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Preface

Onc aim of this Handbook is to survey convex geomeltry, its many ramifications
and its relations with other areas of mathematics. We believe that it will be a
useful tool for the expert. A sccond aim is to give a high level introduction to
most branches of convexity and its applications, showing the major ideas, methods
and results. We hope that becausce of this feature the Handbook will act as an
appetizer for future researchers in convex geometry. For them the many explicitly
or implicitly stated problems should turn out to be a valuable source of inspiration.
Third, the Handbook should be useful for mathematicians working in other areas
as well as for econometrists, computer scientists, crystallographers, phycisists and
engineers who are looking for geometric tools for their own work. In particular,
mathematicians specializing in optimization, functional analysis, number theory,
probability theory, the calculus of variations and all branches of geometry should
profit from the Handbook.

The famous treatise “Theorie der konvexen Korper” by Bonnesen and Fenchel
presented in 164 pages an almost complete picture of convexity as it appeared
around 1930. While a similarly comprehensive report today seems to be out of
reach, thc Handbook deals with most of the morc important topics of convexity
and its applications. By comparing the Handbook with the survey of Bonnesen and
Fenchel and with more recent collections of surveys of particular aspects of geo-
metric convexity such as the AMS volume edited by Klee (1963), the Copenhagen
Colloquium volume edited by Fenchel (1967), the two green Birkh4user volumes
cdited by Tolke and Wills (1979) and Gruber and Wills (1983), respectively, and
the New York Academy volume edited by Goodman, Lutwak, Malkevitch and
Pollack (1985), the reader may see where progress was made in recent years.

During the planning stage of the Handbook, which started in 1986, we got gene-
rous help from many prominent convex geometers, in particular Pcter McMullen,
Rolf Schneider and Geoffrey Shephard. The discussion of the list of contents and
of prospective authors turned out to be difficult. Both of us arc obliged to the
authors who agreed to contribute to the Handbook. In the cooperation with them
we got much encouragement and the professional contacts furthered our good
personal reldtions with many of them. The manuscripts which we finally received
turned out to be much more diverse than we had anticipated. They clearly exhibit
the most different characters and scientific styles of the authors and this should
make the volume even more attractive.

There are several researchers in geometric convexity whom we invited to con-
tribute to the Handbook but who for personal, professional or other reasons —
regretfully — were not able to participate. The reader will also note that one area
or another is missing in the list of contents. Examples are clementary geometry
of normed planes, axiomatic convexity, and Choquet theory, but this should not
diminish the usefulness of the Handbook.
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Some fields such as computational and algorithmic aspects or lattice point re-
sults are dealt with in several chapters. The subjects covered are organized in
five parts which in some sense reflect the fact that convexity is situated between
analysis, gcometry and discretc mathematics. This organization clearly has some
disadvantages but we think that it will bc helpful for the reader who wants to
orient himself.

In the editing of the Handbook we received much help, in particular from
Dr. M. Henk, Dr. J. Miiller, Professor S. Hildebrandt, Professor L. Payne and
Professor F. Schnitzer. We are most grateful to Ms. S. Clarius and Ms. E. Rosta
who typed about 1000 letters to the authors, to colleagues whom we asked for
advice and to the Publishers. We most gratefully acknowledge the friendly coop-
erations and expert support of Dr. A. Sevenster and Mr. W. Maas from Elsevier
Science Publishers.

Finally we should like to express our sincere hope that the readers will appreciate
the great effort of so many prominent authors and will find the Handbook useful
for their scientific work.

Peter M. Gruber
Jorg M. Wills
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1. Preliminaries
1.1. Introduction

This survey deals with various lattice point problems, both, from a theoretical and
from an algorithmic point of view. Lattice point problems trace back to Lagrange,
GauB, Dirichlet and Hermite. Most important contributions came from Minkowski,
when he created in 1891 the field “Geometry of Numbers” by applying geometric
tools to number-theoretic problems. The basic idea was to interpret integer so-
lutions of equations or inequalities as points of the integer lattice. This approach
was very fruitful and many eminent mathematicians - Weyl, Siegel, Mordell, Blich-
feldt, van der Corput, Mahler, Davenport, Hlawka, W.M. Schmidt among them -
contributed to this field; for historic outlines see Hlawka (1980) and Schwermer
(1991).

Lattice points are also used in other areas including numerical analysis, computer
science and, in particular, integer programming.

The central notions in this paper are, first, the lattice point enumerator G, a
functional that is defined for a given point lattice L in R? and that associates with
a given subset S of RY the number card(SNL) of L-points in § and, second, convex
lattice polytopes, polytlopes that are the convex hull of their L-points. In particular,
we are interested in properties of L-polyhedra fi (K) that are associated with given
convex bodies K via [ (K) = conv(LNK).

The integer programming problem is the task to maximize a linear functional
over I;«(F) where F is the region of points that satisfy a given system of rational
linear equalities and lincar inequalities. A basic question of interest is to give
criteria for I7(F) to be nonempty. A related but more general problem is to give
upper and lower bounds for Gy (/; (F)), bounds on the number of such solutions
for a given lattice L.

In the geometry of numbers there has been some interest in bounds of the dis-
crete functional G; in terms of continuous functionals like the volume, the surface
area and other quermassintegrals. For algorithmic purposes other functionals are
of some relevance.

All these connections with other areas have been fruitful and some of the more
recent contacts will be addressed in this article, in particular some of the com-
putationat aspects of the field. We will, however, not focus on aspects that are
being covered by various books and survey articles like Cassels (1971), Gruber
and Lekkerkerker (1987), Erdés, Gruber and Hammer (1989), Schrijver (1986,
1993a,b), Gruber (1979), Hlawka (1980), Keller (1954), Lang (1990) and Lagarias
(1993) and, particularly, limit the overlap with other chapters of this Handbook as
much as possible. These chapters are: 3.1 Geometry of Numbers by Gruber, 3.3
Packing and Covering with Convex Sets by G. Fejes Té6th and Kuperberg, 3.4 Finite
Packing and Covering by Gritzmann and Wills, 2.8 Convexity and Discrete Opti-
mization by Burkard and 2.7 Mathematical Programming and Convex Geometry
by Gritzmann and Klee. In particular, we will not cover the following topics:
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weighted lattice point enumerator;

lattice points on the boundary of convex bodies;

lattice points in “large” convex bodies; asymptotic results.

For surveys on these subjects see Betke and Wills (1979), Fricker (1982) and
Walfisz (1957). Further there are far too many ramifications of 2-dimensional re-
sults to be mentioned here in detail; we restrict our attention to those which we
deemed most closely related to the purpose of this article.

1.2. General definitions and notation

Let R denote the d-dimensional vector space over the reals; E¢ is the d-
dimensional Euclidean space. The Euclidean scalar product and unit ball are de-
noted by (-,-) and B¢, respectively.

A convex body in R¢ is a nonempty compact convex subset of RY. Let ¢ denote
the set of convex bodies of R?, let ¢ be the set of convex bodies with nonempty
interior and let % denote the subset of convex bodies in ¥ that are symmetric
about the origin.

A convex polytope in R? is a convex body that can be presented as the convex
hull of finitely many points (or equivalently, as the intersection of finitely many
closed halfspaces). The set of all convex polytopes in R? will be denoted by @,
@d and B¢ are abbreviations for P4 NI and P¢ NFY, respectively. Given P €
P4, let %;(P) denote the set of all i-dimensional faces of P. For comprehensive
treatments of combinatorial properties of convex polytopes see Griinbaum (1967)
and chapter 2.3 by Bayer and Lee in this Handbook.

For computational purposes it is sometimes relevant to distinguish between the
two different ways how polytopes may be given.

A V -presentation of a polytope P C R? consists of positive integers d and m,
and m points vy,...,v,, in Q¢ such that P = conv {v,...,um}. An ¥-presentation
of P consists of positive integers d and m, a rational m x d matrix A, and a vector
b € Q™ such that P = {x € R%: Ax < b} Sometimes we use the shorter form V- or
#-polytope when dealing with a polytope that is V- or -presented, respectively,
and we will also speak of an #-polyhedron F to indicate that F = {x € R Ax < b}
with rational A and b.

For K € %“ let V(K) denote K’s volume; in particular, we set «; = V(BY),
the volume of the Euclidean unit ball. An important set of functionals on % are
Minkowski’s quermassintegrals Wy, ..., W, or their renormalization, the intrinsic
volumes Vj,...,V,, given for j = 0,1,...,d by V; = K‘;_lj (‘]1) W,_;; (see Had-
wiger 1957, McMullen 1975, 1977, McMullen and Schneider 1983, and chapter 1.8
by Schneider in this Handbook). The intrinsic volume V; is continuous, additive,
monotone and positive, invariant under rigid motions, homogeneous of degree
i and independent of the dimension of the space in which K is embedded. In
particular, V; = V is the volume, V,4_; = %F is half the surface area and V= 1.

A lattice L in R? is a discrete subset L of RY of the following form: there is a
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basis {vi,...,Vs} such that

d
L= {Zviv;: vl,...,vdel}.
j=1

The set of all lattices in RY will be denoted by £¢. For a lattice L with basis
{v1,...,vq}, det(L) denotes the determinant of L, the volume of the parallelotope
Z;’=1[0,1]v;, and C(L) denotes the Dirichlet-cell of 0, the set of all points of R?
which are not farther away from 0 than from any other lattice point. Observe
that C(L) is the closure of a fundamental region of L; see chapters 3.1 by Gruber
and 3.3 by G. Fejes T6th and Kuperberg.

For a given lattice L let (L) and P¢(L) denote the subsets of #* and P,
respectively, of convex polytopes P with %,(P) C L. The polytopes P € P4(L) are
called convex L-polytopes (or L-integer polytopes). A convex L-polyhedron P is the
intersection of finitely many closed halfspaces such that P = conv (PNL). L-rational
polytopes and polyhedra are defined analogously. For L € %7 and an arbitrary
convex set C the L-hull (or the L-integer hull) of C is given by [ (C) = conv (LNC).

For a subset S C R? the lattice point enumerator Gy (S) is defined by Gi(S) =
card(S N L). Typically, S will be a convex body but we will also consider cases
where S is the boundary or the interior of a convex body. For L = 7¢ we write G
instead of Gza.

As usual, the polar lattice L of a lattice L is defined by

L*={xe(E)"yel= {(x,y) € Z}.

L* is a lattice in the conjugate space (E¢)*. Since E is self-conjugate we will regard
L* as a lattice in E%. Then, clearly, (L*)* = L and, in particular, (Z¢)* = Z“. For
various interactions between L and L* see McMullen (1984), Kannan and Lovész
(1988) and Schnell (1992).

In sections 5 and 6 we will use the standard notation of complexity theory. We
use the binary Turing machine model, hence, the size of the input of a problem -
usually denoted by L - is the number of binary digits needed to encode the input
data. The complexity classes that are relevant here are the classes P, NP-hard,
NP-complete, #P-hard and #P-complete. For underlying concepts of theoretical
computer science, definitions and for numerous results see Aho, Hopcroft and
Ullman (1974) and Garey and Johnson (1979).

2. Centrally symmetric convex bodies

2.1. ‘Minkowski’s fundamental theorem

The starting point of the geometry of numbers and the predominant result of this
section is Minkowski’s fundamental theorem, Minkowski (1896).
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Letle¥? K e if(g and suppose G (intK) = 1. Then
V(K) <2¢detl. (2.1)

This estimate is tight; in particular, it holds with equality for lattice parallelo-
topes. In addition, the slack in (2.1) can be expressed explicitly:

/ e~ minx dx
(1/2)K

This identity holds under the same assumptions as (2.1); it was derived by Siegel
(1935) as a special multiple Fourier series instance of Parseval’s identity from
functional analysis.

Minkowski’s theorem has numerous applications in the geometry of numbers
(sce chapter 3.1). Its impact shows in the number of ramifications, refinements and
generalizations that it led to. In particular, Blichfeldt (1914) and van der Corput
(1935, 1936) proved that for L € $¢ and K € %

{ V(K)
24(det L)

1

2
—nd _
VI =2detl - V(K).

uel=y {0}

J +1 < GuK). 2.2)

Equality occurs for suitable “quasi-1-dimensional prisms” of the form «C(L) + Bv,
with 0 < a,8 and a < 2.

The following incqualities for the lattice point enumerator are closely related to
(2.1); they are also due to Minkowski (1896).

Let L€ $9, K € ¢ and suppose Gy(intK) = 1. Then
Gu(K) € 3. (2.3)

If, in addition, K is strictly convex then G (K) <24 - 1.

Further analogues of (2.1) can be found in Cassels (1971), Gruber and Lekker-
kerker (1987), and Erds, Gruber and Hammer (1989).

2.2. Successive minima

The most important improvement of (2.1) is Minkowski’s theorem on successive
minima. Given a lattice L and a convex body K € g, then the successive minima
Ay, ..., A, are defined by

Ai(K,L) = inf{A > 0: dimaff MK NL)y =i}, i=1,...,d.

For brevity we write A;(L) and A; for A;(K,L), A;(K,Z%), respectively. Then, (2.1)
reads

MLV(K) < 24detl,
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while Minkowski’s (1896) generalization is the following result:

Given L € ¥ and K € R4, then

d
%detll_ AL x - x ALL)V(K) €24 det L. (2.4)

The left inequality is simple, but the right one is a deep improvement of (2.1).
For a generalization of (2.4) see Woods (1966) and for various proofs see Bambah,
Woods and Zassenhaus (1965), Cassels (1971, p. 208) and Gruber and Lekkerk-
erker (1987, p. 59).

There are some recent analogues of (2.1), (2.2), (2.3) and (2.4), Henk (1990),
Betke, Henk and Wills (1993):

Aiel X - - X AGV(K) < 297Vi(K), i=1,....,d,

?—'SAIX"'XA,'V;(K), i=1,...,d,

2 d (25)
GK)YS | —=+1] , ’
(K) L«I(L) J

The estimate (2.5) extends Minkowski’s inequality (2.3). Betke, Henk and Wills
(1993) conjecture that the stronger bound

Gi(K) € ﬁ {ﬁ + lJ
i=1

holds and prove it for d = 2; along with analogous results for strictly convex bodies.

For details on reduction theory of quadratic forms and other classical results
we refer to Cassels (1971), Gruber and Lekkerkerker (1987), Erd6s, Gruber and
Hammer (1989) and chapter 3.1 of this Handbook.

!
3. General convex bodies

3.1. Lattice points and intrinsic volumes

The classical theory of geometry of numbers deals mainly with centrally symmetric

convex bodies; hence there are only a few classical results on general convex
bodies. One such result is the simple mean value theorem:

V(K) = / GiL(x +K)dx,
)
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which holds for arbitrary L € £7 and K € %¢.
Mabhler (1939) generalized Minkowski’s fundamental theorem by relaxing the
symmetry assumption on K. As a measure of asymmetry Mabhler defined

o(K)=min{e > 1: —K C 0K},

for all K € %4 with 0 € int K and derived an inequality that was later improved
by Sawyer (1954) to the following result:

Let K € %9 and suppose (int K)NL = {0}. Then

d 1 \*
V(K) < (1+a(K)) (1 - (l - m) ) detL. (3.1)

Observe that when K = —K, (3.1) is just Minkowski’s theorem (2.1). If z(K)
denotes the centroid of K then z(K) = 0 implies o(K) < d (cf. Bonnesen and
Fenchel 1934, p. 53). Together with (3.1) this gives

d
V(K) < (d+1)? (1 - (1 —~ ‘1—1) )detl].

for all K € %¢ with z(K) = 0 and (int K) N L = {0}. Ehrhart (1955a) conjectured,
however, that the much stronger inequality

(d+1)¢

V(K) <

detl

holds for all K € %¢ with z(K) = 0. This estimate would be tight but has only
been verified for d = 2, Ehrhart (1955a).

In the remainder of this section we will focus on bounds for the lattice-point
enumerator Gy in terms of quermassintegrals and closely related functionals. Ob-
serve that for finding upper bounds for G(K) in terms of monotone functionals
it is enough to just consider convex lattice polytopes since Ii(K) has the same
number of L-lattice points as K.

The oldest general upper bound for the lattice point enumerator is due to Blich-
feldt (1921).

Let Le ¥, let K € %4 and suppose I (K) € P§. Then

Gu(K) € d ST VK)+d. (3.2)

Equality holds in (3.2) for instance for lattice simplices of volume (1/d!)detL.
If Ry denotes the circumradius of C(L) then

V(K) — RUF(K) < Gi(K) - detL < V(K + C(L)); (3.3)
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Gritzmann (1984, pp. 52, 88), Wills (1990a, p. 37).
Schnell (1992) and Wills (1991) gave the bounds

VaK) | a2 Vaai(K) . Vi(K)
o M@ SGK) < Z_jﬂ XL (3.4)

which involve the lattice functionals D;(L), i =0,...,d defined by
Do(L)=1

and fori=1,...,d
D;(L) = min{| det(L;)|: L; is an i-dimensional sublattice of L}.

Note that, in particular, Dy(L) = det(L) and that D,(L) is the length of a shortest
nonzero lattice vector. Neither of the two inequalities of (3.4) is tight. For d = 2,
the factors 1d*? and i! can be replaced by 1, and this is best possible; Oler (1961)
[upper bound; see (3.9)] and Schnell and Wills (1991) (lower bound). Further, for
L = Z4 there is the asymptotically tight inequality

V(K) - JF(K) < G(K) (3.5)

of Bokowski, Hadwiger and Wills (1972) for arbitrary K € ¥¢. The proof of (3.5)
is based on previous work of Hadwiger (1972). Partial results can also be found in
Nosarzewska (1948), Bender (1962), Wills (1968, 1970), Hadwiger (1970), Schmidt
(1972) and Bokowski and Wills (1974). Some consequences of (3.5) were given by
Hammer (1971) and Bokowski and Odlyzko (1973).

The right-hand inequality in (3.3) can be developed into mixed volumes (or via
C(L) C R B and Steiner’s formula into quermassintegrals). For L = Z4, we obtain
Davenport’s (1951) inequality.

Let for K ¢ %4, K J’ be the orthogonal projection of K into the i-dimensional coor-
dinate subspace E; C B,i=1,...,.d;j=1,..., (‘f) Then

¢

—~
‘k

d
)<Y Z Vi(K). (3.6)

i=0 j=1

(Sce Betke 1979.) Equality holds for lattice boxes. A simple consequence of
(3.6) is the estimate

d-1
GK)YSV(K)+> ViQ), KeX,

i=0
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where Q denotes the smallest lattice box containing K. Ehrhart (1977) conjectured
that the bound can be improved to

d-2
G(K) < V(K)+ F(K)+ Y _Vi(Q), Ke¥
i=0
which holds for d <3 (Ehrhart 1977), but is open for d > 4.
Another simple consequence of (3.6) is

d
d
< Vi(K), KeX 3.7
am\g(J (K), Ke )
which holds with equality if and only if K is a lattice point. Obviously, the coef-
ficients of V,, and V, are best possible. There were, however, many attempts to
improve the other coefficients. Wills (1973) conjectured that

d
G(K) < Y VilK). (38)
i=0
This estimate holds with equality for lattice boxes. Further, it has been verified
for dimensions d = 2,3 (Nosarzewska 1948, Overhagen 1975), for rotation bodies
when d < 20 (Hadwiger and Wills 1974) and for arbitrary lattice zonotopes (Betke
and Gritzmann 1986). Moreover, Hadwiger (1975) gave integral representations
of the functional W = %, V; which inspired some work from the viewpoint of
valuations (McMullen 1975; see also chapter 3.6 by McMullen in this Handbook).
However, the conjecture turned out to be false. Hadwiger (1979) showed that for
d > 441 there are lattice simplices for which (3.8) does not hold. Later Betke
and Henk (1993) showed that it is false for suitable lattice cross polytopes already
when d > 207. In fact, even the much weaker estimate

G(K) < V(K +«;'/“BY),

conjectured and proved for d < 5 by Bokowski (1975), is false for d > 3.7-10"°,
Hohne (1980). Another attempt to fill the gap between (3.7) and (3.8) is the fol-
lowing conjecture of Wills (1990b) which is closely related to a covering thecorem
by Santal6 (1976, p. 274):

d
GKy<Y %V,(K), K e .
i=0

3.2. Classes of lattices

Lattice point problems are closely related to lattice packing and lattice covering.
In order to facilitate the transition between these arcas the following classes of
lattices are introduced for C € ¥{.
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£,(C) is the subset of $¢ of all lattices L which i
‘ A pack C, i.e., the transl
in {g+ Cf g € L} do not have interior points in common; ies of €
Z£.(C) is the subset of £ of all lattices L for which L+ C covers R?. i.e U
C)=R" T
Since the main interest focuses on bounds for the latti i
' Ice point enumerator i
terms of quermeissmtcgrals only the case C = B¢ has been studied thoroughlgr "
For.L € £,(B’) and K € %“ there is the simple but useful upper bound '

ge!l.(g+

d
GuUK) < k;'V(K+BY) = Xy k).

Wilhdﬁy;(B") and 19%(I1'3") denoting the lattice packing and lattice covering density
of BY, respectively, it is easy to see that the inequality

d

Gi(K)<Y

i=0

Sy(B(I)

K;

Vi(K)

would be the best possible bound of this kind. It has been sh i

' ble . . own by Gritzmann
and Wllls (19§6) that this inequality holds for L-zonotopes but is false in general
for suitably high dimension. However, in dimension 2 it holds for general K € %?

and L € it?,,(B") even in the Minkowski plane (Oler 1961). I i
. In th
Oler’s result reads as follows: P ( )- In the Euclidean case

1 1
G (K) < — =

L(K) 2\/§V(K)+2V1(K)+1. 3.9
Observe that (3.9) follows from Pick’s (1899) identi impli
thae for K a3 ) follows, ( ) identity (4.1). In fact, (4.1) implies

V(K) , Vi(K)

Gk < G DD

+1.

gov&g 3.9) follo»ys since'for each L € ¥,(B?) we have det L > «,/8¢(B?) = 2v/3 and
thz: (0 r)c> 2.f he inequality (3.9) is equivalegt to the “lattice version” of a packing
o m of Groemer (1960); another proof is due to Folkman and Graham (1969);

- also Zassenhaus (1961). Oler’s result might possibly be the 2-dimensional case
of the general inequality for L € £,(B¢) and K € %

d
Ge(P) < 3 2vi(P). (3.10)

i=0 !

H ; ’ i
Vof;re o denote§ Rogers s (1964) packing constants, i.e. the ratio of the sum of the
umes of the intersection of 4 + 1 unit balls centered at the vertices of a regular
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simplex of side 2 to the volume of the simplex. Gritzmann and Wills (1986) showed
that (3.10) is valid for L-zonotopes and conjecture that it holds in general.
Gritzmann (1984, 1986) showed that

d
G (K) € ((2 + \/?t)\/g‘F —ﬁ) Z K:—:ivi(K);
i=0 4

again, for arbitrary L € &£, (B4) and K € %?. (For a “finite packing interpretation”
of this result see chapter 3.4.)
As in section 3.1, the lower bound problem is simpler and essentially solved by

Wills (1989):
Given L € £.(BY) and K € %, then 9%«;'{V (K) — F(K)} < Gu(K).
3.3. Nonlinear inequalities

In the previous two sections the bounds for G were linear combinations of the V;
or related functionals. We now consider nonlinear inequalities for G in terms of
functionals which are homogeneous of degree 1.

Let D(K), R(K), r(K) and w(K) denote the diameter, circumradius, inradius
and width of K € ¢, respectively. We begin with the following trivial inequalities.

G(K) < (D(K)+1)%,
G(K) < k4(R(K) + V),
ka(r(K) = 1Vd)! < G(K), i r(K) > 3Vd.
There are various inequalities for lattice-point-free convex bodies which involve

the width. Results of this kind are of some relevance for reducing a d-dimensional
integer programming problem to lower-dimensional ones; see Lenstra (1983). Let

wg = max{w(K): K € X% A G(K) = 0}.
McMullen and Wills (1981) showed

(\/§+1)(\/E—_—a) <wg<d+]1,
where a ~ 1.018 is a constant. For K € %9 let d;(K) denote the length of the
projection of K onto the x;-axis (“outer quermass”) and let 5;(K) denote the

length of a maximal segment of K parallel to the x;-axis (“inner quermass”). Then
Scott (1979) (cf. also Wills 1990a) showed that for XK' € %4 with G(K) =0

1 1
- 4 -—?1) '=1,...,d,
d,(K) ;S,(K) :
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with equality for suitable cross polytopes. McMullen and Wi
the same assumptions that s (1981) proved under

V20,_) + 1 Sl izl
W(K) d,(K) = Ry = ,...,d,
. \/iwd—l \/E

wK) TDE) Ch

Possibly the last inequality can be improved to

®d-1 1 >1
w(K) D(K) ™

a result confirmed by Scott (1973) for d = 2. Some sharp nonlinear inequalities for

special convex bodies can be found in Erdds, Gruber and H
e Yau (1999 r and Hammer (1989) and Xu

A simple but useful inequality is

d d
G(K) - V(K) < [[(di(K) +1) - [] ditk); (3.11)
i=1

i=1

it holds with equality for lattice boxes. For applicati
‘ U . pplications of (3.11) and some closel
relia-;ledfn;::quahtles see Chalk (1980) and Niederreiter and Wills (1975). ’
e following results use the covering minimum g;, introduced by K
Loviész (1988), which is defined for L € ¥4, K € 3¢ a’nd i=1,... ,dyby nnen end

©i(K,L) = inf{¢: 1K + L meets every (d — i)-flat of R%}.

] Thg i correspond to M?nkowski’s successive minima A; and, in fact, w, is the
;:hasslical. inhomogeneous minimum x in geometry of numbers. u;(K,L)~! is called
wiflth-z;dlgl I(zf K - or, (»jvtfn the lattice is specified by the context, simply lattice

. Kannan and Lovasz (1988) prove that there is iti
such that for L € £4 and K € % P ? postive consiant ¥

t 1 d
[ -1 <o 612

and if K € %4

1 d
[(m - “) J < Gu(K). (3.13)

The constant ¥ comes from the constant in the following theorem.
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There is a positive constant B such that for K € ed
Bkt < V(K)V(K™) < kg (3.14)

The upper bound in (3.14) is due to Santal6 (1949), the lower bound was given
by Bourgain and Milman (1985). Using the known formula for «,; one sees that
V(K)V(K*) is bounded below by (ad)~¢, where «a is a positive absolutc constant.
As a consequence of (3.14) and Minkowski’s theorem (2.4) on successive minima
Bourgain and Milman (1987) obtain

d
. H’\i(K, DA (K", L") < yiad.

i=|

Their paper contains also various other results on the A; and u;.

Betke, Henk and Wills (1993) prove some inequalities for the w; and the V;; an
example is the result that there is a constant 8 with 0 < 8 <1 /d! such that for
every K € X3

F’](Kazd) ’ “’d(K’Zd)V(K) z B

4. Lattice polytopes
4.1. General lattice polytopes

The methods in the theory of lattice polytopes are mainly from combinatorics and
lincar algebra and several results do not require convexity. For the purpose of this
subsection only, a polytope in R? (or a polygon in R?) is the underlying point set of
a simplicial cell complex (in the sense of Griinbaum 1967). Equivalently, a polytope
can be defined as a finite union of convex polytopes of dimension at most d. A
polytope is called proper, if it is the closure of its interior or, equivalently, if it can
be represented as the finite union of convex d-polytopes. Given a latticc Le¥ a
polytope P is called L-polytope if there is a simplicial cell complex with underlying
point sct P whose vertices are all in L. As usual the Euler-characteristic x(P) of a
polytope is the sum Zf.'zo(—l)" |%;(¢)| where 6 is any simplicial cell complex with
underlying point set P. The first result on lattice polygons is Pick’s identity, Pick
(1899).

If P C 2 is a lattice polygon whose boundary is a closed Jordan curve, then

V(P)
detlL

GL(P)= +1GL(bdP) + 1. 4.1
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(Compare also Varberg 1985.) Observe that Nosarzewska’s inequality (3.8, for

d =2) is a simple consequence of (4.1). There are various proofs of (4.1) and many
generalizations. For instance, Reeve (1957) showed

G (P)= %é:%) + %Gl(de) +x(P) - ix(bd P), (4.2)

and Hadwiger and Wills (1975) proved

_v)

GilP) = GerL

+1E(P) + x(P),

where E(P) denotes the number of segments between two consecutive lattice
points on bd P, and 1-dimensional parts of P are counted twice.

Ding and Reay (1987a) give a generalization of (4.1) to hexagonal tilings and
indicate possible applications to computer graphics; for further results along these
lines see Ding and Reay (1987b) and Ding, Kolodziejczyk and Reay (1988).
Griinbaum and Shephard (1992) extend (4.1) to more general oriented polygons,
a result that implies many of the previously known (plane) variants of (4.1).

Hadwiger and Wills (1975) showed the following.

Let L € £2, let P be an L-polygon and x € R2\L. Then
Gu(P) - Gi(x+P) > x(P); (4.3)

and for each L € ¥ and x € Z there are an L-polygon P with x(P) = x and an
x € R?\ L such that (4.3) holds with equality.

. No analogue of (4.3) is known for d > 3; but there are remarkable generaliza-
tions of (4.1) and (4.2) for arbitrary L € £¢ and proper L-polytopes P:

d—1)d!
(2det)ll_ V(P)=(=D)""(x(P) - }x(bd P))

Lrd-1 .
{;( j )(“)’(GL(W—I—i>P)—%Gt(bd((d—l—j)m)),
p=

d!l d-1 )
gt V)= D)+ X () -1YGe(@@-1-)P).

j=0

These identities are due to Macdonald (1963); the case d = 3 was first proved by
Reeve (1957, 1959).

4.2. Convex lattice polytopes: Equalities

Ehrhart (1967, 1968) discovered the “polynomiality” of the lattice point enumera-
tor G : P4(L) — Ng:
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For each L € £ there are functionals Gy; : P9(L) — Ny such that for every P €
®4(L) and n € N

d
GL(nP) =) _n'Gui(P) 4.4)
i=0

and

d
Gy (relint(nP)) = (-1)™" Y "(—n) Gi(P). (4.5)

=0

Equation (4.5) is called the reciprocity law, and the polynomial in (4.4) is often
referred to as Ehrhart-polynomial. It is quite important for various questions. In
particular, the question when the dual of an integer polytope P (with O € int(P)) is
again an integer polytope can be answered in terms of conditions on the Ehrhart-
polynomial, Hibi (1992). See the book by Stanley (1986) for more facts on the
Ehrhart polynomial. For L = 74 we will use the abbreviation G; rather than Gy ;.

In case of lattice zonotopes one can give an explicit formula for the Ehrhart
polynomial; Stanley (1980, 1986). Stanley (1991a) used this fact to find a generating
function for the number of degree sequences of simple n-vertex graphs; in fact,
there is a one-to-one correspondence between these degree sequences and the
integer points of a suitable zonotope.

The G, are valuations (cf. McMullen 1977 and McMullen’s chapter 3.6 in this
Handbook). Further they are invariant under unimodular transformations, ie,
transformations U of RY with U(x) = Ax + b, where A is an integer d x d-matrix,
detA = +1 and b € L. These properties provide the framework of an analogy
between the Gy ; and the intrinsic volumes V; which shows in the following two
important theorems.

(Hadwiger 1951) Every continuous and additive functional on ¢ which is invariant
under rigid motions is a linear combination of the d+1 intrinsic volumes Vy,..., Vg

(Betke and Kneser 1985) Every additive and unimodular invariant functional on
P4(L) is a linear combination of the d + 1 functionals Gy, . .-, G

In addition, for i = 0,d — 1,d, V; and G; are very similar
Gy=Vs=V, Gop=Vo=1

and

Ga(PY=1% Y eV (F) < 3F(P),

Fe?,;-,

where 1/pr = det(Z¢ Naff F) is the determinant of the sublattice of 74 induced by
aff F. As opposed to the corresponding intrinsic volumes, Gy,...,G4_2, however,
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do not admit a simple geometric interpretation. In particular they are neither
monotone nor nonnegative. Let us point out that Stanley (1991b) introduced a
different basis Ay, ..., h} via

A=x)*' D" GunP)x" = hj+hix + -+ hyx?

nz0
for the same space whose elements are monotone and, hence, nonnegative; see
also Hibi (1991).

As Wills (1982) pointed out there is a simple analogue of Minkowski’s lattice
point theorem (2.1) for G,_;. In fact,

Gq-1(P) < d2'7,

for all P € $¢ with G(intP) = 1.
It is open whether

Gi(P) € (‘f) 2!

holds for i = 1,...,d —2 under the same assumptions. Betke and McMullen (1985)
showed that for each i = 1,...,d there are constants a;, 8; such that for all P € P4

G,(P) < (X;Gd(P)-!-B,'.

The following identity resembles the polynomial expansion of the Minkowski

sums of convex bodies into mixed volumes and generalizes Ehrhart’s polynomial
cxpansion (4.4).

(Bernstein 1976, McMullen 1977) Let L € 44, k € N, Py,...,P, € P4(L) and

n};,...,nk € N. Then there are coefficient functionals Gy (Py,n,...,Px,ng) such
that

k d
G!L (Znipi) = Z nlll"'n{:Gl(Phjl)”')kajk)'
!

i=1 ooy =0
jieeigsd

. The number (of equivalence classes under the group of unimodular transforma-
uqn§) of convex lattice polygons and polytopes has been studied by Arnold (1980),
Bdrdny and Pach (1992), and Bardny and Vershik (1992).

4.3. Convex lattice polytopes: Inequalities

pnlike ‘l!me bounds in section 3 which hold for general K € ¢, the following
inequalities are tailored to the case of convex lattice polytopes.
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Using methods of Ehrhart (1955a) and Stanley (1976) on formal power series

and polyhedral cell complexes Betke and McMullen (1985) extended Blichfeldt’s
inequality (3.2) as follows:

vinP) '\ ( i
G“("PK( deit "@-ni ) E )
V(nP) nt i n+d
- - < .
( detl d!) I1 (l+n)+< d ) < Gi(nP)
These bounds hold for all L € ¥ and P € P{(L).

lil<d/2
Ehrhart (1955b) and Scott (1976) proved that for L-polygons P with Gy (int P) =
k21,

45 detl, k=1,
ViP) < {2(k+1)-detIL, ifk>2

The bounds are sharp. There is no direct analogue for k = 0. Perles, Wills and
Zaks (1982) showed that there is a constant & = 0,5856 such that for each d > 3
and k > 1 there is a P € @4(L) with G (intP) = k and
d-a

V(P) > k—;—lzz‘ detlL. (4.6)
The much harder problem of the existence of an upper bound for V' was solved
by Hensley (1983). Subsequently, Lagarias and Ziegler (1991) improved his bound
and showed that

V(P) < k(T(k + 1))2""" detl, (4.7)

whenever P € ®4(L) and Gy(int P) = k > 1. Further, Lagarias and Ziegler (1991)
conjecture that the examples for (4.6) are optimal and show that (4.6) and (4.7)
can be generalized to rational convex polytopes. Via Blichfeldt’s inequality (3.2)
one obtains similar results for G (P). ‘

Rabinowitz (1989) determined all convex lattice polygons (up to unimodular
transformations) with at most one interior lattice point. Lattice simplices in B
containing no lattice points except their vertices were studied among others by
Recve (1957), White (1964), Scarf (1985) and Reznick (1986). A relation of the
Frobenius problem to “maximal lattice free bodies” was given by Scarf and Shall-
cross (1990) (cf. also Kannan 1989).

5. Lattice polyhedra in combinatorial optimization
As we will see in the last two sections combinatorial optimization problems are

naturally related to some special lattice point problems which are usually formu-
lated for Z¢. Of course, most problems can also be phrased in terms of other
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lattices. However, from a theoretical point of view most problems studied in sec-
tions 5 and 6 are, indeed, affinely invariant. The same is true from a computational
point of view if we assume that the occurring lattices L, are related to Z¢ by affine
transformations A, of size that is bounded by a polynomial in 4. Hence it seems
unnecessarily clumsy to formulate the following results for lattices other than the
integer lattice. Therefore, with the exception of section 6.1 the results in sections §
and 6 will be phrased in terms of Z¢ only.

5.1. The combinatorics of associated lattice polyhedra

In this section we deal with the integer hull /;.(F) of polyhedra F. It is easy to see
that 7;.(F) is not a polyhedron in general. However, Meyer (1974) showed that
for a rational polyhedron F, I;.(F) is again a polyhedron. Hence, we will in the
following only deal with rational polyhedra. In fact, we have the following stronger
statement (cf. Schrijver 1986, p. 237).

Let A be an integer m x d matrix, b € Z"™ and let F = {x € R%: Ax < b}. Further,
let A be the maximum of the absolute values of the subdeterminants of the matrix
[A b). Then there are integer vectors xi,...,Xy,Y1,...,Ys with all components at most
(d + 1)A4 such that I.(F) = conv{xy,...,x,} +pos{ys,...,ys}.

This result implies that if a rational system Ax<b has an integer solution then
it has one of size that is bounded by a polynomial in the size of the input A
and b. Further, if ¢ is rational and max{{c,x): x€1z(F)} is finite then the maxi-
mum is attained by a vector of polynomial size. This means that one can restrict
all considerations in integer programming to polytopes P and associated lattice
polytopes I7.(P) and that the integer programming problem is in the class NP.
For various other results along this line see Schrijver (1986).

Doignon (1973) and, independently, Bell (1977) and Scarf (1977) showed the
Helly-type thcorem that if each set of at most 2¢ of the constraints in Ax < b has
an integer solution then there is an integer solution for the complete set Ax < b
of constraints.

The importance of integer hulls of ¥-polytopes in combinatorial optimization
stems from the fact that linear functionals can be maximized (or minimized) over
rational polyhedra F = {x: Ax < b} in polynomial time; indeed, this is the linear
programming problem, Khachiyan (1979), Karmarkar (1984). Hence, if we could
find in polynomial time a presentation of 7,.(F) in terms of linear inequalities we
could solve the integer programming problem in polynomial time. This is particu-
larly easy if b is integer and if A is totally unimodular, i.e., if each subdeterminant
of A isin {—1,0,1} hence, then, F = {x: Ax < b} is already a lattice polyhedron,
gll vertices are integer. Therefore, in this case the integer programming problem
is solved by any linear programming algorithm. This result is essentially a charac-
terization of total unimodularity: Hoffman and Kruskal (1956) show the following
theorem, for which a short proof was later provided by Veinott and Dantzig (1968).
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An integer m x d matrix A is totally unimodular if and only if for each vector b € Z™
the polyhedron {x: Ax < b A x > 0} is integer.

Note that this property holds, in particular, for network matrices; see Schrijver
(1986, p. 272). As a consequence of Seymour’s (1980) decomposition theorem total
unimodularity can be tested in polynomial time; for more details see Schrijver
(1986, p. 290).

Unfortunately, the situation is much worse, in general. Edmonds (1965) showed
that there is no polynomial p such that for each ¥-polyhedron F = {x € RY: Ax <
b}, the associated polyhedron /z.(F) has at most p(size(A, b)) facets.

Let for j € N, T; denote the triangle in R? given by

Ti={x=(&,&) € RZ: &1 + djm & < ¢22,~+1—1 A&, & 20},

where ¢, denotes the kth Fibonacci-number. Rubin (1970) showed that I7.(T})
has j + 3 vertices and therefore also j + 3 facets. Hence, there is no bound on the
number of facets of the polytope I7«(P) in terms of the number of facets of a
polytope P.

Hayes and Larman (1983) showed that the number of vertices of the knapsack
polytope P = {x € R (a,x) < B Ax >0}, witha € N4, B € N, is at most
(log,(2 +28/@))¢, where a is the smallest component of a. Extension of their
arguments yields an O(m?L%) upper bound for arbitrary rational polyhedra of
size L with m facets in fixed R?. (For some related results see Shevchenko 1981.)
Strengthening this result Cook et al. (1992) showed that a rational polyhedron F
in R? presented as the set of solutions to a system of m linear inequalities of total
size L can have at most 2m?¢(6d42L)*"! vertices. :

Rubin’s (1970) result shows that the order in L of the above result is best possible
for polygons. Recently, Bardny, Howe and Lovész (1992) proved that for any fixed
d >2 and for any L € N there exists a rational polyhedron F € R? of size at most
L and with at most 242 facets such that the number of vertices of I7.(F) is at least
yL4-!, where 7 is a constant depending only on n.

Similarly sharp results for the number of facets of associated lattice polyhedra
are not known.

5.2. Polyhedral combinatorics

Associated lattice polyhedra and lattice polytopes play an important role for the al-
gorithmic solution of combinatorial optimization problems. Here we will only give
some paradigms to outline the concept. For more details we refer to the relevant
literature on combinatorial optimization, particularly to Lawler et al. (1985) for
results on the traveling salesman polytope, to Schrijver (1993a) and to Schrijver’s
(1993b) forthcoming book on polyhedral combinatorics. The general approach of
polyhedral combinatorics is to apply linear programming techniques to combi-
natorial optimization problems by studying the structure of corresponding lattice
polytopes. These polytopes are usually given as the convex hull of a finite set of
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points. Hence, in order to apply linear programming techniques we have to find
a (possibly small) system of linear inequalities that presents the polytope P. This
might seem a rather strange detour since, obviously, a linear functional can be
maximized over a finite point set by evaluating it for each such point and taking
the maximum. However, typically the number of points is exponential. This is also
true for the number of facets but on the other hand an optimal vertex v of P is
already characterized by dim P of its facets that are incident with v. Hence the un-
derlying philosophy is that it might be possible to find an optimum solution without
having to consider too many facets. Focusing on its theoretical aspects, polyhedral
combinatorics is mainly concerned with the combinatorial and geometric study of
special lattice polytopes. In many cases these polytopes evolve as follows.

Let E = {ey,...,€,}, and let ¥ be a subset of 2%, the set of all subsets of E.
With every S € 2F we associate the incidence vector x* = (§,...,£), where

LN

S _ 0 ife,-gS, .
§""{1 ifees, Th

Then we set
Py = conv {x’ € R": S € ¥}.

To give a concrete example suppose V = {1,...,d} and let E denote the set of
all edges of the complete graph Ky, on the vertex set V. Hence n = (). Further,
let ¥4 denote the subset of 2£ of all Hamiltonian cycles (tours) in Ky|. Then the
polytope Py. is called the symmetric traveling salesman polytope. If we do the
same in the complete directed graph on V and consider the set @¢ of all directed
Hamiltonian cycles then Pg. is the asymmetric traveling salesman polytope. In
principle, solving the symmetric or asymmetric traveling salesman problem is just
a linear programming problem over Py, C R(2) or Py, c RY4-Y, Clearly, these
polytopes are the convex hull of a suitable subset of the vertices of the cube
0,1)(3), [0,1)%@-D, respectively.
The dimensions of the traveling salesman polytopes are for d > 3:
dimPy, = 3d(d -3), dimPg.=(d—-1)’ —d,

cf. Grotschel and Padberg (1985).

Padberg and Rao (1974) further showed that for d > 6, the (graph-theoretic)
diameter of the 1-skeleton of Pgq is 2; for 3 < d < 5 it is 1. (This does not imply
that two pivot operations of the simplex algorithm would suffice; however, 2d — 1
pivot steps do suffice, Padberg and Rao 1974.)

There are many facets known for the traveling salesman polytopes — too many

to be described here, see Grotschel and Padberg (1985). Some classes can be used
in cutting plane approaches. However, there are also facets which are defined by
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properties that — unless P = NP — cannot be checked in polynomial-time. For a
survey on algorithmic implications of polyhedral theory see Grotschel and Padberg
(1985).

6. Computational complexity of lattice point problems
6.1. Algorithmic problems in geometry of numbers

Essentially any result in the geometry of numbers can be studied from an algo-
rithmic point of view. Here, we only give some examples and refer to Schrijver
(1986). Kannan (1987b), Grotschel, Lovasz and Schrijver (1988) and chapter 3.1
by Gruber for further studies.

Recall, first, the definition of a reduced basis of a given lattice L. Let (v,...,v4)
be an ordered basis of L, let (v],...,v}) be its Gram-Schmidt orthogonalization
and let

i
* .
v = E [.L,'l'l)j, l=1,...,d.
/=1

(v1,...,vy) is called reduced if the following two conditions hold:

I;Liilé% f0r1<j<l<d

o7y + i 0f 2 = 30712 fori=1,...,d - 1.

One of the fundamental results in the algorithmic geometry of numbers is
Lovasz’ basis reduction algorithm which first appeared in Lenstra, Lenstra and
Lovész (1982), (cf. also Grotschel, Lovész and Schrijver 1988, Gruber and Lekkerk-
erker 1987, and Kannan 1987b).

There is a polynomial-time algorithm that, for any given linearly independent vectors
vi,...,0q € QY finds a reduced basis of the lattice | spanned by v, ..., v,

Needless to say how important basis reduction is in geometry of numbers, hence
this result has numerous implications. For example, it leads to a polynomial-time
algorithm for factorization of polynomials and to an approximate polynomial-
time algorithm for simuitancous Diophantine approximation, Lenstra, Lenstra and
Lovész (1982), but it can also be used in cryptography, Shamir (1984). A gener-
alization of the basis reduction algorithm to Minkowski geometry was given by
Lovész and Scarf (1990).

The basis reduction algorithm was, in particular, applied by Grotschel, Lovész
and Schrijver (1988, p. 149) to give the following algorithmic version of Minkowski’s
fundamental theorem (2.1).
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Let vy,..., vy € Q% and let L € £ be the lattice spanned by vy, ... vy Let K € 3td,
let r,R € Q such that rB* C K C RB? and suppose

d(d=1)/4 d/2

V&) 2

(d + 1) detlL.

Further, let € € Q, & > 0. Then there is a rational arithmetic algorithm for finding a
nonzero lattice point in K that uses as a subroutine a procedure that, given a point
x € Q1 cither asserts that x € K + eB? or asserts that

xgcl ([R"\ (RINK)+ s[B")).

Assuming that a call of the subroutine has unit complexity, the algorithm runs in
time that is bounded by a polynomial in d,logr,log R and log ¢.

Observe that the requirement for the volume of K is much stronger than in (2.1),
and it is not known whether there is a similar algorithmic version of Minkowski’s
theorem with its original bound 2¢.

For more results on the algorithmic theory of convex bodies see Grétschel,
Lovdsz and Schrijver (1988) and chapter 2.7 by Gritzmann and Klee. For some
interesting recent algorithmic results concerning successive minima see Kannan,
Lovdsz and Scarf (1990).

6.2. NP-hard problems

Karp (1972) showed that the feasibility problem of integer programming is NP-
complete:

Given a rational m x d matrix A and a vector b € Q™, is there
a point x € Z¢ such that Ax < b?

The problem remains NP-hard if all entries of A and b are in {0,1} and x is
required to be a 0-1-vector. Hence, integer programming is NP-hard in the strong
sensc, even over rational polytopes. Even the following variant of the knapsack
problem is NP-hard.

t

Given a € Q7 with a > 0 and B8 € Q; does there exist a vector
x € {0,1} such that {a,x) = B?

A transformation from this problem can be used to show that the problem of
deciding whether a given ¥ -polytope contains an integer point is also NP-complete
(Freund and Orlin 1985)

However, the situation for ¥-polytopes is even worse: Papadimitriou and Yan-
nakakis (1982) (cf. also Schrijver 1986, p. 253) showed that the following problem
is NP-complete.
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Given an %-polytope P and a vector y € Q% is y € I4(P)?

The following problems are also NP-complete; Schrijver (1986, p. 254), Papadim-
itriou (1978):

Let P be an ¥-polytope. Given y € P NZ4% is y not a vertex
of I«(P)? Given x;,x, € P NZ% are x, and x, non-adjacent
vertices of Iz¢(P)?

The last problem remains NP-complete even when P C (0, 1)¢. In this case x,x2
are vertices of P. Similar difficulties arise when a hyperplane is to be tested for
being a facet of I7«(F). Even the problem of deciding whether an %-polytope has
only integer vertices is NP-hard: Papadimitriou and Yannakakis (1990) show that
the following problem is NP-complete.

Given an ¥-polytope P, is P # Iz4(P)?

Clearly, computing Gz«(P) for an ¥-polytope P is NP-hard, even #P-complete
(see Valiant 1979). This does, however, not directly imply that the problem of
counting the number of lattice points of a lattice polytope is also #P-hard since
the restriction to polytopes P with integer vertices changes the problem. However,
as it is known (Valiant 1979) the problem of determining the number of perfect
matchings in a bipartite graph is #P-complete and on the other hand the node-
edge incidence matrix of a bipartite graph is totally unimodular. This implies that
the corresponding polytope has 0-1-vertices. Hence the problem of counting the
number of lattice points of a lattice ¥-polytope is, indeed, #P-complete. For integer
¥ -polytopes the #P-hardness can be inferred from Ehrhart’s result (4.4) and the
fact that, by Dyer and Frieze (1988), computing the volume of a rational polytope is
#P-hard, Dyer, Gritzmann and Hufnagel (1993). The same is true for the problem
of counting the number of lattice points of a lattice zonotope, Dyer, Gritzmann
and Hufnagel (1993).

The problem of counting lattice points of polytopes in fixed dimensions was stud-
ied by various authors; it can be solved in polynomial time for d < 4 (Zamanskii
and Cherkasskii 1983, 1985, Dyer 1991).

For various additional results on the computational complexity of integer pro-
gramming etc. see Schrijver (1986) and chapter 2.8 by Burkard.

6.3. Polynomial time solvability

As we have seen, counting the number of lattice points in an J-polytope is a hard
problem. Cook et al. (1992), however, describe an algorithm that determines the
number of integer points in a polyhedron {x: Ax < b} to within a multiplicative
factor of 1+ £ in time polynomial in m, L and 1/& when the dimension 4 is fixed.
This result has to be seen in connection with results of Zamanskii and Cherkasskii
(1985) but also in conjunction with Lenstra’s (1983) polynomial-time algorithm
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for integer programming in fixed dimension. Lenstra (1983) proved the following
remarkable theorem.

For fixed d € N there is a polynomial-time algorithm for the following problem:
given m € N, a rational m x d matrix A and b € Q, find an integer solution of the
system Ax < b or decide that there is no such solution.

This result implics, in particular, that the integer programming problem can be
solved in polynomial time when the dimension is fixed. Based on work of Lenstra,
Lenstra and Lovész (1982) and making crucial use of Minkowski's theorem (2.1)
Kannan (1987a) improved Lenstra’s complexity bound by giving an integer pro-
gramming algorithm whose complexity depends on the dimension d as d°, The
problem of counting the number of lattice points of lattice polytopes in fixed R¢
has some relevance for problems in computer algebra, cf. Gritzmann and Sturmfels
(1993).

6.4. The complexity of computing upper and lower bound functionals

In sections 2, 3 and 4.3 we have stated various inequalities involving G, and some
other functionals. In view of the hardness of counting lattice points, it is natural to
ask whether these functionals can be computed easily. It turns out that functionals
like the volume, the surface arca, the diameter and the width can be computed
for rational (V- or ¥-presented) polytopes in polynomial-time, if the dimension is
fixed. For d being part of the input, computing the volume or surface area is #P-
hard, Dyer and Frieze (1988) (see also Khachiyan 1992). The complexity of inner
and outer radii like diameter, width, inradius and circumradius in finite-dimensional
110rmcd spaces has been studicd by Gritzmann and Klee (1993) - and we refer to
their paper for the precise statement (and some applications) of the following re-
sults. In Euclidean space the situation is roughly as follows: the diamcter (and
hence the circumradius) problem is NP-hard even for #-presented parallelotopes
(cenlered at the origin); see also Bodlaender et al. (1990). The width problem
18 NP-hard alrcady for (%- or ¥ -presented) simplices, the inradius problem is
NP-hard already for ¥ -presented cross-polytopes. The following radii can be com-
puted or at least approximated in polynomial time: the inradius for ¥-polytopes,
the width for symmetric %¢-polytopes, the diameter and the circumradius for V-
po}ytopcs. In¥, and in ¢, spaces some of the radius computations become easier.

T'he complexity of computing the lattice width of a polytope as used in (3.12)
and (3.13) has not been determined, yet.

Let us close with the discouraging result of Cook et al. (1992) that for any
polynomial p : Z — Z the following problem is NP-hard:

Given an ¥-polytope P in R?; find positive integers a, 8 such
that @ € Gz«(P)+1 < B and B < 27a.

This result shows a dilemma for the problem of computing lower and upper
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bound functionals for the lattice point enumerator in variable dimensions: either
the gap between the lower and the upper bound grows super-exponentially in the
dimension or at least one of the two functionals is itself hard to compute.
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Introduction

The concept of a valuation lies at the very heart of geometry, as does the closely
related concept of a dissection. Indeed, the word “geometry” means “measuring
earth”, and involves the notion of dividing up plots of ground and calculating their
areas. The Greek definition of area was built on the idea of dissecting planar polyg-
onal regjons into triangles, whose areas are given by the familiar formula, although
a rigorous proof that polygonal regions of the same area admit equidissections into
congruent triangles had to wait until comparatively recently (see section 5.3).

The comparable 3-dimensional problem of comparing volumes proved much
more difficult to the Greeks. The technique finally adopted, that of the method of
exhaustion due to Eudoxus Archimedes (though first applied less formally in the
plane by Antiphon), involves a limiting process. Whether an elementary dissection
argument would also work here was asked by Gauss, if not earlier, but it was only
with Dehn’s negative solution of Hilbert’s third problem (see section 4.5) that the
problem was, at least partially, settled. What is now understood by Hilbert’s third
problem is that of finding necessary and sufficient conditions on polytopal regions
for such equidissections (under various restrictions on the motions allowed) to be
possible.

In this article, we shall discuss the current state of knowledge of valuations
and dissections. An earlier survey article (McMullen and Schneider 1983) covered
the same ground as this, and we shall draw on it extensively. There is, though,
one striking difference. Recently, the concept of the polytope algebra, introduced
by McMullen (1989), has done for general translation invariant valuations what
the earlier algebra of polytopes of Jessen and Thorup (1978) did for translation
invariant simple valuations. (The later work did, however, rely heavily on the
earlier.) We shall therefore base our treatment of the abstract foundation of the
theory of valuations on the polytope algebra (see section 3).

1. The basic theory

We begin with a discussion of the basic theory of valuations and dissections, in-
cluding the background notions of Euclidean space which we employ. It is worth
remarking, though, that much of this basic theory works in the more general con-
text of a finke-dimensional linear space over an arbitrary ordered field, and we
only choose the Euclidean context for simplicity of treatment (see, in particular,
McMullen 1989).

1.1. Euclidean notions

We shall work, for the most part, in d-dimensional Euclidean space E4. A gen-
eral vector in E4 is written x = (&,...,&), where ¢ € R, the real numbers,

for j = 1,...,d. We endow E¢ with the inner product (x,y) := Y}, &n;, Where
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y = (m,..-,M4), and corresponding norm ||x|| := /{x, x). Occasionally, though, we
shall refer to a vector space V over an arbitrary (not necessarily Archimedean)
ordered field F. This too can be given an inner product, but there will not usually
be a norm, because F will not be square-root-closed. However, the Gram-Schmidt
orthogonalization process will enable us to define orthogonal projection onto sub-
spaces of V.

We shall be as much concerned with affine as linear properties of E4; useful refer-
ences here are Griinbaum (1967) or McMullen and Shephard (1971). In particular,
the vector or Minkowski sum of S, T C E? is defined by

S+T:={x+y|x€S,yeT},

the translate of S by t € E? is S+t := S+ {t}, and the scalar multiple of S by A € R
is

AS = {Ax|x €S}

The Hausdorff distance p(S,T) between two non-empty compact subsets S, T
of E¢ is defined by

p(S,T) =min{p>0|S C T +pB, T CS+pB},

where B = BY := {x € E|||x|| <1} is the unit ball in E4. Continuity for functions
on classes of compact subsets of E4 will usually be with respect to the Hausdorff
metric.

1.2. Valuations

Let & be a family of sets in E4. We call a function ¢ on ¢, taking values in
some Abelian group, a valuation, or say that ¢ is additive, if (SUT)+¢(SNT) =
¢(8)+@(T) whenever S,T,SUT,SNT € $. If @ € &, we shall always suppose that
¢(®) = 0. Our families ¥ will usually be intersectional, which means that SN Te?
whenever S, T € . For an intersectional family &, we write U¥ for the family of
finite unions of members of ¥, and U¥ := {S\T|S, T € U¥}. Particular examples
of intersectional families in E4 are the family %¢ of compact convex sets or convex
bodies, the family ®¢ of (convex) polytopes, and the family 69 of convex cones
with apex the origin (zero vector) o. The family U % is called by Hadwiger (1957)
the convex ring, although we shall avoid the term, and the members of UP? are
called polyhedra. In addition, a subscript * on %¢ or ®9 will denote the subset of
non-empty members of the appropriate family.

There are many examples of valuations, which we shall discuss in more detail
in section 2. For now, let us note that the restriction of a measure to any family
in E4 will yield a valuation on that family; in particular, volume is a valuation in
every dimension. Surface area is also a valuation, as is the Euler characteristic on
the three families just introduced. All these valuations ¢ are transiation invariant,
in that @(S +t) = ¢(S) for each appropriate S and each ¢ € E¢ (the definition
has no force for the family 6¢). More generally, we shall say that a valuation ¢
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on a class ¢ which is permuted by a group G of affinities of €4 is G-invariant if
o(DS) = ¢(S) for each S € ¥ and P € G. Then these valuations just mentioned
are actually D-invariant, where D is the group of all isometries of E4.

An important subclass of valuations consists of those that are simple. In general,
if L is a linear subspace of E?, we say that a valuation ¢ on a family & is L-simple
if @(S) = 0 whenever S € F(L) := {S € ¥|S C L} satisfies dimS < dim L (our
class here will consist of convex sets, for which the dimension can be defined). The
term simple alone will mean E*-simple.

A function ¢ on a suitable family & is called Minkowski additive if (S +T) =
o(S) + @(T) for all §,T € &. Then there is a fundamental relation, due to Sallee
(1966).

Lemma 1.1. If S, 7,SUT € %4, then
SUT)+(SNT)=8+T.
Hence every Minkowski additive function on ¢ is a valuation.

Since ¥4 is a semigroup under Minkowski addition which has a cancellation law,
we can imbed %< in an Abelian group; we can thus interpret this observation as
saying that the identity map from %4 into itself is a valuation.

A closely related example of a valuation is the support functional h(K , -), defined
by

h(K,u) = max{{x,u)|x € K}

for K € ¢ and u € E4, since Minkowski addition of convex bodies corresponds to
addition of their support functionals. (By the way, we might remark here that the
Hausdorff distance p is given by

p(K,L) = max{|h(K,u) — h(L,u)||u € 0},

where 2 = 241 = {x € E4|||x|| = 1} is the unit sphere.) If C € % is fixed, then
the map ¢c from ¥? into itself defined by ¢c(K) := K + C is a valuation, since

SuUT)+C=(S+C)U(T+C)
for all S, T € X9, while
(SNT)+C=(S+C)N(T+C)

provided that SU T € %¢ also (see Hadwiger 1957, p. 144). This remark will play
an important role later. This observation is also an immediate consequence of the
following,

Lemma 1.2. If f : X4 — % is a map such that f(SUT) = f(S)Vf(T) and f(SNT) =
FS)NFT) if S,T,SUT €A%, then ¢ o f is a valuation on K¢ whenever ¢ is.

For polytopes, a variant notion of valuation is useful. We call a map ¢ on P4 a
weak valuation if 9(P)+¢o(PNH) = ¢(PNH*)+¢(PNH") whenever P € ¢ and
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H is a hyperplane bounding the two closed half-spaces f/* and H~. Sallee (1968)
(see also Groemer 1978) has shown:

Lemma 1.3. Every weak valuation on @4 gives rise to a valuation.

However, examples show that weak valuations on %9 need not arise from valu-
ations in this way (see McMullen and Schneider 1983, p. 173).

1.3. Extensions

While it was not important for Jessen and Thorup (1978), it turns out to be vital
for the approach of McMullen (1989) to be able to extend valuations on & to
valuations on U, for & = @4 or %“. The quickest way to see that such extensions
are possible follows Groemer (1977a) (we slightly modify his argument). If § € &,
its characteristic function St is given by

1 ifxes
te) — ,
§'x) {0 ifx¢gs.

The Abelian group of integer valued functions generated by the functions St with
S € ¥ is denoted X¥. Then we have:

Lemma 1.4. A valuation on & admits a unique extension to U¥.

With UY replaced by U, the result is originally due to Volland (1957) (see
also Perles and Sallee 1970). Since the basic idea of the proof is important, as well
as simple, we shall outline it. First, note that, whenever S, T C E¢, intersection is
given in X¥ by

(SNT) =S'Tt

(the product is ordinary multiplication of functions), while complementation is
given by

(E9\ $) =1 5",
(If necessary, we adjoin £ to our intersectional family ¢.) Thus union is given by
1-(SU---uS) =(1-Sh---(1-5})
(note that 1 occurs on both sides of the equation, so adjoining £ to & is only a
convenience), and this results in the inclusion—exclusion principle:

Lemma 1.5. The extension of a valuation ¢ on & to UY is given by

k
e(S1U--US) = Z (-1)/-! Z e(Siy N -+~ NSy
j=1 i(i)<-<i()
with Si,...,85¢ € ¥, and further to UY by
¢(A\B) = ¢(A) — ¢(AN B),
with A, B € U¥.
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1.4. Dissections

Let & be a subfamily of U2?, where 29 consists of the polyhedral sets, or inter-
sections of finitely many closed half-spaces, in E4. (We shall therefore consider
the unions of polyhedral sets from the outset; the particular subfamilies we shall
usually be concerned with are those obtained from the polytopes or polyhedral
cones.) A dissection of P € & is an expression of the form

P=PuU..-UP,

with Py,..., P, € &, which means that P = Py U ... U P, with int(?; NP)=20
whenever i # j; that is, a dissection is a union of seis with pairwise disjoint interiors.
Let G be a group of affinities of E¢, which permutes the members of &. We say
that two members P, Q of & are G-equidissectable, written P ~ Q, if there are dis-
sections P = Py--- WP, and Q@ = Q4 ---WUQy, and elements @y,..., P, € G, such
that Q; = &;P; for i = 1,...,k. We say that P,Q € ¥ are G-equicomplementable,
written P ~¢ @, if there are P/, P, Q', Q" € & such that P” = PUP’, Q" = QuQ’,
and P’ =g @', P" =g Q". We shall discuss equidissectability and equicomple-
mentability, and the relationship between them, in section 4.4 and section 4.5 be-
low. However, the reader is surely familiar with various games and puzzles, such
as tangrams and pentominoes, which involve dissections. It is clear from the defi-
nitions that, if & is such a class as above, and ¢ is a G-invariant simple valuation
on ¥, then ¢(P) = ¢(Q) whenever P =, Q (or P ~5 Q); the core of Hilbert’s
third problem is to find sufficient conditions for G-equidissectability (or equicom-
plementability) in terms of suitable families of G-invariant simple valuations.

2. The classical examples

We shall now more formally introduce the classical examples of valuations. In the
first two subsections, we consider volume, moment, and related valuations, while
in the third, we treat the lattice-point enumerator, which differs in a number of
important respects from the other examples.

2.1. Volume and derived valuations

Any measure on a ring of subsets of E¢ which contains %¢ which is finite on ¥4
will yield a valuation on X?. In particular, Lebesgue measure gives the ordinary
volume V; this is a simple valuation. However, there is a quite different approach
to volume, beginning with an elementary notion of volume of polytopes (which
can be characterized axiomatically; see section 5.3 below), and extending this to
general convex bodies by continuity arguments. For further details, see Hadwiger
(1957), Boltyanskii (1978) or Bshm and Hertel (1980).

We introduce a little notation. We shall write «; := V' (8%) for the volume of the
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unit ball in E¢4, and o for Lebesgue measure on 297!, so that o(£2“°') = di, =:
wy_ is the area of the unit sphere.

As we remarked in section 1.2, ¢(K) ;= ¢(K + C) is a valuation if ¢ is, and
if C € %¢ is fixed. It is easy to show that, if Ki,...,K; € X7 and Ay,..., A 20,
then the volume of A1 K, +--- + A K, is a homogeneous polynomial in Aj,..., A,
of degree d, say

VLK +-+ MKy ) = zAi(l)"‘Ai(d)V(Ki(l)u~~sKi(k))a

with V(K;q),-- -, Kix)) symmetric in the indices, and depending only on K, ...,
Kix)- These coefficients are known as mixed volumes. We often write this expres-
sion in the form

d ,
V(/\|K1 +'-'+AkKk) =Z (r] .“rk)/\:' ~~-/\k“V(K|,r1;...;Kk,rk),
where

i k —_— » ; —
d PR if 320 ri=dand r; 20(j=1,...,k),
<’|“"k) o
0 otherwise,

is the multinomial coefficient. Here, and elsewhere in such expressions, we use the
abbreviation

‘P(Kl)rl;~'~;Kk’rk)=¢(K1)“‘aK]a'“ka)"ka)v
e’ N——’
) times r, times
with 7, +--- + r, = m, for any function ¢ of m variables; we also write
(P(Klv""K[H(G)=@(Kll'Hvaan-o»ls"'1Lm)i

when € = (L,,i,...,Ly) is a fixed (m — p)-tuple. With this convention, we then
obtain

V(/\]K] +-- 4 AkKk,p;(G)

P o .
with m = d in the above.
Since the mapping
K- V(AK"'APHKPH +0 4 Ade)

is a valuation on % for any p € {1,...,d} and any (d—p)-tuple ¢ = (K.1,..-, Ky),
it follows by considering the coefficient of (p!/d!)A?A,,; --- A, that the mapping
@, given by

¢(K):=V(K,p;€¢)
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is also a valuation. In particular, the jth quermassintegral W, defined by
W}(K) = V(K,d—j;B,j),
is a valuation, and corresponds to the Steiner parallel formula

d

VIK+AB)=)_ (‘j) MW(K).

j=0

We also define the normalized quermassintegral, or intrinsic r-volume V, by
d
Kg_r V, = (r) Wd—r;

since Wy(K) = x4 for all K € ¥, it follows that Vo(K) = 1(= x(K), the Euler
characteristic, see below) for all such K. More generally, the normalization, due to
McMullen (1975a), is such that V,(K) is the ordinary r-dimensional volume of K
if dim K = r; note that V, is homogeneous of degree r, in that V,(AK) = A'V,(K)
for all K and all A > 0. Further, S(K) := dW|(K) = 2V,_(K) is the surface area
of XK.

While the valuation property of the quermassintegrals was pointed out by
Blaschke (1937), and played an important role in the work of Hadwiger (see sec-
tion 5), that of the general mixed volumes is, strangely, not mentioned in any
standard textbooks to date.

Without going into details, let us also remark that the intrinsic volumes occur
in various integral-geometric formulae, which average the intrinsic volumes of
sections (projections) of a convex body by affine (on linear) subspaces of E¢. [See
Hadwiger (1957) or Santalé (1976, sections 13, 14) for the exact results and their
proofs, and Hadwiger (1956, 1957) for generalizations.]

The extension property of valuations, discussed in section 1.3, enables the in-
trinsic volumes to be extended to U ¥. In particular, the extension of Vj is the
Euler characteristic x. The Euler characteristic is, of course, of considerable im-
portance in other branches of mathematics, and so a substantial literature has
been devoted to it. Within convexity, we mention the inductive construction (in
U4, and on dimension) due to Hadwiger (1955a); this idea was further explored
in Hadwiger (1957, 1959, 1968b, 1969c) and Hadwiger and Mani (1972) (see also
Hadwiger 1974a, concerning planar polygons). For applications to combinatorial
geometry, see (in addition) Hadwiger (1947), Klee (1963), and Rota (1964, 1971);
the last paper provided a very general theoretical treatment. The extension of y
to relatively open polytopes was considered by Lenz (1970) and Groemer (1972);
see also Hadwiger (1969c, 1973) for special cases, and Groemer (1973, 1974, 1975)
for further generalizations.

The extension of the higher intrinsic volumes has received somewhat less atten-
tion. However, the Gauss—-Bonnet theorem describes the Euler characteristic of
surfaces in local terms. The Lipschitz—Killing curvatures, though initially defined
in analytic (differential geometric) terms, turn out in the piecewise linear case just
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to be the extended intrinsic volumes, though this has not hitherto been recog-
nized (see, for example, Cheeger, Miiller and Schrader 1984 and Budach 1989; the
desired connexion is most casily obtained from the latter).

Closely related to surface area are the mixed area functions. Using their prop-
erties of Minkowski additivity and uniform continuity in each argument, the Riesz

representation theorem shows that, for given Kj,..., K1 € X4, there is a unique
(positive) measure S(Ki,...,Kyy;) on the Borel subsets of the unit sphere {2,
such that

1
V(L,K,,...,Kd-.)=3/n h(L,u) dS(Ky, .., Kaoy;10),

where A(L,-) is the support functional of L € ¥¢. This measure is due, indepen-
dently, to Aleksandrov (1937) and Fenchel and Jessen (1938); see also Busemann
(1958) (it is often called a Fenchel-Jessen area measure). In particular, one writes

Sp(K;+)=S(K,p;B,d—p—1,-)

for the pth order area function of K; we note that S,(K; 1) = dW,_,(K).

If @ is a Borel set in {2, then S(K;w) is the {(d — 1)-dimensional Hausdorff)
measure of that part of the boundary of K at which there is an outer normal
vector (to a support hyperplane) lying in w. The general mixed area function is
then given by

Sai(MKy+- -+ 0Ky +)
= Z Airy - M-S (Kitys - - - Kiga-135 +)-
It then follows that the mapping '
K~ S(K,p,6;-)

is a valuation for each p € {l,...,d — 1} and each (d — p — 1)-tuple € =
(Lp+ts-..,Lgoy) in 2. In particular, each S, is a valuation on *¢ (with values
in the vector space of signed Borel measures on £2); this valuation property was
first pointed out and used by Schneider (1975a).

The Fenchel-Jessen area measures can be obtained from a local version of the
Steiner parallel formula. Variants on these measures are the Federer measures,
which now depend additionally on a Borel set in E¢ itself. As initially defined
by Federer (1959), they applied to more general sets than convex surfaces. We
shall not give any details here, but instead refer the reader to Federer's paper,
and to Schneider (1978, 1979); the latter survey article contains other references.
Subsequently, these ideas were further generalized by Wieacker (1982).

Schneider (1980) has shown how to extend the area functions and curvature
measures to U 39, among other things, he obtains a variant of the Gauss-Bonnet
theorem. Related notions (to this last) occur in Banchoff (1967, 1970) (see also
Schneider 1977)b).
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2.2. Moments and derived valuations
The moment vector z(K) of K € 3¢ is defined by
2(K) = / x dV(x),
K

so that, if dimK = d, then g(K) := V(K) 'z(K) is the centre of gravity of K.
There is a polynomial expansion, exactly analoguous to that for volume, of the
form

(MK + -+ MKy ) = Z/\i(()) Ay 2(Kigoy, - -+ Kiay),

whose coefficients are called mixed moment vectors. (In case d = 3, this expansion
was already noticed by Minkowski (1911, section 23); the general theory was de-
veloped by Schneider 1972a,b.) As for mixed volumes, for each p € {1,...,d + 1}
and (d +1 — p)-tuple € of (fixed) convex bodies, the mapping

K — z(K,p;€)

is a valuation, which is homogeneous of degree p. Other properties of mixed
volumes also carry over, but observe that, while they are invariant under translation
of any of their arguments, the mixed moment vectors satisfy

. 1
(Ko +1,K1, - Ka) = 2(Ko, Kiy - K) + 5 V(K- Ko,
which is a special case of translation covariance (see section 5.5 below).

2.3. The lattice point enumerator

We call P a lattice polytope if its vertices lie in the lattice Z¢. Of great importance
in a number of areas outside valuation theory (in, for example, the theory of
numbers — see Gruber 1979) is the lattice point enumerator G, defined by G(P) :=
card(Z N P). In fact, G(S) can clearly be defined for any subset S of E4, and is a
valuation which is invariant under lattice translations, that is, those in Z¢. Various
connexions with other functionals on convex bodies are discussed by Betke and
Wills (1979), but we shall confine our attention here to those aspects strictly related
to valuation theory.

We denote by ?¢ the family of lattice polytopes in E4. Ehrhart (1967a) showed
that there is a polynomial expansion

d
G(nP)=73_ n'Gi(P),
=0

with # a non-negative integer, when P € ®¢; the coefficients G;(P) do not depend
on n. Besides making applications of this to various counting problems, Ehrhart
(1967b) also discovered the reciprocity law

d
G(relint(nP)) = (—1)4im? Z(—n)iG;(P),
i=0
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where again P € @ and (this time) # is a positive integer.

The polynomial expansions for mixed volumes have analogues for the lattice
point enumerator. If Py,..., P, € Q?Z and ny,...,n; are non-negative integers,
then

G{mPy+---+nPy) = Z n' -t G(Py, 1. Pr ),

where the sum extends over all non-negative integers ry,...,r; satisfying ry +--- +
r, <d. This was independently found by Bernshtein (1976), at around the same
time that more general results were discovered by McMullen (1975, 1977).

Various weighted lattice point numbers have been considered by Macdonald
(1963, 1971); if

o VPN (pB+x)
P =T Vs

is that proportion of a sufficiently small ball centred at x € Z¢ which belongs to
P € ®¢, then

AP):=) a(x,P)

gives a simple valuation which is invariant under lattice translations. He proved an
analogous polynomial expansion, and investigated the coefficients. Hadwiger (1957,
p. 69), replaced the ball by the lattice-oriented cube, and obtained a criterion for
equidissectability of lattice polytopes under lattice translations.

3. The polytope algebra

In section 4.1 below, we shall discuss the algebraic structure which underlies the
theory of translation invariant simple valuations; this was described, independently,
by Jessen and Thorup (1978) and Sah (1979). This structure is that of a vector
space over R (or, more generally, over whichever ordered, but not necessarily
Archimedean, field is the base field). It is therefore not surprising that the anal-
ogous structure underlying general translation invariant valuations behaves some-
what similarly. What is, perhaps, surprising is that the polytope algebra, introduced
by McMullen (1989), has a far richer structure, and, indeed, fails to be a real graded
(commutative) algebra in only one trivial respect.

In the following sections, we shall describe the polytope algebra; as usual, how-
ever, proofs of the results will be omitted (details can be found in McMullen 1989).

3.1. The algebra structure

The polytope algebra II is, initially, the Abelian group with a generator [P}, called
the class of P, for each P ¢ @ := @4 (with [@] = 0); these generators satisfy the
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relations (V) [PUQ]+ ([P NQ| = [P]+[Q] whenever P,Q,PUQ € P (the condition
ensures that PNQ # @ if P,Q # @), and (T) [P +¢] = [P] whenever P ¢ ® and
t € E9. Of course, (V) (which governs addition) and (T) just reflect the valuation
property and translation invariance. It is clear that we have:

Lemma 3.1. A translation invariant valuation on ®? (into some Abelian group)
induces a homomorphism on I1, and conversely.

We invariably employ the same symbol for the valuation and homomorphism.
We at once introduce the multiplication, which is induced by Minkowski addi-

tion, by (M) [P]-[Q] = [P + Q] for P,Q € P, and extend it by linearity to 1. In
view of

P+(Qi1U@)=(P+Q1)U(P+Qy),

which always holds, and

P+(QiNQs)=(P+Q1)N(P+Qy),

whenever P U Q € P (compare Hadwiger 1957, section 1.2.2), the extension by
linearity is compatible with addition on [T, so that IT becomes a commutative ring,
with unity 1:= [o] = [¢] for any ¢ € E* (we write [f] instead of [{r}] for brevity).

An important role is played by dilatation (D) A(A)[P] := [AP] for P € ®9 and
A € R. It is clear that each 4(A) is a ring endomorphism of IT. We can now state
the main structure theorem for I7.

Theorem 3.2. The polytope algebra I1 is almost a real graded (commutative) alge-
bra, in the following sense:

(a) as an Abelian group, IT admits a direct sum decomposition
M= _ En
(b) under multiplication,
Er ' 5: = Erua
forr,s =0,...,d (with 5, = {0} for r > d);
(©) By=2Z, and forr =1,...,d, 5, is a real vector space (with 53 = R);
d)ifx,yeZ,:= EB‘::]E, and A € R, then (Ax)y = x(Ay) = A(xy);
(€) the dilatations are algebra endomorphisms of II, and, for r = 0,...,4d, if
X€E, and A 20, then
AAX)x =A'x,
with A* = 1.

While we cannot prove Theorem 3.2 here, we can outline some of the ingredients
of the proof. There are three stages. First, we cstablish the algebra structure over
the rational numbers. Next, we introduce the real vector space structure on 5, and
prove a special case of the algebra property (d). Last, after proving the separation
Theorem 3.11, we extend the real vector space structure and the algebra property
to the rest of II.
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The subgroup (actually subring) 5, of IT generated by the class 1 of a point

oy

clearly plays an anomalous role. The isomorphism Zp = Z is obvious. Writing Z,
for the subgroup of I7 generated by all elements of the form [P] —1 with P € Pe,
we have:

Lemma 3.3. As an Abelian group, I[1 = 5, ® Z,. The projection from II onto 5,
is the dilatation A(0), and Z, is an ideal in II, with z € Z, if and only if A(0)z =0.

If ag,ay,....0x € E4 are such that {ay,...,a,} is linearly independent, we write
T(ay,...,a;) = conv{ag,ap+@ay,...,a+ - +ar},
which is a k-simplex, and define
s(ay,...,a) = [T(ar,...,a)] = [T(ar,..., 41

with s(@) = 1. This is the class of a partly open simplex (lacking one facet), and
these classes generate I (an arbitrary polytope can be dissected into simplices -
an easy proof is given by Tverberg 1974). The key tools are the analogues of the
simplex dissection theorems of Hadwiger (1957).

Lemma 3.4. For A, 20,
Kk
AA +p)s(ay,...,a) = Z (A(M)s(ay, - - ., a;))(A(r)s(@ja1, - - - 8k ))-
=0
Lemma 3.5. For k > 1 and integer n >0,

A(n)s(ay,...,a;) = zk: (':) Zr

r=1

where
r
zr = > IIs@-1s15-- a5
0=j(0) << j(r)=k i=1

is independent of n.

Lemma 3.5 shows that, if x € IT, there exist yo € 5, and yy,...,¥q4 € Z), such
that

sepe=3 (")

r=0

for all integer # > 0; these y, are unique, since, in fact,

= g(—l)'-" (7) acnrx.
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If we compare

a1 = Pl = 1P = (21 - D+ = 3 (7Pl -1y

r=0

with this, we see that ([P] —1)" = 0 whenever P € ®¢ and r > d. We now let Z, be
the subgroup of IT generated by all elements of the form ([P] — 1)/, with P € ®¢
and j >r. Writing the relation above as

d

anP)-1 =3 () 21— v,

k=1

taking the jth power (with j>r), and using the fact that A(n) is a ring endomor-
phism, shows that, if x € Z,, then A(n)x —n"x € Z,,,. It is now a short step to show
that Z, is uniquely divisible, that is, for each x € Z|, there is a unique y € Z,, such
that x = ny (we recall here that Z;,, = {0}).

At the next stage, we introduce the concepts of logarithm and exponential. These
are defined by

tog(1+9) = Y EUT e,

k21

1
expz:Z sz
k20

(with z% = 1), for every z € Z,. The nilpotence of Z, {which follows from its def-
inition, and the nilpotence of elements [P] — 1) shows that these are well-defined
inverse functions on Z;, with the usual properties of ordinary log and exp. If
P € ¢, we write logP := log[P]; setting z = [P] — 1, we recognize logP as
the coefficient of n in the expansion of [nP] = [P]" given above. Indeed, since
log{nP] = log([P]") = nlog[P], and A(A)log P = log(AP) for rational A, we de-
duce:

Lemma 3.6. For P € ®¢ and rational A >0, A(A)logP = Alog P.

We now invert this relation. If P € ®¢, p = logP and A >0 is rational, then,
since A(A) is a ring endomorphism, we have

d
[AP] = 4(A)[P] = A1) expp = exp(A(A)p) = exp(Ap) = Z AT %P"
r=0 :

The sum terminates at r = d, because p?*! = 0.
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For r = 1,...,d, we now define the rth weight space =, to be the subgroup
of I1 generated by all the elements p’, with p = log P for some P € P! We
then obtain (after a little more work) Theorem 3.2, except that the dilatations and
scalar multiplications are, as yet, only by rationals. (Along the way, it is useful
to characterize =, as the set of all x € I1, such that A(A)x = A"x for one single
positive rational A # 1.) _ .

While it is not yet necessary, we now deal with =;. Comparison of the def-
inition with Lemma 3.5 shows that =, is generated by all elements of the form
s(ay) - --s(aq), with {ay,...,a,} linearly independent. If i # j, it is easy to show that
s(a; + Aa;)s(a;) = s(a;)s(a;) for any scalar A, and, since s(—4;) = s(a;), standard
vector space theory shows that, if we choose a fixed basis {ey,...,eq4} pf B4, tl}en
s(ay)---s(ay) = s(uey) - -~ s(ey), where u = |det(ay, . . .,a,)|, the determinant being
with respect to the basis {e;,...,e4}. Clearly also, s((n + v)ey) = s(uer) +s(ver)
for u,v > 0. It now follows that the mapping

s(a)---s(ag) — |det(a, ..., a4)|

induces an isomorphism between the Abelian groups =y and R. This isomorphism
(together with the homomorphism it induces on I7, and the corresponding trans-
lation invariant valuation on ®9) is called volume, and is denoted vol. More gen-
erally, each linear subspace L of E¢ also admits a volume vol,, which is unique up
to positive scalar multiplication (see, for example, Hadwiger 1957, section 2.1.3).

The first weight space =, admits an alternative characterization. Since
Minkowski addition on ®¢ has a cancellation law, wc can define an Abelian group
%, whose elements are the equivalence classes (P, Q) with P,Q € ®¢ under the
relation

(P,O)~(P,Q)eP+Q =P +Q+t forsomet el
with addition (P,Q) +(P',Q') = (P + P',Q + Q'). Then, in fact:

Theorem 3.7. The mapping log : P — = induces an isomorphism between P
and E,.

Scalar multiplication on =) can now be defined in one of two equivalent ways:

(AP,AQ) if A0,

NP0 = { (-AQ,—AP) if A <0,

on ?,. = I or

e d A0x if A >0,
Tl —A(-Mx ifA<O,

on E, itself.
Checking that (A + g)x = Ax + ux is tedious rather than difficult; all the other
vector space properties are obvious.
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The next step involves proving a special case of Theorem 3.2(d). If we write
II(L) for the subalgebra of IT generated by the polytopes in the linear subspace
L of E, and =,(L) for its rth weight space, then we have:

Lemma 3.8. If L and H are a complementary line and hyperplane in B¢, E is a line
segment in L and e =10g E, and A € R, then (Ae)x = e(Ax) for all x € E\(H).

The method employed in McMullen (1989) to prove Lemma 3.8 closely followed
that in Jessen and Thorup (1978) of the analogous result for the polytope group;
for reasons of space, we shall not reproduce the details, even though the result
is crucial for the discussion. We then appeal to the separation Theorem 3.11 (see
section 3.3), to prove property (d) in full, after establishing it for x,y € =, when
d = 2. The details are largely technical in nature, and do not merit much discussion.
In the course of the proof, the remaining properties of Theorem 3.2 are also
verified; once (d) is known, the rest follows relatively easily.

3.2. Negative dilatations and Euler-type relations

In section 3.1, the only dilatations considered were those by non-negative scalars
A. We now describe what happens when A is allowed to be negative.

The Euler map * is defined on the generators [P] of IT (with P € $9) by (E)
[P)* := 3 (=1)4im¥[F], where the sum (here and elsewhere) extends over all faces
F of P (including P itself).

Theorem 3.9. The Euler map is an involutory algebra automorphism of II. More-
over, forr=0,...,d, if x € 5, and A <0, then

AA)x = ATx".

The proof of Theorem 3.9 uses the isomorphism Theorem 3.12, which, in turn,
depends on the separation Theorem 3.11. In fact, the key result here is an abstract
version of a theorem of Sommerville (1927) on polyhedral cones (we shall mention
this in section 4.4 below); the idea of the proof is the same as that of the more
concrete version proved for translation invariant valuations in McMullen (1977)
(the result occurs without proof in McMullen 1975).

There is an amusing algebraic consequence of Theorem 3.9. It is clear that x € [7
is invertible if and only if it is of the form x = £(1+z) for some z € Z,. In particular,
if P € @2, then [P] is invertible. Now, if p = log P, then [P]~! = exp(—p), and,
in view of Theorem 3.9, —p = (A(—1)p)*. The algebra properties of the Euler
map (which really follow from those of A(-1)) now show that [P)™' = [-P]";
written in the form [P].[-P]* = 1 = [o], this has a nice interpretation as an
equidecomposability result. (In fact, it can be shown not to depend on translation
invariance — see section 3.5 below.)

Further properties of the Euler map, and its relations with the Euler character-
istic, are given in McMullen (1989).
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3.3. The separation theorem

Ifo#uc E4, then the face of a polytope P in direction u is defined to be
P,= {v € Pl(')’“) =h(P,u)}.

Then we have:

Lemma 3.10. The mapping P — P, induces an endomorphism x — x, of 1I.

Now let U = (uy,...,uq_,) be a (d —r)-frame, that is, an ordered orthogonal set
of non-zero vectors in E4. Defining recursively Py = (Pu,,..u,,_, Juz.,» WE S€€ that
we can define an induced endomorphism x — xy. If

L=Ut:={velF!|(v,uy=0foralue U},
and we write voly := vol;, then clearly the mapping fy defined by

fu(P) = VOlu(Pu)

induces a (group) homomorphism fy : II — R, which we call a frame functional
of type r (note that dim L = r, so that fi; will be homogeneous of degree r). The
frame functional of type d (with U = 8) is just vol itself, and that of type O (which
is, essentially, unique) is x (or 4(0)). Then we have:

Theorem 3.11. The frame functionals separate I1; that is, if x € II is such that
fu(x) =0 for all frames U, then x =0.

The key idea behind the proof, which may be found in McMullen (1989), is to
use Lemma 3.8 to reduce the result to an inductive proof on the dimension. Again,
this adapts the idea of Jessen and Thorup (1978).

The frame functionals are not independent, but although the family of rela-
tions or syzygies between them is conjectured in McMullen (1989), it is not yet
completely established.

3.4. The cone group

Although we shall return to the question of spherical dissections in section 4.4
below, we need to begin the discussion of the cone group here. If L is a linear
subspace of E4, the cone group 3(L) is defined to be the Abelian group generated
by the cone classes (K) with K € €(L) := {K € €¢|K C L}, with the relations
(V) (the valuation property) and (S) (K) = 0 if dim K < dim L. Thus 3(L) is the
abstract group underlying simple valuations on ¢(L). We further define the full
cone group to be

3= @S(L),
L

the sum, as usual, extending over all subspaces L of E4,
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Let us write P|L to mean that the affine hull of the polyhedral set P is a
translate of the linear subspace L, and say that P and L are parallel. If F is a
face of a (non-empty) P, we define the normal cone N(F,P) to P at F to be the
set of outer normal vectors to hyperplanes which support P in F, and n(F,P)
to be its intrinsic class, that is, its class in 3(L), where L||N(F,P). We note t,hat
dimN(F,P) = d — dim F. We shall write vol P from now on to mean the volume
of a polytope P measured relative to the subspace L parallel to P, with vol P = 1

if P is a point. An important result, which is a consequence of the separation
Theorem 3.11 is:

Theorem 3.12. The mapping

a(P):=)_ vol F®n(F,P)
F

induces a monomorphism from II into R® 3.

If we define

o(P):=.)_ vol F@n(F,P),
dim F=r

then, similarly, o, induces a monomorphism from =, into R® 2,_,, where

5= P 3.

dimL=d-r

3.5. Translation covariance

Following McMullen (1983), we call a valuation ¢ on P¢ taking values in the
vector space ¥ translation covariant if there exists a map @ : $¢ —» Homg(E%, %),
such that (P +1) = ¢(P) + ®(P)t for all P ¢ P? and ¢t € E%. With ¢ weakly
continuous (see section 5.5 below), we can replace Homg by Hom.

. The abstract theory underlying translation covariant valuations is, as yet, still in
its infancy, and we outline the (unpublished) material only in the hope of stimu-
lating further research. It is convenient, for this subsection alone, to change the
notation somewhat. We now write 1, instead of I7, and define IT to be the Abelian
group generated by the polytope classes under the relations (V) alone. As before,
IT is actually a ring, with the multiplication given by (M); it still has a subring
generated by 1 := [o] which is isomorphic to Z.

We let T be the ideal of IT generated by the elements of the form [f] — 1,
with ¢t € E4. Then Iy = 1T /T. The powers of T are also ideals of IT; we write
I, := I/T*'. Thus IT; is the abstract group underlying translation covariant
valuations on ®¢. The IT, for larger k correspond, in a similar way, to the theory
of valuations which behave under translation like tensors.
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It may be shown that each I, is almost (in the same sense as in Theorem 3.2) a
graded commutative algebra over Q, with graded terms 5, of degrees r <d +k.
However, except in the relatively trivial case d =1 and k = 1, we have not, so far,
been able to extend the algebra properties to allow scalars in R. The first weight
space 5y, is always a real vector space, and is, for k 2> 1, isomorphic to the space
®, defined like ? in section 3.1, but with the equivalence relation not factoring
out translations. The analogue of Lemma 3.8, though, has so far proved elusive.

It may be helpful to observe the following stability result. If we write Z for the
ideal of IT generated by all the elements [P] — 1, with P € ®4, then T/ C Z4* for
all j >0. Define =, := Z"/Z"". Let Z, be the corresponding ideal of Iy, so that

Zo = ZNZN T =(Z + T/ T,
and hence, if k >, then
B, =202 = (ZT+ TR (2 + TFY~Z/ZM = 5,.
What can be proved is that the Euler-type relation
A(-Dx =(—1)x",
with x € 5 ,, remains valid for all , and since
N 7 =09,
k>0

it therefore follows that, if P € ®¢, then [P)~! = [-P]* in IT itself. Writing this
out, and observing that we can identify (P) with P!, we have the decomposability
result:

Theorem 3.13. If P € ®¥, then
Z(—l)dim F(Pp - F)t ={o}".
F

We end the section by remarking that Lawrence (unpublished) and Fischer and
Shapiro (1992) have also investigated I, which they call the Minkowski ring. In
the former paper is shown the following. Let Y be an indeterminate, for u € 4,
define

u(P) = YHF,

with P € @,, and extend to [7 by linearity (it is clear from Lemma 1.1 that &, is a
valuation). Then:

Theorem 3.14. The valuations &, are multiplicative homomorphisms which separate
I

It is not clear how these valuations &, relate to the frame functionals (which are
certainly not multiplicative).

The latter paper considers the subrings of IT generated by finitely many polytope
classes, and their prime ideal structures.
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3.6. Mixed polytopes

In section 2 we discussed mixed volumes and moment vectors. Not unnaturally,
there are analogues in the polytope algebra IT itself (and, in fact, in the more
general II; defined in section 3.5). The definition of a mixed polytope is straight-
forward: if Py,...,P, € P and p; =log P; fori = 1,...,r, then the mixed polytope
m(py,...,p,) is defined by

1
m(plw--apr) = r_| Pr°--Pr.

Thus the rth weight space component p, of a polytope class [P] is just p, =
m(p,...,p).

A theory of mixed polytopes was attempted by Meier (1977), but it appears
that, at one point, his argument is flawed. Another theory, but only within the

context of the polytope group (see section 4.1), was propounded in McMullen and
Schneider (1983, section 6).

If ¢ is now a translation invariant valuation on ®¢ which is homogeneous of
degree r, then the corresponding mixed valuation is

‘P(PI)""‘PI) = ‘P(m(Pls'-' >pr))~
Since )

(Ap1) -+ Arpr) = A1 A)pr---pr,

we have the curious consequence that, for fixed polytopes Py,...,P,, the value
of the mixed valuation ¢(Apy,...,A,p,) depends only on the product A;---A,,
without any assumption on the continuity of ¢.

We make one final remark in this subsection. It was observed by Groemer
(1977a) that, if K, L € ¥ are such that K U L is convex, then the mixed volume
satisfies

V(KUL,KNL,8)=V(K,L %)

for any (d — 2)-tuple 6 of convex bodies. An easier proof than the original was
given in McMullen and Schneider (1983, section 3). However, the essence of the
proof is algebraic, and in IT is almost trivial. Let P, Q € ®Z be such that X := PUQ
is convex, let Y := P N Q, and write p := log P, and so on. Then the valuation
property [X] +[Y] = [P] + [Q)] yields in Z,:

xX+y =p +q.
Hence
xy =3((r+y)* ~ (£ +y%)
=3((p+9’ - +4%)
=pq,

which is the abstract version of the required property.
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3.7. Relatively open polytopes

Schneider (1985) developed a theory of decomposition by translation, based on
relatively open polytopes. We briefly describe this here, although we shall not set
up the underlying abstract structure.

We know from section 3.1 that the class [relint P] of the relative interior of a
polytope P exists in 1], and since

[P]=_ [relint F]
F

is obvious, Mobius inversion (see Rota 1964) yields
[relint P] = )~ (-1)*™P~4mF(F),
F

or.

Theorem 3.15. The class of the relative interior of a polytope P is given by
[relint P) = (—~1)4imP[P]*.

In view of the fact that the mapping [P) — [P]” is an automorphism of 1, we
see that [relint P] — (—1)%™7[P] also gives an automorphism - in retrospect this
is transparent. Schneider (1985) gives a separation criterion based on relatively
open polytopes (closely related to the isomorphisms of section 4.3); the simpler
one given by McMullen (1989) is essentially the previous remark.

3.8. Invariance under other groups

When we impose invariance under bigger groups than translations on the polytope
algebra, we not unnaturally lose some of its properties. In this subsection, we briefly
discuss what is so far known to happen.

Let G be a group of affinities acting on E4, which contains the group 7 = E4 (as
an additive group) of translations in E. If we replace the translation invariance
condition (T) in the definition of the polytope algebra IT by the stronger condition
(G) [@P] = [P] forall P € P and ¢ € G, we obtain a new group I1;. The polytope
algebra I7 itself is thus I7y.

It is clear that I is no longer a ring, unless G = 7', because Minkowski addition
is not compatible with affinities which are not translations. However, since II; is,
as an Abelian group, a quotient of IT, a great deal of the structure of IT does
survive,

Theorem 3.16. For any group G of affinities of EY which contains the translations,
the polytope group Il has the following structure:
(a) Il; has a direct sum decomposition

d
I.=P=
-0
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where 5y =Z and, for r = 1,...,d, E, is a real vector space;
(b) dilatation acts on =, by

o= 52020

(with A° = 1) if x € 5,, where * is the Euler map.

We obtain the direct sum decomposition, because it is obvious that dilatations
commute with the endomorphisms of I7 induced by affinities.

For most groups G, we can say little more than this. However, there are some
special cases.

Theorem 3.17. If G contains a dilatation by some A # £1, then II; = 7.

Let A denote the group of all affinities of E“, and let EA denote the subgroup
of equiaffinities, that is, the mappings of the form v — ®v + ¢, where @ is a linear
mapping with det @ = +1. Then we have:

Theorem 3.18.(a) I1, = 7Z;
(b) Fordz>1, Mea=Z ®R.

Part (a) is a conéequence of the previous theorem, while in (b) the volume term
additionally survives.

Finally, let TH be the group consisting of the translations and reflexions in points
(mappings of the form v +— 2c — v, where ¢ € E¢). Since A(—1) acts as the identity
on Iy, we have:

Theorem 3.19. If G DO TH, then in Il;, the rth weight space E, is generated by
classes of polytopes of lower dimension than d if r Z d modulo 2.

4. Simple valuations and dissections

We now consider the groups which correspond to the simple valuations on 4. As
in section 4.1, the translation invariant case is the fundamental one, about which
most is known. However, since the rigid motion invariant case has provided much
of the motivation for research in this area, we shall also devote a fair amount of
space to it.

4.1. The algebra of polytopes

The polytope group 1 has a generator (P) for each P € P9; these generators
satisfy the relations (V) and (T) of the polytope algebra, together with (S) (P) =0
if dim P < d, which corresponds to simple valuations. From Theorems 3.2 and 3.9,
we deduce at once the main structure theorem of Jessen and Thorup (1978) and
Sah (1979).
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Theorem 4.1.(a) IAI(’AE Z.
b) If d > 0, then I1 has a direct sum decomposition

d -~
nd — @E,

into real vector spaces Moreover, dilatation acts on =, by

Ax if A 20,
AA)x = { (—1)A7x

if A <0.
Of course, dilatations are compatible with the relations (S). For the negative
dilatations, we observe that the Euler map in /T¢ acts as

Py = Z(—l)d“""<F> = (-1)4(P).

{In Jessen and Thorup (1978), this behaviour under negative dilatations was as-
sumed; in Sah (1979), by contrast, it was proved.] .

For the separation result, we need another concept. If U = (ui,...,uq_,) is a
frame, and E = (&,...,64_,) is a vector with entries & = *1, we wrlte EU =
(e101,. .., &4-ra—,), and

d-r

sgnE := H &j.
j=1
A Hadwiger functional of type r is then a map of the form
hy:= Z sgnE fry,
E
where U is a (d — r)-frame. As with the frame functionals, ky = vol is just ordinary
volume. Then we have:

Theorem 4.2, The Hadwiger functionals separate .

This result, proved by Jessen and Thorup (1978) and Sah (1979), cannot be
deduced from Theorem 3.11, but must be shown independently.

Just as there are syzygies between the frame functionals, so there are between
the Hadwiger functionals. In Sah (1979), these syzygies were described, but the
proof that they were the only ones was lacking. The proof was provided by Dupont
(1982). In fact, there is a stronger result than Theorem 4.2.

Theorem 4.3. Let X be a real vector space. Then all linear mappings ¢ . =
are of the form

¢ =ZfUCU1
U

where U — cy is an arbitrary function from frames into %.

T o I
s TR L A A AL AR A
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4.2. Cones and angles

We have already introduced the cone group 3 in section 3.3. In order to proceed,
we need to investigate it a little further.

First, we produce the analogue of the isomorphism Theorem 3.12. The subgroup
of 3 generated by the classes of cones which contain a line (and so have a face
of apices of positive dimension) is denoted T.If c € 3, we write € for its image
under the quotient map from Sonto 3 / T, and n(F,P) = n(F,P) (with analogous
notation employed subsequently). Then Theorem 4.2 implies:

Theorem 4.4. The map & : P —» R® (3/T), defined by

F(P)=)_ vol(F)®#(F,P)
F
induces a monomorphism from I14 into R® (3/T).

We shall see the suggestive role this result plays in section 4.5. For the moment,
we just note that the classes of the normal cones to the faces of a lower-dimensional
polytope lie in I".

An important notion is that of angle. In E“, we have a natural notion of rotation
invariant angle, but over more general fields F, where we do not usually have a
full rotation group, an alternative approach is necessary. If L is a linear subspace,
then an angle on € (L) is an L-simple valuation w;, (into the base field), such that
w; (L) = 1. We can choose an angle on each subspace L simultaneously, as follows
(the notion was suggested by U. Betke): pick any d-polytope Q with o € int(Q),
and define w; by

vol(C N Q)

R S 2T

for each C € 6(L), where vol = vol;. (By the way, the same idea enables us to
choose a particular scaling of all the volumes vol; simultaneously — we just set
voly (LN Q)=1forall L.)

If we have an angle ; for each subspace L, then we can define a homo-
morphism @ on 3 by @ = w.(c) if ¢ € SP(L). We shall also refer to such a
homomorphism  as an angle.

The angle cone of a polyhedral set P at its face F is the cone A(F,P) :=
pos(P — F) generated by P at (any relatively interior point of) F. We write a(F, P)
for the intrinsic class of A(F,P) in 3, and, if w is an angle, we write a(F,P) =
w(a(F, P)), which we call an inner angle. We similarly write v(F,P) := w(n(F,P)),
with n(F, P) the class of the normal cone, which we call an outer angle. We observe
that a(F,F) =1 = v(F,F) for all (non-empty) faces F. Further, we call an inner
angle o and outer angle v inverse if

Y (-))¥mdimFo(F 1w (J, G) = 8(F, G), ‘
J
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where
1 if F=G,
8(G,H):= { 0 if F#G,

is the delta function.
The relationship between inner and outer angles is such that:

Lemma 4.5. If @ and v are inverse inner and outer angles, then
Y (1) Gy (F Na(l, G) = 8(F, G).
i

In fact, the best way to look at this is within the context of the incidence algebra
of Rota (1964). This consists of the functions « on ordered pairs of faces (taking
values in the base field), such that x(F,G) = 0 unless F is a face of G. Addition
and multiplication of such functions are defined by

(K"' ’\)(F7G) = K(FaG) + ’\(F$G)’
(xA)(F,G) =Y _ x(F,))AU,G).
]
These functions can be thought of as triangular matrices indexed by faces of poly-
hedral sets. The crucial result about angles is the following,

Lemma 4.6. If v is an outer angle, then there exists an inverse inner angle a, and
conversely.

When the angles are the ordinary normalized angles in E4, this result was first
proved by McMullen (1975); the general result occurs in McMullen (1989).

Inner and outer angles can be used to find another relationship between the
polytope algebra and the polytope groups (see section 4.3 below). The abstract
results on which it depends are the following. In each case, & stands for ¢ or €4,
and in the latter case translation invariance is to be ignored.

Lemma 4.7. Let§ be an Abelian group, and for each subspace L, let - F(L) —§
be an L-simple translation invariant valuation. If § : ¥ — § is defined by W(P):=
. (P) if P||L, then the mapping ¢ : ¥ — 4 ® 3 given by

¢(P):=) _y(F)®n(F,P)
F

is a translation invariant valuation.

Lemma 4.8. Let G be an Abelian group, and let ¢ : & — 6 be a translation invariant
valuation. Then for each subspace L, the mapping y; :S(L) =>4 ® S defined by

ZF (P(F)@(—l)d'mp_d'm’:a(F,P) ifP"L,
0 otherwise,

YL(P) = {

is an L-simple translation invariant valuation.
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The final lemma in this subsection is clear.

Lemma 4.9. If X is a real vector space, and o is an angle, then the mapping = :
2R3 > % defined by m(x®c) = w(c)x, withx € X and c € 2 is @a homomorphism.

4.3. The polytope groups

Since a linear subspace L of E“ is itself a real vector space of the _appropriate
dimension, it also has associated with it a polytope group I (L); thus m=n (E9).
Before we discuss the connexion between the polytope groups and the polytope
algebra, we shall mention a kind of multiplication, which is an analogue of the
genuine multiplication in f1.

Theorem 4.10. Let L and M be complementary linear subspaces of E¢ of positive

dimension. Then there is a natural embedding of i (L) ® b7 (M) into 4. This
embedding is compatible with the scalar multiplication in that, if x x y is the image
of x®y, with x € II(L) and y € [I(M), then for each scalar A,

(Ax) xy =x x (Ay) = A(x x y).

The embedding is that which is obviously induced by the geometric direct sum. In
fact, this theorem lies at the heart of the original proof of the structure Theorem 4.1
in Jessen and Thorup (1978) and Sah (1979).

We now write

m=@nw),
L

the sum, as usual, extending over all linear subspaces of E“. Qur other isomorphism
theorem for the polytope algebra is:

Theorem 4.11. IT = [1.

The isomorphism is easily described. Let a and v be any pair of inverse inner
and outer angles. First, we define the mapping ¢ : ¢ — [I by

¢(P):=Y_ v(F,P)(F),

F

where (F) is the intrinsic class of F, that is, its class in I (L) where L||F. There is
no trouble with the vertices F° of P, even though %= 7, since Sopo v(FO,P)=1.

Then ¢ induces a homomorphism from IT to i by Lemmas 4.7 and 4.9.
Next, for each subspace L of E¢, we define a mapping ¢, : @ (L) — I by

g (~1)dmP-dmFqQ(F P)F]  if P||L,
0 otherwise.

!I’L(P)={
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Again, we have no problems with the 0-components of the classes [F], since

Z(—l)dimp_dimFa(F,P) —

{ 1 ifdimP =0,
F

0 ifdimP >0.

Then these ;. induce a homomorphism i : -1 by Lemmas 4.8 and 4.9.
Finally, the definition of inverse angles shows that ¢ and ¢ are inverse homo-
morphisms, as required.
This proof closely parallels that in McMullen (1977) of the relationship between
general and simple translation invariant valuations. However, this proof covers
more than just the real-valued case considered there.

4.4. Spherical dissections

In preparation for the discussion of Hilbert’s third problem in section 4.5, we
must first discuss the analogous problem for spherical polytopes or cones (we can
identify a spherical polytope on £27-! with the cone in E? which it spans, and so
we shall usually consider the latter). In this section, we shall largely follow Sah
(1979).

The group 3 is, as a group, not of great interest. It is only when we impose
additional relations on it that it begins to acquire some structure. As far as we
are concerned, the most important case is the following. The group 2% s 3(E9,
with the additional relations (O) (¥K) = (K) whenever K € €/ and ¥ € O,
the orthogonal group. We define 3¢ := 345 ¢ 25, with 30 = Z. We then have a
natural product * on 3, which is induced by orthogonal Cartesian product, and
which is compatible with orthogonal transformations. Formally, if K; and K; are
two cones, we define (K;) * (K3) := (K; x ¥K;), where ¥ is a suitable rotation
taking K into a subspace orthogonal to K.

Before we proceed further, let us make a remark. If SO is the subgroup consisting
of the rotations in O, then we have (compare Lemma 4.31 below):

Lemma 4.12. 3% = 34, for every dimension d >2.

Clearly, f(', & 7, and is generated by the class p (which stands for “point™) of a
half-line. The same notion which proves Lemma 4.12 also lies at the heart of:

Lemma 4.13. The group 3 is 2-divisible.
We also have:
Lemma 4.14. For d =2 or 3, fg ~ R

The case d = 2 is obvious; while the second is fairly familiar, we shall justify it
in Theorem 4.17 below,

e Tt 2o
RN e

P TRTITTITST TT
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In qrder to investigate 2y, we need to introduce some further concepts. The
recession cone rec K of a polyhedral set K is defined to be

recK:={xcE|x+ycKforall yeK}.

If K is a polytope, then recK = {0}, while if K is a cone with apex a, then
recK = K —a. A common generalization of results of Brianchon (1837) and Gram
(1874) (see also Shephard 1967), and Sommerville (1927) is the following, due to
McMullen (1983):

Theorem 4.15. Let K be a polyhedral set in E¢. Then
> (1) Fa(F,K) = (—1)*(rec(—K)).
F

As in section 3.4, a(F, K) denotes the class of the angle cone A(F,K). We have

kept rec(—K) instead of rec K, to emphasize the geometric nature of the dissection
result.

In case K is a pojnted polyhedral cone in E4, we can apply Lemma 4.13 to
Theorem 4.15, to deduce:

Theorem 4.16. If d is odd, and K is a pointed polyhedral cone in E2, then

(K) =3 S0 LalF )

An r-fold join is a just a product &, *--- % k,, where k; = (K;) is the class of a
cone of dimension at least 1 for i = 1,...,r. We write 34 for the subgroup of 3¢
generated by the r-fold joins, and 3, :=J, 5 ¢ 2¢. Then

$=32%2,
and
S;ill * 3‘;122 C E;ill:gz,

for all ry,ry,d,d>.

We may observe that each term in the sum of Theorem 4.16 is a join. Indeed, if
we define the intrinsic inner cone of K at its face F to be B(F,K) := A(F,K)NF L
where F* is the orthogonal complementary subspace to F in E¢, then for d> 1,
we can express A(F, K) as a non-trivial product

A(F,K)=B(F,K) xlinF.
A closely related angle cone is
A(F,K) = B(F,K) x E9mF-1

whenever dim F 2 1, which corresponds to the angle cone at F N {2 of the spherical
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polytope K N £2. The mapping e : 3d _, 3a-1 given by
e(K) =) (-1 F1a(F, K),

F#o

where a(F,K) := (X(F ,K)), is called by Sah (1979) the Gauss-Bonnet map (the
reasons for this name are not altogether clear). When d is even, Sah (1981) shows
that e((K)) = 0, and Theorem 4.16 can be written in the form

(K) =pxe((K)).

Extending the notation of section 3.4, let us write I'¥ := p x 39! The crucial
result of Sah (1981) is:

Theorem 4.17. If j >0, then 3¥*! = T%*' = p x 3%, and the map e; 3%+ = 3% s
an isomorphism inverse to x — p * x.

It follows that, if T := @, , , I, then 3/T" is evenly graded by degree.

We now introduce the graded volume map. Our normalization of (spherical)
volume gives the total volume of 247! as 1, in contrast to Sah (1979), who follows
Schlifli in assigning it volume 24, and is just the rotation invariant angle. A natural
way of defining this for a polyhedral cone K with apex o is by

volK::/ exp(—|x||?) dx,
K

where dx is ordinary Lebesgue measure in the subspace lin K. Thus, the volume
of a linear subspace is always 1. The graded volume of K is then defined by

gr.vol(K) := vol K - T9mK

where T is an indeterminate. Further, Theorem 4.16 has the implication

volK =1%" B(F,K),

F#0

where B(F,K) := vol B(F,K) = vol A(F,K), because of the normalization, and
the elementary observation

vol(K,; x K3) =volK; -vol K,

for orthogonal cones K; and K,. Lemma 4.14 for d = 3 is now an immediate
consequence of this and Theorem 4.17.

We now discuss various dissection results and their consequences. Let K be a
polyhedral cone with apex o. First, when we note that each point z € E4 admits a
unique expression of the form z = x +y, where x € relint F for some face F of K
(possibly K itself) and y € N(F, K), we have:

Theorem 4.18. Let K be a polyhedral cone in B¢ with apex 0. Then the cones F
and N(F,K), with F a face of K, are orthogonal, and B¢ is dissected into the cones
F x N(F,K).
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In :‘J, this result leads to

(EY) = (F)*n(F,K),
-

where n(F,K) := (N(F,K)).

The analogue for normal cones of B(F, K) is the intrinsic outer cone C(F,K) :=
N(F,K)NlinK, the normal cone to K at its face F in the subspace lin K which
it spans; we write ¢(F, K) for its class, and y(F,K) for its volume. Similarly, we
write Z(F,K) for the orthogonal complement of lin F in lin K, and z(F, K) for its
class. Further, we define

m(F,K) = (-1)""#F 2 (F k),
and the identity function i by

1(€2) if F=K,

iF, KO :={ 0 it F#£K.

We can extend the notation of the incidence algebra of Rota (1964) to the multi-
plication #, and write

f+8(F,G)y:=Y_ f(F.J)gU,G),
J

where F, G are faces of a polyhedral cone, and the summation is over all faces J,
with the understanding that f(F,J) = 0 unless F is a face of J, and so on. The
Euler relation for polyhedral cones implies:
Theorem 4.19. mxz =i=z*m.
If we define b by
b(F,K) = (-1)imK-dmFp(p ),

and ¢ similarly, we can now rephrase Theorems 4.15 (for cones) and 4.18 as:

Theorem 4.20.(a) m* b = 3;
(b) brc=1z

Combining these two results, we have consequences of McMullen (1983) (com-
pare also McMullen 1975b):

Theorem 4.21.(a) bxc=i=b*s:
(b) cxb=1i(=Cxb).
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The basic result here is part (a), from which (b) follows by use of the incidence
algebra, and polarity, which we shall talk about below (the second part of (b) is
actually the same as the first). An important consequence of this (obtamed by
replacing the cone classes by their volumes or angles) is that 8 and y are inverse
inner and outer angles.

Now we introduce polarity. We define the polar K° of a cone K by

K°:={x el (x,y)<0forally € K}.

Note that K = K. As an example, N(F,K) = A(F,K)° for every face F of a
polyhedral cone K. Our first remark is that polarity is compatible with the valuation
property [this originates in Sah (1979), from which what follows is taken, but see
also Lawrence (1988)).

Lemma 4.22. Let K, K, be polyhedral cones with apex o. Then
(K] n Kz)o = KT + K;
=K UK3,
if K} UK3 is convex.

Further, if dimK < d, then K° has (linK)* as its (non-trivial) face of apices,
and so (K°) € I'; T'; the converse is also obviously true. There then follows:

Theorem 4.23. Polarity induces an involutory automorphism § of 3d /T" 4. defined
by

(K8 = (ko).

This automorphism is called the antipodal map, and it extends to Z/F in_the
natural way, if § is now defined_intrinsically; thus b(F,K )§ = ¢(F,K) in Z/F
The algebra (rmg) structure on 3, with multiplication %, now induces an algebra
structure on 3 / T In fact, we also have a co-algebra structure.

Before we describe this, however let us introduce something more general. I If
x € 3, we write ¥ for its image in 3/T'; we also define b by b(F,K) := b(F, b(F,K),
and so on. The total spherical Dehn invariant of a pointed polyhedral cone K (or
of the corresponding spherical polytope K N (2) is

V5= (F)®b(F,K)e 2o (3/D),

F

where the sum extends over all faces F # {0} with dimK — dim F even. In fact,
the terms with dim K —dim F odd drop out anyway, and, when dim K is even, that
for F = {0} is not needed, because the information carried in the term (K} ® (o)
contains that in {(0) ® (K).

DA RAMAAPIRRIEE
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The map ¥s then induces a map W :3/T - (2/1" ) ® (3/T), defined on the
generators (K) of E/F by

*

Ps({K)) =) (F)®b(F,K).

F

This is the comulnphcatzon on Z/ T. The co-unit or augmentation (which is dual
to the unit) is the natural mapping whose kernel is the set of elements of E/F
of positive degree. With these algebra and co-algebra structures and the antipodal
map, 3/I" then becomes a Hopf algebra (see Sah 1979).

In discussing equxdlssectabxhty, it is natural to look for a suitable family of sep-
arating homomorphlsms as in section 3.3 for the polytope algebra. The map ¥
separates 3¢, but in a rather trivial way, since it is obviously injective. More rele-
vant is the fotal classical Dehn invariant

PDs .= (gr.vol @ id) o ¥;
thus

*

¥s(K) =" (vol F - T9"F) o b(F,K) € R(T) @ (3/T),
F

with the same summation convention as above.
In the positive direction, we have:

Theorem 4.24. & separates 3¢ ford=2or3.

This is really just a restatement of Lemma 4.14. For d > 4, however, the situation
is quite different, and the general equidissectability problem remains unsolved.
For example, if d = 4, and the cone K has rational dihedral angles, then @5(K) =
vol K - T4, so that, if ds does separate 2“ then K should be equidissectable with a
product cone. This is far from obviously true; indeed, such cones K are a possible
source of torsion in 3¢ (see Sah 1979).

A partial result in this direction by Dupont and Sah (1982) is the following.

Theorem 4.25. A polyhedral cone which is the fundamental cone for a finite or-
thogonal group in €9 is equidissectable with a (d — 1)-fold product cone.

What is actually shown is that the fundamental polyhedral cones for two such
orthogonal groups of the same order are equidissectable, and the core of the
argument lies in proving it for p-groups (Sylow subgroups).

4.5. Hilbert's third problem

We now come to Hilbert’s third problem and its variants. In section 1.4, we intro-
duced the concepts of G-equidissectability and G-equicomplementability of poly-
topes (or polyhedra) under a group of affinities G of E?. As examples of typical
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such groups G, we have the groups 7, TH, A and EA introduced in section 3.8,.as
well as the group D of all isometries of £, and its subgroup SD of direct isorpetqes
or rigid motions. In what follows, we let G be a group of affinities. We begin with
two important results of Hadwiger (1957).

Lemma 4.26. Let P,Q € P9. Then P ~g Q if and only if P ~¢ Q.

This result holds, in fact, whenever the base field F is Archimedean. We say that
a simple valuation ¢ on ®¢ is G-invariant if ¢(PP) = ¢(P) whenever @ € G.
Then we have:

Theorem 4.27. Let P,Q € P4 Then P ~¢ Q if and only if ¢(P) = ¢(Q) for all
G-invariant simple valuations ¢ on P°.

Over a non-Archimedean field, ~¢ has to be replaced by ~¢.

Hadwiger’s proof of Theorem 4.27 is highly non-constructive, because it uses the
axiom of choice to pick a basis of the polytope group 1, which is obtained from
f1¢ in the same way that II; is obtained from [T, namely by imposing on I1¢ the
extra relations (G) (®P) = (P) for all P € ¢ and ¢ € G.

In fact, the variants of Hilbert’s third problem reduce to finding, for a given
group G, a “nice” family of G-invariant simple valuations which separates Ilg.
We have seen that the Hadwiger functionals provide such a family when G =T
(Theorem 4.2). Another group is easily dealt with.

Theorem 4.28. Two d-polytopes P and Q are TH-equidissectable if and only if
hy(P) = hy(Q) for every Hadwiger functional whose type is congruent to d modulo
2

The reason is that, if Ay is of type r, then Ay (—P) = hy(P) for all P if and only
if r = d modulo 2. ) )
Another easy result, which is a consequence of Theorem 3.18(b), is the following.

Theorem 4.29. Two d-polytopes P and Q are EA-equidissectable if and only if
V(P)=V(Q)

As a last preliminary result, we have a result proved by Gerwien (1833a), which
was also observed by F Bdlyai.

Theorem 4.30. Two planar polygons are D-equidissectable if and only if they have
the same area.

This follows from the fact that a triangle is D- (or even SD- or TH-) equidis-
sectable with a parallelogram; any two parallelograms of the same area are f—
equidissectable. Hadwiger and Glur (1951) later showed that, if a group G of affini-
ties is such that two planar polygons of the same area are always G-equidissectable,
then G 2 TH.

We now come to the classical version of Hilbert’s third problem. In contrast to
the planar situation, it was early recognized (by Gauss, among others) that the

-
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3-dimensional case was likely to be more difficult. Hilbert (1900) formally posed
the question of finding two 3-polytopes of the same volume (even pyramids with
the same height on the same base) which were not D-equidissectable. Modifying
an earlier attempt by Bricard (1896), Dehn (1900, 1902) found an example before
the problem was published.

Before describing the example, we make some remarks about the polytope
groups fI3; we now distinguish the dimension. First, if two polytopes are sym-

metric in a hyperplane, then it may be shown that they are SD-equidissectable.
Thus:

Lemma 4.31. ﬁg = ﬁ;‘D.

In view of the presence of scaling by —1, we also have (compare Theorem 4.28
above):

Le]'nma 4.32. H‘Di = @rEd(z)J‘)O 5;‘.

That is, there are no graded terms Z¢ unless r = d modulo 2.

There is a natural product structure on Il := Y, . , II3, induced by orthogonal
Cartesian product, which, as in Theorem 4.10, we denote by x. It is often helpful
to work with Ip, rather than with the individual terms ﬁ;;. Observe that each
term &, with » > 1 is a sum of non-trivial products. R

There are conjectures about separating functionals for IIp, which are exactly
analogous to those for separation of 3 which were described in section 4.4. First,
we have the rotal Euclidean Dehn invariant of a polytope P, defined by

*

Ye(P):= (F)®b(F,P) € Il & (3/T);
F

as in section 4.4, such sums are over all faces F of P with dimF > 0 and dimP —
dim F even. Similarly, the fotal classical Euclidean Dehn invarians is
@ == (gr.vol®@id) o ¥,

so that

Dp(P)=>)_volF-TImF g p(F,P).
F

Theorem 4.30 shows that &, separates flg for d = 2 (and the case d = 1 is
trivial). It was the considerable achievement of Sydler (1965) to extend this to the
case d = 3. Jessen (1968) simplified Sydler’s proof by using the language of the

algebra of polytopes (see section 4.1), and then (Jessen 1972) extended it further
to the case d = 4. Thus we have:

Theorem 4.33. If d <4, then ®g separates ﬁg.
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We shall not give any of the details of the proof here; in the crucial case d = 3,
these involve clever dissection results for special tetrahedra. However, a disadvan-
tage of the proof is that it involves an appeal to the axiom of choice at several
stages. More recently, though, Dupont and Sah (1992) have produced a quite dif-
ferent approach, using the Eilenberg-MacLane homology of the classical groups,
and Hochschild homology of the quaternions; this avoids both the special con-
structions of Sydler (which Jessen’s proof retains) and the need for any appeal to
the axiom of choice.

We should note that the case d = 4 follows directly from the case d = 3 and
H4 == ::, which says that every x € I'I * is equivalent to a prism e x y, where
¢ is the class of a line segment and y € H3, Jessen (1972) gave a direct proof of
this result.

We end this section with a few remarks. First, the antipodal map §S on the
Hopf algebra 3 / r (see section 4.4) enables us to replace b(F, P) by ¢(F, P) in the
definitions of the two Euclidean Dehn invariants ¥ and @,. In view of the iso-
morphism Theorems 3.12 and 4.4, this change is very natural, although Dupont and
Sah (1992) offer contrary evidence in favour of retaining the present definitions.

Next, the Dehn invariants are compatible with the product structure. Indeed,
since the angle cone of the orthogonal product P x Q at its face F x G is B(F,P) x
B(G, Q), we have

¥p(P x Q) = ¥p(P)¥p(Q).

A more general question along these lines, which is prompted as well by the proof
of Theorem 4.33, is the following: is every polytope equivalent to a direct sum of
products of odd-dimensional components? For example,

PO ~
m=s=x5'9&,

M=o =G5 e @),
since the other term ._12®H1 in ,:,vz vanishes. The first open question here concerns
the case d = 6.

The space of indecomposable elements of II3 is certainly the sum of the £ ~2’”
for s > 0. We might also ask: is HD isomorphic to a symmetric algebra based on
the space of indecomposable elements? In particular: is IIp an integral domain, or
a Hopf algebra?

A final question is: what are the images of the Dehn Invariants? This question is
particularly interesting in case d = 3.

5. Characterization theorems
Certain valuations with invariance or covariance properties can be characterized

in various ways. In this section, we shall survey the known results of this kind, as
well as discussing several related open problems.

.
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5.1. Continuity and monotonicity

We first consider some general relationships between valuations, involving conti-
nuity and similar notions. The natural metric on subfamilies of convex bodies is
the Hausdorff metric, introduced in section 1.1, although other closely connected
metrics have been used from time to time. In what follows, all functions will take
values in some real vector space; a functional is then a real-valued function.

We shall call a functional ¢ on a subfamily ¥ of X¢ monotone if ¢(K) < ¢(K')
whenever K, K’ € & satisfy K C K’. The convention ¢(@) = 0 for valuations ¢
ensures that a monotone valuation on ¥ is non-negative.

A useful result of McMullen (1977) is the following (the case d = 2 was proved
by Hadwiger 1951b).

Theorem 5.1. A monotone translation invariant valuation is continuous.

The theorem is initially proved for polytopes, and uses the polynomial expan-
sion for translation invariant valuations of rational multiples of polytopes. The
extension to general convex bodies is routine.

A different concept of continuity is often more appropriate for polytopes; it is
due to Hadwiger (1952d). Let U = (u,,...,u,) be a (for the moment) fixed set
of unit outer normal vectors, and write ?¢(U) for the family of polytopes of the
form

P(y):{erdl(xaui)gni (i=1)""n)}7

where y = (91,...,m,). We call a function ¢ on P¢ weakly continuous if, for each
such U, the function ¢y defined by ¢y (y) = @(P(y)) is continuous. We clearly
have:

Lemma §.2. A continuous function on P¢ is weakly continuous.

As we saw in sections 3.1 and 3.5, translation invariant (or even covariant)
valuations admit polynomial expansions with rational coefficients. To extend these
expansions to real coefficients, weak continuity, rather than continuity, will suffice.
In fact, we have:

Theorem 5.3. The following conditions on a translation invariant or covariant val-
uation ¢ on P¢ are equivalent:

(a) ¢ is weakly continuous;

(b) @(AyPy+---+ A Py) is a polynomial in Ay,. ..,
and all real numbers Ay,..., A, 20;

(c) for each U, the one-sided partial derivatives of ¢y exist.
In addition, if ¢ is translation invariant, a further equivalent condition is

(d) ¢ is continuous under dilatations; that is, the mapping @p on R defined by
Op(A) = ¢(AP) is continuous.

Ag for all polytopes Py, ..., Py

The equivalence of conditions (a), (b) and (c) is due to McMullen (1977). The
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equivalence of (a) and (d), which was left open by Hadwiger (1952¢), follows
from the fact that Z, C IT (the polytope algebra) is a real vector space. This latter
equivalence for translation covariant valuations (which was inadvertently claimed
in Theorem 11.2 of McMullen and Schneider 1983) would follow if it could be
shown that T, were a real algebra (see section 3.5); a stronger condition which is
equivalent is that ¢ is continuous under translations as well as dilatations (compare
McMullen 1983).
A final remark is often useful.

Theorem 5.4. The mixed valuations derived from a (weakly) continuous translation
invariant or covariant valuation are (weakly) continuous in each of their arguments.

Whether this, or an analogous, result holds for monotone valuations is unknown.
5.2. Minkowski additive functions

A starting point for the characterization of more general valuations is often that
of certain special types. We have already discussed the Euler characteristic in
section 2.1, and we shall consider volume and moment in section 5.3 immediately
following. A further important case is that of a Minkowski additive function ¢,
which means that ¢(K + K') = ¢(K) + ¢(K’) for appropriate K and K'; because of
the strong assumption, more specific results are available for such functions.

Lemma 1.1 says that a Minkowski additive function ¢ is a valuation. Further, for
fixed K, we also have ¢(AK) = A ¢(K) for rational A >0, and, if ¢ is continuous,
this holds for real A.

Since the width w,(K) = h(K,u) + h(K,—u) of K in the direction of the unit
vector u obviously gives a translation invariant valuation, so does the mean width
b, given by

- 2
b(K)=—— [ h(K,u)do(u)
@ 2

d—1

for K € ¥4, which is a constant multiple of the intrinsic length V; (or quermass-
integral W,_,). In fact, V; admits the following characterization.

Theorem 5.5. If ¢ : K¢ — R is Minkowski additive, continuous and invariant under
rigid motions, then ¢ = oV, for some real constant a.

The proof of Hadwiger (1957, p. 213), uses a rotation averaging process, and
actually shows more: it is only necessary to assume that ¢ is continuous at the unit
ball B.

However, it would be nice to have Theorem 5.5 for suitable subclasses of ¥4,
in particular for 4. If ¢ is locally uniformly continuous on ®¢, then it can be
extended uniquely to %¢, and any additive and invariance properties carry over;
by local, we mean that the uniform continuity (or other condition) holds for the
elements in any fixed ball. It is natural to ask whether a continuous or uniformly
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bounded Minkowski additive functional on ®¢ must also be a constant multiple
of V}.

The vector-valued counterpart of mean width is the Steiner point s, which is
defined on ¥? by

s(K) = Kld/;)h(l(,u) do(u);

this is clearly Minkowski additive. We call a mapping f on ¢ or P¢ taking values
in E? rigid motion (translation) equivariant if f(®K) = ®f(K) for every rigid
motion @ of B (f(K +t) = f(K) + ¢ for every translation ¢ € E, respectively).
Then we have the analogue of Theorem 5.5:

Theorem 5.6. If f : #¢ — E“ is Minkowski additive, continuous and rigid motion
equivariant, then f = s, the Steiner point.

Again, it need only be assumed that f is continuous at the unit ball. The first
proof of Theorem 5.6 was by Schneider (1971); the case d = 2 was earlier shown
by Shephard (1968b) using Fourier series, and Schneider’s proof generalizes this
(though not straightforwardly) by using spherical harmonics. A more elementary
proof, which makes weaker assumptions, was given by Positel'skii (1973). However,
the application of spherical harmonics seems to be the proper tool in this context,
since the method also treats other similar problems.

Earlier attempts to characterize the Steiner point, a problem which was first
posed by Griinbaum (1963, p. 239), are worth mentioning. Griinbaum asked
whether s can be characterized by Minkowski additivity and dilatation equivari-
ance, but this was shown not to be the case by Sallee (1971) and (with an easier
counter-example) by Schneider (1974a). Shephard (1968b) added the continuity
assumption, and Meyer (1970) proved a weaker version of Theorem 5.6 by assum-
ing uniform continuity; two other attempts to prove the general result (Schmitt
1968, Hadwiger 1969a) contained errors.

In case d = 2, elementary proofs were given by Hadwiger (1971) and Berg
(1971), the latter obtaining additional results for polytopes. To describe them, let
v be any outer angle (see section 3.4), and define s, by

SV(P)= Z V(v,P)v,

vEvertP

where vert P denotes the set of vertices of the polytope P. If » is the usual rota-
tion invariant angle, then s, is the Steiner point. In general, s, is translation and
dilatation covariant, and it may readily be shown that it is also Minkowski addi-
tive. Berg (1971) calls a Minkowski additive function f : ¢ — E? which is rigid
motion and dilatation covariant an abstract Steiner point. If the angle v is rotation
invariant, then s, is an abstract Steiner point. Whether the converse holds when
d > 3 is an open question; Berg (1971) established this for d = 2 and 3, showing
additionally that (in these cases) a locally bounded abstract Steiner point is the
usual Steiner point.
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Another interesting family of Minkowski additive functions consists of t‘hose
which take values in %4 itself. They should, perhaps, 'be called eﬂndomorphzsms,
but Schneider (1974a), answering certain questions raised b'y‘Grunl?aum (1?63?,
reserves this term for those which are also continuous and rigid motion equivari-
ant, noting that such functions are compatible with ll}e most natural geometric
strﬁcturcs on X4, The cases d = 2 and d >3 show different features, since the
rotation group is only commutative if d = 2. . o ‘

For d = 2, Schneider (1974a) characterizes endomorphisms as limits of functions
of the form

k
B(K) =Y A YK - s(K)] +5(K)

j=1

for K € ¢, where A; 20 and ¥; € SOy, the rotation group, 'for j= 1,‘.. ., k. More
precisely, if we write u(a) = (cos a,sin a) for a € [0,27) (with coordinate vectors
relative to some orthonormal basis of E?), we have

Theorem 5.7. Let @ be an endomorphism of H2. Then there exists a (positive)
measure v on the Borel subsets of [0,27), such that

h(P(K),u(a)) = /Ohh(K — s(K), u(a + B)) dv(B)+(s(K),u(a))

for a € (0,27) and all K € X%

The proof, by Schneider (1974b), uses a characterization by Hadwiger (1951b)
of continuous translation invariant Minkowski additive functionals on *2, clez}rly,
any Borel measure v on [0,27) defines an endomorphism <I> in this way. Schneider
gives additional results about the uniqueness of v for a given &, and abo;nt the
nature of @ when its image contains a polygon. In particular, if ¢ maps X onto
itself, it takes the form ®(K) = A ¥(K —s(K))+s(K) for some A > 0and ¥ € SO,.
The space of all endomorphisms is also shown to have the structure of a convex
cone, and certain properties proved by Inzinger (1949) for special endomorphisms
are extended (after some normalization) to all of them. .

For d >3, as yet only partial results have been obtained, ‘by Schneld§r (1974a).
If g : [0,00) — [0,00) is a function for which the following integrals exist and are
finite, then for K € %¢ there is a unique ®,(K) € ¢ for which

M@K}, = [ HK = (K0, = lull0dg(ll) dz + (5(K). )

for u € E¢ (support functions are here defined for all vectors in E9); th%s @, is then
an endomorphism of ¥¢. Such endomorphisms have proved useful in the st}ldy
of certain approximation problems; see Berg (19§9) and W(;il (}975b). Schneider
(1974a) obtained various results which charactepzed certain kinds of endomqr—
phism @ of X¢ (for brevity, we tacitly assume this notation below, and any K will
lie in %9).

- .
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Theorem 5.8.(a) Every such & is uniquely determined by the image of some suit-
able convex body, such as a triangle with an irrational angle.
(b) If @ takes a body which is not a point onto a point, then ®(K) = s(K) for
all K. If & takes some body onto a segment, then
P(K) = A[K — s(K)] + u[-K + s(K)] + s(K)
for some A, u 20 with A + u > 0.
(c) If D is surjective, then
@(K) = A[K — s(K)] + s(K)
for some A # 0.
(d) If @ satisfies V,(P(K)) = V,(K) for some r =2,...,d, then
D(K) = g[K — s(K)] +s(K)
for some g = £1.

Writing %4 for the family of full-dimensional convex bodies, we further have:

Theorem 5.9. Let @ : f){g — ¢ be a continuous Minkowski additive mapping, such
that ®(W(K)) = W(P(K)) for every affinity ¥ of E4. Then

®(K) =K +A[K - K]

for some A 20.

If invariance or equivariance with respect to some group of affinities of E¢ is not

assumed, then other stronger conditions must be imposed. For example, Schneider
(1974c) has shown:

Theorem 5.10. Let & : H¢ — K¢ be a Minkowski additive function such that

V(@(K)) = V(K) for each K. Then there is an equiaffinity ¥ of B¢ such that
P(K) is a translate of V(K) for each K.

Finally, we remark that Valette (1974) has studied the continuous maps @ : ¢ —
*¢ (with d >2) which commute with affine maps, and satisfy the weaker condition
(p(K] + Kz) 2 ‘D(Kl) + (p(Kz) for Ki,K; € %f

5.3. Volume and moment

Until further notice, we shall take all valuations to be real-valued. We first deal
with the characterizations of volume. From a geometric viewpoint, we should wish
for something simpler than the fact that the essential uniqueness of Haar measure
on E shows that Lebesgue measure (that is, volume) is the unique translation
invariant (positive) measure ¢ on the Borel sets of E4 such that ¢(C) = 1 for some
fixed unit cube C. In particular, we should prefer to consider simple valuations on
®? or #4, rather than o-additive functions on Borel sets. We shall, in fact, take ®¢
as our domain of definition, since the assumptions we have to impose will extend
to uniqueness on ¥ as well. Further, the extension of a simple valuation to U®¢
will share any non-negativity or monotonicity property, or invariance under any
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group of affinities, of the original. Bearing these remarks in mind, we have:

Theorem 5.11. If ¢ is a translation invariant, non-negative simple valuation on P4,
then ¢ = aV for some a >0.

Various proofs of this theorem, for example, that in Maak (1960) (see also
Hadwiger 1955b), use techniques such as exhaustion or polyhedral approximation,
and so are not strictly speaking elementary. Some continuity argument is necessary,
since finite dissections alone will not suffice to compare volumes whose ratio is
irrational. However, the limit process can be reduced to the essential uniqueness
of monotone real-valued functions A which satisfy Cauchy’s equation A(a + 8) =
A(a) +A(B) (with @, B € R), while the remainder of the proof does only use finite
dissections. Such a proof was given by Hadwiger (1950d, 1957, section 2.1.3); and
(1949a) for d = 3.

As shown by Schneider (1978), the analogous result holds in spherical spaces
as well (for the notion of polytopes in these and hyperbolic spaces, see Bohm
and Hertel 1980), when rotation invariance replaces translation invariance. An
extension to compact homogeneous spaces was given by Schneider (1981), and a
general approach which treats hyperbolic spaces also was outlined in McMullen
and Schneider (1983, p. 226).

Returning to E¢, we have the following alternative characterizations; the first is
due to Hadwiger (1957, p. 79), the second to Hadwiger (1970), and the third to
Hadwiger (1952e, 1957, p. 221).

Theorem 5.12. A translation invariant valuation on ®? which is homogeneous of
degree d is a constant multiple of volume.

Theorem 5.13. A non-negative simple valuation on ®* which is invariant under
volume preserving linear mappings of ¢ is a constant multiple of volume.

Theorem 5.14. A continuous rigid motion invariant simple valuation on %4 is a
constant multiple of volume.

For the last, one would like to replace %4 by P4, but it is so far unknown whether
this is possible (the proof of Theorem 5.14 uses Theorem 5.5). Whether there is a
characterization of the usual rotation invariant angle on convex cones (polyhedral
or more general) analogous to Theorem 5.14 is also an open problem. We may
observe that Theorem 4.17 gives a reduction from odd-dimensional polyhedral
cones to products of lower-dimensional cones, but it is not clear that this remark
is particularly helpful.

If K € %4, then its centroid c(K) is defined by V(K)c(K) := z(K), the moment
vector of K. We have the following counterparts to Theorems 5.11 and 5.14, which
are due to Schneider (1973) and (1972b), respectively.

Theorem 5.15. If f: UPY — E¢ is a translation equivariant function, such that V f
is a simple valuation and f(P) € convP for each P, then f =c.

Theorem 5.16. If f : %4 — ¢ is a continuous rigid motion equivariant function
such that V f is a valuation, then f = c.
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5.4. Intrinsic volumes and moments

One of the central results in the theory of valuations is Hadwiger’s famous char-
acterization of linear combinations of quermassintegrals. Rephrasing this in the
language of intrinsic volumes, it states:

Theorem 5.17. If ¢ : ¢ — R is a continuous rigid motion invariant valuation, then
there are constants oy, ..., o4 such that

d
e(K) =) _a V,(K)

r=0
for all K € %¢.

There is a variant on Theorem 5.17, with monotonicity replacing continuity.

Theorem 5:18. If ¢ : H? — R is a monotone rigid motion invariant valuation, then
there are non-negative constants oy, . . ., a, such that

d
e(K)=)_a, V,(K)

r=0

for all K € ¥°.

Blaschke (1937) was the first to produce a result of this kind (with d = 3), but
he needed to make a somewhat artificial assumption about the “volume part” of
a valuation. Hadwiger proved Theorem 5.17 for d = 3 in (1951a) (see also 1955b),
and for general d in (1952e). Theorem 5.18 was proved in Hadwiger (1953a); it
can also be deduced form Theorem 5.17 by means of Theorem 5.1. Both results
appear in Hadwiger (1957, section 6.1.10) (see also Leichtweif3 1980).

Since Hadwiger’s proof of Theorem 5.17 uses Theorem 5.14 (which in turn re-
lies on Theorem 5.5), it is unclear whether ¢ can be replaced by ®¢ in these
theorems, possibly with local boundedness or non-negativity instead of continuity
or monotonicity. It should be noted that these alternative conditions are inappro-
priate for general convex bodies; if ¢(K) is the sum of the (d — 1)-dimensional
volumes of the (d —1)-faces of the convex body K (or twice the (d—1)-dimensional
volume of an at most (d — 1)-dimensional body), then ¢ is a rigid motion invariant
valuation which is locally bounded and non-negative, but which is clearly not a
linear combination of intrinsic volumes. Theorem 5.17 has important applications
to in}egral geometry. The basic idea, which is to show that certain integrals give
continuous or monotone rigid motion invariant valuations, goes back to Blaschke
(1937), but was systematically exploited by Hadwiger (1950e, 1955b, 1956, 1957) to
c!erive both old and new integral geometric formulae. A different kind of applica-
tion, to random sets, was made by Matheron (1975), and variants of the theorem
are due to Groemer (1972) and Baddeley (1980).
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It might be expected that analogues of Theorems 5.17 and §.18 hold in spherical
and hyperbolic space. For a polyhedral cone C with face of aplces.A, there are wo
analogues of the intrinsic volumes. Define B(A, F) to be the o.rd‘mary normalfzed
angle (in lin F) of the face F of C, and let y(F,C) be the similarly normalized
angle of the normal cone to C at F (these are the intrinsic inner and outer angles,
see McMullen 1975). For r =0,...,d, define

@(C):=Y_ B(A,F)y(F',0),
Fr

where the sum extends over all r-faces F” of C, and

Y = Z Pd+1-r+2m-
m20

Clearly, g, is increasing, it can be shown that ¢,4_, is also (see Shephard 1968d), and
by duality, ¢ and ¢, are decreasing; however, for 2 < r <d —2, examples show tpat
¢, is neither increasing nor decreasing (see McMullen and Schneider 1983, section
3). Since 244 (C) is the normalized measure of the r-dimensional linear subspaces
of E¢ which do not meet C in the origin o alone, it is also increasing. Moreover, all
these functions are continuous, and extend to general closed convex cones. It may
be conjectured that continuous (monotone) rotation invariant valuations on ¢
are linear combinations of the ¢, (#, with non-negative coefficients, respectively);
the first question has an affirmative answer if the corresponding characterization
of spherical volume, mentioned in section 5.3, is valid.

5.5. Translation invariance and covariance

In a sense, the description of the polytope algebra in section 3, and particularly the
isomorphism Theorem 3.12, tell us what a translation invariant valuation on ®¢
looks like; it is just the composition of o with some group homomorphism. How-
ever, without some additional assumptions on the valuation, the resulting charac-
terization will be too vague to be useful.

Natural conditions to impose include some form of continuity. We shall discuss
the known results in this area. We begin with weak continuity. Throughout, % will
denote a real vector space.

Theorem 5.19. A function ¢ : P4 — % is a weakly continuous translation invariant
valuation if and only if

¢(P)=)_ volF A(F,P),
F

where A 13 — % is a simple valuation, and vol is ordinary volume.

This follows directly from Theorem 3.12, but was proved by McMullen (}283)
using the following result of Hadwiger (1952e) (the extension from the original
paper stated here is straightforward).
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Theorem 5.20. A function ¢ : ®¢ — ¥ is a weakly continuous translation invariant
simple valuation if and only if

¢(P) =Y _ vol Py n(U),
U

where v is an odd function on frames, and vol is ordinary volume.

In view of the isomorphism Theorem 4.4 for the polytope group il , we could
rephrase Theorem 5.20 in terms of mappings on R ® (E/T‘). It should also be
remarked that there are exactly analogous results for translation covariant valu-
ations, which involve the moment vectors of faces as well as their volumes; see
McMullen (1983) for details.

We now turn to continuity, and for simplicity confine our attention to real-valued
valuations. The problem of characterizing continuous translation invariant valua-
tions remains open; the supposed characterization of Betke and Goodey (1984)
was unfortunately flawed. However, there are some partial results. For dimension
d =2 there is a complete solution by Hadwiger (1949, 1951b).

Theorem 5.21.(a) If ¢ is a continuous translation invariant valuation on %2, then
oK) =+ [ gu) dSi(Kiu) + BVa(K)

for some constants «a, 8 and some continuous function g.
(b) If ¢ is a locally bounded translation invariant valuation on $2, then the same
expression for ¢ holds, with g a bounded function.

Actually, Hadwiger did not express his results in terms of the area function
$1(K;+). The function g is uniquely determined, up to a function of the form (v,-),
with v a constant vector. If ¢ is just Minkowski additive in part (b), then the same
result holds with a = 8 =0.

For d > 4, no such explicit representations are known; the case d = 3 is covered
by the results below. If we use the fact that a continuous translation invariant
valuation ¢ can be written as a sum ¢ = Zf=0 @, with ¢, (continuous and) ho-
mogeneous of degree 7, then we can obviously investigate the individual ¢,. By
Hadwiger (1957, p. 79), ¢, is a constant multiple of volume, and ¢ is constant.
The only complete solutions for any of the remaining cases are those of McMullen
(1980) for r =d — 1, and Goodey and Weil (1984) for r = 1.

Theorem 5.22. Let ¢ be a continuous translation invariant valuation on K¢ which

is homogeneous of degree d — 1. Then there is a continuous function g on the unit
sphere §), such that

o(K) = /!2 g(u) dS,_ (K1)

for each K € H°.
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As above, g is unique up to a function of the form (v,-). The valuation can also
be expressed as a limit

o(K) = lim[V(K,d — ;L)) - V(K,d - 1, My)],

for suitable sequences (L;), (M;) of convex bodies.
When r = 1, we have the following.

I3 . . . d .
Theorem 5.23. Let ¢ be a continuous translation invariant valuation on X whch
is homogeneous of degree 1. Then there are sequences (L;),(M;) of convex bodies
such that

e(K) = lim[V(K; L;,d — 1) - V(K; Mi,d - 1)],

uniformly for all K CmB and all m > 0.

For r € {2,...,d — 2}, rather less is known. leearly, suitaple limits.of. mixed
volumes will provide continuous translation invariant valuations, but it is open
whether all such valuations can be obtained in this way. Goodey and Weil (1984)
tried to relate such (mixed) valuations to distributions on tensor products of sup-
port functionals, of the form

QD(K!"‘- 7Kr) = T(h(Kla') Q- ®h(Krv°)))

but an important part of their argument seems to be invalid. '

With a stronger continuity assumption, McMullen (1980) gcompare also S‘chnel—
- der 1974b) showed that a uniformly continuous translation invariant valuation on
%< which is homogeneous of degree 1 is of the form

e(K)=V(K;L,d—1) - V(K;M,d - 1)

for some convex bodies L, M; this can be deduced from the Riesz representation
theorem. '
A little more can be said about the case of monotone valuations.

Theorem 5.24. Let r = 1 or d—1. If ¢ is a monotone translation invariant valuation
on K4 which is homogeneous of degree r, then there exist convex bodies L,.1,..-,La,
such that

o(K)=V(K,r,Lysis. .o La)

The case r = d is similar, with a non-negative multiple insi:rted (Theorem 5.11).
For the theorem, the case r = 1 is due to Firey (1?76), whnlg the case r=d — 1
was proved by McMullen (1990). It would be tempting to conjecture that the same
result holds for all r, but the evidence to support th}s is meagre.

Finally, let us mention translation covariant valuatlons.. McMullen (1983) proved
the following analogue of Theorem 5.19. As before, ¥ is a real vector space.

e et i e e e e o
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Theorem 5.25. A function ¢ : ¢ — % is a weakly continuous translation covariant
valuation if and only if

@(P)=Y_ (VoI F A(F,P) +m(F) A(F, P)),
F

where vol is volume, m is moment, and A : So%and A:3 - Hom(E4, %) are
simple valuations.

There is a similar result for simple weakly continuous translation covariant val-
uations; compare Theorem 5.20.

5.6. Lattice invariant valuations

We call a function on subsets of E4 which is invariant under the translations of the
integer lattice Z¢ lattice invariant. A unimodular mapping of E¢ is an affinity which
leaves Z¢ invariant; it is therefore the composition of a linear mapping whose
matrix (with respect to the standard basis) has integer entries and determinant +1
with a lattice translation. The lattice point enumerator G, the derived functionals
G, and the weighted lattice point numbers A are examples of lattice invariant
valuations, and the first two are also invariant under unimodular mappings. In
this section, we consider various characterization theorems along the lines of, for
example, Theorem 5.17, on the classes 9’{ of lattice polytopes and 9‘3 of polytopes
whose vertices have rational coordinate vectors. The first result is due to Betke
(1979, unpublished a).

Theorem 5.26. Let ¢ : Q’Z — R be a valuation which is invariant under unimodular
mappings. Then there are constants ay, ..., o, such that

d
¢ = Z a,G,.
r=0

Originally, Betke assumed that ¢ satisfied the stronger inclusion-exclusion prin-
ciple, but Stein (1982) showed that this followed from the valuation property and
lattice invariance; later, Betke (unpublished b) was able to remove this latter as-
sumption.

A consequence of Theorem 5.26 and the method of its proof is the following
description of the underlying abstract structure of valuations on ®j which are
invariant under unimodular mappings.

Theorem 5.27. The Abelian group I, generated by the equivalence classes of lat-
tice polytopes under unimodular mappings, with addition defined by the valuation
property (V), is isomorphic to 7%+,

In fact, the d + 1 generators of the group are just the classes of the lattice
polytopes conv{o,ey,... e}, for r =0,...,d. This result was proved by Betke and
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Kneser (1985). Miiller (1988) has extended these results to equidissectability with
respect to more general crystallographic groups.

We finally discuss lattice invariant and covariant valuations on Q’;{,. McMullen
(1983) proved the following analogue of Theorem 5.19.

Theorem 5.28. A function ¢ : P& — R is a lattice invariant valuation if and only if
@(P)=Y_ Vol F y(F,P),
F

where v is a real valued function on translates of normal cones, which depends only
on the translation class of aff F modulo 7¢.

In McMullen (1978), the corresponding result for simple valuations was proved.
There are results on covariant valuations analogous to Theorem 5.25; these are
mentioned in McMullen (1983).
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Introduction

In differential geometry intrinsic geometric properties of a differentiable m-
dimensional manifold M as well as extrinsic properties with respect to an
immersion of M into the d-dimensional Euclidean space R? (m < d) are studied.
By such an immersion we mean a differentiable map x: M— RY, given by
x=x(u' ..., u™) in the local coordinates u', ..., u™ of M, where the induced
linear map x,: TPM—_>IR”' is of maximal rank or, equivalently, the partial
derivatives x,:=dx/ou', i=1,...,m, are linearly independent at each point
p € M. The map x defines a differentiable submanifold F of R? which is called
hypersurface in the special case m =d — 1. A differentiable hypersurface F may
be oriented if M is covered by coordinate systems with coordinate changes of
positive functional determinant everywhere. In this case the normalized vector
product of x,,...,x,_, represents the so-called “unit normal vector” n of F
which is defined independently from the chosen coordinate system of M.

The importance of convexity in differential geometry consists in the fact that
certain differentiability assuinptions easily may be removed if a differentiable
hypersurface F of R? is “convex”, i.e., the point set x(M) lies in the boundary of
some suitable closed convex set K of R® By this way one obtains convex
geometric generalizations of notions and theorems in differential geometry.
Conversely, if the boundary of a closed convex set K of R? is the point set of
some differentiable hypersurface F, then it is not hard to compute convex
geometric entities and to prove convex geometric theorems in a differential
geometric manner.

In order to get an impression of the influence of the convexity of a differenti-
able hypersurface F with x : M— R of differentiability class C, we choose the
first d —1 coordinates x',...,x% ! of a suitable Cartesian coordinate system
{x',...,x% in R? as local parameters of F such that

=fx'. x0T, 1)
with f of C, is a local representation of F. Without loss of generality we may

assume that H ™ : x? =0 is a supporting halfspace of x(M) with the additional
property that H: x* =0 touches x(M) at the origin. hence

£0,...,00=£(0,...,0)=0 and f(x',... ,x7 =0 )

(f:= af/axi, i=1,...,d—1). Moreover, f must be a convex function, and it is
well known that this is equivalent to the fact that the quadratic form

. azf o
- &rE! = —— = .. - 3
ee (4 o biTl..d 1) (3)

is positive semidefinite everywhere.
This may be expressed in a more geometrical manner: the curvature k of a
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plane normal section of F is given as the quotient of the “second fundamental
form” of F

i (h ~_<_ﬁ_ >= f;’
h,'igg if axi axj’ n (1 + 2?;1 (ﬁ)Z)I/Z ’

i,j=1,...,d—l) (4)

and the (positive definite) “first fundamental form” of F

gz,gigj (gij:=<xi’xj>’ hj=1,...,d=1). (5)
If the position of the cutting plane (given by £ L., £97Y) varies, k attains d — 1
stationary values k, . . . , k,_,, the so-called “principal curvatures” of F. Accord-

ing to Lagrange’s multiplicator method they are the roots of the characteristic
equation

det(h,; g™ - 287)=0. (6)
Their normalized elementary symmetric functions,

(k1+“'+kd—l)’
‘=kl.‘.kd—l’

are defined as the “mean curvatures” of F (especially H,_, is called the ““Gaussian
curvature” of F). o -
Now the positive semidcfiniteness of f,,.g'g’ is equivalent to the positive
semidefiniteness of the second fundamental form of F, eq. (4), or to the
nonnegativity of all principal curvatures of F. We comprehend: locally, a hyper-
surface F in R is convex iff (after changing the orientation of F eventually) all
principal curvatures k,,...,k,_, of F are nonnegative. In this case also the

Gaussian curvature H,_, of F is nonnegative.

1. Differential geometric characterization of convexity

A basic result on the global characterization of the convexity of a compact
hypersurface in RY is:

Theorem 1.1 (Hadamard 1897, pp. 352-353). Let x: M—>R" (d=3) be a
compact oriented hypersurface F of class C, with positive Gaussian curvature:

H, ,>0. (8)
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Then x is an embedding and x(M) is equal to the boundary of a suitable compact
convex body K in R°

Proof. We consider the spherical map » of F, defined by x(p)e x(M)—
—n(p)€ $*". Taking into account, besides eqs. (8) and (7), a special point
po € M where a hyperplane of R’ touches the compact set x(M) in R, we can
conclude that the principal curvatures k, ..., k,_, of F at x(p,) are all of the
same sign, say +1, after changing the orientation of F eventually. This remains
true for all points p € M [as no principal curvature of F changes its sign because
of (8)] and justifies us to say that Fis “‘one-sided curved”. Moreover, the induced
linear map v, : x, (T,M)—>T_, p)Sd", defined by the Weingarten equations:

j on .

—n(p) = hy(P)g"(P)x(p) (ni==@, z=1,...,d—1) )
[compare (4) and (5)], has the eigenvalues k,,...,%,_, and a positive de-
terminant

det v, = det(h,g"*) =k, -k, , >0 (10)

everywhere, see (6). As a consequence the image of the spherical map v itself is a
covering of $*~! without boundary or branch points. Therefore, $*~" being simply
connected for d = 3, this covering must be onefold. So each tangential hyperplane
H( p) of F with the “outer” unit normal —n( p) is a supporting hyperplane of F.
Namely otherwise, by a compactness argument of x(M), there would exist a
supporting hyperplane of F with the same outer normal vector —n(p) and
different from H( p), which is impossible. This yields the fact that x(M) coincides
with the boundary of the compact convex intersection K of all closed supporting
halfspaces H ~( p) of F and that x is injective. O

Remark 1.2. Theorem 1.1 becomes wrong if we have d =2 (regard the slightly
disturbed & times traversed unit circle in the plane!).

The assumptions in Theorem 1.1 may be essentially weakened in the sense that
the positivity of the principal curvatures k, of F is replaced by their nonnegativity
(i.e., the local convexity of F), with the exception of one point, and the
compactness of F by its completeness. This is a trivial consequence of:

Theorem 1.3 (van Heijenoort 1952, p. 241). If x : M— R? (d =3) is a complete,
locally homeomorphic mapping F of the (d — 1)-dimensional topological manifold
M which is
(i) locally convex, and
(ii) “absolutely convex™ at a point p of M (i.e., there is locally a supporting
hyperplane of x(M) which intersects x(M) only at p),
then x is homeomorphic and x(M) is the boundary of a suitable convex body in R
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We omit the proof of this theorem — where differential geometry is not in-
volved — but make the following remark.

Remark 1.4. Theorem 1.3 becomes wrong if assumption (ii) is dropped. Coun-
terexample: Cartesian product of R?"? and the curve in R® of Remark 1.2.

Remark 1.5. Before van Heijenoort, Stoker (1936) had just proven that Theorem
1.1 remains valid if d = 3 and F is complete instead of being compact (with K not
necessarily compact).

The last step of extensions of Theorem 1.1 was done in:

Theorem 1.6 (Sacksteder 1960). Let x: M—R? (d=3) be a complete hyper-

surface F of class C,, with -

(i) a (positive or negative) semidefinite second fundamental form (4) every-
where,
or equivalently,

(ii) nonnegative sectional curvature

Rijklfi"?ifk"li
(88— gilg;'k)gln}gkn[

K(¢,m):= (&, = linearly independent)

(11)

of the induced Riemannian metric (5) on M everywhere [R.,, = hyh; — hyhy, =
components of the Riemannian curvature tensor of the metric (5)).

Then either

(a) x(M) is the boundary of a convex body K in RY (if K(£,)#0) or .

(b) x(M) is a “hypercylinder” consisting of »' parallel (d - 2)-flats in R® (if
K(£,m)=0).

Proof (Outline). M is divided into the set M, of flat points (h;€'¢'=0) and its
complement M, (h, £'6’ # 0). Then for each (connected) component C of M, the
unit normal vector n|. is constant. Namely, a theorem of Sard (1942, p. 888) says
that »(C)= —n(C) is a one-dimensional zero set of S‘~" and therefore totally
disconnected as image of flat points of M where the rank of the induced linear
map v,, given by (9), is 0. But simultaneously, »(C) must be connected as
continuous map of the connected set C. Thus n(C) = n, and {ng, x| = const,
whence

x(C)CH (12)

for a suitable hyperplane H in R% But eq. (12) and simple convexity arguments,
applied to the convex hypersurfaces x(D,) (D, = component of M,) imply tha}
x(C) is a convex set in R®. Conversely, a k-flat x(L) on x(M) has a constant unit
normal vector. These two facts, together with the completeness of F and rather

e ¥
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complicated topological considerations permit to reduce the proof of Theorem 1.6
to Theorem 1.3 by factoring out eventually a suitable k-flat of x(M) in case (a).

O

Remark 1.7. The assumption of completeness of F is essential in Theorem 1.6 as
seen in the following example: d =3 and F: x° = (x')’(1 + (x*)?) with (x*)* < L.
A simple calculation shows that the second fundamental form of F is positive
definite for x' >0, zero for x' =0 and negative definite for x' <0, i.e., F cannot

be locally convex at the origin. Indeed F is not complete because of the restriction
for x”.

Remark 1.8. Moreover, Theorem 1.6 fails to be true if the assumption of the
nonnegativity of the sectional curvature (11) is replaced by the nonnegativity of
the Gaussian curvature H,_,, see (7)! Namely, Chern and Lashof (1958, PP:
10-12) gave the following counterexamples: (1) d =4 even, M =S'x §9°2
x(My: (V'Y +-+ Y =2+ () =1; (2) d=5 odd, M=S§*x §° 2,
x(M): (VD2 + 4+ () =22 + () + (r9)2 =1.

Remark 1.9. Before Sacksteder, Chern and Lashof (1958, p.6) (see also Voss

1960, p. 125) gave proofs of Theorem 1.6 in the special case d=3 and F=
compact.

At the end of this section we would like to mention that there is also a
possibility to characterize the convexity of an m-dimensional submanifold F with
x: M— R (0< m < d), regarded as hypersurface in its affine hull aff(x(M)), in a
differential geometric manner. This was first done by Fenchel (1929) for m =1
and d =3, and, for general m and 4, in the following theorem.

Theorem 1.10 (Chern and Lashof 1957, p. 307). We suppose that x: M —R%isa
compact oriented m-dimensional submanifold F of class C, ith the generalized
spherical map

vi(x(p), n(p)— —n(p)i=— 2 An(p)

a=m+]

d
(mr; I, e, 1 = orthonormal normal vector fields of F, > (A) = 1)

a=m+1

of the unit normal bundle B, of F into the unit sphere $°™' about the origin. Then
(a) The induced linear map v, : x (T,M)®T st T, 897, given

-n(p)
by i

—-n(p)

(P = (PE (Pxp)+ 2 UPAP),

i=l,....m a=m+1,...,d,
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a 3’x o\ B <a ﬂ> Ba
" —_ —_— = — . =—1. 1
h‘f'_<auiau”n>’ t; n,n L, (13)

[compare eq. (9)] has the determinant

d

ervimie 3 i) a9

a=m+
[compare eq. (10)], which is the ratio of the volume element dw""dgf .S‘:" and the
volume element dw’ ™' A dF of B, relative to the map v, (do“" """ = volume
element of the sphere §4™"1 of the unit normal vectors of F at a fixed point,

dF = volume element of F),
(b) If G(p, n(p)):= det v,(p) is the so-called * Lipschitz—Killing curvature” of

F at (p, n(p)), and

K*(p):= [ ey 1G(p, nPY d0®"", (1)

gd-m—l(p)

then the “total absolute curvature’

L K*dF (16)

of F attains its minimal value 2dx, (k, = volume of the d-dimensional unit ball) iff
x(M) is the boundary of a compact convex body K in a subspace R™*! of R%

The proof of Theorem 1.10(a) is obvious, and the proof of 1.10(b) needs a
detailed study of the covering of $°~' by the endpoints of the unit normal vectors
of F. It is highly connected with integral geometry and with Morse theory for the
nondegenerate critical points of differentiable functions. Finally it is noteworthy
that:

Corollary 1.11 (of Theorem 1.10). A compact and (suitably) oriented hyper-
surface F of class C,, in RY bounds a compact convex body in R* iff

H, =0 (17)
and
degv=+1. (18)

This follows easily from the fact that (17) and (18) imply K* =2H,,_, [see egs.
(15), (14), (10) and (17)] and therefore

IM K*dF=2 JM H,_, dF = 2(deg v)dx, = 2dx, .
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Corollary 1.11 fails to be true if the assumption (18) is omitted (see the
counterexample in Remark 1.8).

2. Elementary symmetric functions of principal curvatures respectively principal
radii of curvature at Euler points

We return now to the mean curvatures (7) of a convex hypersurface F : M — R¢
of class C,. They may be geometrically characterized in the following manner:
Steiner’s formula of the volume for the shell U,, bounded by F: x=
x(u',...,u""") and its outer parallel hypersurface F,: x=x(u',..., u"") -

An(u', ..., u?"") (A= const > 0) indicates that we have by means of egs. (9), (6)
and (7)

@a-nwvw,)= LA [L (dx —p dn,;;._', dx — udn, n)] du

da-1

A d-1 d—1
=L [M 2 p_d—l—v( . )(—dn,...,—dn,dx,...,dx, n)]dp.
»=0 d-1-v M
d—1
d-1\ 1 .
=§;‘,0( ) )d_v/\" IMHd_l_v(dx,...,dx,n)
15 /4
=@d-1ty a(y)"d_"L H, , ,dF. (19)

Here dx :=£{7' (ax/du’) dd', dn:= 52! (an/au’) du’, and the determinants with
differential form valued column vectors have to be computed as in Leichtweiss
(1973). Equation (19) establishes that the mean curvature H,_,_, is the density of
the vth “‘curvature measure” in the sense of Federer of a convex body bounded by
F(v=0,...,d—1, H,:=1; see chapter 1.8). In the case of an oriented and

compact M with F of class C, these mean curvatures are related by Minkowski’s
integral formulas

__ 1 j
IMH”“dF_ @=1 M( dn, ..., dn,dx,;..,dx,n)
v—1 -v
——l—f —(—d —dn,d d
@=-1) Iu (—dn,...,—dn,dx,...,dx, x)
v d-1-v
=IMH,hdF, v=1,...,d-1, (20)

where

h:=—{(x,n) (21)
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is the support function of F, a direct consequence of Stokes’ theorem. The egs.
(20) are an important tool for proving results in the global differential geometry

of hypersurfaces. )
If our convex hypersurface F has positive Gaussian curvature H,_, everywhere,
H; >0, (22)

then all the principal curvatures &y, . . ., k,_; of F must be positive [see eq. (D],
and we may define their reciprocal values

1
RI = k_ >0,
ke @)
R, = >0,
d-1 kd—l

as the “principal radii of curvature” of F. In this case we can locally use the
spherical image v(x(M)) C $47! of F as parameter manifold for F and represent
the points of F by their unit normal vector # in the following manner:

x(—n)=(%{- (—n),.‘.,g—;{d(—n)). 24)

Herein, H is the support function of a convex body, bounded by F:

1 d
H ls-~-r ¢ = h(l—,‘..’y—-),
oy =l G
yi=(y', ..., y)eERN0} (25)

{see eq. (21)], convex, positively homogeneous of degree 1 and of class C, (see
chapter 1.2). The homogeneity of H yields

d
> % Y =H, (26)
b=1

whence after partial differentiation

d 2
S PH =0, a=1,....d. (27)
b=1 8y 8y
Therefore, the Hessian of H at —n has the eigenvector n to the eigenvalue 0.
Because of the relations

H

d ZH R d 3
com=(-2 T et 2 s )

i=1,...,d—1 (28)
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— resulting from (24) by differentiation with respect to u’ (i=1,...,d — 1) - the
other d—1 eigenvalues of (Hess H)(~n) coincide with the eigenvalues
R, (=n),...,R,_,(-n) of the linear map Y, T_,,S“_'—>x*(Tp(_,,)M), in-
duced by the (locally existing) inverse » ' of the spherical map v [see eq. (23)].

From these facts we deduce that we have for the normalized elementary
symmetric functions

’H

I.)l:= (R|+"'+Rd-|),

-1

: (29)
P, ,: Rl"'Rd-l >

s

defined as the “mean radii of curvature” of F, the equation:

(dzl)P”(_n)=Dv(H)(_")’ v=1,...,d-1, —n€v(x(M)),
(30)

where D, (H) denotes the sum of all principal minors with » rows of the matrix
Hess H. Now egs. (7), (29) and (23) prove

P = Hd—l-v

, v=0,...,d-1, P,:=1 31
v Hd—l [ ( )

[see eq. (22)], whence (19) respectively (20) may be transformed into the “dual”
formulas

vwy=5 2 (D

(dw = volume element of $°~') and, for d >2 (see Theorem 1.1) and F of class
G,

(32)

P
x(my ¥

sd_lP,,_,dw=Ld_l P, ., hdw, w=1,...,d-1. (33)

Equation (32) shows that the mean radius of curvature P, is the density of the vth
“surface area measure” in the sense of Aleksandrov of a convex body bounded by
F(v=0,...,d—1; see chapter 1.8).

A very important theorem about the influence of the infinitesimal behaviour of
a convex hypersurface to its global behaviour is the following:

Theorem 2.1. (Blaschke 1956 (1916), p. 118). A sphere Sy, of radius R> 0 in R* is
rolling freely in the interior K of an “ovaloid” F, i.e., a hypersurface x : M— R
of class C, with positive Gaussian curvature bounding a compact convex body K, if
the condition

R=< min {R,(=n),...,R,,(-n)} (34)
holds.
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Proof. In the first step we prove Theorem 2.1 in the case d =2. Here, eq. (30)
becomes

°H °H d?

Rm=pen=(E5+ 5 )en =g gE @, 69

after the introduction of the angle ¢ by

—n:=(cos ¢, sin @) (36)
and of the auxiliary function g by

g(@):=hicos p,sing), 0<¢<2mw, 37
see eq. (25). If we denote R,(—n)= R,(cos ¢,sin ¢) by r(¢), we find by the

method of variation of constants the following solution of the inhomogeneous
linear ordinary differential equation of second order (35):

L4
8()= | rw)sin(o ~ ) du + C,c0s ¢ + Cysin g, (38)
@
with given initial conditions at ¢, implying

C, = cos ¢,g(@,) — sin ¢,8'(¢,) C, =sin ¢,8(p,) + cos 8’ (#) -(39

Now we compare g with the support function g, of the circle S;(¢,) of radius R
touching the curve F from the inner side at an arbitrary point with the outer unit
normal vector (cos ¢,, sin ¢,). Clearly, g, has the representation

¢
gr(®) = J Rsin(eo — ¢)dy+ C,cos @ + C, sin ¢ (40)
@

[analogous to eq. (38)], with the same integration constants C, and C, because of
(39). Therefore, subtraction of (40) from (38) gives

g(¢)—gk(¢)=J’ (r) - R)sin(e —9)dy, g -mse<gtm,
®

(41)
and the condition (34) or R < r(y) for all ¢ yields

gle)=grle), - T<esg@gtm. (42)

Equation (37) together with eq. (42) proves that the circle Si(¢,) totally lies in
the interior of F so that S, “is rolling freely” there as the contact point of S and
F may be chosen arbitrarily.
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The second step in the proof of Theorem 2.1 consists in the reduction of
dimension by an orthogonal projection 7 of R onto a suitable plane R? in RY
containing the origin. After (21) and (25) the support function H™ of the curve
F'™ := 7o F in the plane R’ equals the restriction of the support function H of F
to R’. Therefore, the radius of curvature R{™(—n) of F'™ at a point with the unit
normal vector —n € R” has the value

2

(my_ _ . v a_b
R (—n) mn ey (—=n)z’z
llzf=1.{z,n}=0
2
=  min —— (-n)z°z
zeRd ay" a
||z||=l,e(‘§,n)=0 y ey
=min{R,(-n),...,R,_(-n)}, (43)
as Ri(—n),...,R,_(—n) are the eigenvalues of (Hess H)(—n) different from

the eigenvalue 0 for its eigenvector n. Now the assumption (34) implies R <
R{™(-n) so that m(S z) is rolling freely in the interior w(K) of F". But
consequently S, is rolling freely in the interior of F because otherwise there would
exist a sphere S, touching F from the inner side at x( p) and with a point x(g) of F
in the proper interior of S.; and the projection 7 along the (d — 2)-dimensional
direction simultaneously orthogonal to the normals of F at x( p) and x(g) would
produce a contradiction to 7(S;) C 7(K). O

Remark 2.2. Using the definition R, = 1/k; of the principal radii of curvature
where the &, are the extremal values of curvature of the normal sections of F by
planes (i=1,...,d—1) it can easily be seen that the condition (34) is also
nccessary for the assertion of Theorem 2.1.

Remark 2.3. By the same method of proof it follows that an ovaloid F is rolling
freely in the interior of another ovaloid F, iff

max {R'I(_n)’ vy ﬁd—l(_n)} < min {Rl(_n)’ ey Rd—l(_n)}
-nesd-1 -nesd-1
(ﬁ Loevos ﬁd_l = principal radii of curvature of F } holds. This fact also possesses

a local version. For further information see Schneider (1988, Theorem 1), and
Brooks and Strantzen (1989).

At the end of this section we shall explain how the notion of principal
curvatures or principal radii of curvature of a convex hypersurface F of class C, in
RY given by (1), can be extended to the case of an arbitrary convex hypersurface.
Then f is no more continuously twice differentiable but only convex. However, a
famous theorem of Aleksandrov (1939) says that f must be nevertheless twice
differentiable in a certain abstract sense (due to Frechet) almost everywhere (see
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chapter 4.2). This implies the validity of Taylor's formula at the points
(#0y» fluggy)) of twice differentiability of f in the form

| f(w) = f(uo)) = df(u(,,))(“ —U@gy) 3 dzf(uw,)(“ — Uy, U “(0))|
’, (44)

< R(||lu— u(o)”)”u - u(O)l
(u:=xl,...,xd_ly u(O):=x:0)""’xg[~:)"

R :R"— R"a monotone increasing function with lim R(:)=0),

where df|, ,is alinear and dzf(“(o), is a positive semidefinite quadratic function on
)

R‘"' (see Bangert 1979, Lemma 4.8).

In order to understand the geometrical meaning of (44) it is convenient to
choose a coordinate system in R? with Uy =0, flue)=0, df(u(o)) =0 and
f(u) =0, and to consider the intersection D, of a convex body K, bounded by F,
with the hyperplane x?= /4 =const>0, expanded by the factor 1/V2h and
projected orthogonally onto the supporting hyperplane x?=0. The boundary
bd D, of the convex body D, is given in polar coordinates by

r= \/% 2,(v), (45)
where p, (v) fulfils
flp wyoy=h, veER"", |lv||=1. (46)

By this we conclude from (44) that lim,_, ,, D, exists (in Hausdorff sense) with
the representation of its boundary in the form

r= lim L p,(v)= lim _____p,,(v)
=0 VIR P T VR p, o)
= lim,,_l.ii?o;.tv)w \/i:v) = \/dzf(:)(v, - 47
t
or, equivalently,
d%f oy (u, u)=1. (48)

Therefore, the boundary is a quadric in R~ with the origin as midpoint, namely
an ellipsoid if d%f,, is positive definite, or an elliptic cylinder if d’f, is positive
semidefinite but not positive definite or zero, or the empty set if d’f,, is zero.
This leads to:
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Definition 2.4 (Aleksandrov 1939). A point x( p) of a general convex hypersurface
Fin R? is called normal iff lim n—+o Dy exists and its boundary I( p) is a quadric in

the tangent hyperplane of F at x(p) with x(p) as its midpoint, the so-called
“indicatrix of Dupin”.

We have just seen that x( p) is a normal point of a convex hypersurface F if the
function f, representing F, is twice differentiable at this point. However, also the
converse is true as shown by Aleksandrov (1939). It is convenient to define the
inverse of the squared length of the semiaxes of I(p) as the (generalized)
“principal curvatures” of F at a normal point x( p) [compare (47) in the C,-case!].
Their product may be regarded as a (generalized) Gaussian curvature H,_, (x( p))
of F which turns out to be the appropriately defined derivative at x(p) of the
(generalized) Gauss map » as a set function (see Aleksandrov 1939). Finally, if in
addition the (convex) support function H of a convex body, bounded by F, is
twice differentiable at —n(p), then the product of the “principal radii of
curvature” (inverse to the principal curvatures) 1/H,_,(x( p)) is finite and equals
to the entity D,_,(H)(—n(p)) of (30) (see also Aleksandrov 1939). For further
information we refer to a paper of Busemann and Feller (1936) and a paper of
Schneider (1979).

3. Mixed discriminants and mixed volumes

In this section we want to express the volume of a compact convex body K
respectively the mixed volume of such bodies X,, ..., K, in R% provided that
they are “‘regular”, i.e., they have C,-boundaries F, respectively F,,...,F,,
with positive Gaussian curvatures, by suitable integrals over F, respectively
F,,...,F,, and also over the unit sphere $“'. This will produce certain
“counterparts” of important theorems on mixed volumes (see chapter 1.2). We

begin with the representation

1 1 _1 J’
V(K)= aL(dx,.;. ,dx) = d—!jp(dx,;‘. ., dx, —x) = p thF
-1
! 1 49

=7 Jsamr HPd—ldw=E SJ_IHD‘,_,(H)dw (49)
of the volume of K, a consequence of Stokes’ theorem after a suitable orientation
of F [see also eqs. (21), (31) and (30)]. If we insert in (49) for x a linear
combination x =27, Ax" (A,=20,...,A,=0) for corresponding points
M. x" (with the same unit normal vector n), the comparison of the
cocfficients of A, - -+ A, yields

1
V(Kil, “eey Kld) = E j"_ (dx(h)’ e, dx(ld_l)’ —x(ld)) ,

Isl=s--'=sl,<=m,. (50)
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In order to get this formula we used the symmetry of the integral in (50) with
respect to the indices /,, . .., I, arising from Stokes’ theorem and the compact-
ness of the oriented hypersurface F. Furthermore, the insertion of (28) into (50)

gives

1 - (4
VK, - K)= 3 JF (dx, . .., dx‘, n)nl

1 Gam )
=7 Jouns D, (HY,...,H'"H" dw, (51)
where (d — 1)!'D,_(H @ . H%-VY denotes the sum of all “mixed” prin<(:}pa§

. - b ’ . ! ~
minors with d — 1 rows of the Hessians of the support functions H W, ,.H -1
of K, K, . We can easily realize (51) if we use the fact that this term
e

©2 gy ) .
equals the coefficient of Ay* A, < -+ A, in the determinant

*H™ 2H -0 ]

det[/\oﬁab +A, Py e AL T

and that this determinant is invariant against orthogonal transformations of R so
that it suffices to prove (51) under the additional assumption n=(0,...,0, 1)
and therefore dn? = 0 as well 3°H/ay* oy’ =0{a=1,...,d; see eq. (27)] at the
corresponding point. For all these reasons it is convenient to define:

Definition 3.1. Let Q,, . . ., Q, be arbitrary symmetric (d X d)-matrices. Then the
coefficients D(Q, , . . ., @,,) of the expansion

det(w,Q, + -~ +w,Q,) = 2-. Zl w,ow, D(Q, . Q)

(52)

which are required to be symmetricin s,, . . . , s, are called mixed discriminanis of

0......0.

These mixed discriminants D(Q, , ..., Q,,) are depending only on the mat-

rices O, , ..., Q, , and we see easily that
D(Q,...,Q)=detQ (53)
in the case Q, =+ = Q, =: Q. Moreover, the mixed discriminants are linear in

each argument:

D(a, 0V +2,02,0,,...,0Q,)
=a,D(Q",0,,....0,)+aD(Q,Q,,....Q0,)- (54)

Convexity and differential geometry 1061
As we have just shown, there exists the relation
D, (H", ... H%V)=d-D(Hess H",... Hess H“),E) (55)

[E =(d X d) — unit matrix] for the integrand in (51). In the same way the
equation

D,(HY, ...  H")= (d) D(Hess H', ... Hess H*) E, ... E)
14 [——
(56)

d~v
[1=sv=d-1; see eq. (30)!] becomes obvious.
A first important property for mixed discriminants—a counterpart to the
nonnegativity of the mixed volume - is expressed in:

Proposition 3.2. If all the (symmetric) matrices Q,, . .., Q, in Definition 3.1 are
positive semidefinite (respectively positive definite), then all mixed discriminants
D(Q,,, ..., Q,,) are nonnegative ( positive) (1<s,<t,...,1<s5,<1).

Proof. After suitable approximation of positive semidefinite matrices Q,, ..., Q,
by positive definite ones we can see that it suffices to prove this proposition for
positive definite matrices. This will be done by induction with respect to d. The
case d =1 is trivial. We suppose Proposition 3.2 to be valid for d — 1. Then at first
the application of Sylvesters’ law of inertia for the positive definite matrix Q,,
together with the simultaneous multiplication of all matrices Q,,..., Q,by T* on
the left and T on the right implies

D(Q,,....0,)=@etT)’D(Q,,...,Q., .E), (57)

where det 7#0 and Q, :=T*Q, T,...,Q, :=T*Q, T, E=T*Q,T [see
eq. (52)]. However, d!- D(Q, , ..., Q. ., E) is the sum of all “mixed” principal
minors with d —1 rows of the positive definite matrices Q;w ..., Q,,  and
therefore positive by the inductive assumption so that also D( Q> Q) mu[S:tI

be positive because of (57).
Remark 3.3. Proposition 3.2 and egs. (51), (55) together with the relation

d - D(Hess HY, . . Hess H%-v E)
= D'(Hess' H'), .. ., Hess’ H-7y>0, (58)

where D’ denotes the mixed discriminant of the (positive definite) restrictions of
Hess H'Y(—n),. .. ,Hess H%-(~n) to the (d — 1)-dimensional sum of their
eigenspaces corresponding to their positive eigenvalues (the radii of curvature of
F,..., F;, ), imply the well-known property for regular compact convex bodies
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V(K. K )>0. (59)

Hereby the positivity of H was used coming from the choice of the origin in
i it
the interior of the convex body K, . The same argument yiclds the monotonicity

property
VK- K, K)<VIK,,....K, ,K) ifK,CK,, (60)

with cquality iff K, = K, .

We now proceed to the following counterpart of the Aleksandrov-Fenchel-
Jessen inequalities for mixed volumes (see chapter 1.2).

Theorem 3.4 (Aleksandrov 1938). If the matrices Q. ,...,Q,,  are positive
definite and Q is any (symmetric) matrix, then
2
(D(Q,, -+ Qs Oy s Q)]

> 'D s”"’Qs_z’Qid’Q‘d)’
/D(Qsl?' LR ] Q’d—z’ Q.rd_,’ Q"d—l) (Q1 d (61)

where the equality holds only if Q, is proportional to Q

Sa-1"

Proof (See also Busemann 1958, pp. 53-56). After introduction pf the quadrat?c

form g in the essential elements ¢, (1< i< j < d) of an arbitrary symmetric
S1 a2

matrix X by:

Zoosg K X)=D(Q, -, oy Ko X)

Il
Ma
Mea

[}
—
~.

n
—_

(D(Q517 c ey Q-‘d—z’ X))ijgij

Il
e

M~
[ \ZEN

-~
[}

~.
[}

-

k

the inequality (61) takes the form
[g’l""d-z(Q3d—l’ Qsd)]z = g’l"'-‘d—z(Q‘d—l’ Q-"d-l) : g.s""'&‘d_z(Q«"d’ Q‘d) ’ (63)
with equality iff

. (64
Q.7 Q,., YER.
This is equivalent to the implication

Burnen @y p @) =0 > g, (2, 0)<0 (65)

(D(Q,,> - - » Qo Vi€ s (62) -
11=1
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for a symmetric matrix Q, with equality iff

Q=0. (66)

Indeed, egs. (63) and (62) together with Proposition 3.2 imply (65) and (66).
Conversely, after applying (65) and (66) for

gs,-nsd_z(Qsd_,’ Q’d) Q
g’r“-'d—z(Q-'d—l’ Q’d—l) !

we get (63) and (64).
In the following, (65) and (66) will be proven by induction with respect to d.
(65) and (66) may be easily shown in the case d =2 if the positive definite

(respectively symmetric) matrices Q,, (Q) have been simultaneously transformed
into diagonal forms

Q:= Q’d_

a, 0 ) b, 0
[0“ azz] , a,>0, a,,>0 (respectlvely [0” bzz])

by a unimodular transformation, not changing the mixed discriminants. Indeed,
here the implication

apbytanb, =0 > b, b,<0 67)

is trivial, with equality iff
b,=b,=0. (68)
Now we assume (65) and (66) to be true for d — 1 and show their validity for d

by consideration of the nonnegative eigenvalues of 8;,.-s,_, With respect to the
quadratic form

d d
2 2 (&) (69)
i=1j=1
At first this will be done for the special quadratic form
. A\
87X X)=DE.....Ex0=(9) 3 (eg,-6. )

I=i<j=d

It results from an elementary calculation involving Lagrange’s multiplicator
method that g‘® has 1/d as single positive, and ~1/d(d — 1) as (1d(d + 1) —1)-
fold negative eigenvalue, so that 0 cannot be an eigenvalue of g”. More general,
0 is not an eigenvalue for 8,5, ,- Otherwise we would have

gs,msd_z(QO’ X) = D(Qsl’ R4 Q-’d-z’ QO’ X) =0 (71)
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for a symmetric matrix Q, # 0 and an arbitrary symmetric matrix X [see eq. (62)],

and this relation remains unchanged after a simultaneous unimodular matns
. . . an

transformation of Q, , ..., @, _,» Q0 X §uch that thc. positive definite Q,

the symmetric Q, are transformed into diagonal matrices with elements

d-2 (d-2) ©_p s <i<i<d
ale-? =af P, (af¥>0) and b’ =b,8 1<is<j

ij itvif o (72)
So we may suppose the validity of (72) without loss of generali‘ty and deduce from
(62) and (71) the equations (D(Q;, - - x Q,d_.z, QO)‘)H =0,i=1,...,d, where
dD(Q;,, - > Lsyy Q,)).; equals the mixed dlscrlmlnan.t of Q, .-, Qs,_, Qo
with all elements with index i having been deleted. For this reason we have by the
inductive assumption

(D(Qsps -+ Cypr Qo QN <0, 1<i<d, (73)

and by (71)

i (D(Q,s- -+ Qsy 1 Qo» QoNutty 2 =D(Qyr- -5 Qs o Qo» Q) =0.

But this and eq. (72) imply equality in all the inequalities (73), and ther.efqre
Q, =0 by the inductive assumption which contradicts Q, #0. Now a continuity
argument, applied to the eigenvalues of the forms

87X, X):=D(1-NE+7Q,,. X, X),

O0=r=1,

.., (1-7)E+71Q

sq-2°

. . - no
connecting g with g5, ,» Shows that g, .. has exactly one positive and

zero eigenvalue as well as g because no eigenvalue of g™ passes through 0 when
7 runs from O to 1. o

At the end of the proof we interpret the essential elements glsisjs d) of
a (nonvanishing) symmetric matrix X as projective coordinates of the‘ points of a
(1d(d + 1) — 1) — dimensional projective space P. Then, by the previously men-
tioned property of g ..., .

Boysy,(X> X) =0 (74)
is the equation of a hyperellipsoid in P. Because of (62) aqd Propositlpn 3.2 \;v‘e
have g, ., (Q., Q,, ,)>0, which means that the p(?mt Q’d—'l lies in ]; t:
component of the hyperellipsoid (74) which does not contain a’full line qf P. :10
then each point Q #0 with g, .., (Q,, ,@)=0,ie, each point Q conjugate ©
Q,  with respect to (74) lies in the other component, wher.lce 85, 5q (2> Q).
0. d"f‘]herefore, the implication (65) is true with equality iff (66) holds whlcé
completes the proof of Theorem 3.4.
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4. Differential geometric proof of the Aleksandrov—Fenchel-Jessen inequalities

In this section we shall apply Theorem 3.4 for a proof, formally analogous to that
of Theorem 3.4 for mixed discriminants, of the following Aleksandrov-Fenchel—
Jessen inequalities for mixed volumes:

V(K- K, . K, K)I
VK, Ky, Ky LK ) VKK KK,
1<{,...,.L<m, (75)

where K|, ..., K, are assumed to be regular compact convex bodies in R® with
the origin in the interior and equality occurs iff K,  and K,, are homothetic:

K;d=)"K,d_l+a, v>0, aGR"’, (76)

see Aleksandrov (1938, §6) and Busemann (1958, pp. 56-59).

For this purpose Aleksandrov extends [similar to his first proof of eq. (75)] the
notion of the mixed volume (51) as a functional over the d-fold Cartesian })roduct
of the space C5™"($“™") of all those positive C,-functions on the sphere 52~ with
convex positively homogeneous extensions H of degree 1 to R“\{0} whose
Hessians have d — 1 positive eigenvalues (orthogonal to the position vector of the
argument) in the following manner: let Z be the positively homogeneous exten-
sion of degree 1 of an arbitrary C,-function on $*"' to R\(0}, and let C,(§°7")
be the space of all such functions. Then, by adding to Z a suitable positive
multiple a H,, of the special function Hy(y):=(Z¢_, (y*)*)"'* with a Hessian of
d — 1 eigenvalues 1 on S”', we get another function H, € C°™(5“"") (because
of the compactness of S“7'!) so that the representation

Z=H,-aH,, HeC™©$'™"), Hye Ccr™(s*™Y) (77)

holds for Z. This fact permits us to define a bilinear function qy,..1,_, On the space
C(S*7) x C,(8?7") by a well-defined bilinear extension of the mixed volume
(51) considered as a bilinear form on C5™($%7') x C2°™(5?') with the fixed
support functions H', ... HY-2 & C3*™(S%") of the fixed regular compact
convex bodies X, , . . ., K;,_,. This extension has the property

ot (HV, H Y = VK, .. K,), (78)

and we shall prove, instead of (75) with the equality condition (76), the following
stronger version:

(41, ,H, D 2 g, (HYD, B0 g | (Z,2),
Ze Gy, (79)
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with equality iff
Z=7.H('d-1)+(a’,), ‘)'E[R,aGRd, (80)

compare (78). ‘
Now a first step of the proof is to show that (79) and (80) are equivalent to the

fact that

Gy, (H™,Z)=0, ZeC(S"), (81)
implies

q,..1,,{Z, Z) <0, (82)
with equality iff

Z={(a,"). (83)

Clearly, from (79) and (81) we may deduce (82) considering (78) and (59), E}nd
the insertion of (80) into (81) yields y =0, i.e., (83) because of the translation
invariance of the mixed volume. Conversely,

A qll--~ld_2(H(ld_l)s Z)

- T '
4. (H(Id—l) H(ld—l)) He- (84)
-2 ?

fulfils (81) implying (82) for Z, which is equivalent to (79). There equality occurs
iff this is true for (82) with Z, i.e., Z = (a, +) or (80) by definition (84).

Then a next step is the application of Hilbert’s “parametrix method” (see
Hilbert 1912, chapter 18 in the case d =3), the essential idea of Aleksandrov’s
prooE. ;l"his will be done by defining a “weighted” inner product on the space
C,(S77) by:

<z,w>:=Ld_lz-dew, (85)

with the weight

*) (Ua-1)
o D HY, )

H ; (86)
and a linear differential operator L on C,(5°7") by:
L(Z):=Dd—l(H(ll)1- .. ’H(ld—2)’ Z)' (87)

This operator is symmetric because of the relation
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L.,-l L(Z)- Wde = J;d-. D, (H",. .. ,HY%2 7). W do

= it Dd_l(H(ll)’ el H(la—z), W) Zdew =J;4—1 Z - L(W)de, (88)

arising from (51) and the symmetry of the mixed volume with respect to
K, ..., K, after extension of C3°"'(S"") to C,(S*™"). Moreover, L is of elliptic
type what means that the (symmetric) matrix C’ of the cofactors of the elements
3°Z/ou" ou’’ (i, j=1,...,d—1) in the expansion

L(Z)= D’'(Hess’ H"’, ... Hess' H%-2 Hess’ Z)
d-1d-1

= > (D’(Hess’ HYY, . .. Hess' I-I(""Z’))‘.j .
i=1 j=1

2
F uli ou’ J (89)
[see egs. (87), (55) and (58)], is positive definite. This can be seen as follows. By
a suitable orthogonal transformation of the Cartesian coordinates u’’,. . . , y'~*
of the tangent hyperplane T_,5"' of $°' which acts on the Hessians of

H™, . H%-2 simultaneously by:
Hess” H') = T'* Hess' HY T',
Hess" H'-2) = T'* Hess’ H'«-? T7 |

and for this reason on the matrix C’ of cofactors (in the same manner as on the
matrix of the cofactors of a determinant) by:

C"=(det T")Y(T')"'C(T"*)™ = T"*C'T"

we can make C” a diagonal matrix. Therefore, C” and thus C’ are positive definite
if the diagonal elements of C” are positive:

(D"(Hess" H, ... Hess" H'-?)), >0, i=1,...,d—1. (90)

But these cofactors are, up to the factor 1/(d — 1), the mixed discriminants of the
matrices Hess” H, . .. Hess” H%-2 with suppressed elements with the index i,
being all positive definite, so that (90) holds because of Proposition 3.2.

Now the principal result of Hilbert’s parametrix method is contained in:

Proposition 4.1 [Hilbert (1912, p. 241) for d =3 and the C.-case].

(a) If L is any linear symmetric differential operator of second order and elliptic
fype with continuous coefficients on the space C,(8%7"Y), and if w is any continuous
positive weight function on S, then the differential equation

L(2)+ Awz=0 (91)
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for z:=Z|s-\, has a countable number of eigenvalues A\, <A, <--- with a
[relatively to C,(8%7Y)] closed system of eigenfunctions z, = Z,|sa-1, 2, = Z,|ge-1,
..., mutually orthogonal with respect to the inner product (85):

(Z,,Z,)=0 ifp*v, (92)
and normalized by
(Z,,Z2,)=1. (93)

(b) Hereby, A, is characterized by the property:

A = min [,z L2ydw), (94)

- i ( )
Y(Z,2y=1.(2).Z)="=(Z,_,. Z)=0 sd-1

attained for Z=Z,. ‘
(c) If L and w depend analytically on a parameter t, then A, depends continuous-
iy on t.

Applying this result to our differential operator (87), tf)gether with the weight
function (86) and the inner product (85), the implication (81) = (82), with
equality iff (83) holds, or equivalently,

(H%0 Zy=0 > —Ld-. Z-L(Z)dw=0, (95)
with equality iff
d

Z(y)=2 a,y,, a,=const, (96)
a=1

will be proved if we can show:

A, =—1 with eigenfunction Z, = H"-", (97)

Ay=---=A,,, =0 with eigenfunctions Z,=y,,...,Z,,, =y, (98)
and

Ager >0 (99)

That H"4- is eigenfunction of L for the eigenvalue — 1 is a direct consequence
of (87) and (86). Moreover, the linearly independent linee'lr functions y,, ..., y,;
with vanishing Hessians are eigenfunctions of L for the eigenvalue 0 be-cause o
(87). But this is not enough to prove (97), (98) and (99) because therg might exist
further nonpositive eigenvalues for L. Therefore, Aleksandrov considers at first
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the special case K, =---=K, =K,:=B" with H(y)=---= H%-1(y)<
Ho(y) = (24, (¥*)))""%, and thus
Hess' HY(=n) = -- = Hess' HY“-(-n)=E’ (100)

The insertion of (100) into (89) leads to

1§ éz 1
L@ =37 Z Gup =71 42 (101)
as well as
w=1. (102)

Now it is well known that the so-called “spherical harmonics”, defined by:

2.(y)

s,(y)i= a7, " y#0, (103)

with suitably normalized harmonic homogeneous polynomials p,(y) of degree n
in the coordinates y', . . ., y*

4p, =0, n=0,1,2,..., (104)
form a closed system for the continuous functions on ¢ (see Miiller 1966).

These spherical harmonics are mutually orthogonal with respect to the inner
product (85) with w =1. Their positively homogeneous extensions

ZO(y):= p"fy) 7, ¥#0, (105)
. oy Y

of degree 1 to R\{0} provide all (normalized) eigenfunctions of our differential

operator L, because (101), (105), (104) and Euler’s homogeneity relation yield

(n—1)(-n—-d+1)
d-1

L(Z)i= 505 420 = -1 4z

Z(O)
(106)

on S$“°'. Therefore, we see that in fact (n—1D(n+d-1)/(d—-1), n=
0.1,2,..., are all the possible cigenvalues for L,. Especially A'” = —1 is the
smallest eigenvalue of L, with multiplicity 1 and AP =... = AL =0 is the next
one with multiplicity d; there exist no other nonpositive eigenvalues for L. Finally,
Aleksandrov applies the “continuity method” in order to complete his proof by
showing (97), (98) and (99). As we have just seen this is true in the special case
L = L,. It remains to prove this fact for a general differential operator L. For this
reason we consider the array of differential operators L, respectively of weights
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w., defined by (87) respectively (86) with respect to the regular compact convex

bodies K i=(1—- Ko+ 7K,,..., K4V =(1- DK, + 1K, (0=r<l).

Proposition 4.1(c) says that the eigenvalues AJ” of L, together with w, (v =

1,2,...) depend continuously on 7. Therefore, it suffices to prove that 0((1)5)

eigenvalue for all L,, w, with multiplicity d because then no higher eigenvalue A,

of L, with v =d +2 can move into the interval (—, 0] when = runs from 0 to 1.
This will be done as follows. Let Z be an arbitrary solution of

L.(Z):= D'(Hess’ H',. .. Hess' H!"? Hess' Z)=0, (107)
see (55) and (58). Then (61) implies

D'(Hess' H™, ..., Hess' H!*- Hess' Z,Hess' Z)<0 on s”_l(los)

Now

j D'(Hess' HY, ... Hess' Hy*-¥ Hess’ Z, Hess' Z)- HY-2 4o
Sd—l

= D'(Hess' H', ..., Hess’ H'-? Hess' Z)- Zdw =0,

§a-1

(109)

because of (88) and (107), so that we may deduce the equality in (108) from
(109) and HY4-? >0. But Theorem 3.4 says that this occurs only if the relation

Hess' Z = q - Hess’ H4-? (110)

holds on §%~! with ¢ =0 as it can be seen by insertion of (110) into (107). Thus
Hess' Z=Hess Z=0, whence Z(y)=(a,y)=ZLi_,a,y’ with a,,...,a,=
const, so that Z? = y', ..., Z$), = y* are all linearly independent eigenfunctions
of L, for the eigenvalue 0. This completes Aleksandrov’s proof. O

Remark 4.2. By an approximation argument it may be seen that the Alcks?n-
drov-Fenchel-Jessen inequalities (75) hold for arbitrary compact convex bodies.
But this argument gives no information for the equality case which has not yet
been completely solved. For this topic we refer to chapter 1.2.

5. Uniqueness theorems for convex hypersurfaces

In literature numerous theorems about the uniqueness of a regular compact
convex body in R? with prescribed infinitesimal behaviour of its boundary (up‘ to
certain congruence) exist. Most typical result in this direction is the following
theorem.

Convexity and differential geometry 1071

Theorem 5.1. [Aleksandrov (1937, Section 7) and Fenchel and Jessen (1938),
both without differentiability assumptions]. If the boundaries of two regular
compact convex bodies K, and K, in R® have the same vth mean radius of
curvature at corresponding points with equal unit normal,

PO(-n)=PV(-n), -nes*! (111)
for a fixed v(1<sv<d-—1), then K, and K, only differ by a translation.

Proof for v>1 (Outline) [Chern (1959) in case of differentiability C.]. In the
same manner as the Aleksandrov-Fenchel-Jessen inequalities (75) imply the
concavity of the Brunn—Minkowski-function

1/v+1
11’(:):=(V(K,,...,K,,B“,...,Bd)) ,
r+1 d-1-v

K:=(1-NK,+tK,, 0sr<1

(see Leichtweiss 1980, Satz 24.1), the corresponding inequalities (61) for the
(multilinear) mixed discriminants imply the concavity of the function

d_l) @ © ]llv
&)= ' ' ..., Hess HY E',. .. E')-
() [( ’ D'(Hess’ H'”, ..., Hess E ¥(—n)

v d~1-v

| ¥2
= [(d)D(Hess H® .. HessH“,E,..., E)(—n)]
g =~ =

=[D,(H)(-n)]"" (112)

[compare eq. (56)], where H := (1 — )H'® + tH'" is the support function of
K,. Therefore, after applying (30) and (111), the inequalities
D (H(U) . H(O) H“))? [D (H(O))](v—l)/v. [D (H(l))]l/v= D (H(l))
v ) - ’ » v v v
Y (113)
and (changing the part of K and K,)

D(H®H", ..., H)=[D,(H™)]'" - [DH™M)* ™" = D(H®)
o (114)

hold (see Leichtweiss 1980, Hilfssatz 22.2). Hereby equality only occurs if ®(¢) is
linear in ¢, i.e., if we have equality in the underlying inequalities (61), whence
(because of » > 1), after using (111), Hess' H” = Hess’ H'". For this reason, in
order to prove Theorem 5.1, it suffices to show equality in (113) and (114). This
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may be done by subtracting the generalized Minkowski’s integral formulas

) d—1 _ID(v—l.l)dw=J (d_l)_lD(v.l) do
J’sd'lh v v st-t \p+1 v+l
-1
=J AN Devde (1)
§4- v

and vice versa

m d-1 _]D(l_,,_l)dw=J' (d—l)_'D(l.v)dw
[gd—lh v v sd-1 V+l v+l
-1
_ Id h(O)(d - 1) D(,O’y) do, (116)
sd-1 v

with
wA) _ © ® g gDy gsA<y (117)
DN =p H?, ..., H®, H'", ..., H) ,

A v—A

[compare eqs. (30) and (33)!], from each other. Namely, this yields
J [h(ﬂ)(D(v—l‘l) _ D(O.v)) + h(l)(DE’l.u—l) _ Dflv‘o))] dw =0 , (118)
sd—l v v

which indeed implies equality in (ll%)_land (114) if we assume (without loss (|):|f
generality) A >0 and 2" >0 on $*7".

In the case v = 1, Chern gave a proof of Theorem 5.1 [wh}ch does not makeTlas.e
of the profound inequalities (113) and (114)] by another‘ integral formula.d fls
theorem was at first proved for d =3 and » =1 by Christoffel (1.865.), and for
d=3 and v =2 by Minkowski (1903). Some important gepcrahzatlons c(;f flt,
replacing P, by a suitable function @(R,, ... ,.Rd_l, n, x) with <?4>/8R,.>“' tqr
i=1,...,d—1, and using a maximum principle for the solutions of _elliptic
differential cquations, are due to Aleksandrov (1962). .For other generahz'atltortlg
with regard to parts of convex hypersurfaces, see'Ohker (1979). We yvanf o
mention further that Theorem 5.1 is obviously gquwalent to tl-{e following fac l
Two regular convex hypersurfaces F, and F, in R® are congruent if they have equa
“third fundamental form”

igi o = (2" a—"—) i) = d-1 (119)
ei}.§§’, e,.j—<g, aui 3 l,] ly-.-, ’

. . . ¢
and equal vth mean radius of curvature at corresponding points, be?use the firs
condition induces the congruence of the spherical maps of F, and F;.

. a .
Corollary 5.2 (Siiss 1929, Satz 2). A regular convex hypersurface F in R® with the
property
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P,=const, vfixed, 1svsd-1, (120)
is a sphere.
“Dual” to Corollary 5.2 is the following theorem.

Theorem 5.3 [Liebmann (1990, pp. 107 and 109) in the case d=3). A regular
convex hypersurface F in R with the property

H,=const, v fixed, 1svsd-1, (121)

is a sphere,

Proof (in the C-case for v <d—1). By Newton’s formulas (see Hardy, Little-
wood and Polya 1934, p. 104), there is

v+1 =
A, = 7) Zoo= H, H,:=1, (122)
with equality only in the case k, =--- = k,_y or F=sphere. But (121) and the

Minkowski-formulas (20) imply

[ onar=[ @, -H,.pyar-n, |, - Hmyar
=0, (123)

whence indeed follows equality in (122) or HH,-H =0 if we assume,
without loss of generality, 4 > 0. a

For a proof of Theorem 5.3 in the case v =d — 1 by a slightly different integral
formula, see Walter (1989, pp. 186-187). Furthermore, we want to draw atten-
tion to a paper of Walter (1985) with far reaching extensions of Theorem 5.3
involving special “‘isoparametric hypersurfaces” (whose principal curvatures are
all constant).

Theorem 5.3 is a consequence of a reflection thcorem and — more general —of a
uniqueness theorem for hypersurfaces of another type as theorem 5.1:

Theorem 5.4 (Voss 1956, Satz VI). If the boundaries Fy and F, of two regular
compact convex bodies K, and K, in R? of differentiability class C, have the same
“lower” and “‘upper” orthogonal projection along the direction e €R? on a
hyperplane in R? as well as equal vth mean curvature at corresponding points with
respect to this projection,

HO«y=HP V), vfixed, l<sv=d-1, (124)
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where
xW = 5@ 4 e, (125)
then K, and K, only differ by a translation along (the constant vector) e.

The idea of the proof of this theorem consists in a modification of S'teiner’s
continuous symmetrization: F;, and F, are joined by a linear array F,, given by
¥ i=x® 4 ye, O0=t=<1, (126)

compare eq. (125)! Then Theorem 5.4 turns out to be a direct consequence of the
integral formula

0= [, (L = HO ) xe,n ) 0F,
M

| (r)
=L UM —0’;' (xe, n"’>dF,] dt

- r [I (—d an —dn®, ..., =dn®,dx,. . ., dx", xe)] dt
0 M ’

T W@d-n at — —
)
= [ (~an®,...,~an®ax®,. . dx® dye, —a—"—)] d
(d-1)!Jo Unm ""_'T d-1-» ot
. ax dx
=__" ij 0)yy2 72 A (127)
Tod-1 th Cinl{e, n™)) ou' ou °

[compare eq. (20)!], because hereby the matrix (C,,) is positive definite and
(e,n) vanishes only on the “shadow boundary” of Fo, with respect to
projection along e.

Remark 5.5 (Aeppli 1959, Satz 10). Theorem 5.4 remains valid if we replace
there the *‘parallel map” (125) by a “radial map”

(128)

=@ x>0,

the equality (124) by the equality of the (dilatation invariant) “reduced vth mean
curvature” at corresponding points

Ix©IHO @) = |xV"HPO (), »fixed, 1sv<d—1, (129)

. . - d _
and the translation along e by a dilatation with the origin of IR” as the center
under the additional assumption that all “joining hypersurfaces

(f':
E.

A aAL
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xXPi= A+ - ), ost<1 (130)

[compare eq. (126)], be regular convex hypersurfaces.

It should be mentioned that two different common generalizations of Theorem
5.4 and Remark 5.5, involving 1-parameter transformation groups of a Rieman-
nian target space R? have been made by Hopf and Katsurada (1968a,b), based on
Stokes’ theorem and on a maximum principle. For further information on the
topic of this section, especially for d = 3, see Huck et al. (1973).

6. Convexity and relative geometry

In the so-called “relative differential §e0metry” of convex hypersurfaces, a
regular convex hypersurface F: M— R’ of differentiability class C,, given by
x=x(u',...,u"""), is referred to a regular convex “gauge hypersurface”
N:M—-R? of differentiability class C,, containing the origin in the “interior”
and given by —y = —y(u', ..., u*""), by means of the so-called “Peterson map”
between (equally oriented) points of F and N with parallel tangent hyperplanes:

—yi-=—%=3ka, i=1,...,d-1 (131)
[compare eq. (9)], with
(xys oo xyy, 9)>0. (132)

(Thus Euclidean differential geometry is the special case y =n of relative
differential geometry!) Besides the “normalization vector” y of F we consider also
its “conormal vector” X, defined by:

(X,x)=(X,y)=0, i=1,...,d-1, (133)

and
(X,y)=1. (134)
Because of the obvious symmetry relations

_ pk _ aX _ Bzy o X _ pk _
Bij‘ B, ij _<W’ yi>_ _<Xa PRy = ﬁ, Vil = Biji— B,':

(135)

for the coefficients of the (quadratic) “third fundamental form”

B £'¢! (136)
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of (F, N), compare eq. (119), with respect to the coefficients
G;i=(X,x/ou' 3u’) = G,

of its positive definite (quadratic) “‘second fundamental form”
G,;£%¢’ (137)

{compare eq. (4)], the roots of the characteristic equation det(B¥ — 26§) =0 are
all real. They are called the “relative principal curvatures” Kooy kg of
(F, N), and their inverses, Ry, ..., R,_,, the “relative principal radii of curva-
ture” of (F, N) with the normalized elementary symmetric functions  Ff, respec-
tively P, (v=1,...,d—1). As we have assumed also the gauge hypersurface N
to be regular convex, all the entities k,, .R,, H,, P, (v=1,...,d-1)
are positive in view of the positive definiteness of the matrix (By;)=
((X, —ay/au' du’)), see eq. (135). They are related by the “relative geometric
Minkowski’s integral formulas” .

J rH,,_,d,F=I H, hd F, v=1,...,d-1, (138)
M M
I ,P‘,_,,d,N=J, Py, hdAN, v=1,...,d-1, (139)
M M
involving the “relative geometric support function”
hi=—(X, x) (140)

(compare eq. (21)] and the “relative surface area”

1
= 141

Ld,F d-1)! Jt"(dx,w;.;,dx, y) (141)
of F, respectively the “relative surface area”

1
J'M dN= (d——l)! ,{M (—dy’;d':';"’ —dy, y) (142)

of N [compare egs. (20) and (33)!]. These Minkowski’s formulas may be proved
exactly as in the Euclidean case after replacing the Euclidean unit normal vector »
by the normalization vector y. As an important consequence we note:

Theorem 6.1 [Siiss (1927, p. 69) for d =3]. A pair (F, N) of regular compact
convex hypersurfaces of differentiability class (Cy, C,) with constant relative vth
mean curvature H, for a fixed v with 1sv<d-—1,is a “relative sphere”, i.e., a
pair of homothetic hypersurfaces F and N (compare Theorem 5.3!).

R
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The proof of this theorem is totally :

v 3 y analogous to the proof of Theorem 5.3: j
t1;s¢s the Minkowski’s formulas (138). Theorem 6.1 remains valid with A he;vi’nlgt
feen r‘eplaced by P, (1< v=<d~1) [compare Corollary 5.2 and use Mrinl:omki’s

ormulas (139)!].' We remark that this fact is a trivial consequence of the followin
relative geometric generalization of Theorem 5.1. &

Theorem 6.2. The hypersurface F of the pai
pair (F, N) of regular compact conve
hypersurfaces of class (C,, C,) is uniquely determined up toa translaticfn by N ancxl

the relative vth mean radius o itrari
re relaive » f curvature P, for an arbitrarily fixed v with

;l“his theorelp may be proved totally analogous to Theorem 5.1 for » > 1: for
;— 1 then'e exists (1q the C,-case) a proof, applying a suitable integral forn;ula
ue to Oliker and Simon (1984, Theorem 3.1). Finally, we cite in this context:

Theorem 6.3 [Schneider 1967, Satz 4.4 (4.1)). A pai

, 4 (4.1)). A pair (F, N) of regular compact
convex hypersqrface; of class (C;, Cs) is uniquely determined up to a nondegeﬁer-
ate affinity by its third (second) fundamental form (136) (eq. (137)), the relative
(d = 1)th ( firstymean curvature H,_, (,H,) and the “Tschebycheff-vector”

V:= ik . | = —
=GlAy,, i=1,...,d-1, (143)

where (G'*) is inverse to (G.) and A, ‘=
‘ : .. i ‘= (X, x;..) are the (symmetri -
efficients of the ““cubic fundan;lental foml{” i o ") €0

ok
Ay 't (144)
of (F, N) (x,.,., denote covariant derivatives with respect to the Riemannian metric

ds* = G, du' du’t).

7. Convexity and affine differential geometry

In the so-called “equiaffine differential geometry” the special conormal vector

X:: [‘x],»-.,xd_l]
[det((xl, Ce, xd—nx,-,))]”(‘““

(145)

is assigned toa regular convex hypersurface F in R? of differentiability class C
invariant against orientation preserving paramcter transformations of F. Then tl:e;
envelope of the hyperplanes (X, z) = 1, reflected at the origin, may be used as a
gauge hypersurface —C (reflected ““curvature image™) for F (we assume for the
moment that —C must not be regular convex). Its position vector ~ y [compare
eqs. (134) gnd (133)] is called the negative “‘affine normal vector” of F, as ~C
transforms itself in a homogeneous equivariant manner when F is transfo;med by
an equiaffine (i.e., volume preserving affine) map of R”. From egs. (145) and
(134) we conclude for the “affine surface area” of F [compare eq. (141)]
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l f GRS
= ., dx,
jMdaF @-n , (% : X, y)

= JM (det(G, ) du' -+ -du""", (146)

whence after logarithmic partial differentiation of the integrands in (146),

V,=0, i=1,...,d—1 (147)

(“apolarity conditions”). So we have natural speciz?lizations of Theorem 6.3 in the
equiaffine differential geometry (e.g., see Schnelder‘ 1967, Satz §.3). Now the
notions of relative mean curvatures (respectively relative mean radii of curvature)
immediately translate to equiaffine differential geometry and we have the follow-
ing theorem.

Theorem 7.1. A regular compact convex hypersurface F of class Cs‘ with coystar.:t
affine vth mean curvature H, for a fixed v with 1sv<d—1, is an ellipsoid
(compare Theorem 5.3!).

This follows from the fact that such a hypersurface must be a “proper affine
sphere”, i.e., a hypersurface with homothetic F and — C (compare Theorem 6.1),
and therefore an ellipsoid by a famous theorem of Blaschke (1923, §7f1 and §77)
for d = 3 and Deicke (1953) for general d. For a short proof, see Schneider (1967,
pp. 395-396), for further information, Simon (1985). '

There are special results for regular compact convex hypersurfaces .F u‘)‘tth
regular convex reflected curvature image —C which we will denote as being “of
elliptic type”. For an example, we cite the following theorem.

Theorem 7.2 (Leichtweiss 1990, Satz 1). A regular compact convex h‘ypersur)“ac'e
F, of class C, and elliptic type, containing another one F, (not necessarily of elliptic
type) in its interior, has a bigger affine surface area (146) than F, unless F, and F,
coincide.

Finally, we mention affine geometrical interpretations of the not.ions “affine
normal vector” and “affine surface area”, given by Blaschke (1923, §43 and §47)
for d = 3, and by Leichtweiss (1989, 1986) for general d, that are connected with
cach other in a certain sense.
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A real valued function f defined on an interval / of the real line is said to be
convex if for all x, y€l and A €0, 1},

STAx + (A=< Af(x) + (1 - Mf(y).

We say f is strictly convex if the inequality is strict for all x and y, x = y. In terms
of a graph, the definition requires that if P, Q, and R are any three points on the
graph of f with Q between P and R, then Q is on or below the chord PR (fig. 1).
The definition can be taken as a statement about the slopes of the segments
pictured in fig. 1,

slope PQ <slope PR <slope QR .

The papers of Jensen (1905, 1906) are generally cited as the first systematic study
of the class of convex functions, but earlier work that noted properties of such
functions is summarized in Roberts and Varberg (1973, p. 8).

It is easily seen that f is convex if and only if the set of points above its graph,
its epigraph, (fig. 1) is a convex set in the plane. The study of convex functions is
therefore subsumed by the study of convex sets, so that most studies of convexity
(including this handbook) focus on convex sets. Convex functions do arise
naturally, however, in optimization, analytic inequalities, functional analysis, and
applied mathematics, so that there has arisen a vast literature that treats convexity
in language familiar to analysts, that of functions. Our purpose is to survey that
litcrature, according to the following outline:

L. Basic notions: Mid-convexity and continuity; Lower semi-continuity and
closure of convex functions; Conjugate convex functions.

2. Differentiability of convex functions: Functions defined on R; A function
defined on R’; Functions defined on a linear space ¥; Differentiable convex
functions.

3. Inequalities: Classical inequalities obtained from convex functions; Matrix
inequalities.

We conclude this introductory section with a briefly annotated bibliography of
surveys of our topic, the complete citations of which can be found in the
references listed at the end of the article.

epigraph
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|
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Figure 1.
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(Beckenbach 1948). This article from the Bulletin of the AMS gives the flavor
of some later, more extensive, frequently cited, but unpublished notes by the
author.

(Ekecland and Temam 1976). Translated from the French, this was one of the
first gencral works to introduce convex analysis into the calculus of variations.

(Fenchel 1953). Another sct of frequently quoted but unpublished notes used
as the basis of lectures at Princeton, these notes are given special mention for
their influence on Rockafellar’s Convex Analysis.

(Giles 1982). This text, acknowledging its debt to the unpublished 1978 notes of
Phelps, focused on making accessible to graduate students the rescarch on
differentiability of convex functions.

(Morcau 1966). These are again lecture notes that were influential in the
development of what is now called convex analysis.

(Phelps 1989). Perhaps prompted by the Giles book, Phelps finally brought up
to date and then published the 1978 notes he had used at the University of
London.

(Roberts and Varberg 1973). This text, written for an undergraduate audience,
gives accessible proofs to most of the fundamental properties of convex functions.

(Rockafcllar 1970b). Restricted to convex functions on R", this carefully written
book stands as the most complete reference on the topic. It makes extensive use
of the notion of conjugate functions.

(Van Tiel 1984). Here is another book aimed at the undergraduate which
provides a handy place to look for proofs of the basic properties of convex
functions.

1. Basic notions
1.1. Midconvexity and continuity

Jensen, in his classic papers, said a function f was convex if it satisfied an
inequality we shall take as the definition of midconvexity; f is midconvex on an
interval [ if for every x, y €1,

7 (E52) < 1w+ 101

Examples of discontinuous functions satisfying this inequality werc known to
Jensen, so he naturally addressed the question of what minimal additional
conditions would guarantee the continuity of a midconvex function. He first
established what is now known as Jensen’s inequality.

Theorem 1. f is midconvex on I if and only if

” n

f(z aixi) <2 o, f(x;)

i=1 i=1

for any n points x, € I and any n nonnegative rational a; such that e =1

:
R
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‘ He then showed that a midconvex function defined and bounded on an open
interval would be continuous there.

Thi§ set in motion a series of papers that still continue, in which people strive
for minimal additional conditions to imply continuity. It is known, for example
that a midconvex function defined on [a, b] will be continuous on (a, b) if it i;
bounded above on a set M of Lebesgue measure m(M) >0, or if it is bounded
above on a second category Baire set. Roberts and Varberg (1973, chapter 7)
summarize and give references to papers giving conditions that, along with
midconvexity, imply continuity.

Results of this kind also occur for functions defined on spaces other than the
real line. If U is a convex set in a linear space %, and if f : U— R is a real valued
function defined on U, then the definitions of both convexity and midconvexity
still make sense. Of course, to talk about the continuity of f, we need some sort of
topology on £, and most convex analysis is carried out with the understanding
tt‘nat Zis a normed linear space. That seems the right context in which to end our
discussion of the continuity of midconvex functions. A midconvex function
defined on an open set U in a normed linear space is continuous on U if it is
bounded above in a neighborhood of a single point of U.

1.2. Lower semi-continuity and closure of convex functions

If a convex function is defined on a nonempty open set in a locally convex linear
topological space &, then it is quite easy to describe the continuity properties of f.

Theorem 2. Let f: U—R be convex on a nonempty open set UC K. If f is
bounded above in a neighborhood of just one point p of U, then f is continuous on
U (Roberts and Varberg 1973, p. 67).

It is possible, of course, that a convex function may fail to be bounded above in
a neighborhood of even a single point; well-known examples of discontinuous
linear functionals defined on infinite dimensional linear spaces all fail to be
bounded above in a neighborhood of any point. One might summarize with the
observation that a convex function defined on an open set U is either continuous
on U, or wildly discontinuous there. In particular, if U C £=R", then f is
bounded in a neighborhood of every point p € U, and is continuous on U
(Roberts and Varberg 1973, p. 93).

Two difficulties that enter into this otherwise tidy situation can be illustrated by
letting U be the half plane subset of R®

U=A{(x, y,0): x>0}
and defining the convex function f: U— R by:

fix,y,2)= y2/x .

There is a natural sense in which U has interior points, but since no point of U
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has, in the topology of R’, a neighborhood in U, it is not meaningful to talk about
the continuity of f until we embed U in its affine hull (the entire xy plane in our
example). Then we can say that f is continuous on U in the relative topology.
Though easily done, this procedure introduces the complications of phrasing
everything in terms of the relevant topology, and it is commonly avoided by the
expedient described below of taking any convex function to be defined on all &.

There are, in fact, far more compelling reasons than the one just mentioned for
extending to all of & the definition of a convex function originally defined only on
a subsct of Z. It is very useful in any setting, such as optimization, where we are
working with a large set of functions, to have them all defined on a common
domain; in convex programming problems, it enables us to build constraints into
the objective function to be minimized by defining the function to be infinity
outside of its feasible set; and it is absolutely essential to have our functions
globally defined if we are to take full advantage of the duality we shall meet when
we introduce conjugate convex functions in the next section.

To properly set_the stage for this program, we need to consider functions
f:U—R, where R={RU(+%)U(—x)}, possibly taking the values *c. This
requircs careful, but common sense arithmetic rules involving +o and —, and
wc must modify our definition to say that fis convex if and only if for any x and y
in U for which there are real numbers a and 8 with f(x) < a, f(y)< 8,

flAx+ (1= Nyl < Aa +(1— )B

when 0 <A< 1. In this setting, we say that the effective domain of f is dom( f) =
{x€X: f(x) < +x}, and a convex function is called proper if dom( f)##@. We
shall avoid some technical difficuities with the understanding that all the convex
functions we discuss are proper. Proper convex functions never take the value of
—x.

Now given a function f: U—R convex on U C .Y, it would be possible to
extend f to all of & and preserve convexity by simply defining f(x) = < for any
x Z U. Quite obviously, however, we would sacrifice whatever continuity prop-
erties f might have had. It is natural to wonder, in the case of a convex function
continuous on U (perhaps with an appropriately chosen relative topology),
whether we might do better, and it is here that our example above illustrates
another difficulty. Since an approach to (0, 0) along the parabolic path x = y’/m
results in a limit of m for any m >0, no definition of f(0,0) will make f
continuous at (0, 0). We face the fact that even in the relative topology that
cnables us to talk about the continuity of f on U, we may still be unable to extend
f to the closure of U so as to retain the continuity of f.

It is easy to show (Fenchel 1949) that if a convex function f is defined at a limit
point p of its domain U, then

lim inf f(4) < f(p) .

This suggests that lower semi-continuity is the right goal to have in mind when

e e e o i e St T e
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extending the definition of a convex function to include the limit points of its
domain.

This works particularly well when U CR". Then given a convex function
f: U— R that never takes the value —», we define clf to be identical with fonthe
interior of U, and we define it at the limit points p of U by:

clf(p) = lim ipnf f@w)

when this limit is finite; otherwise we set f( p) = «. To complete the definition, let
clf be the constant —« for the case in which f assumes the value — at some
point. This function is lower semi-continuous.

Theorem 3. Let f: U—R be a convex function that is not identically +x on
U CR" Then clf is a lower semi-continuous convex function that agrees with f

except possibly at relative boundary points of the dom( f) (Rockafellar 1970b, p-
56).

Apart from necessary fussiness over details, we may conclude that any convex
function can, with some possible redefinitions on the boundary for which we have
a constructive method, be taken to be lower semi-continuous; and since all this
will be true if we extend cIf to all of R" by setting clf(x) = + for all x not in the
closure of U, we may take any convex function to be globally defined.

For functions f: £— R, we define the epigraph of f to be the set epi(f)=
{(x, ) ER" X R: @ = f(x)}. It is still true that f is convex if and only if its
epigraph, epi f is a convex subset & x R. It can also be shown that f is lower
semi-continuous if and only if epi f is a closed subset of & x R. For this reason,
clf is called the closure of f.

At this point we sec an argument for subordinating the study of convex
functions to an epigraphical viewpoint that immerses the study of functions in a
study of their epigraphs. In their argument for this approach, Rockafellar and
Wets (1984) point out that the graph of f : R”— R is not well defined as a subset
of R"*' because f(x) may be +w; the graph is really a subset of R” X R. The
cpigraph, however, does lie entirely in R"*".

A basic reference for the epigraphical perspective is the monograph of Attouch
(1984), which considers various convergence notions for convex functions in
terms of their epigraphs. One important concept here for the case when the
underlying space is reflexive is Mosco convergence (Mosco 1969). A promising
approach for general normed lincar spaces is the Attouch-Wets convergence,
where convergence of epigraphs means uniform convergence on bounded subsets
of £ xR of the distance functions for the epigraphs. This reduces to ordinary
Hausdorff metric convergence when restricted to closed and bounded convex sets
and is well suited for estimation and approximation. Also, this notion of
convergence is stable with respect to duality without reflexivity (Beer 1990).

Corresponding to a nonempty convex set U in a normed linear space &, there

are four globally defined convex functions that play a prominent role in the
literature:
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The indicator function

0 ifxeU,
xU)=) 4 ifxgU.

The gauge function
Gx|U)=inf{A=0|xE€AU}.
The support function
S(6,U)=sup{{¢,x)|x€U} forUCR", £E€ZL*.
The distance function
D(x|U) =inf{[lx -yl | yE U} .
1.3. Conjugate convex functions

The two-variable version of the geometric mean—arithmetic mean inequality as
stated in Theorem 18 below can be written, for x>0, y >0, in the form

xy < f(x) + g(y) , 1)

where f and g ar¢ convex functions defined, with p>0,¢>0and 1/p +1/g=1,
by:

g(y)=ly"-

1.,
f(x) 5 p

Our interest is in inequalities of the form (1).

Another inequality of this form from classical analysis involves integrals.
Consider a function A : [0, ©)— [0, ) that is strictly increasing and continuous
with 2(0)=0 and lim,_,_ A(r) = %; in such a case, ™' exists and has the same
property as k. This allows us to define two convex functions

X y
o= nod,  go)=) Kwa
for which Young’s inequality then says

xy < flx)+g(y).

Fenchel began a seminal paper (1949) by calling attention to Young’s inequality
and to one more example. If we set the support function S and the gauge function
G defined at the end of the previous section for U CR" equal to f and g,

e RIDRIE L
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respectively, they satisfy the inequality (1). Generalizing from these observations,
he then proved a theorem that has turned out to be a fundamental tool in the
study of convex functions.

Theorem 4. Let f be a convex function defined on a convex point set F C R" so as
to be lower semi-continuous and such that lim__, , f(x) = % for each boundary point
p of ¥ that does not belong to ¥. Then there exists a unique convex function g
defined on a convex set § with exactly the same properties and such that

'xlyl+.“+xnyns‘f(xl"‘"xn)+g(yl""’yn)‘

Moreover, the relationship is dual in the sense that if we begin with g defined on the
convex set G, we obtain f and F.

The functions f and g are called conjugate convex functions.

Beginning with a convex function f having the required continuity properties,
the unique conjugate function guaranteed by Theorem 4 is denoted by f*. The
usual procedure is simply to define, for y € &,

f*(y)=§gg{(x,y> - f(x)}

and then show that it has the desired properties. The notation {x, y) is used for
y(x) to emphasize the duality.

If onc is not so careful about the lower semi-continuity of f, it is still possible to
define the conjugate f*, but it can then be proved that f* is a closed convex
function; that is, its epigraph will be a closed set in £ X R. There is no hope,
then, of achieving the complete duality of having f** = f unless f is a closed
function to begin with. It is for this reason that we find the conventions mentioned
at the end of the last section to be convenient.

Though pairs of functions satisfying (1) entered into an earlier paper by
Birnbaumn and Orlicz (1931), Fenchel (1949) gave the first general treatment of
conjugate convex functions, and his work has had far reaching ramifications to
which we can only allude here.

We shall sce when we ask about the existence of the derivatives of convex
functions that onc of the most satisfying answers comes in the form of the
rclationship between the subdifferential of £* and the inverse of the subdifferen-
tial of f; a(f*) = (af) ™"

The convex programming problem, which is to minimize a convex function f
over a constraint set K, can be replaced, according to the Rockafellar—Fenchel
Theorem (Holmes 1972, p. 68) with the dual problem of maximizing the sum of
the conjugate of f and the indicator function of the set K. Rockafellar (1970b,
1974) has developed these ideals very fully.

After exploring the role of the duality of conjugate convex functions in the
calculus of variations and in minimax theory, Ekeland and Temam (1976) take up
applications to numerical analysis, control theory, mechanics, and economics.
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This list does not exhaust the applications that are made of conjugate convex
functions. In addition to the authors already mentioned, loffe and Tikhomirov
(1968) provide a good survey of the applications of conjugacy.

2. Differentiability

We begin our consideration of the differentiability of convex functions with a
careful look at functions of a single variable, first because easily drawn graphs
often expose the heart of proofs that can be carried to more abstract settings, and
secondly because the properties we shall discover help us anticipate what is true in
general. In section 2.2, we use a particular function of two variables to introduce
related concepts central to our survey in section 2.3 of differentiability of convex
functions defined on Banach spaces. In section 2.4 we turn from questions of
existence to look at what can be proved about convex functions known to be
diffcrentiable throughout an open set.

2.1. Functions defined on R

The characterization of convexity in terms of slopes of secant chords says for the
four points shown in fig. 2 that

slope PQ < sslopc PR < slope QR < slope QS <slope RS .
In particular,

f) = f(y) _ f2) = f(y)
xX—y z—y

(2)

Since slope PR <slope QR, it is clear that slope QR increases as x T y. Similarly,
slope RS decreases as z | y. Thus the quotient on the left side of (2) increases as

<<

[ S T T r—

Ep-——————
X [ ————

Figure 2.
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x 1y, the one on the right decreases as z| y, and we have established our first
theorem.

Theorem S. At an arbitrary point y interior 10 its interval of definition, a convex
function f has both a left derivative f (y) and a right derivative f',(y); moreover,

FL)<fi(y).

When f_(y) = f',(y) = m, then fis differentiable at y, and a line with slope m
is tangent to the graph at R(y, f(y)). Otherwise we may choose any m satisfying
fL(y)<m<f'(y) and draw a line with slope m through R that lies entirely
under the graph of f. Such a line is said to be a line of support for f at y.

Referring once again to our statement comparing slopes of secant lines, we see
that

f) = fw) _ fY) — fx)

x—w y—x

fiw)< <f

with all inequalities strict if f is strictly convex. Thus, drawing on Theorem 5, we
can write

frm<fim=sfn=<f.0).

Theorem 6. If f : I— R is convex (strictly convex), then f' (x) and f' (x) exist and
are increasing (strictly increasing) on their respective domains.

Further analysis of fig. 2 establishes quickly that
lim f,(x)=fL(y) and lim f',(2)=£1().

From these two facts, we conclude that f'(y)=f'.(y) if and only if f/ is
continuous at y. Stated another way, the derivative fails to exist at precisely those
points where the increasing function f’, is discontinuous. Since an increasing
function can be discontinuous on at most a countable set, we have proved the
following theorem.

Theorem 7. If f : I — R is convex on an interval 1, the set E where f' fails to exist is
countable. Moreover, ' is continuous on I — E.

Finally, let us note that if the convex function f is differentiable at x,, then for
every x > x, in the domain of f,

fl1 = a)xo + ax]=(1 - a)f(x,) + af(x).
If we set 1= a(x — x,), we see that

f(xo + B) = flxg) _ flx) = f(xo)
. < .

X=X
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Consideration of the case x < x, leads to the same inequality, and taking limits as
h— 0 gives us our last theorem of this section.

Theorem 8. If f is convex on an interval I and differentiable at x, then for any
x€EI

f(x) = f(xo) 2 f(x0)(x — xo) -
2.2. Related concepts

Many of the very deep results about the differentiation of convex functiops are
couched in terms that can be nicely illustrated with a function of two variables.

Consider the graph (fig. 3) of the function

2 2 2 2
x+y, x“+y =2,
f("’y)={2, P+yi<2,

If P(x,, yo, f(xy, ¥)) is a point on the graph, then
z=A(x, y) = f(xy, ¥o) + alx — xy) + b(y — y,)

is a plane that mects the graph of f at P. It is instructive to look at two such
planes:

plane II

Figure 3.
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Plane I, through (1, 1,2), z2=243x-1)+3(y-1),
Plane II, through (1,2,5), z=5+2(x~1)+4(y-2).

Both meet the graph of fin exactly one point, and otherwise lie below it. A plane
that meets the graph of z = f(x, y) in at least one point and never rises above it is
called a support plane. Our example illustrates the following facts about support
planes.

(1) A plane of support may meet the graph of z = f(x, y) in many points; z = 2
is a support plane that meets the graph in fig. 3 in infinitely many points.

(2) There may be many planes of support passing through the same point on
the graph of z = f(x, y); besides Plane I and the plane z =2, there are obviously
many other planes of support to the graph of fig. 3 at (1,1,2).

(3) The plane of support at a point (%0, Yo, o) might be unique, as in Plane II,
the plane tangent to the graph at (1,2, 5) in our example.

(4) A function f(x, y) is convex if and only if it has at least one plane of
support of each point (x,, y,, z,) on its graph.

The most obvious generalization of the derivative of a function of one variable
to a function of two variables (not necessarily convex) is the so-called directional
derivative. Starting at p,(x,, y,) and moving in the direction of the unit vector
v =[r s], we define:

F(po)(®) = !1_{1(} fp, + tvt) = f(py) )

In our example, with py(1,2) and v =[% 2], it may be shown that f'(po)(v)=4.
This is the slope of the line formed by the intersection of the tangent Plane II and
the plane through (1,2) that contains v and is perpendicular to the xy plane.

The directional derivatives for the choice v = [1 0] and v=[0 1], when they
exist, are called the partial derivatives af/ dx(x,, y,) and 3f/3y(x,, y,). When the
directional derivative exists at P, for every choice of v, we say f is Gateaux
differentiable at p,.

In general, Gateaux differentiability does not guarantee all that we would like
to be true of a differentiable function. The Gateaux derivative of f may exist at a
point even if f is discontinuous there; and f'( p,)(v) need not be linear in v. All
this changes if it is known that f is convex; convexity imposes orderlines. If a
convex function is Gateaux differentiable at a point, it is continuous there, and
F'(py)(v) will be linear in v.

If the convex function f has continuous partial derivatives in a neighborhood of
(Xo» ¥o), then the support plane, A(x, y) as defined above, is unique. It is the
plane tangent to the graph at (x,, y,, z,), and the coefficients @ and b that
determine the plane are the components of the gradient vector Vf of elementary
calculus which, with an eye to the future we shall call

df = [j_i,( (x0> Yo) % (o, .YO)] .
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We turn now to a second generalization of the derivative wh”ich,. though it
brings us to the same place for convex functions defined on U CR" will prove to
be a stronger concept for functions defined on a normeq lme@r space. .

Consider again the function A(x, y) defined above. It is said to be affine. It is
the sum of a constant f(x,, y,) and a linear function, a fact that can be
emphasized by writing it in the form

+{a b] [x - xo]
= a .
A(x, y) = f(xo, o) .y
We now adopt the viewpoint that the derivative of f at (xg, yo) is thfa lim.aar
transformation from R’ to R, represented by the matrix [a &]. The spectgl thing
about this linear transformation is, of course that it is a linear tran'sform.atlon that
closely approximates A(x, y) — f(x,, ¥o)- That is the idea that gives rise to our
definition. . ‘

Using Ax =x — x, and Ay =y — y,, we say that f is Frechet differentiable at
(xy yo) if there exists a linear transformation L such that

f(x, y) = f(x yo) + L(Ax, Ay) + |(Ax, Ay)|e(xo, y,, Bx, Ay) ,

where &(x,, y,, Ax,Ay)—0 as (Ax,Ay)—0. The linear transformation L,if it
exists, is easily shown to be unique; it is called the Frechet derivative f'(x,, y,) of
f at (xg, ¥o)- _ ]

As \3e h(z;ve already said, for a convex function f defined on U C R", the Frechet
derivative is identical to the Gateaux derivative:

of of Y
df = [5 (g ¥o) 5; (xo, YU)] =f'(xgs Yo) -

There is yet a third way to look at this expression. We may r‘egard dasa special
case of a set valued operator 9 that maps a point (x,, y,) into a set of lmea;
transformations, any one of which will define a plane of support. Thus, when fis

differentiable at (x4, y,), 9f(%o, ¥o) is the single transformation df(x,, y,), but
when £ is not differentiable, af(x,, y,) is many valued. In our example,

3(1,1)=[tt], wheret€[0,2].

The sct valued operator @ is called the subdifferential of f at (xg, ¥o), and a
particular member of the set, such as [§ 3] is called a subgradient. Our example
makes it clear that a function will have a subdifferential at points where‘ it may not
have a derivative in the sense of either Gateaux or Frechet.' It is this fact that
makes the subdifferential such a useful tool in convex analysis. .

We have seen that a convex function of a single real variable has, by virtue of
its convexity, numerous differentiability properties. It 2is algeady clear from the
example in this section, which is nondifferentiable on x” + y° =2, that we cannot
hope to establish differentiability on all but a countable set. Under what
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conditions will a convex function on £ have a Gateaux differential? a Frechet
derivative? When will these derivatives be equal? How can we characterize sets of
nondifferentiability? These questions have led to a rich, deep, and largely
satisfying literature to which we now turn.

2.3. Functions defined on a linear space ¥

A function f : U— R defined on an open set U in a linear topological space % is
said to be Gateaux differentiable at x, € U provided that

lim f(xo + ) = flx,)

—0 t

exists for every v € £. The limit, when it exists, is called the Gateaux differential
df(x,).

Though not true of the Gateaux differential in general, df(x,) turns out to be 