg(g): then (7.39) is never satisfied, so (7.38)
has no solution.

— If deg(l,l7) > 0, let then r € k[t] be the remainder of lu — clw modulo
ll7. If r is identically 0, then lu = lw (mod l,l;), which implies that
I5u € k[t] and [w € k[t] where I}, is the squarefree part of I,,, hence that
d and e are normal, in contradiction with deg(l,{;;) > 0. Therefore r is not
identically 0, so equating all its coefficients to 0 yields an overdetermined
linear algebraic system for c. If this system has no solution in Const(k),
then (7.38) has no solution, otherwise we get a unique candidate for c.

This in turns yields a method for solving (7.37): given f and 6, applying
Lemma 7.3.1 to u = f and w = D@/6, we can either prove that (7.38)
has no solution with ¢ € Q, in which case (7.37) has no solution, or get a
unique candidate for ¢ = m/n, or fail to get information about c if none of
the above conditions is satisfied. If we get a unique candidate ¢ € Q, write
¢ = M/N where M,N € Z, N > 0 and ged(M, N) = 1. Then for any solution
of (7.37), we must have n = QN and m = QM for some nonzero integer Q,
which implies that QN f = Dv/v + QM D8/8, hence that Nf — MDG/6
is the logarithmic derivative of a k(t)-radical, something that we can test
recursively.

Note that if @ is an exponential over k(t), then D8/ = Dn for some
7N € k(t). If voo(n) < 0, then veo(Dn) < —max(0,d(t) — 1) by Theorem 4.4.4,
so deg(q) > max(0, §(t) — 1) and the above method succeeds. If v,(n) < 0 for
any normal irreducible p € k[t], then v,(Dn) < —1 by Theorem 4.4.2,s0p |
and the above method succeeds. If v,(n) < 0 for any special p € Sirr) then
v,(Dn) < 0 by Theorem 4.4.2,s0 p | l; and the above method succeeds. Thus,
the only cases where the above method can fail when 6 is an exponential over
k(t) and ST = Si* is if n) € k, i.e. § is an exponential over k.

In a similar fashion, we see that if f = Dg for some g € k(t), then the
above method succeeds when S = S, unless g € k. Thus if S = S,
f = Dg and 6 is an exponential over k(t), then the above method fails only
if f € k and @ is an exponential over k, in which case an analysis similar to
the one made in Sect. 5.12 shows that for any solution of (7.37), v must be in
k* if Dt € k, in which case we are reduced to solving a similar problem over
k, or v must be of the form v = wt? for w € k* and an integer q if Dt/t € k.
In that latter case, we are reduced to solving an equation of the form

Dw D6 Dt

nDg = o + m—;— + QT (7.40)
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where both 6 and ¢ are exponentials over k. Lemma 7.3.1 can be generalized
to an arbitrary number of w’s (Exercise 7.1) and applied to (7.40). This
process stops when we reach the constant field, since Dw = 0 at that point,
and (7.40) becomes a linear algebraic equation with integer unknowns. In
practice however, it is preferable to use the structure theorems if Lemma 7.3.1
fails to produce c the first time around.

ParametricLogarithmicDerivative(f, 8, D)
(* Parametric Logarithmic Derivative Heuristic *)

(* Given a derivation D on kl[t], f € k(t) and a hyperexponential mono-
mial 6 over k(t), returns either “failed”, or “no solution”, in which case
nf = Dv/v+mD8/8 has no solution v € k(t)* and n,m € Z with n # 0,
or a solution (n,m,v) of that equation. *)

w + D8/8 (* w € k(t) *)
d « denominator(f), e ¢ denominator(w)

(p,a) « PolyDivide(numerator(f), d) (* f=p+a/dx*)
(¢,b) « PolyDivide(numerator(w), e) (*w=gqg+bfe x)

B  max(0, deg(Dt) — 1)

C + max(deg(p), deg(q))

if deg(q) > B then
s + solve( coefficient(p,t') = c coefficient(q,t'),B+1<i < C)
if s =0 or s ¢ Q then return“no solution” a
N ¢ numerator(s), M + denominator(s) (*x s€Q*)
if Q(INf - Mw) = Dv/v for some Q € Z and v € k(t) with Q # 0

and v # 0 then return(QN, QM, v) else return“no solution”

if deg(p) > B then return“no solution” (* deg(q) < B *)

| « lcm(d, €)

(In,ls) « SplitFactor(l, D)

z ¢ ls ged(la, dl, /dt) (x z =1Ll *)
if z € k then return“failed”
(u1,m1) « PolyDivide(lf, z) (* i =1f (modLl]) %)

(u2,72) + PolyDivide(lw, z) (* r2=lw (mod I,l7) *)
s + solve( coefficient(r,t') = ¢ coefficient(rs, t),0 < i < deg(z))
if s=0 or s ¢ Q then return“no solution”

M ¢ numerator(s), N « denominator(s) (* s€ Q%)
if Q(Nf — Mw) = Dv/v for some Q € Z and v € k(t) with Q # 0 and
v # 0 then return(QN, QM, v) else return‘“no solution”

Ezqmple 7.3.1. Let k = Q(z) with D = d/dz, t be a monomial over k sat-
isfying Dt = 1/z and @ be an exponential monomial over k(t) satisfying
DO = —6/(xt?), i.e. t = log(z) and § = e!/1°8(=)  and consider the paramet-
ric logarithmic derivative problem

5(2+¢t—-6 Dv Do

2wt - v (741)
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for n,m € Z and v € k(t). We get

w = D/ = —1/(zt?)

(p,a) = PolyDivide(5t* +t — 6, 2zt?) = (5/(2z),t — 6)

(¢,b) = PolyDivide(-1,zt?) = (0,-1)

B = max(0,deg,(1/z) — 1) = 0, C = max(deg,(5/(2x)), deg,(0)) = 0

. Since deg(p) < B and deg(q) < B, | = lem(2zt?, zt?) = zt?

. (In,1,) = SplitFactor(zt?, D) = (zt?,1)

.z =ged,(zt?, 2at) = t

. (u1,7) = PolyDivide(5/2t% + t/2 — 3,t) = (5/2t + 1/2,-3)
9. (ug,m2) = PolyDivide(-1,t) = (0,-1)

10. s = solve(-3=-¢)=3,soM=3and N=1

11. f - 3w = (5t +1)/(2tz)

Using the algorithm of Sect. 5.12, we find that f — 3w is the logarithmic
derivative of a k(t)-radical, namely

5t+1 D(z%t
A —3w) === = 1(r:5t)

so (7.41) has the solution n = 2N = 2, m = 2M = 6 and v = z°¢. Note that
it has in fact no solution with n and m coprime.

Ezample 7.3.2. Let k = Q and t be a monomial over k satisfying Dt = 1, 6
be an exponential monomial over k(t) satisfying D8 = 6, i.e. D = d/dt and
6 = et, and consider the parametric logarithmic derivative problem
Dv Do
=— — 7.42
11 ” +m 2 (7.42)
for m € Z and v € k(t). Even though this problem is trivial, it arises from
bounding the degree in 8 of the solutions q € k(t)[6] of

234662231 1255151

242 — (112 + 22t + 10)g = 74
(t* + 2t + 1)Dg — (11¢* + 22t + 10)q 3628800 © T 28512 (7.43)
which itself arises from computing the nontrivial integral?
/ 2581284541et + 1757211400 GL/(et 1) =10t gy
39916800e3t + 1197504002t + 119750400¢t + 39916800 ’

Despite its triviality, (7.42) is not solved by Lemma 7.3.1 because both 11
and D@/ do not involve ¢. Since ¢ is a primitive over k, (7.42) has a solution
with v € k(t) if and only if it has a solution with v € k. At this point,
Dv = 0, so (7.42) becomes 11 = m, whose solution yields the degree bound
11 on the solutions of (7.43). There happens to be a solution of degree 11,
and the above integral is an elementary function.

2 This example is attributed to M. Rothstein in [28].
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The structure theorems of Chap. 9 provide an efficient alternative to solv-
ing (7.37): suppose first that f has an elementary integral over K, which turns
out always to be the case in the parametric logarithmic problems that arise
from the integration of elementary functions. Let then F' be an elementary
extension of K(#) and g € F be such that f = Dg. Then, if (7.37) has a
solution with n # 0, we get

Dv D8  D(v8™)
nf= v +m 6~  vgm

which implies that f = Dg is the logarithmic derivative of an F-radical. If
F = C(z)(t1,...,tn) where C = Const(K), Dz = 1, and each ¢; is either
algebraic, or an elementary or real elementary, or a nonelementary primitive
monomial over C(z)(t1,.--,ti—1), then it can be proven (Chap. 9) that f is
the logarithmic derivative of an F-radical if and only if there are r; € Q such

that Dt
i ——
EriDti +Zr,- = f (7.44)
i€l i€EE
where
E = {i € {1,...,n} s.t. t; exponential monomial over C(z)(t1,...,ti-1)}
and

L ={i€{l,...,n} s.t. t; logarithmic monomial over C(z)(t1,..-,ti-1)}-

Finding the rational solutions of (7.44) can be done by considering it a sys-
tem of one linear equation for the r;’s with coefficients in F', then applying
Lemma 7.1.2 to obtain a system with coefficients in C' and the same constant .
solutions. Assuming that we have a vector space basis containing 1 for C over
Q, projecting that system on 1 yields a system with coefficients in Q and the
same rational solutions as (7.44). This method is also applicable to equations
of the form (7.40) with an arbitrary number of terms in the right hand side,
since the existence of a solution implies that f is the logarithmic derivative
of an F-radical.

Exercises

Exercise 7.1. Prove the following generalization of Lemma 7.3.1: let k be a
differential field of characteristic 0, ¢ be a monomial over k with Const(k(t)) =
Const(k), v,wo,...,wn € k(t) and ¢,...,cn, ¢ € Const(k) be such that v #
0, ¢ #0, and

_Dv i
Wo =c—+Zciw,-.
v

i=1
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Write w; = p;+a;/d; for 0 <1 < n where p;, a;,d; € k[t], d; # 0, ged(a;, d;) =
1 and deg(a;) < deg(d;). Then,

deg (Po - ic,@) < max(0,4(t) — 1).

i=1

Furthermore, let [ = I,l, be a splitting factorization of ! = lem(dy,...,d,),
and [ be the deflation of [,,. Then,

lwg - Zcilwi =0 (modLl;).

i=1

Exercise 7.2. Solve the parametric logarithmic derivative problems (7.41)
and (7.42) using the structure theorem approach.

8. The Coupled Differential System

We describe in this chapter the solution to the coupled differential system
problem, i.e. given a differential field K of characteristic 0 and fi, f2, 91,92
in K, to decide whether the system of equations

Dyl) (fl —fz) (.1/1) (91)

+ = 8.1
<Dy2 f2 N () 92 (8.1)
has a solution in K x K, and to find one if there are some. It turns out
that (8.1) is not really a second order equation, but the coupled system for

the real and imaginary parts of a Risch differential equation. Indeed, suppose
that (y1,y2) € K x K is a solution of the slightly more general system

Dy, fi afz) (yl) <gl>

= 8.2
(Dyz)+<fz i )\w) " \e ®.2)
for an arbitrary a € Constp(K). Then, since Dy/a = 0 by Lemma 3.3.2,

writing y = y1 + y2/a we have

Dy + (fi + f2Va)y Dy + D(y2)vVa + (fi + f2v/@) (1 + y2Va)
Dy; + fiy1 +afay2 + (Dy2 + fayr + f1y2)Va
= g +gpva

which implies that y is a solution in K (1/a) of the Risch differential equation
Dy + (fi + f2v/a)y = g1 + g2V/a. (8.3)

Conversely, if /a ¢ K and y = y1 + y21/a satisfies (8.3) for y1,y2 € K, then
the above calculation shows that

i

Dy; + fiyr + afoyz + (Dy2 + foyr + fiy2)Va = g1 + g2va

hence that Dy, + fiy1 +afoy2 = g1 and Dyz + fay1 + fryz = g2, since {1, Va}
is a vector space basis for K(y/a) over K. Therefore, (y1,y2) is a solution
of (8.2). Since coupled differential systems are generated by the integration
algorithm only when /=1 ¢ K, the above remarks yield a trivial algorithm
for finding the solutions in K x K of (8.1): find the solutions y € K(v/-1) of

Dy + (fi + foV=D)y = g1 + g2vV-1
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and let y; and y, be the real and imaginary parts of y. While this approach is
feasible, it has the following inconvenient: when K = k(t) and ¢ is a monomial
over k, the Risch differential equation algorithms of Chap. 6 can generate
Risch differential equations to be solved recursively over k. If we adjoin v/—1
to K, then the equations to be solved recursively are over k(v/—1), which
means that any other hypertangent monomial in k has to be rewritten in
terms of complex hyperexponentials. This cause the eventual solutions yi, y2
to be in a differential field isomorphic to K rather than in K itself, something
that we would like to prevent. In order to avoid this problem, we present in
this chapter direct algorithms corresponding to the cancellation cases of the
Risch differential equation. When K = k(t) and ¢ is a monomial over k,
these algorithms generate recursively coupled systems of the form (8.1) over
k rather than Risch differential equations over k(v/~1).

As in Chaps. 6 and 7, we only study (8.2) in the transcendental case,
i.e. when K is a simple monomial extension of a differential subfield &, so for
the rest of this chapter, let k be a differential field of characteristic 0 and ¢
be a monomial over k. We assume in addition that Const(k(t)) = Const(k).
We suppose that the coefficients f;, f2,9; and g2 of our system are in k(t),
that a € Const(k) and /a ¢ k(t), and look for solutions (y;,y2) € k(t) x k(t)
of (8.2). In the first stage, we let f = fi + f2v/a, g = g1 + 92+/a and apply the
algorithms of Chap. 6 to the Risch differential equation Dy+ fy = g up to and
including the SPDE algorithm. At this point, either we have proven that (8.3)
has no solution in k(y/a)(t), in which case (8.2) has no solution in k(t) x k(t),
or we have computed b, ¢, d, a, 8 € k(/a){t] such that any solution in k(y/a)(t)
of (8.3) must be of the form y = (ag + B)/d where g € k(\/a)[t] is a solution
of (6.19), i.e. Dq+bg = c. Furthermore, we have an upper bound n on deg(g).
Although it may have been necessary to solve various problems over k( /a)
recursively during the reduction of (8.3) to (6.19), those problems only occur
when we compute various bounds on the poles of y, so after those integer
bounds are computed we are again computing in k(y/a)(t), even though we
may have used isomorphic fields during the computation. If we are in one of
the non-cancellation cases of Sect. 6.5, then we can apply the corresponding
algorithms to the reduced equation Dgq + bg = c since they do not generate
any recursive problem over k(,/a). Thus, in the non-cancellation cases, we
can either prove that (8.3) has no solution in k(/a)(t), or compute such a
solution, thereby solving (8.2). We can therefore assume for the rest of this
chapter that we are in one of the cancellation cases of Sect. 6.6, i.e. in one of
the following cases:

1. 6(t) €1, b€ k(/a) and D # d/dt,
2. 8(t) > 2, deg(b) = 6(¢t) — 1, and deg(gq) = —lc(b)/A(t).

By our previous remarks, (6.19) is equivalent to

(oa)+ (o ) (8)=(5) 649
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where ¢ = q1 + g2v/a, b = by + by\/a, ¢ = 1 + c2v/a and q1,¢2,b1,b2,¢1,¢2
are in k[t]. Since /a ¢ k(t), deg(q) = max(deg(q1),deg(ge)), so deg(q:) < n
and deg(gz) < n. In addition, deg(b) = max(deg(b;), deg(b2)), so b € k(y/a)
if and only if b; € k and b, € k.

8.1 The Primitive Case

If Dt € k, then é(t) = 0, so the only cancellation case for (8.4) is by, b; € k.
If b = by = 0, then (8.4) becomes D¢, = ¢; and Dgz = ¢3 for ¢;,¢2 in

k[t], which are integration problems in kft], and deciding whether they have

solutions in k{t] can be done by the in-field integration algorithm (Sect. 5.12),

so suppose now that b; € k* or bs € k*.
If b + bev/a = Du/u for some u € k(y/a)*, which can also be checked by
a variant of the integration algorithm (Sect. 5.12), let then

<P1> (ul au2) <Q1) (8 5)
P2 Uz uy q2 ’
where u = u + U2\/a with ui, Uz € k. We have

p=pi+pvae = (uiq +auzge) + (u2qy + u1g2)Va
(w1 + u2va)(q1 + ¢2va) = ugq

so
Dp = D(uq) = uDq + qDu = uDq + ubg = u(Dgq + bq) = uc

which implies that (8.4) becomes

Dp1\ _ (u1 aus cl)

Dp, uz U [
which is, as earlier, a pair of integration problems in k[t]. The change of
variable (8.5) is invertible since

Uy aup

u =u? — auj = (u; +u2va)(u; — u2va) #0.
2 U

Hence, solutions of the integration problems yield solutions ¢y, g2 of (8.4).
Note that a necessary condition for b; + bay/a = Duju is 2by = Dv/v for
some v € k*, and that condition can be tested in k rather than k(\/a).

If by +bey/a is not of the form Du/u for some u € k(+/a)*, then D(lc(q)) +
blc(q) # 0, so the leading monomial of Dq + bgq is

(D(lc(q)) + ble(q)) 18 .

This implies that deg(q) = deg(c), and that lc(g) is a solution in k(y/a)*
of (6.23), i.e. Dy + by = lc(c). Since deg(q) = max(deg(q1),deg(g2)) and
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deg(c) = max(deg(c),deg(cz)), we get that deg(q:) < n and deg(qa) <
n where n = max(deg(c;),deg(cz)). Furthermore, lc(q) = y1 + y24/a and
lc(c) = 21 + z2v/a where y;,y2, 21 and z2 are the coefficients of t" in g1,¢2,¢1
and cp. Therefore (6.23) is equivalent to

Dy, + by ab; y1>=(21)

Dy, by b Y2 z2
which is a coupled differential system in k. If it has no solution in k, then (8.4)
has no solution in k[t]. Otherwise, since it is equivalent to (6.23), Lemma 5.9.1

implies that it has a unique solution y;, y2, which must be the coefficients of
t" in ¢ and g¢o. Replacing each ¢; by y;t™ + h; in (8.4), we get

Dh1 + b1 ab2 h1 _f{a-— D(yl t") _ b1 ab2 ) (ylt")
th b2 b1 hz - Cy — D(yztn) bz b1 yztn
which is a system of the same type as (8.4) with the same b, and b, as before,

but a bound of n — 1 on deg(h,) and deg(hz). We can therefore repeat this
process, decreasing the bound each time until we have solved (8.4).

CoupledDECancelPrim(a, by, b2, c1,c2, D, 1)
(* Cancellation — primitive case *)

(* Given a derivation D on k[t], n either an integer or +00, a € Const(k),
bi, b2 € k and c1,c2 € k[t] with Dt € k, /a ¢ k(t) and b, # 0 or b2 # 0,
return either “no solution”, in which case the system (8.4) has no solution
with both degrees at most n in k[t], or a solution qi,q2 € k{t] x k[t] of
this system with deg(q1) < n and deg(q2) < n. ¥)

if b= Dz/z for z € k(1/a)* then
z2=1z1+22¢/a (* 21,22 € k %)
if z1c1 + azaca = Dp, and z2¢, + z1c2 = Dpa for pi,p2 € k[t] with
deg(p1) < n and deg(pz) < n
then return((21p1 — az2p2)/(2} - az}), (z21p2 — 22p1) /(2] — a23))
else return “no solution”
if ¢; =0 and ¢c2 = 0 then return (0,0)
if n < max(deg(c.),deg(c2)) then return “no solution”
q1 0, q2 0
while ¢; # 0 or ¢c; # 0 do
m + max(deg(c1),deg(c2))  (* m becomes smaller at each pass *)
if n < m then return “no solution”
(s1,82) «+ CoupledDESystem(b,, b,
coefficient(c;,t™), coefficient(cz,t™))

if (31, 82) = “no solution” then return “no solution”
@ —q +51t™, g2 g2 + 82t™
ne—m-—1

¢t cL — D(s1t™) — (bis1 + abasa)t™
c2 + c2 — D(82t™) — (basy + b1s2)t™
return (q1,q2)
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8.2 The Hyperexponential Case

If Dt/t = n € k, then §(¢t) = 1, so the only cancellation case for (8.4) is
by, b € K.

If by = by = 0, then (8.4) becomes Dq; = ¢; and Dgy = c; for ¢;,¢y in
k{t], which are integration problems in k[t], and deciding whether they have
solutions in k[t] can be done by the in-field integration algorithm (Sect. 5.12),
so suppose now that b, € k* or b, € k*.

If by + b2v/a = Du/u + mn for some u € k(/a)* and m € Z, let then

Py _ (w auz) [qt™ (8.6)
P2 uy oy gat™ '
where u = u; + uzv/a with u;,u; € k. We have

p=p+pva (u1q1t™ + augat™) + (ugqit™ + u1g2t™)Va
(w1 + u2va)(q + g2vVa)t™ = ugt™

i

S0
Dp = D(uqt™) = (uDg + ¢Du + mnuq)t™ = u(Dq + bq)t™ = uct™

which implies that (8.4) becomes

Dp,\ _ (w1 auy ct™

ng) T \uy w ) czt”‘)
which is a pair of integration problems in k(t), and deciding whether they
have solutions in k(t) can be done by a variant of the integration algorithm
(Sect. 5.12). As in the primitive case, the change of variable (8.6) is invertible,
so solutions of the integration problems yield solutions of (8.4). Note that a
necessary condition for by +b2v/a = Du/u+mmn is 2b, = Dv/v+2mn for some
v € k*, and that condition can be tested in k rather than k(,/a), yielding a
unique potential candidate for the integer m.

Suppose finally that b; + bzv/a is not of the form Du/u + mn for some

u € k(y/a)* and m € Z. Then D(Ic(q)) + deg(q) nlc(q) + blc(q) # 0, so the
leading monomial of Dq + bq is

(D(lc(q)) + deg(q) nlc(q) + blc(q)) tdesla)

This implies that deg(q) = deg(c), and that lc(q) is a solution in k(,/a)*
of (6.24), i.e. Dy+(b+deg(q)n)y = lc(c). Since deg(c) = max(deg(c, ), deg(cz))
and deg(g) = max(deg(q1), deg(gz)), we get that deg(q;) < n and deg(gz2) < n
where n = max(deg(c,), deg(c,)). Furthermore, lc(g) = ¥ + y2v/@ and
le(c) = 21 + 22v/a where y1,y3, 2, and 2, are the coefficients of t™ in ¢y, go, 1
and c3. Therefore (6.24) is equivalent to

(Dy1)+ by+nn  abs n)_ (=
Dy, by by +ny yv2 )  \ 2z



258 8. The Coupled Differential System

which is a coupled differential system in k. If it has no solution in k, then (8.4)
has no solution in k[t]. Otherwise, since it is equivalent to (6.24), Lemma 5.9.1
implies that it has a unique solution y;, y2, which must be the coefficients of
t" in ¢; and ¢2. As in the primitive case, replacing g by y:1t™ + h; and ¢2
by y2t™ + ho in (8.4) yields a system of the same type with a lower degree
bound on its solutions, and a lower degree right hand side.

CoupledDECancelExp(a, b1, b2, 1, ¢2, D, n)
(* Cancellation - hyperexponential case *)

(* Given a derivation D on k[t}, n either an integer or 400, a € Const(k),
bi,b2 € kand c1,c2 € k[t] with Dt/t € k, \/a ¢ k(t) and by # 0or by # 0,
return either “no solution”, in which case the system (8.4) has no solution
with both degrees at most n in k[t], or a solution q1,q2 € k[t] x k{t] of
this system with deg(q:1) < n and deg(gz) < n. *

if b= Dz/z + mDt/t for z € k(y/a)" and m € Z then

z2=2+22/a (* 21,22 € k %)
if (zic1 +azzc2)t™ = Dp, and (z2¢1 + z21c2)t™ = Dp; for p1,p2 € k(t)
then

@« (z1p1 — azap2)t~ ™/ (2} — a23)
g2 « (z1p2 — zap1)t ™ /(21 — az})
if 1 € k[t] and g2 € k[t] and deg(q:) < n and deg(p2) < n
then return(qi, g2) else return “no solution”
else return “no solution”
if ¢c; = 0 and c; = 0 then return (0,0)
if n < max(deg(c:),deg(c2)) then return “no solution”
q1+0,g20
while ¢; # 0 or ¢2 # 0 do
m + max(deg(c1), deg(c2)) (* m becomes smaller at each pass *)
if n < m then return “no solution”
(s1,82) + CoupledDESystem(b; + mDt/t, b,
coefficient(c,,t™), coefficient(cz,t™))

if (s1,82) = “no solution” then return “no solution”
Q1 —q1 + 81t™, g2 ¢ g2 + sat™
nem-—1

C1 ¢ ~ D(sltm) — (b131 + ab232)tm
c2 ¢z — D(s2t™) — (bas1 + b1s2)t™
return (q1,q2)

8.3 The Nonlinear Case

If §(t) > 2, then the only cancellation case for (8.4) is max(deg(b,), deg(b2)) =
8(t) ~ 1 and lc() = —nA(t) where n > 0 is the bound on deg(g). Since
lc(b) = By + B2y/a where f; and B are the coefficients of ¢*()~1 in b; and b,
and A(t) € k, we must have 82 = 0 and 81 = —nA(t), i.e. deg(by) = 46(t) - 1,
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deg(b2) < 8(t) — 1 and lc(by) = —nA(t). As in the Risch differential equation
case, there is no general algorithm for solving the system (8.4) in this case. If
however S'™ # 0, then projecting (8.4) to k[t]/(p) for p € S'™ can be done:
with D* being the induced derivation on k[t}/(p), applying np to (8.4) we get

(D'QI‘) + ("’p(bl) "p(a)"p(b‘a’)) (‘If) - <7"p(cl)) (8.7)
D*q; mp(b2)  mp(b1) % p(c2) '
where g} = m,(q1) and g3 = 7,(g2). Assuming that we have an algorithm for
solving (8.7) in k[t]/(p), we can then solve (8.4) as follows: if (8.7) has no
solution in k[t]/(p), then (8.4) has no solution in k[t]. Otherwise, let (g}, q3) €
k[t]/(p) x k{t]/(p) be a solution of (8.7), and let r{,ry € k[t] be such that
deg(r1) < deg(p), deg(ra) < deg(p), mp(r1) = ¢f and mp(r2) = g¢3. Note
that 7,(Dry 4 by71 + abare) = mp(c1), and 7p(Drg + bary + bi12) = mp(c2), so
P ' C1 —DTl —b17‘1 —ab21‘2 and P I Cy —DT‘2 - b27‘1 - b11'2. In addition, 7rp(q1) =
mp(r1) and my(g2) = my(ra), 50 by = (g1 — 1)/ € klt], ha = (g2 —72)/p € K[
and we have

(@) = (o) (o %) (&)
¢ = Dq, by b g2
_ Dh, b+ E22  ab hy
= P\\Dh, + by b1+%3 ha
D’I‘l b1 ab2 T1
(o)< (n 5 ()

so (hy, hg) is a solution in k[t] x k[t] of
Dh,y +(b1+2p2 ab; )(hl) _
Dhy by b + Qpﬂ ha

S(az) () () e

which is a coupled system of type (8.4), but with a lower bound on the degree
of its solutions since deg(h;) < deg(q:) — deg(p) and deg(hs) < deg(g2) —
deg(p).

As was the case for Risch differential equations, there are cases when (8.7)
can be solved, for example when we can find an element of degree one, or
an element with constant coefficients, in S'**. Although /a ¢ k(t), it may
happen that \/7,(a) € k{t]/(p), in which case two new difficulties arise:

— p is then reducible over k(1/a), so we must use an irreducible factor  of p
in k(/a)[t] rather than p.

— (8.7) is not equivalent to a Risch differential equation over k[t]/(P) anymore,
so we must revert to solving (6.25), taking care to generate coupled systems
over k recursively, rather than Risch differential equations over k(y/a).

'An example of those difficulties is provided by the hypertangent case with

a=-1and § = {t2 +1}.
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8.4 The Hypertangent Case

If Dt/(t? + 1) = 5 € k, then §(t) = 2, so the only cancellation case for (8.4)
is by € k and b; = by — nnt, where by € k and n > 0 is the bound on
deg(q). In such extensions, the method outlined above is not applicable for
a = —1, since S = {t2 + 1}, and /=1 € k[t}/(t* + 1). Since /-1 ¢ k(t) by

assumption, (8.4) is equivalent to (6.19), in this case
Dq+ (b — npt + by =1)g = 1 + 2V -1
and we can use the method of Sect. 6.6: taking
p=t=v-1 €8T mumv

(6.25) becomes

Dg* + (bo + (b — nm)V-1)¢" = c1(V-1) + c2(vV-DV-1 (8.9)
where D is extended to k(v/—1) by Dv/—1 =0 and ¢* = q(v-1) € k(v/-1).
Writing

¢ =y+yv-1 and a(V-1)+a(V-DV-T1=2z+zV-1

where y1,y2, 21, 22 € k, (8.9) is equivalent to

Dy, bo mp-b\(wm)_ (=
(Dy2>+<b2—nn bo ) (yz)_<22> (8.10)
which is a coupled differential system in k. If it has no solution in k, then (8.9)
has no solution in k(y/=1), which implies that (8.4) has no solution in k[t].
Otherwise, if y,,y2 € k X k is a solution of (8.10), letting r = y; + y2v/—1,
h = (q~r)/(t — v/—=1) is a solution in k(v/—1)[t] of degree at most n — 1
of (6.26), which in this case becomes

—Dr—br
Dh+ (bo — (n— 1)t + (b2 +n)V—1) h = "t___rﬁ

_a—zitnn(yit+y2) + (2 — 22 + nn(yat —y1))vV-1

t—v-1
where the right hand side is an exact quotient in k(v/—1)[t]. Repeating this
process we either prove that (8.4) has no solution in k[t], or obtain a solution

g € k(v/=1)[t] of (6.19). Writing ¢ = q1 + g2v/—1 with q1,¢2 € k[t], we get
that ¢, g2 is a solution of (8.4).
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CoupledDECancelTan(bg, bs, ¢1,¢2, D, n)
(* Cancellation - tangent case *)

(* Given a derivation D on k[t], n eithér an integer or +o00, bo,b2 € k
and ci,c2 € k[t] with Dt/(t? +1) =n € k, V=1 ¢ k(t) and bo # 0 or
b2 # 0, return either “no solution”, in which case the system

(o) + (" %™ e (3) = (&)
Dqg2 b2 bo + nnt Q@ c2
has no solution with both degrees at most n in k[t], or a solution ¢1,¢2 €

Kk[t] x k[t] of this system with deg(q:) < n and deg(qz) < n. *)

if n =0 then
if ¢; € k and c2 € k then return CoupledDESystem(bg, b2, ¢1, c2)
else return “no solution”

pet——1

n« Dt/(t* +1) (x t =tan(f n) %)
a(V=1) + co(V-1)V=1 = 21 + z2/~1 (* 21,22 € k %)
(81, s2) & CoupledDESystem(bg, b2 — n7, 21, 22)

if (s1, 32) = “no solution” then return “no solution”

¢« (c1 — z1 + nn(sit + 82) + (c2 — 22 + n(s2t — 51))v/—=1)/p

c=dy +dov/~1 (x di,dz € k[t] %)
(hi, h2) «+~ CoupledDECancelTan(bo, b2 + 71,d1,d2, D,n — 1)

if (hi, h2) = “no solution” then return “no solution”

return(hit + ha + 81, hat — hy + 32)

Ezample 8.4.1. Let k = Q(z) with D = d/dz, and let ¢t be a monomial over
k satisfying Dt = 1 + t?, i.e. t = tan(z), and consider the coupled system

(Bu) (& ) (1) = (0 rim e DY) e

which arises from computing

/_ (tan(z)? — 2tan(z) + 8z% — 1) tan(x?) + 4z — 2

(tan(z)? + 1)(tan(z2)? + 1) dr. (8.12)

The system (8.11) is equivalent to the Risch differential equation

(t2 -2t +8z% - 1) +2(2z — 1)/-1
241

over k(y/—1)(t). Since 4z+/—1 is weakly normalized w.r.t. ¢ and the denom-

inator of the right hand side of (8.13) is special, Theorem 6.1.2 implies that

any solution in k(v/=1)(t) of (8.13) must be in k(v/=1)(t). With a = 1,

b=4zv/-1 and € = £1, we have

bev/—1) _
_;(;—\/_:—T) = —41:\/:T

Dy + 4zy/-1 = — (8.13)
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which is not of the form 2mey/~1 + Du/u for m € Z and u € k(+/=1)*, so
Vs _ey=1(Dy +4zyy/—1) = Vy_y=1(y) for e = 1 and any y € k(v/-1)(t) by
Lemma 6.2.1 (see also Exercise 6.1). Hence, v,_, ~1(y) > —1 for any solution
y € k(v/—=I)(t) of (8.13), which implies that any such solution must be of the
form y = ¢/(t* + 1) where ¢ € k(v/—1)[t]. Making that substitution in (8.13)
we obtain

Dg+ (4av-1-2t)g=~(t> =2t + 827 — 1) + 2(1 — 22)vV—=1  (8.14)

which is equivalent to the system

Dq -2t —dz\ (q\ _ [-t*+2t—-822 +1
(Dlh) + ( 4z —Zt) (qg) - ( 2(1 - 2z) ) (8.15)
Witha =1, b = 42v/-1 -2t and ¢ = (—t% + 2t — 822 + 1) + 2(1 — 2z) we

have le(t)

¢

——= =2 — deg(b

@ =2 deg(c) — deg(b)
so0 any solution g € k(v/—1)[¢] of (8.14) has degree at most 2 by Lemma, 6.3.5.
Since deg(b) = 1 and Ic(b) = —2, we are in the cancellation case of this section.
Applying CoupledDECancelTan to by = 0, by = 4z, ¢; = —t>4-2t—8z2+1,
c2 =2(1 —2z) and n = 2, we get

l.p=t—-+-1

2. =Dt/ +1) =1

3.
cl(V=-1) + ca(V=1)vV—=1 = 2(1 — 42%) + 4(1 — z)vV/—1

s0 21 = 2(1 — 47?) and 2z, = 4(1 — )
4. Since

DS] + 0 2(1 - 2.’11) S1 _ 2(1 - 4.’£2)
Ds, 2(2z - 1) 0 s2 )\ 41 -1x)
has the solution s; = —1 and s, = 2z + 1,
(s1,52) = CoupledDESystem(0,4z — 2,2 —8z?,4 —4z) = (—1,2z+1)

t2-2(2z+ 1)tv/-1-4z -1
- _ =—-t+ 4z +1)v-1
c o (4z + 1)V
sod) =—tandd; =4z + 1
6. recursive call, CoupledDECancelTan(0,4z + 1, ~¢t,4z+ 1,D, 1):
a) c1(vV-1) + co(v/-1)vV=1=4z/~1,50 z; =0 and 2, = 4z

b) Since
Ds, + 0 -4z s1Y_( 0O
Ds, 4 0 sy )~ \dzx
has the solution s; =1 and s3 =0,
(s1,82) = CoupledDESystem(0, 4z,0,4z) = (1,0)
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c)c=(-t+t+(dz+1—-4z-1)/-1)/(t—v/=1)=0,50d; =dy =0
d) CoupledDECancelTan(0,4z + 2,0,0, D,0) returns (0,0), so we
return Ayt + hy +s; =1 and hot — hy + 52 =0
7. We obtain (hy, h2) = (1,0) from the recursion, so we return the following
solution of (8.15):

g =hit+ho+s, =t—1 and @ =hst—hi+s9=~-1422+1=2z

We conclude that a solution of (8.11) is

_t——l and _ 2z
T+l 2= w0

)1

hence that
(tan(z)? — 2tan(z) + 822 — 1) tan(z?) + 4z — 2
/_ (tan(z)? + 1)(tan(z?)? + 1)
(tan(z) — 1) tan(z?) + 2z tan(z) — 1
(tan(z)? + D(tan(@)? + 1) / 2 @) 1 E

dr =

and the latter integral does not involve tan(z?) anymore. Applying the algo-
rithm of Sect. 5.10 to it, which involves solving a coupled differential system

over Y(z), we find

/ tan(z) -1 ,  z(1 —z)tan(z)® + (1 - 2z)tan(z) —2% ~z — 1
Ttan(@)Z+ 17T 2(tan(z)? + 1)

which yields a complete formula for (8.12).



9. Structure Theorems

We present in this chapter proofs of the various structure theorems that were
used in Chap. 7 for solving the parametric logarithmic derivative problem.
Although they are used in the integration algorithm, the main application of
structure theorems is to determine algebraic dependencies between functions.

9.1 The Module of Differentials

We first need to slightly generalize the concept of derivation we used previ-
ously.

Definition 9.1.1. Let S C R be commutative rings and M be an R-module.
An S-derivation of R into M is a map D : R — M such that for any ¢,y € R:

(i) D(z+y)= Dz + Dy.
(ii) D(zy) = 2Dy + yDz.
(i) Dc=0 for anyc€ S.
Note that a derivation of R in the sense of Chap. 3 is an S-derivation of R .
into R for any subring S of Constp(R), in particular for S = Z.

The usual properties of derivation (Theorem 3.1.1) are easily generalized
to S-derivations.

Theorem 9.1.1. Let S C R-be-commutative rings, M be an R-module, and
D: R — M be an S-derivation. Then,

(i) D(czx)=cDz for anyce S and z € R.
(1) If R is a field, then
z yDz—-zDy
Do =
) y
foranyz,y € R, y #0.
(i) Dz™ = nz" Dz for any z € R\ {0} and any integer n > 0 (any integer
n if R is a field).
(iv) Logarithmic derivative identity:
D(uf ... ug D Du,
——————(1:1‘ on ) 2u e, Dun
Uy ... Up u1 Un

for any uy,...,un, € R* and any integers ey, ..., e,.
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(v )
p
DP(zy,...,z,) = i—(xl,...,xn)Dx,-
o 0K
for any z1,...,z, € R and any polynomial P with coefficients in S.

Proof. The proofs are similar to the proofs of the corresponding statements
in Theorem 3.1.1 and are left as exercises. 8]

Let R be a commutative ring and #g be the free R-module generated by
the symbols éx for all z € R. Its elements are all the finite sums Zi a;0T;
with a;,z; € R. For any subring S of R, let ¥g/s be the submodule of &5
generated by d(z + y) — dz — dy and §(zy) — zdy — ydx for all z,y € R and
dc for all c € S, and let £25/5 be the quotient module $5/¥g/s. It is easily
checked that the map dg/s : R = f2p/s that sends = € R to the equivalence
class of 4z is an S-derivation of R into 2p/s.

The pair (£2r/s,dgys) is called the module of S-differentials of R, and
we omit the subscript on d when the context is clear. The S-differentials of
R are all the finite sums ), a;dz; with a;,z; € R, subject to the relations

d(x + y) =dzx + dy, d(zy) =zdy+yder forallz,y€ R

and dc = O for all ¢c € S. If S C T C R are commutative rings, then
¥g/s is a submodule of ¥p,r. This implies the existence of a canonical pro-
jection w : f2p;s — g7, which is the surjective R-linear map given by

T (X adrysTi) =¥, a;dp/T ;-
We first show that £2p/s is a universal object, i.e. that every S-derivation
can be factored as in the following diagram:

Rpys

d D

R M

D

Lemma 9.1.1. Let S C R be commutative rings, M be an R-module, and
D:R— M be an S-derivq\tion. Then, there is a unique R-linear map D :
2p/s = M such that D = Dd.

Proof. Since &g is a free R-module, let D : $5 — M be the R-linear map
given by D(dz) = Dz for all z € R. Since D is an S-derivation, D(éc) = Dc =
0 for all ¢ € S. Furthermore, D(6(z +y) —dz ~0y) = D(z+y)—Dz—~Dy =0
and D(6(zy) — zéy — yéz) = D(zy) — zDy — yDz = 0 for any z,y € R,
which implies that ¥g/s C ker D, hence that D induces an R-linear map
D: 2p/s = M. For any z € R we have Ddz = Déz = Dz, so D = Dd.
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Suppose that D; and D, are both R-linear maps from 2ps into M such
that D = D;d = Dad. Then, since any w € f2p/s is a finite sum of the form
w = Y_.a;dz; with a;,z; € R, we get by linearity of D, and D, that

Diw = ZaiDl(dx,-) = ZaiDz:,' = ZaiDg(da:i) = Dyw

hence that D is unique. o

Any ring homomorphism induces a skew-linear map on the differentials
such that the following diagram commutes:

Rp/s 2 f21/s0

d d

R T

Lemma 9.1.2. Let T and S C R be commutative rings, and o : R - T be a
homomorphism. Then, there is a unique map o* : Rrss = 150 such that

(i) wW+n)° =w’ +19° foranyw,n€ Rpss
(i) (zw)°" = 2°w?" for any w € f2pss and z € R.
(i) o*d = do

Proof. Let 7 : $p — S be the map given by

(Z a,-ax.-) = afé(zf)

for all finite sums with a;,z; € R. & is well-defined since ¥ is free over R.
Furthermore, 7 is an abelian group homomorphism by definition. Since ¢ is
a homomorphism, 17 = 1, so 8 = do. In addition we have (6¢c)” = 8(c’) €
Y7/s. for all ¢ € S. Furthermore,
Oz +y)—dz~6y)” = 6((z+y)")-(z°) - 6(y°)
= 6(z° +y°) - 6(z°) ~d(y°) € ¥r/se

and

(0(zy) — 28y — ydz)”

6((zy)”) — 2°8(y°) — y7 (")
6(2y%) - 2°6(y°) —y78(z%) € Prys-

for any z,y € R, which implies that (WR/S)F C P15+, hence that 7 induces
an abelian group homorphism ¢* : 25,5 — f21/s- that satisfies
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(Z aidzi) = Z ald(z?).

Furthermore, o*d = do since 6d = do. Let z € R and w € QR/S, and write
w = ¥, a;dz; with a;,z; € R. Then,

(zw)” = (Z a,-:::dz,') =Y (aiz)’d(z]) =2’ > alde?) = 2w’ .

Suppose that o, and o2 are both maps from 25,5 into 275+ that satisfy the
lemma. Then, since any w € f2p/s is a finite sum of the form w = ), a;dz;
with a;,z; € R, we get

W =Y afd(z]) = w
i

hence that ¢* is unique. (]

In a similar manner, we can show that a derivation on R induces a skew-
derivation on the differentials such that the following diagram commutes:

D‘
Rpys— Nnys
d d

R D R

Lemma 9.1.3. Let (R, D) be a differential ring and S C R be a differential
subring. Then, there is a unique map D* : 2p/s — f2p/s such that

(i) D*(w+1n) = D*w+ D*n for any w,n € Prys
(i) D*(zw) = (Dz)w + zD*w for any w € s and z € 1.
(i#i) D*d = dD

Proof. Let D : $p — Jg be the map given by

D (Z a,-dz,-) = Z(Dai)ézi + aié(Dzi)

1

for all finite sums with a;,z; € R. D is well-defined since &g is free over R.
Furthermore, D is an abelian group homomorphism by definition. Since D is
a derivation, D1 = 0, so D6 = 6D. Since S is a differential subring, DS C S,
so D(dc) = 6(Dc) € ¥gys for all ¢ € S. Furthermore,
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D((z+y) -6z —0y) = 6D(z+y)—dDz—éDy
= 6(Dz + Dy)—-d6Dz - 6Dy € ¥Ppgys

and

D(6(zy) — zéy — ydz) = 6D(zy) — (Dz)dy — x6Dy — (Dy)éx — yéDz
= 6(zDy + yDz) — 6(zDy)
+ (6(zDy) — (Dz)dy — =6 Dy)
—d(yDzx) + (0(yDzx) — (Dy)dz — yéDx)
= (0(zDy +yDz) — 6(zDy) — 6(yDx))
+ (6(zDy) — (Dy)dz — =6 Dy)
+ (0(yDz) — (Dx)éy ~ydDz) € ¥p/s

for any z,y € R, which implies that D¥g/s C ¥g/s, hence that D induces
an abelian group homorphism D* : f2p,5 — f2g/s that satisfies

D* (Z a,-dx,) = Z(Da,‘)dl',' + a,;d(Dl'i) .

Furthermore, D*d = dD since Dd = dD. Let z € R and w € f2g/s, and write
w =), a;dz; with a;,z; € R. Then,

D* (Z aixd:ci) = Z(Daiz)dz,- + a;zd(Dx;)

i

D*(zw)

I\

E a;(Dz)dz; + z(Da;)dz; + a;zd(Dz;) = (Dz)w + zD*w.
Suppose that D; and D, are both maps from {2z, into {255 that satisfy the
lemma. Then, since any w € {2g/s is a finite sum of the form w = }_; a;dz;
with a;,z; € R, we get

Dyw= Z(Da,-)dx,- + a;D(dz;) = Z(Da,-)d:ci + a;d(Dxz;)
; -

1

Z(Dai)dxi + a;‘Dz(dIB.') = Dyw
B |

hence that D* is unique. m]

Lemma 9.1.4. Let S C R be commutative rings, ({2r;s,d) be the module of
S-differentials of R, and B C R. Then,

(i) d(S[B)) and {db}sep generate the same submodule of 255 over R.
(i) If R and S are fields, then d(S(B)) and {db}scn generate the same sub-
module of 2p;s over R.
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Proof. For any S C 2g;s, we write R(S) for the submodule of 25,5 gener-

ated by S over R.
(i) Let p € S[B]. Then p = P(zy,...,z,) where z; € B and P €
S[X1,...,Xn] is a polynomial with coefficients in S. Therefore,

. OP
dp=> b_){—i'(zl:---axn)dzi
i=1

by Theorem 9.1.1, so R(d(S[B])) C R{d(B)). Since B C S[B], R{(d(B)) C
R(d(S[B])) so both submodules are equal.

(i) Suppose that R and S are fields, let z € S(B) and write z = p/q where
p,q € S[B] and ¢q # 0. By Theorem 9.1.1,

dp — pd, 1

adp—pdg 1, Py,
q q

Since dp and dgq are in the span of {db}ses by (i), we conclude that

R(d(S(B))) C R(d(B)). Since B C S(B), R{d(B)) C R{d(S(B))) so both

submodules are equal. O

d:c:d’—):
q

We now determine the dimension of 25,5 over R when R and S are fields.

Lemma 9.1.5. Let k C K be fields of characteristic 0 and B C K be alge-
braically dependent over k. Then, {db}secp is linearly dependent over K.

Proof. Since B is algebraically dependent over k, there are z,,...,z, € B
and a polynomial P € k[Xy,..., Xn]\ {0} such that P(zy,...,z,) = 0. Let
Q be a nonzero polynomial with coefficients in k and of minimal total degree
such that Q(zy,...,z,) = 0. Applying d and Theorem 9.1.1 we get

.9
0=d0=dQ(z1,...,zn) = Zoj-é%(zl,...,zn)dzi.
Since Q ¢ k and k has characteristic 0, Q/8X;, is not indentically 0 for
some ig. By minimality of the total degree, (8Q/0X;,)(z1,...,2,) # 0, which
implies that dz,,...,dz,, and therefore {db}scp, are linearly dependent over
K. 0

Theorem 9.1.2. Letk C K be fields and B C K be algebraically independent
over k. If K is separable algebraic over k(B), then {db}sep is a basis for Qg /k
over K.

Proof. Let z € K, then z is separable algebraic over k(B), so let P € k(B)[X]
be its minimal irreducible polynomial and write P = Z;"zo a;X? where
o, ...,am € k(B). Since d is a k-derivation of K into £2x/, we get

9.1 The Module of Differentials 271

m m
0=d0=dP(z) =d (Z ae’ | = ) aldaj + jajoidz
Jj=0 j=0

m ) m
= Zz’daj +dz Zjajm"l .
j=0 j=1

Let a = 3777 ja;z7~! € K. Since z is separable over k(B), a # 0, so dz =
E;’;O(—zj /a)da; is in the subspace of 2k /i generated by dao, . . ., dan,, hence
in the subspace generated by d(k(B)). By Lemma 9.1.4, this implies that dz
is in the subspace of {2k generated by {db}sep. Since this holds for any
z € K, {db}sep generate 2k /k.

Suppose that 37, a;dz; = 0 for some ay,...,a, € K and z,,...,z, € B.
Since B is algebraically independent over k, 8/8z,...,8/8z,, are derivations
on k(B) by Theorem 3.2.2. Those derivations can be extended to derivations
of K by Theorem 3.2.3. Since k C Constp, (K), each 8/8z; is a k-derivation
of K into K, so let D\l, e ,D: be the induced K-linear maps from 2k into

K given by Lemma 9.1.1. Applying D; and Lemma 9.1.1 we get

n n n
0= D,’O = b\, (Z ajdzj) = Zajﬁ(dxj) = Zajg—':% = a;
i=1 =1 j=1 ¢

which implies that dz,,...,dz, are linearly independent over K , hence that
{db}scp is linearly independent over K. ]

As a consequence, the dimension of 2k over K is exactly the transcen-
dence degree of K over k. Another consequence is that in characteristic 0,
algebraically independent elements yield linearly independent differentials.

Corollary 9.1.1. Let k C K be fields of characteristic 0. Then, BC K is
algebraically independent over k if and only if {db}sen C R is linearly
independent over K .

Proof. Let A be a transcendence basis of K over k containing B. Since the
fields have characteristic 0, K is separable over k(A), so {db}sc 4, and there-
fore {db}sep, is linearly independent over K by Theorem 9.1.2. Conversely,
if {db}sep is linearly independent over K, then B must be algebraically in-
dependent over k by Lemma. 9.1.5. a

Corollary 9.1.2. Let k C K be fields and t € K be transcendental over k.
If K is separable algebraic over k(t), then

Oz
=—dt
dz T,
in 2k for any x € K, where /0t is the derivation on K that maps t to 1

and every element of k to 0.
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Proof. Note that /8t is uniquely defined on K by Theorems 3.2.2 and 3.2.3.
Since ¢ is transcendental over k and K is separable algebraic over k(t), dt is
a basis for 2x/; over K by Theorem 9.1.2, so let D : K — K be the map
given by dr = (Dz)dt for every ¢ € K. Since d is a k-derivation we have

D(z + y)dt = d(z + y) = dz + dy = (Dz)dt + (Dy)dt

and

D(zy)dt = d(zy) = zdy + ydz = (zDy)dt + (yDz)dt
for any z,y € K, which implies that D is a derivation on K. Since Dc = 0
for any ¢ € k and Dt = 1, we have D = 3/8t by unicity of the differential

extension. O

Let k C K C L be fields of characteristic 0. The restriction to K of
the k-derivation dy g : L — 2, is a k-derivation of K into {2k, so by
Lemma 9.1.1, it induces a K-linear map d: gk — 21/ such that dpjp =
EdK/k. Let B be a transcendence basis of K over k. Then, {dk/rb}ses is a
basis of 2k, over K by Theorem 9.1.2. In addition, {dL/kb}sesp is linearly
independent over L by Corollary 9.1.1. Since (fdk/kb = dg b for any b € B,
this implies that dis injective, hence that it is an embedding of £2x/; into
2r/k-

9.2 Rosenlicht’s Theorem

We prove in this section a fundamental theorem of Rosenlicht, itself a gener-
alization of a result of Ax [4] on Schanuel’s conjecture for differential fields,
that is used to prove the various structure theorems later. From now on, let
all fields in this chapter have characteristic 0. We start with an analogue of
Theorem 3.2.4 for differentials: the trace map in algebraic extensions induces
a linear trace on the differentials.

Lemma 9.2.1. Let k C K be fields, E a finitely generated algebraic exten-
sion of K, and Tr : E - K and N : E — K be the trace and norm maps
from E to K. Then, there is a K-linear map Tr* : Qg = ki such that
Tr*d=dTr and

Tr* (d_aﬁ> = dj‘:;/(:l)) foranya € E*.

Proof. Let K be the ilgebraic closure of K and o,...,0, be the distinct
embeddings of E in K over K. Note that k% = k for each 7 since o; is
the identity on k, so let o} : 2p/p — .Q?/k be the induced map given by
Lemma 9.1.2. Define Tr* : g/ = N, by Tr* = >, or. Since o; is the
identity on K, o} is a K-linear map by Lemma 9.1.2, so Tr* is K-linear. We
have
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n

Tr*(da) = Y (da)” = id(a“-‘) =d (Zn: a"") =d(Tr(a))
=1 i=1

i=1

for any a € E, so Tr*d = d Tr. Furthermore,

(4 £ (8- -4

i=1 i=1

for any a € E*. Let B be a transcendence basis for K over k. Then, {db}sen
is a basis for £2x/ over K by Theorem 9.1.2. But E is algebraic over K, so
B is a transcendence basis for E over k and {db}scp is a basis for 2z, over
E by Theorem 9.1.2. Write then w € g/, as w = ),z apdb where the a;
are in E and only finitely many of them are nonzero. Then,

n

Tr*(w) = iw"-" = Z Zag‘ db = Z Tr{ap)db
i=1

i=1 beB beB
which is in the image of {2/, under the natural embedding 2k, — (27(-/,:,
SO TT‘(QE/k) g QK/k ad

Lemma 9.2.2. Let k C K be fields, v € K, uy,...,un € K*, ¢y,...,¢cn €k
be linearly independent over Q, and

n
du;
=d — Ry - 9.1

w v+ ;C, ” € fk/k ( )

Then,
w=0 <= up,...,un,v are all algebraic over k
— duj=...=du,=dv=0.

Proof. Note that Corollary 9.1.1 implies that any = € K is algebraic over &
if and only if dz = 0. Suppose first that u,,...,un,v are all algebraic over
k. Then, du; = ... = du, = dv = 0 so w = 0. Conversely, suppose that

w = 0 and that one of the u;, say u,, is transcendental over k. Let B be
a transcendence basis of K over k containing u; and E = k(B \ {u1}). K
is then algebraic over E(u;), so F' = E(u;)(uz,...,us,v) C K is a finitely
generated algebraic extension of E(u,). Identifying ¢/, with its image under
the embedding {25/ — 2k, mentioned at the end of the previous section,
we can consider w and the differentials appearing in (9.1) as being elements of
ps- Let Tr: F = E(u;) and N : F = E(u;) be the trace and norm maps
from F to E(u1) and Tr* : 2p/x = g,k be the induced E(u;)-linear
map given by Lemma 9.2.1. Applying Tr* and Lemma 9.2.1 to (9.1) we get
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o
I

Tr*(0) = Tr*(w) = Tr*(dv) +Zci Tr* d_u_

i=1

" dN u,) = dv;
d(Tr(v)) +Z =dw +mc1 ™ +Zc,

Vi

in 2gu,)/k, where w = Tr(v) € E(w), m = [F : E(ui)] > 0 and
= N(u;) € E(u;) for 2 < i < n. Applying the canonical projection
T 2B /k = 2Ew,)/E to the above, we get
d u . d vi
0= dE(ul)/Ew + mcy “E)/E1 + Z Ci E)/ET .
U im2 Vi
By Corollary 9.1.2, dg(u,) ez = (02/0u1)dg(u,) w1 for any = € E(u1), so

o d u ¢ Ov;
0= _wdE(ul)/Eul + mc; —E)/ETL + Z :

—d
Ou, Uy “ v; Ouy E(u1)/EY1 -

Since u; is transcendental over E, dg(y,),gu1 # 0, so the above implies that

T_+iﬁgl£__a_w (9.2)
“ Uy i—2 Vi 6u1 - 3u1 ) ’

Note that u; is a monomial over E with respect to /du; and that u; is
normal and irreducible as an element of E[u,]. Furthermore, the left hand
side of (9.2) is simple by Corollary 4.4.2, so dw/8u, must be simple too, which
implies that vy, (Ow/8u;) > —1. But v, (Qw/0u,) # —1 by Corollary 4.4.2,
so residue,, (Bw/du;) = 0 by Theorem 4.4.1. Applying Corollary 4.4.2 and
residue,, to (9.2) we get

n n
) m c; Ov;
0 = residue,, | c;— + Z —~——] =me + Z Vu, (vi)es
Uy i—2 Vi Bul i=2

where v, is the order function at u;. Since m is a positive integer, the

above is a contradiction with ¢y, ..., ¢, linearly independent over Q, There-
fore u,,...,u, are all algebraic over k, so du; = ... = du, = 0, which implies
that 0 = w = dv, hence that v is also algebraic over k. O

Lemma 9.2.3. Let (K,D) be a differential field, k C K be a differential
subfield and D* : g/ — k1 be the induced skew-derivation given by
Lemma 9.1.8. For any u,v € K, if u and v are algebraically dependent over
Constp(k), then D*(udv) = d(uDv) in k.
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Proof. Suppose that u and v are algebraically dependent over C = Constp(k),
and let P € C[X,Y] be a nonzero polynomial of minimal total degree such
that P(u,v) = 0. Applying D we get

oP ar
0= D(P(u,v)) = B_X(u’ v)Du + (W(u,v)Dv (9.3)
by Theorem 3.1.1. Applying d we get
oP oP
0=d(P(u,v)) = —aTX-(U,U)du + a—Y(u,v)dv (9.4)

by Theorem 9.1.1. Using (9.3) and (9.4), we obtain
oP oprP P oP
(B_X( )BY (u, v)Du) dv (6X (u, v)Du) <6_Y(u’ v)dv)

= ( Zi(u v)Dv) (—a—P(u,v)du)

( (u, v) (u U)Dv) du  (9.5)

If 6P §%(u,v) = 0, then ﬁ is identically 0 by the minimality of P, which
1mp11es that P € C[Y], hence that v is algebraic over C, i.e. that dv = 0
and Dv = 0 by Lemma 3.3.2. Therefore, (Du)dv = (Dv)du = 0 Similarly,
(Du)dv = (Dv)du = 0 if & (u,v) = 0. If BP S5 (u,v) #0 and (u v) # 0,
then (9.5) implies that (Du)dv = (Dv)du. Usmg that equality together with
Lemma 9.1.3 we get

D*(udv) = (Du)dv + uD*(dv) = (Dv)du + ud(Dv) = d(uDv).
(m]

Lemma 9.2.4. Let (K, D) be a differential field, k C K be a differential sub-
field and D* : Qg = Ngyr be the induced skew-derivation given by Lem-
ma 9.1.3. Then, for anyv € K, u,,...,un € K* andcy,...,c, € Constp(k),

n n
d (Dv + Zc,- l:_") D* (dv + Zc, du]) in 2y -
i=1 ¢

=1 Uj

Proof. Since d is k-linear, we have

Z. Du; e Du;
d{Dv+)» ¢i—= ] =dDv)+ > cd (——’) .

Since u;ju; ' —1 =0, u; and u;"! are algebraically dependent over Constp(k),
so d(Duj/u;) = D*(duj/u;) by Lemma 9.2.3. In addition, d(Dv) = D*(dv)
by Lemma 9.1.3, so
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i i - di * = du;
d(DHZc,-D”’) = D*(dv) + ) _ D’ ( 5 ) =D (dv+ > ci'af) :
i=1 i=1 :

173 i= i=1

O

Lemma 9.2.5. Let (K, D) be a differential field, k C K be a differential
subfield, D* : Qg x — g/x be the induced skew-derivation given by Lem-
ma 9.1.8 and wy,...,wn € g be such that D*w; = 0 for each i. If

Wy, ..,wn are linearly dependent over K, then they are linearly dependent
over Constp(K).
Proof. Suppose that wy,...,w, are linearly dependent over K, and let

ai,...,an € K be not all 0, and such that Z?zl a;w; = 0 with the number
of nonzero a;’s minimal over all such linear combinations. We can assume
without loss of generality that a; # 0, and dividing by a; if needed, that
ap = 1. Applying D* we get

n n n
0=D* (wl + Zaiwi) = D*(wl) + ZD(a;)wi + a,'D‘(wi) = ZD(ai)wi .
i=2 i=2 i=2
Since a; = 1, the above is a linear combination of the w; with one less
nonzero a;, so by minimality we must have Da; = 0 for 2 < i < n, hence
ay,...,a, € Constp(K). Therefore w,...,w, are linearly dependent over
Constp(K). a

Theorem 9.2.1 (Rosenlicht [66]). Let (K, D) be a differential field, k be a
differential subfield of K with Constp(K) = Constp(k), and let vy,...,v, €
K and uy,...,un € K*. If there are constants c;; in Constp(k) such that

m
Du; .
Dv,-+§ C,‘j——J- €k forl<i<n
=1 Y

then either k(ui,...,um,v1,...,v) has degree of transcendence at least n
over k, or wy,...,w, are linearly dependent over Constp(k), where

= du;
wi=dvi+Zc,-jle— G.QK/,C.

Jj=1
Proof. Let C = Constp(K) = Constp(k), E = k(u1,...,Um,v1,...,Vn),
D* : 2/ — k)i be the induced skew-derivation given by Lemma 9.1.3,
z; = Dv; + 2;":1 ¢ijDuj/u;, and suppose that z; € k for 1 < i < n. Then
dz; = 0 for each i by the definition of 2k, so D*w; = dz; = 0 by Lem-
ma 9.2.4.
Suppose that wi,...,w, are linearly independent over C. Then, they are
linearly independent over K by Lemma 9.2.5, so considered as elements of
25k, they are linearly independent over E. This implies that the dimension
of 25 over E is at least n, hence by Theorem 9.1.2 that E has transcendence
degree at least n over k. n]
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Corollary 9.2.1. Let (K,D) be o differential field, k C K be a differ-
ential subfield with Constp(K) = Constp(k) and let vy,...,v, € K and
Ul,...,Un € K* be such that

Du.
Dv,--—lﬂ €k forl1<i<n.
i
Then, either k(u,,...,un,v1,...,v,) has degree of transcendence at least n
over k, or there are cy,...,c, € Constp(k) not all zero, and ey, ..., e, € Z

not all zero, such that 3., c;v; and [, uf’ are both algebraic over k.

Proof. Suppose that the degree of transcendence of k(uy,...,un,v1,...,vs)
over k is stricly less than n. Taking ¢;; = —1if i = j and 0 if ¢ # j,
we see that uy,...,un,v1,...,v, satisfy the hypothesis of Theorem 9.2.1.
Therefore, wy,...,w, are lincarly dependent over Constp(k) where w; =
dv; — du;/u; € k. Let then cy,...,c, € Constp(k) be not all zero and
such that }:?:1 ciw; = 0. Since Constp(k) contains Q, it is a vector space
over Q, so there are by, ..., b, € Constp(k) linearly independent over Q, and
m;; € Z not all zero such that ¢; = Z;=1 m;;b;. We then have

- 2 o du;
0 = Zciwi = Zcidvi - szijbj_,
i=1 i=1 i=1 j=1 Ui
n r d 7'1_ i—mij
- 4 (Z ) oy, ™)
i=1 =1

By Lemma 9.2.2, this implies that )", c;v; is algebraic over k, and that
[Ti=; u; ™ is algebraic over k for each j. Since at least one of the my;’s is
nonzero, this proves the corollary. 8]

—my;

U;

Corollary 9.2.2. Let C be a field, z be transcendental over C, (K, D) be a
differential extension of (C(z),d/dx) with Constp(K) = C, and vy, ...,v, €
K and uy,...,u, € K* be such that

Du;
Dv,—— €C for1<i<n.
i
Then, either C(z)(u1,...,un,v1,...,v,) has degree of transcendence at least
n over C(x), or there are ey, ...,e, € Z not all zero such that M, ui €eC.
Proof. Let ug = 1, vo = z and suppose that the degree of transcendence of
C(z)(u1,-..,un,v1,...,v,) over C(z) is stricly less than n. Then the tran-
scendence degree of C(ug,uy, ..., %n, o, V1, ... ,Un) over C is stricly less than
n + 1, so by Theorem 9.2.1, wy, . ..,w, are linearly dependent over C where

wi = dv; — du;/u; € 2g;c. Let then co,...,c, € C be not all zero and such
that 37 o ciw; = 0. Note that wy = dz is linearly independent over K by
Corollary 9.1.1, so there must be some i > 0 such that ¢;, # 0. Expressing
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each ¢; as ¢; = E;=1 m;;b; with m;; € Z as in the proof of Corollary 9.2.1,
we get in a similar way that [l u; ™% = [Tl u; " is algebraic over C
for each j. Since C' = Constp(K), Lemma 3.3.2 implies that []7_, u; "~ € C
for each j. Since cio # 0, m;,; # 0 for some j, which proves the corollary. 0O
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Recall (Definition 5.1.4) that a differential field (K,D) is an elemen-

tary extension of (k,D) if K = k(t1,...,t,) with each ¢; elementary over
k(ty,---,ti—1). In that case we define the following index sets:
Expe = {i€{l,...,n} such that ¢; transcendental over k(t;,...,ti—1)
and Dt;/t; = Da;,a; € k(t1,...,ti—1)} (9.6)
and

1l

{i € {1,...,n} such that t; transcendental over k(ty,...,ti—1)
and Dt; = Dai/ai,ai € k(tl, ceey t,'_l)'} . (97)

Lk

Note that the cardinality of Ex/x U Lk is exactly the transcendence degree
of K over k and that it is at most n. In addition, if Constp(K) = Constp(k),
then deg,, (Dt;) is 0 when ¢; € Lg/x and 1 when t; € Exy, (since Dt; # 0),
S0 EK/I: N LK/Ic =0.

Lemma 9.3.1. Let (K, D) be an elementary eztension of (k,D) satisfying
Constp(K) = Constp(k) = C. Write K = k(t1,...,tn) with each t; elemen-
tary over k(t1,...,ti-1), and let Ex/x and Lgi be given by (9.6) and (9.7)
respectively. If there are integers e; € Z such that

H t5 H ai* €C
i€Ex/e  i€Lk/k
where t; = log(a;) for i € Ly, then e; =0 for all i in Eg g U Ly
Proof. Suppose that e; # 0 for some ¢ and let then

j =max{i € Eg/; U Ly such that e; # 0},

a= H t; H ai' and f= Z eia; + Z eit;
i€Ek/k €Lk /k i€Ek/k €Lk
i<y i<y i<j i<j
where t; = log(a;) for i € Lk, and t; = exp(a;) for i € Exyx. Note that
Da/a = D by the logarithmic derivative identity.
If j € Egyi, then t;ij a € C, in contradiction with ¢; transcendental over
k(t1,...,tj—1) since a € k(t1,...,tj-1).
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If j € Liyk, then aj’a € C, so

D (a;ja) Da; Da
= —;;Tc-x— = eja—j- + o - e;jDt; + DB = D(e;t; + B)

which implies that e;t; + 8 € C, in contradiction with t; transcendental over
k(ti,...,tj—1) since B € k(t1,...,tj_1)-

Theorem 9.3.1 (Risch [62]). Let C be a field, x be transcendental over C,
and (K, D) be an elementary extension of (C(z),d/dz) with Constp(K) = C.
Write K = C(z)(t1,...,tn) with each t; elementary over C(z)(t1,...,ti—1),
and let Eg/c(z) and Lg/c(z) be given by (9.6) and (9.7) respectively. If there
are v € K and u € K* such that Dv = Du/u, then there are r; € Q such

that
v+ Z rit; + Z ria; € C

€L K/ C(z) i€Ek/c(2)
where t; = exp(a;) for i € Ex;c(s)-

Proof. Let u; = t; and v; = a; for i € Eg/c(z), i = a; and v; = ¢; for
1 € LK/C(z)a I = EK/C(I) U LK/C(:)» m be the cardinality of I, and F =
C(z)(u, v, {u;}ier, {vi}icr)- Since the degree of transcendence of K over C(z)
is exactly m, the degree of transcendence of F over C(z) is at most m, hence
strictly less than m+1. Since Dv—Du/u =0 € C and Dv;—Du;/u; =0€ C
for each ¢ € I, Corollary 9.2.2 implies that there are integers e and {e; }ier,
not all zero, such that u® [[;; ui* € C. Note that e # 0 by Lemma 9.3.1. We
then have

D (u® [];cp ui Du Du;
0 = —u(e_n%e:) =€ +26i—l =eDv+ZeiDv,v
er u ier Ui il
= eDv+ Z e;Dt; + Z e;Da;
€Lk c(x) i€EK/c(z)
= Dlev+ Z e;t; + Z e;a;
i€Lk/c(z) i€Ek/c(2)

which implies that
ev + Z eit; + Z eia; € C
€L /(=) i€Exk/c (=)
and dividing by e proves the theorem. a

As consequences we get algorithms for determining whether new loga-
rithms or exponentials over a differential field are monomials over that field
having the same constants.
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Corollary 9.3.1. Let C,z,K, Ex/c(s) and Lk c(z) be as in Theorem 9.3.1,
a€ K* and b€ K. Then,

(i) Da/a is the derivative of an element of K if and only if there are r; € Q
such that
Dt,' Da

Z riDt; + Z T » = ; (9.8)

€Lk c(2) i€EK/c(2)

(ii) Db is the logarithmic derivative of a K-radical if and only if there are
r; € Q such that

Dt;
Y mDti+ ) ri===Db. (9.9)
i€Lk/c(a) i€EK/C(a)

Proof. (i) Suppose that Da/a = Dv for some v € K. By Theorem 9.3.1 there
are r; € QQ such that

v+ Z rit; + Z ria; € C
i€Lk/c(a) i€EK/C(a)

where t; = exp(a;) for i € Ex/c(s)- Applying D yields (9.8). Conversely, if
there are r; € Q satisfying (9.8), then

l—)g =D Z it + Z ria;

a X .
i€Llk/c(z) i€Ek/c(x)

is the derivative of an element of K.
(ii) Suppose that nDb = Du/u for some integer n # 0 and u € K*. By
Theorem 9.3.1 applied to v = nb, there are r; € Q such that

nb+ Z ril; + Z ria; € C

i€LK/C(2) i€Ek/c(a)

where t; = exp(a;) for i € Ex/c(z)- Applying D and dividing by n yields (9.9).
Conversely, if there are r; € Q satisfying (9.9), then

D= Y riz‘f*+ 3y ril:f‘

€Lk c(s) t i€EK/C(x)

where t; = log(a;) for i € Lg/c(z)- Putting the r;’s over a common denomi-
nator e # 0, we get

Da; Dt; Du
b= Y o Phy 3 o Dh_Du
) a; ) i u
i€Lk/C(2) t i€Ek/c(a) '
where
u = H af." H t:-i € K*.
i€Lk/c(a) t€EKk/c(a)

9.3 The Risch Structure Theorems 281

The algorithms follow from Corollary 9.3.1 and Theorems 5.1.1 and 5.1.2:
let (K, D) be given explicitely as an elementary extension of (C(z),d/dxr)
where C' = Constp(K) and suppose that the sets Ex/c(z) and Lg/c(z) are
known (those can be computed by applying the algorithm to ¢;,t2,...,t, in
that order).

Let a € K* and let ¢t in a differential extension of K be such that ¢t =
log(a), i.e. Dt = Da/a. If (9.8) has a solution r; € @, then it provides
v € K such that Dv = Da/a, hence ¢ =t — v € Constp(K(t)) and K(t) =
C(c)(t1,--.,tn). Otherwise, Da/a is not the derivative of an element of K by
Corollary 9.3.1, so t is a monomial over K and Constp(K(t)) = Constp(K)
by Theorem 5.1.1.

Let b € K and let ¢ in a differential extension of K be such that t = exp(b),
i.e. Dt/t = Db. If (9.9) has a solution r; € Q, then it provides a nonzero
integer e and u € K* such that eDb = Du/u, hence ¢ = t¢/u € Constp (K(t))
and K(t) is algebraic over C(c)(t1,...,tn) since t¢ = cu. Otherwise, Db is
not the logarithmic derivative of a K-radical by Corollary 9.3.1, so t is a
monomial over K and Constp(K (t)) = Constp(K) by Theorem 5.1.2.

To determine whether (9.8) and (9.9) have solutions in Q, we compute
a lincar system with cocfficients in C' and the same constant solutions by
Lemma 7.1.2. Assuming! that we have a vector space basis B containing 1 for
C over Q, projecting that system on 1 yields a linear system with coefficients
in Q for the r;’s.

Risch also gave a real version of his structure theorem, which is applicable
to towers of logarithms, exponentials, arc-tangents and tangents over a real
constant field. Recall (Definition 5.10.1) that ¢ is a tangent over k if Dt/(t2 +
1) = Da for some a € k. In a similar fashion, we say that ¢ is an arc-tangent
over k if Dt = Da/(a? + 1) for some a € k such that a® + 1 # 0, and that ¢
is real elementary over k if ¢ is cither algebraic, a logarithm, an exponential,

an arc-tangent or a tangent over k. We say that (K, D) is a real elementary

extension of (k,D) if K = k(t,...,t,) with each ¢; real elementary over
k(ti,...,ti-1). In that case, in addition to the index sets Ex/r and Ly
defined by (9.6) and (9.7), we introduce the following index sets:

Tk = {i€{l,...,n} such that t; transcendental over k(ty,...,¢;1)
and Dti/(t?-f- 1) = Da;,a; € k‘(tl,...,ti_l)} (910)
and
Age = {i€{1,...,n} such that t; transcendental over k(t,...,t;_;)

and D¢; = Da,-/(a? + 1),(1,‘ (S k(tl,.. -,ti—l)} . (9.11)

! This may cause undecidability problems in general, but we usually compute in
cases where C is a finitely generated extension of Q and such a basis is available.
The integration algorithm requires an explicitly computable constant field.
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Note that the cardinality of Eg/x U Lk U Txye U Agyx is exactly the
transcendence degree of K over k and that it is at most n. In addition,
if Constp(K) = Constp(k), then deg,, (Dt;) is 0 when ¢; € Ly U Agys, 1
when t; € Exyi and 2 when t; € Tk, so the sets Ap/, U Lk, Ep/ and
Tk x are disjoints. It can be shown that Ay N Ly = @ when -1 ¢ L
(Exercise 9.1), so the four index sets are disjoints.

Lemma 9.3.2. Let K be a field, X be an indeterminate and p,q € K[X] be
irreducible. Then,

p trreducible over K[X]/(q) <= q irreducible over K[X]/(p)

Proof. Let K be the algebraic closure of K and a,8 € K be such that
p(a) = ¢(B) = 0. Then, K[X]/(g) ~ K(B) and K[X]/(p) ~ K(a). We
proceed by a degree argument in the following diagram:

K(a,B)
Ka) K(B)

K

We have [K(a) : K] = deg(p) and {K(8) : K] = deg(g) since p and ¢ are
irreducible over K. If p is irreducible over K(8), then [K(a,8) : K(8)] =
deg(p), so

(K(e,8) : K] = [K(e, 8) : K(B)][K(B) : K] = deg(p) deg(q) -
But
(K(a,B) : K] = [K(a,B) : K(a)][K () : K] = [K(a, B) : K(c)]deg(p)

which implies that [K(a, 3) : K(a)] = deg(g), hence that ¢ is irreducible over
K(a). The converse follows by symmetry. a

Lemma 9.3.3. Let C be a field, x be transcendental over C, and (X, D) be a
real elementary extension of (C(x),d/dx) with v/—1 ¢ K and Constp(K) =
C. Then, K(v/—1) is an elementary extension of (C(v/—1)(z),d/dz). Fur-
thermore, Const A (E) = C(v/—1), and the elementary tower from C(v/—1)(z)
to K(v/—1) can be chosen so that Lg(/=ty/c(v=1) = Lkjc Y Agc and

Ex(v=1y/c(v=1) = Exk/c UTk/c-

Proof. Note that Constp(K(v/—1)) = C(v/—1) by Lemma 3.3.4. We write
K = C(z)(t1,...,tn) where each t; is real elementary over C(z)(t1,...,ti-1)
and proceed by induction on n. If n = 0, then K = C(z) so K(v/-1) =
C(vV=1)(z). Suppose now that n > 0 and that the lemma holds for k =
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C(z)(t1,...,tn—1). Then, Constp(k(v/-1)) = C(v/-1), k(v/—1) is an el-
ementary extension of (C(v/-1)(z),d/dz), and the elementary tower can
be chosen so that Ly/=1)/c(y=1) = Lr/c U Ax/c and Ey/m1)/0(/=1) =
Eyxjc UTyc. In addition, K = k(t) where ¢ = i, is real elementary over K.

Case 1: t is transcendental over k. Then, t is transcendental over k(y/—1).

Case la: t is a logarithm over k. Then, ¢ is a logarithm over k(y/'-1), so
K(v-1) = k(v/=1)(t) is elementary over k(/—1), hence over C(v/—1). Fur-

thermore,
Lyv=1y/0(v=1) = {n}VULk(y=1)/0(v=1) = {n}ULkjcUAr/c = LkjcUAk/c
and

Ex(v=nys0(v=1) = Exv=iy/c(v=1) = Er/c UTk/c = Ex/c UTk/c -

Case 1b: t is an exponential over k. Then, ¢ is an exponential over k(v/—1),
so K(v/-1) = k(/-1)(t) is elementary over k(v/—1), hence over C(v/—1).

Furthermore,
Ey(v=ny/c(v=1) = {RYVE/=1),c(v/=1) = {n}UEk/cUTk/c = Ex/cUTk/c
and

Ly(y=n/0(v=1) = Liqv=ny70(v=1) = Lr/c U Akjc = Lkjc U Axjc -
Case lc: t is an arc-tangent over k. Let then 8 = 2¢y/—1 € K(/—1). We have
Dt = Da/(a® + 1) where a € k satisfies a®> + 1 # 0, so

Da Db
D0=2Dt\/— —2\/—1-(—1—5—:;—1" = T

where b = (a—+/—1)/(a++v/—1) € k(v/—1)*, so 8 is a logarithm over k(+/—1),
which implies that K(v/~1) = k(v/~1)(8) is elementary over k(v/—1), hence
over C(v/—1). Furthermore,

Ly v=1yc(v=1) = {n}ULyv=1)/0(v=T) = {n}ULk/cVAk/c = Lr/cUAK/C
and
Exv=1/c(v=1) = Ex(v=n)/c(v=1) = Eryjc U Tkjc = Ex/c UTk/c -

Case 1d: t is a tangent over k. Let then 6 = (V—=1-1t)/(V/-1+1t) € K(v/-1).
We have Dt = (2 + 1)Da for some a € k, so

De Dt Dt 2v/—1D
= b D(2av/~-1)

9 J/1-t Joi+t  t2+1

so @ is an exponential over k(+/—1), which implies that K(v/-1) = k(v/—1)(6)
is elementary over k(v/—1), hence over C(v/—1). Furthermore,
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Ex(v=ny/0(v=1) = {nIVEy =) /0(v=1) = {n}UE/cUTk/c = Ex/cUTk/c

and
Ly(vy=1y/c(v=1) = Li(v=1)/c(v=T) = Lrjc U Axjc = Lijc U Akjc -

Case 2: t is algebraic over k. Let then X be an indeterminate and p € k[X]
be the minimal irreducible polynomial for ¢ over k. Since v/—1 ¢ k(t), p re-
mains irreducible over k(y/~1) by Lemma 9.3.2, so K(v/~1) = k(v/-1)(t) ~
k(v/~T1)[X]/(p) is algebraic, hence elementary, over k(v/—1). Furthermore,

Exv=n/c(v=1) = Exv=y/0(v=1) = Exjc UTkjc = Ex/c U Tk/c

and

Lxw=ncwv=1 = Litv=n/c(v=1) = Lrjc U Akjc = Lxjc U Ak/c -
0

We can now prove a slight generalization of the real Risch structure The-
orem to arbitrary constant fields.

Theorem 9.3.2 (Risch [62]). Let C be a field, = be transcendental over C,
and (K, D) be a real elementary extension of (C(z),d/dz) with Constp(K) =
C and V-1 ¢ K. Write K = C(z)(t1,...,tn) with each t; real elementary
over C(z)(ty,...,ti—1), and let EK/C(z): LK/C(::): TK/C(::) and AK/C(:) be
given by (9.6), (9.7), (9.10) and (9.11) respectively.

(i) If there are v € K and u € K* such that Dv = Du/u, then there are

r; € Q such that
v+ Z rit; + Z ria; € C
€Lk c(2) i€Ex/c(a)

where t; = exp(a;) for i € Ex/c(z)-
(ii) If there are u,v € K such that Dv = Du/(u? + 1), then there are r; € Q

such that
v+ Z riti + Z ria; € C

i€AK/C(x) €Tk /c(=)
where t; = tan(a;) fori€ Tk/c(z)-
Proof. Let F = C(v/=1). By Lemma 9.3.3, E = K(/—1) is elementary over

(F(z),d/dz), Constp(E) = F, Lg/r(z) = Lkjc(z) U Ak/c(z) and Egyp(z) =

Ex/c(z) U Tk/c(q)-
(i) Suppose that Dv = Du/u for v € K and v € K*. By Theorem 9.3.1
applied to E, there are r; € Q such that

v+ Y rbi+ Y e € C(V-D)

iGLE/p(,) iGEE/p(,)
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where ; = exp(a;) for i € Egp(s)- Differentiating, we get
0 = Dv+ Z r;D6; + Z r; D6,

€Lk c(z) i€AK/C(2)

lEEK/C(a) ; i€Tk/c(a)

Dv + Z i Dt; + 2\/——1 Z riDt;

i€Lk/c(a) iGAK/C(a)

+ Z TiDtl +2\/_— Z ’I",t2+1

i€EK/c(2) i€TK /0 (2) ¢
Since v—1 ¢ K, we get that
Dt;
Dv+ Y mDti+ ) r,-—t;l =0

iELK/c(,) iEEK/c(,)
hence that
v+ Z rit; + Z ria; € C
i€Lg/c(a) i€EK/C(a)

where t; = exp(a;) for i € EK/C(,)
(i1) Suppose that Dv = Du/(u? + 1) for u,v € K. Then,

D(2vv/—=1) = 2DvV/-1= 2\/_ o 1 >

where z = (u — V—1)/(u + v/—1), so by Theorem 9.3.1 applied to E, there
are r; € Q such that

V=1 + E rif; + Z Tio; € C(\/—_l)

i€LE/r(a) i€ER/F(a)

where 8; = exp(a;) for i € Eg/p(q)- Differentiating as in part (i), we get

0 = 2Duv/—1+ Z riDt; +2V=1 Y Dt

i€Lk/c(z) iEAK/C(z)
Dt
D SRR FENE N
i€EK/C(a) €Tk /C(z)

Since v—1 ¢ K, we get that

Dt;
Dv + Z r;Dt; + Z Tit2—+11- =
)

_ Dz

tf+1

€AK/C(2) €Tk /(=)
hence that
v+ E rit; + E ria; € C
i€AK/C(a) €Tk c(a)

where ¢; = ta,n(a,-) fori € TK/C(:)-
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As consequences we get algorithms for determining whether new loga-
rithms, exponentials, tangents and arc-tangents over a real differential field
are monomials over that field having the same constants.

Corollary 9.3.2. Let C,z, K, Ex/c(z), Lk/c(z), Tk/c(z) and Ak jc(z) be as
in Theorem 9.3.2, a € K* and b€ K. Then

(i) Da/a is the derivative of an element of K if and only if there are r; € Q

such that
Dti _ Da
Y rDti+ Y i (9.12)

i€Lk/c(a) i€EK/C(a)

(i) Db is the logarithmic derivative of a K -radical if and only if there are
r; € Q such that

Dt;
Y. mDti+ > rmi=—"=Db. (9.13)
. . ti
€L K /() 1€EK /C(2)
(1) Db/(b* + 1) is the derivative of an element of K if and only if there are
r; € Q such that
Dt; Db
Y. rDti+ > ri= == (9.14)

t2+1 b2 +1

i€AK/Cc(2) €Tk /c(2)

(iv) /—1Db is the logarithmic derivative of a K (v/—1)-radical if and only if
there are r; € Q such that

Yo mDti+ > Dt _ py. (9.15)

i€EAK/C(a) €Tk jc(x)

Proof. The proofs of parts (i) and (iii) are similar to the proof of part (i)
of Corollary 9.3.1, using Theorem 9.3.2 instead of 9.3.1, while the proofs of
part (ii) is similar to the proof of part (ii) of Corollary 9.3.1.

(iv) Suppose that ny/—=1Db = Dw/w for some integer n # 0 and w in
K(vV-T1)*, and write w = y + 2y/—1 where y,z € K. If y = 0, then 2 # 0
and Dw/w = Dz/z = ny/=1Db, which implies that Dz = Db = 0, hence
that (9.15) is satisfied with r; = 0 for each %, so suppose from now on that
y # 0. We then have,

nv—1Db = Dw _ Dy+v-1Dz _ yDy + 2Dz yDz—szﬁ.l.

w y+zv/—1 —  yi4z? y? + 22

so yDy + zDz = 0, which implies that ¢ = y? + 2% € C*. Let then W = w?/c
and

w? c—y?+ 2% = 2yz/—
u = \/ = \/-——1: \/
1+W c+y? — 22+ 2yzy/—-1

_ 22/=1 +yz__zz\/ +y EEK
v +yzv/-1 yy+zv/-
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We have W = (v/-1 - u)/(v/-1+ u), so by Lemma 5.10.1,

Du Dw Dw Dc
\/———-=———=2-—————=2ﬂ\/—'1Db
2 1u2+1 w w c

which implies that nDb = Du/(u? +1). By Theorem 9.3.2 applied to v = nb,
there are r; € Q such that

nb+ z riti + Z ria; € C
i€AK/C(a) i€Tk/c(2)

where t; = tan(a;) for i € Tk/c(s)- Applying D and dividing by n yields (9.15).
Conversely, if there are r; € Q satisfying (9.15), then

Da‘i Dtl
= { Ti = .
Db Z T‘a2+1+‘ Z ttf'f'l
iGAK/c(,) t tETK/c(,)

so putting the r;’s over a common denominator e # 0 and multiplying by
2v/—1, we get
Dt;

Da,-
Db = VoI AV
2eV/=IDb= )  2e/-l—7+ > 2 P
€AK/C(a) ¢ €Tk /c(a)
where t; = arctan(a;) for i € AK/C(,) Let b; = (V-1-a;)/(V-1+ai)

K(V/- )"andO—(\/ 1-t)/(V-1+t) € K(vV-1)*. ByLemmaSlOl
Db;/b; = 2¢/=1Da;/(a? + 1) and D6;/6; = 2/~ Dt,/(t + 1), so
i D
2ev/=IDb= S %’— + ==

ieAK/c(g) lETK/C(z

where
w= [ o [I 6 ekKW-D" (9.16)
i€Ak/cz)  1€Tk/c(a)
(u]

The algorithms follow from Corollary 9.3.2 and Theorems 5.1.1, 5.1.2

and 5.10.1: let (K, D) be given explicitely as a rcal elementary extension of
(C(z),d/dz) where C = Constp(K), v—1 ¢ K, and suppose that the sets
Ex/c(z), Lr/c(z) Tk/c(z) and AK/C(x) are known (those can be computed
by applying the algorithm to ty,t2,...,t, in that order).
Let a € K* and let t in a dlff(,rentxa.l extension of K be such that t =
log(a), i.e. Dt = Da/a. If (9.12) has a solution r; € Q, then it provides
v € K such that Dv = Da/a, hence ¢ = t — v € Constp(K(t)) and K(t) =
C(c)(t1,. .-, tn). Otherwise, Da/a is not the derivative of an element of K by
Corollary 9.3.1, so t is a monomial over K and Constp (K (t)) = Constp(K)
by Theorem 5.1.1.
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Let b € K and let ¢ in a differential extension of K be such that ¢ = exp(b),
i.e. Dt/t = Db. If (9.13) has a solution r; € Q, then it provides a nonzero
integer e and u € K* such that eDb = Du/u, hence ¢ = t¢/u € Constp(K(t))
and K (t) is algebraic over C(c)(t1,...,tn) since t = cu. Otherwise, Db is
not the logarithmic derivative of a K-radical by Corollary 9.3.1, so ¢ is a
monomial over K and Constp (K (t)) = Constp(K') by Theorem 5.1.2.

Let b € K and let ¢ in a differential extension of K be such that ¢ = arctan(b),
i.e. Dt = Db/(b® + 1). If (9.14) has a solution r; € Q, then it provides v € K
such that Dv = Db/(b? + 1), hence ¢ = t — v € Constp(K (t)) and K(t) =
C(c)(t1,. .., ta). Otherwise, Db/(b% + 1) is not the derivative of an element
of K by Corollary 9.3.2, so t is a monomial over K and Constp(K(t)) =
Constp(K) by Theorem 5.1.1.

Let b € K and let ¢t in a differential extension of K be such that t = tan(b),
i.e. Dt/(#* + 1) = Db. If (9.15) has a solution r; € Q, then it provides a
nonzero integer e and w € K(v/—1)* given by (9.16) such that 2e\/—1Db =
Dw/w. Let

0=(V-1-t)/(V-1+1t) € K(vV=1)(t)* and c = 6°/w € K(V-1)(t)*.

Using Lemma 5.10.1 we get

Dc D6 Dw Dt

—E- =e——0—— 7 226\/~_1m—2€\/—_1Db:0
so ¢ € Constp(K (v/—1)(t)) and 6 is algebraic over C(c, vV/—=1)(t1,- .., tn) since
6° = cw. Since t = (§—1)/=1/(8+1), this implies that K(t) is algebraic over
C(c,v/=1)(t1,---,tn), hence over C(c)(t1,...,tn). It is actually possible to
compute the minimal polynomial for ¢ over C(c)(ti,...,tn) directly from the
solution of (9.15) without introducing /=1, see [10] for details. Otherwise,
if (9.15) has no solution in Q, then /=1Db is not the logarithmic derivative
of a K(v/—1)-radical by Corollary 9.3.2, so t is a monomial over K and
Constp(K (t)) = Constp(K) by Theorem 5.10.1.

9.4 The Rothstein—Caviness Structure Theorem

Rothstein and Caviness [69] have generalized the Risch structure theorem by
allowing arbitrary primitives instead of logarithms in the tower of extensions.
Since a hyperexponential extension can be embedded in an exponential ex-
tension of a primitive extension, this yields a structure theorem applicable to
arbitrary Liouvillian extensions. In order to avoid having logarithms cancel
with primitives, it is necessary to introduce the restriction that for a primi-
tive ¢ over a field F', either ¢t is explicitely given as a logarithm over F, or Dt
does not have an elementary integral over F'.
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Definition 9.4.1. Let (K, D) be a differential extension of (k,D). t € K is
nonsimple primitive over k if Dt € k and Dt does not have an integral in any
elementary extension of k.

Note that Theorem 5.1.1 implies that if ¢ is nonsimple primitive over k,
then ¢t is transcendental over k and Constp(k(t)) = Constp(k).

Definition 9.4.2. (K, D) is a log-explicit Liouvillian extension of (k, D) if
there are ty,...,tn in K such that K = k(t1,...,t,) and fori € {1,...,n},
either t; is elementary over k(ty,...,ti—1), or t; is nonsimple primitive over
k(tla"-yti—l)'

Theorem 9.4.1 (Rothstein & Caviness [69]). Let C be a field, x be tran-
scendental over C, and (K,D) be a log-explicit Liowvillian eztension of
(C(x),d/dz) with Constp(K) = C. Write K = C(z)(t1,...,ta) with each
t; either elementary or nonsimple primitive over C(z)(t1,...,ti—1), and let
Ek/c(z) and Lgjc(z) be given by (9.6) and (9.7) respectively. If there are
v € K and u € K* such that Dv = Du/u, then there are r; € Q such that

v+ Z rit; + z ra; € C

i€Lksc(z) i€Ek/c(a)
where t; = exp(a;) fori € Ex/c(a)-

Proof. We proceed by induction on the number p of nonsimple primitives
among t1,...,tn. If p = 0, then K is elementary over C(z) and the result
follows by the Risch structure Theorem. Suppose that ¢ > 0 and that the
theorem holds for any log-explicit Liouvillian extension of (C(z),d/dz) with
constant field C and at most p— 1 nonsimple primitives. Let 79 be the largest
index such that t;, is nonsimple primitive over C(z)(t1,...,tip~1), t = ti,
k= C(z)(t1,..-,tip—1) and 6; = t;;4; for i € {1,...,m} where m = n — io.
Then, k is a log-explicit Liouvillian extension of (C(z),d/dz) with at most
4 — 1 nonsimple primitives, and K = k(t)(61,...,0m) is elementary over k(t)
by the maximality of ig. Let u; = 8; and v; = a; for i € Exary, ui = a:
and v; = 6; for i € Lg/kty, wo = 1, v0 = t, I= EK/lc(t) U LK/k(t), p be the
cardinality of I, and F = k(ug,vo)(u,v, {ui}ier, {vi}ier). Since the degree
of transcendence of K over k(t) = k(uo,vo) is exactly p, and the degree of
transcendence of k(uog, vo) over k is 1, the degree of transcendence of F' over k
is at most p+1, hence strictly less than p+2. Since Dv—Du/u =0 € k, Dvg—
Dug/up = Dt € k and Dv; — Du;/u; = 0 € k for each i € I, Theorem 9.2.1
implies that the elements w = du/u — dv, wp = dt and w; = du;/u; — dv; of
2k are linearly dependent over C, so let c,co, {ci}ier € C be not all zero
such that cw + codt + Zie[ ciw; = 0. Dividing by c if ¢ # 0, we can assume
that ¢ € {0,1}. Since C is a vector space over Q, there are by,...,b. € C
linearly independent over Q, and m;; such that ¢; = er.:l m;ib;. We can
assume without loss of generality that b, = 1, hence that ¢ = cby, since
c € {0,1}. We then have
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0 = codt+ow+ ) ciwi (9.17)
el

= codt+chidv+) Zm,,b dv; — cbl— -3 Zm,] —_’
iel j=1 i€l j=1 Ui

- dz;

= d|cot+ Z b;y; Z b; =

j=1
where

y; = cdiv+ Zmij’l}i, zj = uy Hu:""'
iel iel
and é;; = 1if i = j and 0 if i # j. By Lemma 9.2.2, this implies that
w = cot + E]r:l b;y; is algebraic over k, and that z; is algebraic over k for
each j. We also have

Dz; i
1= c&u =2y > m,, — =cdi;Du + > miiDv; = Dy;  (9.18)

J i€l el

for each j, so

Dw — Zb —'—cth+Zb Dy; — Zb Dz’ =

Applying the trace from E = k(w, z;,...,2;) into k and Theorem 3.2.4, we
get

colE : k|Dt = Zb in"’f

where T'r and N are the trace and norm maps respectively. Since Dt has no
elementary integral over k by hypothesis, the above implies that ¢g = 0, hence
that w = E -1 bjy; is algebraic over k. Let F' = E(ya,...,y,). Since each y; is
either a loganthm or algebraic over E by (9.18), F'is elementary over E, hence
elementary over k, and therefore log-explicit Liouvillian over (C(z),d/dx)
with at most ¢ — 1 nonsimple primitives. Furthermore, Constp(F) = C since
F C K, so applying the induction hypothesis to y; = w — E;zz bjy; € F and
z1 € F, we get that there are r; € Q such that

1+ Z riti + Z ria; € C (9.19)
i€Lp;c(2) i€EF/c(2)

where t; = exp(a;) for ¢ € Ep/c(z). Since E is algebraic over k and each y; is
either a logarithm or algebraic over E by (9.18), Ep/c(z) = Ei/c(s) and

r T
Z rit; = Z r,-t,-+2r_jyj= Z Titi+ZZmijT_jvi

i€LF/c(a) i€Lk/c(z) j=2 i€Ly/c(e) j=2 i€l
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where 7; = 0 whenever y; is not a logarithmic monomial, r; otherwise. In
addition, y1 = cv + 3, ; ma1vs, s0 (9.19) becomes

.
cv + Zmﬁvi + Z rit; + szij"_'_jvi + Z Ti;

i€l €Lk () j=2 iel i€EL/c(2)
=cv+ E rit; + Z r,-a,-+ZF}v.- e C
€Ly c(x) i€Ey/c(a) iel

where 7; = mj; + Z;=2 m;;7; € Q. Furthermore,

Zﬁvi= Z 7i0; + Z 7ini

el iELK/,,(g) iGEK/k(t)

where 8; = exp(n;) for i € Ex/k(), S0

cwt Y mti+ Y, riat Y A+ Y fm €C. (9:20)

€Lk c(2) i€EL/C(a) €Lk /r(e) I€EK k()

Since {6;i}icr is a transcendence basis for K over k(t), {df;}icr is a basis for
2k /k(ty over K by Theorem 9.1.2. For i € Ex/x(;) we have w; = df;/6; — dn;
where 6; = exp(n:) and n; € k(t)(6:,...,0i-1). For i € Ly we have
w; = dn,'/n,' — df; where 6; = lOg(’ni) and 7; € k(t)(&l,..,,&_l). In both
cases, 1; € k(t)(61,...,6;—1) implies that that dn; is the K-span over K of
{d8;}jer, i<i by Theorem 9.1.2. Hence, the matrix of {w;}ier in the basis
{db;}icr is a triangular matrix whose diagonal entries are either ;! or —1.
This implies that {w;}ier is linearly independent over K, hence that c#0
in (9.17). Therefore we can assume that ¢ = 1 in (9<20), and noting that
LK/Cfv(z) = LK/k(t) ULk/C(,) and EK/C(:) = EK/k(g) UEk/C(:) completes the
proot. O

The algorithms of Sect. 9.3 for determining whether new logarithms or
exponentials over a differential field are monomials over that field having the
same constants become now applicable to log-explicit Liouvillian extensions.

Corollary 9.4.1. Let C,z,K, Ex/c(z) and Lk c(z) be as in Theorem 9.4.1,
a € K* and b€ K. Then,

(i) Da/a is the derivative of an element of K if and only if there are r; € Q

such that Dt D
i a
> mDti+ Y o = (9.21)
1

i€Lk/c(a) i€EK/c(2)

(ii) Db is the logarithmic derivative of a K -radical if and only if there are
r; € Q such that

> mDti+ Y r,-Dt_tisz. (9.22)

i€Lk/c(a) i€Ek/c(a)
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The proof and corresponding algorithms are exactly the same than for
Corollary 9.3.1 and the algorithms following it. In the cases arising from the
integration algorithm, we can always ensure that the differential field con-
taining the integrand is a log-explicit Liouvillian extension of its constants
by applying recursively the integration algorithm to primitives. For the gener-
al case, Rothstein and Caviness also proved that any Liouvillian extension of
a differential field can be embedded in a log-explicit Liouvillian extension [69].

Exercises
Exercise 9.1. Let (k, D) be a differential ficld of characteristic 0 and a, b in
k* be such that b2 + 1 # 0 and

Da Db

e B+l

Show that -1 € k.
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