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PREFACE.

THESE two volumes, now published as Part IV of
the present work, are my final contribution towards the
fulfilment of a promise made twenty-one years ago. They
are devoted to the theory of partial differential equations.

Though the work thus is completed, no claim is made
that every topic of importance has been discussed. In
the earlier volumes, indications of omissions from other
portions of the whole subject were given and need not
now be repeated: here also, there have been definite
omissions. Nothing, for instance, is said concerning the
researches of Picard and Dini on the method of successive
approximations for the construction of an integral which
obeys assigned conditions; these investigations limit the
variables to real values, and throughout the treatise I
have dealt with variables having complex values. Formal
questions, such as those which arise out of the appli-
cation of the theory of groups, are hardly mentioned ;
here, as in the preceding volumes, I have concerned
myself with organic properties, given by applications
of the theory of functions, rather than with formal
properties. Again, the subject of boundary problems
is not dealt with; it appears to me to belong to the
theory of functions in its applications to mathematical
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physics rather than to the theory of differential equa-
tions. In the branches of the subject that are discussed,
I have tried to deal as completely as’ possible with what
seems to me to be essential : and I have omitted what
are purely formal extensions, to equations of general
order, of the properties of equations of the second order
when such extensions contain no intrinsic novelty.

In the preparation of the volumes, I have consulted
the works of many writers; and references are freely
given. My aim has been to make these references relate
to the main issues; not a few results, extracted from
memoirs, have been used to construct examples; and the
name of the author is (I hope) given in every such case.
But I have not attempted to select and arrange the
references, so that they might make the framework of a
history of the subject ; had the latter been my purpose,
names such as Lagrange, Cauchy, Jacobi, whose work
is now the common possession of all writers, would have
received more frequent specific references in my pages. It
will be seen that Darboux’s treatise, Théorie générale des
surfaces, and Goursat’s three volumes, Legons sur lin-
tégration des équations aux dérivées partielles, have been
frequently quoted : I wish to make also a comprehensive
acknowledgement of my indebtedness to those works.

The earlier of the two volumes is devoted mainly
to equations of the first order. The theory of these
equations may be regardéd as almost complete, because
the actual integration of the equations is made to depend
solely upon the solution of difficulties which occur in
connection with a system of ordinary equations of the
first order.

PREFACE vil

An introduction to the subject is provided by
Cauchy’s existence-theorem ; it is discussed in the first
two chapters. The next chapter is specially concerned
with linear equations and linear systems; these admit
of a separate and special mode of treatment. The fourth
chapter gives an exposition of what, on the whole, I
regard as the most effective method of integration for
non-linear equations: it contains what is usually called
Jacobi’s second method, with Mayer’s developments. In
the succeeding chapter will be found Lagrange’s classifi-
cation of integrals, based upon the process of variation
of parameters: but something still remains to be done in
this branch of the subject, because even simple examples
shew that the customary classes may fail to be entirely
comprehensive. The next three chapters are devoted to
Cauchy’s method of characteristics, alike for two and
for any number of independent variables, and to the
geometrical associations in the case of two independent
variables. Then follows a chapter dealing with Lie’s
methods, based upon contact-transformations and upon
the properties of groups of functions: it was possible
to abbreviate this chapter, because Pfaff’s problem had
already been discussed in the first volume of this work.
A chapter has been added dealing with the equations
of theoretical dynamics, partly because of their intrinsic
connection with partial equations, yet mainly in order
to shew the origin of what is usually called Jacobi’s
first method of integration of partial equations. The
concluding chapter of this volume discusses those simul-
taneous equations of the first order, involving more than
one dependent variable, which can be integrated by
operations of the same class as those in any of the
methods mentioned.
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The later of these two volumes is devoted to the
consideration of partial equations of the second order
and of higher orders, mainly (thougﬁ not entirely) in-
volving two independent variables. A perusal of the
volume will shew that, outside the limits of Cauchy’s
existence-theorem, knowledge is fragmentary: the in-
version of operations of the second order has not yet
been discovered and, accordingly, any effective process
consists of a succession of operations of the first order.

After a chapter devoted to the discussion of questions
connected with the existence of integrals and, in parti-
cular, to the discussion of the constitution of a general
integral, two chapters are occupied with Laplace’s method
(and with its developments, due to Darboux) for the
integration of the homogeneous linear equations of the
second order: the effective success of the method de-
pends upon the vanishing of some invariant, in one or
other of two progressively constructed sets of functions
involving the coefficients of the original equation. The
result raises the question of the form of equations, the
primitive of which can be expressed in finite terms: and,
to this matter, one chapter is assigned.

In the attempt to integrate any equation of the second
order, it is natural to enquire whether an equation of the
first order exists which is its complete equivalent : and
equations, characterised by this property, will obviously
constitute a distinct class. Such, indeed, were the equa-
tions of the second order for which integrals (now called
intermediate) were first obtained; and one method of
their construction is due to Monge. Later, another (and
a more direct) method for their construction was given
by Boole: but both methods assume that a special form

PREFACE 1X

attaches to the intermediate integral, and the assumption
demands that a very restricted form shall be possessed
by the original equation. Basing his argument entirely
upon an assumed type of integral, Ampeére devised an-
other process of integration: his method makes no
demand for the existence of an intermediate integral :
and the result is often effective when no such integral
exists. All these three methods, (and another method
of some generality, as given), require the construction
of integrable combinations of one (and ultimately the
same) set of subsidiary equations, when they are applied
to the same original equation. But Ampere’s method is
applicable also to equations of less restricted form.

It may, however, happen that an equation of the
second order is not of the restricted form or, being of
that form, does not possess an intermediate integral, or
is not amenable to Ampere’s method. In that case, a
method due to Darboux may be applicable, whereby a
compatible equation of the second order (or of some
higher order) can be constructed; provided only that
a compatible equation of finite order can be obtained, a
primitive of the original equation can be derived. To
these matters, three chapters are given: they explain
the working processes that are effective for the deter-
mination of an integral in finite terms, whether by a
single equation or a set of equations.

One chapter is devoted to the generalisation of
integrals which involve some arbitrary parameters, and
another to the discussion of characteristics of equations
of the second order. The investigations in both of these
chapters are clearly incomplete : they could be continued
along lines that lead to the complete classification of
integrals of equations of the first order.

ab
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In the theory of equations of the first order, much
information is given by Lie’s general theory of contact-
transformations : and an obvious investigation is thereby
suggested as to whether there is a corresponding theory
for equations of order higher than the first. The question
has been considered, and partly solved, by Bicklund and
others: one chapter gives an outline of their work:
it is clear that much yet remains to be done in this
subject.

In the last three chapters of the volume, some of
the preceding methods and theories are extended to
equations, which are of order higher than the second
or which involve more than two independent variables.
Only the simplest extensions are discussed : they could
be amplified to any extent: but the result would be
merely an accumulation of formal theorems possessing
neither individuality nor intrinsic value.

From this brief sketch of the contents of these
two volumes, it will be manifest that, in the theory
of equations of order higher than the first, there are
many gaps and that the theory is far from complete :
and even -a summary perusal of the volumes will give
some indication of these gaps. It is my intention to
point out, in a presidential address which will be
delivered to the London Mathematical Society next
month, some of the more obvious and practicable
questions which are waiting for solution. Of these,
there is no lack: it is only the workers who are
wanted.

PREFACE x1

On not a few occasions, it has been my privilege to
acknowledge the help which has been given to me by
the Staff of the University Press. Once more, an oppor-
tunity comes to me: and I gladly seize it, to express
my indebtedness to them all for the care, the attention,
and the consideration, by which they have lightened
what to me is never an easy or a simple duty.

So I pass from a task, which has filled the greater
part of many years of my life, which has broadened in
my view as they passed, and which has suffered inter-
ruptions that threatened to end it before its completion.
Many of its defects are known to me: after it has gone
from me, others will become apparent. Nevertheless, my
hope is that my work will ease the labour of those who,
coming after me, may desire to possess a systematic
account of this branch of pure mathematics.

A. R. FORSYTH.

TRINITY COLLEGE, CAMBRIDGE.
October, 1906.
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CHAPTER 1
INTRODUCTION : TWO EXISTENCE-THEOREMS,

1. THE investigations, which constitute this Part of the present
work, are devoted to the consideration of properties of partial
differential equations. In text-books which deal with the modes
of constructing the integrals of such equations, several processes
are given, often with the main purpose of obtaining the integrals
in finite terms; but the processes are.limited in the scope of their
application, because the equations which prove amenable to their
action are few in character and not infrequently have been arti-
ficially constructed. When these processes either are not applicable

or. cannot conveniently be completed, no information concerning

the solution of the equation would then be obtained ; indeed, they
offer no guarantee that an integral even exists.

Accordingly, it is desirable to discuss the whole theory of
partial differential equations from the foundations and, in the
course of that discussion, not only to revise known results but
also, so far as may be possible, to place them in their fitting
positions in the ordered body of doctrine. Such a discussion was
found to be necessary for the proper establishment of results
relating to ordinary differential equations. It is even more
necessary in the case of partial differential equations, partly be-
cause the inversion of simultaneous partial differential operations is
more difficult than the inversion of ordinary differential operations,
partly because the suggestions as to the character of an integral,
as offered by processes of inversion, are less significant for partial
equations than for ordinary equations.

F. V. 1




2 GENERAL [2.

2. Two kinds of illustration should suffice for a justification of
this last statement.

One mode of attempting to discover the character of the most
complete integral of a partial equation would be by generalisation
from the case of an ordinary equation.

For an ordinary equation, which has y for its dependent variable
and « for its independent variable, the integral is made complete
by the assignment of initial values to the variables; that is, y is
some function of # and so, when a constant value is assigned to =,
the function y and all its derivatives become constants. As the
equation is to be satisfied and yet the integral is to be as com-
plete as possible, these constants will be as unrestricted as possible :
and therefore it is to be expected that some at least of them will
be arbitrary constants. There thus arises a suggestion that the
most complete integral will be such that, when some constant
value is assigned to z, the function y and some of its derivatives
acquire arbitrary constant values. The suggested property has
been established under appropriate limitations and conditions.

To extend these results, if possible, to partial differential
equations, consider a single partial equation of the first order,

having z for its dependent variable and #, ..., 5 for its inde-
pendent variables. If an integral exists, that integral must
determine z as a function of x, ..., #,; and so, when an initial

value a, is assigned to x,, the first derivatives of 2z with respect

to @y, ..., &n; can be deduced from an assigned expression for z,

and then (save in special circumstances) the partial equation
determines the first derivative with regard -to «,. By using
the equation in combination with the expressions for the first
derivatives, the derivatives of higher order can be obtained for
the value a, of #,; and thus no limitation appears to be imposed
on the value of z as an assigned function of @, ..., Z,—;, when
Zn=a,. If the integral is to be as general as possible, it 1is
reasonable to expect that the assigned function shall be as general
as possible. But at this stage, questions arise as to what is the
most general function admissible? ~Is it to be made general by
possessing the greatest possible number of arbitrary constants ?
Can the assigned function be an arbitrary function, subject possibly
to limitations imposed by the partial equation ? and, if so, must it

2.] CONSIDERATIONS 3

be explicit or may it be given implicitly, for example, by means of
quadratures which cannot be effected in finite terms? Or are all
the modes indicated for securing the generality-of the integral
admissible, so that there are different kinds of general integrals?
and if so, are there any relations among the various integrals ?
To such questions the argument offers no hint of an answer.

Similarly, when a partial equation of the second order is
propounded in the same variables z, @y, ..., a,, the extension of
0z
0y
should acquire assigned values as functions of i, ..., #,—,, when

&, = a,. For the values of —a—Z, . i
ox, 0%y

deduced from the value of z; and then the values of

the results obtained for ordinary equations suggests that z and

, when «, = a,, could be

2
0, 0w’ for
r=1,...,n—1,and s=1, ..., n, could be deduced from the values
of gﬁ, e 9z already known; and the partial equation would

2, 0%y
(save in special circumstances) determine the value of aamii As
n
before, the values thus obtained, when combined with the use of
the partial equation, lead to the values of all the derivatives.
Thus all the quantities associated with z are known: at the
utmost, only special limitations appear to be imposed upon the
assigned functions by the process adopted; and therefore it is
reasonable to expect that the integral will become the most
general possible when the two assigned functions are as general
as possible. Again, at this stage, questions arise as to the con-
stitution of the generality of these assigned functions. Is the
generality to be secured, by arranging that they shall involve
the greatest possible number of arbitrary constants? or by making
them independent arbitrary functions of x;, ..., x,,? or by
associating them with a possibly even more general function of
&y, ..., &, for the particular value a, of #,? If the functions are
arbitrary, must they be given explicitly or may they be given
implicitly as, for example, by uncompleted quadratures? Again,
are all the modes admissible as alternatives, so that they lead to
different kinds of general integrals? and if so, what relations (if
any) subsist among the integrals? As in the former case, the

argument offers no hint of answer to the questions.
1—2
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3. In both the instances that have been briefly considered,
the argument offers suggestions and even stirs expectations: that
this is the limit of the attention to be paid to it, can perhaps be
most simply seen by a particular case. Applied to a couple of
simultaneous partial equations determining a couple of dependent
variables, it would lead to a suggestion that the most general
integral would involve at least two sets of general elements, what-
ever be their form ; yet the integral of the simultaneous equations

0z 2_8.251 a_zl 8_2_2_ ?iﬁ — ,
B_x'?—aay2+2aay+am aay—i—zz—-f(m, Y)
05, 05 L
e tay = st n=g@ )]
is
— og (z, y) , 09 (@, y)
Zl_f('%" y)_g(w: 3/)_ oz +a ay
o (=, of (=,
2y =f(w; Z/) _’ﬂg‘;g> - aﬁ”f(gy y) &:
4+ 2099 Y) P9 (@ y) 0% (2 y)
oy ox? oy?

a being a constant; manifestly it contains no arbitrary element.
In fact, the utmost to be inferred from the argument is that
some kinds of equations may possess integrals involving arbitrary
elements in their most general forms, and that there may be
different kinds of general integrals.

Whether these general integrals include all the integrals of an
equation is a matter that demands separate consideration, to be
undertaken later in another line of inquiry: and, naturally, a
detailed consideration of the generality of integrals must also
be undertaken later.

4. Another mode of attempting to discover the character of
the most complete integral of a partial equation consists in com-
paring differential equations, constructed from initial integral
equations, with those integral equations: but it is easily seen to
be untrustworthy.

Thus if an integral equation

az+ b

=P @ m),
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where ad — bc =1, be propounded, the result of eliminating the
constants between the equation and its derivatives leads to the set
of partial equations

lop _1lopg 1 0¢
P 0w, Pe GLA o DPn 02y’
where
_ 0z
" 0wy’
for r=1, ..., n. The process cannot be reversed, so as to lead to

an inference that the most general integral of the set of partial
equations contains three arbitrary essential constants: the infer-
ence would be incorrect, for the set of equations is satisfied by

S (@)= (2, ..., @),
where f(2z) is any function of z containing any number of arbitrary
constants.

Again, if there is given an integral equation
S, oo, Tpy 2, @iy oory @) =0,
it is possible to construct a set of partial equations with which the
integral equation is consistent, by forming the n derived equations

which give the values of 8—;, vee, B%Z—, and then eliminating the
1 7
m constants a,, ..., dn. For the present purpose, the m constants

may be assumed to be not reducible to a smaller number, and m
may be assumed not greater than n; also, when elimination takes
place, the number of resulting equations will be not less than
n+4+1—m. It will be assumed that the number of such equations
in the set is actually n 4+ 1 —m ; each of them is partial, and of the
first order.

If m is equal to n, there is a single partial equation: and the
argument suggests that a single partial equation of the first order
may possess an integral involving n arbitrary constants: it does not
prove this result, for there is nothing to shew that the partial
equation is not of a special form, arising from the limitation that
it has been deduced from an integral equation of specified form.
The argument offers no contribution to the question as to whether,
if the integral is possessed by the partial equation, it is the most
general integral.

If m is less than n, there is a set of simultaneous partial
equations of the first order: and the argument might be held
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to suggest that n + 1 —m simultaneous partial equations of the
first order, involving one dependent variable and n independent
variables, may possess a common integral involving m constants.
The result is, of course, not proved and it is not true in general
fact : for, independently of the impossibility of reversing the process
of elimination, the n + 1 — m equations are affected by the form of
the original integral and therefore will have relations with one
another, while such a set of partial equations postulated initially
need not have any relations with one another. Thus the existence
of a common integral is even more doubtful than in the case of a
single equation: if it exists, no inference as to its generality can
be drawn.

5. After these explanations and criticisms, it is manifest that
attempts to obtain information as to the solution of partial equations
by vague extensions of the knowledge of the solution of ordinary
equations must be abandoned. The constructive process, that will
be adopted instead of them, consists in the gradual establishment
of results, beginning with the proof of the existence of integrals
possessing definite assigned characters. The actual construction of
the integrals when their existence has once been established, the
discussion of the range of their generality, and the possibility of
using them in the derivation of integrals of other kinds, all are
matters for subsequent investigation.

It will be assumed that, save in special examples, the number
of independent variables is n; and they will usually be denoted by

@, +.., Zn. The number of dependent variables may be taken as
m, the simplest case arising when m =1; they will be denoted by
21, «.., Zm; and when there is only one variable, it will be denoted

by z. For the present purpose, these dependent variables are to
be determined by partial differential equations; let the number of
such equations in a given set be s, and suppose that the highest
derivatives that occur in them are of order w.

Let derivatives of each of the equations be constructed, of all
orders up to those of order « inclusive. Then the total number of
equations in the amplified set is

s{l4+n+3in(n+1)+... to (¢ + 1) terms}

_  (n+1(n+2)...(n+«)
=5 1.2....k

=sN,
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say; and the total number of dependent quantities, being the
dependent variables and their derivatives of all orders up to u+ &
inclusive, is (or can be, for some of the dependent quantities may
not occur explicitly)

m{l+n+in(n+1)+ ... to (k+p+ 1) terms}

_m(n+1)(n+2)...(n+lc+u)
o 1.2....(k+p)

=mNK,

where

K_(n+/c+1)...(n+/c+/u,)
- (e +1)...(r+ pn )

The factor K 1is obviously always greater than unity; and
therefore if s < m, or if s =m, the number sN is less than mNK.
The number of equations in the amplified set is less than the
number of dependent quantities in the amplified aggregate ; and
therefore it will generally be impossible to eliminate the dependent
quantities from among the equations. Were such elimination pos-
sible, the results would take the form of relations between the
independent variables: and these, of course, do not occur. There
is therefore nothing incompatible with the analytical nature of the
case, if s < m, or if s =m.

Next, consider the possible hypothesis that s > m. The factor
K is greater than unity; but its value decreases as x increases,
and it tends towards unity with large increase of k. Let «, be the
earliest value of x for which

S
K< —;
m

then for the value «,, and for every value of & which is greater
than «;, we have

s>mkK,
and therefore

sN >mNK.

For such values of &, the number of equations in the amplified
system is greater than the number of dependent quantities in the
amplified aggregate. The dependent quantities could then, in
general, be eliminated from the amplified system of equations ;
the results would take the form of relations among the inde-
pendent variables alone, and such relations cannot occur. Such a
conclusion is, in general, not compatible with the nature of the
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case: and therefore, in general, s cannot be greater than m. If
however the elimination could be performed for any given set
of equations, amplified in the manner indicated, the final relations
would be evanescent, and the incompatibility would not appear.
This last event could occur only if such conditions were satisfied
by the original system and consequent conditions were satisfied by
the amplified system, as would reduce the number of independent
equations in the amplified system so that, at the utmost, it
should not be larger than the number of dependent quantities in
the amplified aggregate.

Hence, in general, the number of equations in a given system
must not be greater than the number of dependent variables
involved; but the number of equations may be the greater in
particular systems, and the investigation of the necessary and
sufficient conditions will be a matter for subsequent discussion.

It is clear without detailed argument that, when s is less
than m and when the equations are general, then m —s of the
dependent variables can have values assigned (either quite arbi-
trarily or arbitrarily within proper limits), still leaving as many
equations as undetermined dependent variables.

Accordingly, the most general case to be considered for the
present is that in which the number of equations is the same
as the number of dependent variables.

6. Two properties of such a system of equations may be
mentioned ; their importance is mainly formal, and only a brief
consideration is needed.

The first of the properties can be stated as follows: if a system
of m partial equations in m dependent variables involves derivatives
of order higher than the first, it can be replaced by an equivalent
system of equations containing only derivatives of the first order,
the number of independent equations in the new system being
the same as the number of dependent variables which it involves.

The property is practically obvious and so hardly requires
proof: it can be seen in connection with any particular example.
Let there be a single equation, involving derivatives of the second
order as the highest: when n new dependent variables are intro-

duced by the equations
0z

%’.zpr’ (7'———-‘1, ...,n),
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the given equation can be expressed in a form

0 0
f<x1; cees Ty, Z;Z)u "')})n} 5%’ e £>=O;
which involves only derivatives of the first order; and the new
system now contains n+ 1 equations, involving n+ 1 dependent
variables with derivatives of the first order.

It may be added that the main use of the property lies in
deducing existence-theorems for equations of order higher than
the first from the existence-theorems which soon will be established
for systems of equations of the first order.

An extended form of the property enables us, not merely to
replace any given system by a system containing only derivatives
of the first order, but also to secure that each equation, which
in the new system involves derivatives of the first order, is linear
in those derivatives. Thus, in the preceding example, additional
dependent variables would be introduced by the equations

0z ap# —

5;.; = Pu> ax = Gus>
for pwand s=1, ..., n: the original equation takes the form of a
relation

f(ml; L] xn; 'Z: pl) s _pn’ Qn: ] an)':o

among the variables free from derivatives; and the derived
equations

0 %0 of 0Qau

§£+ sa];-kﬁ o “S+228g]; aqxb =0

are formed for s=1, ..., n. All the equations are linear in the
derivatives which are of the first order; but it should be noted
that the number of equations in the modified system is larger
than the number of dependent variables, though the conditions
for coexistence are satisfied.

‘When the number of variables is other than very few, the
extended form of the property tends to be cumbrous. It is,
however, of definite use, as will be seen later (Chap. XVIII), as part
of a method for obtaining integrals of equations of order higher
than the first when they possess integrals that are expressible
in finite terms.
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7. The other of the two properties indicated in § 6 bases the
solution of a system of m partial equations in m dependent variables
upon the solution of one equation (or of more than one equation)
in a single dependent variable in association with algebraic pro-
cesses: the substituted equation or equations usually (but not
universally) involve derivatives of order higher than those which
occurred in the original system.

Reverting to the method adopted in § 5, and applying it for
the purpose of eliminating z,, ..., 2z, and all their derivatives, we
should have mXV equations in the amplified set, while the number
of dependent quantities to be eliminated is (m — 1) NK. Accord-
ingly, let &, be the least value of « for which

m
K< w1
and therefore
(m—1)NK <mN.

The dependent quantities, composed of z,, ..., 2, and their
derivatives, can be eliminated from the amplified set of equations:
the results of the elimination will take the form of one equation
or more than one equation involving z and its derivatives, the
latter being of order higher than those which occur in the original
system. Moreover, by the algebraic processes, all the dependent
quantities that are eliminated are expressible in terms of those
that survive. Accordingly, when the solution of the equation or
equations in z is known, the other dependent quantities can be
regarded as known: and then the solution of the original system
will have been obtained.

It should be added that this property is not of importance
in the general theory: its chief value lies in the fact that it

provides a method which sometimes is effective in leading to the
solution of particular classes of equations.

PREPARATION FOR CAUCHY'S THEOREM: THE FIRST OF THE
SUBSIDIARY EXISTENCE-THEOREMS.

8. We proceed now to the establishment of some positive
results, in particular, to the establishment of Cauchy’s theorem
affirming the existence of integrals of a system of partial equations.

8.] CAUCHY'S THEOREM 11

The system of equations contains the same number of dependent
variables as of equations; in form, it does not include all possible
systems of such a character, but it will be found to include a
large selection of important and representative systems; and the
integrals will be proved to exist, subject to an aggregate of
assigned conditions. For the purpose in view, the method devised
by Madame Kowalevsky* will be adopted, whereby the main
theorem 1is approached through two existence-theorems belonging
to partial equations of comparatively simple type.

The first of these theorems can be stated as follows :—

Let a set of partial equations be given in the form

azq; m 2 aZj

8.73‘1 =1 r=2 8@

for values =1, ..., m, being m equations in m dependent variables ;
the coefficients Gy, are functions of z,, ..., 2, alone. Let ¢, ..., ¢y
be a set of values of 2, ..., 2, respectively, in the vicinity of which
each of the functions Gy, is regular; and let ¢,, ..., ¢ be a set of
functions of @,, ..., «,, which acquire the values c,, ..., ¢, respec-
tively when «,=a,, ..., » = a,, which are regular in the vicinity
of these values of @,, ..., #,, and which otherwise are arbitrary.
Then « system of integrals of the equations can be determined,
which are regular functions of i, ..., &, in the vicinity of the values
Ly =y, By= Qg +.., Ly = Gy, and which acquire the values ¢y, ..., Ppm
when x, = a, ; moreover, the system of integrals, determined in accord-
ance with these conditions, 1s the only system of integrals that can be
so determined as regular functions.

9. Tt is convenient, for the sake of conciseness in the formulse,
to write

Ty — Qg = Ys, Z?'_Cr:é’r: 4)1'—07':"1"7';

for s=1,...,n,and r=1, ..., m: and then we have to deal with
quantities in the vicinity of zero values of y and &

As the functions G are regular within this vicinity over some
finite region, we select a portion of the region defined by the
ranges

| &g R, | &I|<R, ..., | tn| < R;

* Crelle, t. Lxxx (1875), pp. 1.—32.
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and we denote by M the greatest value among the quantities | Gy, |
within this portion of the region selected, M being finite. The
functions G can be expressed as power-series; and if we take

Gij,- =33 ... az{; &S ..,
where the multiple summation is for all integer values of s;, s,, ...
from zero upwards, simultaneous zeros being included, then*

] aijr 1 _ M
$18g-4+ < Rsits+...
st M
Si!osyt... Rsitset.”

a fortiort. Similarly, within a selected region of existence of the
functions 4, defined by the ranges
'y-2|<,0, ilySizp""; \ynl<p,
we have
Y =220 Cupgpy oo Y Y o,
where the multiple summation is for all integer values of u,, s, ...
from zero upwards, simultaneous zeros being excluded; and then,

if IV denote the greatest value among the quantities | .| within
this region, we have

! N
1 Cupgpty... 1| T e
P}Lz M3t
(A ps+ )N
=~ Mol ops! pratpate. s

a jfortiors.

If functions & exist possessing the character required in the
theorem, they can be expanded as series of powers of ¥, in the
vicinity of the origin; having regard to the value they must
acquire when 7, =0, we can take them in the form

o=+ ydru + 1 Prpe+ .o,
where (as the functions ¢ are to be regular in all their variables)
the coefficients Yr.,, Yrus, ... must be regular functions of y,, ¥s, ...
within the selected region of existence, and they do not involve y,.
These functions ¢ if they exist, are to satisfy the differential
equations: we substitute them therein, and compare the coefficients
of the various powers of y, and, from the fact that the derivatives

* See my Theory of Functions, (Second edition), hereafter quoted as 7' I,
§ 22.
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with regard to @, (and consequently of ;) occur on the left-hand
sides of the equations only, we find relations of the form

PYup = 24,

where the number of terms in the summation on the right-hand
side is finite. Each term Z is the product of four factors:

(1) a coefficient @ from the expansion of the functions G :

(i1) a product of the functions ., the second subscript
index A being less than p:

(ii1) a first derivative of one of the functions +r., the second
subscript index A being less than p:

(1v) a positive integer.

Now all the functions ., having their second subscript index
zero, are the functions , ..., Yy ; and their expressions as
regular functions of ,, ..., , are known. Hence the relations

Prup = A
give a formal determination of the functions +r,, in succession;
they appear as power-series in ¥,, ..., ¥, the coefficients in which
involve the constants @ from the expansion of the functions @, the
constants ¢ from the expansion of the functions +r, ..., Yy, and
positive numerical factors.

When these values are substituted in the w;-expansions of
&1y ovvy &, expressions result which formally satisfy the differential
equations. In order that they may possess functional significance,
these multiple series must converge; this necessary convergence
can be proved as follows.

10. We consider variation in a more restricted range for the
quantities ¢, given by

R R R
|§1l<;’)’—b, §§2l<,}“ﬁ"'-> !é’m|<%;
so that

[ G+ 8t o+ 8 | < B

and we construct a dominant function® & in the form

st‘z (81+82+...)I _[W

S5 Se
ol syl Rerern GUE

* T, F., §23.
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where the multiple summation is for all integer values of s, s,, ...
from zero upwards, simultaneous zeros being included. Then the
modulus of any term in ¢ is at least as great as the modulus of
the corresponding term in G, having the same combination of the
variables. Moreover, in the region of variation considered, G can
be expressed in finite terms: we have

M

G = 1 .
1— E(§1+§2+ +§m)

We also consider variation in a more restricted range for the
quantities ¥, ..., ¥n, given by

P
n—1

P
> s lyn’<n~_17

lya | <
so that
Yo+ oo+ Y| <ps

and we construct another dominant function yr in the form

g+ .on) ! N
v = == (#‘;‘: f:jg L. : pratust o Yy,

where the multiple summation is for all integer values of w,, ws, ...
from zero upwards, simultaneous zeros being excluded. Then the
modulus of any term in + is at least as great as the modulus
of the corresponding term in +, having the same combination
of the variables. Moreover, in the region of variation considered,
4 can be expressed in finite terms; writing

Y=Y+ ... + Yy,

we have
Ny 1
=2
P 1__Y
P
_ Ny
P—Yy

and the range for the variable y is given by
ly | <p.

11. By means of these dominant functions, a dominant system
of partial equations

ayl Jj=1 r=2 ayr
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is constructed; and we assign, as conditions, that each of the
quantities Z; shall acquire the value » when 7, =0. Taking
G and ) in their expanded forms as power-series, and applying to
these equations the process applied to the original system, we
obtain equations of precisely the same form as before, to determine
the successive coefficients in the expressions for the variables Z as
power-series in the variables v, %, ..., y,: and the successive
operations for the construction of these coefficients are the same
as before. In these new operations, all the terms in the expression
for any coefficient are positive; the modulus of each term is at
least as great as was the modulus of the corresponding term
in the former operations; and therefore, if

Zp=v 4+ YW+ ¥V e+ .o,
| PV | 2= | PV |,
| Yup | €1 ¥ up |-

Hence the series for ¢, will certainly converge if the series for Z,
converges.

we have

that 1s,

The values of Z,, ..., Z,,, and their consequent expressions as
converging series, can be otherwise obtained. Returning to the
dominant system and using the finite forms for G and 4, we have

to determine values of Z, ..., Z,, satisfying the equations
o2, s ¢ 2 oz

W g —%(Z1 bt )it 2 O
and such that
_ Ny
p—y’ .
when %, =0. Thus Z,, a function of all the variables, is a function
of the combination of them represented by ¥, say a function of y

"

alone, when v, = 0; and therefore a—Z—“, for r=2,..., n, 1s also a

oYy
function of y alone when y, = 0. The differential equations then

shew that %?‘ is a function of y alone when y, =0. Again,
1

differentiating all the equations with regard to ¥,, noting that the

quantities Z and all their first derivatives are functions of y alone

when y, = 0, and applying a similar argument, we find that aa%/ZTf‘
1




16 CONVERGENCE OF THE POWER-SERIES [11.

is a function of y alone when z,=0. Similarly, for all the
derivatives in succession. Inserting their forms in

_ 02, . vt [04.
Zy=[Z.)+ s \:531]04' ) [ O—I—...,

oyy®
we see that Z,, if it exists, is expressible as a function of ¥, and .

Now from the equations, we have

0%, _0Z_ _olh,
ayl ayl o a?/l ’
and therefore, taking account of the conditions that
Z1=Z2= =Zm:_-zy‘y— ’
pP—Y

when y, =0, we have

Zy=7Z,=...="1lpy,
in general. Denote this common value by Z, which now is a
function of y, and y; then all the equations in the dominant
system are satisfied, provided Z can be determined to satisfy the
equation

%————M m(n—l)ag
aylﬁl_ é oy
m 5

and is such that it acquires the value J\_T‘y when 2, =0. It is

easy to verify that the equation is satisfied by a relation

<1 _le_%> Y+ Mm(n—1)y,=f(Z),

where f is any function whatever of Z: and therefore all the
requirements will be met if /' can be chosen so as to allow Z to

acquire the value {y when v, =0. For this purpose, the two
equations
(1 —m ;%) y=f(w),
Ny _..
P—Y
must be the same. The latter gives
— _PY
Y= Nyuw
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which, substituted in the former, gives

=(1—mX) P
being the appropriate expression of the function /i Thus all the

requirements are met by a value or values of Z determined by
the integral relation

(1—-m%)y+Mm(n—1)y1=<1—m%) J\TL—?Z

This quadratic equation has two roots. Omne of the two roots

becomes g when 7, =0, and must be discarded as not satisfying

the imposed condition when y, =0. The other root is given in
the form

m N
QR@—wZ—%P—w+mRy—MmW—D%}
N 2
= — lj(p—-y—mﬁy> + Mem? (n — 1)2y,?

TR (P §
—20m (1= Dy {p = g+ m g 20—} |
it can be expanded in powers of 7, in the series

Np 1
Py

Z=—J§_Tl—{—]llfm(n—1)y1 i
Py p—y—mpy
+ higher powers of y,.

It is clear from this expression for Z obtained in finite form that
Z can be expanded in a series of powers of y and y,, which con-
verges in a non-infinitesimal range round ¥y = 0 and 7, =0. When
y is replaced by its value g+ ys+ ... + ¥, the modified power-
series in %, %, ..., Yn Still converges in a non-evanescent range
round y, =0, y,=0, ..., y,= 0; consequently, the quantity Z of
the required type does exist.

It therefore follows that the quantities Z,, ..., Z, exist as
determined by the equations in the dominant system ; and there-
fore integrals of the original equations exist satisfying the pre-
scribed conditions.

12. The preceding investigation establishes the existence of
integrals which are regular functions of the variables in the

7. V. 2
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selected region; it is easy to see that they are the only set of
integrals which, satisfying the prescribed conditions, are regular
functions of the variables. If any other set existed, being regular
functions and satisfying the prescribed conditions, they would be
expressible in a form

Co=Yu+ V¥V n+y2 Ve + ...
when these are substituted in the differential equations, they would
lead to relations

PY =22’
for the determination of the coefficients, similar to the relations
Py = 2Z.

When p =1, no double-suffix function occurs in Z’, which then is
the same as Z, because the term in ¢’, independent of ¥, is the
same as the corresponding term in &, : hence

‘I’/nl = Yru.
When p = 2, the only double-suffix functions that can occur in Z’
are the functions v'y;, which have been shewn to be the same
as ra;; hence, for this value, Z' = Z, and therefore

Viue = Yrus-
Similarly for all the coefficients in succession: we find
Eu= "8,

for all the values of u; and therefore the set of regular integrals
obtained, subject to the prescribed conditions, are unique regular
integrals.

As an example illustrating the general theorem, we require the integrals of
the simultaneous equations

0U_ 2 0
o oy’
o 2 ou
fo= (= utv) g,

such that, when #=0,
u=y (a+ay+ay’+...)=L(y),
v =y (by + b1y +boy® +...)=8 ().

The equations are amenable to the ordinary practical methods. The most
general integral of the first equation is easily found to be

w=f(y+uia),
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where f is arbitrary so far as the equation is concerned. Also

a_v ouw ou
o " ar— T gy
1 ou
=(=%) 5 55

and therefore
1

v-u=e ug(y),
where g is arbitrary so far as the equation is concerned.

To determine these arbitrary functions, the imposed conditions are used.
As

u=f(y +u’z),
and as =R (y) when #=0, we have
B (y)=1 ()
and therefore, generally,
u= R (y+u?x).

Laplace’s theorem in expansion can be used to give the explicit expression for
% in terms of # and y: this is

u=R @) +oB @) R )+ G Q) B @)+ 50 (B 0) R ()} + .

where 7' (z, ¥) is a series of powers of x, the coefficients being functions of ¥

which vanish if R (¥) vanishes identically.

Again, as v=.S(y) when =0, we have

1
S(y) - R(y)=e EWg(y),
so that, generally,
11

v—u=e®W (S (y)~ R (y)}.
The apparent singularity can be removed ; for
11 2T (2, y)
B wT1¥aRy) T (% 9)’
where the function on the right-hand side is regular in the vicinity of =0,
y=0. Thus the required integrals are

u=R () {1+28 () T (#, y)}
T (x, y¥)
v—u={S(y)~ B ()} e\ HROT® D,

Tn particular, if the imposed conditions should be that =0 and v=.8 ()
when =0, then as R (y) vanishes identically, 7 (x, y) vanishes. The full
expressions for the integrals are

u=0, v=_. (9 ) ;
these are easily obtainable directly from the differential equations but not
from the integrals which involve the arbitrary functions f and g.

2—2




20 REGULAR INTEGRALS [13.

18. It should be observed that, throughout the foregoing proof,
there has been a complete restriction to regular functions. The
possibility of non-regular functions, satisfying the equations and
obeying the prescribed conditions, has nowhere been taken into
account and the proof does not shew that it should be rejected as
inadmissible ; what 1s established is that a unique set of regular
integrals exists. In the statement of the argument, it is practically
assumed that the integrals are regular. Thus 2, is made to acquire
the value of a regular function of «,, ..., #, when «;, =a,; and this
could be secured when z; is a uniform function of «;, even if a; is
an essential singularity, provided «;, then be allowed to approach «a,
by an appropriate path*. If however z; is made to acquire its
value when #; =a,, quite independently of the path by which «,
approaches the position @;, and so also for the other dependent
variables, then it is not difficult to see that the integrals must
be regular under the assigned conditions. For the differential
equations then make g;—j, vees 882?
whatever be the @,-path of approach to a,; when derivatives of the
equations are formed and suitably combined it could be inferred

regular functions of @, ..., 2,,

%z %2, - 4- . . .
that o fa?"; , in like circumstances, become regular functions
1
of ,, ..., #,; and so on, for the derivatives in succession. The
inference that z, ..., 2z, are regular functions of @, «,, ..., @, 18

then immediate.

The assumption made by ignoring the path of approach of x; to
a, may fairly be described as a customary assumption: it does, in
effect, exclude the consideration of the possibility that «, is an
essential singularity of a uniform function, and it may exclude the
consideration of other possibilities of deviation from regularity.
Yet it is not inconceivable that, in particular instances, such as the
stability of a system in a critical condition, the excluded possibilities
are of importance: in such an instance, it might be actually the
fact that the variable must approach its value by a specific path
and is not permitted an unrestricted approach to the value.

* See T. F., p. 57 (second edition), Ex. 4.

+ The same considerations occur in connection with the integrals of an ordinary
equation of the first order: see §§ 28—34 in volume 11 of this work, where (§ 34) the
condition given for that case by Fuchs is explained.
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THE SECOND OF THE SUBSIDIARY KEXISTENCE-THEOREMS.

14. In the preceding theorem, the only variables which occur
explicitly in the set of partial equations are the dependent variables:
it can, however, be extended so as to allow the explicit occurrence
of all the variables. The extended theorem is as follows:—

Let a set of partial equations be given in the form

N 1 G,

axl j=1r=2

for values =1, ..., m, being m equations in m dependent variables ;
the coefficients G5 and the quantities G; are functions of all the
variables, dependent and independent. Let ¢y, ..., ¢, &1, ..., ay be
a set of values of z, ..., Zm, @1, ..., &, vespectively, in the vicinity
of which all the functions Gy and G; are regular; and let ¢,, ...,
¢m be a set of functions of ,, ..., ,, which acquire values ¢;, ...,
em respectively when @, = a,, ..., @, = a,, which are regular in the
vicinity of these values of ,, ..., @,, and which otherwise are
arbitrary. Then « system of integrals of the equations can be determ-
wned, which are regular functions of @, ..., @y in the vicinity of the
values x,= @, =0y, ..., Tp=apn, and which acquire the values
1, - -5 Pm when z, = a, ; moreover, the system of integrals, determined
i accordance with these conditions, vs the only system of integrals
that can be thus determined as regular functions.

The establishment of this theorem can be derived from the
former theorem in a simple manner. Let n new dependent
variables ¢, ..., ¢, be introduced, defined by equations

ot, _ ot Oty Ot Oty
— =0, =0,..., ~—— =0,
Bazl ox,’ O 0 oxy ox;
and by the conditions that, when #, =q,,
bhh=ay, o=y, ..., Tp=o,.

From the last n — 1 of these equations, combined with the imposed
conditions, it 1s clear that
to=1=Ty, b3=2%3, ..., tn = Tnp,

in general. Then
ot, Oty _

om, Om,
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so that
t, = x, + function of z,, ..., @,

= &y,
on applying the imposed condition.

We replace @, ..., @, in Gy, and in G; by ¢, ..., t,, and denote
the functions resulting after the change by Hy, and H;. Also,

noting the fact that oty is unity, we take an amplified system of

02,
equations
02; mon aZj Ot
2w, 5 o e, T i,
on _ ot
Ox, 0z’
ot,
oy
fore=1, ..., m,and p =2, ..., n; and the imposed conditions are

that, when z, =a,,

Zl=¢1} Z2=¢2) cees Zm=¢m,

t1=a‘1: t2=w2: e tn'_——-«fl}'n.

The coefficients in the modified system are functions of the de-
pendent variables; the properties of the modified system, when
account is taken of the imposed conditions, are the properties of
the systems to which the former theorem applies. Hence, by that
former theorem, a set of integrals

zi= i (21, Xg, «.., Xp),

b=,

fori=1,...,mand p=1,...,n, exists; the functions +r; are regular
functions of the variables #, and when @, = «,, the functions r, ...,
Y Teduce to ¢y, ..., ¢p., respectively ; and these regular integrals

are the only set of regular integrals which satisfy the imposed
conditions.

When we substitute ¢, = a,, t,=a,, ..., t, = @, in the modified

system, we return to the original system : the results just obtained
constitute the theorem required.

Note. 'There is the same kind of limitation as in the former
case (§ 13): it is possible that, for reasons connected with essential

14.] EXAMPLES 23

singularities such as particular modes of the approach of z, to a,,

there may be non-regular integrals of the equations satisfying the
imposed conditions.

Lz 1. Obtain the integral of the equations
ou 2 o Ou | Ou
@-—26—'227——.27 + 22+ (v — 20 — &%) g/ +€z

ov

dv  Ov
e — D — 22) 2
PP (u—2v—x >8y +

oz
subject to the initial conditions that, when #=0,
2 — 2
u=2e¥T* 4. g6, v=eWF"
(where a is a constant), in the form
% — 20— 2?=ae~?

logv={z+y+z+ae?(1l—e—?)22 .
(Riquier.)
Fx. 2. Integrate similarly the equations

o du  Ou

%=2x+(u—2?}—x2) (1 —2¢2)+2¢ (u—gru_xz)@+$
?TZ-: ($2+2v~u)t2+2t(u—2@—x2)g_; +g_: >
%F 225(2&—21;—492)%4_%
gi;= (22420 —u) 2 +2¢ (u—2v—x2)%§+%: )

subject to the initial conditions that, when x=0, the variables «, v, ¢, w,
respectively acquire the values :

u=2 (y?+22)+ae? ow=y?*+2? =1, w=2.
’ (Riquier.)

Ex. 3. As an example of the general theorem, let it be required to obtain
the integral of the equation

0z y? 0z

o =yt oy

b

which acquires the value ¥ when z=1.
After the explanations that have been given, it will be of the form
z=y—(@—Dy+@—12y2—...;

in order that this may satisfy the differential equation, the coefficients y;, 72, ..
are determined by the relation

Y2 OYu-1 s OYn_2 y? 0Yp-3
- S +...
T +<y2—-3/+l)2 . TGPy ip oy
e %1 Y

"'+<y2-3/+1)"‘1'3? @P—y+1)"’
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as may be verified by substituting the expression for z and comparing
coefficients of powers of #—~1. In particular,

2

S
?/1_3/2'—,?4‘1 >

. y? i( y? > y?
2=yl dy \F-g+1) TPy

and so on.

The equation is amenable to the ordinary practical method. The most
general integral is found to be

1
(@—y)e¥=F(2),

where # is an arbitrary function, to be rendered definite by means of the
assigned condition, which is that z must acquire the value y when x=1.

Hence
1

(1—2)ev=F(9),
and therefore
1

(1=2) % =/ (2),
so that the required integral is given by the equation
1 1
(1—2)e?=(wx—y)eY.

But in connection with this equation, it must be specified as that value
of z which acquires the value y when #=1; it is not enough to take any root
of the equation for the integral, because (when x=1) there is an infinitude of
values of z as functions of y, and only one of these is actually equal to . In
fact, the finite form of the equation, though it includes the required integral,
does not give a unique expression for z.

Note. It sometimes is convenient* to associate an ordinary equation
d;
a%zf (@ ¥)
with a partial differential equation
0z Oz
PRGN @—‘-0-

It is known that integrals of the respective equations exist. Taking the
equation just discussed, so as to have

yZ
J (@ y)=m >

the only regular integral of the ordinary equation, acquiring a value zero when
z=1, is given by
y=0,

* Picard, T'raité d’dnalyse, t. 11, ch. x1, § 15.
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Now taking the partial equation and supposing an integral of the ordinary
equation, assumed to exist in the same regular field of variation, to be substi-
tuted in z, we have

0z 0z dy
et oy do= "

that is, 2= 4, a constant, for that substitution: and the constant 4 manifestly
can be made zero. Conversely,
z2=0

clearly gives the regular integral of the ordinary equation in the form

y=0.

We can also, by quadratures, obtain the complete primitive of the ordinary
equation in the form
(o—g)ev=c,

where ¢ is an arbitrary constant. This cannot be obtained from the regular
integral of the partial equation, by taking

z=A4,
for any value of A, if we take unlimited variation of y; because y=0 is an

essential singularity for one equation and an ordinary point for the other.
But it can be obtained from the non-regular integral

1

(@=y) ¥ =f (2),
by taking z=4 : the appropriate value of ¢ is

e=F(A).




CHAPTER II.

Caucuy’s THEOREM.

TaE main results in this chapter are associated with theorems establishing
the existence, under assigned conditions, of integrals of systems of partial
equations, the number of equations in a system being the same as the number
of dependent variables: they are conveniently described as Cauchy’s Theorem,
because they have their origin in Cauchy’s investigations* on the subject.
The method adopted is based upon the memoir of Madame Kowalevsky,
quoted in the preceding chapter (p. 11); reference may also be made to the
expositions given by Jordan, Cours d’Analyse, t. 111 (1896), ch. 111, § 1, and
by Goursat, Legons sur Uintégration des équations aux derivées partielles du
premier ordre, (1891), ch. 1.

15. The existence-theorems established in the preceding
chapter can be applied to equations, and to systems of equations,
of representative types; and to such applications we now proceed.
But some passing remarks must be made upon the limitations
that have been imposed. All the equations are linear in the
derivatives of the dependent variables: this character, if not
irﬁtially possessed, frequently (though not universally) can be
secured by appropriate transformations. All the coefficients of
the derivatives in the equations have been assumed to be regular
functions of the independent variables (and, in the case of the
earlier theorem, of the dependent variables) within the fields of
variation considered: no result as to the character, or even the
existence, of integrals has been obtained when there is any
deviation from the postulated regularity. The imposed initial
conditions are of a similar type, because they require the assump-
tion, as values, of arbitrary functions of a regular character for a

* Buvres de Cauchy, 17 Sér., t. vir, p. 17, and elsewhere. These memoirs were

published in the Comptes Rendus in 1842 ; his earliest researches on the subject date
back to 1819.
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chosen value of a particular variable: but no result is established
if these assigned arbitrary functions are not regular, in any form
of deviation from regularity. It may be possible (and frequently
it is possible) to transform the equations in such a manner that
another particular variable may be selected as the pivot of initial
conditions, with the appropriate modification as to the arguments
of the functions in the assigned initial conditions; and the
existence-theorems establish no relation between the integrals
proved to exist in the respective cases. Moreover, the integrals
considered are functions which are regular within the fields of
variation ; the limitation to uniformity, instead of to regularity
so as to exclude essential singularities, is (for the almost complete
part) excluded from discussion in the present state of knowledge.

Even within these restrictions, the existence-theorems already
proved have a wide range of important applications; some of
these applications will now be taken in succession.

CaucHY’S THEOREM FOR EQUATIONS OF THE KIrRST ORDER.

16. We begin with the simplest case, being that of a single
equation of the first order in one dependent variable and two
independent variables; taking the latter to be « and v, and
denoting the first derivatives of z with regard to these variables
by p and ¢ respectively, we may consider the equation in the form

Sy 2 p =0,

where f will be taken to be regular in its arguments: and we
shall assume that the equation is irreducible. Let z=a, y =0,
z=c, p=2A, ¢g=p, be a set of values satisfying the equation f=0;
of
op
can be resolved so as to express p in terms of the remaining
arguments in a form

then unless the quantity =~ vanishes for these values, the equation

p—A=g@x—a,y—>b,z—c, q— p),
say
p=9(® Y 2 q)
where g is a regular analytic function of its arguments. Now, as
g—J—; usually involves the variables that occur (or some of them), it
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usually is possible to choose initial values so that %; does not

vanish: and then the analytic resolution of the original equation
1s possible. But it may happen that values of z (if any) and of its
derivatives which satisfy the original equation f=0, that is, which
make f vanish consistently with a relation between 2z, #, y and
with derivatives from that integral relation, also make %—; vanish
similarly: the suggested resolution of the original equation is
then impossible, so that p could not be expressed as a regular
analytic function of =, v, 2, q.

17. As a first alternative, we assume that the resolution
with regard to p is possible in the form

p=9@y 29,
where ¢ is regular in the vicinity of z=a, y=0,z2=c, g=u. We
can apply the existence-theorems, already established, to prove
that an integral z of the equation exists, having the properties :—
(1) et vs a regular function of x and vy within fields of
vartation round x=a and y =056 gwen by
e—al<r, |y—blen
where r vs not infinitesimal :

(1) when x= a, the integral z reduces to ¢ (y), where ¢ (y) s
a regular function of y within the field |y—b|<r,
acquiring the value ¢ when y=>0, and otherwise arbi-
trary ;

(i11) the integral z, as determined by these conditions, vs unique
as a regular wntegral.

In order to deduce this result from the former theorems, we
consider a system

0z

&=

dq _9p

oz oy ’

op _0g , dg +89820

ox  Ox ' 0z 0q oy

regarding it as a system in three dependent variables z, p, gq.
Applying the second of the existence-theorems (§ 14), we infer
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that integrals of this system of equations exist which are regular
in the vicinity of #=a, y=>0, and, when « =a, are such that

z=¢(y),
_a¢(y)
9= "Gy

p= g{a ) qb(y)},

where ¢ (y) is the foregoing regular function of y acquiring the
(y)
a ¢>

value ¢ when y =25, an is therefore also regular, acquiring

the value u when y=1>; moreover, this set of regular integrals is
unique. ILet the set of integrals of the system, thus known to
exist, be denoted by

z=Z(xy), p=P@y), 9=0Q(y);
we proceed to prove that z= Z (z, y) satisfies the original equation
so that, owing to its other properties, it is the announced integral.

As these quantities Z, P, @ satisfy the amplified system of
equations, we have

0Z _
ox
from the first of those equations, so that
0: _
oz
Again, we have
0Q _oP
ox 0y
from the second of those equations, so that
oQ_ 0 0z )
o 0y (ax
and therefore
0
5w (@ @)=0
oZ . . . .
Hence —— — @ is a function of ¥ only, and its value is the same

oy

whatever value be assigned to 2. When x=a, we have

0Z _ _d¢(y)
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from the assigned value of Z, and

_dé @)
2="a,"

from the assigned value of ¢ ; hence, when z=a, the value of

B_Z_ @ 1is zero, and therefore

=

oy
0Z
oy ~“="
generally, that is,
0 _
oy

Again, denoting P —g (z, v, Z, @) by u, we have
ou _oP ©0g 0goZ 0dg 0Q

ow  ox ox 0Zox 0Q ox
_oP og agP 0g oP

TPz oz 0Z7 T9Q oy
=0,

by the third equation of the system. Thus » is independent of «;
when « = a, its value is

g {“’ Y b @), O}i%y)}— g{a, Yy, @), ‘il‘g_;y_)}

on inserting the values acquired by Z, @, P when #=a: this is
zero, and therefore u=0 generally, that is,

P =g('x’ Y, Z, Q)’

b =g(x’ Y, % Q)

and therefore

We thus have

0z 0z
=P 5=t P=9@Y 5,

in association with z=2Z7 (», v), that is, z2=2Z2 (2, y) satisfies the
equation

0z 0z
é;s:g(w, y, z, 8—}/.)’
which is the original equation. Owing to its other properties, by
which it obeys the assigned conditions, 2= Z («, y) is the integral
required.
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18. Passing now to the other alternative, under which the
equation /=0 cannot be resolved with regard to p because the

magnitude % vanishes for values of the variables that make f

vanish, we consider the resolubility of the equation f=0 with
regard to ¢. This resolution will be possible unless the magnitude
gj—; vanishes for values of the variables that make f vanish; when
it is possible, the resolved form will be

q =h(x: Y % p)’

“where A is a regular function of its arguments, in the vicinity of

values (say) #=a,y=>b, z=c. An integral of the equation ewists
having the properties :—
(1) it vs a regular function of x and y within fields of
variation round x=a and y=0>b gwen by
le—al<€r, |y—0b|<mn
where r is not wmfinitesimal :

(i) when y =01, the integral z reduces to r (x), where yr () is
a regular function of = within the field |z —a|< 7,
acquiring a value ¢ when y = b, and otherwise arbitrary :

(iii) the integral z, as determined by these conditions, is unique
as a regular wntegral.

The proof of this proposition is similar to the proof of the
proposition in the case when the equation f=0 was resolved
with regard to p; it will not be set out in detail.

19. Combining these results, it follows that an irreducible
equation f=0 possesses a regular integral with assigned condi-
tions if it is resoluble with regard to p, that it possesses another
regular integral with other assigned conditions if it is resoluble
with regard to ¢, and that each of these integrals is unique under
its conditions. These integrals have been obtained from equations

p=9@®y 249, 9=h@y 2p)
respectively, which arise from the resolution of f=0 in the
respective cases: but they do not generally represent the whole
of the equation f'= 0, for if /" were of degree m in p and n in g,
there would generally be m equations of the former type and n of
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the latter, distinct from one another in their respective sets. Each
such equation determines a unique regular integral under the
assigned conditions, which may be made the same for each equa-
tion in the set. If for the m equations, the respective regular
integrals are

z2=0,(x,y), z2=0,(z,vy), ..., z2=20,(z v),
then clearly the equation
{g=0(z, Pl {z = 0:(, )} ... {2 = On (2, y)} =0
gives the integrals of the equation
Sy, 2 pq)=0,
supposed of degree m in p and resoluble with regard to p, such
that when ¢ =a, z assumes the assigned functional value ¢ ().
Similarly, if '
S @y, 2 pg)=0
be of degree n in ¢ and be resoluble with regard to ¢, an equation

e=™@ e =D @ 9} .. [ = V(e »)=0
gives the integrals of the equation such that, when y = b, z assumes

the assigned functional value r ().
But it may happen that the equation

S @y 2 p @)=0
is not resoluble with regard either to p or to g, that is to say, it

may happen that the magnitudes % and gl; vanish for values of
the variables which make J vanish. The existence-theorem cannot
then be applied, and so it provides no information as regards
integrals of the equation. We must then investigate independently

the character of those integrals (if any) of the equation
f(wa Y, %, P 9) = 0;
which at the same time are such as to satisfy the equations
U _o U _
5p = 0, 3q = 0.

This discussion will come later.

20. The initial conditions imposed upon the integrals, in the
cases where existence has been established, are associated with
particular values of the variable « or of the variable y: a more
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general form can be given to the theorems, by a change in the
independent variables. ILet these be changed from # and y to
X and Y, where
X=Xy, Y=Yy

and denote by P and @ the derivatives of z with regard to X and
Y respectively. Then if the transformed equation is resoluble
with regard to P, it possesses an integral z (which therefore is an
integral of the original equation) characterised by the following
properties :

(1) 1t is a regular function of x and y within domains that
are not infinitesimal :

(11) when X (z, y)=a, the integral acquires a value 6 (z, v),
which s a regular function within the domains con-
sidered, which is not expressible in terms of X alone,
and which otherwise s arbitrary :

(111) the regular integral thus determined s unique for the
branch of the equation given by the resolution with
regard to P.

Note 1. When the equation f(z, y, 2, p, ¢) =0 is resoluble
with regard both to p and to ¢, regular integrals are obtained
each of which is unique under the initial conditions imposed.
Such integrals are, in general, independent of one another; if an
integral possessed by the equation resolved with respect to p
proved to be the same as the integral possessed by the equation
resolved with respect to ¢, there must be relations between the
two sets of initial conditions.

Note 2. In each set of initial conditions, a single function
occurs which, within certain very broad limitations, is arbitrary:
subject to the associated conditions, this arbitrary function deter-
mines a regular integral uniquely. We may therefore expect
that, when classes of integrals of partial equations of the first
order are being discussed, one class will emerge characterised by
the occurrence of a single arbitrary function.

This result will be found to be a special case of a more general
result.

Note 8. The equation f(z, vy, z, p, ¢)=0 has been described as
irreducible; the property has been tacitly used, though explicit
F. V. 3
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reference to the irreducibility has not been made after the first
statement.

The reason for assuming the property is practically obvious.
If f(x, 4,2, p, ¢) can be expressed as the product of independent
regular factors, say F and &, and if, in considering integrals of
J=0, we begin with the integrals of F' =0, we have

of _0F o _ o OF
op " op’ g "9’
so that, as G is not zero, the critical quantities for the resolution

of the equation are %1 and g—f We thus, in effect, do consider
separately the integrals of F'=0 and G =0; and therefore no
generality is lost by assuming the equation as irreducible in this

case.

21. We shall frequently have recourse to geometrical illus-
trations, particularly in the case of equations involving one de-
pendent variable and two independent variables. Such illustrations
limit the range of variation of the variables to real quantities;
they will, however, be found an occasionally convenient method of
statement. '

Thus consider the equation f(«, ¥, z, p, ¢) =0: an integral is
a relation between «, y, and z, and this can conveniently be inter-
preted as the equation of a surface. We have seen that, under
conditions which do not need restatement for the present purpose,
there is an integral such that, when « = a, the integral acquires a
value ¢ (y). But

x=a, z=¢(),

are the equations of a plane curve, as arbitrary as is the function
¢ (y). Hence a surface can be drawn that will satisfy the partial
equation and will pass through a plane curve which (within
certain large limitations) can be taken arbitrarily.

Similarly, as regards the modified result of § 20: the equations
X (=, yY=a z=0(z ¥),

are the equations of a skew curve; and therefore a surface can be
drawn that will satisfy the partial equation and will pass through
a skew curve which (within certain large limitations) can be taken
arbitrarily.
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22. A precisely similar application of the general existence-
theorems in the last chapter can be made when the differential
equation of the first order involves n independent variables: it
will therefore be sufficient to state the results.

Denoting the independent variables by @, ..., «,, and the first
derivatives of z by p;, ..., pn as usual, we take the equation
in the form

f(‘wla e wn: Z:pl; vee pn)=0’

and we assume it to be irreducible: and we have the following
results.

Except for such values of the variables (if any) as make %
vanish at the same time as f, the equation can be resolved with
regard to p,; and if @, =a,, .., Bn="0n, 2=C, Pr =Ny, -+, Pn = An,
be an ordinary set of values for the equation f=0, so that f is
regular in their vicinity, then the resolved expression for p, is
regular in the vicinity of those values. Let ¢, denote a function
of @, ..., @y, @4y, --., &y, which is regular in the vicinity of
&=y, ..., Xp = Ay, which at a,, ..., a, acquires the value ¢,, and
which is otherwise arbitrary. Then an integral of the resolved
equation exists, determined by the conditions

(1) it is a regular function of the variables within fields of
variation given by
iml_a/l | P, e Imn_aﬂn | € p,
where p is not infinitesimal;

(i) when x, = a,, the integral acquires the value ¢,.

Moreover, the integral of the resolved equation, as determined by
these conditions, is unique.

If the original equation is of degree w in p,, there are u re-

solved equations equivalent to f=0 save when 88% vanishes with f;
”
each such resolved equation determines a unique integral, subject

to the imposed conditions; if these be &, ..., §, then the equation
(z—8&)...(z—¢8.)=0
can be regarded as providing the integral of f= 0, subject to
the imposed conditions.
3—2
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The resolution of the equation f= 0 is possible with regard to
each of the m» quantities p in turn, except only when g—;.j vanishes
with f; and each such solution leads, under corresponding imposed
conditions similar to those used for the resolution with regard
to p,, to similar integrals of the resolved equations and to a corre-
sponding integral of f= 0, unique under the imposed conditions.

Hence, by resolving with regard to one or other of the
derivatives p,, ..., Pn, We establish the existence of integrals of
the equation, uniquely determined by imposed conditions which,
within certain large limitations, involve an arbitrary functional
element.

This establishment of the existence of integrals of the equation
f=0 is effective except in the single conjunction that all the
quantities

o o kA

o p T opn
vanish for values of the variables which make f=0: in that con-
junction, if it can occur, the existence-theorems cannot be applied.
There will therefore remain, as a subject for separate consideration,
the discussion of the integrals (if any) of the equation

f=0

which simultaneously satisfy the equations

o Lo, ¥ g
opx

>

S
As before, we can deduce the existence of integrals which are
such that, when some relation
pw (@, oo, 2)=0

is satisfied, z acquires a value ¢ (2, ..., @,), where x and ¢ are
regular functions, and ¢ is not expressible in terms of u alone:
the general condition, necessary for the existence of the integral, is
that the quantity

o op O Op U o
Op, Om, " Op, 0wy " Opp O

shall not vanish in virtue of f= 0.
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CAUcHY'S THEOREM FOR EQUATIONS OF THE SEQOND ORDER.

23. The equation, next in simplicity, to which the existence-
theorems can be applied, is an irreducible equation of the second
order in one dependent variable and two independent variables.
Denoting the second derivatives of z with regard to « and y
by 7, s, ¢, as usual, we may take the equation in the form

Sz, y, 2 p q 78 t)=0,

where f will be assumed to be a regular function of its arguments.
Let a, b, ¢, N, p, &, B, v be a set of values of the arguments of fin
the vicinity of which f is regular; then, unless gj; vanishes for
those values, the equation can be resolved so as to express r
in terms of the remaining quantities by an equation

r—a=g@—a, y—b z—c¢ p—\ g—p s=B t—1),
say
r=g@ ¥ % D ¢ S O,

where ¢ is a regular analytic function. Now, as Ea)l; usually in-
volves at least some of the variables, it usually is possible to choose
o
or
of the original equation can be effected. But it might happen
that values of z (if any) and of its derivatives, which make f vanish,

also make %J; vanish : the resolution of the original equation with
regard to = could not be effected, and we should have to proceed

otherwise.

initial values so that does not vanish; and then the resolution

When the resolution is possible, the general theorems can be
applied to establish the existence of an integral z having the
properties :

(A1) 1t is @ regular function of x and ywithin fields of variation
round a and b, given by

le—a|<p, |y—bi<p,

where p is not wnfinitesimal ;




38 INTEGRALS OF EQUATIONS OF [23.

(i) when = a,then z reduces to ¢,(y) and g—z reduces to ¢, (y),

where ¢, (y) and ¢, (y) are reqular functions of y within
the domain |y — b |< p, acquiring the values ¢ and A
respectively when y=2>b, and are otherwise arbitrary ;

(iii) the integral z as determined by these conditions is unique.

The mode of establishment is similar to that in the case of the
equation of the first order, and so the exposition will be brief.
We consider a system of equations

9z _

0w P>
op _

o "
o9 _op
ox 0y’
as_or
ox oy’
o _os
ox oy’

or 0 0 dg 0 Oog or  0g 0s
éfa‘gﬁa*g“a%”"a‘% 8_§+37§8_y ot 3y’
of the same character as in the general existence-theorems; and
we regard the system as involving six dependent variables
2z, p, q, 7, s, t. When the former results are applied, we infer
the existence of integrals of this system of equations, characterised
by the properties:

(1) they are regular functions of # and y within the fields of
variation
le—al<p ly—bl<p,
(i1) when #=a, then

Z = 4’0(9),
.p = (;bl (y)>
$o ()

dy

b
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t = d2¢0 (3/)
dy*
_ deo(y) dé (y) o (y)
r=g {a’ Y, ¢0 (y)’ (161 (y)’ dy » dy ’ dy2 } 5

where ¢, (y) and ¢, (v) are the foregoing regular functions:

(iii) the set of integrals determined by these conditions is
unique.

Let the set of integrals thus determined be
z2=Z(x y), p=Pz y), ¢=Q( y)
r=R(x, y), s =8 vy), t=1(z y);

then z = Z (2, y) s the announced vntegral of the original resolved
equation.

The proof is simple, on the same lines as before. From the
first of the equations, we have

oZ
w=
and therefore
0 _
ox
Similarly
._0p _ 0%
" 2w 0wt
Again, the third equation gives
oQ _oP
ox oy
_Z
"~ 0z0y’
so that

Thus %— Q is independent of : inserting the values of Z and @
when = a, we find the value to be zero, so that

oz

=@
and therefore

0 _
8y_q
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The fourth equation gives

o8 _on
ox 0y
-2 (@)
"oy \oz/’
and therefore S — %15 is independent of x: its value is zero when
x=a, and so '
oP
S 3
that 1is,
op
"oy
_ 0z
T 0xdy’

.. . 0°Z .
Similarly from the fifth equation, we have 71'— e independent
of x: its value 1s zero when x=a, so that

0*Z
"=y
that is,
_os
=

Lastly, writing
v=R—9g(x, y, Z P, Q, S, T),

the sixth equation shews that v is independent of z: its value is
zero when z=a, and so v=0 generally. Thus

R—g(wy Z P, Q, S, T)=0,

that 1is,
”'—9<m,y:z;}7,q,3;t)=0’
where _EZ% _% r—aji s—ﬂ _ 0z in associatl
p_ax’ q_ay> T oaR’ _axay, —ayz, 1 SSO on

with z=2(x, y).

Owing to the other properties, by which it obeys the assigned
conditions, z=Z(«, y) is the integral of the original differential
equation, having the prescribed character.

Thus the existence of an integral of the equation

f(x,y,2,p,q9, 1,8 6=0
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. . . of . .
1s established, save in the case when ar vanishes for values (if any)

of the variables simultaneously with /. When gi:‘does not thus

vanish, the original equation is analytically resoluble: there is one
such integral, subject to the imposed conditions, for each resolved
branch of the equation: and if §,, &, ... be these integrals, then

(z—8&)(z—&)...=0
provides an integral of the original equation.

Similarly, if the equation is resolved with regard to t—and this
will be possible except for such values (if any) of the variables as

o

make % vanish simultaneously with f—and if the resolved form is

t=h(z,y, 2, p q 1 9)
where & is a regular function of its arguments, then an integral z

exists, characterised by the properties:

(1) <t s a regular function of x and y within fields of variation
round a and b, given by

|z ~al|<p, |[y—0[<p,

where p is not infinitesimal ;

i) when y =0b, then z reduces to r, () and 0z reduces to
Y v 3y
Y (), where \ry () and r; (&) are regular functions of

x within the domain |x— a|< p, acquiring the values
¢ and pw when z = a, and are otherwise arbitrary ;

(iil) the integral z, determined by these conditions, is unique.

The proof is similar to that of the earlier proposition and so need
not be expounded.

24. It may happen that there are values of the variables for
which the equation is not resoluble with regard either to » or to ¢,
of of

so that ) 87‘ , ﬁ
these values the equation f=0 may be resoluble with regard to s.
In that case, we change the independent variables from « and y to

, / vanish simultaneously for such values: yet for
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«' and y'; denoting the derivatives with regard to the new variables
by v, ¢', 7, §, t', we have

. /\ 2 ’ 7 /N 2 T Ng 2,/
T:r1<%>+28/?ﬁ%+t/<%> +p/ax+glay

ox ox ox ox ox? 0x?
, 0x’ o’
S=7r é—.’L‘— —a—§ e
, [0x'\?
t=r (@) L T

When these are substituted, the new equation will be resoluble
with regard to " except for values (if any) of the variables which

of

make 2 vanish, that is, which make
of (0x'\* of 0x’ 0x’ | Of [0x'\?
$<%>+$a@§+ﬁ@ﬁ

vanish. In the present case, we can choose 2’ so that it shall

involve « and v; and therefore, even though %j; and %Jg vanish, the
0

foregoing quantity will not vanish unless %nganishes. When 33

does not vanish, the equation can be resolved with respect to »’:
and an integral of the equation exists, uniquely determined by
conditions similar to those in former cases.

This transformation, moreover, shews that the initial conditions
can be modified in all the preceding cases: they can be associated
with an initial value &’ = ¢/, of course with the appropriate modi-
fications, that is, they can be associated with an initial relation

0 (w, y)=d,
where 6 is a regular function.
The existence of an integral of the equation
Sz y, 2 p,q,7,58)=0

is thus established except for such values (if any) of the variables
as make the equations

o o Yo U_
=0 570 5=°

satisfied simultaneously with f=0. If this be possible, the exist-
ence-theorem does not apply: and there must be an independent
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discussion of these integrals, if any. This discussion will be
deferred.

In the case of equations of the first order, say in two independent variables

only, we are accustomed to the existence of integrals such that f, %];, %
vanish simultaneously. Without anticipating the discussion of the corre-
sponding question for equations of the second order, it is to be remarked
that the four equations
- s _ o _ o _
f'—'oﬁ ﬁ'—(): é;“07 Ei-07

may coexist without rendering the elimination of 7, s, ¢ possible. An example
is furnished by the equation

(ra®+2szxy + ty? — 2px — 29y +22)2 — at (r2 4 252 4-¢2)

4at
=m3/7)é (px+gy - Z)Z.

CavucHY’S THEOREM IN GENERAL.

25. We now proceed to apply the existence-theorems, in order

to establish the existence of integrals of the system of equations
0"z,
ox,"

0m2,
oz,

O™em o,

Ban L

=7, =Ly, «oes
where the quantities Z,, Z,, ..., Z, are regular functions of the
independent variables @, ..., #,, of the dependent variables z,, ...,
Zm, and of the derivatives of the latter of all orders up to (and
including) 7y, ..., 7, respectively, except only those derivatives
which appear on the left-hand sides of the equations.

Let a,, ..., a, be values of «, ..., #, within the field of regular
existence of the quantities Zi, ..., Z,, ; and let a number of functions
of @y, ..., @, be chosen, which are regular in the vicinity of a,, ...,
@y, and (subject to certain limitations upon their coefficients about
to be stated) which are otherwise arbitrary. These functions will

be denoted by ¢au, for

A=1, =01, ..., rn—1;
A=2, u=0,1, ..., r,—1;
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Then a system of wntegrals z,, ..., zm of the equations exists,
characterised by the properties :

(i) they are regular functions of ®,, ..., @, n fields of
variation gwen by

oy —a|Zp, |@2—as|Zp, oo, |Zn—an|=Zp,
where p vs not infinitestmal ;

(i1) when x, = a,, the values acquired by the integrals and by
their derivatives are given by the relations

O Zn _
ox Prws

Jor the various values of N and w, 1t being assumed that
the values of the functions ¢, when x,=as, ..., Ty =y,
are values of the derivatives of z, ..., 2y, within the field
of regular exvstence of the functions Zy, ..., Zpy ;

(iil) the system of integrals, thus determined, vs unigue.

In order to establish this result, we merely generalise the

method applied in the preceding special cases of the theorem. We
introduce a number of auxiliary variables

orstttee 5

0z, 0,50yt .. = Parst..

assigning as initial conditions that, when @, = a,, the values they
shall assume are given by the relations

Paryoo.. = [Zx),
Pareo... = (,b)\r;

when r < ra, and [Z,] is the value of Z, when #, = «a,; and we con-
struct the system of equations

ap/\r,\oo... i 0Z m 0Z

axl - awl +S§1-a—2;p810...+---)
0
pg'-;]: T PA, v41, 0, 0, 0
ap/\o‘st... — apA, r41, s—1, t...

o, 0, ?

these holding for » <7x, 7+ s+t + ... <7, s> 0, and for all values
of A; the right-hand side of the first equation is the complete
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derivative of Z, with respect to «;, the derivatives of the included
arguments being modified by the rest of the equations in this
amplified system.

The substituted system of equations conforms to the type
specified in the general existence-theorems, which accordingly
apply. The system possesses a set of integrals having the pro-
perties:

(1) they are regular functions of the variables =, ..., @,
within the specified fields of variation:

(i) when @, = a,, the various dependent variables acquire the
respective assigned values:

(1i1) the integrals, thus determined, are unique.
Let the values of z, which occur in this set of integrals, be
Zp= "1["7' (wl; ooy wn);

for r=1, ..., m: these values constitute the announced set of integrals
of the original system of equations.

The method of proceeding is the same as for the simple cases.
Thus we have
Oz _
oz, = Parrco...>

direct from equations of the substituted system. Again, we have

a]?,\omo... _ @}100...

ox, 0z,
_ 82,2')\_‘
02,025
aZ)\ .o . .
Thus Pagwe... — 5z, 18 independent of @, ; its value is zero when z,= a,,
2

and therefore is zero generally, that is,

aZ,\
am' = Paro1co... -
p

And so on, step by step: the last step gives
0
é‘x‘l (P/\r)\oo... —Z)\) =0,

so that par,.. — Zr is independent of ,: its value is zero when

x, = a,, owing to the assigned conditions; and therefore the value
is zero generally, that is,

Par,co... = 2y,
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and therefore we have

o"A Za _

awlr)\ Z)\}

equations which, for all the values of A, constitute the original
system. These are equations satisfied by

Z)\:q"'\(wl:'”:xﬂ), (7&=1,...,'m),

which accordingly are the integrals of that original system. The
properties, which they possess as integrals of the substituted
system, both as regards regular character, values acquired when
@, = a,, and uniqueness, shew that they obey the conditions imposed
in connection with the original system.

A simple illustration is provided by the differential equation of a vibrating
plane membrane, which is ]
0% 0% 0%
o T o) T
where 42 is a constant : an integral of this equation is uniquely determined by
the condition of being a regular function of #, ¥, ¢, and by the conditions that,
when ¢=0,

h2

Z:f(.z‘, 3/): S—i=g(‘x> y)

By the nature of the case, the boundary of the membrane is fixed ; hence,
along the boundary, z and gé are always zero, so that the regular functions

f(@, y) and g(x, ) have their otherwise arbitrary character restricted by
this general condition attached to the particular problem. But it follows
from the general theorem that, if an integral can be obtained, in any manner,
satisfying the imposed conditions, it is the unique integral, subject to those
conditions.

For example, let the membrane be rectangular in form, having its sides
equal to o and b: let the equations of the sides be y=0, y=b, #=0, x=a,
so that f and g must vanish for any one of these four relations. Now an
integral of the equation is given by

z=/(a cos ct+ 3 sin et) sin Az sin uy,

provided
A2 (N2 p2)=c?:

and this integral will vanish on the rectangular boundary if
sin Aa =0, sin pb=0.
The latter will be satisfied by taking

I mmw
R_E f“""—b' 3
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where 7 and m are integers ; then
2 2
% B2m? <l m

and the integral is
. .1 .
z=(a cos ct+ 3 sin ¢t) sin %x sin mzv)rg/

Clearly, the sum of any number of such integrals is also an integral: so that
we have an integral given by
mary

Ina
Z=3 3 (apm COS Cpmt + Bim, 810 ¢ppt) Sin — ’ sin
I=1m=1 a b

This quantity Z vanishes on the boundary : if, then, the coefficients ayn, Bim
can be determined so as to satisfy the imposed conditions, we shall have the
required integral. Now, when =0,

.l . m
Z= 3 = almsmw—sm—f—?—/,
=1 m=1 a b
oz loex . mmy
=== 3 1B 8in L sin ﬂ-‘/;
0t 121 m=1 b

and these should be equal to f(2, ¥), g (», ¥), which accordingly impose
limitations upon the character of the regular functions. The conditions will
be satisfied if

mwy

ayn = ab / f VAC)) sm—sm 3 dz dy,

Bim= / J g (z, y)sin _x sin Z‘y dx dy.

The required integral is uniquely given by the expression

abcl

® 2 ’ . . Amw . mwy
2= S 3 (ap, COS Cipl + Bun 81N cy,t) 8In —— sin ,
I=1m=1 &% b

with the foregoing values for the coefficients a and 3.

Note. It will be noticed that the existence-theorem provides
for the introduction of a number of functions which, within certain
very wide limitations, are arbitrary functions of all the variables
but one, or are arbitrary functions of all the variables subject to an
assigned relation among the variables. In the case of the system
of equations considered in this section, the number of these
functions 1is

r+ret .. T,
being the sum of the orders of the highest derivatives that occur.

In particular, if there be only a single dependent variable and
a single equation of order =, the number of arbitrary jfunctions
provided by the theorem for the precise determination of the
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integral s », the same as the order of the equation. Special
illustrations have been furnished by an-equation of the first
order and by an equation of the second order.

26. In the establishment of the theorem as to the existence
of integrals of the equations

0"z, "™ 2y,

axlrl_ 1o =0 ox,"m

= Zm:

it was assumed that no derivatives of z, of order higher than »,
occur, and similarly for the derivatives of the other dependent
variables. This limitation is important: it is actually necessary
in order that the convergence of the series (and therefore the
functional significance of the integrals) may be established.

The importance of the condition may be illustrated by a single example *.

Consider the equation

0%z Oz

o o
which belongs to the system when associated with imposed conditions to be
satisfied for an assigned value of ; but the limitation is not obeyed when the
imposed conditions are to be satisfied for an assigned value of #. To see the
effect of the limitation, let it be required to obtain an integral of the equation
which shall acquire a value P (y¥) when =0, P (y) being an analytic function
of 7, regular in the vicinity of y=0. A formal solution is manifestly given by

xn d2n p

2= 3 — G5
n:()ﬂ! dj/zn

.

The convergence of the series cannot be established : indeed, the series in
general is not a converging series. To make the series more precise, let

1
P (y)= m P
which satisfies all the conditions : then
a” 27!
z—nz()(l —yIL g T
1 2n!

2

zl—y,io n!(1 —_e/)znx ’

Now it is known+ that p, the radius of convergence of a converging series
Sa,,2™, is given by
1 1
—=Lim | a,,™ | ;
P m:oo! " ‘
* Kowalevsky, Crelle, t. Lxxx (1875), p. 22.
+ T. F., § 26,
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hence, if p be the radius of convergence of the series for z regarded as a power-

series in @, we have
1
1= 1 Lim <2m !>?ﬁ
p 1=y m=w \ m!

1
- ot Tim o™
| 11—y |2 m=w €

b

approximately, by the use of Stirling’s theorem; thus p is zero, whatever
finite value be possessed by z. In other words, there is no region of con-
vergence for z in the case of the assumed form of P ().

The question thus suggests itself: what are the limitations upon P (y) that
the series for z should converge? To answer it, we take the equation as
an instance of the equations in § 23: the theorem shews that a regular
integral exists determined uniquely by the conditions that, when y=0,

Z=Q(‘”)= S cpx"
n=0

0z
e =R (x) =n§o Fop 2,
where @ (x) and R () are regular functions. The formal expression of this
integral is easily found to be
. 3/2))7, d‘m@ (.Z‘) o :l/2m +1 dm R (%.>
Tm=02m ! dam me0(2m+1)!  dx™

Hence, when x=0, the value of z is given by

m ! m !

s CmyYP 4+ =
m—02m ! my ™"+

J— - 2m +1 .
o @m 1) Em &S

if the integral is to be given by the former process, this must be the value of
P (y) in the assigned initial conditions.

Let » denote the radius of convergence of the power-series ¢ () and
R (») simultaneously: then, because 3 ¢,4™ and 3 k,2™ are converging series

n=0 n=0
when | # | <7, a finite quantity @ exists such that
G G
fcn‘<;ﬁ’ ,kn[<7,—n7
so that we may take
Gu Gv
T kn='7—n ’

where |u| <1, |v| <1, while » and » are not zero. If p denote the radius of
convergence of the series of powers of y, then

l—~Lim mi Gulm
P m=w| 2m! ™
=0,

or the power-series must converge over the whole plane. Consequently, the
only functions admissible as values of P (y) in the earlier investigation are

F. V. 4
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those which are regular over the whole plane and, when expressed as power-
series, converge over the whole plane in a manner comparable with the series

Thus possible values of P(y) are given by
P (y)=e,
P (y)=Jo (),
P (y)=n(¥)
when (in the last example) the real part of % is positive.

27. The equations, in § 25, though not of a completely general
character, constitute a very extensive class; and they are even
more extensive than their explicit form indicates, because of the
possibilities of transformation.

Suppose that, in a given system of m equations, the order of
the highest derivative of z, is i, for A =1, ..., m; then, by trans-
formation of the independent variables, it is usually possible to
secure the explicit occurrence of the derivatives

o A orm Zom
o™’ T Qaym
that is, of the highest derivatives with regard to one and the
same variable. If all these occur, no change is needed ; if any are
absent, we change the variables by relations
Ty = Qg &y + Uy + ooo + Aspn,

for s=1, ..., n, the constant coefficients a being at our disposal
provided their determinant is kept different from zero. Suppose
that the required derivative of z, has not occurred in the original

equations, but that there is a derivative am—lﬁa%;?%u—~, where
s+t+u+...=r; then, after the transformation, the derivative

0"z,
oa/ "
secure that this negative provision is satisfied; hence the m
equations can be transformed so that the required derivatives
occur explicitly.

will occur unless a,’afas”... vanishes. We can always

But this result is not sufficient to secure the form of the
equations adopted for the existence-theorem ; it must further be
possible to resolve the m equations with respect to the m selected
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derivatives. When the resolution is possible, the resolved equa-
tions are of the form
oMz,
Oa, "1

o™z,
=2y, <., =Zm.

0x,"m

When the resolution with regard to the selected derivatives is not
possible, and is equally not possible with regard to every set of
similarly selected derivatives, the equations do not belong to the
class considered.

As an instance shewing that the form cannot be regarded as
one to which all equations of the type considered are reducible,
take the equations

P, 02,

0z, 0z
a—xﬂl—i-PzaTvl'l-Psa_wl“

02, 02, 025 _
QIS‘J@;'FQ?T% -+ Q"’a_a:;_ZZ’

Z,

02z,

Yo,

+ R azg—Z:s;

0w,

02,
2 Oy

R + R

when the transformation
@y = U ) + W@y + Az @5

(for s=1, 2, 3) is effected, they have the form

0z, 02, 02, o,
a1 <P1a%—1/ +P2871, +P3871,> +...=27,
0% 02, 8_Z> —
22T <Q1 5, + @, oy + @, ) +...=2,,
02, 02, 02, _
Q3 (Rla—x’“l/ +R2§W:’ +R38?1,> + ... ——Z:,;.
0z, 0z, 0z

The equations can be resolved for (and therefore

a—x_l/; 8-7)1/, aml/
would be reducible to the selected general form) if
s | Py, Py, Py

Ql; QZ’ QS
-Rl; R?} RS
is not zero. But it might very well happen that the determinant

of the coefficients P, ), R should vanish identically; the resolution
would then be impossible. In that case, it is equally impossible

4—2




52 TRANSFORMATION [27.

0z, 02z, 02
Owy* Omy” Oy
with regard to the remaining three derivatives, and so the
existence-theorem cannot be applied; but then it is also necessary
that the relations

to resolve the equations with regard to and also

P17 —PZJ -PSJ Zl { = O
Ql’ Q'Z) Q3: Z2 ‘
Rl; -R2> -R37 Z3

be satisfied.

Hence the form of equations retained in § 25 is not a com-
pletely inclusive normal form ; but, as already stated, it includes a
very extensive class of equations®,

Ex. Consider the equations

ou b ov 09X
ot o l
0w 00 _ BYJ ’
“ou oy T oy
where ¢’s and b’s are constants, X is a function of « alone, ¥ is a function of
y alone.

Effecting the transformations, we easily find that the system can be
changed so as to have the mnormal form selected, provided ab' —a'b is not
zero. Assuming this proviso satisfied, the existence-theorem applies and
the integrals certainly exist: they are most easily obtainable by quadrature
from the original equations in the form

au+bv=X+ f(y) }
au+bv=Y—+g (x) ’

where f and g are arbitrary functions. To determine f and g in connection

with assigned initial conditions, we take the existence-theorem for the

transformed equations: it would assign values ¢ (yx+8y) and  (yx+8y) to

u and v respectively when ax-4 By is constant, say A, where ad— By is not
zero. 'Thus

o (% = L5 a)+oy (B - P52 ) - 7 (A 4 o)

which determine f and g.

* For a fuller discussion of this matter, see Bourlet, dnn. de UEc. Norm. Sup.,

3me Sér., t. viir (1891), supplément. The example that follows is taken from this
memoir.
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But if ab'—a'b=0, the resolution is not possible: and the existence-

theorem does not apply. The quadrature is still possible ; and we find

aut+bv=X+71(y),

adu+bv=Y4g (x),
where f(y) is arbitrary so far as the first equation is concerned, and g (x) is
arbitrary so far as the second equation is concerned. Assuming for purposes
of illustration that no one of the constants «a, b, &/, 8’ vanishes, we have

VAX+/ ()} =0{Y+g ()}

hence, as there is no relation between the variables 2 and ¥, we must have

g (@) :% X -V,

b
F@)=g Vb,

where ¢ is a constant. The two integral equations are now equivalent to one
only ; hence they do not precisely determine the two quantities % and w.
One of these can be taken at will, say

v=012, y);
and then ’

b X Y be
u=—_0(@ y)+—+ =

which accordingly are integral equations in the case when abd’—a’b=0.

OTHER CLASSES OF HQUATIONS.

28. The preceding forms of equations are thus not universally
inclusive ; and, in recent years, investigations have been made on
general differential systems, so as to establish the existence of
integrals under assigned conditions associated with wider classes
of equations. These investigations are mainly due to Méray,
Riquier, Bourlet, Tresse, and Delassus*: their formal complication
is elaborate. There are two main issues in this development of
the theory; one is the construction of canonical forms, the other
is the establishment of the existence of integrals of the systems of
equations, the expression of which involves arbitrary constants or
arbitrary functions. And we have seen, by a particular example,

* Many references will be found in von Weber’s article on partial differential
equations in the Encyclopidie der mathematischen Wissenschaften, vol. 11, pp. 299,
300. Iun addition to these, four memoirs by Riquier may be mentioned; they are
to be found in the Acta Math., t. xxmr (1900), pp. 208—332, ib., t. xxv (1902),
pp. 297—358, dnn. de VEc. Norm. Sup., 83me Sér,, t. xvirx (1901), pp. 421—472,
2b., t. xx (1903), pp. 27—73.
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(§ 8), that cases may occur in which integrals certainly exist and
cannot contain any arbitrary element whatever.

For such investigations, we refer to the memoirs of the authors
quoted ; and we shall therefore enter into no further detail as to
the existence of integrals of systems of equations in number equal
to the number of dependent variables. There still remain, for our
consideration, the discussion of the integrals (if any) of an equation
or a system of equations in the vicinity of values of the variables
where the functions concerned are not regular, and the discussion
of the integrals (if any) of systems of equations in which the
number of dependent variables is less than the number of equa-
tions. To the former, very little space will be devoted as the
subject is hardly begun: it certainly seems to have claimed no
attention from investigators. The latter is of the utmost import-
ance, particularly in the case when there is only one dependent
variable; it will be undertaken in a succeeding chapter.

CHAPTER IIL

LinEAR EQUATIONS AND COMPLETE LINEAR SYSTEMS.

For the materials of this chapter, reference may be made to the authorities
quoted in Part 1, ch. 11, of this work, in particular, to Mayer’s memoir, Hath.
Ann. t. v (1872), pp. 448—470, and also to chapter 11 of Goursat’s Legons sur
Uintdgration des dquations auw dérivées partielles du premier ordre. The chap-
ter is devoted to linear equations, either single or in simultaneous systems.

Single equations and systems of simultaneous equations, which are
homogeneous and linear in the differential elements of the variables, have
already been discussed. The discussion of exact equations and exact systems
of this type is given in the first two chapters of volume 1 of this work: the
remainder of that volume is devoted to the discussion of inexact equations
(Pfaff’s problem) and of inexact systems.

n
THE LINEAR EQUATION 3 X;p;=0.

=1

29. We proceed to a more detailed consideration of equations
of the first order. Cauchy’s theorem establishes the existence of

integrals having a considerable degree of generality : but it does

not prove that the integrals have the widest degree of generality
possible or that they include all integrals by the appropriate
specification of the arbitrary elements; and the only method which
it provides for the actual construction of the integrals leads to
expressions in power-series. It should be added, however, that
(save for special classes of equations) the method provided in the
proof of the existence-theorem is the only universal mode of con-
structing the integral: but for those special classes of equations
simpler methods can be devised for the construction of the integrals,
while further information can be obtained as to their relative
generality and their classification. In all that follows, we are
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concerned rather with the theory in general than with the practical
solution of particular equations as expounded in text-books*.

The simplest equations of all are those which are linear in the
derivatives ; among them, the simplest is the equation

Xipo+ Xopo+ .o + Xpp =0,
when the coefficients X, ..., X, are functions of the variables
@1, ..., &n but do not involve the dependent variable z. It will
be seen later that every linear equation can be expressed in this
form.

As usual, we associate with the partial equation the system of
ordinary equations
de, dwo, _day
b b Alint ok
by the theory of such equations, their integral equivalent consists
of n — 1 independent equations in a form

- Up (D1, ooy X)) = Cp,y (r=1, ..., n—=1).
Taking any one of these integral equations, we have

ou, ou, .
%dwl—k cee +87v;dxn—0,

concurrently with the ordinary differential equations; hence
o, o,
Xl%;"" +Xna%_ 0,

again an integral equation. Now there cannot be an integral
equation independent of the set

Uy =C1, Uy =0Cq, ..., Up— =Cp;

so that the new equation is not independent of this set. But it
does not involve any of the quantities ¢; hence, though the equation
holds, it does not hold in virtue of the integral set. It therefore
can only be an identity; so that the equation

ou, ouy,
t oy "O0an

is satisfied identically. Consequently, when we put

X + ...+ X, 0

Z = U,

* For instance, much of chapter 1x in my Treatise on Differential Equations,
(8d. edn. 1903), will be taken for granted.
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in the original partial equation, the latter is satisfied identically:
and therefore z = u, is an integral of the partial equation.
Moreover, this holds for all values of »; and therefore there are
n— 1 functionally distinct integrals of the equation. But there
are not more than n — 1 distinct integrals; that is, every integral
can be expressed in terms of these. Let any integral be denoted by

z=f (2, ..., @n);

then the equation
Y +x, Y0
ox

: "oy,
is identically satisfied. The equations
Oy ou,

Xlax’l ...+X¢Z%=O,
for r=1, ..., n — 1, are identically satisfied: and the quantities
X,, ..., X, do not all vanish: hence
J— J(f, Usy oves un_l> -0
“\ L1y Loy vee, Tp )

The quantities « are functionally distinct, so that J does not vanish
through an aggregate of vanishing first minors. It cannot vanish
in virtue of z=#, for it does not involve z. It must therefore
vanish identically ; and therefore some relation must exist among
the quantities f, u, ..., 4,_;, the relation involving f because
Uy, ..., U,y are functionally distinct: let it be

S=¢ (U, ouvy Un).
Hence the equation possesses exactly n — 1 functionally independent
wntegrals.

If /' denote the most general integral of the equation, then
¢ must be the most general function possible: the requirement
is satisfied by making ¢ a completely arbitrary function of its
arguments. Hence if w, ..., up—y be a set of functionally inde-
pendent vntegrals, the most general wntegral of the equation s
gwen by

2= U, .., Un—),
where ¢ vs a completely arbitrary function of its arguments.

The arbitrary function ¢, and the functionally distinct integrals,
can be determined so as to satisfy assigned initial conditions
and therefore so as to yield the integral established by Cauchy’s
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theorem. Let a,, ..., a, be values of ,, ..., 2, In the vicinity of
which all the quantities X,, ..., X, are regular; and suppose that
some one of these quantities, say X,, does not vanish for those
values, an assumption that can always be justified by an appropriate
choice of a,, ..., a,. The general initial conditions will be that the
integral z is to acquire a value f(w,, ..., #,), when «,=a,, the
function f being regular in the fields of variation considered.

The appropriate arguments can easily be constructed. ILet an
mtegral v,_, be obtained to satisfy the partial differential equation,
subject to the condition that it shall acquire a value «,, when
&, = a,; its value 1s

/U’I'—I:‘w7'+<x1—al) P¢($1—a1, XLy — g,y voe, wn"'an),

where P, is a regular function of #, ..., 2, in the vicinity of the
initial values. Taking this result for »=2, ..., n, we have v, ...,
V-1 as n — 1 functionally distinet integrals; and then

z2=f(v1, ..., Vnor)
is clearly the integral of the equation which acquires the assigned
value f(#,, ..., #y), when ;= a,.

The appropriate arguments can also be constructed from the
associated ordinary equations. ‘

COROLLARY. After the preceding analysis, we can state the
existence-theorem, in a different but equivalent form, as follows.

If ay, ..., an are values of x, ..., &y, in the vicinity of whach all

the coefficients X' in the equation
]91+X2'P2+X3'173+ -+X'n,/pn=0

are regular, the equation possesses n— 1 functionally distinct inte-
grals, which are regular in the selected region and which reduce to
Toy v, Ty, TESPECtivEly, when xy = a,; and if these wntegrals be z, ...,
Zn1, amy ntegral of the equation can be ewpressed in the jform
z=f(z, ..., Zn—) by appropriate choice of f.

Ex. 1. Required an integral of the equation

2 1+ B e+ X3 03=0,

which shall acquire the value 6 (22, #3), when x;=a;.

To obtain an integral »; which shall acquire the value x;, when z;=a,, we
take '
n=ay+ (21— ) pr+(@—a) Pt ... 5
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and we find

Z x
¢>1=—07j, ¢z=a~12§_s
so that
1= {1 _fima <@>2_ }
ay ay
A1 %y
=

We proceed similarly to obtain an integral v, which shall acquire the value
x3, when w;=a,; we find
» __ 13
2=
The required integral is clearly

z=0(vy, vg)

-0 <a1x2 a1x5> )

If we proceed from the associated ordinary equations, we need two
integrals of the equations
dey _ dxy_ das
Xy X3
these can be taken in the form
=2 %8
ul_‘x1 ) uz—xl .
We then require the form of ¢ such that ¢ (w;, us) becomes 6 (w3, #3), When
x1=a; : hence

B (522, 2)=0 (o, o)
and therefore
b (g, Ug)=06 (aru1, Arg),

Z=¢ (uly u‘Z)

=0 (a1, AUg),

that is, the integral is

as before.

Ez. 2. Three given functions u, », w of @, ¥, z are such that

au ov | Ow
S
oy = 0z
and three other functions &, 7, g“ of the same variables are defined by the
relations

_% oy o0& _ o oy _ &
Ty e’ YT dx  YTow oy
Prove that the most general values of &, n, ¢ are
oF _oH or oH o oH
= t0% Tyt Cwmtiu

where G and A are integrals of the equation

09 06 08 —0,
“on 8;4/+ 0z

and Fis an arbitrary function of #, ¥, z
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n
THE LINEAR EQUATION 2 X;p;=Z.

i=1
30. Next, we consider the linear equation
lel + oo ann =,Z)

where X,, ..., X,, Z are functions of the variables «, ..., @,, 2.
We shall assume that any factor, which is common to X, ..., X, Z,
has been removed ; it will therefore be unnecessary to take account
of a value of z which simultaneously satisfies the equations

X, =0, ..., X, =0, Z=0,

the differential equation being then satisfied without regard to the
derivatives of z.

With the linear equation, we associate the set of ordinary
equations

dey, _dw, _daen _dz
X, X, X, Z°
Now whether X, ..., X,, Z be uniform or not, we shall assume

that there are values of the variables in the vicinity of which
X,, ..., X,, Z behave regularly; and then, from the theory of
ordinary equations, we know that the foregoing set possesses n
functionally distinct integrals. Let these be

(@1, ooy X, Z2) =01y oony P (@, oo, Ty, ) =Cy,
where ¢,, ..., ¢, are arbitrary constants.
In the first place, any equation
b, =
gwes an wntegral of the original equation if it tnvolves z explicitly.

As 1t is an integral of the ordinary equations, the relation

a¢r a(P'r a¢’l -
S, dx, + . 8 dz, + dz =
is consistent with those equations; and therefore
2, , 0b, | b _
i, o T gy, T =

Now this is a relation between the variables: it clearly is not
satisfied in virtue of ¢, =c¢, ; and therefore it is satisfied identically.
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Taking ¢, =c, as an equation giving a value (or values) of z, the
derivatives are given by

a(;br opr
anm oz Pm= 0.

When these values of a‘f)r for m=1, ..., n, are substituted in the
m

foregoing equation that is identically satisfied, it becomes

84” (Z = Xopr— e — Xnpu) = 0

Now ¢, contains 2z, so that aa(i;” is not identically zero: and aat”

does not vanish because of the equation ¢,=c,, for it does not

O,
oz

contain ¢,: hence is different from zero. Accordingly, the

equation

Z—Xpr—...—Xupa=0
is satisfied: or the equation ¢,=c¢,, when ¢, involves z explicitly,
provides an integral of the partial equation.

The same is true for each of the equations ¢ = ¢, provided each
particular function ¢ involves z. Now some of the quantities ¢
must involve z, even though each of them may not: for otherwise

95

” would vanish for each value of r, and the equations

X, %@ Xy ang

would be satisfied identically, for »=1, ..., n: we should then have

(cﬁl, . ¢n) _

Ly, eeey Tp

satisfied, but not in virtue of ¢, =¢,, ..., ¢Pp=0,: it must be
satisfied identically and therefore, as the functions ¢, ..., ¢, do
not (under the present hypothesis) involve 2z, there would be a
functional relation between them, contrary to the fact that they

are functionally independent. Hence, through the integral system

of the ordinary equations, we find an integral or integrals of the
partial equation.

In the second place, let f(pi, ..., pn) denote any arbitrary
Sunction of the quantities ¢, and swuppose that the equation

f(¢’1’ sees 4’7») =0
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determines a value or values of z: then f=0 provides an integral
of the dufferential equation. For the equations

b TS & S

1 a 2, a ’
for r=1, ..., n, are satisfied identically; as f is arbitrary, not all
the quantities 8—8«{_ . 5%{0— vanish ; and therefore, on multiplying
1 n

o

by ere and adding for all the values of », the equation

noof aqs,. 5 a¢y . of by
X, + X, =
7‘21 aqbv 21 a¢¢ Z 2'1 8¢>T 0z =0

is satisfied identically. Now the derivatives of z, as determined by
Jf=0, are given by

% of 0, L 9f 0 _

121 Oy 0$m+pm Z1 0¢, 0z 0,
for all the values of m: when these are used, the identical equation
becomes

% 9f 0, _
(Z—Xipy— .. — Xupn) 2 e r =0.
Now as f contains z, the quantity
2 o %,
r=1 8([)7 oz

does not vanish identically; and it does not vanish in virtue of
JS=0, when f is perfectly arbitrary: hence

Z—Xpy— .. — Xopn=0,

or the equation is satisfied. When the values of p,, ..., p, of 2
are determined by f'= 0, the equation is seen above to be identically
satisfied: hence f=0 provides an integral of the equation.

Of course, there may be special forms of f such that the
equation f=0 does not determine z: and there may be special

forms of f, such that s o ¢, vanishes in virtue of f=0. In
r=1 0, 0z

what precedes, we are concerned with quite arbitrary forms of f.
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31. The integral thus obtained is clearly of a very general
character. A question arises as to whether it is completely inclusive
of all integrals: that is, can the functional form f* be so chosen as
to provide any integral that the partial equation possesses? Let
such an integral be known to occur in a form

(2, @1, oo, ) =0;
and let z=c¢, &, =a,, ..., &y = a,n be a simultaneous set of values of
the variables, in the vicinity of which +r is a regular function.
Also suppose that thése values are such that, in their vicinity, the
functions ¢, ..., ¢, are regular, these providing integrals of the
partial equation as before explained. Now the n quantities ¢, ...,
¢, are functionally independent of one another; and therefore not
all the determinants

b 06 o,

0z’ 0wy’ 7 Own

Opn Odn Obn

0z > Ox’ 7 Omy,

vanish identically. Two typical cases will suffice for the general
discussion: for the first, it will be assumed that

0(ds, ..oy Pbu)

a('x1> w2> mres mn)

does not vanish identically ; for the second, it will be assumed that

0(Pr, e Pn)
0(z, @, ..., X)
does not vanish identically.
32. 1In the first place, when the Jacobian of ¢, ..., ¢, with
regard to i, ..., %, does not vanish identically, it is possible to
choose the set of values ¢, a,, ..., a, for z, a;, ..., @y, so that the

Jacobian does not vanish or become infinite for them, unless the
set constitute a singularity or other non-regular place for one
or more of the quantities ¢. Assuming this choice made, we
then can resolve the » equations

¢T=¢7’(Z’ &, ...,.CUn>, (7"=1, ees ’ll),

so as to express @y, ..., &, as regular functions of z, ¢y, ..., ¢, in
forms

T = Em (2, b1, ..., Do),
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for m=1, ..., n. Let these values for the n variables be substi-
tuted in Yr=0, so that

W= 0= ¥ B s Ea)
=X(Z, qf)], ee, (}Sn),

and now the given integral can be taken in the form x=0. To
obtain the derivatives, we have

ox L Ox (0, , 0P, >_
ézpm*)§1&m<a%;+azfm =0

Multiply by X,, and add for the values m=1, ..., n: then
aX Z X,mp7n+ 2 X {( Z X a¢7'> a¢7 < 2 Xfm,_pm)} :O.

m
aZ m=1 r=1 a¢7 m=1 awm aZ m=1

Now for the integral under consideration, we have

7
2 Xm_pm = Z:
m=1
and we also know that the equation

& x, 0%, 7% g

m=1 " a%’m oz

is satisfied identically for all values of ». Moreover, in the
vicinities concerned, all the functions are regular, so that the

8«';)6 are finite 1in the fields of variation retained. When

these relations are used, the above equation becomes

quantities

ox _
Z =0,

and this equation must be satisfied in association with x = 0.
This requirement may be met in three ways.

vanishes identically : then z does not

It may happen that aa—ic

occur explicitly in , and the expression of x then gives

\II=X(¢'1’ LR ¢’n):
that is, a form of function in the integral f (¢, ..., ¢,) has been
obtained so that the general integral becomes the given integral.

ox
0z
only in virtue of ¥ =0. Then z occurs explicitly in yx; and the

It may happen that vanishes, not indeed identically but
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form of the arbitrary function cannot be determined so that the
general integral becomes the given integral.

It may happen that 8 does not vanish. The condition can
only be satisfied, if Z=0: and this must hold in association with
x =0. Again, z occurs in ; thus, once more, the form of the
arbitrary function cannot be determined so that the general
integral becomes the given integral.

Of these three alternatives, it is clear that the last belongs to
a special set: as the integral is given by Z= 0, we must have

0Z 0z

0% Pm 0z =0;
and then the equation
X%, +x,% 9
0z, 0&m,

must be satisfied, concurrently with Z=0. Moreover, as ¢, =c,,
, ¢pn=0, are a set of n independent integrals of the system
of ordinary equations

de,  _dwx, dz
X=X, %
we have
Z (—=1y—=X,
J/ Piy s Pu > (¢>1, By ¢n>’
Xy, Tay vuey Ty "\e, @1,y 0., Xy

where , is omitted from the deriving variables in .J,, and
r=1,...,n in turn; hence as Z=0 for the integral under con-
sideration, X, must vanish for the value of z unless J, should
vanish for the value. We have assumed that not all the quantities
Z X,, ..., X,, vanish for the same value of z

The second alternative may belong to a less special set: it will
be illustrated by examples. The first alternative provides the
most general case.

Integrals, which arise under the second alternative or under
the third alternative, may be called special integrals®.

* Sometimes they are called singular. This term, however, is better reserved
for a class of integrals belonging exceptionally to equations of a degree higher than
the first in the derivatives.

F. V. 5
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33. In the second place, when the Jacobian of ¢, ..., ¢, with
regard to z, a4, ..., #, does not vanish identically, to take only a
typical case when the Jacobian of those quantities with regard to
@y, %3, ..., 2, does vanish identically, it is possible to choose the set
of values ¢, a;, ..., a,, so that the Jacobian does not vanish or
become infinite for them wunless they constitute a singularity or
other non-regular place of one or more of the quantities .
Assuming this done, we can then resolve the » equations

¢7‘=¢7"(Z) L1y vees wn)

so as to express the variables z, @, ..., @, in terms of @, ¢y, ..., ¢y

in forms
z = C(wl; ¢1) L] ‘]Sn);
x?‘ = ”)7’ (xla ¢1; ey ¢7n);

for r=2, ...,n. When these values are substituted for z, z,, ..., z,
in the equation 4+ =0 which provides the given integral, it takes

the form
Y=0= (s 2, ..., Zn)
=0(w1) ¢1) see ¢n)5

and the given integral can now be taken in the form 6 =0. The
derivatives of z are given by the n relations

20  n 00 [0b, O, )_
azﬂia?r(*éazﬁiﬁ =0
LN

7'=lé$r(awm+ 0z Pm =0,

for m =2, ..., n. Multiplying these by X, and by X,, respectively,
and adding for the various values of m, we have

x, 29 + 3 26 {( S X, a¢,.> +aaqz" %I(mem)} = 0.

1~ n
0w, ,=1 8(,67' m=1 0%m,

For the integral under consideration, we have

S, X pm=2;
m=1

and we know that the relation

3 x, % 7% o

m=1 axm oz

is satisfied identically. Moreover, all the functions are regular in

all the vicinities concerned, so that all the quantities , for

20
o
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r=1, ..., n, are finite in the fields of variation retained. When
these equations are used, the above equation becomes
00
Xl a_.x)l -_ O E]

and it must be satisfied in association with € =0. This require-
ment can, as in the preceding discussion, be met in three ways.

It may happen that 29 vanishes identically ; then 2, does not

ox,
occur explicitly in 6, and the expression of 8 gives
'\l"=0(¢1’ cees Sbn),
that is, a form of function has been obtained for f(¢,, ..., ¢y) so

that /= 0 has become the given integral {r=0.

Or it may happen that 88?0 vanishes, not indeed identically but
1

only in virtue of 8 =0. Then #, occurs explicitly in €; the form
of the arbitrary function f in the general integral cannot be deter-
mined so as to particularise the general integral into the given
integral.

Or it may happen that g—z does not vanish. The condition can

then only be satisfied if X, =0; and this must hold in association
with 6 =0. Again, the variable @, occurs explicitly in 6 : thus, once
more, the form of the arbitrary function f in the general integral
cannot be determined so as to make the general integral become
the given integral.

The three alternatives are similar to those in the former dis-
cussion ; integrals, that arise in connection with the second or
the third of the alternatives, will be called special, as before.

34. Gathering together these results, we can summarise them
as follows :—

Let (2, @, ..., an)=0 provide an wntegral of the partial
differential equation
Xip+...+Xnpn=72,

and let f(¢y, ..., Pn) = 0 denote its most general integral, f being an
arbitrary function ; then the functional form of f can be chosen so
that £ (s, -.., bn) becomes r, unless r is of the type of integral
called special, or unless the value of z provided by = 0 constututes
5—2
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a stngularity or other non-regular place for one or more of the
quantities ¢.

It thus appears that the general integral for the linear non-
homogeneous equation, in which the dependent variable occurs
explicitly, is not so completely inclusive as is the general integral
for the linear homogeneous equation, in which the dependent
variable does not occur explicitly.

Instances of the principal portion of the theorem are so frequent
that none need be adduced here: a few examples will be given to
illustrate the special integrals and other exceptions.

Ez. 1. Consider the equation
rp+yq==2
Two integrals of the associated equations
do_dy_ds
x y =
can be taken in the form

and the most general integral is given by

. . f((i)l’ ¢2)=0-
It is easy to verify that

=z~— =0

provides an integral of the equation. XExpressing » in terms of ¢, ¢z, and z,
we find

‘I"“z_z :: 2 \l’
go that
o _ =1— P2
0z P2’
thus —"li does not vanish identically but only in virtue of {/=0, and then
Pz

only in virtue of the factor 1 — E in Y. Thus the integral given by =0 is

a special integral; for the form of fin f(¢;, ¢2) cannot be chosen so as to
make f(¢1, ¢Pa2) become .

It should be noted that f(¢py, ¢s) can be chosen, in a form ¢,2— ¢y,
so as to vanish for the integral provided by »=0: but it does not follow
(and it is not the fact) that f can be chosen so that f(¢y, ¢2) becomes .

FEz. 2. Consider the equation

2o?
<Z— Xy i)pl—l—xzpz +.§U3P3=Z.
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Integrals of the associated ordinary equations

g _dwy _dry _ dz

.1722 xy X3 Z

Z2— X
'3
may be taken in the form

&
2L @y &z £,
¢1=< ——i@:>e " ¢2=;2, ¢>3=‘3;
and the general integral is

S (b1, P2, p3)=0,

where fis an arbitrary function.

It is easy to verify that
2
=z—2; &—2;—0
X3
provides an integral of the equation; but the functional form f cannot be
chosen so that f(¢;, ¢, ¢3) becomes 4. In fact, we have

2%

V=edie b =y,

AP AN
2 —he o <1'Z?;5§>’
o

and 5 does not vanish identically. Taking the value of z given by {» and

so that

substituting it in ¢y, we find ¢;=0: so that »a»a; vanishes in virtue of this

result, that is, in virtue of 4 =0. The integral {»=0 is a special integral.

If, instead of expressing #;, 3, x3 in terms of the quantities z, ¢y, P2, s
with a view to the transformation of y», we express z, zp, x3 in terms of
&1, P1, P2, P3, we find

=g - s (2

and then the requisite condition is

oy
X, =0,

oy

7
in association with {'=0. Now Er does not vanish identically, nor does
1

it vanish in virtue of y/=0; we must therefore have X;=0 in association
with {y/=0. This is satisfied: and therefore, as before, {»=0 provides a
special integral of the equation.

FEz. 3. Consider the equation

22\ 2
xp+2yqg=2 <Z_?/> .




70 EXAMPLES [34.

The associated ordinary equations are
clx

BE)

of which two independent integrals are given by
1

22 2
Pr="7,  Pa=ye V.
The most general integral of the partial equation is
f(¢17 ¢2>:O,

where £ is an arbitrary function.
It is easy to verify that
22
=z —— =O
v Y
provides an integral of the equation : but the functional form f cannot be

chosen so as to make f(¢;, ) become . Proceeding as in the general
exposition, we have
Yy=z—p1=v,

so that %:1 and cannot vanish, shewing that f cannot be chosen for the

purpose. But the quantity Z of the general investigation vanishes for the
value of z given by y=0.

It will be noted that v’ does not involve ¢;: the special integral is a
singularity of ¢,.
Ez. 4. Consider the equation¥*
(1+GE—2-p"p+g=2
The integrals of the ordinary equations

dx _dy _dz
I+(—a—gpt 1 2
can be taken in the form
b= 1
=y+2@EF—2—y)*;
and the general integral is e+ 2 P
J (b1, P2)=0.

It is easy to verify that
Vy=z—x—y=0
provides an integral of the equation; it is clear that no form of f can be found
which will make the general function f(¢;, ¢3) become . The integral
provided by =0 is a special integral; and manifestly any set of values,
satisfying ¥»=0 and chosen as initial values, constitute a branch-place of the
quantity ¢, and of the coefficient of p in the equation.

As this coefficient is not regular in the vicinity, Cauchy’s theorem does not
apply.
* This example is given by Chrystal, Trans. R. S. E., t. xxxv1 (1892), p. 557.
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35. The discussion of the integrals of the equation
Xipr+ .o+ Xopn=2

can be associated with the discussion of the integrals of the
equation, which 1is without the quantity Z and any explicit occur-
rence of z, by means of a simple transformation. Let the integral
be given by the equation

w=u(2Z, &1, .., @p) =0,

where, in the circumstances, « involves z; then we have

% + & =0

oz 0" T
Now g—g does not vanish identically, and we shall assume* that it
does not vanish in consequence of u= 0; hence we may resolve
these equations for p,, ..., p,. Substituting in the original
equation, we have

au ou ou
X, Py 1 4+ X, " P + Z e 0,

and this must be satisfied identically when a value of z given by
u=0 1is inserted : in other words, the modified equation is satisfied,
not identically but only simultaneously with « = 0. The modified
equation is of the earlier type: the coefficients of the derivatives
involve only the independent variables but not the dependent
variable w. Of this modified equation, let

w=01(z o, ..., 2p)

be an integral; then obviously v =0 will give an integral of the
original equation. But the fact that 0 (2, oy, ..., #,) is an integral
of the modified equation means, as was seen before, that when this
value of wis substituted the equation is satisfied identically. This
limitation is additional to the earlier requirement, which was only
that the equation should be satisfied simultaneously with «=0; it
was not necessary that the equation should be satisfied identically.
We cannot therefore infer from the argument that any integral of
the original equation can thus be obtained from an integral of the

* The significance of the assumption, and the limitation which it imposes,
would need to be examined if the character of the integrals were being determined
solely by the present argument.
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modified equation; and it is clear that any integral so obtained is
a special case of an integral given by

0(z, 2, ..., xp) — =0,
where a is an arbitrary constant*.

Ez. As an example, consider the equation

(2% +22y) ag;—_ — 22 %f/ =2
It clearly is satisfied by a value of #z given by the equation
x+y+z=0.
But effecting the transformation indicated, viz. taking
u=u(z x, y)=0,
so that « is a new variable, we have

ou ou on
2 2O 2 0%, 0 0%
€ +2.zy)ax z ay—l-g/ % 0.
Any integral of this equation, when substituted, is known (by our earlier
argument) to make the equation satisfied identically. If we take

u=x+y-+z,
the equation is not satisfied identically ; it can only be satisfied for this value
of % simultaneously with #=0; but u=x+#+z is not an integral of the new
equation.
On the other hand, the original equation is satisfied by a value of z given
by the equation
¥ +P=q,
where « is a constant: and
°w= 3/3 + 23
is an integral of the modified equation. Thus the first integral is not given,
the second integral is given, by the method.

The distinction between the two cases can be expressed simply by a
reference to the theory of continuous groups. Let

\ 00 00 06
X (80)=(2%+22xy) %-—22 3 + 2 P

be an infinitesimal transformation.

We have
X (92 +7°)=0;

the quantity z3+ 2% is an ¢nvariant for the given infinitesimal transformation.

‘We have
X@+y+a)=@+y+z) (2+y—2),

* The limitation was, I believe, first pointed out by Goursat, in § 16 of the
work quoted on p. 55.
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so that x4+ 4z is not an invariant for the infinitesimal transformation: but

when we have
r4+y+2=0,

then, in virtue of that equation,
X(x+y42)=0;

the equation o+ y+2z=0 is an nvariant equation for the transformation.

36. Itremains to associate Cauchy’s theorem with the equation;
for this purpose, we have to obtain an integral which, when #, = a,,
reduces to

z2=g @y, ..., Tn),

where ¢ is a function, which is regular in the domains of the
values @, =ay, ..., &n = a,, and otherwise is arbitrary.

Choosing a, so that X, does not vanish there, the integrals of
the associated ordinary equations

X, X, X, 7z
dm2=zda}1, d.x';;:zdwl, cees dwn——zdml, dZ—-X;dwl

can be obtained, subject to assigned conditions that x,=as,..., Zn=0ax,
2=g¢ (as, ..., y) =c, when @, =a,; and they have the form
=2 +(;y—a)v, =¢ ,

Uy = Xy +(w1—‘a1) Vo = o,

Uy = L, + (091 — Q) Vp = An,

where vy, ..., v, are regular functions of the variables a,, ..., @5, 2.
Now the general integral is

S, Uy eony UR)=0;
or, changing the form of the arbitrary function, we may take
Uy = F (g, ..., 1)

as the integral, where F also is arbitrary. When a; =aq,, this

equation becomes
z2=F (25, ..., p);

but the value of z when ;= a,, is to be g (2, ..., ,): and there-
fore when the arbitrary function is chosen so that

Fx, ..., wp) =g (4, ..., @),
and consequently

F Uy, oooy un) =9 (s, o0, Up),
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we have an integral
ul = 9 (u27 see un);

which is the integral in Cauchy’s theorem.

Ex. Required the integral of
rp+Y9==

2
which, when #=a, is such that z=g—c .

Two integrals of the ordinary equations
de _dy _ dz
x  y oz
b2 .
are taken such that, when x=a, we have y=5b, and z= i these are easily

seen to be

= b2

172 4¢’
a

u2=ﬁ=b.
x

Thus the general integral of the equation can be taken in the form

Uy =f<262)3
where f is arbitrary. When w=a, this equation becomes
so that, for the required integral,
7.
J@=1;
and therefore
_u
f('uz)-—— 4e¢ .
Hence the required integral is given by the equation
w2
ul=fc" 5
that is,
_’
= dew

If, instead of taking Cauchy’s theorem in its simplest form as
associated with an initial value @, =a,, we require an integral
which, when a relation of the form

Sz, 2, oo, 2n) =0

exists among the variables, shall be given by the equation

g(z, &1, ..., p)=0,
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effectively what is required is the determination of the arbitrary
functional form F in

F(ps, oon, ¢u)=0,
so that the equation may be satisfied without any other relation

solely in virtue of f=0, g=0.

As f=0 and g =0 are two relations between n + 1 quantities,
n — 1 of these can be regarded as independent: or we may regard
all the n + 1 variables as expressible in terms of n — 1 independent
quantities. Taking the latter mode of representing them, let
their expressions be

P =»\1,. (fl, esy En*1)»
b= By s Er)

for r=1, ..., n. When these are substituted in the quantities
b1, ..., Pu, we have

¢m = (}Sm (Z: Ly, eeny mn)
= Gu (¥ Vs woes V)
= am (El y eees En-l) = ¢m say,

for m=1, ..., n; and these n relations, expressing ¢,, ..., ¢, in
terms of n— 1 quantities, are satisfied concurrently with the
relations /=0, g=0. Among these n relations, let the n—1
quantities &, ..., &,_, be eliminated, and let the result of the

elimination be _ _
G (b1, ovvs Pn)=0.

Now when /=0 and g =0, we have ¢,, degenerating to J)m; and
the general integral becomes

F (¢, ..., ¢n) =0,

which coexists with /=0 and g = 0, but, as now it involves only
the quantities &, ..., £,—, 1t is satisfied by itself and not in virtue
of /=0, g=0. We thus have

F(pi, ..oy Pu) =G (1, -.n, bn),

and therefore also

F(dy, ooy b)) =G (b1, ..., bn).

Hence the required integral is given by the equation

G (b1, «.., Pn)=0.
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FEz. In examples, the details sometimes are developed in a different way.
Let it be required to find a surface, satisfying the equation

zp+yq=2
and passing through the curve

22 2 22
7+‘#+2§=1, lx+my+nz=1.
The curve can be expressed in the form

r=a\, y=bu, z=cv,
where
A2 ptpl=1,
AN+ bmu+cnv =1.

Two integrals of the associated ordinary equations are

z z
U=—, v==;
z Yy
hence, along the curve, we have
_ cuw _ cv
U= — Do —
a N\’ b’
so that
c v cv
)\'——-— = = =
aw’ FTBEH
whence

and therefore

1 2 1 021_ l+m+’) 2
tomtEe= :

This equation corresponds to the equation G (¢py, ..., ¢.)=0 in the pre-
ceding discussion. In the present case, the required integral is accordingly
given by

l 2
=c2 .
1+a2u2 62v~ < + — +7> ;

inserting the values of w and », the equation of the required surface is

22 2 2
py +%—2+ﬁ=(lx+my+nz)2.

COMPLETE LINEAR SYSTEMS THAT ARE HOMOGENEOUS,

37. Before passing to the discussion of the most general
equation of the first order and of degree higher than the first,
it is convenient to deal with a system of simultaneous linear
equations involving one dependent variable. If the dependent
variable occurs explicitly, the equations can be changed, by a
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transformation as in § 85, so that the new dependent variable
does not occur explicitly; the number of independent variables
is thus increased by unity. In their transformed expression,
the equations are homogeneous in the derivatives; they may be
written

0 0 ou
A, (u) = ay a%+ o 5;7‘+ oo g 2= 0
1 2 S
0 0 o
.A2 (u) = a12 au + 29, é% + . + CLSQ 8506 O -
2 S
w ou ou

Au(u)= a’l#éd;l + aﬁu%
where the coefficients a,,, for m and n =1, ..., s, are functions of
the independent variables @, ..., z; alone. We have to investigate
the conditions under which an integral (if any) can be possessed
by the system ; we have also to devise means for the construction
of an integral when it is possessed.

Equations of this type have already, in Part 1 (§§ 838—41) of
this work, received some consideration; but there they arose as
a class, associated with equations linear and homogeneous in
differential elements in the variables, and the limitations imposed
upon them were derived from the originating equations. Their
importance, not least owing to their frequent occurrence in various
theories, justifies an independent treatment ; the earlier discussion
will render some abbreviation possible.

The p equations in the propounded system are said to be
independent, when no linear relation of the form

Ed,(w)+ ...+ EAdu(u)=0

exists, the quantities &,, ..., & being functions of #,, ..., #,, and
the quantities A4, (uw), ..., A, (w) being merely the linear com-
binations of the derivatives of w. If, however, such a relation
or relations should exist, then one or more than one of the
equations 4 (x) =0 would be dependent on the others: an integral
of those others would satisfy the dependent equation or equations;
and so the dependent equations could be ignored for the present
purpose. Accordingly, we shall assume that the equations in the
system are independent.
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It is clear that, if a linear system in s independent variables
contains s equations or more than s equations, the equations can
only be satisfied by having

ou ou ou
8701_0’ 8;2——0, ceey a‘w—s—

0;
and then
u = constant

is obviously the only integral of the system. Having disposed of
systems for which > s, we shall now assume u <s.

The p equations are independent; but it may be necessary to
associate other equations with them, arising as consequences of
their coexistence or as conditions of their coexistence. It is clear
that, if the equations

Ap(uw)=0, A,(u)=0

possess a common integral, it makes the left-hand sides vanish
identically ; and therefore the equations
A, (A4,u)=0, 4,(d,u)=0,
and so also
Ay (Au) — Ay (Apu) =0,

are satisfied for that common integral; that is, the last equation
coexists with 4,, (v)=0 and 4, («)= 0, when the two latter are
members of a linear system. But the new equation is found also
to be linear in the first derivatives of w: for the coefficient of

o*u
aZk Ba:l
and is a0, when k is the same as !; and the coefficient of

0%
Bxk axl
and is gz, @, when k& is the same as 7: thus the derivatives of u of
the second order disappear, and only derivatives of the first order
remain. The equation is

0=4,,(Au) — A, (4Anw)

s ' ou
- 'rél {Am (a'r'n) - An (OLWn)} %" .

in A, (Axu) 1S Qgm Qi + Qm s, When % and ! are different,

in 4, (4A,) 18 CmOpm + GnQum, when k and [ are different,

Now this equation may be evanescent, because the coefficient of
each of the derivatives of u vanishes. Or it may be satisfied in
virtue of the original set, as a linear combination of them ; it then
is not a new independent equation, and consequently it need not
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be taken into further account. Or it may be not evanescent, and
not a linear combination of the original equations, and yet it must
be satisfied ; then it is a new equation, and it must be associated
with the system.

Similarly for any pair of equations in the system. Suppose
that, by taking all possible pairs, » new equations are obtained so
that there is a system

A4, (w)y=0, ..., 4, (w)=0, A, ,(w)=0, ..., 4., (u)=0.

Again we must take all possible pairs; clearly it will be sufficient
to take each of the first x with each of the last », and all possible
pairs of the last »; all new equations are to be retained. And
so on, until the process either provides no new equation or until
the number of equations has come to be s. The latter case has
been dealt with. When the former case occurs, the number of
equations being less than s, the system at that stage is called a
complete linear system. Manifestly, when there is only one de-
pendent variable and there are several linear equations, we have to
deal with complete linear systems. Moreover, the only systems of
this type that require consideration are those in which the number
of independent equations is less than the number of independent
variables.

38. Two properties, possessed by complete linear systems, lead
to simplification in the analysis: they must be established.

In the first place, when a complete system is replaced by another,
which s its algebraic equivalent, the new system s complete. Let
a system

A4, (w)=0, ..., 4,(u)=0,
supposed complete, be replaced by a system

Bi(w)=0, ..., B.(u)=0,

where
"
Bm (u) = 21 fmnAn (’LL),
n= .
for m=1, ..., u, and the quantities &,, are functions of the
variables 2, ..., #s such that their determinant does not vanish.

It is clear that the quantities A4,(u) are expressible as linear
combinations of the quantities B, (%); so that, algebraically, the
two systems of equations are equivalent to one another.
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To decide whether the new system is complete or not, we
construct the quantities B,,(B,u) — B,(B,u); and we have

B (B,uw) — B, (Bru)
§ |emdi{ £ g ar )]

- z [am- 4% aeaio}] -

. Emo Enid,(Aiu)+ E 2 Eﬂm A, (Eni) Ai (w)

I M?

=1
2 2 B Ai (A 0) = = 5 Eudi(Em) Ar ().
Combining the first summations in the two lines, we have
A;(A,u)—A4,(A;u) as the coefficient of £, £,;; this quantity is
a linear combination of the quantities 4, (w), ..., 4, (u), because
the system is complete: hence these two summations give a linear
combination of the quantities A4 (u). Each of the other two
summations is actually a linear combination of these quantities;
hence the whole expression for B,,(B,u)— B, (By,u) is a linear
combination of the quantities A (u). KEach of the quantities 4 (u)
is a linear combination of the quantities B (w); when the values
are substituted, we find that B, (B,u)— B, (Byu) is a linear
combination of the quantities B (w). As this holds for all values
of m and n, it follows that the system of equations B, (u)=0,
B, (u)=0 is complete.

In the second place, a complete system remains complete for
any transformation of the independent wariables. Let these
variables be transformed by the relations

@) = fr (@1, ..., ),

for r=1, ..., s, the functions f,, ..., f; being independent of one
another. Then

ou _ Ou 9fy , Ou ofs ou ofs

oz, ox, Ow, Omy 0z, Oxg oz,

for all values of 7; substituting in A4, (u) for the quantities 8;6 ,
we have
Ay (u) = A" (w),

and 4, (v) is homogeneous and linear in the derivatives

ou ou
o0z’ "7 0w
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As there is no linear relation among the quantities A, (),
there can be none among the quantities 4, (u): the equations
A’ (w)=0 are independent. Further, the operation 4, is replaced
by 4./, having the modified coefficients: thus

A (Apu) = Ay (A)w) =4 (A w),
A, (Apu)= 4,4,/ w) =4, (4, w),
and therefore
Ay (A w)— A, (A w)= A, (dyu)— A, (Anu)
= linear combination of 4, (w), ..., 4, (w),
U A7 (w), ..., 4,/ (w),

for all values of m and n. Hence the system of equations
A/ (w)y=0, ..., A,/ (w)=0 is complete.

39. The first of these properties is used to express a complete
linear system in a canonical form: the second of them will be used
in the establishment of the existence-theorem.,

As regards the expression in a canonical form, let a complete
linear system of m equations be given, involving one dependent
variable « implicitly through its derivatives and m + n independent
variables @, ..., min. As the m equations are independent of one
another, they can be resolved algebraically so as to express m of
the derivatives of u, say g;‘l e ;ﬁ—n

remainder ; let their expression be

, linearly in terms of the

Bt(u)————i— 2 U,

t
s=m+1 aa's

=0,
fort=1, ..., m.

The system was complete in its earlier expression: hence, by
the preceding property, it remains complete in the changed
expression ; consequently

B;(Bju) — B; (B;w) =ki§1 &x By, (),

where the quantities £ do not involve u or its derivatives. The
left-hand side of this relation is
m-+n

" (Bi(Uy) ~ B (T} o

s=m-41
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and it does not contain any of the m derivatives ?@?‘_, v —aﬁ:
ox, 0%,

whereas the right-hand side does contain a derivative 8_;{ unless &;
[

is zero. Hence, in order that the relation may be satisfied, each of
the quantities &, ..., &x 1s zero; and it then becomes
s {B: (Ug) — B; (US,,)}4
s=m+1

Now the system is complete, so that no equation of this type is to
be associated with it which is not satisfied in virtue of B, (u)=0,
«.sy By (w)=0; consequently, this equation must be evanescent for
all values of 7 and j, and therefore

Bi(Uy)— B;(Uy) = 0.
This relation involves the independent variables only; hence it
must be satisfied identically, for all values of ¢, 7, and s.

Conversely, if this relation be satisfied for all values of ¢, j, and

s, then we have ‘

B; (Bju) — B; (B;u) =03
and the system of equations B, (u)=0, , B (u)=0 is evidently
complete. Hence we have the formal result:—

A complete linear system of m equations, vnvolving one dependent
variable u and m + n wndependent variables xy, ..., @pyon, and such
that only derivatives of w occur, the equations being homogeneous in
those dertvatives, can be expressed wn the form

Bu m ou

B = =" U =0,
¢ () wt s=m+1 * aws
Jor t=1, ..., m; and the conditions, mecessary and sufficient to

secure that the system should be complete, are the aggregate of the
im (m — 1)n relations

B (Uy) — Bj(Us) =0,
Jor the wvalues of s, and for the combinations of v and j: each of
these relations must be satisfied identically.
In consequence of the conditions, the equation
B; (Bju)— B; (B;u)=0
is satisfied 1dentically, for all values of = and j. A set of equations
possessing this property is frequently said to be n tnvolution.

A complete linear system, expressed in the above form, is some-
times called a Jacobian system.
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40. The preceding investigation gives the formal conditions
for the coexistence of the equations: it gives no information as to
the integral or integrals (if any) of those equations. An existence-
theorem, similar to those in the preceding chapters, is as follows :

Let ay, ..., Qmin be a set of values of the independent variables
wn the vicinaty of which all the coefficients U, in the complete Jacobian

system
a w m+n

Bt (ll/) P + 2 US

t~
s=m-+1 axa

=0, (t=1, ..., m),

are reqular functions; then the system possesses n functionally dis-
tinct integrals, which are regular functions in the vicinity of the
selected values and which reduce respectively to values Tmiqs +-+ ) Tmin,
wWhen £, = @y, o= Qo, «ev, Ly = Q-

The theorem has been established* when m =1. The inductive
method will be used for the general case; and we shall prove that
it is true for a Jacobian system of m equations in m + n independent
variables, if it is true for a Jacobian system of m — 1 equations in
m +n—1 independent variables.

Accordingly, we make the latter supposition that the theorem
is true for a complete Jacobian system of m —1 equations in
m +n — 1 variables. For brevity, we make @, =0, ..., dpin=0:
all that would be necessary to secure this result would be to take

Yp =Tp— Cp.

The equation
B, (u)——%-i- nE U,

s1
41 s=m-+1 axs

=0

possesses m +n — 1 functionally independent integrals, which are
regular functions of the variables in finite fields of variation round
0, ..., 0, and which acquire values @,, #;, ..., Zm4n respectively
at that place; this is a theorem already proved (§ 29). Of these
integrals, m — 1 clearly are given by

U = Xy, ws: ] L
respectively ; let the remainder be denoted by v =¥mi1, .-s Ymin
respectively, where
Ymts = Tpgs T wlR’In+8) (3 =1, ..., n),

* In § 29, Corollary.
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R,,.s denoting a regular function of the variables a, ..., Zmin in
the assigned vicinity. Reversing these equations so as to express
L1 «--> Tman, We have

Zyngs = Ymys + x1Pm+s,
where P, is a regular function of the variables ay, ..., Zm, Ymi1,
-os Ymin In the vicinity of O, ..., O.

Now let the independent variables be changed from #,, ,, ...,
Zopym BO oy Zay oovy Ty, Y1 ++-> Yman s We know, from the property
established in § 38, that the new system of equations is complete.
Also let the result of the transformation on any integral u be
denoted by ». The effect of the transformation upon B, (u)=0
can be obtained at once: as its m + n — 1 functionally independent
integrals now are @y, ..., &m, Ym+1> -+ » Ym+n, Which are the aggregate
of independent variables other than x,, we have

ov
Bl (?)) = 5‘;’—1= 0.

For the other equations, we have
ou _ ov 0V OYmeis

a_xi B a?z s=1 ay1n+s axz

>

forte=2, ..., m, and
jL i %l« _821_ 53/m+s
0 4 j o1 OYm s O%myj’
for j=1, ..., n; hence the equation B;(w) =0 becomes

m-tn
Bt(’l)):aa—;)t“*‘ 2 V:s- a/U:O’

s=m+1 ! é?y:
with new coefficients V.

The properties of these coefficients could be deduced from those
of the coefficients Uy : they are most simply deduced by the use of
the known property that the new system B, (v)=0, ..., B,, (v) =0
is complete. On account of this property possessed by a Jacobian
system (it will be noticed that the new system has the form of a
Jacobian system), we have

B, (Vsj) - Bj (Vsl) =0,
for all values of s and j. Now all the coefficients V, are zero, and
B, is ; hence the foregoing condition is
Wy _

ox,

0
ox,
0,
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that is, the coefficients V; do not involve #;. We also have

B;(Vy)— B;j(Vy)=0,

for all values of ¢ and j in pairs combined from 2, ..., m, and
for s=m+1, ..., m+n. The modified Jacobian system is
ov
B, (v)= o = 0,
_ov K3 ov

st o — O:
awt s=m+1 33/5

fort=2, ..., m.

Now the last m — 1 equations constitute a complete Jacobian

system, for the necessary and sufficient conditions
B; (Vi) = B (Vi) =0

are satisfied; and they are a system in m +n— 1 independént
variables #,, ..., @m, Ymi1s --+» Ymin, the variable x; not occurring.
Owing to B, (v) =0, it follows that an integral of the system of
m equations cannot involve @, in the modified set of variables:
consequently, every integral of the system of m equations in the
m + n independent variables is an integral of the system of m — 1
equations in m + n — 1 independent variables, and conversely.

The coefficients Vg in the Jacobian system of m —1 equations
are regular functions of the variables in the vicinity of z,, ..., &,
Ymats s Ymin =0, ..., 0; for they are polynomial combinations of
the coefficients Uy and of the derivatives of ¥pi1, .-.) Ymin With
respect to the original variables, all of which are regular in the
assigned vicinity. By the hypothesis adopted for the systems of
m — 1 equations, the Jacobian system of m — 1 equations in the
m +n — 1 variables possesses n functionally independent integrals
which are regular functions of the variables in the domain con-

sidered and which reduce respectively t0 Yinq1, ++v5 Ymin, When
z,=0, ..., @, =0; let these integrals be

Vs = Ym+s + ¢m+s; (8 =1, ..., n);
where ¢mys is a regular function of the variables which vanishes,
when @z, =0, ..., ,,=0. It is clear that no one of the quantities
v, ..., Up contains @;, so that each of them satisfies

Bl(@)=%=o
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Consequently, they are integrals of the Jacobian system of
m equations.

Moreover, these integrals satisfy the assigned conditions; for
we have
vs=:ym+s+'¢m+s
= Lyps + 01 Rm+s + ¢m+s;

so that as ¢ is still a regular function vanishing when , =0,
.., Zm =0, the integral v, reduces to s, when we revert to the
original variables and we make #, =0, 2, =0, ..., ,=0.

The theorem is thus true for a complete Jacobian system of
m equations in m + n variables, if it is true for such a system of
m —1 equations in m -+ n — 1 variables. It is known to be true
for a single equation in any number of variables: hence it is true
generally.

The existence of n functionally independent integrals has thus
been established. When m =1, it is known that an equation in
n + 1 independent variables possesses n, and not more than n, such
integrals; the course of the preceding argument then shews that
a complete Jacobian system of m equations in m +n vartables
possesses n, and not more than n, functionally independent integrals.

41. The set of integrals, determined in association with the
assigned conditions of § 40 and reducing to Zpi1, -+.;, Tmgn for
assigned values of 2, ..., @, 1s sometimes called a fundamental
system for the assigned vicinity.

As in the case of a single equation, it can be proved that any
integral can be expressed in terms of any set of » functionally
independent integrals: and, in particular, the expression in terms
of the members of a fundamental system is simple.

To prove the first of these statements, let u,, ..., u, denote a
set of functionally independent integrals of a Jacobian system of
m equations in m + n independent variables; so that, with the
preceding notation for the system, the equations

m+n
B (u,) = SZ7 + = U, Ouy _ 0,

t
t s=m-+1 0y

forr=1, ..., n,and t=1, ..., m, are satisfied. Moreover, they are
satisfied identically, because the quantities 1, ..., %, do not occur
explicitly.
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Now, let
w=Ar (@1, .o, Tingn)

denote any integral of the Jacobian system : then the equations

mt+an
?ip+ s U a""—0,

=
Oy s=m+1 0

for t=1, ..., m, are satisfied; and they are satisfied identically,
because 4+ does not occur explicitly. Hence all the determinants

o ow oy oy |

0w’ "7 0y’ OTmgn” T O%man

oy o,y ou, Waul

0w, " 0%’ 0%man T O%man

% ou,, Uy, ou,

oz’ " 0wy’ 0% > a-Z'm+n I

vanish, in association with the integral

w= Y (2, crv), Lmin))
but u does not occur explicitly so that, as the determinants cannot
vanish in virtue of that integral equation, they must vanish
identically.  Accordingly, some functional relation must exist
among the quantities yr, t,, ..., U, ; it cannot exist among u,, ..., Uy,
alone, for these are independent; and therefore it must involve +r.
Hence it may be taken in the form

Y=f(u, ..., Uy),
where f is some function of its arguments.
We thus have a verification of the proposition that the number

of functionally independent integrals in a Jacobian system of m
equations in m + n variables is exactly n.

The form of the function f is not difficult to obtain when +r is
given, if we take a fundamental system of integrals for the set
Uy, ..., Up. In particular, let the latter be v, ..., v,, Where v,
(for s=1, ..., n) assumes the value a,,,, when &y =q,, ..., Zp=apn;
1t is required to determine the functional form g, such that

11"‘(‘%‘17 e wmv: mm-}-l; cer mm+n)=g(vl, ree Un)-

Let @, =a,, ..., 2, = @y ; this equation becomes

Y (ay, oory am, Tmt1s oo wm—i—n):g(wm—y—l; cerr Emin)-
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This is true for all variables independent of one another; and
therefore
«P(alj e aon; Ul; L] vn) =9(711; LREN] 'I)n),
so that
‘P(wl’ cees T, wm+17 vt xm+n)="l/' (a’ly ceey Uy Vi, ooy v’n);

being the required expression in terms of a fundamental set of
integrals.

CorOLLARY. When the preceding results are combined, the
following existence-theorem is obvious:—

Let ay, ..., Qmyn be a set of values of @,, ..., XTmin Such that,
wn their wvicinity, all the coefficients U in the complete Jacobian
system

@[: m%n Ust aVu _
0%t s—m41 Oy ’
Sor t=1, ..., m, are regular functions of the variables; and let
b (Xpias -ovy Xman) denote any regular function of tts arguments
+ Y reg 9

wm the assigned regron of variation, which (except for the require-
ment of being regular) vs arbitrary. Then an integral of the
Jacobian system ewists, which vs a regular function of the variables
m the wvicinety of &y, ..., Guan, and which acquires the value
h(@maas -ovs Tman), When o=, «.., Ty = Q.

42. Tt is a part of Cauchy’s existence-theorem that an integral
satisfying the conditions :
(1) that it is a regular function of the variables within the

domain of a set of values where all coefficients in the
above linear equation are regular,

(i1) that it acquires the value of an assigned regular function
for an initial value of one of the variables,

is a unique integral so determined. Hence the fundamental system
of integrals of the equation
P +X2P2 + ...+ Xn+1]3n+1= 0,

required to acquire values ,, ..., @, respectively when , =a,,
and to be regular functions of the variables, is unique as a set of
integrals.

The inductive proof of the establishment of integrals of a
Jacobian system shews that, if a set of integrals satisfying the

42.] COMPLETE LINEAR SYSTEMS 89

assigned conditions be unique for a Jacobian system of m—1
equations, a set of integrals satisfying the assigned conditions is
unique for a Jacobian system of m equations. The proposition
just quoted indicates that a fundamental system is unique when
there is a single equation: hence a fundamental set of integrals is
unique for a Jacobian system.

Similarly, the integral at the end of § 41, defined as an
integral of the Jacobian system

oS g, P,

axt s=m+1 aws
for t=1, ..., m, which is a regular function of the variables and
acquires the value of an assigned regular function of 41, ---, Zinin
for initial values of @, ..., @, is easily seen to be a unique

integral determined by those conditions.

The property of uniqueness of the integrals is thus established
in connection with the various existence-theorems belonging to
the Jacobian systems. But it must be remembered that the
selected initial values of the variables are such that all the
coefficients U, are regular in their vicinity: and only on this
hypothesis have the theorems been established. Separate investi-
gation is necessary for the consideration of integrals (if any) of
the system in the vicinity of a set of selected initial values of the
variables, which constitute a singularity or other non-regular place
of any of the coefficients.

Two METHODS OF INTEGRATION OF COMPLETE LINEAR SYSTEMS.

43. Now that the existence of integrals of a Jacobian system
has been established and that the character of the conditions
which limit an integral has been indicated, it is desirable to have
some means of actually constructing the integral, more especially
if there should be an integral which is expressible in finite terms.
Two methods seem more direct for this purpose than others: one
of these is due to Mayer, the other is based upon the actual stages
in the establishment of the existence of the integrals.

Mayer’s method has already* been expounded: consequently
the discussion need not be repeated, but the results will be restated
for convenience. It is as follows:—

* Vol. 1 of this work, §§ 41, 42.
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To obtain a set of n independent integrals of the complete
Jacobian system

ou min ou .
a Y Uyg-—=0
Oy +s=m+1 * 0xs ’
Jor t=1, ..., m, we transform the variables x,, ..., &pn by the

substitutions
we=o0r+ (111 — 0) fe (Y1, -+, Ym),
and construct the equation
ou = min ou
—+ 3 Y.—=0.
ayl s=m+1 saxs

The equations subsidiary to this single equation, viz.

dx dx
dy, = Eomar | Cmn
yl Ym+1 I7m+n
are to be integrated, keeping v,, ..., Yy as tnvariable quantities : let
the n wntegrals be
bp (Zms1s oo+ Tingn> Y1, -+, Ym) = constant,

Jor p=1, ..., n. Then the set of n independent integrals of the
Jacobian system are given by the following process: in the equations

4)1) ($m+l> coos Emtns yly yz; e ym)=¢p<01: «ees Cns 9} 3/2, st ym);
the variables 4y, ..., Yy are to be replaced by their values wn terms
of the variables @, ..., xm, and if, in any of the equations,

bp (C1, -ovs Cny 0, Yay oo, Ym) should be a pure constant, the changed
equation s
¢p(xm+1) coos Lmgn, L1, oo 'xm) = ¢10 (cl> eees Cpy OQyy evey am)~

These n equations are resolved so as to give ¢, ..., ¢, (or n wnde-
pendent functional combinations of them): let the result of the
resolutton be

u’u (xly s wm,; x?n+1’ sy wm+n) = Op.) (I~L= 1) vrey n))
where O, ..., €, are n independent functions of ¢, ..., ¢,: the n
ntegrals of the original system are

U=Uy (X1, «evy Ty Tmair o> Lantn)s (p=1, ..., n).

Note 1. The simplest substitutions for the transformation of
the variables appear to be
T = 91,

=y + (Y1 — 1) Y,
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for t=2, ..., m; the quantities Y41, ..., ¥Ymysn In the subsidiary
equations are given by

Ym+s =Ugqs + § Ug Ye.
t=2

Note 2. 1If only a single integral of the Jacobian system is
wanted and not a full set, it can certainly be obtained from any
one integral of the subsidiary system.

Note 3. If any integrals of a Jacobian system are known, they
can be used to modify the system, so as to reduce the amount of
integration necessary to complete the set. Thus let

U=TYr, b="TYs, .0, U=Yp,

be known integrals independent of one another, where p <n; and
use these p quantities to change the variables from a,, ..., @y s tO
(say) @1, «ov), Tmin—p, Y1, -+, Yp. Then as y, is an integral of the
system, the term aa_yu must be absent from each equation of the
1

modified system: its coefficient must vanish in order that the
ou ou
Sy’ " By
will be a modified system of m equations: the variables v, ..., ¥,
are of the nature of parameters: it involves m 4 n — p variables
Ly oooy Tpyn—p; and 1t still is complete. It therefore possesses
n — p integrals; and these can be obtained, as in Mayer’s method,
by the integration of the » — p subsidiary ordinary equations.

equation may be satisfied. Similarly for Thus there

44. In outline, and as regards the theoretic amount of inverse
operations (such as integration) that are required, Mayer’s method
for the integration of complete linear systems is the simplest and
the briefest: but occasionally, for particular systems, the detailed
operations can be complicated. An alternative method of pro-
ceeding is provided by an adaptation of Jacobi’s method of inte-
grating partial differential equations; the details of the adaptation
are almost dictated by the course of the proof of the existence-
theorem. In details, it frequently is simpler than Mayer’s method,
though the number of inverse operations is greater: but the mere
number of such operations, without regard paid to their intrinsic
difficulty, i1s not the only trustworthy criterion of practical sim-

plicity.




92 ALTERNATIVE METHOD [44.

The method may be described as that of successive reduction.
Let the system be taken in its canonical form, the first equation
being .

m+n y
B w=2"4 8" v,

1 =
0%, s=m+1 0

0.

This equation in m +n variables has m +n — 1 functionally inde-
pendent integrals; of these, m — 1 are evidently given by «,, ..., Zm,
and the remaining n are provided by integrals of the subsidiary
equations

dz d,
do, = -0F = | = Zmin
! Um-i—l, 1 Um+n, 1
the quantities @, ..., @, being regarded as parametric. If the

integrals of these subsidiary equations are
U (X1, <., Bmen) = constant, (=1, ..., n),

then the » remaining integrals of B, (v) = 0 are given by

W=y (X1, «ooy Bappn) = Wp.
Every integral of B, {#) =0 is a functional combination of ,, ...,
L, Uy, ..., Uy ; the appropriate functional combinations must be

such as tc satisfy the remaining equations of the system.

We accordingly make @, ..., @m, Uy, ..., U, the independent
variables for the equation B,(x)=0. If any integral of this
equation be taken in the form

W =F (Lo, eevs Lms Wy onr, Up),
which is also an integral of B, (v) =0, we have
_ af n af v _
B2 (u) = a—._Z'z + rél au,,. Bg (le,-) = 0.
Because the system is complete, we have
By (Bay) — By (Byuy)=0;
but B, (u,) vanishes identically, so that B, (B,u,) = 0, and therefore
By (Byuy) = 0.
Hence B, (u,) satisfies the equation B, (u)= 0; it may be zero, or
it may be a pure constant: if it is neither of these but is variable,
it is an integral of B,(u)=0, and therefore can be expressed in

terms of %, ..., @, U1, ..., Up. Thus all the coefficients in the
transformed expression of B,(u)= 0 are functions of the m +n — 1
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new variables alone. The equation in this form has m +mn — 2
functionally independent integrals; of these, m — 2 are given by

&y, ..., Tm 5 and the remaining n are provided by integrals of the
subsidiary equations
doy = T D
B, (w) 77 By(ua)’

the quantities @, ..., @, being regarded as parametric. All the
denominators, if not zero or pure constants, are functions of

@y eevy Ly Up, ooy Up s let the integrals of this set be
Vo (Lo, uvy B, U, «ov, W)= constant, (p=1, ..., n);
then the n remaining integrals of B, (u) = 0 are
U=V (L, ++v) Ty Uz, ovvs Up) = Vp.

Each of these, as a functional combination of #,, ..., @m, U1, «--, Un,
is an integral of B,(w)=0; and every integral, common to B,(u) =0
and B, (u)=0, is a functional combination of xs, ..., Zm, v1, ..., Vn.
The appropriate functional combinations must be chosen so as to
satisfy the remaining equations of the Jacobian system.

We now proceed as before: and for the third equation, we
make z;, ..., @Tm, v1, ..., ¥, the independent variables. If any
integral of the equation B;(u)=0 be

U = ¢('x3> cees Ty vl; LR Un);
we have )

Bg(u,)=gi’ + 2% py—o0.

Z3 =1 0Vp
But, as the system is complete, we have

B, (B;v,)= B;(B,v,) =0,
B, (B;,,'l),.) = B, (BQvT) =0,

because B, (v,) and B, (v,) vanish identically ; therefore B;(v,) is a
simultaneous integral of B, (v)=0 and B,(u)=0. Consequently
B;(v,) 1s either zero, or a pure constant, or a function of a, ...,
L, V1, -+, U3 and the coefficients in the modified form of B;(u)=0
involve only the variables which occur in the derivatives of ¢.
The position is now the same as in the preceding stage, except
that the number of variables has been decreased by unity.

We pass thus from stage to stage: the integrals at the last
stage are n functionally independent integrals of the system.
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Note. At first sight, it would appear as though the number of
quadratures of ordinary equations, required to make the process
effective, is mn, being n for each stage. But the number can be
reduced, often very substantially, except at the last stage when n
such quadratures are then certainly required. For example, let

W (&1, «-vy Timyn) = constant

be any integral of the subsidiary system of B,(u)=0: then
w=u' (21, ..., Tmen) =% 1s an integral of B,(u)=0. Now for
any value of p, we have

B, (Byw') = B, (Ba)
=0,

because B,(«') vanishes identically : hence B,(u") satisfies B;(u)=0.
If B, () is not zero and is not a pure constant, it is an integral of
B, (u)=0; if it is functionally independent of «’, we may write

u’' =B, W);

and we thus obtain a new integral of B,(u)=0 without any
further quadrature, in the case of each operator B, that leads to a
result of this type.

Again, each new integral so obtained may be similarly treated,
until possibly an adequate number of integrals has been obtained
at the stage. The reduction in the number of quadratures may
thus be made by means of the operators in the remaining equations
of the system at any stage: it clearly cannot be made at the last
stage when no further operator remains for consideration.

Further, if B, (w') is zero, then »’ is an integral ecommon to
B,(u)=0 and B,(u)=0; when retained as a new independent
variable under transformation of the variables, the integration of
B, (u) =0 will be thereby simplified.

Again, if B, (w) be a pure constant, =« say, and if B, (v"),
derived from a functionally distinct integral of B, (u)=0, be also a
pure constant, = b say, then

B, (buw' — av’) =0,

that is, bu’ — av’ is an integral common to B, (u) =0 and B, (u)=0;
it can be used to simplify the integration of B,(u)=0 at the
appropriate stage.
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Thus the number of quadratures necessary for the method may
be considerably reduced : but even in the most favourable circum-
stances, their number is greater than the number in Mayer’s
method.

Ex. 1. As an example, which will be integrated by both methods, con-
sider the system
Xy (B) =1y — X P2+ X33 — T4 s =0,
Xy (2)=w3p1 — 21 03=0,
X3 (2) =24 p2 — 204 =0,
ai—i, for u=1, 2, 3, 4. We have
Xl (A}Z) —ng <X12)=0,
Xy (X32) — X3 (X32)=0,
A’g (ng) - 1Y3 (XgZ)ZO,
so that the system is a complete linear system, being a system in involution.
When expressed in a canonical form, it is

where pu=

21 #7428
Z)=p; ——
&1(z)=p1 7y B gt

P1=0,

&2(2) =p2— %]04=0,

3 23+ 247

&s (Z)=P3—;.4 22+ 75 1 =0,

Adopting Mayer’s method of integration, we make the transformations

X1=3Y15 Lo=Co+¥Y1Y2, L3=A3+Y1Y3;

and then the single equation to be considered is

0z 0z
o o=
where
p_ Y1ty (A +y1ys) (a2 +y1y2)E +a? , 22tz
L Y12+ (as+y1y3)? 7
The subsidiary equation is
cly + f@ =0
1 Y 2

and an integral is found to be
{12+ (a3 +y193)% {(@s+ 71 92)% + 4%} = constant.
Accordingly, by the theorem quoted in § 43, we construct the equation
{y% (s +7193)% {2 +5192)* + 2% = aztas?,

the right-hand side being obtained by putting #; equal to zero in the left; and
then, replacing the variables »(, #., 25, we have

(32 + 25%) (02? +247) = aas?,
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that is, by the theorem, a common integral is
2= (212 + 23%) (w9% + 2,%).
A more general common integral is
z=F{(2®+x5?) (2® + 22},
where 7'is any arbitrary function.
Proceeding by the other method of integration, we obtain an integral,
other than z, and x;, of

&y Zo? 4+ 242
,— =122
X4 .Z'12+¢'L'32

Pa=0:
the subsidiary system is

dzy .
'37} x22 + .%42 -
x4 212+ 232

dr+

O’

an integral of which is
(202 + 242) (212 + 25%) = constant.
We take #s, 3, v as the independent variables, where
v= (2% +2,2) (2 + 25?).
But &, (v) =0, so that the second equation becomes

0z
8x2=0 :

and any integral common to the first two equations is a function of #; and ».

We take 3 and v as the independent variables for the third equation.
But £&;(v)=0, so that the third equation becomes

0z

azl'.%—o-
The integral is thus a function of »; a common integral of the system is,
as before,

z=v= (212 + 23%) (2% +x47).

If an integral is required to attain an assigned value g (#4), when #;=aq,
2o="0, xy=c, it is easily seen to be

v o\ &
Z=g {(mz— Z)Z> } .

Ex. 2. Prove that the system
0=p;+ 22102+ 323+ ps + X4 o,
O=xypy + 22ap9+ 30303+ X5 5 + L6 Po,
0 =322 — 2x3) p1+ (32122 — 23) Pa + 321 X33+ (X4 X5 — Bg) Pa~+ 25705 + X5 Ze g

is complete: and find a system of three common integrals.
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COMPLETE LINEAR SYSTEMS THAT ARE NOT HOMOGENEOUS.

45. The complete linear systems that have been considered
are homogeneous in the derivatives of z: and the dependent
variable does not explicitly occur. But it is possible to have
complete linear systems which are not homogeneous in the
derivatives and in which the dependent variable does occur
explicitly. This class of equations is a very special example
of a system of simultaneous equations and can be treated by
the general method devised for general systems: the equations
can, however, be more simply treated by being included under
the class already considered. We take a new dependent variable w.
such that

w=u(2, &y, ..., Tn),
and we transform the equations by means of relations

ou ou
the transformed equations are homogeneous and w does not occur
explicitly. These are amenable to the method already explained :
the conditions of coexistence are at once obtainable; and integrals
will be given by equations
u = constant,

=0:

provided « involves z.

Note. The same warning must be applied about linear non-
homogeneous systems as was applied to a single non-homogeneous
equation (§ 35). The method does not necessarily give all the
integrals of such a system, for it may fail to give those which
belong to the residuary class called special.

46. The conditions of the coexistence and the completeness
of the system can be easily obtained from the transformed system.
Thus let a given linear system be expressed in the form

m+n
N (Z) =p + b A Ps = Zy,

s=m+1

m—+n
E, (Z> = Pg + —E-i—l s Ps = Z,,

.......................................
m+n

E,, (z) = P+ p Asm Ps = Zim s
s=m-+1
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and consider the system

ou min. Dy ou

B (’U/) i + s=i+1(1/31 ET{[’S + Zl a; = 0,
ou min ou ou

B2 (’U/) - 0% * s=m-+1 o 05 Z2 6? =0,
m+n a 8w

B =g 2 o 4 =

the quantities aa, and Z being functions of z, @, ..., «,. The
conditions of completeness of the latter system are

B; (ag) = Bj (as),
B; (Z;) = B; (Zy),

for all pairs of values ¢, j=1, ..., m, and for s=m+1, ..., m+n.
But for any value of , we have
0
B7'=E7'+Zr'327
as a relation between the operators; thus the above conditions
become

B (ag) + Z: 0 = By (a) + 250,
Z 0Z;
E(Z)+Z%4_E(Z) 7,%%,

for all pairs of values 7, j=1, ..., m, and for s=m+1, ..., m +n.
These are the conditions, necessary and sufficient to secure the
coexistence and completeness of the system.

We know that the system of equations B, (1) =0, ..., B,, («) =0,
being a complete linear system of m equations in m+mn+1
variables, possesses n -+ 1 functionally distinct integrals. Let a
set of these be taken in the form wu,, ..., Uy, some of which will
certainly involve z; then any integral of the transformed system
can be expressed in a form

w=f (U, ..., Uni1),

and its most general integral will be obtained by taking f as a
completely arbitrary function. It is also obvious that an integral
of the original system will be provided by an equation

w =0,
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if « 1s an integral of the transformed system which involves z;
hence a very general integral of the original system will be
provided by the equation

Ty, e, Upgr) =0

But for reasons similar to those adduced for a single equation in
§ 35, we are not in a position to declare (and it is not, in fact, true)
that every integral of the original system of equations is included
in the equation f'= 0 for an appropriate form of f.

As the quantities uy, ..., Uy, Necessary for the construction of

the function f, are simultaneous integrals of the system B (uw)=0,

.. By () =0, it is clear that either of the two methods (in §§ 43, 44)
effective for the construction of u,, ..., u,4, can be adopted.

Ex. Let it be required to find whether the equations

211+ Zpy — X3 ps+2 =0,
Zep1— 21 Patiaps +as=0,
have any common integral.

Expressing these equations in the form

XoZ— X1 X3 X2+ Dol

Pit— 3 3 P3= — 3 2
X1e+ g 2%+ 2y

2124 o3 X9t — X1 X3

7 g = — 2103

D2 242+ 9% P 212+ 292 ’

and applying the conditions of the text, we find them satisfied : hence the
equations coexist, and they form a complete system.

To obtain the general common integral, we construct the equations

Ou | Xz 1123 Ju @izt 2wy 0U 0
O0xy = x?4ay? Omg  ait+ae? Oz ’

0u wztaaxs Cu Xez— a3 Ou
D2 2 2 3 T2 0O
Oxy &2+ a2 Oxs 2P+x% 02

which are a Jacobian system. It possessestwo functionally distinct integrals:
these are found, by the processes previously explained, to be

U=y =D\ X3+ T2, U=Ug=ToX3—T12.
A general integral, common to the two original equations, is given by
21834 Tp2 = @ (T3 — 212),

where ¢ is an arbitrary functional form.




CHAPTER 1IV.

NON-LINEAR EQUATIONS: JACOBI'S SECOND METHOD,
WITH MAYER'S DEVELOPMENTS.

For the material of the present chapter, reference may be made to
Jacobi’s posthumous memoir, “ Nova methodus...... integrandi,” Crelle, t. 1L.X
(1862), pp. 1—181, Ges. Werke, t. v, pp. 1—189; to Mayer's memoir, *“Ueber
unbeschrinkt...... Differentialgleichungen,” Math. Ann., t. v (1872), pp. 448—
470; and to Imschenetsky’s memoir *“ Sur Pintégration...... premier ordre,”
Grunert's Archiv, t. L. (1869), pp. 278—474. Mention should also be made of
Mansion’s treatise ¢ Théorie des équations aux derivées partielles du premier
ordre” (1875), Book 11; and of the exposition given in chapters vI and vir of
Goursat’s treatise, already (p. 55) quoted.

47. We now proceed to deal with single equations, and with
systems of consistent equations, of the first order and of general
degree in the derivatives: clearly no generality is lost by assuming
that the equations are irreducible. It will be sufficiently obvious
from the discussion in the last chapter that the construction of an
integral of the equation or of the system of equations is a process
of several stages, differing in this respect from the usual construc-
tion of an integral of an ordinary equation; and the difficulty, in
general, is the discovery of the effective inverse operations that
lead from stage to stage.

Now, whatever equation or equations may be assigned for the
determination of the value or for the limitation of the form of a
dependent variable, one permanent relation subsists between a
number of independent variables «;, ..., #,, a dependent variable
2, and the derivatives p,, ..., p, of the latter: the relation is

dz=p,dz, + ... + p,day,.

The quantities p,, ..., p, are themselves dependent variables and
consequent!y are functions of @y, ..., #,: but it frequently happens
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that they arise as functions of @, ..., #,, 2, the last variable not
being explicitly known in terms of the independent variables.
Also, there must be only a single functional relation between z, #;,
..., &,, so that the integral equivalent of the preceding differential -
relation is effectively a single equation among the variables:
consequently, the differential relation must be an exact equation.
The conditions necessary and sufficient to secure this result are
known*: in the present case, they are

OPu _ OPm OPu 2

0Tm ax“+ "oz Pros =0,
for the §n (n —1) pairs of values of m and u from the set 1, ..., n.
Let

4 _0 i p 2
dz, 0z, L r
so that C{—j— is the complete derivative with regard to «,, account
‘P
being taken of the explicit occurrence of xz, as well as of its
implicit occurrence through z: the necessary and sufficient con-
ditions become

dp,. — dpm .

Avy  da,’
and these conditions apply, whatever be the quantity z and how-
ever its derivatives py, ..., p, may be determined. When they are

satisfied, the relation

dz=p,dae,+ ... + ppda,
is exact : when an integral equivalent is obtained by the recognised
processes of quadrature, that equivalent is an integral relation
between z, 2y, ..., Zy.

Now there are n of these derivatives of z: when regarded for
the purpose of quadrature, they will most generally be determined
by n equations

F,=0, F,=0, ..., F,=0,

where F,, ..., F, will be assumed to be n regular functions of

@y, weey Ty, Z, P1, ---» Pn Which, so far as they involve pi, ..., pa,
are functionally distinct; consequently the Jacobian
J (El_’;;’ff@) , =J say,
P1s s P

* Part 1 of this work, § 11.
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does not vanish identically. In that case, the n equations can
be resolved so as to give expressions for p,, ..., p, as regular
functions of #,, ..., «,, z: when these expressions are substituted

in the equations, the latter become identities. Taking two of

these equations, say F, =0 and Fy;=0, thus turned into identities,
we have, on differentiating with regard to a,,,
dF, 4 z oF, dp,

dmm = 1 ap# zz';n =9,

dF, % oF, dp,

(—z.-%_'; p=1 app. d‘%'?n

>

and therefore, on the elimination of -@&'—L

% 0(F,, Fy) dﬁﬁ——o.

ar, oF, _an,or,
day, apm da,y, a])m =1 0 (pp-; pm) Ay,

This holds for each value of m; taking it then in succession for
each value of m, and adding all the left-hand sides together, we
have

= 0.

g (ch oF, _ dF, 0F) g & ok, By dp.
da:m apm dm’m apm 7;1:1 =1 a (pp.) pﬂ’b) dwm

m=1

The last double summation can be modified: the terms for which
# =m do not occur: taking a pair of values for p and m from the

set 1, ..., n, and combining them, the summation may be written
S o(Fy, Fy) (d}zﬂ, _ @@)
i ma(}’/w Pm) \d@,,  dzn /)’

Moreover, it is convenient to use a symbol to denote the first
summation: we write

7, = % (dﬁ oF, dF, aﬁz),
m=1

Axm, apm Ea 87%7;
and the equation now becomes
B(Fq, Fy) (dp olpm>
F,, F, e =0.
L A v a(p,“ pm) \dw,  duz,

This holds for all combinations of » and s from the set 1, ..., n.
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SIGNIFICANCE OF THE JACOBIAN RELATIONS.

48. Two inferences can be drawn from this aggregate of
relations.

In the first place, the quantities p,, ..., pp, as determined by
the equations F, =0, ..., F,,=0, have thus far merely been re-
garded as variable magnitudes: but, in addition, they are to be
derivatives of z. The conditions, necessary and sufficient to secure
this last property, are

IPu _ W _ .
Az, da, ’
hence we have
[F,, Fg]=0

for all values of r and s. These equations, $n(n — 1) in number,
are thus a necessary consequence of the hypothesis that the quan-
tities p are the derivatives of z.

In the second place, if these 4n (n — 1) equations are satisfied,
then the quantities p,, ..., p,, determined by the equations
F.=0, ..., F,=0, are the »n first derivatives of z with regard to
&y, eoe, . Assuming the equations to be satisfied, the foregomg
aggregate of relations becomes

2, Ms) (dpu- dpm) -0

wom 0 (P Pm) \ditm, — d,

for all combinations of » and s. We thus have in (n — 1) equa-

tions, homogeneous and linear in the $7n(n — 1) quantities

dp.  dpm

dxy, dx, n '

Taking the equations in the form

% § oF,. oF, <0l73# _ %) —0,
m=1 m=1 apy apm

dzy, dz,.

which is only a rearrangement, and writing

§ aF (dp,,, dpn\

m=1 apm dwm - dwu/ —7«[';48)
we have
n
3 aaF Ups = 0.
mw=1

This equation holds for all values of r and of s: taking one value
of s, and the n values of » in turn, we have n equations which are
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linear and homogeneous in s, s, ..., Uys. The determinant of
the coefficients does not vanish, for i1t is the Jacobian of the func-
tions Iy, ..., F, with regard to p,, ..., p,; hence

Uus = 0,
for all values of w and s, that is,

§ oF, (dp# dpm> —o.

m=1 apm A, dwy.

Taking the n values of s in turn, we have n equations which are
linear and homogeneous in the quantities

dpy _dpy - dpu A
de, de.’ 7 dw, dz,’
the determinant of their coefficients does not vanish, for again it

is the Jacobian of F,, ..., F,, with regard to p,, ..., p,: hence

day,  da,
for all values of m and w. These conditions have been proved
necessary and sufficient to secure that the quantities p are deriva-
tives of z; and they are a necessary consequence of the equations
[F,., F]=0,
which therefore are sufficient to secure that the quantities p are

derivatives of z and that, when their values given by F, =0, ...,
F, =0 are substituted in the equation

dz = p1d$1 + ... +pndmn:
this equation is exact.

If, in particular, z does not occur explicitly in any of the

equations F =0, then
dF, oF,

dy, awm ’

the equations become

z <8F7. oF, oF, an>

a1 \OZm OPm  OPm 0%
and these are frequently represented by the form
(F s r s) = 0.
Note. All these conditions will equally be required if the equa-
tions determining p,, ..., p, occur in the form

F1=CL1, cees E7,=a’n,

where «,, ..., a, are constants.

)
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49. Again, suppose that n + 1 equations, involving p,, ..., Pa,

2,&, ..., &y, are given. Let them be
Gl =O; e G71+1=0;
they can be regarded as determining n + 1 quantities 2, p;, ..., pn
in terms of @y, ..., #,. We proceed to shew that the conditions
[GT; Gé] = 0;

for all combinations of = and s from the set 1, ..., n + 1, must be
satisfied, if quantities z, p,, ..., p, are so related that

97 _ oPm _ 0P

0w T Om. Oy’

also, that the conditions specified suffice to secure these relations.

When the values of 2z, p,, ..., p, are substituted in the equa-
tions G = 0, each of them becomes an identity; and therefore we
have, from any equation (, = O after the substitution,

8&_*_86# 0z § oG, Opu
0%

?Z_q m w=1 ap# Oy, =0,

so that

>

0G, = 0G, 0G,( dz ) 2 96, 0pu _
dam TP 0z T He (a—x; —Pm) R G
or writing

0 4, 0 _ 4
axm Dm 0z B d“"m ’
for all values of m, we have

dG, 04, / 0z % 0G, 0p.
diz,, + _é? <5J::—n: - pm,>

Similarly

d@d, 06, ( oz m) + & aGs@i_

da;m o0z me le a]);.‘ 0%, a

Multiplying the former by g}cj" , the latter by g§7 , and subtracting
we have "

A&, 9G, dG, 3G, (Z)G?.aGs aGsaGa)(aZ n)

A, 0P A O+ \ 02 0P 02 Opm/ \Om,,

% 0 (G, Gs) apll-
+ 3 i =
p=10 (Pu> Pm) 0Tm
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Summing the left-hand sides of this equation, taken for all the n
values of m in succession, we have

g <dG,. oG, dGy BG,‘)

A, apm Ay, apm

m=1

2

z 9(G,, Gy) 0z 2 0(G,, Gs) op
Z -~ - <’— — m) + 2 B B b=
m=1 a (Z: }jm) awm ]) m=1 /J.%l a (pu; fgm) a'xm
or, again using [(,, G5] to denote the first summation, we have
% 0(Gy, Gy) [ 0z 22 9(G,, Gy op
G, Gl+ = 7, T2 ( )+ > s I\ ) OPe
[ ] + m=1 a (Z; pm) awm ])l ) m=1 u=1 a (p;u ])m) awm
The last summation can also be written
§ % 2690 @p" —QZﬁ) ;
m=1pu=1 a}?y apm O%m axp.
and therefore we have

z 0(G,, Gs) (02
(G, Gl + m§=:1 0(2, Pm) <6a3m pm>

L % 06,06 (Op. %) _
+ mzzl u=1 a}’# apm <axm axu B O

If then the quantities z, pi, ..., pn, determined as functions of
%y, ..., &, by the n+ 1 equations G =0, be such that their values
satisfy the relations

0z 0P Opm

8‘413';@ - Mm> awm - _a;: >

for all values of m and u, then we must have
[G,., Gs]1=0;
and this holds for all combinations of » and s.

Conversely, if the relation holds for all the values of » and s,
then the values of 2z, p,, ..., p,, as given by the equations G'= 0,
are such that the quantities p are equal to the derivatives of z
and satisfy the necessary relations of the foregoing type. When
[G,, G5] =0, the equation becomes

2 0(G,, Gy) [ 0z z 2 06,06 (0p. OPm )

mzzl 0 (Z: pm) (awm - ]%n) + mE::‘l ,L,LEI app. apm (M N éw—'}u) =0 ?
or, if we write

Uy = LGT( o _ m) + 3 206 (Qfl& _ %) ,

0z \02y, p=1 a,pl-t O, amﬁ‘
» 9@, [ 0z
Vp = mE:l 8pm (?)xm - pm) >
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we have
0Gs = 006G, .
— Vy _a—Z— + nil % Uy = O,

for all values of » and s. Taking the n 41 values of s in succes-
sion, and keeping one and the same value of », we have n+1
equations, homogeneous and linear in the » + 1 magnitudes wv,,
Upr, +ory Upy. The determinant of the coefficients of these magni-

tudes 1s
J(GI: ceey G?’L+1> ,
Z’ pl; L] pn

which does not vanish, because the n + 1 equations G =0 are

presumed to determine z, p,, ..., p, as functions of the other
variables; hence all the magnitudes v,, 4., ..., U, vanish, that is,
~ o, / oz
oUr (9% _ 5 V=0
mzzl apm <axm pm> ’
oG, [ 0z % 06, (Op.  Opm) _
7 (50~ P> +x a}:(m" ow,) = O

the former holding for all values of », the latter for all values of »
and of m. Taking the latter for a single value of m and for all
the values of r, we again have n +1 equations, homogeneous and
linear in the n + 1 magnitudes

0z _ . O OPm Opn _ 0Pm
0y, Prms 0x,, O0x 7 0y, Owy’
one of which is identically zero; the determinant of the co-
efficients again is the Jacobian of G4, ..., Gy, with regard to
Z, P1, --., Pa, and so does not vanish : hence the n + 1 magnitudes
are zero, that 1s,
oz 0 P OPm _
0%, —Pn=0, 0k Ox, 0.

Next, taking all the values of m in turn, the other set of equations

n oG, [ 0z B
=, 5 G~ ) =0
is satisfied without providing any new condition: accordingly, we
have the relations

0z Ope _ Opm

Pm= aa omm  0x,

>

as a necessary consequence of the equations [, Gg] = 0.
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Note. Tt will be noticed that, if the n equations
=0, ..., F,=0,

satisfy all the conditions [F),, F] = 0 necessary for coexistence, the
determination of a value of z which satisfies them all requires
resolution of the equations and a quadrature: while, if the n 41
equations
G,=0, ..., G =0,

satisfy all the conditions [G,, (/s] = 0 necessary for coexistence, the
determination of a value of z which satisfies them all requires reso-
lution of the equations only. The former case could be changed
into the latter by the provision of an additional appropriate equa-
tion: this appropriate equation is actually provided as the result
of the necessary quadrature, with the added advantage that it
gives a relation between z and the variables =z, ..., x,, free from
the quantities p,, ..., pa.

50. These two theorems lead to various issues, as regards the
solution of a single equation and of a system of compatible equations.
We shall deal with the latter first.

Accordingly, we suppose that several equations
Fi=0,.., ;=0

are given: after the foregoing explanations, we can suppose that
s is less than n. It may also be assumed that these equations are
algebraically independent of one another and, at this stage, that
they involve all the variables concerned: also, that it is not
possible to eliminate z, p;, ..., p, from among them, so as to lead
to a relation among the independent variables alone. In order
that the given equations may coexist, it is clear from the preceding
analysis that the further equations

[£%, F;]=0
must be satisfied, for all combinations of 7+ and j from the set
1, ..., s
One, or more than one, of these further equations may be
impossible: the original equations cannot then coexist as deter-
mining a function z of &, ..., @, which satisfies #,=0, ..., F;=0
simultaneously. The case requires no further consideration.

One, or more than one, of the further equations may be satisfied
identically: mno condition is thereby imposed upon the system.
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Similarly, no condition is imposed upon the system when any one
of the further equations is satisfied in virtue of the original
equations.

But it may happen that one of the further equations is not
satisfied, either identically or in virtue of the original equations,
and yet it must be satisfied: it is a new equation, which must be
associated with the original system. Each such further equation,
not satisfied either identically or in virtue of the original equations
or in virtue of the newly associated equations, must be associated
with the system: let the additional aggregate thus provided be

Foy=0,..., F,=0,

each of which, as representing a relation [F;, /] =0, is an equation
of the first order.

In order that these may coexist with the original system and
with one another, each of them must be combined with every other
and with every member of the original system in the relation
[F;, F;]=0. Any new equation thus arising is associated with
the increased system : and the process is repeated until the system
is so amplified that the relation is satisfied either identically or in
virtue of the equations in the amplified system. Such a system, on
the analogy of the earlier and simpler case in Chapter 111, is called
complete : if it be denoted by

F,=0,..,F,=0,

the relation [F;, F;] =0 is satisfied for every combination of ¢ and j
from the set 1, ..., m, either identically or in virtue of the members
of the complete system.

If the original system should be such that z does not occur
explicitly in any equation, the relation [F;, F;]=0 becomes
(F;, F})=0; and then the complete system is

F=0,.., F,=0,

being such that the relation (F;, F;) =0 is satisfied for every com-
bination of 7 and j from the set 1, ..., m, either identically or in
virtue of the members of the complete system. Moreover, z does
not, occur explicitly in any member of the complete system : for it
is not introduced by any of the relations (s, Fj) = 0.
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51. 1In § 22, it was established that the equation
f(xh ce xn; Z: pl: L] p'7b)= 0

possesses an integral with one or other of the assigned initial
conditions for one of the values «, =a,, ..., #, = a,, except for
such values (if any) of the variables as satisfy /=0 and also

o
apl o a})n

If these equations can coexist, we must have

R AR ARD

for all values of u, 7, s, in connection with the n + 1 equations.

The former condition is

S [ 0 () o d (o)) g,
m= 1 (dxm a_pm a]?p apm dw a}?y ’

but aaf = 0 for all values of m, and thus the condition is
m
o odf o

m=1 A&, apm a]h -

>

for all values of u, so that we have n relations, homogeneous

daf df

and linear in the » quantities Suppose now that,

dz,” 777 daxy”
if the equations g— =0, ..., o =0 can coexist with /=0, they
opr Opn

determine p,, ..., Pn, so that

of of
J op:’ 0Py
D1y coer P

is not zero; then the preceding n relations can only be satisfied by

df’
dan, = O
that is, by
of af
0%, +pm C O
for m =1, ..., n. These are n additional relations: they must be
satisfied by the values of p,, ..., p,, 2z, provided by the n+1
equations.

51.] THE EXISTENCE-THEOREM 111

It is easy to see that these relations must be satisfied whether

gf o, ..., 1— 0 are independent of one another or not, qua
Pr OPn

equations in p,, ..., p,. For the value of 2, and the values of
P1, -« pn deduced from it, must make f'= 0 satisfied identically
when they are substituted: hence

L puil+ 3 AP,

amm pm=1 a_/pp. axm
that 1s,
o o _
all)qn + ’H’l a O

for all the values of m, which are the conditions in question.

The other set of conditions is

m§=1 l:{dim- <ai{) } a}’azjgps B {dim <aa}7{>} af)i%gpr] 0

for all values of » and s.

When all these conditions are satisfied, and when the n+1

equations f=0, ﬁf— =0, ..., % =0, determine p,, ..., pn, £ as
‘ op, Pn

functions of &, ..., #,, the value of z is certainly an integral of the

original equation f=0. Clearly, it then is not capable of obeying

assigned initial conditions: for it possesses no arbitrary element

which is at our disposal.

Such integrals are of the class usually called singular: we shall
recur to them later. When they exist, they result from the

elimination of p,, ..., p, between
. of of
=0, £ =0, =0
7 op: " Opn

Ex. 1. As an example, we may take
f‘: ‘2'*'@“1291 +... +~??nZ')n+.9 (201; '--72)11):0 5
the additional equations are
R
Pm

so that evidently g must involve all the quantities pi, ..., Pm. The relations

9 I _
02’y TPy, = =0

o9
xm+ap - =0,
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are satisfied identically; likewise the other set of relations. Moreover, the
form of g is known : hence, eliminating p, ..., p, from the equations
0
/=0, xm+5}—)‘g—=0, (m=1, ..., n),

the value of z given by the resulting equation is an integral of the original
equation. But it contains no arbitrary element.

Ez. 2. It must not be supposed that elimination of p, ..., p, is always
possible among the n+1 equations. Taking n=2, a simple instance is

provided by the equation
2

— N2 2 o2 i -
f=@otqy = P =+ gy sy =0
All the equations oF .
— 9 _

f=0? 6;)_0; aq_‘O,
and all the relations

3f o _ of
s TP =0 gt v az

of
d (6p p <ag> da (89 op (810

* (810) dg (g > dy @2) g \9 aj -

are satisfied by the two equations

p_4 z

o=y
attempted elimination gives no further equation. An integral for the particular
example is clearly given by
2=a (x2+y2_ 1)a
where a is an arbitrary constant.

To equations having integrals of this kind, we shall recur later.

TaE CoMBINANTS (F, G), [F, G]: SOME PROPERTIES.

52. Before passing to the further consideration of a complete
system of given equations, it is convenient to note a property
of the operation, represented by (&, ) when F and G do not
involve z, and by [#, G-] when /" and G do involve 2.

Let I, G, H be any three independent functions of 2n quantities
Ly, ooy Tny Prs -o-5 Pui then 1t is not difficult to verify that the
equation

(F, HH)Y+ (G, )+ (H, FYG)=0
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is satisfied identically. TFrom this identical relation, one inference
can be made at once. Let u = ¢, and =+, where ¢ and + are
functions of @, ..., &y, P1, ..., Pn, be two independent integrals of

F, w)y=0,
which is a homogeneous linear equation in % ; then

F, $)=0, (F, ¥)=0
both equations being satisfied identically. Hence

(T, P)¥)=0, (¥, F) P)=—((F, ¥)¢$)=0,

and therefore

: (P, ) F) =
that 1s,
, (F($p, ¥)) =0
Thus, taking
u=(¢p, ¥),
we have .
(F, w)=0

Now (¢, ) may be zero identically, or it may be a pure constant :
in either case, the equation u = (¢, Yr) gives a trivial (and negli-
gible) integral of the differential equation. But if (¢, Yr) be a
variable quantity, then w = (¢, ¥) gives an integral of (F, u)=0;
and if it be distinct from ¢ and from ), it is a new integral. We
therefore have the theorem*:

Ifu=¢ and w = are integrals of the equation
F, u)y=0
then w= (¢, ) also satisfies the equation: and if (b, ¥) be a

variable quantity distinct from ¢ and from +r, then u = (p, ¥) is a
new tntegral of the equation.

Another mode of stating this result is as follows: Let /=0, ...,
Jm=0 be a complete system of equations which do not wnvolve z
explicitly, so that the relation

(frs ) =0,

Sor all values of r and s from the set 1, ..., m, 1s satisfied ; and let
u =6 be an integral of the homogeneous linear equation ( fi, u) = 0.
Then of the relatron (fi, fr) = 0 s satisfied identically, the quantity

* The theorem is customarily associated with Poisson’s name. It was used by

Jacobi without explicit indication of the limitations, though he uses it only generally,
not universally: see Jacobi, Ges. Werke, t. v, pp. 49, 50.

F. V. 8
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w = (fr, 0) also satisfies the equation (fi, ) =0; and it s a new
wntegral of that equation if, being a variable quantity, it 18 function-
ally independent of 0.

The result is derived, on the lines of the earlier explanation,
from the relation

(1 S O+ (S, O)J) + (8, f1)/r)=0.
For (fi, 6)=0 identically, and (f;, /) =0 identically, so that
{(fi, fr) 0)=0 and ((0, f1)fr) = 0: thus u=(f,, 6) satisfies the
equation (f), w)= 0.

The relation (f1, /) = 0 must always be satisfied; but if it is
satisfied only in virtue of equations of the system, the inference as
to the significance of (£, §) cannot be drawn.

53. Next, let f; g, # be any three independent functions of
2n + 1 magnitudes @y, ..., @y, 2, P1, ..., Pn; then it is not difficult
to verify that the equation

(Lf, 9141+ (g 2] + [0 1) = = Llg 1= 2 h 11- 211, g
is satisfied identically.

A corresponding inference can be drawn from this identity:
but it is not so completely useful as in the former case. Let u=¢
and u =+, where ¢ and + are functions of @y, ..., @n, 2, P1, -.., Pu,
be two independent integrals of

[/, u]=0,

which is a homogeneous linear equation in % : then

[/, ¢1=0, [/ ¥]=0

are satisfied identically. Hence also

(L ¢1¥]=0, [V, fI1dl==1[[/ ¥]¢]=0;

therefore, taking ¢ =g and 4+ = h in the above identity, and using
these relations, we have
oF
[[$, ¥1/1=—Z 16 ¥)

or, writing

v=_[¢, ¥]

[/ v]=vg€.

we have
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Thus, in general, w =v =[¢, Y] does not satisfy the equation

[f, u]=0;
and thus, in general, a new integral of that equation is not obtained.

of

If, however, f does not explicitly involve z, so that 2~ is zero, then

oz
L/ v]=0;

hence u = v satisfies the equation. As before, [¢, 4] may be zero
identically, or it may be a pure constant: then w=v gives a
trivial (and negligible) integral of the equation. But if [, ¢r] is
a variable quantity, then u = [$, 4] is an integral of the equation :
and it is a new integral if distinct from ¢ and from +, that is, if
it 1s not expressible in terms of ¢ and of 4 alone. Hence we
have the theorem* :-—

If u= ¢ and u = are integrals of the equation

[/, u]=0,

then w=[¢, ¥] ts a new integral of that equation, only if f does
not explicitly inwvolve z and if [P, Y] is a variable quantity not
expressible tn terms of ¢ and b alone.

Another mode of stating the result is as follows: Let f/,=0, ...,
fm=0 be a complete system of equations, some at least of which
wnwolve z explicitly, so that the relation

[fh f?] =0,

Jor all values of r and s from the set 1, ..., m, is satisfied ; and let
u =Y be an tntegral of the homogeneous linear equation [ f, u] = 0.
Then +f the relation [ f,, fr] =0 s satisfied identically and f the
equation f; =0 does not tnvolve z explicitly, the quantity w = [ f,, ¥]
also satisfies the equation [fi, u]l=0; and it is a new wintegral
of that equation if, being a variable quantity, it vs jfunctionally
wndependent of V.

The result is derived from the same identity as before. Taking

=5, 9=z k=%, we have [ f1,9]=0 identically and [ £3, /] = O
also identically, so that

(LA £:19]=0, [[A, S1/f]=0:

* The correct statement of the theorem appears to have been given first by
Mayer, Math. dnn., t. 1x (1876), p. 370.

8—2
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also %];1 =0, by the hypothesis adopted : thus
(LS S]/i1=0,
and so u = [ f;, Y] satisfies the equation [ f;, u]=0.

The relation [fi, f;]=0 must always be satisfied: 1f 1t is
satisfied only in virtue of the equations of the system, the inference
as to the significance of [ £, ] cannot be drawn.

54. Now the ultimate object of investigations, connected with
a single equation or with complete systems of equations, is either
the construction of the most general integral that is possessed
or the formation of processes effective for such construction.
Moreover, speaking generally, such processes will be made simpler
by every reduction in the number of inverse operations to be per-
formed and by every increase in the number of direct operations.

It is clear, from the two preceding sets of results, that a direct
operation for the construction of a new integral of (&, u) =0 will
more frequently be effective than a direct operation for the con-
struction of a new integral of [/, u]=0: indeed, the latter is
effective only when the equation f,=0 is more limited than is
generally permitted to the system of equations in which it is
included.

We know that it is always possible, by means of a trans-
formation

‘ w=u(2z, X1, .., &) =0,

to remove the dependent variable from explicit occurrence in an
equation, or in a system of equations, involving only one dependent
variable : the number of independent variables is, however, thereby
increased by unity. When the integral w of the transformed
system has been obtained in the most general form, which com-
prehends all its integrals, a general integral of the original system
is at once deduced from the equation w = 0; but this general
integral is not completely comprehensive, for it need not include
special integrals if any such exist. But as has been seen in the
case of a single equation, that is non-homogeneous and of the first
order, the processes adopted for the untransformed equation do
not lead to the special integrals, if any.

Thus there would appear to be no real loss of generality and no
real diminution in the number of integrals obtainable, if we pass
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to a transformed system in which the dependent variable does not
explicitly occur. On the other hand, there is an added element of
effectiveness, because the quantity w = (F,, 6) is often an integral
of (F, w) =0, whereas the quantity u=/[ f,, %] requires compliance
with an additional condition in order that it may be an integral of

LA, u]l=0.

Accordingly, for the immediate present, it will be assumed
that the dependent variable does not occur explicitly: hence we
have to deal with a system of equations

F,=0, ..., Fp,=0,

involving the quantities @y, ..., Zn, P1, ..., Pn. We may further
assume that the equations are linearly independent of one another,
so that no one of the quantities F can be expressed as a linear
combination of the remainder with coefficients whether variable or
constant. And after the discussion in § 50, we shall assume that
the system is complete, so that the relation

(I, Fg)=0

is satisfied, for all values of » and s from the set 1, ..., m, either
identically or in virtue of the equations of the system.

Moreover, after the same discussion, it will be assumed that
m < n. What is required is a value of z satisfying all the equations
of the system: in order to proceed by quadratures, other n —m
compatible and independent equations are needed.

MAYER'S DEVELOPMENT OF JACOBI'S SECOND METHOD.

55. There are various ways of deducing the further n —m
equations that are requisite: one of the simplest of these ways
is Mayer’s development of what is often called Jacobi’s second
method.

The m equations in the complete system
=0, .., F,=0

are linearly independent of one another, in the sense that no one
of the quantities ¥ can be expressed as a linear combination of the
remainder: thus there can be no effective functional relation among
the quantities #. Consequently, the m equations can be resolved
so as to express m of the involved variables in terms of the rest.
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In the first instance, let it be supposed that the equations can
be resolved so as to express m of the variables p,, ..., p,, say to
exXpress P, ..., Pm, in terms of all the other quantities involved ;
and let the result of the resolution be denoted by

- ¢i(pm+l: [RE) _pn: Ly eeesy wﬂ) =0
—¢;=0,
for<=1, ..., m. We prove, as follows, that the resolved system of

equations is complete, the original system being complete : that is
to say, the relation

or by

(.pr — s Ps— ps) =0

is satisfied, for all values of » and of s from the set 1, ..., m.

When the values ¢,, ..., ¢n for p,, ..., pm respectively are
substituted in all the equations of the original system, each of the
latter becomes an identity. Therefore

oF, ™ OF, 0y
0x; + 751 opx 5«7‘7;

=0,

for all values of 7= , n: that is,
o8, _ % oF,0(pe— )
ax, k=1 apk a%,, ’
for all these values. Similarly, we have
oF, m OF, o¢y
T+ 3
opj =1 0Pk OP;
for the values j=m+1, ..., n; that is,
o0F, _ % 0F,0(px—¢n)
opj k=19px  Op
for these values. Also
OF, _ n 0K, 0(pi—dw)
opy x=10pk  Opy
for the values j=1, ..., m, because for each of these values only a
single term on the right-hand side occurs: hence
or, _ 3 oF, 0 (pr— ¢k)
opi  K=10px 0P

for the values ¢=1, ..., n. And these results hold for all the
values =1, ..., m.

=0,

2

b
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Substituting in (F,, F,), we find

_ =z (0F, 9F, aF, oF,
@, Fy= 32 (5, ap:  op )

S5 33 MR =) 2=
i1 k=1 1=1 0Pk OPu ox; op;
_0(pr— Pr) 9 (1 — )
api awi
moom aF aF
kzll e O * (pr— br> Pr— )

Now (F,, Fy) =0, for all values of » and of s from the set 1, ..., m
hence

m.m oF, oF
k=1 1=1 OPx Opx , (P i o= d) =0,

for all these combinations of values. Taking the relation for one
value of s and for all the values of », we have m equations, homo-
geneous and linear in the m quantities

a}?z (Pk br, Pr— o),

for k=1, ..., m. The determinant of the coefficients of these
quantities in the m equations is

J(Fl, Fm>
pl; °--;pm

which, by hypothesis does not vanish : consequently,

— > =0;
l : apz (Pk brs Pr— P1)

for all the values of s and k. Taking this relation for all the m
values of s, we again have m equations, homogeneous and linear in
the m quantities

(px— Px>, pr— b2),

for =1, ..., m; and the determinant of the coefficients of these
quantities in the m equations is again

J<I{'1, oo Fm) ,
]91 3 s Pm
which does not vanish : consequenﬂy,

(pr— dx, pr— P1) =0,
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for ¥ and {=1, ..., m. Hence the system of equations

Pp;i— ¢:=0,

(t=1, ..., m),
is complete.

It is easy to see that the completeness of the system of

equations
pi—¢i=0,
fori=1, ..., m, is of a special kind. The relation
(Pe— b5, Pr—P1)=0,
k and [ having any values from the set 1, ..., m, is

o=,§ﬂ+§@c+ $ (54%3951 a(f)ka(f)l)'

oz, ox; j=m41 %; a—])] - 5@ 550;

This relation is to be satisfied, and it clearly is not satisfied in
virtue of the equations

.2‘)": - ¢’5 = 0)
for v=1, ..., m, because it does not involve any of the quantities
P1, --+» Pm; hence the relations for the modified system are satisfied

identically.
When the relations, necessary and sufficient to secure the
completeness of a system, are satisfied identically, the system is

sald to be i <nvolution. The resolved system of complete equa-
tions is a system in involution, because each of the relations

(Pr—bx, p1—d)=0
is satisfied identically *.

Note. Even when a complete system of equations F,=0, ...,
F,,=0,is such that z occurs explicitly, a corresponding result is
obtainable. Suppose that the m equations can be resolved with
regard to 2 and to m —1 of the quantities p, say pi, ..., Pm—s, iD
the form

z2—P=0, p—Yn=0, ..., Pum—— VY =0,

where , \,, ..., Y, do not involve 2z, p,, ..., pm—; then the
relations
[pi =i, pi—A]=0,
[z =¥ —a(pr— Y1) — oo — T (Pina — Y1), Pi— ] =0,

* Sometimes, for convenience, the unresolved complete system is said to be
in involution.
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are satisfied in virtue of the relations
[F,., F] =0,

for all values of < and j. When the quantities

[p: — Vs, i — il
are expressed in full, they contain none of the variables z, p, ...,
pm_1; they cannot vanish, therefore, in virtue of the resolved
equations: hence they must vanish identically. Similarly, the
quantity

[z—Yd -z (pr—A) — .. o= o1 (Pre1 — Yrm—a)s Pi — Vil
vanishes identically.

The resolved system can be regarded as a system in involution.

56. In order to obtain common integrals of the system, a
satisfactory method will be devised if, by its means, other n —m
equations are associated with the m equations in the system: and
the remaining stage will be a quadrature with reference to the

variables «;, ..., @,, if the Jacobian of
Pr— b1, cees Pin— ¢m, Umg1s oo Unp,
(where 4., = constant, ..., u, = constant, are the additional n —m
equations) with regard to p,, ..., p, does not vanish identically,
that is, if
J <um+l, ey uﬂ>
Pm+1s «++5 Pn

does not vanish identically. Accordingly, this method requires
the determination of m —m equations w = constant.

Each such equation, as it is to coexist with the equations of
the given system, must satisfy the conditions which are necessary
and sufficient to secure the coexistence: that is, it must satisfy
the relations

: (pr—p1, w)=0, ..., (P, — Pm, 1) =0,
which, in effect, are m equations for the determination of . Now
these equations constitute a complete system of the type con-
sidered in the last chapter. We have

((Z)r—‘¢%~, u), Ps— ¢S) _'((p~9_¢87 u)’ Pr— d)a‘>+ ((PS - ¢'S’ Pr— ¢r)’ u):O
identically ; also (ps — ¢s, p, — ¢p,) = 0 identically for all values of r
and s, so that ((ps — ¢s, P, — ¢P,), 1) =0: hence

(Pr— s (s — s, 0) = (Ps — b5, (P — Py, ).
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Let
(pi — bi> w) = 4 (w),

where A; is a linear operator: the foregoing relation becomes
A, (Aguy= A (4, w),

for all values of  and s. This aggregate of relations is necessary
and sufficient to secure that the system of equations 4, (u)=0, ...,
A, () =0, is complete.

Written in full, the equations are

ou + % (6’1& 0, ou 3¢1) o Qw 0y _

0%y i=m+1 j=10p; 0x;

2

............................................................

Bu, & (Dm0 8 Pudbn_
awm i=m-+1 apz a«CL}; awi opi J=1 ap] axj
a system of m equations in the 2n variables z,, ..., Zn, P1, «++s Pa-

When any integral of the system has been obtained involving any
of the variables p,, ..., pm, the relations p,=¢,, ..., P = Pn, can
be used (without affecting its value or its significance) so as to
remove these variables. In the transformed expression for u, we

have
ou 0

=0, ..., 2% —o,

op " Opm
that is, we may take the m equations in the form

ou + » <8u o, ou 8(1)1) ~0,

op; ox;  Owx; Op;

L1 i=m41

ou 7 ou 0y 0U 0P\
+ 2 (G et o) O

aa}m t=m-+1
The original system of m equations was complete : the transformed
system, with the condition that the integrals w do mnot involve
P1s -++s Pm, 18 also complete. The number of variables involved is
2n —m, being @, ..., Ln, Pms1, ---» Pn: SO that, as the system for
the quantity « is now a complete Jacobian system, it possesses
2n — 2m integrals*, which are functionally independent of one
another.
* It is easy to see that this result comes also from the earlier form of the
equations for u: that form involves 2n variables, and so there are 2n —m integrals.

But u=p, — ¢, ..., u=p,, — ¢, are seen to be m integrals: and therefore there are
other 2n - 2m integrals.
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Two limitations are, however, imposed upon these integrals, so
that not all of them can be retained for our purpose. In the first
place, the aggregate of m —m equations required must be such

that
J (u"ln+1 3 see ’ll/n)
pm+1 ) cce) p'ﬂ

does not vanish identically. In the second place, let wpy1 = Gmi
be an integral of the system: it must involve one or more of the
quantities Ppi1, ---, Pn, and it must be resoluble with regard to
one of them, because otherwise all the derivatives _@_u_ e, ou
OPmta Opn
would vanish: let the resolved form be

Pmy1 — ¢m+1 =0,

where ¢pyy involves apyy. Any other of the 2n —2m —1 remain-
ing integrals, say v, undoubtedly satisfies

(Pl - 4)1: 'U) = O; ey (pm - ¢’m> 'U)= 0:
but, for our purpose of proceeding to the determination of the n
quantities p, it must also satisfy the relation

(Pm+1 - ¢m+1> 'U) =0;

and this relation will not, in general, be satisfied for any one of the
2n — 2m — 1 integrals, selected at random. Accordingly, it is not
necessary to obtain all the 2n — 2m integrals of the system though,
if they are known, they can be used in the construction of v as an
appropriate functional combination of the 2n — 2m — 1 integrals
other than w,.,: it is sufficient at this stage to obtain a single
integral of the transformed system. Denoting this single integral
by %mi1, We Tesolve the equation wpy; = @ny. With regard (say) to
Pmt1, 10 the form pPp; = Pppia; and then any other equation
v = constant, that can coexist with the original system and with
Pmys= Pm+1, must satisfy the necessary and sufficient conditions

(pr - 4)1'7 ’U) =0,
forr=1,...,m+1. As before, v may be assumed not to contain
P1, --o> Pm: and for reasons similar to those adduced before, it may
be assumed not to contain Py, so that
2 _o, . o _o,

T apWL+l -

op,
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and then the system of equations for v is

o, 3 <av ap, a¢7.) o,

api awi awi apz

aw’r i=m~+2

for r=1, ..., m+1. The system of m + 1 equations is complete :
it involves the 2n —m — 1 variables i, ..., Zn, Pmias -+, Pn; and
so it possesses 2n — 2m — 2 functionally independent integrals.

57. At each stage, we have a complete Jacobian system for
the determination of a quantity u, such that an equation =« can
be associated with the system of equations for the variable z. The
theory of these Jacobian systems, as explained in the preceding
chapter, shews that they do possess a number of integrals; and
therefore quantities w of the appropriate type do exist, so that we
require only their explicit expressions in order to formulate the
successive equations u = a.

We thus may pass from stage to stage: at each step, an
integral of a number of simultaneous equations, forming a
complete Jacobian system, is required: and as, at any stage, the
number of equations has become greater while the number of
variables has become less than at the preceding stage, the con-
struction of the integrals in succession is successively simpler.

At each stage, what is required is a single integral belonging
to the complete Jacobian system then framed: this integral must
involve one of the variables p still surviving in the system®*. For
this purpose, we may use either Mayer’s method or the amplified
Jacobian method devised for complete linear systems; but it is
not necessary to work either method to the complete issue, because
all that is wanted is a single integral of the simultaneous system,
not the aggregate of functionally independent integrals of the
system.

Each new equation of the type u = constant, associated with
the system in its amplified condition before the derivation of the
particular u, introduces an arbitrary constant. Thus, at the end of
the series of operations which result in giving n equations, the
number of arbitrary constants introduced is n —m; when the

* In case, at any stage, an appropriate integral of ‘this type may not con-
veniently be obtainable, while an integral involving the variables « and some of the
old variables may be forthcoming, a transformation similar to that adopted for
a corresponding difficulty, hereafter (§§ 58, 59) discussed, will be effective.
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n equations are fully resolved for p,, ..., p,, the expressions for
these quantities involve @, ..., Zn, @1, ..., Gu_. When these
values are introduced into the equation

dz =p1d$1 + ... +pndxn:

the right-hand side is an exact differential ; when the quadrature
of this exact differential is effected, we have

2= (1, ..., Ty, A1y veny Upm) + b,

where b is an arbitrary constant. This equation gives the required
value of z as an integral common to the system of equations: its
expression contains n —m + 1 constants.

Ex. Obtain a common integral (if it exist) of the simultaneous equations

Iy =pips— 2324=0 }
Fy=psps— 212,=0
We have
(F1, Fo)=p121+pao— Ps&s— PaZy ;
the right-hand side must vanish, and it clearly does not vanish in virtue of
Fy=0, F,=0; hence we have a new equation to be associated with the first
two, and we write
Ly =p1 81+ Py By — P3@z— Pars=0.

‘We now have _ '

(Fh F2>: F35

(F1, Fs)=—21I7,

(73, Fy)= 2[%;

all the quantities of the type (F,., F}) vanish in virtue of the three equations;
hence these equations are a complete system.

Resolving the three equations F;=0, Fy=0, F3=0, so as to express

P15 P2, P3 in terms of the other variables that occur, we find two systems,
viz.

. X9 X3 x4p4 X1 &9 .
(1) Pri=—"—, =y P3=—_—3
P4 Zg P4
o _ Ty Pa _ T %3 X1 X9
(11) 1= ) 27 ’ 3= .
41 P4 P4

The second of these two sets is derivable from the first by interchanging the
variables x; and x,; hence its integral must be similarly derivable from
the integral of the first.

To obtain this integral, we need an equation #=a, where a is a constant
and » must involve py; and u is determined by the equations

Lo @, Xy
<pl_ﬁ’ 10):0, <_702—' ;,2)4) u)=07 (}73— ;427 u)=0,




126 EXAMPLES OF THE [57.

together with the justifiable assumption that » is explicitly independent of
P15 P2, P3- These equations are

O_ég&‘ Zyw3 Ou
_axl p42 ax‘4
Ju %4 ou P ou

O=ax2 X9 a$4 X9 3204

_du, oy O
T 0w pg? 0wy’

and the fact that they are complete can easily be verified.

The Mayer solution of these equations is as follows. We transform the
variables by the relations
ZT1=¥Y1,
Tg=22 +(Y1— a1) Y2,
w3=a3+ (Y1 — 1) ¥s;
and we form the single equation
Ow Ou Bu

where
X,
I71= p423 29 ./2+ _292 939
=P
Y, nyz
An integral of the subsidiary system
dzy  d,
A= =5

where 75 and y3 are arbitrary parameters, is required involving py: one such
integral is clearly derivable from

dﬂ dpy et —a)ys

dy =
Y1 Y, ~ pa 72

in the form
Pa
ag+(y1—a1) ¥2
Then an integral of the original system is given by

= constant.

B . S
. as+(y1—a1)ys  ag’
that is, by
Ps_ ¢
X9 ag

Hence u=% is an integral of the three equations ; as it involves p,, it is of

2
the required type.

To deduce the value of 2z, we take

P

=a’
&g,
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and then the values of p;, ps, p3, ps are

X3

&y
201=;, P2=0axy, P;s:;, DPa=axy

inserting these values in

dz=p, Az + pads + psdacs + paday,
we find that

”6'1';

+axoxy+0
is an integral of the first set of equations derived from the resolution of
Fy=0, F,=0, F3=0, and therefore is an integral of the original equations.

Effecting upon this integral the interchange of variable whereby the first
and the second resolved sets are interchanged, we £d that

4
2= 243

+a.%1x4+b

is also an integral of the original equations /'y =0, /=0

We thus have two distinct integrals, each involving two arbitrary con-
stants: and they are the only integrals that are thus obtainable. Their
relation (if any) to one another, and the derivation of other integrals (if any)
from them, belong to a range of subsequent investigation.

The amplified Jacobian method of solution is simple in the present case
and leads very directly to the integral

wet
Xy

the rest of the analysis is the same as before.

58. The preceding investigation has rested on the two as-
sumptions: (i) that the equations F;=0, ..., F,,=0 of the
complete system can be resolved with regard to m of the variables
Prs oo P (i1) that the equations of the complete amplified system
FI—O, vois Foy=0, i1 = i1, -.., Up= 0y, can be resolved with
regard to p;, ..., Pu, $0 that the Jacobian

J (Fli R E] Fm; /M'In-{—l; LY un)

does not vanish identically. The latter assumption is, however,
unnecessary : and, as has been proved by Mayer*, it is sufficient
that the n functionally independent equations £, =0, ..., I, =0,
Ump1r = Amtas - -+, Un =, should be resoluble with regard to n of the
quantities which they involve.

* Math. Ann., t. vimx (1875), p. 313.
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Still retaining the first assumption, let the m equations ¥, =0,
, #'m=0 be resoluble with respect to p,, ..., pu; and let the
resolved set be

_(P]:O) e pqn—¢1n,=0-
Let X be a function of all the variables such that

(-F'T) X) = 07
for =1, ..., m; and let & denote the value of X which results
from substituting ¢,, ..., ¢, as the values of p,, ..., pn in X ; then
(}79- — ¢, S) =0.
For
0 00X = 0X Oy
5= s T e O
so that
a.ﬁl}'i 890@ =1 Bpk awv,
for¢=1, ..., m. Similarly
0X _0f % 02X 0(px— ) ¢k)
op;  Op; k—l ope  op
for j=m+1, ..., n; and this last relation is identically true for
j=1, ..., m, because neither £ nor any one of the quantities ¢,, ...,
bm, involves py, ..., Py ; that is, the relation is true for j=1,

Also, when the values of py, ..., p, are substituted in the equations
F,=0, ... F,=0, these become identities: hence

oF, g oF, a(ph_¢h)
or;  1=h opn ox;

for values of t=1, ..., n; and (as above)
ok, _ < oF, 0 (pr— ¢»n)
op; n=10pn  Op;

first for j=m + 1, ..., n, from the identical equation, and obviously
identically for j=1, ..., m, that is, for values of j=1, ..., n.
Hence

m oF,
F.,X)= 3
( ) h=1 a}?

>

‘ ’§ oF,. 0X

2> +
4)7 §> h 1k= 1a]3h 5]0

(pn— b1, pPr— Pr)-

Now we have

Pr— <f>h, Pr— ¢k) =0,
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and by hypothesis,
r,, X)=0,
for all values of »; hence
aph —¢n, ) =0,
holding for »=1, ..., m. But
J (Fl, . Fm)
pl; s pm

is not zero, because of the assumed resolubili’ry of the equations
F=0,..., F,=0 with respect to p,, ..., pm: hence the preceding
m relations can only be satisfied by

(ph—‘;bh’ f)=0,

which was to be proved.

Next, suppose that (by some method or other) we possess
n —m equations

U1 = Qg1 -5 Up = U,

which coexist with F, =0, ..., F,, =0, and with one another; the
n equations in the aggregate being functionally independent of one
another. The original system of m equations is certainly resoluble
with regard to p,, ..., pm; the amplified system of n equations is
resoluble with regard to n of the variables, which can certainly be
chosen so as to include p,, ..., p, and may include others of the
quantities p though perhaps not all of them. Suppose, then, that
the variables chosen for resolution include p,, ..., p., where
p>=m, but not more than u of the quantities p; the resolved
equations will be equivalent to p equations of the amplified
system, say to

F=0, .., F,=0, Upii= nyr, ors Up= 0.

In the remaining equations of the system, let the values of p,, ...,
P be substituted, and suppose that they become

vp.-{—l = a‘ﬂo+17 LA VUp = Up,

these equations not being resoluble for any of the quantities Py,
.., Pn, and consequently not involving any of these quantities.
Then, exactly as in the preceding case, we have

(pr—bn, v) =0,
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for h=1, ..., p, and k=pu+1, ..., n: taking account of the fact
that v; involves none of the variables p,, ..., p,, we may write this

set of equations in the form

ka z a‘vk 8¢h _

—— 3 i—=2=0,
Oy, i=pt1 0x; api
for all the values of A and £.

The quantities vuy., ..., v, involve the variables a;, ..., ,: we
prove, as follows, that they are functionally independent combina-
tions of @, 1, ..., @n. Otherwise, there would be some relation

F (@, ooy Ty Vagas oeny, U)=0,
which would have to be satisfied identically when the values of
Vg1, ---» Vn In terms of the variables «,, ..., x, are substituted ;

and as 1t would involve one or more of the quantities v, it could be
resolved with regard (say) to v, in the form

Un =9 (wl; voes Ly Vpgas -ovs ,U'n—l)'
This relation would also be an identity when the values of .4,
..., Uy in terms of @y, ..., @, are substituted. Now

0vn % Ovn0n_

0Tp  i=pi1 OT; OP;

0;

substituting g (@1, ..., Zu, Va1, -+-» Vp—) for v,, this gives

<§g+ st 23?.%)_ "t 09 % 0nddn_

01, Azp+1 OUA O A=ptl OUA j=pt1 05 OP;

2

but
s 3 onddn_
0%y =1 0% Op; -

0,

forA=upu+1, ..., n—1, and therefore
Ezoj

8a¢h
for all the values of 2. Thus the above expression for v, would
give
v?’L:g(v/J.—i—l) RS v'n—l);

and the quantities v,.,, ..., v, would not be functionally inde-
pendent of one another, contrary to the construction of the
quantities w. Hence vu4 = Auta, ---, Un=0ay,, are functionally
independent combinations of ., ..., @n.
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The equations v.i; = Gpui1, --., Un =&y, can therefore be resolved

with regard t0 @i, ..., #»; and consequently the system
F1=O>---: Fm=0; Ugp+1 = Ugppy15 +++5 Uy = Up,
can be resolved with regard to pi, ..., Pu, Zus1, -+-, . Let a

resolved set be

Pr=Yn (L1, -y By Pugrs -+ P,

@p =0y (%1, ..\ Zpy Put1s ~+os Pu)s
for h=1, ..., g, and k=pu+1, ..., n, the functions 6 and + in-
volving the arbitrary constants.

59. Now take a new dependent variable Z, defined by the

contact-transformation *
Z=2— Put1Pyt1— ++» — Pnin,
being a transformation of a type first used by Lagrange+; then
dZ = pdz, + ... + p.de, — Ty APyiy — ... — T dpy.
We write
Tay ooy Tpy — Putts vovr =P =Y1s oo Yus Yutts ++vr Yns
respectively, and regard ., ..., ¥, as new independent variables:

then, denoting by ¢, ..., ¢» the derivatives of the new dependent
variable with regard to the new independent variables, we have

ph—'——‘Qh; ‘Tk:qu

for h=1, ..., p,and k=pn+1, ..., n. Let
FI'('xl; ] wn)pl) L] pn)= Gr(?/l: cee yn: 91; cee Qn);
Us (1, vvvy Ty Prs wevs Pn) = Ws (Y15 oovs Yns Q15 =+> In)s

on effecting these changes: then as the equations

F,=0, .. F,=0, Upi1==0mi1, --e) Up=_=0ny,
are resoluble with regard to p,, ..., Pu, @usa, ..., Zn, the equations
G1=0; e G’;n:o; Wint+1 = Qg1 + oo Wy = A,

are resoluble with regard to ¢y, ..., ¢,. Moreover, the equations
F1=O; sees En=0: U1 = Qg1 +oe5 Un = Anp,

* Called tangential transformation in Part 1 of this work: the phrase contact-
transformation is now customary, and it will ‘be herein adopted whenever reference
to it is required.

+ Euvres completes, t. 1v, p. 84.

9--2
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satisfy the relations
(FT; Fs) =0, (Fr: 'U/L) =0, (ui: uj) =0,
forr,s=1,...,myand ¢, j=m+1, ..., n. Now

oF, 9G, oF, 3G,

%—ayh’ aphgaqh’
oF, 090G, OF, 3G,

omp . Oqx’  Opn  Oyn’

for h=1, ..., u, and k= +1, ..., n; and similarly for relations
between derivatives of w and w. Thus

(8 G, 0G; 0G, 8G8>

Oyn 09n  9qn Oyx

2 (3G, [ 9GN  [ 0G, 0GY)
+Ic=%+1 {BQR:< 8yk> ( a:l/k> aqkf

_ 2 (aGT 06, oG, aGs>

(F, F)=3

h=1

© =1 \0y: 0qi  0q: Oy
= (Gm Gs) 5
and similarly
(Fy, w))=(Gy, wy), (us, w5) = (w;, wy).
Consequently
(Gr, G =0, (Gy, w;))=0, (w; w;)=0;

and the equations

Gl = O: ceey Gm = 0: W1 = Qgpg1s +oey Wy =0y,
are resoluble with regard to ¢, ..., ¢n, expressing these quantities
in terms of #1, .., Yn, Amtas +++> An. Moreover, the earlier results
shew that the values of ¢,, ..., ¢, thus given make

AdZ = q.dy, + ... +qady,

an exact equation: when the quadrature is effected, the result
will be of the form

Z=‘l’(3/1; cee; :l/n: am+1: LR aﬂn) + b;

where b is an arbitrary constant. To obtain the value of z, we
note that
_3Z _oy

Xy = =—

oy OYr’
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fork=p+1,...,n; and

Z=2—Xp1Putr— ++r — TnPn

=24+ Zppr1Yut1+ oo + TulYas
hence

Z+ TpnlYpsrt oo+ Tuln
="I"(y1’ e y’n) am+1) sy a”n) +b

=’\’b‘({1}1, coes Lus Yutas oo Yns T, -+ an)"[“ b;
wy= Y
8yk
for k=wp+1, ..., n. Eliminating %u4., ..., ¥, among these

n—pu+ 1 relations, and resolving the eliminant with regard to
2z, we have a relation

Z=I(x1’ eees L, a'm—i—ly L] a’n)+b)

for z occurs in the elimination only in the combination z— b; this
relation is the integral of the original system of equations, and
it involves n — m + 1 constants.

One such integral will arise for each resolved set of equations
arising out of the resolution of the equations

Fi=0,...,F,=0, Upi1=Cpy1, covs Up=0p}

the aggregate of these integrals includes all the integrals that are
thus obtainable. But other integrals may be deduced by other
processes, which will form the subject of subsequent explanations.

LEz. Consider an equation
J=3px+qy+g*»*=0.
An equation v =« is required, which may coexist with f=0 : it is given by
(fs ©)=0,
an equation that is homogeneous and linear in % : and an integral is required
which involves either p or ¢ or both. The subsidiary equations are
dx dp dy dg

Br —8p—2¢°2%  y+3¢%t —q’

one integral of these equations is

¢%x=constant ;
and another integral is
_,?/_2 — x=constant.
xq
Taking the former integral, we have to resolve the equations

=0, g*r=c5
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where ¢ is a constant. Resolution with respect to p and ¢.is simple, giving

1
-3 ORI s —
5, p=—%—joya

qg=cx % H
substituting in
dz=pdz+qdy,
and effecting the quadrature, we find
z=A4 —%—c%—{—cx‘%g/,
which is an integral involving two arbitrary constants.
Taking the other integral of the subsidiary equations, we have to resolve
the equations

2
/=0, xigz—x=2a,

where o is a constant. Resolution with regard to p and ¢ is possible: it is
simpler with regard to p and y, and with respect to these variables gives the
relations

F=y—g (@*+2a0)=0, Gm=p+3g®(@+a)=0,

which satisfy the relation (F, G)=0 identically. After the investigations
above, we take ¢ and # as the new independent variables and Z as the new
dependent variable, where

Z=z—qu.
Thus
dZ=pdxr-—-ydq
= -3¢ (w+a) do— g*(2®+ 2ax) dg,
so that
Z=DB—%q¢* (2?4 2ax).
Now

oz
y= =gy =4 (2 +300),

so that we have to eliminate ¢ between the equations
y=¢* (@ +2ax), z—qy=DB- g (+?+2az).
The result is
2= B=23y% (2% +2ax) "%,

another integral involving two arbitrary constants.

Later, the relation between different integrals will be considered.

60. Reasons were adduced in § 54 for discussing equations in
a form which does not explicitly contain the dependent variable ;
but it should be added that the preceding method can be applied
also when the dependent variable does occur explicitly. In that
case, the investigation follows the same lines as before, but the
analysis is rather more complicated on account of the occurrence of
z: it will be sufficient to give merely an outline.
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Let /=0, ..., fin=0 be a complete system of equations in the
n independent variables, involving the dependent variable and its
first derivatives: then the relation

LS fs]=0
is satisfied for all values of 7 and s, either explicitly or in virtue of
the equations of the system. Any other equation, coexisting with
the equations of the system in a form w = constant, must be such

that
[ﬁ> u] =0,

Suppose that the system of equations f;,=0, ..., f,, =0 is
resolved with regard to z and m — 1 of the variables p, say p,, ...
Pm—1, In the form

Z_’\;(,‘=O; ']71—’\!/‘1':07 cees Pm— — ‘["m—1=05
the resolved system is in involution, for (§ 55, Note) the relations

(pi— i, pj— 5] =0,

for all valuesz=1, ..., m.

2>

[Z -y —x (]01 — "I’l) T eee = Wy (pm—l - "l/‘m—l); Pi— ’\If‘zJ =0,
for all values of ¢« and j from the set 1, ..., m —1, are satisfied
identically. Let these values of z, pi, ..., Ppm—, in terms of oy, ...,

s Pms «++» Pn, be substituted in u and let the resulting value be
denoted by w; then the equations

(2= —2 (pr— Y1) — oo — Zia (Prn—1 — Ym—r), w] =0,
[pi =i, w]=0,
are satisfied in virtue of [ f;, «] = 0, and conversely.
Moreover, the system of equations determining w is a complete
system. For if
9:=0, ..., gn=0
is a complete system in involution, then the identical relation

[Lgr> gs]w] + [Lgs, w]l 9]+ [[w, 9.]95]
=~ 219, 902 190, ) — % w, 9]

becomes
__ 09, 095
[97'9 [gSJ w]] - [98’ [97" w}] - az [.C]S) w] - az [gﬂ ’w];

because [¢g,, gs] vanishes identically: hence, denoting [g;, w] by
B; (w), we have

B, (Bow) — B, (Byw) =2 B, () - %9; B, (w)

=0,
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in virtue of B, (w)= 0, B (w)= 0, which is the test of a complete
system.

As the equations

[Z — Y=z (Z)l - "l"l) — e —Tp— (29m—1 - ‘4"m—1); ’w] =0,
[pi— i, w]=0,
are a complete system, they possess a simultaneous set of integrals :

let one such integral involving some one of the variables p,, ..
Pn, be obtainable in the form

.

o w=w (%1, «or;, Tn, Pms +++5 Pn);
then the equation

W (15 wens Ty Py +ees Pr) =
where @ is an arbitrary constant, coexists with
Z—’\II‘=O, pl_'\Iﬁ:O,--~;pm—1"‘l"m——1=0-

Let it be resolved so as to give (say) p, in terms of the other
variables it contains, and denote the result by

Pm = Xom 5

and let this value be inserted in the other equations so that they
take the form

Z_X=O) P1r— X =O) coes Pm—1— Xm—1 = 0.
Then for the next stage, we proceed from the m + 1 equations

Z—X—_"O; p1_X1:0:--->pm"‘Xfm=0:
as in this stage from the m equations.

When n + 1 equations have been obtained, the first of them
has a form
z—0=0,
where @ involves n—m + 1 constants; 2z =40 is an integral of the
original system.

JACOBI'S SECOND METHOD, WHEN 2z DOES NOT OCCUR.

61. The preceding investigation has been carried out after an
initial assumption that the m equations in the given complete
system are resoluble with regard to m of the variables p,, ..., pn:
the selection of p,, ..., p»n Was merely typical. This assumption is
not any real limitation : for if the m equations

F,=0, ..., £, =0
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are not theoretically resoluble with regard to any m of the variables
P15 ---5 Pn, S0 that all the determinants

| om o
i‘ o o |
| 9B 0w |
| opy” T Opa
vanish, then p,, ..., p, can be eliminated among the m equations:

as the m equations are functionally distinct, the eliminant cannot
vanish identically and so would take a form

O (21, ..., @) =0,

a relation among the independent variables alone. Such a result
is excluded: and so the m equations are resoluble with regard to
some selection of m variables from the set p,, ..., pa.

The forms of the resolved equations may, however, be com-
plicated: and then it might be desirable to proceed from the
unresolved equations. Such a process was given by Jacobi, and
it is sometimes called his second method; naturally, it is less
simple than the method that has just been expounded, for it deals
with equations of a less simple form than those to which Mayer’s
method is applied. Indeed, the preceding process is really a form
of Jacobi’s method: but it has been simplified and shortened by
the improvements and the developments due to Lie and to Mayer.

Thus far in the range of these discussions, we have been
considering m equations : and though there is no intrinsic element
in the analysis which makes m greater than unity, all the super-
ficial appearance suggests that m is not unity. For variety, we
shall now deal with the integration of a single equation: and
it will be found that, in general, the process leads to the issue
through the integration of systems. For this purpose, we shall
use Jacobi’s method : a sufficient indication of its detailed working,
whether for single equations or for detailed systems, will thus be
provided.

As already hinted, Jacobi’s method of integration (without the
modifications and amplifications introduced by the investigations
of Lie and Mayer) appears to be most useful when, from whatever
cause, the equation or equations are not resolved with regard to
one or more of the derivatives. We begin with a single irreducible
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equation, unresolved with regard to any of the variables p and not

explicitly containing the dependent variable: it may be taken in
the form

f=Ff(xs, ..., Zp, P1, -or, Pn)=0.
By the process adopted, other n — 1 equations are required which,

speaking generally *, would suffice for the expression of pi, ..., pa
in terms of @1, ..., @,.

If w = constant be such an equation, then the relation
(s w)=0
must be satisfied; any integral of this equation, distinct from f
(which manifestly is an integral) and involving some of the variables

Pis .-, pun, will suffice for the purpose. The system of ordinary
equations, subsidiary to the construction of this integral, is

Aoy Ao _dp__dpa.
_y Ty T o
op, Opn  0xy oz,

let /i = constant be one integral of the system, where f; involves
one at least of the quantities p,, ..., p,: then we may take

u=f.
f; S)=0

is satisfied identically : and the two equations
ﬁ = a,’ f= O,

where @ is an arbitrary constant, satisfy the conditions of co-
existence,

The relation

62. We now proceed to obtain another equation, involving
some of the variables p and coexisting with the two equations; if
it be v = constant, then the relations

(£ 9=0 (fi D=0,
must be satisfied. These effectively are two equations for the
determination of »; any common integral of the appropriate form
and functionally distinct from f and f; (both of which manifestly
are integrals) will suffice. Now the equation (f, v)=0 is the

* That is to say, omitting from consideration the alternative already discussed
in §§ 58, 59.
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same as that for the determination of u, so that the subsidiary
ordinary equations are the same as before: let

¢ = 4)(.%'1, cees Ty Prs oeees ])n)=00nsta,nt,
be an integral, which involves some of the variables p,, ..., p.
and 1is functionally distinct from f and f;; then the equation
(s ¢)=0

is satisfied identically.
If ¢ is such that (fi, ¢) =0, then we may take
v=9¢

as a common integral of the two equations.

If ¢ is such that (f;, ¢) does not vanish, then (fi, ¢b) is either a
constant, say ¢, or is a variable quantity, say ¢,. In the latter
case, ¢, is an integral of the equation (f, w)=0, by Poisson’s
theorem (§ 52); and it is a new integral, if it is functionally
distinct from f, fi, ¢.

Similarly, if ¢, is a new integral of (f, u) =0, we may have
(f1, ¢1) =0, in which case we may take

v=d,
as a common integral of the two equations; or if (fi, ¢,) is not
zero, it is either a constant, say ¢, or is a variable quantity, say ¢..
As before, Poisson’s theorem shews that ¢, is an integral of the
equation (f, u)=0: it is a new integral, if it is functionally
distinet from f, fi, ¢, ¢,

Proceeding in this sequence, we have a number of functions
¢, b1, ¢y, ...; and provided (f;, ¢.) is a variable quantity, it is a
new integral of the equation (f; w)= 0 if it is functionally distinct
from £, fi, b, ¢, .., Pu. Now the number of functionally distinct
integrals of (f, w)=0 is not greater than 2n —1; hence, if the
series of functions either should not cease, by the occurrence of a
zero-value for (f; ¢,), or should not give a constant non-zero value
for (f, ¢,), then we must sooner or later obtain a function ¢,
which is expressible in terms of those already found. ILet ¢;
be the first function in the sequence which either is zero, or is a
pure constant different from zero, or is expressible in terms of the

preceding functions.
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Then no new distinct integrals will arise from continuing the
construction of the functions (fi, ¢). For in the first alternative
and in the second alternative, we have (fi, ¢;) = 0: and if, in the
third alternative

$i=0(f, fi, & b1 -y Pica)s
then

(i $0= <f1,f>§7€+<ﬁ,ﬁ>§79 (i 8) g e (o i) g

= 9'512 e aqu

which is expressible in terms of the functions anterior to ¢;; and
so for each succeeding function.

Accordingly, consider a functional combination of ¢, ¢y, ..., ¢iy
represented by
v=g (b, 1, --0; Pia);
then
(f; v)=0,

whatever be the form of the function g. Also, as above,

(Fir )= bu S5 g oo b

hence, if g can be determined so that the right-hand side vanishes,
we shall have (fi, v)=0. In order to determine g from the
relation

¢1 ¢ + ¢>2 ¢ .+ (,bz, agbb—l =0,

we consider the system of z — 1 ordinary equations
dd) d¢1 — _ dqbi—l .
b . T P

their integral equivalent consists of 7 — 1 distinct integral equations
of the form

hy (b, b1, ¢, ..., Pi_y) = constant, (r=1,...,2—1),

whether ¢; be zero, or a constant, or be the foregoing quantity ;

and each of these functions £, is such that

7 r ahr _
¢1 a¢+¢2a¢)1+--.+¢ia¢i—l—o'

v="h, (P, b1, oy -ers Piy),

Hence, takin
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we have
fs =0, (S, v)=0

and thus we have ¢— 1 distinct integrals common to the two
equations.

If ¢; is zero, the simplest of these integrals is

V=,

even so, it is only one of ¢ — 1 distinct integrals common to the
two equations.

Also 7 is greater than zero, because we have assumed that
(fi, ¢), which is ¢,, does not vanish. Hence, if ¢ is greater than
unity, a common integral has been obtained; in that case, indeed,
we have obtained 2 —1 common integrals of (f, ©)=0, (fi, v)=0,
distinct from f and f;. Consequently, this stage is completed
except only when (fi, ¢), though not zero, either is a constant
or is not functionally independent of f J1, ¢ : that is, in the case
when z=1.

In the case when +=1 in connection with a quantity ¢, we
return to the equations subsidiary to (f; w) = 0: and we determine
another integral of them in the form

Yy=A(2, ..., Zp, P1, ..., Pn)= constant,
where 4 is functionally distinct from £, f;, . We proceed with

in the same way as with ¢, by forming the functions

(fl’ ‘l’)=‘1’1> (fb Yy =, ..o,

in succession ; and, as before, we obtain an integral or a number of
integrals common to the two equations

(f, =0, (fi, w)y=0

save only in the case where +f,, though not zero, is either a
constant or is not functionally independent of £, £1, ¢

Even if the integral required is not provided because of the
double lapse of the process into this exceptional stage, an integral
as required can be obtained by a combination of the two integrals
¢ and +. Take any function g (¢, 4, f1): owing to the origin of
¢ and ), we have

(f, 9)=0;
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and

(fng)— (f1,¢)+ (fu\lf)+ 7 (/o)

— S oyt
We form the equations
de _ d¥ _ dfs,
¢ A 0

in these equations, ¢, either is a constant or is a functional com-
bination of f, fi, ¢, say ®(f, fi, ¢); and likewise for +,, which
either is a constant or is a functional combination of f, fi, v, say
W (f, fi, ¥). For our purposes, f is zero: one integral of the two
ordinary equations is f;=a,, where a, is an arbitrary constant;
another integral is given by integrating

dp  _ dr

D0, ar, ) YO, a;, )’

Let an integral equivalent of this be

u (t,, ¢, Yr) = constant,
u (f1, ¢, Yr) = constant :

9($, ¥, f)=u(f1, d, ¥),
(fi, wy=0.

In other words, u=wu (fi, ¢, Y¥) is an integral common to the two
equations (f, u)=0, (f;, ©)=0.

The simplest instance occurs when ¢, =¢, Yy, =¢’, where ¢ and
¢’ are constants: then

or say

then if we take

we have

u=c'¢p—cy.

In every case, an integral common to the two equations
(f, w)=0, (fi, w)=0 has been obtained. It has required the
assignment of certainly one integral of the equations subsidiary
to (f; )=0: even when the functions ( fi, ¢,) have to be formed,
each of them gives an integral of that subsidiary system, and so
does each combination of the type &, (¢, Py, ...), ~a (P, b1, «.2); oo
and only one of these combinations is assigned. The most un-
favourable association is that in which the ¢-series ends with ¢,

and a r-series ends with 4, ; and then the two integrals ¢ and
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of the subsidiary system of (f, u)=0 must be assigned for the
construction of an integral common to (f, v)=0, (fi, v)=0.

Now the subsidiary system consists of 2n — 1. ordinary equa-
tions; its integral equivalent must consist of 2n —1 independent
equations. One of these is f=0, and another consists of fi=a,;
hence there are other 2n — 3 independent equations, which may be
denoted by

¢ = constant, = constant, y = constant, % = constant,

If (fi, $)=0, then w=¢ is the quantity desired. If (f;, ¢)
is neither zero, nor a constant, nor a functional combination of
f fi» ¢, then there is a ¢-series: and a single combination of the
members of the series, (which must also, in the circumstances, be
a combination of some of the quantities ¢, Y, ¢, Y, ...), will give a
quantity v as required. The most unfavourable set of results
possible is that in which the ¢-series terminates with (f,, ¢), the
\r-series terminates with (fi, ¥), and so on, no one of these
quantities vanishing : then each of the quantities

f de¢ _dy
(fi, &) J(fi )’
dé [ dx
(fis &) ()’
d¢ dS

(fis ) (fi, %)’

is an integral common to (f, u)=0, (f1, w)=0. As there are
2n — 3 quantities ¢, Y, x, Y, ..., it follows that, even with the
most unfavourable set of results, the two equations (f, »)=0
and (f;, u)=0 possess 2n —4 integrals in common, independent
of £, of £, and of one another, and obtainable in this manner.

Let u =/, be one of these integrals: then the equation
Jo=ta,
where a, is an arbitrary constant, associates itself with
=0, fi=a.
We thus have succeeded in associating two new equations fi=a,,
and f, =a,, with / and with one another.

63. The next stage is the determination of a new equation
2 = constant, consistent with

f=0: ‘f1=“1, f2=“25
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the necessary and sufficient conditions for coexistence are

(fw=0, (fi,w)=0, (f2, u)=0.
Let w =2 be an integral, common to (f, u)=0, (f;, w)=0, and
functionally distinct from f, f3, /3, where
A=A(Dy, een, Zny Prs oees Pu)t
it may be taken as one of the 2n — 5 common integrals, other
than f, fi, f.. We proceed as before, and form a series of

functions .
(fo, M) =N, (fo, M) =Ny, -...

Each of these quantities is a common integral of (f, u)=0,

(fi, v)=0. For
(S (S, )+ (126, 7))+ (0(F, /) =0,
(fi (o, )+ (2 (0, /D) + (0 (S, /) = O3
and (f; f2)=0, (i, f2) =0, both identically, so that
@ LSDN=0, (0(/,/))=0;

(f (fa: )= (12 ([, 0)),

(2 (fe, €)= (/2 (S, 6))
Let 8 =\ ; these results give

(i M) =(fa (i M)=0,

(S, M) = (/2 (J1, M) =0,
because (f, A)=0, (fi, A)=0, both identically satisfied; thus
A, 1s an integral common to (f, ) =0, (f;, u) =0. Let 8 =2x,;
then the two relations give

(.ﬁ Ap) = (.fz (f; A)) =0,

(J1: M) = (/2 (1, M) =0,
as before : that is, A, is an integral common to (f, v) =0, (f, u)=0.
And so for all the functions A in succession,

and therefore

The number of independent integrals is limited : and thus the
A-series will terminate either in a zero, or in a pure constant, or
in a function expressible in terms of the anterior functions.
Proceeding as before, we obtain some A-function, or some com-
bination of A-functions, say A, such that

(fe, A)=0,
save only in the case when (f;, \) is either a constant (not zero)
or is not distinet from f; fi, /2, N
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In the latter circumstance, we take another integral u,
common to (f;, w)=0, (fi, v)=0, and distinct from f, fi, fas N
Proceeding in the same way, we obtain some u-function or some
combination of u-functions, say M, such that

(fer M)=0,
save only in the case when (f,, wu) either is a constant (not zero)
or is not distinet from f; /i, /o, p.

And should the latter happen, then if

_ dx du
¥=[ ol
we have
(f2> N) = O‘

Thus in every case we obtain an integral common to the three

equations

(f; u)=0, (.fb u)=0> (.fZ: u)=0:
and in the least favourable combination of circumstances, there
are 2n— 6 such integrals, independent of f, fi, f2, and of one
another.

Let f; be one of those integrals ; then the equation
f;} = as:

where a; is an arbitrary constant, associates itself with
f=0> fi‘l=a/11 f2=a2'

64. We proceed in this way from stage to stage, obtaining
equations f; = a,, ... in succession which are associated with all
the equations that precede them. The last stage of all is the
construction of an equation f, ;= a,—,. Our earlier results shew
that, when the equations

f= 0, ﬁ= A1, oeny fn——l = Up—

are resolved for p,, ..., p, in terms of =, ..
obtained are such as to make

., &,, the values thus

pday + ...+ padae,
an exact differential; after quadrature, an integral of the original
equation f= 0 is given by
z—a, = [(prde, + ... + ppdx,),
involving n arbitrary constants.
F. V. 10
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If it is not possible or not convenient to resolve the equations
JS=0, ..., fuus = ap—y with regard to p,, ..., p,, we choose another
set of the variables involved and, resolving with regard to these,
adopt the process explained in §§ 58, 59.

JAacoBI's SECOND METHOD WHEN z DOES OCCUR.

65. In the preceding account of Jacobi’s method of solving an
equation =0, the dependent variable z has been supposed not to
occur explicitly. If it should occur explicitly, we have already
seen that there is a mode of proceeding by a change of dependent
variable, associated with a unit increase in the number of inde-
pendent variables. This mode of proceeding may be cumbrous:

and in any case, it is desirable (if possible) to have a direct method
for constructing an integral.

Accordingly, let
J= (@1, eeey Xny 2, D1y oovy Pn) =0
be an irreducible equation which involves z explicitly : if
U= (L1, esv, Tn, 2, P1, +++, Pn) = constant

be an equation which can coexist with /=0, it is necessary and
sufficient that the relation
[f, u]l=0

should be satisfied. This equation is homogencous and linear in
the derivatives of «; written in full, it is

igl {(@j 4 8f> ou 9w of ou 0f)

0x; bigy apfa_%éﬁ""a_p szf*

To obtain a value of u, we construct the system of subsidiary
equations

_dw; o dxn ap, . dpn
A A A A AN
" op Opn 0wy Ty, 0%, T Pn 0z

_ dz
= - o7 TR
(pl 5]?1 + ... + Pn 8107)

which (for reasons that will appear hereafter) are called the
equations of the characteristics; and we take an integral of these

65.] FORM OF EQUATION 147

equations, choosing by preference one that is not free from z, p,,
.-s Pn, 1If any such exist. Let such an integral be
g(@y, ..., @, 2, P1, ..., Pn)=constant;

then the equation

U=g($z; L] -Z'n, Z)_le ---,Pn)

gives a value of u as required ; and the relation

[/, 9]1=0

is satisfied identically, so far as concerns g = constant, but not
necessarily identically, so far as concerns f= 0: indeed, it may be
satisfied only in virtue of f'=0.

Ex. The characteristics of the equation

prz+qyz—xy=0
are given by

—wz —yz pi—y+pPrtqy) g -atq(qutpy)  —pur—qyE
An integral, as required, is given by

dx dy dp dg dz

—zy = constant ;
the relation

[pwz+qyz— 2y, & —ay]=0
is satisfied only in virtue of f=0. Another integral, as required, is given by
Ppz—35Y 2/

= constant ;
gz —%w

the relation
P23y _o

qz— S

l:pxz +qyz — xy,
is satisfied identically.

66. Accordingly, at this stage it is convenient, for the sake of
very substantial simplification of the analysis, to resolve the two

equations
Jf=0, g=a,

for z and one of the variables p, chosen so as to give the simplest
resolution : let the selected variable be p,, and let the result of the
resolution be denoted by

Z—-’\IJ‘=O ]71_‘1"1;'0,
where 4~ and , are functions of @,, ..., @n, P2, ..., Pu. Then, after

the explanatlons in § 55, Note, and § 60, we take these two
equations in the form

10—2
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Z—"I”_-ﬁl(pl_'\l"l):o: D1 =03

any equation w=c that can coexist with them must satisfy the

equations
[z =Y — @ (p— ), w]=0,
[pr—4n, w]=0.
These two equations to determine w are, by § 60, a complete
system.

As any integral of these two equations is to furnish an equation
w = constant, which shall coexist with

z2—Y=0, p—4Yn=0,
it can be transformed so that, if z and p, do occur, they are replaced
by 4 and +~ respectively: that is, without loss of generality,
w may be assumed not to involve either z or p, explicitly. Let

w=c¢=0c¢ (@, .o, Tn, Pa, ++-> Pn)
be an integral of the equation
[ =V — @ (pr =), w]=0;
then, as [z — vy — @, (p; — Yr1), ¢] does not contain z or p,, so that it
cannot vanish in virtue of z —yr=0 or p;, —{Jr; =0, and as it must
vanish, it vanishes identically. Construct the function [ p, — v¥r, ¢],
= ¢, say. If ¢, vanishes identically, this last condition is satisfied :

also [p, — Y1, ¢]=0; and therefore w = ¢ is a common integral of
the two equations. In that case, the equation

¢=a/1’

where a, is an arbitrary constant, can be associated with

2= =0, p—An=0.
Suppose, on the other hand, that ¢, does not vanish identically ;
then, as

L& 7] ]+ [[m, ¢1 &1+ [[¢, E17]
op o¢ o
=225 )~ 0 [ $1 - T [, )
identically, we have, on writing

=z—Ad—z (P =), 7T=p —n,
[[pl—‘z"l; ’:;b] &=~ [pl-‘\pl: ¢l
[¢1, {]=— .

the relation

that is,
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Thus ¢, is not an integral of

[Z—‘!"‘xl(Zh_‘l’l), 'w]=0§
and as [¢,, §] involves derivatives of ¢,, it is clear that ¢, cannot
be a pure constant.

In that case, let

’Z,U=X= X('xl! cees Ty, pm cee _pn)
be another integral of the equation

[z =¥ — @ (P — ), w] =0,
functionally distinct from w = ¢ ; and construct the function
[p1 — Y, x], =x2 say. If x; vanishes identically, it follows that
w =+ is an integral of the two equations determining w; and then
the equation
X = C1,
where ¢, is an arbitrary constant, can be associated with

2= =0, p,—Y,;=0.
But if v, does not vanish identically, then we have

[ €1=—x
as before; and x,; cannot be a constant. Also
[¢l: é’] =-— ¢,
so that
5 el - xm im0
and therefore
=

is an integral of the equation
[z =+ — a1 (pr = ¥r), w] =0.

Now both ¢, and x, are variable: but X1 may be a constant,

.
say ¢. Then
[pl _‘\1’1: X] =X1
= C¢1
= [pl - \lrl’ Cd)]’

and therefore

[pe— s, x —cp]=0;
[z =4 — 2 (p1— ), X—Cﬁb]:O;

hence as
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so that, under the particular hypothesis, w = ¢ — c¢ is an integral
common to the two equations. But, in general, w, will be a variable
quantity.

Assuming w, now not to be a constant, construct the function
[p1— Y1, wi], =%, say. 1If y, vanishes identically, it follows that
w = w, is an integral common to the two equations for the deter-
mination of w; and then the equation

W, = Cy,

where ¢; is an arbitrary constant, can be associated with
z2—A=0, p,—Y,=0.
If x, does not vanish identically, then

X
b

Wy

is an integral of the equation

(2= — 2 (pr — ), w] =0.
If w, be constant and equal to a, then
w = w, — ap
is an integral common to the two equations. But, in general, w,
will be a variable quantity.

Assuming that w, is variable, we construct the function
[pr— 4, w,], = say. As before, if y, vanishes identically, we
have an integral w = w, common to the two equations. If x,= B¢,
where B is a constant, then w = w, — B¢ is an integral common to

X3

the two equations. If 22 is not zero nor a constant, then
1

X3
We = T~
3 ¢1
is an integral of the equation
[z — ¥ — 2 (p1 — ), w]=0.
Proceeding in this way, either we shall at some stage obtain an

integral common to the two equations, or we shall obtain an
integral of the equation

[z =¥ — @ (pr — ), w] =0
which 1s expressible in terms of the preceding integrals; for the
number of functionally distinct integrals of that equation is limited.
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When the last alternative occurs, all succeeding integrals are also
so expressible ; for if

W =f(’wm—1; e X (;b)’

then, as
[Pr — V1, W] = Wepa by,
we have
1
Win+1 = a [pl - ‘I"l; 'ujm]
1
_ o of of of
- awm—l Wi -+ awm_2 Win—1 + ...+ —8—96— w + % >

shewing that w,,, is expressible in terms of the earlier integrals :
and so for all succeeding integrals. Now take some functional
combination of ¢, x, Wi, ..., Wy, SAY

9 =g(¢: X} wl; L] w’m-—l);
then

| 3 _ . (29 , o9 99 9% sl
[pl 1?1,g]—¢1{a¢+5>zwl+awlﬂ)2+-..+a,wm—1f}.

if g can be chosen so that the right-hand side vanishes, then
[pr — ¥, g]1=0, and we shall have an integral common to our two
equations. Let any integral of the system of ordinary equations
d_(é . QZZC _dw, . dWy—a
1 w, Wy T f(Wmeas e, X D)

S (¢’ Xs oo wm—1) = constant 5

be

then taking
g =gl (¢> X, (RS} wm,—l);

[ — Y, 9]=0.

Moreover, there are m functionally distinct integrals of the system
of ordinary equations: hence there are m distinct integrals common
to the two equations

=Y —2(pi—Y), w]l=0, [pi—n, w]=0; 7
and these are constructed out of m + 1 distinct integrals of the
first equation*.

we have

* The simplest case occurs when w; is not functionally distinet from the
integrals that precede it, viz. from ¢ and x, so that we then have
. wy=F(x 9);
if the integral of the equation
dx
dp = —— T
?=ilo 9

be g (¢, x)=constant, we take g (¢, x) as a common integral of the two equations.
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Let one of these integrals be w (x;, ..., @n, P2, ..., Pn): then
the equation
w (wl: cees Xny Pas oees pn) = Uy
coexists with the equations
z2—=Y=0, p—y=0.

In every case, therefore, an equation has been constructed which
coexists with the equations already obtained.

67. To proceed to the next stage, we resolve the equation

u('xl’ 2o -’Un; _p2’ L) p’n):a2

with regard to one of the variables p which it contains: let the
resolved form be

P2= Xz
where y, involves a,, ,, ..., @n, Ps, ..., Pm. Let this value of p, be
inserted in 4 and Y, and let the resulting expressions be y and
x1; then we have the simultaneous equations

Z"X=O, pl—‘X1=O; 102—%2=0-
Now x, X1, X= do not involve z: hence, writing
f=2z— X— % (}71 - Xl) — &y (pz"— Xz)» T1=P1— X1, T2=Pz— Xz
and denoting by € any quantity which does not involve 2, we have

[[m, 38 1+[[6, & 1m]l+[[ & m]O]=—[m, 0],
[[e 618 T+(19, & 1m]+[[ & m]0]=—[m, 6]
([, 6] 7]+ ([0, 7] m]+[[7s, 7] 0]=0;

also we have

[:; 771] = O; [g) 7?'2] = O) [77-2) Wl] = 0;
identically.

Let o and p be integrals common to-the two equations

(& v]1=0, [m, v]=0,

obtained as in the preceding sections, and limited so that they do
not involve z and that they are functionally distinct from 7, and
from one another; and let

[77'2; 0']:0’1; ['77'2’ P]=P1-

If either o, or p, vanishes, then we have a common integral of the
three equations

[¢ v]=0, [m, v]=0, [ms, v]=0.
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If neither of them vanishes, we make € equal to o and then to p
in succession in the above identities. The first of the identities
gives no condition; the second gives

[g’ 0-1] = 0, [g) pl] = Pl;
and the third gives
[771 » 0'1] = 0; ['77'1, Pl] = 0.

Hence 2* is an integral common to the two equations

1 [é‘; 'U]yz 0, [, ?)]:O,

unless it is a constant; and if % is a constant, say equal to a,
1

then

(&, p—ac]=0, [m, p—ac]=0,

[77-2’ P — ao—] =p1— Ao, = 07
so that p — ao would be a common integral of the three equations
determining .

Writing 7 = &, and
g,
[77'23 T] =T,

then if 7, vanishes, a common integral of the three equations
is v = 7; while if 7, does not vanish, we have

[; '7'1] =T, [771, '7'1] =0,

[; E]:O, [WI’ E]=O;
g g,

is an integral common to the two equations

and therefore

shewing that T

o,
[§ v]1=0, [m, v]=0.

We proceed as in the former stage : sooner or later, an integral
of the two equations [§ v] = 0 and [7,, v]=0 is obtained which is
expressible in terms of the earlier integrals, or an integral is
obtained which also satisfies [7,, v]=0. In the former alternative,
we construct (as in the earlier stage) a combination of all these
independent integrals of [, ]= 0 and [m,, v]= 0 which shall also
satisfy [m,, v]=0. Let it be

v=?)(x1, coey $7L1 p3) e pm);

then the equation

V (X, ooy Tny Psy coes Pm) = 0
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coexists with the equations
E=0, m =0, m,=0.
Let it be resolved for one of the variables p; say ps, in the form
Ps— 0:=0,

where 6, involves a;, @, ..., Zu, Ps» ..., Pm; When this value
is substituted in v, 1, x., let them become 6, 6,, 6,; then our
equations are

Z——9=0, p1~91=0, 20-2=92, P3=03-

So we proceed from stage to stage. In each stage the con-
struction of the new equation requires, in the least favourable
combination of circumstances, the assignment of two integrals
of the subsidiary system associated with the initial equation

[f, u]=0.
This subsidiary system contains 2n differential equations: its
integral equivalent must therefore contain 2n integral equations,
that is, it possesses 2n integrals. Hence there are sufficient
integrals for the achievement of n stages; at the end of the last,
we shall have

z = function of x,, ..., z,, &, ..., g,

(where a,, ..., a, are arbitrary constants) as the integral of the
original equation. Or at the completion of the (n — 1)th stage, we
can resolve the n equations then coexisting, and express p,, ..., Pn
in terms of z, @y, ..., Zn, A1, ..., Apy; Substitution in the relation

dz = p,dx, + ... + paday,
and quadrature, lead to the integral required.
Fz. Let Z denote z— pyx;— ... — p,2,; and suppose that a set of

‘equations
FI’-:F#(Z)I’ ceey Pas Z)=07

where m <, is propounded for solution.

We have
dFy OF,. 0F.
;- ow, TP e

for all values of u and of ¢ : consequently
[‘F"l" iy 8] =0,

for all values of » and s, so that the system is in involution.

0,
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To obtain other equations consistent with the system, we need simultaneous
integrals of
[F1, u]=0, ..., [F, w]=0.

The equations subsidiary to the solution of [/}, #]=0 are

_— P dz - .
Tory oFy T ofy o
ox; Pig; Plapl P"apn
but %%-l—pi ?a{;l =0, and so an integral of these equations is given by
1=constant.
Also p
[201 ’ F’r]:O’
for r=2, ..., m; so that w=p; is an integral common to all the equations

[Fu, ©]=0. We therefore associate the equation
P1=0y
with the given set; the new system is
Fy=0, ..., Fo=0, pi=0ay,
and it is easily seen to be in involution.
Similarly, we may associate the equations
P2=0qg; «ery Prn-m+1=%n~m+1s

where @q, ..., @y_m+1 are arbitrary constants, with the amplified system and
with one another: and the whole system thus extended, viz.

=0, ..., Fm=0’ P1=0Q1; «oesy Pn—m+1=%p_m+1s

is in involution. If therefore the quantities p;, ..., p, can be eliminated
from the system, the eliminant will give an integral of the original set.

Now the n+41 equations thus obtained are independent of one another,
and they involve the n+1 quantities p;, ..., p,, Z; when resolved with
regard to these quantities, they give

Z=c, pi=ay,
that is,
Z— Q1T — AgXog— .o. — ALy =20,
where the constants ay, ..., ¢,_,+1 are arbitrary, and the remaining con-
stants @, _,, 49, ...y A, ¢ satisfy the m relations
Flk(a‘b sy Qg c)=0;
for the values pu=1, ..., m. The equation

z2= 0+ Qoo+ ... F 0,2 C,

with the limitations upon the constants, provides an integral of the pro-
pounded system.
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CHARPIT'S METHOD: INTEGRALS WHEN THE CONDITIONS IN
CAaucHy’s THEOREM ARE NOT . SATISFIED.

68. Naturally, the simplest case of the preceding method
arises when the number of independent variables is two. With
the usual notation in this case, the equation may be written

S @y 2 p,9)=0;
and the condition [f; »]=0, which must be satisfied by w if
u = constant 1s to coexist with f=0, is

of\ ou | (of of\ou 0of ou of ou
(8w+paz> 8p+ 6y+q55> 0g Opox 0q oy
of of > ou
( ap +a oq) 0z
To obtain an integral of this homogeneous linear equation which
shall involve p or g or both, the system of ordinary equations

dp dq dzx dy dz

s T 7 T ¥ g _ T
oz TP 52 oy t23; “op  oq pap qaq

1s formed: if

u (%, ¥, 2, p, q) = constant

be any integral, distinct from /=0, involving p or g or both, then
the equations

f(x1 Y, % P, g)"‘—'o’ u’(w’ Y 2 P 9>=a>

where a is an arbitrary constant, are resolved with respect® to
p and q. These values make the equation

dz —pde —qdy =0
exact. For from the equations f=0, v =a, we find
0 (f, w) pa(f,‘u)+a(f,%)+qa(f,u)=<glg_ >a(fu)
o(w,p) “o(sp) 0y, q) T 0(z9) o(p, @)’

and because u (=, ¥, 2z, p, ¢) = constant is an integral of the system
of ordinary equations, the left-hand side of this equation vanishes,
so that

@-) 565

* Or with respect to other variables, with a modification in the rest of the
process, similar to that in §§ 58, 59.
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and therefore, as the Jacobian of f and u with regard to p and ¢
does not vanish *, we have

dg _dp _,

de dy 7
the necessary and sufficient condition. Effecting the necessary
quadrature of the equation

dz — pdx — qdy =0,

we have an equation giving z in terms of @, y, and two arbitrary
constants.

This mode of obtaining the integral of the original equation
by means of a single integral of the subsidiary system was first
devised by Charpit+.

The method of Jacobi, whether in its original form as developed
by himself or in the amplified form as developed by Lie and
Mayer, and (for the case of two independent variables) the method
of Charpit, aim at the construction of an integral containing a
number of arbitrary constants; and the results do not indicate
any particular suggestion of Cauchy’s existence-theorem. The
association will be made later, partly by a modified use of the
equations of the characteristics; and it will be necessary to
indicate the kinds of integrals which can be deduced from those
provided by the methods of Jacobi and of Charpit.

69. All the examples, that follow, have been chosen, so as to
give some initial indications of one investigation hitherto practi-
cally omitted by mathematicians. When an equation

S(@, 9,2, p,9)=0

is. resolved with regard to p, or is given in a resolved form, so that
1t may be written

p=9( Y 2 q)
Cauchy’s existence-theorem can be applied only if the function
g(x, y, 2z, q) is a regular function of its arguments within the

* It would vanish if w involved neither p nor g.

+ In a memoir, presented 80 June, 1784, to the Académie des Sciences, Paris;
he died soon afterwards, and the memoir was never printed : see Lacroix, Traité du
calcul différentiel et du calcul intégral, 2° éd., 1814, 6. 11, p. 548. Lacroix indicates
(ib., p. 567) that Charpit tried to extend his method to partial differential equations
of the first order and degree higher than the first, involving more than two
dependent variables.
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domains of the initial values adopted: it ceases to apply if initial
values are selected in the domains of which the function g (z, y, 2, ¢)
is regular.

In all these examples, it is possible to choose initial values
which make p infinite or indeterminate: the known method of
constructing an integral has been used so as to give indications of
the kind of integral (if any) which exists in association with such
initial conditions.

What is required for the full discussion of an equation

S @y, 2 p ) =0,
(and, @ fortiori, of an equation in more than two independent
variables), is a classification of all the non-regular forms arising
out of the resolution of the equation with regard to p or, what is
the same thing, a classification of all the non-regular forms of
g(x, y, z, ¢) in an equation

p=9® Y 2 9
Each of these would need to be considered in turn, as was done*®
for the non-regular forms of an equation

dw
dz Zf(w’ Z) 5

the following set of examples give a few of the simplest types.

Meanwhile, some indications of results can be given: the
methods of Charpit and of Jacobi are entirely independent even of
the results given by Cauchy’s theorem.

Fz. 1. Consider the equation
plax+by+cz)=1.
It is clear that Cauchy’s general theorem will not apply to this equation if,
when =0, we require z to acquire the value of a function of y regular
in the vicinity of =0 and vanishing there: the initial value of p is infinite
and the proof no longer is valid.

But an integral can be obtained by Charpit’s method. One of the
subsidiary equations is

dp _ _dg
ap+cp®  bp+cpg’
so that
dp _ _dg

a+cep  btceg’

* In Chapters 11 and v in Part 11 of this work,
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an integral of which is

bteqg

atep P

where a is an arbitrary constant. Accordingly, we combine this equation
with the original equation, and we resolve them for p and ¢: substituting
these found values in dz — pdx — gdy =0, we have

P R B +<,,,,“_a____>} d
Tav+by+tez ctee ax+by+cz &>
and therefore

C
adw+bdy +cds= <aﬁ@-¥& + a> (dw+ady).

Writing .
w=ax+ by +cz,

a simple quadrature leads to the equation
U — glog (¢c+au)=B+a (z+ay).

The value of z thus provided is an integral which contains the two arbitrary
constants a and 3. '

In order to see whether any integral z exists, which vanishes when £=0
and =0, these being values which make p infinite initially, we note that the
foregoing equation is satisfied by 2=0, =0, y=0, provided

c
==—_ loge.

Assuming this value of B, we have
4

o \~2
e’“<1+ Zu> a:ea(m+ay);

and therefore, in the vicinity of the initial values assigned, we have

a au az( +ay)
-= ~—A{x+tay
(1 +zu>e ¢ =e¢ ¢ ,

that is,
w4 ...=2c(x+ay)+...,

so that, unless ¢=0 (and this will be excluded), we have
az+by+ez=u=@+ay)} R {(x+ap)t},
where R is a regular function of its argument and does not vanish when
2=0 and y=0.
Ez. 2. In the same way it may be proved that an integral of the equation
p(ax+by +czym=1,

where m is a positive integer, is given by

um
[ i =t ata
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where a and 8 are arbitrary constants, and
u=ax4by+cz;
and that an integral, which vanishes when =0 and y=0, is given by

1 1
ax+by +cz=@+ay)1tm R {(x+ay)l+m},

where R is a regular function of its argument and does not vanish with
z and .

Ezx. 3. Tt is easy to see that the integral of the equation
(p+a'q) (ax+by+cay=1,

where o' is a constant and m is a positive integer, is of the same type as in the
preceding example: obtain the integral.

Lz. 4. Consider the equation

p(ax+by+czt+kg)=1,
where a, b, ¢, k are constants.

Proceeding from subsidiary equations as in Ex. 1, we find that they have
an integral
b+cq
a+cp
where a is an arbitrary constant.

=a,

There are two ways of continuing. We may either resolve the original

equation and the new equation for p and y, and introduce a new dependent
variable ¢, where

{(=2-qy,
d¢=pdx—ydqg:

we substitute for p and y; and, effecting the necessary quadrature, we elimi-
nate ¢ by the relation
o¢

oy~ "

and then we have

Or we may resolve the two equations for p and ¢, substitute in de=pdz+ g dy,
and effect the quadrature. The result is

1 c? 1 c 1
-3 <1 + m) log {A* —cu+ & (b—aa)} + “a log {&7 —cu+%k (b+ aa)}

-9¢
a x+
48,

A% —cu+k (b—aa)
where a and 8 are arbitrary constants, v =ax + by + ¢z, and
A=(cu+ bk — aka)?— 4ck {(b— aa) u— ca}.

It is possible (but the analysis is somewhat laborious) to deduce, from this
result when £==0, the integral of the equation in Ex. 1.
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We can make one more inference. If it were possible that the equation
could possess an integral such that when x=0, the dependent variable
acquires the value of a function of  such that z and ¢ vanish when y=:0,
then p would become infinite for the initial values #=0 and y=0: Cauchy’s
theorem no longer applies. Now we are to have

b+cq
2 gy
a+cp
therefore for such integral (if any) we have a=0 because initially p is infinite,
and then b+cg=0. But ¢ is to vanish initially, so that 5=0; and thus
g=0 always; or z is merely a function of #, vanishing with # and given by

x=a% e“z—d% (14 az).
Excluding this trivial case, it follows that the given equation has no integral
of the kind indicated, provided c¢ is different from zero.

Ez. 5. Integrate the equation
plax4by+cz+hyg)=1;

and discuss the question whether it possesses an integral which, when #=0,
acquires the value of a regular function of y that vanishes when y=0.

[An integral is given by eliminating ¢ between the two equations

1 -2
(z-qy+“—f+ 5) (b+¢q)

4

xz - 1 , ;
=I3+E—Ja—2108{1‘a“(5+09) “%h

1 1 v
———=-5log{l-aa(b+c'q) “}

aa?

k
z Y cye L
B+;c+c(b+cq)0 a c
(b+c9)¢ —aa

where a and 8 are arbitrary constants, and ¢ =c¢+£.]

Ez. 6. Obtain an integral of the equation

P
_ Y9 —3?
in the form

i7=x—B)(ay—a),
where a and 8 are arbitrary constants; and discuss the integrals of the
equation (if any) which are such that y¢ and z vanish when #=0.

Ex. 7. As another example, consider the equation

S S

S yg—37

with a view to inquiring whether it possesses an integral which, when =0,
can be a function of y that vanishes, when y=0, in an order higher than
the first, so that then ¢ may vanish when =0, y=0.

p

F. V. 11
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Forming the subsidiary equations in Charpit’s method, we find one integral
of them in a form '

pg=ad’,
where a is an arbitrary constant. Resolving this equation and the original
equation with regard to p and ¢, substituting in

dz=pdz+qdy,
and effecting the quadrature, we find
Bac (2cx - y2) — B =(a2y? — 2cz)¥ — a¥y3,

where @8 is an arbitrary constant. This equation gives an integral involving
two arbitrary constants.

If the equation is to provide an integral of the kind indicated, it is clear
that 8=0. To discuss the consequent value of z when =0, we proceed from
the equation

(a%y? — 2¢2)% = a3y3 — Bacyz.

This equation certainly gives a value of z which vanishes when y=0; two
roots are zero, and the third is
z-_—:Laz'ﬂ
80 ./ >
which is of the required type.

Accordingly, the equation possesses an infinitude of integrals (because
of the parameter a) which, when #=0, give z and ¢ as functions of y that
vanish when y=0 ; these integrals are provided by the equation

(a%y? — 2¢2) = (aPy® — Bacyz + 6ac?z)?,
where a is an arbitrary constant, that is, by the equation
8¢32% — 3a?c?y?2? — x (36a’c3yz — 12atc?y3) + 36a2ctw? =0.

It is easy to see that, though, when x=0, the integral becomes the simple
regular function for the vicinity of y=0, the integral itself is not a regular
function of # and y in the specified domains.

FEx. 8. Prove that an integral of the equation
pz=aq+zx,

where a is a constant, can be obtained by eliminating p and ¢ between the
equation itself and the equations

1 —'1 1
2 (p?— 12 +ay+B=0aa {p—i—% log <£7+1>} , g=a(p?—=1)%,

where a and 3 are arbitrary constants. Discuss the integrals in the vicinity
of #=0.
Lz. 9. Consider the equation
p (azx+by +cz)+a’x+b’y+c’é=0.
Changing the dependent variable so that

7 =z—a x—b"y,
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where a” and b” are constants, we can choose &” and b” so that the new
equation has the form

P (ax+ By +y7)+yZ =0.
Accordingly, we consider the equation in the form
p(axr+by+cz)+cz=0;
as it is homogeneous in the constants a, b, ¢, ¢/, we can imagine it multiplied

by such a constant factor as to make a+¢' =1 unless a+c¢'=0.

Firstly, if a+¢ =1, prove that an integral is given by the elimination of
p between the equations

p (ax+by+cz)+c'z2=0

z— px b , 1\ —e-1
,——-—7"16&=A3/+B+ f/p—v <p+5> dp >
pc’(;o+;>

where 4 and B are arbitrary constants.

Secondly, if a+ ¢ =0, prove that an integral is given by the elimination of

p between the equations » ’
P (ax+bg/+cz)+c’z=01

z by <

% _ Tep—
Zopt+ T~ (dy+Bye =0 |

2

where 4 and B are arbitrary constants.

Discuss these integrals in the vicinity of #=0.

11—2




CHAPTER V.

CLASSES OF INTEGRALS POSSESSED BY EQUATIONS OF THE FIRST
ORDER: GENERALISATION OF INTEGRALS.

THE customary classification of integrals of a partial differential equation
of the first order into three kinds was first made by Lagrange: see his
Fuvres Completes, t. 111, p. 572, t. 1v, pp. 65, 74. A full exposition is given
in Imschenetsky’s memoir, quoted on p. 100 : it will be found in chapter 1 of
the memoir. Other expositions are given by Goursat, Lecons sur Uintégra-
tion...premier ordre, by Mansion, Théorie des éguations...premier ordre, and
by Jordan, Cours & Analyse, t. 111.

That the theory is not complete even for the simplest case is pointed out

by Goursat, in the book just quoted, § 18. Some further exceptions are
indicated in the present chapter.

70. Before proceeding to the exposition of further methods
of integration, and partly in order to facilitate the discussion
of characteristics in particular, it is convenient to develop the
relations, to one another, of the different integrals that have been
obtained or have been proved to exist.

We have seen that, in the case of a homogeneous linear
equation of the first order, it is possible to construct an integral
which, on appropriate determination of its arbitrary elements,
comprehends any integral of the equation : also that, in the case of
a linear non-homogeneous equation of the first order, it is possible
to construct an integral which similarly comprehends any integral
that is not of the type called special. Consequently, no further
discussion 1s necessary in those cases.

But in the case of equations that are not linear, it has been
seen that there certainly are two kinds of integrals. On the one
hand, there is Cauchy’s existence-theorem according to which
an arbitrary functional element occurs in the expression of the
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integral proved to exist. On the other hand, Jacobi’s method
of integration, either in its original form or in any of its modified
forms, has led to integrals which contain arbitrary constants in
their expression. It is natural to enquire what is the relation,
if any, between integrals of such widely distinct types and, further,
whether integrals of other types exist.

VARIATION OF PARAMETERS.

71. Accordingly, beginning with a single equation which
(after the preceding explanations) may be taken as not linear,
we shall suppose it given in the form

f(mla cees T, Z: pl; AR pn) = O;
and we may imagine that it has been integrated by the Jacobian
method, with a result that z is given as a function of the variables
and of n arbitrary constants a,, ..., @, by means of an equation
(2, @, ...y X, Ay ooy @y) = 0.

The values of the derivatives are given by equations

0 0
¢m=£pm+ ¢ _0,

0%y

for m=1, ..., n; these values of p,,, together with the value of z
deduced from ¢ =0, will, when substituted in the differential
equation, make it satisfied identically. Moreover, the elimination
of the n arbitrary constants between the n + 1 equations

¢=0, ¢$,=0, ..., ¢, =0
leads to the differential equation, and to that differential equation
alone, provided that not all the Jacobians

J((¢; ()bl) A ¢n>>

Ayy vers Qp

vanish; and conversely, when there is only a single differential
equation, the Jacobians do not all vanish.

In the process of returning from the n 4+ 1 equations
¢=0, ¢, =0, ..., =0

to the differential equation, the quantities a,, ..., @, are to be
eliminated : but no regard is paid, during the operation, to their
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constant values; and the resulting differential equation will be
the same, provided the n + 1 equations have the same form, when

these quantities are made variable. We therefore make a,, ..., a,
functions of @, ..., @,, subject to this proviso. This change leaves
the equation ¢ =0 unaltered in form: in order that ¢, =0 (for
m=1, ..., n) may remain unaltered in form, it is necessary that
the equation

06 day ., 0b dm _

oa, oxy, = 0dy, Oz

should be satisfied, for each of the n values of m: and if these
equations are satisfied, then ¢ =0 (with the changed values of
@y, ..., ay) Will still give an integral of the differential equation.

Multiplying the n equations by dx, ..., dx, respectively and

adding, we find

)

idal—l- +a—
oa,

aj; da, =0,

where da,, ..., da, are the complete variations of the quantities
ay, ..., ay; and conversely this equation, when satisfied, yields
the n conditions. The coefficients of the differential elements are
functions of 2z, @, ..., @, @, ..., a, in general: but z is given by
¢ =0 in terms of the other quantities; and, as a,, ..., a, are
(unknown) functions of @, ..., x,, so the latter may be regarded in
the most general case as functions of a,, ..., a,: that is, the
coefficients may, in the most general case, be regarded as functions
of a;,...,a,. Thus we have a Pfaffian equation: by the general
theory of Pfaffian equations*, the integral equivalent consists of one
equation or of several equations connecting the quantities a,, ..., a,.

In the argument, one exceptional case has been omitted: it
may be that the Pfaffian equation is evanescent, on account of
vanishing coefficients: we then have

9% _o 9% _o

aal s eeey aan—

concurrently with ¢ = 0.

After noting this exceptional case, we return to the integral
equivalent of the Pfaffian equation. Let it consist of u equations

Gr(ar, oo, @) =0, ..., gu(ay, ..., ay) =0,

* See Part 1 of this work, passim.
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and of these solely: then the only relations among the differential
elements are

dg, =0, ..., dg.=0,

and the Pfaffian equation must be satisfied in virtue of these.
Thus p quantities A, ..., A, must exist such that

0 0
%dal—i- +£Ldan=xldgl+... + Adgp;

and therefore
0 _\ 9%, 0w
T A T
for the n values of m. These n equations, together with

¢=0, =0, ..., 9.=0,
make up n+ u + 1 equations, involving a,, ..., @,, Ay, ..., Ay
eliminating the quantities ¢ and A, we have a single equation
as the result, and it expresses z in terms of @y, ..., #,. The value
of z determined by this final equation is an integral of the original
differential equation: the functional forms g, ..., gu are involved
in 1ts expression.

72. Tt might appear as if there were integrals of a character
intermediate between those of the two kinds considered. Thus we
might have @4, ..., @, as constants, so that the differential
relation would then be

o da, + +8_¢ da,, = 0.
da, 0

If the integral equivalent of this relation consists of o equations in
the form

Gy, ooy @) =0, ..., o, o.n, Q) =0,

and of these only, then the same argument as before leads to
equations

op _  Op 0gs

aai =P aai+ + pe aai’
fort=1, ..., m. These m equations, together with

¢=O7 9130; ---;ga=0:

are m + o + 1 equations involving z, @, ..., @y, Gy, «ov s Qan, P1y ++vs Pot
eliminating these m quantities a, ..., a, and the o quantities p,
we have a single equation between z, 4, ..., #,. The value of z
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thus given is an integral of the original equation. The functional
forms g¢;, ..., g, are involved in its expression; and the arbitrary
constants i, ..., @y also occur. The latter can be regarded as
given by n — m relations

Py (Qirs ooes Q) =0, oo, b (g, «oy @) =0,
involving the » — m constants: they are such that the equations
dh, =0, ..., dhp_p, =0

are satisfied identically. Now it is known from the theory of
Pfaffian equations that

oc+n—mz=pu,

so that the total number of equations among the quantities a,, ...,
an is greater than before: their range of value is therefore more
restricted than in the preceding case. Accordingly, we can regard
the present mode of satisfying the differential relation as a
specialisation of the preceding mode or as a special instance of
the preceding mode involving a greater number of relations some
of which are of restricted forms.

In this argument, as in the preceding argument in § 71, one
exceptional case is omitted: it may be that the reduced Pfaffian
equation is evanescent, on account of vanishing coefficients: we
then have

0b _o, .., 2% o,
oa,

concurrently with ¢ =0.

It thus appears that, while the completed process leads in
every case to a single equation providing an integral, there are
intrinsic differences according to the circumstances of the cases.
It is clear that distinctions will arise according to the number of
relations postulated among the quantities a,, ..., @ ; it is customary
to regard a class of integrals as being defined according to the
number of relations so postulated. When u relations of the
indicated character occur, the corresponding class of integrals is
frequently called the uth class: and if

0< pu<mn,

the integrals of all the classes may be regarded as falling within
the category of what will presently be called general integrals.
Thus there will be n—1 classes of general integrals.
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The extreme cases must also be taken into consideration. It is
possible that w=mn: there are then n functional relations con-
necting the n quantities a,, ..., @x, independent of one another;
all these quantities are constants and, when the relations are
quite arbitrary, the constants are arbitrary: the integral then
provided is what will be called the complete integral. It is
possible that w=0: if the equations can be satisfied, and an
integral is provided, we have what will be called the singular
integral.

Of the general integrals, the most comprehensive is that in
which only a single ‘functional form occurs, say

=Y (a, ..., An),

and {r can be taken as the most general and arbitrary function of
its arguments. The equations which determine the integral are

d=0, a;=+vY(a ..., ay),

0, = 0Q1 Oy
for m =2, ...,n; and the integral itself is given by the elimination
of ay, ..., a, among these n + 1 equations.

That it is the most extensive class of general integral can
easily be seen by the following argument, whereby it is proved to
include all the other classes. When wu relations are postulated
among the m quantities a@,, ..., @, in the form

gr (A1, oons An) =0,

for #=1, ..., u, the integral is given by these equations, together
with
¢ =0,
b _ 991 _ag_,.;_
0, =M Bam+ +)‘“aam’
for m=1, ..., n. Let
0(ay, ..oy W) =Mgh + ... +AuGu,

so that the relation € =0 is certainly satisfied for the integral
in question; moreover, the equations

o4 _ 06

0ty  OQy,
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are certainly satisfied for this integral. Now let § =0 be resolved
for a;, so as to express it in terms of a,, ..., a, in a form

ar=x (A, ..., ay):

20 00 oy _

O Oy O

we have

Hence, for the integral in question, the equations
op , 0 Ix _
2, Ba, 30,

are satisfied : and conversely, when these are satisfied, the original
set of equations also is satisfied. Now in the case when there is
only a single relation

ar =Y (A, «.., Ap),

{r is the most general function possible: so that the relation
ay =% (A, -, Ay)
is included as a special case, and consequently the equations

b | 0 ox _

0a,, = 0a, 0,

are a special case of the equations
op 0 oy _ .
00, o000, O

that is, the general integral in question is a special case of the
general integral, which arises when there is only a single relation
between the quantities a,, ..., @,. The latter general integral is
accordingly the most comprehensive.

In passing, we may note that the general integral includes the

exceptional case noted, in which @41, ..., a, are arbitrary con-
stants and the equations

96 _ 9% _o

oa, 7 Do,

are satisfied. We can represent it by relations

A= (W, .., Am),
for u=m +1, ..., n, and by restricting the functions . to be con-
stants ; for then
W _ o

'aa@-

>

72.] CLASSES OF INTEGRALS 171

for =1, ..., m, and the relation

W 50 MW _,

oa; . Oa, da;

simply becomes

o
a(l,,; - O’
which (for 7 =1, ..., m) are the equations for the exceptional case.

CLASSES OF INTEGRALS.

73. Three kinds of integrals may thus arise. One of them is
given by an equation containing n arbitrary constants; it is called
the complete integral. Another of them is given by equations that
involve a functional form or several functional forms, and in the
most general type these forms are arbitrary; these integrals are
called general integrals and often, when there is only a single
functional form so that the widest range of variation is provided,
the integral is called the general integral. And, lastly, the equations

o op _
¢ =0, 567,:0’ 0 5, =0
may be possible and be consistent with one another; if the result
of eliminating a,, ..., a, among them provides a single equation
involving no arbitrary element, and if the equation determines an
integral ¥, the integral thus furnished is called the stngular integral.

It must however be noticed that an integral, containing the
appropriate number of arbitrary constants, is not necessarily the
complete integral, any more than one which contains no arbitrary
element is necessarily a singular integral. On the one hand, since
an arbitrary function can be regarded as containing any number
of arbitrary constants, a general integral may be simply specialised
so as to contain the appropriate number of arbitrary constants: it
will not thereby necessarily pecome a complete integral, for it may

* The reason for this limitation will appear subsequently : meanwhile, it may

be sufficient to point out that, while the equations %:O, ey 57? =0 are consistent
1 n

with the existence of an integral, it has not been proved (and, indeed, cannot be
proved) that their significance is only co-extensive with that existence. KEven
in the case of ordinary equations of the first order, the corresponding process
frequently gives rise to relations that do not provide integrals of the equations in
question : and the same holds, to a wider extent, in partial equations.
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be only a special case of the general integral. Omn the other hand,
by assigning particular values to the arbitrary constants in a com-
plete integral, the latter becomes free from all arbitrary elements:
it will not thereby become a singular integral (even if such an
integral is possessed by the equation), for it is only a special case
of the complete integral. It is therefore important to devise tests
which shall shew to what category any given integral should, if
possible, be assigned: and this necessity raises a further question
as to how comprehensive is the retained aggregate of integrals.

SPECIAL INTEGRALS.

74. Suppose, then, that we have an integral of the differential
equation
f(xl, RS 'xn’ Z: }71; L] Z)n)=0
given by the equation
O(xy, .o, @, 2)=0;
and let the values of z thus determined be denoted by & Also,
let a complete integral be given in the form

G @y, ooy Ty 2, Oy eeny Q) =0
and let the value of z thus determined be denoted by Z. We
have to consider whether it is possible to associate with g=0
equations or relations which will change Z into &; if this should

be possible, then the character of the added equations or relations
will indicate the character of the integral &.

In order to obtain the tests that may be both sufficient and
necessary, assume that a,, ..., @, are changed into functions of
&, ..., @, such that Z is still an integral of the differential
equation and such that, if possible, it becomes the integral {. As
the two integrals are mow hypothetically the same functions of
z,, ..., @p, the derivatives of these functions with regard to the
variables are respectively the same. For the integral ¢, they are
given by

00 00

0%y L™ 0z 0,
for m=1, ..., n, when z is replaced by ¢ in these equations; and
for the integral Z, they are given by
o9 og 0g 0Oa, g 0an _
Sam TP =0 Gy G T B, B
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for m=1, ..., n, when z is replaced by Z in these equations.
Consequently, we must have
29 00 _09g 06 _
0x,, 02 0z 0ty
dg Oy 09 Oan _ 0
0y 0%y, —~  On 02p v
for m =1, ..., n, when z is replaced by the supposed common value
of & and Z.
Now when this common value is substituted, the n equations
09 00 99 29 _
0%y 02 02 Oy
are a set of equations involving the quantities a,, ..., a,. If they

determine values for these quantities, we can proceed to the
identification of the integral; but they do not necessarily deter-
mine such values, and then we cannot proceed.

Suppose that such values are determined. If they are con-
stants, then ¢ is a more or less particular form of the complete
integral : all the equations

09 oa, @ o,
oa, ox,,  Oayn Oy,

=0

are satisfied. If values are found, so that some at least have
the form of functions of #,, ..., «,, there may be some functional

relation or several functional relations among them : let these be
denoted by

(@, oon, @)=0, .o, gulay, ..., ap)=0.
Then the other = equations are satisfied by means of the
equations

0g 0 G
awm_hl aam+ e x“m ’
for m =1, ..., n, with appropriately determinate values of A, ..., A,.

All the conditions then are satisfied; and & then is a more or less
particular form of the general integral. If on the other hand
the variable values found (say m in number) are such that no
functional relation subsists among these m quantities, the =
remaining equations can only be satisfied by having

9 _
a(,(n,;_ ?
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for each of the m quantities a; found to be variable; the integral ¢
would then be a degenerate form of the general integral of the
differential equation. Lastly, if all the quantities a are variable
and if there is no functional relation among them, the n remaining
equations can only be satisfied by having

% _ % _¢-

56171—0, ...,aTn——O,
the integral ¢ would then be a singular integral of the differential
equation.

It thus appears that, subject to the determination of the
quantities a, ..., a, from the equations

og 00 og 89_0

0,, 02 0z 0@y,

the integral ¢ is comprehended within the aggregate of the
complete integral, the general integral, and the singular integral.
This aggregate is widely comprehensive: it cannot be declared to
be completely comprehensive, because occasions arise in which the
equations refuse to provide a consistent set of values of «,, ..., a,
needed to secure inclusion. The whole of this theory is formal:
it does not take account of the peculiarities of equations: and
examples will be indicated to which it fails to apply.

Such integrals, as do occur but are not included in any of the
three classes, will be called special.

Ez. 1. It is easy to see that the equation

P1&1+ . P Xy =2
has an integral

Z=a1x1+... +anxn,
which is a complete integral. To obtain a general integral, the most general
possible, we take only a single relation among the quantities oy, ..., a, in the

form
a1=f(a2, cevy an);

where fis an arbitrary function of its arguments. The associated equations
are

9
x8+ml ’a‘afi:O,
8
for s=2, ..., n; these give
&g Zn
Ar=Zr 2 )
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where the character of g,. is dominated by the arbitrary form of /. Inserting
these values of @, we have

z Lo Z,

F_op(22 . in

Z1 <x1 T )

where F is an arbitrary function.

This is the integral which would be obtained by the process of § 30;
accordingly, the most comprehensive integral given by that process is the
general integral.

The equations, which would give the singular integral if it existed, are
Z=ay X1+ .. A2y,
21=0, ..., £,=0:
clearly there is no singular integral of the equation, though z=0 is a

particular case of the complete integral.

Ex. 2. The equation
22\ 2

Y
has been discussed (§ 34, Ex. 3); in particular, it was shewn that the integral

xp+2yq=2 <z—

xe

=

Yy

was not derivable from the general integral there obtained. The equation
does not possess a singular integral.

2
Is the integral z:——f/— comprehended in the complete integral ?

o

FEz. 3. At the end of § 59, it was shewn that the equation
‘ 3pr+qy +q¢2?=0
possesses two complete integrals
s=a—3bx+brty,
2=A+3%y% (22+2Bwx)" .

The general integral deduced from the first of these complete integrals is
obtained by associating with it the equations

a=¢ ), ¢ (b)—ab +a"y=0,
where ¢ is arbitrary: the general integral deduced from the second of
them is obtained by associating with it the equations
A=y (B), ¥ (B)=}yte(a*+2B2)7,
where {» is arbitrary. Clearly there is no singular integral.

To obtain the relations to one another of the two complete integrals, we
adopt the method in the text. When we equate the different respective
derivatives, we have the relations

— 300~ 4br "y =3y (224 2B2) " ¥ (24 B),
b~ ¥=y¥ (22 +2Bz) " ¥,
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these relations are consistent with one another, in virtue of the single relation
b =y"l=“x% (2?4 2Bx)~ ,
When we equate the two integrals themselves, we find
a=A —3Bxy® (a?+2Bz)" 2.
The values of @ and b are thus variable quantities ; and it is easy to see that
they are connected by the relation
a— A= —3Bb3.

In virtue of this relation, and of the values of a and b, the other necessary

relations
0z da , Oz 0b

oa 9 T b ow
% 2a 220 _
oa 0y ' 0b 0y

0,

are satisfied.

Hence each of the two complete integrals is a particular case of the general
integral deduced from the other : the generalising relation is

a—A+3%Bb¥=0.
Lx. 4. The equation
pg=4zy
has ;
z= a? +ay?+b
for a complete integral ; it has no singular integral : and its general integral
is given by
x? x2 ,
Z=E+“.7/2+ba 0= - a2 +y2+f" (@), b=f(a).
Another integral is given by
z=2xy +b.

To investigate its relation to the complete integral, we proceed as before..
Equating the derivatives, we find

2 3
7'2':23/, 2ay =2z,

giving -

with this value, the two quantities z are the same.

The other equations

0g da , 0g 0b dg 0a , 0g 9b
dadz 005" Bady by O
are satisfied by
99 i
5,0 b=arbitrary constant.
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The new integral is a special case of the general integral; for we have
2 2
e="Tagr+b, b=f(a@), —L+pr4f (@)=0,
as the equations of the general integral; and they lead to the new integral,
when f(a) is regarded as a pure constant.
Ezx. 5. Classify the integral z=3x ot w5¥ + b of the equation

Pip2ps=1.
Ez. 6. Consider the equation
{1+G-2-yltp+g=2,
which has already (§ 34, Ex. 4) been discussed from the point of view of the
general integral. The equation is clearly satisfied by
z=x+y:
the question is, does this integral fall within the three classes of integrals
considered ?
Proceeding to integrate by Charpit’s method, we find
as one integral of the subsidiary equations. When this relation is com-
bined with the original equation, we have values of p and ¢: these are

substituted in
dz=pdx+qdy,

and the quadrature is effected: the result is
s+(@=1)y+2 (a+1) (z—a~y)=b,

where a and b are arbitrary. Writing
u=z+(@-1)y+2(@+1)(z—v-y)

the singular integral (if any) is given by

du=8)_, du-b)_
o ’ ob
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