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PREFACK.

THE two volumes, now published as Part II, are my
second contribution towards the fulfilment of an old
promise. They deal almost entirely with the functional
character of the solutions of ordinary differential equa-
tions. At one time, I hoped to discuss the whole of this
theory in the present Part ; the extent of the subject has

prevented me from realising this hope. Accordingly, I

have reserved the theory of linear differential equations

for another Part.

The revision of the proof—sHeets has been made
lighter for me by the assistance of three friends.
Mr. E. T. Whittaker, M.A., Fellow of Trinity College,
Cambridge, has read both the volumes. Prof. W.
Burnside, M.A., F.R.S., Honorary Fellow of Pembroke
College, Cambridge, read a large part of the first volume.
Mr. R. W. H. T. Hudson, B.A., Scholar of St. John’s

College, Cambridge, has read the whole of the second

vi PREFACE

volume. T wish to make a grateful acknowledgement of

the help giiren me by these gentlemen.

I wish also to express my thanks to the Staff of the
University Press, for the care and trouble they have
taken, and the uniform consideration they have shewn

me, during the progress of the printing.

A. R. FORSYTH.

TriNiTY COoLLEGE, CAMBRIDGE,
16 December, 1899.
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CHAPTER 1.
INTRODUCTORY *.

1. THE theory of the solution of differential equations has
been developed along several distinct lines of research. One of
the many problems of the subject is the determination of those
classes of differential equations which possess solutions expressible
in terms of the functions already known in analysis. The most
notable example of such a class is that of linear differential
equations with constant coefficients: these can be solved by
means of the exponential function. Another problem is the
determination of those classes of differential equations which can
be integrated by quadratures, that is, can be transformed so as to
depend on the integration of equations of the form

dy

dz
where Z is a function of z. The solution of such equations
involves only those transcendents which occur in the Integral
Calculus. Examples of this kind are equations of the first order
and the first degree in which the variables can be separated, and
equations of the first order from which one of the variables is
explicitly absent.

=7,

Equations of such classes were at one time the chief object of
study in the theory of differential equations. They are somewhat
limited in character and range. Many of the simpler results which

* In regard to the contents of this chapter, the following works may be
consulted :—
Jordan, Cours d’Analyse, t. 111, ch. 1;
Konigsberger, Lehrbuch der Theorie der Differentialgleichungen, Kap. 1,
Abschn. 1, 1I. '

4% F. 1 1




2 INITIAL [1.

have been obtained are given in introductory text-books on
differential equations and therefore will not be developed here.

In the modern general theory, the problem of solution is
considered from a different standpoint. It is proved that, within
a suitably chosen region, a converging series of powers of the
independent variable can be found which satisfies the differential
equation. When, as is often the case, the function thus obtained
is not included among the functions previously known in analysis,
it is regarded as defined by the equation, and its properties are
deduced as far as possible from the characteristic properties of the
equation. Thus it may be possible to determine from the equation
whether its integral is a uniform function or a multiform function ;
what are the places and the nature of its zeros, its singularities, its
branch-points: and so on. In this way, new classes of functions
are introduced to analysis, and the classes of differential equations,
which can be solved by means of them, can be constructed.

It is to the consideration of this aspect of the theory of
ordinary differential equations that nearly the whole of the
present Part of this work is devoted. It will be seen that many
of the investigations have regard to existence-theorems and are
concerned with the character of the integral function in the
vicinity of singularities. When all the singularities are known
and the general character of the integral function in the im-
mediate vicinity is determined, the further explicit determination
of the integral is frequently taken for granted. The reason of
this omission is that, as the respective investigations shew
the kind of analytical expression which the integral acquires
in the domain of any point, the actual substitution of an
appropriately constructed expression and the determination of
the coefficients, so as to make the equation identically satisfied, are
matters of direct algebra. Such a process may be laborious but
is not intrinsically difficult, and therefore only a few instances of
it are carried through to their end; in several cases, it is omitted
because its details are sufficiently obvious.

Moreover, the investigations will be restricted mainly to the
analytical character of the solution of the equation. Some
incidental illustrations may be given; but theories, that are
concerned with descriptive and other properties of the equations
considered, will be omitted.

2.] ‘ EXPLANATIONS 3

2. Simple considerations shew how little can be regarded at
the outset as established knowledge and indicate that practically
all the accepted propositions of a general character require to be
reviewed so that their meaning and range may be clear and
determinate. For instance, the complete solution of an ordinary
equation of the first order is known to contain an arbitrary
constant; and it is customary to declare that, in order to satisfy

‘the conditions of a special problem associated with the equation,

the value of the constant can be determined by any assigned
relation. On this basis, a solution of the equation

dy _ _ ¥

dz =
might be required that would make y vanish when x vanishes.
The complete solution is

% = A +log z,
where 4 is left arbitrary by the equation ; the datum is insufficient
to determine A in the absence of information as t6 the mode in
which « and y vanish. A precise solution cannot in this case be
obtained ; and a question is suggested as to possible limitations
on data that serve to determine solutions. Further, the difficulty
indicated has arisen after the general solution of the equation has
been obtained ; at least as grave a doubt must occur in the case
of equations of which an explicit solution cannot be written down.
In consequence, it is mnecessary to consider the fundamental
question as to whether an integral exists; when the existence
is established, some investigation must obtain the conditions by
which it is limited and must deduce the characteristics of the
function in the vicinity of ordinary and of critical values within
and upon the boundary of its region of existence.
The existence-theorem for a system of equations

%Ziz’f=¢i(wl,...,w,,,z), G=1,2,...,n),
requires :
(i) the establishment of integrals in the vicinity of values for
which the functions ¢; are regular®: the range of existence
of the integrals must also be considered :

* The term regular is applied, in accordance with Weierstrass’s definition, Ges.
Werke, t. 11, p. 154, to a uniform function, (or to a uniform branch of a function),

1—-2




4 SYSTEMS OF EQUATIONS [2.

(i1) a proof of the uniqueness within the range of existence;
this gives rise to various questions connected with the
appropriate determining conditions, and also leads to a
discussion of some classes of singularities:

(iii) (connected partially with (ii) in fact, though substantially
a quite independent investigation), a discussion of integrals
in the vicinity of values for which the functions ¢; cease to
be regular.

There is another class of investigations, distinct from those
just indicated : they are suggested by the corresponding class of
questions that arise in connection with ordinary linear equations.
When the path of the variable between z and some initial value z,
is deformed in the plane, how is a particular set of simultaneous
solutions of the system affected ? Or when the variable returns to
the initial point z, after describing any circuit in the plane, what
is the effect on the composite integral ?

The various investigations thus suggested will, as far as
possible, be taken into successive account: the last class is,
however, discussed only briefly, for reasons adduced later.

3. All the variables that occur are supposed to be complex
quantities with initially unlimited variation. As is usual, a
separate region is associated with each of them so that the
variation can be represented geometrically; the region of any
variable is generally a plane and, being so, is referred to as the
plane of the variable.

In most of the succeeding investigations, there is only a single
independent variable. The system of equations determining the
dependent variables is regarded as being constituted of simul-
taneous equations, which are independent of one another in the
sense that no one of them can be derived from the others by any
combination of algebraical and analytical processes. The number
of equations in such a system is the same as the number of
dependent variables. The dependent variables are generally
denoted by u, v, w,..., the independent variable by z.

in a region of the variables at every point of which it can be represented in the form
-of a converging power-series: it is finite and continuous for all values of the
variables included in such a region.

3.] OF THE FIRST ORDER 5
The equations may contain differential coefficients of any

orders; but a transformation can be effected after which the
only differential coefficients that occur are of the first order, it
being sufficient for this purpose to associate appropriate equations
of the type

dw dw,

Do =W gy = W

with the system, which in its changed form will still be composed
of as many equations as there are dependent variables. All the
equations discussed will be algebraical in each of the derivatives
of the dependent variables, and they will usually be algebraical
also in these variables themselves, any deviation being indicated
when it is of importance; but no such limitation as to functional
occurrence is imposed as regards the occurrence of the independent
variable.

It may happen that some equations of the system are free
from derivatives: or it may be possible to construct such an
equation from the system without integration or any equivalent
process. Let such an equation be

g, v, w,...,2)=0,
so that
ogdu ogdv 0Og dw

0g aw a , °9 Bg_o
oudz ' ovdz ' owdz -

4+ ...+ 2z

By means of the latter, some one of the derivatives can be
eliminated from all the equations of the system; by means of
g =0, the corresponding variable can be eliminated from each of
the modified equations in turn. In this form, the number of
equations is greater by unity than the number of dependent
variables, so that one equation is satisfied in virtue of the
remainder; this equation is therefore superfluous and should be
removed. The original system is thus replaced by another,
containing one dependent variable less and one equation less;
the solution of the original system is compounded of the solution
of the new system and of the equation g=0. It would thus
be sufficient to obtain the solution of the modified system; all
the further processes necessary to solve the original system are
algebraical in character.




6 IRREDUCIBLE EQUATIONS [3.

For example, in the system
P1%+P2%+P3%=P4\!
Q2P %oq

PRy Ry R ) {
the coefficients P, @, R, supposed to be functions of the variables, may be

such that the determinant (P,@,R,), say A, vanishes identically. In order
that the derivatives of %, », w, may not have infinite values only, it is
necessary that the equations
(Po@sRy) =0, (P1@3R,)=0, (P,@QR,)=0

be satisfied. They cannot all be identities, for the original system would
then contain only two independent equations; properties of determinants
shew that, as A vanishes identically, they are satisfied in virtue of a single
new equation, say S=0. This equation .S=0 would be used to transform the
system into one involving only two dependent variables.

Systems of equations which can be transformed so as to yield,
merely by processes of algebraical elimination, one or more equa-
tions free from derivatives, are called reducible ; systems which do
not admit of such a transformation are called irreducible. The
process of modifying a reducible system, so that ultimately an
irreducible system in a smaller number of variables shall remain,
has been indicated; the properties of reducible systems and the
tests of reducibility must be sought elsewhere. For the present
purpose, it will be assumed that all the systems of equations
under consideration are irreducible; and manifestly there is no
loss of generality in assuming that each equation in a system is
rationally irresoluble. 4

CONSTRUCTION AND PREPARATION OF NORMAL FORMS.

4. Before undertaking the discussion of the integral equivalent
of a system of equations, it is desirable to select some typical
form for the equations as one in which any given system can be
expressed.

When a' system is composed of only a single equation and
when therefore only one dependent variable is involved, it is of
the form

4.] TYPICAL FORMS 7

where (after preceding explanations) f is rational and integral
in dw/dz, is usually rational as regards w, and is unlimited as
regards z.

When a system is composed of two equations and when
therefore two dependent variables are involved, it will initially
in the most general case have the form

du dv du dv
f(dz dz “”z) 0 FAFA
where both f and g are rational and integral in du/dz and in
dv/dz; so that the two equations may be regarded temporarily
as algebraical equations expressing dw/dz and dv/dz in terms of
u, v, z. To select a typical form of reference, the simultaneous
roots of the two equations are to be found; and, for this purpose,
Sylvester’s dialytic process of elimination can be used. If f be
of degree m, and g of degree m, in du/dz, then m, +m, equations

are constructed, being in fact

n/
(&) 9=0,

oy

for n=0,1,..., my—1 and n' =0, 1,..., m; —1. -When all the
my +my,—1 powers of du/dz are eliminated, the result is an

equation
dv
F(C—lg, u, v, z)=0

U, v, z) =0,

which 1is rational and integral in dv/dz; and any m;+ m,—1 of

the equations*, solved linearly for du/dz, lead to an equation of the

form
du dv
% =G (d , U, v, Z) B

where (F is algebraical and generally fractionalt in EZ Moreover,

* This is-true in a case of complete generality ; but nugatory forms may arise
for particular cases. A full discussion of alternatives would require much of the
algebra associated with the discussion of the intersections of algebraical plane curves.

+ It can easily be made integral as follows. Let V" denote dv/dz and suppose
that the fractional form of G is

P (V7 u, v, 2)
q(V,u, v, 2)’°
so that for any root, say V;, of F=0, we have

du_p (Vi u, v, 2)
dz Tq (Vi u, v, 2)°
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dz dz

is a root of a rational function in Zl% when not the first power of (—f{—;

but some higher power is directly deduced from the m, 4+ m, —1
equations. The original system is thus equivalent to

F<g§,u,v,z>=0, %=G(Z§ uvz)

which can be taken as a typical form for a system determining
two dependent variables.

@G is rational in dv when the first power of du can be deduced ; it

When a system is composed of three equations and when

therefore three dependent variables are involved, it will initially
in the most general case have the form

du dv dw \
f(—&;)a;;a_é:u’;v:uhz/_o)

duodo dw L

(Ez’dz’ dzxu; v, w, z|=0,
h(c:l: Zz iliw,u v, W, z> 0,

where f, g, and A are rational and integral in each of the three
derivatives. To obtain the modified form for this system, the
process of dialytic elimination for several simultaneous equations
is used*: it is similar in kind to the modification in the preceding
case, but the details are more complicated. The result is that an
equation of the form

F(@,u,'v,fw,z>=0
dz

Let the other roots of F=0 be V,, V,,...; then

du p(Vl, u, v, 2y ¢ (Vy, u, v,2) g (Vy, u, v, 2) ...

Az~ q (Vi) %, ,2) ¢ (Vay ®, 0, 2) 4 Vg, W U, 2) ...
The denominator is a symmetrie funetion of V7, V,, V5, ... and therefore, by means
of F=0, can be made a function of u, v, z; the numerator is a symmetric function
of Vy, Vg, ... which, by means of the same equation, can be made a function of

Vi, 4, v, z which is integral in 7;; hence the new form of % in terms of ‘—2—1; is

integral and no longer fractional.  Moreover, by means of F=0, its degree in % can
be made lower than that of =0,

* Salmon’s Higher Algebra, 3rd edn., §§ 91—94; Faa de Bruno, Théorie générale
de Vélimination, 3™¢ partie, chap. 11, § iv; Cayley, Coll. Math. Papers, vol. 1,
pp. 370—374.

4.] SYSTEMS OF EQUATIONS 9

subsists, obtained as the eliminant of a number of equations
linearly involving powers of du/dz, dv/dz and their combinations ;
and when all but one of these equations are treated simultaneously
as giving the powers and products of du/dz and dv/dz, they
generally lead to equations of the form

ili—lzb:G(idg,u, v, w, z>,

——H< u'vwz)

where G and H are algebraical and fractional* in d—w The

dz

two latter, with # =0, can be taken as a typical form for a
system determining three dependent variables.

When a system is composed of n equations and when therefore
n dependent variables are involved, it will initially in the most
general case have the form

7 (d_u_l duy - dun
dz’ dz’" "7 dz’
for s=1, 2,..., n. The application of a similar dialytic process

leads to the typical form for the system, as constituted by the
equations

Uy, Uy eee 5 Un, z>=0

Fn ((Zu’zn Uy, u2: ces s Up, Z) = O’

du du,
;E—G(d ul,ue,...,un,z),

for s=1,2,..., n—1; the equation F, =0 is rational and integral
in du,/dz, and all the expressions+ @, are algebraical and generally
fractional (which can be made integral) in du,/dz.

A very special example of such a system occurs in the case of

* Both G and H can be made integral in %3-: by the same process as in the

preceding instance,

1+ It may be remarked that these expressions are usually rational; they cease to
be rational only when the algebraical solution of the simultaneous equations used
in the dialytic process leads to a nugatory result for du,/dz, and then some finite
integral power of the expression (G, is rational. The same remark applies to the
expression @ in the system with two variables, and to the expressions G, H in the
system with three variables.
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the ordinary linear differential equation of order » in a single
variable. When it is

d™y dnly d
dw”+P1dxn"1 ...+.Pn~1(_i‘%~+.Pny=0,
the equivalent system of the preceding type is
d d Ay
E—g_yly E:%l:yz;-'-’%?_yn—h
d?/n—-l

~as T Piypna+ ...+ Pn_l:gl + P,y =0.

In the transformation of the system involving n variables, there is no
special reason for retaining du,/dz as a derivative of reference in the typical
form; any other of the derivatives might similarly have been retained. If
each be retained in turn, there would be an equation

F, (du", Ugyoeey Uny z>=0,

r=1,...,7; these n equations would be distributed through the » reduced
typlcal systems

The aggregate of these n equations #,.=0 is sometimes regarded as the
normal form for the original system. It undoubtedly includes the original
system ; but it includes more. For a simultaneous solution of the aggregate
would be given by combining any root of F;=0, with any root of #,=0, with
any root of F,=0, and so on; but only a limited number of such combinations
would satisfy the original system®*. The aggregate therefore cannot be
regarded as a proper equivalent of an original system in which each equation
involves all the derivatives.

It has been assumed that, in the original system of equations,
all the derivatives occur in each equation or at least so inany
occur as to make the purely algebraical transformation possible.
But sets of equations, that are less general, may be propounded.
For example, in the system

S (z u, v, W, gu) 0,

0,

dv dw) ~0,

g(Z,u; v, W, JE: 72'

h (z, u, v, dv dw)

W qz dz

* An analogous case would arise in finding the coordinates of the intersections
of two curves, if they were determined from the x-eliminant and the y-eliminant
alone,
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the transformation, which can only partially be effected, leads to
f(z, U, v, W, g—:)=0
G(z, u, v, W, %>=O

%—H(z, u, v, W, %)

~

In the system
‘ _ du,
f?“('z; Uy eeey Up, %) =’0;

given as an original system, the transformation cannot be effected
at all.

5. A somewhat different form of reference is selected as
typical for the last class of equations; it can be constructed as
follows.

Let U, V, W,... denote du/dz, dv/dz, dw/dz,...; and in the
first place let the system to be considered be
S uv,w,..., 0)=0
gz, u,v, w,..., V)=0
h(z, w, v, w,..., W)=0

---------------------

where f is of degree [ in U and has f,U? for the term involving
the highest power of U when the coefficients of all the powers of

. U are made integral functions; m and g,V™ are corresponding

quantities for the second equation, n and A, W™ for the third, and
so on. Let IV denote the product lmn....

Denote the I roots of the first equation by U, ..., U;; the
m roots of the second equation by Vi, ..., V,; and so on. If

t denote

AT +uV 4+ oW+,

where A, u, v, ... are arbitrary constants, then, on substitution of
the possible roots of the equations, the quantity ¢ assumes values
lpgr.. TEpPresenting

AU+ puVe+v W, + ...,
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which are N in number; and the equation which has these values
tpqr.. for its roots is
y N N
F@)y=/foit gomhe™ ... TI  (t—tper.)=0.
D49, 7, ...
The coefficients of the powers of ¢ are symmetric functions of the
various combinations of the roots of the equations f=0, g=0,
h=0, ...; when they are expressed in terms of the coefficients in
these equations, all of them are rational integral functions of
2, u, v, W, ..., and the coefficient of t¥ is independent of A, g, v, ....
Thus F (¢) has the form
F(t)y=0,t" 4+ 0,t7 1+ ... + Oy,

where all the coefficients are rational integral functions of
z, U, v, W, ...; all of them except 6, involve the arbitrary constants

A, M, v, ..., being algebraical and integral in these constants; and
. the roots of F (t) are the IV values t,,. . Now

oF(t) ¥ ¥ X 1
__.(__)=f:)lgomh0” II (t"‘tpqr...) p r_+ 2
ot by P g7 b bpgr.
and therefore
I:ﬁ»a—t(_)] =214y =ﬁ l gomho e s qg', (tp’Q’r’..-- - tpq"m)'
Also
oF()_ 5 ¥ ¥ — Uy
o g0’ ho't - s qg‘, - tpqr'") P, q.zr, m ’
and therefore
oF (1) N N N
[ ax( ]t=tplqlr/... - p:f;) Zgom}bon h D, }:‘I’:", (tp’q’r’... - tpqr...)

. [F®
T Up’ [ at ]t=tplq’r’... ’

provided the ¢-discriminant of F(¢) with regard to ¢t does not
vanish; and this condition is generally satisfied because the
constants A, u, v, ... are arbitrary. In the same way, it can be

deduced blla:b
[ ( )] = , ( ) =
af" t=tprgtri... I_. Et ]t tpigler... ’

oF (t) . oF (t)
[ aV ]t=tp/q/,-/..._ WT’ l: ot Jt=t;ﬂqlrh.,
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and so on; and it should be noticed that the quantities U, Vy,
W, ... are those which lead to the value ¢4, of ¢ It therefore
follows that the original system can be replaced by the system

du _ B\, 2z, u,v, w,...)

dz

0
a—tF(t, 2, U, v, W, ...)

dv _ F,(tz,u,9w,...)

dz 0 ,,, ’
(%F(t, Z, U, YV, W, ...)

where ¢ is determined by the equation
F, 2z uv,w,..)=0,

and the functions F,, F,, F,,..., being respectively —0F/on,
—0F[ou, —0F[ov, ..., are algebraical functions of ¢ of degree one
less than F. All the possible systems of values of du/dz, dv/dz,
dw/dz, ... are obtained by taking all the values of ¢ in turn as the
roots of F'=0.

No substantial difference arises according as #'=0 is a reducible equation

~ or an irreducible equation ; for, in the former case, it would reduce as in the

form
_ F=G.H,
where @ and H are rational integral algebraical functions of # and it is easy
to see that for the roots of G'=0 the system would be composed of equations
such as
du _ —0G/oA G—0 -
&= =0
= G
ot
while for the roots of H=0 the system would be composed of equations
such as

gl_z_c= -—aH/a)\’ H—o.
dz —QH
ot

Both systems would be retained in order to secure the full equivalent of the
original system. Thus the difference between the case when # is reducible
and that when it is irreducible is a simplification in expression for the former ;
but the form is the same.
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The form thus obtained* is Weierstrass’s normal or canonical
form.
In the second place, let the system to be considered be of the
type

. , du,
fr Z, Uzy Ugy veey Uny Unprs ooes Ungm, 7(:?2 = 0’

Aty du, du,
dz =fn+s .2', ’qu, QL‘Q, seey Un, sees un+m, Ez“,..-,%‘ P

for r=1,..., n and s=1, ..., m; the functions f,. are rational
integral functions of the derivatives that occur, and the functions
Jnis generally are, or can be made, also rational integral functions
of the derivatives that occur. Introducing a variable ¢ defined by

the relation

du, du, du,
agy F e gy T e g

the set of » equations f, =0 can, by the preceding investigation,
be replaced by the equivalent system

t =

G(t, Zy, Upy eeey ’u’n+m)= 0,

du, _ G (¢, 2, Uy, oery Upim)
dz

>

0
Eﬁ G(t) Z, Uy eeey un+m)

where G is practically the eliminant of the equation defining ¢
and the n equations f,=0 for r=1,..., n; and the remaining
m equations, after substitution is made of the various expressions
just obtained for du,/dz, du,/dz, ..., du,/dz, become

duy,
+s
dz = n+s (t: Z, Uy, Ugy oee,y un+m)-

The form thus obtained will be regarded as the normal form.

It thus appears that any system of equations can be so trans-
formed so as to be equivalent either to a system of the type

F(Cl%, Uy oany Uy, z) =0 )

dz
du, du,,
@—=Fr (—%, Ups voey Uy, Z>

2

* Konigsberger, Theorie der Differentialgleichungen, p. 11; Biermann, Theorie
der analytischen Functionen, p. 248.
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for r=1,...,n—1; or to a system of the type
F(E ey Uy, 2)=0
du,

s =H,( uy, ..., Uy, 2) ’

for r=1,...,n. The former is less symmetrical than the latter,
but it dispenses with the introduction of the other variable ¢. A
comparison of the investigations shews that the former type could
be changed into the latter, but that the latter cannot be changed
into the former.

6. In all the forms to which the system of equations has been
reduced, the completion of the process of expressing each of the
derivatives in terms only of the variables depends upon the
solution of an algebraical equation defining one of the derivatives
as an implicit function. That the implicit function does exist
when so defined is an inference from Weierstrass’s theorem* on
the resolution of a function of several variables: a theorem which,
for the present purpose, may be stated as follows:

Let z=c, w,=a,, ..., w, = a, be stmultaneous values of variables
gving a zero value to a uniform analytical function ¢ (2, wy, ..., Wn);
and let the changes 2z = ¢ + x, w, = a, + @, for r =1, ..., n, transform
¢ (2, wy, ..., wy) into F (x, @y, ..., x,) so that F vanishes when each
of ts variables acquires a zero value. Then it 1s always possible

-to choose non-vanishing quantities p, 71, ..., T Such that, for values

of the variables within the regions
|z|€p, || €7y ooneen s | Zn | € 1y
F(x, 2, ..., w,) can be expressed in the form
f(x, Ly, eee, “‘n) e9 @, Ty, oy wn),

where g (®, @y, ..., xn) 1S finite for the range of variables indicated
and f (@, &y, ..., x,) 18 an algebraical polynomial in x hawving, jfor
the coefficients of powers of z, analytical functions of x, ..., z,
which are regular within the range. Moreover, when the ex-
pansion of F(z, O, ..., 0), supposed not to vanish identically,
begins with Cz™, the polynomial is of degree m; so that if, in

* Abhandlungen aus der Functionenlehre, pp. 107—114 ; Ges. Werke, t. 11, pp.
135—142: a proof is given at the end of the present chapter. It need hardly be

pointed out that, as the theorem holds for uniform analytical functions in general,
it holds for those that are merely algebraical in some of their variables.
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particular, oF (=, @, ..., #,)/0x does not vanish for zero values of
@, Z1, ..., Tn, the value of m is unity and then f takes the form

« — analytical function of a,, ..., @p.

It thus appears that if 0F/ox is not zero for =0, 2,=0, ..., 2, =0,
the equation F'=0 is satisfied, for values of the variable in the
vicinity, solely in virtue of the equation

z—c=x=h(2, ..., Tp) =h (W — a1, ..., Wy —ay),

where A is an analytical function of #, ..., #, that vanishes when
all the variables are zero and is regular for values of the
variables within the assigned regions.

7. In the first of the typical forms to which a system of
equations can be reduced, the central equation

F(%{z—”, Upy veey Unp, z>=0

is algebraical in du,/dz. If du,/dz have a value b for z=c,
Uy =y, eee, Up=0y, and if
FO+U, a, ..., as, ¢)

when expanded in powers of U begin with the first power of U
or—what is the same thing—if 9F/0U be not zero for the values
specified, then there are finite regions of the variables defined by

lz—c|Zp, |[th—ar| €71, covy |Un — Q| ETh,
for which the above equation is satisfied by

dty

dz

where & is a function regular for all values of the variables within
those regions. When this value is substituted in

—b=h(z—c, Uy — Ay, «or, Up—p)

du, du,,
az =Fr (‘d—z': Uy eeey Up, Z))
the new expression for the derivative is a function of z, u,, ..., u,

which is an analytical function of z—c¢, u; —a,, ..., %, — a, unless
the set of values ¢, a,, ..., a, constitute a singularity of one or

more of the coefficients of powers of %’ in F,. This form holds
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for each of the derivatives; and thus the final reduced form of the
system s
i d

dl; =f; (U, «vv) Un, 2),

where the functions f, are analytical jfunctions of the variables
Us; vees Un, 2. In discussing the integral equivalent of these
equations, when there is an integral equivalent, it will be
necessary to take account of the singularities of the analytical
functions f.

8. In the second of the typical forms to which a given system
can be reduced, the central equation is
F(t, uyy ooy Up, 2)=0,
algebraical in the subsidiary variable ¢ If T be a value of ¢
when u,, ..., Un, £ acquire the values a,, ..., a,, ¢ respectively, an
argument similar to that which applies to the first case leads to
the inference that the equation F = 0 is satisfied by

t—rm=h(z—c, Uy —a,, ..., Up — Ay),

where % is a function regular for all values of the variables within
certain finite regions. The substitution of this value in the remain-
ing equations of the system shews, as before, that the final reduced
form of the system is of the same character as in the preceding
case. This final reduced form also may be called a normal form.

It would have been possible also to infer the final reduced form of a
system of equations, without the construction of the intermediate forms, by
using a theorem on the existence of a number of implicit functions given by
the same number of algebraical equations: the theorem is the generalisation
of Weierstrass’s theorem quoted in the process which has been adopted.

It was assumed that 0F (b+ U, ay, ..., a,, ¢)/0U does not vanish with U;
and there is a corresponding assumption in effecting the modification of the
alternative typical form. The consideration of the equations when the
assumptions are not justified is reserved until a later stage, when branch-
points connected with equations will be discussed.

Further, cases occur in which the value of U, as determined by

F(Up, uyy eevs U, 2)=0,

satisfies 5%; F (U, Uy eeey Uy, 2)=0
not, solely for systems of particular values of w,, ..., #,, 2 but in general.

This possibility will be discussed when the singular integrals of systems of
equations are considered.

F. 1I. 2
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9. The purpose of the preceding investigation has been the derivation of
a normal form equivalent to the original system ; the form has been chosen as
one that will be found convenient in discussing the existence of the integral.
It may however be pointed out that, in practice, the solution of a system
given in a normal form can be made to depend upon the solution of a single
equation of order equal to the number of dependent variables, when the
analytical functions are algebraical in the dependent variables. Thus let the
system be

dw
az W (w, %y eevs Un—1, z)= w,
r _ p, v, ' 1);
a (W, Uy vees Upoy, 2)=Upy  (r=1,2, .o, n—1);
and denote the operation
' 0 0 0 0
oz -+ WBTU_*_ Ula—%+...+ U”"W,:
by ©. Then
dw
==
d2w
e oW,
dBw
@ =o'
d”w_._ n—1 )
@ =Y

In these n equations the variables ,, ..., #,_; occur algebraically: conse-
quently they can be eliminated by ordinary processes, and the resulting
equation is of the form
dw d?w drw
P oW G gm ) =0
the order = being the number of dependent variables in the former system.
If the complete integral of this equation be known in the form

"’(z’ Wy Cys eeay a,i)=0,
involving 7 arbitrary constants, the solution of the original system can be
dw d%*w dar~lw

deduced. For from =0, the values of 72 dB’ T dp—t

and the » equations

can be derived ;

dw ar—lw
‘I’=O’ E;= I/V, sty gm—1 =6“"2I’V,

will then constitute the practical solution of the original system.

The similar inference, that the solution of any given system, which involves
only one independent variable with any number of dependent variables and
their derivatives in any order, can be made to depend upon the solution of a
single equation of higher order, is true when the system is not given in a normal
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form. The derivation of that single equation and even the investigation of
the order of the highest derivative that occurs are somewhat complicated
questions, which will be omitted as not contributing towards the develop-
ment of the theories to be considered ; they have been discussed by Jacobi*.

NorTE.

Weierstrass's theorem on the form of a regular function of
several variables in the wvicinity of a zero value.

This theorem¥ has been used in §§ 6—8 when the number of
variables is general. It will be used several times in succeeding
chapters, particularly in the case when the number of variables
is two. e

It is proved as follows by Weierstrass (I. ¢.). Two cases arise
for consideration according as F(z, 0, ..., 0) does not, or does,
vanish for all values of .

In the former case, F (z, O, ..., 0), when it does not vanish for
all values of #, is a uniform analytical function of #, vanishing
when 2 = 0; let the lowest exponent of # which it contains be .
Denote it by F,(z); and introduce a function F,(z, @, ..., Zn)
defined by.the equation

Fx, x, ..., 25) = F,(2) = F, (2, 2y, ..., @),
so that F, vanishes for all values of # when =, ..., , vanish, and
is a uniform analytical function within the region of convergence
of the power-series for /. Because F\ is independent of ,, ..., @,
and does not vanish for all values of z, we can choose points, in
the vicinity of 0, 0, ..., 0 and lying within the region of con-
vergence of F,;, such that
| Fy| > | Fy).

But F, vanishes when =0, so that there may be some limit of
|@| other than zero below which the inequality does nof hold :
suppose that the range for which the inequality does hold is
given by

po<|z|<p, |x|<|7s], (s=1, ..., n).

* Ges. Werke, t. v, pp. 191—216; ¢b. pp. 483—513. See also Jordan, Cours
&’ Analyse, t. 111, pp. 5—7.

+ See Ges. Werke, t. 11, pp. 185 sqq. The theorem is of great importance in
the theory of functions of several variables ; some of the applications are given by
Weierstrass.

Another proof, when the number of variables is two, has been obtained by
Simart; it is reproduced by Picard, Traité d’Analyse, t. 11, pp. 243—245.

22
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For all such values we obtaln on -forming logarithmic derivatives

of the equation
F=0F (1 - l. 1)
0 Fo >

12F_1dF, 9 3 1F

Fox F,dr ox,iNF}'
Since F, is a uniform analytical function of z, the lowest exponent
of which is m, we have

the relation

1 dF, m
Fde —w T G (x),
where G (z) is a converging series of integral powers. Similarly
F* o
1;_70)_\ —_— 2 G Ap mh+;L,
where the coefficients G, are converging series of integral powers
of =z, ..., ,, all of them vanishing with these variables; and

accordingly, collecting the terms that involve the same power
of #, we have

by fo,‘\ =p=_w Gpa?,
where the coefficients G, are converging series of integral powers
of @, ..., @, all of them vanishing with these variables. Hence
Faa=g 005 5 Ger
This result shews that, for values of «,, ..., 2, given by
st.[<rs, ' (s=1, ..., n),

there are m values of z such that F vanishes, each zero being
counted in its proper multiplicity. For if within the ranges

indicated there be values a,, ..., @, such that no root of
F(z, a, ..., ay) occurs within the included range of #, then

) 1 OF (z, ay, «.., &)

F(z, ar, ..., ay) ox ’

when expanded as a converging series of powers of x, would
contain only positive integral powers. This expansion, however,
ought to be the same as

a ©
Z;_+G(w)_55 S Gpeor;

p=—om
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an identity in form that does not exist owing to the presence of
%:’ in the latter, the only term with an exponent —1. Accordingly,

the hypothesis that F (2, a,, ..., a,) is rootless within the range is
untenable. ’

Suppose therefore that &, ..., & are all the zeros of

F(x, ay, ..., ay) for values of x such that |x|< p, repetition
of a value & accounting for possible multiplicity; then
1oV Z 1

For s—12—E&;
is finite for all values of # within the range and it can therefore be
expanded in a converging series of positive integral powers, say

P (x), so that

10F
Fé—_P( )+321w—£s

Now choose values of # such that |«|, while still less than p, is
greater than the greatest of the quantities |&|; for all such
values, the fractions on the right-hand side can be expanded in
descending powers of x, and we have

1 0F . r = .
75‘5=P(m)+;€+x§15§w 5
where Se=E& +E+...... + E.~

Consequently, comparing the expansions

a a0
=+ G@) -5 3 Gpar

p=—
and ; +P(x)+ = Scx™,
k=1
and writing #,, ..., 2, for a,, ..., a, in the latter, so that the two
must now be identical, we have
r=m,
S, =«G_,.

The first result shews that there are m roots of F within the
range. The other expresses the sums of the powers of those roots
as converging series of positive powers of ,, ..., #,; and therefore,
when we write

f(w: Lyy eeey wn)=(w“§1)(w—§2)(w—§m)
= g™ +ﬁwm-1 +f2wm—-—2+ +fm,
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the coefficients fi, fi, ..., fm are power-series in &, ..., &n, CON-
verging within the specified ranges*, and vanishing at O, ..., 0.

Further, the identity of the two expansions leads to the
equation

P@a)=G@— 2 (p+1) Gpna?,
=0
so that, if ?
T'(z 2, ..., ) = fmG (@) dz — § Gpr2?t,
1) =0

where I' is obviously a regular function of =z, @y, ..., x,, We
have ‘

P(x)y= 58._” I'(w, %y, ..., z2).

1 o0F m ]
Tlllus F—aTz::_P(.T)"*‘sElw_fs
0 0
=a—xI’(x, Lyy ey Ty) + a—x{logf(w, L1y ons Zo)}s

and therefore
F: Uf(a:, X1y eeny wn) er(x,x“...,x“—)’
where U is independent of «.

In order to determine U, it may be noticed that, when
2y, ..., &, all vanish, the value of U must be C: but it does not
follow that U is equal to C for non-zero values of z,, ..., z,. The
function # is a uniform analytical function of z, i, ..., #,; the
function f is a polynomial in # and is regular in ay, ..., #,; also
T' is regular; consequently U, if it be variable, is a regular
function of x,, ..., #,, and therefore

U = C (1 + positive powers of x,, ..., z,)
= C¢,
where u is a regular function of the n variables. This function u
may be absorbed into the function I'(w, #, ..., #,) which still

will be regular after the change; denoting the new function by
G (z, 2, ..., x,), we have

F=Cf (2, ..., x,) eF &%),

* If there be only one variable z;, then f,, f,, ..., f. are regular functions of
z; which vanish when z; =0.
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The coefficients in the regular functions f and G are independent
of p, 7y, ..., 7,; the application of the principle of continuation
shews that the equality holds throughout the domain of con-
vergence round 0, 0, ..., 0 that is common to F, f, G

The alternative case is that in which the function # vanishes
with «,, ..., «, for all values of #, so that no function F,(x) exists.
We then transform the variables by a substitution

w: 'fvla --':a"n':( C00) COI) sy COn §?/, :1/1, ceecy yn)7
c1()) CIlls sy Cln
01!.0 2 c‘nl 3 sy c’n.n
the constant coefficients ¢ of the matrix of substitution are
arbitrary, subject solely to two conditions of inequality (1) that

‘the determinant of the matrix does not vanish, (ii) that the quantity

9 (Coos Cro5 -+ Cno) does not vanish, where g (z, @, ..., x,) denotes the
aggregate of the terms of lowest dimensions, say /, in F. Manifestly
with (n + 1) arbitrary constants at our disposal, the two conditions
can be satisfied in an infinitude of ways. When the substitution

‘ is effected upon ¥ (2, z,, ..., ,), the new function, say F(y, 91y e Yn)s

is an analytical function of y, v, ..., ¥,; and clearly
F(y,0, ..., 0)=9g(Cows Cros +-+> Cno) ¥* + higher powers of y,
so that F(y, 0, ..., 0) does not vanish for all values of y.
The preceding analysis may now be applied ; and we infer that
F(I’/’ Yiseees Yn) =G (Coos Cr05 -+ » cm)f_(y: Yis--e s Yn) G W s s ),

The regular function G (y, %1, ..., ¥a) can, by the inverse substitu-
tion, be changed into a regular function

G(z, 21, ..., )

" The function F (Y, y1,..., ya) is an algebraical polynomial in y of

degree ! of the form
‘ Y+ YT+ Sy f

the coefficients ﬂ, f;, ,ﬁ being regular functions of y, ..., g/n,‘
vanishing with vy, ..., ¥a. '

Manifestly the zeros of the uniform analytical function
F(z, ,..., ;) in the domain of 0, 0,..., O are given by

f(x’ xl:'--awn)=0’ J?(Z/, 3/1,--~,Z/n)=0,

in the respective cases.
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In the case when the number of variables is only two, we
denote them by 2, y. The function F (2, y) then vanishes at 0, O
and is regular in the immediate vicinity of those values; con-
sequently it can be expanded in a converging power-series.

If F(x, 0) does not vanish for all values of x, let Cz™ be the
lowest power of x which it contains; then a function f(=, y) of
the form

flz, y) =™+ fra™ ! + fa™ 2+ .+ [,

where fi, ..., fm are regular functions of y vanishing when y =0

exists such that ‘
F(w) 3/) = Cf(‘z" y) 6% @ ),
where @ is a regular function Qf x _and Y, vanishing at 0, 0.

If F (x, 0) does vanish for all values of #, then a transformation
of variables

=N+ pv, y=Nu-+uv
is effected, subject to the limitations
A —Nu#0, F,(\A)+0,
where F,,(z, y) is the aggregate of terms of lowest dimensions in
F (2, y). Then F(#, y) becomes a regular function of » and v, say
F (u, v), such that F (u, 0) does not vanish for all values of u. If

Au™ be the lowest power of u which # (u, 0) contains, then a
function f(u, v) of the form

Fu, ) =uwm+ fun + fum + L+ fony
where £;, f;, ... , fm are regular functions of v vanishing when v =0,
exists such that o
F(z, y) = Af(u, v)ed®v),
where G is a regular function of z'and y, vanishing at 0, 0.

In this particular case when the number of variables is two,
there is an alternative expression for ¥ which is equally effective.
The form that has been obtained has been made special in the
variable # so that if, for instance, the zeros of # in the vicinity of
0, 0 are wanted, they are given by m values of « as functions of y
from the equation

S (x, y)=0.

It may, however, be desirable to have these zeros given by values

of y as functions of x; they would bé obtained most simply as
follows.
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If F (0, y) does not vanish for all values of y, let By? be the
lowest power of y which it contains; then a function g(z, y) of
the form

9@ Y=Y + Gy’ + gyt G,
where g, ..., g, are regular functions of x vanishing when =0,
exists such that
F (z, y)= By (2, y) @ ¥,

where @ is a regular function of # and y, vanishing at 0, 0. The
zeros of F in the required form would be given by g (z, y) = 0.
Similarly, if F (0, y) does vanish for all values of y, we

transform the variables to

=M+ pv, Yy=Nu+uv,
where A’ —Np#0, F,(u, u')# 0; and we obtain a corresponding
expression

F(z, y) = Dg (u, v) e ¥ ;
here g(u, v) is algebraical in v of degree equal to the lowest
power of » in F (0, v), where F(z, y) becomes F (u, v), and the

coefficients of the powers of v are regular functions of « which
vanish when = 0.




CHAPTER II.

CAUCHY’S THEOREM ON THE EXISTENCE OF REGULAR INTEGRALS
OF A SYSTEM OF DIFFERENTIAL EQUATIONS¥.

10. It has been shewn that the normal form of a system of
equations involving one independent variable is

du,
a0z =fr (U, .o, Un, 2), (r=1,...,n),

where the functions f, are analytical functions. To secure the
existence of integrals of this system, an obvious preliminary
condition is that the regions of existence of the. functions
J1> Joseoos Ju, regarded as analytical functions of wu,,..., un, 2
must have some common range that is not infinitesimal. In this
common range let z2=¢, v, =q,,..., u,=a, denote a place at
which all the functions are regular; each of them can therefore
be expressed in the form of a power-series converging absolutely
for all values of the variables defined by

lz—cl€p, |th—a|@ 7y, ..., |tn —\anléfrn.
Then, if » be the smallest of the magnitudes r, ..., r,, the series
certainly converge absolutely for values of the variables defined by
lz—c|Zp, |um—an <7, (m=1,...,n).
The fundamental theorem relating to the integrals of the
system of equations, when these various conditions are satisfied,
is due to Cauchy; it is as follows:—
In a region of the z-variable that is not infinitesimal in extent,
Junctions u, us, ..., U, of z exist satisfying the system of differential
equations and assuming values a,, ... , a, respectively when z = c.

* References to a number of authorities are given in a bibliographical note at
the end of this chapter.
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Let M denote the maximum among the values of the moduli
‘of all the functions f;,..., f, for all possible places within the
common range of existence; and let a new function, denoted by
F (v, ..., va, 2) and defined as

M

(1—2;“)(1—”‘;“1) (1—”2—;2%)...(1—_——_””’;“")’

be constructed. It is a known proposition* that
am,+mg+...+mu+pﬁ am1+...+'mn +p F

ou™ ...... Su,™ 0zP o™ ...... 0v,™ 0zP
! m. | 1! M
< ml.m2....mn.p.m,
for all positive or zero values of the integers m,,..., m,, p, when
in the former the values u, =a,, ..., 4, = a,, z = ¢ are substituted
and in the latter the values v,=a,, ..., vp=a,, 2=c. The

function F is called a dominant function .
First, consider the system of equations
dv, dv, __duv,

:‘Z_Z=T¢lz='°'_77l; =F(’U1,..., Vn, Z)-
dv, _ dvm,
From dz = dz

it follows that
UV — Ay =V — U,
the constant of integration being determined by the assignment
of a,,..., a, as simultaneous values of v, ..., v, respectively; and
therefore the quantities vy, — @, for m=1,..., n, are equal to one
another. Tlxus any one of them, say v, — a,, is determined by the
equation
dv, M

S0

4 _ =0 L P ( _z—c)
(1 ) = A+ DL Miog (1 =),

whence

r

* See the author’s Theory of Functions (which, in subsequent references, will be
denoted by T'h. Fns.), § 22.
+ Poincaré calls such a function majorante.
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A being a constant of integration to be determined. Let that
branch of the logarithmic function be chosen which is zero for
z=c; the branch is regular for all values of 2z such that
|z —c| < p, that is, for all values of 2z at present under considera-
tion. Now let ¢ be the value of z when a, is the value assigned
to v,; it appears that 4 =1, and therefore

Sl 251
>

) 1
— n4+1
11 v e 1P Mo (1_;_0)} ,
L+ + D7 M log P

on choosing that branch of the radical which is unity when z=c.

The value of v, thus obtained is regular for values of |z —c¢|
which, being less than p, exclude the branch-points of the radical
from a simply-connected field of variation in the z-plane. The
radius o of the circle within which #, is uniform is therefore
given by

14 (n+1)2 Mlog <1— %>'=o,

r

so that og=p{l—¢ @tDMp},
evidently o is a finite quantity less than p, so that v, is regular
within a finite circle. Consequently, functions v, ..., v, exist
satisfying the system of equations

dv, dv, __dw,

L= = =F (v, ..., Vp, 2),
and acquiring the values a,, ..., @, when 2z =c; and each of them

is a function of z, regular for all values of z such that

r g
|z—cl<p (Ll —e DM}
For the purpose of establishing the existence of integrals of
the equations

Elis‘—.]‘.;(ul’ veey Un, Z), (3=1, cees ?’I,),

(which will be called the original system), it is convenient to
compare them with the integrals of the system just considered

dv,
Eg=F(v1’ ey Uy 2), (s=1, ..., mn),

(which will be called the dominant system). The integrals of the
latter have been proved to be functions of z that are regular for
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all points 2 lying within the circle |z—c¢|=0¢; and therefore for
such values of z they can be expressed in the form
d'vs (z —c)? d*v
21 dz?
where the coefficients of the powers of z — ¢ are the values of the
derivatives of v; when z=c¢. The values of the successive deriva-
tives of all the functions v, when z=c¢ can be obtained by
differentiating the equations of the dominant system any number
of times, substituting after each differentiation the general values
of the first derivatives, and then inserting the values z=c,
V= Qyy +eey Up =0dpn. They all clearly are real positive quantities.

vg—ag=(2 — c)

+ .,

Now if integrals of the original system exist which are regular
and acquire the values a,, ..., @, for the value ¢ of z, then power-
series of the form
clus (z c)? dug
; 21 dzt
define the integrals W1th1n>some region of existence in the vicinity
of the point ¢, the coefficients of the powers of z —c¢ being the
values of the derivatives of the functions w,, ..., 4, when z=c.
And the values of these derivatives can be formally deduced from
the equations of the original system by precisely the same process
as the one by which, as explained above, it is possible to deduce
the values of the derivatives of » from the equations of the
dominant system.

—as—(z—c) + ...

_ From the definition of the function # (v, ..., vy, 2), it at once
follows that, when z=c,

dug dvg

72- <;l-z—’ (s=1,...,n).
] d*us 8/; 8_]‘;
Again, B i 2 fp
so that, when z=c,
d?u, | afs z st
dz? 0z : 'f b4 ‘
the values z=¢, =0, ..., Up=20, bemg substituted in the
right-hand side. But for these values
ofs of's oF
9| <%’ |oup| <oy Iel<E
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when the values z=c¢, v, =a,, ..., v, = a, are substituted in F and
its deriva,tives; and therefore

dru, aF 2 or

a7 |<mt 2 5,

for such values. By proceeding from the dominant system in the
" same manner, it is evident that
d*v, oF =~ _oF

dz? oz pzl Favp

for the values considered ; and therefore, when z=¢,

d*ug|  dPu,

dz? < dz2’

For the values of the third derivatives at z=¢, the equations

dou, _Of, of, die_OF 3 poF

dz* 0z | ,oy7/Pou,’ df 0z @ oy O,

would be .treated in the same manner as above: and a similar
argument leads to the conclusion that

dug)| _ &

dz® dz?

at z=c¢. And it can now be seen that, for all values of m, the
inequality

d™u,
dz™

d™uv,
dzm

can be established; for the processes that occur in using the
equations of the original system are differentiation, multiplication,
addition and the replacement of the modulus of any term by the
greatest possible value it can possess: and the completion of these
processes leads to the same result as is obtained in using the
equations of the dominant system.

'vs (z —¢)® d?v

2T de2 T
which defines the function vs — a3, converges absolutely for points
within the circle |z —c¢|=0¢. The moduli of its terms are greater
than the moduli of the terms of the series

dus (z ¢)® d?u, .
(z—) T21 dzz ! CT?

The series (z— ) d
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and therefore the latter series also converges absolutely for points
within the circle. We accordingly construct functions u, given by

dus (z—c) d*us

—as—(z—-C) + 51 dzc2+"" (s=1, ..., n),
2
using the values of g——:, (jlzl?’ ... at z=c as deduced in the

preceding formal calculations. These functions %, are regular

within the circle |z —c¢|=o; consequently*, all their deriva-

tives also exist with the same character within that. circle.
The function |u; —as| is continuous, and its value is zero when
z=c; being always positive, it begins to increase (save in one
case to be noticed hereafter) with increasing values of |z—c],
though the increase may not be persistent. It is finite for all
values of z such that | z—c¢|< o, and it cannot exceed the value 7,
as was proved ; and therefore |u,’ —as| either will never attain a
value 7 for values of z within the circle |z —¢| =0 or, if it attains
the value 7, it will first attain that value when |z —c|=a,0, where
as is a proper fraction that does not vanish. Of all the fractions
ay, if any arise, let a be the smallest ; then either

|us —as|<r for |z2—c|<a, (s=1, ..., n),
or |u;’ — a.| € r for |z —c|<Zag, (s=1, ..., n).
Also o < p, and therefore also ac < p; hence there is a region
within which du,’/dz has been proved to exist, this region is finite,

and it is certainly included for all the variables in the region in
which the functions f;, ..., f, are supposed regular.

Lastly, from the manner in which the coefficients in the
power-series giving the values of w,— a, have been obtained, it
is evident that dw,’/dz and f; (w/, ..., %, 2) have the same value
at z=c and that any derivative of either of them has the same
value at 2= c as the derivative of the other of the same order.
They have been shewn to possess a common region of existence,
within which they can be expressed as power-series; and their
derivatives are the same at z=c¢. Hence

—--—-—j;(ul,...,un’, z), (s=1, ..., n),
at all points within this common region of existence: that is to

* Th. Fns., § 21.
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say, functions %/, ..., u, exist, satisfying the differential equations
and acquiring values a,, ..., a, for z =c. »
Cauchy’s theorem is thus established under the assigned

conditions.

The case of exception referred to, in which the value of
| us—as| does not begin to increase from zero with values of
| 2z —¢| increasing fromt zero, is that in which the power-series

for uy; — a; is evanescent by reason of zero values of all of the

derivatives of u, when z=c¢; and this may occur for more than
one of the quantities w. The subsequent argument is not valid in
this case: and the inference is that the corresponding functions
ug, defined by the equations and the assigned conditions jointly,
are merely constants for values of z such that |z—c¢|<p. On
the other hand, the inference can only be made for values of the
variables occurring in the regions where the functions f£, ..., f,
are regular; other investigations will be required when values
of the variables are considered that give rise to branchings, or
infinities, or discontinuities, or other irregularities, of the functions

Sy eees S

A simple example will illustrate the last remark. . Let the equation
du_ w
dz 1-z
be considered ; a general solution is

1 _
&—log(l 2)+d.

If » is to have the value O when z=0, and if 7 i3 restricted so that |2|<1,
then A4 is infinite; and for all such values of z the value of % is zero. If
other values of z be included and it be possible to have z=1, the value of «
cannot be asserted to be zero; but z=1 is an infinity of %2/(1 —2) for non-zero
values of «, and #u=0, z=1 make %?/(1 — z) indeterminate, and thus the initial
conditions of the theorem cease to be satisfied.

And more generally, it is not difficult to see that the case of exception can
occur only when at least one equation in the system has the form

du, i
%=<u1_“l)gls+<u2_a2) g2s+"-+(un"’an>gns

for s=1, ..., n, the various coefficients ¢y, ..., gnn being analytical functions
of %y vu.y %y, z that are regular for the regions of variation considered; in
such regions, the equations determine the corresponding functions %, as
constants.
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11. In the same way* as in the case of functions defined by
power-series, it may be proved that, if two paths ACB and ADB
in the z-plane enclose a space for every point of which all the
conditions necessary for the establishment of the existence-theorem -
are satisfied, then the set of regular integrals at B are the same
whether the passage of z from 4 to B be made by the path 4CB or
by the path ADB. Hence also the values of the set of integrals
at any point, as depending upon the values assigned at any other
point, are unaffected when the path of variation of the independent
variable is deformed continuously within the region of existence of
the integrals. Further, it at once follows that a path ACBDA,
returning to the initial point and enclosing a simply-connected
space every point of which is ordinary for all the functions
concerned, restores at A the values of the set of integrals as
initially assigned.

UNIQUE DETERMINATION OF THE REGULAR SYSTEM.
12. The preceding investigation establishes the existence of
integrals of the equations

dug
d’; = fy (U «or, Uy, 2),

the integrals being regular functions of z which assume values
@, ..., a, when z=c; and, save in the case of exception indicated,
the range of variation of the variables is given by equations of
the form

lz—c|<p, |us—as|<p",
where p’ and p” are finite quantities.

Moreover, a review of the investigation shews that at no stage
has there occurred any possibility of deviation from uniqueness of
value; and it might therefore be concluded that the system of
regular integrals is unique, a conclusion which can be established
by the following considerations.

The theorem of Cauchy proves the existence of a set of
quantities w,, W, ..., w,, which are regular functions of z near
the point z = ¢, take the values a;, as, ..., a,, respectively at that
point, and satisfy the differential equations.

* Th. Fns., § 90.
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It remains to be seen whether more than one set of quantities
Wy, Wy, ..., W,, exists, satisfying these conditions.

If possible, let wy, wy, ..., w,” and w,, w,, ..., w,, be two
different sets of quantities satisfying the conditions.

Since w,, Wy, ..., W, ; Wy, W,, ..., W,, are functions of z, regular
near z'=c, they can in the vicinity of this point be expanded in
series of ascending powers of z —c. Let the series be represented by

w,=o,+ b, (z—¢)+ ¢, (z2—c)+..., (r=1,2, ..., n),
w, =a,+b (z—¢c)+c¢' (z—c)P+...,  (r=1,2,...,n).
Then since the differential equations are satisfied, we have

dw
er =f7‘ (wl’ Way «ve, Wy, Z)-

Differentiating this,

d2w7 a r » a r a r a 7' /

B o i fo e+ G ot = 0 2)
say. Therefore

dw, _ofy

ofy ofy, of, ..,
dz® ~ ow, ﬁ+_a%ﬁ+ e aj,;n fn+af_z=f;‘ (Wi, .., Wy, 2)

say. Similarly the higher derivatives can be found in terms of

wl: wz; '“)wn) Z.
Hence
rdw ‘ d?w
(‘d,;) =j;-(als Oa, «vvy Oy, C); <.d_Z2r o =ﬁ~’ (als Ooy «evy Oy, C);
z=¢ z=c

dPw,
(‘d—z-;;—) = r” (aha?, ceny Uy, C,);""
z2=cC
But in the same way it can be shewn that

2w,

dw,’
( er) =f:r(al) a2; ey an: C); ( dZ;> =ﬁ‘l(a1$ a2:”')an) C);
z=c z=c

d3w,’
(hdz—;> =f," (A, Oy euvy Oy C)5 uue
Zz=cC

Hence

S % daw, dw\
(0% >z=c = (%)z=c ; (d:;)m = 2 ), e

that is, b.=0b/, ¢.=c/,....

Therefore the series expressing w, and w,” are identical ; that
is, w,’ is not distinct from w,.
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So there cannot be two distinct sets of quantities w,, ws, ..., w,
satisfying the given conditions; the set given by Cauchy’s
existence-theorem is the only possible set of regular integrals.

13.  Another proof, establishing this important result, is as-
follows*,

Suppose that it is possible that two different sets of regular
solutions of the equations
%=f¢(u1,...,un, 2), (r=1,..., n),
can exist having the same values a,, ..., @, for z=c¢; and let them
be denoted by w,, ..., %, ; w+v1, ..., 4, + v, respectively. All the
quantities u, w + v, f are regular functions of z for the respective
regions in which they exist, all these regions being included
within the region of existence of the n functions /. It therefore
follows that the quantities v,, being (u, + v;) —us, also are regular
functions of z for the region of existence common to the quantities
w and u +v; and they all have a zero value for z=c.

The region of simultaneous existence of the two sets of
integrals may be more restricted than the region of existence of
the » functions f; but it is not infinitesimal. Within this region
let a portion be defined by |z —c|<b; and suppose that, for
|z —c¢|=>b, the value of |u;— as| is equal to or less than u,, with
the further assumption that, as the value of |z — ¢| increases from
0, this value b is the first for which | u, — a,| acquires the value u,:
an assumption justified for values u;, b that are not infinitesimal,
because the continuous quantities |u, — as| begin to increase from
zero with values of | 2 — ¢| increasing from zero.

Similarly, let |us+vs— as| €N for |2 —c|=20, and suppose
that, as the value of |z — ¢| increases from zero, this value b is
the first for which |u,+ v;—as| acquires the value A,: this
assumption is justified as before, by noting that the quantities
| us + vs — a5 | begin to increase from zero as |z—c| increases from
zero, and by tracing simultaneously the values of |u; —a,| and
| us 4+ vs — as| with increasing values of |z—c¢|. Then as the
region of existence, considered lies within the region of existence
of the functions fi, ..., f,, which was defined by

lz—cl<p |tm—am| <7,
* It is based upon Jordan’s method, Cours d’Analyse, t. 111, pp. 94—101.
3—2
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it follows that b< p, Ay <7, us<7. Moreover as all the quantities
considered are regular functions, so that (§ 11) they acquire at 2
the same value whatever be the path by which the variable passes
from ¢ to z, it will be assumed that the z-path is a straight line so
that, if at any point |z —c¢|=s, the value of s varies from 0 to b
and |dz | =
" Let ¢ denote a real variable lying between 0 and 1, and let
ws = ug + tvs,

s0 tha,t for all values of ¢, w; lies within the reglon of existence
common to u; and wus + v, is regular in that region, and acquires
the value a, for z=c; it is easy to see that the greatest value of
|ws; — as| lies between A, and u,; so that, denoting it by 6,
this value 0; <. It follows that all possible values of w; for
lz—c|< b are included  within the region of existence of the
functions £, ..., f,, and that consequently f.(w, ..., w,, 2), as
well as all its partial derivatives with regard to w,, ..., w,, for
r=1,...,n can be expanded in absolutely converging power-
series of W, — @y, Wy — Ay «vvy Wy — Ay, 2 — C.

Hence

of's aj; 02 fs
ow, oa, 8a18

fs fs

c)+

('w1 a,) +

ar+rl+7‘2+...ﬁ

(w2 a)+ ...,

where o dardas" ...
denotes the result of substituting the values ¢, a;, @, ... for
2, w,, w,, ... respectively, in
orrctrete £

0z 0w, ow,2 ...’

and therefore
ofs| |5 afs afs
'a;l aa +IZ—C] +|'w1 a/ll

M M M
<—+|z—c|—+|w1—a1|2!—2+...
r rp r
(as in § 10), so that

%‘ 1 1 1 1
owi| T T |z—c| |w—a1)21 | w, — a, | 1 Wy — |
P r r r
M1 1 1 1
7'1_!’_( __6_’1)21_9.2 1_€1‘
P r r r
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Hence if 8 be the greatest of the quantities 6,, ..., 0, so that
0 < r, it follows that

o _ M _1 1
awl’ r 1— é (1__ g)n-l—l
P r

for all values of the variables within the portion of the region of
existence under consideration,

In the same way it may be established that
s

S Z N, (m=1, ...,n; s=1,...,n),

for all values of the variables within the portion of the region of
existence under consideration, N denoting the quantity

LSS (1 - 9)_1 (1 - Q)‘"_l,
7 p r
which is finite.
Now

‘fs(u;l"i"vl’ u2+ Vs oeey Uy + Yy, Z) —ﬁ(ula Ugy «voey Uy, Z)

14 :
=f0 %f;(ul+'vlt, Uy + Vsty ooe, Uy + V8, 2) dE

1/ 9 d 9
=f0 <01%1+v28—w;+...+v,,%—n>ﬁ(wl, ., Wy, 2)di

1 1 1
=v1f a—fsdt+vzf %dt+...+vnf s dt.
0 0w, 0 0w, 0 0w,
s

ow,,

Also N

for all possible values of the variables that occur in the integral,
and therefore

1
2 dt'<Nf dt< N.
. ) o

0 OWyp,
Consequently
| fe (ua 01, Us + Vo, oony Uy + Uy 2) — fo (Uny oeny Uy, 2) |
N {Jo ]+ ||+ +]vl)
Because %, ..., u, and w, +v,, ..., u,+v, are two sets of

solutions of the given system of differential equations, we have

d'vm d (Um + Vi) _ Ay,
dz = = dz dz

=fm(u1+v1v Ug + Vgy «ves u/n+'vn, Z) _fm(ula ey Uy, Z)
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for m=1, ..., n; and therefore
dv,

dz
for the n values of m, so that
| dvm | € IV {{v] + |va] + ..o + |9, |} ds.
Now for any complex variable w
dlw|Z|dw|.
Hence if V=lo|+|v|+ ... +|v.|,
it follows that ~ dV=d|v,|+d|v.|+ ... + d]|v,|

SN {|v|+|vl+...+]|v,|}

Z|dv, |+ |dv |+ ... +|dv,|
ZnNVds,
or Ellf( aNV.
ds
Therefore %—;: nNV —p,

where p is a real quantity that may be zero but cannot be
negative.

The variables #y, ..., v, all have a zero value for z=c¢; conse-
quently V has a zero value when |z—c¢|=0, that is, when s=0.
As n and IV are independent of s, the above equation gives

Ve—-nNs = A _fpe—-nNsds"

where 4 is an arbitrary constant, which can be determined by the
condition that V=0 when s=0; so that

8
Ve nNs = — f pe"Neds.
0

The real quantity p may be zero but cannot be negative; hence,
as s is real and not infinitesimal, the integral is positive except
only in the case when p is zero for all values of s. But V is

necessarily not a negative quantity, so that p must be zero; and
therefore

with the condition that V=0 when s=0. This equation gives
Ve = B,
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where B is an arbitrary constant. It is determined by the
condition that V=0 when s =0, and by the fact that only a finite
region is under consideration, so that s has only finite values; and
the equation becomes

Ve ¥ =0,
so that ¥ must vanish for all the values of s considered. Hence
each of the quantities |v, [, [%,], ..., |v,| must vanish ; and therefore
also the quantities v, ..., v, vanish for the range of variables

considered.

Each of these quantities v is a regular function; each of them
has been proved to be zero along a finite continuous line in the
z-plane; consequently*, each of them is zero everywhere in the
part of the region of its existence that lies in the domain of z=c.
It therefore follows that the two sets of regular solutions, having
the same values a,, ..., @, for z=c, are the same; consequently,
the regular integrals of the dyfferential equations having the values
@y, -.ey @y for z=c are uniquely determined by these conditions.

It remains to take account of the possibility that the set of
integrals u,, ..., u,, determined as having the values a,, ..., a, for
z = ¢, have those constant values for a finite range of variation of
z, say, for |z —c¢| < 0.

If another set u, +w, ..., %,+ v, exist within that range
determined by the same initial values for z=¢, then v,,..., v, have
zero values for z=c; and they are regular within a finite range of
variation. The sole difference between the more general case,
when the quantities w are variable, and the present, when they are
constant, is that all the quantities u, in the preceding discussion
now become zero. This change is easily seen to leave both the
course of the argument and the inferences unaffected ; and there-
fore it is concluded, in the same way as before, that all the
quantities v are zero for the range of variation of z; that is, that
the set of solutions determined by their values for z=c¢ are a
unique set for a range of variation of z such as to make the

functions f;, ..., f, regular functions.

It has been proved that, if the region of existence of the analytical
functions fj, ..., f, within which they are regular, be defined by the
conditions

|Z—CI<P7 |u7n—“7nl<7'7

* Th. Fns., § 37.
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then solutions of the equations

. .
o = fo (Uy; viny Uny 2), (s=1, ..., n),

are obtainable as power-series in z— ¢, which certainly converge within the
range |z—c¢|< p;, where

p<pil—e ) (2 ¥1) e,

a range included within the range of the functions /. But though these
series for u,— a, converge, no indication is given as to the greatest value of
|#s — ag| within the range of z except that it is less than a quantity which
itself is less than »; as has been seen, it may even be a constant zero.
Manifestly, the greatest value of [#,— a,|, within the region of existence of the
functions f occurring in the differential equations that define the quantities «
in a general case, must depend upon the quantities a,, ..., a,, ¢, p; the more
precise determination of this dependence requires to be effected.

Note.

Several methods have been devised for the establishment of the existence
of integrals of differential equations.

The earliest of them appears to be due to Cauchy* who in the first
instance applied the calculus of limits, as it is called, to the discussion of a
system of differential equations in which all the variables are real; an
exposition of the method is given by Lipschitz+t, by Picard }, and by others,
in a form that is simpler and is more precise in definition than Cauchy’s.
Cauchy afterwards extended the application of the calculus of limits to
systems of ordinary equations in which the variables are complex and to
systems of partial differential equations§; and his methods have been
improved and amplified by Méray|, and by Riquier<¥, who has applied
Méray’s methods to partial differential equations.

The most conspicuous additions after Cauchy’s memoirs are those con- .

tained in the memoir of Briot and Bouquet®¥*, who discussed in much detail
the properties of the integral of a single equation ; some limitations on their
proof are pointed out by Picard in his expositiontt of the method, and Fuchs
has devoted some memoirs to the discussion of difficulties and omitted cases}].

* It is reproduced by Moigno, Calcul Différentiel et Intégral, (1844).

+ Lehrbuch der Analysis.

T Traité & Analyse, t. 11, ch. x1, §§ 1-4.

§ Tuvres completes de Cauchy, 1% sér., t. viL

I A full statement of M. Méray’s position as regards the development of the
theory of the existence of integrals is given in his Legons nouvelles sur Uanalyse
mﬁmteszmale, t. 1.

% Annales de UEcole Norm. Supér., 3me Sér., t. x, (1893), pp. 65-86, 123-150,
167-181.

** Journal de UFcole Polytechnique, t. xx1, (1856), pp. 133-198.

-H‘ l. c. supra, § 10.

+ References will be found later, §§ 28-34, where a discussion of these ma.tters

wxll be found.
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Briot and Bouquet’s proof of the uniqueness of a system of solutions defined
by suitably chosen initial conditions has been improved by Jordan*; and the
whole method is applied by him to the establishment of the existence of
integrals of a system of equations. And an extension has been made by
Poincarét to the case when the equations involve an arbitrary parameter, in
powers of which it may be desired to expand the functions that occur.

An independent method, having some analogy with Cauchy’s, has been
constructed by Weierstrass; it is slightly sketched by Mme v. Kowalevsky }
who extended it to partial differential equations: and it is expounded in fuller

detail by Konigsberger§, who proceeds to the establishment of the integrals
directly from Weierstrass’s canonical form.

There is also another process due to Weierstrass|| constructed at a time
when he was unacquainted with Cauchy’s investigation (L. ¢., p. 85).

Picard uses a method of successive approximations to the integrals,
applying it in the first instance to the case when the variables are real; by
generalising this method so that it may be applied to the case when the
variables are complex, he is able to shew that the series obtained as integrals
of the equations have a circle of convergence that is larger than the circle
obtained above in § 10. He also uses the existence-theorem for partial
differential equations to deduce the existence of integrals of ordinary differ-
ential equations<. )

* Cours d’Analyse, t. 111, §§ 77-81.
+ Les méthodes nouvelles de la mécanique céleste, t. 1, §§ 23-27 ; it had been given

previously in the Acta Mathematica, vol. xix, (1890), pp. 15 sqq.

% Crelle’s Journal, vol. Lxxx, (1875), pp. 1-5.

§ Lehrbuch der Theorie der Differentialgleichungen, Kap. 1, Sect. 111.

I Ges. Werke, t. 1, pp. 75-84.

q Ib. t. 11, chap. x1; the whole of the chapter will well repay perusal.




CHAPTER III.

CrAssEs OF NON-ORDINARY POINTS CONNECTED WITH THE

FORM OF AN EqQuaTiON OF THE FIiRsT ORDER AND FIRST
DEGREE IN THE DERIVATIVE *.

CONTINUATIONS OF A REGULAR INTEGRAL.

14. THE equations under discussion, viz.,

dug

_Cz—.g= _9(?/11, caes Up, Z)’ (8=17 '“3”)5

were obtained as a normal form of a general system of differential
equations; the functions f; being regular in the vicinity of assigned
values of the variables, when certain conditions are satisfied. The
equations may, however, be propounded independently of any such
origin of existence; in that case, there need not be a limitation to
the particular region initially considered and the functions f may,
for values of the variables that arise, cease to possess some at
least of the properties of regular functions. We therefore shall
take account of this wider possibility.

The existence of integrals of the differential equations has
been established for finite domains of a set of values of the
variables within which the functions f occurring in the equations
are regular; and these integrals, obtained as power-series, are
regular for some domain of the variable z. Within the whole of

* Reference can be made to Briot and Bouquet’s memoir quoted in the biblio-
graphical note at the end of chapter 1. A different method of reduction of the
differential equation to typical forms, valid in the vicinity of the respective
exceptional points, is adopted in this chapter; it is based upon Weierstrass’s
theorem (Note to chap. 1) upon functions of more than a single variable.

In regard to non-regular integrals, only a few preliminary remarks are made in
this chapter; they are discussed more fully in later chapters.
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this domain, the derivatives are also regular and the differential
equations are satisfied. »
Let ¢’ be a point in the domain and let a/, ..., a,” be the values
of the integrals at that point; so that ¢, &/, ..., a,” constitute an
ordinary combination of variables for the functions /. When the

~ existence-theorem is applied with this set of values as initial values,

there is a domain of ¢’ at all points of which there exist integrals
satisfying the differential equations, these integrals being regular
in the domain. By a repeated application of the process, the.
region of existence of the integrals can be constructed gradually.
It is evident that this process is equivalent to the process of
continuation* applied to power-series; and that, for each one of
the integrals, the series obtained for the first domain is the initial
element. It may happen that parts of the z-plane cannot thus
be included, as not belonging to the region of existence; regular
integrals exist determined by initial values, but they have been
established only so long as the variable moves in a simply-con-
nected part of the plane leading to values of the variables which,

. with the variable z, leave the functions f regular.

It has been seen (§ 11) that, within the domain of a point
z=c¢, the path of variation of the independent variable from ¢ to
any other point ¢’ can be deformed without affecting the values of
the integrals at ¢’ as determined by the assigned initial values at
c. But the result may not necessarily hold when, by the process
of continuation, domains of successive points and corresponding
successive elements of the integrals are obtained. For when this
process of continuation is completely effected, it may happen that
a closed path of the variable z, returning to the initial point c,
does not lead to initial values of the integrals. From what has
already been established, it must then be inferred that the path of
the variable encloses points in the z-plane corresponding to values
of the variables for which some of the functions occurring in the
differential equations cease to be regular.

Points of this character, when taken in the aggregate, will, for
the sake of brevity and to distinguish them from ordinary points,
be called exceptional (or criticalt) points of the differential

* Th. Fns., §§ 34, 90.

+ Oritical points are, by some writers, restricted to the class of branch-points

round which a finite number of branches circulate. When f is everywhere a
uniform function, the exceptional points are frequently called singularities.
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equations. It is therefore necessary to consider the system of
differential equations for values of the variables in the immediate
vicinity of the exceptional points: further, it will be convenient
to obtain the various classes of points included in this general
aggregate.

ON THE PosSIBILITY OF NON-REGULAR INTEGRALS.

15. Thus far, only those solutions which are characterised by
the possession of the properties of regular functions have been
taken into account; they are the only set established by Cauchy’s
theorem. But Cauchy’s theorem does not exclude the possibility
of other non-regular functions which may be determined by the
same conditions; its sequel declares that, if the solution is regular,
it is unique. Instances of the actual occurrence of non-regular
solutions satisfying the same conditions as regular solutions
can be constructed, and one such will be given: the general
investigation is difficult.

- The investigations will, in the first instance, be undertaken in
connection with only a single equation, so that there is only one
dependent variable. And further, for the sake of simplifying the
argument, the equation will in the initial stage be taken of the
first degree in the derivative, so as to avoid complications caused
by concurrence of different classes of exceptional points; the
substantially important critical points of a single equation, that
initially is not of the first degree in the derivative, will be
considered subsequently.

Accordingly for the immediate purpose, the equation to be

considered is
dw

= S (w, 2).
When Cauchy’s theorem is applied to this equation, it establishes
the existence of a regular solution acquiring the value a when
z =c¢, provided that f(w, z) is regular within a finite domain in
the vicinities of a and c¢; the solution is obtained in the form of a
converging series of powers of z— ¢ and, being regular, it is known
to be unique.

There is one case of exception, so far at least as concerns the
variability of the regular solution, though f(w, 2) is still a regular
function. It arises when the value assigned to w makes f vanish
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without regard to the range of variation of z; the equation then

has the form

dw m
T (w—a)y"g(w, z),

where m is a positive integer greater than zero and g(w, 2) is
regular in the domain considered. The equation is undoubtedly
satisfied by w=a: the possibility of variation in the solution is
precluded by the conditions imposed which are manifestly quite
special in connection with the form of the equation.

The proof as to the uniqueness of the regular solution obtained
depends upon the fundamental assumption, tacitly made and
actually used in the analysis, that the solution is uniform. When
once the possibility of multiform integrals is admitted, an attempt
to apply the proof to them, or to each branch of them, must fail ;
the proposition, that the path of the independent variable could
be deformed at pleasure and could therefore be taken a straight
line, can no longer be applied. Fuchs* and Picardt object to
the validity of the argument for the case of integrals that are not
regular, on the ground that the finiteness of the path from the
initial point ¢ to a point z is of the essence of the argument. It
is true that the full variation of the variable is excluded, if a path
infinite in length is not permissible, though the proposition is not
therefore wrong; but so long as the possible multiformity of a
solution can be entertained, the full variation of the variable is
not admissible, in this sequence of ideas.

Consider the example
c}zﬁ _ (w — a)?
dz~ z-—-¢°
a special form of an equation instanced by Fuchs in another
connection; the complete solution of the equation is

1
A —log(z—9§)
This solution is one possessing an unlimited number of branches :

they can be deduced from one another by adding to any one
branch of the logarithmic function (positive or negative) integer

w—oa=

* Berliner Sitzungsber., 1886 (1), p. 283.
+ Cours d’Analyse, t. 11, (1893), p. 314.
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multiples of 27¢; and those branches for which the integer
multiples are infinite reduce the solution to the form w =a,
though they reduce it to this form whether z be equal to ¢ or not.

In this mode of stating the result, there is no question of the
variation of the path of 2. Each branch of the solution is uniform
in a simply-connected region in the finite part of the plane that does
not enclose the point &; there is an unlimited number of branches
of the function each of which has reduced the solution to the

assigned form. The point z={¢ is a singularity of the function

—:ﬁg , and therefore it is excluded from the range of variation of z

contemplated in Cauchy’s theorem ; if therefore all the conditions
in Cauchy’s theorem are to be definitely maintained, it is not
permitted to make the variable z describe a path round the
point ¢ Were it otherwise, it would be possible to make the
variable pass from ¢, move round ¢ an unlimited number of
times* and then move to the, final value z: the final value of

w would be a,—in effect, the same as that obtained from the
branch of the logarithmic function chosen above.

On the other hand, it is to be noticed that each of the branches
of the multiform function under consideration coincides, within
the region of variation retained, with the uniform solution known
to exist. So far as concerns the particular equation under dis-
cussion, the difference between the two ways of regarding the
solution, which is equal to a when z is ¢, may be resolved into a
difference of mere statement. Yet when we regard a multiform
function as composed of all the branches that do not isolate them-
selves into uniform functions over the whole range of their
existence, the more exact way of stating the result would appear
to be, in the present case, that some branches of the multiform
integral satisfy the conditions that determine the unique uniform
integral. Of course, the exceptional points of the functions in the
differential equations are excluded from the range of variation;
" but critical points of the integral may be introduced by a process
of integration and some of them might be included within the
specified range. '

The conclusion therefore to which the argument and the

* This could be secured by a finite path, for instance, along an equiangular
spiral having its pole at ¢ and passing through c.
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example, limited as the latter is, lead, is that further investigation
is necessary before the proposition, that the.unique regular integral
of the equation is the only integral of any kind satisfying the con-
ditions within the range of variation assigned by Cauchy’s theorem,
can be regarded as definitely established*. The actual resolution
of the question will be possible after the singularities of the
equation have been considered in their effect upon the integral
in their immediate vicinity (§ 34).

ExcEprTiIONAL POINTS OF THE EQUATION.

16. Having adverted to the possibility of integrals of an
equation that are multiform in character and determinable in part
by initial conditions, we now proceed to the consideration of the
exceptional points of the equation of the first degree in the
derivative. So far as is suggested by the preceding investigation
in the case of a single equation

% =f(w’ z),

all these exceptional points are included among those near or

at which the function f(w, 2) ceases to be regular and therefore
can be
(i) not finite, or

(i1) not determinate, or
(iil) not uniform.

Further a function f(w, z) can cease to be continuous from various
causes. One such cause may be the occurrence of an infinite
value; it will be deemed to be included in the first of the above

* The proof given by Picard, Cours d’4dnalyse, t. 11, pp. 314—318, based upon
the corresponding existence-theorem for partial differential equations, seems to me
to be incomplete. The solutions indicated by the existence-theorem are regular
and it can be proved, as in the earlier part of this chapter, that the regular
solutions are the only regular solutions determined by the assigned conditions;
but it is not proved that they are the only solutions so determined and, indeed,
there is the same kind of difficulty in establishing their uniqueness as arises in the
case of ordinary equations.

A proof, which is outlined by Painlevé in his Stockholm Lectures, pp. 19—20,
virtually assumes that any branch of a possible non-regular solution is regular
within a cirecle of half the radius of that over which the regular solution is known
to exist: the assumption requires to be justified before the proposition can be
regarded as established.




48 EXCEPTIONAL POINTS [16.

classes. Another may be the occurrence of one or more points of
essential singularity; it will be deemed to be included in the
second. of the above classes. Further, it will be assumed that the
function f(w, 2z) has no lines or spaces of essential singularity for
variations of z in its plane. Hence so far as regards the cessations
of continuity of f(w, z) that are admitted as possible, they give
rise to no classes of exceptional points other than those .already
retained.

It does not follow that all such points, which lead to deviations
from regularity in the function f(w, z), are exceptional points of
the intégral; all that can be stated before investigation is that,
taking account of Cauchy’s theorem, all possible exceptional points
of the integral that arise through the form of the differential
equation have been retained.

On the other hand, it equally does not follow that all the
exceptional points of the integral, regarded as a function of the
independent variable, are thus secured. For example, the integral
of the equation

is w=(g"—am)y",
where @ is arbitrary: manifestly the m points given by z™=a™

are parametric branch-points of the function w. The integral of
the equations

dw
_d—z = W,
dw, w?-+ 2qwiw,?
dz ~ w 7
1
is w= ae~°,

where a and ¢ are arbitrary; the parametric point ¢ is an essential
singularity of the integral. In the former instance, the parametric
branch-points would be found to occur naturally in the discussion
of the infinities and the indeterminate values of the expression for

dw

7’ provision for which has already been made. In the latter

instance, the parametric singularity does not obviously arise in
connection with the exceptional points of the two simultaneous
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equations. In fact, the obvious singularities to take account of
are a zero value of w and an infinite value of w,; but the form of
the solution shews that, for the parametric singularity c, the
value of w is not definite nor is-its variation in the immediate
vicinity definite : and indefiniteness in value of one of the variables
gives rise to exceptional points distinct from specific singularities
of functions that occur. Though it is to be noted in passing that
the latter instance is not that of a single equation, still it
manifestly is desirable that account should be taken of the possible
occurrence of parametric singularities of the integral which do not
arise through the exceptional points of the equation or equations
under consideration.

SINGULARITIES OF THE FUNCTION f(w, z), WHEN UNIFORM.

17. It thus is necessary to consider the various classes of
values for which f(w, 2) is not regular. .- Let w=a, z=¢ be such
a combination of values; then there may be some power-series
P, (w—a, z—¢), vanishing for the combination w=a, z=¢, and
such that the product

P,(w—a, z—c) f(w, 2)

is a regular function in the vicinity of a and ¢; the combination is
called an accidental stngularity of f (w, 2).

Of accidental singularities, there are two kinds. If the above
product P,/ can, by appropriate choice of P,, be made to have at
a, ¢ a value different from zero, then the singularity is said to be
of the first kind. If however all the power-series, which render
the above product regular, are such as to make the product vanish
at a, ¢, the singularity is said to be of the second kind.

- If there be no power-series vanishing at the values a, ¢ such
that the product P,f is regular at and in the immmediate vicinity
of a, ¢, then the combination a, ¢ is said to be an essential
singularity of the function*. This class of values manifestly
includes those for which w=a is an essential singularity of f
without regard to the value of z, and those for which z=c is an
essential singularity of f without regard to the value of w.

* Weierstrass, Crelle, Lxxxix (1880), p. 3; Ges. Werke, t. 11, p. 128. See also the
memoir in the latter volume, pp. 135 et seq.

F. II. 4
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- If a function f(w,2z) be such that w=a is an essential
singularity of f without regard to the values of 2z, and if all the
essential singularities of f also arise for values of w. without regard
to the values of z, then, as they are also essential singularities of

}, by taking the equation in the form

dz 1

dw ™~ f(w, 2)’
we have an equation in which all the essential singularities for the
value of the derivative arise for values of the independent variable.
If a function f'(w, z) be such that all the essential singularities

arise for values of z without regard to the value of w, then the
equation

9 fw, 2)

is of the same character as in the preceding case.

If a function be such that some essential singularities of f
arise for values of w without regard to the values of z and some
arise for values of z without regard to the values of w, the equation
cannot be transformed, as in the first case, so that the essential
singularities of the derivative arise for values of the independent
variable.

Manifestly neither the first.case nor the third case can arise if
S (w, z) is a rational function of w. '

18. In order to discriminate exactly between the two classes
of accidental singularity, we use a special form of Weierstrass’s
theorem already quoted*, taking the case in which the number of
variables is two. ‘

As regards the power-series P,(w—a, z—c¢), if Py(w—a,0)
do not vanish for all values of w, and if the lowest power of w—a
which 1t contains have an exponent m, it is possible to determine
a function p (w, z), where

pw, 2)=(w-=o)"+ p, (w—a)" + p,(w—a)" 2+ ... + P,
and p,, ..., pm denote functions of z—c regular in the vicinity of
z=c¢, such that - D o
‘P (w—a, 7= c)=p (w, z) eF®: 2,
where G is a regular function of w and z in the immediate vicinity

* Bee Note, chap. 1, p. 19; in:particular, pp. 24, 25.
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of a and ¢. But if P,(w— a, 0) vanishes for all values of w, then,
effecting a transformation

W—a=Ne+puv, z—c=Nu+uv,
where A, u, A/, u’ are arbitrary constants subject to the conditions

7\‘/*"1 - 7\‘//" %O’ Do (7\': >",) =Ié 0,
where p, (z, y) is the aggregate of terms of the lowest dimensions,
say l,in P, (z,v), 1t is possible to determine a function p (u, v), where
pu, v)=uw + Pt + put2 4+ ...+ Py,
and p,, ..., p; are analytical functions of v regular in the vicinity
of v=0, such that
Py(w—oa, z—c)=p(u, v)edt 2,

where H is a regular function of w and z in the immediate vicinity
of @ and ¢. In the former of these resolutions, the functions
pr (for r=1, ..., m) are regular in the vicinity z=c and .vanish
there; in the latter, the functions p, (for s=1, ..., ) are regular
in the vicinity v=0 and vanish there.

When a, ¢ is an accidental singularity of f(w, 2), then the
product

P,(w—a, z2—c)f(w, 2)
is a regular function, say @, (w —a, z— ¢), in the vicinity of a, c.

If the accidental singularity is of the first kind, @, does not
vanish there; and therefore the term of lowest dimension in
@ (w—a, 0) is of order zero. Accordingly, applying Weierstrass’s
theorem, we have

Q(w—a, z—c)=el @2,
where J is a regular function in the vicinity of a, c.

If the accidental singularity is of the second kind, ), does

vanish at it: the corresponding alternatives for @,(w —a, z—c)

‘must be taken as they were taken for P,. If @, (w — «, 0) does not

vanish for all values of w and if the lowest power of w — « which it
contains has an exponent n, it is possible to determine a function
q (w, z), where
q(w,2)=(w—a)"+q(w—a)y’1+... +q,,
and ¢, ..., ¢, denote functions of z —c¢ regular in the vicinity of
z = ¢, such that ’
Q(w —a, z—c)=q (w, z) ¥ @2,
where I is a regular function of w and z in the immediate vicinity
42
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of a and ¢. But if @, (w—a, 0) vanishes for all values of w, then
effecting the same transformation as before, viz.
w—a=ANu+pu, z—c=Nu-+uv,
and imposing a further exclusive limitation by the condition
g (M N)#0,
where ¢, (2, y) is the aggregate of terms of lowest dimensions, say
k,in @, (z, ), it is possible to determine a function ¢ (v, v), where
’ q (u, v) = uk + qur 1+ guk 2+ ... + gz,
and ql, ..., qi are analytical functions of v regular in the vicinity
of v=0, such that

Qo (w—a, z— cy=q (u, v)eY W3,
where T is a regular function of w and z in the immediate vicinity
of a,c. In the former of these resolutions, the functions ¢, (for
s=1, ..., n), regular in the Viciniby of z=c¢, vanish there; in the
latter, the functions g, (for s = ., k), regular in the vicinity of
v = 0, vanish there.
In each of these cases we have

_Q(w—a,z—c)
S, Z)_Po(w—a, z—c¢)’

19. When the accidental singularity is of the first kind, then
S (w, z) has either the form

1 eJ w,2)—G (w,2)

3
p(w, 2)

or the form 1 eJ w,2)—H (w,2)_
P (%, v)

For the first of these, J (w, z) — G (w, 2) is a regular function in the
region considered: for the second of them, J (w, z) — H (w, 2) is
likewise a regular function. It is manifest that f(w, 2) is infinite
at o, ¢; and the infinity is a determinate infinity. We have

(—z’L—U = _—1__. e—G1 {w, 2)
dz p(w, 2) ’
dw 1 G, 0,2 -
and therefore dz = p (w, z) e 2
dw 3 3
o dz = Gy (w,2) .
or dw p ('Ll, 'I)) € s
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where the functions on the right-hand side are regular in the
immediate vicinity of w=a, z=c.

20. When the accidental singularity is of the second kind,
then f(w, z) has one of four forms: viz.

q(w, 2) eF w,2)—G w,2)
p(w, 2)°

M e¥Y w,—G w,2)

p(w, 2)

q (w_,_ z__) el w,2)—H w,2)

P’

9 (U V) oy 0, 2—H 0,20,

P o)’
Each of the functions in the index of the exponential is regular in
the region considered ; and each of the functions ¢ (w, 2), p (w, 2),
q (u, v), p(w, v) vanishes at a, ¢. Moreover, owing to the source
of the functions in connection with f(w, z), it may be assumed
that the numerator function ¢ and the denominator function p
have no common factor*,

Consider the first of these forms. At a, ¢, both ¢ and p vanish.
For other values of w and 2, both ¢ and p can vanish only if the
resultant of the two functions, obtained either as an eliminant
in z or as an eliminant in w, should vanish, for some value or
values of z or for some value or values of w; and these values
have a finite modulus and are isolated values, because g and p
have no common factor. Accordingly if we take a small, not
infinitesimal, region round w = a, z = ¢, then for no values in that
region other than the respective centres can ¢ and p vanish together.

Now g and p are algebraical in w. Hence within this region
there will be an infinitude of simultaneous values of w and z for
which ¢ can vanish alone without p vanishing for any of the

combinations: for each of them % is zero. There will be another

infinitude of simultaneous values for which p can vanish alone
without ¢ vanishing for any of the combinations: for each of them

* There is one exception, of slight functional importance, to this statement in
regard to the last of the four forms: it will be noticed in its proper connection
(8 85, p. 86).
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dw/dz is infinite. There will be another infinitude of simultaneous
values for which '

p—4g=0,
where A is any constant, without either p or ¢ vanishing for any
of the combinations: for each of them dw/dz has the value 4.
Hence dw/dz can have any value in the immediate vicinity of «, ¢:
and at a, ¢ its value is not determinate.

A similar argument applies in connection with each of the
other three forms, when they are transformed as in § 35; the
indeterminateness of the value of the derivative at and near the
point is the general characteristic of the accidental singularity of
the second kind.

Hence in the immediate vicinity of such a singularity of
f(w, 2), the differential equation has one of the forms.

d_ q (w, ) €620, )

dz  p(w, 2)

dw g (u, v) oGt

dz  p(w, 2) ¢

‘_l_@_” 9, 2) gy 0,5),
dz ~ p(u, v)

dw _ 9w, v) (u, v) ¢Gelin, )

dz  p(u, v)

where w—a=Au+pv, z—c=Nu+pu'v, with merely exclusive
limitations on the constants A, x, A, &’; in each of the forms,
g and p are algebraical functions of w and u respectively: and
both ¢ and p vanish at e, ¢

It is clear that accidental singularities of f(w, z), depending
upon only one particular value of one of the variables and without
regard to the value of the other, are included in these two classes.
Thus let 2=¢ be such a point; then there is some positive integer

x such that
(z — o) f(w, 2)

is regular in the vicinity of ¢; if its value at ¢ is not zero for a
value of w, that accidental singularity belongs to the first kind ;
if its value at ¢ is zero for a value of w, that accidental singularity
belongs to the second kind.

21. No limitation, external to the equation, has been imposed
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upon the arbitrary values assigned to-the variable w and. the
variable z as initial values; but the forms considered depend upon
a tacit assumption that both variables initially are finite. It is
necessary to take. account of infinite values, which need not be
singularities of the functions in the equations ; it is convenient to
take account of them separately from the finite values. For this
purpose, let ww, =1, so that '

o= (g 2)
—ﬁ (’wl’ Z)
say. The initial value of w; to be taken is zero; for an as31gned
value of z, the combination may be an ordinary combination for f;,
or it may be an exceptional combination. In the former case, the
existence-theorem applies; in the latter case, the combination
belongs to one of the classes considered for the earlier form and
the corresponding reduction to a typical form should be effected.
Similarly, for infinite values of z, we change the variable to &
by assuming 2§ = 1.

22. Asregards the various classes of singularities, one property
should be noticed.

In the case of essential singularities, the combination «, ¢
represents a combination of isolated points in the respective
planes. If c¢ alone, without respect to the value of w, be an
essential singularity of the function f(w, z), then the function is
determinate and finite for points in the z-plane in the immediate
vicinity of ¢. If f be transcendental in w, it is possible that isolated
values of w alone could be essential singularities of f: as pointed
out before, a transformation making z the dependent variable.and
w the independent variable brings the equation under the case
last considered, in which the essential singularity is a value of the
independent variable without regard to the dependent variable.
If f be rational in w, then isolated values of w alone cannot be
essential singularities of f; points in the z-plane, being isolated

‘points, can provide this kind of singularity alike for special values

of w and without regard to the value of w. Essential singularities .
of the function f(w, 2) are isolated points in the z-plane, when f
is a rational function of w; preceding assumptions require f to be
merely a uniform function, qua function of z.
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In the case of accidental singularities of the second kind, say
of the combination a, ¢, the function behaves like

qg(w—a, z—c)
p(w—a,z—c)

in the immediate vicinity ; for the actual values @, ¢, the function
is indeterminate in value: and for any region round a, ¢ however
small, the function can acquire any value. But in the infinitesimal
region indicated, there are no other simultaneous values of w
and z where the function can be represented in a corresponding
analytical form; so that the combination a, ¢ represents a com-
bination of isolated points in the respective planes. - Accordingly,
accidental singularities of the second kind possessed by the function
f(w, z) are isolated points in the z-plane.

In the case of accidental singu]arities of the first kind, say of
the combination a, ¢, the function behaves like

1
p(w—a, z—c)

in the immediate vicinity. For the actual values a, ¢, the function
is infinite in value; for any small region round a, ¢, the value of
the function is everywhere determinate and, by making the region
sufficiently small, the modulus of the function can be made as
large as we please. Not merely so, but for every point z in such
a region there are values of w which make the modulus of the
function actually infinite ; for writing z — ¢ = &, where | §| is to be
taken small, and w — a = W, the equation

p(W,6)=0

is an algebraical equation in W which has zero roots when {=0
and, by the known theory as to continuity of the roots of an
algebraical equation, has one or more roots of small modulus
when | ¢| is small. It therefore appears that, in the case of a
combination a, ¢ proving to be an accidental singularity of the
first kind, the point ¢ is not an isolated point in the z-plane; at
all points in the immediate vicinity of ¢, there are some associable
values of w in the immediate vicinity of a which give actually
infinite values for f; and all values of w in the immediate vicinity
of a leave | f| larger than any finite quantity by taking the vicinity
sufficiently small. We may proceed from a point on the boundary
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of a small vicinity of ¢ in a direction outside that vicinity and
obtain another small vicinity for every point of which there can
arise one or more combinations of w and z which give deter-
minately infinite values to f.- Accordingly, accidental singularities
of the first kind possessed by the function f form a continuous
region in the z-plane. In fact, for any value of Z, we have a
definite infinity given by

. 1

T D

because f is rational in w, this is generally a definite algebraical
equation in w, known therefore to possess roots each of which,
associated with Z, is an accidental singularity of the first kind.

0;

It may happen, however, that an isolated value of z is a pole
of some coefficient in f(w, z) without regard to the value of w;
there then is no algebraical equation for values of w. Similarly,
it may happen that a value of w makes f infinite without regard
to the value of z. These are merely very special cases, arising as
limiting forms of the general case.

Corresponding considerations arise and should be applied
when, for the singularities in question, either w is infinite, or
z 1s infinite,  or both are infinite.

It thus is clear that, for a function S (w, 2) which is rational in
w and uniform in z; the mode of occurrence of points in the z-plane
for essential singularities and for accidental singularities of the
second kind is markedly different from that for accidental singu-
larities of the first kind ; in the two former classes, the points are
isolated points in general*: in the latter class, the points belong
to a continuous region or continuous regions. When therefore a
curve is drawn in the z-plane, it will always be possible to draw
the curve continuously so that no point of it is at only an
infinitesimal distance from a point of singularity, either essential
or accidental of the second kind; the explanations adduced shew
that it is not possible to exclude accidental singularities of the
first kind from its course.

* This would not apply to families of functions which possess lines of essential
singularity or lacunary spaces in the z-plane; at the present stage, such families of
functions are tacitly excluded from discussion.
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BRANCHES OF f(w, 2).

23. It still remains to take account of points, or combinations
of values, where the function f(w, z) does not possess only a single
value, the points themselves not belonging to any of the pre-
ceding classes. In the vicinity of such points the function is not
uniform ; the number of values for any point in that vicinity may
be limited or unlimited. By taking continuations of the function
F(w, 2) so as to make closed paths round all such points in the
respective planes of w and z, (or, if the branching is due to the
mode of occurrence of only one variable, in the plane of that
variable alone), and by noting the various branches of the function
that thus arise solely from continuation of f(w, z) and without
regard to the fact that f is to be equal to the derivative of w, we
shall find that the total number of branches is either limited or
unlimited.

If the number is unlimited, then either f is not determined by
one equation or, if it is so determined, the equation is transcend-

ental in /. When f is replaced by Ojl_%:’ the former case implies

that no differential equation of the first order is satisfied by w;
the latter case implies that a differential equation of the first
order is satisfied by w, the equation being transcendental in the
derivative, the coefficients being uniform functions of w and z.
As our attention will be limited to equations that are algebraical
in the derivative, both the possibilities that thus have arisen will

be ignored. ’

When the number of branches of the function f is limited and
equal to n, say, then f is the root of an algebraical equation

F(f, w, 2)=0,

which, when made integral in f is of degree n in f; the coefficients
are uniform functions of w and z. Accordingly, we shall have a
differential equation
. (dw ,
F (EZ , W, z) =0

of the first order and of degree n when made integral in powers of
the derivative ; the coefficients are uniform functions of w and z.
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Such combinations of values of w and z, as make the branches
of f circulate for contours round them in their respective planes,
are undoubtedly exceptional points for the equation

L)

This however is only one of n equations to which # is equivalent,
and the exceptional combinations of points of f are exceptional
combinations for =0, being the branch-points of # considered as
a function of w and 2. They accordingly will be discussed later in
connection with equations of the first order when the degree of
the equation is higher than the first: there is moreover an added
advantage in this reservation of branch-points for the present,
because some of the branch-points of the equation

dw
F(&?’ w, z) =0

may be also singularities of the derivative.




CHAPTER 1IV.

INFLUENCE OF AN ACCIDENTAL SINGULARITY OF THE FIRST
KIND, POSSESSED BY THE EQUATION, UPON THE CHARACTER
OF THE INTEGRAL¥*.

WE now proceed to the consideration of the integral of the

equation
dw
E—Z_ =f(w, Z)

in the vicinity of the various singularities which it possesses; and
the various forms will be considered in turn. These forms have
arisen in connection with special combinations of values; so that,
for the immediate purpose, what is desired is a knowledge of the
behaviour of an integral or integrals (if any) in the vicinity of a, c,
such that w=a when z=c.

But in an earlier instance, when certain forms were obtained
as reduced canonical forms of a system of differential equations,
these forms having certain restrictions upon their properties to
serve that purpose, it was pointed out (p. 42) that such forms
might be propounded initially without such restrictions: so here
also, it may be that equations are propounded with the same
analytical expressions as the canonical forms, though not restricted
by the same initial conditions and the same limiting range of
functional existence. "

* In connection with the subject of this chapter, reference may be made to the
memoir by Briot and Bouquet (cited on p. 40) and particularly to the examples
which they discuss. Their method is followed by Pieard, Cours d’Analyse, t. 11,
ch, xit. Also the memoir by Fuchs, ‘ Ueber die Werte welche die Integrale einer
Differentialgleichung erster Ordnung in singuliren Punkten annehmen koénnen,”
Berl. Sitzungsber. (1886, 1), pp. 279—300, should be consulted ; it is in this memoir
that the notion of points of indeterminateness of a function is first introduced into
the discussion of the integrals of differential equations.
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ACCIDENTAL SINGULARITIES OF THE FIRST KIND.

24. We shall first deal with the class of accidental singularities
of f(w, z) which are the simplest in regard to the analytical
expression of f in their vicinity—viz. those of the first kind. -
Taking w=a, z=c to denote such a singularity, we know that
the function

1
S (w, 2)

is regular in the vicinity of the combination of values.

In the first place, if does not vanish for all values

1
S +a o) |
of y, then (Note, ch. 1) there is a function p (w, 2z), where

pw, 2)=(w—a)y?"+p,(w—o)" 1+ ... + Pm,

and the functions p,, ..., p, are regular functions of 2z -—c¢
vanishing at ¢, such that
1
s = p (W, 2) €512,
Flw, 2 p(w, 2)

To consider the differential equation, write
w=a+vy, z=c-+a

Also, since p; is regular in the vicinity of the #-origin and vanishes
there, write ’

pi=a™ Py,
where n; is an integer >1 and P; is a regular function of # which
does not vanish with #; and let

eGL(a: €) = A’

so that €%, being a regular function of w and 2, is a regular
function of z and y, equal to A when y=0, =0. Thus the

_differential equation becomes

Z—; =4 {?/m + wanly'In—l + wﬂ2P2ym—2 a4+ w""'Pm} +...,
the ﬁnexpressed terms being of moduli smaller than the expressed

terms in the immediate vicinity of the origin; or it may be written
» dz
— = Ay™Q + 2T
dy Yy + T,

where Q may be unity but more generally is a regular function
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of # and y, which is equal to unity when =0, y=0; and T
is a similar function, without the restriction of being unity
when =0, y=0. As the right-hand side of the equation is a
regular function of # and y, the existence-theorem leads to the
conclusion that there is an integral of the equation, uniquely
determined by the condition of acquiring a zero value when y=0;
and it is known that this integral can be expanded in a converging
series in powers of 4. The process adopted in the proof of Cauchy’s
theorem leads to the expansion. Evidently d°z/dy® vanishes for
z=0,y=0 when s=1, 2, ..., m, but its value for =0, y =0 is
m! A when s =m + 1; and the derivatives of higher order can be
deduced by making the same use of the equation as in § 10. The
expansion takes the form ‘
o ym+1 /dm+1w) . ym+2 ' (dm+2w> 4
Gn + D1 \dy )y T (e + 251 \dy ),

= m 1 ym+1 -+ bym+2 + cy’l’l’l«'{"s +

where A, b, ¢, ... are finite constants: and this value of « is the

desired solution. To obtain w as a function of z, this series must
be reversed ; the result of the reversion gives

w—a=y

—E+BE - yE+
1 1 .

where o« = {(m + 1)/A}"*+1 and & = (z—c)"*1, and the series con-
verges* for sufficiently small values of £ It thus follows+ that
z=c is an algebraical branch-point of order m, that is, a branch-
point round which m 4+ 1 branches of the function w interchange
in a cycle and at which they have a common value a. The results
may be summarized as follows :—

If the function f(w, z) become infinite for w=a, 2= c in such
a way that its recvprocal is regular vn the immediate vicinity of
those values, and if m be the order of the first of the partial deriva-
twes of 1/f with regard to w that does not vanish for w=ua, z=c,
then there exists an z’ntegral of the equation

W F w2

* Chrystal’s dlgebra, vol. 11, p. 354.
+ Briot et Bouquet, (L. ¢., p. 40), p. 148.
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 acquiring the value a when z=c; this integral has m + 1 branches

i the tmmediate vicinity of z=c, forming a single cycle for
interchange round the branch-point c.

The point is sometimes called an algebraical critical point for
the function w. :

25. In the second place, suppose that

1
S(w—a, 0)
does vanish for all values of w; then there is a function p(u v),
given by
p (U, v) =u™ 4+ pu™ 1+ ool A+ P,
where pi, ..., pm are regular functions of v vanishing with v,
such that '

1 .
F—a 7m0 = P e,

where G, is a regular function of w — @, z — ¢, and where
W—oa=ANu+puv, 2Z-—c=Nu-+po
Since S vanishes for all va.lues of w, it follows that
f(w —a, 0)
p (u, v) vanishes when Nu +u'v =0. Now p(u, v) is an integral
algebraical function of u, the coefficients of which are regular
functions of v vanishing with v; hence Nu+ u'v is a factor of p.
Let the sth power of this linearrfactor be the highest contained
in p, and let
P (, v) = (N + w0y py (u, v),
where p, now does not vanish with X'u + uw'v. Now write
w—a=y, Z—Cc=ux;
then p(u, v) e @9 =asg (y, x),
where ¢ (y, ) is a regular function of z, y in the immediate
vicinity of 0, 0, and g (y, 0) does not vanish for all values of .

The differential equation then becomes

dz
dy = z*g (Y, ),

where g (y, ) is a régillar function of y and & in the vicinity of
0, 0, such that g (y, 0) is not zero, and s is a positive integer.




64 EFFECT OF SINGULARITY [25.

So long as the variables remain in the domain of the new
origin, that is, so long as w and 2 are confined to a region round
a and ¢ that includes no other exceptional combination, there is
only a single regular integral of this equation which vanishes
when y=0; and it is given by 2#=0. Hence for this relation
between w and z, it appears that 2z remains steadily equal to ¢
while w varies from a within a domain of a and ¢ that contains
no other exceptional combination of the original equation; and
therefore, with this limitation on the range of the variables,
w cannot be regarded as a function of z. In other words, no
regular integral of the equation can be determined by the
assigned conditions of values a and ¢, if the range of the variables
is restricted to a small domain round those points.-

This kind of relation between w and z is sufficiently illustrated
by the equation
dw - -
a0 =y,
where m and n are integers and a is a constant; the general
integral can be obtained explicitly and its evanescence be observed
when w=a, z=c are assigned as conditions for the determination

of the constant of integration.

But if this restriction as regards the range of variation of the
variables is not imposed, the result is no longer valid. As an

example, consider
- dz x?

dy " a+y’

which satisfies all the assigned conditions; the complete in-
tegral is :

1
A—Tog (a+3)’

X =

that is,
1

Z_C=Af—log(fzu—a+a)f

If then w, starting from the value «, passes an unlimited number
of times round the point a — a, then undoubtedly any number of
branches of the function on the right-hand side give z =c on the
return of w to a. When w is expressed as a function of 2z, we find

1
w—a+a=ecde"°;
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the point 2z = ¢ is an essential singularity of w. Now this function
is uniform; it is known that, in the immediate vicinity of an
essential singularity, a function can assume any value*, and
therefore w can assume the value a. The difference from the
preceding case arises from the fact that, at the essential singu-
larity z= ¢, the value of the function is not determinate : but the
solution may not be excluded.

The difference between the two cases, according as the range
of variation of the variables is restricted or is not restricted,
recalls the difference between the two views regarding the
uniqueness of the regular function determined by initial con-
ditions, as stated in Cauchy’s existence-theorem and discussed
in § 14, 15. In connection with a given equation

W F, ),

for which a, ¢ is an accidental singularity of the first kind, the
modified expression for f is only known to be valid within the
immediate vicinity of a«, ¢ (though it may be valid in a less
limited vicinity), and there could then be a justification for
restricting the variation of the variable. In connection with a

given equation

o% =p(w, 2) g%,

where the region of validity of the expressibn on the right-hand
side is not thus limited, there then is not the corresponding
justification for restricting the variation of the variable.

ASSIGNMENT OF INFINITE VALUES.

26. These inferences have been deduced on the implied
supposition that o is not infinite; the possibility of infinite values
must be considered.

The equation is

= Fw 2

_ PatPpw+ ... + Pyl + pow™
gm + @ma® + ... + W™ 4+ gouw™ ’

* Th. Fns., §§ 33, 62.
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where f(w, z) is expressed as a rational function of w. ‘Then n > m,
because, by hypothesis, w = o0 must make f(w, z) infinite for some
assigned value or values of z; and both p,; ¢, may be assumed
different from zero for a value of z, say z = c, this valie being an
ordinary point for all the other functions p and q.

Let n=m + 1; then if wyw =1, the equation for w, is

clw1 po + pyw, + .
dz QO + g1, +

=w,h(w,; z — c),

where A is regular for sufficiently small values of |w;| and |z —c|.
From § 10, p. 32, it follows that, as an initial value zero is
assigned to w;, ‘the only regular integral of the equation is that
which arises by giving a persistent zero value to w,; and therefore
the integral of the equation

AW _ Pt + PmW + - + Piw™ + pow™*?

dz Qum+ gmaW + ... + Gt + g™’
to which is assigned an initial infinite value for a value of z that
is an ordlnary point for all the coefﬁments p and q and is not a
zero of either p, or g, is infinite for all values of 2 in the vicinity
of ¢; the integral is not properly a function of 2.

Next, let n =m+2. On making the same substitution for the
dependent variable, the equation for w, is-
dw, __ potpnt..
dz Qo+ qw +

=k (w,, 2 — ¢),

where k is regular for sufficiently small values of |w,| and |z —¢|,
and .does not vanish for w; =0, z=c¢. The values w; =0, z=c,
constitute an ordinary set of values for the new equation; and
therefore there exists a unique integral w, which is a regular
function of z — ¢ and acquires the value 0 for z=c¢. Hence also
there exists a unique integral of the equation

AW _ Pmis+ Prmia® + ...+ prw™t 4 pow™

dz Im+ Qma® + .o+ QW+ QU™
determined by the condition that it has an. infinite value for any
given value of z, which is an ordinary point of each of the co-
efficients p and ¢ and is not a-zero of p, or ¢,. The unique

2
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integral w of course changes as the selected point z is changed
subject to the governing conditions. It is of the form

1 . . .
= uniform analytical function of z—c¢,

the term independent of z — ¢ being absent.

Lastly, let n>m+2. As before, the equation in w, is con-
structed ; it can be taken in the form
dz —atmis Qo T QWL+ o+ g™

W
du, ! Po+ Prtwy + - + pawy”

— wl—n+m+2 Q’

where Q is a uniform analytical function of w, and z—c¢ which
does not vanish when w, =0, z=c. By § 24, an integral of this
equation exists, determined by the condition that w,=0 when
z=c; the integral has »—m —1 branches in the immediate
vicinity of z=c¢, these branches forming a single cycle for inter-.
change round the branch-point ¢. Consequently there exists a
corresponding integral of the original equation determined by the
condition that it acquires.an infinite value when z=c¢: and this
integral has n —m —1 branches which interchange in a single
cycle round z=c.

Hence it appears that, with three general exceptions, the
acctdental stngularitres of the first kind are algebraical branch-
points of the integrals which certainly exist in the vicinity of these
pornts. These three exceptions are:

1
J(@+y, c+a)
regular: there is no regular function of z, satisfying the
equation and acquiring the value a when z=¢, when the
range of variation is limited to a small region;

- (1) when takes the form «*g (y, «), where g is

(11) when f (@71)—1 , 2 — o) takes the form 1%lh(wl, z—c), where

h is regular and does not vanish for w,=0, z=c: there
is no regular function of z satisfying the equation and
acquiring the value o when z=c¢;

5—2
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1 .
(ii1) when f(a , 2 — c) takes the form 1%3 k (w,, z—c), where
. 1 1 .
k is regular and does not vanish for w,=0, z=c¢; there
is a unique integral satisfying the equation and acquiring
the value o when z=c: its reciprocal is a regular function
of z—c for sufficiently small values of |z —¢]|.

The first two of these cases will be considered immediately in
regard to the possibility of non-regular integrals.

27. Kz.1. In illustration of these results, consider the integral relation
between w and z which is equivalent to

dw w(w+1)
dz = w—1 °
There exists an integral w, which is a regular function of z and is uniquely
determined by acquiring a value a for some value of z, say ¢; but a may not
be O or —1 or «o. In case an initial value O, or an initial value — 1, or an
initial value «, be assigned to w, then % cannot vary when determined by the
equation although z is capable of variation. The function
w—1
w(w+1)
is regular in the vicinity of w=1, and the integer s is unity; hence if ¢ be
the value of z when w=1,
e—¢=1(w—10+...,

and ¢ is a simple branch-point of the function w. These results are established
by the preceding theorems: they can be verified as follows.

The equation can be integrated ; for

B w—1 _ (w+1)2
dz—md'w—dlog a——-—-w s
so that (w412 _(a+1)? . .
w a

assuming that w=a when z=c. The value of a cannot be —1, for » would
then be — 1 for all values of z: and it cannot be 0, for w would then be O for
all values of z: and it cannot be infinite, for w would then be infinite for all
values of z: in none of these cases is w a function of z. For all values of a,
other than 0, —1, and o, the function w—a can be expressed as a regular
function of z—¢ vanishing when z=¢. A branch-point for the functional
relation between w and z is given by w=1: if ¢ be the corresponding value of
z, then
4= (atD? eS¢,
a

=463‘§;

so that v(_u_z-_l—_lf
w

and therefore e—¢=F(w—1)2+...
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in the immediate vicinity of z=¢, w=1, shewing that ¢ is a simple branch-
point. ‘

FEz. 2. Discuss in a similar manner the properties of the integral

equivalents of
' dw

A =

=%=2.
Tw-b’
(i) dw  a
dz ~ (w+2z)»’
(iii)v dw _a+ Bw+ yzw?
dz~ d+e(z—1)w’
in particular, considering the integrals in the vicinity of 2=1, z=0.

for n=1, 2;

Ez. 3. Discuss the equationé considered in § 26, when z=c is a zero of p,
or of g, or of both,

Ez. 4. Discuss the function satisfying the equation

i‘l—u—;= aw?4bzm,

dz

determined by an assigned value of w (finite or infinite) when z=0; the
integer m being positive.

NoN-REGULAR INTEGRALS.

28. It now remains to consider the possibility of non-regular
integrals of the equation in the general case, when the combination
of values initially assigned to the original equation is an accidental
singularity of the first kind ; and therefore we proceed to consider
the possibility of non-regular integrals of

dz :
d_y - '-'1"89 (3/; 9&'),

where g is a regular function of y and «, such that g (y, 0) is not
zero for all values of ¥, and s is a positive integer.

Following Fuchs*, we introduce the notion of a point of
indeterminateness (Unbestimmtheit), as associated with functions;
it is a point (it may be an essential singularity, but is not
necessarily so) at which a function can assume one of a series

of values, the value assumed depending upon the path by which

the independent variable approaches the point. Moreover, the
point may be a branch-point; if it is a branch-point, the
branching can be one of two distinct kinds.

* Berl. Sitzungsber., (1886, 1), pp. 279—300.
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In the case of the first kind, it may be possible to surround
such a point ¢ with a circle, not infinitesimal in size yet small
enough to exclude every other branch-point; the branching is
then called definite. Thus if ¢ be a function which is uniform
in the immediate vicinity of ¢ but actually indeterminate at c,

then for
(z—c)o,

where N is a real positive quantity other than an integer, ¢ is a
point of indeterminateness with definite branching.

In the case of the second kind, it is not possible to surround
the point ¢ with a circle of such character, because there is an
infinitude of points in the immediate vicinity of ¢ at which
branching takes place; the branching is then called <ndefinite.
For example, let § be any point other than ¢, and let

1
efe= C’
where manifestly C is determinate and not zero; then all the

points defined by

1 1
5 = - 4 2n7re,
7—0¢ E—o¢

for integer values of n from — o to oo, give
1

ez - = (.
Of this series of points there is an unlimited number within any
circle, however small, having ¢ as its centre; each of them is -a

branch-point of the function
1

1
(o= Oy

where m is an integer. For this function, the point ¢ is a point

of indeterminateness with indefinite branching.

It is necessary to consider the effect of such points upon the
possibility of the expansion of a function in their vicinity.

When the point of indeterminateness is one without any
branching whatever, the function can be expanded in a series of
positive and negative powers of z—¢, according to Laurent’s
theorem, the series converging in a region of the plane between
two circles. Thus the function -

1
1
eit— (I
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can be. expanded in such a series valid over a ring between two
circles, having ¢ for a common centre and such that the ring-space
contains no zero of the denominator; but the circles- may not
be infinitesimal in radius, in order that- this condltlon may . be
satisfied. :

When the point of mdetermmateness is one w1th deﬁmbe
branching, in many cases the expansion is poss1ble by means
of a subsidiary variable ; sometimes. the region of expansion is a
strip, sometimes a Laurent ring;:the actual region depending on
the subsidiary variable adopted. -

But when the point of indéterminateness is one with indefinite
branching, the expansion is not, in general, possible; thus the
function instanced above, for which the point ¢ is ‘of the class
specified, . cannot be ‘expanded in positive and -negative powers
of z—c¢,

29. Turning to the equation
de
dy 'ws 9, w)

or rather to

EZTU =x'g (w..--iot, ), -

from which it is derived, the functlon ¢ is a regular function in the
1mmed1ate vicinity of w=a, x=0, on the assumption that the
variables themselves are definite and specific at each point in
their respective planes; the expansmn of g then has the form -

4, +A z+ 4, (w——a)+

and it is definite. NOW a, if 1t exist at all as a.-solution, is a
function of #. If =0 is not a point of indeterminateness for w,
then w=ua is a definite and specific. value of w; the foregoing
expansion is definite and possible, and the existence-theorem then
shews that w=a is the solution under the assigned conditions.
But if £=0 is a point of indeterminateness (it might even be
with indefinite branching) for w, then w cannot be regarded as
determihatel‘y: equal to @ at #=0: in the vicinity of «=0, the
variable w —a is not definite -and specific, so that g(w—a, 2)
cannot thus uniquely be éxpanded as for the other case:. and
the inference in the existence-theorem cannot then. be -drawn.
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It therefore is necessary to settle this particular relation of =0
to the functionality of w.

For this purpose, we introduce a new variable ¢ having =0
for a point of indeterminateness and then, if possible, discuss the
dependent variable w as a function of the new variable.

When s > 1, we define the new variable ¢ by the relation

101
tmgi-sFmt

so that S
11
t dz "

The value =0 is a point of indeterminateness for ¢: the value
of t in the immediate vicinity of # = 0 depends upon the path of
 in its approach to zero and it can have any magnitude. Taking
this relation together with the differential equation, we have

dt _de __dy
t x  1
9y, z)

with these relations in differential elements we associate the
partial differential equation

oU oU 1 9oU

te T g e oy

If U, »,y) is an integral of this equation, then we know (from
the elementary properties of partial differential equations of this
type) that '
U (t, =, y) = constant
is an integral of the equations in the differential elements.
Accordingly when, with this integral, we associate the integral
‘ e
t=el-sa

which is independent of it, we have the integral of the original
differential equation. Now the equation

U (¢, =, y) = constant,

if it involves y at all, may be regarded as determining y as a
function of # and £. As @ approaches the value zero, the value
of ¢ depends upon the mode of approach ; consequently, in general,
y (which is a function of # and ¢) will also have a value depending
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upon the method of approach, In that case, # =0 is a point of
indeterminateness.

It may happen that, for special values of the constant to which
U is equal, y ceases to depend upon ¢ and is a function of z alone;
=0 then ceases to be a point of indeterminateness for the integral.

‘It should be noted that, when s=1, the variable £, as defined
above in the form
1 dt 1
tde
ceases to be effective for the purpose of discriminating the
character of # =0 as a point of the integral.

30. As a simple example of a point of indeterminateness, take the
equation
dx xs

dy ~ ag+ary +ay?’
where a,, a,, d, are non-zero constants; we are to consider the relation of
=0 to values of . We have
1 1 1 A
B e
where A and p areé the roots of
ap+a §+ ay?=0,
and O is arbitrary. It is evident that unless A=y, that is, unless a,?=4aya,,
x#=0 is a point of indeterminateness for y.
As a more general example, consider the equation
dx x8
dy "~ pot+pry +p2y*’
where p,, p;, , are regular functions of # in the vicinity of #=0 and no one
of them is zero there. Let

+C,

then on substituting, we find

d' _(pr_s ] dpg) dn +POP2 -0
da?” \z* = p2 da ’

a linear equation of the second order. When s>1, this equation has no

integrals that are regular* in the vicinity of #=0; it can be made to have one

sub-regular® integral; and the point £=0 is a point of indeterminateness for

the variable y of the original equation.

This result depends upon the theory of ordinary linear differential
equations and is established by the following analysis, which is suggested by
that theory. -Anticipating so far the discussion (in a future volume) of the

* In the sense in which these terms are used in theory of linear differential
equations by Fuchs,  Thomé, Cayley, and others.
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process of dealing with the sub-regular integrals (if any) of a linear differential

equation, take
) ' n=e2Y;
then the equation for Y is

a2y ay . .
W'l‘ Ql% +Q2Y=O’
on the removal of the factor ¢®. The coefficients @, and @, are given by
Q1=29'+f P .1_ flf_Z,

—orrorio (5 _Pi_ 1 AP\ | PoPs.
Qoo (5B 2 Py Bl

the quantity @ being at our disposal. Now if the two independent integrals

of the equation in ¥ are to be regular (in the sense adopted for linear

differential equations), the lowest power in the expansion of @, in ascending
powers of x cannot have an index lower than — 1, and the lowest power in the

similar expansion of ¢, cannot have an index lower than — 2. And if some one
integral of the equation in Y is to be regular, the preceding conditions are to
be replaced by a condition that the lowest index in the expansion of @, is less
by unity than the lowest index in the expansion of @,—a result that may be
achievable in two ways, each leading to a regular integral; if they give
distinct regular integrals, they can be linearly combined for the equation in 7,
according to the general theory. Tt may be added that the conditions stated
are necessary : but they do not form the aggregate of sufficient conditions to
secure the result.

- With our present aim in view, which is the derivation of at least one
critical relation among the constants, it will suffice to take the second
alternative, and apply it to a special instance, say s=2. Moreover, let

. pi=a;+bxr+ex?+t ..., (=0, 1, 2).
If we assume
, A
&=,

where X is a constant, the assigned conditions of relation between the lowest
exponents in the expansion of @; and @, are satisfied. - We then have
- b2

Ql 22 T + 1)1 (‘”),

A2 — Aoy + a0, " aébo + aob,

—Ab 1 ,
z 23 '+ ;2'1)2 (%);

Q2=

where P, and P, are regular functions of # in the vicinity of =0 and do not
necessarily vanish there.

Let the roots of the equation
» AZ—Aay + ayty =0
be different from-one another; and dénote them by Ay, A,: and let,
o, — dayoy = €%,
so that axn— a;=te.
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The determining equation of the equation for ¥ is
C(Ch—ay) n=atyby+ ttgby — \b;
so that, if ¢ be different from zero, there are two different values for =
according to the two values of A. When A=A, let n=n,; when A=2,, let
N="ny.
Then %, is a characteristic index for a regular integral ¥, say

Yi=amyy,
where y, is a regular function of # in the vicinity of #=0 and does not
vanish there; the corresponding value ¢f Q is

o=-2,

%

Similarly, #, determines an integral Y,, such that

Yy=ama,,.
where y, is a regular function of # in the vicinity of #=0 and does, not

“vanish there: the corresponding value of @ is

a=-22,
Hence the general value of 7 is
‘ ' N Ay

n=de Tamy+Be T gty

where 4 and B are arbitrary constants; the corresponding value of y, which
is a solution of the equation

do _ al

dy  po+piy+pay?’
is ' y=—-£21dr’

. P n dz

expression for y is of the form
Ag— Xy
e U4V

=S ’

e = U+ TV,
where U, V, U, V, are either uniform in the vicinity of =0, or merely
multiform with specific branches. It is evident that the point =0 is a point
of indeterminateness (it is an essential singularity) of ; and therefore, unless
the roots of the equation

A2 Ay + @y =0
are equal to one another, the value =0 is éertainly a'point of indeterminate-
ness for the equation

de 2
dy — po+pry+ pey*’
where pi=a;+ b+t ...,

for 2=0, 1, 2.
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It must not however be assumed that, if this condition is satisfied, the
integrals of the equation in ¥ are regular and consequently that =0 is not a
point of indeterminateness of the integral of the equation in y so determined.

Thus let the roots of
AZ—Aa; + 2y, =0

be equal, so that a,2=4aa,: then 2x\ =a,, and we have

2-b
Q1=—.,;3—1+P1 ().

1
Lt 5 Py ().

Then Q= @by + oby — 34D, a(;l? — b

If azby+ ayb,—$a;:b, is different from zero, then no integral of the equation in
Y is regular; but if
@gby+ by — 3,6, =0,

then @, begins with a term in ;1 In that case, one independent integral of

the equation in Y is certainly reguiar. A second integral will also be regular
if the roots of the determining (quadratic) equation differ by a quantity which
is not an integer: and then we have

Fi=amyy, Yy=a"w,
where yr; and 4, are regular functions of x that do not vanish with x; and
the value of 5 is
a,
n=e 'z (4Y,+BY)),

where 4 and B are arbitrary constants. Since

it is manifest that #=0 is no 1onger a point of indeterminateness for the
integral y thus determined.

If however the roots of the determining quadratic equation differ by an
integer, then the two independent integrals of the equation in ¥ are

Yi=a"y,,
Yy=a" (Yy+ ¥, log @),
where y~, and , are regular functions of #, not vanishing with #. Then

a
n=¢ 'z (47, +BY,),
and we have

Manifestly the value of y depends (when B is different from zero) upon the
way in which # approaches its origin: the point consequently is a point of
indeterminateness for the integral so obtained. :

The two conditions, viz.
— —1
a2=4a,a,, aby+ab,=%a,b;,

shew that p,2— 4p, p, is divisible by 2
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It therefore appears that the point #=0 is certainly a point of indetermi-

nateness for the integral of the equation

de - a?

Ay Potpiy+pey”
unless p2—4p,p, is divisible by 22, a condition involving two relations
among the coefficients ; but the point ceases to be a point of indeterminate-
ness if these two relations between the coefficients are satisfied and if, in
addition, the difference between the two roots of the (quadratic) determining
equation for the linear equation in ¥, obtained after the transformation

is a real quantity distinct from an integer.

81. In all the cases considered, it has been assumed that the
value of w and the value of z for the. singularity are finite.
Corresponding investigations for the cases when either is infinite,
and for the case when both are infinite, would be necessary to
complete the discussion: they would follow the lines already laid
down, and so they will not be detailed here. But in each
individual instance, the infinite values must be considered so
as to make the discussion complete.

32. Another method suggested by Fuchs, as introducing a
new independent variable of intermediary type for the discussion

of the equation
dz

dy =9 @ @), (s=1),

depends upon the equation
dx

% = wsg (77: 0):

so that, if s > 1,
1 1

and, if s=1,
log @ = [g (1, 0) dn.

The variable # is thus determined in terms of 7. The original
equation becomes

dn _ gy, »

dy g (m, 0)’
in the right-hand side of which the value of z is to be substituted
in terms of 7: this form, however, is not necessarily simpler than
the initial form.
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Suppose that logarithmic terms occur in [g (», 0) dn, say
J9(n, 0)dn =34 log (g — a) + g1 (n) + constant.

First, suppose that s >1. Then when the variable 5 describes a
contour round ¢ an unlimited number of times and completes its
path by ending at any point in its plane, the modulus of the
right-hand side becomes infinitely great; the corresponding value
of # is zero and this holds for a region of continuous variation of 7.

If s=1, then we have a relation of the form

z=c,TI (n — a)tenm,

If in any one of the indices 4 the imaginary part should be differ-
ent from zero, say equal to <a, (where a is positive), then when 7
describes a contour round a and returns to its initial value, this
contour not including any other point such as @ associated with a
factor in the product II, the new value of z is

xoemriA,
z, being some one value; and therefore the new value of || is
Iwo I e—2ma

Consequently after an unlimited number of contours round a, the
value of |«| tends to the limit zero: and therefore # tends to the
limit zero, in consequence of such a path, whatever the final value
of » may be.
As in the precedingf method, we consider the system of

equations

dz dy _  dp

1 1

9@ = 9@ 0)

in differential elements, and with them we associate the partial

differential equation
Zif 4o 1 oU + 1 oU _
ow " gy, @) 0y " g(n,0) I
Any integral of this equation that involves y is an integral of
the system of two equations and therefore, when taken in con-
junction with the integral of
dx dn
b 1

g @ 0)
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furnishes an integral of the original differential equation. Now
the existence-theorem of partial differential equations shews that
integrals exist ; let one such be

U (y, «, 7) = constant.

As « tends to the value zero, then in the preceding cases it has
been seen that there is an unlimited number of values of 5: and
conversely, the values of 5 depend upon the path by which «
approaches zero. When an integral y is derivable from U= con-
stant and when it depends upon 7, there will generally (though
not universally) in such cases be a value or a number of values
of y depending upon % as well as upon «; that is, owing to the
relation between z and 5, an unlimited number of different values
of y depending upon the path by which 2 approaches zero. When
all these conditions are satisfied, whether for s >1 or for s=1, the
point # =0 is a point of indeterminateness for the integral.

Examples for the case s>1 have been given in connection with the other
method. A simple example, (for which the intermediary variable need not

be used), is given by :
dz _ y+1

&y =axr 1
where @ is a real positive constant. The integral of this equation is

w=c(y— i)%a (1~—1) (-y+,é)%a a+9

As x approaches the value 0, there are an unlimited nﬁmbe}r of values of ¥
satisfying the equation; each can be obtained by making that variable
describe negatively -an unlimited number of times a contour enclosing ¢ and
not — 4, or by making it describe positively an unlimited number of times a
contour enclosing —<7¢ but not ¢; subject to this condition, the value of ¥
can remain arbitrary. Thus the point #=0 is manlfestly a point of mdeter-
minateness for the integral. '
A corresponding investigation would shew that #=0 is not a similar point
of indeterminateness for the integral of the equation
dr  axy
&y
where a is a real commensurable constant.

~33. We may summarise the results for the integral in the
immediate vicinity of an accidental singularity of the first kind
as follows.

Denoting the singularity by a, ¢, the reciprocal of the value
of dw is regular in the vicinity of a, ¢, and vanishes there. If

dz




80 SUMMARY OF RESULTS [33.

= {f(w —a, 0)}7, does not vanish for all values of w, the
smgulamty is an algebraic branch-point for the integral, the
branches circulating round the point form one system, and their
number is greater by unity than the index of the lowest power
of w—a in the expansion of W. If W does vanish for all values
of w—so that {f(w—a, z~c)}™?, expanded in the vicinity of the
singularity, is of the form (2 —c)g(w—a, z—c¢), where s is a
positive integer, and g is a regular function such that g(w — «, 0)
does not vanish for all values of w——then there is no regular
integral acquiring the value a at z=c¢, but there can be non-
regular integrals; when s is greater than unity, the singularity
is generally (but not universally) a point of indeterminateness for
the non-regular integral ; and when s=1, the singularity may or
may not be a point of indeterminateness for the non-regular
integral. The discrimination between the cases depends upon
the form of the function g.

With the appropriate changes, corresponding results hold if «,
or if ¢, or if both a and ¢, be infinite.

ON THE UNIQUENESS OF CAUCHY'S INTEGRAL.

34. The analytical results just obtained, in connection with
the points of indeterminateness of the integral that can arise from
an accidental singularity of the first kind-belonging to the original
differential equation, can be applied to settle the question, which
was left unsettled (§15), as to whether the unique regular integral
in Cauchy’s existence-theorem is the only integral of the equation
satisfying the conditions in that theorem.

Let » denote the unique regular integfal of the equation

= Fw, 2)

determined by the condition that it assumes the value a when
z is ¢, the function f being regular in the vicinity of a, ¢. Let
u + v denote any other integral (if any such exist) satisfying
the same initial conditions; it will not be assumed that the
integral is regular, and therefore it may not be assumed that v is
regular, so that the argument of §§ 12, 13 is no longer valid: it is
not possible by that means to prove that v is zero everywhere in
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the vicinity of z=c¢. Because u and w+v are integrals of the
equation, we have

d—?=f(u+'v, 2) — f(u, 2).

When v is zero, the function on the right-hand side is zero; so
that we may write

Cfutv, 2) = fu, 2)=vg (u, 2, v),
where the new function ¢ is a regular function of u, 2, v; or since
u is a regular function of z, the function g is a regular function
of 2 and v, say G (z, v). Moreover, if the variable v be definite
(§ 29), G can be expanded in power-series. The equation for v

now 1is

% = v°G (z, v).

But from what we have seen, the point z=c¢ is a point of in-
determinateness in general for » when s >1; and, when s=1,
it may be a point of indeterminateness according to the character
of the function G. If then z=c is a point of indeterminateness,
v cannot be regarded as definite in its immediate vicinity;
the expansion of the function G is therefore also not valid; and
neither the argument of § 12 nor that of § 13 can be applied to
prove that v is steadily zero, as indeed it is-not when z=c¢ is
a point of indeterminateness. We therefore infer the following
result, due to Fuchs (I ¢.):

The regular integral w of the differential equation
dw
dz =f(w, 2),

determined by the initial conditions tn the existence-theorem, is the
sole wntegral of the equation determined by those conditions only if
the initial value of z 1s mot a point of indeterminateness jfor the
equation

?Tz=f(u+w, 2) — f (u, 2).

As a special example constructed by Fuchs, consider the equation
dw _ a(az+Bw)* —a(az+bw)
dz ~ B (az+4bw) — b (az+Bw)?’

where a, b, a, 3 are constants such that a8 —ba is not zero. Assign ¢ as an

initial value of z, —2 ¢ as the initial value of w ; then %Y is determinate and

B dz
F. 1II. ' 6
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is

w=—%z
ik
We thus take w= _%3+9x
- 2
so that dy B(aB —ab)y

(@B— ab) 2+ by — b’
and therefore* B (af— ab) d 7 {(a,B ab) z+ng/ bRy},

The integral of this is z(ab—aB)=bBy+Ade By,

where A is an arbitrary constant. Manifestly ¥ can be made to tend to the
value zero (and can have an unlimited number of values in the vicinity of
zero) so that z shall tend to the value ¢: all that is necessary for this purpose
is to take

1 .
-5 + 2kmi=log {c(ab—aB)},

and to give the integer % a succession of infinitely large values.

In fact, w= — = ¢ is an essential singularity of z regarded as a function of

B

w; wis a non-regular function of z having z=c¢ as a singularity ; and some,

among its infinitude of branches, tend to the value — 2 ¢ as 2 tends to .

B

It is manifest that a whole class of cases, with similar results,
is given by an equation
dw
dz
where F is a regular function and the assigned condition is that
w=rc when z=c.

=9+ (w— 2’ F(w, 2),

Ez. Another example, being a case in which for s=1 a point of indeter-
minateness arises, is given by Fuchs as follows.

The integral of the equation

dw 1 1 221 w0 —
dz ~ 42(z-1) z(z—1)
Ad’71+d772
. dz
is given by w =

Angi+ny
where A4 is an arbitrary constant, m=2 3K, n,=2"%K', and K, K’ are the

elliptic quarter-periods of modulus 27 Tt is proved that the number of
integrals of the equation, converging to one value as z by selected variation is
made to converge to any arbitrary value, is unlimited.

* The equation in question is evidently an example of the value s=2 indicated
on the preceding page.

finite for these initial values, It is easy to see that the corresponding integral

CHAPTER V.

TypricAL. REDUCED FoRrRMS OF THE DIFFERENTIAL EQUATION IN
THE VICINITY OF AN ACCIDENTAL SINGULARITY OF THE
SECOND KIND¥*,

ACCIDENTAL SINGULARITIES OF THE SEcCOND KIND: ForM
OF THE EQUATION.

35. WHEN the combination a, ¢ is an accidental singularity
of the second kind for the function f(w, z) in the differential

equation

it has been proved (§ 20) that the differential equation can be
changed so as to have one or other of four definite forms.

Let
w—a=1y, Z—C=2a;

then the first form is

Q(y’ w) Gy x)
dz" p(y, @)

* The more important cases of reduction were discussed by Briot and Bouquet
in their memoir (cited on p. 40); in the present chapter, the discussion is rendered
complete because the general functional expression due to Weierstrass (Note to
ch. 1) of a function of two variables is used as the basis of departure. The various
results attained by Briot and Bouquet have been adopted or reproduced by many
other writers but without any amplification; the only exception to this statement,
so far as concerns the form of the equation (as distinet, that is to say, from the
character of the integral), is to be found in a memoir by Horn, Crelle, t. cx1ir (1894),
pp. 50—57.

6—2
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where G is a regular function of y, # in the immediate vicinity
of 0, 0; also

g 2)=y"+ qy" "+ @y + o+ s

P, ) =y" + Py Py A+ Py
m and n being positive integers, and all the coefficients ¢, and p,
being functions of # which are regular in the vicinity of its origin
and vanish there.

The second form is

dy _ 94 (9 64,
da ™~ p(y, @)

where G is a regular function of ¥ and # in the immediate vmlmty
of the origin, p has the same significance as before, and ¢’ is

given by
q, (’L(/, ’l}) =™+ QIIUM—I + Q2lun‘—2 + ...+ q,nl P

in which the coefficients ¢, are functions of w, regular in the
vicinity of »=0 and vanishing at v=0. The variables u and v
are connected with # and y by the relations

y=Au-+pv, x=Nu-+uv,

containing arbitrary constants A, u, A/, u’, subjected only to the
two inequalities specified at the time of the reduction to the
form. Moreover, the transformation of the variables was rendered
desirable by the fact that, if ¢’ (u, v) is the transformed expression
for g (w —a, z—c), the quantity ¢ (w — a, 0) vanishes for all values
of w.

Consequently, ¢ (u, v) vanishes when Au 4 u'v=0. Now
q’' (u,v) is an algebraical function of wu, the coefficients being
regular functions of v which vanish with v; hence ANu + u'v is a
factor of ¢’ (u, v). Let the sth power of this linear factor be the
highest contained in ¢’ (, v), and let

q' (u, v) = (Nu+ p'v)* ¢ (u, v), (s=1),
where ¢, now does not vanish with ANu+ u'v. Effecting the
reverse transformation so as to express g, (w, v) as a function of
y and @, we obtain a function @), (¥, ) of y and «, which is regular
in the vicinity of 0, 0 and vanishes there but does not vanish for
all values of y when x=0. To @, (y, ) we again apply the theorem
of Weierstrass proved in the Note to Chapter 1; since @, (y, 0)
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does not vanish for all values of 7, let ¥™ be the lowest power of y
which it contains; then

¢ (u, v)= Q1 (y, @)

="+ QYT QYT+ ) eSO

=4 (y, @) e
say, where @, is regular and the coefficients g, ..., ¢, are functions
of # which vanish at #=0 and are regular in its vicinity.
Accordingly

g (u, v) =2°q(y, ) e 2 ;
and therefore, writing

G (y, ©) = G (y, ©) + G=(y, @),
so that ( is regular in the vicinity of 0, 0, the differential equation
becomes

dz — p(y, @)
where s is a positive integer.

@:ws Q(Q’QQG(Z/;W)

In particular cases, it might happen that (Nu + w'v)* is the
whole of ¢’ (u, v); for each of them, the function g (y, #) would be
replaced by unity.

The third form is

dy _ 909, @) (J> %) 6w, @

dz~ p’ (u, v)
where the function p” has properties and character similar to those
of ¢’ in the last case. Similar modification of p’ and transformation
by Weierstrass’s theorem lead to an expression

p(u, v)y=a"p (y, =) eb W, @)
where
P )=y "+ Py Py D

the coefficients p, are functions of #, which vanish when =0
and are regular in its vicinity. Writing

G (y, ) =G (¥, ®) = Ga (y, 2),
so that G is a regular function of y, # in the vicinity of 0, O, the
form of the differential equation is

W _ s IO D) g

dz p(y,

where s is a positive integer.
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In particular cases it might happen, as for the preceding form,
that 2* is the whole of p’(u, v); for each of them, the function
p (y, ) would be replaced by unity.

The reduction for the third form can be made in another way,
as follows. The equation can be written

da &(’U/_'U_)_ e~ G W, )
dy 4y, @)
On interchanging the variables in the statement of Weierstrass’s
theorem (p. 24) when there are two arguments of the functions
there considered, we obtain a result which can be applied to this
case. It shews that the equation can be put in the form
de _ P %) ey,
dy ~ q(y @)
which is an equivalent of the third form.
The fourth form is »
dy q " (u, v) ey
dz~ p” (u, v)
where (, is regular in the vicinity of 0, 0, and the two functions
q”, p” have characteristic properties similar to those of ¢, p’
in the preceding cases. The corresponding modifications and
transformations, by means of Weierstrass’s theorem, can be
effected ; and we have results such as

7 (0 = g (g, @) a7,
p’/ ('LL, 7)) = -7"8210 (y’ x) % W %) >

where s, and s, are positive integers, and the functions ¢ and p

are given by the equations

9@ D) =y"+ @y + @y T+t g,

Py ) =y +py" T Py e+ P
the coefficients ¢, and p, being functions of # which vanish at
# =0 and are regular in its vicinity. Hence writing

§1— 8 =S,

Gy (3/, z) + G (3/, z) — Gy (y7 x) = G(?/’ z),
so that G is a regular function of %, # in the vicinity of 0, 0, the
equation becomes

d Sq('j’ IL‘)eG(?/:

o de =" p(y, @
where s is an integer.
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When s=0, this equation is included in the first form; when
s is positive, the equation is included in the second form ; when s
is negative, the equation is included in the third form.

Accordingly no new characteristic type of equation is introduced
by the fourth form of § 20 ; and therefore summarising the results, -
it appears that, in the vicinity of an accidental singularity of the
second kind of the equation

dw :
32 ""f(w» Z)
at a, ¢, the equation can be expressed in the form

d 39(?/: w)eG(y x)

do~ " ply, @)
where s is a finite integer, (zero, positive, or negamve) and the
functions ¢, p, G are of the assigned characters in the immediate
vicinity of the singularity.

36. The first result to be obtained is that integral (or class
of integrals) of the equation which vanishes when #=0. Such
integrals may be regular or non-regular. Thus the integral of

dy _y+ax+ba®
do @ ’

which vanishes with z, is
y=axlog z+bx*+ Az,

where 4 is still arbitrary; if a is zero, the integral is regular; if
@ is not zero, it is an integral with an unlimited number of
branches.

But the equation in the form obtained may be propounded as
an initial equation and not as a form representing a limiting case
of another within the immediate vicinity of the origin; it will
then be necessary to consider the integral of the equation for a
range not so restricted as in the more special investigation for
which the limiting form has been obtained.

87. The determination of the forms has thus far been chiefly
affected by the algebraical character of the occurrence of y in
q (y, #) and p (y, ) ; but deviations from the apparent expressions
can be caused by the mode of occurrence of #. Thus it might
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happen that, in ¢ (y, ), the coefficients ¢a, gn-; .-, gn—r are
evanescent, so that ¢ contains a factor y”, say

qy, ) =y (Y, ©),

where now ¢, (0, ) does not vanish for all values of «; the cor-
responding form of the equation is

_dﬁ =a'y" it (3’ z) e% W, o),

de p(y, =)
Or it might happen that, in p (y, ), the coefficients pm, pm—1, «--,
Pm—r are evanescent, so that p contains a factor y", say

p(y, @)=y p(y, =),
where mnow p, (0, #) does not vanish for all values of x; the
corresponding form of the equation is

dy _

ds =Y (g, ) et W,

V! (f% .Cli’)
Accordingly, the most general form of the equation in the vicinity
of the singularity considered is

dy 9(y, )

2L = ST e v, )
da » (Y, @)

where neither q (0, ) nor p(0, z) vanishes for all values of x;

the integers s and r may be zero, positive, or mnegative, each

independently of the other. .

>

In very particular cases, it may happen that

(1) if s be a positive inﬁeger and r >0, ¢ may be a constant,
though p must then be variable ;

(i1) if r be a negative integer and s € 0, p may be a constant,
though ¢ must then be variable;

(di1) if s be positive and = negative, p and ¢ may each of
them be constant.

Unless there is an explicit statement to the contrary, it will be
assumed that q(y, #), p(y, ) are functions of ¥ and « and are
not constants; and then it is manifest, after the preceding expla-
nations, that no generality is lost by further assuming that a term
independent of y exists both in ¢ (y, «) and in p (y, ).
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INITIAL FoRM OF INTEGRAL: SIiMPLEST CASE.

38, Taking thé'simplest of these forms, viz.,

dy _ 9 *) 6y, m

de p(y, z) ’ ‘
we require primarily the character of the integral (or integrals) in
the immediate vicinity of =0, which vanish at #=0. Suppose
that the order of y in powers of # is u, the real part of which is
positive: (it will appear that w generally is real); then, in the
vicinity of #=0, ¥ may be represented in the form

y=pzt—+...,

the indices in the remaining powers being greater than u, and p
being some constant. Now :

9@ )=y +yY" 7 Gt F G ,
where the functions ¢, are functions of @, which vanish at
=0 and are regular in its vicinity. Let

gi=a;x"+ ...
=a"Qs,
where @; is a regular function of # which is equal to a; when
2 =0, and 7; is a positive integer (r,=0); then the order of terms
in g, other than those which occur in
Y+ Y T+ Apx YT+ o ™,
is greater than the order of the lowest term or set of lowest terms
in that retained aggregate. Similarly, let
pi= b,;{l}si + ...
= wsi—P’i’
where P; is a regular function of # which is equal to b; when
=0, and s; is a positive integer (s,=0); then the order of terms
in p, other than those which occur in
Y™ 4+ by Yy 4 by Yy L+ by,

is greater than the order of the lowest term or set of lowest terms
in that retained aggregate. Thus

y*+ 2 (gt y™ ) + ...
1

dy _
de

e® W, )

I=
y™ + kz (bpatey™*) + ...
=1
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With the hypothesis adopted,

d
d—Z:;x,pw“*l—{—

when the values of y and dy/dz are substituted, the differential
equation is to be satisfied identically; and therefore the term of
lowest order on the right-hand side must be of order w—1.
This term will be obtained by selecting the term (or the group
of terms) in the numerator of lowest order in w, and the term
(or the group of terms) in the denominator of lowest order in z.

For the value
y=pxt+...,
let aamy™? be one of the set of terms of lowest order in the
numerator ; its leading term is

alp'n-—lm'r;+p.(n——l) ,

and for all terms of this order in the numerator, the coefficient
of artrn— ig
ECLgpn_l.
For the same substitution, let by % y™* be one of the set of
terms of lowest order in the denominator; its leading term is

bk p'm—k‘ T (m—k) ,

and for all terms of this order in the denominator, the coefficient
of. astrm—h ig

zbkpm—k.
Now the equation, after substitution of the value of y and
multiplication of both sides by p (y, ), may be satisfied identically
in one of two ways; either (i) by having the terms of lowest
order on the two sides equal or (ii) by having the terms of
lowest order on one side lower in order than the corresponding
terms on the other. ‘

First, suppose that the terms of lowest order on the two sides
are the same; by equating their orders, we have

p—=l=r+pun—=10)— {sg+pn(m—=~)},
and by equating their coefficients, we have

S a0t
—o=hP
PL zbkpm——lc 4
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where C is the value of €¢%® 9 ; this is the only part of G (y, =)
which occurs, because the index u in the expression for y has
its real part positive. The former gives a value of u, viz.
. rp4+1—syp .
P mylak—(n—=1)’
a definite real value in general, when the appropriate terms have
been selected.

APPLICATION OF PUISEUX’S DIAGRAM.

39. To obtain the various possible values of u, a method can
be used which is similar to that adopted in connection with the
branch-points of an algebraic equation®*. We take two perpen-
dicular axes OF, On in a plane; and we mark a first set of points
(m+1—Fk, s) for the various values of k, these being associated
with the denominator; and a second set of points (n—1{, 7+ 1)
for the various values of [, these being associated with the
numerator. Now if the differential equation be

dy A

de D
where, for the present purpose, only the lowest terms in A and D
are retained, the equation can be written

e,

dy - _ ¢
w%D—wAe s

and the terms of lowest order on- the two sides are then to

be retained. A term on the left-hand side is of order

) s+ s+ (m—k) p,
that is,

p(m+1—k)y+s;;
and a term on the right-hand side is of order

rm+1+n—1)pu.
From the value of u, these two are equal ; and there are no terms
of smaller index on either side. A straight line drawn in the
plane, through the point m + 1 —k, sz and making an angle tan™ u
with the negative direction of O, is

n—s=—p[f-(m+1-h)],

* Th. Fns., § 97.
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so that the perpendicular from the origin on the line is
{m(m+1—k)+ s} (1+ w2
A parallel line through n —1{, r,+1 is

n—(r+1)=—plf-(n=10)]
so that the perpendicular from the origin on the line is
{m(n—=0)+r+1} (14 p?)%;
the two perpendiculars being equal, the parallel lines must be one
and the same: and the single line joins a point of one set to a
point of the other set. Moreover, this perpendicular must be the
least distance of all parallel lines through a point of the first
set: it must also be the least distance of all parallel lines through
a point of the second set.

On the basis of these properties and noting that no point of
the first set is on the axis On and that no point of the second set
is on the axis O, while one point of the first set is on the axis O&
and one point of the second set is on the axis On, we obtain
possible values of w as follows. Take the single point of the
whole tableau of points which lies on Oz ; round this point, let a
line turn from the position Oz in the counterclockwise sense until
it meets one or more of the marked points; let it turn in the
same sense round that one of these met points which lies nearest
the axis O, and continue turning until it meets one or more of
the marked points; and so on, until it meets the point lying
in Of. Then among the properties of this broken line, it is easy
to note the following :—

(1) all the values of u are positive, real, and commensurable ;

(i1) when a number of the marked points lie on a portion of
this line, the corresponding terms in the equation

are of order lower than all other terms for the substitution

y=pz;

(1i1) if the marked points on any portion of the line include
at least one point from each set, then the corresponding
value of u gives rise to terms on both sides of the equation
in the above form, the terms being of the proper lowest
order;
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(iv) if the marked points on any portion of the line all belong
to the first set only, the lowest terms that arise all occur
on the left-hand side of the equation taken in the above
form : while if all of them belong to the second set only,
the lowest terms that arise all occur on the right-hand
side of that equation. ’

As the line begins at a point of the second set and ends at a
point of the first set, at least one part of it (and it may be all the
parts of it) will contain marked points belonging to both sets.

40. As a preliminary instance, consider

dy _ Y+ 2y’ +aga®yt + aza’y + ayxy° + a; 8% + a2+ ... 6 (y,0)

dzx Y+ b 23y - by y® - g%y + by B - ... ?
the omitted parts referring to terms of higher order for all substitutions. In
the figure, the points 4 correspond to the terms in the numerator with the
same suffix for @, 4, corresponding to the first term there; they are the
second set of points. The points B correspond to the terms in the denomi-
nator with the same suffix for b, B, corresponding to the first term there;
they are the first set of points.

7

Ag

As

Bgi™

By ..

L
G * £

For the portion 4yB,, we have p=4; if therefore

y=px*+...,
we have
g8+ ...
3 — 6 i
4px34-... Cb4x3+...’
so that
i 1 a4
p—; b—4 0.

In this portion there is one point from each of the two sets.
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For the portion B, §3 B,, we have u=1; if therefore
: 4

y=px+...,
we have .
: _ a,x3p?+...
p... O(b4+bgp+62p2)x3+...’

so0 that p is determined by a cubic equation

by p®+b3p? + byp = Cayp?
of which one root is zero : or neglecting the zero root, (which manifestly will
occur in every case when, in the numerator on the right-hand side, the term
free from y does not give rise to terms of lowest order), we have p determined
by a quadratic
byp?+(bg— Cay) p+by=0.

For the portion B, B,, we have p=4% ; if therefore

y=px%+...,
we must have
2x2+
Yoo Fqp...=0, SPET T
zp® T (bep®+phH) 22+,

which could not possibly be satisfied unless, as a first condition, the aggregate
of the terms in the denominator of lowest order vanish ; so that

byp?+p*=0:
as a second condition, that the next aggregate of terms in the denominator be

of order : and as a third condition, that the coefficients of 27% be equal
which, in effect, is a relation among the coefficients of the equation (those
which are specified and others which are unspecified), p, and the coefficient
of a succeeding term in y.

The statement that the points on each portion of the line correspond
to the terms that give rise to quantities of lowest order after substitution is
confirmed, it will be noticed, by the occurrence of the coefficients & and a of
those terms that correspond to the points B and A respectively on each
successive portion of the line.

41. As regards the value of u in general, one remark should
be made. If it arises through points belonging to the first set
alone, its value is definite; likewise, if it arises through points
belonging to the second set alone. When it arises through points,
which belong some to one of the two sets and some to the other
of them, then its value has the form

ri+1— s .
m+1—k—(n-=1)’

and this expression could be indefinite if

rm+l=sy, n—Il=m+1-—k,
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that is, if the point of the second set coincide with the point of
the first. Moreover, this could occur for other pairs of coincident
points.

If there be only one pair of coincident points, the portion of
the line passing through that common point joins it to a point of
either the first set or the second set. In each case, the portion of
the line joins two points of one set; and by them the value of w
will be determined, though the coincident points do not determine
its value.

If upon the portion of the line there be more than one pair of
coincident points, the portion can be regarded as joining a point
of one set (in one of the pairs) to another point of that same
set (in another of the pairs); by means of them, its value is
determined.

The alternative reduced forms for the value of dy/dz, adopted
in § 87, made it possible to assume, for the case

by _ 9, ©) ey,

dz p(y, )
under consideration, that ¢ (0, #) is not zero for all values of # and
that p(y, 0) is not zero for all values of y; accordingly, there is
always a point of the first set on the line O£ and there is always a
point of the second set on the line On. If all the other effective
points occur in coincident pairs, the reduction is still possible by
joining the one nearest OF to the point on O, and the one
nearest On to the point on On; so that, in the present case, the
value or values of u can always be determined.

42. In the initial derivation of u, it was assumed (p. 90) that
the terms of lowest order for the substitution adopted arose on
both sides of the equation; but it was pointed out that terms of
lowest order might arise on only one of the sides of the equation.
In reality, so far as the determination of w is concerned, the
alternative has actually been taken into account. When terms of
lowest order occur on both sides, the corresponding portion of the
broken line contains points of both sets; when terms of lowest
order occur on only one side of the equation

d'y__ G
D%—Ae ,
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then the corresponding portion of the broken line contains points
of that set alone which belong to the side of the equation giving
the lowest terms.

Accordingly, no further investigation for the value of u is
necessary at this stage: but discrimination must, of course, be
made between the possible cases of the source of u as arising
from terms grouped in the various ways.

CONSTRUCTION OF CRITIcAL REDUCED FORMS.

43. Consider, first, a portion of the line which contains at
least one point from each set. Then since
_ 71+ 1 —sg
Pyl —k—(n—1)’
and since w is found to be a positive quantity by the preceding
investigation, w is a positive commensurable magnitude: let it be

expressed as a fractionlg taken in its lowest terms. In particular

cases, it may happen that ¢ is unity. Then

pim+1—k)y—(n—=0}=q(r+1—s),
and therefore _

p(m+1l-k)+gsp=p@n—10)+q@r+1)

=N,
say. Take
=11, Y= utl’?

so that, if the integral of order u in « near the origin exist, u is
to be different from zero when ¢ vanishes. The equation for the
determination of w is

(Shypum—kgpm—ti+es 4, <pt1’_lu 4 %)

= COqta ' S qyunrtgpin—itan 4

where C is the value of ¢%© 9 ; that is,

(Shyum—kgpimi—bras— 4 ) (pu, +t %‘)

= CqSqur—lgpn—breordn—t4

The terms of lowest order on the right-hand side in ¢ contain it
to the order IV —1; likewise for the terms in the coefficient of
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puU +t(fi—:' on the left-hand side, also to the order N — 1; for the

substitution under cbnsideration, all other indices of ¢ are > V.
Hence, dividing out by ¢¥!, we have

du
dt
where P,, P, are regular functions of » and ¢ at and in the
immediate vicinity of 0, 0; in the summations on the two sides,
only those terms occur which correspond to the marked points
on the portion of the line determining the value of p in the
substitution adopted.

{Zbgum® + tP, (u, t)} (pu, +t ) = OgSa,u" + tP, (u, t),

The variable w, if it exist, 1s required not to vanish with ¢;
let p denote its value for t=0. (When expressed as a function
of t, it may be a regular function in the vicinity of ¢ =0, and then
it would be expressible in a converging power-series containing a
term p independent of £.) Since w satisfies the above equation, it
follows that p is determined by the equation

F (p) = ppSbyp™* — CqZazp"* = 0.

44. Let p be a simple root of F'(p)=0, so that F (p) does not
vanish for that value; and take

u=p-+v,
so that v is (if possible) a function of ¢ vanishing with ¢ Then

the coefficient of ¢ %) is

Sbipm b+ Qs (v) + R, (v, 8),
where @, and R, denote regular functions, ¢, vanishing with v.
Let all the other terms be transferred to the right-hand side;
their aggregate is
—vF (p) — 5 F" (p)— ... + tR, (v, t),
where R, is a regular function. The equation thus becomes
dv _ —vF' (p) —30°F" (p) — ... +tR, (v, )
dt 2bpp™F + Q(v) + tR, (v, t) )
Suppose that

t

Ebk pm——lc =/= 0’
which also implies that
2(1/; p’ll—l % 0 ;
then the denominator does not vanish for the values 0,0; and

F. I, 7
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therefore, expanding the whole fraction in the immediate vicinity
of 0, 0 in a converging power-series, we have

t%%=wv +bf+§ow2 + But +Fy2 + ...
= ¢1 (?), t) ....................................... (I),
where ¢, is a regular function ; and the value of a is
Ebkpm—k *

This is the reduced form of the equation to be discussed ; it clearly
is the case of widest generality, for the possibility of its derivation
has depended only upon inequalities among the constants. Its
relation to the original equation is given by the equations

w=oa+(p+v)tP, z=c+ 1,
the quantity p is a simple root of the equation

pp2bpp™* — OgZa;p" ' =0
and L is the expression of the equal fractions

rp+ 1 — s
m+1—k—(m-10)

when reduced to their lowest terms.

The form has been deduced on the supposition that p is a
simple root of F (p)=0. Suppose, in the next place, that it is a
multiple root of F (p) =0, of multiplicity «, so that the first x — 1
derivatives of F vanish for that value. It is easy to see that the
equation becomes

P (p)
d'l) —_— T-—-..‘i‘tRz(’U, t)

' S ) T B (0 D)
With the same assumption as before that
Sbpmt 0,
so that the denominator does not vanish at 0,0, we can expand
the whole fraction, which is a regular function of v and ¢, in a
converging power-series, say

t%?—;=gv"+bt+6vt+ryt2+
=P (U, 8) eeieiiii amn,

where g=— Py W:
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and the function ¢, (v, ¢) is such that ¢, (v, 0), a regular function
of », has gv* for its lowest termy. This is the corresponding reduced
form.

45. In deducing these two forms, the assumption has been
made that Zbgyp™* does not vanish; but the assumption is not
necessarily justified, for p would still be a root of F (p)=0 if

Sbppmt =0, Zap"t=0,
simultaneously, the coexistence of these equations implying at
least one relation between the coefficients o and b.
Suppose then that p is a simple root of
F, (p) = 3bpp™* = 0.
Then, as in the earlier investigation, the coefficient of ¢ %% is

Sbhpu™* +t P, (u, t);
this becomes

oF! (p) + % F/ (p)+ ... +tRy (v, t).

If p, being a simple root of F;(p) =0 and also a root of F(p)=0,
is a simple root of the latter equation, then v is determined by
f 0 _Notptt ..

dt  A+ut+...°
where the unexpressed terms are of the second and higher orders
in v and ¢ combined.

If however p, being a simple root of F, (p) =0 and also a root
of F(p)=0, is a multiple root of the latter equation, then » is

determined by

dv  Nv+pt+ ...
dt — M+ pt+...

where in the numerator the unexpressed terms independent of ¢
have indices greater than «, and the other terms are of the second
and higher orders in v and ¢ combined.

t

2

Suppose, next, that p is a multiple root of
Fy(p)=Zbpp™*=0

of multiplicity {. Then the coefficient of ¢ @3; , being

Sbyunk 4t P, (u, t),
becomes

:
% F\9 (p) + terms in higher powers of v + tR, (v, t),

7—2
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where F,® (p) does not vanish. Now p is also a root of F (p)=0;
let it be of multiplicity ', so that F'® (p) is the lowest derivative
of F which does not vanish for the root; then the equatlon takes
the form

dv Ko+ ut+...

dt Tkttt

where, in the numerator, »* is the lowest power of » in terms
independent of % and in the denominator, #* is the lowest power
of v in ‘terms independent of ¢. The simplest case arises when
I’=1, so that the root p is a simple root of F(p)=0

46. Of all this set of forms, which can arise for particular
equations when special relations among their constants are
satisfied, some can be modified. When the numerator of the
fraction on the right-hand side has a term of the first order
in v, say as in the first of those (§ 45) which are obtained when
F,(p)=0, we write

7L' t = Vt
then as v vanishes with ¢, ¥ may (but need not necessarily) vanish
with £. We have

dv_ W av
v N +V+it g
and therefore
p % _ %: f— Vt‘—i— N?»_’_T/;t -,l- terms in squares of ¢
HT—M—t + terms in squares of ¢
=adV+bt+...,
unless
N = A =0.

‘But if g\’ —Au’ =0, the new equation is

dV _NV+tet+..
dt x”V+et—|.- ..

A similar transformation, viz.

t‘)

V+ 5t = Vit,

would then be made and would be found effective for the reduction

unless
Ne —AN'e=0:
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and similarly for the alternative. The ultimate reduced form is
seen to be

AW

7 =aW + bt + ...

with the condition that the positive integer s is not less than 2.
This also is a reduced form for

dv _ Nv+pt+..

dt ~ kv +put+... "

because it can be derived from the preceding case by taking A =0;

the one condition, which then is necessary in order that (III) may
be its reduced form, is that u should not vanish.

t

Lastly, as regards the form

dv _ kv +pt+ ...

dt  kv+ut+... "7

(which includes an earlier form when [ =1), we have I’>2. This
will be considered later, among the forms of the type

dy _a° 9(y, %) g, -
dz— yFp(y, @)
where S is negative (§§ 54—56).

t

47. In the second place, consider a portion of the broken line
in the tableau of points, which contains only points of the second

set, 7.e. points associated with the numerator in the expression
for % When the quantity u for that portion of the line is in
its lowest terms, let its value be g, where in particular cases it

may happen that ¢=1; as before, let
' x=17, y=ut?;
so that, if the integral vy exist of dimensions w in 2 in the

immediate vicinity of the origin, v must not be zero at x#=0.
Then we have

Y (3. (pum-bioctom—) 4]

=C[3 {alu”ﬂf—ltwl+p(n—l)} 4] %
= Oqta—* [Sagun—ttarapo—= 4 7.
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The terms of lowest dimension on the right-hand side are those

having
g(ri+1)+pn—-10)—1

= N, say, for the index of . The left-hand side of the equation is
(pu +1 flt) P [ b, um ket em—h)

In this expression, all the quantities
g +p(m+1—k)—1

are greater than IV, on the present hypothesis of the origin of u;
let the smallest of them be N 4 v, where v > 1, and let it arise
from terms typically represented by that which has b, in its
coefficient. On the right-hand side, all the rest of these indices
are >N +1; on the left-hand side, they all are >N +v+1; so
that, dividing by t¥, we have

& <10u+ ¢ ) [Zbrum* + tP, (u, t)] = gCRazu + 1@y (w, £)

as the form of the equation, P, and @, denoting regular functions.

It therefore follows that, if p be the value of v when =0,
p being distinct from zero, then it must be a root of the equation

H(P) = Zalpn_l =0,
and it may (or it may not) be such as to make
I(p), = Zbpp™*,
vanish. Let v = P+

When p is a simple root of H (p)=0 which does not make
I (p) vanish, then the reduced form of the equation is

t”“%=av+bt+...

= ¢’1 ('U’ t)’
the unexpressed terms being of order higher than unity in » and ¢
combined. Since v >1, this form is included in the form (III).
When p is a multiple root of H (p)=0 of multiplicity «
and does not make 7 (p) vanish, then the reduced form of the
equation 1is
dv
vl T 3
gt = ave + bt + .
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where av< is the lowest term on the right-hand side involving »
alone, and the unexpressed terms are of order higher than unity
in v and ¢ combined.

When p is a simple root of H (p) =0 and is also a simple root
of I(p) =0, the reduced form is, by analysis similar to that in the
corresponding case, found to be

dw

e = WH+bt+...,

where s> 2, and the ﬁnexpresséd terms on the right-hand side
are of order higher than unity in W and ¢ combined. This form
also is included in the form (III).

Lastly, if p is a multiple root of H (p)=0 of multiplicity n’
and if it is also a multiple root of I (p) =0 of multiplicity m’’
(where m” >1, taking account of preceding cases), then the
reduced form of the equation is
dv k™ + ut+ ...

At~ Fv" -t ..
with corresponding implications as regards the unexpressed terms
alike in the numerator and in the denominator.

All these results are derivable exactly as in preceding investi-
gations, and therefore they are merely stated without proof: the
actual verification is simple.

v

48. In the third place, consider a portion of the broken line
in the tableau of points, which contains only points of the first
set, t.e. points associated with the denominator in the expression

for % When the quantity u for that portion of the line is in

its lowest terms, denote its value again by zg, where for particular

instances ¢ may be unity; and, as before, let

x=19, y=ut?,
so that, if the integral y exist of dimensions g in 2« in the
immediate vicinity of =0, v must not be zero at #=0. The
equation is

=1 (put £ 52 [2 (pyum—hsssrinb) 4. ]

= Oqte1 [3 (qgun—igar +po-b} 4]
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The terms of lowest dimension on the left-hand side in the

coefficient of ‘pu+t%~: are those having

gsk+p(m+1—-k)—1,

= N say, for the index of ¢; all the others on that side have the
index of >N+ 1. On the right-hand side, all the quantities

g+ +pn—-10)-1 ,
are greater than N, on the present hypothesis of the origin of u;
let the smallest be IV + 1/, where 2’ > 1, and let it arise from terms
typically represented by that which has q; in its coefficient. All
the other indices of ¢ on the right-hand side are >N +v +1;

that, on division by ¥, the equation becomes
(u+¢ d-ff) [Shyuwn 4 tP, (u, £)]
= CtV [Squ + tQ, (u, t)],

where P, and ¢, are regular functions. Now u is to be different
from zero when £=0; let its value there be p, and if it be
assumed expansible in powers of ¢, let

u=p+ ot* +
so that, if the equation is identically satisfied, we must have
[pp + (p +A)ot* + ... 1[L (p) + powers of ¢ and ¢*]
= Ct” [H (p) + powers of ¢ and #*]

identically satisfied. Because »' > 1, a first condition is given by

taking
I (P) =0,

which is the fundamental equation determining p. Clearly, the
simplest cases arise when »"= 1, though this is not a necessary
condition; but if 2’ > 1, some conditions would be satisfied by
the constants in the differential equation. Taking then

u=p-+v
in general, where p is a root of I (p) =0, we have a reduced form

d ot...
dt+pv+pp & av+bt+..."°

if p is a simple root of 7(p) =0, and is not a root of H(p)=0.
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Without entering on the discussion of the various alternatives

to these assumptions as to p, it may be noticed that, if the equatlon
be taken in the form

dz _p(y, #) _aq, @)
dy ~ q(y, =)
then the particular substitution giving v as of dimensions u arises
solely from terms in the numerator and thus can be included in
the last case (§ 47). Since
Y oo ot
so far as concerns its most important term, so also
1
oy
q
oc yP.
We should then introduce new variables such that
y = Tq’: €z = ETP,
where £ does not vanish when == 0; and the reductions for the
respective possibilities would be similar to those in the preceding
discussion.

THE REMAINING CASEs OF § 37.

49. It still remains to consider the rest of the forms of § 37,
which can be represented generally by

@ ws Q(y’ z) o, @)

dz— y* p(y. z)
where neither ¢ (0, ) nor p (0, z) vanishes for all values of z: the
integers R and S may be positive, zero, or negative, though it is
now unnecessary to consider simultaneous zero values. Moreover,
if S be positive, then ¢ may be a constant; if R be positive,
p may be a constant; if both R and S be positive, then both
p and ¢ may be constants. This last case is relatively simple;
we then have

y3%=w5(0+ay+bw+ cee )

If S> R, and b be not zero, then in the immediate vicinity of the
origin, the two most important terms of y are

1
Rf1 S+1 S+1
_ (0 R+ 1>

+1
51 B 4 g BT
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while if S< R and a be not zero, then in the immediate vicinity
of the origin, the two most important terms of y are

B of g BHT

S+1
if § = R, these pairs of terms coincide.

(OR_}_l)R%i S+1 , 5+1

It is clear that, without discussing this very special case
further, the origin (being an accidental singularity of the second
kind) is in general an algebraical branch-point of the integral of
the original equation; the character of the branch-point, and the
number of branches of the function, depend upon the expression
for S+l
T R+1

The assumption has been made that the form of the equation
has arisen as a particular form of an earlier equation for an
exceptional combination of values constituting an accidental
singularity of the second kind: so that the limiting condition
on the integral y is that it is to vanish with «. If however, as
is possible, the given equation be propounded as an initial form,
and be not subjected to this condition, then the conditions actually
imposed may form either an ordinary combination for the equation
or an accidental singularity of the first kind; in each case, the
properties of the integral can be regarded as known, after the
earlier investigations.

in its lowest terms.

Accordingly, we shall now consider that the case when both q
and p are constants, S and B being positive integers, has been
dealt with, so that it may be excluded from further discussion.

There are, in fact, four distinct general cases: but they can be
effectively considered in three forms.

First, it may happen that neither B nor S is negative; the
equation then has the form

dy _2° q(y, ») eGw o)
dz  yEp(y, )
Secondly, it may happen that R is negative and S is not
negative ; changing the signification of R, we shall take

dy s, 29 ) g
= =g 2N L oGy, @) ,
do= " plyw

with R and S not negative, as the representative form.
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Thirdly, it may happen that S is negative and that R is not
negative ; changing the signification of S, we take

as the representative form, which manifestly is the same as in the
last case when the variables are interchanged.
Lastly, it may happen that both R and S are negative;
changing the signification of both R and 8, we take
@Q = 3.1_% .q._.__(y’ ac) G, @
de 25 p(y, @)
as the representative form, where now neither R nor S is negative.

Case 1.
50. Taking the equation in the form
dy _ 29 ) oq,m

dw— y= p (y, ©)
where in the first place it will be assumed that S and R are
positive integers either of which (though not both) may be zero,
what is sought is an integral (if any) which shall vanish with «.
The functions g and p have the same general functional expression

as before; and therefore, for the present purpose, we may take
q(y, &)= y" + a2y + a2y 4 ... +apt+ ...,
Py, &) =y™ + bty basymn 4 ..., +bmrtm+ ...,
where a, and b,, are different from zero.

Suppose that the order in powers of 2 of the integral y, if it
exist in the vicinity of the origin, is u; so that it may there be
represented by

y=pxzt+ ...,
p being a constant that does not vanish, and the indices in the
remaining powers being greater than wu.

Now in q (y, x), let

a; xnyn—l
be one of the set of terms which are the lowest in order for the
substitution y = pa*; so that in ¢(y, «) the leading term of lowest
index is
xn—i—p.m——l) Ea,l Pn——l-
In p(y, x), let

bk Sk ‘ym—k
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be one of the set of terms which are the lowest in order for the
substitution y=px*; so that in p(y, #) the leading term of

lowest index 1is
Skt (m—k) Ebk Pm_k-

If the equation is to be identically satisfied by the postulated
value of y, the lowest term in

d
y* d‘% p(y, )
and the lowest term in
2%q (y, ®) e @

must have equal indices and equal coefficients. That the indices
may be equal, we must have

pR+p—1+sz+pm—-k=S+r+un-1);
that the coefficients may be equal, we must have
F (p)=pB+ u2bpp™* — C2a;p" =0,
where C is the value of ¢¢® 9. The former gives a value of u, viz.

_ ’7‘;+1+S—-8k
PemTR+1—Fk—(n—1)

a definite value in general, when the appropriate terms have been
selected.

51. To determine the values of u, we adopt the same method
as in the case when R=0, S=0. Drawing two perpendicular
axes OF, O7 in a plane, we mark a first set of points

m+R+1—Ek, sp)
for the various values of %k, these being associated with the
denominator in the equation
dy _ 2°9(y, »)

- — AT eG(y; ) ;

cdx yEp (y, ©)

and we mark a second set of points (n—1, r,+ 1+ 8) for various
values of [, these being associated with the numerator in that
equation. Writing the equation in the form

zytp (Y, ) % =a8q (y, &) W D,
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and on the two sides keeping terms of order lowest for the
substitution y = pz* + ..., a term on the left-hand side is of order
p (R +1)+sp+ (m—k)p,

that is,

pm+R+1—Fk)+ s
and a term on the right-hand side is of order

1+8+rm+pn—10);

these two orders are equal on account of the value of u. There
are no terms of smaller index on either side. Drawing through
a point (m + R+ 1—Fk, sx) a line making an angle tan— x with
the negative direction of O£, so that its equation is

n—sp=—p{f—(m+R+1-k)
the perpendicular from the origin on the line is

{w(m+ R +1—k)+si} (1 +p) 3
and drawing a parallel line through a point (n—1, r;+1 + S), the
perpendicular from the origin upon it is

rm+1+8S+pn—0A+ p2)
The two perpendiculars are equal: and the two lines are therefore
one and the same, which thus is a line joining a point of one set
to a point of the other set. Moreover, this perpendicular is the

least distance from the origin of all parallel lines through a point
of either set.

Accordingly, we can construct the broken line in the tableau of
points, corresponding to that in § 39 : for there is one point of the
first set (but none of the second set) on Of, and there is one point
of the second set (but none of the first set) on On. We take a
line coincident with Oz, make it turn in the counterclockwise
sense round the single marked point on Ox until it meets some
point or points in the tableau: then make it turn about the last
of them until it meets others: and so on, until it passes through
the single marked point on OE.

For all equations having integers R and S that are not
negative, the properties of the positions of the broken line are
similar, detail by detail, to those before enumerated in § 39: they
need not here be repeated. There are corresponding explanations
as regards the determination of u for any part of the broken line,
if it should happen that some expression for w in that portion
becomes indeterminate (§ 41).
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52. Consider, first, a portion of the line containing at least
one point from each set. Then
ri+1+8S—s;
b T m+R+1—k—(n—=1)’
is a real, positive, commensurable magnitude; let it be expressed

in its lowest terms, say g, so that

p{m+R+1—k)—(n—=D}=q{(r+1+8)—s},
and therefore
p(m+R+1=k)+gsp=pnm—0+q@+1+8)

=N,
say. Take
x=1t?, y=ut?

as before, so that, as y is to be of order Zé in « in the immediate

vicinity of the origin, » must be equal to p, that is, different from
zero, when ¢ = 0. The equation for the determination of » becomes

(Pu + ¢ %) [ShpumE+E gp mti+R—k) +e5—1 4]

= Oq [Sagur—ttp —b+Sgrgr+y—1 4 7
The terms, containing the lowest powers of ¢ on the right-hand

side, contain it to a power IV — 1; all other indices of ¢ on that

side are > N. Also, in the coefficient of pu + ¢ % on the left-hand

side, the lowest power of ¢ that occurs is that given in the
expressed terms: its index is N — 1, and all the other indices are
> N. Hence, dividing out by ¢, we have

du
m—k+R
3, {bpumE+E 4 tP; (u, t)} (pu+ t dt)

= Cq Saun + tP, (u, t),
where P, and P, are regular functions of « and ¢ in the immediate
vicinity ; and in the summations on the two sides, those terms are
taken that correspond to the points on the portion of the line
which determines the value of u adopted.
The further reduction to typical forms is obviously similar
to that for the earlier case. Let

F (p) = pp Tbpp™*+F — Cq Zazpm.
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If p is a simple root of F(p) =0, we take
u=p+v;
then, unless p is such as to make
Fi(p), = ZbypmF+E,

vanish, the equation for » in the immediate vicinity of ¢ = 0 is
d
t—di;=a/u+ bt + Fav: + But + Lyt + ...
= ¢ (v’ t)’

where ¢, is a regular function of v, ¢ vanishing with v =0, {=0;
and the value of @ is
—F (o)

B, () -~
The relation to the integral of the original equation is
w=a+(p+v)t?, z=c-+17;

o =

and £ is the common value of the equal fractions

ri+148—s;
mARYI—h=(n=10)

when expressed in their lowest terms.

If p is a multiple root of F (p)=0 of multiplicity m, and is not
a root of F(p) =0, then the equation becomes )
dv

L

= gv™ + bt + But + yt* + ...
= ¢’m'1 ('I), t)?

where ¢, is regular in the vicinity of 0, 0; the lowest term in v
in ¢y, (v, 0) is gv™, and the value of g is
_ 1 Fm(p)
B ’77; B (P) )
If p is a simple root of F (p)=0 and is also a simple root of
F, (p)=0, the equation can be reduced to the form
dv_ Nv+pt+....
dt M+ut+...°0
by suitable transformations, this can be changed to the form

{ EZ——-—CLW+bt+,

where the integer m > 2.
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If p is a multiple root of F (p) =0 of multiplicity I’ and at the
same time is a multiple root of F)(p) =0 of multiplicity /, then
the equation can be reduced to the form
t@_k’v’l+y’t+...
dt kvt ut+...°

which can be transformed as was the other.

In fact, with the appropriate changes in the form of the
equation
F(p)=0 :
and of the function I} (p), all the cases that occur, when either
R or S or both are different from zero, are of the same types

respectively as when both R and S vanish. No new forms

therefore arise for consideration.

It is not necessary to advert, except with the utmost brevity
after the preceding discussion, to the other two possibilities that
can occur in connection with portions of the broken line.

For a portion which contains points of the second set alone,
being the points associated with the numerator in the expression

dy
dax

those where B =0, S=0; we substitute for the former functions

H (p) and I (p), functions defined by
H (p) = Za;p™,
I (p) = pBSbrp™*;

and the reduced forms belong to one or other of the types

for , the typical forms that arise are respectively similar to

d
t"+1d—:=av+bt+...,

tv+13_;)=gvm+bt+...,
tv+sdI;V=a’W+b’t+..., (s = 2),

dv kv +put+ ...

tv+1 -

@t WV +pt+ .

where » > 1, and in the last form m and 7’ are not unity together.

For a portion of the broken line which contains points of the
first set alone, being the points associated with the denominator
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dy
% ’
interchange the variables (as suggested in § 35, p. 86, for the
corresponding case when S =0, R =0), so that the equation is

in the expression for the simplest plan of discussion is to

dz _y" P4, ®) vy,
dy & q(y, %) ’
the discussion then resolves itself into a repetition (with the

appropriate modifications) of the discussion of which the sum-
marised results have just been given.

In fact, it appears that, when R and S are positive, the equation
provides no canonical types other than those found for the case
R=0,S8=0. The discussion has been given at some length: as
will be seen immediately, some of the analysis needed to establish
this result will be found useful in the discussion of the remaining
instances for negative values of R, or of S, or of both.

Note. The discussion of the integral of the equation
dy _2° 9@ ey, n

da ™ y® p(y, =)
has been limited by the condition that the integral y is to vanish
with .

If however the equation be propounded as an initial equation,
not subject to this particular condition, then the simultaneous
initial values that are imposed upon y and z form either an
ordinary combination for the right-hand side or they form an
accidental singularity of the first kind. The mode of obtaining
the characteristics of the integral in either case has been indicated
in preceding sections.

53. Further, it is proper to notice the two cases which were
pointed out (§ 37) as special cases, viz. that, when R >0, p may
be a constant; and, when S >0, ¢ may be a constant.

The same method for the determination of u can be adopted
as before.

If R >0, the suggested form of the equation becomes
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The corresponding equation for the determination of u is

p(R+1)—1=8+r+u(n—1),
so that
S+ 1+’)"Z

F=R¥1—(m=10)"
We mark the set of points (n — I, S+ 1 + 7;) for the various values
of 1; the first of them (for the highest value of 7) lies on the line
On; and we mark the point R+ 1,0, which is a point on the line
OE. The critical line for the value (or values) of u can be
constructed as before; the simplest instance will be when it
consists of a single piece joining the point (0, S+ 1 + 1) to the
point (R + 1, 0), and then the value of u is

_S+147,
- R+1

Whether the line consist of one portion only or of several portions,
it is easy to see that no new typical forms arise other than those
already included in the typical reduced forms : those which would
actually be obtained are only special cases of those which have
been retained.

If S>0 and ¢g is a constant, then the equation may be taken
in the form

s Z—?'j =Cp(y, x)e ¢,

which, with the interchange of variables, is merely the preceding
case: the results of that case, when Inverted as between the
variables, apply to the present.

Case II.

54. We now consider the equation when one (but not both)
of the integers R and S is negative: and as has been seen, we
may take the equation in the form

dy S, R Q<3/: w) 3G(y’ @) ,

dx Y p (y, »)

which covers the two possibilities (§ 449). The functions ¢ and
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p have the same functional expressions as before, so that for our
present purpose we may take

q(y, ) =y" + @y T+ @y 2+ L a4,
Py, ) =y"+ byt b y™ 2+ . b+,
and a,,, b,, are different from zero.

Suppose that the order of the integral y, if it exist in the
vieinity of the origin, is u in powers of #; so that it may there be
represented by

Y= pxrt <4 ...,
p being a constant that does not vanish, and the indices of the
remaining terms being greater than wu.

As before, let

alwnyn—l
be one of the set of terms in ¢ (y, #) which are the lowest in order
for the substitution y = pa*, so that, in ¢ (y, «), the leading term of

lowest order is
o wn—&—,u. (n~1) Eal pn-l.
Similarly, let
bkmsk ym——k

be one of the set of terms which are the lowest in order for the

‘same substitution, so that, in p (¥, ), the leading term of lowest

order is
aftu =k 3h, oMk,

When the equation is taken in the form

d
» (Y ») %Z =25ytq (y, ) ¥ 7,

it may be satisfied by having the lowest terms the same on both
sides, as regards coefficients and indices, or by having a vanishing
set of terms on one side only—with, of course, equality of sub-
sequent terms. The latter may (as was seen to be the fact in
§ 42) be regarded as a limiting case of the former; and so,
generally, we take the condition in the form that the lowest
terms on the two sides must be the same. To secure the equality
of the indices, we have

p=14s,+u(m—E)=S+uR+r+pn-=1));
to secure the equality of the coefficients, we must have
F (p) = puZbyp™ % — CpEZa;pnt =0,
8—2
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where C is the value of ¢9® 9, The former gives a value of g,
viz.
. r+1+8S—s,
e m—R+1—k—(n—=1)

a definite value in general, when the appropriate terms have been
selected.

55. To determine values of u, we adopt the same method
as before. Drawing two perpendicular axes Of, On in a plane,
we mark a first set of points (m—R+1—Fk, s,) for the values
of k, these being associated with the denominator p(y, ) in the
original form of the equation; and we mark a second set of points
(n—1, r;+1+8) for the values of /, these being associated with
the numerator q (¥, «#) in that original form.

Each portion of the broken line, drawn as before to join the
points determined by some values k of the first set and some
values I of the second set, gives rise to the terms of the lowest
order for the substitution y = pz*, the value of u being the
tangent of its inclination to the negative direction of OE.

But to draw the broken line, we do not necessarily begin with
the point (0, r,+1+S) on the axis On, as the first point round
which the line turns. In that case, it would be necessary to
begin with a direction, not coincident with Oz but parallel to O,
and make the line turn in the counterclockwise direction. For
if R be greater than 1, some of the points in the first set are on
the negative side of the axis O»; and then, if

Sm>rn+ 148,
there would arise a negative value of u; if

Sm=7rp+1+38,
there would arise a zero value of u; and if

sm<7Tn+14+8,
there would arise a positive value of u.

In the first of these instances, there is no corresponding fitting
solution for the equation; we have assumed that y = pa* +...,
and are seeking the integral that vanishes with # and, to obtain
it, higher powers of y (among other combinations) have been
neglected : it is clear that a negative value of u does not satisfy
the postulated conditions and the implicit assumptions. Moreover,
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it would make G (y, #), in the exponential, an infinite quantity.
(If the equation is given as an original form, and not as a typical
form, then we should no longer be restricted to the particular type
of integral indicated, and no longer have the variables restricted
to the immediate vicinity of the origin.)

In the second case and in the third case, the value of @ not
being negative, the portion of line can be considered as beginning
in the point — (R — 1), s,». If no other of the quantities

r+1+8

is less than 7, -+ 148, then in the second case the value u=0
will give the terms of lowest order; but this is not so if any of the
quantities 7,4+ 1 + S be less than 7, +1+ 8. And in the third
case, the value of u will give the terms of lowest order if no one
of the quantities 7+ 1 + S be less than r, + 1+ 8; should however
this condition not be satisfied, then the value of u so obtained
may or may not be an appropriate value giving rise to terms of
lowest order.

Similarly, if R be equal to 1; there then is a point 0, s, in
the first set, and there is a point 0, 7, + 1+ S, in the second set.
Taking a broken line as before, clearly the first part of it lies
along the axis Ozn: the corresponding value of u is

p=o.
For all other points in the line, the value of u is positive.

It thus appears that, in the present typical form of differential
equation, the method adopted for obtaining the lowest terms gives
rise to three forms of w that were not obtained for the earlier
typical forms. Negative values are to be rejected, for reasons
already stated: they do not give rise to any integral of the
required character. If there be infinite values of w, then as
regards the first term, we have

Y = pat,
and so
lyl=lpllzl*;

so that, as u is infinitely large, | #|* becomes infinitesimally small
for all values of # within the circle |#|=1, that is, | ¥| 1s steadily
zero for such values of « or, in other words, there is an integral of
the equation which is a constant zero while # varies in a finite
range ; and then w=a would be a solution of the original equation
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for a finite region round the point z=c¢. If there be zero values
of u, then as regards the first term we have
Y oc
1
and so & oy,

that is, when « is regarded as a function of y, it is of an infinite
order in powers of y, near the origin. Manifestly, the argument
of the preceding case applies now: we infer the meaning of the
result to be that « is steadily zero while y can vary through a
finite range, in other words, that ¥ 1s not a function of z, or that
w is not a function of z in reference to the original equation.

These results have been deduced on the initial assumption
that the integral can be expressed in the form

Y= pxt+...
in the vicinity of the origin. This is a form of function which is
regular if 4 be an integer, and which has a limited number of
branches if u be a fraction, u being positive in each case ; the pointisa
definite point for the function when the conditions are actually satis-
fied. But if the assumption is distinctly contravened, or cease to
be given in a definite form (as for w=w0 , or for u=0), the expression
for the function is no longer necessarily admissible ; the point may
be a point of indeterminateness for the integral, and the proper
tests must be applied to determine whether this is the fact or is not.

56. Excluding, therefore, portions of the broken line which
might give rise to values of u that could be negative, or zero, or
infinite, we draw the broken line as follows. When R is greater
than unity, there are points with negative abscisse; we choose
as the initial point that which has the greatest negative abscissa,
viz. —(R—1),s,. When R is equal to unity, there is a point on
On belonging to the first set, viz. 0, s,,: and there is a point on
On belonging to the second set, viz. 0,7, + 14+ S; we choose as the

initial point that one of the pair which has the smaller ordinate.’

Through the initial point take a line parallel to Oz, and make it
turn in the counterclockwise sense until it meets one or more of
the marked points in the tableau; then make it turn about the
last of these met points, that is, the one most distant from the
initial point, until it meets one or more of the remainder; and so
on. Since s, in the first case, and either s,, or 7,+1+S8 in the
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second case, is greater than zero, the initial point is off the axis
OE; since s, is 0, there is a point m — R +1, 0, of the first set on
the axis OF; and therefore the last part of the broken line will
end at a point on the line OE.

Clearly the value of u, for each portion of the broken line
thus constructed, is a positive quantity; its typical value is
- rm+1+8=-s,
m—-—R+1—-k—(n-1)’
when the portion of the line, which determines it, contains points
from each of the two sets.

The further reduction to typical forms is effected in the same
manner as before, with the appropriate changes of the significant
functions.

When the portion of the broken line contains points of both
sets, the function F(p) is

F (p) = ppSbp™* — CqSa,pn+E,
If p is a simple root of F'(p) =0, then we take

=1t y=ut’, u=p+v,

where ]—q) is the value of u reduced to its lowest terms as a proper

fraction, and w=p when ¢=0; then unless p is a root also of
F,(p) =0, where

F.(p) = Zb.p" 7%,
the equation for v in the immediate vicinity of =0 is found to be

d
tag=av+bt+%av2+ﬁvt+§—vt2+...

=¢: (v, %),
where ¢, is a regular function of v, ¢ in the vicinity of 0, 0: and
the value of @ is.
F(p)

Fi(p)°
If p is a multiple root of F (p) =0 and not a root of ¥, (p)=0;
or if it is a simple root of F (p) =0 and a root of F,(p) =0; or if
it is a multiple root of F(p) =0 and a multiple root of F;(p) =0:
in every case, we obtain one of the types before considered, and
there is no new type thus deduced.
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When the portion of the broken line contains points of only
one set, then the terms of lowest order in the equation

d
P @) % =2y q (y, z) e?® @

arise through terms on only one side of the equation. With these
we proceed as in earlier cases: it appears that various relations
among constants must be satisfied so that all terms on that side,
which are of order lower than the lowest on the other side, may
disappear: and then subsequent terms of the same order on the
two sides must have the same coefficients, a relation which serves
to determine the remaining part of the leading term.

It thus appears that, in this case, positive values of u lead
in general to typical forms: but for values of w, that arise out
of a particular group of terms on one side of the equation, con-
ditions among the coefficients must be satisfied identically.

Case III.

57. 'We now consider the equation when both of the integers
R and S of the original form are negative; and changing the
significance of the integers, we consider the equation in the form

d:?/ — yR Q(y’ ‘7") eG(y, @)

de ™ 2° p(y, =)
where R, S now are positive. As before, we construct a tableau

of points. In the present case, the points of the first set—
the set connected with the denominator—are given by
m—R4+1—Fk, s,
for the values of k; and the points of the second set—the set
connected with the numerator—are given by
n—1, n+1-28,
for the values of /.

When negative values, or infinite values, or zero values, of u
occur, they are put on one side as in the preceding case and for
similar reasons; but the origin may be a point of indeterminateness
for the integral, and this question requires separate investigation.

Of the first set of points, some have negative abscissee when
R >1, and, when R =1, one is on the axis Oy : all have positive
ordinates except for k=0. Of the second set of points, all have
positive abscisse, except for I=n, when there is a point on the
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axis Ozn. If 8=1, all the points (except for [=0) have positive
ordinates; but if S> 1, one of the points (for /=0) certainly has
a negative ordinate, and others may have negative ordinates.

To construct the appropriate broken line, we begin with the
point of the first set which has the largest negative abscissa;
through this draw a line parallel to On, and make it turn about
the point in the counterclockwise sense until it meets one or
more of the points in the tableau; choose the point of those now
on the line which is most distant from the initial point, and about
it make the line turn in the counterclockwise sense until it meets
other points: and so on. The last portion of the line may be part
of the axis Of: in that case u =0, and there is no corresponding

-integral to be retained : or it may be a part which lies below the

axis O, this case corresponding to a value S > 1.

The value of x being determined, the reduction to the typical
forms is by the same process as before: and no new types of final
reduced forms are obtained.

58. The simplest, and perhaps the most interesting, instance
of the present form occurs when R=1, S=1, the equation then
having the form

Y _Y 92 oy m

da @ p(y, )
The points in the tableau are
m—k, s, (k=0,1,..., m),

being the first set; and

n—1,r, (t=0,1, ..., n),
being the second set. Kach set has a point on the axis On; the
corresponding value of u is infinite. Each set has a point on OE;
the corresponding value of w is zero. All other parts of the
broken line give ‘positive values of u; for each of them, there is
the corresponding reduction.

The values pu=o00, u=0 are put on one side, for the same
reason as before; the first gives merely a constant zero for y,
and a constant « for w; the second gives no function at all for w.
But the origin may be a point of indeterminateness : the decision
as to whether this is so or not, requires separate investigation.

59. Summarising the discussion as regards the various- forms
of the equation in §§ 49—58, we have the following results.
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When the integers R and S of the original equation

iy = fis_Q(y’ x) e%w, @)

dz  y& p(y, x) ’
are (either or both) zero or positive, the origin stands in the
same general relation to the integral as it does when both S and
R are zero. There are various values of u, all positive, such that,
in the immediate vicinity, y oc 2#; all these values of u are real
commensurable quantities. :

When 8 is zero or positive, and R is negative, the origin may
be a point of indeterminateness for some integral or integrals;
but, in general, some value or values of u exist in the form
of real commensurable quantities, such that in the immediate
vicinity there are integrals for which y oc 2

When R is zero or positive and S is negative, again the origin
may be a point of indeterminateness for some integral or integrals;
but, in general, some value or values of u' exist in the form
of real commensurable quantities, such that in the immediate
vicinity there are integrals for which « o«c y*, and therefore

1
y o a,

Lastly, when both R and S are negative, again the origin may
be a point of indeterminateness for some integral or integrals;
but, in general, some value or values of u exist in the form
of real commensurable quantities, such that in the immediate
vicinity of the origin there exist integrals for which y oc a®.

For any such value of u, arising in any of the cases indicated,
let p/q denote its expression when reduced to its lowest terms:
the corresponding integral is obtained as follows. Let

z=12, y=(p+v)t?;
then p is determined by an algebraical equation
F(p)=0,

and v is determined by a differential equation which, in the
immediate vicinity of £=0, has one or other of the forms

dv 1

t = av + bt + Fov®+ But + Syt + ...
- = d)l (’U, t);
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where ¢, is a regular function of v, ¢, and
¢, (v, 0) = vP (v),
where P (v) is a regular function of v not vanishing with »; or

dv _

=9 + bt +...

= ¢, (V, 1),
where ¢,, is of the same character as ¢,, and
P (v, 0) = v"P (v),

where P (v) is a regular function of » not vanishing with v; or

dv
tr =1 (v, 1), or (v, 0),

where ¢, and ¢,, are as before, and the positive integer « >2; or
dv KoV +pu't+...

dt — kvt 4pt+... 7

where the positive integer /' > 2, and « > 1.

tic

The character of each integral thus obtained is determined by
the quantity v which satisfies one or other of these equations.

For each distinet non-zero root of F(p)=0, there are as
many integrals as can arise out of the respective reduced
differential equations for the determination of the quantity v.
The aggregate of all such integrals must be taken: they
represent the aggregate of integrals of the original equation in
the immediate vicinity of the accidental singularity of the second
kind, which can be made to depend upon algebraical transforma-
tions of the variables.

In addition to this aggregate, and depending upon the form
of the equation, there may be integrals for which the singularity
in question is a point of indeterminateness.

In every instance, the discussion has been approached as
though the differential equation were a limiting form of the
original differential equation, for values of the variables in the
immediate vicinity of some definite combination of values; and
on this basis, integrals y are required which vanish with #. The
various forms may, however, be propounded as initial forms; in
that case, the origin still has its characteristic property as regards
the equation, but the variables are no longer restricted, as regards
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their variation, to the immediate vicinity of the origin. Other
singularities possessed by the functions ¢ and p. belong to the
classes already considered : and, in particular, it may be necessary
to take the vicinities of infinite values of y or of « or of both, in
order to render the discussion complete.

Before discussing the typical forms of the equations for v which
have been obtained, some illustrations of the precedmg general
theory may now conveniently be considered.

EXAMPLES.

60. Ex. 1. The simplest example of all is that in which both ¢ and p
are.of the first degree in z, such that ¢ (0, #), p (0, #) both begin with a term
in the first power of # : and G (¥, ) is a constant. We
then have n

dy _ ytez+pir’+...

dz~  ytagx+PBea®+...0 q
where the remaining terms in the numerator and the
denominator are higher powers of x alone.

Adopting the preceding method*, we have the
points as in the diagram. Connected with integrals of (¢ £
the equation that vanish with #, there manifestly is a
single value of u, viz. p=1. To determine the leading term, we write

Yy=pr+...,
no transformation to a new independent variable ¢ being necessary, because p
is an integer ; and then we have

oPT? + al
p+ay’
that is, p is determined by the equation
p2+(ag—C) p—a,C=0.
When the roots are unequal, denote them by p;, p,; if equal denote the
common value by p'.
‘We now write

p=

y=2z(p+v),
so that
dv _wpF+v+a 2l (2)
Pt = et oy (a)

where P, P, are régular functions of #. Thus
dv O{a1+p+'a;+xl’l (x)} —p—v

YdzT ay+p+v+xPy(x)
_? (C—2p —ay)—v2+ O P (x) — pa Py () — v Py (.z')
ap+p+v+2 Py ()
* The points associated with terms in the numerator of the fraction for % are

throughout marked by x; those associated with its dénominator, by o.
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When the roots of the quadratic are unequal, C'—2p —a, is not zero; and
p-ag is not zero, when a; and q, are different from one another. In this
case, we can regard the-whole function on the right-hand side as a regular
function of » and #; when expanded in the immediate vicinity of 0, 0, we
have

d

& =av+ br+ ...,
where

_C—2p—a,
ag+p v

This result holds for each of the roots of the quadratic equation : so that in
connection with each of them, there is a differential equation for ». When
the character of the quantity », thus determined, has been obtained, the
integral of the original equation y is known for each of the values of p.

It may happen that a, and a, are the same ; in that case, one root of the
quadratic is C, the other is —a,. Still assuming that the roots are unequal,
so that for the present instance '+ a, does not vanish, we see at once that
the preceding reduction is valid for the root p=('; the value of a is —1, and
the equation for » is

dv _ ba
» = v+obx+....
But for the root p= — q, it is not a satisfactory reduction ; we then have
x@ v (C+ag) + C2 Py (2) + agzx Py () — v2 — v P, (x)
dx vt aPy(x)
Here
P (#)=B1+y&+82%+...,
Py(@)=Bo+yox+8;2%+...;
we take
OBy +agBy
v+ Wx—xz
and then
2O aVia 0%1%30 0<(g+ag>w+xzﬂ<v, 2
o C(-){»- 1 z+2V+22Q (%)
ay

where R (V, #) is linear in V and regular in . If B, is distinct from B;, this
becomes :

24V OBy +ao80 <0+ao> ViaR(V, z)
P T ey T UG )
O+a G2+ V4 2@ (%)
(0+¢10)
14 vee
TC@-p) KT
while, if B,=p;, we obtain for «? g a form similar to that for w% . As

P, and P, are not identical, there will be a limit to the number of necessary
transformations ; and the final form would be
d w
dz

=0W+0x+...,
where 322.
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When the roots of the quadratic are equal, and their common value p’ is
not — ay so that C'+q, is not zero, then a,+4p’ is not zero ; the equation is

dv _ =0+ Cx Py (w) — p'w Py (%) — v Py (%)

¥ da ay+p +v4+2 Py (»)

1
= a+ L V24 cx+ .oy

on expanding the right-hand side in the vicinity of 0, 0; the remaining terms
in » alone are of order higher than 2, those in x alone are of order higher
than 1, and there are terms in # and v combined.

‘When the roots of the quadratic are equal and their common value p’ is
—ay, 8o that C+4a, is zero and a;=ay, then ay+p’ is zero. The original
equation is then

dy Y+ayw+ By a®+...
ap 2 ’
dax Y+agx+ Byri+...

so that

(B1—B) 7+ (1 —vo) &5+ ...
Y+agx+Bew?+...

When B, is not equal to 3,, a diagram, corresponding to that in the general

theory, shews that

d
s Y ta®)=—a

CYtagw zt
in the vicinity of =0 ; accordingly, we write
 o=8, ytaw=uf,
higher powers of 5
3u _ ao(8,~By) £+higher p
G 5) wt Bkt e,
=3 (Bl Bo) ag,

we have a value of beginmng with v =46, ; and it appears that the value of »
is of the form

and then

Hence if

u=6y+6;&+...,
a regular function of £ for each of the two values of §,. Similarly, when 3,
is equal to By; and so on in succession for the various alternatives that may
occur.

Another method for dealing with the equation under consideration has
been used*, wherein the variables # and y are regarded as the coordinates
of a point in the plane, and thus are real quantities; the differential
equation then represents a curve. A subsidiary variable ¢ is introduced in

the form
dy dz dt

dy+bz+t... ay+brt.. ¢

* Poincaré, Sur les courbes définies par les équations différentielles, Liouville,
8me Sér., t. vir (1881), pp. 8375—422, ib., 3™ Sér., t. vix (1882), pp. 251—296, 0.,
4me 8ér., t. 1 (1885), pp. 167—244. See also Picard, Cours d’4nalyse, t. 111, ch. 11,
ch. 1x, where the subject is resumed with independent treatment; and Bendixson,
Sur les points smgulzms d’une équation différentielle linéaivre, Ofversigt af Kongl.
Vet.-Akad. Forh., Arg 52, (1895), pp. 81—99.
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Let new constants A and u be chosen, so that
aA+du==Ep, OAFVu=EN;
then £ is a root of the quadratic equation
(§—a)(§—b)—ab =
In general, there are two distinct roots of the quadratic, say & and & : and
then there are two sets of constants X and u. Now
A (ay +02) + py (@y +V2) =& M2+ my) 5
so that, if X=A,2+p,y, we have

¢ %: &, X +terms of the second and higher orders.
Similarly, if Y=2A,x+pus¥, so that ¥ is a variable connected with the value
&,, then similarly

tcﬂ’— &Y +terms of the second and higher orders.

Hence if ¢, X, ¥ are kept so that their moduli are small, (that is, # and y
are in the immediate vicinity of their respective origins), and &, and &, have
their real parts positive, then approximately

X=ath, V=p6";

or introducing another variable =, where =%, the integrals there are

X=ar, Y= Bré ,
that is,

At present, it is not so much the integral of the equation which is being
considered as its inclusion (by reduction) in a typical form. The equations
used can be connected with the quadratic in the preceding investigation.
Manifestly, in the immediate vicinity of the origin, the significant term in y
can be obtained by taking X=0, or by taking ¥'=0. These give

Y=px,
where
~_A_d—-¢
=—="a
But

(§-a)(E-b)y=al;
(ap+b)p=ap+V,

equivalent to the former quadratic equation.

and therefore

Ez. 2. Consider the equation

dy . ay?42bwy+ca® (@, b, cXy, )
da ™ af+3Byw+3yya+82° " (a, B, v, 617, #)°
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From the diagram (where the points o are the points 3+41—4%, s, of the
denominator, and the points x are the points
2—1, m+1, of the numerator), it appears that
two values of p must be considered, viz.

p=1, p=3.
&
First, let u=1: as the value is derived from |™
the numerator terms alone, at least the first A

term in the expression for y will be settled by
means of them. Take

y=px+ux?

where p is a constant ; then

+an =+ 2ux= a*(a, b, clp, 1)+ 2%u (a, bYp, 1)+a,4u2oc
P dz z3(a, B, v, 8% p, 1)%+32%% (a, B, '}’IP, 1)24-3a%u% (a, BY p, 1) + 2%u3a’

Choose p, so that

(@, b, cXp, 1)2=0

then unless (a, B, y, 81 p, 1)3 for one or other of the two values of p is zero—a
result that can occur only if the resultant of the binary form (a, b, ¢} % )? and
the cubic form (a, B, v, 8Y%)® vanishes, and that will be assumed as not
occurring, for then a reduction in the expression for dy/dx could be effected—
we can remove a factor 23 from the numerator and the denominator of
the fraction. We then have

du : 2u (a, bl p, 1) +2ula
27749 — ) ) .
P T = G By, 8%, 1P+ 3wu (a, B, y1p, 1)+ 327 (a, Bp, 1) +2°uPa

It is clear that there are functions % which do not vanish with #; let the
value, when x=0, be o, so that o is determined by the equation

(a9 [37 Y BIP, 1)3
2(ap+b) "

Then writing
u=o-+7,

it is not difficult to prove that the equation determining » is

ZZZ =v £ — kx +terms of second and higher orders,

where
3ap0'+39 (07 By ')’EP) 1>2+4b‘7
2 (ap+Db)

This is the typical form for the reduction when p=1; the relation to the
integral is given by

y=pz+2*(o+v),
where p is a root of the quadratic

(a, b, cYp, 1)2=0,
and o has the above value.
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Secondly, let u=1%; the value is derived from a term in the numerator
and a term in the denominator. In accordance with the general theory, we
take -

=122 y=ut=(p+2)t,
where v is to be zero when ¢£=0. We have
at? (p+ v)2+4 2083 (p +v) +ct*
o (p+ 0)3 -+ BBH (p + 0+ Byl (p+ 0) 460
a(p+v)%+20t (p+v)+ct?
a(p+v)3+3Bt (p+v)2+3ye2(p+v)+ 083

9 ap?+ 2apv +2bpt + ...
ap®+3ap?v+3Bp2t+..."

+tdv+v—22
L

Choose a non-vanishing value of p so that
2
p=2"2 p3,
that is,

pla=2aq.

Then after some comparatively simple reduction, we find

dv__ <)
t% —2v+t<2——3 >+

as the reduced form.

Ez. 3. Discuss, in a similar manner, the equation

dy (ay By 'Ylvafly’ z)P
dz— (a, b, Xy, @ °

Ex. 4. Consider the equation

dy _y* (@, b, cBy, »)* .
d_’l? "1’2 (a, Br Y 59:% x)S
here S= -2, R=-2.

From the diagram (where the points o are the points 3—1—£%, s, of the
denominator, and the points x are the

points 2—17, —1 of the numerator), it
appears that two values of u arise for
consideration, viz. u=2, u=1. K\‘
First, take u=2. The leading term S
in y is pa?, where
oD
cx? N
2p.z' = pzngd/Tg’ L
that is, i
8 N
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y=a? <2%+7J> ,
cx? 4 2bx3 . 2§+...

+2vr=a%4 - <8+v+ ) 3 ,
x3+3-y.764.2—c-+..

‘We then take
so that

46‘“""‘“’23

and therefore

c+4 .
x@+2v—-4— —1+<3+7)+ ) 8
a+67 L4

S/, bd
=4/0+80—2 (\2 _C_ —By)a}-{-...,

that is, d
v

@ =
on reduction and expansion. This is the typical reduced form for the value
pu=2.

Secondly, take u=1; then the leading term in y is y=«xz. We write

20+8°2 2—-—3 )x+
C

y=xz(x+v),
and substitute ; thus
(K+’U> (a, b, cle+w, 1)
& (a, B, v, 88c+v, 1)3°
In order that this may be satisfied when v=0, we must have
(ay by cYx, 1)2=0

as a first condition ; and the leading term in » must be a multiple of z, say
v=xV, where V is not zero when #=0. The original transformation thus is

K+xg—+ =

y=ax+2*V;

when this is substituted, we have

av (k+2V)? 2(axk+byaV+ax? V2
2 =
e TEV=T0 By Slka ¥ I
Let '
(a By v, 8%« 1)3=f"a
3 (09 B '}’IK: 1)2= —fz H
then olV 2( bV Ve
ak -+ +ax
=42 V= — V)2
ol +2x k+(k+2V) FrFaV
If p denote the value of V when £=0, we clearly have
O — g 2@ t)p
‘ Js
that is,

= 3 .
P=9x (ak+b)"
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Now substitute
V=p+ W,

so that W vanishes with x ; the value of ¥ is
y=wx+xp+22W,
and the equation for W is, after some straightforward reductions, found to be

x? @W £ f(a" —’?f2p)+'-'>

which is the reduced typical form.

Ez. 5. Consider the equation

2 W\ Y tpe
* 3w ypx?

which is one of the unreduced typical forms (§ 46) : here S=—1, E=0.

The numerator points (marked x) are I—j, 7;, though the only terms
entering are those for which j=/7, j=0; the denominator terms (marked o)
are 14+0'—%, s, though the only terms entering are those for which 2=7,
£=0. The diagram can easily be constructed ; the points o are (1+7, 0),
(1, 1) ; and the points x are (I, 0), (0, 1). There are three cases, according as
14+0U>1, =1, <.

. (i) Let 14-I'>7; there is only one value of p, and it is % ‘Write
w=t, y=ut;

and let 14-0'=10+s, where s i3 a positive integer > 1. Then

du IN w A+ et
Y@ TS T pdw e
N _pru
t ].L'+t8—1ul“

Now wu is to be different from 0 when =0 ; let p be its value, and take
u=p+vi,
where v may or may not be zero when t=0. We have

N ptpt+lpt—lot+51(0—1) pt 202424,
e (P Ut T et +. L) ‘

dv
¢2 4 +2vt+p—

There are two sub-cases, according as s>1 or s=1. First, let s>1; take
ptpl=
A
== 7pt—1
P
so that

Ip- 1o+ 41 (I~ 1) pt= 202t +...
}L’+t8—lpl’+... 2

t2%+2vt+p=l)\
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so that

y=pt+at?+2W
g T2at+2Wi=—p+Ix

and a is the value of » when ¢=0. Take v=a+ W, where W=0 when ¢=0
then

[60. 60.]

ot latlpt "1 W4LI(I—1) pt—2a%¢+
and therefore

#’+t3“1pl'ﬂ-‘...
A Q=1 W+ (I—1) pt=2a%— p¥ +12~1} 4

J‘{U(z 1)y pitgs Qa}

dW

Z2)\pz'1
dr

’

I

bines with a later term.
Secondly, let s=1, so that I'={; take

ptpt=

AN -
p= pllpl 1q;
so that

pi—1 1242
d—”+2?}t+p=l7\l v4+50(1—-1)pt— 202 +..

W plipt ot 4. ’
and a is the value of » when ¢=0. Take v=a+ W, so that W =0 when =0,
and then
y=pit+al?+2W
we have _
d w
dt

2 ——+2at+2Wt= -—p+l7\l

a+lp=IW+3l(1—-1)pl~2a%¢+
y-'+pl+lpl‘1at+ .

(Lot~ W+t{l({—1)p' " 2%a
and therefore

M'+P‘
p AW _ mp l:n\ 31(1—-1)p+2a?
dr

lpla} +...7,
W]
— 2a |2
w+pt ol i
These are the respectlve reduced forms for the case I’ >1

(ii) Let 1470=1¢

There is a single value of u, and it is 7 Again, write
r=t, y=ut;
then 7 ’
du N U ud
@ TS it
A (pt+d)
SWiat
Now when ¢=0, » must be different from zero, say p ; so that
_A(p+ph
pt=T 0
and therefore

_ Dp
1-\°

— l’+lts——1+ cers
"
where if s=2, the third term combines with the second, and if s> 2, it com-

REDUCTION
Let u=p+w, so that

y=(p+v)t;
then the equation for v is ’
d . A (ptpt+lpi-tot...)
LT TP R = D) ot .

leading to

u——@%—-fr )w—fﬂ+
the reduced typical form,

(iii) Let1+?</!, =!— o, where the 1ntegef o>1
L 1
of u, and it is

Z’_— ‘Write

x=1"% y=ut=(p+v)¢;
then taking » (pto)ts

Pl T=2u(l~),
the equation for » is found to be

o

dt=—(l o)v—

.
the two terms in ¢ that are exp1101tly given coalescing when o=1
reduced typical form.

Ez. 6. Consider the equation

dy " y3+ax4y2+bxg)+cx14 .
dw ~ Y Y+ 2 YR 4 gady + hald’
here §=2, R= -5 :

P

oo

There is a single value

This is the

133
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From the diagram (where the points o are the points 15—4—Z%, s; of the
denominator, and the points x are the points 3 —, ;-3 of the numerator), it
appears that possuble values of p are 6, 2, 1, &, .

First, take p=6; then when we substitute
y=28(p+ o, 2"+ 2™+ 032+ oy 2™ F o™ +..)
and retain the lowest terms, we find that, in the numerator on the right-hand
side (including the factor xx%y®), the term of lowest order is xbpSx®; con-
sequently, in order that the equation may be satisfied identically, the terms

in the denominator of order lower than 3% must disappear. To secure this,

we must have
a;=4, ay;=8, a3=13, aq;=16, a;=19;

and then the necessary relations among the coefficients are
O=h4gp '
( 0=go;+fp*
\ O0=goy+2fpo,
( O0=gog+f(2poy+ o)
O0=gos+f(2po3+ 201 0y),
which determine p, oy, 03, 073, 05. That the coefficient of 2% may be the same

on the two sides, we must have
xbpb

6P"'§(}' ’
kb o kDB
or o-5=€q po= 696 ;

and so for the other powers in succession, the remaining coefficients of powers
in the expansion of y involving the constants «, a, b, ¢ of the numerator in the

dy
dx”

Next, take u=2; then when we substitute
=22 (p+ A2+ N2+ N33 +...),
the lowest power in the numerator is that which occurs in kbp8215; accordingly,

all terms in the denominator of order lower than !¢ must disappear. That
this may be the case, we must have

0=gp+/p%

O=gA;+2/pA,,

O=gAs+ 7 (A*+2pX5),
which can be satisfied by taking A;=0, A;=0, fp=—g. For the next term,
we equate powers on the two sides and find

expression for

Kbp _ «bg*

= 57 ;
and so for other powers in succession, the remaining coefficients in the
expansion of y again involving the constants of the numerator in the expres-

sion for 0@ .

dx

Ag=—
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Next, take p=1. Substituting y=pz, we find

bp
=K, 5 y
' p=kp fo?
that is,
3—.L
=
Now, let
y=x(p+v);

on substitution and reduction, we find that the equation for » is

v
3——-3w+x<—— Z)+...,

the typical reduced form.
Next, take p =14, and change the independent variable to ¢, where
x=12;
then in the expansion of y, the leading term is p¢. A similar analytical
process shews that p is determined solely by the terms in the numerator ;

and if
y=pt+y+otd+...,

then
P2+b=05
v=0,
1 pbt
o=3"%

and similarly for succeeding powers of z. To obtain the typical reduced form,
take
y=(p+v)t=pt+(c+ V) 2;
then after reduction, we find
d V_
rZ2

Lastly, take u=2; we change the 1ndependent variable from x to ¢, where

V ft-i—-

w=t8;
then in the expansion of y, the leading term is p#3, where
p=35«.
According to the general theory, we take
y=0(p+v);
and after reduction, we find

dv b
w_ _ 3%
= -2+ 3 oA

the typical reduced form.
Note. The object of the examples is to indicate how the typical reduced

forms arise in particular cases. It can, however, be inferred as a suggestion
from this and from other examples that the simplest typical reduced forms
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arise in connection with those values of u which are determined by a portion of
the broken line containing points from both sets in the tableau ; the character
of the corresponding integral or integrals is determined by the character of
the integral of the typical reduced form. In other cases, where the values of
@ arise from a portion of the broken line containing points of only one set,
there can be a branch (or a set of algebraical branches) of the integral
vanishing with # and expansible in regular form, either in powers of # or in
powers of another variable, the existence of the branch depending upon the
convergence of the series; for the determination of the branch or branches,
no typical reduced form is necessary. It is manifest that the latter class of
integrals (when they exist) is highly special ; the initial terms in the expansion
are obtained without reference to the differential coefficient, for they are
obtained by making terms, in the numerator or the denominator as the case
may be, of lowest orders vanish.

It may, however, be the case that such special integrals are only particular
portions of some more general integral, which would be determined in connec-
tion with a typical form. In the present instance, the simpler plan would be
to proceed from the form

22 5@_yl5+fx7y2+gx9!/+/l‘xl5 .
L Ty T Prartyi+bay + ot

the two cases that lead to typical reduced forms, which were not obtained in
the preceding analysis, are '

x:py% +... x=py’i‘+... H

they would be treated as was the case u=4.

Ez. 7. Consider the equation
dy _y aytbz
do~ way+bz’
here R=—-1, S=-1.

The tableau consists of two coincident pairs of points at 1,0 and 0, 1 ; the
only value of u is unity. If y=px, then

ap+b
p=palp+bl3
so that
_¥—b
p—a_a/'

If now, in accordance with the general theory, we substitute

y=a(p+v),
we easily find

dv _(a—a')(b'=b)

dx“’ al;r_a/b ) ”Q (?]),

where € (v) is a regular function of » in the vicinity of v=0, and @ (0)=1.

60.] , REDUCTION 137
This form is satisfactory unless ab’'—a'b=0. If, however, ab' —a’'b=0,
then the original equation degenerates to
dy _ 2y
dz o 2’

the integral of which is obvious,

The integral of the original equation can be obtained by quadratures,
Let

y=ux,
so that
du au+b
x z‘x +u=u m, H
hence
dia _ cjz_ll a'u4-b
v u (a—ad)u+b--0
- 4 ¢
=du {u + (a—a) u+b—b’} ’
where
o a’b—ab
e_b__b/’ ¢_ b___b/ .
Consequently

v a’b—ab’
x=Aud-b {(a - a') u+(b—b)a—a)b=b),
and therefore
_a_ b © _a'b—ab’
za—d = Ayb—b {(a— o)y +(b—b") a}a-a)b-b),
which is the integral.

Taking .
u=p-+v,

with the earlier value of p, and absorbing a constant into 4, we have

v _ a'b-ab’
z=A' (p+v)b—b v(@—-a)®-¥),
Accordingly, if
A a'b—ab’
~(a—d)(b-0)

is positive, » tends to zero with @#. When A is a positive commensurable
quantity, other than the reciprocal of a positive integer, then there are a finite
number of branches for » as a function of w, all vanishing with 2 and
circulating round the origin. If A be the reciprocal of a positive integer, then
» is a uniform function of #, vanishing with .

Implicit assumptions have been made that ¢ and o’ are unequal, also that
b and & are unequal : the discussion of the alternatives is simple.

Ex. 8. Consider the equation
dy Yy 9+ ayP+ a0t y’ +azady +a, o8

Az~ @ P4 0,72y T byaP B+ bya? YR+ by a5y + Dy ®
here 8= -1, R=—1.
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From the diagram (where the points o are the points 5—#%, s; of the
denominator, and the points x are the points 4—1,
r; of the numerator), it appears that the possible
values of p are «, 3, 1, 0. Of these we put the
infinite value on one side, for it corresponds to a
constant zero value of ¥ while # varies ; and we put ¢
the zero value on one side, for it corresponds to the
case when y varies without variation of #, that is, ¥
is not then a function of . N

Ty
M
N

First, take p=3 and substitute y = pa3, retaining
only the lowest powers of # ; the equation for p is

0
D

3p=p ?5— ’
so that
b5
P= ch
Now write

b
=3 5 .
y=u (3 a3+”)’

then substituting and reducing, we find that the equation for v is
, 2
« =3v+ 322 (ﬁ‘—9 l)“—Z;§--27 Mg)-i—
dxw ag ag ag

Secondly, take p=1 and substitute y=pz. Proceeding as before, we find
the equation for p to be
4 +a.
=p _?_p_gf ,
that is, p is a root of the cubic
pP—bp+az=0,

the roots of which are distinct from one another unless 45,%=27a,2, a condition
which we shall assume is not satisfied. Then taking

y=xz(p+v),
we find that the equation for » is

dv _ (,p° a,p?*—p*
ITJ.C—L‘—<3b—3—1)v+ - b3 -Z'+...,

where the coefficient of v is distinct from zero, because the ctibic for p does
not possess equal roots.

Ez. 9. Consider the equation

dy _ y 8
dz = 7 (Y +20,2°%).

Here R= —1, S=~17; and the function p (v, #) is unity. The diagram at
once shews that the possible values for u are «, 6.

The former gives a constant zero value for .
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For the latter, we take = pa® and find
- Bp=p?
that is, p=6. Hence substituting

y=a(6+v),
we find
x@=617+12a 2242 4 20,022
dz 4 4
=6v+ 120,22+ ...,

which is the reduced equation for ».

But as a matter of fact, the integral of the e@uation
can be obtained by quadratures. We have

and therefore
Lowima— [Lgunigy
y R

1 1
—A+6x‘3 4324- a4 +1 g2 log 2+ P (2),
where P (x) is a regular function of . This corresponds with the above form

y=a"(6+v) ;
and clearly =0 is a point of indeterminateness for g, since » contains terms
in log 2.
Ex. 10. Discuss the following equations :—
() dy _ ay*+ba?yi+cxs
dz ays+Batyi+yzs’
dy  ayt+bx%y® +cad

(11) xr % Ay(;_*_)\/ ) bl
2 y_ ayt+ bxy® + cat
(i @ dz yi+axyd 4 Briy +yxt ;
. dy Ny+uad
@iv) dr yitwx i
V) x9 dy a?. '+ ot where 0 > 2;

x yﬂl_‘_
. dy s ta it a oy +azat
() da =Y PA+b 2 Y2 4 by + bya8’
¥+ axty? + bay featt
P+ gt gady + hatd’
2,395+ 8% + agwys + aywtys + oyt + aryt + agrty® + o’y +agr
YT +b 220+ byatys + by a3yt + b, a3y + by xSy - by +bya® 7
Yyt a, 23 + a2y + agxy + a, a8
YT+ by 2290 + byt 45 + b3yt + b2y + by ady? 4 by ax’y+b7x8’
dy__ 1 ay+bdx
) Fo= 2292 ay + Bz

s d,
(vil) J—‘Z‘ =2ty

(viii) = k2

(ix) Z—Z:xwz




CHAPTER VI

TaHE INTEGRALS OF THE VARIOUS REDUCED FORMS OF THE
ORIGINAL DIFFERENTIAL EQUATION IN THE VICINITY OF
THE ACCIDENTAL SINGULARITY OF THE SECOND KIND¥*,

61. It has appeared that the determination of the integral
of the original differential equation in the immediate vicinity of
an accidental singularity of the second kind depends upon the
character of the integral of a subsidiary differential equation
which belongs to one or other of a number of reduced typical
forms. Moreover, the algebraical substitutions, adopted in §§ 43,
47, 52, tacitly assumed that, subject to this consideration, the
integral of the original equation is of a regular form or
is changeable into a regular form. It may be the case with
some of the equations that the portions of the integrals thus
obtained constitute, when taken in the aggregate, the complete
elements of the solution in the vicinity of the singularity. But
for some of the equations these portions, if any, represent only
part of the solution: in particular, it may be necessary to con-
sider independently whether the singularity is or is not a point of
indeterminateness for the general integral.

We proceed, in the first place, to the consideration of the
reduced typical forms in succession.

* Many references are given in the course of the chapter. In addition to those
quoted, there may be mentioned, Picard, Cours d’4Analyse, t. 111, ch. 11, 1x; Jordan,
Cours d’Analyse, t. 1u, pp. 112-—122; and the papers of Poincaré in the foot-
note to Ex. 1, § 60.

Neither the method originally given by Briot and Bouquet, nor that given by
Poincaré and to some extent followed by Picard, has been adopted: it will be seen
that Jordan’s method is more closely followed.
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The forms which have to be considered are

.dv
tk;lz =av+l)t+ e = ()bl('l), t))
where « is an integer >1;
t* glg ;.—_-91)77" +bt+... =t ('U: t)’

where « is an integer > 1, and m is an integer > 2;
L _ g+ bt ...
dt — hv™ +cot+ ...
A
bm (v, 2)°
where « is an integer > 1, m and » are integers >1; but if they
are both equal to 1, the form can (by transformation) be included
in the first of the set.

Of all these forms, the most important, as regards the natural
occurrence, is the first when x«=1. It will be seen that the
characteristics of v, as determined by

t

dv
t (Tt- = ¢1 (?}, t);

are settled for all the varieties of this form that can occur; but
it will be seen that the same claim cannot be made for the other
forms, and they offer opportunities for further investigation.

THE FIirst TyrPIicAL REDUCED FORM.

62. The first of the typical reduced forms is

dv
i ¢ (v, )
=qv+bt+3ar®+Bvt+ Syt + ...,
where ¢, is a regular function of v and ¢ in the immediate vicinity

of the origin. The quantity v thus defined is required to vanish
when ¢=0.

It will appear that the general character of v is to some extent
determined by the nature of the constant @. When a is not a
positive integer, transformations of the dependent variable can be
effected, so that the new equation is the same in form as before
but with a new coefficient @ which has its real part zero or
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negative; and when a is a positive integer, the corresponding
transformations lead to a mew equation the same in form but
having unity instead of the coefficient @. The transformations
indicated are of the type given by

v= (— ———b——- + v’) t;
a—1 ’

after substitution and division by ¢, we find

/

t%%=(a— D' +bt+....

This transformation is effective, if a be not unity. If @ be not a
positive integer, say a+¢2’, where a may be integral or fractional
when o’ is not zero, and where a is fractional when o is zero, then
it can be applied any number of times in succession: after a
definite number of operations equal to or greater than the integer
in o, the real part of the coefficient which emerges in place of «
is either zero or negative. If a be a positive integer, the trans-
formation can be effected until the coefficient which emerges
in place of @ is unity, that is, it can be effected @ —1 times.

63. Since ¢, (v, t) is a regular function of v and ¢ in the
vicinity of 0, 0, expressible in a converging power-series, let the
radius of convergence in the plane of ¢ be » and the radius of
convergence in the plane of v be p; within this region of existence,
let the maximum value-of | ¢, (v, ¢)| be M.

If a regular integral of the equation exists which vanishes with
¢, it can be expanded in a form

V=t 4 ot +at* + ...
when this is substituted in

t i_li%] = ¢, (v, t)
= qv + bt + F(av? + 2Bvt + ) + ...,
the new result must be an identity. Accordingly, from the
coefficients of #?, we have the relation
(n— a) a, = coefficient of ¢t” in bt + § (av®+ 2Bvt +4t?) + ...
= integral function of a;, ..., o,—;, which is linear in

the coefficients in ¢, ;
thus

(1—a)a, =10,
2—a)a,=3(y + 28a; + a=?),
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and so on. When the values of &y, a,,..., a,_; are obtained in
succession and are substituted in the equation for a,, the final
expression for a, is an integral function of the coefficients in
¢., divided by a quantity, which is a product of factors 1 —a,
2—a,..., n—a, some of them being repeated in that product.

Further, it may be noted that

v= —E—at+a2t2+a3t3+...,

so that -

vV =t +at? + ... ;
and therefore the quantity »’, which occurs in the equation after a
single transformation has been effected as above, is also a quantity

‘that vanishes with ¢ when v is a regular quantity. And similarly

after any number of transformations. Hence we may assume, ab
wnitro, that the transformations are effected; and therefore we
have two cases to consider, viz.

(i) when the real part of @ is zero or negative, the -
imaginary part of ¢ not vanishing when the real part
is zero; ’

(ii) when a =1.

The former assumption will now be made: the latter case is
reserved for later consideration (§ 68). ‘

Case I: a = positive integer.

64. Now as the real part of a either is negative, or is zero
and then the imaginary part does not vanish, the value of |n—a|
for any integer n is certainly greater than unity. For n=1, the
quantity |n — @ | is less than for all other values of = ; let this be
0, so that 6 >1. Hence when the modulus of the final expression
for a, is taken, and in the denominator each factor |m —a|, for
m=1,..., n, is replaced by 6, the modified quantity will be greater
than the proper value of |a,|. Further, the modulus of the
numerator is increased when every term (with its proper sign)
is replaced by its modulus. Moreover, it is known* that the
modulus of the coefficient of v™t™ in ¢, is less than M + p™r™;
consequently if, in the expression obtained as being already
greater than |a,|, the quantities M + p™r™ replace the moduli of

* Th. Fns., § 22.
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all the coefficients of »™#", which occur in the numerator of the
expression (and occur there only), a still higher value will be

obtained for the newly modified expression than the former. "

When these cumulative appreciations in value are effected upon
the modulus of the expression for a,, let the new quantity be
A, ; thus

|on| < Ay.

This quantity 4, is the value of a, when each of the numbers
1—a, 2—a, 3—a,... is replaced by 8, when the coefficients of
v"&™ which occur in ¢; are replaced by M= p™r™, for the
respective combinations of m and m’, and when all the terms
are made positive. Let V denote A,¢+ 4,*+ A,t*+ .... The
effect of the changes, which lead from |a,| to 4,, is to replace

+ % by OV and &, (v, ¢) by

dt v
1—”t+JL{t2+ﬂ—1tV+JL2[V2+:..;
r 7 rp P

hence V satisfies the equation

0V=]—‘£t+]—|§t2+]—”tV+I—%V2+...
r 7 rp P

1 |4

fhe-0) e

This, being a quadratic equation, has two roots: one of them
vanishes with ¢, and the other is different from zero when ¢=0.
The former clearly is the proper value A4,¢t+ 4,82+ A;¢*+ ... of V;
it is easily found to be given by
20+ M) y_g_ {92— ek 6——-"+.M}%,
P r—t  p’

where that branch of the (two-valued) radical is to be taken
which becomes equal to @ when ¢=0. Now this branch remains
regular and can be expanded in a series of ascending powers of
t, converging for all values of ¢ such that

t ! < 02 p?

,.‘r—t 4M (M + 6p)

' < k,

say ; and the values of ¢ are such that [¢|<€r. Now trace the curve

=M

|t|=x|r—t].
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It is a circle; its diameter lies between the two points which
divide, internally and externally in the ratio of « : 1, the radius
of the circle of radius » drawn from the centre in the positive
direction of the axis of real quantities. Since « is not an
infinitesimal quantity, the part of the area of this circle which lies
within the circle |¢|=1r is finite, not infinitesimal; every point
lying within this part and not on its boundary satisfies all the
required conditions. Accordingly, there is a region of values of ¢

which is finite in extent and throughout the whole of which the
series

At + A2+ A0+ ...
converges absolutely. But we have seen that
lon| < An;
consequently, throughout the same finite region, the series
V=0t + o, t?+ a3+ ...
converges absolutely.

Now remove the restriction that the real part of @ is zero or
negative ; and replace it by the condition that a is not a positive
integer. When the equation

d
t =i (v, 1)

is in this form, it is known that a finite number of operations is
sufficient to transform it to the preceding case, these operations
being transformations of the type

v='<—a—g——+v1) t,
v = (—ab_j2+vz> ¢

The last of the dependent variables v thus arising is that which
occurs in the preceding investigation; it has been expressed as an
absolutely converging power-series. When the successive substi-
tutions are carried out, so as to give the initial dependent variable,
the result manifestly is to give a regular function of #, that vanishes
with ¢ and, owing to its construction, satisfies the differential
equation. Hence we have the theorem :—

F. IL 10
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The differential equation

dv
t% G/U+bt+

‘ = ¢1 (1), t)’
where the coefficient a is not a positive integer, possesses a reqular
integral which vanishes when t=0 and exists over a finite part of
the region of existence of the function ¢, (v, t).

The argument of § 12 may be applied, or a proof similar to
that in § 13 may be constructed, to shew that the regular integral
thus obtained is the only regular integral which vanishes with ¢
and satisfies the equation.

65. Though the integral thus obtained is unique as a regular
integral vanishing with ¢, there may be other integrals, non-
regular, which vanish with ¢; to determine whether such integrals
exist or not, we proceed as follows. Let w denote the regular
integral which has been obtained; and take

v=u+ U,

so that U is a quantity vanishing with #; but unless the integral
u already obtained is the only integral that satisfies the condition,
U is not zero everywhere. (It is not a regular function of ¢; but
it might be a regular function of some other variable, such as
tlogt, which itself is not regular in ¢) We have

t——¢1(u+ U, ) — ¢ (u, £)

a¢1 2a¢1 .
_Uau +—U au2+...,

since ¢, (u+ U, t) and ¢, (u,t) are regular functions of their

arguments, the right-hand side of the expression for t%g is an
absolutely converging power-series. Now

b, (u, t) = aw + bt + F(au? + 2But +yt?) + ...,
go that

aaqzl a + au + Bt + terms of higher orders,

¢,
ou?

Y L - = DR s
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and so on. In each of these quantities, let the value of u be
substituted; then we have

%=a+blt+bgt2+
ou

o0*¢ / ,
au;=a+b1t+b2t2+
and so on, so that the equation for U is

¢ 20—l (14 g (U} + 2 UR (T, 1),

where g(U) is a regular function of U vanishing with U, and
& (U, t) is a regular function of U and ¢ that does not vanish with
U and ¢, unless b, vanishes, that is, unless

b
,3+<zl_a

vanishes: which, in general, is not the case. Hence

al _ t h(U,t)
To+g=%% T1+g() ™
and therefore

aUu dt b+ ... d,

T A=nU=—mU+. D=0+ w7
that is,
U @ b+ ...
——lf—a7=(%+'¥1U+-")dU+ Wdt‘

In the vicinity of ¢ =0 take a point %4 ; and suppose that, if
possible, U, is a value of U at that point, U, being finite and
different from zero. Join the point ¢, to the origin by any curve
such that U tends from U, to a zero value as ¢ moves from ¢, along
the curve to the origin; and assume first, that the curve is finite
in length and that, if desirable, it can pass an infinite number of
times round the origin, (for an infinite number of revolutions
round the origin is possible with a curve of finite length such as
an equiangular spiral); and secondly, that the origin is not a
point of indeterminateness for U. Let integration be effected
along this curve between ¢ and %,; the equation gives

U ¢
log % —alog;;=on(%+fle +...) olU+fto T?b(;()i(]_*_— dt,

at any point of the curve.
10—2
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All the series on the right-hand side converge absolutely.
Hence in the first integral, which is

'Yo(U'_ U0)+%’YI(U2"‘ Uo2)+ cee

as U tends to zero with ¢, the sum of the series tends to a definite
and finite limit. Similarly, as ¢ tends to zero, the second integral
also tends to a definite and finite limit. The right-hand side
in these circumstances tends to a definite and finite limit:
let its value be C+ 7, where 7, depending on ¢, vanishes with ¢.
Thus

_l_r_ = gi’ eCt+r

e
so that, in the limit as ¢ tends to vanish,
U= At?,

where A is a finite constant, which is arbitrary so far as concerns
this equation : it depends upon the arbitrary quantities %,, U,.

The curve of variation has been limited by the condition that
U should tend to vanish with ¢; the expression for U shews that
the curve must be such as to make ¢* vanish with ¢.

Let @ =a + B, where (by the initial hypothesis) a" is not a
positive integer when @’ vanishes; and let ¢=7¢%; thus

l 1o l = %108 r—p’e’

and therefore, as ¢ tends towards zero, the quantity « logr — 3¢
must tend to a value — oo.

(i) If B be zero, the condition is satisfied when o' is positive :
but it cannot be satisfied if o’ then be zero or negative. Hence
when @ is real and not an integer, there exists an integral U
vanishing with ¢ if @ be positive; and there is no such integral if
@ be negative.

(i) If B be not zero and o be positive, the condition is
satisfied provided that, as ¢ tends towards zero, € either remains
finite or, becoming infinite, has the same sign as B. The
latter case gives a spiral with an unlimited number of turns in a
prescribed sense ; and the integral exists for such variations.

(iii) If B’ be not zero and o’ be negative, the condition can
be satisfied, only if 6 tend to an infinite limit having the same
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sign as B and such that &' logr — 3’0 tends to the limit — oo.
Again the curve is a spiral with an unlimited number of turns in
a prescribed sense; and the integral exists for such variations.

In the respective cases, these are the curves along which the
variable ¢ must tend to its origin.

It therefore follows that, in certain circumstances, a quantity'
U exists satisfying the differential equation

t 02—?: b (u+ U, t) — ¢i (u, t),
vanishing when ¢{=0 and distinet from zero in an infinitesimal
region round the origin; consequently, for that region it follows
that the solution % is not the unique solution of the original
equation. Moreover, the expression of U, when it exists, is
U= At

in the immediate vicinity of ¢ =0, where 4 is a finite constant
that is arbitrary so far as the equation is concerned.

66. This result, valid over the infinitesimal region specified,
suggests a form of result for the equation when the region of
variation of ¢ is not restricted in that manner. Returning, there-
fore, to the original differential equation
t%}=av+bt+...

= ¢1 (% t)s
the integrals that vanish with ¢ are indicated by the following
theorem* :—

The differential equation possesses an infinitude of integrals that
vanish with t, when a is not a positive integer but has its real part
positive ; and they have the form

V= zdntn-l-f/af,

n=1

where Sa,t" vs the regqular integral of the equation the existence of
n=1

which has already been established, and & can be expressed as a
doubly-infinite series of powers of t and 1% which converges in a
finite region round t=0 and acquires a value A at t=0, where A
18 an arbitrarily assigned constant.

* It was enunciated in part by Briot and Bouquet, Journal de VEe. Polytech., t. xx1
(1856), p. 172 ; and was rendered complete by Poincaré, ¢b., t. xxvimx (1878), p. 14.
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It is evident that, for extremely small values of |¢]|, the value
of t2§¢ is the same as that of U in the preceding investigation, so
that £ tends to the value 4 as ¢ tends to the limit zero. To
establish the theorem, it must be shewn that a doubly-infinite
series of the specified kind can be obtained which, when substituted
for U, will render the equation for U identically satisfied. That
equation 1is

dU 0, 0%,
tw =Y a(fo 5 U af%

=aU(1 +%U+ «es) + tU (b, + powers of U and t),

where
b
bh=B+ay_—, R

a a’

substituting {*£ for U, the equation for £ is
t 2 = E (bt + ayotoE + )
=&y (8, 1°6),

where +r (¢, t2§) is a regular function of ¢, ¢* (in some vicinity of
t=0), and of & (for values of £ that tend to acquire an arbitrarily
assigned finite value 4 as ¢ tends to the value zero), the powers of
& always occurring through powers of ¢*£; and + vanishes when
t=0. The equation thus obtained is the differential equation for
£; the establishment of the existence of a solution §, subject to
the assigned condition, can be effected in a manner similar to that
adopted for the regular integral of the original equation (§ 64).

Let IV denote the greatest value of |y (¢, t*€)| for values of the
variables within the region of convergence of 4, say |¢t|<€r, |E|<p,
| % | < o ; so that, as is known*, the modulus of the coefficient of
tmtnegn in the expansion of 4+ is less than

N
for all positive values of the integers m and n. Now as § is to be
a function of ¢ and ¢, take

0 =te,
so that
d¢ _  0& o&
t%_taﬁ" ab 50

* Th. Fns., § 22.

66.] NON-REGULAR INTEGRALS 151

when £ is expressed as a function of ¢ and 6; the equation to
determine £ then is ’

t% 4 008 = £9 (1, 08)

Now if & is to be a regular function of ¢ and 6, which is finite
when ¢ and 0 vanish, it must be expressible as a converging power-
series, say of the form

E= 3 I cp, ™07,

m=0 n=0
where ¢, , is not zero; when this series is substituted for £, the
equation must be an identity. Thus*, for values of m and n that
are not simultaneous zeros,
(m 4 an) ¢, » = coefficient of ™" in Er (¢, OE)

= Om, n>
where (), » is a rational integral function of the coefficients in +»
and of the coefficients ¢,y In & such that m'<€m, n'€n, and
m +n <m+n But there is no constant term either on the
left-hand side or on the right-hand side of the equation after
substitution: so that no limitation on the quantity ¢, , is intro-
duced by the equation. When the series for & converges, its
value for £ =0 is ¢, ,: the preceding investigation shews that,
as t tends to the value zero, £ tends to a limit A4 which is
an arbitrary constant: and therefore, if the series converges,
we have

. Coo=A4A.
For the other coefficients ¢y, », the equations
(m + (l?’l) Cmyn = Cm,'m

solved in succession for increasing values of m + n, lead to results
of the form

Cm,n = Ym,n>

* A possible difficulty might be suggested, as regards equating the coefficients, in
the case where a is a real positive commensurable quantity, say =3 : for then the
even powers of 8 would be integral powers of ¢ and the identification in the form
adopted would not be possible.

The difficulty ceases to be valid when, as is the actual fact, the equation in ¢ is
regarded as a partial differential equation in two independent variables ¢ and 6.
The integral of the partial differential equation leads to the integral of the original
ordinary equation by making 6#=t*; but it can lead to the integrals of other
ordinary equations by making other substitutions for ¢ in terms of ¢.
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where «y,, , is an integral function of the coefficients that occur in
4Jr, this function being divided by a product of factors of the form
m + an.

Now as the real part of a is positive, | m +an| increases with
increasing values of m and n; it is therefore at least equal to 1,
or to |a| if |a|< 1, for m and n are not simultaneously zero; and
except for the'lowest values of m and n, it is greater than unity.
Hence when the modulus of the expression for ., is constructed,
its value will be increased if each of the factors |m + an| in its
denominator be replaced by €, where e is the smallest among them
all. The value of the expression, thus modified, will be further
increased if the modulus of the numerator be replaced by the sum
of the moduli of its various terms; and in this later form, its value
will be still further increased, if the modulus of the coefficient of
t? (6¢)? in the expansion of 4r be replaced by

N
rPgipe’
for all values of p and ¢. Hence, if Ty, ,, is the result of making
all these appreciations in the value of the expression for |om q|,
we have

Icm,n | < Fm,n-
We take T, ,=]¢Cqo|- The series obtained from substituting
Ty, n fOr € 5 gives a quantity #, such that
n= 2 S, Pm,nt’”‘()”.

m=0 n=0
From the law of formation of I', ,, it is easy to see, as on p. 144,
that # satisfies the equation
N N N N
= (242 gy 4 2 Vg
en eA+77\rt+o_p n+rapt9n+rzt+ )

ISR

Also, » must be that root of the quadratic equation which
becomes 4 when ¢ and @ vanish. The solution of this quadratic
and the choice of the appropriate root lead to the result

=ed + Ny

[V 9 \*
2(e+ N) — 4ed (e+ N)—
L =111 oL
" Ad N: o~ —( A0 Nt)2j’
€4 — = = €+ -
op r—t cp r—t
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where that branch of the radical is chosen which is equal to 1
when 6=0. The branch of the radical remains regular, and
tends to the value 1 when 8=0, for a region of variation of the
variables represented by

2
e+e—4t“—N—t—t > 4
op r—t

ed .
;;(G'FN)t I.

Since € is a finite and not an infinitesimal quantity, this region is
finite in extent; clearly ¢ =0 is included within the region, and
therefore the area common to the region and the circle |¢| = r—
but not necessarily the boundary of this area—is a region of
existence for the function #5; and it satisfies the conditions pre-
cedently laid down.

Within this region, the quantity % can be expanded in an
absolutely converging power-series in ¢ and @; the constant term
in the expansion is at once seen to be A, from the expression

for the appropriate root of the quadratic; consequently the series
S = Ty atmen
m=0 n=0
converges absolutely for the range indicated. But
lem,n| <|Tm,ul;
and therefore the series
S S G, ntmO”

m=0 n=0
converges absolutely. It is a solution of the equation
0 0
0% + a6 % = £y 1, 08),

and its value is 4 when ¢ =0.

When these various results are combined, the theorem is
established as enunciated.

67. It thus appears that an integral of the equation can be
associated with an arbitrarily assigned constant A, provided 4 be
different from zero. (If A be zero, we merely fall back upon the
regular integral of the original equation.) It may be noted that,
when ¢ is a real commensurable positive quantity (and therefore a
fraction, for integer values are excluded by the theorem), each
integral associated with an assigned constant 4 is composed of a
finite number of different branches, which have the origin for their
common branch-point and circulate round it in one cycle. When
a is not real, the integral, associated with an assigned constant A4,
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is a regular function of ¢ and 8 in the vicinity of t=0, §=0;
regarded as a function of ¢ alone, there is no limit to the number
of its branches for each constant 4,—the origin is, in fact, a point
of indeterminateness.

Next, when o is a real negative quantity (whether an integer
or not), or when «a, being complex, has its real part negative, there
is no integral of the equation, other than the regular integral,
which vanishes when ¢=0.

Lastly, when these integrals other than the regular integral
are known to exist, that is, when the real part of a is positive
(a not being itself an integer), the earlier stages in the theorem
just proved give a practical method of obtaining their analytical
expression: as a matter of fact, the coefficients ¢, , in the double-
series for £ are explicitly deduced in a succession from the first,
which is the arbitrary constant of the integral.

Case II: o= positive integer.

68. It now is necessary to consider the sole case omitted
from the preceding investigation, viz. that in which o is a
positive integer.

The particular form that arises when « is zero can be omitted
for the present: the implication then is that the term involving
the first power of v alone is absent from ¢, (v, ¢). When this
happens, then, if ¢, (v, 0) is zero for all values of v, ¢, (v, t) has
a factor ¢, which could be removed from both sides of the equation
and would leave it in the form

d
7= @ D),

where 4, is a regular function of v, ¢; this form has already been
considered. If ¢, (v, 0) is not zero for all values of v, let gv™ be
the term with lowest index which it contains: on the hypothesis
adopted, m > 2; the equation is then

d

v Y1
tai——g’b' 4+ bt + ...,

where m >2. This is one of the forms reserved for later con-
sideration, being a typical reduced form (§ 44). '

Accordingly, we may assume that the positive integer a is
>1. When a>1, it has been seen (§ 62) that transformations of
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the dependent variable can be made in succession which at each
stage diminish the coefficient of the new dependent variable by 1,
while leaving the general form of the equation unaltered: and
that this transformation can be effected so long as the coefficient
is greater than 1, but that it cannot be effected when the
coefficient is unity. We shall therefore assume that, when
a > 1, these transformations have been effected as often as is
possible; and consequently the form of the equation to be dis-
cussed is

t%=v+bt+%(av2+2,8vt+n/t2)+
=61 (?)) t)’

say.

Some hints as to possible forms of the theorems that apply to
this equation may be obtained by taking the theorems for the
former case, say when a is real, positive, and not an integer;
regarding « as parametric, we make it pass to the limit when it
becomes unity. For this purpose, it will suffice to take

a=143,
where & will be made zero in the limit.

As regards the regular integral in the former case, it was

1)=a1t+a2t2+613t3+ ceny

where
o b
1 1 —a 3
and the succeeding coefficients a,, as, ... depend upon a; in part,
when it occurs. Now with the adopted value of a, we have
b
Hn=""5

so that, if b be not zero, a, becomes infinite in the limit con-
templated ; and the remaining coefficients a then become infinite.
The regular integral would then cease to be significant; hence
it may be expected that b=0 is a primary condition for the
possession of a regular integral by the equation

dv

t(—Tl_t-= 91 (’U, t)
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If, however, b be zero, then in the former instance o; is 0; the
value of a, then is
3

xq, =
2 2—'01,

and so for the other coefficients in succession. Passing to the
limit in the present case, we have

= %‘7’
and so for the other coefficients; it therefore appears as if, when
b =0, the regular integral survives. But this suggested inference
cannot be regarded as thereby established.

As regards the non-regular integrals of the former case, it
was proved that they could be expressed as regular functions of

t and ¢% Now
1 —= g1+8

=t{1+dlogt+...},

so that, if we replace ¢* by this value, a function of ¢ and ¢
becomes changed into a function of ¢ and t¢log¢ Hence it
appears possible that there may be non-regular integrals of the
equation

dv
] a? = 61 (’U, t),

which can be expressed as regular functions of ¢ and ¢logt; but
again, this suggested inference cannot be regarded as thereby

established.

We consider first, the possibility of regular integrals: secondly,
the possibility of non-regular integrals.

69. The existence of regular integrals is defined by the
following theorem, due to Briot and Bouquet:—

The differential equation

dv
tp=v+bi+..=6(v1)
possesses no regular integral vanishing with t, if the coefficient b be
different from zero ; but if the coefficient b vanish, then the equation
possesses a regular integral, which vanishes with t and tnvolves an
arbitrary constant.
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Any regular function of ¢, which vanishes when =0, can be
expanded in a converging power-series

v=0," + "+ ...,
where n > 1. If this can be an integral of the equation

d;’ —0, (v, 9)

Fn

=+ bt + 4 (av? + 2Bvt + yt*) + ...,

the equation must be satisfied identically when the value of »
is substituted in it. We ought then to have

ot +(n+1) o, 8"+ ...
— antn_'_ an+1tn+l + ...
4+ bt +3yt2+ Bt (a,t” + ...) +Fa(a, " +... 2 + ...,
satisfied as an identity. If »>1, the only term in the equation
involving the first power of ¢, is bt: this cannot disappear if b is
not zero. If then b is not zero, n cannot be greater than 1; it

must be equal to 1. In order that the first power of ¢ should
then disappear, we must have

oy = oy + b,

which cannot be satisfied by any finite value of a, if b be
different from zero.

The series accordingly is not possible; and therefore there is
no regular integral of the equation when the coefficient b does not
vanish.

Next, suppose that b= 0, so that the equation is

tg—:=v+%(av2+26vt+fyt2)+....

If this equation possesses a regular integral that vanishes when
t=0, we may write v =t£, and the sole condition attaching to £ is
that it is to be a regular function of ¢ in the vicinity of ¢=0:
but it need not vanish there, in order to secure a zero value
for v when ¢=0. Substituting, we have

% Yy +28E+ap)

+3t(8, v, B, QL E+ ...,
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where the function on the right-hand side is a regular function
of t and &; let the region of its existence be defined by

t|zr, |E|<p.

To this equation for §, Cauchy’s original existence-theorem can
be applied. If A be any arbitrary quantity such that

A <p,
then an integral of the equation for £ exists, which is a regular
function of ¢ in the vicinity of ¢=0 and assumes the value A
when ¢=0.

Denote this integral by &,; then
V= tf)\

is a regular integral of the original equation, which vanishes
when ¢=0; and it contains an arbitrary constant A.

Moreover, &\ is the only regular integral of the equation for
£, determined by the condition that it shall assume the value
A when ¢£=0; hence t£, is the only regular integral of the
equation

d
td_;’=v+%(av2+2ﬁvt+vt2)+...,

determined by the conditions that v vanishes when ¢=0 and

v
— assumes a value A when ¢=0.

dt

If the limiting condition be solely that v shall vanish when
t=0, then as A is arbitrary, subject solely to the restriction
|A| < p, 1t follows that the equation in v, when b=0, has an
infinitude of regular integrals which vanish with . '

70. The existence of non-regular integrals is defined by the
following theorems* :—
An infinitude of integrals of the equation
dv

t%=v+bt+... =0,(v, t)

exist, which vanish with t and, within a region round t=0 that is
not wnfinitesstmal, are reqular functions of ¢ and ¢ Log t, where Logt

* The first was enunciated definitely by Poincaré, Journ. de UEc. Polytech.,
t. xxvir (1878), p. 26 ; Briot and Bouquet had previously (l.c.) shewn that the
equation possesses an infinitude of non-regular integrals.
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s that branch of the function logt, whose argument lies between
0 and 2. ,

Further, in the tmmediate vicinity of the origin, these integrals
take the form

: btLogt+ 7V,
where | V| can be made smaller than any finite quantity on suffi-
ciently diminishing |t|, and is wnfinitessmally small compared
with |t Logt|.

The second of these theorems will first be established, in order
to follow as closely as possible the line of investigation adopted
for the case when @ is not a positive integer. We take the
equation in the form

dv

taz——-'u{l +vg (v)} + bt + vt {B + vh (v)} + PR (v, 1),

where g (v), 2 (v), R(v,t) are regular functions which may (but do
not necessarily) vanish for zero values of their arguments; and
rearranging it, we construct expressions to which quadratures can
be applied.

We have, for any function F (v),
d F(’U) —0t+1G (V) | =— p—0t+iG (v)
PO o] < g 3

where 7 7 p
_F@dv _F@) F@) @) v dv
U= s et {(—o+ G} + ; G(v)tdt,
o being any constant. Let F (v) be determined by the condition
F) _
)~ v {1 +vg (v)},
so that () 1

F(v) ~ v{l +g ()}
= % — %o + positive powers of v

1 a4V,
where V; is a regular function of v, vanishing with v; thus we
may take
F (v) =veh,
arbitrary constants not being important for this purpose. And then

F’(v) =1 — av + higher powers of .
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We now have

U=F () E%’—tﬁ;{uw(v)}] +J

= F' (v) l:R(v, t) + g+;—){6+vh(v)}:| +J,

where

T srq@y+ L

(V) ~rpn, QY
O

=F—§v) {—o+ G('v)}+1~r§——9 G’ (v) [v{1 + vg (v)} +tP]
F

_ g'v) (—o+ G} + ﬁ:(?})t.___glv_)v{l +vg (v)} + PF (v) G (v);

here ® denotes
b+v{B+vh (@)} +tR(v1),
so that the term ®F (v)G’(v) in J is a regular function of v and ¢.

Also F'(v) R(v,t) in U is a regular function. Now choose the
function G (v) so that

[+ {B+ vk (v)}]F'(v)
+F@)[— o+ G@)+vGF @ {1+v9@)}]=0b;

then, if this choice be possible, the term in U in % has b for its
coefficient. We must have
veV1 [—o + G (v) +vG (v) {1 + vg (v)}]
=b—[b+v{B+vh()]]F (v)
=b(aw—...)—v{B+vh (@A —av+...)
=ba—B)v+ vy +....
The constant o is, as yet, unspecified ; let

o =3 —ba,
so that
G (v) +vG’' (v) {1 +vg (v)}
={—(B-ba)y+vy,+...}e "1+ 8 —ba
= 298, + higher powers of v
—oP (), say;
thus

F ()

G () + G (v) 7 ()

=vP (v),
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~and therefore

G (v) F(v) = [vP (v) F'(v)dv

= 8,42 + higher powers of v

= y2eVs ;
hence G (w)y=ve">~ "

= veVZ,
so that G'(v) is a regular function of v, vanishing when v=0.
(The object is merely to obtain some regular function vanishing
with v, and therefore constants of integration are neglected.)

With these values, we have

U= i-’ + DF ()& (v) + F' () R(v, t)

b
=-t—+®,

where ©® 1is a regular function of v and ¢, in the immediate
vicinity of v=0, ¢=0.

Thus
d [F(v) —ot+tG W) | — (é — -G (v)
el € D = 7 + @)) e v,

where @, is a regular function of ¢ and v in the immediate vicinity
oft=0,v=0.

Now the required integral v is to vanish with ¢; take a point
t, near t= 0, and let the value of v there be v,. Join #, to the
origin by a curve, which is of finite length and does not make an
infinite number of circuits round the origin; and integrate along
this curve from ¢, to . We have

L6
VO potric ) _ %‘_’eV,(vo)e—ato—FtoG(vo) =b log tﬁ + ’ ®, dt.
"o 0 t
As 0, is a regular function of ¢ and v, then, if the variable v be
such as to have only definite finite values along the curve of

integration, the integral

¢
®,dt
%
is a finite quantity, say £; and therefore
3; e~otthi+i@) =plogt+ A + E,
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where A is a constant, depending upon v, and ¢,. Hence finally
v="btlog t et~ V1"t (At + Kt) €7t~ V2 —1C )
=btlog t+ (At + Et) ect~ V116 ® 4 pglogt {est~VimtG@ — 1},
Now when || is a small quantity, so also is ; for if kLogt
denote that branch of the logarithmic function the argument of
which lies between 0 and 2, then
|tlogt|=|tLogt+t2kmi|,
where % is a finite integer on account of the properties of the
curve drawn through ¢ from O to 4. Now
|t 2k |

is small compared with |¢ Logt¢| when ¢ is small. Also

|t Logt|=r{(Logr)+ 623,
where t=7¢%; that is, when » is very small, | Log¢| differs from
r Logr by a quantity infinitesimal compared with its value;
moreover, this value can be made smaller than any finite quantity,
on sufficiently diminishing 7.

From the foregoing equation, it therefore follows that
v=>btlogt+ ...,

where the unexpressed parts are powers of ¢, of ¢log¢, and of

combinations of their powers; the term retained is the most
important term, for
[t] < [tlogt],
|tm| |tlog t|™ < |tlog ¢].
In particular, if we choose the branch Log¢ of the logarithmic

function, we have
v=>bt Logt+ ...

=bt Logt+ V,
where | V| can be made less than any assignable finite quantity on
sufficiently diminishing |¢|, and is at the same time infinitesimally
small compared with |t Log ¢|. '

71. To establish the first theorem in § 70, it would be possible
to pass from the equation

F () o—ot+tG (v) b
dt[ 7 —+®1(v, t),

where @O, (v, t) is a regular function of v and %, to the more
extended theorem dealing with the general character of » in a
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finite region round the origin; but the argument is difficult. We
can make a definite use of the argument for the case when a
is not a positive integer, by proceeding (of course, with proper
strictness) to the limit when @ assumes a value unity*. The
equation, when a is not a positive integer, is

d

t Y vt ant+ S S @, 0mt,
dt m=0n=0

where m +n > 2 in the double summation. To pass from this form
to the required case, we proceed as follows.

Let A, » =|amn,»|, and consider the equation

t %f— aV 4 Agt =SS A, V0 (m+n>2),
choosing a to be a real positive fraction less than unity but tending

to the value 1. Let a new variable 8 be defined by the relation

and assign to ¢* its principal value e“™#?; then when a becomes 1
in the limit, 8 is — ¢ Log t.

By the theorem of § 66, it is known that there is an integral
of the differential equation which vanishes with ¢ and which can
be expressed as a series in powers of ¢ and #% converging abso-
lutely for sufficiently small values of |¢|. When #* is replaced by
t+ (1 —a) 0, the converging series becomes a converging series of
powers of ¢ and 6, and it satisfies the preceding equation for V.
In order to obtain its expression in this modified form, let

V =330y, 0™t

where C,, 1s zero; then as

do
t%=a€—t,

it follows that

dV— 2200, (0O + MmO (a0 — )}

= 33Cm, n {(n + am) 7" — m@m—1gn1}
hence the coefficients C are given by
250, (0 + am) 672 — mO™17 D) — @S0l 078" + At
= 254,017 (220, 07 17), (p+0>2).

* This is the method used by Jordan, Cours d’Analyse, t. 11, pp. 118 et seq 5
his proof has been adopted in the text.

11—2
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The terms involving 6 give no relation; in order that the terms
in ¢t may disappear, the equation

C’10 = (1 - a) _001 + Aol

must be satisfied. But there is no equation to determine (, : let
it be assumed positive. The condition, that terms in #™¢™ shall
disappear, is
(n+am —a) Cp o — (m + 1) Crpa, ns = By,
where B,, » is a sum of terms of the form B4, ,Cy. . C.,.,--- C’“pvp,
such that
pto=>2
Mt et py=mop
oct+vit+ v+ ...+,

I

n

in particular, when m = 0, the term A4, must be included in, B, .;
and the numerical constant B is the number of those simultaneous
solutions of the equations

M1t . tp,=m, vi+..+v,=n—o,
which do not allow u, and »,, for p =1, ..., p, to be zero together.

These equations can be solved in succession, by taking first
the three equations for which m +n = 2, next the four equations
for which m + n =3, and so on. The result is to give

Om,'n = P'm,na

where Iy, » is the sum of a number of positive terms; each of
these terms is the quotient, by a number of factors of the form
n+ am — a, of a quantity which is integral in the coefficients
A, ,, contains a power of C; of index not higher than n, a power
of O, of index not higher than m, and a numerical factor that
(being a combination of the constants B) is otherwise independent
of a.

The form of the divisor of a term in I', , is limited by the
property that the number of factors €m + 2n—1, a result which
can be established by induction. ILet it be supposed valid for all
expressions I',, ,, which have their second suffix less than n and
for all those which, having their second suffix equal to =n, have
their first suffix less than m. Then when the equation

m+am—a)Cpn—(m+1)Cppy ny=DBmn
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is solved for C,, ., the terms in Cp, , arising from Cpyy »— have
the fiumber of factors in the denominator
=1, on account of n + am — @
+ an integer € m+1+2(n—1)—1, on account of Crpyyy, ny
<m+2n —1.
And the terms in U, arising from BA,;Cy,, ... O, have the
number of factors in their denominator
=1, on account of n + am — a
+ a sum of integers € = (i, + 21, — 1).
Now S (g + 20, — 1) = S, + 230, —
=m+2(n—0c)—0p
<m+2n—o -2,

because p+ o > 2; and therefore the number of factors

l+m+2n—0o —2

€2m+2n—1—o

Zm+ 2n — 1.
Hence, on the hypothesis adopted, the result is valid also for C,, ,.

The first set of equations, viz. those for which m 4+ n =2, are
aCh= A.,C\?%
Ou - 2020 =Ay Clo + 2A20 010 001:
(2 - a’) 002 - C'll = 'A02 + All C’Ol +A20 C’012 ;

so that the integer in question is 1 for C,, 1 for (), 2 for C,,.

The result is consequently valid for C,, for C,, for C,, for C,;
and so on, it is valid in general.

And on account of the existence of the integral, estabhshed by
the previous theorem in § 66, it is known that the series

. 220, n 0"t
converges absolutely.

Now proceed to the limit in which @ increases to the value
unity. The effect on the equation is to change it to the form

av

t"d—-'— V+ A01t——22A,n nV tn

and the effect on the integral is to change it to
230", 0 (— t Log tymt®,

where (', , is the value of (), , when a=1.




166 POINCARE’S THEOREM ON [71.

The quantity |y, »| is the sum of a series of positive terms.
Let 7' be any one of these terms, and 7" the value of the term
T when a=1. The changes thus made are, first, | Cy|, which is
(1—a)Cy+ Ay, is replaced by A,, which is smaller than the
modulus of C}y: and secondly, the change in the numerical denom-
inator. Each factor n+am —a is replaced by n+m —1, that is,
by a greater factor when m does not vanish; while if m vanishes,

n > 2, so that
n—a_,
n—1<“7%
As the number of factors is not greater than m + 2n — 1, it follows

that their product, say II, is such that

n+am—a

—_ = 2_ M+27—1
(n+m—1><( @)

< (2 —_— a)2m+2n'

Consequently, as the changeé made have depreciated the numerator
of T, it follows that
/il cqpttem—a
T n+m-—1
< (2 —_ a)2m+2n;

and therefore
| C'iyn |

1T,

< (2 — a[)2m+2n.

If the series
%) IV L
converge for values of ¢ given by |£|<r, and |€|<|s|, and if
M be the maximum value of the modulus of the series for the
range of variation considered, then

men < %‘[’)Z"
smr
and therefore
¢’ =4
m,n < s m r [
lo=a) ey
Consequently, the series
33.C (¢ Log tymt»

converges absolutely for values of ¢ such that |¢|< 7.
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The existence of the integral, as stated (§ 70) in the theorem,
can now be established for the original equation

dv I
td—t—-v+bt+22am,nv "

Should an integral of this equation exist, vanishing with ¢ and
expansible in a series of powers of ¢ and ¢log ¢, it must have the
form

v =323, a (tlog t)t".
Choose ¢, so that |c,|is the quantity C, of the preceding case.
When this value of v is substituted, the differential equation must
be satisfied identically. When the relations, necessary to ensure
this result, are solved to give the coefficients ¢y, 4, it is easy to
see that ¢,,,, can be deduced from C’y, , on replacing 4, 4,, by
—b, a,, (for all values of p and o) in the expression for 'y .
Consequently, when the modulus of the expression for ¢, , is
formed, a superior limit is obtained by writing, for —b, a,,, their
moduli 4,,, 4,, respectively; and therefore

|emn| < C mam-
S50 . (¢ Log t)"t"

converges absolutely for all values of ¢ such that
therefore the series

But the series

t|<r; and

3 Zcm,n (t Liog £)™t»

‘also converges absolutely for the same range of values.

The quantity O, in the case when a is not a positive integer
was left undetermined: it is arbitrary. So also, in the present
case, the coefficient ¢, in this expansion is arbitrary, and the
coefficients ¢, », such that m4n > 2, involve ¢, ; the expression
for v thus is ‘

v = bt log ¢t + cut + 22 cm,n (¢ log t)™t™,
m T

where, in the double summation, m 4+ % > 2, and the coefficient ¢,
is arbitrary.

72. Having now established the existence of the infinitude of
integrals, their actual expression in any particular case can be
obtained as follows. Let the equation be

t % = v+ bt + 2=, Ay, n V" "
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do dv 8 ov av
write H—tLogt sothatt?z—-6+t thentdt at+eae 30 -
It is known, from the existence-theorem, that an integral exists,
given by
v=>00+ At + ZZcp, ,0"t"

Take together those terms which are of dimensions p in 6 and ¢
combined, and denote them by v,, so that

’U 2 Cn’p_nentp—-n
then
v=00+ At + v+ v;+ ... =0 + v, + V3 + ... say.
Now

av ov
at+95—é—bG+At+21)2+3v3+...,

so that our equation is
0v, 8v3
00 ot

=bt+ b0+ At + v, + v+ ... + ZZp, 0",

bt+b0+ At + 20, + 3034+ ...+t =5 + ¢

where m +n > 2 on the right-hand side. Hence

(4 2.55) + (20w 55) (30 445)

= EECLm, 2V, ‘ (m +n= 2)

All that now is necessary is to arrange the right-hand side after
substitution for v, in groups of terms that are homogeneous in
t and 6 of succeeding degrees; and to equate the respective
groups. Thus

oV,
U+ 1 8_62 = Aoy V3% + A Vit + @t

which determines the coefficients in v,;

ov:
2v;,+1 8_03 = 205 1Y; + A V5t + (a'so: Qg1 , Mg, ao3§”1y t)3;

which determines the coefficients in v;; and so on.

CoroOLLARY. It is easy to prove that, when b= 0, then ¢y, , =0
for all values of m > 0. The integral then, in fact, becomes the
regular integral, possessed by the equation and containing an
arbitrary constant (§ 69).
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738. The explicit form of the integral of the equation, when a

is a positive integer, is easily inferred from the foregoing result.
Let

v=—b-t+tv1
—a

be substituted in the equation

dv
t%—av+bt+f(v, £);

and Uy = B t+ tvz:
pla—2)
Vg—2 = | t+ tvg—,
in the transformed equations in succession; the last of them is
dv,—
t ZZ} Y= w4y + Bt + S (04—, t).

The integral of this is known to be
Vg—y = Bt log t + Kt + G (t log t, t),

where K is an arbitrary constant, and G is the regular function
indicated by the preceding investigation. Hence, writing 6 for

tlogt, we have
V=t + ot + ...+ g 177 + Kt + Bt 0+t G (6, t),

where the coefficients «,, ..., a,—,, B are definite, the coefficient
K is arbitrary, and the function G contains terms of no dimension
lower than 2 in ¢ and 8 combined.

Actual substitution of this value in

dv
t%—av+bt+f(v, t)

leads to the equations determining the coefficients.

As an example, consider the equation

d
dt =30 +0t 4 (@, by, o1 #, O)2+ (3, b, C3y dzY v, 13+ ...

Then
v=a;t+ a2+ K3+ Bt20 + 112G (6, ¢),
where
G (8, t)=(ay, by, ¢i'Y 6, t)2+ (a3, by, ¢y 3% 6, 23+...5
say

V=, +Vo+V3+ v+
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where v,, is the aggregate of terms in » which are of dimensions m in ¢ and 6

combined. Now d 5 5 5
v v v v
im0

=, + 20, + 3v;+4v,+ 50, +...

12

ov o
3 S4 —5
+B3B+1t 50 + ae+....
The differential equation is

tgl;=3v1+3v2+3v3+3v4+...+bt

o
+(Agy by, UV +Vo+ ..., £)2
+(ag, bs, ¢35 dgfvi+op+..., 1) +....

Hence
— 20, =0t,
so that
;= —%b H
—vg=(ay, by, vy, 1)
so that
—ay=(ay, by, 3N ay, 1)?;
3B = 2w, (g, byY vy, 2)+ (a5, b, 5, dyivy, 8)3
so that :
B=2a, (3, b3% ay, 1)+ (a3, b;, ¢35, dalay, 1)%;
and so on.

The constant K remains undetermined and arbitrary ; the coefficients
which occur in G are all affected by the coefficients in w»;, that is, they

involve K. Thus

0v, :
vt 8_04=2”3 (ag; baX vy, £) +a3v57,2

+3v, (a5, bs, 031”1, ?)?
+(ay; by, ¢4, dy, 643{”17 2

leading to equations for the coefficients of the various combinations of ¢ and 6.
And so for the rest. In particular, a,’=0, and all the coefficients &’ are zero.

CoroLLARY. Clearly the condition, in the general case for an
integral value of a other than unity, or in the particular case
when a=3, that the equation should possess a regular integral
vanishing with ¢ is that B should vanish: this corresponding to
the condition (§ 69) that b =0 when a =1 for the specified property,
and to the condition that

(@, by, 2§ b, —12=0

when a = 2, as may easily be verified.

74. In all the investigations relating to the equation

dv
t a’z = ¢1 (’U, t),
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one assumption has been made tacitly, viz. that some term or
terms occur on the right-hand side which do not contain », in
other words, it has been assumed that ¢, (0, ¢) does not vanish for
all values of £. The alternative must now be considered.

Accordingly, if ¢, (0, ¢) is such as to vanish for all values of ¢,

it follows that ¢, (v, t) contains some factor which is a power of v

only; because a is not zero in the present case, it follows that this
power is the first, so that
¢ (v, t) = v (a0 + powers of ¢t and v)
=G (v, t),
where @ is a regular function that does not vanish when v =0,
t=0.
The following are the results which apply to this equation.
When the real part of a is positive but « is not itself a
positive integer, the only regular integral of the equation which
vanishes with ¢ is v =0. The number of non-regular integrals
vanishing with ¢ is unlimited ; each of them can be expressed as a
regular function of ¢ and ¢*; and the form of the integral, when
| ¢ is sufficiently small, is
Cte,
where C, in the limit when | ¢ | =0, is an arbitrary constant.

When « is a positive integer, the number of regular integrals

. vanishing with ¢ is unlimited, because a regular integral can be

obtained involving an arbitrary constant; and all the integrals
that vanish with ¢ are regular.

When the real part of a is negative, whether a be complex or
be purely real, the only regular integral which vanishes with ¢ is
» = 0; and there is no non-regular integral which vanishes with ¢.

75. FEx.1. Consider the equation

dwv 2
¢ %=po+P1”+P2” 3
where
Po= bot+cyt?+ ...,

pr=a; +bittc2+...,
D=0+ byt +cyt?+...,
and assume that a, is not zero : then the equation takes the form

ad
¢ £=a1v+bot+f('v, 0.
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Let

v=_t 18V,
T op, Vodt’
then the equation for V is
aV_dVip 1dpy 1\, PoPay_
W"_< 57"7)+*2rv-0’
that is,

azv dvV /e —1 by ) ayb, _
aE " —t—+b1+&—2+powels>+ V<7—+azco+bob2+...>—0.

The results of the general theory of linear differential equations will be
assumed for our immediate purpose.

The determining (indicial) equation for this linear equation of the second
order is
m (m—1)—m (a;—1)=0,
having 0, a, for its roots.

In the first place, if @, be not an integer, two independent solutions are
given by
V="V,, V=tuV,,

where V; and V, are regular functions of ¢ in the vicinity of ¢=0 which do not
vanish there ; and the most general solution is

V=AV,+BtuV,,
where 4 and B are arbitrary constants.
Substituting this value of V in the expression for », we have

1 At 1+z%B< 2+a1VZ>
" e A V1+t“113 Vs :

‘When the real part of @, is positive, then v tends to the limit zero when ¢=0 :

it contains an arbitrary constant 4 : it is a regular function of ¢ and %, for

B
¥, is not zero when ¢=0: it is not a regular function of ¢ in general. Hence
when a, is not a positive integer, but has its real part positive, there is an
infinitude of integrals of the equation vanishing with ¢.

Next, let B be zero ; then

: 1dv,
V= — —
Py Vy dt’

which, since neither V] nor p, vanishes with ¢, is a regular function of ¢ in the
vicinity of =0, and it vanishes at ¢£=0. It is the unique regular integral
vanishing with ¢, known to be possessed by the equation ; that it is unique is
manifest from the complete integral which is not regular unless B=0.

Lastly, let 4 be zero ; then
1 t dV,
== (7, 2

undoubtedly a regular integral : but it does not vanish with ¢, and therefore
it does not satisfy the assigned conditions.
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In the second place, let ¢, be an integer : so that the roots of the indicial
equation 0, @, are both integers.

When «, is the greater of the two, that is, when @, is a positive integer,
then two independent integrals of the equation in ¥ are

V=V, V=V,+KVtulogt,

where V,, V, are regular functions of ¢ that do not vanish with #, and where K
is a determinate constant that may, in particular cases, be zero; the most
general integral then is

At V4 B (Vy+ K Vit log 1)

Substituting this value in v, we have

; Avn <tfl__1+a1V>+B[de2+K{ 184+ Vit log ¢4+t [tfllogt}]

= p TV, 7 BV, T BV, 1oz 1)

When ¢ is 0, then p,, V;, V, are all finite and different from zero; hence »

tends to the value O as ¢ tends to zero ; it contains an arbitrary constant g s
it is a regular function of ¢ and tlog¢: it is not a regular function of ¢ in
general. Hence when «, is a positive integer, there is an infinitude of integrals
of the equation vanishing with ¢ ; they can be expressed as regular functions
of ¢ and ¢logz.

Next, let B be zero, which is the only wayb(unless K should happen to be
zero) of securing a regular integral ; then

?,___1_ a+iﬂl>
T op\ T Yy de )’

a regular function of £; but it does not vanish when £=0. Hence, in general,
when o, is a positive integer, the equation possesses no regular integral
vanishing with ¢=0.

If however K=0, which effectively is a relation among the coefficients of
the equation, then
( ir ——+a, V] ) + Bt

At“ Vi+ BV, ’

Q;—_..__

and V, is not zero when ¢=0. In this case, v vanishes when ¢{=0; it is a
regular function of ¢ ; and it contains an arbitrary constant % Hence if the
condition be satisfied, the equation possesses an infinitude of regular integrals
vanishing with ¢.

The case when 4=0 and B0 is of no special interest.

When «, is the smaller of the two integers O and a,, that is, when a, is a
negative integer, = —s say, the two independent integrals of the equation in
V are

V=", V=t—3V,+JV;log¢,
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where J is a determinate constant that may be zero; the most general
integral is ‘
V=AV,+B @& *V,+JV, log ?).

The value of v then is
A@Q+Bi {t=8V,+JV, log ¢}

¢S ar TP 2% V108
Po AV, +BGE-Vy+dV,logt)

In general, the only way of securing a regular integral from this value of »

is to make B=0 ; we then obtain a regular integral vanishing when ¢=0. It

may happen that J=0; in that case, » becomes a regular function containing

V= —

an arbitrary constant %; but when z=0, the value of » is &i’ not zero.
2

Hence when ¢, is a negative integer, the equation has only one regular integral
vanishing with ¢. .
‘Whether J is, or is not, zero, the value of the general expression of v for

=0 is ai’ that is, not zero: thus when «, is a negative integer, there is no
2
integral, except the regular integral, which vanishes when ¢==0.

In the more special instance when a, is unity, the roots of the indicial
equation are 0, 1. One independent integral of the equation for V is
V="V,=1tP (),
where P () is a regular function of ¢ such that

P()y=14Bt+...,
and

2B— <bl+ b_> +ayby=0.
@y

To determine another, without assuming the results of the general theory of
linear differential equations, let

V=uV,,
so that 2 - ; ,
dv d w .
d—:; n+2 Zlg ‘C‘lt'l -" a (bl +(7j + positive powers) =0,
and therefore
b .
fii‘ V2o Ae (b1+a——:) t+higher powers
dg 1 5
where A is an arbitrary constant. Thus
b,
b+-2)t+...
du_aol’n)
dt~ 22 A+ Bi+...)?
A

- b,

—Zg{1+t<—2B+bI+a—2>+-..}
A

=5 1+abt+...},

u=K— %1 + Aas b, log ¢+ positive powers,
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so that the new solution can be taken
Vy=coefficient of 4 in « ¥,
=a,b, P ()¢t log t+ R (¢),
where R (¢) is a regular function of ¢ such that
R (§)= — 1+ positive powers.
The general integral of the equation in V is therefore
BtP &)+ C{R (&) +ayb, P (¢)¢ log ¢},
and the corresponding value of » can be deduced at once. Reverting to the
discussion of the case when a, is a positive integer, we see that (unless the
logarithmic term disappears from this expression) the equation in v possesses
no regular integral vanishing with ¢; and that, if the logarithmic term does
disappear, the equation in v possesses an infinitude of regular integrals

vanishing with z The condition for the necessary disappearance is that
a,b,=0 or, as a, is not zero, the condition is

by=0.
The general proposition of § 69 is accordingly verified for the special case.

Finally, we must take into account the case when there is no term on the
right-hand side which is free from v ; this occurs when all the coefficients in
P, vanish, so that p,=0, and then the equation is

dv
¢ ‘CTZ=P1”+P2”2,
which can be integrated by quadratures. We have

d/N\ pl_ ps
401

v t v
and therefore
p 4
%eJ.Yldt iy —f%ef?dtdt.

Now
/Zi;; dt = f% dt+bit+5e2+...

=a, log t+ 5 (¢),
where S (¢) is a regular function vanishing with ¢z.  Also

yal
f%eh‘“ dt=/<‘%+b2+...>za,estt)dz

=% o,
_alz G (1),
where G (¢) is a regular function of ¢ such that ¢'(0)=1. Thus
1 s Qg
ZgteSt) =4 — 22
Sthe a 14 G (2),

and therefore, writing 4C=1, we have
Ot eSO

v= .
— 0%
1 C’alt G ()

The various inferences in § 74 can be verified.
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FEz. 2. The equation
du _sin (s~ )
dz z ’
with the condition that #=0 when z=0, is discussed by Briot and Bouquet,
(in their memoir, cited p. 40).

‘We have
du 1
Y o w—= (2 —u)3
Z p=E= U 6(z u)3 4 ...,
so that b=1, a= —1. Since the coefficient of # is a negative integer, the

equation possesses a regular integral that vanishes with z; and this is the
only integral vanishing with z that is possessed by the equation.

Moreover, for every finite value of z other than zero, the function
gm_(z:ﬁ) is definite; and it cannot become infinite. Hence the regular
integral exists over the whole finite part of the plane; and therefore the
power-series which represents the integral in the immediate vicinity of the
origin converges absolutely for all finite values of 2.

By the substitution tan 3#=wv, the equation can be made an instance of
the preceding example. It can also be discussed differently, for it can be
definitely integrated in terms of known functions as follows.

Take v=2—u; then

z @+sin v=z
dz :
Writing z=¢’, we have
dv . (‘]
g5 Tsinv=e.
Take

_2dw_
w d—g—

dn o v 1 vdv
— = (tan§+§sec 2 dé

then

=% (620 + %),
which is a form of Riccati’s equation. Also
2 d*w , 2 fAdw\?_dy_ , 99, 2 [dw\?
"W Eﬁ“‘eﬁ(d_e ~dgT = +,;,,—2(70 ’
and therefore
d2w

B 7 +ie29w=0.
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Now Bessel’s function J, (#) satisfies
A (%Y 4 a2y—0;
z xdx>+xy—0,
taking #=3}¢’ the equation becomes
d?y

%2"*'%629

y=0.
Hence
w=AJ, (3¢")+ BY, (3¢°)
= AT, (3)+BY, (32).
2 dw
w " g
__2adw
T owdz
_ _JO,+G'170,
= T U, +c¥,’
where ¢ is an arbitrary constant. Now?*
Jo(@)=1—a?+Fsat— ...,
Yy(@)y=Jylog w+2Jy—J +...
=Jylogw+}a?—Egat4...;

Consequently,

1=
tan o= —

and therefore, for small values of | x|, we have
Jy=1—..., Y,=log # +small quantities,

Jy=—-%x+.., YO’=}:+small quantities ;
so that, for small values of |z|, we have
c
—-%Z+...+;+...

1—...+clogz+..."

Now % is to vanish with z, and therefore 3» vanishes with z; consequently,
the fraction on the right-hand side also must vanish with z. If ¢ is not zero,
this fraction

tan 3o=—

¢+ positive powers of z
cz log z+positive powers of z

R
zlogz+...’

which becomes infinite in the limit when z=0, instead of zero as it should be.
Hence ¢=0; and we have

. Jy ___Jl(%z)
. . tan jv= Jy :To(é“z)
which gives
1 [/ (%Z)}
— 1 J¥1M\27/
u=z—2 tan 7,32

where that branch of the inverse function is to be chosen which vanishes with
its argument.

* See my Treatise on Differential Equations, p. 164.
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Note. If, instead of the assigned condition that #« is to vanish with z, there
be a condition that « is to be different from zero when z=0, then tan 4{» does
not become zero with z; the constant ¢ does not then vanish, and we have

tan (— % u,)=infinity,
that is, %, tends to an odd multiple of #. But then we revert to the equation
du _ sin (z—u)
dz z ’
where the value © =odd multiple of 7 for =0 makes the right-hand side = —1;
this combination of values is an ordinary combination for the function.

Ez. 3. Discuss the integral of the equation

s

dv

Y
t = -+ bt,
where ¢ and b are constants.

THE SEcCOND TyPicAL REDUCED FoRM*.

76. The second of the typical forms to which an equation

can be reduced is
dv

aF”

= gv™ + bt + cvt + ...
= QbM(v’ ?)s

where m is a positive integer greater than unity, and ¢, (v, t) is a
regular function of v and ¢ in the immediate vicinity of 0, 0.
Moreover, we shall assume in the first place that ¢, (0, ¢) is not
zero for all values of ¢: that is, ¢, (v, t) contains terms in ¢ which
are independent of .

The argument of § 64, which established the existence of a
regular integral for the equation

dv
t%=av+bt+ v =, (v, ),

can be applied here, with the sole limitation that «=0. The
change that must be made is as regards the quantity 8, which
was the least value of |m—a| for m=1, 2, 8,...; manifestly,
0 must be replaced by unity for the present case.

The dominant function V is now given by
1
V= Il[é -1-—
¢ V ?
a0y
\ r P
* The only discussion of this form which is known to me is the discussion in
the memoir by Briot and Bouquet, cited p. 40 (l.c., pp. 178—181).
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that root of the quadratic being chosen which = 0 when £=0: so

that
M+

p2
which can be represented as a regular function for values of ¢
within the circle defined by
t | p?
r—t| 4MM+p)’
The substitution of unity for 8 does not affect the essence of the
remaining part of the discussion: and therefore it is inferred that
an integral of the equation
¢ Cczz—z = ¢p (v, t)
eausts, which vanishes when t=0 and s a regular function of t in
the tmmediate vicinity of the origin.
Suppose that in ¢y, (v, ) the term, which is independent of v
and contains the lowest power of ¢, is @, ,t", so that
& (0, t) = ay, nt* (1 + powers of t);
then it is easy to see that the first term in the expansion of this
regular integral, the existence of which has been established, is

1
% Q, nl"

2

P‘V=1—{1—4M ¢ P+M}2

r—t p* J’

Let u denote this regular integral.

77. In order to investigate whether the regular integral thus
obtained is unique as a regular integral and whether other integrals
exist, which vanish with ¢ but are not regular, let

v=u+ U,
so that U (whether a regular function of ¢ or not) is to vanish
with ¢. We have

t‘(}le—? = ¢m(u+ U, t) — ¢ (u, t)

=U{gUm+... +mu™ g +ct +...},
where the unexpressed terms after ct are of higher order in U, u, ¢
combined than those which are retained.

Now U is to vanish with ¢ 1If, for sufficiently small values
of |t|, U can be expressed as of order @ in powers of ¢, then
12—2
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t %%I is also of order € in powers of ¢ for that range. Now m is at

least equal to 2, and w is a regular function of ¢ which vanishes
with ¢; so that the successive terms on the right-hand side are of
order

ml, (m—1)0+38, (m—2)0+25,..., 6+(m—1)8, 6 +1,...,
where 8 is the order of the lowest term in u, so that § >1. Con-
entl
sequently: O=mb, or 0=0+1,
according as m@ or € + 1 is the smaller. The second alternative
makes @ infinite ; so that, if
U= tn,
then 7 is also of infinite order in powers of ¢ and it vanishes with
t. The equation for 7 is

d
—Z =n(—14gy™ ™. .+ mum g+ ct+...).

The theorems of § 74 shew that the only solution of this equation,
which vanishes when ¢=0, is 7 =0; and then U=0. Hence no
mtegral of the original equation, other than the regular integral,
can be deduced by assuming an infinite value for 6.

The other alternative, viz. @ = m0 where mé < 8 + 1, must be
considered. Since the integer m > 2, it follows that 6 = 0, which
satisfies the condition mf < 6 +1; and then the order of U in
powers of ¢ would be zero. To obtain the significance of this
result, let

t=~pUm,
so that, as U is of zero order in powers of ¢, the new variable -
vanishes with ¢; it is of order unity in powers of ¢ and therefore
is of infinite order in powers of U. Moreover, the regular function
u vanishes with ¢; hence, when this substitution is made for ¢ in
the expression
U(@Um + ...+ mu™g+ct+...),
the new form is divisible by U™; and so
U™ drr _ 1
A dU —mu 1+9v +ceyU+...
= g, + powers of U+ P (3, U)
=90+ UQ(U) + P (¥, U),

where @ and P are regular functions of their arguments.
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Let
go + UQ(U) =.9o +91U+.(]-2U2 + LR +gvn—1 Um_l +g'm, Um + csey
where some of the coefficients after g, may be zero; and let

= o 91 Im—2
¢ =Gyt mozyus Tt T

Then
Ly d$(U) _ gues - ¥ b U
«,_HZT/'-*_ iT = U + gm + powers of U + UmP(\{r, ),

the last term of which is infinitesimal for small values of U on

account of the relative orders of 4+ and U. Taking
‘\Ij' = #e—‘f’(U) U9M~1’

the equation for u is

g%' = plgn+ g U+ ...+ pe ¢ O Tr=1=m P (¥, V)]

As 4 tends towards zero, u can tend to an arbitrary value different
from zero, say w,, only if e—¢(0) U9»-1 tends to zero with U; and
because
t= #e—ﬂi)(U) Umtgm-1

t also tends towards zero in that case; but, as is not difficult
to see, its argument becomes infinite. The preceding equation
defines u as a function of U, which acquires a value yu, as U
tends to zero.

The relation between the integral and the equation is

therefore
v=u+ U,

t = ,ue—qs(U) Umtgm-1,

In order that v may vanish with ¢, it is necessary that the
argument of ¢ should increase indefinitely as its modulus decreases
to zero; and then wp tends to an arbitrary value with decrease
of U. It<is only for such variations of t that any integral of the
equation, vanishing with t and distinct from the regular integral,
can exist; but for general variations of t from zero, there is mo
integral other than the regular integral which vanishes with t.

In order that the integral v may vanish with ¢, in accordance
with the prescribed condition, U also must vanish with ¢. Now
clearly U= 0 is an essential singularity of the function which is
equal to ¢; and it is a known property* that, in the immediate

* Th. Fns., § 33.
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vicinity of an essential singularity, a function acquires every poss-
ible value and therefore also a zero value. The function however
is not regular at the point; in fact, for all integrals other than the
regular integral, the value ¢ =0 is a point of indeterminateness.
To examine the relation between ¢ and U more closely, let
U=re, g, =T,¢er, for n=0,1,..., u=Me¥. Then the modulus

of ¢t 1s

T, cos {(m~1)0—y,} .
e =0 (1 e)+Tm-1(COS ym-110g 7 — O 8in ym-1)
7o — -1
M,rme (m—=1)pm R

where e is an infinitesimal quantity vanishing with ». The
argument of ¢ is
A+ (m + Ty €08 ) @ + Ty siney,,—, log #
mst Dy sin {(m—n) 6 — gy}

+ n2=1 (m —n) e

3

so that the condition, necessary to secure that | ¢| vanishes, is that
cos {(m — 1) 6 — ,} is positive.

If ¢,,—, is real so that v, , is a multiple of 7, and if at the
same time (m —n) 0 — y,—; is a multiple of 7 for all the m —1
values of n, then (and only then) does the argument of ¢ cease to
be infinite and become finite. Also |¢| will still tend to zero with
U, and the argument of ¢ will tend to a finite value, if the value
of 0 be such as to give

I (] m—
H—m_1+r 1P (7r),

where P () is a uniform finite function of 7. Hence, if U
approaches a zero value along any curve determined by the last
equation, an integral of the equation can exist which vanishes
with ¢ and is distinct from the regular integral.

78. The preceding discussion, which accords with that given
by Briot and Bouquet (Z.¢.), is rather unsatisfactory: for no account
is effectively taken of the part

yr
ra £ (s V),

or its equivalent, in the expression for g% certainly it cannot be

considered that the discussion of the non-regular integrals of

dv -
t 5 =Pm (v ?)
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has been so completely carried out as the discussion of the
non-regular integrals- of

It may prove possible, in spite of obvious initial difficulties, to
proceed from the case of

dv
i % = ¢1 (’U, t),

where o is a small positive quantity—so that the mnon-regular
integrals are regular functions of ¢ and #*—to the limit when a

becomes zero; but I have not carried out the investigation.
External considerations suggest that there is substantial difference
between the case m =2, and the cases m > 2.

79. As an example, consider the equation

dwv
¢ g = Po + P19+ g%,

where
Po= byt +cot2+...,

= bit+ef+...,

Po=0ag+byt+cy 2 +...,
and assume that a, is not zero ; then the integer m is 2, so that the equation
takes the form

v 9
¢ 5= e + byt +....
et el &R
so that the equation for ¥V is
dzl/:' AV /1 p; 1 d]02> + PoP2 0,

da# T a \i 7 Py dt P2
that is,
eV . dv /1 b, 5B )L
%2-4'%<;—bl—&é+...>+(T+a200+b0b2+... V=0.

The indicial equation for the singularity £=0 of this linear equation of the

second order is
m(m—1)+m=0,

that is, m2=0.
There is one regular integral, viz.
V=1 —ay,by¢+higher powers of .
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To obtain the other independent integral, write
V="MW,

so that aaw aw aw d,
2 av, a W 1_]"1 1 dpy\ _
wamrt2 g vt e g ar )=
apP
Now %:bl +Clt+...=w,
say, where P is a regular function that vanishes with ¢; then
aw i
PRLALANIUEPEY
Vi dt pze 4
that is, -
2V 4 P2y -2
=47

=A4 {%2 -+ powers of t},
and therefore
W=DB+ A4 {a,logt+ R (2)},

where R (¢) is a regular function of ¢, vanishing when ¢=0. Thus
V=V W
=BV,+ AV, {a,logt+ R (£)}
=DBV+ A4 (a,V logt+ V),

where V, is a regular function of ¢, vanishing when ¢=0. The value of »
therefore is

__2t 14V
v= py V di
av, ( av, avy
_ 1 Bt“'?d_t"*‘A {a2V1+a2 Wlogt+t7%~}
T pe BV, +Ada,V,1logt+ AV, :

When A4=0, this value of » is a regular function of ¢ which vanishes
with ¢; it is the regular integral which vanishes with ¢; and manifestly it
is the unique regular integral.

When A is not zero, the value of » is not a regular function of &
If a branch of the logarithmic function be taken which has only a finite
argument, then the value of » tends to the limit zero as ¢ tends to 0;
for the numerator of v is finite, and the denominator tends to an infinite
limit, as ¢ becomes infinitesimal. It therefore follows that there are branches
of the non-regular integral which tend to the value O as ¢ tends to the origin.
The origin is, in fact, a point of indeterminateness for the integrals that are
not regular functions of z.

We may, by another method of considering this example, follow more
closely the argument for the more general case. We have

¢ %}=a27;2+bot+cot2+bl?;t+...;
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the regular integral which vanishes with ¢ is
w=byt +§(ay0)2+ b, by +cy) 2+....
To find the other integrals, if any, which vanish with 7, we take
v=u+ U,
where U is to vanish with ¢ ; so that

aU
¢ i U(p1+2pu+p, U)

=U(ay U+ + 0,0 U+ ..0),

where the unexpressed terms are higher powers of #, or are combinations of
U and higher powers of ¢; and where

Ay =by+2a,5b;.

1dy 2 1
Let =102 ldy 2
ot =y U*; then @ oG+ T~ (@ v U+ .y U
-1 MY
ay U2 ay? 70
and therefore, taking
1
YU
we have
lde N Y
;W——&;‘g‘ UP(‘I’a U)’

where P is a regular function of y» and U. Also

1
“a,U

t=pue ’

and the equation for p is
v 1 1

du A #E o Tau b T@U

0= "ap 5% P(ﬁz" %, U).
Evidently U=0 is an essential singularity of z, while x does not necessarily
tend to an infinitesimal value when ¢=0; integrals U, not zero for values
of ¢ other than O and distinct from the regular integral but vanishing when
t=0, exist; but they acquire the zero value only as one among an infinite
number of others connected with the essential singularity. The point =0 is

a point of indeterminateness for all integrals of the equation other than the
regular integral.

80. It has been assumed that, in the equation

dv
t a‘t— = ¢m (’U, t),

terms occur on the right-hand side independent of v, so that
¢ (0, t) does not vanish for all values of ¢. In the cases where




186 SECOND REDUCED FORM [80.

this assumption is not justified, » (or some positive power of v) is
a factor of ¢, (v, t), so that we can have

dv n
% = ’\Il‘('v, t),

where (0, t) does not vanish for all values of ¢. The simplest
case is naturally that for which » =1; it is the form which has
arisen in the discussion of the function U.

The only regular integral, which vanishes when ¢=0, is given
by »=0. The origin, in general, is a point of indeterminateness ;
and there can be branches of non-regular integrals which tend to
the value zero as ¢ tends to its origin.

As an example, consider

t%=P1v+P2v’”,
where
Pi=  bitde ...,
Po=ay+byt+cyt?+....

The equation can be integrated by quadratures ; we have
ad /1 1
0o <~m——1) +(m=1) Py g = —(m—1) ;.
Let
= [n-1)Lra
=(m—-1)bt+3(m—1)c 2+...,

a regular function of ¢; then

__1_1 e91=A—(7n—1)f<%+bz+...> e dt

T
=4 —(m—1)ay,logt+ R (2),
where £ (¢) is a regular function of ¢ Hence writing AC=1, we have
Ce
T 1-C(m=1)aylogt +CR(2)"

Manifestly, the only regular integral vanishing with ¢ is obtained by putting
C=0; it is an integral which is steadily zero in the vicinity of 2.

1

It is clear that, as ¢ tends to the value zero, branches of the non-regular
integral tend to the value zero. The point ¢=0 is, for the non-regular
integrals, a point of indeterminateness with definite branching if m > 2;
if m=2, the point =0 is a point of indeterminateness, but without cyclical
branching,
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Tae THIRD TyYPIcAL REDUCED FOoRM*

81. The next of the reduced typical forms that arises for

consideration 1is

dv
S —_—
t dt—cw—i—bt-{—...

= ¢ (v, 1),
where the integer s is greater than unity.

It is not difficult to infer that, in general, the point ¢ =0 is a
point of indeterminateness for the integral. We associate a new
variable  with the equation, determined by

11
— pl—s -1
n==e § ’

and we have the system of equations

dg _dt _  dv
n t $i(v, )’

with this system, we associate the partial differential equation

oU | oU 2T _

i s D
M 5 +, + ¢, (v, t) - 0.

If U (v, t, n) be any integral of this equation, then
U (v, t, n) = constant,

* In their memoir, which has frequently been quoted, Briot and Bouquet advert
only very briefly to this form. The only papers known to me, which deal with
it, are :— :

Horn, Ueber das Verhalten der Integrale von Differentialgleichungen bet der
Anniherung der Verinderlichen an eine Unbestimmtheitsstelle, Crelle,
t. cxvir (1897), pp. 257—274: b., t. coxix (1898), pp. 196—209,
267—291: (in the first part, an infinite value of the independent variable
is considered chiefly in connection with the Riccati equation

m~k% =dy?*+By+C,

where 4, B, C are regular functions of 1/z; in the later parts, the variables
are restricted to be real); and

Bendixson, Sur les points singuliers des équations différentielles, Stockh.
Ofver., t. v (1898), pp. 69—85; this paper restricts the discussion to
real variables, and is a development of the investigations guoted at the
end of the discussion of Ex. 1 in § 60.
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is an integral of the two equations in differential elements; when
we combine the relation between n and ¢ with the relation
U = constant, it gives a solution of the original equation

v 0= (0, 1)

Now the general existence-theorem of partial differential
equations shews that integrals of the form U(v, t, #) exist.

When any one such has been obtained involving v, then the
equation

U (v, t, n) = constant,

will in general—that is, save for special values of the constant
or for special forms of U—determine v as a function of ¢ and 7,
with one or more values. For each value, t=0 1s a point of
indeterminateness of the solution obtained for », because it is
an essential singularity of n; that is, ¢=0 is, in general, a point
of indeterminateness for the solution of the original equation.

It may happen that, for particular equations, there are special
values of the constant in

U (v, t, n) = constant,

or there may be special forms of U, such that the relation
determines v as a function of ¢ only and not of #n; for each such
determination, the point ¢=0 ceases to be a point of indeterm-
inateness for the equation.

Examples will be given immediately.

82. Briot and Bouquet assert that the equation cannot, in
general, have a regular integral by shewing that, even when taken
in its simplest form, it does not unconditionally possess a regular
integral. The form adopted for this purpose is

2% — v+ P (),

where P (t) is a regular function of ¢. It can be integrated by
quadratures in the form

a

_a _a ? 1
v=Ade ' +e ’fetﬁP(t)dt

— AT —éfp(t)Jr(t d)P(t)+< dt>2P(t)+ }
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Let A be different from zero; then, even without regarding the
infinite series, the point ¢=0 is an essential singularity of the

integral, so that the point is one of indeterminateness for the
general integral.

Let A be zero; the integral then obtained is a regular integral

provided the series converges; otherwise there is no regular
integral vanishing with #.

To discuss the convergence of the series, let

1{1+_§+(t2 d)

a a dt dt } P@) = 2 Cat

and suppose that
P(t)= Sc,tm.

m=1

Then

©2d 1
amfO= "

v a)
‘2 me,, t™+,

87201 £ mons Do

and so on; so that

—aC’n=cn+(n—1)C”TL_I+(n—1)(n—2)CZ;2+

and therefore

an _ on a?l—l Cn—l an——Z
(n—l)!on_(n—l)! (71—2)’ e ReFa
= Sh,

say. The series £ C,t® must converge absolutely in order that
n=1

the regular integral may exist; in order that this may be the case,
1

the limit* of the quantity |C,|” as n becomes infinitely great.

must be finite; that 1is,

S+

Lim l’n ! Sn+1|

n=aw

* Chrystal’s 4dlgebra, vol. 11, p. 107.
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must be finite. But, for very large values of n, Stirling’s theorem *
gives
1
n! = (2mn)t nte™ il +. } R

12n
1 Lo v
H7 == 2n e
so that |mt| 6(271'72) n{l + 197 + }

n
>_7
e

1 " 1

whence Lim |n! S,n|?>Lim - VS| 7.

n=ao n=o

Now the quantity on the left-hand side is to remain finite in the

limit when = is infinite, say C'; thus
1

Lim | S |?= le 5— 0,

1 =0

and therefore
Lim S7L+1 = O.

N =0
The condition is necessary: it is also sufficient, when || is
small enough. For because

Cn Cn+1

p— —1
P1(a’>'—cl+c2a+"'+(n 1)’a + pou "4 ...=0,
1t follows that

=Gt Une
Cn = n n(n+1)+""

1
Let |a|=a; and let @ denote the greatest value of |c,™| for

all values of m, so that @ is a finite quantity. Then

13— aBn+1 aan-&-z
[ Ol < n +n(n+1)+n(n+1)(n+2)
n n+1 2 Qn+2
<§*+gl[g—2“+oi~6é*+...
n n n
<% laB'
1= 2P
n

For some finite value of n and for all subsequent values of =,

a3 . " s v s .
1-— f is positive and it increases with increasing values of n.

* Boole’s Finite Differences, p. 94.
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Let p be some finite value such that 1—%? =6, where 6 is

positive; then for all values of n equal to p or greater than p,

Oul< 52"

Hence

3 COutr| < 9 Z B"]tl"
n=p n=p N
a series which converges if B|¢|< 1. Also S, is a finite quantity
for all values of n < p, and therefore also (), is finite for those

values; consequently, for all values of ¢ such that |¢|< ,-é-, the

series
s Cute
n=1
converges, provided that a satisfies the equation
P,(a)=0.
A regular integral then exists which vanishes with ¢ But if
a does not satisfy this critical equation, then no regular integral

oD
exists, for the series X C,¢® does not converge.
n=1

It will be seen that, if ¢, = 0, then a = 0 is a solution of
P, (a)=
The particular equation then becomes

d
t2a%=P(t)=t2(cz+ Cot + ...,

which is trivial; but there is thus suggested the form

%— b+t (co+ it +...)
= bv?+ P (¢),

which will be discussed later (§ 83).

FEz. 1. Discuss, in the same way, the equation

e
¢ %—av—}-P(t),

when « is an integer greater than 2.

. . dv
Ezx. 2. As a similar example, consider 52—

a =qv+bt+cuvt, where s > 2.
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If a regular integral exists, vanishing with ¢, we must have

v 4+bt=A 2+ A3+ ...,
and therefore

#{—b+24,0+345824 ...} =a (482 + A3+ Ayt 4 ..)

ot (=Dt A2 A 34,
If s=2, we have .

nd,=ad,1+cd,, —b=ad,-bc,
so that
a"Apy=—m—c)(n—1-0)...(2=0)(1—0)b;

the series A4,¢24 43¢5+ ... becomes
12 A ¢
-—ba[(l ) 0—[2+(1 -0 (2—¢) &3+(1—c) 2-cy(8-¢) AT :l

which is certainly a diverging series unless ¢ is a positive integer ; but if ¢ is

syt s . . . .t
a positive integer, the series terminates with a term in ol

Consequently, the equation has a regular integral only if ¢ be a positive
integer, when s=2. This result, with this condition, appears also as follows.

‘We have
' @_v<2+e>_é
dt 2 ) ¢

so that ve‘t ¢— A= ft1+ce‘dt.

Now, integrating by parts, we have

a

1 e%dt= 11 (l—c)
a

and so on in succession, the series of operations being finite in number when
¢ is a positive integer. The regular integral is given by taking 4 =0; for the
general integral, the point £=0 is an essential singularity.

If s> 2, there is no regular integral vanishing with ¢, unless b and ¢
vanish ; the point =0 is a point of indeterminateness for the integral.

Ex. 3. Shew that, for the equation

dv
8 — g —1
¢ P av bt + ket 1,

there is a regular integral vanishing with ¢, if £ is a positive integer multiple
of s—1.
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Ex. 4. Consider, more generally, the equation

Al CQ)_ 2
az = PotPLo+pevs

where s > 1, and p, does not vanish. Take

©1dV
T T Vidt’
then the equation for V is
axv  dv s 14 ,
dr tdr < g Z‘]’;;R%Z +85 =0
For the present purpose,
Po= byt +cot?+...,

pr=oy bttt 4.,
Po=0g+ byt +cot?4...;
so that, as s > 2, the numbers for the characteristic index are given by
042, 1+4s, 2s—1.
When s > 2, (and a, and b, do not vanish), the last of these numbers is the
greatest : the determining function is a constant, and the linear equation then
has no regular¥* integrals, that is, integrals such that
V¢—*=uniform function of z.
But the equation in ¥V might have sub-regular® integrals.

When s=2 (and o, and b, do not vanish), the last two numbers are equal;
there may be one regular integral of the equation in V.

In particular, take s=2; then the equation for V becomes

ol 2 V
~ @+ @ V=0,
where
a; , by by .
Q= Tt +¢;+ 2+ positive powers of ¢,
2
Q,= “z bo + %% ;2‘ body + bos + 0052 oy + positive powers.

The equation in V may possibly possess one regular integral, since the
lowest index of @), is greater only by 1 than the index of @,. To find it, write

V=mo;
the equation for © is
daze de
W —-P1 a1 +P29 0,
where 5,
—2 2
P1=Q1—2":n=%1+ m <1+—>
Pz—-Qz—— Q.+ m (m 1)
_a2b0~moc1+a200+bob2 m (by —2)+m (m— 1)
h e 2

* In the same sense as on p. 73.
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Let a,b,—ma,;=0; then the equation for © is

, %0 de

_0?55 (al + positive powers)

+© {aycy4byby— bym+m (m+ 1)+ positive powers}=0.
A solution of this, in the form of a regular function of ¢ not vanishing when
¢=0, is given by
Qg€+ byby— bym+n (m+1) t

91=1— a,

provided this series converges. To settle this proviso, let
2Pi=a,+Bt+B,t*+...,

2 P,=Cy+ Oyt + Cot?+...,
so that
2
dd_t? “ (601+B 4+ By +...)+ 6 (Cy+ Oyt + Co2%+...)=0.

Now ©, if a regular function of ¢, is expressible in the form
O=J,+Jit+Jpt2+...,

where the coefficients J are constants. Substituting and making the coefficient
of ¢ vanish, we find

n
ay (n+ 1) Jn+ 1= {’l’b (7&— 1) - nBl + 00} Jn""'?'El{Cr - B1‘+1 (n - 7’)} ‘Zn-r;
for n=2, 3,...; while for n=0, 1, we have
Jyay =2, Co,

2J,a,=J,C,+J,(Cy— By).
When the values of the coefficients /,, are obtained in succession, it is clear
that, if the consequent series for © proceeds to infinity and if no relations
subsist among the coefficients, then the expression for © is a diverging series

and is consequently of no significance: that is, the regular integral of the
equation in V would not exist.

But for special relations the series may converge; particularly if, for all
values of n from and after one particular value, the coefficients J vanish, the
series converges. There then exists a function @, say ©=6,; and a regular
integral of the equation in V is

asby
V=t * o,.

The equation may possess one sub-regular integral. To find it, write
V=¢27,
where Q is a function of ¢ at our disposal ; the equation for U is

d U ’ U " ’
Oltz +<29 Ql) vy +U/Q +92 QIQ +Q2) 0.
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We take @' an algebraical function of negative powers, with index
greater than 1, so as to annihilate the terms of greatest negative index in
the coefficient of U; that is, we take

, a
Q= x‘l’
and so
P
=-7
With this value of @', the equation in U is
a:Uu
e +Rl dt +R2U=O’
where b .
a -2
L N
be— ab,\ 1
R2=f'f2.9_t§~albl+ <a200+b by—ay e — —i-> At

The equation in U may have a regular integral in the form
azby - b,

U=t o,,

where ©, is a regular function of ¢ not vanishing with z; and then a sub-

regular integral of the equation in V is
—b —%
V=t al e ¢ [S7%
Consequently, if the conditions for the convergence of the respective series
are satisfied, the general solution of the equation in V is
@3by _

' 1 T
V=t™ (46, +Bt be 7 @y);
Addel+Bt bie { e —) e,+ dez}

, Aoe;+ DBt~ bie 0 o,

When B=0, the value of » is a regular function of ¢ which vanishes when
¢=0; there is, accordingly, a regular solution of the original equation which
vanishes with ¢; its expansion begins with

b,
v=— 0t ;
a4

and manifestly it is the only regular solution of this kind.

and therefore

2| %b
P2 | %t

When B and 4 are distinet from zero, the function, which is equal to v,
has =0 for an essential singularity. Accordingly, among its values will be
found zero values, and the integral is not regular ; the point z=0 is a point
of indeterminateness for the integral.

When B is distinct from zero and A4 vanishes, then {=0 ceases to be an
essential singularity of the function. We then have

v b z:—— {(al—b 1) ©,+ 1 dde‘},
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which is a regular function of ¢; but it is not zero, in general, for its value
when =0 is
1441
—
Hence unless ¢, vanishes, there is no regular integral vanishing with ¢ and
distinct from that given by B=0. If @, vanishes, the form of v is ineffective
because it contains infinite coefficients : separate investigation is required.

The point ¢=0is a point of indeterminateness for the most general integral
of the equation.

Next, let s>2; it will suffice to take s=3 as an illustration. The
equation then is

B2V . adv
aE O g T @V=
where
Q % + tb_zl + & ; 3 +d;+ aé: + positive powers,

The equation has no regular integrals ; but it may have sub-regular integrals.
To obtain the latter, if they exist, we take

V=eol,

where @ is a sum of negative powers of ¢ at our disposal; the equation
for U is

aaU
ar T~ Q1> + U(Q"+9"%~ @2 +@,)=0,

and @ is chosen so as to annihilate as many terms as possible in the

coefficient of U which have negative indices. Simple calculations shew that
P, 6

is a suitable form, and further that

bp=a;, @,0=0a,b;—a3b,;

the bcoefﬁcient of % then is

3:tﬂ+ =R, (¢) say,
and that of U is

1
A {=3a,+6%—a, (c;—3)— b 0+ (azc,4byby)}+...
= %1-}- ... =12, (8) say,
so that the equation in U now is

azU
TE + R (t) a +R2 () U=o0.
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Of this, there may be one regular integral ; if so, it is

&

U=t “eo,,

where ©, is a regular function of 7, not vanishing when ¢=0. To find
another integral, write

U=U,W;
then
1 2w, 2 dU,
aw ag T T a0
dt .
ot 0-20 -3
=- +W~22 7 “+..
Hence
Ul %W—Atc _36—2‘% bJ t29+p051t1ve povsers’
t
and therefore
@_7=A 3 e, -3+2%L al 21,;"’ +posxb1ve powers ,

dt
where b’ =0, — 26 ; hence the value of Wis

¢, ~3+42% a"+ +positive powers
WeB4 4 [t a2 dt

=B+ A4'®,
say. Consequently, we have

V=eﬂU

@ _ ;0
=¢ 2 1 (BU,+A'U,®),
as the primitive of the equation.
Hence the integral of the original equation in » is

#1dV
Py V dt

dU, ,
S a4 @ D)
py L 83 BU,+A4"U® )
It is clear that, in general, no regular integral exists which vanishes with ¢.

v=—

It appears as if, taking «;=0, we should have a regular integral on

making 4'=0; but then the index of the leading term in U, is —&— that
1
is, it would become infinite, and the resulting integral could not then be

declared regular.

Consequently, when s> 2, there is no regular integral of the equation
which vanishes when ¢=0. The point ¢=0 is a point of indeterminateness
for all the (non-regular) integrals of the equation.
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83. In order to discuss the case omitted from the preceding
investigation, and also to discuss the equation suggested at the
end of Example 4 in § 82 where @, is to be zero, consider

ti% =bv? + 12 (Co+ C1E+ Cot?+ ... )
=0v® + 2R ().
Write

then the equation for V is

a2V dV2 b,

The determining indicial equation is
m2+m + be, = 0,

the roots of which are unequal unless b, = 1. Let
1 — 4bc, = 467
so that
m=—3%4+0.
If 260 be not an integer, there are two regular integrals of the
equation in V'; and the primitive is
Ve=At3*°T,+ Bt T,

where T and T, are regular functions of ¢ that do not vanish
when £=0. The value of v is

ar ) ar,
—6 21 (L y 0 72 (1
At {t 2~ G+ O T+ B {t =G —0) n}

; AT, + Bt T,
When 4 =0, we obtain a regular integral which vanishes when
t=0. When B=0, we obtain another regular integral which

vanishes when ¢=0. These two integrals are the only regular
integrals vanishing with ¢.

t

V= —

When neither 4 nor B vanishes, we have an integral which
vanishes when £=0 and contains an arbitrary constant in the

ratio % According as the real part of @ is positive or is

negative, the integral is a regular function of ¢ and #* or of ¢
and ¢=%°; if the real part of @ be zero, then the integral is a
regular function of either combination. Hence there is an
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infinitude of non-regular integrals, in addition to the two regular
integrals, which vanish when ¢=0.

If 26 be an integer, a similar investigation shews that there
is one regular integral which vanishes when #=0; and that there
is, in addition, an infinitude of non-regular integrals vanishing
when ¢=0, these integrals being regular functions of ¢ and ¢log .
The simplest case is that in which ¢, =0 and 260 =1; the equation
is

t? % = bv* + R (2).

E»x. Discuss these equations, by considering the effect of the substitution

v =ul.

84. There still remains one case for consideration, viz. that

‘in which all the terms of ¢,(v, ¢) independent of » disappear;

since @ is not zero, the equation then 1s
dv
ts% = 'v\lfl (U7 t)s

where 4, is a regular function of v and ¢ such that (0, 0)=a,
and « is a constant distinet from zero.

The integral » =0 is, in general, the only regular integral
which vanishes with ¢ For all the other (non-regular) integrals
it may be proved, as in § 81, that the point ¢ =0 is, in general,
a point of indeterminateness.

Note. It may happen for special forms of 4 (v, ), such that
@ is zero though not all the terms in 4, (v, t) independent of v
vanish, some regular integrals, other than v =0, exist which vanish
with ¢: it may even happen that all the integrals vanishing with
¢t are regular, and are infinite in number.

Lix. 1.. Consider the equation
dv
& =pP1v+peh
where p; and p, are regular functions of ¢, say

pr=0y+bittc 24,
Po=0g+bot+cot2+....

d /1 1
©r <;,> + Py =P

We have
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provided v be not steadily equal to zero. (It is evident that »=0 is a
regular integral of the equation; we shall assume this regular integral as
already considered.) Then

D1 g Pl
Lla® _4 —fﬁgeft‘ s,
v [
so that

0
ool 5%

where AC=1. It is obvious that, with general values of p; and p,, the point

=0 is a point of indeterminateness for the integral: and that the only
integral (other than iselated values of the non-regular integrals), which
vanishes with ¢, is the regular integral »=0.

But for particular forms, this result does not necessarily hold. Suppose
that ’ :
py=xt*~ 14 higher powers of ¢;

then e'r%dt =0,
where G'(¢) is a regular function of ¢ vanishing with ¢ If « be such that its
real part is positive and greater than s—1, say
k=8=—1+¢,
where the real part of e is positive, then

G (t)

—€

P, Dras_pye
Iz ?

— e ®® g1+

and therefore
"Dy
f Be o ¥ s 22 4 1 (2),
IAd €

where H (¢) is an integral function of ¢ that does not vanish with ¢ In that
case
Ots—l +e eG(t)

1-0L+H@)
€

so that, as C is an arbitrary constant, there is an infinitude of integrals which
vanish with ¢ ; and except v=0, all of them are non-regular when ¢ is distinct
from a positive integer. But if e be a positive integer, that is, if x be a positive
integer > s, then there is an infinitude of regular integrals which vanish with ¢.

In general, the point ¢=0 is a point of indeterminateness for the complete
primitive of the equation; and in general, v=0 is the only integral which
vanishes when ¢=0. These results, however, do not hold for particular forms.
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The equation can also be discussed in connection with the method of
Ex. 4, § 82. We have p,=0; and taking

_-#lay
T op, Vdi?
the equation for V is

GV AVi=p s 1dpy_,
dez U dt \tt 't p, dt)
The solution of this equation, given by V= constant, leads to the regular

integral ¥=0. The complete solution is

P
V—B+4 /%e e
from this, the other solution can be deduced immediately.
Ez. 2, In the same way, discuss the equation

dv
1 il S 2 o,

where #» is an integer > 2.

Tae ReEmMaINING Typrical ForMms.

85. The typical forms that as yet have not been discussed are
of less frequent occurrence as initial forms; some of them can be
brought into relation with the preceding forms.

One such form is

dv v
2 QY _
t g7 bm (v, 1)
= gv™ + hv"™H + ™2 Q (v) + ¢ (b + tR (2)}
+ vt {c + S (v, )},
where Q (v), R (t) are regular functions such that @ (0), R (0) are
not necessarily zero, and S (v, ¢) is a function such that S(0,0)=0.

Suppose that b does not vanish. The application of a Puiseux
diagram to this equation suggests a transformation

t= 0" ©v=ub,

where u is to be finite (not zero) when 6 =0. Substituting, we
find

% 0m+1 <9 g_g + ’Lb) —_ ngum + 3m+1 hum+1 + bgm + cu €m+l

1 m-+-
+%9 2P(u,9),
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where P (u, 0) is a regular function of » and 6 ; and therefore
du
g LY
0 dé
Let w=p when 6 =0; manifestly
gp™+b=0.
In general, therefore, we take

= mgu™ + bm + (mc — 1) ub + mhu™+16 4 @ P (u, 0).

=p + U’
so that U is to be zero when 6 =0 ; then

& %%= ng’"‘l U+ {(me — 1) p + mhp™*} 6 +

=— m2 U+ {(mec—1)p+mhp™*t} 6 4.

which is an instance of the third typical form.

In general, 8 =0, that is, £= 0, is a point of indeterminateness
for U and therefore also for the original dependent variable v. But
for particular forms of the equation, it has been seen to be possible
that integrals exist, which vanish with € and are regular functions
of 8. For all such equations, it follows that there are integrals of
the original equation vanishing with ¢; they are regular functions

1
of tm, that is, the point ¢= 0 is an algebraic critical point for the
integrals, the branches forming one cycle round the point.

Ez. 1. As an example, consider
dv
olt

We take : t=6% wv=ub,
so that the equation for « is

=2 —a2¢ -+ cvt.

16° (6 - + u) =u202— 0202+ cud’,

and therefore
du

6? =" 202 +2u?+ (2c — 1) u6.
As u is not to vanish with 6, its value is manifestly a for =0; take
u=a+ U,
where the new variable ¥ must vanish for §=0. The equation for U is
¢ d—U_(zc- 1) ab+ U fda+(2c—1) 6} +2 0%,

an equation of the type considered in § 82, Ex. 4. We have s=2, p,=2,
po=(2c—1)af, p;=4a+(2c—1)8; and we know that an integral of the
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equation may exist, wh1ch vanishes with 4 and is a regular function, its

expression being
62 ayby 61 de

1 1

— = (2c— = 2=
4 (2e—1)6 2 ¢ ® db’

where @ is a regular function of 4 which is equal to 1 when §=0.

When the value of U is substituted, it appears that & satisfies the equation

1,d%

de 1 .
56 g — (20— 0) S5 — 2 (3—8e+40%) & =0.

First, suppose that the coefficient of ® does not vanish, that is, that ¢ is neither
4 nor 3; then if

d=1+ 5 4,6
n=1
the equation determining the coefficients is

= i(li—a [4m?2 4 4m — (3 — 8c+4c?)],

which gives the convergence-ratio for the series. It is clear that the corre-
sponding series diverges: and therefore the postulated condition of the
example quoted is not satisfied, and then the function & (4) does not exist
if determined by the condition that & (0)=1.

Next, let 3—8¢+4¢2=0; then

4 4q

P— 1 4 —_—

— 4 7] ) = [
b= 4 e ’2016 B+ e .

Taking B=0, the value of U gives a regular function of 4; but it does not
vanish with 6 (unless @ =0), and therefore it is not suitable.

Taking 4 =0, the value of U is —1(2c—1)4. If we take 2¢=3, this gives
U= —}6, an integral vanishing with 6. Accordingly, we infer that the equation

dv
2 Y _ e 2 3
¢ e t4 3ot
has an integral
v=ab—-362=att -
which vanishes with z. The verification is 1mmedlate.

If we take 2¢— 1==0, this gives U=0, an integral vanishing with z
Accordingly, we infer that the equation

olv

dz =2 — a2+ vt

has an integral
v=ab=att,

which vanishes with ¢, The verification again is immediate.
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Ez. 2. Apply the method to the equation

cdv
¢ ;ﬁ—¢m (vi t)y

where « > 2.

86. The form that remains for consideration is

” _ $u(v, t) (v, t)
dt bm (v, t)°

When & =0, it has been discussed at length in §§ 38 sqq. When
x = 1, so that the equation is

dv _av*+bt +cvt +dvt + ...

dt  av"+ Bt +eoqvt+...

one method of proceeding is that which is indicated in Ex. 5 of
§ 60. If m>n, we take

, t=0" v=ub,
so that
le(ed_u+ )__b+au“+cu9+du262+
dé T Braumfm T qyuf + ...
Take u=p+K0+V6,
where V vanishes with 8, and K is a constant : let

b+ ap®=0.
First, let m = n; then choose K so that

1
o (B + ap™) = nap™ K + cp.

The equation becomes, after straightforward reductions,

dV n%zp” 1

o dé ,8+a "

V+0C0+...,
where

it (n—1)ap" 2 K>+ n“’bK% + ncK + p*(nd — «y)

C=—-2K+ RS ;

this is a typical form already considered.

Next, let m >n + 1; then choose K so that

~71;L pRB =nap" 1K + cp.
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After corresponding reductions, the equation becomes

aV  nrap™?

V4 06— apmtigm—n 4 ...,

where

C'=—2K + % [3n* (n—1) ap"* K* + ncK + p* (nd —v)];

the term in 8™ coalescing with the term C’¢ if m —n =1, and

with other terms if m —n >1. Again, the typical form has already
been considered.

Next, let m<n. First, take m=n—1: and again, let

t=0", v=ub;
so that

0 0 du (b + au™) 0" 4 cuf" M + dur6" 2 4 ...
< 379 ) au? 1 0"+ BOY + qud 4

and therefore

6d = b+au”+cu9+0lu292+
do au™t 4+ 36 + yub® +
Let
_ b b + ap™
p= apn— ’
so that ;
n
pr = a—na’

then if u = p + V, we have
od_’_=(n2ﬁ_'”“1—1) re—Boy .,
o P o

dae n—2
a special instance of the first typical form.
Next, take
m<n—1, =n—1-—og,

where o is an integer >1. We assume

t=0"7 v=ub=(p+7V)6,

choosing p so that
ap" " =(n—o)b;

then, after reductions, the equation becomes

0@____‘(11 —o')V+c(n

- B
40 o+

cwtp”‘""r b
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another special instance of the typical form. Since the coefficient
of V in the expression for H%ZZ—Z is a negative integer, there is

only one integral of this equation which vanishes with 6 ; it is the
regular integral, the first term of which is

c(n—a)—p p_29
n—oc)(n—oc+1)>b

if ¢>1, and 18
SM e:) -+ %’ pn+1} 9

| n—o b n—a+1

if o=1.

87. When « > 1, the Puiseux diagram shews that the appro-
priate substitution is :
t=6" wv=ub,
so that

6n(x—1)+1 (9 %%/ +

) — (au™ +b) 0" 4 cuf™* 4 dur 07+2 +
“)= au™ @™ + BO" + qyud 4+ ... -
If m >n, we take

n c

and we substitute
' u=p+ K6+V0,

then the quantity V, which must vanish with 8, is given by

, AV _ nap™ n(cK + dp
0= 8 V+ 3

one of the typical forms already considered.
If m =n, we still take

e’n(K—]

2)0+...

ap”+b=0, K=——CL_,
nap’n 2
and u=p+KO0+V0,
the equation determining V is
gy IV _mapt (K +dp) g
do 8- aé 8 b ’
a *a

a satisfactory reduction to a typical form already considered
unless a8 —ab=0.
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If m<n =n—o, we still take

c
ap+b=(), K=—'W2,
u=p+ Ko+ 7V0;
the equation determining V is
2 o—1
%____nap v+ n(cK+dp)e+

o ap"“

e’n (x—1)+2—0

again one of the typical forms already considered.

Ex. 1. Discuss the equation
Kol'v_ w+bt+cut +...
dt~ " wrrbt+aut+...’

where ¢ and a are unequal.

FEz. 2. Discuss the equation

e d)n (v) t)

dt ¢m(v, t)’
where 7 is an integer that may be positive or negative, so as to obtain the
integrals » (if any) which vanish when #=0; the integer « being positive.

Summary.

88. We may now, very briefly, summarise the results of
the investigation of the behaviour of the integral of the equation

W Fw, 2,

in the immediate vicinity of a combination of values w=a, z=c,
which constitute an accidental singularity of the second kind for
the function f(w, z): the integral being further defined by the
condition that it must assume the value a when z=c.

In the first place, it was shewn that, by an appropriate
algebraical transformation

z—c=ax=tl, w—a=y=(p+v)t?,
(which could, in general, be definitely determined so that p
and ¢ are positive integers, p is a constant different from zero,
and v is a new variable that vanishes when ¢ = 0), the original
equation could be replaced by a differential equation determ-
ining v and belonging to one or other of a limited number
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of ascertained types. In many cases, it happens that a number
of distinct reductions of the same broad character are possible in
connection with the original equation, each such reduction leading
to a differential equation for ».

In some cases, it happens that a steady zero value of y while
x varies, is the only integral possible: for them, a constant value
w=ea in the immediate vicinity of the singularity is the only
solution which satisfies the conditions. In other cases, it happens
that a steady zero value of x, while y varies, provides the only
solution of the equation; for them, there is no integral of the
equation which satisfies the assigned conditions. But in all the
remaining cases, the character of the integral of the original
equation is subject to the character of the quantity w.

Various possibilities arise in connection with the ultimate
forms to which the equation has been, or can be, reduced. In
some instances, there is only one integral v which is a regular
function of ¢; in some, there is an infinitude of regular integrals;
in some, there is an infinitude of non-regular integrals, the devi-
ations from regularity being of specified types; in some, there
are no integrals of a non-regular class; in ‘some, the point is an
essential singularity of an otherwise regular integral; in some, it
is a point of more general indeterminateness, with or without
definite branching. For the various instances, the respective
tests have been given in connection with the typical reduced
forms as they were discussed.

CHAPTER VIL

ESSENTIAL SINGULARITIES OF A SINGLE EQUATION OF THE
FirsT ORDER¥*.

89. VERY little can at present be said in general discussion
of the integral of a differential equation

Eld‘zzg =f(w’ 2),

for values of the variables in the immediate vicinity of an essential
singularity of the function f(w, z); because there is no generally
adopted type (or set of types) of expression of the function in the
vicinity. Such an expression as

234, ., (w—a)"(z—c)

-0 00 .
would have significance (if at all), only for values of w in a ring-
space in the w-plane round a as centre, and for values of 2z in a
ring-space in the z-plane round ¢ as centre; but it is not possible
to make the expression effective when the variables are made to
approach any immediate vicinity of a and c.

In the case of the accidental singularity of the second kind,

it proved possible to obtain definite expression for %%Z—U in the
immediate vicinity, though the value was indefinite actually at
the singularity: and even so, it appeared that for many cases—

indeed, for the most general cases, because the detailed results

* For reasons indicated in § 89, little is said in discussion of the general equa-
tion. With regard to particular illustrations, reference may be made to Painlevé’s
Stockholm ILectures, Sur la théorie analytique des équations différentielles, (Paris,
Hermann, 1897), pp. 1—186.

F, 11, 14
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obtained frequently arose through the assignment of special
numerical values or limitations upon coefficients—the singularity
of the function f(w, z) was a point of indeterminateness for the
complete integral; though, for special branches of the complete
integral, the singularity might be an algebraical branch-point
or even an ordinary point. It is therefore not unreasonable to
expect that, when the combination w=a, z=c is an essential
singularity of the function f(w, 2), the point z=¢ will certainly
be a point of indeterminateness for the integral of the equation.

When individual instances are propounded, it may be possible
to discuss them; but the natural objection, quite apart from the
difficulty of the discussion, is that the instances may not be
typical of any important class of cases. Thus, it might be that
the function f(w, 2) is a regular function of w, 2, and 2z log 2, for
some finite simply-connected region not enclosing the origin; it
is manifest that continuations of that regular function, when
completely carried out by variations in the z-plane alone, would
lead to an unlimited nupuber of values of %U, even supposing
that at any point in the w-plane the value of w is definite.
‘Though such an expression would doubtless cover one class of
essential singularity, there appears no indication of its relative
importance.

All that seems possible is therefore to deal with such instances,
as they arise and when they arise, by any method that may be

found appropriate to their case: it does not, in the present stage.

of knowledge of essential singularities of functions of two variables,
appear possible to initiate any useful general discussion of the
integral (if any) of the differential equation, which is to be
determined by a condition that occasions an essential singularity
of the expression for the derivative.

Simple examples suffice to shew, even in the class of cases
indicated, that the mode of functional occurrence of the singularity
in the differential equation may be replaced by one of entirely
distinct functional occurrence in the integral equation.

Thus for the equation

dw _az+azlogz—w
dz zlog z

>
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the combination w=0, z=0 is an essential singularity of the

expression for %;—’ There is a complete integral of the equation,

which can be obtained by quadratures in the form

A
eW—9E = g,

an equation which is uniform so far as regards the occurrence of

‘the variables.

Similarly, w =0, z=0 is an essential singularity of the equation
dw_w az(logw+logz)—1

dz z"w(logw+logz)+w—az;

there is a complete integral in the form

4

ev— = qz,
again an equation which is uniform so far as regards the occurrence
of the variables.

PAINLEVE’S THEOREM.

90. In the case of an equation

D _ w2,

where f is rational in w and is uniform in 2z, there are no com-
binations of values of w and z which give rise to branch-points
of the function f(w, 2); it is, in fact, a uniform function of its
arguments,

The exceptional points of f(w, 2z) have been taken into con-
sideration ; and the integral of the equation has been discussed
for values of the variable in the vicinity of the different classes of
exceptional points in turn. At and near some points, the integral
has been regular ; some points have been algebraical critical points
of the integrals; some points have been points of indeterminateness
of the integrals; and all the points have been suggested by the
equation. ~ ‘

It may, however, happen that the integral of an equation
possesses singularities at points not suggested by the equation
itself; thus an accidental singularity of the first kind (which was
‘seen to be, not an isolated combination, but a continuous aggregate)
leads to a parametric critical point of an algebraical nature. All

14—2
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the other singularities, that have arisen, have been fixed combi-
nations and have led to no parametric critical points. Moreover,
every combination of values, which is not a singularity of the
function f(w, z), however arbitrary in character subject to this
negative condition, is proved by Cauchy’s theorem to be an
ordinary combination for the integral determined by those values
as Initial values. It might therefore be inferred from these results
that, so far as coneerns a single equation, all the points of inde-
terminateness of the integral have been obtained : the inference is
confirmed by the theorem that the points of indeterminateness, in
particular, the essential singularities of the integral of the equation,
are fized points determined by the equation ttself. To the establish-

ment of this theorem, which is due to Painlevé*, we now proceed.

It has been seen that essential singularities of the integral ecan
be provided by essential singularities of f(w, z) and by accidental
singularities of f(w, z) of the second kind; and that (§ 22) these
singularities are isolated points. TLet w=a, z=c denote an
ordinary combination of values for the equation and therefore for
the function f(w, 2); and through ¢ let a curve be drawn in the
z-plane, so that no point of it lies within an infinitesimal distance
of any one of the two classes of exceptional points of f(w, z),
which can lead to the singularities of the integral indicated in
the theorem. Part at least of this curve lies in the domain of
the point ¢, connected with the region of existence of the first
element of the integral determined by the initial value a; and
therefore continuations of the integral, leading to successive
elements, can be constructed by taking successive points along
‘the curve, leading in each instance to new domains. Unless the
“domain of at least one point on the curve becomes infinitesimal,
there is no limit to the curve other than that which already has
beent imposed ; all the points of the plane, not belonging to some
oné or other of the selected classes of exceptional points, are then
ordinary points of the integral.

Accordingly, let it be supposed that there is a point Z on the
curve such that, as the variable z approaches Z, the successive

* Painlevé, Sur les lignes singulieres des fonctions analytiques, (Thése pour
le doctorat, 1887), pp. 38—40; see also his Stockholm Lectures, Sur la théorie
analytique des équations différentielles, (1897), pp. 28—26. An exposition of the
theorem is given by Picard, Cours &’ 4nalyse, t. 11, pp. 324—329; it is upon Picard’s
exposition that the proof in the text is based.
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domains become so small that the continuation of the integral
beyond Z is impossible along the curve. When z tends to coincide
with Z, the limiting value of w must be either indeterminate or
determinate ; if determinate, it must be either finite or infinite.

If the limiting value of w for z=Z be determinate and finite,
it follows that, as the integral cannot be continued beyond Z, the
function f(w, z) becomes indeterminate or becomes a determinate
infinity. The former alternative is impossible, because the com-
bination of values would be either an accidental singularity of the
second kind or an essential singularity of f(w, 2), and the curve
in question is drawn so as to be at a finite distance from any such
point in the z-plane; hence f(w, 2) is there determinately infinite,
and the point arises through an accidental singularity of the first
kind of f(w, z). Such a point is known (§ 24, 25) to be an
algebraical critical point of the integral.

If the limiting value of w for 2= Z be determinate and infinite,
we take ww,=1. A similar argument to that adopted in the last
case shews that, as the integral w, cannot be continued beyond Z

and as its value at Z is a determinate zero, the function w,2f (% R z)
1

becomes determinately infinite there, and the point in the z-plane
arises through an accidental singularity of the first kind. Such a
point is known (§ 26) to be an algebraical critical point of the
integral. ’

If w does not tend to a determinate value as z tends to
coincide with Z, then as f(w, z) is a uniform function of 2z and a
rational function of w, f(w, z) cannot have one determinate finite
value at z=2Z. It therefore either must have one of a number of
determinate finite values, or it must be indeterminate, or it must
be infinite. (If it have one of a number of determinate finite
values, then f(w, 2) is really a branch of a multiform function and
this branch is uniform in the immediate vicinity of z=Z; hence
the continuation of the integral could be effected beyond Z for
each such branch, contrary to the initial hypothesis. In reality,
however, this case does not arise at present, for f(w, z) has been
supposed uniform.) If it were indeterminate for z=Z, then the
point—or the possible combination of values, if w has one of a
limited number of definite values for z=Z—must be either an
essential singularity or an accidental singularity of the second
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kind: each of these results is excluded by the course of the
curve as drawn, and therefore f(w, z) cannot be indeterminate.
The only possibility therefore is that f(w, 2) should be infinite
when z=Z, though w does not tend to a determinate value as z
tends to Z, and therefore that

1
e = 0.
S(w, Z)
Now the function f is rational in w, and therefore the equation
1
- =0
S(w, Z)
has a limited number of roots; let them be v, ..., v,, any one or

more than one of which may be a repeated root. All of these will
be assumed finite; the equation, being algebraical in w, may be
regarded as also possibly having an infinite root.

Let a small circle of radius » be drawn round Z; then, as z
moves within or on this circle, the roots of the equation

1

Fw, =Y
which are finite when z=Z, remain in the immediate vicinity of
¥y, ..., Up. Consequently small closed curves, say circles of radii
P15 ++-5 Pn,can be drawn in the w-plane round v, ..., v, respectively,

such that these roots lie within the respective curves when z lies
within its circle. As for the root of the equation which is infinite
when z =7, it has a modulus which tends to become infinite as 2
approaches Z; hence a circle of very large radius R can be drawn
in the w-plane such that this root of the equation lies outside the
circle.

The adopted hypothesis being that f(w, z) tends to become
infinite, though w does not tend to a determinate value as 2z tends
to Z, consider points such that [z —Z|<r. On this hypothesis,
a corresponding value of w could not lie within one of the
circles round one of the v-points; if it could, then as z tends to Z,

the variable w would tend to the corresponding value v, that is, to-

a determinate value. Nor could the corresponding value of w lie
entirely without the circle of radius R ; if it could, then as z tends

tb Z, the Qaria.ble w would tend to an infinite value, and %10 would

acquire a definite zero value. Hence as z varies within or on the.
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circle |z — Z | = r, the point w must lie within the circle of radius
R and without the circles round the points ». But for all such
points w, and for values of z, which (i) do not lie within an
infinitesimal distance of either an essential singularity or an
accidental singularity of the second kind (a condition rendered
possible in this case, for 7 can be made small and Z is not within
an infinitesimal distance of a singularity of either class), and
(i) are not an accidental singularity of the first kind (a condition
also which can be regarded as satisfied, for the influence of such a
point has already been taken into consideration), there exists a
regular integral of the differential equation. This regular integral
can be expressed as a power-series, converging within a circle
(§ 10) of radius

_D
o=d(1—¢ 2Ma)

where d is the distance of the z-point from the nearest exceptional
point, D the distance of the corresponding value of w from the
associated exceptional point in the w-plane, and M is the maximum
value of | f(w, 2)| for the regions of variation indicated. Now D is
not zero, because on the one hand z is moving along a curve that
does not approach infinitesimally near an exceptional point . of
J(w, 2), and on the other hand w lies within the circle of radius B
and without the circles round the points v. For all such points, M
is finite, and it has been pointed out that p does not vanish ; hence
o is different from zero, being a finite quantity.

Accordingly, when a point z within or on the circle |z — Z|=r
is taken as the centre of a new domain, this domain will certainly
extend as far as the circle of radius o. The domain will certainly
include Z and points of the variation-curve of z beyond Z, because
o is finite. All points included in the circle are ordinary points
of the differential equation, and continuations of the integral
beyond points lying within the circle can be made; therefore the
integral can be continued beyond the point Z, that is, in the
circumstances, Z is not a point beyond which continuation of the
integral is impossible.

It therefore follows that, on the preceding hypothesis, Z is not
a point of indeterminateness of the integral of the equation.

It has been seen that the integral may become infinite at a
point in the plane, but the point is then an algebraical critical point
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of the integral, or it may even be an ordinary point of the integral ;
it is not a point of indeterminateness of the integral.

Consequently, all the points of indeterminateness (if any) of
the integral of the equation

dw

% = f (’CU, Z),
where f is rational in w and is uniform in z, are to be found
among the essential singularities of f and among its accidental
singularities of the second kind; that is, they are fixed points,
determined by the equation itself.

91. It is an immediate inference that, so far as concerns an

equation 4
w
dz =f (w’ Z),

parametric singularities of the integral function may be poles and
may be branch-points ; they cannot be points of indeterminateness,
in particular, they cannot be essential singularities of the integral.
It will be seen hereafter (§ 110) that this property belongs also
to any equation of the first order

F(%%),w, z)=0,

dw
dz

In this respect, there is a fundamental distinction in character
between an equation of the first order and an equation of higher
order or, what is effectively the same thing, between an equation
of the first order and a system of simultaneous equations of the
first order. As an example, consider the integral

w?=a + log (¢ —b)

which is algebraical in w and ,and 1s uniform in z,

of the system

dw )
T =™ _
CLwl__’wlz + 2’6027»012}» ’
dz w

there is a parametric singularity at b. This particular system can
be changed so as to depend upon the equation

dw, _ w?+ 2ww,?

dw ww, ?
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expressing w, as a function of w; the argument of the preceding
sections could be applied to obtain w; as a function of the (tem-
porarily independent) variable w, only on the supposition that the
independent variable is definite at each point in its plane. This
supposition, however, in the present case is the whole matter at
issue; and the result shews that the supposition would not be
justified, for the temporarily independent variable is not definite
at, or in the immediate vicinity of, its parametric essential
singularity.

This substantial difference of property, between a single
equation and a system of equations, must not be supposed
necessarily to apply to all systems. Thus in the case of a system
which is the equivalent of an ordinary linear equation of order 7,
every exceptional point of the integral (whether it be an accidental
singularity, or a branch-point, or an essential singularity as of a
uniform function, or a more complicated point of indeterminate--
ness) is found to be a fixed point, that is, a point determined
by the functions that occur in the differential equation: all values,
parametric in regard to the differential equation, are ordinary
points for its integral. But it is only to special systems of
equations, and not to a system of any unlimitedly general type,
that the property belongs.

The mere fact that all the critical points of a system of
equations, that lead to a single linear equation, are fixed points,
coupled with the property that an equation of the first order has
no parametric points of indeterminateness, suggests an investiga-
tion of those equations of the first order the integrals of which -
have none of their exceptional points parametric. The con-
sideration of this question will be undertaken later (Chap. 1X), after
the branch-points of an equation of the first order but not of the
first degree have been discussed.

92. One or two results of particular equations may be useful

illustrations of this general theorem®*. In the first place, consider

equations of the first order. The equation

2z'wa—;=1

* See Painlevé, Stockholm Lectures, pp. 5—12.
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has its integral in the form.

w = (a + log 2)3,
where a is an arbitrary parémeter. The points of indeterminate-
ness of the integral (they are points with indefinite branching)

are 2=0 and z=o00; both of these are fixed points. The other
critical point is z = ¢~*; in its immediate vicinity, let

z=¢"%+7,
w=e"Z+ ...,

that is, the point is an algebraical branch-point. It is the only
parametric non-ordinary point for the integral.

so that

The equation
dw . A
has
1

Z—Q

for its integral; the only singularity of the integral is the para-
metric point a, and it is a pole.

The equation

n d____w + w'lH—l —_ 0
dz
has
wn —_ _,._1__
Z2—a

for its integral; the only non-ordinary points for the integral are
#z=o0 (a branch-point, and a fixed point) and z=a (a branch-
point; it is a parametric point, and it is not a point of
indeterminateness).

The equation

zd—.w+fwz=0

dz
has
1
W = e
a + log z

for its integral; the points of indeterminateness are z2=0,z=00,
both fixed points; the only parametric non-ordinary point is
z=e¢"% and it is a pole.
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The equation

dw
2~ 4 =
z ds +w=0
has
1
w=ae’

for its integral; the only non-:ordinary point of the integral is
z=0, which is a fixed point.
.The equation

dw\?
2 i 2 4
z (dz) +w—wt=0

has

w = cosec (a -+ log 2)
for its integral; the parametric point z=e"% is a pole; the only
other non-regular points are the points of indeterminateness z=0,
z= 0, both of them fixed points.

As regards equations of the second order—or a system of two
equations of the first order—with parametric points of indeterm-
inateness, they can be deduced from equations of the first order,
by differentiating the latter and eliminating z between the equa-
tion and the derivative. Because z occurs only in the element
dz in the differential coefficients of the eliminant equation, the
integral of the new equation will involve z in the form z—g,
where ¢ is a parameter; hence all the exceptional points of the
integral may be parametric. Thus from the equation

22?2 = wt — wh,

where w, = dw , we have
dz
. 2 ,1,
. (w*—1) ’
w,

so that

w? w (w? — 1) dw,
— 1)} w,? dz ’

1 =(‘ll)2 - 1)%+ (w?

and therefore the equations

dw, wy? ) 5

= —«————~—( ! {2uw? — 1 — (w®—1)3}|
dw
€=

have
w = cosec {a + log (z —¢)}
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for their integral; the parametric point z=c+e~* is a pole; the
parametric point z=c is an essential singularity ; the fixed point
z=o0 1s an essential singularity.

93. One more illustration, in connection with an equation of
the third order, may be taken as shewing that more complicated
singularities can occur than are even suggested by a single
equation of the first order. '

Consider the two quantities

2K=f1 (2(1 = 2) (1 — o) dz,

2K’ =f1 {z(l—2)(1 —c2)}tds

where ¢+c¢ =1; then K and K’ are independent solutions of the

equation
2,

VY oW -
cc d—c—2+(c —0) d—c—iy—o.
From the known theory of elliptic functions (or as a deduced
property of the independent solutions of the differential equation),
it is known that '

dK’ ., dK_ =«
o K @ =" de

Now, when |¢| is a small quantity, we have

K

K =% {L+cP (o)},
where P (¢) is a regular function of ¢ in the vicinity of ¢=0;
consequently

K’=—];{10gc+R(c),

where R (c) is a regular function of ¢ in the vicinity of ¢=0.
Hence ¢ = 0 is a logarithmic singularity for the function K’/K.
Similarly, ¢ =1 is a logarithmic singularity for the function

7

and therefore also for

X K
K/ H K ]
For large values of |¢|, let ¢y =1, c2=¢; then

¢ f{z (1 —2)(1 - )} de= {1 - ) (1 — )} HdE.
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Let I' and I" be periods of the latter integral ; then*
' (K +iK)=T,
EK=T4cI",
K =—T".
Now =0 is a logarithmic singularity for IV/T'; and therefore

¢= o is a logarithmic singularity for I'/T', and therefore also

for K'|K.

Now consider the function of ¢ defined by

and therefore

’

V= f .
The points ¢ =0, 1, o are logarithmic singularities of »; all other
points in the ¢-plane are ordinary points of K’ and K ; and there-
fore in the domain of any such point (that is, a simply-connected
region not enclosing 0, 1, « ), the function v is uniform.

But the function v ceases to be uniform in the domain of any
of the points ¢=0,1, . When the variable is made to describe
paths round each of them any number of times in any sequence
and in either trigonometrical direction, there arises an infinitude
of values of the function represented by
aK’' + BK
yK’'+ 8K’

i +8

yv+8’

where 3, ¢ are even integers, and «, & are odd integers such that
Cad—By=1;
and each of these arises for a definite value of ¢, the particular

form that occurs depending upon the path by which the argument
attains its value c.

say

Consequently, ¢ is a function of v—it is called a modular
function—such that, when » is given, there is a single value of ¢,
that is, ¢ is a uniform function of »; it is such as to remain
unchanged for the transformations

V__ow+B_
T qv+ 8’

" * Th. Fns., § 303.
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and therefore, if we write ¢ =¢ (v), we have
_ (v + B
o=9@)=4(51%5)-
Now the line that is transformed into itself by the infinite
group of transformations
av+ 8
(v, Ty + 8) ’

is the axis of real quantities in the v-plane, the coefficients «, B, v, 8
all being real; hence, by the known theory of (automorphic)
modular functions, the line » = 0 is a line of essential singularities
for ¢, regarded as a function of ».

The invariant of the equation

By dy _
cc dcz—i-(c—c)%—-%y-—o

1
relfali 1)
c* c* (614]

is given by

1, 1 + 1 } i
2 (1—c¢p c(l—0))’
and therefore*, if {v, ¢} denote the Schwarzian derivative of v with

regard to ¢, where v denotes the quotient of two independent
solutions of the equation, we have -

{v, ¢} =21
But v, ¢}=— @y {c, v};
3 dc 2 2
consequently one integral of the equation

1(1 1 1 de\?
1R Rl el : @\
{O"v’+2{02+.(1——o)2+c(1—c)}(dv) =0

has the axis of real quantities in the v-plane for a line of essential
singularity. If an integral be

¢=¢(v)
the general integral of the differential equation is
- /@iﬁ) :
°=¢\Cv+ D)’

the differential equation of course does not restrict the arbitrary
constants 4, B, C, D to be real integers. It is easy to see that

* Treatise on Differential Equations, p. 92.
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this general integral has a circle in the v-plane for a line of
essential singularity.

These examples may suffice to shew the substantial difference,
between a single equation of the first order and a system of
equations each of the first order. For the former, the essential
singularities (or points of indeterminateness of a more general
character than essential singularities) are fixed points which are
isolated ; for the latter this is not necessarily the case, and the
points of indeterminateness may be parametric isolated points:
they may even form a continuous aggregate in the plane of the
variable.




CHAPTER VIII.

BRANCH-POINTS OF AN EqQuATION oOF THE FirsT ORDER
AND ANY DEGREE, AS DETERMINED BY THE KQUATION:
SINGULAR AND PARTICULAR SOLUTIONS¥,

94. ONE class of exceptional points of the equation

D F @, 2)

still remains unconsidered, viz. those at or near which the function
S (w, 2) does not admit of expression as a uniform function, yet in
such a way that, for any combination of values of w and z, the
number of distinet values which it can assume is limited. It was
pointed out (§ 23) that, taking account of all possible values

* This chapter deals with equations of the first order and of degree higher than
the first. In so far as the form of the equation gives rise to singularities in the
vicinity of which the various values of w’ are uniform, the appropriate discussion
has been effected in preceding chapters and is not repeated. The chapter is
specially devoted to the discussion of the integral function in the vicinity of
those combinations of values which give branchings of w’ as determined by the
equation itself.

In such a discussion, the subject of singular solutions is bound to arise. It
will be found that the subject is discussed almost entirely from the point of view
of functional relation: gnd that, with relatively slight exceptions, the geometrical
theory (in which both variables are restricted to real values) is omitted. Such
‘developments are undoubtedly interesting in themselves and form the material of
a large mass of literature; the reason for the omission is, that my purpose is
chiefly the discussion of functional relations with unrestricted values of the
variables, and deviation, only infrequent, from this range into (purely real)
geometrical theory is made almost entirely for purposes of illustration.

As regards the matter included in the chapter, references are given in various
connections. More general reference may be made to the frequently cited memoir
by Briot and Bouquet (p. 40, note), pp. 191 et seq. (I.c.) ; to a memoir by Hamburger,
quoted in the note at the end of §102; to a memoir by Fine, dmer. Journ. Math.,
t. x1 (1889), pp. 817—320 ; and to Painlevé’s Stockholm Lectures, quoted p. 209,
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obtained by making the variables w and z describe all conceivable
paths, 7 is then the root of an equation of finite order n, which is
irreducible when £ is regarded as the variable to be determined.
Let this equation be

F(z,w f)=0;
then writing W for %, the differential equation is one branch of
the irreducible equation
44 F(z,w, Wy=0,

where the left-hand side is a polynomial in W of degree =, the
coefficients of which are uniform functions of z and w. All the
exceptional points of the equation W = f, which are of the indicated
type, will arise in connection with the full investigation of the
integral of this differential equation of the first order and nth
degree, represented by

AWryr AW 4+ A4, W+ A4,=0,

where A4,, 4,,..., 4,_;, 4, are uniform functions of z and w, which
have no common factor. It will, for many purposes, be assumed
that the coefficients 4 are algebraical in w, so that all of them
(on account of the presence of A,) can be regarded as polynomials
in w, the coefficients of the various powers of which are uniform
functions of 2z, regular in the vicinity of the point considered; but
this assumption will not initially be made.

The first question to be discussed is the existence of an
integral of the equation and of the initial conditions which
determine that integral: and therefore, taking account of the
existence-theorem for the equation of the first degree, we have
to consider the existence of an integral or integrals (if any) of the

equation p
w
F (Z’, w, a;) = 0,
which become equal to « when z=c.
For this purpose, consider the equation
F (C, a, _p) = 0’

which is of degree n in p, unless ¢, a be such as to make 4,=0;
let p=+v be a root of the equation, and suppose that « is finite.

F. IL. 15
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Then if we take
dw
z=c+z, w=a+y, E—Z—=ry+ U,
in connection with the original equation, where U vanishes with
and y, we have, on substitution,

orF oF oF

which is algebraical in U. WNow for sufficiently small values of
|| and |y|, we can make |U| infinitesimal; hence

w—a—ry(z—c)
can be made infinitesimal for those values, that is, we can take
Yy=qx -+,

where v (not necessarily a uniform function of #) is of order higher
than the first in powers of «, when |z | is sufficiently small. We
then have

_dw _dy

VU= T
so that U=@;
dxz

and therefore the equation for v is

(8_F+ a£1>w+zﬁw'u+a—ﬁ'd‘v+
oc 7 a oa oydz = 7

where the unexpressed terms are of the second and higher orders

=0,

in z, v, Z—Z; and both » and d_'u must vanish when = 0.

dz

95. First, let  be a simple root of

F(c, a v)=0,
oF . ..O0F  OF . .
so that oy is not zero. Then if o TV 5 18 not zero, the preceding

equation gives

2 0, 2)

= Av + B,x + higher powers of v and =,
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where ¢, is a regular function of v and «; the coefficients are

oF oF oF
p_% @ ,_ Oa
v oF Y 2
oy Oy

and B,, according to the hypotheses made, does not vanish. To
this equation, we can apply Cauchy’s existence-theorem. The
initial condition is that v =0 when £=0; and therefore there
exists a unique regular function of «, which vanishes with # and
satisfies the equation. There may be other integrals of the equation
which are non-regular functions of # vanishing with #,if # =0 is a
point of indeterminateness for the equation

az

dx = (v +Z: .CL') - 4’1(’0: x);
but unless this is the case, the unique regular integral is the only
integral that vanishes with #, and its first term clearly is

B2

It therefore follows that, in the vicinity of z =c¢, there exists a

branch of the integral which is a regular function in that vicinity,
associated with a simple root ¢ of the equation

F(c a p)=0,
. oF o . .
provided 7 T 75, # 0. This is true for each simple root of the

equation ; and therefore if all the roots of the equation
Fc,a,p)=0
are simple, the integral has n branches, each of them a regular

function in the vicinity of z=c.

If however or + 88—1: is zero, so that the term in the first power

oc
of 2 alone is absent from ¢,, then the coefficient of #? in ¢, is
11 /0 0\?
2 —o7 5+ 75a) =B
Ory

say. When this is different from zero, the conclusion is the same
as before, except that the leading term in v is
1B,
15—2
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More generally, if

1 0 0\*
7 (5t 7a) ¥
Oy
vanishes for s=1, 2,..., m — 1, but not for s =m, then the con-

clusion is the same as before, except that the leading term in v is
gt 1 0 0 mF
(m + 1! _a_ff'<éE+""aZ> '
dy
. . oF .
Hence when v is a simple root of F, so that 5 18 not zero,
Y
there exists, associated with it, a branch of the integral which, in
the immediate vicinity of 2z =g¢, is a regular function of z — ¢, unless
the values of ¢, a, v are such that

8
5o+ 7aa) =0

for all positive integral values of s. For general values, the latter

possibility can happen only if ¥ is a function of a — ¢y alone, or is

a function of ¢ alone, or is a function of a — ¢y and « alone; so

that, remembering that F is algebraical of order = in «, the

original equation® would be

G (w—z%}—;, %—:):O,
where @ is an algebraical function of both its arguments such that
d_G_(a_d—'ygLry_) is not zero. As this equation is merely a generalised
form of Clairaut’s equation, the treatment of which belongs to
the elements of the subject, we may suppose that it has been

considered and therefore it can be placed on one side ; accordingly,
we are justified in assuming that

0 0 >"‘
Sy lYF
(80 T oa
does not vanish for all integer values of s.
* That is, if ¢ and « (and consequently ) are parametric quantities; but if they

are pure constants, the form in the text is not necessarily that of the equation.
The latter alternative is discussed later (§ 98).
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If all the roots of ¥ (c, @, v) =0, an algebraical equation in «,
are simple, the preceding result applies to each of them; the
necessary and sufficient condition is that the root ¢ shall keep

@ distinet from zero.

Oy

96. Next,let v be a multiple root of # of order m, say, so that
g%lg= 0 for r=1,...,m—1. With the same notation and sub-
stitutions as before, we have

oF oF oF 1 omF /dv\™
(36 +732) 7 2" F i (@)

where the unexpressed terms are of higher order than unity in @

..=0,

and v alone or combined, and of order higher than m in D alone.

dz

When %?—f— ryg—f for this multiple root of ¥ is not zero, let

x=t"; then we find
v =™ P (),
where P is a regular function of ¢ in the vicinity of £ =0, such that
oF  oF\m
=M g o2l _ ™
P (0) 1) ™ T , m+1%,
oy™

say ; and therefore
w—a=(z—c)y+v )
=(—c)y +(¢—0) P {(z— )"},

1
where P, is a regular function of (z —c¢)™ in the vicinity of z=c¢,
such that

VPI {(z=c)ym} =(z2—c)™ P (0) +....

Consequently, there are m branches of the integral of the
original equation which become equal to a when z=c; the point
is an algebraical branch-point, and the m branches form a single
cycle. The condition for this result is that, ¥ being a multiple

-y

root of order m, the quantity %—i— + fy%g is not zero.
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To settle whether this cycle of integrals is the complete set of
integrals vanishing with # (and therefore with %), let

v=t"" P(t) + Z,
where Z should vanish with £ Then we have

oF , 1 omF /dv\"'dZ _
2w 2 e (@) ot =0

where the unexpressed terms are, in part, higher powers of Z,

higher powers of (czi‘f’ combinations of Z and Z—i , and terms in the
dz . . . dv
first power of an involving higher powers of A than the (m — 1)th.
Now
Aoy dE_ L, oy dZ
" (Ja‘c dw ~ _o_lf)"" (dt dt
(a
= %tg (Y™ + positive powers of t),

and so for the other terms; thus the equation for Z is

oF 1 o0"F ., ,dZ _
£Z+ﬁa—ry-”7% %4_-00—'0.
Unless t = 0 is a point of indeterminateness for this equation, the
only integral which vanishes when ¢=0 is a steady zero; and the
test, as to whether the point is one of indeterminateness or not,
depends largely upon the terms
oF 1 0°F 1 o2/

2T 31522t 31 o

Z3+...,

which involve powers of Z alone (§§ 29, 32).

If the point £=0 is not a point of indeterminateness for the
equation in Z, then the group of m branches which are regular
functions of ¢ are the only branches of the integral which vanish
when z =c.

97. Next, suppose that

or oF

%-I—'yaa:()
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for the multiple root ¢ under consideration; but for the same
reasons as before, assume that

0 2\*

(G+72a) T
does not vanish for all values of s =1,2,3,..., ad inf.: let s=n be
the first value for which it does not vanish, so that the term
involving the lowest power of « alone has index n. There is a

m
term in (%0) ; so that the equation takes the form

m k
(Z—Z) + 2 Cypatv? (g%) +da™+... =0,

where the unexpressed terms are powers of # alone higher than
dv
dw
that obviously is higher than that of every term retained in the
triple summation.

the nth, powers of =— alone higher than the mth, and terms of order

Now v is to vanish with «, as must also Z—Z; so that, if v be of

order w in powers of « for small values of =, Z—Z} will be of order

#—1 in powers of @, and therefore u must be greater than 1.

Accordingly, let
a
— ppt1
o= (p it E) ’

where o is a constant different from zero, p is a real positive
quantity, and & vanishes with #. Then the dimension in «# of

. N AL
the lowest term in Cjpatv’ ds) 1S

t+j(p+1)+kp
=t+j+k+))p.
When the value of v is substituted in the equation, the latter
must be satisfied identically; the terms of lowest order must there-
fore disappear. If two such equal orders arise from the terms in
Cyr and Cyjr, we have
VS E +)p=1+j+E+T)p
and therefore ]
_i+j—= @ +])
e e )
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To determine the appropriate values of p, we use a Puiseux
diagram in the same way as in Chapter v; we mark the points
(% +j, © +J), corresponding to all the terms in the equation; if a
line joining the two points (k +j, ¢ +7) and (¥ +5’, ' +3) make an
angle tan— p with the negative sense of the axis O, then p is the
magnitude given by the above fraction. Clearly there will be one
(and only one) point on the axis O, viz. (m, 0); and there will be
one (and only one) point on the axis O, viz. (0,n). We take a
line through this point on the axis On, make it turn in a counter-
clockwise sense until it meets some of the points in the tableau ;
then make it turn about the last of these until it meets others,
and so on: the last direction of the line passes through the
single point on the axis Of. Every portion of this broken line
gives a positive value to p; the points lying on any portion
correspond with the terms in the e'qua,tion which, for the substi-
tution adopted give rise to the terms in « that then are of lowest
order.

The various quantities p are real positive commensurable
magnitudes; for any portion of the line, let
i+ — (@ +5)
I CETI IR
be equal to 1—; when expressed in its lowest terms, where the two

points may be supposed the extreme points on that portion. Take

ag
=14, o =tP+e ) ,
x v (p raps + &
where & vanishes with ¢, so that
dv tdé p+q
—_ == p ——— -
de =t <a+q ot 7 E)
= tp (a ._I_ 77)’
where 7 vanishes with ¢ Then substituting, we have
= 30, §26+)+PG+R) lL)j—l k~1< oq ) A
0=ZCyt (p+q N p+g +5& (a+ )

+ terms involving higher powers of ¢ in combination with
constants and powers and products of £ and 7.

Choose a so that

(%9 )j E— Q-
EC’wjk(p_l_q 4 0,
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on dividing out by the lowest power of ¢, the equation takes the
form

. ag \ k{ . q
207,_7]{: <p_-_+ q> a jf+l¢p+
Whére P, (€ 7, t) is a regular function vanishing with & =, ¢
Now
k d‘g‘
b= (k) e ot T

and therefore the equation takes the form

n}+At+tPl(e,n, =0

M IE gt At 1tP (8, b),

dt
where
— » ag \7t .k
» 20“’“<p+q> “prq
and
g1
M=“20v’c<p4q.g) o (§ + k).

The general character of the solution of this equation in the
vicinity of £=0 is known (Chap. vi). If ’% is not a positive
integer, there is a regular function of ¢, vanishing with ¢, which
satisfies the equation; one such regular function arises for each

value of a connected with the determinate quantity L. and

each such function leads to a branch of the integral of the
original equation, for which therefore the point is a branch-point
of algebraical type; there are as many groups of cycles of integrals

at the branch-point as there are distinct values of £; in each

gi‘oup of cycles, there are as many cycles as there are simple
roots a of the equation

J

and each cycle contains ¢ members which circulate round the
’ 1
point =0, these being regular functions of z2.

If %, though not a positive integer, has its real part positive,

. 1
then, in addition to these regular functions of #2 which are integrals
of the equation, there is an infinitude of other integrals which are
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1

1 o
regular functions of 7 and #*%. All these quantities £ vanish with
1

, as do the regular functions of 2.

If ’XL, not being a positive integer, has its real part negative,
1
then the regular functions of #¢ are the only integrals of the
equation of the required type.

If % is a positive integer, there is no regular integral of the

equation in & which vanishes with ¢ unless 4 =0; but if 4 =0,

there is an infinitude of such integrals, which thus lead to
1

integrals of the original equation and are regular functions of <.

When 4 # 0, there is an infinitude of integrals of the equation in §,
1 1
which vanish with # and are regular functions of #¢ and z?log .

It is unnecessary to recite the corresponding results for
alternative cases not quoted in the above list. The form of the
equation obtained is one of the typical forms which have been
discussed at length in a preceding chapter; the results apply,
mutatis mutandes, to the present case.

Similarly, when A is zero, the equation has the form

£
h1t6%= #E—I—At’*’tp (S; 7 t):

where the integer € is >1, and all the terms in tP (&, », t) are of
dg
dt

this equation have been obtained.

higher order than 225, again, the properties of the integral of

If a is not a simple root of the algebraical equation which
determines it, corresponding investigations lead to others of
the typical forms previously discussed. In every case where the
method can be applied, the first necessity is the reduction to one
of the typical forms: the properties of the branches of the integral
are then known.

98. What has thus far been considered has been the possi-
bility that, for the original equation of degree n, the values w=a
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and z =c give for %U a value «y, which is finite and may be either
a simple root or a multiple root of
F(e, a, y)=0.

But in the first place, it should be noticed that the equation may
become evanescent for these initial values; thus the equation

dw dw\?  [dw\?
hz3+922% + fuw? <EZZ> +zw<zz—> =0

ceases to determine any quantity ¢ if w=0, z=0 are initial
values. In such a case, there may exist an integral which
vanishes with z; if, when |z| is very small, it can have the form
w=ocz*+..., so that u is a positive quantity, 1t still does not
follow that w is greater than unity or even is at least as great as
unity. Such cases must be considered separately.

Further, one general class of equations has been put on one

side, viz. those for which
s
G+ 75a) 70
is satisfied for all values of s=1, 2, ...; the corresponding
functional form has been indicated when the quantities ¢, a, ¢
are of a parametric character, and the equation then falls under
a recognised type of forms already discussed. But it may easily
happen that the foregoing relation is satisfied for all values of s,
the constants ¢, a and ¢ not being parametric. For instance,
if F is explicitly independent of z, and if the value of « is zero,
then the condition would be satisfied : such a case arises for an
equation :
dw\™ .
(52)" {1+ w@ @)} + wmn B () =0,

where G and H are regular functions of w, and m and m' are
positive integers. It may happen for some such equations that
the Puiseux-diagram will determine suitable values of p; this
does not occur for the equation written down, because no value
of p that is positive can be obtained from the diagram. Equa-
tions which do not explicitly involve the independent variable will
be considered separately (§§ 127—130).
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Lastly, it may be the case that the combination w=a, z=c¢

gives only n — r finite values of OZZ;—:, while the original equation
is of degree m; the implication is that dw has  infinite values.

dz
To discuss the corresponding branches of the integral, we should

interchange the variables, so that g@—i then is a zero-root of
multiplicity ; and the relation of z to w would be obtained as
that of w to z is obtained in § 96.

It therefore remains to discuss the equation, whether in w and
z, or in » and , for these omitted cases; for this purpose it can be
taken in the form

S35 Ay cwi (E‘%\)k ~0,

such that some factor free from (2_@: occurs on the left-hand side, and

the equation is. irreducible in % ; the complete generality of the

form justifies the assumption that w =0, 2= 0 are initial values.
It will not be assumed that terms involving z alone are absent:
in fact, this presence of terms involving z alone is sometimes
dw

needed for those equations which do not determine any value of -

for w=0, 2= 0.
As w is to vanish with z, let its order in powers of z be u when
| | is sufficiently small; and let

, w =0z 4 ... = ve",
where 0 is a constant ; then x> 0, though it is not necessarily > 1.

E
The dimension of the term A z'w’ <‘;—Zj) in z is

1w+ p—Dk=7i—k+pn(+Ek).
If the dimension of this term be the same as that of

o rdwnNF
Ai'j'k’ 2rw’ <E> ’
then V= +p( +E)=i—k+p(G+h),
and therefore
_t—k—=(@'=k)

WX —G+k)
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Accordingly, we mark in a plane, referred to two perpendicular
axes, all the points (j+ k%, ¢—£k); all of these have positive
abscisse, unless there exist terms such that j=0, k=0, and
then the corresponding points lie (for the various values of 7) on the
axis On. In the latter case, we choose the point on Oz nearest
to O (its ordinate is positive) as the initial point; in the former
case, we take the points which have the smallest abscissa and
among them, if there be more than one, that which has the
smallest ordinate, and choose this last as the initial point.

Through this initial point, we draw a line parallel to On, and

-make it turn in the counterclockwise sense until it meets points

in the tableau; and in the customary manner we construct the
broken line, continuing it so long as it is inclined at an acute
angle to the negative direction of OE.

If in one extreme limit, there be a value u =00, the impli-
cation is that w =0 while z varies; that is, w is a constant zero
for a small region round the origin.

If at the other extreme limit, there be a value w =0, the
implication is that z is a constant zero while w varies; that
is, w 1s not a function of z

If there be no value of u which is positive, the implication is
that no variable function w exists satisfying the equation and
vanishing with z; there then is no term in the equation involving
z alone. An instance of such an equation is

dw\? dw

- habap gt 3—(

(dz>+2dzw+w 0;

that w = O satisfies the equation is obvious ; that no other function,

which vanishes with 2, satisfies the equation, can easily be verified.

If there be one (or more than one) value of u which is positive,
it is a real commensurable quantity, because it is the quotient of

two integers; let it be L when expressed in its lowest terms.

dw

dz

If p > q, then C—%’ vanishes with z; if p<g, is infinite when

z2=0; if p=gq, %;UZ— is a finite quantity different from zero when

z=10.) We take
z2=1%, w=vtP=(p+ V)t?,
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where p is a finite constant, and V' =0 when £ =0; and then

dw 1, av

When these values are substituted, one set of terms is of common
order lower than all others, namely the set corresponding to the

b

points on the portion of the broken line which gives the value &

of u adopted; when these are made to vanish, there arises an
algebraical equation for the determination of p.

The subsequent analysis leads to a form, of the same character
as the typical reduced forms for the earlier investigations; the
nature and number of the integrals, regular and non-regular,
which vanish with ¢, are determined by using the known results
relating to the integrals of those typical reduced forms. In some
cases, the non-regular integrals can be made regular by an alge-
braical substitution of the type #=1%?; in some cases, the non-
regular integrals are regular functions of ¢ and #% where a is a
constant having its real part positive but not an integer, or are
regular functions of ¢ and ¢logt; in other cases, the point can be
a point of indeterminateness of character less simple than these,
including the possibility of belonging to one of various classes of
essential singularities. In every case, the points considered are
isolated points: and they are fixed points, determined by the
~equation.

Ex. 1. Consider the equation
dw dw\? dw\3
3 2 Y 2 ( 2Y 20 (C¥Y =
ha3+gz 7 + fw <dz> + 7 w(dz) 0,
;80 as to obtain the integrals (if any) which vanish when z=0.
 The points (j+4, — &) are (0, 3); (1, 1); (4, —2); (4, —1); there are two
values of p, viz. u=2 and p=1.
First, let u=2; and write
w=pl2+4...=(p+ V)
no change of the independent variable being necessary; here p is a finite
.constant, and ¥V vanishes with = We choose
"
P 2‘9 »
.and then we find
av

et 3
Z%= —'2V—'4f§«z = eses
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Of this equation, there is one and only one integral vanishing with z; it is the
regular function
4/

=27 43 hi
5y p*®+higher powers of z.

Thus corresponding to the value u=2, there is one (and only one) integral w
which vanishes with z; its value is :

Secondly, let u=1; and write
w=pz+..=(p+V)s

again no change in the independent variable being necessary: as before, p is a
finite constant and V vanishes with 2. Substituting, we choose

- JeP+9=0,

80 as to annihilate the lowest terms in z; and then we have, after reduction,

av_ h p
zgz———3V+<§—}.>z+....

There are three distinct values of p. For each value of p, there is one and
only one integral of this equation vanishing with z; it is the regular function

Thus corresponding to the value pu=1, there are three (and only three)
integrals of the equation which vanish with z; each of them is a regular
function of z; and their analytical expression is

_ 1/ »p 2
'w~-pz+4<g f>z +oeeey
where p is any one of the three roots of the equation

Jp?+g=0.

Ez. 2. Discuss the foregoing equation, (i) when g=0, (ii) when f=0,
(iii) when A=0.

99. The preceding results indicate the character of the
integral as determined by an arbitrarily assigned pair of initial
values, w =a, z=c; and they shew that, for the simplest cases,
there is a fundamental distinction according as all the roots «
of '

F(c,a v)=0
are simple or not. Each simple root « determines a regular
function of z—c¢, which is equal to a when z=¢ and is an integral
of the equation; and there may be other non-regular functions of
z—c, also equal to a when z=c¢, each of them an integral of the
equation. Each multiple root ¢, say of multiplicity m, determines
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a group of m integrals of the equation, each of which is equal
1
to a when z=c; they are regular functions of (z—c)™ in the

immediate vicinity of the point, and they form a single cycle
for circulation of z round c.

If, then, =0 has all its roots simple, the point is an ordinary
point of the equation; each of the n integrals, corresponding to
the n determined values of w, is a regular function of z—c. If,
however, only some of its roots are simple, and the rest are
multiple, then the integrals corresponding to the simple roots
are regular functions of z—c¢; and the remaining integrals can
be arranged in cycles, each cycle corresponding to one value of
a (multiple) root and the members of the cycle circulating round
the point. The point is a branch-point of the equation.

If a value of « is infinite, so that dw is infinite for w=«, z=c,

dz

then g@% is zero for those values. Should the infinity be a simple

infinity, then z—c is a regular function of w— a in the vicinity,
dz . . . .

and as ﬁ is zero for w=a, z=c, the expansion of z—c¢ begins

with a term in (w — a)™, where m > 2; consequently, reversing the
1
series, w —a 18 a regular function of (z—c¢)™, that is, the point is

a branch-point of the integral. Should the infinity be a multiple
1
infinity of order m, then z—c is a regular function of (w — &)™ in

. z . .
the vicinity; as —— is zero for w=a, z=¢, the expansion of z —¢
dw 2 )

n
. . . 142
begins with a term in (w—a) ™, where n>1; consequently,
1
reversing the series, w — a is a regular function of (z—c)ym+t~, the

_m_
first term in its expansion being the term in (z —c)™*#: the point
is a branch-point of the integral.

dw
dz
proceed, as in § 98, to obtain the expression in the vicinity of
w=a, z=c; the character of the integral depends upon the
typical reduced forms.

If for w=a, z=c, values of are not determinate, then we
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100. Reverting then to the equation
F (C> a, 'Y) =0,

the fundamental distinction for finite values of « lies between
simplicity and multiplicity of occurrence of a root ry. Construct
the discriminant of F =0, and denote it by A (¢, «); then as F is
of degree n in v, A is of degree 2n — 2 in the coefficients of /. If
these coefficients are algebraical in o, say of degree €m, then A
is of degree € m (2n —2), that is, algebraical, in a; and as F is
merely analytical in ¢, then A also is analytical in c.

Now when each root of ¥ is simple, A does not vanish; and
when A does vanish, then at least one root of F is multiple. In
the former case, the point is an ordinary point for the differential
equation, and the n integrals are regular functions; in the latter
case, only some of the integrals are regular functions, the remainder
being non-regular functions that range themselves in cycles.

If N, € m (2n—2), be the degree of A in a, then for general
values of ¢ there are values of o, € N in number, for which A
vanishes; they are, of course, the roots of A. Each such com-
bination gives at least one multiple root v of F'; every other value
of @, combined with ¢, gives simple roots of F.

These results can be illustrated geometrically, by regarding

z, w as the coordinates of a point in a plane; the illustration, of

course, implies restrictions as regards functionality and variation.

dw

When the discriminant of # (z, w, é) = (0 is formed, let it be

denoted by A (z, w). When z=c, let £;, B, ... be the correspond-
ing values of w given by

and let a denote a general parametric value of w when it is
not a root of A=0.

Let a point move along the line z=c parallel to the w-axis.
For all except a limited number of positions, a is a value of w;
and, for each of these, the n integrals of the equation are regular
functions, determined by the n (different) values of «, each simple-
Through each such position, there pass n distinet curves; and as
the point moves along the ordinate, the n curves move with it,
changing continuously their directions. When the point comes to
a position B, then some root v is repeated, it may be, more than

F. IL. 16
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one root; say r, repeated A, times, y, repeated A, times, and the
rest simple. ~ Through this position there pass n curves; A, of
these have a common tangent at the point, its direction determined
by oy : other A, of them have a common tangent at the point, its
direction determined by ¢,; the remaining n— A, — A, do not touch
one another or either of the two sets. Moreover, the position lies
on the curve :
A (z, w)=0,

of which it may be an ordinary point or a singular point; but
there is nothing to shew that any one of the directions of the
integral curves (there being n—2A; —A;4+ 2 of such directions) at
the point coincides with the direction of the tangent to the
discriminant-curve: though, on the other hand, there is mno
obvious general necessity which could prevent the coincidence
from sometimes occurring. When the moving point has passed
through the B-position, then w resumes an a-value; and the n
integral curves are again distinct. And so on, in succession.

Ez. 1. As an example, consider

dw\3 dw

For z=a, w=a, the values of %—?g are the roots of

¥3 —ya+a=0.
The discriminant is o?—g%a?; and
therefore we have

BZ - 547(1,3 =0,

Take any value a= 0K, and draw this
curve; let the ordinate through N
meet it in B.

At any point 4, where a=A4XW, not
on the curve, the three values of v are
distinct; through A there are three
directions AC;, AC,, AC;; and the
branches of the integral through 4
are, in fact, three straight lines. They
remain distinct as 4 moves on the line
NB.

‘When the moving point comes to
B, where =B/, a point on the curve,
one value of y is repeated simply ; the
other value is distinct from it. The
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three directions through B are BT, BT, (which two are in the same straight
line), and BZ;. The branches of the integral through A are three straight
lines; two of them coincide there, having 77 B7), for their common direction ;
the third of them is B7%.

When the moving point passes beyond B, the three values of y again
become distinct; two of them are conjugate complex values, and the remaining
one is real. The full geometrical representation is now not possible ; but for
each such position, the three branches of the integral are regular functions
determined by the three distinct values of .

It is easy to verify for the present instance :—

(i) that each of the three directions at any point, such as 4, touches the
discriminant-curve;

(ii) that at a point B on the discriminant-curve, the common direction
of the two coincident branches of the integral coincides with the
tangent of the discriminant-curve.

The general integral of the equation is
w=Az— A3,
where the arbitrary constant 4, if determined by initial values, is such that
a=Aa — A3;
manifestly, there are three branches of the integral. There is a solution
(which will be recognised as the “singular solution”) given by
W=
being determined by initial values « and B8, they must be such as to satisfy
B2=sra’.
The statement, that the discriminant-curve in this case provides a
solution of the differential equation, is justified for the following reasons.

At every point on the discriminant-curve, the value of di: determined by

d

dw determined by the common

dz
direction of the two coincident branches of the integral that pass through the
point. Ience, at the point of the discriminant-curve, the values of w and z

that curve is the same as the value of

are the same as for all the integral curves; and the value of (;%U is the same

as that for two of the integral curves. These values satisfy the equation for
the integral curves; accordingly, when regarded as belonging to the dis-
criminant-curve, they satisfy the equation, that is, the diseriminant-curve can
be regarded as providing a solution of the equation.

It is not difficult to see that the discriminant-curve is not an integral
curve, in the preceding sense of the words: it provides a value of OOZZ—ZU , with a

value of w and a value of z which, taken together, satisfy the equation.
16—2
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Ez. 2. As another example, consider
dw\? dw
3e (%) ——2za—z~ +w—b=0.

dw
dz

3c-y2—-2a'y+a—b=0.

For z=a, w=a, the values of are the roots of

The discriminant is a2 — 3¢ (a — b); and therefore we have

a?=3c(B—b).
Draw this curve, manifestly a parabola;
let ON=a, and let the ordinate meet it
in B.

At a point 4, where a is less than b,
one of the values of v is negative, the
other positive: there are two integral curves
through 4, touching the lines indicated
in the figure. At a point A’, where a is
greater than b, both values of y are positive,
but they are unequal; there are again two integral curves through A4’,
touching the lines indicated in the figure.

‘When the moving point comes to B, the two values of y are equal; and
the common direction is easily proved to be that of BC. The two integral
curves touch at B; and BC is their common tangent.

When the moving point passes beyond B, the two values of ¢ again
become distinct; as they are conjugate complex quantities, the geometrical
representation is now not possible. For each such position beyond B, the
two branches of the integral are regular functions of 2z, determined by the two
distinct values of .

It is easy to verify for the present instance :—

(i) that neither of the two directions at a point 4 touches the dis-
criminant-curve except for the special point such that a=56; when
a=>b, one direction touches the discriminant-curve, ' being its point
of contact;

(il) that at any point B on the discriminant-curve, the common tangent
of the two touching branches of the integral curve does not coincide
with the ‘tangent of the discriminant-curve: the sole exception being
for the vertex C of the discriminant-curve.

The general integral is
{22% — 9cz (w — b) + A}2=4 {22 — 3¢ (w—b)}3,
where the arbitrary constant 4, if determined by initial values @ and a, is

such that
{203 —9ca (a — b) + A} =4 {a? — 3¢ (a— b)}.
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101. Thus far we have been considering the character of the
integral of the equation F = 0, as determined by assigned initial
values of the variables; and it has been seen, in general, that
values of the variables, which do not make the discriminant of F
vanish, determine n regular functions, each of them an integral:
while values of the variables, which do make that discriminant
vanish, determine » functions, some of them perhaps regular, some
of them certainly non-regular, but such that the point is a branch-
point for these non-regular integrals. (In geometrical phraseology,
the discriminant provides a locus of singular points for some of
the branches of the integral.)

If the discriminant of # (z, w, %) =0 be A(z, w), then the

dw

value of dz

provided by
A(z, w)=0,

together with a value of w satisfying A = 0, does not in general
satisfy the differential equation. From the first example con-
sidered, however, it was seen that this statement does not hold in
all particular instances; that, in fact, the combination of A =0
dw
dz
that then it may be considered as providing a solution of the
equation.

with the deduced value of dqes make the equation satisfied, so

From the second example considered, it was seen that the
statement is true for a general range of values of the independent
variable; but that there was one set of values provided by

A (z, w)y=0 with the deduced value of % which made the

original differential equation satisfied. In this case, the dif-
ferential equation is satisfied only by a number of isolated values
connected with A =0; and A =0 cannot then be considered as
providing a solution of the equation.

It therefore is necessary to investigate the nature of the
functional relation of the values of w, determined by

Az, w)=0,

to the integral (or integrals) of the original equation.




246 THE DISCRIMINANT IN GENERAL [102.

102. That the value of w furnished by the discriminant-

equation A (z, w)=0, together with the value of dw given by

dz
0A , 0A dw
0z ' ow dz
does not, in general, satisfy the equation can be seen as
follows.

Writing W for (cil the original equation is
F(z, w, W)=0.
The discriminant is the eliminant of # and g—fv; and the

vanishing of the discriminant is the condition that F =0 and

i%’F_V= 0 have a common root W, or that this root W is a multiple

root of F=0. Taking the simplest case, when the multiple root

is of order 2, so that it is a simple root of aa %

by W,; and let the other » — 2 roots of BW_ 0 be

Vi, Voo ooty Vs,
When these values of W are substituted in F, let it become
Gy, ..., Gp—y Tespectively ; and let F; be the (zero) value of F for
W = W,. Then the analytical expression of the discriminant,
save as to a factor which is a power of the coefficient of W™ in

F, is given by

=0, let it be denoted

A= Fl . G1G2 cen Gn_2u
Hence taking complete derivatives with regard to z, we have

da dF d
dZ 1 Gl .o G(n_z + Fl a; (G1G2 cee Gn_2>.
When W= Wl, the discriminant is zero; F, is zero: and
G,G,; ... Gy, are not zero. Consequently

dA oFy % a factor which does not vanish.
dz = dz

But the value of c(‘;ll_'z;; from the discriminant-equation is given by

dA  0A  0A dw

oz tow e =0
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consequently it also is given by

- dby
0= dz
_OF,  oF, dw , oF, AV,
T 0z 0w dz oW, dz
BF oF; dw
T 0z " ow dz’

because s W, =0. Now for the particular value of w, the value of

%%—U must be such as to satisfy F (z, w, W) =0, if the discriminant-
equation leads to a solution of the original equation: that is,
%‘: must be either W, the repeated root of F =0, or it must be

one of the remaining n — 2 roots of # =0; and therefore we then

should have
. oF, |oF;
F<Z’ W = az/aw)—o’

satisfied when the value W= W, is inserted in the derivatives
of F,; and it must be satisfied either identically, or in
virtue of

A (z, w)=0.

When the substitution takes place in F (z, A 881;‘ %1;) let

the value be H (2, w); then
H (z, w)y=0

either is an identity or is satisfied in virtue of A =0. It is clear
that, in general, the elimination of W, between

F(z, w, W)=0

and F (z, w, — oF, 8F> =0,

0z | ow

does not lead to an identically nul-equation ; it is also clear that,
in general, it does not lead to an equation which is the same as, or
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involves, or is involved by, the equation obtained on the elimina-
tion of W, between
F (2, w, Wy)=0, or,

ow,

=0.

Consequently, the condition necessary that the value of % pro-

vided by A =0 should satisfy the original equation is not fulfilled
in general ; and therefore the value of w provided by A= 0 is not,
in general, a solution of the original equation.

For instance, in the case of the equation
Wr—mWz+w=0,

where m is any constant different from unity, we have

oF
0z
el 57.,—1 = mW,

ow

so that H (z, w) = 0 is the result of eliminating W between

Wr— mWz+w= 0}
mW)yr—m*Wz+4+w=0
Because m is not equal to unity, the eliminant is not an identically
nul-equation : it is, in fact,
(m = 1y m— 1) ,
(m* — 1)

The discriminant of W» —m Wz +w=0, equated to zero, is

H (z, w)y=w*? — man—1 = 0.

A (z, w)= 'w”_l—w— (n—1)y1z"=0.

These equations are only the same if m = 1, a value that has been
excluded ; hence A (z, w)=0 does not provide a solution of the
original equation.

But though this is true of the general function given by
‘A (2, w)=0, there may be special values of z (and the associated

values of w) for which the value of %Z batlsﬁes the equation. The

necessary condition is :
H (2, w)=0;
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and therefore, for values of w and z that satisfy the equations
H =0, A=0 simultaneously, the value of %1: given by A =0

satisfies the equation. Manifestly, these values (both of w and
of z) are isolated and, in general, do not form a continuous
aggregate.

Thus for the above instance, the values z2=0, w=0 lead from
A(z, w)y=0 to Zé—?~0; the combination of these values satisfies

the original differential equation. It manifestly is an isolated
combination of values.

If, however, H (z, w) = 0 were satisfied in virtue of A (z,w) =0,
the value of w provided by A =0 would then be a solution of the
equation. Instead of discussing the analytical conditions for the
equivalence, partial or complete, of these two equations, we
investigate the relation of values of w, which are provided by
A =0, to integrals of the differential equation, as follows*.

103. Writing w’ in place of dw we have the equation in the

dz’
form
F(z, w, w)=aw”+aw™ + ... +ap W +a, =0,
where a,, a,, ..., a, are uniform functions of w and 2z without

a common factor, these functions being generally algebraical in

~w and analytical in 2. Moreover, the equation is supposed

irreducible in w'.

Let the discriminant of #), in regard to w’, be A (2, w); if

A (z, w)=0,
then some value %', which satisfies # = 0, satisfies also
or
awl'—oy
and one root (or more than one root) of F =0 is repeated.
Because the coefficients a,, a,, ..., @, are algebraical in w, the

discriminant A also is algebraical in w; let w=% be one of its
roots. Suppose that the substitution of 7 for w does not make the

* Hamburger, Ueber die singuldren Losungen der algebraischen Differential-
gleichungen erster Ordnung, Crelle, t. oxir (1893), pp. 205—246. See also Fuchs,
Ueber Differentialgleichungen deren Integrale feste Verzweigungspunkte besitzen,
Berl. Sitzungsber. (1884), pp. 700—705.
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coefficient a, vanish identically, so that it remains a function of z
after the substitution; and denote by ¢ a constant quantity distinet
from the roots of the equation a,(z, ) =0. Then

F(z,n, w)=0

determines n functions w’; some of them may be distinct from
one another, but some of them will certainly coincide with one
another; none of them will be infinite in the vicinity of z =c.
Let p roots w’ of F(z, n, w)=0 be equal to &

Now in the equation F (z, w, w')= 0, w’ = § is a root of multi-
plicity p when w =7 let

w—C=v, w—n=u,
so that, in the equation,
F(z,u, v)=0,

there are p roots v equal to zero when w=0; hence it must have

the form
vPh (2, u, v) + ulk (2, u) =0,

where ¢ is an integer >1, and neither % (2, 0, 0) nor k(z 0)

vanishes identically. Assuming that the value z=¢ is chosen
so that neither % (c, 0, 0) nor k(c, 0) vanishes, we have
® x+1

v=gout + g ¢ + ...,
where a either is p or is a factor of p, « is an integer which is
positive because v =0 when u=0; and the functions g,, g, ... are
regular functions of z in the vicinity of z= ¢, the first of them g,
not being zero there; consequently

K x+1
w—C=g,(w—n)>+gw—m)* +...
104 Now 7 is a function of z; so that w =% may, or may
not, constitute a solution of the differential equation.
First, suppose that w = does not constitute a solution of the

equation; then, because w’' = ¢ is a value of w’ that satisfies

F(z,n, w)=0, it follows that ¢ and Z% are not equal to one

another, and therefore ¢ —%—Z is not identically zero. Being a

function of 2, it can have isolated zeros; it might happen that
z=c 1s one of them ; whether this is so or not, a point b in the
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vicinity of z=¢ can be chosen which is not a zero of ¢ —ZZZ—Z .
Now take

wW—n=u= ya:

. a— dy_ ,__d??
so that oy la;—w .

d
= (=T QY Ry

oa—1
and therefore dz = &y

- :
o Gy TGy

Now as z=2b is not a zero of C—%,let the value of §~—0—lgat

dz

z=> be B, where B is not zero; thus

dz vt
B@-—ay G(z—0b,y),
where G (z— b, y) is a regular function of z—b and y, such that
G (0,0)=1. At the point under consideration, n is the value of

dn

w, though . is not the value of w’; and therefore, when z=">0, we

have w =1, that is, we have y =0. Consequently z=05, y =0 are
initial values for the last equation ; and therefore we have

B(z—-b)=y*+ k,y*t* + gyt 4 L,

where «,, «,, ... are constants, and the function on the right-hand
side is a regular function of y. Hence
1 2 3

y={B(z=b)*+r/ (2 —b)* + &) (2 = b)*+ ...,
on reversing the series; and therefore
w—n=y"
=B@—m+%@—m”hﬁmpmf%+““
We thus have a set of a branches of the integral, having b for a

common branch-point and 7 (b) for a common value at the branch-
point. Moreover,

(da%u _ %)zzb =B=¢(b)— (%Z)Fb ’

(%) =t®;

so that
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thus the a branches have a common value §(b) for their first
derivative at the point; this common value is different from the

derivative of % at that point, where 7 is the quantity given by the

discriminant.

Now let b, so far restricted only to be a non-zero of & — % in
the vicinity of a point ¢, which itself is not a zero of a,(z, 1), move
in the z-plane in the vicinity of ¢, merely avoiding points which

are zeros of ¢ — g—z Then there is a corresponding set (or group
of sets) of branches, which have a common value and the de-
rivatives of which also have a common value for each point b;
but while the common value of the branches agrees with the
value of a function given by the discriminant, the common value
of their derivatives does not agree with the derivative of the

function given by the discriminant.

A corresponding investigation leads to a similar result for any
other root of
v F(z,n, w)=0,
which is a multiple root.
For any root, which is a simple root of
F(Z’ s ’I,U’) =0,

the corresponding result is obtainable by making a=1 in the
preceding investigation; that is, w —= is a regular function of
z—2>b. Then the single branch of the integral, which thus arises,
has the same value at z=10 as the function given by the dis-
criminant ; but the derivatives of the integral and the discriminant-
function are not the same.

105. Thus far it has been assumed that all the roots w’ of
F(z,mw)=0

are finite. If however w =7 makes @, (z, w) vanish for all values
of z, then some of the foregoing roots w’ will be infinite; but
not all of them can be infinite because, since the coefficients
@y, Gy Ay, ... have no common factor, they cannot all vanish when
w=mn. Of these roots, let there be p which are infinite; then
writing '

w=v w—n=u,
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so that, in the equation
F(z,u, v7)=0,

there are p roots v zero when u = 0, this equation must have the
form

vPh(z, u, v) +ulk(z, u)=0,
where ¢ is an integer >1, 2 and % are regular functions of their
arguments, and % (z, 0, 0) and k(z; 0) do not vanish identically.
As before, we assume that the constant ¢ i1s chosen so that
neither 4 (¢, 0, 0) nor k (¢, 0) vanishes; then we have

K k41
vsgou“+glu R TN

where a is either p or a factor of p, x is a positive integer because
v=0 when »=0; and the functions g,, ¢;, ... are regular functions
of z in the vicinity of z = ¢, g, not vanishing there: consequently,

w =y
_x 1
=u *{go+gu*+..}7
K 1 2

=u *{hy+ Iu*+hou*+ ...},

where the quantity, which « * multiplies, is a regular func-
1

tion of z—¢ and u*, that does not vanish when =0, z=c.

Now let
w—mn=u=7y

so that

dy dn o

a—1 "J - __ 1 —x ] R
*y dz dz +y <h’°+hly+hz?/ +...),

and therefore ;

dZ _ aya+/<—-1

“@s _ - ‘

W b=y 4 by Ry

Now h, is not zero; moreover, under the present hypothesis,

. . . dn . . pe
w = 7 is not a solution of the equation, so that E,:Z 1s not infinite.

Hence taking a value b in the vicinity of z =c¢ such that b is not
a zero of h,, the right-hand side can be expanded as a regular
function of ¥ and z — b, in the form

dz _ o
dy " o (0)?Y

a-tKk—1 + ya+x—1_P (Z — b’ y)’
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where P is a regular function such that P (0, 0)=0. At the
point b under consideration, # is the value of w, though g—z is not

infinite there; that is, w=n when z=05; or z=05, y =0, are initial
values for this equation. Thus

2z — b= +r +Blya+x+l + ..

o
(o +7%) by (B) 7
ago() a.n otk
_a+/c i Byt 4

and therefore
1

o4 K )T 1 2
y= {rgo(zf)} (2= B 4 7, (2 = B)*H% 4 ..

w=mn+Yy*

hence

a.

a-—+«k e a—l—;
="7+{ago(b)}' (Z—'b> + {(Z-—b) + }’

where P is a regular function of its argument such that P (0)=1.
We thus have a set of a+ x branches of an integral, having 2 =25
for a common branch-point and w = » (b) for a common value at
the branch-point ; for each branch, the value of w’ at the branch-
point is infinite and is different from the value at b of the
derivative of 7 (2).
Now « is a positive integer >1; also a is a positive integer,
which is either p or a factor of p, unity included ; hence
o
a+ K

or the index of the lowest power of z—b in the expansion of w —17
1

as a regular function of (¢ — b)** is a positive proper fraction.

If the infinity for «’, instead of being of multiplicity p, be
a simple infinity, all that is necessary is to make a equal to unity
through the preceding investigation.

1> >0,

The analysis has implicitly assumed that 7 is not infinite. As,
however, the discriminant-equation, being algebraical in w, might
have infinite roots, account must be taken of this possibility. For
all such infinite roots, we should assume

1

w==;
u)
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and then it would be mnecessary to consider zero-roots of the
equation obtained by equating to zero the discriminant, with

regard to u’/, of
1

F(z,—, - lzu')=0.
wow

Lastly, it might happen that the discriminant-equation is
satisfied through the vanishing of some factor which involves z
alone. If z=a be a value determined by this vanishing factor,
so that z=a is (by hypothesis) not a solution of the equation,
then z—a would be expressible as a function of w; the necessary
analysis is similar to that for the preceding cases.

106. Next, suppose that w =7, where 5 is a finite root of
the discriminant-equation, provides a solution of the differential

equation, so that the equation
F (z 7, lew) 0

is satisfied by taking 22 = 27,

Since 7 is a root of the discriminant, several of the roots dw

dz
are equal to Z—Z for w==17: let there be a set of a roots, derivable
as before, such that
d w &+l
(dz ﬂ)_go(w "7)“‘*'91(7” "7)“ ooy

where g, is not identically zero, « is an integer >0, and « and «
have no common factor. Take

w—mn=y%
so that
% _ aya.——l—x
dy  Go+ gy + gy + .
There are two cases for consideration.
(A) Let a—1—x>0, so that O<x<a—1. Hence a>1.
Take b an ordinary point of g,, such that g,.is not zero at z="5:

13

then, as we wish to have the values w equal to » at 2z =10, we find

a 1

e ®?

a—K _|. Blya—x-!—l 4+ ...
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Hence
1

a— Ya—«k 1 2
y= ) DT e =D

o

and therefore
e 1

wen = {22 q @] =L P (- b

[#4

o
a— K
being always >1. We thus have a group of a — « (>1) branches of
the integral, which are equal to one another at b and have % () for

the index of the lowest power of z— b on the right-hand side

their common value there. Let A be the greatest integer in &L’C ,

if this be fractional: if not, so that a — x =1, let A denote a — 1:
then '

dsw  dfn

@~ dr P
A being at least 1. The a — « branches, which have % (b) for a
common value at z=>0, have their derivatives, of order up to A,
equal to one another and also equal to those of # up to that order.

(s=1,...,N)

Now let the point b move in the vicinity of the point ¢, which
is not a zero of a, (2, ); and let it avoid points which are zeros
of a,. Then there is a corresponding set (or group of sets) of
branches of an integral function, which have a common value at
each such point b ; their derivatives also, up to a definite order, also
have common values at the point b. The common value of the
branches at the point is the value, at the point, of the function »
determined by the discriminant-equation; the common value, for
each order, of their derivatives is the value of the derivative of 7
of that order, at the point.

If a —x=1, there is only one branch of the integral function;
the branch then becomes a uniform function of z in the vicinity
of z=0.

Reverting for the moment to the geometrical statement of the
case, when w and z are restricted to have only real values, we see
that the integral of the equation is composed of a set of a—«
different curves, touching one another at any point on the dis-
criminant-curve, and having contact with one another and with
the discriminant-curve up to some definite order. Then w= 7 is
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an envelope of each of those a — x families of curves, each family
being constituted by one of the curves for all the values of z; and
it is a solution of the equation. If a—«x =1, there is only one
family of curves enveloped.

The solution w =7 is then a singular solution of the equation.

(B) Let a—1-—4x<0, so that «>a—1. . Proceeding as
before, we have

dy _1

T —a ST (Gt gy By )

and the index « — (a— 1) of y is an integer greater than zero.

Because z=5 is an ordinary point of g, 91, ga, --., and g, does
not vanish at z=2>, the only integral of this equation, which is a
regular function either of z—b, or of a transformed independent
variable giving a finite number of branches, is

y=0.

Consequently, w = 7 is the sole integral of the differential equation,
which at the point z=0 is equal to the function given by the
discriminant-equation, and which is a regular function either of
z—20b or of a transformed variable. Hence, for values of x >a—1,
the integral w =7 is a particular solution of the original differen-

tial equation.

If for the root n of the discriminant-equation, several distinct
sets of roots w’ of the equation

F(z,n,ww)=0

be equal to one another, it may happen that « €a—1 for one
set, and « >a — 1 for another set. The solution w =7 is singular,
in its association with the former set; it is particular, in its
assoclation with the latter set.

Further, as the discriminant-equation is an algebraical equation,
some of its roots may be infinite; and an infinite root may satisfy
the original differential equation. In that case, we should substi-

tute
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and consider roots of the equation obtained by equating to zero
the discriminant, with regard to ', of
. 1 1,
F(z,—, —u—zu)=0;

u
the initial values are u=0, z=0.
The discussion of the respective cases is the same as for the

case of finite roots of the discriminant-equation. Such a root may
be either a singular solution, or a particular solution, or it may be
associated with one set of solutions in the former capacity and at
the same time with another set in the latter capacity.

Corresponding results hold when the discriminant-equation is
satisfied by the vanishing of a function of z alone which also
provides an integral of the original equation.

107. A case, intermediate between the two which have been
considered, still remains. In the first of these cases, w =7 is not

a solution of the equation, so that & —-gg is not zero for a con-

tinuous aggregate of values of z; in the second, w =7 is a solution,

so that &— dn is identically zero for such an aggregate. It remains

dz

to consider the integrals in the vicinity of a point which is an

dn

isolated zero of § —%, say z=/f; at that point, w=1, w’=%

satisfy the equation; but for z=jf+e¢, where |¢| is to be made

infinitesimally small, & —g—: is not zero and then w =7 is not

a solution. Let
— PN e—FPPG—f)
where P (z—f) is a regular function of z—f such that P (0)=1.
Then write
w—n=y%
as before; the equation for y is

d
ay* L= N (@ =Y+ go + s

where the unexpressed terms are of order higher than £ in y or of
order higher than s in f; what is desired is an integral y that
vanishes when z = f
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- Clearly the general investigation will be of the same character

as that adopted in Chapter v for the reduction of a differential
equation to a typical reduced form. Without entering on this
general investigation, some indication of the character of the
result will be obtained by considering the simplest case, viz.
a=2, s=1, k=1, so that the equation is

d
2y =N (e —f) + Goy + i+ -
Let
Go=Jo+ i(z=S)+..-;
y=E-+7),

20* —fop —A =0,
and assigning to Y the condition that it shall vanish when 2=/
The differential equa.tion for Y is

ROk L CUNCEIORRe

where the unexpressed terms are of higher order than the first in

z—fand Y.

and take

choosing p so that

Unless fo ;pép , that is, unless
—2(f2+ 8a)
Jot+ (f&+ 80
be a positive integer or zero, the equation has a regular integral
vanishing when z = f; while if that quantity be a positive integer,
some relation must hold (§ 73) among the constants wu if the
equation has a regular integral.

Assuming that a regular integral exists, we have
w—n=E—-frE+Y);

hence at z = f, we have
dw dy

dz ~ dz’
but this is not the case for points in the immediate vicinity of £

Hence it follows that, when w =17 does not provide a solution
of the differential equation, though for a particular value of z, say

z = f, the value %Z— at that point, when substituted for w’, satisfies
17—2
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the equation, there are integral curves which touch the discriminant-
dn
EE:
when substituted for w’, no longer satisfies the equation. In other
words, the function w = satisfies the differential equation at a
particular point, or at a number of points each of which is
isolated ; but, except at those points, it does not satisfy the
equation. '

curve at that point; as z moves away from that value, then

Note 1. The function g, in the preceding investigations does
not vanish identically. The point z=2>, chosen as an initial point,
is such that ¢, does not vanish there; the alternative should be
considered, so as to obtain the relation between the integral of the
equation and the discriminant-function in the vicinity of a zero
of ¢,, when the integral and the function have the same value at
that zero. The investigation is left as an exercise.

Note 2. In these cases, it may- occur that, though some
portions of the integral are expressible in a form which is regular,
or can be made regular by an algebraical transformation of the
independent variable, yet for the general integral the values
z=f, w=n(f); or z=b, w=mn(b); can be points of indeterm-
inateness. It should be remarked that these are fixed points,
that is, points fixed by the equation itself; they are not
parametric.

108. Summarising the results obtained in connection with a
root w=mn of the equation

Az, w)=0,

where A 1is the discriminant of F(z, w, w’)=0, we have the
following cases.

I. When w =17 is not in general a solution of the equation, so

that the substitutions w =19, v’ = (jl—z do not satisfy the equation,

then all the integrals which are equal to % (b) at z="b, where b is
a point in the z-plane in the vicinity of which 5 is regular, can be
represented in the form

w—n=P((z-"0),
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where P is a series of positive powers of z—b, the indices
being either integers or commensurable fractions; the lowest

index in P is unity, when all the values of é’g given by

d
F(z,m,w)=0

are finite at z=b; the lowest index is less than unity for those of

the values of % given by F (2,7, w’) =0 which are infinite at z=5.

This restriction as to the magnitude of the lowest index of
powers of z—b in P can no longer be imposed if w =, though
not in general a solution of the equation, provides at z=1> a value
of w’ which, at the point, satisfies the equation.

II. When w=17 is a singular solution of the equation, then
all the integrals of the equation, which become equal to 7 (b) at
z=0b, where b is an ordinary point of 7, have the form

w—mn=P(z-D0),
where P is a series of positive powers of z —b, the indices being

either integers or commensurable fractions; the lowest index in P
is always greater than unity.’

III. When w=7% is a particular solution of the equation,
then all the integrals of the equation, which are equal to 7% (b) at
z =0, are given by ‘

w = 1.
(The analytical distinction between the cases II. and III is
afforded by the expansion

d _ e
—(/%;——ql)=go(w—n)“+....

K

The solution w =7 is singular, in relation to those integrals of
the equation for which « < a; it is particular, in relation to those
integrals of the equation for which « > a.)

IV. It may happen that w =9 is a singular solution in rela-
tion to some integrals of the equation and is a particular solution
in relation to other integrals; in that case, w=7 gives more than
one distinct repeated root of

F(z, n, w)=0,

though this result is not, of itself, sufficient to secure the double
relation of the solution w=1.
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109. The discriminant may provide several roots. If it is
an irresoluble function of w, these roots form one set. If it
is a resoluble function of w, let it be expressed in the form
AmAMAMs .., where A,, A,, A,, ... are irresoluble; then the
roots of A;=0 form one set, those of A,=0 another set, and so
on. Then we have the proposition, due to Hamburger*, that, if
one root of a set is a solution, every root of that set s also a
solution of the same kind, singular or particular; so that, in
fact, we can then regard A =0, if A is irresoluble, or A,=0,
A,=0,...,if A is resoluble, as solutions of the differential equa-
tion in the respective cases; and these solutions are singular or
particular, according as any one root is singular or particular.

To prove this, let w =7 be a root of an irreducible equation of
degree m in w, say ® =0; and let it be a solution of the original
differential equation, so that

F(z, 7, %Z—) =0,

is satisfied. Now

00
dn —5;
&= 56
on

this quantity, by means of ®@=0, can be expressed in the
d
form o+ o+ ... + oy ™% Also, every power of d—: can be

expressed in this form : and every power of 7, of index higher than

m — 1, can be expressed in this form, so that F |z, 7, %Z—) =0

can be expressed in the form

Jotfin+ oot fruan™ =0,

where the coefficients f do not involve 7. Now w = 7 is to satisfy
the equation, either identically or as an algebraical consequence
of ® =0. The equation ® =0 is irreducible, and therefore no
equation of lower degree is satisfied in virtue of ® =0; hence

* Crelle, t. cx1x (1893), p. 220.
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the above equation, as the final form of # (z, 7, %) =0, can be
satisfied only if

=0, fi=0,..., fina=0.

In virtue of these relations, the substitution of any other root of
® = 0 for # will also lead to an equation which is satisfied: that
is, every root of the irreducible equation ® = 0 is a solution if any
one root is a solution.

The distinction between a singular solution and a particular
solution is based upon the character of the expansion of

d . . .
w — d_z =9, say, in powers of w—n =u, say. This expansion

arises out of the equation
vPh(z, m, u, v)+ulk(z, 9, u, v) =0,
and is of the form

dn L past
w’—az":v:go(z, Mut+g.(z,p)u ¢ +...,

for the root # of ® =0. But as ® = 0 is irreducible, the analysis
for a root 7,, instead of a root %, In connection with the corre-
sponding expansion, is precisely the same, step by step, with only
the substitution of 5, for n; so that, for any other root, we have

’ d771 = K—+—1
w —ElE=9o(z, n)(w—n)*+9:(z, m)(w—m) = +...,

where the integers « and a are the same as before.

Consequently any two roots of the irreducible equation & =0,
are singular together, or are particular together, or are singular
together in relation to one set of integrals and particular together
in relation to some other set of integrals.

In these circumstances, the irreducible equation ® =0 can be
regarded as a solution which is either singular, or particular, or
both singular and particular.

Note. In all these discussions as to singular solutions, and
the relation of roots of the discriminant-equation to integrals of
the differential equation, the functional character for completely
unrestricted variation of the variables has been regarded as the
most important element ; and the introduction of the geometrical




264 EXAMPLES OF THE [109.

interpretation, wherein both the variables are restricted to real
values, has been made only for the sake of incidental illustration.

On the subject of what may be called the geometry of singular
solutions, there is a great amount of literature, the most important
part of which dates from the publication, in 1873, of the well-
known papers by Cayley and Darboux. It is not, however, my
purpose to discuss the plane curves represented by differential
equations of the first order (§ 60, Ex. 1): and therefore the
discussion of the geometry of singular solutions, in regard to
propositions regarding cusps, tac-loci and the like, connected
with the discriminant of the differential equation and the dis-
criminant of the equation which i1s the integral equivalent, is
omitted. It is more properly associable with the discussion, in
differential geometry, of the curves represented by differential
equations of the first order.

Ez. 1. Consider the example

F=w'3—4zww +8uw2=0,
The discriminant is .
A=64 (w*— & Bus) ;

and therefore the roots of A=0 which arise for consideration are
w=n=0, w=n=g25

Evidently w=0 satisfies the differential equation ; and w=#2%"is easily seen
to satisfy the equation.

First, as to the nature of the solution w=75=0. It is necessary to obtain
the expansion of gz—(w—q) in powers of w—n, that is, of ' in powers of w,

from the equation #=0; and the three values are found to be
2
W= gw+ (—274 + —) wi4-...,
z z z
W= 2z%w%—%+...,

W= —2Fut — g+ sooe

As regards the first of these, the lowest index of powers of w in the expansion
is unity ; for this value of %', we have x=a; and the integral w=7n=0 is
therefore a particular solution of the equation, in connection with this value
of w'.

As regards the second and the third, the lowest index of powers of w is % ;
for these two values of ', we have x<<a ; and the integral w=5=0 is there-
fore a singular solution of the equation, in connection with these values of '
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Secondly, as to the nature of the solution w=n=3%2% It is necessary to
obtain the expansion of 0% (w—n) in powers of w—z, that is, of ' —42% in
powers of w— 2% from the equation F'=0. Let

w—gpd=u, wW—§2=v;
then
V34120222 — dzuv + LG uz® 4 8u?=0.
There are two values of » which vanish with « ; they are given by
' v= %iz’}u%+...,-
v= ——%iz%u’}+

The lowest index of powers of «# in the expansion is 4 ; for these two values
of w — 422 we have k <a; and the integral w=7=4%2% is therefore a singular
solution of the equation in connection with these values of w'.

The general integral of the equation is

w=4d (z— A)?,
where 4 is determined by the equation
a=A (a—A)3

if w=a, z2=a are the assigned initial values.

The customary geometrical interpretation, obtained by regarding z(=w)
as the abscissa and w (=y) as the ordinate of a point in a plane, illustrates
the relation between the various integrals.

The equation
y=A4 (x—A4)*
represents a series of parabolas having their axes parallel to the axis of g,
their vertices on the axis of #: for positive values of 4, they are turned in
the positive direction of the axis of y; for negative values of 4, they are
turned in the negative direction of the axis. They all touch the line =0 ;
hence y=0 is a singular solution, as being an envelope of integral curves.
But one of the parabolas, viz. for 4=0, is the line y=0; that is, y=0
is a particular solution.

The curve
Y=gy a®
is an envelope of the parabolas, touching the curve
y=4 (- 4)

at the point x=384, y=443; thus y=5%23 is a singular solution as being an
envelope of integral curves, and the value of dy/dx for the common tangent
at the point £=34, y=443, is 442 The three values at the point are the
roots of ’ ’
PP—4844p +12846=0,

that is, 442 repeated and —842; so that y=3%4% is an envelope connected
with two touching integral curves, but it is not thus connected with the third
integral curve through the point.
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Ez. 2. Discuss similarly the equations :—

(1) Z(%)2—2w%+4z=0;
(i) <‘%’>4 — 4w (z . 2w>2 —0;
ity (Z2) 42592~ w=0;

() (- () - 1+ur=0;

w2 dw
™) =z (%) +é (2z o —w).—:O,
where ¢ is any regular function ;

3
(vi) (i—f) —az Ojl—r;u+z3=0.

PAINLEVE'S THEOREM..

110. In the case of the equation

dw

dz =Jf(w, 2)
of the first order and the first degree, the function f being
algebraical in w and uniform in z, it was proved (§ 90) that all
the points of indeterminateness of the integral are fixed points
determined by the equation itself. This theorem* applies also
to the equation

F(z, w,w)=0,
when F is algebraical in «/, say of (finite) degree n in w/, is
algebraicalt in w, and uniform in 2.

* It was first enunciated by Painlevé, Sur les lignes singulieres des fonctions
analytiques, (Thése, 1887), p. 41.
+ The limitation, that the equation

F(z, w, w')=0,
which is algebraical in w’, should also be algebraical in w, if its points of indeterm-

inateness are to be points fixed by the equation itself and not parametric points, is
necessary, as may be seen from so simple an example as

the general integral of which is

w=alogg—alog(A—z),

where A is an arbitrary constant: the (parametric) point z=4 is a point of
indeterminateness of the integral.
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Much of the former proof, that applies to the equation of the
first degree, is applicable to the present case. The equation F'=0
determines n values of w’ as functions of w and z, say

w' = f, (w, 2), (r=1,...,n)

which are distinct from one another except for values of z and w
satisfying ’
A(z, w)=0,

where A denotes the discriminant of F =0 with regard to '
Giving to z any arbitrary value z, the equation A =0 then
provides a number, say N, of values of w, say #,..., ny; the
preceding investigations shew that, in the immediate vicinity of
z=2,, w=mns, some of the integrals of the equation can be ex-
pressed as regular functions of a fractional power of z — z,, which
acquire a value 7n; at z=z,, and the rest of the integrals can be
expressed as regular functions of z—z,, which acquire a value
ns at z=2,. Hence the point z=2, can be a branch-point of
integrals of the equation: but it is an algebraical critical point for
them.

For particular values of z, such as z =0 (determined as a zero
of a regular function of z occurring in an expansion such as that
in § 105), there are values of w given by A (z, w)=0, say w =7,
which are (or may be) points of indeterminateness of the integral ;
but these are fixed points, settled by the equation itself, and they
are isolated points.

For values of z, such as z=2, or 2z =0, and for values of w
which are distinet from those given by A (z, w) =0 for the value
of z, the n values w’ are distinct from one another. They remain
distinet from one another so long as the variables do not acquire
(or pass round) a simultaneous combination, which is effectively
a branching-combination of values.

~ As regards the distinct branches, there may be combinations
of values of w and z which can be accidental singularities of the
first kind : these are parametric, but they are algebraical critical
points; or there may be accidental singularities of the second
kind : these can be points of indeterminateness, but they are fixed
points; or there may be essential singularities of the function
Sr(w, 2): but these again are fixed points. Accordingly, in the
z-plane, we mark all the fixed points given by the equation as
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known points of indeterminateness: each of them is an isolated
point ; and therefore, beginning with any value of 2, which is not
one of these marked points, we can draw a curve in the plane
so that it does not come within only an infinitesimal distance of
any one of these points.

We then consider the aggregate of the n» values of w/,
given by
w =f,(w, 2),

and, moving along the curve indicated, we proceed to form the
continuations of the integrals that arise in connection with
assigned initial values.

(r=1,..., n),

If we reach a point z on the curve which corresponds to a
branching of the values, then, after z passes through that point,
say to &, the aggregate of the m values is the same as if the curve
had been drawn differently to ¢, though their distribution is
different. As in the case of only one value of w’, when the
original equation is of the first degree, the continuations of the
integrals can be carried beyond any point Z, unless a function
Jr(w, 2) becomes either (i) infinite, (il) indeterminate at Z, though
uniform in the vicinity, (iii) indeterminate at Z, but multiform
In the vicinity.

As regards infinite values, if the infinity be determinate, then
the combination is an accidental singularity of the first kind for
w' =f,(w, 2); the corresponding integrals determined by that
equation have a parametric critical point, but it is algebraical.
If the infinity be not determinate, that is, if the value at the point
be infinite but the point be a branch-point, the preceding investi-
gations of this chapter shew that the corresponding integrals of
the equations, all of which have the point for an infinity, have
a parametric critical point there, but it is algebraical for every
integral. '

As regards a point Z which makes f, (w, z) indeterminate and
leaves it uniform in the vicinity, the argument of § 90, which applies
to the equation of the first degree, applies here practically word
for word ; and the inference is that the point Z is not one beyond
which continuation of the value w’ =f, (w, z) must cease: that is,
the point is not a point of indeterminateness for the integral.
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As regards a point Z which makes f, (w, z) indeterminate, but
keeps it multiform in the vicinity, the multiformity arises solely
from the original differential equation; the point is therefore
a branch-point. (In such a case, algebraical transformations of

the type
z—7Z=20,

can be obtained, for integer values of r and «, which make the
expression of f, (w, z) uniform in the new vicinity of {=0 and
W =0: but it is unnecessary to make this change.) The integrals
have been considered in the vicinity of every branch-point, the
original equation being algebraical in w in every case; such
branch-points as are points of indeterminateness lie off the curve;
and for all others, the integrals are known to exist say in a
vicinity round Z not large enough to extend to the nearest point
of indeterminateness. As they exist in such a vicinity round Z,
they can be continued beyond Z, that is, Z is not a point beyond
which the continuation of the value w’' = f, (w, z) must cease; the
point, in fact, is not a point of indeterminateness.

w—n= Wk,

Hence it follows that no point on any curve, drawn in
the z-plane so as not to approach indefinitely near to the fixed
points of indeterminateness, can be a point of indeterminateness.
All such points, whether particular branch-points, or accidental
singularities of the second kind, or essential singularities, of the
functions f, (w, z), are fixed points determined by the equation
itself; the only parametric singularities of the integrals are
accidental singularities of the first kind, and algebraical branch-
points which may give either finite or infinite values to the
integrals.

Painlevé’s theorem is thus established. Furthur, there is
suggested the investigation of those equations of the first order
and any degree such that all the exceptional points of the
integrals of any kind are fixed points. It is known that the
exceptional points, if parametric, can only be algebraical; and
therefore it will be sufficient, for that purpose, to obtain the tests
ensuring that an equation of the first order has no parametric
exceptional points, which are algebraical in character.




CHAPTER IX.

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER, THE INTEGRALS
OF WHICH HAVE NO PARAMETRIC BRANCH-POINTS®,

111. It has been proved, in the preceding chapters, that the
.exceptional points of the integral of an equation of the first order
F(z,w, w)=0,
which is rational in %’ and in w, and is uniform in 2z, belong to
.one or other of three classes, viz.
(1) poles, in the vicinity of which the integral is uniform ;

(i1) branch-points, at which the branches of the integral may

have finite or infinite values, and round which a number
of branches circulate in one or more cycles: when the
number of circulating branches is finite, the point is an
algebraical critical point;

(ili) points of indeterminateness; these include essential
singularities in the vicinity of which the integral is
uniform: and other points, at which the values of the
integral are unlimited in number and depend upon the
method of approach of z to the point; in the vicinity
of such points, there may also be branching of the
integral, either definite or indefinite.

* The subject of this chapter originated with Fuchs’s important Memoir,
««Ueber Differentialgleichungen deren Integrale feste Verzweigungspunkte be-
gitzen,” Berl. Sitzungsber. (1884), pp. 699-—710. The results contained in this
memoir were amplified by Poincaré, Adcta Math., t. vz (1885), pp. 1—32. Another
‘method was devised by Picard for later developments; it is expounded, among
.other places, in the second and third volumes of his Cours d’Analyse, having first
been given in the crowned ‘‘Mémoire sur les fonctions algébriques de deux
variables,” Liouville’s Journal, Sér. 4, t. v (1889), pp. 135—319.

In this connection, reference may also be made to Painlevé’s crowned ‘¢ Mémoire
sur les équations différentielles du premier ordre,” Annales de UEe. Norm.,
Sér. 8me, §. vixr (1891), pp. 9—58, 103—140, 201—226, 267—284 ; to the memoir
by Wallenberg, cited in § 127, and to a brief memoir by the same writer, Crelle,
-t. cxvr (1896), pp. 1—9.
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It has further been proved (§ 110) that all the points of indeterm-
inateness are fixed  points, determined by the equation itself;
but that the poles, and the algebraical critical points, of the
integral are (or can be) parametric, and that, for the most general
equation F =0, some of these exceptional points are certainly
parametric.

It is, however, conceivable that classes of equations exist for
which all the exceptional points of the integral are fixed ; it is
further conceivable that more extensive classes of equations exist,
for which some set of the exceptional points (though not all of
them) belonging to the integral are fixed. The course of the
general discussion shews that the occurrence of poles, in the
vicinity of which the integral is uniform, is relatively rare and
unimportant compared with the occurrence of algebraical critical
points. Accordingly, we proceed to the investigation of the
conditions, necessary and sufficient to secure that all the alge-
braical critical points of an equation

F(z,w,w)=0
are fixed points, determined by the equation itself.

EquaATions oF FIRsT DEGREE WITHOUT PARAMETRIC
CrITICAL POINTS.

112. We begin with the equation of the first degree; and we
find that the only equation of the first degree, tn which all the
algebraical critical (or branch) points are fixed, vs Riccatr’s equation

%U =A,+ 4w+ 407

where 4,, 4,, 4, are uniform functions of z.
The general equation of the first degree, which is rational
in w, 18
dw P (w, z)
dz — Q(w, 2)’
where P and @ are integral polynomials in w, having no common
factor.
First, we must have @ independent of w. (Then @ will be a
function of z alone, and can be absorbed into the coefficients of
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powers of w in P; that is, we can take @ =1.) If it were other-
wise, let w=a, z=qa, be a pair of values, which satisfy

Q(w, 2)=0

and are such as to make P (w, z) distinct from zero ; we can take a
arbitrarily, because P and ¢ have no common factor, and still find
this condition satisfied. But taking w=a, z=a, as initial values
for the equation, we know (§ 24)) that z=a, where a is an arbitrary
point, is an algebraical critical point for the equation. This
possibility must be excluded; there must accordingly be no
equation @ =0, giving values of w and z; and therefore, as
explained above, we take Q =1.

Next, as P is a polynomial in w, let it be of degree m. The
ground of the exclusion of variability for @ was on the score of a

definitely infinite value for %%, as connected with specific values

of w and z. This possibility must still be excluded: and it can
arise, in the new form of the equation, for infinite values of w,
which therefore must be taken into account. For this purpose,

let w= %V’ so that we have

aw . P, (W, 2)
W wp( )= 2,
The critical value is now W =0; the preceding case shews that
P, (W, 2)
Wm—2

must be an integral polynomial in W ; and therefore
m—2<0.
The function P is consequently of order not greater than 2 in w;

and the original equation thus is of the form

Ooll—?: = A,+ Ayw + A2,

where A,, 4,, A, are functions of z, which are uniform because

. dw . . .
the expression for —— is uniform in 2.

dz
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113. To discuss the integral of the equation, one convenient
method is to make it. depend upon a linear equation of the second
order by the transformation

so that v is determined by
d?u 1 dA, du
R _ (L 4 VO
dz (A2 dz > dz
The functions 4,, A4,, A, being uniform functions of z, let them be
expressed in the form

A

+ A, 4,u=0.

_Go _G G
[ G H 1= G H G >
where the functions &, G, G4, G, have no singularities for finite
values of z; then the equation becomes

66, 5% — (66,6 + Gz‘ff 6.6 %+
where now all the coefficients of derivatives of wu are regular
functions. The only points, which are possibly not ordinary
points of the equation, are the roots of G =0 and G,=0, that is,
they are fixed points of the original equation, being either zeros
of A,, or infinities of A4, or A, or 4,. As regards the integral
of the equation, compounded of a linear combination of two
integrals, these (fixed) points may be algebraical branch-points,
or branch-points of the same type as (z —¢)* where N\ is incom-
mensurable, or logarithmic singularities, or essential singularities
(with or without branching), or more general points of indeterm-
inateness.
Let this integral be
u=au; + SBuy,

where either u,, or u,, or both, must possess these various (fixed)
exceptional points; then the integral w, which is

A A,=

G2Gu=0

193 R g

- J-—Z;, ou, + Bu,
contains the arbitrary parameter a + 8. It is clear that, in general,
any exceptional point of u, or w, of the classes indicated will be
an exceptional point of w; all of these are fixed points. All other
points in the plane, and therefore any parametric point, are

F. II 18
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du,
| dz’
metric point give a zero for awu, + Bu,, it provides a pole for w; if
the value of au,+ Bu, at the point is not zero, the parametric
point is ordinary for w. Hence parametric points are either
ordinary points or are poles of the integral w of Riccati’s equation.

ordinary for au, + Bu, and therefore for a 0%+ B if a para-

If the arbitrary parameter a8 be determined by initial
values w=w,, z=2,, where 2, is an ordinary point of %, and wu,,
then it is easy to see that

Swy+ T
W=
Uw,+V
where S, U, V, T are functions of z and z,, which have the fixed
exceptional points of u; and u, as their (fixed) exceptional points.

114. In the discussion of the integral of the equation, it is
also possible to introduce some simplification in the form by
transformation.

Let w=

choosing @ so that the term in W in the expression for %V may
vanish ; then
A, 1 d4,

26=X2+Z‘2—2 dz

and the equation becomes

aw .
& = tJ@)
= W24 J,

say, where

2 d24 3 (dAy\? dA4, 24,dA
— . A 2 = 2 _ 2> 1 — “L1 —2

4J =444, ‘ 1 +A2 dz2 A2 ( dz 2 dz A, dz’

It is known that all the points of indeterminateness and all the
critical points of the integral of the equation are fixed points;
and therefore a parametric value of z can be only an ordinary
point of the integral or a pole of the integral, and such a

parametric value of z is an ordinary point of J.
When 2z =a, where a is a parametric constant, is an ordinary

point of the integral, then by Cauchy’s existence-theorem an
integral exists, which is a regular function of 2 —a and acquires an
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assigned value w, when z=a; and the regular integral, thus
determined, is unique.

When z=a is a pole of the integral, the initial condition
attaching to w is that it shall acquire an infinite value when z=a.
Moreover, this point is neither a branch-point nor a point of inde-
terminateness: in the vicinity of z=a, the integral is uniform.
To determine the order of the infinity, let

A
T (=
the indices of the unexpressed powers of z —a being higher than
~n, where n is a positive integer and A is a (non-zero) constant.

Substituting, so that the equation may be identically satisfied,
we have

W + ...,

n+1=2n, —nA=2A3%
and therefore n=1, A=—1. Accordingly, we write

W=" 1+ ’
z—a
where the new dependent variable v is a regular function of z —a

vanishing when z=ua; it is determined by the equation

(z—a)%—=——v+ v+ (z—a)3d

=—v+P+@E—a)P{fo+Ji(z—a)+r(z—a)+...},
say. We know (§§ 64, 67) that only one integral of this equation
exists which vanishes with z—a, and that it is regular; it is
easily found to be represented by the series
Wo(a—af + 33 (e — a0 + 3 (Ta+ 472 (2 — @)
+3( s+t J)(z—a)y +....
To obtain a region of certain convergence of the series, we con-
struct (§ 63) the dominant function V such that*
3V ==V+ V2+(z—a)J;
we take the root of this quadratic which vanishes with z=aq,
so that
V=2—{4—(z—a)3J}

The region of convergence for V (and therefore also a certain
region for v) is a circle of radius p having « for its centre, where p
is the smaller of two quantities, one of them the distance of « from

* The factor 8 on the left-hand side is the value of 6 in § 63; the quantities to
be considered here are 2 —a, 3 —-a, ..., where a= —1: the smallest of these is 3.

18—2
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the nearest (fixed) singularity of J, the other of them a value of
| z — a| determined by
|z —al?| J|=4.

We thus have the expression of the integral of the equation
in the vicinity of an ordinary point of J, whether parametric
or fixed ; and its expression in the vicinity of a parametric point

which is a singularity—a pole—of the integral. The expression

of the integral in the vicinity of the other exceptional points,
whether critical points or points of indeterminateness, (all of
them being fixed), is obtained by the methods of Chapters 1v
and vI; and several special examples are there given.

115. This form of equation, therefore, is the only one of the
first order and the first degree that has its integral devoid of
parametric exceptional points other than poles. It is, however,
a question of an entirely different range of investigation to secure
that the integral is devoid of critical fixed points and points of
indeterminateness with branching, in other words, to secure that
the integral is uniform.

Taking the equation in the form

ﬂ_ W2+J’
dz
where J is uniform, we see that, if the integral of this equation is

uniform, so also is that of the original equation: and wvice versa.
Now if

14U

V=—T 4"

then —qlig+ UJ=0,
dz

so that, if U; and U, be two linearly independent solutions of this
equation, then
aUu, dU,

dz "% ds

U +cU, °
If U, and U, are uniform functions, then also W is uniform ; but
not conversely, for U, and U, could have common irrational
elements, or could have a common factor for which a fixed point
is at once an essential singularity and a branch-point, and the
point still could cease to be critical for W.

W=
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EQUATIONS OF ANY DEGREE, WITHOUT PARAMETRIC
BRANCH-POINTS.

116. Proceeding next to find the conditions, which must be
satisfied in order that all the critical points of the equation
F(z, w, w)=0
may be fixed points, determined by the equation itself, we assume

that F'= 0 is irreducible in regard to w’ and, being of degree m
is expressible in the form

aW'™ + @ W™+ .+ Qe+ Q= 0,

-where the coefficients a,, @, ..., @y are algebraical polynomials

in w, are regular functions of z, and have no factor common
to all.

From preceding investigations (Chap. viir) it has appeared
that an integral of the equation exists, which acquires an assigned
value w, at an arbitrary point z, and is a regular function in the
vicinity of z,, provided every root w’ of

F (25, wy, w)=0

is simple and finite; but if any root be infinite, or if any root be
multiple, then z, is a branch-point for a number of integrals
which have a common value w, at z,.

Further, it was proved that, if w =7 is a root of the equation
Az, w)=0,
where A (2, w) is the w’-discriminant of F=0, and if w'= ¢ be a
multiple root of

F(Z’ 7, g) =0,
so that it also satisfies

ZF G m =0

and if
w=mn + u, ep’=§+v,
change the irreducible equation
Fz, w, w)=0
into the (also irreducible) equation

Fi(z, u, v)=0,
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where F, is consequently not divisible by a power of » for all
values of z and «; then any root v of this equation can be ex-

pressed in the form
x k+1

v=gnu;+glu7+ cee s
where a is a positive integer, « is an integer which may be positive,
or zero, or negative, and where g,, g;, ... are functions of z, the
branch-points of which are fixed points; so that the parametric
point 2z, is ordinary for each branch of these functions and
therefore, within a domain round z, which does not extend so far
as the nearest branch-point of any of them, the coefficients g,, g,...
can be expressed as regular functions of z—z,. For such roots of
F =0 as are simple, a is unity ; but some root (or roots) must be
multiple, and then a> 2. Taking

‘ w—n=u=y"

the equation for y is

dy _, ., _dm

ay“‘ld—z=w ~ 3

d
= C_ag +goyk+g1yl¢+l+ cen

117. First, let the integer « be negative ; then

dz
@ —_ eoya—l—n + elya—x + ezya—x+1 + cens
where ¢, =;-, is a regular function of z — z,, and all the
(1]
other coefficients ¢, €, ... are regular functions of z— z, in the

region retained. The integer a >1, whether the root under con-

sideration be simple or multiple, and « is a negative integer,

so that a—«>1; hence (§ 24) y branches at z,, being a
1

regular function of (¢ — 2,)*-%. Consequently u, =y and there-
fore also w, branches at z,.

Now when « is negative, v = o when u=0; and therefore the
equation -
Fi(z, u, v)=F(z, n+u, {+v)=0
must mot have infinite roots for v when u =0, if the original
equation F (z, w, w')=0 s to be devoid of parametric branch-
ponts.
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118. Secondly, let the integer « be positive. There are two
dn

cases, according as & -7 is not, or is, identically zero.
When & — % is not identically zero, its roots are fixed points;
. . . . d
accordingly, the parametric point z, is not a root of &— Zig R

and we have

é’z_ a.—1+ u+
dy-—%y TY eees

where «,, 7, ... are regular functions of z— 2, of which ry, does
not vanish when z=2z,. Then
2= z,=Coty*+ Cry* 1+ ...,

where c¢,a is the value of «, at z=z, that is, ¢, does not vanish.
In the case of some roots of the original equation, @ >2; hence y

is of the form
1 1

(2 — 20)* P {(z — 20)"},
where P (0) is not zero. Consequently
w—n=y*
1
= (z—2) @ {(z — )},

where @ is a regular function; and then z=2z, is a branch-point
for this part of the integral. If, then, the original equation ¥#'=0

is to be devoid of parametric branch-points, {— dn cannot differ

dz
from an identical zero; that is, » must be a solution of the
equation.

Taking therefore ¢ =%, the form of the equation for y
depends on the relation of a—1 to «.
@) If a—1>k, then
dz

e — ﬁ a—Kk—1 +
=0 vees
so that
z=zy=boy*=*+ by ...
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Since a —1 >« in this case, that is, a—x > 1, we have y a regular
1

function of (¢ — z,)*~~, and therefore

w—n=y* L

=(z— zo):c Q {(z — zo).‘xf,o,
so that 2z = 2z, is a branch-point for these integrals.

(1) If a—1=«, then
dz o
5 = hl seey
dy % + nmy -+
so that
Z— Zo=boy+bly2+ X
Here y, and therefore also w (=7 + ¥*), has 2z =z, for an ordinary
point. _
(ii1) If a— 1< «, then

% — %’ yn—(u.——l) + % yn—a+2 + ...

Now z =2, is a parametric point; all the points of indeterm-
inateness of the original equation F = 0 are fixed points,
determined by the equation itself; and therefore z =2, is not
a point of indeterminateness either of F' =0 or of the deduced
equation between y and 2. Since « — (a— 1) is a positive integer,
it follows that

y=0

is the only solution which vanishes when z = 2,; that is, w =19 is
the solution of the original equation. (It is a particular solution.)

Hence, in order that z, may not be a branch-point, we must
have a—1 < «, and 7 must be a solution of the equation: conse-
quently, when w' is regarded as an algebraical function of w,
gwen by F(z, w, w')=0, and when, for an arbitrary value z, of
z, w=m 18 a branch-point of order a —1, the a branches having &

Jor their common value, then § = %«Z, in order that the integral of

the equation
F(z, w, w)=0

may not have z, as a branch-point, so that n vs a solution
of the equation ; and F (z, w, %) =0 must have w=n as a root

of multiplicity equal to, or greater than, a — 1.
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119. Thirdly, let x=0. Again there are two cases, according
as & — gg is not, or is, identically zero.

When ¢ — zg is not identically zero, the same course of analysis

as was adopted (§ 118) when « is a positive integer, shews that
z, is a branch-point for those integrals associated with values

of a>2; and there are such integrals. Since z, is not to be
a branch-point of the integral of the equation, it follows that

&— gg must be identicélly zero, and therefore that n must be a

solution of the original equation.

Now some of the roots of A (2, n)=0 are simple roots of
F (z, w, g—;—?) =0, regarded as an equation in w; but one at least

of them is multiple, and a >2 for that root. Since «=0, the
analysis for the case when « is a positive integer applies in the
instance a —1 >« ; and z = z, is a branch-point for those integrals.

‘When « =0, the root
K x+1

v=gou* + gru * + ...,

is not zero when «=0; and this case must be excluded. Hence
the equation

Fi(z, u, 'v)=F(z, n +u, %+'v)=0

must not have any multiple root v which is finite when uw=0, if the
original equation is to be devoid of parametric branch-points.
120. When the equation is arranged in powers of «/, it is
Flz, w, w)=Aw™+ A,w™ + ...+ Apw' + A,
where the coefficients 4 are integral polynomials in w.

If A, involves w, let w =& be a value of w which makes 4,
vanish. As F =0 is to have no parametric branch-points, the
equation w=§, if it gives a solution of the original equation
F =0, does not violate the hypothesis. The alternative is that
w = £ should not give a solution of ' =0: and then we take

w=E-+ u,
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making this substitution in the coefficients A alone in the first
place. Now -

Ay(z, w)y=4,(s, E+u)=4/,
say, where 4, is an integral polynomial in «, which vanishes with
u because A,(z, £)=0. Others of the coefficients 4, after this
substitution, also may vanish with »; but not all of them can do
s0, because w— £ would then be a common factor of all—the
possibility of existence of which has been excluded. Suppose
that

A =A;(z, &+ u)=usP;(u),
where P;(u) is not zero for w=0; also r,> 0, and some one or
more of the integers 7y, ..., 7, must vanish.

Then at least one root w’ of the equation
Awm™+ Ay wm o 4 Ayt + Ay =0
is infinite when «=0. To obtain the order of the infinity,

construct a Puiseux diagram, marking in a plane referred to two
perpendicular axes Of, On the points

(')na 7'0)3 (m—' 1’ «,rl)’ v (1’ /rm-—l); (O, 'r'm,)'

A line drawn through the point m- 1, 3, making an angle tan™ u
with the positive direction of OE, is

y—ri=plz—(m—1}
so that the intercept on the axis On is r;—u (m — <) ; this is the
index of the lowest term in the expansion of 4;'w'™% in ascending
powers of u for a value of w’ which, when expanded also in ascending
powers, begins with a term in w—*. The point (0, r,) is on the
axis Oz ; one of the points (0, r,,); (1, p—1); ...; (m—1,r) is on
the axis O, say (m —j, r;), so that r; =0; the point (m, r,) is off
the axis Of Through (0, 7,) take a line coinciding with On;
make it turn in the counterclockwise sense, till it meets some
point or points in the tableau: then make it turn about the last
of such points, until it meets others; and so on. At some
stage it passes through a point or points on Of; on continuing to
revolve, when it passes through the last of these on Of, (which
has its abscissa < m), it will meet at least one point in the tableau,
giving to its direction a positive inclination tan™ u less than L.
Hence there will be certainly one portion of the line, and there
may be more than one portion of the line, giving positive values

120.] PARAMETRIC BRANCH-POINTS 283

to wu, where a term in % is the first term in the expansion of w’
in ascending powers of w.

Further, if a value u be determined by a portion of the line
joining (m — j, 7;) to (m —<, 7;), where m —j<m —< and =0,
we have
. ry— (m—j) =1 — (m — i),
then

&
j=3

so that u is a positive commensurable quantity.

Let a root w’, which is infinite when w is zero, be obtained in

the form
W = gou ™+ ru T gouTtr 4 L,

where « is a positive commensurable quantity; the zeros of g,
may be branch-points of g,, but they are fixed points; a para-
metric point z, is ordinary for each branch of g,, and likewise for
the other coefficients ¢, ¢s,..., so that we may consider them
expressed as regular series of powers in z — z,, of which at least
the coefficient g, does not vanish when z=z,.

Now £ is not a solution, so that % is not infinite: thus
du , dE
dz =" T dz
=g+ ...+ ...,
the term — z—i being inserted in the series certainly later than the

first term. As in previous cases, this gives
1 1
U= (Z— Zo)tc+1 Q {(Z__ ZO)K+1}’
where @(0) is not zero. Since x is a positive commensurable
quantity, it follows that z =z, is a branch-point for » and therefore
for the integral w. The equation
F(z, w,w)=0

is to be devoid- of parametric branch-points; the hypothesis on

~which the preceding result has been deduced must be excluded;

and therefore the coefficient A,, which, at the utmost, is a
polynomial in w, must not determine any root w=§; con-
sequently, 4, must be independent of w. It at once follows
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(1) that, for a parametric value of z, no root w’' can be infinite
for finite values of w; and (ii) that A, can be taken as equal
to 1: for it now is a function of z alone, and we can divide
F (2, w, w') throughout by 4, without affecting the character of
the coefficients.

Next, to take account of possibly infinite values of w, write
1.

W )

then, assuming 4,= 1, the equation in W is

(&) -malm) (&)

+Wid, (VLV z) (%Vym- .= 0.

By what has just been proved, it is necessary, if F (2, w, w)=0 is

w =

to have no parametric branch-points, that % should not, for a

parametric value of z,, have an infinite value for zero values of z.
Hence all the coefficients W A4, (%, z> must be integral poly-

nomials; in other words, the coefficient 4;(w, 2) is an algebraical
polynomial in w of degree not greater than 2:.

121. Combining these various results, we have the following
theorem *, due to Fuchs:— ’

The condrtions, necessary and suffictent to secure that the differ-
entral equation
F(z, w, w)=0,

of degree m, shall have no parametric branch-points, are :(—
(A) The equation must have the form
wlm+ ,\plw/m—1 + ‘l’zw’m—g + ...+ ‘P\m — O’

where Yr; (for t=1, ..., m) is an algebraical polynomial in w of
degree not higher than 2, the coefficvents of the various. powers of w
being uniform functions of z ;

(B) If A denote the dz'scﬁminant of F, and 1f w=mn be a root
of A (z, w) =0 which leaves all the roots of

F(z,n,w)=0

* Berl. Sitzungsber., (1884), p. 707.
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distinct from one another, no condition need be vmposed ; but if it

be a root of the discriminant-equation which makes one or more

roots of
' F(z,n,w)=0

multiple, then n must be a solution of the original differential

equation, so that we must have w'’ =%Z— Jor those multiple roots.
(C) If the root w' = %,—Z = & of the equation
F(z,m,w)=0
s of multiplicity a, then w = n must be a root of
F(z,w,{)=0
of multiplicity equal to, or greater than, a — 1.
In the course of the establishment of the theorem, it has been
proved '

(i) that w’ cannot become infinite for finite values of w
when z has a parametric value, though it may be so
when 2z has a particular value (or any one of a number of
particular values) determined by the equation itself :

(i) that, if wW =1, then C%Z- cannot become infinite when
W =0 if z has a parametric value, though it may be so
when z has a particular value (or any one of a number of
particular values) determined by the equation itself:

(iii) that the values of w and w’, determined by

oF

ow = O

constitute a solution (singular, or particular, or both
singular and particular) of the equation.

F=0,

Ex. The conditions, that the critical points of the equation
dw\? dw
e () =+ x0) (20 22+ 02)
should be fixed, are satisfied : so that the only parametric points, which are

exceptional for the integral, are poles.

Let a be a pole of the integral of order n, so that w can be expressed in
the form

0 .
7”=(?_—(1)1»P(z‘“)’
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where P is a regular function in the vicinity of z=a and P (0)=1. When
substitution takes place, a is a pole of order 2n+ 2 on the left-hand side ; for

Awd it is of order 3n ; for 2auw %5 , it is of order 2n+1 ; and for other terms,
it is of order less than 2n+2. Hence
2n+2=3n;

and equating coefficients of the terms of highest order in (z —a)~%, we have

N2 nE =065,
that is, we have

A
W = Z—;-a—)élj(z—-a).

(
Plz—a)=14+2u(z—a);

so that the integral of the equation is a rational function of z.

As a matter of fact,

122. The equation
F(z,w,w)=0
is rational and integral of degree m in w’; and it has been proved
to be rational and integral of degree not greater than 2m in w, in
order that the desired property may be possessed: the coefficients
of the powers of w’ being of limited degrees in w. The variable z
is of a parametric character when the equation is regarded as
an algebraical relation between w and w'.

It thus is natural to associate with the equation a Riemann
surface having m sheets. The branch-points of the surface are
the places

, d
w=mx, = ’d—z P
. oF . .
given by #F =0, e 0; and the surface is such that if, at any
place w=n, @' = z—z , there are a sheets which branch there, then

we associate with that branch-place a root w of

dn
F(Z, w, *&2) = O,
which is of multiplicity at least a—1. Let 2p+1 denote the
connectivity * of the Riemann surface, so that p denotes the class
(or genus) of the surface and also the class (or genus) of the
equation.

* Th. Fns., § 178.
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Thus far, the only limitation upon the explicit occurrence of z
in the equation

F(z, w,w)=0

is that the coefficients of the various algebraical combinations of w
and w’ are uniform functions of z; and the branch-points of the
equation are fixed points, being roots of such functions as g, in the
expansions in § 120.

If these uniform functions are transcendental functions of z,
then the number of roots of g, may be unlimited; and so the
integral of the equation could have an unlimited number of

branch-points, all of them fixed.

If all the uniform functions are rational functions of z, so that,
in effect, F'(z, w, w') =0 is algebraical in %/, in w, and in 2, then
the number of branch-points is limited; and all of them are
determined by the equation itself, being fixed points.

123. Proceeding now to the various cases that can arise, we
begin with the simplest, viz. when the genus of the equation is zero,
so that p = 0. Then it is known* that both the quantities which
are regarded as variables in the equation can be expressed
rationally as functions of a new variable ¢, say

_a®) L _h®
5 T h®

where ¢,, ¢;, ¢, are algebraical integral polynomials of degree
not higher than 2m in ¢; in the present case, their coefficients are
functions of 2. Hence

w

0, 0,
Q€~¢0¢2—¢0§;+¢1$
dz o, 0, ’
T h -

where the right-hand side is a rational function of # The
branch-points of the original equation are to be fixed points;
they manifestly can arise only through branch-points of ¢, for w is
uniform in z and is rational in ¢; therefore the branch-points

* Salmon, Higher Plane Curves, § 44.
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of t are fixed points and consequently (§ 112) the equation for ¢
must have the form

g—t——A + 4.t + At

where A,, 4,, A, are uniform functicns of 2.

There thus arises no substantially new class of equations of
genus zero; they all are rational transformations of Riccati’s
equation. When given, they can be transformed to Riccati’s
equation.

124. Next, consider equations of genus unity, so that p=1.
It is known* that both the quantities, which are regarded as
variables in the equation, can be expressed rationally as uniform
doubly-periodic functions of a single argument ; or, restricting the
expression of the variables to algebraical functions, they can be
expressed in the form

_ht B bty R

¢o+"l"oR%, ¢0+1]r0R§
where ¢,, ¢,, ¢, are rational integral functions of ¢ of degree
k< im, ¥ry, Yr, Y, are rational integral functions of ¢ of degree
h<¥m, such that h+k=m—2, and R is a quartic polynomial
in ¢t: the coefficients in every case being functions of z.

When the two equations are combined, we obtain, after

substituting for w’ in the derivative of w, an equation for at

dz
which, when rationalised, is of the second order. As the quantity
w is not to have parametric branch-points, it is clear that ¢ may
not have parametric branch-points; hence, by the condition (A) of

§ 121, the equation for % must be of the form

(dt) —on X o,

where +Jr, and +r, are polynomials of degrees not higher than two
and four respectively, the coefficients being functions of 2.

* Clebsch, Crelle, t. Lxiv (1865), pp. 210—270; Cayley, Coll. Math. Papers,
vol. vizi, pp. 181—187, where such equations are called bicursal.
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. dit
Solving for 720 Ve have
ds A+ AR}
%=A0+A1t+ 282+ ARE,

where 4,, 4;, 4,, A are functions of z: and AR, =+r2—1, is a
quartic polynomial in ¢.

Further, the condition (B) of § 121 must be satisfied. The

discriminant-equation is R=0; any root of this equation must

satisfy the differential equation. Now the value of % is
iven by '
8 oR dt N oR o

ot dz ' 0z

for the particular root of R : and also, for this root, by

dt
75 = Ao+ Ast + At

Hence we have

§E+(A + A+ A, tz) at 0,

satisfied by any root of R =0, so that the left-hand side vanishes
for each root of R =0, that is, when B =0: and it is of degree
in ¢ greater than R. It must therefore contain R as a factor, and
consequently

@+(A + At + 4, t2) o —(B + Bit) R,

where B, and B, may be functions of z: the quantity B must
satisfy this equation. Also R is of degree 4 in ¢; and since a
factor A? is associated with R in the expression for yr?— r,, we
may assume that, in R, the coefficient of #* is unity, say

R=(t—-o)(t—B)(¢~v)(t—2).

In the expressions for w and w’ in terms of ¢, the general
character and the particular conditions are conserved when ¢ is
subjected to a homographic substitution

au +b
cu+d

t=

>
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where a, b, ¢, d are functions of z such that

: ad —bc=1.
It therefore is to be expected that the corresponding equations,
determining « and the associated quartic expression, will be of the
same general form as those for ¢&. To verify this, we have

du dt
T =(u+dy
= A, (cu+d)y+ A, (cu+ d) (au +b) + A, (au + b + N R,

where R=@w—do)(u—pB)u—yv)u—"7),
a_aa'+b B‘_aB'+b
T ed +d’ TR 4dT
and A=\ {(a —ca)(a —cB) (a — cy) (a — cd)}E;
that is, ‘;ITZ =4, + A_l’u + A/ wr+MRE
Similarly, we find
881: + (4, + A/ u+ A uw?) 8815 =(B/ + Bl’u) R,

so that the equations are covariantive for homographic trans-
formation. ,

We can select a normal form by taking an appropriate
homographic substitution. As the quantities a, b, ¢, d are at
our disposal, subject to the condition ad —bc=1, choose them so
that / =0, 8'=1, ¢y =—1; then

R=u(—1)(u—7),
where &, if variable, is the only function of z in R’. It follows
that the system can always be transformed so that the quartic

polynomial in the radical, which occurs in the expression for ;l—;,
can be made to occur in the form

R=R(@)=t(—1)(t—29),
where & may be a function of z. Substituting in

' aﬁ +(4,+ At +A2t2)a£= B+ Bit) R,
0z ot
which must be satisfied identically, we have

b1 =)D 1 (A, + Ayt + 4,908 = (By+ Bt R.
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Now make ¢t =—1, 0, 1 in succession, each of which causes R and

the coefficient of g—j to vanish : hence for these three values

(A, + At + Azt?)%%E

must vanish. Moreover cannot vanish for = —1, 0, 1; for in

$ b
the respective cases, the factor ¢+ 1, ¢, or ¢ — 1 would be a repeated
factor of R, and the genus of the original equation would then be
»=0,not p=1.

Consequently, 4,+ A,¢ + A,t* vanishes for the three values of
t, and therefore 4,=0, 4,=0, A4,=0; thus

8(1— )% = (B,+ Bit) B,

which is to be satisfied identically. It gives

ds
=B+ Bit)(t-9),

which can be satisfied identically, only if

j—i:O, By,=0, B,=0,

that is, & is a constant and does not depend on 2.

We now have

dt
T =\R},

that is,
R3dt =Adz =du,

say, where w is a function of z. Hence, after quadratures, we can
express ¢ as a uniform doubly-periodic function of wx + 4, where u is
a function of z; the critical points of ¢ are those of u, where fl—’; = A,
that is, they are fixed points. ‘

Hence, when the genus of the equation F = 0 is unity and the
other conditions of § 121 are satisfied, its integral can be obtained
by algebraical transformations and a quadrature.

125. When the genus p of the equation

F(z,w,w)=0
19—2
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is greater than unity, and the integral of the equation is required
to have all .its critical points fixed, then the integral can be
obtained by algebraical processes, and it occurs in the form
w= A4 (2),

where A is algebraical in the functions of z that are coefficients of
w and w’ in F, and A4 also involves initially assigned values of w
and «’. This theorem was first enunciated* by Poincaré, having
been obtained by considerations associated mainly with the theory
of automorphic functions: but the general result, as distinguished
from details and from the actual derivation of the integral, can
be established more simply by a proof due to Picard+, based upon
considerations associated with the theory of birational trans-
formation of Riemann surfaces.

Let « denote an arbitrary initial value of z, and let y denote a
corresponding arbitrary initial value of w; then the values of w’
(denoted, say, by ¥'), which can be taken as initial values, satisfy
the equation

F(z y,y)=0

of precisely the same form as the given equation. Manifestly
when this is regarded as an algebraical relation between z, y, v/,
any two of the three quantities can be considered as independent ;
so that, regarding the equation as one between y and ¥/, involving
a parameter x, we have the genus of the equation equal to p.
Moreover, the values of %’ are different from one another unless
y is such as to make the discriminant of ¥ vanish, that is, unless
only a limited number of values of y be excluded.

Now let the independent variable pass from z to z by any
path not passing through any of the fixed critical points: there
- are supposed to be no parametric critical points, so that the path
is not otherwise restricted. Taking z, v, ¥’ as a set of initial values
and proceeding along the path, we obtain at the end definite final
values 2, w, w’'; also, because there are no parametric critical
points, the path can, without changing these final values, be
deformed in the plane, provided only it is not made to pass over
any of the fixed critical points. Thus the final values w and w’
depend upon the extremities of the path, upon the initial values

* Acta Math. t. viz (1885), pp. 1—32: this memoir should be consulted also

with reference to § 124.
+ Cours d’Analyse, t. 111, pp. 62, 81—87.
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y and ¥/, and only to a limited definite extent upon the path;
in other words, w and %’ can be expressed in terms of y and ¥/, as
well as of 2z and «, in the form :
= 9(2 2, ¥, ?/,>}
w=G0G(zuz1yvy)’

where the functions g and G are uniform functions of y and ¥’
(For the purposes of the verification of the equation, we should
have G =0g/0z; but it is not necessary to introduce this relation at
the present stage of the argument.)

The quantities y and 7y’ are parametric and not special
numerical values. Hence the path can be reversed, the argu-
ment applied with z, w, w’ as initial values, and equally general
deformations of the path are possible; hence y and ¥ can be
expressed in terms of w and w’, as well as of z and @, in the

form

y= h(z z, w, w)

y = H (2, z, w, fw’)} ’
where the functions 2 and H are uniform functions of w and
w’.  Combining these results, it follows that there exists a
bi-uniform transformation between the set of variables w, w” and
the set of variables v, ¥’. Further, the equation # (2, w, w)=0 is
rational in w and w’; and the equation ¥ (z, ¥, ¥') =0 is rational
in y and 5. Hence the bi-uniform transformations are rational in
the variables that are transformed: in other words, there exists
a birational transformation which transforms the equation F =0
into itself.

Such a birational transformation is, in general, not unique.
It is known that, when p = 0, birational transformations exist
involving three arbitrary parameters: and, when p = 1, birational
transformations exist involving one arbitrary parameter. But
when p >1 (the case which at present is under consideration),
the number of birational transformations is known to be limited.

Some of the limited number of birational! transformations,
which exist when p > 1, can be deduced from the properties of
integrals of the first kind belonging to the associated Riemann
surface. Let such an integral, appertaining to the equation

F(z, w, w)=0,
be denoted by
1, (z, w, w)dw;
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there are p such integrals in all, and they can be represented by
giving to m the values 1, 2, ..., p. When the variables are
transformed by the birational transformations that are known to
exist, the subject of integration becomes a function of ¥ and ¥’;
and as the integral is everywhere finite on the surface, it is still
an integral of the first kind, and therefore* is expressible as a
linear combination of the p mnormal integrals of the first kind
appertaining to the equation

F(x, vy, y)=0.
J1. (2, w, w)dw =34, fI.(x, v, y)dy,

the moduli of the congruences being the periods of the integrals,
and the coefficients 4, independent of w, w’, ¥, ¥, being possibly
functions of z, # and constants; and therefore

I (2, w, ) dw =24 L (2, y, y) dy,

a differential relation which subsists in virtue of the birational
transformation.

Hence

The same argument applies to each of the p normal integrals
of the first kind; and therefore taking any other of them, say
[ I, (2, w, w) dw, we deduce

L, (2, w, w)dw =SA,.I. (% vy, v) dy,

another differential relation subsisting in virtue of the (same)
birational transformation. As these two relations are consistent
with one another, it follows that the birational transformation is
implied in the deduced equation

Im (Z, w, ’&0’) - zAmx Ix (.Z‘, Y, 3//)
L,(z, w,w) Zdpl @y, y)

To determine it more explicitly, we should in the first instance
take an equation of this kind with (parametric) coefficients 4,
the quantities 7 being normal integrals of the first kind; and
then the coefficients 4 must be obtained in connection with the
fundamental equations

F(z,w,w)=0, F(z,vy,vy)=0.

Even without this more explicit determination, the general char-
acter of the new relation is known: it is an algebraical relation

* Th. Fns., § 234.
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between w, w’ and the initial parametric quantities y, y': that
is, the integral of the equation

F(z,w,w)=0,

when it is of genus greater than unity and it has all its critical
points fixed, is algebraical. ’

It is manifest that, in order to secure the existence of the
birational transformation deduced through integrals of the first
kind, limitations upon the forms of the functions I, must be
satisfied ; these in turn will impose limitations upon the form
of the equation F =0, which must be satisfied in order that the
assumed hypothesis as to the critical points may be justified.
Moreover, in constructing the equation of transformation, the
original equation F'=0 has been regarded merely as an alge-
braical equation between w and w’: that the results obtained
may constitute a solution of the differential equation, the further

relation
, dw

w = ==
dz

between the quantities given by the birational transformation
must be satisfied; when this is the case, the equations represent
an algebraical integral.

126. Summarising the results, we have the following addition
to Fuchs’s theorem, made by Poincaré :

When Fuchs’s conditions that the critical points of the differ-
ential equation

: F(z,w,w)=0
should be fived points and not parametric are satisfied, then, when
the genus of the equation (regarded as algebraical tn w and w’) is
zero, 1t can be transformed to Riccati's equation ; when the genus s
unity, it 1s integrable by transformation and a quadrature; when
the genus s greater than unity, the integral of the equation <s
algebrazcal.

The appropriate reduction, when p =0, is given by the
customary unicursal expressions for w and «’. The reduction
to the quadratable form, when p =1, is derivable from the
corresponding expressions for w and w'. When p>1 and the
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conditions of § 121 are satisfied, several of these are useful in the
actual construction of the integrals of the first order; the further
analysis for the derivation of the algebraical integral is then
within an algebraic range. Moreover, by the birational trans-
formation in the last case, the surface associated with the
equation
Fz,w. w)=0

is transformed into itself. But such a surface has 3p — 8 moduli
@if p >1), which are invariable through such a transformation ;
hence as the moduli, which might involve # alone for the first form
and z alone for the second form, are unaltered, they must be pure
constants—a result due to Poincaré.

BinoMmiAL EqQuaTioNs wiTH FixeED CRITICAL POINTS.

127, As a special class, consider binomial equations* of the
form
w'™ = R(w, 2),
where R is an algebraical polynomial of degree not greater than
2m, in accordance with condition (A) of § 121.

Let w =% be a root of R (w, z)=0, which is the discriminant-
equation; then it makes the m roots w’ equal to one another and
zero in value. If w =49 is not a branch-point for the values of w/,
no condition attaches to n (B, §121): in order that this may be
the case, the index of w— in R must be an integer multiple
of m, that is, 1t must be either 2m or m. If w = % is a branch-
point for sets of values of w/, then (B, § 121) 7 is a solution of the

(ZZ_Z’ = 0, and therefore 7 is a constant, say a. As

regards the index of w — a in R, let it be n; and suppose that s is
the greatest common measure of m and n. Then the point w =«

equation ; hence

ives s cycles, each of ™ members w’ branchin there; and in the
g Y S g

expression of these members, each cycle is given by an equation of

the form
m n

w's = (w—a)® P(w—a),
where P is a regular function such that P (0) is not zero.

* Wallenberg, Schlom. Zeitschr., t. xxxv (1890), pp. 193 et seq.
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Hence (C, § 121)

>——1

2

n m
S 8

that is,
nzim-—s.

Now whether factors of R be of the form w—a (where a is

constant) or of the form w — 5 (where 7 is variable), we have
2m > 3n
>3 (m — s).

Moreover, for the Riemann surface connected with the equation
involving w’ and w as variables, the ramification Q is given* by

Q=Es<%z—1)

=3 (m —s),
so that
Q <2 2m.

But if p be the class (or genus) of the surface,
Q=2m+2(p—1);

hence p=0or p=1.

When p =0, the equation becomes a Riccati equation: when
p =1, the integral can be obtained by quadratures: in each case,
it may be, after algebraical transformations. Thus the integration
of every binomial differential equation, all the critical points of
which are fixed points, can be made to depend upon the integration
of a Riccati equation or can be effected by quadratures.

128. We proceed to obtain all the irreducible binomial equa-
tions which have all their critical points fixed.

Denote by w — 5 a factor of R such that » may be a function
of 2. Then R (w, z) may contain either

(1) a single power (w — n)*: or
(i1) two single powers (w — 7)™ (w — n,)™: or
(iii) a single power (w — n)™: or
(iv) no factor of the form w — n;

and in addition, it can contaln a factor A, where A is a function

of z.
* Th, Fns., § 178.




298 BINOMIAL EQUATIONS WITH [128.

(i) The first two of these cases can be dealt with at once.

In the first, we have
‘ w'™ =N (w — n)*,
so that, if A = u™, we have
w' = p(w—1),

a special form of Riccati’s equation.

(i1) Similarly, the second is

w' ™ =N (w — 7)™ (w — )™,
which is reducible to
W' = (w =) (W= 1),

another form of Riccati’s equation.

(ii1) As regards the third form, if R (w, z), which can be (but

need not be) of degree 2m in w, contains no factors other than A
and (w — 7)™, the equation is

W= (w —n)";
this is reducible to

w=p(w=—n),

and can be  integrated by quadratures. Accordingly, for the
further discussion of the case when R (w, 2z) contains a factor
(w—n)", it will be assumed that it contains* factors of the
form w — a. V

When R(w, z) contains a single factor (w—n)™, let the
equation be
w'™ =\ (w—n)" P (w),
where P (w) is a product of factors of the form w — a, and in w is of
degree not higher than m. Let such a factor be (w — a,)™; and let
s, be the greatest common measure of m and n,, so that (C, § 121)

Ny =M — S1.

Hence
m = Enl
>2 (m —s1);
and therefore
2(i-2)<
m

* It hardly needs to be remarked that the quantity » may be a constant in any
particular instance ; the most general case is that in which % is a function of the
independent variable z.
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s s
221 and therefore 1 —= > 3.
m m

\Y

Now as s is a factor of m,

Consequently, in the preceding summation, there can be only two
terms or only one term, corresponding to two different factors
w—a or to one such factor.

‘When there are two terms in the summation, then

8
.__=%.

) . .
for each of them, that is, 771% =1, and so n, = 1m, since s, is the

greatest common measure of n, and m. The equation is
W =n (W — )" (W — @) (W — @)t
which is reducible to
w2 = p(w—n) (w—a) (W= a).
When there is only one term in the summation, then (C, § 121)
Ny =M — 8y,

where s, is the greatest common measure of m and n,. The
specified property must be possessed also for infinite values of w;
so that writing wW =1, we have

(= 1)y W/m=n (1 — W) (1 — ay Wym Wm—m,

Hence as s, is still the greatest common measure of m and m —n,,
we have (C, § 121)

m—n, =m—S.
From the former case,

m—mn, <8y,
so that
S =Z2m—38
and therefore
§ = im.

But s is a factor of m. Were it equal to m, the equation

would be
w'™ =N (w— )" (w— a)™,

a special form of an equation already considered (ii). Hence

and the equation is

w'™ =\ (w — )" (w— )",
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the reduced form of which is

w?2=p(w—n)(w—a,).

(iv) Now, suppose that R (w, z) contains no factor of the
type w — 7, so that all its factors which involve w are of the type
w — a; let the equation be

wm=A(w—a)" (W — a)™ ... (w— az)™,
where
mtn+ ... +n5< 2m,

on account of the degree of R in w. If s; denote the greatest
common measure of m and n;, then (C, § 121)

ng; =M — 8,

which secures the property for the values w=a;. To secure
the property for infinite values of w, we similarly must have

0>m—s,

where 6 = 2m — (n, + 7y + ... + ng), and s is the greatest common
measure of 8 and m.

From the former conditions, we have

h- (m —8)<E Sn; € 2m,

2(1—;%)<2.

There are various cases, according to the number of distinct
factors in R (w).

and therefore

The integer s; is m, or §m, or im, ..., according to the value
of n;, of which it is a factor. Unless one (or more than one) of the
values of s; be m, then

<4,

31

so that

S
1—%25.

5(1-2)<x

there cannot be more than four terms in the summation.

consequently as
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If one of the quantities s; be m, so that n; = m, then for the
remaining factors
s (1 - S)<1:
m

that is, there cannot then be more than two other factors.
If two quantities s; be m, there are no other factors.

The last two cases are special instances of the more general
forms already dealt with; the first, therefore, supplies a new
result.

129. First, suppose that there is only one distinct factor, say
(w — a)”, so that
wm =N (w— a)

If m and »n have any common factor s, the equation is reducible to

one of degree % and of the same form: hence we can take s= 1.

Then
nzm—1l=m—1+gq,

say. To take account of infinite values, write w W =1 and then
(=Wyr=xA —aW)r Wan—n,
and in order to secure the required property, we have

2m —n>m — 1,
that is,
m+1l—qg=>2m-—1,
and therefore
q<2.

When ¢ = 0, we have the equation
wm=n(w—a)"
When ¢ =1, the equation reduces to the form w’ = u (w — a), which
already has been considered.

When ¢ = 2, we have the equation
wm™=nA(w— a)™,
Thus there are two new forms when R (w) contains a single factor.
Secondly, suppose that there are two distinct factors, so that

wm=n(w— a)™ (W — ax)"™,
where
2m — 1y —n,=60>=>0;
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and assume that m, n;, n, have no common factor: the equation
would otherwise be reducible to another, for which this condition
is satisfied. Let s, be the greatest common factor of m and n,,
s, that of m and n,, so that s and s, are prime to one another:
and let s be that of m and 6, when 6 >0. Then (C, § 121)

ny, =Mm — 8,

Ng 2= M — Sy,

8>=m—s,
so that

2m = 3m — 8 — 8, — Su,
and therefore
m< s+ 8 + 8.

s
m

Q| =

Now s, when it occurs, s;, and s,, are factors of m. Let

2

>

s 1 s 1
=", 2=": so that
n gy m Ty

1 1 1
12—+ —+—.
o o 0oy
Let 8§ =0; then
Ny + Ny = 2m,
so that either both integers are equal to m, in which case the
equation is reducible to
w'=p(w—a)(w—>),
a special instance of a form already retained : or, one of the integers
n, being greater than m, say m + v, the other is m — . Since s,
divides n, and m, it divides y and therefore also 7,; the equation

can be reduced to
m 1 n Ny

W' =A% (w — al)s_2 (w — a,2)§;.
Now 2 and ™ have no common factor, so that (C,§121)
Sa 2

My M
Z2>——1;

Sy S
and n, = m — v, so that
n, m
Sq | Sy
Hence
Ng M
LCRRLL AN, I
Sa Sg
and therefore
ny  m
—==+1
S Sy
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Thus the equation reduces to
W= p(w— a) (w — a),
where ¢ is an integer.

Let 0 >0; then
1 1 1

1= 4=+ .
o o, 0,
We manifestly can leave on one side the case when n, or n, is
m ; for we then have a special instance of the equation containing
a factor (w —#)™: that is, we do not take o, =1 or o, =1.
The inequality is satisfied if o =1, that is, s = m, so that § =2m
or @0=m. If =2m, the equation is
W™=,
which is reducible to
w' = pu.
If 0 =m, the equation is
wm =N (w— o)™ (W — a,)™,
where now n, +n,=m. Also
Ny =M —8;, MNg=M —S8s.
But s, <€ im, s, < im, so that
Cm=im, m=im;
and therefore, because n, + n, =m, we have
n=%m, n,=4m.
The equation is :
W™ =N (w— )™ (w — a,)}™,
which is reducible to
w'?=p(w—a,) (W — a,).
Hence we now may take o > 1.
Each of the numbers n, and =, is less than m. If not, let n,
(which is not equal to m) be greater than m, say m + ; then

ny, < m,
ny, _m
so that 2=
S Sy
ny, _m
and 2 > —1 ;
Sy 8

therefore Ny == M — S;.
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Also 0 <m,
so that 6 <
S s
and 6 =" _1 ;
s s
therefore O=m—s

Now s< im; so that
2 El

Also ‘ 0 =2m — n, —n,

< Ss.
And s, is a factor of m, so that s, < $m: hence
0 < im,

contradicting the former result. Hence both the indices n,, n, are
less than m: and @ is less than m; so that now, as above,

n1=oh—sl, Ny=m—Ss,, B=m—s,
and we have
m=s,+8+s,
and therefore

LR . T

g g, Ty
The possible solutions are

g, 0y, O'2=2, 3: 6;

2, 4, 4;
3,3, 3;
giving
0,0.=2,6; 2,3; 3,6; 2,4; 4,4; 3, 3.
Now

n1=m(1 ——1—>, n2=m<1 —~j—l—>;
51 T

hence the reduced forms of the equation

W =AW —a,)(w— a)™
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in the respective cases are
W= (w— ) (w— a,)l
W= p(w— )’ (W — )
Wm0 — @ (0= a)|
W' =p(w—a) (w—a) |

W' = (w0 — o) (w — az)’

w3=p(w— a)? (W — az)?
Thirdly, suppose that there are three distinct factors, so that
the equation is -

W= A(w— ay)" (W — )" (w — ay)™,
where
n + 1y + ng <€ 2m.

We may leave on one side the case when one of the integers n
is equal to m, because it has already been discussed in the more
general form where the quantity a is a function of 2.

Moreover, no one of the indices can be greater than m: for if
one of them, say n,, is greater than m, then

Ny + Mg < M.

Now, as 1n other instances,

g Ss
21 — ﬁ > _%.’
and similarly
7.
s > _% .
m

which render n,+ n; <m an impossibility. Accordingly, »,, n,, ns
are, each of them, less than m; and we have
n;=m — S;, (z=1, 2, 3),
where s; is the greatest common measure of m and n;.
Let 2m — 9y — Ny — Ny = 0,

and first, suppose that & is not zero. Then € may not be 2m;
nor can @ = m, for then

m=2(m— &)
~nx(i-3
> $m.

F. II. 20
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Hence, if 0 is not zero, we have
0 =m —s,
where s is the greatest common measure of m and 6. In this case

2m =m — s+ = (m — ),
so that

2=1-9—f—z+2( -5,

Each of the quantities 1 — 7%, 1-— 987'; , is equal to, or greater than, & ;

as there are four of them, each of them is 4, so that

ng = m.
The equation then is

W™ =AW — @GP (W — A ) (w — az)i™,
which reduces to
W =N (w — a,) (W — az) (W — a).
‘When 8 is zero, so that
7 + Ny + ng = 2m,

s(1-2)-2

S.
S >2=1;
m

then

and therefore

that is, with the same notation as in the case of two factors,

we have
1 1 1
—+—+—=1

: : gy, O, O3

The possible solutions are

.01 Oy, O-3=2: 3: 6; 2, 4-‘)45) 3’ 3) 37

ni=m<1—l>,

g3

and

for =1, 2, 3. The reduced forms of the equation
WM =N (w — a)™ (W — ay)™ (W — ag)"
in the respective cases are
W= u(w— ) (w— az)* (W — as)°
w't = p(w— @) (W — a)* (W — az)’r.

W= p(w— ;)P (w— a)? (W — a)?
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Fourthly, let there be four distinet factors in R (w), which is
the greatest number of distinct factors that R (w) can have. The
equation is

W™= (W — )" (W — a)™ (W — az)" (W — a)™.
The preceding analysis, for the instance n; + n, + n; < 2m, can be
applied here: and it is easy to prove that n;=4m, (¢ =1, 2, 3, 4),
so that the reduced equation is
w'?=p(w—a)(w— @2) (w — az)(w — a,).
The equations obtained constitute the aggregate of the binomial
equations, all the critical points of which are fixed.

130. As is remarked by Wallenberg, these equations are not
independent of one another. Thus, taking

W — Qg = ’l_;L s
the equation

w2 = p(w— ar) (w— ay) (W — as) (w — a)
becomes
w2 =, (u—a) (u—oa,) (u—as),
on changing wu, and the constants a. Similarly, for the others.
Accordingly, omitting all such forms as can be derived from others
that are retained, we have the system
w = p(w—m)(w—1n,),

w'® = (W — ) (w — a) (w — az),

W= p(w — a)* (w — @),

W= p(w— ) (w— a)* (w — ay)’,

Wt = p(w— ) (w— a)’ (W — as)?,

W= p(w— @) (W — @) (w — as)’,

W' = (= az) (w — a) (w — a5) (w — a,),
which are independent of one another; all the others can be

deduced by transformation of these forms or by transformation of
special cases of these forms.

The first of these is a Riccati equation.
For the second, let
w—Q; y?
w—a,” p(a—n"

20—2
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where y is the new dependent variable ; the equation for y is

dy o 29’
23—2“—M(“1—77)(“2-77)+?/<;_%_n)_y2:

a Riccati form.
For the third, let
w—a _
w — dy =Y
the equation for ¥ is
(d_y>t J— (a — Q. )t t+1
dZ 1 2 ?/ 5
the integral of which can be obtained by quadrature.

For each of the others, the genus (or class) p is unity: the
integral depends upon algebraical transformation and quadratures,
and as will be seen later (Chap. X), is in each case expressible by
means of uniform doubly-periodic functions.

Ex. Shew that, if z does not explicitly occur in the equation
wrto, w4 day W a,=0,
the only equations which have all their critical points fixed are those of
genus O or 1.

Note. 1If z does not occur explicitly in the original differential
equation, the latter has the form

J(w, w)=0.

Manifestly, when z occurs in the integral, it must occur in the
form z — a, where a is an arbitrary constant; and therefore every
critical point of the integral is parametric. If then the integral
is to have all its critical points fixed, it follows that there are no
critical points : that is, the integral is a uniform function. ‘

The discussion of the necessary conditions and the determina-
tion of the various forms of equations, the integrals of which are
thus limited, will be resumed in the next chapter.

FEz. 1. As an example of an equation for which p>1, consider*®
F=(dew' — w)t— 2804+ b=0.
Forming the discriminant of #" and taking any of its roots—this can be
effected by treating F'= 0, 0F/ow’ = 0 as simultaneous equations—, we find
w=n={(2562)% — 1}1,
giving twelve values in all. Each of these is a solution of the equation.

* Wallenberg, l.c., p. 352.
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The branching, in the immediate vicinity of each of the twelve simultaneous
ay
(,—ig H
genus of the equation is given by 2p+1=12—8+3, so that p=3.

All the Fuchsian conditions, that the critical points should be fixed,
are satisfied. Since the genus is greater than unity, the integral of the
equation is algebraical (§ 125); and it can be derived through a transformation,
that is birational between the variables w, #’ and g, ¥’ in the equations

dow —w)t—2Bwt+b=0, (day —y)—a%'*+b=0.
Y

Such a birational transformation is clearly given by

values of n and is simple; the ramification is 12(2—1)=12, and the

dow' —w=4xy —y, Aw =a ’
the irrational character so far as concerns the (parametric) quantities z, z
not affecting the general character of the transformation. Hence
w=4zw — (dxy’' — y)
=4ty — (4ay' —y)
=4taty — (a5t - D)h.
Let #3y'*—b, which is connected with the initial arbitrary values of the
variables, be denoted by a*; then
w=4z% (a*+b)* — q,
which is the integral. The critical points of the integral are ¢=0, z=c0,
both fixed ; and the integral manifestly is algebraical.
Ex. 2. Shew that each of the equations

(i) w'i—deww +8uw?=0:
. 1
(ii) w’3—éww’2+%w2w'——=0:
2 z z
(iii) Bw'3 ~ (ct+422w) w24 (dew? — 2¢%2) w —22=0:

has all its critical points fixed ; and obtain the integral in each case.
(Wallenberg.)

Note. The memoir by Wallenberg, which has been quoted and from
which the preceding examples are taken, contains a number of interesting
discussions relating to differential equations of the class under consideration
in this chapter. In the same connection, Briot and Bouquet’s 7hdorie des
Jonctions elliptiques, (2nd ed.), Book v, Chap. 1v, may be consulted with
advantage.




CHAPTER X.

EQUuATIONS OF THE FIRST ORDER WITH UNIFORM INTEGRALS,
AND WITH ALGEBRAICAL INTEGRALS ¥,

EqQuaTioNs wiTH UNIFORM INTEGRALS.

131. THE question of determining whether the general solution
of the equation
F(z, w,w)=0
is an algebraic equation or whether the integral is a uniform
function, is one of much greater complexity than the preceding
investigation ; but if the differential equation be free from explicit
occurrence of the independent variable, so that it has the form

F(w, w)=0,
then similar analysis leads to the conditions necessary and
sufficient to secure that the integral function w is a uniform
function of z. The remark in § 130, Note, indicates that the last
question must be largely included in the earlier investigation;
but in spite of some repetition, a full discussion will be given
here, so as not to leave an important lacuna in the theory. It

* For reasons that will appear in the course of the chapter, the theory of
equations of the first order with algebraical integrals is discussed only very slightly.
The methods belong to a range of ideas outside those which it is my chief aim to
expound in this place: moreover, they appear to me not yet to have received that
complete discussion or that sufficiently final form which compels their full admission
into a text-book,

+ Various references are given, in the course of §§ 131—137, to some of the
more important memoirs used in giving an account of the method adopted. Other
authorities, that may be consulted on the subject of differential equations of the
form F (W, w)=0, are Jordan, Cours d’Analyse, t. 111, pp. 122—186 ; Picard, Cours
d’Analyse, t. 11, ch. 1v; Phragmén, Stockh. 6)"’1)., t. xwvizx (1891), pp. 628—668.
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also is desirable to expound the somewhat different and earlier
method, due to Briot and Bouquet.

Let the equation be of the mth degree in %b——:, supposed

irreducible; when arranged in powers of the derivative, it takes
the form

(& + () A+ () frtwy+..=0.

Because w is a uniform function of z, it has, qua function of z, no

branch-points ; and dw has, qua function of z, no branch-points.

dz

Hence infinities of w are infinities of , and wice versa; and

dz

therefore @'—U cannot become infinite for a finite value of w. Tt

dz
follows that the coefficients f;(w), f;(w), ... of the various powers
of the derivative are integral functions of w; they are already
known, by the character of the equation, to be rational.

Moreover, all the general properties possessed by w are pos-

sessed by its reciprocal u = @lu When u is made the dependent

variable, we have

(G- (G () (e ()= o

. .. d PR
as the equation determining u. Now C—zg cannot become infinite

except for infinite values of u, since w is a uniform function of z;

hence the coefficients of powers of %lzif must be rational integral
<

functions of w. This condition can be satisfied only if f;(w) be of
degree in w not higher than 2s.

Hence, denoting le—%: by W and % by U, we have the
theorem :—
I. The differential equation
CEF(W,w)y=Wm4+Wrfi(w)y+Wm2f,(w)+...=0

cannot determine w as a uniform function of z, unless the co-

efficients
fi(w), fi(w), fi(w),...
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are rational integral functions of w of degrees not higher than

2, 4, 6, ... respectively : and when this conditron s satisfied, ¢
is satisfied also for the equation
: 1 1
Um _Un—2f, (E) U (a) . =0,

which determines u, the reciprocal of w.

132. The equation, in the first instance, determines W as a
function of w; and values of w may be ordinary points or may be
branch-points for W, qua function of w. In the vicinity of such
points, it is necessary to secure that w, as depending upon z, shall
be uniform.

First, consider finite values for w: let w =r. For points in
the immediate vicinity of that value, the values of W are not
infinite: they may be

(i) distinct from one another, and no one of them zero at
the point ; or

(i1) distinct from one another, and at least one of them zero
at the point; or

(iil) not distinct from one another, so that w =+ is then a
branch-point of the function.

(1) Let any value T, a constant different from zero, be the
value of W for w=+«. Then in the vicinity we have
d
EZ—’:I‘{1+>\.(w~ry)+,u(’w—'y)2+---},

and therefore

Tdz = o

L+ (w—9)+pu(w—9)P+...
={1+ 2N (w—)+3u (w— )+ ...} dw,
where N, &/, ... are constants. Hence, if z, be the value of z when
w =ry, we have
T'z—z)=w—g+N@wW—9p+u (w—q9P+...,
and the inversion of this equation gives
w—y=I'(z—2)+ P (z —2),
that is, w is then a uniform function of z in the vicinity of z,. No
new condition, attaching to the original equation, arises.
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(i1) Since the values are distinct from one another, and at
least one of them is zero for w =y, we must have
d
T=a(— g {L+b =) to(w—v)+...]

for at least one of the values of W; and n is a positive integer,
as « is not a branch-point.
First, if » be unity, we have

dw
w—r

1+ (w—y)+c(w—v)+...] =ads,
so that
log(w—)+ P(w—r)=az,
the constant of integration being absorbed in P (w —«). This gives
(w — ')’) 6P (w—y) — ewz,
and therefore, inverting the functional relation,

w— oy = 08 Q e),
that is, w is a uniform function in the vicinity of its own value
v, but it can acquire this value only for logarithmically infinite
values of 2. No new condition, attaching to the original equation,
arises. ,
Secondly, if n be 2, so that

Cil—’l:=01,(fw—-ey)2{1+b(/w——ry)+c('w—ry)2+...},

then, proceeding as before, we have
1 . :
—m—blog(w——ry)+R(w—ry)=az.
If b be different from zero, then, as on pp. 315, 316, it can be
proved that w is not uniform in the vicinity of 2= . Hence b
must be zero, so that

1 1

giving w as a uniform function of z in the vicinity of its own
value v; and w can acquire the value & only for algebraically
infinite values of z. The new condition, attaching to the original
equation, will be included in a subsequent case (IIL., § 133).

When n > 2, similar analysis shews that z= o0 is a branch-

point of w; that is, w is not then a uniform function of z. Thus
the only values of n are 1, 2.
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(iii) If w= be a branch-point, then two cases arise according
as W is not, or is, zero: it cannot be infinite, because ¢ is not
infinite.

If W be not zero, we have the value of W in the form

1 2
W=a{l+bw—)P+c(w—y)P+..}
where p is a positive integer. The integral of this equation is of
the form

1 2
W= L+ (w—9)P+ (w—y?+..}=a(z—a),

and this makes w uniform in the vicinity of z = a, only if powers
of w —  with non-integer indices be absent from the last
equation and therefore also from the former. When the frac-
tional powers are absent from the former, the implication is that
w = is really not a branch-point for W, qua function of w, but
only that more than one of its values are equal to a@; then w is a
uniform function of z, and therefore W is a uniform function of w,
and vice versa.

If however W be zero at the branch-point, then its value in
the vicinity takes the form
q+1 g+2
W=a@—m?+b@=n)? +c@—y)? +.
and, as W cannot be infinite for a finite value of w, the fractlon q/p
is positive. It may be less than 1, equal to 1, or greater than 1.
Hence :—

II.  If any finite value v of w be a branch-point of W regarded
as a function of w, then, in order that w may be unzform, all the
values of W affected by the point must be zero for w = ry.

183. If g/p< 1, the integration of the equation leads to a

relation of the form
p—q p-g+1
z—a=a (w-— ry) P 4V (w—ry) P +...
in which all the indices are positive. The inversion of this
relation makes w uniform in the vicinity of z=a, only if p —q
be unity, that is, if the zero of W as a function of w be of degree

1 —%, when the degree is less than unity ; and the value of z is

finite.
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If g/p =1, then we have .

1 =
We=a@=—q)+bw—y) P+c(w—ry) ?+..,

and therefore
2

dw , o 2
ad,z:zv——&{1+a (w—)P+ 0 (w—y)?+ ...},

so that
1 2
az=log(w—q)+a’ (w—q)? + 0" (w—v)?+....

az
Let w —y =v?, Z = ¢?; then this equation becomes

plogZ=plogv+a v+ b" 0% +

that is, Z = vt = 9 P (v);
whence, by inversion, we have a relation of the form
v=2ZQ(Z),
az
so that w—g=e"Q(e?),

shewing that w is uniform for values in the vicinity of w =« : it is

simply-periodic in that vicinity, the period being 2’%:: , and 1t can

acquire the value v only for (logarithmically) infinite values of 2.

If g/p>1, let g=p+mn, where n and p are prime to one
another ; then we have
: % n+1
We=a(w—ry) P+bw—op) 7 +...,
so that

.;.1_& _l_n__l _1—n;2
adz={(w—q) P+b(w—r) 2 4 (w—ry) P +...}dw,
o n—1
or z=a(w—q) P+B(w—vy) P +...
1 1
+8(w—q) ?+elog(w—r)+ P {(w— )P}
Hence w can acquire its value y only for (algebraically) infinite
values of z.
As a first condition for uniformity, the coefficient ¢ must

. . . dz . z
vanish, that is, in the expansion of 22 in powers of (w — )P, there

dw

must be no term involving (w — )™t For let

2=4" w—ry=9?,
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so that
=2Z"{a+ Bv+ ... + 8" + ev” log v + v" P (v)}.
Then, if
v = ul,
we have
w = QuZ) + ewrZ" (log u + log Z),
where @ is a series of integral powers of uZ converging for
sufficiently small values of |uZ|.

Since z is infinitely large for sufficiently small values of
|w —r|, we have Z infinitesimally small. When Z =0, the value
of Z™log Z is zero; but for values of Z that are not zero, the
quantity has an inﬁn1te number of different values of the form

Z™ (Log Z + 2mmr),
and there will then be an infinite number of distinct equations
determining %, one corresponding to each of the values of m.
Hence « (and therefore v, and therefore also w — «y), in that case,
has an -infinite number of distinct branches in the vicinity of
Z=0; then w is not uniform in the vicinity of Z=0. As a first
condition for uniformity, we must therefore have e =0.

We take e=0: then the equation between z and v, where
w—y=2P, is '

z=v"{a+ Bv+yv® + ...},
the inversion of which can give v (and therefore can give w — ) as
a uniform function of z, only if n =1. When n=1, we have w—¢
uniform; and w can obtain its value vy only for algebraically
infinite values of z.

Combining these results, we have the theorem :

III. If for a finite value y of w, which is a branch-point of W,
the equation wn W has a zero for p branches, then, in order that
w may be u,mfo'rm the degree of that zero us of one of the forms

1 —-5 1, and 1+}o; and if it be of the jorm* 1+]_o the term in

(w— )™ must be absent from the expression of (—;—% . powers of
w — 1.

134. Only finite values of w have been considered. For the
consideration of infinite values of w, we pass to the equation in u:

* The case p=1 occurs in (ii), § 182: it now is included in II1.
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and only zero values of u need be taken into account. If w be
uniform, w also is uniform and vice versa ; hence :—

IV. In order that the function w may be uniform when uts
value tends to become infinitely large, the conditions vn II. and III.
must apply to the equation in u for the value w=0.

The branch-points of W, regarded as a function of w, as well as
points where the roots though equal are distinct as in IL., are (in
addition possibly to w=0) the common roots of the equations
of (W, w)

ow
If, then, the conditions in 1I. and IIL. be satisfied for all these

points, and if the conditions in IV. be satisfied for w= 0, that s, for
infinvte values of w, then the integral of the equation

(%”)m + £ (w) <%>m_1 oot S () Tt fo () =0

18 @ uniform function of z.

S(W, w)=0, = 0.

185. The classes of uniform functions of z can be obtained as
follows.

.. .. . dz
The function, inverse to w, is given by the equation —— =W,

dw
and therefore
o [an
=/
Let the Riemann’s surface for the algebraical equation
S (W, w)=0,

regarded as an equation between a dependent variable W and an
independent variable w capable of assuming all values, be con-
structed ; and let its connectivity be 2P +1. Then [W™dw is the
integral of a uniform function of position on the surface; and if
w, be a value at any point, then all other values at that point
differ from w, by integer multiples of
(1) the moduli of the integral at the 2P cross-cuts,
(i1) the moduli of the integral at such other cross-cuts as
may be necessary on account of the expression of the
subject of integration as a function of w.
Hence the argument of w, a uniform function of z, is of the form

z + Zm{), where the coefficients m are integers and the quantities
{) are constant.
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It is known* that uniform functions of z with more than two
linearly independent periods cannot exist; hence there may be
two moduli, or only one modulus, or none. In the last case, as
there are m values of W for one of w, there are m values of z for
one of w; and no value of w provides an essential singularity for
z. Thus #z is an algebraical function of w; and conversely w is
an algebraical function of z which, being uniform, is rational. It
therefore follows that the uniform function of z s either

(1) a doubly-periodic function of z; or

({) o simply-periodic function of z; or

(iil) a rational function of z. _
Furthert, the class of the Riemann’s surface jfor the equation
S (W, w) =0 1s either unity or zero; for in what precedes, the value
of P is not greater than unity, when the limitations as to the
possible number of periods are assigned.

It is now easy to assign the criteria determining the class of
functions to which w belongs, when it is known to be a uniform
function of z satisfying the differential equation.

(1) Let w be a uniform doubly-periodic function. Take any
parallelogram of periods in the finite part of the plane: all values
of z within the parallelogram are finite, and all possible values of
w are acquired within the parallelogram. '

Let « be a finite value of w for a point z=c¢; then, since the
function is uniform, we have

w—g=(z—c)" P(z—c¢),
where m is an integer and P (2 — ¢) does not vanish for z=c¢: and,
by inversion, we also have
1 1
z—o=(w—y)"Q{(w— )}
where @ is finite but does not vanish for w=ry.

Now
dw

T = (=" mP (s — o)+ (2 — ) P’ (s — o)}

1 1
1-= =
=@w—9v) "™Q{w—o"}
where @), does not vanish for w=y«.
* Th. Fns., § 108.
+ This result is due to Hermite, and is stated by him in a letter to Cayley,

Proc. Lond. Math. Soc., t. 1v (1873), pp. 343—345. The limitation of the class to
zero or unity is not, in itself, sufficient to ensure that w is a uniform function of z.
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If m =1, then v is an ordinary point for % .

If m >1, then v is a zero branch-point for W, of index-degree

equal to

1- L.
m

If, in the vicinity of z=10, w be infinitely large of order g, then
z=0> is a zero of u of order g, so that we have

u=(s— )1 Py (s — b);

as in the first of these cases, it follows that

du 1-1 1
Jg = U q P2 (’qu),
where P, does not vanish for u=0.

Hence it follows that if, for finite or for infinite values of w, all
the branch-points for W be zeros and each of them have its degree

less than unity, the index of the degree being of the form 1 —110,

where p is the number of branches of W affected, then the uniform
function w is doubly-periodic.

(ii) Let w be a uniform simply-periodic function, of period e ;
then it is known* that w can be expressed in the form

omzi
w=jf(e)=[f(Z)

Take any stript in the z-plane as for a simply-periodic function,
bounded by lines whose inclination to the axis of real quantity
is 37 +arg. o : in this strip the function acquires all its values.
The variable Z is finite in the strip except at the infinite limits;
at one infinite limit we have z=kiw, where £ is positive and
infinitely great, and then Z=e?*=0, and at the other we can
take z=—Fkiw and then Z=e*=o0; so that Z=0 and Z=wo
at the infinite limits.

Let v be a finite value of w for a finite point z=c¢ and let
2mwet

C=¢ “ : then we have

w—o=f(Z)-f(C)=(Z—-C)g(Z-0),

* Th. Fns., § 113. + Th. Fns., § 111,
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where ¢g(Z — C) does not vanish for Z=C and ¢q is a positive
integer.
When ¢=1, we have
Z-C=w-7)Gw-1),
where G does not vanish for w=r; and then

dw 27m

=5 Z19Z-0)+(Z-0)g(Z-0)]
=H(w—v),

where H does not vanish for w =+ ; the point w=ry is an ordinary

point for d—%ﬁ .

dz
When ¢ > 1, we have , )
Z—0=(w—v1 G {(w—)},
where @ does not vanish for w =+ ; and then

d_w_Q'n'i
dz o

Z(Z-0ylgg(Z - +(Z—C0)g (Z-0))

= (w—r) h{w—y0},

where % does not vanish for w=r+. Such a point is a branch-zero

for ¢ branches of W, and its index-degree is 1 — —1—

If the value of w be infinite for the finite point z=¢, then we

have
u=(Z—-CYg(Z-0).

If ¢ =1, the point is an ordinary point for %; if ¢>1, it is a
branch-zero for g branches of g , and its index-degree 1s 1 — %

When 2=, then Z=0 or Z = o . The value of the function
w for infinite values of z is either finite or infinite.

Let w be a finite quantity «, for infinitely large values of z.
When Z is very small, we have

w—ry =2f(Z),
where ¢ is a positive integer and f does not vanish for Z=0; and

then
1

Z=(w— o) g {(w—vy)},

135.] EQUATIONS OF THE FIRST ORDER 321

where g does not vanish for w=r«. Then

dw 2m

S 2T g g (gf () + 2F (D))
= Z1h (%),

where i does not vanish when Z = 0; and therefore
dw

T, =@ =) Py {(w—)},

or the point w =+ is a branch-zero of ¢ branches of O(ZZ , and its
index-degree is unity.

When Z is very large, we have
1
w-v=7721(z),
where ¢ is a positive integer, and f; is finite and not zero for

Z=ow. As before, it is easy to see that

D w— ) P fw =),

or the point w =+ is a branch-zero of ¢ branches of Ojl , and its
index-degree is unity.

If, however, the value of w be infinite for infinitely large
values of z, then we have

w=Z1£,(Z)
when Z is very small, and

u=27(z)

when Z is very large. As before, the point « =0 is then, in each

case, a branch-zero of ¢ branches of g—z, and its index-degree is

- unity.

Hence if all the branch-points of W are zeros: if, moreover,
one of them has its degree equal to unity, and if all the other
branch-zeros are of index-degree less than unity, the index of the

degree being of the form 1 —;—) , where p is the number of branches

of W affected : then the uniform function w determined by the
equation (W, w)=0 is simply-periodic.
F. 1L 21
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(iii) Let w be a rational function of z; then it can be
expressed in-the form
_ Ji(®)

Je(2)’

where f; and f, are rational integral functions of z.

Finite values of w can arise from values of z in the vicinity of
a zero of f,(2), say z=c, or an infinity of f;(z). For the former,
we have, if ¢ denote the value of 2,
w—ry=(z—c)"F(z—c),
where F does not vanish for z=c¢: and then, inverting the

functional relation,
1

s—c=(w —f/)ﬁP(w— 7,
where m is a positive integer which may be 1 or greater than 1.

Now

d’“’ — (s — oy (mF (2 — 0) + (2 — &) F' (2 — o)},

so that, if m =1, we have

where @ does not vanish when w = ; and, if m > 1, we have

W (w— o) 7 Qu fw =

where @, does not vanish when w=+v. Hence w=r is either an
ordinary point for W: or it is a branch-point at which m branches

vanish, the index-degree of the zero being 1—%.

For an infinity of f; (2), we must have z= o ; and therefore, for
infinitely large values of z, we have

’w—fy=z"\F<%>,

where F' does not vanish when z=o. Proceeding as before, we
have

%—(w 7 A17'{('w 'Y))‘}

where F, does not vanish when w=q. If A=1, w=+ is an
ordinary point, a case which has been considered; if A >1, w=¢
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is a branch-point for W at which A branches vanish, and the

index-degree of the zero is 1 +%.

Infinite values of w can arise from values of z that are
infinitely large—in connection with f; (2)—or from values of z that
are zeros of the denominator. For the former, we have

u=z".'\F<§>,

where A is a positive integer and F does not vanish for z= o0 ; and"

‘then proceeding as before, we have

@ = )\ F(u1)7

so that, if A =1, % =0 is an ordinary point, a case of which account
has already been taken; and if A >1, vu=0 (that is, w=100) 1s a
branch-point for U at which A branches vanish, and the index-

degree of the zero is 1+%’.

Moreover, as w is a rational function, we do not have both
w=r and u=0 for infinite values of z.

It thus appears that, when w is a rational function, there
is only one value of w which, being a branch-point for W, gives
m branches vanishing, and has the index-degree of the zero

equal to 1+ %; all other branch-points of W give zeros that are of

~index-degree less than unity, each being of the form 1— % , where

n is the number of branches that vanish at the point.

186. The following is a summary of the results that have
been obtained :—

I. In order that an irreducible differential equation of the
first order may have a uniform function for its integral, it must be
of the form

dw dw\™1
FW,wy= (520" + (52) " A@ e+ fu ) =0,
where f;(w), fo(w), ..., fm(w) are rational integral functions of
w of degrees not higher than 2, 4, 6, ..., 2m respectively:
21—2
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and this condition as to degree is then satisfied for the
equation

o, 0=r(-40.}

- (e ) (0

II. If any finite value of w be a branch-point of W, when
regarded as a function of w determined by the equation

F(W, w)=0,
then all the affected values of W must be zero for that value of w;
and likewise for the value u =0 in connection with the equation
G (U, u)=0.

ITI. If for a value of w, which is a branch-point of W when
regarded as a function of w, there be a multiple root of
F (W, w)=0 which is zero for n branches, the index-degree for

each of those branches is of one of the forms 1 —%, 1,1 +%; and

likewise for the value u =0 in connection with the equation
G (U, u)=0.
IV. The class of the equation F (W, w)=0, and therefore the

class of the Riemann’s surface associated with the equation, is
either zero or unity.

V. If all the multiple zero-roots of W, for finite values or for
an infinite value of w, be of index-degree less than unity, each of
them being of the form 1 —7—12, then w is a uniform doubly-periodic
function of 2.

VI. If, for some value of w, there be a single set of m multiple
zero-roots of index-degree equal to unity, and if, for finite values
or for an infinite value of w, all the other sets of multiple
zero-roots have their respective index-degrees less than unity and
of the form 1 —%, then w is a uniform singly-periodic function

of z.

VII. If| for some value of w, there be a single set of m multiple

zero-roots the index-degree of which is equal to 1 +q%, and if, for
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other values of w, all the other sets of multiple zero-roots have
their respective index-degrees less than unity and of the form

1-—- 1, then w i1s a rational function of z.
n

In all other cases the equation, supposed irreducible, cannot
have a uniform function of z for its integral. If the equation
have a uniform function of z for its integral, and the preceding
conditions in V., VI. or VIL, be not satisfied, the equation is
reducible*, that is, it can be replaced by rational equations of
lower degree to which the criteria apply.

Note. The preceding method may be considered as essentially due to
Briot and Bouquet.

There is another method of proceeding, which leads to the same result.
It is based upon Hermite’s theorem (§ 135), proved independently ; and its
development will be found in memoirs by Fuchst and Raffy}. A reference
to the memoirs which have been quoted shews that the equation # (W, w)=0,
when it is satisfied by a uniform function of 2z, can be associated with the
theory of unicursal curves and of bicursal curves.

137. The preceding general results will now be applied to the particular
equation

(%) =7

where f is a rational, integral, algebraical function of degree not greater
than 2s.

Let
Sw)=n(w—a) (w—0)"...,

where A, a, b, ... are constants and [, m, ... are integers, and

l+m+...€ 2s.

. 1 du .
The equation in % <=@> and 8

(—1)s (% 8=)\*"'a62"‘l"""“"" (1 —au) (1 -bu)ym...;

* This investigation is based upon two memoirs by Briot and Bouquet, Journ. de
UEe. Polytechnique, t. xx1, Cah. xxxv1 (1856), pp. 184—198, 199-—254; and upon
their Traité des fonctions elliptiques, pp. 341—350, 376—392. A memoir by Cayley,
Proc. Lond. Math. Soc., vol. xvirr (1887), pp. 314—324, may also be consulted.

+ Comptes Rendus, t. xcx (1881), pp. 10683—1065; Sitzungsber. d. Akad. d. Wiss.
2w Berlin, 1884, pp. 709, 710.

T Annales de UEec. Norm., 2me Sér., t. xir (1883), pp. 106—190; ¢b., 3me Sér.,
t. 11-(1885), pp. 99—112.
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dw du .

thus the values of T and 7, are respectively

dw ! m

ZE:?\ (w—a)s(w—2>0)s ...,

du gt ™ _ . 4 m

—E;—-)\u s s 1 —-auw)s(1—0du)s ....
Because the integral of the equation must be uniform, each of the indices
1
2—-——-@—..., é, m,... must be of one of the forms 1—1, 1, or 1+1;
s s s? s » p

and p may be 1, but the point is then not a branch-point. Then the smallest
value of p is 2, and the least index is therefore % ; hence, as

i m _
E+;+...<2,

there cannot be more than jfour distinct (that is, vnon,—rep.ea,ted) factors in
f(w). Hence
(i) if one of the indices g ™, .., be greater than 1, cach of the other

indices must be less than 1, unless it be 2 when all the others
are zero ;

(ii) if one of the indices gl, %, ..., be equal to 1, then either each

of the other indices must be less than 1, or one other is equal
to 1, and then there is no remaining index ;

l
(iii) if each of the indices t 75’, ..., be less than 1, then 2 — - — ——
s’ 8?77 s
may be less than 1, or equal to 1, or greater than 1.

These cases, associated with the possible numbers of factors, will be taken
in order.

I. Let there be a single factor ; the equation is

dw\? :
<d—2z0> =N (w—a)l,

<_ ‘fl_j * o nsu (1 — aw)l,

and therefore

Now :i—, not being 2, is either 1— %, 1, 1+% ; and these forms cover also
the necessary forms of 2 — fi .
. 1
If I=s—1, then one index (for w=a) is equal to 1—~;, and the other

(for v=0) is equal to 1+%: the function w is rational in 2, and z is infinite

only when w=o0 : hence the integral w is a rational integral function of
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If ?!=s+1, the reasoning is similar; and the integral is a rational
meromorphic function -of z.

If I=s, the indices are each equal to unity: the integral is a svmply-
periodic function of z. The equation is reducible.

If 7=2s, the equation is reducible ; the integral is rational.

The equations in the respective cases are

G%y=kﬂw—@“*n"“ ...... TR (A.),
(%u SN (W= @ . e (A,
(%% =\ (W=a).eenenn. ORI (- 8 )X

%2)\ (w—a).......... eersancerseasaens eee (AV),

where (A.) implies that the uniform integral is a rational function of z,
and (S.P.) implies that it is a simply-periodic function ; the letters (D.P.)
will be used to imply that the uniform integral is a doubly-periodic function.

II. Let there be two distinct factors ; then the equation is

d’w 8.__ 8 — 1 —A\m
—oZ'Z)_)\ (w— a)t (w—Dby™.

First, let one of the indices in the expression for C(%) be greater than 1, say é .
It is not necessarily in its lowest terms; when reduced to its lowest terms,
let

Eorsl

s P

Then 7—: must be less than 1; when reduced to its lowest terms, let

m_y_1

S g

which is the necessary form. And 2—% — — —... must be less than 1, and

it must be expressible in the form 1-— 1 : hence

,r
(e )-(-Dmiet
P o T

11,1
l+-==+=,
-

p

and therefore

where p and o are each greater than unity. If r>1, the right-hand side is
manifestly less than the left ; and therefore we must have r=1, p=o; and
the common value of p and o is s. The integral is then a rational function
of z '
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Secondly, let one of the indices in the expression for duw be equal to 1, say

_ dz
!=s. Then % is either 1 or of the form 1 -—é.

If %:—-1, the exponent of » in the expression for %—Z is zero: the

equation is
d
0;:) =N\ (w—a)® (w—b)s,

which is reducible ; it has a simply-periodic function for its integral.

If —=1 1 , the exponent of « in the expression for du is 1 . This must
s - dz o

be of the form 1 —%, so that -

1.1
__+_=
o p

hence, as o and p are each greater than 1, each must be 2. The equation is

dw 8 1
Y = w—ay -y,

which is reducible ; and the integral is a simply-periodic function.

Thirdly, let each of the indices in the expression for dw be less than 1 ; as

dz
l 1 m 1
they are not necessarily in their lowest terms, let —=1- R —é-=1 -5 Then
duw . 1 1
the index of « in the expression for A is I;+ —; because p and o are each
[

greater than 1, this index cannot be greater than 1.

If % + §= 1, the only possible values are p=2, =2 ; the equation is

( ) =\ (w— @) (w— B,
which is reducible ; the integral is a simply-periodic function of .

If p +; be less than 1, then, as it is the index of « in the expression for

%’ it must be of the form 1 —‘—%_ , Where 7 is greater than 1: thus

and then all the indices in the expressions for % and le_l: are less than 1.

Hence for such equations as exist, the integrals will be doubly-periodic
functions.
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In this equation the interchange of p and o gives no essentially new

arrangement. We must have r>1: the solutions for values of greater
than 1 are:—

11

(@) T=2; then ‘—)—i—% %, so that p=3, o=6; p=4, o=4.
1 1 2

() r=3; then ;+;=§, 8o that p=2, 0=6; p=3, ¢=3.

‘ 1,1 3 ’

(¢) 7=4; then ;+;=Z’ so that p=2, o=4.

(d) T=5 gives no solution.

(¢) T=6; then %4_};:%, so that p=2, o

Il
o

And no higher value of r gives solutions.

Hence the whole system of equations, satisfied by a uniform function of z
and having two distinct factors in f(w), is :—

dw
dz

(7?;' =\ (w—a) (W=B) e (8. P)

> =N (w—a) ~L(w—0)**1. .. .....(AL),

(%—Z PoNB(w—a) (@=DB) eroerri(S. P,

<(é?_: 2=)\2 (w_a) (w—=08) ......... (8.P),

<§l1:>6=>\6 (w—a)t (w=bF .......(D.P), (1)
%?)4=7L4l(’w _ a)(‘} (w - b)3 ......... (D- P-), (2)’
c(i;: =2 (—a) (W=D ...... «.(D. P.), (3),
<c%; 3=)\3 (W= (W=B) v (D. P, (4),
( w) =N (w—a)? (w-58B ... (D. P), (5),
T A @-ap @=B) (D P, (O)

III. Let there be three distinct factors : then the equation is

(T2) = (=)t (w—bym (w—oy
and therefore

< d“> =Sy —1—m—n (1 — qar)t (1 — bar)m (1 — cw)
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s 1. . . dw l 1
If one of the indices in the expression for T be greater than 1, say ;_=1 +=,
P
m n . 1 1
then 503 must be of the form 1-=, 1—-=, where ¢ and = are each greater
(o8 T
than 1. ‘
. . . du . 1 1 1 R
The index of % in the expression for FARL then =+ - — =—1, a quantity
o T p
which is necessarily negative, for p is finite ; and the index should either

1 .o i m
be zero or be of a form 1—-=. Hence no one of the indices 2 50 Z: can be
»

greater than 1.

Secondly, let one of the indices in the expression for g—q: be equal to 1, say

s. Then since m+n< s, only one of the indices is unity ; and therefore

»|§ 3

, % are of the form 1 -——1—, 1 —l, where p and o are each greater than 1.
P L .

) dz
negative ; hence the only possible values are p=2=g¢, and they make the
index zero. There is thus one index equal to 1, and the others are less than
1: the integral of the equation is a simply-periodic function of z.

The index of « in the expression for du is then © + -1——1, and it cannot be
p o

dw

be less than 1: then
dz

Thirdly, let all the indices in' the expression for

they are of the forms 1 —l, 1 L
P

1
o’ 1—~=, where p, o, v are greater than 1;
- .

1

and the index of % in the expression for du i 4+ 1+ =—1. Because the
. . p o T

dz

smallest value of p, o,  is 2, this last index is not greater than % ; hence it
must be 1 —%, where, because this quantity is the index of %, u is equal to 1

or to 2. In either case, all the indices are less than 1; and therefore
the integrals of the corresponding equations are doubly-periodic functions
of z.

If ' 1+.1_+1_1;—_1_1,
p o T 2
.1 1 1 3 . . .
so that =+ =+ ==, the only possible solution is
p o T 2

p; o, T=2, 2, 2,
1 1 1 . .
If =4 =+ ==1, the only possible solutions are
p o T
py o, T=2, 3, 6;
2, 4, 4;

3, 3, 3.
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"Hence the whole system of equations, satisfied by a uniform function of z and
having three distinct factors in f (w), is :—

%)LV (w—ayw—>b) (w—2¢) ......... (S.P.),

<%l§ 2=7\2(w—a) (w="0) (W=20) verrereee (D P.), (7),

(%) =2 0= (=0} (0 =0 .....0..(D- P, (®)
O <3 (0= ) 0= B (0 . (D- ), (9,
du\3

<ZZZ =23 (w— )2 (w—b)2 (W—C)? ......... (D.P.), (10).

IV. Let there be four distinct factors ; then the equation is
dw s_.. s —a)t — b\ —e)n —
(72) =A% (w—a) (w—0b)"(w—c)* (w—d)?.

. l . .
Since 5 7—? , %L, jg are each of a form 1— 1, and their sum is not greater than
p

2, it is easy to see that the only possible solution is given by % =5=5=

each index is less than 1, and the integral is a doubly-periodic function.
Hence the single equation, satisfied by a uniform function of z and having
four distinct factors in f(w), is

(%)Lm (w—a) (0=8) (w~0) (w—d)uerreenso(D. P, (11).

Those of the complete system of equations, which have their integrals
either rational functions of z or simply-periodic functions of z are easily
integrated. The remainder, which have uniform doubly-periodic functions
of z for their integrals, are most easily integrated by first determining the
irreducible infinities of the functions and their orders: and then, by using
the properties of doubly-periodic functions, the integral can be constructed.

The irreducible infinities can be determined as follows. In the equation

for d—q: , let the index of » be 1-— }—) ; and let s=0p. Then the equation which

determines » is
du
dz
so that, for very small values of %, we have

8
) =A%’ P~ (1 - au)...,

1
{u‘.1+,;+ } du— andz,

where a is a primitive sth root of unity. Hence

1
aX (z—¢)=pur+...,
and therefore

1
—=u=dA\P —c)P oo
P AP (z—c)P +.
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It thus appears that the accidental singularity of w at z=¢ is of order p ; and,
as there are o distinct values of af, there are o distinct accidental singularities
to be associated with the respective values.

Applying these to the equations which, having doubly-periodic functions
for the integrals, are numbered (1) to (11), we have the following results,
where o is the number of distinct irreducible accidental singularities and p is
the order of each of these singularities :

number of equation @@ 1 @)@ |G |6)] M| @6)] 91011
number of singularities=¢ | 3 | 2 2 1 1 1 1 6 4 3 2

order of singularity =p 2 } 2 (8|38 14|6 2|1 111

All the binomial equations, which have uniform functions of z for their
integrals, have been obtained. The general results, summarised in § 136, can
be applied to other equations ; the application to trinomial equations will be
found in the treatise by Briot and Bouquet (cited p. 325, note).

Note. The binomial equations can be treated otherwise, by forming the

equation
m

l
z—a=[(w—-a) s(w—58) s.... dw ;
but, as indicated at the beginning of § 137, the method in the text is adopted
in order to illustrate the general results of § 136. (See also Note, § 136.)

Ex. 1. Prove that the integral of the équa,tion

3 2
%?—j) —(%?) +4uwd —27ub=0

is a rational function of z ; that the integral of

duw\3 dw\? 2 i
O PR

is a simply-periodic function of z ; and that the integral of

dw\3 dw\2 .
i 6 _4—
(dz) +3<dz +ul-4=0

is a doubly-periodic function of 2.

Find the infinities of each of the functions : and integrate the equations.
(Briot and Bouquet.)

Ez. 2. Shew that, if an irreducible trinomial equation of the form

dw\™ duw\™—1
(&) + (@) Awrmm=o
have a uniform integral, then m may not be greater than 5 ; and that, if m be

4 or 5, the uniform integral is a doubly-periodic function.

Apply this result to the discussion of the equation

dw\® dw\* L4t
<7.E> +(%) ('w2—1)—5—5w2('w2—1)4=0.

(Briot and Bouquet.)
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Ex. 3. Shew that the integral of the equation
“(d—w ® N (w— a)? (w— ) (w0 — e
dz

is a two-valued doubly-periodic function of z. (Schwarz.)

Ez. 4. Shew that, if a function w be determined by a differential equation

dw
F(E;, w>=0,

: . d .
where F is a rational integral algebraical function of w and 7‘;—: , of degree m in

gg—;) , and does not contain z explicitly, then to each value of w there correspond

m series of values of z, the terms in each series differing from one another by

- multiples of periods. Prove further that, if the integral w have only a limited

number of values for each value of z, then it is determined by an algebraical
2mze
relation between w and u, where » may be z, or ¢ @ , or @ (2).

(Briot and Bouquet.)

These results should be compared with the results relative to functions
which possess an algebraical addition-theorem*.

GENERAL CONSIDERATIONS ON HQUATIONS COMPATIBLE WITH
A GIVEN EqQuaTIiONT.

188. After having discussed equations, all the critical points
of which are fixed, we proceed to consider for more general cases
the formal relations between the equation, say

F(w, w, 2)=0,

* Th. Fns., Chap. x1II.

+ In addition to the references given in § 140 dealing with the general theory of
equations having algebraicsl integrals, it is proper to refer to the investigations of
Darboux, Bull. des Sciences, 2me Sér., t. 11 (1878), pp. 60—96, 123—144, 151—200,
and Poincaré, Palermo Rend., t. v (1891), pp. 161—191; also to a series of papers
by Autonne, Journ. de DEc. Polytech., t. xuir (1891), pp. 85—122, t. xvimx (1892),
pp. 47—180, t. xrav (1893), pp. 79183, t. xLv (1894), pp. 1—53, 2me Sér., t. 11
(1897), pp. 51—169, t. 111 (1897), pp. 1—74, and a memoir, dnnales de Lyon, t. 111
(1892), 1°r Fascicule. All of these relate to equations of the first order and the first
degree.

There are also some papers dealing with equations

_Ply, 2)
Y ) (v, )’

having integrals of the form

X (y—ax)™ (y —x)™2 ... (y —x,)™ =constant,
where X, x,, ..., x, are variable; see Korkine, Math. Ann., t. xuvimx (1897), pp.
817—364, and Comptes Rendus, t. cxxiix (1896), pp. 38—40; also Painlevé, Ann. de

Toulouse, t. x (1896), G, Comptes Rendus, t. oxxir (1896), pp. 1319—1322, b.,
t. oxxir (1896), pp. 88—91.
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and any integral; the equation F =0 being rational in «’ and in
w and, for many purposes, limited to be rational in z also.

In order to solve such an equation, or indeed an equation of
any order, some other equation must be obtained which is com-
patible with it but is not a mere algebraical equivalent of it.
When this new equation does not involve w’, so that it is of the
form '

g (w, 2)=0,
it is called an integral of the equation; and if it involve an
arbitrary element, connected with either a parameter or with
initial values of the variables, it will be a general integral of the
equation. When the new equation involves not merely z and w
but also derivatives of w up to any order, it is of the formn
hi(z, w, W', w’, ...)=0.
Now it is possible to deduce from F' =0 all the derivatives of
order higher than the first by the process of successive differentia-
tion ; and each such derivative is uniquely obtained. When the
values of these derivatives have been substituted in % =0, the
latter takes the form '
r(w, w, 2)=0,

which may or may not involve an arbitrary constant. This last
form is accordingly the most general form of equation compatible
with but algebraically independent of ' =0; it manifestly includes
the case of a compatible equation explicitly independent of w’.

The analytical expression of compatibility is easily constructed
as follows. The values of all the successive derivatives of w,
deduced from the one equation in series and from the other
equation in series, must be the same, either identically or in
virtue of =0, r=0; and this will be the case, without added
conditions, solely in virtue of #=0, »r=0 if they exist together.
The two equations F'=0, =0 can be regarded as determining w’
and w in terms of z; when these determined values are substituted,
each of the two (compatible) equations becomes an identity.
Accordingly, we have

BF or ol

s Yo T =0
or or o or
é_'l,l;/ ’LU + aw w + a— 0, ‘
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on differentiating; and therefore, eliminating the quantity w”
which must have a value common to these two relations, we find

or (EF E_i_li'>+8r ,OF BraF_O.
ow 0z o

an equation that is satisfied simultaneously with #' =0, »=0.

“ 5w \aw® w®” 3w T oz 0w

If our object be the determination of the most general relation
that is compatible with # = 0, the preceding equation is manifestly
a partial differential equation of the first order characteristic of
the form of such compatible relation. Moreover, if' we assume
that F =0 is irreducible—an assumption that is justifiable—then
that characteristic equation is not satisfied solely on account of
F =0; that is to say, the partial differential equation determines
the form of the compatible relation. Further, as the singular
solutions (if any) can be discussed separately and have already

or
ow’
vanish concurrently with Z#.

189. The subsidiary syétem of the partial differential equation
is

dw’ —dw —dz
—3F P~ oF O
Wow ™ oz ow  ow

It is easy to see that F'=0 is satisfied in virtue of these equations.
Any other integral of this system will give a compatible equation ;
denoting it by » (w’, w, 2), then

r(w, w, z)=a,
where @ is an arbitrary constant, is an equation compatible with
F=0. The elimination of w’ between F'=0 and r=a leads to a
general integral of the original differential equation.

Let another equation compatible with /=0 be given by
s, w, z2)=c,
where ¢ is an arbitrary constant. Then since the relation
ow ( ,0F OF\ ou ,0F Ou OF
g (™ 92) ~ 00" Bt~ 3% 0w

is satisfied when u = F, when v =17, and when u =s, we have

J(ﬁzgg=a
w, w, 2

=0
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by determinantal elimination from the three equations, it being

assumed that g—g, is not zero. Now J =0 manifestly is not

satisfied in virtue of r =a or of s=c, for the arbitrary constants a
and ¢ occur only on the right-hand sides of these compatible
equations, and do not occur in J =0. Further, the whole investi-
gation is formally the same whether the original irreducible
equation be taken in the form ¥ =0 or in a form F =0, where b
is any arbitrary constant; hence J =0 is not satisfied in virtue of
F =0 for, owing to the identity of analytical form, J=0 would
then be satisfied in virtue of F = b, an impossibility excluded for
reasons similar to those adduced in connection with »=a, s=c.
Hence J =0 is satisfied identically; and therefore between the
three quantities F, 'r,‘ s, regarded as involving three arguments
w’, w, z there exists a functional relation

O, r, s)=0,
the coefficients of which are free from w’, w, z and involve only
the permanent constants in #, », s. For our present purposes,
F =0 is a permanent equation, »=a is an equation compatible
with £'=0, s = ¢ is another such equation: hence

@0, a,c)=0,
¢ (a,c)=0.

It therefore appears that if » =a, s=c be two equations compatible
with # = 0, some functional relation

(a0, 0)=0
exists between the parameters a and ¢, the form of ¢ depending
upon the form of » and s.

say

Conversely, if two compatible equations » =a, s =¢ are known,
such that the functional relation

¢(a/’ C) =

is satisfied, then any arbitrary functional combination, say

U= ,‘P‘ (T’ 8)’
where +r is an arbitrary function at choice, leads to another
compatible equation
=k ,
Since r and s are, each of them, solutions of the homogeneous
linear partial differential equation, which is characteristic of the
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compatible equations, it is at once evident that the foregoing
function also leads to a solution. Also

k= (a, c).

It thus appears that, when one compatible equation has been

obtained in the form r=a, an unlimited number of other com-
patible equations can be deduced from the forms

O, r s)=0]
u=(r,s)

and the question naturally arises as to the s1mplest forms that can

be chosen as forms of reference.

140.. Without entering upon the discussion of the general
question thus suggested, it will be enough to limit the discussion
to one class of equations, viz. those which have algebraical integrals.
And here it is necessary to take account of the fact, established by
Abel’s theorem, that a relation among transcendental integrals

may be equivalent to an algebraic relation between the arguments

of the integrals. Thus the equation
<dfw)2 _l—w
dz)  1—2

sin'w —sin~'z=coslq

has an integral

which is transcendental in form; but it also has an integral

w? — 20wz + 22=1 — a3,
which is an analytical equivalent of the transcendental relation.
Also, it is possible that an equation should appear to involve a
parameter in a transcendental form when a transformation can be

made so that a (new) parameter occurs only algebraically: thus
the equation
w =z tan a + ¢ sec o

is effectively included in the equation ,
(w—qzy=c(1+9°),
a being the parameter in the first and ¢ in the second.

As the original differential equation #F =0 is algebraical in w

-and /', it. will be assumed that, whenever a compatible equation

(or the general integral) contains transcendental forms and can be
replaced by an equivalent equation containing algebraical forms,

F. II. 22
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this change is effected; but of course, such a change from
transcendental to algebraical forms is possible only under limiting
conditions as to the mode of occurrence and the character of the
transcendental functions. Without entering upon the discussion
of these conditions—a discussion which involves the significance
of Abel’s theorem in relation to the comparison of transcendental
functions—we assume, as already stated, that the equation adopted
as compatible with F=0 is made algebraical whenever this is
possible ; and we might proceed to the consideration of equations
which have algebraical . integrals. Conditions necessary and
sufficient to secure that the integral of an equation of the first
order shall be a uniform function of the independent variable have
already been obtained: and accordingly such equations will be
regarded as completely discussed. The method appropriate for
that discussion requires a development as yet not effected, before
it can be made suitable for this more general question; and the
range of ideas employed for the development of the corresponding
theory lies outside the scheme of this section of the present work.
Accordingly, we shall deal only with some elements of that theory:
and for the present, shall merely refer to the investigations of
Picard* and Painlevét, based so largely upon the theory of
rational transformation of curves and of surfaces].

Equations with Algebrarcal Integrals.

141. Suppose then that an equation
r(w,w, 2)=a
is compatible with the original equation
F (', w, 2)=0,

taken to be algebraical in w’ and w: and let the function r (w', w, 2)

be designated an integral of #=0. The elimination of w’ between
F =0 and r = a leads to an equation

G (w, 2z, a) =0,

* Cours d’Analyse, t. 11, ch. xi1; . 111, ch. TV,

+ See the memoir cited at the beginning of Chapter 1x: and the Stockholm
Lectures, frequently quoted in preceding chapters. )

T It should be added that the first attempt at effecting relations between
differential equations, of the first order and any degree, and the Riemann theory of
algebraic functions was made by Clebsch, Math. 4dnn., t. vi(1873), pp. 211213,
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which, as it involves an arbitrary parameter «, is the general
solution of #'=0. Owing to this relation between G =0 and /=0,
the elimination of a between

,0G oG
G=0, G1=’U)a—u;+$——o
involves the relation F'=0; and the relation r=a is satisfied in

virtue of these same equations, #'=0, G =0.

Now assume that the function G is integral and rational so
far as concerns w, and that ¥ is integral and rational so far as
concerns w and w; then @, also is integral and rational so far
as concerns w’ and w. By the ordinary theory of elimination, we
have

G=A'F + B'r,
where A’, B’ are functions of w’, w, z, rational in «’ and w; and

therefore
r=AF + BG,

where A, B are functions similar to A4’, B’. Now in virtue of
F=0, G=0, every rational function of w’ and w, and therefore
both 4 and B, can be made polynomials in %' and w, the
coefficients being functions of z that may have a meromorphic
form. To effect the change to this form in any given instance, we
first use # =0 to make 4 and B polynomials in w’ of degree not
so high as F': and then use G =0 to make the coefficients of the

-various powers of «w’ polynomials in w of degree not so high as G.

When this transformation is made, then r is the sum of two
terms, each of which is the product of two polynomials in w and
w'; hence r is itself a polynomial in w and w’. It therefore
follows that, of the general integral of the equation F =0 is
rational in the dependent variable w, F'=0 itself being rational in
w’ and w, then every integral, such as r (W', w, z), compatible with

F=0, can be expressed in a form that is ratronal in w' and w.

Further, iof F=0 and ts general solution are rational also
n z, then r(w', w, 2) also is rational in z. For interchanging
the independent and the dependent variables, the equation

Fw, w, 2)=0
becomes

F(%,w,z):O,
z
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which is rational in z and 2z’; by what has just been proved,
every integral compatible with this equation is rational in z

and 2/, that is,
r (1, , W, z)
z

r(w, w, z)=a,

is rational in 2.

Again, the equation

which is compatible with # =0, is rational in w and % when F
has that character. Moreover by using /' =0, the function
r(w', w, 2)

can be made an integral function of w’; and by repeated substitu-
tion from F'=0, the degree of this integral function in w’ can be
made less than the degree of F'=0: that is, if the differential
equation

Fw,w, 2)=0
be of degree m and have its general solution rational, every
tntegral compatible with F=0 can be expressed as a polynomial
m w of degree €m — 1, the coeffictents of the various powers of
w being rational functions of w.

It is an immediate corollary that the arbitrary constant enters
linearly into the general solution of

dw
EZ_ = ..R (’ll), Z),

where R is rational in w and the equation has a rational integral.

Lastly, since r is rational in «’, as also is ¥, and since
G (w, z, a) is the eliminant of r=a, F'=0, it follows that &, the
general solution, is rational in the parameter a.

142. Next, consider solutions of the equation .defined by
arbitrarily assigned initial values. Let w, be assigned as a value
of w when z=z,; let w, denote one of the m associated values of
the derivative, given by say

Fo=F(w/, w, 2)=0;
and assume that these are not connected with the singular integral

(if any) of the equation. Then when the variable describes a path
from z, to z, not passing through any of the singularities of the
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equation, the function r (wy, w,, 2,) becomes r (w’, w, z) at the end
of the path ; or since r=a, we have

r (W, w, 2) = a=1rw,, W, %)

‘The general solution of the equation is known to have the form

G (w, 2, @) =0,
so that it can be expressed in the form
G {w, z, v (wy, w,, 2,)} =0,
G being rational in w and a, and r being rational in wy : that
is, @ is rational in w,. Now w,” is any one of the m values
satisfying F,=0; hence eliminating w, between G =0, F,=0,
we have an equation
& (w, 2, w,, 2,) =0,
which is rational in w and in w, If F=0 and its general
solution be rational in 2z, then also €k is rational in z and z,.

- Note. One remark may be made in passing. It might be
thought that, if an integral function acquires only a limited
number of values when the variable z describes any paths (whether
round fixed critical points or round parametric critical points), then
the algebraical equation of which it is a root is necessarily rational
in z, when the original differential equation is rational in z. That
this is not the case can be seen from a simple example. The
equation

Tw? = (w+ 1) (v — w)
is rational in w’ and w: its primitive is
w=2ae® + a*e®,

which is rational in w but not in z; and if the parameter a be
determined by the condition that w=w, when z=z,, then €& =0
is the equivalent of

(w+1)—1

(wp+1)F—1
when the latter is freed from radicals. Manifestly €k is rational
in w and w,, and is transcendental in z and z,.

— pf—Z
= e 0’

143. It has been seen that an unlimited number of integral
functions are compatible with the original differential equation :
and it is desirable to determine whether the original differential
equation possesses a general integral in the form of an algebraical
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equation. The following considerations indicate a possible method.
Let r(w', w, z)-and s(w’, w, z) be two integral functions of the
compatible character, say
rw,w, z)=X, s@w,w,2)=1Y,
and denote by
d(X,Y)=0

the relation between X and Y, satisfied in virtue of #’=0. Then

we can regard
r=X, s=Y

as a rational transformation which, when applied to the equation

F(w, w, z) =0,
leads to an algebraical equation
¢ (X, Y)=0.

According to the form of the transformation, there will be a
relation between the genus, say p, of /" and the genus, say p’, of ¢:
in particular, consider as possible the case when the transformation
is birational, so that p and p’ are equal.

Let 1, ..., I, denote the p normal elementary integrals of the
first kind associated with #; and let

QX, V)
=er—aX
oY

be any integral of the first kind associated with ¢. When the
variables are transformed, the integral still remains everywhere
finite on the Riemann surface associated with F, that is, it is an
integral of the first kind ; and therefore it is expressible in the form

ML+ 0T,

where A,, ..., Ap are parametric in this relation. If

Ik:JQk_(g’}_w_)dw, k=1, ..., p),
ow’

we have

o¢p

‘ M dXE 27\.]5[]‘,
oY
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the moduli of the congruence being the periods: and therefore, as
the quantities Ay are parametric,
X, Y A w, w
Q_(‘aib_'? dX =3 ﬂ%——) duw.
oY - ow’

If we conceive the equation F =0 resolved so as to express w’
(irrationally) in terms of w and 2z, and the resulting expression
substituted in » = X, the new equation is a resolved form of the
general primitive. It can be regarded as the integral of

dw —wdz=0;
that is, if ® be an integrating factor, we have

O (dw — w'dz)
as a perfect differential. But we know (§ 139) that any combina-
tion of r and s, that is, X and Y, is an integral compatible with

F=0; and so
QX Y)
o
oY
is an (irrational) function of X and so is a compatible integral.
Hence as dX = 0 concurrently with dw — w'dz = 0, and therefore

also 0x
& Y) v
5% dX =0
oY
concurrently with dw —w'dz=0, it follows that
X, YV)dX
9  dw
oY .
is an integrating factor of the equation. Denote by M the

quantity
¥ A Qi (w, w')

ow'’
so that M is an integrating factor of
dw—w'dz =0,

when w’ is the appropriate function of w and z. Hence
M (dw — w'dz) = perfect differential,
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so that
oM © ,
~ o7 = 8w M)
- '?,U’ a_J_” + M?i\llv— >
ow ow
that 1is,

or' oM ;oM or

o (5 +w %—> =M et

Now, on the hypothesis that the integral is rational, the form
of M is known, save as to the (parametric) coefficients A : that is,
now taking account of the variation of z as well as of w and @/
(which have been considered rather in relation to the general
properties of F'=0 and the associated Riemann surface), when

2 MG (w, W)
k=1  OF
ow
is substituted for M in the differential equation which it satisfies,
the latter must become an identity. The quantities @ are known
in connection with the equation # =0 of genus p; and therefore
the quantities A, functions of 2, must satisfy a number of relations
in order that the equation for M may be identically satisfied.
These relations will impose conditions on the form of # which,
in fact, are the conditions that F =0 should have a rational

integral.

144. Tt is manifest that this is rather a descriptive indication
than a convenient method: any attempt at actual expression of
the conditions would be extremely laborious, even if it could be
completed. No other method, however, seems generally available.

But if it does not promise to be an effective method for the
expression of conditions or the actual construction of the integral,
there is a manifest possibility of developing general properties of '
the equations. With the reference to Painlevé’s investigations-
that already (§ 140) has been made, we shall cease any further
discussion of this portion of the subject, as being outside the range
proposed for this volume.
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