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Vi Preface

Hamiltonian structure of the so-called Garnier system is exhibited. The
simplest Garnier system turns out to be the celebrated sixth Painlevé
equation, of which algebraic properties are explained. Furthermore, it
is shown that for some particular values of the parameters, the Garnier
system admits solutions which are expressible by the Appell-Lauricella
hypergeometric function. Finally in Chapter 4, the behavior of solutions
of non-linear differential equations at singular points is investigated. A
modern treatment of classical theories is given and a new method to
attack the singularities of the Painlevé equations is introduced.

In what follows, only elementary notions of differential equations
(the existence theorem for ordinary differential equations, etc.), of func-
tion theory (power series, the Cauchy theorem, residues, etc.) and of
group theory (normal subgroups, quotient groups, etc.) are supposed to
be known, so that any graduate student should be able to understand
the presentation.

This book was written in honor of Professor Tosihusa Kimura by
his students on the occasion of his sixtieth birthday. The first drafts of
Chapters 1,2,3 and 4 were written by M. Yoshida, K. Iwasaki, H. Kimura
and S. Shimomura, respectively; then each chapter was improved and
polished by the authors and professors Y. Haraoka, Y. Murata, K. Oka-
moto, T. Sasaki, K. Takano, N. Takayama, and D. Zagier to whom
the authors are deeply grateful. Their gratitude goes also to professors
H. Majima B. Morin and N. Yamada. Last but not least, we want to
thank the members of the department of mathematics of Kobe Uni-
versity, where discussion on the manuscript was held in a comfortable
atmosphere, for their tolerance and kindness.

April 1990
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Linear equations 1

This chapter presents fundamental definitions and theorems on the the-
ory of differential equations which are needed in the course of this book.
We do not give proofs for the theorems in Section 1 and 2; the reader
may consult any introductory book on differential equations.

1. Cauchy’s Existence Theorem

Consider a system of first-order ordinary differential equations

(1.1) == filx,2) (G=1,...,7)

with the independent variable z and the unknown vector z = (z,...,
z,), where the vector function f = (fi,..., fr) is holomorphic in a
domain D C CxC".

THEOREM 1.1. For any (a,b) € D, there is a unique solution z of
(1.1) holomorphic in a neighborhood of a, such that

(1.2) 2(a) = b.

THEOREM 1.2.  If the system (1.1) and the initial data (1.2) depend
holomorphically on a system of parameters s = (s1,...,5p) then the
solution is holomorphic both in = and in s.

REMARK 1.3.  Any system of ordinary differential equations of higher
order can be reduced to a system of the form (1.1) by introducing new
unknowns. :

2. Linear Equations

Counsider a linear ordinary differential equation

d’z d—1lz
(2.1) d'rr +a1($)ﬁ;—;_—l+---+ar(x)220
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where the a;’s are holomorphic in a domain D C C. Introducing new
unknowns, say

di
o li=1,...,r=1),

=2, 2= (7

the equation (2.1) can be written in the following form:

d—?:Za{(m)z,— (t=0,...,7=1).

THEOREM 2.1.  For any point a € D and any complex numbers by, .. .,
br_1, there is a unigue holomorphic solution of (2.1) such that

%(@:bi, i=0,...,r—1

The solution z can be analytically continued along any curve in D.

A system of r linearly independent solutions of (2.1) at a is called
a fundamental system of solutions of (2.1) at a.

If the coefficients of the equation (2.1) are holomorphic in {z| 0 <
|z—a| < €} for some € > 0 and are meromorphic but not all holomorphic
in {z| |z — a] < €}, then the point a is called a singular point of (2.1).

DEFINITION 2.2. A singular point a of (2.1) is said to be regular if
(z — a)*ar(z), (k=1,...,r)

are holomorphic at a.

If a is a regular singular point of the equation (2.1), then by putting,
for instance,

z1 =z, zzz(:c—a)ﬁ z.=(z —a)

dz,..q

dzr—l
dz ’

the equation can be written in the form

(2.2) “_ 1 Aa),

dr z-—a

| where z = “(2y,...,2,) and A(z) is an r X r matrix holomornhic at a

Linear equations 3

TueoreM 2.3.  Consider the equation (2.2) with anr xr matriz A(z)
holomorphic at a. If the matriz A(a) has no eigenvalues that differ from
each other by integers, then there exists a matriz P(z) holomorphic at
a with P(a) = I, such that

P(z)(z - a)M®
satisfies (2.2), where

(z — a)A(®) = exp{A(a)log(z — a)}.

Proof. Without loss of generality, we assume a = 0. Let us trans-
form the unknewn z of (2.2) by

z = P(z)w,

where P(z) is a holomorphic r X r matrix with P(0) = I,. Then the

equation changes into
zét—v— = B(z)w,
dz

with
dP(z)

dz

B(z) = P~} (z)A(z)P(z) — zP~(2)

We want to determine P(z) in such a way that B(z) becomes a constant
matrix A(0). Our aim is to solve the equation

z%}; = A(z)P - PA(0).

The change of variable P = I, + Q@ transforms the equation into the
equation

+29 — A0)Q - QAW) + {A(2) - AO}I: + Q)

Notice that the eigenvalues of the linear map of r x r matrices

X — A(0)X — X A(0)
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are the differences of the eigenvalues of A(0) (to se~ this, take A(0) to
be diagonal). Thus, under the assumption for the eigenvalues of A(0), C I— . b (2167
we can apply Proposition 1.1.1 in Chapter 4 to show that the equation | - Z i(z) ’

for @ has a unique holomorphic solution with Q(0) = 0. =0
The equation where
+ 3 = A(O)w bo(z) =1
d.'l: i . .
\ and b, (z),...,b.(z) are given by convergent power series. We set
is easily solved by the matrix z4(9). Therefore the matrix z = (I, +
Q(2))z4® is a solution of (2.2). o _
(3.1) biz) =) biz’, 0<i<r

3. Local Behavior around Regular Singular Points (Frobe- : _ j=0
nius’s Method) .
Let z = 0 be a regular singular point of the equation (2.1). We introduce ‘ In particular, boo = 1, bo; =0 (j 2 1).
the Euler operator Put ;

d 4

dz’ . : | (3.2) z=1x° Z cez®, =1
Since é relates with the operator d/dz as follows: ‘

. d* : and calculate Lz:
3.0 —_ =86-1)--(6=-k+1
(30) =65 1) (5 k4 1)
= bi;xiém "
for k > 1, we have Lz ZJ_ZO it X%ckz
| dr dr! — SR RhY bis(s + k)"c pStkts
T '(w—,+al($)dxr_1+"'+ar($) ‘ —;jz:;; i(s k

o0

z_: ar__k(x 86-1)---(6—k+1) =zt Z{zn: Xr:bi,n_k(s + k)r'ick}x"
k=0 ‘ n=0 “k=0 i=0

— AT (T 1) - ]
= {xal(x) S22 6 o where we used the identity 6% = ax®. We put

where g = 1. —i
Thus, the equation (2.1) can be written in the form O Z bios”

= XT: b,‘(O)Sr‘-i‘,
1=0

Lz =0,

L _where I, is a linear differential onerator of the following form:
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which is equal to L|,—¢ after replacing 6 by s, and put

T

fils) =) bijs™F, j>1

and
Ro = 0,

3
v
p—

n—1
(3.3) R, = R,(c1,...,Cn-1,8) = Z fr—k(s+ k)ck,
k=0

Then we have
Lz =z* f:{f(s +n)c, + Ry }a™.
n=0
Thus Lz = 0 if and only if
(3.4;n) f(s+n)ecn +Ry=0, n>0.
DerInITION 3.1.  The algebraic equation (3.4;0):
(35) f(s)=0

is called the characteristic (or indicial ) eguation of the equation (2.1)
(and of Lz = 0) at the regular singular point z = 0. Roots of (3.5) are
called the (characteristic) ezponents.

Now consider s as a parameter in a certain domain S, determine
the coeflicients ¢, = c,(s) (cg = 1) by the equations (3.4;n) (n > 1) and
put

z(s,r) =2° Z cn(s)z™.

If s satisfies
f(s+n)#0 for n>1,

)
then the series z(s, z) converges and represents a holomorphic function
in s and z. In fact we have

Frobenius’s method 7

ProrosiTION 3.2 Let s be in the domain S and let N be a positive
integer such that

f(s+n)#0 for s€S, n>N.

For arbitrary complex numbers cy,...,cn—1, define co(s) (n > N) by
(3.3) and (3.4;n). Then the series

i cn(8)z™
n=N

converges and represents a holomorphic function in s € S and z.

Proof. The assumption implies that if s is in a compact subset of

S then
|f(s+n)|>Fn" for n>N

for some F' > 0, and the convergence of the series (3.1) yields
lbi;| < Be™? 1<i<r

for some B > 0 and € > 0. Since, for sufficiently large ¢, we have

15N bl 5> 1
i=1

r—1
: 2P
i=0

< CeIlym!
for some C > 0, we get
| Rn(s)]
cn(8) =
= TG4

n—1
< =] Famk(s + B)er(s)
Fn7 =
C n—1
< mr 2 €T s KT er(s)

k=0
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and so
. D n—1
€"len(s)] < ﬁgfkl%(ﬂl

for some D > 0; which proves the proposition. g

Let sy,...,5, be the roots of (3.5): f(s) = 0; we can assume
Rs, < ... < Rs;.

Then z(s;,z) is a solution of our differential equation, because we have
f(s1+n)#0foralln>1.

Assume now for simplicity that » = 2. If s; — s2 is not an integer,
then for the same reason, z(s;,x) is another solution which is linearly
independent of z(sy,z). This is also true when s, — s is a positive
integer, say m, if R,;, happens to be zero. In this case we can solve (3.4;n)
for s = s, for all n > 1 {choose c,, arbitrarily); and the singularity is
called non-logarithmic. ‘
Otherwise, i.e., when s; = s, or s; — s = m is a positive integer and
R,, # 0, differentiate

' Lz(s,z) = z°f(s)

by s and put s = s;, then we get

0
a{Lz(s’z)}|s=sl = mslfl(sl)-

In case s; = s, namely when s, is a double root of f, since we have
f'(s2) = 0, the following expression

0z(s, ) s =
fas_.-lsﬂ1 = z(s;,z)logz + « jzoc;-(sl)qﬂ

is a solution of Lz = 0, because L does not depend on s and so it
commutes with 9/0s.

Finally consider the remaining case : s, — so = m € Z, m > 0 and
R,, # 0. Put

Fuchsian equations 9

where the ¢;’s (j < m) are determined (co = 1) by (3.4; j), while
cm is arbitrarily fixed and the ¢;’s (j > m) are determined again by
(3.4; j). Then the series u* converges (Proposition 3.2) and satisfies the

following;: N
Sa+m

Lu* = Ry(c1,--.,Cm—-1,52)T
Since s2 + m = s,, we know that a suitable linear combination of u*
and 9z(s,z)/05|s=s,, say

0z(s, )

fl(sl)u* _ Rm(cla' v yCm—=1, 52)T|5=51

is a solution. In the latter two cases, the singularity is said to be loga-
rithmic.

REMARK 3.3. By the expressions obtained above, we see that there
is a positive number N such that for any solution z(z) and any two real
numbers 6, and 6, ( §; < 6, ), we have

N z(z) = 0
as r tends to 0 in the sector defined by

0, < argz < 0a.

4. Fuchsian Equations .

Before going into the subject of this section, let us give a criterion
of regular singularity of differential equations written in terms of the
operator 4.

LEMMA 4.1. A differential equation
(6 +by(2)6™ 4+ b(2)}z =0
is regular singular at z = 0 if and only if b; (1 < j < r) are holomorphic
atz =0.
This is a consequence of the identity (3.0) and the following identity

k-1
+ c

=1

&% = zk

d*
drk

dJ:J ’

k.
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where c (1 € 7 < k) are constants determined by

k
=Zc§s(s—1)---(s—j+1),
i=1

or by the recurrence formula: cf'“ = c;?_l + jcf, 1<j<kcg=0,

c',g = 1.

The linear equation (2.1) with rational coefficients is said to be
Fuchsian if every singular point in the z-plane is regular and if, after
changing variable z into ¢t = 1/z, the transformed equation has a reg-
ular singular point at ¢ = 0. The exponents at ¢t = 0 are called the
exponents of (2.1) at infinity. Let us express the equation (2.1) by using
the variable t; put

0=ta.

Since § = —6, we have

dr dr—l
: {d : 1(9”)5:1‘*"‘*‘“(”}

=Y "%, _4(2)6(6-1)- - (6 -k +1)

x
I}
=]

-

t_(r—k)a,_k(%)(—l)kG(B +1)--(B+k—1)

x
=]

— (_l)rgr +
where a5 = 1.
ProrosiTION 4.2 (A characterization of Fuchsian equations). The

equation (2.1) is Fuchsian with regular singularities at x1,...,Tm, Tm41
= 00 if and only if the coefficients have the following form:

___ pi(2) _
ar(z) = 7, -z (k=1,...,7)

ahere ench ni (r) i¢ a_nolunamial of dearee at hnef kim = 1)

Fuchsian equations 11

Proof. By the definition of regular singularity, at each finite singular
point z; (1 < j < m), we have the expression of a;(z) given in the
theorem, where p;(z) are entire functions. Applying Lemma 4.1 at the
singular point ¢ = 0 of the equation with the variable t = 1/z given
above, we conclude that

"kak(-i—) (k=1,...,r)

are holomorphic at ¢t = 0. Therefore each pi(z) is a polynomial of degree
at most k(m —1). g

The following table of the regular singular points z;,...,Zm4+1 and
the exponents s},...,sT at z; is called the Riemann scheme of the equa-
tion (2.1).

I o Tm4l
s1 ... Sha
ST ... Shy

ProprosiTION 4.3 (Fuchs Relation). The sum of all exponents of (2.1)
depends only on the number m + 1 of singular points:

mz-":l i — l)r(r - 1)

i=1 j=1

Proof. Let z1,...,Zm,Tm+1 = 00 are regular singular points of the
equation (2.1). By the proposition above, a;(z) admits the following

expression:
1
ay(z) = E :
— T — z;’

where «; are constants. At each finite singular point z;, putting

d
6 =(z — )4,
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we have

-2 { L ta@ b bana)
T —x; I Tl a,

=8 +{@-mm@ - g

Thus, by the definition of exponents, we conclude that

T
; r—1)r
Z sl = —a; + (—)—
; 2
=1
At 2,41 = 00, by the following expression of the equation with respect
to the variable t = 1/z:

., dr dr-—l

xr—l
- t‘("k)ar_k(%)(—l)k0(0+1)---(0+k ~1)
k=0 .

= e+ {-jap+ =Bl s #ee].

we have
U e r—1)r
> s = Y=
1=1 =1

Therefore we are led to the desired equality. g

5. Pfaffian Systems and Integrability Conditions

Consider a system of first-order partial differential equations with r
unknowns u',...,u" and n independent variables z!,...,z" in the fol-
lowing form
3ui i . .

(5.1) a—xj-zaj(a:,u), 1<i<r, 1<j<n,

where the a}’s are holomorphic in a domain D in (z,u)-space. Such
a system is called a Pfaffian system. The system (5.1) is said to be
(completely) integrable if for any (zo,up) € D there is a solution u(z)

such that u(zo) = uo; the manifold consisting of points (z, u(z)) is called
tha dntonmal wnncifald £ (2 1) H feak [ \

Pfaffian systems and integrability conditions 13

THEOREM 5.1 (Frobenius). The system (5.1) is integradle if and only
if

T

da’ da dai < Oal

— Jas = 22k ks
(5-2) goF * 25"t T Bus +§L:; Bus %’
HLk=1,...,n, i=1,...,m

For the sake of clarity, we prove the theorem for the simplest non-
trivial case: r = 1, n = 2. Consider the system

du

Wy a_x = a(x,y, U)
- Ou _ b(z,y,u)
ay - ' Y

defined in a domain P in (z, y, u)-space. If, for every point of D, there is
a solution passing through the point, then by the identity 8?u/d8zdy =
8%u/0z0y, we have

% da, 0 ob
%+0u T 0r  Ou

a.

(5.2

Assuming (5.2) conversely, for an arbitrary point (g, yo,uo) in D, we
shall construct a solution passing through the point. Let v(z) be the
solution of the following ordinary differential equation:

dv
—= = a(z, Yo, V)

(5.3) dr

vlz:::o = Uo. -

Let u(z, y) be the solution of the following ordinary differential equation
with parameter z:

du
(5.4) { ay = o)

il — i )
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We prove

Ou(z,y) _ ‘

(5.5) 5o = Uz.y,u(z,y)).

Since the solution u(z,y) of (5.4) depends holomorphically on the pa-
rameter x (Theorem 1.2), we have

9 (3u($,y) _9b 0bou
Oz Ay ~ 9z ' dudz’
au(x,y) d'lL(.’L',y dv(z
Oz |y=yo = dz 0) = d(.'l') = a(mayoav(x))'

Thus du(z,y)/dz is the solution of the following ordinary differential

Pfaffian systems and integrability conditions 15

equation with parameter z:

dw b b

(5.6) dy oz ou”
wly=yo = a(‘z‘,yﬂav(z))'
On the other hand, by (5.2)’, we have

( da(e,yu(a,y)) _ 9a , 9adu

Ay dy ' Budy
da Ja
= 5?; + 5Zb
. b ob
=9z ou™

a(a:, y,u(a:, y))|y=yo = a(a:, Yo, u(a:, yO))

\ = a(xayﬂav(x))'

Thus a(z,y, u(z,y)) also solves (5.6). By the uniqueness of solution, we
have the identity (5.5). Since

u(Zo, o) = v(zo) = uo,
the function u(x,y) is the solution of (5.1)’ passing through (xo, yo, uo)-
The system (5,2) is called the integrability condition of the system
(5.1). We can paraphrase the theorem by making use of the exterior
(differential ) algebra, consisting of holomorphic p-forms (0 < p < n+r7),
over the ring of holomorphic functions in D (any left or right ideal of

the exterior algebra is a two-sided ideal). We associate with the Pfaffian
system (5.1) the ideal 7 of the exterior algebra generated by the 1-forms

n
du’ ——Zaj-(a:,u)da:j, 1=1,...7.
i=1

COROLLARY 5.2. The system (5.1) is integrable if and only if

dweT forall wel,
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in other words,

dw=0 modulol forall wel.

In fact we have

n

d(du’ - ) " aidz?)

ji=1

" [ Oat . <~ Ot .
—_ J k J 3
= E ( E —azkd“’ Adx? + E Sue du® A d.’c’)
I1=1 k=1 s=1
%[ Oal . I~ Oat & )
— E : E : J k § : J § : s k
= - ( Wd.’l‘ A d.’l“’ + aus akd:c A d.’l?")
j=1 “k=1 s=1 k=1

Ba"- aai 8a aai .
= —J _ Tk al — —£a? J k
Z {azk dzi +Z(8 s Ou® aJ)}dI Az

1<j<k<n

modulo Z.

When (5.1) is linear, it can be written in the following form:

67 gL =Y b, 1<i<r 1<i<n,
k=1

where the a’ % s are holomorphic in a domain D in z-space. The system
can also be wrltten as

Ou .
507 =A@, 1<ji<n,
where .
u=‘(ul,...,u") and A; = (al)ik=1,.

and, if you like, as

du=wu, w= ZAjdﬂ:j.
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COROLLARY 5.3. The system (5.7) is integrable if and only if

ax: +':£: @5 g = Jq *':E: 65533

peg=1...,r, 4,3=1,...,n,
or equivalently,

0A; OA; ..
5——1—+AA a$:+AJ’A,‘ ,j=1,...,n
or
dw-wAw=10

(where the ezterior product w A w of the r by r matriz-valued 1-form
w = (w}) is the matriz whose (i, j)-th entry is the 2-form Y ohe1 wf/\w}c).

For any simply connected domain U C D, the set of solutions on
U of the integrable system (5.7) forms an r-dimensional linear space.

6. Hamiltonian Systems

Let t = (¢!,...,t™) and = = (z!,...,22") be variables in C™ x C2?".
For rational functions f and g in (¢, z), we define the Poisson bracket:

_~~, Of 8g 8f 99
10t =2 (gt ae ~ 37 9enr )

=1
The set of rational functions in (¢,z) forms a Lie algebra with respect

to the Poisson bracket, that is, the Poisson bracket {-, -} is a skew
symmetric bilinear form over C which satisfies the Jacobi identity:

{fi{9,h}} + {h,{f,9}} + {9, {h, f}} = 0.

The Pfaffian system:

(6.1) dz' =% {Hj,z'}dt), i=1,....2n
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is called a Hamiltonian system with Hamiltonians H; = H;(t,z),(j = DEFINITION 6.1. A rational transformation @ : (t,z) — (s,y) :=

1,...,m). Note that (6.1) is equivalent to a system of first order partial - (s(t),y(t,z)) is said to be rational symplectic (with respect to T) if
differential equations: ' det(ds/0t) does not vanish identically and if there are rational functions

Ki(s,y),...,Km(s,y) such that

6 2) 0.Z‘i _ BHJ Bz‘""'" _ BHJ o1 n ) ) m )
(6. 9t7  9znti’ ot ozt T o™ (6.4) F=@‘(Zdy‘/\dy"""+Zd](j/\ds]>;
1=1 j=1
or to we denote the transformation by
d:(t,z,H) — (s,y,K).
(6.3) O _ ;v OH, , (t,2,H) = (s,y, K)
ot Oz
where Since we consider only rational transformations of Hamiltonian sys-
0 I tems in this book, we call such a transformation simply symplectic. Let
J= (—I 6‘) , us study the condition (6.4). We set
d 9z/0t and OH i i 4 at
and dz/Jt an /dz are Jacobian matrices: dr = ( : ) dt= ( : ) ete.,
: dz?" dt™
oz (9z'\ OH _ (OH;\ o
7= \aw) & = \aw) oy _ (o) OK _ (0K
Oz 0ri )’ Oz 0xi )’ "

that is, for example
’ pie and omit the symbol A for a while. Since we have

Ozl Ox!
5T B . de’dm""" = *dszx
o= _| ..
ot ' ' ZdH dt = a—Hdt + M oy
o9r2" 9r2n oz
=tdt (aaH)dt+ ‘dx (aaH)dt,
T
We associate with a system (6.1) the closed 2-form 5 5
Y Yy
dy = —=dt + —dx,
. m . ETA ™
[:=) dz* Adz™ +) dHj Adt) oK ., 8K -
) . 2 &GK /4/
o ot dK= T dt + 5 —dz, €3 S
‘ d Os Bonn
called the symplectic 2-form or the fundamental 2-form s = Edt’ ninlinthek
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the right-hand side of (6.4) equals

1, 0y ay dy dy
5 (Btdt+8 dr )J(atdt+3

0K 0K , \0s

(WdH' 5 —dz )6tdt

o f 10y, By, OK 05
‘”{2 (3075t (B0 )5 |

dy, .0y 0K ., 0s
t

+d:r{ (8) at+ (5 )Bt}dt
li

dy
+§ dl‘ (al‘

dz)

Oy
)Jazd

Thus the condition (6.4) is equivalent to the following three conditions:

OH d0s OK 1,0y, 0Oy
2= G 3 Ga

Jy. .0y
—tZINTI
(65) T=4 525,

OH Js, 0K Jy, .0y
(66) 2= G e

ProposiTiON 6.2. By a transformation which satisfies (6.4), the
system (6.1) is taken into a Hamiltonian system:

m

(6.7) dy' =) {K;,y'}ds/, i=1,...,2n.

=1

Proof. We shall derive (6.3) from

oK
)
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Noting
Oyos_ . 0sdt_,  Btds _
9z dy ™ o8tds ™ dyor
o _ oyt 0yos
ds  Otds  Ords’
OK _ 0K
dy = 0Oz Oy’
we have
Gy ., 0K
3~ 5y

_ Oy 2:11+_3_:£@_8_:rJ,(6:r) (GI()as ot
T 9z | Ot Oydot Oy Jy dz ot [ Bs’
Since (6.6) implies

oOH 3]( as

— 1 dy

Oy
t
I Oz )Jat
and (6.5) implies
oz 1,0y
ay =-J (az)‘]v

we have
Oy ., 0K Oy [0z ( OH | Ot
Bs J(ay) 15 ) G e ™

We shall see how the integrability condition for the system is ex-
pressed. Let 7 be the ideal of the exterior algebra in the variables ¢ and
T generated by

w; :=dz* — Z{Hj,zi}dtj, i=1,...,2n,

i=1
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and put
F,‘j = 6,~Hj - ajHi + {HiaHj}a

where 8; = 8/0t'. Notice that for a function f(¢,z), we have
of i
(6.8) df (t,z) = Z 3+ {Hisf})dtt mod T.
In fact
i 2T 4z
df = Z Bt'dt +Z ~do
= Z{Bt’ Z (8:51 2t " 9o 9w )}dt

(o)

LEMMA 6.3.  For the symplectic 2-form I' associated with the system
(6.1), we have

= ) Tydt'Adt! mod I.
1<i<j<m

Proof. We have
['=) defAdz"™+) dH, Adt*
i=1 k=1

= Z Z H]',.’L‘i}{Hk,.’I,‘n-'_i}dtj A dt*
i=1 k:

+ Z (0;Hi + {H;, Hy})dt? A dt*
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= Y [Z({Hj’xi}{Hka$n+i}—{Hk,$i}{Hj,$"+i}):|dtj/\dtk

1<j<k<m bi=1

+ Y (8jHk — OuH; +2{Hj, Hi})dt! Adt*

1<j<k<m
= Y (8;Hx — OcH; + {Hj, He})dt) A dt*
1<j<k<m
= Y Tydt Adt*
1<j<k<m

modulo Z, where we used the following identity to show the last equality:

Y ({H;, &' {Hy, "'} - {He, o' {H;, «"'}) = —{H;, He}.n

i=1

ProposITION 6.4. A Hamiltonian system (6.1) is completely inte-
grable if and only if T'j, (j,k=1,...,m) are independent of z, i.e.,

Lir,z'}=0 i=1,....2n; ,k=1,...,m
J

Proof. We have the following equalities modulo Z:

dw; = d(dz* =Y {Hj,z'}dt?)

j=1
Z (8c{Hj, '} + {Hi, {Hj, z'}})dt’ Adt*F
7,k=1
= ({0kH;,z'} — {0;Hi,z'}
1<j<k<m
+ {Hi, {Hj,2'}} — {H;,{Hy,2'}})dt? A dt*F
= Z ({0kH;,z'} — {0;Hy,z'} + {2, {Hy, H;})dt? A dt*

1<j<k<m

= Z {ij,:l:i}dtj /\dtk

1<kl
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modulo Z, where we used (6.8) and the Jacobi identity to show the
second and the fourth equality, respectively. Thus Corollary 5.2 leads
to the conclusion. [
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modulo Z, where we used (6.8) and the Jacobi identity to show the
second and the fourth equality, respectively. Thus Corollary 5.2 leads
to the conclusion. g ‘ 2
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The leading example, in the theory of linear ordinary differential equa-
tions with regular singular points of one complex variable, is doubtless
the hypergeometric differential equation:

d?u du
z(l-z)7 +{r—(a+ B+ Nz} —afu=0,

which is a normalized form of linear ordinary differential equations with
three regular singular points in the Riemann sphere.

A series of works on this equation by Euler, by Gauss, by Kummer
and especially by Riemann inspired L. Fuchs to conceive the concept of
regular singularity of linear ordinary differential equations in complex
domains. Since then, the theory of Fuchsian differential equations has
been developed into various directions, for example, expressing local so-
lutions at singular points, studying the relation between a fundamental
system of solutions at a singular point and that at another singular
point (the so-called connection problem), studying the monodromy of
linear differential equations, and constructing a linear differential equa-
tions for a given monodromy (the so-called Riemann-Hilbert problem).
The theory has been developed also for various classes of Fuchsian equa-
tions, for example, the Jordan-Pochhammer equations, the generalized
hypergeometric equations ,F, and hypergeometric equations in several
variables, which inherit some of the nice properties of the hypergeo-
metric differential equation presented here. Thus what follows may be
considered as a resumé of the whole theory of linear ordinary differ-
ential equations with regular singular points of one complex variable.
It should be noticed that the equation also appears in many different
situations, for instance, in conformal mapping theory, in automorphic
function theory, in the theory of representations of Lie algebras, and in
the theory of difference equations.

The present chapter is entirely devoted to discussing various as-
pects of the hypergeometric equation and its solutions by focusing our
attention on the connection problem; we exhibit five different methods
to find its monodromy groups. We also explain in detail contiguity rela-
tions and related topics. On the other hand we do not mention subjects
related to conformal mapping theory or automorphic function theory.
The reader who is interested in these topics can consult [YosM].
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1. Definition and basic facts

1.1 The Gauss hypergeometric equation

Let a Riemann equation be a second order Fuchsian equation with three
regular singular points on the Riemann sphere P!, and let a Riemann
scheme be a table of the following type

a a2 ag
(111) gy 02 O3 ,
T T2 T3

where a; are three points on the Riemann sphere P! and oj,7; are
complex numbers satisfying the Fuchs relation :

3

(1.1.2) Y (o +15)=1.

j=1

ProrosiTiOoN 1.1.1. To each Riemann scheme (1.1.1) there is a
unique Riemann equation E(a;0,T) with regular singular points a; and
with the characteristic exponents 0j,7; at a; (j = 1,2,3).

Proof. Assume a3 = oo, then by Proposition 4.2 in Chapter 1 a
Fuchsian equation with regular singular points at {a;,a3,a3} is of the
form

d*u du

W+Q12;+Q2U=0

where

— P _ P2
% (z —a1)(z —az)’ 92 (z — a1)?(z — ag)?

and px (k = 1,2) are polynomials in x with degree at most k. Thus ¢,
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where A; and B; are constants. Characteristic equations (Chapter 1
Section 4) at = a1, az,00 are given by

s2+ (A, - 1s+ B, =0,
32+(A2—1)S+Bz =0,
s?4+(=A, —Ay+1)s+ B, + By + B3 =0,

respectively. The exponents {ok, 7%} (kK = 1,2,3) at a, are, by defi-
nition, solutions of the above three quadratic equations, and hence we
have
A -1=~01 -1, By=o01m
Ay — 1= —02 — 72, By =037
~A~Ay+1=—-03—13, B+ By+ B3=o037;.

The Fuchs relation (1.1.2) tells us that the above linear equations with
respect to A; and B; can be uniquely solved.

When a3 # oo, one has only to apply a linear fractional change of the
variable z to send a3 to infinity. g

If we identify a Riemann scheme with those obtained by reordering
the columns and by permuting o; and 7;(j = 1,2,3), then the corre-
spondence is bijective. The Riemann P-function

a, ag asg
(113) P oy 02 03 I
1 T2 T3

is, by definition, the collection of solutions of the Riemann equation
E(a;0,7) associated with the Riemann scheme (1.1.1).

Now we shall see that the investigation of a Riemann equation can
be reduced to that of a more special equation. Since any automorphism
T of P! transforms E(a; 0, 7) into E(T(a); 0, 7), we may assume, without
loss of generality, that a; = 0,a2 = 1 and a3 = co. Moreover, since

and ¢ can be written as ( ) 0 1 o
1.14 Ploy 01 0o ;2
B A, A, To 1 Two
= T—a;  T-—ap 0 1 >
g2 = B + B, + B3 =z%(x-1)"P 0 0 Oxot+0o+o01 ;T {,
7 o 7 VI DNV X To—0p T —01 Teo+0p+0;
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the knowledge of the P-function (1.1.3) reduces to that of

0 1 o0
(1.1.5) P 0 0 o iz
l-y y=-a-8 8

by puttinga =09+al+aw,ﬁ= Too+00+0yandy =140 —79.
The zfssomated Riemann equation, called the (Gauss) hypergeometric
equation, denoted by E(a,3,7), reads as follows

d?
(1.1.6) a:(l—a:)zlx—z+{7—(a+ﬂ+1)z}j—z—-aﬁu:O.

Notice that F(a,,v) admits another convenient expression
(1.1.7) 62(6: +v— Du — z(6, +a)(6; + B)u =0,

whi(3h will. be used later, where &, is the Euler operator z(d/dz). Thus
the investigation of a general Riemann equation boils down to that of
the hypergeometric equation with suitable parameters «, 3 and ~.

REMARK 1.1.2.  In other words, in the present context, one may define
the hypergeometric equation as a Riemann equation with singular points
.,1 and oo such that one of the characteristic exponents at each finite
singular point is zero.
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1.2 Hypergeometric series
The hypergeometric differential equation E(a,(,7) admits solutions
holomorphic in the unit open disk

A={zeC|z| <1}
if
(1.2.1) y#0,~1,~2,--,

since its Riemann scheme is of the form (1.1.5). The Frobenius method
gives a solution which admits the following power series expansion:

oo
(@)m(B)m _m
1.2.2 Fla,B8,v;z) = ™
(1.22) (0,%59) = 2 50
called the hypergeometric series, where (o), denotes the following fac-
torial function

_f1 (m = 0),
(a)m—{a(a+1)...(a+m_1) (m=1,2,3,--).

This factorial function can be expressed also in terms of the Gamma
function I'(z) defined by

o
['(z) :=/ et ldt Rz >0.
0

It satisfies the difference equation:
['(z+1) = 2I[(2),

and so we have
'1)=1, C(m+1)=m!
and
_T{a+m)
@ = ")

By using the above functional equation, I' is continued analytically to
define a meromorphic function in C, which has simple poles at —m (m =
0,1,2,...) with the residue (—1)™/m!. We quote here the Stirling for-
mula:

a#0,-1,-2,---

[(z) ~ (27r)%zz'%e" (z = o0, |argz| < ™ — 6)
for an arbitrary positive 8, where ~ implies that the ratio of the right
and left-hand sides tends to 1.
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REMARK 1.2.1. (i) The power series F(a, 3,7;z) is symmetric in o
and 8. (ii) F(a, 3,7; z) is a polynomial in z if and only if either « or 3
is a non-positive integer.

THEOREM 1.2.2. If neither a nor 3 is a non-positive integer, then
(i) the radius of convergence of F(a,3,7v;z) s 1,
(i) if R(y — a = B) > 0, then F(a,B,7;z) converges absolutely on
the unit circle {|z| = 1}.

This theorem will be proved by applying the following two crite-
ria.

LEmMa 1.2.3.
(a) (the d’Alembert test). The series Y owoan converges (resp. di-
verges) if
lim |a—"ﬂ| <1 (resp.>1).
n—oo ' Qp

(b) (the Raabe test). The series Y oo, an converges if there ezists
a constant C > 1 and a positive number £ such that

ety =1 - Ch o

an 1+5) (n - w),

where O stands for Landau’s symbol, and the condition means that there
s a posttive number M such that

lan+l|
an

1+—’ l+s

for all sufficiently large n.

Proof. (a) We have only to recall the fact: The series

oo

Zr" (r >0)

n=0

tonverges (resp. diverges) if r < 1 ( resp. r > 1),
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(b) We recall the fact: The series

ib" bn=$, seER
n=1

converges if s > 1. Since

bn+l _ l -8

s 1
—1-240() ()

choosing s so that 1 < s < C, we have

an+1 bn+1
ozt ¢ b
Qn n

for sufficiently large n. g

Proof of Theorem 1.2.2. (i) Since

the assertion follows from (a) of the lemma.
(ii) We apply (b) of the lemma to

_ (Da(B)n n
= D)

33
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We have, on |z| = 1,

(a+n)(B+n)
(y+n)(1+n)
(

(1+3)(1+%)

1+ +3)
a+p 1

14+ 17 =
+ ” +O(n2)
7 +1

1
LA -
+ n +(9(n2)

an41
an

-1+ 22 v o) (1- 2 o)

—jj_1tr-a-p
n

+0($)

=1

_1+§R(7_a—,3) 1

which proves (ii). Another proof using the Stirling formula is given as
follows: We have

[(z+n) ~n?
I'(z) ’

~nd so that

(@)n(B)n - T(a+n)I(B+n) N 1
(Mn(D)n  T(r+n)T(1+n) nr—e—B+1" N

REMARK 1.2.4. From the viewpoint of the theory of differential
equations, one can give a satisfactory explanation of the assumption
R(7—a—p) > 0 made in Theorem 1.2.2, (ii): Since the hypergeometric
differential equation has no singular points on |z} < 1 except at z =
0,1, the hypergeometric series converges in |z} < 1,z # 1. Moreover,
since the hypergeometric differential equation has a regular singular
point at z = 1 with characteristic exponents 0 and v — a — [3, there
ks a fundamental system of solutions around z = 1 which is of the
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form (fy(z),(z —1)Y~*"P fa(z)), where f;(z) are holomorphic functions
around r = 1. Thus, near z = 1 in the unit disk, F(«,3,7;z) can be
written in a linear combination :

F(CV,,B,’Y?I) = clfl(z) + 02(1: - 1)7—a_ﬂf2(‘r)'

If R(y —a—B) > 0 the second term on the right-hand side tends to zero
as £ — 1. Thus the limit lim,_,, F(a, 3,v; ) exists with value ¢; f;(1),
which will be calculated explicitly in Section 3.7. Hence one can expect
that the series F(a, 3,7;z) is convergent for z = 1.

We consider the sum of the hypergeometric series as a function
in four variables (a, 8,7, ¢). Since the hypergeometric series converges
uniformly withr respect to «, 3,7 and z in any compact subset of Q) :=
C x C x (C\{0,~-1,-2,---}) x A, we have

THEOREM 1.2.5. The sum of the hypergeometric series F(a, 3,7; )
is holomorphic in @ = C x C x (C\{0,-1,-2,---}) x A.

The holomorphic function in |z| < 1 defined by the hypergeometric
series, as well as its analytic continuation, is called the (Gauss) hyper-
geometric function.
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1.3 Finite group action and Kummer’s 24 solutions

Let E(a, 3,7) be the hypergeometric equation, i.e., the Riemann equa-
tion corresponding to the Riemann scheme

0 1 00
R(a,ﬁ17)= ( 0 0 O/) ‘

-y y-a-p8 B
A suitable change of the dependent and the independent variables
u(z) — z#(1 — z)"u(h(z)), z+— h(z),

u,v € C, h € Aut(C - {0,1}) takes E(a,3,7) into another hyperge-
ometric equation F(a,b,c) for some a,b,c. There are 24 of them; it is
checked by the following consideration. The group

H : = Aut(C — {0,1})

1 r—-1 =z

}

1
-—{xr—vx,;,l—x,l_z, z ‘z-1

acts on the set {0,1,00} as the full group of permutations. For each
h € H, there is a vector (not unique)

p=(fo, 1, Boo) Mo+ M1+ Poo =0
such that

1(0) h(1) h(o0)
R(h,p) = 0+ pr(o) 0+ pa(1) & + fh(oo)
1—y+ppoy Y—a=B+pna) B+ Br(eo)

is in the form R(a,b,c) for some a,b,c. For example, let h be z — 1/z
then we can choose p = (—a, 0, ) and we have

h(0) =00 h(1)=1 h(c0)=0
R(h,p)=< 0+« 0 a—a )

l-y4+a y—a-p -«

0 1 0o
B-a y—a-8 l-v+4+a

=Rla,a—y+1,a+1-=7).

Definition and basic facts 37

Another example: Let h be

and put p=(—(y —a—8),—a,v - B);

then we have

h(0) = oo h(1)=0 h(oo) =
meﬁ=( 0+(v-0) 0—(y—-a-p) a—a )
l-y+(v=8) y—a-B-(y—a-p) -«

0 1 00
0 0 7—5)
-(y-a=-B8) B-a 1-0

=R(7-_:8s1-:8,7-a‘:3+1)'

One more example: Let h be the identity and put g = (—(1-7),0,1—7);
then we have

0 1 00
me%=( 0-(1-9) 0 a+1—7)
l1-y-(1-7) y—a-8 B+1-v

=Rla—-v+1,8-v+1,2—1).

In this way, we can find 24 pairs (h,p) and the corresponding 24 Rie-
mann scheme R(h,p) = R(a,b,c). Passing to the corresponding Rie-
mann equation E(a,b,c), we see that its any solution is expressed as

v (1 - y)* f(h(y)),

where f is a solution of the original equation F(a,b,c). Associating the
series F'(a,b, c;z) with E(a,b,c), conversely, we conclude that

h(z)™#(1 - h(z))™#! F(a, b, c; h(z))

is a solution of E(e,3,7). Therefore we get 24 expressions of solutions
of the equation F(a,3,7) of the form

Iu(l - .’L‘)UF(G,, b7 (& h(.’l:)),




38 Hypergeometric differential equation

which are called Kummer’s 24 solutions. From the three examples
above, we have

@ 1
<l) Fla,a—v+ La+1-p5;-),
z z

vy—a—p a )
(x—1> (1_33"'1) F('Y—ﬁ,l-ﬁ,’r—a—ﬁ.}.l;x 1)
* T

T

(: Pz - 1)"“"’1’(1—@7—@7—a—ﬁ+1;1;1)),

and
' T"Fla-v+1,8-7+1,2-7;z).

For later use we name and tabulate the 24 expressions:

fo(z;0) : = F(a, 8,7; %)
=(1-2)"*PF(y-a,y-B,71)

=(1-z)"%F(y - B3,a,7; ;i—l)

— (1= 2V BF(~ — T

=(1-2)"F(y -8, 7—7)-

jo(z;l—'y):=xl_7F(a—’y+1,ﬁ—-’y+1,2—’7;1)
—_:xl"V(l—x)“"""‘ﬂF(l—a,l—ﬁ,Q—'y;x)

=z!7(1—z)" T F(1-Ba+1-72-7; %)

=z!77(1 - I)v—ﬂ—lF(l -o,B+1-72-7; x—i—l)

fi(z;0): = F(a, B,a+ B -7+ 1;1~x)
=x1_7F(ﬁ+1—'y,a+1-—'y,a+ﬁ+1—‘y;l—m)

r—1
—)

=z *Fla+1l-v,a,a+B+1-17;

-1
=2 PF(B+1-7B,B+a+1—y ")
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fi(z;y — a - B)
i=(1-2)"*PFP(y—a,y-B,7y+1-a-05;1-1)
=z7"1-z)"*PFl-a,1-B,7+1-a-p;1-1zx)

)
).

r—-1

=P (1-2)""*PF1-By-By+1-a-5;

=z Y1 -2z)" P *F(l1-a,y—a,y+1 —a—ﬁ;z— !

foo(g;;a) = z“"F(a,a -7+ La+1-4; —;l:-)
= (=) (1 =2 P F( =y~ Bt 1 ;)

= (1-2)"*F(a,7 - B,a+1 —ﬁ;l—-i—;)

=(-z)!'7"1 -2)"* ' Fla+1-7,1-B,a+1-3; ﬁ)

fooliB) i= &P F(B,6 v + 1,8+ 1 - o 1)

= (~2) (1= 2y PF(1 - o,y -, S+ 1- 05 )

:(l—x)_ﬂF(ﬁ,’Y_a’ﬁ+1_a;liz)

= (=) (1 =) P F(B+1 - 7,1 - @ ft 1 - a5 ),

These series make sense if

Y 7_a-/8’ a—/B'¢ Z.
The pairs of solutions (fo(z;0), fo(z;1 — 7)), (f1(z;0), i(z;y — a —
B)) and (foo(z; @), foo(z; B)) have characteristic exponents indicated in
(1.1.5) at £ = 0,1 and oo, respectively.

Group-theoretical Remark. The 24 linear transformations

(a.8.7) — (a.b.c)
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together with the transformation
L (aaﬂ,7) - (ﬂ,av7)
form a group G of order 48: Let
n: (a,ﬂ’7) —’(Q—’)’-*—].,,B-’)‘-*— 1,2 _7)
g . (a,ﬂv7) —’(7 -,y — :3,7)

hl I(CY,,B,’)’) —’(a’a_’)"*' ]"a-ﬂ+ 1)
h'Z : (a,ﬂ,7) —*(C!,,B,CY+,H—’)’+ 1),

where n; and n, are the transformations of the parameters correspond-
ing to R(h,p):

h = identity, p = (=(1-7),0,1-17)

and
h=identity, ”=(0’_(7—a—ﬂ)v7_a_ﬂ)’

respectively; h; and h, are the transformations of the parameters cor-
responding to R(h, p):

h:zw— —1—, p=(-a,0,a)
z
and
h:z—1-2z, p=/(0,0,0),
respectively.
Put

N = <7’l0,7’l1,n2>, HI = <h1’h’2>’

where (ki,ks,--) stands for the group generated by ki, k2, - . Then
N is a normal subgroup of G, and G has the following structure:

N ~(Z/22)?,
H' ~ H = Aut(C - {0,1}) ~ symmetric group of degree 3

and
G=NH, NnH=({1}.
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2 Contiguity relations

Let us introduce the ring of linear differential operators with coefficients
in the field C(z) of rational functions. Consider the C(z)-vector space
with basis: .

dk

= k=012

Define multiplication inductively as follows:

d, d* A
EE(PF) =pld:c_’° tPomm  PE C(=),

dm dk )— dm—l d dk
d;r’"(pdxk = dzm1 | dz \PdzF ’

where p’ stands for the derivative dp/dz of p with respect to z. The
vector space equipped with the multiplication has the structure of a
ring; it is called the ring of linear differential operators with coefficients
in C(z), and is denoted by

d
R = C(.’B)[E .
d\* d*
We sometimes write [ — ] in place of —-. Note that the definition of
dz dzk

multiplication is forced by the formula for the derivative of the product

of two functions:
d du dv

E(uv) =2 + U

We have the Leibniz rule:

d* E R ;) @
- p= (5) i
dzr? JZ;) (j)p dzk-=3’

; . d . .
where p(9) stands for the j-th derivative 7:’2— of p. This is proved induc-
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tively as follows:

A1 g dk
a1 P = 4 (da:"‘jp)

k k—j k—j+1
k . dr7 dk-J
= (j+1) ) Dl
= <J> {p drF—3 +pY dzF- J+1}
k+1 o 1—
/ J j—1 dxk“'J

(k41N gy dHIT
j drktl-3’

2.1 Contiguity relations

Let S(,3,7) be the linear space of solutions of the hypergeometric
equation E(a,(3,7) at a fixed point 3 0,1. There are first order dif-
ferential operators which send S(a, 3,7) into S(a + €1, 8+ €2,7 + €3),
where £; = 0,x1. Indeed, we have

THEOREM 2.1.1. Let Hy(a,8,7) and Bj(a,8,7) be the first order
differential operators defined by

d
Hl(aaIBa7) = x% + a,

H2(a’lBa7) = IL";; + ,8,
(211) Hy(oB,7) = (1 = 2) - + (v — @ = B),
By(o8,7) = a(1 = 2) 7 + (v — a = z),

By(a ) = a(1 — )5 + (v = B — ax),

Rulo R\ = 20 4 (1)
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Then we have the following linear homomorphisms:

(1) HI(Q,IB,’)‘):S(a,ﬂ,’)’)—'s(a'l"l,ﬂ,’)’),
Bl(a+ 1MB,7) . S(a+ 1716’7) - S(G,IB,’)’),

which are isomorphisms if and only if

ale,B,7) = —ala—y+1) #0.

(2) H‘z(a,ﬁ,’r) :8(07 ﬂ77) - S(GMB + 1,7),
By (o, 8+ 1,7) : S(e, B+ 1,7) = S(e, B,7),

which are isomorphisms if and only if

cafa, B,7) = -B(B—v+1)#£0.

(3) Hi(a, B,7) : S(a, B,7) = S(o, 8,7 + 1),
B3(C¥,,B,")’+ 1) :S(aaﬁa7 + 1) - S(aaﬁ,’Y)a

which are isomorphisms if and only if

c(a,B,7) =(vy~a)(y-8)#0

The operators Hj(a, 3,7), 7 = 1,2 and 3, increase the parameters
a, 3, and 7 by 1, respectively, while the operators B;(a, 8,7), j = 1,2,
and 3, decrease these parameters by 1, respectively. Thus H;(«, 3, ) are
called step-up operators and Bj(a, 8,7) are called step-down operators.
The step-up operators H;(«,3,7), j = 1,2, and the step-down operator
Bs(a, B,7) are obtained as follows: Let us define the hypergeometric
differential operator L(a, 3,7) by

L(e,8,7) : = b2(6, + v = 1) — 2(8; + )(8; + B),

(2.1.2) =$[1(1—I s +{7v— (a+ﬁ+1)x}%—aﬁ
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(see (1.1.7)). By the commutation relation 6,z = z(6; + 1), we have

(6z + ) L(e, B,7) = L(a + 1, 8,7)(6z + ),
(61: + 1 Z)L(avﬂ"” = L(a, 6,7 - 1)(6:: +7- 1)
These formulae imply that Hy(e,3,7) = 6, + a is an step-up operator
for o and Bs(a, 8,7) = 6z + v — 1 is a step-down operator for v. The

sther step-up/step-down operators are slightly more difficult to find (see
Remark 2.1.4). We can show

ProposiTION 2.1.2.

(1) Bl(a+ 1aﬁa7)H1(aaﬂ)7) € Cl(aaﬁav) + ’R’L(a,ﬁa’)’)a
Hl(aaﬁa7)Bl(a+ laﬂ)’)l) € Cl(aaﬂav) +RL(CY+ 1aﬂa7)‘

(2) BZ(aaﬂ + 1,’)’)H2(C¥,ﬂ,’)’) € C2(a’ﬂa7) + ’R‘L(aaﬂr’)/);
Hz(a,ﬁ,’)’)Bz(a’ﬂ'F 1v7) € 02(aaﬂa7) +RL(O’,ﬂ + 1’7)

(3) B3(aaﬁ, Y + 1)H3(a,ﬂ,')') € C3(aaﬂa7) + RL(a’ﬂa7),
Hs(a,B,7)Bs(e, 8,7 + 1) € c3(e, B,7) + RL(a, 8,7 + 1).

In fact, for example, we have

Bi(a+1,8,v)Hi(a, B,7)
={l-2)6+(y~a-1-Bz){6+a}
= (1-2)8%+{y~1-(a+B)z}s+aly - a~1- f)
= L(Q,ﬂ,’)’) + 0(7 -—a-— 1)
Theorem 2.1.1 follows immediately from Proposition 2.1.2. The

statement of Theorem 2.1.1 is referred to as contiguity relations for the
hypergeometric equation. Moreover, we have contiguity relations for the
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THEOREM 2.1.3.

(1) Hi(a,B,7)F(a,8,7;z) = aF(a +1,5,7;2),
Bl(a+ 1,ﬁ,’)’)F(O’+ 1,5a7§-'l7) = —(O/— v+ l)F(CY,,B,’)’;.’I:).

(2) Hg(a,ﬂ,'y)F(a,ﬁ,'y;x)=ﬁF(Ot,/3+1,’y;:z:),
BZ(aaB"’ 1,7)F(a,ﬁ+ 1,")’,17) = —(ﬁ_ Y + I)F(a’ﬁ77 : :L')'

@) Hy(o 5,7)Floo f7i2) = L= =B pa, 5,5 4 1,2,

Bi(a,B,7 + 1;2)F(a, 8,7 + 1;z) = vF(e, 8,7; z)-

The first formula of (1) is checked as follows:

H(o B )F(a,,7) = (6 +0) T he Ol

@B
=2 aa et ™

= ((1/ + l)m(ﬁ)m ™
=) (7)m(1)
=aF(a+1,8,7;z).

The second formula of (1) is shown as féllows: Since
L(e,B,7)F(a,8,7) =0
by (1) of Proposition 2.1.2, we have
By(a+ 1,6,7)Hy(@, B,7)F (e B, 752) = ea(en B,7)F (e B,7: 7)
and, by using the first formula of (1),
aBi(e+ 1,5,7)F(a+1,8,v;z) = cila, B, ) F(a, B, 7 7),

which is the second formula of (1). The others are proved in a similar

way.
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REMARK 2.1.4. Consider the ring
Rn = C(z1, - -,2,)[0/021,-+,0/01,]

of linear partial differential operators and its maximal left-ideals 7
parametrized by a complex parameter A. Denote by Sy the collection of
functions annihilated by Z,. If the step-up operators Hy : Sy — Sx41
are known, we can find step-down operators By, @ Sx41 — Sy by
solving the equation

213) B,\+1H,\ =1 (mod I,\)

for unknowns Bjy,;. Similarly, if step-down operators are known, the
step-up operators are found by solving the equation

2.1.3)' H,\B,\+1 =1 (mod I,\+1)

for unknowns H). Let us explain this method for the hypergeometric
differential operator L(a, 8,7), focusing our attention on the parameter
v. Let 7, be the ideal of R = C(z)[d/dz] generated by L(c,(,7), and
et Hy := Hi(a, B8,7)(= 62 + ). We find the operator B,4; so that

Bo+1Ho =1 (mod Z,)
as follows: Since
L(a,8,7) = 6:(8: + a+7—1—-a)—z(6; + a)(6; + B)
=6(y—1-0a)+{b6;— z(6, + B)} (6: + @)
= (8 +a - a)(r — 1 - @) + {6 — a(6, + B)} (6 + )
—a(y=1-a)+{y-1-a+é:—z(b: + B)} (6 + @)
=-ofy-1-a)+{(1-2)b: +7—-1-a—2z8)}(6: + ),

we have

1

Bopy = —
+ a(y—1—a)

{(1-2)6:+7-1-a~zB)}(s: + ).

Many identities for special functions can be understood through the
heory of rings of differential operators, where Gébner bases of an ideal
play a crucial role to find explicit formulae. For more detail, see [Bern],
Zei], [Tky.1], [Tky.3], [Tky.5] and the references of the papers.

Considering the operator Hy(a, 3,7)Hz(a, 3,7)Hs(a, 8, v) modulo
L(a,B,7), we obtain
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ProposiTioN 2.1.5.  Ifes(a, B,7) = (v — a)(y — B) # 0, then

d
Es(aaﬂ,’)/) C S(a+ 13:B+ 17’7 + 1)

Proof. For brevity, we write H; = H;(c,8,7) and L = L(a, 3,7).
By a straightforward calculation, one can check

d d
(214) H\H>H; =(Id_z'+a+;3_7)L+c3(ahBa7)E;'

Since Theorern 2.1.1 implies Hy HoH3S(a, 8,7) C S(a+1,8+1,7+1),
(2.1.4) establishes the proposition. g

In Section 3.3, this proposition will provide a motivation to intro-
duce the Euler transform D2, which justifies the “a-times differentia-
tion” (d/dz)® for an arbitrary complex number . The Euler transform
will yield a clever way to derive integral representations of solutions of
the hypergeometric equation.

We have also a contiguity relation for the hypergeometric series.

ProrosITION 2.1.6.

d
EF(a,ﬂmz) = %EF(CH 1L,B+ 1,7+ 1)

Combining this proposition with Theorem 1.2.2, we obtain
ProrosITION 2.1.7. If R(y — a — B) > 1, then the power series

diF(a,ﬂ,'y;z) converges absolutely in the closed unit disc lz] < 1.
T

In the next section, an application of the contiguity relations to the
Toda equation will be given.
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2.2 Contiguity relations and particular solutions of the Toda
equation

The Toda equation, a famous equation in mathematical physics, is a
system of non-linear differential-difference equations of the form

(;bn—l ¢n+l

(2.2.1) X?%log ¢n = ¢y 5.2

ior unknowns ¢,(z) (n € Z), where X is a vector field, say X =
r(z)d/dz, r(z) a rational function, and ¢, are constants. We shall
give here solutions of (2.2.1) which are closely related to the contigu-
ity relations for the hypergeometric equation. The method explained
below can be developed not only for the hypergeometric equation but
also for other differential equations ( see [Kam.1], [Kam.2], [Okm.8] and
[Okm.10]).

We first note that we can change the sequence c¢,; a transforma-
another Toda equation which is obtained by replacing ¢, by ¥, and c,

by €nGn_1Gn4+1/an?. As we shall see soon, there is a convenient choice
of the sequence c,. Suppose that (2.2.1) has a solution of the form:

¢a(z) = $(2), (n€2)
Substituting this into (2.2.1), we obtain
p,,Xz log ¢ — cn¢pn_1—2pn+pn+1 ,

so that
X’logp=¢
if the ¢, satisfy

Cn = Pn, Pn-1— 2pn + Pny1 = 1.

Since the above difference equation is solved by

1
Pn = §n2+an+b (a,b € C),

we have:

tion ¢, = an¥,, where a, are non-zero constants, takes (2.2.1) into
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LEMMA 2.2.1. If ¢(z) is a solution of X%logd = ¢ and if the
sequence cn 18 of the form: cn = in? +an+b (n € Z), where a a,'n.tli b
are fized complez numbers, then the Toda equation (2.2.1) has a solution

(2.2.2) $a(z) = (z) (n € Z).

In this section, we set a vector field X as

(2.2.3) X =a2(1- z)%.

This choice is made because we are now considering the hypergeometric
equation; when we consider other differential equations, suitable vector
fields should be chosen. The following ¢(z) and c, satisfy the assump-

tion made in Lemma 2.2.1.
1
(2.24) ¢(z)=2z(zx-1), cn= E{C3(a,ﬂ,’y +n-1)+v+n-1},

where c3(a, B,7) := (y—a)(y—B) (see the statement of Theorem 2.1.1).
Consider constant multiples of the step-up and step-down operators for

g

1
Un = ;‘HS(aaﬂ3’Y + TI.),

(2.2.5) :
Dn = ‘V_'B3(aa ﬂw’y + TL),

where p, and v, are non-zero constants such that

(2.2.6) pnvn = cs(e, B,y +n), (n€Z).

Take a function fo € S(«, 3,7) and define a sequence f, (n € Z) by
fasr =Unfa 0 20), fao1=Dnfn (n<0),

then assertion (3) of Theorem 2.1.1 implies that

fﬂ ES(aaﬂ,’Y-'_n),
2.7 (n€Z)
(22 ) fn+1 —_-Un.fn, fn—lanfﬂ'




50 ' Hypergeometric differential equation

A sequence satisfying the condition (2.2.7) is called a Laplace sequence
for the pair (Un, Dy). By (2.2.5) and (2.2.7), we have

{B3(av 597 + n)f,,}{H;;(a, :B,’Y + n)fn} - 2/\nfn-1fn+l = 0,

where

(2.2.8) Ap = %unun.

We carry out the differentiations:

0= (1 - z)fnL(a,ﬁ,’Y + ")fn
—z(1 - z)[{Bs(e, B,y + n)faHHs(a, 8,7 + n) fa}
- 2’\nfn—1fn+1]

=1 -a)zfulz(1 - z)fy + {y +n = (a+ B+ 1)z} f — aff]
—e(l-z){zfo+ (v +n-DHiH0 - 2)fh + (v +n - a = B)fn}
+22(1 ~ 2)Anfr1 frs1
=221 = 2)*{f} fa = (1)} + 2(1 = 2)(1 - 22) fu f.

= AnBfni1fnt1 + Cndf?

d !
= f32(1 = 2) el = )22} = M sfans 4 ot f?
and find that {f,} satisfies

(2.2.9) X?log fr = ,\n¢(z)f"_-;£;i = cnd(z),

n

where ¢(z) and c, are defined by (2.2.4). Let #n(z) be defined by

(2.2.2) and (2.2.4), and put v, = ¢, f,. Then, by (2.2.9), we see that
Yn(n € Z) satisfy the Toda equation

(2.2.10) X?log ¢, = ,\n%.
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THEOREM 2.2.2. Suppose neither v — o nor v ~ 3 is an integer. Ler

Un and v, be non-zero constants satisfying pnvn = c3(a, 5,7+ n) anc
put Ap = pntn/2. Then, for a Laplace sequence fno(n € Z) for the pair
(Un, Dy), the sequence

(2.2.11) Yn=0nfn (n€Z)

is a solution of the Toda equation (2.2.10), where

(2.2.12) @n(z) =[22(z - 1)]°", cn= %[c;;(a,ﬁ,’y +n)+v+n-1].

Notice that the assumption on «, and ¥ made in Theorem 2.2.
asserts the non-vanishing of ¢3(a, 3,7 + n) for all n € Z. Notice alsc
that the theorem states that there is a class of solutions of the Tod:
equation of which elements can be decomposed as

(a very simple solution of the Toda equation)
x (a contiguous sequence of solutions of a linear
differential equation containing a parameter).
This phenomenon often occurs not only for the hypergeometric equa

tion but also for many other differential equations. See [Okm.8] anc
[Okm.10].
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3 Integral representations

3.1 Integral representations as a tool for global problems

One can know local properties of solutions of a linear differential equa-
tion in several ways (cf. Sections 1.2 and 1.3). However, one does not
a priori know any global properties; for instance, to relate solutions at
one point to those at another point, called the connection problem:

Connection problem. Let f}l)(l <j<r)and f§2)(1 < j <) be bases
of local solutions of a differential equation of rank r at z, and x5, re-

spectively, let C be a path joining r; and z, and let C, fJ(-l) be the
analytic continuation of f;l) along C. Find a linear relation between
CfPU<j<r)and FP(1<j <),

If a solution u(z) of the differential equation happens to admit an
integral representation :

u(z) = /;(z) K(z;t)dt

it might be useful for attacking global problems; here the kernel K (z, t)

is expected, according to what one wants to do, to be a simpler function

than u(z), otherwise integral representations would give no information.
In this chapter two types of integrals

(i) Euler integral representation, and

(i) Barnes integral representation

are treated in detail.

3.2 Euler integral representation derived from the power se-
ries

Hypergeometric functions admit the Euler integral representation. In
this section we derive it from the hypergeometric series F(a,§,7; x).

Another clever derivation by using the Euler transform will be given in
Sections 3.3 and 3.4.

THEOREM 3.2.1.  Suppose R(7y) > R(B) > 0. Then we have

1
(3.2.1) F(a,B,7;z) = F(,_BYII‘%’;)—_,B)/; 9711 — )" P Y1 — zt) " dt
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for |z| < 1, where the branch of the integrand is determined by the
following assignment of the arguments

argt =0, arg(l-t)=0, |arg(1—:ct)|<-72[, (0<t<).

Proof. We use the well-known formula relating the Beta function
with the Gamma function:

I'(p)T(q) .
T(p+q)’

The power series F(a, 3,;z) can be rewritten as follows:

822 Bpa) = [ L1 -ty = R(p), R(g) > 0

et = 3 e o
W,iB (B+m,y-B) é‘(g,:)x”‘
Eh 2_:0/ R e
- B(ﬂ_,i__ﬂ_)/; tA-1(1 — ¢)71-B-1 -2(;‘:)(—@%
- f@% /01 #4=1(1 — £)7=B=1(1 — zt)=°dt.

Here the third equality is obtained by applying the above formula for
the Beta function, the fourth equality by exchanging the order of the
summation and the integration, and the last equality by using the bino-
mial theorem. Notice that the assumption R(y) > R(3) > 0 is necessary
to apply the formula for the Beta function. g

REMARK 3.2.2. The change of variable ¢t = 1/s takes the formula
(3.2.1) into another formula (cf. Section 3.4)
F(a,B,7: 2)

(3.2.3) _ () ot a—v Y=B=1(5 _ r\%ds
= _—_P(ﬂ)r‘('y ) /1. s (s -1) (s —z)"%ds.
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REMARK 3.2.3.  The integrals on the right-hand sides of (3.2.1) and
(3.2.3) make sense if z is in C\[1, ). Hence F(a, 8,7; z) is analytically
continuable to the domain C\[1,00).

3.3 The Euler transform

Recall that the hypergeometric series admits an Euler integral repre-
sentation (3.2.3). We shall consider why it admits such an integral rep-
resentation. Using the contiguity relations given in Proposition 2.1.5
repeatedly, we obtain

k
(%) S(a,B,7) CS(a+k,8+k,v+k),

where k is a positive integer. In particular, if o is a negative integer
and f(z) € S(a, §,7), then g(z) := (d/d2)~*f(z) € 50,5 &,y — @),
Since the hypergeometric differential operator L(0,8 — o,y — a) is of
the form

LO,B-ay-a)={(6:+7-a-1)-z(6: +f ~a)}b;
(cf. (1.1.7)), S(0, 8 ~ @, 7 — a) contains a function g(z) such that
(3.3.1) ¢'(z) =z (z - 1) P L.
Therefore, (—a + 1)-times integration of (3.3.1) yields a solution of the

original hypergeometric equation. Since the k-th derivative of the inte-
gral

1 ? k=1
—_— —1 t)dt
(the Riemann-Liouville integral) is ¢(z), a function defined by

/I t27(t — 1) P (¢ — 2) "t
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is an element of S(a,3,7). This formula is the same as (3.2.3) except
for the path of integration. We shall extend the above argument to
the case where « is not necessarily a negative integer. To this end,
we have to justify the operation (d/dz)~* for every complex number k.
If k is a positive integer, then we may regard it as k-fold integration,
whence (d/dz)~*y is given by the Riemann-Liouville integral (3.3.2).
Therefore, justification will be made by analytic continuation of (3.3.2)
to the whole k-plane. The correspondence of ¢(z) to a function defined
by (3.3.2) is called the Euler transform of o(z).
For the reason mentioned above, we shall consider the integral :

(3.33) (D7°f)(z) = ﬁ / "o — et f (e,

where the path of integration is an arc C with initial point ¢ and ter-
minal point z and the integrand is of the form

(3.3.4) () = (t—a)*g(t), nec,

where g(t) is holomorphic in a neighborhood of C' and g(a) # 0. For the
present, we assume that the initial point a is finite. We shall consider
the case a = oo later. We call u the exponent of f(t) at t = a. If we fix
a branch of the multi-valued functions arg(t — z) and arg(t — a) along
the arc C , then the integrand of (3.3.3) is well-defined. If R(a) > 0
and R(p) > —1, then the integral (3.3.3) converges. Now we want to
generalize (3.3.3) in such a way that it makes sense for general o and
i. To this end, we introduce the notion of the finite part of a divergent
integral.
Consider the integral

b
(3.3.5) H(v) = / (t - a)"~g(t)dt,

where the path of integration is an arc 4 with initial point ¢ and terminal
point b, g(t) is a holomorphic function in a neighborhood of the arc v
and a branch of the function arg(t — a) is fixed. We consider H(v) as
a function of v. Clearly H(v) is holomorphic in R(v) > 0. Moreover we
have the
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LemMMma 3.3.1. The function H(v) can be continued analytically
to a meromorphic function in |v| < oo which has simple poles at v =
0,—1,-2,---. The residues at v = —m are.given by

1
Res H(v) = mg(m)(a).

v=—m

Proof . Pick a point ¢ on the path of integration in (3.3.5) within
the circle of convergence of the Taylor series of g at a; then (initially for

R(v) > 0)
[ b © _(m) c b

H(v)=/ +/ =5 g 2 m,(“) / (t a)"-1+mdt+/

a c m=0 : a c

(m) -
g (a c—a ..
Z - + holomorphic in v,

)u+m
m=0

from which the statement is clear. g

The integral (3.3.5) is, in general, divergent if R(v) < 0. Even in
such a case, if v # 0, -1, =2, -+, (3.3.5) has a meaning by Lemma 3.3.1,
which is called the finite part of a divergent integral. The finite part of
a divergent integral can be applied to the integral (3.3.3): one has only
to divide the path of integration C into two arcs.

ProposiTiON 3.3.2. The integral (3.3.3) makes sense, in the sense
of finite part, for any value of a and defines an entire function in a,
provided that the ezponent p in (3.3.4) satisfies

(3.3.6) p#—1,-2,-3,

Proof. Since the simple poles at @ = 0, -1, ~2,-- - arising from the
integral in (3.3.3) are canceled out by the simple poles of I'(a) at those
points, Lemma 3.3.1 implies the proposition. g

We shall next investigate some properties of the operator D;*. Our
aim is
(i) to express the exponent of D7 f at = = a in terms of that of f,
(ii) to establish the composition “rule - D& .DP = Dath
(iii) to make sure that DT* = (d/dz)™, if m is a positive integer, and
(iv) to establish a kind of Leibniz rule for D7.
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ProposiTion 3.3.3.  Let p be the ezponent of f(z) at r = a satisfying
the condition (3.3.6). Then the ezxponent of D7 f at that point is p+«
unless p + a i3 a negative integer, in which case the ezponent is 0 or a
positive integer.

Proof. We may assume, without loss of generality, that ¢ = 0. If
f(z) is given by the power series
Q0
f(z)=12* Z cmz™,

m=0

then (3.3.3) for z within the circle of convergence of this series is given
by the following expression

(Pz*N@ = g5 | - °1t“2 "y
e

Z Cm s“"’"‘(l —5)*lds

— ety

ZC °+'"+“F(u+m+1)1‘()
™ T(a) T(a+p+m+1)’

m=0

=$#+0i F(u+m+1) c Im
Tla+p+m+1) "

from which the assertion follows. g

ProrosiTIiON 3.3.4. Let p be the exponent of f at = = a; and
suppose that p is not a negative integer. Then we have

(33.7) Df - D3 f(z) = DS+ (a).

Proof. In view of the assumptions on y, Propositions 3.3.2 and 3.3.3
imply that both sides of (3.3.7) make sense. Writing f(z) in the form
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Figure 2.1.

(3.3.4), we can regard both sides of (3.3.7) as meromorphic functions
n (o, B, 1) in C3. (Recall Lemma 3.3.1.) If R(a) < 0, R(8) < 0 and
R(n) > ~1, then all three integrals in (3.3.7) are convergent and (3.3.7)
is easily proved by exchanging the integral signs. By the use of the
analytic continuation with respect to a and 3, we see that (3.3.7) holds
for all values of & and p which satisfy the given condition. g

ProposiTiON 3.3.5. If m is a positive integer, then
D' = d\"
¢ T \dr/)

Proof. This follows from Proposition 3.3.1, since (—-1)*(D7* f)(z)
is the quotient of H(v) (with @ and b replaced by z and a in (3.3.5))
by I'(v), and these functions have simple poles at ¥ = —u with residues
g™ (z)/m! and (—1)™/m!, respectively. g
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ProrosriTiON 3.3.6. If p() is a polynomial of degree n, then
D2 {p(2)f(2)) = Z( )o@ 1)),

where plY) is the j-th derivative of p.

Proof. A polynomial p(t) of degree n can be expressed by

p(t) = Zp_ (t—=2)

Substituting this expression into (3.3.3) with p(#)f(t) for f(t), we obtain
the desired formula. g

We shall next consider the Riemann-Liouville integral with initial
point oo :

B33 D=NE =g [ (o s

where f(t) is assumed to be of the form
(3.3.4) f()=1t""g(t), mec,

where g(t) is holomorphic in a neighborhood of the path of integration
such that g(co) # 0. The number p is called the ezponent of f(t) at
t = oo. Changing the variable by ¢t = 1/s we have

_ 1/z
(D32 f)(z) = 'rr.l,) / smotu=1(1 = sz)e=tg(L)g.

3

Then we obtain the following propositions similar to Propositions 3.3.2
- 3.3.4. Propositions 3.3.5 and 3.3.6 are valid for (3.3.3)’ without any
modification, so we do not repeat them.
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Ve

Figure 2.2.

ProposITION 3.3.2'.  In the sense of finite part, the integral (3.3.3)'
defines a meromorphic function in o in |a| < co with simple poles at
a=/”’$u+11/~‘+21

ProposiTion 3.3.3'.  If f(z) has ezponent u at z = co, then D f
has ezponent p — o (respectively, 0 or a positive integer if u — a is a
negative integer) at z = oo.

ProprosITION 3.3.4". Let p be the ezponent of f(x) atz =oco. If u
18 not a negative integer, then

DZ, - D% f =Dt

The Euler transform is, by definition, expressed by an integral in a
generalized sense over an arc (i.e., we take the finite part if the integral
is divergent), but it can also be expressed as an integral over a double
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loop (the commutator of two loops with a fixed base point). Let b be
a base point on C. Let v, be a loop starting and ending at b which
encircles z once in the positive sense, and v, be a similar loop with
respect to a. See Figure 2.2. The commutator [y;,7s] of ¥, and ¥, is
defined by

[7:1741]:7:'70'7:—1 '74;_1’

PropPoSITION 3.3.7.  Let u & Z be the ezponent of f(z) atz = a and
let v ¢ N, then

(3.3.9) (Pz1)@) = s

T — a—1
" /M]< 0= f(t)dt,

where

Ay ) = (1 — 27i%)(1 - e #)[a).

Proof. One has only to trace the variation of branches of the inte-

grand along the double loop. g

For a € N the right-hand side of (3.3.9) becomes 0/0, but of course
the limiting value of the right-hand side as o tends to a positive integer
still equals the left-hand side, which is defined for any o.

In the next section, the Euler transform will be used for deriving
the Euler integral representations for solutions of the hypergeometric
equation.
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3.4 The hypergeometric Euler transform
An n-th order differential operator

(3.4.1) L= Xn:pj(a:)Dj, p=2

is said to be of hypergeometric type if the coefficients are polynomials
such that deg p; < j for all  and degp, = n. We denote by H,, the set
of n-th order differential operators of hypergeometric type. Let X be a
complex number and let f(z) be a function holomorphic at @ € C with
exponent p such that n — pu & N (see (3.3.4)). By using the calculus of
the D)’s established in the previous section, we have

D)Lf = Z D} {p;(z)f9}

Jj=0

7=0 k=0 k
- (2": - ( A ) ¥ k)(z)Dk)D,\f
]-k p] al)
k=0 j=k
ie.
(3.4.2) D)L = (D*L)D),

where D*L is the differential operator

(3.4.3) DML = Zn:qk(a:)Dk
k=0
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with gk(z) given by

(3.4.4) ak(z) =) (j :\ k>p§j ().

i=k
Therefore we have the following theorem.

THEOREM 3.4.1. If the ezponent p of a function f Iat a satisfies
n—pé N, we have

Dy(Lf) = (D*L)(Daf) (A€ C).

Similarly, we have:

THEOREM 3.4.1". Let p be the ezponent of a function f at = oo
such that neither p nor X + u is a negative integer . Then we have

D) (Lf) = (D*L)(DLf) (A€ C).

The operator D*L is also of hypergeometric type, so we obtain the
correspondence D* : H, — H,. We call it the hypergeometric Euler
transform. We have the composition rule:

(3.4.5) D*D* =D =D*D¥ (\,v e C).

This follows formally from Theorem 3.4.1 and the corresponding prop-
erty of D} (Proposition 3.3.4), or from the symbolic formula D* =

(1 + % D‘l)'\, or, of course, by direct computation using (3.4.3) and
(3.44).

Theorems 3.4.1 and 3.4.1" give us a method of »sbtaining solutions
of (D*L)f = 0 from those of Lf = 0. Indeed we derive now, as an
application, integral representations of solutions of the so-called Jordan-
Pochhammer equation. For two vectors a = (aj,---,a,) € C*, a; #
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aj (i # j) and g = (p1,-++, pa) € C", we define two polynomials p,
and p,_; by

pa(z;a) = [[(z - ay),

=1

Pa-1(z;a,p) = Zﬂj H(z —ax)

3=l ki)

(3.4.6)

and define the differential operator L of hypergeometric type by
(3.4.7) L =p,(2;0)D™ — p,—1(z;a,u) D",
Since
D7H(Lf) = D" {p,D ~ paa} D" f

=D""Yp,D - po1}D;7f,

we have
D" 'L = D* ! {pn(z;a)D — pa_1(z;a, )},

so the differential equation (D™"~1L)g = 0 has a solution

n

5(@) = [T - ay».

Jj=1
Ifn—pu; €N, then Theorem 3.4.1 implies that Dé,» g(z) is a solution

of (D**"~1L)f = 0. Similarly, Theorem 3.4.1’ implies that if neither
B1 4+ pin nor gy +-+-+ p+ X is a positive integer, then D2 g(z) is
a solution of (D**"~1L)f = 0. By (3.4.4) and (3.4.7), the differential
equation (D**"~1L)f = 0 can be written as

(3.4.8) Y a(w;a, 1, 0)DFf =0,
k=0

where
A+n—1\ (._
qk(w;a,u,/\):=( . )Pﬁ ") (z;a)
n—
Atn =1\ (nek-1),
(n_k_l)pn—l (z50, ).

The differential equation (3.4.8) with (3.4.6) and (3.4.9) is called the
Jordan-Pochhammer equation. Thus we have proved:

(3.4.9)
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THEOREM 3.4.2. Let p= (g1, -+, n) € C* be constants such that

n—pi 14+ pny it + 0+ pin + A € N. The Jordan-Pochhammer
equation (3.4.8) admits solutions f;j(z) = f;(x;a,p,A) (j =0,1,---,n)
defined by the integral

fi(z) = ﬁi—A) / ( — i) T (e - aw)t,

k=1

where ag = 00. The right-hand side makes sense as the finite part of a
divergent integral, even if it is divergent in the usual sense.

The hypergeometric equation is a special case of the Jordan-Poch-
hammer equation: Indeed, in case

n=2, a=(0,1), p=(a—-v,y-0-1) and A=a-1,
(3.4.8) becomes the hypergeometric equation with the parameters «a, 8
and 4. Thus we obtain the Euler integral representation of solutions of
the hypergeometric equation.
THEOREM 3.4.3. Let o, B and 7y be constants such that

2-(a=-7),2-(y-B-1)a-B-1,-f-Lag¢N.

Then the hypergeometric equation admits solutions Fpo(z) defined by
q
(3.4.10) Fule) = [ 71— 757 e = a) 2
P

where p=10, 1, 00, or z. If the integral is divergent, then it is regarded
as the finite part of a divergent integral.

This theorem gives us six solutions Fpq(x) where p,q € {0,1, 00, z},
p # g, which will be used in Section 4.4 to find the monodromy of the
hypergeometric equation. Each function Fp4(z) can also be expressed
by the integral over a double loop around p and ¢ (cf. Proposition 3.3.7).
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3.5 Barnes integral representation: interpolation method

As we announced in Section 3.1, solutions of the hypergeometric equa-
tion admit two kinds of integral representations. One is the Euler inte-
gral representation and was disussed in Sections 3.2 - 3.4. Here, we shall
discuss the other, i.e., the Barnes integral representation. We have, at
least, three different approaches to it:

(1) to derive it from the power series representation of the solutions,
(2) to derive it by transforming the differential equation into a difference
equation by the Mellin transform, and

(3) to derive it by using the representation theory of Lie groups.

In this section, we take Approach (1). Approach (2) will be explained in
Section 3.6. Approach (3) is not treated in this book; readers interested
in this method can consult [Vil]. The idea of finding the Barnes integral
representation described in this section is based on an interpolation of
an infinite sequence of numbers by a meromorphic function defined in
the entire plane.

Consider a function f(z) defined by.the power series

e <]

flz) = Z amz™.

m=0
Suppose that there is a function g(t) satisfying the conditions

(1) ¢(?) is meromorphic in [t} < oo,
(ii) g(t) is holomorphic at t =0,1,2,---,
(iii) g(t) interpolates the sequence {am}, i.e., g(m) = a,.

Then the function

h(t) = —9(t) T (~2)",

(ﬂ)
has simple poles at t = m (= 0, 1, 2, ...) with the residue —a,,z™.
Therefore, if Cy is a loop which encircles the points t = 0,1,---, N in

the negative sense and leaves the other poles of h(t) outside, then we
have

N

(3.5.1) o /C At =3 ama™.

m=0
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If h(t) has a suitable asymptotic property, then letting N — oo, we may
obtain an integral representation for f(x) of the form

f(z) = %ﬁ /C h(t)dt,

where C is a certain path of integration.
Now we apply this idea when a,, are given by the coefficients

(3.5.2) an = (@)m(B)m _ [(y) T(a+ m)[(B+m)
- ™= MmDm - D@IL(@) Ty + ML+ m)’

of the power series F(a, 8,7v; ). The right-hand side makes sense only
when

(353) «, ﬁ»7 7"- O’ _11'—25
Then the function

(= L0 T+ 0@+
I = T(@)L(B) Ty + )1 +1)

satisfies the above conditions (i)-(iii). By using the well-known formula

T
sin(mt)’

(3.5.4) T(#)I(1 - t) =

we find that

[(y) T(a+t)T(B+ t)I(-1)
T(a)T(B) T(y+1)

(3.5.5) h(f) = (—2)".

We have the following theorem.

THEOREM 3.5.1. Suppose that a, 8 and v satisfy (3.5.3). Then

P(a+t1‘(ﬂ+t)1‘( 1) (_p)
Flowfyyie) = mr(a)rﬂ)/ Nor
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holds for |z| < 1 and |arg(—z)| < =. Here the path of integration C
runs from —ioco to +ico in such a way that, if |t| is sufficiently large,

then t € C lies on the imaginary azis, the poles of T'(a+t)['(B+1) lie to

the left of C and those of I'(—t) lie to the right of C (see Figure 2.3.).

We shall prove this theorem along the lines explained above. Let

Cy = Cg}) + Cﬁ) be a loop indicated in Figure 2.4. Then we obtain the
equality (3.5.1), where a, and h(t) are defined by (3.5.2) and (3.5.5)
respectively. Therefore, in order to prove Theorem 3.5.1, it suffices to
prove:

(3.5.6) /(2) h(t)dt converges to zero as N tends to oco.
CN

By using (3.5.4), h(t) can be rewritten as

I'(v) T(x+(B+t) = (~2)t
T(a)T(B) T(y+ t)I'(1 +t) sin(nt) )

(3.5.7) h(t) = —

LeMMa 3.5.2.  Suppose |z| < 1 and |arg(—z)| < 7, then we have

h(t) = © (t(a+ﬁ—~r—l)e—(rlﬁ‘(t)lﬂrs(—r)-ﬁ‘(l)})
as t tends to oo tn such e way that
s 1
§ < |argt] £ 5 or §R(t)EN+§

holds, 8 being an arbitrary positive number. (Here O is Landau’s sym-
bol.)

Proof. Recall the Stirling formula
logT(t) = tlogt —t — %logt+ O(1) (t — oo,|argt| < m —6),

where § is an arbitrary positive number. Apply this formula to the
expression (3.5.5) for h for § < |argt| < 7/2, and apply it to (3.5.7) for
R(t)eN+1/2. g

Lemma 3.5.2 shows that, if jz| < 1 and |arg(—z)| < =, then h(t)

is exponentially small on all of Cﬁ) as N tends to oo. This proves the
assertion (3.5.6) and hence also Theorem 3.5.1.
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3.6 Barnes integral representation: difference equation method

In this section, we are concerned with Approach (2) to the Barnes inte-
gral representation introduced in Section 3.5.

The inverse Mellin transform F(z) of a function G(t) is defined
formally by the integral

Flz) = 5 / G(t) (=)' dt,

where “formally” means that no path of integration has yet been spec-
ified and that no convergence has been discussed.

It happens that the Mellin transform converts a differential equa-
tion into a difference equation, when the differential equation is in a
special form. Then, if the resulting difference equation is simple and
can be solved explicitly, the inverse Mellin transform yields an integral
representation of a solution of the original differential equation. The
hypergeometric equation is a typical example where this observation
really works.

The crucial fact used in this section is that the hypergeometric
equation can be written in the form

(3.6.1) {8206z + 71— 1) — x(8: + a)(6: + B)}f =0,

where 6, = z(d/dz) (see (1.1.7) ). We note that the method explained
below is applicable in general to any differential equation with polyno-
mial coefficients.

We shall find a condition on a function g(t) under which the inverse
Mellin transform

(3.6.2) @) = 5% /C a(t)(=)'dt

converges and gives a solution of the hypergeometric equation, where
C is a vertical line with possible deviation to avoid singularities of the
integrand. From (3.6.1) and (3.6.2) we would have

(3.6.3) /Ct(t+y—1)g(t)(—z)‘dt+/C(t+a)(t+5)g(t)(—x)'+1dt=0.
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If the path of integration in the first integral can be shifted to the left
by 1, then we would obtain

J A+ D+ Do+ 1+ (4 )t + Do} -2)*dt =0,

Therefore f(z) would be a solution of the hypergeometric equation if
g(t) satisfied the difference equation

(t+a)(t+B)

(3.6.4) gt +1)= - R ESY

g(t).

Take a path of integration C as mentioned above. Then if the condition

(3.6.5) fli_{x;o t2g(t)(-z)' =0 (t=o0+1ir)

holds uniformly as ¢ tends to oo in any finite vertical strip, then the
integrals (3.6.2) and (3.6.3) converge uniformly with respect to z and
so the above formal calculation can be legitimated. For instance, take
the function

L(t+ o)l + B)T(-1)

(3.6.6) g(t) = T3

which is a solution of (3.6.4) satisfying the condition (3.6.5) (see Lemma
3.5.2). Then, substituting (3.6.6) into (3.6.2), we obtain a solution

T(t+ oLt + BT(-1)

Tty O

(3.6.7)

of the hypergeometric equation, where the path of integration C is taken
in the manner indicated in Figure 2.3.
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3.7 The Gauss-Kummer identity

We know that the hypergeometric series F(a, 3,v; z) is convergent on
the circle |z| = 1 if ®(y —a —B) > 0, (Assertion (ii) of Theorem 1.2.2).
In this section, we shall find its explicit value at z = 1.

THEOREM 3.7.1. IfR(y—a—-) >0, then

T(y)I(y — a =)
T(y—a)l(y-8)

(3.7.1) F(e,B,7;1) =

This formula is called the Gauss-Kummer identity. It provides
a clue to calculate the connection matrices (see Section 4.7). A gen-
eralization of the Gauss-Kummer identity was made by [Okub.1] and
[Okub.2], which plays an important role in computing monodromy of
the so-called hypergeometric type (or Okubo type) equations. We shall
give two proofs of the theorem:

Proof 1 is based on the Euler integral representation;
Proof 2 is based on the contiguity relation for the parameter 7.

Proof 1. Suppose R(a) > 0 and R(8) > 0. Under the condition
R(y - a - B) > 0, we have R(y) > R(B) > 0. Hence the Euler mtegra.l
representatlon (3.2.1) can be applied. Putting z = 1 in (3.2.1), w

- obtain

1 1
F(a,8,1;1) = m/; tﬁ—l(l _ t)v—o—ﬁ—ldt
_BBr-c-f)
B(,Ba’y—ﬁ)

_Trly—a-p)
I'(y - a)I(y - B)

Now analytic continuation gives the result in general. g

Proof 2. We use the following contiguity relation (Theorem 2.1.3,
(3)) for the parameter 7:

(v —a)(y = B)F (e, 8,7+ L;2) = v(y — a — B)F(a, B,7; z)
(3.7.2) p
+ 7(1 - I)IE'F(avﬂs’y;z)'
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If R(y — a — 8) > 1, then the power series F(a,,v;z), F(a, 8,7 +
d

1; z), —&}-F(a,ﬁ,'y; z) converge on |z| < 1 (Theorem 1.2.2, Proposition

2.1.7). So letting z tend to 1 in (3.7.2), we obtain

Fla,B,y1) = 3= =8)

By the analyticity of F(a,S,4;1) in (a,3,7), this formula is valid for
R(y - a — §) > 0. Using this formula repeatedly, we obtain

F(a,B,7;1)

_Ty—a+ml(y-B+m) TMNI(r—a=-p)
Ty +m)I(y —a-B+m) T(y-a)l(y-pH)

F(a,B,7+m;1).

To show (3.7.1), we must show that the first and third factors on the
right-hand side tend to 1 as m tends to infinity. For the first factor this
follows immediately from the formula

I'm+c¢

Lm + <) ~ m¢ (c fixed, m — o0).
I(m)

For the second, we verify that all the terms except the constant term 1

in the hypergeometric series representation of F(a, 3,7 + m;1) tend to

0 in a sufficiently uniform way as m — oo; details are left to the reader.g
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4 Monodromy of the hypergeometric equation

4.1 Fundamental group of P'\{0,1,00} and the monodromy of
the Riemann equation

Let D be a domain in the complex plane. Consider an n-th order dif-
ferential equation

darf
dzn

dn—lf

(4.1.1) =3

+ a1(z)

+otan(@)f =0,

where the a;(z)’s are holomorphic functions in D. If D is not simply
connected, then a solution of (4.1.1) may be a multi-valued holomor-
phic function in D. To describe the multi-valuedness of solutions of
(4.1.1), we can associate to (4.1.1) the conjugacy class of a subgroup of
GL(n,C), which will be called the monodromy of (4.1.1).

We introduce the fundamental group = (D,b) of D with a base
point b € D. A loop v in D with the base point b is a curve

y:I=[0,1]— D
starting and ending at b. Let L{D,b) be the set of loops in D with

the base point b. Two loops vp,71 € L(D,b) are said to be homotopy-
equivalent and denoted by 79 ~ v, if and only if 7y can be deformed

" continuously to 7y, keeping the base point b fixed. One can check that

~ is actually an equivalence relation. Let 7;(D,b) be the set of all
equivalence classes of loops in L(D,b), i.e., m(D,b) = L(D,b)/ ~. The
class, which is called the homotopy class, containing v € L(D, b) will be
denoted by [7]. The product +; - ¥ of two loops vy and 1 € L(D,b) is
defined to be a loop going firstly along 7o and then <, in the obvious
sense. The product is compatible with the equivalence relation ~ .
Namely, if v; ~ v} (v;,7; € L(D,b),j = 0,1), then 7, -7 > 7] - 7.
Thus the product is naturally defined on 7,(D,b), which in this way
becomes a group. In fact, the unit element e € m;(D,b) is given by [c],
where ¢ € L(D,b) is the constant map ¢: I — D, ¢(t) = b. The inverse
element ™! of & = [y] € m(D,b) is given by [y~!], where y~! is a
loop defined by v7!(t) := (1 — t). Proof of these assertions and the
associativity of the product is left to the reader. The group =, (D,b) is
called the fundamental group of D with base point b.

Let U be a simply connected neighborhood of b in D and let F =
(f1,+- -, fr) be a fundamental system of solutions of (4.1.1) in U. Given
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any element o € m(D,b), choose a representative loop v € L(D,b) of
a. Let . F be the analytic continuation of F along the loop v; then the
monodromy theorem for analytic continuation implies that -, F depends
only on the homotopy class o containing the loop 7. Thus we write o, F
for v,F. Since (4.1.1) is a linear equation, o, F is also a fundamental
system of solutions of (4.1.1) in U and there is a unique non-singular
matrix M(a; F) € GL(n, C) such that

(4.1.2) a,F = FM(a; F).
Since e,F = F and (af),F = o (8,F) for o, 8 € m(D,b), we have
M(e;Fy=1, M(af;F)= M(c; F)M(B;F),
where I is the unit matrix in GL(n, C). These imply that the map
pr :m(D,b) - GL(n,C), awr M(a;F)

is a group homomorphism. A group homomorphism p : m(D,b) —
GL(n,C) is also called a (linear) representation of rank n. We call pr
the monodromy representation and the image group pr(m (D,b)) C
GL(n,C) the monodromy group of (4.1.1) with respect to the funda-
mental system of solutions F. Let G be another fundamental system of
solutions at another point, say a. If we denote also by G the analytic
continuation of G along a curve joining a and b, then there is a matrix

C € GL(n,C) such that G = FC. Hence we have
GM(0;6) = 0,6 = (0, F)C = FM(e;; F)C = GC' M(; F)C,

i.e., M(a;G) = C~'M(a; F)C. In other words, we have

(4.1.3) pg(a) = C lpr(a)C for o€ m(D,b).

In general, two representations p, p' : 71(D,b) — GL(n,C) are said to
be conjugate if and only if there is a matrix C € GL(n,C) such that
p'(a) = C~1p(a)C for all a € m;(D,b). Conjugacy is clearly an equiva-
lence relation. The monodromy representation depends not only on the
differential equation (4.1.1), but also on its fundamental system of so-
lutions. Note that, however, (4.1.3) implies that every two monodromy
representations of (4.1.1) are conjugate, so that the conjugacy class of
the monodromy representation is uniquely determined by the differential
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equation (4.1.1). We call this conjugacy class the monodromy of (4.1.1).
Two subgroups G, G3 of GL(n, C) are said to be conjugate if and only if
there exists a matrix C € GL(n,C) such that G, = C~1G,C. 1t is clear
from the above argument that the monodromy group px(m (D, b)) of
(4.1.1) with respect to any F belongs to the same conjugacy class which
is also called the monodromy of (4.1.1).

ProBLEM 4.1.1. (Monodromy problem) For a given linear differential
equation, find an explicit expression of its monodromy; or find genera-
tors of the monodromy group with respect to o fundamental system of
solutions.

When (4.1.1) is a Fuchsian differential equation on the Riemann
sphere with regular singular points at p;, -+, pm,Pm+1 = 00, then we
take D = C\{p1,"*+,pm}. For each j = 1,---,m, let U; be an open
disc in DU {p;} centered at p;, and let £; be a loop in U;\{p;} with
a base point ¢; € U;\{p;} which encircles p; once counterclockwise,
and let F; be a fundamental system of solutions of (4.1.1) in U;\{p;}.
Let b be a point in D, let F be a fundamental system of solutions of
(4.1.1) in a simply connected neighborhood of b and v; (j = 1,---,m)
be arcs starting at b and terminating at g;. The connection matrices

C; € GL(n,C) (j = 1,---,m) are defined by
(4.1.4) v; F = F;C;.

The connection problem mentioned in section 3.1 can be stated as fol-
lows:

ProBLEM 4.1.2. (Connection problem) For a given linear differential
equation, let F,F; and C; be as above. Find an ezplicit expression of
the Cj ’s.

The circuit matrices M; around p; can be defined by
(4.1.5) ¢ F; = F;M;.
Since generators of the monodromy group with respect to F are given
by
C;'M;C;,

we see
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Figure 2.5.

REMARK 4.1.3. The monodromy problem is a part of the connection
problem.

Unfortunately, we know only a very restricted number of equations
whose monodromy problem we can solve. To each of such equations,
one applies an appropriate method, according to the property of the
equation, which stems from a method used for the hypergeometric dif-
ferential equation. So, we shall present in Sections 4.3-4.7 several known
methods to find generators of the monodromy group of the hypergeo-
metric differential equation.

We briefly recall the structure of the fundamental group of D =
P'\{0,1,00}. Take a point b € D and three loops 79,7 and 7e with
the base point b (= 1/2) in a manner indicated in Figure 2.5. For brevity,
we also denote by 7; the homotopy class to which v; belongs. We can
easily show that the fundamental group G = m(D,b) is a free group
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generated by the two elements v and 7;; Yo is given by

(4.1.6) Yoo Ol = M70.

Notice that ;79 and 77, are conjugate ; in fact

Y71 = Y (mnr0)v0 !

= 7" (mro)mn-

4.2 Classification of 2-dimensional representations of the free
group with 2 generators

The monodromy representation of a Riemann equation is a 2-dimen-
sional representation of a free group with 2 generators. So we classify

2-dimensional representations of the free group with 2 generators in
advance. Let

G = (u, v} : free group generated by u and v,
V : 2 dimensional complex vector space,

p:G — GL(V): a 2 dimensional representation,
and

{A1,A2} :set of eigenvalues of  p(u),
(4.2.1) {p1,p2} :set of eigenvalues of  p(v),
{vi,12} :set of eigenvalues of p(uv).

Notice that the eigenvalues (4.2.1) depend only on the conjugacy class
of p , and that the equality det p(u) - det p(v) = det p(uv) leads to the
following relation among these eigenvalues :

(422) /\1/\2/11[1.2 = V.

One may think that a class of the representation is determined
by the eigenvalues (4.2.1) but it is true only when the representation
is irreducible. A subspace W C V is called p-invarient if and only
if p(G)W C W and W is called proper if it is neither {0} nor V. A
representation p is called irreducible if there is no p-invariant proper
subspace.
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THEOREM 4.2.1. (i) p is irreducible if and only if
(4.2.3) Xip; # v forall 4,j,k=1,2.

(ii) If p is irreducible, then there is a basis of V such that p(u) and
p(v) are represented by the following matrices

p(U)*-'(’\O1 ;2)

(4.2.4) .
1

plv) = <(V1 +v2) — (Mg + dap2) ﬂz) '
All representations (4.2.4) given by ezchanging A\ and A, and/or py
and po are mutually conjugate. In particular, if a conjugacy class is tr-
reducible, it is determined uniquely by the eigenvalues {A1, A2}, {111, 12}
and {vy,s}.

(iii) If p 1s reducible, then the conjugacy class of p is not determined
only by the eigenvalues; there are several cases.

(a) In case Ay # Ao, i1 # p2 end vy # va, we label (there are two
ways) indices so that

Apr =1 (& dgpp = 1a).

There are three conjugacy classes given by

(g ) o=t 2

e (g n) el L)

| Az 0 Ha 1
- (B 0) o=t ).
(b) In case Ay = Aa(=: X),p1 # p2 and vy # vq, there are three
conjugacy classes:

(5 1) o= 2

o
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p(U)H(é\ ,1\> p(v)*—*(‘f)2 :1);

(3 3) e (B 0).

(b)' In case Ay # Xa,p1 = po(=: p) and vy # vy, there are three
conjugacy classes:

(5 5) = (5 0)
w - (g 0) s (b L)
o= (5 ) e (b 0)

(b)" In case Ay # g,y # p2 and v1 = vo(=: V), there are three
conjugacy classes:

- (5 0 ) (
e (0 ) e (220 e (501);

e (5 2). e (5 8). wmee (9.

(c) In case Ay = Xa(=: X), u1 = pa(=: i) and v1 = vo(=: v), there
are a 1-parameter family of conjugacy classes:

w3 1) s (b b)) eeo,

and two classes:

o (g 3). s (b 2) =0,

1
TN
=
bt
Tl
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Proof. Proof of the assertions (i) and (ii): Suppose that p is irre-
ducible. Let e, be an eigenvector of p(u) corresponding to the eigenvalue
A1, and let e, be an eigenvector of p(v) corresponding to the eigenvalue
p2. By the irreducibility of p, the two vectors e; and e; are linearly
independent, and the line spanned by e, is not p(u)-invariant. Hence e
can be normalized so that p(u)es = e; +const -e;. Then, in terms of the
basis {e;, ez}, p(v) and p(v) are represented by the following matrices,

(4.2.5) P(U)HA=</})1 /\12), p(v)wB:(’;)1 52);

and so p{uv) is represented by

b+
p(uv) « AB = < Agh Napiz )

Computing the trace of p(uv) in two ways, we obtain
(4.2.6) b4+ A+ dapto = vy +vs.

Since p is assumed to be irreducible, (4.2.5) implies that
(4.2.7) b#£0,

and that the line spanned by e; is not p(v)-invariant. Now let us consider
a p(u)-invariant line. In case A\; = ),, such a line is spanned by e;.
Hence in this case (4.2.7) is also sufficient for p to be irreducible. In case
A1 # A2, the vector €’ = e; /(A3 — A1) + e2 spans another p(u)-invariant
line. For p to be irreducible, it is sufficient that the line spanned by
e’ is not p(v)-invariant and this is equivalent to the condition that e’
is not an eigenvector of p(v) corresponding to the eigenvalue u;. This
condition is given by

(4.2.8) b+ (A2 = A1)(pz — ) # 0.

If A; = )q, then (4.2.8) clearly reduces to (4.2.7). Hence (4.2.8) covers
the first case. Therefore (4.2.7) together with (4.2.8) is a necessary and

Monodromy 83

sufficient condition for p to be irreducible. Using (4.2.6), we find that
this condition is nothing but

(429) /\1/1.,' + /\2/1-]' ?é v+ 1 (va = 1’21i ?éJ)

Since we have (4.2.2), the relation between roots and coefficients of a
quadratic equation (e.g. (x — Aypg)(x — A2py) = 0 etc.) implies that
(4.2.9) is equivalent to (4.2.3). Hence the assertion (i) is proved. The
assertion (ii) is already established by (4.2.5) and (4.2.6).

Proof of the assertion (iii): Suppose p is reducible. Then there
is a 1-dimensional p(G)-invariant subspace. Let e; be its basis vector,
which is a simultaneous eigenvector of p(u) and p(v). We assume that e,
corresponds to the eigenvalues A; of p(u) and p; of p(v). If we extend
e1 to a basis {e;, ez} of V, then p(u) and p(v) are expressed by the
matrices of the form

(5 5) (), eseo

Since any 2 by 2 matrix with distinct eigenvalues is diagonalizable, the
following elementary lemma leads to the assertion (iii).

LEMMma 4.2.2, Let P be a 2 by 2 non-singular matriz.

(i) If P commutes with

A 0
( 01 /\2) ’ (Al ?é ’\2)
(5 39)
0 ¢q)°
é _ -1g
p(H )P1=(m g
(0 H2 0 B2 ) ’

(1) If P commutes with
Al
0 A)

then P is of the form

and we have
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P g
0 p)’
and we have

P(ul 5 )P_1 _ (I-‘l P (2 —m)+5>_
0 p 0 H2

then P is of the form

4.3 Finding the monodromy by local properties and the Fuchs
relation

Let us consider the Riemann equation RE(p,o,7) with a Riemann
scheme

0 1 o«
(431) MM 01 T
p2 02 T2

In this section we shall find the monodromy of RE(p,o,7) by using lo-
cal properties and the Fuchs relation. On the other hand, in Sections
4.4 - 4.7 we shall find the monodromy representation of RE(p,o,T)
with respect to a certain fundamental system of solutions by using
explicit expressions of solutions, (e.g., by using integral representa-
tions and by solving the connection problem). In the former method,
although the monodromy representation is not given, one can know
the monodromy for arbitrary values of the characteristic exponents
0i,0,Te (1,5,k = 1,2). In particular, one can know which classes of
2-dimensional representations of the free group generated by two ele-
ments can be realized as the monodromy of a Riemann equation (see
Corollary 4.3.4). On the other hand, in the latter method, one can get
more detailed information about the monodromy representation; how-
ever, these methods cannot be applied when the characteristic exponents
0i,0, Tk (i,3,k = 1,2) take certain special values. Notice that the mon-
odromy depends only on the Riemann equation and the Riemann equa-
tion depends only on its characteristic exponents, so its monodromy can
be described only in terms of its characteristic exponents.

Let G = n;(D,b) and v; € G (j = 0,1,00) be as in Section 4.1.
Let p: G — GL(2,C) be a monodromy representation of the Riemann
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equation RE(p,0,7). Since p(71 - Y0) = p(Yeo) ™! by (4.1.6) and yoy, is
conjugated to 7,0, we have

{e(p1),e(p2)}  :set of eigenvalues of  p(vp),
(4.3.2) {e(o1),e(02)}  :set of eigenvalues of  p(v;),
{e(—m1),e(—72)} :set of eigenvalues of p(vom1),

where €(-) = exp(27i-). Thus, putting A\; = e(p;),u; = e(o;) and
v; = e(—7;), we arrive at the situation in Section 4.2. As was seen in
Section 4.2, the conjugacy class of p , i.e., the monodromy of RE(p, o, 7),
is almost determined by the eigenvalues (4.3.2); and is completely de-
termined, if the monodromy is irreducible.

DEFINITION 4.3.1. The Riemann equation RE(p, o, 7) is said to be
(ir)reducible if its monodromy is (ir)reducible.

We first treat the irreducible case. As an immediate consequence
of Theorem 4.2.1 (i) and (ii), we obtain the

TueoreM 4.3.2 (Irreducible case). The Riemann equation RE(p, 0, 1)
is irreducible if and only if

(433) p,‘+0'j+Tk¢Z (i,j,k=1,2).

Under this condition, the representation p is expressed, up to conjugacy,
by the following matrices,

(4.3.4) p('ro)‘—*(e(gl) 1))’ p("‘)H(E(Zl) E(O )

e(p2 02)
Here the number b is given by
(4.3.5) b=e(—71)+e(—m) — e(pr +01) —e(p2 + 02),

where £(-) = exp(27i-). All representations (4.3.4) obtained by exchang-
ing p1 and p, and/or o, and oy are mutually conjugate.

We shall next consider reducible cases; which are more complicated
than the irreducible case. Recall that a reducible tepresentation class
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cannot be determined only by the eigenvalues (4.2.1). So the mon-
odromy of RE(p,0,7) cannot be determined only by the exponentials
(4.3.2) of the characteristic exponents p;, o, Tk(?, 7,k = 1,2). Namely,
there still remain some informations to be taken account of. Of course,
the monodromy is determined by the characteristic exponents p;, o;, T,
because the Riemann equation is uniquely determined by its character-
istic exponents. The key is to know which singular points are (non-)
logarithmic. Keeping this point in mind, we state the result, by using
the following notation:

N : the set of positive integers,
Np : the set of non-negative integers,

¢ : th ty set (m =0)
m) = {{1,2,?-??lrﬁ}y ) (m € N),

e(:) = exp(2mi-).

THEOREM 4.3.3  (Reducible cases). Suppose that the Riemann equa- ‘

tion RE(p,0,7) is reducible, namely, the following condition holds
(4.3.6) pitoj+1.€Z for some i, j,ke€{1,2}.

Then p(yo) and p(v1) are uniquely represented up to conjugacy by the
following matrices (the result is divided into several cases):

(A) Case py — p2,01 — 02,71 — T2 & Z. We can uniquely label the
exponents so that

pr+0o1+7 €E—-No

which is equivalent, by the Fuchs relation, to

p2+o2+12 EN

The representation p is given by

a3 pw - (00 0 = (G0 0.
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(B) Case p; — p2 € Z,01 —02 ¢ Z, 71 — T2 ¢ Z.We label the ezponents
at = 0 so that
1 — p2 € No.

(B.1) Case when
(438) p+oi+ 75 ¢ (pl - P2) (l,] = 132)

holds ( i.e., x = 0 is logarithmic ). We can uniquely label the exponents
at x =1 and oo so that

pr+01+ 71 € —No.

The representation is given by

(4.3.9) p(vo)'-'(e(op) 1))’ ,,(71)._,<€(gl) 0)

e(p e(2)

where €(p) := e(p1) = &(p2)-
(B.2) Case (4.3.8) does not hold ( i.e., z = 0 is non-logarithmic ). The

representation is given by

(4.3.10)  p(r0) & (E(Op) 5(0/)))’ pn) = (E(gl) 6(22)>

(B) Case py —p2 € Z,01 — 02 € Z, 71 — To & Z. We label the exponents

at £ =1 so that
01 — g2 € No.

(B.1)’ Case when
(4.3.8) pitor+71i¢{or—02) (i,5=1,2)

holds ( i.e., x =1 is logarithmic ). We can uniguely label the exponents
at x =0 and oo so that

p1+0o1+ 71 €—No.

The representation is given by

(4.39  p(y0) & (E(S‘) ) ))’ pln) o <E(g) 6(17))

&(p2
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where £(0) 1= e(01) = £(02).
(B.2)" Case (4.3.8)" does not hold ( i.e., z = 1 is non-logarithmic ). The
representation is given by

(4.3.10) p(vo)H(E(gl) 5(22)>’ ”(7‘)'_'(5(3) E(?f)>

(B)” Case where py — py ¢ Z,01 — 02 ¢ Z,71 — 72 € Z.We label the
erponents at £ = oo so that

7y = 72 € No.
(B.1)" Case when
(438)” Pi + g; +n ¢ (Tl - T2) (l,_] = 1,2)

holds ( i.e., z = oc is logarithmic ). We can uniquely label the ezponents
atz =0 and 1 so that

p1+ o1+ 711 €—No.
The representation is given by

(4.3.9)" p(%)H<€(gl) 5(22)), p('yl)._,<5(g1) sg,(;;)z—)l),

p(rom) < (E(OT) E(IT)) :

where e(7) == e(1y) = &(rp).
(B.2)" Case (4.3.8)" does not hold ( i.e., x = 0o is non-logarithmic ).
The representation is given by

oo = (000 ) ptmy = (G 0,

e(p2 &(a2)

p(rom) = (E(OT ) E(OT)) -

(C) Case py — p2,01 — 02,71 — T2 € Z. We label the exponents so that

(4.3.10)"

p1— p2,01 — 02 € No,
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and set e(p) := e(p1) = €(p2). and £(0a) := (01) = €(02).

(C.1) Case (4.3.8) and (4.3.8)" hold ( i.e., z =0 and z = 1 are logarith-
mic ).

war) oo (P ). = (7 7E57),

(C.1)" Case (4.3.8) holds and (4.3.8)" does not hold ( i.e., z = 0 is
logarithmic and £ = 1 is non-logarithmic ).

(4.3.11) P(70) < (E((f) E(IP)) » pm) e <E(g) 5((37)) ’

(C.1)" Case (4.3.8) does not hold and (4.3.8)" holds ( i.e., £ = 0 is
non-logarithmic and z = 1 is logarithmic ).

(4.3.11)" p(*ro)H(E(Op) 58,)>’ P(‘“)H(E(g) E(L))’

(C.2) Case neither (4.3.8) nor (4.3.8) holds ( i.e., z=0andz =1 are
non-logarithmic ).

(4.3.12) p(70) + <E(0p) 68,)) y o plm) = (E(g) e(?r)) ’

The above cases (A), (B), (B), (B)" and (C) cover all possibilities.
CoroLLARY 4.3.4. Except for the cases mentioned below, any
conjugacy class of 2-dimensional representations of the free group with

two generators can be realized as the monodromy of a Riemann equation.
The exceptions are classes determined by the representations:

= (0 ) o= 0

Aiyphj € C* A1 # A, iy # pa, Arpir # dapta;

where
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pW)~>(3 i), p@)**(g Z)

Mp€eC*, beCandbs# ~—pu/l.

and

where

Acknowledgement. This corollary was first proved in [KS]. (c.f. [Bieb]
and [KimT.6]). The authors are grateful to Professors T. Kimura and
K. Shima for having informed us of their results.

LEmMa 4.3.5. If the generators p(vo) and p(y1) of a monodromy
representation of a Riemann equation are simultaneously diagonalizable
then at least one of p(yp), p(11) and p(ov1) s a scalar matriz.

Proof. ¥ p(vo) and p(71) are diagonal and neither of them is a
scalar matrix, the Riemann equation admits two linearly independent
solutions:

z°(1 - z)°p(z) and z° (1 — z)7 p'(z)
where {p,p'} = {p1, 02}, {0,0'} = {01,02}, and p and p’ are polynomi-
als of degree n and ', respectively, since p and p' are single-valued and
z = oo is a regular singular point of the equation. If p(y:1) is not a
scalar matrix, we conclude that {-p—0 —n,—p' — ¢’ —n'} = {1, 7p}.
The Fuchs relation tells us

l=p+p+o+0' +7+7 =-n-1n,
which is a contradiction. g

LemMMA 4.3.6. If
prtor+m€—-No

and if at least one of py — p3,01 — 09 and 7| — T3 is not an integer then
there is a solution of the Riemann equation RE(p,0,7) of the form

2 (1 - z)”'p(z)

where p is a polynomial of degree at most —(p; + 01 + 11).

I
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Proof. We assume, for example, py — p2 ¢ Z. Put n:= ~(p1 +01+
1) 2> 0. Since we have

0 1 o 2
Plp or 1 52}, Z(Pi+‘7i+7'i)=1
p2 02 T2 1=1
0 1 0o
=z (1-z)"P 0 0 prtor+mn iz
pr—p1 02—01 o1+ T
0 1 oo
=z (1-z)>P| O 0 a
-y y=a-8 B
where
a=p+o1+7=-n,
B=p1+01+ 7,

y=1l-p+m¢Z
the Riemann equation E(p,o,7) admits a solution
oo

141 o1 (_QM): 2
#(1=2)" 2 G,

1=

o B
a1 e 3 A

=0

LEmMma 4.3.7.

(i) Suppose R(p1) > R(p2). Then the Riemann equation RE(p,0,T) has
a logarithmic singularity at = = 0 if and only if the following conditions
hold:

pr—p2€ENo, prtoitTélp—p2) (,5=12).

(ii) Suppose R(d1) > R(02). Then the Riemann equation RE(p,0,7)
has a logarithmic singularity at z = 1 if and only if the following con-
ditions hold:

o1 -0 ENg, pitor+7ié{or—0o2) (4,5=12).
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SUBLEMMA 4.3.8. When v € —Np, the hypergeometric equation with
parameters (c, B,%) has a non-logarithmic singularity at z = 0 if and
only if

aor f€{y,...,—-2,-1,0}

Proof. Since 2— v # 0,-1,-2,..., the equation has the Kummer’s
solution

fomil-y)=2'"Fla-v+1,—7v+ 1,2~ ;1)

corresponding to the exponent 1 — . Let us consider the possibility of
the solution of the form

oo
u= Zanz" (g0 =1)
n=0

corresponding to the exponent 0. Substituting the series u into the
equation we have the recurrence formula (c.f. Chapter 1, Section 1.3,
Frobenius’s method):

(v +n)(1 + n)anss = (a+n)(B+n)a, (n20)
Thus if the condition in the sublemma holds, we can take

an=0 n2>1 ify=0

a,=0 n>—v if y€e =N

so that the finite series u is another solution. Conversely, if the condition
does not hold, there is no series {a,} (ag = 1) satisfying the above
recurrence formula for n = —v, g

Proof of Lemma 4.3.7. We prove only (i). For a Riemann equation
RE(p,0,7), let us assume p; — p2 € N. (If py = pa, the singularity at
z = 0 is logarithmic (c.f. Chapter 1, Section 1.3).) We have

m
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0 1 o
Plp o 7 ;z {o,0'} = {o1,02}, {7, 7'} = {71, 72}
p2 al TI
0 1 00
=z(1-z)°P 0 0 pto+T iz
p—p 0 —0c pato+T

Put
l-y=p—-p €N,

a=ps+0+T,
B=p2+o+7.
Since ¥ € —Ng, by the sublemma, z = 0 is logarithmic if and only if
aor Be{vy,...,~2,-1,0}.

Since
pto+T=p—pta(=1-7+a)

m+o+7T =p-p+B(=1-7+p5),

- we have only to recall the definition

<pl _m) ={la2"°'7pl —P2}- |

LemMma 4.3.9. If the Riemann equation E(p,0,7) is reducible,
then it cannot happen that all three singular points are simultaneously
logarithmic.

Proof. Suppose that the reducible Riemann equation RE(p,0,7)
has three logarithmic singular points. We assume that

(4.3.14) R(&) > R(&) (&= p5,05,75)-

Since RE(p,0,7) is reducible, there is a solution f(z) of RE(p,0,7)
invariant under the action of m;(P'\{0,1,00}) up to multiplication by
constants; it must be of the form

fz) = 28z — 1)"p(x), p(z): a polynamial of degree n;
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we can assume that p(z) is not divisible by £ nor £ — 1 , so by the
definition of characteristic exponents, we conclude that £,7 and - —
17 — n are characteristic exponents at £ = 0,1 and oo, respectively.
Since all singular points are now logarithmic and (4.3.14) is assumed,
the exponents p9,0 and 73 correspond to logarithmic solutions. Hence
we have

f=P1; n=o0o, —E_n—n=7-l'

Summing up the both sides, we obtain py + 0 + 11 = —n < 0. The
assumption (4.3.14) and this lead to the inequality

Rpr+p2+o1+0o2+71+7)<0.

This contradicts the Fuchs relation. g

Proof of Theorem 4.3.3. Since the representation is reducible, we
assume p(7o) and p(7y;) are upper triangular. Let us consider three
numbers .

P1— p2,01 — 02,7y, — T2.

By the Fuchs relation and the reducibility condition (4.3.6), we see that
only three cases occur: (A) none of the three is an integer, (B) exactly
one of them is an integer, (C) all of them are integers.

(A) In this case, we can uniquely label the exponents so that

p1+01+ 71 €—No.

We take p(yp) diagonal. By Lemma 4.3.5, p(71) is not diagonal. Since,
by Lemma 4.3.6, the equation admits a solution of the form z#!(1—z)”
(a polynomial), the representation is given by (4.3.7).

(B) We take p(7;) diagonal. Let us label the exponents at £ = 0 so that
P1 — p2 € No, and consider the four numbers:

nto+T

where o (resp.7) is one of the exponents at z = 1 (resp. oo). Since the
representation is reducible, Theorem 4.3.2 and the Fuchs relation tell us
that at least one of these numbers is an integer. Since 01 —05, 71 -7 € Z,
exactly two of the four numbers are integers which can be written as

eE=p+0o+T
e=p+a +7 o#o,T#T.
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By the Fuchs relation we have
ete=p-pp+1.
If £ = 0 is a logarithmic singular point, then by Lemma 4.3.7, we have
prta+7, prt+o’+7 ¢ (p1 - p).

By this condition together with the above equality, we conclude that ¢
or ¢ € —Np. Thus we can uniquely label the exponents at x = 1 and
oo so that

p1+ 014+ 11 € —No;

so, by Lemma 4.3.6, the representation is given by (4.3.9).

If z = 0 is non-logarithmic, there is no need to label the exponents at
z = 1, because if we exchange o, and o3 in the representation (4.3.10)
it gives a conjugate one.

(B), (B)": Same as (B).

(C) When z = 0 and 1 are both logarithmic, Lemma 4.3.9 tells us that
T = 0o is non-logarithmic, i.e., not of type

(¢ ) #*O

thus we have (4.3.11). When z = 0,1 and oo are all non-logarithmic,
we have (4.3.12).

Theorem 4.3.3 is completely proved.
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4.4 Finding the monodromy by Euler integrals over arcs
In this section, we shall solve the connection problem with respect to
solutions expressed by Euler integrals over arcs starting and ending at
one of the four points: 0,1,00 and z. As is mentioned in Remark 4.1.3,
the monodromy group with respect to such solutions is obtained from
the solution of the connection problem.

Consider the integral

q
(4.4.1) Foolz) = / o(t, 2)dt,
P .
where
(44.2) (t,z) = p(t,z; A, p,v) = (1 - t)¥(z - t)",
(4.4.3) A=a-7, p=v-0-1, v=-a
and

p,g€{0,1,00,z}, p#gq.

We assume that z lies in the upper-half plane: ¥(z) > 0. If R(8) <
R(y) < R(a) + 1 < 2, then the integral (4.4.1) converges; anyhow, this
integral makes sense as the finite part of a divergent integral (cf. Section
3.3), provided that

(444) noneof o,1 -8,y —aand 8 — v+ 1is a positive integer.

Under this condition, the integral (4.4.1) gives a solution of the hyper-
geometric equation (Section 3.4). There are (;) = 6 integrals to be
considered:

(445) FOhFloanooOaFO:aFlzanoo'

The paths of integration for F,, are denoted by 7 and indicated in
Figure 2.6. The branches of integrand of Fy, along Pg are determined
by the assignment of arg(t),arg(1 —t) and arg(z — t) tabulated in Table
1.

We shall solve the connection problem for the hypergeometric equa-
tion with respect to the 6 solutions (4.4.5). Since the solution space is
2-dimensional, the solution of the connection problem is given by four
homogeneous linear equations for (4.4.5); any four solutions are linear
combinations of the remaining two.

Monodromy 4

Assignment of branchs in case Sz > 0

argt arg(l—t)  arg(x —t)

01 0 0 (& n)*
Too 0 -7 [, 7]
o0 T 0 [0,¢]
Oz 3 [7—m,0] £
1z [0,¢] n—-m n
=9 § [-mn-a]" E4m

£:=argz, n:=arg(z—1), 0<§,n<m,

[a,b]* := [min(a, b), max(a, b)].

Table 1
THEOREM 4.4.1. The solutions Fpq(z) listed in (4.4.5) satisfy the
following linear relations:
(1) F01+ Floo+ FooO =—“0,
(2) Fox - Foz: + Fis =0,
(3) E(—[I)Fu,o —Fl:: —E(V)ono =0$
(4) E(A)Fwo + Foz + ono = 0,

where £(-) = exp(2mi-).

Proof. Let D;(j =0,...,4) be domains indicated in Figure 2.6 and
denote by 0D, their boundaries with the natural orientation. If (A, s, v)
lies in a suitable open subset of C3, then the integration of e( Ty A gy v)
over D; makes sense and Cauchy’s theorem is applicable:

(4.4.6) / o(t,z; A\, p,v)dt = 0.
aD;
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O

Figure 2.6.

Divide 9Dj into three arcs of the form pg; the integral (4.4.6) is the sum
of the corresponding three. Comparing branches of these integrands
with those of Fpy (see Table 1), we can easily show that (4.4.6) leads
to the linear relation (j) of the theorem. For a general (A, p,v), the
theorem is proved by making an amnalytic continuation with respect to

(A m,v).

To find generators of the monodromy group with respect to two so-
lutions in (4.4.5), we establish relations between Fy, and local solutions
fa(z;€) which has characteristic exponent £ at x = a defined in Section
1.3.
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THEOREM 4.4.2. We have

( Floo(z) = €100 fo(z;0),
Foz(z) = coz fo(z;1 =),

(4.4.7) e = _ritr-a-p LBIL (7 - B)
= T(y)
_Na-7+1)I(1-a)
{ Cozr = F(Z — 7) s

( Fooo(x) = CooO.fl(x; O)a
Fi2(z) = ciz fi(z;y — a = ),

(4.4.8) { o = erima IBT(@ ~ 7 +1)
>t Tla+B-v+1)’

c1. = e—m’a F(’)’ — ﬂ)r(l - a)

\ == I'y—a-8+1)’

[ For(z) = co1 foo(z; @),
Fxoo(x) = C.roofoo(x;ﬂ)v

(4.4.9) _ Ta-y+1I(y-B)
O T Ta-g+1)
oo = _e—m'('y—a—ﬁ)r(ﬂ)r(l - q)
{ =0 TB-a+1)

Proof. The first formula of (4.4.7) follows immediately from (3.2.2)
since fo(z;0) = F(a, B3,7;z). To prove the second formula of (4.4.7), we
make a change of variable ¢t = z/s in (4.4.1) for Fp, to obtain

o0
Foz(z) = 2! / 8P s - 1)"%(s — z)* P 1ds.
1

The integral on the right-hand side is holomorphic at z = 0, whence
Fy.(z) has the exponent 1—+ at z = 0. So Fy.(z) is a constant multiple
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of fo(x;1—y). The constant co, is found by evaluating the above integral
at z = 0. For the first formula of (4.4.8), we make a change of variable
t=1-sin (4.4.1) for Fyo(z) to obtain

Foco(z) = /°° $YAH(1 — 5)* Y s — (1 — z)} ™ %ds.

1

Hence Feo(z) is holomorphic at £ = 1, and therefore Foo(z) = Cogo
f1(x;0) with coco = Fooo(1). Evaluating Feoo(1), we obtain the first
formula of (4.4.8). To show the second formula of (4.4.8), we make a
change of variable t =1 — (1 — z)s in (4.4.1) for F}, to obtain

Fu(l‘) = —e_"ia(l — .’I:)'Y_"""ﬂ‘/0 37—13—1(1 _ s)-a{s ~(1- .’L‘)}a—‘yds.

The integral on the right-hand side is holomorphic at z = 1. Hence
Fi(z) has the exponent v — o — 3 at z = 1. Evaluating the integral at
z = 1, we obtain the second formula of {4.4.8). For the first formula of
(4.4.9), we rewrite Fy,(x) in the form:

Fa(z)=z"° /01 1 -t)*(1 - %)"dt.

The integral on the right-hand side is holomorphic at z = co. Evaluating
it at £ = co, we obtain the first formula of (4.4.9). Finally, to show the
second formula of (4.4.9), we make a change of variable t = z/s in
(4.4.1) for F.o to obtain

1
Froo(z) = x“’/ $P=1(s = 1)~o(2 — 1)7-F~1gs,
0 T

The integral on the right-hand side is holomorphic at z = co. Evaluating
it at z = 0o, we obtain the second formula of (4.4.9). g

Now we turn to the monodromy group. Solving the equations (1)
- (4) of Theorem 4.4.1 with respect to Fop and F., we obtain

(4.4.10) (Fioo, For) = (Fwo,Fu);(—l,)—_i?J’
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where

_(cO+v)—e() e(-n) - e(A+)
(4.4.11) P= ( e(v) - 1 1— e(~p) .
We finally have generators of the monodromy group of the hypergeo-
metric equation with respect to the fundamental system of solutions

(Fioo, Foz)-

THEOREM 4.4.3. Let v;(j = 0,1) be the loops defined in Figure 2.5
with base point b= 1/2. Suppose o, and 7y satisfy (4.4.4). Then the
analytic continuation y; F of F := (Fieo, For) along v; are given by

(4412) ’)’o.f = on, 71,.7: = fAl,

where

(4.4.13) A0=((1) E(‘_),y)), Al;P-l<é E(’y—(()l—ﬁ))P'

The matriz P is given by (4.4.11). The monodromy group with respect
to the fundamental system F of solutions i35 generated by Ay and A;.

4.5 Finding the monodromy by Euler integrals over double
loops

Euler integrals over double loops also provide us with solutions of the
hypergeometric equation (Section 3.4). We shall compute the mon-
odromy group with respect to two such integrals. This method is more
elegant than that of using Euler integrals over arcs; we need not worry
about divergence of integrals. Moreover, we can know the monodromy
directly, i.e., not by solving the connection problem. Let T be the equi-
lateral triangular domain with vertices 0,1 and p := (1 + iv/3)/2. For
z €T, we set

Y, = Pl\{01 1, max}

and take p as base point of the fundamental group of Y;.
We consider an Euler integral over a double loop:

(45.) €@ = [ et @eD),

{¢.m]




102 Hypergeometric differential equation

where

(452)  o(t2) =gt 20, 8,7) = 1777t = 1)TP7(t - 2) 7,

(4.5.3) [€,n) := &né~ 1y~ : commutator of &,n € m (Y, p).

The branch of (-, z) at the starting point ¢ = p can be determined by
the assignment: argt = n /3, arg (t—1) = 2r/3,7/3 < arg (t—z) < 27 /3.
The integral (£,7) represents a solution of the hypergeometric equation
(Section 3.4). The integrand ¢(-,z) enjoys a very simple monodromy
property, which is expressed by the 1-dimensional representation:

(4.5.4) c:m(Ye,p) = C*, & c(§),
where ¢(£) is a constant caused by the analytic continuation of (., z)

along €. Let us denote by £,y the analytic continuation of ¢ along £.
Notice that [, (].p = v and so that ¢([n,¢]) = 1. Notice also that

/ gpdt:/n.gpdt#/cpdt
&n 4 n
=c(n)/<pdt+/<pdt.
14 n

The monodromy of the hypergeometric equation can be derived by
the 1-dimensional representation (4.5.4) and the distributive law (4.5.5)
mentioned below.

LEMMA 4.5.1. For £,1,¢ € m(Yz, p), we have

(4.5.5) (€m ¢y = (&€} + ()7 {n, Q)

Proof. Since
[én,¢] = &nCn~1¢71¢T!

= Enn¢TleTECETI¢T!
= €[n, C)™'IE ¢,

Monodromy

we have

(€n,¢) = / pdt
&[n.ClE-1[€.C)
=/ [5,(].¢dt+/ ot
£[n,C)E-1 {£,€)
- / odt + (£,C)
£[n,L)e-?

/ £ pdt + / pdt + (£,¢)
&[n,) -1

e [l [ pairs [ e+ (60

I

1

C -t d c -t ) +£7<
€ [ot [ oits @0+ 6

= [ e+ @0+ 60
=c(§) T Q) + (6:€).
CoRrOLLARY 4.5.2.  For£,n,( € m (Y2, p), we have

(4.5.6) (€7,¢) = —c(§)(6, <),

(4.5.7) (€71n€,¢) = c(&){clm) ™ — 1HE Q) + (&) (n,€)-

Proof. They follow from
0=(&71¢) = (£ + (O E0)
and

(€106, ¢) = (€71,0) + (€7 (g, €
= —c(€)(6: Q) + ({(n, ) + (™6} u
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P=2(1+if3)

Figure 2.7.

Let (;(j = 0,1,00 and z) be the loops with base point p indicated
in Figure 2.7. We note that (; encircles j once in the negative direction.
The fundamental group 71 (Y, p) is a free group generated by (o, ¢, and
(z; we have a relation

(4.5.8) ol = ¢
Operating (-, () on (4.5.8) and using (4.5.5), we have
0= ((Z!,Coo) = (GoCaC1s Coo)
= (€01 Coo) + ¢(C0) ™ €21y Coo)
= (CosCoo) + €(C0) T {{€z» Goo) + () T (1, ool ],
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and so

(4.5.9) ((o,(oo) + C(CO)—I(CZHCOO) + C(COC:)—I«vaoo) =0.

Let v,(v = 0,1) be the loops with base b(= 1/2) defined in Figure
2.5. Recall that the fundamental group m;(X,b) of X = P!\{0,1, 00}
is generated by o and 7. We see that ((;,{w)(j = 0,1,00) are holo-
morphic functions of = in the triangle T. Their analytic continuations
along v, (v = 0, 1) are denoted by .., ((;,{c). Notice that ({y,{0) (resp.
(¢1,€o0)) is holomorphic at z = 1 (resp. z = 0). Let us analytically con-
tinue the functions ({1, (o) and ({z, (o) along the loop vo. The analytic
continuation is found by deforming the paths of integration (;,{, and
(oo inY; = P! —{0,1,00,z} as = € P! - {0, 1,00} travels along y,. The
paths (; and (o have nothing to do with the moving point z so they
can remain as they were. Thus we have

(4.5.10) 704 (€1, o) = ({1, {o0)
and by exchanging the role of 0 and 1, we have
(4.5.10)’ M.{C05Coo) = (€0, Coo)-

The following illustration (Figure 2.8) shows the deformation of (.

The last picture (Figure 2.8 (7)) shows the result when the point =
has ended its journey and the path (, has been deformed into {5 (..
Therefor we obtain

70.((1:’(00) = (C('rlCzCOaCoo)
= C(CO){C(CI)-I - 1}((07(00) + C(CO)(CI! Coo)a

where (4.5.7) is used to derive the second equality. Making a similar
consideration also for (|, we have

71:((::,(00) = <<1_1<I<11<oo)
= C(Cl){C(CI)_l - 1}<<l:<oo) + C(Cl)((za(oo)-

Perform on (4.5.9) the operation y;, and make use of (4.5.10) and
(4.5.11); then we have

0 =71,(¢0,Co0) + C(CO)_171‘:(<1:’<00) + e(Colz) " 11 (€1 Coo)
= (€0, Coo) + c(Co) "M (¢ ){e(Cz) ™t = THC1,y Coo) + €(€1){Czy Coo))
+ C(COCZ)_171t(<1’CCD)’

(4.5.11)

(4.5.11)
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(1)

(3)

(4)
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(s) 3
o
(6) F
0
(7) 4
[o]
Figure 2.8.

Monodromy 107

and so

Y14 (€11 Co0) = =¢(C0Cz) {0, Coo) ~ €(C1){1 — €(€2) HC1) Coo)
- c(<1<t)(<tv<oo)-

Performing on (4.5.9) the operation vg,, we have similarly,
70, (C0y Coo) = {1 — c(€2) ™  Hlo, oo} = (o)™ (€1 Coo)
- (Cta(oo)-

Elimination of {(;, () from these formulae by using (4.5.9) yields

Y14 €1y Coo) = (€162 ){C15 Coo)
+ C(COC:){C(CI) - 1}«0,(00),

(4.5.12)

Y0 {C0, oo) = c(¢2) ™ H{e(1 = Go) T H(1,s Coo)

(4.5.13)

+ {14 c(Co) — () Hos Goo)-
On the other hand, by the definition of the loops {p,({; and (., we see
(4.5.14) c(Go) =e(y —a), c(C1)=e(B~7), () =¢ela),

where £(-) = exp(27¢-). The following lemma tells us under which con-
ditions ((o,¢x) and {(1,{x) are linearly independent.

LemMA 4.5.3. Suppose that o, B, and v satisfy

a# Oa—la-2y_31"'7
(4.5.15) a—p¢Z, and

7—ﬁ7é 11273;"' or 0_77&07]-’27"'-
Then, (o,Cx0) and {(1,c0) are linearly independent.

Proof. Since ((p,{c0) is holomorphic near z = 1, and {(1,(s0) is
holomorphic near z = 0, if they are linearly dependent, one of them,
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say {Co; (oo}, is holomorphic also at z = 0, and hence holomorphic in the
entire plane C. Since it has polynomial growth order, we conclude that
it is a polynomial. We shall show that, under the condition (4.5.15),
neither ({o,{x) nor ((1,{w) is a polynomial, by expanding them into
power series at 1 and 0, respectively. To carry out the computation, we
use Pochhammer’s integral representation of the Beta function:

1 -1 _ #\q-1
Be9= T =@ g OO
E(p + Q) tp_l(l _ t)q_ldt,

T 1= = @) Jivorm]

where the argument of the integrand is assigned at the starting point
b=1/2 by argt = arg (1 — t) = 0. This formula is a direct consequence
of the definition (3.2.2) and Proposition, 3.3.7.

Expanding ({o,{c) and (¢1,{c) around z = 1 and 0, respectively,
we have

(G0, Coo} = Z Dz -1

m={_{

(Gl = 3 W

m=0
where

o) = m(a)m/ £277(t - 1)7T" ™t
[CD#Coo]

& = ¢ (a)m / =T (g — 1)1=B14y,
[Cl Coo]

and ¢y and c; are constants independent of , 3,7, m. By changing the
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variable of integration, we have
/ (- 1)7_ﬁ_ldt
Cl yCao]

=/ s(m+B)=1(1 _ g)(1-B)=14
[70,71]

_[—em+ )1 - (v~ B)]

6(m+7) B(m+ﬂ,7—ﬂ)
_[1-e@l -y~ BIT(m + BTy - B)
() I(m +7)

In this way, we have

Ta-y+1)I(B—a+m)
rB-y+m+1) °

) = co(@)m{l ~ e(a = H1 - £(8 ~ @)}

B ~a+m)(y—p)
I(y—-a+m) ’

&) = er(@)m{l - (B - NHL - (v - B)}

So, under the condition (4.5.15), c(,:.)),cm) # 0 (m > 0). Hence {{o,(x)

~ and ((1,{s0) are not polynomials. g

THEOREM 4.5.4. Suppose that a, 8 and v satisfy (4.5.15), then
F = ({(1,€o0)s {€0s Coo)) forms a fundamental system of solutions of the
hypergeometric equation. Let vy, (v = 0,1) be the loops with the base
point b = 1/2 defined in Figure 2.5. Analytic continuation of F along
1.(v =0,1) is given by

(4.5.16) 1. F=FA, (v=0,1),

where the matrices A, are given by

Ao=(1 e(—a) —e(-7) )

0 1+e(y—a)-e(-a)

_(ela+B-7) O
A“’(dm—dﬂ 1)’
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where £(-) = £(2ni-). The monodromy group with respect to the funde-
mental system of solutions F is generated by Ay and A,.

Proof. By (4.5.10) and (4.5.13), we have

70*'7: = (70¢<C1aC00)770¢<C07<oo))

(1 elo-e(-a){ely—a) - 1)
‘f<0 1+ &(y - @) - ¢(~a) )

=F Ao.
Analogously, we have

'711.-7: = (711.((17(00))711:((07(00))

__ C CIC: 0
= ({€1,C0), (€0, €o0)) (C(COC:)({C(Cl)) -1} 1)

_ £(B - a)e(a) 0
i <€(7 —a)e(){e(B~7) - 1} 1)

=.7'-A1 B

Note. A generalization of the method used in sections 4.4 and 4.5 is
made in [Aom.5], [HK] and [KN].

4.6 Finding the monodromy by Barnes integrals

The Barnes integral representation (Section 3.5) for F(a,B,v;z) takes
the form

(4.6.1) F(a, 8,7 a;):% /c h(t, )dt,
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where the integrand is given by

y) Dlat )TB+ON(=t)
INCIINGE) I(t+7)

Al poles of h(:, ) are on the union of Py and P, where

(4.6.2) h(t, z) =

7D+ = {011a2v3,' "}v

P_={-a,—a-1,~a—2,--}U{-B,-B~1,-B—2,}

The path of integration C is a vertical line along the imaginary axis
with deviation so that Py lies to the right of C and P_ lies to the left
of C (Figure 2.3). Let Cy be the path indicated in Figure 2.9, where
N is an integer. We change the path of integration C into Cy and
let N — oo. Following this line, we obtain an answer to the connection
problem, which leads us to the monodromy group of the hypergeometric
equation.

THEOREM 4.6.1. Suppose none of o,f,7,7 — @ and v — B s an
integer. Then we have the connection formula
(4.6.3) (fo(2;0), fo(z;1 = 7)) = (foo(T; @), foo (; B)) P,

where P is a matriz given by

_(ca,B8,7) cla=-7+1,8-74+1,2~7)
(4.6.4) P‘(c(ﬂ,a,'y) C(ﬂ—7+1’a—7+1,2_7))a

and c(a, B3,7) s defined by

_ —rin EW)T(p = A)
(4.6.5) chpu,v)=e ’\m,

and the function fo(z;)) is o Kummer’s solution with the ezponent A
at £ = a, given in Section 1.3.

Proof. The integrand h(-, ) of (4.6.1) has simple poles in Py UP_,
whose residues at P_ are given by

t=1§gs_n h(t, )
(4.6.6) I(y) T(a+B-2v—n)l(v+n)

=F(a)1’([3) I(y-—v—n)T(1+n) (-z)~vz™"
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b
N JN

Figure 2.9. 1

for v = «, 8, where the identity Res;=_,I'(t) = (-1)"/n! is used. On
the other hand, we have

F(Oz +8-2v-— n) = (—1)'1(23(?_:?’;3_'/1))"’ (V = Oz,,@),
(4.6.7) T(y - v)

My—v-n)= (-7
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which are easily verified by using
L(t+1) =tT(t).
Substituting (4.6.7) into (4.6.6), we obtain
t=13:$s_n h(t, z)

(4.6.8) 4+ Da)n  —en
=C(V,OJ+,B - V,7)(2(:_ CZ_ IB+ ij)nn!x

for v = a, 3. Hence, (4.6.1) and the residue theorem imply
fﬂ(m; 0) = C(aaﬂ,’)’)foo,N(x; Q) + C(lg7av7)foo,N(x;:B) + IN(I)a

where

N
B (v=7+Da(¥)n _,_n
fm’N(x’V)_2(21/—0—54-1)""!2 ,

Iv@) === [ kit 2)dt.

271 Cn

We can show that Iy(z) converges to 0 as N tends to oo in a manner
similar to the proof of Lemma 3.5.2. Moreover we have fon(z;V) =
foo(z;v) as N — oo for v = o, 8. Hence, we obtain

(4.6.9) fo(2;0) = (e, B, 7) fool; ) + (B, 0, ) foo(; B).

If we replace (o, 8,7) by (¢, 8',7) = (@ =7+ 1,B-7+1,2-9) in
(4.6.9) and multiply it by z1~7, we see

fo(z;1-7)
=C(a—7+1,ﬂ—7+112_7)f00(x’a)
+c(ﬂ—'y+1,a—’7+1,2—’Y)foo(l‘;ﬂ)-

(4.6.10)

In fact, putting superscripts (afv) on the symbols of Kummer’s solu-
tions in order to indicate the parameters, we have

Il—vféﬁ J )(x; 0) = féaﬂv)(m; 1- ,y),
TN (ol ) = fL2P (25 ),
xl_"fc(,g’ﬁ"")(a:;ﬂ') - fc(,gﬁ7)(1‘; B).

RFematinn (4 A 2) fallawe readilv fram (A A QY and (AR 1M =
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THEOREM 4.6.2. Let v,(v = 0,00) be the loops with base point b =
1/2 defined in Figure 2.5. Suppose that none of @, 8,v,7Y—a and y—f3
is an integer. Then the analytic continuations of F = (fo(x;0), fo(z; 1~
7)) along v,(v = 0,00) are given by

(4611) 71/-? = fAu (V = Oim)7

where A, are the matrices

(4.6.12) A0=(é dfﬂ), Am=}r1(“;” dfm)fz

e(-) = exp(2ni-), and P is the matriz given by (4.6.4). The monodromy
group with respect to the fundamental system of solutions F is generated
by Ap and A

4.7 Finding the monodromy by Gauss-Kummer’s identity

We shall solve the connection problem by using Gauss-IKKummer’s iden-
tity and then find generators of the monodromy group. We consider two

fundamental systems of solutions (fo(z;0), fo(z;1 — 7)) and (f1(z;0),
fi(z;y — @ — p)), and find a relation between these systems, where the
functions f,(z;v) are defined in Section 1.3.

THEOREM 4.7.1. If neither v nor vy — a — 3 is an integer, then
(4.7.1) (fo(z;0), fo(z;1 = 7)) = (fi(z;0), fi(z;y — @ = B))P,

where P is the matriz defined by

F(l(y—a=-p) TC-7I(y~-a=-F)

I(y-ao)l(y=8) T{l-al(1-p)

F(Mf(y—a-pB) THr-a-Br2-7)
I(e)T(B) Flo-y+I{B-7+1)

(472) P=

Proof. Let us put

(4.7.3)  fo(z;0) = b(e, B,7)f1(2;0) + c(e, B, 1) fr(z; 7 ~ a = B),
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and find the constants b = b(c,3,v) and ¢ = c(a, B,7v), which are
meromorphic functions of o, 8 and . To find b, we put z = 1 in (4.7.3)
under the condition ®(y — o= 8) > 0. Taking Gauss-Kummer's identity
(3.7.1) into account, we obtain

(4.7.4) b(e,B,7) = fo(1;0) = ;‘8)5(2);(: = g;

On the other hand, applying Gauss-Kummer's identity to
fi(z;0) = F(e, Ba+ f~ v+ 1;1 - z)
and

flgyy—a—-B)=(1-z)""* PPy —a,y - B,y —a-F;1-2z),

we obtain

Hla+B-y+1)T(1-7)

FB-v+ 1l (a~y+1)’

P(y—a-B+1)(1~7)
I1-a)(1-5)

(4.7.5)
HOy—a=-8)=

(R(1~-v)>0)

Using I'(t)['(1 — t) = w/sin 7t, we obtain from (4.7.4) and (4.7.5)

.0y = SiInT(y — ) -sin7(y - §)
5£1(0;0) = sinmy-sinw(y —a~ )’

sin we - sin 73
sinwy-sinm(a+ 3 —v)

I'(a)D(B)
I(ML(e+B-7)

(4.7.6) 0y —a-p)=

Assuming ®(1 - ) > 0 and putting z = 0 in (4.7.3) , we obtain

(4.7.7) 1=05£1(0,0) + cf1(0;7 — o = B).
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Substituting (4.7.6) into (4.7.7), we find that

Iy —a-p)
Ha)I(B)
If we replace (@, 83,7) by (a—=v+1,8—-7+1,2~7) in (4.7.3) and make

use of identities in the table of Kummer's 24 solutions (Section 1.3), we
see

(4.7.8) o(a, B,7) =

Jo(z;1=7)
(4.7.9) =bla-7+1,8-7+1,2-7)fi(z;0)
+e(a—v+1,8-7+1,2-7)fi(z;y —a-f).

Now (4.7.1) is readily proved by (4.7.3) and (4.7.9) together with (4.7.4)
and (4.7.8). &

THEOREM 4.7.2. Let v, (v = 0,1) be the loops with base point

b= 1/2 defined in Figure 2.5. Suppose that neither v nor y—a—f is
an integer. Analytic continuation of the fundamental system of solutions

F = (fo(x;0), fo(x;1 — 7)) along v, is given by
(4.7.10) TeF =FA, (¥=0,1),

where A, are matrices defined by

I e e (R L

where P is given by (4.7.2), and e(-) = exp(2mi-). The monodromy group
with respect to the fundamental system F is generated by Ag and A;.
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Substituting (4.7.6) into (4.7.7), we find that

(4.7.8) oo, B,v) = F(7)r1?((;);(‘;)‘ ﬁ).

If we replace (@, 8,7) by (¢ —v+1,8—-v+1,2—7) in (4.7.3) and make
use of identities in the table of Kummer’s 24 solutions (Section 1.3), we
see

fo(z;1=17)
(4.7.9) =ba-v+1,8-7+1,2-7)fi(z;0)

+e(a—y+1,8-7+1,2—7)fi(z;y —a-p).

Now (4.7.1) is readily proved by (4.7.3) and (4.7.9) together with (4.7.4)
and (4.7.8). n

THEOREM 4.7.2. Let v,.(v = 0,1) be the loops with base point

b=1/2 defined in Figure 2.5. Suppose that neither ¥ nor y —a— (3 1s
an integer. Analytic continuation of the fundamental system of solutions

F = (fo(z;0), fo(z;1 = 7)) along v, is given by
(4.7.10) Y. F=FA, (v=0,1),

where A, are matrices defined by

(4.7.11) A0=((1) 5(87)), A1=P—1(é 5(7_(;_6))P,

where P is given by (4.7.2), and e(-) = exp(27i-). The monodromy group
with respect to the fundamental system F is generated by Ay and A,.

3 Monodromy Preserving
Deformation,
Painlevé Equations and

Garnier Systems

<

la Weyl chamber

i
x x ! a2 wall
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The most important non-linear ordinary differential equations are the
following six Painlevé equations:

d2\

P Et—2=6,\2+t,

P”:-'gt%\:Q,\3+t,\+a,

Py :2—21:; = ;(%)2 - %%+%(0~\2+ﬁ)+7/\3 £>

Prv :‘227;\ - %(%)ﬁ %/\3+4t)\2+2(t2 o)+ g
e G ) -1 25 )

EDY dA dA
o ) (B - (G i)

AQ = 1D(A—1) t o t-1 1 t(t-1)
2E-1) [“‘5ﬁ+7(x—1)2 +(§_6)(A—t)2]’

where «, 3,7,6 are complex constants. (Warning: The parameters of
Py are slitely different from those customarily used; —3 and % -6
have been denoted by 8 and §. The reason of our choice will turn
out to be clear in the text.) We study, in this chapter, these differ-
ential equations first classically (§1) and secondly in the framework of
the monodromy preserving deformation. After introducing the concept
of monodromy preserving deformation (§2, §3), we derive the Garnier
system written in the form of Hamiltonian system, which governs such
deformation of a second order Fuchsian equation with n+ 3 singularities
(§4). When n = 1, the Garnier system turns out to be equivalent to the
sixth Painlevé equation. In Section 5, we derive the Schlesinger system,
which governs monodromy preserving deformations of matrix equations
of Schlesinger type. By using the relation between the Garnier sys-
tem and the Schlesinger system, discussed in Section 6, we transform
the Garnier system into the system with polynomial Hamiltonians (§7).
The system thus obtained is frce of movable branch points. Symmetry
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of the Garnier system is studied in Section 8. For some particular values
of parameters, the Garnier system happens to admit solutions expressed
by hypergeometric functions of Lauricella (§9).

1 Painlevé equations

1.1 Historical remarks

‘We shall review briefly how the Painlevé equations Pj are discovered.
One of the important problems of analysis in the 19th century was to
find “good transcendental functions” defined by non-linear algebraic
differential equations. A differential equation

dy d’y,
(1.1.1) Flty 2 20) =

defined in the domain D js said to be algebraic if F = F(t,y0,¥1, s ¥n)
is a polynomial in y = (yo,¥1,-,yn) With coefficients meromorphic
in t € D, rational if it is algebraic and 'is of degree one with respect
to Yn, and linear if it is algebraic and F is a linear form in y. Take
c:= (g, ++,¢cn) € C**! and ty € D so that F(to,co,c1, - ,cp) = 0,
and denote by ¢(t) = ¢(t;tg,¢) the holomorphic solution such that

dip .
—(tg) = ¢; =0,---,n).
Trt)=ci (i=0,--2,m)

The function obtained by an analytic continuation of (1) is also denoted
by ¢(t).

If an equation is non-linear, we can in general predict neither where
the singularities of solutions appear nor of what kind the singularities
are. In such a case, we can hardly say that the function which is a
solution of the equation is controlled by the differential equation. The
following examples show that solutions may have branch points or essen-
tial singular points which change their position depending on integration
constants.

ExaMPLE 1 my'y™1=1 meN.

Solution: y(t) = (t -~ ¢)}/™, ¢ € C being an integration constant. y(t)
has an algebraic branch point over t = c.
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EXAMPLE 2 ' + (@) =0.

Solution: y(¢) =log(t—c1) +¢2, €1, 2 €C.

2
EXaMPLE 3 vy’ + (y')z(i,—/ - 1) =0.

Solutions: y(t) = c; exp(=1/(t = ¢2)), c¢1, c2 € C.

Thus we face to seeking a non-linear differential equation such that
the singularities (except poles) of the solutions are predictable.

An algebraic differential equation (1.1.1) is said to be free of mov-
able branch (resp. essential singular) points if the solution ¢(t;?o,c) has
no branch (resp. essential singular) point which changes its position
when we vary (o, c) under the restriction F(tg,c) = 0.

ProBrLEM 1.1.1.  Find all the algebﬁzic differential equations free of
movable branch points and movable essential singular points.

We say that an algebraic differential equation enjoys the Painlevé
property if (1.1.1) is free of movable branch points.

When n = 1, the problem was studied and solved by L.Fuchs and

. H.Poincaré; any equation of the type (1.1.1) with the Painlevé property

can be transformed, by a holomorphic change of the variable ¢ and by a
linear fractional change of the unknown with coefficients in O(D), into
the equation of the Weierstrass g function:

d
112 (d—!t’)2 =4’ - gy — 93, 92,93€C

or into the Riccati equation:

d
(113) L =a(yP+b(ey+elt), alt)b(t),c(t) € O(D),
where O(D) stands for the ring of holomorphic functions on D. The
equation (1.1.3) reduces to a linear equation; in fact we have the follow-
ing result.
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ProrosiTion 1.1.2. By the change of unknown
1 d |
=———logu
v a(t) dt &%

(1.1.3) is transformed into the linear equation:

(1.1.4) u’ + (%’(%)- - b(t))u' +a(t)e(tyu =0.

When the order n of (1.1.1) is one, only movable branch points
appear, whereas when n > 2, movable essential singular points may
appear. E.Picard pointed out this fact in his letter to Mittag-Leffler
(1893), and expressed his pessimistic opinion that there might be very
little hope of success to find non-linear differential equations with the
Painlevé property in case n > 2. Despite of the negative prospect of Pi-
card, P.Painlevé attacked the problem for rational differential equations
of the form

(1.1.5) % = R(t,y,%),

and he showed by a huge amount of computation that any equation with
the Painlevé property reduces, by an appropriate transformation of the
variables, to an equation which can be integrated by quadrature, or to
a linear equation, or to Py (J =1, --- VI). Precisely speaking, Painlevé
found only P;, Py, Ppp because of errors in his computations. His
student, B.0.Gambier, added the equations Pry , Py, Py to the
list. The success of Painlevé for rational differential equations of the
second order encouraged his students, J.Chazy and R.Garnier, to pursue
further the problem for rational differential equations of order > 3 and
for algebraic differential equations of the second order. However, only
partial results are obtained and the complete classification is not yet
achieved.

After the discovery of the Painlevé equations, there was a dispute
between Painlevé and J.Liouville whether they can be integrated by
solutions of linear algebraic differential equations ([Pain]). The dispu-
tation has come to an end by a recent algebraic study (|Nis.2], [Ume.3])
proving that they are never integrated by such functions.
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Do the Painlevé equations form an isolated island far from the
continent of analysis ? (Preface of [Pain)].) It turned out that they form
a part of that continent. Consider a second degree Fuchsian differential
equation (cf. Chapter 1, §4)

4’y dy
Tz +ay(z) I +as(z)y=0
with five singular points g, ..., z4 € P!, and suppose that the singular-

ity at xp is an apparent one (this means that it is non-logarithmic in the
sense of Section 4 of Chapter 1 and that the characteristic exponents
at rg are integral, or equivalently, that the solutions of the differential
equation are meromorphic at zp). Since this description is invariant
under the group PGL(2, C) of automorphisms of P!, only two parame-
ters t (=cross-ratio of zy, ..., z4) and A (=cross-ratio of zo,...,r3) are
needed to describe the position of the z;’s, while 8 further parameters
are needed to describe the possible choices of the rational functions a, (z)
and ay(z). The monodromy representation of the differential equation
is a homomorphism, defined up to conjugation, from the fundamental
group of P! — {z),...,24}, which is a free group on three generators,
to GL(2,C), so it is described by an element of the 9-dimensional set
GL(2,C)3/PGL(2,C). Since 10 is bigger than 9, there must be one-
dimensional families of equations, i.e., curves in the space of functions
(a1,a2), with constant monodromy. The beautiful discovery of R. Fuchs
(1907) is that the relation between the parameters t and A along such
a curve is exactly the Painlevé equation Py . This will be discussed
in Sections 3 and 4, and its generalizations will form one of the main
themes of the rest of this chapter. Notice that the above-mentioned
24-symmetry of Py also becomes obvious from the above description,
since the points z;,..., 14 can be permuted arbitrarily.

We note a connection of the Painlevé equations with a recent de-
velopment of mathematical physics ; for example, Wu et al. (1973-1976)
encountered, in the study of the Ising model, the third Painlevé equation

[MTW].
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1.2. Relations between the P; ’s.

We associate with each Pj the set Z; given by:

: 00,

~

1 00,

~
~

: 0, 00,

~
~
~

: 00,

~
<

: 0,00,

<

[11 [ [ M [ [n

: 0,1, 00.

<
-~

It is known that P; admits no singular points outside Z; except poles.
So, it enjoys the Painlevé property and moreover is free of movable
essential singular points. We call = the set of fized singular points of
P; . We deduce from this fact that the general solution is meromorphic
on the universal covering space By of By := P'\Z:

B[ﬁB”’;‘B[”’zélvﬁévﬁC and BV[ED adiskin C.

We show that equations Pj (J =I, --- V) are derived from Py
by certain limit processes. Let us derive Py from Pyg . Substitute the
independent variable t and parameters in the equation Py as follows:

t=1+ety, B=-p, y=bel+mel, §=-be?

then PVl:
d?) d\
@ = Rt g)
is taken into
dZx dX
2. — =€ -120)).
(1.2.1) . €R(1+e€ty, A e dtl)

It is easy to see that the right-hand side of the equation (1.2.1) is holo-
morphic in € at € = 0. Letting ¢ — 0 and writing ¢, 8,,6 in place of
t1,81,71,61 , we obtain the fifth Painlevé equation Py . For notational
simplicity, let us write the above process as Py; — Py :

t—ol4et, Bo—-B b 24y, 6o —be? (e = 0).
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This process causes the coalescence of fixed singular points ¢ = 1 and
t = 0o. The other equations are also derived successively from Pyy. In
order to state the following proposition compactly, let us introduce the
equation

Pl 2\ 1 (dA)2 1dx  \?

8 )
=Y 224 (4 242
dt2 A \dt tdt+4t2(7 +a)+4t 4

ProrosiTiON 1.2.1. Py (J =1,---,V) are obtained from Py by
the successive limit process according to the following diagram:

P,
Pyy— Py : Pi:; :’, P — Pr.

These processes are given as follows:

PVI_’PV: t_’1+€t7/3_’—/317_’6€-2+7€_l,

§— =62 (e—0).

1 1 _ 1
Py — Pyy - t—bl-{—\/iet,,\—pﬁg,\’a_,ie 4,[3_’2/3,

L R —-;—6_4 +ae? (e - 0).
Py — Py t— —6_3(1 - 2_2/3€4t), A= 6—3(1 + 22/362/\),

o — —%6-6 -2a, f— —%6_12 (e — 0).

1 1
Py Pyl tot, Aol+ed a— ge_z'y-i— Ze_la,
1

8626 (€ = 0).

B — —-;-6“27, v — %Eﬁ, 6 —

Pl = Prpp: t— %, Aot
1
Py — Pyp t—bl+€2t, A= 14 2€), a—»—ie‘s,

1
8 — %6_6(1 + 4aed), ¥ - Ze'e,
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1 6
6 — -1 (e — 0).

Py — Py t— -—66—10(1 - é—elzt), Ao e73 (1468,

a =47 (e —0).

REMARK 1.2.2. The reason why such changes of the variables
and of the parameters in Proposition 1.2.1 arise can be explained

from the viewpoint of monodromy-preserving deformation; see [Gar.1],
[Okm.6).

REMARK 1.2.3. By rescaling A and ¢, we see that the number of
parameters in Py and Py are practically 2 and 3, respectively.

1.3. Symmetry of the Painlevé equation Py,

We study the symmetry of the sixth Painlevé equation Py, the mas-
ter equation. The results presented here are due to Painlevé, and
K.Okamoto ({Pain], [Okm.1]). Let V = {(o,3,7,6);,8,7,6 € C} ~
C* be the space of parameters of Py;. The sixth Painlevé equation
with parameters v € V is denoted by Py (v).

Let us consider the change of the variables (¢, \) — (¢;,A1) in Py
defined by :

T:t-':l—tl, /\=1—/\1,

and write t, A in place of ¢;, A\;. We obtain a differential equation

x 141 1 1 dn? 1 1 1 \dA
#Z= Gttt ) &) Gt E
AA=-1)(A-1) t t—-1 1 t(t-1)
2(t- 1) ["“"Az Gt _6)(,\ - t)z]’
which is nothing but Pyy (v) where v' = («, 7, 5,6). To indicate this
change, we define an affine transformation £: V' — V by v’ = ¢(v) and
write as follows:

T:t—>1—-t A—>1-A
¢: (o, 8,7,6) = (2,7, 8,6).

This example suggests to make the following:
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DEFINITION 1.3.1. A pair 0 = (T, () copsisting of a birational

transformation T : (t,A) — (t1,A1) and an affine transformation ¢ :
V — V is called a symmetry of Py if T - Pyr(v) = Py((£(v)).

ProrosiTiON 1.3.2. The equation Pyp admits a group G of
symmetries which is isomorphic to the symmetric group Gq. The group
G is generated by the following three transformations o; = (T, ¢;) of
order 2:

Tiy:A—=1-X t—1-t,

TQ:/\ — %\-, t—’?,
A—t ¢
: 2t —
Bid=gp oD

31 : (aa,Ba’Y’é) - (0,7,,3,5),
ly: (a,8,7,6) — (13’07776)v
1?3 : (07,35756) - (aiéy’fnﬁ)'

The proposition can be proved by straightforward computations.
Another proof will be given in Section 8 with the aid of of the theory
of monodromy preserving deformations.

We consider the sixth Painlevé equation Pyp in P! x B, where
B := P!\ {0,1,00}. Set

So:={(\t) € P! x B; A=0}
S :={(\Mt)eP' xB; A=1}
Soo i = {(A\,t) € P' x B; A = o0}
S;:={(t,)) €eP' x B; A=t}

and

s= U S

£€{0,1,t,00}

We see that S is a set of poles of the right-hand side of Py . With the
help of the explicit form of the generators o; of G, we immediately have
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CoroLLARY 1.3.3. The group G of symmetries of Py acts
transitively on the set {Sg; £ =0,1,¢,00}.

This result will be used in Section 1.4.
REMARK 1.3.4. Further investigation of syminetries for each Pj is

made in {Okm.13].

1.4. Solutions of Py; at singular points

In this section, we study the singular initial value problem:
/\(t0)=€a tO EB: BVI=]P1\{011500}a EE{O,I,OO,to}
for Pyp, and transform the equation Py into a system by introducing

a new unknown ug. Here “singular” means that the right-hand side of
Py1 has a pole at (t,§). '

ProrosiTION 1.4.1. Assume o, 3,v,6 £ 0. For any ty € B and

£ € {0,1,00,t0}, there are two 1-parameter families of solutions A of
Py which are analytic at t =ty and satisfy A(to) = &.

Proof. We prove the proposition when £ = 0 under the assumption
B # 0. In the other cases, £ is sent to 0 by an element of the group of
symmetries in Proposition 1.3.3, and the condition 3 # 0 is converted
into & # 0,y # 0,6 # 0 for £ = o0, 1,1, respectively. Py can be
written in the form:

d?
@ =m(@) et st g)

where S is a polynomial in d)/dt with coefficients holomorphic in (A, t)
at (0,tp). Substitute the expression

oo

Mty=(t—to)™) aj(t—te)’, m>0, ag#0

Jj=0
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into the above equation; then we have

2 26

meh T G

and we see that a; can be taken arbitrarily, say h, and that a; (§ > 2)
are determined successively by ag,---,a;_;. Thus, defining x¢ by

Ky =20 (#0),

we obtain two 1-parameter families (h as the parameter) of formal power
series:

< +x
Ax(t) = o _01

(t~to)+ h(t—to)2 +---

satisfying the equation formally. Let us consider X_(t). Since

1 1 1 ”(t-to)j

to—1 t—-1—(t—ty) t—1j=0 t—-1/"
we have
: 3 —Ko —Ko
4. A-(t) = t— — —t ).
R v [
and

dh_(t)  —ko —Kp

1.4.2 =2 bt —2 | (t -
(142) —5 t—1+2+(t—1)2( fo) +

Notice that we have from (1.4.1):

t—1

—ho

t—to= A— + (a power series in A_ of order > 2).

On the other hand, referring to the equation (1.4.2), we introduce a new
variable yp by

d/\_—fio
dt ~ t-1

(1.4.3) + Ao.
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Differentiating both sides of (1.4.3) and using Py;, we have

d
(1.4.4) =2 = Ao(\, t)uo? + Bo(A, o + Co(A,1),
where
AZ ¢
AU(A, t) =

2= 1) (A —1)’
=Ko 1 1 1 1 1
B°(’\’t)_t—1(,\—1+,\—t)_t t—1 A=t

Slmeyly Lo Ly, e L
CO(/\’t)—Z(t—l)( t+,\_1+t(,\—t))+t—-1t(/\—t)

A=A -t 2 1-—k,2
+ ) ) K1 Nt]

1¢
5 t(t—1) [tt—l 12 T s
and Ki1,Keo and K, are quantities such that

2 1 5 1,
Q= Koo'y, Y=c=Ki1°, 6= -kKj.

2 2 2

Since Ag(A,t), Bo(A,t) and Cp(A,t) are holomorphic at (A, t) = (0,1),
Cauchy’s theorem assures the existence of a solution (A(t),u(t)) of
the system (1.4.3 and 4), holomorphic at #y, which satisfies the initial
condition:

to—=1 1

h .
Ko +t0—1

/\(to) = 0, /,Lo(to) = -2

It is clear that A(t) thus constructed has the same power series expansion

with respect to t — to as A_(f). We can prove the convergence of 4 (t)
in a similar manner. g

In the proof, we transformed Py; into the system (1.4.3 and 4)
which is holomorphic at A = 0. Notice that the system is defined for
any 3 and that the equation Py can be recovered by eliminating uq.
Let us find a system, for other £, which is holomorphic at A = §; this
is done by applying the symmetnes of Py to the system (1.4.3 and 4),
which will be called (E)o.
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ProPOSITION 1.4.2. Let the parameters (o,8,v,8) and
(Ko, K1, Koo, Kt) be related by

1
(1'4'5) Q= '2'K0027 IB— KO y V=

1 1
2 5&12, 5 = -2-K;2,

Then, for each £ € {0,1,t,00}, the equation Py is transformed into
the system of differential equations:

d)
= = X ue +ee(At)

dp
dé = Ae(X )ue” + Be(M thue + Ce(\, 1),

where ag,bg, A¢, Be, C¢ are rational functions in (A, t), holomorphic at
A =¢&, given by

Ko
t-1’

bo(A,t) = A, (A E) =

Ao(A,t), Bo(A,t) and Co(),t) are given in the proof of Proposition 1.4.1,

(M) =x-1, a(\t)= "‘T

A\ ) = —_’\;\‘(/\Zi “;)t,

TR

ann=3(3) (= §+(t—1)1(,\ 7) m(t_nl(x_t)
+;((j 1’) (Us + Uy + Us),
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A-1
bt(/\,t) =/\-t, Ct(l\’t)z—nt-*-t__T’
A —2tA+t
A=
1 1 1 2
B ) =G+ 327 " T o

1, A-1 A
(1) = EC’(’\’t)( oot (t—l)(,\—l))

_ct(,\,t)til(/\—2+ A )

t t—1
s o 2
boo(M\ 1) = =X, Coo(M\t) = t(t"fl)v,
A0 = gy
B === (54 ) ~ -yt
Culht) = _;_ciof\;\,t) (1 i . ttil\,\ _ t) _ cm,(\,:,t)t_i\x
- %(l—‘t(?—)_(tlg—”(vo + U+ U,
where
to=-7 —ni)xz’ Ui= t(,\n—% 12’
U= (IA_-'gz’ Voo t(:%l)

Proof. For example, let us derive (E); from (E)o by applying the sym-
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metry oy = (T}, £)) of Py given by

Ty :(’\at)_’(’\l’tl)
A=1-X, t=1-1,
Zl :(aaﬂvfyvé) - (a77?ﬁ’6)'

Note that the permutation:
(K'ooa Ko,y K1, K’t) — (Kfoov K1, Ko, Kt)

induces the transformation £; (see 1.4.5). The equation (1.4.3) is taken
into

Define py := —pq. Then (1.4.4) is taken into

di
i =Ao(1= A, 1 —ty)pd

—Bo(l — /\1,1 — tl)/ll +Co(1 - /\1,1 —tl).

We set
Al(’\latl) = Ao(l bl /\1, 1 - tl),

Bl(/\latl) = —Bo(l - Al,l - tl),
Cl(/\lytl) = Co(l - /\1, 1- tl).

Writing A, t in place of Aq,t;, we see that Ay, By, C; are given explicitly
as in the proposition. Since o) is a symmetry of Py;, the equation
Pyj can be recovered from (FE); by eliminating p. This proves the
proposition for £ = 1. The other systems (E); can be obtained in a
similar manner. g
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1.5. Hamiltonian structure for Py

In this section we shall glue the systems (E)¢, £ € {0,1,00,t} in order
to obtain a Hamiltonian system, which will again be derived from the
theory of monodromy preserving deformations in Section 4.

Notice that we are considering the dependent and independent vari-
ables (A,t) of Py in P! x B, where B = P* \ {0,1,00}. Since the
right-hand sides of the system (E)¢ are polynomials in p¢ and are holo-
morphic at A = £, the space of dependent variables and the independent
variable (¢, A, t) of the system (E)¢ can be considered to be

M¢:=CxNicCxP xB,
where
N ={(\t) €P x B; A ¢ {0,1,00,t} \ {€}} C P* x B.
Let us look at the relation between the (E)¢’s. Let A(t) be a solution
of Pyr. Define pg(t) and p,(t) so that (ue(t), A(t)) and (u,(t), A(?))

are solutions of the systems (E); and (E),, respectively, where £, =
0,1, 00,t. Then they relate on a common domain of definition as

be(A(t), e (t) + ce(M(t),t) = bn(A(2), )an (8) + €q(A(D), 1)

or equivalently

pe(t) = gen( A1), i (8) + fen(A(2), ),

where

by(A,t)

cn(A 1) — ce(A, 1)
be(A, 1)’ '

bf(’\a t)

(1'5'1) gf'fl(’\’ t) = ffn(’\’ t) =

and ag(A,t), be(A,t) are given in Proposition 1.4.2. Notice that the
transition functions g, and fe, satisfy the compatibility condition:

9ec = Gennc
(15.2) =

fec = fen + genfuc.
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Motivated by the above observation, we patch four M¢ (£ =
0,1,00,t) by

(1.5.3) e = gen(A, ) pn + fen(A, t)

to obtain an affine bundle ¥ over P! x B, which will be thought of
as a bundle over B in the obvious manner. Notice that the collection
{(AM(2), pe(t)); € = 0,1,00,t} defines a local section of the bundle &
over B. The collection of the systems (E)¢ (£ = 0,1, 00,1), patched by
(1.5.3), yields a differential system (E) on L.

We shall perform a change of fibre coordinates of ¥ over P! x B in
order to make the transition functions independent of ¢. If we change
coordinates p; on M¢ into ,ué by an affine transformation:

(154) /lf’ =gf(’\at)1uf+ff(’\’t)7

where

gf(’\vt)a ff(’\at) € O(Nf)v gf(’\’t) # 0,

then the transition functions g,’ and f¢,’, defined by
pe' = gen' N )y’ + fen' (A1) on MEN M,

are related with g¢, and f¢,, as follows:

-1 1]
(1.5.5) nEne

gf_lgfn’fn + gf—lffn’ - gf—lff = fen.

ProposiTiON 1.5.1. Suppose

1
e:=§(no+n1+n,+nm—l);ﬁ0.

There is uniquely a rational change of coordinates (1.5.4) such that the
new transition functions are given by

gen = 13 ff,n =0 (fv"#oo)a

A58) o= —1/N, fewme/A (€ #00).
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Proof. Suppose that there exists a change of coordinates (1.5.4)
which takes the transition functions (1.5.1) into (1.5.6). Notice that,
from the expression of a; and b, given in Proposition 1.4.2 and the
definition (1.5.1) of g¢, and fe,, the transition functions gos and foe (£ =
1,t,00) are given by

_A-1 P _ Kot +Ki(t—1)
901——/\ y 01__At(t—l) s

A—t ___fco—fc,(t—l)+/\—1
(1-5-7) Jot = - for = /\(t — 1) )
_ _ Kot + Koo A?
gOoo—"la fOoo— /\t(t—l)

First we determine the g¢’s. From the relation (1.5.5), we have

A-1
g1 = gogo1 = Tgo,

At
_ A-1
9oo = (Gboo) "' 909000 = —9o-

‘We show that g¢ (£ =0,1,00,t) can be written as

-0
EDCH
QW
9= Mh—1)
(1.5.9)
10
gt = —/\(/\ —1)
Q)N

o= -1 =1

where Q(t) is a rational function in ¢. Notice that g, is a rational
function in (\,t) that is holomorphic in N¢ and nowhere vanishing.
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Since go has poles at most at {(\,f) € P! x B; A = 1,¢,00} and g is
holomorphic at A = oo, the third relation of (1.5.8) says that go has the
form

QW
D=y

where p and g are integers and Q (A, t) € C(¢)[A] such that deg, Q(A, 1) <
p+g—2and Q(1,t)-Q(t,t) # 0. Putting this expression into the relations
(1.5.8), we have

_ QA1)
=X - e

o= Q1)
AR -1P( =)t

The holomorphy of g1 at A = 1and of gy at A =t and ¢,(1,2)-¢4(¢,2) # 0
lead to p = q = 1. Since deg, Q(A,t) < p+qg—2 =0, we have

QA1) = Q1) € C(1),

which proves (1.5.9).
Let us determine fo, f1, f; and fo. We assert that

Q) = 54t - 1),

ko A=t =1+ k1 (A=t)+ (ke —1)(A-1)

fo=

200 - 1)(A —t)
_ Ko(/\—t)+f€1(/\—t+1)+(l‘ét—1)/\
(1.5.10) fi= PO 1) :
f _ I‘éo(/\—1)+I‘£1/\+(K4—1)(/\—1+t)+t
te 22(A - 1) ’
; CRA =)+ (ke = DA = 1) + ko {(A = 1)t + 2}
== 20— 1)(A-1) '

By using the expression (1.5.7) of fo¢ and the expression (1.5.8) of g,
the relation (1.5.4) between the new and the old transition functions

Painlevé equations 139

gives the relation

fr=fo+gofor
~ Qt)  met+mlt—1)
=fot A - -1 t(t-1)
fo = fo + gofor
(1.5.11) Q(1)
=h+ 30T 06—
foo = (gtl)oo)_l(fo + gUfOOO - f(;oo)

_ Q1) Kot + ko A2 €
“V(h+xu—nu_0 ZU—D ‘X)'

Ko—l{t(t—].)+/\—1
tt-1) '

Since f; and f; are holomorphic at A = 1 and at A = ¢, respectively, the
first and the second relations of (1.5.11) say that fo has simple poles at
A =1and at A =, and that the residues there are given by

¢ = 1}3 fodX= E(t—Q_(—t-i-)—z—{not +r(t - 1)},

ct = I}S? fodr = Z—Q—(ti—)?{—ﬂo + (ke =1 -1}

(t-

The holomorphy of fo, at A = co says that fo has simple zero at A = oo,
which implies

— “ ct
=313 ¢
(1.5.12) __Qw {fcot +ri(t—1) | —ko+ (s = 1)t~ 1)}
tt— 1) A-1 A—t
and that
cate+ ':(C:?(lti -e=0.

The last relation can be written as

{81}
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and it determines Q(t) as in (1.5.10) because of € # 0. Putting the ex-
pressions of Q(t) and fj into (1.5.11), we obtain the expressions (1.5.10)
of f¢ (€ =0,1,00,t). Thus we have shown that, if there is a transforma-
tion (1.5.4) changing the transition function (1.5.1) into (1.5.6), then
ge and fe are given by (1.5.9) and (1.5.10). Conversely if g¢ and f¢
are given by (1.5.9) and (1.5.10), it is immediate to show that the new
transition functions defined by (1.5.4) are given by (1.5.6). g

Let us define an affine bundle £, over P! with fibre C as follows:
Let z = (20,2;) be homogeneous coordinates of P! and let U; = {z €
P!; z; # 0} (i = 0,1) be affine charts of P! with coordinates A = z;/zo
in Uy and u = zp/z) in U,. We patch Uy x C and U; x C by identifying
two points (A, i) € Uy x C and (XN, p') € Uy x C if

(1.5.13) M =1 g =ex=Apu
This defines an affine bundle £, over P!. This can also be defined as
Te = {(2,2;u,4") € P! X C*|2% — €22 + 2?pu = 0}.

The proposition above tells us that the bundle £ over B can be thought
of the direct product ¥ = X, x B. Let us express the differential system
(E) on X, no matter whether or not € = 0, in terms of the coordinates
(A, u,t) on Uy x C x B as

% = F(’\7 Ky t)a
(1.5.14) J
(i
dt - (’\’ /‘at)

Since the right-hand sides of (E)¢ are rational functions in (A, p,t) holo-
morphic in M¢, rational functions F(), u,t) and G(\, g, t) must be holo-
morphic in Uy x Cx B. It follows that F' and G are polynomials in (), z)
with coefficients in C(t). The actual forms of F and G are known by
computations, and we have the desired result ([Okm.6)):

TuHEOREM 1.5.2, Suppose that a parameter (o, 3,7, 6) is related
with (Ko, K1, Koo, K1) by (1.4.4) . Then, the sizth Painlevé equation is
equivalent to the Hamiltonian system, called the sizth Painlevé system:

d\ _ 0Hy;

dt ~ op’
Hyr: -

du _ OHyg

dt — 0\
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with the Hamiltonian

1
t(t-1)

Hy = A= DA = 4 = {mo(A = D)(A = 1)

+ R AA =) + (ke = DA~ D} + s(A - 1)],

where

1
ﬂ:Z[(I{o-}-Kl +ﬂt—l)2——,‘€2 ]

o0

The transformation (A, u) — (X', p’) defined by (1.5.13) extends to
a symplectic transformation

(’\a i, 2, HVI) - (’\Iv l‘la t, HVII)v
where .
Hy/ = Hv[(/\l_l,(;‘/\l - /\12/1', t).

We can see that Hy ' is a polynomial in (A, ).

COROLLARY 1.5.3. The Hamiltonian system Hy extends to the
Hamiltonian system on %, x B on which the Hamiltonian is holomor-
phic.

REMARK 1.5.4 When ¢ = 0, the manifold ¥, has a natural section
# = p' =0 and is isomorphic to the cotangent bundle T*P!. The com-
pactification of the manifold £, plays important roles in constructing
the space of initial values for the P;’s, see [Okm.1].

For the other Painlevé equations P; (J =1, --,V), we state, without
giving proofs, results corresponding to Theorem 1.5.2.

THEOREM 1.5.5.  The Painlevé equation P; (J=I,. .. ,V) is equivalent
to the Hamiltonian system, called the J-th Painlevé system,:

d\ _ 6H,
M, - dt o

dp _0H,

L TE)
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with the Hamiltonian H; € C(t)[A, p] given as follows:

1
H; = 5;# — 23—t

Ll ety 1.
Hn—2u (A +2)# (01+2)/\,

1
HIII = ; [2/\2 z- {2nmt/\2 + (2f€0 + 1)/\ - 27)0t}/1,

+ 7)00('90 + cho)t/\]a
where
a = _'47700""00, IB = 47)0('90 + 1)7
7 = 40, 8 = —4no%;
Hryv = 22% = (N2 426\ + 2650}t + Koo,
where
o= —kKo+ 2o + 1, B=—2k%

Hy = 2[A - 1% - {so(A = )% + keA(A = 1) = ptA b

+ k(A - 1)],
where
1 1
a= Eﬁmz, B= —Eﬂoz,
1,
TY=-n(l+kt), 6= =37

1 1
K= Z(K,o + I‘C{)z - Zﬂmz.

The limit processes given in Section 1.2 can be translated into those
for the Hamiltonian systems. For example, we shall derive Hy from
Hyr. -

Replace, in Hyy, variables and parameters A, u,t,x; and k; by
At T+et*,n*e ! + k7 + 1 and —n*e!, respectively, and put H(e) =
€Hy ;. Then we have
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H(e) ! )[A‘(A* SN -1 — et*)pt?

Tt
— {3 = 1)(A* = 1 —et*) + KIAT(A* = 1)
— (0" +exi + A Jp

1 1
+{3(k0+7)" = 7re}(N — 1~ et")].

Notice that the change of variables is a symplectic transformation, i.e.:
dAAdp+dH Adt =d\* Adp* +dH(e) Adt*.

Letting € tends to zero in H(€), and writing (A, p,t, k¢,7) in place of
(A%, p*, t*, kF,n"), we get the Hamiltonian Hy. For the sake of simplic-
ity, we write the above process as

(A, HVI,t) — (/\,,u,e"le, 1+ et),

HVI—bHvt 1 1
ki —=net+r+1, Ke— —ne (e - 0).

ProposiTiON 1.5.5. The Hamiltonian systems H; (J = I,...,V)
are obtained from Hyy by successive himit processes according to the
diagram:

H
Hyr— Hv 3 HIIIVI SHi— M

where Hy — My denotes a symplectic transformation, conlaining a
parameter €, followed by the limit € — 0. The actual limit processes are
given as follows:

€ V2 1
A Hy + K, 1) = (—=\, —=p, —Hyv, 1+ V2et),
(A, u, Hy ) (ﬂ iy Pl )

HV —’HIV : n— —6-2, Ki —’6_2+2Kfoo—n0a Koo _’6—2,
(e — 0),
(A, Hrv, 1) = (€73(1 + 22/3¢22),272 3¢y,
_ 1 - _3 -
Hpy — Hyp 223¢= 1 Hyp - 5(2a+1)e 3 3 427 3%t),

1 1
Ko — 56—6, Koo — —--2—(201 +1), (e—0),
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H[[—VH[:
(A u—-,\2—lt H”+l,\+lt2 t)
’ 2" 2778

36-20, ~6e710 + €2t),

— (e +eX ey e ?Hy - %te'8 -3

a—4e7® (e = 0),

(A, Hy,t) > (1+eX e p, Hyp,t),
Hy — Hyp Ko = € Moo, N €My, Ky — Ko,

Koo — qoof—l ~ Koo, (f - 0)

The Hamiltonian Hyrpr is given by

1 1
Hpyp = ?[/\.2 2 — {NooA? + KoX — Mot} + Eﬂoo('io + Koo )A]-

The Hamiltonian system H sy is obtained from Hyrp by the symplectic

transformation

_ 1 A
Hip = Hiyr: (A p, Hip,t) = (0,671, E;(Hm + Tu),t2)7

Hyp— Hyr:
1
(’\auaHIII - noo(KO + K'oo)vt) - (1 + 26’\7 55_1%6_2]'[11,1 + 62t)a
1
o — _ZE_37 Noc — %6_3,

1
Kp—= ——€3—2a—1, Ko — —%6-3, (e = 0).

2
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1.6. Particular solutions of the systems P,

We shall show that, when the parameters in H; are restricted to a cer-
tain hyperplanes in Vj, each Painlevé system H; (J=II,...,VI) admits
particular solutions which are expressed by classical special functions.

We first treat Hyg.
ProrosiTioN 1.6.1. Suppose that the parameters (Kg, K1, Ko0,6) in
Hy satisfy the conditions:
1
K= Z(no+nl +0—14k)(ko+K1+8—-1—Ks)=0,
A:=kKko+r1+6-1#£0,

then the system Hy has solutions (A(t), u(t)) of the form

MO = A7 (1 = 1) S log((¢ - 1)eu(t),

u(t) =0,
where u(t) is an arbitrary solution of the Gauss hypergeometric equation
E(a, B,v) with
(1.6.1) a=1-kK1, B=6+1, v=Ky+6-1.

Proof. Since k = 0, the right-hand side of the second equation of Hy
is obviously satisfied if we put g = 0. The first equation of Hy then
becomes
d\
(1.6.2) t(t— l)d_t =—ko{A-1)(A—1t)
— K AA-t)— (6 —-DAA-1).

Notice that this is the Riccati equation. Apply Proposition 1.1.2 to
(1.6.2) by introducing a new dependent variable u:

A= A7 1) S tog(1 — 1)ou(e)):
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and we obtain the Gauss hypergeometric equation E(a, 3,7):

(=058 @+ B+ 102 —apu =0,

with parameters a, 3 and <y given in (1.6.1). g

For other Painlevé systems Hy (J = I1,---,V), we obtain a similar
result to the one above.

ProposiTioN 1.6.2. If the parameters in H; satisfy a condition
50 that Hy is divisible by p, then H; (J = II,---,V) has particular
solutions (X, u) = (Ay(t),0) given by

d .

Ar(t) = Elogun(t), if a+4=0,
d .

AII[(t): Elog(t"oulll(t)), if 70 = Noo = %’ Kg + Koo = 0’
d .

Arv(t)= — logury (1), if Koo = 0,

d
Av(t)= (ko + )" Zloguy(t)+1,if n=~1, k=0, Ko+ 6 #0,

where uy(t) satisfies the second order linear differential equation LP;:
LPrr (Airy’s equation)

ol
a2 Tt T
LP;rr (Bessel’s equation)
dzu du
?lt—2+td + (12 — koH)u =0,
LPry (Hermite’s equation)
d?u du

d_t2 —2ta?+2f€0‘u = 0,
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LPy (Laguerre’s equation)

d2u

dt2 + (ko + u =

du
+(0+1+t)d

REMARK 1.6.3. In Section 9, we shall show that under certain
conditions on parameters, the Hamiltonian system H, (a generalization
of Hy; in n variables) admits solutions expressible in terms of solu-
tions of the Lauricella hypergeometric equation Ep(c,51,--+,8n,7), a
generalization of the Gauss hypergeometric equation in n variables.
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2 The Riemann-Hilbert Problem for second order linear dif-
ferential equations

We are principally interested in nonlinear differential equations which
govern the monodromy preserving deformation of linear ordinary differ-
ential equations. This section poses a problem which will be discussed
in the following sections.

2.1. Spaces of Fuchsian differential equations and those of
representations of m;

We consider a second order linear differential equation defined on the
Riemann sphere P! := C U {00}

(2.1.1) D’y + p1(2)Dy + p2(z)y =0, D =d/dz,

where p; (z) and ps(z) are rational functions in z € C. Let S = {ay,-- -,
@m,8m+1 = 0} be a subset of P!, and let z¢ be a point in X := P* - S.

DerFINITION 2.1.1. A differential equation (2.1.1) is said to be
d-reducible if the differential operator £ := D? 4+ p;(2) D + pa(z) decom-
poses into the product of two operators of the first order:

(2.1.2) L=(D+q(z)) - (D+r(z)), q(z), r(z) € C(z);

otherwise it is said to be d-irreducible.

If the operator L is decomposed as in (2.1.2), we have

p(®) = a(o) +7(2),
(2.1.3) r(
pa(e) = alo)r(z) + L2

ProrosITION 2.1.2. A Fuchsian differential equation (2.1.1} with
singular points in S has irreducible monodromy if and only if it is d-
irreducible.

Proof. Assume that the monodromy is reducible. There is a fun-
damental system Y(z) = (y1(z),y2(x)) of solutions such that the mon-
odromy representation p: my (X, z¢) — GL(2,C), with respect to Y(z),
has the form

_f(aty) O (X — G2
p(7)_(c;(7) CB(’)’))’ Y € I(X S, 0)-
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It follows that r(z) := —Dysz - y; * is single valued in X. Furthermore,
since (2.1.1) is Fuchsian, we see that Dy, - y;' has at most poles in S
and hence it is a rational function. We divide the differential operator

Lby D+r(z):
L =(D+g(z)) - (D +r(2)) + R(z),

where q(z) and R(z) are rational functions in . Since L - y» = 0 and
(D + r(x))y2 = 0, we see that R(z) = 0. Conversely, if the equation is
d-reducible and is decomposed as in (2.1.2), the space of solutions of
the equation (D + r(z))y = 0 forms a proper p-invariant space. g

From now on we say simply “(¢r)reducible” in place of “d-(ir)reduc-
ible”. Since we treat only Fuchsian equations of second order, by virtue
of the proposition, this convention is compatible with Definition 4.3.1
in Chapter 2.

We introduce the following notation.

£(S) := {second order Fuchsian differential equations having sin-
gular points at most in S},

&(S) := { second order irreducible Fuchsian differential equations
having singular points at most in S},

M(S) := {conjugacy classes of irreducible linear representations of
7 (X, zo) of rank 2 }.

Proposition 4.2 in Chapter 1 tells us that £ (S) admits a natural struc-
ture of affine space, and it is easy to see that £(S) is an open dense
subset of £(S). It is known [Gunn, Theorem 27] that M(S) is a com-
plex manifold. So that we can speak of their complex dimensions.

e(S) := complex dimension of the manifold £(S) (= dim £(S));
m(S) := complex dimension of the manifold M(S).

We shall compute the numbers e(S) and m(S).
ProprositTionN 2.1.3.  ¢(5)=3m - 1.

Proof. By Chapter 1, Proposition 4.2, we have

=Y {ji(m-1)+1}

j=1,2

=3m-1.g
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ProrosiTion 2.1.4.  m(S)=4m - 3.

Proof. The fundamental group 71 (X, zo) of X = P! \ S with base
point zy is a free group generated by m elements, say, 71, -, ¥m. Thus
any representation p : m1(X,zo) — GL(2,C) is determined by the im-
ages of the 7;’s, so by m arbitrary 2 x 2 nonsingular matrices. The group
GL(2,C) acts on the space of representations by the adjoint action :

p—gpg~', g€GL(2,C).

If p is an irreducible representation, then Schur’s lemma (see Remark
2.1.5) asserts that the adjoint action is trivial if and only if g = cI;, c €
C* (I is the 2 x 2 identity matrix). Hence the quotient group GL(2,C)
/{cIz]c € C*} acts freely on the open set of GL(2, C)™ consisting of m-
tuples (g1, -, gm) such that y; — g; (i = 1,-.-,m) gives an irreducible
representation. Thus the dimension of the orbit space M(S) is given as
follows:
m(S) = 22m — (dimGL(2,C) - 1)

=4m—3. |

REMARK 2.1.5. Let V be a finite-dimensional C-vector space and let
p: G — GL(V) be an irreducible representation of a group G in V. If
an endomorphism L of V satisfies

L-p(g) =p(9)L (g9€G),

then L is a scalar endomorphism (Schur’s Lemma). In fact, let A € C
be an eigenvalue of L and v be an eigenvector of L corresponding to the
eigenvalue A. By assumption, we have

(L=X)p(g) =p(g)(L—-1A) (9€G),

from which we have (L — X)p(g)v =0 (g € G). Since p is irreducible
(see Chapter 2, §4.2), {p(g9)v; g € G} spans the linear space V. Hence
L = A, where I is the identity endomorphism of V.

REMARK 2.1.6.  For second-order differential equations defined on a
compact Riemann surface, analogous results to Propositions 2.1.3 and
2.1.4 are known, [Sait.1], [Iws.3], [Oht.2].
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2.2. The Riemann-Hilbert problem

For a Fuchsian differential equation (2.1.1) we associate its monodromy,
and we have the mapping ® : £(S) — M(S), which leads to the prob-
lems: “Is the map @ surjective ?” and “Is it one-to-one ?” To state the
problem more precisely, let us make some definitions.

DEFINITION 2.2.1. A pair (S,p) consisting of a subset S =
{a1, - -,@m,amy1 = o0} of P! and of the conjugacy class p of an irre-
ducible representation of ) (P! \ S, zg) of rank two is called a Riemann
datum.

The Riemann-Hilbert problem: Given a Riemann datum
(S,p), find a Fuchsian differential equation with singular points in S
which has p as its monodromy.

ProposITION 2.2.2. The mapping ® is not surjective if m > 3.
Proof. By Propositions 2.1.3 and 2.1.4, we have
m(S) —e(S)=m - 2,

which implies that, if m > 3, then m(S) > e(S). n

When m = 2, by Corollary 4.3.4 in Chapter 2, we know that & is
surjective.

REMARK 2.2.3.  When m < 1, the problem can be easily solved. In
fact, if m =0, £(S) is empty and M(S) contains trivial representation
only. When m = 1, any Fuchsian differential equation can be integrated
by quadrature.

Since we cannot in general find a solution of the Riemann-Hilbert
problem in the class of differential equation £(S), we ask whether we
can solve the problem in a larger class of differential equations which
includes £(5). We consider Fuchsian differential equations with singular
points in S and additional singular points in X = P! \ S at which the
circuit matrices are trivial.
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DEFINITION 2.2.4. A regular singular point z = a of (2.1.1) is said to
be apparent if it is non-logarithmic in the sense of Section 3 of Chapter
1 and if the exponents a; and oy at z = a are integers.

A singular point z = a of (2.1.1) is apparent if and only if it admits
two linearly independent solutions which are meromorphic at z = a.

Let us define, for a non-negative integer ¢, a class £(S, q) of linear
differential equations of the form (2.1.1) by

&(S,q) := {second order irreducible Fuchsian linear differential
equations having at most ¢ apparent singular points besides S}.

By counting parameters we can expect that dim £(S, q) = e(S) + ¢, and
this can in fact be shown to be true. Notice that we have

E(8)=E&(S,0)Cc &S, 1) Cc---C&(S, g C--.

Set £(S,00) := UZ;() £(S, ¢). By associating to a differential equation

its monodromy, we define the mappings:

B,:E(S,q) - M(S), &=,
Dot £(S,00)— M(S).

The following two theorems give a solution to the Riemann-Hilbert
problem in an abstract manner. Since the proofs of the theorems require
a knowledge of complex analytic geometry, we do not give them in this
book.

THEOREM 2.2.5. ([Plem],[R6h])  The mapping P : (S, 00) — M(S)
18 surjective,

This theorem says nothing about the number of apparent singular
points necessary to solve the Riemann-Hilbert problem. Since

dim £(S, m(S) — e(8)) = m(S),

one may expect that ®,,(s)_¢s) is already surjective; this is not quite
true. We have the more precise result:
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THEOREM 2.2.6. ([Oht.2))
(1) <I>m(5)_le<5)+1 : E(S,m(S) — e(S) + 1) = M(S) is surjective.
. (ii) Let M'(S) = {p € M(S); the image by p of a loop encircling a
point of § is diagonalizable}. Then M'(S) is an open dense subset of
M(S) and is contained in the image of Brn(S)—e(5)-

Let S(t) = {a1(t), -+, am(t),am41 = 00} (t € U C C¥) be a small
deformation of S = S(0). Since the space M(S) is stable under a small
deformation of S, we can define the map

a7 : | E(S(t),q) — M(S)

teu

by collecting maps @, : £(5(t),q) — M(S) for t € U. Notice that
U,ev £(S(t),q) carries a natural complex structure. We are led to the
following problem.

P(fj{OBlLEM 2.2.7. For a given p € M(S), describe the variety
(24)7*(p). That is, describe the family of differential equations with p
as its monodromy.

We call this the problem of monodromy-preserving deformation, which

we shall study in the rest of this chapter.
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3 Monodromy-preserving deformations

3.1. M-invariant fundamental solutions

Let U be a simply connected domain in C* with coordinatest = (¢, - -,
tn), and put X := P' xU. A function f on X is said to be uniformif there
exist finitely many subsets S; of X given by the graph of holomorphic
maps & : U — P!, ie.,

S = {({;(t),t)lt e U}.

such that f is single valued and holomorphic outside S = {J; S;. Let
us fix an inhomogeneous coordinate £ on P!. We say that a matrix or
a vector is uniform if its components are uniform functions on X. A
l1-form w = agdz + aydt; + --+ + a,dt, is said to be uniform if the
a; are uniform on X. Put Xg := X \ S and denote by # the natural
projection of X on U: n(x,t) =t. Fort € U, set S(t) := #~!(t)N S and
Xs(t) = n~1(t)\ S(1).

Given a 2 x 2 uniform matrix P(z,t), consider a family of ordinary
differential equations of the form

. . _d
(3.1.1) Dy = P(z,t)j, D=~

with a parameter t € U, where § is an unknown 2-vector. Let us choose
to € U so that there exists a simply connected neighbourhood U’ C U of
to, such that Xg(¢) (t € U’) are homeomorphic. For simplicity, we write
U in place of U’. Let us choose z¢ € Xs(#p) and fix a homeomorphism

U Xg(to) xU — X5
such that
U(Xs(to) x {t}) = Xs(t), ¥((20,?)) = (20,1).
The restriction of ¥ on Xg(to) x {¢t} defines a homeomorphism
U, Xg(to) = Xs(t),
and it induces an isomorphism

(\I’t),, tm (Xs(to), (.’L‘g,to)) —:* 1 (;Yg(t), (Io, t))
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For 7o € m, (Xg(to), (.’l‘o,to)), define 7(t§ to,"/o) em (Xg(t), (:Eo, t)) by
Y(t to,70) = (¥e)uyo.

In what follows, we write 7(t) in place of ¥(t; to,Y0). Note that v(to) =
Yo-

Let Y (z,t) := Y(x, (20, t)) be a fundamental solution of (3.1.1),
which is by definition a holomorphic non-singular matrix solution at
(zo,t0). Let Y(z,t) := Y(z,(xo,t)) be a fundamental solution of (3.1.1)
which is holomorphic in a neighbourhood of {29} x U C X5 and co-
incides Y'(z,1) on Xs(to). For v € m)(Xs(t), (zo,t)), let us denote by
Y7(z,t) a solution of (3.1.1) obtained by the analytic continuation of
Y(z,t) along 7. Since Y(z,t) is a fundamental solution holomorphic
at (zo,1), there exists a matrix p(t,7) € GL(2, C) such that

Y7(z,t) = Y(z,t)p(t,7).
Thus we have an analytic family of monodromy representations:

p(t,-) : m(Xs(t), (z0,t)) = GL(2,C), teU.

DEFII\{ITION 3.1.1. (Y(z,1),(zo,t)), or simply Y(z,t), is said to
be M-invariant if, for any y(to) € m1(Xs(to), (zo,%0)), the monodromy
matrices p(t,y(t)) are independent of ¢.

DEFINITION 3.1.2. A family (3.1.1) of differential equations is said to
be monodromy preserving if there exists an M-invariant fundamental so-
lution of (3.1.1). We also say that (3.1.1) gives a monodromy preserving
deformation.

ProrosiTion 3.1.3. A fundamental solution Y (z,t) is M-invariant
if and only if the matriz valued 1-form

(3.1.2) Qz,t) = dY (z,t)Y (z,t) 7"

is uniform on X, where d denotes exterior differentiation with respect
to t.

Proof. Suppose that Y(z,t) is M-invariant. Define Q;(z,t) by
Uz,t) = 3, Q(z,t)dt; := dY - Y~1. We show that Q(z,t), i =
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-

Figure

1,---,n, are uniform on X. Let ¥(t) € m(Xs(t),(zo,t)) and Y(z,?)
be as above. We have

QO(z,1) : = dY"O(z,1) - YO (z,8)™
= d(Yp(t, (1)) - p(t,7(£) 'Y
=dY - p(t,¥(t)p(t,7(t) 7Y
=dY.Y™!
= Q(z,1),

since p(t,v(t)) is independent of t. This identity implies that the Q;(z,1)
are single valued on Xs(t).
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Conversely, suppose that Q(x,t) is uniform on X. Let p(¢,-) be the
monodromy representation with respect to Y (x,t). Since the analytic
continuation along y(t) and the exterior differentiation d with respect
to t are commutative, for any () € m(Xs(t), (zo,?)), we have

dY" O (z,t) = d{Y (z,1)p(t, 7(1))}
= Ydp(t,7(t ) +dY - p(tv'Y(t))'

(%)
=Ydp(t,7(t)) + QYp(t>7(t))'

and
dY"W(z,t) = QO(z, )Y O (z,t) = Q(z,1)Y (2, )p(t,7(1)),

because (z,1t) is single valued on Xg(¢). It follows that

Y(z,t)dp(t,7(t)) = 0.

Hence dp(t,7(t)) = 0 because detY(zr,t) # 0. This shows that the
monodromy representation p(¢,-) is independent of t. g

LemMMa 3.1.4. The Pfaffian system

(3.1.1) Dj = P(z,t)7,
(3.1.3) 4§ = Q(z, 1),

is completely integrable ( cf. Chapter 1, §5) if and only if

dP(z,t) = DQ(z,t) + [z, t), P(z,1)],

(3.1.4)
dQ(z,t) = Q(z,t) AQ(z,1)

holds.

Proof. By virtue of the Frobenius theorem (Chapter 1 Corollary
5.3) we have only to check that the integrability condition of (3.1.1 and
3) is equivalent to (3.1.4). The Pfaffian system (3.1.1 and 3) can be
written as

diz ¥ = w7,
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where w = Pdr 4+ and d(, ) is the exterior differentiation with respect
to (z,t), i.e., d(; 1) = dzD+d. We compute the identity diz yw—wAw =
0. The following computation leads to the conclusion.
diz;yw =dP Adz +dz A DQ + dQ
= (dP - DQ) Adz + dQ,
wAw= (Pdz + Q) A (Pdz + Q)
=(-PQ+QP)Adz+QAQ
=[Q,PlAdz+QAQ. g

Therefore we have

ProposiTION 3.1.5. If Y(z,t) is an M-invariant fundamental
solution of (3.1.1), then the matriz 1-form Q(z,t) = dY (z,t)-Y (z,t)™"
is uniform on X and satisfies (3.1.4). Conversely, if the system (3.1.4)
admits a solution Q(z,t) which is uniform on X, then any matriz Y(z,t)
satisfying
DY =PY, dY =QY

is an M-invariant fundamental solution of (3.1.1).

The system (3.1.4) is called the deformation equation of (3.1.1).

Since Q(z,t) = dY(z,t) - Y(z,t)~! depends on the choice of M-
invariant fundamental solution Y'(x,t), we discuss in the next section
the ambiguity of Y(z,t). As a result, we know the ambiguity of the
matrix Q(z, t).

‘and Q) (z,t) := dYC
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3.2. Totality of M-invariant fundamental solutions

Let YO(z,t) = Y(D(z,(z0,t)) and Y (z,t) = Y?(z,(z0,1)) be two
fundamental solutions of the equation (3.1.1). There is a matrix C(t) €
GL(2,0(U)) such that

(3.2.1) YW (z,8) = YO (2,8)C(2),

where O(U) stands for the ring of holomorphic functions on U. If
Y?)(z,t) is an M-invariant fundamental solution of (3.1.1), YV (z, 1)
defined by (3.2.1) is not necessarily M-invariant. We find a condition
for the matrix C(t) so that Y(V)(z,¢) is also M-invariant.

ProOPOSITION 3.2.1.  Assume the monodromy of (3.1.1) is irreducible.
Let YD(z,t) and Y (z,t) be as above and suppose that Y P (z,t) is
M-invariant. Then

(i) Y (z,t) is M-invariant if and only if C(t) has the form:

(322)  C()=un)C, ()€ OW), u) #0, C € GL(2,C),
(i) #f Y(z,t) is M-invarant, then we have

(3.2.3) QD (z,t) ~ Q®(z,t) = dlog u(t) - I

) -
p(t) # 0, where I is the 2 x 2 identity matriz
t

(
for some u(t) € O(U),
)(m,) Y()(z )", i=1,2.

REMARK 3.2.2. The (1,2)-component of Q(z,t) := dY (z,t)-Y(z,t)7?
is independent of the choice of M-invariant fundamental solution Y.

To prove the above proposition we make use of the following lemma.
Consider a differential equation of the form

(3.2.4) DL = [Q(.’L‘),L],

where L is a 2 X 2 unknown matrix and Q(z) is a 2 x 2 matrix valued
function. We associate with (3.2.4) the following differential equation

(3.2.5) D = Q(z)y.

where § is an unknown 2-vector. Let Y(z) be a fundamental solution
of (3.2.5).
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LemMma 3.2.3. A general solution L{z) of (3.2.4) is given by
(3.2.6) L(z) = Y(2)LoY(z)™?,

where Y(x) is a fundamental solution of (3.2.5) and Ly is an arbitrary
constant matriz.

Proof. We show that L(x) satisfies the equation (3.2.4). In fact,
noting that ¥'(z) is a fundamental solution of (3.2.5) and that

D(Y(z)™") = ~Y(z)"'DY(z) - Y(z) 7",
we get
DL(z) = D(Y(z)LoY(z)™")
= DY(z) - LoY(z)™! = Y(2)LoY(z) ' DY (z) - Y(z)™*
= Q(2)Y(2)LoY (z)™! - Y(2)LoY () ' Q(x)
= [Q(z), L(z)].

Since L(z) is a solution of (3.2.4) which contains 2 x 2 = 4 parameters,
it gives a general solution. g

Proof of Proposition 3.2.1. The proof will be carried out in four
steps.

1°) Let Y()(z,t) (i = 1,2) be M-invariant fundamental solutions
of the equation (3.1.1), and set
(3.2.7) QO (z,t) := dYO(z,t) - Y O(z,1)7".

Define L;(z,t) (i=1,---,n) by

aN(z,t) - Q@ (z,1) = ) Li(z, t)dt;.

We show that each Li(z,t) satisfies the equation (3.2.4) with Q(z) =
P(z,t). Since Y()(z,t) is M-invariant, it follows from Proposition 3.1.5
that

(3.2.8) dP(z,t) = DQO(z,t) + [ (z,1), P(x, 1)),
(3.2.9) dQ(z,t) = QO (z,t) AQD (z, ).
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Subtracting (3.2.8) for 1 = 2 from that for ¢ = 1, we have
(3.2.10) DLi(z,t) = [P(z,t), Li(z,1))].

2°) Let us show that Li(z,t) = \(t)Lz ({ = 1,---,n) for some
Xi(t) € O(U). Applying Lemma 3.2.3 to the equation (3.2.10), we see
that L;(z,t) can be written as

(3.2.11) Li(z,t) = Y (z,t) Lo ()Y P (z,t) 2,

by choosing L;o(t) € M(2,0(U)) appropriately.

Let p(t,-) : m(Xs(t),(zo,t)) — GL(2,C) be the monodromy repre-
sentation with respect to Y(2)(z,¢). Analytic continuation along () €
m (Xs(t), (.’L‘o, t)) ylelds

(3:2.12)  Li(z,t) = YO(2, 0(t, 1(0) Lio(t)(t, /(1) YD (2, 8),
because L;(z,t) is uniform. It follows from (3.2.11) and (3.2.12) that

p(t,¥(t)) Lin(t) = Lio(t)n(t, (1))

for any (). Since the representation p(t, -) is irreducible by assumption,
using Schur’s lemma (see Remark 2.1.5), we see that L;o(t) are scalar

matrices: L;jp(t) = Ai(t)]p, Ai(t) € O(U). Thus we have
Li(z,t) = Lio(t) = Xi(t) 2,

and hence

(3.2.13) OM(z,1) — Q®(x,t) = 61,

where § =3, \i(t)dt;.
3°) We show that the 1-form 6 is closed: d6 = 0. Differentiating
both sides of (3.2.13) and using (3.2.9), we see

dbI, = dV) — 4@
=0M A1) _ ) A 3@
=M A QW - Q®) 4 (M) — @) A 0@

= QW AL, + 61, A QP
=0, A (P - 1)y
={0A],

=0.
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Since U is simply connected, there is a holomorphic function »(t) in U
such that dv = 8. Define u(t) by u(t) := exp(v(t)), then (3.2.13) implies
(3.2.3) proving the assertion (ii).

4°) Substituting Q) = dY® . YO~ ipto (3.2.13), we see
g

8, = dy® .y~ _gy@ . .y@™!

= dY@cw)c@)ly® ™ —ay®@.y®™

=Y®@dC(t) - C(t) YD

and hence

dC(t) = 6C(t).

Thus we have C(t) = u(t)C for some C € GL(2,C). Conversely, if the
matrix C(t) in (3.2.1) has the form (3.2.2), it is obvious that Y(!)(z, ¢?)
is M-invariant. Thus the assertion (i) is proved. g

3.3. Monodromy preserving deformation of second order dif-
ferential equations

r
Let us consider a monodromy preserving family of second order differ-
ential equations:

(3.3.1) D%y + py(z,t) Dy + pa(=, )y = 0,

where p;(z,t) (i = 1,2) are uniform functions on X = P! x U, U being
a simply connected open set in C". Let us explain how the monodromy
preserving deformation of the equation (3.3.1) is related to that of a
system (3.1.1).

Set

(3.3.2) P(z,t) = (_(I’)z _lpl).

The equation (3.3.1) is equivalent to the system (3.1.1) with (3.3.2). In
fact, if y(z,t) is a solution of (3.3.1), §(z,t) := (y(z,t), Dy(z,t)) gives
a solution of (3.1.1) with (3.3.2); conversely if §(z,t) = *(y(z,t), z(z,t))
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is a solution of (3.1.1) with (3.3.2), then z(z,t) equals to Dy(z,t) and
y(z,t) is a solution of (3.3.1).
Let
y(.’l:, t) = (yl (13, t)a yZ(x’ t))
be a fundamental system of solutions of (3.3.1), i.e. y;(x,t),y2(z,1) are
linearly independent solutions of (3.3.1). Let Y(z,t) be the Wronskian
matrix of Y(z,1):

v =( 2500 ) = (450 Sh)

Then Y(z,t) gives a fundamental solution of the system (3.1.1) with
(3.3.2). A fundamental system Y(z, t) of solutions of (3.3.1) is said to be
M-invariant if the associated Wronskian matrix Y'(z,t) is M-invariant.

Suppose that (3.3.1) has an M-invariant fundamental system Y(z, t)
of solutions. Let us show that the 2 x 2 matrix 1-form

(3.3.3) Qz, t) :=dY(z,t) - Y " (z,1)

is determined by its first row. Define a linear operator V acting on a
row 2-vector f(z,t) by

Vflz,1) = Df(x,t) + f(z, ) P(x,1).

ProposiTioN 3.3.1.  The matriz Q(z,t) can be written in the form
e = (A

Proof. Let A(z,t) be the first row of Q(z,t). The first row of (3.3.3)
reads

(3.3.5) dY(z,t) = Az, )Y (z,1).
Differentiate both sides of (3.3.5) with respect to z:
dDY(z,t) = D{A(z,t)Y (z,t)}
=DA-Y + ADY
=VA-Y,
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and combine it with (3.3.5). Then we have

A
dy_(vj)y..

ProposriTiON 3.3.2.  IfY(z,1) is an M-invariant fundamental system

of solutions of (3.3.1), then the vector 1-form A, defined by (3.3.4) using
the matriz 1-form

Q:=dY .dY~!, Y:=( Y )

is uniform and satisfies the system:

(3.36) . V24 + pi(z,)VA+ py(z,t)A + dP(z,1) = 0,
A A A

(3.3.7) d(vj)—<vj)/\<vj)—0,

where

B(z,t) = (pa(z, ), ;1(3,1)).

Conversely, if (3.3.6 and 7) admits o uniform solution f-l‘, any solution
Y of the system
DY = PY, dY =Y,

_{ A
Q'—(VA>’
(Y
Y‘(Dy)’

and Y is an M-invariant fundemental system of solutions of (3.3.1).

where

can be written in the form
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Proof. 1t is sufficient to show that (3.3.6) is equivalent to the first
equation of (3.1.4). The first equation of (3.1.4) can be written as

(3.3.8) VQ(z,t) — P(z,t)Qz,t) - dP(z,t) = 0.

Noting that P(z,t) and ((z,t) have the forms (3.3.2) and (3.3.4), we
see that the first row of (3.3.8) yields nothing; from the second row, we
obtain (3.3.6). §

Name the entries of the 2-vector A as
A=:(B,A).
The following result is the consequence of Remark 3.2.2.

COROLLARY 3.3.3. Suppose that the family (3.3.1) of differen-
tial equations is monodromy preserving and that its monodromy is irre-
ducible. Then the uniform 1-form A(z,t) is independent of the choice
of M-invariant fundamental system of solutions.
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3.4. SL-equations

As a special case let us consider a linear differential equation of the form
(3.4.1) D?w = p(z,t)w,

where p(z,t) is a uniform function on X. Such differential equations are
said to be of SL-type and are called SL-equations (this name comes from
the fact that a monodromy representation has its image in SL(2,C)).
They are characterized by the property: the Wronskian of a fundamental
system of solutions is independent of x. We show that the monodromy
preserving deformation of an equation (3.3.1) reduces to that of an SL-
equation (3.4.1).

Let ¢(z,t) be a non-zero solution of the equation

(3.4.2) 2D¢ = —py(z,t)¢.
Then by the change of unknown y — w:
(3.4.3) y = ¢z, t)w,

the equation (3.3.1) is transformed into an equation of the form (3.4.1)
with p(z,t) given by

(344)  plat) = ~pe,t) + 3pa(z, 0 + 3Dpi(e,0).

ProrosiTION 3.4.1. If the equation (3.3.1) has an M-invariant
fundamental system of solutions, then so does the SL-equation (3.4.1)
with p(z,t) given by (3.4.4).

Proof. Suppose that the equation (3.3.1) has an M-invariant so-
lution Y(z,t). Let Y(x,t) be the Wronskian matrix of Y(z,t) and let
r(z,t) be its Wronskian:

r(z,t) = det ( g;}’(”zt)t)) .

Then r(z,t) satisfies the differential equation

Dr = —p;(z,t)r.
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We take ¢(z,t) in (3.4.3) as

o(z,t) = \/r(z,t).

Since Y(z,t) is M-invariant, we see that the monodromy representation
with respect to r(z,t) is t-invariant and hence so is the monodromy
representation with respect to ¢(x,t). This shows, through the trans-
formation (3.4.3), that the SL-equation (3.4.1) with (3.4.4) also has an
M-invariant fundamental system of solutions. g

3.5. Deformation equations for second order SL-equations

Define A;(z,t) and B;(z,t) by

(3.5.1) A(z,t) = i(B.-(z,»t),A;(z,t))dti.

i=1

For an SL-equation, we can simplify the conditions (3.3.6) and (3.3.7)
by eliminating the B;(z,t)’s.

ProposiTiON 3.5.1.  IfY(z,t) is an M-invariant fundamental system
of solutions of (3.4.1), the functions A;(z,t) (i = 1,---,n), defined by
(3.5.1) and (3.3.4) using

= a1y Y
NQi=dY - Y™, Y := (Dy)’

are uniform and satisfy the system:

(3.5.2) D*A; — 4pDA; — 2Dp - A; + 2D;p = 0,
(3.5.3) D;A; - D;A; = A,DA; — A;DA;
fori,j=1,--- n, where D; = 8/0t;. Conversely, if the system (3.5.2

and 3) admits uniform solutions A;(x,t) (i =1,...,n), then setting

_[( A4 s~ 1o | |
Q= (VA)’ A= Z( 2DA,(:1:,t),A,(x,t))dt”

=1
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any solution of

DY =PY, dY =QY

can be written in the form
_( Y
v= ()

and Y is an M-invariant fundamental system of solutions of (3.4.1).

Proof. We apply Proposition 3.3.2 for /i,-(z, t) = (Bi(z,t), Ai(z,t)),

(i=1,---,n) and
P, 1) = (p(f,t) (1))

Writing down the equations (3.3.6) we have

(3.5.4) D(2B; + DA;) =0,

(3.5.5) D?B; 4+ 2pDA; + DpA; — Dip=0.

The equation (3.3.7) can be written as

(3.5.6) D,'Aj + AjDA,' = DjA.' + A,'DAJ',

(3.5.7) D,'Bj + AJ'DB.' = DJ'B,' + A.'DBJ'

fori,7 =1, --,n. Suppose the existence of an M-invariant fundamental

system of solutions of the SL-equation (3.4.1). Then from (3.5.4), we
have

(3.5.8) DBi(z,t) = —%DZA;(z,t), i=1,--,n.

Putting this into (3.5.5), we have (3.5.2).

Conversely suppose the system (3.5.2 and 3) admits a uniform solu-
tion (A;(z,t), -+, An(z,t)). We define uniform functions B;(x,t) (i =
1,---,n) by

1 :
(359) B,‘(I,t) = —EDAi(I’t)’ 1= 1,...’n'

Then functions A; and B; solve (3.5.4,---,7). In fact, (3.5.4 and 5) follow
from (3.5.9 and 3), respectively; and we have (3.5.7) by differentiating
(3.5.6) with respect to z. This proves the proposition. g
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4 The Garnier system G,

4.1 Main theorem

We consider a Fuchsian differential equation

(4.1.1) D?y+ p1(z)Dy + pa(z)y = 0
with singularities at t1, - -, £,, thy) = 0,840 = 1ty =00, A1, -, As.
We assume:

(i) The singular points are all distinct and the Riemann scheme is
given as follows:

T=t T=tya T=A
91' o+ 0n+3 2

i=l,---,n+2;k=1,..‘,n_

) 6;¢Z i=1--,n+3.
(iif) The singular points A are apparent in the sense of Defintion

- 224

The Fuchs relation implies
1
(4.1.3) a=-3 Y bit+6nys-13,
(¥

where from now on we use the symbols 3", and 2 (i) to stand for the
summation over i = 1,...,nandoveri = 1,...,n+2, respectively. For
notational simplicity we sometimes write

0 in place of 8,,3.

By assumption (i) and Proposition 4.2 of Chapter 1, the coefficients
of (4.1.1) can be written as follows:
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( 1-6; 1
n@=d o2y

O]

K 2 ti(t; — DK;

(414) | P2e) = z(z - 1) - : z(z ~ 1)(z - t;)
Ak(Ae = 1)pk
+ 5 ok Z R
{ ;:c(z-— 1)(z — Ae)
where pg, K; (k,i=1,---,n) are constants and

P % {(205—1)2—0%,’0}.
(1)

In fact, since the singular points of (4.1.1) are ¢;,-- -, tny3, A1, -,
An and all are regular singular, Theorem 2.3 says that p;(z) and p2(z)
are of the form:

pl(z)=zm(iit,~ +¥mjk)\k’

(¥

b;
P2(z) =Z(Y,—; (z —t;)? +¥ (x = A)?
K;
DI
r—1; kl‘—/\\k

where a;, b;, K;, ¢, d., it are independent of z. The characteristic equa-
tion at z =t; is

s(s—1)+ais+b=0

and its roots are characteristic exponents, 0 and ;. It follows that
a,'=1—0,', b,'=0.
The same argument for the singular point £ = A; leads to:

Ck—‘=—-l, dk=0
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Moreover the expansion of py, ps at z = oo is
p(z)=(2-) 0)z~! + O(z7?)
O]
pA2) =(=Y_Ki+ Y pp)e!
(i) k
H=D o tKi+ Y M)z~ + Oz,
() k
Since x = oo is regular singular, we have
(4.1‘5) - Z K + Z ur =0.
() k
The characteristic equation at £ = co reads:

S(s+1) = (2= D 05+ (=D K+ > M) =0,
©) () k

whose roots are o and a + 0,,. It follows that

(4.1.6) 20+ 60 =1-) 6,
(3
(4.1.7) Ha+6000) ==Y LK+ Y A
(i) k

Set k := a(a+ 0, ) and eliminate Knt1,Kn42 in pa(z) by using (4.1.5
and 7). Finally we arrive at (4.1.4).
Notice that

Hi = Res pz(flt, t)w
(4.1.8) =
K; = —Res pz(.’L‘,t).

z=t;

By assumption (iii), as we shall see in Proposition 4.3.2, there are n inde-
pendent relations among {);, u;, K;}, which determine K; (i=1,...,n)
as rational functions in

(0,A,/l.,t) = (017'"10n+3y/\17""An)/1'1a--'a/l'nvtla'--7tn)'




172 Monodromy-preserving deformation and Garnier systems

Explicit forms of K; will be given in (4.3.7).

Thus our differential equation depends on parameters (8, i, t); let
us denote by Eg(), g1, t) the equation (4.1.1) with parameters (6,2, i, t).
To solve Problem 2.2.7, we shall find submanifolds M in (8, ), p, t)-space
such that the family Eg(), p,t) ((6, A, p,t) € M) on M is monodromy
preserving. On each such manifold, the parameters 8 = (6;)i=1,...,n+3 are
constants; thus for each 6 satisfying assumption (i1) we find submani-
folds M in (), p,t)-space such that the family Eg(X, pyt) (X, p,t) €
M) is monodromy preserving. The case n = 1 will correspond to the
Painlevé equation Pyp .

Before stating the main theorem we introduce a Hamiltonian sys-
tem which will play a central role in the following.

DEFINITION 4.1.1. The n-dimensional Garnier system G, is the

Hamiltonian system

d\; = }:{K,-,A,-}dt,-,

J

(4.1.9)
dl—li = Z{I(], ”i}dtj,
J

i=1,--+,n, where { -,- } stands for the Poisson bracket

af dg g Of
{f.9}=2_ (Gon ~ Bman

1

The Hamiltonians
K; = Ki(A,”’at) = K’i(aa Aa /-‘7t)
are given in (4.3.7).

THEOREM 4.1.2  Assume (i), (ii) and (iii) above, and let 8 = (61, -,
0.43) be fized.

(i) The Hamiltonian system G, is completely integrable.

(ii) Let M be an (n-dimensional) integral manifold in (X, p,t)-space
0f Gn. Then the family Eg(X, p,t) (A, 1,¢) € M) on M is monodromy
preserving.
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(iii) Let M be a manifold in (A, p,t)-space such that the family
Eo(X, i1, t) on M 1is monodromy preserving. Then M is a submanifold
of an integral manifold of G,,.

Consider the Garnier system in case n = 1. Write (A, g, ¢, K) in
place of (A1, py,t1,K1). Then

KO8 = 7 RO - D= 00 = 820 - DA - 9

+0:AA = 1) + (61 = DA = D)} + &),

which is HVI(A,u,t) with parameters (kq, Ko, K1, Ko0) = (01,02, 03,04).
So the 1-dimensional Garnier system G, is just the sixth Painlevé system
Hyy. In this sense we can regard G, as a generalization of the sixth

" Painlevé system to a completely integrable system of partial differential

equations.

4.2 Reduction to SL-equations

Since the monodromy preserving deformation of (4.1.1) and that of the
corresponding SL-equation are equivalent to each other, we shall reduce
Theorem 4.1.2 to a similar theorem for SL-equation.

Let
(4.2.1) D*w = p(z)w

be the SL-equation derived from (4.1.1) with (4.1.4). To obtain this
SL-equation, it is sufficient to make the transformation:

y = #(z)w,
#(z) = H(I — ;)" (1-6:)/2 H(z — )Y
(9 k

we have
(4.2.2) p(z) = L 5+ Int3
%(z—ti) z{z — 1)
ti(t: - 1)L,
+ Z 2z -z -14)
3 _ (e = Dy
+ ; [4(3: B VS Py} e )\k)]’
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where the constants a; (i = 1,---,n + 3) are related to the exponents
6; (i =1,---,n + 3) of the equation (4.1.1) by

1,., )
=_(0i—1)7 1.=1,"',Tl+2,

Gn43 = —= (E o7 — 0n+3 )

(%

(4.2.3)

Notice that

Li = Res p(z,1),
r=t;
(4.2.4) (i= 1,---,n).
v; = —Res p(z,t)
r=X;

The SL-equation thus obtained from (4.1.1) has the Riemann scheme

T=t r=00 X=X
1-6; -1-6, _1
2 2 . 2 )
146; —-1-0, 3
2 2
and, by the assumptions (ii) and (iii) in Section 4.1, the singular points
z = t;, A are non-logarithmic. The quantities L;, vy (i,k = 1,---,n)

are related to K, yi by the formula

1
Vi = i + sWk,

(4.2.5) 21
L;=K; + 5(1 - 6;)W;,
where
1-6; 1
Wi_%ti—tj +;/\k—ti’
(4.2.6)
“’"‘Zxk-t Zxk—xe
Here zém) stands for the summation over m = 1,---,i - 1,i+1,...,
n+ 2.
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ProrosiTION 4.2.1. The transformation
(At K) — (A, L)a

defined by (4.2.5) and (4.2.6), is symplectic, i.e.,

(427) Y du Adre— D dK;Adti=) dve AdAe — Y _dLi Adts.
k f k i

Proof. By (4.2.6), we have

Owy, 1 Owy,
dvy = dp + 3 at —dt; + 5 Ed/\e
dL,-=dK,-+§(1 )[ dt +Z ]
Since
Q1 9.)% __Ow  Owi  Owx  OW _ W
! Ok - ot; ' Ok - o’ ot; N oty ’
fori,k=1,...,n, we get

(4.2.8) Zd/\k/\duk

—Zd)\k/\dpk——zz d/\kAdt,,

(4.2.9) Z dL; A dt;

_Zde Adt; + = ZZ d/\k/\dt

Hence (4.2.8) and (4.2.9) give the desired identity (4.2.7). §
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Since Ax (k = 1,---,n) are non-logarithmic singular points of our
SL-equation, as we shall show in Proposition 4.3.4, L; (: = 1,---,n) are
rational functions in

(G,A,V,t) = (al,"'aan+3;/\lv""/\n;ulﬂ"'sun;tla"';tn)-

Thus our SL-equation depends on parameters (a, A, v, t). Let us denote
by Ea(A,v,t) the equation (4.2.1) with parameters (a, A, v,t). By the
help of Proposition 4.2.1, we see that Theorem 4.1.2 is equivalent to the
following theorem for the SL-equation (4.2.1) with (4.2.2).

THEOREM 4.2.2. Under the same assumption as in Theorem {.1.2,
let a = (a;)i=1,...n+3 be fized.
(i) The Hamiltonian system

d\i = Y {Li, Ae}dt;,
(4.2.10) i (k=1,---,n),
dyy, = Z{Li,l/k}dti

with the Hamiltonians
L;= Li(/\y v, t) = Li(a’ /\1 v, t)

given in (4.3.13), is completely integrable.

(i) Let M be an (n-dimesional ) integral manifold in (A, v,t)-
space of the Hamiltonian system (4.2.10). Then the family E,(A,v,t)
(A v,t) € M) on M is monodromy preserving.

(iii) Let M be a manifold in (X, v,t)-space such that the family
E,(\v,t) on M is monodromy preserving. Then M is a submanifold
of an integral manifold of the Hamiltonian system (4.2.10).

In Subsection 4.3, in order to complete the statement of Theorems
4.1.1 and 4.2.2, we express K; and L; as rational functions in (A, g,1)
and (A, v, t), respectively. In Subsections 4.4 and 4.5, we prove Theorem
4.2.2.

The proof will be carried out in the following way. We regard (\,v)
as holomorphic functions of ¢ and consider the family of differential
equations (4.2.1) with parameters ¢ = (#;)i=1,..,n. We assume that the
family E,(X(t),v(t),t) (t € U C B) is monodromy preserving. Let
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W = W(z,t) be an M-invariant fundamental system of solutions of

(4.2.1) with (4.2.2). Putting W = ( W ) and 2 = dW - W1, we

DW
define A; = A;(z,t) by

= z,: (Vl(gi?i fii)) i

By using local expressions of W, we will know the poles and zeros of the
rational functions A; in z. Since the A; satisfy (3.5.2 and 3) in Propo-
sition 3.5.1, we will know, in Subsection 4.4, the explicit expression of
A; as rational functions in (z, A, ). In Subsection 4.5, we substitute

- these expressions of A; into the conditions (3.5.2 and 3) and show that

the conditions (3.5.2 and 3) are equivalent to a system of differential
equations with unknowns ), v and variables ¢, which will turn out to be
the completely integrable Hamiltonian system with the Hamiltonians L;
(i =1,---,n). The integrability of the Hamiltonian system implies that
for each point (Ag, Vo, %), there is a unique n-dimensional submanifold
M 3 (Xo,vp,t0) in the (), v,t)-space such that the family E,(\,v,t)
((A,v,t) € M) is monodromy preserving,.

4.3 Explicit forms of K; and L;

Let us express L; and K; (i =1,---,n) as rational functions in (A, u,1)
and (A, v,t), which will turn out to be Hamiltonians for the systems G,
and (4.2.10), respectively.

We start by showing the following lemma. Let E = (Eg;)g,i=1,n
be the n x n matrix defined by

ti(ti— 1)
4.3.1 Ey; = ]
( ) k /\k(/\k - DAk - t,')
LemMMa 4.3.1. The inverse matric F = (Fit)ik=1,..n of E is given
by

F,'k=M,'Mk’i, i,k:l,«--,n,
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where M; and M* are defined by

M, = —;,((ttt)),
(4.3.2) N T’( (i,k=1,---,n,n+ L,n+2),
M = G
and

(4.3.3) T(z) = [J(z - t:) ) =[] - 2o
() A
Proof. Define the rational functions Z;(z) (i = 1,---,n) by

T@
z(z - 1)z — t;)A(z)

(4.3.4) Zi(z) =

Notice that the poles of Z;(x) are Ay, -+, An, which are all simple, and

that oo is its simple zero. Expand Z;(z) into partial fractions:

T (&) 1
(435) Z Z/\k/\k—l /\k—t)A'(z\k)m‘—/\k

L Ae—t;
=———— Mk‘JEi J =1’...’n'
t,'(t,' — 1) Zk: k T — A (] )

On the other hand, since Z;(z) has simple zeros at z = ¢t; (j = 1,---,

n;j # 1), we have

Zi(t;) = i
(4.3.6) () = RXOESYA
1t follows from (4.3.5) and (4.3.6) that

Y M;M*Ey; = 6;.

These identities show that the inverse matrix of Eis F. n
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ProrosiTioN 4.3.2. The points Ay,---, A, are non-logarithmic
singular points of (4.1.1) with (4.1.6) if and only if

(43.7) K,=M; Xk:Mk'i{”kz - (;) 9;,: :i: P + /\k(/\:— 1)},
where
= {0 1) -0,

(1)

Proof. Take a local coordinate z := z— Ag at A, and rewrite (4.1.1)

- into

(4.3.8) D%y + 2q1(2)Dy + 2q2(2)y = 0,

where ¢;(2) and ¢z(z) are functions holomorphic at 2 = 0. Let
=2}
2)=-1+ Z agmz™,
m=1
=2}
= pr + Z bemz™
m=1

be expansions at z = 0. Since z = 0 is a non-logarithmic singular point
baving 0 and 2 as its exponents, the equation (4.3.8) must have a power
series solution:

(4.3.9) y(2) =14 ymz™

Putting this into (4.3.8) and comparing the coeflicients of like powers,
one has a recursive formula which determines the ym,’'s:

Y1 = Mk,
(4.3.10)
m(m—2)ym =Rk,m(y1,"',ym—l)7 m =2u37"'
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When m = 2, the left-hand side of (4.3.10) vanishes, and therefore
the existence of the solution (4.3.9) implies Ri 2(ui) = 0. Conversely,
if Re2(pr) = 0, there is a solution of the form (4.3.9) of (4.1.1) with
(4.1.6) and A is a non-logarithmic singular point of (4.1.1) with (4.1.6).
Using (4.3.8), we see that the conditions Rxo(pk) =0 (k =1, --,n)
are written as

(4.3.11) [J.k2 +ak1pk+ bk,l =0, k=1,...,n,

where a,; and b, are determined by p{z) and pz(z) as follows:
Qg = (Pl(l‘) + I—_l—/\;)lux,‘
tﬁ —é;xijm’
)lz:A»
(/\k -1) Z /\k(/\k - ;)(1/)\1{— t:)

1) pirm 1 1
+§:MAVJ(M— m‘(ﬁ+AV4)%

(3)
e = (pa(e) - =

where the symbol zfn stands for the summation over m = 1,...,k —
Lk+1,...,n

Using the matrix E defined by (4.3.1), the conditions (4.3.11) can
be written in the form

(4.3.12) EY Ky, Kp) = Y(V1,---, V),
where
1 1
— 4.2 -
Vi = e *'(“h‘ e Ak-1)“k

k

Z l)um + K
- Ax( /\k - 1) ) A(Ae—1)
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By the help of Lemma 4.3.1, the equation (4.3.12) can be solved:

Ki=M;) MV,
k

ki
= M; Z [Mk"#k2 + (M*ay; — M) e + Swewsyik
k
where
k
. 1 /\k(/\k -1HM™ i
ko _ [ Mk i .
M (/\k+/\k—-1) +Z/\ m— DAk = Am)

To complete the proof of the proposition, it suffices to show that

(4.3.13) ME0 = 'Mk{E:Ak—t E:Ak— ]

We make use of a similar technique as in the proof of Lemma 4.3.1.
Let us consider the rational functions Z;(z)/(z — Ax), where Z;(z) are
defined by (4.3.4), and let us apply the residue theorem to them. By

" definition, it is seen that

Mm,i
) Am(Am — 1)(/\m - Ak)
Res Zi(z) _

=\, T — ’\k

if m#k

k

Mk i 1 1 .
/\k(Ak—l)[; Ak—tl —;Am—Ag] fm=k

and

Res 2% 4z o,
z=o00 T — Ak

Since the residue theorem tells us

ZR Zi(= dz+Res Z()dm—

z—A,..l'—/\k z=c0 T — Ak
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it follows that

Mk,l',O

i

k
1 1 k.i Z,(I)
- MEE X -
(/\k + e — 1) £ 1);133,, T— A

1 1 k: Z{(I)
(5 + o) M5+ M0 - DRes =25

_Mk,,-(i 1 _f: 1 )
- (m)/\k_tm — e — Am /-

REMARK 4.3.3. By applying the residue theorem to Z;(z) given by
(4.3.4), we have

Mk|
(4.3.14) Z WY =1.

Let us determine Ly,---, L.

ProPOSITION 4.3.4. The singuldr points Ay, -+, N\, of the SL-
equation (4.2.1) with (4.2.2) are non-logarithmic if and only if

(4.3.15) L, = MiZ[Mk,.'sz _ Mk,i,ouk _ Mk,iUk],
k

where M**0 is given by (4.3.13) and

k
Qn43 aQm 3
4.3.16 U= +—7—7—+ w5t —_—.
( ) TN D) % Mk — tm)? ; 40k — Am)?

The proof of this proposition can be carried out in exactly the same
manner as in the proof of Proposition 4.3.2, so we leave it to the reader
as an exercise.

4.4 Explicit expression of 4;(z,t)

The proof of Theorem 4.2.2 proceeds along the scheme stated at the
end of Section 4.2. We find an explicit form of A;(z,t) (i = 1,---,n),

which is the second component of fl‘,’, defined in (3.5.1) for SL-equations
(4.2.1) with (4.2.2).

" Recall that f_f,'(:r, t) = (Bi(z, ), Ai(z,1)) (i =
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ProposITION 4.4.1. The functions A;(z,t) (i =1,---,n) are giver
by

T(z
(441) A,‘(.’E, t) = M, ( )

o~ t)Al)’
where T(z), A(x) and M; are given in (4.3.3) and (4.3.2), respectively.
In order to prove this, we shall first study the singularity of A;(z,?).

LEMMA 4.4.2. For any fixed t, A;(z,t) satisfies the following
properties:

(i) It is holomorphzc outside the set {\1,---,An, 00},

(ii) 2 = A (k=1,-+,n) and z = 00 are poles of order at most 1,

(iyz=t; (j= 1,-- ,n+2,%# 1) are zeros of order at least 1.

Proof. Let W(z,t) = (wy(z,t), wa(z ( t)) be an M-invariant funda-
mental system of solutions of (4.2.1) w1th (4.2.2), and let W(z,t) be its
Wronskian matrix :

-, n) is determined by

(4.4.2) DiW(z,t) = Ai(z, )W (z,t).

Solving this with respect to A;(z,t) we have

(4.4.3) det W(z, t)Ai(z,t) = det (D):vyeaz;f)t) ) ’

where det W (z,t) is the Wronskian of W(z,t). Since the equation
(4.2.1) is of SL-type, detW(z,t) is independent of z. Set w(t) =
det W (z, t). Notice that, for any fundamental system of solutions V(z,t)
= (v (z,t),v2(z,t)) of (42 1), there is a matrix C(t) = (cre(t))k,e=1.2
€ GL(2,0(U)) such that

(4.44) W(z,t) = V(z,t)C(t).
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Substituting (4.4.4) into (4.4.3), we have

(4.45) w(t)Ai(z,t) = det (D?V) det C(t)

+ Zdet ( Ck1 ce ) ve(z, thve(z, t).
k2

Dicky  Dicen

First we consider (4.4.5) at £ = Ak(t). Since the exponents of (4.2.1)
at z = A, are —1/2 and 3/2, and since z = A, is a non-logarithmic
singular point, we can take a fundamental system of solutions V(z, t) of
the form

vi(z,t) = (z - M) f, wa(a,t) = (z = M) fa

where f; (i = 1,2,) are convergent power series in z— A, with coefficients
holomorphic in t such that f;(Ar) # 0. Put these into (4.4.5); we see the
first term

Vv .
det (D,-V) = vy Djvy — va Dju,

is holomorphic at z = A, and a simple pole appears from the second
term of the right-hand side of (4.4.5). Thus we have

Ai(z,t) = (z — M) f,

where f3 is a convergent power series in £ — A, with coefficients holo-
morphic in t; this shows the assertion (ii). By virtue of the assumption
(ii) in Section 4.1, the assertions (i) and (iii) are proved in a similar way.
|

Proof of Proposition 4.4.1. The above lemma says that A;(z,t) can
be written in the form
T(z)

(446) A,‘(.’L‘,t) = X,'(—z—_m,

where X; is a function independent of z. Let us determine X; as a
rational function of ¢ and A. Multiply (3.5.2) by A; and rewrite it as

(4.4.7) A;D*A; — 2D(pA?) + 2A;Dip = 0.
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Denote by Z;(z) the left-hand side of this equation. Expanding p(z, t)
and A;(z,t) in Laurent series in z — t; and putting them into Z;(z), we
get
E,’(I) — A,'(t,', t) +1 *
(z-t:)*  (z-t)
It follows from the equation (4.4.7) that A;(t;,t) + 1 = 0; which yields
X; = M;, where M, is given in (4.3.2). g

2+

4.5 Proof of Theorem 4.2.2

In this subsection, we show that the conditions (3.5.2 and 3) imply that
A(t) and v(t) satisfy a system of differential equations with variables t.

Furthermore, it will be shown that the system thus obtained is the com-

pletely integrable Hamiltonian system with the Hamiltonians L,, - - -, L,,
which are given in (4.3.15).

Lemma 4.5.1. The equation (3.5.3) is equivalent to the system of
differential equations:

Ap — 2 Ap—t; (t; — t,')T(/\k)
4.5.1 DA\ — ——21D. 2 =
( ) M; k Mj J/\k + (/\k - ti)(Ak - tj)A'(/\k) 0
(isjak = la"'vn)'

Proof. Rewrite (3.5.3) into the form
1
(4.5.2) Z_D; log A; - _/:—ij log A; + D(log A; —log A;) =0,

and denote by ¥;;(z) the left-hand side of (4.5.2). With the help of the
explicit form (4.4.1) of A; in Proposition 4.4.1, it is seen that

L1 1
DlOgAi=§x—tm—¥z—)\k’

D; M
I — /\k ’

1
D;log A; = D;log M; — — 7 _zk:

Ai(t,-, t) = -1,
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for i,j = 1,---,n; ¢ # j. It follows from these identities and the ex-
pressions (4.4.1) of A; that ¥;;(z) has simple poles at 0, 1 and ¢,
(m=1,---,n; m # 4,J) and a simple zero at co. Since a non-trivial

rational function has the same number of poles and zeros counting their
multiplicity, it is seen that ¥;;(z) =0 (i, = 1,- -+, n) are equivalent to
the conditions

q’ij(Ak)=0) i,j,k:l,---,n,
it is immediate that these conditions are equal to (4.5.1). g

Consider next the equations (4.4.7), which are equivalent to (3.5.2).
As in Section 4.4, let us denote Z;(z) (¢ = 1,---,n) the left-hand side
of the equations (4.4.7):

Zi(z) = AiD?A; — 2D(pA?) + 2A:D;p.

LEMMaA 4.5.2. (i) The rational functions Z;(z) (i = 1,---,n) are
expanded in partial fractions as follows:

Wi k,m
I—/\km’

kml

where w;, w; k. are independent of z,
(ii) The egquations Z;(z) =0 (i =1,---,n) are equivalent to

(4.5.3) wi,k,m=07 i,kzl’--.’n;mzl’...74

Proof. The assertion (i) is proved as follows. Note that the poles
of Z;(z) are contained in {t1,- -, ta40, A1, -, An}

First we consider Z;(z) at t; (j # 1). By the explicit form of A;(z)
given by (4.4.1), we see that A;(x) has a simple zero at t; and

_ a; LJ‘ .
p(z,t) = Tt + T=1 + (a term holomorphic at z = ¢;),

where a; is a constant independent of ¢. Then

D;L; .
D;p(z,t) = — t] + (a term holomorphic at z = t;).
j
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It follows that Z;(z) is holomorphic at z = tj.
Next we consider Z;(z) at r = t;. The Laurent series expansion of

A;(z,t) and p(z,t) at z = ¢; has the form

Az, t) = =-1+bi(z—t;) + bo(z — ;)2 + - -

a; L;
1) =
P(z%) (:L‘—t,‘)2+:1,‘—t,'+
Then
. L: — 2a:
A2 — a; i i
P (z-t)2 -t
and

2a; L;—2a;b
D A2 = _ 1 It 1Vl
(p 1) (l‘—ti)s .(Il'—t,‘)z

Furthermore we have

2(1,' L
Dip = : .
P e— o T e
and
AiDip - _ 2(1,‘ L,‘ - 2a,—b1

(=t (z-t)?

So t; is a simple pole of Z;(x).

Finally let us consider Z;(z) at z = M. Let 2 := 2 — A, be a local
coordinate at z = A, and let us expand A;(z,t) and p(z, that 2 =0
in Laurent series:

o) = M 5 ]

(4.5.4)

Noting that
AD’A; = 6(M;M*¥)227% 4 O(z~%)

D(pA}) = 3(M:M*)?27% + O(2™),
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we see that Z;(z) has a pole Ay of order at most 4. Now the assertion
is obvious.

Let us show (ii). It is clear that Z;(z) = 0 (i = 1,---,n) imply
(4.5.3). So we prove the converse. If (4.5.3) holds, Z;(z) has the form
Zi(z) = wi/(z — t;). On the other hand, by the help of the expressions
(4.4.1) for the A;’s and (4.2.2) for p(z,t), it is easily seen that oo is a
zero of order more than two. It follows that w; =0 (i = 1,---,n). Hence
we have Zi(z) =0 (¢=1,---,n). n

We shall write down the conditions (4.5.3) explicitly in terms of
(A, v,t). Putting the Laurent expansions of A; and p at z = ) into the
equation Z;(z) = 0 and equating the coefficients of like powers in z, we
see that w; x 4 = 0 implies
(4.5.5) D = M;[2M*4y — M*0],

that w; x 2 = 0 implies
(4.5.6) Divi = M; [M*upy + MbHly, - gM""’Z],

and that w; x,; = 0 implies

Mk'iD,'uk‘o - Mk’i’oDiVlc
(4.5.7) . , 5
= [M*uey + MB - SME] D,

where uk m are the coeflicients of the Laurent expansion (4.5.4) of p(z, t).
We see that w; x 3 = 0 is derived from w; x4 = 0 and
(4.5.8) U0 = Ui’

which is obtained by analogous computations as in the proof of Propo-
sition 4.3.2 under the condition that the singular points A;,---, A, are
non-logarithmic.

LEMMA 453, (4.5.5), (4.5.6) and (4.5.8) imply (4.5.7).
Proof. Differentiating (4.5.8) with respect to t;, we have

D,'uk,o = 2VkD,‘l/k.
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Then (4.5.7) is written as
(2M*iy — M%) D,y
=(M*ugy + M5y - gM"”"z)Di)\k.
This is a consequence of (4.5.5) and (4.5.6). &
LEMMA 4.5.4.  (4.5.5) implies (4.5.1).

Proof. Tf \(t) satisfies (4.5.5), the equations (4.5.1) is written as

(t; —t)T (M)
Ak — )k = )M (M)

(45.9) (Ak — t)M50 — (A — t;)MF30 =

. To show this, we consider rational functions

W,(I) = A — t; T(:L‘)

-t Mz)
Set z := 2 — Ag. Since
Wi = M7 (O — t:)Ai(z, 1),
it is expanded in Laurent series at £ = Ay as
Wi(z) = (M — t)MP27 4 (A = t) M50 + O(2).
Then

{wite)-wi)}

On the other hand, since

= ()\k - t,')Mk'i’o - ()\k — tj)Mk’j‘o.

I=A|‘

we have

_ (= t)(z — A) T(2)
z=x (z-t)(z—t;) Alz)

{Wie) - wi(a)}

This proves (4.5.9), and hence the lemma. g

Let us summarize the lemmas obtained in this subsection:
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PROPOSITION 4.5.5. The deformation equations (3.5.2 and 3) for SL-
equation (4.2.1) with (4.2.2) are equivalent to the system of differential
equations:

(4.5.5) DX = M;[2M*iyy — MF40),

(456) Din = M{ [Mk".uk,l + Mk,i,luk _ ng,i,Z]-

To complete the proof of Theorem 4.2.2, it is sufficient to prove the
following two propositions.

ProrosITION 4.5.6. The system of differential equations (4.5.5 and
6) is the Hamiltonian system (4.2.10) with the Hamiltonians L,,---, L,
given by (4.3.15).

PRrOPOSITION 4.5.7.  The Hamiltonian system (4.2.10) with (4.3.15)
1s completely integrable. ‘

Proof of Proposition 4.5.6. 1t is easily checked that (4.5.5) is just

the equations
Didpg={Li, )}, 4Lk=1,---)n

We shall show that (4.5.6) is equivalent to

oL,

(4510) Dy, = {Li,yk_} = -—x, ,k= 1,---,n.

Recall that the singular points A1,:--, A, of the equation (4.2.1) are
non-logarithmic if and only if (4.5.8) is satisfied; the condition can be
written as

(4.5.11) 1 > EmiLi=Wn,

1 = Xe(De =1
Wm=Vm2_(—+ ) Ee:)‘m B(t )\2”_6)‘ )—Um,
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and U, is given in (4.3.16). Differentiating (4.5.11)m , m # k, with
respect to Ar, we get

(4.5.12)m ZEm.a/\

Ae(Ae — 1) 3
axk{xm(x “ 1) 0% = ) po+ 207 =)

m # k, and differentiating (4.5.11); with respect to Ak, We get

oW, OFy;

dL;
‘——' = it Li .
Z,- Brigye = on 20N

The above equation can be written as

OL; _ Ve
(4-5-13)k Zi:Ekia—)‘; = —Uk, MO — 1)’

in fact, since uy,; is the coefficient of the power (z — Ax) in the Laurent
expansion of (4.5.4) of p(z,t) at T = Ag, we have

0 3 Vi
Ul = B [p(z,t) T 4(z — Ag)? tis )\J

I=/\),

k
0 a; o 3
- E[(Z): (z — t;)? LTI +Z£: 4(z — Ae)?

T+ A — lwc Zk: (le(le— e

z@-1) © fra(z—1)(z =)

ti(ti— 1
+Z z:-—l z—t)]

aWk aEkz Vi
=-——F L; -
0Ax Z KAk — 1)

=Ax

i

and hence we obtain (4.5.13).
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By using (4.5.13)m (m =1,---,n) and Lemma 4.3.1, ~8L;/8X (i, k = which shows the first identity of (4.5.15). The second identity of (4.5.15)
1,---,n) can be written as is the consequence of the partial fraction expansion:
aL;
4.5.14 - == z{(r — 1)Z(z
(4.5.14) 7 (z - 1)Zi(z)
T(z)
Mlc i —_——
=M; | M* _ T~ t;)A
[ ukl+{>\k k"l) ( )(:l:)

i 1 .’E+/\g—-1
=2£:Ml {z—/\¢+/\g(/\g-1)}'

mi 0 Ae(Ak —
+ZM aAk( Ao k-( 1k)(,\:)— ,\m))}”"

LIy Put the identity (4.5.15) into the equation (4.5.6) and compare it with
- z __—)3] (4.5.14). Then we obtain the latter half (4.5.10) of the Hamiltonian

™ 2(Ak — A . system (4.2.10), which completes the proof. g
On the other hand, we have ’ Proof of Proposition 4.5.7. Let
MFi ‘
lc,z,l
(M )\k(/\k—l) ‘ I"=Zd/\k/\duk+ZdL,-/\dt,~
' k 1
Ae(Ae —1)
l i k\ Nk
(4.5.15) J +Z a)‘k{,\e de— D)% — /\2)} be the fundamental 2-form associated with the Hamiltonian system
(4.2.9) and let 7 be the ideal (of the exterior differential algebra) gen-
k : ‘ .
TS z MU erated by 1-forms
| DIENEEAY
dX; _Z{Lj,Aj}dtj; dV,'—Z{Lj,Vj}dtj, t=1,...,n.
In fact, if we put Z;(z) = T(z)/{z(z - 1)(z — t;)A(z)}, we have J j

Mo Then, by L 6.3 in Chapter 1, we h
Zi — . y enima 0.0 1n a.p er 1, we nave
(2) ; MO —1)(z = Ag)’

) 2= ) Tydt; Adt; dulo Z,
and, by the definition of M**™ we have z ! 7 mocuio

%)
Mk,i,l
where
17} Mk Tyj=0;L; -8;L;+{L;,L;},
i [z(z - 1)Zi(z) - 3 ] ’ 7 ’ ,
T = Akl lzzay and &; denotes the partial differentiation with respect to ;.
_ Zk: Ml,ii[ a(z 1) ] Iy ‘I;;t us define operators D; (j = 1,---,n) acting on functions f in (A, v, )
7 Oz /\[ ¢ — 1 /\[) /\k(/\k - 1)’ ﬁj = aj + {Lj, f} /;/ /N}?

/Q
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(Note that if (A(t), v(t)) is a solution of the Hamiltonian system, then
Djf(A(t), V(t)a t) = (ﬁJf)(A(t)s V(t)a t)

holds.) Then we have
(4.5.16) T = DjL,‘ - D,‘LJ' - 0;L; + 9;L;.
By virtue of Proposition 6.4 in Chapter 1, it is sufficient to show that
T';; vanishes.
Let
Aj(z,1) = Mj(e = ti) (mji0 +mjia(e —t) +--4),

a; L,’
p(x,t)=(x_ti)2+ +".

r—1t;

be local expansions at = = t; (i # j), where
L

Mmiig= —————

PO Mt — )

Mk
Miid == B

Since the left-hand side Z;(z) of (4.4.7) vanishes identically, in particu-
lar, we have Z;(t;) = 0. This gives the differential equations

DJ‘L;' =Mj[mj,,~_oL,-+2mjy,-,0a,-], ,j=1,---,n.

By using these equations, we can see that the right-hand side of (4.5.16)
vanishes. g

REMARK 4.5.8 The fundamental 2-form I' of the Hamiltonian sys-
tem (4.2.10) vanishes along any solution i.e., for a solution (A(t), v(t)),
defining p : t — (A(t),»(t),t), we have

@*'T'=0.
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5. Schlesinger Systems

So far, we have studied the monodromy preserving deformation for the
second order Fuchsian differential equations on P!. As we shall see in
Section 7, the Garnier system G, does not enjoy the Painlevé prop-
erty. So we intend to transform G, into a Hamiltonian system with
the Painlevé property by an appropriate symplectic transformation. In
finding such a transformation, we make use of the Schlesinger system,
which will be discussed in this section.

Let B be the open subset of C* defined by

B = {t: (tl,...,t") € C", t; #Oalvtj (7'#])}3

" and let U be the simply connected open subset of B. Cousider a system

of differential equations of the first order:

51)  Di=Qani, Q@y=-Y2U iey

with singular points £ = t;,...,%n,th41 = 0,tny2 = 1 and t 43 = o0,
where @;(t) (i=1,...,n+2) are 2 x2 matrices whose components
are holomorphic in U. Here the symbol }° ) stands for the summation

overi=1,...,n 4+ 2. In order to consider the system (5.1) at z = oo,
we put z = 1/z; the system (5.1) can be written as

dy Ly . -
o {T + (a term holomorphic at 2z = O)}y,

where
Leo:==)_ Qi().
i)

A system of differential equations of the form (5.1) is said to be of
Schlesinger type.
Let us denote by S(t) the set of singular points of (5.1) for t =
(tla"'atn) € U:
S(t):={t1,...,tas3} C P
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The system (5.1) is considered to be defined on

X=X, X;=P\S@.

teu

For the system (5.1), we assume:

(i) For each i =1,...,n + 2, the eigenvalues 8F and 6] of Q;(t)
do not differ by an integer,
(ii) the system is normalized at T = 0o as

L == 300~ (% o)

and 8% — 02 ¢ Z.

The assumption (ii) implies that at £ = oo (5.1) has a unique local
fundamental solution Z.,(z,t) of the form

Zoo(xa t) = Roo(zat)sza Roo(ovt) = IZ’

where z = 1/z and Roo(2,1t) is a power series in z. Regarding t =
(t1,...,tn) € U as a parameter, we study the monodromy preserving
deformation of (5.1). It follows that 9?, 6% should remain invariant
under the deformation. Now we state the theorem:

THEOREM 5.1. Suppose that the assumptions (i) and (ii) hold.
There is an M-invariant fundamental solution Y (z,t) of (5.1) such that
Y(z,t) = Zo(2,t)Co0 with Co € GL(n,C), if and only if Q;(t) (7 =
1,...,n+ 2) satisfy the system of differential equations:

(52)  dQi=)_[Q;,Qildlog(t:—t;), i=1,...,n+2,
()
where d denotes the exterior differentiation with respect to t.

The above system of nonlinear differential equations (5.2) is called
the Schlesinger system.
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To prove the theorem, we recall the results in Section 3: The linear

equation (5.1) has an M-invariant fundamental solution if and only if
there is a 2 X 2 matrix of 1-forms

Qz,1) =Y Qu(z,t)dt;,

uniform on P! x U, such that the system of differential equations
(5.3) DY = Q(z,t)Y, dY = Q(z,t)Y

is completely integrable; the integrability condition is given by
(5.4) d@ = DO - (@, 9, d=0QAQ.

To deduce the conditions for @;(t) (i = 1,...,n+2) from (5.4), we give
an explicit form of the 1-form Q(z,t).

LEMMA 5.2. The 1-form Q(z,t) is given by

(5.5) Az, t)=-) Q‘(t)_ dt;.

Proof Let Y(z,t) be an M-invariant fundamental solution of (5.1)
such that

(5.6) Y(z,t) = Zoo(2,t)Co, detCo #0
with a matrix Cy independent of t. We define Q(z,t) by Q(z,

t) =
dY(z,t)-Y(z,t)~!. By virtue of the assumption (i), the system (5.1)
has a local fundamental solution Z;(z,t) of the form

Zi(z,t) = Ri(z, t)(z - t;) 11, i=1,...,n+2
where R;(z,t) is a 2 X 2 matrix which is holomorphic at z = t; such

that
det Ri(ti’t) # 0; Ql(t) = RiLiRi_ll:::t;
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6F 0
w=(F o)
for i = 1,...,n + 2. There exist nonsingular matrices C;(t) (i = 1,...,
n + 2) holomorphic in U such that

and

Y(z,t) = Zi(z,t)Ci(t).

Note here that the matrices L; (i = 1,...,n + 2,00) are independent

of t, and the circuit matrices C,-'lez‘/'_l"L‘C,- around z = t; (i =
1,...,n+ 2) with respect to the fundamental solution Y (z,t) are also
independent of t, since Y (z,t) is an M-invariant fundamental solution.
Since

Dy(CcteVTTITlic)y =0,  j=1,...,n+2,

we have

[D]C; ‘C,‘_I, ez\/-‘lﬂ’Li] =0

So, taking account of the assumption, we see from Lemma 4.2.2 in
Chapter 2, that D;C;-C;' (i =1,...,n+ 2) are diagonal matrices.
Thus we have, at = = t;,

R;L;R;!

DY -Y™ = D;R;- R~ 6;= .

+ R,‘(:L‘ - t,')L‘D]'C,' . Ci—l . (I - i,’)_L"Ri—l

Qi

= —§;; ——
Yy —1;

+ (a term holomorphic atz = ¢;).

In a similar way, we can show that D;Y -Y~! = O(1/z) by taking into
consideration dC, = 0, and we have

Qj(z,t) = D;Y Yl 2

Hence we obtain the lemma. g
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Proof of Theorem 5.1 Suppose that Y (z,t) = Z(z,t)Co (det Cop

# 0) is an M-invariant fundamental solution of (5.1) such that dCo = 0.
Then substitute the expression of Q(z,t) and (5.5) into the first equation

of (5.4):
Qi dt; dQ;
Z(I—ti)z +Z,:E—t,'

: ®

_ Qi dt Q;dt;
—zi: z~t;) Zz—t Zx—tj
Bilinearity of the bracket [-,-] yields

di 7
STy A%,

() () J

taking the residue at z = t;, we obtain (5.2):

Qi = ¥ [Q;, Qildlog(t: = t;), =1, ,n+2.
)

. Conversely, we have (5.4) with (5.5), provided that Q,’s satisfy the

system (5.2). In fact, we readily obtain the first equation of (5.4) by
tracing back the above computations. On the other hand, the second
one reads:

dQ: Adt; = — (Z [?Ji?‘ t; | Adt;, 1=1,---,n,

which is a immediate consequence of (5.2). Thus the system (5.3) is
completely integrable; so there exists an M-invariant fundamental solu-
tion Y'(z,t). Let us express it, near x = oo, as

Y(z,t) = Zoo(z,1)Coo(1).
We have

Qj(z,t) = D;Y - Y™! = YdCo - CZY ™' + O(z71).
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It follows from (5.5) that dCo, = 0.

ProposiTION 5.3. The Schlesinger system (5.2) is completely

integrable.

Proof Put

wi=dQi+ Y _[Q:,Q;ldlog(t; —t;), i=1,--,n+2.
%)

The complete integrability of the Schlesinger system (5.2) is equivalent
to dw; = 0 modulo T (i = 1,---,n + 2), where 7 is the ideal of the
exterior algebra generated by wy,...,wn42 (Chapter 1, Corollary 5.2).
Using the Jacobi identity for the bracket [, ], we have

—dw; = i{[de,Q;] +(Q;,dQil} Adlog(t: — t;)
5

i
DD [[@k, Q;), Qi]dlog(tk — t;) A dlog(t; — t:)
@

+3 5371Q4: [Qr, Qil] dlog(te — t:) A dlog(t; — t;)
7y (k)
= Y [QnQ] Qi {dlog(te - t;) Adlog(t; - t;)

1<j<k<n+2,5,k#1
—dlog(t; — t) A dlog(tx — ti)
— dlog(ts — t:) A dlog(t; - t;)}

The last equality is true because the expression in curly brackets van-
ishes identically, as can be checked by direct computations. g

Now we state a celebrated theorem (see Section 1.1).
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THEOREM 5.4 ([Malg.2),[Miw]). The Schlesinger system enjoys the
Painlevé property. Moreover, any solution of the system is meromorphic
on the universal covering space of B.

This theorem is not proved in this book, since it requires a long
preparation.
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6. The Schlesinger system and the Garnier system G,

To transform the Garnier system G, into a system with the Painlevé
property in Section 7, we first transform, in this section, linear equations
of Schlesinger type into second order linear equations, and then we get a
transformation formula taking the Schlesinger system (the deformation
equation for the former) into the Garnier system (the deformation equa-
tion for the latter). We also study a transformation of Garnier systems
into Schlesinger systems; this transformation is not used later.

6.1. Transformation of systems of equations into second order
equations

Consider a system of differential equations for an unknown vector § =
i .
Y, 2):

(6.1.1) Dyj=Q(z)y, Q=)= (Zlig% 328) ’

where g;;(z) € C(x), i,j = 1,2.

LemMma 6.1.1. Suppose that gi2(z) does not vanish identically.
Then the first component y(z) of a solution §(z) of (6.1.1) satisfies the
differential equation

(6.1.2) D%y + pi(z)Dy + pa(z)y = 0,

where

{Pl(l‘) = —Dlog g12 — Tr Q(x),
(6.1.3)

pa(z) = det Q(z) — Dq1y + g1 Dlog gi2.

Proof We write the system (6.1.1) componentwise:

Dy = gy + qi22,
(6.1.4)

Dz = g1y + g222.
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Let us eliminate z in (6.1.4): Differentiating the first equation of (6.1.4),
and using the second equation, we have

D?y = gDy 4 q12Dz + Dqy, -y + Dgys - 2
= gDy + (Dq11 + q12921)y + (D12 + q12922) 2.

Solving the first equation of (6.1.4) with respect to z as
1
(6.1.5) z=—(Dy - quy),
q12

and substituting it into the equation obtained above, we see that y(z)
satisfies the equation (6.1.2) with p;(z), p2(z) given by (6.1.3). g

LEMMA 6.1.2. Suppose that X is not a singular point of the system
(6.1.1). Ifz = X is a zero of qi2(z) of order m, then z = ) is an
apparent singular point of (6.1.2) with the ezponents 0 and m + 1.

Proof Let z = X be a zero of q12(x) of order m; the function ¢;5(z)
admits the following expression:

qi2(z) = (z = A)"b(z),  b(A)#0,  b(z) € C{z - A}
in the neighbourhood of z = A; and hence

m b'(x).

Dlog gqi2(z) =
Substituting it into (6.1.3), we get

miz) = —% + (a term holomorphic at z = A),

p2(z) = qn(/\)z—r-f—/\ (a term holomorphic at z = A).

It follows that z = A is a regular singular point of (6.1.2) at which
solutions are holomorphic, and the characteristic exponents are obtained
by solving

plp—1)—mp=0.
Hence, z = A is an apparent singular point of (6.1.2), and the exponents
are Dand m+1. g

The following two propositions are easy to see.
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ProposiTION 6.1.3. Let
Y(z) = (1(2), f2(2)), §i(z) = '(3i(2), 2i(2)),  i=1,2

be a fundamental solution of (6.1.1). Then yi(z) and ya(x) form a
fundamental system of solutions of the equation (6.1.2) with p(z),

p2(z) given by (6.1.3).

Now let us suppose that the matrix Q(z) in (6.1.1) depends holo-
morphically on the parameters t = (t),...,t,) € U, where U is a simply
connected domain in C".

ProposITION 6.1.4. If the system (6.1.1) admits a monodromy
preserving deformation, then so does the second order equation (6.1.2)
with (6.1.3).

6.2. Transformation of the Schlesinger system into the Garnier
system '

We start by considering the system (6.1.1) of Schlesinger type with
coeflicients

(6.2.1) Q(z,t) = (‘111(1' 1) qa(z ) Z 3?_tt)

g21(x,t) gqoa(z

where
o [(q(0) g0
Q'(t)—<451(t) qaZ(t))’

and tn+1 = O,tn+2 =1.

We assume the following:
(i) The eigenvalues of Q;(t) are 0 and 6; ¢ Z, 0; being independent

of t,

(ii) The system (6.1.1) is normalized at £ = to43 = oo, i.e.,

_ZQ (0 a+00 ) 0o ¢ Z,
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where 05, is independent of t and

-% (20;+0w— 1) ,
)

(iii) all zeros of qi2(z,t) are simple.  (Logically, 6 should be
denoted by 6,43, but 4 is easier to read.)

By the assumptions (ii) and (iii), we see that g,5(z,t) is a rational

function in = having n + 2 simple poles and n simple zeros: Aq,..., A,.
We set
giz A(z)
2.2 = =
(6 ) qu(Is t) % T -t XT(.'E),
. 1
where

X = Z tigly, Alz)= H(l' — ), T(z)= H(z —-t)
(%) O)

and the symbol H(,-) stands for the product over i = 1,---,n + 2. We
transform the equation of Schlesinger type into a second order equation,

(6.2.3) D%y + pi(z,t) Dy + pa(, t)y = 0,

as in Lemma 6.1.1. We see, by Lemmas 6.1.2 and by the assumptions,
that the Riemann scheme of (6.2.3) is

=t xT=00 T=2>X
0 o O i=1,...’n+2;k=1’...’n
0; o+ 04 2

Thus the coeflicients p,(z,t) and py(z,t) can be written in the form

(6.2.4) { Pz, t) = z(zn_ 0 Z z(:(fl_)(i)l_{iti)

Mg = 1) p
+ Ek: 2z - 1)z = M)’
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where
2
(Z"f‘l) — 02 .
(O]
ProrposiTiON 6.2.1. A system of equations of Schlesinger type with

(6.2.1) corresponds to a second order equation (6.2.3) with (6.2. 4) as
follows:

( Ae (k=1,...,n): zeros of gi2(z)

‘111
#k—ZAk_t k=1,...,n,
(6.2.5) J g
K= kl_lt +Z (‘111+‘I11‘00)
k 1

i Q; .
+Tr[Q, (E) —t]-]’ t=1,...,n.
\

Proof Notice that p(z,t) and py(z,t) are obtained from Q(z,t)
by (6.1.3), and that K, u, are written as

K; = —Res pg(l‘,t)dz, e = Res pz(z, t)dz

T=1; z=Ag

We have

pr = Res  {det Q(z,t) — Dg1(z,t) + q11(z,t) Dlog qio(z, 1)} dx
=X
= Res Q11(I, t)A’(.’L‘)
=)\ A(I)

_Z ‘111
A

=t

dr
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and

K; = —Res {detQ(z,t) — Dq1(z,t) + q11(z,t)Dlog g12(z,t)} dz

r=t;

A=) T,(z) ! 4{1
(A(I T(I + T —1; l-‘t:t.- + qll(z’ t) - z -t ,z:ti
~ g (‘111(1 t ‘Iutl) le=t, — i (tm(z,t) - Iqut,-) | 2=t

+qlz (lm(z t ¢h1t ) lz—t +fI21 ('hz(z t) — I'lnt ) |= =1;

_Z ai, ‘111+‘111
-t T = =t

i J
i 11 i ’1'272
-6
+ (a1 )gt—t Zt,—t
J

! J €)]

+‘1122

1

g} I
=Zx\ - .+Zt._t,(‘111+Q{1—0,~0j)
k @

k—ti

+ Tr(Qj i ticijtj),

(5
where we used Tr Q;(t) = 0; to show the second and third equality. g

The following is the consequence of Theorem 4.1.2, Propositions
6.1.4 and 6.2.1.

COROLLARY 6.2.2. If (Q1(t),. .., Qnya(t)) satisfies the Schlesinger
system, then (A1(2),..., An(t), 1 (2), ..., n(t)) defined by (6.2.5) satis-
fies the Garnier system G,.

REMARK 6.2.3.  The Schlesinger system enjoys the Painlevé property,
whereas the Garnier system does not. This follows from Theorem 5.4
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and the fact that Ay(t),...,An(t) are n zeros of a rational function
qlz(l‘,t).

6.3. Transformation of second order equations into systems of
equations

Let us investigate the (X, u)-dependence of @Q;(t) (: = 1,...,n + 2).

They are determined up to the factor X = 3° tjqu. In fact we have
the following result.

ProrositiON 6.3.1. The matrices @; (i=1,---,n+2) are expressed
in terms of (X, i) and X as follows:

gi, = My(W; - W),
1o = —MiX,
g5 = —XH(Wi = W) [M(W - W)) + 6],
Gha = 0: —~ My(W; ~ W),
where

- Alz) _ _Alt) _
M‘l L ij:ts' T(I) - T’(t,‘ b 1= 1’ 7n+ 27

Wj:=ZMk'j(ﬂk+%)’ j=1,---,n,
k

(63.1) MutiWapr =3 (t; - DM;W; ~ o,
2

Mp4oWogo = — Z t; M; W5,
j

(Boo = DW =Y W;(M;W; - 6;),
(€))

and A(z), T(z) are defined by

M) =[-2),  T(@ =[]z~

k O]
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Proof Since

_ A(z) _ M X
QIZ(Iat)—XT(I)— %):.’E—t.‘,

we have )
q12="MiX’ 2=151n+2

Note that we have

(6.3.2) Y Mj=0
)

from the relation 3°;, q{2 = 0, which is a part of the assumption (ii) in

Section 6.2. . '
Next let us determine ¢}, ({ =1,---,n). Set

(6.3.3) W= tigl,.
)

Then, using the assumption (ii) in Section 6.2, we have

(6.3.4) Y dh=-a
)

We write the second equality of (6.2.5) in Proposition 6.2.1 in the fol-
lowing form
o

Y Ewigjy = LA
'. kidy) = /\k(Ak — 1) Mk Ak’

where Ej; is given by (4.3.1). Applying Lemma 4.3.1 and using the
identity (4.3.13), we get

iy ki a__ W
(6.3.5) a1 = M; Xk: M (’“‘ + Xe Mk — 1))

=Mi(Wi—W)1 i=17""n7
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where
W= Y M~ =
; (#k + /\k),

M* being given by (4.3.14). ¢/t! and gJ}t? are determined as follows.
First notice that we have the following identities:

thMj-f-l:O, Z(tj—l)Mj+l=0,
(€3] (€)]

which are shown by applying the residue theorem to the rational func-
tion zA(z)/T(x) . Substitute (6.3.5) into (6.3.3) and (6.3.4), and solve
them with respect to g;t* and q[;t2. Then, if we define W, 4; and W,y
by

Mo Way = Z(tj - 1)M;W; — ¢,

J
Mn+2Wn+2 == Z tijWja
J

n+1

we see that git! and g7;"? can be written in the form stated in the

proposition. Now it is easy to see that ¢}, and g}, are determined by
the assumption (i) in Section 6.2.
To complete the proof of the proposition, it is sufficient to express W
in terms of A\, z and X. We have

(6.3.6) S MW+ a=0,
(7

by the definition of W, 41, Wy 42, and we have the Fuchsian relation

D 0+ 00+ 20 =1.
()

On the other hand, observing the (2,1)-components of the assumption
(ii) in Section 6.2, we have

Y g =0

(9
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substituting the expressions of the qgl’s into the condition, we have

Y (Wi = W) [My(W - W) +6,] =0,
(%)

In view of (6.3.2), (6.3.6) and the Fuchs relation, we see that W is
expressed as in the proposition. g
6.4. Relation between the Garnier system and the Schlesinger

system

ProposiTION 6.4.1. Assume that Q;(t) (i = 1,---,n 4 2) satisfy
the Schlesinger system (5.2) and define (A(t), u(t)) by (6.2.5). Then

X= Z(j) tjq{2 satisfies the completely integrable Pfaffian equation

(6.4.1) dlog X = 0o »_ Mjadt;.
(7

To prove the proposition, we need two lemmas.

LEMMA 6.4.2. Suppose (A, pu) satisfies the Garnier system. Then
0 1= Yy, Ak satisfies the differential equations

D,’O’ = Mi[QWi - L,‘],
where W; is given by (6.3.1) and

5; .
L;:= (;)(Gh - 5ih)(th -1+ H’: - 20— 0,.m',

i
m 1=0’—Zth.
h
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Proof Since (A1,--+,\,) satisfies the Garnier system, we have
ki ki X On — bin
(6.4.2) Dide = M; [2Mbip, — MRy~ 22|
T Ak —th

So

k,i
Dl-a' = Mi |:2ZMk'i/1,k - Z(oh - 6ih)z Ai\l_ th:l )
& k

(»)

To compute the second term of the right-hand side, we show

6.4.3 MY iamiz s p 2
(6.4.3) Zm— h—1+m +—1\Z" =1,.n+2

We prove it only when h = i, since the other cases are proved in the

same way. Consider a rational function

T(z)

M GGy

then we see that

T(\)
Res R;(z)dr = ~—-——*———
Res, Filo)dz = 5 anitong)
Mlc,i
= N1 k=1,--,n,
T'(t:)
l}:ts' R,(.’L‘) dx = m
=L
M’
Res Ri(z)dz=-t;+1- mt.

Then (6.4.3) is a consequence of the residue theorem. Now noting that
W; can be written as

Wi= 3 M+ a(m ~ 1),
k
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we see that the lemma is obtained by virtue of (6.4.2), (6.4.3) and the
Fuchs relation. g

LemMMa 6.4.3. Suppose that (X, p) satisfies the Garnier system.
Then the 1-form 3. M;dt; is closed, i.e.,

D,‘Mj:DjM,’ for i,j=1,---,n.

Proof Since M; = —A(t;)/T'(t;), we have

1 .,
DjMi= Mi [—Xk:ti _/\kDJ')‘Ic+ % —i;} y 1 "lé]-

So we have
(6.4.4) D;M; — D; M;

=Z( M; D) — M; Di/\k)—M
. A —t; /\k—-tj t; — 1t

—(1. . . . T(Ak) M’ + MJ
= DMM D On - RO T by

Here, to show the second equality, we used the equality (4.5.1) in the
form
M; M;

Ak —t,'Dj)‘k B A — t;

D)

T(A)

= = MM e - N O

We assert that the right-hand side of (6.4.4) vanishes. In fact, for a
rational function 4

T(z)
(z —1:)%(z — 1)?A(z)

R(z) =
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it is easy to see that

_ T(Ae)
e, O = R 0w - )W )
T'(t:) _ -1
I}fts' R( )d (t —t; ) A(t,') - (t,' —tj)zM,"
T'(t;) -1
Res ROV = oA ~ G M)
Rfs R(z)dz =0;

so the residue theorem implies the assertion, and hence the lemma. g

Proof of Proposition 6.4.1 Observing the (1,2)-components of both
sides of the Schlesinger system (5.2), we have
dgly = (qh1ls + 0i20d; — @10is — alagls)dlog(t: — t5), i#j.
(%)

Putting the expressions for g, gis, gis, @7}, ¢’5, g2, given in Proposition

6.3.1 into the above equation, we obtain for any j(# i),

6; o;
[2(W,‘—W)+E—A—4.::| Dilog M;.
We show that the right-hand side of (6.4.5) equals to —0,.M;. By
Lemma 6.4.2, we have

(645) D,’ logX = 7 MI

i

AW; — W) = (;}Di - M%Di)" +(Li— Lj)
BT
efj\l;il_%\l—_]_l—(leGm)(ti—tj)
= (ti— ;) [MiiZkIﬁDf*kHJ } 7\17
;-1 6;-1

M, MJ' —(1+0m)(t,'—-tj).
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Here the second equality is assured by

and by (4.5.1) which can be written as
1 1
22 D = 3 Dide

ti—t; 1 Mki
D; ) ti—t;)————
M; M-t et ( J)(/\k—tj)2

=0, i#j,

and the third equality is verified by applying the residue theorem to
T(z)/(z — ti)(z — t;)2A(z). Thus we have

0_1 l' t; _7 1
77 A ZAHJ Didw = 37, =~ Ol =15).

2(Wi - Wj) +

Since

1
D — . .
log M; t~—t,+ E /\k D/\k, i3,

we see that the right-hand side of (6.4.5) is equal to —8,,M;. Combining
this with Lemma 6.4.3, we arrive at Proposition 6.4.1. g




410 hionoaromy-preserving aejormation ana arnier sylems

7. The Polynomial Hamiltonian system H, associated with G, .

In this section we shall transform G,, which has movable algebraic
branch points (Remark 6.2.3), into a Hamiltonian system enjoying the
Painlevé property whose Hamiltonians are polynomials in dependent
variables. To do so, we use (6.2.2), Proposition 6.2.1, and Theorem 5.4.

7.1. Transformation of G, into the polynomial Hamiltonian
system H,

Define a locally biholomorphic mapping:
¢:UxB—C"xB,
(A1) = (g,9)
U:={A=(X\) €CH X\ # A fori # j}
by

(711) qi=—tiMi; s,-:—— i:l’...,n,

where M; are symmetric polynomials of the A;’s defined by (4.3.2). It
induces the bundle map ¢, : (), u, t) — (g, p, 5)

T*UxB 24 T'C"xB
UxB % c"xB
with
(7.1.2) Bi = Zpiaq.'/a)\k,
where T*U (resp. T*C") denotes the cotangent bundle of U (resp.
c").

The bundle map ¢. extends to a symplectic transformation @ :
A, t,K) — (q,p, 5, H): we define

(7.1.3) Hi = —(t; - 1)? [K +zpja‘h]
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so that

Z(Pz‘dqa' — Hids;) = Z(p;d/\i — Kdt;).

i i

Firstly let us express p;,---,p, as functions of (A,u,t).

LeEMMA 7.1.1. The mapping ¢. : (A, p,t) — (q,p,s) is given by
(7.1.1) and
(7.1.4) i=—(ti—1 Z Mkz#k t=1,..-,n

Mt p' ] Ak Ak — 1 ’ b b

where M* is defined by (4.3.2).

Proof Since g; = —t;M;, we have from (7.1.2)

(7.1.5) ”"=Z,\Zifit,.’ k=1,---,n,
i

or equivalently

T [ m—
ti(ti =1) t(te—=1) M =1) A (-1 )

where E = (Eki)k,i=1,.-,n is the matrix given by (4.3.1). Applying

Lemma 4.3.1 to this linear equation with unknowns q1p1,- -, gnpn, we
obtain
Mlc l#k
ipi =M -1
a:p )Z SWEVSSIE

The main theorem of this section is the following.

THEOREM 7.1.2.  The symplectic transformation @ takes the Garnier
system G, into the system H,:

= Z{Hj,qi}dsja
J

dp; =Y _{Hj,pi}ds;,
i
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with Hamiltonians:

Hi= —- [Z Ei (s, q)pipe — Y Fj(s,q)p; + 'Wf]:

e(s;) ik 3

where
e(z) = z(z - 1),

and Ej;, F} € C(s)[g] are given by

( gig;4x, fikjLk#
qiq;(g; — Rji), ifi#j=kF,
= Q gig(a — Ryi), if i=j#k,
qilgi — 1)(gi — i) — i Sagiqr, i i=j=Fk,
3

( Agig; — 0iRijq; — 0;R;igi if i #
(On41 — Dai(gi — 1) +0,400i(gi — 33)
Fi(s,q) = !t 8:(qi — 1)(gi — 53)

L + Z{qu;(q. — Rix) = 0:Sicqe}, i i=
with
(7.1.6) AimS 01, n=%(A2—9?,o)-

€

Notice that Ei, F} € C(s)lg] are symmetric with respect to 3,7, ks

(7.1.7) Ei,=Ej=E; F=F
and that
(7.1.8) Rij+ Rji = 1, Ri;+ Sii = si.

7.2. Proof of Theorem 7.1.2.
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To prove the theorem, we decompose the transformation @ into two
symplectic transformations ®, and ®,:

&, : ()\,‘,ﬂ,‘,K,’,ti) - (q,',p,',K,{,t,')
QZ (‘I:,P:aK,{,ti) — (qivpiaHi7si)
so that ® = ®, o ®;. The Hamiltonians K7,---, K] are determined by

Z(u,dx - K;dt)) = Z (pidg; — K'dt;),
and hence by

Ki=K; +ijaq1, i=1,--,n

We express the Hamiltonians K explicitly in terms of (g, p,t).

ProposiTION 7.2.1.  The Hamiltonians K! (i=1,---,n) are given
as follows:

- tiﬁ.z{(q»prt)

= {q,-(q.- - 1)(g; - ttTl) + Xk: (t—it:‘%t';(t_i—l_)tgqiqk} p?

i {
1 t;
+ZQiQk(Qk_t ; )Pi+2zq,'q:c(q 3 )PiPk
& k— b & i bk
+ Z qiqeQiPrPL
1<k,l<n, i,k distinct
ti
~{6ns = Dales = 1) + busaai(as - )
+ 040 = (g —
i\gi qi -1
+ 2{9in(9i - )+9iQk—t————}}P.
- t— ti (t = 1)(t; - tx)

d Outrg; — Oit;
5y {Aq,.qk + _k_kz__v%}pk + g,
- t; — I
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where the symbol E;c stands for the summation overk =1,---,i—1,i+

1,...,n'

The proof will follow from two lemmas given below. First, let us
compute the terms in the expression of K; given by (4.3.7):

M; MMi2 = M. ME QaPa  GbDb
LM =M 2 MR T

= M; Z M(i, a, b)(QaPa)(qub),
a,b

where

Mk,i
(ad):=) o5 0w =t

- T(Ax)
- ; (M = t:)(Ak = ta) (A = to)A'(A)”

Notice that M(7,a,b) are symmetric with respect to 1, a, b, i.e.,

M(i,a,b) = M(a,i,b) = M(i,b,a).

LEMMA 7.2.2. We have the following identities:
([ M;, fi#a#b#1,

M,‘+%, if a;é b=i,
M;M(i,a,b) = ¢ e

s
z=t;

M; - (Dlog A(z) - Dlog ET—S%)

L if i=a=hb.

Proof By considering the rational function in z:

T(z)

Z(i,a,b;z) = (z = t:)(z - to)(z ~ tp)A(z)’
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we see immediately from the definition that

M(i,a,b) = Res Z(i,a,b;z)dz,
z=A
(7.2.1) e
Res Z(i,a,b;z)dz = —1.

There are three cases: (1) i,a,b are all distinct, (2) a # b, i = b, (3)
a = b =1. In case (1), since Z(i,a,b;z) is holomorphic at = = t;, -+,
», the residue theorem:

ZRes Z(i,a,b;z)dz + Res Z(i,a,b;z)de =0

r=MAk =00

leads to M(i,a,b) = 1. In cases (2) and (3), since z = ¢; is a pole of
Z(i,a,b; ), the residue theorem and (7.2.1) leads to

M(i,a,b) = —Res Z(i,a,b;z)dz + 1.

r=t;
As for (2), we see
T'(t,') -1
Z(i,a,iz)dzr = = ;
Res 2(ia,ii2)do = 36007790y = Mt — ta)

and hence we have the conclusion. As for (3), we have

Res Z(i,i,i;z)dzx

(DlogA() Dlog;w—):)lmh. 1

—t.

E|

In order to express M;M(i,1,1) in terms of 1,--+,tn and M, .-+,
M,,, we need the following lemma.
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LEMMA 7.2.3. Substituting these expressions into (7.2.2), we obtain

‘ 1

L e(t:)M; + e(ty) M ‘ DA(z)|e=t, = nt? ™ + Lijuj,

Dlog A(z)l,=,, = t)M {Z s (t) M 1}, e=t dethj:
k

where

L= Z(n — k)trElwy;
k

Proof We write
0

A(:z:)=zﬂ+o.1zn—1+..-+0'n—1z+0'n, | = (5t—detW) It_,,-:t.-.
J

where Z On the other hand, it is easy to see

Xy * Ak,

o; = (~1)}
1<k <ckiSn

detW = (—1)7! H ti—te) I (ta—to),

Let us express

a<fB,#j
(7.2.2) DA(z)|,_, = nt? ™ 4+ (n= Dot 2+ 4 ony
e ' : (gaz—detW)’ = (-1)’" ‘H(t—te ) I (ta—ta).
. =1,

in terms of ty,---,t, and M;,---, M,. Since M; are given by J a<p.#i

A(tj) = -T,(tj)Mj, Since T,(ti) = e(t,') n;(ti - th), we have
by setting ' i 1 o

t’;_l t’;"z e 1 L. Zti—tk, if j =1,

W = . . . . L k
= : : A ‘ det W ) (¢
tn-logr-2 g, 1 e(t;) T,( i) , if § #1.
e(t:)(t: — t;) T'(t;)
we have
It follows that
(7.2.3) W Yoy, 0n) = Hur, -+, un), )
T'(t:) e(t;)M; + e(tx ) M +R;
where DA(z)le=t; = - e(t;) Z ti — Y
Uj=—T’(tj)Mj—t?, j=1,---,n.

Let W;; be the (j,1)-cofactor of the matrix W. Then, solving (7.2.3), where
we get

Wi T'(t:) : e(te)ty e(t:)t} ey
ok = Z detkW i k=1eym Ri= e(t;) Z((tk —t)T'(tk)  (ti— tk)T’(ti)) ot
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The lemma follows immediately if we show

T'(t)
7.24 ;= ,
( ) Rl e(ti’)
Putting l
(z) e ZE=1)2"
R:(z) T (.’B _ t,-)T(z)’
we have
Res Ri(z)dz = -
te )t}
Res Ri(z)dz = ____C(Lk__
Ree Rile)de = G =0T (@) |
if k # 1, and

Res R; (2)dz = D{(z - t;)*Ri(2)} o=1;

e

Then (7.2.4) is a consequence of the residue theorem:

ZRes R;(z)dz + Res Ri(z)dr =0. g
T=o0

k =1y

Proof of Proposition 7.2.1 Recall that the Hamiltonians K; and
K are linked as

IX —I\ +ijaq1 i:l’...,n,

and that I{; are given by

Ki=M; ZM‘”( ukzj\k—:‘—:ﬂ) + kM;.
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Since

T(z) IR oV S

Dlogz—tszt,- ktj_tk t; tj—1

we have, by virtue of Lemmas 7.2.2 and 7.2.3,

MY M
k
= M; Z M(ia a, b)(QaPa)(qbpb)
a,b
qi ——————-———-1) Qi P
=—EH(-—1)( )+Z(t—1 (t: — ti)
+un p.z+2Z% 4 —tq)p’p"

i
+ Y quqbpapb]-

aba#Eb

In a similar way we can calculate the terms:

- &im
k.
MZM #k /\k—tm

Finally, to express 3 PkOqk /8t; in terms of (g,p,t), we have only to
notice

%k if ki

e

tk-—t.',

, T(z) , 1 i k=i
ot g (Dlog A(z) — Dlog p—y + Z) if k=1,

r=t;

and apply Lemma 723 1
Proof of Theorem 7.1.2 In order that the transformation

&, : (girpi Ki ti) — (q.',pi,‘H.',Si)

-
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be symplectic, the Hamiltonians H; (2 = 1,---,n) of the system H,
should satisfy 3, K!dt; = 3", Hds;, therefore H; is given by

1
Hi=-———K!.
O

Using the explicit expressions for the K! (k =1,---,n) in Proposition
7.2.1, the theorem follows immediately by computations. g

REMARK 7.2.4. In case n =1, (i) the Hamiltonian H, is

1 2
- - - — {8;(q — -
o) lg(g — 1)(g - s)p" — {61(g — 1)(g ~ 3)
+ (62 - Yg(g — 1) + 83g(q - s)}p + xq),
and the Hamiltonian system is the sixth Painlevé system Hy,
(ii) The transformation (A, t) — (g, s) defined by (7.1.1) is just the

transformation 73 in Proposition 1.3.2. .
7.3. r-function associated with H,,

THEOREM 7.3.1.
then the I-form

Let (q(s), p(s)) be a solution of the system H,,

wi=Y Hi(s,q(s). p(s)) ds:
18 closed.

Proof LetT' =73, .Tijds; Ads; be the fundamental 2-form asso-

ciated with the Hamiltonian system H, (see Chapter 1, §6). Then, by
making use of the explicit forms of the Hamiltonians H;, it is easy to
verify that H;(s,q,p) (i =1,---,n) satisfy

6H; OH;
(73'1) . =_l’ iaj=11"'7n; Z:Ié]s
Os; 0Os;

where 0f/8s; denotes the partial derivative with respect to s; of f,
regarded as a function in ¢, p and s. Let (g(s), p(s)) be a solution of H,
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and set H;(s) = Hi(s,q(s),p(s)). The integrability condition for Hn,
which implies the vanishing of T';; along any solution of H, (Remark
4.5.8), says that

(7.3.2) D;H;— DiHj = == — 35—

Combining (7.3.1) and (7.3.2), we obtain
DJ'H,' - D,‘Hj =0

for any i,j = 1,-++,n; this yields

dw = — Z(DjH,- - D;H;)ds; Ads;

i<y

=0 n

REMARK 7.3.2. The above theorem allows us to deﬁnc.a, for any
solution (g(s), p(s)) of Hy, a function 7(s) called the 7-function by

dlog7(s) = w.
7(s) is determined up to multiplicative constant factors.

PrOPOSITION 7.3.3.  If (Q1(t)," -+, @n42(t)) satisfies the Schl-esin_.qer
system (5.2), then (g(s),p(s)) defined below satisfies the Hamiltonian

system Hn.

( i

q
qi = ti_lls
i n41 n+2
| pi= E(‘q:—l +(ti—- 1)q;l+1 - tiqill-rz)’
1 \ g1 912 12
1
L si t" - 1’

where X =Y ; tigi,.

I
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Proof This follows from Propositions 6.2.1 and 6.3.1 together with
the residue theorem. In fact, by virtue of (7.1.4) and (6.2.5)

Mlct
Z Ak(Ae = 1
—(t; - I)qulM i,a
(a)

where

. Mk,i
M(i,a): = Ek: ek — Dk — ta)

T(X
- Z Ae(Ae = 1Ak ~ t; )k(/\k = ta)A'(Ac)’

Consider the rational function in z:

It is easy to see

M(i,a) = ZRes Z(i,a; z)dr,

* z=XMg

Res Z(i,a;z)dz = 0.

Z=00

If a #i{,n+ 1,n + 2, then the poles of Z(,a;z) are only £ = A;. Then
we have from the residue theorem M(%,a) = 0. Moreover we can show:

M(i,i) = —Res Z(i,i;z)dx

_ 1 T’(t,‘)
- t,(t, - 1) T(-t—,)_
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M(i,n+1)=—Res Z(i,n+1,z)dz
z=tn-|—1
1 X
Y qn+1’

M(i,n +2) =—Ref Z(i,n+ l;r)dr
I=tngd
_ 1 X
- t - lq"'*'2

This proves the proposition. g

COROLLARY 7.3.4. The Hamiltonian system H, enjoys the Painlevé
property. Any solution of H, is continued meromorphically on the uni-
versal covering space of B = C™\ E.

Proof This follows from Theorem 5.4 and Proposition 7.3.3. g
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8. Symmetries of the Garnier system G, and of the system H,,

In this section, we investigate a group of symmetries for the Garnier
system G,, and for the system H,,. Roughly speaking, a group of symme-
tries for G, is a group of birational transformations (\, i, t) — (N, p', ")
which leave G, invariant modulo change of parameters.

8.1. Symmetries of G,

Let us consider a Pfaffian system:

(E) dz; =Y _ Fy(z,t,0)dt;, i=1,..,m,
i=1
where F;;(z,t,0) are rational functions in (z,t) = (Z1,...,Zm, t1,...,

t,) depending on parameters 6 € C¥. The system E with a parameter 6

is denoted by E(6). For a birational transformation T : (z,t) — (z/,t'),
we denote by T- E(6) the system of differential equations in the variables
(2',t') obtained from E(8) by the transformation T.

DEeFINITION 8.1.1. A group of symmetries for the system F is a
group whose element is a pair ¢ = (T, {) of a birational transformation
T : (z,t) — (¢',t') and an affine transformation ¢: C¥ — CV such
that T - E(8) = E(¢(6)).

We give a group of symmetries for the Garnier system G,, and for
the corresponding polynomial Hamiltonian system H,. Let V = {§ =
(61,...,0,43) € C"*3} be the space of parameters of the systems G,
and H,,; and let G,,(6) and H,(8) be the systems G,, and H,, with fixed
parameters 6, respectively.

First we treat the Garnier system G,,. Let Tp, @ (A, p1,8) — (X, 1/, t)
(m =1,...,n,n+ 2,n + 3) be the birational transformations given as
follows.
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Tn(m=1,...,n):

'Al tm—/\1
[ tm -1 ’
B = _(tm - 1)/“7
tm — 1 .
T o (iEmntl)
tm .
L tm _1’ (l_m)a
Tn+2:
(M =1-),
J ﬂ': = —H,
 ti=1—1t;
Tn+3:
X:
N=-"1
A=-17
Hi = —(Al - 1)2ui - a(Az - 1))
tl = ti
ot =1

Let £; : V = V be the linear transformations defined by the following
exchanges of coordinates:

byt Oy — Oppy, (m=1,...,n)
bng2: Ongo = Ony,
Cat3t Ongpa e« bnyo.
Set om = (T, lm) (m=1,...,n,n+2,n+ 3) and let G be the group

G = (Ula---a0n70n+2»0n+3>

generated by the elements 04,...,0,,0442,0,43. Then we have
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THEOREM 8.1.2. The group G is a group of symmetries for the
Garnier system G, and is isomorphic to the symmetric group Gny3 on
n + 3 letters.

Proof First we sketch the idea of the proof. Let us consider the
linear differential equation

(8.1.1) D2y + pi(z,t)D.y + p2(z,t)y =0, D, =d/dx,

with coefficients given by (6.2.4). The Riemann scheme of the equation
reads

.’L‘=t,‘, l‘=tn+1=0, 17=t,,+2=1, t=tn+3=00, Z=A,'
0 0 0 o 0 ,
6; Ot On+2 R 2

where
n+3

o= _%(E - 1)

For the equation (8.1.1), we consider a projective transformation of -

the independent variable ¢: P' 3 z +» z € P! such that ¢ takes
the set of singular points S = {t, ...,tn,0,1,00} into a set §' =
{t1, -« th,0,1,00}, and then we consider a change of the unknown w =
¥(2)y which takes, at each singular point in the finite plane C, one of
the characteristic exponents into zero. Let

(8.1.2) D w + Pi(z,t)D,w + Pa(z,t)w =0, D, =d/dz,

be the consequent equation under the change of variables (z,w) = (¢(z),
¥(2)y). This change of variables induces a correspondence

Ai = (),

(8.1.3) =i pt), i=1,...,n,
tg = t;(t)’

where pi, ...,pu, are defined by

(8.1.4) i :=Res Py(z,1), i=1,...,n.

—3!
z=A;
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Let us assume the family (8.1.1) is monodromy preserving; then so
is the family (8.1.2). By the way, Theorem 4.1 says that the family
(8.1.2) is monodromy preserving if and only if A’ and p’ are functions
of t' = (t],...,t,) solving the Garnier system G,(6') for some ¢§' € V.
Hence the transformation T; : (A, p,t) — (X, p/,t'), given by (8.1.3),
takes the Garnier system G,(6) into G, (8') for some 8’. We set £(6) := ¢'.

Now we give the details of the above procedure for o,43. Consider
the projective transformation ¢ : £ +— z = z/(z — 1) which exchanges
singular points 1 and oo and leaves the point 0 fixed. The Riemann
scheme of the linear differential equation thus obtained is

z=t, z=0, z=1  z=o00, z=J)
0 0 a 0 0 ,

6; Ont1 a+0nys  Ong2 2

where
(8.1.5) M= = i=1...,n

In order to make one of the exponents at z =1 equal to zero, we make

‘the change of the unknown y — w:

w=Y(2)y, P(2)=(2-1)"7%

and get the equation (8.1.2) with coefficients

( _ 2a+2 pl(mvt)
Pl(z,t)— 7 —1 —(2_1)2,
_ofla—1) a 2 pz,t)
(8.1.6) <PZ(Z’t)_(2_1)2+z_1{z—1_(z—1)2}
PZ(Ivt)
. RCE

On the other hand, as we have seen in Section 4.1, the coeflicients can
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be written as follows:

n+1
1-0; 1-6 1
Pl(z’t)zzz—t'. M _Zz_—j{’

i=1 i n+2 k

’

Pz(z,t) — K _ Z (t:(t: - I)K:

2{z-1) z(z = 1)z = t)

Ae( A% = Dy
+Zz(z—l)(z—/\k’)

where

(01 + -+ Ong1 + 043 — 1)? — 0,427 .

.M»—n

Thus X, g, t' are related with A , g , ¢ by (8.1.5) and

(8.1.7) po=-i-12ui—a(Xi-1), i=1,...,n,

and K[(X,u',t) := Res P,(z) are obtained from K;(}, p,t) by replac-
z=t:~

ing 8 by £,43(0), and (A, p,t) by (X,p,t'). Since the monodromy
preserving deformation for (8.1.1) induces that for the equation (8.1.2),
Theorem 4.1.2 says that the transformation T}, 43 defined by (8.1.5) and
(8.1.7) takes the Garnier system G, () into G,(£,4+3(8)); this gives the
generator o,,3. The other generators oy, ..., 0,,0,42 of the group
G can be obtained in a similar way (see Remark 8.1.3 below). The
statement G ~ G,43 is now clear from the construction. g

REMARK 8.1.3.  For later use, we give explicit forms of the projective
transformation z = ¢(z) and the change of unknown w = y(z)y for
each o,,. We give also the correspondence S — S’ of singularities of the
equations (8.1.1) and (8.1.2).

(o0m) (m=1,...,n):

('tla"'atnaoalvoo) = (tll»” m 1’0,tm+1a" "t{n)t:-nvlvoo)a
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(0n+2):

z=1—-z, w=y,
(tl"",tnaosliw)H(tllv" rnlao OO)

(0n+3)3

w= (Z - 1)—ay,

(tla"'atfuoslaoo) = (tlla"'at:-no 0, 1)

8.2. Symmetries of H,

We shall present a group of symmetries for the Hamiltonian system
‘H, which is naturally induced from the group G. For each generator
Om = (T, ) of the group G, we associate a birational symplectic

transformation Tr: (g,p,s,H) — (¢',p',s', H') such that the following
diagram commutes:

where the right and left vertical arrows indicate the symplectic transfor-
mations, given in Theorem 7.1.2, which take the Garnier system G, (6)
into the Hamiltonian system H,(8). Note that the Hamiltonians H;
(resp. H!) are polynomials in g and p; (resp. g} and p; ). Let us define

the birational transformation Tm: (g,p,s) — (¢',p,s') as follows:
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qi .
(= (#m)
q; = s
m
sm_l(gs_l) (z—m),
$
, Rim(pi - _’Tlpm) (l # m)v
p; = t
—(8m = Dpm (i =m),
s 8; .
- (i # mn+1),
, Sm—1
§; =
Sm
Sm—1 (i =m),
Tn+2l
9 = gi’
35
p; = sipi,
sh = l,
LH
Tn+3:
' qi
=
g1—1
p:=(gl - 1) (pi+a_ZQapa> s
a
s'-= % y
' 8; -1

where R;p, are given by (7.1.5) and

a1 :=ZQ¢11 Gs :=Zz_a-
a a ¢
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LemMa 8.2.1.  If a birational transformation X : (q,p,s) — (¢',p/, s')
satisfies X 0 ® = ® o T,,, then we have X = Trm.
Proof. We show the lemma for m = n 4+ 3. For the other cases

the lemma can be proved in a similar way. Using the explicit form of
To+3 and ®, we see that

We express ¢/,...,q. in terms of g and s. Set
P ql n

A(@) =[] - 2), Tu@)=]]E=-1t),
i ()

where t;, ., =0, ¢ ., = 1. Then we have

A1)
) i
=T
_ A(t) 1—12
- tlT’(t,') 1;‘[ 1- X

Apply the residue theorem to a rational function Z(z) := zA(z)/T(z) =
[Ti(z = Ae)/(z — 1) [ (z — t&) ; we have

_ tkA(tk)

Res Z(z)dr = = k=1,...,n,
Ifft (I) z T'(t]c) Qk, n
Res Z(z)dz = 1_/\k,

=1 % 1- tk

Res Z(z)dz=-1

=00

and

(8.2.2) II Sl =1-g.




238 Monodromy-preserving deformation and Garnier sytems l Group of symmetries 239

Hence we obtain ¢} = ¢;/(¢1 — 1) (i=1,...,n) and Exactly by the same computations to those in the proof of Proposition
7.3.3, we have from (8.2.2),
g = Z Qa g1 — 1

Next we express p},...,p, in terms of g, p and s. By using the explicit —
forms of T, 43 and of ®, we see that g1 —1
o =g -1
D t ,\;c(,\;c -1) Next we compute 4,,...,A,. By the construction of 0,42 and that of

®, we see easily that the transformation

M'“{(,\k—l Vi + a(Ay — 1)}
l)z (- 1) ) ‘ : (@1y-+Gny P1oe-sPn) = (Q1y ey @y ALy ey An)

coincides with the induced bundle map: T*U — T*C" of the mapping

where U — C™ given by
T ‘
Mlc,1 .= k . ! q1 q
* A —tOAL(N, yeeosGn) P (dh, ... qh =< .- ),
(A = tAL(AL) | (q1,---1qn) = (q15-- -, 4n) pry LR
Put ki where
1)ZM (’\k_l #k ! . U=C"—{(q1,...,qn);g1—1=0}.
TN >
Ak —1) Hence we have Y, prdqr = Y, Axdgj,, which is equivalent, by putting
Beoe (# -1 ME(O -1) A=14;,...,4,), to
i= (1) N1 .,
k k\"k
qa .. gn P
then p} = A; + aB;. First we compute B;: (G -VDIn—1 ¢ A=(g1— 1)2
1 q1 cee Qn Dn
B;:=(t, - Z 0 /\, 5 | Solving this equation, we obtain
]
by applying the residue theorem to Ai=(-1) (pi - E q“p“> :
a
Zu(z) = H,,,#,(:c ) Combining the expressions of A; and B;, we see that the transformation

(z— DA (z) X coincides with Th4s. g
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We set 6., = (’f"m,é’m), (m=1,...,n,n+2,n+3). Then, as a
consequence of Theorem 8.1.2 and Lemma 8.2.1, we have

TsEOREM 8.2.2. .
(i) The birational transformations T,, eztend to symplectic transforma-
tions which make the diagram (8.2.1) commute.

(i) The group G = (81,...,8n,Fns20n+3) is a group of symmetries for
the system H, and is isomorphic to the symmetric group Gni3 onn+3
letters.

8.3. Prolongation of the system H,

In this subsection, we prove, as an application of Theorem 8.2.2, a result
analogous to Corollary 1.5.3. To this end, we use the following lemma,
whose proof will be given at the end of the present section.

LemMa 83.1.  Define 7 = (T, £.) € G by

Tm = (&n+3&m)&n+2(&n+3&n;)_1, m=1,---,n.

Then Ty, : (g, p,8) — (¢, P/, 8') is given by

. j—;"’j (i # m),

= (6= m),

( ~qmpi (i # m),

P= ‘\ ~dm (a ¥ anpa) (i=m)
N (= (i # m),
T 1 i (i = m).
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Let us define the affine bundle £, of rank n over P™ as follows.
Let z := (zo,-..,2n) be homogeneous coordinates of P"; let (U;,z") be
the i-th affine charts of P™:

Ui := {2 € P*|zi # 0},

i (i i i i_ %
z' 1= (20, .oy 21y Zig1s o r Bn)y B = =

We identify two points (z°,¢) := (2°,¢}, ..., ¢y Clyry--2Ch) € Ui @
C" and (z7,¢9) = (27,¢3, ..., ¢d_1, ¢4 -2 ¢3) € U; X C" when z* and

2z’ represent the same point in P* and
G (B# 1),
(8.3.1) Gg=9 . ‘
z; | —a- Z 2.5 (k=1).
a#i

Denote by ~ the equivalence relation and define the affine bundle ¥,
over P" by

Yo = (OU:'XC")/N-

" We define the transition maps

Qm : UO X Cn 2 (ZO,CO) L (zm,cm) € Um X Cn’
m=1,...,n by (8.3.1).
For each m = 1,...,n, let H;(q,p, s) and H™(q,p,s) (i=1,...,n)
be the Hamiltonians of H,(#) and H,(£,,(f)), respectively. Let R, be
a birational map defined by

Rm : (qvpas) H(q,ap,, sm)
=(—‘]my"‘h,---:"Qm-—l,(I17"‘Im+17---,—‘Im

—pm9_p2»-"7_'pm—1’pl’—pm+’l,"'a—pny

Ty ey Y ) gy

31 Sm-1 1 Sm+1 Sn
Sm Sm Sm Sm Sm
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If we define functions K["(q¢’,p’,s™) by

(ZK’" (¢,p,s™)ds™ ) ZH (g,p,s)ds;,

then the map R,, extends to the symplectic transformation

(q,p,s,H'") - (Rm(q’P, s)’_[(m)_

The composition R,, o T}, is shown to be

Rm oT-:n : (qapv S) — (‘Dm(q,p), S)

and is extended to the symplectic transformation

(q’p’ S, H) — (‘Dm(q,P), 3, I(m).

Therefore the system H,, in Up x C™ X B is transformed into the Hamil-
tonian system on U,,, X C* x B with Hamiltonians K™ = (K}")j=1,m,n-
We call the collection of the Hamiltonian systems on Uy, x C* x B (m =
0,...,n) obtained above, the Hamiltonian system on ¥, X B. The fact
that KI* (j = 1,...,n) are polynomials in (z™,(™) leads to the result:

ProrosiTiON 8.3.2.  The Hamiltonian system H,, eztends to a Hamil-
tonian system on T4 X B with Hamiltonians holomorphic on X, x B.

REMARK 8.3.3. In the case n = 1, the above proposition is equivalent
to Corollary 1.5.3.

Proof of Lemma 8.8.1. Firstly we note that 7, is associated with
the linear transformation caused by the exchange of coordinates:

ém H 0m — 0n+3

To find the explicit form of the transformation T, we make use of
the method adopted in the proof of Theorem 8.1.2. In this case, the
transformation from (8.1.1) to (8.1.2) is given by:

(t -z

P W=y

Group of symmetries

It follows

that

!

1—tm

tm

-1

k=tm—)\k

Then we have , for i # m,

and

On the other hand, since, in this case,

we obtain

Pz(Z,t) =

(z-

e(t)”
tn )t

(%

p2(x,t) +

2

ala - 1)
=

)2
e(tm)

!
z=1,

{z—t'm+(

gy 2 = Res Py(z,1)
z=A|

(%

—~ )21

e(tm)

TN -t (O

)\

(tm)

(o + (A —

—¢ )gﬂk

m)l‘k)a

Pz},

243
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where Ps(z,t) is a coefficient of the equation (8.1.2) and e(t) = £(t — 1).
Then, by definition,

Mkt
P —_(t 1)2/\/(/\/
=Ai+Bi7

where

Mkt
c= (th -
Ai=(ti- Zx %= DG =)’

’ ' M:w.
= (- Deltn) 2 ST -

Now recall the proof of Lemma 8.2.1 and make again use of similar
computations to those in the proof of Proposition 7.3.3. For example,
we find:

Bp = (t), - anpn(t' )N (m, a) + (8, = 1)gmpmM,(m,m),

where

Mk,m
N.(m,a) = u ,
(m.0) =3 S D, ~ L= El)

Mk m
M. (m,m) = Z NN = DN, — 2
By means of the residue theorem for rational functions,

T.(z)
z(z ~ 1)(z = t,)%(z ~ t,)Au(2)’

T.(z)
2(z = 1)(z - t)2A.(z)’
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we obtain finally

. 1
(t = CN.m,0) = === = =g,

m

1
M,(m,m) = oy = gm.

m

The proof can be completed by computations. g
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9. Particular solutions of the Hamiltonian system H,

We saw in Section 1.7 that if the parameters in the Painlevé equa-
tion Py satisfy certain conditions, then Py has particular solutions
expressed in terms of the Gauss hypergeometric function. As a gen-
eralization, we shall see in this section that, under certain conditions
on parameters, the Hamiltonian system H, has solutions expressed in
terms of Lauricella’s hypergeometric functions in n variables.

9.1. The Lauricella hypergeometric series Fp

We present a generalization of the hypergeometric function due to
(Appell-) Lauricella.

Let I := {m = (my,...,mp);my,...,m, € No}; and for m € I,
let |m| ;= my + -+ + m,. For z = (x1,...,2,) and m € I, we set
z™ = (" - 2", Let us define the Lauricella hypergeometric series
in n variables:

« T (@)im((Br)my -+ (B ) z™
FD( ’/81"' ,Bn,')’, ) mZEI (’y)lml(l "(l)mn ’

where a, 31,..., 8, 7y are complex constants such that v # —1,-2,...,
and

() i=a(a+1)---(a+k-1).

ProrosiTioN 9.1.1. The power series Fp(a,f1,...,0n,7;T)
converges tn the polydisc A = {x € C";|z1| < 1,...,|z.| < 1}.

Proof. Set

_ (@ (B)ms -+ (Bu)ma

(5-1.1) Dt D Do

1t is easily seen that there exists a positive constant C such that

|Cm| < C forallmel
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and hence that Fp(a,f1,...,Bs,7; ) is majorized by the series

C
Z Cay™ - T (=) -(1—-2,)

M =0

which converges in the unit polydisc A. Hence Fp(a,B1, -, 8n,7; )
converges uniformly on any compact set in A. g

ProposiTioN 9.1.2.  Ifa and v are not negalive integers, the series
Fp(a,B1,...,Bn,7;z) satisfies the system of differential equations:

(9.1.2) Liu=0, Mju=0, ,7=1,...,n,

where L; and M;; are linear differential operators defined by

(913) L;:= ("y— 1+Zé,)6, —I;’(G+Z§i)(ﬁi+6,’),
(9.1.4) Mij = (.’L‘,‘ - .’L‘j)&iéj - ﬂ_,-z_,-éi + ﬂ,;.’l:its_,',
and &; := 1;8/0x;.

Proof. Lete; =(0,...,0,1,0,...,0) € I be the multi-index with
1 at the i-th position. Notice that the operators 6;,...,6, commute
with each other:
(9.1.5) [6:,6;] =0, ,j=1,...,n,

and z™ (m € I) are simultaneous eigenfunctions of the operators é, ...,
bt

(9.1.6) &;ix™ = mz™, i=1,...,n
In particular we have
(614 +6,)z™ = (my +--- + ma)z™.

By the definition of the coefficients Cp,, we have

Cm+e’.g;m+e" _ (a +my 4+ mn)(ﬂi + m‘.)
Cmz™  (Y+mi+---+ma)(1+m)

i
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ie.,

(’7 +m,+---+ mn)(l + m;)C’m+e‘.zm+e‘
—zila+my+---+my)(Bi + m;)Cpz™ = 0.
Using (9.1.5) and (9.1.6), this is equivalent to

(7 1+ 5,~)5,-c,,,+e,.zm+e-"
—x(a+26) (Bi +6;)Crmz™ = 0.

Thus we have

Li.FD(a’IBl7"',IBn’7;x)=0’ i=l,...,n.

To deduce the second equation of (9.1.2), we consider operators é;L; —
6;L; which annihilate Fpp. Then it is easy to see that

(9.1.7) (a+ 1 +}: ){(11 —x;)6:6; + Biz jb; — Bjzib;} .

Since (a+ 1+ 3, 6;)u(z) = 0 for u € C{z} implies u = 0 by virtue of
the assumption on «, it follows from (9.1.7) that the series Fp satisfies
the second equation of (9.1.2). g

CoroLLARY 9.1.3.  The hypergeometric series Fp satisfies the system
of differential equations

(9.1.8) Pu=0, Quu=0, ij=1,...,n,
where
(9.19)  Pi:=z;(1-2:)D}+(1-2:))  a;D;D;

J

+{y—(a+B:i+1)z;} D; — 5; ZIJ’DJ' —af;,
J

(9.110) Qi;: = (zi—z;)DiD; +3;D; — ;D
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and D; := 8/9x;.
Proof. Using the commutation relations:
(6;,z;) =z, [6;Di]=-D;, i=1,...,n,

we see that L; = x;P;, where

P = (7+ Zé;)D; - (G+Z&')(ﬂi +6i).

Expressing P; in terms of D,...,D,, we obtain the first equations of
(9.1.8). It is immediate that the second equation is derived from the
second equation of (9.1.2). g

The system (9.1.2) as well as (9.1.8) is called the Lauricella hyper-
geometric differential equation and is denoted by Ep(a, ;.. ., 5B, 7).
Let

0]

=JZij, Sy:i={reChni=1}, i,j=1...,n+%i#j]

i#j

where we set 2,41 =0,2p40 = 1.

ProrosiTioN 9.1.4.

(i) For any point P € B, there are n + 1 linearly independent holomor-
phic solutions of Ep(a, B1,...,08n,7) at P;

(ii) Fp(a,B1,-..,0n,7;z) is the unique holomorphic solution u(s) of
the system (9.1.2) such that u(0) = 1.

Proof.  (i): Set @ := ‘(uq,u1,...,us) := *(u,b1u,...,6,u), then
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the equations (9.1.2) are written as

Diuo-Ea
z;

_ aﬂ,' ’ 1
Diui = —uo +{(1-7 };ﬂk)xi
+7—a-ﬂi—1 — B Yoy

;-1 Ti— Tk

Diuj'=,8j(—-—'+ - .)ui_ “Uj (l?&])

Hence we have the Pfaffian system

di = ( Z A,-jdlogga;j)fi,

1<i<j<n+2
where p;; = z; — =; and
i J
l B —~B;
Aij = )
J Bi —/BJ
i
0 0 1 0 0
-b
—Bi-
Ai,n+1 = i 1-+ —I,B,' )
—Bi+1
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Ainga =1t | —afi =fi...=f y~a-6i-1 -fi...—f;

By the identity
dlog pij Adlog pjr = dlog @i Adlog pi; + dlogpi; A dlog i,
the integrability condition A Q = 0 reduces to
[Aij, Aji + Aik] = [Aij + Aji, Air] =0 f i< j <k
[Aij, Al =0 if 1,3,k are distinct,
which can be easily checked.
(ii): Suppose that the series u(x) = > ;Cmz™, Cp = 1 satisfies

formally the equations L; -u = 0 (i = 1,---,n). Substitute u(z) into
the equations; we get recurrence formulae for {C,, }mer:

(a+mi+ -+ ma)(B; + m;)
(F+mi 4+ 4+my)1+m) ™

C'm+e.~= 1=1,...,n.

Determining successively C,, by these recursive formulas, with the ini-

tial condition Cy = 1, we obtain

(O‘)Iml(ﬂl)ml +(Bn)ma )

o TG S Gy

CoroLLARY 9.1.5.  The holomorphic function Fp(o, B1,....Bn,7; )
at 0 € C™ can be continued analytically to a holomorphic function on
the universal covering space of B = C™" \ E.

Any solution of Ep(«, f1,. .., Bn,7) is called a hypergeometric func-
tion of Lauricella.

9.2. Particular solutions of H,

We show that, when the parameters § belong to some hyperplanes in
the affine space V, the system H,(f) admits solutions which can be ex-
pressed by logarithmic derivatives of hypergeometric functions of Lau-
ricella. In fact we have
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TueoreM 9.2.1.  Suppose that the parameters 8 = (61,...,0n42,0)
satisfy

(9.2.1.4) Y i+60-1=0,
or
(9.2.1.) ' Y 6i-6p-1=0.

(i)
Then the system H,(6) has solutions (q(s), p(s)) given by

{ gi(s) = A~ le(s;)D; (log((l - s,')o"u(B; s))) ,
pi(s) =0,

i=1,...,n, where D; = 8/0s;,

e(z) =xz(z - 1), A=Zt9,-—1

and u(6; ) is an arbitrary solution of Ep(L(9)),

L(0) (1’0n+2»01, . ,0-,,,A—0n+2+1).

Proof.  The condition (9.2.1.4 or b) for the parameters  implies
£ = 0, k being the parameter of the Hamiltonians H,,..., H, for the
system H,(6). Then the system H,(#) can be written as follows:

DQJ_ZZ kPk

(9.2.2)
1PJ = _‘Pk
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Let p; = -+ = p, = 0, then the second equation of (9.2.2) is satis-
fied. The first equation of (9.2.2) reduces to the following system for

(2 R 7 P
(9.2.3) e(si)Dig; = —F;(s,q), i,j=1,...,n

Since the systemn H,(6) is completely integrable, so is the system (9.2.3).
Since the terms F}(s,q) in the right-hand side of (9.2.3) are polynomi-
als of degree two in q),...,@y, the system (9.2.3) can be considered
as a several-variables version of the classical Riccati equation. Recall
here that the Riccati equation can be linearized by a suitable change
of unknown (cf. Proposition 1.1.3). Imitating the classical case, let us
linearize (9.2.3) by introducing a new unknown. To this end we first see
that, for any given solution q(s) of (9.2.3), the 1-form

gi(s)

is closed. In fact, we have

40 = qu,(s ) Ads;
=Z-1—D~q‘d.9v/\ds-
i e(s;) 7 '

—Z )e (F' F?)ds; Ads;
i<y 8i

=0,

because of the symmetry (7.1.7) of the rational functions F} . Since Q is
closed, for any solution g(s) of (9.2.3) there is a function u(s) such that

Q=A"ldlog (]'—[(s;c - 1)9"u(s)> ,
k

ie.,

(9.2.4) q,-(s)=A-1e(s,-){ b +P‘—"}, i=1,...,n

s;—1 U
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Note that u(s) is determined up to multiplicative constants. Substitut-
ing (9.2.4) into the system (9.2.3), we get a system of linear differentrial
equations:

s;(s; - I)D?u

=(Si—1)‘:3k[ L Dyu + b Dku]

Sk — S 8; -8
& k i i k

n+2
+ {3 0m — (2+86; —bny2)si| Diu
(m)

~0; Y skDitt = (1 = Opg2)0iu,
k

(si — sj)DiDju = 8;D;u — ;Dju =0, i,7=1,...,m;
which is just the system Ep(l — 8,42,01,...,00, A—6nia+1). n

Studies on Singularities of
Non-linear

Differential Equations

Poles of q35(t)
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Note that u(s) is determined up to multiplicative constants. Substitut-
ing (9.2.4) into the system (9.2.3), we get a system of linear differentrial

equations:

5,'(8,’ - l)D?u

=(s,~—l)Zsk[ b piut D,,u]

" 84 — 8 8§; — 8k
n+2
+ Z 0 — (2 +6; - 0n+2)5i D;u
(m)

~8; > sk Dt ~ (1 = 842)0;u,
k

(si — 8;)DiDju = §;D;u — 0; Dju =0, ,7=1,...,m;
which is just the system Ep(l —0p42,01,...,00, A—0ns2+1). g

Studies on Singularities of
Non-linear

Differential Equations

Poles of d3g(t)
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Consider a system of nonlinear ordinary differential equations of the
form

(001) y::gi(z’yl’...’yn) (i:l’...’n)

in n unknowns ¥, -, y¥n, where the g;’s are meromorphic in z,y;,---,
yn With poles along r = a. We say that equation (0.0.1) has a singular
point of regular type at r = a if every g; has at most a simple pole at
z = a, and of irregular type otherwise.

For an n-th order differential equation

y(n) = g(.’l:, Y, y,1 B y(n—l))a

where g is a meromorphic function having poles along = = a, the singular
point £ = a is said to be of regular type if it is equivalent to a system
of n differential equations of the first order for which z = a is a singular
point of regular type. :

In this chapter, we give some methods of constructing solutions of
nonlinear differential equations near singular points of regular type. The
main purpose of Section 1 is to establish a classical fundamental theorem
(Theorem 1.3.1) under the so-called Poincaré condition. We also discuss
the case n = 1 in detail. In Section 2, we study the fixed singular points
of regular type of Painlevé equations. Unfortunately, Theorem 1.3.1

"is not applicable to Painlevé equations because Poincaré’s condition
is completely violated. In order to treat Painlevé equations, we first
transform them into a normal form and next give a local expression of
its solutions at the singular point (Theorem 2.2.1).

We use, in this chapter, the following notation:
1)
0= (0,10) € Z",

Efl}=(1,90,---,0) € Z",

E[n] =(0,---,0,1) e Z".
For a column vector X = ¥(z;,---,z,) € C" and for a multi-index

K =(k(1),---,k(n)) € No™,
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we write
Xl\' = If(l) . z:(n),

|K| = k(1) + -+ k(n).
2) For two indices K = (k(1),---,k(n)) and L = (£(1),---,€(n)),
we write

K»>L
if and only if

k(1) + - + k(n) > 81) + - - + {(n),

N B + o4 k() = £1) + -+ + E(n),

k(i) = £() (i <4), k(5) > £(5)

for some 1 < j < n. We write

K»L

ifand only if K > Lor K=L,and K < Lif L > K. We use similar

notations on (Np)™*!. Thus

(0,0) < (0, E[n]) < (0, E[n —1]) < -+ < (0, E[1]) < (1,0)
< (0,2E[n)) < (0,E[n - 1]+ E[n]) < ---
< (0,2E[1]) < --- < (1, E[1]) < (2,0)
< (0,3E[n]) <+ < (3,0)

3) For a column vector X = *(z;,-+,%,) € C" and an n xn matrix
A = (aij)1<i,j<n, We define || X|| and || 4] by

X1 = maxzl,

n
4]l = max )" lagj|.
i =
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Note, for X,Y € C*, ¢ € C and an n X n matrix A, that

(0.0.2) X =0 if and only if ||X]| =0,
(0.0.3) lleX || = lefii X1,

(0.0.4) X+ Y <iX)+ 1y,

(0.0.5) lAx| < Alxy.

In Section 1, vectors, multi-indices and matrices will be denoted
by capital letters, while their components will be denoted by the corre-
sponding small letters.

1. Singularities of Regular Type

In this section we consider a system of the form
(101) zy1{=fi(z7yla"'ayn) (i=1a"'an)a

where the fi(z,y1,---,¥n) are holomorphicat z =0,y =0, --,y, =0
and satisfy
£i(0,-,0)=0 (i=1,--,n).

In our terminology, (1.0.1) has a singular point of regular type at z = 0.

‘1.1. Holomorphic solutions

First we give a solution of (1.0.1) which is holomorphic at z = 0. Equa-
tion (1.0.1) can be written in the vectorial form:

(1.1.1) zY' = F(z,Y),
where Y = Y(y;,---,yn) € C" is the unknown vector and F(z,Y) =

Hh(z,Y), -, fa(z,Y)) is a vector-valued function. We expand F(z,Y)
into a convergent power series in z and Y:

(1.1.2) Fz,Y)= Y Ajxa’vX
+IKI21

which is bounded in the domain:

lz] < ro, “Y” <ry (ro>0, r>0).
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Here K denotes the multi-index (k(1),---,k(n)) € (NU{0})" and A;x

the column vector ‘(a_(illz,, e ,a_(;;g) € C".
Suppose that the series
(1.1.3) Y=Y Cizl, Ci=4Y,--, M) ect
i21

satisfies equation (1.1.1) formally. Then we have

Y iCizt =) AC;zI

izl jz21
. &)
e Tl
7, K) =1 “p21
where E'(“() stands for the summation over (j, K) > (1,0), that is,
j+IKI> 1and G,K) # (0,B[) (1<¢<n),

and A denotes the matrix:

a5,

afi
=-1(0,0)--- ==1(0,0
6y1( ) 3y,.( )
A=
Ofn Ofn
=—(0,0)---=—(0,0
3y1( ) ay,.( )
We have
(1.1.4) GI-A)C=V;, j21,
where

I
(15 V= XY Audded),

(m,K) m+pr+-+pg=j

e ™) XD
x Pl(1)4 - k(n=1)+1 cP|k|'

Notice that each component of V; is a polynomial with positive coeffi-
cients in a(rﬁ)K’s and cg,l)’
(mK)=(1,0), 1<m+|K|<j,1<p<j-1,1<¢<n.

Then we have

s, where m, K, £ and p satisfy
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ProrosiTiON 1.1.1. If none of the eigenvalues of A is a positive
integer, then equation (1.1.1) admaits a solution of the form

Y=Y Ca

21

convergent at £ = 0. Furthermore there is a unique solution holomorphic
at £ = 0 satisfying Y (0) = 0.

Proof. One can see by (1.1.4) that the coefficients C;’s are deter-
mined uniquely, because, for each j > 1, V; is a function of Cy, ---,C;_,
and jI — A € GL(n,C). It is sufficient to show the convergence of the
formal series. There exist positive constants M and e such that

(1.1.6) 45l € Mrg e T for () = (1,0),
(1.1.7) G- A <e™? for j21.
The Cauchy inequality yields inequality .(1.1.6). Inequality (1.1.7) is de-

rived as follows: There exists a non-singular matrix P such that P~ AP
is a Jordan canonical form

Ay 0
PlAP=A= ..
0 A
where A; (1 = 1,:-+,m) is a Jordan block of size s(i) written in the form
A1 0
by 0
A= .. or A;= )
0 A -1
0 A

By the assumption on A, for every positive integer j, the matrices
J1s(iy — A; are nonsingular and we have
(I = 4)~ = PGI - A)7 P!
(sz(l) - Al)—l
=P Pt
(i Ls(my = Am) ™!
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Note that, if o # 0,

a 1 o\ !
. _1 1 1 2 1k
L | Tal @At A
0 a

where k is the size of the matrix and A is the following k by k matrix:

0 1 0
., 1
0 0

By the assumption on A, there exists a positive constant M such that
-M"tsM

for integers j > 1 and i = 1,...,m. Using this estimate, we have

. -1 . -
NG =) = max 11(iLe - A) 7l

SMA+M 4+ 4+ M%) (0= max s(i),
and hence

IGI = AT < NPIIPTHIM + M7 + - + M),

Thus we have inequality (1.1.7).

Now consider the following algebraic equation

’ M .
en = Z zinlX|

2 roirgIK]
(1.1.8) G50
z -1 ny-n nn
=M|(1-= 1-—= 1=t
[( 7‘0) ( Tx) LS ]
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From the implicit function theorem, it follows that (1.1.8) has a unique
holomorphic solution 7 = n(z) with 7(0) = 0 in the neighborhood of
z =0. Let )5, 7;2’ be the Taylor expansion of n(z). We see that the
coefficients 7; are recursively determined by

’ M
1.1.9 j=¢! — Y
( ) i (mz,;{) m+pl+§.plkl=]‘ TomT1|K| P1 Pk

On the other hand, from (1.1.4), (1.1.5), (1.1.6) and (1.1.7), we have
(1.1.10)

Icil
’
<SHGT=A73 X MAnkllIChll- 1Cq
(m,K) m+pit-+pix)=Jj
- ! M
<ty 2wl Il

(m,K) m+pit+-+pg)=J
By (1.1.9) and (1.1.10), we obtain
ICll <v; for 521,

which proves the convergence of Y > C;rl. n

' 1.2. One-dimensional case

1.2.1. Formal transformations

In this section we construct a family of solutions of equation (1.1.1)
when n = 1. Let us write it in the form

(1.2.1) zy’ = f(z,y),
where

f(z,y) = atoz + Ay + Z aiz'y",
i+k>2

for |z| < ro,|y| < r1. First we shall find a formal transformation y =
p(z, z) which changes equation (1.2.1) into an equation of simpler form.
Consider the transformation

Tv: y=z+pz,

where p is a parameter.
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ProposiTiOoN 1.2.1. Equation (1.2.1) is transformed by Ty into
(1.2.2) z2' = ¢g(z,2) = Z bjrzi 2k,

j+k>1
where

bio=a10+ (A—1)p, bo1 =ag =\

Proof. Equation (1.2.1) is transformed by T} into

zz' = f(z,z + pz) — pz

=(ajo+Ap—p)z+ Az + Z a2’ (z + pz)¥,
k22

which implies the proposition. g

Next we consider the transformation

m
Tp: y=2z+ ijzjzm'j (m>2),
j=0

where p; are parameters.

ProposiTIiON 1.2.2. Equation (1.2.1) is formally transformed by T,
(m > 2) into

(1.2.3) zz' = h(z,z) = Z it 2¥,
J+k>1
where
Cjk = Qjk, j+k<m-1,

cik= ajk — [(k = YA+ jlp; — (k + 1)awopj-1, j+k=m,

(we set p_1 =0).
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Proof. The formal inverse of T, can be written as
m . Y
(1.2.4) z=y— Zp,-a:J Y™ + [z, y)m
7=0
where [z,y]m denotes a linear combination of terms whose total degree

(with respect to z and y) is greater than m. Differentiating (1.2.4), we
have

m m
22’ =y’ =) jp@dy™ T =Yy (m— f)piety™ T (zy) + -
j=0 j=0

m m
= f(z,y) = Y_ip@dy™ =Y (m—j)paly™ I f(my) + -
i=0 =0

Substituting T}, into the right-hand sidé, we have

m m
zz = f(z,2) + Z )\pj:rjzm'j - ijjzjzm'j

7=0 =0
m . ) m
- S S it
j=0 =0
m
= ). a4’ =) (m =i~ DA+5)p; - ajm-jlaiz"
jk<m—1 i=0

=Y (m—j+1awpj_1ziz™ T+ (p_y =0).
j=0

Hence we have

Cik = Qjk, ]+ksm_1’
cik = aje — [(k = 1)A+jlp; — (k+ Dawopj-1, j+k=m g
We shall construct a formal transformation by composing infinitely

many transformations T1,T5,- -+, T}y, - - -, where the parameters of each
T,, will be suitably chosen.
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Let (E;) be the equation obtained from (1.2.1) by the transforma-
tion T;. Replacing the variable z in (E;) by y, we apply the trans-
formation T, to (E;) and obtain equation (E;). In this way, applying
the transformations T3, T3, - -+, Trm to (1.2.1) successively, we obtain the
equation which is written as

(En) 12 = hp(z,2) = Z cg':)zjzk,
k21
(m)
ik
Case 1. A€ C— QN (~-00,0] - N
If we put p = a;0/(1 — A) in the transformation 71, then

where ¢ are constants.

&Y =0, =2

in (E)). Next putting p = 0812)/)\, p1 = c(lll), D2 = c%)/(‘Z — A) in the
transformation T3, we have

ngl) = A,

D=0, j+k<2, (k) #(0,1)

in (E;). Since (k — 1)A+j # 0 (for (j,k) # (0,1)), we can choose
Ts,-++, Ty, so that

e =

=0, j+k<m, (j,k)#(0,1)

3

in (En,) . Therefore, composing the transformations given above, we
obtain a formal transformation

y= Y per’z’ (p=1)

J+E>1
by which equation (1.2.1) is transformed into

(1.2.5) zz = Az.
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Case 2. A€ N
As long as (j,k) # (0,1),(),0), we can choose Ty, so that cg-:l) =0
for j+k <m. When A = 1, we put p = 0 in 7} and when X # 1,
we put py = 0 in 7). Thus we obtain a formal transformation y =
Y1 piex?z® (po1 =1, pxo = 0) by which equation (1.2.1) is trans-
formed into

(1.2.6) z2 = Az + bz,

where b is a complex constant.

Case 3. A =0
In this case, by Proposition 1.1.1, equation (1.2.1) admits a convergent
power series solution ¢(z) = Ej?_l cjz’. By the transformation y =

v + (), equation (1.2.1) is transformed into the equation

(1.2.7) zv' = fo(z,v) = z alpzvk.
i+k>1,k>1

In place of (1.2.1), we start from equation (1.2.7). By Proposition 1.2.2,
the transformation T,,, {(m 2> 2) takes equation (1.2.7) into equation
(1.2.3) with

Cik=a:'kv z+k5m—1,
Cik=aj —ip;, i+k=m.

Hence if we put p; = cf.Z'_l)/i (i >1) and pp =0 in T,, (m > 2), then
by the transformation Tr, - - -T2, we get equation (E,,) with cg,:") =0
(i > 1). Thus we obtain a formal transformation

s
v= 3 it p) =1, pl)=0 (k22),
J+k>1

by which equation (1.2.7) is changed into

(1.2.8) zu = u*t! Zbkuk (bp =b#0),

k>0
where s is a positive integer. Now we make a change of the unknown:

(1.2.9) u=z(14+7r,2")
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where n is a positive integer and r, is a constant, Since z = u{l—r,u"+
--+), if we apply this transformation to equation (1.2.8), it becomes

2 =z’ (l—rp(n+ Du™ + )
=1 =ra(n+Du"+..Ju*H? Z bru*
k>0
=(1=ra(n+1)2"Q +7,2")" +-- )2

X (1 4+ 71,2™)*H! Zbkzk(l + raz™)*
k>0

= z5+! [Z b (2% + rokz* " 4.0
k>0

+ra(s —n)z" Z bk(zk k2t 4. Y- ]
k>0

= z5+1 [Z bz — bro(n —s)z" +-- ]

k>0
= 1 Z cfc")z",
k>0
where
c§§”=bk, 0<k<n-1,
M=b, —bro(n—s), k=n.

When n # s, we choose r,, so that M = 0, csc") =b, (0<k<n-1).
Composing the transformations of the form (1.2.9) for n # s, we obtain

the transformation
u=z+ Z e’ 2*
k22
by which (1.2.8) is changed into an equation of the form
(1.2.10) zz' = 2*t (b + b'2°),

where b and b’ are complex constants, and s is a positive integer. Thus
we have constructed a formal transformation

y= Z pjer’z’y, pn=1, pox=0 (k2 ?2)
j+ex1
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which changes equation (1.2.1) into equation (1.2.10).

Case 4. A= —pfv, p,veN, (p,v)=1
Notice that (k — 1)A+ j = 0 if and only if

j=hy, k=hv+1, h=0,1,2,---.
Hence there exists a transformation

(1.2.11) » y= Z pg}c):z:juk
J+k21

with pf,ll) = 1 and p%lu),hu_,_l = 0, by which (1.2.1) is changed into an
equation of the form

I__E u, vyvh
(1.2.12) zu' = Uu+u,§,bh(x u”)".

If we put w = z#u”, this equation is written as

(1.2.13) v = vw Z brwh = vw*t? Z bornw” (b, £ 0),
h>1 k>0

for some positive integer s. In the same way as in Case 3, we can

construct a transformation

(1.2.14) w=_(+ ) ek,

k>2
by which (1.2.13) is changed into
(1.2.15) ¢ = b+ ).

Note that

1/v
u=z MY (Z rZCk) (rf=1)

k>1

= z—y./ucl/u Zr;cllck (7‘6" = 1)

k>0
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We put z = z~#/*¢1/¥ (¢ = £#2*). Then we see that equation (1.2.15)
is changed into

(1.2.16) zz =2 (A + bu—l(z#zU)a + bIV—l(szU)Za) ,

by the transformation

£
v= Y B (s

F+E>1 k>0
= Y pua’st (po =1).
i+E>1
Thus we have shown
THEOREM 1.2.3. There exists a formal transformation of the form
(1.2.17) y= Y pier’s® (po = 1),
i+e>1

by which equation (1.2.1) is formally changed into an equation of the
following form

(1.2.5) 2’ = Az, if A€ C—QN(—00,0]-N,
(1.2.6) zz' = Az + bz, if A€N,
(1.2.10) zz = 2t (b4 1/2°), if A=0,

zz' =z (A + bu-l(z“z”)’—}-b'u'l(z“z”)zs),
(1.2.16)

if A=—u/v, g,y €N

Here b and b/ are complex constants, and s is a positive integer.

Singularities of regular type 271

It is easy to see that equations (1.2.5) and (1.2.6) have solutions
z=Cz* (CeC)

and
z=1zblogz +C) (C€C)

respectively. Equation (1.2.10) can be solved as follows. If b = &' = 0,
then z = C, and if b # 0,5 = 0, then z = (C — sblogz)~/%. In case
by # 0, we put

¢=(b/b)z7", w=gV/W,
Then equation (1.2.10) becomes

a1
E=1te

From this equation, we have
¢—log(¢+1)=logf + C.

Hence equation (1.2.10) admits a solution

4 sb? /e
z= (EQIA(C - 'BTIOgI)) :

where ( = 2A(?) is an inverse function of { —log({ +1) = ¢ (the function
%A is studied in {HKM]).
Summing up, equation (1.2.16) admits a solution of the form

2=Cz>, ifb=¥V =0,
z=z*(C — sblogz)~1/*, if ¥ =0,

2= (G AAC - L log z))~1/*, if b/ # 0.

1.2.2. Convergence of formal transformation

In this subsection, we show the convergence of the formal transformation
obtained above, in case A € C — (—00,0].
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THEOREM 1.2.4.  If X € C — (~00,0], the transformation

(1.2.17) y= Y piec’z’ (pn=1)
i+e21

constructed in Section 1.2.1 converges for |z| < r,|z] < r', where r and
v’ are sufficiently small positive constants.

As an immediate consequence of Theorem 1.2.4, we have

THEOREM 1.2.5. (1) If A € C — (—00,0] — N, then equation (1.2.1)
admits a solution of the form

(1.2.18) y= Y pea’(Cs*) (pu=1)
+e

which converges in the domain

lz] <7, |Cz? <7,

More precisely, the domain can be described in terms of t := logz as -

follows:
R(t) < -M, RA)<-M

for some large M ; (these conditions are compatible since A ¢ (~00,0]).
(2) If X € N, then equation (1.2.1) admits a solution of the form

(1.2.19) y= Z piez’ (zN(C + blogz))*  (por = 1)
j+e21

which converges in the domain:

lz| <r, |2*(C+blogz)| <.

Proof of Theorem 1.2.4. First we consider the case A € C —
(~00,0] — N. Substituting transformation (1.2.17) into the left and the
right-hand sides of equation (1.2.1), we have

Yy = Z(J + ,\Z)p,-g.rjz‘
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and
f(@, Zpilszl) =A ijeszz + Zla.‘kxi (Z Pjexizf) k
(ik)

where zzi,k) denotes the summation for (7, k) > (0, 1), namely for i+k >
1,(i, k) # (0,1). Hence we have

(12200 S (G+(¢-1)\pjea’st = Z'a;kz‘( 3 pjngz‘)k,

j+e21 (i.k) J+€21

from which we obtain

(1.2.21) G+ (=1 Npje=V;e for (5,¢) = (1,0),
where

!
(1.2.22) Vie=Y D GikPaps -+ Parsis-

(ik) (0, Bi(ik),(7,8)

Here 3, 5. k). (j,0) Stands for the summation for (ay,...,ox) and

(Brs- - -, Br) satisfying

ito+...fag=j
Br+...+ Bx="¢

Notice that Vj, is a polynomial with positive coeflicients in a finite
number of the aix’s and in pag ((a,8) < (5,£)). If we put pp; = 1,

then pj¢’s for (4,£) > (0,1) can be determined uniquely. There exists a
sufficiently small positive constant £ such that

li+(€-1A>e

for (j,€) > (0, 1) (see Figure 1.2.1), and a positive constant M such that
laik] < Mrgirs*. We put

P =1

and recursively
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J+@-nA

i

Figure 1.2.1

I Z _J'\ikpﬂuﬂx "‘Pﬂkﬂk

1

Pj( =&
: iy 7071
(i,k) (@,B:(i,k),(J,0))
for (j,€) » (0,1). Then we have

Ipjel < Pje j+€21.

The formal power series

Y(z,2) = Z Pjez? 2t

+e1
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satisfies the following algebraic equation

Y=:+ E'IZ’—A—l—z"Y"

gk
ri
(k) 071

- z+e-1M((1 - %)_1(1 - %)_1 -1- %)

The implicit function theorem says that this equation has a unique holo-
morphic solution ¥ = Y(z, 2) with Y(0,0) = 0 in the neighbourhood
of = z = 0, which implies the convergence of 3. >, Pjez’ z%. Hence

Y1 pjex? 2 also converges.

Next we consider the case A € N. Substituting (1.2.17) into the left
and the right-hand sides of equation (1.2.1), we have

oy = Z (j+ M)pjen? 2t + bz*z7t D tpjen’st,
+e31 i+t

k
. . ! . .
i S = Y st s e (3 )
J+£21 (i,k) J+€>1

and hence

Z (_] + (f - I)A)pje.’tjze

j+e>1

k
. ! . .
= —bzz"! Z pjex’ 2t + Z a,-k:c’( }: pjgz"zf) .

j+e£>1 (i,k) F+E2>1

(1.2.23)

Thus we have
(1.2.24) G+ E=DX)pje = =b(f + 1)pj-re41 + Vje

for (5,¢) > (0,1),(4,€) # (X,0). Here V¢ is the polynomial given in
(1.2.22). The coefficients py; and pxo can not be determined uniquely.
If we put po; = 1 and pao = 0, then the pj,’s for (7,£) > (0,1),%# (), 0)
can be determined uniquely.
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Note that there exists a positive constant B such that

|b|(f+1) 1
Fre—n <P Gre-on <?

for (.7, f) > (0, 1),7é (A,O). If we put
F=1
and

' M
Pje = B(Pj—A,l+l + Z Z ﬂPOuﬂx "'Pahﬂk>

(56) (ai(ink) (50 072
for (7,£) > (0,1), then
[pjel < Pje.
In order to prove the convergence of the series EPjng z
introduce the quantities {Q; j+¢} by

tin x, z, we

Qo1 =1,
Qjj+e= B(Qj-z\,j—/\+e+1

' M
+ Z: Z ;Fde,a1+ﬂ1 cee Qakaak+ﬂk>?

(i,k) (o,8(i.k),05,8)) 01

(1.2.25)

and consider the power series

(1.2.26) Y Qe (= E Pt 27**

j+e21 jte>1

in £ and z. Notice that this series is obtained from the series Y (z, z) by
the substitution z = ¢z.
Consider the algebraic equation

Y=z+4 B{{’\z’\'lY + Z'—f—lgg"z‘)f’“}
TaTl
(i,ky 071

- z+B£*z*-’Y+BM((1 - f_")_l(l - z)_l -1- X)_

To ™1 T1
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By the implicit function theorem, this equation has a unique holomor-
phic solution Y = Y(£,z) with Y(0,0) = 0 in the neighbourhood of
£ =2=0. Let

Y(&z2)= Y Yigsh

i+h21
be the Taylor expansion of Y (€, z). Then {Y;,} are determined by
Yo =1,

Y;n=B <Yj-x,h—,\+1

+ Z’ Z _i-‘Af:lFYals‘h i 'Yaln'Yk)

(k) (ams(ik) (ish=i)) 'O

for (,h) > (0,1). Therefore, we have the following inequalities among
the coefficients {Y;x, j < h}

Yo =1,

Yin > B(Yiesn_
(1.2.27) = ( oAk

n

+ Z’ Z %Yaxm ...Ya,”-y,c)

(ik) (o7i(ik),(5,h—1)) 01

for y < h, (4,h) > (0,1). Here EZ;'-,;(i,k),(j,h-i)) stands for the summa-

tion for (ay,..., ) and (71,...,7«) satisfying

i+a1+...+ak=j,
Nn+...+m=h-yg
@ SNy 0k S Ve
By (1.2.25) and (1.2.27), we obtain

0< Pje=Qjj+e <Yjj4e for j+£2>1.
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Since 3, +h>1 Y;1€7z" converges, (1.2.26) also converges. Thus
|piel < Pje < Mr=i=U8 = pp(r2)~ir=t

for some positive constants r and M, which implies that the right-hand
side of (1.2.17) converges for |z| < r2,|z| < r. This completes the proof
of the theorem. g

Note. In case A € (—00,0], while transformation (1.2.17) may not con-
verge; it gives an asymptotic expansion of an analytic transformation

(see [HKM]).

1.3. n-dimensional case
In this section, we treat the n-dimensional equation

(1.1.1) zYV'=F(z,Y), (Y =%y1,...,ym)),

where

(1.1.2) F(z,Y)= Y Ajxa’Y¥
J+IK|>1

converges for |z| < 7o, ||Y]|| < r;. We may assume that the Wronskian
matrix

0fy 0f1
=—(0,0)-.-—(0,0
ayl( ) ay,,( )
A=
O0fn 0fn
—(0,0).-- =—(0,0
ayl( ) ayﬁ( )
is of the Jordan canonical form;
A
1)
(1.3.1) A= (6, =0or1).

bn  An

We will obtain a solution of equation (1.1.1) in the following way:
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Figure 1.3.1

(a) We construct a transformation ¥ = ®(z, Z) that reduces the equa-
tion (1.1.1) into an equation of simpler form.

(b) We substitute a solution Z of the reduced equation into &(z, Z),
which leads to solution of (1.1.1)

One expects that, under suitable conditions, equation (1.1.1) can be

“reduced to
zZ' = AZ.

In fact, as is shown below, it is true under the following assumptions on

ALy An.
(A1) For every (7,L) » (1,0); (L= (¢1),---,4(n))andv =1,...,n,

JHAMED) 4+ -+ Apb(n) — A, #0.

(A2: Poincaré’s condition) The convex hull of the points 1, A1,:--, A, in
the complex plane does not contain the origin, in other words, we
can draw a line [ through the origin so that 1, Ay, - - -, A, are situated
on one side of I. Equivalently, there exist complex numbers ¢ such
that e?,e*1?, ..., e*! are all small simultaneously.

THEOREM 1.3.1.  Under assumptions (Al) and (A2), equation (1.1.1)
admits a solution of the form

(1.3.2) Y = &(z,zC)
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with the following properties:
1) The series

(1.3.3) ®(z,2)= ), Pzt
J+IL21

(0

21 0

PjL € Cn’Z = ) POE'[U] =€, = 1 (V
2z 0
n

\o/
converges for |z| < r, ||Z|| < r, where r is a sufficiently small positive
constant. v

2) Z = zC is a solution of the equation

(1.3.4) ©Z' = AZ,

where C = Y(cy,...,c,) € C™ is an arbitrary constant vector.

REMARK 1.3.1.  If we write A in the form A =A; &...® A,, with

then z* is decomposed as

J:A:zA‘@...@zA""
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where each zA is given by

1
A Iy logz
x l=x t K

(logz)™~1/(m; = 1)! --- logz 1
Here m; is the size of the matrix A;.

To prove Theorem 1.3.1, we first show the existence of the formal
series ®(z, Z) such that ®(z,zAC) satisfies equation (1.1.1).

Ezistence of formal series ®(z,Z). Assume that ¥ = &(z,z"C)
satisfies equation (1.1.1). We put Z(z) = zAC. Substituting &(z, Z(z))
into equation (1.1.1), and using 2Z'(z) = AZ(z), we have

x%@(z, 2(2)
= ) jPjLai Z(x)"
+ 3 Ppa (22 (2)6(1) Z(2) B 4 223 (2)(n) Z(2)L =21
=Y iPa? Z(z)" + ) Pirad (AL(1) + - + Mab(n))Z(2)"
+ 3 Pira? (86(2) 2 () B0 ...

+ bal(n) Z() Fr~1- B0 ) 2 ()

= Z APjLIjZ(I)L + Z, Ail\’zi (Z PnyjZ(:L‘)L) K’

(i,X)

where ZZ:’,K) denotes the summation for (¢, K') > (1,0). Since Z(z) =

z*C contains arbitrary constants cy,. .. ,c,, we have the following iden-
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tity
S G+ ML)+ + Aal(m), - A)PiaiZ"
J+ILI21
= - Z (525(2)213[1]-13[2] N
J+lLI21
+ 8,L(n) ZEIn-U-Elnh\p. | i 7L

K
+Z,A,‘](l‘i( Z PJ'L:L‘jZL) ;

(i,K) JHILI21

(1.3.5)

where r and Z = *(2y,...,2n) are regarded as indeterminates. Con-
versely, if P;j1’s are taken so that identity (1.3.5) holds, then &(z,z"C)
satisfies equation (1.1.1) formally.

Let us see that the P;.’s can be determined so that (1.3.5) holds.
First we see the term z7Z% in (1.3.5) for (j,L) < (1,0). For (5, L) =
(0, E[n]), we have ‘

An— A1
N - Al Pogin) =0,
0

where A = A —diag[)\,..., ). For (0, E[n—1}),...,(0, E[1]), we have

An—1 = Ag
-A POE[n—l] = _6nP0E[n]a
/\n—l - /\n

AL = Az
— Al Boppy = —62Fog).

A= A
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These linear equations are solved by

(o)
0 .
POE[n]=en= 0 1"'aP0E[u]=eU= 1 (V7
(1.3.6) 1 :
\0/
1
0
”'7P0E[1]=elz .
0

Next for (j, L) > (1,0), we have

G+ M)+ - + Ml - AP;
(137) = - (62£(2)Pj,L—E[l]+E[2] + -+ 6"£(n)Pj,L—E[n—1]+E[n])
+ ‘/j[n
where
L e )
ViL= Z Z AiKPa,T, " PayayTagr)
(1.3.8) (i,K) (a,T5(1,K),(5,L))

.o g o
k()4 4k(n=D)F1 L k(1) 4t R(n-1)41 a k| Cix

and Pjp = ‘(pg.lL), e ,pg-’i)). Here Z(a,F;(i,K),(j,L)) stands for the sum-
mation for ((o1, -+, k), (T1,- -+, T|k|)) satisfying
ito+--t ok =7,
F1+-~-+F'K| = L.
Notice that each component of V}, is a polynomial with positive coeffi-

cients in a finite number of the ag;()’s ( components of A;x) and in p&”lz s
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for (a,T) < (4,L) (1 £ v < n). By assumption (Al), P;; can be deter-
mined uniquely for every (j,L) > (1,0) so that 1dent1ty (1.3.5) holds.
Thus we have proved the existence of the formal solution ®(z,zAC) of
equation (1.1.1).

Convergence of ®(x,Z). We show that ®(z,Z) converges near
(z,Z) = (0,0). By assumptions (Al) and (A2), there exists a posi-
tive constant € < 1 such that

(139)  (L+IZDIG +MbD) +- -+ Xl(m) o = A) [ <7,
for (,L) = (1,0). This inequality is proved as follows. Set
A=(G+ MU+ -+ Aal(m) - A
ai

—&

-6, a,

Let g, 1, -+, tn be the distances between the line ! and the points
1,A1, -+, A, respectively(cf. (A2)). Define u and m by

H= min(ﬂ()s.u'la"'».u'n)a
2 2

m = max <1+—max|/\,-|,—n).
T m

We first consider the case j + |L| > m. From (A2) and the assumption
j+|L| 2 m, we have
lai] = |G + A £(1) + -+ + Aal(n)) = Adf
2 7+ 061+ + Aal(n)] = i)
2 (poj + prl(1) + -+ + pat(n)) — i)
2 (j+ (LD = [l
'2‘ U+ lLl)lH'—# il

> (+1+L)k

A\

n,
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which implies

la;| ™! < n~!

Let b;, be the (i,v)-th component of A=, then b;, = 0 for i < v,

b;,~=a,~'1 and
iu:u for i > v.
Q41004
Hence we have
1 1 1
biy| < — ———+---+-—+1}
Zl SR (oo e e R v
2 4
£ — L —,
= el T (14 |LDn

Thus we have

iy 4
A+IpNA~ < -

=

bforj+lL| > m. If we put

¢! = max

4
1+ LA™, ;) >1,

max
(J‘+ILI<m,(J',L)t(1,0)
inequality (1.3.9) holds.

By Cauchy’s inequality, we have

M
lAik] <

. 1>
S oK for i+|K|2>1,

where M is a positive constant independent of (¢, ). It follows from
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(1.3.7), (1.3.8) and (1.3.9) that
IP;cll £ N(G +M2(1) + -+ + Anl(m)) I = A)7Y)
X {f(z)“Pj,L-EUHEMH + -+ L) P - Epn—1)4 Efmy ]

Y ¥

llAfKHl!Pa,r,!I~--llPa,x.r.x.ll}
(i,K) (a,I';(4,K),(5,L))

< 6'1{||P',L_E|11+E[21|| oo WP pineait |

/ M
+ Z Z ;_—-,'—rlT(T"PQIF]"”."P0|K|F|K|"}

(i, K) (a,T'i(4,K),(4, L))

for (j,L) = (1,0). Suggested by these inequalities, we define positive
constants ;L by

YoEn) = 1,

vir=¢€"" {’Yj,L—EllHE[?l + -+ Y, L-En-1]+E[n]

! M
+ Z Z roirl|l\’|7°1rl "'70’|K|F|K|}

(i,K) (a,T'(4,K),(4, L))

(1.3.10)

for (j,L) > (0, E[n]). Since e~! > 1, we have
Yo 2 € N0Ew+1] 2 5—270E[u+2] 2
26Ty gy > 1= |Pogll,  v=1,.,m -1

and hence
NPl € v for (5,L) > (0,0).

Therefore it is sufficient to prove the convergence of the series

Z ’7jL:1:jZL.

J+ILI21 '
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If the linear part A of the equation (1.1.1) is diagonal, we can prove
the convergence of ) P; 127 Z" by the method used in the proof of
Proposition 1.1.1. However, since the linear part A in general has off-
diagonal parts, we make use of the following trick.

We consider the series :

Y TV (T =t ta) €CY),
J+ILI21

where
v n

WIL) = (e(l), M ON ..,Zf(s)).

s=1 s=1

Notice that Y v;pz/TWIH is the series obtained from ¥ v z/ZL by

. the substitution

z2] = t1t2"'tﬂ, veey 2y =tutu+1"'tna viey 2 = tn.
Define ¢;wr) by
Z 72 TV = Z $iwipe’ TVIE
J+ILi21 J+|L|21

then from (1.3.10), we have
(1.3.11)

boEm) =1

$jwiry =€ {¢j.W(L—Em+E(zn + o+ G WL -Eln—1]+ E[n]]

’ M .
+ Z Z roi,,.1|1\"| Py wir,] " ¢°|K|W(F|K|]}'
(1,K) (a.L's(3,K),(4,L))

Counsider the following algebraic equation

¢=tn+5_l{(t1+"'+tn—1)’(/l+Z, M :l:i'(/)”(l}

ip K
(i) ©1

=t.+ e"{(tl ot )

(-2 (-8) -2}
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By the implicit function theorem, this equation has a unique holomor-

phic solution % = (z,T) with ¥(0,0) = 0 in the neighbourhood of
(z,T) = (0,0). Let us expand 9(z,T) into the convergent power series

b D)= Y GwdTV.

J+IW(21
The coeflicients 1;w are recursively determined by
Yogm) =1

Yiw = 6_1{¢j,w-1-:[1] + o+ Y w-En-1]

: M
+ E Z T R Ve s "'w"lKlHlK(}

K
(LK) (a Hi(1,K), W) 0 7L

(1.3.12)

for (7, W) > (0, E[n]). Since
WI[L,]+ W|L,] = WL, + LJ]
WIEY]-Elv-1)|=-E[v-1], v=2,...,n,
we have
YoE[R) =1
Vw2 € {%wu—mwmn +-

(1.3.13)
+ ¥ W[L~ E[n-1]4 E[n]]

: M
+ Z Z | Yoy Wiry] " %.Klwu“,,(,]}
(ivK) (G,F;(i,K),(j,L))

for special multi-indices (j, W[L]) with (7,L) > (0, E[n]). By (1.3.11)
and (1.3.13), we have

YoE[n] = PoE[n] = 1,
Yir = ¢jwir) < Yiwir)  for (4, L) > (0, E[n]).
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Therefore, the convergence of the series ¥(z,T) = EjHWIZl ijijW
implies that of

Z 71TV for |z, ||T| < 7,
J+{Li21

where ' is some positive constant. Hence, for an arbitrarily fixed r
(0 < r < r'), there exists a constant M’ > 0 such that
0<L YL < M'T-j_|W[L”
= er—j—nl(1)-(71—1)8(2)—---—2(71)
= er—j(rn)—l(l)(rn—l)—8(2) cen ,.—l(n)’

which proves that Y v;z27Z% converges for |z| < r,|z1] < ™, |z2| <
r™ 1, ... )zn) < 7. Thus we have completed the proof of Theorem 1.3.1.

’
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2. Fixed Singular Points of Regular Type of Painlevé Equa-
tions

Solutions of Painlevé equations (P;) (J=1,---,VI) have fixed singular
points as well as movable singular points which are known to be poles.
In this section, we study the behavior of solutions of Painlevé equations
near the fixed singular points of regular type. The singular points of
irregular type are not studied in this book (cf. [Shim.2], [Tkn.3] and
[YosS.1]). We notice that the fixed singular points t = 0,1,00 of (Py;)
and t =Qof (Pyy) and (Py) are of regular type, and the fixed singular
point t = oo of each (P;) (J =LILIILIV,V) is of irregular type.

We can see that Poincaré’s condition is not satisfied at the fixed
singular points of Painlevé equations; we can not apply Theorem 1.3.1
to Painlevé equations. In order to overcome this difficulty, we proceed
as follows: We first transform Painlevé equations into equations of the
following form

z(zv') = Fo(z,e™ ", ze*)+ Fi(z, e~ ", ze®)(zu') + Fo(z, e %, ze")(zu')?,

where Fi(z,&,n) (i =0,1,2 ) are holomorphic at (z,£,7) = (0,0,0) and
F;(0,0,0) =0 (i =0,1,2 ). We next construct solutions of the equation
at z = 0. The above equation is called the normal form of Painlevé
equations at fixed singular points of regular type.

The fixed singular points of Painlevé equations can also be stud-
ied by the use of the polynomial Hamiltonians obtained in Chapter 3
([Tkn.2|, [KimH.2]).

2.1. Transformation into the normal form
Consider the fifth Painlevé equation (Py) :

Vo (1+/\1 )/\/z T’+(A—1)2(a“é>+ A A+

2\ 12 A A-1

In order to eliminate the term A", we change the unknowns by putting

1—e*\?
= tanh?® =
A = tanh®(u/2) (1+e"‘> ,

which satisfies

101\,
Auu— (2A+ﬁ> Au’
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where A, = d\/du and A,y = d?\/du?. Substituting
N=udy, N =u"di+u?A

into equation (Py) , and using the above relation among Ayy, Ay and
A, we obtain

t(tul)l = (A ;ul)z (0A+ -'i-) + t; +6t2—;—(%

Substitute A = tanh?(u/2), Ay = tanh(u/2)-cosh~%(u/2) into the right-
hand side of this equation. Then equation (Py) is changed into

t(tu') = (ata.nh 4 Btanh™® )cosh—2 5
(2.1.1)

+ %tsinhu - gt? sinh 2u.

Notice that equation (2.1.1) can be written as

l1—-e™ 1+e*\? 4ev
ne _
t(tu) - (al+e"" +'B(1_e—u> )(1+e—u)2

Y/ u —u é u\2 2(,—u)2
+ g (te® — te™¥) — o((te")? - £2(e7")’),

which is in normal form with

F°(‘*f”’)=( 1+§+ﬂ(1+£) )(1165)2

6
+ 20~ 1§) = 5" = 1Y),
Fl(t,fﬂl) = FZ(tagaT’) =0

Similar treatment is possible around the origin for the two Painlevé
equations

X2 ox 5
(PIII) N = DY - + (UAZ + ,B) + 7A3 + ‘A',
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1/1 1 1 1 1 1

P AH - = il - AI2 — !

(Pvi) 2(A+A —1taC t) ( troaty T )'\

A =1)(A=1) t t—1 | _t(t-1)
TTae-1y ("’*ﬂﬁ”(x—l)?”(x—t)Z)'

For equation (Py;) we put

A=e™?,
which satisfies
Apw = AZ/A.
Substituting
N =0y = ~v'e™ X' =0"dy + 02y = —v"e™" + v'2~"

into equation (Pjy) , we have
t(tv') = —ate™ — Bte” — y(te™")% - §(te?)?,
which is in normal form with
Fo(t,€,m) = —atf — By — yt2¢% ~ 62
In order to get an equation in normal form satisfying

6F0 0F,

52 (00,0 #0, 5 (00,0 #0,

we make a further change of variables
v=u+logt, t> =1z.

Then equation (Pyy;) becomes

a
Z(TUy)y = —Ze’" - éze“ -~ %(e‘“)2 - —(ze®)?

which is in normal form with

o Jé] é
Fo(e,,m) = -3¢ - Zn -1 - 22,

Fi(z,6,n) = Fy(z,€,1n) =0
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This normal form will be useful in the construction of solutions of equa-
tion (Py;) ; whereas only bounded solutions of (Ppy) are obtained

from the former normal form, we can get, from the latter, unbounded
solutions of (Pyy;) as well (cf. Theorem 2.4.1 and its proof).

Next we consider equatlon (Py;) . Note that the A'*-term is ap-
proximated by
1/2 1 2
AI
(,\ = 1)

near the singular point ¢ = 0. We put

4e~

A =cosh™ (u/2) m’

which is a solution of

Then equation (Py;) becomes

t(tu')

_(1-tC(wA)SW)Cu) [ o wt-1) stt-1)

- (t—1) [ Clu)® +ht+ Sy - tC(u)Z)Z]
t 1Cw? \ ,  S@C) . ., |

- (t— 1t1c tC(u)z)m T 20 —tC(U)Z)(w) ’

where

uf2 —uf2

C(u) = cosh(u/2), S(u) = sinh(u/2) :=

— €
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Near ¢ = 0, this is a normal form with

4-2t~t€ —nraf(l -
Fo(t,6,m) = (t-1)£2 L (El(+£)§)+%(r]—t£)

vt D)EA+E) | St =1(n - &)
ey +(4_2t—t£—n)2]’
_ ¢ 204+t + 9

Fl(t,f,n)——t_l’4—2t—t§—’7’
~ t€ —n

Fz(t,E,ﬂ) = 2(4 -2t - t& - 77).

Since equation (Pyy) contains the term A2/(\ — t), we can not get an
equation in normal form satisfying Fy(z,€,n) = Fa(z,&,n) = 0.

Summing up we have

ProrposiTion 2.1.1. Transform the variables as follows

A= t_le—", tz =T fOT (PIII)
A=tanh®(u/2), t=z for (Py)
A=cosh™?(u/2), t=z for (Py).

Then, near t = 0, each equation is changed into an equation in normal
form:

z(zu') = Fy(z,e” Y, ze")
(2.1.2)
+ Fi(z, e, ze")(zu') + Fo(z, e, ze*)(zu')?,

with the following properties:
(1) The Fi(z,&,n)’s are holomorphic for

Izl <To, IEI <ri, |77] <ry,

where rg and vy are sufficiently small positive constants, and

(2) Fi(0,0,0)=0 (i=0,1,2).
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REMARK 2.1.2. For equations (Ppy;) and (Py), we have F} = Fy = 0.

REMARK 2.1.3. The transformation y = tanh®(u/2) is used for
equation (Py) in {LM].

REMARK 2.1.4. For equation (Pyj), we do not consider the singular

points t = 1 and ¢t = oo because they are transformed into ¢t = 0 by
simple transformations (see Proposition 1.3.2 in Chapter 3).

2.2. Solutions of equations in normal form

The main part of equation (2.1.2) is z(zv')’ = 0, which admits a solution
up(z) = —wlog z + &,

where w and & are integration constants. We are going to prove that
equation (2.1.2) admits a solution close to ug(z).

THEOREM 2.2.1. Let
(2.2.1) w € C = (~00,0] — [1,400)

be a constant and let k be an arbitrary complex constant. Then equatior
(2.1.2) admits a holomorphic solution such that

(223) u(w, k; 1) = —wlogz + & + O(|z] + [e™"z%| + [e*z! %)),
2.2.2
zu'(w, K 2) = —w + O|z| + le™"z¥| + e"z!™%])

in the domain
(2.2.3) D(r) = {z € Ro; |z] < r,le ™ z¥| < r, |e*z? ™| < 1},

where v 18 a sufficiently small positive constant depending on w, and R
is the universal covering space of C~{0}. O denotes Landau’s symbol.
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D(r) — : D(r)

»»»»

O<§Rw<1, (,:f(,,_)>0

{(loglxl, argx) | x € D(r)} \

SR(O(O, §w>0

Y=argx Y=argx

X= 1og Jx|

0 X= 1og x|
{(loglxl, argx) ‘ x € D(r)}’

Figure 2.2.1 Figure 2.2.2
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REMARK 2.2.2. It is known that the O-terms in (2.2.2) can be
expressed as a convergent power series in z, e~ "z* and e*z!~“, and
that the solution u{w, x; z) is holomorphic in w and « in a certain domain

(see [Shim.6]).

REMARK 2.2.3. The dominating constants corresponding to the Lan-
dau symbol O are independent of x and depend only on w. Namely there
exists a positive constant M{(w) (independent of «) such that the mod-
uli of both O-terms in (2.2.2) are dominated by M(w)(|z|+ |e™"z*| +
le*z!=*|) in D(r). This will be proved in the course of the proof of
Theorem 2.2.1.

Our proof will proceed as follows. New unknown v will be intro-
duced. The equation for v will be given by (2.3.1). Estimates of the
coefficients ® and ¥ of equation (2.3.1) will be given in Lemmas 2.3.2
and 2.3.3. A system (2.3.5) of integral equations with the unknowns
(v, w) will be introduced. The first component v(z) of the holomorphic
solution (v(z), w(z)) solves (2.3.1). System (2.3.5) will be solved by suc-
cessive approximation. Approximating sequences v, and w, will be in-
troduced, the identity zv], = w, and the existence of limits lim v, (=: v)
and lim w, (=: w) will be proved, and estimates for v and w correspond-
ing to (2.2.2) will be obtained.

2.3. Proof of Theorem 2.2.1

We put
u=—-wlogz +x +v.
Since
v = —w+ 30, z(zu') = z(z0'),
e~ = e_"];“’e-”, re¥ = enzl—wev,

equation (2.1.2) is changed into

z(zv') = Fo(z,e "z%e ", "z ~“ev)

+ Fi(z,e "z%e™" e"z!~“e”)(~w + zv')

+ Fy(z, e "z¥e™" e"z!"“e?)(—w + zv')?,
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which can be written in the form
z(zv') = Go(z,e "z, e z' "e”)
+ Gy(z,e "z¥e™", e"z " ¥e")(zv')

+ 02(1:,e—nxwe—u,exxl—weu)(zvl)2

with

Go = Fo —UJFl +UJ2F2, Gl = F1 et 2wF2 and G2 = Fz.

Define ® and ¥ by

‘D(.’L‘,E, 7’) = Go(l‘,&, 7’)1
\I/(:E,E, v, w) = G()(ZE, Ee_va 77‘3”)— GO(:E’ Ev 7’)

+Gy(z, €67, ne’)w + Ga(z, Ee™°, me”u?,

then we have

ProrosiTION 2.3.1. By the transformation
u=—-wlogz+K+v

equation (2.1.2) is changed into the equation:

1

(2.3.1) z(zv') = B(z,e7 2", € 2" ") + U(z,6""z", "z

which has the following properties:
(1) ®(z,&,7n) 1s holomorphic in

|zl <, Kl <7, Inf <7’
and ¥(z,£,m,v,w) is holomorphic in

lz) </, Jl <7, Inl <oy ol <7, |w| <,
where v’ is a sufficiently small positive constant,

(2) ©(0,0,0)=0
and

299

v, zv)
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(3) ¥(z,£,7,0,0) = ¥(0,0,0,v,w) = 0.
Proof. By the definition of ® and ¥, we have
Golz, e ", ne”) + G (z, e~ ne”)w + Ga(z,£e77, ne?)w?
= &(z,&,n) + ¥(z, & n,v,w).

If we put

E=e"z¥, n=e "z, w=1zv,

it is easy to see that equation (2.1.2) can be written in the form (2.3.1).
By Proposition 2.1.1,(1), the functions Go(z,&,n) and G;(z,8e™", ne”)
(t = 0,1,2) are holomorphic at (z,€,7,v) = (0,0,0,0), and hence
®(z,£,n) and ¥(z,£,n, v, w) are holomorphic near (z, §,n,v,w) = (0,0,
0,0,0). Furthermore, by Proposition 2.1.1, (2) we have

$(0,0,0) = Go(0,0,0)
= Fy(0,0,0) — wF1(0,0,0) + w? F3(0,0,0) = 0,
‘I’(I7£17’,0a0) = Go(l‘,f,fl) - GO(l',f,TI) = 0,

and
¥(0,0,0,v,w) = G1(0,0,0)w + G2(0,0,0)w?

= (F1(0,0,0) — 2wF5(0,0,0))w + F2(0,0,0)w? = 0,

which prove the proposition. g

The function ¥ has the following properties.
LEmMMA 2.3.2.  In the domain

lz| < o', €l <o’y i<, Jul <, Jwil < (i=1,2),
we have

W(z,&, 1, v2, wz) - Uz, &, 1,v1,w1)

(2.3.2) = (vg — v1)¥1(z,&,n, v1,v2, w1, ws)

+ (w2 — w1)¥a(z, €, 7, v1, V2, w1, we),
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where ¥, and Uy are holomorphic in the domain, and satisfy

(2.3.3) 0;(0,0,0, v1,vg, w1, wp) =0 (i =1,2).

Proof.
\I’(I,f’ 7 Ug,wz) - ‘I’(I’f, uB vl’wl)

1
=/ D w(z.6,m,V(6%1, v2), V(8 w1, w2))dB
, 90
1
= (v2 —vl)/ ‘I’v(xagvn’v(o,vlvl&)’V(o,wl,U)?))do
0
1
+ (w2 = wn) / Cu(z, £, 1, V6, 11, v2), V(B w1, w2))db,
0

where V(0, a, ) = 86 + a(1 — 6). We put
‘1’1(I,€,Tlavl,vz,w1,w2)
1
=/ ‘I’v(zaéanvV(o’vlaUZ)’V(01w1’w2))d0
0

and
"I’?(I,fafl, vlavZawla'wZ)

='/(;1 U (x,€,m,V(0,v1,v2), V(8,w1,ws))db.
By Proposition 2.3.1, these functions are holomorphic in the domain
ol <+, lel<rs Il <, ful <y sl <o’ (i=1,2).
Note that

‘I’(Iaﬁa”htaw)d

T

1
‘I’u(z,f,ﬂ,v,w) = m |

t—v|=¢
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for
lz) <, [l <, Inl <7, Jv] <7, |w| < 7',

where ¢ is a sufficiently small positive constant depending on r’. From
this formula and Proposition 2.3.1, (3) we have

¥,(0,0,0,v,w)=0
for |v| < ', |w| < #'. Therefore we have
‘1’1(0,0, 0; U17U23w15w2) =0

and similarly
¥5(0,0,0, vy, v, wy,wz) =0

in the domain |v;| < 7', Jwi| <’ (i = 1,2). These imply the lemma. g

Lemma 2.3.3. If

/

T
lzl <%

I
7 leT 2% le"x "”l< ;o el < S (1=1,2),

2

then there exists a positive constant ¢ such that
|®(z,e™"a%, e"z! ™) < c(|z| + 72| + [e"z?~¥|),
[O(z,e™"z¥, e"2' ™ vy, wq) — U(z,e " 2% e zl~v, vy, wy)]

< oflzf + le™"z] + le"z' ) (Jvz ~ vi| + |wp — wy ).

Proof. Since ¥;(0,0,0, vy, v5,wy, wz) =0 (i = 1,2), we have

‘I’i(z,éanavl7v2awlaw2)

1
= [ 550i(62,06,6n,01,02, 0, w2)d0
0
1
= a:/o ‘Il,-,,(03:,0§,0n,vl,vz,wl,wz)dG
1
+£/0 ‘I’,-E(Gz,Of,Gn,vl,vg,wl,w2)d0

1
+17/ V;y(0x,08,0n,v1, v, 10y, w,)dB
0
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in the domain
lz| <o’y [l <7y Inl <7y ol <7y Jwj| <7’ (5 =1,2).

By Proposition 2.3.2,

/01 Typ(--)db, /01 Tie(---)do, /01 Bio ()0

are holomorphic a.ngl bounded in the domain
I I

|z|< |£|< |n|< Iv,|< Iw:l<

Hence we have
(2.3.4) |¥i(z, e~ 2%, e"z' ™, vy, v, w1, wo)]

< c(|z|+ le7 2] + |e*z*~]) (i =1,2),

—K 1

for a positive constant ¢ if (z,e™"z* e*z' %, v, ve, w1, ws) is in the
domain. By this inequality and (2.3.2), we have the second inequality.

- Using 9(0,0,0) = 0, we can prove the first inequality in a similar way

as in the proof of (2.3.4). g

We consider the system of integral equations

w(z) = / t~H{®(t, e "1, et )
T'(=)

+W(t e v, e t ™, u(t), w(t)) }dt,

'U(E _/ -—1/ —1 —xtu,extl-W)
I(z) T'(s)

(t, e "t et~ u(t), w(t))}dtds

(2.3.5)

with the unknowns v and w, where the path of integration I'(z) is given
as follows:
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1) If Qw # 0, then

¢ 112
I(z) = {t € Roi It*] = +°]

z

, 0< |t < ]z|}.

2)If 0 < w < 1, then

I'(z) = {t € Ro;t = Texp(V-largz), 0 < 7 < |z|}.

Note that, if the right-hand stdes of (2.3.5) are holomorphic and if they -

can be differentiated under the sign of integration, then the first com-
ponent v(z) of a system (v(z), w(z)) of holomorphic solutions of the
integral equation is a solution of the differential equation (2.3.1).

Put ¢t = 7eV~1? € T'(z). In case Sw # 0, since

tv t
—o| = exp (R (wlog ;))
= exp (Rw log I—;—I — Qw(f — arg z))

and since the path I'(z) is defined by

o 1/2

zw

t

(2.3.6) -

’

we have

T

exp (?Rw log — — Qw(6 — arg z)) = exp (% log -1-) .

z| |=]
on I'(z). Hence the path T'(z) is given by

t= -rexp((a.rg:z+ wlogL)V—l), if Qw#0,
(2.3.7) Sw |=I

t=rexp(v-largz), if O<w<l,
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%w(l, Fw>0

[T(x)

0<w<
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where 0 < 7 < |z|]. So we have
(2.3.8) |dt| € L(w)dT,

where

L) = \/1+(Mgwl—/2)2, if Sw#0,

1, if 0<w<l,
because
R —
}1+“’—-1£\/—1 dr, if Sw#0,
|dt| = Sw
dr, if 0<w< 1.

LEMMA 2.3.4. Ifw satisfies (2.2.1), we have
[ I+ e+ el
I(z)
X
<ED o] a4 e,

for every n € N, where K(w) is a positive constant (> 1) depending on
w.

Proof. Assume that Sw # 0. Using (2.3.6) and (2.3.8), we have
[t plerai=e
()
=/ |t|—1+i+k|e-xlj—k|tw|j—k|dt,
I'(z)

£ 112 ik
) it

=/ |t|—1+i+k|e—x'j—k(|zu|
I'(z) o

=/ |e—xzw—l/2Ij—k|t|—1+i+(j+k)/2|dt|
I'(z)
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. Iz L
<JeTr et [T e (=)
1]

e[ +G+H)2

_ e—nzw—-l/Z i—k w
_L I i+(j+k)/2L( )

2L . .
< —(—u&|1:|’|e"°z“’|-’|e"z

l—wlk
> n )

for arbitrary nonnegative integers ¢, j, k satisfying ¢ + j + k = n. Hence
putting K(w) = 2L(w), we have the assertion.
When 0 < w < 1, we have

/ )7 el le " 2= et |t
I(z)

Iz
< ]e—nlj—k/ T—l+i+wj+(l—w)kL(w)dT
0 .

|I|i+wj+(l—w)k

— o=k i~k L
e e T a—oR @)

< : L(“)) Izlile—xzul_jlenzl—wlk’
nmin{w,1 — w}

-for arbitrary nonnegative integers i, j, k satisfying ¢+ j+k = n. Hence

putting K(w) = L(w)/ min{w, 1 — w}, we have the assertion. g

We show that equation (2.3.5) has a system of solutions (v(x), w(z))
satisfying
[o(@)] = Offa] +[e"a*| + |e=zi~~])

and
lw(z)l = O(|z] + le™*2*| + [e*z'~|)

in D(r). We prove this by the method of successive approximation.
Let {vn(z)}n>0 and {wa(z)}a>0 be sequences defined by

vo(z) = we(z) =0
and

(2.3.9) wa(z) = ¢1(2) + [1(Un-1, Wa-15 ),
vn(z) = o(2) + Ip(va_1, Wn1: ),
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where
tpl(:r)z-/ t71B(t, e %, e"t' %) dt,
I(z)
tp(z)=/ t~ o (t)dt,
I'(z)
IL(v,w;z) =/ 710t e v, e~ 17, u(t), w(t))dt
I(z)
and
Io(v,w;:r)=/ t7 M (v, w; t)dt.
I(z)
Put

Va(z) = vp(2) — vo-1(2),
Wa(z) = wa(z) — wao1(z) (n=1,2,--4).

We need the following lemma.

LEmMMA 2.3.5. For a sufficiently small positive constant r (<
min{r’'/2,1/3}), and for every positive integer n, the functions v,(z),
wp(z), Va(z) and Wy(z) are holomorphic in D(r) and satisfy

zv,(z) = wa(z), zVi(z) = Wa(z).
Moreover we have

(2.3.10) |va(z)], |wa(z)| <7'/3,
(2:3.11) [Va(z)| < (20)"K ()™ (2] + [e™"2*| + |e"z' )" (n}) ",
(2:3.12) [Wa(z)] < (20)"K ()™ (|z| + [e™"2%| + e"2' )" (n}) !

in D(r), where ¢ and K(w) are the constants given in Lemmas 2.3.3 and
2.8.4, respectively.

Assuming this lemma for a moment, we finish the proof of Theorem
2.2.1.
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By (2.3.11) and (2.3.12), the series }_ Vi(z) and }_ Wi(z) converge
uniformly in the domain D(r); let us denote the limits by v(z) and w(z),
respectively:

v(z): = Z Vi(z)
k=1

n—oo

= lim 2": Vie(z)
k=1

= lim v,(z),

w(z): =) Wi(z)
k=1

= lim iWk(I)
k=1

n—o00

= lim w,(z).

The functions v(z) and w(z) are holomorphic in D(r) and satisfy

because we have

By (2.3.11) and (2.3.12), there is a constant M > 0 independent of
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n such that
(@) —va(@) € ) Vi)l < M(Jz| + le*z%| + |e*z'~|)",
k=n+1

lw(z) ~wa(2)| < D [Wi(@)l < M(Je| + e~ 2" | + [erz!~|)"
=n+1

in D(r), and hence using Lemmas 2.3.3 and 2.3.4, we have

|11 (v, wn; z) = I (v, w;z)|
< 2eM / [E]72([e] + le™ %] + [eme =)+ dt|
T'(z)

2ceM K (w) _ l—wpnatl
< K W L w\n
S ET (=] +le™ 2| + |e"z =)

and
{o(vn, wn; z) — Jo(v, w; )|

2cM K (w)?

S Tmre (El e et

in D(r). Let n — oo in both sides of recursive formula (2.3.9), and use
the above estimates and the inequality

|z} + le™"z| + ez ™| < 3r < 1.
Then we conclude that (v(z),w(z)) is a holomorphic solution of the

integral equation (2.3.5). Furthermore, by (2.3.11) and (2.3.12), we
have

o(@)| < ) IVal2)]

< exp(2cK (w)?(|z] + Je~*z* |+ |e*z}~¥])) — 1
= O(|z| + le” 2| + le"xl_“’l),
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and

|zv(2)] = |w(z)|
<Y IWal2)|

< exp(2eK (w)?(|z| + e7 2| + |e"2' ™])) ~ 1

= O(|z] + le™"z%| + |e*z! =)
in D(r). Thus we bave obtained the desired estimates of v(z) and
zv'(z) = w(z). (It is easy to see that the dominating constants cor-
responding to the symbol O depend only on w. This proves Remark
2.2.3.)
In order to show that v(z) satisfies equation (2.3.1), we need the follow-
ing lemma which will be proved later.
LEMMA 2.3.6  If f(z) is a holomorphic function satisfying
(23.13) £(2) = O(Ja] + le~"z*| +|e"2'~*])
in D(r), then

nn:ﬁmrvmm

18 holomorphic in D(r) and satisfies F'(z) = =71 f(z).

Substituting v(z) into (2.3.5) and using zv'(z) = w(z), we have
zv'(z) = / tH(t, e7 Y, et )
T(z)

+ U(t, et et~ u(t), tv'(t)) }dt
in D(r). Notice that, by (2.3.10),

' I
@)l < 5, lev'(@)l < 5.
Hence, by these inequalities and Lemma 2.3.3, the integrand of the
above equality is of order O([¢|~(|t| + |e™*t*| + [e*t'~“[)) in D(r). By
virtue of Lemma 2.3.6, differentiating the both sides, we conclude that
v(z) satisfies equation (2.3.1), which proves Theorem 2.2.1.

Assuming Lemma 2.3.6, we prove Lemma 2.3.5.
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Proof of Lemma 2.8.5. By Lemmas 2.3.3 and 2.3.6, Wi(z) =
w1(z) = p1(z) and Vi(z) = v1(z) = ¢(z) are holomorphic in D(r'/2)
and satisfy zv{(z) = w;(z). Thus, by Lemma 2.3.4, we have

W1(2)] = [ (2)] = |1 (2)
< / 171102, ¢, et =) |dt]
I'(z)

< K(W)e(le] + le™z] + Je*z'~])
and
Vi(2)] = [va(2)] = lp(2)] < K(w)’e(lz] + le™ 2| + e"z' ™)
in D(r'/2). Take the constant r so small that
r < min{r’'/2,1/3},

oo

(2.3.14) 3 (20K (w)™ (3r)"(n})

n=1

= exp(2cK(w)?-3r) =1 < 1'/3.

Then inequalities (2.3.11) and (2.3.12) hold for n = 1 in the domain

D(r) (C D(r'/2)). (Note that K(w) > 1.) Moreover, since
lr1(z)] € cK(w)?-3r < /3,
|wy(z)] < cK(w)-3r < cK(w)?-3r <r'/3

in D(r), inequalities (2.3.10) Lold for n = 1.

Suppose that (2.3.10), (2.3.11) and (2.3.12) hold for n < N — 1.
By Lemmas 2.3.3, 2.3.4 and inequalities (2.3.10) with n = N — 1,
the integrands of the recursive formula (2.3.9) with n = N is of or-
der O(It|~1(J¢| + |e=*t“| + |e~t'~~|)). Hence, by Lemma 2.3.6, vy(z)
and wy(z) are holomorphic in D(r). Puttingn=Nandn=N—1in
the first equation in (2.3.9), and subtracting the latter from the former,
we have

IWa(z)] = |L(vv-1,wN-1;2) = T (uN—2, wN—2; )|
S / ltl—llw(tae—xtwyextl—w1vN—l(t)awN—l(t))
I'(z) '

= U(t,e™ 9, e ', vy _o(t), wn —2(t))||dt|

Singular points of Painlevé equations 313

in D(r). This inequality together with Lemma 2.3.3 leads to

W (z)] < j clt| 71 (1t] + e~ 2] + Je"t=])

I(z)

(2.3.15)
x ([Vv-1()] + [Wh-1(8)])]dt].

In a similar way we obtain

Vin(z)| < / 1o~ / (1t + || + et~
I'(z) I'(s)

x (Vv -1 (O] + W1 (1)])|dt]|ds].

(2.3.16)

By virtue of inequalities (2.3.11) and (2.3.12) with n = N - 1 and
Lemma 2.3.4, the above estimates (2.3.15) and (2.3.16) imply

Wi (z)
< VK (w)XN-D(N - 1))

x f [E72 (18] + le™™ | + le*t ~ )V |d¢|
I'(z)
< 2NE W) THNY T (J2] + le7 2| + feszt )Y

and
[Vn(2)]

< / 15172 W (s) lds|
I'(x)

< VK@M (N) 7 (J2] + Jem"a) + ez T

for z € D(r), which implies that (2.3.11) and (2.3.12) hold for n = N.
Moreover, by (2.3.14) and (2.3.11), (2.3.12) for n < N, we have

N

[va(2)] < D [Va(2)|

n=1
< exp(6cK (w)?r) — 1
<r'/3,
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and

N
lwa(2)| < Y IWa(2)] < 7'/3,

n=1

which implies that (2.3.10) holds for n = N. Notice that the holomorphy
of vp(z) and wy,(z) has been already proved. Thus, by Lemma 2.3.6 and
(2.3.9), we see readily that zv,(z) = wa(z). Once the statement of the
lemma, for v,, and w,, is proved, the holomorphy of V,, and W,, and the
equality zV,.(z) = Wy(z) follow from their definition. g

Finally we prove Lemma 2.3.6.

Proof of Lemma 2.3.6. 1t is sufficient to show that
z4Azr
F(z 4+ Az) - F(z) = / t=1 f(t)dt,

namely

(2.3.17) (.[‘(1+Az)—.£‘(:)_Lm+A:> t~ f(t)dt =0,

where z is an arbitrarily fixed point in D(r),  + Az is a point in the
neighbourhood of z and the path of the third integral is taken to be the
line-segment joining z to z + Az.

Assume that Sw # 0. Let ¢ be an arbitrary small positive constant.
Let t = ¢(€) and t = ¢’(¢) be points on the paths I'(z) and I'(z + Axz),
respectively, such that

le(e)] = |c'(e)] =«
By the condition ¢(¢) € I'(z) and (2.3.7), we have

Rw - 1/2 €
arge(e) = argz + ~5o log m

If t € T'(c(€)), then

t = Texp ((a.rgc(e) + %i_u;(;d_lﬁ_ log%)\/——_l)

R — 1/2 ‘
= Texp ((arg:c + —w#log ]%l)\/—l) (r=1tl<e<|z),
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which implies ¢ € ['(z).
Thus we have I'(c(¢)) C T'(z) and similarly T'(c'(¢)) C I'(z + Az).
Hence, for any ¢ > 0, we have

[T T Y DY Y i
T(z+az) JI(@) Je (e Iree)) Jee)

In order to show (2.3.17), it is sufficient to prove

c'(e)
(2.3.18) lim (/ —/ —/ )t‘lf(t)dt=0.
e=0\JIr(e!(e))  JIT(e(e))  Jele)

Since ¢(e) € I'(z), ¢'(¢) € T'(z + Az), we have
w vl € 1/2
(6] =121 <]

and
1/2

! w| w €
€ (e = 1( + A2)°l | 5

Then, by Lemma 2.3.4 and (2.3.13), we have estimates for the first and

~ the second integrals in (2.3.18) as follows:

(2.3.19) / t=Lf(t)dt| = O(le(e)] + e~ "c(e)*] + le"c(e)} ™))
T'(e(e))
— 0(61/2)
and
(2.3.20) / t~Lf(t)dt| = O(e'/?).
T(e'(e))

We estimate the third integral. By (2.3.7), if I'(z) and I'(z 4+ Az) meet
at some point, then /
1 Rw — 1/2 1

Rw—1/2
———log i~ = A
argz + og ol arg(z + T)+ S, o8 o A]

Sw
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X+ Ax

x(6)

[Mx+Ax)

Cx)
[ (x8))

C(e,0)

c'(g)

Figure 2.3.2
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which implies that one of the two paths includes the other. In such a
case the third integral vanishes and the lemma is proved. We consider
the case where I'(z) and I'(x + Az) do not meet in D(r). The segment
[z,z + Az) is parameterized as follows

t=z(0) =z +0Az (0<6<1).
Let t = ¢(e, ) be the point on the path I'(z(6)) such that
lc(e, 0)[ = €.

When z(6) moves on the segment [r,z + Az] from z to z + Az, the
point c(e,8) moves continuously on the arc A(c(e),¢'(€)) (included in
the circle [t] = €) from c(¢) to ¢/(¢). Since c(e,8) € ['(z(8)), we have

1/2
e, 01 = 1sOl| 75| =0 (0<0<).
Hence, if t € A(c(€),c/(€)) then
(2.3.21) f(t) = 0V,

Moreover, by (2.3.7), we have

|arge(e) — arg ¢'(€)|

= |argz — arg(z + Az) + ﬁw%—Tl/zlogll + —A-;—:
= 0(Az) = 0(1)

and hence

(2.3.22) the length of A(c(e),d (g)) = O(e).

Therefore, by (2.3.21) and (2.3.22), we have

c'(e)
/ tLf(t)dt
c(e)

(2.3.23) = O(e'/?).

From (2.3.19), (2.3.20) and this estimate, (2.8.18) follows immediately.
In case 0 < w < 1, the path I'(x) is the line-segment joining 0 to z. The
estimates corresponding to (2.3.19), (2.3.20) and (2.3.23) are obtained
in a similar way and are of order O(e™*{«.1=«}), Thus the lemma is
proved. g
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2.4. Solutions of Painlevé equations

By Proposition 2.1.1 and Theorem 2.2.1, we obtain solutions of Painlevé
equations near the fixed singular points of regular type.

THEOREM 2.4.1. Let
wel- (—oo,O] - [1,-}-&)

be a constant and let k be an arbitrary complez constant. Then

(1) the third Painlevé equation (Pyy) admits a holomorphic solu-
tion with the properties

/\III(w,K;t) - e—xt2u—l(1 + O(|t|2 + Ie—xt2w| + lext2(1—u)|))
and
Mip(w, ;1) = (2w = 1)e™ 272 (1 4 O(Jt? + |e~"t2| + [e*¢2(~))))

in the domain {t € Rq;t? € D(r)},

(2) the fifth Painlevé equation (Py) admits a holomorphic solution
with the properties

M (k) = 1= e (1 + O(|f] + e™t| + [e*1]))
and
M (w,k38) = ~we™ 711+ O(t] + [e™ | + [e*¢1=|))

in the domain D(r),

(3) the sizth Painlevé equation (Py;) admits a holomorphic solu-
tion with the properties

Avi(w, ;) = €7 ¢(1+ O(Jt] + |e™™t=| + |t ~+|))
and
Mi(w, £;8) = we™ " 1+ O([t| + |e™" <] + |e"t1=*))

in the domain D(r).
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Here r is a sufficiently small positive constant depending on w, Ry is
the universal covering of C — {0}, and

D(r)={t€Re;lt| <1, le7"t’| <1, [e*t'™¥| < 7).

Proof. (1) Recall that by the change of variables
A=t"le™¥, t*=1z,

equation (Ppp) is transformed into the normal form obtained in Section
2.1. Substituting a solution of the normal form expressed as

u(w, k;z) = ~wlogz + & + O(|z| + le™*z*| + |e"z'~¥|)

(z € D(r)) into A = t~'e™™ and going back to the original variable
z(= t2), we obtain the solution of equation (Pyj;) expressed as

Ainp{w, k3 t) = t71 exp(—u(w, ; %))
=t  exp(wlogt? — k + O(Jt?] + |e "t2| 4 |e" 121 ~+))))
— e—xt2u—l(1 + O(|t2| + Ie—nt2u| + 'ext2(1—u)l))

which is holomorphic for ¢ € Ry satisfying t* € D(r).

*The derivative Afy(w, &;t) is computed in the following way. Note that

Ar(w, &3 ¢)
(2.4.1) = —t"%exp(—u(w, &; %)) = 2uz(w, k; 1) exp(—u(w, &; %))
= — 711 + 282u  (w, £; 2)) A (w, &3 £2).
Substituting
t2u, (w, k;t2) = —w+ O(|?| + |e"°t2“’| + ]e"tz(l_“’)|),
which is obtained from (2.2.2), into (2.4.1), we obtain
Am(w, 5;t)
=—t71(1 = 2w + O(Jt3) + |e~"t*| + |2 "IN A1 (w, &; 1)
=(2w - l)e_”tz“"'z(l + O(JE| + |e™ "% | + |e’°t2(1"")’)).
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(2) Equation (Py) is transformed into normal form by the change
of variables

2
l1—e™®
( ) an 3 (l+e‘")’ t=uz.

By Theorem 2.2.1, the normal form admits a solution expressed as
u(w, k;7) = —wlog z + k + O(|z| + le~*z*| + |e*z'~|)
in the domain D(r). Hence equation (Py) admits a solution
Av(w, k;t) = tanh?(u(w, k;t)/2)
in D(r). If t € D(r), the absolute value of
exp(—u(w, k;t)) = e~ "t“(1 + O([t| + |e~"t*| + |e"t*~|))

is sufficiently small. Substituting u(w, ;) into (2.4.2), we obtain

1= exp(—u(w, x; 1)) ’
Av(w, k;t) = (1 + exp{—u(w, k; t)))

=1-4dexp(—u(w,«;t)) - [1+ Oexp(—u(w, 5;1)))]
=1-4e™"t“(1 4 O(|t| + |e™"t*| + |e"t'~]))
in D(r). Since x is arbitrary, replacing 4¢~" by e~*, we obtain a solution
in the theorem. The derivative A}, (w, x; ) is obtained as follows:
Ay (w, K5 t)
= u'(w, &;t) tanh (u(w, &5 1) /2) cosh ™2 (u(w, k; t)/2)
= 4u'(w, k; t) exp(—u(w, k; 1)) - [1 + O(exp(—u(w, &; t)))]
in D(r).

(3) The solution Avi(w,;t) of equation (Py;) is obtained in a
similar way. g
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By the asymptotic expressions of solutions of Painlevé equations
and of their normal forms, we can see the behavior of solutions. For
example, consider a solution of equation (Py) expressed as

Av(w, k;t) =1 — e~ (1 + O(Jt| + [e~*t“] + |e*t ™))
in D(r).

1. Let k be an arbitrary complex constant and w be a constant
satisfying 0 < w < 1. Then the solution satisfies

lim Av(w,s;t) =1.
teD(r)

2. Let w = 0y/-1 (0 # 0) is a pure imaginary constant and x be
a complex constant such that [e~*| is sufficiently small. Then the real
interval (0, ) is contained in D(r) and the solution admits the expression

Av(ov-1,k;t)
=1 - e "(cos(c logt) + v—1sin(c logt))(1 + O(le™"*| + |e~t]))

on the real interval (0,r). By Remark 2.2.3,if 0 < t. < r < |e™2¥,
we can replace the remainder term by O(|e~*|). This expression shows
that Av(ov/—1, &; 1) oscillates on the real interval (0, r), if r is sufficiently

small.

3. When a = 8 = 0, the normal form of equation (Py) can be
written as
N Y u -u s 2, 2u 2 —2u
(2.4.3) t(tu') = Z(te —te™") - g(t et —te™ ).

By the change of variables u = v + logt, t2 = z, this equation is trans-
formed into

(244)  a(ene)e = L(aet —e™) - (@) - (7))

which is also in normal form. Applying Theorem 2.2.1 to equation
(2.4.4), we obtain a solution of equation (2.4.3) expressed as

u=Ulw,k;t) = (1 - 2w)logt+«
+ O + [e™"12] + [e=20-2))
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if £ € D(r), where x is an arbitrary complex constant and w is a

constant satisfying (2.2.1). Hence we obtain a solution of equation (Py)
expressed as

A= ®(w, K;t)
2 1 K 2 —r 42 2(1-
= tanh” | { 5 —w Jlogt + = + O(t[* + [e7"t™| + et (1-w)))
if t2 € D(r). If we put w = (1/2) — ev/=1 and & = 2¢'v/=1 (e,d € R),
then, for any A > 0, the domain D(r) includes the sector
largt| < A, |t] <o,

where ry is a sufficiently small positive constant depending on ¢,c’ and
A. Thus we have

THEOREM 2.4.2 Assume that @ = B = 0. Then, for any real constants
c and ¢/, equation (Py) admits a solution ezpressed as

A =¢(c,c;t)
= —tan%(clogt + ¢ + O(t))

in the sector |argt| < A, |t| < ro. Here A is an arbitrary positive
constant and ro is o sufficiently small positive constant,

REMARK  The solution ¢(c,’;t) has infinitely many poles and zeros
near the positive real axis.
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if 2 € D(r), where « is an arbitrary complex constant and w is a

constant satisfying (2.2.1). Hence we obtain a solution of equation (Py)
expressed as

A= ®(w, k;t)

1
= tanh® ((5 - w) logt + g + Ot + e~ t2| + |e"t2(1"")|))
if £ € D(r). If we put w = (1/2) — cv/=1 and & = 2¢'v/—1 (c,¢ € R),
then, for any 4 > 0, the domain D(r) includes the sector
largt| < A, |t] < ro,

where rg is a sufficiently small positive constant depending on c, ¢’ and
A. Thus we have

THEOREM 2.4.2 Assume that « = 8 =0. Then, for any real constants
c and ¢/, equation (Py) admits a solution ezpressed as

A = ¢(c,c';t)
= —tan®(clogt + ¢’ + O(t))

in the sector |argt| < A, |t| < ro. Here A is an arbitrary positive
constant and ro is a sufficiently small positive constant.

REMARK  The solution ¢(c,c’;t) has infinitely many poles and zeros
near the positive real axis.

Bibliography 323

Bibliography

[Aom.1] Aomoto, K., Une remarque sur la solution des équations de L
Schlesinger et Lappo-Danilevski, J. Fac. Sci. Univ. Tokyo, 17(1970
341-354.

[Aom.2] Aomoto, K., Un théoréme du type Matsushima-Murakami concer
nant l'intégrale des fonctions multiformes, J. Math. Pures Appl.
52(1973), 1-11.

[Aom.3] Aomoto, K., Les équations aux différences linéaires et les intégrale
des fonctions multiformes, J. Fac. Sci. Univ. Tokyo, 22(1975), 271
297; Une correction et complément a l’article “Les équations au:
différences linéaires et les intégrales des fonctions multiformes”
ibid., 26(1979),519-523.

-[Aom.4] Aomoto, K., On vanishing of cohomology attached to certain man:

valued meromorphic functions, J. Math. Soc. Japan, 27(1975), 248
255.

[Aom.5] Aomoto, K., On the structure of integrals of power product of linea
functions, Sci. Papers College Gen. Ed. Univ. Tokyo, 27(1977), 49
61.

[AKF] Appell, P et Kampé de Fériet, J. Fonctions hypergéométriques e
hypersphériques, Gauthier Villars, Paris, 1926.
[AW] Askey, R.A. and Wilson, J.A. Some basic hypergeometric orthog
onal polynomials that generalize Jacobi polynomials, Memoirs o
the AMS, AMS, 1985.
[BV] Babbitt, D.G. and Varadrajan, V.S. Local moduli for meromorphi
differential equations, Astérisque, 169-170, 1989.
[Bail] Bailey, W.N. Generalized hypergeometric series. Cambridge Math
ematical Tract No.32. Cambridge Univ. Press, 1935.

[BJL.1] Balser, W., Jurkat, B. and Lutz, D.A., Birkhoff invariants an
Stokes multipliers for meromorphic linear differential equations, J
Math. Anal. Appl., 71(1979) 48-94.

[BJL.2] Balser, W., Jurkat, B. and Lutz, D.A., A general theory of in
variants for meromorphic differential equations; Part I, formal in
variants; Part II, proper invariants, Funkcial. Ekvac., 22, 197-221
257-283 (1979); Part III, Houston J. Math., 6(1980) 149-189.

[BJL.3] Balser, W., Jurkat, B. and Lutz, D.A., On the reduction of connec
tion problems for differential equations with an irregular singula
point to ones with only regular singularities, I., SIAM J. Math
Anal,, 12(1981) 691-721.




324 Bibliography

[Bern] Bernstein, I.N., The analytic continuation of generalised functions
with respect to a parameter, Func. Anal. Akademia Nauk CCCR 6
(4)(1972), 26-40.

[Bieb] Bieberbach, L., Theorie der gewdhnlichen Differentialgleichungen,
Springer-Verlag, 1953,

(Birk] Birkhoff, G. (Editor), A source book in classical analysis, Harvard
Univ. Press, Cambridge, Massachusetts, 1973.

[Bor] Borel, E., Legon sur les séries divergentes, Gauthier Villars, Paris,
1928.

[Bout] Boutroux, P., Recherches sur les transcendantes de M.Painlevé et
Iétude asymptotique des équations différentielles du second ordre,
Ann Sci. Ecole Norm. Sup., (3) 30(1913), 255-375; (3) 31(1914),
99-159.

[Brj] Brjuno, A.D., Analytic form of differential equations, Trans. Mos-
cow Math. Soc., 25(1971), 131-288.

[Bur.1] Bureau, F.J., Differential equations with fixed critical points, 1.

Annali di Matematica, 64(1964), 229-364; II ibid., 66(1964), 1-116.

[Bur.2] Bureau, F.J., qu}_&itions différentielles du second ordre en Y et du
second degré en Y dont l'integrale générale est a points critiques
fixes, ibid., 91(1972), 163-281.

[Chaz] Chazy, J., Sur les équations différentielles du troisiéme ordre et
d’ordre supérieur dont I'intégrale a ses points critiques fixes, Acta.
Math., 34(1911), 317-385.

[CL] Coddington, E.A. and Levinson, N., Theory of Ordinary Differen-
tial Equations, McGraw-Hill, New York, 1955.

[Del] Deligne, P., Equations différentielles & points singuliers réguliers,
Lec. Notes in Math., 163, Springer-Verlag, 1970.

[Eca] Ecalle, J., Les fonctions resurgentes, Tome I,ILIII, Publications
Mathématiques D’Orsay, 85-05, Université de Paris-Sud.

(Erd] Erdélyi, A. (Editor), Higher transcendental functions, I, II and III,
MacGraw Hill, New York, 1953.

(Ext.1] Exton, H. Multiple HGF’s and applications, John Wiley, 1976.

[Ext.2] Exton, H. Handbook of HG integrals, John Wiley, 1978.

[FucR] Fuchs, R., Uber lineare homogene Differentialgleichungen zweiter
Ordnung mit drei im Endlichen gelegenen wesentlich singuliren
Stellen, Math., 63(1907), 301-321.

[Gamb] Gambier, B., Sur les équations différentielles du second ordre et du
premier degré dont I’intégrale générale est & points critiques fixes,
Acta. Math. Ann., 33(1910), 1-55.

Bibliography 325

[Gar.1] Garnier, R., Sur les équations différentielles du troisiéme ordre dont
'intégrale générale est uniforme et sur une classe d’équations nou-
velles d’ordre supérieur dont I'intégrale générale a ses points cri-
tiques fixes, Ann. Ecole Norm. Sup., 29 (1912), 1-126.

[Gar.2] Garnier, R., Etude de l'intégrale générale de 1’équation VI de M.
Painlevé, Ann. Sci. Ecole Norm. Sup. 3° série, 34(1917), 239-353.

[Gar.3] Garnier, R., Contribution & ’étude des solutions de I'équation (V)
de Painlevé , J. Math. Pures Appl., 46(1968), 353-413.

[Gel] Gelfand, .M. General theory of hypergeometric functions, Soviet
Math. Dokl. 33(1986), 573-577.

[GG] Gelfand, I M. and Gelfand, S.I., Generalized hypergeometric equa-
tions, Soviet Math. Dokl. 33(1986), 643-646.

[GGR.1] Gelfand, .M. and Graev, M.L,, Hypergeometric functions associ-
ated with the Grassmannian G3g, Soviet Math. Dokl. 35(1987),
298-303.

[GGR.2] Gelfand, M. and Graev, M.I., Generalized hypergeometric func-
tions on the Grassmannian G3 ¢ (in Russian), Preprint 123 Keldysh
Inst. of Appl. Math. (1987).

[GGR.3] Gelfand, M. and Graev, M.I., Strata in G3 4 and the associated
hypergeometric functions (in Russian), Preprint 127 Keldysh Inst.
of Appl. Math. (1987).

[Gér.1] Gérard, R., Une classe d’équations différentielles non linéaires &
singularité réguliére, Funkcial. Ekvac., 29(1986), 55-76.

[Gér.2] Gérard, R., Etude locale des équations différentielles de la forme
zy’ = f(z,y) au voisinage de £ = 0, J. Fac. Sci. Univ. Tokyc
36(1989), 729-752

[GL.1] Gérard, R. and Levelt, A.H.M., Etude d’une classe particuliére de
systemes de Pfaff du type de Fuchs sur 1’espace projectif complexe
J. Math. pures et appl., 51(1972), 189-217.

[GL.2] Gérard, R. and Levelt, A.H.M., Sur les connexions & singularité:
régulieres dans le cas de plusieurs variables, Funkcial. Ekvac.
19(1976), 149-173.

[GR] Gérard, R. and Ramis, J.-P. (editors), Equations Différentielles e
Systemes de Pfaff dans le Champ Compexe, I, II, Lec. Note it
Math., Springer, 712, 1979; ibid 1015, 1983.

[GO] Gérard, R. and Okamoto, K. (editors), Equations différentielle:
dans le champ complexe (colloque franco-japonais 1985), I, IT, III
Publications IRMA,(1989).

[GS] Gérard, R. and Sibuya, Y., Etude de certains systémes de Pfaff ave
singularités, Lec. Note in Math., Springer, 712, 1979.




326 Bibliography

[Gol] Golubew, W.W., Vorlesungen iber Differentialgleichungen im
Komplexen, Deutscher Verlag der Wiss. Berlin, 1958.
[Gol] Golubeva, V.A., Some problems in the analytic theory of Feynman
integrals, Russian Math. Surveys 31 (1976), 139-207.
[Gray] Gray, J., Linear differential equations and group theory from Rie-
mann to Poincaré, Birkhiuser, 1986.
[Gun] Gunning, R.C. Lectures on Vector Bundles over Riemann Surfaces,
Mathematical Notes vol. 6 Princeton, Princeton University Press,
1967.
[HSY] Hara, M., Sasaki, T. and Yoshida, M., Tensor products of linear
differential equations, Funkcial. Ekvac., 32(1989), 455-477.
- ar.1] Haraoka, Y., Theorems of Sibuya-Malgrange type for Gevrey func-
tions of several variables, Funkcial. Ekvac., 32(1989), 365-388.
[Har.2) Haraoka, Y., G-primitive extensions for linear ordinary differential
equations, Kumamoto J. Math., 3(1990).
[Har.3] Haraoka, Y., The Galois theory for linear homogeneous partial dif-
ferential equations of the first order, Funkcial. Ekvac., 33(1990).
[HK) Hattori, A. and Kimura, T., On the Euler integral representations
of hypergeometric functions in several variables, J. of Math. Soc.
of Japan, 26(1974), 1-16.
{Hil} Hille, E., Ordinary differential equations in the complex domain,
Wiley-Interscience Publication, New York-London-Sydney-Tronto,
1978.
[Huk.1] Hukuhara, M., Sur les points singuliers des équations différentielles
- linéaires: domain réel, J. Fac. Sci. Hokkaido Imp. Univ., 2(1934),
13-88.
[Huk.2] Hukuhara, M., Sur les points singuliers des équations différentielles
linéaires II, J.Fac.Sci. Hokkaido Univ., 5 (1937), 157-166.
[Huk.3] Hukuhara, M., Sur les points singuliers d’une équation différentielle
ordinaire du premier ordre, I, II, III, IV, Mem. Fac. Eng. Kyushu
Imp. Univ., 8(1937), 203-247; Proc. Phys.-Math. Soc. Japan, 20
(1938), 157-189; ibid 20(1938), 409-441; ibid 20(1938), 865-907.
[Huk.4] Hukuhara, M., Intégration formelle d’un systéme d’equations dif-
férentielles non linéaires dans le voisinage d’un point singulier, Ann.
Mat. Pura Appl., 19(1940), 35-44.
[Huk.5] Hukuhara, M., Sur les points singuliers des équations différentielles
linéaires III, Mem. Fac. Sci. Kyushu Univ., 2 (1941), 125-137.
[Huk.6] Hukuhara, M., Quelques remarques sur le mémoire de P. Painlevé
sur les équations différentielles dont l'intégrale générale est uni-
forme, Pub. Res. Inst. Math. Sci., A3(1967), 139-159.

Bibliography 327

[Huk.7] Hukuhara, M., Theory of ordinary differential equations, (in Japa
nese), Iwanami-Zensho, 1950, 2-nd edition, 1980.

(HKM] Hukuhara, M., Kimura, T., and Matuda, T., Equations différen
tielles ordinaires du premier ordre dans le champ complexe, Math
Soc. Jap., Tokyo, 1961.
[Inc] Ince, E.L., Ordidnary Differential Equations, Dover, 1956.
[Inui] Inui, T., Special functions (in Japanese), Iwanami, 1962.
[IN] Its, A.R. and Novokshenov, V,Yu., The isomonodromic deformatio:
method in the theory of Painlevé equations, Lec. Notes in Math
1191, Springer, 1986.
[Iwn.1] Iwano, M., Intégration analytique d’un systéme d’équations différ
entielles non linéaires daus le voisinage d’un point singulier, I, II
Ann. Mat. Pura Appl., 44(1957), 261-292, 47(1959), 91-150.

" [Iwn.2] Iwano, M., On a singular point of Briot-Bouquet type of a systen

of ordinary nonlinear differential equations, Comment. Math. Univ
St. Paul., 11(1963), 37-78.

[Iwn.3] Iwano, M., On general solution of a first-order non-linear differen
tial equation of the form z(dy/dz) = y(A + f(z,y)) with negativ.
rational A, Ann. Mat. Pura Appl., 126(1980), 19-80.

[Iwn.4] Iwano, M., On a general solution of a non-linear 2-system of th
form 22dw/dz = Aw + zh(z,w) with a constant matrix A of signa
ture (1.1), Tohoku Math. J., 32(1980), 453-486.

[Iwn.5] Iwano, M., On an n-parameter family of solutions of a nonlinear n
systems with an irregular type singularity, Ann. Mat. Pura Appl.
140(1985), 57-132.

[Iwn.6]) Iwano, M., Schwartz Theory , Math. Seminar Notes, Tokyo Metro
politan Univ., 1989.

[Iwn.7] Iwano, M., A general solution of a system of nonlinear ordinary
differential equations zy’ = f(z,y) in the case when f,(0,0) is th
zero matrix, Ann. Mat. Pura. Appl., 83(1969), 1-42.

(Iwn.8) Iwano, M., Applications of Nagumo-Hukuhara theory on the
boundary value problems for nonlinear ordinary differential equa
tions, Ann. Mat. Pura. Appl., 113(1977), 303-392.

(Iwn.9] Iwano, M., Analytic expressions for bounded solutions of non-lineas
ordinary differential equations with an irregular type singular point
Ann. Mat. Pura. Appl., LXXXII(1969), 189-256.

{Iwn.10] Iwano, M., Analytic integration of a system of nonlinear ordinary
differential equations with an irregular type singularity LII, Ann
Mat. Pura. Appl., 94(1972) 109-160, 99 (1974) 221-246.




328 Bibliography

[Tws.1] Iwasaki, K., On the Riemann-Hilbert-Birkhoff problem for ordinary
differential equations containing a parameter, J. Fac. Sci. Univ.
Tokyo 35(1988), 251-312.
[Iws.2] Iwasaki, K., Riemann equation of harmonic equation and Appell’s
F,, SIAM J. Math. Anal., 19(1988), 902-917.
[Iws.3] Iwasaki, K., Moduli and deformation for Fuchsian projective con-
nections on a Riemann surface, Univ. Tokyo preprint 89-16.
[Jimb] Jimbo, M., Monodromy problem and the boundary condition for
some Painlevé equations, Publ. Res. Inst. Math. Sci., 18(1982),
1137-1161.
‘MU] Jimbo, M., Miwa, T. and Ueno, K., Monodromy preserving defor-
mation of linear ordinary differential equations with rational coef-
ficients, I, Physica D, 2(1981), 306-352.
[JM] Jimbo, M. and Miwa, T., Monodromy preserving deformation of
linear ordinary differential equations with rational coefficients, II,
Physica D, 2(1981), 407-448. .
[Jou] Jouanolou, J.P., Equations de Pfaff Algébriques, Lec. Note in
Math., Springer-Verlag, 708(1979).
[Kam.1] Kametaka, Y., On the Euler-Poissor-Darboux equation and the
Toda equation I, Proc. Japan. Acad. 60A(1984), 145-148, II, ibid
181-184.
[Kam.2] Kametaka, Y., Hypergeometric solutions of Toda equation, RIMS
Kokyuroku 554(1985), 26-46.
[KNFH] Kametaka, Y., Noda, M., Fukui, Y. and Hirano, S, A numerical
approach to Toda equation and Painlevé II equations, Mem. Fac.
Eng. Ehime Univ. 9(1986), 1-26.
[Kas] Kashiwara, M., b-functions and holonomic systems, rationality of
roots of b-functions, Inv. Math. 38(1976), 33-53.
KimH.1] Kimura, H., On the isomonodromic deformation of linear ordinary
differential equations of the third order, Proc. Jap. Acad., 57(1981),
446-449.
KimH.2] Kimura, H., The construction of a general solution of a Hamiltonian
system with regular type singularity and its application to Painlevé
equations, Ann. Mat. Pura Appl., 134(1983), 363-392.
KimH.3] Kimura, H., The degeneration of the two dimensional Garnier sys-
tem and the polynomial Hamiltonian structure, Ann. Mat. Pura.
Appl., (to appear in 1989).
KimH.4] Kimura, H., Feuilletage uniforme associé au systéme de Garnjer,
Tokyo Univ., preprint (1988).
[KO.1] Kimura, H. and Okamoto, K., On the isomonodromic deformation

Bibliography 32

of linear ordidnary differential equations of higher order, Funkci
Ekvac., 26(1983), 37-50.

[KO.2] Kimura, H. and Okamoto, K., On the polynomial Hamiltoni
structure of the Garnier systems, J. Math. Pures et Appl., 63(198
129-146.

[KO.3] Kimura, H. and Okamoto, K., On particular solutions of Garn:
systems and the hypergeometric functions of several variables,
Quarterly J. Math., 37(1986), 61-80.

[KimT.0] Kimura, T., Ordinary differential equations (in Japanese), Kyori
Publ., 1978. '

[KimT.1] Kimura, T., Sur une généralisation d’un théoréme de Malmquist.
I1, I1I, Commentarii Math. Univ. Sancti Pauli, 2(1953), 23-28; it
3(1955), 97-107; ibid 4(1955), 25-41.

[KimT.2] Kimura, T., Sur les points singuliers des équations différentiel

' ordinaires, I, II, Commentarii Math. Univ. Sancti Pauli, 2(195
47-53; ibid 3(1954), 43-49.

[KimT.3] Kimura, T., Sur la propriété d’Iversen et 1’équation différentie
ordinaire du second ordre, Commentarii Math. Univ. Sancti Pau
7(1960-1), 63-70.

[KimT.4] Kimura, T., Sur la propriété d’Iversen et I'équation différentielle ¢
dinaire du second ordre, II, Commentarii Math. Univ. Sancti Pau
8(1961-2), 87-90.

[KimT.5] Kimura, T., Sur la direction de Julia au point singulier fixe d’u
équation différentielle du premier ordre, Funkcial. Ekvac., 4(196:
1-27.

[KimT.6] Kimura, T., On Riemann’s equations which are solvable by quad
tures, Funkcial. Ekvac., 12(1969-70), 269-281.

[KimT.7] Kimura, T., On Fuchsian differential equations reducible to hyp:
geometric equations by linear transformations, Funkcial. Ekva
13(1970), 213-232.

[KimT.8] Kimura, T, Hypergeometric functions of two variables, Semin
Note in Math, Univ. of Tokyo, 1973.

[KimT.9] Kimura, T., Ordinary differential equations II, Kisosugaku-koz
Iwanami, (in japanese), 1976.

[KimT.10] Kimura, T., Analytic theory of ordinary differential equations, I
Global theory of nonlinear differential equations, Recent Progre
of Natural Sciences in Japan, Science Council of Japan, 1(197¢
47-55.

[KimT.11] Kimura, T., On the isomonodromic deformation for linear ordina
differential equations of the second order, I, II, Proc. Jap. Aca




330 Bibliography

57(1981), 285-290; ibid 58(1982), 204-297.
[KS] Kimura, T. and Shima, K., On the monodromy of the hypergeo-
metric differential equation (in preparation)
[Kin] Kinosita, K., On the system of Pfaffian equations of Briot- Bouquet
type I, J. Fac. Sci. Univ. Tokyo, 24(1977), 341-356.
[Kit] Kita, M., The Riemann-Hilbert problem and its application to an-
alytic functions of several complex variables, Tokyo J. of Math., 2
(1979), 1-27.
[KN] Kita, M. and Noumi, M., On the structure of cohomology groups
attached to the integral of certain many-valued anaytic functions,
Jap. J. Math. 9(1983), 113-157.
(Kle] Klein, F., Vorlesungen iiber die hypergeometrische Funktion,
Springer-Verlag, 1933.
[Koh.1] Kohno, M., An extended Airy function of the first kind, Hiroshima
Math. J. 9(1979), 473-489.
[Koh.2] Kohno, M., A two point connection problem, Hiroshima Math. J.
9(1979), 61-135.
[Koh.3] Kohno, M., A simple reduction of single linear differential equations
to Birkhoff and Schlesinger’s canonical systems, Kumamoto J. of
Math. 2(1989), 1-18.
[KY] Kohno, M. and Yokoyama, T., A central connection problem for a
normal system of linear differential equations, Hiroshima Math. J.
14 (1984), 257-263.
[LM] Léauté, B. and Marcilhacy, G., Sur certaines solutions particuliéres
transcendentes des équations d’Einstein, Ann. Inst. H.Poincaré
Sect. A, 31(1979), 363-375.
MTW] MacCoy, B.M., Tracy, C.A. and Wu, T.T., Painlevé functions of
the third kind, J. Math. Phys., 18(1977), 1058-1092.

Majm] Majima, H., Asymptotic Analysis for Integrable Connections with
[rregular Singular Points, Lec. Note in Math., Springer-Verlag,
1075 (1984).

Malg.1] Malgrange, B., Sur les polynémes de I.N.Bernstein, Uspekhi Math.

Nauk 24-9 (1974), 81-88.

Malg.2] Malgrange, B., Sur les déformation isomonodromiques, I. Singu-

larités régulierés, séminaire E.N.S. Birkhauser, 1982.

[Mal.1] Malmquist, J., Sur les fonctions d’un nombre fini de branches défi-

nies par les équations différentielles du premier ordre, Acta Math.,

36(1913), 297-343.

[Mal.2] Malmquist, J., Sur les équations différentielles du second ordre dont

lintégrale générale a ses points critiques fixes, Arkiv. Math. Astr.

Bibliography 33

Fys., 17(1922-23), 1-89.

[Mal.3] Malmquist, J., Sur I’étude analytique des solutions d'un systé
d’équations différentielles dans le voisinage d’un point singul
d'indétermination, I, II, III, Acta Math., 73 (1940), 87-129, 7
(1941), 1-64, 74(1941), 109-128,

[MR] Mastinet, J. and Ramis, J.P., Problém de modules pour des équ
tions différentielles non-linéaires du premier ordre, Publ. LH.E
55 (1982) 63-164.

[MatM] Matsuda, M. First order algebraic differential equations, Lec. N¢

in Math., Springer, 804(1980).

[MatT] Matuda, T., Etude de I’équation différentielle ordinaire sur u
surface de Riemann, Funkcial. Ekvac.,3(1961), 75-103.

[MSY] Matsumoto, K., Sasaki, T. and Yoshida, M., The period map o:
4-parameter family of K'3 surfaces and the Aomoto-Gelfand hyp:
geometric function of type (3, 6), Proc. J. Acad. 64(1988), 307-3:

[Mill.1] Miller, W.Jr., Lie theory and the Lauricella functions Fp, J. Maf
Phys. 13(1972), 1393-1399.

[Mill.2] Miller, W.Jr., Lie theory and generalized hypergeometric functio
SIAM J. Math. Anal. 3(1972), 31-44.

[Mill.3] Miller, W.Jr., Symmetry and separation of variables, Encyclopec
of Mathematics and its application, Vol.4, Addison-Wesley, M
1977.

[Mill.4] Miller, W.Jr., Symmetries of differential equations, the hyperg

ometric and Euler-Darboux equation, SIAM. J. Math. Annl.
(1973), 314-328.

[Mis] Misaki, N., Reducibility of the Pochhammer equation of ord
three, Master thesis, Tokyo Univ., (1973).

[Miw] Miwa, T., Painlevé property of monodromy preserving deformati
equations and the analyticity of 7 functions, Publ. RIMS, Kyo
Univ., 17(1981), 703-721.

[Mur.1l] Murata, Y., Rational solutions of the second and the fourth
Painlevé equations, Funkcial. Ekvac., 28(1985), 1-32.

[Mur.2] Murata, Y., On fixed and movable singularities of systems of 1
tional differential equations of order n, J. Fac. Sci. Univ. Toky
35(1988), 436-506.

[Mur.3] Murata, Y., The Picard type theorem for essential singularities
solutions of systems of n rational differential equations., J. Di
Eq., 82(1989), 174-190.

[Mur.4] Murata, Y., Classical solutions of the third Painlevé equation,
Nagasaki Univ., preprint (1989).




332 Bibliography

[Nag] Nagumo, M., Degree of mapping in convex linear topological spaces,
Amer. J. Math. 73(1951), 497-511.

[Nism] Nishimoto, T., Global disperation relation for density waves in a
certain simplified model of disk shaped galaxy, Studies in Appl.
Math., 60(1979), 11-26.

[Nis.1] Nishioka, K., General solutions of algebraic differential equations
(in Japanese), Seminar on Math. Sci. Keio Univ. No. 11, 1987.

[Nis.2] Nishioka, K., A note on the transcendency of Painlevé first tran-
scendent, Nagoya Math. J., 109(1988), 63-67.

[Nis.3] Nishioka, K., Differential algebraic function fields depending ratio-
nally on arbitrary constants, Nagoya Math. J., 113(1989), 173-179.

tivis.4] Nishioka, K., General solutions depending rationally on arbitrary
constants, Nagoya Math. J., 113(1989), 1-6.

[Noum] Noumi, M., Wronskian determinants and the Grébner representa-
tion of a linear differential equation, in Algebraic Analysis. Papers
Dedicated to Prof. Mikio Sato on the Occasion of His 60th Birthday.
Ed. by M. Kashiwara and T. Kawai. Academic Press, 1989.

[Oht.1] Ohtsuki, M., A residue formula for Chern classes associated with
logarithmic connections, Tokyo J. of Math., 5(1982), 13-21.

[Oht.2] Ohtsuki, M., On the number of apparent singularities of a linear
differential equations, Tokyo J. of Math. 5(1982), 23-29.

Okm.1] Okamoto, K., Sur les feuilletages associés aux équations du second
ordre a points critiques fixes de P. Painlevé, Jap. J. Math., 5(1979),
1-79.

Okm.2] Okamoto, K., Déformation d’'une équation différentielle linéaire
avec une singularité irréguliére sur un tore, J. Fac. Sci. Univ. Tokyo
Sec. IA, 26(1979), 501-518.

Okm.3] Okamoto, K., Polynomial Hamiltonians associated with Painlevé
equations, I, II, Proc. Japan Acad., 56, Ser. A (1980), 264-268;
ibid, 367-371.

v .m.4] Okamoto, K., On the 7-function of the Painlevé equations, Physica
D, 2(1981), 525-535.

Okm.5] Okamoto, K., Introduction to the Painlevé equations (in Japanese),
Sophia Kokyuroku in Math. 19, Sophia Univ.,1985.

Okm.6] Okamoto, K., Isomonodromic deformation and Painlevé equations
and the Garnier system, J. Fac. Sci. Univ. Tokyo Sec. IA, Math.
33 (1986), 575-618.

Okm.7] Okamoto, K., Studies on the Painlevé equations, I, Ann. Mat. Pura
Appl., 146(1987), 337-381; II, Jap.J.Math., 13(1987), 47-76; I1I,
Math. Ann., 275(1986), 221-256;IV, Funkcial. Ekvac., 30(1987),

Bibliography 33

305-332.

[Okm.8] Okamoto, K., Sur les échelles associées aux fonctions spéciales «
l’équation de Toda, J. Fac. Sci. Univ. Tokyo, Sect. IA 34(1987
709-740.

[Okm.9] Okamoto, K., The Hamiltonian structure derived from the Hol
nomic Deformation of the linear ordinary differential equatio
on an elliptic curve, Sci. Papers College Arts Sci. Univ. Toky
37(1987), 1-11.

[Okm.10] Okamoto, K., Echelles et I’équation de Toda, Univ. Tokyo prepri:
87-04. :

[Okm.11] Okamoto, K., Elliptic Garnier systems, Univ. Tokyo preprint 87-0

[Okm.12] Okamoto, K., Bicklund transformations of classical orthogonal
polynomials, (Colloque franco-japonais 1985), Publ. IRMA, Uni
de Strasbourg, 1989.

'[Okm.13] Okamoto, K., The Painlevé equations and the Dynkin diagram

Proc. of the NATO workshop, (to appear in 1991).

[Okub.1] Okubo, K., A global representation of a fundamental set of solutio:
and a Stokes phenomenon for a system of linear ordinary differenti
equations, J. Math. Soc. Japan 15(1963), 268-288.

[Okub.2] Okubo, K., Connection problems for systems of linear differenti
equations, Proc. of Jap.-U.S. seminar on ordinary differential ar
functional equations, Lec. Notes in Math., 243, Springer, 1971.

[Okub.3] Okubo, K., Group of Fuchsian equations, Seminar report of Tok;
Metropolitan Univ., 1988.

[OTY] Okubo, K., Takano, K. and Yoshida, S., A connection problem f
the generalized hypergeometric equation, Funkcial. Ekvac., 31
(1988), 483-495.
[Pain] Painlevé, P., (Buvres t. I, II, ITII, SNRS, Paris, 1976.
[Pic] Picard, E., Remarques sur les équations différentielles, Acta. Matl
17(1893), 297-300.
[Plem] Plemelj, J., Problems in the sense of Riemann and Klein, Inte
science, 1964.
[Ram.1] Ramis, J.P., Dévissage Gevrey, Astérisque 59-60(1978), 173-204
[Ram.2] Ramis, J.P., Les séries k-sommables et leurs applications, Lec. No
in Phys., Springer 126(1980), 178-199.
[Ram.3] Ramis, J.P., Phénoméne de Stokes et filtration Gevrey sur le grou
de Picard-Vessiot, C.R. Acad. Sc. Paris 301(1985), 165-167.
[Ram.4] Ramis, J.P., Phénomeéne de Stokes et resommation, C.R. Acad. £
Patis 301(1985), 99-102.




334 Bibliography

[Ram.5] Ramis, J.P., Filtration Gevrey sur le groupe de Picard-Vessiot d’une
équation différentielle irréguliére, preprint, Instituto de Matematica
Pura a Aplicada, Rio de Janeiro, 45(1985), 38 pages.
(R6h] Rohrl, H., Das Riemann-Hilbertsche Problem der Theorie der lin-
earen Differntialgleichungen, Math. Ann., 133(1957), 1-25.
(Sait.1] Saito, T., A note on the linear differential equation of Fuchsian
type with algebraic coefficients, Kodai Math. Seminar Reports,
10(1958), 58-63.
[Sait.2] Saito, T., On Fuchs’ relation for the linear differential equation with
algebraic coefficients, ibid., 10(1958), 101-104.
"“asai] Sasai, T., On a monodromy group and irreducibility conditions of
a fourth order Fuchsian differential system of Okubo type, J. Reine
- Angew. Math. 299/300(1978), 38-50.
[ST] Sasai, T. and Tsuchiya, S., On a fourth order Fuchsian differential
equation of Okubo type, Funkcial. Ekvac., 33(1990).
[Sski] Sasaki, T., Contiguity relations of Aomoto-Gelfand hypergeometric
functions and their application to Appell’s system F3 and Goursat’s
system 3F, to appear in SIAM Math. Analysis (1991).
[SY.1] Sasaki, T. and Yoshida, M., Linear differential equations in two
variables of rank 4, Math. Ann. 282(1988), 69-111.
[SY.2] Sasaki, T. and Yoshida, M., Linear differential equations modeled
after hyperquadrics, Tohoku Math. J. 41(1989), 321-348.
[SY.3] Sasaki, T. and Yoshida, M., Tensor products of linear differential
equations II, Funkcial. Ekvac.33(1990), 527-549.
[Schl] Schlesinger, L., Uber eine Klasse von Differentialsystemen be-
liebliger Ordnung mit festen kritischen Punkten, J. fiir Math., 141
(1912), 96-145.
Shim.1] Shimomura, S., Painlevé transcendents in the neighbourhood of
fixed singular points, Funkcial. Ekvac., 25(1982), 163-184.
Shim.2] Shimomura, S., Series expansions of Painlevé transcendents in
the neighbourhood of a fixed singular point, Funkcial. Ekvac., 25
(1982), 185-197.
shim.3] Shimomura, S., Supplement to “Series expansions of Painlevé tran-
scendents in the neighbourhood of a fixed singular point”, Funkcial.
Ekvac., 25(1982), 363-371.
shim.4] Shimomura, S. Analytic integration of some nonlinear ordinary dif-
ferential equations and the fifth Painlevé equation in the neighbour-
hood of an irregular singular point, Funkcial. Ekvac., 26 (1983),
301-338.
him.5] Shimomura, S., On solutions of the fifth Painlevé equation on the

Bibliography 33

positive real axis I, II, Funkcial. Ekvac., 28(1985), 341-370, :
(1987), 203-224.

[Shim.6] Shimomura, S., A family of solutions of a nonlinear ordinary diffe
ential equation and its application to Painlevé equations (IIT),("
and (VI), J. Math Soc. Japan, 39(1987), 649-662.

[Sib.1] Sibuya, Y., Sur un systéme des équations différentielles ordinair
linéaires a coefficients périodiques et contenant des paramétres,
Fac. Sci. Univ. Tokyo, 7(1954), 229-241.

[Sib.2] Sibuya, Y., Sur réduction analytique d’un systéme d’équations d
férentielles ordinaires linéaires contenant un parameétre, J. Fac. S
Univ. Tokyo, 7(1958), 527-540.

[Sib.3] Sibuya, Y., Simplification of a system of linear ordinary different;
equaitons about a singular point, Funkcial. Ekvac., 4(1962), 29-5

[Sib.4] Sibuya, Y., Asymptotic solutions of a system of linear ordina
differential equaitons containing a parameter, Funkcial. Ekvac.,
(1962), 83-113.

[Sib.5] Sibuya, Y., Formal solutions of a linear ordinary differential equ
tion of the n th order at a turning point, Funkcial. Ekvac., 4(196:
115-139.

[Sib.6] Sibuya, Y., Global theory of second order linear ordinary diffe
ential equations with a polynomial coefficient, Math. Studies 1
North-Holland, 1975.

[Sib.7] Sibuya, Y., Linear ordinary differential equations in the compl
domain, Kinokuniya-shoten (1976), (in Japanese).

[Sie.1] Siegel, C.L., Topics in complex function theory I, Wile
Interscience, 1969. '

[Sie.2] Siegel, C.L., Uber die Normalform analytischer Differentialg]
ichungen in der Nihe einer Gleichgewichtslosung, Nachr, Aka
Wiss. Géttingen, Math.-Phys. Kl. (1952), 21-30.

[Sie.3] Siegel, C.L., Uber die Existenz einer Normalform analytischer
Hamiltonischer Differentialgleichungen in der Nahe einer Gleic
gewichtslosung, Math. Ann., 128(1954), 144-170.

[Slat] Slater, L.J., Generalized hypergeometric functions, Cambridge Ui
versity Press, 1966.

[Tkn.1] Takano, K., A 2-parameter family of solutions of Painlevé equ
tion(V) near the point at infinity, Funkcial. Ekvac., 26 (1983),7
113.

[Tkn.2] Takano, K., Reduction for Painlevé equations at the fixed singul
points of the first kind, Funkcial. Ekvac., 29(1986), 99-119.

[Tkn.3] Takano, K., Reduction for Painlevé equations at the fixed singul




336 Bibliography

points of the second kind, J. Math. Soc. of Japan, {to appear in
1990). ‘

[TSY] Takano, K., Shimomura, S. and Yoshida, S., On the fixed singu-
lar points of Painlevé equations, Sugaku, 39(1987), 289-304, Jap.
Math. Soc. (in Japanese).

[TB] Takano, K. and Bannai, E, A global study of Jordan-Pochhammer
differential equations, Funkcial. Ekvac., 19(1976), 85-99.

[Tky.1] Takayama, N., Grébner basis and the problem of contiguous rela-
tions, Japan J. Appl. Math., 6(1989), 147-160.

[Tky.2] Takayama, N., Holonomic solutions of Weisner’s operator, Funkcial.
Ekvac., 32(1989), 323-341.

|+Ky.3) Takayama, N., An approach to the zero recognition problem by
Buchberger algorithm, J. Symbolic Computation (to appear 1991).

[Tky.4] Takayama, N., Monodromy transformation formula of Euler-
Darboux equation, Kobe Univ. preprint (1989).

[Tky.5] Takayama, N., An algorithm of constructing the integral of a mod-
ule — an infinite dimensional analog of Grdébner basis, Proc. of
ISSAC’90, ACM Press (to appear 1990).

[Trji] Trjitzinsky, W.J., Analytic theory of nonlinear singular differential
equations, Mém. Sci. Math., Gauthier Villars, 1938.

[Tsu.1] Tsutsui, T., Linear partial differential equations with regular sin-
gularities in all variables, Japan J. Math., 11(1985), 131-143.

[Tsu.2] Tsutsui, T., On the Cauchy problem with ramified initial data
whose singular loci are intersecting hypersurfaces, Chiba Uni., pre-
print (1987).

[Tsu.3] Tsutsui, T., Fuchsian initial value problem on P?(C) with hyper-

geometric functions as data along P*(C), preprint (1988).

[Tur] Turrittin, H.L., Convergent solutions of ordinary linear homoge-
neous differential equaitons in the neighborhood of an irregular
singular point, Acta Math., 93(1955), 27-66.

. :n.1] Ueno, K., Hypergeometric series formulas through operator calcu-

lus, Funkcial. Ekvac.(to appear in 1990).

[Uen.2] Ueno, K., Hypergeometric series formulas generated by the Chu-

Vandermonde convolution, Mem. Fac. Sci. Kyushu Univ. (to appear

in 1990).

[Uen.3] Ueno, K., Umbral calculus and special functions, Adv. in Math.

67(1988), 174-229.

Ume.1] Umemura, H., Algebro-geometric problems arising from Painlevé’s

work, Algebraic and Topological Theories, Kinokuniya Tokyo

(1985), 467-495.

Bibliography 33

[Ume.2] Umemura, H., Birational automorphism groups and differntial
equations, in [GOJ.

[Ume.3) Umemura, H., On the irreducibility of the first differential equati
of Painlevé, Algebraic geometry and Commutative algebra in hon
of Masayoshi Nagata, (1987), 101-119.

{Ume.4] Umemura, H., On the second proof of the irreducibility of the fi1
differential equation of Painlevé, Kumamoto Univ. preprint (198¢

[Vil] Vilenkin, N.J., Special functions and the theory of group represe

tations, Transl. of Math. monographs, vol. 22, AMS Providenc
Rhode Island, 1968.

[Waso] Wasow, W., Asymptotic expansions for ordinary differential equ
tions, Interscience, 1965.

[WW] Whittaker, E.T. and Watson, A., A course of modern analys
Cambridge Univ. Press, 1972.

[Witt] Wittich, H., Neuere Untersuchungen ber Eindeutige Analytisc
Functionen, Springer, Berlin-Géttingen- Heidelberg, 1955.

[Yag] Yagami, T., On Gevrey asymptotic solutions of linear Pfaffian equ

tions, Master’s Thesis, Univ.Tokyo (1983).

[Yok.1] Yokoyama, T., On connection formulas for a fourth order hyperg
ometric system, Hiroshima Math. J., 15(1985), 297-320.

[Yok.2] Yokoyama, T., Characterization of connection coefficients for h
pergeometric system, Hiroshima Math. J., 17(1987), 225-239.

[Yok.3] Yokoyama, T., On the structure of connection coefficients for h
pergeometric systems, Hiroshima Math. J., 18(1988), 309-239.

[Yok.4] Yokoyama, T., A system of total differential equations of tv
variables and its monodromy group, submitted to Funkcial. E
vac.(1989).

[YosM] Yoshida, M., Fuchsian differential equations, Vieweg Verlag, Wie
baden, 1987.

[YosS.1] Yoshida, S., A 2-parameter family of solutions of Painlevé equatio
(I)-(V) at an irregular singular point, Funkcial. Ekvac., 28(1985
233-248.

[YosS.2] Yoshida, S., A general solution of a nonlinear 2-system withot
Poincaré’s condition af an irregular singular point, Funkcial. E
vac., 27 (1984), 367-391.

[Zei] Zeilberger, D., A holonomic systems approach to special functios
identities, J. of Computational and Applied Math. (to appear :

1991).
[2T.1] Zograf, P.G. and Takhtadzhyan, L.A., On Liouville’s equation, a
cessary parameters and the geometry of Teichmiilier space for Ri




338 Bibliography

mann surfaces of genus 0, Mat. USSR Sbornik (AMS), 60-1(1988),
143-161.

|ZT.2] Zograf, P.G. and Takhtadzhyan, L.A., On uniformization of Rie-
mann surfaces and the Weil-Petersson metric on Teichmiiller and
Schottky spaces, Mat. USSR Sbornik (AMS), 60-2(1988), 297-313.

Notes on the chapter titlepage illustrations 339

Notes on the chapter titlepage illustrations

The titlepage illustration of Chapter 1 shows a solution of the Tode

equation expressed by rational solutions of the second Painlevé equatior
[KNFH].

The titlepage illustration of Chapter 2 shows a solution of the Toda
equation expressed by the Bessel function, as drawn by N. Takayama.

The titlepage illustration of Chapter 3 shows a group of symmetries
of the fourth Painlevé equation [Mur.1].

The titlepage illustration of Chapter 4 shows the distribution of
poles of a rational solution of the second Painlevé equation [KNFH].
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Index of symbols

General

N: set of positive integers

—N: set of negative integers

No: set of non-negative integers

—No: set of non-positive integers

Z: ring of integers

R: field of real numbers

C: field of complex numbers

C*: multiplicative group of non-zero complex numbers
Rz: real part of a complex number z

Jz: imaginary part of a complex number =
(@)m:=cla+1)---(a+m-1) ‘
C™: n-dimensional complex affine space

P": n-dimensional complex projective space
B(z,y): Beta function

I'(z): Gamma function

6i;: Kronecker’s symbol

R[zy,...,z,]): polynomial ring over a ring R with variables z;,...,2,

F(zy1,...,z,): field of rational functions over a field F with variables
"ZT1y,...4Tq

I.: identity matrix of size n

diag[ay,...,a,]: diagonal matrix (6;;a;)

GL(n, R): general linear group of dimension n over a ring R
PGL(n,R): projectivization of GL(n, R)

SL(n,R) := {X € GL(n,R)|detX =1}

PSL(n,R): projectivization of SL(n, R)

Ga: symmetric group on n letters

m1(X, z): fundamental group of X with base z

AutX: group of analytic automorphisms of a complex manifold X
(a,b,...): group generated by a,b,...

[a,b] := aba~'b"!: commutator "

{f,g}: Poisson bracket of fandg . . . . . . . . . .. . 17,172
Resg—q: residue at z = a /

(: Landau’s symbol

~: isomorphism of groups
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Chapter 2
F(a, 3,7;z): hypergeometric series . . . . ., . . . . . . ... 31
E(a, 3,7): hypergeometric differential equation . . . . . . . . . 30
R(a,,7): Riemann scheme of E(a,8,7) . . . . . . . . ... 36
L{w, 8,7): hypergeometric differential operator . . . . . . . . . 44
RE(p,0,7): Riemann equation . . . . . . . . ... . .. .. 55
Dg: Euler transform . . . . . . ... ... L, 55
D?: hypergeometric Euler transform . . . . . . . . .. .. . 62

Fpq: solution of E{c, 3,7) given by an integral over the arc 5§ 65, 96
(&,n): solution of F(«,(3,7) given by an integral

over the doubleloop [€,n] . . . . . . . . .. ... .. 101
fo(2;0), fo(z;1 = ), f1(2;0), fi(z; 7 — & — B), foo(T; @), foo(T; B):
* Kummer'ssolutions . . . . . . .., ... ... ... 38, 39
H;(a,B,7): step-up operators . . . . . . . . . . . ... 42,43
Bj(w,B,7): step-down operators . . . . . . . . . . ... 42, 43

ci(o, 3,7) = —afa—y+1)
c2(a, ,7) = ~f(B -y +1)
cs(@, B,7) := (v — a)(v - B)

by := zd/dz
R: ring of linear differential operators . . . . . . . . . . . . . 41
S(a, B,7): linear space of solutions at a point (# 0,1)

of E(a,B,7) . . . « . . ., 42
H, : set of n-th order differential operator

of hypergeometrictype . . . . . . . . . . .. .. ... 62
&(-) 1= exp(27i-)
(m):={1,...,m}

7.f: analytic continuation of f along a curve v

Chapter 3

Y ;: summation overi = 1,...,n

Ef summationover t = 1,...,7 - 1,5+1,...,n
2 (;): summation over i =1,...,n+2

2'("1.): summation over i =1,...,5—-1,j+1,...,n+2

[1;: product overi =1,...,n

Symbols

H;’ product over i =1,...,7-1,7+1,...,n
H(i): product over = 1,...,n+ 2

Hf.-f product overi=1,...,7—1,7+1,...,n+2

O(D): ring of holomorphic functions in a domain D

Pj: J-th Painlevé equation . . . . . . . . . . . . ..
Z: set of fixed singular pointsof Py . . . . . . . ..
BJ = Pl \E ....................
V;: space of parametersof P; . . . . . . . . . . ..
Yrbundle . . . . . . . ... 0oL
e aparameterof Pyy . . . . . . . . . . ... ...
¥, affine bundleover B! . . . . . . . . ... ...
‘Hj: Painlevé system with Hamiltonian Hy . . . . . . .
H;: Hamiltonian of the J-th Painlevé system H; . . . .
£(S): a space of Fuchsian differential equations . . . . .
e(S): dimensionof £(S) . . . . . . . .. ...
M(S): a space of representation classes . . . . . . . .
m(S): dimensionof M(S) . . . . . .. .. ...
£(S,q): a space of Fuchsian differential equations . . . .

d: exterior differentiation with respect to t = (¢;)
D:=d/dz

Vi=Df+fP(t ... .........
D, :=9/d;

6; = x,0/0x;

A,y . . ...

A;(z, t), B,'(:t, t) ...............

0;: exponents . . . . . . . . . . . .. ..
a:anexponent . . . . . . .. . . ... oL
t;: singular points, variablesof G, . . . . . . . . . .
Ar: apparent singular points, unknowns of G, ..
pi: unknownsof G, . . . . . . ... oL L.
G,: Garnier system in n variables . . .

a;; parameters . . . . . . . . . . . . ... ..
v;: unknowns of (4.2.10) . . . . . . . . ... ..
Whk  « v v e e e e e e e e e e e e e e e e e e
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T(z)
A(z)
Mlc,i,o
MEim
Un
Uk,m .
K;: Haxmltomans of gn .
L Hamiltonians of the Ha.mnltoman system (4 2 10)
B:={z = (z;) € C"|z; # 0,1,z;(1 # j)} .

Z:=C"\B
‘H,: Polynomial Hamiltonian system
H,: Hamiltonians of Hy

Tk
F; ; ..
e(:l:) .1:(.1: - 1) .
V': space of parameters of gn a.nd of 'H,1
T,.: automorphisms of (), v,t)-space
{,,: automorphisms of V ..

m = (Tm, £m): symmetries of G,
C:r': a group of symmetries of G, .
G: a group of symmetries of H,
X,: affine bundle over P

Fp(a, Bi,...,Bn,7v;z): Lauricella hypergeometrxc series

Ep(e, B, ..., Bn,7): Lauricella hypergeometric system
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D(r): a domain of Re

Symbols

172,
174,

178
178
181
187
182
187
179
182
195

217
218
218

218
218
230
231
231
231
231
240
241
246
249

257
258

295

Index

p-function 29 -

7-function 226, 227

Appell-Lauricella hypergeomet-
ric equation 246

Barnes integral 52, 66, 71, 110

Beta function 53, 108

Cauchy’s existence theorem 1

Cauchy’s theorem (function the-
ory) 97

Euler integral 52, 61, 65, 73, 101

Euler operator 30

Euler transform 47, 55, 60, 61,
62

Frobenius theorem 13

Frobenius's method 4

Fuchs relation 11, 28, 29, 84, 86

Fuchsian differential equation 9,
10,27, 28, 77, 148, 149,
151

Garnier system 119, 172, 195,

202, 204, 207, 211, 230,

232, 234, 235
Gauss hypergeometric differen-
tial equation 27, 30
Gauss-Euler formula 75
Gauss-Kummer identity 73
Grobner basis 46
Hamiltonian 18
Hamiltonian of G, 178

Hamiltonian of H, 218

Hamiltonian of H; 142,

Hamiltonian system 17, 18

Hamiltonian system G, 172

Hamiltonian system M, 217

Hamiltonian system H; 141, 142

Ising model 123

Jacobi identity 17

Jordan-Pochhammer equation 65

Kummer’s 24 solutions 38, 39

Landau’s symbol 32

Laplace sequence 50

Lauricella hypergeometric differ-
ential equation 249

Lauricella hypergeometric func-
tion 251

Lauricella hypergeometric series
246

Lie algebra 17, 27

M-invariant 154, 155

Mellin transform 66, 71

Okubo type 73

Painlevé equation 119, 122, 123,
126, 141, 257, 290, 318

Painlevé property 121, 195, 207

Painlevé system 141, 172, 226

Painlevé Preface

Pfaffian system 12, 15

Poincaré’s condition 257, 279

345




346

Poisson bracket 17, 172

Riccati equation 121, 253

Riemann datum 151

Riemann equation 28, 79, 84, 83,
89

Riemann P-function 29

Riemann-Liouville integral 54, 59

Riemann scheme 11, 28, 36, 84,
169

Riemann surface 150

Riemann-Hilbert problem 151

SL-equation 166

SL-type 166

Schlesinger system 196, 202, 204,
211, 227

Schlesinger type 195

Schur’s lemma 150

Stirling formula 31, 71

Toda equation 48

Weierstrass p function 121

Wronskian 166

Wronskian matrix 163, 278

affine bundle 136, 140, 241
a-times differentiation 47
algebraic differential equation 120
apparent singularity 123, 152
characteristic equation 6
characteristic exponent 6
circuit matrix 77
completely integrable 23
conjugacy class 76, 80, 89
conjugate 76
connection matrix 77
connection problem 52, 77, 96,
111, 114

INDEX

contiguity relation 42, 45, 47, 54,
73

d-irreducible 148

d-reducible 148

deformation equation 158, 190

difference equation 27, 66, 72

differential system 136

double loop 60, 61

essential singular point 121, 124

exponent (of a function) 55

exponent (of an equation) 6

exterior algebra 15

finite part of a divergent integral
56

fifth Painlevé equation 119,318

fixed singular point of P; 124,
290, 318

formal transformation 263

free group 78, 79, 104

fundamental 2-form 18, 193

fundamental group 75, 78, 101,
103

fundamental solution 155

fundamental system of solutions
2

generalized hypergeometric equa-

tion 27
group of symmetries 127,128, 230
hypergeometric differential equa-
tion 27, 30
hypergeometric differential oper-
ator 44
hypergeometric Euler transform
62
hypergeometric function of Lau-
ricella 251
hypergeometric function 35, 246

INDEX

hypergeometric series 31, 246

hypergeometric type 62, 73

ideal (of a ring of differential op-
erators) 46

ideal (of an exterior algebra) 15

indicial equation 6

integrability condition 13, 15, 21

integrable 12, 15

integral representation 52

interpolation method 66

inverse Mellin transform 71

irreducible 79

linear differential equation 1, 16

logarithmic singular point 9, 87,
92

monodromy group 76, 101, 109,
114, 116

monodromy preserving deforma-
tion 119, 155, 196

monodromy representation 76, 101,

109, 114, 116
monodromy 75, 77
movable branch point 121
movable essential singular point
121, 124
non-logarithmic singular point 8,
92
normal form 290
particular solution of the Toda
equation 48
particular solution of P; 145, 146
particular solution of H, 252
rational differential equation 120
reducible 79, 80
regular singular 2
singular point of regular type 257,
259, 290, 318

singular point of irregular type
257
sixth Painlevé equation 119, 318
step-down operator 43, 46, 49
step-up operator 43, 46, 49
symmetries of Py, 128
symmetries of G, 232
symmetries of M, 235
symmetry 126
symplectic 2-form 18, 193
symplectic transformation 19
third Painlevé equation 119, 318
uniform 154

347




