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Six reviews on Quantum Theory: Concepts and Methods by Asher Peres

Peres has given us a clear and fully elaborated statement of the epistemology of quantum
mechanics, and a rich source of examples of how ordinary questions can be posed in the theory
and of the extraordinary answers it sometimes provides. It is highly recommended both to
students learning the theory and to those who thought they already knew it.

A. Sudbery Physics World (April 1994)

Asher Peres has produced an excellent graduate level text on the conceptual framework ¢
guantum mechanics. . This is a well-written and stimulating book. It concentrates on the
basics, with timely and contemporary examples, is well-illustrated and has a good bibliography
. .. | thoroughly enjoyed reading it and will use it in my own teaching and research . . . it
is a beautiful piece of real scholarship which | recommend to anyone with an interest in the
fundamentals of quantum physics. P. Knight, Contemporary Physics (May 1994)
Peres’s presentations are thorough, lucid, always scrupulously honest, and often provocativ
... the discussion of chaos and irreversibility is a gem—not because it solves the puzzle of
irreversibility, but because Peres consistently refuses to take the easy way out . . . This boo
provides a marvelous introduction to conceptual issues at the foundations of quantum theory
It is to be hoped that many physicists are able to take advantage of the opportunity.

C. CavesFoundations of Physics (Nov. 1994)

| like that book and would recommend it to anyone teaching or studying quantum mechanics
. Peres does an excellent job of reviewing or explaining the necessary techniques . . . th
reader will find lots of interesting things in the book . . .

M. Mayer, Physics Today (Dec. 1994)

Setting the record straight on the conceptual meaning of quantum mechanics can be a perilot
task . . . Peres achieves this task in a way that is refreshingly original, thought provoking, and
unencumbered by the kind of doublethink that sometimes leaves onlookers more confused tha
enlightened . . the breadth of this book is astonishing: Peres touches on just about anything
one would ever want to know about the foundations of quantum mechanics . . . If you really
want to be proficient with the theory, an hongsto-nonsense” book like Peres’s is the perfect
place to start; for in so many places it supplants many a standard quantum theory text.

R. Clifton, Foundations of Physics (Jan. 1995)

This book provides a good introduction to many important topics in the foundations of quantum
mechanics . . It would be suitable as a textbook in a graduate course or a guide to individual
study . . . Although the boundary between physics and philosophy is blurred in this area, this
book is definitely a work of physics. Its emphasis is on those topics that are the subjec
of active research and on which considerable progress has been made on recent years . . .
enhance its use as a textbook, the book has many problems embedded throughout the text .
[The chapter on] information and thermodynamics contains many interesting results, not easily
found elsewhere . . A chapter is devoted to quantum chaos, its relation to classical chaos, and
to irreversibility. These are subjects of ongoing current research, and this introduction from
a single, clearly expressed point of view is very useful . . . The final chapter is devoted to the
measuring process, about which many myths have arisen, and Peres quickly dispatches mal

of them . .. L. Ballentine,American Journal of Physics (March 1995)
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Preface

There are many excellent books on quantum theory from which one can learn 1
compute energy levels, transition rates, cross sections, etc. The theoretical rul
given in these books are routinely used by physicists to compute observabl
quantities. Their predictions can then be compared with experimental date
There is no fundamental disagreement among physicists on howsetthe
theory for these practical purposes. However, there are profound differences
their opinions on the ontological meaning of quantum theory.

The purpose of this book is to clarify tlwenceptual meaning of quantum
theory, and to explain some of the mathematical methods which it utilizes.
This text is not concerned with specialized topics such as atomic structure, c
strong or weak interactions, but with the very foundations of the theory. This is
not, however, a book on the philosophy of science. The approach is pragmat
and strictly instrumentalist. This attitude will undoubtedly antagonize some
readers, but it has its own logic: quantum phenomena do not occur in a Hilbe
space, they occur in a laboratory.

The level of the book is that of a graduate course. Since most universitie
do not offer regular courses on the foundations of quantum theory, this boo
was also designed to be suitable for independent study. It contains numerol
exercises and bibliographical references. Most of the exercises are “on line
with the text and should be considered as part of the text, so that the read
actively participates in the derivation of results which may be needed for future
applications. Usually, these exercises require only a few minutes of work. Th
more difficult exercises are denoted by a starA few exercises are ratedk
These are little research projects, for the more ambitious students.

It is assumed that the reader is familiar with classical physics (mechanics
optics, thermodynamics, etc.) and, of course, with elementary quantum theon
To remedy possible deficiencies in these subjects, textbooks are occasional
listed in thebibliography at the end of each chapter, together with general
recommended reading. Any required notions of mathematical nature, such &
elements of statistics or computer programs, are giveappendices to the
chapters where these notions are needed.

The mathematical level of this book is not uniform. Elementary notions
of linear algebra are explained in minute detail, whephgsical meaning is

Xi



Xii Preface

attributed to abstract mathematical objects. Then, once this is done, | assur
familiarity with much more advanced topics, such as group theory, angula
momentum algebra, and spherical harmonics (and | supply references for read
who might lack the necessary background).

The general layout of the book is the following. The first chapters introduce,
as usual, the formal tools needed for the study of quantum theory. Here, hov
ever, the primitive notions are not vectors and operators,pkegarations and
tests. The aim is to define the operational meaning of these physical concept:
rather than to subordinate them to an abstract formalism. At this stage,
“measurement” is considered as an ideal process which attributes a numel
cal value to an observable, represented by a self-adjoint operator. No detaile
dynamical description is proposed as yet for the measuring process. Howeve
physical procedures are defined as precisely as possible. Vague notions such
“quantum uncertainties” are never used. There also is a brief chapter devote
to dynamical variables with continuous spectra, in which the mathematical leve
is a reasonable compromise, neither sloppy (as in some elementary textbook
nor excessively abstract and rigorous.

The central part of this book is devoted to cryptodeterministic theories,
i.e, extensions of quantum theory using “hidden variables.” Nonlocal effects
(related to Bell's theorem) and contextual effects (due to the Kochen-Specke
theorem) are examined in detail. It is here that quantum phenomena depa
most radically from classical physics. There has been considerable progre:
on these issues while | was writing the book, and | have included those ne\
developments which | expect to be of lasting value.

The third part of the book opens with a chapter on spacetime symmetries
discussing both nonrelativistic and relativistic kinematics and dynamics. After
that, the book penetrates into topics which belong to current research, ar
it presents material having hitherto appeared only in specialized journals: th
relationship of quantum theory to thermodynamics and to information theory
its correspondence with classical mechanics, and the emergence of irreversibili
and quantum chaos. The latter differs in many respects from the more familis
classical deterministic chaos. Similarities and differences between these tw
types of chaotic behavior are analyzed.

The final chapter discusses the measuring process. The measuring appars
is now considered as @hysical system, subject to imperfections. One no longer
needs to postulate that observable values of dynamical variables are eigenvalt
of the corresponding operators. This property follows from the dynamical be
havior of the measuring instrument (typically, if the latter has a pointer moving
along a dial, the final position of the pointer turns out toclmse to one of the
eigenvalues). The thorny point is that the measuring apparatus must acce
two irreconcilable descriptions: it is a quantum system when it interacts with
the measured object, and a classical system when it ultimately yields a definit
reading. Theapproximate consistency of these two conflicting descriptions is
ensured by the irreversibility of the measuring process.
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This book differs from von Neumann’'s classic treatise in many respects. vol
Neumann was concerned with “measurable quantities.” This is a neo-classic
attitude: supposedly, there are “physical quantities” which we measure, an
their measurements disturb each other. Here, | merely assume that we perfor
macroscopic operations calletsts, which have stochastic outcomes. We then
construct models where these macroscopic procedures are related to microscopi
objects (e.g., atoms), and we use these models to make statistical predictio
on the stochastic outcomes of the macroscopic tests. This approach is not or
conceptually different, but it also is more general than von Neumann’s. The
measuring process is not represented by a complete set of orthogonal projecti
operators, but by a non-orthogornadsitive operator valued measure (POVM).

This improved technique allows to extract more information from a physical
system than von Neumann’s restricted measurements.

These topics are sometimes called “gquantum measurement theory.” This is
bad terminology: there can be no quantum measurement theory—there is on
quantum mechanics. Either you use quantum mechanics to describe expe
mental facts, or you use another theory. A measurement is not a supernatul
event. It is a physical process, involving ordinary matter, and subject to th
ordinary physical laws. Ignoring this obvious truth and treating a measuremer
as a primitive notion is a distortion of the facts and a travesty of physics.

Some authors, perceiving conceptual difficulties in the description of the
measuring process, have proposed new ways of “interpreting” quantum theor
These proposals areot new interpretations, but radically different theories,
without experimental support. This book considers only standard quantun
theory—the one that is actually used by physicists to predict or analyze expel
imental results. Readers who are interested in deviant mutations will not b
able to find them here.

While writing this book, | often employed colleagues as voluntary referees
for verifying parts of the text in which they had more expertise than me. | am
grateful to J. Avron, C. H. Bennett, G. Brassard, M. E. Burgos, S. J. Feingold
S. Fishman, J. Ford, J. Goldberg, B. Huttner, T. F. Jordan, M. Marinov,
N. D. Mermin, N. Rosen, D. Saphar, L. S. Schulman, W. K. Wootters, and
J. Zak, for their interesting and useful comments. Special thanks are due to Se
Braunstein and Ady Mann, who read the entire draft, chapter after chaptel
and pointed out numerous errors, from trivial typos to fundamental misconcep
tions. I am also grateful to my institution, Technion, for providing necessary
support during the six years it took me to complete this book. Over and abov
all these, the most precious help | received was the unfailing encouragement
my wife Aviva, to whom this book is dedicated.

ASHER PERES

June 1993
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Plate |. This pseudorealistic instrument, designed by Bohr, records the
moment at which a photon escapes from a box. A spring-balance weighs
the box both before and after its shutter is opened to let the photon pass.
It can be shown by analyzing the dynamics of the spring-balance that
the time of passage of the photon is uncertain by at iddsE , where

AE is the uncertainty in the measurement of the energy of the photon.
(Reproduced by courtesy of the Niels Bohr Archive, Copenhagen.)



Chapter 1

Introduction to Quantum Physics

1-1. The downfall of classical concepts

In classical physics, particles were assumed to have well defined positions an
momenta. These were considered as objective properties, whether or not the
values were explicitly known to a physicist. If these values were not known, but
were needed for further calculations, one would make reasonable (statistical
assumptions about them. For example, one would assume a uniform distributio
for the phases of harmonic oscillators, or a Maxwell distribution for the velocities
of the molecules of a gas. Classical statistical mechanics could explain man
phenomena, but it was considered only as a pragmatic approximation to the
true laws of physics. Conceptually, the positigrand momentump of each
particle had well defined, objective, numerical values.

Classical statistical mechanics also had some resounding failures. In partic
ular, it could not explain how the walls of an empty cavity would ever reach
equilibrium with the electromagnetic radiation enclosed in that cavity. The
problem is the following: The walls of the cavity are made of atoms, which
can absorb or emit radiation. The number of these atonfiits, say 165;
therefore the walls have a finite number of degrees of freedom. The radiatior
field, on the other hand, can be Fourier analyzed in orthogonal modes, and it
energy is distributed among these modes. In each one of the modes, the fie
oscillates with a fixed frequency, like a harmonic oscillator. Thus, the radia-
tion is dynamically equivalent to amfinite set of harmonic oscillators. Under
these circumstances, the law of equipartition of energy=(KT per harmonic
oscillator, on the average) can never be satisfied: The vacuum in the cavity
having an infinite heat capacity, would absorb all the thermal energy of the
walls. Agreement with experimental data could be obtained only by modifying,
ad hoc, some laws of physics. Planck! assumed that energy exchanges betwec
an atom and a radiation mode of frequenayould occur only in integral mul-
tiples of hv, where h was a new universal constant. Soon afterwards, Einstein2

1 M. Planck, Verh. Deut. Phys. Gesell. 2 (1900) 237;Ann. Physik 4 (1901) 553.
2 A. Einstein, Ann. Physik (4) 17 (1905) 132; 20 (1906) 199.



4 Introduction to Quantum Physics

sharpened Planck’s hypothesis in order to explain the photoelectric effect—the
ejection of electrons from materials irradiated by light. Einstein did not go so
far as to explicitly write that light consisted of particles, but this was strongly
suggested by his work.

Circa 1927, there was ample evidence that electromagnetic radiation of wave
length A sometimes appeared as if it consisted of localipadticles—called
photons3—of energ)}e = hv and momentump = h/A. In particular, it had
been shown by Comptérihat in collisions of photons and electrons the total
energy and momentum were conserved, just as in elastic collisions of ordinar
particles. Since Maxwell’'s equations were not in doubt, it was tempting to
identify a photon with a pulse (a wave packet) of electromagnetic radiation.
However, it is an elementary theorem of Fourier analysis that, in order to make
a wave packet of sizAx, one needs a minimum bandwidth(1/ A) of the order
of 1/Ax. When this theorem is applied to photons, for which ¥ p/h, it
suggests that the location of a photon in phase space should not be described
a point, but rather by a small volume satisfyifigA¢*Ap; 2 3 (2 more rigorous
bound is derived in Chapter 4). This fact by itself would not have been a mattel
of concern to a classical physicist, because the latter would not have considere
a “photon” as a genuine particle anyway— this was only a convenient name
for a bunch of radiation. However, it was pointed out by Heisehbirat if
we attempt tolook (literally) at a particle, that is, if we actually bombard it
with photons in order to ascertain its positignand momentump, the latter
will not be determined with a precision better than thand p of the photons
used as probes. Therefore any particle observed by optical means would satis
[1A¢'Ap; 2 k3. This limitation, together with the experimental discovery of the
wave properties of electrofgéed to the conclusion that the classical concept of
particles which had precisg and p was pure fantasy.

This naive classical description was then replaced by another one, involving
a state vectory, commonly represented by a functiofq,,...,q.;t). Our
intuition, rooted in daily experience with the macroscopic™ world, “utterly fails
to visualize this complex function ofn3 configuration space coordinates, and
time. Nevertheless, some physicists tend to attribute to the wave futction
the objective status that was lost byand p. There is a temptation to believe
that each particle (or system of particldgs a wave function, which is its
objective property. This wave function might not necessarilykh@vn to any
physicist; if its value is needed for further calculations, one would have to make
reasonable assumptions about it, just as in classical statistical physics. Howeve
conceptually, the state vector of any physical system would have a well defined
objective value.

Unfortunately, there is no experimental evidence whatsoever to support thi

3G. N. Lewis,Nature 118 (1926) 874.

4A. H. Compton,Phys. Rev. 21 (1923) 207, 483, 715.

SW. Heisenberg,Z. Phys. 43 (1927) 172;The Physical Principles of the Quantum Theory,
Univ. of Chicago Press (1930) [reprinted by Dover] p. 21.

6C. Davisson and L. H. GermeRhys. Rev. 30 (1927) 705.



The rise of randomness 5

naive belief. On the contrary, if this view is taken seriously, it leads to many
bizarre consequences, called “quantum paradoxes” (see for example Fig. 6.
and the related discussion). These so-called paradoxes originate solely from &
incorrect interpretation of quantum theory. The latter is thoroughly pragmatic
and, when correctly used, never yields two contradictory answers to a well pose
question. It is only thenisuse of quantum concepts, guided by a pseudorealistic

philosophy, which leads to these paradoxical results.

1-2. The rise of randomness

Heisenberg’'s uncertainty principle may seem to be only a bit of fuzziness which
blurs classical quantities. A much more radical departure from classical tenet:
is the intrinsicirreproducibility of experimental results. The tacit assumption
underlying classical physical laws is that if we exactly duplicate all the condi-
tions for an experiment, the outcome must turn out to be exactly the same
This doctrine is calleddeterminism. It is not compatible, however, with the
known behavior of photons in some elementary experiments, such as the on
illustrated in Fig. 1.1. Take a collimated light source, a birefringent crystal such
as calcite, and a filter for polarized light, such as a sheet of polaroid. Two spot:
of light, usually of different brightness, appear on the screen. As the sheet o
polaroid is rotated with respect to the crystal through an aagtee intensities
of the spots vary as cog? and sin%a.

This result can easily be explained biassical electromagnetic theory. We
know that light consists of electromagnetic waves. The polaroid absorbs the
waves having an electric vector parallel to its fibers. The resulting light beam

Fig. 1.1. Classroom demonstration with polarized photons:
Light from an overhead projector passes through a crystal
of calcite and a sheet of polaroid. Two bright spots appear
on the screen. As the polarizer is rotated through an angle
o, the brightness of these spots varies as?casd sind.
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X
Fig. 1.2. Coordinates used to describe o
double refringence: The incident wave E Kk
vector k is along thez-axis; the electric / > z
. . . [ P

vector E is in planexy; and the optic \foo-
axis of the crystal is in plangz. . .

y pang y Optic axis

is therefore polarized. It now passes through the calcite crystal, which has a
anisotropic refraction index. In order to compute the path of the light beam in
that crystal, it is convenient to set a coordinate system as shown in Fig. 1.2
the z-axis along the incident wave vectkr the x-axis perpendicular t& and
to the optic axis of the crystal, and tleaxis in the remaining direction. Then,
the x andy components of the electric vectér propagateindependently (with
different velocities) in the anisotropic crystal. They correspond to the ordinary
and extraordinary rays, respectively. These components are proportional t
cosa and sirn (wherea is the angle betweel& and thex-axis). Theintensities
(Poynting vectors) of the refracted rays are therefore proportional toocasn d
sin? a. This is what classical theory predicts and what we indeed see.
However, this simple explanation breaks down if we want to restate it in
our modern language, where light consists of particles—photons—because eac
photon isindivisible. It does not split. We do not get in each beam photons
with a reduced energlv cog a or hv sin2a (this would correspond to reduced
frequencies). Rather, we gétwer photons with thefull energy hv. To further
investigate how this happens, let us improve the experimental setup, as show
in Fig. 1.3. Assume that the light intensity is so weak and the detectors ar
so fast that individual photons can be registered. Their arrivals are recorde
by printing + or — on a tape, according to whether the upper or the lower
detector was triggered, respectively. Then, the sequence of + and — appea
random. As the total numbers of mark®y+ andN —, become large, we find
that the correspondingrobabilities, that is, the ratiodN+/(N++ N_) and
N—/(N+ + N_) tend to limits which are césa and sirf a. We can see that
empirically, this can also be explained by quantum theory, and moreover this

@%0%

S P H

Fig. 1.3. Light from a thermal source S passes through a polarizer P, a
pinhole H, a calcite crystal C, and then it triggers one of the detectors
D. The latter register their output in a device which prints the results.
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agrees with the classical result, all of which is very satisfactory. On the othe
hand, when we considéndividual events, we cannot predict whether the next
printout will be + or —. We have no explanation why a particular photon went
one way rather than the other. We can only make statemenpsobabilities.

Once you accept the idea that polarized light consists of photons and thi
the latter are indivisible entities, physics cannot be the same. Randomne:
becomes fundamental. Chance must be elevated to the status of an essen
feature of physical behavidr.

Exercise 1.1 Consider a beam of photons having a wave vector k along the
z-axis, and linear polarization initially along the x-axis. These photons pass
through N consecutive identical calcite crystals, with gradually increasing tilts:
the direction O of the optic axis of the mth crystal (m=1, . . . ,N) is given, with
respect to the fixed coordinate system defined above, by G = sinfmm/2N) and
Oy = cosfim/2N). Show that there are 2N outgoing beams. What are their
polarizations? What are their intensities (neglecting absorption)? Show that,
as N - o, nearly all the outgoing light is found in one of the beams, which is
polarized in the y-direction. *

Exercise 1.2 Generalize these results to arbitrary initial linear polarizations.

1-3. Polarized photons

The experiment sketched in Fig. 1.3 requires the calcite crystal to be thicl
enough to separate the outgoing beams by more than the width of the bear
themselves. What happens if the crystal is made thinner, so that the bean
partly overlap? In classical electromagnetic theory, the answer is straightfor
ward. In the separated (non-overlapping) parts of the beams, the electric fiel
is

E = E;cos(kz — wt + é,), (1.1)
for the ordinary ray, and
E = E, cos(kz — wt + §,), (1.2)

for the extraordinary ray. Here, the coordinates are labelled as in FigEJl.2;
and Ey are vectors along th& and y directions; and, anddy are the phase
shifts of the ordinary and extraordinary rays, respectively, due to their passag
in the birefringent crystal. The photons in the non-overlapping parts of the light
beams are said to Heearly polarized in thex andy directions, respectively.

In the overlapping part of the beams, classical electromagnetic theory give

7 Well, this claim is not yet proved at this stage. In fact, it will be seen in Chapter 6 that
determinism can be restored for very simple systems, such as polarized photons, by introducir
additional “hidden” variables which are then treated statistically. However, this leads to serious
difficulties for more complicated systems.
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E =E, cos(kz — wt + &;) + E, cos(kz — wt + §,). (1.3)

For arbitrary 6 = 8- 98y, the result is calledlliptically polarized light [the ellipse

is the orbit drawn by the vectd(t) for fixed z]. This is the most general kind

of polarization. In the special case wheye=tm/2 and(E,J=E,] one has
circularly polarized light. On the other hand, i = 2mn (with integral n),

one has, in the overlapping region, light which is linearly polarized along the
direction of E +Ey, exactly as in the incident beam. This is true, in particular,
when the thickness of the crystal tends to zero, so thatdhahddy vanish.

6=0 8 =m/2 d=m 6 =3n/2

Fig. 1.4. Overlapping light beams with opposite polarizations. For simplicity,
the beams have been drawn with sharp boundaries and they are supposed
to have equal intensities, uniformly distributed within these boundaries. Ac-
cording to the phase differenc® one may have, in the overlapping part of
the beams, linearly, circularly or, in general, elliptically polarized photons.

How shall we describe in terms of photons tverlapping part of the beams?
There can be no doubt that, in the limiting case of a crystal of vanishing thick-
ness, we have linearly polarized light, with properties identical to those of the
incident beam. This must also be true wheneder 2mn. We then have
photons which are linearly polarized in the direction of the origihalWe do
not have a mixture of photons polarized in tkendy directions. If you have
doubts about thi§,you may test this claim by using a second (thick) crystal
as a polarization analyzer. The intensities of the outgoing beams will behave
as cosd and sintt, exactly as for the original beam.

In the general case represented by Eq. (1.3), we likewise obtain in the over
lapping beamslliptically polarized photons—not a mixture of linearly polarized
photons. The special case whelg||= |E,| andd = +7/2 givescircularly
polarized photons. The latter can be produced by placing a quarter wave plate
(gwp) with its optic axis perpendicular o and making a 45° angle witk,
so thatEx = Ey in Fig. 1.2. Conversely, if circularly polarized light falls on a

8You should have doubts about any claim of that kind, unless it can be supported by exper-
imental facts. You will see in Chapter 6 how intuitively obvious, innocent looking assumptions
turn out to be experimentally wrong.
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gwp, it will become linearly polarized in a direction at +45° to the optic axis
of the gwp; the sign + depends on the helicity of the circular polarizatien,
whether the vectoiE(t) moves clockwise or counterclockwise.

Exercise 1.3 Design an optical system which converts photons of given linear
polarization into photons of given elliptic polarization (i.e., with specified values
for & and |Ex/ E|). *

Exercise 1.4 Show that a device consisting of a qwp, followed by a thick
calcite crystal with its optic axis at 45° to that of the qwp, followed in turn by
a second qwp orthogonal to the first one, is a selector of circular polarizations:
Circularly polarized incident photons emerge from it with their original circular
polarization, but in two separate beams, depending on their helicity. What
happens if the optic axes of the gwp are parallel, rather than orthogonal?

Exercise 1.5 Design a selector of elliptic polarizations with properties sim-
ilar to those of the device described in the preceding exercise: All incoming
photons emerge in one of two beams. If the incoming photon has a specified
eliptic polarization (i.e., given values of 6 and |Ex/Ey|) it will always emerge
in the upper beam, and will retain its initial polarization (that means, it would
again emerge in the upper beam if made to pass in a subsequent, similar selec-
tor). Likewise, a photon emerging in the lower beam of the first selector will
again emerge in the lower beam of a subsequent, similar selector. What is the
polarization of the photons in the lower beam? Ans.: They have the inverse
value of (Ex/E,jand the opposite value ef® (these two elliptic polarizations
are calledorthogonal ). *

Exercise 1.6 Redesign the system requested in Exercise 1.3 in such a way
that if two incident photons have given orthogonal linear polarizations, the
outgoing photons will have given orthogonal elliptic polarizations (see the def-
inition in Exercise 1.5). Does this requirement completely specify the optical
properties of that system? Ans. No, a phase factor remains arbitrary. *

Exercise 1.7 Design a device to measure the polarization parameters & and
|Ex/Ey| of a single, elliptically polarized photon of unknown origin. Hint:
First, try the simpler case & = 0: the polarization is known to be linear. It is
only its direction that is unknown. How would you determine that direction,
for a single photon?

1-4. Introducing the quantum language

Have you solved Exercise 1.7? You should try very hard to solve this exercise
Don’t give up, until you are fully convinced that an instrument measuring the
polarization parameters of a single photcannot exist. The question “What is
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the polarization of that photon?” cannot be answered and has no meaning. ;
legitimate question, which can be answered experimentally by a device such ¢
those described above, is whether or not a photon repecdied polarization.

The difference between these two questions is essential and is best understo
with the help of a geometric analogy. A question such as “In which unit cube is
this point?” is obviously meaningless. A legitimate question is whether or not
a given point is inside apecified unit cube. A point can be inside some cube,
and also inside some other cube, if these two cubes overlap.

The analogous “overlapping” property for photon polarizations is the fol-
lowing: Suppose that a photon is prepared with a linear polarization making
an anglex with the x-axis, and then we test whether it is polarized along the
x-axis itself. The answer may well be positive: this will indeed happen with
a probability cos?a. Thus, if | prepare a sequence of photons vgpecified
polarizations, and then | send you these photons without disclosing what ar
their polarizations, there is no instrument whatsoever by means of which yol
could sort these photons into bins for polarizations from 0° to 10°, from 10° to
20°, etc., in a way agreeing with my records. In summary, while fossible
to measure with good accuracy the polarization parametersi (Ex/E, [ of
aclassical electromagnetic wave which contains a huge number of photons, it
is fundamentally impossible to measure those of a single photon of unknown
origin. (The case of a finite number of identically prepared photons is discussec
at the end of Chapter 2.)

The notion of “physical reality” thus acquires a new meaning with quantum
phenomena, different from its meaning in classical physics. We therefore nee
anew language. We shall still use the same words as in everyday’s life, such as
“to measure,” but the meaning of these words will be different. This is similar
to the use, in special relativity, of words borrowed from Newtonian mechanics,
such as time, mass, energy, etc. In relativity theory, these words have meanin
which are different from those attributed to them in Newtonian mechanics;
and some grammatically correct combinations of words raeaningless, for
example, “these events occurred at the same instant at different places.”

We shall now develop a new language to describe the quantum world, and
set of syntactical rules to use that language. In the first chapters of this book
our description of the physical world is a grossly oversimplified model (which
will be refined later). It consists of two distinct classes of objects: macroscopic
ones, described in classical terms—for example, they may be listed in a catalc
of laboratory hardware—and microscopic objects—such as photons, electron:
etc. The latter are represented, as we shall see, by state vectors and the rela
paraphernalia. This dichotomy was repeatedly emphasized by °Bohr:

However far the [quantum] phenomena transcend the scope of classical
physical explanation, the account of all evidence must be expressed in
classical terms. The argument is simply that by the word ‘experiment’

9N. Bohr, in Albert Einstein, Philosopher-Scientist, ed. by P. A. Schilpp, Library of Living
Philosophers, Evanston (1949), p. 209.
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we refer to a situation where we can tell others what we have done and
what we have learned and that, therefore, the account of the experimen-
tal arrangement and the results of the observations must be expressed
in unambiguous language with suitable application of the terminology of

classical physics.

To underscore this point, Bohr used to sketch caricatures of measuring instrt
ments in a pseudorealistic style, such as robust clocks, built with heavy dut
gears, firmly bolted to rigid supports (see for example Plate I, page 2). The
message of these caricatures was unmistakable: They vividly illustrated th
fact that such a macroscopic instrument was only a mundane piece of machii
ery, that its workings could completely be accounted for by ordinary mechanic
and, in particular, that the clock wouft be affected by merelgbserving the
position of its hands.

There should be no misunderstanding: Bohr never claimed that differen
physical laws applied to microscopic and macroscopic systems. He only insiste
on the necessity of using differentodes of description for the two classes of
objects. It must be recognized that this approach is not entirely satisfactory
The use of a specific language for describing a class of physical phenomena
a tacit acknowledgment that the theory underlying that language is valid, tc
a good approximation. This raises thorny issues. We may wish to extend th
microscopic (supposedly exact) theory to objects of intermediate size, such as
DNA molecule. Ultimately, we must explain how a very large number of micro-
scopic entities, described by an utterly complicated vector in many dimension:s
combine to form a macroscopic object endowed with classical properties. Thes
issues will be discussed in Chapter 12.

A geometric analogy

When we study elementary Euclidean geometry—an ancient and noncontrc
versial science—we first introduce abstract notions (points, straight lines, ...
related by axioms, e.g., two points define a straight line. Intuitively, these ab
stract notions are associated with familiar objects, such as a long and narro
strip of ink which is called a “line.” ldentifications of that kind promote Eu-

clidean geometry to the status of a physical theory, which can then be teste
experimentally. For example, one may check with suitable instruments whethe
or not the sum of the angles of a triangle is 180°. This experiment was ac
tually performed by Gaus$, while he was commissioned to make a geodetic
survey of the kingdom of Hanover, in 1821-23. With his surveying equipment,
Gauss found that space was Euclidean, within the accuracy of his observatior
(at least, it was Euclidean for distances commensurate with the kingdom o
Hanover). Yet, this was not a test the axioms of Euclid: Gauss's experimen
tested thephysical properties of light rays, and could only confirm that these

10C. F. GaussWerke, Teubner, Leipzig (1903) vol. 9, pp. 299-319.
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rays were a satisfactory realization of the abstract concept of straight lines. .
hundred years later, precise astronomical tests of Einstein’s theory of gravite
tion showed that light rays are deflected by massive bodies: thegogfaithful
realizations of the straight lines of Euclidean geometry. Actually, no material
object can precisely mimic these ideal straight lines. Nonetheless, Euclidea
geometry is useful foepproximate calculations in the real world. Likewise, we
shall see that the real instruments in a laboratory can appgyoximately mimic

the fictitious instruments of the axiomatic quantum ontology.

Preparations and tests

Let us observe a physicidtin his laboratory. We see him performing two
different kinds of tasks, which can be callpdeparations and tests. These
preparations and tests are the primitive, undefined notions of quantum theor
They are like the points and straight lines in the axioms of Euclidean geometry
Their intuitive meaning can be explained as follows.

A preparation is an experimental procedure that is completely specified, like
a recipe in a good cookbook. For example, the hardware sketched in the le
half of Fig. 1.3 represents a preparation. Preparation rules should preferab
be unambiguous, but thesnay involve stochastic processes, such as thermal
fluctuations, provided that the statistical properties of the stochastic proces
are known, or at least reproducible.

A test starts like a preparation, but it also includes a final step in which
information, previously unknown, is supplied to afbserver (i.e, the physicist
who is performing the experiment). For example, the right half of Fig. 1.3
represents a sequence of tests, and the resulting information is the one print
on the tape. This information is not trivial because, as seen in the figure, test
that follow identical preparations need not have identical outcomes.

Note that a preparation usually involves tests, followed bgelaction of
specific outcomes. For example, a mass spectrometer can prepare a certain t
of particle by measuring the masses of various incoming particles and selectir
those with the desired properties.

The foregoing statements have only suggestive value. They do not properl
define preparations and tests, as this would require prior definitions for the nc
tion of information and for related terms such &®mown/unknown, etc. It is
obvious that the distinction between preparations and tests involves a directic
for the flow of time. The asymmetry between past and future is fundamenta
in the axiomatic structure of quantum theory. It is similar to the fundamental
asymmetry between the past and future light cones in special relativity. Thes

11This book sometimes refers to “physicists” who perform various experimental tasks, such
as preparing and observing quantum systems. They are similar to the ubiquitous “observers
who send and receive light signals in special relativity. Obviously, this terminology does not
imply the actual presence of human beings. These fictitious physicists may as well be inanimat
automata that can perform all the required tasks, if suitably programmed. | used everywhere
for brevity, the pronoun “he” to mean “he or she or it.”
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asymmetries may appear paradoxical because elementary dynamical laws &
invariant under time reversil. However, there is no real contradiction here be-
cause, at the present stage of the discussion, we have not yet affdyedmical
description for preparations and tests, or for the emission and detection of sig-
nals. The macroscopic instruments which perform these tasks are considere
at this stage as unresolved objects. Therefore, time-reversal invariance is los
just as it would be in any elementary problem with external time-dependen
forces. In the final chapters of this book, this approach will be refined and the
macroscopic apparatuses will be considered as dynamical entities. Then, tt
asymmetry in the flow of time—the irreversibility of preparations and tests—
will be explained by arguments similar to those of classical statistical mechanics

Note that we are free tohoose the preparations and tests that we perform.
As stated by Boh¥2 “our freedom of handling the measuring instruments [is]
characteristic of the very idea of experiment.” We may even consider the pos
sible outcomes of mutuallyjncompatible tests (an example is given in the next
section). However, our free will stops there. We are not free to choose the futur
outcome of a test (unless it is a trivial test that can have only one outcome).

We can now define the scope of quantum theory:

In a strict sense, quantum theory is a set of rules allowing the computation of

probabilities for the outcomes of tests which follow specified preparations.

Here, a probability is defined as usual: If we repeat the same preparation mar
times, theprobability of a given outcome is itselative frequency, namely the
limit of the ratio of the number of occurrences of that outcome to the total
number of trials, when these numbers tend to infinity. This ratist tend to

a limit if we repeat thesame preparation (this is the meaning of “same”).

The above strict definition of quantum theory (a set of rules for computing
the probabilities of macroscopic events) is not the way it is understood by mos
practicing physicists. They would rather say that quantum theory is used t
compute the properties of microscopic objects, for example the energy-levels an
cross-sections of atoms and nuclei. The theory can also explain some properti
of bulk matter, such as the specific heat of solids or the electric conductivity of
metals—whenever these macroscopic properties can be derived from those of t
microscopic constituents. Despite this uncontested success, the epistemologic
meaning of quantum theory is fraught with controversy, perhaps because it i
formulated in a language where familiar words are given unfamiliar meanings
Do these microscopic objects—electrons, photons, etc.— really exist, or ar
they only a convenient fiction introduced to help our reasoning, by supplying
intuitive models in circumstances where ordinary intuition is useless? | shall
argue later in this book that the microscopic objects do “exist” in some sens
but, depending on circumstances, their existence may be very éttisive.

12 Exotic phenomena such as® Klecay cannot be the cause of macroscopic time asymmetry;
nor can the expansion of the Universe explain time asymmetry in local phenomena in an isolate
laboratory.

13N. Bohr, Phys. Rev. 48 (1935) 696.

14 An early draft of this book had a Freudian typo here: “illusive” instead of “elusive.”
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1-5. What is a measurement?

Science is based on the observation of nature. Most scientists tend to belie
that there exists an objective reality, which is partly unknown to us. We acquir
knowledge about this reality by means m&asurements. These are processes
in which an apparatus interacts with the physical system under study, in suc
a way that a property of that system affects a corresponding property of th
apparatus. Since themsust be an interaction between the apparatus and the
system, measuring one property of a system necessarily causes a disturbance
some of its other properties. This is true even in classical physics, as we she
see in Sect. 12-2. However, classical physics assumes that the property which
measured objectivelyexists prior to the interaction of the measuring apparatus
with the observed system.

Quantum physics, on the other hand, is incompatible with the propositior
that measurements discover some unknown but preexisting reality. For exampl
consider the historic Stern-Gerlach experirntfemhose purpose was to deter-
mine the magnetic moment of atoms, by measuring the deflection of a neutr:
atomic beam by an inhomogeneous magnetic field. Let us compute the traje
tory of such an atom bglassical mechanics, as Stern and Gerlach would have
done in 1922. (The reader who is not interested in the details of this calculatio
can skip the next page.) The Hamiltonian of the atom is

‘B, (1.4)

where mis the mass of the atorp,its momentum, andt its intrinsic magnetic

O S M D

Fig. 1.5. Idealized Stern-Gerlach experiment: silver atoms evaporate in an
oven O, pass through a velocity selector S, an inhomogeneous magnet M,
and strike a detector D. All the impacts are found in two narrow strips.

Bw. Gerlach and O. SterZ. Phys. 8 (1922) 110; 9 (1922) 349.



What is a measurement? 15

moment. If the latter is due to some kind of internal rotational motion around
a symmetry axis, we have = gS, whereSis the angular momentum around
the center of mass of the atom, agpids a constant—the gyromagnetic ratio—
which depends on the mass and charge distribution around the rotation axi:
The magnetic fieldB is a function ofr, the position of the center of mass of the
atom (the variation oB over the size of the atom is completely negligible).

The classical equations of motion are obtained from the Poisson brackets

F=[r H]p =p/m, (1.5)
pz[va]pB: D(HB)7 (1 6)
2= [HH], =9(nxB). (1.7)

The last equation follows fromSf ,§]., = S;and its cyclic permutations. Note
that the internal variableS have vanishing Poisson brackets with the center of
mass variableg and p.

Equation (1.7) implies thap precesses around the direction Bf This di-
rection cannot be constant in space, since this would violate Maxwell's equatiol
O -B = 0. One can however approximately solve (1.7Bif ,riean value of
B in the magnet gap, is much larger than tlaiation of B in that gap and
if, moreover, the duration of passage of the atom through the magnet is muc
longer than its precession timet/gB. If these conditions hold, the atom will
precess many times around the directionBof , so that we can neglect, on
time average, the components oft orthogonal toB .Let us write B =e; B,
where ejis a unit vector and is a constant. It then follows from (1.7) that
M -e; is a constant, and we can, ortike average, replace U by pye;, where

M1:= W -eq. (1.8)

(The symbol := means “is defined as”.) From Eq. (1.6) we obtain

d
E(el. p) = B, (1.9)

where B' :=(e; - U)(es - B) depends only on the construction of the magnet.

The force (1.6) acts during a time/v, where vis the longitudinal velocity
of the atoms, and. is the length of the magnet. The transverse momentum
imparted to the atoms by this force jigBL/v, and their deflection angle
is u,BL/I2E, where E = %mvz. All these terms, excepfi;, are determined
by the macroscopic experimental setup (the oven, the velocity selector, th
magnet, etc.) and are fixed for a given experiment. The surprising result foun
by Gerlach and Stethwas thatp, could takeonly two values, + .

This result is extremely surprising from the point of view of classical physics,
because Gerlach and Stern could have chosen different orientations for the
magnet, for examplee; and e;, making angles of +120° witle;, as shown in
Fig. 1.6. They would have measured then
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H2= M- e or M3 = - €3, (1.10)

respectively. As the laws of physics cannot be affected by merely rotating the
magnet, they would have found, likewige;, = +p or pz3 = *u This creates,
however, an apparent contradiction when we add Egs. (1.8) and (1.10):

b+ M2+ H3= H-(e1 +e2+ eg)= 0. (1.11)

Obviously, 1 , p, and p; cannot all be equal topt and also sum up to zero.

Of course, it is impossible to measure in this way the valugg ahd |,
andy; of the same atom—the magnet can have only one of the three positions.
There is no need to invoke “quantum uncertainties” here. This is a purely
classical impossibility, inherent in the experiment described by Fig. 1.6. (What

€

Fig. 1.6. Three possible orientations for the Stern-Gerlach magnet, making 120°
angles with each other. The three unit vectefse, and e, sum up to zero.

quantum theory tells us is that this is not a defect of this particular experimenta
method for measuring a magnetic moment: No experiment whatsoever cal
determinep; and W2 and ps simultaneously.) Yet, even if the three experimental
setups sketched in Fig. 1.6 dreompatible, it is certainly possiblé to measure
M2, or 3, instead ofu;. Thus, if we attribute to the word “measurement” its
ordinary meaning, namely the acquisition of knowledge about some objective
preexisting reality, we reach a contradiction.

The contradiction is fundamental. Once we associate discrete values

with the components of a vector which can be continuously rotated,

the meaning of these discrete values cannot be that of “objective” vector

components, which would be independent of the measurement process.

16You may feel uneasy with thisounterfactual reasoning. While we are free to imagine the
possible outcomes of unperformed experiments, Eq. (1.11) goes farther: it involves, simultane
ously, the results of threencompatible experiments. At most one of the mathematical symbols
written on the paper can acquire an actual meaning. The two others then exist only in our
imagination. Is that equation legitimate? Can we draw from it reliable conclusions? Moreover,
Eqg. (1.11) assumes that, in these three possible but incompatible experiments, the magnet
moment of the silver atom has the same orientation. That is, our freedom of choice for the
orientation of the magnet does not affect the silver atoms that evaporate from the oven. If yol
think that this is obvious, wait until after you have read Chapter 6.
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A measurement is not a passive acquisition of knowledge. It is an active pro.
cess, making use of extremely complex equipment, usually involving irreversible
amplification mechanisms. (Irreversibility is not accidental, but essential, if we
want an objective, indelibleecord. The record must be objective, even if the
“physical quantity” to which it refers is not. This point will be discussed in
Chapter 12). Moreover, we musiterpret the experimental outcomes produced
by our equipment. We do that by constructingheoretical model whereby the
behavior of the macroscopic equipment is described by a few degrees of freedor
interacting with those of the microscopic system under observation. We ther
call this a “measurement” of the microscopic system. The logical conclusion
from this procedure was drawn long ago by Kerible:

We have no satisfactory reason for ascribing objective existence to physical
guantities as distinguished from the numbers obtained when we make the
measurements which we correlate with them. There is no real reason for
supposing that a particle has at every moment a definite, but unknown,
position which may be revealed by a measurement of the right kind, or
a definite momentum which can be revealed by a different measurement.
On the contrary, we get into a maze of contradictions as soon as we inject
into quantum mechanics such concepts carried over from the language
and philosophy of our ancestors... It would be more exact if we spoke of
“making measurements” of this, that, or the other type instead of saying
that we measure this, that, or the other “physical quantity.”

As a concrete example, consider again the Stern-Gerlach experiment sketche
in Fig. 1.5. The theoretical model corresponding to it is given by Eq. (1.4). The
microscopic object under investigation is the magnetic momeoft an atom—
more exactly, itgu1 component. The macroscopic degree of freedom to which it
is coupled in this model is the center of mass positigthe coupling is in the
term p-B, since B is a function ofr). | call this degree of freedommacroscopic
because different final values ofcan be directly distinguished by macroscopic
means, such as the detectors sketched in Fig. 1.5 (see Exercise 1.8). Fro
here on, the situation is simple and unambiguous, because we have entered t
macroscopic world: The type of detectors and the details of their functioning
are deemedrrelevant. No additional theoretical model is needed to interpret
the conspicuously macroscopic event which occurs when a particular detectc
is excited. The use of these detectors is only a convenient amplification of ai
existing signal, for the benefit of the experimenter.

Nevertheless, if we have doubts about this interpretation, we can displac
the arbitrary boundary between the microscopic and the macroscopic worlds
We have the right to consider the numerous atoms in the detectors as adc
tional parts of the observed system, to include all their degrees of freedom ir
the Hamiltonian (with all the interactions between these atoms and those o

17E. C. Kemble,The Fundamental Principles of Quantum Mechanics, McGraw-Hill, New
York (1937) [reprinted by Dover] pp. 243-244.
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the atomic beam) and to imagine an additional, larger apparatus observing th
whole thing. Consistency requires that the result of observing the detectors b
another instrument is the same as if the detectors themselves are considered
the ultimate instrument. This is what is meant by the claim that there is an
objective record of the experiment. The role of physics is to study relationships
between these objective records. Some people prefer to use the word “inter
subjectivity,” which means that all observers agree about the outcome of any
particular experiment. Whether or not there exists an objective “reality” be-
yond the intersubjective reality may be an interesting philosophical proBlem,

but this isnot the business of quantum theory. As explained at the end of
Sect. 1-4, quantum theory, in a strict sense, is nothing more than a set of rule
whereby physicists compute probabilities for the outcomes of macroscopic tests

Exercise 1.8 Show that, in the Stern-Gerlach experiment, the quantum me-
chanical spreading of the wave packet of a free silver atom is negligible. There-
fore the motion of its center of mass can safely be treated by classical mechanics,
once the magnetic moment of the atom does not interact with external fields.
Hint: What is the diffraction angle of a beam with A = h/p and aperture
determined by the collimators in the Sern-Gerlach experiment?

Exercise 1.9 Rewrite the Stern-Gerlach calculation in quantum notations,
with commutators instead of Poisson brackets, and with Srepresented by 2 x 2
matrices. Is Eq. (1.11) till valid? Where will the classical argument which led
to a contradiction break down?

Exercise 1.10 What are the possible values of S, S and S, for a particle of
spin S = :;’? Can you combine these values so that & + %/2 +82=S(S+ 1)

1-6. Historical remarks

The interference properties of polarized light were discovered in the early 19th
century by Arago and Fresné&l. Decades before Maxwell, the phenomenology
sketched in Fig. 1.4 was known. The crisis of classical determinism could there
fore have erupted already in 1905, as soon as it became apparent from the wo
of Planck! and Einstein? that light consisted of discrete, indivisible entities.
But at that time, no one was worried by such difficulties, because too many
other facts were unexplained. Nobody knew how to compute the frequencie:
of spectral lines, nor their intensities. In fact, nobody understood why atoms
were stable and could exist at all.

Progress was slow. First, came the “old” quantum theory. In 1913, 2Bohr
suggested that the only stable electronic orbits were those for which the angula

188, d’Espagnat,Une incertaine réalité, Bordas, Paris (1985); English transReality and
the Physicist, Cambridge Univ. Press (1989).

19, Arago and A. Fresnelnn. de Chimie et Physique 10 (1819) 288.

20N. Bohr, Phil. Mag. 26 (1913) 1, 476, 857.
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MEMOIRE

Sur I' Action que les rayons de lumiére polarises
exercent les uns sur les autres.

Par MM. ARAGO et FRESNEL

AvanT de rapporter les expériences qui font I'objet de
ce Mémoire, il ne sera peut-étre pas inutile de rappeler
quelgues-uns des beaux résultats que 1eTBomas
Young avait déja obtenus en étudiant, avec cette raro
sagacité qui le caractérise, l'influence que, dans cer-
taines circonstances, les rayons de lumiére exercent les
uns sur les autres.

1°. Deux rayons de lumiére homogene, émanant dine
méme source, qui parviennent en un certain point
de l'espace par deux routefifférentes et |égérement
inégales, s’ajoutent ou se détruisent, forment sur I'écran
qui les recoit un point clair ou obscur, suivant que la
différence des routes a telle ou telle autre valeur.

2°. Denx rayons s’ajoutent constamment la ou ils ont
parcouru des chemins égaux: si I'on trouve qu'ils s'a-
joutent de nouveau quand la différence des deux chemins

Fig. 1.7. The historic paper of Arago and Fregrai the interference of
polarized light starts by recalling “some of the beautiful results already
obtained by Dr. Thomas Young on the interference of light rays.”

momentum was an integral multiple ¢f/21t. Planck’s constanh, originally
introduced to explain the properties of thermal radiation, was found relevant to
the mechanical properties of atoms too. Unfortunately, Boadsoc hypoth-

esis, which correctly gave the energy levels of the hydrogen atom—the simples
atom—already failed for the next simplest one, helium.

Exercise 1.11 Bohr’s model for the helium atom consists of two electrons
revolving at diametrically opposed points of a circular orbit, around a point-like
nucleus at rest. Find the lowest energy level from the condition that the angular
momentum of each electron is . Compare your result with the experimental
ionization energy of helium.

Bohr's hypothesis was generalized by WiKoand Sommerfeléfto dynami-
cal systems with several separable degrees of freedom, and then by Elnetein

21w, wilson, Phil. Mag. 29 (1915) 795.
22A. Sommerfeld, Ann. Physik 51 (1916) 1.
23A, Einstein, Verh. Deut. Phys. Gesell. 19 (1917) 82.
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systems which were not separable, but still were integrable. However, more ger
eral aperiodic phenomena, such as the scattering of atoms or their interactic
in the formation of molecules, remained practically untouched.

The next progress was due to de BrogdfieHis doctoral thesis, submitted
in 1924, was effectively the counterpart of the hypothesis that Einstein had
proposed in 1905 to explain the photoelectric effect. Not only were electro-
magnetic waves endowed with particle-like properties, but material particles
such as electrons could display wave-like behavior. The relationshkifh/ A
was universal, and Bohr's angular momentum postulate simply meant that th
length of an electronic orbit was an integral number of electronic wavelengths
This unified view of nature was aesthetically appealing, but it could not yet be
considered as a consistent theory.

The following year, Heisenbefyinvented a “matrix mechanics” in which
energy levels were the eigenvalues of infinite matrices. Laftsbewed that
Heisenberg’s infinite matrices could be represented as singular kernels in inte
grals and was able to derive an integral equation whose eigenvalues were the
verse energy levels. However, Lanczos’s work attracted little attention because
it was soon superseded by Schrddinger's “wave mechanics” in which energy lev
els were the eigenvalues ofdifferential operator (which is notoriously easier
to use than an integral operator). Schrodinger, who was led to his theory b
a study of de Broglie’'s work, also proved the mathematical equivalence of his
approach and that of Heisenbérg.

The “new” quantum theory became known as quantum mechanics and deve
oped very rapidly. There were important contributions by Born and Jé#dan
and especially by Dirgé, who successfully guessed a relativistic wave equation
for the electron. Quantum mechanics was unambiguous and mathematically
consistent. It allowed to compute not only the properties of the hydrogen
atom, but also those of the helium atom—in principle those of any atom, an)
molecule, anything for which the potential was known. It would correctly pre-
dict the probabilities for photons to go one way or the other in a calcite crystal
but, on the other hand, it could not predict the path taken hyarticular
photon. Therefore that theory wasssentially statistical.

Not everyone was happy with this novel feature, in particular Einstein was
not. He clearly understood that the meaning of quantum mechanics could onl
be statistical. He wrote, near the end of his 3ife:

One arrives at very implausible theoretical conceptions, if one attempts
to maintain the thesis that the statistical quantum theory is in principle

24L. de Broglie, Ann. Physique (10) 3 (1925) 22.

25W. Heisenberg,Z. Phys. 33 (1925) 879.

26K, Lanczos, Z. Phys. 35 (1926) 812.

27E. Schradinger,Ann. Physik 79 (1926) 361, 489, 734.

28M. Born and P. JordanZ. Phys. 34 (1925) 858.

29p. A. M. Dirac,Proc. Roy. Soc. A 117 (1928) 610.

30A. Einstein, in Albert Einstein, Philosopher-Scientist, ed. by P. A. Schilpp, Library of
Living Philosophers, Evanston (1949), pp. 671-672.
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capable of producing a complete description of an individual physical
system. . .I am convinced that everyone who will take the trouble to carry
through such reflections conscientiously will find himself finally driven to
this interpretation of quantum-theoretical description (thdunction is

to be understood as the description not of a single system but of an en-
semble of systems). . . There exists, however, a simple psychological reason
for the fact that this most nearly obvious interpretation is being shunned.
For if the statistical quantum theory does not pretend to describe the
individual system (and its development in time) completely, it appears
unavoidable to look elsewhere for a complete description of the individual
system. . . Assuming the success of efforts to accomplish a complete physical
description, the statistical quantum theory would, within the framework of
future physics, take an approximately analogous position to the statistical
mechanics within the framework of classical mechanics. | am rather firmly
convinced that the development of theoretical physics will be of that type;
but the path will be lengthy and difficult.

Since the inception of quantum mechanics, many theorists have labored 1
prove, or disprove, the possible existence of theories with “hidden variables
whereby the quantum wave function would be supplemented by additional dat
in order to restore a neoclassical determinism. The unexpected result of the
investigations were proofs by B&lland by Kochen and Speck&rthat hidden
variables could actually be introduced in such a way that statistical averages
over their values reproduced the results of quantum mechanics. There we
however a heavy price to pay for this reinstatement of determinism: the hidde
variables of two widely separated and noninteracting systems were, in som
cases, inseparably entangled. Therefore determinism could be restored only
the cost of abandoning the axiom of separability—the mutual independence
very distant systems—which until that time had been considered as obviou:
This quantum inseparability will be discussed in Chapter 6. Its philosophical
implications are profound. They have been the subject of a lively debate whic
will probably continue for many years to come.
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the world itself is unequivocally rejected.” There is therefore no real conflict between
Ballentine and Stapp, except that one of them calls Copenhagen interpretation wha
the other considers as the exact opposite of the Copenhagen interpretation.



Chapter 2

QuantumTests

2-1. What is a quantum system?

A quantum system is a useful abstraction, which frequently appears in the
literature, but does not really exist in nature. In general, a quantum system
defined by arequivalence class of preparations. (Recall that “preparations” and
“tests” are the primitive notions of quantum theory. Their meaning is the set o
instructions to be followed by an experimenter.) For example, there are man
equivalent macroscopic procedures for producing what we call a photon, or
free hydrogen atom, etc. Theguivalence of different preparation procedures
should be verifiable by suitable tests.

The ambiguity of these notions emerges as soon as we think of concret
examples. Is a hydrogen atom in p Sate the same system as one insa 1
state? Or is it the same system as a hydrogen atom @st@td accompanied
by a photon? The answer depends on the problem in which we are intereste
energy levels or transition rates. In a Stern-Gerlach experiment, we have se
(page 17) that the “guantum system” nst a complete silver atom. It is only
the magnetic momemt of that atom, because the goal of the Stern-Gerlach
test is to determine a component jof The center of mass of the atom can
be treated classically. These examples show that we must be content with
vague “definition” A quantum system is whatever admits a closed dynamica
description within quantum theory.

While quantum systems are somewhat elusive, quardiates can be given
a clearoperational definition, based on the notion dést. Consider a given
preparation and a set of tests, among which some are mutually incompatible,
in Fig. 1.6. If these tests are performed many times, after identical preparation
we find that the statistical distribution of outcomes of each test tends to a limi
Each outcome has a definite probability. We can then define a state as follow
A dtate is characterized by the probabilities of the various outcomes of every
conceivable test.

This definition is highly redundant. We shall soon see that these probabilitie
are not independent. One can specify—in many different ways—a restricted s

24
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of tests such that, if the probabilities of the outcomes of these tests are know
it is possible to predict the probabilities of the outcomes of every other test
(A geometric analogy is the definition of a vector by its projectionsewvery
axis. These projections are not independent: it is sufficient to specfiyite
number of them, on a complete, linearly independent set of axes.)

Before we examine concrete examples, the notiorprabability should be
clarified. It means the following. Weémagine that the test is performed an
infinite number of times, on an infinite number of replicas of our quantum
system, all identically prepared. This infinite set of experiments is called a
statistical ensemble. It should be clearly understood that a statistical ensemble
is a conceptual notion—it exists only in our imagination, and its use is to
help our reasonind.In this statistical ensemble, the occurrence of evehtas
relative frequencyP{ A}; it is this relative frequency which is calledpsobability.

To actually measure a probability, the best we can do is to repeat the same
experiment a large (but finite) number of tideShe more we repeat it, the
smaller will be the expected difference between the measured relative frequen
and the true probability.

As a simple example of definition of a state, suppose that a photon is sai
to have right-handed polarization. Operationally, this means that if we sub
ject that photon to a specific test (namely, a quarter wave plate followed by
suitably oriented calcite crystal) we can predigth certainty that the photon
will exit in a particular channel. For any other test, consisting of arbitrarily
arranged calcite crystals and miscellaneous optically active media, we can the
predict probabilities for the various exit channels. (These probabilities are com-
puted in the same way as the classical beam intensities.) Note that the wo
“state” does not refer to the photon by itself, but to an entire experimenta
setup involving macroscopic instruments. This point was emphasized by Bohr:

There can be no unambiguous interpretation of the quantum mechanics
symbols other than that embodied in the well-known rules which allow to
predict the results to be obtained by a given experimental arrangement
described in a totally classical way.

More generally, we may relate a quantum state to a set of equivalent exper
mental procedures—provided that it is in principle possible to verify that these
procedures are indeed equivalent. For instance, we may use quarter wave pla
supplied by different manufacturers, or we may devise an altogether differen
method to analyze circular polarization. Occasionally, we may even renounct
the use of any equipment, and consider purely mental experiments, as long ¢
we are sure that a real experiment is possibleprinciple. For example, it is
perfectly legitimate to consider the state of an electron located at the center c
the Sun. A measurement of a spin component of that electron is undoubtedl

1Repeating an experiment a million times does produce an ensemble. It only makese
very complex experiment, involving a million approximately similar elements. (In this book,
the termassembly is used to denote a set of almost identical systems.)

2N. Bohr, Phys. Rev. 48 (1935) 696.
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very difficult, and it is ruled out for sure by budgetary constraints; but it is
not ruled out by the laws of physics—as they are known today. Therefore |
is legitimate to use quantum mechanics to compute the physical properties
a stellar plasma, just as it is used to discuss metallic conduction, or heliur
superfluidity, that we observe in our laboratory.

The essence of quantum theory is to provide a mathematical representati
of states (that is, gbreparation procedures), together with rules for computing
the probabilities of the various outcomes of any test. Our first task thus is to g
acquainted with the phenomenology of quantum tests. | shall start by listin
some basicempirical facts. The conceptual implications of these facts will be
analyzed, and then elevated to the status of “postulates.” However, it will not b
possible to derive the complete formal structure of quantum theory from thes
empirically based postulates. Additional postulates will have to be introducec
with mathematical intuition as our only guide; and the consequences derive
from these new postulates will have to be tested experimentally.

Before we enter into these details, the nature of a quantum test must
clearly understood. A test is more than the mere occurrence of an unpredictal
event, such as the blackening of a grain in a photographic plate, or an elect
discharge in a particle detector. To be interesting to physicists, these macr
scopic events must be accompanied by a theoretical interpretation. As explain
above, the latter must be parttyassical.

For example, the firing of one of the photodetectors in Fig. 1.3 is interprete
as the arrival of a polarized photon, because we tacitly use the rules of classic
electromagnetic theory, according to which a beam of light is split by a calcit
crystal into two beams with opposite polarizations. Likewise, the Stern-Gerlacl
experiment is interpreted as the measurement of a magnetic moment, becal
it could indeed be such a measurement if we just sent litle compass need|
through the Stern-Gerlach magnet, instead of sending silver atoms. When n
clear physicists measure cross sections, they assume that the nuclear fragm
trajectories are classical straight lines between the target and the various dett
tors. Without this assumption, the macroscopic positions of the detectors cou
not be converted into angles for the differential nuclear cross sections. And whe
spectroscopists measure wavelengths by means of diffraction gratings, they v
classical diffraction theory to convert their data into wavelengths. Quantun
theory appears only at thaext stage, to explain, or predict, the possible values
of the magnetic moment, the cross sections, the wavelengths, etc.

Here, you may ask: Why can’'t we describe the measuring instrument b
quantum theory too? We can, and we shall indeed do that later, in order f
prove the internal consistency of the theory. However, this only shifts the imagi
nary boundary between the quantum world—which is an abstract concept—ar
the mundane, tangible world of everyday. If we quantize the original classica
instrument, we need another classical instrument to measure the first one, a
to record the permanent data that will remain available to us for further study

This mental process can be repeated indefinitely. Some authors state th
the last stage in this chain of measurements involves “consciousness,” or tl
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“intellectual inner life” of the observer, by virtue of the "principle of psycho-
physical parallelisni>* Other authors introduce a wave function for the whole
Universe® In this book, | shall refrain from using concepts that | do not un-
derstand. The internal consistency of the theory will simply mean that if an
instrument is quantized and observed by another instrument, whose descripti
remains classical, the result obtained by the second instrument must agree w
the result that was registered by the first one, when the first one was describg
classically. More precisely, the probability for obtaining conflicting results must
be arbitrarily low. This requirement imposes conditions on what can legiti-
mately be called a measuring apparatus. It will be shown that an apparat
must have enough degrees of freedom to belaeeersibly in a thermodynamic
sense. This will establish the consistency of our approach.

2-2. Repeatable tests

Consider two consecutive identical tests, following each other with a negligible
time interval between them. If these tests always vyield identical outcomes
they are calledrepeatable. (The term “repeatable” is used to refer to tests
whose outcomes are intrinsicallynpredictable, except statistically, for most
preparations that may precede these tests. The term “reproducible” refers t
phenomena having a fullpredictable behavior.)

For example, consider two identical calcite crystals, arranged for testing the
linear polarizations of incoming photons, as in Fig. 2.1. There are three de
tectors. It is found empirically that only the upper and lower ones may be
excited; the central one never is. This is indeed what classical electromagnet
theory predicts for light rays: any trajectory different from those indicated by
the dotted lines is impossible to achieve. Note thatmwuet tacitly imagine the
existence of quasi-classical paths, as indicated by the dotted lines, because t
is the only way of interpreting the outcome of the experiment. Without some
kind of interpretation, experiments are meaningless.

There is, however, a delicate point here: We also tacitly assume that th
route followed by a photon, when it is tested by the first calcite crystal, does no
depend on the existence of the second calcite crystal that we placed between 1
first one and the detectors. We believe that this photon would have followed th
same route even if the second crystal had not been present. Such an assumpt
is needed in order to be able to say that theretwoeconsecutive tests here,
and to compare their results, in spite of the fact that the result of the first tes
is not recorded, but only inferred. This assumption is natural, because of ou

3J. von NeumannMathematische Grundlagen der Quantenmechanik, Springer, Berlin
(1932) p. 223; transl. by E. T. BeyeMathematical Foundations of Quantum Mechanics,
Princeton Univ. Press, Princeton (1955) p. 418.

4E. P. Wigner,Symmetries and Reflections, Indiana Univ. Press, Bloomington (1967) p. 177.

5J. B. Hartle and S. W. Hawking?hys. Rev. D 28 (1983) 2960.
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deeply rooted classical prejudices—we have a tendency to imagine that ea
photon follows a well defined trajectory. However, this assumption is obviously
counterfactual, and it is not verifiable. Counterfactual experiments will further
be discussed in Chapter 6, where it will be seen that our intuition is not at al
a reliable guide in the quantum domain.

"~ .~

Fig. 2.1. A repeatable test: the second calcite crystal
always confirms the result given by the first one.

Not every test is repeatable. For example, if identical quarter wave plate
were affixed to theright of each calcite crystal in Fig. 2.1, there would be three
outgoing rays, rather than two, emerging from the second crystal (the centr
detector would be excited as frequently as the two others combined). In th
case, the photons leaving the first test would be circularly polarized. This i
not the kind of polarization that is tested by these calcite crystals—therefor:
the modified tests would not be repeatable.

These tests would also not be repeatable if an optically active fluid were
introduced between the two crystals, causing a rotation of the polarizatio
plane. Likewise, two consecutive identical Stern-Gerlach experiments, with thei
magnetic fields parallel, may yield conflicting results if they are separated by
region where a perpendicular magnetic field causes a precession of the magne
moment of the atom. The dynamical evolution of quantum systems will be
discussed in Chapter 8. In the present chapter, it is assumed that consecut
tests follow each other so rapidly that we can neglect any dynamical evolutio
between them.

Another example of nonrepeatable test is the standard method for measuri
the momentum of a neutron, by observing the recoil of a proton in a photo
graphic emulsion or in a bubble chamber. It is obvious that the momentun
of the neutron after the measurement cannot be the same as before it. TI
example clearly shows that a good measurement is not necessarily repeatal
contrary to careless statements such as

From physical continuity, if we make a second measurement of the same
dynamical variable immediately after the first, the result of the second
measurement must be the same as that of the first.

6P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press (1947), p. 36.
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This gives the impression that every correctly done test is necessarily repeatable
Actually, repeatable tests are the exception, not the rule. They exist mostly ir
the imagination of theorists. They are idealizations, like rigid bodies, or Carnot
engines; and like them, they are useful in theoretical discussions. The reaso
will soon be obvious, when we consider consecutive testsdiffat from each
other (see Sect. 2-4).

In most of this book, | shall therefore assume that tests have been designe
so as to be repeatable, and the word “test” will meaepeaatable test, unless
specified otherwise. However, it must be emphasized that nonrepeatable test
are the most common variety. Moreover, they may yietile information than
ideal repeatable tests, as you will see in Chapter 9.

2-3. Maximal quantum tests

Let N be the maximum number of different outcomes obtainable in a test of
a given quantum system. Assumieto be finite, for simplicity (the case of
infinite N will be discussed in Chapter 4). Then, any test that has exactly
N different outcomes is callednaximal or complete. For example, the Stern-
Gerlach experiment sketched in Fig. 1.5 is a complete test for the value of ¢
component of a magnetic moment. It always has, irrespective of the orientatior
of the magnet, (+ 1) different outcomes for atoms of smnAn incomplete

test is one where some outcomes are lumped together, for example, becaus
the experimental equipment has insufficient resolution. This is not necessarily
a defect. We shall see (Chapter 12) that a low resolution may be advantageol
in some applications, and that “fuzzy measurements” sometimes are those fror
which we can extract the most interesting information. They should not be
confused withimperfect tests, whose outcomes are afflicted by various detector
inefficiencies (including false alarms).

The adjectivemaximal or complete should not be misunderstood. A linear
polarization test, such as the one sketched in Fig. 1.3, is complete only with
respect to the polarization of the photon. It yields no information about other
properties that the photon may have, such as its position or momentum. Like:
wise, the Stern-Gerlach experiment (Fig. 1.5) is a complete test for spin, while
other degrees of freedom are ignored. In practice, the result of each one of thes
tests is observed bgorrelating the value of the internal degree of freedom (po-
larization or spin) which is being tested, to thasition of the outgoing particle,
which can then be detected by macroscopic means.

The notion of completeness of a quantum test is radically different from
its counterpart in classical physics. For example, in classical mechanics, it
is possible to specifyll the components of the angular momentudnof a
rotating body. A complete description of the bodwst therefore include all
of them. However, when we attempt to measure the componendsobfvery
small systems such as atoms, we fierdpirically that the measurement of
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one of the components af not only precludes the measurement of the other
components, but it even alters the expected values of these other componel
in an uncontrollable way. An example was given in Sect. 1-5 when we discusse
the Stern-Gerlach experiment. It was shown that the atom had to precess ma
times around the direction ® —the mean value of the magnetic field—so tha
the components ofl perpendicular ta were randomized. This result may
appear at first as an irrelevant practical difficulty, due to the limitations of
the experimental setup chosen by Gerlach and Stern. However, this difficult
becomes a matter of principle in quantum theory. To be precise, ihaese to

use quantum theory as the tool for interpreting the results of our experiment:
it is impossible toexactly determine more than one component of the angular
momentum.” We can onlychoose the component which we want to determine.

This limitation does not preclude the use of quantum mechanics for comput
ing the motion of a gyroscope, say, if we wish to do so. We shall see that, i
the semiclassical limith » & , it is in principle possible to reduce the uncer-
tainty in each one of the componentsJofo a value of the order afJk.  This
uncertainty is utterly negligible for macroscopic systems, such as gyroscope:
Quantum limitations, as mentioned above, arise only when we want to reduc
the uncertainty in one of the componentsJofo less than/J#.

It should be clear that the interpretation of raw experimental data alway:
necessitates the use sdme theory. Concepts such as “angular momentum” are
parts of the theory, not of the experiment. Moreoweryrespondence rules are
needed to relate the abstract notions of the theory to our laboratory hardwar
It is the theory—together with its correspondence rules—which tells us wha
can, or cannot, be measured. What does not exist in the theory cannot |
observed in any experiment to be described by that theory. Conversely, anythi
described by the theory is deemed to be observable, unless the theory its
prohibits to observe it. To be acceptable, a theory must have predictive powe
about the outcomes of the experiments that it describes, so that the theory c
eventually fail. A “good” theory is one which does not fail in its domain of
applicability. Today, in our present state of knowledge, quantum theory is the
best available one for describing atomic, nuclear, and many other phenomen

According to quantum theory, we havecloice between different,mutually
incompatible tests. For example, we may orient the Stern-Gerlach magnet ir
any direction we please. Why then is such a Stern-Gerlach test catigllete?

The reason can be stated as the following postulate:

A. Statistical determinism. If a quantum system is prepared
in such a way that it certainly yields a predictable outcome in a
specified maximal test, the various outcomes of any other test have
definite probabilities. In particular, these probabilities do not de-
pend on the details of the procedure used for preparing the quantum
system, so that it yields a specific outcome in the given maximal test.
A system prepared in such a way is said to be in a pure state.

"There is one exceptiorall the components offl may vanish simultaneously.
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The simplest method for producing quantum systems in a given pure state i
to subject them to a complete test, and to discard all the systems that dic
not yield the desired outcome. For example, perfect absorbers may be inserte
in the path of the outgoing beams that we do not want. When this has beer
done, all the past history of the selected quantum systems becomes irrelevant.

The fact that a quantum system produces a definite outcome, if subjected to
specific maximal test, completely identifies the state of that system, and this is
the most complete description that can be given of &.

The next definition we need is that of equivalent tests:

B. Equivalence of maximal tests. Two maximal tests are
equivalent if every preparation that yields a definite outcome for
one of these tests also yields a definite outcome for the other
test. In that case, any other preparation (namely one that does
not yield a predictable outcome for these tests) will till yield the
same probabilities for corresponding outcomes of both tests.

For example, a Stern-Gerlach experiment measudngfor arbitrary spin) is
equivalent to an experiment measuring)¥, or 1/0, —#+/2), or any other
single valued function ofl,. It is important to note that postula® demands
that N different preparations yieldlefinite and different outcomes for each
one of the maximal tests. Equivalence is not guaranteed for tests that merel
yield, in some cases, identicptobabilities. For example, consider two crystals
which can test linear polarization. Each one of these crystals, regardless of it
orientation, will split an incoming beam of circularly polarized light into two
beams of equal intensities, so that both tests always agree, statistically, in th
special case of circularly polarized light (fboth circular polarizations!). This
trivial result gives of course no information as to what would happen if a beam
of linearly polarized light impinged on one of these crystals, and in particular
whether that beam would be split in the same proportions by both crystals.
In real life, most preparations do not yield pure states,nfixéd ones. After
an imperfect preparation, no maximal test has a predictable outcome. Fo
example, photons originating from an incandescent lamp are in a mixed stat
of polarization. In this particular case, their polarization is completatydom.
Any test for polarization (whether linear, circular or, in general, elliptic) should
yield approximately equal numbers of photons with opposite polarizations, if
the apparatus has the same efficiency for both outcomes of that test. Such &
apparatus is calledinbiased, and we shall henceforth consider only unbiased
tests. This example suggests the following generalization:

C. Random mixtures. Quantum systems with N states can be
prepared in such a way that every unbiased maximal test has the
same probability, N-1, for each one of its outcomes.

8Any attemp t to supplement this description by means of additional “hidden” variables leads
to serious difficulties. See discussion in Chapter 6.
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A random mixture is the state that corresponds toraplete lack of knowledge

of the past history of the quantum system. To avoid a possible misunderstan
ing, | again emphasize that a “quantum system” is definethdget of quantum

tests under consideration. For example, if we consider experiments of the Stern-
Gerlach type, which test a component of the magnetic moment, the quantu
state of a silver atom emerging from the oven involves only the magnetic ma
ment p of that atom—its center of masscan be treated classically (see p. 17).
Obviously, that quantum state is a random mixture.

PostulateC seems innocuous, but it has far reaching consequences. Firs
we note that, for each quantum system, the state which is a random mixtu
is unique (there cannot be several distinct types of random mixtures). This
follows from the very definition of a state, namely the set of probabilities for
the various outcomes of every conceivable test. All these probabilities are equ
to N ~1. Moreover, this unique random mixture dgnamically invariant. This
can be shown as follows: An unbiased maximal test may include doing nothin
but waiting, for a finite time. In that case, a quantum system, initially preparec
as a random mixture, and allowed to evolve according to its internal dynamice
properties, must remain in the state which is a random mixture. If it weren't
so, the “idle test” would yield probabilities different from™, contrary to the
definition of a random mixture. Postula@ may therefore be called tHeaw of
conservation of ignorance. We shall see in Chapter 9 that this a special case of
the law of conservation of entropy for an isolated system.

Note that true randomness is a much stronger property than mere “disorder
and that total ignorance is radically different from incomplete knowledge. The
distinction is fundamental, as the following exercises show. (Their solution
requires a statistical assumption callBdyes's rule, which is explained in an
appendix at the end of this chapter, for readers who are not familiar with thi
subject. Additional exercises can be found in that appendix.)

Exercise 2.1 One million photons, linearly polarized in the x-direction, and
one million photons, linearly polarized in the y-direction, are injected into a
perfectly reflecting box® where these photons can move (in the *z-direction)
with no change of their polarizations. No record is kept of the order in which
these photons are introduced in the box (only the total numbers are recorded).
A second, similar box contains one million photons with clockwise circular po-
larization, and one million photons with counter-clockwise circular polarization.
You are given one of these boxes, but you are not told which one. Can you find
out how that box was prepared, by testing each photon, in a way which you
choose? What is the probability that you will make a wrong guess? Ans.:
About (4r x 16F) ~¥2, if you have perfect photodetectors (see below).*

Exercise 2.2 Repeat the preceding exercise, assuming now that the photo-
detectors have “only” 99% efficiency.

°The size of the box is much larger than the coherence length of the photons, so that yo
can ignore the consequences of the Bose statistics that photons obey.
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Exercise 2.3 Suppose that you have successfully performed an experiment
which solves Exercise 2.1: You tested all the photons for one of the types of
polarization, and you found unequal numbers of the two possible outcomes of
these tests. You now hand on all these photons to another physicist, without
telling him the result that you obtained. Can he find out which is the type of
polarization that you tested? (Assume that all photodetectors are perfect and
allow repeatable tests.)

2-4. Consecutive tests

To be acceptable, a theory must have predictive power about the outcomes ¢
some experiments. We are therefore led to considerelations between the
outcomes of consecutive tests. The simplest case, namely identical tests, wi
discussed in Sect. 2-2. A situation more instructive than identical consecutive
tests is that oflifferent consecutive tests, such as those illustrated in Fig. 2.2,
which represents a double Stern-Gerlach experiment for particles of spin 1.

PR

Fig. 2.2. Two consecutive Stern-Gerlach experiments for particles of spin 1. The
drawing has been compressed by a factor 10 in the longitudinal direction.

Let |  denote the intensities of the three beams leaving the first magnet. (If
the source of particles is unpolarized, all {ae are equal, by postulat€, but
for our present purpose we need only assume that none of, thenishes.) Let
the angular separation of these three beams be sufficient, sahéyato not
overlap when they enter the second magnet. Yet, that separation should no
be too large, so that the second magnet performs essentially the same test f
each one of the three beams that impinge on it. If these conditions are satisfiec
it becomes possible to imagine the existence of quasi-classical trajectories—a
we did for Fig. 2.1—in order to give a meaning to the experiment. We want
to consider the setup shown by Fig. 2.2twe consecutive tests, rather than a
single test with nine possible outcomes. Therefore we imagine that each impac
on the detector plate is the end point of a trajectory which is not seen, but whict
can be calculated semi-classically. The location of the impact point reveals no
only the outcome of the final test, but also the outcome of the test performec
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with the first magnet. (Moreover, we assume tiHahe second magnet had
not been there, the trajectory through the first magmetld have remained
the same. As explained above, this is a natural, but unverifiable, counterfactu:
assumption.)

Taking all these assumptions for granted, the nine spots on the detector pla
can be unambiguously identified as corresponding to outc@nlesand c of the
first test, and outcomes, B, andy of the second test (Latin and Greek letters
will be used to label the outcomes of the first and second test, respectively)
Let I ,m be the observed intensities of the nine spots on the detector plate. |
no particle is lost in transit, we ha\ZeuIum =1 . Define now a new matrix
Pum = I um/Im, which therefore satisfies

S Pum = 1. 2.1)
u

(Matrices with nonnegative elements which satisfy the above equation are calle
“stochastic” in probability theory.)

In the experiment sketched in Fig. 2.2, the first test is not only complete, bu
also repeatable: its different outcomes are preparations of pure states. Therefc
the matrix P, is a probability table for the observation of outcopaéollowing
the preparation of pure stata. This probability matrix depends solely on the
properties of the two tests that are involved in the experimental setup. It doe
not depend on the properties of the source of particles.

It will now be shown thaP,, satisfies not only (2.1), but also

% Pum = 1. (2.2)

Matrices with nonnegative elements satisfying both (2.1) and (2.2) are callec
“doubly stochastic.” They have remarkable properties which will soon be used

The proof of Eq. (2.2) is based on the obvious fact that any combination of
consecutive tests can be considered as a single test. In general, this combir
test may be biased, even if the individual tests are not. For example, in Fig. 2..
we couldselect one of the outcomes of the first test before performing the second
one, by placing an absorber in one of the beams, between the two crystal
Likewise, in Fig. 2.2, we could bias the final result by performing a selection
among the beams which leave the first magnet or, more gently, by subjectin
them to an additional inhomogeneous magnetic field in order to cause differer
precessions of the magnetic moments of the atoms. Suppose however that \
are careful not to introduce any bias by treating differently the beams whict
leave the first test. Then, if the quantum systems being tested are prepare
as arandom mixture (see postulat€), the probability for each one of thid
distinct outcomes of the second testpig =N~1, just aspm =N-! was the
probability for the mth outcome, in the first part of the combined test. On the
other hand, we also have

plu = Z Fum pm,
m
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becauseP, is the probability that outcomg follows preparationm. Compar-
ing these results, we readily obtain Eq. (2.2).

Exercise 2.4 Use your knowledge of quantum mechanics to predict the Pym
matrix for the experiment sketched in Fig. 2.2. Ans.: In the special case of
perpendicular magnets, one obtaiRs; ; = ‘1—1 ,P110 :% , andPgo= 0. Therefore,
there should be no central spot on the detector plate of Fig. 2.2, if the magnet
are exactly perpendicular.

Finally, consider the same two complete, repeatable tests executed in revers
order, as sketched in Fig. 2.3. We likewise define a probability tEblg, for
the observation of outcomm, following a preparation of pure statgu It is
found empirically that

nmp = Ppm- (2.3)
This can be stated as the following law:

D. Law of reciprocity. Let @and § denote pure states. Then
the probability of observing outcome @in a maximal test following
a preparation of state i, is equal to the probability of observing
outcome Y in a maximal test following a preparation of state .

This reciprocity law has no classical analogue. The probability of observing
blond hair for a person who has blue eyes is not the same as the probability c
observing blue eyes for a person who has blond hair. Of course, none of thes
classical tests (for the color of hair or eyes) is complete. Nor are they mutually
incompatible, as complete quantum tests may be.

R #

Fig. 2.3. The same tests as in Fig. 2.2, performed in reverse order.

In some instances, it is possible to derive the reciprocity law from symmetry
arguments, for example in the case of tests for the linear polarization of pho-
tons along different directions: The probability that a photon with one of the
polarizations will pass a test for the other polarization can depend only on the
angle between the two directions. However, in general, different complete test:
are not related by symmetry operations. Consider, for example, the spin stat
of a hydrogen atom. A complete test could be to measuoé the proton, and
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sy of the electron. Another complete test could be to measure the total spir
S, and its componen§;. These two complete tests are utterly different and
unrelated by any symmetry.

Exercise 2.5 Find the probability matrix relating the four possible outcomes
of these two complete tests. *

The heuristic meaning of the law of reciprocity is the following: Suppose
that a physical system is prepared in such a way that it will always pass &
maximal test for pure statp. Then the probability that it will pass a maximal
test for pure statep is a measure of the “resemblance” of these two states.
Therefore the law of reciprocity simply means that “stat@sembles statey
just as statep resembles statep.” An unsuccessful attempt to derive this law
from thermodynamic arguments was made by Ldfiddere, we accept it as an
empirical fact. At a later stage, the law of reciprocity will be derived from the
more abstract postulates of quantum theory. However, it is important to note
that this law can be experimentally checked in a straightforward way, without
invoking any theory—that is, insofar as we can identify specific laboratory
procedures with maximal tests.

An interesting consequence of the law of reciprocity is that quantum pre-
diction and retrodiction are completely symmetric. In terms of conditional
probabilities, pure states satisfy

P{olu} = P{ylg} (2.4)

This symmetry between past and future can be extended to any sequence
maximal testd! There is no contradiction between this property and the fact
that each individual quantum test is a fundamentally irreversible prdcess.

2-5. The principle of interference

One further step will now bring us to the heart of quantum physics. Consider
three consecutive repeatable maximal tests, as illustrated in Fig. 2.4. It is
enough to treat the case where the first and last tests are identical. As befor
it is assumed that the beams which leave each magnet are well separated, so t
they do not overlap when they pass through the next magnet, but neverthele:
their separation is not too large, so that the next magnet performs essentiall
the same test for each one of the beams that impinge on it. If these condition
are satisfied, and if we use s@nparticles for simplicity, eight clusters of points

10 A. Landé, Foundations of Quantum Theory: A Study in Continuity and Symmetry, Yale
Univ. Press, New Haven (1955).

*1Y. Aharonov, P. G. Bergmann, and J. L. Lebowihys. Rev. 134B (1964) 1410.

12 Any man carries, on the average, one quarter of the genes of his grandmother. Any granc
mother carries, on the average, one quarter of the genes of her grandchild. This does n¢
contradict the fact that procreating is an irreversible process.



The principle of interference 37

appear on the detector plate (there would be 27 such clusters if particles of spin
were used, as in the preceding figures). Each cluster can be labelled by thre
indices, such asnun, indicating that the three tests successively performed on
each particle gave outcomes, {, andn, repectively (the same set of Latin
indices can be used to label the outcomes of the first and last tests, since thes
tests are identical). If the particles are initially unpolarized (e.g., they escapec
from an oven) the intensity of clustemun is proportional to

May Pum = Pun Pum, (2.5)
where the right hand side follows from the reciprocity law (2.3).

Exercise 2.6 Show by symmetry arguments that Pyyn = % if the second
magnet is perpendicular to the first one.

[PlE

Fig. 2.4. Three consecutive Stern-Gerlach experiments for %pin
particles. Eight clusters of points appear on the detector plate,
corresponding to the two possible outcomes of each test.

Let us now gradually turn off the field of thteecond magnet of Fig. 2.4. The
horizontal separation of the clusters on the detector plate will decrease but
as long as these clusters are distinguishable, their intensities remain consta
and are given by Eqg. (2.5). As the field continues to decrease, each one of th
four pairs of clusters begins to coalesce. One could then naively expect to ge
when the second magnet is completely turned off, four clusters with intensities
proportional tozu Pun Pum. On the other hand, we know that it cannot be so,
because this would violate thepeatability property of the first and third tests,
which are identical: If the second magnet is inactive, all the particles hitting the
detector plate must be concentratediio clusters only, those corresponding to
identical outcomes of the initial and final tests. These two clusters are equally
populated if the initial preparation is a random mixture (Postu@te

What actually happens in this experiment is that when the second magnet i
gradually turned off, it ceases to satisfy the requirement that the beams whicl
leave it are well separated. As they come to overlap, two of the pairs of beam
interfere constructively and reinforce each other, giving dbable of the sum of
their separate intensities, while the two other pairs interfere destructively anc
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annihilate each other (see Fig. 2.5). This phenomenon is one of the cornerston
of quantum theory:

E. Principle of interference. If a quantum system can follow
several possible paths from a given preparation to a given test, the
probability for each outcome of that test is not in general the sum
of the separate probabilities pertaining to the various paths.

In the preceding example, the preparation was labellednbthe various pos-
sible paths by, and the final outcome bwn.

mn = ++
mn = +-— S
mn = —+ S
mn = —

= L R L R L R

Fig. 2.5. Behavior of the eight beams in the experiment of Fig. 2.4, when the
field in the middle magnet is gradually turned off. Interference effects double
the amplitude of the beams with= n, and annihilate those wittm# n.

The principle of interference implies that the rule of addition of probabifities
P{AuUB}= P{A}+ P{B}- P{ANn B} (2.6)

which is valid for theoccurrence of two events A andB, does not apply in general
to quantum probabilities. This does not mean of course that probability theor
is wrong: the passage of a quantum system through an indeterminate path
not the occurrence of an event, and therefore Eq. (2.6) is not applicable to it.

In classical mechanics, the situation would be different. Even in the presenc
of stochastic forces (e.g., in Brownian motion), it is in principle possible to
follow the evolution of a dynamical system without in any way disturbing that
evolution. Therefore the passage of a system through one of various alternati
paths can be considered as a sequence of events which can conceptually
monitored, so that Eqg. (2.6) applies. Actually, Eq. (2.6) may be valid for a

13W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York
(1968) Vol. I, p. 22.
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guantum system too, in situations where it is in principle possible to determine
the path which is followed without disturbing the dynamics of that system.
However, if that path cannot be determined without such a disturbance, the
separate probabilities do not add. What exactly constitutes a “path,” and wha
is the criterion for deciding whether the evolution of a system is disturbed, will
be clearer after we have discussed quantum dynamics.

The experiment sketched in Fig. 1.4 would be difficult to perform, but an
analogous one, with polarized photons, is feasible. It has predictable result:
because statistical properties of photons, such as the total intensity of a ligh
beam, are adequately treated by classical electromagnetic theory. Instead
the three magnets, let there be three calcite crystals. The first and last crysta
test verticalvs horizontal polarization, and the middle crystal tests polarization
at +45° If we gradually reduce the thickness of the middle crystal, the eight
resulting light beams will behave as shown in Fig. 2.5. When two beams overlap
there is either constructive interference (the amplitude is double and therefor
the intensity quadruple of that of a single beam) or destructive interference (the
amplitude is zero).

The principle of interferenc& could be made plausible by simple qualitative
arguments, involving only crude conceptual experiments (on the other hand
the law of reciprocityD had to be accepted as an empirical fact). How can
such a far reaching principle, which grossly violates our classical intuition, be
derived without detailed knowledge of the dynamical laws underlying quantum
phenomena? The novel feature of quantum physics which inexorably led us t
the principle of interference can be succintly stated as follows:

Quantum tests may depend on classical parameters which can be varied

continuously, and nevertheless these tests have fixed, discrete, outcomes.
Examples of continuous classical parameters which control quantum tests ar
the angle of orientation of a calcite crystal used to test the linear polarization
of a photon, or the angle of orientation of a Stern-Gerlach magnet.

2-6. Transition amplitudes

Interference effects are not peculiar to quantum physics. They also occur i
acoustics, optics, and other types of classical wave motion. antpgitudes of
these waves usually satisfy a setliofear differential equations (for instance,
Maxwell’'s equations for the electromagnetic field). Therefore, when several
paths are available for the propagation of a wave, the amplitudes combine
linearly. On the other hand, the observietensity of these wave phenomena
is given by the energy flux, and the lattergsadratic in the field amplitudes.
Therefore, the intensities—contrary to the amplitudes—are not additive.

In a guantum description of optical interference, the energy flux is propor-
tional to the number of photons per unit area, and therefore tribigability
of arrival of these photons. The principle of interfereriee which applies to
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all quantum systems (photons, electrons, atoms, . . . ), suggests that transitic
probabilities such a®,, are the squares dfansition amplitudes, and that the
latter combine in a linear fashion. Moreover, we know from classical optics that
phase relationships are essential and that polarization states are convenien
described by complex numbe¥s.We are thus led to postulate the existence of
acomplex transition amplitude,C,, for obtaining outcomeu in a test that
follows preparationm.

The postulated transition amplitude,, satisfies

[Cuml? =Pum- (2.7)
Likewise, we define, for the inverse transition, an amplitigg, satisfying
Mg =M my- (2.8)

We know from the reciprocity law, Eq. (2.3), thdty| = [Cum|, but we do
not know the phases, as yet. Finding the phases is our next problem.
Consider consecutive tests, as in the above figures, and assume for the m
ment that asingle path can lead from the initial preparation to the final out-
come. The overall probability for that path is the product of the consecutive
probabilities for each step, as in Eq. (2.5). It is therefore natural to define
the transition amplitude for a sequence of maximal tests aspribdect of the
consecutive amplitudes of each step. For example, in the triple Stern-Gerlach
experiment (Fig. 2.4), the amplitude for the path labelgaeh is I Cum.
Up to this point, nothing was assumed that had any physical consequence
The phases of the transition amplitud€sy, still are irrelevant, and we could
as well have stayed with the probabilitiBg, . It is only now that we introduce
a new physical hypothesis (borrowed from classical wave theory):

F. Law of composition of transition amplitudes. The
phases of the transition amplitudes can be chosen in such a way
that, if several paths are available from the initial state to the final
outcome, and if the dynamical process leaves no trace allowing to
distinguish which path was taken, the complete amplitude for the
final outcome is the sum of the amplitudes for the various paths.

For example, in the triple Stern-Gerlach experiment of Fig. 2.4, if the middle
magnet is switched off, the various amplitudgsCyum have to be summed
over 4, which labels the unresolved intermediate path. On the other hand, all
we really have in that case is a pairidéntical maximal tests whose results
must always agree. Therefore the overall transition probability, from pure state
m (prepared by the first Stern-Gerlach magnet) to pure stftebtained from

the last magnet) i®\m . Let us assume that the complete transitonplitude
isd,m too, without extra phase factor. We then have

Y“H. Poincaré, Théorie mathématique de la lumiére, Carré, Paris (1892) Vol. Il, p. 275.
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Z Fnu Cum = 671"1 . (29)
u

The matricesC and Tl are the inverses of each other. Moreover, we know from
the reciprocity lawD that [I',| = |Cun|- Therefore, if we could choose phases
in such a way thaf,, =C,,we would obtain a nice resuft:

3 ConCoum = bum - (2.10)
n

Matrices satisfying (2.10) are calladhitary. They are the generalization to
the complex domain of the familiar orthogonal matrices, which represent real
Euclidean rotations.

Exercise 2.7 Prove that DetC, = 1.

Exercise 2.8 Prove from (2.10) that

3 ConCom =6y (2.11)

Note, however, that Egs. (2.10) and (2.11) are equivalent only for matrices of
finite order. A simple counterexample, in an infinite dimensional space, is the
shift operator Cym = Oy, me1 (U, M=1,...,0).

We are now faced with an algebraic problem: Gip,, can we find its
“‘square root,” namely a unitary matri€, which satisfies Eq. (2.7)? We
shall see that this problem has solutions fodease set of Pym, provided that
these P, are doubly stochastic matrices, obeying both (2.1) and (2.2). This
condition is necessary, but it is not sufficient: the probabiliflgg must also
satisfy some complicated inequalities. Doubly stochastic matrices that satisf
Eq. (2.7) are calledrthostochastic. 16 The reader who is not interested in this
algebraic problem may skip the next subsection.

Determination of phases of transition amplitudes

The absolute valuesIC,m being already given, the problem is to assiases

to the complex numberS,, , in such a way that Eq. (2.10) is valid. Let us count
the number of independent equations. It is enough to consider themcase,
becausem < n corresponds to the complex conjugate equations, andy sfn,

Eqg. (2.10) is automatically satisfied by virtue of (2.1). Counting separately
real and imaginary parts, there akg(N —1) equations (2.10) to be satisfied.
These equations, however, are not independent, becaus&,thegiven by (2.7)

are themselves not independent. They must satisfyNfo@nstraints (2.2),

15The complex conjugate of a number is denoted by a bar. An asterisk will denoteatheint
of an operator, to be defined in Chapter 4. This is the standard practice in functional analysis.
18y H. Au-Yeung and Y. T. Poon,inear Algebra and Appl. 27 (1979) 69.
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of which only (N-1) are independent, because the sum of these constraints
is automatically satisfied, thanks to (2.1). The final count thusNis X)?
independent algebraic conditions imposed on the phaseg,nf

This also is the number of unknowmonarbitrary phases that have to be
determined. Indeed, we may, without affecting the unitary conditions (2.10),
choose arbitrarily the phases of an entire row and an entire column of the matri
Cum. For example, the first row and the first column can be made real by the
transformation®”

|Cuil 1Cim] Cu
Cl‘rl Clm |Clll

C/,Lm i C,,‘m = Cum (212)

We are thereby left withN-1)? nontrivial phases, to be determined ky-1?
independent nonlinear algebraic conditions. These conditions are algebraic-
not transcendental—because we can always replace each unknownepligse
two unknowns,x = cod and y = sinf, subject to the algebraic constraint
x2+y2 = 1. It is therefore plausible that there is a dense; {)2-dimensional
domain of values of thd®,,, in which our problem has €nite number of
solutions, with realx andy.

Exercise 2.9 Show that, if the unitary condition (2.10) holds for C,y, , it also
holds for Cypm, defined by (2.12).

Exercise 2.10 Show that the ratio Cum Cun /Cum Cun 1S invariant under the
transformation (2.12).

Exercise 2.11 Solve explicitly Eq. (2.10) for the case N = 2.

The caseN = 3 can be explicitly solved as follows. First, choose phases
such thatCy; andCy, are real. Equation (2.10) form = 12 then gives

|C11Chal + 6iﬁ|C21022| + 6£7|C31032[ =0, (2.13)

where e'P := Cy/fCoidand €'Y := Caz,/[Cafl
We thereby obtain a complex equation for the
two unknown phase@ andy. A graphical
solution can be obtained by drawing a trian-
gle with sides’Cy; C2l] as shown in the figure.
This can be done if, and only if, all the triangle
inequalities such as |Cy1 Cial

[C11Crs} < |CuCoal + |C31Claal, (2.14)

are satisfied by the given values |@f,..| = /P . ObviouslyBidndy are a
solution of (2.13),-p and -y are another solution. This is not, however, the
only ambiguity, as seen in the following exercise.

1If any of theCyy or Cin vanishes, it may be replaced by an arbitrarily small number.
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Exercise 2.12 Show that the N — 1 matrices of order N
CW¥) = etrikem/N N2 (k=1,...,N-1, m,p=1,...,N), (2.15)

are unitary. Note that all these matrices correspond to the same P, = IN. If
N is prime, these matrices differ only in the ordering of their rows and columns,
but, for composite N, some of them are genuinely different. *

Exercise 2.13 Inthe caseN = 3, write a computer program which generates
random values for four of the nine B, , computes the five other B,m by means of
Egs. (2.1) and (2.2), checks whether all the relations of type (2.14) are satisfied,
and finally computes, whenever possible, the phases of the Gim. *

Exercise 2.14 Your supplier of pure quantum systems has furnished to you
two sets, which he claims originate from two different outcomes of a maximal
test, having N outcomes. However, he does not disclose the specific test that
was performed. Generalize Eq. (2.14) to the case of maximal tests with N
outcomes, and devise a procedure which could disprove the supplier’s claim. (If
you also suspect that the states are not pure, the situation is more complicated
and several tests are needed. See Exercise 3.37, page 77.) *

Exercise 2.15 Show that if 0 <A <1, and if P,y isa3 x 3orthostochastic
matrix, the matrix AP,, 4 (1 — A)/3 is orthostochastic too.t”  xx

Amplitudes, not probabilities, are fundamental

Let us proceed to the cas¢é= 4. The situation then becomes much more
complicated!® The space of allowed values Bfm has a subspace of dimension
<(N=1)2, in which the various algebraic constraints are not independent, so
that there is acontinuous family of solutions for the phases &m 1% This
difficulty indicates that we ought to reverse our approach. The amplitGgdes
should be considered as tpemary, fundamental objects, and the probabilities
Pum should be derived from them, in spite of the fact thatRfg are the only
guantities that are directly observable.

We can reach the same conclusion by modifying the triple Stern-Gerlach
experiment of Fig. 2.4. Let us orient the last magnet in a direction thabtis
parallel to the first one. The third magnet then providesea test, whose
outcomes will be labelled by boldface letters, suchras, etc.? When, in
the modified experiment, the central magnet is turned on, all the paths ar
distinguishable, and the probability for pathur is M, Pum. We therefore
write the transition amplitude for that path &g Cum, where|Tru* = Iry,
as usual. Let us now gradually turn off the central magnet, so that the variou:
K1 become indistinguishable. The generalization of the sum over paths (2.9) i

M. Roos,J. Math. Phys. 5 (1964) 1609; 6 (1965) 1354 (erratum).

19G. Auberson,Phys. Letters B 216 (1989) 167.

201t is good practice to use different sets of labels for characterizing the outcomes of different
tests. This helps avoid confusion.
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3 Teu Cum = Crm (2.16)
i

where C = TC, again is a unitary matrix. Its eleme@,, is the transition
amplitude from preparatiom to outcomer.

Note that the matrice§ and Cin (2.16) are time ordered: the earliest is
on the right, the most recent on the left. This is readily generalized to case:
with additional intermediate states, and suggests that the dynamical evolutiol
of a quantum system is represented by a product of unitary matrices. We sha
indeed derive that property in Chapter 8.

It follows from Eqg. (2.16) that the probability matriR, ,, = OC %, which
is experimentally observable, cannot be independenf]gf and P, . There
must be numerous relationships between the elements of these three probabil
matrices, which can in principle be tested experimentally. These tests have
fundamental, universal character. They do not involve any dynamical assump-
tions, such as those be needed to predict energy levels, cross sections, etc. \
can really test théogical structure of quantum theory, and not only the validity
of this or that Hamiltonian. Here are some examples:

Exercise 2.16 Given the transition probabilities [1,, and Pyy (for any three
specified pure states m, , and r ), what is the range of admissible values of the
transition probability Prm ?

Exercise 2.17 Consider a source of particles, two independent scatterers and
a detector. If only scatterer A (or B) is present, the detector registers intensity
Ia (or Ig, respectively). If both scatterers are present, the detector registers
intensity |ag. Show that

(Inp —Is — Ig)? <41, Ip. (2.17)

Exercise 2.18 The experimental setup described in the preceding exercise
is extended, by the introduction of a third scatterer, C. Define, as before,
intensities Ic, lgc and Ica. Further define a dimensionless parameter

Mupg = (Iap — Iy — Ig)/2+/I41p, (2.18)

and likewise Mgc and Mca. Show that, if the particles emitted by the source
are in a pure state,

MABZ+MBCZ+MCA2—2MABMBCMCA =1. (2.19)

Note that this relationship, which involves the results of six different exper-
iments, does not depend on the properties of the particles (other than their
being in a pure state), nor on those of the scatterers.?! *

21This result can be used for distinguishing experimentally quaternionic from complex quan-
turn theory: A. PeresPhys. Rev. Lett. 42 (1979) 683.
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2-7. Appendix: Bayes's rule of statistical inference

The essence of quantum theory is its ability to pregiaibabilities for the
outcomes of tests, following specified preparations. Quantum mechanits as
theory about reality; it is a prescription for making the best possible predictions
about the future, if we have certain information about the pagte quantum
theorist can tell yownhat the odds are, if you wish to bef on the occurrence

of various events, such as the firing of this or that detector. Some theorists
are indeed employed in predicting probabilities of future events: They calculate
cross sections that have not yet been measured, or predict rates of transitior
that have not yet been observed.

However, a more common activity retrodiction: the outcomes of tests are
given, it is their preparation that has to be guessed. Look at Fig. 1.3, where
the two photomultipliers recorded 4 and 3 events, respectively. What can you
infer about the orientation of the polarizer? In another commonly performed
experiment, you detected and counted somé décays. How old is the fossil?
The “inverse probability” problem is of considerable importance in many aspects
of human activity, from intelligence gathering to industrial quality control. A
brief account is given below, for the reader who is not familiar with the vast—
and sometimes controversial—literature on this subject.

Consider two statistically related even#&,and B. For example,B is the
outcome of the experiment in Fig. 1.3, where the upper photodetector fired four
times, and the lower one three times (note that this ss\gle experiment, not
a set of seven experiments). Likewigeis the positioning of the polarizer at an
angle in the interval® to 6 + d6, in that experiment. Recall now the notion of
statistical ensemble, that was introduced in Sect. 2-1: in an ensembles—an
infinite set of conceptual replicas of the same system—r#hative freguencies
of eventsA and B define the probabilitie® { A} and P{ B}, respectively. Let
us further introduce two notions:

P{A n B} = P{B n A} is the joint probability of events A and B. This
is the relative frequency of the occurrence hafth events, in the statistical
ensemble under consideration.

P{AB} is the conditional probability of occurrence ofA, when B is true; and
likewise P{B[A} denotes the converse conditional probability.

Since all these probabilities are defined as the relative frequencies of various
combinations of events in the given ensemble, we have

P{ AN B} = P{ ACB} P{ B} = P{BIA} P{A}, (2.20)

22G. ‘t Hooft, J. Sat. Phys. 53 (1988) 323.
28No experimental evidence will convince a bad theorist that his statistical predictions are
wrong. At most, you may drive him to bankruptcy if he is serious about betting.
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whence we obtain Bayes's theoréf#d

P{AB} = P{B[A} P{ A} / P{B}. (2.21)

In this equation,P{BOA} is assumed known, thanks to the physical theory
that we use. For example, in the experiment of Fig. 1.3, the theory tells us tha
the probabilities for exciting the upper and lower photodetectors ared sl
sin? 0, respectively. We therefore have, from the binomial distribution,

P{B|A} = T cos® @ sin® 6. (2.22)
413!

Recall that the problem in Fig. 1.3 is to estimate the orientation @Grajle
the polarizer. To make use of (2.22), we still ndeffA} and P{B}. These
probabilities cannot be calculated from a theory, nor determined empirically
They solely depend on the statistical ensemble that we have mentally conceive
Let us consider theomplete set of events of typd, and call themAq, Az, ...,
etc. For exampleA; represents the positioning of the polarizer at an angle
betweend; and®; +df,. By completenessy; P{A;} = 1, and therefore

P{B} = ZP{BIAj}P{Aj}. (2.23)

At this stage, it is customary to introduce Bayeptstulate (this is not the
same thing as Bayestheorem!). This postulate is also called the “principle of
indifference,” or the “principle of insufficient reason.” If we have no reason to
expect that the person who positioned the polarizer had a preference for son
particular orientation, we assume that all orientations are equally likelthat

P{ A} = dg/m for every® (we can always take € 8 < 11, becaused and 8 + 1t

are equivalent). We then have, from (2.23),

1 g
P{B) = ;/0 35 cos® 0 sin® 8 df, (2.24)

and we obtain, from Bayes's theorem (2.21),

35 11
P{A|B} = = cos*6 sin®#d6/P{B) = ?5_ cos® 6 sin® 6 d6. (2.25)
Xis

Exercise 2.19 Check this equation and plot its right hand side as a function
of 8. Where are the maxima of this function? How sharp are they? *

24T, Bayes,Phil. Trans. Roy. Soc. 53 (1763) 370; reprinted iBiometrika 45 (1958) 293.

25Joint probabilities exist only for events which are compatible. In particular, no joint prob-
ability can be defined for the outcomes of incompatible tests. Therefore Bayes's theorem doe
not apply to quantum conditional probabilities, like those in Eq. (2.4), because they refer to
different experimental setups.
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Exercise 2.20 Exactly 10°% photons, linearly polarized in the same unknown
direction, and 10% photons, linearly polarized in the orthogonal direction, are
injected into a perfectly reflecting box® where they move with no change of
their polarizations. No record is kept of the order in which these photons are
introduced in the box (only the total numbers are recorded). Can you determine
along which directions these photons are polarized? Hint: Sart with just two
oppositely polarized photons, then consider two pairs, and so on. You will
quickly realize that if the photons are tested one by one, even with perfect
photodetectors, the result is considerably less efficient than a combined test
involving the entire set. For further hints, see Exercise 5.27, page 141. * %

Exercise 2.21 A single photon of energy 1leV arrived from a distant light
source. Assume that this source has a thermal spectrum, and give an estimate of
its temperature. Hint: You must assume some a priori probability distribution
for the temperature, and only then deduce the a posteriori probability. *

Exercise 2.22 A second photon arrived from the source mentioned in the
preceding exercise. Its energy is measured as 0.01eV. Can you still believe that
the source emits thermal radiation? Hint: What is the probability that two
photons picked at random from a Planck spectrum have energies which differ
by a factor 100 or more? * %

2-8. Bibliography

A brief account of Bayesian statistics was given in the preceding section. There is :
vast literature on the analysis of stochastic data. Two excellent books are

S. L. Meyer,Data Analysis for Scientists and Engineers, Wiley, New York
(1975).

C. W. Helstrom,Quantum Detection and Estimation Theory, Academic
Press, New York (1976).

It is interesting to compare the approaches taken in these books. Meyer follows th
custom of experimental scientists and shows how to compute the most probable value
a random variable, together with confidence intervals giving the likelihood of deviations
from this most probable value. On the other hand, Helstrom presents the problem fror
the point of view of a communications engineer, who must supply a single, unambiguou:
output. In that case, detection and estimation errors may occur. An arbitrary “cost’
is assigned to each type of error, and the problem then is to minimize the total cos
incurred by the recipient of a message, due to unavoidable errors.

Recommended reading

R. T. Cox, “Probability, frequency, and reasonable expectatiém. J.
Phys. 14 (1946) 1.

R. Giles, “Foundations for quantum mechanicd,”Math. Phys. 11 (1970)
2139.



Chapter 3

Complex Vector Space

3-1. The superposition principle

We have seen that quantum transitions are described by unitary malfiges
which satisfy Eq. (2.10), repeated below for the reader’'s convenience:

Z Cu.m C;m. - 6mn- (31)
"

This suggests the introduction of complex vectors on which these matrices will
act. The physical meaning of the complex vectors, as we shall presently set
is that ofpure quantum states. We shall usesans serif letters to denote these
N-dimensional complex vectors, whilboldface letters will be used, as usual,
for the ordinary real vectors in Euclidean three dimensional space.

Let us examine this new kind of vectors. First, we note that, in order to
satisfy the summation rules of linear algebra, their complex components mus
be labelled by indices such ag or p, matching those of the unitary matrices.
Recall that these indices refer to the outcomes of maximal quantum tests, an
therefore to pure quantum states (see Sect. 2-4). On the other hand, Eq. (3.
shows that unitary matrices are an extension to the complex domain of the
familiar orthogonal matrices, which represent real Euclidean rotations. We are
therefore led to try the following idea: The choice of a maximal test is analogous
to the choice of a coordinate system in Euclidean geometry; and the pure state
which correspond to the various outcomes of a maximal test, are analogous t
unit vectors along a set of orthogonal axes.

Let us denote these unit vectors by, e, etc. This notation is meant
to recall thate,, represents the pure state corresponding to outconué the
“Latin test,” e, corresponds to outcome p of the “Greek test,” and so on.
An obvious role for the unitary matriceS,, would then be to express the
transformation law from one basis to the other:

eu=Y Cumen- (3.2)

48
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However, we are not free to postulate arbitrarily the above relationship: The
unitary matrix that appears in it represents transition amplitudes which are
experimentally accessible. Therefore Eq. (3t#s a physical meaning and is
amenable to a consistency check. Let us indeed consider a third maximal tes
whose outcomes are labelled by boldface indices. We have, likewise,

er =3 Crmeém and er= True,, (3.3)
m I

where Gn and Iy, are unitary matrices, representing the transition amplitudes
from statesm and p, respectively, to state Consistency of Eqgs. (3.2) and (3.3)
implies that

Crm = Z Fru Cu.m- (34)
I

This result is identical to the composition law of transition amplitudes,
Eq. (2.16), that was found earlier on purely phenomenological grounds. This
agreement indicates that we are on the right track, and that a complex vecto
formalism is indeed appropriate for describing quantum phenomena.

Exercise 3.1 Prove that
e, = 2 e“ Cpm. . (3.5)
mn

Exercise 3.2 Consider three different Sern-Gerlach experiments for spinl2
particles, with the magnets tilted at an angle of 120° from each other, as in
Fig. 1.6. Find the unitary matrices for conversion from one basis to another,
and check that Eqg. (3.4) is satisfied.

Exercise 3.3 Repeat the preceding exercise for particles of spin 1. *

Encouraged by the success of Eg. (3.2), we now defimectar, in general,
as a linear combination

VIi=D) Umen. (3.6)

The complex coefficients, are thecomponents of the vector. We shall later
see that any vector represents a pure state. However, we first need some form
rules to give a mathematical meaning to expressions like (3.6).

Let u := Y umen be another vector. The equality=v means that corre-
sponding components aof andv are equalum = vm . Theaddition of vectors
and theirmultiplication by scalars(i.e, by complex numbers, sometimes called
c-numbers in the older literature) are defined by the execution of the same
operations on the vector components. Therefore vectors folimear space:
If uandv are vectors, andi and B are complex numbersy = ou + Pv is a
vector, with componentsvy = auk + Bvk. Thenull vector O is defined as the
one that has all its components equal to zero.

A fundamental tenet of quantum theory is the following assumption:
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G. Principle of superposition. Any complex vector, except
the null vector, represents a realizable pure state.

This sweeping declaration does not tell us, unfortunately, how to design the
equipment which prepares the pure state represented by a given vector. A
explained in Sect. 1-4, quantum theory allows us to compute probabilities for
the outcomes of tests following specified preparations. However, the theory doe
not supply instructions for actually setting up the laboratory procedures that
are used as preparations and tests (just as Euclidean geometry does not t
us how to manufacture rulers and compasses). These procedures are concei\
by physicists, using whatever supplies are available, and their design can b
analyzed, a posteriori, with the help of quantum theory.

It is sometimes claimed that the principle of superposit®is not generally
valid: Not every vector that can be written by a theorist would be realizable
experimentally. It is indeed true that some theoretical desiderata (ultrahigh
energies, extremely low temperatures, etc.) appear to lie beyond any foreses
able technology. Our ability to design instruments will always be limited by
mundane physical constraints, such as the finite strength of existing materials
or their ability to sustain high voltages without electric breakdown. Moreover,
practical limitations oninformation storage and processing make it exceedingly
difficult (we say “impossible”) to realize pure states roécroscopic systems,
having numerous degrees of freedom. Nevertheless, there is no convincing a
gument indicating that the principle of superposition might fail for quantum
systems that have finite number of states. One should never underestimate
the ingenuity of experimental physicists!

Another problem raised by the principle of superposition is the converse of
the preceding one: How can we determine the values of the compenettsit
represent a pure state, specified by a given experimental procedure? Here aga
the analogy with Euclidean vectors is a helpful guide. Euclidean vectors may
have aphysical meaning, such as displacement, momentum, force, etc. Their
components are the values of the projections of these physical quantities o
three arbitrary orthogonal axes. A different choice of axes gives different values
to the components of theame vector. It is only after we choose a set of axes
that the components of a vector acquire definite values.

In quantum theory, we can likewise represent same vector by means of
different bases. For example, the vectogiven by Eg. (3.6), can also be written

v= Z Vu €. 3.7)

We then obtain, from the transformation laws (3.2) and (3.5),

Vm =9 0, Cym and v, = Z Clm Vm . (3.8)
“w m

Note that the transformation law of vectoomponents is the converse of the
transformation law of basis vectors, Eq. (3.2) or (3.5). It ought to be clear tha
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the two sets of components, andv,, are two different representations of the
same physical state.

I shall now briefly outline a method for the experimental determination of
the componentsim (or v, ). Recall that a state is defined by the probabilities of
outcomes of arbitrary tests. Since the procedure for preparisgspecified—
this was our assumption when the present problem was formulated—we cal
produce as many replicas as we wish of the quantum system invsiEerefore
we can measure, with arbitrary accuracy, the probabilities for occurrence of
outcomes e, , .., of various maximal tests that can be performed on a
system in statev. In other words, we can obtain the transition probabilities
Povs Muv, ..., from statev to statesem,e,, etc. With enough data of that
type, we can compute complex amplitudes, suclCa$, from which we finally
obtain the coefficientvm in Eq. (3.6). The execution of this conceptual program
requires additional mathematical tools, which are given below.

3-2. Metric properties

Orthogonal transformations in Euclidean space preserveetiggth of a vector,
defined by|A| = [Z(4x)%Y2. We shall likewise introduce neetric structure in
the complex vector space and define tieem of a vector by?!

Ml = [ o] (3.9)

The norm of a vector is always positive, unless it is the null ve@tdk vector

whose norm is 1 is said to b®rmalized. It is always possible to normalize a

nonnull vector by dividing it by its norm, and it is often convenient to do so.
For a linear combinatiom u + v, we have

llow + BV)|* = Jaf? ||ull® + 18] |IV)* + @B 3 Umvm + 0B Y umbm - (3.10)
The expression?2
(Uv) =3 U Om, (3.11)

is called thescalar product (or inner product) of the vectorsu and v. It is
the natural generalization of the scalar product of ordinary Euclidean vectors.
Note that{v,v) = |jv||2. Two vectors whose scalar product vanishes are called
orthogonal. Two vectors which satisfpiu + Bv = 0, for nonvanishingt and (3,
are calledparallel.

It is easily seen that the scalar productv Clis linear in its second argument:

1Some authors denote the norm by ||instead of || .

2 The notation here is a compromise between the one used by mathematicians, who write
scalar products asuf), and Dirac’s notatioriti|v [] which is often convenient and is very popular
among physicists, but may be misleading, if improperly used. Dirac’s notation is explained in
an appendix at the end of this chapter.
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(u,av + Bw) = afu,v) + B{u,w). (3.12)
It is “antilinear” in its first argument:
(au + Bv,w) = a(u,w) + B{v,w). (3.13)

Moreover, the scalar product satisfies

(u,v} = ({v,u

~—

(3.14)
Bilinear expressions having this property are caliéet mitian.

Exercise 3.4 Show that the norm of a vector is invariant under unitary
transformations: 3

Yo oul? =3 lvml® (3.15)

Exercise 3.5 Prove the “law of the parallelogram” :
lu + vl + [lu = vi* = 2]julf* + 2 |jv]|%. (3.16)
Exercise 3.6 Show that the norm completely determines the scalar product:
Hu+ v = |lu=v||* + i fju —av|> — ijju +iv]|* = 4 (u,v). (3.17)
This property is very handy and we shall often make use of it. For example, i
readily follows from (3.15) and (3.17) that the scalar produgt Cis invariant
under unitary transformations (this is why it is called a&calar product).
Schwarz inequality
An important property is the Schwarz inequality
{u,v) 2 < fuli?iivii®, (3.18)

which is easily proved from

v=u<u’V> v—u(u’v)
= nu||2+( uunz)' (3.19)

The first term on the right hand side is a vector paralleli toThe other term
is orthogonal tou, as can be seen by taking its scalar product withThese
two terms are therefore orthogonal to each other and we have

3It is also possible to define complex orthogonal transformations preserving a sum of square
such asy"(vm)?, rather thary |vm|?, but these sums have no use in quantum theory.
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2

, (3.20)

Ivii* = [y, v)* + ]'v {u,v)

fluli2 e

whence (3.18) readily follows. Moreover, the equality sign holds in (3.18) if,
and only if, the last term in (3.20) vanishé, when u andv are parallel.
A useful corollary of the Schwarz inequality is tlvéangle inequality,

Full = vl < flu+ vil < Jlull + fivll- (3.21)

The proof is left to the reader.

Orthonormal bases

A complete orthonormal basis is a set ofN vectors, ey, €b, . . . , satisfying
(e‘m,en) = 6’””! . (322)

Recall the physical interpretation of these unit vectors: they represent pure
states corresponding to the different outcomes of a maximal test. From the
definition of a vector, Eq. (3.6), and from (3.22), it follows that

Um = {€m, V). (3.23)

The converse is also true: V¥, is defined by (3.23), and they,, are acomplete
basis, we have

v =3 vmenll® = IVI® + 3 [om* = 3 vm(em,v) = 2(v,em)vm . (3.24)

The right hand side of this expression vanishes by virtue of (3.9) and (3.23). It
follows thatv — 3" vye,, is the null vector, and therefore Eq. (3.6) holds.

Now letuq,Upg, ..., be another orthonormal basis (corresponding to the
outcomes of another maximal test), so that
(U ) = 6. (3.25)
We obtain, from the transformation law (3.2),
Cum = {&m, €,). (3.26)
It follows that the transition probability from statato statep is

Pl-lm = Icmn|2 = ‘(emseuHZ‘ (327)
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In particular, as shown below, it is possible to construct orthonormal base
which satisfy Pym = 1NN, for all pand m. These bases are “as different as
possible” and are calledhutually unbiased. For example, in the case of polarized
photons, a test for verticals horizontal linear polarization, a test for the two
oblique polarizations at +45°, and one for clockwiseounterclockwise circular
polarization, are mutually unbiased. A photon, having passed one of these test
and then submitted to any other one, has equal chances for yielding the tw
possible outcomes of the second test. Some examples of unbiased bases w
given in Exercise 2.12. It can be shown thatNifs prime, it is always possible
to find N +1 mutually unbiased basés.

The simplest case of unbiased bases results from a discrete Fourier transfor

e, = N-1/2 Z e, eZrinm/N (m,p=1,...,N). (3.28)
m

Quantum tests satisfying (3.28) are calledmplementary. ¢ We shall see in
Chapter 10 that these tests are the quantum analogs of measurements of cl
sical, canonically conjugate, dynamical variables.

3-3. Quantum expectation rule

The correspondence between complex vectors and physical pure states is 1
one to one: Quantum theory considers vectors thatparaellel to each other
as representing theame physical state. It is often convenient twrmalize
vectors by dividing them by their norm, so that the new norm is 1. There
still remains an arbitrariness of the phase, becausade!®v have the same
norm, for any rea. This phase arbitrariness is an essential feature of quantun
theory. It cannot be eliminated, because of the superposition principle: Givel
any two statesl andv, the linear combinations + v andu + €i® v are physically
realizable states, and amet equivalent, as shown by the simple example of the
polarization states of photons, illustrated in Fig. 1.4.

If parallel vectors represent the same physical state, what is the meaning ¢
orthogonal vectors? The latter can be members of an orthogonal basis. Thi:
suggests the following extrapolation of the principle of superposiBon

G*. Strong superposition principle. Any orthogonal basis
represents a realizable maximal test.

That is, not only can any individual vector, suchags Eq. (3.6), be exper-
imentally realized, but any complete set of mutually orthogonal vectors has :
physical realization, in the form of a maximal quantum test.

4 1. D. Ivanovic, J. Phys. A 14 (1981) 3241.
5 W. K. Wootters, Found. Phys. 16 (1986) 391.
6 J. Schwinger,Proc. Nat. Acad. Sc. 46 (1960) 570.
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Orthogonal states corresponding to different outcomes of a maximal test are
the quantum analog of “different states” in classical physics. If we definitely
know that a system has been preparedrie of several given orthogonal states
(not in a linear combination thereof) we can unambiguously identify that state,
by the appropriate maximal test.

Non-orthogonal states

The generic case is a pair of vectors that are neither parallel nor orthogonal
These vectors correspond to physical states that are neither identical, no
totally different, but “partly alike.” For example, photons with linear polariza-
tions tilted at an angle a from each other are partly alike. There is a probability
cos2a that a photon prepared with one of these linear polarizations will suc-
cessfully pass a test for the other linear polarization.

This partial likeness is not peculiar to quantum physics. In the classical phase
space too, we may have Liouville densitiés(q, p) and f,(q, p), which partly
overlap. For example, there may be two different methods for releasing a giver
pendulum. In each one of these methods, the initial coordinates and moment
are not controlled with absolute precision; therefore the phase space domain
corresponding to these two different preparation procedures have a finite size
They may be disjoint, or they may partly overlap, as shown in Fig. 3.1. Note
that this figure represents our imperfect knowledge of the clasgiaat p of a
single pendulum. The use of Liouville densities for representing this imperfect
knowledge has the following meaning: We imagine the existence dhfamte
set of identical replicas of our pendulum (that is, we imagine a&nsemble, as
explained in Sect. 2-1). All these conceptual replicas are produced accordin

(a) p (b)

Fig. 3.1. The results of two different classical preparation procedures are
shown by hatchings with opposite orientations. The size of the ellipse repre-
sents the expected instrumental error. (a) If the ellipses do not overlap, an
observer can deduce with certainty which method was used. (b) If there is
an overlap, it is only possible to assign probabilities to the two methods.
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to one of the two imperfectly controlled preparation procedures, and all the
resulting g and p are therefore represented by a cloud of points in phase space
The density of points in this cloud is the Liouville density(q, p) or f5(q, p),
which corresponds to the preparation method that was used.

Suppose now that an observer wants to determine which one of the twe
preparations was actually implemented. Even if that observer is capable o
exactly locatingg and p by means of ideal measurements, he may not be able
to tell with certainty to which “cloud” the result belongs. The answer can be
stated only in terms gbrobabilities.

The new feature introduced by quantum theory is that the probabilistic
nature of the outcome of a measurement is not due to imperfections of the
preparing or measuring apparatuses. It is inherent to quantum physigsreA
guantum state is similar to a classi@isemble. 7 Therefore, the meaningful
questions are not about the values of dynamical variables, but rather about th
probability that some particular preparation was used. This is a much sounde
approach: quantum dynamical variables are abstract concepts, existing only i
our mind. The experimental preparations exist in the laboratory.

Probability interpretation

In general, let us define a “test for staté as one which always succeeds for
quantum systems prepared in stateand always fails for those prepared in
any state orthogonal te. This need not be a maximal test, but only one
that singles outv from all the states orthogonal . A fundamental result of
quantum theory is the following rule:

H. Quantum expectation rule. Let u and v be two normalized
vectors. The probability that a quantum system prepared in state
u will pass successfully a test for state v is [u, vI3.

With the notations of Sect. 2-4, this means that
Pu = D:DJ,VDDZ, (3.29)

which is an obvious corollary of Eq. (3.27) and of the strong superposition
principle G*. (If we had not already assumed the validity®f, we would have
to considerH as a new, independent postuldte.)

The law of reciprocityD, expressed by Eq. (2.4), now becomes a trivial
consequence of the Hermitian nature of the scalar product (3.14). Conversely
if the reciprocity lawD were experimentally falsified, we would have to reject
the expectation ruléd, and then the entire complex vector formalism proposed
here would be devoid of physical interpretation.

. R. Senitzky,Phys. Rev. Lett. 47 (1981) 1503.

8From postulateG*, together with reasonable continuity assumptions, it is possible to derive
Gleason's theorem (see Sect. 7-2). That theorem generalizes the quantum expectation rule
states which are not pure.
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3-4. Physical implementation

It is the probability ruleH which allows us to relate the abstract mathematical
formalism of quantum theory to actual observations that may be performed ir
a laboratory. This rule can be derived from previously proposed postulates
Every step in its derivation is a plausible extension of preceding steps. Wher
we retrace the route that was followed in the derivatiotHofthe weakest link

is thelaw of composition of transitions amplitudes (PostulateF, page 40) which
may be no more than an educated guess, influenced by our familiarity with
classical field theory.

Quantum theory, for which we are now collecting appropriate tools, may
some day be found unsatisfactory, and replaced by a more elaborate theol
(just as Newtonian mechanics was superseded by special relativity, and then &
general relativity theory). The need to discard—or upgrade—quantum theory
may arise when we become able to probe smaller spacetime regions, or strong
gravitational fields, or biological systems, or other phenomena yet unforeseen
However, a more urgent task is to check the theory for internal consistency
All the foregoing discussion involved ideal maximal tests, which can only be
roughly approximated by real laboratory procedures. The final chapter of this
book will be devoted to the “measurement problem.” It will give a more detailed
description of the experimenter's work with quantum systems. At the present
stage, | shall only propose another version of the expectation rule, with a milc
operational flavor:

I. Quantum expectation rule (operational version). For any
two normalized vectors u and v, it is possible to design experimental
testing procedures with the following property: a quantum system
which certainly passes the test for state u has a probability fu,v13
to pass the test for state v, and vice versa.

This new version is more explicit thad, but not yet fully satisfactory. A
guantum test is not a supernatural event. It is a physical process, involving
ordinary matter. Our testing instruments are subject to the ordinary physica
laws. If we ignore this obvious fact and treat quantum tests as a primitive
notion, as we are presently doing, we are guilty of a gross oversimplification of
physics. We shall return to this problem in Chapter 12. Meanwhile, let us note
that the consistency of the expectation rule implies that dynamical laws mus
have specific properties:

J. Dynamical description of quantum tests. Let U and V
denote apparatuses which perform the tests for states u and v ,
respectively. The dynamical laws which govern the working of these
apparatuses must have the following property: If quantum systems
are prepared in such a way that apparatus U always indicates a
successful test, apparatus V has a probability gm,vi3to yield a
positive answer, and vice versa.
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It is not obvious that this requirement can be fulfilled for arbitrargndv .
Dynamical laws cannot be decreed by whim, without risking a violation of
physical principles that we wish to respect, such as conservation of charge,
relativistic invariance, or the second law of thermodynamics. More often thai
not, it is impossible to satisfy conditiohin a rigorous way (as will be seen in
Chapter 12), but it still can be satisfied to an arbitrarily good approximation

In last resort, the fundamental question is: What distinguishepiaatum
test from any other dynamical process governed by quantum theory? Th
characteristic property of a genuine test is that it producperianent record,
which can be described by our ordinary language, after having been observed
ordinary means, without the risk of being perturbed by the act of observatior
It does not matter whether someone will actually observe this record. It i
sufficient to prove, by relying on known physical laws, that an observation is i
principle possible and can be repeated at will by several independent physici
without giving rise to conflicting results. In summary, the outcome of a test is
an objective event (some authors prefer the terntersubjective ).

The robustness of a macroscopic record—its stability with respect to sma
perturbations such as those caused by repeated observations—suggests
irreversible processes must be involved. This is a complicated issue, not ye
fully understood, which will be discussed in Chapter 11.

Having thus warned the reader of the difficulties lying ahead, | now return tc
the formal and naive approach where a quantum test is an unexplained eve
producing a definite and repeatable outcome, in accordance with well define
probability rules given by quantum theory.

3-5. Determination of a quantum state

Suppose that the only information we have about a preparation procedure
that it produces gure state. (The more general case rofxed states will be
discussed later.) Our task is to determine the components of the correspondi
state vector,v = T uvne, = Y v,e, = ---. If wecan prepare and test an
unlimited number of systems, it follows from the expectation rdlehat we
can measure, with arbitrary accuracy, threbabilities of outcomes such as

l'”m|2 = l(em,v)|2 or |U;t|2 = |<em")|2' (3.30)

There are 2N — 1) independent experimental data in (3.30), because of the
constraintsy {vm|? = Y jv./? = 1. . This iexactly the number of data that we
need to determine thphases of these complex numbers. Indeed, let us write

Uy = Ty €597, (3.31)

whererm and @ are real. Note that the phases, are defined only up to an
arbitrary common additive constant. TiNmoduli rm are given by the first
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set of data in (3.30)and then theN -1 relative phases can be obtained by
making use of the transformation law (3.8), which gives

2
|v“|2 =

(3.32)

Z CymTm e'dm
m

The solution of (3.32) for the unknowgs, is an algebraic problem, similar to
the one in Sect. 2-6. There are as many independent algebraic equations as th
are unknowns. A finite number of solutions should therefore be obtainable,
provided that the data satisfy some inequalities, which restrict the domain
of admissible values db,| anj,]. These inequalites have the meaning of
uncertainty relations, as may be seen from the following example.

Uncertainty relations

Consider two complementary bases, as defined by Eq. (3.28), in a two dimen
sional vector space. We then halig, = (—1)*™//2, and Eqg. (3.32) gives

[vul® = 3| £ 7 e ryet®)? = it + 73 £ 277 cos(dr — $2)], (3.33)
whence
3l =2l < ol < Gl 4ot (3.34)

For example, ifv, =dm (if there is no uncertainty in the result of a “Latin”
test), we obtainjv,|? =% for both values ofu (there is maximal uncertainty
for the result of a “Greek” test).

Example: photon polarization

Suppose that we receive a strong beam of polarized light (from a laser, say) ar
we want to determine the polarization properties of the photons in that beam
We have seen, in Sect. 1-3, how polarization is describedldsgical electro-

magnetic theory. Although Maxwell's equations cannot apply to individual
photons (since they allow no randomness), the description of the polarizatior
of single photons ought to be similar to the classical one, because the simple
statistical properties of photons, such as the total intensity of a light beam, agree
with the predictions of classical electromagnetic theory. Thereforassambly®

of photons can be treated classically, to a good approximation. Consider nov
two interfering polarized light beams, as in Fig. 1.4. The experiment sketched
in that figure can be performed with very weak beams, in such a way that it

9The termassembly denotes a large number of identically prepared physical systems, such
as the photons originating from a laser. An assembly, which is a real physical object, shoulc
not be confused with aensemble, which is an infinite set otonceptual replicas of the same
system, used for statistical argumentation, as explained in Sect. 2-1.
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is unlikely to have at any moment more than one photon in the apparatus
and nevertheless, the total number of photons during the entire experiment
very large, so that the laws of classical optics must be valid. This two-sidec
situation suggests that we represent the polarization states sofgla photon

by a linear space, like the one used in classical electrodynamics. This conclusic
is of course in complete agreement with the superposition prinGple

Note that, in the present discussion, we are concerned only with polarizatio
properties. The number of photonse; the beam intensity—and the location
of that beam are not considered. In other words, the “quantum system” the
we are testing by calcite crystals and similar devices is onlypttexization of a
photon. (Recall the discussion of the Stern-Gerlach experiment in Sect. I-5: th
“‘quantum system” was the magnetic momenbf a silver atom. The position
of the atom could be described classically.)

The linear space describing photon polarization is two-dimensional, becaus
there are two distinct states corresponding to each maximal test; and it is
complex space, because phase relationships are essential (see Fig. 1.4). We
thus led to a representation of polarization states by column ve(gt)ars , Wit
complex component& and3, satisfying the normalization condition

lal? + |82 = 1. (3.35)

The two outcomes of any maximal test may be taken as a basis for this twc
dimensional linear space. Different tests correspond to different bases, as v
have seen. For example, the vecteys= ((1)) ande, = (‘;) can be taken to
represent linear polarizations in the andy-directions, respectively.

The classical superposition principle (1.3) suggests thatE, exp(ig,)
and B ~ Ey, exp(g), with a proportionality constant which depends on the
units chosen and on the intensity of the beam, and which in any case include
the common phaseiz-«)  Here, E, and E, can be taken as functions &f
andy, if we wish to represent beams of finite extent, rather than an infinite
plane wave. Note that the polarization of a light beam depends only on thi
ratio of the component€E, andE, , and on their relative phase. Multiplying
both components by the same number does not change the polarization of t
light beam, but only its total intensity.

Suppose now that a photon with unknown polariza |9 teisted for
linear polarization in a direction making an andlevith the x-axis. We know
that a classical electromagnetic wave will pass without reduction of intensity
if E4/Ey = cosB/sin® . It follows that photons with that polarization state,

(z) = (:::g) always pass the test. Likewise, those having the orthogonal

polarization, namely (g) = (—Ci';") , always fail the test. In general, we can
write

(;) =a (:)ns Z) t c”(-ccs)isnoe)’ (3.36)
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where
. cos8\' (a
¢y =acosf+ Bsinf = sing) g (3.37)
andto
. —sinf\'[a
c; = —asin® + Bcosf = 06 ) (3.38)

Again, from the analogy with the classical electromagnetic wave, we know
that theamplitude of the wave that has passed through the linear analyzer
is proportional toc,, and therefore it3ntensity (its energy flux given by the
Poynting vector) is proportional fe,|2. When this is expressed in terms of
photon numbers, this means that]? aleg? are theprobabilities for any
single photon to pass or fail the test, respectively. Note |thEt+ |cal? = 1,
by virtue of (3.35). All these findings are in complete agreement with the
expectation ruleH.

We can now solve the problem of finding the polarization of an assembly of
photons in a pure state—that is, finding the rati@®, which is in general com-
plex. A calcite crystal will split the light beam into two parts, with intensities
proportional to |a|? and|Bi{% . In these beams, the photons are in pure state:
ey ande, respectively, with the- and y-axes defined by the orientation of the
optic axis of the crystal (see Fig. 1.2). i$still leaves the phase af/p to be
determined. To find that phase, let us rotate the analyzer by 45° around the
direction of the light beam. We thus substitute, in (3.37) and (3£8),45°.

The observed probabilitiefs;|* and |c;|? then become {|a + A[%, from which
one can obtain the phase afip (except for the arbitrary sign ofix Note
that a and B may still be multiplied by acommon phase factor. The latter is

obviously related to the arbitrariness of the origin of time in the common phase
ei(kz—0t)

Exercise 3.7 Find explicitly the ratio a/f from the intensities measured in
the two experiments described above.

Exercise 3.8 Show that a similar experiment with a quarter wave plate, to
test circular polarization, would give the two probabilities }|a=i8]*. Moreover,
show that a comparison of the result of this experiment with the two preceding
ones is a consistency check for the claim that the incoming light is fully polarized
(i.e., that the photons are in a pure quantum state).

Exercise 3.9 Find an uncertainty relation similar to Eq. (3.34) for the case
of complementary bases in a 3-dimensional vector space. *

0The dagger 1 superscript denotes Hermitian conjugation, that is, both transposition and
complex conjugation.
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Exercise 3.10 Four polarization filters are introduced in a Mach-Zehnder
interferometer, as shown in the figure below. The two internal filters allow the
passage of light with vertical and horizontal polarization, respectively. The filter
near the source is oblique, at 45°. The filter near the observer may be rotated,
or removed. Show that no interference fringes will appear if the observer’s filter
is vertical, or horizontal, or absent. On the other hand, there will be fringes
if that filter is oblique. How can the existence of these fringes be explained in
terms of polarized photons travelling in the interferometer? What happens to
these fringes if the filter near the source is removed, or is rotated to the vertical
or horizontal position?

Fig. 3.2. Mach-Zehnder interferometer with four polarization
filters. (This experiment was suggested by M. E. Burgos.)

3-6. Measurements and observables

A meaningful quantum test must have a theoretical interpretation, usually for
mulated in the language of classical physics. For example, if a Stern-Gerlac
test is found to have three distinct outcomes for a given atomic beam, we in
terpret these outcomes as the valpesO, and 4, which can be taken by a
component of the magnetic moment of each atom. In the absence of obviou
classical values for the outcomes of a test, we may ascribe arbitrary numeric:
labels to these outcomes; for example, in Fig. 1.3, the two linear polarization
can be labelled +1. Thus, in general, we assodiateal numbers,ay, ... an,

with the N distinct outcomes of a given maximal test.

Once this has been done, we may say that the result of a quantum te
is a real number, and the test becomes similar to a classical measureme
which also yields a number. | shall therefore follow the usage and call tha
test a “quantum measurement.” However, as explained in Sect. 1-5, this ne
type of measurement is not a passive acquisition of knowledge, as in classic
physics. There is no “physical quantity” whose value is unknown before the
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measurement, and is then revealed by it. A “guantum measurement” is nothin
more than its original definition: It is a quantutest whose outcomes are
labelled by real numbers.

To complicate things, the same word “measurement” is also used with @
totally different meaning, whereby numerous quantum tests are involved in e
single measurement. For example, when we measure the lifetime of an unstab
nucleus (that is, itexpected lifetime), we observe the decays of a large number
of identically prepared nuclei. Very little information can be obtained from
a single decay. Likewise, the measurement of a cross section necessitates
detection of numerous scattered particles: each one of the detection events is
quantum test, whose alternative outcomes correspond to the various detectc
in the experiment.

Still another kind of scattering experiment, also called a measurement, i
the use of an assemBlgf quantum probes for the determination of alassical
quantity. For example, when we measure the distance between two mirrors b
interferometry, each interference fringe that we see is created by the impacts
numerous photons. A single photon would be useless in such an experimen
These collective measurements will be discussed in Chapter 12. Here, we restr
our attention to measurements which involve a single quantum test.

Suppose that we perform such a test many times, on an assefmblyantum
systems prepared in a pure stateLet er be the vector representing theh
outcome of the test, and, be the real number that we have associated with
that outcome. (I am using here boldface indices for labelling the outcomes c
the test. The reason for this choice will soon be clear.) Since weugdkrs as
the result of this process, we say, rather loosely, that we are observing the val
of some physical quantitg, and we callA anobservable. By its very definition,
that observable can take the valwes,a,,...,only. The quantum expectation
rule H asserts that the probability of getting the resuliis|{er,v)|?.. Therefore,
the mean value (also calledexpectation value) of the observableé\ is'!

(A) = Zar I(er,V>|2 = Za, [’Ur|2. (339)

Let e,,eb, ..., denote the orthonormal basis used to set up the complex
vector space of quantum theory. (As usual, this basis is labelledalby in-
dices. Here, it would be more efficient to take theldface basis,e;,e;, ...,
corresponding to the test under consideration, but that choice has not enouc
generality, because we shall soon be interested in comparing the outcomes
several distinct tests.) From the transformation law (3.3), we obtain

11According to common practice, the same symbaland Oare used to denote the mean
value of an observable, and the scalar product of two vectors. This dual usage has no profoun
meaning and is solely due to a dearth of typographical symbols. It cannot lead to any ambiguity
Some authors prefer to denote an averagdh.as , but this may lead to confusion when comple
expressions are averaged. A bar is still used in this book to dendtassical average (e.gB
in Sect. 1-5) because in that case no complex conjugation can be involved and, on the othe
hand, it is necessary to avoid confusion withantum averages.
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2 2
(A) = Ear Z:(Cm em,V)| =D ar Z Crn U (3.40)
r m r m
This can also be written as
(A) = Y U Arn n (3.41)

clearly showing the distinct roles of the expressiomsn, which refers solely
to the preparation of the quantum system being tested, and

Apn = Y Crm ar Cra, (3.42)
T

which refers solely to the quantum test defining the basis and thereby the
observableA.

An observable is therefore represented bynatrix in our complex vector
space. These matrices will be denoted by capitals serif letters, such a#\,
to distinguish them from ordinary complex numbers, such as their component
Amn . The Hermitian conjugate of a matrix, denoted by a supersTc,riiH
defined as the complex conjugate transposed matrix:

(MY)n=M,, . (3.43)

Sinceay is real, it follows from (3.42) thafmn= Anm, So that any observable
matrix is Hermitian:A = AT. It will be shown later that the converse is also
true: any Hermitian matrix defines an observable.

Transformation properties

Note that we have now two essentially different types of matrices. There art
unitary transformation matrices, such &gm or Crm, whose indices belong to
two different alphabets, indicating that they refer to two different orthogonal
bases; and there are Hermitian matrices, W, which represent observable
physical properties, described with the use ddirgle basis.

It is natural to ask what is the transformation law of the components of thes
observable matrices, when we refer them to another basis. For example, we m:
define, by analogy with (3.42), the expression

Aw =) TriaTyr, (3.44)

where the transformation matrix is defined by Eq. (3.3). These transformation
matrices are not independent (in mathematical parlance, they fogmoap) .
Inserting the composition law (3.4) into (3.42), we obtain

Amn =2 (Z Try Cum> ar (Zﬁ: 5:) : (3.45)
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whence, by comparing with (3.44),

Amn =Y Cum Ay Com. (3.46)

nv

This is the transformation law for observable matrices. It is similar to the vector
transformation law (3.8), but now botfi,, and its complex conjugate appear,
because the transformed elements have two intfices.

Exercise 3.11 Derive (3.46) from (3.8) and from the requirement that

(A) =3 VA v, (3.47)

gives a result which agrees with Eq. (3.41).
Exercise 3.12 Show that

Ap =Y Cum An Cin. (3.48)

I shall now show that th&l expressionswpy, =3  AmnVn are the components
of avector which can be written aw = Av. This is not a trivial claim because,
in general,N arbitrary numbers ar@ot the components of a vector. The
characteristic property of a vector is that its components obey a well defined
transformation law (the same law for all vectors!) when these components are
referred to another basis. Simple examples of non-vectors are shown in th
following exercises:

Exercise 3.13 A vector {x,, X »} in the Euclidean plane is defined by the
property that a rotation of the axes by an angle q induces a linear mapping

{z1,22} = {z1cos8 + z35inh, —z;sin § + z; cos H}. (3.49)

Show that the pair of numbers {yi, y,} = {X1, =X,} also has a linear mapping
law under a rotation of the axes, but that law has not the same form as (3.49)
and therefore the pair {y1, y,} isnot a vector. On the other hand, show that
{ug,u} = {=x,, x4} transforms according to

{ur,u2} — {u1cos@ + uysinf, —uysind + u, cos b}, (3.50)

and therefore the pair {u,,us} is a vector. *

121f you are familiar with general relativistic notations, and in particular with spinor theory
in curved spaces, you will want to introduce here lower (covariant) and upper (contravariant)
indices, as well as dotted and undotted indices for complex conjugate transformations. | refrain
from using these exquisite notations, lest they scare the uninitiated.
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Exercise 3.14 Show that the pair of numbers {vi,v;} = {z} — z%, 2z,z,}
behaves, under the mapping (3.50), as a vector would have behaved under a
rotation of the axes by an angle 26, rather than 6. Therefore, v; and v, are not
the components of a vector (they are the components of a tensor) . *

Let us therefore examine whethar = Av is a vector: We must find what
happens to the equationyn = Y n AmVvn , When that equation is referred to
another orthonormal basis—say. Shall we then gew, = Y Ay, with
wy satisfying the transformation law (3.8)? The answer is positive, as may be
seen from the transformation laws (3.8) and (3.46). These give

z Amn Un = Z Cum Auu Cun Convy = E Cp.m Auu Uy = Z Cum Wy
n nuve wy I

and this is indeedm, . This formally proves that the componentswotransform
like those of a vector. In other words, an observable matrixlisear operator
mapping vectors into vectors.

Once this point is established, we can considerably simplify the notation anc
discard all the indices (Latin, Greek, boldface, etc.) which refer vectors to
various orthogonal bases. For example, Eqg. (3.41) becomes

(A) = viAv = (v, Av). (3.51)

This symbolic notation is not only aesthetically more pleasant; it will be the
only possible one foinfinite dimensional vector spaces, where “indices” take
continuous values (see Chapter 4). The index free notation is unambiguou
provided that all vectors and matrices are referred tostnee basis. Explicit
indexing is preferable when transformations among several bases are involvel

Projection operators

The simplest observables are those for which all the coefficeentre either 0

or 1. These observables correspond to tests which ask yes-no questions (yes =
no = 0). They are callegrojection operators, or simply projectors, for the
following reason: For any normalized vectorone can define a matrir, = wT

with the propertie,2 = P, and

Pyu=vviu=v(v,u). (3.52)

The last expression is a vector parallelvtp for any u, unlessCv,ull= 0. In
geometric termsPyu is theprojection of u along the direction of/. Projectors
of a more general type than in Eqg. (3.52) will be discussed later.

These projection operators are very handy. In particular, we can write any
observableA as a linear combination of projectors on the basis which defines
that observable:

A=Y arecel. (3.53)
r



Further algebraic properties 67

The matrix elementé,,, are then simply given by
Amn = ¢ Ae, = (e, ,Ae,), (3.54)
as can be seen from the definitions (3.3) and (3.42). Conversely,

A=) An.enel. (3.55)

mn

The matrix Amn is said to be theepresentation of the observablé\ in the basis
em. Likewise, the matrixd,, is the representation &k in the basis,, and so
on. It readily follows from (3.53) that the representationfofn the basiser
(the basis which corresponds to the quantum test that was used to Aefirse
adiagonal matrix, with the numbers, along the diagonal.

Eigenvalues and eigenvectors

Two more notions are of paramount importance in quantum theory: If there
is a numbera and a non-null vectou such that the equatioAu =au holds,

then o is called areigenvalue of A, and u is the correspondingigenvector. 13

For example, we have from (3.53),

Aeg = Z ar ep e:[ eg = Ug €g. (3.56)

r

Exercise 3.15 Show that, in the em representation, Eq. (3.56) becomes

Z Amn Csn = ag Csm y (357)

whereCsn is defined by Eg. (3.3).

Equation (3.57) shows the structure of the unitary transformation matrix which
diagonalizesA: the matrix elemeniCg, is the mth component of the eigen-
vector of A corresponding to the eigenvalae.

3-7. Further algebraic properties

The transformation law (3.46) for the matrix elements of an observable is linear.
Therefore observables, like state vectors, form a linear spac&:atid B are
observables, andi and 3 are real numberd) =a A + BB is an observable too,
with componentd,,, =adAm + BBm . Note thata and B must be real, as
otherwise D would not be Hermitian. The proof of some important theorems is
left to the reader, in the following exercises:

13The termsproper or characteristic values and vectors are also used in the older literature.
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Exercise 3.16 Show that if C is unitary and A is Hermitian, c'AC is also
Hermitian. Likewise if U is unitary, C'UC is unitary.

Exercise 3.17 Show that any algebraic relation between matrices, such
asA+B =D, or AB =D, is invariant under a similarity transformation
A - S7IAS,B - S'BS(and in particular under a unitary transformation).

Nonlinear functions of an observable are defined by the natural generalizatior
of Eq. (3.53):

f(A) =3 flar)erel. (3.58)

Their matrix elements are given as in (3.42):

(F(A))n = (€m , f(A) &) =Y Crm f(ar) Crn (3.59)

For the integral powers of an observable, this definition coincides with raising
its matrix to the same power. For example,
(Az)mn = ZAmk Akn = Z Crm arC_rszk asc_snv (360)
k krs
is indeed equal t&; Crm (ar)2Crn , by virtue of (3.1). However, the definition
(3.58) is also applicable to functions which cannot be expanded into power

series, such as lo§. Note that if the function f is bijective, the measurements
of A and f(A) are equivalent, in the sense of PostuBtépage 31).

Exercise 3.18 Show that if H is Hermitian, €' is unitary.

Exercise 3.19 Show that if U is unitary, i(2 - U)/(1 + U)is Hermitian.
(Here, 1 denotes the unit matrix.)

Next, let us consider functions of several observabkesnd B, say—which
are not defined by the same complete test. Whileis defined as above by
associating real numbers; with a set of orthonormal vectors;, one defines
B by associating real numbebs, with another set of orthonormal vectoss, ,
corresponding to aifferent maximal test. (If you want a concrete example,
think of A andB as angular momentum componenfg, and Jy.) As before,
we refer all the components of vectors and matrices to some fixed orthonorme
basisem (for example, the one in whicl,; is diagonal). The matrixAmn is
given by Eg. (3.42), and likewise we have

Bon =3 Cum b, Crun. (3.61)
173
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What is then the physical meaning of the observable @A=+ (B ? Clearly,

there is some other basis—corresponding to some other maximal test—in whic

Dmn is given by an expression similar to (3.42) or (3.61), with numerical coeffi-

cientsde (instead ofa, andb) which then are, by definition, the possible values

of the observabl®. Thesedo and the orthonormal vectoess corresponding to

them are the eigenvalues and eigenvectors of the nafras in Eq. (3.56).
Conversely, suppose that we have prepared a quantum wsfatewhich it

can be predicted with certainty that the measurement of an obseDalvié

yield the valuedo. It then follows thatdo is an eigenvalue ob andv is the

corresponding eigenvector. Indeed, the variance

((D — do)?) = v!(D — do)® = ||(D — do)v|]%, (3.62)
must vanish, and this can happen if, and onlyD¥, =dowv.

Exercise 3.20 What are the eigenvalues of Jx+Jy for a particle of spin 27?
What are the eigenvectors in a representation where Jz is diagonal ?

Exercise 3.21 Show that the eigenvalues of a matrix are invariant under a
unitary transformation (or, more generally, under a similarity transformation).

To verify the consistency of the physical interpretation, we must still show
that the eigenvalues of any Hermitian matrix are real, and that eigenvector:
corresponding to different eigenvalues are orthogonal. The first property readily
follows from the fact that the diagonal elements of a Hermitian matrix are real—
in any representation. The second one too is easily proved:Huet au, and
Hv =Bv. We then have

viHu =avfu and utHv =Butv. (3.63)

Subtract the second equation from the Hermitian conjugate of the first one.
The result is ¢ — B)ufv=0, so thaw andv are indeed orthogonal i # .

Exercise 3.22 Prove likewise that the eigenvalues of a unitary matrix lie on
the unit circle, and that eigenvectors corresponding to different eigenvalues are
orthogonal.

Conversely, iftiv, Aw Ois real for any vectow, then A satisfies

{u, Av) = (v, Au), (3.64)

for any two vectorsu andv (that is, A is Hermitian). This property is proved
in the same way as Eq. (3.17), which showed how all scalar products could be
determined from the knowledge of all norms. Here, we have
(u+V)TAU+v) = (u=v)TA(u =v)
+i(u — ) A(u — iv) — i(u + iv)TA(u + iv) = 4u'Av. (3.65)
The real part of the left hand side is obviously invariant under the interchange
of u andv. The imaginary part, on the other hand, changes its sign, because
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(v £ 2u)tA(v £ iu) = (u T v)TA(u T iv), (3.66)

and Eq. (3.64) readily follows.

Computation of eigenvalues and eigenvectors

To obtain explicitly the eigenvalues and eigenvectors of a given matrixwe
have to solvey Amnun =0un , or Y (Amn — 00mn)uy = 0. These linear equa-
tions have a nontrivial solution if, and only if, DeAnfy — 0dmn) = 0. This is
an algebraic equation of ord®, called thesecular equation. If ais a simple
root of this equation, the corresponding eigenvector is obtained by solving a se
of linear equations, and it is unique, up to a normalization factor.

If the same eigenvalue occurs more than once, it is called “degenerate,” an
it may have several independent eigenvectors. In particulad i§ Hermitian
(or unitary), it is always possible to construkt orthonormal eigenvectors
corresponding to aM-fold root of the secular equation. This can be proved
as follows. We first find one eigenvectov,say. We then perform a unitary
transformation to a new basis, such thais the kth basis vector. This does
not affect the eigenvalues & (see Exercise 3.21). In the new basis, we have
> Am Vn = a vy, However, in that basis, the only nonvanishing component of
visvy, whence it follows that\ck = a and all the otheA nx = 0, and therefore
all Akm = 0 too, becausd is Hermitian. Consider now a new matiX which
is the same a#\, but with thekth row and column removed. This matrix is
defined in the subspace of all the vectors orthogonal. t8y construction, its
eigenvectors are also eigenvectors Af with the same eigenvalues. Repeating
this processM — 1 times, we can findl orthogonal eigenvectors pertaining to
the M-fold eigenvalue. Obviously, any linear combination of these vectors is also
an eigenvector, corresponding to the same eigenvalue. Additional informatior
can be found in texts on algebra, such as those listed in the bibliography.

Exercise 3.23 Prove that similar properties hold for unitary matrices.

Exercise 3.24 On the other hand, show that the matrix( : _il ),vvhich is
neither Hermitian nor unitary, has only a single eigenvector.

Exercise 3.25 Show that the trace (the sum of diagonal elements) of a
Hermitian—or unitary—matrix is equal to the sum of its eigenvalues, and the
determinant of that matrix is equal to the product of its eigenvalues.

From the definition off(A)—see Egq. (3.53)—it readily follows that if all
the eigenvaluegs, satisfy a relationship(a;) = 0, thenf(A) = 0 too. The
converse is also true, as can be seen by considering the representatiorAwhere
is diagonal. A simple example is that pfojection operators (or projectors),
for which all eigenvalues are either 0 or 1, and which therefore satisfy
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Exercise 3.26 Prove that any projector P can be used to split any vector v
into the sum of two orthogonal terms:

v=Pv+(v—Pv) (3.68)

Exercise 3.27 Let u and v be normalized vectors. Show that uu’ and vv'
are projectors. Moreover, show that uu® +w' is a projector if, and only if,
@, vO= 0. Generalize this result to an arbitrary number of vectors.

Exercise 3.28 Let{e,} be a complete orthogonal basis. Show that

Y oe, eL =1, (3.69)
u
where1 is the unit matrix.

Commutators
The expression
[A,B] := AB — BA, (3.70)

is called thecommutator of the matricesA and B. If [A, B] = 0, we say that

A and B commute. Obviously, two observables defined by means of the same
maximal test commute (there is a representation in which both are diagonal
Conversely, ifA andB are Hermitian and commute, it is possible to find a basis
where both matrices are diagonal. This can be done as follows: First, let u
diagonalize A. We then have

[Ay B]mn = (Amm - Ann) an = 0. (371)

If Ais nondegenerate, it follows th&mn = O wheneverm # n (i.e., B too

is diagonal). If, on the other hand, is degenerateB is only block-diagonal.
Each one of the blocks corresponds to a set of equal eigenvaluegtiudt is,
the corresponding block oA is a multiple of the unit submatrix). We can then
diagonalize each block d8 separately without affectind\, so that, finally, both
A and B are diagonal.

In particular, consider two projecto® and Q. If they commute, both can be
diagonalized in some basis. In that case, their pro®@t= QP has diagonal
elements equal to 1 only whelmth P and Q have such diagonal elements.
Projection operators which satisfyQ = 0 are said to berthogonal.

Exercise 3.29 Show that if the projection operators P and Q satisfy PQ = 0,
then QP = 0 too.
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Exercise 3.30 Show that if P and Q are orthogonal projectors, and v is any
vector, [Pv, Qv= 0.

Exercise 3.31 Show that if P is a projector, the operator 1 — P is also a
projector, and it is orthogonal to P.

Normal matrices and polar decomposition

To conclude this brief tour of linear algebra, here are two more definitions. A
matrix A is called normal if it commutes with its adjoint{A, ATl = 0. In

that case, the Hermitian matrices + AT and i (A — AT) commute and can be
simultaneously diagonalized by a unitary transformation. Therefoitself can

be diagonalized.

Consider now a generic matri, which is not normal, and therefore cannot
be diagonalized by a unitary transformation. It may still be possible to write
A in polar form, like we write a complex number= rel® Indeed, the matrix
ATAis Hermitian, and it has nonnegative eigenvalues, because, fou,any

ufATAu = [|Au})2 > 0. (3.72)

Further assume thaA'A has no zero eigenvaluée|, the equationAu = 0 has
no solution other tham = 0). Since ATA is Hermitian, it is possible to define,
thanks to Eq. (3.58), the matrixA*(A)_l/?, where, for definiteness, we choose
the positive square root of each eigenvalueAbk. Then, the matrix product

U:=A(AtA)"1/? (3.73)
is unitary, becaus®'U = (AtA)~1/2 AtA (AtA)-Y2=1 | and we finally have
A = A (ATA)71/2 (ATA)/2 = U (ATA)Y/2, (3.74)

The reader is invited to work out an explicit example, such asJ.+:J,+€l,
and to see what happens in the lifit. 0.

3-8. Quantum mixtures

Most tests are not maximal and most preparations do not produce pure qual
tum states. We often have only partial specifications for a physical process. W
therefore need a formalism for describing incompletely specified situations.

Imagine a procedure in which we prepare various pure stgtesvith re-
spective probabilitiegp, . The vectorsuy are normalized but not necessarily
orthogonal to each other. The corresponding projectorgp.ateuyul, (a new
symbol p, was introduced here, instead of the forni®r, to avoid confusion
with the probabilitiespq).

The average value of an observaidor the pure stately is
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(A)a = ul Auy = Tr(pa A), (3.75)

where thetrace of a matrix is defined as thsum of its diagonal elements.
Traces will frequently occur in our calculations. You should be familiar with
their most important properties, which are listed in the following exercises.

Exercise 3.32 Prove that Tr(aA + BB) =a Tr(A) + Tr (B).

Exercise 3.33 Prove that Tr(AB) = Tr(BA). As a corollary, prove that the
trace of a matrix is invariant under similarity transformations A ~ SAS™ . In
particular, it is invariant under unitary transformations.

Exercise 3.34 Prove that Tr(AB) isreal if A and B are Hermitian.

Returning to our stochastic preparation procedure, where the pureugtate
occurs with probabilitypq, we get, as the average value of the observable

(8 = Spo (Ao = T5 (S parah) 3.76)
which can be written as

(A) = Tr(pA), (3.77)
where

p= ;pa P (3.78)

is thedensity matrix (or statistical operator) of the quantum system. It satisfies
Trp:ZpaTr(p[,)=Zpa =1. (3.79)

Note in particular thatl) = 1, as @ught to be.

Equation (3.77)can be considered as a generalization of (3.41) when the
preparation of a system is not completely specified. The notion of density
matrix—just as that of state vector—describegpraparation procedure; or, if
you prefer, it describes an ensemble of quantum systems, whose statistical pro
erties correspond to the given preparation procedure. A pure state is a spec
case of Eq. (3.78), when only one of the is 1, and all the other ones vanish.

In that casep is a projection operator and satisfies

pl=p. (3.80)

Conversely, if Egs. (3.79) and (3.80) are satisfipds a projector on some
pure statew. Indeed, (3.80) implies that the eigenvalues poare 0 and 1,
and (3.79) that the sum of these eigenvalues is 1. Therefore, there is a sing
eigenvectorw satisfying pw = w, and we havep = ww".

Note that any projector satisfies
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{v,Pv) = (v,P?) = ||Pv|* > 0. (3.81)

Hence the diagonal elements of a projector are nonnegative, and so are those
any density matrix. This property cannot be affected by choosing another basis
In particular, the eigenvalues of a density matrix are nonnegative. Moreover,

none of these eigenvalues can exceed 1, because of (3.79).

Exercise 3.35 A maximal test defines an orthonormal basis ey. Show that
the probability of obtaining the pth outcome of that test, following a preparation
p,isTr (pPy), whereP, = eue,t.

Positive operators

A positive operator A is defined by the property thdaiv,Aw(> 0 for any

w (a more accurate name would have been “nonnegative operator”). Such a
operator is always Hermitian, as seen in the proof of Eq. (3.64). It satisfies
further interesting inequalities. Consider, for example, a veetaith only two
nonvanishing components;m andvy, , say. SincevTAv involves only a submatrix

of A with elements labelled by the indicem or n, that submatrix itself must

be a positive operator. In particular, its eigenvalues cannot be negative, an
therefore—see Exercise (3.25)—the corresponding subdetermingfi,m Ann —
|Am=n|?), cannot be negative. It follows that if a diagonal elem&m vanishes,

the entiremth row andmth column of A must vanish. More generally, if a
matrix is positive, then any submatrix, obtained by keeping only the rows and
columns labelled by a subset of the original indices, is itself a positive matrix,
and in particular it has a nonnegative determinant.

Decomposition of a density matrix
An important corollary is that if we try to decompose a pure spateuu’ as
p=Ap +(1-X)p", (3.82)
with 0 <A < 1, we can obtain only
P=p"=p (3.83)
Indeed, consider any orthogonal tou. We have
(v,pv) = A{v, p'v) + (1 = X){v,p""v) = 0. (3.84)

Since bothA and (1 —A) are positive, it follows that{v,p'v) = {v,p"v) = 0.
Therefore, if we choose a representation in which lo#ndv are basis vectors,
the entire row and column belonging Yomust vanish. It follows that the only
nonvanishing components @ andp" are{u, p'u} = (u,p"u) = 1, whence we
obtain Eqg. (3.83).
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On the other hand, any density matrix which it a pure state can be
decomposed into pure states in infinitely many wHyBor example, we have

07 0\ _ 10 00
( o 0'3)=o.7(0 0)+0.3(0 1), (3.85)

where the two matrices on the right hand side are projectors on the orthogon:
pure state{(‘,) and (‘1’) respectively. Thesame diagonal density matrix (3.85)
can also be decomposed in an infinity of other ways, such as

10 0.64 0.48 0.36 —0.48
0'4( 0 0 ) +0.3 ( 0.48 0.36 ) +0-3< o048 064 ) , (3.86)

where the last two matrices correspond to pure stéﬁé)s and (_35) which

are orthogonal to each other, but not @ or (‘1’)

This lack of uniqueness has a remarkable consequence. Giveuliffimcent
preparations represented by density matriggsand p2, one can prescribe a
third preparation,p, as follows: Let a random process have probabiltyo
“succeed” and probability (1 -A) to “fail.” In case of success, prepare the
guantum system according fm . In case of failure, prepare it according @g.
The result is represented by the density matrix

p=Api+(1-A)p2, (3.87)

because, if the above instructions are executed a large number of times, tt
average value obtained for subsequent measurements of any obserable

(AY = ATr(p A) 4+ (1 — \) Tr (p; A) = Tr(pA). (3.88)

What is truly amazing in this result is that, oreés given, it containgll the

available information, and it is impossible to reconstruct from it the origial
andp2! For example, we may have an experimental setup in which we prepar
a large number of polarized photons, and we toss a coin to decide, with equ
probabilities, whether the next photon to be prepared will have vertical or hor:
izontal linear polarization; or we may have a completely different experimental
setup, in which we randomly decide whether the next photon will have right
handed or left handedircular polarization. In both cases, we shall get the same
p =3 1. An observer, receiving megajoules of these photons, will never be abl
to discover which one of these two methods was chosen for their preparatio
notwithstanding the fact that these preparations reaeroscopically different.
(If he were able to do so, he could use this capability for the instantaneou
transfer of information to distant observers, in violation of relativistic causality.
This will be shown in Chapter 6.)

This property will be expressed as our final fundamental postulate:

A quantum mixture is therefore radically different from a chemical mixture, which has a
unique decomposition into pure components.
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K. Completeness of quantum description. The p matrix
completely specifies all the properties of a quantum ensemble.

Determination of a density matrix

We have seen in Section 3-5 how we can in principle determine an unknown

pure state, by testing a large number of identically prepared systems, provide

that we are sure that their unknown preparation indeed is that poireastate.

This was a simple, but a rather artificial problem. We shall now consider the

generic case of amarbitrary unknown preparation. How can we determine the

corresponding density matrip? In principle, the method is the same, but we

now need to measure the mean values of a larger number of observables.
Consider again the case of polarized light, but allow pawial polarization.

A test for verticalvs horizontal polarization, which distinguishes the pure states

(3) and(?), is equivalent to the measurement of an observable

10
o, = ( 0 1 ) (3.89)

having these pure states as eigenstates, with eigenvalues 1 and —1. Likewise,
test for linear polarization at +45°, corresponding to the pure states

1 /1 1 1
— and S 3.90
) A0 @s0)
can be considered as the measurement of an observable
01
a,_<1 0), (3.91)

with eigenstates given by @0), and eigenvalues *1.
Finally, a test for circular polarization, corresponding to the pure states

1 /1 1 /2
—1 " and — 3.92
ﬁ(t) fz(l) (3:92
is equivalent to the measurement of an observable
0 —:
oy = < i 0 ) , (3.93)

with eigenstates given by (3.92), and again with eigenvalues +1.
These three measurements, repeated many times—on three disjoint subse
of photons randomly chosen from the light beam—yield average results

a; = {0;) = Tr(pa;). (3.94)
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The observed values of thesg are three experimental data, which, together
with the trace condition (3.79), allow us to determine the unknown values of
the four elements of the Hermitian matqx The result is

p=31+3 a0, (3.95)

as can easily be verified by using the identity
OmOn + On O =26 - (3.96)
Exercise 3.36 Show that (3.94) is a consequence of (3.95).

Exercise 3.37 For quantum systems having N orthogonal states, how many
different measurements are needed to determine p? Ans.:. N + 1.

Exercise 3.38 Show that pin Eg. (3.95) corresponds to a pure state (that
is, to fully polarized light) if =;(a;)? = 1.

Exercise 3.39 What are the eigenvalues of pin Eqg. (3.95)? Ans.. The two
eigenvalues arg(l+(X;a?)/?. Therefore, if an experimenter fiige? > 1,
he'd better look for systematic errors.

3-9. Appendix: Dirac’s notation

Most notations used in this chapter are the standard ones of linear algebr
They may become awkward when complicated quantum systems have to &
described. For example, the state of a free hydrogen atom involves its tot:
momentum p, the internal quantum numbens |, m, one quantum number
for the spin of the electron, and perhaps one more for the proton spin, if yol
wish to discuss the atom hyperfine structure. To avoid unwieldy symbols with
multiple subscripts, lik&ipnims,s, » Dirac introduced the bra-ket notation. The
state vector is written ggnims.s,) ; this symbol is callelleq and it has the
same algebraic meaning as a column matits. Hermitian conjugate, which
is a row matrix, is writtedqpnlms.s,} and is calledbaa (this has caused not
only some bawdy jokes, but also fruitless attempts to attribute different physice
meanings to the two types of vectors, such as preparation states and observat
states). The scalar product that was hitherto deRdigdu,vCthen becomes
a complete bra-c-kefi|vQ

The following table is a summary of the various notations. The two last lines
show that great care must be exercised with Hermitian conjugation if you us
Dirac’s notation.
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Table 3-I. Equivalent notations for vectors and operators.

R3® | Complex vectors Dirac's notation

Vector (column, ket) % v [v)
Co-vector (row, bra) | u- ut {u]
Scalar product u-v utv = {(u,v) {ulv)
Dyadic vu- vut v} {ul
Hermitian conjugate | — vervt |v) & (v]
Linear operator Av Av Alv)
Co-vector (linear inA,

antilinear in u) uA. ufA {u]A
Co-vector (antilinear

in A and inu) — (Au)t = ufAt {Au| = (u|4
Adjoint of operator — | (A)tv = WAV | (Aulv) = (u]A]v)
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Chapter 4

Continuous Variables

4-1. Hilbert space

Most quantum systems require the use ofirfimite dimensional vector space,
where vectors have an infinity of components. The indexk may even take
continuous values, and we then writ¢k), rather thanug. It is possible to have
indices whose values are discrete in some domain, and continuous in anothi
domain. For example, if a quantum system has both bound states and unbour
ones, and if the energy of that system is used as an index for labelling state
that index has both discrete and continuous values.

Physicists usually have a nonchalant attitude when the number of dimension
is extended to infinity. Optimism is the rule, and every infinite sequence is pre-
sumed to be convergent, unless proven guilty. The purpose of this chapter is t
highlight some of the novel features which appear when vectors and matrice
become infinite dimensional. This does not pretend to be an exhaustive treal
ment. | shall only guide the reader through a grand tour of common npitfalls.
The selection of topics reflects my personal taste, shaped by my experience wit
real problems that | have encountered. More information, at various levels of
rigor, can be found in the treatises listed at the end of this chapter.

Quantum theory uses a special kind of infinite dimensional vector space,
called “Hilbert space”—usually denoted k. To qualify as a Hilbert space, a
vector space must satisfy three properties. The first ohiméarity: If u and
v are elements of, and if a and 3 are complex numbersy u+pv too is an
element ofH. For example, if the elements éf are represented by functions of
X, such asu(x) andv(x), thenau(x) + Bv(x) is a function ofx, and therefore
it is an element oH. In particular, H contains a null elemen®), such that
u+ 0 =ufor anyu. Up to this point, there is nothing essentially new.

Inner product and norm

The second property that must be satisfied by a Hilbert space is the existenc
of a Hermitian inner product: To any pair of elementandv, corresponds a

79
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complex number [u,vO= [V, ullthe value of which is linear i and antilinear
in u. The rule for actually computindgl, vOneed not be specified at this stage.
However, that rulemust be such that

(u,u) >0, (4.1)

with the equality sign holding if, and only ify = 0. If one allows [, ull< O,
this gives a “pseudo-Hilbert” space. Many theorems which can be proved for
Hilbert spaces are not valid in pseudo-Hilbert spaces, and the latter have n
legitimate use for representing states in quantum theory. (Spaces endowed wit
an indefinite metric, such as the Minkowski spacetime of special relativity, have
many important uses in theoretical physics. However, space of quantum
states must have a definite metric. ) If you ignore the requirement (4.1), as
some authors brashly do, Schwarz's inequality (3.18) does not hold, and you
will soon encounter negative probabilities, or probabilities larger than 1, and
other bizarre results for which | can offer no explanation.

Returning to the case where the elementdHddre represented by functions
of x, a natural (but by no means unique) choice for the definition of the inner
(or scalar) product is

(u,v) = / w(z) v(z) dz. (4.2)

This expression is obviously Hermitian, linear inand antilinear inu, as we
want. However, there already is a difficulty here: The sum in (4.2) may diverge
for some functionsu(x) andv(x). In particular, for Eq. (4.1) to make sense,
the sum [|u(z)*d2 must exist. Therefore only square integrable functions are
admitted in a Hilbert space whose scalar product is defined by (4.2). Again
you may find authors who feel comfortable with vectors of infinite norm. If you
want to follow their path, you will do so at your own risk. Here is an example:

Exercise 4.1 If a monochromatic wave e ik is an acceptable state, why
shouldn't e** be acceptable too? But if that is acceptable, you will not have
discrete energy levels in a square well. Show that a wave function cos Kx
inside the well, which corresponds to any negative energy E, can always be
smoothly joined to a wave function Aé® + Be** outside the well (with the
same arbitrary negative E).

The norm Wi|| of a vector is defined as usual by
[fu]]? = (u,u). (4.3)

Many of the properties that were proved for the norm of finite dimensional
vectors remain valid. In particular, the norm completely defines the scalar
product as in Eg. (3.17)and the Schwarz inequality (3.18) and the triangle
inequality (3.21) still hold.
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Strong and weak convergence

The third property that must be satisfied by a Hilbert spaceoispleteness,
which means that any strongly convergent sequence of elementgas a limit,

and that limit too is an element ¢f (more formally, if ||u, — u.]] — 0 for

m, n - o, there is aunique u 0O H , such that|u,, —u]| — 0). Nte that
strong convergence, as defined above, is essential. Weak convergence, define
by the property that the sequende u, Ctends to a limitly, ull for everyv, is

not sufficient for completeness. For example, if the are an infinite sequence of
orthonormal vectors, the scalar produgt u, Ohas a limit, namely zero, while
obviously the sequence, does not converge ta = 0.

Exercise 4.2 Let us try to define the square root of a delta function (there
is no such thing, as you will see). Consider the sequence of functions

Vo if |z} <1/2n,

0 if |z|{>1/2n. (4.4)

i) = {
Show that, although each function is normalized, the sequence of u, weakly
converges to zero. Moreover, show that this sequence does not strongly converge
to anything, because ||u, — u,|| has no limit, when m and n tend to infinity.

The completeness requirement has no immediate physical meaning, but i
is essential, because the proofs of many theorems about Hilbert spaces requi
going to some limit, and that limit must also belong to the Hilbert space. If
completeness is not satisfied, we don’t have a Hilbert space, and some theoren
which were proved for Hilbert spaces are no longer valid.

In particular, continuous functions donot form a Hilbert space, because a
sequence of such functions can have, as its limit, a discontinuous function. At
elementary example is the Fourier expansion of a square wave: a finite numbe
of terms in this expansion is continuous, but the limit is discontinuous.

Case study: spontaneous generation of a singularity

It is inconsistent to require Schroédinger wave functions to be always continuous
and finite, even for free particles. It is not difficult to construct states which
are represented, at time= 0, by a continuous function and which evolve
into a discontinuous, or even singular, one. Indeed, consider the free particle
Schrodinger equation

.0 1 0%
‘Bt T T2 92 (4 .5)

where units are chosen so that= & = 1. The explicit solution of (4.5), for
given initial Y(x, 0), ist

1E. Merzbacher,Quantum Mechanics, Wiley, New York (1970) p. 163.
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P(a,t) = (_L)w /_ ‘: @12 4y, 0) dy. (4.6)

2wt
The reader is invited to verify that (4.6) is a solution of (4.5), and that it
satisfies %1_{% P(z,t) = ¢(x,0). This way of writing the Schrodinger equation as
an integral equation, rather than a differential one, has the advantage of beir
valid even ify is not a differentiable function.
As an example, let

¥(z,0) = e/ (1 4 22)713, .7)

which is square integrable, and everywhere continuous and differentiable. We
then have

eia:2/2¢ 0 iy’ (1-t)/2t —izy/t dy
$e) = G L -

The integrand falls off only ay|?® for large |, but the rapid oscillations of
the complex exponent make it integrabkexcept for x = 0 andt = 1. That is,
W (0, 1) is infinite. Explicitly, we have, at time= 1,

) eiz2/2 o eTiTY dy 4o
1/)(557 )_ (21r-i)1/2 /;oo (1+y2)1/3 . ( . )
The integral on the right hand side can be evaluated expfcitly:

~ coszydy 2712 |z 1/ .

o (L1203 " T/3) \ 2 ye(lz)), (4.10)

whereK  (x) is the modified Bessel function of the third kind, which is infinite
atx= 0, but is nevertheless square integrable.

Exercise 43 As a milder example, let
Y(z,0) = e @2 g7 ging, (4.11)
Show that W has a finite discontinuity at t = 1 :

e 2 (n 2002 i z] < 1,

0 if |2 > 1. (4.12)

#an={

N Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricoifables of Integral Transforms,
McGraw-Hill, New York (1954) Vol. I, p. 11, Eq. (7).
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Separability3

A Hilbert space isseparable if there exists aountable set of vectorde,,} such
that anyv O H can be written as in Eq. (3.6),

V=) Umen, m=1, 2, ...,00, (4.13)

with [@,,e,0=8,, and ¥ |v,|? finite. This way of writingv as a discrete
sum does not preclude the possibility of representing it by means of a functior
of a continuous variable, such &&). As a simple example of a relationship
between a discrete basis and a representation by continuous variablét, let
consist of all the square integrable functiafg) on the segment & x < 2T,

with scalar product defined by

(u,v) = [”mv(z)dz. (4.14)

Dirichlet's theorem asserts that amwx) having at most a finite number of
maxima, minima, and discontinuities, can be represented, except at isolate
points, by a Fourier series

v(z) = (27)" 2 Y v e, (4.15)
where
27
= (2 ~1/2 —-imz X .
v (27) /0 e v(z)dz (4.16)

That is, the functiorv(x) contains the same information asceuntable set of
Fourier coefficients. Note thie||? = (v,v) =¥, |va|*

If you want a counterexample, a set of functions thanatosatisfy Dirichlet's
conditions is f(z) = z*sin(a/z). These functions are everywhere continuous
and differentiable, but they have infinitely many maxima and minima near
x = 0. Therefore, thesdg (x) cannot be represented, as in Eq. (4.15), by a
countable orthonormal basis, independent of the paranzeter

Nonseparable Hilbert spaces involve mathematical intricacies well beyond the
scope of this book. | mentioned them because the quantizatifields (that is,
of classical dynamical systems with a countable infinity of degrees of freedom)
inexorably leads to nonseparable Hilbert sphchsalso leads tesuperselection
rules which restrict the validity of the superposition principle. Fortunately,
ordinary quantum mechanics requires only a separable Hilbert space. It ma
involve discontinuous wave functions, but not “pathological” ones.

3The word “separability” here has a meaning completely different from the “separability”
that will be discussed in Chapter 6.

4G. Barton, Introduction to Advanced Field Theory (Interscience, New York, 1963),
Chapt. 13.
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4-2. Linear operators

Next, consider infinite dimensional matrices, which map vectors into vectors. As
before, | shall mention only the most important new features which result from
the infinite dimensionality. It will be no surprise to encounter again convergence

problems.
For example, the innocent looking matrix
Apn = 81m + b1a, (4.17)
gives, when we expand = Au,
V=) A, =ur + Z Up, (4.18)
and
U = Uy, (m #1). (4.19)

The expressionzu, which appears in (4.18nay diverge, even i ju,|?
is finite (e.g.,un = 1/n). Therefore Au is not defined for every vectou.
Moreover, even ifX u, is finite, so thatv1 in (4.18) has a meaning, itself is
not an element of Hilbert space, becdlde|* diverges (unless 0).

Exercise 44 Show that if A is defined as above, A does not exist.

These convergence problems lead to the notiodoofain of definition of an
operator A: this is a set of elements 0 H, such thatv = Au also is an element
of H. The domain of definition of an operatércan be the entire Hilbert space
if, and only if, |JAu|| is bounded, for any normalizad The norm ||A]| of a
bounded linear operator is defined by

A} = sup (| Auf| /{u] ), (u#0). (4.20)
Exercise 45 Show that any unitary operator satisfies ||U|| = 1.

Exercise 4.6 Show that, for a bounded operator A, and normalized vectors
uand v,

[(Au, Av)| < [IA]I® and [{u, Av)|* < |IA]I*. (4.21)

Local and quasilocal operators

When we use continuous indices, an expression such=a8u becomes

o(z) = [ Aw,v)uly) dy. (4.22)
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The analog of a diagonal matridm, = @m émn, becomes
A(z,y) = a(z) 6(z — y), (4.23)

where d(x—y) is Dirac’s delta function, defined for any continuous f by
Y2>T
fl@y= [ 8(a—y) f(y) dy. (4.24)
n<z

Intuitively, a delta functiond(z) has an exceedingly high and narrow peak at
z= 0, satisfyingfé(z)dz = 1.Actually, its structure may be much more
complicated. These generalized functions, calstributions, are discussed in
an appendix at the end of this chapter.

If Eq. (4.23) holds, Eq. (4.22) become$x) = a(x)u(x). In that case, the
operatorA is local, in the x basis: its meaning simply is multiplication by the
functiona(x). That function is called the representation ofA.

Likewise, one can define guasilocal operator as the continuous analog of a
band matriX Bmn = b (6mms1 —Omn-1).  Instead of (4.23), we have

B(z,y) = b(z) 6'(z — y). (4.25)

Integration by parts then gives

v(z) = /b(:c) §'(z — y)u(y)dy = b(z) u'(z). (4.26)

This means that the representation of the observabRis the differential
operatorb(x)d/dx. Higher derivatives of the delta function likewise correspond
to higher order differential operators.

These operators are unbounded, even if they are restricted to act only o
continuous and differentiable functions. For example, Hetonsist of all the
square integrable functiong(x), on the segment & x < 271, with scalar
product defined by (4.14). A convenient basis is the set,(z) = €™ /+/2x.
Equations (4.15) and (4.16) show that this set is completey rifins over all
the integers from e to . Now let A := —id/dx, so thatAw, = mwy,.

Then J|JAw,|> = m? is finite for everym. However the sequendfAw,l|* is
unbounded, and therefore the operafors unbounded too.

As a further example, consider the functiog = e~*#*/2 z=1 sin x, with
—0 < X < oo, which appeared in Exercise 4.3. This function is continuous
and differentiable. Nevertheless, it does not belong to the domain of defini-
tion of —i9/0z, because its derivative is not square integrable. Therefore the
free particle Schrodinger equation (4.5) is, strictly speaking, meaningless in this
case. However, the equivalent integral equation (4.6) causes no difficulty: Ever
if H is unbounded, the unitary operatd$ = e~*Ht has unit norm, and its do-
main of definition is the entire Hilbert space. This unitary evolution operator
is therefore more fundamental than the Hermitian operator
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Further definitions

The product of a linear operator by a numbds defined by ¢A)v = ¢ (Av);

the sumA + B of two linear operators, byA(+B)v = Av + Bv; and their
product AB by (AB)v = A (Bv). Note thatcA, A + B, and AB, also are linear
operators. The domain of definition oA is the same as that &. The domain

of definition of A + B is defined as théntersection of those ofA and B. The
domain of definition ofAB consists of the vectons for which the expressioBv

is defined and belongs to the domain Aflt is sometimes possible to extend
these domains, in a natural way, beyond the minimal boundaries guaranteed &
the preceding definitions.

Obviously, ordinary numbers are a trivial case of bounded linear operators
Therefore | shall often make no distinction between the number 1 and the uni
operator 1. The null operatoD is defined by the propertpu =0, for every
vector u. Some elementary lemmas, which will be useful in the sequel, are listed
in the following exercises:

Exercise 4.7 If @, vO=0for every v, then u = 0. Hint: Let v = u.
Exercise 4.8 If [Au, vO= Ofor every u and v, it follows that A = O.
Exercise 4.9 Show that if CAv,v= 0for every v, then A = O.
Exercise 4.10 Show that if A is bounded, |cA|l = || [|A]l.
Exercise 4.11 Show that, for any two bounded operators A and B,

1A+ BIl < [IAIl+ 18] and ABI| < IAIIBH- (4.27)

Adjoint operator

Let an operatorA be defined over alense sef of vectorsv in Hilbert space.
The adjoint operator, A*, is then defined by the relation

(A"u,v) = (u, Av). (4.28)

This equation determineA* uniquely, if u also belongs to a dense set. Indeed,
if (4.28) has two solution#y; and A} these satisfyf{(A} —A3)u,v) =0, whence
it follows that A} — A3 = O (this is proved by extending the result of Exercise
4.8 to dense sets). However, there is in general no guarantee that the doma
of A* is dense (possibly, it may contain only the elemerft 0).

An operator satisfyingA* = A is called self-adjoint. Note that the equality
A* = A implies that both operators have tlsame domain of definition. It is

5 A set of vectors islense if every vector inH can be approximated arbitrarily well by some
element of that set.
6F. Riesz and B. Sz.-Nagfunctional Analysis, Ungar, New York (1955) pp. 300, 305.
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not enough if they act in the same way on the common part of their domain:
of definition. This requirement is essential, as the following example shows.
Consider again the Hilbert space consisting of square integrable functions ol
the segment 0< x < 2T, with scalar product given by (4.14). An operator
A = —id/dx is defined over all the differentiable functiong$x). We shall see
that its adjointA* is also written +d/dx, but A* has a smaller domain: It
is defined only over differentiable functions(x) which satisfy the boundary
conditionu(0) = u(2m = 0. Indeed, we have

(w,Av) — (A"u,v) = =i [ [u@) v(e) + W@ v() ] de, (4.29)
= —i[u(2r) v(2r) — u(0) v(0)), (4.30)

and sincev(0) andv(2m) are arbitrary, the above expression will vanish if, and
only if, the functionu(x) satisfiesu(0) = u(2m) = 0. Thus, in this example,
the domain ofA* (which acts oru) is smaller than that of (which acts onv).
This is written as

A O A* or A* A, (4.31)

and we say thaf is anextension of A*, or thatA* is arestriction of A. Note
that both operators coincide in the common part of their domain of definition.

Closure

An operatorA, with domainD, , is calledclosed if every sequence/, 0D,

has a limitv which also belongs t®, , and moreover the sequende, has a

limit, which is Av. Even if A is not closed, its adjoird*, defined by Eq. (4.28),

is always closed, because the scalar product is a continuous function of its
arguments. It can be provedhat if A is closed andD , is dense inH, the
domain of A* is also dense ifd, and moreoverA** = A.

Symmetric operators and self-adjoint extensions

An operator satisfyingl, Bvld= [Bu, vlin a dense domain dfl, is called
symmetric (another way of saying that B O B*). For example, in Eq. (4.29),
A* is symmetric, butA is not. In the physics literature, the term “Hermitian
is often indiscriminately used for either self-adjoint or symmetric.

Exercise 4.12 Prove that, if A, B, A + B, and AB, have dense domains,
(AB)* D B*A* and (aA+ BBy DaA*+ 3B (4.32)

Also, prove that (aA)* =« A* for any complex number a. *
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It is sometimes possible to extend the domain of definition of a symmetric
operator, so as to make it self-adjoint. A symmetric operator may even have
an infinity of different self-adjoint extensions. For example, let us define a
family of operatorsA, = -id/dx, whose domains of definition consist of the
differentiable functionsv(x) which satisfy

v(27) = €2 y(0), (4.33)

with 0 < a < 1. All these differential operators are writterididx and
“look the same,” but actually they are quite different, because their domains
of definition are different (they do not even overlap). For each one of these
operators, it follows from (4.29) that the adjoint operaté;, is agaitdx

Now, however, the domain of definition oA} is the same as thai,ofbecause

the right hand side of (4.30) vanishes if the boundary condition

u(27) = e~ 4 (0), (4.34)

holds, as well as Eq. (4.33). Thereford: = A, . Thede are self-adjoint
extensions of the symmetric operatdt which was defined in Eq. (4.29). Each
value ofa generates a different extension, which representifferent physical
observable. The difference is clearly seen in the spectra of the varqus given

by the eigenvalue equatioA,v = Av. The latter is, explicitly, +dv/dx = Av,

with the boundary condition (4.33). The solutions afe) = ef™+®)= where

m is an integer. Therefore the eigenvalues (that is, the observable values) of

A, arem+a, and they are different for each

Aharonov-Bohm effect

Differential operators likeAq can be given a simple physical interpretation.
Consider an infinitely long and narrow solenbidgarrying a magnetic fluxp.
There is no magnetic fielB outside the solenoid, but nevertheless there must be
a magnetic vector potentidl, whose line integral around the solenoid satisfies
§A -dr = ®. For example, if we take cylindrical coordinates, z, with the
zaxis along the solenoid, and if the gauge is appropriately chosen, the vecto
A has only an azimuthal compone®/2rr (note that the flux® is gauge
invariant). A free particle of mass and chargey, moving in the region outside
the solenoid, is classically described by a Hamiltonian

1 g . \? 1 1 g®\?
H=o-(p-2a) = s () 402 .
2m p cA 2m [PT'I' r? pe 2me + P (4.35)
The classical canonical transformatiops — pg + ¢®/27c, can then completely

eliminate the flux term from (4.35), so that the solenoid does not influence the
motion of charges outside it. This is the expected classical result, since there |
no magnetic field outside the solenoid.

7Y. Aharonov and D. BohmPhys. Rev. 115 (1959) 485.
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In quantum mechanics (wheng becomes—ihd/d8), there is likewise a
unitary transformation, similar to the above canonical transformation, which
eliminates ® from Schrddinger’s equation. That transformation is

,(/) — eiq<I>0/27rhc X, (436)
giving
(—iﬁ% _ g_i) = eia®6/2mhe (_lhz‘%) X. (4.37)

The Schrodinger equation, when written in termsy of , then looks exactly like
that of a free particle—the fluxP nowhere appears in it—but, on the other
hand, the new wave functiop  must satisfy a boundary condition

x(2m) = e79%/* x(0), (4.38)

instead of simplyy (2m) = g (0). It is theboundary condition which depends

on the external paramete&pb, and gives it physical relevance. In a practical
problem, such as a scattering experiment in the region encircling the solenoid
we caneither work with ¢ and the expressions on the left hand side of (4.37),
or with x,, given by (4.36). In the later case, the presence of the solenoid is
taken into account by the boundary condition (4.38), rather than by the wave
equation itself. These two alternative ways of representing the physical situatior
are completely equivalent.

Radial momentum

Not every symmetric operator has a self-adjoint extension. For example, let
p, = -d/dr be defined over differentiable and square integrable functigng
in the domain 0< r < oo, with v(e ) = 0, and inner product

o0

(u,v) = /0 w(r) v(r) dr. (4.39)

A calculation similar to Eq. (4.29) shows thatis symmetric if its domain is
restricted by the boundary conditim0) = 0. Then, the domain e¢f need
not be restricted byu(0) = 0. It can be proved that no adjustment similar to
Egs. (4.33) and (4.349an make the domains pf and p:coincide.

4-3. Commutators and uncertainty relations

The formal derivation of the quantum uncertainty relations provides instructive
examples of the importance of correctly specifying the domains of definition of
unbounded operators. However, before we discuss these mathematical issues,
is desirable to clarify the physical meaning of these so-called “uncertainties.”
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Classical measurement theory tacitly assumes that physical quantities ha
objective, albeit unknown, numerical values. Measurement errors are caused |
imperfections of the experimental equipment, not to mention those of the ob
servers themselves. Thus, if we repeatedly measure the same physical quant
such as the length or the weight of a macroscopic object, the resulting value
are scattered around some average. The most common and naive approach
data analysis simply is to proclaim this average as the “best” value that wa
obtained for the physical quantity.

In general, there are many independent sources of instrumental errors.
these errors have finite first and second moments, the central limit tifeorem
asserts that unbiased experimental values have a Gaussian distribution. A cc
venient estimate of the uncertainty of a varialdés the standard deviation
AX = ({X?) - (X)?)¥/?, divided by the square root of the number of experi-
mental data. This uncertainty is usually listed, with a + sign, after the “best”
value, to indicate the expected accuracy of the latter. For example, the sol
luminosity recorded for the year 1990 whg = (3.826 + 0.008) x 18 watts.

In quantum physics too, there are instrumental errors, which, if due to man
independent causes, are Gaussian distributed. However, even if we could ha
perfectly reliable instruments, the results of identical quantum tests, following
identical preparations, would not, in general, be identical. For example, if ar
atomic beam of spig particles, polarized in the direction, is sent through a
Stern-Gerlach magnet oriented along thdirection, the resulting distribution
of the observed magnetic moments may appear as in Fig. 4.1.

N u-;.p_,.‘_.

: :’:‘f\-;'," 3
P | I
—pxAp 0 pEtAp o

N T IR

Fig. 4.1. Simulated scatter plot of a Stern-Gerlach experiment (each cluster
contains 200 impact points, produced by a random number generator).

A naive application of the “best value” formalism would then yigldd =~ 0,
and give no useful information on the intrinsic magnetic moment of the atoms
studied in the experiment. Moreover, the standard deviation from this “bes
value,” namelyAu, ~ (u,2}'/? ~ p , isnot at all the result of instrumental
errors. The correct interpretation of the data shown in Fig. 4.1 ispthatan
take two valuesp or 1. Each one of the two clusters of impact points must be
treated separately. The distance between the centers of the two clusters is not
due to an instrumental deficiency, but is a genuine, unavoidable quantum effec
It is the spread of points withieach cluster which is related to experimental
imperfections, such as a poor collimation of the atomic beam. The actua

8W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York
(1968) Vol. |, p. 244.
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uncertainty of the value oftis given by the width ofach cluster, divided by
the square root of the number of its points.

There are many other instances where a standard deviatioot ihe same
thing as an instrumental uncertainty. For example, in a table of elementar
particle properties, the(1020) meson is listed as folloWs:

Massm = 1019.413 + 0.008 MeV,
Full width T = 4.43 + 0.06 MeV.

Obviously, I, the full width of the mass distribution, is much larger than the
mass uncertainty (0.008 MeV). These are two essentially different notions. The
mass uncertainty could be reduced by performing more experiments, in order t
improve the statistics. The full width is a physical constant which cannot be
reduced by performing more experimesiis is only its uncertainty (0.06 MeV)
which can be reduced.

Although the standard deviatioy X = (OX20- OX[?)¥2, cannot in general
be a good indicator of the nonuniformity of the results of quantum measure-
ments, the mathematical simplicity of this expression has nevertheless led to it
widespread use. The familiar relatibn

AA AB > § [(AB — BA)/, (4.40)

1
2

links the traditional measure of uncertainty (the standard deviation) with the
novel feature brought by quantum mechanics (noncommutativity). However
the situation is more complicated than it appears: Eq. (4.40) cannot be vall
in general. Let us carefully follow its derivation.

From the Schwarz inequality (3.18), we have

[Aull* |Bull* > [(Au, Bu)]?, (4.41)

where it was assumed thatbelongs to the domains & and ofB. The equality
sign in (4.41) holds if, and only if, the vectods and Bu are parallel. Further-
more, from the definition of the adjoint of an operator, Eq. (4.28), we have

(Au,Bu) = (u,A*Bu), (4.42)
=1(u,(A*B + B*A)u) + 1 (u, (A*B — B*A)u). (4.43)

Note that bothA*B + B*A andi(A*B — B*A) are self-adjoint, or at least
symmetric operators in some dense domain. Therefore the first term in (4.43
is real, and the second one is imaginary. It follows that

[(Au, Bu)|® = L |(A"B + B*A)|* + 1 |(A*B — B*A)[%. (4.44)

Moreover, in Eq. (4.41),

9Review of Particle PropertiesPhys. Rev. D 45 (1992) VII.22.
104 . P. RobertsonPhys. Rev. 34 (1929) 163.
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[[Auf? = (Au, Au) = (u,A*Au) = (A*A). (4.45)
Combining all these results, we obtain

(A*A) (B*B) > 1 [(A*B + B*A)|* + 1 |(A*B — BA)|%. (4.46)
Exercise 4.13 Show that

(A*A + AA*) (B*B + BB*) > |{A*B £ BA*)]. (4.47)
Hint: The expression (A*B) = (BA*) behaves like a scalar product [A, BJ and
in particular it satisfies a Schwarz inequality.! *

In quantum theory, we are mostly interested in the case whened B are
self-adjoint operators, and (4.46) becomes

(A%) (BY) > 1 |(AB + BA)[|? + 1 |(AB — BA)[2. (4.48)

This equation remains valid i is replaced by A— a), whereais any number,
in particulara = CACl We then have

(A= (A)?)* = (A?) = (M) = (AA)?, (4.49)

and likewise forA B. The uncertainty relation (4.40) readily follows. Let us
now examine the conditions for attaining the equality sign in (4.40): the vectors
(A—=CAQu and B-[BOu must be parallel and, moreover, the real contribution
to (4.43) must vanish. The second requirement can be written as

(A = {A)u, (B — (B))u) + ((B — (B))u, (A — (A))u) = 0. (4.50)
It follows that, in the condition for parallelism,
a(A - (A))u+ B(B — (B))u =0, (4.51)

the ratio a/Ris pure imaginary.

Now, for all the foregoing mathematical manipulations to make sense, the
state vectoru must belong not only to the domains AfandB, as in Eq. (4.41),
but also to those oA*B, andB*A, andA*A, andB*B. Any vector u lying
outside one of these domains (which may not even overlap!) may cause a Vic
lation of the uncertainty relation (4.40).

Let us examine some examples. The simplest case is that of a Cartesian cot
dinate x and its conjugate momentum. In tlxeepresentation, these operators
are x and p = —ihd/dz, respectively. Their commutator is

[x, p] =k (4.52)

11L. Pitaevskii and S. Stringari,J. Low Temp. Phys. 85 (1991) 377.
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Both operators are self-adjoint if the inner product of two vectors is

(u, v) =/_°;EG‘)v(z)dz. (4.53)
We then obtain the standard uncertainty relation

Az Ap > h/2. (4.54)

Now, since bothx and p are unbounded operators, there are functions lying
outside their domains of definition. For example, you may easily verify that the
function (sin x") /x, which is square integrable, belongs neither to the domain
of x, nor to that ofp. For such a function, botiAx and A p are infinite, and

Eq. (4.54) is trivially satisfied—if it has any meaning.

Exercise 4.14 Show that the equality sign in (4.54) is attained only for
h(z) = C e’ b, (4.55)

where a is real and positive, and b may be complex. Compute explicitly the
normalization constant C, and the values of XOand [pCfor this “minimum
uncertainty wave packet,” Hint: ¢ must satisfy (p-Cp0y = imw(x — X0y,
where mw is a real constant with the dimensions of mass/time.

An uncertainty relation such as (4.54) is not a statement about the accurac
of our measuring instruments. On the contrary, its derivation assumes the exis
tence ofperfect instruments (the experimental errors due to common laboratory
hardware are usually much larger than these quantum uncertainties). The onl
correct interpretation of (4.54% the following: If thesame preparation proce-
dure is repeated many times, and is followed either by a measuremerirdiy
a measurement gb, the various results obtained farand forp have standard
deviations, A x and A p, whose product cannot be less tigi2. There never
is any question here that a measuremeni tdisturbs” the value ofp and
vice-versa, as sometimes claimed. These measurements are indeed incompe
ble, but they are performed diifferent particles (all of which were identically
prepared) and therefore these measurements cannot disturb each other in &
way. The uncertainty relation (4.54), or more generally (4.40), only reflects the
intrinsic randomness of the outcomes of quantum tests.

Consider now an angular variabfe with a range of values 96 <2m, and
the conjugate momentum = —thd/df. Both are self-adjoint operators if the
scalar product is defined as in Eq. (4.14hd the domain ofg is restricted
to differentiable functions which satisfy(2m) = v(0). Shall we then have an
uncertainty relation

A6 Apy > hf27 (4.56)
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This equation is obviously wrong. It is violated by all the eigenfunctions of
Pg, namely un(f) = (2r)~1/2e™¢ which trivially satisfyAp,= 0, while their

AB is about 1.8 (see next Exercise). It is not difficult to find the error. The
eigenfunctionsim (6) do not belong to the domain of the prodysgt8, because

6 u,.(8) does not satisfy the periodicity conditiorf2m) = v (0), and therefore
does not belong to the domain pj§.

Exercise 4.15 Show that any eigenfunction of pg gives A8 = =//3.

Exercise 4.16 Find three textbooks on quantum mechanics with the wrong
uncertainty relation (4.56), and one with the correct version. *

Exercise 4.17 Find three other textbooks with the uncertainty relation
AtAE > k/2 (or 2z h). Read carefully how each one of them explains the
meaning of this expression. This cannot be a special case of Eq. (4.40). The
time t is not an operator (in classical mechanics, it is not a dynamical variable)
so that At cannot be the standard deviation of the results of measurements of
time. (This issue is discussed in Sect. 12-8.) *

Case study: commutator of a product
From the well known identity,
[ABC]=[AB]C+BJ[A,C], (4.57)

one is tempted to infer that ik commutes withB and C, then A must also
commute with the producBC. This conclusion is undoubtedly valid for finite
matrices, but it may not be valid in an infinite dimensional Hilbert space, ac
the following example shows.

Let H consist of square integrable functions xfwith —co < z < o0, and
with an inner product given by Eqg. (4.53). Let the operatdr®, and C, be
given, in thex representation, as follows:

A =x[Dq (4.58)
B = 1/x, (4.59)
C = x d/dx. (4.60)

Then AB = BA = 1/pxg so that A, B] = 0. Likewise,AC = xgd/dx and

d z d

The first term on the right hand side contains the derivative of the discontinuou
function x /x|, which is 2(x). It is apparently permissible to ignore this term,
becausexd(x) is equal to zero when it multiplies a functigr(x) which is finite
atx = 0, or even a function which imfinite at the origin, as long as it is
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less singular tharx—!, for example,¥(z) = ==°®. Now, anyp(x) which is

square integrable must be less singular tkal? Therefore, we can safely

write AC = CA, when these operators act on functions belongingdto
Consider now the produd8C =d/dx. We have

[A BC] = [x/mOd/dx] = -23(x), (4.62)

and this commutator for sure does not vanish, althoAgbommutes withB
and with C separately! Where is the error? A careful check of the foregoing
calculations shows thatA, C] = —2xd(x) # 0 was set equal to zero, because
X&(x) = 0 whenever this expression is multiplied by a function belonginhl.to
But the operatoB = 1/x, when acting on that function, makes it singular at
the origin, and then the resulting produBfA, C] = —25(x) does not vanish.
This example shows the importance of being extremely careful with the do-
mains of definition of unbounded operators. You will find more surprises in the
exercises below.

Exercise 4.18 The scaling operator D(s) is defined by
D(s) ¥(z) = s(s’z), (4.63)

where s is a positive constant. Show that D(s) is a unitary operator, and that
it commutes with the sign operator A defined by (4.58). Show moreover that
[A, BD(s)] = 0, where B is defined by (4.59). *

Exercise 4.19 From the scaling operator D(s), defined above, one can obtain
a new operator,
D -

D'(1) = lim M. (4.64)
Show that D'(1) = 1 + X d/dx = 1 + 2C, where C is the operator defined by
(4.60). Thus, although A commutes with BD(s) for all s, it does not commute
with the derivative BD'(1). *

4-4. Truncated Hilbert space

In the preceding chapter, we saw that physmadervables are represented by
Hermitian matrices, according to the following prescription: The eigenvectors
of a matrix A form an orthonormal basis, whose elements correspond to the
pure states defined by all the possible outcomes of a maximal quantum tes
each one of these outcomes corresponds to one of the eigenvaldesthait
eigenvalue is then said to be the result of a measuremefit mf means of the
aforementioned quantum test.
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We thus turn our attention to a difficult issue—tbdstence of eigenvalues
and eigenvectors of linear operators in a separable Hilbert dpacbese op-
erators may be represented by infinite matriced i endowed with a discrete
basis, or by differential or integral operators acting on functions of continuous
variables, ifH is represented by a space of functions. The novel feature here i
that, contrary to the case of finite Hermitian matricest every operator has
eigenvalues. For example, consider a Hilbert space consisting of functions, of
defined in the domain -k x< 1, and with an inner product

v = [ llmv(x)dx. (4.65)

The linear operatox is perfectly well behaved: it is bounded (its domain of

definition is the entire Hilbert space) and it is self-adjoint; but, on the other
hand, it has no eigenvalues. Indeed, if we try to solugz) = Ebe(x) olbeain

an eigenvalueg, we find that (z — )e(x) = 0, sothat ¥¢(z) = 0 whenever

x# & You cannot overcome this difficulty by taking, as some authors boldly
do, ¥¢(z) = 8(z — £), because the delta function is not square integrable, anc
therefore does not belong tb; nor can you introduce the square root of a delta
function, because there is no such thing (see Exercise 4.2). Other ways must
found to overcome the difficulty.

A possibility worth investigating is thdiscretization of continuous variables,
as when we solve numerically a differential equation, or replace an integral b
a finite sum. In the present case, we may attempt to replabg a surrogate,
finite dimensional vector space. For example, we may restrict the functfehs
to be polynomials of degreg N (where Nis a large integer). We then get a
linear space withN +1 dimensions. Truncation methods of this type are com-
monly used in chemical physics, in order to find the energy levels and transitiol
amplitudes of atomic and molecular systems. They are reasonably success
for Hamiltonians involving smooth anharmonic potentials—which may be good
approximations to the true molecular Hamiltonians—because the exact energ
eigenfunctions can be closely approximated by linear combinations fafita
number of harmonic oscillator eigenfunctions.

Unfortunately, truncation methods fail for operators with continuous spectre
(that is, operators lacking a discrete set of eigenvalues). Let us see this in det
for the operatorx, defined above. IfH is restricted to polynomial functions of
degree< N, a convenient orthonormal basis is the set of normalized Legendr:
polynomials u,(z) = (n + 1)V/2P,(z), with n = 0,1, . . . N. Everything then
seems very simpleThe only trouble is that the operat@rno longer exists!
Indeed x zxN = xN+1 is outside the truncated Hilbert space.

As an alternative, let us try tdefine an operator equivalent t& by means
of its matrix elements. From the identity

@Crn+ 1)z Py(z) =nPoi(z) + (n+ 1) P (), (4.66)

we obtain
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(2n + 1) /_11 % Po(2) Pu() do = (n6pctm + Mbnprm)/(m +3),  (4.67)

whence
m 1 ( )
Tmn /lum(x)zun(:z:)da:, 4.68

= (M bmnt1 + N bnmy1)/y/(2m + 1)(2n + 1). (4.69)

This matrix correctly represents the operakoif the indicesm and n can

run to infinity. Here however, the matrix isuncated for morn= N. It is

this truncation which causes it to have properties different from those of the
original operatorx. How badly different is it? This can be seen by inspecting
the eigenvalues and the eigenfunctions of the operator represented by the ba
matrix Xmn. We first have to solve

men Up = élvrrm (470)

to find theN + 1 eigenvaluest and the corresponding eigenvectors (this is
easily done numerically, sincen, already is in tridiagonal form). Then, for
each&, we may obtain the representation of the eigenvectop—that is, the
eigenfunctionv (x)—by

0(z) = 3 vnun(2) = D va/n+ § Pa(a). (4.71)

The result is shown in Fig. 4.2, fdd = 100. First, we notice that the
eigenvalues are not evenly distributed between —1 and 1. They are more co
centrated toward the extremities. We also see that a typical eigenfunction (th
60th, in this case) has, as intuitively expected, a sharp peak at the correspor
ing eigenvalue. But it also has fringes all over the domair. dhese fringes are
necessary in order to ensure its orthogonality to the other eigenfunctions. No
in particular the overshoot (Gibbs phenomenon)xat +1. These properties
are not unexpected. They resemble those of the delta functions which will b
discussed in an appendix to this chapter (see Fig. 4.4).

As a further exercise, let us examine the matrix elements of the operatc

= —ihd/dx. They are

T dun(z)
Pmn = —ih /_1 Um(z) ~ dz, (4.72)
where um(z) = (m + 1)/2P,(z), as before. Integration by parts gives

/_11 Pp(z) Py(z)dz = [1 = (=1)™*" | - /_11 P! (z) Po(x) dz, (4.73)
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becauseP n(x1) = (x1)™. The parity and orthogonality properties of Legendre
polynomials ensure that the integral on the left hand side vanishes, argess
m+ 1, m+ 3,..; and in that case, it is the integral on the right hand side
that must vanish. We therefore obtain

Pmn = —th/(2m +1)(2n + 1) fn=m+1,m+3,..., (4.74)
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-1 0 1

Fig. 4.2. The 101 eigenvalues of the truncated operate shown by the

bars at the top of the figure. The normalized eigenfunction corresponding
to the 60th eigenvalue (which is 0.27497 27848) has a sharp peak there, but
is also spread throughout the entire domainxofrom -1 to 1.
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and the othemp, vanish. Obviously, this matrix is not Hermitian. This had
to be expected: as we saw earlier, the operattix is not self-adjoint when
the domain ofxis finite and no boundary conditions are imposed on the wave
functions.

Exercise 4.20 Verify that 3,(%ms Psn — Pms Ten) = thbmn , if the sum is not
truncated. What is the result if s runs only from O to N ? *k

The conclusion to be drawn from this study is that truncation of an infinite
dimensional Hilbert space to a finite number of dimensions completely distorts
the physical situation. Truncation methods may be justified only for operators
with discrete eigenvalues and, moreover, for states that are well represented |
linear combinations of a finite number of basis vectors. In all other cases, ¢
radically new approach is needed.

4-5. Spectral theory

The correct mathematical treatment of operators with continuous spectres
closely parallels what we actually do, in ordinary life, with mundane tools.
For instance, to locate the position of a material object, we take a graduatel
ruler. We formally consider that physical position as a continuous variable,
The ruler, however, can only have a finite resolution. An outcome anywhere
within its jth interval is said to correspond to the vakje Thus, effectively,

the result of the position measurement is not the original continuous variable
X, but rather a staircase function,

¥=flz)=z;, V z;<z<zj31. (4.75)

This is illustrated in Fig. 4.3.

These considerations are easily transcribed into the quantum language. |
the x representation, an operatot is defined as multiplication by the staircase
function f(x). This operator has a finite number of discrete eigenvalyes
Each one of these eigenvalues is infinitely degenematg:wave function with
support betweerx; and x;,, entirely falls within thejth interval of the ruler
of Fig. 4.3, and therefore corresponds to the degenerate eigenyalue

Orthogonal resolution of the identity

An experimental setup for a quantum test described by the above formalisn
could have, at its final stage, an array of closely packed detectors, labelled b
the real numbers<j. Such a quantum test thus asks, simultaneously, a set
of questions “Isx; < x < x4 ?" (one question for each). The answers,
“yes” and “no,” can be ascribed numerical values 1 and 0O, respectively. Eact
one of these questions therefore corresponds to the measuremeptaéction
operator (or projector ) P;, which is itself a function ok:
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x'=f(x)

1

Xmax X

Fig. 4.3. (a) The magnifying glass shows the details of a ruler
(4.76)

Xmin
used to measure the continuous observabl@) The result
of the measurement is given by the staircase funcfipg).

P,(z) 1 if X <X < Xja1,
(2) =
’ 0  otherwise.

4.77)

These projectors obviously satisfy
(4.78)

Pi Pk =djk Pk,

(4.79)

and
= 1.
The staircase operatot = f(x), defined by Eq. (4.75), can then be written as

2P;

7

7' = Z:Ej Pj .
2
(4.80)

It satisfies
I -z | = Sup(zjﬂ - z;),
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so that the operatax' indeed approximates the operatgras well as allowed
by the finite resolution of the ruler in Fig. 4.3.

Exercise 4.21 Prove Eq. (4.80).

How do we proceed to the continuum limit? We could rely on Eq. (4.80),
and imagine that we have an infinite sequence of rulers, divided in centimeters
millimeters, and so on, getting arbitrarily close to the abstract notion of a
continuous length. However, it is more efficient to proceed as follows.

Let us define apectral family of operators

k=0

They obey the recursion relation

E(Xj+1) = E(x;) +Pj, (4.82)
and the boundary conditions

E(Xmin) = O and E(Xmax) = 1. (4.83)

The physical meaning of the operaté(x;) is the question “Isx < x;j ?” with
answers yes = 1, and no = 0. As can be seen from Eq. (4.77), Bliegeare
projectors. They act like a sequence of sieves, satisfying

E(zm) if zp, £ 2n,

E(z,) i 2z, <zp. (4.84)

E(n) E(an) = E(an) Elom) = {
It is now easy to pass to the continuum limit: We defi(&) as the projector
which represents the question “ks< & ?” and which returns, as the answer, a
numerical value (yes = 1, no = 0). We can then consider two neighboring values
¢ and & +d¢, and define an “infinitesimal” projector,

dE(¢) = E(¢ + d&) — E(¢), (4.85)

which represents the question “fs< x< & + d&?”. This dE(E) thus behaves
as an infinitesimal incremenP; in Eqg. (4.82). We then have, instead of the
staircase approximation (4.79), the exact result

z= /0 " dE(e). (4.86)

Note that the integration limits actually amperators, namely E(Xmin) = O,
and E (xmax) =1, in accordance with (4.83).

Equation (4.86) is called thspectral decomposition, or spectral resolution,
of the operatorx, and the operator&(&) are thespectral family (also called
resolution of the identity) generated bw. We can now define any function of
the operatorxin a way analogous to Eq. (3.58):
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5@ = [ 7(©) ). (4.87)

The right hand sides of Egs. (4.86) and (4.87) are called Stieltjes integrals.

Consider now a small incremenf — 0. If the limit dE(&)/dE exists, the
integration step can be taken as twumberdg, rather thandE(&), which is
an operator. We then have an operator valued Riemann integral:

J s = [ o S a (4.89)

It can be showk? that any self-adjoint operator generatesnigue resolution
of the identity. A spectral decomposition such as (4.86) applies not only to
operators with continuous spectra, but also to those having discrete spectra, «
even mixed ones, like the Hamiltonian of the hydrogen atom. For a discrete
spectrum,dE(&) = 0 if & lies between consecutive eigenvalues, aig¢) =P,
namely the projector on the kth eigenstate, if ki eigenvalue lies between
and & + d&.

Note that in any case the project®() is a bounded operator, which depends
on the paramete€. It may be a discontinuous function @ but it never is
infinite, and we never actually neediE(E) /d€. This is the advantage of the
Stieltjes integral over the more familiar Riemann integral: the left hand side of
(4.88) is always meaningful, even if the right hand side is not.

Exercise 4.22 Show that, if f(§) is a real function, then f(x), defined by
Eq. (4.87), is a self-adjoint operator. *

Exercise 4.23 Show that two operators that have the same spectral family
are functions of each other.

Exercise 4.24 Show, directly from Eq. (4.84), that, for a given spectral family
E(N),

J1©dE© [ amydEm) = [ £0)a(0)dEQ). (4.89)

This is an important property, which will be used later. *

Exercise 4.25 Show that, if f(&) is a real function, and x is an operator with
the spectral representation (4.86), the expression

@) /eif(f) dE(¢), (4.90)

is a unitary operator. Hint: Use the results of the preceding exercises.

12M. H. Stone, Linear Transformations in Hilbert Space, Amer. Math. Soc., New York (1932)
p. 176.
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The spectral decomposition of self-adjoint operators allows one to give &
rigorous definition of the measurement of a continuous variable. The latter i
equivalent to an infinite set of yes-no questions. Each question is represented |
a bounded (but infinitely degenerate) projection operator. However, this forma
approach is unable to give a meaning to the measurement of operators that ¢
not self-adjoint, such as the radial momentwih d/dr (with O <r < o)
whose properties were discussed on page 89. Yet, in classical meclpanes,
well defined variable. It thus appears that there can be no strict corresponden
between classical mechanics and quantum theory.

4-6. Classification of spectra

Self-adjoint operators may have a discrete spectrum—with well separated eigel
values and with @omplete set of normalizable eigenvectors—or a continuous
spectrum, or a mixed one. A mixed spectrum may have a finite number o
discrete eigenvalues, or even a denumerable infinity of them; typical example
are the bound energy levels of a finite potential well, and those of the hydro
gen atom, respectively. In both cases, there is, above the discrete spectrum,
continuous spectrum of unbound states.

Although an operatorA with a continuous spectrum has, strictly speaking,
no eigenvectors at all, each pointof that spectrum (that is, each point where
dE(&)/dg exists and is noD) is “almost an eigenvalue” in the following sense:

It is possible to construct stat@s, satisfying

I(A =2l < (4.91)

with arbitrarily small positivell Indeed, letE(E) be the spectral family of.
Define a projector

Pa= [ dEGe) (4.92)

—€

and letya be any eigenstate df) with eigenvalue 1, that is to say,

Psts = 9. (4.93)

Such ay, is easily constructed_by taking any stagéor which Pa@ #0. The
normalized vectoryy = Py ¢/||Px ¢|| will then satisfy (4.93). For example, if
A = x, the x-representation ofy) is any functiony (x) with support between
A—DOandA +0

To prove (4.91), we note that, by virtue of (4.89),

A= AP = [ EdEE) b, (4.94)
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and we thus have
la-nwl = [Te-naE@nl, (4.95)
= (0. [ €= aE@ ), (4.96)

where (4.89) was used again. The last expression can be transformed into &
ordinary integral (that is, into a sum afnumbers):
Ate 2 2 Ate
SO €= @ dE© ) S € [ r dEE) ). (4.97)
The integral on the right hand side simply{ds , [ dE(£) ¥n) = {1, Pr ) =1.

This completes the proof of Eq. (4.91).
More generally, we have

L = soorwa] = | [ 150 - o1 aee v | (4.98)
If the function f can be expanded into a Taylor series arodnd

FO) = FO) + (€= N () + -+, (4.99)
the right hand side of (4.98) becomes

[ =0 500 + - Jae@w] < elron+0w). (4.100)

Therefore, stateg), can be constructed in such a way that, for any smooth
function f, the mean valudlf(A)Ois arbitrarily close tof(A). This is in sharp
contrast to the situation prevailing in tleepty regions between eigenvalues of
adiscrete spectrum: While it is easy to construct superpositions of eigenstates
of an operatolA such that, on the averagéyp, Ay) = p (for any nedletween

two discrete eigenvalues), the variance

(¥, (A = w)*) = |I(A — p) pl?, (4.101)

cannot be made arbitrarily small.

Exercise 4.26 Let Am and An be consecutive discrete eigenvalues of A, and
let vim and v, be the corresponding eigenvectors. Let ¢ = v,, cos8 + v, sin 8.
Show that 6 can be chosen in such a way that (¢, Ay) will take any desired
value between Am and An . What is then the variance ||(A — x)|??
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Bound states embedded in a continuum

The discrete and continuous parts of a mixed spectrum are not always disjoin
They may also overlap: discrete eigenvalues, which correspond to normalizabl
eigenvectors, may be embedded in a continuous spectrum (that is, the interva
between these discrete eigenvalues are not empty). For example, consider tv
hydrogen atoms, far away from each other. Their mutual interaction is negligi-
ble. If we also neglect their interaction with the quantized electromagnetic field
vacuum, each atom has an infinite number of stable energy levels. The lowe:
ones areE; = -13.6eV andE, = —-3.4eV. Each atom also has a continuous
spectrum,E = 0. Therefore the two atomi®gether have, among their discrete
eigenvalues, one atEz = —6.8eV, which ishigher than the threshold of their
continuous spectrum, namely = E;.

However, if we take into account the mutual interaction of the two atoms,
this discrete eigenvalue (with both atoms in an excited 2 state) becomes
metastable: it actually is aesonance. The system will eventually undergo
an autoionization transition, whereby one of the electrons falls into nts 1
ground state, and the other electron escapes to infinity.

Exercise 4.27 Estimate the mean decay time by autoionization of this H,
system, asa function of the distance between the atoms. * %

A similar situation occurs in the Auger effect. An atom can be excited in
such a way that an electron from the innermost shell is transferred into a highel
incomplete shell. The result is an eigenstate of the Hamiltonian of thellatom,
with all the electrons bound. However, the total energy of that excited atom
is compatible with other electronic configurations, where the innermost shell is
occupied and one of the electrons is free. The resulting positive ion has, like th
neutral atom, discrete energy levels; but, on the other hand, the kinetic energ
of the free electron has a continuous spectrum. In this way, discrete energ
levels of the neutral atom are embedded in the continuous spectrum of the ior
electron system. Here too, most of these “discrete energy levels” actually ar
very narrow and long lived resonances, which decay by autoionization. It is only
the use of arapproximate Hamiltonian, where some interactions are neglected,
which make these levels appear discrete and stable.

Still another type of spectrum, which at first sight may seem rather bizarre,
but which will actually appear in a future application (Sect. 10-5), consists of
adense set ofdiscrete eigenvalues. As a simple example, consider the Hilbert
space of functiongp(x,y), with 0 < x,y < 2. The scalar product is given by

@)= [ [ Hw e,y de dy. (@.102)

13The Auger effect is amonradiative rearrangement of the electrons. In the present discussion,
the atomic nucleus is assumed fixed, and the Hamiltonian does not include any interaction witt
the quantized electromagnetic field.
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In that space let an operator,
A= —; i+\/§-‘-’l- , (4.103)
dz dy

be defined over the subset of differentiable functioggx, y) which satisfy the
boundary conditions

v (2m,y) =w(0,y) and U (x,2m) = Y (x,0). (4.104)

That operator is self-adjoint. Its normalized eigenfunctions &™) /2,
corresponding to eigenvalues + /2 n, with m and n running over positive
and negative integers.

This spectrum looks very simple, but its physical implications are curious.
Suppose that a measurementfofjields the resulr, with an expected accuracy
+ 0. (The estimated errot0 is solely due to the finite instrumental resolution,
it is not a quantum effect.) What can now be said about the corresponding
eigenstates (that is, the corresponding quantum numieasd n) ? The latter
are obtained from the equation

a—e<m+vV2n < a+e, (4.105)

which has, for arbitrarily small positive, an infinity of solutionsm and n.

This is intuitively seen by noting that (4.105) represents a narrow strip in
the mn plane. That strip, which has an irrational slope, contains an infinity of
points with integral coordinatesyandn. The smallerd, the larger the average
distance between consecutive valuesnofind n. While an exact measurement
of A (for example,a = 7 — 5/2 , exactly) would yield unambiguous values for
m and n, and therefore well defined eigenstates of the commuting operators
—id/dx and —id/dy, the least inaccuracyl leaves us with an infinite set of
widely different m, n pairs.

Finally, one more type of pathological spectrum is worth mentioning: It is
asingular continuous spectum, whose support is a Cantor set—an uncountable
set which may, but need not, have zero Lebesgue measure. Spectra of this kil
may occur for Hamiltonians with an almost periodic poteftial.

4-7. Appendix: Generalized functions

The use of singula® —functions, originally introduced by Dirac, was criticized
by von Neumann, in the preface of his bddk:

143, Avron and B. SimonBull. Am. Math. Soc. 6 (1982) 81.

153. von NeumannMathematische Grundlagen der Quantenmechanik, Springer, Berlin
(1932); transl.:Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press,
Princeton (1955).
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The method of Dirac, mentioned above, (and this is overlooked today in
a great part of quantum mechanical literature, because of the clarity and
elegance of the theory) in no way satisfies the requirements of mathematical
rigor—not even if these are reduced in a natural and proper fashion to
the extent common elsewhere in theoretical physics. For example, the
method adheres to the fiction that each self-adjoint operator can be put in
diagonal form. In the case of those operators for which this is not actually
the case, this requires the introduction of “improper” functions with self-

contradictory properties. The insertion of such a mathematical “fiction”

is frequently necessary in Dirac’'s approach, even though the problem at
hand is merely one of calculating numerically the result of a clearly defined
experiment. There would be no objection here if these concepts, which
cannot be incorporated into the present day framework of analysis, were
intrinsically necessary for the physical theory.... But this is by no means
the case.... Itlould be emphasized that the correct structure need not
consist in a mathematical refinement and explanation of the Dirac method,
but rather that it requires a procedure differing from the very beginning,

namely, the reliance on the Hilbert theory of operators.

In this chapter, | followed von Neumann's approach, to give some idea o
its flavor. 1 did not attempt to be mathematically rigorous nor complete; more
information can be found in the treatises listed in the bibliography. The purpos
of the present appendix is to partly rehabilitate Dirac’s delta functions, and tc
clarify the conditions under which their use is legitimate.

From the pure mathematician’s point of view, a space whose elements a
ordinary functions with regular properties may be embedded in a larger spac
whose elements are of a more abstract character. In this larger space, t
operations of analysis may be carried out more freely, and the theorems tal
on a simpler and more elegant form. For example, the theodistibutions,
developed by Schwart?,is a rigorous version of Dirac’s intuitive delta function
formalism.

These distributions can often be obtained as improper limits, that | shal
denote by writing “lim” between quotation marks. However, as we shall
see, their properties are quite different from those sketched in Dirac’s graphi
descriptionl?

To get a picture 0d(x), take a function of the real variablevhich vanishes
everywhere except inside a small domain, of lerigteay, surrounding the
origin x = 0, and which is so large inside this domain that its integral over
this domain is unity. The exact shape of the function inside this domain
does not matter, provided that there are no unnecessarily wild variations
(for example, provided that the function is always of orfler). Then in

the limit O- O this function will go over int® (x).

16) Schwartz, Théorie des Distributions, Hermann, Paris (1950).
7p_ A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press (1947), p. 58.
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A simple example will show that things are different from Dirac’s intuitive
picture. From the properties of Fourier series, Egs. (4.15) and (4.16), we have

v(e) = (2m)7 i /0 " eme) o (y) dy. (4.106)

m=—00

Let us boldly exchange the order of summation. We obtain

2m o0 )
v(z) = (2r)"! /0 [ > e””"‘”’] v(y) dy, (4.107)
whence we infer
(27[')_1 Z eim(z—y) — 5(1: _ y). (4108)

To give a meaning to this infinite sum—when it stands alone, rather than inside
an integral as in (4.107)—let us try to consider it as the “limit” of a finite sum,
from —M to M, when M - . This finite sum is a geometric progression
which is easily evaluated, with result

Losn me o L sin((2M 4 1)e/2) (4.109)

21 v 2w sin(z/2)

where z denotesx—y, for brevity. For largeM, the right hand side is easily seen
to have a sharp peak of height/mtatz= 0. On each side of the peak, the
nearest zeros occur at= =1t/M. Thus, the area of the peak is roughly unity.
However, the function (4.109) does not vanish outside that narrow domain
Rather, it rapidly oscillates, with a periodt2M, and with adowly decreasing
amplitude, which is about iz for |z]$ 1. As a consequence of these rapid
oscillations, we have, for any smooth functipn

/y2>f sin[(2M + 1)(z — y)/2]

< 2msme-yyz W=/ (4.110)

This approximation is valid for larg®, and for functionsf whose variation is
much slower than that of the first factor in the integrand of (4.110). Under these
conditions, the “limit” of Eq. (4.109) foM - o satisfies the fundamental
property of delta functions:

sy = [*7 8z - v siw) dy. (4111)

Note that this result is valid only for functiorfsthat are sufficiently smooth
in the vicinity of x.

Another example of delta function, showing a different morphology, can be
obtained by using the orthogonality and completeness properties of Legendr
polynomials, in the domain —%¥ x< 1. Formally, we have
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5 (2m + 1) Pu(z) Pu(y) = 6(z — 1), 4.112)

m=0

because, if we multiply this equation IB,(y) and integrate ovey, both sides
give the same result, nameBy(x). As the Legendre polynomials form a com-
plete basis, the same property will hold for any “reasonable” function which
can be expanded into a sum Bf(x). Let us however examine how the “limit”

m - o is attained. We have, from the Christoffel-Darboux fornifila,

> (2m+ 1) Pa(e) Pu(y) =
(n + 1) [ Poy1(2) Pu(y) — Pu(2) Para(v)}/(z — y)- (4.113)

Figure 4.4 show a plot of this expression, as a functiorx,dér n = 100 and

y = %. There is a striking resemblance with Fig. 4.2; even the overshoot (Gibbs
phenomenon) at = +1 looks the same. However, the vertical scales in these
figures are completely different. The area under the curve in Fig. 4.4 is equa
to 1 (see next Exercise). On the other hand, Fig. 4.2 represents a normalize
eigenfunction v(x) of the truncated operatax, given by Eq. (4.71), and it is
the integral of J(x)|?> which is equal to 1.

Exercise 4.28 Show that if the left hand side of (4.113) is multiplied by xX,
for any k < n, and then integrated over x, the result is yk.

Exercise 4.29 Use the asymptotic expansion of P,(x) for large n to obtain a
simple estimate of the right hand side of (4.113). x

Exercise 4.30 Show that

{{lim ” -
e—0 gz + 1€

=Pl sins(a), (4.114)
T

where P denotes the principal value. Hint: Consider the real and imaginary
parts of this equation. *

We thus see that delta functions (empered distributions, as they are called
in the mathematical literature) can be given rigorous definitions, and are &
legitimate computational tool. Howevethese are not functions, in the usual
sense of this word, and one must be careful not to misuse them. In particula
they cannot represent quantum states, because they are not square integrable,
and therefore not members of a Hilbert space; nor can we consistently defin
the square root of a delta function, as we attempted to do in Exercise 4.2.

An essential property of delta functions is that they can safely be used only
when they appear in expressions in which they are multiplied by athemth

18] s, Gradshteyn and |. M. Ryzhiklable of Integrals, Series, and Products, Academic
Press, New York (1980) p. 1026.
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Fig. 4.4. A truncated delta function: The expression in Eq. (4.113)

is plotted as a function ox, for y = % andn = 100.

functions. Only then is the meaning of these expressions unambiguous. In an
other case, the result is ill defined.

Quantum fields

However, these other cases do occur—they even play a central role in quantu
field theory. The latter is an extension of quantum mechanics, in which the
dynamical variables aréelds, such asE(r,t) or B (r,t). Here, the symbok
doesnot represent a dynamical variable; rather, it serves as a continuous inde
for the set of variablest and B. We thus have amfinite number of degrees
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of freedom, and this creates new convergence difficulties, over and above thos
already discussed earlier in this chapter.
As an elementary example, consider the canonical commutation relations,

(qm ,Pn] = th épmn. (4.115)

Assume that we have dnfinite set of canonical variables: the indicesand n

run over all integers, fromoe-to . Let us now replace these discrete indices
by continuous ones, as we did for Fourier series, in Eqs. (4.15) and (4.16). Wi
thereby produce “field variables”

Q(z) = (2m)~/? i gm €™, (4.116)
and
P(y) = (2m)"/? f: pne”. (4.117)

Their commutator is

gi > el (4.118)
T

m=—0o0

[Q(=z), P(y)] =

and this can be written, by virtue of (4.108), as
[Q(z), P(y)] = ih é(z — y). (4.119)

This singular result shows that the quantum field varialf)dx) and P (y)
are not ordinary operators. They were defined by the sums (4.116) and (4.117
and the latterdo not converge. These quantum field variables are technically
known as “operator valued distributions.”

Until now, the singular nature of the commutator (4.119) was only the result
of formal definitions, and caused no real difficulty. However, when we extend our
considerations to nontrivial problems, involvingteracting fields, we encounter
products of fieldsat the same point of spacetime. For example, there is a term
v#Au(x)$(z) in the Dirac equation for a charged particle. In the “second quan-
tized” version of that equation, the product of the field operatéx) and
Y(x) is ill defined. This gives rise to divergent integrals, if we attempt to obtain
a solution by means of an expansion into a series of powers of the coupling con
stant,e?/hc . In this pdicular theory—quantum electrodynamics—and also in
some other ones, that difficulty can be circumvented by a sophisticated methoc
called renormalization. The latter is, however, beyond the scope of this book.

Exercise 4.31 In classical field theory too, Poisson brackets between fields
are delta functions. Why isn't classical field theory plagued by divergences, like
quantum field theory? *
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physics and quantum theory, writes in the preface: “. . . this book may fill the needs
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to understand any contemporary mathematical source that is needed to enlarge th
knowledge gained from this volume.”

M. Reed and B. Simoryethods of Modern Mathematical Physics, Academic
Press, New York. Vol. I: Functional analysis (1980); Vol. Il: Fourier analysis,
self-adjointness (1975); Vol. lll: Scattering theory (1979); Vol. IV: Analysis of
operators (1978).
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be needed by a quantum theorist.
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C. Zhu and J. R. Klauder, “Classical symptoms of quantum illnesges,”
J. Phys. 61 (1993) 605.

O. E. Alon, N. Moiseyev and A. Peres, “Infinite matrices may violate the
associative law,”J. Phys. A 28 (1995) 1765.
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Plate Il. The Kochen-Specker theorem, discussed in Chapter 7, is of funda-
mental importance for quantum theory. Its most “economical” proof makes
use of 31 rays, which form 17 orthogonal triads (see Exercise 7.20, page 211).
These rays are obtained by connecting the center of the cube to the black dots
on its faces and edges (the six gray dots are not used in that proof). This
construction should be compared with the cube in Fig. 7.2, on page 198.
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Chapter 5

Composite Systems

5-1. Quantum correlations

A composite system is one that includes several quantum objects (for example
a hydrogen atom consists of a proton and an electron). Our problem is tc
construct a formalism whereby the state of a composite system is expressed
terms of states of its constituents.

The situation is simple if the electron and the proton are widely separated—
they may possibly be in different laboratories, where they have been prepare
in statesu andv, respectively. (This is not, of course, what is commonly called
a hydrogen atom.) The vectorsand v belong to different Hilbert spaces. It
is possible to represent them by function§e) and v(r,), where re andry
are Cartesian coordinates used to describe the states of the electron and t
proton, respectively. However, in order to make our first acquaintance with
this problem, it is preferable to usedescrete basis, where the components of
u and v are uy andv,, with the Hilbert space of electron states labelled by
Latin indices, and that of proton states by Greek indices.! The state of botf
particles together can then be represented dseat product (sometimes called
“tensor product”) of these two vectors, written ws=u 0 v. The components
of warewn, =umvw . In that expression, one must considev as asingle
vector index, whose values can conveniently be listed in alphabetical order
my = aa, af, av,...,ba, b, by,..., and so on.

Direct products can represent the state of two (or more) systems that hav
been preparedndependently. However, the main issue that we want to in-
vestigate is the description ofiteracting particles—for example, of a genuine
hydrogen atom. Let us tentatively assume that composite systems do not diffe
in any essential way from “elementary” ones, and in particular that they obey
the principle of superpositio® (see page 50). Namely, i andu, are possible
states of an electron, and, andv, possible states of a proton, the expression
w=a(u®v;)+ 0 (uz®vz) is a realizable state of an electron-proton system.

1 Here, indices taken from different alphabets are used to label different vector spaces. In
preceding chapters, they denoted different bases in the same vector space.
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Note that, in this combined state, neither the electron nor the proton is in
a pure quantum state: There is no complete test for the electron alone, nor f
the proton alone, whose result is predictable with certainty. Onlypéie of
particles has a well defined pure state, in which the electron and the proton ar
correlated. Numerous examples of such situations will be encountered in this
chapter and in the following ones.

A simple example of correlated states is produced when a photon passe
through a calcite crystal. The photon has two relevant degrees of freedom: it
polarization, and the location of the path (the ray) that it follows. Although
these two degrees of freedom belong to the same photon, they can formally
treated as if they were two constituents of a composite system.2 The Hilber
space describing the state of the photon is the direct product of a polarizatio
space and a location space. xeandy denote the two orthogonal polarization
states defined by the crystal orientation, anduetnd v denote the locations of
the ordinary and extraordinary rays, respectively. A complete basis for photor
states, at this level of description, may thus kBu, xOv, yOu, and yOv. For
example, if we say that a photon statexisu, this means that we cgpredict
that if the photon is subjected to a test for polarizatiorand if that test is
located in the ordinary ray, the photon will certainly pass the test. Moreover,
that photon will not excite a detector located in the extraordinary wéfor
any polarization) and it will not pass a test for polarizatioat any location).
These predictions are the only operational meaning of the phrase “the photo
has statex 0 u.”

Suppose now that the initial state of the photon, before passing througl
the crystal, is(ax + B8y) ® w wherea and 3 are known complex numbers
satisfying |a|? +|8]? = 1, and wherev denotes the location of the incident ray.
This state is a direct product: the photon can be found only in the inciden
ray; it will pass withcertainty a test for polarization statex + By; and it is
certain to fail a test for the orthogonal polarizati¢fix — ay). Our calcite
crystal, however, does not test these two orthogonal elliptic polarizations—i
testsx vsy. Therefore the only predictions that we can make siegistical:

After a photon passes through the crystal, there paobabilities|a|? and|3]?

to find it in the ordinary rayu with polarization x, or in the extraordinary ray

v with polarizationy, respectively. However, the mere probabilities do not tell
us the complete story. According to quantum theory, the state of the photor
after passing through the crystal, can be written as

¥=ax@u+8yQv, (5.1)

where an arbitrary phase factor was omitted (it can be included in the definitior
of the basis vectors). This is calledcarrelated (or “entangled”) state. The
corresponding process is sketched in Fig. 5.1.

2In classical physics too, a Hamiltoniaid = (p1? + p2?)/2m + V(z1, z2) can represent a
single particle in a plane, or two interacting particles on a line.
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ax®u

(ax+By)®w +
By®dv

Fig. 5.1. Preparation of a photon in a correlated (or “entangled”) state.

Decorrelation of an entangled state

The superposition principle asserts tHdtin Eq. (5.1) is apure state. This
means that there existsnaaximal test (having four distinct outcomes) such that
a photon prepared in statB will always yield the same, predictable outcome.
As we shall presently see, such a test may include either a mirror to reflect th
photon through the crystal, or a second crystal which is the mirror image of
the first and recombines the two beams. The state of the photon is thereb
decorrelated—it again is a direct product—and its polarization can then be
tested as usual.

It is instructive to design explicitly a maximal test having the entangled
state (5.1)as one of its eigenvectors. The three other eigenvectors can be chose
arbitrarily, provided that all of them are orthogonal. Let thenf@u—a y®v,
which also is an entangled state, atidv andy O u, which are direct products.

A possible experimental setup is sketched in Fig. 5.2.

The first element of the testing apparatus is a calcite crystal, which is the
mirror image of the one in Fig. 5.1, and therefore reverses its effect. Ideally, we
have

ax®@u+By@v - (ax+ fy)®@w. (5.2)

However, to obtain this perfect recurrence of the initial state, one needs ¢
perfect symmetry of the two crystals. If that symmetry is only approximate,

Phase
shifter

(lalx+(Bly)@w’
> (|Blx—jaly)®w"

Fig. 5.2. A maximal test with four distinct outcomes, one of which certifies that
the incoming photon was prepared in the correlated state given by Eqg. (5.1).
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any thickness difference generates extra phase sRifindn, in the ordinary
and extraordinary rays, respectively. Instead of (5.2), we then have

ax@u+By®v— (aex+ Fe"y)@w. (5.3)

Note that the right hand side of Eq. (5.3) still ispare state.

We must also find out what happens to a photon prepared in one othére
incoming states. First, we notice that Eq. (5.3) is valid for angnd 3. On
its right hand sidew, &, andn depend on the properties of the crystal, but not
on a and 3, which refer to the preparation of the photon. We therefore have,
separately,

x®u — e¥xQw and YRV — €y@w, (5.4)
and

Bx@u-—ay®v — (Befx—ac"y)ow. (5.5)
This result directly follows from (5.3) by substituting— 3 afd- —a. . It

could also have been derived from (5.4) by virtue of the linearity of the quantum
dynamical evolution, which will be discussed in Chapter 8.

Note that the two orthogonal correlated states on the left hand sides
(5.3) and (5.5) are channeled into the same wayThe resulting states are no
longer entangled. They are direct products of a location siad&d an elliptic
polarization state, which is eith€te®x + Be’y), or (Bex — aey).

The next element of the testing apparatus is a phase shifter, converting the
elliptic polarization states, which are mutually orthogonal, into linear ones. In
the special case of circular polarization, this phase shifter would be a quarte
wave plate. In the general case, its effect is the same as that of an extra thickne
of the crystal. The phase shift has to be adjusted in such a way that

x = xe8 Jaja and y — ye® /38, (5.6)

where 0 is a function ofa, (3, & andn, which need not be known explicitly for
our present purpose.® We thereby obtain linear polarizations:

actxt Bely — & (lalx+ |Bly), (5.7)
and
Bex—aey — e \[aBlaB (|Bx - |aly)- (5.8)

3The only adjustable parameter is the optical length, (the thickness) of the phase shifter.
The extra phases in (5.6) are proportional to that thickness. However, it is onlgifffeeence
(not the sum) of these phases which turns out to be relevant in the following calculations, and
this difference does not depend on the param@ter
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Exercise 5.1 Check the last two eguations and verify that the resulting linear
polarizations are orthogonal.

The final step of the test can then be performed by another calcite crysta
with its optic axis oriented in the direction appropriate for distinguishing these
two orthogonal linear polarizations, as shown in Fig. 5.2

We still have to examine the result of this test in the case where the initia
state of the photon is one of the two remaining orthogonal vectofs,v or
y O u. We have already seen in Eq. (5.4) that the first crystal in Fig. 5.2 deflects
incoming photons withx polarization downwards (fronu tow), and those with
y polarization upwards (fronv to w). This is indeed the opposite of the effect
of the symmetric crystal in Fig. 5.1. We can therefore write

X@Vv — x@V and yu — yeu, (5.9)

where any extra phase factors were absorbed in the definitions of the vecto
v’ and u’, which represent the locations of the new ordinary and extraordinary
rays, respectively. These rays are located, as shown inbRigbelow and above
thew ray, and their distance from the latter is equal to that between the origina
u and v rays. This completes the construction of a complete (maximal) test,
having theentangled state (5.1) as one of its eigenstates.

Further algebraic properties

Composite systems have observables which are not trivial combinations of thos
of their constituents. In general, a system wistates hasN? — 1 linearly
independent observables (plus the trivial observable 1, represented by the ur
matrix) because a Hermitian matrix of ordNrhas N2 real parameters. Any
other observable is a linear combination of the preceding ones. Now, if system
having M and N states, respectively, are combined into a single composite
system, the latter habIN states and therefor®?2N? — 1 nontrivial linearly
independent observables. These are obviously more numerous than the obse
ables of the separate subsystems, whose total number isMly N? — 2.
Therefore, a composite system involves more information than the sum of it
parts. This additional information, which resides in tipgantum correlations,
involves phases and has no counterpart in classical physics.

Some of the observables of a composite system may be ordinary sums. F
example, if A andB are observables of an electron and a proton, respectively,
their sum (classicallyA+B) is

(AR T+ 1 B)mpns = Amn 6 + Smun Bos - (5.10)

This expression involveglirect products of matrices (not to be confused with
their ordinary products). These direct products follow the standard rules of
matrix algebra, once we remember thafiis a single index. For example,
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(A 1+18B)(u®v)=(Au®Vv)+ (u® Bv), (5.11)
because

Z(Am,, Suy + Opn B ) up v, = Z AmnUn v, + Z Uy By, v, . (5.12)
Likewise

Z(A ® B)mpynv (U ® V) = [(AU) ® (BV)]my - (5.13)

nv

When no confusion is likely to occur, it is usual to omit thend1 signs, and
to write simply (A + B)uv = (Au)v + u(Bv), etc.

Exercise 5.2 Let

{01 (0 —i 1 0
s=3\10)0 T2\, o) *=T3lg -1)

be observables of an electron, and likewise let

01 0 —i 1 0
S’=%[10]’ Sy %[i 0]’ S‘=%{0 —1]’

be observables of a proton (the latter were written with square brackets, rather
than parentheses, to emphasize that they belong to a different linear space).
Write explicitly, in the four dimensional combined space of both particles, the
15 matrices s; ® 1, 1®S,, and s; ® Si. *

]

Exercise 5.3 With s; and S defined as in the preceding exercise, let
Jo=vV31®S,+2(s, ®S:+5,85,),
Jy=V31®S,+2(5,85: 5. 8S,),

1. =18S5.+2s. 0L

What are the eigenvalues of these matrices? You should find that none of these
eigenvalues is degenerate, so that measuring any one of these observables is a
maximal test. Hint: Show that J;J, — J,J. = «J, (and cyclic permutations)
and that J,2+J,2 + )., =12 *

Exercise 5.4 With notations similar to those of Exercise 5.2, consider the
singlet state

v=2{()°[- O[]}

Show that (s;) = {S) =0, and (s; @ Si) = —1 .
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5-2.  Incomplete tests and partial traces

Consider again the “entangled” pure state (5.1) and suppose that we want t
measure a polarization property of the photon, regardless of where the photc
is. That property is represented by a second order Hermitian matracting

on the linear space spanned by the vectoendy which correspond to two
orthogonal polarization states. For examplexidndy represent states of linear

polarization, the observablk= (? "()i) gets values +1 for the two states of

circular polarization. Now, a complete description of photon states (including
the labelsu and v which distinguish the two outgoing rays) requires a four
dimensional vector space, as explained above. If the location of the photon i
not tested, this “non-test” can be formally represented by the trivial observable
1 (the unit matrix) in the subspace spanned by the veaioasd v. This is
because the question “Is the photon in one of the rays?” is always answere
in the affirmative. We are therefore effectively measuring the obseAabls
This is not a maximal test, becaude is a degenerate matrix, and there ar
only two distinct outcomes, rather than four.

The mean value oA (or, if you prefer, A® 1 ), expected for this incomplete
test, is given by the usual rule in Eq. (3.41):

(AY = UTAT = (ax@u+ By @v)I(A@ D (ax®@u+ By @ v). (5.14)
This can be written as
(A) = {a|?xtAx + |82yt Ay. (5.15)

The result would be the same if the photon simply had probalgltyto be in
statex and probability |B[? to be in statey. These probabilities do not depend
on the choice of the observablewhich is being measured. In other words, if
that experiment is repeated many times, everything happens as if we had
ordinary mixture of photons, some of them prepared in statand some in
statey. The relative phase of andy is irrelevant.

This result is radically different from the one which would be obtained by
measuringA (that is,A® 1) on thdncident beam whose statéax + 8y) @ w,
is anuncorrelated direct product. In that case, we would have

(Alin = (ax + By)' A(ax + By),
= |a|’x'Ax + |8’ ytAy + ag x'Ay + aBy'Ax. (5.16)

The last two terms involve off-diagonal elements of the maf#tiand depend

on the relative phase a and B. That phase did not appear in (5.15) because,
in the entangled stat® of Eq. (5.1), the statex andy are correlated to the
rays u and v, respectively, and the unit matrlx has no off-diagonal elements
connectingu andv.
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It is convenient to rewrite (5.15) explicitly in terms of matrix elements:
(A> = E(|a|2$mz_n+lﬂ|2ym—g;)‘4nm zzpmn Anm' (517)

This has the same form, pK), as in Eq. (3.77), wittp given by
p=laf*xxt + 8] yy'. (5.18)

Note thatxx' andyy' are projection operators on the stateandy which are
detected with probabilitiego? and |BP, respectively.

Irrelevant degrees of freedom

It is of course possible to use (5.14) instead of (5.17), and to consider explicitl
the subspace spanned byandv, in which we “measure” the unit matrix.
However, it is far more convenient to ignore the irrelevant degrees of freedor
and to use directly (5.17). Moreover, we often have no real alternative tc
the use of (5.17), because the irrelevant data are too numerous, or they &
inaccessible. For example, the photons originating from an incandescent sour
are said to be “unpolarized” because we cannot follow all their correlations with
the microscopic variables of the source, which are in thermal motion.

Some further thought will convince you that there is no essential difference
between the derivations of Eqg. (3.77) on page 73, and Eq. (5.17) here. I
the former, we considered a situation where the preparation procedure we
incompletely specified: it involved a stochastic process. Here, we deliberatel
choose to ignore part of the available information, by testing only the photor
polarization, irrespective of the ray where the photon is to be found. The fina
result is given by similar expressions. This is natural, because this result cann
depend on whether the omission of “irrelevant” data was voluntary or not.

In general, let the density matrix of a composite systenprp@ay where,
as usual, Latin indices refer to one of the subsystems and Greek indices to tl
other one. If we measure only observables of tiag O (that is, if we observe
only the Latin subsystem and ignore the Greek one) we have, as in Eq. (5.1

<A) = Z Prvmp Amnbu = Z (Z Pnuvmu) Amn - (5.19)
mnuy mn n
The matrix
Pam = Z Prpmu s (5.20)
m

obtained by a partial trace on the Greek indices, is calledrétleced density
matrix of the Latin subsystem.
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Exercise 5.5 With the same notations as in Exercise 5.2, let

o= (1)es4]+(2)o22]

Show that W is normalized. Compute the average values of the 15 observables
5; @1, 1® Sk, and s; ® S If we ignore one of the two particles, what is the
reduced density matrix of the other one? *

5-3. The Schmidt decomposition

In Eq. (5.21), the vectoW is written as the sum of two terms. The latter are
orthogonal, becaus(é) ar(q}) are. On the oﬂm&md,[o'] isnot orthogonal

0.4

to [g;] . It will now be shown that, if a pair of correlated quantum systems are in
a pure statéV, it is always possible to find preferred bases such4hhecomes
a sum ofbi-orthogonal terms. A simple example of bi-orthogonal sum can be
seen in Eq. (5.1), where we have b&hyO= 0 andCu,vdO= 0.

The representation of¥ by a bi-orthogonal sum is called the Schmidt de-
composition of#¥. The appropriate bases can be constructed as followsa let
and v be unit vectors pertaining to the first and second subsystems, and let

M:={(u®v, ¥). (5.22)

Since |MP is nonnegative and bounded, it attains its maximum value for some
choice ofu andv. This choice is not unique because of a phase freedom, and
possibly additional degeneracies, but this nonuniqueness does not impede tt
construction given below.

Let us choosel andv so as to maximiz¢MP. Letu' be any state of the first
system, orthogonal ta. Let [0 be an arbitrarily small complex number. Then

u+ ew’||? = 1+ O(e?), (5.23)

so thatu + Ou' is a unit vector, just as, if we neglect terms of orddr2. We
then have

(ut e )@v, ¥) =M + e(u' @v, T), (5.24)
whence
Hu+e)@v, ) = |M[*+2Re(e{u' ®@v, ¥)) + O(?). (5.25)

The value of the expression on the left hand side is stationary with respect tc
any variation ofu, by virtue of the definition ofi. As the phase o is arbitrary,
it follows that, on the right hand side of (5.25),
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{(W®v, ¥) =0, V' eHy, (5.26)

where H; denotes the set alfl the states of the first subsystem, which are
orthogonal tou. Likewise, if V' is a state of the second system, orthogonal, to
we have, with similar notations,

(u®V', ¥) =0, Vv er,. (5.27)
Consider now the vector
V=0-Mu®v. (5.28)

It is easily seen tha#' satisfies the same relationships Hsn Egs. (5.26) and
(5.27), and, moreover, it also satisfies

(u®v, ¥) =0, (5.29)

by the definition ofM. Therefore, if the bases chosen for our two subsystems
include u andv among their unit vectors, all the components4of referring to
these two unit vectors shall vanish. It follows that

U eH,QH,. (5.30)

We can now repeat the same procedure in the smaller #fja&eH, , an
proceed likewise as many times as needed, until we finally obtain

\I’=ZM]‘U]'®V]', (5.31)
7

where the unit vectorsij and vj belong to the first and second subsystems,
respectively, and satisfy

<U,‘ ) Uj) = <V,‘ ,Vj} =0. (532)

Note that the number of nonvanishing coefficiems is at most equal to the
smaller of the dimensionalities of the two subsystems. The phases bf thege
arbitrary—because those af; andv; are. Moreover, if severgM; | are  equal,
the (u; ® v;) corresponding to them can be replaced by linear combinations o
each other, as is usual when there is a degeneracy. For example, the sing
state of a pair of spié particles can be written as

1 1 0 0 1 1 1 T ) 1

= - = — 5.33

o) l]-C) el -a{C) e L= G) =} e
as well as in an infinity of other equivalent bi-orthogonal forms.

Exercise 5.6 Verify Eq. (5.33) and write two more equivalent forms of the
singlet state.
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Exercise 5.7 Show that the density matrix of the singlet state (5.33) is

p=71 (1@1—20,,,@0,,,). (5.34)

Hint: Show that Tr(A ® B) = (TrA)(TrB), that this p is a pure state, and
that a spin singlet satisfies (1@ o+ o ® 1) ¥ =0.

Exercise 5.8 Find the Schmidt decomposition of W in Exercise 5.5.

Exercise 5.9 Show that the Schmidt decomposition cannot in general be
extended to more than two subsystems.

The density matrix of a pure state is, in the Schmidt basis,

o=V = EM,E u,-u§®v.~v}. (5.35)
i]

The reduced density matrices of the two subsystems therefore are

= Z |M;1? ujuz and P2 = Elelz V]'V} . (5.36)
7 J

These two matrices obviously have the same eigenvalues (except for possib
different multiplicities of the eigenvalue zero) and their eigenvectors are exactly
those used in the Schmidt decomposition (5.31). Thanks to this property, it i
a straightforward matter to determine the Schmidt basis which corresponds t
a pure state, if the latter is given in an arbitrary basis.

Exercise 5.10 Given any density matrix p in a Hilbert space H, show that
it is always possible to introduce a second Hilbert space H', in such a way that
p is the reduced density matrix, in H, of a pure state in H @ H".

Exercise 5.11 What are the reduced density matrices of the two particles in
the singlet state (5.33)?

Exercise 5.12 Two coupled quantum systems, each one having two states,
are prepared in a correlated state W, represented by the vector with components
0.1, 0.3 + 0.4 0.5, —0.7.(This 4-dimensional vector is written here in a basis
labelled aa, a3, ba, b, as explained at the beginning of this chapter.) Find
the Schmidt decomposition of W. *

Exercise 5.13 Two coupled quantum systems, having two and three states,
respectively, are prepared in a correlated state W, represented by the vector
with components 0.1, 0.3 + 0.4 -0.4, 0.7, 0.3 0. (As in the preceding
exercise, this vector is written in a basis labelled aa, . . . , by.) Find the Schmidt
decomposition of W. * %
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Another way of transformings = 3~ A4,, x, ®y, from arbitrary bases and
y, to the Schmidt basis, is to diagonalize the Hermitian matrices and AAT
by unitary transformationsJATAUT = D' and V AATVt = D". We then have
VAU'D' = D"V AUT, so thatV AUt is “diagonal” too:3- Vi, A,, U;, = 6; a;.
It follows that ¥ = Y «; u; ® v;, where uj =Y U;x, and v; = zﬁy“.

5-4. Indistinguishable particles

A quantum system may include several subsystems of identical nature, whic
are physicallyindistinguishable. Any test performed on the quantum system
treats all these subsystems in the same way, and is indifferent to a permutatic
of the labels that we attribute to the identical subsystems for computationa
purposes. For example, the electrons of an atom can be arbitrarily labelle
1,2, . . . (or John, Peter, and so on) and no observable property of the atom
affected by merely exchanging these labels. The same is true for the protons
an atomic nucleus and also, separately, for the neutrons.

As a simple example, consider a helium atom. The distance between the tw
electrons,|r{ —r 2|, is observable, in principle; but , the position of the “first”
electron, is a physically meaningless concept. This is true even if the heliun
atom is partly ionized, with one of its electrons removed far away. Note that
it is meaningful to ask questions about the electron closest to the nucleus,
about the most distant one—bnbt about the electron labelled 1 or 2.

We have here &undamental limitation to the realizability of quantum tests.

One may toy with the idea of devising “personalized” tests, which would be
sensitive to individual electrorsand it is indeed easy to write down vector
bases corresponding to such tests—but this fantasy cannot be materialized
the laboratory. We are forced to the conclusion thett every pure state is
realizable (recall that pure states were defined by means of maximal tests—se
PostulateA, page 30). Our next task is to characterize the realizable states o
a quantum system which includes several indistinguishable subsystems.

Bosons and fermions

First, consider the simple case where only two identical particles are involved. /
complete set of orthogonal states for one of them, if it is alone, will be denotec
by um; the same states of the other particle will be called,. Then, if these two
particles are truly indistinguishable, some states of the pair cannot be realize
For example, the statean O vn(form # n) cannot, because it idifferent

from the statev,, O u,, obtained by merely relabelling the two particles (these
two states are actually orthogonal). On the other hand, states that are n

4 This issue does not occur in classical physics, because classical objects have an inexhausti
set of attributes, and therefore are always distinguishable.
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forbidden by indistinguishability are
U ® Vi and (Um @ Vo + Us ®Vm)/V2 (m # n), (5.37)

and
(U ® Vn — Up ® Vi )/ V2 (m # n). (5.38)

Vectors of type (5.37) are obviously invariant under relabelling of the particles.
Those of type (5.38) merely change sign under relabelling, and therefore stil
represent thesame physical state.

Now, however, we run afoul of the superposition princifigsee page 50),
because the following linear combination of (5.37) and (5.38),

U @ Vo = 3 [(Um ® Vo + Up @ Vi) + (U ® Vi — Un @ Vi )], (5.39)

is unphysical, as we have just seen. The only way to salvage linearity is t
demand that, for any given type of particles, the allowed state vectors of a pair c
particles are either always symmetric, as in (5.37), or always antisymmetric, a
in (5.38). Particles that always have symmetric state vectors are talteds;

those having always antisymmetric states are caléechions. It is customary

to say that these particles obey Bose-Einstein or Fermi-Dstagistics, even

if only two particles are involved, as here, and we are far from the realm of
genuine statistical physics.

From the postulates of relativistic local quantum field theory, it can be shown
that bosons have integral spin, and fermions have half-integral spin. The a:
sumptions underlying this theorem, as well as its detailed proof, are beyond th
scope of this book.

It is customary to say that “only one fermion can occupy a quantum state.’
This statement is not accurate. In a vector such as (5:88), particles are
present ineach one of the two states—this is indeed a trivial consequence of
their indistinguishability. However, fermions and bosons have different ways
for occupying their states, and that difference can be seen experimentally. Th
mean value of an observabfeinvolving two identical particles is

(A) =1 ((um @V £ Us @ Vi), A(Um @V Up ® Vim)),
= 1 (Amnmn + Anmam £ Amnnm £ Anmmn)s (5.40)
where the various matrix elements are defined by
Amnps = (U @ Ve, Aty @ V,). (5.41)

Since the particles are indistinguishable, the observabieust be indifferent to
any interchange of the particle labels. Therefore, the value of (5.41) is invarian
under an exchange of the labelsand v that we use to indicate the “first” and
“second” particles, respectively. Hence,

Amn,ra = Anm,sr 3 (542)
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and (5.40) becomes
(A> = Amn,mn + Amn,ﬂm . (543)
The * sign in the observable mean value differentiates bosons from fermions.

Exercise 5.14 Two noninteracting identical particles occupy the two lowest
energy levels in a one-dimensional quadratic potential V = %ka. Find the
mean value of x; X, when these particles are bosons, and when they are fermions.
What would be the result for distinguishable particles? *

Likewise, if there are three indistinguishable bosons or fermions, a vectol
involving three orthogonal states can be written as

(5.44)

n
with Dirac’s notation, . (Another notation could hé\,
to emphasize the symmetric structureWf) As in Eq. (5.42), matrix elements
of an observablé\ are invariant under internal permutations in their composite
indices:

(5.45)

Therefore the mean value #éfis given, as in (5.43), by

(5.46)

Exercise 5.15 Three identical and noninteracting particles occupy the three
lowest energy levels in a one-dimensional quadratic potential V =—kx2.Find
the mean value of (x1 + X2 + x3)? when these particles are bosons, and when
they are fermions. What would be the result for distinguishable particles?  «

Cluster separability

An immediate consequence of Egs. (5.37) and (5.38) is that two particles of th
same type are always entangled, even if they were prepared independently, f
away from each other, in different laboratories. We must now convince ourselve:
that this entanglement is not a matter of concern: No quantum prediction.
referring to an atom located in our laboratory, is affected by the mere presenc
of similar atoms in remote parts of the universe.

To prove this statement, we first have to define “remoteness.” In real life,
there are experiments that we elewt to perform, because they are too far
away. For example, if we consider only quantum tests that can be performet
with equipment no bigger than 1 meter, a statéocalized more than 1 meter
away is “remote.” In general, a stateis called remote ifi|Aw]||is vanishingly
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1+ 1+ 22 =31, which is the number of group elements. On the other hand, we
have so far used only four orthonormal states: the bosons and fermions give
by Eq. (5.44),and theW . andW _ states in Eq. (5.54), which form a closed set
under all permutations. Therefore there must be another orthonormal pair ©
states, which also transforms under permutations with the aid of the matrice
of the D@ representation (but which does not mix with).

It is not difficult to find the two missing states. They can be taken as

&, = (|nms) + @ [snm) + w |msn))/V/3, (5.57)
&_ = (Jmns) +@ |nsm) + w |smn))/V/3.

Exercise 5.19 Verify that ® ;and & _ are orthogonal to the boson, fermion,
and W. states, and that they behave exactly as W, and W_ under permutations
of the particle labels.

Exercise 5.20 Show that, for any real a and B, the four states

Zy=cosa Uy — e’ sina @y, (5.58)

and
Ty =ePsina @y +cosa ¥y, (5.59)

are mutually orthogonal, and that each pair, =+ and Y. , has the same trans-
formation properties as W+ and ®: under permutations of the particle labels.

Exercise 5.21 Show that the pair of orthonormal states
Ay = (U, +T_)/V2 and Ao =i (T, —T_)/V?2, (5.60)

transforms according to

Ao A = < : . ) A, if |abc) — [bac), (5.61)
and
, 11 -3
Ao A =—-= A i . * .
— 5 ( Vo1 ) , if labc) — |cab) (5.62)

The last exercise shows that all six matrices of e representation can be
made real by aitary transformation of the basis. (Different representations
of the same group, related by a unitary transformation of the basis, are said t
beequivalent. ) Since the newD® matrices no longer involve the coefficients
of i and of— in the vectorsA. are not mixed by these matrices, and therefore
they transform independently. You may verify that the two pairs of vectors

{ (2|mns) — [nsm) — |smn) + 2 |nms) — |snm) — |msn))/V/12,
( ~ |nsm) + |smn) + |snm) — [msn})/2,

(5.63)
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and

{ ( [nsm) — |smn) + [snm) — |msn})/2,
(5.64)

(2|mns) — [nsm) — |smn) — 2|nms) + |snm) + [msn))/ V12,

are mutually orthogonal, and that each pair transforms, without mixing with
the other, as in Egs. (5.61) and (5.62).

Inequivalent bases can be experimentally distinguished

This wealth of equivalenD® representations raises a fundamental question:
Given that the particles cannot be individually identified, are there quanturr
tests able to distinguish from each other the various stats,, ®., =, , efc.
It is obvious that states which can be transformed into each other by relabellin
the particles, such a@¥. and%_ , or any linear combination thereof (for exam-
ple, A+) cannot be distinguished by any test. Indeed, the mean value of an
observableA is the same,

<\I}—7A‘II—) = (\II+ ’A\I}+)a (565)

because a relabelling of the particles is represented by a unitary transformatio
¥, — U, under whichA is invariant: A = UAUT .

On the other hand, bases that cannot be converted into each other by mere
relabelling the particles, such'%s and @, , are experimentally distinguishable.
For instance, the operator

Py —Pe=0, 0l +0_0t -3, &, —3_a!, (5.66)

is invariant under a relabelling of the particles; all linear combinations of the
Y. states are eigenvectors of that operator (with eigenvalue +1); thoge. of
states also are eigenvectors (eigenvalue af)f the boson and fermion states
in Eq. (5.44)are eigenvectors too (eigenvalue 0). A physical realization of the
operator in (5.66)would therefore allow us to verify whether triads of identical
particles are of typéd, or®, or none of these.

As a concrete example, consider the symmetric expression

A=zy(zp;+p.2)+za(ypy +pyy) +y2z(zps +pe2), (5.67)

where x, y andzare the coordinates of three identical particles, ppdp, and

p, are the conjugate momenta. Let the three sthteg,|n and|sl be those

of a harmonic oscillator, with the ground state labelled 0 (not 1). We then have
(in natural units, including: = 1),

Topn = (ﬁ 6m,n+1 + \/ﬁan,m+l)/\/§’

(5.68)
Prn = (VM 8mnt1 = V1 bamin) i/ V2.
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It follows that (xp — pX)mn =i &mn, as is well known, and

(zp+p2)mn =i (yYm(n + 1) bpniz — Yr(m + 1) bnme2)- (5.69)

Therefore the operatoh, given by Eq. (5.67), has a nonvanishing mean value if
the statesm[ln anddsO correspond to threeonsecutive levels—in any order.
For example, let us take them@8 l0and®0 We have

ZTop = 1/\/5, Ty =1, (Tps + pr )2 = —i V2, (5.70)
and you are invited to verify that

(T, AT) = —3/3 and (s ,Ads) = +3V/3, (5.71)
while CAO= 0 for bosonic and fermionic states.

Exercise 5.22 Find the mean value of the operator A in Eq. (5.67) for the
states =+ , T+, and A+ , which were defined in the preceding exercises. *

These results show beyond doubt that, if there were particles which obeyec
parastatistics rules, that property would have observable consequences.
Suppose now that we have three particles of hetype. That is, we have
determined experimentally that they are neitlder,nor T., etc. On the
other hand, we have no experimental way of differentiatihg from W_ (or
from linear combinations thereof, such As) because the particles are indis-
tinguishable. These states can be transformed into each other by relabellin
the particles, and all mean values, such(Z8 , are the same for all of them. It
follows that the physical state of our three-particle system iscmal weight
mixture of \I/+‘IIL and ¥_¥t . This mixture is represented by a density matrix
which is proportional to the unit matrix (in the subspace spannéd. l@nd
W_), and is therefore invariant under the unitary transformations correspond-
ing to permutations of the particles. We have a mixture, rather than a pure
state, because of the inaccessibility of some data—namely, the conceptual labe
attached to the indistinguishable particles.

Cluster inseparability

The above considerations can be generalized to multidimensional irreducible
representations oB,, for n > 3. The latter have the property that, when we
descend from S, to its subgroupS, _; (for instance if one of the particles is so
distant that we ignore it and permute only the labels ofrth& other particles),

all the irreducible representations 8f becomereducible representations of
Sh-1. This too has observable consequences, that will now be discussed.

"H. Weyl, Theory of Groups and Quantum Mechanics, Methuen, London (1931) [reprinted
by Dover] p. 390.
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Returning to the case of three particles, assume thamfifend nOstates
are localized in our laboratory, while thelistate is remote, localized on the
Moon, say. The question may now be raised: if three particles obey the
symmetry, what happens when we swap the labels of only two particles o
the same speci@s (More generally,niparticles belong to a given irreducible
representation ofS,, what is the representation for a subsenef 1 particles?)
We have already investigated a similar question in the case of losems or
fermions (see Exercise 5.16) and we then found the intuitively obvious result
that if one of the three particles is remote, the two others still behave as bosor
or fermions, respectively.

However, for three particles obeying tBeél) symmetry, the situation is more
complicated. For example, if they are of ty{¢e , we have, instead of Eq. (5.46),

<A) = Amns,mns +w Amns,nsm +w Amns,smn . (572)

Exercise 5.23 Show from Eq. (5.54) that the matrix elements Amnssnm and
A mns,smn are complex conjugate, and verify Eq. (5.72).

On the other hand, for three particles of tyfpa , we have a different result,
which looks like (5.72), but with < @. Other bases, which also lead to the
sameD @ representation, or to unitarily equivalent ones, give for the observable
mean valuelADstill other results. None of these results has the desired propert
of reducing to the boson or fermion symmetry rules, if one of the three occupie
states is remote, and only the two others are accessible.

This leads to a paradoxical situation. We know thad indistinguishable
particles behave either as bosons, or as fermions. On the other hand, if we ha
such a pair of particles here, we can never be sure that there is no third partic
of the same kind elsewhere (e.g., on the Moon). The mere existence of th
third particle would make the trio obdp @ statistics—which implies, for the
two particles in our laboratory, an improperly symmetriZ&d] unlike that in
Eq. (5.43) which was valid for bosons or fermions. Since it is hardly conceivable
that observable properties of the particles in our laboratory are affected by tt
possible existence on the Moon of another particle of the same species, we &
forced to the conclusion that only Bose-Einstein or Fermi-Dirac statistics are
admissible for indistinguishable systems.

5-6. Fock space

An efficient way of writing completely symmetric or antisymmetric state vectors
is the use of a Fock space. This is a new notation, which also allows the
introduction of states where thmumber of particles is not definite. Such states
naturally occur whenever particles can be produced or absorbed. For examp
if an atom is prepared in an excited energy state from which it can decay b
emission of a photon, the quantum state after a finite time will bénear
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superposition of two components, representing an excited atom, and an atom in
its ground state accompanied by a free photon; the number of photons prese
in that quantum system isidefinite. We thus need a mathematical formalism
which is able to represent situations of that kind, and is more powerful than
ordinary quantum mechanics, which describes only permanent particles.

Raising and lowering operators

Assume for simplicity that there is only one kind of particle, and that the
physical system has a nondegeneraéeuum state, in which no particles are
present That state is denoted MYy (or (P0in the Dirac notation). It is the
normalized ground state of the system, and it should not be confused with the
null vector 0, which does not represent a physical state.

We now define aaising operatora} bythe property that the vectef ¥o
is normalized and represents a single particle in stgte(The termcreation
operator and the notatiora{‘ . are also commonly used.) The operator which is
adjoint toal is writtena; and is towering operator, because

(lI/o,a; aleJO) = (a: ‘I’g,&:‘l’o) = 1, (573)
and therefore
a; at ¥o = Uy, (5.74)

so thata; maps the one particle staginto the vacuum state. (The terms
destruction, or annihilation operator, and the notatioa,, without a super-
script, are also commonly used f. )

We shall henceforth assume that (except for normalization) the opefator
adds a particle in state, to any state (not only to the vacuum state) and
therefore its adjoin; removes such a particle. In particular,

a, Uy =0, (5.75)

I3

is the null vector, because removing a particle from the vacuum produces a
unphysical state.

Fermions

Two fermions cannot occupy the same state. We therefore (ajtij¢¥, = 0,
since this expression is unphysical. More generally,

(af)* =0, (5.76)

even when this operator acts on a non-vacuum state.

8 This assumption is not as obvious as it may seem. Quantum field theory involves an infinite
number of degrees of freedom and allows, in some cases, the existence of degenerate vacua. T
Fock space formalism, discussed here, is not applicable to these situations.
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We likewise havea})? = O for ang, orthogonal toe,, and moreover, for
the state represented by the unit ve(e,+e.,)/v2, we layera})? = 0.
Combining all these equations, we obtain

atal +atat =0, (5.77)

which generalizes Eq. (5.76). The raising operadfirs #nd are saiatito
commute. The lowering operators, which are their adjoints, also anticommute:

a,a, +a;a, =0. (5.78)
The state vector
atal ¥, = —afal ¥y, (5.79)

represents two fermions occupying the orthogonal stajeande,. With this
new notation, no fictitious labels need to be attached to the two particles.
However, we can still swap the labglsand v of the occupied states, and then
the entire vector changes its sign, as seen in (5.79). This property is readil
generalized to three or more fermions: the complete antisymmetrization of the
state vector is automatically included in the Fock formalism.

It is convenient to define aumber operator,

N, =aI a, . (5.80)

It follows from Egs. (5.75) and (5.74), respectively, that the eigenvalud$,of
are 0 and 1, since

N, ¥ =0 and N, af ¥o = at Tp. (5.81)

Exercise 524 Show that the operator a;at has the same eigenvectors as

Ny, but with eigenvalues 1 and O, respectively, and therefore

ata; +ajal =1 (5.82)
Show, more generally, that

atay +ajaf =6, 1 (5.83)

Hint: Consider the raising and lowering operators, a;y = cos6 a* +sin6 af,
for the normalized state eg, with an arbitrary value of the mixing angle 6.

From (5.83), it follows that

[N., NJJ=atasala; —ata; =0, (5.84)
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because the exchange of two anticommuting operators involves two changes
sign, and thereforgairs of anticommuting operators commute.
Bosons

The treatment of bosons is simpler in some respects, and more complicate
in others, than that of fermions. It is simpler because the sign of the state
vector does not change when occupied states are swapped. On the other har
each state can be occupied by an arbitrary number of particles. A complet
orthonormal basis can be written @mg ng ... n, ... ]  wheyeis the number
of particles in statee,. We may define a number operatdy,, for that state,

by
Nolooom oY =mp om0 ). (5.85)
It then follows from the definition of the raising and lowering operators that
N, at ...nu...)=(nuj:1)a:f|...nu...), (5.86)
or, more generally,
Noaf|...on,..)=(n,x6,)a]...n, ... ). (5.87)
The raising and lowering operators for bos@mnmute,
[a},af)=[a;,a;] =0, (5.88)

instead of anticommuting like those of fermions, because bosonic state vector
do not change sign if state labels are swapped.
Equation (5.87) can also be written as

Ne,aZ] | ooy =260 |...n, .00 ). (5.89)
Since the basis... n, ...} is complete, this gives the operator equation
N, af] = £6,, aF (5.90)

from which it is easily shown thgN,, a}a;] = 0.

We have not yet normalized the raising and lowering operaors The
preceding relations only say that, in the basis wh¢gés diagonal, the matrices
a¥ have their nonvanishing elements in thdjacent diagonals:

(@] Jmn = Am b ma and (37 )mn = An Gnimat - (5.91)
Therefore,(a}f a; )mn = [Am|? dma . It isconvenient to choosa, = +/n, so that

N,=a

T+

ay, (5.92)
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has the same form as the number operator for fermions. It also follows from
the preceding equations thgtat = N, + 1, and therefore, for any pair of
orthogonal states,

[a ,af] =46, 1 (5.93)

This is acommutation relation, instead of thenticommutation relation (5.83)
that was valid for the fermionic raising and lowering operators.
It follows from (5.90) and (5.91), with, = y/n, that

at|...n, .. )=\, +1]...(n,+1)...), (5.94)
aglooong )= male (mg - 1) 0.

Therefore, thenormalized basis states in Fock space are
fooomy, o) = H(n,‘!)‘l/2 (@l ¥o. (5.95)
m

Exercise 5.25 Show that

lag, (3F)") = 8. n(af)" 1. (5.96)
Exercise 5.26 Show that

9. = (a} +a;)/V2 and pu=i(af —az)/V2 (5.97)
satisfy the canonical commutation relation [q,,p.} = 6, 1.

Exercise 5.27 Try again to solve Exercise 2.20 (page 47) by using Fock space
methods. Hint: Let a* and b* be the creation operators for photons polarized
along the x- and y-axes, respectively. The operators corresponding to axes
rotated by an angle 6 are a* cos6+b*sinf and —a* sin6+ b+ cosd. Therefore
the state with N photons polarized along 8, and N photons along 6 + 11/2, is

By = [(a* cosf + bt sinf) (—a™ sin b + bt cos§)|Y /NI, (5.98)

Show that, if jg" — g| is small and N is large, we have |(&, &4 )|? ~ e~ 4N -0,
so that the angular resolution attainable by an ideal measurement is about

1/vV4aN. *

Parafermions

The Fock space formalism can be adapted to represent hypothetical particle
having a number operator with eigenvalues 0, . M. (ordinary fermions cor-
respond toM = 1.) Indeed, any matrix of orddvl + 1, with nonvanishing
elements given by (5.91), is a raising operaér which satisfies
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(af )M+ = 0. (5.99)

For example, a smooth interpolation between fermidds=( 1) and quasi-
bosons W - o) is obtained from

(@5 )mn = (3 )am = Smpnpa [m (M —~n)/M V2 (5.100)

"

Exercise 5.28 Show that Eq. (5.99) is satisfied by (5.100), and moreover that
(af a; Jmn = 6mn m(M —m +1)/M,  (ag 3} )mp = bma (m +1)(M —m)/M,
and therefore
% M(a:’ a, —ay aj + D) = Smn . (5.101)

The expression on the left hand side of this equation is the number operato
Ny, with eigenvalues O, . . .M.

The generalization of Eq. (5.99) to products of raising operators belonging to
different states can be obtained by considering transformations to other ortho
normal bases. The transformation law (3.2) gives

af =3 Cumal,, (5.102)

where C, is an arbitrary unitary matrix. Because of this arbitrariness, we
have, in general,

doafat .. af =0, (5.103)

where each term is a product ®f+ 1 raising operators, and the sum includes
all the permutations of the indicesn . . .s. This relationship—which depends
solely on the property oét postulated in Eqg. (5.99), not on its particular
implementation in Eqg. (5.100)—imposes an antisymmetry property on state
vectors, when there are more thihparticles. However, this antisymmetry is
not restrictive enough for a smaller number of particles.

This alternative approach to parastatistics is just another way of showing
the difficulties that were already mentioned in the preceding section.

5-7. Second quantization

Some composite quantum systems contaitarge number of indistinguishable
particles: heavy nuclei, solids, neutron stars, are typical examples. A metho
called second quantization, originally devised for use in quantum field theory,
allows us to treat these large assemblies of particles without having to specif
how many particles are actually involved. This is made possible by using the
Fock basis given by (5.95). We shall now learn to write ordinary operators, like
those for kinetic energy, or potential energy, in that new basis.
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One-particle operators

Consider anadditive dynamical variable, such as kinetic energy, or angular
momentum, which is represented in quantum mechanics by an opAi@tap)
when there is a single particle. If there adandistinguishable particles, the
total value of that variable is

N
A =" A(gk, Px)- (5.104)
k=1

We are interested in the matrix elementsfobetween Fock states, which are
a complete orthonormal set labelled by occupation numbgrs

In ordinary quantum mechanics, where particles are not allowed to appear
disappear (as they can do in quantum field theory) an operator acting on a sta
vector may change the occupation numbegsof individual basis states, but
it cannot chang§_.n,. Imparticular, A does not change the total number of
particles. Therefore, the observabfehas nonvanishing matrix elements only
between Fock states with the sanmal number of particles, because states
with different numbers of particles are orthogonal.

Let us now choose a one-particle basis in whidig, p) is diagonal. With
that basis, even the individual occupation numbgrsdo not change when the
diagonalized operatoA acts on a Fock state, and we have

Al ony oy =Y Agng].on, ). (5.105)
o

This can be written as an operator equatidn= Y, A, N, = 5, A, 3} a .
Recall that this equation holds only in the basis whens diagonal. Its form

in any other basis (denoted as usual by Latin indices) can be obtained from th
transformation law (5.102), and its Hermitian conjugate which is

a, = Z—C';: a;. (5.106)
We have
A= Z(ZcumAuu_C—;)a;: a, . (5'107)
mn m

Since A is diagonal in the Greek basis, the parenthesis on the right hand sids
of (5.107) can also be written as

S Cun A Con = Amn = (e, Acy), (5.108)

uv

where use was made of the transformation law for matrices (3.46). Thus, finally

A=Y An.afa;. (5.109)
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The remarkable property of this expression fais that it makes no explicit
reference to the total number of particles, while that information was needed fol
writing Eq. (5.104). This is the advantage of the “second quantized” notation,
with respect to the ordinary, “first quantized” one.

Exercise 5.29 Show that the generalization of Eq. (5.105) to a general basis
where A, is not diagonal is

Al...n,..0) =Z(Aw"#|--~"#-">+

> A+ D) (ma+1) (= 1) ..0)). (5.110)

v#u

It is instructive to verify the agreement of Eq. (5.110) with the result
that can be obtained, laboriously, by means of the first quantized formalism
Assume for simplicity that only the two states andey are occupied. Let
N= n,+n,. The state vectoW is a symmetrized sum d¥!/n,!n,! different
terms that correspond to inequivalent ways of attributing stafeandey to
the particles. Since all these terms are orthogonal, the normalization factor i
(n,In, /N2 From the definition of matrix elementse, = (Ay e, + A, e,

+ irrelevant terms), we see that the vectoW contains:

1) the same terms as W, with unaltered occupation numbers, but multiplied
by a coefficient(4,, n, + 4., n,).

2) terms with a coefficienA,, , in which one particle switched from, toe, .
The number of these terms is

n, [Ni/n, 0l = (n, + 1) [NY(n, + Di(n, — 1)}, (5.111)
so that each symmetrized set of these new terms oogurs () times. The
new normalization factor i§n, + 1)!(n, — 1)!/N!]¥/2.  Comparing the old
and new normalizations, we get an extra coefficigm,/(n,,+1), which,

together with the coefficientn( + 1) on the right hand side of (5.111),
exactly gives the square root in Eqg. (5.110).

3) and likewise fory o v.

Two-particle operators

A similar treatment applies to additive two-particle operators, such as two-body
Coulomb interactions. In the ordinary (first quantized) notation, we have

B:=3 B(a:,p:,q;,P;)- (5.112)

i<y

When this operator acts on a Fock state, it may change the occupation numbel
of at most two one-particle states, and it can therefore be written as
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3 Y Bawalatajaj. (5.113)

nAuu

Note that the raising operators stand on the left of the lowering operators. Thit
is called anormal ordering. Any other ordering can be obtained by using the
(anti)commutation relations (5.83) and (5.93); the result differs from (5.113)
by terms having only one raising and one lowering operator (or none at all),
that is, by a one-particle operator (or a scalar). This ordering arbitrariness i
related to a trivial ambiguity in the definition of a two-particle operator: an
expression such a8 (qi,pi,qj,p;) remains a two-particle operator if one adds
to it a sum of two one-particle operators.

It will now be shown that the coefficiemB,s ,. in (5.113) is the ordinary
two-particle matrix element,

Biay = =% {ecr, Bey,), (5.114)
where the minus sign is for fermions, and where

€uu = U, QV,, (5.115)
and

e = (U, v, U, ®v,)/V?2 (n # v), (5.116)

are the symmetrized state vectors given by Egs. (5.37) and (5.38). Consider fc
example the effect oB on a two-particle state,; (with p # o). We have

BafalWo =13 Y B arala;a;atal ¥ (5.117)

RAuv

Repeated use of the (anti)commutation relations (5.83) and (5.93), togethe
with a; ¥y =0, gives

a; a, a: a: To = (6#0 6up + 6;Ap 51/0) Yo ) (5118)
whence
B a: al ¥y = % Z(B,Q,” + Bgypo)al al O,
KA
=+ Y Bu,eatat U, (5.119)

KA

which is just another way of writing Eq. (5.114).

Exercise 5.30 Compute explicitly B(n,!)"V?(af) ¥,. Hint: Use the
commutation relation (5.96).

Exercise 5.31 Compute explicitly BT] (n,!)""/?(a} )™ ¥,. *



146 Composite Systems

Quantum fields

Let the abstract Hilbert space vectag be represented by functions, (1, t),
which satisfy the orthonormality and completeness relations

/ uu(r,t) un(r,t)dr = b, (5.120)
and

Y uu(r ) u,(r,t) = 6(r' — ). (5.121)

Note that thesame parametert accompanies both' andr" .
Under a unitary transformation of the basig, given by Eq. (3.2), we have

U(1,8) = 37 Cramn (1, ). (5.122)

It then follows from the transformation law (5.106) that the operators

P(r,t) = uu(r,t)a; and  ¥*(r,t) =) u,(r,t)a} (5.123)

are invariant under a unitary transformation of the basis, produced by the
matrix Cum. They arenot invariant, of course, if we choose a different set of
orthonormal functionsi, (r,t) for representing the same physical staje

If all the functionsuy (r,t) happen to satisfy a partial differential equation
(the same equation for ajl), the operatonp(r,t) also satisfies that partial
differential equation. In that respect, it behaves like a field in classical physics
and for that reason it is called a “quantum field.” In particular, if the functions
uy (r,t) obey a Schrodinger equation, the figydr,t) also obeys that equation.
This is the origin of the term “second quantization” The old quantum wave
function (for a single particle) becomes an operator, and the new state vectc
(for an indefinite number of particles) is given by a combination of Fock states.

The quantum fieldsp and Y* have (antijcommutation relatiofis

[$(x',2), (x", )]z = ["(r',2), %" (x", )1 = O, (5.124)

and

[, 1), % (" )]e = 2w, ) w0, 8) fa;, af]e = 80/ = 1), (5.125)
o

by virtue of Egs. (5.83), (5.93), and (5.121). The singular nature of this
(anti)commutator is related to that of the fields themselves: The sums in (5.123
do not converge, and the quantum fielflsand Q* actually areoperator valued
distributions, as explained at the end of Chapter 4.

Operators that were defined in Fock space, suchAasnd B, can now be
written in terms of fields. We have

9The symbol p, B]. meansAB + BA.
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A= Ayata; = z/u,‘(r,t)Au,,(r,t) drata;,
ey wy

= / P (r, ) A(r) (r,t) dr. (5.126)
Likewise,
B=1 / / P (r, ) (r", ) B, v") (x”, £) h(r', t) dr’ dr”. (5.127)
Exercise 5.32 Take A = 1 and show that the operator for the total number
of particles is M = [ #*(r,t)2p(r,t) dr.

Exercise 533 Check that the factor ordering in Eqg. (5.127) is the correct
one for fermions (it is of course irrelevant for bosons). *
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Chapter 6

Bell’'s Theorem

6-1. The dilemma of Einstein, Podolsky, and Rosen

The entangled states introduced in Chapter 5 raise fundamental issues, whic
were exposed by Einstein, Podolsky, and Rosen (hereafter EPR) in a classi
article! entitled “Can Quantum Mechanical Description of Physical Reality Be
Considered Complete?”. In that article, the authors define “elements of physica
reality” by the following criterion:If, without in any way disturbing a system,

we can predict with certainty . . . the value of a physical quantity, then there

exists an element of physical reality corresponding to this physical quantity. This
criterion is then applied by EPR to a composite quantum system consisting o
two distant particles, with an entangled wave function

Y = 6(x1 —x2 — L) 8(pa + p2). (6.1)

Here, the symbold does not represent a true delta function, of course, but a
normalizable function with an arbitrarily high and narrow peak; &and a
large distance-much larger that the range of mutual interaction of particles 1
and 2. The physical meaning of this wave function is that the particles have
been prepared in such a way that their relative distance is arbitrarily cldse to
and their total momentum is arbitrarily close to zero. Note that the operator:
X1 — Xz andp1 + pz2 commute.

In the statey, we know nothing of the positions of the individual particles
(we only know their distance from each other); and we know nothing of their
individual momenta (we only know the total momentum). However, if we
measurex;, we shall be able to predict with certainty the valuexef without
having in any way disturbed particle 2. At this point, EPR argue “tHaice at
the time of measurement the two systems no longer interact, no real change can
take place in the second system in consegquence of anything that may be done to
the first system. ” Therefore, X, corresponds to an “element of physical reality,”
as defined above.

1A. Einstein, B. Podolsky, and N. RoseRhys. Rev. 47 (1935) 777.
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Nathan Rosen, working in
his office at Technion, 55
years after he co-authored
the famous EPR article.

On the other hand, if we prefer to perform a measuremept ofther than of
X1, We shall then be able to predict with certainty the valu@-ofagain without
having in any way disturbed particle 2. Therefore, by the same argumen
as above,p, also corresponds to an “element of physical reality.” However,
quantum mechanics precludes the simultaneous assignment of precise values
both x, and p2, since these operators do not commute, and thus ‘ERfR
forced to conclude that the quantum mechanical description of physical reality
given by wave functions is not complete.” However, they prudently leave open
the question of whether or not a complete description exists.

Bohr’s reply

Soon after its publication, EPR’s article was criticized by Bohet us exam-

ine the points of agreement and disagreement. Bohr did not contest the validi
of counterfactual reasoning. He wrotéour freedom of handling the measur-

ing instruments is characteristic of the very idea of experiment . . . we have a
completely free choice whether we want to determine the one or the other of
these quantities . . . ” Thus, Bohr too found it perfectly legitimate to consider
counterfactual alternatives. He had no doubt that the observer had free wi
and could arbitrarily choose his experiments.

On the other hand, Bohr disagreed with EPR’s interpretation of the notior
of locality. He readily conceded théthere is no question of a mechanical
disturbance of the system under investigation” [due to the measurement of the
other, distant system], but he addedhere is essentially the question of an
influence on the very conditions which define the possible types of predictions
regarding the future behavior of the system.”

Bohr gave to his point of view the name “principle of complementarity.”
Its meaning is that some types of predictions are possible while others ar
not, because they are related to mutually incompatible tests. For example,

2N. Bohr, Phys. Rev. 48 (1935) 696.
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the situation described by EPR, the choice of the experiment performed ol
the first system determines the type of prediction that can be made for the
results of experiments performed on the second system. On the other han
no experiment, performed on the second system by an observer ignorant of tt
above choice, would reveal the occurrence of a “disturbance” to that systemn
thereby disclosing what the choice of the first experiment had been.

According to Bohr, each experimental setup must be considered separatel
In particular, no conclusions can be drawn from the comparison of possible
results of mutually incompatible experimentse.( those having the property
that the execution of any one of these experiments precludes the execution ¢
the others). Bohr's argument did not convince Einstein who later wrote, in his
autobiography?

. . . it becomes evident that the paradox forces us to relinquish one of the
following two assertions:

(1) the description by means of ttpefunction iscomplete,
(2) the real states of spatially separated objects are independent of each
other.

In Einstein’s mind, the second of these assertions was indisputable. H
wrote4 “On one supposition we should, in my opinion, absolutely hold fast:
the real factual situation of the system S is independent of what is done with
the system S1, which is spatially separated from the former.” This physical
principle has received the name Einstein locality.

Spin systems

A simpler example of the same dilemma, involving only discrete variables, was
proposed by Bohrh, and became since then the basis of most discussions of
the so-called “EPR paradox.” Consider the decay of a spinless system into
pair of spin% particles, such a8 — e+ e~ | (this decay moda®ofs rare, but
it actually occurs). After the decay products have separated and are very f
apart, we measure a component of the spin of one of them. Suppos® thuit
the electron is measured and found equalkj@. Then, we can be sufgthat
of the positron will turn out equal teh/2, if we measure it; in other words, we
know that the positron is in a state wSth= —&/2. Moreover, it must have
been in that state from the very instant the positron was free, since it did no
interact with other particles.

On the other hand, weould have measure®, of the electron and, by the
same argumengy of the positrorwould have been definite; and likewise f&x,

3 A. Einstein, in Albert Einstein, Philosopher-Scientist, ed. by P. A. Schilpp, Library of
Living Philosophers, Evanston (1949) p. 682.

4 A. Einstein, ibid., p. 85.

5 D. Bohm, Quantum Theory, Prentice-Hall, New York (1951) p. 614.
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Therefore, all three components of spin correspond to “elements of reality,” a
defined by EPR, because a definite value will be predictable with certainty, fo
any one of them, if we measure the corresponding spin component ofhire
particle. This claim, however, is incompatible with quantum mechanics, whict
asserts that at mosine spin component of each particle may be definite.

Recursive elements of reality

The “paradox” can be sharpened if we further assume that elements of reali
which correspond tacommuting operators can be combined algebraically, and
thereby generate new elements of reality, in a recursive manner. The rationa
for this assumption is that if operatofsand B commute, quantum mechanics
allows us in principle to measure both of them simultaneously, together witl
any algebraic functiorf(A, B), and the numerical results of these measurements
are functionally related like the operators themselves (see Exercise 6.2 below
Therefore, if commuting operators and B correspond to elements of reality
with numerical valuesx and 3, respectively, it is tempting to say that any alge-
braic functionf(A, B) aso corresponds to an element of reality, with numerical
value f(@,3). This is the spirit, if not the letter, of the EPR criterion. One may
distinguish primary elements of reality (obtained by observations performed on
distant systems) fronsecondary ones (obtained recursively), but both kinds
are considered equivalent in the present argument. This recursive definition
strongly suggested by the intuitive meaning of “reality.”

Now, consider again our two spig particles, far apart from each other,
in a singlet state. We know that measurementsSgf and S, if performed,
shall yield opposite values, that we denote by;x and m,,, respectively. Like-
wise, measurements &5, and Sy, if performed, shall yieldopposite values,

My = —M,,. Furthermore, sinc&1x and S,y commute, and both correspond
to elements of reality, their produst, S,, also corresponds to an element of re-
ality (recursively defined, as explained above). The numerical value assigned
the productS;, S,y is the product of the individual numerical valuesix may.
Likewise, the numerical value &1y S,, is the productm;y, m,,. These two
products must bequal, becausem;y =-m,, and my =-m, .But, on the
other hand, quantum theory asserts that these products dppesite values,
because the singlet state satisfies

(512 52y + S1yy S2z) ¥ = 0. (6.2)

This is no longer a paradox, but an algebraic contradiétioN.e are thus
forced to the conclusion that our recursive definition of elements of reality,
which appeared almost obvious, is incompatible with quantum theory.

Exercise 6.1 Show that the operators S,, Sy and S,, S,, commute, and
prove Eq. (6.2).

6 A. PeresPhys. Letters A 51 (1990) 107.
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Exercise 6.2 Show that if a state g is prepared in such a way that Ay = ay
and By = Py, then f(A,B)y = f(e,B)s. Note that this result is valid even if
A and B do not commute, but merely happen to have a common eigenvector .

Three particle model

A similar contradiction was derived by Mermiinfor a three particle system,
without the use of any debatable extension of the EPR criteria. (Mermin’s
argument is a simplified version of another one, with four particles, due to
Greenberger, Horne, and Zeilinger.

The three spin} particles are prepared in an entangled state

Y= f(l‘l ,1”2,1’3) (Ul Ug Uz — Vi Vp Va), (6.3)
where the coordinate space wave functipfmi,r2 r3) has a form ensuring

that the particles are widely separated, and where the spin staedv are
eigenstates ob,, satisfying

TLU =V Tyu = z'v. o.u=u, (6.4)
oV =1U o,V = —tu gV = —V.
It is easily seen thap is an eigenfunction of several operators:
T12 O2y U3y¢ = 01y 0'21'03y¢ = 01y 02y03z¢‘ =¢7 (6-5)
and
015 025 035 Y = —¢. (6.6)

Exercise 6.3 Verify the above equations and show that these four operators
commute. Moreover show that

(Ulz T2y 03y) (aly 02y 03y) (Uly 621/ 031:) = _(011 T2z 031)' (67)

The minus sign in (6.7)s crucial, as will soon be seen.

The EPR argument now runs as follows. We may measure, on each particle
eitherox or oy, without disturbing the other particles. The results of these
measurements will be called, or m,, respectively. From (6.6), we can predict
with certainty that, if the three@, are measured, the results satisfy

My Moy M3y = —1. (68)

”N. D Mermin, Physics Today 43 (June 1990) 9Am. J. Phys. 58 (1990) 731.
5D. M. Greenberger, M. Horne, and A. Zeilinger, Bell’s Theorem, Quantum Theory, and
Conceptions of the Universe, ed. by M. Kafatos, Kluwer, Dordrecht (1989) p. 69.
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Therefore each one of the operators,, 0,,, ando;, corresponds to an EPR
element of reality, because its value can be predicted with certainty by perform:.
ing measurements on the tvabher, distant particles.

However, it also follows from (6.5) that we can predict with certainty the
value ofo;, by measuring,, andasy rather tharo,, andog,. We have

My Moy M3y = 1, (6.9)
and likewise, by cyclic permutation,

My, Moy May = 1, (6.10)
and

myy Mgy M3y = 1. (6.11)

The product of the last four equations immediately gives a contradiction.
There is a tacit assumption in the above argument, rthgt in Eq. (6.8)

is the same asn;, in Eqg. (6.9), in spite of the fact that these two ways of

obtaining m;, involve mutually exclusive experiments—measurirg, , and o 5,

or measurings ,, and g 3,. This tacit assumption is afounterfactual nature,

and cannot be experimentally verified. It obviously adheres to the spirit of

the EPR article—it is almost forced upon us by the intuitive meaning of the

word “reality"—but it is open to the same criticism that Bohr expressed in his

response to Einstein, Podolsky, and Rosen.

Einstein locality and other relativistic considerations

The paradoxes—or algebraic contradictions—resulting from the apparently
reasonable criteria proposed by EPR, prompt us to reexamine more carefull
their argument:If . .. we can predict with certainty . . . Who are “we"?

In Bohm’s singlet model, the observer who measBgs and finds+h/2
knows that if the other observer measures (or has measured, or will measure
Sox, she® must find the opposite result-%/2. However, this knowledge is
useless (it is devoid of operational meaning) because the two observers are f
apart. The only thing that the first observer can do is to send a message t
the second one, telling her that she can verify ®ay is—%/2, provided that
she has not yet disturbed her particle by measuring another component of spil
before she received that message.

Now assume that, unbeknownst to the first observer, she me&resand
finds the result+%/2, say. Can there be any paradox here? Conceptual difficul-
ties may indeed arise if you demand that every physical system, such as our pa
of particles, has, at every instant, a well defined quantum state (some author:

9When two observers are involved, | shall call the second one “she” rather than “he” (see
footnote on page 12).
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would like the entire Universe to have a quantum state). To illustrate this diffi-
culty, let our two observers be attacheddtfferent Lorentz frames, as shown in
Fig. 6.1. They recede from each other, with a constant relative velocity. Thus
in each one of the Lorentz frames, the test performed by the observer who is
rest appears to occwarlier than the test performed by the moving observer.
If the first observer got a bad education in quantum theory and believes the
the pair of particles has, at each instant, a definite wave function, he will sa)
that the singlet state, which existed for < 0, collapsed into an eigenstate of
Six and of S, for t1 > 0. In the same vein, the second observer may say tha
the singlet state held for, < 0, and thereafter collapsed into an eigenstate of
S1y and of Sy, as a result of her test.

8 )

Test of Test of

/ Slx S2y \ Z

%

Fig. 6.1. In this spacetime diagram, the origins of the coordinate systems
are the locations of the two tests. The andt,axes are the world lines

of the observers, who are receding from each other. In each Lorentz frame,
the z; andz, axes are isochronous; = 0 andt2= 0, respectively.

Statements like those of our fictitious observers are not only contradictory—
they are utterly meaningless. There is no disagreement about what was actua
observed. However, a situation involvirsgveral observers cannot be described
by a wave function with a relativistic transformation law. No single covariant
state th,tory may be defined which properly accounts for all the experimenta
results.!

Exercise 6.4 Show that if the two observers cannot communicate to compare
their results, the observations of each one of them are statistically consistent
with a random preparation, represented by the reduced density matrixp =3 1.

Exercise 6.5 After the first observer performs a repeatable test and finds
S1z = k/2, the spin state of the pair of particles, as defined by that test, is
1 (}) [_}] Transform this spin state to the Lorentz frame of the second observer,

whose relative velocity is in the z direction. *

10y, Aharonov and D. Z. Albert,Phys. Rev. D 24 (1981) 359.
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6-2. Cryptodeterminism

The EPR claim that the description of physical reality by means of quantum
mechanics is not complete suggests the existence of a more detailed descripti
of nature—perhaps associated with the use of a technology more advanced th
the current one—such that all our predictions would be unambiguous, rathe
than probabilistic. For example, we would be able to predict whether any spec
ified silver atom passing through a Stern-Gerlach magnet will be deflected uy
or down. This more detailed description would presumably involve additional
data on the silver atom, and the Stern-Gerlach magnet, and perhaps also t
oven from which the atom originated. These hypothetical additional data have
been given the name “hidden variables.” The tentative goal of a hidden variabls
theory is the following: In the absence of a detailed knowledge of the hidder
variables, calculations could be based oneasemble average over their pur-
ported statistical distribution, and would then yield the statistical predictions
of quantum theory. The probabilistic character of quantum theory would thus
be due to an incomplete specification of physical data, just as in classical stati
tical mechanics; and a quantum average would have a conceptual status simi
to that of a classical canonical average.

Photon pairs

There are indeed clues that the randomness of quantum phenomena is only
illusion, and what appears to be a random sequence may actually be fully de
terministic. To illustrate this, consider an atom, initially in an excifstate,
undergoing two consecutive electric dipole transitiodss(0) - (J=1) -

(J= 0). This process is called an aton®®S cascade. If the two emitted
photons are detected in opposite directions, they appear to haveathe
polarization. This is due to a symmetry property explained below.

The initial, excited state of thatom is spherically symmetric(J = 0). Its
decay is due to an electromagnetic interaction, which is rotationally invariant.
Therefore, the final state ahe atom and the photon pair is also spherically
symmetric. That final state isntangled, the various eigenstates of the atom
being correlated to those of the photons. This entanglement can partly be lifte
by means of collimators which select photons moving in a given direction. Let
us take that direction as theaxis. The resulting state, after collimation, still
has rotational symmetry around that axis. Ixeand y denote the states of
a photon with linear polarization along directiorsindy, orthogonal to the
zaxis. Then, for gair of photons, the four statesx;x;, xiy2, yixa, angys,
form a complete basis. Of these, only the tmtangled combinations

Yy =X X2 +y1 Y2)/\/§, (6.12)
and

Yo = (x1y2 = y1%2)/ V2, (6.13)
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are invariant under rotations around tteaxis. The polarization stat&+ is
even under reflections, while- is odd. Since the electromagnetic interaction
conserves parity, the final state of the photon pair can onhy.heif the photons
originate from an atomicSPS cascade. (On the other hand, a pair of gamma
rays created by positronium annihilation must be in the antisymmetric state
y_ , because the positronium ground state has negative intrinsic ‘Parity.

Exercise 6.6 Write U+ and Y_in terms of helicity eigenstates (that is, states
of circularly polarized photons).

Let us now improve the experiment sketched in Fig. 1.3 (page 6), and replact
our source of photons—the incandescent lamp—by an at&@P&cascade, so
as to obtain pairs of photons in staie  with correlated polarizations. In the
new setup, shown in Fig. 6.2, there are no polarizers, but each beam of photor
has its own complete detecting station, with an analyzer (a calcite crystal), twc
photodetectors, and a printer to record the results.

We are then faced with the following situation. If we consider the output
of each printer separately, it appears completely random, with equal number
of + and —. However, if wecompare these printouts, they areorrelated. In
particular, if the two crystals are parallel, as shown in the figure, their printers
will always register identical outputs, because the photons have the same pola
ization. An observer, having seen the results of the upper printer, can predic
with absolute certainty those that are going to appear in the lower printer. The
second printout by itself looks like a random sequence, but actually each an
everyone of its results is fully deterministic.

A further improvement, shown in Fig. 6.3, is the possibility of rotating one
of the two detecting stationsas a whole—by an an@laround the direction
of the photon beam. Let the linear polarization state tested byfitkeé ana-
lyzer be calledx (this merely defines the direction of theaxis, in the plane
perpendicular to thez axis which coincides with the light ray). Then, the
linear polarization tested by theotating analyzer isx cos® +y sin 6, and the
corresponding test is represented by the projector

Pg := (x cos 8 + y sin8)(x cos§ +y sin§)'. (6.14)
It will be convenient, in the sequel, to work with another operator,
09 :=2Pg— 1= (xxt —yy') cos 20 + (xy! + yx!) sin 26, (6.15)

whose eigenvalues are 1 and —1, corresponding to the eigenvalues 1 and 0O
Pe. (This operator is formally similar te;cos28 +0,sin28. )

For our pair of photons, the productollo ¢ also has eigenvalues 1 and —1.
These correspond to identical results, and opposite results, respectively, of tt

113, M. Jauch and F. Rohrlictithe Theory of Photons and Electrons, Addison-Wesley,
Cambridge (1955) pp. 275-282.
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Fig. 6.2. Photons originating in a®PS cascade, with opposite directions,

have perfectly correlated linear polarizations. Here, there is a delay in the
detection of one of the photons, whose path is reflected by distant mirrors,
far to the left (not shown). The lower detecting station is always activated
later than the upper one, and its outcomes are predictable with certainty.

two analyzers. The average value of the observapl8o ¢ is thecorrelation of
the outcomes of the two analyzers. Its value can be predicted by the standar
rule for a quantum average, Eq. (3.41):

{o0 ® 0g) = % (x1 %2 + y1 yz)t {00 ® 0¢) (x1 X2 + y1y2) = cos 26. (6.16)

We obtain, as expected, a perfect correlation @er 0, a perfect anticorrelation
for 8 = /2, and Malus’s law for all the other angles.

Exercise 6.7 What is the correlation that has been measured in the exper-
iment sketched in Fig. 6.3, until the last test recorded on that figure? Ans.:
6o o ¢= 0.5.

S IR E

.

Fig. 6.3. If one of the detecting stations is tilted by
an angled, the correlation of the outcomes is cdk. 2
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Exercise 6.8 Show, from Egs. (6.12) and (6.15), that if two analyzers test
linear polarizations at angles a and  from an arbitrary x axis, the correlation
of their outcomes is

(00 ® 05) = cos 2(a —~ ). (6.17)

Bell’'s model of hidden variables

The perfect correlation of distant and seemingly random events, illustratec
in Fig. 6.2, suggests that the fundamental laws of physics are deterministic
and the apparent stochasticity of quantum phenomena is merely due to ot
imperfect methods of preparing physical systems. Indeed, from the early day
of quantum theory, there were attempts to deduce its properties from those of
deterministic, yet unknown, subquantum world; and, on the other hand, ther
also were numerous attempts to prove that no “hidden variable” theory coulc
reproduce the statistical properties of quantum theory.

In particular, von Neumann’s classic bddkcontains a mathematical proof
that quantum theory is incompatible with the existence of “dispersion free en
sembles.” Namely, it is impossible to prepare an ensemble of physical systen
in such a way thaevery observableA satisfies[(A2 0= [A[2. The assumptions
needed for von Neumann’'s proof are that any observAkike represented by a
self-adjoint operator (this is the essence of quantum theory); thatahd B
are observables, their sufk + B is also an observable; and moreover that

(A +B) =(A) + (B). (6.18)

The last equation could be a trivial consequence of the trace formula (3.77), bt
von Neumann does not want to use the trace formula in his proof—he rathe
wants toderive it from weaker assumptions.

The difficulty, acknowledged by von Neumann himself, is that there is no
physical reason to assume the validity of Eq. (6.18), if the operAtarsd B do
not commute and cannot be measured simultaneously. The three experiment
setups needed for measuridg B, and A + B, may be radically different (just
think of measuring the kinetic energy, or the potential energy, or the total
energy of a physical system). One could therefore argue that a convention:
preparation, which produces an ordinary quantum ensemble, satisfies (6.18
but more sophisticated preparation methods, not yet invented by us, coul
create dispersion free ensembles, violating condition (6.18).

Following von Neumann’'s questionable proof, there were other unsuccessfu
attempts to derive the “no hidden variable theorem,” from different premises.
All these efforts were finally laid to rest by BEIl who explicitly constructed a

123, von NeumannMathematische Grundlagen der Quantenmechanik, Springer, Berlin
(1932) p. 171; transl. by E. T. BeyeMathematical Foundations of Quantum Mechanics,
Princeton Univ. Press, Princeton (1955) p. 324.

133, S. Bell.Rev. Mod. Phys. 38 (1966) 447.
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deterministic model, generating results whoseerages were identical to those
predicted by quantum theory.

Bell's model involves a spi% particle and an observabld =m - o, where
the three components ah are arbitrary real numbers, and those mare
the Pauli spin matrices. According to quantum mechanics, a measurement |
A always yields one of its eigenvaluesnfwhere m = ) and the average
result of an ensemble of measurementgAls = »tAyp. . However, quantun
mechanics is unable to predict the specific outcome of each test. Bell's mod
assumes that this outcome is determined nbyfa macroscopic parameter of
the measuring apparatus, which we know to control),ybfthe quantum state
preparation, which we can also control), and by an additional, hidden variabl
called A. Conceptually, each physical system has a unigjuleut we are unable
to know its value. Our present experimental techniques always end up yieldin
a uniform distribution of A, between -1 and 1. It is this uniform distribution
which charaterizes the domain of validity of quantum theory. The model furthel
specifies that, for any given, the result of a measurement is:

+m if —¢tAg/m < A < +1 — this occurs with probability(1 + ¥tAyp/m)/2,
—-m if =1 < X< —9tAp/m — this occurs with probabilitfl — ptAyp/m)/2.

Therefore theaverage result ism(1+¥tAy/m)/2—m(1—ytAgp/m)/2 = HtAyp,
in agreement with quantum mechanics.

Consider now another observablB,=n - o, whose measurement yields,+
according to the value ok, by the same rule as fok. Furthermore, define a
third observable,C = A + B = (m +n) -0. Notice that a measurement Gf
will always yield #m + ngand this result iswot one of the four combinations
m+n, m-n, etc. Therefore, Eg. (6.18) cannot be valid for a particular value of
A, nor in general for an arbitrary distribution of the valuesAof Nonetheless,
Eq. (6.18) is valid founiformly distributed A, because, in that case, Bell's model
guarantees agreement with quantum mechanics. We thus see that it is possi
to mimic all the statistical properties of quantum theory by a deterministic
hidden variable model.

In the same articl&® Bell also shows that this model can be extended to
higher dimensional Hilbert spaces; and then, he raises a new, cardinal questic
If a quantum system consists of several disjoint subsystems, as in the EP
argument, will the hidden variables too fall into disjoint subsets? Bell shows
that his model does not satisfy thésparability requirement, if the state of the
guantum system is entangled:

. in this theory an explicit causal mechanism exists whereby the dispo-
sition of one piece of apparatus affects the results obtained with a distant
piece. In fact the Einstein-Podolsky-Rosen paradox is resolved in the way
which Einstein would have liked least.

Finally, Bell asks whether it is possible to prove thany'hidden variable
account of quantum mechaniocsust have this extraordinary character.” The
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answer appears in a footnote, added at the end of this article: “Since the
completion of this paper such a proof has been found.” (An editorial accident
caused a two year delay in the publication of Bell's arfigleshich appeared
long after the proof mentioned at its éid® That proof isBell’s theorem on

the nonexistence dbcal hidden variables, discussed below.)

6-3. Bell’s inequalities

The title of Bell's second paper is “On the Einstein Podolsky Rosen paradox,”
but, contrary to the EPR argument, Bell's rist about quantum mechanics.
Rather, it is a general proof, independent of any specific physical theory, tha
there is arnupper limit to the correlation of distant events, if one just assumes
the validity of theprinciple of local causes. This principle (also callecEinstein
locality, but conjectured well before Einstein) asserts that events occurring in
a given spacetime region are independent of external parameters that may |
controlled, at the same moment, by agents located in distant spacetime region
Bell's proof that the principle of local causes is incompatible with quantum
mechanics has momentous implications, and it was hailed as “the most profoun
discovery of science®®

Here, you may object that the principle of local causes does not belong tc
physics, but rather to philosophy, because it is of counterfactual nature. Th
claim that the occurrence of a particular event does not depend on some exterr
parameters implies a comparison between mutually exclusive scenarios, in whic
these external parameters have different values. For example, we may imagir
the existence of several replicas of the experiment of Fig. 6.3, with different
values of the angl®, and we may reasonably claim that the results displayed
by the upper printer should not depend on the tilt andlegiven to thelower
detecting station. Bell's theorem asserts that this claim—obvious as it may
appear—is incompatible with the cosine correlation law (6.17). As we shall see
that correlation istoo strong.

Before discussing these quantum correlations, let us consider an elementa
classical analog of the SPS photon caséadﬁmagine a bomb, initially at rest,
which explodes into two asymmetric parts, carrying angular momgnta and
J2 = =Ji. An observer detects the first fragment and measures the dynamica
variable signg - J1), wherea is a unit vector with an arbitrary direction, chosen
by that observer. The result of this measurement is caladd can only take
the values 1. Likewise, a second observer detects the other fragment an
measures sigf{ - J2), where3 is another unit vector, chosen by the second
observer. The result i = *1.

143, S. Bell,Physics 1 (1964) 195.

15M. Jammer,Found. Phys. 20 (1990) 1139.
164, P. StappNuovo Cimento B 29 (1975) 270.
17A. Peres,Am. J. Phys. 46 (1978) 745.
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Fig. 6.4. A bomb, initially at rest, explodes into two
fragments carrying opposite angular momenta.

This experiment is repeated times. Leta; andb; be the results measured
by our observers for thgh bomb. If the directions of ; andJ, are randomly
distributed, the averages obtained by each observer,

(a) = Zaj /N and (b) = Zb, /N, (619)

are both close to zero (typically, they are of the order afN/ ). However, if
the observersompare their results, they find aorrelation,

(ab) = Z a; b_,‘ /N, (620)
J

which, in general, does not vanish. For instanceq i (3, they always obtain
a; = —b;, so thatCabO= -1.

For arbitrarya and BB, the expected correlationablcan be computed as
follows: Consider a unit sphere, cut by an equatorial plane perpendicular tc
a, as shown in Fig. 6.5. We then haee= 1 if J; points through one of the
hemispheres, and = -1 if it points through the other hemisphere. Likewise,
a second equatorial plane, perpendicula3taletermines the regions where
b= +1. The unit sphere is thereby divided by these two equatorial planes intc
four sectors, with alternating signs for the proda&t Adjacent sectors have
their areas in the ratio dd to -0, where 6 is the angle betweex and 3.
Thus, if J4 is uniformly distributed, we obtain thetassical correlation

(ab) = [0 — (r — 6))/x = —1 + 26/. (6.21)

Fig. 6.5. Geometric construction for
obtaining the classical correlation
(6.21). In the shaded areash = 1;
in the unshaded onesp = -1.
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Let us now return to quantum mechanics. Consider two %pin particles in
a singlet state, far away from each other, like those of the Bohm P@ulel.
observers measure the observabdesc; andf3 -0 ,, whereo; ando, are the
Pauli spin matrices pertaining to the two particles. The unit vectoasid 3
are freely chosen by the observers. As before, the results are aaledlb, and
can have values +1. Their mean values are predicted by quantum mechanics ¢
a0= [bO= 0, and their correlation as

(ab) = ¢! (ax- 1) (B - 02) ¥ (6.22)

In the singlet state, we hawey = —o;3. Hence, with the help of the identity
(a-0)(B-o)=a-B+i(axB) o,we obtain

(ab) = —a - B = — cos b. (6.23)

Figure 6.6 shows the expressions (6.20) and (618):quantum correlation

is always stronger than the classical one, except in the trivial cases where both
are 0 or £1. Are you surprised? If so, this is the result of having been exposec
to unfounded quantum superstitions, according to which quantum theory is
afflicted by more “uncertainty” than classical mechanics. Exactly the opposite
is true: quantum phenomena are more disciplined than classical ones. We sha
again see this in Chapter 11, where quantum chaos will be found much tame
than classical chaos.

Fig. 6.6. The quantum
correlation (solid line)
and the classical one
(broken line) for a pair
of spins, as functions
of the angle®.

Bell’s theorem

Bell's theorem isnot a property of quantum theory. It applies to any physical
system with dichotomic variables, whose values are arbitrarily called 1 and -1.
Its proof involves two distant observers and some counterfactual reasoning, jus
as in the EPR article.! However, while EPR merely pointed out a property
of quantum theory which they found unsatisfactory, Bell derigeantitative
criteria for the existence of a realistic interpretation avfy local theory.

The elementary algebraic proof below involves pairs of polarized photons,
because this is the example most easily amenable to experimental verification
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However, the result applies equally well to pairs of correlated spins, or indeec
to any correlated systems, whether classical or quantal.

Consider a pair of photons, emitted in opposite directions in an SPS cascad
Two distant observers test their linear polarizations. The first observer has
choice between two different orientations of his polarization analyzer, making
anglesa andy with an arbitrary axis. For each orientation, his experiment has
two possible (and unpredictable) outcomes. The hypothesis that we want t
test is that the outcome which actually occurs is causally determinddchy
hidden variables, of unknown nature, but pertaining only to the photon anc
to the apparatus of the first observer. If he chooses amgtbat outcome is
called o and may take values 1. The measured observable thus is the on
calledoy in Eqg. (6.15). Likewise, if the first observer choosgehe measures
oy, and thesame hidden variables determine the outcome *1.

Einstein locality asserts that these outcomes cannot depend on paramete
controlled by faraway agents. In particular, they do not depend on the orients
tion of the analyzers used by tlsecond observer. The latter also has a choice
of two alternative directionsf3 or y (the samey as may be chosen by the first
observer). The outcomes of her test &re +1 orc= 1, respectively, and
are determined by the hidden variables of her photon and her apparatus.

If both observers choose the same directjothey find the same resutt as
we already know. In any case, the resatd, andc, identically satisfy

a(b-c)=«£1 -bc), (6.24)

since both sides of this equation vanishbif c, and are equal to +2 i # c.
Note that the various mathematical symbols in (6.24) refer to three tests, o
which any two, but only two, can actually be performed. At least one of the
three tests is counterfactual.

Suppose now that the same joint experiment is repeated many times, wit
many consecutive photon pairs. Then, the three results (actual or imaginec
for the jth photon pair satisfy

a; b]' —ajc; = :f:(]. - bj C]'), (625)

as in the preceding equation. Obviously, the hidden variables, which we do no
control, are different for eachp The serial numbelj can thus be understood
as a shorthand notation for the unknown values of these hidden variables. |
particular, taking an average over the hidden variables is the same as taking ¢
average ovelj, and therefore we have

[{ad) — (ac)| <1 — (be). (6.26)

Here, [ablis the sum of all the producksb; , divided by the number of photon
pairs. In other wordg;ab0 is thecorrelation of the outcomes andb. The result
(6.26) is Bell's inequality. (For perfectlgnticorrelated pairs, as in Fig. 6.4, the
right hand side of the inequality is 1 [bcl)4
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Now comes the crux of this argument: Although quantum theory is unable
to predict individual valuesaj, bj, c;, it can very well predicaverage values,
and in particularcorrelations like those which appear in (6.26). Moreover, these
correlations can also be measured experimentally, regardless of any theory. In
the case of polarized photons, they are explicitly given by Eq. (6.17), and Bell's
inequality (6.26) becomes

lcos2(a — B) —cos2(a —¥) |+ cos2(B —v) < 1. (6.27)

For instance, if the three directioms B, and y, are separated by angles of
30°, as shown in Fig. 6.7(a), the three cosines %re % - ,?nd , respectively
and the left hand side of (6.27) gs ThereforeBell's inequality is violated by
quantum theory—and also by experimental evidence, as discussed below. Thus,
ironically, Bell's theorem is “the most profound discovery of sciedBéfecause

it is not obeyed by the experimental facts.

o B o B
Y
Y 5
. % N %

Fig. 6.7. Linear polarization directions giving the maximal violation
of (a) Bell's inequality (6.26), and (b) the CHSH inequality (6.30).

A more general inequality

In the above argument, thedirection was common to both observers. More
generally, the two alternative experiments of the second observer may involve
directions 3 and d, both of which are different from those of the first observer,

who can test alongx ory. If a test alongd is performed, it will give a result
d= 1. We then have, identically,

(a+c)b+ (a—c)d==2, (6.28)

because eithera+ c=0 anda—-c= %2, ora—-c=0 anda + c= 2.
If several photon pairs are tested, we have, for jthepair

a; bj +b_,' c; +¢j d]' ——dj a; = £2, (6.29)
and therefore, on the average,

(ab) + (be) + (cd) — {da)| < 2. (6.30)
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This result is called the CHSH inequalty.Like Bell's inequality (6.26), it is
valid for any set of dichotomic variables. It is apper limit to the correlation

of distant events, if the principle of local causes is valid. In the special case of
photons with the correlation (6.17), this inequality becomes

|cos2(a — B) + cos 2(8 — ) + cos 2(y — &) — cos 2(§ — a)} < 2. (6.31)

For instance, if these various directions are separated by angles of 22.5°, ¢
in Fig. 6.7(b), the first three cosines are/4/ , and the fourth one ig2-1
Therefore the left hand side of (6.31) g2 , which is obviously more than 2.
We again reached a contradiction: there must be something wrong with ou
physical interpretation of the identity (6.30).

The theorem itself is not wrong, of course. It is based on Eq. (6.29), which is
trivially true. The difficulty lies with the conceptual premises underlying that
identity. Its physical interpretation is questionable and involves delicate points
of logic, which will be discussed in the next section.

Exercise 6.9 Show that a linear correlation law, 1 — 2/, as in Eq. (6.21),
satisfies both Bell's inequality (6.26) and the CHSH inequality (6.30).

Exercise 6.10 Show that Bell’s inequality (6.26) is a special case of the CHSH
inequality (6.30).

Exercise 6.11 Show that the maximal violation of Bell's inequality (6.26)
for polarized photons occurs when there are three angles of 30°, as in Fig. 6.7.
Show likewise that the maximal violation of the CHSH inequality (6.30) occurs
when there are three angles of 22.5°.

Experimental tests

Physics is an experimental science, and theoretical predictions like Eqgs. (6.2¢
and (6.30) must be tested in the laboratory. For correlated photons, this mea
that one must verify the cosine correlation (6.17), which was derived from the
wave functiony. in Eq. (6.12), which was itself derived from purported sym-
metry properties of atomic states and of their electromagnetic interaction. Fo
correlated fermions, it is the cosine correlation (6.23), illustrated in Fig. 6.6,
which must be tested. These are difficult experiments, whose interpretation i
complicated, because in real life one must take into account finite collimation
angles and finite detector efficiencis.

A static test like the one in Fig. 6.3, with fixed (or slowly moving) detectors,
does not fully implement all the premises of Bell's theorem. The latter involve
two disjoint observers, who are free to choose their experiments out of mutually
incompatible alternatives. These observers need not, of course, be humans: a

183, F. Clauser, M. A .Horne, A Shimony, and R. A. HdPys. Rev. Lett. 23 (1969) 880.
19J. F. Clauser and A. ShimonRep. Prog. Phys. 41 (1978) 1881.
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automatic devices, acting in random fashion and independently of each other,
effectively behave as these fictitious observers, endowed with free will.

An experiment® simulating these conditions is sketched in Fig. 6.8. The
photons, emitted by excited calcium atomsSBS cascades, have wavelengths
A1 = 422.7nm and\, = 551.3 nm. (These photons are therefore distinguish-
able, contrary to the situation in some more recent experfhéhighich use
parametric down conversion in nonlinear crystals.) Each photon that passe
through a collimator (not shown in the figure) impinges on an acousto-optical
switch, from where it is “randomly” directed toward one of two polarization
analyzers. The two switches, which act like rapidly moving mirrors, are not
truly random, of course, but rather quasi-periodic. They are driven by differ-
ent generators, at different frequencies, and it is plausible that they functior
in uncorrelated ways. The distance between them is 12m, corresponding to
signal transit time of 40ns. This is much larger than the mean time betweer
switchings (about 10 ns), or the mean lifetime of the intermediate level of the
calcium atoms (5 ns). Therefore “the experimental settings are changed durin
the flight of the particles,” a feature that was deemed “crucial” by 'Bell.

1l

Coincidence
recorder

Fig. 6.8. Aspect's experiment: Pairs of photons are emittedSRfS cascades.
Optical switches @ and O randomly redirect these photons toward four po-
larization analyzers, symbolized by thick arrows. Each analyzer tests the linear
polarization along one of the directions indicated in Fig. 6.7(b). The detector
outputs are checked for coincidences in order to find correlations between them.

This schematic description of Aspect's experiment cannot do full justice to
this technicaltour de force which took six years to be brought to completion.
For the first time in the history of science, a physical process was controllec
by two independent agents with space-like separation, rather than ame-
like one, as in every other experiment hitherto performed. The result was in

207, Aspect, J. Dalibard, and G. RogePhys. Rev. Lett. 49 (1982) 1804.
2LyY. H. Shih and C. O. AlleyPhys. Rev. Lett. 61 (1988) 2921.
223, G. Rarity and P.R. TapstdPhys. Rev. Lett. 64 (1990) 2495,
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complete agreement with the quantum mechanical prediction, Eq. (6.17); ar
it violated the CHSH inequality (6.30) by five standard deviations.

6-4. Some fundamental issues

We must now find out what was wrong with tidentity (6.29), which led us

to conclusions inconsistent with experimental facts. There is no doubt tha
counterfactual reasoning is involved: the four numba[sbj,cj, dj,cannot

be simultaneously known. The first observer can measure aiher cj, but

not both; the second one—eithley ord;. Therefore Eq. (6.29) involves at least
two numbers which do not correspond to any tangible data, and it cannot b
experimentally verified.

However, we do not normally demand that every number in every equatior
correspond to a tangible quantity. Counterexamples abound, even in classic
physics (the vector potentiah,, the Hamilton-Jacobi functior§ are two fa-
miliar instances) Moreover, counterfactual reasoning is not illegitimate per se
It was endorsed by Bohr2 in his answer to EPR; it is practiced daily, with no
apparent ill effects, by people who ponder over a menu in a restaurant, or ove
an airline schedule in a travel agency. In the present case (correlated photc
pairs) we can always imagine a table as the one below, including both actuc
and hypothetical results of performed and unperformed experiments. We lac
the information needed for filling the blanks in the last two rows of that table,
but there are only 2! different ways of guessing the missing dataandd;.
Therefore, there are only?® different tables that can be imagined. The point is
that none of them obeys the cosine correlation (6.17). That correlation (which
has been experimentally verified) igo strong to be compatible with Table 6-1.

Table 6-I. Actual and hypothetical outcomes Mfguantum tests.

The tests were 1 2 3 4 5 6 N
actually a |+ + + - - +
performed |+ - - + - - +
unperformed, (c¢;|? ? ? 2?2 ? ? . ?
just imagined |dj|? ? ? ? ? ? ?

Let us see why a correlation which is too strong prevents the assignment c
consistent values t@; andd;. Choose the various directions as in Fig. 6.7(b),
SO0 as to maximize the experimental violation of the CHSH inequality (6.30).
Then, only a fraction sin?m(/8) ~ 1/7 of theb;will not agree with the corre-
spondinga; . Likewise, only 1/7 of the unknowg; will be different fromb; , and
only 1/7 of thed; will differ from the corresponding;. Thus, if we discard all
thej for which there is any disagreement among the outcomes of the above test
we still remain with at least a fraction 1 — 3 sime/§) ~ 4/7 of thed; which
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agree with the corresponding;. On the other hand, the probability of agree-
ment betweena; and d;, predicted by Eq. (6.17), is only cosf(8) ~ 1/7.
Therefore at least 3/7 (more precisely2 -10.4142) of the columns of
Table 6-1 cannot be consistently filled. This conclusion can be succintly stated:
unperformed experiments have no results.'”

Exercise 6.12 Construct a similar table for the original Bell inequality (6.26).
If the polarization tests are performed along the directions shown in Fig. 6.7(a),
what fraction of the columns cannot be consistently filled? Ans.: 1/4.

Exercise 6.13 Show that a table like the above one is consistent with the
weaker linear correlation 1 — 26/ which satisfies the CHSH inequality.

A 41% discrepancy, as in Table 6-1, is not a small effect, and calls for a full
investigation. Here is an exchange of opinions on this proBlem:

Salviati. At the time of these measurements, the two observers are unaware
of each other, e.g., they are mutually space-like. There is no possibility of
communication between them. It is therefore reasonable to assume, as EP
did, that the actions of one observer do not influence the results of experiment:
performed by the other one. For example, the reautt 1 obtained by the
first observer should not depend on whether the second one measures (or hi
measured, or will measure) the photon polarization al@ngr alongd.

Smplicio. This is obvious.

Sagredo. Your statement makes sense only if you assume that all these
events are causally determined, even those which are unpredictable and see
to us random. Otherwise, you could not meaningfully compare the results
that are obtainable by the first observer under different and mutually exclusive
external conditions. | am seriously worried by this deterministic approach,
because you havalso assumed that the observers themselves halveeachoice
among the various experiments. Aren't these observers physical systems toc
and therefore subject to deterministic laws? Let us see how you solve this
apparent contradiction.

Salviati. Please, don’'t detract me from my proof. The crucial point in
Bell's argument is that although thedividual results are unpredictable, their
correlations, which are average values, can be computed by quantum theory, ol
can simply bemeasured experimentally, irrespective of any theory. The amazing
fact is that it is possible to prepare physical systems in such a way that the
inequality (6.30) is violated, and therefore ttdentity (6.29) cannot be valid.

Simplicio. An identity which is not valid?

Salviati. This is of course impossible, therefore there must be a flaw in this
argument. Either it is wrong that the observers have a free choice among the
alternative experiments (namely, for each pair of particles, only one of the four
experimental setups is compatible with the laws of physics—the others are not

23A. Peres,Found. Phys. 14 (1984) 1131.
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for reasons unknown to uspr it is wrong that each photon can be observed
without disturbing the other photon. Take your choice.

Smplicio. Both alternatives are distasteful. | prefer classical physics.

Salviati. |1 again insist: This difficulty is not the fault of quantum theory.
Only experimental facts are involved héteSo indeed we have a paradox.

Sagredo. There is a paradox only because yorce on this physical system
a description with two separate photons. These photons exist only in you
imagination. The only thing that you have really prepared j&ia of photons,
in a spin zero statélhat pair is a single, indivisible, nonlocal object. Now, if
you like paradoxes, | can supply to you additional ones, at a greatly reduced co
in labor and parts. You don't have to invoke Einstein, Podolsky, and Rosen
You don’'t needtwo photons. Asingle photon will do as well, in the standard
double slit experiment. You just ask: How can the half-photon passing througl
one of the slits know the position and shape of the other slit, through whicl
the other half-photon is passing, so that it can interfere with it?

Simplicio. This question is meaningless! There are no half-photons. A
photon is a single, indivisible, nonlocal object. This is why it can pass through
two widely separated slits and interfere with itself.

Salviati. A single photon can even originate from two different ladergve
have been since long familiar with nonlocal photons, electrons, etc.

Sagredo.  And yet, you have no moral pangs in asking, in the EPR paradox,
how can the first half of the pair (here) be influenced by the apparatus whict
interacts with the second half of the pair (there). After you know that each
particle is stripped by quantum theory of all its classical attributes (it has
neither definite position, nor definite momentum, nor definite spin components)
you still believe that it retains a well defined “existence,” as a separate entity

Salviati.  So, there is no paradox?

Sagredo. The only paradoxical feature that | can see is tdatost every-
thing happensas if there were, at each instant, two distinct particles with
reasonably well defined positions and momenta. It is only their polarization
states that are inseparably entangled. That's why you may be excused f
having had no moral pangs, and EPR are excused too. But there is no paradc

Nonlocality vs free will

In his opening statement, Sagredo admitted being worried by the fact that fre
will had been granted to the two observers, in an otherwise deterministic world
Then, at the end of the dialogue, he opted for abandoning Einstein locality, an
he left the free will conundrum unsolved. As we shall now see, these two issue:
are inseparably intertwined.

24G, Galileo, Discorsi e Dimostrazioni Matematiche, Intorno & Due Nuove Scienze, Elsevier,
Leiden (1638).
2R . L. Pfleegor and L. MandeRh7ys. Rev. 159 (1967) 1084.
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Let us examine the consequences of nonlocality. Assume that the outcome
aj, obtained by the first observer, depends on whether the second observe
chooses to measure the polarization of her photon glongr alongd. We shall
distinguish these two alternatives by means of more detailed notations, such a
aj@ andaje) . If Einstein locality does not hold, these two numbers are not
necessarily equal. The left hand side of Eq. (6.29) then becomes

ajg) bj(a) + i) €i(p) T €j(6) Ai(v) — dj(a) Gj(s) s (6.32)

which can be 0, £2, or 4. The right hand side of the CSHS inequality (6.31)
becomes 4, and there is no more any contradiction with experimental facts.

There seems to be, however, a new problem with potentially devastating
consequences: Assuming that measurements are instantaneous (that is, ve
brief), can we use these nonlocal effects to transfer informatisiantaneously
between distant observers ? For example, can the second observer find o
the orientation of the apparatus used by the first one? If this were possible
Einstein’s theory of relativity would be in jeopardy. In the present case, there
is no such danger, because, as long as the observers do not communicate ¢
compare their results, each one of them only sees a random sequence of + and
carrying no information.

Exercise 6.14 Let §.,given by Eq. (6.12), represent the state of a pair of
correlated photons, and let p = ¥,¢] be the corresponding density matrix.
Show that if a partial trace is taken on the polarization states of one of the
photons, the other photon is described by a reduced density matrix p = 3 1,
which corresponds to a random polarization mixture.

Exercise 6.15 Show that if, contrary to postulate K (page 76), it were exper-
imentally possible to distinguish a random mixture of photons with orthogonal
linear polarizations from a random mixture of photons with opposite circular
polarizations, EPR correlations could be used for the instantaneous transfer
of information between arbitrarily distant observers (provided that these EPR
correlations would be maintained for arbitrarily large distances).

The question may still be raised whether more sophisticated preparations c
correlated quantum systems would allow instantaneous transfer of information
Quantum theory by itself neither imposes nor precludes relativistic invariance
It only guarantees that if the dynamical laws are relativistically invariant (see
Chapter 8), the particles used as information carriers cannot propagate fast
than light over macroscopic distances—insofar as the macroscopic emitters ar
detectors of these particles are themselves roughly locdfizEderefore all the
statistical predictions (which are thenly predictions) of relativistic quantum
theory necessarily satisfy Einstein locafty.

26, PeresAnn. Phys. (NY) 37 (1966) 179.

2"More generally, one can defingeak nonlocality, which cannot be used for information trans-
fer, andstrong nonlocality, which could have such a use. For example, quantum correlations
are weakly nonlocal; the laws of rigid body motion are strongly nonlocal.
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On the other hand, a hidden variable theory which would prédéividual
events must violate the canons of special relativity: there would be no covariar
distinction betweeen cause and effect. Yet, it is not inconceivable that a nonloc:
and noncovariant hidden variable theory can be concocted in such a way ths
after the hidden variables have been averaged out, the theory has only local a
covariant consequences. It must be so, indeed, if these average results coinc
with those predicted by relativistic quantum theory.

There is nothing unacceptable in the assumption that deterministic hidde
variables underlie the statistical features of quantum theory. When Boltzman
created classical statistical mechanics, he assumed the existence of atoms, v
before anyone was able to observe—let alone manipulate—individual atoms
Boltzmann’s work was attacked by the school of “energeticists” who did not be:
lieve in atoms, and wanted to base all of physical science on macroscopic ener
considerations only. Later discoveries, relying on new experimental techniques
fully vindicated Boltzmann’s work.

One could likewise speculate that future discoveries will some day give u:
access to a subquantum world, described by these hypothetical hidden var
ables which are purported to underlie quantum theory. It is here that Bell’s
theorem comes to put a cap on science fiction. In a completely deterministi
theory, which would necessarily be nonlocsgparate parts of the world would
be deeply and conspiratorially entangled, and our apparent free will would be
entangled with them.?® (If you hesitate to include “free will” in the theory,
you may replace the human observers by automatons, having random and u
correlated behaviors. Just imagine two telescopes pointing toward differen
directions in the sky and counting whether an odd or even number of photor
arrive in a predetermined time interval.) A reasonable compromise thus is t
abandon Einstein locality fondividual phenomena, which are fundamentally
unpredictable, but to retain it for quantuaverages, which can be predicted
and causally controlled.

However, once we accept this attitude, doubts about the existence of “fre
will” appear again: Why can’'t our pair of observers be considered as a single
indivisible, nonlocal entity? Their past histories are undeniably correlated, sinc
they agreed to collaborate in a joint experiment. Consider the similar, but muc
simpler issue illustrated in Fig. 6.2, where two photons have correlated historie!
Each one of the two records appears “random” (each apparatus seems to h:
“free will”) if we disregard the information in the other record. The latter is
crucial, because the photon pair is a single, indivisible, nonlocal object. If we
ignore the correlationgvery outcome looks random. Likewise, when people are
considered individually, and their past interactions with other people or things
are ignored, they appear to behave randomly—to have “free 4will.”

Can unknown correlations restrict our apparent free will? A similar question
also bears on the experiment in Fig. 6.2, in which randomness is not complete

283 5. Bell, J. Physique 42 (1981) C2-41.
29A. Peres,Found. Phys. 16 (1986) 573.
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eliminated: we can predict the second sequence after seeing the first one, b
we cannot predict the first one. Can the remaining randomness be reduce
by finding further correlations? This would require to trace back the histories
of the atoms that emitted th&PS cascades. If the latter were produced by
a coherent process, it may be possible to correlate these photon pairs wi
other observable phenomena. On the other hand, if the excitation process wi
thermal, further correlations arngractically lost. Turning now our attention

to considerably more complex systems, such as human beings, it is obviou
that any EPR correlation between them is swamped by myriads of irreversible
processes. The result is thesich one of us behaves unpredictably, as if endowed
with free will; this is why the expression “each onmih be used when we talk
about people like you and me.

In our daily work as physicists, we are compelled to use @nopmplete
information on the world, because we cannot know everything. The method
that we use in physics is the following. We divide the world into three parts,
which are thesystem under study, theobserver (or the observing apparatus),
and therest of the world (that is, most of it!) which, we pretend, is unaffected
by the two other parts. We further assume that, if the system under observatio
is sufficiently small, it can be perfectly isolated from everything *®lsxcept
from the observer testing it, if and when it is tested. This makes tlaipgsar
simple. This method is what gives to physics the aura of an exact science
For example, we can compute the properties of the hydrogen atom to umptee
decimal places, because when we do these calculations, there is nothing but
single hydrogen atom in our conceptual world.

We work as if the world could be dissected into small independent pieces
This is an illusion. The entire world is interdependent. We see that in every
experiment where Bell's inequality is violated. But we have no other way of
working. The practical questions with which we are faced always are of the
type: Given a finite amount of information, what are the possible outcomes of
the ill-defined experiments that we prepare? The answers must necessarily
probabilistic, by the very nature of the problem.

Is quantum theory universally valid?

The proof of Bell's theorem requires the observed system to be deterministic
while the observers are not. If observers enjoy the privilege of immunity from the
laws of a deterministic theory, we still have a logically consistent scheme, but i
is not a universal one. (By way of analogy: celestial mechanics is deterministic
and puts no restrictions on our ability to measure the positions of planets an
asteroids, but celestial mechanics does not explain the functioning of telescope

3 OMore precisely, a microscopic system can be isolated fromuakiyown effects originating in
the rest of the world. That system may still interacts witjpeefectly controlled environment,
such as an external magnetic field, which is then treated as a known term in the system’s
Hamiltonian.
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and photographic plates, nor was it intended®lto.)

On the other hand, we believe that our apparatuses are made of atoms &
that their macroscopic behavior is reducible to that of their elementary con
stituents. There is nothing in quantum theory making it applicable to three
atoms and inapplicable to 260 At this point, it is customary to argue that
observers (or measuring apparatuses) are essentially different from microscop
physical objects, such as molecules, because they are very big, and therefore it
impossible to isolate them from unknown and uncontrollable effects originating
in the rest of the world. They a@pen systems. However, the mental boundary
between our ideal quantum world and tangible reality is arbitrary and fuzzy,
just like the boundary between reversible microscopic systems and irreversibl
macroscopic ones. | shall return to this problem at the end of the book.

Even if quantum theory is universal, it is ndbsed. A distinction must be
made betweemndophysical systems—those which are described by the theory—
and exophysical ones, which lie outside the domain of the theory (for example,
the telescopes and photographic plates used by astronomers for verifying tf
laws of celestial mechanics). While quantum theory can in principle describe
anything, a quantum description cannot incluégerything. In every physical
situation something must remain unanalyzed. This is not a flaw of quantum
theory, but a logical necessity in a theory which is self-referential and describe
its own means of verificatioft. This situation reminds of Gdédel's undecidability
theorem? the consistency of a system of axioms cannot be verified becaus
there are mathematical statements that can neither be proved nor disprov:
by the formal rules of the theory; but they may nonetheless be verified by
metamathematical  reasoning.

In summary, there is no escape from nonlocality. The experimental violatior
of Bell's inequality leaves only two logical possibilitiegither some simple
physical systems (such as correlated photon pairs) are essentially noolocal,
it is forbidden to consider simultaneously the possible outcomes of mutually
exclusive experiments, even thoughy one of these experiments is actually
realizable. The second alternative effectively rules out the introduction of exo
physical automatons with a random behavior—let alone observers endowed wif
free will. If you are willing to accept that option, then it is teire universe
which is an indivisible, nonlocal entity.

6-5. Other quantum inequalities

The stunning implications of Bell's theorem caused an outbreak of theoretica
activity, including wild speculations that | shall not discuss. On the serious
side, Bell's work led to a systematic search for other universal inequalities.

31A. Peres and W. H. ZurekAm. J. Phys. 50 (1982) 807.
32K, Godel, Monat. Math. Phys. 38 (1931) 173 [transl.On Formally Undecidable Proposi-
tions of Principia Mathematica and Related Systems, Basic Books, New York (1962)].
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Cirel'son's inequality

Cirel'son®® raised the question whethguantum theory imposed an upper limit
to correlations between distant events (a limit which would of course be highel
than the classical one, given by Bell's inequality).

Let us consider four operators,, ,0p, 0y, andas, with algebraic properties
similar to those of the observables in the Aspect experiment (Fig. 6.8). These
operators satisfy,? =042 =0, =052 =1, and

[oa,08] = [08,0,] = [04,05) = [05,04] = O. (6.33)
Define an operator
C=o0,0p+050y+ 0,05 0504, (6.34)

with the same structure as the combination which appears on the left hand sid
of the CHSH inequality (6.30). We have identicily

C=4 + [UG’G‘Y] [aﬁ706]' (635)
The identities (4.27), page 86, give, for any two bounded operaétasd B,
I [A,BIIl < [[ABJ}+ [IBAJl < 2|iA][]iBII, (6.36)

and therefore, in the present casfe,,o,]|| < 2 and ||[og,05]|| < 2. It thus
follows from Eq. (6.35) thaf|C?|| <8, or

IClt < 2v2. (6.37)

This is Cirel'son’s inequality. Its right hand side is exactly equal to the upper
limit that can be attained by the left hand side of the CHSH inequality (6.30).
Quantum theory does not allow any stronger violation of the CHSH inequality
than the one already achieved in Aspect's experiment.

Further insight in this problem can be gained by choosing a basis which make:
both [o4,0,] and pg,05] diagonal, with eigenvaluek, and A, respectively?®
In that basis,C2 is also diagonal, with eigenvalues 4 x;A,. If it happens
that all theA, (or all the A}) vanish, we have (J]| = 2 exactly, and there
is no disagreement with the CHSH inequality (6.30). None should indeed be
expected, since at least one of the observers is not involved with incompatible
tests. However, in general, there are nonvanishing eigenvalesd Ay. If
there is a pair for whickh, A, > 0, the corresponding eigenvectors represent
a state which violates the CHSH inequality, becallp = /4 + A, A, > 2.

It can be show# that these violations come with both signs:é&f> 2 is an
eigenvalue ofC, then <€ also is an eigenvalue .

33B. S. Cirel'son,Lett. Math. Phys. 4 (1980) 93.
34L. J. Landau,Phys. Letters A 120 (1987) 54.
35S, L. Braunstein, A. Mann, and M. RevzeRhys. Rev. Lett. 68 (1992) 3259.
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Chained Bell inequalities

Generalized CHSH inequalities may be obtained by providing more than twe
alternative experiments to each obseffe€Consider, as usual, a pair of spin %

particles in a singlet state. The first observer can measure a spin compone
along one of the directions;, a3, ...,0,,_1, and the second observer along one

a2n—1
BZn -
Fig. 6.9. Then alternative directions along which
each observer can measure a spin projection.
of the directionsp ,, B4, ...,Bon- The results of these measurements (whether

actual or hypothetical) are calles, andbg, respectively, and their values are
1 (in units ofr/2). We have, for each pair of particles,

[a1by + bzas + asby + -+ + agp_1ban — bopa1 | < 2n — 2, (6.38)

because the reterms in the sum cannot all have the same sign. Taking the
average for many pairs of particles, we obtain a generalized CHSH inequality:

|<(L; bg) + <b2(13> + -+ <a2n—lb2n> - (bgn a1)| S 2n — 2. (639)

This upper bound is violated by quantum theory, increasingly with lamger
For instance, let the n2observation directions be chosen as in Fig. 6.9, with
anglest/2n between them. Each one of the correlatiddbin (6.39) is then
equal to —cogt2n), which tends to —1 +m%8n2 for n » . Therefore the
sum on the left hand side of (6.39) can be made arbitrarily close.to 2

More general entangled states

For any nonfactorable (entangled) state of two quantum systems, it is possibl
to find pairs of observables whose correlations violate the CHSH inecaality.

363, L. Braunstein and C. M. Caveann. Phys. (NY) 202 (1990) 22.
SN. Gisin and A. PeresPhys. Letters A 162 (1992) 15.
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Indeed, anyy O H,; OH, can be written as a Schmidt bi-orthogonal sum
P = T;cu; ® vy, where {u;} and {vi} are orthonormal bases i1 and H »,
respectively. It is possible to choose their phases so that altjthee real and
non-negative, and to label them so tltat2C2> ---= 0. We shall now restrict
our attention to theN-dimensional subspaces éf; and H , which correspond
to nonvanishingc; . A nonfactorable state is one for whiciN > 1.

With orthonormal bases defined as above, ligtandl", be block-diagonal
matrices, where each block is an ordinary Pauli matixando,, respectively:

o 0 0 .- g, 0 O
0 [e ™ 0o ... 0 o, e
F, = 0 0 Oy - N Fz = 0 0 o, - . (640)

If Nis odd—which slightly complicates the proof—we take,)nn = O, and
we define still another matriX], whose only nonvanishing elementlisyy = 1.
If Nis even,l is the null matrix. It is also convenient to define a numpéy

v:=c% (odd N) and y:=0 (evenN). (6.41)
With the above notations, consider the observables
Ala) =T, sina+ T, cosa + 1II,
(6.42)
B(#) =T, sinB+T, cos B+ 1L

The eigenvalues oA(a) and B(B), denoted bya and b respectively, are 1,
and the correlation of these observables is

{ab) = (¢, A{a)@B(B) ) = (1—v)cosacos B+ Ksinasinf +y, (6.43)
where
K := 2((,‘1 C2+C3C4+"‘) (644)

is always positive for a nonfactorable state. In particular, if we choose0,
a' =12, and B =— B’ =tan"{K/(1 — y)], we obtain

(ab) + (ab) + (a'b) — (a'¥) = 2[(1 —7)* + K*]'/* + 27, (6.45)
> 2(1-7)+2, (6.46)

which contradicts the CHSH inequality (6.30).
Exercise 6.16 Verify Egs. (6.43) and (6.45).

Exercise 6.17 Prove that y=1/N and y< 1 —K.
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Exercise 6.18 The above definition of B(B) is not optimal. Show that, in
order to maximize the violation of the CHSH inequality for a given state y,
there should be different angles Brnassociated with each o, and g, in Eq. (6.40):

B = =Bl =tan"}[2¢zn1 can /(2,4 + 2], 1<n<N/2. (6.47)

Find the amount of violation achieved in this way. *

More than two entangled particles

If there areN entangled quantum systems, which are examined\ listant

and mutually independent observers, the correlations found by these observe
may violate classical bounds by a factor that increasg®nentially with N.
Recall that the EPR dilemma, that was originally formulated for two entangled
particles, turned into an algebraic contradiction for Mermin’s three particle
state (6.3). A generalization of that state fémarticles g8

Y = f(ri,rz,...,rn)(Uruz - Uy — vivy -o- VN ), (6.48)

whereu andv are the eigenvectors ofz, and the function f(ry,rs,...,ry) has
a form ensuring that th&l particles are widely separated. That function is
properly symmetrized, and it is normalized so fhAfdr; --- drN=%.

Each one of theN observers has a choice of measuring eitbigror oy of
his particle, with a resultmyx orm, respectively, which can be +1. There
are therefore Isépos;sible (and mutually incompatible) experiments that can be
performed. Let us assume that all these experiments, whether or not actuall
performed, have definite results, and moreover that the results of each observi
do not depend on the choice made by dkeer observers. This is the familiar
cryptodeterministic hypothesis which bears the name “local realism.” Consider
now all the products of the possible results of these experiments:

N
II mnr = £1, (6.49)

n=1

wherem, means eithem,, orm,, (here, the indexn labels theN particles
and their observers). Let us multiply byeachm, appearing in (6.49), and
also multiply the right hand side of (6.49) by the appropriate poweér éfaving
done that, let us add theé"esulting equations. This gives

N N
(Mo + impy) = T(£1 £4). (6.50)

Since [+ 1+ = /2, weobtain |[[(mas + ima,)| = 2V/2, and therefore

38N. D. Mermin, Phys. Rev. Lett. 65 (1990) 1838.
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N
Re [](mns + imgy)| < 2V/2 (6.51)

n=1

Let us compare this classical upper bound with the quantum mechanica
prediction. Define an operator

1] X : N ‘
A= 5 [ [1(one +i0ny) + [[(0ns — iony)| - (6.52)
n=1 n=1
Recall that
(0 +io,)u=0 (oz + toy,)v = 2u,
! - (6.53)
(s —ioy)u=2v {0z —io,)v=0.

We can readily verify that the entangled state (6.48) satisfies
A = 2Ny, (6.54)

On the other hand, if we expand all the products in (6.52), we obtain a sum
of 2N°! operators, each one of which is a productoaf and o, belonging to
different particles (with an even number @f). Each one of theseN2! terms

has eigenvalues *1. It follows then from Eq. (4.27), page 86, that all thede 2
operators commute, because otherwise their sum could not have an eigenval
as large as the one we find in Eq. (6.54).

Exercise 6.19 Show directly, by using the algebraic properties of the Pauli
matrices, that these 2N~1 operators commute.

Any one of these 27! operators may now be measured by a collaboration
of our N distant observers—each observer having to deal with a single particle.
The outcomes of all these measurements are combined as in Eq. (6.49) and
corollary (6.50). Therefore, the classical expectation, given by Eq. (6.51), is

(A)| < 2M2, (6.55)

This is in flagrant contradiction, for and > 3, with the quantum prediction
(6.54). Note that the contradiction increassponentially with N, the number
of disjoint observers who are collecting these entangled particles.

When N is very large (1®or 1025, say) the vectonp in (6.48) is a coher-
ent superposition of twanacroscopically distinguishable states. For example,
[uuu...Omay represent a ferromagnet with all its spins up, pmd..Othe
same ferromagnet with all its spins down. It is then exceedingly difficult to
adjust the relative phase of the two components (ldfe) because they may
have slightly different energies in an imperfectly controlled environment. These
peculiar superpositions, known as “Schrédinger cats,” play an essential role ir
the measuring process, and will be discussed in Chapter 12.
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6-6. Higher spins

It is commonly believed that classical properties emerge in the limit of large
guantum numbers. Let us examine whether there is a smooth transition fro
guantum theory to classical physics. Consider a pair of gpiarticles with
arbitrarily largej, prepared in a singlet state as usual (rather than §spin
particles as we considered until now, or polarization componenents of photon
which have similar algebraic properties).

The EPR argument is applicable to our spiparticles, exactly as before.
Separate measurements df, andJ,, by two independent observers must give
opposite values, since the value &f,+ J,; is zero. More generally, we are
interested in thecorrelation of the results of measurements &fandJ, along
non-parallel directions, arbitrarily chosen by the two observers.

We shall need the explicit form of the vectdr, that represents two spin
particles with total angular momentum zero. For each particle, we have

le Uy = T Uy and JQZ Vi = MV, (656)

where m =j,7~1,..., —3, and & = 1 for simplicity. In order to satisfy
(12 +J2.)%0 =0, the singlet state must have the fofle = Xm €m Um © Vorm -
This is a Schmidt bi-orthogonal sum, as in Eqg. (5.31). Therefore, the dat:
that can be obtained separately by each observer are given by identical dens
matricesp, which are diagonal, with elementsy2 summing up to 1.

Moreover, all the probabilitiefgy? are equal. The reason simply is that
a zero angular momentum state is spherically symmetric, andz-thés has
no special status. Any other polar axis would yield the same diagonal densit
matrix p, with the same elemenfs, 2. As the choice of another axis is a mere
rotation of the coordinates, represented in quantum mechanics by a unital
transformationp — UpUt, it follows thatp commutes with all the rotation
matricesU. Now, for any givenj, these matrices are irreducife. Therefore p
is a multiple of the unit matrix, anft,,2 = (J + 1)'. Only the phase ot
remains arbitrary (because those qf and v, are).

Exercise 6.20 Show that (4, (- ,) ® (8- J2) o) = —15(j + 1) (- B).

Exercise 6.21 Show that for the singlet state y,, and for half-integral j,
Eq. (6.44) gives K = 1, causing the maximal violation of the CHSH inequality
allowed by Cirel’son’s theorem. What happens for integral j ? %

Exercise 6.22 Show that the standard choice for the matrices Jyx (Symmetric
and real) and J, (antisymmetric and pure imaginary) gives

Po = (25 +1)"V/2 XJ: (=1Y"™ Up @V . (6.57)

m=—j

This result generalizes Eq. (5.33), which was valid for spin £ .

39E. P. Wigner,Group Theory, Academic Press, New York (1959) p. 155.
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Consider now the following experiment: The two spiparticles, prepared in
the singlet state (6.57), fly apart along thedirections (collimators eliminate
those going toward other directions). The two distant observers apply to eac
particle that they collect a torque around its direction of motion, for example
by letting the particles pass through solenoids, where each observer can contr
the magnetic field. The state of the pair thus becomes

) = e~ e o=16222 o = e~ i(61-62))12 Yo. (6.58)

The last step follows frome,e = —Jiz9P0, Which holds for a singlet state.
Each observer then performs a Stern-Gerlach experiment, to meagure
and J2z, respectively. There is no fundamental limitation to the number of

detectors involved in such an experimerjt{2 = 10° detectors, say) because

it is always possible, at least in principle, to position the detectors so far away
from the Stern-Gerlach magnets that ther21 beams are well separated, and
the correspondingn can be precisely known. (An equivalent experiment would
be to apply no torque, and to rotate the Stern-Gerlach magnets, together wit
all their detectors, by anglésand 6,.)

Notice that a Stern-Gerlach experiment measures not bpnlybut also any
function f(J,) = ¥m f(m)unul,, as defined by Eq. (3.58), page 68. In partic-
ular, a Stern-Gerlach experiment measures the dichotomic variable,

2
3 (1)U gl = efrlinda)] (6.59)
m=—j
which has eigenvalues t1. Theorrelation of the values obtained by the two
observers for these dichotomic variables is the mean value of their product:

C(6) = (p,emtimd) i)y,
= ®™ (e““” o, e~ e gmimdes it $o), (6.60)

where 8 =08, - 6,, for brevity. Note that=""J2x ande=**!= commute; that
emimler gy = emhi= 4y (becausapy is a singlet state); and that™-  generates
a rotation by an angletaround thez-axis, so that

emmdir g=t0ix gimdie _ iodis (6.61)
We thus obtain

0(9) — e2mii (2/)0, 825911, %) = e2mii (1/)0’ e2i0J1, 1/)0), (6.62)
where the last step used rotational invariance. Together with (6.57), this give:

J : )
CB) = (2j + 1) e® 3 (=1)2"™ (U, @Verm, €™ Uy @ Vo),

m=—j

= (25 + 1) (-1)¥ i‘ e¥m (6.63)

m=-j

This sum is an ordinary geometric series, and we finally have
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C(6) = (—1)¥ sin[(2j + 1)6]/[(27 + 1) sin ). (6.64)

We can now apply the CHSH inequality (6.30) in the usual way: If the first
observer has a choice between parameferand6s;, and the second observer
betweenB2 and 04, that inequality becomes:

IC(61 — ;) + C(6; — 85) + C(83 — 85) — C(65 — 61)| < 2. (6.65)

Let us take 6y — 60y = 6 — 03 = 03 — 0, = z/(2j +1). 'Whenj - «, the left
hand side of (6.65) tends to a constant, whose maximum value is obtained f
x = 1.054:

3sinz sin3z

r 3z

It is possible to obtain an even stronger violation, u@w@which is the
maximum allowed by Cirel'son’s inequality (6.37), by using particles having an
electric quadrupole moment besides their magnetic dipole mdfent.

In summary, if the resolution of our instruments is sharp enough for dis-
criminating between consecutive values rof their readings violate the CHSH
inequality, and therefore invalidate its classical premises. The conclusion is the
measurements which resolve consecutive values of m are inherently nonclassical.

No matter how largg may be, there is no reason to expect the results of these
ideal measurements to mimic classical behdVior.

= 2.481 > 2. (6.66)

Exercise 6.23 Generalize the preceding calculations to the case where the
torques are applied around axes that are not parallel. *

Observations in a noisy environment

There is a serious practical difficulty in the ideal experiment that was just
described. The dissemination of all these spjarticles among a multitude
of detectors, unless accompanied by a proportional increase of the incomin
beam intensity, reduces the statistical significance of the results and makes the
highly sensitive tonoise. In particular, a compromise must be sought between
detection failures and false alarms. As the detectors are mutually independer
there are no correlations between the wrong signals that they generate, al
the noise has a white spectr‘U‘m.This means that if we carry out a discrete
Fourier transform from the variablen, which labels the outgoing beams, to
a frequency-like variable, the power spectrum of the noise is uniform for all
frequencies. This situation is familiar in communications engineering. The key
to noise reduction is a suitable filtering which retains only the low frequency
part of the spectrurft.

In our example, this filtering can be done as follows. First, we note that, in
the absence of noise, the probability amplitude for the pair of resultand
m, is given by Egs. (6.57) and (6.58) as

40N. D. Mermin and G. M. SchwarZound. Phys. 12 (1982) 101.

413, R. PierceAn Introduction to Information Theory: Symbols, Sgnals and Noise, Dover,
New York (1980).
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(Umy ® Vg , ) = (27 +1) 72 (Upny ® Ving , €712 57 (1) "™ Uy ® Vorm),
= (25 4+ 1)V (U, , e (1Y 0. (6.67)
Therefore the joint probability for the results; and m,is
P(ma, ma) = (27 + 1) |{tm,, €= )2 (6.68)

A discrete Fourier transform, frorm; and m, to the frequency-like variables
and n, gives

P(&,n) = 3 elmitmma) p(m; my), (6.69)

myma

= (2 + )70 Y elemrma iy e sy V(U €907 uy),  (6.70)

myme

where the last inner product was obtained thanks to the definition of the adjoin
of an operator—see Eq. (4.28). The double sum in (6.70) can be rearranged

Tr [(Z gilm um,ufn,> e~0d1s (Z efrma u_m,uim) e"“"]

mi ma
=Tr [eif-ju e-ﬂ'@.lxr. e—-ivlJu e"““] . (6.71)

To evaluate this trace, we note that each one of the exponents on the rigl
hand side of (6.71) is a rotation operator, and therefore their product also i
a rotation operator, by some anglethat we have to determine. The crucial
point here is thak is a function of the separate rotation anglésn, and
+ 6, butnot of the spin magnitudg (the latter affects only therder of the
rotation matrices, not their geometrical meaning). In order to computee
may simply pretend thaj = % so as to handle nothing bigger than 2 by 2
matrices. Moreover, we actually need only the absolute valu&, ohot the
direction of the combined rotation axis. It is easily found that

cosg = cosg cos-12z + cos @ sing sin g (6.72)

Exercise 6.24 \Verify Eg. (6.72) and show that it can also be written as

L2k a6 1 £—n E+n) . .0
sin® o = sin® >—— + 3 (cos 5 cos =5— | sin® 5. (6.73)
Exercise 6.25 Find the direction of the vector k (the rotation axis). x

We can now evaluate the trace in (6.71). As a trace is independent of the
basis used in Hilbert space, it is convenient to take the basis that diagonalize
K -J, whose eigenvalues akg, k(j— 1), . . . , ®j. We obtain
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Tr(e ) = ™ 4 ™00 4 4 e, (6.74)
This again is a geometric series which is readily summed, and we finally have
P(¢,1) = sin[(25 + 1)x/2)/[(25 + 1) sin(x/2)]. (6.75)

This expression isxact and contains the same information as Eq. (6.70). In
particular, if we také = n = m, (that is, alternating signs for consecuting ,
Eq. (6.72) givesk = 206, and the final result in (6.75) agrees with the one in
Eq. (6.64)}2

We now turn our attention to the white noise that mars our exact quantun
results. Because of it, high frequency components in (6.75)—those &veitid
n of the order of unity—may not be experimentally observable. If only low
frequency components are, we may take, instead of Eq. (6.73), its limiting value

6limo k? =&+ 3% — 2fncosé, (6.76)
m—

where the terms that have been neglected are smaller than those which we
retained by factors of order(¢ — n)? and (€ + n)?sin?(8/2). It will now be
shown that if this expression is used in Eq. (6.75), the result is identical tc
the Fourier transform of the joint probability for observing given values of two
components of the angular momenta of a paiclatsical particles, whose total
angular momentum is zero.

The classical correlation

The classical analog of a pair of spgiparticles in a singlet state is a pair of
particles with opposite angular momentd. More precisely, the analog of an
ensemble of pairs of spinj particles in the singlet state is @nsemble of pairs
of classical particles with angular momentd whose directions are isotropi-
cally distributed, so that both ensembles have spherical symmetry. (Recall th
discussion in Sect. 2-1. The only meaning of “quantum state” is: a list of the
statistical properties of an ensemble of identically prepared systems.)

Let us denote the magnitude of the angular momenta as

J=\i(G+1)~j+1, (6.77)

the last approximation being valid fgr>> 1. Instead of the quantum correla-
tion (6.68), we have, for gived, a classical correlation,

Pa(my,my;J) =6(my —a-J) é(me + B-7J), (6.78)

and the Fourier transform (6.69) is replaced by

42The extra factor (-2 in (6.64) is due to the factor (-1)in the definition of the
dichotomic variable that was previously used: {=1).
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-~ J J o .
Pa(&,n;J) = /_J /_J Emtmm) P () my)dmy dm, = €YK, (6.79)

where
k=~{a-78. (6.80)

This classical correlation must now be averaged over all possible directions
of J. As the latter are isotropically distributed, we have

Pa(&,n) = /c"“‘ dQ/4r, (6.81)

wheredQ is the infinitesimal solid angle element in the directionloTo perform
the integration, let us take the direction lofas the polar axis, so that

J k= Jku, (6.82)
where
= |t — 8| = (6? + n* = 2-Bn)'/?, (6.83)

and whereu is the cosine of the angle betwednand k We can then take
dQ =2mdu by virtue of the rotational symmetry od” “around the direction
of k, and Eg. (6.81) becomes

Py(€,n) =1 [1 e du = (sin Jk)/Jk. (6.84)

Since o -B = cosB (where 6 has the same meaning as before) we find that
k= (& +n°—2€&n cos§)'/?, (6.85)

is exactly the same as the limiting value iofin Eq. (6.76). We thus finally
have, for largej and smallk,

Pa(€,1) 2 sin[(2j + 1)k/2]/[(25 + 1)k/2], (6.86)

in complete agreement with the limiting value of the quantum correlation
P(&,n)in Eq. (6.75), for largg and smallk.

How coarse should our instruments be, in order to obtain this agreement o
classical and quantum results? We have seen, in the derivation of Eq. (6.76
that the error made in approximatimgby its limiting valuekis of the order of
(€~n)* and (€ +7)?sin?(9/2). This error is then multiplied by, in Eq. (6.75).
Therefore P will be well approximated B, iboth j(£{ — ) < 1 and
J(€+n)?sin?(8/2) < 1 hold. In other words, the noise level must be such that
the only detectable “frequencie andn are those for which bott —#»| and
(€ 4+n)sin(8/2) are much smaller thajr'/2 This high frequency cutoff implies
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that different values ofn can be experimentally distinguished only if they are
separated by much more th#gn

This result had to be expected on intuitive grounds: In order to reduce the
quantum correlation to a value similar to that of the weaker classical correlation
the minimum amount of blurring that one needs is obviously larger than the
intrinsic “uncertainty” imposed by quantum mechanics on the components of
the angular momentum vector. The lattef(dsJd)—(J)-(I)]*/? > /5 (this
will be proved in Sect. 10-7). The minimum uncertainty is achievedrgyular
momentum coherent states that satisfyn-Jy = jg, for some unit vecton.
For example the state;, defined byJZuj = ju,, gives

() =3 and (J=) = (Jy) =0, (6.87)

whence (J-J) —(J)-(J) = j. This is the minimal angular dispersion compatible
with quantum mechanics. If the angular resolution of our instruments is muct
poorer than this limit, they cannot detect the effects of quantum nonlocality.
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Chapter 7

Contextuality

7-1. Nonlocality versus contextuality

In the preceding chapter, it was shown that, for any nonfactorable quantun
state, it is possible to find pairs of observables whose correlations violate Bell’s
inequality (see page 176). This means that, for such a state, quantum theol
makes statistical predictions which are incompatible with the demand that the
outcomes of experiments performed at a given location in space be independe
of the arbitrary choice obther experiments that can be performed, simultane-

ously, at distant locations (this apparently reasonable demand iprtheiple

of local causes, also calledEinstein locality).

However, it is not easy to demonstrate experimentally a violation of Bell's
inequality. The predicted departure from classical realism appears only at th
statistical level. Even formulations of Bell’'s theorem “without inequalities”
cannot be verified by a single event. Therefore, any purported experimenta
verification is subject to all the vagaries of nonideal quantum detectors.

In the present chapter, we shall encounter another class of “paradoxes” whic
result from counterfactual logic. These new contradictions between quantun
theory and cryptodeterminism do not depend on the choice of a particula
quantum state, and therefore they are free from statistical inferences. Operat
algebra is the only mathematical tool which is required. On the other hand
postulatesstronger than the principle of local causes are needed.

Degeneracy and compatible measurements

If a matrix A is not degenerate, there is only one basis in wiids diagonal.
That basis corresponds to a maximal quantum test which is equivalent to .
measurement of the physical observable represented by the mdtriK, on the
other hand,A is degenerate, there are different bases in whids diagonal.
These bases correspond iteequivalent physical procedures, that we still call
“measurements oA.” Therefore the word “measurement” &@nbiguous.

If two matrices A and B commute, it is possible to find at least one basis

187
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in which both matrices are diagonal (see page 71). Such a basis correspon
to a maximal test, which provides a measurement of Botnd B. It follows
thattwo commuting operators can be simultaneously measured. If, on the other
hand, A and B do not commute, there is no basis in which both are diagonal,
and the measurements AfandB are mutually incompatible.

These properties are readily generalized to a larger number of commutin
operators. A set of commuting operators is cakedplete if there is a single
basis in which all these operators are diagonal. Therefore, the simultaneot
measurement of a complete set of commuting operators is equivalent to th
measurement of a single nondegenerate operator, by means of a maximal—
complete—quantum test.

Exercise 7.1 Give examples of complete and incomplete sets of degenerate
commuting operators.

Exercise 7.2 Show that an operator which commutes with all the operators
of a complete set can be written as a function of these operators. x

Context of a measurement

Let us now assume that, in spite of the ambiguity mentioned above, the resu
of the measurement of an operatdrdepends solely on the choice #fand

on the objective properties of the system being measured (including “hidden’
properties that quantum theory does not describe). In particuld&,cdmmutes
with other operatorsB and C, so that one can measufetogether withB, or
together withC, the result of the measurement Afdoes not depend on its
context, namely on whether we measufealone, orA andB, or A and C.

This is assumed here not only for the “obvious” situation where operators
B and C refer to some distant physical systems, but also if oper&oand
C belong to thesame physical system a#. For example, the square of the
angular momentum of a particll, = J.;2 + J,2 4+ 1,2, commutes with the
angular momentum componends and J, of the same particle, butJx does not
commute withJy. The present assumption thus is that a measuremeni® of
shall yield the same value, whether it is performed alone, or together with
measurement ofy, or one ofJy.

The hypothesis that the results of measurements are independent of the
context is manifestly counterfactual (it is not amenable to an experimental
test). The nature and connotations of counterfactual reasoning were discuss
at great length in the preceding chapter and will not be further debated here

Functional consistency of results of measurements

If two operatorsA and B commute, quantum mechanics allows us in principle
to measure not only both of them simultaneously, but also any function thereof
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f(A,B). In particular, it is easily shown that if a system is prepared in a sjate
such thatAy = ay and By = B¢, then f(A,B)y = f(a,8) . This property
holds even ifA and B do not commute, but merely happen to have a common
eigenvector . We may be tempted to extend this result and to propose the
following postulate:

Even if ¢ isnot an eigenstate of the commuting operators A, B and f(A, B),
and even if these operators are not actually measured, one may still assume
that the numerical results of their measurements (if these measurements were
performed) would satisfy the same functional relationship as the operators.

For example, these results could tef, and f(a, B), respectively.

Each one of the two above assumptions (independence from context ant
functional consistency) seems quite reasonable. Yet, taken together, they ai
incompatible with quantum theory, as the following example readily shows.t
Consider once more a pair of spjn particles, but this time let them bayin
state, not necessarily a singlet. In the square array

n®<72 Uz@“ o, ® o,
o, ®1 1Q® o, 0s ® 0g (7.1)
0z ® 0. o, ® 0y oy ® oy

each one of the nine operators has eigenvalues 1. In each row and in eac
column, the three operators commute, and each operator is the product of th
two others,except in the third column, where an extra minus sign is needed.

Exercise 7.3 Show that

(0:®0,) (0, ®0:) =0y D0y, (7.2)
but

(0:®0:)(0: ®0z) =~y ®@ay. (7.3)

Exercise 7.4 Construct an array similar to (7.1) for the operators involved
in Eq. (6.7). Hint: The array has the form of a five-pointed star, with an
operator at each intersection of two lines.

Because of the opposite signs in Egs. (7.2) and (7.3), it is clearly impossible t
attribute to the nine elements of (7.1) numerical values, 1 or -1, which would be
the results of the measurements of these operators (if these measurements w
performed), and which would obey the same multiplication rule as the operator:
themselves. We have therefore reached a contradiction. This simple algebra
exercise shows that what we call “the result of a measuremewt” ofannot

in general depend only on the choice Adfand on the system being measured
(unlessy is an eigenstate dk or, as will be seen belowA is nondegenerate).

IN. D. Mermin, Phys. Rev. Lett. 65 (1990) 3373.
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The above proof necessitated the use of a four dimensional Hilbert space
We know, on the other hand, that in a two dimensional Hilbert space, it is
possible to construct hidden variable models that reproduce all the results o
guantum theory (see page 159). Most of the remaining part of this chapter will
be devoted to the case of a three dimensional Hilbert space, which gives rise f
challenging algebraic problems, worth being investigated for their own sake.

7-2. Gleason’s theorem

An important theorem was proved by Gleason? during the course of an investi
gation on the possible existence of new axioms for quantum theory, that woulc
be weaker than those of von Neumann, and would give statistical prediction:
different from the standard rule (see page 73),

(A) = Tr (pA). (3.77)

Gleason’s theorem effectively states that there is no alternative to Eq. (3.77) i
the dimensionality of Hilbert space is larger than 2.

The premises needed to prove that theorem are the strong superpositio
principle G* (namely, any orthogonal basis represents a realizable maximal test,
see page 54), supplemented by reasonable continuity arguments. As show
below, these very general assumptions are sufficient to prove that the averac
value of a projection operatd? is given by

(Py="Tr(pP), (7.4)

where p is a nonnegative operator with unit trace, which depends only on the
preparation of the physical system (it does not depend on the choice of thi
projectorP). This result is then readily generalized to obtain Eq. (3.77) which
holds for any operatoA. The thrust of Gleason’'s theorem is that some of the
postulates that were proposed in Chapters 2 and 3—in particular the quantur
expectation ruleH, page 56—can be replaced by a smaller set of abstract def-
initions and axioms, which may have more appeal to mathematically inclined
theorists. The fundamental axioms now are:

o) Elementary tests (yes-no questions) are represented by projectors in a
complex vector space.

3 ) Compatible tests (yes-no questions that can be answered simultaneously)
correspond to commuting projectors.

y) If Py, and P, are orthogonal projectors, their sum Py, = Py + Py , which
is itself a projector, has expectation value

2A. M. Gleason,). Math. Mech. 6 (1957) 885.
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(Puv) == (Pu) + (Py). (7.5)

The last assumption, which is readily generalized to the sum of more tha
two orthogonal projectors, is not at all trivial. A projector suchPas, whose
trace is> 2, can be split in infinitely many ways. For example, Rgt= uu?
and P, =vvt be projectors on the orthonormal vectorandv, and let

x = (u+v)/V?2 and y =(u—-v)/V2, (7.6)

be another pair of orthonormal vectors. The corresponding projdtorsxx!
andPy =yy! satisfy

Px+ Py =Py +Py. (7.7)

This expression is a trivialdentity in our abstract complex vector space. On
the other hand, the assertion that

(Px) + (Py) = (Pu) + (Py) (7.8)

has a nontrivialphysical content and can in principle be tested experimentally,
by virtue of the strong superposition principB*.

Experimental verification

As a concrete example, consider a spin 1 particle.ul.e®t andw be eigenstates

of J;, corresponding to eigenvalues 1, -1, and O, respectively (in natural units
k= 1), and likewise lek, y, and w be eigenstates ¢f;%—J,%), corresponding

to eigenvalues 1, —1, and 0. Let us prepare a beam of these spin 1 particles, &
send it through a beam splitter (a filter) which sorts out the particles accordin
to the eigenvalues 0 and 1 of the observable

1= (07— ) (7.9)

This can in principle be done in a Stern-Gerlach type experiment, using al
inhomogeneous quadrupole field.3

An observer,L, far away on the left hand side of the beam splitter (se
Fig. 7.1), receives the beam with statewvhich corresponds to the eigenvalue 0
of the matrixJ,2. That observer can thus measure the expectation {R)e
which is the fraction of the beam intensity going toward the left.

Meanwhile, the other beam, that corresponds to the degenerate eigenvalue
of the observable in Eq. (7.9), impinges on a second filter, which is prepared b
another observerR, far away on the right hand side. That observer haboice
of testing the particles either fal; (thereby obtaining the expectation values
(Pu) and (Py)), or for J,% — J,? (to obtain{Py) and (Py} . These two choices
naturally correspond to different types of beam splitters. The two experimenta
setups that can be arbitrarily chosen Ryre mutually incompatible.

The results recorded by the two observers are not independent. In the fir:
case,L gets a fraction

3A. R. Swift and R. WrightJ. Math. Phys. 21 (1980) 77.
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(P
(Pw>1A no 112=1? yes
(P)
(P
(Pw>2 no ‘122=1? yes

P

Fig. 7.1. The two alternative experiments testing Eg. (7.8). If that equation
does not hold, the values (Py) are different in these two experiments.

(Pwhi =1—(Puy) — (Py) (7.10)

of the initial beam, while in the second case, he gets
(Pw)z =1 — (Px) — (Py). (7.11)

If Eq. (7.8) is valid{Pw); = (Pw)2 , and observef  cannot discern which
one of the two experiments was chosen RyContrariwise, if Eq. (7.8) does
not hold—which would mean that quantum theory is wrong—a measurement of
(Pw) will unambiguously indicate t&€€ which one of the two setups was chosen
by the distant observeR. In that caseR would have the possibility of sending
messages t&€ , that would be “read” instantaneously. They could even be rea
before they are sent, if the distance from the first filter Rds larger than its
distance to£. , and if the particles are slow enough.

The hypothetical situation described above is essentially different from the
ordinary quantum nonlocality linked to the violation of Bell's inequality. In-
deed, Bell's inequality only refers tcorrelations between the observations of
L andR In order to test experimentally Bell’s inequality, one mustmpare
the results obtained by the two distant observers, after bringing their record:
to a common analysis siteEach observer separately is unable to test Bell's
inequality. Therefore the observers have no way of using the Bell nonlocality in
order to send messages to each other. On the other hand, if Eq. (7.8) does r
hold, the results observed WY are sufficient to tell him which one of the two
setups was chosen (or will be chosen) by his distant colleRgue
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Frame functions

Let us now return to Gleason’s original problem: Find all the real nonnegative
functions fu) such that, forany complete orthonormal basiem, one has

S flem) = 1. (7.12)

The physical meaning of such a functiofu)fis the probability of finding a
given quantum system in state u. This interpretatiorf (@) is in accord with
Postulatey. More generally, Gleason definesframe function by the property
that 3., f(en) has the same value for any choice of the complete orthonorma
frame {en}, but this value is not necessarily 1.

The solution of Gleason’s problem, given below, involves the transformatior
properties of spherical harmonics under the rotation group SO(3). The read
who is not interested in these details may skip the rest of this section.

Two dimensions

If you haven't followed the above option, consider a two dimensional real vector
space. Unit vectors correspond to points on a unit circle, and can be denote
by an angle8. Equation (7.12) becomes

FO) + F(6 +7/2) = 1. (7.13)
Let us try a Fourier expansianf(d) = 3" c, e, with c_, =<,. We obtain

FO) +fO+7/2) =3 cae™ (14" =3 ¢ (14i7). (7.14)

To have a frame function, this expression must be a constant. Therefore, tf
only values ofn allowed in the Fourier expansion are= 0, and thosen for
which :* = —1,, namely,n = £2, 6, +10, etc. There is an infinity of possible
forms for frames functions in a two dimensional real vector space. This can als
be seen intuitively: an arbitrary function8f(can be chosen along one of the
quadrants of the unit circle, and then one takes (1 — f) for the next quadrant

In more dimensions, there is less freedom, because the orthonormal bases
intertwined: a unit vectou may belong to more than one basis. However, it
must have a single expectation valfép) = {uut) , irrespective of the choice o
the basis in which it is included. This requirement imposes severe constrain
on the possible forms of () as we shall presently see.

Three dimensions

Let us now consider a three dimensional real vector space, which has the sar
metric properties as our ordinary Euclidean space. The unit vectors correspor
to points on a unit sphere, and can be denoted by a pair of ehglep. We

can therefore write fif as f@, ¢ and try an expansion in spherical harmonics:
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f(6,8) =3 cim YVim(8, ¢). (7.15)
im

Lemma. If f(6,¢) is a frame function, each irreducible I-component of an
expansion in spherical harmonics is by itself a frame function.

Proof. Consider two directions(#,¢) ar&’,¢") , orthogonal(fp¢) and
to each other. We then hdve

f(gl7 ¢‘) - Z Cim },lm(ela ¢’) = Z Cim E D,(-Q( }/Ir(o, ¢), (716)
im Im T

where theD{) are unitary matrices of order I§1), representing a rotation
which carries (9,¢) into(¢',¢') . Likewise,

F(8,¢" =3 cim . DU V1,6, 4), (7.17)
Im r
where theD{)” matrices represent a rotation which carfi@sp) o ¢").

Let us interchange the indicem andr in the last two equations, and add the
resulting expressions to Eq. (7.15). After some rearrangement, we obtain

£(6,8) + £(8,4) + £(8",4") =
> [c,m +3 (DY 4+ DY) J Yin(6, $)- (7.18)

im

This must be a constant, if we want f to be a frame function. It follows that

cm+ 2 (DY + DY) e =0 i 10 (7.19)

This result must hold for eachseparately. Therefore eadhcomponent of the
frame function (7.15)s by itself a frame function.

Thanks to this lemma, it is now sufficient to investigate the conditions for

fi(6,¢) = le em P™(cos 6) e™¢ (7.20)

m=-{

to be a frame function. Note thhtannot be odd, because in that c#isevould
change sign when the directigf, ¢) is replaced by its antifeded, =+ ¢),

and a frame function is not allowed to do that (if one or more ofethe are
reversed, they still form an orthonormal basis). In general, for antipodes, we
have eimé «y em(r+6) = (~1)m ¢imé andt

'Pl (COS 6) = sin em B(COS 0), (721)

4E. P. Wigner,Group Theory, Academic Press, New York (1959) p. 154.
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which behaves as (—'1?1 whenf - 1m—6.
For evenl, it is enough to consider the simple cdse 0, and® = 6" = /2.
From Eqg. (7.21), we obtain

P (1)=0 if m# 0, (7.22)
so thatfi(0,¢) = co, which is a constant. Moreover we have, as in Eq. (7.14),

F( 12 ) + (/26 +7/2) = Y em PO (147, (7.23)

m=—}

and this too ought to be independentqoff we want to have a frame function.
The odd values ofndo not contribute to (7.23), becauBg(0) =0 |i# m
is odd, as can be seen from (7.21). We are therefore left to consider the eve
values ofm. For the latter, one must prevent occurrencesmof *4, 48,...,
if the right hand side of (7.23) is to be constant. It will now be shown that this
rules out everyl, exceptl = 0 andl = 2.

Recall that the representation of the rotation group by spherical harmonics
of orderl isirreducible.4 Therefore, for any givem= 4, the requirement that
¢4 = 0 in every basisi., with every choice of the polar axis) entaidg = 0
for all m. Indeed, by choosingl2 1 different polar axes, we can obtaih+21
linearly independent expressions fgr, and all of them will vanish if, and only
if, every one of thes,, = 0.

Exercise 7.5 Prove that if a given component of a vector vanishes for all
bases, that vector is the null vector. *

We are thus finally left with spherical harmonics of order 0 and 2. These can
be written as bilinear combinations of the Cartesian components of the unit
vector u, so that any frame function has the form

FW) =3 prn U U, (7.24)

mn

where pis a nonnegativenatrix with unit trace.

Higher dimensional spaces

Any higher dimensional vector space, possibly a complex one, has an infinity
of three dimensional real subspaces. In each one of the latter, frame function
have the form (7.24). It is intuitively obvious, and it can be formally proved,
that in the larger space one must have

f(l.l) = Epmnmun' (725)
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A rigorous proof of this assertion involves intricate geometrical arguments, for
which the interested reader is referred to Gleason’s original article.2

Cryptodeterminism

Gleason’s theorem is a powerful argument against the hypothesis that th
stochastic behavior of quantum tests can be explained by the existence of
subquantum world, endowed with “hidden variables” whose values unambigu-
ously determine the outcome of each test. If it were indeed so, then, for an
specific value of the hidden variables, every elementary test (yes-no questior
would have a unique, definite answer; and therefore every projégtovould
correspond to a definite value, 0 or 1. And therefore the fungtion = (Py)

too would everywhere be either 0 or 1 (its precise value depending on those
the hidden variables). Such a discontinuous functia) f§ radically different
from the smooth distribution (7.25) required by Gleason’s theorem. This mean:
that Eq. (7.5) cannot be valid, in general, for an arbitrary distribution of hidden
variables; and therefore, a hidden variable theory must violate Posjulase
long as the hidden variables have not been averaged over.

This conclusion was first reached by BellSoon afterwards, Kochen and
Speckef gave a purely algebraic proof, which used onlfidte number of
operators (117 operators, to be precise). Gleason’s continuity argument, whic
had motivated the work of Bell and of Kochen and Specker, was no longer neede
for discussing the cryptodeterminism problem. More recent (and simpler) proofs
of the Kochen-Specker theorem are given in the next section.

7-3. The Kochen-Specker theorem

The Kochen-Specker theorem asserts that, in a Hilbert space of dimensiol
d= 3, it is impossible to associate definite numerical values, 1 or 0, with every
projection operatoiPn , in such a way that, if a set abmmuting P, satis-
fiesy_ P,, = 1, the corresponding values, name{(fn ) = 0 or 1, also satisfy

Y v(Pmn)=1. The thrust of this theorem is that any cryptodeterministic theory
that would attribute a definite result to each quantum measurement, and stil
reproduce the statistical properties of quantum theory, is ineviditextual.

In the present case, if three operatdPs, , Pr, and P5, have commutators
[P, P:] = [Pm,Ps} = 0 and [P-,Ps] # 0,, the result of a measurement Ry
cannot be independent of whetHes is measured alone, or together with,

or together withPs.

Exercise 7.6 Write three projectors P, P, and P with the above algebraic
properties. Explain why this requires a vector space of dimension d = 3.

5J. S. Bell,Rev. Mod. Phys. 38 (1966) 447.
6S. Kochen and E. Specked, Math. Mech. 17 (1967) 59.
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The proof of the theorem runs as follows. Lgt,...,uy be a complete set
of orthonormal vectors. ThéN matricesPm = umu}, are projection operators
on the vectorsu, . These matrices commute and satisfy_ P, = 1. There are
N different ways of associating the value 1 with one of these matrices (that is
with one of the vectorsi,), and the value 0 with th&l — 1 others. Consider
now several distinct orthogonal bases, which may share some of their unit vec
tors. Assume that if a vector is a member of more than one basis, the valt
(1 or 0) associated with that vector is the same, irrespective of the choice of tt
other basis vectors. This assumption leads to a contradiction, as first show
by Kochen and Speck&for a particular set of 117 vectors 3 (the real
3-dimensional vector space). The earlier proof by Billolved acontinuum
of vector directions, but it can easily be rewritten in a way using only a finite
number of vectors.

As this result has a fundamental importance, many attempts were made 1
simplify the Kochen-Specker proof, and in particular to use fewer than 117
vectors. The most economical proof known at present is due to Conway an
Kochen, who found a set of 31 vectors having the required property. The
direction cosines of these vectors have ratios involving only small integers, C
11, and +2 (see Plate I, page 114). Here however, we shall consider anoth
set, with 33 vectors belonging to 16 distinct basesBi That set enjoys many
symmetries which greatly simplify the proof of the theoferiive shall then see
an even simpler proof R4, using only 20 vectors.

In these proofs, | shall use the wordy, rather thanvector, because only
directions are relevant. The length of the vectors never plays any role, and
is in fact convenient to let that length exceed 1. This does not affect orthogo
nality, and the algebra becomes easier. To further simplify the discourse, ray
associated with the values 1 and O will be called green and red, respectively (
in traffic lights, green = yes, red = no).

Thirty three rays in R®

The 33 rays used in the proof are shown in Fig. 7.2. They will be lab¥jlad
where x, y, and z can be: 0, 11 (this symbol stands for —1), 2 (meaf®),
and 2 (means _‘/Q:). For example the rayi02 connects the origin to the point

(-1, 0, V2 ). Opposite rays, such 562 and 1@., are counted only once, because
they correspond to the same projector.

Exercise 7.7 Show that the squares of the direction cosines of each ray are
one of the combinations 0+0+1=0+1+1=0+314+2=214+1+1, andall
permutations thereof.

Exercise 7.8 Show that the 33 rays form 16 orthogonal triads (with each ray
belonging to several triads). *

7 A. Peres,J. Phys. A 24 (1991) L175.
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Fig. 7.2. The 33 rays used in the proof of the Kochen-Specker theorem
are obtained by connecting the center of the cube to the black dots on
its faces and edges. Compare this construction with Plate I, page 114.

An important property of this set of rays is its invariance under interchanges
of thex, y and zaxes, and under a reversal of the direction of each axis. This
allows us to assign arbitrarily—without loss of generality—the value 1 to some
of the rays, because giving them the value 0 instead of 1 would be equivalent
to renaming the axes, or reversing one of them. For example, one can impos
that ray 001 is green, while 100 and 010 are red.

Table 7-1. Proof of Kochen-Specker theorem in 3 dimensions.

Orthogonal triad | Other rays | The first ray is green because of
001 100 010 | 110 110 | arbitrary choice of z axis

101 101 010 arbitrary choice of z vs —z

011 011 100 arbitrary choice of y vs —y

112 112 110 | 201 021 | arbitrary choiceof z vs y

102 201 010 |211 orthogonality to 2nd and 3rd rays
211 011 211 | 102 orthogonality to 2nd and 3rd rays
201 010 102 |112 orthogonality to 2nd and 3rd rays
112 119 1f2 | 021 orthogonality to 2nd and 3rd rays
012 100 021 | 121 orthogonality to 2nd and 3rd rays
121 101 121 |012 orthogonality to 2nd and 3rd rays

The proof of the Kochen-Specker theorem entirely holds in Table 7-1 (the
table has to be read from top to bottom). In each line, the first ray, printed
in boldface characters, is green. The second and third rays form, together
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with the first one, an orthogonal triad. Therefore they are red. Additional rays
listed in the same line are also orthogonal to its first ray, therefore they too ar
red (only the rays that will be needed for further work are listed). When a red
ray is printed initalic characters, this means that it is an “old” ray, that was
already found red in a preceding line. The choice of colors for the new rays
appearing in each line is explained in the table itself.

The first, fourth and last lines contain rays 100, 021, ahd O 2, respectively
These three rays are red and mutually orthogonal: this is the Kochen-Specke
contradiction. It can be shown that if a single ray is deleted from that set of
33, the contradiction disappears. It is so even if the deleted ray is not explicitly
listed in Table 7-1. This is because the removal of one ray breaks the symmetr
of the set and therefore necessitates the examination of alternative choices. T
proof that a contradiction can then be avoided is not as simple as in Table 7-
(the computer program in the Appendix may hélp).

Physical interpretation

Since our present Hilbert space is isomorphicRo 3, the abstract vecipbe-
have as ordinary Euclidean vectors. We shall therefore denote them by boldfac
letters, m, n, etc. A simple physical interpretation of the projection operator
Pm can be given in terms of the angular momentum components of alspin
particle. It is convenient to use a representation where

00 O 0 0 : 0 — 0
=00 |, Jy=l0 00|, =i 0 0|, (7.26)

0 : O -1 0 0 0 0 O
in natural units & =1). These matrices satisfy{J,,J] = iJ;, and cyclic

permutations thereof. With this representation, we have
000 1 00 1 00
L2=]lo0o10], J2 =000, J:=]|010]. (7.27)
001 0 01 0 00

These three matrices commute, so that the corresponding observables can |
measured simultaneously. One may actually consider allJ{heas functions
of a single nondegenerate operator,

8 The proof originally given by Kochen and Specker proceeds in two steps. The first stef
(which is the difficult one) is a lemma saying that two particular vectors out of a given set of
8 vectors cannot both have the value 1. The second, much easier step is to replicate 15 tin
that 8-vector set, in a way leading to a contradiction. Three of the vectors appear twice in thi
construction, making a total of 1% 8 — 3 = 117 distinct vectors. Some authors consider the
second step so trivial that they say that the Kochen-Specker proof necessitates only 8 vecto
(and then Bell’s earlier proof would have used 10 vectors). However, the purists, including
Kochen and Specker themselves, want a complete proof, not only a lemma, and their count
117 vectors.
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-100
K=J2-J2=| 0 1 0). (7.28)
0 00

Exercise 7.9 Show that J,> =1+ (K —K?)/2, and write likewise Jy? and J;°
as functions of K.

Exercise 7.10 Write explicitly the three matrices JkJi+J1Jk (for k #1) and
show that, for any real unit vector m, the matrix

Pm=1-(m-J)? (7.29)
has components (Pm);s = mr Ms, and therefore is a projection operator.

A measurement of the projectBr, is a test of whether the spin component
along the unit vectorm is equal to zero. The eigenvalue 1 corresponds to
the answer “yes,” and the degenerate eigenvalues 0 to the answer “no.” Nof
that this test is essentially different from an ordinary Stern-Gerlach experimen
which would measure the spin component along because the degenerate
matrix P m makes no distinction between the eigenvalues —1 and +fn .

A generalization of (7.28), for two orthogonal unit vectonsand n, is

K(m,n) = (mJ)2 —(n-J)% (7.30)

This operator has eigenvalues -1, 0, and 1. A direct measuremeR{ngh)
is difficult, but it is technically possible,® and a single operation can thereby
determine the “colors” of the triadh, n and m x n.

The 33 rays that were used in the proof of the Kochen-Specker theorem forr
16 orthogonal triads (see Exercise 7.8). These triads correspond to 16 differe
and noncommuting operators of the same type Egm, n). Any one of them,
but only one, can actually be measured. The results of the other measuremel
are counterfactual—and mutually contradictory.

Twenty rays in R*

Consider again our pair of sp%lparticles. Recall that in array (7.1), each row
and each column is aomplete set of commuting operators. The product of
the three operators in each row or columnli® 1 , except those of the thirc
column, whose product is1® 1. It is obviously impossible to associate, with
each one of these nine operators, numerical values 1 or -1, that would obey tl
same multiplication rule as the operators themselves.

This algebraic impossibility will now be rephrased in the geometric language
of the Kochen-Specker theorem. The common eigenvectors of the commutin
operators in each row and each column of (7.1) form a complete orthogonal basi
We thus have 6 orthogonal bases, with a total of 24 vectors. The impossibl
assignment is to “paint” them in such a way that one vector of each basis i
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green, whileall the vectors thata are orthogonal to that green vector are red
(including any orthogonal vectors that belong diher bases).

Suppose that we have painted in this way the vectorsnefof the bases. Its
“green” vector indicates the outcome of the complete test corresponding to that
basis—if and when the test is performednd therefore it attributes definite
values, 1 or -1, to each one of the three commuting operators (the entire rov
or column) generating that basis. Now, we have just seen that it is impossible
to have a consistent set of values for all the elements of array (7.1). Therefor
we expect to encounter a geometric incompatibility in our painting job, similar
to the one found earlier RS

The geometric proof is even simpler in the present case thRA. iVith the
usual representation af, ando, (both real), the eigenvectors too may be taken
real. Therefore the discussion can be restricteR*towith the same notations
as above, the 24 rays, labell@kyz, are 1000, 1100,1100, 1111, 1111, 1113,
and all permutations thereof (opposite rays are counted only once). This set i
invariant under interchanges of thw X, y and zaxes, and under a reversal of
the direction of each axis.

Exercise 7.11 Sort out these 24 rays into 6 orthogonal bases, one for each row
and column in array (7.1). Show that each one of the 24 rays is orthogonal to 9
other rays and belongs to 4 distinct tetrads. There are 108 pairs of orthogonal
rays, and 24 distinct orthogonal tetrads. *

Exercise 7.12 Show that the 24 rays are orthogonal to the faces of the regular
polytope® known as the 24-cell. * %

Exercise 7.13 Prove the Kochen-Specker theorem inR* by the method used
in Table 7-1. *

It turns out that it is not necessary to use all these 24 rays for proving the
Kochen-Specker theorem. A proof with only 20 ryss given by Table 7-2:
there are 11 columns, and the four rays in each column are mutually orthogona
Therefore in each column one ray is green. This makes a total of 11 green ray:
However, it is easily seen that each ray in the table appears either twice, or -
times, so that the total number of green rays must be an even number. Th
contradiction implies that the 20 rays have no consistent coloring.

Table 7-2. Proof of Kochen-Specker theorem in 4 dimensions.

1000 1000 1000 1000 1111 1111 1111 1111 0110 0011 1010
0100 0100 0010 €001 1111 1111 1111 1111 1001 1100 0101
0010 0011 0101 0110 1111 1010 0110 0011 1111 1111 1111
0001 0011 0101 0110 1111 0101 1001 1100 1111 1111 1111

9H. S. M. CoxeterRegular Polytopes, Macmillan, New York (1963) [reprinted by Dover].
100\, Kernaghan,J. Phys. A 27 (1994) L829.
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7-4. Experimental and logical aspects of contextuality

The Kochen-Specker theorem is a geometrical statement. Like Bell's theoren
it is independent of quantum theory, but it profoundly affects the interpretation
of the latter. However, the Kochen-Specker theorem, contrary to Bell's, doe:
not involve statistical correlations in an ensemble of systems. It compares th
results of various measurements that can be performed smgla system. This

is a radical simplification. There is no need of taking averages over unspecifie
hidden variables, or over fictitious experimental runs, as in the derivation of
the CHSH inequality from Eqg. (6.29). Moreover, the absence of statistical
considerations relieves us of any worries about detector efficiencies.

Yet, the problem cannot be one of pure logic. Any discussion about physic
must ultimately make connection with experimental facts. The purpose of this
section is to analyze the empirical premises underlying the theorems of Bel
and of Kochen and Specker. These premises are formulated as nine distin
propositions. Seven of them are strictly phenomenological. They can be teste
experimentally (in addition to tests for internal consistency). They can also be
derived from quantum theory.

The last two propositions are of counterfactual nature: They state that it i
possible toimagine the results of unperformed experiments, and moreover, to
do that in such a way that these hypothetical results bameelations which
mimic those of actual experimental results. Although this counterfactual rea-
soning appears reasonable, it produces inadmissible consequences such as Bg
inequality, which is experimentally violated, or the Kochen-Specker coloring
rule for vectors, which is contradictory.

A. Elementary tests

We start with some definitions and propositions which are not controversial.

There are “eementary tests’ (yes-no experiments) labelled A, B, C, .. .Their
outcomes are labelled a, b, ¢, O 1 (yes) or 0 (no).

In quantum theory, these elementary tests are represented by projection ope
ators. It is sufficient here to consider only a subset of quantum theory, where
projectors are represented by real matrices of order 2 or 3.

Exercise 7.14 Show that any 3 x 3 real projector with unit trace can be
written as in Eq. (7.29).

Exercise 7.15 Show that any 2 x 2 real projector with unit trace can be
written as

Py = %(]l—l—az sin@ + o, cosf). (7.31)

A physical realization oPg may be a Stern-Gerlach test of séiparticles, for
which Pg represents the question “Is the component of spin alond§ td&ection
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positive?” Another possible implementation may involve the linear polarization
of photons.

B. State preparation

In general the outcome of a given test cannot be predicted with certainty. Ye
the following exception holds:

For each elementary test, there are ways of preparing physical systems so that

the outcome of that test is predictable with certainty.

In quantum theory, a preparation is represented by a density nmatfike
result of an elementary test represented by a projdetar predictable if and
only if Tr (pP) = 0 or 1. In general, the preparation satisfying this equation is
not unique, becausB may be degenerate.

C. Compatibility of elementary tests

Some tests areompatible. Compatibility is defined as follows:

If a physical system is prepared in such a way that the result of test Ais
predictable and repeatable, and if a compatible test B is then performed
(instead of test A) a subsequent execution of test A shall yield the same result
as if test B had not been performed.

In quantum theory, compatibility occurs when operatArand B commute.
We have seen in Sect. 2-2 that not every test is repeatable but, for our prese

purpose, it is enough to consider repeatable tests, which certainly exist.
A familiar pair of commuting projectors which represent compatible tests is:

[3(1+m-01), {(14+n-03)] =0, (7.32)

where m and n are arbitrary unit vectors, angh ando, refer to two distinct
spin%— particles. Another example of commuting projectors is

MI-(m-3)?,1-(n-4)? =0, (7.33)
where J refers to asingle particle of spin 1, anagn -n = 0.

Remark: If we wished to extend these notions to classical physics, we would
find that all tests are compatible.

D. Symmetry and transitivity

Compatibility is a symmetric property, but it is not transitive.

This statement means that Afis compatible withB, then B is compatible with

A (this is not obvious, but this follows from quantum theory and this can also
be tested experimentally). However, A is compatible withB and with C, it
does not follow thaB is compatible withC.
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Exercise 7.16 For a spin 1 particle, define
A= (m-J)} B =(n-J)? C=(r-J) (7.34)
with m-n=m -r=0#n-r. Show that [A, B] =[A, C] =0#[B, C].

Exercise 7.17 Show the same for two spin % particles, with the definitions

A=m. o, B=n:o,, C=r-o,. (7.35)

Remark: It is implicit that compatibility is a reflexive property (this follows
from [A, A] =0). If any test is repeated, it will give the same result. As already
stated, the present discussion is restricted to repeatable tests.

E. Constraints

When a state preparation is such that compatible tests have predictable results,
these results may be constrained.

Example (spin 51): If the test forPn := % (I+m-o) has a predictable outcome
pm, thenpm +p-m = 1.

Example (spin 1): Let m, n, r be three orthogonal unit vectors and let us define
Pm = 1— (m-J)?, corresponding to the question “m -J = 0?". Likewise
define projectorsPn andP,. The three corresponding tests are compatible, as
we have seen. Moreover, we have

Pm+Pn+Pr =1 (7.36)

Quantum theory predicts, and it can in principle be tested experimentally, the
for state preparations such that the outcomes of these three tests are predictal
their outcomes satisfy

Pm+pn+pr =1 (737)

One test is positive and two are negative.

Warning: At this point, we may imagine hypothetical systems subject to con-
straints that lead to logical contradictions. For example, if we have four distinc
tests such that any three are subject to a constraint like (7.37), we obtain

a+tb+c=1 a+b+d=1 a+c+d=1 b+c+d=], (?)

whence 3¢ + b + ¢ + d) = 4, which is obviously impossible. Of course, there
is no physical system obeying these rules! The important point to notice her
is that innocent looking postulates, such as those that we are proposing her
may lead to contradictions. We are always free to propose postulates, but w
must carefully check them for internal consistency.
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F. Further constraints

The preceding postulate referred to state preparations leadiny etiictable
results. It has the following generalization:

Even if a system is prepared in such a way that the outcomes of constrained
tests are not predictable, these outcomes will be found to satisfy the proper
constraints, if the tests are actually performed.

In other words, even if the outcomes of individual tests are not predictable, the
are not completely random. There appears to be some law and order in natur
This may encourage us to think in terms of a microphysical determinism, anc
perhaps to attempt to introduce hidden variables. This is not, however, the
path followed here.The present discussion is strictly phenomenological (any
reference to quantum theory is merely illustrative).

This last proposition can be tested experimentally. It can also be derivec
from quantum theory, if we wish to use the latter. A complete set of orthogonal
projectors satisfie®,P; = P,;P; = §;;P; and ¥ P; = 1. We then have, for the
corresponding outcomefi = +1):

((p)) = ((Em) = ((ZP)) - ((ZP)) =0, (7.38)

sothat 3 p = 1 always (this result is dispersion free).

Remark: The derivation of (7.38pssumes that, for orthogonal projectors, the
average of a sum is the sum of averages. This rule is amenable to experiment
verification. See the discussion that follows Eq. (7.5).

Remark: Postulate F has no classical analog (if it had one, there would be
an inconsistency of the Kochen-Specker typecliassical physics, because all
classical tests are compatible).

G. Correlations

A weaker form of the preceding postulate is the following statement:

If an ensemble of systems is prepared in such a way that the outcomes of several
compatible tests are neither predictable nor constrained, there may still be
statistical correlations between these outcomes.

As an example, consider a pair of s%'uparticles, prepared in a singlet state.
Define projectorsP,, = 1(1+a-0y) and Pys = (1+B3-02), Wherea andp

are unit vectors. Lepia and pop be the outcomes (0 or 1) of the measurements
of P1q andP 2, respectively. We then have, on the average,

(P1c pas) = (1 — - B)/4. (7.39)

Exercise 7.18 Show that (p,,) = x and that (7.39) is just another way of
writing the spin correlation in Eg. (6.23).
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We already know that this correlation violates Bell's inequality. However, in
order to derive that inequality, or to prove the Kochen-Specker theorem, we
need two additional postulates, of a radically different nature.

H. Counterfactual realism

In the present discussion, hidden variables are not used explicitly, nor ever
implicitly by assuming some unspecified kind of determinism. We shall only
consider what could have possibly been the results of unperformed experiments
had these experiments been performed.

a) It is possible to imagine hypothetical results for any unperformed test, and to
do calculations where these unknown results are treated as if they were definite
numbers.

This statement refers to a purely intellectual activity and there can be no doub
that it is experimentally correct. For example, we can very well imagine the
possible results of a teftm . The latter can only be 1 (yes) or 0 (no). We can
then perform a set of calculations assuming that the result was 1, and anothe
different set of calculations, assuming that the result was 0. There is nothing
to prevent us from doing the same intellectual exercise for other possible tests
Pn,Pr, etc., even if the latter are mutually incompatible.

b) It is furthermore possible to imagine the results of any set of compatible
tests, and to treat them in calculations as if these sets of results had definite
values, satisfying the same constraints or correlations that are imposed on the
results of real tests.

Again, this refers to a purely intellectual exercise. For example, if we have a
pair of spin% particles, and we measui;, on the first one, we can measure
either P o3 or P2s on the second particle. These are two different (and mutually
incompatible) setups, for which can imagine 228 different sets of outcomes.
We cannot know which one of these outcomes will turn out to be true, but
we certainly can consider all eight possibilities. We can imagine that these
experiments are repeated many times, after preparing the particle pairs in
singlet state. The hypothetical results must then be chosen so as to satisf
correlations such as Eg. (7.39) and also

(Prapes) = (1 — - 6)/4. (7.40)

Note that we want both (7.39) and (7.40) to be satisfied, although only one of
the two experiments can actually be performed on any given pair of particles.

Likewise, for a spin 1 particle, we can consider two orthonormal triads sharing
one unit vectorm -n=m-r=n-r=0andm - -s=m -t=s-t= 0. However,
ns#0. For examples = (n +r)//2 . We can now imagine that we measure,
together withPy := 1 — (m-J)* gither P, and P, or P andP; (these
projectors are defined in the same wayPas). The results of these hypothetical
measurements must then obey both
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Pm+pntpr=1, (7.41)

and
Pm+ps+pt =1 (7.42)

We can for surenrite these two equations, although at most one of them can
materialize experimentally in a test performed on a given spin 1 particle.

Here however, there is a rather subtle difficultypls in (7.41) the same as
pm in (7.42)? This cannot be tested experimentally, because these two setu
are mutually incompatible. We therefore propose one more postulate:

I . Counterfactual compatibility

The hypothetical result of an unperformed elementary test does not depend on
the choice of compatible tests that may be performed together with it.

This is the crucial “no-contextuality” hypothesis. For example, the result of a
measurement oP 1« ON a spin% particle does not depend on whether one elects
to measureP s or P 25 on a second, distant particle. Likewise, the outcgme

is the same whether one elects to measureandP , , as in Eq. (7.41), oPs
andP, as in Eq. (7.42).

The “psychological reason” suggesting the validity of this last postulate is
that, whenever a state preparation guarantees a predictable result for sor
test, this result is not affected by performing other, compatible tests. One i
naturally tempted to generalize this property (just as Postliageneralized
Postulate€) to counterfactual tests whose outcomendt predictable.

Summary

Although counterfactual compatiblity cannot be tested directly, some of its
logical consequences can be shown to conflict with quantum theory—and witl
experimental results. For example, it can be seen, by direct inspection, that

P1y + P2g + P1a P26 — Pra P2p — P1y P26 — P1yPas = 0 or 1. (7.43)
Exercise 7.19 Show that no other value is possible.

Therefore, theaverage value of the left hand side of (7.43) ought to be in the
range [0,1]. This is just another form of Bell's inequalityNevertheless, by
choosing the directions, B, yandd as in Fig. 7.3, the left hand side of (7.43)
becomes, on the average, for a pair of %p'particles in the singlet state,

1 1 1 1) 3 1 11
S (1) -1 =)=+ —=>1 7.44
2+2+4(+\/§> 4( \/§> PRV R (749

3. F. Clauser and M. A. Horn®hys. Rev. D 10 (1974) 526.
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contrary to the counterfactual prediction in (7.43).

Likewise, Table 7-1 shows that it is possible to choose 33 rays in such a way
that Egs. (7.41) and (7.42) lead to a contradiction, if it is assumed that each one
of the outcome$m, pn, etc., has the same numerical value in all the equations
where it appears.

Y

Fig. 7.3. The four directions B 3
used in Egs. (7.43) and (7.44)
make angles of 45°.

a

The rationale behind quantum contextuality is the following: An elementary
test such as “Ix o, = 1?" or “Ism -J = 0?” has a well defined answer
only if the state preparation satisfies PPf= 0 or 1, so that the required
answer ispredictable. For any other state preparation, these questions, which
are represented by degenerate operators,aaf@guous. The answer depends
on which other (compatible) tests are performed, for example, on whether we
shall also measure - g,,0r r - 0,,together withm - o,

This state of affairs can be succintly summariz€de same operator may
correspond to different observables. That is, a given Hermitian matri®, does
not represent a unique “observabldhe symbolPm has a different meaning if
Pm is measured alone, or measured wih, or with Pr . The only exception
is a nondegenerate variable, suchKgm, n) in Eqg. (7.30), which is equivalent
to a complete set of commuting observables, corresponding to compatible tests
One then effectively has eomplete test, rather than aelementary one, and
contextuality effects do not appear.

This mismatch of operators and observables was first mentioned byirBell
his analysis of the implications of Gleason’s theorem:

It was tacitly assumed that measurement of an observable must yield the
same value independently of what other [compatible] measurements may
be made simultaneously . . . There is no a priori reason to believe that the
results should be the same. The result of an observation may reasonably
depend not only on the state of the system (including hidden variables)
but also on the complete disposition of the apparatus . . .”

The notion of contextuality appears even earlier, in the writings of 'Be¥iro
emphasized “the impossibility of any sharp distinction between the behavior of
atomic objects and the interaction with the measuring instruments which serve
to define the conditions under which the phenomena appear.”

12N. Bohr, in Albert Einstein, Philosopher-Scientist, ed. by P. A. Schilpp, Library of Living
Philosophers, Evanston (1949), p. 210.
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7-5. Appendix: Computer test for Kochen-Specker contradiction

The proof of the Kochen-Specker theorem given in Table 7-1 was very simple,
because the rays formed a highly symmetrical pattern. It was possible to choos
arbitrarily, in some of the triads, the “green” rays to which the value 1 was
assigned, because any other choice would have been equivalent to a relabellir
of the coordinates.

When there is less symmetry, as in the case of the 31 rays of Plate Il (p. 114
different assignments of the value 1 are not equivalent to renaming the axes
Therefore both values, 0 and 1, must be tried. If one of them leads to an
inconsistency, one still has the other choice to try. The search for a consister
coloring is similar to the search for a passage through a maze. Whenever th
explorer reaches a dead end, he has to retrace his footsteps to the last po
where he made an arbitrary choice, and try another choice.

The following FORTRAN code performs this search for any patternNofays.

The input file is a list of all orthogonal pairs of rays. This list, which describes
the geometric structure of the set of rays, must be supplied by the user. Thi
output file returns a string of 0 and 1, if therays can be consistently colored,

or a message stating that no coloring is possible.

C Kochen- Specker coloring problem for N rays
PARAMETER (N= )

INTEGER P(N.N), X(N), Y(N, Z(N), N, L(N), GANN

C P(1,J)=1 if rays | and J are orthogonal, else P(l,J)=0
C NTRIAD i s nunber of orthogonal triads
C X(NT), Y(NT), Z(NT) are the three rays in triad NT
C C(J) is color of ray J; 0 =red, 1 = green, 4 = unknown
C LVL = nunber of rays whose color was arbitrarily chosen
C L(K) is the ray whose color was assigned in Kth choice
C OC(LVL,J) was color of ray J after LVL arbitrary choices
OPEN (8, FILE=' INPUT. KS')
OPEN (9, FI LE=" QUTPUT. KS')
DO 10 1=1,N
C(l)=4
C Col ors are unknown as yet
DO 10 J=1,N
10 P(1,J3)=0
DO 11 M1, N¢N
C Read list of pairs of orthogonal rays
READ (8,'(213)",END=12) I, J
P(1,J)=1
11 P(J,1)=1
12 NTRIAD=0
C Find triads of orthogonal rays

DO 13 I=1, N
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DO 13 J=I+1,N
DO 13 K=J+1, N
IF (P(I,J)+P(1,K)+P(J,K).NE. 3) @QOTO 13
NTRI AD=NTRI AD+1
X(NTRI AD) =I
Y(NTRI AD) =J
Z( NTRI AD) =K
13 CONTI NUE
LVL=0
C Choose arbitrarily next green ray, whose nunber is NG
C Al other rays that are already colored are consistent
14 DO 15 NG=1,N
IF (C(NG.EQ4) THEN
C(NG =1
GOTO 16
ENDI F
15 CONTI NUE
WRITE (9,'(4012)') C
C A consistent coloring has been found
STOP
16 LVL=LVL+1
LAST=1
C Last arbitrary assignment was to nmake a ray green
L(LVL) =NG
o This arbitrary assignment was made for ray NG
DO 17 J=1,N
C Record the situation after LVL arbitrary choices
17 OC(LWL, J)=C(J)
18 DO 19 J=1,N
C Al the rays orthogonal to a green one nust be red
19 1F (P(NGJ).EQ1) C(J)=0
20 DO 21 NT=1, NTRI AD

C Now check whether there are three orthogonal red rays
IF (C(X(NT))+C(Y(NT))+C(Z(NT)).EQ 0) GOTO 22

21 CONTI NUE
GOTO 25

22 | F (LVL+LAST.GT.0) GOrO 23
WRITE (9,' (" No consistent coloring")")

C Al options have been exhausted
STOP
23 DO 24 J=1,N
C Restore status quo at preceding branching
24 C(J)=0C( LWL, J)
C(L(LWL))=0

LAST=0



Bibliography 211

C Last arbitrary assignnment was to make a ray red
LVL=LVL-1

C Return to preceding branching
GOTO 20

25 DO 26 NT=1, NTRI AD
Is there a triad with two red rays and a colorless ray?
C If so, the colorless ray nust be painted green
IF (C(X(NT))+C(Y(NT))+C(Z(NT)).EQ4) GOTO 27
26 CONTI NUE
GOTO 14
27 |F (C(X(NT)).EQ4) THEN
C(X(NT)) =1
NG=X( NT)
GOT0 18
ENDI F
IF (C(Y(NT)).EQ4) THEN
C{Y(NT))=1
NG=Y( NT)
GOro 18
ENDI F
IF (C(Z(NT)).EQ4) THEN
C(Z(NT)) =1
NG=Z (NT)
GOro 18
ENDI F
END

(@]

Exercise 7.20 Show that the 31 rays in Plate Il (p. 114) form 71 orthogonal
pairs, which belong to 17 orthogonal triads. *

Exercise 7.21 Show that removing any one of these 31 rays leaves a set that
can be consistently colored. *x

Exercise 7.22 Write a similar program for the Kochen-Specker problem in
four dimensions. *
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This paper contains an elegant proof of the Kochen-Specker theorem, involving the
geometric properties of the dodecahedron. The proof is based on the following propert
of spin2§ particles: the eigenvectorg and ¢, satisfying

m-Jy=1¢ and n-Jé=19, (7.45)

are orthogonal ifm - n = 1/3. Recall that cost(1/3) is the angle subtended at the
center of a dodecahedron by a pair of next-to-adjacent vertices. Thus, if we conside
the results of (mutually incompatible) spin measurements which test whether the spii
components along the 20 directions pointing toward the vertices of a dodecahedron ar
equal to%,we obtain the following Kochen-Specker coloring rules:

(@) no two next-to-adjacent vertices can be green,
(b) the six vertices adjacent to any pair of antipodal vertices cannot all be red.

Rule (a) follows from the orthogonality property mentioned above, and rule (b) can be
proved by introducing 20 additional, “implicit” state vectbame for each vertex of the
dodecahedron, in the following way: Each veridéx has three adjacent vertices, which
are next-to-adjacent to each other. Therefore the three eigenvectors of type (7.45
corresponding to these three vertices, are mutually orthogonal (in Hilbert space). The
fourth orthogonal vector (in Hilbert space) is the “implicit vector” belonging to vertex
V. It is easily shown that coloring rules (a) and (b) lead to a contradi¢fion.

Higherdimensions

A set of Kochen-Specker vectors for any dimension 3 is always obtainable from
a set of dimensiom-1 as follows: add to all these vectors a muth component, and
introduce a new vector 0. . . 01. The only consistent coloring is to make the new vecto
green and all the others red. The latter include 10. . . 0. Now introduce more vectors b
exchanging the first andi-th components of all the preceding ones. The complete set
has no consistent coloring. However, much smaller sets can be obtained in some cast

M. Kernaghan and A. Peres, “Kochen-Specker theorem for eight-dimensiona
space,” Phys. Letters A 198 (1995) 1.

A contradiction is derived for a system of three entangled %p'particles (see
page 152). The proof requires 36 vectors. This article also introduces a “state-specific
version of the Kochen-Specker theorem, valid for systems that have been prepared i
a known pure state. The projection operators can then be chosen in a way adapted
the known state, and fewer operators are needed (only 13 in the present case).

3penrose, who first stated that proof in an unpublished article, also showed that the 33 ray
of Table 7-1 can be generated by three interpenetrating cubes, as those in Escher's celebrati
lithograph Waterfall. For further details, se&cientific American 268 (Feb. 1993) 12.
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Plate Ill. Musical notation as shown above contains information on time and on

frequency. These are complementary parameters, which satisfy the “uncertainty
relation” At Aw > % (this inequality is a general property of Fourier transforms).
Show that this limitation does not cause any serious difficulty in playing music,
because the uncertainty area is quite small on the scale of the above figure. Yet,
if you try to play very low notes, for example with a double bass, it is difficult to
make these notes very brief. Because of the way music is written, the time scale in
this figure is not linear, and the frequency scale is only approximately logarithmic.
One quaver (eighth note) is about 0.22s. The figure is from a work of Mozart.*

*W. A. Mozart, Duet for vialin and viola in B flat major (K. 424).
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Chapter 8

Spacetime Symmetries

8-1. What is a symmetry?

A symmetry is an equivalence of different physical situations. The hallmark
of a symmetry is the impossibility of acquiring some physical knowledge.! Fol
example, it is impossible to distinguish a photograph depicting a right hanc
glove from one of a left hand glove, viewed in a mirror.

The laws of nature that you observe in your laboratory are also valid ir
other laboratories: these laws are invariant unmenslations and rotations
of the scientific instruments that are used to verify them. Moreover, they ar
invariant under auniform motion of these instruments. This is linematic
symmetry, first postulated by Galilei for mechanical laws, and later found valid
by Michelson and Morley for optical phenomena in vacuum. Einstein propose
that this symmetry applies to electromagnetism in general. This is the principl
of relativity, which is today firmly established for all physical phenomena, with
the possible exception of gravitation.2

Active and passive transformations

The existence of a symmetry entails the equivalence of two types of transform
tions, called active and passive. For example, the hand sketched in Fig. 8.1
is actively rotated, with no change of shape, into a new position. The nev
coordinates (of the fingertip, say) are related to the old ones by

F,=F; cosf — F, sin,

Fy’ = F; sin6 + F, cos 6. (8.1)

1F. E. Low,Comm. Nucl. Particle Phys. 1 (1967) 1.

2According to thegeneral theory of relativity, the description of gravitational phenomena
necessitates the use of a non-Euclidean geometry which does not rafja@lvmotions of ex-
tended bodies, such as laboratory instruments. Therefore general relativity, contrary to spec
relativity, is not the theory of a spacetime symmetry. (There are nevertheless exact solution
of the Einstein gravitational field equations with restricted symmetry properties, for example
a spherically symmetric black hole.)
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216 Spacetime Symmetries

In Fig. 8.1(b), the hand is not rotated, but the coordinates are, bgatine
angle. This is a passive transformation, and the components of the fingerti
along the new axes are:

Fo = F;cos@+ F,sind, (8.2)
Fy =—F, sin@+ F, cosé. '

Obviously, the transformation matrix in (8.2) is the inverse of the one in (8.1).
Therefore, if both transformations (active and passive) are simultaneously pel
formed, as in Fig. 8.1(c), we obtain:

F;1=Fx and F’A=Fy' (83)
The numerical values of the new components are the same as those of the ¢

components. The mere knowledge of these values does not indicate whether
transformation was performed.

“
2

i

&
&

F

& &

.
x
(a) (b) (c)

X

=y

Fig. 8.1. Active and passive transformations.

This indistinguishability is due to a physical property of plane surfaces: it
is possible to rigidly rotate any plane figure. On the other hand, an irregula
surface does not allow rigid motions. It still allows, of course, passive coordi-
nate transformations, which are nothing more than a relabelling of its points
but there are no corresponding active transformations, which would leave th
displaced body unaltered.

Exercise 8.1 If we turn a right hand glove inside out, it becomes a left hand
glove (assume that the inside and outside textures are indistinguishable—a
good approximation for some knitted gloves). This is an example of active
transformation. What is the corresponding passive transformation?

We now turn our attention tquantum symmetries. Quantum states are
represented by vectors in a Hilbert space and can again be specified by a
of components. The indices which label these components refer to the possib
outcomes of a maximal quantum test (see Sect. 3-1). A passive transformatic
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corresponds to the choice of a different basis—that is, a different maximal test-
and it is represented by a unitary operator. On the other hand, an activ
transformation is an actual change of the state of the quantum system.

As usual, the existence of a symmetry implies a correspondence betwee
active and passive transformations. Thus, if we choose another maximal te
to define a new basis for the Hilbert space of states, we may expect that the
is an active transformation such that the new physical state, obtained afte
that transformation, has components with respect to the new basis, which a
equal to the components of the original state with respect to the old basis-
just as in Eg. (8.3). Actually, the situation is more complicated, because th
vector space used in quantum theorycemplex, and there is no one-to-one
correspondence between physical states and sets of vector components. T
basis vectors defined by maximal tests may be multiplied by arbitrary phase:
inducing a phase arbitrariness in the components of the vector that represer
a given physical state.

However, the transitiomprobabilities Py = u, v[?, which are experimentally
observable, are not affected by this phase arbitrariness. For example, wector
may represent photons in a horizontal beam, with a vertical polarization; an
vector v, photons in the same beam, but with a linear polarization at an éingle
from the vertical. Suppose that the apparatus which prepaggsotons, and
then tests whether they avephotons, is rigidly moved to another location and
given a different orientation. With respect to the original basis chosen in Hilber
space, the photons are now prepared with a different polarizatjcand tested
for a different polarizationv'. Yet, the laws of optics are not affected by rigid
displacements of optical instruments. Therefore the probability of passing th
test is invariant; Py = P,y = cos?é.

8-2. Wigner’'s theorem

This invariance has far-reaching implications, because of an important theorer
due to Wigner.? Consider a mapping of Hilbert spage: v’, v — v/, and so
on. Theonly thing we assume about this mapping is that

Hu' v 2 = [{u,v)]?, Vo ou, v (8.4)

In particular, we do not assume linearity, let alone unitarity. Wigner's theorem
states that it is possible to redefine the phases of the new veatons'(. . .)
in such a way that, for any complex coefficientsand 3, we have either

(au4pgv) =av + 8V and (W', v = (u,v), (8.5)
or
(au+Bv) =au +Bv and (W, v') = (v, u). (8.6)

3E. P. Wigner,Group Theory, Academic Press, New York (1959) p. 233.
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In the first case, the mapping is linear and unitary, in the second case, it is
antilinear and antiunitary. The proof of Wigner's theorem follows.
Let e; be the vectors of an orthonormal basis, which are mapped eihto

The new vectore', are also orthonormal, by virtue of Eq. (8.4). Consider now
the set of vectors

fi=e+te;, i=2,3,..., (8.7)
which are mapped int§;. We have, from (8.4),

[{e1, )] = [{en, fi)| = 1, (8.8)
and

Kb Tl = I{ess )| = bix, (G>1. (8.9)
Therefore, for anyj > 1, we can write

f=z;e +ye, (8.10)
where |z;| = |y;] = 1. Wethen redefine the phases of the transformed vectors:

fj’ — 1 =1f}/x, and e s el =y, e;/z;, (8.11)
(and e =€) so as to obtain

as in (8.7). We shall henceforth work with the new phases, and ejitestead
of e"j. We thus have the mapping

ert+e; — (e +e)=¢e+ e; ; (8.13)

Consider now the mapping of an arbitrary vector

u=Yae — u=3 de. (8.14)
We have

la3] = I(e}, u)] = [(ej, u}| = a;]. (8.15)
Moreover,

{e1 +ej,u) = a1 +aj and (e} +¢€},u') =al +a). (8.16)

It then follows from Egs. (8.4) and (8.13) that

las + a;1* = |a} + &} (8.17)
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Together with (8.15), this gives
a_laj—}—al?i;:a_’la_’i—l—a'lE?. (8.18)

Dividing this equation by

(@181 a;3; )% = (d} @} &} @ )1/, (8.19)
we obtain
(a1 a;/a13; )/* + cc. =(a_ia;/aia_§)1/2+c.c., (8.20)

which has the form

e e = & 4 e (8.21)
with two solutions,0' = £ 0. Let us consider them one after another.
Unitary mapping: If 6 = 0, we have

a} dj/a\d} =q; aj/ara; - (8.22)

Redefine the phase of so thata’; = a;. We then haver}/a; = a;/a; and it
follows from (8.15) thataj =a; . Therefore

u'=Y ae]. (8.23)
Given another vecton = S be; , wean likewise choose the phasewfo as
to havev’ =y be} , whence Eg. (8.5) readily follows.

Antiunitary mapping: If 6'=—0, we have
o d} [\ = a1 G5/ T ;. (8.24)

Redefine the phase of so thate} =a; . We then have,/a = g;/a; and it
follows from (8.15) thata} =a; . Therefore

v =Y ae. (8.25)

Given another_vecton, = Y bie; , wean likewise choose the phasewfso as
to havev' = 3 bel , which gives Eq. (8.6).

Whether a specific transformation is unitary or antiunitary depends on its
physical nature. Transfomions that belong to a continuous group, such as
translations and rotations, can only be unitary, because in that case any finil
transformation can be generated by a sequence of infinitesimal steps, where t
transformed vectore' are arbitrarily close tei; we must then choosé = a;
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(rather thana; =7; ) if wewantu' to be close tai. This rules out antiunitary
transformations.

On the other hand, this continuity argument is not applicable to discrete
transformations, such as space reflection or time reversal. We shall later se
that a space reflection is represented by a unitary transformation, but a timi
reversal is antiunitary.

Finally, we note that the same results can be derived from premises weake
than Eqg. (8.4), by merely assuming that vO= 0 impliesCl', v'O= 0. In that
case, however, the proof is much more diffiéuit.

8-3. Continuous transformations

Consider a set of unitary matricd$(ay ,az,...) , depending on continuous pa-
rametersa;. These matrices are in one-to-one correspondence with the element
of a continuougroup of transformations, provided that the domain of definition
of the parametersi; is chosen in such a way that:

1) One, and only one, of these matrices is the unit métrik is customary
to define the parameters; in such a way thatu(0,0,...) = 1.

2) Every product of two matrices also is a member of that set of matrices.

3) Every matrix of the set has a unigue inveisdhat set, that is, for every
choice of the parameters;, there also are parameteBs, in the given
domain of definition, such thabl(a;,az,...)U(A,B2,...) =1

The fourth characteristic property of a group, which is the associative law,
A(BC) = (AB)C, is automatically satisfied by matrices.

Exercise 8.2 Give examples of continuous transformations which do not
satisfy one or more of the above criteria, if the domain of definition of the
parameters is not properly chosen.

A unitary matrix which is nearly equal to the unit matrix corresponds to
an infinitesimal transformation (the unit matrix itself generates thelentity
transformation). The importance of infinitesimal transformations stems from
the fact that any finite unitary transformation can be obtained by exponentia-
tion of an infinitesimal one. For example, a finite rotation in the complex plane
is represented by a factet®, which is the limit of (1 4+ i8/N)¥, for N — co.

In this caselU =€ is a trivial unitary matrix of order 1. More generally, for
any Hermitian matrixH,

4G. Emch and C. Piron). Math. Phys. 4 (1963) 469.
SN. Gisin, Am. J. Phys. 61 (1993) 86.



Continuous transformations 221

U=eM= dim (1 —iH/N)Y, (8.26)
is a unitary matrix, as can easily be seen by writing this equation in the basi

which diagonalizesH (and therefore also diagonalizék). Actually, it is often
more convenient to use thantihermitian matrix A = — H, and to write

U=ef=T14+A+1A24... (At = -A). (8.27)

Transformations of operators
If we take a new basis for parametrizing the Hilbert spdce the components

of the state vectorp undergo a unitary mappingy — ¥’ = Uy | as we have
seen in Eq. (3.8). The corresponding transformation law of operators is

Q-9 =UQut, (passive transformation) (8.28)
so that the mean valugs, Q¢) remain invariant. Indeed, these average value
which are experimentally observable, cannot depend on the arbitrary choice
a basis foH (see also page 65). More generally, any matrix elemenfly) is
invariant under a passive transformation.

Exercise 8.3 Show directly from Eqg. (8.27) that the transformation law of
operators can be written as

AQe A =Q+[AQ+ 1A AQ]+--. (8.29)
What is the next term of this expansion?

Here is an alternative proof of (8.29). Define

Q) =M e A, (8.30)
where \ is a real parameter. As a result dfet*)/dA = +Ae* | we have
dQ(N)/dx = [A, Q(N)]. (8.31)

The solution of this operator valued differential equation, subject to the initial
condition Q(0) =Q, is

Q) = Q+[A A2+ 102A, Q] + -], (8.32)

as you can easily verify by differentiating the right hand side of (8.32) with
respect to\. SettingA = 1 in this solution gives Eq. (8.29).
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Recall that the above equations refer to the behavior of operators (that is
of finite or infinite matrices) undepassive transformations (changes of basis
in Hilbert space). On the other hand, if the mapping> ¢’ = Uy is due
to anactive transformation—i.e, an actual change of the state of the physical
system, while the basis fdd remains the same—the matrices that we use for
representing physical observables remain unchanged. For example, when w
describe the precession of a séirparticle in a magnetic field, the components
of the spinory evolve in time, but the Paui matrices do not. Then, obviously,
the observable mean valugs o)  evolve in time, as a consequence of the acti
transformation imposed on the state

Heisenberg picture

There is another way of describirggtive transformations, which bears the
nameHeisenberg picture.6 Instead of transforming the vectors, one transforms
the operators,

Q- Qqu=UtQU, (active transformation) (8.33)
so that the resulting mean value,
(%, Qu ) = (%, UTQU %) = (Uyp, Q Uy), (8.34)

is the same as when we hgd— ¥’ = Uy and we Kepinchanged. Note that
the transformation law (8.33) is ttepposite of the one for passive transforma-
tions, Eq. (8.28). The two laws are always opposite when there is a symmetry
as we have seen for the active and passive transformations (8.1) and (8.2), whic
are the inverse of each other.

You may perhaps think that the Heisenberg picture, whieie fixed and
Q is transformed, is contrived and unnatural. Actually, the Heisenberg picture
is closer to the spirit of classical physics, whegmamical variables undergo
canonical transformations. The point is that a state veptowhose role is to
represent a preparation procedure, has no classical d@n@lngthe other hand,
guantum observables may have, under appropriate circumstances, properties
similar to those of classical canonical variables. The relationship between then
is best seen in the Heisenberg picture, where quantum properties can sometim
be conjectured on the basis of analogies with classical models. However, yol
must be very circumspect if you want to use these semiclassical arguments, b
cause there is no formal correspondence between classical and quantum physic
This issue will be further discussed in Chapter 10.

6 The term "Heisenberg picture” is usually given to the unitary transformation generated by
the passage of time. Here, | use it in a more general way for arbitrary unitary transformations.
"To be sure, the quantum density matrix, which = @ @t for a pure state, bears some

analogy to the classical Liouville density in phase space.
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Generators of continuous transformations

Consider a transformation which depends on a single paramgeteuch as a
rotation around a fixed axis, which is defined by a single angle. The paramete
a, in U(a), may be the rotation angle itself but, more generally, it could be
any function of that angle. Therefore, the result of two consecutive rotations
is, in general,U(a”)U(a’) = U(f(a”,a’)). Obviously, it is advantageous to
choose the parameter proportional to the rotation angle, so as to have simply
U(e)U(a’) = U(a” + o) . We can then write

U(a) = et = ¢~iG, (8.35)

where G is independent ofi. The Hermitian operato6 is called thegenerator
of the continuous transformatiod (a). Generators of transformations that
correspond to symmetry properties often have a simple physical meaning, suc
as energy, momentum, electric charge, and so on (these quantities must |
expressed in appropriate units, of course).

When there are several independent parameters, as in a three dimensior
rotation which depends on three angles, the choice of a good parametrizatic
is not trivial. Here is an example:

Exercise 8.4 Euler angles, ¢, 6, and ), are commonly used for parametrizing
three dimensional rotations. Show that two consecutive rotations by the same
angle, around the same axis in space, are not equivalent to doubling the values
of the Euler angles: U(2¢,26,2¢) # [U(¢, 6, %)) *

We see from this exercise that(¢,0,p) cannot be written as in (8.35), with
an operatorA which is a linear combination o§, 8, andy . More suitable
parameters, for our present purpose, are the components of an axial wector
whose direction is that of the rotation axis, and whose magnitude is that of th
rotation angle. Then, by definitiotl(2a) = [U(«)]* . More generally, we have,
as in Eq. (8.35)U =e”, with A = —i ¥ a, J.. The physical meaning of the
generatorsJ, is that of angular momentum components, in unitsh ofThis
matter will be further discussed in Sect. 8-5.

Consecutive transformations

Let us now investigate the result of two consecutive, noncommuting unitary
transformations,e” and eB. Note that if [A,B] # O, thene” and €® do not in
general commute, but theege exceptions, as in the following exercise:

Exercise 8.5 Show that, if [x,p] = iRl then [e2"™*/e enaP/A] = O, for any
integers m and n. *

Exercise 8.6 Further show that the set of operators e2*imx/a and e#P/% | for
all integral m and n, is a complete set of commuting operators.8 X %

8J. Zak, Phys. Rev. Lett. 19 (1967) 1385.
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Returning to the general case of noncommutifigand e, let us introduce
a continuous parameteér, as in Eg. (8.30). We have, up to second ordek jn

e BB A L gy 2 [B,A] ~ N IBA] (8.36)

This relationship will be very useful, because it allows one to obtain the value
of the commutator A,B] without having to refer to thesxplicit form of the
matrices A and B (see Sect. 8-5).

Exercise 8.7 Show that

e Be QM8 _ e Me2B 0 B ~ 32 ([B, (A, Q] - (A, [B,9]))

= —AZ[[A,B],Q] ~ e~V ABIQ *IABI _ o (8.37)

Hint: Use Eq. (8.29) and the identity

[[A,B],C] +{[B,C],Al + [[C,A],B] = O. (8.38)
Exercise 8.8 Show that the next term of the power expansion in (8.36) is
32 {[A[A,B]] - [B,[B,A]]}.  «
Correspondence with Poisson brackets

The identity (8.38) is formally the same as Jacobi's identity for Poisson
brackets® There are other commutator identities which are formally similar
to identities for Poisson brackets, in particular

{A,BC] = [A,B]C+ BIA, (], (8.39)
and
[AB,C]=A[B,C] +[A,(]B. (8.40)

The factor ordering must be carefully respected in the quantum version—it is
of course irrelevant for the classical Poisson brackets.
The correspondence rule suggested by these examples is

{4, B),; — [A,B]/ih. (8.41)

The rule obviously works ifA and B are Cartesian coordinates and momenta,
or linear or quadratic functions thereof. However, there is in general no stric
correspondence between quantum commutators and classical Poisson bracke
For example, the null commutator in Exercise 8.5 has a nonvanishing Poisso
bracket counterpart.

9H. Goldstein, Classical Mechanics, Addison-Wesley, Reading (1980) p. 399.
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8-4. The momentum operator

Consider an active translatiorn - X + a. The quantum system is transported
through a distanca. What happens to its wave function?

To give a meaning to this question, we must first specify the basis usec
for parametrizing the Hilbert spadd. Let us, for instance, represeit by
functions of x, with inner product

(u,v) = /j:omv(z)d:c (4.53)

This is called thex-representation oH. Its physical meaning is illustrated in
Fig. 4.3(a), page 100.

Due to translation symmetry, a displacement of the quantum system by
distancea is indistinguishable from a displacement of the origin of coordinates
by —a. The latter is a passive transformation, a mere substitution of variables
X = X — a. We may therefore be tempted to write the transformation law of
state vectors a¥(x) - Uv(x) =v(x—a). For example, a Gaussian function
e=** becomes~=-%*, so that its peak moves froms Oto x = a, and the
system indeed moves through a distan@e MWhen you deal with symmetry
transformations, you must be even more careful than usual with + signs!)

Actually, the situation is more complicated. The state veefer) is not a
classical scalar field, having at each point of space an objective numerical value
invariant under a transformation of coordinates. Quantum state vectors ar
defined in a Hilbert spacél. When we perform a passive transformation in
that space, each one of the new basis vectors may be multiplied by an arbitra
phase (a different phase for each vector). In threpresentation oH that we
are presently using, there are, strictly speaking, no basis vectors (because t
vector indexx takes continuous values), but the above arbitrariness still exists.
The most general expression for a shift in the coordindtais is:

v(z) — V'(z) = Uv{(z) = *® y(z — a), (8.42)
which involves an arbitrary phase functiagx).

Exercise 8.9 Show that the transformation (8.42) is unitary, and that the
n-th moment of the position operator x behaves as

(v,x*v) — (V,x"V') = (v,(x + a)*v). (8.43)
Exercise 8.10 Show that, with U defined as in (8.42), x transforms as
x — UxUt=x—a. (8.44)

Are you puzzled by the minus sign in Eq. (8.44)? It is not a misprint. The
system is without any doubt transported through the distarge as clearly
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seen in Eq. (8.43). The point is that the symkadh (8.43) and (8.44) is

not the numerical value of the position of a classical particle. This symbol
represents amperator (a matrix of infinite order) in Hilbert space. The physical
meaning ofx is derived from its matrix representation, or its functional form.
In our present basis, labelled by the position observablg is represented by

a multiplication byx. The meaning of Eq. (8.44) is that, if we go over to a
new basis in Hilbert space, by means of the unitary transforméltiothen the
same position observable is represented by a multiplicationxoy @). And if we
perform both the active transformation (8.42) and the passive transformatior
(8.44), observable mean values remain invariant, as they should.

Exercise 8.11 Show that the active transformation for X is
x - xg=UxU=x+a. (8.45)

By now, you should be convinced that it is the Heisenberg picture for operator
transformations that is closest to the classical formalism.

Returning to Eg. (8.42), it is natural to redefine the phase of the transportec
statev'(x) so as to simply have'(x) = v(x — a). If we adopt this convention,
and the state functiok(x) can be expanded into a power series, we obtain

2
v(z —a) = v(z) — a;; v(z)+1 (—a dia;) v(iz)+---. (8.46)

This can be symbolically written as®#/4=v(z), so that we haveUis e”,
A = —ia(—id/dz). (8.47)

We thus see that, in the-representation, the generator of translations is the
self-adjoint operator—id/dx.

Unitary equivalence

The most general unitary representation of a translation is Eq. (8.42), whicl
involves an arbitrary phase functiap(x). It can be considered as consisting of
two successive transformations: the first one is generated by the op&rator
(8.47), and the second one is a multiplication é¥*), which also is a unitary
transformation. This second step is similar to a change of gauge in classice
electromagnetic theory.

The most general expression for the translation generator thus is

kg = @) (—id/dz) e ) = ~id/dz — dé(z)/dx . (8.48)
Its generalization to three dimensions is

€40 (—i V) e ) = iV — V(r). (8.49)
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Exercise 8.12 Verify that the x, y, and z components of (8.49) commute.

There can be no doubt thht, is abona fide translation operator, whatever
we choose as the phase functigfx). It fulfills the canonical commutation
relation Ky, X] = —, or more generally[kq, f(z)] = —if'(z). Therefore the
unitary operatoil = e~**ks satisfiesU'xU = x+a , exactly as in Eq. (8.45). On
the other handk ¢ is different from —id/dx = ko, that appears in Eq. (8.47).
More generally, for every different choice of the phase functfr), there is a
genuinely different operatok, . In particular, the same state vectx), in a
given Hilbert spaceH, will yield different mean valuek,[l

One may therefore be tempted to ask whether there is a “true” operato
U(a), which represents the translation through a given distaaceNatural
as this question may seem, it is meaningless. You wouldn’'t ask what is the
correct form of the three spin matricdg: there would be an infinite number
of answers, depending on the choice of a basis in spin space. In the prese
case, where state vectors are represented by wave funefioynsthere is at
each point of thex axis a phase ambiguity in the definition of the Hilbert
space basis. Therefore the functional form of the translation operator cannc
be unique. Indeed, the most general definitionUga), namely,

Ut(a) (x) U(a) = £(x + a), (8.50)

is obviously invariant under the substitutitifa) — U(a) e#*).

It is essential to clearly distinguish two types of unitary equivalence. There
is the trivial equivalence due to a change of basis in Hilbert space (a passiv
transformation). For example, the thrdg matrices in Eq. (7.26), which are
antisymmetric and pure imaginary, are equivalent to, and are as legitimate a
the standard form of th&, matrices found in all elementary textbooks, with
diagonal, andJy real and symmetric.

On the other hand, in given Hilbert space, with a fixed basis, active
unitary transformation, such as the one in Eq. (8.42), definitely produces :
new physical situation. In that case, the formal unitary equivalence of two
operators certainly doermot imply their equivalence from the point of view of
physics.}? For example, there is a unitary transformation converfipgnto Jy,
but, in the given basis, the symbalg andJ, havedifferent physical meanings.
There also is a unitary transformation (or, for that matter, a classical canonice
transformation) convertinginto p (both defined on the real axis). Yet, these
two dynamical variables are of a completely different nature.

We thus see that, while there can be no unique solution to the problem c
finding an operatotJ(a) which satisfies (8.50), this nonunigueness is essentially
irrelevant. The problem is the same as if we were asked to find Jhnemtrices
with the commutation relations of angular momenta: there is an infinity of
different, but unitarily equivalent solutions. It may sometimes be necessary fc
choose explicitly one of them, in order to perform our calculations, just as it

0R, Fong and J. Suched, Math. Phys. 5 (1964) 456.
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is necessary to choose a language in order to write a book on quantum theon
However, the choice of a particular form fdr, whether the standard one with
J; diagonal, or the one used in Eq. (7.26), or any other one, can only be a matte
of taste, or of momentary convenience. This arbitrary choice cannot have an
observable consequence, unless there are other physical data which explicit
refer to a particular basis in Hilbert space.

To conclude this discussion: It is simplest and most natural to chadsex—
as the generator of translations along theaxis. That is, we shall choose
ko among all the unitarily equivalent operatdkg, if we are compelled to
make an explicit choice between them. Actually, this necessity rarely happens
In any case, the arbitrariness in this choice has no consequence on physic
observations.

Correspondence with classical mechanics

It is customary to multiply the translation operatoid#dx by i and to call
the productmomentum. The reason for this name is that if a quantum system
has a classical analog, and if its stgtéx) is a roughly localized wave packet,
the average value of the observablgd{dx indeed corresponds to the classical
momentum. This may be seen from de Broglie’s formula

Ap=h. (8.51)

Planck’s constanth = 2xA , which appears in de Broglie’'s formula, is used for
linking classical mechanics and quantum mechanics. It never has any othe
role, and in particular it is never needed for formulating the laws of quantum
theory itself. It only is aconversion factor that we use if we wish to express
the translation operator, ig/dx, in units of momentum rather than of inverse
length, or for specifying a frequency in units of energy, and so on. The status
of % is similar to that of the velocity of light in relativity theory, where time
can be measured in units of length, and mass in units of energy.

In the SI units used in everyday's life, >~ 3 x 10®m/s is a fairly large
number, and% ~ 107Js is exceedingly smdf. Therefore, a typical value
of linear momentum for a macroscopic b&tdynakes itsA so small that it is
practically impossible to observe the wave propagation properties of that body
And conversely, values ok that are common on the human scale (for electro-
magnetic waves, say) correspond to momenta so small that recoil effects due 1
individual photons are hard to detect.

There are nonetheless borderline cases where particles are prepared with
well defined momentum (according to a classical description of the preparatior
procedure) and then these particles diffract like waves, so that de Broglie’s
formula Ap = his experimentally verifiable. For example, electrons launched

11The conversion factohc™ 2~ 7x 10755 kg/Hz is just ridiculous.
12, Zeilinger, Am. J. Phys. 58 (1990) 103.
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with an energy of 100 eV have a wavelengtk 1.23 A, comparable to crystal
lattice spacings. Neutrons with energy around 0.03 eV are copiously produce
in nuclear reactors (in thermal units, 0.03 leyY£E 348 K). The corresponding
wavelength is 1.65 A. These neutrons are routinely used for solid state studie
Their wavelike diffraction by the crystalline lattice may be elastic, as for X-rays.
However, the same waves may also be scattered inelastically, and then tl
neutrons behave just as ordinary particles, exchanging energy and momentt
with the elastic vibration modes of the lattice.

Warning: The so-called principle of correspondence, which relates classical an
quantum dynamics, is tricky and elusive. Quantum mechanics is formulated in
separable Hilbert space and it has a fundamentally discrete character. Classi
mechanics is intrinsically continuous. Therefore, any correspondence betwee
them is necessarily fuzzy. | shall return to this problem in Chapter 10.

8-5. The Euclidean group

The Euclidean group consists of all possible rigid motions (translations anc
rotations) in the ordinary Euclidean three dimensional spéelf we ignore
distortions of the spacetime geometry due to gravitational effects, the physice
space in which we live has a Euclidean structure. Therefore, the Euclidea
group corresponds to physical symmetry, and rigid motions are represented
by unitary matrices in the quantum mechanical Hilbert space.

Dynamical variables vs external parameters

We have just created an exquisite fiction: a perfectly empty space which i
rigorously symmetric. There is nothing in it to indicate where to put the origin
of a Cartesian coordinate system, and how to orient its axes. The laws
physics, Maxwell's equations say, are written in the same way in all these ment
coordinate systems. However, when we clutter our pristine space with materi
objects (buildings, magnets, particle detectors and the like) we destroy the
symmetry. It then becomes possible to say that the origin ofxyheaxes is
located at this particular corner in our laboratory, and that the axes are paralls
to specified walls.

Yet the symmetry is not completely lost—it only is more complicated. If we
carefully move the entire building, with the magnets and the particle detectors
and the coordinate system which was fastened to the walls of the experiment
hall (this Herculean job is passive transformation) and if we likewise move
all the particles for which we are writing a Schrédinger equation (this is the
active transformation) then the new form of the Schrddinger equation is the
same as the old form. It is impossible to infer, just by observing the behavio
of the quantum particles, that the building and all its equipment have bee
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transported elsewhere, and the quantum particles too.

We shall therefore distinguish two classes of physical objects. Those whos
behavior we are investigating are describeddggamical variables;, they obey
Newton’s equations, or the Schrédinger equation, or any other appropriate equ
tions of motion. For these dynamical variables, a symmetry is represented b
a canonical transformation in classical physics, or a unitary transformation in
guantum theory. And, on the other hand, there are auxiliary objects (magnet:
detectors, etc.) whose properties are supposedly known, and whose behavi
can be arbitrarily prescribed. These objects moedescribed by dynamical
variables and they doot obey equations of motion. Their motion, if any, is
specified by us.

Depending on the level of accuracy that we demandsdhe object may be
considered either as part of the dynamical system for which we write equation:
of motion, or as something external to it, specified by nondynamical variables.
For example, in the most elementary treatment of the hydrogen atom, there
is a point-like proton, located at a given positidd, and represented by a
fixed Coulomb potentialyV = —€?/|R — r |. Only the components af (the
position of the electron) are considered as dynamical variables. ThoReard
external parameters. In a more accurate treatment, the componeRt$oof
are dynamical variables, and the proton is a full partner in the hydrogen aton
dynamics. In that case, it is obvious th& € r) is invariant under a rigid
translation of the atomR - R+aandr - r +a.

However, even in the hybrid description, where onlis dynamical andR
is an externally controlled parameter, there still is a well defined meaning to
translation invariance. Namely, a translation by a veetdnvolves two oper-
ations: a unitary transformatiow(r ) — U(a)w(r) for the quantum variables,
and an ordinary substitution of the classical variables, the pararRebering
replaced byR + a. The Hamiltonian of the hydrogen atom is invariant under
this combined transformation.

Translations

The active transformation shown in Fig. 8.2,

r 2 ¢ =r+a, (8.52)

is represented in quantum theory by a unitary operbia) = e”. Likewise,

a rigid translation by a vectdo (not shown in the figure) is represented by
U(b) = €. The explicit form of these operators depends on the way we de-
fine the Hilbert space of states, and in particular on the number and type of
particles in the physical system. However, even without specifgirand B
explicitly, we can obtain the commutatdk,B] from Eq. (8.36), except for an
arbitrary additive numerical constant. In the present case, the use of Eq. (8.3€
is particularly simple, because translations &#ynd b commute. We have
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Fig. 8.2. Equivalent active and passive rigid translations of a hand symbol.

r—"—\ar’:r+a——B—>r"=r'+b=r+a+b
Ao _a=r+b B _p=-r. (853

This brings the point (any point) back to its original position. It follows that
the left hand side of Eq. (8.36) may be either 1 or, more generally, a phas
factor depending oraandb. (Recall the discussion in the preceding section:
state vectors are defined only up to an arbitrary phase.)

We can therefore writeA,B] = i K(a,b) 1, where K(a,b) = K (b,a) is
a numerical coefficient that we still have to specify. It is obviously simplest
to postulate thaK = 0. For example, if there is a single particle, and if its
state is described in the coordinate representation by a wave fuggtipn it is
natural to takeA = —a -0 and B = —b - 00, or more general expressions as in
Eq. (8.49), all of which giv&K = 0. This is not, however, the only possibility,
as the following exercise shows.

Exercise 8.13 For a single particle in three dimensional space, let
A= —iZampm/h = —ia«(—-iV—%er), (8.54)
where V is an arbitrary constant vector, having the dimensions of an inverse

area. Show that the self-adjoint operators pm defined by this equation satisfy
[Pm,%n] = —théms , @s any translation operator should. Show moreover that

(Pm:Pn) =A% Y €mns Vo 1L (8.55)

where Omns 1S the totally antisymmetric symbol defined by Eqg. (8.57) below.

Exercise 8.14 With the above definition of a translation operator, show that
if a guantum system is transported along a closed loop, it will return to its
original position with its state vector multiplied by a phase factor €V , where
A =% §r x dr is the area enclosed by the loop. *
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Note that the translation operatggs defined by Eq. (8.54) and associated
with different vectorsV arenot unitarily equivalent!® This is obvious from the
fact that they have different commutators in Eq. (8.55). Therefore, thgse
correspond to genuinely different specifications for the transport process of a
guantum system: the transport law explicitly involves the vewtorThis obvi-
ously breaks rotational symmetry, but not translational symmetry (for example,
translation invariance isiot broken by the presence of a uniform magnetic field
throughout space). We shall soon see how dtditional requirement of rota-
tional symmetry will formally result inv = 0.

Rotations

A rotation is a linear transformation which leaves invariant the scalar product
of two vectors,r -s = Y rnSn. A general infinitesimal linear transformation
modifies vector components by, =Y rn Qum and ds,m =Y Sn Qpm, Where

the matrix element€2 ,, are infinitesimal. We thus obtain

8 tmsm = (TnSm + T 5n) D - (8.56)

We have a rotation if the above expression vanishes for avands. This
implies thatQ ., = —Qnm. In the case of a three dimensional space, it is
convenient to introduce a totally antisymmetric symbgl.s whose only non-
vanishing elements are

€123 = €331 = €312 = 1 and €321 = €132 = €313 = —1 (8.57)

We can then writeQ ,y =5 Oyms s, Where the components ofs are three
independent infinitesimal parameters. Their geometrical meaning is that of
Cartesian components of an infinitesimal rotation angle (see next exercise). We
have &rm= Y rnOmmsOs, OF, in the standard vector notation,

r - r+ér=r+(axr)+0(a?). (8.58)

Exercise 8.15 Show that a rotation by a finite angle is given by

sin -~ COS &

r - r=r+ 0{(oz><r)+1
[ 4

— [a x (a x r)]. (8.59)
The direction of the vector o is that of the rotation axis, and its magnitude o
is equal to the rotation angle around that axis. *

Exercise 8.16 Show that the angular velocity vector w, which is defined by
the relationship r = w X r, is not the time derivative of the rotation vector o
defined above, but is given byl4

3They differ in that respect from the one-dimensional translation operatogsin Eq. (8.48),
which were unitarily equivalent.
14A. Peres,Am. J. Phys. 48 (1980) 70.
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R 1 —cosa . a — sina
w=a+——F (@ xa)+———
@

= la x (o x &)). * % (8.60)
To obtain the commutation relations of rotation operators, let us consider

four successive rotations, by infinitesimal angles o, B, —a, and —f3, just as we

did for consecutive trandations. Any point r moves along the following path:

r A r=r+(axr)

=N rf’'=r+Bxr)y=r+(axr)+(Bxr)+Bx(axr)

A M=r—(axr)=r+(@xr)+B8x(axr)—ax(fxr)
=B Bxr)=r+Bx(axr)—ax(Bxr). (8.61)
In this calculation, we have retained terms proportional to af3, but ignored

those proportional to a2 and B2, because the latter do not appear in the fina
result in Eqg. (8.36). We now use the vector identity

ax(Bxr)+B8x{rxa)+rx(axf)=0, (8.62)
and we see that the final result in (8.61) is an infinitesimal rotation
r - r+(8xa)xr. (8.63)

Recall that, in al the preceding discussion, r was an ordinary geometrical
point, not a quantum operator. In quantum theory, we assume that the unitary
transformations e” and eB, corresponding to the above rotations, are generated
by linear combinations of o, and Bn:

A=Y anln/ik and B =738 J./ik. (8.64)

The operators Jx are Hermitian, and a factor # was introduced to give them
the dimensions of angular momentum components (because of their analogy
with the generators of classical canonical transformations). We thus obtain, by
comparing Egs. (8.36) and (8.63),

[Z /Bn Jn s Zam Jm] =1h E €nms ﬂn (42 Ja . (865)

nms

Since this relationship has to be valid for every a and (3, it follows that

UmyJnl =ik Y €mns ds - (8.66)

Here, you could object that the value of [B, A] which can be inferred from
the geometrical meaning of the left hand side of Eq. (8.36) is determined only
up to an arbitrary additive numerical constant, because of the phase ambiguity
inevitably associated with any sequence of active transformations. Therefore
the right hand side of Eq. (8.66) should have been written, more generally, as
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iR Y €mns (Js + ws1), where the wg are three c-numbers, like Vs in Eq. (8.55).
However, in the present case, this ambiguity can easily be removed by adjusting
the phase of the rotation operator '@ J/& . This is equivalent to redefining
Js+ Wl asanew Jg, which restores the standard commutation relation (8.66).

Rotations and translations

Finally, in order to obtain the commutator [Jm,pn], we consider infinitesimal
rotations +a, dternating with infinitesimal trandations b, as sketched in
Fig. 8.3. We have (ignoring as before terms of order a?2)

r — r=r+(axr)
B, =r'+b=r+(axxr)+b
A r"=r'~(axr)=r+b—-(axb)
-8, v =r"-b=r-(axb). (8.67)

The result of these four successive transformations is a trandation by the in-
finitesimal vector —a x f3.

’ F—03,

N\

il

Fig. 8.3. A rotation by a small angle a (around the origin of coordinates) is
followed by a trandation by a small vector b, then a rotation by —a, and
findly a translation by —b. The final result is a trandation that is amost
equal to b x a (it would be exactly equa if o and b were truly infinitesmal).

In quantum theory, these geometrical operations are represented by unitary
operators e*A and e*B, with

A= anln/ik and B = b,pa/ik (8.68)
Invoking again Eqg. (8.36), we obtain

(b0 Pns 3 mdm| = =15 Y €ms @ b Py (8:69)

mns
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Since this is valid for every am and by, it follows that
[Jm ’ pn] = 1h Z €mns Ps - (870)

As in the previous case, we could have added an arbitrary multiple of 1 to
the right hand side of (8.69), because of the phase arbitrariness accompanying
any active transformation. Then, on the right hand side of (8.70), we would
have (ps +ws 1) instead of ps. And, exactly as in the preceding case, we could
then adjust the phase of e~'®"P/% 5o as to redefine (ps+ws 1) as being the new
ps, thereby regaining the standard commutation relation (8.70).

However, we still have to dispose of the arbitrary vector V on the right hand
side of Eqg. (8.55). The latter cannot be eliminated by redefining phases. It
is intuitively obvious that such a fixed vector is incompatible with rotationa
invariance. This can aso be shown formally, from Jacobi’s identity (8.38):

[Pm s Pals J6] + [[Jks Py Pr] + [[Pns di)s Pm] = O. (8.71)

By virtue of Egs. (8.55) and (8.70), this identity becomes

O+ Z €kms [Pa s pn] + Z €nks [Psa Pm] = 01 (872)

and one more substitution in (8.55) gives

E (ekms €snr + €nks e.gm,v-) ‘/r - 0- (8.73)
Taking for example k = m # n, we obtain V,= 0. Therefore finaly,

[Pm,pn] = O. (8.74)

Remark: It is amusing that this argument would not hold in a two dimensional
space where there is no O, Symbol. In a plane, the only generators of the
Euclidean group are py,py, andJ =J,, with commutation relations

J,p:] =ihp, and [J,p,] = —thps. (8.75)

No algebraic contradiction results from assuming that [p,, p,] = V1 #O.
There still is a difficulty with the reflection symmetry x ~ ywhich changes
the sign of [py, py] but cannot change the sign of iVL, if this reflection is
represented by a unitary transformation.’® This till leaves one possibility: the
physical constant V, which commutes with p,, and with J, may change sign
under a reflection of the Euclidean plane.

15 Don't speculate on representing it by an antiunitary transformation. While this solution is
allowed by Wigner's theorem, it is ruled out by dynamical considerations, as will be shown at
the end of this chapter.
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Exercise 8.17 Discuss the use of the commutation relations (8.55) and (8.75)
for describing the motion of a charged particle in a plane, in the presence of a
uniform magnetic field perpendicular to that plane. x

Vector and tensor operators

We are now employing two completely different types of spaces. One of them is
the geometrical space R3in which we live, and which has the Euclidean group
symmetry. The other one is an abstract infinite dimensional Hilbert space H
that we use to formulate quantum theory. Vectors in H represent quantum
states, and Hermitian operators in H correspond to observables. A rotation in
R3 is represented in H by the unitary transformation (8.33). If that rotation
is infinitesimal, namely U ~ 1 —:«-J/h, an observable Q changes by

Q=0 —Q=i[aJ,Q)/h (8.76)

The result depends on the geometrical nature of Q. The most common cases
are:

Scalar operators, which behave as operators in H, and as scalars in R3. These
are the operators which commute with Jx and therefore are invariant under
rotations. For example p?:= 3 p2 and J2:=3 JZ ae scdars. (The word
“operator” is usually omitted in this context, if no confusion is likely to arise.)

Vector operators are triads of observables V, having commutation relations

Uy Val =R 3 €mns Vs . (8.77)

Examples of vectors (that is, of vector operators) are Xn, Pn, Jdn-

Exercise 8.18 Show that if A, and B,, are vectors, then Y A By, isa scalar.
Conversely, if Ay is a vector and Y A,By, is a scalar, then By, is a vector.

Exercise 8.19 Show that if A, and B, are vector operators, then

Co=) €wmnAnBa, (8.78)

is a vector operator.

Tensor operators behave under rotations as products of vector components. For
example, the nine operators T;s .= A(Bs (r,s=1, 2, 3) satisfy

[Jm ) TTS] = Zh Z (emrn THS + emsn TTTL)' (8'79)

Higher order tensors, with more than two indices, are occasionaly needed.
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8-6. Quantum dynamics

A translation in time also is a symmetry: it is impossible to distinguish the
description of an experiment performed on a given day from the description
of a similar experiment performed on any other day. The laws of nature are
invariant in time (though very slow changes, on a cosmological scale, cannot be
completely ruled out). An active trandlation in time amounts to nothing more
than waiting while the dynamical evolution proceeds. A passive transformation
is a resetting of the clock, t - t'=t—1.

Exercise 8.20 Draw figures illustrating active and passive translations in
time.

How does a quantum state evolve in time? A reasonable extrapolation from
known empirical facts (such as the success of long range interferometry) suggests
the following rule:

Quantum determinism. In a perfectly reproducible
environment, a pure state evolves into a pure state.

This means that if at time t; there was a maximal test for which the quantum
system gave a predictable outcome, then at time t, >t; there will also be
amaximal test—usually a different one—for which that system will give a
predictable outcome. For the other maximal tests that can be performed at
time ty, only the probabilities of the various outcomes are predictable.

In order to verify quantum determinism, the environment must be severely
controlled. For instance, consider the precession, in the magnetic field of the
Earth, of a silver atom moving between two consecutive Stern-Gerlach appara-
tuses, as in Fig. 2.2. To obtain a pure spin state at the entrance of the second
Stern-Gerlach magnet, the magnetic field between the two apparatuses must
be stabilized with enough accuracy to ensure a reproducible precession of the
silver atom. An estimation of this accuracy is proposed as an exercise:

Exercise 8.21 Estimate the order of magnitude of the precession angle if the
two Sern-Gerlach magnets are 10 cm apart and the magnetic field of the Earth
is not shielded. How precisely must that magnetic field be controlled to make
the spin precession predictable with an accuracy of 1°?

Exercise 8.22 In the Michelson-Morley historic experiment, how precisely
was it necessary to stabilize the ambient temperature, so that the position of
the interference fringes would not be affected by the thermal expansion of the
interferometer?

In this book, | usualy consider ideal experiments, executed in a perfectly
controlled and accurately known environment. The consequences of a nonideal
environment on quantum dynamics will be examined in Chapter 11. It will be
no surprise then to find that a pure state may evolve into a mixture.
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Unitary evolution

Quantum dynamics deals with the evolution of quantum states, v{t1) — v(t2)-
You know for sure that this is a unitary transformation,

v(t2) = U(ts, 1) v(t), (8.80)
and that the unitary operators U(tm, tn) satisfy the group property:
U(ts,t1) = U(Es,t2) U(ta, th). (8.81)

You perhaps have read that it must be so, because symmetries are represented
by unitary transformations. However, this claim is not valid, because time is
not a dynamica variable, like position. In the dynamical formalism, whether
classical or quantal, t appears as an ordinary number and has vanishing Poisson
brackets, or commutators, with every dynamical variable or observable.

The fundamental difference between space trandations and time translations
can be seen as follows. A passive space trandation, X - x—a, iS a mere change
of labels, P (X) - Y(x—a), similar to a shift um, - U m.n for discrete indices.
The scalar product,

/:; H(x—a)Y(z —a)dz = /_: ¢(_z'5¢v(a:)da:, (8.82)

is not affected by this relabelling. Therefore this transformation is unitary. It is
so because the observable values of x serve as arguments in the functions Y(x)
used to represent the Hilbert space of states. The sum in Eqg. (8.82) runs over
these observable values.

None of these properties applies to a shift in time. We do not use functions
of time to represent quantum states, and we do not sum over values of time
to compute a scalar product. Therefore there is no reason to demand that a
trandation in time be represented by a unitary transformation.

Canonical formalism

A similar situation exists in classical mechanics. If we start from Newton's
second law, dp/dt = F, there is no reason to assume that there is a Hamiltonian
function, H(q,p), such that F = —0H/dq and dg/dt = 0H/d p. Other laws of
motion can as well be written. For example, we have

q(t) = e [¢(0) coswt + p(0) sin wt],
. (8.83)
p(t) = e [—¢(0) sinwt + p(0) cos wt],

for a damped harmonic oscillator. If the origina dynamical variables g(0) and
p(0) are used to define Poisson brackets, we obtain from (8.83)
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la(t), P(t))pp = e, (8.84)

S0 that q(t) and p(t) are not a pair of canonically conjugate variables. 6

Exercise 8.23 Show from (8.83) that dg/dt and dp/dt can be expressed as
functions of g and p, without involving explicitly the time t. It follows that there
are differential equations of motion which are invariant under a translation in
time, and have Eg. (8.83) as their solution.

The dissipative nature of the motion of a damped oscillator is solely due
to the incompleteness of the above description, which uses a single degree of
freedom. The damping force —yp has no fundamental character. It is only a
phenomenological expression, resulting from the time-averaged contributions of
an enormous number of inaccessible and “irrelevant” degrees of freedom which
belong to the damping medium.

On the other hand, it is commonly assumed that the fundamental laws of
classical physics are obtainable from a Lagrangian which includes all the degrees
of freedom. In the Lagrangian formulation, a trandation in time is a canonical
transformation, just as a translation in space, or as a rotation. This canonical
approach has important conceptual and computational advantages, and is also
systematically used in classica field theory.16

The Hamiltonian

By analogy with the classical formalism, we shall assume that the evolution of
a quantum state is given by the unitary transformation (8.80), satisfying the
group property (8.81), in the same way that translations and rotations in the
physical RS space are represented by unitary operators. Let us define

dUt(t, o)

H o= in G0 Gy 4y = in U(t, to) —

pr (8.85)

This self-adjoint operator is analogous to the Hamiltonian in classical theory,
because it generates the evolution in time, as shown in the following exercises.

Exercise 8.24 Show that iU = HU and —:AUt = UtH. Combining these
results with Eq. (8.80), derive the Schrodinger equation

thdv/dt =Hv. (8.86)
Exercise 8.25 Show from Eq. (8.85) that

. UR+ALH -1

16The reader who is not familiar with the classical canonical formalism should consult the
bibliography at the end of Chapter 1.
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It follows from Eq. (8.87) that H is independent of t;. Moreover, if the
physical system is not subject to time dependent external forces, H is also
independent of t, and the solution of Schrodinger's equation is'

v(t) = e~ R y(0). (8.88)
In that case, the unitary time evolution operator is
U(ta, 1) = ettt/ (8.89)

which obviously satisfies the group property (8.81).

Consider now the commutator [H,pn]. From the point of view of passive
transformations (i.e., the use of new space and time coordinates) it is obvious
that t - t— 1 commutes with r -~ r —a. We are therefore led to write

[H.pnl =O. © (8.90)

However, this eguation cannot be valid in general. For example, it does not
hold for a harmonic oscillator described by

H=p2/2m + kx2/2. (8.91)

Where is the falacy in the reasoning that led to Eg. (8.90)?

The point is that x is an operator, and we have, in the x-representation,
p = ~ih8/0z. On the other hand, tis not an operator, and H is not ¢hd/ot.
Although the differential operators d/dx and d/dt commute, p need not com-
mute with H. This is true even if we restrict our attention to wave functions
W(x t) which satisfy the Schrodinger equation ik = He. We can then write
the identity 8% /0 0t = 0% /0t Oz as

pHy = th d(p )/ 0L, (8.92)

but the right hand side of (8.92) is not equal to Hpy, unless py happens to be
a solution of the Schrédinger equation.

Exercise 8.26 Explain why there are opposite signs on the right hand sides
of e="H/%op(z,t) = (z,t + 1) and e P/ 3(z,t) = (z — a,t). In the first
case, the state Y (x, 1) is transformed into a later state of the same system; in
the second case, it is translated by a distance a into another position, such
that (™) — ((z + a)"). *

Note that the unitary transformation (8.88) does not represent the evolution of a physical
process, but only the evolution of what we can predict about it. Quantum theory does not give
a complete description of what is “really happening.” It only is the best description we can
give of what we actually see in nature.
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Let us return to the harmonic oscillator Hamiltonian (8.91). We may avoid
a violation of translational symmetry by introducing nondynamical external
parameters, as we have done in Sect. 8-5. Let us write the potential energy
as k(x; — z3)?/2, rather than kx%2. Here, x1 is an operator which represents
the instantaneous position of the oscillator, and x» is an ordinary number—the
classica equilibrium position. The latter is an external parameter. However,
we can aso use a more fundamental description, in which x» is a full-fledged
quantum dynamical variable, associated with a particle of very large mass,
my >> m (the mass of the oscillator is m1 = m). We then have

kx?

o Py P2 RO —xe)? LA
2u 2’

P2
T omy | 2ma 2 om t (8.93)

where M = m | + m, is the totd mass, g = mymy/(my+ms2) ~ my is the
reduced mass of the oscillator, and x = x1— X2 is its distance from the second
particle. The generator of translations, P = p; + p,, obviously commutes with
x and with the relative momentum

p = (mzp1 — my p2)/(m1 + my). (8.94)

In this complete description, free from nondynamical external parameters, we
have [H,P] = O. In the same manner, it can be shown that a free quantum
system satisfies [H,J,] = O.

Nonlinear variants of Schréddinger’s equation

The unitary evolution law (8.80) and the Schrodinger equation (8.86) could
not be formally derived by using only invariance under time translation. They
were postulated, by analogy with classical canonical dynamics. It is indeed not
difficult to invent nonlinear equations of evolution for the state vector. These
nonlinear variants of Schrodinger's equation are mathematically consistent, and
they can be ruled out only by introducing additional physical assumptions.

As an elementary example, let v = (g) be a two component state vector,

which | take here as real, to make things easier. Let H = kvte,va, , where oy
and ¢, are the usua Pauli matrices. Schddinger's equation becomes

. d (o 2 a2 !
za<ﬂ)=(a —ﬁ)ay<ﬂ). (8.95)

There is no explicit time dependence in this equation; it is manifestly invariant
under time translations. Explicitly, & = —(a* — %) and B = (a® — f?)a.
These equations are invariant under a « B. It is easily seen that ad + 88 = 0,
so that a2+ B2is constant. We also have

dla/B)[dt =1 — (a/B)?, (8.96)
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whence we obtain two families of solutions:
af/f =tanh(t —ts) if |of < |,

(8.97)
af/f =coth(t—t)) if |af >8]
In these solutions, tp is an integration constant which depends on the initial
conditions: at time t=to, we have a =0 or B = 0, respectively.

Exercise 8.27 Write explicitly the state vector (g) at time t, and show that
its time evolution is not a unitary transformation: the scalar product of two
different state vectors is not conserved in time.

There is no mathematical inconsistency in these results. However, they have
an unpleasant consequence: All the systems obeying Eq. (8.96), regardiess of
their initial preparation, converge to the same state, with a =3 = UV2. In
particular, systems prepared as a random mixture will evolve into that pure
state. The dynamical model proposed in Eq. (8.96) therefore violates the law
of conservation of ignorance (Postulate C, page 31). In the next chapter, it will
be proved quite generally that nonlinear variants of the Schrddinger equation
violate the second law of thermodynamics.

8-7. Heisenberg and Dirac pictures

In classical mechanics, the equations of motion are simplest when we use an
inertial frame of reference. Nevertheless, it is sometimes more convenient to
use a noninertial coordinate system, such as one which rotates with the Earth.
(For instance, artillery officers don't consider their guns and targets as being
constantly accelerated because of the rotation of the Earth. They rather use
an earthbound coordinate system, where guns and targets appear to be at rest.
Coriolis and centrifugal forces must then be added to gravity and aerodynamic
forces, to compute ballistic trgjectories.)

Likewise, it is often convenient to use time dependent bases in quantum
mechanics. Two methods are noteworthy and are discussed below. They are
known as the Heisenberg picture and the Dirac picture. The approach that was
presented in the preceding section is then called the Schrédinger picture.® The
spirit of Schrodinger’s picture is close to that of classical statistical mechanics,
where the Liouville density function satisfies a first order partial differential
equation. The Heisenberg picture, on the other hand, gives equations of motion
that look like Hamilton's equations in classical mechanics, but with commuta-
tors instead of Poisson brackets. Dirac’s picture has intermediate properties,
and is a useful tool in perturbation theory.

BIn the older literature, the term representation is used instead of picture.
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Heisenberg picture

The Heisenberg picture is obtained by making each basis vector e,, move ac-
cording to the Schroédinger equation (8.86), as if it were a state vector of the
quantum system under consideration. Therefore the components [&n,,vOof the
state vector v are constant. Another way of achieving the same result is to
define a “Heisenberg state vector”

vi := Ut(, 0) v(t) = U(to, t) v(t) = v(to). (8.98)

An ordinary state vector v, without label, is understood to be given in the
Schrédinger  picture.
One likewise defines Heisenberg observables

Au(t) == Ut(t, to) AU(t, o), (8.99)

as in Eq. (8.33). If A does not depend explicitly on time, this gives

% = UTAU + U'AU = UtU Ay + Ag UTU,

= Ay UTU — UtU Ay = [Ag, UTU], (8.100)

where use was made of UTU =1 and UU % UtU =0. The expression UU in
the last term is reminiscent of UUt = H/:k in Eq. (8.85) and is indeed closely
related to the Hamiltonian. We have

ih UtU = ih UTUUTU = UTHU = Hy. (8.101)

This is the Hamiltonian in the Heisenberg picture, defined as in Eqg. (8.99). It
coincides with H, the Schrédinger picture Hamiltonian, if and only if the latter
is time independent. In summary, we have

ihﬁ = [Ay, Hul. (8.102)
dt
This is the Heisenberg equation of motion for quantum observables. It is similar
to the classical equation of motion, expressed with Poisson brackets.

Note that these results are valid for operators that do not depend explicitly
on time, when written in the Schrodinger picture. For example, p = —d /0x
does not depend explicitly on time. Therefore, in the Heisenberg picture, we

have ih de/dt = [pH, H}{]

Constants of the motion

Operators whose matrix elements are independent of time, in the Heisenberg
picture, are caled constants of the motion. Their mean values—and all their
higher moments—are constant in time. For instance, if there are no external
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forces or torques acting on the physical system, the generators of the Euclidean
group, pn and Jn, commute with H and therefore are constants of the motion.

Conversely, any constant of the motion G generates a symmetry. Indeed,
let the mapping Q — €%CQ e '%® pe performed on all the Heisenberg oper-
ators in H This unitary mapping does not affect observable properties, such
as the eigenvalues of these operators, or scalar products of their respective
eigenvectors, from which we obtain transition probabilities. In particular, the
Heisenberg equation of motion (8.102) is not affected, since dG/dt = 0. The
transformed situation therefore obeys exactly the same physical laws as the
origina one—this is the hallmark of a symmetry.

Note that a constant of the motion may depend explicitly on time, when it
is written in the Heisenberg picture. Consider for instance H =kwao,. The
Schrodinger operators ox and oy do not depend explicitly on time; therefore the
Heisenberg operators oxy and oy obey the eguations of motion

doyu/dt = [o,u, H]/ih = —woyn,

8.103
doyu/dt = [oyu,H]/ih = woy. ( )

The solution of these equations is
ozul(t) = o coswt — oy sinwt, (8.104)

oyult) = o, sinwt + o, coswt.
We can now define new operators, 7;, which are constants of the motion:

TeH = Ozg coswt + ouy sinwt,

i (8.105)
TyH 1= —0Ozy sinwt + oyy coswi.
Their Heisenberg equations of motion are
drju/dt = Or;u /8¢ + [rju, H)/ih = O, (8.106)

where the partial derivative dr;n/dt refers to the explicit time dependence in
Eqg. (8.105). We thus see that 74y and ryy are constants of the motion, even
though their definition in (8.105) explicitly involves t.

Exercise 8.28 Show that 7,y = 0y and 7y =0y.

Exercise 8.29 Show that the validity of the Heisenberg equation of motion
(8.102), without a partial time derivative as in Eq. (8.106), is the necessary
and sufficient condition for the absence of an explicit time dependence in the
Schradinger operator A = U(t,40) Ag Ut(2, 20).

Dirac picture

The Dirac picture, also called interaction picture, is useful for treating problems
in which the Hamiltonian can be written as H = Ho +H1, where Hohas a smple
form and Hji is a small perturbation. As in the Heisenberg picture, one defines
a unitary matrix U by
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dUo(t, to)

ih o = Hg Uo(2, to), (8.107)

with the initial condition Uo(to,%0) = 1. If the form of Ho is simple enough, so
that its eigenvalues E) and eigenvectors u) are known, it is possible to obtain
the explicit solution of Eg. (8.107) as a sum over states,

Uo(t,to) = 3 uyul exp[—iEx(t — ta)/h]. (8.108)
A

This expression is called the Green’s function, or propagator of Hy.
The Dirac state vector is defined as

vp(t) := Ud(t, to) v(2). (8.109)
It satisfies the eguation of motion

dVD

ih-‘E = —U(t;HoV + U(T)HV = U‘f)HonVD = H]D Vp, (8110)

where Hyp := U}H,U, is the Dirac picture of the perturbation term in the
Hamiltonian.
In general, any observable A becomes

Ap =UlAU. (8.111)
If A'is not explicitly time dependent, it satisfies the equation of motion

., dA
ik _EtE = [Ap, Hop]. (8.112)

We thus see that H op generates the motion of observables, while Hip generates
that of state vectors.

8-8. Galilean invariance

Consider a free particle, in one space dimension, described by the Hamiltonian
H = p?%2m. Its equations of motion, in the Heisenberg picture, are p = 0 and
%x =p/m. (As fro m now, the subscript H which denotes the Heisenberg picture
will be omitted, if no confusion is likely to occur.) The dynamica variable

G:=pt—mx, (8.113)
has the property that

dG/dt = 8G/dt + [G,H]/ih = O, (8.114)
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just as the matrices tj in Eqg. (8.106). Therefore G is a constant of the motion
which depends explicitly on time in the Heisenberg picture. If we write G as
a matrix of infinite order, al its elements are constant (they are equa to the
matrix elements of —mx at time t=0).

In spite of its explicit time dependence, G generates a symmetry, as any other
constant of the motion. The physical meaning of the unitary transformation
e~*G/% isaboost of the physica system by a velocity v. This is readily seen
from the transformation law of the canonical variables:

R 1 [(wG/h,x] + -+ = x + vt, (8.115)

where use was made of the expansion (8.29). Note that the last expression in
Eqg. (8.115) is exact, even for finite v, because the higher terms in Eq. (8.29)
identically vanish in the present case.

Likewise,

eWO/h g e=ivG/h — o [tvG/B,pl+ -+ = p + mu. (8.116)
Therefore the new Hamiltonian is

2 2 2 2
wG/m PG _ (ptmu)® _ p? mv” 117
€ 2m € 2m ~ 2m tupt 2 (8.117)

Contrary to trandlations and rotations which leave H invariant, boosts do affect
the Hamiltonian (that is, they modify the matrix which represents H) but the
functional relationship between H and p remains of course unchanged.

Schrédinger’s equation in moving coordinates

The motion of a particle of mass min a one-dimensional potential V(X) is
described by the Schrédinger equation:

2 m

i %—f = — 2%; g—;ﬁi + V(z) . (8.118)
Let us transform this equation to a uniformly moving coordinate system,
X =x+ vt (and t' = t). This is a passive transformation, which is equivalent
to boosting the externa potential V(x) by a velocity v. In quantum mechanics,
this transformation involves not only a substitution of coordinates, but also a
unitary transformation of . Indeed, if we try to preserve the value of Y at each
spacetime point (that is, to treat Y as if it were a scalar field), the transformed
equation turns out to have a form essentially different from that of Eq. (8.118):
it also contains a term ¢hv dy/3z’. To eliminate the latter, one has to change
the phase of y at each point:

_(/) N d)l — ei(mvz’—mv%/?)/h 'lf) (8119)
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This gives the desired result,
i % _ h2 azwr

at ~  2m 0x'?
which has the form of a Schrédinger equation with a moving potential.

+ V(g - vt) ¢, (8.120)

Exercise 8.30 Work out explicitly the calculations giving Eg. (8.120). *
Exercise 8.31 Carry out the same calculation for a uniformly accelerated
coordinate system, z’' = $+% ~t2, and show that the transformed wave function,
1/)/ — ei(m'y:c’t—m'yzta/(i)/ﬁ w’ (8121)
satisfies
a¢/ . hz a2,¢,l
8t~ 2m Ox'2
What is the physical meaning of the last term in this equation? *

th

+V(a' = 1yt ¢ — myzy. (8.122)

The unitary transformation of | in Eqg. (8.119) appears to be different from
the unitary transformation e=**6/* that was used in Egs. (8.115) and (8.116).
The reason for this difference is that the operator G in Eq. (8.113) was written in
the Heisenberg picture, while Egs. (8.118) and (8.120) are obviously written in
the Schrodinger picture. At time t =0, when these two pictures coincide, both
unitary operators are the same, namely e*™*/* Then, for t # 0, the explicit
form of the operator (8.113) results from its being a constant of the motion.
On the other hand, the factor exp (—imwv?t/2k) in Eq. (8.119) is only a trivial
phase adjustment which defines the zero on the new energy scale.

The Galilean group

The Galilean group includes trandations in space and time, three dimensional
rotations, and boosts. If the physical system consists of particles with masses
my and canonical coordinates X and pak, the boosts are generated by the
Hermitian operators

Gi = (tpar — maxap). (8.123)
A
This expression is the obvious generalization of (8.113). It is easily seen that
[Gk,G)] = O. (8.1249)
This property is similar to [ps,p;] = O and merely expresses the fact that

boosts in different directions commute.
We aso have from (8.123)

[Gk, 1] = ik egim G, (8.125)

which states that the generators of boosts are vector operators. Finaly,
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(Gk,pi] = =ik 6 Y_ma. (8.126)
A

The last equation displays a novel feature: its right hand side is a c-number
(or, if you prefer, it is a multiple of the unit operator). It is instructive to see
how this c-number appears in a derivation of the value of [Gk,pi] based on
the geometric properties of a sequence of trandations and boosts, as when we
derived the value of [Jm,ps] in Eq. (8.67), by considering alternating rotations
and space trangdlations. If we follow the same method, we find that coordinate
translations and boosts commute. Therefore, in quantum theory, [Gg, pi] must
be a c-number which commutes with everything, like the vector V in

Pe,pi} = ik? D ew, Vo 1. (8.55)

However, there is an important difference between [Gk,p:] and [pk,pi). The
latter is antisymmetric in the indices ki, while there is no such antisymmetry
requirement for [Gi,pi]. This gives us more flexibility for constructing an ad-
missible right hand side for Eq. (8.126), because there is an invariant symmetric
symbol &k which can take care of the indices, and there is a physical quantity,
mass, with the same dimensions as Gp/%. The right hand side of (8.126) thus
becomes the geometric definition of the total mass of the system. The mass
plays an explicit role in spacetime transformation properties.

We dtill have to find the commutator [Gk,H]. If translations in time, which
are generated by H, are a symmetry (i.e., there is an equivalence between active
and passive transformations) this commutator can likewise be obtained from
Eg. (8.36) by considering alternating time trandations and boosts. These are
represented by the unitary transformations 2 — eAQe-A and O — eBQeB,
respectively, with

A =i H/h and B=1)_ v G/ (8.127)
k

Here, however, we must be careful when we specify the corresponding geometric
transformations. While the unitary operator € generates the boost r — r + vt
as in Eq. (8.115), the operator e” does not ater the time t, since the latter is
not a dynamical variable. What €*actually does is to modify all the dynamical
variables in the following way: each variable is replaced by a new one, whose
present value is egqual to the value that the old variable will have a time T later.
For example, r becomes r + Tr (recal that higher powers of 1 are discarded).
We thus have, as in Eq. (8.67),

A .
r — r=r+r7r
B no__ 1 _ .
— r =r+vi=r+7r+vi
-A .
== =r"—-rr=r+vt-vr

B e _vi=r—vr. (8.128)
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The result of these four successive transformations is a translation by the
infinitesimal vector —vt. Invoking again Eqg. (8.36), we obtain

[ vk G, mH| = =i S ve . (8.129)
k k

Since this is valid for all values of t and vk, it follows that
[Gk,H] = —ihps. (8.130)

Exercise 8.32 Show that (8.130) is satisfied by any Hamiltonian of type

H=3" (pa*/2ma) + Y V(ran), (8.131)
A 4B

where r ap =[ra —rg] so that V depends only on the distances between the
various particles—not on their individual positions.

8-9. Relativistic invariance

The laws of physics are not invariant under a Galilean transformation, namely
r-r =r+vtand t =t even in the limit v << c¢. The equation t' =t
implies the existence of a universal time, independent of the motion of the
clocks that are used to measure it. This is an unphysical assumption: in order
to synchronize distant clocks in arbitrary motion, it is necessary to convey
information between them, and there is no physical agent capable of doing that
instantaneously. The best synchronization method that is available to us is the
one that uses optical signals (or equivalent electromagnetic means) because the
latter have the same, reproducible velocity in every inertial coordinate system.
This implies that the times t and t', associated with coordinate systems r and
r' in uniform relative motion, are related by

i —r? = %~ p'2, (8.132)

where cis the invariant signal velocity. It follows that, together with the infini-
tesimal space transformation

r-r =r+vt, (8.133)
there must be a time transformation,
to t=t+v.r/cd (8.134)

These two equations define an infinitesmal Lorentz transformation. The latter
does not reduce to a Galilean transformation for v <« c, because Eq. (8.134)
must hold for arbitrarily large r. When v <« c, we can neglect terms of order
v?c2, but not those of first order in v.
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Exercise 8.33 Show that the Lorentz transformation for finite v is given by
r'-v=y(r-v+vt) and r'xvs=rxv, (8.135)
and
t=y@{t+v-r/c?, (8.136)

where v = (1 —~ v%/¢®)~1/2, Hint: Show that Eq. (8.132) is satisfied to all
orders in v, and that the infinitesimal transformations (8.133) and (8.134) are
recovered when one neglects v2/c2 and higher powers of v/c.

The time transformation law (8.136) involves explicitly the position r. This
leads to amusing counter-intuitive phenomena, such as the “twin paradox.”
On the serious side, this creates difficulties in the canonical formalism, if we
want the dynamical variables g to transform like the geometric coordinates r,
so that the physica meaning of ¢ is that of a position in space. Obvioudly,
we cannot have, in the canonical formalism, t =t+v -q/c2 since tand t'
are numerical parameters (c-numbers) while g is a dynamical variable (or an
operator, in quantum theory). This is even more obvious if there are severa
particles, each one with its own position variable qa, while there is (in the
canonical, or Schrodinger, formalism) a single time, tor t', in each one of the
two reference frames whose relative velocity is v.

Relativistic canonical dynamics

It is common to present the theory of relativity as the intimate union of space
and time into a single concept—the four-dimensional spacetime of Minkowski.
The dynamical laws can be written, concisely and elegantly, in terms of deriva-
tives with respect to a “proper time” dr? = dt? — dr?/c?.  The relativistic
invariance of an eguation can be established at once, by mere inspection of its
tensorial indices.

Unfortunately, this four-dimensional formalism becomes quite awkward when
canonical quantization is contemplated, because algebraic constraints such as
¥ g p*p* =m?c® are difficult to handle in a quantized formalism. Moreover,
if several particles are involved, there are as many proper times as there are
particles, while a single wave function has to be used to describe the guantum
correlations of a multiparticle system. It is therefore preferable to abandon the
elegant four-dimensional formalism and to return to the old fashioned separation
of the space and time variables. But then, the relativistic invariance of an
equation can no longer be proved simply by inspecting its tensorial indices.
More sophisticated methods are needed for deciding whether a theory is, or
is not, relativistic. Remember that more than thirty years elapsed between
the publication of Maxwell's equations, and the proof by Lorentz that these
equations were in ariant under the Lorentz group.
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Traditionally, the first step in the quantization of a classica®™ system is to
write its equations of motion in canonical form. The conditions for compatibility
of these canonical equations of motion with the requirements of special relativity
were not clear for many years, until they were finally analyzed by Dirac.2°
In essence, Dirac's argument was that if a canonical formulation is possible
in one Lorentz frame, it should be possible in every Lorentz frame (by the
principle of relativity). Therefore a Lorentz transformation must be a canonical
transformation of the dynamical variables—for the same reason that an ordinary
spatial rotation is a canonical transformation.

The existence of a relativistic canonical formalism thus demands that the
dynamical laws be invariant under the coordinate transformations (8.135) and
(8.136), and moreover that there be a canonical (or unitary) transformation of
the dynamical variables g o and pa belonging to each particle, such that each
ga behaves as the geometric coordinate r in Eqg. (8.135). It is not obvious
that al these demands can be simultaneously fulfilled (i.e.,, that the canonical
formalism is compatible with relativity theory).

Let us first examine the case of a single free particle, with canonical variables
g(t) and p(t). The existence of a canonical (or unitary) representation of the
Lorentz transformation can be demonstrated as follows. Consider

a(t) — q'(t) = q(t) + éq(t). (8.137)

Note that a single time t appears everywhere in this equation (there is no t').
Indeed, a classical’® canonical transformation, or a quantum unitary transfor-
mation, does not modify the time, which is not a dynamica variable. The effect
of a Lorentz transformation is, to first order in v

q(t) = q'(t) — q(t)
=q(t' —v-r/c’) — qt)
=q'(t') = (v-r/) ) - alt), (8.138)
where use was made of the infinitesimal transformation of time (8.134) and the

result expanded to first order in v. We further note that, if the dynamical
variable g transforms as the geometric coordinate r, we have

q'(t") = a(t) + vt, (8.139)

by virtue of Eg. (8.133). This means that world-lines are invariant under the
canonical transformation which implements a given Lorentz transformation. We
can therefore replace r, in Eq. (8.138), by g. We can aso replace §'(t") by ¢ (t),
because the difference is of first order in v, and is itself multiplied by v. We
thus obtain

1The word “classical” is used here as the opposite of “quantized” (not as the opposite of
“relativistic”).
2p, A. M. Dirac, Rev. Mod. Phys. 21 (1949) 392.
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Sq(t) = vt — (v-a/c®)a(t), (8.140)
which can be written in terms of Poisson brackets as
5q(t) = [q7 vt - p]pa - [q> (V . q/c2) H]PB . (8141)

We thus see that the infinitesimal transformation (8.137) is a canonical trans-
formation, generated by v - K, where

K:=tp—- Hq/c, (8.142)
is the Lorentz boost generator. The corresponding quantum expression is
Kj = tpj — (H X; + X; H)/262. (8143)

Comparison with the Galilean boost operator (8.123) shows that, instead of the
mass m, we now have H/c2 This is a nontrivial dynamical variable which,
unlike m, does not commute with everything.

Poincaré group algebra

The Poincaré group (also called inhomogeneous Lorentz group) consists of trans-
lations in space and time, rotations, and Lorentz boosts. These are generated
by pn,H, Jn, and K, , respectively.

Let us find the commutation relations between K, and the other generators.
If the physica system is invariant under spatial translations and rotations, so
that H commutes with p,, and Jm, we have, from (8.143),

[Pm, Kn] = th 6 H/ P, (8.144)
and

[Jm, Kn] =1th Z €Emnas Ks - (8145)

To find [H, K] without the explicit knowledge of H, we proceed as in the
derivation of [H, Gn], by considering alternating time trandations and boosts.
The new feature here is that boosts are given by Eq. (8.140), rather than simply
or = vt. Nevertheless, the fina result is the same as in Eq. (8.128):
r A P=r+7i
B oo v (v /e

=r+7i+vt—(v-r/e)F—T(v-i/c})F —T(v-r/P)F

" =r"—71i"=r+vt—vr—(v-r/H)F

1t 4

=" — vt (v D = —vT. (8.146)

% 1%

Recall that throughout this derivation, all terms proportional to 12 or vZ are
discarded. We thus obtain, as in Eqg. (8.130),
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H,K,] = thp,. (8.147)

On the other hand, in the special case of a single particle, we have, from the
explicit expression for Ky, given in (8.143),

[H, K] = —(H [H, %] + [H, xa] H)/2¢? = ik (H %, + %0 H)/2. (8.148)

Comparison with (8.147) gives x, = ¢*p,/H. The same result can be obtained
by noting that

[H? - p?c%, K,] = O, (8.149)

by virtue of (8.144) and (8.147). Since (H2 — p2c?) aso commutes with H,
with pn, and with J,, it must be a Lorentz scalar (either a c-number, or an
operator which depends only on Lorentz invariant internal properties of the
physical system). We can therefore define the total mass of the system by

mict := H? — picl, (8.150)
Exercise 8.34 Derive x, = ¢?p,/H from the preceding relation.

We dtill have to find the [Km,K,] commutator. Using the same method as
in Eq. (8.146), we consider consecutive boosts with velocities u and v:

r A&, r=r+ut-(u-r/c))r

LN r’=r+vt—(v-r/H¥

=r+ut+vt—(u-r/A)r— (v -r/*)r —(v-ut/c)r
+(v-t)u-r)r/c* +(v-r)u-P)r/ct + (v -r)(u-r)r/c!
—(v-r/P)u. (8.151)

After only two steps, this partia result seems frightening. Actudly it is quite
innocuous, because most of its terms are symmetric under the exchange of u
and v, and will disappear when we perform the additional boosts, by —u and
—-v. This can be seen by using Eq. (8.37) instead of Eg. (8.36). We substitute
in that equation AA = u-K/ihand AB = v-K/ih, and we obtain, for the
Heisenberg operator Qn=r,

~[[u-K/ih, v-K/ik],r] = (u-r/c?)v — (v -r/cP)u
= (uxv) xr/c. (8.152)
All the other terms that appeared on the right hand side of Eq. (8.151) mutually
cancel. The final result in (8.152) is the same as the variation of the Heisenberg

operator r due to a rotation by an infinitessima angle (u x v)/c? namely or =
—[(u x v)-3/ihc?, r]. We thus have

[30 tm K 3 0n K| = i8I (emns thm vn/c?) Ju, (8.153)

mns
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and since this is valid for every u and v, it follows that

(Ko, K] = —1h 3 €mns Ju/c (8.154)

mns

You probably wonder why | gave this tedious derivation of (8.154), based on
the nonlinear transformation (8.140), while it would have been much easier to
derive the Lie agebra of the Poincaré group from the linear transformations
(8.133) and (8.134), and still easier to obtain these results by using a manifestly
covariant four dimensional formalism (as is done in most textbooks). The reason
for this long derivation is that | wanted to write Lorentz boosts as canonical (or
unitary) transformations, in order to show the consistency of specia relativity
with the canonical formalism (or with quantum theory). This is not at all a
trivial matter, as will be seen in the next section.

8-10. Forms of relativistic dynamics

If the state vector of a free spinless particle is written as (g, t), the generators
of the Poincaré group are p = ik8/8q, H = (m?ct+ p2c?)V/%, J =q x p, and
K given by Eq. (8.143). If we have several noninteracting, particles, described
by a state vector ¥(qi,qz,--.,t), the generators are ordinary sums, namely
Pp=Ypy, H=YHua, etc. Note that each particle has three coordinates (and
three momenta) but there is only one time in the canonical formalism.

Difficulties appear when we want to introduce interactions. If we try to
write H =Hgo + V, or more generaly H # X H 4, either p or K (or both) must
change and include an interaction term, to ensure the validity of Eq. (8.144):
[P, Kn] = ith6ma H/ % This commutator expresses a kinematical relationship
between Lorentz boosts and trandations in space and time, and it cannot be
affected by the presence of Lorentz invariant dynamical interactions.

On the other hand, if we want to interpret the dynamical variables g a as
physical positions in space, we must retain p = —:h ¥ 4 8/8q4,and aso define
K in such a way that the Lorentz transformation law (8.140) is satisfied. When
there is more than one particle, this transformation law becomes

6qa(t) =vt —[(v-qu)qa+qa(v-qa)l/2c. (8.155)

As aready explained, this is the necessary condition for world lines to remain
invariant under a canonical Lorentz transformation (a boost by a velocity v).

Exercise 8.35 Rephrase the last statement in quantum language, using wave
packets and mean values.

The transformation law (8.155) will hold if we have, as in Eq. (8.143),

K=tp—(Hq,+q,H)/2¢* + Z4, (8.156)
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where Za is any vector operator commuting with q . However, the generator
K belongs to the entire physical system, and its form cannot give a privileged
status to the particle labelled A. In the case of noninteracting particles, with
H =X H A, this causes no difficulty, because we can take

Zs= Y [Hs(as —qa) + (a5 — qa)Hsl/2, (8.157)
B#A
so that, in Eq. (8.156), we have K = X K a. If, on the other hand, H includes an
interaction, it can be shown2.22 that this problem has no other solution than
pure contact forces (that is, H # Hg only if g A= q 8).

There have been attempts to overcome this “no go theorem” by relaxing
the traditional identification of the canonical coordinates qa with the physical
positions of the particles. At first sight, there seems to be nothing wrong if the
physical positions r A (which transform as geometrical coordinates under the
Poincaré group) are complicated functions of the canonical variables q o and
pa. Possibly, the ra may not commute with each other. After all, there are
other respectable dynamical variables, such as the components of J, which do
not commute, and therefore cannot be simultaneously ascribed sharp values.
This has no harmful consequences, other than the impossibility of writing a
classica Lagrangian in terms of these variables and their time derivatives. It
thus seems that one can easily forego the requirement that the canonica g a
transform like geometrical coordinates.

However, it is not so. If no restriction is put on how the canonical coordinates
gAa behave under a Lorentz transformation, the principle of relativity becomes
vacuous: Given any H, P and J satisfying the usual commutation relations,
it is always possible to construct a vector operator K which also satisfies all
the required commutation relations.?® Therefore, the existence of dynamical
variables satisfying the algebra of the Poincaré group generators is not in itself a
guarantee of Lorentz invariance. Other demands, such as cluster decomposition,
must be satisfied to obtain a proper physical interpretation.”

Alternative approaches

Dirac® attempted to overcome these difficulties by radically modifying the
canonical formalism: states would not be defined for a given value of t, but
on a Lorentz invariant hypersurface, such as the hyperboloid 2 —r2 = a2, or
the null plane ct = z. This new approach gave to some equations a more sym-
metric aspect but, contrary to Dirac’s hope, it did not allow the introduction
of nontrivial interactions.

The only relativistic canonical formalism, including interactions, known at
the present time, is field theory. A field @ (x, vy, z t) isaninfinite set of dynam-
ical variables. The space coordinates X, y, z are not operators, but numerical

21D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod. Phys. 35 (1963) 350.
2 H. Leutwyler, Nuovo Cimento 37 (1965) 556.
23 A, Peres, Phys. Rev. Lett. 27 (1971) 1666.
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parameters (c-numbers) which serve as labels for these variables. Their role is
similar to that of the labels A attached to the dynamical variables g o and p a
which describe a finite set of particles. The infinite number of dynamical field
variables gives rise to new difficulties: divergent sums over states, far worse than
those appearing when there is a finite number of continuous variables. These
new difficulties, which were briefly discussed at the end of Chapter 4, can be
circumvented by a technique called renormalization (this topic is far beyond
the scope of the present book).

The condition that a field theory must satisfy to be relativistic is the equal-
time commutation relation?42>

(M0, MGy = =it S (PG + PH)) 50 6x ~ ), (8.158)

where H (x) is the Hamiltonian density and Pk(x) is the momentum density of
the field. Examples are given in the following exercises:

Exercise 8.36 Verify the validity of Eq. (8.158) for a real scalar field with
Lagrangian density £ =3(c2®%— V& -V® - x2®?).

Exercise 8.37 Verify the validity of Eg. (8.158) for the electromagnetic field,
whose Lagrangian density is £ = } (E? — B?). *

There is still another formulation of relativistic quantum dynamics, which
was first proposed by Heisenberg,?® and was very popular in the 1960's. It is
the S-matrix theory, which makes no attempt to describe a continuous time
evolution, and only relates asymptotic states, for t - +o. The eements
of the S-matrix are called scattering amplitudes. The fundamental axioms of
Smatrix theory are analyticity of the scattering amplitudes (as functions of
the kinematical variables of the incoming and outgoing particles), unitarity,
and crossing symmetry. The latter is a requirement that amplitudes for given
incoming particles be the analytic continuation of amplitudes for the corre-
sponding outgoing antiparticles, and vice versa?’?8

The S-matrix formalism is not restricted to scattering problems. While it is
convenient to use plane waves (momentum “eigenstates’) to label the elements
of the S-matrix, the initiad and final states may be arbitrary linear superpo-
sitions of these plane waves, such as wave packets prepared and observed at
finite times.2>% It can be proved from the analytic properties of the S-matrix,
in particular from its pole structure, that if the final state (the observation

24P, A. M. Dirac, Rev. Mod. Phys. 34 (1962) 592.

23, schwinger, Phys. Rev. 127 (1962) 324.

2\, Heisenberg, Z. Phys. 120 (1943) 513, 673.

27G. F. Chew, SMatrix Theory of Srong Interactions, Benjamin, New York (1962).

2R, J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The Analytic SMatrix,
Cambridge Univ. Press (1966).

2H, P. Stapp, Phys. Rev. B 139 (1965) 257.

S0A. Peres, Ann. Phys. (NY) 37 (1966) 179.
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procedure) is localized outside the future light cone of the initial state (the
preparation procedure), the probability for a successful observation becomes
vanishingly small. There is no need to impose, as an extraneous condition in
the theory, that there be no observations outside the future light cone of the
preparations. We only need an unequivocal distinction between preparations
(“active” inputs) and observations (“passive’ outputs).

The weakness of “pure’” S-matrix theory is that it is unable to produce ab
initio calculations. The genera principles of analyticity, unitarity, and crossing
symmetry, alow one to derive many useful relationships between observable
guantities, but are not strong enough to perform complete calculations. Despite
heroic efforts by its proponents, S-matrix theory did not supplant quantum field
theory as the leading approach to relativistic quantum theory.

8-11. Space reflection and time reversal

Most physical laws are invariant not only under translations and rotations of
the coordinate system, but also under inversions of the space and/or time coor-
dinates. While it is in general impossible to reflect a physical object, it is often
possible to prepare an object which is the mirror image of the origina one. One
cannot then distinguish a picture of the reflected object from one of the origina
object, viewed in a mirror. This is a symmetry, as defined at the beginning
of this chapter. Likewise, time cannot be made to run backwards, but many
elementary physical phenomena, such as the motion of an ideal pendulum, are
invariant under a reversal of time. If we make a movie of the pendulum and then
run that movie backward in time, the result will represent a possible motion of
the same pendulum.

Quantum theory treats these two symmetries in radically different ways,
because the space coordinates of a particle are dynamical variables and are
represented by operators, while time is a numerical parameter (a c-number).
Moreover, space reflection is defined with respect to some plane, for example
(x,y¥,2) - (x,y,—z); and likewise space inversion is defined with respect to
a center, as in (x,y¥,2 - (—X,—Yy,—2z). These two operations are related by
a 180° rotation around the z-axis. On the other hand, time reversal is not a
forma relabelling of tas—t. It is the inversion of a process, whereby the initia
state becomes the final state, and vice versa

Space reflection

If space reflection is a symmetry of the physica system, it preserves transi-
tion probabilities, therefore, by Wigner's theorem, its representation in Hilbert
space, Y —» ' =Ry, is either a unitary or an antiunitary mapping. We shall
now see that it can only be unitary.
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The simplest way of representing a reflection is ¢'(x) = @ (—x). This is a
unitary transformation, because

[F@ ¥ (@)dz = [ F=2)9(-2)de = [ B(@) () da. (8.159)
Exercise 8.38 Show that if p = —ihd/0z, then (R'pR) = —(p).

We now easily see that the antiunitary transformation law ¢'(x) = #%(—z)
would not be acceptable. It would leave [pOinvariant, while we expect the sign
of [pto change, as in the preceding exercise. Moreover, an energy eigenstate,
U = e *BYRf(x), would become e+Ft/A f(— x), with the opposite sign of energy.
This is impossible if the Hamiltonian has a semi-infinite spectrum, bounded
below (that is, if the system has a ground state).

Another unitary transformation, more general than the one in Eq. (8.159), is
Ry(x) = elay(—x), wherea is an arbitrary phase. If we want two consecutive
reflections to restore the origina state, we must have €% = = 1. The + sign
is a characteristic property of the particle whose state is reflected. This sign is
caled the intrinsic parity of that particle, and its effect becomes manifest in
reactions where particles of that type are produced or absorbed.

Exercise 8.39 Show that J,, = 3 €mns X» Ps 1S invariant under inversions.

Time reversal

Time reversal (for which a better name would have been motion reversal) is
defined as follows. Consider the unitary evolution

v(t2) = U(t2, t1) v(th). (8.80)
If the dynamical properties of the system are symmetric under time reversal,

there exists a mapping v(tj) - v'(t;) such that the same unitary  operator
U(t2,t1), which transforms v(t1) into v(t2), also transforms vT(tz) into vT(t1) :

VT(tl) = U(tg, tl)VT(tg). (8160)
We then have, from Egs. (8.80) and (8.160),
(v(22), vT(11)) = (v(21),vT(%2)). (8.161)

Since these two inner products are antilinear in v(t;) and v(t2) it follows that
vT(tj) must be an antilinear function of v(t;). Therefore time reversa is an
antiunitary mapping.

This result was first derived by Wigner.3! There have been attempts to define
time reversal in other ways,3232 but Wigner's definition is the one which is now
universally adopted.

SLE. P. Wigner, Géttinger Nachrichten, Math.-Phys. 31 (1932) 546.
32 G. Racah, Nuovo Cimento 14 (1937) 322.
33 ], Schwinger, Phys. Rev. 82 (1951) 914.
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Exercise 8.40 Show that [pfand Ll change sign under time reversal.

Another important symmetry is charge conjugation (a better name would
have been: particle-antiparticle exchange). A fundamental theorem of quantum
field theory states that any Lorentz invariant local field theory must be invariant
under the combined operations of space reflection, time reversal, and charge
conjugation. 3435
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Chapter 9

Information and Thermodynamics

9-1. Entropy

Let us perform a quantum test on a physical system that was prepared in a
known way. Prior to the test, we can only predict probabilities for the possible
outcomes. As the test is performed, one of these outcomes materializes, and we
have a certainty. A quantitative measure for the average amount of information
that we expect to gain in this test can be defined as follows. Let p,...,p, be
the known probabilities of the various outcomes of the test that we intend to
perform. Namely, if we imagine the same test applied to nidentically prepared
systems, and if nis a large number, we expect about n; = np; outcomes of
type j. From our knowledge of the preparation of the physical systems, we can
predict the relative frequencies of these outcomes, but not the order in which
individual outcomes occur (as for example in Fig. 1.3, page 6). The number of
different possibilities to arrange these n outcomes is n!/(n!n)t...). If n - oo,
al the n; are large and we have, by Stirling’'s approximation,

n!
logm ~nlogn —n— Z(n_, logn; —n;)=-n) p;logp;. (9.1)
J J

The expression

N
S := -3 pjlogp;, (9.2)

i=1

is called the entropy of the probability distribution {p,,...,py}. It is a measure
of our ignorance, prior to the test.
It is easy to see that Sis maximum when all the p; are equal to 1/N. In
order to avoid dealing with the constraint Y p; = 1, let us rewrite (9.2) as
N-1
S=—73" pilogp; — pnlogpn, (9.3)

i=1

260
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where py is defined by

N-1
pn=1-3p;, (9.4)

j=1
and al the other p; are considered as independent variables. We obtain
05/0pi = —log px + log pw, (9.5)

which vanishes when px = py = 1/N. This is the only extremum of S

In general, the entropy Sdepends not only on the preparation process, but
aso on the choice of the test with respect to which the probabilities px are
defined. If for every test we have maximal ignorance, namely px = 1/N, the
preparation is called a random mixture (see Postulate C, page 31), and it is
represented by the density matrix

Pmn = bmn/N. (9.6)

For example, a photon coming from a therma source is caled “unpolarized,”
to say that, in any unbiased polarization test, both outcomes are equally likely.

The other extreme is a pure state, with p2 = p, as in Eq. (3.80), page 73.
This relation implies the existence of a vector v such that

Pran = U Tn- (9.7)

A pure state as in Eq. (9.7) corresponds to the maximal amount of information
which can be supplied on the preparation of a quantum system (Postulate A,
page 30). Intermediate cases, as in Eq. (3.78), page 73, correspond to partial
information on the preparation of a state.

Exercise 9.1 Photons are prepared by a process that has a 70% probability
of producing right handed circular polarization, and a 30% probability of pro-
ducing left handed circular polarization. What is the entropy of these photons
in a test for circular polarization? In a test for linear polarization? Ans.:
0.61086 and 0.69315, respectively.

Exercise 9.2 Photons are prepared by a process that has a 70% probability
of producing right handed circular polarization, and a 30% probability of pro-
ducing them linearly polarized in the x direction. What is the entropy of these
photons in a test for circular polarization? In a test for linear polarization in
the x direction? Ans.: 0.42271 and 0.64745, respectively.

The notion of entropy originally arose in classical thermodynamics and was
later introduced in information theory by Shannon.t It will be shown later
in this chapter that there is a close relationship between these two definitions

1 C. E. Shannonon, Bell Syst. Tech. J. 27 (1948) 379, 623.
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of entropy. In particular, the thermodynamic arrow of time which arises in
irreversible phenomena is equivalent to the asymmetry between past and future
which is intrinsic in the processing of information.

Physicists usualy include in the definition of entropy an extra factor equal
to Boltzmann's constant. Information theorists use logarithms with base 2. In
the latter case, the unit of entropy (or of information) is caled a bit (from
abbreviation of binary digit).

Concave functions

An important property of entropy is that S(p) is a concave function of its

arguments py,...,pn. This means that for any two probability distributions
{r;} and {p{}, and for any A such that 0 < A <1, we have
SAP + (1= Np"] = AS(P) + (1 - 1) S(p"). (9.8)

The physical meaning of this inequality is that mixing different probability
distributions can only increase uniformity. The proof of (9.8) follows from

dSIAP + (1= Np'] _ —pl)?

(p]
= - —L 3 <
d\? ) Z /\PJ /\) = 0 (99)

which is a sufficient condition for a function to be concave? Moreover, this
second derivative can vanish only if every p} = pf.

Exercise 9.3 Prove by induction that if A, >0 and ¥ A, =1, and also
Puj 2 0and ¥;p.; = 1, then

S(3 Aupui) =3 A S(pus). (9.10)

Suppose that the properties of a quantum system are specified by giving
the probabilities p,, for the outcomes of some maximal test, T, which can be
performed on that system. The entropy of this probability distribution is a
measure of our ignorance of the actual result of test T. It will now be proved
that this entropy can never decrease if we elect to perform a different maximal
test. That other test may be performed either instead of test T, or after it, if
test T is repeatable.

Indeed, if the probabilities for test T are p,, those for a subsequent test are
P = m Pumpm , Where Py is the doubly stochastic matrix defined in Sect. 2-4.
The new entropy thus is?®

S(p,) 2 S(pm)- (9.11)

2 R. Courant, Differential and Integral Calculus, Interscience, New York (1936) vol. I, p. 326.
3 This inequality holds not only for entropy, but for any concave function. See G. H. Hardy,
J. E. Littlewood, and G. Pdlya, Inequalities, Cambridge Univ. Press (1952) p. 89.
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The above inequality can be proved from*
Y Pmlogpm — D p,logp, = pm (108 pm — 3 Pum log p,)
m N m B

= me Pm log(pm/p),), (9.12)

mu

where we used 3, P = 1. Since log x = 1 — x~1 (with equality holding if,
and only if, x = 1), it follows that

S(#) = S(Pm) 2 D Pm Pum (1 = Plu/Pm) =0, (9.13)

mi

where the equality sign holds if, and only if, Pym is a permutation matrix, so
that the sets {pm} and {p\,} are identical.

You may find it paradoxical that no test whatsoever can decrease our igno-
rance. To avoid a possible misunderstanding, | emphasize that the probabilities
Py are those which are predicted before the test (after the test, there are no
probabilities—there are definite results). These pj aways have a more uniform
distibution than the probabilities pm that were originaly given (more precisely,
they cannot have a less uniform distribution). Further consecutive tests can
only further increase the entropy: the more we intend to test, the less we can
predict what will be the fina outcome. We can of course perform a selection
after a test, and thereby acquire a perfect knowledge of the new state. This
selection, however, amounts to preparing a new state, and erases al knowledge
of the origina state.

Entropy of a preparation

After a given preparation whose result is represented by a density matrix p,

different tests correspond to different sets of probabilities p,,, and therefore to
different entropies. Let us define the entropy of a preparation as the lowest value
that can be reached by the expression (9.2) for any complete test performed after
that preparation. It will now be shown that the optima test, which minimizes
Sin Eqg. (9.2), is the one that corresponds to the orthonormal basis v, formed
by the eigenvectors of the density matrix p:

PV = W,V,. (9.19)
In that basis, p is diagonal. The eigenvalues w,, satisfy

0<w, <1 and Y w,=1 (9.15)
I

Recall now that Postulate K (page 76) asserts that the density matrix p
completely specifies the statistical properties of an ensemble of physical systems

4E. T. Jaynes, Phys. Rev. 108 (1957) 171.
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that were subjected to a given preparation. All the statistical predictions that
can be obtained from CAO= Tr(pA) are the same as if we had an ordinary
(classical) mixture, with a fraction w, of the systems being with certainty in
state v . Therefore, if the maximal test corresponding to the basis v, is designed
so as to be repeatable, the probabilities w, remain unchanged® and therefore
the entropy Sremains constant. The choice of any other test can only increase
the entropy, as we have just seen. This proves that the optimal test, which
minimizes the entropy, is the one corresponding to the basis vuthat diagonalizes

the density matrix. The entropy of a preparation can therefore be written as

S == w,logw, = -Tr(p logp), (9.16)
n

where the logarithm of an operator is defined by Eq. (3.58), page 68.

Exercise 9.4 What are the eigenvalues and eigenvectors of p in Exercise 9.2?
What is the physical meaning of these eigenvectors? What is the entropy of the
preparation? Ans.: 0.36535.

Composite systems

The entropic properties of composite systems obey numerous inequalities®
Some of them are proved below, and will be used later in this chapter. Firgt,
we need the following lemma:

Let {vm} and {e, } be two orthonormal bases for the same physical system,
and let p = Y wmvmvl, and o = Y w,e,el be two different density matrices.
Their relative entropy S(ollp) is defined by

S(olp) = Trlp(log p — loga)]. (9.17)

Let us evaluate this expression in the v, basis, where p is diagona. The diagonal
elements of log o are

(log 0)mm = (Vm, Z logw, e“eL Vi) = Zlogw# |(e“,vm)|2. (9.18)
m

“

The matrix Pum = |(e.,vm)|? is doubly stochastic, and we have, as in the proof
of Eq. (9.12),

S(Glp) = Zwm (IOg Wm — ZPum w,u) >0, (9.19)

with equality holding if, and only if, o = p. Note that the above proof holds
even though ), is not equal t0 37 Punwm.

5Here, one would be tempted to say that the state of each system remains unchanged.
However, this claim is not experimentally verifiable. Only the probabilities w, can be shown
to remain constant.

6 A. Wehrl, Rev. Mod. Phys. 50 (1978) 221.
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Consider now a composite system, with density matrix py,, », (double indices
have the same meaning as in Chapter 5). The reduced density matrices of the
two subsystems are

(P1)mn = D Pmamr and (P2uw = D Pimiv- (9.20)
> 7

It will now be shown that
S(p) £ S(p1) + S(p2)- (9.21)

This inequality, called subadditivity,® means that a pair of correlated systems
involves more information than the two systems considered separately.

Exercise 9.5 Verify subadditivity for two spin j particles in a singlet state.
Ans.: Eqg. (9.21) becomes 0 < log(2j + 1).

In order to prove the ineguality (9.21), we first note that

S(p1) + S(p2) = S(p1 ® p2), (9.22)
because

E Wi lOg Wi + Z wylogw, = E Wy log Wan,, (9.23)

m m mu

where W, wp, and Wmp = wp, w, are the eigenvalues of p1, p2, and p1 O po,
respectively. Consider now the relative entropy

S(p1 ® p2|p) = Tr{p(log p —log p1 ® p2)]
= Tr{p(log p — log p1 — log p2)]. (9.24)

This is a nonnegative quantity, by virtue of (9.19). On the other hand, we have

Tr(plogp) = 3. Pmuns (108 p1)am buu = Tr(py log p1), (9.25)

muny

and likewise for Tr (p log p,). The subadditive property (9.21) readily follows.
It can also be shown that”

S(p) 2 15(p1) — S(p2)l, (9.26)

so that S(p), S(p;), and S(pz) obey a triangle inequality.

7H. Araki and E. H. Lieb Comm. Math. Phys. 18 (1970) 160.



266 Information and Thermodynamics

Information erasure

We can now see why information processing is associated with an irreversible
arrow of time. There is nothing intrinsically irreversible in the logic of the com-
puting process. However, we must initially load data into a memory. Assume
for simplicity that the memory elements are built in such a way that the binary
digits 1 and O are represented by orthogonal states, u and v, respectively.®
Further assume that the last computation that has been done has left these
memory elements in states u and v with equal probabilities. Therefore the state
of each memory element is represented by a density matrix, p = %]1, and its
entropy is log 2.

We must first reset each memory element to a standard state, such as v,
before we can start the computation. Such an erasure or overwriting of one
bit of information transfers at least one bit of entropy to the environment?
because no unitary evolution can transform the mixed state p = %11 into a
pure state vv'. The only way of resetting the memory to zero is to couple it
with a reservoir, which initially is in a known pure state w, and let the combined
system follow a unitary evolution,

(%?Il)(}i)wwJr - wig(l1). (9.27)

This sets the memory element in a standard state, as we wished, but meanwhile
one bit of entropy has been dumped into the reservoir which cannot be used
again since it now is in a mixed state.

Exercise 9.6 Write explicitly the unitary operator U which produces
Uvow) =vRw and Uu@w)=v@x, (9.28)

where x is orthogonal to w.

9-2. Thermodynamic equilibrium

A Boltzmann distribution (also called Gibbs state) is one whose density matrix p
has eigenvectors which coincide with those of the Hamiltonian, and has eigen-
values w, related to the energy levels Ey by

w, = e PEu)Z, (9.29)
The sum
Z=3 eFE (9.30)

8A more realistic assumption would be the use of density matrices, rather than pure states.
Thiswould bring no change in the conclusions.
°R. Landauer, IBM J. Res. Dev. 5 (1961) 183.
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is called the partition function of the system. Preparations satisfying Eq. (9.29)
are said to be in thermodynamic equilibrium at temperature T = 1/B. (It is
convenient to use energy units for the temperature, so that Boltzmann's con-
stant is unity.) A random mixture satisfying Postulate C, page 31, corresponds
to B = 0, namely therma equilibrium at infinite temperature.

It readily follows from (9.29) and (9.30) that the mean energy is

(E) = S w, B, = —8(log 2)/0p. (9.31)

Exercise 9.7 Show that a Gibbs state has the maximal entropy compatible
with a given value of [E[

Exercise 9.8 Show that 8(E}/88 = (E) — (E?) <.
In a process slow enough to preserve thermodynamic equilibrium, we have

d(E) = ¥ (w, dE, + E, dw,). (9.32)

n

The term Y w,dE, is due to a shift of the energy levels caused by variations
of the external parameters. We cal it the work performed on the system, while

§Q =Y E, dw, = d(E) — Y w,dE,, (9.33)

is the heat transferred to the system (the effect of heat transfer is to change the
probabilities of occurrence of the various energy levels).
On the other hand, we have from (9.29)

dS = —3 logw,dw, =Y BE,dw,, (9.34)
3 ©

where we have used 3" dw, = 0. Comparing Egs. (9.33) and (9.34), we obtain
dS =6Q/T, (9.35)

which is the familiar thermodynamic definition of entropy.’® It should be kept
in mind that this definition applies only to systems in thermal equilibrium,
while the more general definition (9.2) is aways valid.

We must now explain why it often happens that physica systems tend to
thermal equilibrium. An isolated system certainly does not. If its density
matrix is p = Y w,v,vl, each v, evolves linearly, asv,(t) = Uv,(0), but the
coefficients w,, remain constant. Therefore the entropy given by Eq. (9.16) is
constant too. (The same is aso true in classical dstatistical mechanics, where
the entropy is defined by the Liouville density in phase space.) The following

10 F, Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York (1965)
pp. 218-219.
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argument ™ shows that thermalization of a quantum system may result from
multiple collisions with other systems which aready are in thermal equilibrium.

Collisions

In a collision of two quantum systems which are initially uncorrelated, the
combined density matrix evolves as

Pa® pp— U [Pu ® Pb] UT = P;b- (9.36)

The total entropy,S(p,,) = S(p.) + S{ps), remains constant under this unitary
transformation. However if we consider separately the final states of the two
subsystems after the collision, these are given by the reduced density matrices

po = Try(pls) and Py = Tra(l’;b)’ (9:37)

and we have, by virtue of the subadditivity inequality (9.21),

S(pa) + S(ph) = S(pa) + S(ps)- (9:39)

This growth of the total entropy is caused by the replacement p!, — p! ® p},
whereby we “forget” the correlations that were created in the collision process.
This entropy growth is not a dynamical process, and is solely due to the way the
problem is formulated. There is no mysterious time-asymmetry here: if we were
given the final reduced density matrices (after the collision) and were asked for
our best estimate of the initial uncorrelated density matrix, our answer would
also involve more entropy than the data supplied to us.
We shall write Eqg. (9.38) as

AS, + AS, > 0. (9.39)

In general, the symbol A will denote the increment of a physical quantity, due
to a collision. For example, we have

A(E,) + A(E) = 0, (9.40)

by energy conservation.
For a system in a Gibbs state (9.29), we have

S — B(E)y = —Tr(p log p + BpH) = log Z. (9.41)
If that system collides with another one, its fina density matrix p' will not, in

general, be a Gibbs state, but we may still consider the quantity S(p’) — B{E"),
where (3 refers to the initial state, before the collision. We then have

M. H. Partovi, Phys. Letters A 137 (1989) 440.
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~A(S — B(E)) = Tr(p'logp’ + Bp'H) + log Z
= Tr(p’ (Jogp' + BH +1og Z)]
= Tr[p’ (log p' — log p)}. (9.42)

This expression is the relative entropy SE|p) which was defined by Eq. (9.17)
and is nonnegative, as we have seen.

Approach to equilibrium

Consider a collision of system a, initidly in any state, with system b, which is
initially in a Gibbs state at temperature B~'- We have, from Eq. (9.42),

A(Sy — B(Ey)) < 0. (9.43)
Combining this result with Egs. (9.39) and (9.40), we obtain
A(Se — B(E.)) 2 0. (9.44)

Therefore if system a, initially in any state, undergoes multiple collisions
with other systems, al initidly in Gibbs states at the same temperature B4,
the expression S, — B{E,) never decreases, and it will eventually approach a
limiting value. If there are no selection rules (that is, if there are no conservation
laws inhibiting transitions between some of the energy levels Ey of system a)
this limiting value is the one which maximizes

S = B(Es) = — S w, (logw, + BE,), (9.45)

subject to the constraint - w, = 1. Using the method of Lagrange multipliers,
it is easily found that the solution is the Gibbs state (9.29).
Zeroth law of thermodynamics

Consider now an interaction of two systems, a and b, initialy in Gibbs states
at different temperatures 37! and B;'. From Eq. (9.43), we have

A(Sy — B(Es)) <0, (9.46)
and likewise
A(S, — Ba(E.)) < 0. (9.47)

Together with Egs. (9.39) and (9.40), this gives
(Ba = Bs) A(Ea) = B A(Ea) + 5 A(Ep) 2 A(Sa + 5) 2 0, (9.48)

which means that heat flows from the system having a higher temperature to
the system with the lower temperature.
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Second law of thermodynamics

Finally, consider multiple interactions of system a with an array of systems by,
which initially are in Gibbs states at various temperatures 8;'. At each step,
we have, from Eq. (9.44),

Ansa Z ﬂn An<Ea> = —Bn 6Qn’ (949)

where 0Qn is the energy transferred to the n-th reservoir and converted into
heat. In a cyclic process, the initial and final states of system a are identical,
so that ¥, AnS. = 0, whence T, $rb6Qy = ¥, 6Q, /T > 0.The total entropy
of the reservoirs must not decrease while system a undergoes a cyclic process.

9-3. Ideal quantum gas

It will now be shown that the quantum entropy (9.16) is genuine entropy, fully
equivalent to that of standard thermodynamics. Let us first recall the proof
that the entropy of a mixture of dilute, inert, ideal gases is

S=-NY cjlogg, (9.50)
J

where N = 3 N; is the total number of gas molecules, and ¢; := N;/N is the
concentration of the j-th species. The derivation of Eg. (9.50) is given below
for the case of two different species, It assumes the existence of semipermeable
membranes which are transparent to molecules of type j, and opague to all
others. These membranes are used as pistons in an ideal frictionless engine
immersed in an isotherma bath at temperature T, as sketched in Fig. 9-1.
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Fig. 9.1. Ideal engine used to separate gases A (to the left) and B (to the right).
The vertically and horizontally hatched semipermeable pistons are transparent to
gases A and B, respectively. The mechanical work supplied in order to transform
the initial state into the fina state is released as heat into the thermal bath.
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The first step of the separation is a motion toward the right of the pair of
pistons that are connected by a rigid rod. Gas A exerts no pressure on the left
piston (which is transparent to it) and gas B exerts the same pressure on both
pistons. Therefore no work is needed for this reversible separation. Then, each
gas is isothermally compressed to reduce its volume by a factor cj, so that the
final total volume is the same as the initial one. The isothermal work needed
for compressing the j-th idea gas is

- /p]- v = —NjT/dV/V = —N;T loge; = ~NTc;logc;. (9.51)

This work is released into the reservoir where it is converted into heat. Since
the entire process is macroscopicaly reversible, the total entropy is conserved.
Therefore the mixing entropy, in the initial state, is given by Eq. (9.50). And
vice versa, TS is the maximum amount of heat convertible into mechanical
work by isotherma mixing of ideal gases. (Recall that the name heat is given
to the energy randomly distributed among the many degrees of freedom of the
reservoir, for which we gave up the possibility of a detailed description.)

The quantum definition of entropy closely parallels the above argument. It
also assumes the existence of semipermeable membranes which can be used for
performing quantum tests. These membranes separate orthogonal states with
perfect efficiency. The fundamental problem here is whether it is legitimate to
treat quantum states in the same way as varieties of classical ideal gases.

This issue was clarified by Einstein'? in the early days of the “old” quantum
theory, as follows: Consider an ensemble of quantum systems, each one enclosed
in a large impenetrable box, so as to prevent any interaction between them.
These boxes are enclosed in an even larger container, where they behave as an
ideal gas, because each box is so massive that classical mechanics is valid for its
motion (i.e., there is no need of Bohr-Sommerfeld quantization rules—remember
that Einstein’s argument was presented in 1914). The container itself has ideal
walls and pistons which may be, according to our needs, perfectly conducting,
or perfectly insulating, or with properties equivalent to those of semipermeable
membranes. The latter are endowed with automatic devices able to peek inside
the boxes and to test the state of the quantum systems enclosed therein. The
entire machine can then function like the one in Fig. 9.1.

Similar assumptions were later used by von Neumannt® who emphasized that
the practical infeasibility of Einstein’s fantastic contraption did not impair its
demonstrative power: “In the sense of phenomenological thermodynamics, each
conceivable process congtitutes valid evidence, provided that it does not conflict
with the two fundamental laws of thermodynamics.” von Neumann showed that
the mixing entropy (9.50) could be written as S = —N Tr(plogp), where pis
the density matrix representing the state of each quantum system. The c¢j of
Eg. (9.50) are analogous to the eigenvalues of p.

12 A, Eingtein, Verh. Deut. Phys. Gesell. 16 (1914) 820.

133, von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin
(1932) p. 191 [t rand. by E. T. Beyer: Mathematical Foundations of Quantum Mechanics,
Princeton Univ. Press (1955) p. 359].



272 Information and Thermodynamics

Quantization of Einstein’s state selector

This hybrid classical-quantal reasoning is not satisfactory, because there is no
consistent dynamical formalism for interacting classical and quantum systems. |
shall now outline a genuinely quantal proof of the equivalence of von Neumann's
entropy (9.16) to the ordinary entropy of classical thermodynamics.

Let g denote collectively all the internal degrees of freedom of a quantum
system, and let R denote its center of mass. The components of R have the
same role as the coordinates of Einstein’s impenetrable classical boxes, but they
are quantum variables. The Hamiltonian of the quantum system is

H = Ho(q) + P?/2M, (9.52)

where Hp involves only the interna variables, P is the momentum conjugate
to R, and M is the mass of the system. At this stage, there is no interaction
between the internal degrees of freedom ¢ and the trandatory ones, R and P.

We now introduce Einstein’s large container, which also plays the role of a
thermal reservoir. As is customary in thermodynamics, the properties of this
container are extremely idealized. Its degrees of freedom fall into two classes: a
small number of macrovariables collectively denoted by X (position of the center
of mass, gpatial orientation, location of the pistons, etc.) and a huge number
of microvariables, denoted by x, which describe the atomic structure of the
container (the symbols X and x also denote momenta). The idealization here
is the absence of “mesovariables,” such as collective excitations which involve
108 or 10%atoms, and are neither microscopic nor macroscopic. Such an ideal
container can exist only in our imagination. Nevertheless, as long as it does not
violate known laws of physics, it is a perfectly legitimate tool for discovering
additional laws (see above quote from von Neumann's book).

The characteristic property of the macrovariables is that, if their observable
values are initially sharp, namely (X?) ~ (X)2, they remain sharp during the
entire dynamical evolution. This property does not hold for microvariables such
as the positions and momenta of individual molecules, whose values quickly
acquire a large dispersion, because of multiple collisions. The molecules aso
collide with the container, but each collision has a very small effect on the
latter. Only the total effect is noticeable: it is the pressure exerted on the walls
and pistons, and the fluctuations of that pressure are small if the container is
very large and there are many quantum systems enclosed in it.

The Heisenberg equations of motion for x and X have the form

dx/dt = f(X,x,q,R,P), (9.53)
and
dX/dt = F(X,x,q,R,P) + Foy, (9.549)

where Foq (@ C-number) is due to external agents under the direct control of
the experimenter who is actuating the pistons, opening and closing valves, etc.
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Taking average values in the last equation, we obtain
d(X)/dt = (F(X,x,q,R,P)) + Fex, - (9.55)

Thanks to the small dispersion of the X variables, it is possible to replace, on
the right hand sides of (9.53) and (9.55), X by X0 (or, if you prefer, by (XO1),
and to consider (X[ as a classical variable, that we shall write simply as X. We
know that it is in genera inconsistent to mix classica and quantum dynamical
variables; however, no inconsistency arises if we treat the X variables as mere
numerical parameters, having a prescribed dependence on time.

We further assume that these X parameters have a very slow motion, so
that the microvariables are a every instant in therma equilibrium. They have
a Gibbs distribution at temperature B :

pe = exp(—fHc)/Tr [exp(—BH)], (9.56)

where H. is the Hamiltonian of the container, which depends on x and on the
numerical parameters X. It is thanks to this thermal equilibrium that the
dispersion of the X variables always remains small.

Finally, we introduce an interaction between our quantum system and the
container in which it is enclosed. This interaction causes multiple scatterings
of the quantum system with the walls and pistons. It is essentia that AH, the
energy spread of the quantum system, far exceeds the average level spacing of
the energy spectrum of the macroscopic container, so that the quantum system
does not feel the discreteness of the spectrum of the container.

Two cases must now be distinguished, depending on whether the container
has semipermeable partitions which interact with the internal variables of the
guantum system, or only ordinary walls and pistons. In the latter case, the
interaction term in the Hamiltonian involves the macrovariables X (considered
as classical parameters), the microvariables x (quantized), and the position
variables R and P of the quantum system, but not its internal variables q.
The evolution of the latter thus is completely digoint from that of the other
variables. We can now apply the results of the preceding section. The final
value of § — B(F) for the R and P variables corresponds to a Gibbs state at
the same temperature B~ as the reservoir. That is, an ensemble of quantum
systems described by the Hamiltonian (9.52) has the same statistical properties
as a classical ideal gas of free particles of mass M. In particular, it exerts
exactly the same pressure on the walls of the container.

Selection of orthogonal states

The situation becomes more interesting if semipermeable partitions are intro-
duced. The latter may be described by an interaction term involving g, R, P,
and X. Recall that the classical parameters X, which include the positions of
the movable partitions, are prescribed functions of time. Their time dependence
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must be extremely slow on time scales relevant to the x, R, and P variables, so
that the latter aways are in therma equilibrium.

If we add to the right hand side of (9.52) a term Hin (g, R, X), its effect will
be to generate an entangled state, where the variables q and R are correlated.
As an extremely simplified model, take a one dimensional container. Particles
with spin up can be concentrated on one side of a partition located at position
X, and particles with spin down on the other side, by means of an interaction

Hine = —Vp o, tanh K(R — X), (9.57)

where Vo and K are large constants, and the symbol “tanh” stands for any
smoothed step function. This interaction produces a force ~¢o.Vp K acting on
the quantum system when its position is in the vicinity of X, the location of
the semipermeable partition. The result is like a Stern-Gerlach experiment.
Particles with opposite values of o, are accelerated in opposite directions. The
final wave function (in the coordinate representation) is the sum of two terms.
In each one of them, ({R} — X) has the same sign as {c.).

Exercise 9.9 Write an interaction which sorts out different eigenvalues of any
operator A into different regions of a three dimensional container.  *

This simple abstract model demonstrates that it is possible, at least in theory,
to dispatch into different regions of the R-space quantum systems in orthogonal
states. They behave exactly as if they were a mixture of classical idea gases
of different types. Therefore there should be no doubt that von Neumann's
entropy (9.16) is equivalent to the entropy of classical thermodynamics. (This
statement must be understood with the same vague meaning as when we say
that the quantum notions of energy, momentum, angular momentum, etc., are
equivaent to the classical notions bearing the same names.)

Free energy of a pure state

On the other hand, there also are circumstances under which an ensemble of
guantum systems displays thermodynamic properties quite different from those
of a mixture of classical ideal gases. This is due to the existence of non-
orthogonal states, which are essentially nonclassical. These states are partly
alike—neither identical, nor completely different from one another. They enable
us to convert in a continuous way any quantum state into any other quantum
state, as shown below (for a concrete example, see Exercise 1.1, page 7).

Exercise 9.10 Let v and w be two orthogonal states of a quantum system.
Show thatU = exp[A(vw! — wv')], with real A, is a unitary matrix which
rotates the subspace spanned by v and w :

Uv = cosA v —sinA w, Uw = sin A v 4 cos A w. (9.58)
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In the following discussion, it will be assumed that any unitary evolution, such
as the one in Eq. (9.58), can in principle be realized in the laboratory. It is
an isentropic process, and any energy that has to be supplied can be reversibly
recaptured (or, if you prefer, you can put the system in an environment such
that v and w become degenerate energy eigenstates).

We shall now see that an ensemble of n quantum systems in any pure state
can extract energy from a thermal reservoir at temperature T. Indeed, take
one half of these systems, and reversibly rotate their pure state into an ortho-
gona state, as in Eqg. (9.58). Then, mix these two subensembles, isothermally
and reversibly. This extracts an energy nT log2 from the thermal reservoir.
More generaly, if the quantum systems used for this process have N orthogonal
states, you can divide an ensemble prepared in a pure state into N identical
subensembles, reversibly rotate N— 1 of them into mutually orthogonal states,
and finaly mix them together, thereby extracting an energy nT log N from the
thermal reservoir.

9-4. Some impossible processes

In the preceding section, we examined conceptual processes which would have
been exceedingly difficult to realize in practice, but did not violate any funda-
mental physical principle. | shall now describe truly impossible tasks, and show
that there is a close relationship between dynamical evolutions which violate
some fundamental principle of quantum theory (such as unitarity) and those
which are forbidden by the second law of thermodynamics.

It thus appears that thermodynamics imposes severe constraints on the choice
of fundamental axioms for quantum theory. However, this claim heavily relies
on the equivalence of von Neumann's entropy to the ordinary entropy of thermo-
dynamics. The proof of this equivalence assumes the validity of Hamiltonian
dynamics (in order to derive the existence of therma equilibrium), and there
may be a logical error here, known as petitio principii: we invoke Hamiltonian
dynamics in order to prove some theorems, and then we claim as a corollary
of these theorems that non-Hamiltonian dynamics is inconsistent. Thus, the
final conclusion to be drawn from this discussion is that if the integrity of the
axiomatic structure of quantum theory is not strictly respected, then every
aspect of the theory must be reconsidered.

Selection of non-orthogonal states

The interaction in Eg. (9.57) and its multidimensional generalizations alow us
to distinguish different eigenvalues of Hermitian operators, which correspond
to orthogonal states of a quantum system. Can there be more general tests?
Imagine that a wily inventor claims having produced semipermeable partitions
which unambiguously distinguish non-orthogonal states. He can thereby convert
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into work an unlimited amount of heat extracted from an isothermal reservair,
as shown below. Will you invest your money in this new technology?

Before we examine how this marvellous invention works, let us first notice
that such a process violates the completeness postulate K, which asserts that
a density matrix p is a complete specification of all the physical properties of
an ensemble (see page 76). Indeed, let P, and P2 represent two pure states
of a quantum system, and let po be the initial state of an instrument built
for separating them. An interaction with a properly constructed instrument
generates the following dynamical evolutions:

Pi®po—P1®p and P: ® po — P2 ® p2, (9.59)

where the final states p, and p, are orthogonal (that is, p1 p2 = O). For example,
p1 and p, may be located in different regions of spacel If the initial state of
the quantum system is a mixture, 1(P; + P,), the effect of the separator is

3Pi4P)®po — 3(P1®p1+P2®pa) (9.60)

This relation follows from Postulate K, because the representation of a statistical
ensemble by the expression%(Pl +P3) means that this ensemble behaves as if
50% of its elements are in state P, and 50% in state P ,. There is no need here
to assume linearity, because there are no interference effects between the two
components if the initia state is a mixture.

The dynamical process represented by Eq. (9.60) is a separation of the P;
and P, components of the mixture, such that each one ends up correlated to
a different final state of the instrument. Taking the squares of both sides of
Eqg. (9.60), we obtain, apart from a factor %:

(P14 P+ PP+ P2P)®p® — Pr®pi? +Pa®pi?, (9.61)

where use was made of P2 = P;, and p1p, =0O. Subtracting from Eg. (9.61)
the squares of Egs. (9.59) then gives P1P, + P,P; = O . Therefore Eq. (9.60) is
consistent if, and only if, states P, and P, are orthogonal.

Consider now the cyclic process illustrated in Fig. 9.2, which involves two
non-orthogonal photon states. Suppose that there are n photons in the vessel.
One half of them are prepared with vertical linear polarization, and the other
half with a linear polarization at 45° from the vertica. Initialy, in state @),
they occupy two chambers with equal volumes. The first step of the cyclic
process is an isothermal expansion, doubling these volumes, as shown in (b).
This expansion supplies an amount of work nT log 2, where T is the temperature
of the reservoir. At that stage, the impenetrable partitions separating the two
photon gases are replaced by semipermeable membranes, as in Fig. 9.1. These

11t is always possible to consider p, as a pure state, which satisfies pg2= po, by introducing
an auxiliary Hilbert space, as shown in Exercise 5.10. However, that mock Hilbert space does
not participate in the dynamical evolution, and one cannot impose that p; and p, be pure
states too.
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membranes, however, have the extraordinary ability of selecting non-orthogonal
states: One of them is transparent to vertically polarized photons, and reflects
those with polarization at 45° from the vertical; the other membrane has the
opposite properties. A double frictionless piston, like the one in Fig. 9.1, can
thus bring the engine to state (c), without expenditure of work or heat transfer.
We have thereby obtained a mixture of the two polarization states, with density
matrix

1 t
R EVAYAYEYAYAY NN N E
P=3 [(o) (0) *3 (1) (1) ] = ( 0.25 0.25 ) ’ (9.62)
The eigenvalues of p are 0.854 (corresponding to photons polarized at 22.5°
from the vertical) and 0.146 (for the orthogonal polarization).

(b)

(d) (c)

Fig. 9.2. This cyclic process extracts heat from an isothermal
reservoir and converts it into work, by using a hypothetical
semipermeable partition which separates non-orthogonal photon
states. Double arrows indicate the polarizations of the photons.

We now replace the “magic” membranes by ordinary ones, which reversibly
separate these two orthogona polarization states, and yield state (d). The next
step is an isothermal compression, leading to state (€) where both chambers
have the same pressure and the same total volume as those in state (@). This
isothermal compression requires an expenditure of work

—nT (0.146 log 0.146 + 0.854 log 0.854) = 0.416 nT, (9.63)

which is released as heat into the reservoir. This work is less than nTlog2,
the amount that was gained in the isothermal expansion from (a) to (b). The
net gain is 0.277 nT. Finally, no work is involved in returning from (€) to (a),
by suitable rotations of polarization vectors, as in Eq. (9.58). We have thus
demonstrated the existence of a closed cycle whereby an unlimited amount of
heat can be extracted from an isothermal reservoir and converted into work, in
violation of the second law of thermodynamics.
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Nonlinear Schrédinger equation

A similar violation of the second law arises if nonlinear modifications are intro-
duced into Schrodinger's equation, as proposed by many authors with various
motivations. 1516 A nonlinear Schrédinger equation does not violate the super-
position principle G (page 50). The latter asserts that the pure states of a
physical system can be represented by rays in a complex linear space, but it
does not demand that the time evolution of these rays obey a linear equation.

It is not difficult to invent nonlinear variants of Schrédinger’s equation with
the property that if u (0) evolvesinto u(t), and v (O) evolves into v(t), the pure
state represented by u(0) + v(0) does not evolve into u(t) +v(t), but into
some other pure state (see for example page 241). | shall now show that such
a nonlinear evolution violates the second law of thermodynamics, if the other
postulates of quantum mechanics are kept intact. In particular, | shall retain
the equivalence of von Neumann's entropy to the ordinary thermodynamical
entropy, which was demonstrated in the preceding section.

Consider a mixture of quantum systems represented by a density matrix

p=APy+(1— )Py, (9.64)

where 0 < A < 1 and where P and Py are projection operators on the pure
states u and v, respectively. The nonvanishing eigenvalues of p are

wi= [ - A1- N1 -2 (2.65)

where x =[u,vI2. The entropy of this mixture, S= —kY w;logw; , satisfies
dS/dx < 0 for any A. Therefore, if pure quantum states evolve as u(0) - u(t)
and v(0) - v(t), the entropy of the mixture p shall not decrease (i.e, that
mixture shall not become less homogeneous) provided that x(t) < x(0), or

u(®), v(t)1* < {u(0), v(0))*. (9.66)

In particular, if W(0),v(0)O= 0, we also have Cu(t),v(t)O= 0. Orthogonal
states remain orthogonal.
Consider now a complete orthogonal set ux. We have, for every v,

2o e =1 (9.67)
k

Therefore, if there is some m for which [{u,.(¢), v(£))> < |{u,(0),v(0))|%, there
must also be some n for which [(u,(¢),v(t)}|* > [{u(0),v(0)}{*. Then the
entropy of a mixture of u, and v will spontaneously decrease in a closed system,
in violation of the second law of thermodynamics.

15, de Broglie, Une Tentative d'Interprétation Causale et Nonlinéaire de la Mécanique
Ondulatoire, Gauthier-Villars, Paris (1956).
16s, Weinberg, Nucl. Phys. B (Proc. Suppl.) 6 (1989) 67; Ann. Phys. (NY) 194 (1989) 336.
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To retain the second law, we must have [{u(t),v(#)}|®> = [{u(0),v(0)}{? for
every u and v. It then follows from Wigner's theorem (Sect. 8-2) that, with
an appropriate choice of phases, the mapping v(0) - v(t) is unitary (the anti-
unitary alternative is ruled out by continuity). Schrodinger's equation must
therefore be linear, if we retain the other postulates of quantum theory without
any change.

No-cloning theorem

It was shown in Sect. 3-5 that, if we know that a large number of quantum
systems have been prepared identically, it is possible to determine their state
unambiguously by suitable quantum tests. On the other hand, we have just seen
that it is impossible to distinguish unambiguously non-orthogona states of a
single system. Why can't we overcome this difficulty by making many identical
replicas of that system, just as we duplicate a letter with a photocopier?
Imagine that there is an amplifier, initially in a state W, with the ability of
duplicating quantum systems prepared in an arbitrary state. That is,

v - U(TRv)=0'Qvey, (?) (9.68)

where W' is the state of the amplifier after performing its duty. Likewise, for a
different input state of the quantum system, we would have

Tw — U(T@w)=0"0w®w. ? (9.69)
Take the inner product of these two eguations. Unitarity implies that
(T, @) (v,w) = (¥, T") (v, w) (v, w). () (9.70)

In this equation, we have 0 <v,wll < 1 for suitable choices of v and w, and
dsoW,WlE= 1. It follows that W', V" OVv,wl= 1, which is impossible, because
', W"< 1. Therefore such an amplifier cannot exist. 17:18

9-5. Generalized quantum tests

The most efficient way of obtaining information about the state of a quantum
system is not always a maximal test (as defined in Chapter 2). It is sometimes
preferable to introduce an auxiliary quantum system, prepared in a standard
state, and to execute a combined quantum test on both systems together. We
shall now examine these indirect quantum tests, which actually are the most
common ones. The maximal tests that were considered until now are a conve-
nient conceptual notion, but are seldom realized in practice.

7W. K. Wootters and W. H. Zurek, Nature 299 (1982) 802.
18D, Dieks, Phys. Letters A 92 (1982) 271.
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Formulation of the problem

The classic treatise on the foundations of quantum theory is von Neumann's
book. 13 Historically, this was the first rigorous presentation of a mathematical
formalism for quantum theory, with a consistent physical interpretation. The
book had a disproportionate influence on quantum methodology. In particular,
most subsequent investigations of the “quantum measurement problem” have
revolved around the determination of values of dynamical variables which have
classical counterparts. positions, momenta, energies, etc. In von Neumann's
approach, these dynamical variables (classically—functions of qand p are
represented by self-adjoint operators acting on H, the Hilbert space of quantum
states. Their spectrum corresponds to an orthogonal resolution of the identity,
because the various outcomes of a quantum test are mutually exclusive, and
their probabilities sum up to 1.

It was later realized that von Neumann's theory of quantum measurements
was too narrow. It did not allow to ask simple questions referring to well
defined physical situations. As an example, suppose that a spin% particle is
prepared in a pure state. Its wave function @ satisfies o-ny =, for some unit
vector n. The state Y is uniquely defined (up to an irrelevant phase) if nis
given. The question “What is n?" has an obvious classica analog (“What is the
direction of the angular momentum?’). It is a legitimate way of inquiring about
the preparation of the system. That preparation is a macroscopic procedure,
without any “quantum uncertainties.” However, nis not a quantum dynamical
variable (a self-adjoint operator acting on H). The only “quantum observables’
of a spin % particle are the components of o and linear combinations thereof.

The situation described above may occur in actual experiments. Polarized
neutrons are used as probes for measuring magnetic fields in condensed matter.
We thus want to know the precession of the neutron’s magnetic moment. This
is a well defined physical concept (represented in quantum theory by a unitary
operator). Yet, there is no possibility of measuring this precession if only one
neutron is available. We need numerous, identically prepared neutrons in order
to obtain a good estimate of the precession angle. While this is not a serious
impediment in experimental solid state physics, where you have an abundance
of identical particles, this may become one in other areas of physics, where only
a few quanta are available. For example, if we detect a small number of photons
from a distant star, how well can we determine their polarization? The most
efficient methods are not maximal tests, as we shall soon see.

Shannon’s entropy in quantum theory

The novel feature introduced by quantum theory is that preparations which
are macroscopically different can produce states which are not orthogonal, and
therefore cannot be distinguished unambiguously from each other. For instance,
let the state of a spin % particle be prepared by selecting the upper beam in
a Stern-Gerlach experiment. We are given the choice of orienting the magnet
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aong direction n,, or aong direction n,. The corresponding quantum states
of the resulting beams, Y3 and Y2, are then given by o -njyj = yj. In genera,
these states are not orthogonal. Their overlap is

[(1,92)|* =1 (1 +ny - ny). (9.72)

This expression is the probability that, following a preparation of state 1, the
question “Was the prepared state W,?" will be answered in the affirmative. The
answer cannot be predicted with certainty. Once the spin % particle has been
severed from the macroscopic apparatus which prepared it, it does not carry the
full information relative to the preparation procedure. Some questions become
ambiguous, and only probabilities can be assigned to their answers.

This situation is radically different from the one prevailing in classical physics.
Therefore quantum tests cannot be restricted to be mere imitations of classical
measurements, where all we want to know is the numerical value of a dynamical
variable. More general procedures must be considered, which are adapted to
the rules of quantum theory.

Because of the peculiar properties of non-orthogona states, it is necessary
to distinguish Shannon’s entropy, — 3 p;logp;, from von Neumann's entropy,
—Tr(plogp). For instance, our spin % particle may have N distinct preparation
procedures. If they are equally probable, Shannon’'s entropy, log N, can be
arbitrarily large. On the other hand, von Neumann's entropy never exceeds
log 2. Thus, paradoxicaly, we are less ignorant in quantum physics than in
classical physics: this is because there are fewer diferent (i.e, orthogonal)
questions that we are allowed to ask, and therefore there are fewer unknown
answers. To clearly distinguish these two kinds of entropies, Shannon’s entropy
will henceforth be denoted by H (not S) as is customary in information theory.
(There is no risk of confusion here with the Hamiltonian.)

Exercise 9.11 Three different preparation procedures of a spin % particle

are represented by the vectors ([‘)) and 3 (). If they are equally likely, the

Shannon entropy is log 3, and the von Neumann entropy is log 2. Show that if
there are n such particles, all prepared in the same way, the von Neumann
entropy asymptotically tends to log 3 when n - o. Hint: Consider three
real unit vectors making equal angles: [lj,u;00= cif i # j. Show that the
eigenvalues of Eu,-u} ael-c,1-c and 1+ 2c. *

Quantum information gain

How well can we distinguish non-orthogonal states? Let us assume that there
are N different preparations, represented by known density matrices p;, and let
pi be the known a priori probability for preparation i. We further assume that
the testing procedure may yield n different outcomes (in general n # N). If
we have enough understanding of the physical processes involved in the test,
we can compute the conditional probability P,; that preparation i shall yield
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result p. Having found a particular result , we can then compute Qi ,the
likelihood (or a posteriori probability) for preparation i. It is given by Bayes's
theorem (see Appendix to Chapter 2):

Qiu = Pui pi/qu ) (972)
where
9 =2_ Pupj, (9.73)
2

is the a priori probability for occurrence of outcome L.

Before finding the result p, we only knew the probabilities pi. Shannon’s
entropy, which is a measure of our ignorance, was —Z pilogpi.After having
found the result p, we can compute the a posteriori probabilities Qy, and the
new entropy is

Hy==3_ Qi log Qi (9.74)

For some outcomes, H, may be larger than the initial entropy, so that the result
of the test is to increase our uncertainty. Here is an amusing example, due to
Uffink: my key has a 90% chance to be in my pocket; if it is not, it may be in
a hundred other places, with equal probabilities. The Shannon entropy thus is
-0.9 log 0.9 — 0.1 log 0.001 = 0.7856. If | search in my pocket and | don’'t find
the key in it, the Shannon entropy increases to — log 0.01 = 4.605. We thus
see that Shannon’s entropy does not measure an objective ignorance level, but
rather our subjective feeling of ignorance.

On the average, however, a quantum test reduces the Shannon entropy. The
average information gain is

Ly = Hipitial — (Hpnal) = — > _pilogpi — Y _q. H,. (9.75)
3

We shal investigate the optimization of this information gain after we have
acquired the necessary mathematical tools.

Positive operator valued measures

The information gain (9.75) depends on the conditional probabilities Py for
obtaining result p when the system is prepared in state pi. The value of Py is
determined by the testing procedure. Consider the following model for a two-
step operation: First, an auxiliary quantum system, called ancilla® is prepared
in aknown state paux. The combined, uncorrelated state of the original guantum
system and the ancilla is

19C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York
(1976) pp. 74-83.
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(Pi ® paux)mr,ns = (pl )mn (paux)rs 3 (976)

where italic and boldface indices refer to the original and auxiliary quantum
systems, respectively.

A maximal test is then performed in the combined Hilbert space. This is
in principle always possible, by virtue of the strong superposition principle G*
(page 54). That complete test is represented by an orthogona resolution of the
identity. Different outcomes correspond to orthogonal projectors which satisfy

P.P,=6,P, and S P,=1 (9.77)
I

In such a test, the probability that outcome p will follow preparation iis

Pui = Tr[P, (pi ® paux)] = Z (Pu)mrims (Pi)nm (Paux er - (9.78)

mr.ns

This can be written as

P = Tr(A,pi), (9.79)
where
(A)mn =3 (Pu)mrns (Paux)sr (9.80)

is an operator acting on the original Hilbert space H.
The Hermitian matrices A, which in general do not commute, satisfy

YA =1 (9.81)

The set of A, is called a positive operator valued measure?>?! (POVM), because
each A is a positive operator (see definition on page 74). The main difference
between these POVMs and von Neumann's projection valued measures is that
the number of available preparations and that of available outcomes may be
different from each other, and also different from the dimensionality of Hilbert
space. The probability of outcome W is now given by g, = Tr{A, p), instead of
von Neumann’s  Tr(P, p).

Optimization

We usually want to maximize the average information gain |, for a given set
of p; and p;. Finding the optimal strategy is a difficult problem for which no
general solution is known. Some partial results are however available. It can be
proved? that the optimal POVM consists of matrices of rank one:

203, M. Jauch and C. Piron, Helv. Phys. Acta 40 (1967) 559.
2lE. B. Davies and J. T. Lewis, Comm. Math. Phys. 17 (1970) 239.
22E. B. Davies, |IEEE Trans. Inform. Theory IT-24 (1978) 596.
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A, =u,ul, (9.82)

where the vectors u, are in general neither normalized nor orthogonal. The
required number, n, of different A, satisfies the inequality?

d<n<d? (9.83)

where d is the dimensionality of the subspace of H spanned by the different
preparations pi.
It can also be proved®? that the average information gain is bounded by

L, < S(Z pipi) — Zpi S(ps), (9.84)

with equality holding if, and only if, al the pi commute. The recoverable
information can never exceed the von Neumann entropy.

Exercise 9.12 (a) Show that the four matrices (14 o0,)/4 and (1 0.)/4
are of rank one and form a POVM. (b) Let a spin % particle be prepared in
one of the eigenstates of o x or o,, with equal probabilities for these four states.
Compute the probability matrices Pyi and Qj,. What are the values of the
Shannon entropy before and after testing the above POVM? Ans.: log 4, and

log 4 — % log 2, respectively (the same result for all the outcomes). *

Exercise 9.13 With the same preparation states as in the preceding exercise,
compute the final Shannon entropy for the POVM consisting of the four matrices
(14 (0, £ 0.)/v2]/4, which also are of rank one. Ans.: All the elements of
Pui and Qi, are equa to (1+1/+/2)/4, and the final entropy is log 4 — 0.27665.
(The information gain is less than in preceding exercise). *

In some cases (such as in quantum cryptography, see Sect. 9-8), we are not
interested in maximizing the average information gain 14, but in having part
of the answers stating with certainty that some definite preparation was used,
or was not used. Consider, for instance, two eguiprobable preparation states,

u= (c9sa> and v= (S““’), (9.85)
s o COS &

where 0 < a < 11/4. We do not want a test giving a posteriori probabilities
for these two states, but one with definite answers: either u, or v, or “lI don’t
know.” A suitable POVM giving these answers can be constructed as follows.
The projectors on states orthogona to u and v are

Py :=1—uul and Py =1 —wv, (9.86)

2. B. Levitin, in Proc. Fourth All-Union Conf. on Information and Coding Theory, Tashkent
(1969) p. 111 [in Russian].
%A, 'S, Holevo, Probl. Inform. Transmission 9 (1973) 110, 177 [transl. from the Russian].
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respectively. Let S= [u,vO=sin 2a. Then the three positive operators
Ay =Po/(1 +5), Ay = P_y/(1 +5), Ar=1-A,—Ay, (987
are the required POVM.

Exercise 9.14 Show that A; = S(1 + §)2(u + v)(u + v)f, and that the
probability of an inconclusive answer is S.

After an inconclusive answer, Shannon’'s entropy still has its initial value, log 2.
The mean information gain with this method thus is 1, = (1 — S)log 2.

A larger gain can be achieved if we are willing to accept probabilities, rather
than occasional certainties mixed with totally inconclusive answers. To get this
larger |4, we measure the operator uut — vvt, whose eigenvalues are + cos 2a
The probabilities of obtaining these eigenvalues, after preparations of u or v,
are Py = (1= cos2a)/2, and the average information gain is

I, =log2+ P, log Py + P_ log P_
= [(1+cos 2a) log (1+cos 2a) + (1 —cos 2a)log (1 —cos2a)]/2.  (9.88)

Exercise 9.15 Plot this result as a function of a, and show that it is always
larger than 15 = (1 —sin 2a)log 2, which was obtained with the preceding
method. Hint: Differentiate both expressions with respect to cos 2a. *

9-6. Neumark’s theorem

It will now be shown that there aways exists a physical mechanism (that is, a
realizable experimental procedure) generating any desired POVM represented
by given matrices A, . This result follows from Neumark’s theorem, 2526 which
asserts that one can extend the Hilbert space of states H , in which the A,
are defined, in such a way that there exists, in the extended space K, a set of
orthogonal projectors Pu  satisfying 3~ P, = 1, and such that A, is the result of
projecting Py from K into H. (The actual realizability of this set of P, follows
from the strong superposition principle, see page 54.)

Thanks to Davies's theorem,?2 we can restrict our atention to matrices A
that are of rank one, as in Eq. (9.82). The index pruns from 1 to N, the number
of different outcomes (note that N > nif all the A, have rank 1, the equality
sign holding only if they are orthogonal). Let us add N — n extra dimensions
to H by introducing unit vectors vs, orthogonal to each other and to al the uy
in Eg. (9.82). The index sruns from n+ 1 to N. Consider

M. A. Neumark, 1zv. Akad. Nauk SSSR, Ser. Mat. 4 (1940) 53, 277; C. R. (Doklady) Acad.
Sci. URSS (N.S) 41 (1943) 350.

2N. I. Akhiezer and |. M. Glazman, Theory of Linear Operators in Hilbert Space, Ungar,
New York (1963) Vol. 2, pp. 121-126.
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N
Wy =yt DD CusViy (9.89)

s=n+41

where the cys are complex coefficients to be determined. The vectors w, form
a complete orthonormal basis in the enlarged space K provided that
N
(W,\,Wp,) = (u/\yuu> + Z acua = 6)\#- (990)

s=n<+1

There are here more equations than unknown coefficients c,s. However, the u,
are not arbitrary: they obey the closure propertyZu“uf,:EA,,:]l. Explicitly,

N ——
Y Ui, = &j, (9.91)
=1

where i and j run from 1 to n (the number of dimensions of the original Hilbert
space, H). With the same explicit notations, Eqg. (9.90) is

n N
Y Unituit Y CxsCus =, A p=1,..,N). (9.92)

=1 s=n+1

Consider now the sguare matrix of order N,

Ugr =+ Uogn Camnt+1l "' CaN
u,@l LY Uﬁ C s +1 e C N

M= 7 o ’ (9.93)
UNT " UNn CNmn+l '°° CNN

The first n columns are the u,;, which are given, and the (N — n) remaining
columns are the unknown c,s. Equation (9.92) simply states that M is a unitary
matrix. The first n columns, which satisfy the consistency requirement (9.91),
can be considered as n orthonormal vectors in a N-dimensional space. There are
then infinitely many ways of constructing N-n other orthonorma vectors for
the remaining columns. We thereby obtain explicitly the N orthonormal vectors
w), defined by Eq. (9.89). Their projections into H are the u, of Eq. (9.82).

Exercise 9.16 Wkite explicitly the matrix M for the POVM in (9.87). *

We now have a formal proof of Neumark’s theorem (for a finite dimensional
Hilbert space) but we still have the problem of actually constructing the extra
dimensions spanned by the vectors vg. In some cases, this is easy: it may happen
that the set of uyin Eg. (9.82) spans only a subspace of the states available
to our quantum system, and that the latter has enough states to accomodate
al the vs (it is trivially so if we use only a finite number of A, in an infinite
dimensional Hilbert space). However, in general, the extension from H to K
necessitates the introduction of an ancilla,® as shown below.
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Case study: three non-orthogonal states

As a smple example, let n;, n, and n3 denote three unit vectors making angles
of 120° with each other, so that 3" n, = 0. Consider a spin 32 particle and define
three pairs of normalized states by

Oy Xp = Xu and o n, = —1h,. (9.94)
It is easily verified that the three positive operators
A, =2y, (9.95)

have sum 1 and therefore define a POVM.

Suppose that we are given the following information: The spinl2 particle can
be prepared in one of the three quantum states X, defined above, and these
three preparations have equal a priori probabilities. If we are not told which
one of the three X, is actually implemented, the Shannon entropy is H = log 3.
Our problem is to devise a procedure giving us as much information as possible
(that is, reducing H as much as possible).

Exercise 9.17 Show that in this case the Levitin-Holevo inequality (9.84)
gives |5 <log 2.

We shall now see that the best result which can be achieved is to reduce the
value of H to log2, so that the actual information gain is log(3/2). This result
is obtained by ruling out one of the three alowed states, and leaving equal
a posteriori probabilities for the two others (see next exercise).

The lac:tual mechanism can be described as follows. The ancilla, which aso is
aspin ; particle, is prepared in an initial state @ . Let @' be the state orthogonal
to (. Let Y be any arbitrary state of the origina particle, and let ' be the
orthogonal state. Choose phases in such a way that (y,,%,) = —3 if u#v.
Then the three states!

CGuo=12/3 0@ % +/1/34' %, (9.96)

are orthonormal. The fourth orthonormal state is ¢'®¢’. The four projection
operators P, = ¢,¢} therefore form an orthogonal resolution of the identity,
and can in principle be measured in a single maximal test. Moreover, we have
(f0,Cu) = (2/8)/2¢, (for u = 1,2,3) and therefore, ¥

{¢0, P do} = (b0, ) {Cus o) = Ay, (9.97)

as in Eq. (9.80). In this particular case, it can be shown? that the A, in
Eq. (9.95) are the optimal set which maximizes |, .

2 Here, (¢g,(,) denotes the “partial inner product” of the ancilla state @% with the combined
state (,. The latter is defined in a larger Hilbert space, namely the tensor product of the
ancilla's Hilbert space with the origind H. The value of this partial inner product therefore is
avector in H.
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Exercise 9.18 Show that P, = Tr(A, p;) = 1 (1 —§,;), and that the final
entropy is H, =log 2 (the same entropy for all outcomes).

Preparation of the ancilla for arbitrary A,

This construction will now be generalized to an arbitrary set of Ay . Let @o
be the initial state of the ancilla, and let ¢n41,...,én ., De other states in the
ancilla’s Hilbert space, forming together with @o an orthonormal basis (that is,
the ancilla is an N — n + 1 state system). Likewise, let ey denote a complete
orthonormal basis in H. Define, as in Eq. (9.89),

N
Ci=o@uUu+ I cusds Qe (9.98)
s=n+1
The calculations now proceed just as in the previous case. However, the(,
span only a subspace of K, because K has n (N —-n+ 1) dimensions. The
(N —=n)(n— 1) remaining orthonormal states can be taken as ¢, ® es, Where
k=2,...,n. All these states are orthogonal to @, and therefore do not affect
the validity of Eq. (9.97).

Exercise 9.19 Construct the vector ¢, for the POVM (9.87).2%

Exercise 9.20 Consider four unit vectors n, connecting the center of a tetra-
hedron to its vertices, so that the angle between any two of these vectors is
m— arccoss—%. Define Xy, gy, and A, as in Egs. (9.94) and (9.95). Construct
explicitly the matrix M in Eqg. (9.93). Assuming that the four input states Y,
are equally probable, show that the information gain is log(4/3). * %

In real life, POVMs are not necessarily implemented by the algorithm of
Eqg. (9.98). There is an infinity of other ways of materiaizing a given POVM.
The importance of Neumark’s theorem lies in the proof that any arbitrary
POVM with a finite number of elements can in principle, without violating the
rules of quantum theory, be converted into a maximal test, by introducing an
auxiliary, independently prepared quantum system (the ancilld).

Quantum state resulting from a POVM

After a repeatable maximal test, the new state of the quantum system is the
pure state which corresponds to the outcome found in that test. What happens
after we execute a POVM? The result essentially depends on how that POVM
is implemented.® For example, if we use the method which has just been
described and we find the result 1, the state of the combined system is given
by Eqg. (9.98). The reduced density matrix of the origina quantum system is
obtained by taking a partial trace on the ancilla's variables,?

28D Dieks, Phys. Letters A 126 (1988) 303.
2 A, Peres, Phys. Letters A 128 (1988) 19.
%05 L Braunstein and C. M. Caves, Found. Phys. Lett. 1 (1988) 3.
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N
Py = Y05, G €l ) = 30 185, G = uul, + erel 3 lewl’. (9.99)

7 7 s=n+1
The last sum is 1 — |ju,]|? = 1 — TrA,, as may be seen by setting A = p in
Eq. (9.90). Therefore the state of the quantum system after we have found the
p-th outcome of the POVM by the above method is

Pl =Au+ (1 - TrA,)eel. (9.100)

If our quantum system was in state p, the probability of finding outcome p is
Tr (Aup). Therefore the expected state after execution of this POVM is

P = P Tr(Aup). (9.101)
u

A specia case of this result is von Neumann's projection valued measure, where
A, =Py. Wethen have Tr A, = 1, and

p'=3 P.Tr(P.p) =3 P.pP,. (9.102)
“ I

Exercise 9.21 Derive the last expression in Eg. (9.102).

Exercise 9.22 Show that, if we again test the same POVM, the probability
of getting result v is

P, =Tr(A, p) = Tr (A A,) + (1= TrA,) (e1, A, &), (9.103)

9-7. The limits of objectivity

Your supplier of polarized particles (the beam physicist of your accelerator)
claims to have produced neutrons with spin up. Can you verify this? If your
philosophy is that of the logical positivists, a statement is meaningful only if it
is possible to establish empirically whether it is true or false. Obviously, you
can take one of these neutrons and perform a Stern-Gerlach type experiment.
If the answer is “down,” you have caught your beam physicist misleading you;
but if the answer is “up,” this does not prove as yet that he told the truth.
A neutron polarized at an angle 6 from “up” has a probability cos¥6/2) to
yield the “up” result in a Stern-Gerlach experiment. An unpolarized neutron
(p=31) has a 50% probability to successfully pass the test.

The notions of truth and falsehood acquire new meanings in the logic of
guantum phenomena. It is in principle impossible to establish by a single test
the veracity of a statement about a quantum preparation. You can increase the
confidence level by testing more than one neutron, but this, in turn, depends
on your willingness to rely on the uniformity of the neutrons preparations. This
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issue itself is amenable to a test, but only if other suitable assumptions are made.
In general, the residual entropy (i.e, the uncertainty) left after a quantum test
depends on the amount and type of information that was available before the
test. This is also true in classical information theory (since |, depends on the
a priori probabilities pi) but the effect is more striking for quantum information
which can be supplied in subtler ways.

State verification

Let us start with an elementary example. You are told that a spin% particle
was prepared in an eigenstate of o,, with equal probabilities for both states.
The Shannon entropy is log 2, and this also is the von Neumann entropy, since
p = %]l. A Stern-Gerlach test along the z direction can then determine the
initial state with certainty. The information gain is log 2.

Now, imagine that there are two observers, who give contradictory reports on
the spin preparation procedure. One of them tells you that it is an eigenstate of
o, (with equal probabilities for both signs) and the other one asserts that it is
an eigenstate of o (also with equal probabilities for both signs). If you equally
trust (or distrust) your two observers, the Shannon entropy is log 4. You decide
to perform a Stern-Gerlach test.

Exercise 9.23 What is the information gain if that test is performed along
the x direction? Along a direction bisecting the angle between the x and y
axes? Ans.: I, = 0.34657 and 0.27665, respectively.

The above exercise shows that different testing methods may yield different
amounts of information, which is not unexpected. However, no testing what-
soever can determine which one of the two observers told the truth. This is
impossible even if you are given an unlimited number of particles to test. This
impossibility is fundamental (it follows from Postulate K, page 76). Indeed, if
it were not so, instantaneous communication between distant observers would
be possible, by using correlated pairs of particles originating from a common
source halfway between them, as was shown in Chapter 6.

Continuous variables: a case study

Suppose that the only information prior to a test of o,is that the initial state
was pure. It satisfied o -m =+, with equal probabilities for al directions of
the unit vector n. How well can we determine n?

Let us parametrize n by the polar angle 6 and the azimuthal angle ¢ around
the z-axis. The outcomes +1 of the test for o, have probabilities

Py =1(1%cosb). (9.104)

This test therefore gives no information about ¢ (as is obvious, because of the
axial symmetry).
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With an isotropic distribution of the spin direction n, the a priori probability
pe for the polar angle 6, irrespective of the value of ¢, is given by pe dB =
sinfdf §dé/4r = sinfdB/2. Let us introduce a new variable, u = cos 6,and
divide the domain of uinto a large number N of equal intervals of size du = 2/N.
The a priori probability for any one of these small intervals is

Pu=psdd =3 sinfdf =3du=N", -l<uc<l. (9.105)

The initial Shannon entropy is
1
Hy=~Y3 p, log pu = —/1 1 du log (3 du) = log N. (9.106)

In the limit N - oo, the value of H, becomes infinite, but this is harmless,
because Hg is an irrelevant additive constant, as we shall see. (A similar infinity
also occurs in the definition of entropy in classical statistical mechanics3t)

Exercise 9.24 What is the density matrix corresponding to a given value of
u = cos 6, in the representation where o, is diagonal?

The a priori probabilities for the outcomes +1 in a test for o, are
1
qi=ZPi,upu=/_1%(1:tu) Ldu=1. (9.107)
The a posteriori probability for u therefore is, by Bayes's theorem,
Qut = Prypufgr =3 (12 u)du = (1 £u)/N, (9.108)
and the final Shannon entropy, after observation of an outcome +1,is
1
He= =3 Qualog Que = — [ [1(1£w)du log[(1+u)/N]
1
=Hy—1 /1(1“) log (1 + u) du. (9.109)
The average information gain thus is
2
In=Ho— He =1 /0 zlogzdz =log 2 — 1 = 0.19315. (9.110)

As expected, the information gain is smaller than in the previous examples,
where there were only a few distinct possibilities for the value of u = cos 6.

Exercise 9.25 Generalize the above discussion to the case where the a priori
probability for the direction of nis not isotropic. *

31F. Reif , Fundamentals of Satistical and Thermal Physics, McGraw-Hill, New York (1965)
p. 245.
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What happens if we know nothing at all about the initial preparation?
Strange as it may be, there is no possibility of “knowing nothing” in the present
context. The only valid questions are those of the following type: Given the
a priori probabilities of various preparations, estimate their a posteriori prob-
abilities, after the result of the test is known. Within this logical framework,
a statement that the initial state is a random mixture, p ~ 1, leaves no room
for a priori probabilities. It is a complete specification of the preparation: the
Shannon entropy is zero and no further information is to be sought. It is only
when several distinct alternatives are considered that we have a meaningful
statistical problem.

Homogeneous assemblies

Consider a large number n of independent quantum systems of a known type.
The supplier asserts that the states of all these systems have been prepared in
the same way. If he does not disclose what that state is, it is easy to determine it
empirically: the elements of p (a density matrix of order N) can be obtained by
measuring the mean values of N2 — 1 suitably chosen operators® (The example
of a2 x 2 density matrix was discussed in detail, page 76.) The problem is to
verify that these n systems have indeed been prepared in the same way—for
example, that the source of particles which produces them is well stabilized.

Recall that quantum theory describes a set of nindependently prepared sub-
systems by a density matrix R = py ® p2 ® --- ® p, . This is a direct product,
where each one of thep; matrices is of order N. The matrix Ris of order N"
and treats the assembly as a single composite system. If all the subsystems
are prepared in the same way, the pj matrices are identical. They depend on
N2 -1 parameters which can be measured experimentally3 We shall now see
that if n > N2, it is possible to verify the uniformity of the preparations.

We divide the n subsystems into v sets, in any suitable systematic way—not
in a random way-so as to avoid erasing any suspected systematic deviations
from homogeneity in the preparation procedure. For example, yesterday’'s sam-
ples are not mixed with those of the preceding day, if we suspect that the source
is not stable. A convenient way of distributing the n samples among v sets is
to take v ~ N/, 0 that n > v>> N2. We then use N2-1 of these sets to
obtain estimates of the elements of p, and we repeat this process many times,
to verify that the results of different samples are consistent. If no inconsistency
is found beyond the normally expected statistical fluctuations, we are satisfied
that the n subsystems have been prepared in the same way, and we have aso
measured the corresponding one-particle density matrix p.

Here, it should be noted that we have asked only a very small subset of
all the possible questions: while only N? — 1 different questions are needed for
determining p, a maximal test could have had N" different outcomes (this is the
dimensionality of R). We shall again see in Chapter 12 that the transition from

32\, Band and J. L . Park, Found. Phys. 1 (1971) 339; Am. J. Phys. 47 (1979) 188.
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the quantal to the classical description of a physical system requires discarding
nearly all the microscopic information pertaining to that system.

9-8. Quantum cryptography and teleportation

Cryptography is the art of transmitting information in such a way that it cannot
be understood by an opponent who might intercept it. The original information,
caled plaintext, consists of words or expressions taken from a finite vocabulary
and assembled according to definite syntactical rules. Encryption is an invertible
deterministic mapping, yielding a ciphertext which conforms to none of these
rules and appears random and meaningless, so that it can be safely transmitted
over a public communication channel.

A demonstrably safe encryption method is the Vernam cipher. The plaintext
is written as sequence of bits (0 and 1). Another random sequence, called a
key, is added to it, bit by bit, modulo 2. This addition is equivalent to the
Boolean operation XOR (exclusive OR). The resulting ciphertext can then be
decrypted by XORing it with the same key. It is essential to use a key as long
as the message, and to never use it again.®

The problem we are going to address is how to distribute a cryptographic
key (a secret sequence of bits) to severa observers who initially share no secret
information, by using an insecure communication channel subject to inspection
by a hostile eavesdropper. If only classical means are used, this is an impossible
task. Quantum phenomena, on the other hand, provide various solutions. The
reason for this difference is that information stored in classical form, such as
printed text, can be examined objectively without altering it in any detectable
way, let aone destroying it, while it is impossible to do that with quantized
information encoded in unknown non-orthogonal states, for instance in the
polarizations of photons. It is the elusiveness of quantum information which
makes it ideal for transmitting secrets.

EPR key distribution

Consider a source of correlated photon pairs, as in the Aspect experiment (see
Fig. 6.8, p. 166). Two distant observers receive these photons and test their
polarizations aong directions o or B, which make a 45° angle with each other.
Here, contrary to the original Aspect experiment, the same pair of directions
is used by both observers. The choice between a and B is randomly made
for each photon, by each observer, who keeps a record of the results of al his
polarization tests. After they have analyzed a sufficient number of photon pairs,

% |f two messages are XORed with the same key, the XOR of their ciphertexts is identical
to the XOR of the plaintexts. The result is equivalent to the use of one of the messages as a
non-random key for encrypting the other message. If only a finite vocabulary is used, it then
is an easy cryptographic problem to decipher both messages.
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the two observers publicly announce the sequences of directions (a or ) that
were chosen by them, but not the results of the corresponding tests. In about
one haf of the cases, it turns out that the same direction was chosen by both
observers, and their results must then be the same, because the photons are
correlated. This sequence of results, which is known only to the two observers,
can be used as the secret key. The results of polarization tests performed aong
different directions may be discarded, 3 or used for eavesdropping control® (see
below).

It is usualy necessary to verify that there is no eavesdropper who intercepts
some of the photons and substitutes other, uncorrelated photons, to mislead
the two observers. Moreover, there is a possibility that two photon pairs are
emitted almost simultaneously, and only one photon of each pair is detected by
each observer. This may cause a mismatch in the two keys, inducing errors in
the encryption-decryption process. In order to ensure that both keys are the
same, the observers may publicly disclose the parity of the sum of randomly
chosen subsets of bits (and then discard the first bit of each subset, so that no
information is released to an eavesdropper). Sophisticated methods of verifica-
tion and “privacy enhancement” have been developed for this pupose, ¢ making
guantum cryptography an absolutely secure method of communication.

Key distribution using two non-orthogonal states

EPR-correlated particles appear to be a very safe agent for distributing a crypto-
graphic key, because they contain no information at al. If these particles can
be stored as long as necessary by the distant observers, the key comes to being
only when it is needed for transmitting a message. Other methods, however,
may be easier to implement. For example, it is possible to use only two non-
orthogonal states, u and v, as follows: 37 One of the observers emits a sequence
of quanta, randomly prepared in the u or v states; the other one executes a
POVM of type (9.87) and publicly announces the cases in which the quantum
state was positively identified, without saying of course whether it was u or v.
The resulting sequence of u and v, which is known only to the two observers, is
the cryptographic key.

Double density coding

In the EPR key distribution discussed above, a single bit is transmitted by each
EPR pair (if we aso count lost EPR pairs for which the observers have used
different settings, only haf a bit is transmitted, on the average). Remarkably,
it is possible to transmit two bits with a single EPR pair, by the following

z’zC. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett. 68 (1992) 557.
A. K. Ekert, Phys. Rev. Lett. 67 (1991) 661.

%6C. H. Bennett, F. Besseite, G. Brassard, L. Salvail, and J. Smolin, J. Crypto. 5 (1992) 3.
37C. H. Bennett, Phys. Rev. Lett. 68 (1992) 3121.
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procedure: 3 Consider an EPR pair distributed to two distant observers. To
simplify the discourse, | shall use notations appropriate to spin—% particles. The

pair is in a singlet state, (uy vz — v; uz)/+/2, Where u = ((1)) and v = (‘1’) .
To encode a message, the emitter subjects his particle to a unitary operation,

00~ 1 01 ~ o, 10 ~ oy 11 ~a,, (9.111)

and sends it to the other observer. The latter thus possesses a correlated pair,
in one of the states (up to an irrelevant phase)

(u1 vy vy Uz)/\/é or (Ul uz v Vg)/\/ﬁ. (9112)

These four states are orthogonal and a maximal test can distinguish them un-
ambiguously, thereby revealing which unitary operation was performed. On the
other hand, an eavesdropper who would intercept the information carrier would
find it in a usdless random mixture, p = ;11 (that is, if the same procedure,
with the same unitary operation, is repeated many times).

Quantumteleportation

The inverse process is even more remarkable. It is the “teleportation” of an
unknown quantum state by means of an EPR pair and two bits of classical
information. 3° The first step of this process is the distribution of the EPR pair,
in the standard singlet state, to the distant observers, A and B. Suppose that
A holds, besides particle 1, another spin & particle, labelled O, in an unknown
state @ that has to be transmitted to B (the particle itself is not sent, only
information specifying its unknown state). This can be done as follows.

Particles 0 and 1, which are initially uncorrelated, are subjected by Ato a
maximal quantum test with eigenstates

\I’i = (UOV1 :l:Vo Ul)/\/§ and Q:t = (uo [1E} :f:ngl)/\/i. (9113)

These are analogous to the states in (9.112). The four outcomes of this test have
equal probabilities, regardless of the unknown state @ (see exercise below). The
result of the test—two apparently random bits of information—is communicated
to B over a public channel. According to this result, B performs on particle 2
a suitable unitary operation from the set (9.111). The state of particle 2 then
becomes ¢, identical to the state of particle O before the latter was tested by A.
That state now is inaccessible to A, and is still unknown to B.

The experimental meaning of the above statements is the following: there is
a 25% probability that A finds state W- ; then, if B measures any projection
operator P, the probability of getting the result 1 is @, P @l Likewise, if A
finds state W+, and B measures P, the probability of getting the result 1 is
6,9, Po, eCland so on. The detailed proof is proposed as the following exercise:

38C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69 (1992) 2881.

¥ H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys.
Rev. Lett. 70 (1993) 1895.
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Exercise 9.26 Show that the combined state of the three particles before A's
test, namely ¥ = ¢o (u3 vz — v1 ug)/\/i , can also be written as

'(/) = % {—‘11_ ¢2 - \I’+ (0’; ¢2) + d_ (Uz ¢2) - (I>+ (ioy ¢2)] (9114)

Hint: Write ¢¢ = aug + fvo, wherea and B are unknown coefficients, and
likewise ¢2=O(U2+6V2. *

It follows from linearity that teleportation works not only for a pure state @,
but also for a mixed one. This includes the possibility that particle O is initialy
correlated to a fourth particle, far away. Then particle 2 will turn out correlated
to that fourth, distant particle. This process may look like science fiction, but
it is a rigorous consegquence of quantum theory.
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Chapter 10

Semiclassical Methods

10-1. The correspondence principle

The historical development of quantum mechanics left it with a heavy legacy of
classical concepts. Foremost among them is the correspondence principle, which
asserts that there are, under suitable conditions, analogies between classica and
quantum dynamics. Even today, this principle is often used as an intuitive guide
for finding quantum properties similar to known classical laws. These analogies
are surprising, because of the radical differences in the mathematical formalisms
underlying the two theories: quantum mechanics uses a separable Hilbert space
with a unitary inner product, while classical mechanics wants a continuous
phase space with a symplectic structure.! Yet, in spite of this fundamental
difference, there may be in some situations an approximate correspondence
between classical and quantum concepts. The analogy is admittedly vague.
Some of its virtues and limitations are pointed out below. In particular, it will
be shown how the correspondence principle must ultimately break down in any
nontrivial problem.

Classical operators

Formally, we may imagine a sequence of quantum theories having different
values of %, and examine under which conditions the limit & — 0 exists and
coincides with classical mechanics. In general, for arbitrary dynamical vari-
ables, this limit does not exist and quantum theory does not reduce to classical
mechanics. However, in that sequence of quantum theories, there is a privileged
class of operators, which can be expressed in terms of the canonical g and p,
without explicit mention of %. These have been called reasonable or classical
operators. 23 For instance, the momentum operator introduced in Sect. 8-4 is
reasonable. Likewise J, = xp, — yp; is reasonable, but cos(J,/k) is not. By

1H. Goldstein, Classical Mechanics, Addison-Wesley, Reading (1980) pp. 391-407.
2L. G. Yaffe, Rev. Mod. Phys. 54 (1982) 407.
3K. B. Kay, J. Chem. Phys. 79 (1983) 3026.
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restricting our attention to these special operators, it becomes possible to find
similarities between classical properties and corresponding quantum properties,
in an appropriate limit loosely called # — 0.

Such a limiting process was used in Sect. 6-6, when we lumped together
“neighboring” outcomes of quantum tests. In pure quantum theory, this is a
meaningless phrase: any two different outcomes of a quantum test correspond
to orthogonal states, and are as close or distant as any two other different
outcomes. However, a meaning can be attributed to “neighboring” outcomes
in a semiclassical context, where the outcomes that are lumped together are
those which correspond to neighboring eigenvalues of reasonable operators. The
argument presented in Sect. 6-6 was that, if our macroscopic apparatuses are
able to measure only operators of that type, it is impossible to observe the
strong correlations predicted by quantum mechanics for the results of tests per-
formed at distant locations. The readings of our instruments have only weaker
classical correlations, which do not violate Bell's inequality. It is only when
our instruments are so keen that they can detect genuine quantum features,
such as isolated eigenvalues, that local realism breaks down (together with the
correspondence principle itself).

Canonical and unitary transformations

A formal analogy, emphasized by Dirac# is the one between canonical transfor-
mations in classical mechanics and unitary transformations in quantum theory.
(The reader who is not familiar with canonical transformations should consult
the bibliography at the end of Chapter 1.) Obvioudly, there cannot be any strict
correspondence between these two concepts, because unitary transformations
preserve eigenvalues (which are the observable values of quantum dynamical
variables) while canonical transformations can relate variables having different
domains of definition and even different dimensions. An example of failure of
this correspondence for “unreasonable” operators will be given later. First, let
us see some cases where it works.

A question which often arises in practice is the following: given a classica
physical system, how do we define the analogous quantum mechanical system?
This surely is an ill defined question, to which | can only propose the following
ill defined answer: The law of motion of reasonable quantum operators (in the
Heisenberg picture) should resemble the classical law of motion. This criterion
is admittedly vague, because any resemblance between these laws is in the eye
of the beholder. | shall now illustrate this issue by simple examples, using as
dynamical variables the three components of angular momentum.

First, assume that the quantum law of motion is a rotation by an angle B
around the y-axis. That rotation is represented by the unitary operator

U = e=ifdu/%, (10.1)

4P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press (1947), p. 106.
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Obvioudly, this operator has no limit for & — 0, if the classical parameter 3
and the classical operator Jy are kept fixed while # changes. The operator U
has an essential singularity for # — 0. We do not obtain classica mechanics as
a limiting case of quantum mechanics.

The relationship between U, in Eg. (10.1), and a classical rotation around
the y-axis has a forma nature: We note that Jy itself is invariant under the
unitary transformation generated by U. For the other components, we have

Jopad = ePhih(y, 440,) e Bl (10.2)

and some algebraic manipulations (best done in the representation whereJy is
diagond) give

J,+iJ, =, cosf~J, sinfB)+i(J, sinfB+ J, cos B). (10.3)

Written in this form, the quantum law of motion looks identical to a classical
rotation. In particular, it does not involve % explicitly.

As a second example, consider a linear twist around the zaxis, by an angle
proportional to Jz/J:

J, = J; cos(a J,/T) — J, sin(a J,/J),
J, = Jp sin(a J,/J) + J, cos(a d,/J), (10.4)

J=T..

Thisisacanonical tranformation of the variables Xk, Jy and Jz as can be seen
from the fact that the Jn have the same Poisson brackets as the J.

In quantum theory, we may still assume that the total angular momentum
has a sharp value, [J(J + 1)]*/2%. For any given J, the twist operator is

U= e-iasz/ZJh' (105)

This unitary operator leaves J, invariant, and the law of motion of the other
components is

Yy idy = @B (g, gy emied R (10.6)

Note that U has no limit for A — 0. With some agebraic manipulations (best
done in the representation where J; is diagonal), Eq. (10.6) can be written as

il = etede/2 (), i) ) etedet (10.7)
where both exponents now have the same sign, not opposite signs as in (10.6).
Exercise 10.1 Verify that the transformation (10.4) is canonical.

Exercise 10.2 Verify Eqg. (10.7). *
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Again, k seems to have disappeared. It still is here implicitly, of course, because
of its presence in the commutation relations of the components of J. However,
if we pretend that the variables in Eq. (10.7) are classical, that equation can be
written as

al,

Y4l = (Jr cos%Ji —J, sin—j—)+i(Jr sin

al, al,
T + J'y cos 7), (108)

which looks exactly like the twist transformation in Eg. (10.4).

Unreasonable operators

The correspondence principle completely fails when we consider canonical trans-
formations between classical variables whose quantum analogs have different
spectra, and cannot therefore be related by unitary transformations. Even the
most fundamental notion of classical mechanics, that of number of degrees of
freedom, has no quantum counterpart.

Exercise 10.3 What is the canonical transformation from Cartesian to spher-
ical coordinates? Write explicitly the canonical momenta pg and p, in terms
of the Cartesian momenta p. What is the canonical transformation from the
variables 6, @, Pg, Py, t0 @ new set of variables, among which

J. =py and J? = pg?® + p,?/sin? 8, (10.9)

(whose Poisson bracket vanishes) are the two new canonical momenta? What
are the canonical coordinates conjugate to J, and J27? If these dynamical
variables are converted into operators, what are their domains of definition? x
Ans.. The generating function of the second canonical transformation is

S=¢J, + /0 TP~ 7.2/ sin? ¢ de, (10.10)

and the corresponding coordinates are

@1 =05/0J. = ¢ + tan™(py cot 6/ps), (10.11)
and
95 -1 2 oin2 2\1/2
Q= 77 = sin~! (pa sm26 + ps ) (2012)
o7 2\/p92 + pg?/sin’ @ pe? tan? 8 + py?

As a sequel to this exercise, let us perform one more canonical transformation,
and define new momenta p, — z-2J24 p~1J,, and their conjugate coordinates
Q.. What are the quantum analogs of these variables? These are not reasonable
operators, of course, since their definition involves f explicitly. Nonetheless,
they have a perfectly well defined domain in Hilbert space. The eigenvaues of
P. are al the positive integers, as seen in the following table:
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B/R20 2 6

JLJRJO|-1 0 1]-2 -1 0 1 2
P, |0| 1 2 4 5 6 7 8
P10 3 2 1| 8 7 6 5 4

The operators P, and P- are nondegenerate, and they are functions of each
other. Consider the representation where both are diagonal. If there were a
correspondence between Poisson brackets and commutators, we would expect
P. to commute with Q_, and therefore Q_ would be diagona too. This would
then contradict the requirement that Q_ is conjugate to P-. Not surprisingly,
the correspondence principle fails for these nonclassical operators.

10-2. Motion and distortion of wave packets

Until now, we considered algebraic properties of operators, irrespective of the
choice of specific quantum states. There also are analogies of a different type,
holding for localized states such as wave packets. For simplicity, consider a
system with a single degree of freedom, and a Hamiltonian H = 1 p? + V/(q).
The Heisenberg equations of motion are

q=p and p = —dV(q)/dq. (10.13)

Let g = (¥,q%) and p = (s,py) denote the mean values of the operators g
and p. We then have, from (10.13),

i=p and p = —(dV(q)/da). (10.14)

Therefore, if the potential V changes slowly over the size of a wave packet,
so that (dV{q)/dq) ~ dV(q)/dq, the wave packet moves approximately like a
classical particle. This is Ehrenfest's theorem.

Let us evauate deviations from this semiclassical approximation. We have,
by a Taylor expansion,

V(g)=V(g)+(q- )%q—) Lig-qp ¥ V(q) - (10.15)
whence
R R < O {OR L PR CLED)

When we take the expectation value of the last equation, we have (q-—g) =0,
and ((a — ¢)*) = (Aq)?, which is the dispersion of g (the width of the wave
packet). We obtain, neglecting {(q —¢)3) and higher terms,

5p, Ehrenfest, Z. Phys. 45 (1927) 455.
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_ <£‘i(q_)> __dV(g) 1d°V(q)

2
7 i R (Aq)2. (10.17)

Because of the last term, the centroid of a wave packet does not move aong
a classica orbit, and there is a gradual spreading and distortion of the wave
packet. © (Note, however, that these are not quantum phenomena: similar effects
also occur for classical Liouville densities.)

Poincaré invariants

This difference between the motion of localized wave packets and that of clas-
sical point particles has important consequences. In particular, it precludes
the existence of quantum analogs for the classical Poincaré invariants.”® The
simplest of these invariants is the volume of a 2N-dimensional domain in phase
space. As the points which form the boundary of this domain move according to
Hamilton's equations, the enclosed volume remains constant—this is Liouville's
theorem. Any compact domain, obeying the Liouville eguation of motion, is
continuously distorted and tends to project increasingly long and thin filaments.
As time passes, new, finer filaments emerge, whose volume is less than =V . The
quantum density p (or the Wigner function, that will be discussed in Sect. 10-4)
cannot reproduce these minute details and smoothes them away® We therefore
expect the quantum dynamical evolution to be qualitatively milder than the
classica one.

Let us examine the simple case of a single degree of freedom. There is only one
Poincaré invariant: the area of a domain in phase space. The evolution of the
area of an infinitesima triangle can be investigated by comparing three dlightly
different motions of a given particle. In classical mechanics, these would be
three neighboring orbits in phase space. In quantum mechanics, we shall have
three neighboring wave packets, labelled , ¢ and #"”. For the wave packet
', let us define mean values ¢, p' and A'qg, as before. We then have, from
Egs. (10.14) and (10.17),

d(¢' — g)/dt = (p' — p), (10.18)
and

d

P -p= —<¢’, fi% w') + <¢, %‘-‘—) ¢> = (10.19)

v : .
B _[ R (A“)Z]“' 0 -3 5 B (aray - (aay].

M. Andrews, J. Phys. A 14 (1981) 1123.

7H. Goldstein, Classical Mechanics, 1st ed., Addison-Wesley, Reading (1950) pp. 247-250.
Unfortunately, this material was deleted from the second edition of this book.

8M. Born, The mechanics of the atom, Bell, London (1927) [reprinted by Ungar, New York
(1960)] p. 36.

9H. J. Korsch and M. V. Berry, Physica D 3 (1981) 627.
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It is the last term in this equation which precludes the existence of a quantum
analog of the area preserving theorem.

Indeed, introducing the third neighboring wave packet, +", with equations
of motion similar to (10.18) and (10.19), we obtain the rate of change of the
infinitesimal triangle area:1

% [(q’ - ~p)—("-9F - p)} /2= (10.20)

3
= f’—d—Vq@ {(¢" - DA - (20)") - (¢ — D (A"Q)* — (Aq)"}}/4.
This expression does not vanish in general, unless d°V/dg®> = 0. It can be
neglected only if the size of the wave packets is much smaller than the distance
between the vertices of the (infinitesimal) triangle. Such an approximation may
be valid for planets and other macroscopic bodies, but not for generic quantum
systems such as atoms or molecules.

Case study: Rydberg states

If d®V/dg® # 0, the evolution of a localized quantum wave packet cannot be
simulated by that of a classical Liouville density (which represents an ensemble
of particles moving on neighboring orbits in phase space) for more than a finite
lapse of time, whose duration depends on the type of potential and on the
location of the wave packet in phase spacel® The following example displays
some bizarre features of quantum dynamics, with no classica analog.

Consider the motion of a planet around the Sun, with V = -GMm/r, or
that of an electron in a Coulomb potential, V = —e?/r. For simplicity, take a
circular orbit. A classical calculation gives J=rp and e?/r? = p?/mr. We
thus have

p=me*/J and r = J%/me?, (10.21)
whence
e me!
iy 03 (10.22)

In these equations, p is the tangential component of the momentum p. The
classica angular velocity along the orbit is

w = p/mr =me*/J* = (~2E)*? (me*)1/2. (10.23)
For neighboring circular orbits, whose energies differ by dE, we have

6w = 3wSE/2E. (10.24)

1ON. Moiseyev and A. Peres, J. Chem. Phys. 79 (1983) 5945.
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Inner orbits have a higher angular velocity. Consequently, the Liouville density
in phase space is sheared, as it moves along concentric orbits. If it initialy is
a smal blob, it will gradually spread over a circular arc, until the head of the
pack catches up with its tail. This will occur after a time

T, =2r/éw =4ATE /3w E. (10.25)

Any remaining analogy between classical motion and quantum motion must
then break down, because the quantum wave packet will interfere with itself in
a way that the classical Liouville density cannot mimic.

Let us return to quantum mechanics. Instead of (10.22) we have

E, = —me*/2n%R2, (10.26)

where n = J/h is an integer. Hydrogen atoms with n > 1 (for which semi-
classical approximations may sometimes be valid) are called Rydberg atoms.
Consecutive energy levels are separated by me*/n3h® = hw, . as expected from
the correspondence principle: a classical charge in circular motion radiates with
the rotational frequency w. Each emitted photon has an energy hw, and this
has to be the energy difference between the quantized levels.

Let a hydrogen atom be prepared in such a way that the positive-energy
part of its spectrum is negligible (that is, ionized atoms are removed by the
preparation procedure). The Schrddinger wave function can be expanded into
eigenfunctions of H:

P(r,t) = ch Un(r) e‘iE"t/h, (10.27)

where fu_nusdr = 6,5 and Y |c,|? = 1. Since this sum converges, a finite
number of c, can make ¥ |e,|? arbitrarily close to 1, and are therefore sufficient
to represent Y with arbitrary accuracy. As a consequence, any  is arbitrarily
close to a periodic function of time. Indeed, all the exponents in (10.27) have
the form 2wit/Tyn? where Tp = 4nh®/me* = 3.04 x 10~165. Let L be the least
common multiple of al the nfor which we do not neglect ¢, . Obviously, Y has
aperiod T, L?. This recurrence has no classical analog (the celebrated Poincaré
recurrences occur for individual orbits, not for continuous Liouville densities).

Exercise 10.4 Show that if a minimum uncertainty wave packet is placed on
a circular orbit, with its central parameters satisfying Eq. (10.21), the number
of energy levels appreciably involved is of the order of \/n. *

The required time for an exact recurrence, Ty L2, is enormous if many levels
are appreciably excited. However, nearly exact recurrences occur considerably
earlier. The probability of finding a recurrence is given by the overlap of Y(t)
with the initial state @ (0), namely

P(t) = [((0), p(NIF = |3 wn e En/H[7, (10.28)
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where w, = |e,|2. If the initidl wave packet is well localized, its energy dis-
persion is small (AE < |E|) and the coefficients wy are large only in a narrow
domain of n. Let N be an integer anywhere in the middle of that domain, and
let v=n—-N. We can expand

n2=N"2_9ON 343N 12 4N 3, 34+5NSp4—.... (10.29)

If we keep only the first two terms of this series, the exponents in Eqg. (10.28)
are (2nit/ToN3)(2v — N). Apart from a common phase —2it/TpN?, al these
exponents are integral” multiples of 2ri whenever

t =Ty = N°Ty/2, (10.30)

where Ty; = 2w /w isthe classical period of revolution for energy En . This is of
course the expected result: for short times, the quantum wave packet moves as
a classica particle. For longer times, higher terms in (10.29) destroy the phase
coherence and the wave packet spreads over the entire orbit.

Yet, it eventually reassembles: the exponent in Eqg. (10.28) is, apart from an
irrelevant additive constant,

exp[(w2t/Ty) (20 — SN2 +4N"%2 - 5N~ 34 4. )], (10.32)

When t = 2NT,, the second term in this series yields an integra multiple
of 2mi, and the wave packet reappears at its origina position. Actually, this
recurrence aready occurs after (N/3 + }) classical periods (where N, which
was only loosely defined above, has to be adjusted so as to be a multiple of 3).
Indeed, lett =(N/3+ 1}Ty. The first two terms in (10.31) give

(N 1 3v /N v 1\ _ _ JuN yr-1)
2’””(‘5%)(1*%)—2“”<"3“§+§)—2“[3 —3 ]

We can always adjust N so that N/3 is an integer. Also, v(v— 1)/2 aways is
an integer. Therefore, apart from terms of order N7%, the exponent in (10.31)
is a multiple of 2ri. The factor N/3 (without lz) can also be obtained from
semiclassical arguments!* This recurrence has been experimentally observed!?

As time passes, the third term in the series in (10.31) gradualy destroys
these periodic recurrences, but new ones appear at integral multiples of N2T.
The same argument shows that the first such reappearance actually occurs
at t = [(N?/4) + ]Ta, where N must again be adjusted to make it even,
if necessary. These recurrences are then destroyed by the following term in
(10.31), and reappear a integral multiples of [(N®/5)+ 3] Tu, and so on. This
is illustrated in Fig. 10.1 for the case N = 1000, with 21 energy levels having
a binomia distribution of weights: w, = 2-2020!/(n — 990)!{(1010 — n)!. With
this value of N, the third recurrence level occurs at t = 30.4s, an exceedingly
long time by atomic standards.

M. Nauenberg, Comments Atom. Mol. Phys. 25 (1990) 151; J. Phys. B 23 (1990) L385.
123 A. Yeazell, M. Malldlieu, and C. R. Stroud, Jr., Phys. Rev. Lett. 64 (1990) 2007.
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—
> s

Fig. 10.1. Recurrences of a wave packet consisting of Rydberg states with
n =990 to 1010. The value of |{(1(0),1(¢)})|?> (vertical axis) is plotted versus
time. In each graph, the time (horizontal axis) extends over two classical
periods. The central time is, from top to bottom: T, (one classica period),

100 Tci (a random number), 333.5 T, (first order recurrence), 250 000.5 T,
(second order recurrence), and (2 x 10° + 0.5) T, (third order recurrence).

10-3. Classical action

A short time after the publication of Schrodinger's historic papers, Madelung®
proposed a hydrodynamical model for Schrédinger's equation. Let ¢ = ReS/%,
where R and S are real, and let p = R2 [In modern parlance, p(r) is the
diagonal part of the density matrixp(r',r").] Then, the Schrédinger equation
for a particle of mass min a potential V(r) is equivalent to the real equations:

13E. Madelung Z. Phys. 40 (1926) 322.
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. v. <£ vg) —0, (10.32)
ot m

s 1 n? V2R

95 1 gspiy_ —o. 10.33
ot + Zm( Sy + 2m R 0 ( )

Exercise 10.5 Verify these equations.

If we ignore the last term in Eq. (10.33), under the pretext that k*is very
small, the result is identical to the Hamilton-Jacobi equation for particles of
mass m and momentum p = O in a potentia V(r). It is then possible to
interpret Eq. (10.32) as a continuity equation for a fluid consisting of these
particles, with density p(r) and local velocity v = p /m.

The last term in Eq. (10.33) is called the quantum potential. Its order of
magnitude is about  %%,/ml2, where | is a typical length over which the value of
R=m0O changes by an appreciable fraction of itself. Therefore®/l is the order
of magnitude of the “quantum momentum” due to the nonclassical motion of the
particle (a kind of Brownian motion, if you wish to visualize this). This semi-
classica interpretation should not be taken too seriously. However, even without
it, you can see from Eg. (10.33) that if the “quantum momentum” is negligible
with respect to the classical momentum OS a semiclassica description of the
motion becomes legitimate.

Exercise 10.6 What is the quantum potential for the ground state of a har-
monic oscillator? For the ground state of a hydrogen atom?

Van Vleck determinant

The above results show that, in a slowly varying potential, the phase of  is
analogous to the Hamilton-Jacobi function S This phase may therefore be
approximately obtained by solving the classical equations of motion for the
given Hamiltonian, with arbitrary initial data. It is then natural to ask what is
the classical analog of p = MO 2 The answer, given by Van Vleck!* and further
elaborated by Schiller,15 is presented below. The reader who does not feel at
ease with the Hamilton-Jacobi equation should skip the next three pages.

Since you seem to fedl at ease, let H(q*, px,t) be the Hamiltonian of a classical
system with N degrees of freedom. The Hamilton-Jacobi equation is

8S/dt + H(q, 85/8q, t) = 0, (10.34)

where q without indices denotes the set g%, . . ., qN. Assume for a moment that
(10.34) has, in some domain of the configuration space, a solution which depends
on N integration constants P (we shal later return to this point). Denote this
solution by S(q,P,t) and define a matrix

143, H. Van Vleck, Proc. Nat. Acad. Sc. 14 (1928) 178.
15 R. Schiller, Phys. Rev. 125 (1962) 1100, 1109, 1116.
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St .= 8*5/0q* OP,. (10.35)
This matrix too is a function of g and P. The inverse matrix T, is defined by

S TSk =6} (10.36)
I’

Other functions of qand P are the momentum and the velocity:
pi(q, P,t) = 85/8¢", v* = dg*/dt = OH/Bp;. (10.37)

Note that S = Opi/OP,.
It will now be shown that the Van Vleck determinant, D = Det S}, satisfies
an equation of continuity in the N dimensional configuration space. We have

aD/ot = 3. D T* (8S!/0t), (10.38)
ku

because (D TF¥) is the coefficient of Sf ‘in an expansion of the determinant D
(recall the rule for computing the inverse of a matrix). To obtain 8S;/dt, we
differentiate twice the Hamilton-Jacobi equation (10.34), and obtain

6Sk 8H 8p; _ 0S¢ E) o
qk Z Bp: 9P, = ot ' g Z v 5E=0. (10.39)

Therefore
; vt ; OS*
— _ TQR k| YY on [t
ZD uakzvst %DT“ (aqk's’+v 3qk)' (10'40)
Using Eg. (10.36) and
0S*/0q*F = 85t /dq', (10.41)
which follows from the definition of S}., we obtain

dD/dt = — Y| D (8v'/0q:) +v' Y DTF(95%/9a:))
€ kp

- Z[D (8v'/8q:) + v (8D/dg;)| = ~9(Dv')/dg'. (10.42)

This result looks like an equation of continuity for a fluid of density D and
velocity vi, in the N-dimensional configuration space. We are therefore led to
interpret the function D(q,P,t) asaprobability density, which still needs a nor-
malization factor (/D dVg¢)~'. To see this more precisely, recal that S(q, P,t)
is the generating function of a canonical transformation from g and p, to new
dynamical variables, P, and QW= 85/0P,. Each classical orhit corresponds to
fixed values of Pyand QW Let f(q,p,t) = F(Q,P,t) be any dynamica variable.
Consider an ensemble of orbits with given values of B, and uniformly distributed
values of Q! (for example, consider an ensemble of harmonic oscillators with
the same energy and uniformly distributed phases). The average value of Fis
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(F) = / FQ,Pt)d"Q / / Q. (10.43)

To return to the origina variables, substitute Q = Q(q,p,t). The Jacobian of
this transformation, for fixed P and t, is

Det (0Q*/3¢*) = Det (8°S/8¢* 0P,) = D. (10.44)

Therefore, in the origina coordinates,
()= [ Hap)Da% [ [Dd"g, (10.45)

where p, = 85/8¢* = pi(q, P,t), as in Eq. (10.37). We thus see that D is pro-
portional to the density in configuration space which corresponds to a uniform
distribution of QMW

Quantization

We can now define a “classical wave function” g = /D €'S/*, which satisfies
a Schrodinger-like equation, except for a correction term (h?/2m)V?/D/+/D.
The latter can be neglected if the variation of D is slow on the scale of #/p. The
connection with quantum theory is made by giving to & its usual value (until
now, & could be an arbitrary constant). There are however difficulties.

In general, the Hamilton-Jacobi function S(qg,P,t) is not globaly single-
valued in configuration spacetime. This can be seen by following its value along
an arbitrary path (not necessarily the true trgectory). We have

dS = (0S/0t)dt + 3 (85/d¢*)dg* = —H dt + 3 pr dg*. (10.46)
k k

In particular, if H is time independent, and if we consider a closed loop in
configuration spacetime, we get

gS ds = ; 55 i dg*. (10.47)

We thus see that Sis multiple valued: for each period of the k-th degree of
freedom, Sincreases by the classica action Iy := § px dg*. To make the wave
function €*5/* single valued, we must impose the condition I = 2wnxh, where
ng is an integer. This is Bohr's quantization rule for periodic orbits.

Exercise 10.7 Solve the Hamilton-Jacobi equation for a harmonic oscillator.
Show that the Bohr quantization rule gives E = nhw. *

It is possible to obtain results in closer agreement with quantum mechanics by
using the EBK (Einstein-Brillouin-Keller) quantization rule'®18

16A. Einstein, Verh. Deut. Phys. Gesell. 19 (1917) 82.
171, Brillouin, J. Phys. Radium 7 (1926) 353.
183, B. Keller, Ann. Phys. (NY) 4 (1958) 180.
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Iy = gSPk d¢* = 2nh (ni + ar/4), (10.48)

where akis the Maslov index which counts the number of caustics encountered
by the classical periodic orbit.!®

However, most orbits of a generic classical system are not periodic, nor
even multiply periodic, and the action-angle variables cannot be constructed.
Generic dynamical systems are nonintegrable. A system with N degrees of free-
dom has fewer than N constants of the motion Py, and the Hamilton-Jacobi
equation has no global solution in terms of differentiable functions® Integrable
systems, for which the Hamilton-Jacobi equation has a globa solution with N
constants of the motion P, are the exception, not the rule.

Nevertheless, even a nonintegrable classical system has an infinite number of
periodic orbits, which may be either stable or unstable with respect to small
perturbations of their initial conditions. A domain of phase space where most
periodic orbits are stable is called regular. If most periodic orbits are unstable,
that domain is said to be irregular or chaotic. In a regular domain, a bundle of
neighboring periodic orbits may densely cover a finite volume of phase space. If
that volume is much larger than (2x%)Y, EBK quantization is approximately
valid and energy levels can be labelled by integers ng as in Eq. (10.48) These
are legitimate quantum numbers—just like n, I, m, for the hydrogen atom.

On the other hand, in a chaotic domain, periodic orbits which happen to
pass close to each other a some time tend to separate very rapidly, and then
to wander over large parts of the energy surface in phase space (in the absence
of symmetries, energy may be the only constant of motion). In that case,
semiclassical quantization becomes much more intricate. There are however
sophisticated methods? which predict quantum energy levels with reasonable
accuracy (but which are beyond the scope of this book).

Feynman path integrals

The most important application of the classical action Sto quantum theory
is Feynman's sum over paths.?® This is a radically new approach to quantum
dynamics, which is exactly—not approximately—equivalent to Schrddinger’s
equation for Hamiltonians of the type Y p?/2m + V(q). It is not, however,
restricted to that class of Hamiltonians.

The time evolution operator U(t,,t;) is written, in the q-representation (with
Cartesian coordinates),

U(q" ta; ¢, t1) = / e*Sll/™ Dlg(t)], (10.49)

19M. Tabor, Chaos and Integrability in Nonlinear Dynamics, Wiley, New York (1989) p. 238.

20 M. Rasetti, Modern Methods in Equilibrium Statistical Mechanics, World Scientific,
Singapore (1986) p. 31.

217 Peres, Phys. Rev. Lett. 53 (1984) 1711.

22M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York (1991).

23 R. P. Feynman, Rev. Mod. Phys. 20 (1948) 367.
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where
2 .
Slgl = / L(g,4,t)dt, (10.50)
ty

is the classical action, evaluated along a path g(t) in configuration space. This
is the same Sas in Eq. (10.46), since the Lagrangian is L = ¥ pkdgk — H.

The symbol D[g(t)] in Eg. (10.49) means that this sum includes every con-
tinuous path from (g, t,) to (g, t,), even paths which do not obey the Euler-
Lagrange equations of motion. This symbol also tacitly includes an infinite
normalization constant, to make U(q",t1; ' ,t1) = 3N(gq" —q). All the paths
in the sum (10.49) have equa weights, but only those close to the classica
path, where Sis stationary, give an appreciable contribution. The other paths
interfere destructively because of the rapidly varying phase.S/h.

The right hand side of Eq. (10.50) is not a Riemann or Lebesgue integral.
It is an integral in a functional space whose functions are continuous, but in
general not differentiable (they must however be arbitrarily well approximated
by a sequence of straight segments). Most paths are like Brownian motion and
the value of S[q] in (10.49) depends on the limiting process used for defining
this sum. This leads to formidable mathematical difficulties. Not surprisingly,
the order of summation in these divergent sums affects the value of the final
result. There is therefore no escape from the familiar factor ordering ambiguity
that we encounter when we quantize classical expressions in the conventional
way, p » —thd/dq.

In spite of these difficulties, path integral methods have found many useful
applications, especially in relativistic field theory?*Some standard sources are
listed in the bibliography at the end of this chapter.

10-4. Quantum mechanics in phase space

Let us proceed from configuration space to phase space, that is, from N to 2N
dimensions. In classical statistical mechanics, the statistical properties of an
ensemble of physical systems are represented by a Liouville density f(q, p, t),
which satisfies the eguation of motion”

df _ of Of de*  Of dpc\ _ Of -
+E(a—qkd—t+a—mﬂ) = 1, H]py =0, (1051)

it dt &

This is reminiscent of the Schrodinger equation for the density matrix,

ihjp=[H,pl, (1052)

24C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New Y ork (1980).
2The symbols q and p represent the 2N Cartesian components g¢ and pk. The dependence
of various expressions on time will usually be written explicitly only in dynamical equations.
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which follows from its definition, p(q’,q”,t) = ¥(d',t) ¥(q", t). Density matrices
that are not pure states aso obey Eq. (10.52), by linearity.

Let us try to find a quantum analog for the Liouville density in phase space.
Since phase space treats on an equal footing position and momentum, we shall
define a momentum representation, denoted by +(p), for the state ¢ whose
g-representation is the function Y(gq). We want to have identically, for any
function of the momentum operator,

(¥, F(p)¥) = /@f(—ih 8/0q)¥(q) dq =/ 1P(P)I* f(P)dP.  (1053)

Exercise 10.8 Show that Eqg. (10.53) is satisfied by
B(p) 1= 2rh) ™2 [ y(q) 9P/ dg (1054)

There still is a phase ambiguity: (p) can be multiplied by an arbitrary phase
factor e ®®) without affecting the validity of Eq. (10.53). This point was aready
discussed in Sect. 8-4, and | shall not return to it here.

We can likewise define the momentum representation of any operator whose
g-representation is given:

A(p',p") = (2h) " / ] A(q,q") PP g dg”. (10.55)

In particular we have, for the density matrix corresponding to a pure state,
A(p',p") = %(p") P (p").

Wigner function

In the course of a study of quantum thermodynamics, Wigner26 proposed, as
the quantum analog of a Liouville density, the expression

W(q,p) := (Wﬁ)_N/P(q - r,q+r) P dr. (10.56)
It is easily seen that W(q, p) is real and gives correct margina distributions,

/W(q,p)dp =p(q,9) and /W(q,p) dq = 5(p,p)- (10.57)

It follows that, for any two functions fand g,

(f@) +9(p) = [1f(a) + 9(p)] W(a,p) dadp, (1058)

26E. Wigner, Phys. Rev. 40 (1932) 749.
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as we would have in classical statistical mechanics. No such formula, however,
can hold for more general functions of q and p, because of factor ordering
ambiguities (a unique ordering can be defined for polynomials,?’ but not for
arbitrary functions).

Exercise 10.9 Find the Wigner function for the ground state of a one-
dimensional harmonic oscillator.

Exercise 10.10 Find the Wigner function for ¢(z) = \/2/71'/ (1+ z?). *

Exercise 10.11 Given a Wigner function W(q, p), find the density = matrix
p(g',q"). What is the condition that W(q, p) must satisfy so that p is a positive
operator?

Exercise 10.12 Show that

[ Wi, p) Wa(a,p)dadp = Tr (o1 p2) /(27 1)", (1059
and therefore that

/ [W(q,p))*dqdp < (2xh)~N, (10.60)
where equality holds only for pure states.

For pure states, Tr{p; p2) = |{¢1, ¥2)|?, and it follows from (10.59) that
Wigner functions of orthogonal states satisfy [Wi(q,p)Wa(q,p)dqdp = 0.
This shows that Wigner functions may occasionaly be negative and cannot be
interpreted as probability distributions, in spite of their analogy with Liouville
densities (the term “quasiprobability” is sometimes used). Moreover, it is seen
from Eq. (10.56) that W(q, p) does not tend to a limit when & — 0, but rather
has increasingly rapid oscillations. Nevertheless, Wigner functions may give a
qualitative feeling of the approximate location of a quantum system in phase
space. They are often used to visualize the dynamical behavior of quantum
systems. Note that they are normalized by [W(q,p)dqdp = 1, but they
cannot be arbitrarily narrow and high, since they must aso satisfy Eqg. (10.60).

Quantum Liouville equation

We shall now compare the time evolution of a Wigner function with that of a
Liouville density which obeys Eq. (10.51). For simplicity, let us take a single
degree of freedom, and a Hamiltonian H = T + V(q), where T is the kinetic
energy —(h%/2m)(8%/84¢*) . For a pure state, we have

W(g,p,t) = (nh)™ / W(g — r8)Plg £ 7 8) ¥ /% dr, (10.61)

27J, E. Moyal, Proc. Cambridge Phil. Soc. 45 (1949) 99.




Quantum mechanics in phase space 315

whence
ih OW (g, p,t)/0t = (k)™ / (Hy % — o HD ) 27/ dr. (10.62)
Let us consider separately T and V. We have
/ [To(g —r)o(qg +7) — (g — )T g + )] /P dr = (10.63)
[/ m“ D G i —

Replacing 8%/8¢* by 8?/0r? and integrating by parts, we obtain

., OW K2 2ip 81/)(:1
A I [ 2ipr/n ] = 10.64
o, 2m R / ¢(q+r)e dr + c.c. (10.64)
—_p 2 O [ ot — NG e /b gy P 8— W(g,p:t)
thi- . ) la—ndlg+re dr 94

This corresponds to the term-(dq/dt)(8f/8¢) in Liouville's equation (10.51).
The potentia energy term in (Hwy ¢ — 1 Hep ) gives

JIV(a= b = NTEED - bla—r)V(a + )T 7]/ dr.
If Vis a slowly varying function, we can expand
Vig—r)—Vig+r)=-2[V'(g)+ (r*/3) V"(q) +---]. (10.65)

We then write r™ e¥#r/h = (K /2{)" 8~(e%*7/A)/8p~ , and obtain

in W

= V7(g) + - (10.66)

ow h? 93W
v‘m[ap V0~ 51 5
The first term of this expansion yields a result which is identical to the term
—(8f/8p)(dp/dt) in Liowille's equation (10.51). The next one involves the

third derivative, &®V/dg®, which produces a distortion of the wave packets, as
we have seen in Eqg. (10.17). In summary, the quantum Liouville equation is

oW W p OWdV R 3W &PV
a5t = B¢ m T op dg 24 o5 A +-o- (10.67)

Exercise 10.13 Show that the quantum Liouville equation can be written in
the integro-differential form (valid for N dimensions):

aW(q,p,t) ow dq ,
ot T 9q dt +/V(‘1 p—p)W(a,p',t)dp’, (10.68)

where dq/dt = p/m, and

V(q,p) := (i/mVEN+) / [V(q+r)— V(q—r)]e¥PT/hgr, (10.69)
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Fuzzy Wigner functions

Although Wigner functions are not in general everywhere positive, a small
amount of blurring can cause the disappearance of their negative regions. Let
Wo(q, p) be any Wigner function concentrated around g = p = 0. We know,
from Eq. (10.60), that a Wigner function cannot be arbitrarily peaked, but we
still assume that Wy(q,p) is well localized. For example, we may take

Wo(q,p) = (ﬂh)_N e_(qz/ﬂ)_(p?az/m)’ (10.70)

where o is any real constant. This Wy(q,p) has a minima uncertainty product,
with Ag* =0/v/2 and Ap, = h/o/2.

Exercise 10.14 Show that Wy(Q, p) in Eg. (10.70) is the ground state of an
isotropic harmonic oscillator:

po(q) = (wo?) N/ e= /2%, (10.71)

This Wq(q,p), or any similar one, may then be used to blur other Wigner
functions by means of a convolution

W(q,p) — W,(q,p)
= (2rh)N / Wola - d,p — p') W(d,p') dq'dp’.  (10.72)

If we use the function Wy(q,p) given by (10.70), this convolution blurs each ¢k
by an amount of order g, and each py by about %/o.

Exercise 10.15 Show that if W(qg, p) corresponds to the pure state Y(q),
then W(q-q, p-p')corresponds to the state e’P /% ¢(q — ).

The smoothed Wigner function W;(q,p) can be interpreted in two ways. It
is a linear combination of Wigner functions W(q', p'), with positive coefficients,
and therefore it aso is a legitimate Wigner function, which corresponds to a
linear combination of noncommuting density matrices. On the other hand, we
can consider the right hand side of Eq. (10.72) as a scalar product, like the one in
Eg. (10.59), with g' and p' being the phase space coordinates and momenta, and
g and p mere numerical parameters. Such a scalar product is never negative,
and it follows that Wy(q, p) =0, for any vaue of ¢.

If the smoothing function (10.70) is the one used in the convolution (10.72),
the result is called a Husimi function.28 The latter has neither correct marginals,
as in Eg. (10.57), nor relatively simple equations of motion, like Eqg. (10.68).
However, Husimi functions have important applications in quantum optics,?®
and they can in principle be deconvolved to retrieve the corresponding Wigner
functions.

28K. Husimi, Proc. Phys. Math. Soc. Japan 22 (1940) 264.
295, Stenholm, Ann. Phys. (NY) 218 (1992) 233.
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Rihaczek function

The Wigner function (10.56) is only one of the many quantum analogs of the
Liouville density. The most general function which is linear in p and has correct
marginals, as in Eqg. (10.57), was derived by Cohen.30 If linearity in pis not
required, it is actually possible to construct distributions which are nowhere
negative and have correct marginals.3!

A very simple bilinear function was proposed by Rihaczek:32

R(a,p) = (2xh) N2 (q) §(p) e~ TP/, (10.73)

where ¥(p) is the momentum representation of (s, defined by Eq. (10.54).
The Rihaczek function for a mixed state can be obtained by diagonalizing
p =S wu,p,t, and summing the Rihaczek functions for individual ¢, with
relative weights w, . Unlike the Wigner function, which is real, the Rihaczek
function is complex. On the other hand, its structure is far simpler and it has
interesting applications in periodic potentials.®

Exercise 10.16 What is the relationship between R(q, p)and p(q',q"') ?

Exercise 10.17 Show that, for any two states {1 and {,,
Kepr, 2} = (2ah)~N / Ri(q,p) Rz(q, p)dqdp. (10.74)

From Egs. (10.54) and (10.74) it follows that fR(q,p)dp = |¥(q){®> and

JR(a,p)da=|(p)|?, and therefore (f(a)+g(p)) = f[f(a)+9(p)|R(q, p)dadp,
just as for Wigner's function.

10-5. Koopman’'s theorem

Since there are analogies between classical and quantum mechanics, why not
try to use quantum methods for solving classical problems? Let us start from
the Liouville equation (10.51), which can be written

i0f/0t =L f, (10.75)
where L is the Liouville operator, or Liouvillian,
OH .0 OH 2
() (2)- G- (%)
p lc’)q Ba 1 p (10.76)
%01, Cohen, J. Math. Phys. 7 (1966) 781.
1L, Cohen and Y. I. Zaparovanny, J. Math. Phys. 21 (1980) 794.

32A. W. Rihaczek, |IEEE Trans. Inform. Theory IT-14 (1968) 369.
33, Zak, Phys. Rev. A 45 (1992) 3540.
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Note that f(q, p,t) is a function of q and p, which are 2N independent and
commuting variables parametrizing phase space (of course g does not commute
with —i8/8q, but —id/dq is not at al the same thing as p). The operator L
is “Hermitian.” Whether it is truly self-adjoint or only symmetric depends on
the explicit properties of H (see p. 87 for precise definitions of these terms).

The normalization condition for a Liouville density is ffdqdp = 1, and, in
order to mimic gquantum mechanics, it is natural to introduce a Liouville wave
function ®, such that f = |®[>. Note that ® also satisfies the Liouville equation
10®/0t = L®, because L is homogeneous in first partial derivatives. The time
evolution of ®(q,p,t) therefore is a unitary mapping in phase space. If there
is another Liouville wave function, ¥(g,p,t), which also satisfies Eq. (10.75),
their scalar product [&(q,p,t)¥{q,p,t)dqdp is invariant in time. This is
Koopman's theorem.

| wrote here ®(q,p,t), rather than simply ®(q,p,t), because complex
Liouville wave functions naturaly appear in this Hilbert space. For instance,
consider a one-dimensional harmonic oscillator, with H = p?/2m + k¢*/2. Its
Liouville eguation is

i%b _r (—i %%) - kq(—i %}’). (10.77)

m

Let us find a stationary solution & = e~*¥ F(q,p). It is convenient to define
new variables, p, : = p * imwq, where w = (Km)'/2, as usua. Substituting
these expressions in (10.77), we obtain

QF =w|(py (0F/0ps) — p- (OF [0p_)]. (10.78)

A particular solution is F = (py)¥(p-) .with Q =(k-1)w.To make F
single valued, (k — I) must be an integer. A more general solution is F =
N(H)(p = imwg)", where nis an integer and N(H) is an arbitrary function
of H, which also includes a normalization constant. Therefore the spectrum of
this Liouvillian is Q = nw, where nis any positive or negative integer. This
spectrum has no lower bound, contrary to that of a quantum Hamiltonian.

Exercise 10.18 What is the physical meaning of the eigenstates of this
Liouvillian?

Consider now two uncoupled harmonic oscillators, with incommensurable
frequencies w; and wy. The spectrum of the quantum Hamiltonian is E/h =
(P1 + 3)wr + (n2 + §)w,. It has a finite number of points between any
two finite energies, E and E + OE. (For large E, the density of sates is
dn/dE = E/R*ww;.) On the other hand, the spectrum of the classical
Liouvillian is Q =njw + Nowyp. It has an infinite number of points between
Q and Q + 3Q, because n1Nn2 can be negative. This is a dense point spectrum.

34B. 0. Koopman, Proc. Nat. Acad. Sc.17 (1931) 315.
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In the generic case of nonlinear systems, the spectrum of the Liouvillian is
continuous. This gives rise to qualitative differences between the evolution of
Liouville densities and that of quantum wave functions for bounded systems.
A quantum state can always be represented, with arbitrary accuracy, by a
finite number of energy eigenstates. The time evolution of a bounded quantum
system is multiply periodic, and will sooner or later have recurrences3> as in
Fig. 10.1. On the other hand, the most innocent Liouville density involves a
continuous spectrum, equivalent to an infinite number of eigenvalues of L. This
infinite basis allows a Liouville density to become more and more distorted
with the passage of time, and to form intricate shapes with exceedingly thin
and long protuberances, getting close to every point of phase space that can be
reached without violating a conservation law. The result is a mixing of phase
space which, when combined with coarse graining, is the rationale for classical
irreversibility. These properties have no quantum anaog, and there is no similar
explanation for irreversibility in quantum phenomena (see Chapter 11).

10-6. Compact spaces

The most elementary quantum systems use a finite dimensional Hilbert space.
Their classica analogs have a compact phase space. For instance, let q be an
angular coordinate, with domain [0,2m], whose points O and 21t are identified.
The conjugate variable p has the dimension of an action. Assume that pis aso
bounded in a domain [-J, J], with the points —J and J identified. Define new
classical variables

Jz = /J? — p? cosg,
Jy =\/J?—p? sing, (10.79)

J. =p.

Their Poisson brackets are [J,, J 1,3 = J,, and cyclic permutations, just as for
the three components of angular momentum.

If we quantize that system by using the familiar correspondence of Poisson
brackets with commutators, we obtain [J,, J,] = ¢k J,, whence it follows that
J?=j(G+ 1A%, wherejis an integer (or a half-integer, if two-component wave
functions are admitted). For other values of the classica parameter J, canonical
quantization is inconsistent, if we attempt to do it by means of Eq. (10.79). For
large j (that is, in the semiclassical limit) we have J ~ (j + 1)% and the total
area of phase space tends to an integra multiple of Planck’s constant, 36

A=4x] = (2j +1) 2xh. (10.80)

35|, C. Percival, J. Math. Phys. 2 (1961) 235.
36J, H. Hannay and M. V. Berry, Physica D 1 (1980) 267.
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Case study: a quantum dial

Another way of quantizing this compact phase space is to represent quantum
states by periodic wave functions @(q), and let p = —ihd/8q.. The classical
constraint, namely — J< p < J,is enforced by restricting the number of
Fourier components of y:

¥(q) = X]: Cm ™, (10.81)

m=-j

where j = J kis an integer or half odd integer, and ¥ |en)? = (27)~' . The
Hilbert space H has N = 2j + 1 dimensions, and the total area of phase space
isdnjh =(N — 1)h.

The eigenstates of the operator p are um, and their q-representation is
um{q) = ™ /(2n)1/2, where m =, ..., . However, there is no operator
corresponding to the classical variable g, because q(q) is not a periodic func-
tion, if ¢ is defined by Eq. (10.81). Therefore qu(q) does not belong to H.
It is nevertheless possible to construct states for which qis roughly localized.
These will be called dial states. They are constructed by making p maximally
delocalized, as in

vo(g) = N™/* ivum(q) — (2n )12 SV4/2)

2 sn(g/2) (10.82)
where N = 2j + 1, and use was made of the identity
J - I+ _ p—i-1/2
m=—3

Since qis an angle, you may imagine a dial, with N equally spaced positions,
separated by 21/N. The problem is to associate N orthogonal quantum states
with these N equidistant positions.

If you plot |vo(g)|* versus g, there is at q = 0 a peak of height N/2m and
width ~ 21/N. However, to give a more precise meaning to this “width” is
a delicate matter, and the true width is considerably larger, as you will soon
see. The reason is that Aq cannot be defined as [(q?) — {q)?]*/2., because qvo (Q)
does not belong to H (there is no operator ). Even the expression (sin q) vo
is improper, since (sin q) u.j(g) too is outside H. Let us therefore introduce a
truncated sine, denoted by S(q), and defined by

S(q) Uy, = (um+l - um—l)/Qi’ V m 7é :t]a

. 10.84
5(q)uz; = Fua(j-1)/2:. ( )

We may likewise define a truncated cosine C(q):
C(q) Uy = (um+1 + um—l)/2a Y m # i]v (10 85)

C(q) U:tj ui(j_l)/2.
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Exercise 10.19 Let P+ be the projector on states u,; Show that
C(a)* +S(a)* =1- 3 (P; + P_), (10.86)

and
(C(a),S(a)) = i (P, — P_y). (10.87)
Discuss the properties of the operators C(q) =+ ¢ S(q).

From (10.82) and (10.84) we have : S(q)vo = (u; — u_;)/(2iN/?), -whence
(S(@)?) = [IS(a) voll* = 1/2N. (10.88)

In the physically interesting case, N > 1, the so-called uncertainty (that is, the
standard deviation) AS(gq) = (2N)~Y2 is much larger than 2N, which is
the purported resolution of the quantum dial. This only shows that measuring
S(q) or C (q) is not the best way of locating a position on the dial.

A more efficient approach is to construct a set of N orthogonal states v, by
means of a discrete Fourier transform, as in Eq. (3.28), page 54:

7 .
V= N7H2Z 3 etmium/N (k= =5, er5)- (10.89)

m=—3

The up, and v, bases are called complementary.®” The Fourier transform re-
lationship between them is similar to the one between the continuous ¢- and
p-representations, in Eq. (10.54).

Exercise 10.20 Show that {(v,,v,) = §,, and that

e PINE Y = Vi1 (mod N)- (10.90)
Exercise 10.21 Define a “dial operator” Q = ¥ uv,v,',  which could play
the role of a variable conjugate to p (recall that q itself is not a well behaved
operator). What are the matrix elements of Q in the up, basis? What is the
commutator [Q, p] ? Hint: The sum 3" uz* may be evaluated by applying the
operator xd/dx to Eg. (10.83). *

Group contraction

It is often desirable to approximate continuous variables by discrete ones, in
particular for numerical work. As a possible path to discretization, we could
attempt to use the relationship (10.79) between a pair of conjugate variables
g and p, having the topology of a torus, and three components of angular
momentum constrained by 3°J,2 = J2. In quantum theory, the latter have

87J. Schwinger, Proc. Nat. Acad. Sc. 46 (1960) 570.



322 Semiclassical Methods

a point spectrum and are intrinsically discrete. Unfortunately, it is difficult
to return from the Jcto the origina variables, ¢ = tan~*(J,/J,), because this
expression becomes awkward in quantum theory. If we are faced with a concrete
problem, such as finding the energy levels in a given potential, we must use a
different technique, called group contraction.3®

Consider a (2 + 1)-dimensional representation of J, with j > 1, and define

q:=al./Vik and p:=J,/V7a, (10.91)

where ais a constant with the dimensions of length (take any typical length of
the system under study, for example the breadth of a potential well). We have

[a,P] = [z, 3y} /iR =1 1. /5. (10.92)

If we consider only the subspace of H for which (J,) ~ j#, this is the canonical
commutation relation of g and p. The passage to the limit j - o is called a
contraction of the rotation algebra with generators Jy , to the Heisenberg algebra
consisting of g, p, and 1.

In the subspace of H that we are using, the variables g and p cover a large
range of values, including |{(q)] > a and [{p)| > h/a. Indeed, let 8J, :=
Jh — (J.) (nottobeconfusedwith AJ,). We have -k <« éJ, < jh, sothat

L2+ =50+ DAY= (U5 ~ jA? 4 25R 60, > jh2. (10.93)

Therefore we may have both |(q)| > a and [{p)} > h/a. Their values are only
restricted by (@) < @v/7 and [P} < V7h/a, because {Jo* + Jy%) < j*R%.

Let us write explicitly the g and p matrices in the representation where J,
is diagonal. They can be combined into a pair of dimensionless operators,

A% =[(q/a) £i(pa/h)/V2 = (s +il,)/\/2 h. (10.94)

Recall that the only nonvanishing matrix elements of " (J, £:J,) are

e+ id)mtrm = (Je = i d)mmer = [ —m) (G + m + 1)]2 R (10.95)

Let m=j—k with k=12, .. (7). A good approximation to the right
hand side of Eq. (10.95) is (2jk)/?h, whence we have, for small enough Kk,

AT kprior = ATk @ VE (10.96)
These matrix elements are the same as those of the raising and lowering oper-
ators in Eq. (5.91), page 140. The finite matrices q and p that were defined
by Eq. (10.91) thus start with elements which are aimost equal to those of the
infinite g and p matrices in the energy representation of a harmonic oscillator.

38R.J.B .Fawcett and A. J. Bracken, J. Math. Phys. 29 (1988) 1521.
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10-7. Coherent states

A wave function g (x) and its Fourier transform zZ(p) cannot both have a narrow
localization. This property is commonly known as the quantum mechanical
uncertainty relation,

Az Ap 2 B2, (4.54)
but it is not peculiar to quantum mechanics. A classical acoustic signa with

intensity f(t) also cannot have both precise timing and precise pitch. The latter
must  satisfy

AtAw > 1, (10.97)
where
(At) = /t2 fydt — ( [erwyar)’, (10.98)

and Aw is likewise defined by the Fourier transform f(w). This is a general
property of Fourier transforms, quite independent of the underlying physics.

Yet, approximate values for time and frequency are certainly compatible, as
every musician knows (see page 214). Likewise, in quantum theory, we can have
approximate values for both position and wavelength, A = h/p. For example,
the wave function

P(z) = (7o) V4 exp[—(z — z')?/20° +ip'z /1], (10.99)
is a minimum uncertainty wave packet, with XO= x and [pO=p', and
Az = o /2 and Ap=h/oV2. (10.100)

Exercises 4.14 and 10.15 show that the above Y (x) is the ground state of a
shifted harmonic oscillator, and is the most genera wave function for which
Az Ap = k/2 exactly. We shall now see how these Gaussian wave packets can
be used as a non-orthogonal and overcomplete basis for Hilbert space.

Baker- Campbell- Hausdorff identity

As a preliminary step, let us establish the useful identity

eA B = (A+B JABI2 (10.101)

39Do not attempt to quantize Eq. (10.98) into a time-energy uncertainty relation! Time s
not an operator in quantum mechanics—nor is it a dynamical variable in classical mechanics.
It is a c-number, a mere numerica parameter. The measurement of time will be discussed in
the last chapter of this book.
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which is valid provided that

[A, [A, B]] = [B, [A, B]] = 0. (10.102)
The proof of Eq. (10.101) is similar to that of Eq. (8.29), page 221. Let
F(A) := e AA+B) 2B (10.103)

We shall prove that F()) = ¢**[BAl/2 | Obviously, both expressions are equal
to 2 when A =0. Moreover, we have

dl;(/\)\) BV (—A HALB) L (A 4 B)AATB) _ NALB) B) ¢~*B. (10.104)

We now use Eq. (8.29) in the form

[B,e¢] = (B—eCBeC)eC = ([B,(] - [[B,C},C]+---) e%  (10.105)
Take C = X (A + B). If [A,B] commutes with both A and B, only the first term
on the right hand side of (10.105) does not vanish, and (10.104) becomes

dF(/\) — e—AA [B,/\(A + B)] e,\(A+B) e—)«B
dx
A2[B,A)/2
= A[B,A] M [BAIZ ile_zﬂ__. (10.106)

It follows that F(A) = e*BAI2 for every A, since both expressions coincide for
A= 0. This proves the Baker-Campbell-Hausdorff (BCH) identity (10.101).40

Fock space formalism for Gaussian wave packets

In Section 5-6, we introduced the Fock space as a technique for representing
multiparticle states. We started from a vacuum state, ¥, = |0}, and used
raising and lowering operators a* for constructing n-particle states:

atlny=vn+1|n+1) and a”|n) =+v/nn—-1). (10.107)

It follows from these definitions that (a=)* = at, and [a=,a*] = 1. The
normalized Fock states are

) = (n!)™12 (a*)" |0). (10.108)

Another use of this Fock basis is the representation of the energy eigenstates
of a harmonic oscillator. The operators

401f [A,B] does not commute with A and B, Eqg. (10.101) is the first term of an expansion.
For higher terms, see W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory,
Interscience, New York (1966) p. 368 [reprinted by Dover].
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= /h/2mw (at +a7) and p=1iy/Amw/2(at —a") (10.109)

satisfy [x, p] = ¢h. The ground state of the Hamiltonian p?/2m + kx?/2 is

B = (mw/rh)H1 emmws’ /25, (10.110)

It satisfies a~ ¥, = 0. Note that ¢ = V2Az = (h/mw)!/2. The n-th energy
level is hw(n +1). The corresponding eigenstate will be denoted by [hLJ

We can now write the Gaussian wave packet (10.99) in terms of these Fock
states. We shall label this wave packet by its shift parameters, and denote it as
=/, p'). Recalling that e™*"P/* represents a trandation by x', we have

|2/, p') = e */h =iw'P/h g, (10.111)
By virtue of the BCH identity (10.101), this can also be written as
Iil'l,P,) = ?'7' 12k ilo'x—a'p)/k T,. (10.112)

The first exponential on the right hand side of (10.112) is an irrelevant phase and
may be discarded. In the second one, we introduce a complex shift parameter
o by writing, as in Eq. (10.109),

= Ja/2mw (@ + a) and P =iy/hmw/2 (& - a). (10.113)
We thus have
i(p'x — 2'p)/h = aat — @a™. (10.114)
The expression
D(a) :=exp (aat —aa™), (10.115)
is caled the displacement operator. The state (10.112) can now be written as
|a) = D(a) |0). (10.116)

It is called a coherent state. ** Note that it has the same dispersion 02 as the
ground state MU Different values of o can be achieved by an operation called
squeezing, which has important applications in quantum optics.#2

Exercise 10.22 Prove the following relationships:

D(a) = elof/2 gmat gmaa” (10.117)
) = 7172 g22% |0) = =172 3™ (1) 71/2 o7 [n), (10.118)
D(a) D(B) = e(*F~#2D(a + B), (10.119)

41R. J. Glauber, Phys. Rev. 131 (1963) 2766.
42 Nonclassical Effects in Quantum Optics, ed. by P. Meystre and D. F. Walls, Am. Inst.
Phys., New York (1991).
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D(—a) = [D(a)]* = [D(a)] 7, (10.120)
(o, B) = P~ (e +IBF)/2, (10.121)
(e, B)|? = e~lo=PF, (10.122)
a” la) = aja). (10.123)

The last equation is often taken as the definition of a coherent state.

Overcomplete basis

The Fock states mJform a complete orthonormal basis. any state  can be
written in a unique way as ¢ = 3, ¢, [n), Where 3, Jen|? = 1. It will now be
shown that the coherent states @Ocan aso be used as a basis. That basis is
not orthogonal and it is overcomplete, but it is nonetheless possible to obtain,
for each ), a representation v = [c(e) Ja} d?a, Where

d%a := d(Re a) d(Im «). (10.124)

Moreover, this representation is unique if we impose suitable restrictions on the
admissible functions c(a).

In the proof given below, | follow Glauber's lucid paper* and use, as in that
paper, Dirac’s bra-ket notations (see Table 3-1, page 78). For example, the
completeness of a sum of projectors is expressed by ¥, |n)(n| = 1. Likewise,
with coherent states, we shall see that

Lt / |e){a|d?a = 1, (10.125)

so that the set of operators 71 |a){af forms a POVM, as in Eq. (9.81). This
identity follows from

/ aman el P?o = 76 n!, (10.126)

which is easily proved by writing a =re'®, and d?a = rdrd6. From the
definition of a coherent state in Eq. (10.118), we have

/la (ol da =3 m) \/__ e’ da(n| =7 Y |n)(n],  (10.127)

whence Eq. (10.125) readily follows.
Let us now expand an arbitrary state Y. In the Fock basis, we have

Z In)(n|p) = Z ca ), (10.128)
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which defines the coefficients ¢, = (n|y). Likewise,

/ la)(alp) d?a = = / o) & e_'a” ST ) da, (10.129)

where use was made of Eq. (10.118). Let us now introduce a complex variable
zand define a function

f(z) =Y ca2"/Vnl, (10.130)

where cp = (nfy) . This function is analytic in every finite region of the z plane
(it is caled an entire function). We thus have

p) =11 / la) e”12F/2 £(&) d2a. (10.131)

Conversely, it is possible to obtain for the entire function f(a) an explicit
formula similar to ¢, = (n|) . We have

e-lal? /2

(Bly) = /(ﬁla ye /2 f(&) d*a = /eﬁ"“l"‘Pf(&)dza, (10.132)

where use was made of Eqg. (10.121). Next, we note that, for any integer n,

we have fefe-lel g7 d2q = ngn. This follows from Eq. (10.126) and from the
expansion e~ = ¥ g7a*/n!. A more general form of this identity is

/ ePolof f(5)d%a = 1 f(B), (10.133)
and Eqg. (10.132) gives

F(B) = P72 (Bly). (10.134)
Exercise 10.23 Show that if g(8) = el#/2 (8|4), then

(8l4) = W“/e"“'z 9(a) f(a)d*a. (10.135)
Note that g(a) = e~leF/2 (¢|a) is in general different from g(a).
Exercise 10.24 Show that, for all positive integers n,

/|a nelal/2 424 = g, (10.136)

Hint: Expand (m|a) in powers of a and use Eg. (10.126).
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In gpite of the fact that the coherent states @ are not linearly independent,
the Glauber expansion (10.131) is unique, because the functions f(&) which
appear in the coefficients are required to be smooth, entire functions ofa. For
example, the trivial identity |8) = [la) 6*(a — 8)d%*a isnot a valid Glauber
expansion. The correct way of expanding a basis vector is

I8) = = / la) (] B) d?a = 71 / |y e3P lel/2-18E12 g2 (10.137)

The coefficient e*@-11*/2-16F/2 /1 is considerably smoother than §%(a—23). Shall
we get an even smoother result by iterating this procedure? Let us try:

lv) = n e MF/2 / |B) ePr-18FI2 g2
= 2 =h/2 / [ ] | e30-1oP/2-1p1/2 d2a] ePr-187/2 g2 (10.138)

Integration over B gives |y) = n=1 e~h/2 f|a) e@7-lel*/2 42 | as in the right hand
side of (10.137): there is no further spreading. The expansion is unique.

It is likewise possible to define a coherent representation of operators, by
using their matrix elements(8|t|a). More details and various applications to
guantum optics can be found in Glauber's article®! and in the bibliography at
the end of this chapter.

Angular momentum coherent states

It is natural to seek generalizations of the minimum uncertainty wave function
in Eq. (10.99) to sets of noncommuting operators other than q and p. For
example, we may want all three components of angular momentum to have
small dispersions (AJ,)?. The sum of these dispersions is, for a given total
angular momentum,

(AL = T - S = T (J + 1) - U2 (10139)
k k k k

To find the minimum value of this expression, let us rotate the coordinate
system so that the new Zz'-axis is parallel to the vector [J,[J We then have
{J21) = () = 0. The maximum value of {4,,)? is J2. Therefore, the sum of the
dispersions in Eqg. (10.139) is minima for states that fulfill

n-Jly = Jiy, (10.140)

with the unit vector n parallel to any given [J, [ This equation defines angular
momentum coherent states,*34 which have the property
S (A = Jh = jK% (10.141)
k
In particular, AJy, =0, and AJ, =+/jk/2 in any direction perpendicular to n.

) M. Radcliffe, J. Phys. A 4 (1971) 313.
4P, W. Atkins and J. C. Dobson, Proc. Roy. Soc. A 321 (1971) 321.
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These coherent states will be denoted by B,p0) where 0 and ¢ are the polar
and azimuthal angles of n. Note that B,p0can be obtained from |0,0) = |j)
by rotating that state through Euler angles ¢ around the z-axis, and then 6
around the new y-axis. Therefore,*>

7 . 1/2
16,8y = > |m) (j j-]m) cos’™(8/2) sin? ™ (6/2) e~™®, (10.142)

m=-—j
Let us evauate [|8,¢)(8, ¢| sin6df dé. We first perform the integration over o,
which gives [e{™-m"19dg = 28,4, BNd we are left with

[16,9)(6,41 sin 848 dg (10.143)

J y ™ . .
=2r Y |m)(m| (j ijm) / cos2it™)(9/2) sin?=™)(/2) sin 8 d6.
0

m=—71

The integral on the right hand side is recognized as a beta function, which is
equa to 2(j + m)I(j — m)!(2j + 1)!. We thus obtain

. 4 4
[16.6)(6.9| sinods dg T Clm)ml = 5 1 (10.144)

We shall soon see that this is a special case of a more general formula, valid for
any group.

Exercise 10.25 Show that
(¢, ¢'16",4") = (10.145)

= [cos(ﬁ'/Z) cos(6"/2) #'~#")/? 4 sin(6' /2) sin(8"/2) ei(d>”—¢>’)/2] 2j’

and

2

o, 916", 6" = (10.146)

=27% [1 + cos € cosb” +sin€ sin§” cos(¢’ — ¢”)] = cos*(9/2),
where © is the angle between the directions (8',¢") and (6" ,¢").
The angular momentum coherent states have many properties similar to

those of the harmonic oscillator coherent states* because they are related to
the latter by the group contraction that was discussed on page 322.

45M. Tinkham, Group Theory and Quantum Mechanics, McGraw-Hill, New York (1964)
p. 110.
46F. T Arecchi E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6 (1972) 2211.
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Coherent states for any group

The above considerations can be generalized to any group.*’” Consider a set S
of N unitary matrices U, having the properties of a group: Sincludes the unit
matrix 1, the inverse U,t of any Uy OS and the product U, = UglU, of any
two members of S.

For any fixed [¢) € H, consider the states |4} := U, |#). The sum

A=Y [ad(®al = 2 Ua ) (3| Uat, (10.147)

has the property that, for any Ug,

UsAUg" =3 Up U [9) (] Ut Ug' = 37U, [9) (1 U, = A, (10.148)

because the set of all Uy = UgUq (for fixed Ug , and for al Uq O S) contains N
different matrices, and therefore it runs over al the elements of S.

It follows from (10.148) that UpA = AUg for all the Ug of the group. There-
fore, if the matrices Up are an irreducible representation of that group, we have,
by virtue of Schur's lemma, A =cl. Taking the trace of (10.147), we obtain
cd = Y. {¥a|tb=) = N, where dis the dimensionality of H. It follows that

Y e (el = (N/d) 1. (10.149)

The matrices (d/N)|¢4){%.| thus are members of a positive operator-valued
measure (POVM), as in Eqg. (9.81).

These definitions can be extended to continuous groups, once a suitable mea-
sure is defined to replace the discrete sum over o. For example, the Uy may
be the ordinary rotation matrices of order d = 2j + 1. The |¢,) then are
the coherent states |, ¢) that were discussed earlier. In this case, N becomes
[sin0dfd¢ = 4m, and we obtain again Eq. (10.144).
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Chapter 11

Chaos and Irreversibility

11-1. Discrete maps

Most dynamical problems have no known analytic solution. In some cases,
approximation methods such as perturbation theory give satisfactory answers.
However, it often happens that the only available approximation is the use
of numerical methods. Thanks to the advent of fast computers, numerical
simulations have become a readily available tool, and they may have a high
degree of reliability—if correctly used.

In a computer simulation, continuous physical quantities, time in particular,
are replaced by discrete surrogates.! This naturally suggests to investigate the
properties of dynamical models which are intrinsically discrete, but still obey
some of the ordinary laws of physics. For instance, in quantum mechanics,
we may have, instead of the continuous evolution generated by Schrodinger's
equation, a discrete sequence of unitary transformations. In classical mechanics,
the mapping {q(t), pt)} - {qt + &t), p(t +0ot)} will proceed by discrete steps,
each one of which is required to be a canonical transformation. These discrete
mappings are akin to a sequence of stroboscopic views taken during a continuous
evolution, and they share many of the properties of the latter. In the present
section, we shall discuss classical (canonical) discrete dynamics, as a preparation
to the study of quantum mechanical discrete maps.

Transfer matrices

To simplify notations, let r := {g* ..q",p1...pn} denote a point in the 2n-
dimensional phase space. The problem in which we are interested is whether
the orbit r(t) is stable, or unstable, with respect to small perturbations of the
initial conditions. This issue can be investigated by considering the behavior of

1Some authors have proposed that time and space are fundamentally discrete, with units
of the order of \/Gh/c® ~ 1.6 x 10-35m, where G is Newton's gravitational constant. The
present discussion has nothing to do with these speculations. At the time of writing, there is
no satisfactory quantum theory of gravity.

332
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a small deviation, r — r + Jz. We shall see that it obeys Eq. (11.6) below.
Let us write Hamilton’s equations of motion (for continuous time) as

dr; OoH
. R el 111
dt ;”” or;’ (11.2)
where
01
Ti; = — Wi = iy = ( 1 0 )', (11.2)

isasymplectic matrix. Consider a small deviation, r; — r; + €. To first order
in 0, we have, from Eq. (11.1),

dz; O’H
S = S Mg 2. 113
& = % 75 Br; Oy Zk 3 M 2 (11.3)

This is a linear equation for the deviation vector zx. Note that there is a
different matrix Mik(t) for each orbit.

Exercise 11.1 Show that the matrix
9’H

(8) i S 11.4
Mzk(t) ;nu 67‘1‘ 6T‘k ( )
satisfies
S Mi=0 and > (mi; My + M) = 0. (11.5)

M

The linear equations (11.3) can in principle be integrated, with a result
z(t) = S(t)z(0). (11.6)

The transfer matrix S(t) satisfies § = SM and S(0) = 1. Transfer matrices
play in classical mechanics a role similar to that of unitary matrices in quantum
mechanics. However, some of their properties are radically different.

Consider two different deviations, y and z. The symplectic area which they
span in phase space isynz (where § denotes a row vector which is the transposed
of y). This area is a constant of the motion, because

d(¥nz)/dt = yMnz + §nMz = § (Mn + M)z = 0, (11.7)

where use was made of Egs. (11.3) and (11.5), and a tilde denotes a transposed
matrix. It follows that

F(t)nz(t) = 5(0) SnS z(0) = F(0) nz(0), (11.8)
and therefore

SyS =1 (11.9)
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The transfer matrix S thus belongs to the symplectic group (the group of trans-
formations which leave the symplectic matrix n invariant).

Exercise 11.2 Show that Det S= 1 and therefore that the volume of a small
element of phase space remains invariant under the transformation (11.6).

Exercise 11.3 Show that the area preserving theorem holds for any canonical
transformation.  *

An important property of symplectic matrices is that their eigenvalues are
paired as A and A-1.Proof: Let Sv =Av. We then aso have S-1v = A1y,
and we obtain from Eq. (11.9), which can also b written as Sp =%S"1,

Snv =nS~lv = A gv. (11.10)

Therefore n v is an eigenvector of S , belonging to the eigenvalue "1 But S
and § have the same set of eigenvalues, since they have the same characteristic
equation. Therefore al these eigenvalues are paired, as A and A1 .

Moreover, since Sis real, its complex eigenvalues are also paired as A and ).
Therefore they come either as conjugate pairs on the unit circle, or as quartets,

A, A7L X, and AL

Periodic orbits

If a solution of Hamilton's equations (11.1) satisfies r(t + T) = r (1), the orbit is
said to be periodic, with period T. This notion can be extended to any discrete
map. Consider a nonlinear transformation, r — F(r), where F is an invertible
continuous function, so that neighboring points are mapped onto neighboring
points. We have

ro — ry = F(ro) — r, = F(F(rg)) —r s (1111)

For some particular r o, this sequence may be periodic, namely ry = r,. We
then say that ry isafixed point of order N.

We shall mostly be interested in the case where the map F is a canonical
transformation. For example, F(r) may be the result of integrating Hamilton's
equations (11.1), either for a prescribed time or, more commonly, until the orbit
r(t) reaches a prescribed surface (or higher dimensional manifold). The latter
is called a Poincaré surface of section. Let ro be a fixed point on that surface
of section. Since F(rg) is continuous, a neighboring point  ro+ €z on the same
surface, is mapped onto  rg + €z , where z, = Sz, Here, the matrix S refers to
a complete period. This matrix is in general a function of rq. It belongs to the
symplectic group, because the area preserving theorem is valid for al canonica
transformations.

The stability of a periodic orbit is determined by the eigenvalues of S. After
k turns (that is, kN steps), the orbit which started at rg+ezo will pass through
ro + S*zo . Let us write zgas a linear combination of eigenvectors,
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20=Y vy, (11.12)
A

where v is the eigenvector of S corresponding to eigenvalue A. We then have

Zp = ZC,\ Sk Vy = ZC,\ /\k V. (1113)
Y A

Let A denote the largest eigenvalue of S. If Ais real, the asymptotic behavior
of z for large kis an exponential growth, z; — ca A¥*v, . We shal cal A
the Lyapunov factor of the periodic orbit. (If time is continuous, A is usualy
written as e- T, and L is called the Lyapunov  exponent.) More generaly, the
largest eigenvalues of Smay come as conjugate pairs Aer®® (where A and 0
are real). We then have, asymptotically, z; — A*(cavae™® + c.c.), so that the
exponential growth is modulated by periodic oscillations. In al these cases, the
orhit is clearly unstable. It is only when al the eigenvalues of S lie on the unit
circle that a periodic orbit is stable.

KAM manifolds

It will now be shown that, in a 2m-dimensiona surface of section, al the points
ro + €z; lie on mquadratic manifolds

iQ,z =1, j=1,...,m. (11.14)

This is illustrated in Fig. 11.1 for the simple case of a fixed point of order 1
on a 2-dimensional surface of section (m = 1): the points zy ...z3 lie on an
elipse, if the orbit is stable. They would lie on a hyperbola in the case of an
unstable fixed point.

Fig. 11.1. An elliptic fixed point
ro is located at the origin of a z,
2-dimensional surface of section.
Consecutive points of a neighbor-
ing orbit, ro4€zx, lie on an elipse.

To prove this property, consider Eqg. (11.13) for any given value of k. Write
the 2m values of Ak as an array, x,, and the 2m components of z, as another
array, y,. The result has the form of a linear transformation:

Y = 9 Aur T, (11.15)
A
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where A, isthepth component of caVa in the expansion of zp in Eq. (11.12).
By inverting (11.15), we obtain zx =Y, By, , Where B is the inverse matrix
of A. Recall now that the 2m values of A arepaired,as A and A = A~! s0 that
the 2m values of x, = A are also paired: x,x)» =1. It follows that

VA Y BuBuvvuve =3 (@0 ) Yu o = 1, (11.16)
uy

v

which is just another way of writing Eq. (11.14).

The physical interpretation of this result is a conservation law: in the vicinity
of the fixed point rq, there is some function of r (that is, of g and p) which is
constant, and Eq. (11.14) represents the first terms in a power expansion of this
function. However, some care is needed here, and various possibilities must be
distinguished.

For a stable (also called dliptic) fixed point, the sequence of zk may densely
cover a closed manifold C. This is an ellipse (or ellipsoid) if the zyare infini-
tesmal, a more complicated manifold if they are finite. In particular, for the
simple case of a 2-dimensional surface of section, C is a closed curve which
divides the surface of section into two parts. If an initid point r is inside the
domain bounded by C, al the consecutive mappings of r will also be inside,
by continuity. (Proof: let a continuous curve R connect the fixed point ro to
ro+ zoand pass through r. Consecutive mappings of R will connect ro to
ro+ zx without ever leaving the domain bounded by C.)

In the general case of a finite deviation z, the existence of such a manifold is
guaranteed, under appropriate conditions, by the KAM theorems.2# Consider
an integrable Hamiltonian system, namely one with n analytic constants of
motion in involution. The orbit of r then lies on an-dimensional torus in the
2n-dimensional phase space. If that Hamiltonian is perturbed in a way which
makes it nonintegrable, there will be fewer than n constants of integration
(there may remain only one, the energy). The KAM theorems assert that if the
perturbation is analytic, or at least differentiable sufficiently many times, these
tori will be distorted but they will not disappear as long as the perturbation is
small enough. [This property apparently holds under less restrictive conditions,
such as for the nonanaytic law of force (11.20) discussed below, but there is
no formal proof.] As the perturbation increases, the KAM manifolds gradually
break down, and the motion of a point r in phase space can explore domains
of dimensionality higher than n (up to 2n — 1 dimensions, if energy is the only
remaining constant of motion of the perturbed Hamiltonian).

The situation is more complicated in the case of an unstable (or hyperbolic)
fixed point. In the simplest case of a 2-dimensional surface of section, it may
happen that there exists a continuous curve which behaves as a hyperbola in
the vicinity of the unstable fixed point, and which is mapped onto itself by

2A. N. Kolmogorov, Dokl. Akad. Nauk 98 (1954) 527.
3V. I. Arnol'd, Usp. Mat. Nauk 18 (1963) 13 [trand. Russ. Math. Surveys 18 (1963) 9].
4J. Moser, Nachr. Akad. Wiss. Géttingen, Math. Phys. K1 (1962) 1.
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the nonlinear transformation r — F(r). However, in the generic case, the
sequence of z, wanders over all accessible parts of the surface of section that
can be reached without crossing a KAM line. Such a motion is caled irregular
or chaotic, because it becomes effectively unpredictable for long times: the
dlightest perturbation of the initial conditions is amplified, step after step, until
any computer with finite resources is unable to determine new points in a reliable
way. The situation is illustrated by Fig. 11.2, which displays both KAM lines
and chaotic areas.

That figure aso shows chains of idands of stability, namely KAM lines which
consist of several digoint parts. The latter arise whenever a mapping such as
the one sketched in Fig. 11.1 does not densely cover a closed curve, but contains
only a finite number of points, because it is itself periodic: zs = z,. Each one of
these points thus is a fixed point of order s. If this new periodic orbit is stable,
the associated KAM line consists of s digoint parts.

Case study: area preserving map on a torus

Consider a compact 2-dimensional phase space, -1 < q,p < 1. The end points
-1 and 1 are identified. The discrete map consists of two steps, namely

qg-g=qg+p (“mod 27), (11.27)
followed by
p-p=p+f(q) (“mod 27). (11.18)

Here, “mod 2" means that if |q |or|p'| exceeds 1, one must add or subtract
an integra multiple of 2 to bring it back to the domain [-1, 1]. This map is
invertible, by p= p' — f(q), followed by q=q - p.
Exercise 11.4  Show that this transformation is canonical:

a ! a / 6 ’ 7

94 op' _ 94 0p _ (11.19)

As a simple case, consider the quadratic law of “force” 5

flg) = —q(1 —{g}). (11.20)

We shall give the name parabolic map to the resulting law of motion. The point
g=p= 0 obviously is a first order fixed point of this map. In its vicinity, the
map can be linearized as

5This is a poor man's version of the standard map with f = —K sin(g/ 1), about which there
is a vast literature. The quadratic law (11.20) is used here for pedagogical reasons, because it
allows a detailed investigation with minimal computing tools, as shown in the Appendix.
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ql :q+p, p':p_q':— q_ (1121)

11

The corresponding transfer matrix (_1 0

) has eigenvalues e*27i/3,

Exercise 11.5 Find the form of the KAM ellipse corresponding to (11.21).

Exercise 11.6 Show that the point q = £1, p = 0is an unstable fixed point,
and that the eigenvalues of the transfer matrix are A = (3 +,/5)/2.

Some complete orbits of the parabolic map are displayed in Fig. 11.2. As
expected, there are concentric eliptic KAM lines in the vicinity of the stable

Fig. 11.2. The parabolic map is illustrated here by 13 regular orbits and one
chaotic orbit. The vertical axis is -1 < p < 1, and the horizonta axis is
-1 < g < 1 The regular orbits start at p =0 and q = 0.05,..., 0.65. The
chaotic orbit explores most of the phase space (10° points were plotted).
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fixed point g = p = 0. The shape of these closed curves becomes more com-
plicated as their size grows. They occasionally break up into chains of islands
of stability, corresponding to higher order fixed points. Further away from the
origin, most of phase space is covered by a chaotic region, where blank areas
indicate the presence of additional islands of stability.

In the chaotic region, nearly al the periodic orbits have Lyapunov factors
A> 1. Therefore an infinitesimal region of phase space is stretched, after k
steps, by a factor AK (in the limit k > 1). For a finite region, the situation is
more complicated, because both A and the direction of the eigenvector v vary
from point to point. This causes the finite region to be distorted in a grotesque
way, projecting increasingly long and thin filaments, as illustrated in Figs. 11.3

Fig. 11.3. An initialy circular domain, entirely within the chaotic region of
the parabolic map, is shown after 3 and 6 steps. Note that the area of this
domain is conserved, while its shape becomes more and more distorted. The
PosT SCRIPT program which draws this figure is given in the Appendix.
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and 11.4. As the number of iterations tends to infinity, these filaments will
pass arbitrarily close to any point which can be reached without crossing a
KAM line. This property is caled ergodicity (the label “ergodic’ is sometimes
restricted to situations where the entire energy surface can be reached).

Ergodicity and mixing

In the present context, ergodicity is almost tautological because any region
which would not be covered by these chaotic filaments would necessarily have
aboundary, invariant under the dynamica map, and then this boundary itself
would be an impenetrable KAM line. There is however a nontrivial and much
stronger property, called mixing, which has profound consequences.

Fig. 11.4. The same circular domain, after 12 steps of the parabolic map.
When many additional steps are executed, the increasingly long and thin
filaments will pass arbitrarily close to every point of the chaotic region.
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Consider a compact region Ro of phase space, such as the small circle in
the preceding figures, and let Rk be its kth iteration by the mapping under
consideration. Let p be the ratio of the volume of Ro to the total volume of
the accessible region which is covered by the successive iterations Rc. Then, as
k - o, every accessible fixed region of phase space will have the same fraction
p of its volume covered by points belonging to Rk. Seen on a coarse scale,
the entire accessible region of phase space is uniformly covered by R.. The
notions of mixing and coarse graining are essential in the derivation of classical
irreversibility.

11-2. Irreversibility in classical physics

The intuitive meaning of “irreversibility” is that there are dynamical evolutions
which can easily be prepared, but it is extremely difficult (we say “impossible’)
to prepare the time-reversed evolutions. For example, it is easy to get a cup of
lukewarm water by placing a cube of ice in a cup of boiling water, and waiting
one hour, say. It is impossible to prepare a cup of lukewarm water in such a
way that, one hour later, it will turn into an ice cube floating in boiling water.

The classical explanation given to irreversibility is based on the concepts of
mixing and coarse graining. Mixing, whose intuitive meaning was illustrated in
Fig. 11.4, is a property which can be proved rigorously, in the limit t - oo, for
some specific physical systems, such as a gas of hard spheres (i.e., impenetrable,
nonrotating spheres, which rebound elastically when they collide). Formally, it
means the following:® Consider two finite (and fixed) regions of phase space, V1
and V,, which are not dynamically separated by an isolating constant of motion
(or a closed KAM manifold), and whose measures are fractions pi and po of
the total accessible phase space. Suppose that the Liouville density fi(q,p) is
uniform in Vi at time t;, with {f;dV; = 1. The dynamical evolution causes
this density to become f>(q,p) at time t,. Then, for any t, sufficiently remote
from t1 (in the future or the past) and for sufficiently large pw1 and po, we
have ff.dVa — p,, irrespective of where V, is. The system appears to have
no memory of its origin. Obviously, the smaller p1 or p2, the larger the time
[t1 — 2| needed for mixing. (I consider only finite times, not the unattainable
mathematical limit of infinite time.) Notice that the mixing property is time
symmetric. By itself it cannot explain irreversibility.

In the ice-cube paradigm, V; (the region of phase space which corresponds to
an ice cube in boiling water) is considerably smaller than V,, which corresponds
to what we loosely call “lukewarm water” with no further specification of the
water properties. This is because, for a given total energy, nearly al the points
of phase space are compatible with this vaguely specified state of water, so that
gy =~ 1. Therefore, almost every dynamical evolution will lead to lukewarm

6V. 1. Arnold and A. Avez, Ergodic Problems in Classical Mechanics, Benjamin, New York
(1968) pp. 19-22.
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water, with extremely small inhomogeneities, since g2 =~ 1lis the probability
of finding the final state in V2. Nevertheless, we can, conceptualy, prepare
lukewarm water at time t, so that, at a later time t1 it will separate into an ice
cube and boiling water. However, this requires a very special preparation: not
just any cup of lukewarm water, but one with precise correlations between all the
molecules. This preparation is restricted to lie in an exceedingly contorted region
of phase space, far more complicated than Fig. 11.4, and with structural details
so small that mixing, as defined above, will not yet have been accomplished
after the given finite time t; —t,.

Now comes coarse graining: we are unable, with our imperfect instruments,
to coerce the initial state to reside within a region of phase space which is so
small, or with a structure so complicated, that mixing will not yet have occurred
after a finite time t; —t,. That is, we cannot prepare the system at time t, so
that, after a finite time t; —t,, it will be located with certainty in the desired
domain V; of phase space. There are evolutions (such as from lukewarm water
to an ice cube in boiling water) which cannot be made to proceed.

Deceptive irreversibility

The above argument deserves close scrutiny. The claim that “we are unable to
achieve such a preparation” ought to be proved. What is the degree of difficulty
which is caled “impossible’? (How, indeed, do we measure difficulty?) One
should never underestimate the skill of experimental physicists. For instance
the spin echo’® phenomenon shows that an apparently irreversible behavior
can, under appropriate circumstances, be reversed. In that experiment, a large
number of spins, initially aligned, acquire random phases under the influence
of random, unknown, but fixed internal fields, acting during a known time t. A
suitable RF pulse can then invert all these phases and, after the same time t,
al the spins are again aligned. This is possible because al the spin precessions
are decoupled from each other. Their equations of motion are integrable. The
phases appear random to the untrained eye, but actually they are correlated.
They are similar to a text which has been encrypted by a secret key, appears
incomprehensible, but can be decrypted by anyone knowing the key. Informa-
tion is not destroyed by encryption, it is only made less accessible. Likewise, in
the spin echo case, the “key” is the strength of the RF pulse which inverts the
phases and realigns the spins.

To give a quantitative measure to these concepts, the notion of logical depth
was introduced by Bennett.® It is, roughly speaking, the number of elementary
logical steps needed to obtain the value of a physical quantity from the minimal
program which can compute it. Unfortunately, logical depth itself is not com-
putable: this is due to the most fundamental property of computability theory,

TE. L. Hahn, Phys. Rev. 80 (1950) 580.

8J | Rothstein, Am. J. Phys. 25 (1957) 510.

9C. H. Bennett, in Emerging Syntheses in Science, ed. by D. Pines, Addison-Wesley, Reading
(1987) p. 215.
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namely the unsolvability of the halting problem®1! Moreover, the length of a
computation can sometimes considerably decrease if the minimal program which
generates it is replaced by a longer, but more efficient program. Nevertheless,
if we set some arbitrary rate of exchange between run time and program size,
the resulting logical depth can be shown to be roughly machine-independent.’

Exercise 11.7 The Kac ring model 1213 consists of n equidistant balls on the
circumference of a circle. Each ball can be either black or white. Moreover, m
markers are placed on the circumference, in a random way, at fixed positions.
All the balls move clockwise with the same velocity and, when a ball passes a
marker, its color changes. The initial color distribution is given (for example,
all the balls are white). The problem is to find the color distribution after a
long time. (Assume n >>m>> 1.) *

In the above exercise, we intuitively expect a monotonic approach to an
equilibrium state, with equal numbers of white and black balls, except for small
fluctuations. This is indeed what happens at the beginning of the motion.
Yet, this cannot continue forever. The system is manifestly periodic, because
after two complete turns each ball is back to its original color, having passed
each marker twice. Here again, the colors of the balls may look random to the
untrained eye, but they are strictly correlated: the encryption key is the fixed
distribution of markers.

Let us now imagine that an observer starts to watch the n black and white
balls only a short time before the end of a complete cycle. Their color distri-
bution, which initially appears random, spontaneously evolves from disorder to
order, until all the balls are white; and thereafter, they return to a pseudo-
random state. The baffled observer will perhaps try to interpret his findings as
a statistical fluctuation, one which would have very low a priori probability. (If
a cup of lukewarm water turned into an ice cube in boiling water, this would
be caled a miracle, for sure)

However, upon closer analysis, our observer would realize that he has been the
victim of a conspiracy: the apparently random distribution of white and black
balls is logicaly deep. It has been cleverly contrived by means of a complicated
calculation, or a long physical process. To orchestrate this result, the preparer
would first have to produce m pseudo-random numbers (the markers positions,
between 0 and 2rr) and then to count, for each one of the n balls, how many
of these pseudo-random numbers fall between 21k /n (the initial position of the
kth ball) and 2m(k+1)/n (its position after | steps). Recal that n>> m>> 1, so
that a lot of computation is necessary in order to produce the fake “statistical
fluctuation” which mimics a spontaneous decrease of entropy.

10A. M. Turing, Proc. London Math. Soc. 42 (1936) 230.

M. Davis, Computability and Unsolvability, Dover, New York (1982).

12 M. Kac, Probability and Related Topics in Physical Sciences, Interscience, New York (1959).

13M. Dresden, in Sudies in Satistical Mechanics, ed. by J. De Boer and G. E. Uhlenbeck,
North Holland, Amsterdam (1962) Vol. I, p. 316.
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Computational complexity

Likewise, consider the evolution of a nonintegrable dynamical system. Even
though this system is deterministic, its long time behavior is effectively chaotic
because, as we shall now see, the amount of computation required to predict the
motion increases faster than the actual duration of the motion itself. Therefore,
for sufficiently long times, no computer with finite resources will be able to
predict the final state of the system, except statistically. Chance is supreme.
The fina state is “random” and the evolution is “chaotic.”

A quantitative measure for the computational work needed to accomplish a
given task is its computational complexity.* This notion is defined in roughly
the same way as logical depth, but it refers to a process (such as a dynamical
evolution) while logical depth is a property of the end product of such a process.
For instance, let us evaluate the computational complexity of a classical chaotic
orbit in a bounded system. That orbit, C, will eventually pass near its initial
point. There must therefore be an exactly periodic orbit, O with a starting
point very close to that of C (and with a Lyapunov factor A > 1). let be the
initial separation of these orbits. After kturns, their separation will be about
AO provided that this still is small enough to allow the use of the linearized
equations of motion (11.3). Conversely, in order to predict the final point of C
with a precision [J the initial point must be specified with a precision A kg

The number of digits to be specified in the initial data thus increases linearly
with the duration of the physical motion that we want to compute!® This alone
is sufficient to cause the computational complexity to increase, for t — oo, faster
than tlog t, because there surely are some multiplications in the computation,
and the best (currently known) algorithm™ for multiplying two numbers with
N bits (N >> 1) requires a number of elementary logical operations which
increases faster than N log N. In practice, the computational complexity will
increase considerably faster than that, if the computation involves a sequence
of iterations, such as in the Runge-Kutta method. The numerical error for a
step of duration T typically behaves as at” where a depends on the system of
equations (not on 1) and nis a small integer. Optimally, the expected numerical
error due to the iterative algorithm should be about the same as the admissible
round-off error, namely A" YT, where tis the time remaining until the end of
the motion, and T is the period of the neighboring orbit O. The reguired t thus
behavesas A ", and the total number of steps as A" The computational
complexity of a classical chaotic orbit thus increases exponentially with the
duration of the motion.

Admittedly, this conclusion was reached by assuming the use of an iterative
algorithm of the Runge-Kutta type. For any specific problem, more efficients
methods may exist. However, if the computational complexity of the fastest

14G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice-Hall, Englewood
Cliffs (1988).

15Recall that the magnitude of a number is an exponential function of the number of digits
needed to represent it.



Irreversibility in classical physics 345

algorithm can be shown to increase more rapidly than the actual duration of
the motion, no long range predictions are possible, and the system is chaotic.

Are these difficulties subjective?

We must exert extreme caution before claiming that it is impossible to achieve
a specific goal, just because it looks difficult. In the case of the spin echo, or
the Kac model, what appeared at first sight difficult became easy under closer
analysis. Likewise, consider the intricate phase space domain in Fig. 11.4. Since
it was obtained by a canonical mapping, there must be some canonical variables
with which that domain has a simple shape, while the initial circular domain
appears utterly distorted and complicated.

These two coordinate systems are canonically equivalent, but they are not
equivalent from the point of view of physics. There are privileged coordinates,
namely those in which the observer and his instruments have a simple shape
which can be specified by a short description. Given such a privileged coordinate
system, it is objectively difficult—but not formally impossible—to prepare an
initial state lying within a contorted domain, as in Fig. 11.4, with extremely
fine structural details. This is because the extreme precision which is required
necessitates the handling of a large amount of information, at the very least
supplying many digits in the initial data. The process of getting and recording
this information dissipates at least an equivalent amount of entropy in the rest
of the world (see page 266). However, if the accessible part of the universe is
finite, there must be an upper limit to the entropy that we can generate in it:
our computing ability may be large, but it is not infinite.

It thus appears that some physical properties are subjective and depend on
our intellectual and experimental skills. The spin echo phenomenon, discussed
above, is an example: where most people would see only disorder (high entropy),
others may recognize a perfectly ordered (but logically deep) state, with zero
entropy. This subjectivity should not be a matter of concern, as long as we ad-
mit that there is some limit to our skill. The precise limit has little importance:
our description of physical phenomena is amost indifferent to where this limit
is set, because the Lyapunov exponent which rules the dynamica evolution of
a macroscopic system is so huge that it will overcome, within an exceedingly
brief time, even the most extravagant claims of computability and reversibility.

The role of the environment

Irreversibility results from our accepting that there are things that we cannot do.
We should not, however, underestimate our ability. As shown by Hahn's spin-
echo” experiment, macroscopic observers are not restricted to coarse-grained

variable. 16 If our goal is motion reversal, we don't have to measure a velocity
in order to reverse it—a mundane elastic bounce will do that job. In a large

16 JM.Blatt, Prog. Theor. Phys. 22 (1959) 745.
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system, a reversa of all the velocities does not imply a measurement of all
the velocities (which would indeed be impossible for a macroscopic observer).
Therefore, “proofs’ of irreversibility based on a vaguely defined coarse-graining
are not really convincing, and further considerations are needed.

Irreversibility would still occur if there were no limit to our resolving power,
and if any state specified by a finite algorithm could be prepared experimentally.
(We aready made such optimistic assumptions when introducing the quantum
superposition principle, page 50.) The fundamental limitation to an observer's
ability is of a different nature: he must restrict his observations to a finite part
of the Universe. Insurmountable difficulties do not arise from having to handle
large, complicated systems; rather, they appear with limited and not perfectly
isolated systems.1 6

It is sometimes claimed that physica systems can be isolated as well as we
wish, and that it is only a matter of technological skill to reduce the influence of
the external world to an arbitrarily low level. To show the falacy of this claim,
let us for a moment imagine that this external world is completely known to us,
and let us examine how it would affect the system under consideration. In the
equations of motion, the external world would appear as additional degrees of
freedom, weakly coupled to the degrees of freedom of the origina system. The
coupling being very weak, one could legitimately ignore the global energy trans-
fer between the internal and external degrees of freedom (e.g., superconducting
currents have been shown to run for an “infinite” time, on a human scale).
However, the detailed microscopic behavior of a chaotic system is appreciably
affected by its weak coupling with the external world much more quickly than it
is possible for macroscopic variables to approach global equilibrium’® Therefore
the microscopic motion becomes unpredictable much earlier than irreversibility
is apparent on a macroscopic scale.

Note that the “external world” of a macroscopic system includes not only
the walls of its container and everything beyond these walls. It also includes all
the internal degrees of freedom which are not explicitly taken into account in
the Hamiltonian description of that system. For example, if we specify the state
of a top by the coordinates of its center of mass and three Euler angles for its
orientation, al the remaining, unknown, “irrelevant” degrees of freedom, such
as the displacements of individual atoms from their equilibrium positions, are
part of the external world, or the so-caled environment. Unless the “relevant”
degrees of freedom are rigorously decoupled from the irrelevant ones (for exam-
ple, by virtue of exact conservation laws), they are not truly isolated. Then, if
the Hamiltonian equations of motion are not integrable, the system is chaotic
and long range predictions are impossible, except statistically.

In order to have chaotic dynamics, the number of degrees of freedom need
not be large. In a time independent system, two are enough, provided that they
are nonlinearly coupled, so that the Hamiltonian equations of motion do not
constrain orbits to lie on KAM tori. In an explicitly time dependent system,
or in a discrete map, a single degree of freedom is enough to obtain chaotic
behavior, as illustrated in the preceding figures.
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11-3. Quantum aspects of classical chaos

Can we extend these arguments to quantum systems? We have seen in Sect. 10-1
that the correspondence principle is not a reliable guide, because of fundamental
differences between classical and quantum dynamical laws. For example, if two
classical chaotic orbits start at neighboring points, their “distance” increases
in aroughly exponential manner.” On the other hand, if two quantum states
are initially almost identical (that is, if their scalar product is very close to 1)
they will remain almost identical forever, because the Hamiltonian evolution is
aunitary mapping which preserves scalar products.

However, a quantum state is not the analog of a point in the classical
phase space. The classical analog of a quantum state is a Liouville probability
density. If two Liouville functions are initially concentrated around neighboring
points, with some overlap, that overlap remains constant in time, by virtue of
Koopman's theorem (see Sect. 10-5). Each one of the Liouville functions may
become distorted beyond description, until all phase space appears thoroughly
mixed when seen on a coarse scale. Yet, the overlap of these functions remains
constant, as illustrated in Fig. 11.5.

Anyhow, no one is interested in how a Liouville probability density, which
was initially given, will later overlap with the tortuous domain covered by the
time evolution of another, initially given Liouville density. The experimentally
relevant question is how each one of these time dependent domains overlaps
with a fixed domain of phase space. We know the answer: seen on a coarse
scale, the final probability density is homogeneous and roughly independent of
the initial conditions. This is the property that was caled mixing.

Turning now to quantum theory, we may inquire whether Wigner’'s function,

W(a,p) == (w8 [ p(a—r,a+r)e P ar, (10.56)

which is the quantum analog of a Liouville density, is aso subject to mixing.
The answer is negative: W(q,p) has a much smoother time evolution than a
Liouville function.’® In particular, it can never develop contorted substructures
on scales smaller than k.. Therefore, Wigner's function W(q, p) does not possess
the mixing property, as defined above.

In genera, it is found empiricaly, by numerical simulations, that quantum
mechanics tends to suppress the appearance of chaos. Quantum wave packets
may remain localized, even when classical orbits are strongly chaotic, because
the breakup of KAM surfaces starts in limited regions, and the remnants of
these surfaces effectively act as barriers to quantum wave packet motion while

17The word “distance” was written between quotes because phase space has no metric struc-
ture. It has a symplectic structure, and the metric distance between two points is not canonically
invariant. However, in any arbitrary but fixed metric, such as ds? = dq® +dp?,, an infinitesimal
“distance” between two orbits will end up growing exponentially (as long as it is much smaller
than the extent of these orbits) if the system is chaotic.

18 H. J. Korsch and M. V. Berry, Physica D 3 (1981) 627.
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Fig. 11.5. An illustration of Koopman's theorem: two initially circular do-
mains are subjected to five iterations of the parabolic map, Egs. (11.17-20).
The area of their overlap remains constant. Notice how the regular pattern
of dots in the common domain is distorted by the area preserving map.

permitting extensive classical flow."’A similar phenomenon appears in simple
models where the Hamiltonian includes a time-dependent perturbation?® | n
these models, which may have a single degree of freedom, the physical system
is prepared in a state involving only one, or at most a few energy levels of
the unperturbed Hamiltonian. One then finds that the time evolution of the
guantum system involves only a few more neighboring energy levels, so that the
energy remains “localized” in a narrow domain (even though no vestige remains
of the KAM manifolds, the corresponding classical evolution is chaotic, and the

19 R. C. Brown and R. E. Wyatt, Phys. Rev. Lett. 57 (1986) 1.
20 G. Radons and R. E. Prange, Phys. Rev. Lett. 61 (1988) 1691.



Quantum aspects of classical chaos 349

classical energy increases without bound in a diffusive way)> As a consequence
of this energy “localization,” the quantum motion is almost periodic and the
initial state recurs repeatedly?? as it would for a time-independent Hamiltonian
with a point spectrum. The peculiarity here is not the recurrence itself, which is
similar to that in a Poincaré cycle,23 and is completed only after an inordinately
long time, but the fact that the quantum state after an arbitrarily long time can
be computed accurately with a finite amount of work. Everything is predictable.
Nothing is left to chance.

Quantum simulation of a classically chaotic system

This suggests a curious paradox.? Rather than computing a classically chaotic
orbit by numerical integration of Hamilton's eguations, we could gquantize in
the standard way the classica Hamiltonian (with an arbitrarily low, but finite
value of ) and then integrate the Schrodinger eguation in order to follow the
motion of a small wave packet. For example, we could integrate the evolution of
the solar system for trillions of years, by assuming that the Sun and the planets,
and all their moons, and all the asteroids, are point particles with constant and
exactly known masses, and by replacing these classical points by Gaussian wave
packets of optimum size. Could this be a less complex task (for t - o) than
the direct integration of Hamilton's equations?

Exercise 11.8 What is the time needed for the quantum diffusion, ./fit/m,
of a mass of one ton, to be equal to one micron?

The standard method for integrating the time-dependent Schrédinger equa-
tion is to compute the eigenvalues and eigenfunctions of H by solving

Hu, =FE,u,. (11.22)

Here, it was assumed that the system is bound, so that the Hamiltonian has a
discrete spectrum. We then expand the initia state as

»(0) = Z Cn Un, (11.23)
with ¢, = (u,,%(0)}, , and we obtain
() =Y cau, e Bntlh, (11.24)

This result is essentially different from the classical one: a single formula gives
the complete answer for any t, without costly step by step numerical integration.

21S Fishman, D. R. Grempel and R. E. Prange, Phys. Rev. Lett. 49 (1982) 509.
21 Hogg and B. A. Huberman, Phys. Rev. A 28 (1983) 22.
sz. S. Schulman, Phys. Rev. A 18 (1978) 2379.

A. Peres and L. S. Schulman, J. Phys. A 21 (1988) 3893.
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The computational complexity does not increase exponentially with time. It
increases somewhat, because, in order to have meaningful phases in Eq. (11.24),
the numerical errors in E, should be much smaller than &/t. The number of
significant digits in E,must therefore increase logarithmically with t. This
implies more numerical work, but the latter increases very slowly, as log t,
rather than exponentially.

Here you may object that the sum in Eq. (11.24) is infinite, so that this
equation, taken literally, represents an infinite amount of numerical work, even
if t = 0. Actually, this is aready true for Eqg. (11.22), unless the latter can be
solved analytically, which would happen only for an integrable system. However,
it is permissible to truncate the sums (11.23) and (11.24), because these are
convergent sums which can be represented by a finite number of terms with an
arbitrarily small error. We thus replace ¢(0) by

#'(0) =3 equn, (11.25)
where ¥/ denotes the sum of a finite number of terms. Likewise we define
(1) =3 cpup e Entlh, (11.26)

Note that if '(0) is very close to the true initial  (0), then Y'(t) is very close
to the true final state (t), by unitarity.

We thus reach the following rather strange conclusion: If we ask what are
the initial conditions for a classical orbit so that, after a long time t, it will land
in a given small region of phase space, the computational complexity of the
answer increases exponentially with t. On the other hand, if we want to specify
aquantum state such that, a time t later, it will become a wave packet localized
in the same small region of phase space, then the computational complexity,
athough formidable, will increase at a rate slower than the time titself.

Unfortunately, nothing has been gained by this subterfuge, because the initial
guantum state from which we obtain the final wave packet is not itself a small
wave packet, but is likely to be spread throughout all the accessible phase
space. If we want a genuine quantum simulation of a classical orbit of tota
duration t, we must start with a wave packet of size Aq ~ e L{(Aq)gna and
Ap ~ e L*(Ap)na , Where L is the Lyapunov exponent (of a nearby periodic
orbit). Then, for a given value of the final uncertainty, the initiad Aq Ap must
behave as e 2! and this requires using a fake # which decreases as e 2-t

As a consequence, the sum (11.26) will involve an increasing number of states,
because the smaller #, the larger the density of energy levels for a given energy.
Indeed, for free particles, the number of trandational quantum states is simply
obtained by dividing the classical phase space into cells of size (2x%) , where
fis the number of degrees of freedom.® For bound, or interacting particles,

2 F Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York (1965)
p. 358.
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with a smooth potential, the same algorithm (counting the number of cells)
is asymptotically correct in the limit A — 0, as al wavelengths become much
smaller than the distance over which the potentiadl changes by an appreciable
fraction of the total energy. The coarse grained density of states p(E) thus
behaves, for fixed E, as /. A detailed analysis?*then shows that the number
of terms needed in (11.26) increases exponentially with t, with at least the same
Lyapunov exponent as for the classical problem.

We thus see that if we attach to the word “chaos’ the meaning given above
(the computational complexity increases faster than the actual duration of the
motion), then a genuine quantum system, with fixed & and a discrete energy
spectrum, is never chaotic. On the other hand, if we want the correspondence
principle to hold for a classically chaotic system, all we have to do is to use a
fake value of % which decreases as e2'!, where tis the total duration of the
motion. It is crucia to specify which limit is taken first, t -~ o or & . 0.2 For
fixed A, the correspondence principle is expected to break down after a finite

time, of the order of log(S/%)/L, where S ~ f;pdq of the classical orbit.

11-4.  Quantum maps

Just as in classical dynamics, numerical simulations are necessary to supplement
our intuition when rigorous proofs are not available. A quantum map consists
of a sequence of unitary transformations, which may correspond to classica
canonical transformations if the system has a classical analog. For example,
the two steps of the standard map, (11.17) and (11.18), are generated by

U, = eP*/2A and Uy = e~V (@72 (11.27)

respectively. The “potential” V(q) which appears in U, is defined by f(q) =
—dV/dg. The complete transformation is U = U2U;.

In the simplest cases, the same unitary transformation U will be repeated
indefinitely (it may correspond, in particular, to a complete period of a time-
periodic Hamiltonian). It is then convenient to diagonaize U,

Uvy, =e ™my,,, (11.28)

just as we would diagonalize the Hamiltonian of a time-independent system to
obtain its energy levels. The rea phases @, are caled quasienergies and the
eigenvectors vim form a complete orthonormal set (see Exercise 3.22). We can
thus write U = 3 e~%= P, , where P,, = v,,v}, is the projector on the m-th
eigenstate of U. After an integral number, t, of iterations, we have

P = U= e Py =3 e (v, 1) V. (11.29)

263 M. Robbins and M. V. Berry, J. Phys. A 25 (1992) L961.
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Perturbation theory for unitary matrices

It may happen that an explicit solution of Eqg. (11.28) is not available, but
U is only dightly different from a finite dimensional unitary matrix Ug, with
known eigenvalues e~*%o~ and eigenvectorsv oy . In that case, we may define a
Hermitian matrix K by €K = UjU and tentatively assume that the effect of
the perturbation,

Up — U =UgeX, (11.30)
can be treated by an expansion in powers of A:

eM = 14K+,
Sm = Pom +Ab1m+--, (11.31)

Vm =V0m+Avlm+"‘-
This gives, to first order in A,
Uo (1K Vom + Vlm) = 8—i¢°m (—i¢1m Vom + Vlm)- (1132)

Multiply on the left by vi,, and recall that on ,Vom® dm and

Vi U = (Ul von)t = (' vop)t = e7*%om v . (11.33)
We obtain
e"“" ('l'Knm + <V0n,V1m>) = C_wum (_iQSlm bmn + (VOnyvlm))’ (1134)

where K nm = {Von , KVom). Only the nondegenerate case will be discussed. For
n=m, Eq. (11.34) yields the quasienergy shift

b1m = —Kinm - (11.35)
For n # m, we have
(Von , Vim) = Ky /[ei(F0n=%0m) _ 1], (11.36)

This dtill leaves Ovom,V 1m Oundetermined. Normalization of v, implies that
the real part of Ogm,vamOmust vanish, the imaginary part too can aways be
assumed to vanish, by a suitable choice of the phase of v, . Therefore we can
aways set O/om,vim= 0.

Exercise 11.9 Show that the second order correction to @m is

¢2m = “% E IKnml2 COt[(¢0n - ¢0m)/2}a (1137)
n#gEm

and find the value of W, ,Vom *
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11-5. Chaotic quantum motion

Chaos (i.e., unpredictability) arises when the solution of the equations of motion
is highly sensitive to tiny changes in the initial data. Chaos may then aso result
from uncontrollable external perturbations. For a classically chaotic system,
there is no essential difference between errors in the initia data and those due
to external perturbations. In quantum mechanics, the situation is different.
The dynamical law is a unitary evolution, 1, = Uy, and the scalar product of
the perturbed and unperturbed states is constant: (v, ¢!} = (1o, ¥§).. Small
imperfections in the preparation of the initial state do not grow.

However, in quantum physics too, we may be unable to perfectly isolate the
microscopic quantum system from the influence of its macroscopic environment.
In other words, the true Hamiltonian H is not known. The only thing we know
isan idealized H 3, which differs from H by a small perturbation, V, due to the
imperfectly controlled environment. In that case, it is plausible that V has little
influence on the quantum motion, Y o — Yy, if the analogous classical system is
regular; on the other hand, if the analogous classical system is chaotic, the final
state Y, is likely to be strongly influenced by a smal V. The state after a long
time will therefore be unpredictable if V is unknown. This plausible scenario
is supported by semiquantitative arguments which predict that perturbation
theory fails—it does not converge—for quantum systems whose classical analog
is chaotic. 7

This failure occurs for the following reason: in a perturbation expansion,
each successive step involves one more power of V, and one extra sum over
states. For instance, the third order perturbation in an energy level is®

' ’ Vo Venk Vin |Vnml
E® = k 7k 11.38
n =2 Z(E,,.—E,.)(Ek—E) V""Z(E —E)? ( )

k m

The essential difference between regular and chaotic systems is that the former
have selection rules (corresponding to the classical isolating constants of motion)
so that most matrix elements Vmn vanish (that is, they vanish for a reasonable
V, having a classical limit, as discussed in Sect. 10-1.). A chaotic system, on the
other hand, has no selection rules and the V ,, look like random numbers. A sum
over states is therefore like a random walk, and the ratio of consecutive steps
in the perturbation series is about (N{|Vinn[?))'/2/E, where N is the number of
terms to be summed, and is of the order of the dimensionality of Hilbert space.
In this estimate, the symbol (|V;..|?) stands for the mean square of the various
elements V,, , and E is the typical energy scale of the system.

We thus see that, for finite N, convergence of the perturbation series imposes
a bound of order E/+/N for the “typical” matrix element V. In the semi-
classical limit (N - ) the perturbation series always diverges for any finite V.
We shall now examine a simple model which has, in its classical version, both

27 M. Feingold and A. Peres, Phys. Rev. A 34 (1986) 591.
28|, D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, Oxford (1965) p. 132.
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regular and chaotic domains, and which is described, in its quantum version, by
afinite-dimenssional Hilbert space, thereby avoiding the necessity of arbitrary
truncations.

Case study: twist and turn dynamics

The dynamical variables of this model are the three components of angular
momentum, J k. Their motion consists of a twist around the z-axis, given by
Eq. (10.4), followed by a 90° rotation around the y-axis. The total Jis constant,
and has a given value. The unitary evolution is therefore generated by

U = emindu/2h g—iad220n (11.39)

This system was extensively investigated by Haake, Kug and Scharf2° who called
it a “kicked top.” (It is not really a top, because J;2, in the exponent, generates
atorsion, not a rigid rotation, of the corresponding classical system).

The classical analog of this unitary transformation is an area preserving map
of the unit sphere spanned by the vector J/J. We shal see that this “twist
and turn” map has regular and chaotic domains, belonging to three distinct
symmetry classes (detailed numerical calculations will be presented for only one
of them). The purpose of this study is to find the effect of a change of the value
of the parameter a in Eqg. (11.39), from 3.0 to 3.0003. These numerical values
were chosen so that the model is near the limit of validity of perturbation theory.
As intuitively expected, we shall see that quantum states localized in the regular
region of the classica phase space are impervious to this small perturbation.
On the other hand, quantum states spread in the classicaly chaotic domain are
strongly affected by the small change in a.

Regular and chaotic domains of the unit sphere
Consider a sequence of mappings of the unit sphere x2 + y2 + z2 = 1

X =z,
y'=xsin(az) + y cos(az), (11.40)
z'=—x cos(az) +ysin(a z),

The result of these mappings is displayed in the following figures, which were
drawn with an area preserving projection of the sphere onto the xz plane. The
relationship between radius R (on the paper) and r2 ;= x2 + 2 =1 — y2 is
R? :=2(1 - |y|. Near the poles, R~ r (there is amost no distortion) and near
the equator, R~ +/2r. Equatorial area elements are stretched by a factory/2
in the azimuthal direction (because ds=r dp - Rd@), and therefore they are
compressed by a factor+/2 in the radial direction.

2 F. Haake, M. Kug, and R. Scharf, Z. Phys. B 65 (1987) 381.
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Figure 11.6 shows a single orbit (10% points) generated by the twist and turn
map for a = 3.0. Most of the sphere is visited by that chaotic orbit, with
the exception of eight “forbidden” areas, which obviously correspond to regular
regions of the map. These regular regions are located around fixed points of
order 1, 2 and 4, as shown in the following figures. Higher order fixed points
aso exist, but the regular regions generated by them are barely visible and far
too small to be significant.

Fig. 11.6. A single orbit (105 points) covers most of the
unit sphere, with the exception of eight regular regions.

There are two fixed points of order 1 (for a = 3.0) obtained by solving the
equations X' = x,y'=y,z = z. These are

zy =z, = £0.6294126, y1 = 0.4557187. (11.41)

Orbits starting near these fixed points do not wander chaotically on the entire
sphere. They are constrained to stay between invariant KAM lines, as shown
in Fig. 11.7. Note that each fixed point can be obtained from the other one by
a 180° rotation around the y-axis. This rotation will be denoted by R,.

There is one fixed point of order 2, obtained by solving x" = x, y" = v,
Z'=z. ltis

Ly = —Zg = :ha:l 5 Y2 = —y1. (1142)

The result is shown in Fig. 11.8, together with nearby KAM lines. Note that
a rotation of this fixed point around the x-axis by 180° (henceforth denoted by
R,) yields the pair of fixed points of order 1, together. This property, which
relates two different types of motion, is called a dynamical symmetry?®
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Finally, Fig. 11.9 shows the fixed point of order 4, at
Ty = :i:l, 0, Z4 = 0, :tl, Yqa = 0. (1143)

The latter is obviously symmetric with respect to Ry and Ry.

Until now, we have considered individual orbits, that is, mapping of points
into points. A more general approach, giving new and instructive insights, is
the mapping of Liouville densities. Let us imagine that an infinitesima “mass’
pdA (which may be positive or negative) is attached to each area dA. Let us
further assume that this mass is conserved by the twist and turn mapping, so
that its density obeys the linear law

(a)

y>0

: _‘..‘y<0

Fig. 11.7. Two fixed points of order 1, surrounded
by KAM lines. (&) x; =z¢> 0; (b) x; =z, <O.
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y>0

Fig. 11.8. Fixed point of order 2, surrounded by KAM lines.

pPx.y.2) = p (xy,2), (11.44)

because dA' = dA. Note that, as the mapping (11.40) is continuous, nearby
points are mapped into nearby points, so that a blob is always mapped into
asingle blob (never into several digoint blobs). In particular, the area found
between two nearby KAM lines is mapped onto itself. It follows that a Liouville
function for which pis constant between two closed KAM lines remains invariant
under any area conserving map. These invariant Liouville densities generaize
the fixed points which were discussed earlier.

Fig. 11.9. Fixed point of order 4.
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In the model considered here, Liouville densities, whether invariant or not,
may belong to three invariant symmetry classes of the twist and turn map,
according to their behavior under Ry and Ry (180° rotations around the y- and
x-axes). For example, if p=F(x3 y? 22, xyz) is a single valued function of its
four arguments, this p is even under Ry and R, , and is mapped by Eq. (11.40)
into another function of the same type. Likewise, any p = yF(X3, y?2 72, xy2)is
even under Ry, odd under Ry, and is mapped by (11.40) into a function of the
same type. For instance, the function p =y has this property, because

y =y =z sin(@z) + y cos(az) = y |cos(az) + x_yzz sin{az) , (1145
Y z

In summary, any p(x, y, z) can be written as the sum of three terms, belonging
to one the symmetry classes listed in Table 11-1. It will be no surprise that
guantum wave functions too can be classified according to the same symmetries.

Table 11-1. Symmetry classes of Liouville functions.

R, R, Functional form
even | even p = F(z2%,y?, 2%, zy2)
even | odd - p=yF(z%y? 22, zy2)
odd | zFi(2?, y?, 2%, zyz) + 2 Fp(22, 42, 2%, 2y2)

The quantum twist and turn map

Let us introduce dimensionless variables, j, := J, /R, sothat

U = e~imv/2 g=iais?/2i (11.46)
Here, jis an integer or half odd integer, and the j, are known numerical matrices
of order 2j+1. It is convenient to choose a representation where j, is diagona,
with matrix elements m=j, . . . , -, and eigenvectors denoted by |ml Then
the twist operator in (11.46) is diagonal too. The 90° rotation operator,

Q= e-inis/2, (11.47)

is explicitly given by3°

Q= 5 (j ijn) m(j ijm)”l/é(_l)k (j f n) (k ; :fm)'

SO0E. P, Wigner, Group Theory, Academic Press, New York (1959) p. 167.
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The three symmetry classes which were discussed above at the classical level
naturally appear again in the quantized version. First, consider Ry = Q2 Its
matrix elements, in the j, representation, are30

(Ry)mn = (_l)j-m 6m,—n . (1148)

It follows that Rx = RyR; has matrix elements (—1)?8,, - . We shall henceforth
restrict our attention to even j. Suitable bases for the three symmetry classes
are given in Table 11-2. The labels ee, 0o and oe are reminders that the vectors
belonging to the first class contains only even |m). , and that they are even under
|m) — |—m); and likewise for the other classes.

Table 11-2. Orthonormal bases for the three symmetry classes.

Class| R, | R; Basis (m=1,...,7/2) Dimension
ec | even | even [0) and (|2m) +|—2m))/V2 j/2+1
oo | even | odd (I2m = 1) =1 — 2m))/V/2 7/2
oe | odd | (|2m)—|-2m))/v2 and (|2m—-1)+|1-2m))/V2 J

When written in this new basis, the U matrix (11.46) breaks down into a block
diagonal form, with blocks of size j/2 + 1, j/2, and j. Each one of its three
invariant subspaces is dynamicaly independent of the others. The numerical
calculations reported below were performed for the oo basis (Ry even, R, odd)
whose structure is the simplest.3! There is no reason to expect that results
would be qualitatively different in the other subspaces. These calculations were
performed for j = 120, 500, and finaly 1600. Intuitively, one expects quantum
mechanics to mimic classical mechanics for large j (at least, it ought to do
so for a suitably restricted set of “reasonable” quantum states). Some of the
properties that were examined did not change much when jincreased beyond
120, but other ones necessitated the use of j = 1600.

Let us define two notions that will be useful for further discourse. The extent
of a state is

Aljel = [(52) = (L3112 (11.49)

Note that we must use | j |, rather than simply j, because (j.) =0 for any state
belonging one of the symmetry classes. For a state Y of the oo class, represented

YR
p=3 cn(2m—1) = |1 - 2m))/V2, (11.50)

m=1

3LA. Peres, in Quantum Chaos, ed. by H. A. Cerdeira, R. Ramaswamy, M. C. Gutzwiller,
and G. Casati (World Scientific, Singapore, 1991) pp. 73-102.
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an elementary calculation gives
Alj] = 2[(m?) — (m)*)/3, (11.51)

where (m*) := ¥, e |*m*. The extent of (is maximal if |¢,[? = |c;/5|? = 0.5,
and it is then equal to (j/2)-1. One could likewise define Aljx |and Aljy |, but
the latter do not give any additional information on the eigenstates of U.

Another useful concept is the entropy of a state Y with respect to a complete
orthonormal basis e,. This entropy is defined as follows. First, one computes
the relative weights of the basis vectors in the given state (:

P = (e, ¥)% (11.52)

The physical meaning of these p,, is that of probabilities. It is therefore natural
to call the expression

S:=-3" p.logp,, (11.53)
I

an “entropy.” The qualitative meaning of Sis that eS is the number of basis
vectors which are “appreciably involved” in the representation of . The word
“entropy” is appropriate in this context because Swould indeed be the average
thermodynamic entropy released to the environment, if we performed maximal
quantum tests for the basis {e , } on an ensemble of quantum systems prepared
in state .

Perturbed map

Let us examine the response of our dynamical system to small perturbations.
Assume that the original (unperturbed) system has twist parameter a = 3.0,
and is described by a unitary matrix U satisfying

Uv, = e nvy,. (11.54)

If we consider only states g in the oo symmetry class, the matrix U that has
to be used here actudly is the oo block in the origina unitary matrix given by
Eqg. (11.46). | shall however use the same notation, U, for brevity.

The perturbed system differs from the original one by its twist parameter,
a' = 3.0003. It is described by a matrix U', with

Uw,=e"nw,. (11.55)

I have used different alphabets (Latin and Greek) to label the eigenphases ¢m
and @, , and the corresponding eigenvectors vy and w,, because there is no
reason to expect a one-to-one correspondence between the eigenstates of U and
those of U', unless the perturbation is sufficiently small. This is indeed the
crux of the problem. Such a one-to-one correspondence is the fundamental
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assumption of perturbation theory. In other words, the test for validity of
perturbation theory is whether each unperturbed vnh has a low entropy with
respect to the perturbed basis w.

These entropies,

Sm= = Wy, V) |* log [(Wy, Vi) %, (11.56)
I

are plot ted in Fig. 11.10 for the case j = 1600. It is seen that about 700
eigenstates, out of the 800 in the oo subspace, have entropies of the order of 1
(this value has no special significance), and therefore their € is not close to 1,
so that perturbation theory is not valid for these states. They are so sensitive to
the tiny change o — a' that they bear no resemblance a al to the eigenstates
of the pertubed U'. These states are called fragile.

On the other hand, we aso see in Fig. 11.10 two “strings’ of eigenstates of
U, having very low entropies. This means that each one of these states is nearly
identical to one of the eigenstates of U'. States having that property are called
robust. Upon closer examination, it is found that the string on the left of the
figure consists of a sequence of states with nearly equidistant eigenphases. this
is the Bohr quantization rule—the hallmark of eigenstates localized in a regular
region of the classica phase space. Indeed, the most localized (i.e., the least
extended) of these states have values of (|j.[)/j which are very close to the
coordinates of the fixed points of order 1 and 2, shown in Figs. 11.7 and 11.8.
On the other hand, the second string of dots, whose extent is close to maximal,
represents states localized near the fixed points of order 4.

To conclude this investigation, let us inquire how small the difference between
a and a' would have to be, to restore the validity of perturbation theory. The
crude estimate given at the beginning of this section sets a limit of order N—1/2
for the “typical” matrix element of the perturbing operator. This gives

(Vi , (6 .2 /25 ) vg) =~ 572 (11.57)

The typical range of values for {v,,j.*v,) can be inferred from Eq. (11.49)
and Fig. 11.10. That range is about the same as (A]j.|)?, in the present case
~ 0.1j2. We thus obtain éa ~ 20;j-3/? ~ 3 x 10~4, which indeed is the da
that was used in this numerica example. (The parameters were chosen near
the limit of validity of perturbation theory, in order to display both regular and
chaotic types of motion, rather than fully developed chaos.) The correctness
of these estimates can also be directly seen in Fig. 11.10: even the most fragile
states there have only a moderate entropy. On the other hand, a totally chaotic
situation would effectively correspond to randomly chosen bases. In that case,
it can be shown that the expected Swould have been much larger, namely32

(S) = log 800 — 1 + = 6.2618, (11.58)

where y= 0.5772 is Euler's constant.

S2W. K. Wootters Found. Phys. 20 (1990) 1365.
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Robust and fragile states

Until now, we examined dynamical properties of the unitary mappings U and U'
irrespective of the choice of a quantum state. The latter will be introduced next.
Initially, it is an angular momentum coherent state (see page 329), satisfying

n-jld,4) = 10,4), where n is a unit vector in the direction (069). For such a
coherent state, the uncertainty in jx is given by Eqg. (10.141):

(i) = (5 - (D =7 (11.59)
This means that the uncertainty in the direction of j, is about j_”z. More
precisely, the overlap of two distinct coherent states is given by Eqg. (10.146):

(8, 80",9")|" = cos®(@/2), (11.60

where © is the angle between the directions (6°,@) and(6",¢"). For large j,
this overlap is about e=7®*/2. Two such states are aimost orthogonal (in Hilbert
space) when © 322572 |n our case, with j = 1600, the angular resolution of
coherent states is about 0.05 radian = 3°. This is reasonably small, compared
to the size of a regular region on the unit sphere (see Fig. 11.7). This value of |
is therefore sufficient to obtain a clean distinction between regular and chaotic
quantum motions (smaller values of jwould not be adequate).

Two cases will be considered. Their properties are summarized in Table 11-3.
A “regular state” #: is obtained if the unit vector n points toward a fixed point
of order 1, asin Eq. (11.41). A “chaotic state” . results from taking the same
ny and n, as for ., but the opposite value of ny, so that the vector n will
point into the midst of the chaotic region, as may be seen in Fig. 11.6.

Table 11-3. A tale of two states: the preparation
and evolution of regular and chaotic vectors.

ny = n, of initial coherent state 0.6294126| 0.6294126
ny of intial coherent state 0.4557187 | —0.4557187
p1 = highest weight |{v,,)? 0.923359 | 0.021988
p, = second highest weight  {{v2,%}|? 0.068007 | 0.015673
S (Entropy with respect to v, basis) 0.306937 5.66864
e (Number of eigenvectors effectively involved) 1.35926 289.604
Average fragility of eigenvectors £ p,, Sy 0.000116 1.140183
Average extent \/m 22.1413 460.865
Time average of overlap — see Eq. (11.63) 0.857323 0.003923
Minimum overalp 0.716557 0.0
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We now project Y, and g into the three invariant subspaces of U (defined in
Table 11-2). Each projection must be considered independently of the others.
This separation is essential, because symmetric regular regions, separated by
chaotic ones, behave as a quantum mechanical double well (or multiple well) and
the eigenphases belonging to different symmetry classes form nearly degenerate
multiplets. A state initially localized in one of the regular regions will tunnel into
the other ones, and then, after some time, it will reassemble in the initial region,
thus displaying a sequence of “collapses and revivals."29:33 This phenomenon
causes an unnecessary complication of the analysis. It does not appear if each
invariant subspace is treated separately.

As before, we consider only the oo subspace. The projections of the initia
states Wrand Wewill be normalized to unity, and then smply called Yr and @ ¢
like the original states. First, we compute the statistical weights: p, = [{v.,¥)|?
and entropies S= —3¥ p, logp,. We find radicaly different results for the
two states: W consists for the most part of a single eigenvector of U, while
involves about 300 eigenvectors. Moreover, the eigenvectors used to build
and Y . have quite different properties, as may be seen from Fig. 11.11. The
chaotic state Y. is made of many fragile eigenvectors of U. On the other hand,
the regular state Y, consists of a few robust eigenvectors.

The two eigenvectors which contribute most to Y, will be caled v, and v .
Together, they make more than 99% of the initial state ;. These robust eigen-
vectors are in fact more stable than the corresponding eigenvalues! They are
literally pinned to the classical fixed points. Calling w; and w 2 the correspond-
ing eigenstates of U’, it is found that |(vy,w;}{?= 0.99993166. On the other
hand, the corresponding eigenphases ¢, and ¢; are well separated, by about
0.0950 radian. (For comparison, the average separation between neighboring
eigenphases of U isonly 21t/800 = 0.0079 radian.)

Next, we turn our attention to the time evolution of @, and Y. Initiadly,
when both are coherent states, their extent is given by Alj.|.=0 = 21.9787.
This can be compared with the extent of the most robust eigenstate, Y, which
is 19.11097. Then, as the vectors Y, and Y . evolve, their extent will fluctuate
around a time average which is /3 p.[(Alj:])n]2, because interference terms
between the various eigenstates v do not contribute to that time average. The
results are listed in Table 11-3. It is seen that Y retains its initial compactness,
while | . spreads over most of the sphere.

Exercise 11.10 Derive the above expression for the time averaged extent.
Hint: Use Eqg. (11.51)

Regular and chaotic quantum motion

Finaly, I come to the problem which motivated al this numerica work: the
stability of the motion of Y, and . with respect to a small change of the twist
parameter, from a =3.0 to a '= 3.0003. A good indicator of the sensitivity

%0. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett. 64 (1990) 1479.
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of the dynamical evolution to a small perturbation of o is the overlap of the
perturbed and unperturbed state vectors. After t steps, a state which was
initialy Yo becomes

Uo =3 e ey, or  (U)eho =3 e ™ e w,, (11.61)

"

where ¢, = (vx,%0) and c, = (w,, to).
The scalar product of these two states is

(U9, (U o) = Y Cncu (Vm, Wy, ) 100n00), (11.62)

Their overlap, Pt, is the absolute sguare of (11.62) and can be written as

P =3 |Cncu {(Va, W) + ostillating terms. (11.63)

np

The first term on the right hand side of (11.63) is the time average of the
overlap. It is listed in Table 11-3, for Yr and Ye, together with the minimum
value of the overlap in the regular case. This minimum is obtained when the
phase of the largest contribution to (11.62), namely ¢ ¢} {v1,w1), is opposite to
the phase of al the other contributions. There is no minimum overlap in the
chaotic case: the perturbed and unperturbed ) can become orthogonal.
Figures 11.12 and 11.13 show the behavior of P; over different time scales.
The steady oscillations of the overlap of the two regular states are due to the
fact that more than 99% of W is provided by two robust vectors, vi and v2, or
w1 and w2. Their robustness (low entropy) implies that {vy,w1) =~ {v2,wz) 22 1,
while {v1,wz} and (v,,w;) are very small. Therefore Eq. [11.62] becomes

(U’ ¢”(U/)t ¢r> ~py eit(ér1—¢1) + p2 eit{d2—¢3) , (11.64)
whence
P, > pi? +2p1 py cos[t(¢) — b1 — ¢ + b2)] + O(p2?). (11.65)

In this case, perturbation theory converges and we have, from Eq. (11.35),
¢1 — ¢1 = —0.0003 (vy, j.>v1) /27, (11.66)

with a similar expression for ¢} — ¢,.

On the other hand, the overlap of the chaotic states U!y. and (U} is
seen to decay very rapidly, and then to randomly fluctuate around an average
which is about I/N, where N = eS is the number of eigenstates which appre-
ciably contribute to .. These fluctuations will effectively last forever, because
Eg. (11.63) involves N2~ 10° incommensurate frequency differences, and the
time needed for a Poincaré recurrence would be considerably larger than the
duration of any conceivable numerical experiment.
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Fig. 11.12. The first 2000 steps. The overlap of the two
chaotic states starts to decay quadratically with time,

then as an exponential, and finally it fluctuates around
its time average 0.003923 (shown by a broken line).
Exercise 11.11

Explain why the initial decay stages are quadratic
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Exercise 11.12 Estimate how often there is a very low overlap of the two
chaotic states (10 10, say). *
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11-6. Evolution of pure states into mixtures

The quantum determinism postulate (page 237) asserts that a quantum system
prepared in a pure state remains pure when it evolves in a perfectly controlled
environment. More generally, the entropy, S= —Tr(plogp), remains invariant
under the unitary evolution p — p' = UpU*. On the other hand, if the en-
vironment is not perfectly controlled and is only statistically known, we must
replace the evolution operator U by an ensemble of unitary matrices Uy , with
respective probabilities p, . The dynamical evolution then is

p— p'= paUspUl. (11.67)

Exercise 11.13  Show that p'in Eqg. (11.67) satisfies
—Tr (p'log p') > —Tr (plog p) (11.68)
so that the entropy never decreases. *

Another mechanism which leads to a similar result is the entanglement of a
quantum system with other systems, found in the environment. In that case,
if we use a formalism which ignores the systems belonging to the environment,
the entropy also increases, by virtue of the subadditivity theorem (9.21).

The role of quantum chaos in irreversibility

In the preceding section, we saw that a small perturbation of the Hamiltonian
may cause, over a long time, large deviations from the unperturbed motion: the
perturbed and unperturbed quantum states become nearly orthogona. There-
fore, if the perturbation is unknown, the final state is a mixture. All this was
shown for a fixed perturbation. Obviously, the situation can only be worse for

random time-dependent pertubations (which are commonly called noise) .
It is now possible to reformulate, in the quantum language, the “ice cube in

boiling water” paradigm that was proposed in Sect. 11-2. Consider again the
twist and turn map (11.46). The question is. can we prepare a quantum state
Wo such that, after 105 steps, we obtain, to a good approximation, a prescribed
coherent state 16, )? Figure 11.13 indicates that, in the presence of noise, the
answer critically depends on the type of state that we intend to reach.

Suppose, for example, that we want to obtain at the end of the evolution the
state Yr. The latter mostly consists of two robust eigenvectors. Therefore, even
if we cannot control the precise value of the twist parameter a, we still know
that the motion is stable and that deviations from the planned evolution are
bounded: Egs. (11.65) and (11.66) show that the amplitude of the oscillations
is independent of da (it is only their frequency which is proportiona to d0)

On the other hand, if we want to prepare a state that will become, after 10°
steps, the coherent state Y., we must control the value of o with an accuracy
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better than the limit given by Eqg. (11.57). If we are unable to achieve such
an accuracy, we have every chance of landing far from our target—in a state
which will be nearly orthogonal to W¢. In that case, it is justified to say that the
evolution which starts from the state Ycisirreversible: the reverse evolution
cannot be prepared.

11-7. Appendix: PostScript code for a map

The figures in this book, including the various maps in the present chapter, were
directly generated by a Post ScRIPT laser printer. POST SCRIPT is a computer
language with powerful graphics capabilities.®* Although its primary applica-
tion is graphics, PosT SCRIPT can also be used for ordinary computation, and it
may be quite convenient if a graphic output is desired. In particular, a few lines
of code can easily generate an iterative map. The computation is entirely done
by the microprocessor in the laser printer itself. It could surely be done faster
by an ordinary computer, but then the bottleneck would be the transmission of
data from the computer to the printer. How much time would your equipment
need to transmit 108 coordinate pairs for drawing Fig. 11.2? If this is more
time than you can afford, use PosT SCRIPT It is an efficient tool for generating
iterative maps.
As an example, here is the program which draws Fig. 11.3:

%!
% Figure 11.3 (evolution of Liouville domain)
300 400 translate
% COORDINATE SYSTEM
/Times-lItalic findfont 12 scalefont setfont
—9 73 moveto (p) show 72 —10 moveto (q) show
newpath —80 0 moveto 75 0 lineto
gsave 80 0 translate
newpath —10 0 4 —30 30 arc 0 0 lineto closepath fill
grestore
0 —80 moveto 0 75 lineto
gsave 0 80 translate
newpath 0 —10 4 60 120 arc 0 0 lineto closepath fill
grestore
0.2 setlinewidth stroke
newpath —200 dup moveto 200 —200 lineto 200 dup lineto
—200 200 lineto closepath stroke
/Times-Roman findfont 12 scalefont setfont
20 65 moveto (3 steps) show 84 —63 moveto (6 steps) show

34Adobe Systems Inc., PostScript Language Reference Manual, Addison-Wesley,  Reading
(1985).
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200 92681 div dup scale

% A CIRCULAR DOMAIN
/r 10000 def

200 setlinewidth

newpath —75000 0 r 0 360 arc stroke

% THE DYNAMICAL MAP
/Helvetica findfont 250 scalefont setfont
/n O def
36000 {/n n 1 add def
/an .01 mul def % every 1/100 of degree

/p a sin r mul round cvi def
/g —=75000 a cos r mul add round cvi def
2{3{/qgqgpadd
dup 92681 gt { 185362 sub } if
dup —92681 It { 185362 add } if
def
/p q dup abs 92681 sub mul 92681 idiv p add
dup 92681 gt { 185362 sub } if
dup —92681 It { 185362 add } if
def
} repeat
g p moveto (.) show
} repeat
} repeat
showpage

In order to accelerate the execution of this iterative map (which may take
several minutes, before the POST SCRIPT printer outputs a page) the code was
written with integer arithmetic, which is faster than floating point arithmetic,
and more easily transportable to another computer. The variables g and p in
this program are not the original variables g and p, but are the integers closest to
92681 q and 92681 p. The prime number 92681 is just less than 25 = 92681.9,
o that the expression [0 (926811- ()] is aways less than 2%, which is the
P osT SCRIPT limit for integers.
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Chapter 12

The Measuring Process

12-1. The ambivalent observer

Quantum phenomena do not occur in a Hilbert space. They occur in a labora
tory. Their description gives rise to the following dilemma: In order to observe
a physical system, we make it interact with an apparatus. The latter must
be described by quantum mechanics, because there is no consistent dynamical
scheme in which a quantum system interacts with a classical one. On the other
hand, the result of the observation is recorded by the apparatus in a classical
form—perhaps it will be printed in a scientific journa. Therefore, a translation
is needed from the Hilbert space formalism into a classical language.

The halmark of a measuring instrument, which distinguishes it from other
physical objects, is this ambivalence: it must be treated as a quantum system
while it interacts with the measured object, and as a classical system once
the measurement is over. How can we “dequantize” the apparatus? Can this
“dequantization” be done consistently?

Schradinger’s cat

A vivid example of this ambivalence is Schrodinger’s legendary cat,t doomed to
be killed by an automatic device triggered by the decay of a radioactive atom.
Initialy, the combined state of the cat and the atom is L O u, namely a living
cat with an undecayed atom. After one haf-life of the atom, this state becomes

p=2""2(Leu+D®d), (12.1)

with obvious notations. Nobody has ever seen a cat in such a strange situation.

Clearly, the “cat paradox” arises because of the naive assumption that the
time evolution of the state vector  represents a physical process which is ac-
tually happening in the rea world. In fact, there is no evidence whatsoever

E. Schrodinger, Naturwiss. 23 (1935) 807 [trand. in Quantum Theory and Measurement,
ed. by J. A. Wheeler and W. H. Zurek, Princeton Univ. Press (1983) p. 1521.
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that every physical system has at every instant a well defined state (or a
density matrix p) and that the time dependence of Y (t), or of p(t), represents
the actual evolution of a physical process. In a strict interpretation of quantum
theory, these mathematical symbols represent statistical information enabling
us to compute the probabilities of occurence of specific events. For example,
Eqg. (12.1) tells us that if Schrédinger’s gedankenexperiment is repeated many
times, about one half of the cats will be found alive and one half will not. The
information specified by (t), or p(t), can evolve because of known dynami-
ca interactions (such as those causing the decay of the radioactive atom); it
can aso get degraded, and ultimately obsolete, with the passage of time if the
Hamiltonian is incompletely known (especiadly if the system is chaotic, as we
have seen in the preceding chapter).

Some physicists are not satisfied by the above pragmatic attitude. While
they readily accept uncertainty relations, they would like to have at least a
definite ontology for quantum theory. There have been many attempts to save
the objectivity of the wave function by arguments such as. “Nobody has ever
seen a cat in state (12.1), but this is only because the mere observation of the
cat causes Y to jump? into either the L O u or the D 0O d state” (this jump is
caled a collapse® of the wave function). There is nothing formally inconsistent
in this scenario, but it is nevertheless incredible, as it implies a powerful and
mysterious interaction between the brain of the observer and the entire body of
the cat. A measurement, after al, is not a supernatural event. It is a physica
process, involving ordinary matter, and whatever happens ought to be analyzed
by means of the ordinary physical laws.

Everett's interpretation and other bizarre theories

Another attempt* to salvage quantum ontology, without invoking a collapse of
the wave function, is to assume that an entangled expression like (12.1) does
represent the actual situation. More precisely, the right hand side of (12.1) is a
part of the “wave function of the Universe,” in which the cat may be considered
as the observer of the atom. However, the two branches of (12.1) correspond
to different worlds, between which there can be no communication, once an
irreversible process has occurred. This approach has several variations which
are cdled the “relative state interpretation” and the “many worlds interpreta-
tion.” None is satisfactory because they merely replace the arbitrariness of the
collapse postulate by that of the no-communication hypothesis. In particular,
there are no objective criteria for the occurrence of the irreversibility which is
needed to prevent communication between the various worlds (and there cannot
be any such criteria, as we have seen in Chapter 11).

2P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press (1947), p. 36.
3D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs (1951) p. 120.

“H. Everett, Ill, Rev. Mod. Phys. 29 (1957) 454.

M. A. B Whitaker, J. Phys. A 18 (1985) 253.
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There have aso been innumerable attempts to modify quantum theory (not
only to reinterpret it) so as to avoid the dua nature of the measuring instrument.
There is no experimental evidence to support any one of these mutations of
quantum theory—there is much evidence against them. | shall not further
discuss these groundless speculations.

A simple measurement model

To prove that a piece of hardware is a valid measuring instrument, one must
produce a dynamical model of its interaction with the physical object being
measured. This model should be formulated in quantum mechanical terms, but
it must also be understandable in a semiclassical way. A simple example will
illustrate how the same physical system may accept two conflicting descriptions,
under different circumstances.

Consider again the Stern-Gerlach experiment which was discussed in a clas-
sical way in Sect. I-5, but now use quantum mechanics instead. The dynamical
variable which is measured is a component of the magnetic moment of an atom,
M, say. The “pointer” indicating the observed value of |,is the center of mass r
of that atom. Indeed, it is the final value of r that is irreversibly recorded by a
detecting device. The dynamical description of the measuring process involves
two stages. When the atom passes through the inhomogeneous field B of the
Stern-Gerlach magnet (see Fig. 1.5), its Hamiltonian,

p2

H=5— —u B(r), (1.9)
includes an interaction between the magnetic moment p, a component of
which is the “measured system,” and the center of mass r which plays the
role of the “measuring system.” The atom thus embodies both systems.
(The symbols r and p denote classical variables or operators, according to
the context.) The equation of motion for p, the variable conjugate to r, is
p = [p,H]/ifi = V(p-B), just as in Eq. (1.6), but with [p, H]pp replaced by
a commutator since we are now discussing quantum systems.

However, once the atom leaves the magnet, its Hamiltonian H = p%2m n o
longer couples p and r. The equations of motion have the same solution,

r=ro+ pt/m, (12.2)

in classical and in quantum mechanics. If you prefer, the equation of motion
for the quantum Wigner function, Eqg. (10.67), is identical to that for a classical
Liouville density. Nothing irreversible has occurred as yet at this stage, at least
in principle.® In particular, the first stage of amplification —a necessary step
for a quantum measurement-is simply due here to the passage of time, which
can make the factor t/m in Eq. (12.2) arbitrarily large.

6. Schwinger, M. O. Scully and B.-G. Englert, Z. Phys. D 10 (1988) 135.
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The consistency problem

It must now be shown that no inconsistency arises if the measuring instrument,
or the “observer” (in the above example, the center of mass position r), is con-
sidered as a genuine quantum object for which no classical description is used,
but this quantized instrument is, in turn, observed by some other instrument,
having both quantum and classical descriptions. For example, it should not
matter whether Schrddinger’'s cat is considered as the observer, or is an intrin-
sic part of the atom-cat dynamical system which is observed by someone else.
The reason for suspecting a possible inconsistency is the following:

If the observer were not a cat or some other, possibly inanimate but utterly
complicated measuring apparatus, the unitary evolution leading to Eq. (12.1)
would be reversible. Simple, highly idealized models of measuring apparatuses
can easily be concocted, which have that property.” After the measurement
is achieved (i. e, the instrument is correlated with the measured system), it
still is possible to undo the whole process: A superobserver, capable of fully
analyzing the dynamical behavior of the measuring apparatus (e. g., capable of
writing explicitly the Hamiltonian of Schrddinger’'s cat) could cause the origina
observer (or apparatus—this makes no difference) to decorrelate itself from the
measured system and to “unlearn” the result of the measurement. For example,
the cat would be resurrected. And then, the superobserver, by measuring again
the same system, could obtain a different result for his measurement.

If such a scenario were indeed possible, the notion of measurement would
become meaningless, as no measurement would ever be conclusive. Consistency
thus requires the measuring process to be irreversible. There are no super-
observers in our physical world.

Formally, the logical consistency of the “dequantization” of a measuring
apparatus implies the equivalence of two different descriptions of the same pro-
cess, in which a quantum system Sis coupled to an apparatus A, as in Eq. (1.4)
above. Let this composite system evolve in time, and then trace out Sin its
combined density matrix, so as to obtain a reduced pa for the apparatus. This
reduced density matrix can be converted by means of Eq. (10.56) into a Wigner
function, Wa (g, p). Some blurring (see page 316) converts the latter into a
fuzzy Wigner function which is nowhere negative and may be interpreted as a
Liouwville density fa (g, p), if the A? terms in the quantum Liouville equation
(10.67) are negligible for the macroscopic apparatus. Notice that we obtain a
probability distribution for the final state of the apparatus. We cannot demand
a definite result, since quantum theory makes only statistical predictions.

Consider now a second, bigger apparatus, B, which interacts with apparatus
A, in order to measure it. This is a classical measurement. We have a com-
bined Liouville density for A and B. After it evolves according to the Liouville
equation, we sum over the variables of A and get a reduced Liouville density
Fs(Q,P) for the big apparatus. All this is quite simple and straightforward.

" A. Peres, Am. J. Phys. 42 (1974) 886.
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We can however follow an alternative approach, and this possibility gives
rise to a consistency problem. Instead of dequantizing p, to obtain fa(q, p),
we can describe both apparatuses by quantum mechanics, let the composite
quantum system evolve unitarily, and then trace out A to obtain a reduced
density matrix pg . The latter is converted into a Wigner function W (Q, P)
which, after some blurring, yields a new Liouville function Fg(Q, P).

The consistency issue is obvious: Is Fg(Q, P) the same as Fg(Q, P) which
was obtained by the preceding method? This is quite unlikely, in view of the
many arbitrary steps in the above calculations. However, since we are only
calculating probabilities—because quantum theory predicts nothing else—small
discrepancies between these two Liouville densities should not be a matter of
concern. It is this (approximate) objectivity which characterizes a properly
executed measurement (i.e., a quantum test). The result is definite and cannot
be affected by reconsidering the measuring apparatus as a quantum object, to
be observed by dtill another apparatus. If the latter is reasonable, it will give
results which almost always agree with those of the first apparatus.

The last two clauses must be noted. The restriction to reasonable apparatuses
(that is, those measuring only reasonable operators, as defined at the beginning
of Chapter 10) is equivalent to the former statement that “there are no super-
observers.” The proviso almost always is essential. It gives a fuzzy aura to the
notion of quantum measurement, but there is no escape from this fuzziness.
There can be no unambiguous algorithm for converting the quantum language
into an utterly different classical language.

A classical description is not an approximation of a quantum description,
but is qualitatively different * A classical pointer has a position which is a rea
number. A quantum pointer also has a position, but the latter is an opera-
tor. There are questions, such as “what is the numerical value of the pointer
position,” which make sense in the classical language, but are meaningless in
the quantum language. The only vestige of quantum theory which a classical
description may retain is the canonical uncertainty relation, namely a minimum
spread of order #™ in the 2n-dimensional phase space.

Open systems

When is a physical system a good measuring instrument, satisfying the above
consistency criteria? An obvious necessary condition is that it is not isolated
from the environment where the outcome of the test is recorded in a durable
structure. Therefore irreversibility is a necessary feature of quantum tests. A
simple model will illustrate these points.

Lety =3 cnu, be the initia state of a quantum system which is submitted
to amaximal test corresponding to the orthonormal basis um. The measuring
apparatus has an initial state @ (there is no harm in assuming that this is a pure
state, see Exercise 5.10). Let v, set of final states of that apparatus. The

8 A. Peres and W. H. Zurek, Am. J. Phys. 50 (1982) 807.
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index n refers to a macroscopic degree of freedom, such as the position of the
center of mass of a pointer which indicates which one of the states u, has been
found in the test. The index a refers to additional, microscopic, “irrelevant”
degrees of freedom, such as the interna energy levels of the pointer. Therefore
the orthonormal states v, and Vv , g are macroscopicaly distinguishable only if
m # n. With these notations, the result of the interaction of the apparatus
with the system under study is assumed to be:

Yé — Y CnalnVna- (12.3)

Thisisalinear superposition—it cannot be anything else, if quantum theory is
correct. For example, Eq. (12.1) is such a superposition. The process (12.3) is
caled a “measurement,” because the nth state of the system is correlated with
the nth set of macroscopically distinguishable final states of the instrument.

Here, it should be pointed out that Eg. (12.3) does not represent the most
general type of measurement process. The latter corresponds to a positive
operator valued measure (POVM) as explained in Sections 9-5 and 9-6. The
present discussion is restricted, for simplicity, to repeatable tests, also called
“von Neumann measurements,” or “measurements of the first kind.” The fun-
damental issue of irreversibility is the same for al these processes.

Exercise 12.1 Show that the evolution (12.3) is unitary, provided that

len|” =3_ lenal?, (12.4)

o

and construct a Hamiltonian which generates this evolution. *

If we now want to reverse the arrow in Eqg. (12.3), so as to decorrelate the
observed system from the observer, we must specify not only a few coefficients ¢
corresponding to macroscopicaly distinguishable states, but every single micro-
SCopic € , With the correct amplitude and phase. Here lies the difficulty. The
dynamics of the internal degrees of freedom of any macroscopic apparatus is
inherently chaotic. Therefore the values of the cny are highly sensitive to any
interactions with an uncontrollable external environment, weakly coupled to the
degrees of freedom of the apparatus’ Reversing the unitary evolution (12.3),
for example resurrecting Schrodinger’s cat, is an impossible task.

12-2. Classical measurement theory

Uncertainty relations exist in classical mechanics, just as in quantum mechanics.
As there must be an interaction between the apparatus and the observed system,
measuring one property of the system necessarily causes a disturbance to some

9 A.Peres, Phys. Rev. D 22 (1980) 879.
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of its other properties. In particular, any uncertainty in the preparation of the
measuring apparatus affects the subsequent dynamics of the measured system,
after completion of the measurement.

To give a concrete example, consider a classical system with Hamiltonian
Ho (4, p) and suppose that we want to measure one of its dynamical variables,
A(q, p), a time ty. An ideal measurement is performed as follows. We couple
the system to an apparatus which, in the present extreme idealization, simply
is a free particle (a “pointer”) of mass M, position Q, and momentum P. The
complete Hamiltonian is

H = Ho(q,p) + (P?/2M) + g(t — to) A(q,P) P, (12.5)

where g(t —ty), the strength of the coupling, is controlled by other degrees of
freedom (not included in H) in such a way that g(t — tg) is very large when
to <t< tyg+ O, and negligible for other t.For example, in a Stern-Gerlach
experiment, tpis the time of entrance into the magnet, and ty+ Ois the exit
time.° These two parameters are determined by the trandationa motion of the
atom.

We shall now assume that the interaction term in (12.5) dominates al the
other terms—which can therefore be neglected—during the brief duration of
the measurement. Let us define, for further use,

G= / gt — to) dt. (12.6)
The equations of motion of the “pointer” are:

P=[P,H],, =0, (12.7)
and

Q =[Q, Hlpy = (P/M) + g(t — to) A. (12.8)
Likewise, for any variable B(q, p) of the apparatus, we have

B =B, H,, = [B, Hol,g + 9(t — t0) [B, Al P. (12.9)
From (12.7) it follows that P is a constant: P = Pg. In the special case where
B= A Eq. (12.9) gives A = [4, Ho]pp Which is a finite quantity. Therefore, the
change in A during the very brief interaction is of order € and can be neglected.
We thus obtain, from (12.6) and (12.8),

Q(to + €) = Qo + G A(to) + O(e), (12.10)
which gives us the value of A(tg), that we wanted to know. Assuming for

simplicity that Q(to + €) is measured with perfect precision, the uncertainty in
the recorded value of A(to) is
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AA = AQy/G, (12.11)

where AQq is the uncertainty in the initial position of the “pointer.”
Consider now any other variable B. We have, by integration of (12.9),

B(to + 6) = B() + G ([B, A]PB>tP0 + 0(6), (1212)

which involves the time average of the Poisson bracket during the measurement.
If the initial value P, is known with a precision APy, the final value B(ty + €)
will be uncertain by

AB = G |{[B, Alpp),| APs. (12.13)
It follows that
ABAA = |([B, Al,g)| AQo AP,. (12.14)

This result looks like the quantum uncertainty relation (4.40). However, the
above argument was purely classical. The only role quantum theory could have
in this issue is to set an absolute lower bound to the value of AQo A Pq, irre-
spective of the experimenter’s skill. We thus see why elementary semiclassica
arguments, such as the one commonly presented for Heisenberg's microscope,
end up with the same quantum uncertainty as the full quantum treatment. This
is simply due to the similarity of Poisson brackets and commutators, which holds
for reasonable dynamica variables (as defined in Sect. 10-1).

Consecutive measurements

Suppose now that we want to know not only the value of A a a given time tg,
but the complete time evolution A(t), or at least a sequence of vaues A(t;j).
Obvioudly, if the value of A(t1) depends, via the equations of motion, on the
value of B(tp), and if [B, Alps # 0, then A(t1) will be affected by the disturbance
to B(to) caused by a prior measurement of A(tg).

This can also be seen as follows: It is aways possible, in principle, to express
A(t1) as a function of q(tp)and p(to) with arbitrary accuracy (this can be done
analytically, in closed form, if the equations of motion are integrable, but even if
they are not, perturbative methods are readily available). We may thus define
unequal time Poisson brackets [A(to), A(t1)}ps - From the preceding argument,
it follows that the measurement of A(to) does not perturb A(t1) if, and only if,

[A(to), A(t1)]pg = 0. (12.15)

When this condition is satisfied by a dynamical variable, it is possible to monitor
its evolution in a noninvasive way, that is, without affecting that evolution.
Dynamica variables which satisfy Eq. (12.15) will be called robust. (In quantum
theory, they are called QND-variables O for “quantum nondemolition.")

A simple example of a variable which is not robust is the position x of a free
particle. Since xz(t) = z¢ + pot/m, weobtain
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Az(t') Az(t") = (AQ AP) |t' — t"|/m. (12.16)

A more complicated example is discussed below.

Case study: a forced harmonic oscillator

A situation where classical and quantum physics come in close contact is the
detection of gravitational radiation. A gravitational wave is a time-dependent
inhomogeneity of the gravitational field, caused by the violent motion of distant
masses, and propagating at the speed of light. It acts as a tidal force which
produces oscillations in the distance between neighboring particles. The latter
may be free to move (for example, they may be the mirrors of an interferometric
detector) or they may be part of a massive “antenna’ in which a dynamic strain
is induced.

The problem of detecting gravitational waves may seem completely divorced
from quantum theory. Fields are weak, frequencies are low, and the effects of
quantized gravity are totally negligible. All we want to measure is a classical
signal f(t)J a component of the Riemann tensor, averaged over the size of
the detector. There should be no quantum uncertainties, and no lower limit
to the detectable f(t). The difficulty is solely due to the fact that gravity
couples very poorly to the dynamical variables of any detector. This has the
following conseguence, if we use classical mechanics to perform calculations. The
dynamical variables follow an orbit in the classical phase space. The unknown
value of the signal, f(t), hasto be calculated from the properties of that orhit.
However, if the signal is very weak, the orbit may encompass a domain smaller
than A. This means, effectively, that classical mechanics is not applicable and
the detector must be treated as a quantum system. New problems then arise,
which will be discussed in Sect. 12-4.

Let us first consider the properties of a classical forced harmonic oscillator.
It is assumed that the noise temperature is low enough to alow us to neglect
noise and other dissipative effects. With suitable units of mass and time, the
Hamiltonian is

Ho = 1(p* + 2%) — z f(#). (12.17)

The driving force f(t) is unknown and the problem is to deduce its value from
measurements of x and p. The equations of motion are

T=p and p=—z+ f(i). (12.18)
These eguations can be integrated as follows. Define new variables

A =xcost-psint and B :=xsint+pcost. (12.19)

103, Weber, Phys. Rev. 117 (1960) 306.
1 p F. Michelson, J. C. Price, and R. C. Taber, Science 237 (1987) 150.
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We obtain
A= —sint f(t) and B = cost f(t), (12.20)
whence
1
A(t) = 2o — /0 sint’ f(#') dt' = 2o — S(t), (12.21)
and
t
B(t) = po + /0 cost’ f(#')dt' = po + C(2). (12.22)

The last equations define functions C(t) and S(t) which have to be determined
experimentally. We have, from (12.19),

2(t) = (2o — §)cost + (po + C)sint,

. (12.23)
p(t) = —(zo — S)sint + (po + C) cost.
It follows that [x(t), zo]py = —sint and [p(t), polpp = —sint, so that neither
Xxnor pis a robust variable, satisfying (12.15).

Exercise 12.2 Show that the oscillator energy E = 1(p* + 2%) is also not
robust, because it satisfies [E(t), E(0)],5 = 2o C + po S # 0.

If we are interested in a continual monitoring of f(t), it would therefore be
a bad idea to measure x, or p, or E. On the other hand, the variables A(t)
and B(t) are manifestly robust0 see Egs. (12.21) and (12.22)0 and one of them
(but not both!) can be continually monitored. For example, we may choose
to measure repeatedly A(t) at the cost of perturbing in an unknown way the
value of B(t), or vice versa. By continually monitoring A(t), we obtain the
function S(t) from which we can retrieve the value of f(t). This method is
called “homodyne” (or “phase-sensitive’) detection.

The next problem is to materialize the symbols cos tand sin twhich
appear in Eq. (12.19). Their values are generated by a clock. A clock is not
an abstract notion. It is a physical system, with dynamical degrees of freedom
which must be represented in terms of canonical variables and introduced in the
Hamiltonian. Conceptually, the simplest clock is a rotor described by an angle
6 and its conjugate momentum J, with Poisson brackets [0, J] .5 = 1. The new
Hamiltonian, including that clock, may be taken as

Ho = Hopo + J. (12.24)

It gives the same equations as before, together with § = 1 and J= 0. These
additional equations of motion have solutions 6 = 8, + tand J = const. We
now define, instead of (12.19),
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A = X cosf-psnb and B = xsin 6 +pcosh, (12.25)
and we obtain
A = —sind f(t) and B = cos b f(2), (12.26)

with solution

A(t) = 4o~ [ “sin(6o + ) (') d¥',

. (12.27)
B(t) = By + / cos(fo + ') F(') dt'.
0
This gives, with the same notations as before,
A= (29— 5) cosby — (po+ C) sin by, (12.29)

B = (.T() — S) sinﬂg + (p() + C) COSGQ.

Note that A(t) and B (t) are robust, because the integrals on the right hand
sides of (12.27) have vanishing Poisson brackets with Ag and Bp.

The difficulty is that there is no known way of materializing this rotor clock.
In gquantum theory, it would give a Hamiltonian whose eigenvaues have no lower
bound, which is unacceptable. (An approximate construction was proposed by
Unruh.'2) 1t is also possible to construct, as shown in Sect. 12-7, a rotor clock
with a finite number of quantum states, but in the finite Hilbert space of the
latter neither cos O nor sin B (let alone 6 itself) are well defined operators.

A more practical aternative is an oscillator clock, with the same frequency
as the original oscillator. For example, this clock could be an electric LC circuit,
coupled to the mechanical oscillator by a suitable transducer’®* Let y and p,
be the dynamical variables of the second oscillator. The Hamiltonian becomes

Ho = 1(p,” + %)~ f(t)z + 1(p,* +¥7), (12.29)

where pynow stands for the former p. The equations of motion are the same
as before, together with y = p, and p, = —y, which are easily solved. Define

A:=zy+pp, and B:=zp, ~p:y, (12.30)
and aso (for later use)
D .= %(px2 +z% - pz“2 - yz), (12.31)

These dynamical variables have Poisson brackets

12W. G . Unruh, Phys. Rev. D 19 (1979) 2888.
Bc M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, Rev.
Mod. Phys. 52 (1980) 341.
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[A, Bl = 2D, [B, D] = 2A, [D, Al = 2B, (12.32)

like components of angular momentum (multiplied by 2). This property has
important consequences when quantization is considered: the observable values
of A (or B, or D) are integers, and therefore cannot evolve continuously as in
classica mechanics. Intuitively, the probability of a jump from one eigenvalue
to another depends on the lapse of time between consecutive measurements. A
detailed caculation, given in Sect. 12-5 below, shows that if measurements are
very frequent on the natural time scale of the observed system, that system
appears to be paralyzed: the value of A never changes. This is called the
guantum Zeno effect. To avoid it, one must make fuzzy measurements, which
do not discriminate between consecutive eigenvalues, and do not prevent the
evolution of the system.

Let us return to the classica equations of motion of our driven harmonic
oscillator. With the use of an oscillator clock, we have

A=p, f(t) and B = —y f(t). (12.33)

Therefore[4, Al,, # 0 ad [B,Bl,, # 0. It follows that neither A nor Bis
robust. We have aready seen in Exercise 12.2 that D is not.
We can solve (12.33) explicitly:

t
A®) = Ao+ [ p(#) F(E) (12.34)
whence, with the help of p, = —yo sint + pyo cost,

A(t) = (2o — S) Yo + (Pzo + C) pyo- (12.35)

There are similar expressions for B(t). Comparison with Eqg. (12.28) shows the
essential difference between rotor and oscillator clocks. The variables sin 6 and
cos 6 have a vanishing Poisson bracket. On the other hand, the oscillator clock
variables satisfy [Yo, Pyolpg = 1, which gives [Ao, A(t)],p = Cxo + Spwo # 0.
Therefore the measurement of A, causes an unknown disturbance to the value
of A(t). We have

Ado AA(t) ~ [C zo + S poo| AQAP, (12.36)

where Q and P are the dynamical variables of the apparatus that measures A.
Usually, AQAP is much larger than its quantum limit /2.

The important result here is that the right hand side of (12.36) is independent
of the clock variables y and py ,while A(t) itself is proportional to the amplitude
of the clock oscillations. As the latter can in principle be made as large as we
wish, irrespective of the weakness of the signal f(t), the uncertainty in A(t) can
be made negligibly small, when compared to A(t) itself. The clock essentialy
serves to amplify the wesk signal f(t), and it is theoretically possible to measure
f(t) with arbitrary accuracy. The only problem is to realize in the laboratory
the couplings that were written in the above equations.
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12-3. Estimation of a static parameter

Quantum particles can serve as probes for measuring classical parameters. For
instance, in Fig. 1.3 (page 6), we see a beam of photons used for estimating the
rotation angle of a polarizer with respect to a calcite crystal. Photons are also
often used for measuring the distance between two mirrors in an interferometer.
These mirrors are massive, and their quantum diffusion, (kt/m)'/2,, is totaly
negligible during the time t needed for measuring their distance. It is therefore
justified to consider such mirrors as fixed classical objects.

In the experiment sketched in Fig. 12.1, any variation in the distance between
the two mirrors (thick lines), with respect to the distance between the beam
splitters, appears as a phase difference at the exit port of the interferometer.
This phase difference affects the relative number of counts in the two photo-
detectors. The final analysis of the results of this experiment is identical to that
for the experiment in Fig. 1.3 (see page 46).

) . \ E

\ Photodetectors

Fig. 12.1. Phase-shift detection by a Mach-Zehnder interferometer.

It is obvious that such a measurement method does not fit into the formal
scheme which was proposed by von Neumann in his classic treatise® where
the emphasis is on the measurement of dynamical variables represented by self-
adjoint operators. Another type of measurement which is not covered by von
Neumann'’s theory is the determination of an unknown parameter in a wave
function which has a known form, for example, the parameter o in a coherent
state @[] Since different coherent states are not orthogonal, it is impossible to
obtain a definite answer for the value of a. We can at most get a probability
distribution. In rea life situations, this may lead to intricate problems which
necessitate the use of sophisticated statistical methods. 15 Here, | shal only
analyze an elementary example.

43 von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin
(1932) [trandl. by E. T. Beyer: Mathematical Foundations of Quantum Mechanics, Princeton
Univ. Press (1955)] Chapt. 6.

15C. W. Helstrom, Internat. J. Theor. Phys. 11 (1974) 357.
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Determination of polarization parameters

You are given a spin j particle, prepared in an angular momentum coherent state
|8, ¢), and you are requested to evaluate the angles 6 and @. These are classical
parameters, whose vaue is determined by the orientation of the macroscopic
apparatus which produced the spin j particle.

It is plausible that the best measurement method involves a non-orthogonal
POVM, as in Eqg. (9.81), because 6 and @ may take continuous values, while a
maximal test (a von Neumann type measurement) has only (3 + 1) different
outcomes. In the present case, the natural POVM to use is the one defined
in Eq. (10.144): We divide the unit sphere into small areas sin 6d0d¢, and for
each one of them we define a positive operator

Ao = |0, $)(6, ¢| sin 8 d8 d¢ (25 + 1) /4. (12.37)

These operators satisfy fAgy = 1, so that they indeed form a POVM.
The probability of obtaining a particular Agy as the result of the test is, by

virtue of Eq. (9.79), perer = (6, $|Ass|6, ¢). Using Eq. (10.146), we obtain
porgr = cos'(@/2) sin @' d¢’ d¢’ (2j + 1) /4, (12.38)

where O is the angle between the directions (6,¢) and (0,9 .

Once the test has been performed and has indicated a direction (€', ¢"), we
can derive the a posteriori probability distribution for the actual preparation
direction (8, ¢).. If the a priori probability distribution was isotropic, namely
sin 8dédé¢ /4w, the a posteriori probability can be found by Bayesian analysis
(Sect. 2-77). The result is pgg = cos?(©/2) sin §dd¢ (25 + 1)/4.

Exercise 12.3 Verify that [pys = 1.

Exercise 12.4 For the special case j = —%,compare the above result with the
one in Eq. (9.12:0), which  corresponds to a direct von Neumann measurement,
rather than a POVM. Ans.: In this particular case, the information gain is
the same with both methods. This is no longer true for higher j. *

Physical constants

Another common type of measurement is that of a physical constant, such as
the mass of an elementary particle or the magnitude of its magnetic moment.
These unknown constants are c-numbers, and are measured in the same way as
any other classical parameter. We perform quantum tests on particles which
have been prepared in a known way. These tests are described by an interac-
tion Hamiltonian where the unknown physical constants appear as numerical
parameters—for example mand p in the Hamiltonian (1.4). We then attribute
to these parameters the values which best fit the experimental results.
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12-4. Time-dependent signals

We now turn our attention to a more difficult problem, which is the detection
of weak classical signals. This is done by coupling the signal to a detector
(a dynamical system of known structure) so that the Hamiltonian H of the
detector contains a term depending on the unknown signal. Then, by observing
the time dependence of a dynamical variable of the detector, we can reconstruct
the entire H, including the unknown signal. An example of signal detection by
such a method was discussed in Sect. 12-2, at the classical level.

When the signal is extremely weak, the quantum properties of the detector
cannot be ignored. There appears then to be a conflict between the continuous
nature of a classical signal and the discrete spectrum of a quantum device.
Moreover, the final result cannot be recorded by a quantum system, which may
be in a superposition of eigenstates. The detector has to be “measured” by a
suitable apparatus (the “meter”) which then yields another classical signal—
namely a sequence of real numbers. We shall now examine the distortion caused
by the presence of a quantum interface between these two classical signals. It
will be seen that a good meter should have a moderate resolution, so as to lump
together numerous levels of the quantum detector. Obviously, a poor resolution
gives inaccurate results, but a resolution which is too sharp is aso undesirable,
because it impairs the correspondence between the input and output signas;
and a perfect resolution, down to isolated eigenvalues, may completely lock the
detection process.

Fuzzy measurements

As a concrete example, let us return to the simplified version of the Stern-
Gerlach experiment that was discussed at the beginning of this chapter, both in
the classical language and in the Heisenberg picture (formally, these two were
the same). | shall now use the Schrodinger picture, which is more appropriate
in a situation where the Hamiltonian is not known and has to be determined
by observations. Further simplifications help to get a tractable problem. We
shall consider a particle of spin 1 whose initial state is described by a spinor (E)
There are no other degrees of freedom and, at this stage, no forces acting on
that particle. The problem is to measure o,, a dynamical variable purported
to have observable values +1.

The “meter” which performs this measurement is idealized as having a single,
dimensionless degree of freedom, g, which indicates the value of the measured
varigble. The conjugate degree of freedom, p, satisfies [q,p] = ik.. A stripped
down Hamiltonian which describes the measuring process is

where g(t) has a narrow support near t= 0, and satisfies fg(t)dt = 1.



388 The Measuring Process

Let @(q) denote the initial wave function of the meter. The time evolution
generated by the Hamiltonian (12.39) is

(5)esa ~ (§)eea—n+(3) o+, (1240

This process is illustrated by Fig. 12.2, where it was assumed that @(q) has a
sharp maximum at g = 0, so that, before the measurement, it is most probable
to find the meter near q = 0. The meaning of the right hand side of (12.40)
is the following: There is a probability amplitude a®(q — 1) for finding the
meter near g = 1, and the particle with spin up; and a probability amplitude
Bep(q + 1) for finding the meter near q = -1, and the particle with spin down.

J

Fig. 12.2. Graphical representation of EqQ. (12.40). In this drawing and the fol-
lowing one, a =0.8and 3 = 0.6. The thick arrows indicate the spin orientation.

What we call “the observed value of g, is the fina position of the meter.
The state vector (12.40) specifies the probabilities of observing the meter at its
possible final positions. Idealy, ¢ should have zero width and the result of the
measurement should be +1, i.e, one of the eigenvalues of o,. However, the
actualy observed value of 0 ;may differ from the ideal result by a quantity of
order Aq, namely the width of the meter wave function. This discrepancy is
not a trivial “technical difficulty,” but a matter of principle. We shall actually
see that in some cases it may be advantageous to make Aqg larger than the
separation of consecutive eigenvalues.

The situation when Aq is broad is represented by Fig. 12.3. The probability
of observing the meter between ¢y and q ¢ + dqgo is

P(go)dgo = [lal” [¢(g0 — 1)[? + |8I? (g0 + 1)|?} dgo. (12.41)

If the observed value q, is such that both terms on the right hand side of (12.41)
contribute, the final state of the spin % particle is not an eigenstate of g,. It is
given by the right hand side of Eq. (12.40), evaluated a& = ¢y, and properly
normalized.

For future reference, let us rewrite the preceding equations in terms of density
matrices, for the measurement of an arbitrary operator A, with eigenvalues A,
(in the simple case considered above, A was dzand we had A, = #l). Let pm
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be the density matrix of the quantum system, in a representation where A is
diagonal. Let ®(¢',q") = ¢(q') #(g") be the initial density matrix of the meter.
The combined density matrix is

Pmn(d's4") = pmn (¢, ¢"). (12.42)

The Hamiltonian (12.39) becomes g(t)Ap and, instead of (12.40), we now
have

Pmn(d'54") = Pmn(d = Am, g = An). (12.43)

This expression contains al the information about the correlated state of the
guantum system and of the meter which was used for observing that system.

o(g5-1)

/_W

-1 0gq 1

0

Fig. 12.3. This is the same as the final state in Fig. 12.2, except
that the initial location of the meter is uncertain by more than the
separation of the eigenvalues 1, so that the measurement is “fuzzy.”

At this point, if we are no longer interested in the quantum system, we
may trace out the indices referring to it, and get a reduced density matrix
for the meter. Then, the average value of any observable function f(q)—after
completion of the interaction between the meter and the quantum system—is

(f@) = Cw; [8(a— 20— ) fa)dg, (12.44)

where w; = pjj is the probability of occurence of the jth eigenstate of A, just
before (and aso after) the interaction. For example, if the meter is prepared in
a symmetric state, ¢(q) = ¢ (—q), we have

(@) = ZJ: w; Aj, (12.45)
and

(@) =S, ([ oo+ ). (1246)
It follows that

(9%} —(a)* = (AA)? + (Ag)?, (12.47)

where
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(AAY = T w; X - (X ijj)z, (12.48)
and
(893 = [ & 19(a) da, (12.49)

are the variances associated with the states of the quantum system and the
meter, respectively.

Conversely, if we are interested in the guantum system (for later use) but
not in the meter itself, the reduced density matrix p'mn of the quantum system
is obtained by tracing out ' and g":

P, = / Prn(q — Amy 4 — An) dq = pmn Sman, (12.50)
where S\ is the coherence matrix:16
Smn = [ #(a = Am) Bla = An) da. (12.51)

Exercise 12.5 Show that Spn = (ePOm=a)/k),

E.g., if the meter is prepared in a coherent state, ¢(g) = (2ro?)~1/1e=9*/47%
we have Aq=o0and

Sun = exp[—(Am — A, )?/80%. (12.52)

Obviously, Smm =1 (for any @) so that the diagonal matrix elements pmm are
not affected by the measuring process. On the other hand, the off-diagonal
elements of p are depressed by a factor Smn , and may even be reduced to zero if
the displaced wave packets are mutually orthogonal, as in Fig. 12.2. However, if
Ag 2 |An—An-1f, asinFig. 12.3, the off-diagonal elements of p are not completely
suppressed. In particular, if some eigenvalues are degenerate, the submatrix of
P mn corresponding to these eigenvalues is not affected at al.

Consecutive measurements

The analysis of a time-dependent signal necessitates numerous consecutive
measurements 17 so as to get a sequence of numbers, corresponding to times
t1,t,, ..., and so on. Note that there can be no continuous measurement, if a
measurement is defined as a brief and intense interaction between the meter
and the measured system, as in Eq. (12.39) f or example. In particular, the time
difference tk —tk-1 must be larger than the duration of g(t), so that consecutive
measurements do not overlap.

16 A, Peres Phys. Rev. D 39 (1989) 2943.
17C. M. Caves, Phys. Rev. D 33 (1986) 1643; 35 (1987) 1815.
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On the other hand, we may aso consider measurements of finite duration,
where the function g(t) is spread over an appreciable time, compared to the
natural time scale of the measured system. Such a measurement yields only
asingle number which corresponds, in the best case, to a time-average of the
observed variable, as we shall see in Sect. 12-6. One can even consider a passive
detector, for example, a Geiger counter waiting for the decay of a nucleus. Such
a setup does not correspond at al to the present definition of a measurement.
It is best described as a metastable system with several decay channels.18

Quantum theory does not impose any fundamental limitations to monitoring
arbitrarily weak signals within arbitrarily short time intervals. Limitations
arise solely because we want to use—or are forced to use—some particular
detectors. For example, since gravitational radiation couples very weakly to
matter, detectors must be massive antennas' or gigantic interferometers.l® | t
is therefore impractical to have a large number of identical gravitational wave
detectors for the purpose of estimating quantum averages. We must extract as
much information as possible from each measurement. In general, we would like
the quantum evolution to mimic the classical one, and the output signal to be
an amplified replica of the input. Signa distortion should be minimized. Let
us examine how well these aims can be achieved.

Consider a sequence of measurements performed at timest; , . . . , ty, by
means of meters with coordinates q1, . . . , q n, respectively. The initial density
matrix of the detector and the meters is a generalization of (12.42):

Pran(q1, @15+ 1 G 4R) = P [] ®i(d} 2 q)) (12.53)
3
The Hamiltonian of the composite system is

H=Ho+A Y g(t—1;)p;, (12.54)
J

with notations similar to those in Eqg. (12.39). Here, Ho involves only the dy-
namical variables of the detector, not those of the meters. In particular Hp has
a known functional dependence on the unknown signal. As before, there are no
terms like p;2/2m; in the Hamiltonian: the masses of the meters are assumed
so large that we can ignore the spontaneous spreading of each meter's wave
packet.

In the interva between measurements, Ho generates the unitary evolution
p - UpU'. On the other hand, in the immediate vicinity of each t= tj , there
is a transformation similar to Eq. (12.43), namely

(s @ gy o) = Prnleee s €= Ams @l = Any o). (12.55)

A, Peres, in Information Complexity and Control in Quantum Physics, ed. by A. Blaquiére,
S. Diner and G. Lochak, Springer, Vienna (1987) p. 235.

19A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Girsel, S. Kawamura, F. J. Raab,
D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb,
and M. E. Zucker, Science 256 (1992) 325.
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Note that the new density matrix entangles in a nontrivial way the discrete
indices mn of the detector and the coordinates of the jth meter.

Equation (12.55) contains all the information about the state of the detector
and the various meters. We can now ask a variety of questions. For example,
if we are interested only in the detector, not in the meters that have already
interacted with it, the net result of a measurement is given by Eq. (12.50):

Pmn p:n,n = Poan Smn - (12.56)

After that, the following meter, if observed, will give results similar to those in
Egs. (12.45) and (12.46), with

w; = Y Ujm Pl Usn» (12.57)

where U is the unitary matrix representing the free evolution of the detector
since the preceding measurement, which left the detector in state p' -

We may aso be interested in comparing the readings of different meters. For
example, if there are N consecutive measurements, we may want to predict
the expected {(q: — qn)?)., regardless of the results obtained at tp, . . ., ty, -
As before, let pmn be the density matrix of the detector just before the first
measurement. The latter generates the transformation

Prn 21(01,91) = Pmn ®1(@r — A, gl — An) = p»(v};(q{ y4q1)- (12.58)

The q; referring to subsequent measurements have been omitted in (12.58), for
brevity. Between the first and second measurements, there is again a unitary
evolution, p) — p@ = YMpMYIH o that, just before t,, we have

P a1, a0) = DU UL o041, 4)- (12.59)
We now perform the second measurement. Since its result is not needed in the
calculation of ((q; —qn)?), which is the expression that we want to evauate, we
trace out q'2 and ", in the density matrix. According to Eq. (12.50), this leads
to a reduction of the off-diagonal elements, p{@ — p{@ S, . Further consecutive
measurements can be treated in the same way.

12-5. Quantum Zeno effect

We shal now consider the special case where the measurements are sharp (as
in Fig. 12.2) so that Srs = drs. Returning to Eqg. (12.59), we have, immediately
after t,, a density matrix which contains only the diagonal elementsp(? given
by that equation. Then, between the second and the third measurement, there
is another unitary evolution, p(® — p® = U@ @AY with result
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P, q)) = Z v v P, q" (12.60)

Again, the third measurement is sharp and only the diagonal elements survive.
These are

p(ahsa) = 2V o2 (4 ), (12.61)
where

V® = U (12.62)
The generd rule is obvious. We repeat the same process at t4, . . . , ty_z, and

each time we trace out the intermediate g; which are not needed for obtaining
the vaue of {{q1 — qn)?). After the measurement at tna we thus have a
diagonal density matrix with elements

PN g, g) =3 S VEDVE VO VD pDie,el).  (1263)

wy.. .87

Then, finally, the Nth measurement gives

PG as dvs a) = SSUN-DTUDD pN=1(gt g") En(gly— Aoy gl — Ay)-

x

Since we are interested in {(q1 —qn~)?), we need only the reduced density matrix
involvingq; and qy, with the detector’'s indices traced out. This is

P(g, 411 ahaN) = 2 War P2(q1,0) NN — Aer O — Ae)s (12.64)
where
Z V(N l (N 2) V(S) Vs(TZ), (1265)
and
PO(g, ) = S UDTD prp ®1(g) — Ayl — An). (12.66)

mn

Here, we may be tempted to increase N, the number of steps, so as to make
the time intervals very short and have a quasi-continuous monitoring. However,
as we shall presently see, this would lead to a complete loss of information.
Consider in particular the case where the measurements are equally spaced, at
intervals T = (tn —t1)/(N - 1), and let N - o while T =1ty —t; is kept
fixed. Let

tnt+T

h = H(t) dt. (12.67)

tn



394 The Measuring Process

We then have, in the short time interval T,

U=e ™ =0—ih-1h+..., (12.68)
whence
Vir = |Ugr | = 8ar — 8sr 3_ |haj|® + |Bsr | + O(h*). (12.69)
i

We see that each Vmn in Eqg. (12.65) differs from the unit matrix by terms of
order (TH/N)2. Since there are N — 2 such terms in (12.65), it follows that
W,, = 6., + O(T*H?/N). Thus, in the limit N - o, we can replace al the
Umn and Vmn by unit matrices, and we obtain

P(g1, 415 avsav) = 2w 2a(gl — Mgy g — Aj) Bn(gh — Ajh v — A), (12.70)
J

where wj = p;, as usua. We then have, by virtue of Egs. (12.45) and (12.46),
(a1 — an)?) = (Aaq1)* + (Aqw)*. (12.71)

This result depends only on the initia and final Aq of the meter, not on the
dynamics of the detector which is subjected to repeated measurements. The
evolution of the latter appears paralyzed by its continua interaction with the
meters. This is caled the quantum Zeno effect,?%2! or sometimes *“quantum
Zeno paradox.” It has nothing paradoxical. What happens simply is that the
guantum system is overwhelmed by the meters which continualy interact with
it. The Zeno effect has been experimentally observed with three-level atoms,
in which radiative transitions are inhibited by frequent laser pulses aimed at
measuring in which level these atoms are. 22

The above derivation essentially depends on the assumption Smn = & mn
which results from Aq < |A\; — Aj-1]. Meters having a coarser resolution do
not completely block the detector's motion, and T can even be made as small
as we wish,23 provided that Aq increases as 1-1. Between these two extreme
regimes, it is possible to have a “partia Zeno effect,” which is also amenable to
an experimental test.24

20 The Greek philosopher Zeno of Elea proposed the following fallacy: “So long as anything
is in a space equal to itself, it is at rest. An arrow is in a space equal to itself at every moment
of its flight, and therefore also during the whole of its flight. Thus the flying arrow is at rest.”
[F. Cgjori, Am. Math. Mon. 22 (1915) 1, 292].

2L Actually, this is only a special case of a process devised long ago by von Neumann (see
ref. 14, page 385) for steering a quantum system from any given quantum state to any other
given quantum state, by means of a rapid sequence of measurements.

2\, M. Itano D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41 (1990)
2295.

2C. M. Caves and G. J. Milburn, Phys. Rev. A 36 (1987) 5543.

24A. Peres and A Ron, Phys. Rev. A 42 (1990) 5720.



Quantum Zeno effect 395

Case study: detection of a time-dependent torque

As an example, assume that a time-dependent torque w (t) acts on a rotor with
angular momentum J. We shall see, in an explicit caculation, that frequent
sharp measurements block the motion of the rotor. Measurements which are
less frequent, or are fuzzy, cause a partial Zeno effect, which disappears in the
classical limit.

The Hamiltonian of our rotor is (in classica notations),

H = Hy+w(t)J,. (12.72)

If the rotor is spherically symmetric, Ho = J2/ 21l is a constant of the motion,
which can be ignored. The equations of motion (in classical or quantum theory)
are

Jo=1J,, J, =0, J,=—J,. (12.73)

Their solution is

Jz = Jg cosT+ J,p sinT,
Jy, = Jyo, (12.74)
J, = —Josint + J cosT.
where
3
r— / w(t) dt. (12.75)
0

Our problem is to determine w(t) by observing the motion of J. In classical
physics, the initial values Jko are assumed known, and continual measurements
of Jxand Jz givet=T1(t):

7 = tan"Y(J,/J,) — tan"'(Js0/ J:0), (12.76)

whence we can obtain w(t). Unfortunately, this method is not applicable to

quantum systems, because Jx and J: do not commute and Eq. (12.76) becomes

meaningless. We shall now see in detail what can be done when the “rotor” is

a particle of spin% . Thereafter, we shall consider a particle of large spin j.
The state of a spin % particle can be described by a density matrix

p=3(1+m-0), (12.77)

where m = [b0 Since the equations of motion (12.74) are linear, they are
satisfied by m as well as by J. For example, if initially m = (0,0,1), the
motion of m will stay in the xz plane. The coherence matrix Sm has diagonal
elements 1, and off-diagonal elements S;, = S 21 = S< 1 (assumed real, for
simplicity). Thus, in the present notation, the density matrix reduction (12.50)
is smply
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my =Smy and m ;=m;. (12.78)

This can also be written as

(mx) . (m;) _ < S c'os0 S sin @ ) (mx>, (12.79)
m, m! —sinf cos# m,

where 6 = fw(t)dt during the time interval since the preceding measurement.
Recall that, for a Gaussian shaped @(q), we have S= exp[-1/8(Aq)?]. The
extreme cases are Aq >> 1, giving S >~ 1 and therefore an unperturbed rotation
of the vector m (but no measurement, of course); and Aq << 1 (whence S ~0)
which corresponds to a sharp measurement.

Suppose that we repeatedly measure oz. Initialy, the rotor has been set with
[0z 0= 1. Thereafter, these measurements give us a sequence of +1 and — 1, from
which we have to reconstruct the function 1(t). Obviously, a spin% particle is
not a good torque detector—its Hilbert space is too small. On the other hand,
these particles come cheap (that is, for paper-and-pencil experiments) so that
we can afford to use a large number, N, of identical detectors. Let us examine
the expected average, m, = [b;[] under various scenarios.

The following figures illustrate the behavior of m;(t) in the smple case
where w =1 (so that Tt =t) from t= 0 to t= 5m/2. The dotted line is
m; = cos t, the undisturbed evolution for Aq >> 1 (we would of course need
many observations, namely N >> ( Aq)?2, in order to actually obtain each point
of the dotted line as an average over N data). This ideal result is compared,
in Fig. 12.4, to the case S= 0 (i.e., sharp measurements) for 10, 30, and 90
equally spaced samplings. Obviously, the more frequent the measurements, the
less m; moves (this is the Zeno effect). In every case, m; decays exponentially—
it does not oscillate as the unperturbed m,. This can be verified by computing
the eigenvalues of the matrix in Eg. (12.79). These are given by the secular
equation A% — Acosd(1+ S)+ S =0, whence

A = [(1+ S)cosd £1/(1 + S)2cos?6 — 45 . (12.80)

If S= 0, we obtain: A , = cos @, with eigenvector u+ = (%) and A - = 0, with

eigenvector u_ = (})) As we started from the initial state u+, the polarization
vector m is simply shortened by a factor cos 6 at each measurement.

When 0 < S< 1, the eigenvalues A+ may be real or complex conjugate,
according to the sign of (1 + S)2 cos? B — 4S. We then have an exponential decay
or damped oscillations.?> The transition occurs at Scr = (1 — sin 8)/(1 + sin 8)
Figure 12.5 illustrates the case 6 = 51/60, with S= 0.4 and 0.9, corresponding
to Ag = 0.37 and 1.09, respectively. For the larger Aq, the eigenvaluesA:+ ar e
complex, and m, has damped oscillations.

The worst case scenario is a pair of consecutive measurements performed at
T = 12 and 1 = T, respectively, so that sin 8 = 1. The result can easly

3G, J. Milburn, J. Opt. Soc. Am. B 5 (1988) 1317.
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Fig. 12.4. Precession of a spin% particle due to a constant torque around
the y axis. Initially, m, := [, 0= 1. The dotted line corresponds to the
undisturbed evolution (that is, each point represents the value of m, which
would be obtained if there were no measurement before that time). The circles
represent consecutive values of m, that are observed if sharp measurements
are performed at intervals (from top to bottom) 517180, 511/60, and 51720.

be obtained in closed form and will later be compared with the one for a rotor
of spin j. Using Eqg. (12.79) twice, we see that after two measurements, m is
simply multiplied by —-S For very fuzzy measurements (Aq >> |), we have
— S~ —1 and the spin is thus found flipped after each half period, as expected.
On the other hand, for S= 0 (sharp measurements), m is reduced to zero, and
thereafter no further information is obtainable from the rotor motion.

|
mZ
1""\»
4,
9 e
J ., 5=04
o .
.‘..‘o ° e, ..
t_‘uo "°.°°°°oo:.‘._.°
0 . . £, . ¢\
R T o 2 t
M
o o/
] ° ."‘
e 450 ° 3
$=0.9

Fig. 12.5. Under the same conditions as in Fig. 12.4, each set of circles represents
values of m, that are observed if fuzzy measurements are performed at intervals
51/60. The coherence factors S= 0.4 and 0.9 correspond to Aq = 0.37 and 1.09,
respectively. The critical value of Sfor the onset of oscillations of m, is Scr = 0.589.
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A rotor with spin j

Obviously, a spin % particle cannot mimic the classical rotor described by
Eqg. (12.72). We therefore turn our attention to spin j. Leth = 1, for brevity.
We prepare the rotor in an eigenstate of J,, with j,=j. We shall consider
only the “worst case scenario” mentioned above, with 8 = 1/2, so that the first
measurement of Jz is performed on an eigenstate of Jx with eigenvalue j.

This rotation through an angle 6 = 1/2 is generated by a unitary matrix U.
We have, with Wigner's notations, 26

Unj = D(J')({O’—;O})j,,, - \/(zj)!/[y G+m)(yG—m). (12.81)

The probability of getting jz = mis the square of this matrix element. This is
a binomial distribution with variance j/2. The result is shown in Fig. 12.6, for

the case j = 32 (the standard deviation then is AJ, =+/j/2 = 4).

.,un|”0“hnl..

Fig. 12.6. Expected probability distribution for a measurement of J, ,
after preparation of a state with j. = j, and its rotation by TU/2. The
calculations were done for j = 32. The standard deviation is AJ, = 4.

=J J

The results of further measurements depend on whether the first measure-
ment was sharp or fuzzy. If it was sharp (Sm = O mn ) the histogram of expected
results for the second measurement (at © = 1) is given by the diagram at the
top of Fig. 12.7. The distribution is almost uniform, and very little information
can be inferred from it. Better results are obtained if the first measurement was
fuzzy. The subsequent diagrams of Fig. 12.7 show the distribution of results of
the second measurement, as a function of the Aq of the meter which was used
for the first measurement. Obviously, a very broad Aq alows the quantum
state to reassemble near jz = —j, which would be its vaue at time t=mif
the first measurement had not been performed.

On the other hand, if Aqis too broad, the “measurement” becomes useless.
Obviously, the expression which should be optimized is the one in Eq. (12.47).
From the example discussed above, it appears that the fuzziness of the meter
should be about the same as the natural width of the detector’'s wave packet.
A poorer resolution gives inaccurate and useless results, but a finer resolution
destroys the information in which we are interested.

BE P, Wigner, Group Theory, Academic Press, New York (1959) p. 167.
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Fig. 12.7. Expected probability distributions for a second measurement
of J,, after one more rotation by /2. The results depend on the Aq o f
the meter which performed the first measurement. From top to bottom,
this Aq (shown as a horizontal error bar) is 0, 1, 2, 4, and 8. Different
vertical scales are used in the various diagrams, for better visibility. In
each diagram, the sum of lengths of the vertica bars is 1, by definition.

Exercise 12.6 Compute the data which are displayed in Fig. 12.7. You will
need the rotation matrix U = e=*}:/2_Don’'t use Wigner's formula®® which
becomes unwieldy for large j, because its result is the small difference between
large terms with alternating signs. A better way of computing U is by means of
the relationship UJ, = Jx U, which gives a recurrence relation between adjacent
elements of the matrix U in the basis where J, is diagonal. * *

The Zeno effect is a peculiarity of quantum physics. It disappears in the
semiclassical limit, when eigenvalues become extremely dense. From the quan-
tum point of view, classical measurements are always fuzzy. This is why a
watched pot may boil, after al: the observer watching it does not resolve the
energy levels of the pot. Any hypothetical device which would resolve these
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energy levels would also radically alter the behavior of the pot. Likewise, the
mere presence of a Geiger counter does not prevent a radioactive nucleus from
decaying.!® The Geiger counter does not probe the energy levels of the nucleus:
it interacts with its decay products whose Hamiltonian, including the kinetic en-
ergy, has a continuous spectrum. As we have aready learnt when we discussed
the implications of Bell’s theorem (pp. 183-185), quantum effects violate our
classical intuition only when our instruments can resolve individua levels.

OND measurements and QND variables

A quantum nondemolition (QND) measurement is one performed on a system
which is known to be in one of the eigenstates of the measured operator. The
purpose of such a measurement is to determine that eigenstate. All we have
to do is to perform a maximal test, with the basis defined by that operator. If
this is a repeatable test, the fina state of the system is exactly the same as the
initial one, hence the label “nondemolition.”

A QND variable (sometimes called QNDD, for “quantum nondemolition
detection” 12) is on which satisfies [A(t), A(t')] = 0. It is the quantum analog
of a classical robust variable, as defined by Eq. (12.15). Such a dynamical
variable can in principle be monitored continuously with arbitrary precision
without disturbing its evolution. For example, if v(t) is a random classica
signal, and if H = v(t)p, then g is a QND variable, because q = v(t), so that

a(t) = a(0) + [ w(t")dt, (12.82)

and [q(t),q(t")] = 0. Measuring g will of course disturb p, but this has no effect
on the evolution of q itself. Unfortunately, the Hamiltonian H = v(t)p is only a
mathematical construct, with no experimental counterpart.

Notice that QND variables have a continuous spectrum. This is intuitively
obvious, since they have to follow a continuous evolution, and this can aso
be formally proved!® from the property [A(t), A(t)] = 0. It is unlikely that
a nontrivial QND variable can actually be realized, because of the conflicting
requirements that it must satisfy: its time evolution should be sensitive to weak
external signals, but on the other hand it should not be affected by the intense
interaction needed for the measuring process.

12-6. Measurements of finite duration

until now, | assumed that the interaction between the measuring instrument
and the observed system was almost instantaneous. The motion of the system
during that time was ignored, and the measurement was simply represented
by a unitary transformation, as in Eq. (12.3). This drastic simplification is
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not always justified. Coupling constants occurring in nature are finite, and
sometimes very small. It may therefore be necessary to couple the system and
the measuring apparatus during a finite, possibly long time. We shall now
examine what happens during a measurement of finite duration.

As a first step, let us ignore the free Hamiltonians of the apparatus and of the
observed system, and consider only their interaction Hamiltonian, according to
the simple model in Eq. (12.39). Let the interaction start at time t = 0. Define
an evolution parameter |(t) by

la):=‘Atg@3dﬂ/h, (12.83)

so that |(t) gradually increases from O to its final value, 1, which is reached
upon completion of the measurement. The unitary transformation (12.40) now
becomes a time-dependent relationship, with [q+ I(t)] instead of (q + 1). The
wave function on its right hand side is just like the one that was sketched in
Fig. 12.3. An unfinished measurement therefore is a specia case of a fuzzy
measurement, with a time-dependent coherence matrix: the eigenvalues A, in
Eqg. (12.51) are replaced by Aml(t).

Considering again the simple case of a measurement of g,, the situation is
described by a density matrix:

2 ‘] T—-l- 7 " DNala" + D

o " t) = ( Ia[ g —De(¢" 1) aBd(gd —Ddlg" +1) ) (12.84)
Bag(d +Dglg" = 1) B ¢(q" +Delg” +1)

where | = I(t). The physical meaning of this expression is the usual one: We

imagine the existence of an ideal instrument which can instantaneously perform,
at time t, correlated tests on the spin% particle and on the “pointer” which
interacts with that particle. The density matrix (12.84) enables us to make
statistical predictions on the outcomes of these idea tests. We have aready
seen that if we completely ignore the pointer in such a correlated state, and we
trace out its coordinate g, the reduced density matrix of the spin—; particle is
given by Eq. (12.50). The only new feature now is that the coherence matrix
Sm depends on time while the measurement proceeds.

There is however more to be said.? For example, we may ask pairs of
questions, such as. “What is the probability of finding the pointer in a given
range, q; < g < (2 and, in that case, what are the properties of the spin?’
To answer these questions, we have to delete from (12.84) al the values of g
outside the given range, and then to sum over qin that range:

q2
p(d'sq";t) — R(t) ::/q p(g,q;t)dq. (12.85)

2TA. Peres and W. K. Wootters, Phys. Rev. D 32 (1985) 1968.
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The matrix R (t) is analogous to a density matrix for the spin 4 particle, but it
is not normalized to unit trace. Rather, its trace is the probability of finding
the pointer in the designated domain. The mean value of any spin variable A
when the pointer is found in that domain is

(A(t)) = Tr (AR)/TrR. (12.86)

Exercise 12.7 Show that R(0) is equal to the initial density matrix of the
particle, multiplied by the probability of finding the pointer between o and g

Exercise 12.8 Show that if I(t) has become large enough so that the wave
functions @(q + 1) and @(q — 1) do not overlap, the find R matrix for g > 0 is

_ 2 1 0
R = |e| ( 00 ) . (12.87)
What is the physical meaning of this eguation?

Here, there should be no misunderstanding as to the nature of Eq. (12.85).
The latter does not represent a dynamical process, and it cannot be generated
by a Hamiltonian, contrary to Eq. (12.3), for example. Equation (12.85) only
formalizes the arbitrary selection of a given range of pointer positions, by an
external agent which is not included in the dynamical variables.

Case Study: Stern-Gerlach experiment

As a concrete example, we shall follow the continuous time evolution of a Stern-
Gerlach experiment, in which a particle prepared in an eigenstate of oy is tested
for 0, and the result is found to be 1, say. Assume for simplicity that g(t) in
Eqg. (12.39) is a constant, and that the initial state of the pointer is given by

#(q) = (2a)"V%  if —a<g<a, (12.88)

and ¢(q) = 0 elsewhere. The wave packets will separate, and the measurement
be complete, when I(t) = gt/ & = a. However, we are interested in the situation
a earlier times, when I(tf) < a and the two wave packets of the pointer still
overlap. We ask: “What is the probability, at such a time t, of finding g > 0O,
and in that case, what are the properties of the spin?’

Initially, we have, with the same notations as above, a = B = 27Y2. From
Egs. (12.84) and (12.85), we obtain

(12.89)

R(t):§<1+b 1—b),

1-5 1-%

where b := I(t)/a< 1. It follows that
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(:)/ (o) = bJ(1 = b) = 1/(a — ). (12.90)
Exercise 12.9 Show that the eigenvalues of R (t) are

wi(t) = 1(1 £ V1 -2b+22), (12.91)
and find the corresponding orthogonal eigenstates.

These results are shown in Fig. 12.8, where pairs of orthogonal eigenstates of R
are represented by vectors whose lengths are proportional to the corresponding
probabilities wj. These vectors point in opposite directions, since orthogonal
states in Hilbert space correspond to opposite spin polarizations. As expected,
we have a continuous evolution between {¢,) = 1 at the beginning of the
measurement, and {¢,) = 1 at the end of the measurement.

©,)

(c,) 1

Fig. 12.8. The initial, intermediate, and final states of the spin 51 particle,
during its evolution from {(oz) = 1 to (o,) = 1. The dots represent 20
equidistant steps. At intermediate times, we have a mixture of orthogonal
spin states, shown by opposite arrows. The length of each arrow is equa
to the statistical weight of the corresponding state, given by Eq. (12.91).

The time dependence in Eq. (12.90) or, implicitly, in Eq. (12.89), is not the
kind of evolution that can be followed, moment by moment, for a single spin —%
particle. Quantum theory is fundamentaly statistical. In order to observe the
time dependence illustrated by Fig. 12.8, one has to prepare a large number
of particles in the given initial state, divide them into 20 subsets (with a large
number of particles in each subset), and let each subset evolve for a given
amount of time before observing its particles together with the corresponding
pointers (there is one pointer for each particle, of course). Then, for each subset,
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the statistical properties of the particles for which the pointer’s position was
found positive are correctly described by Egs. (12.89) and (12.90).

This new way of describing a time evolution is no more or less genuine than
Schrédinger’s eguation. In both cases, one needs to prepare a large number of
identical sets in order to observe the time dependence. The only difference is
that in the present example one cannot assign an evolution to a subensemble
of particles until the observations “right vs left” have been made on the corre-
sponding pointers.

Measurement of time-dependent variables

We shall now examine what happens if we attempt to measure, in a way which
is not instantaneous, a dynamical variable which is not a constant of the mo-
tion. This problem is not specific to quantum theory. It may arise in everyday
life, eg., when a photographer takes a snapshot of a moving object. However,
quantum theory introduces novel features, because a measurement is not only
a passive observation, but aso the preparation of a new state. In particular,
we shall see that the result of such a measurement is not, in general, the time
average of the observed quantity during the measurement.

In order to disentangle this problem from the preceding one, we shal now
consider only measurements which have been brought to completion. As an
example, we want again to measure o, of a spin % particle, but meanwhile, the
latter “wants’ to precess with angular velocity 2w around the x-axis, because
its free Hamiltonian is &wox. We thus have

H=hwo, + g(t)po,. (12.92)

Assume for simplicity that g(t) = T-!is constant during the interval 0 < t<T,
and vanishes at other times. The question that we address is the same as before:
“Given the initial states of the particle and of the pointer, what is the probability
of finding q> 0 at time t=T, and if so, what is the state of the particle?’
(For t>T, the particle will continue to precess around the x-axis with angular
velocity 2w. This is a trivial evolution which does not concern us.)

It is convenient, for this calculation, to use the momentum representation
defined by Eq. (10.54) for the state of the pointer. The operator p then becomes
a c-number, p, and the evolution of the composite system, for 0 < t< T, is
given by the unitary operator

U(p) = e+ J Hat/h — mitluoatipos/hT)), (12.93)

For any value of p, this is simply a precession with constant angular velocity
(2w, 0, 2p/A'T). Note, however, that the value of pis not sharp, because ¢(q)
ought to be a narrow wave packet, and therefore&(p) is broad and different
components of the state vector precess with different angular velocities. The
narrower the wave packet is in g-space, the larger the values of p which are
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involved. In particular, if Agq<< YT, most of the wave function has p > AwT
so that the precession axis is nearly aligned with the z-axis. In that case, a
detailed calculation?” shows that the free precession generated by wa, is nearly
stopped, even if Tis large so that the coupling constant g is small (this in-
cludes the case wT > 2m). If we write the initial wave function as the sum
of two components with definite o,, these components retain nearly constant
amplitudes. This is just another example of the Zeno effect: the free part of
the Hamiltonian, hwo,, is overwhelmed by the interaction term gpo: .

Exercise 12.10 Write the g-representation of U(p), and obtain the final wave
function, for t = T, in g-space. * %

The answer to this exercise is a linear but nonlocal transformation?” with a
kernel K(q — q’) which has singularities at q=q + 1, and continuous complex
values between these two limits. Intuitively, this can be interpreted as follows:
The pointer ought to move to the right or left, depending on whether o, = 1
or =1. But o is not constant. A state with o, = +1 will acquire components
with 0, = F1, because of the precession wao,. This causes the pointer to
zigzag, and its final possible positions are not concentrated at g = +1, but
spread continuously between —1 and 1.

For a given fina position of the pointer, what is the state of the spin? Ideally,
we would want to have 0,=1if > 0, and o0 ,= -1 if g < 0. Actually,
the spin state is given by the reduced density matrix R(T), as explained above.
Since the latter involves a nonlocal kernel, the particle is in a mixture of states
with opposite spins. In particular, if we are using this imperfect apparatus to
prepare two beams of particles with opposite polarizations, each one of these
beams will be contaminated with particles of the wrong polarization.

These results are radically different from what could be expected on purely
classical grounds, where an apparatus sensitive to o, would simply give the time
average of o, from t=0tot=T. In the quantum case, such a time average
cannot be directly measured with the simple apparatus described above, with
constant g(t). More sophisticated methods are however available, if we know
in principle the law of motion of the measured system, and our only task is
to determine an unknown numerical parameter in that law. It is then possible
to tailor a time-dependent interaction Hamiltonian in such a way that, after a
prescribed time, the position of a pointer will be correlated with the unknown
value of that numerical parameter. Unfortunately, no general recipe is available,
and each case must be treated ad hoc.

12-7. The measurement of time

The measurement of time is different from that of quantities like position, mo-
mentum, energy, etc., because time is not a dynamical variable. For example,
a classical particle may have a well defined position, an energy, and so on, but
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we cannot say that “a particle has a well defined time.” Formally, the Poisson
bracket (in classical mechanics) or commutator (in quantum theory) of twith
any dynamical variable is aways zero.

What we call the measurement of time actualy is the observation of some
dynamical variable, the law of motion of which is known (and is usualy uniform,
like the motion of a pointer on a clock dial). For example, if we observe a free
particle with classical Hamiltonian H = p%2m, the expression T = mqg/p
satisfies [T, H]pg = 1, and can therefore be considered as a “readlization of time”
(for that particular Hamiltonian).

Exercise 12.11 Show that the operator (in momentum representation)

thm (1 O J1
T="{-n+=—-], 12.94
2 (pap 6p1>) (1254

satisfies the commutation relation [T,H] =ik, and that the formal solution of

Ty =t is p ~ fpe P H/2mh,

No simple physical meaning can be attributed to the results of the above
exercise. If you want to try another exercise, take, instead of a free particle, a
harmonic oscillator with H = 1 (p2 + g2). The result is even worse! In classical
mechanics, you can define T = tan~1(g/p), which is multiple valued, just like
the hour on an ordinary watch. But there is no such thing as a “multiple valued
operator” in a correctly defined Hilbert space.

Larmor clock

A simple guantum clock28-30 can be produced by using the finite-dimensional
guantum dia discussed on page 320 as a basis for quantizing the continuous
rotor clock that was introduced in Sect. 12-2. The clock’s Hamiltonian is

He =wl) = —ihwd/dq. (12.95)
Its eigenstates um are, in the g-representation, €™9/+/2r. with m=+, ..., j.
The complementary basis is
J )
vy 1= N2 ™ gmtmium/Ny (=4, yi) (10.89)
m==3

where N = 2j + 1. The vectors v, are called dial states.
The clock has a time resolution

7 =2r/Nw, (12.96)

28H. Salecker and E. P. Wigner, Phys. Rev. 109 (1958) 571.
2M. Biittiker, Phys. Rev. B 27 (1983) 6178.
303, p. Falck and E.H.Hauge, Phys. Rev. B 38 (1988) 3287.
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as may be seen from

e~Her/hy — VE41 (mod V) - (12.97)
If the clock is prepared in the dia state v, it will successively pass through the
orthogonal states vi,v,, . .., a time intervals 1. It is thus possible to define
aclock-time operator as in Exercise 10.21 (which you should solve now, if you
haven't yet done that):

Te=(2r/Nw) 3 pv, vt (12.98)

Naturally, the finite-dimensional Hamiltonian and clock-time operators cannot
satisfy [T¢, Hd = ih.

Let us examine the energetics of our clock. The clock-time eigenstates v,
have OH:O= 0 and

(He®) = [Hovu|? = (R?Ww?/N) 3o p? = B2 w?5(j +1)/3. (12.99)
We see that, for large j, the energy spread,
AH, ~ jhw/V3 ~ (x/V3) (R[T), (12.100)

is amost as large as the maximum available energy jhw. Therefore our clock is
an essentially nonclassical object. This will be reflected in its interaction with
other objects, as we shall soon see.

We dready found, when we discussed the properties of the quantum dial, that
no local function of q, except f(q) = const., was an operator. Conversely, any
nontrivial matrix A, in our N-dimensional Hilbert space becomes a nonloca
function, A(d', q"), in the q-representation. Nonlocality in time is an essential
feature of finite-dimensional quantum clocks. For example, such a clock is
unable to turn an interaction on and off a precise times, as we had assumed
possible in our previous measurements models.

Exercise 12.12 Find the g-representation of the matrix Apn =1, 0m, n. *

It is possible to construct more classica clocks, with AH; <« OHOhax , by
using a Hilbert space with many more states than the minimum needed for the
required time resolution 1. For example, consider ¢ = A eM’<os{e—%) where M
is a large number and A is a normalization constant. The angular resolution is
Ag =~ M-! so that there are about 2mM distinct “pointer states.” But a good
representation of this Y by a Fourier series necessitates about 2M 2 terms, as
can be seen by Fourier-transforming . Not only are we “wasting” most of our
Hilbert space, but the energy spread, which is of order 2M?hw ~ 2Mhw/Ag,
is much higher than the one for a Larmor clock with the same accuracy Aq.
Therefore this “classical” clock may cause an even larger disturbance to the
gquantum system with which it interacts.
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Time-of-flight measurement

A quantum clock can be used for measuring the time of passage of a particle
between two detectors, by coupling that clock to the translational degree of
freedom of the moving particle. In particular, the clock can keep a permanent
record of the time of flight, which can be read long after the process has been
completed, as we shall now see.

The simplest way of achieving this is to have the movement of the clock
activated when the particle passes through the first detector, and stopped when
it passes through the second one. Let Xx; and x, be the positions of these
detectors, and x be the position operator of the particle (recall that q is the
pointer position on the clock dia). Define, in the x-representation, a projector

1 if
P(z) = H oS w < g (12.101)
0 otherwise.

A suitable Hamiltonian for the particle (mass m) and the clock is
H = (p?*/2m) + P(x) ® Hc, (12.102)

so that the clock runs only when the particle is located between the detectors.
Both H and H. are constants of the motion. The initial state of the clock is the
dial state vo = S u,/v/N . However, it is easier to solve the equations of motion
if the clock isin an eigenstate of H., say u,, and then to sum the solutions for
al n, so as to get the solution corresponding to the initial state v .

If the state of the clock is u, , the operator H. can be replaced by the numerical
constant nhw, and the Hamiltonian (12.102) simply represents a particle of
mass m with a potential barrier of height V = nhw and length L = X5, — Xx.
Outside the barrier, the wave number is k= (2mE}Y2 k, where E = p%2m
is the constant value of H. Inside, it is k' = [2m(E — V)]¥2/k. Therefore the
phase shift caused by the barrier is

(' — k)L ~ —nwL/(2E/m)"?, (12.103)

where the right hand side is an approximation valid for OVO <« E. Note that
v = (2E/m)Y'2 is the classical velocity of the particle, so that L/v is the classical
time of flight T. Thus, if the incoming wave function (before the barrier) is

e*vo = e** Y u,/VN, (12.104)
the outgoing vave function (after the barrier) is

ik Z e=mT y, [\/N = ek b e™a=T) [(2x NYV/2, (12.105)
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The pointer, which was initially directed toward g~ 0, ends up oriented toward
g~ wT. It correctly indicates the time of flight between the detectors.

It is remarkable that this derivation never assumed that the particle was
constrained to stay in a wave packet much smaller than L, or in genera that
it passed through each detector at a definite time. We wanted to measure only
the time interval between the two detectors. The latter is perfectly well defined
by the initial momentum p = &k, even though the times of passage through
each detector are completely uncertain.

Our only assumption was that OV < E, so that the disturbance caused
by the measurement is small. Since OVO can be as large as jhw ~ =wh/r, it
follows that T > h/E. This imposes a lower limit on the time resolution of the
clock, which in turn causes a limitation of the accuracy with which the particle
velocity can be measured over a distance L:

Av ~ 02 /L > hfmL, (12.106)

which can aso be written as Ap > & /L. This result should not be construed
as another Heisenberg uncertainty relation. It rather is an inherent limitation
of our time-of-flight method for measuring the velocity of a particle. It is of
course quite possible to measure p with arbitrary accuracy by other methods.

When did the atom decay?

When did Schrodinger’s cat die? Instead of the legendary cat, consider a
guantum clock which runs as long as the radioactive atom has not decayed.
The question becomes: When did the clock stop?

Let us compute the location of its pointer when t — . As the Hamiltonian,
take

H=Hga +PoHc, (12.107)

where H, is the Hamiltonian of the radioactive atom, Py is the projector on
the atom’s initial state @y, and H. = hwl, as before. We split Hy =Hg + V,
where Ho has both a discrete spectrum (and in particular it has an eigenstate
(o corresponding to the energy Eg) and a continuous spectrum in a domain
which includes Ey. For example, @o may be an excited state of the atom, while
the continuous spectrum corresponds to its ground state accompanied by one
or more photons of arbitrary energy. To simplify the discussion, let us assume
for a moment that the atom is enclosed in a large box, so that the continuous
spectrum becomes discrete and consists of normalizable states @e, with a coarse
grained density pg . All these states are mutualy orthogonal.

A further simplification of our model is to assume that the only nonvanishing
matrix elements of V are

(¢5,V o) = (¢0,V £}, (12.108)
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and that these matrix elements have a slow dependence on E. Under these
assumptions, it can be shown? that, in the wave function

¥ = ao(t) po e E™ + 3" ap(t) pp e ER, (12.109)
E

the coefficient of the initial state @p decays in an approximately exponential
way: ao =~ e""/* Substitution of this result in Schrédinger’s equation
ih dag/dt = (g, V go) ao e’ E-E/E (12.110)

gives ag(t) explicitly. In particular, for t - o, we have

ag — (¢£,V¢o)/(E — Eo +i7), (12.111)
so that
h(t) — Y {é5,Vo) ppe EM(E — B +iv). (12.112)
E

Conservation of the norm (namely, @y, YO= 1) implies that
> leE, Vo) /I(E — Eo)* ++7] =1, (12.113)
E

from which we shall now obtain the actual value of .

First, we must examine how the above infinite sums behave when the volume
of the box, which we shall denote as Q, increases to infinity. If the normalized
eigenfunctions @e are not localized, their amplitude behaves as QY2 This also
is therefore the behavior of [de,V @0 if the initial wave function @ is localized.
The expression V(E) := QY2[e V gothus tends to a limit (a smooth function
of E) as Q - oo. Likewise, the density of states p(E) := pe/Q tends to a
smooth limit. We can therefore rewrite Eq. (12.113) as

V(E)? _

E-Eo) 17 p(E)dE = 1. (12.114)
Thus, since the functions p(E) and V (E) are amost constant over a domain
much larger than vy, it follows from (12.114) that

v = p(Eo) [V(E)I?, (12.115)

which is Fermi’s golden rule.

Let us now couple our atom to a clock, as in Eqg. (12.107). The clock’s initial
state is vo = Y u,/v'N, but we shall again solve the problem for a clock in an
eigenstate u,, so that H.; can be replaced by the numerica constant nhw. The
only change in the Hamiltonian H is that the energy of the initia state @, has
been shifted from Ep to E¢ + nfiw. This may modify the value of yin (12.115),
but the new decay constant will still be very close to the old one, as long as

31A. Peres, Ann. Phys. (NY) 129 (1980) 33.
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dp(Eo) |V (Eo)I*

B < p(Eo) [V(Eo)|% (12.116)

jﬁwi

We again obtained a lower limit on the time resolution of the clock:
7> h|d[log p(Eo) |V (Eo)l*]/dEq | (12.117)

A time resolution which is finer than this expression will alter the decay law
(and in the limit T — 0, a Zeno effect will occur, of course).

In what follows, it will be assumed that we have kept the clock energy low
enough, and therefore the time resolution poor enough, so that the inequality
(12.117) is fulfilled and the decay law is not appreciably affected by the clock.
For t - oo, the combined state of the atom and the clock is given by Eqg. (12.112)
with Eo - Eg + nhw:

% =N"Y2 3" u, S (bg,Vo) pr e B [(E — By — nhw +i7). (12.118)
n E

We are now going to observe the clock, but not the decay products of the atom.
Therefore the state of the clock (more precisely, the statistical properties of
an ensemble of clocks which have been subjected to the same experiment) is
represented by the reduced density matrix obtained from the state (12.118) by
tracing out the degrees of freedom of the atom:

Pmn = Z (Um ® ¢E’ d") (1/)7 u, @ ¢E> (12119)

E

In this partial trace, we pass to the continuum limit:
Sz Vol — [IV(E) - p(E)dE. (12.120)
E

This gives

P = 1 / [V(E)? p(E)
"™ " N J (E - Eo— mhw + 17) (E — Eg — nhw — i)

dE.  (12.121)

Both functions in the numerator were assumed very smooth, and their product
can therefore be replaced by the constant y/mt, defined in Eq. (12.115). We can
then safely extend the integration limits to £ . We obtain

Pmn =N [l +ia(n—-m)!, (12.122)

where o = hw/2v is the angle through which the pointer of a classical clock
would turn during the average atom lifetime, #/2~.

We can now compute the probability for finding a clock stopped at time
t, 1= ur = 271'#/Nw_ This probablllty is Pu = (vu,pv“), or
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— 1 (V;MUn) (Um,V‘J _ 1 e2rip(n—m)/N
=N L T anem) ~ N Triatio ) (12.123)
This double sum can be evaluated explicitly®? and gives, for large N,
%
pu = N7V 30 FRIN/(1 4 ika). (12.124)
k=—2;

Exercise 12.13 Let 6 = 2rm/N be the angle on the dial that corresponds
to time ty. If u <O, redefine p - p+ N, so that 0 < 8 < 21 Show that the
right hand side of Eq. (12.124) is the Fourier series expansion of

o e~/ 2
Na(l—e-?/e) ~ Na

We see from this exercise that the clocks stop (the atoms decay, the cats die)
a times distributed according to the familiar exponentia decay law, with due
account taken of the fact that a clock may run through more than one cycle
before stopping. Quantum theory, which makes only statistical predictions, is
of course unable to specify when an individual atom will decay, or an individual
cat will die.

[0/ 4 em042ma y o=Cran/a ] (12.125)

Switching interactions on and off

A clock can be used not only to measure, but also to control the duration of
a physica process. We shall now see how an interaction can be switched on
a a preset time t,, and then switched off at time t,. For instance, this inter-
action may involve a magnetic field which causes the precession of a spin 1
particle. The problem is to write a time-independent Hamiltonian, such that
the precession angle increases linearly between t, and ty.

Various models can be devised, which have that effect. If we still want to use
a Larmor clock, we may write

H = H. + % EQo, @ (Vavol + VaqiVepr T+ - + vevpl), (12.126)

where Q denotes the spin precession velocity. As usual, the translational degrees
of freedom of the spinning particle have been ignored. Following the same
technique as before, we take initial states which are eigenstates of the constant
of motion o,. We can then replace, in Eq. (12.126), the operator o, by +1,
and thereby obtain an expression which involves only the clock. On the other
hand, H. isnot a constant of the motion, because it does not commute with
the projectors vyv,'. We see that using a clock to control a process perturbs
the clock mechanism! Are you surprised?

The equations of motion of the clock can be soved by perturbation theory.
The cdculations are fairly intricate® and will not be reproduced here. The end
result is that the precession angle is approximately given by the ramp function

32A. Peres, Am. J. Phys. 48 (1980) 552.
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0 for t<t,,
Qt—t,) for t,<t<ty, (12.127)
Qty —ts) for t> .

This is the desired result. It was obtained by using the time-independent Hamil-
tonian (12.126). The approximations that are needed for the derivation of this
result are j > 1 (which is necessary for making a good clock) and Q1 <« 1,
which means that the clock’s time resolution is much finer than the precession
period—a physically obvious requirement.32

Another, more realistic model for switching on and off a magnetic field is to
use as our clock the trandlational degree of freedom of the spin § particle, which
simply enters into a magnet at time t,, and exits at time t,. The Hamiltonian
describing this model is similar to the one that was used for the time-of-flight
measurement:

H = (p?/2m) + P(x) ® 1 AQo,. (12.128)

Comparing this with Eq. (12.102), we see that the spin and position degrees of
freedom have exchanged their roles. The solution of the equations of motion is
the same, of course (in the present case, j = 15).

Exercise 12.14 Show that the condition OVO < E that was necessary for the
time-of-flight measurement becomes now

kL > Q(ty — 1), (12.129)

where k = p/k and L is the length of the magnet. What is the physical meaning
of this condition?

12-8. Time and energy complementarity

It is well known that time and frequency are conjugate variables in a pair of
Fourier transforms. As a consequence, the duration of a signal (a musical note,
say) and the frequency of that signal (the pitch of the note) are subject to an
unsharpness relation, At Aw 2%. This property, illustrated in Plate 111 (page
214), is purely classical.

In quantum theory, frequency means energy. You find, in some textbooks and
articles, an uncertainty relation At AE > #/2, or, even worse, a “relativistic’
generalization:

Az* Ap, > 1hé". ? 12.130
20,
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What can be the meaning of such a relation? In conventional quantum theory,
the statement AqAp = hk/2 means that if we measure q on an ensemble of
particles, and p on another identically prepared ensemble, the product of the
standard deviations of the results of these measurements is at least i /2. If we
try to interpret (12.130) in the same way, we are faced with two difficulties: It is
in general wrong that AxAH =0, since x is not a constant of the motion; and
the expression At is undefined, because there is no t operator, and no meaning
can be given to “measuring the time of a physical system,” in the same way as
we measure its position, or momentum, etc.

Another claim which frequently appears in the literature is the following:
If otis the duration of the measurement of an energy, the result is uncertain
by AE > 1k/6t. This claim is absurd. It is analogous to saying that if we
measure a momentum with an apparatus of size dx, the momentum uncertainty
is Ap > 1h/éx. This is manifestly wrong: a mundane radio receiver whose size
is only a few centimeters can determine the wavelength of a radio station with
an accuracy AMA < 1. In other words, it measures the momentum of the
photons emitted by that station with an accuracy

Ap € R/ < hfbz. (12.131)

Still another claim, illustrated in Plate | (page 2), is that the time (registered
by a clock) at which an energy is measured with an accuracy AE, is uncertain
by at least k/AE. This aready sounds better, because we have defined a clock-
time operator T, and we can therefore investigate the possible existence of an
uncertainty relation between AT. and AH. However, there is no reason to
expect that there actualy is such an uncertainty relation, because the operator
T, refers to the clock, and the operator H to the observed system. These two
operators commute, and quantum theory allows us, in principle, to measure
both of them simultaneously with arbitrary accuracy. The analogy with a radio
receiver can again be used: its position can be accurately determined while it
measures the momentum of the photons emitted by the radio station, in such
a way that Eq. (12.131) is easily satisfied.

These issues were not understood in the early years of quantum theory. It is
only a much later stage that they were thoroughly analyzed by Aharonov and
Bohm,32 who came to the conclusion that “there is no reason inherent in the
principles of quantum theory why the energy of a system cannot be measured
in as short a time as we please.” To support their claim, Aharonov and Bohm
constructed a model Hamiltonian, involving two particles (the “system” and the
“apparatus’), such that the apparatus could perform a repeatable measurement
of the energy of the system in an arbitrary short time.

These conclusions were criticized by Fock,2* on the grounds that the Hamil-
tonian used by Aharonov and Bohm contained an arbitrarily sharp function of
time, g(t), for switching on and off the interaction. Fock wrote:

33y, Aharonav and D. Bohm, Phys. Rev. 122 (1961) 1649.
34V. A. Fock, J. Exp. Theor. Phys. (U.SSR) 42 (1962) 1135 [transl.. Soviet Phys. JETP 15
(1962) 784].
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The introduction of an explicitly time-dependent interaction is equivalent
to the introduction of a field which can be described classicaly (in the cor-
respondence principle sense). However, the classica fields and test bodies
used in the equations of quantum mechanics are not free of the limitations
imposed by the Heisenberg uncertainty relations. On the contrary, the use
of classical fields and test bodies is based on the premise that the uncer-
tainty relations are satisfied for them so strongly [i.e.,A qAp>>hA] tha
it is unnecessary to introduce these relations explicitly. If however it is
(illegimately) assumed that the classical field or test particle may violate
the Heisenberg relations, it should come as no surprise that these relations
will also be violated for the quantum mechanical particle serving as object.

To counter Fock’s criticism, Aharonov and Bohm® modified their Hamiltonian
by introducing a third particle (a “clock” with linear coordinate z) and replaced
the switching function g(t) by a time-independent function, g(z). The resulting
time-independent Hamiltonian formally alowed to measure the energy of the
system, repeatably and in an arbitrarily short time. Everything in this model
was internally consistent.

This dtill leaves an open question, namely whether there are, in nature, inter-
actions which are arbitrarily intense and localized, like the function g(z). In the
present context, however, this is a practica problem, not a fundamental one. It
is like asking, when we study Euclidean geometry, whether it is possible to draw
arbitrarily thin lines, or to manufacture perfectly rigid rulers and compasses.
These technical questions are irrelevant to the study of geometry. Likewise, the
practical feasibility of producing in a laboratory the Hamiltonian that we have
written (without violating any fundamental law, of course) is irrelevant to the
logical structure of quantum theory.

When we anayze these fundamental issues, we should not consider quantum
theory as a tool with which we describe existing physical objects. Rather, quan-
tum theory must be seen as a set of abstract rules—just as Euclidean geometry.
When we come to the physical interpretation of the theory, its abstract elements
are simulated by materia objects—just as the abstract notions of “line” and
“circle” are simulated by thin dark bands drawn on white paper with the help
of rulers and compasses. How good a simulation we can actually achieve is an
important practical problem, but not a fundamental one.

Metastable states
The survival probability of a time-dependent quantum state is defined as

P(t) := [($(0), p(IN? = |{(0), e~/ Ep(0)) 2. (12.132)

(The word “survival,” used in the current literature, is somewhat misleading,
as it suggests the irreversible death of a member of a living community. No

35Y. Aharonov and D . Bohm, Phys. Rev. B 134 (1964) 1417.
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irreversible phenomena are involved in the discussion below, and there is no
reason for the “survival probability” P(t) to be a monotonic decreasing function
of time. It may also temporarily increase, or oscillate, as in the periodic motion
of a coherent state of a harmonic oscillator.)

Exercise 12.15 Let ¢ (0) = Y ceue,where uEe denotes energy eigenstates.
Show that (1(0),%(t)) = 5 |cg|? e—EH/",

Exercise 12.16 For systems with a continuous spectrum, the result of
the preceding exercise becomes (1(0),%(t)) = fw(E)e F/*dE. Therefore
(¥(0),%(¢)) and w(E) are a pair of Fourier transforms. Show that the expo-
nential decay law, (¥(0),%(t)) = exp(—A|t|/2 — iE\t/h), corresponds to

w(E) = (12.133)

5
(B =B+
where E; is the mean energy of the metastable state, and ~ = h)\/2.

The energy distribution in Eq. (12.133) extends to +oc, and in particular has
an infinite AE. This is obviously unphysical. Therefore, no decay law can
be strictly exponential. It can however be shown® that P (t) decays in an
approximately exponential fashion, provided that

v < AE < Ey — Eo, (12.134)

where Eg is the ground state of the system. Note in particular that y, which is
the half-width of the resonance curve (12.133) at haf its maximum height, is
not the same thing as AE, the standard deviation of the energy distribution. In
perturbation theory, y is a second order quantity, as shown by Fermi’s golden
rule (12.115), while AE = ({H?) — (H)?)V/2 is of first order.

Deviations from the exponential decay law are most noticeable for very short
times, as may be seen by expanding Eg. (12.132) into powers of t. We have

P(t) =1—((H?) — (H)®)#2/R* 4 ... (12.135)
A more accurate formula is3®
P(t) > cos*(tAE/R) Y |t] < wh/2AF, (12.136)

which is easily proved as follows:¥ For any operator A we have, by virtue of
the uncertainty relation (4.40),

AAAH > F{[AHD)] = § h[(dA/dt)| = } h|d(A)/dt]. (12.137)

In particular, let A be the projector on the initial state Y (0). We then have

36G. N. Fleming, Nuovo Cimento A 16 (1973) 232.
3D, Home and M. A. B. Whitaker, J. Phys. A 19 (1986) 1847.
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(A) = ($(2), A(t)) = P(t). (12.138)
Moreover, A2 = A, so that
(AAY? = (A?) — (A = P — P2, (12.139)

Combining these equations, we obtain

|dP/dt] < (2AE/k)\/P(1 - P), (12.140)

and Eq. (12.136) follows, by a trivia integration.

12-9. Incompatible observables

Let us try to measure simultaneously noncommuting operators A and B, by
generdizing the interaction (12.39) as follows:

H=g(t)(Ap: + Bpy), (12.141)

where p1 and p, refer to two independent pointers. To simplify the analysis,
let g(t) = 1 for the duration of the interaction (0 < t< 1 with an appropriate
choice of the time unit). The result of the interaction (12.141) is most easily seen
in the Heisenberg picture or, equivalently, in classical mechanics, with Poisson
brackets instead of commutators. The equations of motion are

ﬁl = I‘)z = 07 él = Aa qz = Ba (12142)

and

A= [Av H]PB = D2 [A’B]pay

) (12.143)

B =B, H],, = p1 B, A,y
In classical mechanics, we can aways assume that p1 =p, = 0, and it then
follows from (12.143) that A and B are left undisturbed by the measuring
process. In quantum theory, the situation is more complicated. We want the
pointers to be well localized. Their wave functions @ (g1) and @2(q2) must have
narrow support, so that the expectation values of the displacements,

a-aO)=[A0d  ad  @)-a0)= [ Bd, (12144

are not marred by large dispersions.
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However, a narrow support for ¢(q) entails a broad distribution for the cor-
responding momentum representation,¢(p). It then follows from (12.143) that
A and B do not remain constant during the measuring process. The measure-
ments disturb each other, and the fina meter readings, given by Eq. (12.144),
do not represent the initial nor the fina values of A and B, but rather some
mean values, during the interaction.

Positive operator valued measures

A more sensible way of getting information about incompatible observables is
to use a non-orthogonal POVM, as in Eqg. (9.79). The resulting information will
necessarily have some fuzziness, as we shall explicitly see in the example below,
but this is the best that can be done in a quantum context.

What is a good POVM? A natural requirement is the following one: if the
system was prepared in such a way that A has a sharp value (a fact which could
be ascertained by a von Neumann measurement of A), the POVM shall give us
a good estimate of that value; and if the system has a sharp value of B, the
same POVM gives a good estimate of the value of B. This criterion is in genera
agreement with the classica meaning of the word “measurement,” but it also
allows for some uncertainty of the results, as demanded by quantum theory.

Conversely, the selection (by a quantum test) of a particular component of the
POVM should be equivalent to the preparation of a mixed state for which both
A and B have roughly defined values. We have already seen an example of this
property on page 386, where a POVM is used for the approximate determination
of an angular momentum coherent state.

Exercise 12.17 Set up, by analogy with Eqg. (12.37), a POVM which allows
to measure approximately g and p.

A simple, intuitive method for the simultaneous measurement of q and p was
proposed by Arthurs and KeIIy.?’B’39 Consider an ancilla, with canonical variables
Q and P, prepared in a standard coherent stateyp, with [Q0O= PO = 0, and
AQAP= k/2. The dynamica variables q — Q and p + P commute and can
therefore be measured simultaneously.

Before this measurement, the state of the composite system is a direct
product, ¥(q) ® ¥,. The expected dispersion of the possible results of the
measurement is

[A(a - Q) = (4= Q) ~ (4~ Q) = (Aa)* + (AQ), (12.145)

and likewise for A(p + P). If initialy Aq<« AQ, we have A(q—Q)=~ AQ, so
that the observed value of q — Q typicaly differs from the sharp value of g by
about AQ. Conversely, if initialy Ap < AP, we have A (p + P) ~ AP, and

BE. Arthurs and J. L. Kelly, Jr., Bell System Tech. J. 44 (1965) 725.
%5, Stenholm, Ann. Phys. (NY) 218 (1992) 233.
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the observed value of p + P may differ from the sharp value of p by about AP .
The criteria for a good POVM are therefore satisfied.

It is instructive to write explicitly the POVM which corresponds to the above
procedure. Let x = g—Q and y = p+P. These are a complete set of commuting
operators, and a pure state of the composite system can be denoted as @ (x,y).
Let us divide the classical xy plane into small rectangular cells C,, centered at
(Xxu,yu), and covering the entire plane. The determination of a particular value
of the label p is equivalent to a measurement of x and y, with a resolution equal
to the size of the cell C.

Let us define functions

_J1 if xO Cy,
fulz) = { 0 otherwise, (12.146)
and
_[1 ityoc,
9u(y) = { 0 otherwise. (12.147)

Further definell, (x,y) := fu.(z)g.(y), which satisfies T, II.(z,y) =1 and
O.(z,y) I, (z,y) = 6, (z,y). (12.148)

In quantum theory, thell,(x,y) are a complete set of orthogonal projectors,
which correspond to the possible outcomes of a von Neumann measurement.
If the initial state of the composite system is ®, the probability of obtaining
outcome W is

(Ta) = (2, fulx) 9uly) @) = (fu(x) @, gu(y) ®). (12.149)

Obviously, the most convenient way of expressing f.(x)® is its coordinate
representation, namely f.(¢ — @)¥(q)¥o(Q). Likewise, g.(y)® is most easly
written by means of the momentum representation, as g,(p — P)%(p)¥o(P).
The inner product (12.149) is thereby referred to two different bases. This does
not cause any difficulty. For example, if u =3 am u, and v =3 b,v,, we have

(U, V) =3 G (U, V) by = Ao Crns b,y (12.150)
my muy

where Cny is the unitary matrix relating the bases {up,} and {v.}. Likewise,
given the wave functions ¢(q) and ¢ (p), we have, from the definition of the
momentum representation, Eq. (10.54),

(@) = [ @@ (g dg = [3@) | [ /" i(p) dp/ V2R | dg,

= / / 300) €% (p) dg dp/ /2. (12.151)
The value of [0, given by Eq. (12.149), thus becomes

2—71r-h /f/ Ffula = Q)2(q,Q) e*PN% g (p + P)&(p, P) dq dpdQ dP.



420 The Measuring Process

To evaluate this expression, replace the integration variables g, p, Q, and P,
by g, p,x=9g-Q,and y=p+ P (the Jacobian of the transformation is 1).
The integrations over x and y are trivial if the cell C is small enough so that
the other functions in the integrand can be considered as constant within that
cell: we simply replace, everywhere in the integrand, x by x,,, and y by y,.
Denoting the cell area by S, (which has the dimensions of an action) we obtain

S, _— . -
(ML) = 2% [[Faq=z,) elmrsrmml §(p,y - p)dgdp, (1215

_ S igyu/h & iz (P~yu)/h
—2wh/¢’(q,q-xu)e dg /‘I’(p,yu—p)e wipmal® dp.

This factorization is remarkable! Consider in particular the initial state of
the Arthurs-Kelly composite system, namely ®(q,Q) = ¥(q) ¥o(Q), where

Uo(Q) = (wo?) 14 e=@M/2%, (12.153)

is a coherent state centered at Q = P = 0. We have, in (12.152),

J# gz emitdg = [g) wola = z.) e da. (12.154)
Now, it is readily seen from Eq. (10.99) that
Vo(q — z,) e/t = (gg?)~1/4 ¢~(a-2u)?/207 giayulh (12.155)

is the result of displacing ¥g(g), SO as to obtain a new coherent state, ¥ ,(q),
centered at the point (xu y,). Therefore (12.154) becomes

9@ Talg - ) el dg = (4, W,). (12.156)

Exercise 12.18 Show that the momentum representation of the minimal
uncertainty wave packet (12.155) is

‘i’u(P) _ (02/7rh2)1/4 o= (p=uu)20? /257 e—izu(P-yu)/ﬁ’ (12.157)
and that
/ &(p,yu — p) =W/ dp = (T, ¢). (12.158)

Using the results of this exercise, we finally obtain

() = (5u/27R) (%, Wu) (¥, ) = (4, Au ), (12.159)

where the POVM element A, is proportional to the projector on the coherent
state ¥,

A, :=(S,/27h) ¥, ¥t (12.160)
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The WAY theorem

Until now, we considered pairs of incompatible observables, represented by non-
commuting operators. It was tacitly assumed that any single given operator
could aways be measured, by concocting an interaction Hamiltonian like the
one in Eq. (12.39). We shall now examine this assumption more carefully.
Quantum theory, by itself, does not preclude the redlizability of an arbitrary
Hamiltonian. However, additional requirements may restrict the class of ad-
missible interactions. In particular, we may demand that specific conservation
laws be respected during the measuring process.

For example, let p be the momentum of the observed system, and P that of the
measuring apparatus. If there is no external agent to carry excess momentum,
p + P is conserved. This precludes the measurement of any dynamical variable,
such as g, that does not commute with p + P (to measure ¢, there should
be a term involving g in the interaction Hamiltonian, and then p + P would
not be constant). The reason for this is simple: Conservation of the total
momentum implies that we live in a trandation invariant world, where the origin
of the coordinates is not a physical object. Therefore, the position operator q
is experimentally meaningless. Only the relative position of the system with
respect to the apparatus, q — Q, is observable, and indeed g — Q commutes
with p + P, and can be measured without violating any conservation law.

More generally, the WAY theorem®* states that it is impossible to measure
(in the von Neumann sense) an operator which does not commute with an
additive conserved dynamical variable. A simple proof42 is given below.

Let A and B be two operators belonging to the observed system, and C an
operator of the apparatus, having the property that the sum B+C is conserved.
In particular, if U is the unitary operator which produces a measurement of A,
we have

Ut(B+CQ)U=B+C. (12.161)

Recall that such a measurement generates a correlation of the eigenstates of A
(which are defined by Auym = muy,) with various states vmg of the apparatus,
as in Eq. (12.3):

Un Vo — U Um Vo = Uy Zcma Vma = Up Wiy (12162)
a

The last equation defines wy,, which satisfies |jw,.|| = 1, by unitarity.
We have to show that A cannot be measured unless [A, B] = O. Indeed, in
the basis u,,, which diagonalizes A, we have

(U, [A,Blun) = (U, (AB = BA)u,) =(m — n) Bun. (12.163)

40E, P. Wigner, Z. Phys. 133 (1952) 101.
“Y. Araki and M. M. Yanase, Phys. Rev. 120 (1960) 622.
42 G. C. Ghirardi, F. Miglietta, A. Rimini, and T. Weber, Phys. Rev. D 24 (1981) 347, 353.
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Moreover, [A, C] = O, because A belongs to the observed system, and C to the
apparatus. The matrix elements in (12.163) can therefore be written as

(Umvo, (A, Blu,ve) = (unmvo,[A, B + Clunve),
= (m —n){unmvo, (B + C) u,ve). (12.164)
Combining these various equations, we obtain, for m# n,
Bon = (o, UN(B + Q) Uty vo) = (U Wi, (B + Chupwy), (12.165)
= (U, Bugn) (Wi, Wo) + (U, Un) (Wi, Cw) = B (Wi, W),

since ., unD: 0. It follows that either v, WnD= 1, which effectively means
that there is no measurement, or Bmm = 0, which implies [A, B] = O.

Nonetheless, an approximate measurement of the operator A is possiblel42
provided that the initial state of the apparatus has a sufficiently large value of
AC. For instance, if we want to measure q but we can only measure q — Q,
we shall prepare the apparatus in a state with a very narrow AQ. Then the
observed value of g — Q will typically differ from the expected value of g (which
we cannot directly observe) by a quantity of order AQ. Therefore AQ, which is
defined as usua as the standard deviation of Q in the initial state, also acquires
the meaning of an uncertainty in the inferred value of g. Obviously, in such a
procedure, the initial state of the apparatus has a large AP.

Here is another example: the WAY theorem implies that, if the total angular
momentum is conserved, we can only measure rotational scalars. Then, how
can we measure [, in a Stern-Gerlach experiment? This is the z-component of a
vector operator, which does not commute with the conserved rotation generators
J and Jy. Yet, we can approximately measure |,. The point is that |, appears
in the Hamiltonian (1.4), which describes the Stern-Gerlach experiment, only in
the combination p-B. This indeed is a rotational scalar, which can be measured
without violating any conservation law. The true problem is to guarantee that
B, the magnetic field at the location of the atomic beam, precisely points toward
an externally defined z-direction.

To give the desired orientation to the magnetic field, the magnet has to
be prepared in a superposition of many different angular momentum states.
We have aready encountered this property with a much simpler system, the
N-state quantum dial of Sect. 12-7. Each dia state (10.89) has an angular
resolution a = 21/N and its angular momentum spread, given by (12.100), is
AJ = (7/v3)(R/a). Moreover, for a macroscopic body such as a Stern-Gerlach
magnet, a given angular resolution o entails a value of AJ considerably larger
than % /o (see Fock’s remark on uncertainty relations for classical bodies, quoted
on page 415). Thus, if we set an upper bound to AJ, the WAY theorem implies

that, instead of measuring o, , we actually measure some other component, o,,,
along a direction n which is dightly different from the required direction z

Exercise 12.19 For given values of J and Al hJ, estimate the expected
deviation of n from the z-axis. *x
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12-10. Approximate reality

Quantum theory is not an objective description of physical reality. It only pre-
dicts the probability of occurrence of stochastic macroscopic events, following
specified preparation procedures, such as, for instance, the triggering of particle
detectors following the collision of a specified beam with a given target. These
theoretical predictions rely on conceptua models which involve elusive micro-
scopic objects, such as electrons, photons, etc. The latter are usually considered
as real things, but they occasionaly display extraordinary nonlocal properties,
quite at variance with intuitive classical realism, as we have seen in Chapter 6.

The essentia difference between these two classes of objects, microscopic and
macroscopic, is not a matter of size, but of the completeness of their description:
al the degrees of freedom of a quantum system are taken into account in its
Hamiltonian. On the other hand, only a very small fraction of the degrees
of freedom of a macroscopic system (a few of them, out of 10 or 1030) are
explicitly used in its description. We renounce keeping track of nearly all the
physical properties of macroscopic systems. These are open systems the degrees
of freedom that are not explicitly taken into account play the same role as an
external environment. (There aso are intermediate, mesoscopic objects, for
which a significant fraction, but not al, of the degrees of freedom are explicitly
described.)

Since we give only an incomplete description of an open system, it is tempting
to postulate that some of its operators are not measurable. For example, let u
and v denote two opposite magnetization states of a macroscopic ferromagnet.
The operator M, = uuf—vv! is observable (with eigenstates u and v) but, on the
other hand, the Hermitian operator M, = uvf+vut is not. The eigenstates of M,
are (u+v)/v/2, namely coherent superpositions of u and v magneti zations—or,
if you prefer, of live and dead Schrodinger’'s cats. Even if such superpositions
could be prepared, we would be unable to maintain their coherence for an
appreciable time, as the following exercise shows.

Exercise 12.20 A compass needle containing 10” electrons with aligned
spins is placed in a magnetic field which is stabilized with an accuracy of
+10°° gauss. How long does it take for the phase difference between the u
and v states to become completely uncertain? Ans.. ~ 10" s.

The situation illustrated by this exercise is a special case of the emergence of
“pointer states’: ® the relevant degrees of freedom of each macroscopic system
define a preferred orthogonal basis (such as u and v in the above example, or L
and D for Schrodinger's cat). The elements of that basis are called pointer states
and have the property of being stable, except for an overall phase, with respect
to small, uncontrollable fluctuations of the environment. On the other hand,

linear combinations of pointer states have essentialy non-classical properties

“W. H. Zurek, Phys. Rev. D 24 (1981) 1516; 26 (1982) 1862.
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and are experimentally inaccessible. Their interaction with the environment
rapidly transforms them into incoherent mixtures.

Admittedly, the above claims of impossibility are no more than heuristic
rules. They cannot be formulated, let alone proved, in any rigorous way. There
is nothing in formal quantum theory which indicates that linear combinations
such as (u#v)/+/2 can be prepared for single particles, or for pairs of particles,
but not for 10, or 10 identical particles. You should never underestimate the
skill of experimental physicists!

Assuming that we have set arbitrary rules for distinguishing measurable from
nonmeasurable operators, it is then possible to define a classicad system as a
special type of quantum system, for which al measurable operators commute.
All the observable properties of such a classical system are compatible and can
therefore have sharp values. Note that a “classical” system defined in this way
may also have noncommuting operators, but the latter should be considered
as abstract mathematical expressions, which are not experimentally observ-
able. With this formal definition, the notion “classical” acquires a meaning
with respect to a specified set of dynamical variables. Obviously, by using
fine enough observation means, every physical system will display quantum
features* Physics is not an exact science. It is a science of approximations.

Macroscopic objectivity

Redl life seldom follows the idealized preparation-observation pattern presented
throughout this book. Astronomers, for instance, observe spectral lines (i.e, de-
tect photons) which they interpret as due to the presence of atoms or molecules
in interstellar space. Obviously, the atoms were there a long time ago in an
excited state; they decayed to their ground state, emitting photons which we
can now observe, considerably later. These excited atoms were not prepared by
us, nor our research assistants. We can only observe them passively. We also
observe bigger objects, such as the Moon moving around the Earth, or various
planets, without ever having prepared them.

This would cause no conceptua difficulty with quantum theory if the Moon,
the planets, the interstellar atoms, etc., had a well defined state p. However,
I have insisted throughout this book that p is not a property of an individual
system, but represents the procedure for preparing an ensemble of such systems.
How shall we describe situations that have no preparer?

Let us formulate the problem more precisely. Until now, we were interested
in questions of the type answered by Eq. (9.79): “Given a preparation p, what
is the probability for an observation A 7" (the L-th element of a POVM).
Now, there is a different type of question. For example, we may ask what is
the probability that if astronomer A successfully detects a POVM element A,
(e.g., observes a dot on his photographic plate, which he interprets as a star)
then another astronomer, B, will likewise detect a definite POVM eement By, .

443, M. Jauch, Helv. Phys. Acta 37 (1964) 293.
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To make these observations causally independent, let them occur in mutually
space-like regions (simultaneously on opposite sides of a star, say). None of the
astronomers can then affect the experiments of the other.

In principle, the calculations can be performed as follows. Let pi denote
the a priori probability for a configuration p; that can be encountered by our
observers (this p; may have been produced naturally, or prepared by other
people). If A detects an element A, of his POVM, the a posteriori probability
of configuration p; is, by the rules of Bayesian statistics (see Sect. 2-7),

Qiu = Pupi | 3 Py, (12.166)
M

where P,; = Tr(A, p:) is the probability of obtaining the result p, following
preparation pi. Then, the conditional probability that observer B will detect
an element Bn of her POVM (if A observes element A}) is

P{n|p} =3 Tr(B.p:) Quu, (12.167)

where the sum extends over a complete set of configurations p; (al the possi-
ble types of stars, say, with al their possible positions). We then intuitively
expect that, in a situation involving macroscopic objects for which a classical
description ought to be adequate, P{n|u}turns out to be vanishingly small
unless the observations by A and B are classically compatible. In that case,
these observations define an objective (that is, observer independent) classical
reality, except for practically negligible quantum uncertainties.

Notice that neither A nor B performs a complete set of measurements. They
actually observe different subsystems: the photons detected by A do not come
from the same atoms as the photons detected by B. Then, why should we
expect A and B to agree that there is, objectively, a star somewhere in the
sky? The reason is that any macroscopic object, such as a star, involves an
enormous number of identical subsystems with almost identical properties, in
particular identical positions, within the accuracy of our instruments. Thus,
a macroscopic object effectively is assembly, 45 which mimics, with a good
approximation, a statistical ensemble. Measurements performed on such an
assembly have a huge redundancy. In particular, different apparatuses can be
used for probing disoint subassemblies, each one of which is large enough to
mimic an infinite ensemble. We can thereby measure, with little dispersion, the
expectation values of noncommuting operators.

You must have noted the difference between the present pragmatic approach
and the dogmas held in the early chapters of this book. It was then asserted
that any operator which can be written by a theorist can also be measured in the
laboratory. This fiction was needed in order to establish a forma framework
for quantum theory. Now, our goal is different: we want to use a classical
language for describing, with a good approximation, macroscopic phenomena.

45See footnote 9, page 59, and related text.
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The transition from the quantum language to the classical one is possible only
at the cost of introducing considerable blurring in the physical variables (for
example, having AqAp > k). It is this reduction of our resolving power
which alows the emergence of an objective redlity, even if only a fuzzy one.

Measurable operators form only a small subset of all the operators that can
be defined. We can perform only a negligible fraction of al conceivable tests,
and we therefore end up with a partial knowledge of p; (our lack of knowledge is
represented by an appropriately weighted mixture of al admissible possibilities).
The accessible data usually are macroscopic variables, such as the position and
velocity of the center of mass of an object. For these macroscopic variables,
we have AqAp > k. Compared to these classica uncertainties, disturbances
caused by quantum measurements are negligibly small. Moreover, macroscopic
masses are large so that corresponding wavelengths are small and diffraction
effects can be neglected. Therefore consecutive measurements of position have
predictable results. This ensures the applicability of deterministic eguations of
motion, which enable us to extrapolate our knowledge to the distant past and
future, when observers did not, or will not, exist.

Exercise 12.21 A large number of spin-2l particles have a polarization state
p=3(1+m-e), with jm| < 1. An observer takes three subsets, with
100 particles in each, to measure the three components of [G;0and thereby
determine the polarization parameter m. A second observer does the same,
with three other subsets of 100 particles. By how much are their findings likely
to differ? If each observer could examine only one particle for each component
of gj, what would be the answer to the same question?  x

In summary, macroscopic objects, containing many identical subsystems with
almost identical states, behave, in a good approximation, as if they had objective
(i.e., observer independent) properties, provided that the observers restrict their
enquiries to a small subset of all possible questions. For example, if p represents
a state of my pen, and p' is a state of that pen with one atom removed, these two
states are orthogonal. However, they can be distinguished only by measuring
an operator A for which Tr(pA) # Tr(p’A). If we restrict our attention to the
class of operators Q such that Tr(pQ) ~ Tr(p'Q), we cannot find out whether
an atom is missing from the pen.

Bell inequalities for consecutive measurements

Once you accept the hypothesis that only pointer states® of macroscopic bodies
can be prepared and observed, you will perhaps be tempted to further assume
that a macroscopic body can actually be only in one of these states, and never
in a linear superposition of different pointer states (e.g., Schrodinger's cat must
be either aive or dead, it will never hover between life and death in a quantum
mechanical superposition). To be sure, this assumption radically departs from
orthodox quantum mechanics, but, since the latter has been tested only for
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microscopic systems, it is not illegitimate to speculate that quantum mechanics
does not apply to macroscopic systems. Perhaps, it is valid only in the limiting
case of perfectly isolated microscopic bodies, in the time interval between their
preparation and their observation by external agents; but quantum mechanics
might fail for open systems with many degrees of freedom.

Let us examine the observable consequences of these assumptions. In view
of the macroscopic nature of the pointer states, it is plausible that the latter
can be recognized noninvasively, that is, without causing transitions to other
pointer states. The time evolution of a macroscopic system could then consist
of stochastic transitions from one pointer state to another. It would become
deterministic in the limit where classical dynamica laws are valid.

Consider now a dichotomic variable, A, with values 1, as in our derivation
of Bell's theorem in Chapter 6. According to the above assumptions, A has, at
each instant, a definite value, 1 or -1. Let a; denote the value of A a time t; .
For three consecutive times, we have, identically

((h + 0,3) ag S 1+ a; az. (12168)

This equation does not assume any specific dynamical law, but only the possi-
bility of performing noninvasive measurements: “®the value of a;on the right
hand side (with ho measurement of a,) is the same as that on the left hand side
(when there is a measurement of a).

If a large number of physical systems are prepared according to the same
macroscopic procedure, they may still differ in some microscopic details, and
the actual values of ajfor these systems may be different. Let us therefore
consider ensemble averages, such as [3j a;J and define

Kij = 1-[3 a0 (12.169)
By virtue of Eq. (12.168), the K;; satisfy
K13 <Kp + Ko, (12170)

This is a slight generalization of Herbert’s inequality’ and | shall also call it
like that. The only assumption required for its derivation is the noninvasive
measurability of the objective pointer states. This is a counterfactual assump-
tion, which might be called locality in time: the hypothetical hidden variables
which determine the value of a3 are the same, whether or not we measure a,.
Recall that Bell’s inequality was likewise a consequence of locality in space. In
both cases, no specific dynamical model is assumed.

The actual values of K;; can be obtained from quantum theory, if the latter
is held to be valid, or any other theory which would supersede quantum theory
for macroscopic bodies; or they can be measured experimentally, irrespective of
any theory. Therefore Herbert’s inequality (12.170), just as Bell's inequality, is
amenable to an experimental test.

46 A. ) Leggett and A. Garg, Phys. Rev. Lett. 54 (1985) 857; ibid. 63 (1989) 2159.
“"N. Herbert, Am. J. Phys. 43 (1975) 315.
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For instance, consider the precession of a spin % particle, with H = hwo..
If we measureo; at equa time intervals t, we obtain K2 = K3 = 1 — cos 2wt
and Kj3 =1 — cos4wt. Herbert's inequality (12.170) becomes

2(1 — cos2wt) < 1 — cos dwt, (7 (12.171)

which is obviously wrong for [do t0 <7/4. This is not surprising: a spin % particle
is a genuine quantum object, without privileged pointer states, and it cannot
have the objective properties tentatively attributed to macroscopic bodies.

Exercise 12.22 Consider a uniformly rotating classical particle, for which we
measure a; = sign (cos 6). Show that K;; = 06;-8;0J, so that Herbert's inequality
is satisfied.

Exercise 12.23 Show that, if AH is finite, Fleming's unitary limit (12.136)
is incompatible with Herbert's inequality (12.170). *

A more interesting example is a superconducting loop enclosing a quantized
magnetic flux. The current in the loop is a collective degree of freedom, well
isolated from the environment. The flux eigenstates are separated by a con-
stant amount, ® , = h/2e = 2.0678 x 10 Wb. They can be considered as
pointer states. Transitions between these levels were investigated by Leggett
and Garg’® who also derived inequalities similar to (12.170) and considered the
possibility of their experimental verification.

Experimental results coming close to quantum measurements of macroscopic
systems were obtained with ferritin crystals, which are naturally occurring anti-
ferromagnetic proteins with about 4500 ordered spins. Quantum transitions
between opposite magnetization states were observed® These experiments
were partly inconclusive, because of noisy conditions. It may however be hoped
that improved technology will soon enable us to observe coherent superpositions
of macroscopically different states, and reversible transitions between them.
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The first one of these books is a classic, which shaped the early thinking on quantum
measurements. It was the first serious attempt to give rigorous foundations to quantum
theory, and had a profound influence on its development. Helstrom’s book, on the other
hand, is written from the pragmatic point of view of a modern communications engineer,
with emphasis on the statistical analysis of noisy signals. And the third book will be
preferred by readers who enjoy more abstract presentations.

Extensive collections of articles on quantum measurements can be found in the
following anthologies, which aso include interesting comments by the editors:

Quantum Theory and Measurement, ed. by J. A. Wheeler and W. H. Zurek,
Princeton Univ. Press, Princeton (1983).

Foundations of Quantum Mechanics Since the Bell Inequalities, ed. by
L. E. Balentine, Am. Assoc. Phys. Teachers, College Park (1988).

Nonclassical Effects in Quantum Optics, ed. by P. Meystre and D. F. Walls,
Am. Inst. Phys., New York (1991).

Finaly, if you want to have an idea of the real thing, you should read

C. D. Tesche, “Can a noninvasive measurement of magnetic flux be performed
with superconducting circuits ?” Phys. Rev. Lett. 64 (1990) 2358.

This paper on quantum measurements was written by an experimental physicist who
analyzed the actual feasibility of the experiment proposed by Leggett and Garg®® The
setup involves superconducting quantum interference devices (SQUIDS) with variable
threshold switches and magnetometers. These are open systems, and an appropriate
discussion requires notions such as noise temperature and ohmic resistance, which |
found convenient to ignore in the present book.
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Lyapunov exponent, 335, 345, 350ff
Lyapunov factor, 335, 339, 344

Mach-Zehnder interferometer, 62, 385
macroscopic degree of freedom, 17
macroscopic variables, 426
Macroscopic  VS. microscopic systems,

10ff, 345ff, 378, 423
macroscopically distinguishable, 178, 378
macrovariables, 272ff
magnetic moment, 14, 24
Malus law, 157
many worlds interpretation, 374
map,

discrete, 332

parabolic, 337ff

guantum, 351

standard, 337, 351
marginal distributions, 313, 316ff
Maslov index, 311
mass, geometric definition, 248, 253
matrices,

antihermitian, 221

Hermitian, 64

normal, 72

orthogonal, 41, 48

polar decomposition, 72

transformation law, 64ff

unitary, 41, 48ff, 64
matrix mechanics, 20, 23
Maxwell’s demon, 297
meaningless questions,

10, 169, 227, 292, 377
measurable operators, 426
measurement, 14ff, 62ff

ambiguity, 187ff, 208
approximate, 422
disturbance, 14, 93, 148, 378 -
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finite duration, 391, 401ff approximate, 377
fuzzy, 29, 384, 387, 397ff, 401 limits of, 289
model, 375 macroscopic, 424
of first kind, 378 observables, 62ff, 280
of time, 405 ambiguity, 208
of time-dependent variables, 404ff composite systems, 119ff
“problem,” 280 representation by a matrix, 67
simultaneous, 188 observers, 12, 150, 163, 165, 172, 178, 180,
measurement theory, classical, 378 191ff, 343, 376, 399
aways fuzzy, 399 ambivalent, 373
memory, 266 are physical systems, 168
mental experiments, 25 communication between, 154, 170, 293ff
mesoscopic, 423 macroscopic, 345ff
mesovariables, 272 ohmic resistance, 429
message, 153 one-particle operator, 143
metastable states, 415 ontology, 374
“ metgr," 387ff open system, 173, 377, 423, 427
.Wldth, 388ff, 398ff ] operators, linear, 84
Michelson-Morley experiment, 215, 237 adjoint, 86ff, 182
microvariables, 272ff bounded, 84
m!sprlnt, not a, 225 closed, 87
mixing, 340, 347 domain of definition, 84, 86
mixture, 72ff extension, 87

momentum operator, 225, 313 local. 84
momentum representation, 313, 404, 418ff '

Moon, 137, 349, 424 :LJIrIm,824
music, 214, 323 Cuesiloca, 84
restriction, 87

Neumark’s theorem, 285
neutron diffraction, 229
no-cloning theorem, 279

self-adjoint, 86ff, 102
self-adjoint extension, 87ff

noise, 181, 369, 381 symmetric, 87
non-orthogonal states, 55, 274, 294 transformations of, 221ff
sdlection, 275ff unbounded, 85, 95
nonfactorable, see entangled without eigenvalues, 96
nonintegrable systems, 311, 336, 344 optic axis, 6ff
noninvasive, 380, 427 orbit,
nonlocal, 169 chaotic, 338, 344, 347
transformation, 405 periodic, 311, 334
nonlocality, 169, 173 regular, 338
vs. contextuality, 187 smaller than h,381
weak and strong, 170, 192 stable, unstable, 332, 334ff
norma ordering, 145 orthogonal states, reversible rotation,
number operator, 139 274, 277, 394

overcomplete basis, 323, 326
objective, 4, 14, 16ff, 58, 90, 188, 282, 293, uniqueness, 326
 345,423,425,427ff overlap of quantum states, 281
objectivity, 374 - perturbed and unnerturbed, 366ff
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p-representation, 321
see also momentum representation
paradoxes, 5, 150, 160, 169, 187, 250, 263,
349, 373,394
parafermions, 141
parastatistics, 131
observable consequences, 136
parity, 156, 258
partition function, 267
path, 38ff
perturbation theory, 332, 416
failure for chaotic systems, 353
for unitary matrices, 352
third order, 353
perturbations, external, 353
petitio principii, 275
phase,
arbitrariness, 54, 123, 217, 225, 227,
231, 235
determination, 58ff
shift, 118, 131, 408
phase space,
area = integral multiple of h, 319ff
classica, 55, 267, 303, 381
compact, 319
distance in, 347
division into cells, 350
quantum mechanics in, 312
photoelectric effect, 4, 20
photons, 4
as probes, 385
megajoules of, 75
polarized, 5, 7, 47, 59ff, 116ff, 163ff,
277, 293ff
unpolarized, 261
photon pairs, 155ff, 169
correlation, 157, 295
indivisible, 169
physicists, 3, 4, 12, 13, 50, 58, 59, 172, 374
plaintext, 293
Planck’s constant, 228
planets, 304, 349, 424
Poincaré group, 252
generators (spinless particles), 254
Lie agebra, 254
Poincaré invariants, 303
Poincaré recurrence, 305, 349, 366

pointer, 375, 377, 401ff, 409
free particle, 379
several, independent, 417
zigzag motion, 405
pointer states, 407, 423, 426ff
Poisson brackets, 15, 238, 300, 382ff
and commutators,
225, 242, 319, 380, 417
for fields, 11
unequa time, 380
polarization,
circular, 8ff
eliptic, 8ff, 116
linear, 7ff
orthogonal, 9, 116
partial, 76ff
Polaroid, 5
position observable, 226, 254
positive operator, 74, 314
measure, 282
see also POVM
positronium, 156
P osTS cripT, 339, 370ff
potential barrier, 408
POV M, 283ff, 326, 330, 378, 386, 418ff, 424
choice of, 418
resulting quantum state, 288, 294, 418
precession, spin,
222, 237, 280, 342, 404, 412, 428
preferred basis, 423
preparations, 12, 280
macroscopically different, 280, 428
“same,” 13, 203
pressure, 271ff
principle of local causes, 160, 187
privileged coordinates, 345
probability, 13, 25
addition, 38
conditional, 36, 45, 281, 425
inverse, 45
joint, 45ff, 182
projection operator, 66, 70ff
orthogonal, 71ff, 190ff
projection postulate, 442
projector, 190ff, 202, 351
orthogonal, 205, 283
see also projection operator
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propagator, 245 irreversible, 375
proper time, 250 reduction of off-diagonal matrix elements,
proton recoil, 28 390ff, 395
pure state, 30ff, 48, 56, 117, 261, 314 regular,
evolution into mixture, 369 classica system, 353
domain, 311, 354, 361
g-representation, 313, 321 quantum motion, 364
see also Xx-representation relative state interpretation, 374
QND (quantum nondemolition), 380, 400 glgtivistic dynamics, 254
quantum dial, 320 interactions, 254
gquantum number, 311 no go theorem, 255
hidden, 132 other forms (Dirac), 255, 259
quantum  potential, 308 relativistic invariance, 249
quantum state, 24ff proving, 250
determination of, 58 relativistic quantum theory, 171
quantum system, 24, 60 relativity, general theory, 215
quantum  theory, remote state, 128ff, 137
alterations, 57, 375, 426ff representation, see also picture
“new ,” 20 reservoir, 266, 270ff
“old,” 18, 271 resolution of the identity, 99, 102, 280, 283
scope, 13, 18, 45, 50, 374, 412, 423 resolution, instrumental, 387
statistical interpretation, 13, 20ff resonance, 105, 416
quarks, 130, 132 rest of world, 172ff, 346
quarter wave plate, 8ff retrodiction, 36
quasienergy, 351 rigid body, 29, 215
quasiprobability, 314 Rihaczek function, 317
quaternionic quantum  theory, 44 robust states, 361ff, 363ff

robust variables, 380, 382ff, 400
rotating coordinate system, 242
rotation by finite angle, 232

rotation operator, 182, 233, 300

R matrix, 401ff
radial momentum, 89
radiation, thermal, 3, 47

orthogonal modes, 3 Runge-Kutta method, 344
radio station and receiver, 414 Rydberg states, 304ff
raising operator, 138, 322, 324
random mixture, S-matrix theory, 256ff
31ff, 154, 261, 267, 292, 295 Sagredo, 168
randomness, 5, 32 Salviati, 168
realism, scalar operator, 236
counterfactual, 206 scalar product, 51ff
local, 177, 299, 423 Hermitian, 52, 80
redlity, 10, 14, 16, 45, 153, 173, 425 of Wigner functions, 316
approximate, 423 Schmidt decomposition, 123, 176, 179
elements, 148 Schrodinger  cat,
recursive, 151 178, 373, 376, 378, 423, 426
fuzzy, 426 when did it die? 409ff
reasonable operator, 298, 377, 380 Schrodinger equation, 239ff, 410
reciprocity law, 35ff, 41, 56 for density matrix, 312

record, 17, 58, 373, 387, 408 - hydrodynamical model, 307ff -
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in accelerated coordinates, 246
in uniformly moving coordinates, 246
integration, 349
nonlinear variants, 241ff, 278
Schrodinger picture, 242, 247, 387
Schwarz inequality, 52, 80, 91
science fiction, 171, 296
second law of thermodynamics,
270, 277ff, 297
second quantization, 111, 142, 146
secular equation, 70
selection of state, 263, 273ff, 402
selection rule, 269, 353
semiclassical, 298ff, 319
semipermeable membrane, 270ff, 276ff
shift parameter, 325
signas, time-dependent, 387, 390ff
guantum limitations, 391
similarity transformation, 68
Simplicio, 168
singlet, 120, 124, 151, 162, 180
space reflection, 257

unitarity, 258
space-like, 166, 168, 425
spacetime,

four-dimensional formalism, 250

symmetries, 215
spectra, classification, 103

see also spectrum
spectral  decomposition, 10Iff
spectral family, 101
spectral theory, 99
spectrum,

continuous, 96, 103ff

discrete, 103

mixed, 103, 409

point, 349

dense, 106, 318

power, 181

singular continuous, 106

white, 181, 183
speculations, 173, 426ff
spherical harmonics, 193ff
spin echo, 342, 345
spin 3 particles, passim

pair (in any state), 189, 200
spin 1, 33, 19Iff, 199ff, 203ff

spin, 3, 18, 132, 212
from two spin 3 algebras, 120
spin 1600, 359ff
spin j, 179ff, 186, 398
SPS cascade, 155ff, 163, 166
sgueezing, 325
SQUID, 429
stability of quantum motion, 364
staircase function, 100
standard deviation, 90ff, 321
statistical mechanics, classical,
3, 242, 267, 291, 312, 314
Stern-Gerlach experiment, 29ff, 237, 289ff
approximate, 422
classical description, 14ff
guantum description, 402ff
Stieltjes integral, 102
stochastic matrix, 34
doubly, 34, 41, 262, 264
orthostochastic, 41, 43
subadditivity, 265, 268
subjective, 345
superconducting loop, 428ff
superobserver, 376ff
superposition principle,
48, 115, 117, 127, 278, 378
strong, 54, 190ff, 283, 285
superselection rule, 83
supersymmetry, 259
supplier, your
of mixed states, 292
of polarized particles, 289
of pure states, 43, 53
surface of section, 334, 336
survival probability, 415ff
switching on and off, 412, 414
symmetry, 215ff, 244, 248
axia, 290
dynamical, 355
kinematic, 215
rotational, 155, 180
translational, 421
symplectic matrix, 298, 333ff
eigenvalues, 334
synchronization, 249

technology, more advanced,
155, 158, 170ff, 276
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teleportation, 295
temperature, 267ff
tensor product, see direct product
tensor, 66
operator, 236
tests, 12, 24
biased, 34
compatible, 190, 203
constrained results, 204ff
correlated results, 205
in classica physics, 203, 425
complementary, 54
complete, 29
consecutive, 27, 33
see also consecutive measurements
elementary, 190
generalized, 279
idle, 32
incompatible, 13, 16, 149ff
see also incompatible observables
incomplete, 121, 132

indirect, 279

maximal, 29, 53, 117, 187, 237, 279,
283, 292, 295

repeatable, 27, 203, 378

unbiased, 31ff

theorists, 45, 50, 297, 425
thermal bath, 270
thermodynamics, 260
time,
not a dynamica variable,
238, 248, 251, 405
not an operator, 240, 323, 414
past-future asymmetry, 12ff, 262, 268
past-future symmetry, 36, 341
universal, 249
see also clock-time
time evolution,
canonical, 239
unitary, 238ff, 347
time ordered products, 44
time reversal, 257
antiunitary mapping, 258
motion reversal, 258, 345
time-energy complementarity, 413
time-energy uncertainty, 2, 94, 413ff
time-of-flight, 408, 413

time of passage, 409
tori in phase space, 336
torque, observation of, 395ff
trace, 73, 182
partial, 121, 288, 411
trace out, 389, 401, 411
trajectory, quasi-classical, 14, 26, 28
transfer matrix, 332ff, 338
transformations,
consecutive, 223
continuous, 220, 223
infinitesimal, 220
passive vs. active,

131, 215ff, 222, 225, 229, 231, 237

transition amplitudes, 39, 48ff
complex phases, 40ff
law of composition, 40, 49, 57
transition probabilities, 40ff, 51, 217
determine the amplitudes, 42ff, 51
transitivity, 203
translation in time, 237
canonical formalism, 238
transport law, arbitrariness, 232
triangle inequality, 53, 265
truncated sine and cosine, 320ff
truth and falsehood, 289ff
tunnelling between regular regions, 364
twist and turn model, 354ff
quantum, 358
perturbed, 360ff
regular and chaotic vectors, 363ff
symmetry classes, 358ff
twist, 300, 354
two-particle operator, 144

uncertainty principle, 445
uncertainty relations,
59, 89ff, 323, 374, 377, 409
angle and angular momentum, 93
classical, 378ff
stronger than quantum,
415, 422, 426
entropic, 296
time and energy, 2, 94, 414ff
time and frequency, 214, 323, 413
unitary equivalence,
formal, not phvsical, 227
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universe, watched pot, 399

expansion, 13 see also Zeno effect

finite, 345ff wave function,

indivisible, 173 discontinuous, 82

wave function, 27, 154, 374
unperformed experiments, 168
unpredictability, 353
unreasonable operators, 301

vacuum, 3

state, 138, 324
Van Vleck determinant, 308ff
variance, 390, 398
vector,

complex, 48

components, 49ff

length, 51

norm, 51, 80, 410

normalization, 51

in a box, 409ff

not normalizable, 80

null, 49, 138

operator, 236

orthogonal, 51

paralel, 51

transformation, 48ff, 65
verification of a state, 290, 292

violation of physical principles, 58

von Neumann measurement,

(measurement of the first kind),

378, 385ff, 419, 421

meaning of, 4, 373ff, 424
singular, 81ff
wave mechanics, 20, 22, 23
see also new quantum theory
wave packet, 228, 256, 349ff
minimum uncertainty, 93, 323, 420
motion and distortion, 302ff, 315
overlapping, separating, 402
reassembles, 306ff
spreading, 18
WAY (Wigner-Araki-Yanase) theorem,
421 ff
width, 320
Wigner function, 313ff, 347, 375
fuzzy, 316, 376
Wigner's theorem, 217, 235, 279
work, 267, 270, 276ff
world line, 251, 254
wrong equations,
93, 204, 240, 279, 413ff, 426

x-representation, 225
XOR, 293

Zeno effect, 384, 392ff, 405, 410
partial, 394ff
oscillations, 396ff
zeroth law of thermodynamics, 269
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