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Chapter 1

Parameter spaces:
constructions and examples

A Parameters and moduli

Before we take up any of the constructions that will occupy us in
this chapter, we want to make a few general remarks about moduli
problems in general.

What is a moduli problem? Typically, it consists of two things. First
of all, we specify a class of objects (which could be schemes, sheaves,
morphisms or combinations of these), together with a notion of what
it means to have a family of these objects over a scheme B. Second, we
choose a (possibly trivial) equivalence relation ~ on the set S(B) of all
such families over each B. We use the rather vague term “object” de-
liberately because the possibilities we have in mind are wide-ranging.
For example, we might take our families to be

1. smooth flat morphisms C— B whose fibers are smooth curves
of genus g, or

2. subschemes C in P” X B, flat over B, whose fibers over B are
curves of fixed genus g and degree d,

and so on. We can loosely consider the elements of S(Spec(C)) as the
objects of our moduli problem and the elements of S(B) over other
basei as families of such objects parameterized by the complex points
of B.

The equivalence relations we will wish to consider will vary consid-
erably even for a fixed class of objects: in the second case cited above,
we might wish to consider two families equivalent if

1More generally, we may considér elements of S(Spec(k)) for any field k as objects
of our moduli problem defined over k.
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1. the two subschemes of P” x B are equal,
2. the two subcurves are projectively equivalent over B, or
3. the two curves are (biregularly) isomorphic over B.

In any case, we buil
of sets by the rulo d a functor F from the category of schemes to that

F(B) = S(B)/ ~

and call F the moduli functor of our moduli problem.
Tll:f ful?d'amental first question to answer in studying a given moduli
gro em is: to wha.t extent is the functor F representable? Recall that
is rep‘resentable in the category of schemes if there is a scheme M

and the functor of points of M. This last is the functor Mory; whose

value on B i
ra M.n is the set Morsc, (B, M) of all morphisms of schemes from

DEFINITION (1.1) If F is representabl,
e by M, then we say tha
scheme M is a fine moduli space for the moduli problem :y ‘ the

ofl?:p[;eselftabﬂlty has a number of happy consequences for the study
I "1'( @ : D—=B is any family in (i.e., any element of) S(B), then
X = qg) isa momMsm from B to M. Intuitively, (closed) points of
M classify tl*e objects of our moduli problem and the map y send.
a (closed) point b of B to the moduli point in M determineg by th:
fiber D, qf D over b. Going the other way, pulling back the identi
map of M 1tse.lf via ¥ constructs a family 1 :T—Mins (M) called thtZ
universal family. The reason for this hame is that, given any morphism

X : B—M defin i i
Yoo ed as above, there is a commutative fiber-product

D T
(1.2) P 1
B—X

moduli theory is to bring information j

about the objects of i
pll;oblepl to bear on the study of families and vice vfzrsa: theodllil;a(::luh
above is a powerful too} for relating these two types of informatio&:lry

A. Parameters and moduli 3

Unfortunately, few natural moduli functors are representable by
schemes: we'll look at the reasons for this failure in the next chap-
ter. One response to this failure is to look for a larger category (e.g.,
algebraic spaces, algebraic stacks, ...) in which F can be represented:
the investigation of this avenue will also be postponed until the next
chapter. Here we wish to glance briefly at a second strategy: to find a
scheme M that captures enough of the information in the functor F
to provide us with a “concise edition” of the dictionary above.

The standard way to do this is to ask only for a natural transfor-
mation of functors ¥ = ¥ from F to Mor(-, M) rather than an iso-
morphism. Then, for each family ¢ : D— B in S(B), we still have a
morphism x = Y(@) : B—M as above. Moreover, these maps are still
natural in that, if @’ : D’ = D xgp B — B’ is the base change by a
map & : B'— B, then X’ = Y(@’) = ¥Y(@) o E. This requirement, how-
ever, is far from determining ‘M. Indeed, given any solution (M, ¥)

#id any morphism 1 : M— M’, we get another solution (M’, 7 o ¥).

For example, we could always take M’ to equal Spec(C) and ¥ (@) to
ﬁé"the unique morphism B— Spec(C) and then our dictionary would
have only blank pages; or, we could take the disjoint union of the
“right” M with any other scheme. We can rule such cases out by re-
quiring that the complex points of M correspond bijectively to the
objects of our moduli problem. This still doesn’t fix the scheme struc-
ture on M. it leaves us the freedom to compose, as above, with a map
i M—M as long as m itself is bijective on complex points. For ex-
ample, we would certainly want the moduli space M of lines through
the origin in €2 to be P! but our requirements so far don’t exclude
the possibility of taking instead the cuspidal rational curve M’ with
equation y2z = x3 in P? which is the image of P! under the map
[a, b]1—[a?b, a3, b3]. This pathology can be eliminated by requir-
ing that M be universal with respect to the existence of the natural
transformation ¥: cf. the first exercise below. When all this holds, we
say that (M, ¥), or more frequently M, is a coarse moduli space for
the functor F. Formally,

DEFINITION (1.3) A scheme M and a natural transformation Y from
the functor F to the functor of points Mor of M are a coarse moduli
space for the functorF if

1) The map ¥spec(c) : F(Spec(C))— M(C) = Mor(Spec(C), M) is a
set bijection.?

2) Given another scheme M’ and a natural transformation ¥y
fromF—-Moray, there is a uniqgue morphism w : M— M’ such that

20r more generally require this with C replaced by any algebraically closed field.
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the associated natural transformation I1 : Mora,—Moray satisfies
Yoy =110 ¥oy.

EXERCISE (1.4) Show that, if one exists, a coarse moduli scheme

(M,Y) for F is determined up to canonical isomorphism by condi-
tion 2) above.

EXERCISE (1.5) Show that the cuspidal curve M’ defined above is not
a coarse moduli space for lines in C2. Show that P! is a fine moduli

space for this moduli problem. What is the universal family of lines
over P1?

EXERCISE (1.6) 1) Show that the j-line M, is a coarse moduli space
for curves of genus 1.

2) Show that a j-function J on a scheme B arises as the j-function
associated to a family of curves of genus 1 only if all the multiplicities
of the zero-divisor of J are divisible by 3, and all multiplicities of
(J —1728) are even. Using this fact, show that M, is not a fine moduli
space for curves of genus 1.

3) Show that the family y2 — x3 - t over the punctured affine line
Al - {0} with coordinate ¢t has constant j, but is not trivial. Use this
fact to give a second proof that M; is not a fine moduli space.

The next exercise gives a very simple example which serves two
purposes. First, it shows that the second condition on a coarse mod-
uli space above doesn’t imply the first. Second, it shows that even a
coarse moduli space may fail to exist for some moduli problems. All
the steps in this exercise are trivial; its point is to give some down-to-
earth content to the rather abstract conditions above and working it
involves principally translating these conditions into English.

EXERCISE (1.7) Consider the moduli problem F posed by “flat fami-
lies of reduced plane curves of degree 2 up to isomorphism”. The set
F(Spec(C)) has two elements: a smooth conic and a pair of distinct
lines.

1) Show (trivially) that there is a natural transformation ¥ from F to
Mor(-, Spec(Q)).

Now fix any pair (X, ¥’) where X is a scheme and ¥’ is a natural
transformation from F to Mor(-, X).

2) Show that, if @ : T—B is any family of smooth conics, then
there is a unique C-valued point 1 : Spec(C)— X of X such that
¥Y'(@) =¥ ().

3) Let @ : T—A! be the family defined by the (affine) equation xy -t
and @' be its restriction to A! — {0}. Use the fact that ¢’ is a family
of smooth conics to show that ¥' (@) = 7o ¥(@).

B. Construction of the Hilbert scheme 5

i i al property in 2)
w that the pair (Spec(C), ¥) has the univers
:i)os\zobut does not satisfy 1). Use Exercise (1.4) to conclude that there
is no coarse moduli space for the functor F.

we conclude by introducing one somewhat'vag'ue Fenmnologlgla;
dichotomy which is nonetheless quite useful in practice. W.e woul
like to distinguish between problems that focus on purely mtr*nsp
data and those that involve, to a greater or lgssgr degree, ext;;nsnc
data. We will reserve the term moduli space prmapally for pro 1 ertns
of the former type and refer to the class1fy1ng spaces for the lat ter
(which until now we've also been calling moduli spaces) as parameter
spaces. In this sense, the space My of smooth curves of gen(lils g 1s;
moduli space while the space Hy gr of subcurves of IP’ of elgree :
and (arithmetic) genus g is a parameter space. The extrinsic e Permend
in the second case is the gz that maps the abstract curve to . d;l;l
the choice of basis of this linear system that fixes t.he emt;e Thg
Of course, this distinction depends heavily onrour.pomt of v;gw.. e;;
space G} classifying the data of a curve plu.s a gy (without the choice (c)e
abasis) might be viewed as either a moduli s.pace.or a parametgr slp'<_1
depending on whether we wish to focus primarily o’n the under ytxﬁlg
curve or on the curve plus the g%. One sign that we re dealing w;‘ a
parameter space is usually that the equivale_nce.rglatlon by whic tlvlvie‘,
quotient the geometric data of the problem is trivial; e.g., fo.r :Mg S
relation is “biregular isomorphism” while f_or Ha gy itis trivial.

Heuristically, parameter spaces are easier to gonstruct and mqre:
likely to be fine moduli spaces because the extrinsic extra structuret:h in
volved tends to rigidify the geometric data they classify. On the o ﬁr
hand, complete parameter spaces can usually only be formed ::tﬂ :ﬂ e
price of allowing the data of the problem .to degenerate rather : g
while complete — even compact — moduli spaces can often’ltl)e1 o;:n !
for fairly nice classes of objects. In the next sgctlons, we tl:)ob at
the Hilbert scheme, a fine parameter space, v.vhlcl! provides the bes
illustration of the parameter space side of this philosophy.

B Construction of the Hilbert scheme

The Hilbert scheme is an answer to the problem of parameterizing
subschemes of a fixed projective space P". In the language_ of Fhe ;f)ir;la-
ceding section, we might initially look for a sgheme 3{ whichis a fine
parameter space for the functor whose “data” for a scheme B co;msts
of all proper, connected, families of subscheme§ of IPT defined over
B. This functor, however, has two drawbacks: First, it's too large to
give us a parameter space of finite type since it al'lows hypersu:vfflgis
of all degrees. Second, it allows families whose fibers vary so y
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that, like the example in Exercise (1.7), it cannot even be coarsely rep-
resented. To solve the first problem, we would like to fix the principal
numerical invariants of the subschemes. We can solve the second by
restricting our attention to flat families which, loosely, means requir-
ing that the fibers vary “continuously”. Both problems can thus be
resolved simultaneously by considering only families with constant
Hilbert polynomial.

Recall that the Hilbert polynomial .of a subscheme X of
P" is a numerical polynomial characterized by the equations
Px(m) = h%(X, Ox(m)) for all sufficiently large m. If X has degree
d and dimension s, then the leading term of Px(m) is dm*/s!: cf. Ex-
ercise (1.13). This shows both that Py captures the main numerical
invariants of X, and that fixing it yields a set of subschemes of rea-
sonable size. Moreover, if a proper connected family X — B of such
subschemes is flat, then the Hilbert polynomials of all fibers of X are
equal, and, if B is reduced, then the converse also holds. Thus, fix-
ing Px also forces the fibers of the families we're considering to vary
nicely.

Intuitively, the Hilbert scheme %, pr Parameterizes subschemes X
of P" with fixed Hilbert polynomial Py equal to P: More formally, it’s
a fine moduli space for the functor Hilbp , whose value on B is the set
of proper flat families

x>—l>|p7x3_""_',|pr

(1.8) X

with X having Hilbert polynomial P. The basic fact about it is:

LLY ]

B

THEOREM (1.9) (GROTHENDIECK [67]) The functor Hilbp, is repre-
sentable by a projective scheme Hp,.

The idea of the proof is essentially very simple. We'll sketch it,
but we’ll only give statements of the two key technical lemmas
whose proofs are both somewhat nontrivial. For more details we refer
you to the recent book of Viehweg {148], Mumford’s notes [120] or
Grothendieck’s original Seminaire Bourbaki talk [67]. First some no-
tation: it'll be convenient to let § = Clxo,...,xr] and to let O, (m)
denote the Hilbert polynomial of P” itself (i.e.,

(1.10) O,(m) = (r :nm) = dim(S,,)

B. Construction of the Hilbert scheme 7

is the number of homogeneous polynomials of degree m in (r + 1_)
variables) and to let Q(m) = O,(m) — P(m). For large m, Q(m) is
then the dimension of the degree m piece I(X)., of the ideal of X

Pr. a s n
in'l‘he subscheme X is determined by its ideal I(X) which in turn is

i i i i large m.
termined by its degree m piece I(X),, for any sufficiently

'(Ii‘;e first lemma asserts that we can choose a single m that has_ this

property uniformly for every subscheme X with Hilbert polynomial P.

here is an my such
LEMMA (1.11) (UNIFORM m LEMMA) For every P, t :
that if m = mo and X is a subscheme of P* with Hilbert polynomial P,

then:

1) I(X)m is generated by global sections and I1(X)|>m is generated
by I(X)m as an S-module.

+2) KX, Ix(m)) = hi(X, Ox(m)) = 0 foralli > 0.

" 3) dim(I(X)m) = Q(m), hO(X, Ox(m)) = P(m) and the restriction
map rxm : Sm— H®(X, Ox(m)) is surjective.

“The key idea of the construction is that the lemma allows u§ to as-
sociate to every subscheme X with Hilbert polynomial P the point [ X]
of the Grassmannian G = G(P(m), O,(m)) determined by 7 m.3More
formally again, if @ : X—B is any family as in (1.8), then from the
sheafification of the restriction maps

(1p)*(Opr (M)) ——— (11p)*(Opr (M)POx) —— 0

we get a second surjective restriction map

(118) & (11p) *(Opr (M)) ——— (718) & (11p) *(Opr (M)ROx) — 0.

OB ®Sm

The middle factor is a locally free sheaf of rank P(m) on B anq tl.lere-
fore yields a map ¥(@) : B—@G. Since these maps are fur.lctonal in B,
we have a natural transformation ¥ to the functor of points of some
subscheme H = Hp, of G.

It remains to identify 7{ and to show it represents the functor
Hilbp , . The key to doing so is provided by the universal subbundle ¥
whose fiber over [X]is I(X) and the multiplication maps

Xk : FQSk— Sk+m.

. . - . b-
30r, equivalently, for those who prefer their Grassmannians to parameterize su
spaces otE:l the ambient space, the point in G = G(Q(m), O, (m)) determined by I(X) .
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LEMMA (1.12) The conditions that rank(xg) < Q(m + k) forallk = 0
define a determinantal subscheme 3{ of G and a morphism y : B—gG
arises by applying the construction above to a family p : X—B
(Le., w = ¥Y()) if and only if factors through this subscheme .

Grothendieck’s theorem follows immediately. By definition, #{ is a
closed subscheme of G (and hence in particular projective). The sec-
ond sentence of the lemma is Jjustanother way of expressing the condi-
tion that the transformation ¥ is an isomorphism of functors between
Hilbp,, and the functor of points of 7{.

A few additional remarks about the lemmas are nonetheless in or-
der. When we feel that no confusion will result, we'll often elide the
words “the Hilbert point of”. Most commonly this allows us to say that
“the variety X lies in” a subscheme of a Hilbert scheme when we mean
that “the Hilbert point [X] of the variety X lies in” this locus. More
generally, we'll use the analogous elision when discussing loci in other
parameter and moduli spaces. In our experience, everyone who works
a lot with such spaces soon acquires this lazy but harmless vice.

For a fixed X, the existence of an my with the properties of the Uni-
form m lemma is a standard consequence of Serre’s FAC theorems
[138]. The same ideas, when applied with somewhat greater care, yield
the uniform bound of the lemma. A natural question is: what is the
minimal value of m, that can be taken for a given P and r? The answer
is that the worst possible behavior is exhibited by the combinatorially
defined subscheme X, defined by the lexicographical ideal. With re-
spect to a choice of an ordered system of homogeneous coordinates
(x0,...,Xy) on P, this is the ideal whose degree m piece is spanned
by the Q(m) monomials that are greatest in the lexicographic order.
This ideal exhibits many forms of extreme behavior. For example, its
Hilbert function h(X, Ox (m)) attains the maximum possible value in
every (and not just in every sufficiently large) degree. For more details,
see [13].

Second, we may also ask what values of k itis necessary to consider

in the second lemma. A priori, it's not even clear that the infinite set

of conditions rank(xy) < Q(m + k) define a scheme. A key step in
the proof of the lemma is to show that the supports of the ideals Ix
generated by the conditions rank(x;) < Q(m + k) for k < K stabilize
for large K. This is done by using the first lemma to show that, if
enough of these equalities hold, then rank(xy) is itself represented
by a polynomial of degree » which can only be Q(m+k). It then follows
by noetherianity that for some possibly larger X the ideals Ix stabilize
and hence that #{ is a scheme. A more careful analysis shows that if m
is at least the my of the first lemma and J is any Q(m)-dimensional
subspace of S, then the dimension of the subspace xi(J®Si) of
Sk+m is at least Q(k + m). Moreover, equality can hold for anyk >0
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if J is actually the degree m piece of the ideal of a variety X
?v'i'tlz ;flil{)ert polyng,mial P, g; HH is actually defined by the equations
rank(x1) < Q(m + 1). For details, see [63).

The next three exercises show that Hilbert schemgs_ of hypersur-
faces and of linear subspaces are exactly the fan.nhar paramet’er
spaces for these objects. For concreteness, the exercises treat special
cases but the arguments generalize in both cases.

i i P" has
RCISE (1.13) 1) Use Riemann-Roch to show that, if X c
:ibe‘:ree d and dimension s, then the leading term of Px(m) is (ﬁ) mS.
2) Fix a subscheme X C P*. Show, by taking cohomology qf the exact -
sequence of X c P7, that X is a hypersurface of degree d if and only

if
r+m-d
PX(m)=(r:nm)—( m-d )

3) Show that X is a linear space of dimension s if and only if
s+m
Px(m) = ( m )

RCISE (1.14) Show that the Hilbert scheme of lines in P3 (that
f:.mthe Hilt:ert :cheme of subschemes of P3 with Hilbert p?lynomial
P(m) = m + 1) is indeed the Grassmannian G = G(1, 3). ’Hmt: Regajl
that G comes equipped with a universal rank 2 subbundle Sg C Og.
The universal line over G is the projectivization of Sg. Conversely,
given any family @ : X— B of lines in P3, we get an analogous sutz-
bundle Sz C OF by Sz = @« (Ox(1))¥ C HO(W,o.,a(l))@q), = 0.
Check, on the one hand, that the projectivization of this inclusion
yields the original family @ : X— B in P3 and, on the other, that the
standard universal property of G realizes this subbundle as the pull-
back of the universal subbundle by a unique morphism x : B—G.
Then apply Exercise (1.4).

EXERCISE (1.15) This exercise checks that the Hilbert schemg of plz?ne
curves of degree d is just the familiar projective space of dimension
N = d(d + 3)/2 whose elements correspond to polynomials f of de-
gree d up to scalars.

1) Show that the incidence correspondence
T = {(f,P)If(P) = 0} c PN x P?

is flat over PVN. o~

i T jecti C—PVis
The plan of attack is clear: to show that the projection :
the universal curve. To this end, let @ : X — B be a flat family of plane
curves over B and 7 be the ideal sheaf of X in P2 x B.
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2) Show that 7 is flat over B. Hint: Apply the fact that a coherent sheaf
J on P” x B is flat over B if and only if, for large m, (1rg)« (F(m)) is
locally free to the twists of the exact sheaf sequence of X in P2 x B.

3) Show that (713) . (7(d)) is a line bundle on B and that the associated
linear system gives a morphism x : B— PN,

4) Show that @ : X—B is the pullback via x of the universal family
 : T—PV. Then use the universal property of projective space to
show that x is the unique map with this property.

We should warn you that these two examples are rather mislead-
ing: in both cases, the Hilbert schemes parameterize only the “in-
tended” subschemes (linear spaces in the first case, and hypersurfaces
in the second). Most Hilbert schemes largely parameterize projective
schemes that you would prefer to avoid. The reason is that, in con-
trast to the conclusions in Exercise (1.13), the Hilbert polynomial of a
“nice” (e.g., smooth, irreducible) subscheme of PT is usually also the
Hilbert polynomial of many nasty (nonreduced, disconnected) sub-
schemes too. The twisted cubics — rational normal curves in P3 that
have Hilbert polynomial Px (m) = 3m+1 — give the simplest example:
a plane cubic plus an isolated point has the same Hilbert polynomial.
We will look, in more detail, at this example and many others in the
next few sections.

A natural question is: what is the relationship between the Hilbert
scheme and the more elementary Chow variety which parameterizes
cycles of fixed degree and dimension in P"? The answer is that they
are generally very different. The most important difference is that the
Hilbert scheme has a natural scheme structure whereas the Chow va-
riety does not. This generally makes the Hilbert scheme more useful.
It is the source of the universal properties on which we'll rely heavily
later in this book and one reflection is that the Hilbert scheme cap-
tures much finer structure. Here is a first example,

EXERCISE (1.16) Let C c P3 be the union of a plane quartic and a
noncoplanar line meeting it at one point. Show that C is not the flat
specialization of a smooth curve of degree 5. What if C is the union
of the quartic and a noncoplanar conic meeting it at two points?

“We should note that several authors have produced scheme structures on the
Chow variety: the most complete treatment is in Sections 1.3-5 of [100] which gives an
overview of alternate approaches. However, the most natural scheme structures don't
represent functors in positive characteristics. This means many aspects of Hilbert
schemes hl‘;le no analogue for Chow schemes, most significantly, the characterization
of the tangent space in Section C and the resulting ability to work infinitesimally on it.
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There are a number of useful variants of the Hilbert scheme whose
existence can be shown by similar arguments.’

DEFINITION (1.17) (Hilbert schemes of subschemes) Given a sub-
scheme Z of P", we can define a closed subscheme HZ, of Hp, pa-
rameterizing subschemes of Z that are closed in P* and have Hilbert

polynomial P.

DEFINITION (1.18) (Hilbert schemes of maps) If X Cc P and. Y C Ps,
there is a Hilbert scheme Hx ya parameterizing polynomial maps
f : X—Y of degree at most d. This variant is most easily coglstructed
as a subscheme of the Hilbert scheme of subschemes of X XY in P" x P*
using the Hilbert points of the graphs of the maps f.

DEFINITION (1.19) (Hilbert schemes of projective bundles) From a P"
bundle P over Z, we can construct a Hilbert scheme 3{p p;z parame-
terizing subschemes of P whose fibers over Z all have Hilbert polyno-

. mial P

DEFINITION (1.20) (Relative Hilbert schemes) Given a projective mor-
phism m : X—Z x P"—Z, we have a relative Hilbert scheme H pa-
rameterizing subschemes of the fibers of m. Explicitly, 3 represents

~ the functor that associates to B the set of subschemes Y C B x P* and

morphisms « : B— Z such that V is flat over B with Hilbert polynomial
Pandy Cc Bxz X.

The following is an application of the fact that Hilbert schemes of
_morphisms exist and are quasiprojective.

EXERCISE (1.21) Show that for any g = 3 there is a number @(g) such
that any smooth curve C of genus g has at most @(g) nonconstant
maps to curves B of genus h = 2.

One warning about these variants is in order: the notion of scheme
“of type X" needs to be handled with caution. For example, look at the
following types of subschemes of P2:

1. Plane curves of degree d;
2. Reduced and irreducible plane curves of degree d;
3. Reduced and irreducible plane curves of degree d and geometric

genus g; and,

Sperhaps, more accurately, in view of our omissions, by citing similar arguments.
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4. Reduced and irreducible plane curves of degree d and geometric
genus g having only nodes as singularities.

The first family is parameterized by the Hilbert scheme # , which we
have seen in the second exercise above is simply a projective space
PV. The second is parameterized by an open subset W; c PN, The last
one also may be interpreted in such a way that it has a fine moduli
space, which is a closed subscheme U, c W,.

The third, however, does not admit a nice quasiprojective moduli
space at all. It is possible to define the notion of a family of curves
with 4 nodes over an arbitrary base — so that, for example, the family
xy - & has no nodes over Spec(C[£]/£2) — but it's harder to make
sense of the notion of geometric genus over nonreduced bases. For
families of nodal curves, we can get around this by using the relation
g+ 6 = (d-1)(d - 2)/2. One way out is to first define the moduli
space V4 to be the reduced subscheme of W; whose support is the
set of reduced and irreducible plane curves of degree d and geometric
genus g, and to then consider only families of such curves with base
B that come equipped with a map B— Va.g. In other words, we could
let the moduli space define the moduli problem rather than the other
way around. Unfortunately, this approach is generally unsatisfactory
because we’'ll almost always want to consider families that don't meet
this condition.

C Tangent space to the Hilbert scheme

Let #{ be the Hilbert scheme parameterizing subschemes of P” with
Hilbert polynomial P. One significant virtue of the fact that 4 repre-
sents a naturally defined functor is that it’s relatively easy to describe
the tangent space to 7{. Before we do this, we want to set up a few
general notions. Recall that the tangent space to any scheme X at a
closed point p is just the set of maps Spec(C[£]/€2)— X centered
at p (that is, mapping the unique closed point 0 of Spec(Cle]/€2)
to p). We will write | for Spec(C[£]/£2). More generally, we let
Ix = Spec(Cl£]/(&**1)) and more generally still

(1.22) 1 = Spec(Cley,..., &)/ (e, ..., )%,

with the convention, already used above, that k and I are suppressed
when they are equal to 1.

If you're unused to this scheme-theoretic formalism, you may won-
der: if a tangent vector to a scheme X corresponds to a morphism
I— X, how do we add them? The answer is that two morphisms | — X
that agree on the subscheme Spec(C) c 1 (ie., both map it to the

] i\':‘& N
Maeo, o
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game point p) give a morphism from the fibered sum of 1 with it-
gelf over Spec(C) to X. But this fibered sum is just )?), and we have
a sort of “diagonal” inclusion A of I in ¥ induced by the map of
rings C[&1,£2]/(£1,£2)2—C[€]/(£?) sending both £, and &; to &; the
composition 7 o A shown in diagram (1.23) is the sum of the tangent

vectors.

We're now ready to unwind these definitions for Hilbert schemes. Most
directly, if #{ is a Hilbert scheme and [X] € H corresponds to the
subscheme X C P7, then by the universal property of { a map from
] to H centered at [X] corresponds to a flat family X—1{ of sub-
schemes of P’ x | whose fiber over 0 € Spec(C[£]/€2) is X. Such a

- family is called a first-order deformation of X. We will look at such
'deformations in more detail in Chapter 3.

" For the time being, however, there is another way to view its tangent
'space that is much more convenient for computations. This approach
is based on the fact that # is naturally a subscheme of the Grassman-
nian G of codimension P(m)-dimensional quotients of Sp,. Recall that
any tangent vector to G at the point [Q] corresponding to the quot'ient
Q of S, by a subspace L of codimension P(m) in Sm can be identified
with a C-linear map @ : L—Sp /L. If $ : L—S,, is any lifting of @,
then the collection {f + & - $(f)} fer(x), Yields the map from I to G
associated to @. Suppose that I. = I(X)m or, in other words, that the
point [Q] is the Hilbert point [X] of a subscheme of P with Hilbert
polynomial P and @ is given by a map I(X)m—(S/I(X)m). Then we
may view the collection {f + & - $(f)} rer(x), as polynomials defining
asubscheme X C [ x P". The universal property of the Hilbert scheme
implies that such a tangent vector to G will lie in the Zariski tangent
space to the subscheme #{ if and only if X is flat over I. .
What does the condition of flatness mean in terms of the linear
map @? This is also easy to describe and verify: X will be flat over
i if and only if the map @ extends to an S-module homomorphism
I(X)1om —(S/1(X))1>m (which we will also denote ). For example,
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if this condition is not satisfied, we claim that the exact sequence of
S®Cle]/e2 modules

00— I(X) — SQ®C[el/e2 — A(X) — O

will fail to be exact after we tensor with the C{£]/£2-module C. Indeed,
given any S-linear dependence 3. o, f; = 0 with o; € S and f; € I(X)
for which 3 o; @ (fi) is not 0, the element 3 &; - (fi + @ (f;)) will
be nonzero in I(X)@Spec(C), but will go to zero in S. The converse
implication is left to the exercises.

The map @ : I(X)12m—(S/I(X))1>m Of S-modules determines a
map 7—0pn /7 of coherent sheaves (still denoted by @) where 7 is
the ideal sheaf of X in P™. By S-linearity, the kernel of such a map
must contain 72. Putting all this together, we see that a tangent vector
to H at [X] corresponds to an element of Hom(7/72, Ox) (where we
write Homg,. (F, G) for the space of sheaf morphisms F— @, that is,
the space of global sections of the sheaf Homy (¥, G)). Note that if
X is smooth, the sheaf Hom(7/72, @) is just the normal bundle Ny;pr
to X. By extension, we’ll call this sheaf the normal sheaf to X when X
is singular (or even nonreduced). With this convention, the upshot is
that the Zariski tangent space to the Hilbert scheme at a point X is the
space of global sections of the normal sheaf of X:

(1.24) TixgH = H(X, Nxpr).

EXERCISE (1.25) Verify that the family X c P” x Spec(C[&]/€?) in-

duced by an S-linear map @ : I(X);om—(S/I(X))1>m is indeed flat as
claimed.

EXERCISE (1.26) Determine the normal bundle to the rational normal
curve C c P" and show, by computing its h9, that the Hilbert scheme
parameterizing such curves is smooth at any point corresponding to
a rational normal curve.

EXERCISE (1.27) Similarly, show that the Hilbert scheme parameteriz-
ing elliptic normal curves is smooth at any point corresponding to an
elliptic normal curve.

Warning. As we remarked in the last section, the Hilbert scheme, by
definition, parameterizes a lot of things you weren’t particularly eager
to have parameterized. The examples that we'll look at in the next sec-
tions will make this point painfully clear. For now, let’s return to the
example of twisted cubics. These form a twelve-dimensional family
parameterized by a component D of the Hilbert scheme #3413 of
curves in P3 with Hilbert polynomial 3m + 1. But 3{ also has a second
irreducible component , whose general member is the union of a
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plane cubic and an isolated point: this component has dimension 15.
A general point of the intersection corresponds to a nodal plane cubic
with an embedded point at the node, and at such a point the dimen-
sion of the Zariski tangent space to H is necessarily larger than 15.
In particular, it’s hard to tell whether the component D ¢ 3 whose
general member is a twisted cubic — the component we’re most likely
to be interested in — is smooth at such a point. That both compo-
nents are, in fact, smooth, has only recently been established by Piene
and Schlessinger [130]. We will return to this point in Chapter 3. The
exercises that follow establish some easier facts which will be needed

then.

EXERCISE (1.28) Verify that the tangent space to H at a general point
[X] of intersection of the two components of 3{ has dimension 16.
Hint: In this example, the minimum degree m that has the proper-
ties needed in the construction of 7{ is 4 and it’s probably easiest to
explicitly calculate the space of C-linear maps @ : I(X)4—(S/I(X))4
that kill 1(X)2.

A theme that will be important in later chapters is the use of the
patural PGL(r + 1)-action on Hilbert schemes of subschemes of P". In
the Hilbert scheme H of twisted cubics, this can be used to consider-
able effect because each component has a single open orbit, namely,
that of the generic element. Hence there are only finitely many orbits.
Since, by construction, the Hilbert scheme is invariant for the natural
PGL(7 + 1)-action on G, its singular loci are also invariant (i.e., unions
of orbits) and can be analyzed completely.

EXERCISE (1.29) 1) Use the Borel-fixed point theorem to show that
every subscheme of P” has a flat specialization that is fixed by the
standard Borel subgroup of upper triangular matrices. Conclude that
every component of a Hilbert scheme H contains a point parameter-
izing a Borel-fixed subscheme.

2) Show that there are exactly three Borel-fixed orbits in
H = H3m1,3:
« a spatial double line in P3 (that is, the scheme C defined by the
square of the ideal of a line in P3 );
« a planar triple line plus an embedded point lying in the same
plane as the line;
« aplanar triple line plus an embedded point not lying in the same
plane as the line.

3) Show also that these orbits lie in D only, in E only andin DN E
respectively. Conclude that 2 has exactly two components.
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4) Show that the tangent space to H at points of each of the three
orbits in 2) is of dimension 12, 15 and 16 respectively and that in each
case the normal sheaf has vanishing h!.

5) Show that the Hilbert scheme 3{ of twisted cubics contains finitely
many PGL(4)-orbits. How many lie in D alone? in F alone? in D n E?

A few remarks about this example are in order. First, the lexi-
cographic ideal of #{ (whose degree m piece consists of the first
dim(Sy,) — P(m) monomials in the lexicographic order) defines a pla-
nar triple line plus a coplanar embedded point. Note that this scheme
isn't a specialization of the twisted cubic and that the minimal mg sat-
isfying the hypotheses of the Uniform m lemma (1.11) for this scheme
is 4. On the other hand, an inspection of the ideals of curves in the list
from 2) of the preceding exercise shows that mg = 3 works for every
orbit in the “good” component of D. In general, the least my that can
be used in the construction will be much greater than the least mp
that works for ideals of smooth (or even reduced) subschemes with
the given Hilbert polynomial.

This annoying discrepancy is unfortunately just about the only way
in which #{ is a typical Hilbert scheme. The existence of any smooth
component of a Hilbert scheme (even those parameterizing complete
intersections) is extremely rare.

EXERCISE (1.30) Generalize the scheme C in the preceding exercise to
a multiple line which is a flat specialization of a rational normal curve
in P” and show that for r > 3 the corresponding Hilbert scheme is
not smooth at [C].

How else is the twisted cubic example misleadingly simple? Com-
ponents of the Hilbert scheme whose general member isn't connected
(let alone irreducible) are in fact the rule rather than the exception.
For example, in the Hilbert scheme #g,, of curves of degree d and
genus g in P7, there will be component(s) T, g'.r Whose general ele-
ment C consists of a curve of geometric genus g’ > g plus g -9
points (so that p,(C) = g and C has the “correct” Hilbert polynomial
P(m) = md - g +1). Worse yet, for large enough d the Hilbert scheme
of zero-dimensional subschemes of P3 of degree d will have, in addi-
tion to the “standard” component whose general member consists of d
distinct points, components whose general member is nonreduced —
though no one knows how many such components the Hilbert scheme
will have, or what their dimensions might be. So, for large d, there will
be component(s)Cq 4 » whose general element C consists of a curve of
geometric genus g’ > g plus a subscheme of dimension 0 and degree
(g’ — g) lying on one of these “exotic” components. As in the twisted
cubic example, such components will often (always?) have dimension
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greater than that of the components that parameterize honest curves
of genus g. .oy

To avoid having to rule out such components repeatedly, it'll be
convenient to make the

DEFINITION (1.31) The restricted Hilbert scheme R is the open sub-
scheme of 31 consisting of those points [ X] such that every component
D of 3 on which [ X] lies has smooth, nondegenerate, irreducible gen-
eral element. In other words, the restricted Hilbert scheme is the com-
plement of those irreducible components of 3 every point of which cor-
responds to a curve that is singular, degenerate or reducible.

What we would really like to do is to take the (closed) union R of all
the components D so as to have a projective scheme but unfortunately
there is no natural scheme structure on D at points where it meets
components outside of R. We can, of course, speak of the restricted
Hilbert variety R by giving this set its reduced structure but then
haps to R will no longer correspond to families of subschemes of P".
‘- One further warning: it's almost never possible to analyze all Borel-
fixed subschemes explicitly. As a result, even when it is possible to list
the components of a Hilbert scheme — restricted or not — it usually
requires considerable effort to verify that no others exist. The dis-
cussion of Mumford’s example in the next section will illustrate this

int.

‘:)One of the very few positive results about the global geometry of

“Hilbert scheme is Hartshorne’s

THEOREM (1.32) (CONNECTEDNESS THEOREM [83]) For any P and r,
the Hilbert scheme Hp, is connected.

Hartshorne’s proof involves first showing that every X specializes
flatly to a union Y of linear subspaces that he calls a fan. In fact,
there is an explicit procedure for translating between the coefficients
of P and the number of subspaces of each dimension in Y. Next,
Hartshorne characterizes those Y whose ideals have maximal Hilbert
function: these are the tight fans for which the i-dimensional sub-
spaces lie in a common (i + 1)-dimensional subspace. He then shows
that all tight fans lie on a common component of #{. Finally, he shows
that, if Y is a fan that isn’t tight, then there is a fan Y’ whose Hilbert
function majorizes that of Y and a sequence of generalizations and
specializations connecting Y and Y’'.

The next exercise uses Hartshorne’s theorem to characterize Hilbert
polynomials of projective schemes; we should point out that this char-
acterization, due to Macaulay [111] (see also, [144]), came first and is
a key element of Hartshorne’s proof.
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EXERCISE (1.33) 1) Calculate the Hilbert polynomial P, , .. n.)(m)
of a generic (reduced) union U7_g(Li1 U - - - U Li,) where each Ly; is

an i-plane in P7.
=Z’: m+i\ (m+i-a
S L\it+1 i+1 )

2) Define

Show that any rational numerical polynomial P(m) — i.e., an element
of Q[m] that takes integer values for integer m — can be expressed
as

Q(ao.an ..... as)

Q(ﬂo.al ..... as) (m)
for unique nonnegative integers a; with a; = 0.

igalt)eﬁne a mapping (ng,ny,...,ny)~(ao,a,...,a;) by requiring

Show that the image of this map is exactly the set of (ap,a,...,a;)
forwhichag 2a; > --- > a,.

4) Use the first step of Hartshorne's proof to deduce Macaulay’s The-
orem [111]: a numerical polynomial is the Hilbert polynomial of a pro-
_!ecuve yariety if and only if the sequence (ag, a4, ... »as) of 2) is non-
increasing.

There is little convincing evidence either for or against the con-
nectedness of the restricted Hilbert variety or its closure R: known
examples have so far provided neither a counterexample nor a plausi-
ble replacement for the class of fans used in Hartshorne’s proof. See,
however, Exercise (1.41) on Ho 103 in Section D.

D Extrinsic pathologies

The difﬁcul!:ies we've discussed above are relatively minor annoy-
ances: We will see much nastier behavior in the examples that follow.
The gist of these examples can be summed in:

LAw (1..34) (h_danmr’s LAW FOR HILBERT SCHEMES) There is no ge-
ometric possibility so horrible that it cannot be found generically on
some component of some Hilbert scheme.

To illustrate the application of this law, and as an example of a
tangent-space-to-the-Hilbert-scheme calculation, we now wish to re-
call Mumford’s famous example [1 18] of a component 7 of the (re-
stricted) Hilbert scheme of space curves that is everywhere nonre-
duced. This example also serves to justify the somewhat technical
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construction of the Hilbert scheme. Most of the work there was de-
voted to producing, not the underlying subvariety of the Grassman-
pian G = G(P(m), S,,), but a natural scheme structure on this sub-
variety. Mumford’s example shows that this scheme structure can be
far from reduced. Moreover, since the general point of 7 is a perfectly
innocent-looking (i.e., smooth, irreducible, reduced, nondegenerate)
curve in P3, it shows that we cannot hope to avoid these complica-
tions simply by restricting ourselves to subschemes of P that are
sufficiently geometrically nice. The point is that the behavior of fam-
flies X of subschemes of P can exhibit many pathologies even when
the individual members X of the family exhibit none. These phenom-
ena are usually caused by constraints imposed by the particular mod-
els of the fibers that the Hilbert scheme in question parameterizes.
In the examples dealing with space curves that follow, this constraint
typically takes the form of a condition that the curve C corresponding

* o .any point on some component of the relevant Hilbert scheme 3
lies on a surface of some small fixed degree. One of the motivations
. for the study of intrinsic moduli space is the possibility of eliminating
- such extrinsic pathologies.

ﬁumford's example

'i‘he curves we want to look at are those lying on smooth cubic sur-
. faces S, having class 4H + 2L where H is the divisor class of a plane
section of S and L that of a line on S. (Recall that, on S, H? = 3, that

H.L = —12 = 1, and that Ks = —H.) We immediately see that the

-degree of such a curve is d = H - (4H + 2L) = 14 and that its arith-
- metic genus is g = %C + (C + Ks) + 1 = 24. We are therefore going to

be working with the Hilbert scheme #4243 or, in practice, with the
restricted Hilbert scheme R)4,24,3.

. Note that the linear series |H + L| is base point free since it's cut
out by quadrics containing a conic curve C C S coplanar with L. Hence
|4H + 2L| is also base point free and its general member is indeed a
smooth curve (even, as we leave you to verify, irreducible). Finally,
the dimension of the family of such curves isn't hard to compute.
On a particular cubic S, the linear system [4H + 2L| has dimension
predicted by Riemann-Roch on S as h®(Os(C)) = %C -(C-Ks) =137.
Since the family of cubic surfaces has dimension 19 and each curve
C of this type lies on a unique cubic (d = 14), the dimension of the
sublocus 73 of #{14,243 cut out by such C’s is 37 + 19 = 56.

The family 73 of curves C that arises in this way is irreducible. This
can be proved in two ways. The first is via the monodromy of the
family of all cubic surfaces in P3. In this approach, one first shows
that the monodromy group of this family is Eg and in particular acts
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transitively on the set of lines on a given S. For details, we refer you
to [77]. The second, more elementary, approach is to construct this
family as a tower of projective bundles imitating the argument for
the irreducibility of the family 7; given preceding Exercise (1.37). We
leave the details to you, as in that exercise.

The key question is: is 7; (open and) dense in a component of the
Hilbert scheme? To answer this, let C now be any curve of degree 14
and genus 24 in P3. We ask first: does C have to lie on a cubic? Now,
the dimension of the vector space of cubics in P3 is 20. On the other
hand, by Riemann-Roch on C, the dimension of H° (C,0c(3)) is

h*(Oc(3)) =d - g + 1+ h (0¢(3)) =19 + h%(Kc(-3)),

and since deg(Kc(-3)) =2G-2—-3D = 4, this last term could very
well be positive. Indeed, it is for the curves C constructed above: for
those, K¢ = Oc(Ks +C) = Oc(C - H) so Kc(-3) = Oc(2L) which has
h° = 1. Thus, dimensional considerations alone don't force C to lie
on a cubic.

Suppose C doesn’t lie on a cubic. We have h%(Op3(4)) = 35, while
h%(0c(4)) = 56 — 24 + 1 = 33, so C must lie on at least a pencil of
quartics. Moreover, an element T of such a pencil must intersect the
other elements in the union of C and a curve D of degree 2. Since Kt
is trivial, (C - C)r = 2(gc ~ 1) = 46. From the linear equivalence of
C + D and 4H, we first obtain C - D =C:(4H - C) = 56 — 46 = 10,
then D? = (4H - C)? = 64 — 112 + 46 = -2, and finally gp = 0.
This is only possible if C is a plane conic. To count the dimension of
the family of such curves, then, we reverse this analysis, starting with
a conic D, which moves with 8 degrees of freedom. The projective
space A of quartics containing D has dimension 25. An open subset
of the 48-dimensional Grassmannian G (1, 25) of pencils in A will have
base locus the union of D and a curve C not lying on any cubic. The
dimension of the family 7, of all such C is thus 56. Since the loci 7; and
J4 have the same dimension, we deduce that a general curve of class
4H + 2L on a smooth cubic surface is not the specialization of a curve
not lying on a cubic. This assertion together with the irreducibility of
Js imply that J; is dense in a component of the Hilbert scheme.

We return to the examination of a curve C ~ 4H + 2L in 73 lying on
a smooth cubic S. It’s easy to calculate the dimension of the space of
sections of the normal bundle of C: the standard sequence

O*Nc/s—"NC/pa —*Ns/p3®0C—>0
reads
0—+Kc(1) +»N—0¢(3)—0,
and since K¢ (1) is nonspecial, it follows that:

hO(N) = h%(K¢ (1)) + h%(0¢(3))
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=37+20
=57.

Thus the Hilbert scheme is singular at C, and, since C is generic in 73,
en nonreduced. .

ev What is going on here? It's not hard to see where the extra dimen-

;’lon of h?(N) is coming from: if h®(O¢(3)) really is 20 for curves near

C, then, at least infinitesimally, deformations of C don’t have to lie on

‘cubics. Naively, you might expect that near C the locus in the Hilbert

scheme of curves C, lying on cubics was the divisor m the Hi'lbert
scheme given by the determinant of the 20 x 20 matrix assocnatefi
to the restriction map HO(P3, ©(3))— H?(C,0(2)); thl;ls the local di-
mension of # near C should be 57. Of course, it doesn't turn out this
way, but this analysis is nonetheless correct to first order. There do,

- in fact, exist first-order deformations of C that don't lie on any cubic,
.. and these account for the extra dimension in the tangent space to .

'you've seen some deformation theory before you may attempt:

EXERCISE (1.35) Make the analysis above precise. What does it mean

to say that a first-order deformation of C doesn't lie on a cubic? Find

- such a deformation.

Deformation theory is discussed in Chapter 3. Until then, even if
you're unfamiliar with the subject, you should be able to understand

+-our occasional references to deformations by viewing them as a_tlge-
* braic analogues of perturbations which themselves are parameterized
_b'y various schemes.

We've shown above that there is a unique component J; of R whose
general member doesn't lie on a cubic surface. Are there ot'her com-
ponents besides 73 whose general member does lie on a cubic surf_ace
S? The answer is yes: there is exactly one other. Suppose that C is a
curve in R lying on a smooth cubic surface §. The key observation
is that C must lie on a sextic surface T not containing $: we ha!ve
ho(P3,0(6)) = 84, while h®(C,0(6)) = 61 and the space of sextics
containing S has vector space dimension 20. We can thus descnpe c
as residual to a curve B or degree 4 in the intersection of_S with a
sextic.5 (Note that the curves in Mumford’s example are 1:es1dua1 toa
disjoint union of two conics in such a complete intersectlon.?

What does B look like? First off, we can tell its arithmetic genus
from the liaison formula?: if two curves C and D, of degrees d and e

5Similar dimension counting shows that the generic C lies on no surface of degree
less than 6 not containing S.
To see this formula, use adjunction on § to write

20-2=(Kg+C)-C=((m-4)H+C)-C=(m-4)d+C?
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and genera g and h respectively, to, i
: , together comprise a complete j .
section of surfaces S and T of degrees m and n, then plete inter

m+n-4)e-aq)
5 .

In the present case, this says that B has arithmetic -
§elf-mtersecﬁon 0 on §; in particular B is reducible., g()e:: sp(()ssllznillln .
is that B consists of two disjoint conics; in this case the two conjg
must be residual to the same line in plane sections of S and we get the
Mu:pford component. Otherwise, B must contain a line. For example
B might consist of the disjoint union of a line L and a twisted cubig E:
and, 'ur-nlesg B has a multiple line, any other configuration must be a
specialization of this. In this case, the class of C in the Neron-Severi
group of NS(S) will not equal 4H + 2L. Since NS(S) is discrete, th
classl of Cinit m'ust be constant on any component of R. We there'for:
lc:;::rxnc'l gcale that B's of this type give rise to component(s) of R distinct

To see that just one component 7; arises in this way. it’s si
use a ligison-theoretic approach.8 V&?e will simply list t)lll't:ts:es:sn ?;:3:1::
the .venﬁ‘cationS as an exercise. First, the set of all pairs (L E’) is irre-
d.umbl.e since the locus of E's and L’s are PGL(4)-orbits in th,eir respec-
tive Hllb'ert schemes. Second, over a dense open set in this base pth
set of triples (S, L,E) such that S is a cubic surface containing L' u).?
forms a projective bundle, hence is again irreducible. Third, over
depse set 9f these triples, the set of quadruples, (T, S, L, F) s1;ch thaat‘
tll"ulasﬁz ::’:)tfl'ca ssurfacg containing L U E but not S is a dense open set in

econd projecti i
ORto 3 dene eeond gf :;ée:ctlve bundle. Finally, these quadruples map

(1.36) h-g-=

EXERCISE (1.37) Verify the i i i
graph. y four assertions in the preceding para-

It remains to deal with the case when B has a multiple line. If B has

a multiple line L, then it must have the form i i
mesting 1 ome | 2L + D, where D is a conic

gxnn?sn (1._38) Let C be a curve in R4 43 that lies on the intersec-
on of a cubic surface S and a sextic surface T. Suppose, further that

S ETE B e 82 T Tl i bt e cauaion
- e anC-D=(m+n-4)d - (29 -2
symmetry, C - D = _ _ — h g —~ 2). By
immediate. (m +n ~4)e ~ (2h - 2), from which the formula as stated is
8
The same result can also be obtained by showing that the monodromy group Eg of

the family of smooth cubij it i
o paily of ic surfaces acts transitively on the 432 pairs (F, L) as above
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C is residual in this intersection to a quartic B of the form 2L + D
with L a line and D a conic meeting L once. Show that L + D is the
specialization of a twisted cubic disjoint from L and hence that C is
a specialization of the generic element of J;.

A few additional remarks about this third component are in order.
The first is that calculations like those carried out for 73 show that
the dimension of J; is again 56 and that for general [C] in J3, O¢(3)
is nonspecial. We therefore conclude that this component of R is at
Jeast generically reduced.

The analysis above shows that R)4,243 has three 56-dimensional
components: the generic elements of 73 and 7; lie on smooth cubic
surfaces, and any curve C not lying on any cubic surface is param-
eterized by a point of 74. In principle, there might exist other com-
ponents 73 of Ry4,243 whose general elements lie only on a singular
cubic surface.

EXERCISE (1.39) Complete the analysis of R14,4,3 by showing that, in
fact, no such J3 exists.

Here are a few more exercises dealing with ideas that arise in Mum-
ford’s example.

EXERCISE (1.40) Make up your own examples of components of the
Hilbert scheme of space curves that are everywhere nonreduced.

. Hartshorne feels that, in some sense, “most” components of the

Hilbert scheme are of this type. Do you agree?

EXERCISE (1.41) 1) Use an analysis like that above to show that the re-
stricted Hilbert scheme Rg 10,3 of space curves of degree 9 and genus
10 has exactly two components 7. and 73.

2) Show further that the general element of 7; is a curve of type (3, 6)
on a quadric surface while the general element of 73 is the complete
“intersection of two cubic surfaces, and that both components have
dimension 36.

3) Let C be any smooth curve. Show that if the Hilbert point [C] of
C lies in 73, then K- = &¢(2) and hence C is not trigonal while if
[C] € 7>, then K¢ + ©¢(2) and hence C is trigonal.

4) Conclude that any curve in the intersection of these components
is necessarily singular. Find such a curve.

In particular, this last exercise shows that the locus of smooth
curves in a Hilbert scheme can form a disconnected subvariety, and
shows that there are, in general, limits to how nice we can make the el-
ements of a restricted Hilbert scheme before it becomes disconnected.




24 1. Parameter spaces: constructions and examples

Other examples

Exercise (1.39) might tempt you to suppose that if every curve on a
component of R lies on a hypersurface S of degree d then, for general
C, we can choose S to be smooth. This, heuristically, should not be
true since it would violate Murphy’s Law of Hilbert Schemes (1.34). We
would like to exhibit next an explicit counterexample.

Our example uses double lines in P3. A double line supported on
the reduced line with equations z = w = 0 is a scheme X whose ideal
has the form :

Ix = (2%, zw,w?, F(x,y)z + G(x,y)w)

where F and G are homogeneous of degree m.If F and G have no com-
mon zeros, then X has degree 2 and arithmetic genus ps(X) = ~m. If
T is a smooth surface of degree (m +1) and Lisa line lying on T, then
the class 2L on T will define a double line of arithmetic genus —m.

In our example, we want to take m = 2 so X is twice the class of a
line L on a smooth cubic. Such an X lies on many quartic surfaces S.
Indeed, the general such S will have equation

f=oax(Fz+Gw) - By(Fz + Gw)+h

with h € (z,w)? and & and B suitable constants. A short calculation
shows that this S has a double point at the point (8, @, 0, 0). Geometri-
cally, X is a ribbon: i.e., aline L with a second-order thickening along a
normal direction at each point. Because these normal directions wind
twice around L, X cannot lie on any smooth surface of degree greater
than 3.

Let C be the curve residual to X in a complete intersection S N T,
where T is a surface of degree n. Then C has degree 4n — 2 and the
liaison formula (1.36) shows that its genus is 2n2 - 2n — 2. Now a
theorem of Halphen [71] asserts that whenever the degree d and genus
g of a smooth space curve satisfy g > (d? + 5d + 10) /10, then the
curve lies on a quartic surface. A little arithmetic shows that our C
(and hence any flat deformation of it) satisfy these hypotheses for
all n > 7. Thus, any deformation C’ of our C still lies on a quartic
surface S’.

We next claim that: such a C’ remains residual to a double line in aq
complete intersection of S’ with a surface T’ of degree n not containing
§’. By the argument above, S’ must also be singular, and we conclude
that for n > 7, the generic curve in the component of #, ~2,2n2-2n,3
containing C lies on a quartic but that this quartic is always singular.

To see the claim, first note that K¢ = Oc' (n)(-X) and hence, since
X meets C’ positively, that Oc (n) is nonspecial. By Riemann-Roch,
h%(C’,0c (n)) = n(4an - 2)-(2n?2-2n-2)+1 = 2n3 + 3. The
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dimension of the space of surfaces of degree n in P? containing C' is

thus at least
n+3 2 oy _ (-1 1.
( 3 )—(Zn 3)—( 3 )+

Since the binomial coefficient on the right is the (,liansiog of the
space of degree n surfaces containing the quartic ', C, continues to
lie in the complete intersection of S’ and a sm_-face T of‘ .deglzee n,.
Reversing the liaison formula, the curve X’ residual to C’' in ' N T

again has degree 2 and genus (—2). Since the curve X has no embed-
ded points and is a specialization of X’, X’ can have no, embedded
points itself. This next exercise asks you to show t_hat X’ must then
be a double line and completes the proof of the claim above.

EXERCISE (1.42) Check that the only X’ with no embedded points,

“>'degree 2 and genus (-2) is a double line.
" we will cite only one more pathological example. But to really grasp

the force of Murphy’s Law, we suggest that you make up fon.' yourself
examples of curves exhibiting other bizarre forms of l?ehavmr.
Modulo a number of verifications left to the exercises, v»te'll con-
struct a smooth, reduced and irreducible curve C lying m‘the mt.ersec-
tion of two components of the Hilbert scheme — so that, in particular,

: its deformation space (as a subscheme of P7) is reducible. To do this,
*]et S be a cone over a rational normal curve in Pl JetLy,...,.Ly2CS

be lines on S, let T c P” be a general hypersurface of- degree m con-
taining L;,...,Ly—» and let C be the residual intersection of T mtl? .,S'
Assuming m is sufficiently large, C will then be a smooth curve (it'll
pass once through the vertex of S). ' .

Such a C is a Castelnuovo curve, that is, a curve of maximum
genus among irreducible and nondegenerate curves of its degree
mr-1)-(r-2)=(m-1)(r-1)+1 in P". Now, Ce‘astelnuovo
theory [21] tells us that a Castelnuovo curve of that degree in P" l_nust
lie on a rational normal scroll X on which it must have class either
mH — (r — 2)F or (m — 1)H + F. On the singular scroll S, H ~ (r —1)F
and these coincide, but in general they are distinct; it fol.lows (at least
as long as r > 4) that there are two components of the Hilbert scheme
of curves of the given degree and genus whose general members are
Castelnuovo curves.

EXERCISE (1.43) 1) Show that the curve C discussed above can be de-
formed to a curve on a smooth scroll having either of the classes
mH - (r — 2)F or (m — 1)H + F and hence that [C] lies on both com-
ponents of the Hilbert scheme of Castelnuovo curves.
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2) Find the dimension of the component of the Hilbert scheme param-
eterizing curves of each type and the dimension of their intersection.

3) Find the dimension of the Zariski tangent space to the Hilbert
scheme at the point [C].

E Dimension of the Hilbert scheme

W_e will be returning to the Hilbert scheme later on in the book, and
will do more with it then. We should mention here, though, some of
itll::: p;i:hapalhopen questions with regard to 7{. With an eye to our
ended applications, in the remainder of this chaj !
with Hilbert schemes of curves. prer we'l deal only
The first issue is dimension. To begin with, the description of the
tangent space to the Hilbert scheme of curves in P” at a point [C] as
thg space of global sections of the normal bundle to C givesus an a
priori guess as to its dimension: we may naively expect that

dim H = h%(C,N¢) = x(Nc¢).
This number is readily calculated from the sequence

0—Tc—Tp3s@®Oc—Nc—0.
We see that the degree of the normal bundle is

deg(Nc) = (r+1)d +2g - 2:
and then by Riemann-Roch we have

X(Nc) =deg(Nc) - (r-1)(g - 1)
=(r+1)d-(r-3)(g-1).

This number we’ll call the Hilbert number hagy.

Of course, neither of the equalities above necessarily holds al-
Ways — nor even, unfortunately, that often. Even worse, the naive
inequalities associated to these estimates (dim(#) < h%(N¢) and

h%(Nc¢) = x(Nc)) g0 in opposite directions. It is nonetheless the case
that the dimension inequality

(1.44) dim(H) 2 hy g, := (r+1)d-(r-3)(g-1)

always holds at points of 4 parameterizing smooth curves, or more
generally curves that are locally complete intersections. This follows
from a less elementary fact of deformation theory, which we will dis-
cuss in Chapter 3. We can also see it from an alternate derivation of
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the Hilbert number based on a study of tangent spaces to W} 's. This
topic belongs to the theory of special linear series which we’ll take up
in Chapter 5. For now, we recall from [7, IV.4.2.i] that, in any family
of line bundles of degree d on curves of genus g, the locus of those
line bundles having r + 1 or more sections has codimension at most
(r +1)(g —d + ) = g — p in the neighborhood of a line bundle with
exactly 7 + 1 sections.? Applying this to the family of all line bundles
of degree d on all curves of genus g, we conclude that the family of
linear series of degree d and dimension 7 on curves of genus g has
Jocal dimension at least (3g—3) +g — (r +1)(g — d +7)10 everywhere.
since such a linear series determines a map of a curve to P up to the
(r2 + 2r)-dimensional family PGL(r + 1) of automorphisms of P7, we
may conclude that

o

dim(#)24g-3-r+1)(g-d+7r)+7r?+2r
. =(r+1)d-(r-3)(g-1).

4-80 the dimension of #{ is at least the Hilbert number. By way of termi-
*"nology, we’ll call a component of  general if its dimension is equal to
' tiie’ Hilbert number, and exceptional if its dimension is strictly greater.
- Note one aspect of the Hilbert number: when r = 3, hg g3 = 4d is in-
: jlépendent of the genus, while for r > 4 it decreases with g.
" {"There is another approach to this estimate which is worth mention-
. {ng since in some cases it yields additional local information. Assume
‘for the moment that C is smooth, nondegenerate and irreducible and
"‘that O¢(1) is nonspecial. Then r < d — g. (We don’t necessarily have
equality since we aren’t assuming that C is linearly normal in P7.) We
_-can count parameters: the curve C depends on 3g — 3 and the line bun-
“dle £ € Pic4(C) determined by O¢(1) on g. Moreover, close to our ini-
tial choices we continue to have the inequality h%(C,0¢(1)) s d-g+1.
" Hence the choice of the linear subsystem of H°(C, L) of dimension
(r + 1) determines a point in a Grassmannian G(7,d — g) whose di-
mension is (r + 1)(d — g + r). Finally, we must add (2 + 2r) pa-
rameters coming from the PGL(r + 1)-orbit of each linear system. The
total is exactly h, 4. Note that this argument actually proves that
X(Ncyer) = h°(Ncypr) = dim(Hy 4,) and hence leads to the:

COROLLARY (1.45) If C is a smooth, irreducible, nondegenerate curve
of degree d and genus g in P" with Oc(l) nonspecial, then

SHere p is the Brill-Noether number p=pgra:=9-(r +1)g—-d+7).

10 this sum the first term expresses the moduli of the curve C, the second the
moduli of the line bundle L of degree d and the third the codimension of the set
of pairs (C,L) with at least (r + 1) sections. Note that this postulation also equals
3g-3+p.
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HY(C,Nc/pr) = 0 and

dimc; Higyr =dim TiciHagr
= hd,g,r
=(r+1)d-(r-3)(g-1).

EXERCISE (1.46) Give an alternate proof that the basic estimate
dim(3{) > hy,, for the dimension of Ha,gr holds without the as-
sumption that £ = 0¢(1) is nonspecial as follows:

1) Let C be smooth and irreducible of genus g, let {wy,...,wy} bea
basis of the holomorphic differentials on C and let £ be a line bundle
onC.fD=py+-..-+psisan effective divisor on C with line bundie
Oc(D) = £, we may define a map of @p : HY(C, £)—C? by taking
principal parts of sections at the points of the support of D. Show
that the image of this map is the annihilator in 4 of the g x d matrix
Mp whose ijt* entry is )
gl w;

Po
2) Let £ = {(A,M)|AC ker(M) } where A is an r-dimensional sub-
space of C4 and M is a g X d matrix. The space of quadruples
F =(C,D,V, £) with D an effective divisor on C such that £ = Oc(D)
and V an (7 + 1)-dimensional subspace of H%(C, £) maps onto & by
taking A to be the image of V under the map @p and M = Mp. Show
that this map is dominant and, by calculating dim(¥), conclude that
djm(f) 2 hd‘g,r +7.
3) Show also that the map from ¥ to Ha gy, given by forgetting the

choice of D is onto with fiber of dimension » and conclude that
d-im(ﬂd.g,r) 2 hd.g.r-

If we start to compute dimensions of components of H, we see, in
the low-degree examples, only general components. For example, in P3
the lines form a four-dimensional family, conics an eight-dimensional
family, twisted cubics a twelve-dimensional family, etc. It becomes
clear fairly soon, however, that this state of affairs is temporary. For
example, we find only exceptional components when we look at the
following: complete intersections of high degree; curves of high de-
gree on quadric or cubic surfaces; determinantal varieties associated
to n X (n + 1) matrices with entries of high degree, etc. The general
question of what the dimensions of the components of may be
remains very much open. Four questions in particular may be asked:

QUESTION (1.47) 1) For fixed d and r, but possibly varying g, what is
the largest dimension of a component of the restricted Hilbert scheme

Ra g whose general elements are smooth, irreducible and nondegen-
erate?

. .. 2
F. Severi varieties

d, g and r, what is the smallest dimension of a component
(2):‘ ;({): :x:z Ofgcourse, for r = 3 the answer is 4d, but for r > 4& t_ge
Hilbert number will be negative for many valueg of d, g and r, an 1 s
very much unknown what the smallest dimension may pe. In parttlhcut
lar, it's conjectured that the only rigid curves — that is, curves :l
admit no deformations other than projectivities of P”— are ration:
rmal curves; but this remains open. . .
;;) Can we find a function o(g) such that the ba§1c est_lm;:e
dim(#) = ha 4, holds for any component of Who_se image :nd bg
has codimension less than o (g)? This last (question is motivate ! Y
the empirical evidence that the expected dimension is correct v;k en
this codimension is small. It's even possible that o (g) could be taken
to be roughly equal to g.
- 4) Does the inequality dim(Hg,4 ) > ha g hold for any corr}pont(le]rl};
.+ of a Hilbert scheme of curves? Our motivation for suggesting
estion is the empirical observation that families of s‘ingula.r curve;.i
hich might provide counterexamples, seem to have dimension eq:lh
6 the Hilbert number exactly when the curves do not s.moqth i;x ; e
ambient projective space. Consider, for example.' the union mﬂ:’ fo a{
%" line and a plane curve of degree d meeting at a point. if d = 3'th e lame
ily of such curves has dimension 15 (4 for the line plus 2 for the p ha.linh
o plus 10 for the cubic minus 1 so that the line and cubic meet) wthg
18 less than the Hilbert number 16; however, such curves smoo 213
to elliptic normal curves. If d = 4, the family has dimension
{4 + 2 + 15 ~ 1) which equals the Hilbert nun.lber; such curves are
* classic examples of curves that do not smooth in P>.

F Severi varieties

izi then
If we stick to Hilbert schemes parameterizing su.bcu}'v‘es. of P then,
as we've seen in Exercise (1.15), the case r = 2 is trivial: tl-le Hlll%‘btirt
point of a plane curve of degree d is just given by the equation of ele
curve. In this case, we can hope to understand l_nugh more precisely
the subloci of curves with various geomemcally.s1gx.nﬁca.mt properties.
In this section, we'll take some first steps in this duecqon. .
We've seen that the space of all plane ft;rvgs of a given Qegree dls
simply a projective space PN where N = (44;+3)), What we wish to (;
here is to look at the locally closed subvariety of this PN consnst;ng .o
curves of degree d and geometric genus g. We introduce three loci:

DEFINITION (1.48) In the space of plane curves of degree d, define:

1) Va4 to be the locus of reduced and irreducible curves of degree
d and genus g;
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2) Uay to be the locus of reduced and irreducible curves of degree
d and genus g having only nodes as singularities;

3) Vag to be the closure of Vg g in PN,

These are often referred to as Severi varieties. Note that, as with the
restricted Hilbert scheme, V,, and Va,g don't have a natural “para-
metric” scheme structure: that is, there is no known way to define a
scheme structure on them so that they represent the functor of fam-
ilies of plane curves with the appropriate geometric properties.

On the other hand, the underlying spaces of these varieties are much
better behaved than the Hilbert schemes 7/, gr forr > 3. To sum up
the state of our knowledge, we have the:

THEOREM (1.49) (ZARISKT; HARRIS [80]) Foralld and g,
1) Uag is smooth of dimension 3d tg-1=hay,;
2) Uay is dense in Vag:
3) Vag is irreducible.

With the tools we have available at this point, we can’t prove the
irreducibility now or even the fact that the nodal curves are dense in
the curves of genus g, but we can at least verify that the locus of nodal
curves is smooth of the expected dimension (the proof of the second
part will be given in Section 3.8 as Corollary (3.46) and of the third
part in Section 6.E). To do this, we look first at the variety

2={(C,pr....,P8)IPi € Csing} C PN x (P?)8.

If we.ﬁx. (affine) coordinates (x,5) on P, let q; 7 denote the coefficient
of x*yJ in the equation of C and let (x4, y,) be the coordinates of
the node p,, then 3 is given by the « triples of equations

Fa(aij-xmya) = Zaij(xa)i(ya)j =0,
Gal@ijrXa, Ya) = 31 - @ij(xa) (o)) =0,  and

Fal@ijs Xo, ¥a) = T J - @ij(xa) ()i~ = 0 for all .

(The first equation Just says p, is on C and the last two that it’s a
singular point. Just the ability to write down such a simple set of
explicit equations already distinguishes the analysis of Severi varieties
from that of Hilbert schemes in higher dimensions.)

From ' these equations, we might expect naively that
dim(Z) = N+ 26 -3§ = N - 4. In fact, we'll show that in a
neighborhood of a nodal curve C with nodes p;,... » Ps, the variety 3
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maps one-to-one to V4 by showing that the differential of this map
i tive at C. '

N gg:gider, for example, the case § = 1. (gugfo;; ew;l::ri:(t o?
i € X normalized so that p = (0,0). -

goarnlllglgcc,)t," )F, G and H with respect to x, ¥ and agp looks like

F G H
2 10 ax an
53; 0 an ae
=|1 0 0
TABLE (1.50)

i hen
The corresponding minor (dzodg2 — d112) is nonzero exactly wi

4 C has an ordinary node at p. Note also that all)tt‘xs Iﬂis;l;ge eﬂr::t'ieai
M A 3 e

first column of this matrix are 0 at (C, p). We

- i(%‘tl:; 3, is smooth of codimension 3 in PV x IPZ: Moreover we s_:;
thz;t tl'Je projection map mr : =—PV is an immersion at (C, p), wi

the tangent space to X, at (C, p) mapping ispmorph_jca]ly t(:o t;Je space

of polynomials of degree d vailfisgix}g atp uﬁ":fﬁ :ggl; 6 nodes
i eneral case, i is a curw

plNow'pl;l a;h:inggularities, the map from X to P™ factors through X,

istinguishi 's in turn. We can there-
+_in 6§ ways by distinguishing each of the Pa’s in
‘;zre ;pyll'ese)rllt the locus V,, in an analytic neighborhood of C as the

intersection of the images of analytic neighborhoods of the points

“(C,pi) € Z1. The tangent space to Vg, at C is thus the linear space

i ishi ints p;. But we know
lynomials of degree d vamshmg'ay the poin
::)tfaltmthy;l p: impose independent conditions on curves of any degree
m = d - 3 (cf. [7, p. 54, Exercise 11]); it follows that
(1.51) dim(Tic}Vag) =N -6

and hence that V4, is smooth of this dimension. For emphasis, we
again note that

N_52 (d(d2+ 3)) _ ((d—l)z(d—Z) _g)
=3d+g-1
= hag,2.

While we have much better control over Severi varietiesbtlhansoae:
more general Hilbert schemes, there are many open pro el:c;.lrve
might ask for a description of the tangent space Ti¢;V4 4 Dear
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C i . .
¢ axl-::;n(g/ Zth‘fr th:;n nodal singularities. As an example, consider the
face by th 300 cubics of geometric genus 0 which is a hypersur-
et : :x (f :latge cubics. In the affine plane slice A given by
= » e equation of V is A = 443 4+ 27p2 = 0

;g&bli rfé(:'sos)ﬁl E)lftl?:nl:l[ccqa'bj <]!301Tesp0nding to a point of A is n-ofigll‘
itself has a cusp ut [C(o.o)(]a.,b) - But Co,0) is a cuspidal cubic and ANV
pa:g;;:é’,smt Is that, while the locus Uy, of nodal curves can be com-
erties arelﬁ) a tnfltural Way to Va5, most of its desirable geometric prop-
(partian co st in the Process. This leads to the problem: find a better
compacﬁﬁ?gac'lﬁcatlon of Ua 5. We would like, at least, a parametric
et ation whose tangent space at a point [C] has some natural

iy ef) On as a linear space of curves of degree 4.
be the seplascglcl:;' l;:nai(;vs"(lcw:ry) t:v)himmc('we o oot nat: Deflne Tug to

. - L , ere C is a smooth f

_ 2 ! curve of gen
gewcl',:o’“’ l;va b}r ational map of degree 4. This changegof ;«snfltagg
lrrelevanntl Subvarieties of P? to maps to P2 may seem to be a somewhat
a8 denseoge Since Ty,g and V4 4 are bijective and both contain Ug
morphic as vPeP s_ubvanety.'HoweVer, these two spaces are not is:-
con'espondinar;f)nes. Essentially, T;, normalizes Va,g at points [C]
ize: 1f JoLs '8 10 curves with cusps. All these observations general-

-1 you're interested you'll find a longer discussion in [33].

dEl?(f?;-gLstnf(rt?:)( (I)nothe example above show that for (a,b) in A but
(.3) = o) X d) the curve Cap has a node at the double root
e b_’z%, an Ptzhat the composition of the normalization map
brande oo e:? C witl:l3 bthe Projection to the x-axis is simply
e ot x, 3_') = (20, =) Sslll,ow further that the normalization
ook 2P o }q‘liéll]tjl:;l d)(’) es=nxt— ‘a and is the fiber of a family of pl’s
an extension over the normal;,zaet)i(;:;ngl :)?" ZH ©F & but which does have

G Hurwitz schemes

:l‘};:slia::sai parafneter spages we wish to discuss are perhaps the most
o nca (smt}s. the Hurwnlz” sc;hemes Hy 4, which are parameter spaces
PS ol curves to P1”, je, for branched covers of PL. There are

:;;e;n:,tﬁgil’ wl;t; :;2 l;ljssociate Hto a branched cover its branch divi-
, €mann-Hurwitz formula i ivi
r 1. by i a, is a divisor of d
jectileg :che i ;,nblPl. Slncg tl'ae set of such divisors is canonically : Ig)ll“t::
D Y associating to B the equation of degree b, unique
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up to rescaling, that has B as its cycle of zeros, this might seem almost

wrivial. Of course, divisors with points of multiplicity greater than d

cannot correspond to any cover so we cannot hope to get a complete

parameter space in this way. A more essential difficulty stems from

the fact that the cover C depends on B and the $;-conjugacy class of
the monodromy homomorphism from ) (P! — B) into the symmetric
group S4 on a general fiber of mr: the number of covers with a given
branch locus B and combinatorics of the description of their mon-
odromies thus both depend on the multiplicities of the points in B
jtself.

The intersection of all these approaches is the case when all the
branch points of 1 are simple, that is, when B consists of b distinct
ints and hence corresponds to a point in the dense open subset
%‘: g of P? isomorphic to the quotient by $p of the complement of
all diagonals in (P1)?. (Such covers thus form a locus analogous to

" the locus Uy, of nodal curves in the case of the Severi variety.) A
+, straightforward local analysis then yields:

" THEOREM (1.53) Let 7, be the set of branched covers of P! of degree

d and genus g having b = 2d + 2g - 2 simple branch points. Then,

1) ﬂd,g is an unramified cover of ﬁd,g and, hence, is naturally a
smooth quasiprojective variety of dimension

b=2d+2g-2=nhgg,.

2) There is a smooth universal family of curvesTa,: i.e., a diagram

|

Pl X ﬂd.g

|

Hag

whose fiber over a point [1r] of .’H‘d,g is the covering 7t : C—P1
parameterized by [Tr].
The key point is that ﬂd,g is a covering space of ﬁd,g. We will re-
turn to the topic of branched covers in G, and give only a precis here.
First, for any B, we can choose small loops y; around the points b;
in B that generate m; (P! — B) modulo the single relation []; y; = 1.
Since each branch point is simple, the y; must map to simple trans-
positions T; in §; satisfying [1; T; = 1. Since the cover is connected,
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the subgroup generated by the T; must be transitive, Conversely, any
choice, up to simultaneous $4 conjugacy, of 1;’s meeting these condi-
tions determines a unique connected cover simply branched over B.
The rest follows easily. The Hurwitz variety has one other property
that lies somewhat deeper and that we have therefore set off.

THEOREM (1.54) 374,5 is connected. Equivalently, in view of (1.53).1,
ﬂd,g is irreducible.

The connectedness depends on an analysis (first carried out by
Klein, Clebsch, Liiroth and Hurwitz) of the braid monodromy of ﬂ“
over By ,. Essentially, this involves calculating the action of certain
loops in B, ¢ On the combinatorial description of the monodromy of
a cover [1r] in H;, and then building a loop that takes a given com-
binatorial description to a standard one. The classic reference is [26};
a good modern one is Moishezon’s paper [115].

Clearly, d.g is too small for Iany purposes. When we try to en-
large it naively, however, we run into trouble, When the map C— P!
has nonstandard ramification (i.e., the branch divisor B has multiple
points), then the number of possible combinatorial forms for the mon-
odromy drops. Hence the most we can hope for is to extend ﬂa,g toa
ramified cover #{4 4 of some compactification of Bag of Hy .11 What-
ever B we choose, the existence of a universal family of curves C and
maps 1 becomes a much more subtle question. All that is clear is that

d,g will be a dense open subset in the space #z4 no matter how we
define the latter.

When we return to this subject in more depth in Section 3.G, we'll
study a very pretty and useful resolution of this difficulty, due to
Kngdsen and Mumford. The keyideais to find a compactification Bagy
of Ba 4 in which branch points always remain distinct: this definition
then leads one naturally to the compactification of ﬂd,g by the space
Ha g of admissible covers; this has virtually all of the properties we

might desire, '

'The obvious compactification P? is ruled out by degree considerations as noted

L above

Chapter 2

Basic facts about moduli
spaces of curves

"chapter is an essentally expository one v\(hich summarizes th;
Hféjbf approaches to the construction of moduli spaces of curves an
gtates some of the most important results and open problems about

7 their local and global geometry. _ ) )
: Eh.We have two principal reasons for inserting this summary. The first

“is to introduce the topics that will occupy the remainder of the book:
The second is to state a number of important results that .do ngt reap
pear. Indeed, a careful treatment of all the results stated in this chap-

& i i i . Rather than simply passing
- ter would be impossible in a single volume _ _
¥ :uch results by, we've chosen to record their statements and provide

- references for them here.

R i i i i lete. Our choice
..~ 'Even with this proviso, this chapter is far from comp _
* of results reflects our tastes and interests and we ask your indulgence

if your own preferences differ from ours.

A Why do fine moduli spaces of curves
not exist?

Most of the moduli spaces of curves that we’ll be stut_iymfh are orllyj
coarse moduli spaces. The obstructions to represen.tmgfm e coduli
sponding moduli functors (equivalently, to constructing : € mo
spaces) come from automorphisms of the data of the problems. es
In this section, we wish first to give some elementary ex‘;\mi e
which illustrate the phenomena involved and then to take 13 00 .
the various approaches which have been fieveloped to wor a;'oun
them. We begin by looking again at moduli of curves of genus 1.
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the subgroup generated by the T; must be transitive. Conversely, any
choice, up to simultaneous $; conjugacy, of T;'s meeting these condi-
tions determines a unique connected cover simply branched over B.
The rest follows easily. The Hurwitz variety has one other property
that lies somewhat deeper and that we have therefore set off.
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over Bag. Essentially, this involves calculating the action of certain
loops in B4 4 on the combinatorial description of the monodromy of
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binatorial description to a standard one. The classic reference is [26];
a good modern one is Moishezon’s paper [115].

Clearly, H g is too small for many purposes. When we try to en-
large it naively, however, we run into trouble. When the map C— P!
has nonstandard ramification (i.e., the branch divisor B has multiple
points), then the number of possible combinatorial forms for the mon-
odromy drops. Hence the most we can hope for is to extend #z 4 toa
ramified cover # 4 of some compactification of B4 of #44.1! What-
ever B we choose, the existence of a universal family of curves C and
maps 1 becomes a much more subtle question. All that is clear is that

d,g Will be a dense open subset in the space H; 4 no matter how we
define the latter.

When we return to this subject in more depth in Section 3.G, we'll
study a very pretty and useful resolution of this difficulty, due to
Kngdsen and Mumford. The key idea is to find a compactification Ba 4
of Ba 4 in which branch points always remain distinct: this definition
then leads one naturally to the compactification of H g Dy the space
Ha 4 of admissible covers; this has virtually all of the properties we

might desire. '

11The obvious compactification P? is ruled out by degree considerations as noted
above

Chapter 2

Basic facts about moduli
spaces of curves

:chapter is an essentially expository one V\(hich summarizes thg
ﬁiﬂibi‘ approaches to the construction of moduli spaces of curvesban .
states some of the most important results and open problems abou

"' their local and global geometry. _
’ tf.,hWe have two principal reasons for inserting this summary. The first

i i inder of the book.
introduce the topics that will occupy the remain :

"lls‘ht: gecond is to state a number of important results that do not reap
_Indeed, a careful treatment of all the results stated in this chap-

. i iblei i than simply passing
* rer would be impossible in a single volume. R.ather '

2 :lrch results by, we've chosen to record their statements and provide
: ences for them here. _

tsiie\:‘en with this proviso, this chapter is far from complete. _Our choice

B of results reflects our tastes and interests and we ask your indulgence

if your own preferences differ from ours.

'A  Why do fine moduli spaces of curves
not exist?

Most of the moduli spaces of curves that we'll be stuc_lymgthare onle)j
coarse moduli spaces. The obstructions to represen_tmgﬁn e co;ruli
sponding moduli functors (equivalently, to constructing o e nslo
spaces) come from automorphisms of the data of the problems. s
In this section, we wish first to give some elementary examl 113( s
which illustrate the phenomena involved and then to take la: 00 "
the various approaches which have been fleveloped to worl ai'oun
them. We begin by looking again at moduli of curves of genus 1.
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Recall that in Exercise (1.6), we constructed an algebraic family
X={=x(x-1)(x-2)}c PZ., x Al
L 4
A} -{0,1}

of smooth curves of i i
over genus 1 in which every such curve appears. More-

Xexvesnefa1-aL 1 A-1 A
AT1-A" A AT
and there is a j-map j: Al — Al
] 9P J : Ax—Aj whose fibers are these $3-orbits,
gxtl;:; :;o:-iiss,)tlgle J-htzlve is a coarse moduli space for curves of getlufs I1n
-0) gave two ways of seei ] .
modul space. e 1o YS of seeing that the j-line was not a fine

If the j-line were a fine moduli
. space, there would be i
curve 1 :T— A} and a fiber-product diagram @ universal

x—J ¢

'] 1
Ay —L— Al
3 .
Thus the $°.-action on A} would have to lift to X. What could the

lifting of the involution A-+1 — A be? s
— A be? Since X i :
over 0,1, A and oo, this lift would have to look iﬂiz the curve ramified

(x, ¥, ) ~(1 - x,xiy,1 - A).

Either of these choices acts nontriviall i
‘ ho . y on the fiber X, , and the -
giltlt ;)(f X .by this involution would have a rational ﬁt:g- over 1/ Zc.ll:I(:l
whi::h 111 /azsl_s; lt;l: arcga;vtelc%r;espgndm to the lattice C2/(Z1 + Z/-1)
S j- and the involuti i
tomorphism of order 2 of this lattice.) Hflon above is the extra au-
th;h:arsl i§ ?ilso a more glob'al obstruction to lifting A due to the fact
B ft:g cation t_:y (- 1? 1s an automorphism of any elliptic curve
T o the potential choices for the lifting above has order 4 on X ;

(x,y-l\”—’(l - X, i'iyyl - A)H(x, i A)-

In other words, while the squ

‘give an automorphism of Xa,
nontrivial.

are of such a candidate lifting would
this automorphism would have to be
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There are a number of approaches to dealing with the obstructions
to the existence of fine moduli spaces due to automorphisms. To sim-
plify, we'll restrict our discussion to moduli problems of curves but
all these techniques are more generally applicable.

" The simplest is to eliminate the locus of varieties with automor-
phjsms.‘ If M is the coarse moduli space for a moduli problem F in
which we’re interested, we'll denote by M? the locus of curves C in M
guch that Aut(C) = {idc}. This will, in general, be a fine moduli space
" for the open subfunctor of F of “curves without automorphisms”. This
*-golution is often extremely unnatural since our interest in the objects
of M may be completely unrelated to their automorphisms. Moreover,
we can almost never hope to find complete moduli spaces without al-
lowing some varieties with automorphisms. On the other hand, the
complement of M? is often of high codimension in M — for example,
- in the moduli space M, of smooth curves of genus g, .'Mg has codi-
-+ fension g — 2 for g > 2 — so this approach does allow us to use a
: Q!Pe ‘moduli space to deal with many low-codimension questions.
The second approach is to find some extra structure that can be
ded to the moduli problem that is sufficiently fine that no auto-
rphisms of an underlying curve can fix the extra structure. This ap-
‘{;thach is called rigidifying the problem. For curves, the most common
“extra structures to use are sets of marked or distinguished smooth
points on the curve and level structures. '
- The existence of the bound 84(g - 1) for the order of the automor-
¥phism group of a smooth curve C of genus g = 2 in terms of g alone
e sures that no nontrivial automorphism of such a curve can fix n
jlﬁtinct points of C for any sufficiently large n: thus we get a fine
‘moduli space, denoted M, », for such marked curves. The defect of
this approach is that each marked point increases the dimension of
- the moduli space by 1. This makes it unclear how much of the geome-
try of the original moduli space of unmarked curves can be captured
from that of the marked curves. On the other hand, there are a num-
ber of interesting geometric questions that deal directly with marked
curves so these spaces often arise naturally.
. Level structures are a second method of rigidifying moduli prob-
lems that avoid changing the dimension of the moduli space. A full
level n structure on a curve C of genus g is a symplectic basis
{oq,...,04,B1,...,B4} for Hy(C,Z/nZ): here symplectic means that,
in terms of the basis, the intersection pairing on H; (C,Z/nZ) has ma-

!Here, and in the rest of this chapter, we've allowed ourselves to use the phrases
“with/without automorphisms” as an admittedly slightly abusive shorthand for
“with/without automorphisms other than the identity”.
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_Igo )

trix of the form

2) Show that this is false for n = 2,

3) Show that the map §: Al L di
B nap j : Ay — A1 discussed above i i
M,” — M, associated to level tdvo structures sz f)(;vge:lnlzlgsnllap

curve wi
“ no(: :lwﬁtll: el(:l\lleldlt:vho structure whose moduli point is A, the space Al
o] space for curves of genus 1 with leve] 2 sn'ucturé

EXERCISE (2.2) Consider th i
@ e family of curves x3 + 13 4 ,3
barameterized by the affine line A1 with COOI':in;tg’”: ‘

1) Find the open set U/ in Al
A’ over which the fi in thi .
smooth, and compute the J-function j = j(:;) 2‘:% in this family are

+m-xyz,

¢
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e

o),

: 2) Show that j expressés U as a Galois cover of the j-line, with Galois

group SL2(Z/32).

3) Show that U is a fine moduli space for curves of genus 1 with full
level 3 structure.

"‘?.'Hl" t: The curves in this family are the plane cubics whose flexes are
~Jocated at [0, 1, —w], [-®,0,1] and [1, —w, 0] where w is a primitive

cube root of unity.

'EXERCISE (2.3) Show that there does not exist a universal family of

curves of genus 2 over any open subset U C M. In general, if
Hg C M, is the Jocus of hyperelliptic curves, for which g does there
exist a universal family over some open subset U c H;? Answer: For

g odd.

.. EXERCISE (2.4) Construct examples of:

"_'1)' A nontrivial family of smooth curves of genus 3 over a smooth,
. one-dimensional base B, all of whose fibers over closed points are

" isomorphic.

2) A map @ : B— M3 from a smooth curve B to M3 that doesn’t come
from any family of curves of genus 3 over B.

3) A map @ : B— M3 from a smooth surface B to M3 that doesn’t
come from any family of curves of genus 3, but whose restriction to
each open set U, of a cover of B does.

. To say that a moduli functor doesn’t admit a fine moduli space sim-

ply means that it cannot be represented in the category of schemes.
The third approach to this failure is to look for a larger category
in which the functor can be represented. In order to make such an
approach worthwhile, we must understand the larger category well
enough to be able to carry out geometric investigations in it. If this
can be achieved, it becomes a matter of taste whether the advantages
of having a moduli space with good universal properties are sufficient
compensation for the additional technical difficulties of working with
these more general objects. The mildest generalization of schemes
that has proven useful is Artin’s category of algebraic spaces [10]. An
algebraic space looks locally like the quotient of a scheme by an étale
equivalence relation. Unfortunately, this category is still too small to
provide representing spaces for most moduli problems.

A larger category is that of functors from schemes to sets. This
category has the advantage that moduli functors are, by definition,
objects in it. What isn’t so clear is how we are to interpret geometric
notions in this category. Here we shall simply state that this can be
done fairly satisfactorily for moduli functors and refer you to Mum-
ford’s seminal article [119] if you want to get a sense of the flavor of
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the arguments needed. In that paper, Mumford shows how to extend
the notions of invertible sheaf and Picard group to such functors and,
as evidence that it’s possible to work with such notions, calculates the
Picard group of the moduli space of elliptic curves as Z/122!

Categories of algebraic stacks are other enlargements of the cate-
gory of schemes that have been widely used to study moduli problems.
Very roughly, a stack — say, the moduli stack of curves of genus g
for concreteness — is itself a category. In our example, typical objects
would be families T— A and DB of such curves and a morphism
between two such objects would be a morphism of schemes from B
to A plus an isomorphism of D with the fiber product

D=2BXsCT——T

B

A

of B and T over A. In essence, twisting by automorphisms is prohib-
ited by definition. We leave it to you to formulate or find the correct
definition of a morphism between stacks (a task that starts to bring
out the flavor of the subject).

The stack approach has the advantage of being somewhat closer to
geometric intuition: for example, a line bundle on a stack is simply a
system of line bundles on the base of each family, together with, for
each morphism of families as above, an isomorphism of the line bun-
dle associated to the family D— B with the pullback to B of the line
bundle associated to T— A. We won’t work with stacks here, but we'll
be working with related notions (see the discussion in Section 3.D). If
you're interested, you can look at [29] for a first discussion of stacks
in the present context; or, if you’re prepared for a considerable effort,
go to [106] for a full treatiment. There is also a forthcoming book {14]
that may finally clear up what has traditionally been a murky area.

The approaches to extending the category of schemes via “cate-
gories of functors” and via “algebraic stack” are not comparable: that
is, neither category faithfully contains the other. There is a com-
mon extension, “fibered categories” due (naturally, as it were) to
Grothendieck [68] which we shall pass by in complete silence.

B Moduli spaces we'll be concerned with

We've already mentioned the moduli space M, (though we have yet
to prove its existence). It is the coarse moduli space for smooth, com-
plete, connected curves C of genus g over C. For the rest of this sec-

g. Moduli spaces we'll be concerned with Y]

we use “curve” to abbreviate this package. The space T, is sim-
t;{)yn'the coarse moduli space of pairs (C, p) where C is a curve atlllld
p a point of C. Note that T, naturally maps to My .by forgetting the
point p. In fact, C, may look at first glance hkg a pmversal curve over
M,, but on closer examination we see that this is trge only over th_e
opgn set .’Mg: the set-theoretic fiber of T, over a point [C]l € My is
the quotient C/Aut(C). Thus, for example, qver an open _subset of .’in'z,
Cyisa P!-bundle (in the analytic topology; in the Z.anskl. topqlogy it's
a conic bundle). This is even true scheme-theoreﬂgally in this exam-
ple. You may wish to consider the question: what, in gengral, are tl’lﬁ
scheme-theoretic fibers of the map from T, to M,? Despite thlg, w?c
occasionally abuse languaged;linli order to honor custom by calling Ty

niversal curve over moduli. .
thf!l‘tl:e space My is a direct generalization of Tg: it Is the coarse

i - here C is a curve and
_moduli space for (n +1)-tuples (C, p1,..., Pn) W
o P1,---Pn € C are distinct points. Thus T, equals Mg,1. (Because the
o justification for requiring the points to be distinct comes from the wa}y
. jn which the compactifications of these spaces are constructed, we 1|

postpone discussion of it until we come to consider these spaces. One

e i i ked sets of unordered
can also construct moduli spaces involving mar _ _

-~ points (distnct or otherwise); in practice, working with thg.se m‘_/olves

the additional aggravation of keeping track of the $4-action without

a i i t commonly
compensating advantages so Myn is the space mos

glglt with.) Once again, it's tempting to view Myn as the open sub:c)et

Jf the fiber product T, Xa, Ty Xa, - - * X, Tg Obtained by remov;?lg

;ﬂ]'diagonals; but automorphisms, as for T,4, make this correct only

over a sublocus.

. next space we wish to mention is Pg, ,gz, the coarse moduli space
bf?a?rs (C,II.)) where C is a curve and L a line bundle of degrge don
C. Again, the fiber of Py 4 over a point [C] € My correspondu}%d toa
curve C without automorphisms is the connected cgmponent Pic*(C)
of the Picard variety of C; in particular, Pog is sometimes called FBE Ja-
cobian bundle over moduli. Despite the fact that all th_e ﬁbers:’gl0 0
of the varieties P, 4 for various values d are isomorphic (())ver g Pag
will not in general be isomorphic to Pa 4 even over M,: see the exf
ercises below. For example, it follows from the Hargr-Mestrano proo
of the Franchetta conjecture (discussed later in this chapter; or see
[112)) that Pog = Pay if and only if (2g — 2)|d. We may, however,
note that
Pag = Pa+2g-24

and
Pig = P-dg:»

2Als0 denoted JacZ in some references.
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the isomorphisms being provided by the maps (C,L)—(C,LQKc)
and (C,L)+—=(C, L) respectively. Thus, for each g there can be at
most g of these objects — Py, ..., P,_; , — that are distinct up toiso-
morphism. Note also that in the special case d = g-1 thereis a natural
theta-divisor 0 in P,_; ,, restricting on each fiber to the correspond-
ing class: it's the locus of pairs (C,L) in Py_14 wWith HY(C,L) + 0.
- Beware, however, that we cannot, as for individual curves, define such
a class in every degree.

EXERCISE (2.5) Show that for d = 0,...,9 — 2 there does not exist
any line bundle on P4, whose restriction to the fiber Pic?(C) of Pag
over a general point [C] € M, is the line bundle associated to some
translate of the ®-divisor on Pic?(C) = J(C).

EXERCISE (2.6) Show that no two of the moduli spaces Pogs--1Py-14
are isomorphic.

For a general curve C of genus g > 1, the Jacobian J(C) has Picard
numb'er (i.e., rank of Neron-Severi group) equal to 1 and the Neron-
Severi group is generated by a translate of the @ divisor. It follows
tl.lat for each d and g, the Picard group of P, g has rank 1 over the
Picard group Pic(M, ), with the generator restricting to some multiple
m(d, g) - © of the general fiber of P4, over Mg, and we may ask what
the coefficient m(d, g) is for each d and 4. For example, the existence
of the natural theta-divisor 8 ¢ P,_, , shows that m(g-1,g) =1 for
all g. But, m(d,g) = 1 only rarely. The following exercise suggests
some of the naive ways of approaching the problem; following it, we'll
give the general formula for m(d, g) found by Kouvidakis.

EXERCISE (2.7) 1) Show that m(0,g) # 1.

2) Show that the locus of pairs (C, L) where L is a line bundle on C of
the form Oc(p_l +ooc 4Py - (g - 1)p) with p a Weierstrass point
on C forms a divisor in Py 4. Use this to deduce that m(d,g)I(g° - g)
for any d and g.

3) Shov'v that there exists a divisor on T, whose fiber over a gen-
eral point [C] € M, is a canonical divisor on C, and deduce that
m(d, g)|(2g - 2) for any d and g.

4) Find an example where m(d, g) = 5.

THEOREM (2.8) (KOUVIDAKIS [105]) For all d and 4,
29 -2

m(d,g) =
d.9) ged(2g-2,g+d-1)"
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C Constructions of M,

As we indicated earlier, every construction of the moduli space M,
amounts to looking a priori at curves with some additional structure,
so that a parameter space can be described, and then taking the quo-
tient of this space by the relation that identifies these additional struc-
tures. In this section, we look at the three most common approaches.

The Teichmiiller approach

Here we consider the space of pairs (C; y1,..., y25) where C is a curve
and {y1,...,¥2,} is a normalized set of generators for m (C) — that
is, one that may be drawn (in genus 2) as shown in Figure (2.9). This

£ FIGURE (2.9)

""jﬁ'equivalent to choosing a homeomorphism of the underlying topo-
- . 1ogical manifold of C with the National Bureau of Standards’ compact
.“otientable surface Xy of genus g, up to isotopy. The basic theorem

'Z_il’ere. due to Bers [15], then says that: the space of such data is natu-
‘Fally an open subset T, in C38-3 homeomorphic to a ball. This open set

« 18 called Teichmiiller space. The group I; of diffeomorphisms of Xo
“fiodulo isotopy then acts on Teichmiiller space, and we may realize

the moduli space M, as the guotient of this action. Note that since
the stabilizer of any point is finite (it's simply the group of automor-

" phisms of the underlying curve C), this quotient exists as an analytic

- variety.

Probably the most important thing about this approach is that it
gives us a handle on the topology of M,: since M, is a quotient of
a contractible space by the group I;, we see that for small k, the co-
homology groups H*(M,, Q) are just the cohomology groups of the
group I, tensored with Q. We may then try to calculate these by ex-
amining an action of I;; on another contractible space 3 Byusinga
more tractable v that is combinatorially defined, this approach has

3we only get information about the rational cohomology because I'y has finite iso-
topy subgroups at points of 7, corresponding to curves with automorphisms. There
is, however, an analogue T, of T, parameterizing marked surfaces of genus g with
n marked points (or to use the indigenous terminology, with n punctures) from which
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been fruitfully exploited by Harer (whose results we'll describe later)
an;iv. m}(:reu]r&u:;_ntly, by Kontsevich.

es ol So mention that this approach provides M, with -
ural metric, called the Weil-Petersson metric “Ir’hose posin%ity pra(‘);:::-
tj_es have begn used by Wolpert ([153], [154]) to construct an embed-
ding of..'Mg In a projective variety with many of the nice properties of
the Df:hgne-Mumford stable compactification which we will introduce
lflter in this section. An excellent survey of what is known along these
lines can be found in the paper of Hain and Looijenga {70].

The Hodge theory approach

Tpe idez.l here is to associate to a curve C the data of its polarized Jaco-
blgn: tlus_» amounts to giving a complex vector space V of dimension g
ynth lattice A = 729 and skew-symmetric form Q. Respectively, these
ingredients are naturally obtained from C as: the dual of H%(C, K();
the first homology group H, (C,Z); and the intersection pairing. If we,
chooseasymplecticbasisB = {a,,... 1ag,b1,...,b,} for Hy(C,2Z) and
a complex basis w;,...,w, of H%(C,K.) whose period matrix with
respect 'to the a-cycles is I,, we may in turn associate to these data
the period matrix P € C9° given by integrating the w’s around the
b_-cyc.les. The -Riemann bilinear relations then say that ? is symmet-
ric with positive definite imaginary part. These last two conditions
define, respectively, a subspace and an open subset of the space of
g X g complex matrices whose intersection is called the Siegel upper
halfspace of dimension g and is denoted ﬁg. The group Sp(2g, Z) of
symplectic changes of basis acts on ﬁg and this action corresf)onds
exactly to the choice of symplectic basis made above,

Here the main facts are that: period matrices of curves form a lo-
cally closed subset ¢, of b,; the quotient A, of by by Sp(2g,2) is a
coarse moduli space for abelian varieties of dimension g; and, M,, can
be_ constructed by restricting this quotient map to the locus c,. Aggain
Flus construction yields M, only as an analytic space but it has thé
important advantage over the Teichmiiller approach that the group
Sp(2g, Z) by which we're quotienting is more approachable than T
We pay for this, however, because we can say much less about tlfe:
space ¢, t-hat we’re quotienting. Describi g the locus M, in A, (or
¢g in f,) is the Schottky problem. Formall , a number of solutions
have recently been obtained (8], [117], [125], [242)]) but for practical

the moduli space Mg n can be constructed b i i

: T y forming a quotient by a suitable
rg,n.. qu n largg enough that such marked curves have no automzrphisms wg:?::g
obtain information about H* (M, », Z) by this method. '
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ses — such as determining whether a given period matrix P in
“# lies in ¢, — they are little help.
V"This construction has one other important consequence. Since A,
‘35 a hermitian symmetric domain, it has by {12] a natural Baily-Borel
“compactification A,. (We will discuss compactifications at length be-
w: for the present, when we say that M is a compactification of M,
'} mean that M is a compact analytic variety that contains M as
i analytic open subset.) The compactification A, was historically
e first such compactification to be constructed [136] and it remains
/-¥nown as the Satake compactification in honor of its discoverer.
“+''raking the closure of M, in A, yields a compactification of M,
which we’ll denote by M, and also refer to as the Satake compactifi-
“¢ation. Unfortunately, the %take compactification isn’t modular. Re-
_all ‘that this means that M, is not a moduli space for any moduli
ﬁhc’tor of curves that contains the moduli functor of smooth curves
‘an open subfunctor. (In fact, the points of M, \ M,, do correspond
jsomorphism classes of smooth curves of lower genus, but these
i't naturally fit into families with curves of genus g. Thus while we
*‘ﬁssociate to families of curves with some singular fibers a moduli
iap to M, we can’t go back and interpret subvarieties of M, not
b g’@ﬁtained in M, in terms of families of curves.) This greatly lessens
ﬂjé usefulness of M, for the study of most questions about families
‘of curves or about M, itself.
% There is one important exception to this last statement. It depends
n the following two properties of M,: first, M, is projective; and
“$acond, the codimension of the complement My \ My in My is equal
' ﬁ) 2 for g = 3. By intersecting M, with generic divisors in some large
“thultiple O(n) of a very ample invertible sheaf on M, through any
point, we see that through any point of M, there passes a complete
_ curve lying entirely in M,. In fact, there is a complete curve through
- any finite collection of points of M,: see the exercise below. Using a
curve through two points, on which any holomorphic function must
be constant, we see that there are no nonconstant functions on M.

EXERCISE (2.10) Assuming the facts cited above about the Satake
compactification M, show that through any finite collection of points
of M, there passes a complete curve lying in M,. Hint: blowup the
points and use the fact that the pullback to this blowup of a suffi-
ciently large multiple of an ample linear series on M, minus the sum
of the exceptional divisors of the blowup is very ample.

Together these facts show that M, is neither projective nor affine.
In the next section, we will look at some more refined results about
complete subvarieties of M, which shed light on where in the range
between these extremes M, lies.
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The geometric invariant theory (G.L.T.) approach |

This attack is quite distinct in flavor from the previous two. Simply
put, in each of the last two cases, the extra data attached to a curve
C was essentially analytic. Correspondingly, the parameter space of
curves with this extra data was not an algebraic but a complex analytic

variety, and the group acting on this space with quotient M, was J
not an algebraic group. In the G.IT. approach, however, everything is '
algebraic.

The idea is straightforward: for any integer n > 3, any curve C
may be embedded as a curve of degree 2(g - 1)n in projective space
PN = p2n-D@-1)-1 py the complete linear series [nKc|. We may ac-
cordingly attach to a curve C the data of such an embedding — i.e., we
consider pairs consisting of a curve C and an n-canonical embedding
@ : C—PV¥, Now, we've already seen how to parameterize such pairs:
the family of all such corresponds to a locally closed subset X of the
Hilbert scheme % = Ha(g-1)m.g,2n-1)g-1)-1 Of sSmooth curves of de-
gree 2(g - 1)n and genus g in PN, (Over the open set of smooth curves
in #H, the universal curve T carries two natural invertible sheaves,
the hyperplane sheaf, ©¢(1), and the relative dualizing sheaf, weysf;
X is simply the locus where Oc(1) and (wc,s7)®" are isomorphic.)
Moreover, the ambiguity in choosing the map @ is simply a matter of
choosing a basis for the space HY(C, K&™) of n-canonical differentials
on C — in other words, the group PGL(N + 1,C) acts on X, and the
quotient (if one exists) should be M.

One problem with this approach is that, since the group
PGL(N + 1,C) is continuous rather than discrete, the existence of a
nice quotient is by no means assured. This is shown by using the tech-
niques of geometric invariant theory, which we'll discuss later. Assum-
ing, for the moment, that we've constructed this quotient, however,
the approach has two signal advantages:

¢ It exhibits the Mg as a quasiprojective algebraic variety.

¢ It leads to an explicit, modular Projective compactification of
M.

Briefly, we've indicated that it requires some nontrivial work to show
that the quotient X by PGL(N + 1, C) exists. Having undertaken this
work, however, it’s tempting to try to compactify M, by taking a quo-
tient of the closure X of X in 3{. However, this is only possible for an
open subset X of X containing X. To get an idea of why some such
restriction is necessary, consider the family Tz 1) of smooth cubics
over the affine ¢-line whose fibers C; are given by

(2.11) ¥2% = x3 — 2ax22 ~ $3p23.

i
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s C; for t + 0 are all isomorphic to the smooth curve C_‘;

?,?;;ulf: e1 butt the curve Cp is a rational cpspidal curve. (;learll)", thl;
rt of jump discontinuity rules out the existence 9f any kind of goo

s uli space containing both C) and Cop. By v‘arymg.the c.h01ce o:‘h a

md b, we can arrange for C; to have any desired 'J-mvanant 50 ¢ tlel
-}Qlame for this pathology clearly belongs with Co. We're thus 'l"a?ed wtlh

' "the problem of determining what abstract curves to admit into alle

enlarged parameter space X. The right curves, whxch'emerge naturally

from studying this quotienting problem (and, as we'll see later, from

geveral other points of view), are stable curves.

i cted curve that
BFINITION (2.12) A stable curve is a complete conne t
gas only nodes as singularities and has only finitely many automor
phisms.
i In view of the connectedness of C, its automorphism group can fall
ybe finite only if C contains rational components. Thus, the finite-
¢85 condition can be equivalently reformulated as:

. every smooth rational component C meets the other compo-
+ - nents of C in at least 3 points; or,

» every rational component of the normalization of C has at least
3 points lying over singular points of C.

B aken either of these conditions by replacing th.e numbgr
:;?, ‘tl»fyv;? tvl;,: resulting curves are called semistable. Geo_metncally, this
p"ﬁ:ounts to allowing chains Ci,...,C; of smooth rational curves as
" subcurves of C. More precisely, saying that we havg a chgm m.eans
~ fhat: C) and Cy each meet the complement of the chainin Cina smgle
" ﬁbde; the other C; are disjoint from this complement; @d, e':ach C; for
{ between 2 and (k —~ 1) meets each of Ci-1 and G4 in a,su.mle node
and meets no other components of the chain. Later' on, we'll thodt}ce
 other notions of stability for curves connected with the guotlenung
brocess and, to distinguish the curves described above, will call them
moduli stable curves or Deligne-Mumpford stable curves .
Stable curves with marked points are defined analogously:

DEFINITION (2.13) A stable n-pointed curve is a comp{ete connected
curve C that has only nodes as singularities, together with an ordered
collection p,...,pn € C of distinct smooth points of C, such t}_lat the
(n + 1)-tuple (C; p1,..., Pn) has only finitely many automorphisms.

iti i dition can be

As in the definition of stable curve, the finiteness con
equivalently reformulated as saying that every rat'mnal component
of the normalization of C has at least 3 points lying over smgula;
and/or marked points of C. Also as before, if we weaken either o
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these conditions by replacing the number 3 by 2, the resulting pointed
curves are called semistable.

As for smooth curves, the arithmetic genus g = h1(C, ©¢) of a sta-
ble curve C is a primary invariant. As will be verified in Exercise (3.2),
we can reexpress the genus more geometrically as follows: if C has &
nodes and v irreducible components C;,...,C, of geometric genera
g1,--,8v, then

v
g=Y(gi-1)+8+1
(2.14) =

= (Zgi) +6-v+1.
i=1

The fact that stable curves of genus g are the right class of curves
to consider is expressed in:

THEOREM (2.15) (DELIGNE-MUMFORD-KNUDSEN) There exist coarse
moduli spaces My and M,y of stable curves and n-pointed stable
curves; and these spaces are projective varieties.

The spaces M, and M, », are called the stable compactifications of
M, and My ,.

It's hard to overestimate the importance of having such a modular
compactification: i.e., one that is actually a moduli space for a well-
behaved class of (possibly singular) curves. Clearly, being able to deal
with a projective variety like M, rather than just a quasiprojective
one like M, allows us to bring to bear many of the tools of projective
algebraic geometry in the study of these spaces; this is what will allow
us, for example, to answer in Section 6.F the classical question about
the unirationality of M,.

Beyond that, and perhaps even more significantly, the existence of a
compact moduli space for curves has changed the way we view them.
Now, anytime we have a one-parameter family of curves {C,} in pro-
jective space, or simply mapping to projective space — a family of
plane curves acquiring a nasty singularity, or becoming reducible or

nonreduced, or a family of branched covers of P! in which a large

number of branch points coalesce at once — we know that however
wild the singularities of the flat limit Cy of these curves, there is also a
well-defined limit of the arc {{C:]} C M,; in other words, a canonical
limit Yo of the abstract curves C; that has only nodes as singularities
and whose geometry will illuminate that of the curve Cy. This notion,
expressed formally in Proposition (3.47), underlies almost all of the
constructions and applications in this book. It would not be an exag-
geration to say that Theorem (2.15) has played as fundamental a role
in the theory of algebraic curves in the last thirty years as the notion
of abstract curve did in the preceding sixty.
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apmm—

As suggested above, M, may be realized by geometric invariant
theory: if we define JC to be the locus of stable curves C embedded
by the nth power of their dualizing sheaves w¢ and define M, to be
the quotient X/PGL(N + 1,C), then M, is the coarse moduli space
of stable curves. While this will be carried out in detail in Chapter 4,
we'd like now to introduce a few problems related to this construction.
If you haven't seen the basics of the geometric invariant theory of
Hilbert points, you may want to skip the next few paragraphs until
after you've read Chapter 4.

The first problem is to show that the orbits that the G.L.T. quotient
of X “throws away” are exactly those that are not pluricanonically em-
bedded stable curves. The analysis of this and related questions that
arise in the G.LT. construction of M, is quite intricate. Having carried
out this analysis, it's natural to ask what sort of compact quotient we
can build by considering not just pluricanonically embedded curves

‘but all embedded curves with semistable Hilbert points. This amounts
] 'to trying to find moduli for pairs (C, A) where C is a curve of genus g
- and A is alinear system of degree d and dimension 7 on C. For smooth

¢, the answer is both easy to state and relatively straightforward to
verify. If d » g, then the orbit of such a pair produces a point in the
quotient whenever A is complete. The resulting quotient is a univer-
sal Picard bundle P, 4. The full quotient again yields a modular com-
pactification P4, of P,,. Using the isomorphism Pay = Py+2g-24
discussed in Section B, this gives a stable compactification of the Ja-
gobian bundle. Determining which orbits, or, more generally, which fi-
nite sets of orbits, determine points of this quotient involves a lengthy
and delicate combinatorial analysis that has only recently been carried
out by Caporaso [16]: see the discussion following Theorem (4.45) for
more details.

We will discuss M, in more detail later. For the time being, we want
only to make some elementary observations. Fix a curve C with §
nodes and v irreducible components Cj,...,Cy of geometric genera
a1, ...,9v. Now, to specify such a stable curve we have to specify the
normalizations C; of the C;, and then specify the points on each that
will be identified to form the nodes of C — there will be 26 such points
in all. The family of such curves thus has dimension

(3g:-3)+25,*

M«

i

1

4You may be worried about this parameter count when g; equals 0 or 1. In the
rational case, the correct contribution should be 0 not —3. Fortunately, this is exactly
compensated for by the fact that the §; > 3 marked points on such a component
actually depend on only §; - 3 parameters because of the automorphisms of the
rational curve ;. The number (3g; - 3) actually counts moduli of C; minus moduli
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which, in view of the genus formula (2.14) equals,
3g-3-56.

In other words, the locus in M, of curves with exactly & nodes h
cod:mens::on 6 in M. Moreover, a local computaﬁ'();n in deforfnsa'l’::g:
theory w!nch we'll carry out in the next chapter shows that the locus of
curves with more than § nodes lies in the closure of the locus of those
with exactly 6. In particular, the boundary A = M, ~ M, is a divisor
with .each component the closure of a locus of curves with 1 node'
In' this case, the combinatorics are easy to work out: a stable curw_;
gelg:: one n(:ide is either irreducible, or the union of smooth curves of

Ta t and g - i meeting at one point. ive ri ivi
a?)d PO [g/ZtJl.ng point. These give rise to divisors Ag
arenthetically, we should say that it’s at this point that one i -
eral stops drawing curves as two-dimensional ob?ects and start::.lgf:g
the les.s suggestive but more efficient one-dimensional representation.
Thus, instead of drawing general curves in the boundary components
Ao and A; in Mj as in Figure (2.16), we would draw them simply as

SSCHISE®

FIGURE (2.16)

in Figure (2.17). The surface pictures are actually rather misleading:

AN

FIGURE (2.17)

locally, a node !ooks !ike a pair of (real) two-manifolds meeting trans-
_versely In a point; this can and does occur in real fourspace, but not
in thrgespace. In order to fit our pictures in a two-dimensional repre-
(s);ntt;u(l)r} :)f thr;espace, we're obliged to either pinch these planes, as
€ left, or show them as tangent as on the ri i '
i left, ang e right, either of which
The boundary components of . i
) g.n MAy be listed analogously; here
1s the statement for n = 1: the space My, is often denoted T,, and

called (misleadingly; see the discussion i Secti £
curve over M, Section B) the universal

of its automorphisms and this makes all i
! parameter counts like that above com:
right. We leave you to check that the count is also correct in the genus 1 case. e out

ey
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EXERCISE (2.18) Show that the boundary T, \ T, consists of exactly
g divisors: the closure Xp of the locus of pairs (C,p) where C is an
frreducible curve with a single node; and the closures Z; of the locus
of pairs (C, p) where C is the union of smooth curves of genera i and
g-imeetingata single point, and p lies on the component of genus i.

ﬁnmsn (2.19) Even rational curves can have moduli when marked
points are added. Show that Mo,3 and My 3 are both simply a point by
using an automorphism to fix the 3 marked points. Likewise, show that
Mo 4 = P1\{0, 1, }. Show that any singular stable curve in Mg 4 must
consist of a pair of smooth rational curves meeting in a point with each
carrying two of the four marked points and that two such are isomor-
phic if and only if the induced decompositions of {1, 2, 3,4} into two
pairs agree. For more moduli spaces of rational curves, see [91].

Here are some exercises on the stable compactification of M.

; ve, we may deduce that no stable curve can have more than3g -3

A

! nodes Prove this directly.

E:&nnasn (2.21) How many stable curves of genera 2, 3 and 4 are there
" up, to homeomorphism (in the analytic topology)? For each homeo-

- @irves in M, and say which of these loci are in the closure of which

%ﬁphism type, find the dimension of the locus of the corresponding
¥

- Quaers.

!ffmncrsn (2.22) Show that the normalization € of a stable curve C
- with 3g — 3 nodes is a union of rational curves, each having 3 marked
X points. Up to isomorphism, how many such curves C are there for
. 8 =2, 3,4 and 5? Harder: for general g?

' EXERCISE (2.23) How many components are there in the locus of sta-

ble curves with 2 or more nodes? Which lie in the closure of each
boundary component A;?

Let B be a smooth curve, p € B any point, and let X—B- {pr} be
any family of stable curves. Let  : B — {p}— M, be the correspond-
ing map to moduli. Since M, is projective, the valuative criterion for
properness implies that there is a unique extension of @ to a map
@ : B—M,. In this circumstance, the curve corresponding to @ (p)
is called the stable limit of the curves {Xg}qen-{p) as q approaches
p. The determination of such limits by the process of semistable re-
duction will be discussed in considerable detail in the next chapter.
Here is a warm-up exercise for those of you already familiar with this

process.
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EXERCISE (2.24) Let B be a smooth curve of genus g — 1, p € B any
point, and for any q € B\ {p} let X, be the stable curve obtained by
identifying p and q on B. What is the stable limit of the family {X,}
as q approaches p?

EXERCISE (2.25) [posed by Jean-Francois Burnol] Let A(® c M, be
the locus of stable curves with o or more nodes. For which a is A(®)
connected?

EXERCISE (2.26) It’s a classical fact that the automorphism group of
a smooth curve of genus g can have order at most 84(g — 1). Does the
same statement hold for stable curves?

D Geometric and topological properties

Basic properties

We've already said that M, is irreducible of dimension 3g — 3. Any of
the standard ways of establishing the dimension amounts to making
the computation of the Hilbert number in reverse: we used the dimen-
sion of M, in computing the dimension (r + 1)d — (r — 3)(g - 1) of
any component of the Hilbert scheme #; ,, whose general member
was nonspecial. Conversely, if we exhibit such a component having
dimension exactly ha 4, and dominating M, we will have verified its
dimension. This is straightforward either using Hurwitz schemes (this
is the more usual, since the dimension of any component of #;, is
visibly b = 2d + 2g - 2) or Severi varieties.

Irreducibility comes a little harder. Again, the standard approaches
invoke the parameter spaces H 4 or Vg 4. Thus, for example, Clebsch
analyzed the Hurwitz scheme #;, as a covering space of an open
subset of P?, and showed that the monodromy acted transitively on
the sheets; he deduced that 3, was irreducible for any 4 and g and
hence that M, was. Likewise, the fact that the Severi variety Vi is

irreducible for any d and g implies that M, is (although historically, -

the irreducibility of M, was known long before the irreducibility of
Va g). Although we’ll only prove the irreducibility of M, in Section 6.A,
we'll make free use of it in the interim. You can easily check that we
introduce no circular dependencies in doing so.

Local properties

The local structure of the moduli space M, is very well understood.
The basic facts, which we'll state here, are all consequences of the
deformation theory we'll describe in detail in Chapter 3.
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To begin with, the moduli space M, is smooth at a point [C] cor-
responding to a curve without automorphisms. For genus g = 4, the
gingular locus of M, is exactly the locus of curves with automor-
phisms, and the singularities of M, are finite quotient singularities
— more precisely, in an analytic neighborhood of any point [C] € M,,
M, looks like a quotient of an open subset of €34-3 by a linear ac-

" tion of Aut(C), where the fixed point sets of elements @ € Aut(C)
are exactly the curves nearby to which the automorphism @ deforms.
We will see in the following chapter how to describe this linear ac-
tion more explicitly. In particular, whenever the locus of curves with
automorphisms has codimension two or more, a curve with an au-
tomorphism must be a singular point of M,. Of course, for g = 2,
every curve has a hyperelliptic involution, but M, is smooth except
at one point (corresponding to the curve given by y2 = x° — 1, which

. has additional automorphisms). For g = 3, the hyperelliptic curves

.form a divisor whose generic point corresponds to a curve with a

single nontrivial automorphism, the hyperelliptic involution. At such

: points, the space M3 is smooth. This explains the restriction g = 4
i the second sentence of this paragraph. The exercise below checks

that these are the only divisorial components in the locus of curves

. with automorphisms.

. EXERCISE (2.27) Consider a smooth curve C of genus g with a nontriv-

* jal automorphism o of prime order p. Let f : C— D be the quotient
“.-of C by the group generated by o, let h be the genus of D, and let b
- be the number of points of D over which f ramifies.

1) Show that all ramification points of f have ramification index
~ {p-1) —1ie, exactly p sheets meet at each. Use the Riemann-Hurwitz
- formula to derive the relation

20-2=p(h-2)+(p-1)b.

2) Show that the curve D together with the branch points of f is a
stable b-pointed curve of genus h. Then, use the fact that such a D
depends on 3k — 3 + b moduli to deduce that the pairs (C, o) depend
on at most 2g — 1 moduli with equality onlyif h =0 and p = 2.

3) Show that the only component in the locus of smooth curves of
genus g with automorphisms which is a divisor in M, is the hyperel-
liptic locus in genus 3.

Analogous statements hold for moduli spaces of curves with
marked points (with the additional exceptional case of M, in which
every curve has an automorphism given by inversion with respect to
the marked point).

A similarly explicit description may be given of the local structure .
of M,. Precisely, near a point [C] € M,, M, looks like a quotient
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of an open subset of C34-3 by a linear action of Aut(C); thus M,
is smooth at points [C] with Aut(C) trivial, and at worst has finite
quotient singularities. Note that any curve in M, with an elliptic tail —
that is, an elliptic component joined to the rest of the curve at a single
point — has a nontrivial automorphism, namely, the involution on
the tail fixing the join point. Thus, for all g, the boundary component
A is a locus of codimension 1 in M, consisting entirely of curves
with automorphisms. Since a general point of A; has automorphism
group Z/2Z, such a point will be a smooth point of M,. With this
exception, M, (g = 4) is again singular at moduli points of curves
with automorphisms.

EXERCISE (2.28) 1) Show that, for g = 4, A; is the only component
of A whose generic element has a nontrivial automorphism.

2) Find all divisors in Mg, g = 3, whose generic element has a non-
trivial automorphism.

We can likewise describe the structure of the boundary A = |J A;
by appealing to results about deformations of stable curves that will
be discussed in Section 3.C. For simplicity, assume C is a stable curve
with é nodes p,, ..., ps and without automorphisms. Then in a neigh-
borhood of {C], the boundary A is a union of smooth hypersurfaces
S intersecting transversely. The hypersurface S; is the locus of defor-
mations C’ of the curve C not smoothing the node p; (i.e,, such that C’
has a node near p;). Thus, for example, if C is a stable curve that looks
schematically like the curve in Figure (2.29) then in a neighborhood

FIGURE (2.29)

of [C] the boundary will, schematically, look like Figure (2.30).
Finally, we note that the loci A; are, as our language has been im-
plicitly assuming, the irreducible components of A. Assuming the
irreducibility of M, itself, and hence of all moduli spaces of pointed
curves, the irreducibility of each A; is easily checked by exhibiting it
as the closure of the image of an irreducible scheme X under a map
X— M. A general point of A corresponds to a curve C with a single
node. If C lies in Ay, then its normalization may be viewed as a smooth
curve of genus (g — 1) with the two preimages of the node as marked
points. Identifying the two marked points thus defines a dominating
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Ai X

FIGURE (2.30)

i for some i > 0, its normaliza-
M,_y 2— Do. When C lies on A'¢ _ Y
?1’1:: hasg tvlvcz) components of genera i and g — 1 each with one marke

. point: this determines a dominating map M) X Mg-ix—™ A;.

Complete subvarieties of M,
" |ntuitively, M, isn't a projective variety, since smooth curves do de-

AT ive one
generate to singular stable ones. (The implication is only a naive

| because we'll see later that the moduli map may send the base of a

family of curves with singular fibers into .’Mq.) Og the otht:;‘olrxligg:
we've also said that it isn’t affine: for one th}ﬂg, it has x;(;l nono
stant holomorphic functions. The quespm:) anse:;lt::)eghgn o e 15
j ither affine or projective Mg is. ne way to his
tg ?)%l;gr:; that an affine variety contains no pro_|§2:tn;‘e dsjl:::::ilslt:e:
iti i i i jective variety A O
ositive dimension, while a projec
(t):ul:ologically contains an n-dimensional one. We may thus ask the

question:

QUESTION (2.31) Whatis the largest dimension 7 of a complete (i.e.,
projective) subvariety contained in M,?

However, the formulation of this question per_mlts ;or;lgj 1:::1112&;2:15‘
responses. For example, if we took an affine variety ?;in e etive
and blew up a point, the resulting vanety X would cont project
subvariety of dimension 7 — 1. Accordingly, a better posed q

1S8:

is a general point, what is the largest

QuestioN (232) If (C1 © " tive) subvariety contained in

dimension 7 of a complete (i.e., projec
M, and passing through [C]?
. . e
Here is the current state of our knowledge on these issues, in on
direction:




56 2. Basic facts about moduli spaces of curves

THEOREM (2.33) 1) For any g = 3, and for any point [C] € My,
there is a complete curve X c My containing [C].

2) For any n, there exists a g for which M, contains a complete,
n-dimensional subvariety.

The first statement was already mentioned above as a consequence
of the existence of the Satake compactification. The second result is
based on an easily described construction due to Kodaira. To give one
variant, start with a fixed curve C, of genus go. The family of branched
covers of Cy that have degree 3 and are ramified at exactly one point>
is a complete one-parameter family {C)} of smooth curves of genus
81 = 390 - 2. The key point in verifying this is that we have Jjust one
branch point (which by Riemann-Hurwitz forces us to use a covering
of odd degree). As we'll soon see, the minimum genus in which the
Kodaira construction based on covers of degree d yields a complete
n-dimensional subvariety is roughly d™; hence the choice of degree 3.
If we iterate this construction — that is, consider all covers of degree 3
of curves in the family {C) } ramified at one point — we get a complete,
2-dimensional family of curves of genus g2 = 39y, -1 =999 — 4. In
general, we obtain in this way a complete n-dimensional family of
curves of genus g = 3%gg - (3" — 1)/2. The dimension of the family
must increase with each iteration because any smooth curve covers
only finitely many curves of positive genus (see Exercise (1.21)). Note
that we don't claim that these families are connected or that they map
birationally to moduli.

For g large, this yields the complete subvariety of M, of largest
dimension known as of this writing. At the same time, it’s clear that the
dimension of the families produced is only logarithmic in the genus g.
One idea for improving the bound is to use more branch points gaining
more than a single dimension at each Stage and perhaps allowing the
ratio of gy+1/g; to be smaller as well. If we do this, however, we must
somehow ensure that when these branch points meet, as they very
much tend to do in any complete family, the corresponding covers do
not acquire singularities. One condition that would ensure this, but
that seems to be hard to arrange, is that as branch points meet, their
ramification cycles have disjoint supports in the corresponding fiber
of the covering.

We cannot resist mentioning one trick for forcing the branch points
to remain distinct. If C is a curve with a fixed point free involution i,
Wwe consider the family of all double covers of Co branched at a pair of
points of the form (P, i(P)) getting a complete 1-parameter family of
curves of genus 2g. The set of all unramified double covers of curves

SNote that these cannot be cyclic covers.

b i ily will be a complete family of curves of genus 4g¢ — 1 with
g w;g?:tnfl:;e invqutions.II,terating this pair of steps, we get complete
-p-dimensional families in genus 4™go — (.4" -1)/3. o p

., We should remark that all the curves in any of these families for
1 : nably large n are very special, so the examples are relevant only
ion (2.31).
ki "ogu t‘lzaiugeg(ative) direction, the outstanding resulE is 'Diaz' theorem
fao], whose proof we’ll give in Section 6.B after we've introduced the
* ‘potion of admissible covers.
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THEOREM (2.34) (D1AZ' THEOREM) There does not exist a complete,
(y'— 1)-dimensiong] subvariety of M, for any g.

The results above leave a large gap that cries out to be ﬁ!lefl. Specifi-
cally, we don’t know whether there exist complete sulfvanetles of .’_Mg
i..of any dimension between that produced by the Kgdau-a construction
{roughly logs(g)) and the bound g - 2 given by Dlaz.' '!‘hus, we know
‘> 0and 73 = 1, but already have only the inequalities 1 < £ <2,
¥s < 3, and 2 < 15 < 4, in which the gap is growing roughlz like g.
Even this pales before our almost complete ignorance about #;. Her'e
e know that 73 = 1 for g > 3 with equality for g = 3. But, we don’t
row whether there is any g for which there exists a complete surface
.C M, passing through a general point [C] € M,.
“To close, let's pose the:

; ikonum (2.35) Give an explicit complete ope-parameter family

' X—Bof plane quartics whose generic element is s'moot'h and wl;ose

associated map B— M; is nonconstant but lies ent_lxely in M3. (Since

 the discriminant locus is a hypersurface in the prqjec0ve space of all

" quartic curves, some of the fibers of X must be singular, but we as,k

that their semistable models — see Section 3.C — be smooth. As we'll
see, this could happen, for example, if they are all double conics.)

We might mention parenthetically here that there is an analog-o_u_s
question for Hilbert schemes that is likewise open. Thc_: problem is: if
R c H = 3,4, is the open subset of smooth irreducible nondegen-
erate curves in the Hilbert scheme # of curves of deg::ee d and genus
g in P", how large a complete subvariety may R cpntam? The best r_e-
sult along these lines is a beautiful theorem of Me_l-Chu Chang and _Zlv
Ran ([24], [23]), which states that R cannot confam a complete vane{y
of dimension r — 1. At the same time, it is possible to constrpct fax_m-
lies of smooth irreducible nondegenerate curves C c P” of dJmens19n
r — 3 for any r — see the exercises below — and r — 2 fqr some spe_c1al
7. Thus, the answer is nearly known, but a gap remains. In parpcu—
lar, it isn't known whether there exist complete, positive-qimeg.nsmnal
families of smooth, irreducible and nondegenerate curves in P3.
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EXERCISE (2.36) Show that there does not exist a complete, positive-
dimensional family of twisted cubics in P3.

EXERCISE (2.37) Let A ¢ PN be an abelian variety of dimension n,
embedded in projective space of large dimension, let 77 : A—P"*3 be
a general projection, and let C C A be a curve. Show that the map
restricted to any translate of C is an embedding, and deduce that there
exists a complete, ( — 3)-dimensional family of smooth irreducible
nondegenerate curves in P".

EXERCISE (2.38) Let 0 : P" x P"-3—PN be the Segre embedding, and
let @ be the map

@:P 3 +G(n-r-1,N)

sending a point p to the subspace Ann(o (P" X {p})).

1) Show that the pullback @*(Q) of the universal quotient bundle Q
on G(n — r — 1, N) is projectively trivial, i.e., is a line bundle tensored
with a trivial bundle of rank r + 1.

2) Now let C c (PN)V be the general translate (under the action of
PGL(N + 1, C)) of a smooth curve. Show that the projections g (p) of

C from the subspaces @(p) give a family of smooth curves in P” of
dimension 7 — 3.

EXERCISE (2.39) More generally, let X— B be any family of smooth
abstract curves with n-dimensional complete base B, and let L be a
very ample line bundle on X. Suppose that ho(Xb.le,,) =2n+4and
that, for b € B, the restriction map H?(X .L)—»ho(x.,,qx ) is surjec-
tive. Show that if 0y, ..., 0n+3 are n + 4 general sections of L, then the
map @, : X—P"+3 embeds each fiber X, of X as a smooth nonde-

generate curve in P**3, again giving us an (v — 3)-dimensional family
of smooth curves in P".

Cohomology of M,: Harer’s theorems

We come now to the fascinating question of the cohomology and/or
cycle structure of M,. Most of what we know about the first of these
questions is due to work of John Harer ([72], [74]), who uses the de-
scription of M, as the quotient of the contractible Teichmiiller space
by the Teichmiiller modular group I; to derive results on H*(Mg4, Q).
(As remarked above, these methods lead only to results about rational
cohomology so we shall suppress the coefficients in what follows.)
The first result of Harer’s that we'll give is the one that in some
sense frames all the others. This is the stability theorem, and it says

Wy
i,
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that the low-dimensional cohomology ring of M, is infiependent of
g. Specifically, Harer [73] shows that we have isomorphisms

(2-40) H*(M,) = H*(Mg.1) for3k-1sg.

Moreover, when all the relevant isomorphisms. are ('ieﬁned tpey com-
" mute with the cup product. The bound for k in this result is proba-
bly far from sharp: Harer conjectures that the isomorphism §hould
continue to hold until k is roughly equal to g. Tt.le most impor-
tant possibility opened up by the stability thgorem is that of del-in-
ing what is called the stable cohomology ring H *(M) by setting
HY(M) = H¥(M,) for any g > 3k - 1; it is this ring that is the fo-
cus of most of the results that follow. (We empha§1ze that H*(M) isa
purely algebraic object: there is no actual moduh_ space M. Atltl.loug!l
it's possible to construct objects that are topologically like this imagi-
pary M, it’s necessary to take a limit over g ot: spaces parameterizing
/ the universal curve T, plus additional analytic data in the form qf a
“36cal coordinate at the marked point. The resulting spaces are infinite-
: jonal for all g [9].) _
%%se isa comectgre about the stable cohomology of moduli, called
* the standard conjecture which expresses H *(M) in terms of certain
" standard cohomology classes k; in H*(My). (These classes are also
" known as tautological classes.) To motivate the definition of t‘hese
classes, think of a cohomology class on a space X as a functional
that attaches to each cycle of the appropriate dimension a numbe:r,
" ‘measuring the nontriviality of that cycle in some respect. A. cyf:le in
‘.‘Mg corresponds to a family of curves, and the cycle is trivial if the
family is, so we may accordingly think of a cohomology class in M,
. as something that attaches to a family X — B of curves (of the appro-
e priate dimension) a pumber measuring the variation of the curves in
‘ family. .
th::n- exazlple, suppose I : X—~B is a family ot: curves with one-
dimensional base. To say that the family is trivial —i.e., that X = Bx- C,
. with 1t the projection on the first factor — imp!ies that the relative
" dualizing sheaf wx/s (to be defined in the following chapter; for fan.l-
ilies of smooth curves it is simply the relative cotangent bundle) is
a pullback from C, and hence in particular that its first Chern class
has square c1(wxp)? = 0. (Conversely, it's not hard to see that if
c1(wx,p)? = 0, then the family is isotrivial.) We_may thus think of the
degree of c (wx/p)? as a measure of the nontriviality of the -famﬂy.
With a bit more care, we can use this procedure to desc.rlbe a co-
homology class of codimension 2 on M,. The extra care is needed
because M, is neither smooth nor a fine moduli space. The construc-
tion that follows is a first example of the kind of persisten't, bu_t fun-
damentally minor, irritation that these facts cause. We will give an
informal sketch here assuming g > 4. We first throw away the locus
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of curves with automorphisms: for i
: : : g 2 4 this has complex codi -
csll:l?ni Zn 2, and so won't affect H?(My). (Alternatively, Iv)ve may?lr;.llaine
oty em?n:(gl.alo&())us to (t’gose that follow using a rigidified modulj
R b.'Cg — M, and_ then push the Corresponding classes
o t g Dy the corresponding finite covering map. This method
orks forall g > 2.) We then have a universal curve rr 1T — MY with

a smooth base. On 9, we have a relatj izi
Therefore, we can dgﬁne the class ve dualzing sheal  ~ i
N = c1(weg;ag)

on ’Cg as the first Chern clasg of w, and, on .Mg the class

K1 = T (0%) = ma (€1 (weg mp)?)

as the-Gysin image of 1 of n2.

. kl sTurni(laLI;ashlon, we can define classes x; € H2%(M,) by setting

. tiab—le c:)hn )1. The'stapdard conjecture (122] then states that the
omology ring is freely generated by these classes, that is:

CONJECTURE (2.41) (MUMponb's STANDARD CONJECTURE)
H* M) = Q[Ky, K, ...].

Ed Miller [114] has shown that Q| inj
: _ 1, K2,...] injects into H*
(c)gnastsr:i::ﬁg’ .9f\(1)r any %lmte set of classes in the standard ﬁng(.:ly)clzz
9 on which these classes take on ind '
In the other direction, the evidence w his sonon vuEs,
on, e have for this conje i
due to Harer.6 Specifically, Harer has shown in [72] and??Sc]u:hr:tls -

HY(Mg) = H3(M,) = 0,
(2.42) H*(Mg)=Q -k,
H'Mgz)=Q - xy0Q- (k1)

The first two results show that Pic
! (Mg)®Q, the rational pi
group of line bpndles on My, is of rank 1, and that it is generafelcclagg

the statement “all crows are black” i hing,
; A ¢ black” is the logical equivalent of *al] thi
lgck are not crows”, a white Piece of chalk, for example, could be seei:t::tp:rseiget:

x
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. the line bundle with first Chern class «;. Recently, Arbarello and Cor-
palba [6] have discovered a beautiful algebro-combinatorial approach
which allows them to calculate the first, second, third and fifth co-
homology groups of M, and also provides some information about

M-

* EXERCISE (2.43) Show that if B is any complete curve that maps

. finitely to M) and m : T— B is the corresponding family then «; is

- nonzero on B. Conclude that x; isn't a torsion class on M, and hence
that H2(M,) does indeed have rank at least 1.

Harer’s results also show that Pic(M,) ®Q is freely generated by ki
and the classes §; of the boundary components A;, and, as discussed
in the next section, allow us to determine Pic(Cy) ®Q.

«, There is another approach to generating cohomology classes in M,
% that should be mentioned. Another way of measuring the nontriviality
f a family mr : X — B is by its Hodge bundle A , which can be viewed
informally as the vector bundle of rank g whose fiber over a point

.€ B is the space of holomorphic forms H%(Xp,K) on the fiber Xp.
> (More precisely, the A is the direct image m, (wx/p) of the relative du-
= gllzmg sheaf.) In particular, we can associate to any family m : X —B
” the Chern classes c;(A). This suggests looking at the Hodge bundle
A on M, associated to the universal curve’ T,— M, and taking its

Chern classes

Ai =ci(A).

These also give cohomology classes on M,. As it turns out, these are
polynomials in the classes k;, although the converse is not true.

One other beautiful result in this line is the calculation of the orb-
ifold Euler characteristics of the moduli spaces M, by Harer and
Zagier [76]. The answers are striking: for example, they show that the
orbifold Euler characteristic of the universal curve is

B:
X(Mg) =T(1-29) = —%.
where T is the Riemann -function and B denotes the Bernoulli num-
ber.

One consequence of their results is that the standard classes do
not generate the full cohomology ring for large g. This can be seen
by bounding the total number of standard classes and comparing to
the absolute value of the Euler characteristic. Already for g > 15 the
Euler characteristic is clearly larger, but it may well be that there are

"We leave you to supply the incantations analogous to those above needed to make
formal sense of this.
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nonstandard classes for all g > 3. For
. For instanc ij
that H%(M3) is nonzero and not tautological. ® Looljenga has shown

Cohomology of the universal curve

Il;a(l)r:lll'h !Jsas also pro@uced analogous conjectures and results for the

Pl wI:latclf:totl;l pmtntbeld cull'lves. For example, in the case of T4, Harer
€ stable cohomology of T, i :

by the class w of the relative dualizignyg slg;;‘s Beterated over H™(M)

dle-w generates the Picard group of T,
card gr g over the Picard group o .
Il:)); ﬁ: :]a;:se token, this LmPhes that Pic(C,)®Q is fregly ggne’;::a‘:i
e w, togethex: with A and the classes 0; of the bound
ponents ;, as described in Exercise (2.18). (For a more ete
statemen.t over Z, see Arbarello and Cornalba, [5].) complete

conjecture.

This conjecture states that an i
_ ' y assignment to a general ¢

?,ne l:)lindle on C — precisely, a section of the um‘vgersal Pic:rr:i,i'gn%i;
tl:égma l(;_r:pan open subset of My, or equivalently a rational section of

. ld,g T—.Mg — must be a power of the canonical line bundle
hn'[_‘hexs l:vue:ls dﬁ assically stgted in the form, “the only rationally determineci

€s over moduli are the powers of the i
: ! canonical b "

. (;I‘ehl&sc tp}‘rlt‘:blem pras ﬁ_rst consu?ered by Enriques (cf. [43)) v:rlllllt()ﬂfzﬁnd
ey 1().;::: s ;(:2;% tltlatf hg:rll)roof was faulty, he formulated the
2 nt o iques’ conjecture, which i

¢ State : s ) ch is actu,
stronger' assertion 1n}plymg the Enriques-Franchetta conjectur:niz
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One hypothesis that would guarantee the existence of the desired
patchings would be the existence of a Poincaré line bundle over P44 —
that is, a line bundle on the fiber product Pg4,4 X », T4 whose restriction
to a fiber of the product over a point (C,L) € Pg is L. A theorem due
to Mestrano and Ramanan [113] asserts that there is a Poincaré line
bundle on P, if and only if d — g + 1 is relatively prime to 2g - 2.
A spectral sequence argument does show that, given any rationally

" determined line bundle with “fibers” L, at the points of a variety X,

there is a number n such that all the “fibers” (L,)®" do come from a
line bundle on X. This, combined with Harer's results, implies that any
rationally determined line bundle over moduli is a rational multiple
of the canonical bundle.

To finish off the Enriques-Franchetta conjecture, then, it remains to
analyze the finite covers of M, obtained by taking roots of powers of .
K: that is, for any d, n and g such that (2g - 2)|nd, the spaces

-  pon = g®(5%)

> We would like to be able to say that the space Jn,4,4 has no section
. qver My, except for the obvious ones when 2g — 2 divides d. It would
. be independently interesting to know more about the monodromy
.. of this covering space as well in order to understand its component
+ structure. When d is divisible by 2g ~ 2, for example, the (5;%)-
canonical bundles form an isolated sheet. When d = 0 so that we’re

" tonsidering n-torsion line bundles, the monodromy group is known to
“ be Sp(2g,Z/nZ) and the cover turns out to be irreducible if and only

if n is prime; of course, this is then also true when 4 is a multiple of
" 2g — 2. The other classically understood case is whend = g — 1 and
n = 2 when there are exactly two components corresponding to even
and odd theta characteristics. A first question might be: Is the cover

" irreducible when d is relatively prime to 2g — 2?

Cohomology of Hilbert schemes

Two considerations prompt us to look for algebraic approaches to the
standard conjecture. The first is simply our pride as algebraic geome-
ters. The second is that Harer's approach to the calculation of H*(My)
becomes much harder to carry out with each increase in i; already with
i = 4 we appear to be reaching the limits of human patience and per-
severance (although Harer and some of his students have done work
on the next cases). It seems unlikely that his methods can be pushed
much further.

The most promising strategy is to try to solve the problem in two
steps: first, understand the cohomology of some parameter space or
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csll'::lces, tslclacond, by studying the maps from these spaces to modulj
(Whilgle e cohomology of M,. For example, the irreducibility of 2
(w amounts to the calculation of H(M,)) is proved by showing
at .the Humtz schemes are irreducible and then showing that e :
Mf{ is dominated by such a scheme., Y
€re we simply want to mention some conjecture
ogy.of the Hilbert scheme that are in clostlall analog; (t)(l)l $: cs(::::inagzi

follows. First, look for a canonicall i
\ y defined line bundle on the unij-
\c/s;ssait; tcuenrvt]; ‘g‘g l'ig:'d rI(;nueghlb)l;;:‘(jllujva\lentgl1 at least up to torsion, for a
€ on each fiber of T,. Th
Chern class of this bundle, raise it t i 2, and take ther
n s 0 vario i
Gy‘:m images in the cohomology of M,. Vs powers and take their
5 =e ;‘n}:y dq{;:e(anclt:iyn tgj;fsame tlnnugml in the case of Hilbert schemes
g erence is that there are no i
figﬁned bundles on the universal curve 1 : X — 9 ?hx(;f:gg:l ;:.Bly
Lszfsheaf W = wx3r as before, and the line bundle 0x(1) pulled
a]?c rom Qpr( }) by the inclusion of X in P x H . We may thus tak
monomials in the Chern classes n and & of these two line bun(-e

over Q by the classes
A=my(8%), B=m(E-n) and C=- 4 (n?).

We may call this statement the sta fe
\ ; ndard
du‘:a,ensmnal cohomology of the Hilbert schen‘;zmecmm for the low-
€ may make an analogous conjecture on th : i i
- ¢ low-dimensional co-
gl:rsnsology of the universal curve Xg—R: that it's generated by tcl?e
es n and £ over the ring H*(R). In particular, this would say

m, Lc = w@" @ Oc(m)”, this coni i i
® ( . njecture is already in Enriques,
:z (fj(;; e:l:llgi :]111;11 ?;f) thesle conjfectures lead to statements tha(i the il:“srt
omology of R is generated by stand
bolljmdary components which we won't formu]a};e hert:.lrd classes and
nfortunately, these conjectures are false in general. There are ex-
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EXERCISE (2.44) Let 5o be a smooth cubic surface and L,,...,Ls be
' disjoint lines on Sp. Let Co C So be a general curve in the linear system

CoenH-L; - 2Ly — - - -~ 6Lg].

Show that if n is sufficiently large, then
1) Co is smooth and irreducible;

- 2) a general curve C in a component #{ of the Hilbert scheme con-

taining [Co] also lies on a smooth cubic surface S; and,
3) the class of the curve C c S is expressible in the formnH - 3 i- L;

" for a unique choice of 6 skew lines L,,...,Ls C S.

How large does 7 have to be for each of these assertions to hold?

EXERCISE (2.45) Let X— % be the universal curve over the compo-
nent H of the Hilbert scheme described in the preceding exercise and

Xz — R its restriction to the open set of smooth curves. Show that the
. classes H and L,,...,L¢ give rise to seven independent line bundles

..on Xz, whose restrictions to a general fiber C ¢ Xz are independent.
In other words, show that the group of rationally determined line bun-

dles on Xr—R has rank at least 7. For extra credit, show that the

" rank is exactly 7.

- EXERCISE (2.46) Continuing our analysis of the Hilbert scheme de-

" scribed in the preceding exercise, consider the Gysin images of the

.+ pairwise products of the classes H and Ly,...,L¢. Show that these

" glve rise to at least four independent divisor classes on #, thus vi-
- olating the standard conjectures on the Picard group of the Hilbert

.. 8cheme.

It's therefore somewhat remarkable that for r = 1 and 2 (that is,
for the Hurwitz scheme and Severi variety), the standard conjectures
do seem to hold. Why this should be is unclear. The situation is com-
pletely analogous with those considered in Chapter 1: the Hurwitz
scheme and Severi variety are always irreducible of the correct di-
mension, while the Hilbert scheme is in general neither. The basic
references for the Severi variety case of these conjectures are {33],
{32] and {36} in the last it’s shown that a verification of the standard
conjecture on the Picard group of Severi varieties would imply Harer’s
theorem on the Picard group of M,. Diaz and Edidin {31] have some
results in the Hurwitz scheme case.

There is a further point to be made about the standard conjectures
for Hilbert schemes of curves in higher-dimensional space. This is
that, empirically, the components of the Hilbert scheme that violate
the conjectures all lie over relatively small subvarieties of M, — ones
of codimension on the order of g or more. This phenomenon has been
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CONJECTURE (2.47) (ENRI
. QUES CONJECTURE) 1) Lot
;m;;i of_ branched covers 1t :C—Pl of p! of degreej?i‘d:ndbe i
0. r cisa ﬂr‘anonally determined line bundle on every curve Cg_enus
;esr seiIt of Ha g, then for some n and m, Lc = w@™ & m* o, (ml)n “
2 rve': o‘;:ibe"g in \;d,g nZe the locus of reduced and irreducible piane
b pbigod rave Cg;e:l;.; 9.IfLc isa rationally determined line
mLe 5 wen oo, open set of Va4, then for some n and
3) There exist regl number
; S =m(g) >0 =
ZI; bzl;'t”o”;':"g Statement holds: if 3 isgany cor::odngnt oﬂ;(gl:z .:uch _that
inducedscr‘-ag::a (;f curves o'f degree d and genus g in P" such etsht:tctt’e:
than on emonal ‘rxm'zp Q:H—~ Mg has image of codimension less
8+B,andiflc isa rationally determined line

bundle on every curve ¢ j
in
m, Lc = w@" ® Oc(m). £ Open set of Vag, then for some and

EXE

e :nc:if;lix :azs.:‘? S;l}llow that any one of these three statements implies

clently lon wlt? etta conjecture. (The converse, in case d is suffj-
respect to g, was established by Ciliberto [25]).)

co;*(t:; (s)iztem:;l:l:)f tl'1e standard conjecture for the low-dimensional
« slightlygxstll o dzh!:;l;er; i]chhe!ne (again just for the Picard group)
o _ ~Cale, since it matters just what

e Humnt;/Seven/Hﬂbert scheme we choose, Probatﬁl;etrllles lg’eﬁe(s)f

CONJECTURE (2
-49) (STANDARD
OF PARAMETER SPACES) CONJECTURE FOR PICARD GROUPS

1) Pic(Hy,) 0 Q = 0;
2) Pic(Ugy) @ Q = 0; and
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i3) There exist real numbers & = «(g) > 0 and B = B(g) such that

‘the following statement holds: if H is any component of the restricted

_Hilbert scheme of curves of degree d and genus g in P" and HeH

_.the open subset parameterizing smooth curves, such that the induced

map @ : H — M, has image of codimension less than or equal to

- g + B, then the Picard group Pic(}) ® Q of H is generated by the
. classes A, B and C.
"' You may feel that the formulation of the third part of each of these

éoniectures in terms of unspecified constants «(g) and B(g) is a

: cheat: the statement as a result is so vague as to be virtually immune

to counterexample. We agree. The problem is, the evidence available
doesn’t give a clear indication of what the correct values of these con-
stants should be. For the examples of which weknow,x =1and 8 =0
should work; but that may not be the strongest possible statement.

i lWe leave it instead as a challenge:

égpnmu (2.50) Can you find a component 5 of the Hilbert scheme
vhose image in M, has codimension less than g that violates the

- gtatement of either conjecture above?

EXERCISE (2.51) Calculate the codimension in M, of the image of the
component of the Hilbert scheme introduced in Exercise (2.44); in par-

~ ticular, observe that it's greater than g.

k Finally, we should say that there are analogous conjectures about

the dimension and irreducibility of the Hilbert scheme. As we re-

marked, while the Hurwitz and Severi varieties are always irreducible
of the expected dimension, neither is true of the Hilbert scheme Hg 4~
~ in general. But, it may be conjectured that, as in the two conjec-
tures above, the corresponding statements do hold for components of
H 4 whose images in M, have relatively small codimension. We will
discuss this briefly following the proof of the Brill-Noether theorem

in Chapter 5.

Structure of the tautological ring

Having produced, at least conjecturally, classes which generate the
stable cohomology ring of My, a natural problem is to understand
the relations amongst various products of these classes. The results
and conjectures about this question are most easily discussed in the
setting of the Chow ring A*(My) rather than that of the cohomol-
ogy ring H*(Mg). To set this up, we define the tautological subring
R*(M,) of the Chow ring A*(M,) to be the subring generated by the

tautological classes k; and A;.
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The first result about R*(M,) is due to Mumford [122] who showed
that it's generated by the g—2 classes K1, .. ., kg-2. The first element of
the proof is a Grothendieck-Riemann-Roch calculation which shows,
as was already noted in the discussion of Harer’s theorem following
Exercise (2.43), that the A’s are all expressible in terms of the «'s.
(The first two such expressions are calculated in Section 3.E: see equa-
tions (3.106) and (3.107)). To express k; for i = g + 1 in terms of the
lower «'s, Mumford uses the natural surjection between the pullback
1*(A) of the Hodge bundle under the map 1 : C,— M, and the rel-
ative dualizing sheaf wc,;n,. The kernel of this map is a locally free
sheaf of rank g — 1 onC,4 and so its Chern classes vanish in degrees
above g — 1. Pushing down to M, gives a relation in each degree i
greater than g — 2 between k; and lower «'s. He applies the same tech-
nique to k-1 and K, except that now the pushed-down relation also
involves the A's. Since he has already shown how to express these in
terms of the «’s, he is able to handle this by showing that the first two
such relations are independent. Both steps yield a slew of relations

not used in the proof but, at least initially, it was not clear that these
could be summarized in any concise form.

Looijenga recently showed that Mumford's result is a shadow of a
much stronger vanishing result:

THEOREM (2.52) (LOOIJENGA) In any degreei > g — 2, R{ (M) = {0},
and R8-2(M,) is generated by either the class of the hyperelliptic lo-

cus or the class k;-,. These classes are nonzero so R9-2(M,) is one-
dimensional.

We won't discuss the proof here — it's given in [110] (except for
the nonvanishing of R9-2(M,) which is shown in [48]). However, you
may get an idea of the force of this result by noting that Diaz' theo-
rem [Theorem (2.34)] is an immediate corollary.

Even before Looijenga’s result was established, Faber [48] had in-
cluded it as part of still more precise conjectures about the structure
of the tautological ring. The first part can be stated immediately.

CONJECTURE (2.53) (FABER'S CONJECTURE, FIRST PART)

1) The tautological ring R*(:M,) “looks like” the algebraic cohomol-
ogy ring of a nonsingular projective variety of dimension g — 2.
More precisely, it’s Gorenstein with socle in degree g — 2 — that is,
it vanishes above degree g - 2, it's one-dimensional in degree g — 2
and the pairing R*(My) x R9-274(My)—~RI-2(M,) is perfect —
and satisfies the conclusions of the Hard Lefschetz theorem and the
Hodge index theorem with respect to the class k.

2) The [§ | classes K1, ..., K| g/3; generate the ring with no relations
in degrees less than or equal to 1 4 |.
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's conjecture deal with the nature of the
’?tlizgsthiflrtg:l:asuglg:?cz ringfn'[he first qugstion dto astllclls; :::Z %‘p
ce such relations? To answer this, we introduce th 8
the ;f?)‘lld fiber product of Ty over.Mg, which parame'tl(;lf;sc :sgrr_vus
C of genus g plus a d-tuple of pomt_s P1.P2:- .:,pd,l cessarty
This comes equipped with diagonal divisor classes Ud,i; ' e
dmjnﬂilere pi = pj)and with bundles which we denote W4, obtalm;lh
‘ocusuvnving balck thje bundle wc, /M, via the pro_jection onto th; }lis
?ayct%r. There are lots of other projection mapgc::if_ g § {f }).r Z,e.t m'lg I8
a subset of order e, we have a map 4,1 :‘CZ—— % ¢ by 0 tlgng ing e
ints p; fori € I. It also carries a particularly intere g e
go of rank d, which can be described informally as the bl:ln e
ﬁ‘il)'er over [(C,D)]is H°(C,Kc/Kc(—D)) or, more precisely, as

@

d
(ﬂd+l.{d+l‘)* ((Z 0D¢+|Yt)®wd+l,d+l) .
i=1

‘ i . A—F4 — we use A to denote
dies the evaluation map @ : A—Fkq —1 '
B It'::ex:‘u‘ls]tll;ack of the Hodge bundle to‘Cz __ which is fiberwise the map

ightforward ap-
—» HO(C, Kc/Kc(~D)) and shows, byqstraxgh :
gl:c(ft‘iflf Z)f Port(s.ous' formula (which we'll study in Chapter 3 starting

on page 161) that:
PROPOSITION (2.54) In ATy, cj(F2g1 — A) =0 forj =8

On the other hand, pushing downdt(:mmid? am,'f trlx::?o?:ial u; :)1‘1;
Dy ; and wg,; involved in the defl tion 0O 4’s turns C
:Lag:!/: a;'l{alement olf the tautological ring on M.g so this re‘l;ggi
pushes down to onein R*(M,). The rules for carry;ng t;lhis g:it]:ension
i in 1982"). Unfortunately, the €
ready written down in [_82] (_m ! DTty e e e cure
in which this relation lives 1s'negagve S0 Lems are D e push
i ultiplying this relation with suitab e cla ore hing
:lh;‘SNEYTIlele re{:\tions thus obtained are then highly nonobvious. In fact,
Faber conjectures that:

’ SECOND PART) The ideal
NJECTURE (2.55) (FABER'S cqrmzcruma, ;

g)? reJIations in the tautological ring R¥(My) is generated by those of

orm

theff (M - cj(F2g-1 — A))

i i . and all j = g. (Here

ials M in the classes Da,i; ar_ld wa,i, 4 .
):;)r:a:izr:fln 3’: 2g-1} is the projection which forgets all points).

We won't go into the mechanics of how ‘ijndjvit!u;l) :;Lat;:?asﬂ ;11((;;
j nor in
in the second conjecture are unwoun
th}:;:ethe conclusions of the conjecture may be deduced from sets of
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such relations except to sa
. \ y that the difficulties ared i
- : / ue mainly to the
Fagglzv il;i:ing combinatorial complexity of the calculations (cf. [47)).
things out for g = 2,3 and 4 on pages 10-12 of {48]. In

cases. Even using a symbolic calculation program, a naive approach

g;l):né :Iﬁ;r:ttgm:ai:;:l\'zedbtlxsing sonfl;,: auxiliary rules, Faber, assisted
co A N able to verify the conjectur

prg:@ng ver(ylr strong evidence for it in genellgl ©forg < 15 thus
ving produced relations, it’s natural to asl;
V) ) ) whether they can

explicitly expressed in terms of the «’s themselves. Here agaz'n Fabl;f-

has a beautiful pro i i
verification ror g S;;(;s.al for which there is also a computer assisted

CONJECTURE (2 56) (FABER'S

JE . CONJECTURE )
partition P of the integer g -2 as a sum d; +'dTT?) i
Integers. For each subset, S ¢ {1,2,.. ;
For each permutation o € Sip), let

any
k(P)}, define ds = 3 ;e d;.

oO=0 -az-...-ay(,,)

be its expression as a L
product o
of &y (so that the sets Si partitior': :Imomt cycles, let S; be the support

and let he Set{l,Z,“_'k(p)})’ letd; = dg,,

v(o)

ko= [] ka, & RI2( M),

i=1

If we let

Tp = Z Kop,
Uesm)

then, in R9-2(M,), we have the relation

1p = (20 -3+ k(P)))(2g - LN
(29 - 1)! [T1¥%9 (2a; + 1)n o2

in which (2n - 1)1 denotes, as usual, the product1-3.5.....(2n—1)

to yield relations for individual Products of x's of total degree g - 2.

For example, Zagier showed that the third conjecture implies that
2

1 o
712 (@~ 21k, ,.
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Witten's conjectures and Kontsevich’s theorem

Faber's motivation for looking at the class 7p in the preceding
subsection comes from work of Witten {152]. There he defined
a much larger family of such T-classes — in Witten’s notation,
Tp = (Tay+1, Tdp+1, -+ .1 Tdypy+1) — and conjectured that a generating
function F encoding all the intersection numbers associated to these
classes satisfies two distinct systems of differential equations (one of
which is the Korteweg-deVries system and one of which is associated
to the Virasoro algebra).

At the time it was stated, this seemed, to us at least, plausible —
there was numerical evidence for it coming from earlier work of Mum-
ford on R*(M3) [122] and Faber on R*(M3) (145), 146])) — but out of
reach. However, a tour-de-force proof was soon provided by Kontse-
vich [102]. He uses a combinatorial version of the moduli space based
on ribbon graphs to express the generating function F in terms of ma-
trix integrals. This allows him to show that F satisfies both systems
of differential equations by applying properties of these matrix mod-
els (cf. [89] and [34]). Probably the best place to begin if you want to
understand the proof is Looijenga’s Bourbaki Seminar talk [109].

In the rest of this subsection, we will simply state Witten's conjec-
tures, suppressing, as usual, details of how various definitions which
follow are made precise.® We begin by defining the line bundle £; on
M,,» to be the unique line bundle whose fiber over each pointed sta-
ble curve (C;p1,...,Pn) is the cotangent space of C at p; and letting
@1 € AY(My,,) be the first Chern class of L;. It is convenient, and
as we will see, nearly always harmless, to suppress the dependence
of the classes on . and g: when we need to make this dependence
exp].icit, we Will write Lg'n'i and Wg,nli-

Witten's conjectures concern the intersection products of the
classes ;. A concise notation for these products which exploits the

symmetry in the markings is given by
- ki, k

@5) (TuTe Ty = [Ty = [m‘ wies ek
i=1 a.m

Such products are well-defined when all the k; are nonnegative inte-
gers and the dimension condition 3g — 3 + n = Y1-; k; holds. In all
other cases, (Tg, Tk, * - * Tkn) g is defined to be zero. The empty prod-
uct (1), is also set to zero. The simplest nonzero integral (on Mo3)
is (13)¢ = 1. This evaluation and the first evaluation in the following

8We are grateful to Rahul Pandharipande for notes on which this subsection is
ed.
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exercise act as set of initial conditi i
(cf. Exercise (2.63). tions for the recursions which follow

EXERCISE (2.58) 1) Verify the evaluation (T 1
i 1)1 =2(nM
2) Verify the evaluation (1371)o = 1 (on Mo 4)1. 24 L.

Lett = (to, ty,...,ts,...) be an infinite vec i

: B 3 PRRPE FI tor of variab)

by i 2 0 and let y denote the formal sum y = 3,2 ;7. \srttlgli o
considers the formal generating function for the products (2 57)-ll &

n=0

in which the expression (y™), is defin i
o ) ed by monomial
multilinearity in the variables t;. Thus, more concretel;ixp ansion and

0 LNy

t:
Fg(t) = Z (l—[ nl—i!)(T;oT;“T;z .. .)g,

{n} i=1

where the sum is over all sequences of n ive i
' onnegative integers
finitely many nonzero terms. The generating function F deﬂmﬁ t‘:;i:th

F= A%7F,
8=0

arises as a partition function in two-dimensional
: - quantum
Base(:l on a dlfferen? physical realization of this function in lg:;ﬂwi’
matrix integrals, Wltten {152] conjectured that F satisfies two sd'0
gglc;useil;?nnés of d;fferential equations. Each system determmeslsl-:
provides licit re i

Y. exp cursions which compute all the prod-

Before describing the full systems, two basic properties are needed

for products with 2g -2 +n > 0. U .
. Und i .
equation says that er this hypothesis, the string

(2.59) (To Hm)g = Dt [ 11w,
- Jj=1

ixj

and the dilaton equation says that

(2.60) (Tl n Tkt)g =(2g-2+ n)(ﬁ Tki)g .

i=1 i=1

Both the string and dilaton e i i
_  al quations are derived from a
ison result describing the behavior of the y classes under :::mfk
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pundeSie e

via the map 7 : M, n+1— Mg which forgets the (n + 1)* point. If
je{l,...,n}, the basic formula is

(2.61) Ygn+li = T"*(Wg.n.t) +[D]

where D = Mo2 X Mgn-1 is the boundary divisor on Mgn+1 Whose
generic point parameterizes the join of a curve of genus 0 containing

_ the marked points pi and pn+) with a curve of genus g containing the

other n — 1 marked points.

EXERCISE (2.62) Prove equation (2.61) and use it to deduce the string
and dilation equations (2.59) and (2.60).

The next exercise gives a first glimpse of the force of these two
equations.

. EXBRCISE (2.63) 1) Show the string equation and the initial condition
W (Tg 0=1 determine all the genus 0 products in (2.57). More precisely,
i, show that

- _ (n-3)
(Dl ko = Tl kit

2) Show that the string equation, the dilaton equation, and the initial
condition (T1), = 27 determine all the genus 1 products.

Associated to each of the string and dilaton equations is a differ-
ential operator which annihilates exp(F). The operator associated to
the string equation is

3 A%, < d
(2.64) La=-z=+5 bt gotm T
and that associated to the dilaton equation is
39 <2+1 9 1
(2.65) Lo——2E+t§o > tiat¢+16'

EXERCISE (2.66) 1) Show that the string equation and the initial con-
dition (73} = 1 imply the equation L_1(exp(F)) = 0.
2) Show that the dilaton equation and the initial condition {T1); = 24
imply the equation Lo(exp(F)) = 0.

The first system of differential equations which Witten conjectured

the T-products must satisfy are the Korteweg-deVries or KdV equa-
tions. To give his very compact formulation, let us set

9 0 0
(2.67) (Tk,Tkz . 'Tk,.) = -a't—k—a—tk' R WF’
1 1 1
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so that, in particular, {Te, Tk, * * Tkn M=o = (TkiTkz * - * Tky)- Then,
Witten shows that the KdV equations for F take the form:

THEOREM (2.68) (WITTEN-KONTSEVICH FORMULAS, KDV FORM)
For all n = 1, the generating function F satisfies the equations

2n+DA-2{TnT2) = {Tn_17T0) (T3)+2(Tn_1T§)(T§)+%(Tn_1T3).

Witten further showed that these equations and equation (2.64) for
L_, together determine all the products (2.67) and thus uniquely de-
termine F.

As an example of how this works in practice, try taking n = 3 and
evaluating equation (2.68) at t = 0. We obtain

1
7(1378)1 = (T2To) 1 (13)o + 4—(1'21'3)0-
Applying the string equation (2.59) yields
1
7(mh = () + Z(Tg)o-

Hence, we have rederived the equation (T;) = 2.

To describe the second system of differential equations for F, we
introduce a Lie algebra L of holomorphic differential operators?®: L is
the algebra spanned by the operators Ly, where for n > -1

n+1l _a_

oz’
and in which the bracket is given by [Ln, Lin] = (n—m)Lp.m- That this
notation is consistent with the definitions for L_; and Ly introduced
above follows from:

Ln= =-Z

EXERCISE (2.69) Show that the differential operators defined in (2.64)

and (2.65) satisfy
[L-1,Lol =~L;.

This suggests that equations (2.64) and (2.65) may be viewed as the
beginning of a representation of L in a Lie algebra of differential oper-
ators. In fact, it turns out that, with certain homogeneity restrictions,
there is a unigue way to extend this assignment of L_, and L to such
arepresentation of L. For n = 1, the expression for L,, takes the form

9The physical motivation for considering the Lie algebra L in this context comes
from the fact that it is a sub-algebra of the Virasoro algebra.
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L
a8

Cn+3)1\ 0 had ((2i+ 2n + 1)!!) : )
L"='( 2n+ )at,.,q S\ @2i- 12wt " Btin

3.

(2'70)

Aa2rli+nen- Qi+ 1))!!) 2
2 g‘,( 2n+l ot; Otn-1-1
fra
Recall that 2n -1 =1-3-5-...-(2n - 1) with the convention that

et = 1.
" EXERCISE (2.71) Prove that the formula (2.70) defines arepresentation
- of L. Hint: Use the identity
(2t+1)!!(2n—(2i+1))!! = (-1)H*1 ((-2i-1)(-2i+1) - - - (-2i+2n-1)).

| THEOREM (2.72) (WITTEN-KONTSEVICH FORMULAS, LIE FORM) For
alln = -1, Ln(exp(F)) = 0.
% with the KdV form, it’s straightforward to see that the system of

tions (2.72) also uniquely determines F. As a practic_:al example
‘how this may be used, consider the equation determined by the

15, 9%F OF OF 9 , 9°F OF oF ) _

+A2(—"l—6.(atoatz + Eﬁ;) + 32(at13t1 + oty atl) 0

é constant term of the above relation reads

-85 (1) + B tmomady + g ((mmdy + () =0

X CISE (2.73) Use part 2 of Exercise (2.63) to compute the genus 1

gﬁmbers above and show that .

{rad2 = 1753

5" Kontsevich's proof of both sets of formulas is fundamentally ana-

( lyuc It would be very nice to have direct algebraic arg'ument.s. but as
yet few cases have been treated; for example, for the Lie version, only
L.; and L. . .

" Finally, we note that both Witten and Kontsevich had in mind, pore

' than the values of these invariants, their applications! More precisely,

" Witten conceived a generalization of moduli spaces of stable curves to

- moduli spaces of stable maps to a fixed target variety (moduli spaces
of curves being those in which the target of the map was a point)
and saw the resulting intersection numbers as a way of producing
invariants of the target. These moduli spaces of maps are the topic of
our last section.
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E Moduli spaces of stable maps

The ideas of Witten and Kontsevich in [152] and [102] have inspired a
theory of moduli spaces of stable maps.!? This theory is still undergo-
ing very active development and many of the conjectured results are
currently only known in very special cases. However, it has already
yielded solutions to a wide range of enumerative problems dealing
with rational curves and seems certain to have much wider applica-
tions.

We won't use moduli spaces of stable maps elsewhere in this book.
In this section, we just want to introduce these spaces and state the
main properties known and conjectured about them. For further de-
tails, we refer the reader to the excellent set of expository notes of
Fulton and Pandharipande [54] which we’ve relied on heavily for this
sketch.

First of all, what is a stable map (C, (p1,..., Pn), i) of genus g with
n marked points? As the name suggests, it's amap u from a connected
nodal curve C of arithmetic genus g with a collection (py,...,Pn) of
n distinct smooth marked points to a projective scheme X satisfying
the stability condition that the number of automorphisms of the map
g — that is, maps @ : C—C fixing the marked points and satisfying
Ho @ = u — is finite.

EXERCISE (2.74) Show that this stability condition is equivalent to the
condition that, if a smooth rational component D of C is mapped by
H to a point of X, then the number of marked points on D plus the
number of nodes in which D meets the rest of C be at least 3, plus the
condition that, if g = 1 and n = 0, then g is nonconstant.

If y is an element of H>(X, Z) (possibly 0), then we let My n(X,y)
denote the set of isomorphism classes of stable maps with target X
for which the pushforward u. ({C}) of the fundamental class {C} of
C equals y. Although this set may be empty — for example, if y # 0
and X contains no curves of genus g or less — it can always be made
into a projective coarse moduli space. If 1 is the class of a line in P,
we write My »(P", d) for My »(P", dl).

EXERCISE (2.75) Show that if X is a point and hence the class y
is 0, then we recover the usual moduli space of stable curves, i.e.,
Mgin(pt, 0) = Mg_n.

To get a tractable space, it is, at least at present, necessary to set
g = 0 and to make strong positivity assumptions about X. We call a

10Gromov in [66] had introduced many of the ideas involved from a symplectic point
of view.
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d iocular variety X convex if, for every map y : P! — X, we have
1(pl,u*(Tx)) = {0}. This follows if Tx is generated by _glob.al sec-
& e hence, any variety admitting a transitive group action is con-
wX- I'-‘or convex X, the space Mo(X,y) has properties very much
‘like those of moduli spaces of stable curves. In particular,

¢ o Mon(X,y) is locally normal of pure dimension
| dim(X)+j c1(Tx) + - 3;
Y

o Mon(X,y) is locally a quotient of a smooth variety by a finite
group; .
.. o The locus of maps without automorphisms in Mon(X,y)isa
fine moduli space for such maps; and,
«:e The boundary of Mon(X,y) — that is, the locus of maps with
reducible domain C — is a normal crossing divisor.

"I‘he next exercise makes this more concrete by analyzing the simple

i?_ifgiamples.

EenCISE (2.76) 1) Show that an open set of Mo o(P?, 2) with domain
fg”fs;:ooth r(atiZ)n)al curve parameterizes nonsingular conics. Maps with
: ’Qiis domain also give all double covers of a line (which are deter-
-~ mined, up to isomorphism, by the line and the two branch points on
ﬁ . Next, maps with domain the union of two rational curves meeting
“ata point parameterize those singular conics that are Fhe union of two
distinct lines as well as double lines with a distinguished point (the
_image of the point where the two rational curves meet). Concluaie that
Wo,o(l’z, 2) is isomorphic to the classical space of complete conics (see
for example Vainsencher [146)).
2) Show that the same classification of stable maps extends' to
Mo,0(P",2) when n > 3. However, what we obtain is not the dass1c§l
space of complete conics (classifying a plane plus a complete conic
in that plane): when the map has image a line, the locus of planes
containing the line is blown down to a point in Mg o(P™, 2).

The boundary of Mo (X,y) can, once again, be broken up into
subloci indexed by the ways in which a stable map can have a re-
ducible domain. Now, however, it's necessary to keep track not only
of the decomposition of the curve, but also of the setof malzked points
and the class y. For each partition of {1,...,n} into disjoint subsets
A and B and each decomposition y = &+ B, we let A(A, B; , B) be the
closure of the locus of stable maps for which C = C4 U Cs, the poiqts
indexed by A lie on C4 and those indexed by B on Cp, and the resmg-
tions of u to C4 and Cp represent & and B, respectively. (Note that, if




78 2. Basic facts about moduli spaces of curves

o = 0, then the stability of u forces #A > 2 and that A(A, B; &, B) is
empty unless the classes « and B are represented by stable maps of
genus 0. Also, the irreducibility of A(A, B; &, B) is only known when X
is a projective space.)

If we define

AUL I = S AABa,B),

{t.JicA
(k1}cB
a+f=y

then we have the fundamental linear equivalence
@.77) A({i, jHik, 1) ~ AL B, kD) .

In the case of the moduli space Myp4 = P!, there are three such di-
visors corresponding to the three points 0, 1 and « in this space
parameterizing reducible curves — see Exercise (2.19) — and the
linear equivalence is simply that of points on P!. In general, the
equivalence follows by pulling back this special case under the map
Mo,n(X,y)— Mo4 which forgets the map y and the points not in-
dexed by {i, j,k,1}.

When we take X to be a projective space (certain other homogeneous
spaces can be used as well), equation (2.77) can be used to obtain re-
cursions for solutions to a wide range of enumerative questions about
rational curves. The most direct approach is to write down a suitable
curve Y in Mo n(P",d) and to interpret its intersection numbers with
various boundary divisors as enumerative quantities. Applying these
interpretations to the two sides of (2.77) then produces relations be-
tween the enumerative quantities.

Rather than even attempt to write down general results of this type,
we sketch the now classic use of Mg 34(P?, d) to calculate the number
Ny of rational plane curves of degree d through 3d — 1 general points.
In this case, the “right” curve Y consists of those stable maps which
send the first two marked points to points lying on two fixed but
general lines and the other 3d - 2 marked points to fixed general
points. The only maps

H:C =Cuz VCa,.3a—P?

at which Y can meet A({1,2},{3,...,3d};0,d) are those which col-
lapse Cy1,2; to the point of intersection of the two fixed lines. Since
points, #(Y n A({1,2}, {3,...,3d};0,d)) = Na.

Since the images of the marked points are general, Y is disjoint
from every other A(A, B;0,d) for which A contains {1,2} and, for
0 < e < d, it canmeet A(A, B; e,d —e) only when #A = 3e + 1. If so, we
can count as follows: there are (3¢ -%) partitions for which {1,2} € A
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and {3,4} € B; N, choices for the image of C4 and Ny-, for the image
of Cg; e choices for the image of each the points p) and p> which must
map to points of intersection of u(Ca) with the corresponding fixed
line; and e(d — e) choices for the image of the intersection Ca N Cz
which must lie in the intersection u(Ca) n u(Cp). Thus,

s s 5w -0
O<e<d

EXERCISE (2.78) Suppose now that {1,4} € A and {2,3} € B. Show
that #(Y N A(A, B;e,d —e)) = 0if e = 0 or e = d. Otherwise, show that
Y meets A(A, B;e,d — ¢)) only if #A = 3e and that, in each of these
(3¢4-9) cases, we have

#(Y N A(A,B;e,d - e)) = NeNa_.e?(d - e)?.

‘Finally, use A({1,2}1{3,4}) = A({1,4}1{2,3}) (cf. (2.77)) to deduce

the recursion
3d-4 209 _ 02 3d-4
0«2<4N2Nd e(e d- e)( 1) el(d-e) (3e—2 )

Of course, this argument depends coming up with the right curve Y.

’f:vThis can be avoided by rephrasing (2.77) in terms of the formalism of
" Gromov-Witten invariants and quantum cohomology. Even defining
“these terms carefully would take us too far afield, so we give only the
- barest sketch and refer to [54] for all details.

. Gromov-Witten invariants are numerical invariants of suitable col-

: lections of cohomology classes on X obtained by: pulling the classes
"‘back to Mo, (X,y) using the evaluation maps which send a stable
“'map to its value at a marked point; cupping together the pullbacks;

and finally integrating them over the fundamental class of Mon(X,y)-
When X is a homogeneous space, they have enumerative interpreta-

~tlons. If, in addition, all classes on X which represent a stable map
~ are expressible as nonnegative linear combinations of a finite num-

ber yi,...,¥m, the Gromov-Witten invariants can be used to define
an extension of the ring structure on the Chow ring of A*(X) to its
tensor product with the formal power series ring Q{[y1,...,¥m]]: the
extended ring is called a quantum cohomology ring . Equation (2.77)
amounts to the associativity of this extended product. Once this is set
up, enumerative results can be obtained by simply writing down the
associativity equations and applying the enumerative interpretations
of the Gromov-Witten invariants.

These ideas are currently being pursued in a number of different
directions. The basic program is laid out in {103] and [104]. On the
one hand, there is a symplectic approach to quantum cohomology
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(cf. [135]) which has been used to prove associativity in some caseg
not yet handled by the kinds of methods discussed here. On the other,
the genus 0 results have motivated work by Ran, Caporaso-Hams
Pandharipande, Vakil, Getzler and others on enumerative geometry
of curves of higher genus (cf. [133], [17], [18], [19], (129], [128], {147),

[55] and [56]) to which the quantum cohomological formalism doesn’t
seem to extend directly.

fechniques

Basic facts about nodal and stable
‘curves

i this short section, we collect various elementary facts about stable
{or, more generally, nodal) curves that we'll need later, as well as a few
which have already been used in Chapter 2. Most of the verifications
straightforward and will be left to you as exercises. Almost every-
xing we discuss here is treated in the original paper of Deligne and
nford [29].
e begin with the genus formula already stated in (2.14). if C is a
nected nodal curve with é nodes p,..., ps and v irreducible com-
ents C1,...,C, of geometric genera g, ..., gv, then in Section 2.C

=z(gt—1)+6+1=(Zg¢)+6—v+l.
=1

i=1

":“E)‘ KERCISE (3.2) Let us, as we’ll also do in the sequel, abuse notation
by identifying the sheaf

v
O¢ = Z 06‘.
i=1
on the normalization € = U 5¢ of C with its direct image on C. This is

_harmless, since the Leray spectral sequence identifies all cohomology
groups of these two sheaves. Show that we have an exact sequence

5
Z Cp,—0
j=1

0— Oc — Op

and verify (3.1) by using the associated long exact sequence.
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(cf. [135]) which has been used to prove associativity in some caseg
not yet handled by the kinds of methods discussed here. On the other,
the genus O results have motivated work by Ran, Caporaso-Hams
Pandharipande, Vakil, Getzler and others on enumerative geome
of curves of higher genus (cf. [133], [17], [18], [19], {129}, [128], (147),
[55] and [56)) to which the quantum cohomological formalism doesn’ t
seem to extend directly. -
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“ ‘hapter 3

fechniques

:A Basic facts about nodal and stable
4 curves

iﬁ'thls short section, we collect various elementary facts about stable
or, more generally, nodal) curves that we’ll need later, as well as a few
which have already been used in Chapter 2. Most of the verifications
p are straightforward and will be left to you as exercises. Almost every-
ing we discuss here is treated in the original paper of Deligne and
mford [29]

Ve begin with the genus formula already stated in (2.14): if C is a
inected nodal curve with 8 nodes p;, ..., ps and v irreducible com-
1 pg:hents (1, ...,Cy of geometric genera g1, ..., gv, then in Section 2.C

Z(gt—l)+6+1—(Zg,)+6 v+l
i=1

i=1

":‘EXBRCISB (3.2) Let us, as we'll also do in the sequel, abuse notation
by identifying the sheaf

O = Z g,
on the normalization C = |J C; of C with its direct i image on C. This is

harmless, since the Leray spectral sequence identifies all cohomology
“groups of these two sheaves. Show that we have an exact sequence

5
Z Cpy—=0
j=1

0 > Oc Op

and verify (3.1) by using the associated long exact sequence.
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Dualizing sheaves

Next, we list some basic properties of the dualizing sheaf wc of a
nodal curve C, which will play a role for such curves analogous to
that of the canonical bundle of a smooth curve. We will start with the

most concrete definition. Let C be a nodal curve, with normalization

v:E—C;let py,..., ps be the nodes of C, and {gs,71} = v~'(py) the
pair of points q; and r; of C lying over each node p;. The dualizing
sheaf wc may be defined as a subsheaf of the pushforward of the
sheaf of rational differentials on C: it's the sheaf associating to each
open U C C the space of rational one-forms n on v-1(U ) ¢ C having
at worst simple poles at the pairs of points q; and 7; of C lying over
each node p; € U of C, and such that for each such pair of points

(3.3) Resg,(n) + Resy (n) = 0.

The following exercise establishes some of the basic properties of the
dualizing sheaf of a nodal curve that we'll be using:

EXERCISE (3.4) Let C be a nodal curve of arithmetic genus g.
1) Show that the dualizing sheaf of C is an invertible sheaf.
2) Show that the degree of wc is 2g - 2.

3) Show that if C is connected, then the space H%(C, wc) of global
sections of the dualizing sheaf has dimension g; more generally,
h9(C,wc) = g + u — 1, where u = h%(C, O¢) is the number of con-
nected components of C.

More generally, for any curve C with normalization v : C—C, the
dualizing sheaf wc associates to each U C C the rational one-forms
n on v-1(U) c C such that for each p € U and each f € Oc,p,

(3.5) Y. Resg(v*f-n)=0
qev-(p)

All three parts of Exercise (3.4) are true more generally for any curve
with Gorenstein singularities, a class that includes all local complete
intersection curves; in fact, part 1 of Exercise (3.4) is equivalent to C
being Gorenstein.

EXERCISE (3.6) 1) Show that in the case of a node the requirement
(3.5) implies that n has at most simple poles.

2) What order of poles are allowed if C has a tacnode? A planar triple
point? A spatial triple point?

3) Show that the dualizing sheaf w¢ is invertible at a planar triple
point of C, but not at a spatial triple point.
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HY(C,wc) =€

v‘ﬁch that for any coherent sheaf F on C the cup product map
! H(C.F)®HC(C, Homg, (F, we) — H(C,we) = €
a pondegenerate pairing, inducing a natural isomorphism
v Homg (H(C, F), €) = Home (F, wc) -

T f global sections
ecall that by Home(F,G) we mean the space O :

‘of the sheaf Ho C(_C’f. G)), that is, the space of sheaf.morphm.ns
’e‘i.ffﬁ‘;-—g.) For a proof, see [84]; alternatively, the following exercise
E'sketches a proof in case F is invertible.

bt . ith an invertible sheaf
o C1sE (3.8) Fix a nodal curve C together wi

¥ ;, we write as Oc(Sk; nus¢) with s, ..., ¢ are smooth pPimsfo(_f'
8] et A; C C be an open disc around s;. In terms of the covermg(;

4 the open sets U = UAg and V = C\ {s1,..., 5k}, any element 0

k
HY(C, Oc(z nisy)
i-1

i i ' i - Oclaipd)

; be represented by a collection of Laurent series fi€ -

y n‘,;::,he pull:ctured discs A;\ {p:}. Use the analogous statement (thatﬂlls.
[;pdalra-Serre duality) on the normalization C of C to show that the

£ Tk
&
pi
-

‘ k
o H!(C, Oc(i n4sy) ) X H(C, ‘”C(tzi ~musi)) —> €
x i=1 -

given by ]
{fi,.... fu} x n = > Resp, (fi- M)
i=1
is well-defined, and that it’s a perfect pairing.

Note that, as a consequence, the Riemann-_Roch theorentlh lil;zvse
extends to nodal (or more generally Gorenstein) curves, in the

ho(C,Ly=d-g+1+ ho(C,wc®LY)

for a curve C of arithmetic genus g and invertible sheaf L of degree d
onC. _

The next two exercises show that the duapzing sheaf :)Ill" a if:slz
curve has ampleness properties only very mildly wefnkeﬂr1 artlerms ¢
of the canonical bundle on a smooth curve, and give in : :lse er
characterization of moduli stable curves amongst all nodal ones.




84 3. Techniques

EXERCISE (3.9) Let C be a stable curve of genus g.

1) Show that H%(C, wg") = 2n-1 -1

HUC oty b )(g - 1), and that for n > 2,
2) Show that for n > 3, W™ is very ample on C.

EXERCISE (3.10) Let C be a complete connected nodal curve.

1) Show that, for n > 3, the sheaf 2" is i i

_ that, , c very ample if and only if ¢
is modu!l stable. Hence, wc is ample on a complete connected nodal
curve C if and only if C is moduli stable.

2) Similarly, let py,..., pn € C be distinct smooth points of C. Show

lt)huezlt d(lg; P1,-..,Pn) is a stable n-pointed curve if and only if the line

n
we( po)

i=1
is ample.

A fundamental and important fact about dualizing sh
curves is that they fit together in families: if @ :‘Cm—g—sB :sa:effa(:ffm
of nqdal curves, we may define the relative dualizing sheaf w3 of the
family tp be the sheaf of rational relative differentials — that is ratio-
nal sections of the relative cotangent bundle Coker(do : p*Qp ;Qc)
— satwlfying the residue condition (3.3) on each fiber. That this is in
5:% ag:i gzrgibl:l sl:lleicxfl.ll onT ma);‘ not be clear, but it may be readily
ocal ¢ ation. In i i
ton of the dumiaine grnop I act, this virtually forces the defini-

EXERCISE (3.11) Let T be the locus xy = tkin A3, and i

I ] = , consider the
morphism @ : T—Al given by (x, y,t)—t. Show that the relative
co?angent bundle of @ onT* = T \ {(0,0,0)} extends (uniquely) to
a line bundle on all of T, and that the sections of this line bundie on

the fiber Co = (p—l(o), viewed as rational difF -
the residue condition (3.3). erentials on Cy, satisfy

Given this, the relative dualizing sheaf of a famil :C—
nodal .curveg whose general fiber is smooth may be c,ttlgac.tfrizeﬁ ::
the unique line bundle on T extending the relative cotangent bundle
on the locus T* of smooth points of @. Moreover, if the total space
T is smooth, we may the describe the relative dualizing sheaf as the

canonical bundle of T tensored with the d
canonical bundle of B: ¢ dual of the pullback of the

we/s = Ke@e*Kjy .

Another feature of the relative dualizing sheaf is i
the identification (3.7) as shown by the: ¢ 1% the naturality of
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EXERCISE (3.12) Let @ : T— B be a family of connected nodal curves
" and wess the relative dualizing sheaf of the family. Using the con-
crete description of the relative dualizing sheaf in terms of rational
. differentials, show that

R'@ywes = Op.

3 A consequence is that if L is a line bundle on T with h®(Cj, L) constant,
“: then we have a very special case of Grothendieck duality, the relative
. vetsion of Kodaira-Serre duality:

R'@.(LY®we/s) = (P4L)".

. Observe that Exercise (3.12) characterizes yet again the relative du-
{ alizing sheaf of a family @ : T— B of nodal curves among all line

‘bundles whose restriction to each fiber is the dualizing sheaf of the
It follows from any of the descriptions above that the relative dualiz-
sheaf is functorial: if B’ — B is any morphism and C’' = CxgB’'— B’
- the pullback family, then we ;3 = * (weys), where 1 : T'—T is the
i projection.

;:;Ei'f,anusn (3.13) Let @ : T—B be a flat family of stable curves of
- genus g. Show that for n > 2, the direct image @.(wgf3) is locally
+ free of rank (2n - 1)(g - 1).

. Automorphisms

" Our definition of a stable curve requires that it have only finitely many
automorphisms. To verify the local description of M, given in the
previous chapter (as smooth away from loci of curves with automor-
phisms at which it has quotient singularities), we’ll need the slightly
stronger assertion that the scheme-theoretic automorphism group of
a stable curve is finite and reduced. This is our next goal.

To start with, we need to make precise the scheme structure on
the automorphism group. This turns out to be a bit involved. We will
just sketch the ideas here and refer you to Section 1 of [29] for more
details. We also simplify by working over a point rather than a more
general base. The first step is to define, for any two stable curves C
and D, an isomorphism functor Isom(C, D) whose value on a scheme
S’ is the set of S’-isomorphisms between C X S’ and D x S’. Any such
isomorphism must identify the relative dualizing sheaves of C and D
and hence all powers of these sheaves. Using Exercise (3.9), this leads
to a representation of the functor Isom(C, D) by a subscheme of a
suitable projective linear group.
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More precisely, fix g > 2 and an integer n > 3. Define j
- f . inte
and d in terms of these by sey

r+l=(2:-n-1)(g-1) and
d=2-n(g-1).

(3.14)

Let 3 = 3,4, and let [C] and [D] be the points of H determined
Cand D.Defineamappu : PGL(r +1) —3H x 3 by p(ar) = (a-[C], [Dt?)’
and let I(C,D) = pu~!(A) € PGL(r + 1), where A is the diagonal in
3 x 3. The scheme Isom(C, D) turns out to represent Isom(C, D)
although we won't verify this here. '

To dt_aﬁne the automorphism group of a stable curve C, we just take
D =.,C_' in t‘he foregoing, This amounts to identifying Aut(C) with the
stabilizer in PGL(r + 1) of [C] € #{. The assertion we're after is then:

LEMMA (3.15) Aut(C) = stabpgrir+1)([C]) is reduced.

If not, there would be a nonzero {-valued poi i
not, t point of Aut(C) lying over
the ld(':_ntlty, or equivalently, a nonzero regular vector field on C. The
following exercise rules this out.

EXERCISE (3.16) Show that, on a stable curve C, there is no nonzero,

everywhere regular vector field. Equivalently, Ext®(Qc, Oc) = {0}.

Hint: Such a vgctqr field would correspond to a regular vector field

g;l éheS l111ormt?lllzat101111 ¢ vanishing at all points lying over the nodes
- >how that such a vector field must be identi

component of C. cally 0 on every

We conclude by remarking that similar ar i i

. ¢ guments give a relative
version: given two stable curves C— S and D—» S, there is a scheme
Isomg(C, D) 'whxch is finite and unramified over § and represents the
functor of S-'lsomorphisms between the curves. In particular, if S itself
:Js ?w mrve&(l) Is apoint of S and $* = S\ {0}, then any S$*-isomorphism
elween the restrictions to $* of C—S$ and D—S -
oMo extends to an S

B Deformation theory

Overview

In this s'hor.t section, we want to quickly sketch the typical stages of
an application of deformation theory! using the simplest example,

1A few words about other refe i
rences are in order here. We know of no accessible
reference that deals with all the variations we wish to discuss here. For a very read-

i deformations of smooth varieties, as our model. A deformation of a

smooth variety X with base a pointed scheme (Y, y,) is a proper flat
morphism @ : X —Y, together withan isomorphism ¢ : X —@~1(yq)
of X with the scheme-theoretic fiber of @ over the point yp € Y. In

- other words, it's a fiber square

x—¥ . x
- (337) L4
Yo Y

where the map X— yo = Spec(C) is the structure map and the map
yo—Y is the inclusion. Two such squares are called equivalent if
there is an isomorphism of fiber squares between them that equals

the identity on X.

A first-order deformation of X is a deformation over the pointed
space (1, 0) of dual numbers. The space Def (X) of such deformations

" i extremely important for two reasons. First, it can almost always be

identified with some cohomology group and hence is readily calcu-

"+ lated. Second, if there is a moduli space M containing X then Def; (X)

will usually equal the tangent space to M at the moduli point of X:
this must, by definition, be the case if the moduli space is fine. An
n't-order deformation of X is defined similarly as a deformation over
(1™, 0) but, except in the first-order case, it's generally very difficult
to calculate these explicitly.

Having defined such infinitesimal deformations, it’s natural to ask
whether they can be integrated. More precisely, we ask whether there
exists a deformation @ : X — Y with the versality property: any other
deformation £ : X — Z is analytically isomorphic in a neighborhood
U of each point of Z to the pullbackof @ : X—Y byamap f: U—Y.
Such families go by a number of other names. Analysts usually call
them Kuranishi families (especially when deforming a complex mani-
fold, the case originally studied by Kuranishi) and the term complete
deformation is also seen.

able, detailed description of the deformation theory of compact, complex manifolds,
see Kodaira’s book [98]. This also contains references to the papers in which the ba-
sic theory was originally presented. The only drawback here is that the discussion is
limited to smooth abstract varieties. Another good reference for this case is Palam-
odov's survey [126]; Vistoli's expository article [150] gives a very careful exposition of
deformations of local complete intersection schemes, both embedded and abstract,
from an algebraic viewpoint; and Kollar gives a thorough treatment of deformations
of embedded varieties in {100]. However, none of these deals explicitly with such vari-
ations as deformations of varieties with additional structure (e.g., a line bundle) and
all take distinctly different points of view.
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We emphasize that versality is, in two important ways, formally
weaker than the uni-versal properties we have dealt with in discussing
moduli and parameter Spaces. First, deformations are required to be
pulled back from the versal deformation only locally on the base. Sec-
ond, and in practice usually much more significant, no uniqueness
properties are claimed for the maps f : U—Y that realize a given de-
formation as, locally, a pullback of the versal one. In most cases, nei-
ther potential strengthening is possible. Indeed, the base Y of a versal
deformation can have dimension strictly larger than that of Def (X).
In particular, the existence of a versal deformation doesn't imply the
representability, even in the coarse sense, of the deformation functor.

These problems, however, don't arise when X has only finitely
many automorphisms (or, more generally, when the group of auto-
morphisms of X that extend to all small deformations of X has fi-
nite index in the full automorphism group of X). In this case, a min-
imal versal deformation Y (that is, one for which the induced map
Ty—Def, (X) is an isomorphism) will be universal so that the map
that realizes a family as a pullback of the versal one will be unique.
(This is one, but not the only, point at which making the identification
of the central fiber part of the definition of a deformation is crucial.)
As usual, such uniqueness properties mean that any two versal defor-
mations of X are locally isomorphic. Since we’ll be interested in versal
deformations mainly for stable curves — which, by definition, have fi-
nite automorphism group — we'll almost always be able to make such
uniqueness assumptions.

For general varieties, existence of versal deformations is usually a
difficult question. Even the existence of liftings of first-order defor-
mations to second order (much less to arbitrary order or to formal
families) can be hard to decide, There is a general theory that de-
scribes groups in which the obstructions to such liftings lie. However,
we'll only mention this theory briefly at a few points because, even
in cases in which it's possible to calculate these obstruction groups
explicitly, it's generally difficult to determine whether the obstruction
defined by a given first-order deformation vanishes or not.

Fortunately, for curves, it is possible to give direct and explicit con-

structions of versal deformations. In the next section, we'll see how
to do this in two ways: first, by integrating certain canonical first-
order deformations called Schiffer variations; and second, by taking
a suitable subscheme of a Hilbert scheme as the base of such a de-
formation and, in essence, inheriting the deformation and the desired
(uni)versality property from the corresponding universal curve.

The basic model described above can be varied in many ways to
adapt it to the study of a particular problem of interest. However, al-
most all applications of deformation theory involve three steps anal-
ogous to those outlined above:

:",_ pDeformation theory
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"% 1. Pose the appropriate deformation theoretic problem;

2. calculate the space of first-order deformations; and,

3. construct, if one exists, a versal deformation.

In the rest of this section, we first work out, in some detail, the thret:
steps in the basic case where Xisa smooth curve. Then: we carry ;)u
the first two steps in a variety of useful and representative examples,

;- often omitting detailed proofs and leaving you to make the necessary
" modifications to the smooth curve model.

Deformations of smooth curves

: 'I'hroughout this section, we fix a smooth curve C of genus g = 1. We

; 2
in by determining the first-order deformations of C. )
I?e'i“l;lbe)éin with, let's fix an affine open cover Uy of C and a collectlpn
linear maps @ag : Ouaxiy,, — Ovgxily,, that restrict to the identity
modulo & — that is, we want the maps @agp to satisfy

Paple) =¢ and
Pap(f) = f + €Dqg for f € Oy,,

i i t such a collec-
ith each D,g a C-linear function of f. In order thai
x:m of mapsaglue together to give a first-order deformation of C, two

conditions are necessary and sufficient. .
First, each @4 must be a ring homomorphism:

Pap(f9) = Pap(f)Pas(g),

or, using the definitions above and €2 = 0,

fa+€eDag(fg) = fg+ &(fDap(g) + gDup(f)).

ivati d hence give a
In other words, the maps D,s must be denvgtmns and
cochain, with respect to the cover of Uag’s, taking values in the tangent

bundle to C . . .
Second, on the triple overlaps the @4p's must satisfy the multiplica

tive cocycle condition
Pay = P8y © Pas-
Plugging in again, this amounts to
S + EDay(f) = Dgy(f + €Dag(f)) = f + €(Dgy(f) + Dap(f))

2The approach that follows is due to M. Artin and was shown to us by Angelo
Vistoli.
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or the assertion that the D,g's are an additive cocycle.
Combining these observations, we see that

Def,(C) = HY(C, T¢).

Notice also that, up to this point, what we've said applies equally well
to any smooth variety.

Most references follow a somewhat more analytic path in calculating
Def, (C), which is outlined in the following exercise.

EXERCISE (3.18) Fix a cover as above and choose a local coordinate z,,
on each Uy 50 that @y, can be identified with the ring of convergent
power series C{zq, £}/(£2). Choose in addition a collection {@ag} of
coordinate transformations defined on the overlaps Uyg by

Vopl(Za) = Pap(zp) + Eqap(zp)

with p and q power series in one-variable convergent in some neigh-
borhood of the origin.

1) Use Taylor expansions to show that the maps g satisfy the co-
cycle condition ¢ay = Wgy o Yag if and only if

Pay(2y) = Py © Pap(zy)

3 .
Aay(Zy) = - ;:_p_ Ppy + AapPBy

and hence construct a map from H!(C, T¢) to Defy(C).

2) Given a first-order deformation X —1 of C, consider the normal
bundle sequence

0—Tc—Tx|c—Nc;x—0.

Show that X is trivial if and only if the derivation 33; at 0 in 8 lifts
to a derivation D € H%(C,Nc;x) along C. Show that any two such

lifts have the same image in H1(C, T¢) under the coboundary map -

H%(C,Nc;x)— HY(C, Tc). Conclude that the map in 1) is an isomor-
phism.

Our calculation of Def;(C) shows that it’s isomorphic to
HY(C, Tc) = H%(C,K2%)V = (33, We next want to integrate these,
eventually obtaining a versal family. As a first step, we introduce an
important family of one-parameter first order deformations that can
be integrated explicitly.

Fix a point P on C and consider the cover of C by two open sets,
a small disc U centered at P and the complement V = C ~ {P} of
{P} in C. Since there is only a single overlap W = U NV = A* the
cocycle condition is vacuous and a first-order deformation is simply
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omorphic vector field on U n V. If z is a local coordinate on this

we may choose the vector field to be, for example,
19

Sp = Z3z'

which case the corresponding first-order deformation is called a

, i i HY(C,Tc) and
2 (3.19) Using the Serre duality between '
(Cc;?g2 ;?wg may view elements of H%(C, KEZ) as linear functionals

i) annihilator of the first-order Schiffer variation at P
) Isig?zv'. _It?gazt (t};)). In particular, changing coord;ngtes at P simply
scales the corresponding first-order Scthfer.vanaumf. .
5 Show that the set of all first-order Schiffer variations span
{C, Tc)- o "
e st-order deformations can be integrated to a deforma
;;f—-is;e ai: follows. Let U be a constant unit disc Azl ’v;rith e:(to?:tdﬁal:t;
:> and W; be the varying subannultus in which |z| > t I; etw b
jocal coordinate on C centered at P and map W; to Vtthy :h = 24 ;l
s amounts to identifying the shaded region below (Ue ) vyith g
image of U; in C minus the similarly shaped image of Ups2 ith the
ulus W;. Making these identifications for all ¢t at once yl

/m

2(1+t)

FIGURE (3.20)

deformation X —A; that sends the vector field 2 to the first-order
Schiffer variation of C at P given by sp as desired.
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This construction can now be carried out independently near each
of several points Py, ..., P to give deformations of C over a product
of k discs. Generalizing the exercise above, we see that the annihilator
of the image in Def, (C) of the tangent space to such a deformation is

HY(C,K&(-P1 - - - - ~ P)).

Hence, if we choose any generic collection of 3g — 3 points on C,

we obtain a deformation over a 3g — 3-dimensional polydisc whose
tangent space maps isomorphically to Def, (C). ‘

EXERCISE (3.21) Use the change of coordinates

bt tag-3

w=z+ > Y2t Y 33
to construct a k™ order variation of complex structure over a polydisc
of dimension 3g — 3. Show that if p is generic then this variation also
has a tangent space that maps isomorphically to Def, (C).

The deformations constructed above are versal — even universal —
but, unfortunately, there seems to be no direct method of verifying
this. Instead, we give an alternate construction which has the advan-
tage of working for all stable curves at the end of the next section.

Variations on the basic deformation theory plan

In general, the application of deformation theory in a particular in-
stance involves three steps analogous to those carried out for defor-
mations of curves above: posing the appropriate deformation theo-
retic problem, calculating the space of first-order deformations and
constructing, if it exists, a versal deformation space.

Pose a deformation theory problem

The first step is to specify exactly what is meant by a deformation
of the given object over a given base (B, bg). In this subsection we’ll
discuss only deformations of curves, but we could equally well work

with smooth varieties of any dimension — as, indeed, we do in the
next subsection. Thus,

o A deformation of a curve C is, as we've already seen, simply a flat
family @ : X — B together with an isomorphism C = @~!(bg).
¢ A deformation of a pointed curve (C, p1,...,px) is a flat family
@ : X— B with an isomorphism ¢ : C = @~1(bp) and disjoint

sections 0y : B— X such that 0;(bo) = @(p;:).

i; peformation theory

b o b 0 A
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i curve C with line bundle L is a flat fam_ily
- g?exfﬂat‘::i)&?:o;orphism C = @~!(by), together with a line
pundle £ on X and isomorphism ‘Clqu(bo) = L. .

o A deformation of amap f: C—~C withCand C’ .ﬁxed isa [t‘ilali

F : C x B—C' x B whose restriction to C x {bo} is f. Note u:
. if C' is a projective space P* and fisan embgddmg then, in the
~ absence of automorphisms of C, a deformation of f over B is
just a map of B into the relevant Hilbert scher:e. st on

nof amap f : C— C’ with C’ fixed is a deformat
’ ;Efgrﬁ’ag?that is, apﬂ):t family @ : X—B w1t!1 isomo'rph'lsm
@ :C =@ bo)), together withamap f : X —C' xB fitting into
' a commutative diagram:

% “we could list many further types of deformation but these exam-
pl::t:nake it clear how to define such variatiops. In these exampl_t:lse.r ng
¢ haven't explicitly stated when two deformanon_s are to_be consi lered
equivalent since, in each case, the desired r§lauon is fairly unami ti:ng:s
" ous. But, differences in how we choose thl.S relation can sop;e s
significantly affect what problem we’re posing. For ex_ample, i wile;tax(') .
. interested in studying deformations of an isolated singular po.

jety X, we don’t care about global deformations of X. We may
:h:ra:lif:)tl?; define a deformation of the singl_llarity (?( ,p) to be a ;llefocré
mation U—B of a neighborhood U q{’ p in X, with the equivalen

i d by inclusions U C V. _
rdzgg?hgreril::l?tha:' is sometimes delicate to address is that 3f ;m
posing side conditions on deformations. For example, among e (l);r
mations of a curve singularity (C, p)area _subclass called equ(rlsl;lg;:n o
deformations. In a complex analytic setung: these are thg e ,& ma.
tions that are locally topologically trivial — i.e., deformanon.s A er
of C such that some neighborhood of p is actually a topologic e
bundle over B. This definition seems perfectly reasonable buxtngul ir
a subtle problem: what do we mean, for exapple. by an equis a
deformation over Spec(C[£)/ €2)7 This question does have an answer,
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are deformations that

o preserve the §-invarij ; L
trib ant of a singul
C-v:cttlg;l s;tcl;er%gll;s} 19(1';9 the curve) or, equivalently, the ?:ltyth(ltgfcon'
= where IJ i . ’ ng the
Uits normalizatim;.7 u) where U is a Deighborhood of P in ¢ and

Caiculate the space of first-order deformations

1) The Space Of ﬁ
) rst-order deformatio :
s P i the vector space F1 (x, Ty 2, P04 vartety
defo rmationsu:> fﬂ;salexamme @here Is a natural map to t’;ake épace f
deformations is the gg:l:(;ll'lhse:lgu_cted Illllap e o space of ﬁrst-ord:r
; ) : it’s the map op g’ .
the inclusion Tx (- ¥ £ P)>>Tx in the exact sgqugnlze $ associated to

0—8 Tx(—gm) — Tx —» T /Tx(- 3 p;) — 0.
i

p y i X gl Gy ) - ()
)

last statement m
ay be rephrased i
to t th,_ . as saying that
he d®-symmetric product C; of ¢ atga poﬁgl %tiggt‘:‘: :gace
ace

y Deformation theory

A
1
b

%
[
&

¥

H‘ (C,0(D)/0), and hence that the cotangent space is

T*(Ca)|p = H*(C,K/K(-D)).

,.;;"Now let 2 = {(p,D) :D—p = 0} c C xC4 be the universal divisor and
}‘;[n : 3—C4 and n : Z—C the projections. Show that the cotangent

“ pundle to C4 may be realized as

3

T*(Ca) = M+ (N*Kc@Os).

w

" 3) The space of first-order deformations of a line bundle L on a fixed

variety X is the space H (X, ©).
' This is relatively easy: if L is given with respect to a suitable cover

Ux} of X by transition functions g« then a deformation of L will be
ven by transition functions of the form {gag + £ - hag} where the hyg

i glre holomorphic functions satisfying the cocycle rule but otherwise
'};.;;nrestricted (modulo checking, of course, that cohomologous cocy-
.»:‘g??%(;_s give rise to equivalent deformations of L). Note that we could see
1 is directly by observing that the connected components of Pic(X)

s

 are the tori H!(X, 0)/H' (X, 2).
- In these terms, we can ask as well when a given section o of a line

" bundle L extends to a deformation £ of L. The answer is straight-

orward: if £ is given by a cocycle {hqg} as above and o is given

with respect to the corresponding trivializations of L by the sections
& Oa € T(Oy,), then an extension of o to a section of £ on X x I will be

" given by sections O + € - T Satisfying
(Oa+&-Ta) = (gap + & - hap) - (O + £ Tq),

‘ ie.,

Ta = gaBTB + haBO‘a.

To put this another way, the cup product of the classes oo € H%(X, L)
and h € H'(X, O) is the class in H1(X, L) represented by the cocycle

{hagoa}, and the section o extends to £ if and only if this cocycle is

a coboundary.
We may in particular conclude from this that the tangent space at

a point [L] to the locally closed subscheme W (X) ¢ Pic(X) of line
bundles L having h®(X,L) = r + 1 is the kernel of the map

H'(X,0)—Hom(H®(X,L), H'(X,L))

given by cup product. In the case of a curve C, we may dualize this to
see that the cotangent space to the subscheme W7 (C) is the annihila-

tor of the image of the multiplication map
H°(C,L)®H(C,KQL™")—H"(C,K).
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4) The space of deformations of a pair (X,L) with X a smooth variety

0——»0)(*»21_*»7',\"»0,

and that the induced maps of the H!’s Tepresenting various first-order
deformations are the obvious ones,

EXERCISE-WARNING (3-23) Recall from Section 2.B the moduli space
P44 of line bundles of degree d on smooth curves of genus g which
is naturally a bundle over Mg. Show that there is no splitting of the
tangent bundle to Pag along the fiber of this map over a fixed curve
C that realizes the splitting of H!’s in the exact sequence above.

5) The space of first-order deformations of a map f : X—Y with x
and Y both fixed is the Space of sections HO(X, Sf*Ty) of the pullback
to X of the tangent bungle ofY.

Note in particular that the space of first-order deformations of the
identity map x—. x is just the space HO(X, Tx) of global vector fields
on X.

6) The space of first-order deformations ofamap f:x—y with only
Y assumed fixed is the space of sections HY(X,N), where Ny is the
normal sheaf of the map f, defined by

Ny = Coker(df : Ix— f*Ty).

Nf=Ty|y/Tx = (Ixry 1T3,p)V.

We can also give a deformation-theoretic interpretation to the long
exact cohomology Sequence associated to the short exact sequence

O— Tx— f*Ty — Ny — 0,

The coboundary 6 : HO(Ns)— H1( Tx) takes a deformation of the map
S to the corresponding deformation of X, forgetting the map; the
kernel consists of the deformations of the map f fixing both X and
Y, modulo automorphisms of X.

Notethatif Xc y ¢ Z is a nested sequence of closed subvarieties,
we can identify when a first-order deformation X CcZxlofXis

PUESIGRRE -+t S
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Nxiz ~%+ Nyizly
B
Nyz
" and if the image of the deformation [X] € H?(Ny,z) under the map

&

N -order
%" any curve not a complete intersection with S, then a general first-ord

{!" deformation of S contains no first-order deformation of C. Use this

¢ to prove the:

%;.‘:Pkorosmou (3.25) If'S is any smooth surface in P>and C C S is any

ooth curve lying on it, then C is a complete intersection with S if and
f;':ly if the normal bundle sequence

] Ne¢ys Nc/ps Ns/es|c 0

: splits.
ing “ " es
Warning. The locus of surfaces of. degree d havl:i'lcgin iesxt;:o p(:rlrl‘)’ut
is a countable collection of varieties, each of w bt theeroe:
shose union is everywhere locally dense. Note also tha
vs;tion above is true even when S has degree 2 or 3.

i i int p of a plane
-order deformations of a smgu.lar poin
4 nle&wgc:g gt’i\t:;obryef(x,’;) = 0 is the local ring qf C aat Z n:ingdulo
f;::;acobian ideal 7 generated by the partial dt'ar.wauv? = and: sy;)b-
The elements of 7 amount essentially to trivial de ontlilulo o
tained by translating the coordinate system at p: e.g., mo '

of
Je(x,y) = f(x+&y) =f(x,y) +¢ a(x.y)-

i i . ) fOl'
Thus, first-order deformations are given simply by_ (f + E g
g € ,0 ; J. In this form, it's clear that the description is equally
cpld.




— 0 °°
FIGURE (3.26) -
The cusp, on the oth i
with e er hand, has 3 2-dimensiona] deformation space
Y=x}+a-x+b;
the tacnode 32 = x4 hag a three-dimensional family

2 _
y —x“+a-x2+b.x+c;

and the triple pojnt x3 — 1,3
Ple point x3 — 53 - Ohasafour-dlmensional family

3 4+ 53
yot+x ta-xy+b-x+c-y+d=9,

A fascinating question abo

. 1 ut these families is: wh, i

ll)tle: (c)lccur in fibers near the central one and, ovzlt' tzgfcsh()f Slp_glﬂar-
ase coes each occur? For example, curves loci in the

ther smooth (in gener al) in the first family are ej-
4a = 2717 or cuspidal (only for (a,5) - (p. gy T CUSPIdal curve

EXER i

o asens (‘:;;nzt;) “Svl;c::d t]::t (:xl: the deformation of a tacnode we may
curv » O€ Cus i

(a,b,c) do each of these possibﬂjtiI:e: gggg?node. ror which values of

occur in the fibers of the deformati
¢ i
in (a,b,c, d)-space do they occur? onofa

EXERCISE (3.29) Show that i
) - in th .
m-fold point there is a fiber con:mqmqfnogr?\?non b ordinary

larities that appears on some plane curve o?’rc’i,egle.;b::aﬁon of singu-
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Jhere are, of course, some cases whose spaces of first-order defor-
”ﬂons aren't immediately calculable. Examples are the spaces of eq-
1j; ar deformations of a curve singularity (C, p) or of equigeneric
formations (those preserving the geometric genus). Such spaces are
Wy not smooth (as in the example of the cusp above where the
gpigenenc locus is itself a cuspidal curve). Examples suggest that
they tend to be irreducible, but we know of no general results along
‘this line. In such cases, it would be tremendously helpful for many
reasons (some of which arise later on in Chapter 5) to have even an
ﬁumate on the dimension of the space of first-order deformations,
ch as might come from a cohomological interpretation; but none is
8) A very important example is the space of first-order deformations of
i stngular variety.
v “"This is a subject that requires a fair bit of machinery even in simple
@&"seh‘ “and that can become arbitrarily elaborate. To give the flavor,
4we’ll first state the basic result for local complete intersection varieties
' yeferring you to [150] for proofs and further details. In case X is a local
\.complete intersection (say X is locally embedded in a smooth variety
¥V, with ideal sheaf 7), we have the conormal sequence

0— 17/ — Q,) — 0x —0.
Since 7/72 is locally free, when we dualize we get
0 Ox Tle Nxv .

where @y is the sheaf of derivations of Ox and N = N,y is the dual
: of 7/7%. We then define the sheaf

, Ty = Coker(Ty, ) —Nx/v.
An alternate description is
T} = M})x(ﬂx. Ox),
so that T is a sheaf supported on Xging. If we then set
(3.30) T} = F-Xttlv)x(ﬂx. Ox),

it turns out that T} is the space of first-order deformations of X.
Note that the local-to-global spectral sequence for Ext gives us an
exact sequence

0 — H'(8x) — Ty — H%(T}) — H*(8x)
which has a natural geometric interpretation: first-order deformations

of X induce first-order deformations of the singularities of X; the
space H1(®x) gives deformations of X preserving its singularities.
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of?xf) ;:lurse, :he Hcase in which we want to apply this theory is that
uaing withcurvon S. Here we can be more concrete. For example, if C is
A e no_de at the point p, C is its normalization an'd q1 amflI

HY(C,8¢) = H\(¢, Ba(-q1 - q));

that is, the deformations of
' C preserving the sj ;
as expected, to deformations of the 2-p0inte‘:jsqmgmmQa%tyq‘;"‘;:;spond.

sheaf 7 given in local analytic coordinates on § by 7 =

0—s UP 2w (1Y) —> 0l —o0
look like
OC.p (xy>_’0C,p (dx, dy)

with the map « given by

xXyr>xdy +ydx.
Hence Q] looks locally like

Ocpldx,dy)
{(xdy +yadx)’

which is locally free of I
the sequence ank 1 except at the node p- Dualizing, we get

00— 0 —. oY
® Ts|e == Neis—T' — ¢

with " locally the map
a 2
OC-P (E’ a—y) ->0clp (xy)v

d ing 2

x;ﬁll—]f?c I:Zszzr;g}igl ES and 2 to the linear functionals x 1y ¥ and

Xy th o o¥' \1/11_ce /s 18 generated by the homomorphism

AR o is exactly M, ¢ - Nc/s. Hence, at a node p the

Bas lonrs 7 1518 morpl.uc.to the stalk at p of N¢/s and, in particul
ength 1. This description Inay seem to depend on tl;e embeddirf;'

i
; 8. Deformation theory

o am———

¢ put in fact is intrinsic. If C; and C; are the branches of C at p, we have

jsre]
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Ty
RS

-

T! = 05(-C)VQ0,
= 0s(C)@0p
= 05(C1)Q0s(C2) RO,

{
: = Tp(C1)QTp(C2),

M

, which is independent of the choice of S.3
Vo Put another way, this chain of ideas says that:

f ﬁorosmon (3-31) The normal space to the boundary A ¢ My at a
gé;;ppint corresponding to a curve C with one node is the tensor product
{pf the tangent spaces to the branches of C at the node.

3 i

,J%:l,",his is an important fact, which will be essential to making enumera-
;’f tive calculations later on.

% .. Finally, we can put this analysis together with what we've seen in
*-the case of a smooth curve to give an infinitesimal description of the
- boundary A c M at an arbitrary point. First, because H2(8¢) = 0,
>we have an exact sequence

0 — HY(8¢) —» Ty — HO(T}) —= 0.

- A first consequence is that the space B of first-order deformations
. again has dimension 3g — 3. Identifying a neighborhood of [C] itself
5 in B with a neighborhood of the origin in C34-3 identifies the defor-
mations of C preserving each node with a smooth divisor in C34-3 and
 any two of these divisors meet transversely at the origin. Thus,

PROPOSITION (3.32) Let C be a curve without automorphisms. In a
neighborhood of the point [C), the boundary A is a normal-crossings
divisor, with branches corresponding one-to-one to the nodes of C and
with the normal space to each branch isomorphic to the tensor product
of the tangent spaces to the branches of C at the corresponding node.

EXERCISE (3.33) Let B and C be smooth curves of genera g and h
(both at least 2) respectively. Use first-order deformations to show
that any deformation of B x C is again a product of two curves. Is it
also true that a deformation of a symmetric product of curves is again
a symmetric product?

3Further discussion and applications of this independence are given in [52]
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Construct a versal deformation

As we remarked in the overview (page 86), this is usually very harg
to do “from the inside” — that is, by building up from infinitesimal
deformations. When it's possible at all, the machinery required goes
well beyond our scope here. Instead, we'll refer you again to [150]
and, in the next subsection, give a construction that uses the Hilbert
scheme as a “deus-ex-machina”.

Universal deformations of stable curves

responding base points, we'll henceforth be able to speak of the germ
of the versal deformation of a stable curve.

We will need the following lemma, which follows immediately from
the description given earlier of the versal deformation space of anode.

LEMMA (3.34) Let @ : T—B be a proper flat family of curves. Then
thesetU = {b e BITp is a nodal curve} is open in B.

Next, fix g > 2 and an integer n > 3. Define integers r and d in
terms of these by

1’+1=(2.n_1)(g_1) and
d=2.n(g-1).

Then, let H = #,,,,let P(m) = md —g+1,let @ :T— H be the
corresponding universal curve, and let £ = Oc(1) be the universal

closed subscher’gg of U over which the sheaves £ and w®" are equal.
More formally, X is the subscheme defined by the g™ Fitting ideal of
Rlp, (wn@L-1), —~

Naively, werefer to X as the locus of n-canonically embedded stable
curves. (By Exercise (3.10), we could replace “stable” by “semistable”
or “connected, nodal” in this definition without altering X'.) Our plan

orbit of [C]. Some extra care is needed in order to be able to check
that the resulting slices are versal when C has nontrivial automor-
phisms. To simplify our presentation, we assume that C has no auto-
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morphisms and, after gbing through the construction, indicate what

::. modifications are needed to handle curves with automorphisms.

The first key fact we need is:

LEMMA (3.35) X is smooth of dimension (3g — 3) + (r2 + 2r).

i i C with Hilbert
: F. Fix an n-canonically embedded sgl?le curve t
: 31:? [C] in XK. The dimension count for X is clear: the curve C de

5 pends on 3g — 3 moduli and the choice of a basis of H°(C, w®") (mod-

ulo scalars) on 72 + 27r. _ .
ukl:ks)w, the restriction to C of the tangent bundle to P is a quotient of

i f r +1 copies of Opr (1). Since ®pr (1) restricts to w®" on
:‘d;:efc;lfx:;mmediatgly from the standard normal Sh‘;?.f sec}blenge):
th,at H'(C,Nc/pr) = 0 and hence that the tangent space 1 (g ) ) C(/Ipl;e
o M at [C] has the expected dimension (3q -3)+g9+ (;’ d+ re.d he
éxtra g parameters are for the choice of a line bundle o elgreth,e'
SA.:)""/‘I‘hus. the smoothness of X would follow if we could solve the: .

RO i f HO(C,Nc/pr) correspond-
OBLEM (3.36) Describe the subspace o ' , : ;
i :;z to tangent vectors to X, and show that it has codimension g.

B cking an answer to this problem, we take an indlregt approach.
) Lelt.g be the subscheme of H consisting of the Hilbert points &f :hcoosls
- subcurves C’ C P” that are abstractly isomorphic tq C (ie, " a or
respond to different choices of line bundle and basis pf sec (t)inil o0
: C). The dimension of 7 is therefore g + (2 + 27). 'I‘hg mtersetch otan-
“Jand X is just the PGL(r + 1)-orbit of [C]. We clm t?at e tan-
gent space to J n X has dimension (r2 + 27). In view 0 t?atll?;and
-counts above, this is only possible if the tangent spaces go (1) " Jang
X have the minimal possible dn?eCI;mI(.)el; %nd ge{nszn “(r;:i 1t1]111£ :nl v:r o
incidentall is smooth at [C]. — ‘ .
gaul;'(\in:noc\tg: the !Yli{l:ert scheme #. Consider the diagram determined
by a general tangent vector x : 1— H to H:

c-m_p_% .o

M2 1

—X L3

Such a vector is tangent to 7 if and only if D is a ﬁr§t orderflsomh\;lcahl
deformation of C and thus corresponds to 'such a dlagrag_for :ivonl
the fiber product D is isomorphic to C x[. It's tangent tg ’.:JC EI‘h an on gf
if D—1 is an n-canonical curve, i.e., £*(0¢(1)) = wph. erg,? I:;
it's tangent to 7 n X if and only if E4(Oc(1)) = 0, = OQwW™.
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other words, the choic ¢ . _
the space e of x is equivalent to the choice of a basis of

HO(1, (1) (1@ wE™)) = OI®H(C, we™).

Since H(C, w@") = i
ape e(d . w.C ) = r+1, this choice depends on (r%+2r) parameters

Now we’re ready to slice X assuming that C has no a ]
First, let W = AP(™) (HO(pr, 9(m))¥) where m is take: i&iﬂ:ﬁﬁ
that 7 gmbeds in P(W) as in Chapter 1. Next, choose a linear sub-
space V in P(W) containing [C] that is complementary to the tangent
Space to the orbit of [C]. Finally, choose an affine neighborhood Y of
[C] in .1’C NV that is small enough that, for every point [C'leY, the
curve C’ has no automorphisms and its orbit meets Y transverse'ly.

CLAmM 3.37) @ :T—Y isa universal deformation of any of its fibers.

Let's first show this for C itself. Fix another

W : D—(Z,2p) of C with identification of D, = C. Tlfee?;il:: ?2";
determines a canonical basis of HO%(C, &™) which we may view as a
basis of HY(D,,, w®"|;, ) and extend to a basis for g, (w3}z) near
Zo. This in turn embeds ¢ : D—Z as a family of subschemes of P”

:};i;h::e gvasdzpmg{emmof the Hilbert scheme, this is induced by ;;

p x : —_— w - b ) 2 - P~y 4
Dton cop X £ squaredl Yy construction has Image in X and fits

D g T
(3.38) 17 ()
z—X . %

The map Y is close to the pullback we want and ins i

to use the PGL(7 + 1)-action to adjust it so that i:ilsﬁ;gr:?:tlﬁ:llls
!ies in Y. To arrange this, note first that our transversality hypothesi:
implies that the multiplication map y : PGL(r + 1) x Y—=X is an
isomorphism near (id, [C}]). We can therefore, after possibly shrinkin,

Z,_t_ieﬂne f(_)ll'z nearZzpgermsp: Z—Y c Xand o : Z—PGL(r+1) bs
gf xr_lg:hté seon); :ntl(:a (tJ' = TeGL(r+1) °4 ™" o X. These give a factorization

X(2)=p(o@2),p(z)) orx =po (o,p).

On the other hand, o is injective by construction, so we may also

~

defin " Z— " i !
emaps X' : Z—X and £ : D—T by setting x =po(oc-l,x)

' pmm——
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P,

Ty

e,

“and & = g0 ((0 o)}, x), and, since PGL(7 + 1) acts equivariantly on
. @:T—X, the diagram (3.38) remains commutative if we replace the
. maps x and & by x’ and §’. The factorization identity above, however,

I3

i says that X" = p and hence that X’ be viewed as amap x’: Z—Y and
.. ¢’ as amap to T|y. We have therefore produced the desired pullback

AT e

D £ Cly

'] ?ly

4

X

Z———Y

:. once we check that we have compatible identifications of the fiber of
§:‘;ﬂy over X’'(zo) with C and D;,. This follows immediately since, by
#.ponstruction, o maps zy to the identity in PGL(r + 1).

Aniqueness for x’ follows directly from the universality of the
%‘;Hjlbert scheme. Further, the claim follows for any fiber by observ-
!"ing that the only property of C itself that is used is transversality of
¢ the orbit of [C] to Y and that this, by construction, holds for every
:; fiber. We note, for future reference, that something almost as good —
: qsually referred to as “openness of versality” is automatically true.

ij;:xnncxsn (3.39) Show that, if @ : (X, X)—(Y,0) is a versal deforma-
* tion of X, then it's also a versal deformation of the fiber X, for every
B .

" v in some open neighborhood of 0.

Essentially the same ideas work when [C] has a nontrivial stabi-
lizer G in PGL(7 + 1) if we take account of these to maintain suitable
equivariance at each step. The neighborhood Y must be chosen to be
G-equivariant (by intersecting with any G-translates) and shrunk, if
necessary, so that the stabilizer of any y € Y lies in G — this in turn
requires showing that Y can be chosen so that if g € PGL(r + 1) and
gY meets y, then g € G.

Similar arguments also produce versal deformations for curves with
marked points. We leave it to you to supply the necessary minor mod-
ifications in case you're interested.

Deformations of maps

We now consider a second example of deformation theory: the de-
formations of a map. We will describe here the space of first-order
deformations of a map, and the Kodaira-Spencer map associated to
a family of maps, which associates to a tangent vector to the base of
a family of maps the corresponding first-order deformation. Versal
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deformation spaces for maps do exist (at least when the target and
domain are reasonably well-behaved schemes, such as local complete
intersections), but we won't prove this here; rather, we'll assert it and
deduce as a consequence a dimension estimate for the space of maps
of curves to the plane. In particular, we’ll be able to conclude, as 3
corollary, the second part of Theorem (1.49)

The Kodaira-Spencer map

To keep things relatively simple, we’ll concentrate on maps between
smooth varieties; that is, we'll be concerned with families of maps
from a possibly variable smooth domain to a fixed smooth target
space. In other words, we'll consider a flat, smooth, proper family
f : X— B over a smooth connected base B, a smooth variety Y and
a morphism ¢ : X—+B x Y of B-schemes. For each b € B, we let

Wp : Xp—Y be the restriction of Y to the fiber X), of X over b, and
let

dyp : TXp — YITY

be the differential of ;. We let Np be the normal sheaf of ¥y, that is,

the cokernel of the morphism dy), of sheaves on Xp. Equivalently, if
we let

dw M Tx—-b (p*T(Bx Y)

be the differential of @ and NV = Coker(dy) the normal sheaf of Y,
then the normal sheaf Nj, of p is the restriction of N to the fiber X;,
that is, Ny = & ®0y;, . Note that if @, is an immersion, then N, will
be locally free; more generally, if y,, is equidimensional onto its image
then the sheaf Nj will have a torsion subsheaf supported exactly on
the locus where dyy fails to be an injective bundle map.

We now describe the Kodaira-Spencer map of the family ¢ of mor-
phisms. This is a mapY : TpB— H%(X),, N;,) that associates to any tan-
gent vector v € T;B a global section o = Y(v) of the normal sheaf, in
such a way that the family is trivial — that is, the family X =~ B x Xp as
B-schemes and the morphism ¢ = idg X ), — if and onlyif Y(v) =0
for every v. To define it, let w : B X Y—B be the projection, so that
we have an inclusion of bundles

T T > Tyy.

Weleti: Y**TB— W*T(B x Y) be the corresponding inclusion of

~

pullbacks to X, and Jet ¥ : Y*t*TB— N be the composition of i

7
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th the surjection ¢* Tpxy — N as shown in the diagram
PrnrTy

X

0——Tx ' Y Toy — N —— 0

'éstricting to X; and taking global sections, we get a map
Yp : TyB —— H(Xp, p*1w* Tg) — H®(Xp,Np),

: ’ ira- he given family at b.
3 ch we’ll call the Kodaira-Spencer map of t
- o valently, we let Y be the pushforwarfl of Y to B, composed with
 the inclusion of Tj into FeW*1r* Tp: that is,

Y=fo ¥ T fo*n* Ty — fu N,

' He' will call Y the global Kodaira-Spencer map of the family; the maps
§ ‘;ﬁare then the composition of the induced maps T,B—(f«N)p On
stalks with the natural maps (feN)p—H%(Xp,Np). .
" There are two main facts to be stated in connection with this co:

truction. The first, which can (and will) be left to you as an exercise,
s simply that for any map ¢ : X— Y of smooth varieties, the s;p:lc;
. of first-order deformations of o is H°(X,N), where Nis thlfall-lc(l) l
i sheaf of @o. The second, which is (as usual) substantially ha 61;, s
tbat there exists a versal deformation space for g, that is, there is

e

% deformation X— B of X = Xo and map ¢ : X—B x Y over B with
. Y|y, = Wo, such that:
,»3 1. every deformation of the map q is locally a pullback of (X, ),
: and,
is the space of first-order deforma-
> gl:ntsagtg’eull‘(:; stg:(t:eist.o tgealt(gdaira-Spgncer map Yp of (X,y) at0
is an isomorphism.

For proofs of these two facts, see [87] and [88] respectively.

th varieties and
EXERCISE (3.40) Let ¢ : X—Y be any map of SmO0

let N be the normal sheaf of . Show that the Kodanra-Spepcer n;ap
gives an isomorphism of the space of first-order deformations of

with HO(X,N).

Dimension counts for plane curves

The most common application of these facts is a .dimension coql?ttlllt
follows from the existence of the versal deformation space that e
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family ¢ of morphisms is nowhere isotrivial (that is, the restriction of
 to the subfamily X, = £~ (Bp) C X isn't trivial for any analytic arc
Bo C B), then at a general point b € B the map Y, must be injective,
so that we have an a priori bound on the dimension of the family:

dim(B) < h%(Xp, Np).

Moreover, the Chern classes of the normal sheaf are in general read-
ily calculated, so that in many cases it may be possible to estimate
h%(Xp, Np), giving us an upper bound on the dimensions of families
of maps.

This is exactly what we need, for example, to estimate the dimension
of the Severi variety V4 of reduced plane curves of given degree and
geometric genus. To set this up, let T C Vg4 X P2 be the universal
curve, X = T the normalization of the total space T, and U C Vg,
the dense open subset of V3, over which the map X —+T—+Vg, is
smooth; let ¢ : X—U x P2, If [Co] € U is a general point, so that
Xo is a smooth curve of genus g and o : Xo— Cp C P? a birational
embedding of Xy as a plane curve of degree d, then the normal sheaf

Np of o is arank 1 sheaf on the curve X, the degree of whose Chern
class is

deg(c1(No)) = deg(c1 (@ Tp2)) — deg(c1(Tx,))

=3d+2g -2
>29-2.
We would thus expect that

dim(U) < h%(Xo, No)
=deg(c1(No)) —g +1
=3d+g-1.

We cannot, however, conclude this yet. The difficulty arises from the
possibility that ¢ isn’t an immersion: if the differential dyg vanishes
at points of Xj, the sheaf Np will have torsion there, and in this case
the quotient No/(No)iwors (and hence Ny itself) may well be special. In
such a case, the dimension h%(Xo, No) will indeed be larger than the
naive estimate 3d + g ~ 1 for the dimension of our family, and the
method appears to fail.

Happily, there is a standard result, due to Arbarello and Cor-
nalba [4], that deals with this situation. We have:

' g, Deformation tneory L
e

PP

S

: , th
-LBMMA (3.41) Let X — B be a flat smooth proper family, Y a smoo

variety fzsnd @ : X—B x Y a morphism of B-schemes; assume tl.lat
g:X—Bx Y is birational onto its image. Ifb € Bisa general point,
. then
L Im(Yp) N H*(Xp, (Np)tors) = 0.

Y rks. 1) If we don’t assume the map ¢ is birational on‘to igs im-
i f::‘tzhe coxlclusion of the lemma may well be false. In fact, it will fail
i when the map @y : Xp—Y is multiple-to-one, with constant image
o iable branch points. .
bu;)vxgile we won't ilx)xtroduce the definitions needed to“make this pre-
cise, another way to express this lemma is to say thz?t the first-order
deformation of the map ¢» corresponding to a torsion section of Np
: can never be equisingular”. If b € B is general, the first-order defor-
¢ ipations of @y arising from the family ¢ : X —B x Y are necessarily
! aquisingular; it follows that they can’t be torsion.

by i it’s enough
¥ proOF. Note first that, using the analytic topqlogy, S
%r: prove the lemma in case B is one-dimensional: if we had
“Hm(Yp) 1 HO(Xp, (Np)wors) # O at general b € B, we could in an an-
" glytic neighborhood of b restrict to a curve whose tangent space was

- ined in (Yp) ! (H®(Xp, (Np)tars)) at each point.
R foart:‘;my thu(s :;sume that g : X—BXY is aone-parameter family of
f‘* maps, the image of whose Kodaira-Spencer map Yp at a general.pomt
%' 15 contained in HO(Xp, (Nb)ors)- Let Z = ¢(X) € B x Y be the image
Il of X and p € X a general point with image ¢(p) = (b,q) € BX Y:
£ We're assuming that for any v € TyB, the image Yp(v) vanishes at p;
’ that is, the tangent space T(p,q)Z is of the form

E

I_‘;‘ o T(b,l[)z = TbB X Ap

PRI ESREr S

inear subspace Ap C TgY.

’ fo;qz(:zu;;n t bea lgcal artl’alytig coordinate on B near b, '(:nd.let
(X, Y1,-.-,¥n) be local coordinates on Y near g such that ¢, x is a
local coordinate on X) near p (so that the pair (t,x) give local co-
ordinates on the surface X near p). We can write the map  locally
as

v = filt,x), i=1..,n.

The tangent space T(q)Z is then the zero locus of the linear forms
ofi ., ofi
-a—t-dt I dx

= i bspace
and the statement that T q)Z = TvB X Ap for some linear sul

Ap C T,Y says that %’E‘ vanishes identically near p. Wg deduce ?hat the
image of ) is constant, that is, that near (b, q) the image Z is equal

dy; -




3. Techniqueg

to the product of i i i
e a neighborhood of b € B with a neighborhood of
This being true for general p € X, it follo "
; _ \ ws that Z = B x @p(X,) !
:l\lre:'y;vpere. Finally, §mge the map y is assumed birational, it follm:; ;
a_ X is the normalization of Z; thus it's likewise a product, the map |
¥ =idg X @ and the Kodaira-Spencer map is identically zero. m

To restate the lemma, if we let
Yp: TyB —s Ho(xb-Nb/(Nb)tors)
be the composition of Y, with the natural map
HC(Np) — H°(Xy, Ny/(Nb)tors) ,

then ‘the lemma implies that Y, i inj

. a b 1S an mjection modulo the kernel
in, tha‘t is, ker(Yp) = ker(Yp); in particular, if the family Y is nowhe;):
so@wd then for general b € B the map Y, is injective, and hence

dim B < h%( Xy, Np /(N )tars) .

This is plenty to fix the argument given above ;i
fact, it gives us a bit more. All we ha\gcl: to observef?; trl’:aa:lgom;slin]z
bundle L. of _degree d on a smooth curve X of genus g, h°(X,L) is
fh -9 +‘1 if L is nonspecial, and at most g if L is special. N;)w, su;'!pose
N?)t N is any rank 1 sheaf on X and c1(N) 2 2g. If the torsion part of

as length e, so that deg(N/Niors) = ¢;(N) - e, we have

ho(X.N/Ntors) <max{d-e-g+ Lgl<ca(N)-g+1,

Fvéth equality holding if and only if N is torsion-free. Now, let
( b] € Vag be a general point of any component of the Severi va-
riety V4, as before, Xp—Cp the normalization and Nj the normal
shgaf of the map g, : Xp—Cp C B2, Applying Lemma (3.41) and the
naive dimension estimate above, we have the: ’ '

g::ROLI.ARY (342) The dimension of the Severi variety Vi, is
+4- 1.; and for [Cp) € V; g general, the map Xp—C), c igz is
an immersion and the Kodaira-Spencer mapY, is onto.

Now, to complete the proof of part )
need to establish the: part 2 of Theorem (1.49), we simply

LEMMA (3.43) Cp, has no triple points or tacnodes.

PROOF. The assertion of the lemma is that the i
X map ), is never three-
‘tj(l?f?ne, al_ld where @, (p) = ¥b(q) for p # q € Xp, the images of tlfe
erentials d(¢y), and d(yp), aren't equal. This also follows from

& peformation theory 1m

-analysis of the Kodéira-Spencer map. For the first, suppose that
p: q and r are any three points of X, mapping to the same point of
Cy. If o were a section of N, vanishing at p and 4, then under the

i porresponding first-order deformation of the map ¢, the point of

ersection of the images of neighborhoods of p and g in X, would
tionary; in order to preserve the triple point of Cp, then, o would
to vanish at r as well.

; E"f"l"hus. to show that a general Cj, has no triple points it's enough to

‘Np is aline bundle of degree 3d +2g~2 > 2g+1, so of course the three

oints p, q and r impose independent conditions on H%(X}, Np).

- Similarly, to show that a general Cp has no tacnodes it’s enough to
w that if p,q € X) are points mapping to the same point in P2,
here exists a section of the sheaf Nj, vanishing at p but not at 4, which
pllows from the same argument. ®

eformations of maps with tangency conditions

iiLike the deformation theory of varieties, the deformation theory of
%}'maps admits many variations. We will illustrate this by extending here
tithe results obtained in the preceding subsection to deformations of
“a map X— P2 that preserve tangency conditions with respect to a
fixed line L c P2. This choice of topic is motivated in part by future
"applications: these extended dimension counts turn out to be crucial
“in the proof of part 3 of Theorem (1.49) (that is, the irreducibility of
_the Severi varieties), which we’ll carry out in Section 6.E.

». The key question here is: if ¢ : X— P? is a map that has a point

- of tangency with L — that is, a point g € X such that the pullback
. @*(L) has multiplicity m at ¢ — then, in the space of all deformations

of the map ¢, can we identify the subspace of those preserving the

¥ ‘tangency condition? In particular, can we describe the tangent space

" to this subspace as a subspace of H?(X, N)?

To set this up, let X— B be as above a smooth family of curves
over a reduced base B, ¢ : X— B x P?2 a morphism of B-schemes, and
Q € X a section of X over B such that the pullback divisor y/*(L)
contains the section Q with multiplicity exactly m. Let b € B be a
general point and g = Xp N Q; suppose ¢(q) = p € L. Let v € TpB,
o = Yp(v) € HO(X,, Np) the corresponding first-order deformation,
and o = Yp(v) € H%(Xp, Np/(Np)ors)- Suppose finally that the differ-
ential dy, vanishes to order | - 1 at g, so that the image ¢, (A) of a
small neighborhood A of g € X will have multiplicity I at p. We then
have the: '
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LEMMA (3.44) T vanishes to order at least m - | at q, and cannot
vanish to order exactly k for any k withm -1 < k < m. Moreover, if
WIQ is constant, T vanishes to order at least m at q.

PROOF. It will be sufficient to do this in case B is one-dimensional,
Next, since B is reduced and b € B is general, B is smooth at b. Finally,
since again b € B is general we may assume that the divisor wyL or;
Xp contains the point q with multiplicity exactly m as well.

Now, choose coordinates (x,y) in an analytic neighborhood of
p= !Il(q)a so that the line L is given simply as the zero locus of .
Let' l}h%n 3% and 33— be tl;e genergitors og the rank 2 bundle TY at p;
we'll abuse notation and write == and -2 also
Sections of it % ¥y for the corresponding

The first thing we'll show is that the i 2 V
vanishes to order m - [ at q. tmage of gz 0 No/ (N

We treat the case [ < m first for simplicity, and leave the case [ = m
for later. Let t be an m* root of ¥y in a neighborhood of q€ Xy
tl-len t will be a local coordinate on X, near q and the map g, will bé
given as

Wpit—(th+ ottt + ..., t™)
so that the differential dy,, is given by

2 2 2

s -1 1 -
du’b-atf—>(lt + 1+ Vet +...)a+mt‘m l_a_y_
=t1((L+ (1 + 1), Loyl m-10_
(( T+ Vet + )ax+mt ay)

Set
)=+ A+ epat+-- .)i +mtm—li'
ox oy

The torsion subsheaf (N )iors C Ny, is isomorphic to Ox,/mt1, and is
generated by the section T(t). Moreover, the quotient

No/(Noors = Ox, [, %}/m

is generated by the image of the section ==. Note finally that modulo
the subsheaf generated by T, >

i,\. mtm—l )
ox l+(+Deat+--- ay

so that the image of the section a%— in N /(Np)iors vanishes to order
exactly m ~ [ at q.
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.- Now let t and ¢ be local coordinates on X, with ¢ alocal coordinate

! on B. A general deformation y of the map ), over the base B may be

- given modulo &2 by

Spe) = (&5 et e - re(op+ot+e - -), t™+e(Bo+Bit+- - ).
+ The condition that the divisor ¢*(()/)) = mQ near q says that we

¢ ‘¢an take t to be an m'™ root of the pullback *(:) not just on X», but

7:in a neighborhood of g in X. This means that a deformation satisfying

kY

“the hypotheses of the lemma may be written modulo £? as

w

ke

¢
{

.

ST

.~; wt,e) = (e th+ant*  + .-+ e(op+ oyt +--2),t™).
ﬂ .« From the definitions, the image Y5(2) € H%(X5, Np) of the tangent
¢ vector ;; € TpB under the Kodaira-Spencer map will be given as the

; jmage in N, of
@{\P

.éi: " hose image @ in N/ (Np)1ors, as we've seen, vanishes to order at least
*'m — 1 at q. Moreover, since b € B is general, the differential dy, will
% vanish to order I — 1 at X; n Q for all £ near b; that is, t!~!|dy,. This

 fmplies that

0 0
o= Y;,(é;) = (o +ont+--)z=,

o = 02 =...=oq_1-=0;

r in other words, the order of vanishing of & at p can’t equal

m~1+1,...,m- 1. To complete the proof in case m > I, the further

¢ condition that |, is constant says that ao = 0, which further implies

/ that @ vanishes to order at least m at q.

* " The case m = lis completely analogous. As before we write the map

L p as

L Wp it (" + Cpat™ - ™)

“where now n > m. We leave it to you to check that the same argument

~ yields that if ¥|q is constant, the section T vanishes to order at least
matgqg. ®

We will apply Lemma (3.44) to obtain an estimate on the dimen-
sion of the varieties parameterizing plane curves of given degree and
genus satisfying certain tangency conditions with respect to a line.
First, some definitions. We fix again a line L ¢ P2, and also a finite
subset S = {p1,...,px} C L. For any positive integer B, we define the
generalized Severi variety V‘f to be the closure, in the space PN of
all plane curves of degree d, of the locus of reduced, irreducible plane
curves C ¢ P? of geometric genus g such that if @ : X—C is the
normalization map, then

#(Wol(L\S)) < B.
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The variety Vf will in general be very reducible: for example, in the
simplest nontrivial case 8 = d - 1, the general member of a component
of V; g ay either pass through a point of S, or be simply tangent to
L at a general point. In the case 8 = d ~ 2, there are six possibilities. A
general point [Cy] Vi g ay correspond to a curve that has a node
at a point of S, is tangent to L at a point of S, passes through two
points of S, passes through one point of S and is tangent to L at a
general point, is tangent to L at two general points, or has a flex along
L. In general, though, as the dimension estimates we derive here will
show, the dimension will depend only on 8.

LEMMA (3.45) The generalized Severi variety Vf g has dimension
2d + g — 1 + B everywhere. Moreover, if [C] is a general point of any
component of V, g and Yo : X—C c P? is the normalization map,
then

1) o is an immersion;

2) the only singularities of C away from S are nodes;
3) Cissmooth along L \ S; and

4) #(pg'(L\5)) = B.

PROOF. To begin with, it follows from a straightforward dimension
count that Vf o has dimension at least 2d + g — 1 + B everywhere.

We thus have to show that dime gs2d+g-1+8 everywhere,
LetT c Vf‘y X P? be the universal curve over Vig ¥ : C—T the
normalization of the total space, U c V} o the open subset over which
the map C— Vi g is smooth, and X the inverse image of U in T, so
that 7 : X— U is a family of smooth curves of genus g.

Let [C] € U be a general point, X—C c P? the normalization and
N the normal sheaf of the map g = WY|x : X—C c P2. Write

8 8
WEI(L)= ng-q¢+2n¢-n
i=1 i=1

where @o(q;i) € S. By the definition of Vf o and the fact that [C] e U
is general, we have, in an analytic neighborhood of [X], collections of
sections {Q} and {R;} c X such that

vQcs
(so that in particular P|q, is constant),
B B
YL =>m Qi+ > ni-Ry.
i=1 i

i=1
.
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and

qi=QinX and 7 =RinX.
:' i istinct: if not, then
e may assume that the points {g;} and {r;} are dlspnct. s

v't‘lvne component V of Vf R which the cuglve [C]lis gen::ral would
- also be a component of a Severi variety V; ” for some B’ < B. Our
- argument will then show that the dimension of V is bounded above
iby2d+g-1+p <2d+g-1+8. ‘

t " We need to introduce one more bit of notation. We denote by I; - 1
i the order of vanishing of the differential dy, at the point 7;. We then
“ define divisors D and Dg € Div(X) by

8 8
D=Ymi-q+Y(n-1)-n
i=1 i=1

B
Do=(li-1) n.
i=1

deg(D) =d -8

deg ((w§Op2(1))(-D)) 2 0.

i Note also that

b,

] deg (c1 (Niors)) = deg(Do),

* with equality holding if and only if o is an immersion away from
{n}. Hence

§
]

deg (c1(N/Niors)) < deg(c1(N)) — deg(Do),
again with equality holding if and only if ¢ is an immersion away

1{;‘ from {r:}.

Finally, let D; be the effective part of D — Dy.
Now, applying Lemma (3.41) and Lemma (3.44), we see that

dimU < h%(X, (N/Niars) (—D1)) .
We have
deg ((N/Niors)(—D1)) < deg(c1(N)) — deg(D)

and since
c1(N) = waoln B)RQuwx

we see that the line bundle
(c1(N)(-D))@wx! = ((@§Op2(1))(~D)) @i Op2(2)
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has strictly positive degree. We may thus conclude that

dim U < h%(X, (N/Ntors)(—~D1))
<deg(ci(N)(-D)) -g+1
=(3d+2g-2-deg(D))-g+1
=2d+g-1+8.

This completes the proof of the dimension statement in Lemma (3.45).
Notice that the argument above implies that the image of the
Kodaira-Spencer map can be identified as follows:

Im(Yic) = HO(X, (N/Niors)(=D1)).

To prove the second half of Lemma (3.45), we start by establishing
what is perhaps the subtlest point: that the map g is indeed an im-
mersion. In fact, much of this has already been accomplished in the
proof of the first half: since the line bundle (c; (N)(-D)®wy! on X
has degree at least 2, we may deduce that

(N/Niors)(—D1) = 1{N)(-D)
so that D; = D — Dg and
N/Ntors = €1(N)(-Dy)

and hence o is an immersion away from {7;}.

To see that ¢ is an immersion at the point 7;, we observe that the
line bundle (c; (N )(—D))®w,}l has degree at least 4 on X, so that
there exists a section @ of ¢;(N)(~D) = (N/Niors)(—D1) vanishing
to order exactly 1 at 7;, and this section must be in the image of the
Kodaira-Spencer map

Yix1 : Tix)V — HO(X, (N/Niors)).
But the multiplicity of 7; in the divisor D; = D — Dy is
ni-1)-(L:-1)=n;-1,

and it follows that 7, viewed as a section of N /Niors, vanishes to order
exactly n; — [; + 1 at 7;. By Lemma (3.44), then, we must have [; = 1;
that is, /o must be an immersion at 7;.

Next, to show that X has only nodes as singularities away from S,
we have to show it has no triple points and that no two branches are
tangent to each other. This is simply a variant of the argument given
in the proof of Lemma (3.43), replacing N by N(-D): for example, to

T
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ghow there are no triple points, it's enough to show that for any three
i .‘p_ojnts p.q,7 € X there exists a section of N(-D) vanishing at p and
g butnot at 7, which follows immediately by degree considerations.
. Similarly, to establish part 3, we simply have to argue that for any two
&mpoints p and q of @3l (L\ S), there is a first-order deformation that
<varies @o(p) but not Yo(q).

gj‘ “Finally, the fact that #(yw5?(L\S)) = B is an immediate consequence
. of the dimension count in the first part of the lemma. ®

F% ‘We mention, for future application, that the result of Lemma (3.45)
"ﬁ’doesn't depend on the hypothesis that the general member of Vf g 18
*frreducible. In fact, we can derive the following more general state-

¥ ment as a corollary.

COROLLARY (3.46) Let L in P? be a line and let S be any finite subset.
{21V c PN be any locally closed subset of the space PN of plane curves
fdegreed, andlet[C1 € V bea general point. Suppose that the curve
Uis the image of an abstract nodal curve X of geometric genus g under
' map n : X—C that isn’t constant on any connected component of X
jhd such that the inverse image n~1(L \ S) contains at most B points.

dimV<2d+g+8-1,

and if equality holds, then C is a nodal curve smooth at its points of
intersection with L\ S.

»%* l;i_.(’)or. This follows by simply applying Lemma (3.45) to each com-
o ponentof Cinturn. ®

C Stable reduction

. Results

" It’s abasic fact, quoted without proof above, that the moduli space M,
of stable curves of genus g is compact and separated. According to the
valuative criterion for properness, the compactness property implies
that any regular map from the complement of a point on a smooth
curve to Wg admits an extensiontoa regular map on the whole curve.
Likewise, the separability of M, can be viewed as asserting that this
extension is unique.

As remarked in Chapter 1, a map of a smooth curve B, punctured or
not, to a coarse moduli space M, corresponds (possibly after a base
change to rigidify) to a family of stable curves over a branched cover
of B. It should therefore follow that:
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PROPOSITION (3.47) (STABLE REDUCTION) Let B be a smooth curve,
0 a point of B and B* = B \ {0}. Let X—B* be q flat family of stq-
ble curves of genus g > 2. Then there exists a branched cover B’ —. B
totally ramified over 0 and a family X' —B’ of stable curves extend-
ing the fiber product X xg« B’. Moreover, any two such extensions are
dominated by a third. In particular, their special fibers — those over
the preimage of 0 in B’ — are isomorphic.

The process of finding the family X’ — B’ is called stable reduction,
It arises quite frequently in practice, since even geometrically smooth
families of curves (e.g., linear systems of curves on a surface, fami-
lies of branched covers) are apt to specialize to nonstable curves —
curves with a cusp or worse singularity, or curves with multiple com-
ponents. In this circumstance, we're assured in the abstract that we
can, in any one-parameter subfamily with smooth base, replace the
unstable fibers with stable ones by making a base change and bira-
tional modification. For many purposes, we need to know not Just
that this can be done, but what stable curves actually appear as limits
of one-parameter subfamilies tending to an unstable curve,

Sometimes the geometry of the specialization gives us a good idea
of what special fiber to expect. For example, in a general pencil of
plane quartics degenerating to a double conic, we might guess that
the special fiber will be a (smooth) hyperelliptic curve (this is worked
out in the following subsection). In other cases (many examples are
given below), what the stable reduction will be is far from clear.

One warning we should offer here is that we cannot necessarily take
the total space of the family X’— B’ to be smooth. It will, however,
have only a very limited range of possible singularities: by the descrip-
tion above of the versal deformation space of a node, any singularity
of X’ will be given locally by the equation xy - tk for some k (in the
usual terminology, will be an Ag-1 singularity). These can be resolved
by blowing up to obtain an exceptional divisor consisting of a chain of
k — 1 rational curves each appearing with multiplicity 1 in the fiber of
the blown-up surface over the origin 0 € B. Recalling from Section 2.C
that a connected curve C is semistable if it has only nodes as singu-
larities and if each rational component of the normalization ¢ of C

contains at least 2 (as opposed to 3) points lying over nodes of C,we
then have the:

PROPOSITION (3.48) (SEMISTABLE REDUCTION) Let B be a smooth
curve, 0 a point of B and B* = B \ {0}. Let X—B* pe q flat fam-
ily of semistable curves of genus g > 2. Then there exists q branched
cover B’ — B totally ramified over 0 and a family X' — B’ of semistable
Curves extending the fiber product X Xg+ B’ and having smooth total
space X'. Any two such extensions are dominated by third and so have

i 9
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ial fibers whose stable models — obtained by c:'ontracting smooth
iz:gnal components meeting the rest of the curve in fewer than three
points — are isomorphic.

is wi eful in a number of situations: for example, when we
ha'\lr‘leu: liwlll]i tt))fulllcsile L on X that we want to extend to some compacti-
ﬁc:itlllg?l;,c a. third variant will be useful when we w15h to r;s;ilve :{l;
indeterminacy of a rational map or to replacg adivisorin X 'b te o
‘B, with a collection of disjoint sections. This can be doneh y mahnandg
f‘a’l'lalogous modifications to X’ (either blowups or base ; ?gesecial
blowups) without reintroducing multiple com_ponents of t e':fﬁber
fiber. Since we may have to blow up smooth points of th_e sptia fibe?
%o, producing smooth rational components gf Xo me‘etl.ng e‘riable
X, only once, we can't assert that the resulting family is semistable,
5}:i.lt we can ensure that it’s a family of nodal curves.

i be a smooth curve,
: POSITION (3.49) (NODAL REDUCTION) Let B :

(l;l:zopoint of B and B* = B\ {0}. Let X—B* be a ﬂa{ famzb of nodal
curves of genus g, @ : X —Z any morphism to a prOJef:nve scheme Zé
and D C X any divisor finite over B*. Then, there exists a branche
cover B'— B and a family X' — B’ of nodal curves extending the fiber
product X xg+ B’ with the following properties:

1) The total space X' is smooth.

 2) The morphism 1ty o @ : X xXg+ B'— Z extends to a regular mor-
phism on all of X'.

3) The closure of the inverse image 1ty (D) in X' is a disjoint union
of sections of X' —B’.

Any two such extensions are dominated by a third and so have special
fibers whose stable models are isomorphic.

st property makes it easy to prove analogous results
:‘:)el"’;:r;’;.ligf)} Ztat?le II))oint:,ed curves, which we leave you to formulate
pr;‘;lzfcl:ya.tre now two things to do. We should prove the propo.s.mogs
and we should give some examples of how the process ot: finding the
extension X’ — B of a given family is carried out in practice. YOl;‘ car;‘
by now easily guess which one we’ll actually do. In fact,_proo st od
all three results follow, in outline, rather closely the steps 1lluls.utr_a Si :
by the examples below. After we've gone through these, we(:i tauilled
cate what additional ingredients enter into the proof. (A more ek yec
proof can be found in [11].) We should, howevgr. at least relllnatr) e?s
the way we've motivated these results in the first paragraph abov
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somewhat misleading. Historically, these theorems preceded the dis-
covery of My and their proof did not depend on knowing that such
a compactification exists. Quite the reverse: stable reduction is a key
ingredient in the proof of the existence of M,.

, ) Tp
Examples . g
Glueing a constant section to a moving one ' \ ' A

We start with one of the simplest examples. Suppose that C is a fixed FIGURE (3.52)

smooth curve of genus g — 1, p € C is a point, and for each point

g + p € C, C, is the stable curve of genus g obtained by identifying ' . ; idal curve. This is perhaps
the points p a‘:ld q on C. Fixing p and letting q vary, it's clear that these  a family whose fiber over p elegrl:v;aiut;?stable central fiber will be.
fit together to form a family X of stable curves over the punctured - the first case mWh;E)ht;:esr‘:xct obvious thing: we blow up the original
curve C - {p}. We ask: what happens as q approaches p as indicated in .+’ To find out, we

4 i the iden-
i ¥ famni the offending point (p,p) before making
Figure (3.50)? At the level of the fibers, we want to know how we can ;mzoi: ¢ ?st yields the family in Figure (3.53), and now we can

AL

"

I

/4 \ ?‘L C
q
FIGURE (3.50)
complete the family of stable curves shown in Figure (3.51) (in which A
q approaches p as we move from left to right) to one defined over all T
of C? In other words, what stable curve should replace the question : T \ \ \ P
mark at the right? There is an obvious way to complete this to a family p?
FIGURE (3.53)
P A and T, to arrive at
the identification of the proper transforms P
;n::;ily whose fiber over p is the stable curve shown in Figure (3.54).
? P!
c 4
_ FIGURE (3.54)

FIGURE (3.51)

of curves: in the product C x C, we can simply identify the two cross- k imi he two-pointed curve
sections A and I, where A is the diagonal and I, = {p} x C is the EXERCISE (3.55) sho“{lthat lt: fhset:glile\u;lfl tCoéfntd a copyp:f the line P!
horizontal cross-section as in Figure (3.52). This, however, will yield (C,p,q) as q approaches p
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attached at the point p € C, with two marked points on P!. Why does :

the choice of the two points not matter?

The rational curve with a single node which arises here appears sg 4
frequently that it has been named. For reasons that should be clear :

from Figure (3.54), it's called a pigtail.

If more points come together, however, the moduli of the limit wil] -

depend how they approach each other. The following exercise shows
an example of this.

EXERCISE (3.56) Let C be a smooth curve of genus g — 2. Consider
the family of stable curves of genus g over the complement of the
diagonal in the fourfold product C* whose fiber over a point (p, 4,7, s)
is the curve obtained by identifying p with q and r with s. What are
the stable limits of curves in this family? Does this family extend to a

family of stable curves over all of C%? Over what blowup of C* does
it extend?

Smooth curves acquiring a cusp

This example is probably the most common one. Suppose we have a
pencil {C:} of curves on a surface, with C; a smooth curve for t in
a punctured neighborhood of t = 0, but Cy a curve with one cusp.
Suppose moreover that the cusp of Cp isn’t a base point of the pencil,
so that in a neighborhood of the cusp p of Cy and of t = 0 we can
write the equation of the curve C; as

Fix) +t-G(x)

with G nonzero at p. Generically, the analytic normal form of such a
pencil will be y¥2 = x3 + t and the picture is that in Figure (3.57). We
ask: what is the stable limit of the curves C; as t approaches 0?

FIGURE (3.57)

This problem is substantially more subtle than the preceding one;
for example, here we'll definitely have to make a base change to carry
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i hould clean
A le reduction. Before we do this, howeve:r, we shoul

t';: ;‘t:);lem a little by getting rid of ’tche cu;;la 1)1(1 ;h:fs;t)lf:lgl ﬁber
¥ wing up the total space Xo C rigi na'l
Eoencil ;vgyc:llloalways l;:rrive at a family whose fiber oyer the o.ngllln;1 is
o ported on a nodal curve — the problem is4 that this fiber will have
I’tiple components — and we do this first. ¢ the by-
. This takes three blowups. Note first of all mgt.tbegatlﬁze :encil, hy-
. i t the cusp p of Co isn't a base point O :
ﬁ:cs;sxtrais smooth (this is in fact the only aspect of this pro::;:;
thatavolves the fact that the oigna 08 B2 00 oy

ilv in Figure (3.57) and blowing \ t the fam

g:m}(,ﬁsl)garhose special fiber consists of the normalization C of

~

FIGURE (3.58)

; i jvi = i i ultiplicity 2 in
& eptional divisor E; = P! appearing with m y 21
%ﬁ fh:.;i%:;l I;el’g‘el,)and in the sequel, we indicate component multiplicities

& r than 1 by circled integers. _ o

gr;aet:t’ we blow up a second time to tla:mve at :-hfr Znamllsfosll'll: l;muref e v(\? hf(?li

: _ 4 .

" whose special fiber consists of C, the prop onal

g i i all E;), and a new excep

- we'll continue, by abuse of notatxog,_to cal B 2 smooth and

< E, appearing with multiphcuy 3 in the , :
?Ii:’i;::ctiz!lgpapt a common point p. Finally, we blo_w up ttll:e 1:31‘;135:
introducing another exceptional divisor E3 appearing with m ! pthe
ity 6 in the fiber as in Figure (3.60). This last blowup separates

41f you're familiar with proofs of the stable reduction theom Tﬂayngcn; st:ri;
rocec);ure somewhat surprising since these usually begin by g o ewever,
g e changes and only afterwards perform blowups as ngeded to v:ill oot
pe edure we adopt in this example is, in fact, fairly typical. We e SO ey
thmakinge pmbase changes only after having obtained a_(nom:educed) nod b gres d
implifies the bookkeeping of component multiplic_lties and intersectiofnbuumbert mbers
:he gpedal fiber: this is a task which is superﬂgm_xs in an existence proo
when we want to jdentify a particular stable limit.
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6 El Ez
@ ©
FIGURR (3.59)
E;3
¢
@ E
E;
®

FIGURE (3.60)

proper transforms of the components in the fiber of the Previous fam-

ily (which we continue to ¢ ;
at distines peol all C, E, and E); they now all intersect E;

We have thus arrived at a family whose reduce

¥
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“a single base change of composite order, but doing so makes it much
.parder to keep track of what is going on.
" Inthe present case, since we have components of multiplicity divis-
“ible by 2 and 3, we'll want to make base changes of these orders. To
start with, we make a base change of order 2; that is, we take the fiber
: product of X with a double cover B’ of B given locally by the map
“ti—~12. This is equivalent to taking the double cover of X branched
"along the divisor t = 0, so that the local equation of the resulting
“gurface will be u2 = t everywhere. If D ¢ X is a component of multi-
* plicity m in the special fiber, then in a neighborhood of a point p of
D, t is the m'® power of a local coordinate z on X, so that the local
. equation of X’ will be
' ‘ u? =zm,
- Of course, if m > 1, this will be singular along the inverse image of D.
owever, the normalization process will smooth this locus, replacing
741 by a local coordinate v = 1u/z\™/2}, 5o that the local equation of the
; pi‘malizaﬁon will be either v2 = z or v2 = 1 depending on whether
*m is odd or even. This suggests the following definition.

. DEFINITION (3.61) For any divisor
D= z ai - Dy

‘ on a surface and n. € Z, define the divisor D=y, (called the divisor D
< reduced mod n) to be the divisor

Den =) a;- Dy
where0<a; <n-1anda; = a; modn.

In these terms, we can summarize the discussion in the preceding
paragraph by saying that the effect of the base change of prime or-
der p followed by normalization is to take the branched cover X of X
branched along the divisor (t) reduced mod p. The simplicity of this
description is the main reason for factoring any base change into a
succession of base changes of prime order.

EXERCISE (3.62) Compute the result of performing a base change of
order 6 on X and normalizing the resulting surface and show that
the description above can’t be extended to base changes of composite
order.

In the present circumstance, the divisor (t) reduced mod 2 is simply
the sum of the components E; and C of the special fiber that are
shown thickened in Figure (3.63). Since this branch divisor is smooth,
the resulting surface will be smooth as well. The inverse images of
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¢
@ g
E;

®
®

FIGURE (3.63)

E> and C will of course be curves mapping isomorphically to them.
Since E3 meets the branch locus in two points, its inverse image will
be a double cover of E3 = P! branched at two points, which is to say,
a single rational curve that we shall continue to call E;. On the other
hand, E, is disjoint from the branch locus, so that its inverse image
will be an unramified cover ofl E; = P!; that is, two disjoint rational
curves that we'll call E; and E; .

The multiplicities of the various components in the special fiber are
not hard to calculate either. Briefly, the pullback to X of the divisor
(t) on X is simply the sum of the components of the inverse image of
the special fiber in X, with multiplicities unchanged from that of the
corresponding component of (¢) on X for components not contained

in the branch divisor, and with multiplicity doubled for components
in the branch divisor. Thus,

n* = 2C + 6F» + 2E; + 2E; + 6E;.

But the special fiber (1) of the new family X—B'is exactly one-half
of this divisor: thus

(w) = € + 3B, + Ej + E + 3E3,

and the picture of our new surface is shown in Figure (3.64) with all
components smooth rational curves (except for C, of course), and all
multiplicities 1 unless marked.

Again, we can apply the same principles to a base change of any
prime order p except that the multiplicities of components of the
special fiber X; in the branch divisor are then multiplied by p in the
inverse image of X; and the new special fiber is (%)th of this inverse
image. As an example, we take the logical next step of making a base
change of order 3 and normalizing. We must form the cyclic triple

. stable reduction
e 2 —

4
5
]
3
7

L R

Ebver of our surface branghed over the

H
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E3
C
Ey
E/
E;
®
FIGURE (3.64)

special fiber reduced mod 3,

" UEy ickened in Figure (3.65)-
ich i curve C UE] UE;, shown thic :
V'Iﬁcilx‘\:l:gesiaxgggl:s of C. E} anld Ey are copies of themselves. Since Ez

Ej3
¢
E;
EY
E;
FIGURE (3.65)

is disjoint from the branch divisor, its inversle 'mll,age is ;"’j’ls%(i)rl\nail \;mtct)‘x;
f three rational curves, which we’ll call E;, E; and E; . e t'hre e
(i)nverse image of E3 will be a triple cover of E3 .branch.ed over the throe
oints where F3 meets C, E; and }:"{ — that is, by ]iuemannl:i )
2 lliptic curve, which we'll continue to call simply Es. Figur o0)
ahor 1pttl]'lc | ictu,re we finally arrive at. Since in n*(t) all compone
it(l)?lslaveergultiplicity 3, the new special fiber will be reduced.
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E;
¢
E,
E{
E,
E)
Eé”
FIGURE (3.66)

We're now one step awa fro i i

. A Y from being finished: i

;V_hose special fiber is a reduced curve with only nod g:‘; :‘a"e a family
U's not semistable, however, because of the singularities.

E> curves, which are rational curves meeti

E-E=-1.

Hence, E is an exceptional curve of the first kind

tracted. Blowing do

wn the five curves of this type, and. can be con-

a : . then' Wi .
the family in Figure (3.67) whose special fiber consjsts of th: 3;?:; :tt'
C
E
FIGURE (3.67)

th ] 3 o - 3
e r;oﬁl:l?czhnzacllnon C _of 'the pngmal curve C together with the elliptic
mcurvsp e T]gj an elhpn.c tail ), joined at the point of ¢ lying over the
- This, finally, is the stable reduction of the original family

S,
——
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‘" EXERCISE (3.68) At each stage of this process, calculate the self-
" ntersection of each component of the special fiber.

~ EXERCISE (3.69) Consider the family F + t - G above, with F a quartic
: with an ordinary cusp and G a general quartic. Carry out the process
* of stable reduction globally, making base changes of orders 2 and 3 by
! taking covers P! — P! of degrees 2 and 3 branched over the point t = 0
© and one other general point of P!, What are the numerical invariants
 of the resulting surface?

There is one amusing (and significant) point to be made here. We

" haven't really specified in the description above the moduli point in
. 'ﬁg of the special fiber Xy because we haven't said which elliptic curve
E arises. Looking back at the reduction process we see that E appeared

" in the process of making the base change of order 3 as a triple cover
;; of P! totally ramified over three points. Since any three points on
'f’l" are projectively equivalent, this description completely specifies

[4

¥'E. In fact, it shows that E is Galois with Galois group Z/3Z and so

£

' has an automorphism group of order 3. Thus, the associated lattice is

A<

* spanned by 1 and %™*/3 and the elliptic curve E always has j-invariant

* 0! To see what is funny about this, consider a two-parameter family

. of curves Cq,p) Of genus g = 2 given locally by

yi=x3+a-x+b

- (which is the versal deformation space of a cusp singularity); assume

. that for (a, b) * (0,0), the curve C(qp) is stable. Figure (3.70) shows

the type of singularity in the fiber over each point of the base of this
family. What the analysis above shows is that if we approach the
origin via a general one-parameter family in this plane not tangent to
the a-axis at the origin, we'll get the elliptic curve with j-invariant 0
in the limit. What happens if we approach along the discriminant A?
This is essentially the situation of the first example treated above and
we saw there that the limit is always the pigtail for which j = co.
Where are the other elliptic curves hiding? That generic directions
lead to tails E with j-invariant 0 shows what the answer must be.
Associating to a point of the (a, b)-plane CZ , other than the origin
the isomorphism class [C,p)] of the curve C(q.5) defines a rational
map C;‘;_,, -- -+ M,. Now, not only is this map not regular at the origin;
but what we've seen is that even after we blow up the origin in the
(a, b)-plane, the map doesn’t extend to a regular map. Indeed, what
we've seen is that if C2, is the blowup of C2 , at the origin, E c (3,
the exceptional divisor, then the map @ extends to a regular map on
the complement in Cﬁvb of the point p € E corresponding to the line
(b = 0), constant on E \ {p}: for any arc in C2, with tangent line
at (0,0) not equal to (b = 0), the total space of the corresponding
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Emooth curves acquiring a triple point

Scor another (and in fact easier) example, consider a family of curves,
enerically smooth, tending to a curve with a triple point. As in the
ious case, we'll assume that the family has no infinitesimal base
| s so that we have a smooth total space X — B. (As the last exam-
gple illustrated, this last assumption is quite a restrictive one.) Locally
Usuch a family might have equation of the form x3 + 33 + g(x, ) + t
kwhere g vanishes to order at least 4 at the origin and look like that
§in Figure (3.72). As before, the first order of business is to reduce to

nodal
smooth

— .

cuspidal

4a3 - 2 7b2 = 0
FIGURE (3.70)

0 o]
ne¢-parameter family of curves will be smooth, and the same analysis

-invariant 0,

shows that the stable limit wj
In fact, a se le limit will have an elliptic tail with J

FIGURE (3.72)
ding example is :

- the case where the reduced special fiber has only nodes. This can be
#;-done in one step by blowing up the triple point of the special fiber: we
; ’arrlve at the family in Figure (3.73) in which the special fiber consists
of the normalization C of the original curve C with a triple point, plus
%" an exceptional divisor E; meeting C in the three points lying over the
% triple point of C and appearing with multiplicity 3 in the fiber.

o8

E)
FIGURE (3.71)
a ma M .
tails Eam‘é’v ?;tjs$ds the points of E; to the joins of & to elliptic FIGURE (3.73)
. -invariant. This ma
iu;d A respectively to the three joins vfr,itl;:ot‘taviisdl(:w{l the. g'urvefs E, E, Now, to get rid of the multiplicity we have to make a base change
28 and e, aving J-invariants 0, of order 3, followed by a normalization. As before, this amounts to

taking a cyclic triple cover of the total space of our family branched
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over the curve C. The inverse image of E, is then a cyclic triple cover
of E; totally branched over the three points of intersection of E; with
C. Once again, this is the elliptic curve E of j-invariant 0. Since the
points of intersection of E with C are the fixed points of the automor-
phisms of E, they form a subgroup of order 3 of E. We summarize
this example: the stable limit of our family is the normalization C of
the original curve C with an elliptic curve E of j-invariant 0 attached
by identifying the points of C lying over the triple point of C with the
points of a subgroup of order 3 in E.

Again, we can now ask what variations on this reduction will appear
over the deformation space

x}+y3sa+bx+cy+dxy

of the triple point. Generic pencils in this family will lead to the limit
above. The derivation above continues to apply as long as the total
space X of the original family is smooth, which will be true here as
long as we avoid pencils lying in (or more generally arcs tangent to) the
hyperplane a = 0. Approaches to the origin along special directions,
or more generally, with special higher-order jets will lead to a whole
menagerie of different stable limits which we begin to explore in the
exercises.

EXERCISE (3.74) 1) What is the stable limit of a family of curves with
three nodes degenerating to a curve with an ordinary triple point as
shown below? What conditions must the jet of an arc in the deforma-
tion space of the triple point satisfy to yield a family of curves of this

ek

FIGURE (3.75)

2) Construct an arc in the deformation space of the triple point whose
stable reduction is the join of the normalization C at the points lying
over the triple point with an arbitrary triple of points on an arbitrary
elliptic curve.

3) (Harder) Describe the regularization of the rational map to moduli
from the base of the deformation space of the triple point.
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The inverse image of C is then the double cover of C branched at the
eight points p;, which is a hyperelliptic curve Cy of genus 3. At the
same time, the inverse image of each E; is then just a rational curve
mapping isomorphically to E;. These will appear with multiplicity 1
in the fiber and will have self-intersection —1 so they can be blown
down to arrive at a family whose special fiber is simply the smooth
hyperelliptic curve Co. -

This is an interesting example for several reasons; we should men-
tion at least two here. One is that it illustrates that the nastiness of the
nonsemistable fiber in a nonsemistable family has little to do with how
singular or reducible the semistable limit will be. The double conic is
certainly the “worst” limit we have looked at, yet for the first time we
get a smooth stable specialization.

This example also represents in some ways a nice example of the
20 century approach to projective geometry, which is to focus not
only on subvarieties of projective space but also on the abstract vari-
eties associated to them. Thus, in the original family of plane curves,
the limiting curve is a double conic, which has relatively little struc-
ture (e.g., all double conics are isomorphic, and all points on a double
conic look the same). If we think of the family as a family of abstract
curves of genus 3, however, the natural limiting object is a smooth,
hyperelliptic curve of genus 3 — an object that does have a great deal
of structure.

To illustrate how this notion can be used in practice, we consider
the following classical problem. In the family of curves C; c P? given
by Q%2 + t - F = 0, the curve C; will, for each small t + 0, be smooth
and so will have exactly 28 bitangent lines. We will denote these, some-
what abusively, by L;(t),..., L2g(t) although these aren’t necessarily,
a priori, single-valued functions of t in a punctured neighborhood of
t = 0. We ask: what are the limits of the bitangents L;(t) as t—0?
Similarly, if F is general, the generic curve C,; will have 24 flex points
p1(t), ..., p24(t) (again, not necessarily single-valued functions of t).’
We may ask what the limits of the points p;(t) are as t —0.

To answer the first question, we may use the characterization of
a bitangent line to a plane quartic as the line spanned by the points
of an odd theta-characteristic D — that is, a divisor D > 0 such that
2D ~ K and h%(C, ©c(D)) is odd. Since this description doesn’t ex-
plicitly involve the plane embedding, it serves as well to characterize
the limits of these lines as ¢t — 0. Explicitly, the hyperelliptic curve C,
will have 8 Weierstrass points g; — these are the branch points of the
double cover Co— P! — and the odd theta-characteristics of Co are

5In this example, it turns out that the lines L;(t) are single-valued while the points
pi(t) are defined only over O5[t1/3].

g ) stable reduction

3ust the pairwise sums g; +q; of distinct Weierstrass points. Since th.e
:points q; € Co map to the points p; of intersection of the plane conic
C with the quartic curve F = 0, we conclude that the limits of the 28
-pitangent lines to the curves C, are the lines joining pairs of points of
f:fmtersection of C with the curve F = 0. o »

¢ Again, the point is that the original problem — finding the limits
?)f bitangents to a family of plane curves — doesn’t involve in any
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yay the stable limit of the family. If we look only at the plane curves,
owever, it's difficult to see where the bitangents should go (though
%?n"’s a worthwhile exercise to try and work out the problem rigorously
‘without invoking stable reduction).
%lfiixnnasn (3.78) In the example above, show that as t—0 the 24 l%nes
ato which the general fiber X, flexes approach the eight tangent lu_les
{to the conic at the base points of the pencil and that each tangent line
®occurs with multiplicity 3 in the limit.
f 43
%XERCISB (3.79) 1) Let {C,} be a general pencil of plane sextics spe-
X dializing to a double cubic curve Co = 2E. What will be the stable limit
géf;;of the family? .
‘* 2) A general smooth sextic plane curve will have 324 bitangent lines.

' What are the limiting positions of the bitangent lines to {C:} ast
 approaches 07

g:EXERCISE (3.80) 1) Show that a general pencil of plane sextics spe-
" cializing to a triple conic will have as stable limit a smooth cyclic
" trigonal curve of genus 10.

ff-»2) Make a dimension count that shows that other trigonal curves of

T

" genus 10 must be limits of (special pencils of) plane sextics as well.
© 3) Show that if Q, R and S are a sufficiently generic quadric, quartic
" and sextic respectively, then the pencil Q3 +tQR +t2S has stable limit
" a noncyclic trigonal curve. What does “sufficiently generic” mean in
_ this example?

4) Exactly which trigonal curves arise as limits of pencils of sextics?

TS

Here are a few more exercises that treat stable reductions that come
up frequently in applications.

EXERCISE (3.81) Find the stable limit of a general pencil {C;} of plane
quartics specializing to:

1) the union of a smooth cubic plane curve C and a transverse line L
2) the union of a smooth cubic plane curve C and a line L simply
tangent to C

3) the union of a smooth cubic plane curve C and a flexline L to C
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4) the union of a cuspidal cubic C i
i ic C and a general line L through the

5) the union of a cuspidal cubic C and the “ i
1 of e “tangent line” (i.e.
reduced projective tangent cone) to C at the cusa;g ¢ (e, the

EXERCISE (3.82) 1) If {C:} is a general pencil of curves, smooth for

t + 0, specializing to a curve C with an ordinary fourf
4 old point
that the stable limit of the family will be the union of the noprt(r)laliz:ltllzz

C with a curve B of genus 3 meeting € at the four poi
lying over the fourfold point of C. ur points py,...,p,4 € ¢

2) Show that if {C}} is any such famil imit wi
_ hat | y, the stable limit will b
union of C with a stable 4-pointed curve (B;qy,...,q4) of gerfu;h ;
obtained by identifying p, with q;. '
3) Show that not all such stable 4-pointed curv:
es (B;q,,..., i
giy;];l;(l)svvi(i,nggthatd tl::: versal deformation space of a fogll'fold g;l)ni:nhsaz
N 9 and the space of poi ;
has dimom o D pointed curves (B;q;,..., q4) as above
4) Harder: Naively, the locus of B’s that arise
: » the lo should have th
dimension as the projectivization of the tangent space at theeoﬁ;l'l;

to the deformation space: in the exam expe
: 1 : ple above, we ight-
dimensional family. Prove or disprove the ct an elght

CONJECTURE (3.83) The stable 4-poi '
. 3 pointed curve (B; q,, ..., q4) of genus
3 arises above if and onlyifq, + .. + 44 Is a canonical divisor gn B.

E;mnqs'n (3.84) Partially generalize the previous exercise to the case

o fa_nnhes of curves C; that for t + 0 are smooth but for which the

special fiber C has an ordinary n-fold point P by showing:

111) pl:.)\l/:g ;stgble llmI;’ mllﬂll)e the join of the normalization C of C at the
ying over P with some -poi s

of genus h —n s, stable n pomted_curve (B;q1,...,qn)

2) The B that consists of a union of n lin

n es each
and C at one point always appears as a limit. recting the others

3) The B that arises as the stable limit of the generic such family is the

n-sheeted cover of P! totally ramified at th i
, of P € n points correspondin
to the tangent directions of the branches to C at the n-fold plt’)int. ¢

PROBLEM (3.85) Is it always the case that th in M

_ ) Is it ! e locus in Mj, ,, of curv
B that arise as h@ts in this way has dimension 1 less than";hat of tl(:tsz
versal deformation space of the n-fold point?

Substantial progress has been made r ;
; ecentl
questions by Hassett [85]. Y on this and related
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A
b

é, Outline of the probf of existence of stable reductions

A

i As we remarked before looking at examples, the proof of the existence
x of stable reductions follows, in outline, the stages we have repeatedly
..carried out above.
i-t,; We start with the case where we have a family 7r : X—B over a
 smooth one-dimensional base B smooth over B \ {0} and with other-
%.wise arbitrary special fiber Xy over the point 0 € B. We will proceed
gln stages but continue to use notation like 7 : X— B to denote the
i family that results after each step of the process.
i ..:The first step is to apply resolution of singularities to the pair
& (X, Xo): by blowing up, we arrive a family such that X is smooth, and
Xo has set-theoretic normal crossings, that is, the reduced scheme
- (Xo)red is nodal. At this point, the map 7 will be given by an equation
of the form t = x%y" in terms of a local coordinate ¢ on B and local
coordinates x and y on X.
*." Stage two is to perform a base change. If m is the least common
multiple of the multiplicities of the components of the special fiber
Xp, we make the base change t+t™ and normalize the resulting total
'gpace. A local calculation then shows that the special fiber X has
- reduced normal crossings and the map 7t has local equation of the
. form either t® = x or, at nodes of the special fiber, t" = x7y where t
~ I8 again a local coordinate on the base B. In the latter case, the total
< space X will be smooth at the node if and only if n = 1. If n > 1, there
{. is an An_ singularity at the node. Note that, in both cases, the special
v fiber is now reduced and nodal.
. Third, we minimally resolve the A,-; singularities that arise. This
¢ has the effect of replacing each singularity by a chain of (n-1) rational
¢ curves. We have now arrived at a family with smooth total space and
;. reduced, nodal special fiber.
- What we do next depends on which of the three variants we're after.
- To obtain the semistable reduction, we simply blow down any excep-
~ tional curves of the first kind in the total space X: these are just the
smooth rational components of the special fiber X — 0 meeting the
rest of Xg only once. To obtain the stable reduction, we further blow-
down all semistable chains: that is, chains of smooth rational curves
of self-intersection (—2). To obtain the nodal reduction, it may be nec-
essary to go in the other direction, blowing up some points of X to
extend the map . This causes no trouble unless we need to blow up a
node of Xjp in which case the exceptional divisor will be a nonreduced
component of Xy and we need to repeat step two.

Finally, the case where the general fiber is singular requires a few ex-
tra operations. By a base change, we may assume that the monodromy
acts trivially on the branches of the nodes of the > general fiber. Then,
we apply the steps above to the normalization X of the total space.

I TR e
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Next, at the end, we make further blowups and base changes as ne.
gf:::‘eyn to acirllisl;lre tha‘;l closures of the inverse images of the nodes of
er. er are disjoint sections of X, Fi i i
aDpropie inally, we reidentify thege

As for the uniqueness assertions in all the variants, these all fo]

low by applying the fact r ) !
of Section A, acts about B Isomorphisms discussed at the end

Flat completion of embedded families

Before we leave stable reduction behind i
» We wish to mentio, -
lem raised by Carel Faber that roughly involves understandillllgatg:(i)xl;
vxer_se of the stable reduction process: Given a family of stable curves
—A over the punctured disc together with a line bundle £ o X
whose sections give embeddings "

Xt—>Yt cpr

ofthecurvesinthefamﬂyas curvesin P d i

; y as » describe all the curve i

t';: that can arise a§ flat limits of the Yt's. In other words, desc;bl;oalll;
e embedded families that_ (up to base change) have X —A* as their

smooth plane quartics. That is, each X; for t + 0 is i i

a fixed smooth plane quartic curve and the line bun:lslel sg Iizotrlimcu;l(-’
back of ®p2(1) (equivalently, the relative dualizing sheaf Wxax) l“:’I‘his
means that the images D; of all the X:'s are obtained from arlll; (;ne -
say, D) — by projectivities with coefficients that depend on ¢

Exnncrs!z (3:86) 1) Show that if we obtain D; from D) by the diag-
onal prOchtlvity diag(1,1,t), then the limiting curve D, is eitherag
fourfold line or the union of a triple line with another line dependi 2
on whether the fixed point (0, 0, 1) lies off or on the curve Dll:.’ ding

2) Show that the projectivity diag(1,t,¢) yields as limit the sum of

four concurrent lines (not necessarily distinct).

3) How can you obtain the union of th . .
) e cuspidal 27 _ 43
and its tangent line y = 0 at the sp? pidal cubic 2z - x3 = ¢

3 a4 N .
ﬁ’ exz Aicm =0 appgars if and o_nly if the plane model of D has a hyper-
: t.th ost no . general is known, even about the isotrivial case
ut the problem is yet another that clearly merits study. '
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Interlude: calculations on the moduli
stack

: “OF course, here I'm working with the moduli stack rather
than with the moduli space. For those of you who aren’t

familiar with stacks, don’t worry: basically, all it means is that
" I'm allowed to pretend that the moduli space is smooth and
" that there’s a universal family over it.”
IR
#'Who hasn’t heard these words, or their equivalent, spoken in a talk?
‘i hd who hasn’t fantasized about grabbing the speaker by the lapels
; nd shaking him until he says what — exactly — he means by them?
it perhaps you're now thinking that all that is in the past, and that
Hit iong last you're going to learn what a stack is and what they do.
ifdt chance. Unless you've picked up this book for the first time
i ‘have opened it at random to this page, you must know better.
t, we're not going to evade the issue entirely. Briefly, here is the

i
“ituation:
‘:; One of the basic techniques we’ll be applying in our study of moduli
4 is to find relations among the various cycle classes on the moduli
i} space M,. (Some of these classes were introduced in Section 2.D;
{g;;f others will appear below). Most of the ways we do this — the
»i1 Grothendieck-Riemann-Roch formula, which we’ll discuss in the fol-
: lowing subsection, is a perfect example — don’t a priori give such
- relations. Rather, they give relations among corresponding divisor
;. classes on the base of any family X— B of stable curves. In order
" to get results on the cohomology or Picard group of Mg, then, we
. have to translate these statements.

. There is a perfect vehicle for doing this: the language of stacks.
“* As we indicated in Section 2.A, the category of stacks is a relatively

slight enlargement of the category of schemes — slight enough, at

any rate, that we can meaningfully extend to the category of stacks
the definitions of such things as the Picard group of a scheme, the
cohomology ring of a scheme, and intersection numbers between
line bundles and curves. But the category of stacks is just large
enough that, in it, the functor of families (igltgble curves is rep-
resentable: in other words, there is a stack M, such that for any
scheme B we have a natural identification between the set of fami-
lies of stable curves over B and the set of morphisms of B to M, .
Moreover, since thirl%&s (again, in the category of stacks) a universal
stable curve over M, ', there is a natural map : M, — M,. Now,
the results we obtain by applying Grothendieck-Riemann-Roch and
other formulas to families of stable curves yield directly relations
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among classes on the stack M. and applyi i
é g 3 pplying the map rr we de
In turn results about the cohomology and Picard groul:)s of Wg .nve

Well, t'hat’s .how it goes in theory, anyway. In practice, there is one re.
spect in which the language of stacks isn’t wholly perfect: it's difficult
to understand even the definition of a stack (we're speaking strictl
fpr ourselves here). Actually, once you've absorbed the basic deﬁm}.’
tlons: the rest is not so bad; but there’s no question that the initig]
leawnlllmtg curve is steep, not to say vertical.
what are we going to do in this book? Basicall , We'r i

g!uded by two principles. First, we aren’t going toydeﬁ;eeaiﬁTci,'tgn%e
given that we're not going to define them, we won't use any deﬁniﬁon'
or result that relies on the definition of a stack. Second, we will provide
a reasopably self-contained logical framework for the divisor-class
calculations that form an essential part of our study of M,. We've
thgrefore c'hosen to make purely local and ad-hoc deﬁnitiorﬁs of the
objects we'll be using. But, we’ll also try, parenthetically, to indicate
how the definitions we make relate to those in the theoxzy of stacks
so that you can relate our calculations to those that appear elsewhere'

in the literature. If you want to explore fur .
is Vistoli's article [149]. exp ther, a good place to begin

Divisor classes on the moduli stack

We start w1th the .deﬁnition ofa rational divisor class. On the moduli

;ﬁ:l:ﬁ,ﬁ this is strm%hirt;orward: since M, has only finite quotient sin-
€s, every codimension 1 subvariety of M., is O-Carti

we have an equniey ty of M, is Q-Cartier, so that

Al(M;)®Q = Pic(M,) ®Q.

‘mvad vlvllllllsf):l:‘ ei.u:\ teluelment of this group a rational divisor class on the
lis € same time, it'll be helpful to i i
of a divisor class on the moduli stack. P Hntroduce the notion

Dlzflrlmrnort (3.87) 1-?y.a rational divisor class on the moduli stack
we'll mean an association y to each family p : X — B of stable curves

of a rational divisor class Y(p) € Pic(B i
such that for any fiber square 20 on the base of the famib.

X =B xg X — X
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}
i

ghe class y (p') associated to the morphism p’ : X' — B’ is the pullback
“of the class y (p) associated to p : X— B. The group of rational divisor
¥ dasses on the moduli stack will be denoted Pictun(M,) ®0Q.

g; , We may define analogously rational cohomology classes on the mod-
i:4ili stack. We should emphasize again that terms like “rational divi-
“‘;"ior class on the moduli stack” and “rational cohomology class on the
fmoduli stack” are to be taken as self-contained and atomic: remem-
{per that we do not and will not define a stack. Moreover, the definition
t/ahove does not even suggest the correct definition of a line bundle on
g‘ ystack: a line bundle on the moduli stack is officially something that
“agsociates to every family X — B of stable curves a line bundle on the

f:j})ase of the family, and for every fiber square specifies an isomorphism
¢ petween the line bundle associated to the morphism X’ — B’ and the
“pullback of the line bundle associated to X —B. It will turn out, how-
Zigver, that in the present circumstance the two definitions yield the
game group of bundles.

Of the various divisors and classes we've discussed so far, some
e naturally to be rational divisor classes on the moduli stack: the
iglass A, for example. Others, like &, by contrast, are easy to describe
7:gs rational Cartier divisors (and hence rational line bundles) on the
¢ moduli space M,; but it may not at first be apparent how to define a
-corresponding rational divisor class on the moduli stack: what do we
%‘jio, for example, with a family X — B of stable curves, all of which are
?

% Our first task, then, is to show that, in fact, a rational divisor class
t‘on the moduli stack is the same thing as a rational divisor class on
* the moduli space, that is, an element of Pic(M,;)®Q. Once we've es-
' tablished this isomorphism, we'll be free to define and deal with our
* divisor classes in whatever way seems best suited to the class at hand.
- We will also give an explicit description of the rational divisor class
on the moduli stack associated to a divisor in M, and in particular
answer the question at the end of the last paragraph. In any event, the
first step is the;

PROPOSITION (3.88)
Picrun (M) ®Q = Pic(M,)@Q.

PROOF. We will give inverse maps between the two. In one direction
this is straightforward: given a rational divisor class v € Pic(M,),
some multiple mv of v may be represented by a line bundle L on
Wg. Now, to any family p : X — B of stable curves with induced map
@ : B—~M, we associate % times the pullback line bundle: in other
words, we set 1
Y(p) = ;q’*(L).
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This defines a rational divisor class y on the moduli stack, and thyg

a map .
e Pic(mg)®Q_’Pinun(fMg)®Q-

To define the inverse isomorphism, it will be useful to have a basjc :

lemma:

LEMMA (3.89) 1) There exists a family p : X —Q of stable curves such

that the induced map @ : Q— M, is surjective and finite.

2) Forany point[C] € M, there exists a family X —Q ) of stable curves
over a smooth base Q) such that the induced map Q— M, is surjective,
generically finite, and finite over [C].

We should point out that this is a very weak form of a theorem of
Looijenga and Pikaart {108], who have shown (by explicit construction)
that we can take Q to be simultaneously smooth and finite over M,.
It is also true for more general moduli problems; see Kollar [99}]. This
simple statement is. enough for our purposes, however, and (more
importantly) within our ability to prove, so we'll leave it at that. The
proof will be deferred to the next subsection. The lemma, as stated,
also follows easily from the existence of universal curves with suitably
defined level structure, as in Popp ([131], [132]).

Given the lemma, we can define a map from the group of ra-
tional divisor classes on the moduli stack to Pic(ﬁql_ as follows.
Given y € Picun(M,)@Q, we define a divisor class on M, by choos-
ing any tautological family p : X—Q as in the lemma, letting
D = y(p) € Pic(Q)®@Q be the divisor class associated to this family by
Y, taking the norm (or pushforward) of D under the map @ : Q——Wg,
and finally dividing the result by the degree of the map @: in other
words, we define a map

Ty : Picrun (My) ®Q— Pic(M,) RQ

by 1
M (y) = mNOm()’(P))-

This is independent of the choice of tautological family p : X —Q (any
two tautological families are in turn covered by their fiber product

over M,), and gives a two-sided inverse to 7r* above. ®

Note that since we haven’t defined the notion of stack, morphism
of stacks, or the pullback of a rational divisor class under a morphism
of stacks, we really shouldn't use the symbols “rr*” and “m,.” to de-
note the maps above; something neutral, like “F” and “G" would have
been more honest. But the fact is, there are such things as stacks, mor-
phisms of stacks, and the pullback of a rational divisor class under

§
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a morphism of stacks; there is a natural morphism fr.om.the mod-
pli stack to the moduli space, and the map 1* above is simply the
!pu]lback under this morphism. ' o N

w;’[‘he following exercise is helpful in thinking about divisor classes
jpn the moduli stack.

i"ﬁxnnasn (3.90) 1) Show that any rational divisor class on the moduli
'stack — say ¥ € Pican(M,) — is determined by its values y(p) on
%‘%ﬁmilies p : X — B with smooth, one-dimensional base B.

fﬁ)f[.et 3 c M, be any proper subvariety of M. Extending .the result
%t the first part, show that any rational divisor class y € Plchm(.’{n_g)
‘on the moduli stack is determined by its values y(p) on families

th « X — B such that B is smooth and one-dimensional, and su_ch .thz«ft
he image @(B) € M, of B under the induced may @ : B— M, isn't
Mitained in 3.

";;‘-‘inally, in view of the fact that Pic(M,) is discrete, show that any
Sational divisor class y € Piceun(Mj) on the moduli stack is deter-
Ynined by the degrees

T deg(y(p)) €Q

lgf its values on families p : X — B with smooth, one-dimensional base
(Band @(B) ¢ =
R -
fé’;s.ffl’hus, we may think of a rational divisor class y € Picm(.’Mq) on
“the moduli stack as a gadget that, for any one-parameter family of
_gtable curves, measures the nontriviality of the family, for exa_n_lple
" by counting the number of fibers of a certain type (e.g., the divisor
" class 6 counts the number of singular fibers). This in turn suggests
" another way of associating to a divisor on M, a divisor on the moduli
stack: _ .
Let = c M, be any closed subvariety of codimension 1. Then to any
" one-parameter family p : X— B of stable curves of genus g we may as-
sociate a number, or more generally a divisor class o (p) € Pic(B)®Q
(naively, the “number of members of the family lying in X”), as follows:

Case 1: Only a finite number of fibers Xp of the family correspond to
ints of X.

mln thl£ case, we assign to each fiber X lying in % a multiplicity
mult, (o) and add these up, setting o(p) = b mult_b(a) - b. To de-
fine the multiplicity, let ¥ be the inverse image of X in the versal de-
formation space Def(Xp) of Xp; since the versal deformation space is
smooth this is a Cartier divisor. Now, for any b € B we have a natural
map from a neighborhood of b € B to the versal deformation space
of Xp, and we define mult, (o) to be the multiplicity of the pullback
under this map of the divisor .
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1

Case 2: All the fibers X, belong to x.
Here, we describe a line bundle L on B as follows: in a nei
_ : eighborh
of ga_ch point b € B, we take L to be the pullback of the nctfhmal sp(:;g
to2in Def('X,,). Combining the openness of versality [Exercise (3.39)]
with the uniqueness of the map to Def(X}), we see that this is indeed

a well-defined line bundle. We then define the divisor class o(p) of

curves belonging to X to be the line bundle I.
With all this said, we have the:

PROPOSITION (3.91) For any codimension 1 subvari M

. : 1) ariety 3. ¢ M,, ther,
exists a rational divisor class o on the moduli stack whose vaglues opi
One-parameter families p : X —B are given as above.

Note that by Exercise (3.90), Y is determined by its
th_e d'egrees specified in Case 1 above, so we can);voic?gtlhielszmglm
tnclger calculations invoked in Case 2. Actually, as we'll see in th:
explicit des_cription in Lemma (3.94) of the divisor class on the moduli
stack associated to the boundary A ¢ M,, the calculation in Case 2 is
often quite straightforward to carry out.

.We now have two ways of passing from an irreduci i -
sion 1 subvariety = ¢ M, to a rational divisor class ol:llet'h(e::oglcl;clleul}i
st.a.ck: we can apply the “pullback” map r* of Proposition (3.88) to the
divisor class [X] € Pic(M;)®Q to arrive at a rational divisor class on
the moduli stack; or we can define a rational divisor class ¢ on the
mod}lh stack as in Proposition (3.91). The relationship between the
two is straightforward: we have the:

PROPOSITION (3.92) Let X c M, be an irreducible, codimension 1sub-
:ar?eg‘,j ¢;m;: oe Pi}():rflm(ﬂg) the divisor class on the moduli stack as-
" A )
Thmen as In Proposition (3.91). Let [C) € S be a general point.
1
O0=-——"q*
#Auro)" 12

PROOF. The proof of this proposition is immedi is si
ediate and is s -
neously a proof of the last proposition. m multa

Applying Exercise (2.28), we see in particular that the di '
on the moduli stack associated by Proposition (3.92) to an egzgégads;
visor D C M, coincides  with the the class w*([D]) € Picpyn (M IR0
assoaa}ed to[D] e Pic(My) by the isomorphism in Propositiong(B 88)
except in the cases of genus 2, of the divisor H3 ¢ M3 of hyperellii)tic
curves of genus 3, and of the divisor A; in general.

Now, all of the above may seem somewhat like hai itti
_ ) oV airsplitting: wh
introduce rational divisor classes on the moduli stack at all if the;,
are so closely related to rational divisor classes on the moduli space?
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L,\;;;me answer is a practical one. As we will see very amply illustrated in
" the calculations that follow, the rational divisor classes on the moduli
ii- gtack are the ones that we can calculate readily: typically, if we want to
... find the degree of a divisor class on a one-parameter family of curves,
‘ It's easier to calculate directly the degree of the corresponding divisor
: ‘ s on the moduli stack. Likewise, if we want to find relations among
Eﬁ'ﬁsor classes in Pic(M,), we will typically find relations among the
( degrees of corresponding divisor classes on the moduli stack, and
: ﬁ;then translate the result back into terms of divisor classes on the
. gpace M,. Explicitly, we'll invoke the:

f." ‘ﬁAslc PROPOSITION (3.93) Let I' in Pic(M;)®Q and y = n*(T) in
" Picran (M) ®Q be divisor classes that correspond under the isomor-
- phism of Proposition (3.88). Let %,...,2x C M, be irreducible codi-
.. mension 1 subvarieties, and 0, ...,0x € Pican(My)®Q the rational
‘(gtwsor classes on the moduli stack associated to the subvarieties 3; as
’3 it Proposition (3.91). Let [C;] be a general point of 3; and let a; be the
. order of the automorphism group of C;. The following statements are
“équivalent:

* 1) Forany family p : X — B of stable curves of genus g, we have the
relation among divisor classes on B

> ¢i - oilp) = y(p) € Pic(B).
~ . 2) We have the relation among divisor classes on M,
> 2[5 = T € Pic(M,) Q.
A 1

Moreover the second statement follows if we know the first for families
« X —» B whose general member does not actually belong to any X;.

The notion of the degree of a rational divisor class y on the mod-
uli stack on a one-parameter family p : X—B of stable curves ex-
tends naturally to families that are only generically stable, that is,
whose general member is stable: by the degree of y on such a family
we’ll mean the degree of y on any family p’ : X’— B’ obtained from
p : X— B by semistable reduction, divided by the degree of the base
change morphism B’— B involved. Note that the first statement of
Proposition (3.93) follows for generically stable families as well from
the second statement.

At this point we should do a fundamental example: the description
of the rational divisor class § on the moduli stack associated by Propo-
sition (3.91) to the codimension 1 subvariety A = M, \ M, C M,.

To set this up, suppose that p : X— B is a family of stable curves
over a smooth, one-dimensional base with local parameter {. We con-
sider two cases:

e
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Suppose first that the general fiber X; of the family is smooth, and
that the fiber X, over 0 in B has exactly one node, at p € X,. By our
description of the versal deformation space of a node, we can choose
local coordinates x and ¥ on X in a neighborhood of the point p sg
that xy = t* for some k. Then, by our description of the versal defor-
mation space of a nodal curve we see that, in the versal deformatiop
space of Xo, the image of B will be a curve with contact of order k
with the (smooth) hypersurface of singular deformations. Therefore
the image of @(B) € M, will be tangent to A to order k — or, more
accurately (we don’t know that @ is one-to-one), the pullback to B of
the defining equation of A ¢ ﬁg will vanish to order exactly k at
t = 0. Note in particular the equivalence: the map @ : B—M, will be
transverse to A at t = 0 if and only if Xo has a single node p and X is
smooth at p.

Generalizing this, suppose now that the fiber X;, over b in B has ex-
actly n nodes, at the points P1,P2,...,Pn. In the versal deformation
space of Xy, the hypersurface of singular deformations will have n
smooth sheets corresponding naturally to the nodes pi of Xp. (If the
curve Xp has no automorphisms, the same will be true in Wg: the divi-
sor A will have n smooth sheets in a neighborhood of the point (Xo)).
Moreover, if the local equation of X at pi is xy — tk, then the pull-
back to B of the defining equation of the branch of the discriminant
hypersurface corresponding to p; will vanish to order kq. Allin all, we
see that the pullback to B of the defining equation of the discriminant
hypersurface in the versal deformation space of Xy vanishes to order
ki +k2 + .-+ ky at 0; or, in other words, the multiplicity

mllltb(6)=kl+k2+...+k"_

Now, we turn to the second case. That is, we consider a family of
stable curves p : X — B, still overa smooth, one-dimensional base, but
now where the general fiber is singular. To simplify things, suppose
for the moment that each fiber Xp of p has a single node p. The cru-
cial fact here is Proposition (3.31), which says that the normal space to
the discriminant hypersurface in the versal deformation space of each
fiber X, is naturally identified with the tensor product of the tangent
spaces to the branches of C at the node. To apply this, we introduce
the normalization v : X-+X of the total space of X. Then, we let
F=pov:X—B be the~composition (so that in particular 5 will be a
smooth map), and I ¢ X be the locus of points lying over the nodes
of the fibers X), of the original map. The map I'— B is unramified of
degree 2; after abase ghange  we may assume that I consists simply of
two disjoint sections I and I of X—B. In these terms, what Propo-
sition (3.31) is telling us is that the normal space of the discriminant
hypersurface, in the versal deformation space of each fiber X}, is the
tensor product of the tangent spaces to the fiber Xp at the two points
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3 i iated to the family
% 1 over b. Equivalently, the line bundle assgaat

\ gﬂ% the divisor class 6 on the moduli s,ga_ck Is the tensor product
of the normal bundles to the components of T in X:

i

6(p) = Ny, ®Ny, 5.

by say, the same analysis can be carried out for a family
? ;eedg!?f ;(t)ablg curves whose general fiber has any nu.mber of qod'es.
! Combining these two cases, we arrive at the following description
.. of 6. Suppose p : X— B is a family of stable curves of genus g oxgg‘ a
\'gmooth, one-dimensional base B with parameter t, whose general fiber
“ has n nodes; let X— X be the normalization of the tptal space of 3(
and 5 : X—B the composition. For each singular point p € slng(‘pi
H of the map g, let k = k(p) be the unique ir_xteg_er such thakt there exlsx
%}f‘l’ocal coordinates x, y, t on X near p satisfying Xy = tc.LetT cf

fi{,be the positive-dimensional components of the singular locus of p,
and I' c X the inverse image of T in X. After making a base change,
Eﬁ?ﬂecessary, we may suppose that I' consists simply of 2n disjoint

ﬁ?,g“ections I

jay

L

s

(AR

v he divisor class
th MA (3.94) Let p : X— B be as above, and let § be t.
! E;:‘:he moduli stack associated to the boundary A ¢ My. Then

i

2n o
50) =@M,z R 0s( 3 kip)-B(p).
=1 pesing(p)

- In particular, the degree of § is given by

deg(6(p)) =M%+ 3 k(p).
pesing(p)

We can give similar descriptions of the divisor classes §; on the
moduli staﬁlk associated to the divisors A; ¢ M,. Note that ‘a§ aconse-
quence of Proposition (3.92), the pullback w*([A]) ot: the dlwsor.c!ass
[A] € Pic(M,;)®Q, as defined in Proposition (3.88?. is not the divisor
8 on the moduli stack. Rather, since the general point [C] € A ¢ M,
corresponds to a curve with automorphism group of order 2 (there
is an involution on the elliptic tail fixing the point of attachment), we
have:

COROLLARY (3.95)
T ([A]) = 8o+ 28, + 82+ -+ + 04

i i i ial ambiguity, we have
A warning about notation. In view of the potenti
to be careful to distinguish between the class [A] of the boundary
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A € M, and the divisor & on the moduli stack, and more generally
between the class of any divisor X ¢ My, a component of whose sup-
port lies in the locus of curves with automorphisms, and the assocj.
ated divisor class o on the moduli stack. In the case of the divisor
classes A and «, which are defined only as classes and aren’t naty-
rally associated to any particular divisor, there is no such confusion,
Therefore, we've yielded to temptation, and used the symbols A and
K to denote both the divisor classes on M, and their pullbacks *)
and 1r*k € Picrun(M,)@Q.

Existence of tautological families

To complete this section, we want to give a proof of Lemma (3.89).

PROOF. We observe first that for any point [C] € M,, there is a
Zariski open neighborhood U of the point [C] in M,, a finite map
Qu—U and a family Yu—Qu of stable curves inducing the map
Qu—U C ﬁg. To see this, we look at the locally closed subset k
of the Hilbert scheme parameterizing m-canonically embedded sta-
ble curves and take Q a linear section of X transverse to the locus of
curves isomorphic to [C] and Y —Q the restriction to 0 of the uni-
versal family over the Hilbert scheme. The induced map Q——Wg will
then be finite over some neighborhood U of {C] in My; we simply take
Qu and Yy the inverse images of Uin Q and Y respectively.

Next, suppose we're given two families Yy—Qu and Yy —Qy of
stable curves whose associated maps Qu — M, and Qy — M, are fi-
nite and surjective onto open sets U and V in M,; we want to con-
struct a family Y —Q whose associated map .Tlg is finiteonto U L V.
The construction is reasonably straightforward: very briefly, we'll ex-
tend Qy and Qy to finite covers of M,, take their fiber product, pull
back the families Yy—Qyu and Yy —Qy to the inverse images of Qg
and Qv in the product, and then make a further base change in or-
der to make them agree over the inverse image of U N V so we can
paste them together to form a single family over the union U u V.
The details, however, will sound somewhat complicated as we trace
through them.

To start with, let iy and Ny be the normalizations of M, in the
function fields of Qy and Qy respectively (these are normal varieties
containing Qy and Qv as open sets, to which the maps of Qy and Oy
to M, extend). Let Q' be the fiber product of Qy and Qv over M,,

and let
my:Q — Oy

Q' — Qy
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- gl
PR
?ge ]

m:Q — M,

> jections. Note that 7T, being a composition of finite maps,
r:a?a(ixf lt‘i(l)i'ite. Finally (for now!), let Q;, = (1:l’u)"1(ﬂu) = n“l(q ) agd
) = (mv)"1(Qy) = m~1(V) be the inverse images of U and V in Q.
“‘)};/ia the projection my : Qy—Qu we can ?ull back the famlly of
table curves Yy—Qy to obtain a family Y;; = Yy xq, Q’'; we de-

e a family Yy, —Q;, likewise. We now want to patcl_l togethc_:r the
: families Y;, and Yy, to form a single family over .the inverse mtl’age
0 UL = (U U V) c Q. This, however, requires a fl}rther ase
} éh(;nge: even though for each point p of m=1(U nV) c Q' the ﬁl?ers
of Yy and Yy, over p are isomorphic, there may t?e no s.et of chzlices
¢. of such isomorphisms for each p which glue to give an isomorphism
“hetween the inverse images of U NV in Yy and Yy _
To overcome this problem, we introduce the yangty z 9f pairs (p., ¥)
“where p lies in Q) N Qf, and  : (Yg)p—(Yy)p is an 1s9mor;,)h1sn:i
' Let Zo be any irreducible component of Z doml_natmg Qy N Qy, an
‘,;'f"’t"ake Q" the normalization of Q' in the funct}on‘ﬁeld ,?f Zy. Note
i that the projection Q"' —Q', and hence the pl‘OJeCDOII‘l, 0 ——.,'Ilng, ar’e
* once more finite maps. Now, on the inversejmagt,as Qy axafi Qy gf Q,c,l
* and Qf, in Q", we have pullback families Yi; = Yy Xo;, Qy—Qp a(r)l"
CYy =Yy Xqi, Qy —Qy; and their restrictions to the overlap Qy nQy
* are isomorphic. We may thus patch them toget!:er to fOl'[".ll a smg},e
. family Y = Yj U ¥/ —0 = Qf; u Qy over the union Q of Qy; and Qy,
. whose associated structure map Q—U U V is finite. This, at last, is
i 're after over U u V.
» th;‘lga:l:ll;l,y ;vljce we can cover M, with a ﬁnitt_a number of open sets
‘U admitting such families Yy —Qy, this glueing step completes the

proof of the Lemma. ®

It’s worth noting that each step in this construction is alrfaa_ldy
needed in the case of the moduli space M, of curves of genus 1: i.e,
the affine line with coordinate j. To begin with, in order to have a fam-
ily of smooth curves over a neighborhood U qf. the point 0, we .ha\l'e
to make a base change Qu — U of order 3, ramified at 0; and similarly
to have a smooth family near 1728, we have to make a base change
Qy—V of order 2, ramified at 1728. To cover both, we then have to
take the fiber product of these covers, giving us a six-sheeted cover
of M. But this is still not enough: in order to  patch these famlzllt(as
together to form a single family covering all of M;, we have to make
a further base change of order 2, arriving (for ey'(amplg) at the rela-
tively familiar family of curves of genus 1, with j-function of degree

iven as a pencil of plane cubics. )
12\'Ngel note ong corollary of Lemma (3.89), which ‘we may thmk as
of stable reduction for families of curves over higher-dimensional
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bases, and whose proof we leave as an exercise. To state this corol-
lary, we need one more bit of terminology. Suppose we're given a
family p : X— B of curves, and we want to apply to this family the
base change associated to a generically finite map B’ — B with B’ ir-
reducible. If, in fact, the fiber dimension of p does jump, then it may
happen that the fiber product X xp B’ is no longer irreducible. In this
case, we'll simply disregard the components of the fiber product that
fail to dominate B: we define the essential pullback X' — B’ of our
family to be the unique irreducible component X’ of the fiber product

X xp B’ dominating B’, equipped with the restriction of the projection
map to B’. We then have the:

COROLLARY (3.96) (STABLE REDUCTION OVER GENERAL BASES) For
any morphism f : X— B of integral varieties whose general fiber is
a smooth curve of genus g = 2, there exists a generically finite map
B’ — B, a family of stable curves X' — B’ and a birational isomorphism
of X' with the essential pullback to B’ of the family X — B.

We should note (though it’s not really within the purview of this
book) that an analogue of the basic stable reduction theorem Propo-
sition (3.47) holds for families X — B of higher-dimensional vari-
eties over a one-dimensional base B: after base change and bira-
tional modifications, we can arrive at a family all of whose fibers
are scheme-theoretic normal crossings. The situation for families of
higher-dimensional varieties over higher-dimensional bases, however,
is much less clear; in particular, the analogue of Corollary (3.96)

doesn't seem to hold. For the best statement we know in this direction,
see Abramovich and Karu [1].

E Grothendieck-Riemann-Roch
and Porteous

Grothendieck-Riemann-Roch

The classical Riemann-Roch formula expresses the holomorphic Euler
characteristic of a vector bundle E on a complex manifold X in terms
of topological invariants of the bundle and of the manifold. A more
naive interpretation is as a solution to the initial problem of giving a
formula for the dimension h®(X, E) of the space of global sections of
E in terms of topological invariants. The difficulty is that h®(X, E) isn’t
a topological invariant — it need not even be constant in holomorphi-
cally varying families of bundles E. On the other hand, if we throw in
“error terms” +hi(X, E) coming from the higher cohomology groups
of E, we arrive at the holomorphic Euler characteristic x(E), which is
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a topological invariant, and which is expressed by the Riemann-Roch

fO%leﬂ?;.rothendieck form of the Riemann-Roch formula is, in these

terms, J i i i We have, instea of a
just its extension to the relative case. y -t d .
ingle’variety or scheme X, a family of schemes {Xb} (that is, a mor
S

i d base B, and a

i . x — B of schemes) with smooth connecte se B,
: p;h;lln :)rf vicctor bundles on that family of schemes (thag is, a vegtor
f)und‘lye E on X). We can then try to form the spaces HO(Xp,E) into

ibe that bundle. Of course, this
dle on B, and attempt to descrlbg t | |
aalrjl‘xlllcl)t in general, be done. But, as a first approximation to suc_l; g
lc)undle' we can take the direct image sheaf 7« E on B — after all, i

" is flat over B, then at any point b € B in the open subset U C B where

the dimension h(Xp, E) assumes its generic value, T« E will in fact be

- locally free with fiber (1< E)®kp = H*(Xp, E).

This said, we should next specify what information we're looking

: for. To begin with, we would obviously like to know the rank of the

' is is j i i i by the classical
— this is just the information given to us

gl}:r?fag:lioch formflla applied to the restriction of E to the general

fiber X, of 1r. Beyond this, however, we would like to understand the

twisting of the sheaf 114 E, as measured by its Chern classes. (Indeed,

:r: we can think of the rank of a sheaf as just the O graded piece of its

-
7
Al

j i i derstand com-
ter, an object which we would like to un
gﬁirllyc)h'[a‘ll;:cproblem, then, is to find a formula for the Chern class or

1+ E). '
'Ch"f“kr\rel g}?irca\fltti'rrfo(w ;s that, in analogy with the cla§31ca1 case, even the
topology of the sheaf mEisn’ta topologigal invariant of ”the bu;ldle E
and the map . Instead, we have to throw in “error terms" as before —

' in this case, the higher direct image sheaves Rimr, E (which have fibers

H(Xp, E) at general points b € B). The way to do this that .minimizesf
the an;ount of bookkeeping required is to take the alternating sum o

£ i - Ko(B).

characters ch(R'm«E) in the K-group _
thsv(éhxf;?v briefly review how this is set up and carried out. Tg st.art
with, we fix, as above, a proper morphism 1 : X ——’»B of' pro_pecpve
variéties and a vector bundle E on X. (Tytl))icaé]ly’ v;e re g&lzl%i lggr:liv:
o . 0

i s describing a f y of vector bundles Ey 0
g?; (:):t:r; but we'll see below that there are interesting resul.ts to t?e
had even m, the case where the map 7 is the inclusion of a Qomt X in
a variety B.) For the rest of this section, we’ll assume ]tahathB lf ._s'mgc:l(;atl};i

in icati ! ake B to be the (sin,

, in the applications, we It want to t . ; )
Eofggi space _%gg or Wg but we'll postpone dealing with this extra
cogilfrhfc:::r?lrl‘l-a will be an equality in the Grothendigck group K.O(B) of
coherent sheaves on B (which, since B is smooth, is 1‘1jz;turallyllg ;S(l)lrenc(;rli

i 0 f vector bundles on B).
i Grothendieck group K (B) o : _
It)ll:ilig tt?yt;l:ﬁnition, KO(B) is the quotient of the free abelian group gen
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erated by the vector bundles F onBb
y the sub
elements F-E_ ¢ for which there is an exact

(3.97)

group generated by g
sequence

If c(F) denotes the total Chern class

c(F) = 1+c1(F)+c2(F)+---,

the Whitney product formula sa

exists, ys that, when such an exact sequence

(3.98) ¢(F) = ¢(E) c(G).

To define the Chern character, we introduce a formal factorization:

c(E) = [T(1 + ay(E)).
i

is, as polynomials in the Chern c]
ample of such a function is the
the formal sum

asses c;(E). The most important ex-
Chern character, which we define as

Ch(E) = Y ex(®
i

If E has rank » and we

expand i L.
the ot’s and then arou Xp each exponential as a formal series in

p terms of like degree, we obtain

t

ch(E) By, OE)?  oy(E)3
(E) 2(1+a,(£)+T+T+...)

=(1+1+"'+1)+(0l1+0l2+---+ar)

(3.99) +(af+a§+..-+a$)+(a§+ag+...+ag)
2 6
+ ...
(clz(E)—ZcZ(E))
=rank(E)+c1(E)+$+..._

EXERCISE (3.100) The fi i
from the feood) ormula for the quadratic term above comes

2
O =n2+ 20,

A
{
;
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i

i
8

Y
&

i fn which 0; denotes the ith elementary symmetric function and n; the
- b Newton symmetric function (i.e., the sum of the i'" powers). Use

the analogous formula for o3 to derive the cubic term in the expansion
% of the Chern character above.

7

S

g
b

. The exponentiation in the definition of the Chern character gives it
two convenient properties. First, given an exact sequence like (3.97),
" the identity (3.98) yields

i ch(F) = ch(E) + ch(G).
" Second, for any bundles E and F

ch(EQF) = ch(E) ch(F).

Together, these are equivalent to the statement that the Chern char-
. acter defines a ring homomorphism

ch: K°(X)—H*(X, Q).

This identity can be used to give a characterization of the Chern char-
- acter avoiding the need to introduce the formal roots o;.

{. EXERCISE (3.101) Use the Whitney splitting principle to show that the

. map that associates to a line bundle L in K(X) the class ef'!) in

. H*(X,Q) extends to a ring homomorphism. Then show that this ho-
momorphism K%(X)— H*(X, Q) equals the Chern character.

Next, we introduce the Todd class td(E) of E. This is defined in
terms of the «;’s by

td(E) =[]

i

o
l-—e

€ H*(X,Q).

As this, like the Chern character, is symmetric in the o;'s, it must be
expressible in terms of the Chern classes of E. The expansion

@
T—ea-173%71;
yields, after expanding and rewriting the product defining td(E), the
expansion

c1(E) | c2(E) + c2(E) .
2 12 '

Following custom, we write td(X) for the Todd class of the tangent
bundle of X.

td(E) =1+

(3.102)
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:ilimnasn (131.103) 1) Show that the Todd class is multiplicative jp
€ sense that, given an exact sequence 0—E—F— G —»
td(F) = td(E) - td(G). 60 wehave

2) Find the degree 3 term in the expressi i
Chor i degree xpression of td(E) in terms of the

Finally, recall that the shriek of E by m is given by
™(E) = > (-1)'R¥(m. (E)).
i

While the definitions are length the f i
beautifilly aadon gthy, ormula that relates them js

THEOREM (3.104) (GROTHENDIECK-RIE
: -RIEMANN-ROCH) Ifr : X—B |
a proper morphism with smooth base B, then Hr Xbis

ch(m(E)) - td(B) = m, (ch(E) - td(X)).
EXERCISE (3.105) 1) Show that, when B is a point, m(E) = x(E) and

td(B) = 1 and use this to reduce the form ;
Riemann-Roch formula ula above to the Hirzebruch-

X(E) = (ch(E) - td(X))[X],

where [X] denotes integration over the fundamental class of X
2) Show that, if X is a curve, then -

X(E) = c1(E) + (rank(E) - (1 - g))
and, in particular, if we take E to be a line bundle L of degree 4, then
XL)=d-g+1;
i.e., we recover the most basic Riemann-Roch formula.

Of course, when B has lar i i i
Irse, ger dimension, interpreting the
Gr(‘)ithend_leck-RlanaI_m-Roch formula isn't so easy. We will seg how
to do so in practice in the next sections by applying it in three cir-
cumstances to the universa] family of curves over the moduli space

M,
Chern classes of the Hodge bundle

Our first example of the use of the Gr i i
. : othendieck-Riemann-Roch for-
mula will be a calculation already referred to in the general discussion

5
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N
* of cohomology classes on moduli spaces in Chapter 2: the expression
" of the Chern classes A; of the Hodge bundle in terms of the tautolog-
- {cal classes k;.

- Torecall the circumstances, the Hodge bundle A on M, is the bundle
“whose fiber at a point [C] € M, is the space H*(C,K¢) of holomor-
_ phic differentials on C. More precisely, let i : Ty — M, be the univer-
- gal curve, w = wg;» be the relative dualizing sheaf, and y = ¢;(w);

.we define
s A =m(w).

Note that this bundle exists only away from the locus of curves with
automorphisms. This is for the most part not a serious problem: since
the locus of curves with automorphisms has codimension g - 2, com-
putations involving the Chern classes c;(A) with i < g — 2 will still be
valid. Alternately, the bundle A exists on a finite cover of M, and we
_can define the Chern class of A (with rational coefficients) to be the
“ J;ixshforward of the class of this bundle, divided by the degree of the
'cover. We will address these issues more systematically in a moment.
*'In any event, the Grothendieck-Riemann-Roch formula gives us a
simple expression for these classes. To begin with, note that the conor-
mal bundle of the map m — that is, the difference Tc — T in K(Ty)
— is simply minus the relative tangent bundle, which is the dual of

the relative dualizing sheaf. Hence,

M) vy =1- Y L
()~ @) =-S5

Grothendieck-Riemann-Roch thus says that

2 2 3
- YL YL ). ¥,y ...
ch(mw)—n*((l st ) (1+y+ >t et ))

2
=,,*(1+x+r_+...)_

To evaluate the left-hand side of this equation, note that the higher
direct image R, w is the structure sheaf On,. Thus ch(Rlm,w) =1
and the higher direct images vanish, giving

2
Ch(A)—1=TT*(‘)2:+;’_2+"')-

To evaluate the right-hand side, note first that y has degree 2g — 2 on
a fiber of T, over My; thus

rank(A)—1=g—1-
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which of course is no surprise. Next, we have

c1(A) = chy(A) = T4 (321) =%, |
where k = k; is the first tautological class. Similarly, to find chy(A)
we write |

(3.106)

(3.107) c2(A) —chp(A) = —

_ (A K®
2 288

since chz (A) = 0. In general, it's clear that the Grothendieck-Riemann. ’g

Roch in this case expresses each of the Chern classes of the Hodge
bundle as a polynomial (with rational coefficients) in the tautological
classes k;, and that the polynomial may be worked out explicitly in
any given case. Note in particular that, while the A; are polynomials
in the k;, the above examples already show that the converse is not
true.

Next, we consider how this computation — at least in the case of the
codimension 1 classes in Mg — may be extended over all of the sta-
ble compactification M,. Here we'll see the discussion of Section D
used in practice. First of all, to define our terms, we will denote by
w the relative dualizing sheaf of T4 over M, and call the direct im-
age m.w on M, the Hodge bundle A. Note that the problem we were
able to gloss over above has now become more serious: the universal
curve now fails to be universal over a codimension 1 locus (all the
points [C] € A; C M, correspond to curves with automorphisms).
But now we have an alternative: by Proposition (3.93), in order to de-
rive or prove any relation among divisor classes on the moduli space
we simply have to verify the corresponding relation among the associ-
ated divisor classes on the base B of any family X — B of stable curves
with smooth, one-dimensional base and smooth general fiber.

To do this, let p : X — B be any such one-parameter family of stable
curves. We will use t to denote a local coordinate on the base B of the
family. We make one modification: we let 4 : Y-— X be a minimal reso-
lution of the singularities of the total space X,andletv = pou:Yy—B
be the composition. This has the effect, for each node p of a fiber of
X — B with local coordinates x, 'y, t satisfying xy = t*, of replacing
the point p by a chain of k — 1 rational curves. In this way we arrive
at a family v : V- B of semistable curves, with smooth total space
and having k nodes lying over each node of a fiber of X with local
equation xy — t*. To relate the invariants of the new family v : y—B
to those of the original, we have the:

EXERCISE (3.108) 1) Show that the relative dualizing sheaf of the new
family is trivial on the exceptional divisor of the map u, and hence that
it’s simply the pullback of the relative dualizing sheaf of p : X —B,
ie.,

wy/p = H*Wx/B-

¥

"nnd likewise that

3) Let ZcYbe the locus

: Grothendieck-Riemann

2) peduc
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hat is,

e that their direct images are equal, t

VxWy/B = PxWX/B

V*(Cl(wyls)z) = P*(Cl(wx/s)z) .

of nodes of fibers of Y—B. Show that

v ({Z]) = 8(p)-
ame calculation is made in this

. with all this said, pretty_much the s i B o vely. A

setting, simply replacing ()

thing has chang _
::in element of the K-ring K(Y))isno

“dualizing sheaf. To see wh

and M, jewed
; bundle Ty — p«TB (ViEW!
ed: the relative tangle:;ger the d\ilal of the relative

ith a node

:+ is. let C be a stable curve wit
e the point [C), and let (:f,y? be
in terms of which the map to B is given

o - t
f)ooz dm:t;sx:rlyin:e:vritz the cotangent bundles rather than tangen
byt = Xy

pundles, the pullback map gives an injection
Ty —Ty

which we may view more concretely as the map

Oy(dt)-—'Oy(dx, ay)

dt to xdy + ¥ dx. The cokernel is the relative cotangent

Oy(dx,dy) .
Quip = Txdy + y dx)

along the
Note that this is locally free of rank 1 everywhere except g

des of fibers of Y over B. rerized
loc;]l;wZ ftfenx(‘)elzfive dualizing sheaf w = Wy/B may be charac

bundle. It follows that we can write

sending
bundle

w = Ocla)

where .- dx d_y_'
=5

Note that xa = 2dX, while ya = —24dy, 80 that

Q:=Qy= 1, Qw.
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We can use this to calculate the
: Todd class of the relative cot
e T an
bundle Q in terms of «. To begin with, to calculate the Chern charagc(::l

of the ideal sheaf of Z, we appl i i
nclusion - Shea h We'have pply Grothendleck-Rlemann-Roch to the

h(ix02) = iy (ch(02) - W(T; - i*Ty)) = 4, ()

where n denotes the class of the locus 7.
From the exact sequence

0—>72—>0y—>02—>0
we have
ch(7;) =1 - ch(®;) =1 - n
and so finally:
ch(Q) = ch(w) - ch(1;)
(3.109)

=(1+}'+y2+---)-(1_n+...)
2
=1+}’+(y?—n)+....

Thus, ¢,(Q) = ¢y (w) =
' - = ¥ — no news here, sin ifyi
only on a codimension two locus. Further ¢ we are modifying

1
c2(Q) = EChl(Q)Z —-ch(Q) = p
so that
2
td(y/B)=1—§+Z#+---
Plugging this into the Grothendieck-Riemann-Roch we arrive at

c1{va(wy/p)) = v*(ﬂ(wyT/g)zﬂ)

and finally invoking Exercise (3.1
nd -108) we ha i
divisor classes on B associated to the fanul;ept%l)e( r—elal;lon mene the

(3.110) A= K+o
Applying the translation Propositicl)rf (3' 93) and
arrive at the corresponding formula and Coroll

ary (3.95), we

12— k = :
A-«k [A0]+2[A1]+[A2]+---+[A[gj]ePic(Wg)®Q.

EXERCISE (3.111) Car i
E (3. Ty out the calculation f i
above.wnhout introducing the resolution o the toeation X o

X— B of stable curves near a point with local equation

, ik
use this to calculate the Todd class of X/B directly, Xy —t*, and

7

¢

¥
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Tﬁchern class of the tangent bundle

For our final example we’ll calculate the canonical class of M, in terms

‘. of the standard generators of its Picard group. Before we can even be-
- gin to try to compute this class, we have to make sense of its definition.
-~ On the smooth open sublocus Mg, we mean, as usual, the bundle gen-
+ erated by the holomorphic differential forms of top degree (3g — 3).

However, this definition doesn’t make sense at singular points of M.
‘- We solve this problem by defining “the canonical bundie on M,” to be

g the unique rational line bundle on M, extending the canonical bundle
" on its smooth locus.

Having thus defined the canonical bundle, the computation of its
class turns out to be very similar to the previous two computations.
The connection is provided by the characterization of the tangent

. space to the versal deformation space of a nodal curve C. As we saw in
.- (3.30), this is just the global Ext group Ext! (Q¢, Oc). Applying duality,
“then, the cotangent space to the moduli stack at a point C will be the

space
TV = HY(C,Qc®wc)

of global sections of the tensor product of the dualizing sheaf and the
sheaf of differentials. ‘

Accordingly, we’ll introduce what we will call the canonical class of
the moduli stack: this will be the divisor class K on the moduli stack
that associates to any family p : X — B of stable curves the class

K(p) = p+(Qx/8Qwx/B).

Again, the phrase “canonical class of the moduli stack” should be
treated as atomic: we haven't defined a stack, let alone the canonical
class of one. The bundle on the right is simply the bundle that asso-
ciates to each point b € B the top exterior power of the cotangent
space to the versal deformation space of the fiber Xj,.

We will express the class K in terms of the usual generators A and
&; of Picrun (M) ®Q, and then use this to derive an expression for the
canonical bundle of the moduli space M, in terms of the generators
A and [A;] of Pic(M,) QQ.

The actual calculation of the class K is completely straightforward,
given what we have already done. We let p : X — B be any family of
stable curves with smooth, one-dimensional base and smooth general
fiber and apply Grothendieck-Riemann-Roch to find the first Chern
class of the direct image p.(Qx/s®wx,p): since the higher direct
images are all zero, we have
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ch(p, Qx/3Q@wx/p))

="*((1+2}’+(2}'2-n))(1—x+"2“7))
2
_ 3. (13
~m(1+- (B, n
2 ¥ -

g )+(12K1 —d

12

=39 -3) + (13a - 2¢).

Hence, in particular i
given by » the canonical class K of the moduli stack jg

(3.112) K=13A-25

How do we use this
. to get a formul :
the moduli . a for the canonij
OCUL Space? We're actually pretty close: aft cal dass.Of
eEM alter all, at any point

(C] g COITes '
ponding t i
of the canonical bundlei 0 a curve without automorphisms, the fiber

2, at [C] i i i
;l;e tlgotangent space to th:%ersal gief’:gnmzﬁi:)he pace of sy ower of
oot g gg}??ck of K31 to the moduli stack s
. were not for the presence f ivi
o of the divisor A,
Eover (fyfi]tse iIIAll, t@e versal deformation space of C isla I‘;‘::oa}sghe reren
age in M,, ramified along A;. It follows that eeted

T Kx, =K+6; e Piceun (M,) ®Q,
;?:éklibzit?ﬁstth subtract &; from the
Kyg > :ng' . thz ?al:lngl:f::k to the moduli stack of the canonical class

ge of stacks, we would say that “the modulj

stacki i
K is ramified over the moduli Space along the locus A" —a pretty

nifty trick, considerin
;- O g that the ma ;
moduli space is finite of degree 1). 3’: hfx:!n:ht:; moduli stack to the

canonical class of the moduli

K-6, = 13A-26 - 5,
and so i i i
we find, by again applying our dictionary, that on .Tlg itself

K% = —_ 3
(3.113) M, = 134 - 2[4] - E[AIJ -2[A2]—-..

=130 -2(a] + 3 [A,).

Grothendieck-Riemann-Roch and Porteous 161

Y

‘porteous’ formula

fbne further tool that is often of use in analyzing the geometry of
moduli spaces is Porteous’ formula, which expresses the class of the
-Jocus where the rank of a map between vector bundles is less than
“or equal to a given bound. Applications of this formula are already
',:”abundant in the theory of a single curve. To cite one example, the
.Riemann-Roch formula for divisors on a curve C says that a divisor
D of degree d moves in a linear series of dimension at least 7 if and
- only if the rank of the evaluation map

H%(Kc) — H%Kc/Kc(~D))

is d — 7 or less. As D varies, the target and domain spaces of this map
‘'give vector bundles over the symmetric product C; of C, and applying
" Porteous to the corresponding bundle map we arrive at a formula for
. the class of the locus in C4 of divisors D such that (D) = 7. In
.‘particular, observing that this class is nonzero (when its codimension
"is d — r or less) gives the first proof of the existence of special linear
series on an arbitrary curve whenever the Brill-Noether number p > 0.

For such reasons, the subject of Porteous’ formula and its applica-
tion to curves is already discussed at reasonable length in [7, Chap-
ters 2 and 8]. We will simply state the formula here, assuming a famil-
iarity with its derivation and the applications to a fixed curve, and con-
centrating on giving further applications of the formula to the study
of the geometry of families of curves.

To state this, we need to recall two additional notations. The first
is the Chern polynomial. For a vector bundle E, this is just the formal
polynomial

ce(E) = > ci(E)E
13

By the Whitney product formula, this extends to a group homomor-
phism from K(X) (which we write additively) to the multiplicative
group of units of the formal power series ring H*(X){[t]].

Next, for any formal series ¢; = 3 ; ¢;ti, any integer a and any posi-
tive integer b, we define M, ,(c;) to be the b x b matrix whose (i, j )t
entry is cq+ j—i. Finally, we set Ag p(c¢) = det(My p(cy)). In these terms,
Porteous’ formula is:

THEOREM (3.114) (PORTEOUS’ FORMULA) Let @ : E—F be a homo-
morphism between vector bundles of respective ranks m and n on a
smooth variety X. Let

Xk(@) = {x € X |rank(@y) < k}.
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and let {Xx(p)] be the fundamental class of Xx(@). If Xy (@) is either
empty, or of the expected codimension (m ~ k)(n — k), then

[ Xi(@)} = Anxm-k ((Ct(F - E)))
= Am-kn-k ((ce(EY = F¥)))
= (~1)ERFBA, o (c(E=F))) .

The hyperelliptic locus in M3

The first problem to which we’ll apply Porteous’ formula is the follow-
ing. In the moduli space M3 of smooth curves of genus 3, let H = Hj
denote the locus of hyperelliptic curves. Since H is a closed subvariety
of codimenston 1, it has a class in Pic(M3)@Q. We ask now what that
class is.

This will be another example of how these sorts of computations
are most naturally carried out on the moduli stack, rather than the
moduli space. The steps by now should be familiar: we'll introduce
the divisor class h on the moduli stack associated to the subvariety
H c M3 as in Proposition (3.91); we calculate the degree deg(h (1))
of h on a one-parameter family  : X— B of curves of genus 3 —
that is, the number of hyperelliptic curves in such a family — in terms
of the degree A(mr), and finally use this to deduce a relation between
the classes [H] and A € Pic(M,;). The part that is new is the middle
part, the calculation of the number of hyperelliptic curves in a one-
parameter family, which will involve an application of Porteous.

To carry this out, we first need a good characterization of hyperel-
liptic curves. There are, of course, many: the canonical map isn’'t an
embedding; we have an involution with 2g + 2 fixed points; there is a
degree 2 map to P!; and so on. The one that is most useful here, how-
ever, is the characterization via Weierstrass points: a smooth curve C
is hyperelliptic if and only if it contains a point p € C such that 2p
fails to impose two independent conditions on the canonical series,
i.e., with

h® (Kc(-2p)) = 2.

To globalize this, suppose that  : X— B is any smooth family
of curves of genus 3, not all hyperelliptic. We can define two vector
bundles on the total space X of the family, as follows. First, we let
E be the bundle whose fiber at a point (b, p) (where b € Band p is
a point of Xj) is the space of sections H®(Xy,Kx,). This is just the
pullback of the Hodge bundle:

E = w*(mm.wx/p);
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if we let Xz = X xg X be the fiber product of X with itself over B
g:"d r1; the projection maps to X,
| E = ()« (11} wx;8)-

fiber over (b, p) is the space

take F to be the bundle whose . : o
N%):tl'( “;EKC( -2p)) of differentials in a nelghbor_hood of pin :\i’bA rgc;c :

: flo thf)se vanishing to order 2 at p: that is, if X> is as above an

s the diagonal 2

| F = (m)s (1 0xs®0x./13) - )

i b
we then have a natural evaluation map @ : E—F, sending each glo

i i ted Taylor series at p-
hic differential on Xj to its trunca ap:
tpl:t)yl:trr[;\(zrtfy, this is just the pushforward under m; of the restrictio

2
f e WX —" 5 wxBQOx, 12

: int i Q of points (b,p) € X
‘ key point is then that the locus & :
o ifzthgl; isyaphyperelliptic Weierstrass point of Xb,l? exa‘iital‘y( it::
( l:)lccus where the map @ fails to be surjective. Porteousf Srr:n e
; simple case at that) will giveus a formula'for the clas,s othe'class' e
the generic hyperelliptic Xp has exactly eight _such p’s,
* will be simply (3)™ of the pushforward of this class}.1 asses of E
| To make the calculation, we need to know tI}e' C emu]lback off
‘ and F. The class of E we've already calculated: it's the p
~ of the class x  mey?)
‘ A== ,
12 12 Ny ¢ on
where y = c1(wx/s) 18 the first Chern class. of tkfe dualizing sheatf.
the other hand, for F we have a two-term filtration
— o Fp—>F—FH— 0
(3.115) 0 2 . .
e he fber o i at ()8 0 (K (s ) S5 St
is H® —1)/Kx, (—2p)). Now, ile
lciufa{hiﬁl? éh:a)f/itsxé’lf. Similarly, the bundle F is just the square of the
relative dualizing sheaf. It follows that

c(F) =1 +y)(1+2y)= 1+ 3y +2y%.
We now apply Porteous’ formgla (3.114) to conclude that the locus
where @ fails to be surjective has class
Q1= ca(EY - FY).
(Since here we have n = m = 2 and k = 1, the matrix M has a single

y e
entry, which we’ve chosen to express using .the se;cogd (;f ;::ethre
formé in (3.114))) Modulo terms of codimension 2 in B, W

c(EV)=1-A
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and from the above,

C(=FY) = (1 -3w + 2¢?)-1 = 1+3w + 7w?,

so that
¢(EY-FY) =1+ (3w - A) + (7w? - 3wA).
Thus,
[Q] = 7w? - 3wA
and hence

e ([Q]) = 76 - 127 = 72A.
We conclude that
h=9x¢ Picrn (M;3)QQ

and hence by our Basic Propositi
locus H is given by position (3.93) that the class [H] of the

[H]=18A ¢ Pic(M3)R0.
Here are some exercises about hyperelliptic and related loci.

tli)(::l:;:lls;!i l(13.116) The calculations above make the implicit assump-
on ?o th: f;heme Q - defined as tl?e determinantal scheme asso-
Pt ap @ — is reduced. .Verlfy this by writing @ explicitly

amily of curves whose associated arc in M is transverse to B
— for example, the stable reduction of the general pencil of quartics

:Zv)“tﬁRCISE'(BJU) Find the class in Pic(M3) of the locus of curves C
lolc a Ip:)mlnt P such. that.4p ~ K¢, or equivalently the union of the
us of plane quartics with a hyperflex and the hyperelliptic locus,

EIXEI.QCISE (3.118) More generally, for each semigroup S of nonnepa-
tive integers having index g (that is, such that #(Z70\ 5) = g), let ﬁ?
depote Fhe locgs of curves C with genus g possessing a Weie,rstras:
point with semigroup §. For 9 = 3 and 4, determine when this locus is
reducgd and of the expected codimension, and when itis, calculate its
class in A(M3). (A discussion of these loci in moduli spa,ces of curv

of general genus g can be found in Section 5.D.) =

EXERC'ISE (3.}19) Let W C My be the locus of curves ¢ with a sub-

tc::::;‘altpgzgt_‘ — that is, a point p such that (2g - 2) P ~ Kc. What is
ected dimension of W? As i is dimensi

what 1o e dim suming that ‘W has this dimension,

EXERCISI_': (3.120) Prove that the locus of curves in M, that have only
one pencil of d_egrec 3 is a divisor — the general curve of genus 4 has
two such pencils — and find the class of this divisor.
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jelations amongst standard cohomology classes

ote that a variant of this calculation gives us relations in the co-
pmology ring of M,. To see an example in genus 3, consider the
sstriction map from the pullback E of the Hodge bundle to the bun-
Je F; = w in (3.115) above. Since the canonical series of a smooth
rve of positive genus never has a base point, this map is surjective,
sm which it follows that c3(E¥®w) = 0 in H*(C3). Calculating this

t yields
0= c3(EYQuw)

=y3 + Y2c1(EY) + yc2(EV) + c3(EY)

"4 =y3—y2.i+};.£_+...
% 12 288
h‘w’“e_have written k for the pullback to T3 of the class k¥ = k; and, in
i “é::ﬁnal line, omitted the last term, which is the pullback of a class in
fodimension 3 in M3). Pushing this forward to H*(:M3), we have

2 2
K K
O=Kkp~-——+4

12 288"

;r.'after simplifying,
) 72K2 = 5k2.

i m general, similar constructions can be applied to give relations
among the generators k; of H*(My) for all g. For example, as above

we can use the fact that the canonical series is base point free to

" deduce that cz(EY®w) = 0 in M, where E is as before the pullback

to C, of the Hodge bundle. As above, pushing this forward gives us

a relation in HZ"'Z(.'Mg). At the same time, it’s equally true that no
differential on a smooth curve of genus g vanishes to order 2g — 1 at

any point. This says that the bundle map
EV — J 2g-1

is injective, where Ji is the bundle on T, whose fiber at a point (C, p)
is the space H(C,Kc/Kc(—kp)). This, by Porteous’ formula (3.114),
yields a relation in degree g among the classes y and k; in H*(C),
and hence a relation among the classes «; in degree g — 1 in H*(M,).
Although, in view of Looijenga’s vanishing theorem [Theorem (2.52)],
we might expect all terms in this relation to be 0, Faber's work shows
that such apparently useless relations can in fact have important im-

plications.
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EXERCISE (3.121) Find this relation in H?(Ms,).

We can generalize this further b ini
y defining E™ tg he the
’g‘? 1351 _t(l)ledbun_dle of m-canonical differentiajs and 7" to ber:zgtl;?fkdto
rder Jets of such differentials. (The previous example is Ijlul(:
s

thecasem = 1)1 Ci i
o )If C is any smooth Curve, p is a point of C and m > 2,

the multiple ((m - 1)(2g -2) - i i
dent conditions on Imel, e poses indepen-

and,

no m-fold differentia) vanishes to order m(2g-2)+1atp

Fo s
i ; :;::e;rz _t‘_h;s 1;’1:113(?(' m)ro m((j)re relations among the classes k; and Y
In deg g/, and, correspondingly, relations i

:Irll aﬁy(ﬁgg Unfortur.la.tely, writing down almost any of th:sl::li(riliigrfii:lg
o oela l?:s exphcllltly (at least by hand) is essentially 1‘mpossibley
I » lowever, that the coefficient of each Ki i '

how ; in the mth i

1s polynomial in ™, we do get one simpler relan'oln. € relation

E ; .
ti,éz:fil:fli!n(gél:tzazfemtg :jhe leading term in m of the sequence of rela.
. erive an explici )

In k; and y vanishing in H2¢+2 «, )’fp]-lClt Polynomial of degree g + 1

Divisor classes on Hilbert schemes

cu{_ves in projective space.
0 set this up, let #Hy be a co
» let mponent of the restri i
lsecthjt,eLlr(11l§:eptzlllrametenzmg curves C C P” of degree 4 ansd:f:f:sm“;;g
are ways ofz;()tif:iisr?gbtsl‘:t of .’:;lﬂ; plarameterizing smooth curves ql:here
€se calculations to larger subsets f -
S, ?;Ijl,efso; te;(lallmple, for analogous computations in case  — g i’{l())ut t;?e
et ryiil e;xtl::)e.ns; of greater technical complications, and since w:
Indicate sj i :
Ship e € simply what calculations are possible, we’l]
We firet i S
) l:tﬁ)r(Stc u;t(r(:(dgfebmtehbasm divisor classes on 4. As on page 64
_ H € the universal curve; we let ¢ = '
relative dualizing sheaf of X over #, and we let Ox(1) beut)lféagull)l‘le);lcll‘:

E. Grothendieck-Riemann-Roch and Porteous
—
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| of Opr (1) via the projection X —P”. We then denote by n and & the
. chern classes of the line bundles w and Ox(1), and set

A=1,(E%), B=m«(E-n) and C=m(n?)

" where 1™ : X —3{ is the projection. Note that by what we’ve already
. egtablished, the class C is simply the pullback of the class k = 12A
. under the induced map 3 — M,.

. .In addition to these abstractly defined classes, we have a number
- of other divisors and line bundles that may be defined in terms of the

* geometry of the projective curves parametrized by H, and we may
. ask whether we can describe their classes as linear combinations of

the classes A, B and C. We will give these as a series of exercises.

EXERCISE (3.123) For any codimension 2 linear space A = P"~2 c P7,

Jet
I=IZa={[CleH:CnA+O)}

" pe the locus of curves meeting A. Show that the class of I is simply A.

. EXERCISE (3.12q) For any hyperplane H C P", let T = Ty be the locus

of curves tangent to H. Show that the class of T is simply B.

EXERCISE (3.125) Let S C H be the locus of curves C that possess a
hyperstall, that is, a hyperplane having contact of order r + 2 or more
with C at a point p € C. (In classical terminology, a point p € C whose
osculating hyperplane has contact of order  + 1 or more with C at p
— what we now call a ramification point — was called a stall.) Show
that S has pure codimension 1 in 2, and find its class.

EXERCISE (3.126) Similarly, let F ¢ H be the locus of curves C that
possess a point p whose osculating (r — 2)-plane has contact of order
r or more with C at p. Show that F has pure codimension 1 in 4, and
find its class. (You can check that S and F are the only two divisors in

H defined by ramification conditions.)

EXERCISE (3.127) To check the preceding two exercises, let R C X be
the locus of ramification points. Find its class, and find the branch

divisor of the projection R+ X — 3.

EXERCISE (3.128) Now let r = 3, and let B C H be the locus of curves
possessing a bitangent line. Again, show that B is a divisor, and find
its class.

EXERCISE (3.129) Suppose that nd > 2g — 2, and that E;; = w,0Ox(n)

is the vector bundle on # whose fiber at each point [C] is the vector
space H?(C, Oc(n)). Find the first Chern class of Ej,.
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EXERCISE (3.130) Suppose now that 4
=g+7r > 2g-2andlet
ll:e the locug of degeperate curves, that is, curvgs C lying ll'lD sf):l{
yperp!ane m.P'. Using the result of the preceding exercise, sh .
that D is a divisor, and find its class. P

EXERCISE (3.131) Let now r = 3,d=6
'V =25,4 =6,and g = 3. In this case, t
::)sculs of curv- es C C P3 lying on a quadric forms a divisor in H -'ﬁxl:g
, c ass. (Hint: agalp apply Exercise (3.129).) What does this ha've to
o with the calculation of the class of the hyperelliptic locus in M3?

EXERCISE (3.132) Suppose now th

. . atd =2g-2andr = g-2
thxs. case, the locus qf curves that aren't linearly normal (i.e.gthat all're‘
Projections of canonical curves from ps-1; o, equivalently, s'uch that

Oc(1) = wc) form a divisor. Once more, find its class.

Finally, here is a general challenge:

:glonum (3.133_) Consider two larger open subsets of the Hilbert
andelr:reg ecl('):ttilalmtlhnglﬂ : thef: locus of stable curves embedded in P

» the locus of nodal curves. Can you ¢ ,
of the above Ccomputations on these loci? You carty outany or all

th:k(;ge.that to do this y_ou'll have to introduce as well the classes of
¢ d.v1sors corresponding to singular curves, which may be compli-
cated: for example, the loci of curves with two components C) and

F Test curves: the hyperelliptic locus in
M3 begun

lVIVe will pow comple_te the calculation of the class of the locus H of
lype:elllptlc curves in the moduli space of curves of genus 3. By “com-

gfettlf : vlve mean the _following: we let H = H3 be the closure in M,

of ﬂe;r closed subvariety H ¢ M3 and find the class of H in terms of

the three generators A, [Ao] and [A;] of Pic(M3)®Q. Equival

if we let h denote the | stack associate]

to the subvariety H ¢ M3 as in Proposition (3.91), our goal is to ex-

press h as a linear combination f th
o Piens o of the three generators A, 8¢ and §;

£. Test curves: the hyperelliptic locus in M3 begun 169

we will refer to H as the locus of hyperelliptic stable curves of genus
3. In general, whenever we refer to a subvariety of the moduli space of
‘stable curves characterized by a property normally ascribed to smooth
curves (e.g., hyperelliptic curves, trigonal curves, plane quintics of
‘genus 6, etc.) we'll mean the closure in M, of the locus of smooth
curves with this property. Thus we define a hyperelliptic stable curve
-of genus g to be a stable curve that is the limit of smooth hyperelliptic

curves.

" Warning. H is not the locus of curves that possess a linear series of
‘" degree 2 and dimension 1 because any reducible curve has such a
. series. Just take a line bundle of large degree on one component to
. get the sections and use a bundle of negative degree on the other to
~ make the total degree come out right.

How do we calculate the class of H? Trying to to extend the applica-

.. tion of Porteous’ formula is the most obvious approach. The problem
“ here is that one of the bundles in question — the bundle F = J, whose
- fiber at a point (C, p) is the space H(C,K¢/Kc(-2p)) — cannot be
. extended to a vector bundle over the nodes of fibers of the family of
i curves. At a node P, there is an entire one-parameter family of de-
- gree 2 divisors supported at P and none of these is singled out. More
;. formally, in a family X — B, F can be defined as

M« ("2* (wx/s) ®(0x><sx/7§))-

* This definition certainly extends, but, near nodes, the diagonal A isn’t
" alocal complete intersection, and so has no Cartier divisor structure.

This means that the direct image by m, is only a coherent sheaf and
not a vector bundle.

What we would need, therefore, to carry out this strategy is a version
of the Porteous formula for coherent sheaves. Such a formula, even
with strong restrictions on the sheaves involved, would be extremely
useful in many contexts; but no one has, as present, been successful
in producing one. Nonetheless, we pose the:

QUESTION (3.134) Is there a Porteous type formula for maps of
torsion-free coherent sheaves? That is, given a map @ : E— F of such
sheaves on X, can we give the locus

Xy := closure of {p | E and F are locally free at p and rank,(®) < r}

a scheme structure, and express its class in terms of the Chern classes
of E and F and of local contributions at points where E and F aren’t

locally free?

Fortunately, there is an alternative, if less direct, approach to the
problem. We know there exists a relation expressing the divisor class
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h on the moduli stack as a linear combination of the generators
E=a-/\+b-6o+c-61.

Indeed, we know already that the coefficient @ = 9 and the problem
is simply to determine b and c. We will do this by taking explicit One-

We start with probably the simplest family of (generically smooth)
stable curves of genus 3: a general pencil of plane quartics; that is, the
family of curves {C:} given by polynomials F(X, t) = LG(X)+t H(X)
for general G and H. We have to describe the degree, on the bage
B = P! of this family, of the various divisor classes h, A, 6o and §,.

Two are easy. Since the pencil is general, it will consist entirely of

don’t know what plane models singular elements of Ff might have, we
need to check that none of the irreducible nodal curves in the pencil
lies in H. The birational map from the P4 of plane quartics to M,
takes the discriminant locus D onto A. Therefore, the locus in D of

deg(h(p)) = deg(5,(p)) = 0.

Next we want to count the points (p, t) at which C; is singular. Each
of the forms 0F/0x, 9F /3y and OF {0z must vanish at (p,t). Since
each is bihomogeneous of type (3,1) in (X, t), what we want is the

Intersection of three divisors of type (3,1) on P2 x p!. Letting ot be a
divisor of type (1,0) and B be one of type (0, 1), this is

B+ B)? = 3(3)28 = 27028 = 27.

Thus, the discriminant locus has degree 27 and our pencil meets it
transversely that many times. It’s tempting to conclude directly that
the image of the pencil in Mj; likewise meets A transversely 27 times,

associated family of curves is smooth and we may apply the lemma
to conclude that

deg(do(p)) = 27.

in M 17
Test curves: the hyperelliptic locus in M3 begun

; To find the degree of A, we observe thath if 1:1 :e ;C (—l\»)B =iscall(fEa;mFl();ro£
' curves, w = Wx/p, and E = T W, t en B \ ora
s:t:::ic pencil, we can identify E by writing down a sp'an:ﬁ:gngcm
4 tions (or equivalently of differenti:c\ls on all curves :llue e pendl)
se:the curve in the pencil corresponding to. any finite v ,
-gfﬁne equation f(x,y) = 0, three differentials are

dx

dx - Xdx 4 ng = XX

M= afiey M7 afrey af7oy

is gi tional

i Homogenizing by setting x = and y = Y, this glvest ;l:rtei r: l'([)‘h a

; ections of E which are defined and mdepepdf:nt excepf ) t:or s
is even true at the nodes as wc is the restriction tg C of Op2 ) oral
Cs in the pencil. As t— o, each of the n’s has '?lflmptif zsir&erznﬁals

) ; . . e

ion F(t,X,Y,Z) involves t lmearly.. us, rentials

i :Fenfqltn-itr;: am(i t - n3, are nonvanishing and independent at infinity

This shows that

E = 0p2(1) & Op2(1) & Op2(1)
hence that
 andhen deg(A(p)) = 3.

Another approach to finding the degree of A is to view X as a divisor
of type (1,4) on P! x P2. By adjunction,

Kx = Kpiypz @0O(X) = Ox(-1,1).
Since w*(Kg) = Ox(-2,0), we find that
wx/p = Kx@m*(Kp) ™} = 0x(1,1).

ivi 1,0) and by B one of class
if we denote by « a divisor of class ( ) 0 s
[(-:;H;c)e'v:rev;ind that deg(x(p)) is the intersection number on P* x P

(o +4B)(a+ B)(ax + B) = 9.

In view of the relation « + & = 12A and deg(5(p)) = 27, we again

ive at deg(A(p)) = 3. _
arlzzpplying our assumed relation of classes

h =aX +bég +cé;

i ields
to the one-parameter family p : X — B and taking degrees thus yie
the relation of coefficients

0=3a+27b+0c,

which, since we know that a = 9, tells us that b = —1.
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EXERCISE (3.135) Verify the calculations of a and b above by restrict-
ing to the families p : X— B obtained by

1) taking a pencil of hyperplane sections of a smooth quartic surface
in P3; and

2) taking a pencil of plane quartics containing a double conic but
otherwise generic. (This will require a semistable reduction, and is a
substantially more delicate calculation. The answer, along with the
analogous degrees for other pencils, is given in Exercise (3.166).)

What sort of pencil might we use to extract the final coefficient
¢? The unfortunate fact is that no pencil of quartics whose singular
elements are stable as abstract curves will do: the only such curves
containing an elliptic component will consist of an elliptic curve plus
a rational component meeting it 3 times. Since none of these three
nodes is a disconnecting one, such curves all lie in Ag rather than in
A;! What is needed is to carry out the stable reduction of a pencil con-
taining a cuspidal quartic member. This is possible but onerous since,
during the entire sequence of blowups, base changes, normalizations
and blow downs, we need to do the bookkeeping of the canonical class
of X, of the relative dualizing sheaf wx g, and of all the related in-
tersection numbers. Moreover, to treat values of g larger than 3 we’ll
clearly need other methods. As g increases, writing down generically
smooth pencils becomes increasingly difficult and the accessible ex-
amples such as families of hyperelliptic or trigonal curves only cover
small subvarieties in M.

The most common approach is to use families consisting entirely
of singular curves. We will look at three examples of such families.
Since we have uses for these families beyond the consideration of
the hyperelliptic locus in M3, we consider them in all genera greater
than 2.

EXAMPLE (3.136) Fix acurve D of genus (g —1) and an elliptic curve E
and attach a fixed point p of E to a varying point of D. In other words,
the total space X of our family would be the disjoint union of D x D
and D x E modulo the identification of the diagonal A of D x D with
D x {p} in E as shown in Figure (3.138).

EXAMPLE (3.137) Fix a curve D of genus (g ~ 1) and identify a fixed
point p of D with a varying point g of D. This gives a family lying in A¢.
However, as we established in Section C, the fiber over p itself (that is,
where q approaches p) is a copy of D joined by a disconnecting node
to a rational curve with a node or “pigtail” and this family therefore
meets A; once. (To see this, begin with D X D as in the diagram on
the left of Figure (3.139), then blowup the point (p, p) obtaining the

; Test curves: the hyperelliptic locus in M3 begun

‘idiagram on the right an
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d finally identify the now disjoint sections
x {p} and A to get the bottom diagram.)

D
P
E
D
FIGURE (3.138)
DxD A DxD
D x {p}
‘ . D x {p}r
1
A D D P
> D
r b 7
DxD
r
D
> D
r
FIGURE (3.139)

EXAMPLE (3.140) Fix a curve D of genus (g ~ 1) and identify a fixed

i i i ncil of plane cubic
int p of D with a base point 4 of a generic pe :
pcsr“\:espf to obtain a family of stable curves of genus g over P "t 11::
the elliptic curves degenerate, we again pick up a special fibers wi

“pigtail”. |
The difficulty with all these families is that we have no way of telling

i - tic (ie. lie in H3). For this, we'll need to
hich elements are hyperelliptic (i.e., liein 3) . '
;trf)duce the notion of admissible cover, which will be the subject
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of the next section. Before we turn to this subject, we've recordeg
in Table (3.141) the intersection numbers of each with the standarg

classes. We haven't listed the degrees of the é;’s for i > 2 because
these are all clearly 0.

Example (3.136) | Example (3.137) | Example (3 E
deg(A) 0 0 1 ]
deg(do) 0 2-2g 12 ]
deg(d1) 4-2g 1 -1

TABLE (3.141)

Let’s begin to verify this table with Example (3.136) in which the
fiber X, is the union of D and E with g in D identified to p in E. A
section of wx,p pulls back on D to a section of Kp(q) vanishing at
q and on E to a section Kg(q) vanishing at p. Conversely, a pair of
sections sp of Kp(q) and sg of Kg(q) descend to a section of wxp if
and only if sp vanishes at g and sg vanishes at p. The upshot is that

H%(Kx,) = H°(Kp) ® H°(K¢)

independent of q. Thus the direct image A of wx;p on D is trivial and
its first Chern class A is trivial. Hence, degp(A) = 0.

The degree degp (dp) is also 0 because each fiber X, contains a sin-
gle disconnecting node. For the same reason, the image of this fam-
ily in moduli lies entirely in A;. To find D - A;, therefore, we apply
Lemma (3.94), which says that the value on D of the divisor class é
(or, equivalently in this case, §1) on the moduli stack is the tensor
product of the normal bundles Npx{p}/pxe@Na;pxp. The first factor
here is trivial, and the second has degree equal to the self-intersection
of the diagonal A in the product D x D of a curve of genus g — 1 with
itself. This is just the topological Euler characteristic of D, which is
4 — 2g. (Since test curves often lie in a component of A, this type of
normal sheaf argument occurs fairly frequently.)

Example (3.137) illustrates this in a somewhat dual manner. Only
the fiber X, contains a disconnecting node and since the surface X
is smooth at this point it follows that degp(§1) = 1. However the
image of this family in moduli lies entirely in Ag, so we again need
to compute the restriction to D of the normal bundle to Ag in M,
to evaluate degp(8p). Here this bundle is the tensor product of the
normal bundles to the proper transforms of A and of D x {p} on the
blowup of D x D at (p,p).On D x D, A%2 = 4~ 2g and (D x {p})? = 0.
Since each curve passes through (p, p), each self-intersection drops
by one when we blow up, vielding degj(6¢) = 2 - 2g.

3. Techniques ,

ssible covers

To calculate degp(A), we use the exact sequence on Xg
\ 0 — HO(Kp) —= H(wx,) —2 C—=0.
¥ ;;‘he corresponding sequence of direct images is
0 — H%(Kp)®O —= me(wxpp) — O —0

ﬁom which it's immediate that the first Chern class of T4 (wx;p) 18
Arivi , hence, that deg (A) =0. o _ )
;wm;‘i;laill‘;dwe come to Exam%le (3.140). Since the elliptic pe.nmill here(:i le
3 éénerd {here will be twelve singular elements, each 3 ;?iﬁ(t):: ! r;lgoth
” igtail”. Moreover, the base point of the penc oot!
) a:;n:lotrhf eglernents of the pencil so the total space o_f thg tl;alngﬂ)va:lsl
. :mooth. By Lemma (3.94), each intersection of the family wi 0
T{;;be transverse yielding degp(80) = 12.

t to show that, in
SE (3.142) 1) Use a normal bundlg argumen :
' Exxal;lxllge (3(:?[ 4‘(1)), degp (61) equals the self-mtersect_lon, on the rau::;\sl_
elliptic surface associated to the pencil, of the section gy lcorresp
" ing to the base point g and conclude that degp1(61) = —1.

2) Verify that degp: (A) = 1.

"B =21 ial: we have Pic(M2)®@Q =0
: CISE (3.143) The case g = 2 is special :

L fpil:)?/e this!:);, and so the class A € Piciun (M2) @Q must béa ;xpﬁzss:?:
as a linear combination of the boum_iary classes 0¢ and 01

{ ble (3.141) to show that this relation is

1 1
- + =& .
A 1060 5 !

G Admissible covers

In order to complete the calculations beiun mt tl;;c;;rsﬁzdmgc;uesfgglar;
(0]

for many other reasons as well), we have to Ta _

S\leg(ed earligr: which stable curves are hyperelllthc':ﬂOr, m:srg gener
ally, which stable curves ar¢ limig, of smtootI: iﬁ-gg:r:ﬁ cecuwcom;;actiﬁca-

1] . c
We will determine the answer Dy cOnS ructir D sl
i Section 1.G that the C
i f the Hurwitz scheme. Recall from -G ;

S:In[-[(l)lrwitz scheme Ha 4 is the scheme pararqeferlzm“%‘p?{)sr ;:le?;a )d
where C is a smooth curve of genus g and 17 : C —; P et points
cover of P! of degree d, branched over b :uZdt ; tzlfe _m e oe M,
... pp. The scheme FHg,, maps naturaily to = A
ztl‘ 'Sm(;(ft};l curves of genus g, and it:vi;nage conetglir;saazxoz?;:;;xf?cs;ti (())n

s in M, of d-gonal curves. What we n€ ;
%hqul:cgf Hy ggwith the following somewhat informally expressed list
of p'roperties:
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DESIRED PROPERTIES (3.144) 1) The space 3 4.5 should be rej,.
tively accessible, For example, its singularities should be reasonable;
it should be possible to describe the components of the boundary

dg — Hay; and so on.

2) It should be modular, L.e., its points should actually correspond to
Some sort of geometric object, preferably a branched cover.

3) It should admit a map to the moduli space Wg of stable curves
extending the map of Hag to My, ie., we should have a diagram,

}[d,g — ﬁd,y
(3.145)
Mg —— Wg

At first glance, this seems not unreasonable. Clearly, we have to
understand what happens when branch points of a branched cover
n: X—P! come together. For example, suppose we have a family
of branched covers {C;— P!} — that is, a family T* — A* of smooth
curves over the punctured disc, with a map r : T* — P! such that "lc,
is simply branched at b points p;(t),..., py(t) — we can assume after
base change that these are single valued — and suppose that two of
the branch points p; and pj both approach the point past—0.

What happens in this situation depends on how the simple trans-
positions that express the monodromy of the fibers around piand p;
are related. There are three possibilities indicated in Figure (3.146).
The two transpositions could be equal, they could be noncommuting
transpositions (that is, overlapping but distinct), or they could be dis-
Joint transpositions. In the first Case, we get in the limit a curve ¢,
with a simple node. (Note that this curve need not be stable: it may be
reducible with one component rational. This is, in fact, what happens
if the stable limit of the curves Ct is smooth, but the pencil giving the
map C¢— P! acquires a base point at p;(0) = p;(0).) In the other two
cases, we see no visible degeneration as the curve C; approaches G
although the covering C;— P! does degenerate, If the monodromies
overlap, this cover has one triple ramification point instead of two
simple ones; if they are disjoint, we see two simple ramification points
aligned above one another in a single fiber of the covering. In all three
cases, we can fill in the familyT* to a family T—A having only nodal
fibers, with map r : T— p! extending the given map m on T* and
expressing the fiber Cy again as a d-sheeted branched cover of P!.

The problems start when more branch points coincide. What will the
limiting branched cover look like when three or more branch points p;

g _Admissible covers 177

EEnS
= e

FIGURE (3.146)

;‘“‘;\pproach a common limit p? Making sketches like those above of a few
) examples will convince you that even in cases where you can complete

the family by throwing in a singular curve Cy expressed as a branched

“cover of P!, the limiting singularity will depend on the relative rates

f the points p;(t) to p. This makes it unclea.\r what. t'he
:;:&p(r)?ascuhcg col:lerz will lf)ok like. Moreover, sincg the snngulaptle;
of the special fiber X, can become extremely c'omphcated, there is 11’1,
direct method for determining from the covering data what the s;a e
limit of the family of curves X; will be. This in turn preve;_lrts us from
describing concretely the closure in M, of the image of_ d.g- back

What is the solution to these problems? The idea, which goes bac _
to Knudsen {97}, is simple: we never allow the_branch p?mt;l to (;‘lo
incide. This may at first sound outlandish, !)ut in fact we've lready
seen other examples of how this can be carried out: the modu!l spa;le_
.’I_Mg,, of stable n-pointed curves (C; pi,-..,pp) of genus gt 1sect;)ler
paci, even though the points p; are never allowed to come tog f
In fact, we adopt exactly the same strategy here. The tar.get sgjace oa
a simple branched cover will be a P! with b marked plomts.b iven 2
family of branched covers T* — A* with maps G _—»IP as a gve, wr
can try to fill in the family not with a possibly nastily branched cove
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of P!, but with a branched cover of the stable limit (B; PLi-.-, pp) o
the family {(P! x A* pi(t),...,pp(t))} Mo, simply brancheq
the points p,, ..., Pp. To put it another way, we think of a point of the
Hurwitz scheme Hy g as data consisting of a triple: a curve C, a Stahje
b-pointed rational curve (B; p1,...,pp), and a map 1 : C— B sjm
branched over the points p;; and we compactify it over the compact.
ification My, of the space Mo,» of b-pointed rational curves, Since
Hay, is a finite Covering space of the variety Mop,n, we would ideally
like the compactification H a4 to be likewise finite over My ,,.

|}

RN ]
T —

FIGURE (3.147)

1 ~

Can we in fact implement this idea? The key question to answer is:
what happens to a cover 1 : C—P! branched over p distinct points
pi(t) as the smooth b-pointed curve (P p1(2),... + Pp(t)) approaches
a general stable b-pointed rational curve (B; P1,...,pp)? Happily, it
isn’t impossible to visualize this. To start, consider the simplest case
in which some subset of the points p;(t) come together at comparable
speed — i.e., the family of b-pointed curves is as shown on the left side
of Figure (3.147). In this case, we can simply blow up once at the point
where the p;(t) meet to obtain the stable limit g shown on the right of
the figure. The curve B is simply aunion of two copies of P! meeting at
one point, with the limits of those pi(t) that remained distinct on one
component and the limits of those that came together on the other.

To see what is going on topologically, we may draw the general fiber,
the fibers near ¢ = 0, and, the special fiber as shown at the top, middle
and bottom, respectively of Figure (3.148).

Suppose now we have a family of branched covers C;—P! of the
general fibers of this family. Can we fill it in with a branched cover

";,Admissible covers
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FIGURE (3.148)

: . . : . s h
covers Cy will consist of a collection of disjoint loops, each of whic
“can likewise be contracted to form a node of Cy.

In fact, we can describe Cp explicitly. S}Jppose q l:h t:fldn(s)i(::p?)t;
B. Then the inverse image w~!(B \ _{q}) will be snll100 2nd simply
b;anched over the points p,i € B7 This leaves only the qu :
gole% (;lxllsavtvt:?ilgtsngltlse:é;l, vf'g )need to fix a bit of notation. Sa;;;})ors:
(after reordering if necessary) that the points { pl(tl)x’iéil' E l’;:ir e
main distinct and that B; is the component of B on Lv ch Luelr limits
lie while the points {pk+1(t),...,pp(t)} come toggt grle o
its on the other component B> of B. Let g; € §; be pe monodramy
action associated to the branch ;g)lin‘t‘ Cpo,'lg ; )r :); tsliﬁ:) I»lv;armythe oo et

i int on the
glgt::r::e(s;ffltsi? T?lsixs:)l?(())dl:omy around the loop y is then the product

-1
O=01"... Ox=(0Ok41-...- Op)"",

and the connected components yi,...,¥m of 1().r) ar; I(I)f(')l;f gggg_
sponding bijectively to the cycles of the permutation g ¥ 4 corre
sponds to an a;-cycle in o, then it'll be a cover of dgﬁrge falmlﬁ );.d ovex"
each branch of the corresponding node r; of Cq will be
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;he correspondi_ng branch of B near g, with ramification of order g,
n olther words! if the local equation of B near q is xy = 0, then ther:
are local coordinates u, v near i € Co such that Gy is given locally a5

u-v=0

and the map  is given by
X =u*; y=ypau,

.It's a worthwhile exercise to check from thi ipti
:cxmhme.tic genus of Cp is indeed g. To do thlll;,s l(ifsgflﬁgrzzh;; glm
Inverse images of B; and B,. Then C; is a smooth d-sheeted brancheg
cover ot: B; = P!, branched over the k points p,,... Pk and also ha
Ing ramification points of order a; over q. C; may 01,' may not be co .
nected, but in any case, by Riemann-Hurwitz, its genus is N

9(C) = —d+1+ &F 25212(“1' —1)

and similarly the genus of Cis

9(C)=~-d+1+ (b—k+3T (a; - 1))
2 -
— 1) points, so that the genus

Finally, C) and C, meet at d — 5™, (g,
of Cis * Zin (@

m
8O =9(C) +9(C) +d~ S (a;~1) ~ 1

b i=1
=-d+1+ -
2

=g.

Note that this could also serve t
are nodes.

The gengralization of this description to the case of an
stable b-pointed curve B is immediate and yields the:

o confirm that the singularities of Co

arbitrary

D::;N:)’rlor; (3.249) Let (B;p,,... »Pp) be a stable, b-pointed curve of
genus 0 and let q,,...,q; the nodes of the curve B. By an admissible

cover of the curve B we'll mean a nodal
7 : C— B such that: curve C and regular map

-1
D) w1 (Bys) = Cys, and the restriction of the map 1 to this open

set is simply bra i 1
ot ply branched over the points p; and otherwise unramified;
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2) 711 (Bsing) = Csing, and for every node q of B and every node r of
i+ C lying over it, the two branches of C near v map to the branches
%" of B near q with the same ramification index. Equivalently, we can
- find local analytic coordinates x, y on B and u, v on C such that
/i for somem,

xy=0, wv=0, n*x=u™, and w*y=v™

. The definition of a family of admissible covers of a family of stable
i 'p-pointed curves of genus 0 is analogous.

’*" The main theorem about admissible covers says simply that they
; have all the desirable properties we hoped for at the start of this sec-

ﬁon:

’ THEOREM (3.150) (EXISTENCE OF # 4, [82]) There exists a coarse
moduli space H 4 4 for admissible covers which satisfies the conditions
L 0f (3.144).

. By definition, # 44 is modular. Its local geometry is also accessi-

" ble: an analytic neighborhood of the point in H 4 g corresponding to
a degree d cover w : C—(B, p1,...,pp) with C of genus G is a quo-
tient of a (2d + 2g - 5)-dimensional polydisc by the (finite) automor-
phism group of the cover . Likewise, it’s straightforward to describe
the boundary A = H 44 — Hy 4: for example, the locus As of covers
(C; (B,p1,-..,Pp), ) in which B has § + 1 irreducible components (or,
equivalently, 6 nodes) has pure codimension § in H 4 g and lies in the
closure of As-;.

EXERCISE (3.151) How many irreducible components does the bound-
ary A have?

What isn't so straightforward is the existence of the mapping to M,
in (3.145) and we won't give a proof of the main theorem here. Instead,
following our usual practice, we will show, in a few settings that arise
commonly in applications, how to describe the admissible covers that
arise as limits of families of smooth branched covers.

To begin with, suppose that 1 : C,— P! is a family of branched
covers with m; branched over the points p;(t),...,pp(t). Consider
the three cases illustrated in Figure (3.146) in which two of the
branch points — say p; and p — come together. We know, of
course, what the limit of the family of stable b-pointed rational curves
{(P, p1(t),...,pp(t))} is: it's the curve of genus O in Figure (3.152)
having two components B; and B, with p; and p; on B; and the rest
(not shown in the figure) on B;.

Suppose first that the transpositions giving the monodromies o3
and o around the two points p; and p, in the cover C;—P! are
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&
R
3
N

2
FIGURE (3.152)

equal. In this case the monodromy around the neck of the barbel)
pictured in Figure (3.148) is trivial, so that the limiting admissible

, since
the group generated by 01 and o, has one orbit of order 2 and the
rest of order 1, the inverse image of B, in Cy will consist of a-1
components. Of these, d — 2 will map one-to-one to B, and one will
be the degree 2 of B, branched over p; and p2. (Note that all these

components must be rational.) We may thus draw the picture of the
cover Co— B schematically as in Figure (3.153).

1 1 .

p2
FIGURE (3.153)

In this case, the stable models Co of the admissible cover Cyp display
a surprising variety. The “new” side of the cover (B, above) consists
of (d - 2) rational curves Ineeting the “main” side (over B;) in a single
node over the node of the base and one rational curve meeting the
main side in two nodes. In the stable model, all of the former curves
contract away completely and the latter contracts to a node 7. It’s
tempting to conclude that the stable model lies in Ag. This, in fact,
is what happens “most” of the time; but, depending on the combina-

torics of the branch points that remain on the main side of the cover,

the stable model of C, can lie in any of the A;’s or even outside the
boundary.

3. Techniqueg
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. The key fact to recall is that the conneFted compongnts o£ tém c;xg;z
ik 'j' ' correspond bijectively to the orbits in a general flb.er of C; o
"tbgrollp of the symmetric group generated by the simple transp<;
,S%uﬁons associated to the monodromy around_ the full set ofhli)rasncb !
oints P1,..., Py. Since the general curve C; is connected, th .«: duto
%‘ up must be transitive. However, the_transposmons assogale 9
v e branch points ps, ..., pp that remain on the stable mode rﬁﬁe
9 Jonger generate a transitive subgroup: the group theyl do geneCted
ill, in some cases, have two orbits (which were I_’orrner y conne °d
4 ‘(;-1 = 0»). Correspondingly, the stable model will have two comp

b points lying on each component and on the degrees with which each

{rovers B, the genera of these components need only satisfy_ tl%e>r(e)-
%isuiction that their sum is g. If the smaller of the two genera is i > 0,
p

’{ighen the stable model will lie in A;. If the smaller genus is 0, this ratio-
g“ .

8

'

FIGURE (3.154)

1 p2

When two branch points come together, there' are also two qthe;
combinatorial possibilities for these monodromleg The analysnshot
these confirms our earlier conclusions, based on lflgme (3.148), t‘ a
in these cases the abstract curve C; undergoes no visible degeneration
aS(;ne %ossibility, shown as the third in Figure (3.148), ls'thatbth:
monodromies around the two branch points p; and p; are leEI; ye
pair of disjoint transpositions. (If the degree of the covering is large,
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:)vii te::;;;eg; ttllllls to hgppen most of the time.) In this case, the schematj
e admissible cover over the new component of the basg

point q) must be as shown in Fi
! gure (3.154). Indeed, the sheets :
ramify over each of p; and P2 and no others must ramify over the ngl;:

4 since this monodromy is what occurs at the neck of the “barbe]j” |

Thus over the new component we have (d - 2) rational curves each

gllsgt;?gt hthe main part of the cover in a single node. In the stable |
» these all contract away, leaving us with a smooth (!) curve in y\

which two simple branch poi
become atgman " " points on unrelated sheets happen to have

The final possibility, re i ; :
ure (3.148), 15 tha, t?lle presented by the middle picture in Fig-

two simple branch poj ;
point points have coalesced at q into a double branch

EXERCISE (3.155) Draw i di
in this case. the schematic diagram of the admissible cover

fh:zlzna(l::scnog.lsfi) The preceding examples may give the impression
ovan L € ponents of the stable mode] of an admissible cover lie
' gle component of the base. Show that this isn’t so by showing

able i i ’

= Ifl?scsliillze(g.ﬁ?) List the distinct combinatorial possibilities for an
admis over whose base curve has two components, one of which
ntains exactly three simple branch points, ,

ofz?lslewtelel Lr:)t:iyca(l)tfe;i dz:_ltli thgb(:utset of this section, one of the main goals
5sible covers is to answer the ion, “whi
ot question, “w
:&:t:i?nmiﬁgs liein the closux:e of the locus of smooth k-gonal curvelelsl'f'l'1
1cate now how this goes. To begin with, some terminolog.y;

{
}
!
:
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fi,{fbnmanN (3.158) Let C be a stable curve. We say that a nodal curve
“ ¢’ is stably equivalent to C if C is obtained from C’ by contracting to
{ @ point all smooth rational components of C' meeting the other com-
sonents of C' in only one or two points (that is, containing only one or

- two nodes of C’).
it

DEFINITION (3.159) Let C be a stable curve. We say that C is k-gonal
resp., hyperelliptic, trigonal) if it's a limit of smooth k-gonal (resp.,
gf;{yperellipﬁc, trigonal) curves; that is, if [C] lies in the closure of the
)ocus of smooth curves with a g}, (resp., g, g}).

oy

.. Now, since the moduli space of admissible covers is projective, we
have the:

e

THEOREM (3.160) A stable curve C is k-gonal if and only if there exists
i k-sheeted admissible cover C' — B of a stable pointed curve of genus
i) whose domain C’ is stably equivalent to C.

“* With this theorem, we can answer completely the question of which
“stable curves are k-gonal. While the combinatorics can get compli-
cated in general, we can usually arrive at a relatively simple answer if
‘we restrict either to strata of low codimension in the boundary of M,
or to subvarieties of low codimension in the closure of the locus of
‘smooth k-gonal curves. The following exercises give some examples.

EXERCISE (3.161) Let C be a stable curve consisting of two smooth
irreducible components C; and C, meeting at a single point p. Show
that C is hyperelliptic if and only if h%(Cy, @¢,(2p)) = 2 fori = 1 and
2; that is (in case both C; and C; have genus at least 2), if and only if
each is hyperelliptic and if p is a Weierstrass point of each.

EXERCISE (3.162) Now let C be a stable curve consisting of two
smooth irreducible components C; and C; meeting at two points p
and q. Show that C is hyperelliptic if and only if h°(C;, Oc,(p +q)) = 2
for i = 1 and 2. That is (in case both C; and C; have genus at least 2),
if and only if each is hyperelliptic and if the pair p and q is conjugate
under the corresponding hyperelliptic involution. Note in particular
that every stable curve of genus 3 consisting of two elliptic curves
meeting at two points is hyperelliptic.

EXERCISE (3.163) Let H C M, be the locus of hyperelliptic curves,
and H its closure in M,. Find the irreducible components of H \ H
having codimension 1 in H. Are these all the irreducible components

of H\ H?
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EXERCISE (3.164) Which s

P table curves of the following types are trig vf

1) Curves C consistin. .
. g of two smooth irreduci
C> meeting at a single point ». ucible com

2) Curves C consisting consisting of two smooth irreduci
nents C; and C, Imeeting at a two points p and q.

ponents C; ang
ble compg.

A final remark: since, in the definitj i
allow two of the smooth ints o ool

;:)tl)rllttr:ry genus, with a_lrbitrarily specified branching over p distin
P1,...,Pp. Precisely, for any degree d, pair of genera h and ;t

and collection ¢ Op of conj
s njugacy classes in the s i ;
t§di)we define a psgudo-admissible cover with branchstfrr:;nz(:nc oD j
0 be a stable b-pointed curve (B;p1,...,pp), anodal curvel'C: .5.1;1?) 1&
; anda |

regular map m : C— B such that:

1) 7w71(Bys) = Cpg; the mon
m ‘ns; odromy of the map 7r around i
i’f’il 1s in the conjugacy class 0O over the points p;; and 7 i;h:: ram,
ed overCm\{pl,...,pb};and ’ e

= Csing, and over a neighborhood of each node g of

escribed i igi iti
admisatin oo ed in the original definition (3.149) of

The same argument as ma i ow
. y be given for Theorem 3.150) sh
SlmultaneOUSly that there exists a coarse moduli Sp(ac'e 55_'[): fO:
g

and that this mod-

H The hyperelliptic locus in M;
completed

To conclude this cha_pter, let’s return to the problem of finding the

class of the divisor H in the m i M
; oduli space M i
class of the associated divisor class i1 Picgyy (gﬁ((;;gal;l;:l:r;gg 'ht(:l\;
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"on this family, and clearly the place to start is to identify which
,ﬁ‘bers of this family belong to the closure H of H ¢ M3.
&L/e)! The theory of admissible covers answers this readily. Let
§§t"¢’ = DU E/p ~ q be the fiber of our family over q € D. By what
-ﬁsig"m've said, [C4] will lie in H if and only if there exists an admissible
Jeover 17 : C— B whose domain curve C is a nodal curve stably equiv-
’;i;ﬁ‘]ent to C,4; and we ask when this is the case. To answer this, observe
at if C is such a curve, C will have components isomorphic to D
f"“"d E, and that the map 1 will necessarily have degree 2 on each of
em. They will thus comprise the inverse images of two components
g/ and By of B. Next, note that if either D or E is unramified over a
node 7 of B, then in the stable model of C the two points of D or E
“lying over 7 will be identified either to each other or to points of E or
; bf,respectively — in either case a contradiction. It follows in particular
; ’jat the points p € E and q € D are ramification points of the map 1.
; f course, this imposes no restriction on p € E — it simply says that
“the map T restricted to E is the map associated to the linear series
il Ipl — but it does imply that g must be a Weierstrass point of D. Con-
"yersely, if q is a Weierstrass point of D, the two maps of D and E to
Q'Jl"ll associated to the pencils |2q| and |2p| together give an admissible
‘ cover Cq— P! U P!. We conclude, therefore, that the point [C,] will
-lie in the closure of H if and only if q is a Weierstrass point of D.
The next issue is whether the intersection of our curve D c M, with
“the divisor H is transverse or not. We can deal with this in two ways.
‘One is to answer it directly, as follows. Since the curves of the form
"{Cq}4ep give a fibration of an open subset of the boundary A; € M;,
the intersection of a general such curve with H will be transverse if
and only if the intersection of H with A; is. But the divisor H will
restrict to a multiple divisor on A; only if the tangent space to H
at a general point of H n A is equal to the tangent space to A} —
in other words, if there are no families of admissible covers C;—B
with [Cp] € A; and total space T smooth. However, we can write
down such a family readily. To start, take one of the admissible covers
Co,— P! U P! described above, let x and ¥ be local coordinates on B
near 7, and let u and v be local coordinates on C, at the two identified
points p and q respectively satisfying

xy=uv=0, x=u?> and y =v2.

Then take the deformations of B and C, given locally by xy — t? and

uv —t.
We therefore conclude that the degree of the divisor A on our curve

Dis
degD (7':) = 6.
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Since we know that de.
8p(A) = d = :
may plug into the genefal relati:r%D(ao) = O while deg;, (5, ) =

f_I=a-A+b.50+C_6l

to conclude that ¢ = 3 i
( = ~3. Putting thi -
Section F, we arrive at the formpy] ag this together with the resultg of

H=9A_60‘361.

g

(3.165) [H]=18A- 260 - 36,.

‘2, We

L The hyperelliptic locus in M3 completed

JBXERCISE (3.166) Find the degrees of the classes A, 8, 81, k and hon
" the following one-parameter families of curves of genus 3, and verify
’m each case the two relations 12A = 69 + 8; + k and h = 9A - 8§y - 36,

#{[ound above among these classes.
fifj) a general pencil of plane quartics including a cuspidal
‘ourve; that is, the family of curves {C;} given by polynomials

2) a general pencil of plane quartics including a tacnodal curve;
3) a general pencil of plane quartics including a couble conic; and
' 4) a general pencil of plane sections of a general quartic surface

- Sc P

pencil #1 | pencil #2 | pencil #3 | pencil #4
& deg(A) 22 23 3 4
: deg(8o) 25 243 13 36
deg(81) 3 0 0 0
deg(k) 82 83 5 12
deg(h) 0 i 3 0
TABLE (3.167)

For a further discussion of the moduli of stable hyperelliptic curves
(that is, the closure in M, of the locus of smooth hyperelliptic curves),

see Section 6.C.
Here are some further exercises involving calculations of divisor

classes in M,:

EXERCISE (3.168) Find the class of the closure in M; of the locus of
smooth trigonal curves.

EXERCISE (3.169) In terms of the generators A, w and og; of the Picard
group of T3 as described on page 62, find the class of the closure of
the locus of pairs (C, p) where C is a smooth curve of genus 3 and p is
a Weierstrass point of C. For exira credit: what is the branch divisor of
this locus over M3, and what does this have to do with the calculations

in this subsection and in Exercise (3.170)?

EXERCISE (3.170) Find the class of the closure in M; of the locus of
smooth plane quartics C with a hyperflex, that is, a point whose tan-
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gent line has contact of order 4 with C (equi
. equivalently, smooth
C of genus 3 possessing a point p € C such that Oc(4p) = KC)C.urves

EXERCISE (3.171) Find the class of the closure in My of the locus of

smooth curves C possessing onl 1 i
y one g3 (equivalently, sm
C of genus 4 whose canonical models lie on singularyquat‘;)m(')gsl)curves
'I:he_ calculation of the classes of certain divisors in M, will be the
. , tion 6.F, that M, is of general
{:lll;:zls'%;z Ei In‘ particular, the calculation carried Oﬁt ther%. subsug’lg:
ercise (3.168). If you're interested, Exercises (3.169), (3.170)

and (3.171) are generalized t i i
respertively here, in Exercises (6.75), (6.76) and (6. 78)

B RS S A

‘Chapter 4

‘Construction of M,

This chapter is organized as follows. We review just enough of the ba-

- gic notions of geometric invariant theory (G.L.T.) to indicate how it can

: be used to construct moduli of projective varieties: if you have some

familiarity with G.I.T. you can safely skip this section. Then, we give

- a fairly complete discussion of the Hilbert-Mumford numerical crite-
- rion for the stability of Hilbert points, of Gieseker’s criterion (which

implies this numerical one), and of how it can be used to prove the sta-
bility of Hilbert points of smooth curves embedded by complete linear
series of large degree. We omit only some arithmetic calculations.

At this point, we could but do not construct M, as a coarse mod-
uli space. Instead, we outline what else must be proved in order to
construct the compactification M, in the approach of Gieseker and
Mumford. The heart of the construction is the Potential Stability The-
orem. We first try to motivate this result by showing how it leads to
a construction of M, from which many basic geometric properties
follow as easy corollaries. In fact, a complete proof of the Potential
Stability Theorem would be too lengthy to include here so we have
instead tried to indicate the main line of the argument leaving many
technical lemmas and verifications to you in the exercises. Finally, we
deduce the consequences of the theorem that are needed to construct
M, as a coarse moduli space.

One important feature of the G.L.T. approach is that it's the only
one that can be carried out in all characteristics (and even over more
general base rings than fields). Therefore, while we will continue to
work over C, we'll deviate from the general approach of this book
and make occasional remarks about how the complex case extends to
positive characteristic.
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4.C i \E
onstruction of 3}
A Background on geometric invariant
theory
The G.LT. strategy

_Geometric invariant theory is a technique for formi
in algebri!jc geometry that provides?\ fundamrgltzlglcll:;(t)g:gtfgatcl(:s
c_onstruc'non of moduli spaces of projective varieties. In this subs :
on: we'll recall the basic facts on which this method is based ad
alllathrtle tcllleaIStep's involved in verifyin g these. The remainder of atll:x(si
brajl; s;w 2 s.s with the details of carrying out this program for alge-
To begin with, let’s review the basic problem, fixi
a’umbers_ as the ground field and takin gpa very 'ngi’s:gpoﬂift (g)fn:'l;t:;evx
_e al:e gw:n a set M of isomorphism classes of (complex) varleties.
SChthmk of smooth curves of genus g. Our first task is to find a
. €me structure on this set that is natural in the sense that given any
tl:t proper fami!y 1 : T— B whose fibers are in M, the natural set-
eoretic moduli map @ below is actually a morphism of schemes.!

T
(4.1) w

B Ld M

Ypu §hou]§ pause for a moment to reflect on how audacious an as-
piration this really is by considering how hopeless it is in almost

other mathematical setting. sy
i e!:e;t;:: :va::t to be able to worlf with fairly general complete fam-
oot ood othie able to apply projective methods to the study of M
o wl:nich 0 this, we need to find a set of varieties M containing M
retmeeh we l;:lal;l con§cht a natural projective scheme structure with
s vaneg whic .M is a dense open subscheme. No matter how nice
the les in M 1tse_1f are, any such M is almost certain to contain

gular e ements. A simple example in genus 1 (easily generalized t

any genus) is the family of curves °

(4.2) Y2z = x(x - tz)(x - 2).

1
More properly, we should (as we did in Chapter 1 but here will not) ask for a

scheme structure that mak i X
functor. tmakes M into a coarse moduli space for the associated moduli
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?L.;The curves C; are, for small nonzero ¢, nonisomorphic smooth curves
. of genus 1. The special fiber Co is a nodal rational cubic curve. But, this
* family is its own semistable reduction so there is no hope of filling in
. the family with a smooth special fiber. On the other hand, recall the
. family (2.11) of plane cubics

‘] ¥2z = x3 - t?axz? - *b2®
* discussed in Section 2.C. For ¢t + 0, the curves C; are all isomor-
. phic to the smooth elliptic curve C; while the curve Co with equa-
" ton 2z = x3 is rational and has a cusp at (0,0,1). No reasonable
" algebraic structure on the set of isomorphism classes of plane cubics
: can coexist with a set-theoretic map that has one value for nonzero
- t and another for ¢ = 0. This example shows that there are some de-
~ generations that simply cannot be allowed into M if we want a good
¢ scheme structure: let’s call these, informally, bad degenerations. We
“thus face a subtle second problem, that of determining an M that is
] ye enough to complete M but small enough not to contain any bad
lements.

+"To summarize, we have two basic problems:

¢

f Problem I: Determine the set of “good” degenerations that can be al-
lowed into M.

Problem 2: Construct natural scheme structures on M and ‘M.

Geometric invariant theory (henceforth G.I.T.) provides a two-step
strategy for answering both of these problems simultaneously.

Step 1: Parameterize the elements of a class M’ plus some extra struc-
ture by the points of a projective subvariety X of P(W), where
W is a linear representation of a reductive group G, so that the
set of points of X parameterizing the extra structures on a fixed
element C of M’ forms a single G orbit in X.

Step 2: Form a quotient X /G of X by the action of G.

Before going any further, we want to make a few simplifying re-
marks. The first is that, in our applications, G will always be the spe-
cial linear group SL(V) of another vector space V and W will always be
arepresentation constructed out of the basic representation V of G by
multilinear algebra. In particular, the G-orbit of a point of P(W) will
always parameterize different choices of a system of homogeneous
coordinates on P(V).2 We assume this henceforth. We also adopt the

2Most of what we have to say about G.I.T. applies in more general situations in
which G is any reductive algebraic group that doesn't map onto Gy, and X is any




s::g:cmddmp;rg a:1 stuitable éxtra structure often makes
L eter i
Drindole Spaces discussed in Chapter 1 illustrate thig
For example, the Hilbe
r \ rt scheme 3 = 37, i
of arithm linear soutes .
etic genus g plus a very ample li'fnraar systen?:;etsie;ru:: st

and 7 + 1 sections” or e
. quivalently “s becurv:
arithmetic genus g If we let v =);:r+1: o es of P” of degree d anq

Fini i
te generation of and separation by invariants

To take advantage of this g;

. ' S simplification,

ins ‘ , We mus

surftaece ZT;III::’ ;ts;‘»cl'lgre tll:at the real difficulties jn ttlfzr([;nl t'l]'leagl;l)g(t)iecI;1t

: CE. ldea, however, is very simpl = Spec e

Invariant affine subscheme of X and R ig 31: 'sgbl:in— Spec({z) e .
g of G-invariant

scheme on which G 3 .
. Cts rationall
e introduction of a Y, but to extend the conclusions we need requires

M of a number of technjcal .
Interested, you should consult Chapters l_c;":’cfe[l-;tosl and considerable effort. if you're

Ferated.
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Hyations together to the statement that if C[X] is the homogeneous

Foordinate ring of X in P(W) and C[X]C is the subring of homoge-
ous G-invariants, then X/G = Proj(C{%1%).3 In other words, the
jptient map q : X --» X/G is given by taking the values of homo-
neous invariant polynomials on X.

Eg’l/ pZ. In other words, we must first check that there aren’t too
wany invariants. This is the beautiful:

. The hypothesis of rationality means that for any f € R,
.span{g - f|g € G} is finite-dimensional. This is automatic if the action
-4s algebraic. Using it and the fact that any finite-dimensional represen-
éft‘aﬂon of G is completely reducible, it's easy to construct a canonical
3‘Crlinear projection p : C[X]—C[X]C called the Reynolds operator.
“‘The key property of this operator is expressed in the second part of
- the next exercise.

EXERCISE (4.4) 1) Verify the existence of the Reynolds operator as-
serted above. More precisely, suppose that G is a linearly reductive

3If you're familiar with G.I.T. you'll notice that we haven't introduced the notion of
a linearization of the G-action on X needed to underpin such a patching argument.
This omission is a deliberate one aimed at simplifying our treatment if you're seeing
G.LT. for the first time. If you want to see a discussion of the issues we're glossing
over you can refer to Chapter 1, Section 3 of {50]. If you're familiar with linearizations
you'll recognize that our omission is harmless in all the examples that will concern
us here. These will always begin with the canonical linear action of G = SL(V) on V,
pass to the induced G-action on a G-representation W functorially constructed from
V by multilinear algebra and finally descend to the induced G-action on P(W). In this
situation, there is a canonical choice of an ample line bundle — Op(y)(1) — and of
a G-linearization with respect to this bundle. Moreover, with these canonical choices
stability of a point {x] of P(W) is equivalent to the stability of any lift x of [x] to
W. Likewise, when we consider the problem of quotienting a scheme X, we'll always
be dealing with a G-invariant subscheme of a P(#) constructed as above. Hence, the
affine linear point of view we use amounts to a simplifying abuse of language.
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group (i.e., every finite-dimensional linear representation V of G de.
composes canonically as a direct sum of irreducible representations)
and that R is a vector space — possibly infinite-dimensional — op
which G acts rationally and show that there is a canonical G-linear
projection p : C[X]—C[X]C.

2) Show that if R is both a noetherian ring and an S-algebra and
@ : R—S is a surjective S-module homomorphism, then § is noethe-

rian. Then prove, or simply apply, the following lemma and deduce
Theorem (4.3).

LEMMA (4.5) (REYNOLDS LEMMA) The map p : C[X1—C[X])C isq
C[X1C-module homomorphism; that is, if f € C[X1¢ and h € C[X],
then p(fh) = fp(h).

Hilbert’s proof of this theorem (for G = SL(n, C)), now translated
into English in {86], marked the first nonconstructive use of the Hilbert
basis theorem. Previous work had focused on calculating explicit finite
bases of invariants in specific examples. The high point of this line of
study was Gordan'’s proof of the finite generation of the invariants of
SL(2, C) acting on symmetric powers of C2. The length and complexity
of this calculation should be remarked since it shows the necessity of
finding some way of studying the quotient map without calculating
explicit invariants. The proof sketched above is essentially due to Weyl
[151].

In positive characteristic, reductive groups no longer act completely
reducibly. (The simplest example, when char(k) = 2, is the action
of SL(2,k) on the space of 2 x 2 matrices over k, where the invari-
ant line of scalar matrices has no invariant complement. Equivalently,
there is no nontrivial linear invariant: in characteristic 0, this would
be the trace which is identically 0 in this example.) Nonetheless, with
somewhat more work, the conclusion that their rings of invariants are
finitely generated can be extended to all characteristics. A group G is
called geometrically reductive if for any representation of G, there is a
nonconstant invariant homogeneous polynomial not identically 0 on
the invariant subspace. (In the example above, the determinant is a
suitable quadratic invariant.) Nagata {124] showed that this hypothe-
sis could be used as a substitute for complete reducibility in proving
the finite generation of rings of invariants and Haboush [69] proved
that reductive groups in positive characteristics are geometrically re-
ductive. '

The next step in carrying out the G.I.T. program is to see that there
aren’t too few invariants. The next theorem states, in effect, that there
are as many invariants as permitted by the obvious restriction that an
invariant is constant on the closure of any G-orbit.

OREM (4-6) (HII.BF.RT-NAGATA) If G

dW isa representation of G, then va
L7t polynomials separa

o ioint G-invariant subse
g o write 1 = f + g for some f
bavnolds operator to this equation,

9. provided by the following exercise.

EXERCISE (4.7) (in char 0)* Show that if

: of V there is a G .
f::;iit:entation v’ of G such that Y is

Y48 V. Use this to deduce:

tie
SCOROLLARY (4-8) The quo
lCocus exactly the set of points ]
" alently, every) nonzero lifting x of [x
! the closure G - x of the G-orbit of x.

i lined in Exercise (4.10) below.

st o et

: i’)nmnmou (4.9) Thebase locus
+ of P(W) and is denoted IF‘(W),E a
! the semistable locus: thus, [x]. is Sel;:d
: closure of G - x. A point [x]is ca

Y

3’ ilizers of poin
. amongst all stabilize
' called the stable locus and is denoted

In all the examples we'll_ cons
imal dimension of a stabilizer
sume henceforth that any X C

ic jnvariant theory

te disjoint closed G

X and
i i i s follows. Suppose that _
charaet e e e b s::n w?th ideals I and J respectively.

-eguivariant polyn 0
b tha the inverse image of the origin

map q : P(W)
'[':tc] e’;’(W) such that, for any (or equiv-

This also follows by standard arguments
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is geometrically reductive

lues of homogeneous invari-

_invariant subsets of P(W).

eland g e].Applyingthe

we find that
© = p1) = U +0) =) 00

92) € J6. Thus, p(f) isan

; _stable, p(f) € I and p( )isan
‘smce'lana:l?h{na‘:se OG onXandlonY as required. An alternate p

. . b-
is a closed G-invariant su
. omial map from Vtoa

_ -+ P(W)/G has base

to W, the origin 0 of W lies in

from the theorem as out-

ofq is called the nonsemistab_le lolc,'nezsd
nd its complement P(W)ss IS (.:a
istable if 0 is not contained in the

; i ny
table if the orbit G x of a
I c(x) is of minimal dimenston

. lifting is closed and if the stabilti:ei; %1:’ 0 s

P(W)s-

i ted), the min-
ider (Exercise (4.12) excepted), ]
will be 0. To simplify langua_ge. we a:s
P(W) we consider contains poin

will be stable if the orbits of

o it -
with finite stabilizers. Therefore, a pt;ufllm AL e a el b oy & o

ifu bg(x) i
its liftings are closed and stabg!
ll’(W), we define analogous lociin X

g

4
fouxligrm [49] or in Appendix A to [501.

5All these properties have
% and not referring 10 a lift to
stable loci.

extra credit, prove this in characteristic p

5
by restricting to X from P(W).

also. A proof in this case may be

only the G-action on

intrinsi es defined using 5
mtrvlb’nsll)‘\:;nﬂﬂ;ezguyield exactly the same semistable and
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EXERCISE (4.10) This exerci
1 -10) rcise characterizes semistabl
points of P(W) in terms of the values of homogeneous in‘:/aarrilaitsm?le
Poly.

1) Show that if [x] lies i
' ! ; In X, then there js
i\r’lv_arcl;ant polynomial £ that does not vanish :t h[or;wge_neous -
it il X1. Hint: Take
2) Show that if [x] lies in
Xss and [y] d 't lie i
2 . ss > 1 doesn’t lie in
vani[szl'st;l:te? there is a homogeneous G-invariant polyltll:;ncila(:s}ue o
3 s ¥1but not at [x]. Hing: Take Y to be the cone over Gthat
at the polynomials Sin the preceding parts may be cho;:;

to have degree bounded i
g by a constant independent of the choice of

COROLLARY 411) 1) Tw ,
. 0 : .
G-orbit if and only ifq ([x];n:nqt.;[[;c]])fmd [¥1inX; lie in the same
2) If [x] and [y] are in Kss, then q([x]) = q([y]) if and only if
C-xnGynx,+e.
Warnings. Two are in order here:

EXERCISE (4 12) This exerci
. €rcise treats the action of
: _ : of SL
np:c: 2%;;,,{0 by conjugation, with orbits the sumlargg (c:l)asosltlz th:
L Plex mamges. It provides a rare case in which the nn; gf
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th the same characteristic polynomial. Determine the closure of
similarity class.

) Show that any homogeneous invariant polynom_ial is constant on
‘the set of matrices with given characteristic polynomial.

3) Show that the coefficients of the characteristic polynomial (viewed
§ homogeneous polynomial functions on Mpxn (C)) generate the ring
gf tnvariants C[Mpx»(C))SLO) and that these invariants are alge-
praically independent. In other words, the quotient map q in this case
mﬁps a matrix to its characteristic polynomial.

4) Determine the stable and unstable loci in My (C).

kxxmcrsx_@.:g) Show that if x is a semistable point whose orbit isn't
sed then the closure of the orbit G - x of x contains a unique closed
it G - y and that dim stabg(y) > dim stabg(x).

“The numerical criterion

2 The corollaries above show that we can only hope to have a quotient
- whose closed points correspond to orbits in X (and hence to isomor-
phism classes in M’) beneath the stable locus in X. This, however,
should be viewed as one of the key benefits of the G.I.T. approach.
The theory simultaneously identifies those bad varieties that must be
cluded to have a separated moduli space (these are identified as the
nes whose Hilbert points are nonsemistable), while it constructs the
heme structure on the set of good or stable varieties. The funda-
mental problem of constructing moduli in this approach is then to
determine the stable locus in the appropriate Hilbert schemes. For
;. emphasis, we repeat that, Exercise (4.12) above notwithstanding, it's
. essentially never possible to determine the stable locus by explicit
i calculations with invariants or by directly determining which orbits

in P(W) are closed. This difficulty prevented much use being made
of G.L.T. for constructing moduli until Mumford found a means of cir-
cumventing it.

To see how Mumford's idea works, let’s ask in what, if any, spe-
cial cases it's easy to determine the stable and semistable loci. The
answer is: when G = G, Or in our naive setting when G = C*.6 As
remarked above, we can and will forget about X for the purposes of

this analysis. The decomposition
(414) c[c*] =Cit,t 1 =Pt

ieZ

6This is the one point at which we need to think about representations W of a
reductive group G that don't fall into the special case where G = SL(V) and W is
derived from V by multilinear algebra.
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shows that the characters of i
\ C* — since C* js abeli i
! an, i
%zxgl:iferg;ﬁgtasﬁmscare* one-dimensional ~correspondal:li.j:etcsﬁ3:1e):
5¢I8. Since C* acts completely reducibly 7 w,
pose any finite-dimensional representation A : C* —Z'GL( a’c)agfdgsoansl ]

(4.15) W= @ w
lesr(w)

where W; is the set of vectors w € W on which the element ¢ of C*

actsby therule A(t) - w = ¢i. N .
for which W is nonzero. W and $»(W) is the finite set of integers

DE
tan;:ﬁ(:’r:e(:;ls) We c_:aII the set S\ (W) the A-state of the represen-
o iﬂ; rhe & ements i of S\(W) the A-weights of W and the space
At ght space of w. If x is any element of W, we define th
A(x) of x to be the set of i in S\(W) for which t'he componeni

X1 of x in the subspace W, is no
A-weights of x and deﬁnei nzero, call the elements of Sy (x) the

Ua(x) = min(Sx(x)).

These invariants gre also defin i
i ed for points [x] of P
convention of using their common value on any Iilt';in(gu;c) gf}" [?cl;r usal

More naively, this amounts to usj
g sing the fact that *)i i
::sl) group of GL(W) to choose a basis B = {b? f(cb)}ls:fn ;Peh_an
mag;:t d;o v(vl::::h, forweach L € C* A(t) acts on' W"byNthe di (v:rlngll
by for whi'lfht v t¥~), The space W; is then just the Span ofafhose
Wj =1, 50 53(W) is the set of distinct w;’s and $; (x) is

the set of distinct w,’ i
. s for wi ith . -
B is nonzero, J hich the j® coordinate of X in the basis

The point of these definitions is that, since

AD -x= 3ty
1ESH(x)

we have the equivalences
Ha(x) 20 i . i i
<= th—IPoMt) X exists <= x is not stable; and

Ha(x) >0 i = i
) = :h—IPoMt) *X =0 < xisnot semistable,

The two left equivalences are
' quivaler clear. The limit in the mi i
tion on the first line is either x itself (in which case all%;‘n;?g’l"e) ilo(:;dl:’l

7
For once, the analogous statement is also true in characteristic 4
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' the stabilizer of x, which therefore has positive dimension) or a point

of the closure of the A-orbit of x not lying in that orbit. These possi-
bilities correspond exactly to the two ways in which x can fail to be
stable for the A-action of C*. The right equivalences on the second line
are an even more direct translation of the definition of nonsemista-
bility to our special case. Qur conventions immediately give the same
equivalences for the (semistability) of [x] as well.

Mumford’s idea (building on some examples due to Hilbert) was
that this easy case is actually the general one. Any algebraic group
homomorphism A : C*—G is called a one-parameter subgroup (often
abbreviated one-parameter subgroup) of G and A is called nontrivial
if its image is. We have the:

THEOREM (4.17) (HILBERT-MUMFORD NUMERICAL CRITERION)

1) [x] is G-nonsemistable <> For some one-parameter subgroup A
of G, ua([x]) > 0.

2) [x] is G-semistable <> For every one-parameter subgroup A of
G, ua([x]) < 0.

3) [x] is G-nonstable <> For some nontrivial one-parameter sub-
group A of G, pa([x]) = 0.

4) [x] is G-stable <= For every nontrivial one-parameter subgroup
A of G, ua([x]) < 0.

This criterion is often rephrased as the statement that [x] is stable
[resp: semistable] if and only if every nontrivial one-parameter sub-
group of G acts on it with negative [resp: nonpositive] weight(s). Since
the weights of the one-parameter subgroup A~! (obtained by element-
wise inversion of the image of A) are minus those of A, the criterion can
also be stated more symmetrically as: [x] is stable [resp: semistable]
if and only if every nontrivial one-parameter subgroup of G acts on it
with both positive and negative [resp: nonnegative and nonpositive]
weight(s). This form best illustrates the motivation for using the term
stable point.

If the orbit G - x isn’t closed, then it’s possible to find a disc A in
P(V) such that A* C G-xbut A ¢ G-xi.e., such that 0 liesin G - x but
not in G - x. The content of the criterion is that we can actually make
this disc the image of the unit circle in a one-parameter subgroup of G
under the map. g+ g-x. This, in turn, comes down to showing that any
morphism of A* into G can be taken to a one-parameter subgroup by
pre- and post-multiplying by suitable regular maps of A* into SL(V).
Proving this would take us too far afield, so we refer to [93], which
also contains a beautiful quantitative study of the invariants u;, for

further details.




Stability of plane curves

We're now ready to carry out the G.LT. program in the sj

wl}en M = M,, the set of smooth curves of ggnus 1. Our t:ggll;:: fﬁ
this example goes back to Hilbert. The first step of setting up the pa.
rameter space X is immediate. The vector space X = P(Sym3(C3)V)
of h.omogeneous plane cubic curves parameterizes curves of arith-
metic genus 1 and degree 3 in P2(C). If C is a curve of genus 1, then
C h:ds a one-parameter family of g§ s, but these all yield projec’tively
equlva'lent plang cubics. Thus the open subset X — A of X obtained b
removing the discriminant hypersurface A (the locus of singular cubiz
curves) parameterizes smooth curves of genus 1 plus a choice of ho-
mogeneous coordinates on P2, The basic vector space here is V = 3
the group G is thus SL(3), and the representation W is Sym3(C3)v. ,

(d,0,0)
(d-—llllo) (d_l-loll)
negative
A-weight
zZero
A-weight

Lai+bj+ck=0]

B
positive
(1,d-1,0) A-weight 1,0,d -1
(0.0 - [falxbizcr>0] o
3 t ] ) : 0 0 d
(Old 1,1) (0,1,1_ 1) Vy )
FIGURE (4.18)

Let’s generalize for a moment to i
plane curves of arbitrary degree 4.
If we fix a one-parameter subgroup A : C*—SL(3), thaelt;y thegrre are
homogeneous coordinates X,y and z on C3 with respect to which

A(t) = diag(t%, t?, t°)
Witha + b + ¢ = 0 since det(A(t)) = 1. The basi 4
a. . = 1. asis B of Sym?(C3)Vv
consisting of monomials of de di i i
the sy of gree d In x, y and z also diagonalizes

At) - xiypizk = t(ai+bj+ck)xiyjzk_
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> apxtyizk=0
i+j+k=d

f(x,y,2) =

¢ is the equation of a curve C of degree d (ie, f is the point of

i sym?(C3)V determined by C), then the B-coordinates of f are just

i its coefficients and the A-state Sa(f) is simply the set of monomials
i* whose coefficients in f are nonzero.
" This setup can be represented in planar barycentric coordinates

i+j+k=d

- by points of a plane triangle as shown in Figure (4.18). By linearity, we

may speak of the weight of any point in this real plane and then the
line L, with equation ai + bj + ck = 0 describes the locus of points

- of A-weight 0. The numerical criterion can immediately be translated
* in these terms as follows. The curve C is A-stable if and only if some
i’ monomial lying strictly on the negative side of the line L, appears

- with nonzero coefficient in the equation f; C is A-semistable if and
. only if some monomial lying on or to the negative side of this line has

nonzero coefficient.
Now we return to the case of cubics. If we fix (a,b,c) = (-5,1,4)
then we get the picture shown in Figure (4.19). We can now analyze

(3,0,0)

(2,1,0) (2,0,1)

-5i+j+4k=0

(0,3,0) (0,0,3)

0,1,2)

(0,2,1)
FIGURE (4-19)

what A-stability means geometrically by supposing that successively
greater numbers of the coefficients ¢;;x of the equation f lying in the
negative weight half-plane vanish ordering the coefficients by their
distance from L, or equivalently by minus their A-weights. At each
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stage, the equation f becomes more s
. ; ‘ pecial and this is r
the increasingly singular character of the point P = (1,0 Ot)! onC
In the sul'nmary below, we use an * e .
form and ()’s to indicate a general element of an ideal.

€300=0: f=(y,z),s0P lies in C.

ca0=0 f=xx22+(y,2)2,502=0is tangent to C at P.

€201 =0: f=(y,2)2 50Pisadouble point of C.

€120=0: f = %yz+ %22 + (¥,2)3,s0z =

branch o o 42, 0 is tangent to a

a1 =0 f=x%224(y,2z)3 sOPisa i |
v Z)7, cusp of C
cone twice the line z = Q, P with tangent

C02=0: f=(y,2)3,s0Pisa triple point of C.
Comparmg this summary with the diagram, we may conclude that:
C is smooth < C is A-stable; and

C has at worst nodes < C is A-semistable.

A ar:le(;(tt,hwhat ha.ppens if we vary the weights (a, b,c) = ( -5,1,4) of
o and e coot:dmates (x,y,z) with respect to which it diagona'lize ?

onsider varying the weights first. This amounts to .
L.A around the barycenter ( 1,1,1). Observe that if
cients of C contained in the open [resp: closed] ne
.L;v contains that of L, then any C thatis A-s
Is automatically A’-stable [resp: A’

from L) by a Symmetry of the triangle of coefficients

with Tespect to an arbitrary one-parameter subgroup A’
co:lls1der thg One-parameter subgroup with the weights of A in eve
ordered basis. Now observe that the conclusions at the end of thrZ

last paragraph are invarian i
conpacagrapt t under change of coordinates. Hence, we

, it suffices to

C is stable < Cis smooth;

C is semistable <= C has at worst ordinary double points; and

C is nonsemistable < C has a cusp or worse singularity.

(The third of these conclusion

second.) s follows by negating both sides of the

flected in

to indicate a general nonzerg
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B

?Zﬁ A few further comments about the respects in which this analysis is
éand is not typical are in order. The most typical feature is the very di-
{ pect connection between the instability of f, “undesirable” geometric
¢ features of C, and the destabilizing one-parameter subgroup A. Note,
i dfirst, how these results confirm the intuition from the families dis-

#ixussed at the start of this section that we must avoid cuspidal cubics
jn order to have a nice moduli space but that we must include nodal
Eﬁ@bics if the resulting space is to be complete. Also, note that the re-

oy

A

:Lf,f',ducible cubics with nodes — a conic and a transversal line, or a triangle
f"—— are semistable. This phenomenon is again quite typical. Complete
( moduli spaces almost always include reducible varieties. Perhaps, the
most subtle difficulty in the construction of M, is to control such
i curves.

Second, note that instability is due to a singularity of C and the
%g;gestabilizing one-parameter subgroups are very closely tied to the
% character of the singularities: for a cusp, the singular point and its
Eff‘"tangent cone are defined by the vanishing of coordinates that diago-
%imhze A and the weights have the property that the coefficients that
¢ 'must be nonzero to avoid a worse singularity are of equal A-weight.
» It's a very general phenomenon that instability of the Hilbert point of
i a variety X is “caused” by a bad subscheme of X and that the desta-
bilizing one-parameter subgroup is the one that most clearly “picks
- out” the subscheme. (A more precise statement of this principle is the
. main result of [93].)

. The effect of this phenomenon is that it's generally very easy to
- show that a Hilbert point isn’t stable. To show that such a point is
stable, however, requires handling a general one-parameter subgroup
A, which may bear no relation to the geometry of X. Such proofs, as
we'll see, involve using geometric estimates about sublinear series of
the hyperplane bundle on X to obtain combinatorial estimates for
the weights of a general A. Unfortunately, the combinatorics involved
are often extremely hard and lengthy. They are not even completely
understood for Hilbert points of stable curves embedded by complete
linear systems. This difficulty represents the main obstacle to using
G.I.T. to construct moduli for higher-dimensional varieties. Because
our Hilbert scheme is a projective space, this difficulty doesn’t arise
here.

What aspects of this example are not typical? First, the ring of in-
variants of this example is one of the few that has been computed ex-
plicitly. It’s generated by two elements A of degree 4 and B of degree 6
that are essentially the coefficients of the Weierstrass normal form of
the cubic. The discriminant is one geometrically meaningful invariant
(since projectivities don’t affect the smoothness of a curve): in fact,
A = (27A3 - 4B?), The classical j-invariant is given by j = A3/A; it
generates the invariant function field and hence gives a rational pa-
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rameterization of the quotient M, . If C is a smooth cubic, then A(C)
is nonzero and the moduli point of C is determined by its j-invariant, ydinates
All three orbits of nodal cubics (corresponding to a rational nodal cy- i
bic, a conic and a transverse line, and a triangle) have A = Obut A = ¢,
hence j = . Cubics with cusps or worse (amongst which we also find
degenerate cases of the reducible semistable configurations such ag

a conic plus a tangent line) have A = B = 0 and hence undefineq
J-invariant.

¢ parameter subgroup A : C*—SL(r + 1) and homogeneous coor-

e

; B=BA=={xo,...,xi,...,x,}‘
wch we view as a basis of (C™+!)" with respect to which
a0

|

i

’

A

i

A(t) = diag (£¥°,..., ™0 tvr)

o i i the data of B cop-
& w; = 0. The data of A is thus eqmvalent to ! ‘
v :i:elrzg asla weighted basis (i.e., along with a set of intggral welghtsbllul
! ;mming to 0) and we'll henceforth refer to B and A interchangeably.
- As for plane curves, the basis

43

e

We should also warn that as 4 increases, the singularities that can
lie on a stable plane curve of degree d become more and more com-
plex: see the exercises below. The case d = 3 is a convenient accident
that confirms our philosophy. Conversely, certain smooth varieties : By = {Y — n x}"‘ ‘ Zmi = m}
are unstable — see [116] for examples. i i

EXERCISE (4.20) 1) Analyze the stability of quartic plane curves,
showing that cusps are semistable on quartics.

2) Show that for every y, there is a degree d(u) such that ordinary

plane curves of degree d with only ordinary u-fold points have stable
equations.

L i i 's also
' m(Cr+1)V consisting of monomials of degree m in xi
gasggali(zes the action of A: if we define the B-weight wy of Y by

wy = zwimi-
i

3) Use a tetrahedron of coefficients to analyze the stability of cubic

then AlL) Y =t¥'Y. :
and quartic surfaces in P3. Hint: The answer is given in Section 1 s
of [121].

P * For the rest of this section, fix a suitably large m and let
‘ — AP(M) m +1) VY.
B (4.21) What cubic and quartic threefolds have stable equa- i w m (S () )
tions? A ym

i ibi bscheme of
nstruction of Section 1.B exhibits .'I-[ as a su e
Tt‘hff?}rtgir:xznnmn G of P(m)-dimensional quotients of Sym™(C"* Y,

ies i jon W of SL(r + 1) has a
which in turn lies in IP(W)_. 'I‘.he representation 4 has 2
B Stability of Hilbert points of smooth patural Pliicker basis consisting of all unordered P(m)-element su
curves sets

Z= {Yjp conr Yipgm ‘ Yj € Bm}
. . j jon of A on W: if we set

In this section, we’ll first interpret the numerical criterion for the sta- of B. This basis diagonalizes the actio

bility of Hilbert points of general subvarieties of projective space. wz = Zw,.jk ,

Then, we’ll give several sufficient criteria and see how to combine one K

criterion due to Gieseker (4.30) with standard results about curves

(Riemann-Roch and Clifford’s theorem) to deduce the stability of

then wz
Hilbert points of smooth curves embedded by complete linear sys- At)-Z =t"22Z.
tems of large degree [Theorem (4.34)]. The Pliicker coordinate Z is nonzero at thg point [Q] of tgm.Grases;
mannian G corresponding to a quoti_t;r;; g, lfinanzfl t%fll'lg’l i: bagi;n:)afg Q

. N . . . degree m monomi e g ) .
The numerical criterion for Hilbert points ?m%eot; zhgii(e’;)/po e £X] of a subscheme of X of P" with Hilbert
Our first task is to understand the meaning of the numerical crite- polynomial P(m) corresponds to the quotient
rion for the SL(r + 1)-action on the Hilbert scheme H = Hpn),r Of

subschemes of P” with Hilbert polynomial P(m). To do this, we fix a

sym™(C71)Y X, HO(X, 0x(m)),
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Z is nonzero at [X] if and only if the restrictions ]
monomials in Z are a basis of h%(X, Ox(m)). We w11rle (s::l(l);jlkl)cl?g tshe :
of Il;llon(;lmials a t{i-monomial basis of H(X, Ox(m)). *
L ¢ change of point of view from one-parameter
weighted bases B can be pushed a little frl’u'ther. Firsstl,lbng(:::eurt’lfa? in
thg language of weighted bases, there is no need to maintain the'rl: i
qulremen.ts that the weights w; be integral or sum to 0. Instead we
denote this sum by wp. The second simplification involves the no;jo
qf a rational weighted filtration F of V = C7+1. This is just a colleclf :
tion of subspaces U,, of V, indexed by the rational numbers, with the
propert.y that Uy, c Uy if and only if w > w’. Any weighte'd basis B
determines a weighted filtration Fp by taking

Uw = span{x;lw; < w}.

We say that B is compatible with F if Fg < F. If
/ = F. If so, then we define

the weight wr of F to be wp: this clearf d !

: oesn’t d i
compatible B we choose. Y ¢ cepend on which
Each F is determined by the subs i i

i . Paces associated to the finite num-
ber of vyelghts w at which there is a jump in the dimension of U,,. It's
convenient to use a notation that implicitly assumes that all these

_Luartl;;.’s in dimension are of size 1 and to view F as the collection of

(4.22) F=F:C*=Vy 3V, 2--.2V, 2 {0}

wozw 22w,

Thus, Uy = Uw, <, V; and an element x in V ha i =
if and only if x lies in V; but not in Vis1. Of c:uv:se(la,gl;; 11:1’;(’2 wiw
then F has a larger jump and V;,, is neither uniquely determined Ll);
F nor, indeed, needed to recover the filtration F. We ask you to accept
itxl::is h_am?les§ ambl:guity since it makes it possible to use the same
weighemngtedltlill g::tclt;;ssmg one-parameter subgroups, weighted bases and
_By repeating the arguments above using an basis B i
w1thmI-‘, we see that F determines weiglliid ﬁ¥trations ;:n:)l;a;b;l;
Sym™(C"+1)¥. But anytime we have a weighted filtration on a space
S apd a surjective homomorphism @ : § —H, we get a weighted fil-
trqnpn on H by the rule that the weight of an element h of H is the
minimum of the weights of its preimages in S. Thus, F,, determines
a weighted filtration, which we also denote by Fm, on HO(X, Ox(m))
We _let WF (m) denote the weight of any basis of HO(X, Ox('m)) com:
patible with the filtration Fom: as the notation suggests, we'll shortly

be viewing these weights as givi i i
' ving a function of m de
With these preliminaries, we have: pending on F.
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OPOSITION (4.23) (NUMERICAL CRITERION FOR HILBERT POINTS)
j-ne m Hilbert point [ X1y, of a subvariety X of P* with Hilbert poly-
siomial P is stable [resp: semistable] with respect to the natural
SL(r + 1)-action if and only if the equivalent conditions below hold:

1) For every weighted basis B of C"*1, there is a B-monomial basis of
H%(X, ©x(m)) whose B-weights have negative [resp: nonpositive]
sum.

~ 2) For every weighted filtration F of V whose weights w; have aver-
{ agea,

e

RO

wr(m) < maP(m) (resp: wr(m) < maP(m)).

i

PROOF. If we diagonalize the action of the one-parameter subgroup
| associated to B on W as above, then the B-monomial bases are just
the nonzero Pliicker coordinates of [X],,» and their weights are the
jeights of [X]m with respect to A. Thus 1) is an immediate transla-
tion of the numerical criterion (4.17). To see 2), observe that if B is
?’ any basis compatible with the filtration F and we set w; = B(w; — )
 where B is chosen so that all the weights w; are integral, then B
%‘becomes a weighted basis, and, moreover, every weighted basis B
?;.'arises in this way from some F. The F-weight of any degree m mono-
{mial then differs from its B-weight by map. Hence the weight of
i’ any B-monomial basis of H(X, @x(m)) will differ from Bwr(m) by
i Bmah®(X,0x(m)) = BmaP(m). Therefore, the given inequality is
- equivalent to the negativity of the B-weights of such bases. ®

" EXERCISE (4.24) 1) Show that a collection of d distinct points in P*
has a stable Hilbert point if and only if, for every proper linear sub-
space L of projective dimension s the number of points lying in L
is less than d(%£}). How should this criterion be modified to treat
general zero-dimensional subschemes?

2) Formulate an analogous criterion for the stability of a cycle of k-

linear subspaces of P”.

EXERCISE (4.25) This exercise gives an example of a smooth but
Hilbert unstable variety: the Steiner surface. This is the surface S of de-
gree 4 in P* which is the closure of the image of P? under the rational
map given by all conics passing through a fixed point, say, (0,0,1).
Equivalently, it's the projection of the Veronese in P> from a point
lying on it.

1) Show that H?(S, @s(m)) may be identified with the span of the
monomials of degree 2m in the homogeneous coordinates (x,y, z)
on P2 whose degree in z is at most m.
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n of M,

2) Use this, first, to define a filtration F on H® igni
weight 0 to those sections not divisible by 2 ant(is‘;rgisggllt)i ?(:’ :l? T)lg])lm
Thep, use it. to show that the Hilbert point of § is unstable by sho bl
the inequality wg(m) > marP(m) and applying Proposition (4.23)

3) Geometri_cally, S is an F, rational ruled surface and the projecti(; :
onto the weight 0 subspace of the filtration F has center the exce .
tional section of self-intersection — 1 on S. Generalize this example fo

the projectivization of any unstable rank 2
(cf. [116]). y bundle on a smooth curve

We will continue to write o := of for the aver. ]

t : age weight of an ele-
ment of a bfms B pf C"*1 compatible with F., We will als% say sim(;;lfy
that._the var_lgty X is Hilbert stable with respect to F if, for all large m
the me:qualmes of the proposition hold for F, and that X is Hilber;

use apply to all sufficiently large m, the implicit lower bo

! ) und depend-
ing only _on.the Hilbert polynomial P of X so this will not intr(l))duce
any ambiguity, .To see why this is so, we introduce an idea developed
in [121]: the weights wr(m) are given for large m by a numerical poly-

nomial in i
iy th:a ; m of degree (dim(X) + 1). For our purposes, all we'll need

LEMMA (4.26) (ASYMPTOTIC NUMERICAL C
) RITERION
scheme of dimension n and degree d in pr. ) Let X be a sub-

1) There are constants C and M depending only on the Hilbert poly-

nomial P of X, and, for each F , a constant .
that, forallm > M, er depending on F such

mnr+l

wr(m) — e;m

<Cm™".

2) Ifer < ap(n+1)d, then X is Hilbert stable with respect to F; and

ifer > o n+1)d, is Hil i i '
;e F( )d, then X is Hilbert nonsemistable with respect

3) Fix a Hilbert polynomial P and a subsche, = Hi
me S of H
Suppose that there is a 6 > 0 such that es of Hilbp ;..

er < ar(n+1)d—6

for_ all weighted ﬁltrations F associated to the Hilbert point of any
X in S. Thgn thereisan M, depending only on's, such that the mt
Hilbert point [X ],,, of X is stable for allm > M andall X ins.
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i‘proor. For the first assertion, which follows by standard arguments,
we'll simply refer to [121]. The second then follows by taking leading
! coefficients in the second form of the numerical criterion and using
é‘memann-Roch to provide the estimate, for large m,

’ P(m) = h°(X, Ox(m)) = dnl" +0(mn 1),

1

F{However, while this comparison of leading coefficients shows that
. wr (m) will be negative for m greater than some large M, exactly how
" large this M must be taken depends on the ratio of the constant C in
. part 1) to the difference ar(n + 1)d — er in part 2). To get the uniform
- assertion of part 3), we need both a uniform lower bound (given by
~ §) for this last difference and the uniform upper bound, provided by
; Mumford, for C. ®

’é‘;’kemark. It’s possible to carry out the construction of “ﬂ, using the
& Chow scheme as a parameter space. The inequalities in 2) of the lemma
¢ are respectively equivalent to stability and instability of Chow points.
JEquality in 2) is equivalent to Chow semistability but gives no informa-
.. tion on Hilbert stability. For further discussion, see [116] or [121].

R ——

\ Gieseker’s criterion

. We close these technical preliminaries with a fundamental estimate
I due to Gieseker [57] for ep. While this is in no way essential, we'll now
. simplify by assuming that X is a smooth curve, which we denote C em-
" bedded in P” = P(V) by a linear series with a fixed Hilbert polynomial
- P. In order to state this criterion, we need to define an additional set
of invariants of the filtration F given as in (4.22). These are the degrees
d; of the subsheaf generated by the sections in |V;|. Equivalently, d;
is the degree of the image of C under the projection from P" to P(V;)
multiplied by the degree of this projection. It’s also convenient to de-
fine e; = d — d; so that ¢; is the codegree, or drop in degree, under
this projection.
Gieseker first fixes a subsequence

O=jo>p1>--->Jn=1

of (0,...,7). He next introduces two auxiliary positive integers p and
n to be fixed later and considers the filtration of H(C, Oc(n(p +1)))
given by the images U,?.t under restriction to X of the subspaces

wl:t = Sym™ (Vo) - Symn(p_t)(vjk) : symnt(vf(hn)

of Sym™P+1) (), Here the index k runs from 0 to h — 1 and, for each
k, the index i ranges between 0 and p.
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Gieseker's key claim is that, for any fixed choice of Hilbert polyno.
mial Pand integers n and p, there is an N depending only on these
three choices but not on the Hilbert point [C] or the weighted filtra-
tion F being considered, such that the dimension formula

(4.27) dim(U,) =n(d+ (p - Ddj, +ids,,) - g +1

holds for every n > N and for every k and i. Since every section in Ugy
has weight at most n(wp + (p — i)wj, + iwy,,,), this claim leads, as
we shall see more precisely in a moment, to upper bounds for wg(m),
and eventually for ef.

To see (4.27) pointwise, observe that, if L; is the line bundle on C
generated by the sections in Vj, then we can view U,:i as a sub-linear
series of HY(C, (My,;)®") where

My = LQ(Ly) P IQ(Lj,., )}

is aline bundle of degree d + (p — i)d;, + id},,,. Now, |Vp| restricts to
a very ample linear series on C since it’s the linear series that realizes
the embedding of C in P”. Therefore, the linear space W}, restricts,
on C, to a very ample base point free linear subseries of the complete
linear series HO(C, My;). This, in turn, implies that, for large n, we
have equalities

HO(P(WE ), 0(n) = Sym™(W},)) = W},

and, moreover, that the map
‘P;:,i : 1:1_’H°(C. (My0)®™)

given by restriction to C will be surjective. Taking n = 24, the estimate
of the claim follows from Riemann-Roch applied to (Mg ;)®".

EXERCISE (4.28) This exercise shows how to obtain the uniform ver-

sion of (4.27) from the pointwise version. Fix the Hilbert polynomial
P and integers n and p as above.

1) Use the Uniform m lemma (1.11) to show that there is an Np g with
the property that whenever the linear series w,‘tli(w,}_i) has degree D
and dimension R, then forallm > Npg,allk <h-1andalli <p,

HY(P(W{)),9c(n)) =0,

and hence @y ; is surjective.

2) Show that both D and R above can be bounded in terms of P, n
and p alone and hence deduce the uniform version of (4.27).
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” To prepare to extract estimates for wg(m) from (4.27). we abstract
”?'our setup for a moment. Suppose we're given a filtration of a vector
| space T by subspaces Ti; such that

Too DTpnp D-:--D Top-1 2 Top

=Tip 2Ty 2-:2TNpa 2Ty

N S

‘ = s e
B

=Th-102 Th-11 2 * D Th-1,p-1 2 Th-1,p

=Tho-

suppose, further, that we know that each Ti,; has dimension Dy, and
 that its elements have weight at most Ry,i. Then, any basis of T com-
%Zpatible with the filtration above would have weight at most

&
b
o

G

1p-1
> (Dig — Dig+1) Rk.i) +DnoRno
0 i=0

|

h-1p
= Do,oRo,0 + ( > > Dri(Rui- Rk.¢-1))-
k=0 {=1

We now apply this observation taking T to be HO(C,L™P+D)) and
" Tis = UP;. We can thus take

Dyg=n(d+(p-idjs + (Ddy.,)-g+1

and
Rgi=mn (wo +(p-Dwy + lwﬁm) .

Using d = dy gives an upper bound for wr(n(p + 1)) of
(n(p +1)d-g+ 1) (n(p + l)wo)

+[h§(i(n(d +(p-ddj + Ddy,,) -9+ 1))

k=0 “i=1

’ (n(wjkﬂ - wfk))]

which, by applying standard formulae to the interior summation, we
may rewrite as
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—g

(np+1)d-g+ 1)(n(p +1wo)

h-1
d
+ npd 2_ ) Sk d,.
Lé,( patnip®-p= +""’2"‘1’)%—%&1))

' (n(wjkﬂ - wfk))] .
Expanding this last expression in powers of 7 and P, we obtain

wr(n(p + 1))

h-1
< "sz[dwo + % k% (s +dy., ) (wy,,, - wn)]
, = '
+n p[Zd‘WO + §k=0 (Zd -d; + d,-m)(wjm - ij)]

+n?[dw] + np[—(g ~1)(wo + % El(wjm - wfk))]
k=0
+‘n[—(g— l)wo].

Because we have these inequalities whenever Pp>»0andn»p

vield the estimate they

h-1
er < 2dwy + k=zo (djk + djku) (wjk+l - wjk) .

To see this, first note that on the ri j
_ , ; . right we just have the n2p2 -
;E_r;t vi?u?dt:les gl:mt)lllls 11121? whicl; we denote, for a mome’;t cl‘)))?fg
€ the n°(p + 1)? coefficient were we to h' .
_ \ ave ex-
panded in powers of 7 and (p +1). Therefore, given any £ > Q vev,:e

desired inequality to within &.
Next, observe that
dj +dy,,, = (d - ejk) + (d - ejk+l) = ~(ey +ej,,, - 2d)
and that, if we suppose that w, = 0, then
h-1

wo =) (ij - wjk+1)-
k=0
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- These allow us to rewrite the estimate for er above as

e h-1

er < Z (e.ik + ejk+l) (wjk - w.ik+1) .
L k=0
b #1

{:mally, define &f to be the minimum of these estimates over all sub-
% sequences of (0,...,7):

s h-1
" (4.29) EF = min e, +ej. ) (wh, —wi.)) ).
:.(4- 9 0=.io<jl---<jn=f(k§0(( e + it ) (Wi i x)))

. We then obtain:

" LEMMA (4.30) (GIESEKER’S CRITERION)

1) A smooth curve C is Hilbert stable with respect to a filtration F
withw, =0 ifer < 2dof.

P
i 2) Fix a smooth curve C of degree d and genus g in P" as above,
* _ and numbers &; which are upper bounds for the codegree of every
subspace V; of codimension i in V. Define ec by :

h-1
(430 &= max (0=jorg!5h=r( go (&1 + Ejp) (Wi — w.ik+1)))

ZLOWFI
Then, C is Hilbert stable if
2d
r+1)’

3) Fixintegersd, g and r and a subscheme S of the Hilbert scheme
of curves of arithmetic genus g and degree d in P* such that every
curve in'S is smooth. If there is a 6 > O such that

2d
(r+1)

&c <

& <

for every curve C in'S, then there is an M such that the m'® Hilbert
point [Clm of C is stable for allm = M and all curves C in S.

PROOEF. The first assertion follows directly from the asymptotic nu-
merical criterion by the argument given above. On the other hand, the
quantity defining £ depends only on the codegrees e; and weights w;
of F. We may translate the weights of F so that the smallest equals
0 and then rescale the weights of F so that they sum to 1 and hence
have average 1

“F=r+ D)




M!

x;;l;:‘; ag:acti.ng thg F-stability of C. We will cail such filtrations p,
. nght_ side of (4.29) is increasing as a function of the eo";
i

l(:fu ggrt 2 implies H_ilbert stability with respect to every F. Finally, th,
Irm a.ssertlon In part 3 follows from the uniform version t" .
asymptotic numerical criterion (4.26). = O the

Remark. This criterion, and its higher-di

er-dimensional
bgz:‘.t tools currently available for verifying the s:a%?liotsu f):" ﬁrifbthe
Points. Unfortunately, there are many varieties with stable Hilb::tt

points for which ; o
tions F. even the first inequality is violated for some filtra.

EXERC]
ISE (51&32) 1) Show that, for a noda! plane cubic,

£C= =(—

r+1/°
2) If C is a nondegenerate i
moduli stable curve jn pr
T 2 2n, show that th i i with 7 nodes and
Ociam ere are filtrations F with codegrees ¢; > 2i for

3) Give an example of a complete I
. te
uli stable curve for which ¢ Fp> (r%?':*)’f“r System on an irreducible mod-

th:::: l_:1otlilz~;trlucljon of M, will show that if d » g, then curves like
were in e ast' pax:t of the exercise do have stable points. In oth

rds, Glgseker $ criterion is far from being a sharp estima : te of eer

< F.

PROBLEM (4.33) Find better estimates for er.

Stability of smooth curves
We're now ready to state the fundamental:

S'I‘:i:p(‘)::nt; ;:.?L(zi;?nnn.tmh OF SMOOTH CURVES OF HIGH DEGREE)
t 00th curve of genus g > 2 embedded in pr

:{ ;:Z,zierte al:}n;{a‘rg ;z;teﬂr:z f. t‘;nf degt;eé cli b: 2g. Then C is HilberT slrab;,ey

Y em ilbert point [C],,, i I

m > M may be chosen uniformly for all such cur[veg"(; # stable for al

We wi .
Gieszk::ﬂl? jf:ilgw tt}e argument given in [121) following ideas of
. ar;: o) c,llmagme that bot!l the s and the wy's in Gieseker’s cri-

ed and plot the points (&4, w;) as shown in Figure (4.35).
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w
(€0, wo)
™
w
area given by sum
N using subsequence
\
o (0,3,5)
\ \\
\ \\
\\ ‘\\
(€1,%1) o AN
\\ \\
\ N
(€2, w2) ™ \\
‘\\ '\(5301"3)
/ s N [N ~
. al ~ . S -~
area given NG ARN
by sum using ISR
subsequence (0, 2,4, 5) T (esaws)
\\_= s E
FIGURE (4-35)

The key observation is that the sum

h-1
Z (EJI: + EJIH)(wjk - wjuu)
k=0

associated to a subsequence 0 = jo > ji > - - > jh = r + 1 in the
definition of £¢ in (4.31) represents twice the area in the first quadrant
sounded by the axes and the “curve” obtained by joining the pairs of
points (&;,,w;,) and (£4,,,w},,,) by straight line segments.Taking
the minimum of these sums over all such subsequences amounts to
computing twice the area under the lower convex envelope E of these
points.

Now allow the w;'s to vary, keeping the &;'s fixed. If any of the points
(&1, w;) does not lie on E, then moving it down onto E will leave the
minimum in Gieseker's criterion unchanged while reducing the sum
of the w;’s. Dually, this means that the maximum over sets of weights
summing to 1 in (4.31) must occur when the weights are chosen so that
all the points (&;, w;) lie on E. For such weights, the sum associated
to the full sequence — that is, j; = i for all i from 0 to r — realizes
the minimum over all subsequences.

Next, we claim that we can take

d

(r+1)
This is most easily seen from the graph in Figure (4.36) in which
the Riemann-Roch line d = r + g and the Clifford line d = 2r are

i.

& =
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graphed in the (4, r)-plane. The correspon theor
1tihe point (dm§( U),deg(U)) corresponding :i;nag"y linei?ieﬁ:;eothm
es in the region below the graph. In particular, this applies to11 C’Z
g;n:;dg; -1i,d;) = (r - i,d - e;) associated to any linear seriestt‘l'e
of coc ensipn i in HO(C,L). On the other hand, the hypothesig o;
Lo o ey o o 0 e P
. mann- e. \
imply that the slope of the line segmentT ?r%ih(e:' e Soservation|

is greater than the slope of the segment joining e, 4,

which is just our claim. (r.d) to the origin,
r=h0-1
d=7r+g
(2g,9)
2g-2,g-1)
d=2r
degree d
FIGURE (4.36)
The claim in turn shows that
r-1
& < jz (Ej + e,-,,l) (wj - w,-,,l)
=0

d r-1 .
5r+11§(1+(j+1))(wj—wj+1)

-
Z 2w] .
2 (o)
Using our assumption that the wy’

1's sum to 1 and are d
and hence that wo > (1) — this immediately implies

d 2d
1-2w == - 1
T O)Sr+1(1 r+1)'

-

__4a
r+1
ecreasing —

&c <
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the second part of (4.30) and the uniform assertion from the third part
fiiking & = (2d)/(r + 1)%.

Hhat arises in Gieseker's criterion (4.30). This is useful in studying a
Eiitiety of stability problems involving special curves, vector bundles
A curves and K3 surfaces.

v

T0ix an increasing sequence (&y,. .., &y+1) and define & in terms of this

h-1
= i i+ _
(0=jo <fl£l-l-l- <jn=r ( g}) (&40 + €1t ) (Wi — W) ))

,, he w;’s that realize this minimum have the property that the points
e j,wj) all lie on their own lower convex envelope, and hence, that,
Efor such weights

¢

;',1‘! cr-1 r-1 .
;1’ 38) e = Z (Ej + £j+1)(w] - w]_l) = Z (Ej + £j+1)x].
i j=0 j=0

gg} i

i where, on the right, we've set x; := w; — Wj+1.

2) Show that the w;'s decrease and that the points (&, w;) all lie
»on their own lower convex envelope if and only if the sequence
“(xj/(€j41 — €0)) is decreasing. Deduce that these conditions define
- an (r — 1)-simplex in the hyperplane

r r
2 Jxj= Y wy
=1 j=0

in x-space and hence that the linear function e in (4.38) achieves its
maximum value at one of the vertices of this simplex.

3) Show that a set of w;'s corresponds to a vertex of this simplex if
and only if, for some i between 1 and r, we have

(&'1 - £j)
wj= 7
W —& — - —§&-1
for j < i and w; = 0 for j > i, and that, for these weights, the sum
defining e equals
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4) Use Figure (4.36) to show that &i<ifori<d-2g+landg < i+]
fori=d -2g +1+ L Combine this with part 3) to reprove (4.34) by
explicitly evaluating the &¢ of Gieseker's criterion (4.30).

C Construction of M, via the Potential
Stability Theorem

The plan of the construction and a few corollaries

Our goal in this section is to outline the main ideas in the G.I.T. con-
struction of M, when g > 2. Although the construction is direct and
global in nature and has the projectivity of M, as an immediate coro]-
lary, the main technical result [Theorem (4.45)] involves performing
many small instability calculations. To keep this section brief, we leave
the details of some steps to you, generally by setting them in the form
of exercises; and we work pointwise, indicating in parenthetical re-
marks when stronger uniform results are required and leaving you to
supply the necessary arguments.

The basic technique is to show that suitable projective models of
moduli stable curves have stable Hilbert points and apply G.I.T. How-
ever, no direct proof that Hilbert points of singular moduli stable
curves verify the numerical criterion is known. In particular, as shown
in Exercise (4.32), Gieseker’s criterion may fail for such points. The
paradoxical idea for verifying the stability of certain Hilbert points of
stable curves, due to Gieseker and Mumford, has two parts.

First, consider curves embedded by linear systems of degree suf-
ficiently large relative to the arithmetic genus. The Potential Stability
Theorem (4.45) shows that if such a curve isn’t moduli semistable then
it has a nonsemistable Hilbert point, and if it's moduli semistable,
then the linear system that embeds it must have a number of good
properties. These results came as a big surprise when they were first
discovered since stable curves in the plane and other low-dimensional
Projective spaces can have arbitrarily bad singularities: see part 2) of
Exercise (4.20). The key idea is that imposing the degree hypothesis
above on the embedding does away with these pathologies. The proof
of the Potential Stability Theorem is the heart of the construction of
M, and involves most of the work. 8

The second part of the proof involves considering a one-parameter
smoothing of a pluricanonically embedded stable curve C. By the val-
uative criterion, the pluricanonical Hilbert points of the smooth fibers

- 8However, the rest of the construction and its consequences are independent of
this proof, so if you want You can simply accept this result and omit its proof.
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7 ily have a Hilbert semistable limit in the corresponding
%ﬂﬂ?sﬁlﬁﬁ?’[‘he Potential Stability Theorem is thep used'to deducei
‘that this limit can only be the Hilbert point of the pluricanonical mode
I'of C. This approach has recently been extended l?y C_aporaso [16], at
the cost of considerably greater technical comphc_atlons, to prove a
converse to the Potential Stability Theorem that is then applied to
construct modular compactifications of the universal Picard varieties
i ed in Section B. -
‘g,d'l‘ghglrsecrl:;?nder of this section is organized as follows. First, we claim
ff‘our properties for the pluricanonical locus con_structed inC. Assqm-
2’ing these, we construct M, and deduce a few lmpor‘tant pereth‘ll::s.
;;‘.’We then turn to the statement and proof of the Potential Stability The-
2=;orem. Finally, we deduce the claims from this theorem.

I

%Deﬁnition of ?\ig and verification of its properties

i d an integer n > 5
For the rest of this chapter, we fix a genus g > 2 an 1
Ia:nd define integers 7, s and d in terms of these, as in (3.14), by

s=r+1=2-n-1)(g-1) and
d=2-n(g-1).

i tion, our curves will live in a projective space of dimension
gfll:ﬁsi:'tl!lc simplify many of the formulas in the proof of the Potgn-
tial Stability Theorem to express them in terms of the ggrrespondmg
affine dimension s = r + 1.) We let H = #; 4, and let-.'K be the locutg
in #{ of moduli stable curves C of genus g embedded in P” by the n'

their dualizing sheaves. - .
pol?i]s;l(l))i we define ?(’lzgto be the intersection of X with Fhe sen'!lstable
locus in 3{ for the natural action of G = SL(r + 1'). We will continue ’to
abuse language slightly and refer to all curves in .’K as n-f:anomca ly
embedded (even when they aren’'t smooth) a1_1d will likgwnse refer to
X, as the locus of n-canonically embedded Hilbert-semistable curves

inH.
CLAIM (4.39) 1) K, is smooth.
2) K, is closed in the semistable locus Hs in 3 .

3) K5 = .’1\(4,; i.e.,, every curve whose Hilbert point lies in 5(;, is
Hilbert stable.

4 K s contains the n-canonical models of every moduli stable curve
of genus g.
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N

Of course, the last property simply states that .’l?s, =X We

.
however, only see this at the very end of the section; hence the need'
’

for i
the notation Xss here. The first Statement follows immediate)
ES y

DEFINITION M
(4.4o,L We define My to be the GIT. quotient for the

action of G on Xs; that is, j
.7 ~ ’ W,
a: Kes— X5 /G, thon M, JAC};CG.e denote the quotient map by

plicit in this definition, of course, is the assertion that this quo

tient is a coarse moduli
. spac
this now, pace for stable curves of genus g. Let’s check

fo i
r the direct image P« ((we/5)®") of the nth Power (wc/s5)®" of the

for the sectiong of the i
n-canonical sheaf™) Immediately j
f:ﬁﬁilf ﬁ]:;gg :gg(:a;l:_er to yield a natura] transformat‘i,c:;lll I‘;'h;‘rtc}:;lt gxl:
isomorphis; curv
oou functor&f e rj%g. m classes of stable es of genus g~

Tos i
see that M, is a coarse moduli space, it remains to check that

To check property 2, s
» SUPpose we're given an
. . 1 other ’
2 ur.liacl:yral transformation ¥’ from F to Mory,., Appl .sch‘;l'ne e
e Yi(l:l)gsto Kss of t.he unive;;gal curve T— % over thytlanéilbertto sﬂllle ne
morphisma 1lnorph1sm P Kss—M'. Since F is the functor 0(1':‘ fme
be copom tc asses Ef stable curves of genus g7, the map p mlsot-
_ on each G-orbit in f,, and we ' y
. | 3 d can th
}lggu:;);q g;rlc:luogh lgle quotient M, of X, by G; th::eifsor; Ec:ro f, ;
Hilbegt ey hrpi( ST : My—M'. The universa] prop;arties of thg
duced e ewise upply that the natural transformation 7 j
€ maps 1 satisfies the relation ¥’ = [Jo y required m
in

property 2). Modulo the claims in (4.39), we've proved:
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3

f}Our use of the definite article above is justified by Exercise (1.4),
',;,}hich shows that any two models of a fixed coarse moduli space must
E‘P:F canonically isomorphic.

G _

‘Projectivity and irreducibility of M,

%fvébndition 2. of Claim (4.39) seems to be extraneous to the argument
: above. In fact, it's the key to proving conditions 3. and 4. and is the
* point at which the Potential Stability Theorem is crucial. The assertion

" that X, is closed in the semistable locus has an immediate corollary
- of fundamental importance both in psychological and practical terms:

5

! COROLLARY (4.42) M, is projective.

;- This was first proved by Knudsen [97] by a delicate study of the
 fibers of the Torelli map from M,, to the Satake compactification of
. the moduli space of principally polarized abelian varieties.

The next corollary depends on the assertion of Lemma (3.15) that
the stabilizer stabs(r+1)([C]) of any Hilbert point [C] in X is finite
and reduced. This, together with the smoothness of X, immediately

_ confirms the local description of M, suggested by the versal defor-

" mation theory of stable curves and announced on page 53. The only
singularities are at curves with automorphisms, and all such curves
correspond to singular points (with a few exceptions in small genera
where there is a divisor or curves with automorphisms).

Everything we’ve said thus far can be proved over an algebraically
closed field of any characteristic without substantially more work.
With less ease, Seshadri has shown that it's possible to work over
fairly general base rings [139]. In keeping with the philosophy of this
book, we won't say too much about this here except to remark that
the GLT. approach to the construction of M, is the only one that
can be carried out in positive characteristics. We cannot, however, re-
sist giving Gieseker’s proof that the irreducibility of M, in positive
characteristics as a consequence of the classical irreducibility of the
complex moduli space of smooth curves. This beautifully simple proof
also illustrates the usefulness in applications of the explicit G.I.T. con-
struction of M, as a projective variety.

THEOREM (4.43) Wg is irreducible over any algebraically closed field.

The proof depends on the classical analytic fact that this is true in
characteristic 0 which will be given in Section 6.A. Now, if our ground
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Ing to compare the proof above with the s

proof that lacking a con
y Crete projecti
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Construction of 7, Deligne

The Potentiai Stability Theorem
Statement and preliminaries

DEFINITION (4-44) We call q con

ifree dinpr = P(V*) where s =

nected curve C of genus g and de-

Y+l=d-g4) potentially stabje

1 ,
) The embeddeq curve C is nor'rdegenerate (ie., spans pr )
2) The abstract curve C is moduli semistable.

3) The linear series embeddi
ding C i
h%(C,0c(1) = s and h1(c, gfm;‘:‘(’)’""’e‘e and nonspecial: ie.,

4) Any chain of smooth rati
- rational com ,
of C in exactly two points has lon Ponents of C meeting the rest

»

tional compo
actly two points, then degg (O¢( l))n

ent meeting the rest ofC in ex
line.

=1, that is, R is embedded as q

6) IfY isa complete subcurye of C of arithmetic

the rest of C in ky points, then geris 6y meeting

<&

—

|degy(0c(1)) - 4 _ k
G P )
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(Conditions 4) and 5) are actually consequences of 6) — we’ll see
ﬂﬂs shortly — but we've stated them separately because they indicate
ow close to moduli stable the abstract curve C underlying a poten-
jally stable curve C in P"(C) must be. We will continue, as usual,
o abuse language and speak of a “potentially stable curve C” when
he implied embedding is clear from the context. The justification for
iis somewhat baroque definition lies in the following theorem, which
with Theorem (4.34) forms the heart of the whole G.LT. construction
of M.
%’ﬂnonnu (4.45) (POTENTIAL STABILITY THEOREM) Fix integers g
fﬂr)dd withg > 2 andd > 9(g — 1). Then there is an M depending
only on d and g such that if m > M and C in P (C) is a connected
curve with semistable m Hilbert point, then C is potentially stable.
“ Here we'll only prove a pointwise version of the theorem (with m
Eilowed to depend on C), footmoting points at which our argument
must be refined to get the uniform assertion of the theorem.
* The answer to the natural question — is potential stability also suf-
ficient for Hilbert semistability? — is, essentially, yes. With slightly
weaker numerical hypotheses, this converse is proved by Caporasoin
[16] and shown to yield modular compactifications of the universal Pi-
card varieties. In particular, the moduli strictly semistable curves not
ruled out by the theorem will have models of large degree — those sat-
isfying conditions 3 and 6 — with semistable Hilbert points. We will
only prove the converse for pluricanonical curves in the next subsec-
tion. Caporaso uses a generalization of the indirect approach taken
there, but her proof requires an order of magnitude more combinato-
rial and geometric effort.

Even the proof of the necessity is somewhat lengthy: it occupies
pages 35 to 87 of [58]. A condensed proof of a slightly weaker re-
sult, which suffices for the construction of My, is given in [60]. Our
argument is most closely modelled on this one.

Despite the complications that ensue, the essential strategy is very
simple: if C fails to have some property covered by (4.44), find the
filtration F of V that highlights this failure most clearly and check
that F is destabilizing by showing some form of the numerical cri-
terion (4.23) is violated. Usually, we’ll see that er > 2dar and apply
the asymptotic version of Lemma (4.26). A certain care is needed in
the order in which the properties are established since it is often nec-
essary to assume some of these properties to check that the failure
of others is destabilizing. We will indicate the correct order of these
steps, giving the filtration F in each case. In a few steps, we check that
F is destabilizing; in others, these checks are left as exercises. A few
technical lemmas needed on the way have also been left as exercises.
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We begin with a few Dotational preliminaries, jf Yisa compley,
subcurve of C, we' let

Yred = the underlying reduced subcurve
Ny : Yns—+ Yyed = the normalization of Yred

Ly = 0c(1)},
dy = degy(£y)
sy = hO(Y, £y)

8y = arithmetic genys of Y.
In the definitions given in Section B of the invariant

merical polynomia) reépresenting wy(m). Here, we'll often wish to con.
sider these invariants for subcurves Y of ¢: when we do, we'] Write
wr(Y,m) for HO(y, Oy(m)) and e(Y) for the leading coefficient of
this polynomial. if Y =C, we usually suppress the Y’s in all these
hotations and we'lj also generally replace Lc by Oc(1).

Wealso let F( Y) denote the filtration (possibly trivial) of V that gives
weight 0 to the kernel Uy of the canonical restriction map

¢Y5H°(C.£c)—>H°(Y.£y)

and weight 1 to aJ other sections. we note, for future reference, the
obvious estimate

s
(4.46) OFy) < ?Y

with equality if ang only if @y is surjective.9
If Z is another complete subcurve of C having no common com-

ponent with Y, we'll Jet Kyz =YnZand kyz = [{Y n Z}]. we will

denote by ¥ the closure of the complement of vy j

and ky for K,  and ky 3. We will refer to the nodes

nodes of Y. The other nodes in Yy will be called inte

other nodes of ¥ will e called external to y. Fi,
quasigenus

inKy as boundary

rmal to Y while the

ally, we define the
hy = gy -1+ %

The first virtue of the Somewhat strange looking expression hy is that

it provides an additive form of the genus in the Sense that, if Y and 7

have no common Components, then

hyUz = hy + hz.
—_———

9This is a typical exampie of a formula more naturally expressed in terms of the
dimension s rather than the Projective one r,

3 - i
r truction of M, via the Potential Stability Theorem 22
LiCons:

i follows directly from the definition by combining the ordinary
£ thmetic genus formula

gvuz =9y + 9z +kyz -1
" th the fact that, as sets,
- Ky.z UKyuz =Ky UKz

i dary nodes as
i isjoint. In effect, we view th'e boun
- l;loatllfl (‘)l:l ;n:n?ilsﬁ]:lltp(tm ¥ and so contributing } to the genus of

: f
each. ations to help extract consequences o
&1 We will ma‘:,‘l(’;‘ﬁ; ‘E‘rf,szgto; first feel for this condmop;l?uggt):‘i:
property 5) o hain of smooth rational curves in the potegtl yerty 6)
Eﬂmt Ylsa'nuyli <2.Thengy =0s0gy -1+ ¥ <0an timz 1 and
e plfeg :: < 52{ Since dy > 0, this imm:a;l;la;ecl}’i:“;f:d‘;‘;i semistable.
{shows that any nogal{hz?;tfil:'u:u i, :gl?h:t Y must be a single ration:l;
Mo reozle;i)iefdl(‘i:;as'a line. The next exercise gives two restatemen
'gurve

“of 44).

*of property 6) of (4.4 d
Exn RCISE (4.47) Let C in P” be a connected, redu::eg, goc(lalxl) )cir\(/)e(zd
letY t?fl: a complete subcurve of C. Assume that H!(C, Oc¢

| also that H'(Y, Ly) = 0). . et
;flll;l:lfow that property 6) of (4.44) for both Y and Y is equival

elther pair of inequalities below:

d ky
D (f)hrsdrsy amd (F)hpsdy+y,
or, ky s (d9+E2Y_)
o (2)= 808 g (2). 028,

i e given
2) Use the description of the dualizing shea]; (lf : ngdza}ll :.ug) ngude
in (3.3) to show that degy(wch:) = degy (a‘:;l . t;
that property 6) of (4.44) for Y is also equi

d
————— | degy (wcly)
dy — (degc(wc)) By Y

ili ill follow
t 1 of this exercise, the Potential Stability 'Ih;ozzgl ::)]fi a(l) Jow
i - pz;lr that the curves C of the theorem. are redu C is pi
lfo‘;g:ge(::;rate that the linear series embedding such a
n s

and nonspecial, and that

-2

(4.48) s a4
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for every complete subcurve Y.

We leave as exercises tw, i
o . .
tools for gamere g€ometric estimates that will be our Majn

EXERCISE (4-49) [FIRST Bas
_ : IC ESTIMATE] Fix a weigh i
onVv.IfS = {yjlie] } is a collection of subcurves o% ge:lf:lnt::??hF
e

natural map
@:O0c— @ Oy,
' iel
has finite kernel and cokernel, then

er 2 > ep(Yy).

iel

If the weights of F are n i
v onnegative, i
assuming only that @ has ﬁni%e cokert?l(:: the same condlusion holds

1. Y is an irreducible subcurve of C with generic multiplicity H
2. For some j, V; maps to 0 in HO(Yred, Lreq). ‘

3. There is an effective divi
Ve e o divisor X on Yred such that, for each i < j,

Ho(),l'edv LYM(—(WO - wl)K))-
Th 2
en, er >ep(Y) > (wo - WJ_I) deg(K) + 2pwy_dy,, .

. . . .
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;onstants N, N’ and M, depending only on d and g, such that, for
i = M, we have

e wr(m) + Nm 2 ) wr(Y,m)
i€l

wr(m) + (N + N')m 2 wr(Y) + N'm
| 2
2 ((wo - wy-1)* deg(K) + 2pw;-1dy,) ("‘T)

n the situations of the first and second estimate respectively.

. The proofs of the Basic Estimates outlined in the following hints also
give this refinement pointwise. Uniform versions can then be obtained
yy variations of the arguments used to get the uniform bounds in the
Jniform m lemma (1.11) and Gieseker's criterion (4.30). We leave you
P supply these refinements if you're interested.

Hints and sketch of proof: Both proofs are variations on the ideas
i1sed in the proof of Gieseker's criterion (4.30), the main difference
seing that lower bounds for er are derived from upper bounds for
the dimensions of spaces of sections of small weight, rather than the

‘everse.
. For example, the First Basic Estimate follows directly from the fact

that the restriction maps
HY(C, £2™)— P HO(Cy, L2™)

el

have kernel and cokernel of dimensions bounded by those of .

The Second Basic Estimate requires a bit more work. First, observe
that replacing Y by the curve defined by the ut® power of the ideal
of Yred doesn’t affect either the hypotheses or any quantities in the
inequality for eg. Then, use the fact that

ho(Y,0(m)) = umdy,_, + O(1)

to see that it suffices to consider the case where w;_; = ws; = 0.
Next, use the fact that wr(m) = wr(Yed, m) — since the w;’s are
now positive — to reduce to the case where Y is reduced.

To treat this case, the key observation is that any monomial of

weight at most w restricts on Yieq to a section of
H(Yred, (L1a) ™ (- (mwo — w)K))

and that the dimension of every such space differs from that of its
preimage in H°(Y, Oy(m)) by a uniform constant. The estimate

er(Y) 2 (‘Wo - ‘Wj_l)z deg(K) + Zl.l‘w_j_]dymd
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then follows by applying Riemann-Roch, s i

. ' _ ! » Summing over w and tak.
ing leading coefficients. Since the First Basic Estimate applies vtnatl;l
S = {Y}. we get the claimed estimate for ey as well. We will mainly yse
this estimate in the extreme cases where eitherj=1orj=s.

Outline of the proof

We're now ready to turn to the proof of Th
eorem (4. i
present as a series of steps. (4,45, which we

Step 1. Creq is nondegenerate.

If not, use the filtration F that

. gives weight —1 to the secti
vanish on Creq, and weight w " is chory

> 0 to the others wher i
so that the a:'herage o of the weights of F is 0. Choosz' :,nliiltcgg(:asren
so that the g'® power of any nilpotent in the ideal sheaf of Cis 0 l‘g
Then no monomial that contains more than q factors of weight .—1
can even be nonzero modulo this ideal, Hence if (m — q)w > q, eve
:Ilgnlt;.?t ocfl a monomial basis of HO(C, Oc(m)) has strictly p;)siti\"z
Hﬂ:)gen ;ﬁnsﬂ;ﬁ)ﬁ;a fortiori positive. By Proposition (4.23), C is
Henceforth we assume thatd >

9(g—-1). Combini is wi
and the Riemann-Roch estimate s A ining this with Step 1

s d-g+1, we get an estimate that

we'll often use without comment in the sequel:
(4.51) E < 2.
s 8

We will also often use, when Y is irreducible, th i
. 0 of y , the estimatery < d
with equality if and only if Y is a rational normal curve, Y v+l

Step 2: Every component of C is generically reduced,

Suppose that Y _is a multiple component of C of multiplicity u. We
_clalm that thgre 18 a nonzero section of O¢(1) vanishing on Ypeq; that
is, the filtration F = F(Yreq) is nontrivial. If not, then since C' d is
nondegenerate, we would have, by Riemann-Roch, N

8

SYea =S = (5) d.

The trivial estimates

Symsdym+ls(%)d+l

19Again, proving the uniform i
ooy version of Theorem (4.45) requires
depending only on d and g that we leave to you if you're inte rgs -y a bound for q
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b
{(the last, because p > 2), show that this cannot happen. The same
%gstlmate shows that . dy, +1

Toos 7
:.and hence 9

: 20trd < 2 (§) (Ayeq +1) -

© Onthe other hand, the Second Basic Estimate (4.50) applies to F if we
.'there take Y as the curve, the kernel W of the restriction map @y as the
{ subspace V;, and the empty divisor as K. Since wo = - - - = wj) = 1,
“we find that er > 2udy,,. Since o < 1, these show F is destabilizing

‘unless 9
2udymd <2 (§) (dymd + 1) ’

which can only happen if u = 1 as desired or Ji =2 and dy,, = 1.
. If we're in the last case, then 2ord < 2(3) (dy,a +1) < g. Since
¥ dy = 2, there must be another component Z of C meeting Y in some
i’ point P. We can apply the Second Basic Estimate again to Z, this time
i'with V; = {0} and K = {P} — sowp = 1 and wj_; = 0 — and conclude
i that ep(Z) = 1. Finally, we may combine our estimates for er(Y) and
" er(Z) using the First Basic Estimate (4.49) with S = {Y, Z} to find

er 2 ep(Y)+er(Z) 22-2-1+1 =5 > 2ard, which, by the Asymptotic

Stability Criterion (4.26), shows that F is destabilizing.

- Step 3: Ifan irreducible subcurve Y of C is nota rational normal curve,
thendy > 4.

If Y is not rational normal, then sy, < dy. If dy < 4 as well, the
filtration F = F(Ygea) is nontrivial and Y + C. Therefore, there is a
component Z of Y that meets Y in a point P. Arguing exactly as in
the preceding step (except that now we know that u = 1), we find that
er(Y) = 2dy, ep(Z) 2 1, and ef = ep(Y) + ep(Z) = 2dy + 1. On the
other hand we also have

s 9 9

2doy < 2d (%) < (5) $¥peq S (Z) dy.

This shows that F is destabilizing unless dy = 4.

Step 4: If'Y is a reduced irreducible subcurve of C, thenny : Yns—Y
is unramified.

Assume that ny ramifies at P. Consider the three-stage weighted
filtration F that gives weight 0 to the space V, of sections whose
image under restriction to Y and pullback via ny to Y, lie in
HO(Yys, Lns(—3P)), weight 1 to the space V; of sections with images
in HO(Yys, Lns(—2P)) and weight 3 to all others. Since ny ramifies, Y
itself must be singular. Hence, dy = 4 by Step 3 and the hypotheses
of the Second Basic Estimate hold with S = {Y}, K = P, and j = 2.
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Since wg — w; = 3, we conclude that er 2 9. Since P is ramifieq
dim(Vo/V1) < 1, and in any case, dim(V1/V2) < 1 so ap < 4 Usi
(4.51), this means that 2dar < 9 and hence that F is destabilizing,

Step 5: Every singular point of Creq has multiplicity 2.

If P is a point of multiplicity 3 or greater, we claim that the two-stage
filtration F that gives weight 0 to the space V; of sections vanishing
at P and weight 1 to all others satisfies er 2 3. Since o is clearly
1and 2doy < 2 (3), this will show that F is destabilizing, Suppose
first that (at least) three distinct components h, Y2 and Y; meet
at P. Pick points P; on (Y;),, mapping to P. The Second Basic Esti-
mate applies to each Y; separately, taking K = P; and J =1 to yield
er(Y;) > 1. Now, applying the First Basic Estimate, we conclude that
er 2 er(11) + ep(Y>) + er(Y3) > 3 as desired. If only one component
Y passes through P, then by Step 4, there are at least three distinct
points Q,Rand § lying over P on Yns. Moreover, Y is singular at P, so
by Step 3, dy > 4. The Second Basic Estimate can then be applied to
YtakingK=Q+R+Sandj= 1 toyield e > ep(Y) > 3.

EXERCISE (4.52) Show that er > 3 in the case where exactly two com-
ponents pass through P and complete the verification of Step 5.

Step 6: Every double point of Cieq is a node.

In view of Steps 4 and 5, this follows from the following exercise.

EXERCISE (4.53) Suppose that two distinct points Q and R of the nor-
malization Cp, of C map to a point P on C and that the correspond-
ing branches of C have a common tangent line L at P. Consider the
three-stage filtration F that gives weight 0 to the space V2 of sections
vanishing on L, weight 1 to the space V; of those vanishing at P but
not along L, and weight 2 to all others. '

1) Suppose both Q and R lieon a component Y of Cand K = Q + R.
Show that dy > 4, that the filtration induced on H 0(Yred, Ly,,,) by Fis

HO(Yred, Ly,y) D HO(Yred, L,y (-K)) > H®(Yred, Ly, (-2K)),

and that ex(Y) > 8.

2) Suppose Q; and Q2 lie on different components Y and Z of C.

Show that if dy > 1 then the filtration induced on H®(Yeq, Ly,,) by F
is

Ho(Yred.Ly,,d) DHO(Yred.Ly,,d(—Q)) > HO(Yred.Ey.,d(—ZQ))
and that ex(Y) > 4. Show that if dy =1 then ep(Y) 2 3.
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'3) Conclude that ef > 7 and hence is always destabilizing.

i lications of the Second
int: The first three parts follow by various app ] ;

: ;Iasic Estimate. Given these, the last part is 1mmed1atg. except in the

" case where Q and R lie on different component§ vaen it follows froxg

i'.;he First Basic Estimate by eliminating the possibility that both Y an

+Z have degree 1.

Step 7: H'(Cred, Oc(1)) = {0}.

Fﬁ'I-‘i'rst, an exercise based on Clifford’'s theorem (cf. [62, Lemma 9.1},
which will be used in the proof.

i dal curve and
RCISE (4.54) Suppose that C is a connected noc
f::i L is a line bundle on C generated by global sections such tpa;
" HY(C,L) + {0}. Show that there is a subcurve Y of C for whic
Sy < (dy/2) +1.

1(Cred, Oc(1)) + {0} and Y is chosen as in the exercise, we clalr_n
Ittt‘xft I(ﬂ‘ :d Fy snll be destabilizing. By applying the Second Bas1€/ E:ltlle
‘ mate separately to each component Z of Y with K empty anct! f] ch,
space of weight-zero sections on that component, we see that.th or eaes_
~ Z,er(Z) = 2dz. Using the First Basic Estimate, we can sum eset:hen
. timates over the components of Y to get er 2 Z{iy. The exercis:inl 2
- gives us the estimate 2dar < %(dy + 2), which is less than er e:h
" dy = 2. In this last case, since Ly is ample, Y m.ust bea hne,. a szt}olc)te
plane conic or a pair of lines meeting in one point, all of which viola
the assumption sy < (dy/2) + 1.

Step 8: C is reduced, so H(C,0c(1)) = {0} and V = H%(C, Oc(1)).

This is perhaps the prettiest point in the argument. Let 7 be the ideal
sheaf of nilpotents in @c. Then we have an exact sequence

0 —=1®0c(1) —= Oc(1) — Oc ()|, —* 0.
In cohomology, this gives,
H'(C,1®0¢(1)) —= H'(C,0¢(1)) —= H!(C, Oc(l)|c) —= 0.

i i first term is 0. Step 7
Since we now know 7 has finite support,. the
slllr:)ws that the third is also 0, hence so is the second. But the map
HO(C,0c(1))—HO(C, Oc(1)|,,) is injective by Step 1, so

ho(C,OC‘(].)) < ho(C. OC(I)ICM) = hO(C, Oc(1)) - hO(C-7®OC(1))'

Hence h%(C,7®0¢(1)) = 0. Again, since 7 has finite support, this
implies that 7 = 0.
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We have now established parts 1 to 3 of (4.44). By Exercise 4.47)
and the remarks following it, all that remains is to show that (4.48)
holds for every complete subcurve Y. To prepare to show this as our
final Step 10, we first sharpen the result of Step 3.

Step 9: For every subcurve Yof C and every component E of Y, either
Ddg 2 kgy, or,
2) E is a rational normal curve for which dg = key - 1.

Consider the subcurve Zz = Yy U E. We have s; > sy since
span(Z) > span(Y), so dz —gz +1 2 dy - gy + 1 by using
Riemann-Roch and Step 8 twice. Substituting d; = dy + dr and
9z = gy +geg -1 +kE'y yields dE—gE+ 12> kE.y, which in turn
gives case 1) unless E is a smooth, rational curve as in case 2).

Step 10: Inequality (4.48) holds for every subcurve Y ofC.

We will show that if the desired inequality doesn’t hold, then the filtra-
tion F = Fy must be destabilizing. Since o < (sy/s), this will follow

if we show that e¢f > 2dy + ky. We will deduce this inequality from
the following two claims:

1. The Second Basic Estimate for Y itself yields er(Y) 2 2dy;

2. The Second Basic Estimate for each component E of ¥ implies
ep(E) 2 kE,y.

Summing these using the First Basic Estimate immediately gives
er 2 2dy + ky. Claim 1. is immediate, taking the subspace V; of the
Second Basic Estimate to be the kernel Uy of the restriction map from
CtoY (sowy = Wj-1 = 1). To prove claim 2. let’s first suppose that
dg 2 kg,y. Then the hypotheses of the Second Basic Estimate hold for
E with Vi={0}and X = Kgy. Since wg = 1 and wj-1 = 0, we obtain
er(E) > key directly. If dr < kgy, then we're in Case 2) of Step 9 so
(k¥ /2) < dg. But then, since every section in Uy vanishes on Key,Uy
maps to zero in HO(E, £y). Applying the Second Basic Estimate again
with V; = Uy gives ef > 2dg, which, by hypothesis, is at least KEy.

Completion of the construction

We now return to the proof of the last three properties of .")‘C’,, listed
in Claim (4.39), thereby completing the construction of .’J_ng. Because
we've fixed n > 5, the hypothesis — d > 9(g - 1) — of the Potential
Stability Theorem (4.45), holds for the curves in Xis. Thus, we know
that every curve whose Hilbert point lies in the Semistable locus X
of 3{ is potentially stable. We first prove Claim 2).
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PROPOSITION (4.55) K; is closed in 3;.

Since, by Lemma (3.34), we know X is qpenNin the full Hilbert
’fscheme. it’s at least locally closed in F{;,. Wnte Xss =W u ce u&y,
‘wlth each V; irreducible and locally closed in H; and letg;: yt-; s
."be the corresponding inclusions. To shoyv that X is_ closg . we
;,tf;'nust show that each g; is proper. Applying thg valuamfe cnten::
“for properness, we must therefore show that' given a discrete v
‘uation ring R with residue field C and quotlent field F, ;my n;}ag
7 Spec(R) — H;; that takes the generic point 1 = Spec(F) o Sp:q%c R)
nto Ks; also takes the closed point 0 = Spec(C) of Spec(R) into Xss.
‘We first use « to pull back the universal curve T— H; to adc:rhvcf
P D—Spec(R) and let @ = wp/spec(r) denote. (he relative 1(1i ﬂf
\lng sheaf of this family. It follows from the definition of X, and the
‘Uiniversal property of 7{, first that

a5 Op(Dlp, = W,

“#nd further that &(0) will lie in X, f and only if we can extend this
hism over the closed point 0. ‘
isoltl'nv?r:;pdecompose the special fiber Cy of D into irreducible compo-

nents 1

CO = U Cil
i=1

 then (4.56) implies that
1
Op()jp, = w'”(— 2; alCl)
i=

multiplicities a; determined up to a common intgger tranf
xttigl:.héince Sgec(R) is afﬁne&ODl(—Ct) = ggiilz: gormahze the a;'s
onnegative and at least on . '
sowﬂll;tt av?eaf:ul;t sho%v, then, is that all the a;’s are 0. _Note tl'1at th'llsl
is automatic if Cp is irreducible. To take care of reducible Cp 5, we .
use property 6) of (4.44). Let Y be the subcurve of Co consgsung. o
all C; for which a; is zero, and let Y Pg the remainder of 0 — lfe;
those components for which a; is positive. Then a local eqfu}Na}nm:l (0]
Op(- ZLI a,C;) is identically zero on every compopent of Y an hox;
no component of Y. In particular, such an equation is zero at each o
the ky points of Ky = Ky ¢ = Y nY. Therefore, we find that

is independent of the char-
n se terms chosen to emphasize that our argument

actez:;c, but if you prefer complex analytic lme you may replace, as usual,
Spec(R) by a disc A, Spec(F) by A* and 0 by the origin in A.
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struction of M

ky < degy (0p(- X aiC))

= degy (01)(1)|C0) —ndeg, (‘”|Co)

degc, (O
= degy (0p(1)|g,) - ( egz;ﬁ (12'1:')“) ) degy (w|c, )
0 0

<%

by part 2) of Exercise (4.47). Therefore ky = 0 and since Cp is con-
nected, a; = 0 for all i.

PROPOSITION (4.57) Every curve C in P" whose Hilbert point lies i
X5 is moduli stable. po es in

' Since every curve C in X, is potentially stable, the only problem
is that C may contain some smooth rational components meeting the
rest of the curve in only two points. This cannot in fact occur since,
on the one hand, the degree of the dualizing sheaf w¢ of C on such
a component is zero while, on the other, wg" is very ample on C
because the Hilbert point of C lies in XK.

?R%POSIHON (4.58) Every moduli stable curve of genus g has a model
mn $S*

For any moduli stable curve and any n = 5, w2" is very ample on
_C , and thus embeds C as a curve in P” whose Hiclbert pgnt [g] lies
in #{. To see that [C] lies in K,sor, equivalently, in #, choose a
one-parameter deformation T — Spec(R) of C to a smooth connected
curve over a discrete valuation ring R; that is, the generic fiber C, of T
is a smooth curve of genus g and the special fiber is C. Then T is again
a stable curve over Spec(R), so its n-canonical embedding realizes it
as a family of curves in P"(C) and hence corresponds to a unique
morphism « : Spec(R)— #{. Since the generic fiber C, is smooth of
degree 2n(g - 1), its Hilbert point {C;,] lies in H, by Theorem (4.34).
(This is the only — but essential — point at which this theorem is used
in the whole construction.)

Since the quotient of H;; by SL(r + 1) is projective, we can, after
possibly making a finite change of base, find a map B : Spec(R) — #,
that agrees with « at n. By pulling back the universal curve over 3{
by B, we obtain a second curve T’ — Spec(R) whose generic fiber is
also C;,. By the uniqueness of the semistable reduction of a family
pf stable curves, the stable models of the special fibers C and C’ are
isomorphic. We cannot immediately assert that the curves themselves

5!
v
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'f,ﬂ-e isomorphic since the Potential Stability Theorem only asserts that
' is moduli semistable. However, XK, is closed in Hs. Therefore,
‘gince B(n) lies in X ,sand B(0) lies in #5, we conclude that B(0) also
4ies in K. In other words, C’ is also n-canonically embedded and hence
' must be moduli-stable. Thus C and C’ are both abstractly isomorphic
‘mnd projectively equivalent in P7(C). But the Hilbert point [C']is in
19,5 by construction, hence so is [C].

{3

' PROPOSITION (4.59) K5 = X,: every curve whose Hilbert point lies
Uin Xss is Hilbert stable.

"+ Every curve C whose Hilbert point lies in XK, is, by definition,
- Hilbert semistable. If the Hilbert point of such a curve did not have
" a closed SL(r + 1)-orbit, then its closure would contain a semistable
. orbit with stabilizer of positive dimension by Exercise (4.13). Since ev-
‘ery curve whose Hilbert point lies in X is nondegenerate, this orbit
r} would corrsspond to a curve C’ with infinitely many automorphisims,
 and since X is closed in #,,, the Hilbert point of C’ would lie in XKss.
: Since every such C' is moduli stable and hence has only finitely many
' automorphisms this leads to a contradiction. Thus every point oL Kss

has closed orbit and finite stabilizer, which means that Kss = Ks as

: desired.

We have therefore completed the construction of M,. This proof

. is based on a yoga due to Gieseker, which ought, morally, to be more
. widely applicable. We wish to conclude by laying out the main steps

in his approach to constructing a compactification of a moduli space
M for a set of smooth varieties. Gieseker’s idea is to use geometric

" invariant theory, not merely as a technical tool to construct the right

scheme structure on the moduli space but also as a guide to under-
standing what class of degenerations should appear at the boundary.

The first step in his plan is to show directly that suitable projec-
tive models of the varieties in M have stable Hilbert points. In our
example, this is the stability of smooth curves. Next, we try to elim-
inate possible candidates for the boundary points by showing that
they have unstable Hilbert points. Typically, this amounts to finding
restrictions both on the intrinsic geometry of varieties with semistable
Hilbert points and on how they are projectively embedded: here this
role is played by the Potential Stability Theorem. In one sense, this
step is easier than the first step. As we've seen above, a destabilizing
filtration F is generally closely tied to some more-or-less pathological
geometric property of the unstable variety and this makes the esti-
mation of the weight function wr(m) fairly easy. Proving a variety
stable, on the other hand, requires dealing with an arbitrary F; some
idea of just how difficult this can be in higher dimensions, even for
smooth varieties, can be obtained by examining Gieseker's tour-de-
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force verification of the stability of sufficiently pluricanonical modelg
of surfaces of general type [57]. In another sense, however, the seg- |
ond step can be harder, since the number of nonsemistable cases to

bining valuative methods with a study of degenerations of elementg

of M to these “potential” boundary varieties to vield an indirect proof
of their Hilbert stability. In the construction of M,, this involves the
deformation theoretic results and the tricks with the valuative crite-
rion used in this section. A bonus of this approach is that, when it
works, the completion 7 is automatically projective.

All three steps pose substantial difficulties and represent a chal-
lenge for further study. Other than My, the only case in which this
program has been completely worked out is that of degenerations of
vector bundles on curves: see [127], [62) and [61]). It would be more
satisfying, but seems even harder, to modify the last step by verifying
directly the stability of the Hilbert points of varieties on the bound-

ary. As we've remarked earlier, this has not even been done for stable
curves,

close with a few brief pointers to the main results, For more details
and definitions of unfamiliar terms, see the cited references,
Viehweg has constructed a quasiprojective coarse moduli space

described in [148], is via G.LT. but uses a strategy different from
Gieseker’s and yields slightly weaker existence results for curves and
surfaces than those obtained by Gieseker.

almost smoothable n-folds with semi-log-canonical singularities, am-
ple canonical divisor and fixed pluricanonical Hilbert Polynomial. The
keystone of his proof is a theorem of Kollar [99] which states that the
corresponding moduli functor is represented by a projective scheme
if it has various other expected properties — more precisely, if it
is bounded, locally closed, separated, complete, has tame automor-
phisms and has semi-positive canonical polarization.

Karu's key innovation is the deduction of the boundedness of the
moduli functor — the existence of a family over a Projective base in
which every such variety is a fiber — from the minimal model pro-

ERpRPA
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L am. His strategy, based on the notion of weak semistable reduction
4

in spiri jectivity of M, given

ains close in spirit to the proof of of thg projec &
e, It simplifies earlier work of Alexeev in the surface case elsiee
o "s paper for details and all further references — and also relies

‘undedness with work of other authors including litaka, Kieiman,
¥'Kollar, Shepherd-Barron and Viehweg.

i i i -di i ieties as we do with those
. {deal with moduli of higher-dimensional varie 108
§§’35:':f curves, even for surfaces where the minimal modtf_l -hy(ll:othgm; 01:
gi%known. Much work remains before we have the explicit descrip

i has yet enumerated
{low in the rest of this book. For example, no one ' ate
'lovev bu(lmndary divisors in the compactification of the space of quintic

tsurfaces in P3.




Chapter 5

Limit Linear Series and
Brill-Noether theory

In this chapter, we want to illustrate how the moduli space of stable
curves can be used as a tool to prove theorems that deal with a single
curve. In most such applications, the role of the moduli space is to
allow us to deduce facts about certain smooth curves by studying
what happens when these curves undergo suitable degenerations.
As our example, we've chosen the theory of special linear series. We
will develop a theory of limits of linear series on some singular curves,
and use this to give proofs of the basic results of Brill-Noether theory.

A Introductory remarks on
degenerations

Before getting to work, a few words are in order concerning the na-
ture of the theorems we will discuss, their history and their various
proofs. We first recall the statements of the two most important re-
sults. The Kempf/Kleiman-Laksov/Griffiths-Harris/Brill-Noether the-
orem (which, following custom, we’ll henceforth refer to as simply
“Brill-Noether”) says that a general curve C of genus g carries a gj; if
and only if the Brill-Noether number p = p(g,r,d) defined by

(5.1) p=(r+1)(d—r)—rg=g—(r+1)(g—d+r)

is nonnegative; and if so, then p is the dimension of the locus W} (C)
of such linear series in Pic%(C). The Gieseker-Petri theorem says that
the multiplication map

(5.2) Ho : HY(L)Y@H®(K®L™!)— H(K)

is injective for any line bundle L on a general curve C.
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¥ pundle L for which the domain of o has dimension at least g + 1
i-and conclude that Gieseker-Petri implies the nonexistence statement
. in Brill-Noether. Give an example of a line bundle L on a curve C for
“which po fails to be injective where this isn't forced by dimensional
%‘ponsideran'ons (the first such example occurs in genus 4).
57; What distinguishes these theorems from more elementary results
| on linear series like Riemann-Roch and Clifford? The obvious answer
1'is that they aren’t true on every curve C of genus g: they apply only
i to an open dense subset in, but not to all of, M. (This isn’t true of
! the existence half of the Brill-Noether theorem (p > 0 = WJ(C) # @),
* which was indeed the first of the statements proved, independently
. by Kempf and by Kleiman and Laksov: see [92], [95], [96] and [7]
| for an overview. But it's certainly true of the nonexistence half
: (p < 0 = WJ(C) = @) and of the Gieseker-Petri theorem.) Moreover,
i-we have no independent way to characterize the loci over which they
‘f do hold. It follows that any proof of such results must be fundamen-
* tally different from proofs of the more elementary results, which take
: place on an arbitrary, fixed curve.
. The most direct approach would be to work on a curve that is no
_longer arbitrary but merely sufficiently general. Indeed, the fact that
. these theorems concern conditions that are open on proper, smooth
- families of curves and that we're only required to prove them on an
open subset of M ymeans that we could prove any one by exhibiting
" a single smooth curve satisfying it. This doesn’t, however, seem to
help: as of this writing, no one yet knows how to write down for large
g (at least, say, 16), a single complete, smooth curve satisfying any
of these theorems. The curves we can write down for large g, such
as hyperelliptic and trigonal curves, complete intersections, and the
like, are invariably special with respect to all the properties that these
theorems assert to be general. (See, in this connection, the discussion
at the end of Section 6.F.)

One resolution of this problem is to work not on fixed curves but
in families, so as to incorporate variational elements into the proofs.
This idea, as we shall see in a moment, goes back to the classical Ital-

ian geometers. However, their approach amounted to replacing the
search for general curves with one for general sets of Schubert cycles.
Once again, it turned out that all examples that can be analyzed ex-
plicitly are special. Although this path did eventually lead to a proof of
the Brill-Noether statement itself, it gradually became clear that more
refined results like the Gieseker-Petri theorem would be possible only
with better control of both the families used and the linear series on
them. With hindsight, we can now see that what was needed was to
find degenerations to curves that are sufficiently special that we can




veloped and, incidentall , why, although their statements deal with
f curveg, .;

single curve, they are naturally treated in a book on moduli o

Let’s now examine this histo
I ry a bit more cl i
Brill anq Nogther asserted the truth of the th:of'e(;zeliy' 0d, oo i

Statement of the Brill-Noether theorem jed i
) and applied
number of g7’s on a general curve in the casg Piied It to compute the

] ; . P =0,whenw
it to be finite. To do this, Castelnuovo looked not at any smoo‘tehezup:vc:

of genus g, but at a g-nodal curve Cy: i
, . C o: that is, a rational curve with
E?dzf, rl..r. -17g obtained by identifying g pairs of points (py, q;) oﬂ
o . h:l gd on Cy, Castelnuovo reasoned, would pull back to a g% on
f r'a : (;l could then be represented as the linear series cut ou‘: on
plane(sn(l: Itlorm al curve C = p! »— . pd of degree d by those hyper-
s ognP?lg::ntgh : gﬁf]% (gk - 1; —1)-plane A c P4. The condition that
- Pullback of one on Cy was simply that ev, ivi-
Is\o; l:)(f ut]l:ie nglyge(t:onzhalmfnthg pi should contain qi as wgll):lin othe: rvgo?dv;
€ach of the chords piq; to C in P4. The number of 7'«
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correct value for the number of 43's on a general curve in [20])
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dim(W} (Cp)) = dim(G(d - r - 1,d)) -rg
= (r+1)(d—r)—rg
=p

Problems abound with both halves i
of this argument. Fi i
one defines W] (Cy) to be line bundles of degree d on C;r vsvtlt(l)lf :ll -:-lf
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y ¢ more sections, there one runs into the difficulty that the family
d(C‘)} may not be proper, simply because the family {Pic?(C;)}
Ean't; i.e., the limit of linear series need not be a linear series. (The
iassic example of this is the g% associated to the meromorphic func-

43, fferent from 0 and (-1), or, equivalently, to the pencil cut out on C;

lines through the origin.) This difficulty may be overcome, as it was

first by Kleiman [94], by using the fact that the varieties parameteriz-
Hng torsion-free sheaves of rank 1 on C; do form a proper family, and
tthat for each subset I = {ij,...,ix} C {1,...,g} those torsion-free
heaves on Co that fail to be locally free exactly at {ry,,...,7;} are
‘direct images of invertible sheaves of degree d — k on the partial nor-
‘malization C; of Co at {ry,,...,7:,}. Since p(d—k,g—k,7) < p(d,g,7),
:we need only verify the Brill-Noether statement dim(W]) = p on all
the partial normalizations of Co.

,, As for the second half of Severi's intended argument, it’s not the
f’\(:ase that the g sets of conditions on a (d —7 — 1)-plane A c P4 that it
meet the chords 7:q; to C are algebraically independent — i.e., that the
-gorresponding Schubert cycles intersect in the expected codimension
r9 in G(d —r — 1,d) — for all choices of p;,q; € C. The simplest
example of this is the hyperelliptic case d = 2,7 = 1. Here the g}'s
on the curve Cyp correspond to points in P? lying on each of the g
chords 7:4; to the conic C c P2. If g = 2, of course there is always a
unique such point, corresponding to the fact that every genus 2 has
a unique g%. If g = 3, however, there may or may not exist such a
point, depending on the choice of the points p;, gi, corresponding to
the fact that while the general curve of genus 3 doesn’t possess a g3,
some do.

Once again, we might hope to overcome this problem by introduc-
ing a further variational element into the argument: that is, to con-
sider a further specialization of the points p;, i € P!. As before, how-
ever, nobody knows, for large g, even a single choice of such points
for which the corresponding Schubert cycles are dimensionally trans-
verse. Hence, this approach must also involve a further degeneration
of the underlying curve. What worked in the end was to let the points
q1,P2,42, 73,43, .- - tend to p;, one at a time, in that order. This was
done by Griffiths and Harris in [65], who were able to conclude the
Brill-Noether statement.

Griffiths and Harris did not consider, in their paper, what happened
in the limit to the curve Cy as they carried out their degeneration.
There, the Brill-Noether problem had been transposed into a question
of whether certain Schubert cycles in G(d -7 - 1,d) intersected trans-
versely, and they were only concerned with the behavior, in the limit,
of those Schubert cycles. It was Gieseker, in his proof of Petri's con-
jecture in {59], who first thought to follow the curve Cp into the limit,
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Gieseker worked with a family of curves obtained by taking P! x A
and identifying sections p;(t) with q;(t) over A, with p¢(t) and g;(t)

all distinct for t # 0 and coming together with different orders of
contact with p; at t = 0, as in Figure (5.4).

FIGURE (5.4)

In order to make sense out of “the curve Cp obtained by identifying
pi(t) with g;(t) on P! x {t}” when t = 0, it’s natural before making
the identifications to blow up the point p;(0) until the sections be-
come disjoint. This results in a family shown in Figure (5.5). After
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FIGURE (5.5)

making the appropriate identifications, the resulting Cop looks like the
one pictured in Figure (5.6).

One benefit of Gieseker’s approach is that if one applies a base
change to a family of curves degenerating to a curve of the type pic-
tured in Figure (5.6), and then minimally resolves the resulting singu-
larities of the total space, we again get such a family. We can also blow
up a node and make a double base change with the same effect. It fol-
lows, then, that any family of line bundles away from the central fiber
of such a family of curves may be assumed to be single-valued over

i 45
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FIGURE (5.6)

the base, and then to extend over the;((l:entral,ﬁbrza (’)l;hklil;.gtgf trtllzegr ts(;
ith torsion-free sheaves as in eiman. (] '
:g:?tl :)vfn;leveri's argument is avoided. This benefit comes ata price of

‘ i ’ dealing with linear
hnical complication, however: we re now 2 _

%‘ael;:; :)e;: a reducible curve and have to develop a formallsxq fmt'1 do:!elrg
ihis Setting this up will occupy most of the remainder of this chapter.

In another, more or less orthogonal development, it was noticed

‘by Eisenbud and Harris ((37], [38]) that the proof of the Brill-Noether

statement could be substantially simplified by spepahzmg to ct:uslp’ :
dal, rather than nodal curves. In its simplest case, _cnted abov];zi.l o tgrzee
on 'curves of genus 3, this amounts to the observation that, while

* chords to a conic in the plane may or may not be concurrent (in fact,

i i i t lines can never be. Thus,
are so in codimension 1), three tan?en
twllll:iyle the Brill-Noether condition doesn (ti :loldﬁfolll' az;ll noci:l %ﬁhﬁ
s 3, it apparently does for all cuspidal rational curves. ]
lg:)nnlllenon iS]i)l]‘l) fact general: as it turns out, the P!ucker tt;)rmurl;lse?t)y
plied to a linear series on P! directly imply the Bnll-Nl(’)e er p. ];s A
for an arbitrary g-cuspidal curve. (In tl}e .caste t;)lf %21 s on curv-l_l el
3, the relevant Pliicker formula is just the Riemann urwi
%311'1;:113, that a pencil of degree 2 on P! cannot have more than two
i ts‘ s a9 s
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is to let the cusps come together one at a px'ne. On g o Gieseker'
in order to analyze linear series on the limiting curve % consider:
we'll need to find a well-behaved mode(li for tlnstl l;;mts inz:le O el

i i i f such a degeneration.
ing the semistable reduction 0 _ T 0 aoply

! he first thing to do 1s

curves aren't themselves semlstable_z, t ) do | /
a semistable reduction to the family of curves specializing to a 4
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cuspidal one, This yields a family of smooth curves specializing to a
rational curve with g elliptic tails attached (shown as the “S™-curves in
Figure (5.7) and those that follow). Next, we can bring the points g; at

irreducible rational | ‘\
backbone | \__~

T
7’\/

FIGURE (5.7)

elliptic tails

which the tails are attached together one at a time (in effect, making
the cusps of the original family come together) to arrive at the curve
pictured in Figure (5.8). Finally, to allow for the possibility of further

—

rational chain elliptic tails

backbone

.

FIGURE (5.8)

base change and/or blowing up of nodes and subsequent semistable
reduction, we generalize this to the curve Xy pictured in Figure (5.10).
In this diagram, all the components are rational except the g elliptic
tails on the at the right end of each chain.

These are the curves that we'll use in our proofs of the Brill-Noether
and Gieseker-Petri theorems; we’ll call them flag curves. Specifically,
we will show that:

THEOREM (5.9) If m : X— B is any flat projective family of curves
with smooth general fiber and special fiber Xo = 71 (bg) isomorphic
to a flag curve, as pictured in Figure (5.10), then the general fiber of T
satisfies the Brill-Noether and Petri conditions (5.1) and (5.2).

v~

B. Limits of line bundies

’ N

rational chain
backbone

—

elliptic tails
joined to backbone
by rational chains

: FIGURE (5.10)
... In fact, the Brill-Noether statement will be shown for a larger class of
- gurves: it will be true for the general member of any family of curves
rthat includes a curve composed of a tree of rational curves with g
- elliptic tails attached. The Petri statement, however, will only be shown
~ for the specific configuration of Figure (5.10).

We close this section by mentioning that there is another approach

* to these questions due to Lazarsfeld [107], which we won't go into here

“ but which is perhaps the most elegant. Lazarsfeld uses a beautiful
vector bundle argument to show that special linear series on certain

" curves lying on K3-surfaces must be cut out by linear series on the

surface and is able to deduce that a curve whose class generates the

~ Neron-Severi group of such a surface must be general in the senses of

Brill-Noether and Gieseker-Petri.

B Limits' of line bundles

We begin by assembling some basic facts about line bundles on in-
dividual stable curves and families of them. Let’s consider, to begin
with, the group Pic(C) of line bundles on a connected but possibly
singular and/or reducible curve C. We will assume C is reduced, al-
though a description of the group of line bundles on a nonreduced
curve is a question of some interest as well. If we let r : C—C be the
normalization of C, then an essentially complete description of Pic(C)
is obtained by comparing the sheaf gé of nonzero functions on C with
the pushforward . 0% of that of C. Specifically, the map 1 gives an
inclusion Of »—— . O%. The quotient sheaf ¥ is a skyscraper sheaf
supported at the singular points of C, whose stalks are fairly easy to
describe in terms of these singularities. Thus, for example, if p € C is

247 |
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an ordinary node, the stalk at p of m, OE, consists of pairs of germs of
nonzero functions (f, g) on the two branches of C at p, the subgroup
(0¢), consists of those pairs with f(p) = g(p), and the quotient
Fp = C* with the map (1, 0%) ,— F, sending (£, g) to (f(p)/g(p)).
'Svimilarly, if p is a cusp of E’ and t a local parameter on C aroung
P = m~1(p), then we can write the completion of the stalk (me0%)
simply as invertible power series {ap + a1t + a2t? + - - -}, and %:.:
subgroup (O¢), as those power series with a; = 0. We see then that
Fp = C, with the map (moz,),,——j‘,, given by (a; /ay).

EXERCISE (5.11) 1) Verify that the map (11,..05),,—» Fp given by
(a1/ap) is indeed a homomorphism.

2) Show that, for any p € C, the stalk Fp is an extension
0—C*— F, — (C*)P — 0
where (b + 1) is the number of branches of C at p (that is, #-1(p))
and a +_b = dim(‘rr,.Og/Oc),, is the drop in genus associated to the
singularity, that is, the contribution at p to the difference in arithmetic
genus between C and C.
Having described F, we turn now to the exact sequence
0_——05——1&05——?——0.
Since C is connected, we have identifications
H (0¢) = ¢*
HO (m,0%) = (C*)”

where v is the number of irreducible-components of C. Using, for
example, the Leray spectral sequence, we may also identify

H'(0F) := Pic(C)
H'(m,.0}) = H'(0%) = Pic(&).
Putting these together, we obtain an exact sequence
(512) 0—C* —(C*)" — I (F) — Pic(C) — Pic(C) — 0
in which the first and last maps are just those induced by the pullback

of the normalization map r*. This sequence may thus be interpreted
as saying:
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1. To specify a line bundle L on C, we have to specify its pullback
 IL=m*Lto C, plus give “descent data”, that is, specify when
a section of L is the pullback of a section of~L. For example, if
p € Cis a node with m-!(p) = {q,7} c C, we have to give
an identification @, : Ls— L, of the fibers of L over p as one-
dimensional complex vector spaces.

2. When I is trivial, this descent data corresponds to giving a coset
- of Of in m, 05. For example, if p is a node as above and we fix
a trivialization of L near p, then @, is simply an element of C*

t  as above.

¢ . 3. The descent data are only determined up to our choice of trivi-

alization of I over the nodes, which we may alter by composing
a given trivialization with multiglication by a nonzero scalar on
each connected component of C.

w 4. However, altering the trivialization in this way by multiplication
| by the same nonzero scalar on each component of C does not,
.+ of course, change the descent data.

. Finally, we see that in the analytic topology the coboundary map in
: the exponential sheaf sequence

¢ : HY(C,08)—H*(C,Z2) = 2"

carries a line bundle L on C to its degrees on each of the irreducible
components of C. We define Pic’(C), or J(C) called the Jacobian of
C to be the connected component of the identity in the Picard group
Pic(C), that is, the group of line bundles of degree 0 on every compo-
nent. We then have the sequence

(513) 00— C* — (C*)" —TI(F) — J(C) — J(C) — 0.

From this it’s usually straightforward to describe J(C) in terms of the
singularitites of C. Here are two first examples.

EXERCISE (5.14) 1) If C is a g-nodal curve (that is, P! with g pairs of
points identified), show that J(C) = (C*)4.
2) If C is a g-cuspidal curve, show that J(C) = C4.

More generally, suppose that C is any connected, reduced curve
whose only singularities are nodes. We may associate to C what is
called its dual graph I'(C), a one-dimensional cell complex defined as
follows. Take one zero-cell or vertex for each irreducible component of
C. Then, for each node of C attach a one-cell or edge by glueing the two
ends of the edge to the vertices (not necessarily distinct) associated
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FIGURE (5.15)

.to the co(lina]lJonents containing the branches at that node. Thus, if C
1s a g-nodal curve, its dual graph is a bouquet of g loops (shown in
Figure (5.15) for g = 4). d

The dual graph lets us succinctly summarize what the sequence
(5.13) says about the Jacobian of C by noting that we have a sequence

00— (€*)? — J(C) — J([&) — 0

where b is the first Betd number of I'(C). The g-nodal curve rep-
resents, for this sequence, one extreme, in which J(C) = {0} and
J(C) = (C*)9, At the other extreme, we have nodal curves C satis-
fying the equivalent conditions:

1. J(C) is compact;

2. The sum of the geometric genera of the components of C is ‘g;

3. The dual graph of C is a tree.

Wg will say such a curve is of compact type. In particular, note that if
C is of compact type, each irreducible component of C will be smooth,
and no two components will meet in more than one point. Note also
that the curve of Figure (5.10), which will be our main object of study,
is of compact type, with Jacobian

g 4
J=T11E) =[]E

i=1 i=1

where the E; are the elliptic components of the curve.

Remark. While we've defined the Jacobian of C as the group of line
bundles of degree 0 on C, it may also be defined, in analogy with the
smooth case, as linear functionals on the space of global sections of
.the dualizing sheaf w¢ modulo those linear functionals arising from
integration over closed loops in C - Csing. This is immediate if we recall
from (3.5) that the sections of w¢ over an open set U C C are given by

H

.which

(]
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‘meromorphic one-forms w on w~1(U) c € such that for anypeU
and f € Oc¢,p

- > Resg(w-m*f) =0,

i1l qen-1(p)

ko that integration of sections of w over cycles avoiding the singular
‘Points of C makes sense. As usual, we can write

J(€) = (HY(C,wc)") / (Hi(C - Cung, T)).

Jn particular, an Abel-type theorem holds: two divisors, D = ¥ p; and
’;i-: = Y q, supported on the smooth locus of C will be linearly equiv-
alent if and only they have the same degree on each irreducible com-
‘ponent of C, and if, after reordering so that p; and q; lie on the same
‘component, we can choose paths of integration y; from p; to gq; for

‘ nw)=0

l’or all w € H(C, wc).
: " Having described the group of line bundles on a singular curve, we

turn our attention now to families of line bundles on families of curves
acquiring a singularity. Specifically, for the remainder of this chapter,
we'll be concerned with a projective, flat family

mw:X—B

‘over a smooth curve B. We also fix a local parameter t atapoint0 € B

and assume that the fiber X; = r~1(t) is smooth for t + 0 and that
the special fiber Xy, while possibly singular and/or reducible, is always
reduced. We will, in addition, work with families whose total spaces X
are smooth, though this is really a luxury in which we indulge mainly
to keep our statements as simple as possible.

What we want to develop are methods for obtaining information
about the behavior of linear series in the general fiber X, of such a
family by looking at their “limits” on the central fiber Xp. This raises a
second question, that of choosing a central fiber Xy so that informa-
tion about such limits is easy to obtain and work with. For example, we
might wish, as Castelnuovo suggested, to take Xg to be an irreducible,
g-nodal curve. One difficulty with this, and many other choices, is
that the limit of a family of line bundles on X; may no longer be a
line bundle, reflecting the fact that the Jacobian of Xp need not be
compact. Put another way, when we take the closure of the variety

7 = {(t,L): L € W[(X;), t + 0} over B - {0} in the family of Picard
varieties over B, the resulting scheme need not be proper over B.

One example of this is a family X—B of general curves X; of
genus 4 specializing to a curve Xp with a node obtained by taking
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a hyperelliptic curve of genus 3 and identifying two points not con.
jugate under the hyperelliptic involution. (In this example, the family
is general if X; is nonhyperelliptic and if its canonical irnage lies on 3
smooth quadric Q;.) What will happen then as t goes to zero is that
the quadric Q, will specialize to a quadric cone Qo, and the canonica}
image of X; to the intersection of Qg with a cubic passing through
the vertex P of Qo: in particular, Xp will have a node at P. Then, since
the g3’s on X; are cut out by the rulings of Q;, W} will be a nice,
connected two-sheeted cover of B — {0} ramified only over 0. More-
over, since the lines on Qg aren't Cartier divisors and don’t restrict
to Cartier divisors on Xo, W1 will already be closed in the family of
Picard varieties: that is, the limit of the linear series determined by L,
in W (X;) will not be a line bundle.

This difficulty will not arise if the line bundles L; on each fiber X; for

t # 0 are restrictions of a single line bundle £ on X \ Xj. In this case,
since we're assuming that the total space X is smooth, £ will extend to
a line bundle on all of X and hence the limit as t — 0 of the L; will be
a line bundle. The problem here is that, in general, the single-valued
section of W] needed to define £ may not exist, even if WJ(X;) is
nonempty for each t # 0. For instance, in the example above, because
W} is a connected covering of B — {0}, the two g}’s on X, cannot
be distinguished. Moreover, if we apply a base change to make {L;}
single-valued, then the total space of X will become singular, and line
bundles on X - Xy no longer extend over all of X. Finally, if we resolve
the singularities introduced into X by a base change, then the central
fiber X becomes a reducible curve. This, as we shall see in the sections
that follow, introduces its own set of complications.

What can one do in this situation? The most natural thing to do
might be to try and describe the limits of line bundles and/or linear
series in families in which the total space is smooth and the central
fiber is irreducible. The answers aren't too bad: the limit of a line
bundle is always a rank 1 torsion-free sheaf, and in the limit a linear
series may acquire a non-Cartier base divisor but will otherwise re-
main a bona fide linear series on a partial normalization of Xp. This
approach was, as discussed in Section A, the basis of the first proofs of
the Brill-Noether theorem. Carrying out this program requires a fairly
large amount of machinery that doesn't seem to give the Gieseker-Petri
theorem. The reason for this is that the Brill-Noether theorem deals
only with a general g; on a general curve: thus, by a suitable induc-
tion, we may avoid considering those L;’s on X, that fail to specialize
to line bundles. Petri’s statement deals with all g;'s on a general curve,
which forces us to handle all limiting gJ’s.

Our approach here will be the opposite one: we'll allow ourselves
to make base changes and to resolve singularities that this introduces
and, correspondingly, will allow X to be reducible. Having opened the
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m——

( e barn of reducible special fibers, there is no reason why we
gho:;ltc(l)nt‘ltlgo to the other extreme from Castelnuovo and avoid,_ as far
as possible, the failures of properness discus-sed above by' taking Xo
to be of compact type. In the following section, th'en, we_ell develop
the theory of limit linear series, which describes limits of linear series
in families tending to such curves; and in the subsequent two sec-
tions we'll use this theory to give proofs of the Brill-Noether and Petri

theorems.

C Limits of linear series: motivation and
examples

‘As we indicated in the last section, we want to c.mllsider here lin.nts
‘ of linear series on a family of curves {X:} specializing to a reduc1bl_e
“curve X, with the restriction that Xo is of compact type. Our analysis
“here will allow us to give a proof of the Brill-Noether theorem (5.1) at
the end of this section. In the final two sections of this chapter, we’ll

use it to prove the harder Gieseker-Petri theoreqm (Theorem .(5.78)].
We begin by considering the simplest possible case. Fix a one-
parameter family m : X—B of curves with smooth total space X,
smooth fibers X; for t # 0, and central fiber Xo=YUZ t,he union of
two smooth curves meeting at a single point p. B itself we’'ll take to be

* small enough to have trivial Picard group, €.g. a disc or the spectrum

crete valuation ring. We saw in the last section that, in general,
gffﬁy of line bundle?(lﬁl the smooth fibers of §uch a degenerating
family need not extend to a line bundle on the snpgl.,llar one. By con-
trast, what seems to be the difficulty in this case isn’t the absence of
an extension of a given line bundle £ on X = X \ Xo to X, but rather
the presence of too many, no one of which really captures all the g;;é
ometry of the linear series on X;. Precisely, if L is a l-me Qundlg on X
there will always exist a line bundle £ on X extending £; but if £ is
any such bundle then so is the line bundle £(Y) = LOx(Y). ,
To compare £ and L(Y), note that the line bundle Ox(Y) clear. ly
restricts to the line bundle Oz (p) on Z. On the other hax?d, Ox(Xo) is
trivial, s0 Ox(Y) = Ox(—Z) and hence Ox(Y) must restrict .to Oy(-p)
on Y. Thus, if £ has degree con Y and d — x on Z, the line bundle
L(Y) will have degreeax—1onY andd-a+lonZ.In othex: words,
we see that for given £ on X of relative degree 4, there exists, for
every o € Z, a unique extension L, of £ to X having degree xon Y
d-aonlZ. .
anr(\idore generally now, suppose we assume only that Xo is a nodal
curve whose dual graph is a tree, and that Y and Z are components of
Xo meeting at a point p. By hypothesis, Xo — {p} has two connected
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components; let E be the union of the components of Xy lying in the
connected component of Xo \ {p} containing Y. Then the line bundle
Ox (E) will have restrictions

Ox(EY®ROz = 0z(p),
(5.16) Ox(E)Y®Oy = Oy(-p) and

Ox(E)®Ow = Ow

for any component W of Xy other than Y and Z.

Let Agbe the set of integer-valued functions on the set of irreducible
components of Xo whose values sum to d. It follows that: if L is any
line bundle of relative degree d on X and if « is any element of the set
Ay, then there exists a unique extension L of L to X such that

(517) deg(La@Oy) = a(Y)
for every componentY of Xy. If, moreover, Y and Z are two components

of Xo meeting at the point p, and B is obtained from o by adding 1 to
o(Y) and subtracting 1 from o(Z), then

Ly®Oy = Lo@Oy(p) and
Ls®0Oz = La®Oz(-p).

(518)

This completely answers the question of what data we get in the limit
from a family of line bundles of degree d on the family of curves X;.
We get a collection of line bundles, indexed by A;, satisfying rela-
tions (5.17) and (5.18) above.

Observe that such a collection of data depends only on the curve
Xo itself and not on the particular family X; specializing to it. This
phenomenon is special to limiting fibers of compact type; for a family
specializing to a general nodal curve, what constitutes a limit of line
bundles will depend on the family. :

We come now to the main question of interest: suppose that we have
not just a line bundle L; on the general fiber X; of our family, but a
linear series V; C HO(X;,L;) — in other words, we are given a line
bundle £ on X together with a locally free subsheaf ¥V ¢ me(L) of
rank r + 1. What data on Xy can we associate to such a family that will
provide information about the limiting geometry of the linear series
Vi as t—0?

One natural answer to this question would be to look at all possi-
ble limits of the family £ of line bundles and at the corresponding
linear system in each. For each o € A4, we have an extension L,; the
subbundle V ¢ . (£) will extend to a subbundle V, C 71, (£,); and
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SRR

 pence the linear series V¢ have a limit Vo C HO(Xo, La®Ox,) (that is,
“the fiber of the sheaf V, over 0). The upshot is that we again have a
¢ collection of limiting linear series Vu indexed by Ad

* The problem with this approach is that this data is b(_)t'h redundant
and inconvenient to manage. Fortunately, as we'll see, 1t_ s, not neces-
* gary to look at all these linear series. For the most part, it's sufficient
#to focus on a much smaller subset of the set of h_near series V. For
" each component Y of Xo, we denote by Ly the unique extension of £
{to X with degree d on Y and degree 0 on all other components of Xo
* and we let

—

Vy = lim (Vi) € H'(Xo, Ly ®Ox,)-

* These extensions have the immediate advantage (ox_'er those given by
. general o) that a section of Ly vanishing on Y vanishes on all of Xo,
. 0 that we have an inclusion

Vy ¢ H(Xo, Ly®0y,) € H(Y, Ly@Oy).

Thus we can view Vy as a g7 on the smooth curve Y, rather than on
all of Xo. Anticipating the formal definitions of the next section, we I
gefer to Vy as the limiting aspect of 'V on Y. To sum up: Associated
?to a linear series gj(t) on the general fiber X; of X is a collection of
X limiting aspects Vy that are g§'s on the various corpponents Y .of on

%" The logical next question now becomes, what is the relationship
'{»famong the various linear series Vy arising in this Way? To answer
T:fhis, let’s again look first at the case in which Xp has just Fwo compo-
“fients Y and Z meeting at a point p; let L4 be the extension of a line
“bundle £ to X having degree at on Y and d — o on Z. Recall that the
ifavarious extensions L are related by Lo = La+1(-Z onY.In otl;er
¥ words, the linear series | L] on the total space X is just the subseries
’ of | La+1| containing the component Z with this fixed component re-

" moved. Thus, if D is any divisor in | Lal, then
“ D+ZelLlanl,

" and if D doesn't contain Y, then
(D+2)jy=Dly+p-
This immediately gives the containments of linear series:
(Vas)ly 2 (Vally +P

or, dually,

(Valy € (Var)ly — P-
(Here and in the sequel we denote by V(-D), or simply V - D, th.e
linear subseries of V obtained by imposing the base ppmt condi-
tion given by the effective divisor D, and then subtracting D; that
is, V(-D) ={E-D:E€VandE-D 20})
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ook e te exren e e, oSt PUDOses, it e 1
es = (V, — .
duced above, since they show us tb;t (Va)ly and v; - (Vo)|; intro.

(Vally € Vy(~(d - a)p) and (Va)|; € Vz(-ap).
Further, these inclusions give rise to the basic relations

and V7. Since dim(V,,) = 7, we must have between v,
dim(Valy )+ dim(Vy|,)
519) = dim(Vy (- (d ~ a)p)) + dim(V,(~ap))

. r, if p is not a base point of V,,

r-1, ifpisabasepointofv.,.

Happlly. there is a more convenient way to express such relations

For any linear series V on a
) curve Y and i
introduce the vanishing sequence any smooth point p € Y, we

0 <ap(V,p) <ai(V,p)<-.. <ar(V,p),

which is defined by the condition that, as sets,

the orders with which nonzero elements of V the a;(V, p)’s are just

vanish at p:
{aj(v,p)|i= 0,....,r} = ford,(0)|o #0 € V}.

Vanishing sequences encode infi i
. : ormation abo
®v : Y—P" associated to V is inflected at p. For exammple, w020

is just the multiplicity with which
generally, we have P occurs as abase

(5200  dim(V(-bp)) =7 i e ai-1(V,p) <b < ay(V,p).

:‘sl;us, ?o sat;'li th_at V has no base point at P means that ag(V,p) = 0:

as summa thg 8 is the case and that @v is birational onto it; image,

al(Vyp) at <1pv(1:l) doesn’t have a Cusp at P = @y(p) means that,
) = 1; and in this case, if r = isn’

of Py(h) meard iy 2, to say that P isn't a flex

. A 2. For
inflectionary behavior in V and hence thata general p, we expect no

ai(V,p) =i, i=0,1,...,r.

This suggests defining
point p as the difference
the generic one

the ramification sequence b
i(V,p) of the
between the vanishing sequence at p and

biV.p) =ai(V,p)-i, i= 01,...,r,
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;nnd the ramification index b;(V,p) of p as the sum

r
B(V,p)=> by(V,p).
3 =0
/The classical Pliicker formula (cf. Exercise 1.C.13 of [7]) then gives a
! global measure of the ramification of V at all points:

} LEMMA (5.21) (PLUCKER FORMULA) IfV is any g} on a smooth curve
.Y of genus g,

SBV,p=r+1d+(r+1)r(g-1).
peY

In the context of limit linear series, vanishing sequences provide a
< -convenient way to encode the relation between the aspects Vy and V;
expressed in (5.19), which in view of (5.20), immediately translate to
, the inequalities:

. {5.22) ai(Vy,p) +ar-(Vg,p) 2d, i=0,1,...,7.

This is a strong condition on the pair of linear series Vy, Vz. For
instance, if ag(Vy, p) = 0 (that is, p is not a base point of Vy), then
this implies Vz(—-dp) + @, so that a,(Vz, p) = d; this implies that p
is a highly inflected point for the linear series Vz on Z. In fact, (5.22) is

. often a sufficient, as well as a necessary, condition for a pair of linear
" series Vy and V7 to arise as limits of linear series on smooth curves

tending to Xjg.

We remark here that, as we’ll verify shortly, (5.22) holds more gener-
ally for the collection {Vy} of aspects we obtain from a family of linear
systems on curves tending to a nodal curve X, of compact type: if Y
and Z are any two components of Xo meeting at a point p, then we
must have

ai(Vy,p) +ar_i(Vz,p) 2d

for all i.

To make these notions more concrete, let’s look at an example that
sheds light on the contrast between irreducible and reducible limit
curves. Suppose we have a family 1t : X— B of curves specializing to
a g-cuspidal curve Xy, a family £ of line bundles on X ~ Xq, and a
linear series

Vt C Ho(Xt,Lt)

on X; for t # 0. Let P = Xo— Xo be the normalization of Xo. We
consider the pullback to P! of divisors D € | L]. These do in fact form
a linear system V, on P!, which may be described as follows. For each
cusp pi of Xg, the limit as t — O of the line bundles L,;, which is a priori
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just a torsion-free sheaf on Xo, may or may not, in fact, be locally free
at p,. If it is, then the series Vo will factgr through the map i : P! — X,
near p;. Informally, the linear series Vg “has a cusp” at the point p;
over p;. If this limiting line bundle fails to be locally free at p;, then
the limiting linear series need no longer factor through m near p; but,
if it doesn’t, it must have a base point at p;. We can cover both these
possibilities by the statement

ar(Vo, ) = 2.

Equivalently, 2p; imposes only one condition on Vo, which we
rephrase informally as “Vg has at least a cusp at p;".

Let's now compare this to what happens after we make a base
change of order 6 and minimally resolve the singularities of the re-
sulting surface. The central fiber X of the resulting family consists
of a copy of P!, which we'll call Y and which is the normalization of the
original g-cuspidal curve, plus g elliptic curves Ey, ..., E; attached to
Y at the g points p; which were formerly cusps. Now, the limit of the
line bundles L; is always locally free. We will analyze it along the lines
of the preceding discussion but without the results we've obtained in
general.

Let Ly be the limiting line bundle having degree d on Y and degree 0
on each E;, and let Vy be the restriction to Y of the linear series

Vo = lim V: ¢ H*(Xo,Ly)

on Xo. Thus Vy is a linear series of degree d and dimension 7 on
Y = P}, and to describe it we may use the analysis above, as follows.
For each i, there are the two possibilities for Ly|g,. If Ly|g, # O, ie,
is nontrivial, then HO(E;, Ly ®0Of,) = 0, so that every section of Ly on
Xo vanishes on E;. Correspondingly, Vy has a base point at p;.

The case Ly|y, = Og, is the more interesting possibility. In this
case, we want to consider also the limiting line bundles L; having
degreesd -1 on Y, 1 on E;, and 0 on E; for j # i, and the corre-
sponding limiting linear series Vp; in H%(Xp, L;). The point is that the
line bundle

Lilg, = Ok, (pi) :

still has only one global section that vanishes at p;. On the other hand,
the linear series Vp; restricted to Y has dimension at least » —1 and is
contained in Vp(—p;). Since dim(Vy ;) = r, we conclude that Vp; must
have a base point at py; i.e., 2p; imposes only one condition on Vy.

Our conclusion, then, about the limiting series Vy remains as it was
for the linear series Vp on P! in the first analysis: the series Vy must
have at least a cusp at each p;.

Observe, finally, that this conclusion about Vy may be obtained di-
rectly from the relation (5.22): if Vg, is the limiting g} on E;, we cannot
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‘have two sections of Vi, vanishing to order d-1atp;, sipce otherwise
?:e pencil they spanne& would be a g} plus the fixed divisor (d - 1)p:.

Thus
ar_1(Vg,pi) sd -2,

ﬁnd by (5.22), we conclude
o a1(Vy,pi) 2 2;

jso Vy has at least a cusp at pi.

with this as motivation, we now want to go back and 1.'ederive the
‘basic relation (5.22), this time algebraically and for arbitrary Xo of
compact type. As before, we’ll let Y and Z be two components of
Xo meeting at a point p; again, we'll denote by E and F the divisors
 consisting of the sum of the curves in the connected component;lc:‘f3
:Xo \ {p} containing Z and Y respectively. Then by (5.16), for any
{bundle £ on X\Xo, we have

€

5'%(?5‘.23) Ly=L7(dE) and Lz = Ly(-dE).

. ’, . - PRY t + 0 —
 Now, suppose weTe given a family of divisors D; € |L;| for '
‘i.e., a divisor D € |£] on X\Xo — and we’re asked to find the limit as ¢

- approaches 0 of (D) as a divisor in the linear series | £z®0z|. To do

 this, we simply write D = (o) and D; = (0)|y, for some section o of

: T over X\ Xp, and then multiply o by the (unique) correct power of t
7 g0 that it extends to a holomorphic section 0z of £z on all of X, not
" vanishing identically on Xo. If 0|y, * 0 we must have oz|; * 0, and
* then, of course, the limit of the D¢ 1s the divisor (0z|;)-

In terms of this prescription, it’s easy to relate the limit of the D;

| as a divisor in | Ly ®0Oy| to the limit in Z: in view of (5.23), the section

: . A : P
oy of Ly extending o is obtained by multiplying 0z by t_he section o
Oi(dE)Yvanishing d times on E, then dividing by the highest power
t® of t that divides the product. Equivalently,

(oy) = (0z) + dE — aXo
(524 — (07) + (d - O)E — &F

where « is determined by the requirements that (oy) be effective, but
that (oy) — Xp not be. ' )
To go in the other direction is even easler: by (5.23), we may view
Lz as a subsheaf of Ly. Given oy, 0z will simply be' t*oy where x
is the smallest integer such that t*oy € [(Lz); that Is, the smallest
integer such that (oy) + aXo = dE. Note that this requu'emgnt .means
that (oy) = (d - )E, so that in particular the order of vanishing

ordp (0'y|y) =d- o
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Similarly, by (5.24) we see that (0z) = «F, and hence
ord, (az|z) z

We combine these in the:

LEMMA (5.25) If oy € ['(Ly) and oz € I'(Lz) with neither vanishing
identically on Xo and (oy) = (0z) on X\ Xy, then oz = t*oy and

d - ord, (Oy|y) < @ < ordp(0z|;) .

We remark for future use that as a consequence we have, trivially

(5.26) ordy (ov|y) < ordp(0z|;)

where p’ is any other point of Y, since ord, (0v}y) + ordy(oy|y) < d.
To see how the linear series Vy and V7 relate to one another, we use
a second lemma.

LEMMA (5.27) There exist sections Oy,...,0r Of Ly and Ty, ..., Ty Of
Lz generating rt. Ly and 1, Lz such that:

1) In terms of the inclusion Lz C Ly, T; = t%i0;.
2) The orders ordy (0y|y) are all distinct.

PROOF. The matrix expressing the inclusion of free @p¢-modules
1« Lz — Tty Ly can be diagonalized over Op o by Gaussian elimination;
this yields bases g; and 7; satisfying condition 1). Moreover, if g(t) is
holomorphic on B and «; = «;, we can replace o; by 0; + goj, and T;
by t*(o; + go;) without affecting 1); such transformations allow us
to achieve 2) as well. ®

We can express our conclusions in terms of the vanishing sequences

of Vy and Vz by applying (5.25) and (5.26) to the bases for Vy and V;
found in Lemma (5.27). The result is:

THEOREM (5.28) Let m : X— B be a family of curves over a smooth,
one-dimensional base, with general fiber smooth and special fiber X,
a curve of compact type. LetY and Z be irreducible components of Xo
meeting at a point p. Let L be a line bundle on X\Xo, V C T« L a family
of g}’'s on X\Xy, Ly [resp. Lz] the unique extension of L to X having
degreed onY [resp. Z] and c'ivegree 0 on all other components of Xo,
and Vy [resp. Vz] the limit of V in H*(Y, Ly) [resp. H%(Z, Lz)]. Then

ai(Vy,p) + ar_i(Vz,p) 2 d.
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emm———

PROOF. The previous two lemmas imply that, for some permutation
pof{0,...,7}
ar-1(Vz,p) 2 d - apwy(Vy,p) .

The theorem then follows by applying the following lemma. ®
i.nuuA(s.zg) Ifap<a) <---<arandbp <by <:--< b, are

sequences and for some permutation t of {0, ... ,7}, wehavea; = bp)
for all i, then a; = by for alli.

This analysis actually yields a slight refinement for which we’ll have
use later.

LEMMA (5.30) Let Y, Z and p be as above, and let p’ be any point of

Y other than p. Then,

“ 1) ai(Vz,p) =z ai(Vy,P');

Y

2) Equality holds in 1) for at most as many values of i as there are

' independent sections of Vy vanishing only atp and p’.

a We also note that, by summing the inequalities of (5.28) over i and
expressing the result in terms of ramiﬁcation indices, we obtain:

Conou.AnY (5.31) Let Y, Z and p be as above. Then,
B(Vy,p) + B(Vz,p) =2 (r +1)(d-7).

To see how this sort of analysis is applied in practice, let’s use it
to prove the Brill-Noether theorem, redeeming our earlier promise to
do so. We start by taking X, to be any semistable curve of genus g
consisting of a tree of N rational curves Yj, t0 which g elliptic curves
E; are attached, with each E; attached at one point p; and the points p:
distinct: for example, the curve in Figure (5.10) will do. Let 77 : X—B
be any smoothing of the curve Xp. We claim that for general t € B, the
fiber X, satisfies the Brill-Noether condition dim Wi(X:) <p.

To prove this, suppose we have a family of g4’sonthe smoot_h fibers
of X, given as above, and consider the limit linear series associated to
it. (Note that, if the general fiber X; has a gjj, we can always assume
we have such a family after making a base change and blowing up:
the new central fiber will have more components but will still meet
the conditions above.)

By the Pliicker formula (5.21), the total ramification of each of the
aspects |Vy,| of our limiting g5 on any of the rational components (:f
Xo is (7 +1)(d~7). On the other hand, since the elliptic curves E; don’t
have any rational functions with only one pole, the vanishing sequence




262 5. Limit Linear Series and Brill-Noether theory .

of the aspect |V, | at the point p; will be te
rm-by-
sequence ‘ y-term bounded by the

(5.32)’ (d—‘r—l,d—r,...,d—3,d—2,d)

and the ramification index of IVE| at p; is therefore at most
(r+1)d-r) e Thus the sum of the ramification indices of the
aspects of the limiting g7 at the nodes of Xo is at most

(N+g)r+1)(d~7)-rg.

But the curve X, has N + g - 1 nodes, and at each
‘ N+ . of those nodes
lthe sum of the ramification indices of the relevant aspects must be at
east (r +1)(d-1r) by Corollary (5.31). We must therefore have

(N+g)(r+1)(d—r)—rgz(N+g—1)(r+1)(d—r);

ie,(r+1)d-7r)2 rg; or, equivalently i
; Or, , P = 0. This
ge';‘neral curve X; possesses no g5 's withp < 0. proves that the
0 complete the proof, observe that equality can hold in the j
' roof, ot e inequal-
ity (5.32) above only 1f.the line bundle L, restricted to E; is isomott']phic
to 0?‘ (d-py),or, equivalently, if for any rational component Y of X,
the l:x'le bundlt_a Ly restricted to E; is trivial. It follows that if our family
of gi's pqs Brill-Noether number p, then the line bundle Ly will have
to be trivial on at leqstg = p of the curves E;. In terms of the identi-
fication of the Jacoblap of Xo with the product of the elliptic curves
f‘l,l,p gﬂof't :Zy(s) tht;t the.llmitfixi1 Picg(Xp) of the varieties W7 (X:) will be
n the union of the p-di i i
henported p-dimensional coordinate planes, and
dim(WJ(X;)) <p.

W(:. 'remark that the same method can be used to prove the existence
of g7’s on a general (and hence on every) curve of genus g whenever
p(q,r,d) 2 0. We won't do this here since the methods of Kempf
!(lelman-'laksov and Fulton-Lazarsfeld (as described in [7]) yield moré
information; but there are times when we may want to use this ap-
p_roach to prove the existence of linear series satisfying some addi-
tional Fonditions. We will illustrate this in a series of exercises proving
tl'le existence of curves with certain special Weierstrass points [Exer-
cise (5.48)]. To do this, however, we must ask a basic question: when,
conversely, does a collection of linear series {Vy} on the comp.onents'
of a curve X, of compact type, satisfying the inequalities of Theo-
rem (5.28), actually arise as the limit of a family of g%'s on smooth
curves X; tending to X,? We will give the best known answer to this

[Theorem (5.41)] after first introducing the ism i
followtne o2 Ing the necessary formalism in the
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'D Limit linear series: definitions and

applications

iln this section, the results of the previous section are formalized in
‘the theory of limit linear series. While we won't give a complete ac-
‘count of this theory here, we indicate the basic statements and a few

applications; in particular we'll reinterpret and give a stronger form

‘of the Brill-Noether theorem.

Limit linear series
The first thing to do is to make a precise definition:

DEFINITION (5.33) Let X be a curve of compact type. A limit linear
series D of degree d and dimensionr on X assigns to every irreducible

}'component Y of X a linear series |Vy| of degree d and dimension r
:talled the aspect of D on Y, such that for every pair of components Y,
‘Z € X meeting at a point p the aspects Vy and V3 satisfy

(5-34) ai(Vy,p) + ar-1(Vz,p) 2 d.

We will say the limit linear series D is refined if equalitj' holds in (5.34)
for each i; we'll call it crude otherwise.

~ The notion of ramification is central to the theory of limit linear
series. Given a smooth point p on a curve X of compact type, and a
limit linear series D on X, we define the ramification sequence of D
at p to be just the ramification sequence at p of the aspect of D on
the component of X containing p.

The results of the previous section amount to saying that in a one-
parameter family {X;} of curves of compact type with smooth total
space, alinear series D; on the general fiber specializes to a limit linear
series D on the special fiber. We observe as well that a smooth point
of the special fiber Xp will be a ramification point for D if and only
if it’s the limit of ramification points of D;; further, the ramification
index of D at p will be the sum of the ramification indices of D, at
points of X; tending to p.

This ties in nicely with the Pliicker formula (5.21): the linear series
D, will have a total of (r + 1)d + r(r + 1)(g — 1) ramification points
(counting multiplicity), while if Xo has components Y; of genera g;, we
expect (r +1)d + r(r + 1)(g; — 1) ramification points of the aspect of
D on Y;. Of course, some of the ramification of the Vy, will occur at the
nodes of Xy lying on Y;: by (5.34), the sum of the ramification indices
at a node of X of the aspects of D on the two components containing
the node will be at least (» + 1)(d — 7); if X, has k components, and
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hence k — 1 nodes, this will account for a total of (k—1)(r +1)(d -7)
ramification points of the aspects of D. The total ramification of the
aspects of D at smooth points of Xj is thus at most

S(or+Dd+rer+1@gi-1)-tk-1)r+1)d-7)
i

=(r+1d+rr+1)(g-1);

comparing this with the number of ramification points of D; we con-
clude that the limit linear series D is refined if and only if no node of X,
is a limit of ramification points of D;. Note that as a consequence we
can always achieve this state after blowing up our family at nodes of
the special fiber, and then making further base changes and blowups
to resolve the resulting singularities.

The calculation above suggests the following definition:

DEFINITION (5.35) The adjusted Brill-Noether number p of a linear
series D on a smooth curve X with respect to a given collection of points
pj € X is defined to be the ordinary Brill-Noether number of D minus
the sum of the ramification indices of D at the points p ;.

The idea behind this definition is to generalize the variety GJ; pa-
rameterizing linear series of degree d and dimension r. Just as GJ is
determinantal and either empty or of dimension at least p, so given
any collection of points p,,...,px € C and, for each py, a ramifica-
tion sequence b/ = (bﬂ....,b,}-) summing to 8, we have a variety
Gy(p1,...,px; b, ..., b¥) parameterizing linear series with ramifica-
tion sequence at least b; at pj, and this variety will again be deter-
minantal and either empty or of dimension at least p — 3'; 8;. When
equality holds, we say the limit linear series is dimensionally proper.

We define in the same way the adjusted Brill-Noether number of a
limit linear series D on a curve X of compact type with respect to a

collection of smooth points. In these terms, the calculation above says
that:

LEMMA (5.36) The adjusted Brill-Noether number of a limit linear se-
ries D on a curve X of compact type with respect to a collection of
smooth points p; € X is equal to the sum, over the components Y of
X, of the adjusted Brill-Noether numbers of the aspects of D on Y with

respect to the union of the subset of the p; on Y and the nodes of X
lyingonY.

This is useful because in the case of curves of genus 0 or 1, it's

not hard to estimate adjusted Brill-Noether numbers. Two frequently
useful estimates are
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» s - s s T Pl at an
1. Since the sum of the ramification indices of a gz on
pointsis (r +1)(d-7), which is exactly equal to the Brill-Nogther
number of the g7, the adjusted Brill-Noether numbgr of any Imgar
series on P! with respect to any collection of points is nonnegative.

2. Similarly, the adjusted Brill-Noether number of a linear ser.'ies on
an elliptic curve with respect to any one point is nonnegative.

ining these facts with the statement above, we det.iu(‘:e th-at
if g(o?slbum:fve of compact type formed by attthing g e]hptlc.taﬂs
to a tree of rational curves, and p1,..., Pk are points lying on rangnal
components of X, then the adjusted Brill-Noether n_umber of any limit
linear series on X with respect to the points pi 1§ nonnegat_lve..By
specialization to such curves, we arrive at the following generalization
of the Brill-Noether theorem: :

THEOREM (5.37) Let C be a general curve of genus g, and py, .-, Pk

' i j ill- ber of any
: general points of C. Then the adjusted Brill N?ether number ¢
f‘?inear series on C with respect to the points p; Is nonnegative, ie., for

any linear series D on C the sum of the ramification indices of 1;1 at
thep; isatmostp =g — r+l)g-4+r). b{oreaver, fora:nyco ;,::
tion of k ramification sequences, the variety Gz(Pi,- - p.b,.. .., l)l
will have dimension exactly p — 2. ﬂ§ when it's nonempty; that is, a

limit linear series with nonnegative adjusted Brill-Noether number are

- dimensionally proper.

EXERCISE (5.38) Complete the argument given above by proving the
dimension assertion in the last sentence.

i has a gj;
EXERCISE (5.39) 1) Show that, if a general curve of genus g /1
with ramification sequence (bo(p),--., br(p)) at a genel:'al poil.lt. P,
then p(g,7,d) = B(p). Givean example that shows that this condition
is not sufficient for the existence of such a gg.

2) Show that the inequality p(g,7.,d) = B(p) is equivalent to
i d
S (bip)+(g-d+7)) < 4.
i=0

We may extend the results on limit linear series to a slzlghtly larger
class of stable curves, which we’ll call treelike curves. Briefly, we call
a node of a stable curve C an interior node if its two branches belong
to the same irreducible component of C, and define a stable cprve
C to be treelike if the normalization of C at its inFenor nodes is of
compact type. A nomenclatural warning is perhaps in order hel..'e. Th:l
dual graphs of most treelike curves are not trees; rather, their du
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graphs become trees after removing all “loops” (edges joining a vertex
to itself).

Treelike curves share with curves of compact type (i.e., those whose
dual graphs are trees) the basic property that, if a family of line bun-
dles of degree d on a family of smooth curves specializing to a treelike
curve Cp has a line bundle as limit, then it also has a limit with arbi-
trarily assigned degrees (adding up to d) on the components of Cp.
(The difference is the need for the “if” clause: a family of line bundles
on a family of smooth curves specializing to a treelike curve need not
have a line bundle as limit.) We may then define a limit linear series on
a treelike curve just as we do for curves of compact type, and likewise
the ramification sequence of a limit linear series at a smooth point. As
the following exercise shows, the basic property of curves of compact
type — that a limit of smooth curves possessing linear series with
negative Brill-Noether number must possess a limit linear series with
negative p — holds as well for treelike curves, after a fashion.

EXERCISE (5.40) Let v : X — B be a family of curves with smooth total
space and treelike special fiber Xo. Show that if the general fiber of
possess a g} with p < 0, then the partial normalization of X, at some
subset of its interior nodes possesses a limit g7 with p < 0 as well.
Hint: A family of line bundles on such a family of curves will have as
limit a torsion-free sheaf on Xy. Consider the subset of interior nodes
of Xp at which this sheaf fails to be locally free.

Smoothing limit linear series

In the preceding and subsequent sections, we’ve used our analysis of
the behavior of a linear series as the curve carrying it degenerates
to obtain restrictions on the existence of individual series and on the
dimensions of families of them. We would now like to turn these ideas
around and use our analysis to show the existence of certain linear
series on smooth curves. In other words, we ask: when does a limit
linear series on a curve Xp actually occur as the limit of linear series
on a family X; of smooth curves specializing to Xj.

The answer to this question in its full generality isn’t known. On
the one hand, there are examples of limit linear series that cannot be
smoothed. On the other, we have techniques for proving the smootha-
bility of such series under fairly mild hypotheses, which we'll now
describe.

The key construction is that of a scheme parameterizing limit linear
series. Just as for any smooth curve X there exists a scheme G} (X)
parameterizing linear series of degree d and dimension r on X (cf. [7]),
so there exists for any curve of compact type a scheme parameterizing

[
3
g
f
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et

iﬁf Jimit linear series of degree d and dimension 7 on X, which we’ll con-

4
<
H

tinue to denote by G7(X). Moreover, for any family X — B of curves
of compact type, there exists a scheme G%(X/B)—B parameterizing
limit linear series of degree d and dimension 7 on the fibers of the

1 family. Most importantly for our applications, Gg(X /B)— B has the

¥

expected local description: it's determinantal, and every component

f“has dimension at least dim(B) + p.

pa
i

1
&

1. This dimension estimate is what allows us to assert the smootha-

bﬂity of certain limit linear series. For example, suppose that we have

:a curve Xo of compact type, and that G%;(Xo) has dimension exactly p.

'If 71 : X — B is any smoothing of Xo — that is, a one-parameter family

. . -1 b ) = XO
f curves with smooth general fiber and special fiber (‘ 0) =
2— then the dimension estimate tells us that G7;(X/B) has dimension

' i i onent of
at least p + 1 everywhere, and in pam?ular that no cqmp nent (
G4(X/B) can lie over bq. In other words, in every smoothing v : X ) B
of Xo, every limit linear series of degree d and dimension 7 on Xoisa

 Timit of linear series on the general fiber. . . ‘

° More generally, we see that if 7t : X—B is any fagnly of smgtlilllar
- “urves of compact type such that dim(G}(X/B)) = dim(B) + p, fen
* any limit linear series of degree d and dimension r on a fiber of ™

i : enlarge (lo-
an be smoothed. The argument is the same: we simply !
gally) the family to a family X' —B' of one larger dimension, such

" i imi i '—B', and argue that for
“thatBC B is the discriminant divisor of X B,aq ; ;

. dimension reasons the subvariety G3(X/B) C G3(X'/B') must lie in
" the closure of its complement.

We can also do the same thing for k-pointed curves, as_soc;atmg t_o
a family 7 : X— B with k disjoint sections 07 : B——Xj(wnhjlmageb, in
the smooth locus of 1r) and k ramification sequences_b = (_”03- .o b¥)
a scheme G3(X/B;01,.-.,0% bl,...,b%) parametenzlr;g limit linf\a:
series on fibers X; of X with ramification sequence b’ at crj(t'). :
guing as above, it follows that, for any such family, the dlmejntsnondoif
Gy(X/B;oy,..-, 0% bi,...,b¥) is at least dim(B) + p — Zi.j(ﬁi?, an
equality holds, then any limit linear series ona fiber X t of X with raxg;
ification sequence b/ at oj(t) is a limit of a linear series on a f.sn}OOt
curve X having ramification sequences b’ at points p; specializing to

X specializes to X;. .

0’5\2 jv?ll sufnmarize the state of our knowledge as the following .the%
orem, known as the Regeneration Theorem. Weneed one further bltb cl)
terminology. Let X’ be a semistable curve stably equ’l\_ralent toa sta. e
curve X. We say a refined limit linear series on X' is stgbly equt:;-
lent to a refined limit linear series on X if the t\:vo series haveth e
same aspects on corresponding components of X’ and X. (Note’ at
this determines completely the aspects on the components of X, con-
tracted in X: the ramification sequences at the two nodes of X' lying
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on such a component are precisely complementary, and so force the
aspect there to be monomial.)

THEOREM (5.41) (REGENERATION THEOREM) Fix a family 1t : X —B
and o; : B—X of k-pointed nodal curves and any k ramification
sequences b! = (by,. . bl). LetG = Gy(X/B;01,...,0u6:bY,..., bk),
and let [V] € G be a point corresponding to a limit linear series
= {Vy} on a fiber Xo = w~1(0). If the dimension of G at [V] is
exactly dim(B) + p — 3, ;(B{), then there exists a family of smooth k-
pointed curves (X;; p1(t), ..., px(t)) specializing to a k-pointed curve
stably equivalent to (Xy, 01(0),...,0%(0)), and a family V; of linear
series on the curves X; specializing to a limit linear series stably equiv-
alent toV. '

As we've indicated, the proof follows simply from the existence of
parameter spaces G;(X/B;0y,...,0%; by, ..., b) for limit linear series
and the basic dimension estimate on them; for their construction, see
Eisenbud and Harris ([39], [42)).

We will give some applications of the Regeneration Theorem in the
following subsection. In addition, in Exercises (5.63)-(5.65), we'll de-
duce as a consequence the following converse to the generalized Brill-
Noether theorem [Theorem (5.37)). To state it, we introduce some no-
tation: following Fulton [53, §14.7] for any sequence A = (Ag,...,Ay)
with Ao = A} = ... 2 Ay, we'll denote by {A} or {Ao,...,A,} the class,
in the cohomology or Chow ring of the Grassmannian, of the corre-
sponding Schubert cycle: this is the class denoted 0a,,...A, in Griffiths
and Harris [64]. In these terms, we have:

THEOREM (5.42) Let C be a general smooth curve of genus ﬂ let
P1.....Px be general points of C and let b/ = (b},...,b}) for
J = 1,...,k be any k ramification sequences. There exists a gj; on C
having ramification at least b’ at p; if and only if the product

k .
I—[{b‘:'l---lbé} * {llll"'l

j=1

1,04 £ 0

in the cohomology ring H*(G(r + 1,d + 1),Z) of the Grassmannian
Gir+1,d+1).

When k = 1, there is a simple condition on the ramifica-
tion sequence b = b! equivalent to this: using the Littlewood-
Richardson formula for products of Schubert cycles in the Grass-
mannian (see for example [53)), it's possible to see that the prod-
uct {b,,...,bo} - {1,1,...,1,0}¢ # O if and only if the sum
Y(bi+g-d+1), < g,where we use the notation (x), to denote
max{x,0}. We thus have the following:
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A el
‘,

DROLLARY (5.43) Let C be a general curve of genus g, p be a general
point ofC and b = (by,...,by) be any ramification sequence. There

3;‘=;4 ts a g on C having ramlﬁcatlon at least b at p if and only if the

M~

(bi+g-d+7), <g.

i=0

imits of canonical series and Weierstrass points

a first appliéaﬁon of the theory in the preceding subsection, we’ll
desuibe the limiting positions of the Weierstrass points of a smooth
1 e degenerating to a reducible curve Xo = Yu V4 where Y and Z are

hese limiting positions have nothing to do with — mdeed are d1s_|omt
om — the Weierstrass points of Y and Z themselves.

z‘ es. This identifies their limits as the lnﬂectlonary points of the as-

ipects of the limit (Vy, V) of the canonical linear series V; = |Kx,| on
2 ¢. Our task is thus to describe this limiting series. The key inequali-

ag-i(Vy,p) + ai-1(Vz,q) 2 2g-2 and
ag-i-1(Vv,p) + ai(Vz,q) =22g-2.

: :I’he linear series Vy(—ag,-i(Vy, p) - p) has dimension i — 1 and hence,
#bv Clifford’s theorem, degree at least 2i — 2 with equality holding
\ qnly if it equals |Ky|: therefore, we have ag-i(Vy,p) < 2(g - i).
: Similarly, a;_1(Vz,q) < 2(i — 1). This is only possible if equality
" holds throughout: in particular, Vy(-a4-i(Vy,p) - p) is the com-
- plete canonical series of Y. Using the second inequality, we find that
“ag-i-1(Vy,p) = 2(g —i-1),ai(Vz,q) = 2i,and Vy(-a;(Vz,q) - q) is
the complete canonical series on Z.

Now, assume that p is not a Weierstrass point of Y. Then the linear
series Vy(—agy_i(Vy,p) - p) = |Ky| will be unramified at p and in
particular

ag-1(Vy,p) sag-i(Vy,p) +i-1=2g-i-1

This in turn forces
ao(Vz,q) zi-1

i.e.,, Vz has abase point of order i—1 at g, and after removing this base
point, Vz is a linear series of dimension g — 1 and degree2g-1-i.In
other words, Vz is the complete series |Kz((i + 1) - q) |, plus the fixed
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divisor ( 1 —1) - q. Applying the same argument to the aspect Vy, we
see that in case p and g aren't Weierstrass points of Y and Z , the limit
on X, of the canonical series |Kyx,| can only be the limit linear serieg
(Vy, Vz) with aspects ‘

Vy = Ky((g-i+1)p) I+ (g-i-1)p
and
Vz =1Kz((i +1)q)|+ (i-1)q.

Note in particular that in this case the limit of the series |Kx, | depends
onl)_' on Xy, and not on the family of curves tending to it; in the general
setting — that is, if p or q is a Weierstrass point — we’ll see that the
limit does depend on the family.

The argument so far shows that if P is not a Weierstrass point of
Y, then a point of Z will be a limit of Weierstrass points of smooth
curves ){. of genus g tending to X, only if it’s a ramification point
for the linear series |Kz((i + 1) - q) |. To obtain a converse to this
result we need to suitably smooth this limit linear series; we do this
by applying the Regeneration Theorem (5.41). To set it up, we take our
base B = Z\ {q} and consider the one-pointed family X = Xo x B—B
with_ section o : B— X given by the diagonal in B x B ¢ Xo X B and
ram}ﬁcation sequence b = (0,...,0,1). Now,letr € Z\ {q} = Bbe any
ramification point of the series |Kz((i + 1)q)| other than q. The ar-
gument above shows that the limit linear series (Vy, Vz), with Vy and
Vz as above, will be an isolated point of the scheme g‘z’;_‘z(x /B;o;b).
Since the expected dimension of gg;_‘z(x /B;0;b) is indeed zero, we
conclude from Theorem (5.41) that (Vy, V) is indeed a limit of a%%,s
on smooth curves tending to X, ramified at points p; € X; tending to
7.In sum, then, we see that every ramification point of [Kx((i+1)-q)|
is indeed a limit of ramification points for canonical series on smooth
curves — that is, of Weierstrass points.

We turn now to the case of a curve Xo = YU Z/p ~ q where the
pqint of attachment is a Weierstrass point of a component. For sim-
phci}y. suppose that p is a simple Weierstrass point of Y — that is, the
ramification sequence of the canonical series IKy| at p is (0,...,0,1)
— and that q is not a Weierstrass point of Z. The inequality

ag-1(Vy,p) sayg_i(Vy,p)+i-1= 29 ~i—-1

on the vanish'ing sequence of the aspect Vy of a limit g, '_12 on X
that we used in our previous analysis need no longer holg; instead,
we have only

ag-1(Vy,p) <2g-i and ay_»(Vy,p)s2g-i-2.
These in turn give

ao(Vz,q) 2i-2 and a,(Vz,q) = i.

Bl
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i
‘4n other words, the aspect Vz of the limit linear series associated to
“the canonical series on the members X; of a family of smooth curves
5 tending to Xo is not uniquely determined! }{ather, it can a priori be
;- any one of the one-parameter family of g5,_,'s on Z satisfying
 (5-44) IKz(iq)| +iq € Vz C IKz((i+2)@)| + (i - 2)q.

}5 In fact, we claim that all of these do occur as (aspects of) limits
. 'of |Kx,| for suitable families of curves X; tending to Xo. To see this,
.- 'consider the family 7r : X — B with base B = Y obtained by identifying
{' the fixed point g € Z with a variable point p € Y. By our previous
* analysis, the fiber of ggg‘ }z(x /B) over points p’ € Y = B that aren’t
Weierstrass points will consist of a single point, while the fiber over
~ p will be one-dimensional. Thus, over a neighborhood of p € Y = B,
; we have
dimG‘z’;_lz(X/B) =1=dimB+p,

» and applying the Regeneration Theorem we deduce that for any linear

Y'series Vz on Z satisfying the inclusions (5.44) above, the pair (Vy, Vz)

-(with Vy = |IKy((g —i+ 1)p)| + (g — i — 1)p as before) is the limit of

: the canonical series |Ky,| for some family of curves X; tending to Xo.
- By the same token, we see that for such a curve Xy, every point

s € Z c X is a limit of Weierstrass points on (some) nearby smooth
curves X;. The point is that a general point s € Z will be a ramification
point of a finite number V3, ..., Vi, of the linear series V7 satisfying the
inclusions (5.44) above. Thus, we can take 71 : X —B = Y as before,
mark the family with the section o corresponding to the point s in
each fiber, and again set » = (0,...,0,1). Now in a neighborhood
of the point p € Y = B, the scheme dimgzg'_lz(X/B; o;b) is zero-
dimensional; and once more applying Theorem (5.41) we conclude
that there exists a family of pointed curves (X;, s;) and g‘z’;_lz's on X;
ramified at s; tending to (Xp,s) and (Vy,V;) — in other words, we
conclude that s is a limit of Weierstrass points of smooth curves. In
sum, then, we’ve proved the:

THEOREM (5.45) Let Xy =Y U Z/p ~ q be a curve consisting of two
smooth components meeting at a point as above.

1) If p is not a Weierstrass point of Y, then a point s € Z \ {q}
will be a limit of Weierstrass points of smooth curves X; of genus g
tending to Xy if and only if it's a ramification point for the linear
series |[Kz((i + 1)q)I.

2) If p is a Weierstrass point of Y, then every point of Z will be such
a limit.
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Note finally that, according to the Pliicker formulas, the result above
does indeed account for all the limits of Weierstrass points: the linear
series |Kz((i+1)q)| will have (g —i)(g2 1) ramification points other
than g, and the series |Ky((g-i+1) - p) | will have i(g2 - 1).

The limits of Weierstrass points on curves not of compact type are
studied in [44].

As we indicated earlier, we can go further with this analysis to prove
the existence of curves with Weierstrass points of higher weight. This
is sketched in the following sequence of exercises. Before we begin,
though, we need to introduce some terminology and notation relevant
to Weierstrass points.

First of all, we have what we may call the Weierstrass stratifi-
cation of the universal curve Mg,1: for any ramification sequence
b = (b,,..., bg-1), we'll denote by Tp, Mg,1 the locally closed subset
of M,,) consisting of pairs (C, p) such that the canonical series IKc|
of C has ramification sequence exactly equal to b at C; that is,

Ty = {[(C,p)]: bi(IKcl,p) = by}

This is just the locus of points with Weierstrass gap sequence
{bi+1i+ 1}ico,...g-1. We will say that b satisfies the semigroup con-
dition if the complement H(b) =N\ {bj+i+1]i-= 0,...,.9-1}is
indeed a semigroup; dlearly, Tp will be empty otherwise.

One more bit of terminology. The expected codimension of T, in
Mg, is simply the sum 8 = 397 b, (this is also an upper bound for
the codimension of Tj, whenever it's nonempty). We will say, then, that
a Weierstrass point (C,p) € Tp is proper if in fact dimy(c,))(Tp) = B
— in English, the codimension of the Weierstrass stratum containing
[(C,p))] is equal to the weight. Note that any point of weight O or 1
is trivially proper. In these terms, our first result is a direct general-
ization of an argument above:

EXERCISE (5.46) Let Xo = YuZ /p ~ q be as above the curve obtained
by identifying p € Y withq € Z, and assume that (Y, p) and (Z, q) are
both proper, of weights w; and w2. Show that the variety G‘z’;fz(xo)
of limit g3, ",’s on X, has dimension W) +w;, and that any such limit
on Xo is indeed the limit of the canonical series IKx,| on a family of
smooth curves X; tending to Xo.

Our first application will be to prove the existence of (both kinds
of) Weierstrass points of weight 2.

EXERCISE (5.47) Let Xp = YuZ /p ~ q be as above the curve obtained
by identifying p € Y with q € Z; but now assume g > 4, Y is a smooth
curve of genus g1, and Z an elliptic curve. Assume that p is a simple
Weierstrass point of Y.
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1) Let r € Z be a point such that r — q is torsion of order exactly

g + 1 in the group law on Z. Show that there is a limit g‘z’;_lz on Xo
with ramification sequence (0,...,0,2) at 7, and use the Regeneration

~Theorem to deduce that (Xp,7) is a limit of proper Weierstrass points
“with gap sequence (1,2,..., - 1, + 2).
.2) Now let r € Z be a point such that  — q is torsion of order exactly

g-1in the group law on Z. Show that there is a limit g‘z’;_lz on Xo with
‘ramification sequence (0,...,0,1,1) at 7, and use the Regeneration
Theorem to deduce that (X, 7) is a limit of proper Weierstrass points
with gap sequence (1, 2,...,4 - 2,4, + 1).

Note that in the last exercise, if r is a general point of Z then r
will be a limit of simple Weierstrass points. We may apply the same
techniques more generally:

EXERCISE (5.48) Let Xo = Y U Z/p ~ q be as above, and now as-
sume Y is a smooth curve of genus g — 1 and Z is an elliptic curve.
.Assume only that (Y, p) is a proper Weierstrass point, with ramifica-
‘tion sequence (b,...,by_2). Forany j = 0,...,g — 2,letr € Z be
a point such that r — q is torsion of order exactly bj + j + 2 in the
group law on Z. Assuming that b; + j + % doesn’t divide by + k + 2 for
any k > j, show that there is a limit g5,_, on X, with ramification se-
quence (0, b, ...,bj-1,b;+1,bj41,...,bg-2) and that (X, 7) is a limit
of proper Weierstrass points with this ramification sequence. Simi-
larly, if r € Z is a general point, show that (Xy,7) is a limit of proper
Weierstrass points with ramification sequence (0, by, . .., bg_2).

We may deduce from this the following theorem and corollary.
THEOREM (5.49) IfCp C My4_1,1 contains a proper point, then so does
Ty C My, if either

1) bg=0andb; =b;_; fori=1,...,g~1;0r

2) forsomej =1,...,9 -2, wehave by = 0, b}, = bj_; +1 and
b, =b;i fori=1,...,9 —1,i # j, and b satisfies the semigroup
condition.

COROLLARY (5.50) If H C N is any semigroup of index #(N\ H) = g

and weight
w=( > i)_g____(g+1) <4
{EN\H 2 2
then there exists a Weierstrass point (C, p) with semigroup H.

EXERCISE (5.51) Use Exercise (5.48) to prove Theorem (5.49) and
Corollary (5.50).
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E Limit linear series on flag curves

As we've seen, the Brill-Noether theorem follows directly from inequal-
ities on the total ramification indices of the aspects of a limit linear
series on an arbitrary curve formed from a tree of rational curve and g
elliptic tails. To get more subtle information about the behavior of lin-
ear series on a general curve, such as that expressed by the Gieseker-
Petri theorem, we need to analyze in more detail limit linear series on
a more special type of curve, namely the flag curves described in the
first section of the chapter, and this is what we shall do in this final
section. For the remainder of the chapter, then, Xy will be the curve
pictured in Figure (5.10), and D will be a limit linear series on X, of
degree d and dimension .

Inequalities on vanishing sequences

To analyze D, we label the components of X, as in Fig-
ure (5.10), with Yi,...,Yny forming the main vertical chain and
pi = YinY,, fori = 2,...,N. In addition, for m € {1, - - -, g}, let
us denote by E,, one of the elliptic tails, by Y, () the component of Y
Jjoined to Em, and by g, and s,, the respective points of attachment
on Yy(m) and Ep,.

We begin our analysis by looking at a fixed elliptic tail E = Ep,, so
we'll drop the subscript m’s for the moment. Let Zy = Y, Z,, ..., Zx be
the chain of rational curves leading to E, with q; = Z;_; n Z;. To start
with, we observe that we must have

ar-1(Vg,s) <d -2,

since if ar-1(Vg,s) = d - 1, the pencil generated by the two sections
of Vg vanishing to highest order at s would have d — 1 base points,
and hence would contain a g}. By Theorem (5.28), then

a1(Vz,,s) 2 2
and now by 1) of Lemma (5.30),

a1(Vy,q1) 2a1(Vz,,q2) = a1(Vz,,q3)

2a1(Vz,_,,qx) 2 a1(Vz,s) 2 2.

We deduce from this the:

PROPOSITION (5.52) If | = ¢,y for some m, the linear series Vy, can
have at most one section vanishing only at p; and py.1.
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PrROOF. Two such sections o, T would generate a pencil totally ram-
ified at p; and py.1, and consequently unramified elsewhere. In partic-
ular, suitable linear combinations of o and T would vanish to orders
0 and 1 at g, violating a; (Vy,q1) 2 2. 1

Note that, for like reasons, the equality a,(Vg, s) = d can hold only
if LEQOr = Og(ds) — equivalently, Ly, ® O = Of. Mimicking the
argument above, we see that, unless LeQ®Og = Oc(ds), the point q is
a base point of Vy,, which implies that there can be no section of Vy,
vanishing solely at p; and p;+1. Combining both parts of Lemma (5.30)
with this observation, we see that in general we have the inequality

(5.53) _ a;(Vy,,,, P1+1) = ai(Vy, p1)

and if l = cm for some m, then equality can hold in (5.53) for at most
one value of i.
But now for any [ and i we have trivially

i<ai(Vy,p1) <d - (r -i)
and hence, in general,

(5.54) ai(Vy,,py) - ai(Vy,,,pi,) < (d -7).
Taking l; = N and Iz = 1 and untelescoping the difference gives
N-1

Y (ai(Vy p1e1) - ailVyup0)) < (d - 7).
I=1
Finally, summing over i yields
r N-1
> (at(le.Pm) - ai(VYuPl)) s(r+1)d-r).
=0 I=1
Interchanging the summation, and dropping those (nonnegative)
terms for which I isn’t one of the c(m)’s gives the lower bound
(5.55)

r+1)d-r)=
Zgll.=l Z:‘=0(ai(‘,yc(m)+1 ’ pC(M)+l) - ai(VYc(,,.)l pc(m))) .

But, for fixed m, we know that all but one of the (r + 1) terms in
the sum over i is strictly positive. Thus, we recover the Brill-Noether
inequality

(r+lYd-r)zrg
and the weak form of the Brill-Noether theorem: Xy, and hence a gen-
eral curve of genus g, cannot possess a (limit) linear series with neg-
ative Brill-Noether number.
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EXERCISE (5.56) The argument following Proposition (5.52) shows
that, unless Lg, ®Of,, = Og,(d - 5), every term in the m'? inner sum
in (5.55) will be positive. Use this sharpening to rederive the strong
form of Brill-Noether as well.

Thecasep =0

One case in which the above analysis gives us a more or less complete
description of the limit linear series D is when p = 0. In this case, all
the inequalities used in the argurnent must be equalities. In particu-
lar, this means that the vanishing sequences a;; = a;(Vy,, p1) of the
aspects Vy of D do not merely satisfy a;+1,; = ay,; for all l and i. More
precisely, we have the:

LEMMA (5.57) Incase p =0,
1) forl + cm, we have a,1,1 = ay; for alli; and
2) forl = cm, we have aj1; = ari + 1 for all but one i.

There are only a finite number of collections of sequences a;; sat-
isfying this system of equations; in fact, as we’'ll see in Exercise (5.66),
there are exactly as many as there are g}’s on a general curve of
genus g. For example, in the case of g}’s on a curve of genus 4, we
have the two solutions as shown in Table (5.59). Similarly, for the g}’s
on a curve of genus 6 there are 5 solutions, shown in Table (5.60).

One circumstance in which there is always a unique solution is the
cased = 2g — 2, v = g — 1 corresponding to the canonical series.
The case of g = 5 is typical. Table (5.61) shows the only solution. In
general, we claim that the unique solution of the constraints expressed
in Lemma (5.57) is given, for | between cy,—; and ¢y, by

_ym+i-2ifi<m-1
(558) i=Im+i-1ifizm-1.

To see this, observe that for each m = 1,...,g there is exactly one
i = i{m) such that a.,,,; = ac,,.,,i» every i occurs for exactly one m,
and these indices completely determine the solution. Equation (5.58)
amounts to the assertion that i{(m) = m — 1 for all m. To see this for
m = g, recall that the instances of (5.54) used in the proof are sharp
only if a;(Yn,pn) =d -7 +i =g -1+ i for every i and hence, in
particular, a.,; must be an increasing sequence. But now dropping
the ay; for i = g — 1 and/or l > ¢, we're left with the same system
of equations with g replaced by g - 1 and can conclude by an induc-
tion. We remark that the uniqueness of the canonical series on Xj is
a property of this curve not shared by all curves of compact type.

E
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i
it

) 1 c2 ¢3 ¢a NIl]
o 0j]0 0 1 1 2
4 1{1 2 2 3 3
i 0fo 0 0 1 2
i 11 2 3 3 3
o i
E TABLE (5.59)
o € ¢3 cs ¢ ¢ N1
oflo o0 o0 o 1 2 3
1/]1 2 3 4 4 4 4
%, olo o o 1 1 2 3
i 1{1 2 3 3 4 4 4
e olo o 0 1 2 2 3
s 1]1 2 3 3 3 4 4
0lo0 o 1 1 1 2 3
1]1 2 2 3 4 4 4
ol0 o 1 1 2 2 3
1]1 2 2 3 3 4 4
i
TABLE (5.60)
€1 €2 €3 C4 Cs N Ll
0lo o 1 2 3 4
11 2 2 3 4 5
212 3 4 4 5 6
3{3 4 5 6 6 7
414 5 6 7 8 8
]
TABLE (5.61)

There is one particular consequence of (5.58) that will be crucial in
the following argument.

LEMMA (5.62) If D is a limit of the canonical sen'es,' there is, for
m=1,...,9 and l = cm, a unique section in Vy, vanishing only at
p1 and p1+1, and it vanishes at p to order exactly 2m - 2.
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We will use this description of the limits of canonical series on flag
curves in the following subsection to prove the Gieseker-Petri theo-
rem. In the meantime, we'll indicate in the following series of exercises
how this description of limit linear series on flag curves may be used
to prove the converse to the generalized Brill-Noether theorem [Theo-
rem (5.42)]. The one ingredient that doesn’t involve limit linear series
is Exercise (5.63), This is essentially an exercise in Schubert calculus
which we express using the notation for Schubert classes introduced
with Theorem (5.42); you may wish to simply assume this statement
and proceed to the remaining exercises.

EXERCISE (5.63) Letr and d 2 7 be positive integers, and fix any three
ramification sequences b/ = (b}, ..., b?) for J =1,2,3, satisfying

Sbi=(@r+1)d-7).
iy

Show that there exists a g on P! having ramification sequences b!,
b? and b3 at the points 0, 1 and o respectively if and only if the
intersection number

3 . )
[1tvd,....B0) £ 0
j=1

in the cohomology ring H*(G(r + 1,d + 1),Z) of the Grassmannian
G(r + 1,d + 1). Moreover, in this case there exists a finite number of
such g7's.

EXEBRCISE (5.64) Now let C be a flag curve of genus g, and p,,...,px
smooth points of C lying on distinct components of the backbone of
C.Let b/ = (bé,...,b#), J =1,...,k, be any k ramification sequences
satisfying g + 3. b = (r + 1)(d - r). Assuming the result of Exer-
cise (5.63), show that there exists a limit g7 on C having ramification
at least b/ at p; if any only if the product

L .
[1tvt,... B} - {1,1,...,1,019 # 0
J=1

in the cohomology ring H*(G(r + 1,d + 1),2Z) of the Grassmannian
G(r +1,d + 1), and that in this case there are a finite number of such
limit linear series.

EXERCISE (5.65) Use the Regeneration Theorem (5.41) to deduce the
converse of the generalized Brill-Noether theorem [Theorem (5.42)]
from Exercise (5.64): you may need to impose extra ramification
points with ramification sequence (0, ..., 0, 1) to make up the equality
rg+Xbl=@+1)d-71).

AR GERE
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Here are a couple other applications of the description of limit linear

i series on flag curves.

EXERCISE (5.66) Again let C be a flag curve of genus g and p;,...,px

. smooth points of C lying on distinct components of the backbone of C,

i

and suppose that g, v and d satisfy the equalityg = (r+1)(g—-d +7).
Show that there are exactly as many limit g7’s on C as the expected

© number of g}’s on a general curve of genus g, and (using the Regen-
- eration Theorem) deduce that for a general curve X of genus g the
" scheme G7(X) is reduced.

| EXERCISE (5.67) The following somewhat lengthy exercise illustrates

the use of many of the ideas we've seen so far to prove the existence

~ of a stable curve C of compact type and of genus 23 possessing a

dimensionally proper limit g}, but no crude limit g%,. The existence

_ of such a curve will be used in Section 6.F.

We take for C the curve in Figure (5.68) whgre (F;, pi) are general

//E\\

FIGURE (5.68)

pointed curves of genus 11, E is an elliptic curve, and p; and p; differ
by a translation of order exactly 12; that is, 12(p; — p2) ~ 0, but
n(py - p2) +0forn < 12.

1) Show that, if we set V, to be the complete series |{12p;| on F; and
take V¢ to be the pencil spanned by 12p; and 12p; on E, then the V’s
are the aspects of a refined and dimensionally proper limit g}z onC.
2) Now suppose that we're given a limit g2, on C. Use the fact that the
F; are general and the additivity of the adjusted Brill-Noether number
to deduce that p(Vg, p1,p2) < 0.

3) Use a dimension count to show that V¢ contains sections g; van-
ishing on the divisors

A; = ai(VE,p1)P1 + a2-i(VE, p2)p2,
so that

(5.69) deg(A;) = ai(Ve, p1) + a2-i(Ve, p2) < 17.
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Sum these to obtain the estimate

Bi(VE,p1) + B2_1(VE, p2) < 45.
Combine these with p(1,2,17) = 43 to show that

P(VE,p1,p2) 2 -2,

and, moreover, that if p(Vg, p1,p2) = -1 [resp:p(Vg, p1, p2) = -2],
then equality holds in (5.69) for at least two [resp: for all three) values
of i.

4) Let 0y, and gy, be two sections in Vg, with i; < i2 with associated
divisors A;, and A;,. Use the hypothesis on the points p; to show that
0 ~ (01,) - (0,) = 12(p2 - py) in Pic(E) and hence that

(5.70) (0y,) =B+12p, and (01,) =B+ 12p,

for some effective divisor B of degree 5 supported on p; and p2.
Conclude that there cannot be three such sections and hence that
P(VE, p1, p2) cannot equal —2. Thus p(Vg, 1, p2) = -1, and we must
have p(Vf,, pi) = 0.

5) By Corollary (5.43) we must have
2. (bj(VFn pi) - 4)+ <g.
J

Since p(VF,, pi) = 0, we have also

Z(bf(vfn pi)-4) = ‘'8
J

from which we deduce bj(Vr,pi) = 4 for all i and j. Use the
compatibility conditions (5.34) to show that, for each i and j, first
b;j(Vg,pi) <11, and then b;(VE, pi) < 13. Show that this contradicts
at least one of the equations (5.70) and hence that the hypothetical
limit g2, cannot exist.

Proof of the Gieseker-Petri theorem

In this section, we’ll use the methods of the previous sections to an-
alyze products of linear systems on a family of curves. For the time
being, we let 11 : X—B be a projective family and let ¢ be a local
parameter at a distinguished point b, € B. We assume that the total
space X is smooth and that the central fiber Xo over by is a nodal
curve of compact type. We let L and M be line bundles on X \ X, of
relative degrees d and e. As before, for each component Y of Xy, we
denote by Ly and My the (unique) extensions of L and M to X whose

i}
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. restrictions to each component of Xo other than Y _have degree zero.
. Recall that a section o € I'(Ly) vanishing on Y vanishes on all of X,
. and likewise for My.

Our first task is to define, for each component Y of X, and point

p € Y, an “order of vanishing” at p along Y for elements p of the
" tensor product ['(Ly) ®T(My). To do this, define a flag

[Ly)@I(My) =322, 22;2---

: by letting X be the linear span of all tensor products o ® T such that

ordy(o|y) + ordp(T|y) 2 k.

~ We adopt the convention that ordy, (o) = = if o|, = 0; thus, for all

k,Zx D 2w = t(I'(Ly)@I'(My)). Note also that §d+,+1 = Zeo.
We now define the order of vanishing of an element

u € TI'(Ly)@I'(My) to be the largest k such that u € 3; we

ite this as ord ).
wnAs inour analypsgg kf a single linear series, our basic tool will be to re-
late the “order of vanishing” at p along Y of a given u € I'(Ly)@I'(My)
to its order of vanishing considered as an element of I'(Ly)®TI ('bf.y)
for other components Z. Our basic lemma refers to the now famlh.ar
picture diagrammed in Figure (5.71) in which p’ is any pou.n of Y fils-
tinct from p. As before, we'll denote by E the sum of the irreducible

’ p
Z
FIGURE (5.71)

components of Xy lying in the connected component of Xy \ {p} con-
taining Z, so that
Lz = Ly(-dE)

and
Mz = My(—eE).

We will use these relations to view Lz, Mz and F(Lz)®l"(Mz).as sub-
sheaves and a subspace of Ly, My and I'(Ly) @I (My) respectively.

LEMMA (5.72) If p € T(Ly)@T'(My), 1 ¢ 2, and  is the smallest
integer such that
v =t*uel(Lz)QT'(Mz),

then
ordy (uly) < & < ordp(v|y).
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PROOF. To begin with, choose sections 0y, .. .., 0, of Lyand Ty,...,T,
of My generating m,Ly and .My respectively, as in Lemma (5.27),
Suppose 0] = t*0; and T = thir; are the corresponding sections of
Lz and Mz generating 1, Lz and m, M. We first write our given y as

n=>Y fy0) oieTy

with f;;(t) a holomorphic function of t in B. (Here, and in
the sequel, any implicit indexing is over the full set of pairs
{(t./))I0O <i<7r,0 < j< s}.) Since this expression is unique and
the elements of each of the o and T bases all vanish to distinct orders
at p’, we see that

(5.73)  ordy (uy) = (ordy (auly) + ordy (T4ly)) .

{wn ﬁ;ﬁo)*o}
The key point now is to express a. To do this, set
815(t) = t*bs fi.(¢)
and, note that, in these terms

V=t = F(t*%-B £,,(0)) (t™ 0y ® thity)

(5.74) = X (t*-%~B; £,,(0)) (0] ® ™))

=2g4(0) o/ ®T}.

Since, by hyppthesis, v eT(Lz2)®T(Mz) but v ¢ t - [(Lz)QT(Mz),
all the coefficient functions g; 5 must be holomorphic and at least one
must be nonzero at 0; thus

(5.75) o = max(o; + B; — ordo(fiy)).

Now by Lemma (5.25),

oy 2 ordy (0y)y) and
Bj = ordy (4y)
and combining this with (5.73) and (5.75) yields
ordy (p|y) < e

On the other hand, if the pair (i, j) is chosen from among the subset
for which g;;(0) + 0 so as to minimize the sum

ordy(o|,) + ord,,('r}|z) ,
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then we have

ordp(v|;) = ordp(0o7|;) + ord,,(-r}|z)

2 o4+ By (by (5.25))
= o + ordo( fy;) (since gy;(0) + 0)
>,

which gives the other inequality. ®
We now specialize. First, we go back to the situation where Xj is

" the curve pictured in Figure (5.10) and M®L is the dualizing sheaf

on the general fiber of . We suppose that we have an element

- i1 € T(Ly,)@TI'(My,) such that the image of y1 is zero under the map

r(LYl )®r(MY| )_’r(wyl )-

- Hence, we may also suppose that u; € tbigl(I'(Ly, )@I'(My,)bigr).

* We now plan to proceed as follows. First, as above, we inductively
identify, for each l, Ly,,, and My,,, with subsheaves of Ly, and My,
respectively and hence identify I'(Ly,,, )®T (My,,,) with a subspace of
I'(Ly,)®TI(My,). Then, for each I, we let y; be the smallest integer such

that ¢ - iy € T(Ly,)®T(My,), and we set

=t

l Finally, we'll consider the orders of vanishing

€ = ordy, (uly,)-

These, by (5.72), form an nondecreasing sequence. In fact, we claim
this can be sharpened as follows. If Y¢(m) is the component of Y to
which the m® elliptic curve is joined as in the preceding two subsec-
tions, then we claim:

(5.76)

Since the sum of the relative degrees of L and M is 2g — 2, so that
we must have g < 2g — 2 for all I, this will yield a contradiction by
taking I = c(m). Statement (5.76) will in turn follow from (5.72) once
we establish the

Ifl > ¢y, then & 2 2m.

LEMMA (5.77) Ifl=cm foranym =1,...,g and
& = ordp, (Hi|y,) = 2m - 2,

then
Yis1— Y1z 2m.
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PrROOF. The proof amounts to a more tareful examination of the
situation of Lemma (5.72) whose notation we would like to reuse. We
do this by fixing I = c(m) and writing Y for Y;, Z for Y1, u for
i, v for py,q, p’ for p; and p for p;.1. We then have v = t%u with
& = y1.1 — Y1 As in the proof, we also fix bases {0} of I'(Ly) and {t;}
of I'(My) and write

u=> fij(0) oy ®7;.
By (5.73), the hypothesis of the lemma then implies
2m - 2 < ordy (u|y)

= min (ordp' (oi]y) +ordp (T; |Y))
{wi | 500}

and, by (5.75), its conclusion will follow if we show that
o = max{oy; + B; — ordo(fij)} = 2m.

We will prove the slightly more precise statement that there exist {
and j such that fi;(0) = 0 and

oy + Bj=2m.

To find the pair (i, j), we use, for the first and only time, the assump-
tion that u is in the kernel of the product map

I(Ly)@I'(My)—T (Ly@My).
This implies that

> (fi(0) 01 ® 1))}y = 0.
{tp | fy0+0}

Therefore, the minimum value, among the pairs (i,j) such that
£ij(0) = 0, of ordp (0i|y) + ordy (T;},) must be taken more than once.
Consequently, there exist at least two such pairs for which

2m -2 < g = ordy (uly) = ordy’ (Utly) + ordy (lev)-

Let (i3, j1) and (i3, j2) be two such pairs and note, further that, since
the 0; and T; vanish to distinct orders at p’, we must have both i; * i,
and jp # j2.

We claim now that «; + Bj = 2m for either (i,j) = (i1,j1) or
(i, j) = (iz2, j2). To see this, recall that by Theorem (5.28),

o = ordy (0i|y)
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and that by 2) of (5.30) and (5.52), equality can hold for qt'most one i.
Therefore, we'll have ot + Bj 2 &1+ 2 2 2m for either (i, j) = (i1, 1)
or (iz, j2) unless we have both

g=2m-2

and, after interchanging 1 and 2 if necessary,

oy, = ordy (m.ly) ,
oy, = ordy (O'izly) +1,
Bj, = ordy (Th |Y) +1,
Bj, = ordy (sz|¥) .

In this situation, the sections o0y, |, and Tj,|, each vanish only at p’
and p, and hence so does their product viewed as a section of wyly.

" But by Lemma (5.62), this says that

ordp (O'tlszly) = ordp (m,ly) + ordp (szly) =2m-2
and we arrive at
2m -2 =g = ordy (MIY)
= ordy (0¢;|y) + ordy ('rj1 ly)
> ordy (Uu Iy) + ordp (szh')

=2m- 2,

a contradiction. B

Our conclusion is that u cannot exist; i.e., the tensor product map
is injective. We have thus established the:

THEOREM (5.78) (GIESEKER-PETRI THEOREM) IfC is a general curve
and L any line bundle on C, the map

po : HO(C, LY®H®(C,K®L™!)—H®(C,K)

is injective.




Chapter 6

Geometry of moduli spaces:
selected results

Our aim in this chapter is to illustrate how the techniques we've de-
veloped so far may be used to prove theorems about the geometry of
the various moduli and parameter spaces we've introduced. We have
not aimed at completeness, even for the problems we discuss; rather,
we want to briefly highlight a fairly broad range of examples.

A Irreducibility of the moduli space of
curves

As a warm-up, we'll give here a proof of the classical fact that My is
irreducible. This serves two purposes. First, it gives another example
of the usefulness of the compactification of the Hurwitz scheme by
admissible covers. Second, it’ll also serve as something of a trial run
for more complex arguments in later sections. For example, the series
of reductions made here is in many ways analogous to the one used
in the solution of the Severi problem in Section E of this chapter.

The basic plan is to work by induction, assuming it known that M;,
is irreducible for k < g and using an analysis of the behavior of M,
near the boundary A to deduce irreducibility for M,. This of course
requires some knowledge of the stable compactification M, of M;
in particular, we need to know that:

1. 34—3 is everywhere locally irreducible;
2. The boundary A, of M, is a normal crossing divisor.

3. The irredlécible components of A, are the varieties A;,
i=0,...,15.
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4. For any distinct i and j, the components A; and A; intersect.

We verified the first point in (3.32) and the second and third on
page 54. (The argument there used the irreducibility of M; but only
for i < g.) The last point may be seen directly: A; and A; meet in the
locus of curves of the form seen in Figure (6.1) if i and j are both

Ci Cg-i— J C;
FIGURE (6.1)

positive, and in the locus of curves of the form seen in Figure 6.2) if

(&

FIGURE (6.2)

Jj = 0. Given this, we may make a series of reductions of the original
problem, as follows. First, since M, is locally irreducible everywhere,
we have the:

First Reduction: It's sufficient to show that any two components X and
3’ of M, meet.

Second, since any two A;'s meet, we have the:

Second Reduction: 1t's sufficient to show that any component X of ?ﬂg
contains the boundary component A; for some i.

Now, by the local irreducibility of M, any component of M, contain-
ing a point [C] € A; contains an open subset of A; and hence, since
the A;'s are themselves irreducible, all of A;. We deduce the:

Third Reduction: It's sufficient to show that any component 2 of M,
contains a point [C] € A.

With this said, how do we go about exhibiting a singular stable curve
in a given component X of M,? We could apply Diaz’ theorem (2.34),
which will be proved in the next section, but in fact there is a much
simpler argument based on admissible covers. To set this up, choose
an integer d large enough that every smooth curve C of genus g admits
a map of degree d to P! with simple branching — i.e., such that there
exists a component 3 of the Hurwitz scheme 3{;, dominating 2.
Any component of the Hurwitz scheme maps surjectively onto the
space P, of b-pointed stable curves of genus 0, so that 3 will contain
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FIGURE (6.3)

a point [T : C—B] where B is the stable pointed curve consisting
of a chain of rational curves C;,...,Cp-2 with two marked points on
C1 and Cp_» and one on each of the others. From the description of
admissible covers in Section 3.G, we see that each component of the
curve C must map to one of the components C; of B; in particular
it'll be a branched cover of P! branched over only three points, with
simple branching over at least one. By Riemann-Hurwitz, this implies
that every component of the curve C is rational; the same is then true
of the stable model of C. The image of [ : C—B] in H is thus the
desired point of the boundary.

A historical remark is order here about the two principal ideas in
this argument. First, we can use the geometry of the stable compact-
ification M, of M, to deduce the irreducibility of M, if we show
that any component must meet the boundary: this observation was
made by Deligne and Mumford in their original study [29] of stable
curves and was used by them to deduce the main result of that paper,
the irreducibility of M, in positive characteristic, from irreducibil-
ity in characteristic 0. Second, we use the properness of the Hurwitz
scheme parameterizing admissible covers to find boundary curves in
any component: this idea is due to Fulton in his appendix to [82].

B Diaz’ theorem

Our next example is Diaz’ proof that a complete subvariety of M, has
dimension at most g — 2.

The idea: stratifying the moduli space

The basic approach is one first proposed by Enrico Arbarello in [3]: to
introduce a stratification of the moduli space M, such that the (open)
strata contain no complete curves, and such that closed strata of codi-
mension g -2 likewise don't contain complete curves. The point is that
if we can exhibit such a stratification, any complete subvariety X of
dimension d will have to intersect the codimension 1 strata in com-
plete subvarieties of dimension d — 1, hence the codimension 2 strata
in complete subvarieties of dimension d — 2, and 50 on; ultimately we
conclude that X will meet the codimension g — 2 strata in complete
varieties of dimension d — g + 2, and hence thatd < g - 2.
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Arbarello, with this as one goal among others, introduced the se-
quence of subvarieties

wzcw3c...cwg_lc‘wg=ﬂg:

W, is defined to be the subvariety of smooth curves C of
vgv;lne;: g :xpressible as a cover of P! of degl.'ee at most o with ong
point of total ramification. Equivalently, Wy is the lqcus of curvei; A
possessing a Weierstrass point p whose first nongap is at most «, : a
is, for which h%(C, O(ap)) = 2. (In particular, the §mallest sub;;aneiltz
‘W, is just the locus of hyperelliptic curves, wl_nch is affine.) Ar ail‘lreth
showed that these subvarieties were closed in M, and tk}at die
inclusions above are proper, or, in other words, that W is of lf(‘)W -
mension g — « in My. In a deeper vein, he also showed that eac .,;
is irreducible. It remains an open questipn, thopgh, _whether or no
the open strata Uy = Wq — Wa-1 of this stratification can contain

lete curves.

coil%p see how this question may be approached (apd why theﬁgn—
swer is unclear), consider a family X —B pf curves with general fiber
Xp € Wy What we want to show is that if B 1s complet'e. then (polis-
sibly after a base change) some fibers must either be smgulat; orthe
in Weq_1. As a first step, we can assume, a}fter a base change, that g
family has a cross-section — that is, a point pp = 0 (b) € X) on eac
fiber such that h%(Xp, O(& - pp)) = 2. After further base changes, wr
can pick out on each fiber Xp a linear series of dimension 1 in jot- )’2 bt .
or in other words a map to P!, so that we can take the total spaaclt;liﬁ g
be an a-sheeted branched cover of a P! bundle Y — B, totallyr e
over a cross-section = = o(B) C V. After one final pase change, we
can assume that the branch divisor of this map consists of the cross-
section X (with multiplicity «—1, of course) plus a total of 2g — 3 + &
other cross-sections X;.

z
~ /
Zi = e <
A T~
bo
FIGURE (6.4)
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The key now is to ask: what ha
ppens when on

ondai;y :ranch divisors X; crosses the prim bt ey the .

a point 0 € B as shown in Figure (6.4)? The fi i

_ .4)7 rst point to note i

:lllréc:t;hﬁecm X;E Yo =Plis totally ramified over the pointl s(rt?:)t'
of the curve X, as b—+ b, cannot continue to be g
;ﬁf&tﬁ branched cover of p!: given that there is no way to addeanan
e ramification over the point o (bg), we cannot produce en, 4

total ramification in the limit to yield such a cover. Using the theory of

admissible covers we can determine what type of degeneration must

occur. This is the subject of the following:

EXERCISE (6.5) Show that in the above circumstances, either
1) the stable limit as b— by of the curves X, is singular, or
2) the stable limit X of the curves Xj is smooth, so that the limit of

the admissible covers Xp—~+Y, =P i

) Is an admissible cover X, -+
with X stably equivalent to X, and the map has degree stricti)y le:g
than o on the component of Xy isomorphic to X.

Given this exercise, why is the result not proved? Th i
¢ The reason is si
a‘z;lt r::e Itu;:ve “;1];) mrance that any of the secondary branch divis;nr;?g
w - What might happen is for X to be a section of the P! byn-
y»B having negativ.e self-intersection —n, and for all the Z; tobe
ons sjoint from X, giving instead th -
;ﬁ;‘e in Figure (6.6). (More precisely, Y— B will be the projectivizgtli,ti)(lzl
b ) of a spll‘t vector bundle E = I o L-!, with deg(L) > 0; X will be
dee cro.ss-sgcuon con_-esponding to the unique summand 1. (;f positive
a egx:ee, and the I; will be Cross-sections corresponding to certain of
infinitely many summands isomorphic to L-1.) Of course, in this

)

Y { -
T 1 =P
bo

FIGURE (6.6)

f::uation,t the secFions Zy will necessarily meet each other. But while
éxpect to see singular fibers when they do, we lack the control over
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—s

&giaz’ theorem

-which admissible covers will arise at such points to be sure. The up-
'shot is that it remains an open question whether or not the open strata
“of the Arbarello flag admit complete curves.
" How can we revive the argument? Diaz’ idea was this: while one sec-
tion of a P! bundle may have negative self-intersection and be disjoint
‘from a collection of others, two such sections cannot exist: if three sec-
‘tions of a P! bundle are disjoint, the bundle must be trivial and the
.gections constant. So if we keep track of the branching of a cover over
‘not one but two points of P!, we're sure to see some degeneracy in a
complete, one-parameter family.
Now, we cannot look just at curves that are branched covers of P!

"totally ramified at two points, since such curves will never fill up the
moduli space M, (whatever the degree of the map, the variety of such
curves will, by Riemann-Hurwitz, have dimension 2g — 1). What we
_can do, however, is to take more generally a branched cover of P!, fix
’ its total ramification index at two points (or, equivalently and more
“conveniently, the cardinality of two fibers), and track the behavior of
'this total. This motivates us to define the (closed) subvariety Dy C M,
* to be-the locus of curves C that admit maps m : C— P! such that

deg(mr) < g and

#(m1{0,0}) < k.

(We take D; to be the empty set.) The upper bound g for deg(m) is

. taken purely for technical convenience. We need some bound on the

degree of m or the locus D would have countably many components,
but we could replace g by any other integer dg = g without affecting
the argument that follows.

EXERCISE (6.7) Show that D is a closed subvariety of M, of pure
codimension g - k for k = 2.

Note that D; is simply the locus of curves expressible as branched
covers of P! (of degree at most g) with two points of total ramification.
At the other extreme, Dy is all of M,: for example, every curve may be
expressed as a branched cover of P! of degree d < g totally ramified
over 0 — that is, every curve has a Weierstrass point — and then it
suffices to choose o to be another branch point of this cover. An
alternative proof is given in:

EXERCISE (6.8) 1) If g is even, show that D, = M, by arguing that
for any curve C of genus g we can find a branched cover C—P! of
degree (g + 2)/2 branched over 0 and o.

2) In general, for which triples (n, &, 8) of integers withn > o, =2 0
and 2n - a - B+ 2 = g, can we find a map m : C—P! of degree n
with ramification indices « and g at two points p and q of C?
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The proof

The basic theorem to be proved, from which Diaz' theorem will follow
immediately, is the:

THEOREM (6.9) The open strata Dy — Dx-) of the Diaz stratification
do not contain complete curves.

PROOF. Let B C D; be a complete curve; we'll show that B must meet
Dy—1. The basic setup for doing this has already been described: af-
ter making a base change, we may assume we have a family of curves
X' — B and for some open subset U C B a family of branched covers
ny : Xy— Yy of degree k, where Yy is a P!-bundle over U. Suppose
that for a general point b € U the restriction mp, : X, — P! has branch
points py,..., pp with the monodromy around p; given by the conju-
gacy class T; in the symmetric group 5. We may take p; and p» to be
the points 0 and . Let #{ be the Hurwitz scheme of branched covers
of P! of degree k branched over b points with branching t3,...,Tp,
and let # be the compactification of # by pseudo-admissible covers
(see the end of Section 3.G for the definition of these covers). We may
then complete Yy to a birationally ruled surface Y— B with disjoint
sections X;, Xy to a surface X — B birationally equivalent to X, and
mry to a family 1 : X — VY of pseudo-admissible covers branched over
the sections ;.

The point is now simply that since the family m : X— V¥ is non-
trivial, we must have degeneracies involving £; or X; and one of the
other sections X;, that is, a fiber Xo— Yp of the map 1 such that the
points p; (0) = Z; nYg and p,(0) = 3 N Y lie on different irreducible
components of Yy — say Y’ and Y. Now, since we've assumed that
the original family B ¢ Dy is a complete curve in M,, all the fibers of
X — B are stably equivalent to smooth curves; in particular, the fiber
Xo of X over 0 will consist of a smooth curve X with trees of rational
curves attached.

We want to show that the point [X] € Dy_;. To do this we look at
the map 1 restricted to X. Let Y be the image of X in Yp; Yp can also be
pictured as the curve Y = P! with one or more trees of rational curves
attached (each at one point). If Y is distinct from both Y’ and Y/, then
we let p’ and p”’ be the points in Y where the trees containing Y’ and
Y meet Y;if Y’ = Y, we take p’ to be the point p; (0), and similarly
incaseY’' =Y.

We claim that the covering map X—Y has total ramification index
of at most 2g — 3 + k outside {p’,p’'}. Indeed, the ramification of X
over Y occurs only over those points p;(0) lying on Y, and over each
p;(0) € Y the ramification index of X— Y is at most the ramification
index of 7;. By construction, the sum of the ramification indices of the
classes Ty,..., Tp is 2g+2d 2. Since the ramification indices of T; and
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- whatever the degree of the cover X— i
‘:vheacardinality of the inverse image of {p’,P

so that X € Di-1 as desired. ®

. space Hyg

293

FIGURE (6.10)

T, add up to 2d - k, the sum of the ram}ﬁgatig? in:lliiecso (I)II; ;'];, .a. p, r-:;;;sr
- _Finally, since the locus Y — ip", P m : '
ngsezt:-)tl“ the poi¥1ts {p3,--- Pp} 1t follows that the total ramification

ity . p"}i ictly less than 2g — 2 + k. Now,
index of X—Y over Y —{p’,p }is su;(,:ity;ollows e ed e claim that

"}chsatmostk—l

'C Moduli of hyperelliptic curves

! embled may be used to
how how the techniques we've ass
r:ti‘('i(;'v;:zlist;ably geometric subvarieties of the moduli space of curves

exam i th hyperellip-
i le of the moduli space Hg C Mg of sSmoo
z;t?u?vis andpits closure H , in the moduli space of stable curves. The

. . . bvari-
i i ble, since it can be viewed a_s asubv
I P e ot al s of genus g, as a finite quotient

ety of the moduli space of all /S or, what is, in this case, the

itz scheme of double covers, : .

(s):ntf:’.e ?sutrl::nrfmduli space of stable (29 + _2)-pomted r?%or.na‘:’ ::rr::lii

We’will be mostly concerned with the divisor theorydo theg.restriction

like to describe the Picard group of Hy, und.erstanhi e re adies
map from Pic(M,) to Pic(Hp), and get some idea whic

are positive on Hy.

Fiddling around ; o
imply writing down a “gen-
feel for the problem, we start _by_sxmp \ - .
Il?ag‘e(t);e-;zrameter family of hyperelhgtlc curves: thatis, we consider
the family of curves given by the equation

2 = dagsa(t) - X282+ -k (t) X F ao(t)

where the a; are general polynomials in of some even degree d. The

1
total space X of this family is simply the double cover of P

x Pl
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branched along a general curve C of type (2g + 2,d). (If d were
X—P! x P! would be ramified over the ling t = oo.)) gince Cis :gg:
gral, it (and hence the total space X) will be smooth. Moreover, the
intersection of C with the fiber of P! x P! over t is either tranS\;erse
flt all points or with a single point of simple tangency. Correspond-
ingly, the fiber X; will either be smooth or irreducible with a single
node (over the point of tangency). The curve o : P — M, determined
t.>y the pencil will thus miss the boundary components A; entirely for
i = 1; and the degree of the boundary divisor A on P! will be the
numb'er of branch points of C over P. To calculate this last number,
use memm-Hthz: C has genus (d — 1)(2g + 1), and so a map ex:
pressing C as a simply branched cover of degree 2g + 2 of P! will have
2d(2g + 1) branch points; thus

degp: (60) = 2d(2g + 1).

To calculate the degree of the line bundle A on P! there are sev-
eral approaches. The simplest is to write down a frame for the Hodge

bundle: for general (finite) t, a basis for the space of holomorphic
one-forms on X; is given by

w = X o xdx o _xldx
¥ ¥ T y
These give sections of the Hodge bundile E that are everywhere inde-
pendent except %t the point £ = . At this point, each section w« has
a zero of order (%) and after multiplying w by t#/2 these sections do
in fact form a frame for E in a neighborhood of t = oo; thus

E= (0..1 (%))og

degpi(A) =g - %

For future reference, we note the relation

and in particular

(6.11) degp: (80) = (8 + :—’) degpi (A).

The next exercise gives another method for calculating the degree of A.

EXERCISE (6.12) 1) Apply Riemann-Hurwitz to the map X — P! x P!
to find the canonical class Kx of X.

2) Use this to find the class of the dualizing sheaf wxp = Kx/K
of the family, and hence the degree of the class x; on f’llp X

3) Finally, apply formula (3.110) — 12 - A = k; + 6 — to recover
degpl (A).
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You may have noticed that we used quotes when describing the pen-
cil above as general. Of course, these families don’t give general curves
in the hyperellipticlocus: taking the branch curve C tobe general gives
us curves that avoid all the A; for i > 0. But the pencils above are not
even general amongst families with such branching. The reason is that
not every family of hyperelliptic curves over a base B will have total
space X a double cover of B x P1; X will in general be a double cover
of a P1-bundle over B but only if this bundle is trivial is X itself a dou-
ble cover of B x P!. This exercise shows that, nonetheless, the relation
(6.11) continues to hold.

EXERCISE (6.13) Let S— B be a ruled surface and let D be a suitably
ample divisor class on S of even degree d = 2g + 2 over B. Let C be
a general curve in the linear system |D], and let X —S be the double

. cover of S branched along C. Mimic the calculations above to deter-

mine the degrees of A and & for the family of hyperelliptic curves

X — B. In particular, show that we'll always have

deggz(do) = (8 + :_1) - degg(Ao) .

The calculation for an (almost) arbitrary family

The next logical question to ask is: how do we go from the “general”
one-parameter families described (those in the last exercise are, at
least, general amongst families that meet only the boundary compo-
nent of Ag) to more arbitrary families. One patural way to attempt this
would be to consider double covers of ruled surfaces S— B branched
over curves that have more general branching behavior over B. Unfor-
tunately, this quickly gets very complicated: the fibers over B of the
double covers we get aren’t in general stable, and the process of sta-
ble reduction makes the formulas messy. A more tractable approach
is to use the description of the closure H, of Hy, given by the Hurwitz
scheme of admissible covers of degree 2 of stable (2g + 2)-pointed
rational curves — that is, to consider one-parameter families of such
admissible covers, over one-parameter families of stable pointed ra-
tional curves. We will do this, deriving in this subsection a relation
among the degrees of various divisor classes associated to such a fam-
ily, and then in the next one, laying out what this means in terms of
the rational Picard group of H,.

Let’s set things up. Given a one-parameter family of curves whose
general member is smooth and hyperelliptic, we may after base change
assume we have a family of admissible covers of degree 2 of stable
2g + 2-pointed rational curves: that is, a surface S— B fibered over
a curve B with rational nodal fibers and 2g + 2 everywhere disjoint




296 6. Geometry of moduli spaces: selected resuits
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FIGURE (6.14)

sections 0; : B—S, and a double cover X— that restricts on each
fiber Sp to an admissible cover of S}, branched at the points oy(b).
In fact, since we're primarily interested in the divisor theory of the
hyperelliptic locus in moduli, we can simplify by working only with
families that don’t meet any of the strata of the Hurwitz scheme of
codimension greater than 1. This amounts to making the additional
assumption that each fiber S of S— B has either one or two compo-
nents. The schematic picture of a typical family S— B is therefore as
shown in Figure (6.14).

Next, we ask what the double cover X —S), looks like over one of
the singular curves Sj. A first observation is that the answer depends
on whether the numbers of points o3(b) on each of the two compo-
nents of Sj, are even or odd. The cover cannot be branched over the

node of S in the former case and must be branched over this node in
the latter. '

FIGURE (6.15)

In the even case, the admissible cover X, — S}, looks, near the node
of Sp, like that shown in Figure (6.15).There are two possibilities for
the curve X, If each component S, contains at least four of the branch
p_oints 01(b), then X, is a stable curve consisting of two hyperellip-
tic curves attached to each other at two points conjugate on each. If
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one of the components S, contains only two of the oj(b), then the
corresponding component of X, will be a semistable rational curve
and the main component will be a hyperelliptic cuirve of genus g — 1.
The stable model of X} is thus obtained by taking this hyperelliptic
curve and identifying two conjugate points. In both cases, the stable
model of the curve Xj will lie in the boundary component Ag. Note
that the curve B—M,; associated to the family X — B will have inter-
section number 2 with Ag at such points b € B if the total space §
(and hence likewise X) is smooth over b. More generally, it will have
intersection number 2k with Ag if the local equation of S at the node

of Sp is (xy — tk).

FIGURE (6.16)

In the odd case, there must be at least three branch points on each
component since both are stable. This means that X, is always stable
and consists of two hyperelliptic curves joined by identifying a Weier-
strass point on each. In this case, the curve X} will lie in the boundary
component of A; if and only if the components of S, contain 2i + 1

- and 2g + 1 - 2i of the points o7(b). Moreover, if the local equation of §

at the node p of Sp is (xy - t2k) — the power of t must be even since
X — S will be ramified at the isolated point p — then X will have local
equation (xy — tk) at the point lying over p, and b will be a point of
intersection multiplicity k of B with A;.

To count the number of such fibers, we'll let d; be the number of
singular fibers S; of $—- B in which one component contains j of the
points o;(b) and the other 2g + 2 — j, each such fiber counted with
multiplicity k if the local equation of § at the node of Sp is xy — tk.
We can then write

(6.17) degg(60) =2 - zdz_j;
J

while for each i > 0 we have

(6.18) degg(6;) = dz;“.

Note that we can define the integers d; for general families S— B of
pointed rational curves: let d; be the number of nodes p of fibers
Sp such that the connected components of the complement S — {p}
contain j and 2g + 2 — j of the points o;(b).
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EXERCISE (6.19) Show that with this convention, if X —S— B is the
family of hyperelliptic curves given as admissible covers of the curves
Sp branched in the points g(b), then the relations above on the de-
grees deg(48;) still hold.

The next task is to find the self-intersection of the relative dualizing
sheaf of X over B in terms of the numbers d;. By Riemann-Hurwitz,
the relative dualizing sheaf of X over B is expressed in terms of the rel-
ative dualizing sheaf of S over B and the classes of the branch divisors
I = 61(B) C . To use this we must thus relate the self-intersections
of the sections, the class of the relative dualizing sheaf of the surface
S— B, and the number of singular fibers of each type.

This is a calculation that takes place on S. To simplify, let's first con-
sider only the case in which the total space § of the family is smooth.
What we want to do first, in this case, is to blow down all the compo-
nents of the singular fibers that meet fewer than g + 1 of the sections;
and for every singular fiber in which both components meet g + 1 of
the sections, to blow down one of the two at random. We then have
a nice P! bundle 7" over B, with 2g + 2 sections I} meeting pairwise
transversely; for each singular fiber of S— B contributing to d j we
have a point where j of the sections meet. In particular,

Zrlr,.:ZJ—(—jz——l—l-d,.

l<m J

On the other hand, there is a basic relation between the pairwise
intersections of the[; and their self-intersections. For any two sections
I; and Iy, the difference I — Iy, is numerically equivalent to a sum of
fibers, and so has self-intersection 0; thus

[2+T2 = 2L; - Tp.
Combining this with the last equality, we have

g+1)- 32 =3j(j-1)-d,
l j

What happens when we pass from the P! bundle back to our original
surface S? Each time we blow up a point where j of the sections I}
meet, the sum of the self-intersections of the I decreases by j, so
that on S the sum of the self-intersections of the proper transforms
of the sections I satisfies

g+1) -0 =g+ V(R -3,j-d))
(6.20)

=-2;jg+2-j -ad;.
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For use later in this chapter, it’s convenient to observe that this in-
equality generalizes in two ways.

EXERCISE (6.21) Verify that this last relation holds even if the family
S— B has singular points as follows. Suppose that, at a point p € Sp,
S has local equation xy — tk. Show that:

‘1) after blowing down the component of S; containing j < g + 1 of

the points gy(b), the resulting surface will be smooth at the image of

2) the corresponding sections I; will meet pairwise with intersection
number k, contributing k - j(j — 1) to the sum of the intersections
I; - Imi and,

3) to recover the original surface S we must first blow up k times to
separate the sections I; passing through the image of p, and then blow
down the first (k — 1) exceptional divisors lowering from the sum of
the self-intersections I'? by k - j2.

EXERCISE (6.22) Suppose S— B is a family of rational curves with
smooth total space and such that each singular fiber contains exactly
two components and that we're given n pairwise disjoint sections I;.
Define, as above, d; to be the number of singular fibers with i of the
sections passing through one component and (n — i) passing through
the other. Show that the argument above now yields

m-1)->=-Yjn-j-d;.
] j

Next, consider the class ws/g of the relative dualizing sheaf of
S— B. Before we blew up, the relative dualizing sheaf had self-
intersection 0. This follows, for example, from the fact that any P!-
bundle over B is obtained from B x P! by a like number of blowups
and blowdowns; or, alternately, by applying (K7)? = 4 — 4g(B). Since
there is one blowup for each singular fiber there are a total of 3 ;(d;),
giving

(6.23) (ws/8)’ = - 3. d;.
j

Finally, we can use this to calculate the self-intersection of the class
wx/p of the relative dualizing sheaf of a family X — B of hyperelliptic
curves realized as a double cover @ : X—S of S branched along the
sections [. We have, first of all, by Riemann-Hurwitz

wx/p = @*ws/p + Rx

= @*(wss + %)
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where Ry is the class of the ramification divisor of X—S on X and
Rs = 3 ; I} is the corresponding the branch divisor on S. We thus have

2
(wxp)’=2- (a)s/x +2 5‘)
i

=2 (ws,n)z + ZZt:(ws/x . T't) + %(Z{: T}Z)

since T} - Ty = 0 for I # m. On the other hand, the intersection num-
ber of ws;p with a section of the map S— B is just minus the self-
intersection of that section, so that after clearing denominators, the
last two terms yield

3
(wx8)? = 2 (ws/p)? - E(gftz) .
Using (6.20) and (6.23), this gives the relation
229+ 1) - (wx/p)? = 429 + 1) - (ws;5)* - 3(29 + 1)(2 ﬁz)
i

=) (-4(2g+1)-3j(j-29-2)) - d;
J

=Y (6jg -3/ +6j-8g-4)-dy.
J

On the other hand, by (6.17) and (6.18),

degy(8) = z(jgmd,) + %(

2. d,).

j odd

Combining both of these with the basic formula 12A = k3 + 8
(cf. (3.110)), we see that we can write

degp(A) =D ¢; - dy
J
where, for even j = 20, we have

C’“(lz)((4g+2)(618 3j°+6j-8g 4)+2)

(1 12
- (12(4g+2)) (1209 - 1202 + 12ax)

_ax(g+l-a)
C (4g+2)

C. Moduli of hyperelliptic curves 301

and, for odd j = 2x + 1, we have

A AY R Y S 1
cj-(lz)((4g+2)(619 3j+6j-8g 4)+2)

_ax(g-a
T (49+2)°

To summarize, then, we have

oalg+1-a) o(g - o)
degz(A) = —E——d; + z —F—d;.
jga 49 +2 j=2041 4g + 2

Since the numbers d, aren’t determined by the degrees of the divi-
sor classes §; on B, we cannot express this as a relation among the
restrictions to the hyperelliptic locus H; ¢ M, of the generators
A,80,...,014s2; of Pic(Mg). The exception is our original “general”
case, however, where all d; = 0 for i = 3. Then we have

dz = degy(8o) = degg(d)

and so we recover the relation
degg(8) = (8 + :—’) - degg(A).

In general, we obtain only an inequality. If we first note that
c
Coa2C; and 2-C2qi1 2 72
we obtain:

COROLLARY (6.24) Let X— B be any one-parameter family of curves
whose general member is smooth and hyperelliptic. Then

deg,(8) < (s + 3—) . degz(A).

We will have occasion to use this inequality in determining the ample
cone of M, in the following section.

The Picard group of the hyperelliptic locus

What conclusions can we draw from the relations derived in the pre-
ceding discussion? We will try to shed some light on them by express-
ing them in terms of the rational Picard group Pic(H,;) ®Q of the locus
H, c M, of hyperelliptic curves.
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To begin with, we can describe the locus Hy C M, as the quotient
of the Hurwitz scheme .’_H'z,g of admissible covers of degree 2 by the
action of the symmetric group 524.2 on 2g + 2 letters. Thus, to find
the rational Picard group of H, we’ll start by describing the Picard
group of #H - This is reasonably straightforward, since the Hurwitz
scheme #» o Of admissible covers of degree 2 is the same thing as the
moduli space R = —.M‘o,zwz of stable 2g + 2-pointed rational curves.

We have an open subset R of R, consisting of smooth curves C = P!
with 2g + 2 distinct marked points. This is isomorphic to an open
subset in (P1)29-1; specifically, if we choose for each C the unique
isomorphism ¢ : C— P! carrying p1,p2 and p3 to 0,1 and o re-
spectively, we can identify R with the complement in (P!)29-! of the
divisors determined by the conditions p; € {0,1, ]} or (p; = p;).
This clearly has trivial Picard group, so that the Picard group of R is
generated by the classes of the boundary divisors. For every partition
of I c {1,2,...,2g + 2} into two sets I and J such that both I and J
have cardinality at least 2, we have a divisor D; ¢ R whose general
point corresponds to a curve C = () Up C2 consisting of two smooth
rational curves C; meeting at a point p, with the marked points p; in
C) for i € I and in C; for i € J. Of course, swapping I and J gives rise
to the same divisor.

The rational Picard group of the hyperelliptic locus H, can be de-
scribed in these terms. To begin with, H, is the quotient of R by the
symmetric group on 2g + 2 letters, with the open subset Hy of smooth
curves corresponding to the open subset R (see Exercise (6.25) below);
thus

Pic(H,) ® Q = (0),

and Pic(H,;) ® Q is generated by those linear combinations of the
divisors Dy invariant under the symmetric group. These are just the
sums T; over all subsets I C {1,2,...,2g + 2} of given cardinality i
of the divisors ;. The upshot is that we get one class E; for each
i=2,...,g+1, and Z; is simply the closure of the locus of admissible
covers of curves of the form C = C, up C2 with i marked points p on
C) and 2g + 2 - i marked points on C,.

Next, observe that these divisor classes are indeed independent.
One way to see this is to exhibit a collection of curves in My,2,4.> whose
images in H; have independent intersection numbers with them. For
example, 2g + 2 general sections of P! x P! — P! will meet pairwise
but not triply; thus, the corresponding curve P‘—»ﬁg will meet the
boundary component F, but will not meet Z; for i > 2. On the other
hand, we could simply fix a point p € P! x P! and take i general
sections passing through this point followed by 2g + 2 — i general
sections; the corresponding curve will meet F,, F; and no divisor E;
with j + 2, i. This shows that the divisor classes Z; are independent.
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¥

. To relate this to the standard divisor classes on the moduli space
- Mg, we can express this as saying that the Picard group of the locus
Hy C Wg of hyperelliptic curves is generated by boundary compo-
- nents Eo,...,8((g-1),2f and @y,...,0 4,2}, where the general point of
.Bg = Faa+2 corresponds to a double cover of P! U P! branched over
“2a + 2 points in one component and 2g — 2« in the other, and a gen-
“‘eral point of @x = Fza+) corresponds to a double cover of P! U P!

‘branched over 2a + 1 points in one component and 2g + 1 — 2« in the
. other.

Now, let X — B be any family of hyperelliptic curves. After making a
‘base change, we can associate to X — B a family of admissible covers
with base B’; and the numbers d; introduced in the preceding part
are just the intersection numbers of the corresponding curve B’ c R
with the divisor classes ;. It follows by our previous analysis that the
pullback map

* : Pic (_ﬁg)—’Pic ('ﬁg)

"sends Ag to 2 - 3 B4 and A4 to O4/2 for each «. Finally, our previous
relation says that the pullback of the divisor class A to Pic(H,) is given
_as the linear combination

) = uy—zlnzj ag+1-0) +u§:z1 g -
& 4g+2 « 4g+2 «©

i=1

EXERCISE (6.25) Prove thatif (B; py,..., P2g+2) is any stable (2g + 2)-
pointed rational curve, there exists a unigue admissible cover C— B
branched at the p;. In this way, we have a bijection between H, and
the quotient of the moduli space My, 242 by the symmetric group on
2g + 2 letters. Is this, in fact, an isomorphism?

D Ample divisors on M,

Our goal in this section is to describe the cone of ample divisors on
the moduli space of stable curves. The main tool here is a theorem
that translates the stability (in the G.L.T. sense) of the Hilbert point of
a general fiber of a family of curves in P7 into an inequality relating
certain intersection numbers of the first Chern class of the line bun-
dle that embeds the family. We begin by setting up the statement of
this inequality. Its proof then takes up most of the section. The third
subsection translates this inequality into one relating standard divi-
sor classes and the fourth then combines this with the results of the
preceding section to determine the ample cone.
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An inequality for generically Hilbert stable families

We start with a very naive and general question. Suppose we're given a
proper flat family 1 : X — B of varieties, and a family of line bundles
on the fibers Xj, = w~1(b) of the family — that s, aline bundle L on X,
considered modulo pullbacks of line bundles on B. If L is sufficiently
ample, its direct image m,L will be a vector bundle E of some rank
7+ 1: we'll assume this from now on. What we would like is to estimate
the twisting of this vector bundle, as encoded in its first Chern class.

Of course, this question isn't well-posed as it stands, because ten-
soring L with the pullback w*M of a line bundle M on B will have the
effect of tensoring E by M (and so in particular adding (r + 1)c; (M)
to ¢ (E)). There is a way to fix this, though: we simply consider the
difference between the pullback m*c; (E) of the first Chern class of E
to X, and r + 1 times the first Chern class of L itself. Thus, we consider
the divisor class

D = (r + 1)1 (L) — mw*c1(E);

by what we've said, this is invariant under tensoring L with pullbacks
of line bundles from B.

The class D has the drawback of being a divisor class on the total
space X of our family, and not on the base B as desired, but we can
fix this too. If the family X — B has fiber dimension k, we can define
a divisor class F on B by raising the class D € A*X to the (k +1)®
power and taking the Gysin image

F = 1, (D**1).

Thus, for example, if B is one-dimensional, then all terms involving
c1(E) to a power greater than 1 will vanish and the degree of F will
equal

(r + DX+ (L)X — (k + 1)(r + Vi (E)er (L)%

With all this said, what can we say about the class F? The answer
in general seems to be: nothing. However, with one relatively mild
hypothesis we have a straightforward inequality:

THEOREM (6.26) (CORNALBA-HARRIS [27]) Assume that B is one di-
mensional, and that for a general point b € B the line bundle L = L| X,
is very ample and embeds X as a Hilbert stable variety in P". Then
deg(F) 2 0, ie.,

r+1)-a@)**! = (k+1)-c1(L) - c1(E).

Note that, since B is one-dimensional, it suffices to exhibit one value
of b for which h%(Xy,Lg) = r + 1, Lp is very ample and @y, (Xp) is
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Hilbert stable. In general, if we assume that these conditions are met
for every b € B (or for all but a finite number), we may deduce that F
has nonnegative intersection number with every curve in B and hence
that F lies in the closure of the cone of ample divisors on B.

Before proving this theorem, let’s see what its consequences are for
curves. We apply it in the simplest way possible: we assume we have
a one-parameter family 1 : X— B of stable curves, with the general
fiber X) smooth and nonhyperelliptic; and we take the line bundle L
to be simply the relative dualizing sheaf L = wx;s. The degree of L
on the fibers of 1 is 2g — 2 and the degree of L on X is the degree of
the line bundle « on B, so we have

gK = 2(2g - 2)A.

On the other hand, we know that xk = 12A — §; plugging this in and
collecting terms, we have the:

COROLLARY (6.27) If it : X — B is any one-parameter family of stable
curves, not all hyperelliptic or singular, then the degree A of the Hodge
bundle and the number & of singular fibers satisfy the inequality

degz(6) < (8 + 3—) - degg(A).

This, combined with a separate analysis of families of hyperelliptic
and/or singular curves, will allow us to say when a linear combination
of the divisor classes A and & is ample on M,.

Proof of the theorem

The first step is to observe that for any cover B’ — B, the divisor class
F’ associated to the pullback of L to the pullback family X’ = X xgB’ is
just the pullback of F to B’. It's thus sufficient to prove the inequality
after such a base change; in particular, we may assume, if we like, that
the first Chern class c) (E) is divisible by 7 + 1. Next, since the divisor
class F was specifically chosen to be invariant under tensoring L with
pullbacks of line bundles on B, we may choose a line bundle M on
B with first Chern class ¢, (E)/(r + 1) and replace L by LQm~1M".
Thus we may assume to begin with that ¢; (E) = 0 and what we have
to show under this hypothesis is that ¢; (L)x*1 > 0.
Now consider the natural map

@ : Sym™(E)—mr, (L™).

For sufficiently large values of m, Sym™(E) and . (L™) will be vec-
tor bundles of ranks O,(m) = (" }™) and P(m) respectively where
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P = Py, is the Hilbert polynomial of the fiber X}, of rr and the map @
will be generically surjective. We thus have an induced map

WiWw= AP"")(Sym"‘(E))——AP"")(n* (L"'))

which is likewise generically surjective: since the right-hand side is a
line bundle this simply means the map isn’t identically zero.

Let us now choose a point b € B such that on the fiber Xj, the line
bundle L, is very ample and embeds X; as a Hilbert stable variety
X» C P" = P(E})), and consider these maps just over that point. The
kernel of @ is just the m™ graded piece of the ideal of Xp; so the
kernel of ), viewed as a point in the projective space P(Wj) is just
the Hilbert point [X5] of X}, in

G = G(P(m),Sym"‘(Eb)) c P(W).

Now, by the hypothesis that X} is stable, there exists a polynomial
J» of some degree n on the vector space V := Wy, with the properties
that

1. f} is invariant under the action of the group SL(Ep) on Sym™(V);
2. fu(IXp]) = 0.

The first of these properties states that: there is a global holomorphic
section f of the bundle Sym™(W) whose value at b is f,. To see this,
observe that, because the vector bundle E has zero first Chern class,
we can choose a collection of trivializations @ : Ey, =+ @y, whose
transition functions gqp take values in SL(n, C) rather than GL(n, C).
Such trivializations induce trivializations on all the multilinear alge-
bra relatives of E; in particular, we get trivializations @4 of Sym™ (W)
whose transition functions gug preserve f. Thus, if b € Uy we can
simply take f to be given in each coordinate patch by the constant
polynomial fx = @«(fp) and the compatibilities fg = Fupfx On the
overlaps are automatic.

The second property above says simply that the image of the section
J under the map

Sym™(y) : Sym™ (W) —Sym™ (AP"™ (1, (L™)) )

is nonzero at the point b. In particular, Sym™ (A" (m) (qp,, (L"‘))) has a
nonzero global holomorphic section and hence

c1 (Sym™ (AP™ (1, (L™)))) 2 0.
This is all we really need to know. To start with, this implies that
a (A"(""('rr*(L"‘))) =q ('rr* (L’")) >0.
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What is this last gquantity? We can try to estimate it by applying the
Grothendieck-Riemann-Roch formula to the line bundle L™ on X. Of
course, this formula describes, not the Chern class of the direct image,
but the alternating sum

a(m(L™)) = Y (-1) - a1 (R'm, (L™)).
i

In the present circumstances, though, the higher cohomology of L™
vanishes on every fiber of X — B, so that the higher direct images of
L™ are zero. Grothendieck-Riemann-Roch then tells us that

c1(meL™) = [m, (td(X/B) - ch(L™))],

= 1, ([td(X/B) - ch(L™)];,1)

_ Cl(LM)k+l Cl(L"‘)"
‘"*( k+D! T K

=1, (m"“ c1(L)k+! k€1 (Lm)k

«td; (X/B) + - - )

k+D! T T

-td; (X/B) + - - ) .
This last expression is a polynomial in m so, if it's nonnegative for all
sufficiently large m, then the leading coefficient must be nonnegative.
Thus, as desired, we see that

c1(L)¥*! = deg(f) = 0.

EXERCISE (6.28) What inequality on the degrees of A and é do you
get for an arbitrary family X — B of stable curves by applying this
theorem to powers of the relative dualizing sheaf?

EXERCISE (6.29) Now let 1 : X — B be a family of stable curves, not
all singular or hyperelliptic, and let o : B— X be a section with image
Z = o(B). Assume that K3} (-no (b)) is very ample and embeds Xp
as a stable curve for some b so that Theorem (6.26) applies to the line
bundle w™(-nX). What inequality on the degrees of A and § and the
intersection number w - £ does the theorem yield? In particular, is
it possible to improve the ratio (8 + 3) for families of curves not all
hyperelliptic?

The discussion that follows will shed light on this last question and
you may want to return to it after reading the remainder of this sec-
tion.
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An inequality for families of pointed curves

We will consider here inequalities among the degrees of the three dj-
visor classes A, and w on the moduli space T; = M,,1 of pointed
curves. Recall that A here stands for the pullback of the class of the
Hodge bundle on M,, w = c1(wg, 7;,) is the class of the relative
dualizing sheaf of T, over M,, and the total boundary class & is the
sum of the boundary components Ay,...,A45-1 C T, or equivalently
the pullback of the total boundary é of .’Mg (The methods we'll use
would allow us to obtain more precise estimates in terms of A, w and
the individual divisor classes d4, but we won't go into these here).
As we indicated at the beginning of this section, the argument here
is elementary. Start with a curve B—»’fg. After a base change, which of
course just multiplies the degrees of A, w and & by a common integer,
we can assume that B arises from an actual family of stable pointed
curves, that is, a family X — B of nodal curves and a section o : B—X
such that for each b € B the pair (X, o (b)) is a stable pointed curve,
Replacing X by its minimal desingularization, we can assume instead
that X is smooth and that the fibers (X;, o (b)) are semistable pointed
curves — that is, nodal curves X) with a marked smooth point such
that every component of the normalization Xb of genus 0 contains at
least two points lying over the marked point or the nodes of X),.
Consider now the three divisor classes on X given by

« the class f of a fiber of X — B;
o the class y of the sectionT = ¢ (B) C X; and,
« the class n = ¢)(wx/B).

Note that the self-intersection y? is simply minus the intersection
number y - n, since the relative dualizing sheaf of X/B restricts to
the normal bundle of I in X (in general, the intersection number of
the relative dualizing sheaf of a family X —B with a curve C ¢ X
will be the self-intersection of C plus the number of branch points
of C— B, properly counted). Next, the intersection number y - n is
just the degree of the line bundle w on T, pulled back to B. Finally,
the self-intersection n? is just the degree of the line bundle x on M,
pulled back to B. In particular, the reduction above in which the total
space of the stable model is replaced by its minimal desingularization
doesn't affect the self-intersection of the relative dualizing sheaf.

We can thus write out the intersection matrix of the three classes
f. y and n as shown in Table (6.30). Now, the subspace of the Neron-
Severi group NS(X) spanned by these three classes contains divisors
of positive self-intersection: as an example, take y plus a large multi-
ple of f.1t follows from the Hodge index theorem that the intersection
form on this subspace has one positive and two nonpositive eigenval-
ues; in particular, its determinant must be nonnegative.

i
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f 0 1
Y 1 y: | -y?

nl2g-2|-y*{ n?
TABLR (6.30)

Writing this out, we have

-2g(2g-2)y*-n?* =0,

. which translates into the basic inequality

| 63)

4g(g — 1) - degg(w) = 12 - degg(A) — degp(d).

i
; i+ Note that if X— B has general fiber smooth (and of genus g > 1),
‘“then the term on the right is positive. In other words, the self-

" intersection of a section of a family of stable curves, not all singular, is
' nonpositive; if the family is nonconstant, it’s negative. Another corol-

lary follows from the observation that if X — B is a nonconstant family
of stable curves, not all singular, and C c X is any curve of degree m

. over B, then the degree of the relative dualizing sheaf wx,p restricted

" to C is greater than or equal to m - (12degg(A) — degg(8)). In partic-

. ular, we can invoke:

SESHADRI'S CRITERION (6.32) Let X be a projective variety and let L
be a line bundle on X. If for some ¢ > 0, L satisfies

deg (L|c) > £ - multy(C)
for all curves C c X and points p € C, then L is ample.

Since the multiplicity of a singular point p e Conacurve CC X
is at most the degree of C over B (and since we know the relative
dualizing sheaf has positive degree on the components of the fibers
of X— B), we may deduce the:

THEOREM (6.33) If X — B is any nonconstant family of stable curves,
not all of whose fibers are singular, then the relative dualizing sheaf
wx s of X over B is ample.

PROBLEM (6.34) Is the inequality

4g(g — 1) - degp(w) = 12 - degg(A) — degg(J)
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optimal? Does any sharper inequality hold generally, or do there in-
stead exist one-parameter families of pointed curves for which the
ratio of the two sides is arbitrarily close to 1?

PROBLEM (6.35) Can we find a more exact collection of inequalities
on the degrees of the divisor classes A, w and §; on a one-parameter
family of pointed curves? To be more precise, can we describe the
cone in R9-2 of linear combinations of A, w and the §; that have
nonnegative degree on every family?

PROBLEM (6.36) Do the results above have analogues for multiply-
pointed curves? That is, can we find inequalities on the degrees of the
restrictions to one-parameter families of the various divisor classes on
the moduli space M,,? This is already a fairly substantial problem
in case g = 0 (cf. [105]). A first step, however, would be to look for
inequalities in which the set of divisor classes §; corresponding to
degenerations of the underlying curve, as well as the set of boundary
components corresponding to points coming together are grouped
much as the §; are in this section.

EXERCISE (6.37) We can now make the question asked at the end of
Exercise (6.29) slightly more precise. For example, we ask: can we do
better than (6.31) for a family 1 : X— B of stable pointed curves with
section o : B— X if we assume that the general curve X}, is embedded
as a stable curve by the line bundle wx, (-0 (b))?

Ample divisors on M,

Combining the results of the preceding section and this one, we see
that the inequality

4
8§+—)d A)=d o
(+g) egp(A) > degp(8)

holds for any family X — B of stable curves whose general member
is smooth. What about families X — B whose general member is sin-
gular? We can use the inequalities of the last subsection to estimate
the degrees of the line bundles A and & on these, and ultimately to
show the ampleness of certain linear combinations of these two line
bundles.

To set this up, let X— B be a family of stable curves whose general
fiber has d nodes. By way of terminology, we'll call those nodes of a
fiber X, that are specializations of the nodes on a general fiber the
general nodes of X, and call those nodes of X, that aren’t limits
of nodes on nearby fibers the special nodes of Xp. Thus, every fiber

—

i . Ample divisors on .Mg 311

F

E . will have exactly d general nodes and a finite number will have some
spec1al nodes as well.

" Let Y—X be the normalization of the total space of X: that is,
y—»B is the family whose fiber Yj over any b € B is the partial nor-
mahzaUOn of Xp at its general nodes. After making a base change, we
can assume that there are 2d sections 07y,...,024 : B—Y whose im-
ages I; meet a fiber Y} in the points lying over the general nodes of the

; * corresponding fiber Xp. Note that the general fiber Yj of Y—B will
* be reducible if the general fiber of X — B is. If so, then after a further
- base change we may assume that V itself is the disjoint union of a
" collection of families Y;— B with connected fibers. The exercise be-
- Jow shows that any fiber of one of the VY, together with those marked
. points o;(b) lying on it, is a stable pointed curve. Finally, we replace
. each Yy by its minimal desingularization (so that now each fiber of V;
1s a semistable pointed curve).

F.XBRCISI! (6.38) Let (C,p1,...,Pn) be a stable n-pointed curve. Let
P g : Cs— C be the partial normalization of C at a set S of nodes. Make
4 % each connected component D of Cs into a pointed curve by marking
! the points on D that map under m to either a marked point of Cora
: node lying in S. Show that each such component D is then stable as a

- pointed curve .

. We're now ready to describe the degrees of the divisor classes A
/and & on B associated to the family X—B in terms of the corre-
. sponding classes A; and &; associated to the families Y;— B and the

* self-intersections (I3)2 of the images of the sections 01 : B—Y;. We
~ have

deg(d) = > deg(A;) and deg(d) = > deg(&:) + X (T)*.
i l

i

Given this, what is the largest possible ratio of deg(4) to deg(A)? The
first thing to notice is that components Y; — B whose general fiber has
large genus g; do not help maximize this ratio: for such a component
we'll have deg(8;) < (8 + 4/g:) - deg(A;), and the sections I} lying
on Y; will have negative self-intersection, bringing the total degree of
& down further. Components Y; with fibers of genus 1 do better: we
have
deg(6;) = 12 - deg(Ay);

énd while we do have to have at least one section I'y lying on V;;, its se_lf-
intersection will be simply — deg(A;). We can thus make up a family
of any genus g with

deg(6) = 11 - deg(A):
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just take a constant family C x B— B of smooth curves of genus g -1,
with constant sectionT = {p} x B, and attach any family of semistable
curves of genus 1 — for example, take a pencil {E;} of plane cubics,
choose a base point g of the pencil, and attach each E, to C by iden-
tifying p with g as shown, schematically, in Figure (6.39).

FIGURE (6.39)

Can we do better than 11? Clearly, we can do this only by including
components VY; whose general fiber is rational; so we have to investi-
gate the contributions of these. But we’ve already done this in effect
in the preceding section: each family Y;— B is a family of nodal ratio-
nal curves with smooth total space (and at most two components in
each fiber). If n; of the disjoint sections I; lie on V;, then applying Ex-
ercise (6.22), we have

-1 -2 =->jni-j)-d;
l J

where d; is the number of singular fibers with j of the n; sections
passing through one component and n; — j passing through the other.
Given that in our present circumstance each n; = 3, we see that the

sum of the self-intersections of the sections I is less than or equal to

minus the number of singular fibers. A component V;— B with rational
fiber thus contributes nothing to A and a negative quantity to 6, so that
in fact the ratio of 11 obtained above is the best (or worst, depending
on your point of view) we can do. We deduce the:

THEOREM (6.40) (CORNALBA-HARRIS [27]) For any positive integers
a and b, the divisor class aA - bé is ample on M, if and only ifa > 11b.

~ The following exercise is a warning against the temptation to con-
clude that A itself is ample on M,: that, in other words, we can let
b = 0 above.
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EXERCISE (6.41) Let Y— B be the family of stable curves obtained by
identifying a fixed point on a fixed smooth curve C; of genus g; with
a variable point on a fixed curve C; of genus g» = g — g1. Show that
degg(A) = 0 and hence that the linear system given by any multiple
of A contracts the image of B in M,.

Theorem (6.40) suggests numerous variations that, to our knowl-
edge, have never been worked out. First, we can, as usual, ask what
happens if we consider the boundary components individually:

PROBLEM (6.42) What linear combinations of the classes A and
80,...,0g/2) are ample on M,?

Next, we can ask for extensions to moduli spaces of n-pointed
curves. A first question is:

PROBLEM (6.43) What linear combinations of A, and w are ample
on the moduli space T, of one-pointed curves?

Note finally that, among all generically smooth one-parameter fam-
ilies of stable curves, the ones that we’ve seen achieve the maximum
ratio of deg(J) to deg(A) consist entirely of hyperelliptic curves. We
could ask: does a stronger inequality hold for families not contained
in the hyperelliptic locus? How about trigonal curves, and so on? All
of this motivates the:

PROBLEM (6.44) Define, as usual, a stable curve to be hyperelliptic,
trigonal, etc. if it’s the limit of smooth curves in the corresponding
locus inM,. What linear combinations of A and & are ample when
restricted to the locus of hyperelliptic, or of trigonal curves in M,?

The best results to date on this question are due to Stankova-
Frenkel [143].

E Irreducibility of the Severi varieties

In this section we'll sketch a proof of the result stated in Chapter 1 as
the third part of Theorem (1.49): that the family of irreducible plane
curves of given degree and (geometric) genus is irreducible. This is a
topic that draws upon many of the ideas we've developed in the pre-
ceding chapters; in fact, it represents one of the best examples of how
we can combine the insights obtained from both the parameter space
and moduli-theoretic viewpoints to analyze a family of curves. The
reason why the abstract and projective viewpoints are both involved
may not be clear from a first glance at the problem, but it should
emerge in the course of the following reductions.
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Initial reductions

Let’s first ask the naive question, why should we expect such a the-
orem to be true? After all, we've seen that the Hilbert schemes pa-
rameterizing irreducible, nondegenerate curves of fixed degree and
genus in higher-dimensional projective spaces are only very rarely ir-
reducible. What about the geometry of plane curves should make them
different?

The first answer was given by Severi [140]. (Indeed, although there
are now a number of proofs given of the theorem, they all go back to
this answer in the end.) Severi’s idea was to look at degenerations of
the curves parameterized by a given component of the Severi variety.
Specifically, Severi claimed that if we let PV be the space of all plane
curves of degree d, let m = (431) be the genus of a smooth curve
of degree d, and V4, C PV be the variety of irreducible nodal plane
curves of degree d and geometric genus g (or, equivalently, with ex-
actly 6 = m — g nodes), then the closure of any component 3. of V4 g
must contain the variety V44 of rational nodal plane curves. (Observe
that a rational nodal plane curve of degree d is the same thing as an
irreducible nodal curve of degree d with exactly m nodes).

To see why this implies the irreducibility of Va.g, observe first that
the variety Vg, is irreducible, since all rational nodal curves of de-
gree d are simply projections of the rational normal curve X c P4
from various subspaces A = P43 c P4 to a plane [ = P2. This
gives a dominant rational map from the product of the Grassman-
nian G(d - 3, d) with the variety PGL3 of isomorphisms of I' with P2
to the Severi variety V9, showing that Va0 is irreducible.

In fact, more is true. Given a family of nodal curves C, e Va0,
the m = (43!) nodes p;, ..., pm vary continuously, tracing out arcs
p1(t),...,pm(t). We claim that not only can we find such a family {C,}
of nodal curves joining any two given ones Co and C) in Vg4, but we
can find one such that the arcs p;(t),..., pm(t) induce an arbitrary
bijection between the nodes p;(0) of Co and the nodes pi(l) of C;.In
other words, the monodromy in the family V44 acts on the nodes of

Co as the full symmetric group on m letters. To see this, note that a ,

nodal curve C C P2 may be represented as above as the projection of a
rational normal curve X c P4 from a plane A = P4-3 ¢ P4; the nodes
of C correspond to the points of intersection of A with the chordal
variety of X. Our monodromy assertion then follows from the:

UNIFORM POSITION PRINCIPLE (6.45) If Z is any nondegenerate irre-
ducible variety of dimension k and degree d in P", and A = P"-* c pn
is a subspace meeting Z transversely at points p1,..., pa, then, as we
vary A € G(n—k,n) in the open subset U of planes transverse to Z, the
monodromy acts on the points p; as the symmetric group on d letters.
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For a proof (and other applications) of this statement, see {7] or[78].
In our present circumstances, it gives us a picture of what the clo-
sure Va, of the variety V4, must look like in a neighborhood og
Va,. To begin with, let [Co] € V4,0 correspond to a curve Cy C .P
with nodes pi,..., pm.- We've seen in our discussion of deformation

_ theory that a neighborhood of [Cy] in PN will map to the product

of the deformation spaces of the singularities (Co, p;) (which are
each smooth and one-dimensional). This means that we have local
coordinates 2;,...,zy on PV in a neighborhood of [Co] in terms of
which V¢ is the codimension m coordinate subspace with equations
2y = -+ = Z;m = 0, and the closure Vg4, is the union of the codi-
mension §-coordinate planes z;, = - - - = z;; = 0 determined by all
é-element subsets {i,,...,is} of {1,...,m} — in other words, for any
subset I of m — 6 of the nodes of Cy, there is a (smooth) branch X;
of V44 near [Co) such that a deformation of Cp in X; smooths all the

- nodes in I and none of the § others. The schematic picture is that like

that in Figure (6.46) (where we have takenm =2 and § = 1).

Vag \\\

1

FIGURE (6.46)

Thus, V4, isn't locally irreducible at [Co); rather, it hags ' 9]
branches. But, as [Cp] varies in Vj 0, the monodromy acts transmng
on these branches. Since any irreducible component of V4 4 containing
Va0 in its closure must contain one of the branches of V4,4 near V4,
it must therefore contain them all. Thus, in order to demonstrate the
irreducibility of V4,4 it's enough to show that any irre('iucible compo-
nent of V.4, must contain Vy ¢ in its closure. As an obvious extension,
we have the: "

First Reduction: It's sufficient to show that any irreducible component
of V4, contains in its closure an irreducible component of V44
for some g’ < g.
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We can get away with even less because the picture of V4 and V4 4
in a neighborhood of a point [Co] € V4 corresponding to a curve Cy
with m — g’ nodes looks very much like the one above — that is, V4 4
is locally a union of sheets on each of which some (g ~ g')-element
subset of the nodes of Co smooth. Thus:

Second Reduction: It’s sufficient to show that any irreducible compo-
nent of Va4 contains in its closure a point [Cp] corresponding
to a nodal curve Cp of genus g’ < g.

This reduction seems to be what convinced many that V4 is irre-
ducible: it certainly seems plausible enough that any component of
Va4 must include in its closure, for example, curves with § + 1 nodes.
However, it turns out to be something of a red herring for us: our
proof will use a statement that reduces the irreducibility of Va4 to
the existence of a more general degeneration in its closure.

We will eventually produce such a degeneration, but our path to it
will be circuitous. Why can’t we proceed directly? All we need to do
is to show that every component of V; 4 admits the simplest kind of
degenerations. Moreover, it's not hard to see that every component
‘W of V44 contains degenerations in its closure. For example, we can
just choose any [C] € ‘W meeting the line Z, transversely, and take
the limit as t goes to zero of the curves C; obtained from C = C; by
applying the linear transformation :(Zy, Z,, Z>) = (tZy, Z1, Z2). This
yields a point [Cp] in 'W corresponding to a curve Cy consisting of d
concurrent lines. Alternatively, assuming C doesn't contain the point
2y = Z; = 0, we can take the limit as t— o0, which is a d-fold line.
(Severi tried to use the presence of these degenerations to prove the
theorem,; but no one has seen any way to make his arguments precise.)
Yet another way to exhibit degenerations is to observe that, for any
point p € P2, the locus of curves containing p is a hyperplane in the
space PN of plane curves of degree d. By taking points p1, p2, ..., Pd+1
lying on aline L ¢ P2, we deduce that’'W contains curves containing all
the p; and hence containing L. The problem here is that the presence

of these possibly wild degenerations doesn’t guarantee that ‘W admits -

the milder degenerations to nodal curves required by the reductions.

Another approach to showing that every component of V4, admits
degenerations is to apply Diaz’ theorem (2.34) that M, doesn't con-
tain any complete subvarieties of dimension g — 1. Consider the ra-
tional map

(p:vd'g"‘>.Mg.

Since any component of W7 (C) whose general member is birationally
very ample has dimension at most d — 3r (cf. Exercise IV-E-2 of [7)),
the fibers of @ cannot have dimension greater than d + 2. Since the
dimension of V44 is 3d + g — 1, Diaz concluded that the closure in
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M,, of the image of @ on any component W of Vag ngessarily meets
the boundary A € M,. An arc in W whose image in M, tended to A
would certainly induce a family of curves degenerating in moduli. The
existence of even such families had not previously been known. Here
again, however, there seems to be no way to control the singularities
of the limiting model in P2 and hence to conclude the irreducibility
of V4. A priori, every such arc in ‘W might tend, for example, to a
nonreduced curve.

These considerations make it clear that what we really need here
isn't simply to degenerate, but to do so retaining some control over the
limiting curve, i.e., to exhibit in the closure of any ‘W reduced curves
having lower geometric genus but still reasonably mild singularities.
The question is, how do we exert such control? For example, we've
seen that in ‘W there are curves that contain a line L, but how do
we rule out the possibility that every such curve is just a d-tuple of
concurrent lines?

To surmount these difficulties, the key extra idea is to keep track
of dimensions, or degrees of freedom, in our families. Using this, we'll
make two further reductions. In the end, these reductions won't be
used in the proof; however, they help us come to grips with the dif-
ficulties discussed above and lead to the kind of degenerations we'll
study in the next subsection.

How does keeping track of dimensions help us rule out, for example,
the possibility that every curve in 'W containing L is a d-tuple of con-
current lines? Simply, we know that the dimension of Wis3d +g -1,
and so the locus in ‘W of curves containing L is, by the argument
above, of dimension at least dim(W) - (d + 1) = 2d + g — 2. But
the family of d-tuples of concurrent lines including L has dimension
just d.

As another example, recall that, by Lemma (3.45), any locus
‘W' c PN consisting of curves of degree d and genus g' < g and
having dimension 3d + g — 2 must be open in a component of Usg-1.
We conclude that:

Third Reduction: It's sufficient to show that if ‘W is any component
of Vg, then 'W — ‘W has codimension 1: i.e., that 'W contains a
locus of codimension 1 consisting of curves other than reduced
curves of geometric genus g.

Now, clearly the first two constructions of degenerations given
above will not produce such loci. Diaz’ construction, on the other
hand, seems a much better bet: after all, all we have to show is that the
inverse image, under the map @, of the boundary A C M, has codi-
mension 1 in 'W. Since A has codimension 1 in M, (and is even the
support of a Cartier divisor), this, at first, seems promising. The diffi-
culty now is that @ isn’t a regular map, only a rational one. When we




318 6. Geometry of moduli spaces: selected results

talk loosely about the inverse image of A, we really mean @) (@3 1Ay,
where @) and @; are the projection maps from the graph T of ¢
to 'W and M, respectively. And, while @;!(A) will necessarily have
codimension 1 in 7T, the fibers of @; on @; 1(A) may be positive-
dimensional.

b

locus of singular curves
=@~ (Ag)

ficul) = 978,

FIGURE (6.47)

To see that this really happens, consider a family of plane curves
over a two-dimensional base ‘W, generically smooth in a neighborhood
of apoint p € P? and specializing to a curve Co with a cuspat p —e.g.,
the family given, in terms of affine coordinates x, y on P2 near p and
a,b on ‘W near [Cp], by the equation y? = x3 + ax + b as sketched in
Figure (6.47). Assuming the curves C) are well-behaved away from p,
the map @ : ' W— M, will be defined everywhere except at the origin
a = b = 0in 'W. There, however, it'’s undefined, and we'll have to blow
up three times — once at the origin and then at the intersection of the
first two exceptional divisors with the proper transform on the a-axis
— to resolve it. The map will then blow down the first two exceptional
divisors, so the graph T of @ will be as shown in Figure (6.48). This is
the basic example of a situation where a divisor in Wa — in this case,
A) — may have inverse image of codimension greater than 1 in 'W.

A second example, not involving singularities, can be obtained by
considering the rational map @ : W = P4 --+M; from the space
of plane quartics to their moduli. In Mj, the locus H of hyperelliptic
curves is a divisor; but anytime we have a family of smooth curves
of genus 3 approaching a hyperelliptic one, the canonical models will
tend to a double conic, and the locus S in P4 of double conics is of
course five-dimensional. What's going on here is again simple to de-
scribe, at least over a general point of H: the map @ is blowing up the
locus §, replacing points [2C] € § with pairs (2C, D) where D is anor-
mal direction to H in P14, represented by a divisor D € |@,¢c(4)|, and
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FIGURE (6.48)

ing the pair (2C, D) to the curve of genus 3 given as the double
Ictz)ifl;glgfgc = llg‘ branched over the eight points 9f D. (_Incull‘lentally, t(ljlje_
inverse image @~1(H) doesn’t have codimegsnon 9in P K t_>ut co
mension 3: the locus in M3 of curves consistmg_ of two elhﬁnc curves
meeting at two points lies in H, al‘(lld i)ts inverse image in P** contains

s of quartics with a tacnoae. ) . .

th‘lenl(;;l;' eve(r]lt, it's clear that to find a locus of codimension 1 in ’Wt
consisting of curves of lower geometric genus, Xe need to find a %o]u.ls
[C] € @¢~1(A) ¢ 'W such that the fiber of P; () c T over [N i
udeally) finite or, failing this, at least contains an isolated pom(tl. o.wE
one circumstance in which a point (C, D) € T will t?e an isolated ];(l)mt
of <p§1 (A)n@;1({[C]}) iswhen the stable curve D is stably equiv 2111
to a nodal partial normalization of the plane curve C — there Vavre 1(: vz
finitely many nodal partial normalizations of a given curve. We ha
thus arrived at the final reduction:

ion: It’ ficient to exhibit in any component W of
Fourt}‘l,f : :lrlxcatllroan Ié §W§l:fnth parameter ¢ such thgt B — {0} lies in :Y
but {0} does not, and such that the stable limit of thc_: normal-
izations of the curves C; as t—0is a singular curve (1..e., maps
to a point of the boundary A of M,) that is stably equivalent to

a partial normalization of the curve Co.
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There is one point about this reduction that doesn’t follow from the
preceding discussion. The stable limit X, of the normalizations X, of
the C) need not automatically lie in the boundary A C Wa under the
other hypotheses of the reduction. However, if X, is indeed smooth,
then letting £; be the pullback of Op2(1) to X; and Ly the limit on X,
of the £;’s, then the subspace Vo ¢ H(X;, £;) giving the maps from
X to P2 will have a base point. This implies that the corresponding
locus in V44 has pure codimension 1, and hence consists generically
of nodal curves with  + 1 nodes, so in this case the result follows
immediately.

Analyzing a degeneration

With this said, let V be an arbitrary component of the closed Severi
variety V44. We will find the sort of one-parameter family of curves
in V we want by looking at curves C in V containing a line. To do this,
we fix a line L in P? and d points pi,...,palyingon L,and let Vo C V
be the closure of the locus of irreducible, nodal curves containing
P1,---, Pa- (We can ensure that Vg is nonempty by choosing the points
P1,..., pd tobe the intersection of L with a general member of V.) Note
that by Lemma (3.45), the dimension of Vj is exactly 2d + g — 1.

Now choose one more point ps.; € L,let H C PN be the hyperplane
of plane curves containing Pz, and let W = V3 n H. Of course, W
will consist entirely of curves containing L. Note also that, being the
intersection of Vo with a hyperplane, W will have dimension exactly
2d+g - 2.

Let [Co] € W be a general point of any component of W. Our initial
goal will be to describe the curve C = Cy, and our tool will be the
method of semistable reduction.

To carry this out, let {{C¢]}tea be an arc in V meeting W trans-
versely at [Co], with C; irreducible and nodal for t # 0. Let X; be the
normalization of C; for ¢t + 0; the curves X; form the fibers of a fam-
ily X*—A* over the punctured disc, and the normalization maps
ne : X¢— C: string together to form a map n : X*— P2. Applying
nodal reduction [Proposition (3.49)}, we can (after base change) com-
plete this family to a family 1r : X— A of nodal curves, proper over A
and satisfying the conditions that

1. the total space of X is smooth;

2. there is a regular map n : X—P?2 restricting to the map
ne : X¢— C; on each fiber X; of  over A* ; and

3. X is minimal with respect to these properties; i.e., there are no
rational components of the central fiber X, meeting the rest of
the central fiber only once and on which the map n is constant.
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We have, of course, no a priori idea of what the central fiber 'Xo of
this family looks like, or how the map o behaves. However, we'll see
that the information we do have — that no has degree d, that .Xo has
arithmetic genus g, and that no is the limit of r'nap_s na vyhose 1p1ages
contain the points p; — combined with etlhe basic dimension estimates

w us to describe Xo completely. . .
ab%e;l::t by introducing some notation. By constru?tlon, the image
Co of no contains the line L. Let Yo C Xo be tl_le union of the Fo_m-
ponents of Xo mapping to L letY) be.the union of tl}e re:,n;;lmn‘gi
components, and let 4, ..., 4k be the points of intersection of ¥o ant
Y;. Denote by « the degree of no on the curve Yo, SO that we can write

where D is the image of Y; under no. Clearly a crucial part of our
analysis must be to control o: it turns out that « must equal 1. A con-

Z
[ ——_———— S promtireet
Yo Y)
FIGURE (6.49)

ill be that Xo looks schematically as shown in Figure (6.‘.19):
;?;qilslzntcr:::g}’t;urves (a(il, in fact, rational) whose root Z (shownhthlcl;;
ened) maps isomorphically under n tg lt. a)md whose leaves each me

i f the points g; (shown as dots). . .
YlTl:)l :;l;r:ss thel;'act th:t no is the limit of maps.whose Fagtel:‘s c_ont:nsxé
the points p; so that we can apply this hypoth-es1s, letZ; beb e mvet:h e
image of the point p; in X*, and let %; b_e its closure. Observe ha
since the total space X is smooth, the sections 2; of qmst meet the
central fiber Xo in smooth points of Xo. We can now write

(6-50) n*L=21+"'+zd+Ml
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where M is a divisor whose support is exactly the curve Yy. In partic-
ular, the only points of Y; lying over a point of L other than one of
the p; are the points 4q,...,qx of intersection of Y; with Y. In fact,
we can refine this a little: of the k points q;, suppose that 8 lie on
connected components of Yy on which n isn’t constant,and y = k-8
on connected components of Yy on which n is constant. A connected
component Y of Yy on which n is constant must meet one of the sec-
tons ¥; and hence map to one of the points p;: if Y were disjoint from
all 3;, then the part My of the divisor M supported on Y would have
self-intersection (My - My) = (My - n*L) = 0, contradicting the fact
that any divisor supported on a proper subset of a fiber of m must
have negative self-intersection. Thus, there can be at most  points
of Y1 lying over points of L other than the p;. (Note that, since every
connected component of Y, must meet Yy, n can't be constant on any
connected component of Y;.)
The key question to ask is now: what is the geometric genus g; of

Y1? To estimate this, we use the fact that the arithmetic genus of the
whole fiber Xj is g; it follows that

Pa(Yo) + pa(M) +k-1=g.

Now, since every connected component of Yo must meet Y;, Yp can
have at most k connected components. In fact, we can do a little bet-
ter: there are at most y connected components of Yo on which n is

constant, and at most « connected components on which it’s noncon-
stant. Thus

Pa(Yo)21-y -«

=1-k+B-«
and hence
g(Y1) < pa(1)
(6.51) =g+1-k-paYo)

<g+oa-8.

Now let’s assemble what we know about D = n(Y)). It's the image
of the nodal curve Y; of geometric genus at most g + « — 8 via the
map 1 of degree d — . Moreover, n isn’t constant on any connected
component of Y, and it takes at most 8 points of Y; to points of L

other than p,,..., ps. By Corollary (3.46), such curves form a family
of dimension at most

(6.52) 2d-o)+(g+ax-B)+B-1=2d+g-1-a.
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On the other hand, the curve D moves in the (2d +g - 2)-dimens}onal
family of plane curves W.We concluQe that fd + (fl; 2;03; : g ‘all— tl?é
Therefore, equality is only possible if a =1 and 1, over, he
i ini i .52), and in the app
bounds used in obtaining the estimate (6.52), ' ]
lo:ltll)tli)::rrl of Corollary (3.46), are in fact exact. A whole series of conse
quences follow:

1. Yo is connected: it consists of a tree with one irr_educifbl: ﬁcg:;i
ponent Z mapping isomorphically to L, plus chains 0! rticular
curves joining Z to the points 41,...,qk o0 Y:. In par y
y=0and B =k.

2. Y, is smooth of genus g +1 - k.

o 1
imi i ionXpof Yiand Z = P’,
3. The stable limit of the curves X; is the union i
joined at the k points 4i,..., 9k (or the curve we get from this
by contracting Z if k=1or?2).

First, the sharpness of the estimate (6.51) for _the gel_ms ot;1 :’10 u;:lo
plies that any connected component of Yo has arithmetic get;m oi‘ T
is a tree of rational curves. Moreover, any connectgd co_mpon iy
on which n is constant can meet Y in only one popt, smcetzlqu v
the dimension statement of Corolla:-y ('.:.216; inmclgl;:zhﬂ:?);n e?:t ‘ (li)zom-

n'Y; map via n to distinct points of L. SInce _
gizgnt olf Yo g a tree, the minimality hypothesis in the to::(;’nst:;l:;:,tlll(i)cl:1 o't;
X implies that there are no connected components O koS(‘) e
is constant. Equivalently, we must have y =_0 am_i B=k. mt e ¢ m;
there is exactly one component of Yoon wl-nch nis x.mngzong 2 .must
gives the first consequt)ance. 'I(‘t‘x,e )cha;n+01f mkeqy:rlﬁaihcttlnegsi \l:s(tl-le )

e S| :ie, g(Y1) =palln) = -k,
rlgsl;qugszg. The%hird is then immediate.fron} the ﬁrsft tv;(;.t is hap-

Our analysis also gives us a fairly precise picture o : e
pening to the plane models. Since the k pom'ts q1s---> 49k ig?s D
points p;, the points of Y; that d;:) map t:rgtc)llﬂn;: ;;,-i;l:'g ggm S e

i ith the sections %;; in p ) €
fii;mrllllﬁtt‘i;llicv:tlyml in n*L, we see that whenever the. 1magedla)l ::)\Erg:e
meets L at a point py, it does so transversely. Thus D is f no Ay
of degree d -1 (thus having 8§ —d+k+1nodes), m.eeung _tr?n‘) et
at a subset of | the points p; and at k further points 7; = N4
arﬁf‘?;t,h&l; ?)icture of the degeneration is this: as 'Ctt ter'nci;irtlz
Co = LUD,weseea node tending to c.each of the _l pom S t:é e
on D. The curve D meets L in k other points 7;, and if m; ;sc e g
of contact of D with L at 7y, then We'll l;elg ;;‘n—li:sn:l;igi‘ (t)h { ;) vy

be zero — i.e,
tg gutN l? tcinﬁll:)tt i)rer;r‘g must contain at least one point of L other than
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the p;. Also, observe that there is only one other restriction on the
numbers k and l: I must be at least 8. As for the multiplicities m; of
intersection of D with L at the points 7;, they have to satisfy only the
restriction that 3.¢(m; — 1) < § - L. The components of the variety W
are thus classified by the sequences (I,m;, ..., m;) satisfying these
inequalities.

We repeat, for emphasis, that this analysis applies only to a family
of curves in Vj tending to a general point of a component of the hy-
perplane section W of Vj; obviously, in an arbitrary family tending to
a point of W, things can happen that would curl your toenails.

We have now almost arrived at a family meeting the conditions of
the fourth reduction. Before completing the argument, however, we'll
pause to give an example making explicit the general constructions of
this subsection.

An example

FIGURE (6.53)

To make the preceding general analysis a bit more concrete, consider
a family C: of plane curves of degree 8 and genus 16 meeting a line
L in fixed points p,..., ps, and specializing to a curve Cp containing
L as above — that is, with (g a general point of a component of the
locus of curves in the closure of V3 16 containing L. The limiting curve
will then consist of the line L plus an irreducible nodal septimic D
meeting L at smooth points. One possibility, consistent with all our
restrictions, is that D will pass through p; but none of the points
P2 ..., Ps, will meet L three times away from p), once transversely,
once in a point of simple tangency, and once with contact of order 3,
and will have single node not lying on L: a schematic diagram is shown
in Figure (6.53)

In this case, the central fiber Xj of the family 7t : X — A constructed
above will look like Figure (6.54). There, Y; is the normalization of D
and all the other curves shown are components of Y, and are rational
with the unique component Z mapping onto L under n shown at the
left. If we write n*L = 3 3; + M, then the numbers next to components
of Yy are the multiplicities with which each appears in M; these are
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(e
T
;

FIGURE (6.54)

dictated by the requirements that n be constant on all but one com-
ponent, so that the degree of n*L = 3.I; + M on all other components
of Yo is zero, and that M meet Y; with multiplicities 1, 2 and 3.

EXERCISE (6.55) Verify the multiplicities in Figure (6.54)

Pl N

FIGURE (6.56)

The stable reduction of Xo, shown in Figure (6.56) thus is t.he union
of the curve Y; with a copy of P! — the image of Z — meeting itat three
points (which, in the notation of the preceding st}bsgcﬁon would be
41, q2 and gq3) or in other words the partial normalization of the curve
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Co in which the two branches at p) are separated, and the remaining
singularities of Cy are reduced to nodes.

What we would actually see, if we then looked at the entire family,
would be one of the five nodes of the general member C; tending to
the point p;, one tending to the point where D is simply tangent to L,
two tending to the point where D has contact or order 3 with L, and,

finally, one staying away from L and arriving at the (unique) node of
D itself.

Completing the argument

The general analysis carried out earlier in this section produces a fam-
ily that is very close to meeting the conditions of the fourth reduction.
The only point that isn't clear is that the stable limit of the normal-
izations X; of the curves C; really is singular. In fact, there will be
components of W such that the stable limit of the normalizations of
a family of curves C: tending to a general point [Cy] € W is simply
a smooth curve of genus g, mapped to the plane by a linear series
of degree d — 1 or less. In these cases, we would like to be able to
conclude that there is still a codimension 1 component of the bound-
ary Va4 \ Va4 containing [Co), and so apply the third reduction. We
won’t do this here simply because the details are lengthy. We leave it
as an exercise for you to carry out the modifications of the previous ar-
guments necessary to make this approach work, if you're interested.
Instead, we’ll give an alternative argument in which we use a local
analysis based on facts about deformations of tacnodes as a shortcut
to deducing the existence of a degeneration to a nodal curve of lower
geometric genus from the existence of the degenerations constructed
above.

Recall that the singularities of Co = L U D along the line L are two-
branch double points, consisting of L plus a smooth arc having contact
of order say m with L. Such a singularity may be given by a local

equation y2? + x2™, and its versal deformation given by the family of
curves

(6.57) P24+ x2™ 4 aom 2x®™ 24 ... raix +ap

parameterized by ag,...,d2m-2 — that is, the versal deformation
space A is an étale neighborhood of the origin in affine (2m - 1)-
space with coordinates ag,...,d2m-2.

Within this deformation space, there are two loci of particular in-
terest to us. One is the equigeneric locus B, defined to be the locus
of 8-constant deformations, or deformations that preserve the total
contribution of the singularity to the geometric genus. In general, for
a singularity (C, p) with contribution § = length(oap 10cp) = m,
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this will be the closure of the locus of curves with m nodes; in our
present case, it's the locus of (ao, . .., A2m-2) such that the polynomial
F(x) = X2™ 4 gm_2X? ™24 -+ A1X + A0 has m double roots. Us-
ing the vanishing of the x2m-1 coefficient in (6.57), this locus is given
parametrically by

m-1 2
FO) = (= A2 (x = A0)2 -+ (x —Am)? (X + 3 A)
i=1
in particular, we see that it’s irreducible of dimension m — 1 in A.
EXERCISE (6.58) Show, more generally, that the codimension of the

5-constant locus in the versal deformation space of a plane curve sin-
gularity is always &.

The second locus B’ C A of interest to us is the closure of the locus
of curves with m — 1 nodes nearby. This is given parametrically as

m-1
0 = = A2 (= A - (X~ Ame)? (=) (x4 ue2 T n)

i=1

and so is irreducible of dimension m.

We now consider how this relates to deformations of Cq asa pl_ane
curve. Specifically, we take U to be the component of an étale neigh-
borhood of the point [Cp] in V containing the arc {[{C:1} constructed
in the preceding subsections, and look at the induced map Y froql U
to the product of the deformation spaces A; of the k sm_gular points
r: € Co. We first observe that the fiber of U over the’ ;_)omt_ 1Col con;
sists entirely of reducible curves D = L'uD’ wherelL'is a line and D
has degree d — 1. Moreover, the singularities of D’ consist of exactly
& — d + k + 1 nodes (i.e., D’ is nodal of geometric genus g - k+1), and
D’ meets L’ at smooth points with multiplicities m,, ..., k.

By our earlier dimension counts, D'has3(d-1)+(g-k+1)- 1
moduli. Adding 2 moduli for L’ and subtracting the (m; —_1) cond_l-
tions imposed by the ith multiplicity, the dimension of this fiber is
thus

k k
3(d—1)+(g—k+1)—1+2—Z(mi-l)=3d-1+g-§;mi.
i=1 i=
On the other hand, the map y carries U into the product qf the sub-
spaces B; corresponding to deformations of C(_; to curves with mi - 1
nodes near 7;. Since this product has dimension Y ; m; anq U itself
has dimension 3d + g — 1, we deduce that ¢ maps U surjectively onto
it. In particular, the image of ¢ must also contain the product of the
equigeneric subspaces B;.
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Therefore, the deformations of Cy in U c V include nodal curves
with & + k nodes. This is exactly the statement we need to apply the
last of the initial reductions above and complete the proof of the ir-
reducibility of V4.

F Kodaira dimension of M,

In this section, we'll show how the theory of limit linear series, in

combination with our description of the Picard group of M,, may be
used to prove that:

THEOREM (6.59) (HARRIS-MUMFORD THEOREM, [82] AND [79]) The

moduli space of curves of genus g is of general type if g = 24, and has
Kodaira dimension at least 1 if g = 23.

Before undertaking this, we should say a few words about the back-
ground of the problem.

Writing down general curves

If someone put a gun to your head and demanded that you show him
this “general curve of genus 2” that everyone was proving theorems
about — in other words, that you write down the equation of a general
curve of genus 2 — you would have no problem: you would whip out
your pen, write

y2=xS+asx5+---+ap

and say, “where the a; are general complex numbers”. Likewise, if the
challenge were to write down a general curve of genus 3, you could
write the equation of a plane quartic

Z ayxiyl = 0

i+js4

and again take the coefficients a;; to be general. For genus 4 and
5, there is a similar solution: in each case, the canonical model of a
general curve is a complete intersection, and you can just write down
a homogeneous quadric and a cubic in four variables (for genus 4) or
three homogeneous quadrics in five variables (for genus 5) and once
more let the coefficients vary freely.

In genus 6 you might have to stop and think. Here the canonical
model C C PS5 of a general curve of genus 6 isn't a complete inter-
section; it's the intersection of six quadric hypersurfaces in P3, and
you can’t just take six general quadric polynomials and expect their

5
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intersection to be anything but empty. But Brill-Noether theory pro-
vides an answer: a general curve of genus 6 is representable as a plgne
sextic curve with four double points, no three collinear. So everything
is OK: we can take those points to be the coordinate points in P? to-
gether with the point [1,1,1], write down a basis for the subspace
V c HO(P?, O(6)) of sextics vanishing to order 2 at those points, and
simply take a general linear combination of these basis elements.

Genus 7 presents a new challenge: a general such curve can most
simply be represented as a plane octic with eight double points, and
those points can’t be put in a fixed position. But it's really no problgm:
if we simply let the points p;, ..., ps be general, we see that there is a
21-dimensional vector space of octic polynomials vanishing doubly on
P1,..., P8, and as these points vary the corresponding vector gpaces
form a vector bundle over an open subset of (P?)8. Trivialize this vec-
tor bundle, and we once more have a family of curves, parametrized
by an open subset of an affine space, that includes th‘e general curve of
genus 7. Of course, the gunman may get a little anxious at this point:
the nodes of the octic plane model of a general curve of genus 7, he-
may point out, need not be eight general points in the plane. But you
can handle this one: simply refer him to the paper of Arbarello .and
Cornalba [4], where this is verified. Moreover, analogous constructions
work as well for genera g = 8,9 and 10. .

Unfortunately, it stops working with g = 11. Chang-Ran [22] and
Sernesi [137] prove the existence of such families for genera 11, 12
and 13, but far more subtle methods are needed for these cases, an_d
that's the end of the line, at least as far as our present knowled.ge is
concerned. If your mugger wants more, you might as well tell him to
go ahead and shoot.

What's going on here? Basically, to say that there exists a family
of curves, parametrized by an open subset of an affine space, that_
includes the general curve of genus g, is exactly to say that the moduli
space M, is unirational, that is, thereis a dom.inan_t rational map frqm
a projective space PN to M. In particular, it implies .that th.e Kodaira
dimension of M, is negative; that is, there are no pluricanonical forms
on M,. Thus, one consequence of Theorem (6.59) is the fact that for
g = 23, such a family cannot exist. .

Other facts are known about the birational geometry of M, for
small values of g. It's known to be rational forg = 2,4 and 6 (se_e
the articles of Dolgachev [35] and Shepherd-Barron {141]). In addi-
tion, Kollar and Schreyer [101] prove that M, is actually ra'tional.for
all g < 6. Also, it's known that M5 has negative Kodaira dimension.
The proofs employ a variety of methods but there doesn't seem to be
much chance of using similar ideas to fill in the missing g. \_Ve con-
jecture, however, that for g < 22, M, has Kodaira dimension —oo.
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More precisely, the authors conjecture that the third condition in the
criterion at the start of the next subsection holds for such g. This
would have a number of other consequences of interest (for further
details, see [81]). But whatever our guesses about the intermediate
cases, Theorem (6.59) remains the extent of our knowledge about the
cases where M, isn’t unirational, and the remainder of this section
will be devoted, more or less, to its proof.

Basic ideas

It turns out that the computations required for the proof of Theo-
rem (6.59) are significantly simpler if we assume that g + 1 is a com-
posite integer. Since this case reveals all of the ideas needed in general,
we'll deal only with it, using a strategy Iaid out by Eisenbud and Harris
in [41]. The variants needed to deal with general g can also be found
there.

We should establish one point of notation before we begin. The es-
sential ingredient in our argument is a calculation in the Picard group
of the moduli space M,; and while the divisors we'll be considering
will come to us as subschemes D c M, of the moduli space, we'll find
it much more convenient to carry out the necessary calculations in the
group Piceun (M, )®Q of rational divisor classes on the moduli stack,
and to express the results in terms of the standard generators A and §;
of Picrun (M) ®Q. Since it would be burdensome to introduce a sepa-
rate symbol each time, we'll abuse notation and use the same letter D
to denote an effective divisor D c M, and the class in Picgun (M) @Q
associated to it in Proposition (3.91). (Recall that by Proposition (3.92),
this coincides with the the class t* ([ D]) € Piceun(M,)®Q associated
to [D] € Pic(M,) by the isomorphism in Proposition (3.88) except in
the cases of genus 2, of the divisor A; in general, and of the divisor
Hj3 c M3 of hyperelliptic curves of genus 3.)

With this said, the starting point of our analysis is a criterion that
relates the Kodaira dimension of M, to the existence of certain effec-
tive divisors D ¢ M,,.

CRITERION (6.60) For any effective divisor D C M, express the class
of D in terms of standard classes as

tgr2]
D=aA- Z bibi.
i=0

1) M, is of general type if there exists an effective divisor D with
a 13 a 13

b_i<_2— for all i, and E<?'
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2) M, has Kodaira dimension = 1 if there are two effective divisors
with distinct support in M, satisfying the weaker inequalities

a 13 , a 13
b < > for alli, and, by < 3"
3) M, has Kodaira dimension —o if there is no effective divisor

satisfying the inequality a . 13
by 2°
The general type statement follows almost immediately from two

facts established earlier. The first is the computation of the canonical
class of M, in (3.113):

3
Kﬁa=13A—2[Ao]-§[A1]—2[A2]—
=13A-280-361-262—---.

The second is the calculation of the cone of ample divisors in The-
orem (6.40), which shows that aA - bé is ample on M, whenever
a > 11b > 0. Together these show that if there is an effective divi-
sor D as in the criterion, then for suitably divisible m we can find an
effective divisor E and an ample divisor H such that

K%’;' =H+E.
In particular, this shows that the Hilbert function
037 wpem
h®(M,, K-Wa

has order in m at least that of the ample divisor H: this is just another
way to say that this order is maximal, or, equivalently, that M, is of
general type.

EXERCISE (6.61) Prove the second and third assertions of the crite-
rion.

There is one other point that needs to be addressed before we may
conclude Criterion (6.60). As we remarked when it was first intro-
duced, since M, is singular, it doesn’t have a canonical bundle per
se; the canonical bundle on M, is defined simply as the unique (ratio-
nal) line bundle on M, extending the canonical bundle on its smooth
locus. There is thus no guarantee that a global regular section of a
power of K3; will yield a pluricanonical form on a desingularization
of My.In order to ensure that this is in fact the case, we need to study
more closely the singularities of M,. What must be checked is what
was stated classically as the property that “the singularities of M,
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don’t impose adjunction conditions”, or, in the language of contem-
porary birational geometry, that “M, has only terminal singularities”.
Fortunately, the Reid-Tai criterion (cf., [134] and [145]) provides a very
effective method of checking whether any finite quotient singularity
— and recall that all singularitites of M, are of this type — is terminal.
We will give no details here and simply refer to Mumford’s argument
in [82]. You should be aware, however, that this verification involves
some lengthy and nontrivial combinatorial complications, since, for
each g, we find a different menagerie of such singularities on ﬁg.
Indeed, the last step in the argument requires a computer verifica-
tion whose Basic program listing must surely be the only one ever to
appear in Inventiones!

The idea of the proof of Theorem (6.59) is clear: show that for all
g = 24 there are divisor classes on Wg that satisfy the first part of
the criterion. Those that are easiest to work with are usually dubbed
Brill-Noether divisors. Informally, a Brill-Noether divisor is the locus
of curves that carry a g} for which the Brill-Noether number p = —1.
More carefully, these are the union of the codimension 1 components
of the closure of the locus of smooth curves possessing such a linear
series. The one defect these divisors have is that they exist only for
certain g. Since we’re assuming that

p=g-(r+1)g-d+r)=-1,

g + 1 must be composite. This is why our proof, which will use only
these divisors, applies only in this case. For other g, their role can be
taken by certain Petri divisors but the computations become much
more complicated. Again, see [41]. We will loosely refer to loci of
curves possessing exceptional linear series as loci of “special” curves.

We can rewrite the condition p = —1 in terms of 7 and the projective
dimension s = g — d + r — 1 of the linear series residual to the given
one in the canonical series as

=(r+l)(s+1)-1.
Under this assumption, 4, r and s are also related by
d=r(s+2)-1.

Of course, in view of these constraints, once g is fixed any of the
quantities 7, d and s determines the other two. However, it’ll simplify
statements of several propositions to index these divisors by both r
and s. We will thus define D} c M, to be union of the codimension 1
components of the closure of the locus of smooth curves possessing
such a gj.

The aim of the remainder of this section is to compute the class of
DT, up to a positive rational multiple, for all (r,s) withr,s = 1 or,
more precisely, to prove:
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THEOREM (6.62) (BRILL-NOETHER RAY THEOREM) Whenever s 2> 3
and g = (r + 1)(s — 1) — 1, the class of D} on M, is given, for some
rational number c > 0, by

lg/2}

Dy =c((g+3)A- (£57)80- 2. (g - )8)-

Note the remarkable fact that the coefficients (apart from c) depend
only on g, noton 7 or s.

A little arithmetic with the coefficients should quickly convince you
that the only ratio a/b; in this expression for DT that is substantially
larger than 1 for large g is

a _g+3 12
b~ (@) %1

This is less than 13/2 for g = 24 so we're done by applying crite-
rion (6.60) for such (composite) g.

When g = 23, a/bo = 13/2. We can therefore only conclude that
the Kodaira dimension is positive and then only if we find two D]’s
that have distinct support. Since the Hurwitz scheme 1s irreducible,
the locus of smooth curves of genus 23 possessing a g1 is of pure
codimension 1; i.e. D13 contains every such curve. Thus, we can show
that D}; isn t contamed in D3 by producing a smooth curve with a
g13 but no gf;. This in turn follows from the existence of a curve
of compact type possessing a smoothable (i.e., dimensionally proper)
limit g{; but no limit g%,. Exercise (5.67) constructs such a curve.

For genera g < 23, according to Theorem (6.62), a/bg < 13/2 and
s0 the first two parts of Theorem (6.62) give no information. In the
opposite direction. However, all known examples suggest that Brill-
Noether divisors minimize this ratio amongst all effective ones:

CONJECTURE (6.63) (SLOPE CONJECTURE, [81)) If D is any effective
divisor on M, the ratio

a e, 12

be 26+ 71
Applying the third part this would imply that M, has Kodaira dimen-
sion —oo (at least modulo analogous results for the other ratios). The
conjecture is known to be true only for g < 6.

Theorem (6.62) is deduced by studying the pullbacks of DI to
smaller spaces. These pullbacks lie in certain special subloci and gen-
eral results show that the coefficients of divisors whose pullbacks lie
in these subloci satisfy various relations. Together these relations are
enough to yield Theorem (6.62).
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FIGURE (6.64)

The first space we use is the moduli space M4 of stable g-pointed
rational curves. We let i : My ,— M, be the map obtained by attach-
ing a copy of a fixed pointed elliptic curve at each of the g marked
points as in Figure (6.64). The second space we use is M;,, the mod-
uli space of stable one-pointed curves of genus 2 equipped with the
map j : Ma, — M, obtained by attaching a fixed general smooth one-
pointed curve of genus g — 2 at the marked point. .

It seems to be rather common that loci of special curves in M,
meet j(M>,1) only along the closure W C Ma, of the locus in which
the marked point is a Weierstrass point of the underlying curve. This
is the case for both the D7 and the Petri divisors mentioned above
Similarly, the curves in { (Mo ) seem to be rather general. This time D}
— but not the more general Petri divisors — misses i(Mo,g) entirely
These yield relations on coefficients by applying:

THEOREM (6.65) Let D ¢ M, be an effective divisor, with class

1g/2]
D=aA- Y bib;
i=0

1) If j*D is supported on W, then

by b
a=5b-2b, and bo = _il.—_Gz_
Further, if we write j*D = qW for some (rational) number q, then
b2 = 3q.
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2) Ifi*D = 0, then

)] . 4
bi—-————g_l by for 1——2....,[2J.

EXERCISE (6.66) Show that if a divisor D satisfies the relations in both
parts of this theorem, then it satisfies Theorem (6.62) for some c.
Hint: Use the second relation to write b; in terms of b;. Then use the
first to show thata/by = 6+ (12/(g+1)). Then show thatifa = g +3,
then by = (g + 1)/6 and b; = 1. The remaining coefficients are then
immediate from the second set of relations.

Thus, three tasks remain. First, show that the divisors D{ meet
J(Ma,1) only along the closure of the image of W and miss i(Mog)
entirely. Second, show that the constant of proportionality ¢ in The-
orem (6.62) is in fact positive. These will follow from considerations
about limit linear series that follow fairly directly from the results
of Chapter 5. We do this in the next subsection. Third, we must
prove Theorem (6.65). This will take most of the effort and be car-
ried out in the last two subsections.

Pulling back the divisors DY

~ In this section, we’ll apply results about limit linear series to reduce

Theorem (6.62) to Theorem (6.65).

The key point is that the treelike curves in DY are limits of smooth
curves possessing certain linear series with negative p, so they all pos-
sess generalized crude limit series with negative p by Exercise (5.40).

On the other hand, no curve in i(Mg g) Possesses a series with neg-
ative p by the argument on page 275. Hence, no curve in DY can lie
in i(Mpg). For the same reason, D cannot contain any treelike curve
in j(Mz,; — W). But the generic points of the boundary components
of My, are seen in Figure (6.67) where all components have elliptic

/X and S 2
‘ FIGURE (6.67)

normalizations, and these are treelike curves. Thus the locus of non-
treelike curves is of codimension > 1 in j(M>,), and the intersection
of j(Mp,, — W) with a divisor, were it nonempty, could not consist only
of non-treelike curves. Thus, we've shown all but the last assertion of:
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PROPOSITION (6.68) Ifg = (r+1)(s+1) withr,s 2 1, then the divisor
DY c M, doesn’t meet either i(Mo g4) or j(M2,1\W). Moreover, j*(DT)
is a positive multiple of the class of W.

This provides the necessary reduction. The first statement shows
that Theorem (6.62) must be true for some c by Exercise (6.66). By The-
orem (6.65), the last statement shows that the coefficient cb; of §; in
Theorem (6.62) is positive. Since DY is effective, this, in turn, implies
that ¢ > 0 as required.

To verify the last statement of the proposition, we’ll show that if
(Y,p) is a curve of genus 2 with Weierstrass point p and (Z, p) is
a general pointed curve of genus g ~2 withg = (r + 1)(s + 1) - 1,
then the curve C = Y U, Z possesses a smoothable limit g7, ,_, that
extends to a codimension 1 family of nearby smooth curves. This will
show that C, which is a general point of j(W), lies in D} as required.

We will construct the desired limit series aspect by aspect. Leaving
the easy case r = s = 1 to you, we may assume r = 2 or s = 2, so that
rs+r-3 2 0.0n Y we take the aspect Vy tobe | (» + 2)p|+ (rs+7 -3)p.
One computes easily that

b(Vy,p)=(rs-r-3,...,rs—-r-3,rs—-r-2,rs-r -1),

and hence that p(Ly,p) = -1, and Vy is dimensionally proper with
respect to p.

A g7, _, on Z with ramification sequence (0,1, 2, ...,2) at p will have
adjusted Brill-Noether number 0. By Theorem (5.37), there are finitely
many (dimensionally proper) gr,_;’s on Z with this ramification se-
quence at p. We may take any of these to be V5.

Wehave p(L) = —1 by additivity. Since both the aspects constructed
above are dimensionally proper, the discussion of smoothings on
page 267 shows that this limit linear series smooths to a codimen-
sion 1 family. Thus Y U, Z = j(Y) € DI, as required. -

Remark. The constant ¢ of Theorem (6.62) can be computed from the
number n such that j*D} = nW.

QUESTION (6.69) Does 7 equal the number of points in
Grs+2)-1(Z,(p,(0,1,2,...,2)))? If so, it can be computed through
the Schubert calculus. What is its value?

Divisors on M, that miss JMa1 \ W)

Next, we want to verify the first part of Theorem (6.65). We claim this
follows from the following computation of W in terms of the standard
divisor classes M ;.
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PROPOSITION (6.70) W is irreducible, and its class in M, is given by
W=3w-A- 51.

Let's admit this for a moment and complete the argument. To do
this, we need to know the pullbacks to 3\4-2 1 of the standard classes
on M. Clearly, a curve in Ao(M,) N j(Mz,1) must come from a curve
in Ao(Mz,1) so j*(8p) = 8p. Likewise, j*(51) = 8;. Next, j*(§;) =
if i > 3 since then A;(M,) is disjoint from j(Mz,1). To determme
J*(62), observe that, given any family of genus 2 curves  : T—B
with a marked point given by a section o : B—T of m, j*(82)|g is
the pullback from M, of the normal bundle Os,(5,). This may in
turn be identified with the normal bundle to the section o. There-
fore, by adjunction j*(62) = —w. Finally, if C is a curve of compact
type with components C;, then H(C, wc) is naturally the direct sum
@, H*(C;, wc,). In our situation, this means that J*Ax,) = Azy,-
Since A, 6p and §; on My, are pullbacks of the analogous classes on
M>, where, by Exercise (3.143), they satisfy the relation

1 1
A—E50+§51'

this relation will continue to hold on My ;.
Using the pullbacks, we see that if j*D = gW then the coefficients
of D satisfy the relation

al —bodp -0 6) + bw =q(3w -A - &)

in A(Mz,). This immediately gives b, = 3q as claimed. Moreover,
making this substitution for q and the one above for A gives

Qa by a 2
10 =3¢ @ 5-hi=-5h

from which the relations in the first part of Theorem (6.65) follow by

solving for a and by.

We are thus left with the proposition. Recall that W is defined as
the closure of W n M>,, the locus of Weierstrass points on smooth
genus 2 curves. By the usual construction of curves of genus 2 as
hyperelliptic covers, the monodromy of W — M, is transitive, and
thus W is irreducible.

As for the class of W, it's enough to prove the relation of (6.70) after
restricting to families

w:C—B, o0:B—~T

of stable genus 2 curves pointed by a section ¢ for which B is a com-
plete smooth curve. Further, we may harmlessly assume that B avoids
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C (

FIGURE (6.71)

any codimension 2 phenomena in M, that would be inconvenient.
Thus, we may assume that all the finitely many singular fibers Cp of
T/B are of the forms given in Figure (6.71). We let R be the finite set
of points of B where the fiber is of the reducible type on the right. For
such a fiber Cp, we let Zp be the component of Cp containing o (b)and
Y}, be the other component, and let p and q denote the points of Y
and Z respectively that are identified.

The key to our argument is that we can identify the Weierstrass
points on any fiber Cp in terms of ramification of the corresponding
canonical or limit canonical series. A smooth point of a smooth curve
is a Weierstrass point if it’s a ramification point of the canonical series.
On the other hand, Theorem (5.49) shows that, on a reducible curve
Xo = YUZ/p ~ q consisting of two smooth components meeting at a
point that is not a Weierstrass point on Y, a smooth point s € Z\{q} is
the limit of Welerstrass points on nearby smooth curves if and only if
s is a ramification point of the Z-aspect of the (unique) limit canonical
series on X.

Thus, the condition that o(b) be a Wejerstrass point on Cp can
be reexpressed as a degeneracy condition on the matrix giving the
Taylor expansion of the sections in the canonical series (or its limiting
aspects). Our next goal is to fit these matrices together into map of
bundles over B. To do this, we first let

Wim = wcm(— > Zb)-
beR

Thus, Wim|;, = Wc, if Cp is irreducible. If Cp is reducible, then
Wim|z, = 0z,(24) (e, the restriction is the Z-aspect of the limit
canonical series), and Wim|y, = Oy,. Then, let

T = TMxWhm -

Since h®(Cp, Wim|c,) = 2 for all b, £ is a rank 2 vector bundle on B.
Next, let £ = o (B) be the section, 7 its ideal sheaf, and

F=m (wum®0c/72)-
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It's easy to see that ¥ is also a vector bundle of rank 2: in fact, we
have an exact sequence

00— 0*WIMPwW — F — 0* Wiim —— 0,
where we've written w for the line bundle 0*(7/72) = o*(wc/s). We
have a natural map
Wim — Wim ® O¢/7?,

which induces an “evaluation map”
Q. EF—F.

The dt_!scription of Weierstrass points as ramification points of (limit)
canonical series tells us that the degeneracy locus of @ is W. Thus
W = c1(F) - c1(F), and it remains to compute c;(F) and c; (F).

For F this is immediate: we obviously have 0 *wim = w(—¥41), so
from the exact sequence above

c1(F) = 3w - 26;.
To evaluate c; (F) we use the sequence
0 — wim — wep — Y, (weyp)l, —= 0,
beR ’
which pushes forward on B to an exact sequence

0— F — mewep — O, lp
since
(weyB)|z, = 0z,(q)
and
H%(0z,(9)) =C.

We claim that for each b lying in §; (i.e., with reducible fiber), the
map

Tewep — H((weyp)|z,)= €

is onto — that is, that a nonzero section of (wc/s)|;, extends to a

neighborhood of Cp, in T. This holds since 1, twg/p is a vector bundle
with fiber

H®((we/p)|y,) ® HO((weyn)|z,)
over b. Thus we get an exact sequence

0—F — m.wcip— 05— 0,
which shows that ¢; () = A — §; whence the desired relation
W=c1(F)—-ca(F) =3w-A-4;.
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Divisors on M, that miss i(M;4)

We have now reached the final step: verifying the second part of The-
orem (6.65). This amounts to finding relations on the classes i*A and
i*8;. The first is easy. On any family r : X — B of curves of genus g
formed by attaching fixed elliptic tails to curves in Mp 4 at the marked
points, the vector bundle m, w3 is trivial, so i*A = 0. Also, since
i(Mo4) misses 8o we have i*&¢ = 0. To obtain relations amongst the
higher 8;’s we express these classes in terms of certain classes & on
My, defined as follows.

“/l/“)&\\:\

g-1i
FIGURE (6.72)

Fori=2,...,18/2], we take &; to be the class of the divisor that is
the closure in My, of the set of two-component curves with exactly
i of the g marked points on one of the components as illustrated
schematically in Figure (6.72).

EXERCISE (6.73) Consider the birational map Mo ,— P93 taking a
smooth curve to the moduli of the marked points. Show that the divi-
sors g; contract to distinct lower-dimensional subvarieties under this
map and deduce that they are all independent.

For i = 2, we have i*§; = £;. We compute i*§;. by showing that
lg/2) . .
, i(g—-1i
(6.74) i*6=- ) —(g———)e;
If, then, D is any divisor, given in terms of standard classes as in The-
orem (6.65), it will pull back on Mo, to
lg/2) lg/2]

—bl(— Z i(g-i)e_)_ Z bis; .

T
i=2 (-1 i=2

If, in addition, D misses i(Mp) this pullback must be 0 and equat-
ing coefficients immediately gives the claimed relations on the coeffi-
cients b;.

As usual, it suffices to check (6.74) after restricting to families

n:C—B, o01,...,04:B—T
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of stable rational g-pointed curves, where B is a smooth curve miss-
ing any inconvenient codimension 1 loci in ﬁo,g. and transverse to
relevant codimension 1 loci in My 4. We can thus assume that all re-
ducible fibers of T have exactly two components, the general fiber
is a smooth curve, and the total space T is a smooth surface. Fix g
pointed elliptic curves (E;, p:), and let T'— B be the family obtained
by attaching a copy of B x E; along o; and B X p;. The family T'—B
lies in the g-fold self-intersection of the normal crossing divisor 8,
and, by Proposition (3.32), i*6; is thus the sum of the pullbacks of
the normal bundles to the branches.

At the point of A, corresponding to a fiber Cj, of T, the branch cor-
responding to the i'® node has normal bundle equal to T, (v),c, ® Tp,.£-
Thus it pulls back on B to the normal bundle to the section o0y(B),
which we may rewrite as 1, (m(B))z. Thus

i*61 = m(i 0:(B)?).
i=1

We may contract the component of each reducible fiber meeting the
smaller number of sections (or either component if both components
meet g/2 sections) to obtain a P!-bundle 7 : T— B with g sections
&1 : B—T.These sections meet transversely in groups of i over points
of &;, and are otherwise disjoint. Thus,

lg/2]

ﬁ*(i F:(B)?) = m(i ouB?) + . it
i=1 i=2

i=1

On any P!-bundle the difference of two sections is a linear combina-
tion of fibers, and thus has self-intersection 0. Applying this remark
to &y(B) ~ &;(B) gives the relation &;(B)?2 + &;(B)? = 20y(B) - G;(B).
Summing over all pairs with i < j, we get

Ll lg/2]
(g - Dt (D 8:(B)?) = 2%, (3 (8u(B) - 8;(B))) = X, (ili - Der).
i=1 i<j 1=2
Putting the last three formulas together yields
lg/2l .. . lg/2) lg/2} . .
, o (ii-1) , i(g-i)y_
i*6) = Z:z (————g_l )ei— Zﬁ ()& = - 2:2 (—————g_l )&.

We have thus verified (6.74) and completed the proof of Theo-
rem (6.59).
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Further divisor class calculations

Here are some further calculations of classes of divisors on M, you
may wish to try. They call for the use of a variety of the techniques
that have appeared in this book.

EXERCISK (6.75) In terms of the generators A, w and g; of the Picard
group of T, as described on page 62 of Section 2.D, find the class of
the closure W c T, of the locus of pairs (C, p) where C is a smooth
curve of genus 3 and p is a Weierstrass point of C.

See Cukierman [28] for the answer to this and related questions.

EXERCISE (6.76) 1) Consider the closure in M, of the locus of
smooth curves C of genus g possessing a point p with Weierstrass
semigroup {g - 1,9 + 2,9 + 3,...}. Show that this locus is indeed a
divisor, and find its class.

2) Repeat part 1) for the semigroup {g,g+ 1,9 +3,9 +4,...}.

3) For extra credit, show that the loci described above are the only
codimension 1 components of the locus of curves with nonsimple
Weierstrass points.

See Diaz [30] for a full treatment of this question.

EXERCISE (6.77) Let W c T, be as in Exercise (6.75). What is the
branch divisor of the projection W — Mg, and what does this have to
do with the answer to Exercise (6.76)?

EXERCISE (6.78) Find the class of the closure in M, of the locus of
curves C with a semicanonical pencil, that is, a line bundle L with
L®2 = we and h%(C,L) = 2.

Curves defined over Q

Among the consequences of Theorem (6.59) are (at least conjecturally)
some that are arithmetic in nature, and we’ll summarize them here.
To begin with, for any number field K we'll say that a curve C may be
defined over K if it can be realized as the zero locus of polynomials
with coefficients in K. The moduli space M, itself may be given by
equations with coefficients in Q in such a way that for any K the set
of curves that may be defined over KX is (if we exclude curves with
autemorphisms) just the set M, (K) of K-rational points of M,,.
Now, the fact that we can for small values of g write down a family
of curves, parametrized by an open subset of an affine space, that
includes the general curve of genus g, implies in particular that the
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subset My(Q) C M, of curves that may be defined over Q is dense
in M,. Is this the case in general? Conjecturally not: generalizing the
Mordell Conjecture, we have the:

CONJECTURE (6.79) (WEAK LANG CONJECTURE) If X is a variety of
general type defined over a number field K, then the set X(K) of K-
rational points of X isn’t Zariski dense.

This, if true, would in conjunction with Theorem (6.59) imply that
for g > 24, all the K-rational points of M, lie in a proper subvariety!
But wait, there’s a further conjecture:

CONJECTURE (6.80) (STRONG LANG CONJECTURE) Let X be a variety
of general type, defined over a number field K. There exists a proper
closed subvariety X C X such that for any number field L containing
K, the set of L-rational points of X lying outside 2. is finite.

If we believe this, there is for each g > 24 a subvariety = C M, such
that, for any number field K, all but finitely many curves of genus g
defined over K lie in X. This raises a host of intriguing questions.
First, can we disprove the Lang Conjectures by exhibiting a Zariski-
dense collection of curves of genus g defined over @Q? Second, if we
do believe the Strong Lang Conjecture, what could the minimal such
subvariety Z be? Clearly, it has to contain the hyperelliptic locus, since
the rational points are dense there; and a little more effort shows
that it'll also contain the trigonal and tetragonal locus, as well as loci
of plane curves with small numbers of nodes, complete intersection
curves and the like.

At this point, no one has any idea what X might look like, if indeed it
exists. There are two guesses we might make, though. The first is that
X is contained in the locus of special curves, that is, curves possessing
a linear series with negative Brill-Noether number p. In fact, no one
has (to our knowledge) written down for large g a single curve, defined
over Q, that satisfied the Brill-Noether theorem. The second is that it’s
the intersection of the base loci of all the pluricanonical linear series
of M,: conjecturally (cf. [81)), this second locus is closely related to
the first and it's known to contain some very special subloci such as
the loci of hyperelliptic and trigonal curves. We leave you with the:

PROBLEM (6.81) Find better evidence that £ equals either of the can-
didates above, or find a better candidate for X.
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The Symbols section below give

s the defining occurrence of each notation.

All other references to these notations are indexed in the alphabetical section
uas read™: e.g., for references to M,, look under Mgbar.

Symbols
|, 154

-ﬂﬂ' 44
Ag, 45
al(vl p)v 256
oF, 210
B VIp, 257
b(V,p), 256
¢(+), 152
Ty, 41

‘Cg, 69
ch(-), 152
c(-), 161
A, 50

Ao, 50
Aa» 161
Ay, 50

d; 211
Dan, 125
dy, 226

er, 210

ej, 211

&, 215

n, 60

F(Y), 226
I, 43

Gy, 267
Hpy, 6

hy, 226
yd‘g. 175
Hagr, 16
hd.g.r, 26
Hg, 162
h,. 44

Ky, 226
ky, 226
Ky,z, 226
ky.z, 226
K1, 60

Ky, 60

X, 46
R{“, 221
A, 61

Ay, 61

Ly, 226
MO, 37
M, p, 161
M,, 37
M2, 37
™,, 48
Myn, 41
Myn(X,¥), 76
Moran, 2
pa(x), 200
0,(m), 6
P.6

Pag, 41
Pag: 49
R, 17

75, 35

#5, 57
P27
R*(M,), 67
Sa(W), 200
Sa(x), 200
sy, 226
td(-), 153
T, 43

T, 99
71,99

Y, 106

Vy, 255
Vi, 113
wa, 208
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index

A
Abramovich, Dan, 150
adjunction conditions, 332
adjusted Brill-Noether number,
264
additivity, 264
estimates for, 264
admissible covers, 34, 180
applications, 286
existence theorem for, 181
properties, 177-184
pseudo-, 186
simplest cases, 178
topological description, 179
two branch points meet
admissible description, 181
naive description, 176
A, 44
ﬁ:, 45
ai(V,p), 256
Ag singularity, 118
algebraic space, 39
algebraic stack, see stack, algebraic
oF, 210
Aluffi, Paolo, 138
Arbarello, Enrico, 62, 288, 329
Artin, Michael, 39, 89
aspects
limit linear series, 255
relations amongst, 255
asymptotic numerical criterion,
210

B
B-monomial basis, 208
Baily-Borel compactification, 45
base change, 124

prime order, of

effect on special fibers, 125

Bayer, Dave, 8
B(V,p), 257
bitangent, 134, 167
bi(V,p), 256
boundary

codimension, 45, 50

in My, 50, see also A, A, etc.
Brill, A., 242
Brill-Noether

divisor on M,;, 332

pullbacks to My, and M,
335
standard classes, in terms of,
332
first proof, 261
flag curves, via, 246
generalized, 265
converse of, 268
Gieseker’s approach, 243
Griffiths-Harris's argument, 243
Lazarsfeld's approach, 247
ray theorem, 332
second proof, 265
Severi’s argument, 242-243
third proof, 275
Brill-Noether number, 27, 161, 240
adjusted, 264
estimates for, 264
Burnol, Jean-Francois, 52

C

c(-), 152

canonical class of the moduli

stack, 159

Caporaso, Lucia, 49, 225

Castelnuovo curves, 25

Castelnuovo, Guido, 242

Ty, 41
cohomology of, 62
Picard group of, 62

‘Cg, 69

ch(-), 152

Chang, Mei-Chu, 57, 329

Chern character, 152
alternate characterization, 153
expansion formula, 152
properties, 153

Chern polynomial, 161

Chow variety, 10

Ciliberto, Ciro, 66

Clebsch, A., 34

coarse moduli space, 3
uniqueness of, 4

compact type, 250

complete deformation, 87

conjectures
Enriques-Franchetta, 62
Faber’s on R*(:M,), 68-70

Cornalba, Maurizio, 62, 304, 312,

329

c:(-), 161 :
Cukierman, Fernando, 342
curves

Castelnuovo, 25
compact type, 250
defined over Q, 342-343
degree 2, 4
elliptic normal, 14
genus 1, 4, 14, 36, 38
genus 2, 39, 53, 175, 328
genus 3, 39, 53, 57, 133-138,
162-164, 168-175,
186-190, 245, 328
genus 4, 164, 190, 276, 328
genus 5, 189, 276, 328
genus 6, 276, 328
genus 7, 329
genus 23, 279
Mumford’s example, 19-23
plane cubics, 202-204
plane quartics, 57, 133-138,
164, 170, 206
bitangents to, 134
flexes, 135
plane sextics, 135
potentially stable, 224
rational normal, 14
rigid, 29
space
complete families, 57
degree 5, 10
degree 6, 10
symmetric product
tangent space to, 94
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