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PREFACE

This book is primarily intended for use in undergraduate courses by
physics and engineering students in universities and technical colleges. It
should, however, also prove useful to those working in other sciences,
since it does not contain any specific examples drawn from the fields of
physics, engineering, chemistry, etc. We believe it to be preferable to give
here the principal results concerning special functions likely to be encoun-
tered in applications, and to leave the applications themselves to the par-
ticular context in which they arise. The book is designed for those who,
although they have to use mathematics, are not mathematicians themselves,
and may not even have any great mathematical aptitude or ability. Hence
an attempt has been made, especially in the earlier chapters, to sacrifice
brevity for completeness of argument. The level of mathematical know-
ledge required of the reader is no more than that of an elementary calculus
course; in particular, no use is made of complex variable theory. Equally,
no attempt is made to attain a high level of mathematical rigour; for
cxample, we use results like 1/0 = oo, 1/c0 = 0, which, to be rigorous,
should really be written in terms of limits.

In Chapter 1 we discuss the solution of second-order differential equa-
tions in terms of power series, a topic of crucial importance for the follow-
ing chapters. This is because very often in applications we have a partial
differential equation for some quantity of interest, and this equation may,
by the method of separation of variables, be split into several ordinary
differential equations whose solutions we thus require. If, as is often the
case, these equations do not have solutions in terms of elementary func-
tions, we have to investigate these solutions, and this is best done by the
method of series solutions. These solutions lead to the definitions of new
functions, and it is the study of the properties of such ‘special’ functions
which is the main subject-matter of this book.

Chapter 2 is devoted to the gamma and beta functions, two functions
defined by integrals and closely related to one another; these functions
are not only used in later chapters, but are also encountered in many other
contexts,

Chapter 3 is concerned with a study of the Iegendre polynomials.
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They are introduced as solutions of Legendre’s equation, which very often
arises when a problem possesses spherical symmetry. Such problems can
occur, for example, in quantum mechanics, clectromagnetic theory,
hydrodynamics and heat conduction.

Chapter 4 is devoted to Bessel functions. These functions aceur in a
very wide range of applications, such as loudspeaker design, optical dif-
fraction, the vibration of circular membranes and plates, the scattering of
sound by circular cylinders, and in general in many problems in both
classical and quantum physics involving circular or cylindrical boundaries
of some kind. Kelvin’s functions, introduced in Section 4.9, are of most
interest to the electrical engineer, while the spherical Bessel functions of
Section 4.10 are of prime importance in quantum mechanical scattering
theory.

The Hermite polynomials, discussed in Chapter 5, have their main
application in the quantum-mechanical harmonic oscillator, but other
applications do occur. Likewise, the Laguerre polynomials of Chapter 6
are most useful in the quantum mechanical study of the hydrogen atom,
but they also find applications in, for example, transmission line theory
and seismological investigations.

Chapter 7 treats the Chebyshev polynomials which not only are of
interest for their use in polynomial approximations to arbitrary functions,
but also occur in electrical circuit theory.

Chapter 8 is devoted to two generalisations of the Legendre polynomials
—the Gegenbauer and Jacobi polynomials. These occur less frequently
than the functions mentioned above, but they do have application in various
branches of physics and engineering, e.g., transformation of spherical har-
monics under co-ordinate rotations.

In Chapter 9 we discuss the hypergeometric function. This is the most
general of all the special functions considered. Indeed, all the other special
functions considered, and many elementary functions, are just special
cases of the hypergeometric function.

Chapter 10 contains a brief summary of various other functions which
occur in applications. These are often defined by integrals which cannot
be evaluated in terms of known functions, and very often all the useful
information concerning these integrals is contained in a table of values of
the integral.

Appendix 1 is concerned with the definition of Euler’s constant, encoun-
tered in the chapter on Bessel functions, and Appendix 2 treats explicitly
the convergence of the solutions to Legendre’s equation found in Chapter 3.
T'he remaining appendices summarise certain properties of the special
functions which have been proved throughout the book.
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The problems at the end of each chapter should be considered as an
integral part of the text: every reader is urged to attempt most, if not all,
of the questions. Hints and solutions are provided for all but the easiest
of the problems, but the reader should not seek help from the hints before
he has made an effort to solve the problem for himself.

The proofs of certain theorems are indicated as being able to be omitted
at a first reading. This does not mean to imply that the proofs of such
theorems are difficult, but rather that they are fairly lengthy and that
inclusion of such a proof on a first reading would tend to destroy the con-
tinuity of presentation of the material.

W. W. B.
Aberdeen, 1967
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SERIES SOLUTION
OF DIFFERENTIAL EQUATIONS

1.1 METHOD OF FROBENIUS

Many special functions arise in the consideration of the solutions of
equations of the form

d?y dy _
P(x)a—a—c—z + Q(x)dx + R(x)y =0. (1.1)
We shall restrict ourselves to equations of the type
d?y dy
a —_ - =
X s + xq(x) Ix + r(x)y =0, (1.2)
where ¢(x) and 7(x) may be expanded as power series in x,
gx) = D gna™ (1.3)
m=0
() = > ram, (14)
m=0

convergent for some range of x including the point # = 0.
The basis of Frobenius’ method is to try for a solution of equation (1.2)
of the form

o«

2(x,5) = x'(aq -+ a1x + agx® 4+ ... + ax" +...) = z ax*™"  (1.5)

7n=0

with ¢, ~ (). (We may always take a, .~ (), since otherwise we should just
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have another series of the type (1.5) with a different value of s, the first
cocthicient of which we could now call a,.)
From cquation (1.5) we have

o

dz -
- as | m)xtin !
de
w0
dzz A .
and L Doafs ta)s b Dy,
n 0
so that if we require = to satisfy equation (1.2) we must have

d2z dz
2 — -} & ==
Xt - xq(x) I {- r(x) 0,

and this reduces to

@ @

> s (s +m - Dattn 4 glx) D aus + ) x0m
n=0 n=0
+ r(x) ax*tn =0

which, on using equations (1.3) and (1.4) for ¢(x) and r(x) and cancelling a
common factor of x*, becomes

(-8

Z a(s +n)(s +n — Lo -+ i i Bl + m)a"t™
n==0 m=0

n=0
+ "Z i AT X '™ == 0, (1.6)

7n=0 m=0
For the infinite series on the left-hand side of equation (1.6) to be zero
for all values of x in some range, we must have the coefficient of each power
of x cqual to zero. This requirement gives rise to a set of equations as
follows.
Requiring that the coefficient of x° be zero, and noting that x° arises
only from the choice m = 0, n = 0, gives

aps(s — 1) 4 agges + agry = 0. (1.7)

Requiring that the coefficient of x! be zero, and noting that x* arises in

cquation (1.6) by choosing in the first term # == 1, and in the second and
third termsn +m =1 (e, m=0,n=1orm =1, n = 0) gives

ay(s v Ds 4 {aqo(s -+ 1) + agqus} -+ {ayre + agri} = 0. (1.8)

We may now write down a general equation from the requirement that

the cocflicient of ¥ should be zero. Remembering that in equation (1.6) x*

arises in the first term by choosing # = ¢ and in the second and third terms
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by choosing n -+ m =1 (ie, n =4, m=0 or n=i—1, m=1 or
n=1t—2,m=2, etc., up ton = 0, m =17) we obtain
afs +ifs+i—1)

F{ago(s +9) + aiaqu(s +7 — 1) + aiagels + 7 —2) + ... + aogus}

+{aro +aiar + ... Fapi} =0 (Z>1). (1.9)
Thus
aif(s + 1) . .

F{aiaqi(s +7— 1)+ a0gs(s + 1 —2) + ... + ass}

Ha;ary Fai s+ ..o Fagrib =0 =1 (1.10)

“where we have collected all the terms in a; together and denoted their
coefficient by

fis+i)y=(s+i)s +7—1) + gos -I-7) + 7. (1.11)
We now see that equation (1.7) reduces to
ag{s® + (g0 — 1)(s + 1)} =0
which, with the given assumption that a; 520, becomes
§2 + (g0 — 1)(s +79) = 0. (1.12)
This is called the indicial equation; it is quadratic in s and hence will yield
two roots which we shall denote by s, and s,. In many cases of interest these
roots will be real; this we shall henceforth assume, together with the fact
that s, > s.
Noting that equation (1.12) is just f(s) = 0, we have immediately
J(5) = (s — s1)(s — sa). (1.13)
We might now expect that these two values of s would lead to the two

independent solutions of the original differential equation. We shall see
that this is true apart from certain exceptional cases, viz. when

(a) the two roots of the indicial equation are equal; or
(b) the two roots of the indicial equation differ by an integer.

The set of equations (1.10) can now be used to determine the coefficients
ay, dy, . . . in terms of a,.

Equation (1.10) with 7 = 1 gives

a)f(s + 1) -+ apgys + agr, =0
so that we have

an — —afqs +11)
' fls+1)
. Gm(s)
Fo b 1) (1.14)
where k(s) -+ (q,s | ry) is a polynomial of first degree in s,

8 V—u
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Lquation (1.10) with 7 = 2 gives

af(s + 2) + {aqi(s + 1) + aoges} + {ar: + agrs} =0,
which, when we use equation (1.14) for a,, becomes

azf(s-i—2)+{ a(s) o (s 41y + aoqzs} {"" (9, aora} 0,

6+ 1 fis +1)
yielding
4 — —ao{qi(s + DA(s) -+ go5f(s + 1) + rihy(s) +7of(s + 1)}
: s +1)f(s +2)
o) (1.15)
“H TN T2 '

where fuy(s) = —{gi(s + 1)(s) + gatf(s -+ 1) -+ 7ih(s) + 7af(s + 1)} is 2
polynomial in s.
In general it is not difficult to see that we obtain

hy(s)
R (R I ) (10
where k,(s) is a polynomial in s.

If in equation (1.16) we now substitute s = s, we shall obtain expressions
for a; in terms of a,, leading to a solution with a, as an arbitrary multipli-
cative constant; similarly we may substitute s = s,, so that we have the
two solutions required. This will work, however, only if the denominator
of equation (1.16) is never zero, i.e., provided

fs; +14) #0
and f(sy +17) 20 for £ equal to any positive integer. (1.17)

Now, equation (1.13) tells us that

f(s) = (s — s1)(s — 5)
flo+i)=(s+i—s)s+i—s)

so that

and hence
f(s +1) =i(sy — 55 +1)

and fsa +12) = (52 — 51 + )5, (1.18)
so that equation (1.17) will be satisfied if, and only if, s, — s, is not a
positive integer, i.e., provided the roots of the indicial equation do not
differ by an integer. (We recall that we have labelled the roots so that
Sy > 81.)

If the roots do differ by an integer, the procedure given above will work
for the larger root: if s, — §; = r (a positive integer), then from equations
(1.18) we have
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J(s; F i) =i(—r + 1) (1.19)

f(sg + 1) =i(r + 1), (1.20)
and we see that f(s, +7) =0 for ¢ =, while f(s, +¢) > 0 for any
positive integral 2. Hence the procedure will work with s = s, but not with
s = 5,. How, in fact, do we find the second solution? If we use the relation-
ship (1.16) before fixing the value of s we have the series

o hy(s) hy(s) .
o) = et e b e
his) }
4. T i P 1.21
TR FDC ) e (12D
We know by the method of construction of a,, a,, . . . that if all the terms
on the right-hand side are well defined, then this must satisfy
d?z dz
2 — _ J— L]
x e + xg(x) P 47 (x)z = a,f(s)x

(since equations (1.10) are satisfied, the coefficient of each power x*+¢ with
¢ » 1 must vanish, and the coefficient of x* is, by equations (1.7) and
11.11) just a,f(s)). This equation may be rewritten in the form

for s @b ) —afpe. a2)

Unfortunately, all the terms on the right-hand side of equation (1.21)
are not well defined for s = s;; there are zeros in the denominators for
§ > r. However, if we multiply 2(x, s) by f(s + r) we shall just cancel the
factor in the denominators of the later terms which vanishes when s = s,.
And since f(s +7)=(s+7 —s)s +7 —8) = (s + 55 — 25,)(s — 57)
we might just as well multiply by (s — ;). Also, since this factor is inde-
pendent of x, equation (1.22) now takes the form

2
for & g s 505t 9 = s — saftone
= ay(s — 51)%(s — 5,)x°, (1.23)
using equation (1.13).
Setting s = s,, we have

fa 80 4 @ 4 79 s — et 59 = 0

which shows that 2(x, s,) is a solution, a fact we already know.
Similarly, sctting s - - 5, gives [(s — s,)3(x, 5)], .,, as a solution. In fact
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it turns out that this series is not independent of 2(x, s,) but is just a multi-
ple of it. This comes about as follows. The factor s -- s, cancels zeros in the
denominator for terms with ¢ > 7, but will provide zero in the numerator
for all terms with 7 < r, thus the first power in the series is just x™*" = x™,
which is just the first term in 2(x, s,). And since we use the same rules for
calculating any coefficient in terms of preceding ones in the two cases, we
must just obtain the same series in both cases, apart from a constant
multiplicative factor.

If we differentiate both sides of equation (1.23) with respect to s, we
obtain

{xz(%gz + xq(x)% -+ r(x)} [% {(s = s1)2(, 8)}:]

= a6 — o) s — s 2 o) — s | (128

and we see that the right-hand side of this equation is zero when s = s, so
that we must have [(d/ds){(s — s1)2(x, $)}],~s, as a solution of the differential
equation, It may be proved that this solution is in fact independent of the
first solution (i.e., it is not merely a constant multiple of the first solution),
but we shall not do so here.

Thus we can take as independent solutions

[(S - Sl)z(x: s)]s:s, (1.25)
and [;%{(s — s1)3(x, s)}} : (1.26)

8=38,

Another type of situation may arise when the roots of the indicial equa-
tion differ by an integer. As well as f(s +i) =0 for s =s,and i =7, it
may happen that 4,(s;) = 0. In this case a, is indeterminate (since it has a
zero in both numerator and denominator) so that we may in fact use it
as another arbitrary constant, thus obtaining the two independent solutions
from the one series. We shall see in detail how this happens when we come
to consider particular examples.

The one remaining case is when the indicial equation has equal roots,
say s = s;. Here f(s) = (s — §,)?, and if we make use of equation (1.22) we
obtain

{x2 adxiz + xq(x)(—%c -{—r(x)}z(x, §) = agfs — 51)%° (1.27)

Setting s = s; makes the right-hand side zero, so that 2(x, s,) is a solu-
tion. But if we differentiate both sides with respect to s, we obtain
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{x2 :—; - xq(x)ad;c + r(x)} [%z(x, S):I

= ao{Z(s — s)x* + (s — 51)? a%xs} (1.28)

Again the right-hand side is zero when s = s;, so that we have for a
solution [(d/ds){z(x, s)}];_,,. This, in fact, may be shown to be independent
from 2(x, s,), so that in this case we have the two independent solutions

2(x, ;)

and [d—dsz(x, S):L=s,' (1.29)

Let us now summarise briefly the methods of obtaining independent
solutions which have been described above.

Form the series 2(x, s) by the use of the relations (1.10). Then there are
four distinct cases.

(1) If the roots s, and s, of the indicial equation are distinct and do not
differ by an integer, then the two independent solutions are given by

Z’(x, 51)
and 2(x, 55).
(2) If the roots s, and s, (s, > s,) differ by an integer and one of the

coefficients in the series for 2(x, s) is infinite when s = s,, the two indepen-
dent solutions are given by

s — et N
and |55 = saste ]

(3) If the roots s; and s, (s, > ;) differ by an integer and one of the
coefficients in the series for 2(x, 5), say «,, is indeterminate when s = s,
the two independent solutions are obtained from z(x, s,), keeping a, and q,
as arbitrary constants.

(4) If the roots of the indicial equation are equal, say, s = s, then the
two independent solutions are given by

2(.90, sl)

d
and [Ivz(x, s)] e

"T'he question of convergence of the series obtained must, of course, be
considered. It may be proved (although we shall not do so here) that the
range of values of x for which the solution is convergent is at least as large
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as the range of values of x for which both ¢(x) and r(x) may be expanded
as convergent power series.

In certain cases g(x) or 7(x) may not be expanded as power series in x for
any range of x (e.g., 1/x or exp (1/x)). It may perhaps then be possible to
make a change of variable, such as &' = x — a, or &’ == 1/x, so that ¢(x)
and r(x) may be expanded in powers of ' and a solution found in the form
(1.5) with »’ replacing x.

Finally, let us remark that when carrying out the actual solution of a
differential equation of type (1.1), it is not usually profitable to transform
it to an equation of the type (1.2); all that we require for the above results
to hold is that this transformation should be possible.

Let us now illustrate the above methods by means of some examples.

1.2 EXAMPLES
Example 1

T

We must first verify that this equatlon is of the form

d?y
w52 4 s + ey =0

where ¢(x) and 7(x) may be expanded as power series. Multiplied by x/2,
the given equation becomes

d2 1d 1
xzaf;+ __Jf_.{_ -0

so that g¢(x) = %, 7(x) = {x and the requ1red condition is obviously
satisfied.

Since ¢(x) and r(x) are already in power series form, valid for all values of
x, it follows from the remarks made at the end of the previous section that
any series solutions obtained will be convergent for all values of x.

We now revert to the original equation.

o
SCt z z aﬂxs—Hl
n=0 n=0

ds o
so that e >:‘ S + maxstn-l
d2z <
and it z a(s + n)(s -+ n — Dastr-2,

n
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Then we have

= Z 2a,(s - n)(s -+ n — Dxsn-1 4 Z a,(s + n)xtn-1
n=0 n=0

©
-3 e
n=0

= Z 2a,(s +n)(s +n — Dxsin-1 4 Z an(s + n)xstn-1
n=0 n=0

+ Z Ay _yxttn-1, (1.30)
n=1

where in the last summation we have replaced the label z by the label
n — 1 in order that the general power should look the same in all terms.

In order that z should satisfy the differential equation, we must have
the coefficient of each power of x in (1.30) equal to zero. The power with
n = 0 appears only in the first two terms; thereafter the powers with
n > 1 appear in all three terms. Hence we have the equations:

2a4(s +0)(s +0 — 1) +a¢(s +0) =0 (1.31)
and
2a,(s +n)(s +n —1) 4 ay(s +n) +a,, =0 (n=>1). (1.32)
These equations simplify to
as(2s —1) =0 (1.33)
and
al(s +n){2(s +n) ~ 1} +a,_, =0. (1.34)
Equation (1.33) gives the indicial equation
s2s —1) =0

with roots s = 0 and s = 4. Since these are distinct and do not differ by an
integer, we know that we may proceed according to prescription (1) on
page 7.
Equation (1.34) gives the recurrence relation for the coefficients in
(x, s):
An_y

(s n)2s +n) -1}

a, =

(1.35)

4

(s E)@2s 1 1)

and hence a, = -
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al . ao o o
T T 22 £3) (s (s 2)@2s 1 125 + 3)
Ao a,
a; =

TG 325 +5) s+ (s +2)(s - 3)‘(?1 4 1)(2s + 3)(2s + 5)

and in general

a,
—1) ——
( )(s+ D(s+2)...(s+n)2s+1)2s+3)...(2s +2n—1)
Thus we have the series 2(x, s) given by

o, ) = “"”3{1 T EeEH) T e et Fy@s13) T

a, =

xﬂ
D D612 i@ s R . @si2n—i) T
(1.36)
Since the roots of the indicial equation are s = 0 and s = }, the two

independent solutions are given by 2(x, 0) and 2(x, ) which, by equation
(1.36), are

x x2 x3
3(x, 0) :“°{1 1171213 123135 "

x‘n

1.2.3...n.1.3.5...(2n—1)+"'} (1.37)

+ (=1

¥
and 2(x, 1) = aox*{l -3, 35
52 G4t
+ (-1 ad +
| %;2” +t1246.. .20 } (1.38)

We may rewrite these series more compactly if we note the following
results:

1.2.3....n=nl, (1.39)
C1.234...2n—1).20
135..Cn =D =53 on 220
B (2n)!
T21.2.223...2m—1).2n

- (1.40)
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m+1 1
T =538 @n D)

| SR
Nt
NN

12.3.4.5.6.7...2n+1)
2 2.4.6....2n

1@n+ 1! @2n+ 1)
Zn on ul = 22711;!—_’ (1‘41)

and 2.4.6...2n =2l (1.42)
Using these results we see that equation (1. 37) reduces to

2(x, 0) = a, Z(

n'{(zﬂ) '/(2""')}

n(2x)
= a, Zo(hl) (2n)1 (1.43)
while equation (1.38) becomes
1y — 1/2 S n X"
(59 =4t 2 V" oy iy
et S (1
= agt/ ;( ' G i1 (1.44)

Thus the general solution is given by the general linear combination of
3(x, 0) and 2(x, %), viz.

S NV . o (ap
y_A;o(—l) i B ZO( Yo 1

where 4 and B are arbitrary constants.
Example 2

x(1 ~—x)d + (1 —x)——y 0.

We first verify that this equation is of the form

d d
x2 ——2 + xq(x)—y + r(x)y =0

where q(v) and r(x) may be expanded as power series in x.
'T'he given equation is obviously equivalent to
d"’ dy

A
Tder e 1 K20
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Hence ¢(x) = 1 and r(x) = —x/(1 — x). ¢(x) is already in power series
form, convergent for all values of x, but r(x) is not. However, it may be
expanded as a power series in x by the binomial theorem, and this series
will be convergent for those values of x such that [ x| < 1.

It follows from the remarks at the end of the previous section that any
series solutions which we obtain will be convergent for at least the same
values of x, viz. [ x| < 1.

We now revert to the original equation.

-]
Set 2= 2 a,xstn
%

so that a,(s + m)xsin-1
dzz =
and i ;:’o a,(s -+ n)(s +n — Dasin-2,
Hence,
2z dg
P Sallad —_) e —
(x x)d2+( x)dx 2

= Z a(s+n)(s+n—1)xs+r-1 — z a,(s-+n)(s+n—1)xs+n
n=0

n=0

+ i ay(s+n)xstn—t — ian(s—{-n)x”" —i Apxsth

n=0

a,(s +n)(s+n—1)x2+n-1 — Z ap (s +n—1)(s+n—2)xs+tn-1

Ms

=0

z ay(s+n)xstn-1 — Z Ay _y(s+n—1)xstn-1 i a_jxsn -,

n=0 n=1

=

For z to be a solution, we require the coefficient of each power of x to be
zero, so that we have

ays(s — 1) & ags = 0 (1.45)
and
as +n)(s +n —1) —aus(s +n — 1)(s + 2 — 2) + a.(s + n)
—ay (s +n—1)—a,, =0 (n>1). (1.46)

These equations simplify to
ays® =0 (1.47)
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and an(s +1n)2 —a, J{(s +n — 1)2 + 1}, (1.48)
Equation (1.47) gives the indicial equation
=0 (1.49)

while equation (1.48) gives the recurrence relation
6 +n—1)2+1)
(s +m)? '
Equation (1.49) has coincident roots s = 0; so we know (by prescription
(4) on page 7) that the two independent solutions are given by z(x, 0)

and [(d/ds)z(x, $)]s0-
Equation (1.50) gives

An = Ay

(1.50)

a __a(—s2—{—1)
1 0(s+1)2’
LMD {1 )
U s+ DY +2)
and in general
A D D D 2 1 ke = 1) 4 1)
none (s+ D¥s +2)2...(s + n)?

so that

, S A {121 . L {(sFm=1)2 41}
2(x, 5) = apx |:1 -+ 'Z CLGL2)t. . (Fm) x ]

(1.51)
‘The first solution is then

= {1241} 22412 {3241} ... {(n—1)2+1
o -afrs $ Rt
> 1.2.5.10.17 .. {(n—1)2+1}
= ao[l + P (71')2 X ]
= a,y,(x), say. (1.52)

For the second solution we require (d/ds)z(¥, ). Now, from equation
(1.51) we have

n=1

d
(—l;z(x, s)
d < {21} { FD2 1) {(s+n—1)2+1}
- “"(d”s"’ )[l + Z DX +2)2. .. (s+n)? ol ]

o Al (s F D2 (s =1)240Y)
L Z ‘ [ (s ED)AsH2)R. L (sFm)t ]x - (159)
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For the first term we note that

d
ds ( In x) e In z T
= (ln x)en? = (ln x)x° (1.54)
d .
and hence [a—sx :|s=0 = In «. (1.55)

The second term we evaluate by the technique of logarithmic differen-
tiation.
If we denote the term in square brackets by f,(s) we have

d 1 d
ds In £,(s) :m EJn(S)

so that %fn(s) fn(s) ln Jals). (1.56)
But
Inf(s)=In{s®+ 1} +In{s+D2+1} 4 ... +tIn{(s+n—1)% 41}

—In(s+ 12 —In(s +2)... —1In(s 4 n)?

i (s+m—1)2—{—1}—zlns+m)2

2(s +m—1) > 2
Hence Iclnf,,(s) = gl Goim— )i - s—:F—M
S s+m—1 1
:Zmz_l {(s%—m—])2 + 1 s—{—m}

so that
d
/)
2 st sEm 1 1)
T (s D2 (s +n) z{(s+m~~l)2+1 s»erj

and

[50]

2} {12 + 13 {22+ 1}.. . {(n — )2 + 1} m— 1 1
N 1222 g Z{G{‘l)uﬁ_%}'

+ We recall that & - - ¢! *, where we are using the notation In x = - log, «.
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Denoting this expression by ¢,, we have

2.1.2.5.10.17 .. . {(n — 1)? + 1} -2
= (nl)? Z m{(m neray B9
Thus, setting s = 0 in equation (1.53) gives the second solution
d
9.,
o {1H{12 1322 + 1} .. {(n — 1) -+ 1}am
R P e
“+a, Z CpX™
= aoyy(x) Inx + aq, z Cpx"
n=1
= a,)x(%), say,
where
Yo%) = yy(%) Inx + z k™ (1.58)
n=1

Then the general solution is given by

y = Ay(%) + By:(x)
where 4 and B are arbitrary constants.

Example 3
L P dy
d 2
We see immediately that thlS is of the form (1.2) with ¢(x) = —3,
r(x) = 3 — x, which are already in power series form, so that they have a
power series expansion valid for all values of x. -
It follows from the remarks at the end of the previous section that any

series solutions obtained will be convergent for all values of x.
L

Writing 2 = Z a,x**+" leads in the same manner as in the previous
n=0
examples to the following equations, which have to be satisfied if zisto be a

solution of the given equation:
afs —1)(s —3) =0 (1.59)
afs tn D tn 3) a0 (mo:1) (1.60)

. T @ —xy =0
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Equation (1.59) gives the indicial equation
(s—Ds—-3)=0 (1.61)
with roots s = 1, s = 3. These differ by an integer, so that we know that
we are dealing with an exceptional case.
Equation (1.60) gives the recurrence relation
An_1
a, = O TP (n>1) (1.62)
so that we have
o
“T 2y
. 2, o
S G R e o ey
and in general
)
A +2) ... +n 1) —2) (s —1)s...(s+n —3)
(1.63)
We see explicitly from equation (1.63) that when s = 1 all the a, with
n > 2 are infinite, so that we have to apply method (2) described above on

page 7.
We have

] xn

2(x, ) =ao’c’{1 + zs(3+1),__(s+n—l)(s—2)(s—1)...(s+nA3)}

n=1
so that

(S — l)z(x, s) = aoxs{(s . 1) 4 s((s;—— 12))x

0 xn
+ Z2s(s—}—l)...(s+n—1)(s~2)s(s+1)...(s+n—3)}'
(1.64)
The first solution is given by

[(s - l)z(x) s)]s=1

xn
:""x; 12 n(—1).12.. . (n —2)

xn+1
% Zz T alln — 2)!

n=
= a,y\(%), say.
T'he second solution is given by [(d/ds){(s -~ 1)2(x, $)}]: 1.
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From equation (1.64) we have

e — st )
S UACRERS =)

e xn
+n=zzs(s+l)...(s+n—1)(s——2)s(s+1)...(s+n—-3)}
d s—-1)
dss(s —2)"

+ aoxs{l +

LSl 1 }
& dsss+D . s+ —1)s—2)(s+1)...(s +n—3)
(1.65)

To evaluate the last derivatives we use logarithmic differentiation:

denoting
1
ss+D) ..+ -1 —2s(s+1)...(s+n—3)

by fa(s), we have again

d d
S = £49) 5 I £(s)
and since

Inf(s)=—Ins —In(s +1) —In(s +2)... —In(s +n — 1)
—In(s—2)—Ins—In(s+1)... —In(s +2n —3)

we have
:——slnf,,(s)
2 2 2 1
:ﬁ{;+s—}—l T "+s+n—3+s—2
1 1
~|~s+n~2 s—]—n——l}
8o that

s,
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1

and e Sy B} 5 B Sy P
1
T al(m —2)!
so that
d 1 KR 1 1
[a}f"(S)Ll "l (n~2)!{2 mZ:ﬁ LTS +1_1}

= ¢y, say.
1t is also easy to show that

[gs s(gsilZ)):Isd =1

d
= (In x)x=.

and, as before, we have

Thus, finally, we have from equation (1.65)

\:(%{(3 — 1)z(x, S)}:|S:1 = ay(In x)y,(x) + aox{l —x 22 cnx”}

= ayy,(x), say,
and the general solution is then
¥ = Ayy(x) + Bys(x)
where A and B are arbitrary constants.

Example 4
dzy
2
¥ dxt

Again this is of the form (1.2) with g(x) = —2 + x%and r(x) = —2, so
that the series solutions to be obtained will be valid for all values of x.

d
T — 2x)£- — 2y =0.

Writing 2 = x° z a,x" and requiring = to be a solution of the given
n=0
equation leads, as before, to the system of equations:
ays —2)(s—1)=0 (1.66)
a(s —1)s =0 (1.67)
afs+n—2)s+n 1DHa,(1n 2)=0 (n>2). (1.68)
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Equation (1.66) gives the indicial equation
(s—2)(s—1) =0

with roots s = 2, s = 1. These differ by an integer, so we are dealing with
an exceptional case. When s = 1, equation (1.67) is satisfied irrespective
of the value of 4} i.e., g, is indeterminate, so that we are dealing with case
(3) of page 7. We then know that the two independent solutions are
obtained from the one value of s, namely s == 1.

Equation (1.68) gives the recurrence relation

Ay _s
e
(the factor s + #n — 2 may be cancelled since it is non-zero for # > 2 and
s =1 or s = 2), which with s = 1 becomes

a, =

(n > 2) (1.69)

a, = — n—z (n > 2). (1.70)
rpe a a: a
I'hus a2=——29, 44:~f:2_0’

_ 4 B4

BT BT T T3

and in general
a
R G S

a;

D57 @iy

and Aynyy =

so that we have
d x2n
% 1) :x[a"{l T Z (=1 2.4...2n}

=1
kil x2n+l
+ ay ,ZO(_I) 1.3.5...(2n 1)]-

‘T'hat is, we have the general solution given by

y = Ay\(x) + Byu(x)

where
x2n+1

) =+ 2 (e

x2n+2

Yo%) = 2 =D i35 2n +1)

n=0

and .7 and I3 arc arbitrary constants.

S
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In the examples given so far, it has always been relatively easy to write
down the general term of any series appearing in the solutions. This is by
no means always so; it may be impossible for us to find in any simple
manner an expression for the general coefficient from the recurrence
relation. This is so, in general, when the recurrence relation contains three
or more terms instead of the two they have had up till now. All that we can
do in such a situation is to give the first few terms of the power series
solution, and hope that this will be of some use. We illustrate by the
following example.

Example 5

(x2 7—1)—+3xg— tay =0,

Rewriting this in the form
o d2y . 3x2 dy &
dx? 2t —lde a1
we see that it is of the form (1.2) with ¢(x) = (3x2)/(x* — 1) and
r(x) = x3/(x* — 1). Both ¢(x) and r(x) may be expanded as power series in
x (by the binomial theorem) convergent for | x | << 1. Hence any series
solutions we obtain will be convergent for at least this range of values of x.

We now revert to the original equation, and trying for a solution of the
form

=0,

0

z = z a,xstn

n=0

leads, in the same manner as in previous examples, to the set of equations

aps(s —1) =0 (1.71)
a(s +1)s =0 (1.72)
aps(s +2) —ay(s +2)(s +1) =0 (1.73)

Gy 3+ Ay o(s+n—2)—a,(s+n)s+n—1)=0 (n=>3) (1.74
Equation (1.71) gives the indicial equation
ss—1)=0
with roots s = 0 and s = 1. Equation (1.72) then shows that a, is inde-
terminate if s = 0, so that we are dealing with case (3) above——the two

independent solutions may both be obtained from the root s = 0, taking
ag and q, as arbitrary constants.
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With s = 0, equation (1.73) gives
a, =0
and equation (1.74) becomes
@y 3+ nln — 2)a, , —n(n — l)a, =0,
giving
ay_g +n(n — 2)a,_,
@ = n(n — 1)
It is impossible for us to use the recurrence relation (1.75) to obtain a
general expression for a,,; but we may proceed to calculate as many terms
as we please.

(n > 3). (1.75)

Thus Ay = ———

= {ao + {a,
and so on as far as we please.
We have calculated the series solution up to terms in x°:
Y = ay + ax + (3ao + 3a)x® 4 Haxt
+ (3ag + 2a)x® 4+ ..
=ao{l + 2% + x5 4 ...}
+ayfxe + a3 4 at + 30+ L)

PROBLEMS

(1) Obtain solutions of the following differential equations in ascending
powers of x, stating for what values of x the series are convergent:

) d? d
() 4x—y2+d—y—y=0;
(u)x }—(x+1)~+y—0

(111) ¥y ~y : dz +y
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2
(iv) 9x(1 — x)d—y - 12:-%: + 4y =0;

v (1 — xz)dzy -|—2xd-— +y=0;

(vi) #* == 99 - 3x)a-fc + (4 — 2x)y = 0;

. dy , & .
(vii) (1 — xz)——z —+ e T Y= 03

2
(viii) xzzl—;; - 3xdy + (@ — S)y = 0;
., d¥y dy
) 22—~ w2 —y=o.

(2) Determine whether or not it is possible to obtain solutions of the
following equations in terms of ascending powers of x:

. d d

) xs—@z—f-xzaz—!-y:O
. dzy dy

(i) xzdxz-i—dx—{—xy—()

dy
dx

(3) Obtain solutions of the following equations in terms of ascending
powers of 1/x:

(iii) xzd ; Fat=+y =0

2
() 2% 1>°‘—yz b3+ DY 2y — 05

(it) 2x3 + (2x + xz) —f— 2y =0.



GAMMA AND BETA FUNCTIONS

2.1 DEFINITIONS

We define the gamma and beta functions respectively by:

T(x) — r e-ite-1 dt @1

0
B(x, ) = j: =3(1 — )1 dt. (2.2)

The first definition is valid only for x > 0, and the second only for
x >0 and y > 0, because it is for just these values of x and y that the
above integrals are convergent. We shall not prove this statement, but shall
at least make it plausible.

Consider the integral in definition (2.1). It is known that at infinity the
behaviour of an exponential dominates the behaviour of any power, so
that e~* #*~1—> 0 as ¢t — oo for any value of x, and hence no trouble is
expected from the upper limit of the integral. Near the lower limit of the
integral we have e~*==1; hence if this approximation is good between
t =0 and ¢ = ¢, we may write equation (2.1) in the form

T(x) = j “rtds j " 1 ds
0 e

= [lt”:l + j e t*-1dy,
X 0 ¢

so that if the first term is to remain finite at the lower limit we must have
x> 0.

A similar argument applies to the beta function, the bechaviour at ¢ = 0
leading to the restriction on x and at ¢ -- 1 to the restriction on y.
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2.2 PROPERTIES OF THE BETA AND GAMMA FUNCTIONS
Theorem 2.1

ra =1.
Proor
We have, from the definition (2.1),

T(l) = r’ e-it1-1 dt
0
= jw e~td
0
[
0
~ 1.

Theorem 2.2
Plx + 1) = «x'(x). (x >0)
Proor
T(x +1) = jw e-it® dt
0
(by the definition (2.1))
= l:(—e“t)til °_ Jw (—e a1 dt
0 0
(on integrating by parts)
=0 +x J‘we“t‘c“1 d:

0

CH. 2

(where the first term vanishes at
the upper limit since the exponential dominates the power, and at the

lower limit since x > 0)
= xI['(x)

(using definition (2.1) again).

Theorem 2.3

If x is a non-negative integer, then I'(x + 1) = x!
Proor
P(x 4 1) = xI'(x)
(by theorem 2.2)
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= x(x — 1)'(x — 1)
(using theorem 2.2 again)
=x(x — I)}x — 2)I'(» — 2)
(by further use of theorem 2.2)
=uxx — )(x —2)x —3)...3.2.1I(1)
(by repeated use of theorem 2.2,

and remembering that x is integral, so that continued subtraction of unity
will eventually lead to 1)

= x1I'(1)

= x!

(by theorem 2.1).

Theorem 2.4
[(x) =2 J e~ 121 dy,
0
Proor

In definition (2.1) substitute u2 for #: = u2, so that d¢ = 2u du; when
t =0, u =0 and when t = o0, u = o0, so that we have

[(x) = Jw e (u?)"1.2u du
0
=2 jm e *u2-1 du
0

=2 jw e t't2e-1 g

0
(since in a definite integral we may choose the variable of integration to be
anything we please).

Theorem 2.5
r/z cos2®-1 0 sin2%-16 df = I'(x)C(y) !
0 2l(x + )

Proor
We prove this result by considering in two different ways the double
integral

I= jj exp (—t% — ut®-y-1dt du
R

(where R is the first quadrant of the tu-plane, shown unshaded in Fig.
2.1).
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i

o

Fic. 2.1 'The tu-plane

Firstly, we have

I= jw jw exp (—t% — u?)t2*~u¥-1dt du

t=0J u=0

® 2 ®© 2
= j e et dt.j- e Yu-ldu

0 0

= 30(*).10(y)
(using theorem 2.4)
= T@I()- 2.3)
Next we change variables to plane polar co-ordinates r and 0 in the
tu-plane so that £ =7 cos §, u = 7 sin 6 and the element of area d¢ du is
replaced by the element of area » dr df. Then we shall have

I= S exp (—r%cos? f — 72 sin? 0)(r cos 0)**~(r sin 6)>~1r dr df

Il

n/2

e~ rrer-1 dy j cos?*~10 sin%-16 df
0

I

J J e -1 cos®-1 0 y¥-Lsin®-16 r dr df

n/2
—3T(x + ) jo cos®~16 sin®-10 df 2.4)

(using theorem 2.4 again).
Equating the two expressions (2.3) and (2.4) for I leads immediately to
the required result, which will be true for x > 0 and y > 0, since it is for
this range of values that the gamma functions involved are defined.
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Theorem 2.6
I(}) = va.
Proor
Put x = y = } in theorem 2.5, and we obtain
[7* = DI
0 21(1)
= HT'@)*
(using the fact that I'(1) = 1).

Performing the integration on the left-hand side gives

5 = HOQ)y
and hence ') = £v=.

But from the definition (2.1) we see that I'(x) must be positive (since the
integrand is positive), so that we can discard the negative square root and
obtain I'(}) = 4/= as required.

COROLLARY

Jwe~t’ dt = 1y,

0
Proor

Setting x = } in theorem 2.4 gives I'(}) = 2 j ¢~ " dt, so that the
0
required result follows immediately on the use of theorem 2.6.

Theorem 2.7
Px)I'(y)
B(x,y) = -~
() I'(x + )
Proor

Substitute ¢ = cos? 0 in the definition (2.2) of B(x,y): £ = cos20 so
that df = —2 cos 6 sin 6 df; also, when £ =0, cos 0 = 0 so that = =n/2
and when ¢ = 1, cos § = 1 so that § = 0.

Hence we have:

0
B(x,y) = j /2(C082 6)-1 (sin2 )1, —2 cos 0 sin 6 dO

/2
=2 j cos¥®~10 sinzv—-1( d0

0
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_, T@re).
2l(x + »)
(by theorem 2.5)
_ I'HI)
I(x - y)
Theorem 2.8
B(x, y) = B(y, x).
PROOF

This result follows immediately from theorem 2.7.

Theorem 2.9

(i) B(x + 1,y) = ﬁ—yB(x, ).

.. N y ¥
(i) Bx,y + 1) = prap yB( ) )

Proor
(i) We have
_ L+ DIG)
I'x +14y)
(by theorem 2.7)

xL@(y)

IECEEINCEE)
(by theorem 2.2)

x  Tx)(y)

x4yl +y)

B(x + 1, )

X
=~ B(x,
oY)

(by theorem 2.7).
(1) Exactly similar to (i).
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Theorem 2.10 (Legendre Duplication Formula)

I'(2x) = z—j;;F(x)F(x + 3).

Proor
We have, by theorem 2.7,
Lx)I(x)
T ) = B(x, x)

1
:j 11 — fye-1 dt
0
(by definition (2.2))
_jl (%)mll 1_m—lld
- 2z-1 $ 2.1:——1( S) 2 §

(on making the substitution ¢ = (1 + s))

1 1
= 7= J (1 —s?)*-1ds

22m-1j (1 — s?*-1ds

— D—2x42 j (1 — u)”—léu“l/z du
0
(on making the substitution u = s2)
1
= 2-2+1 j (1 — wP-"uV2du
0

= 2-2+1B(4, x)
o TATE)
TG+
(by theorem 2.7).
Hence, using theorem (2.6),
I'(x) 2-%w+1
T(2x)  D(x +4)

V7

and thus
-1

1'(2x) — %/; P L)
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COROLLARY
If x is a positive integer
2x)!
Do +4) = 2

2mg VT

Proor

In the theorem we may use theorem 2.3 to rewrite I'(2x) as (2x — 1)!
and I'(x) as (x — 1)! Hence we have
2c—1

@v === (v - DI + )

which, on multiplying both sides by 2x, becomes

2z

f/ x(x — WX + §);

2x(2x — 1)! =

44

this equation may be expressed more simply in the form

2200
1 — 2 1
(2x)! \/nx.l’(x + 1)
and thus

U ) = S,

e

2.3 DEFINITION OF THE GAMMA FUNCTION FOR NEGATIVE
VALUES OF THE ARGUMENT

From theorem 2.2 we have
I'(x) = Jl—c[‘(x +1). (2.5)

Apart from x = 0, where the denominator vanishes, the right-hand side
of this equation is well defined for those values of x such that the argument
of the gamma function is positive (since this was the condition for definition
(2.1) to hold), that is, for x + 1 > 0, i.e. for x > —1. We also note that we
may say that I'(0) is infinite, for as x — 0 we have I'(x + 1) —I'(1) =1,
and hence I'(x) = (1/x)['(x + 1) — co. So far the left-hand side is only
defined for x > 0, but we can now use the right-hand side to extend this
definition to ¥ > —1. The argument we are using is as follows:

(i) Equation (2.5) was proved true for x > 0;
(if) Right-hand side is well defined for x > —1, left-hand side for
x> 0;
(iif) Use right-hand side to define left-hand side for « > 1.
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This means that we now have I'(x) defined for x > —1, so that the right-
hand side of equation (2.5) is well defined for x +1 > —1,ie. x > —2;
we may thus use it to define the left-hand side for x > —2; and this
process may be repeated to define I'(x) for all negative values of x.

Theorem 2.11

['(m) = oo, if m is zero or a negative integer.
Proor

We have already remarked above that I'(0) = co. From equation (2.5)
we have

I(—1) :7_171‘(0) =

and N(-2) = ~j—§F(~l) = o,
etc.

It is now possible to draw a graph of I'(x). Plotting of points combined
with information from the various theorems leads to a graph as shown in
Fig. 2.2

r'(x)

FF1c. 2.2 'The gamma function
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Theorem 2.12
1

L)1 — &) = ——.

sin &x
Proort
We shall prove this result in three stages:
(i) We shall prove the infinite product expansion for sin 0, viz.

sin 0 = | [{1 — (/) };
n=1
(ii) We shall show that this implies that
! S
sin n=z—oo 0 —na’
(iii) We shall use result (ii) to prove the required result.

(i) We know that

0
sinf = 2sin = cosg

2 2

.0 fmn 0
= 2 sin 5 Sin <,72 -+ §> (2.6)
and hence, by applying this result to both factors on the right-hand side,
we obtain

. .0 . [x 6 . fmr O\ . fa =x 0
s1n0-—2{2 smzsm <§+Z)}{2 sin <Z -}- Z) sin <§+Z+Z>}

0 ]
= 2%sin 7 sin n; sin 27[2—; 0 sin 37z2—2{—- 6. (2.7)
It is left to the reader to verify that applying the result (2.6) to each of
the factors on the right-hand side of equation (2.7) gives us
. 7o 06 . n+0 . 246 . 346 . 4n + 6
sin § = 27 sin 75 SI —5— sit ——5— sin —— sin —
.5n+0.6n+0.7n—|—0
Sin —— sin = sin —o—. (2.8)

If this process is carried out # times altogether, the general result will be

1 The proof of this theorem may be omitted on a first readmg, altematxvely,
parts (i) and (ii), which are standard trigonometric identities, may be assumed and
used to prove the result in part (iii).
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40 . 2m4+0 . (p—1m+0
sin ... —mMm——
4 ? b

. .0
sin 0 = 27-1gin —sin

(2.9)

with p = 2=,

The form of this equation is plausible as the correct generalization of
equations (2.6), (2.7) and (2.8); if desired it may be proved by the method
of induction.

The last factor in equation (2.9) is

sin U’__—}l)_”i? “in {n - @_;__ez}

=("5)
sin .
?
Similarly, the second last factor is
sin (=2 +0 = sin {n im0 }
b4 p

. (Zn -— 0)
=sin | ———— ),
?

and in general the rth factor before the end is

) (ryz — 0>
sin .
4

We now regroup the factors appearing in equation (2.9) by taking
together the second and the last, the third and the second last, and so on.
Then equation (2.9) becomes

sin § = ZP—lsing{sinﬂ + esinn — 0}{sin on + OSinZ” - 0} s
? ? ? P p
{sin (3 — Dz +90 sin (G — Dz — 9} sin bpm + 0- (2.10)
4 P P

The factor inside each curly bracket is of the form
sin (4 + B)sin (4 — B) = }{cos 2B -- cos 24}
=sin? 4 — sin? B

I

I

and hence equation (2.10) becomes
sin 0 == 271 sin 9 {sin2 T _ sin® 9} {sin2 2m sin? 9} .
p ? yJ p P
1p
{sin2 Gp — D _ sin? 9} cos 9 (2.11)
P P P
Dividing both sides by sin (0/p), letting 6 — 0 and remembering that

lim (sin x/x) == 1 so that

I—»(}
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im o220 _ im —SE—O I .
ososin(0/p) o0 0 ‘sin(0/p)
== P’
we obtain p = 27-1sin? 7 sin? 2m .. .sin? (_%E*—_llz (2.12)

If we now divide equation (2.11) by equation (2.12), we obtain

sin? (2m /p)
sin (0/p) 0
7 PO T - (213
{ (_%_P;IE} 005y 1)
?
We now let p — co. We take into account the three results
(@) lim psin o = tim 20/ 4

P P e O/p
=0,

. osin®(0/p) .. [sin(0/p)\2(0Nf wm/p % 1
©) i e ) 352{ 0/p }<p) {sin (m/p)} (r/p)?

= 02/r?n?,

sin?

(¢) lim cosg =1
p—>0

and see that therefore equation (2.13) gives

. 0% 02 02
sin § = 0(1 ;)(1 — 2———%2)(1 — ;.?n_z) ..
ol1( %)

(ii) It is trivial to verify the result that

e = 4 In tan Q
sin0  do 2
Hence
R g—ln sin (0/2)
sin0 df  cos (0/2)
_d . 2sin2 (0/2)
d0  2sin (0/2) cos (0/2)
d I 2sin?(0/2)

T n sin 0
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= %{In 2 + Insin?(0/2) — In sin 0}

= i{2 In sin (0/2) — In sin 6}

da{z 1nﬂ< 4”2%> In (I >}
(zmw 221n<1~*> i (“L%)
*1,10«21;1(1--—) Zln< —>}

d
do{mo —{—Zzln(Zn"z — ) +Zzln(2mt +6)

—Zln(nz—@) Zln(nn+0

1 21 -1 — > 1
=6+2;21m~0+2;27m—l-0_;F———;nn+0
1 > 1 > 1
:5+{2;0—2nn“;0—nn}

1 &1y (el
_E'F;()—m 1_7;0 -+ nm
(=1

0 —nx'
o

D

n=—

(iii) Let us first assume that 0 < x < 1.

Then
F@@)I'(l —x) =Bx, 1 —x)I'(x +1 — x)
(by theorem 2.7)
= B(x,1 — x)

1
:j #-1(1 — 1)-= dt
0
(by definition (2.2)).

LF—D
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We now make the substitution t = 1/(1 + u); then
dt = {—1/(1 +u)*} duand u = (1 — 1)/t.

Also whent =0, u = o0 and when ¢ = 1, u = 0.

Then T(x)[(1 — ) = j: 0 +1u)m_1<1 iu>—m<_ (—1—%;)—2 du)

_j L
1 +u

1 u-—s J‘oo u-
- d 2o
j.ol—}—u “ 11-{-udu
In the second integral we make the substitution # = 1/v. Then

du = (—1/v?%) do; also whenu = 1, v = 1 and whenu = o0, v = 0.

Thus © gy [0 % < 1 )

TR ) T ae\ T
ri 7):1::—1
.01+'vdv

r1

2

us-1

u01+2tdu

Hence, from equation (2.14) we have

1 o
— - x—1 —Nur d
L(u +u )’Z)( Yrur du

I

1
_l)nj- {un—m - un+a:—1} du
0

et
w)n——ac~1—1 n - x

(remembering that 0 << x < 1)

>

n=0

© 1 1
= n=20 (_l)ni:n - x + 1un—a:ll -+ ﬁ_il{fgcun-g-m]o

>

(-

X~ n
n=—o0
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z (e
st (x7) — (mr.)

sm X

(by part (ii) of the proof).

We now remove the restriction 0 < x << 1. Suppose that x =y + N
where N is an integer and that 0 <y < 1.
Then

L)'l — %) =T(N + y»)I'(1 —y — N)
=(N+y—DN-+y-2)...57()
1 1
vy vl vy VAR )
(by repeated use of the result I'(x + 1) = xT'(x))
= (=TI ~ )

= (=¥

sin 7y

(since we know this result to be true for 0 <y < 1)
4
= sin (N7 + )
7

sin 7tx
as required.

24 EXAMPLES
Example 1

Express each of the following integrals in terms of gamma or beta functions
and simplify where possible.

G) J :/ZV(tan 0) do. (i) jls_\ﬂfifx_ﬁa).

) 1/2
(iii) j t—3/"(1 — e—l) dt. (iv) J‘ (1 - x) dx
0 1 —x
(i) We usc theorem 2.5 where, in order to get 4/(tan )=sin'/2 0 cos~1/2 ()
as integrand, we take 2x — 1 = --}and 2y -- 1 = -4, i.e. x = } and

y =}
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'AOre
2t + )
=TT

1 =a

= 2 sin (2/4)

n/2
Thus IO v/(tan 0) d6 =
(by theorem 2.1)

(by theorem 2.12)

__1 L
T 21/4/2
=q/+/2.

(il) jl —ix—— N j‘l osvewus
0 34/(1—x3%) 0(1 %) dw.

We change the variable to ¢t = x3, When x = 0, # = 0 and whenx = 1,
t = 1. Also d¢ = 3x2dx, i.e., dx = 32-2/3 dz.

' da J ' 1 1/3_14-2/3
Hence J‘O m = 0( — t) .%t di
— 1B, )
(by definition (2.2))
=30(HTE)
(by theorems 2.7 and 2.8)
1=
~ 3sin(n/3)
(by theorem 2.12)
oz
3(v3)/2
2=
V)

(iii) j : £-3/%(1 — e~b) dt.

We cannot relate this immediately to the gamma function; we must first
integrate by parts:

th*-"”(l ety dt = [ 20-12(1 - c“’)} , r 2t-1/2 et dt
0 [}]

0



§2.4 EXAMPLES 39

=0 +2r’z—m e~tds 4
0
— 2r(h)

= 24/7,

o 1 (2

In order to change this into a form resembling the beta function it is
necessary that the range of integration be changed to 0 to 1. This is
accomplished by the change of variable t = }(1 + x). Then » = 2¢ — 1,
dx = 2dt and we have

1 1+x 1/2 J‘ (1 4—2t—1)”2
[ (it;;) =) \iozmyi) 24
1 1 )1/2 d
=2 j-o (1 —1 t
1
=2 j t”z(l _ t)—l/z de
0

=2B(3, 1)
(by definition (2.2))
LTI
I'(2)
(by theorem 2.7)
_H®).TR)
1!
(by theorems 2.2 and 2.3)
=z  (by theorem 2.6).

(by definition (2.1))

(by theorem 2.6).

+ The behaviour of 431 —e~*) at t = 0 requires some explanation. We
recall I’Hépital’s rule which states that if f(a) = g(e) = 0, then
lim f@) f'a)
1ag® g

provided f'(a@) and g'(a) are not both zero (or infinite). Hence we have
(=9 [ 1

lim - =0,
t—>o  tUE [ %) o
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Example 2

[(n)}2
Show that B(n,n + 1) = %{F%, and hence deduce that

n/2 1 1 1/4 I‘l 1 2
I, Garssms) 090 =508
I'(n)l'(n + 1)
I'@2n +1)
(by theorem 2.7)
_ D(n).nT(n)
2nT'(2n)
(by theorem 2.2)

_ {fmy*

We have B(n,n + 1) =

Setting 7 = } gives
Loy
1 5
B(4) 4) 2[\(2)
which, on using definition (2.2) and theorem 2.6 becomes
! {repye
—3/4 1/4
jo 341 — Hvade = v
Now set £ = sin 0 in the integral on the left-hand side. When ¢ =0,
9 =0 and whent =1, 0 = n/2; also d¢ = cos 6 d6.
Hence we have

1 n/e
j t-34(1 — e dt = j (sin 6)~%41 -— sin 0)*/% cos 0 d0
0 0

/2 1 _ si 1/4
- <._ﬂ“_9> cos § do
0 sin® 0
1 1 \1/4
I (sin3 6 sin? 0) cos 0 db,

so that we have proved the required result.

PROBLEMS
(1) Prove that

(1) j e ®xtdx = - l‘(u 1- 1)
0 a

n |1

(n> l,a>-0)
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(ii) j.: ame " dx = iF {(m + 1)/n}

(m > —1,n > 0).

(iii) r’ exp (2ax — %) dx = § v/ exp (a?).

(2) Prove that JZ/Z tan® 0 df = IT{(1 +- n)/2} D{(1 —n)/2} if |n]| < 1.

/2 n/2
(3) Prove that j. sin® 0 df = Jo cos” 0 df = v T{(L 4 n)/2}
0

2 T2 + /2

(4) Express each of the following integrals in terms of the gamma or beta
functions and simplify when possible:

(i) :0 (91—0 - 1)1/4 due; (i) jo (ln 3—)“ dx, (a > 0);
(i) [ (6 — x)m1x — ap-1dv, (b>a,m>0,1n>0);
(iv) : (1l —am?dx, (m> —1,p > —1,n>0);
(1 de dt
e N I D N =

(5) Show that the area enclosed by the curve x* 4 y* = 11is {I'(})}2/2+/7.
(6) Evaluate I'(—%) and I'(—7).
(7) Show that

(@) T)F(—x) =

(if) I'(3 +ATE - %) =

7T

x sin nx
2

COos tx



LEGENDRE POLYNOMIALS
AND FUNCTIONS

3.1 LEGENDRE’S EQUATION AND ITS SOLUTIONS

Legendre’s differential equation is

d2y dy
VS Nl AN, Yo A =
(1—x )dx2 Zxdx Ry =0. (3.1)
We shall write & in the form /(I + 1) for reasons which will become clear
as we proceed.
This equation,

dzy dy
9 —
(1=t ~ 20> + 1l + 1)y =0, (3.2)

is of the form of equation (1.2) with ¢(x) = —2x%/(1 — x?) and
r(x) = {{(I + 1)x2}/(1 — x?). The binomial theorem may be used to ex-
pand these as power series in x for values of x such that x? < 1, i.e., such
that —1 < x < 1. Thus the methods of Chapter 1 will be applicable to
the solution of this equation, any power series obtained being valid for
atleast —1 < x < 1.
Writing 2(x, 5) = x* Z a,x™ and requiring 2 to be a solution of equation
n=0
(3.2) leads, as in Chapter 1, to the system of equations
ags(s — 1) =0, (3.3)

as + s =0 (3.4)
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and

Auig(s +7n +2)(s +n 4+ 1) —af(s + n)(s +n -+ 1) — I(l + 1)}
=0 (n>0). (3.5

Equation (3.3) gives the indicial equation s(s — 1) = 0 with roots s = 0
and s = 1 (which differ by an integer, so that we know we are dealing with
one of the exceptional cases).

Equation (3.4), with s = 0, is satisfied irrespective of the value of a;;
this means that a, is indeterminate and hence the one root of the indicial
equation (s == 0) leads to two independent solutions with the two arbitrary
constants g, and a,.

Equation (3.5) with s = 0 becomes

nn +1) — I+ 1)

Qg = 4y (n . 1)(71 T 2) (36)
which, since
nn +1) — Il +1)=n*-+n—12—-1
— (- 1)+ (0 )
=mn—Dr+D+n-—-1)
=m—Dr+1+1),
may be written in the form
_ (l——n)(l+n+l)
Gnte = T T Y + 2) (3-7)
Thus we have
_ (I+1) . -0+ 2)
2= Ty G= "33
_ (l —2)(! + 3) _ (-3 +4
R R BT
=20+ (- 3) . (l — DI - +2)(+ 9
TR 23 - 2.3.4.5
and in general
ay, = (—1)"a,
(1=D)(I—4) . .. (=204 1)043) . . (42n—=1)
(2n)! (3-8)
and
A1 = (1),
(DU 3o 2u DYLE2NE ) - (20) a9

@2n - 1)!
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Therefore

2(x, 0) = ao{l + i (—1)y

I1=2) . ..A=2n+2)(I+1)(I+3) ... (I+20—1)
(2n)! ¥ }

+ al{x + Z (=1

(-DI-3)... (- 2n4+1)I+2)(14) ... (+2n) 2“1}
2n -+ 1)! o *

= apyy (%) + a,y.(x), say,

so that y,(x) and y,(x) are the linearly independent solutions.

We know already that y,(x) and y,(x) will be convergent for —1 <x < 1.
For many applications, solutions to Legendre’s equation are required
which are finite for —1 < x < 1. The theorem quoted at the end of
Section 1.1 guarantees convergence only for —1 < # < 1, and says nothing
at all about convergence for x = 1. In fact standard methods of
convergence theory may be used to show that the series above are
divergent for x = 41 (see Appendix 1). How then is it possible to
obtain solutions which are finite for ¥ = 4+1? The only way is to
make the infinite series reduce to finite series, and this will happen for
any positive integral value of /. For, from equation (3.8) we see that if
! = 2n (an even positive integer) we have a,, =0 but a,, ., = 0, and hence
all subsequent even coefficients must also equal zero. Similarly equation
(3.9) shows that if / =2n 4+ 1 (an odd positive integer) then a,,,, =0
but a,,,3 and all subsequent odd coefficients are zero. Thus we see that if /
is an even integer y,(x) reduces to a polynomial, and hence is finite for all
finite x, while if / is an odd integer the same occurs for y,(x).t In both
cases the highest power of x appearing is %, so that since equation (3.7)
applies to the series for both y,(x) and y,(x), we may obtain a single series
valid for both even and odd ! if we write it in descending powers of x. The

1+ When we consider integral values of /, we need consider only positive values
of I, since the constant appearing in the equation was /(I + 1) and if ] were a
negative integer we could write m = —(I + 1) and use the easily verified fact
thatm(e + 1) = I({ + 1).

This arrival at integral values of ! is, of course, the reason for writing the
original constant k& in the form I({ + 1).
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first term is a,x’ and subsequent terms are given by equation (3.7) written

in the form
(n+2)n + 1)

Ay = —dy,y Q=mil+nii) (3.10)
so that
(1-1)
G2 = ThUo0r Ty
- (¢ —2)(1 —3)
Aoy = —@_o m
(I — 1) —2)I—-3)
T A4l —D2I=3)
and, in general,
W—-—1D)I-2)...(0-2r+1) 3.11)

B —1 7 -
s = (g 2r(2L —1)(2 —3)... (@2 —2r + 1)
Thus for I even, y,(x) reduces to the following expression, while for

[ odd, y,(x) reduces to the same expression:

Y(x) = @+ a_ g Ea @ . {ao for I even

(3]
= z al—erl_2r

a,x for 1 odd

r=0
L1 for [ even
1] — /2
(where [3/] = {%(1 — 1) for [ odd, (3.12)
i.e., [4]] is the largest integer less than or equal to /)
w2
(— 1)"2 - (-1 ...(1-2r41) ¥ (3.13)
< C2r@I—1)(21—-3) . .. (2—2r+1)

from equation (3.1 1).
We may rewrite this series more compactly if we note the following
results:

I(—1)...(1-2r+1)
=1l —1)...(0 2 }1).
It
-

2.4.6...2r - (2.1)2.2(2.3) ... (2.7)
2123, .7
2! (3.15)

(=271 —2r —1)...3.2.1
(=200 —2r —1)...3.2.1

(3.14)
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and

@ -2 -3)...2l=-2r+1)
. 2121-1)21—-2)(21—3) . . . (21—-2r+-1) (21-2r)!
o 2121-2)21—4) . . . (21 -2r+2) .(21 -2r)!

— 2!

T2 —1)...(—7r + DRl =2

_enu-nt

22— 2nur (3.16)

Using equations (3.14), (3.15) and (3.16) in equation (3.13) gives us
[2/2) M| 1 21(2[ _ 27)'1'
yx) =aq Z (-1 (l 2r)! erl @ — ,)|

w2 . (IN221 — 2r)! o,

= L U =2 — @

=

This is a solution for any value of a;. If we choose a;, = (21)!/{2}(1!)?}
we obtain the solution which we denote by P(x) and call the Legendre
polynomial of order /:

{t/2
. 21 — 2!
Bl = 2 (=D an0 — g =201

r=

A, (3.17)

Thus this is the solution of Legendre’s equation which is finite for
—1 < x < 1; it is the only such solution, apart from an arbitrary multi-
plicative constant.

3.2 GENERATING FUNCTION FOR THE LEGENDRE
POLYNOMIALS

Theorem 3.1

1 S l Ny
v(1 _2tx+t2)—l=zot_P,(x) flt]|<land|x|<1

This means that when (1 — 2tx -+ t2)~V/% is expanded in powers of t, the co-
efficient of t' is Px); (1 — 2tx + t2)~V2 is called the generating function of
the Legendre polynomials.

ProOF
Expand (1 — 2tx + #2)~V/2 by the binomial theorem:
(1 = 2tx - £2)"V2 = {1 — t(2x — £)}~1/2
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=1+ (=h—t2e — i)+ D o gy

r!

1.35...2r -1
(—1y =22 )ty — oy

+... +

[
Ms

0

-
I

(21) U r
er(r')zt (2x — 1.

I
u Ms

Now expand (2x — ¢)" by the binomial theorem (remembering that r is
integral):

(2% — £y = > "C, 24y~

p=0
r!

pir — )t

where 'Cp is the binomial coefficient

Hence we now have

ow ' r
(1~ 2tx +19)=v2 = > ng(’),-)z D e~ 2ay . (3.18)
r=0 op=0

We wish to find the coefficient of #, so we must take r + p = /, and
hence for a fixed value of r we must take p = [ — r. But p only takes on
values such that 0 << p < 7, so we must only consider those values of »
satisfying 0 < I — 7 < r,i.e. §{ < r < I. Hence if / is even, r can take on
values between }/ and I/, while if ! is odd, # can take on values between
1(I + 1) and I For any of these values of r the coefficient of #* in equation
(3.18), obtained by taking p =1 — 7, is

2n! . _, _
2*(2‘,(@ Cr_(—1) 7" (2x)r=4=1
and the total coefficient of # is obtained by summing over all appropriate
values of 7 so that we obtain

d (2r)!

Furrys O L~ DI

coefficient of ## =

1/2 (1 even)
T /2 {odd)
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If we now change the variable of summation from r to k =1 — 7, we
obtain

coefficient of #
2 (21 — 2k)!

z?.l 2k{(l k)'}2 CL( I)k(zx)l 2

{1/2 {2 even)
(I—1)/2 (i odd)

e
(Zl - Zk)! (l — k) kol—2k 1 —2k
T L E R 2ry (T2

(where [I/2] is as defined above in equation (3.12))

11/2]
2l —2k)!
P ( l)kzl(l k(I — z;i)'v?'”l N

=P, ,(x)
(by the definition (3.17)).

Hence the required result is proved.

The restriction on the values of x comes from the condition for
convergence of the binomial expansion of {1 — #(2x — #)}-12, viz.
| t(2x —¢)| < 1. When |x| < 1 this condition may be shown to be
equivalent to | ¢ ]| < 1.

3.3 FURTHER EXPRESSIONS FOR THE LEGENDRE POLYNOMIALS

Theorem 3.2 (Rodrigues’ Formula)

1 &

Pl(x) le| dx 1( x*

-- 1)’.
Proor

We may expand (¥? — 1)* by the binomial theorem:
!

(w2 — 1) = D IC(~1ya,

r=0
Hence,
1 & 1 &<
e (a2 Y - O (-~1)ra2t—2r, 3.
2 & Y =g O (3.19)
jut the Ith derivative of a power of x less than [ is zero, so that

!
:x»lx‘” ¥ L0if2l -2 <1 e, ifr > 1/2.
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Thus we may re lace by 1f lis even and b 1f [ is odd, ie.,
y rep Y

[4/2]

by Z where [//2] is as defined above.
r=0
Also,
d .
S == )P —2) . (p— L+ D
p -
-0
d woer _ (2L — Zr)'
so that pwed iz 21)‘
and hence, substituting into equation (3.19), we have
1 & L1 &8 (21— 20!,
Ziigd U= 20 £ il — s R T Y
we Y
— (_1) _,fﬁlﬁ_,, [—2r
“~ 2Pl — )il — 2r)!
= P(x) (by the definition (3.17)).

Theorem 3.3 (Laplace’s Integral Representation)

Px) = 7—1’_' j': fx 4+ /(2 — 1) cos O} df.

Proor

It may be shown by elementary methods (for example by mecans of the

standard substitution # = tan (0/2)) that

j"‘ do _ 7
ol +icosh /(1 — A%

(3.20)

If we now write A = — {u4/(x? — 1)}/(1 — ux), expand both sides of
equation (3.20) in powers of # and equate the coefficients of corresponding

powers of #, we shall obtain the desired result:
1 1

Tdeosd | uy(—1)

= (1 —ux)[1 —ufe + +/(x* — 1) cos 6}]-1

=(1 - ux)iul{x + /(%% — 1) cos 0}

=0
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o0

(since, by the binomial theorem (1 — a)~! = Z ar).

\/(1 — A%) u2(x2 —1)
'\/{1 (1 — ux)?
- (1 — ux)
~ V- w1

_ (1 — ux)
V(1 — 2ux +u?)
Hence, substituting into equation (3.20) gives

_{Zi"l{x + /(%% — 1) cos 6} dO =

J

V(1 — 2ux + u?)

ie., z ut jn {x -+ v/(x* — D cos O} db == Z u'P(x)
=0 0 1=0
(by theorem 3.1).
Equating coefficients of 4’ gives

aPy(x) — j: {x + v/(x* — 1) cos 0} dB

which is the required result.

3.4 EXPLICIT EXPRESSIONS FOR AND SPECIAL VALUES OF THE
LEGENDRE POLYNOMIALS

From the definition (3.17) we may write down explicitly the Legendre
polynomial of any given order. We give here the first few polynomials:
Pyx) =1,
Pi(x) = x,
Pyfx) = $(3x* — 1),
Py(s) = J(54° — 33),
Py(x) = ¥(35x% — 30x2% + 3). (3.21)

Theorem 3.4

(i) £(1) = 1.

(i) B(—1) = (1)~

(iii) Py(1) =3I 4- 1).

(iv) Pi(=1) = ( 1) 1 1),
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) Pul0) = (~1)

(vi) Py,4(0) =0.
(By P(1) we mean [{dPy(x)}/dx]._,)

Proor
(i) Set x =1 in theorem 3.1 above and we obtain

\/(1 — Zt o t2) Z ﬂP[(]

1 (e o]
that is — E £P(1).
1=0

But 1/(1 — 1) = z # (by the binomial theorem or by considering the
right-hand side as the sum to infinity of a geometric progression), so that
we have Z ¢ = Z #P,(1). For this to be true for all values of ¢ in some

range (in thlS case | t | < 1) we must have the coefficients of corresponding
powers of ¢ equal, i.e., Py(1) = 1.

(i1) Exactly similar to (i) but setting x = —1 in theorem 3.1.
(iif) Py(x) satisfies Legendre’s equation (3.2), so that we have

a —m) P,(x) Zx(—id;cP,(x) I+ D)Px) =0  (3.22)

and setting x =1 in thlS equation gives
—2P(1) +I(l + 1)P(1) =0,
which reduces on using part (i) above, to Pj(1) = 3I(/ + 1).
(iv) Exactly similar to (iii), but setting x = —1 in equation (3.22) and
using part (ii) above.
(v, vi) Set x = 0 in theorem 3.1 above and we obtain

1 [-e}
— o= £P(0).
Expanding the left-hand side by the binomial theorem gives us

1
m) = (1 + t2)-12

=1 _{_( )t2 % (. z)( 2)(t2

SF—E
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NI (=H(-3)-. l{' (21 — 1)/2}(t2)’ N
— ; (—l)l 1.3.5 .z.l:l(!ZI — 1)

-3 (cay L2345 @2 —
B 20112.4.6...(20—2y2

&3
- Z (—1) 2:5122:1'!
_ Z( 1yt 5(5(11)1)2 *

Thus we have
2 (1) gt :Z o

and equating coefficients of corresponding powers of ¢ on both sides gives

Pu0) = (~ 1)

Py 4(0) = 0.

3.5 ORTHOGONALITY PROPERTIES OF THE LEGENDRE POLYNO-
MIALS

Theorem 3.5
O ifl=m

| P(x)P,(x) dx = { Flm

20 +1

(This result may be written more concisely if we introduce the Kronecker delta,
defined by

P 0ifl=m
m =L if L =m.

Then the statement of the theovem is

t 2
j» . Pl(x)l)m(x) d.\" i 21 il l(slm')
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Proor
Py(x) and P,(x) satisfy Legendre’s equation (3.2), so that we have
dzp, dP,
(1 —«2 Tt dx—{-l(l—l—l)Pl—O
d2P, dP,
— %2 ™ P =
and (1 — «? dx? o Fm(m 4+ 1)P,, =0, +
which may be rewritten in the form
{(1 — 2)dP ‘} +I(I 1P, =0 (3.23)

and ——{(1 — 2)—} + m(m + 1)P,, = 0. (3.24)

Multiplying equation (3.23) by P,(x), equation (3.24) by Py(x), sub-
tracting equation (3.24) from equation (3.23) and integrating with respect
to x from —1 to 41 gives

LT (e o R (R i

(I +1) — mm + 1)} jl_l PP, dx =0.

But since
d dPl} dP, dP, d { dP,}
R T o (R

we shall have

1 d dP dP, dP, d dP
. )ty P me Ly a2 m
j-—-l [dx{P’"(l x )dx} dx (- ) V{Pl(l * dx }

1
+dPl(1 _xz)de:} dx+(lz+l_m2—m)J PP, dx =0.
dx dx -1

On integrating the first term we obtain

dP de, 1t
[P,,,(l — 2% — Pl — xz)—&;:] B

1
(= m) 4 m + 1)j PP, dx = 0;
-1

+ Throughout this proof we denote Pi(x) by P; and Pu(x) by Pm. The argument
x is to be understood in every case.
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but now the first term vanishes at both upper and lower limits, because of
the (1 — «2) factor, so that we have

1
(—m)(l+m+1) j‘ PP, dx = 0, and when ! == m we can cancel
-1
the factor outside the integral to obtain
1
J PP, dx — 0.
-1

1
It remains to prove that j {P)(x)}*dx = 2/(2! + 1). For this we use
-1

the generating function of theorem 3.1:

1 fes]
\/(1 "% + 1Y) = 2, #P(a)

so that mz) { Z tPl(x)}

#P(x). Z tm P, (x)

[\/]s

I

tve

#+mP (x)P,(x).
I, m=0
We now integrate both sides with respect to x between —1 and +1:

| arm—m o= > [l PP ax

L,m=0
But the left-hand side is a standard integral of the form

J (1/(a + bx)) dv = (1/6) In (a -+ bx),

while the right-hand side contains only terms for which / = m, by the first
part of this proof.
Hence

00

1 1 1
——— 2 __ — 21 o
[ ;I (L +1 th)J . ;t I_I{Pl(x)} dx
which gives
> jl ()} dx = —o ln(l 20+ ln(l + £ 4 26)

120

1 1
R e B2 — AT
SpIn (1 0t o In (14 1)
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:%{m(l + ) —In(l —t)}

—l{t e +t_}__t_2+t_3 }
———-t —§+—3... 2 3...

(using the series expansion of In (1 -+ ?))

1 A b

2
ity

© t2l
=Zgzz+1'

Equating coeflicients of corresponding powers of ¢ on both sides gives

| ey ae =52

as required.

3.6 LEGENDRE SERIES
Theorem 3.6
If f(x) is a polynomial of degree n, then

n 1
£3) = > ¢.PAx) with ¢, = (r + ) j £(#)P,() dx.
r=0 -t
Also, if £(x) is even (or odd), only those c, with even (or odd) suffixes are
non-zero.

Proor

We have f(x) = a,x" + a,_x"~! + . .. + a\x + a,, say, and we may
write Py(x) = k,x" + k,_sx"~% -+ . . . (since by equation (3.17) P,(x) is a
polynomial of degree #, containing only odd or even powers of x according
to whether # is odd or even), so that if we take f(x) — (@,/k,)P.(x) we
obtain either zero (in which case the first part of the theorem is proved)
or else a polynomial of degree # — 1. This means that

£(x) = caPu(%) + n-1(¥)
where ¢, = a,/k, and g,,_,(x) is a polynomial of degree n — 1.
The same argument may be applied to g, _;(x) to give

gn—l(x) == Cﬂ—lpﬂ——](x) -+ g1»~2(x)
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and hence f(x) = caPu(%) + Cp_1Pp 1(%) + gu_o(%).
The same argument may now be applied to g,_,(x), etc., to yield
eventually
f(x) = caPp(%) + casPrs(x) + ... + 61 Py(x) - coPy()

"
= Z ¢, P(x).
r=0
If we now multiply both sides of this equation by P,(x) and integrate
from —1 to--1, we obtain

[ P ax = Z & [ PP a

But, by theorem 3.6, the integral on the right-hand side is non-zero only
for the value of 7 which equals s, in which case it is 2/(2s + 1).

' 2
Therefore J—x f(x)Py(x) dx = ¢, T

1
giving ¢, = (r + %) j f(x)P,(x), as required.
-1

Now suppose that f(x) is even. Then, since P,(x) is even when 7 is even,
and odd when 7 is odd, so the integrand f(x)P,(x) is also even when r is
even and odd when r is odd. But an odd function integrated over the range
—1 to 1 will give zero, since positive and negative values cancel one
another. Hence ¢, is zero when 7 is odd. Similarly when f(x) is odd, ¢, is
zero when 7 is even.

COROLLARY
If f(x) is a polynomial of degrec less than J, then

j ' f)Px) dx — 0.

PRrROOF
Suppose f(x) is of degree n; then by the theorem we have

f(x) = i ¢,P(x),

so that

n

|* P as— > |* PwPe as

=0
by theorem 3.3, since r «{ n < [, so that 7 is never equal to /.
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The results of the above theorem may be extended to functions which
are not polynomials. We shall not prove this extension, but will merely
quote the following result (the proof is not difficult, but is fairly lengthy).

Theorem 3.7

Suppose {(x) satisfies the following conditions in the interval —1 < x < 1:

(1) f(x) s continuous apart from a finite number of finite discontinuities
(we then say that £(x) is piecewise continuous); and

(ii) f(x) has a finite number of maxima and minima.

0

Then the series Z ¢, P(x), where

r=0
1
G=0+D| (0P
-1
converges to f£(x) if x is not a point of discontinuity of f(x) and to

H(v+) + f(x—)}

if x is a point of discontinuity.t Also, at the end points of the range, x = +1,
the series converges to f(1—) and f(—1-) respectively. This series is called
the Legendre series for f(x).

+ By f(xy+) we mean Lim f(x, + &) where ¢ —> 0 through positive values and
0
by f(xe—) we mean Lim f(x; — &) where again ¢ —> 0 through positive values.
e—~>0

See, for example, Fig. 3.1,

y

g™}

y = f(x}
flrghf = —— = —— | \/

(] X

Fic. 3.1 Left- and right-hand limits at a point of
discontinuity
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3.7 RELATIONS BETWEEN THE LEGENDRE POLYNOMIALS AND
THEIR DERIVATIVES; RECURRENCE RELATIONS

Theorem 3.8 .
(i) Pi(x) = D (2 —4r — )Py ().

(i) %B() = 57 5P + gy 1P
(i) (1 + D)Pyu(s) — (21 + DePy(x) + IPys(s) = 0.
(i¥) P () — Pjo(a) = (2L + 1)P().
(v) xPy(x) — Py_y(x) = IP(x).

(vi) Pyx) — xP;_y(x) = IP,_y(%).

(vii) (¥2 — D)Py(x) = IxPy(x) — IP;_,(x).

(vii) (%2 — D)Pyx) = (I + 1Py y(x) - (I + 1)xPyx).

3
() 2@+ DPIPL) = L (PLaOP3) — PO

Proor

(i) We know that Py(x) is a polynomial of degree /, containing only even
powers of x if ] is even, and only odd powers of x if / is odd. Hence P;(x)
is a polynomial of degree I — 1 containing either odd or even powers of x
according to whether / is even or odd. Hence by theorem 3.6 we have

le(") = cl—lPl;l(x) + ¢ gPy_o(x)

| ferPy(x) ({ even)
+ ...+ Cl~12r—1Pl—2T-—1(x) e {(;OP:(x) (l Odd)_

with e = (s + 1) j PP ds

) 1 1
~ 6+ D{[P@rm] - [ PeEe o
(on integrating by parts)
= (s + PP — P(—1)P(--1) — 0}
(where the integral vanishes by the corollary
to theorem 3.6, since P(x) is a polynomial of
degree s — 1,and s — 11is always less than /)
= (s -+ HI - (=1
(by thecorem 3.4 (i) and (ii)).
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But s takes on the values [ — 1, [ — 3, . . ., so that s 4 [ takes on the

values 2/ — 1, 21 — 3, ..., which are always odd, irrespective of the
values of [ or s. Hence (—1)°* = —1 and we have
¢ =(s+H{l — (=1}
= (2s 4- 1).
Hence

Cl—2r~1 == 2(l —= 2’ - ].) + 1
=2l —4r —1
and so we have
Pi(#) == (21 — DP_(#) + (21 — SPo®) + . ..
4 3P (x) if lis even
+ @2l —4r — 1)P_y_\(x) +... + {Po(x) i 1is odd
[HU=))
= > @4 — )Py (%)

r=0

(ii) xPy(x) is a polynomial of degree I -+ 1, odd if [ is even and even if /
is odd. Hence by theorem 3.6 we have

xP(%) = ¢ 1 Pra() + i Pra(x) + ..+ {22%3 g ZZZI;?
where

=0+ 1) | PP o

= (r+1) j 1_1 Py(x).{xP,(x)} dx.

But this integral is zero by the corollary to theorem 3.6 if » -1 < [
(since then xP,(x) is a polynomial of degree less than l), i.e., if r <1 — 1.
Hence we have

xPy(x) = ¢, 1P 1(%) + -1 Py_y(%). (3.25)

To determine ¢;,; and ¢;_; we set x = 1 in equation (3.25) and in the
same equation differentiated with respect to x, viz.

Py(x) 4 xPy(%) = €11 P1a(®) -+ aPy (). (3.26)

Setting x = 1 in equations (3.25) and (3.26) and using theorem 3.4 (i)
and (ii1) gives

1 = Cl+1 "l“ cl-—l (3.27)

and 1 - 30 -+ 1) = 30 DU +2)} 4o {30 D (3.28)
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Solving cquations (3.27) and (3.28) for ¢, ,; and ¢;_; gives
I+1 l
1 = A+1 €1 = A+1
so that on insertion of these values in equation (3.25) we obtain
xPy(x) = 211_:—1 Py (%) + 2] —ll—l 1~1(%).
(iii) Multiply both sides of equation (ii) above by (2/ + 1) to obtain
(21 -+ 1)xP#) = (1 + DPy () + P (x).
On rearrangement, this equation becomes
(1 + 1Py (%) — (21 4 1)xPy(x) + IP,_y(x) =0,

which is the required result.

(iv) We may use result (i) for both P} ,(x) and P;_,(x):

P, (%) = (21 + DPx) -+ (21 — 3)P,_x(x) + (21 — T)P,_(x) + .

Pi_y(x) = (20 = 3)P,_y(x) 4 (21 = 7)P,_ 4(x) +
Subtracting these two equations gives

Py y(x) — Pi_y(x) = (21 + 1)P(x).
(v) If we differentiate result (iii) with respect to x we obtain
(I + 1P} () — @21+ D{PAx) + 2Pi(x)} + IP}_y() = 0

and if we now use (iv) to substitute for I, ,(x) we shall have

(1P} () +QIFD)PE)} — QU+LYP(x) +xP(x)} + IP]_y(x) = O.
Collecting terms in P _;, P, and P; gives

21 + )P _y(x) + @21 + D) + 1 — 1)P(x) — (21 + 1)xP;(x) =0,

which reduces to  P/_,(x) + IP(x) — xP)(x) = 0,
and on rearrangement this equation becomes
xPy(x) — Pj_y(x) = Py(x).
(vi) If we multiply (iv) by ¥ we obtain
2P} 4u(x) — *Pi_y (%) = (21 + DPyx)
and substituting this expression for (2/ + 1)xP,(x) in (iii) gives
(I + D)Pya(x) + IP_y(x) = xP i (%) — xPp_y(). (3.29)
If we now rewrite (v) with [ replaced by / + 1, we have
xPpy (%) — Pi(x) = (I 4 1Py (%),
and substituting this value of (/ 4 1)P;,(x) into equation (3.29) gives
2Py, (%) - Pl(x) + 1Py y(x) = xP;, ((x) %P ().
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When rearranged, this equation gives
Py(x) — xP;_y(x) = IP,_\(x),
which is the required result.
(vii) If we multiply (v) by x we obtain
x2P)(x) — xP;_ (%) = IxP,()
and on subtracting (vi) from this we obtain
#%P{(x) — Pi(s) = lxP(x) — IPy_(x)
which may be rewritten in the form
(x* — )Py(x) = leP(x) — IP,_(x).

(viii) If we replace / by ! + 1 in results (v) and (vi) we obtain
xP (%) — Py(x) = (I 4+ 1)Pp4(x)
and Pi, () — *Pi(x) = (I + DPa).
Eliminating P;.,(x) between these (by multiplying the second equation
by x and subtracting from the first) gives

—P/(x) + %2P(x) = (I + )P o(x) — (I + DxPy(x),
which reduces to
(8 — D) = (L + DPy () — (L + DxP(s).
(ix) Using (iii) we have
Pe)P3) — PAPLay) = 7] (2 -+ DePue) — R @)P)

— Pk(x){(Zk + NyPuy) — kPk-l(y)}}

:fjfw~wawmm

k + 1{Pk(x)Pk 1(}’) Plc—l(x)Pk(y)};
multiplying both sides of this equation by & + 1, we obtain
(& -+ D{Pra(®)Pi(y) — Pl0)Pei()}
= 2k +1)(x —y)P*)Pu3) +R{Px)P; 1(y) = Pra()P(y)}-  (3.30)

If (k -+ 1){Peyy(x)P(y) — Pu(x)Py,1(y)} is denoted by f,, equation
(3.30) may be written in the form
oo @k 4 D — DP@P(O) (3.31)
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(Strictly, this equation is true for £ > 1, since it is for this range of values
of k that all quantities involved are well defined; but we may also make it
true for & = 0 provided we define f_, = 0, for then

= Py(x)Po(y) — Po(x)Pu(y)
=x—y
(by equations (3.21))
and x — y is also equal to
(2k + D)(x — y)Pi(x)Py(y) + f,_, with & = 0.)
If we now sum the set of equations (3.31) from 2=0 to k=/, we

obtain
l

i = > @k D —POR) + z foos

2k + 1)(x = HPHPL) + D fia

Ed

~ I
<

-1

= > @k + D — PP + D fo

k=0 k=0
Hence
-1

> Z Z 2k + 1)z — )PL)PY)
so that = = z
f=(x —5) D 2k + DPLx)P(Y)

and if we remember the definition of f; we obtain

(U + 1>{p,+l(x>z> () = P@Pua()} = D (2k + DPLPLy).

3.8 ASSOCIATED LEGENDRE FUNCTIONS
Theorem 3.9
If = is a solution of Legendre’s equation

2
a-— xz)‘j1 — Zxdy LI+ 1)y =0
then (1 — x%)ym/2 (d™z/dx™) is a solutzon of the equation

1 — )di_z dy +{z(1+1)— "izxz}y=0

(known as the associated Legmdre equation).
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Proor
Since z is a solution of Legendre’s equation, we must have

dzz dz
— xD)— — — S =
1 —= )dx2 Zxdx I+ 1)z . (3.32)

Now let us differentiate equation (3.32) 7 times with respcct to x:

dm d2z d dz
— 1 — == — -
dx”‘{(l ¥ } zdx’”{ dx } i 1) =90

which, when we use Leibniz’s theorem for the mth derxvatxve of a product,t
becomes
m+3y dm+lz  m(m 1) dz dmz
YT i (1 — g2 —
(=g T =) g 7 a7 g

dmtiz d dmz
_z{dxm+1+mdx }+l(l+1) =0

(since higher derivatives of 1 — &2 and x vanish).
Collecting terms in dm“z/dx”“f2 dm+1z/dym+1 and dmz/dxm we obtain

dxm+2 2L {{(1+1)—m(m—1)— 2m}
which, on denoting d™z/dx™ by z,, becomes

Lo a2 om + Dt 1) — mm £ D = 0. (333
o - —mlm + 1)}z = 0. (3.33)

(1 xz) — 2x(m +1)

dxm+1

If we now write

By = (1 — w2z, = (1 — x2)ym2 ﬁ_:

dxm™

equation (3.33) becomes
dz d
(1 — = az{zz(l — X%~ — 2m + l)xa;{zg(l — x2)~mi2}
' +{I(l + 1) — m(m + 1)}z, (1 — x2)—™/2 = 0. (3.34)
But

Sl iy = 8

=y gy — '211(1 — x2)=miD-1 9y

d
z2(1 — x) =2 | mzx(l - x2)—m/2-1
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s0 that
dz2
@{2’2(1 . x2)—m/2}
2o
= %;"2"(1 x2)-m/2 _*_(_if_ 4__(1 - x2)~lmA-1 ( 2x)

dz
4 m{aﬁx(l _ xz)—(m/2)—1 + 21 — xZ)—(m/2)—-1

+ z2x<_g — 1)(1 — x2)~m/D-2 ~2x}
_dz
=i

4 mzy(l — x2)~/D-1 L oma,x2(m + 2)(1 — xz)—(mlz)—z_

Hence cquation (3.34) becomes

d% ”2(1 1)~ D+ L (1 — x%) 2 (—(15: + mzy(1 — x2)-m2

-+ m(m + 2)(1 — xz)—('"/”—lxﬂzz
dz
— 2(1n -+ l)x{(l —_ xz)—m/zd_x“ -}- mx(l - x2) -(m/2)—-lzz}

+ {iI 1) — m(n + 1)}z(1 — x2)-™2 =0
which, on cancelling a common factor of (1 — x%)~™/2 and collecting like
terms, becomes

dz,

(1 __ x2)-—m/2 + %zzmx(l 2)—-(m/2) -1 L m (1 2)—(m/2)—1

(1 —x2) 2t {2mx —2(m - l)x}dz2

de

+{ m(m+2) ?_(”’l‘ilx):”x +I(1+1) - m(m-i—l)}zz = 0. (3.35)

The coeﬂicxent of dz,/dx is just —2x, while the coefficient of z, is
(m? + 2m — 2m? — 2m)x?

I+1) + +m—mt—m

1 — x?
m2x2
"'l(l‘f‘l)_ —-—~Jﬁ~m"’
ms
R A e

"T'hus equation (3.35) reduces to

d3z, dz, { m? }
y_ 2 . _ 5 . — P —
1 - x )dx‘~’ Zxdx FLI -+ 1) 2, = 0
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so that z, satisfies the associated Legendre equation which, by the defini-
tion of z,, proves the theorem.
CoROLLARY

The associated Legendre functions P'l"(x) defined by

Pi(x) = (1 - xg)’”’2 d P (3.36)
satisfy the associated Legendre equation.
Proor

This result follows immediately from the theorem, since P,(x) satisfies
Legendre’s equation.

Using Rodrigues’ formula (theorem 3.2), it is possible to rewrite
definition (3.36) in the form

Pi(x) =

I+m

(1 —_ 2)m/2 d

ol (e — 1L

The right-hand side of this expression is well defined for negative values
of m such that I + m > 0, i.e., m > —I, whereas the original definition
(3.36) of P7(x) was only valid for m > 0. Thus we may use this new form
to define P7(x) for values of m such that m > —I.

It is easy to verify that if we consider m positive, the function P, ™(x)
defined in such a way is a solution of Legendre’s associated equation as
well as P’}(x). In fact, it is not an independent solution; it may be proved
that

Pro() = (~1 (1 P (3:37)

(see problem 3 at the end of this chapter).

3.9 PROPERTIES OF THE ASSOCIATED LEGENDRE FUNCTIONS
Theorem 3.10

(i) Pi(x) = Pyx).
(i) Pr(x) =0 if m > L

Proor
(i) This result is immediately obvious from definition (3.36).
(ii) Since Py(x) is a polynomial of degree /, it will reduce to zero when

differentiated more than [ times. Thus ; P(x) =0 for m > I, and the

required result then follows from definition (3.36).
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Theorem 3.11 (Orthogonality Relation)

A +mt

[ L, PI@PPE) de = o i %

Proor
We first prove that if ] =21’
1
J P x)Pj (x) dx = 0.
-1

This proof follows exactly the same lines as that of the first part of theorem
3.5, so we shall not repeat it here.
All that now remains to be proved is that

g 20 +m
J‘ {Pr)}e de= NOER RN

Assume first that m > 0; then from definition (3.36) we have

[* prenas

- e Ep S pw} as
_ 'Lg"%’i_pml I LN '

&=‘

I e

_ J ' {;:n p, ”)}dx{(l o ———P (v)} d

(on integrating by parts)

_ _r_ {;"; P ,(x)} {(1 d::nPl(x)} de  (3.38)

(the first term vanishing at upper and lower limits because of the (1 — x?)
factor).
Now, from cquation (3.33) with = replaced by m — 1 we have that

m +1

(1—x2 ) ——Py(x) — med—P(x) +{I(I+1) — (m— 1)m}A P,(x) =0
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and this equation may be rewritten in the form

d dm d

. — a2Ym — _ . 4p2Ym—1

Ho—wor Epe) = —aem—m 4 10—
Substituting this result in equation (3.38) gives

[ (prenas

-Py(x).

= J 1 {j:m “p (x)}(l +m)(l —m + 1)1 — &)= 1{d z(x)}

= (I4m)(l-m+1) jl (1 —x%ym- 1{ (x)} dx
= (I+m)(i— m+1)j (PP-1(x)} dx.
Applying this result again gives
F_I{PZ”(x)} de =(I+m)(l—m +1)(l+m~1)(l—m+2)r {PP~2(x)}2 dx

= (Lm)(tm—1)(—m 1)1~ m+2)j (PP-3(x)}? dr,

and repeating the process m times in all we obtain

[1_1 {P/r(x)}? dx
= ((m)(l+m =1y . . . ((+1).(—m 1) =m 12) . .. l.r_l{P?(x)}z dx
= (pm)(4m=1) . .. (J+1)JI—1) . . . (—mt2)I—m+1). 2111

(using theorem 3.5)
_(Itm! 2
TU=—mi2+1

which is the required result.
Suppose now that m < 0, say m = —n with n > 0.

Then j 1_1 (Pr(a)}? dx — j " (P ()2 da

SRG )"(l+ )'}{P"")}zd"
(by equation (3.37))

S¥—F
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—n)!
{g n :;'} j {PMx)}2 dx
(—m)N2{+n)! 2
={(l—i—n)! (I—ml2l +1
(by the result just proved, since n > 0)
(—n)t 2
NED RS
(+m! 2
T U—mi2i+1
which is the required result.

Theorem 3.12 (Recurrence relations)
2mx

V(I =Y

(if) (27 + DxPy(x) = (I + m)Pz’" (%) + (I —m + )P (x).

(iii) V(1 — 2%)PP(x) = 57— (PiFh (%) — Pizii(#)}-

(@) PPHi(x) — PP(x) -+ ((I+1)—m(m—1)}PP~x) = 0.

Zl+

() V(1 = 5PP() = 50+ m)1 +m — DPRT')

— (= m 4+ 1)~ m + 2PPT),

Proor

(i) Thisis the fundamental relationship linking three associated Legendre
functions with the same / values and consecutive m values.

Let us denote (d™/dx™)P,(x) by P{™(x) so that definition (3.36) may be
written in the form

PP(x) = (1 — a?)"/2P(™(s). (3.39)

Now, in equation (3.33) we know that we may take 2 = Py(x) and hence

2 = P{™(x), so that we obtain

2
a-— xz)(%-zP,(m)(x) — 2(m + 1)xdixpl<m>(x)

4+ {I( + 1) — m(m + 1)}Pf™(x) = 0.
Using the definition of P{™(x), this equation becomes
(1 — *2)P"*2(x) — 2(m + 1)xP{"+ V()

S 1) — m(m | 1)}P™) = 0
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which, on multiplying throughout by (1 — x2)™/2, gives
(1 — xz)(m/2)+lpl(m+2)(x) _ Z(m + l)x(l — xz)m/zpl(mﬂ)(x)

+{( +1) —m(m + DY(1 — x2)™/2P™(x) = 0.
Hence, using equation (3.39), we have )

Pyi(x)

+ {1 + 1) —m(m + 1)} (x) =0
which, when m is replaced by m — 1, becomes
2mx
VI — )

this is the required result.

n 1
Prt2(x) — 2(m + l)xm)

Ppi(x) — Pp(x) + {0 + 1) — (m — )m}P""}(x) = 0;

(i1) This is the fundamental relationship between associated Legendre
functions with equal m values but consecutive / values.
By theorem 3.8 (iii) we have
(I + D)Pyyo(x) — (21 + 1)xPyx) + IP,_4(x) =0
which, when differentiated m times (making use of Leibniz’s theorem for
the second term), gives

(1 + DB — 2+ DEPOG) + mPr-2)
+ IP™(x) = 0. (3.40)
Similarly by theorem 3.8 (iv) we have
P{)y(x) — Py(x) = (21 + 1)Py(x)
which when differentiated m — 1 times gives
 P(x) — PU(x) = (2 + 1P V(), (3:41)
Using equation (3.41) to substitute for P{™~*)(x) in equation (3.40) gives
(I + DPIO(x) — (21 -+ 1)xPf™(x) — m{P™(x) — P™\(x)} + IP{™(x) = 0.

Multiplying this equation throughout by (1 — x*)"/2 and using equation
(3.39) gives

(1P (x) — @I+-1)xPP(x) — mPP (x) + mPP () + IPP () = 0.
Collecting like terms gives
(1 +1 —mPy(x) — (21 + DxPr(x) + (I + m)PiZy(x) =0
which, when rearranged, is the required result.
(iif) Multiply equation (3.41) throughout by (1 — x2)™/2 and we obtain
(1 xePe(x) (1 P @ (1 atyePm ()
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which, on using equation (3.39), becomes
Pl (@) — Py(x) = (21 + 1)v/(1 — 2*)P]"~}(x). (3.42)
Replacing m by m -+ 1 gives
Prt(x) — PP (x) = (21 + 1)/(1 — x?)PP(x)
which, when divided by 2/ + 1, is just the required result.
(iv) We use (i) to replace xP*(x) in (i) by

T U A MPEA) + (= m o+ 1PE()

so that we obtain

Bs) — s e mPE) + 0= m o+ DBR()

+ {1 + 1) — mm — 1)}PF~(x) = 0.

If we now use equation (3.42) for P}"~'(x), we obtain

1 2m "
T =@y Dl TP + (¢ —m o+ D)
1

+{l+1) —mm —1

{10+ 1) — mfm — 1)}
=0.

By straightforward algebraic manipulation this reduces to

V(1 — xZ)P'"“(x)
{I +m)l +m+ )P (x) — (I — m)(l —m -+ )P (%)}

i) —

1 m m
x®) 2] -+ 1{P1+1(x) — PLy(x)}

S + 1
which, when m is replaced by m — 1, is just the required result.

3.10 LEGENDRE FUNCTIONS OF THE SECOND KIND

In the first section of this chapter we obtained two independent series
solutions y,(x) and y,(x) of Legendre’s equation. We obtained solutions
finite for —1 < x < 1 (indeed, finite for all finite values of x) by taking /
integral; then for / even y,(x) reduced to a polynomial, while for
odd yy(x) reduced to a polynomial. In both these cases the other series
remains infinite; it may be shown to be convergent for | x | < 1 and diver-
gent for |x | > 1. In some physical situations we wish two independent
solutions valid for the region | x | > 1; one of these is, of course given by
P(x), while a second solution is given by the following theorem (note that
it is still infinite for x = 41).
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Theorem 3.13
A second independent solution of Legendre’s equation is given by
1 +x [1:2}] @2 —4r -1
Qx) =3P InT— = — > S P (%)

— X

o (2r + 1)1 ~7)
(> 1)
1 +x
Oux) = 4ln
I—1
- if 115 odd
where [l;l:': 12
— = if Lis even.

Q) is called the Legendre function of the second kind.

Proort

In Legendre’s equation, set y = zP,[(x) so that 2 is a new dependent
variable. We have
dP

dy dz .
a;—Pl(x)&—}—za;,
dy d2z  _dzdP, d*P,
R O e Rl P el

and hence the equation becomes

d2z dz dP, dzP dz
2 i I ) i N 1 __ -
(1 —*x®)Px)— +2(1 —x )ac i + (1 — x?)=z It 2xP(x)

— sz%% + (I + 1)zPy(x) = 0.

Collecting terms in 2, dz/dx and d2z/dx?, we have

d2P, dP, }
a2 — Q- !
z{(l ® )dx2 xdx + (I + 1)P(x)

dz dP d2z
= — g2t — x? -
+ dx{z(l x?%) e ZxP,(x)} + (1 — x?)Py(x) e 0,

which, on using the fact that P, satisfies Legendre’s equation, becomes
dzz  d=z dpP, }
— x2 = _e2)S _
(1 = #)Px)5 + 5 21 — = )dx 2xP(x) ¢ = 0.

+ The proof of this theorem may be omitted on a first reading. The proof ends
on page 77.
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d2z/dx? ‘zdP,/dx 2%
dz/dx P(x) 1 —«2
and this is equivalent to

d dz d

—_ — _ 2Y e

dxl ( > +2d In P(x) + 1n(1 x%) =0,
which when integrated gives

dz

In an 4+ In {P(x)}? + In (1 — x?) = constant.

Hence =0,

Therefore —{Pl(x)}z(l — x%) = constant = A4, say,
dz A4

so that i ——{P,(x)}2(1 5

and hence

zzAwama—wy

This means that we have a solution of Legendre’s equation given by

Oifx) = Py(x) j‘m(x—)};%’:x—a (3.43)

We must now show that this is of the form stated in the theorem. We
first dispose of the case / =0

dx
Qolx) = Po(x)jm

—j (1——x+141- )dx

=3{-In(l —x) +In(1 + x)}
11n 1 +x

1 —x

If now [ 5 0, we remember that P,(x) is a polynomial of degree /, so that
it may be written in the form

Pyx) = kx — a}(x — o). .. (¥ — o).

I
[

Thus
N 1 B L 77_1._%
(T HPEE T 91§ Ok a)lc w)t.(x - x)




§3.10 LEGENDRE FUNCTIONS OF THE SECOND KIND 73

l
. o bO Cr dr }
1% 1 +x+r=§;{(x—a,)+(x—oc,)2
(3.44)

on splitting into partial fractions.

We may determine a,, b, and ¢, fairly simply. Multiplying both sides of
equation (3.44) by (1 — x2){P(x)}2 gives
1= ayl + 2){P(x)}* + bo(1 — %){Py)}*

+ (1 - xz){Pz(x)}z{ Zl(x jar) + (x _‘frar)2}'

Setting x =1 in this equation and remembering that Py(1) =1 gives
a, = }, while setting x = -1 and remembering that P(—1) = (—1)}
gives by = §.

We now show that

R e e

To prove this we note that

(%c{(x — o;)(x)} = 2(x — a)f(x) + (x — a,.)2§—:

= ( when x = a;, provided that
f(x) is finite at ¥ = ;.

The only terms on the right-hand side of equation (3.44) which are not
finite at x = «; are ¢;/(x — «;) and d;/{(x — «,)%}.
Hence we have

[dx““ u—_ﬁ]

B [tﬁ(x *) {(x — o) + (% jioci)“’}:’ua,

_ L%c {ede — @) + "i}]x_

=
= [ci]z=ax

= C.-.

Thus, if we write P(x) = (x — o;)L(x) we have

Rl FRT
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_ l: 2% B 2L'(x) ]
(1 —2){Lx)}? (1 — 22){L(#)}*d 2=
_ I:ZxL(x) —2(1 — xz)L’(x)]
(1 —2{L(x)}? o=,
_ 2{ot;L() — (1 — ;)L ()}
= aL@P
But we know by setting P(x) = (x — «,)L(x) in Legendre’s equation
that
(1~ o)l — L) — 2o (e — =)L)
+ I + 1)(x — o)L(x) =0,
which, on performing the differentiations, becomes

(1 — #*){(x — a)L"(x) + 2L'(x)} — 2x{(x — «;)L'(x) + L(x)}
+ I + 1)(x — a)L(x) = 0,

and setting ¥ = o, in this equation gives
(1 — af)2L'(;) — 20t;L(ax;) = 0

so that by substituting back into equation (3.45) we obtain ¢; = 0.
Thus from equation (3.44) we have

(3.45)

11 lzd,
A= )P@PE 20— 20+  L(x—ay

where the d, are constants whose values will not concern us.
Thus

1 1 1 n
Vi mmpts = U = a0 e - E%x—w)

l+x = d,
_%lnl—x T:zl(x-—oc,)'
so that from equation (3.43) we have
1+x l Py(x)
) =P Iy, = > d

But (x — «,) is, for all «,, a factor of P,(x), so that Py(x)/(x —a,) is a

4
polynomial in x of degree / — 1. Thus > 4, {P(x)}/(x — &) is a poly-
r=1
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nomial of degree I — 1; let us denote it by W,_,(x). Then we have
09 = 1P T2

To determine W, _,(x) we remember that Q,(x) is a solution of Legendre’s
equation so that

— Wi_y(). (3.46)

‘f—x{(l —~ xz)%} + (1 +1)0, =0,

which, on use of equation (3.46), gives

;;x{(l —xz)dx (%) In - +’”} 10+ 1) 3P In g

1 +x
— X

{(1 - 2)dW’ 1}» — I+ D)W, =0. (347)
But
+

,(x)lnl x—P,()ln ki Jer(x){1 too }

14+ 1 —x
~Bw1_F+EU

so that
d d 1 +x
&{(1 — x2)—P,(x) In T_}

{(1 — x?)P}(x) In —+f T 2P,(x)}

=gt 1t d‘l {1 — x)Pjx)} + (1 — xz)P,(x) o+ 2P(x).

Hence equation (3.47) becomes

}in 1+x|:

(1 — )P} + 1+ )P, (x)} + 2P;(x)

4 {(1 )dv(;’;‘c—l} — I+ 1)W,_, =0

which, on remembering that Py(x) satisfies Legendre’s equation, reduces
to

a‘sc{“ ) } 4111 YW, ,~2 (3.48)
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Now, by theorem 3.8 (i) we have

dP = (21 — 1)P,_\(x) + (21 — 5)P,_4(x) + .

@ —4r — DP_g 1(%) + ...
He=n1
(2 —4r — )P,y () (349)

r=0

so that if we assume for W, ,(x) (which we know to be a polynomial of
degree I — 1) an expression of the form

W a(x) = aOPl—l(x) + alPy_4(x) + ...
[:¢=11
= DaP g () (3.50)

=0

and substitute equations (3.49) and (3.50) into equation (3.48), we shall
obtain

[3— 1)] [3—1)
D (1~ Pl ) +10+ 1) D)
[3=1)1
= 2D @ —4r — )Py _y(x).  (351)

r=0

But by Legendre’s equation we have
d /
A —#IP s} + (= 2r — 1) = 20)Pr gy a(®) = O,

so that equation (3.51) becomes

[3@—11
a—(1 = 2 — 1)1 — 20) -+ [ + DIP,__(x)

r=0
13¢-1
= 22(21 —4r — 1)P,_,y,_y(x).

r=0

The coefficient of each polynomial must be the same on both sides,
so that we obtain

{—( —2r — 1)1 - 20) +I( + 1)}a, =22 — 4r —1). (3.52)
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But —(/ —2r — 1)(I — 27) + (1 4-1)
= —( =22+ -—-2r) + (I +1)
=0+ 47l —4r2 + 1 -2r + 121
=4r(l —7r) +2(I —7)
= 2(/ — r)(2r + 1).
Hence equation (3.52) reduces to
2(0 — nN@2r 4+ Da, =221 — 4r — 1)
which gives
21 —4r — 1
= () (3.53)
and now, by combining equations (3.53), (3.50) and (3.46), we obtain
immediately the result of the theorem.
That the solution of Legendre’s equation Qy(x) which we have obtained

is inde;.)endent of Py(x) is readily seen : because of the factor In i + z, Oi(x)

a,

is infinite at both ¥ = 4 1, whereas we know that Py(x) is finite for these
values of x.

We may use this theorem to write down explicitly the first few Legendre
functions of the second kind:

1 +x%x
QO(x)=%1nl—x
x, 1 4%
Ql(x)—ilnl—x“I
14+x 3
—_— 2 __ —
Oxfw) = 32 —1) In 7=~ — >

142 5 2
— 1(5x3 — LGN BT
Os(x) = 3(5x® — 3x) lnl —% 3" -|—3.

We now state without proof several theorems concerning Legendre
functions of the second kind.

Theorem 3.14
1
x =)
ifx>1land|y| < 1.

- z (2! + 1)P(x)Q(3)
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Theorem 3.15 (Neumann’s Formula)
P
0 -3 ] 7o

Theorem 3.16

The results contained in theorem 3.8 (ii — ix) remain true when P(x) is
replaced by Q(x).

Theorem 3.17
The associated Legendre functions of the second kind defined by

0r() = (1 — ) 0 )

satisfy Legendre’s associated equation.

3.11 SPHERICAL HARMONICS

In many branches of physics and engineering there is interest in the
equation
1 (9 ., 0¥ 1 o¥
sin 0 (8_6 sin 6%) T sint ¢ sin? 8952 HH+)F =0, (3:54)
solutions of which we shall call spherical harmonics. (This equation usually
arises in the solution of a differential equation such as Laplace’s or Schré-
dinger’s in terms of spherical polar co-ordinates 7, 8, ¢, so that the range of
the variables involved is 0< 0< =, 0<< ¢ < 27 and we often require a
solution which is finite and continuous for these values—the continuity
implying that the value of ¥ at ¢ = 2x is the same as at ¢ = 0.)
One method of finding a solution of equation (3.54) is the so-called
method of separation of variables—we look for a solution of the form
Y(0, ) = O(0)P(¢). Inserting this expression into the given equation gives

D(4) { ( @)} () d*o B
sind 30 \5"0 35+ e age T I+ DOEOYPE) =0
or, dividing throughout by 9(0)@(95) and multiplying by sin2 6,

sin0 d ( 0d9>+1 PP 1+ 1)sinr0 =0

"o g\ d) " ape
which, when rearranged, becomes
sin0 d 1 d2@

de
e 20 = ...
0 d0< 0d()> -1l + 1)sin20 = & dpe



§3.11 SPHERICAL HARMONICS 79

Now the left-hand side of this equation is a function only of the variable
6, while the right-hand side is a function only of the variable ¢. Since these
two variables are independent, it follows that left-hand side and right-hand
side must separately be a constant which we shall denote by m?2.

Thus we have

sinf d do
it in%h — me
5 d0< no > +1{(+1)sin26 =m (3.55)
1 d2@
LT 2
and & dge m2. (3.56)
Equation (3.56) is just
do
. ) 7
g m3Q (3.57)

while equation (3.55) simplifies to

s1111 0 :0 (sm 0_) {l(l +1) - —“6}@ =0. (3.58)

Equation (3.57) has the general solution
@ = Ae™ L Be—™¢
where, if the solution is to be continuous, we require @(2r) = P(0), so that
m must be an integer (which we may take conventionally to be positive).

In equation (3.58) we make the change of variable cos 6 = x. Then we
have — sin 0 df = dx

1 d d
and hence e Rl
d d
— qin2 = W Vel
and sin 6— 3 = sin 6. T 1 —x )dx'

Accordingly, equation (3.58) becomes

(%c{(l — xz)%g} + {l(l +1) — 3 'fzxz}@ =0

which- we recognise as Legendre’s associated equation; it will have a
solution finite at § = 0 and z (x = +1 and —1) only if / is integral. In that
case the finite solution is given by @ = P(x) = P;*(cos §).

Thus the general solution which is finite at both 0 = 0 and =z and is
continuous must be

Y0, $) = (Ae™ + Be—"™¢)P7(cos 0)
which, because of equation (3.37), we may write in the form
W - A,e"P(cos 0) |- Aye™"™¢P-1(cos 0)
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where A, =4

gy A m)!
and Ay, = (—1) (l—m)!B'
If now we denote

V0, ¢) = €™ P(cos 6) (3.59)

we may write the general solution in the form

¥ =Ayr0, ¢) + Ay "0, ¢)-
Of course, this is a solution of the original equation (3.54) for any value
of 7, and since (3.54) is homogeneous we have the solution

W= > AP, 6) + AP0, 4)).

For many purposes it is more useful to consider a multiple of ¥}* (which
we shall denote by Y7}*) as the basic solution; a multiple chosen so that the
solutions are orthogonal and normalised in the sense that

j ':" dé j: d0 sin 0{Y70, $)}* YI(0, 4) — Subpme (3.60)

(where the * denotes complex conjugation).
We may readily prove that this is accomplished by taking

76,8 = (1" {0, )

IV @+ 0= M g
= (—1) \/(Zaz)\/{ T }e 4PM(cos0).  (3.61)

For then we have
27 n
| a8 | avsino(vro, apevie, 9

S 1 I+l + 1) —m)! (' —m')!
=(=1) N/{ 4 +m)!(I'+ m')! }

j ¢ —ms g [ PP (cos 6) PP (cos 6) sin 6 do
0 0

(using the fact that P}"(x) is real),

i @+ 1)@E 4 1)1 —m)t (' — m')!
_( D : 27 { 41 4+ m)! (I' +m')! }2” Omem

|* Prepr( as
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(since the first integral vanishes unless m’ = m, in which case it is equal to
2n; and in the second integral we have made the substitution x = cos 6)

— o [JCLE DRI+ 1Y — m) (I — m)!
=1 J{ 41 +m)! (' + m)! }6m’m

| Preopee as

_ J{(Zl + DR D) —m) (' — m)!}a 2+ mt
h 4+ m) (I + m) mmEI4+ DI —mt"

(by theorem 3.11)

= 6”16mm'.

The factor (—1)™ in definition (3.61) of Y7(6, ¢), which we shall take as
the basic spherical harmonic, was not necessary for the orthonormality
property; however, its introduction is conventional (although the reader
is warned that in the topic of spherical harmonics different authors may
employ different conventions).

Theorem 3.18
{Y7@, $)}* = (-1 Y "6, 9).
Proor
{Y7(, ¢)}*
21 - 1(1 — m)!

== \/(2) { U+ m)! e~"¢P1(c0s 0)

(by equation (3.61))

o 21 4-1 (I — m)!
=0 «/(271) {# T m)
(+m,

(—m!!

e_imnﬁ( — 1) —m

P;™(cos 0)
(by equation (3.37))

. w1 20+1(+mN _ioem
= e [ e wpneos )
— (V70,9

(by equation (3.61)).
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We may use the definitions of Y7}%(6, ¢) and P}*(cos 6) to obtain the
following explicit expressions for the first few spherical harmonics:

1
0 __ V.
Yo = \/(471)’
Vi = i\/<_3 ) sin § et Y? _—J<i) cos 03
1 87Z ’ 1 1 ]
15 . 15 )
2 in?fetid Vil o _ : Lig
VE2 = J(3 )sm fe*e Y J(8ﬂ>s1n6c030e ,

Y= J(i%)@ cos? 6 — 1). (3.62)

3.12 GRAPHS OF THE LEGENDRE FUNCTIONS

In this section we give graphs of some of the functions encountered in
this chapter.

P(x)
1o}
05}~ A
{ |
° 55 0 x
~05 P, Ps &

F16.32 Pi(»),0< < 1,1=1,2,3,4
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P[(X)

10° 1 | | |
! 2 3 4 5 10 X

F16.33 Pilx),» > 1,1 =1, 2, 3, 4 (Note that the scale
on the vertical axis is logarithmic.)

P lcos §)

1:0

05

-0-5 b~

Fic. 3.4 Pi(eos®),0 -0 272,01 1,2,3,4
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Pl

2:0—

15—

o5

Fic. 3.5 P'(x),0< < 1,1=1,2,3

OL(X)

[16. 3.6 Qux), 0. x<< 1,1 -0,1,2,3, 4
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Q (x)

109

1079

109

1o

-
2 3 45 6 7 8 9 0 X

Fic. 3.7 Qix), x> 1,1=0,1, 2, 3, 4 (Note that the scale

3.13 EXAMPLES

Example 1

1
Show that j . x2P (x)P,_ (%) dx =

on the vertical axis is logarithmic.)

211 + 1)
(42 — 1y@2l £ 3)

1
Deduce the value of j x%P, ((x)P;_ (x) dx.
0

85

We use theorem 3.8(ii) to dispose of the x2 appearing in the integrand,

and we may then use the orthonormality property of theorem 3.5.

‘Thus,

[" s p@Po@ [ @) @) s
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= j 1 {211123 Pral®) +21[:13 ’(x)}
(o512 + P e
_J 1211113 Hx)- 2zl Pi() dx

(the other terms vanishing by theorem 3.5, since they are of the form
1
j Py(x)P, (%) dx with I == m)
-1
I(1+1) j ! R
“@ERE =Ty )., Dl
1+ 1) 2

T @32 —1) 2+ 1
(by theorem 3.5)

A1)
T @R =@l + 3y

We know that P(x) is a polynomial of degree /, so that the above inte-
grand is a polynomial of degree 2 +- (I + 1) + (I — 1) = 2(I + 1), i.e., of
even degree. Thus the integrand is even, so that

r 2P,y (x)Py_ (%) d — zj %P, \(%)P,_y() dx

and hence

2 i+
J PraPea) & = ey 3y

Example 2

1

Evaluate J Py(x) dx when [ 1s odd.
0

By theorem 3.8 (iv) we have

j: Py(x) dx = 2] :_ 1 J {Pra(x) — Piy(x)} dx
- 21%[13 i) — P,

1
= o5 18— Piea() = Pis(0) + Proi(0)}
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_ ___{ IR Gt O M U LI
C2+1 20 (L4 1)/2)1)
(=102 (1 —1)! }
27t U= n/2pe

(by theorem 3.4(i) and (v), remembering that / 1 and [ — 1
are both even)

1 (=1Ev2 (- 1) [1 (~1)(l+1)l}

+

a1 27 [Nyl T2+ 2P
I T G ) V). [1 !
“uT1o U fe—neel i

(= 1) — 1)
TG I !
(—1D)&=v2 — 1)t
T2 PIGE- DY

Example 3

Iff(x) = | x| for —1 < x < 1, expand f(x) in the form > ¢,P(s).

=0
By theorem 3.7 we know that such an expansion is possible and that
¢, is given by

1
=4[ I5 P
Now, | x | is an cven function and P,(x) is even if r is even and odd if r
1
is odd. Hence if 7 is odd | x | P,(x) is odd, so that J | x| P(x)dx =0

and hence ¢, = 0. On the other hand, if 7 is even, | x | P (%) is even, and
hence

JL 1P o =2 1P

1
—2 J’ *P,(x) dx
0
so that now

o @11 Il P(x) dx. (3.63)
1]
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To evaluate this integral we use theorem 3.8(ii) :

o= @D | {ZELP@ 4 P} e

_ j AE A+ DPr®) -+ rPry(3))

Now, 7 is even, so that both r + 1 and r — 1 are odd, and we may use
the result of example 2 to obtain
( 1)r/z,.! ( 1)(r/2) ’(r 2)!
~ U Vg ian T @G — )
_ (=1)"2(r —2)t [(r -+ Dr(r — 1) _ r}
2= iar — 0!\ 22Gr + Db
(=) =2y [(r 1) = 1)
C 20\ — 1)!{ r+2 T}
(=1 - 2)! {r2 —1 -7 — Zr}
TN - DI 2 D
_ (~1)’/2)+1(2r 4+ 1)(r —2)!
T2 )G = 1)

(3.64)

Thus we have

1y +1(4n + 1)2n — 2)!
f()—Z‘ s L P,

Example 4

If x > 1, show that P(x) < P,,(x).

We prove this by the method of induction: assume first that
P,_,(%) < Py(x) and use this to prove that Pj(x) < P,,,(x). Then since
the result is trivially true for [ = 0 (Py(x) = 1 and P,(x) = x) it will be
true for all .

We may assume throughout this proof that P(x) > 0. For, from Rod-
rigues’ formula (theorem 3.2), it is readily seen that if ¥ > 1 (which it is
in this example) then Py(x) > 0 for all values of L

Now, by theorem 3.8(iii) we have

Py

IP,_
R S Sl

- )= e
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Thus
P, _ @41x I P,
P, I+1 l+1 P,
- @+1n 1
1+1 I+1
(since x > 1 and we have
assumed that P, /P, < 1)
141
RS
= 1.
Since P, is positive for all /, this implies that P,,; > P, and hence the
method of induction guarantees the result to be true for all values of ..

Example 5
Prove that I{Q(x)P,_\(x) — Q,_1(x)P(x)}
= (I = D{Qu1(%)Py o) — Qy_o() Py 1(%)}
and deduce that [{Qy(x)P,_,(x) — Q,_,(x)Py(x)} = —1.
From theorem 3.8(iii) with / replaced by / — 1 we have
IP(x) — (21 — 1)xP;_4(x) + (I — 1)P_4(x) =0 (3.65)
and by theorem 3.16 we have also
10i(%) — 21 — 1)xQy (%) + (I - 1)Qsa(#) = 0. (3.66)
Multiplying equation (3.65) by O, ,(x), equation (3.66) by P;_;(») and
subtracting gives
KPy(x)Q;1(x) — Qu(*)P;4(x)}
+ (= D{Pro(®)Q1a(%) — Qra(¥)Pia(*)} = 0,
which is equivalent to
HOU#)Py_i(x) — Qi_1(x)P ()}
_ = (I = D{Q1a(x)P1_o(%) — Qi-o(*)P1(%)}
as required.
If we now define

F(l) = {O(x)P;_1(x) — Qu_a(¥)Py(x)}
this result may be written in the form
Fly=F(l-1),
and hence we have
Fy==F(1 1)=FI—2)=...=F(Q1).
Thus F{l) -~ F(1)
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so that {Q,(x)P,_+(¥) — Q1 1(9)Pux)} = Ou(%)Po(x) — Qo(x)Py(x).
But we know that  Py(x) =1,

Pl(x):x)
1 +x
Qo(x):%ln ’
— X
1 +x

Or(x) = 3xIn 1 =% 1
so that we obtain

HOW®)Py1(x) — Oy 1(x)Pi(x)} — Jx In -i’f RPN T

1 —x

= 1,
which is the required result.

PROBLEMS
' 21

(1) Show that N xP(x)P;_(x) dx = @ T
1

(2) Show that j (1 . x2)P{(x)P,',,(x) dx = M
-t 20+ 1

) IfD = i%c’ use Leibniz’s theorem to prove that

!
(1 — afyDin(e — 1) — (1) P i

|
and hence deduce that P, ™(x) = (—1)™ (l'*" )‘sz(x)-

@i -{t, OrreDy

expand f(x) in the form Z c,Py(x).
r=0

e} . (zm)[(l _ x2)m/2 7
(5) Show that Z Bl = Gl — 20 4 o

CH.
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1
) If u, = j x~1P,(x)P, ,(x) dx, show that nu, 4+ (n — 1u,_, =2,

and hence evaluate u,,.

(7) Show that z @2r + 1)P,(x) = P, (%) -+ Pi(x).

(8) Show that (1 — x) Z @2r + 1)Py(x) = (n + 1){Pu(x) — P, 1(x)}.

(9) Assuming the result of theorem 3.14, prove theorem 3.15.

(10) Show that Pyx)Q;(x) — P(x)0ux) — ,‘l__

(11) Show that Y7*(0, ¢) = A/ (214_; 1) Omo-

(12) If x > 1, prove that
1t -y
Oix) = o1 j 1 (x t)"“ dt
and deduce that

6. /(s 1 1) — —
(i) by making the substitution ¢ = eVl 1) = vix = 1)

V(x+ 1) F VE 1)

we obtain
@ do
Qufx) = jo {x + v/(x2 — 1) cosh 0}*V’

. (200 1
(&) Qulx) = iz Z @+ 2+ 1)l e
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BESSEL FUNCTIONS

4.1 BESSEL’S EQUATION AND ITS SOLUTIONS; BESSEL FUNCTIONS
OF THE FIRST AND SECOND KIND

Bessel’s equation of order # is
d2
dac2

(where, since it is only n? that enters the equation, we may always take n
to be non-negative).

Since this is of the form of equation (1.2) with ¢(x) = 1 and 7(x) =
x? — n?, we may apply the methods of Chapter 1 and be assured that

any series solution obtained will be convergent for all values of x.
o«

4 x d A+ (2 —n¥y =0 “.1)

Setting 2(x, 5) = z a,x**" and requiring 2 to be a solution of equation
r=0
(4.1) leads, by the same method as in previous cases, to the system of

equations

{s(s — 1) + s — na, =0, 4.2)
{C+)s+(+1)—ne, =0 (4.3)

and {s+r(s+r—1)+(GE+r)—n%a, +a._,=0
(r>2). (4.4)

Equation (4.2) gives the indicial equation s* — n2 =0 with roots
s = 4- n. We shall obtain two solutions from these which will be inde-
pendent, apart, possibly, from the case when the two roots differ by an
integer, i.c., when 2z is integral.
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Equation (4.3) is
{(s + 1) —n?a, =0
and, since s? =mn?% we cannot also have (s 4 1)? =n?*}, so that

(s +1)2 — n? 50 and hence q; = 0.
Equation (4.4) is just

{6 +7r2—n¥%a, +a,_,=0
which gives

a = . G2
T (s —n?
Taking s = n, this becomes
T e e ,ar-a -
A I T
o a, o
(n4+r—n)n+r-+n)
e B2
= n i) (r > 2). 4.5)
Thus we have
= B S
2T 22 +2) 0 2:A(n - 1Y
S S S . T
T 42n 44 222(n--2)  20.2)m 4 ) + 2)
@ = — — a4 o a4
T 62n+6) 22.3(n +3)
4y

~ 28.3)(n + 1)(n + 2)(n + 3)

and in general

ay
a; = (—1) .
=Y e e ) i)
4+ The only situation in which we can have s? = (s + 1)2 = n?isn = 4,5 = —4.
For this case it is true that s = — } makes a, indeterminate and leads to two inde-

pendent solutions, but the results of the text still hold good, since zero is a
pussible choice for a, and we obtain the second independent solution from s = §.
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We simplify the appearance of this expression somewhat by noting that
(mn+1Dn+2)...n +7)

L(n +1)
=@+ +r =1+ 2o+ Do
_ D +r 1)

T T +1)

on using repeatedly the fact that xI'(x) = I'(x 4- 1) (theorem 2.2).
Thus we now have
C(1y o Bl D)
9 = (U s i T o 1)
Also, if we use the fact that @, == 0 together with equation (4.3), we
obtain
A, =a; =85 = ... =dy,; = ... =0.
Hence, substituting these values for the a, into the series for 2(x, 5), we
obtain as a solution of Bessel’s equation

S 7 F(n + 1 ) 2r+n
;MDPWMM+M'

This is a solution for any value of a,; let us choose ¢y = 1/{2"I'(n + 1)}
and we obtain the solution which we shall denote by /,(x) and shall call the
Bessel function of the first kind of order n:

R v C I (46)

From the remarks at the beginning of this section it is clear that the
infinite series in equation (4.6) will be convergent for all values of x.

So far we have dealt with the root of the indicial equation s = n. The
other root s = --n will also give asolution of Bessel’s equation, and the form
of this solution is obtained just by replacing # in all the equations above by
—n, so that we obtain the solution to Bessel’s equation

J () = Z (wl)rr!F(—n 1—|— r -+ 1)<§> r_n' (*+.7)

r=0
Suppose now that z is non-integral. Then, since 7 is always integral, the
factor I'(—n 4 r - 1) in equation (4.7) cannot have its argument equal
to a negative integer or zero, and hence must always be finite and non-
zero. Thus equation (4.7) shows that J _,(x) contains negative powers of x
(they arise for those values of 7 such that 2» < #), whereas equation (4.6)
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shows that J,(x) does not contain any ncgative powers. Hence, at x = 0,
J (%) is finite while J _,,(x) is infinite, so that one cannot be a constant multiple
of the other, and we have shown that J,(x) and J_,(x) are independent
solutions of Bessel’s equation for n non-integral (which is a stronger con-
dition than 2n non-integral, obtained from the general theory). The
explicit relationship between J,(x) and J _,(x) for integral # is shown inthe
following theorem.

Theorem 4.1
When n is an integer (positive or negative),
Jn(x) = (=1)n(#)-
Proor
First consider n > 0.

Then
x\2r—n
Jx) = Z (= r'F( n+r+ 1)( )
from equation (4.7).

But I'(--n + r + 1) is infinite (and hence 1/{I'(—n + » + 1)} is zero)
for those values of  which make the argument a negative integer or zero,
ie,forr =0,1,2,...(n — 1) (remembering that this is possible because
n is integral).

Hence the sum over 7 in the above expression for J_,(x) can equally well
be taken from 7 to infinity, and then

J o) = E( T H)(")M

z (—1ymon - n)'F(m . 1)( >2(m+n);n

(where we have changed the variable of summation tom = r — n)

. 1 x\ 2m+n
= (—1)"”120(_1)7”(1” -+ n)IT(m + 1) <§> .

x\2min
19 = 2 et 5 ()
(by cquation (4.6))

But
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so all that remains in order to complete the proof is to show that

(m +n)!T(m + 1) =m!l(n +m + 1)
for n and m integral.
But
(m+n)llm +1)=(@m +n)(m +n—1)...(m + 1)m!I(m 4 1)
=m!I'(m +n + 1)

(on using repeatedly the result that I'(x + 1) = xI'(x)), and thus the
result is proved.

Now consider # << 0; in this case we may write # = —p with p > 0.
Then what we require to prove is that

Jp(*) = (1) ()
or (=1)2Jp(x) = J (%)

which, of course, since p is positive, is just the result we have proved
above,

Let us summarise what we have proved so far: we have shown that if n
is not an integer then J.(x) and J_,(x) (defined by equations (4.6) and
(4.7), respectively) are independent solutions of Bessel’s equation (so that
the general solution is given by 4] ,(x) + BJ_,(x)) while if » is an integer
they are still solutions of Bessel’s equation but are related by

J (%) = (=1)n(*).

Theorem 4.2
The two independent solutions of Bessel’s equation may be taken to be
] "(x)
and Vi) = cos nw Jo(x) — J_a(x)

sin nzw
for all values of n.

Proor
We consider separately the cases # non-integral and # integral.

(i) » non-integral.

Here sin nr = 0, so that Y,(x) is just a linear combination of J,(x) and
J —a(x). But from the above discussion we know that in this case J,(x) and
J _n(x) are independent solutions, so that J,(x) and a linear combination of
Jo(x) and J _,(x) must also be independent solutions. Hence J,(x) and Y,(x)
must be independent solutions.



§4.1 BESSEL’S EQUATION AND ITS SOLUTIONS 97
(ii) » integral.

In this case sin nw = 0 and cos nw = (—1)", so that by theorem 4.1 we
have

cos 7 (%) — J a(%) = (=1)/n(*) — (—1)/alx) = 0.

Hence Y,(x) has the form 0/0 and so is undefined. However, we may give it
a meaning by defining it as

Y,(x) = lim Y (x)

m 987 2) —J. (%) (4.8)
—n sin v
_ [@/o){cos v ] (x) ~ J o) }lu=s
[(8/8v) sinvx],_,

(by L'Hopital’s rule)t
_ [msinom () + cosv (/) x) — (2/) ] W),
- [ cos val,_,

_cos nal(9/w) ] (x)]y=n — [(3/OW)] _(*)],

Jt COS 1T
= ;lz[(a/ M%) — (—1)"(3/)] (%)), = (4.9)

We must now prove two things; firstly that Y,(x) as defined by equation
(4.9) is in fact a solution of Bessel’s equation and, secondly, that it is a
solution independent from J,(x). To accomplish the first of these we note
that J,(x) obeys Bessel’s equation of order »:

N T

which, when differentiated with respect to », gives

dz 9J, d 9], a],
2__ x2 — — — 2v] =
i T EL 5 + (x )av 2], =0. (4.10)
Also, of course, J_,(x) satisfies Bessel’s equation of order ». so that we
have in exactly the same way

xzﬁ a]_,+ d a]_,+( 2_,,2)%_ 2] _,=0. (411)

dx? ov oy

1 L’Hopital’s rule states that 1f f(a) = g(a) = 0 then
i £ _ €70
2 8(%)  27(a)
where f07(a) and g{)(a) are the lowest-order derivatives of f(x) and g(x), respee-
tively, which are not both zero at x = a.
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Multiplying equation (4.11) by (—1) and subtracting from equation
(4.10) gives

L B - R O I £
B G S S e B e )

Setting » = » in this last equation and using equation (4.9) gives
2

x? d—- Yu(x) + xd .,,(x) + (2 —n2)Y,(x)

~ @) - ) =0,

But now 7 is an integer, so that we may use the result of theorcm 4.1 that

J _a(x) = (—1)"].(x) to obtain
d2 d
x? - = V(%) + Y,,(x) + (2 — n?)Y,(x) =0

which just states that Y, (x) satisfies Bessel’s equation of order n.

That Y,(x) is independent from J,(x) may be seen from the result of the
next theorem, which implies that at x = 0 Y,(#) is infinite, while we know
that J,(x) is finite.

Theorem 4.3 (Explicit expression for Y, (x) for n integral)

v = 2{ng 7 -5 > 10
P e T D e,
Zl(nﬂ'*l)'(z)-"“*

where y is Euler’s constant (see Appendix 2).

Proor

We shall omit the proof of this theorem, merely noting that the method
to follow is to use the series expansions (4.6) and (4.7) in equation (4.9).
Euler’s constant appears because of properties of the derivative of the
gamma function.
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Theorem 4.4

When n is integral, Y _,(x) = (—1)* Y,(x).
Proor

From equation (4.9) we have

Vo) = - | o) — (1) ] )|,

=—n

2 Ly~ ()]
27w+ 0 2]

1
T n
-1
JT y=n
1o 0
— 0 [ 2 e 2]
= (=1)" V().

We shall call J,(x) and Y,(x) Bessel functions of order # of the first and
second kinds respectively. (Y,(x) is sometimes called the Neumann
function of order # and denoted by N,(x).) As we have seen, J,(x) and
Y.(x) (with n considered positive) provide us with two independent

solutions of Bessel’s equation, [,(x) always being finite at x = 0 and
Y.(x) always infinite at x = 0.

4.2 GENERATING FUNCTION FOR THE BESSEL FUNCTIONS

Theorem 4.5
exp {éx(t — %)} = i ] ().

N=— 0

Proor

1 1
We expand exp {Ex(t — t>} in powers of ¢ and show that the coeffi-

cient of " is J,(x):

ol D -en ) on(3)
Z (%xt)" Z (- 3x/1) ‘x/t)’

& 0
s
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B Z Gt —1) ()=

rl sl

* 1 T+S xr+Spr—s
- z (~1)<§) —rT (4.12)
We now pick out the coeﬂ"lcient of 1*, where first we consider n > 0.

For a fixed value of 7, to obtain the power of # as t* we must haves = r» — =.
Thus for this particular value of » the coeflicient of " is

(=1 (%) o ’r!(ff;—)!'

We get the total coefficient of #* by summing over all allowed values of
r. Since s = r — n and we require s > 0, we must have r > n. Hence the
total coefficient of # is

rn (1 2r—n x2r—n B © v (x/2)2p+n
Z:.( & <> r!(r—n)!ﬁgo( D (p +n)! p!
(where we have set p = r — n)

N , (x/2)%
- ;) (=1 T(p +n + 1)p!

(remembering that both p and »

are integral, so that we may use
the result of theorem 2.3 that

P +n+1)=@+n
(by equation (4.6)).
Ifnown < 0, westillhavethe coeflicientof 1" for a fixed value of 7 given by

Q)

but now the requirement that s > 0 with s =7 — » is satisfied for all
values of 7. Thus the coefficient of #* is just

X 1\ 2r-n x2r—n x/2)2r—n
720 (1= <§) rl(r —1) Z (— Tr!FEr/i)n +1)

= (=1yJ _n(x)
(by equation (4.7))
= Jn(%)

(by theorem 4.1).
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4.3 INTEGRAL REPRESENTATIONS FOR BESSEL FUNCTIONS
Theorem 4.6

Ja(x) = .7_1[ J': cos (np — x sin ¢) dé

(n integral).

Proor

Since J _,(x) == (—1)"],(x) for n integral, the result of theorem 4.5 may
be written in the form

exp{pp(t = 1)} =1 1 2 0 (Capenigco

If we now write ¢ = ¢' so that

1 . ; ..
t——tze"‘—c*"":lequ

this equation becomes

O = Jo(x) + D {e" + (—1)e o (w).
n=1
But when #n is even
e L (—1)ne ™ = " 1 7% = 2 cos ng,
while when 7 is odd we have
¢ (—1)r e — i e~ — 2isin ng.
Thus we have

eeind _ T (x) + Z 2 cos ng J(®) + > 2isinng Jo(x)

n even n odd

= Jo®) + > 2008 2k Julw) +i > 2sin (2k — 1) Jusoa(x).

Equating real and imaginary parts of this equation gives

cos (x sin ¢) = Jo(x) + i 2 cos 2k J u(x) (4.13)
sin (x sin ¢) = Z 2sin (2k — 1) Jor_y(x). 4.14)

If we multiply both sides of equation (4.13) by cos n (n = (1), both sides
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of equation (4.14) by sinné (n > 1), integrate from 0 to = and use the
identities

. 0 (m =mn)

j cos mp cos np dp = <n/2 (m =n #0)

° 7 (m =mn = 0)

= 0 i
and J sin m¢ sin n¢ dé = { (m 7 )

0 n/2 (m=n 70),
we obtain the results

7] (%) (n even)

J: cos neg cos (x sin ¢) dep = {0 (1 odd)
0 (n even)

and J Z sin ngh sin (x sin ¢) dgp — {n] ) ool

Adding these last two equations gives
r {cos n¢ cos (x sin ¢) - sin ne sin (x sin ¢)} dp = 7],(x)
0

for all positive integral #.

i1
Hence j cos (np — x sin @) dé = n ] (x)
0
which is the required result for positive #.
If » is negative, we may set # = —m where m is positive, so that the

required result is
j cos (—m¢p — xsin @) dp = x] _(x)
0
(where m is positive).

But J: cos (—me¢ — xsin ¢) dé

= J: cos {—m(zm — 0) — xsin(xw — 0)}. —d0

(where we have changed the variable by setting

0= —¢)
= jncos {—mm + mb — xsin 6} dO
0

= J {cos (m0 — x sin 0) cos mn
[

-{- sin (mf — x sin 0) sin mz} df
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=(—1)m Jn cos (mf — x sin 0) d0
0
= (—1)ma]m(*)

(since we know the result to be true for positive m)
= 7] (%)
= g [ ().

Theorem 4.7

(2.)6') ! 3 \n—iairt n 1
]"(x)_"\/(ﬂ)r(np)j (1 — 2p=iddt (> — }).

Proor

Consider the integral I defined by
1
I :J (1 — 2t dt
-1

! nt & (ixt)”
:j_l(l_ﬁ) «Z(” dt

z ‘x)rj (1 — epir de.

r=0

Now, if 7 is odd, the integrand in J (1 — t2)»—¥" dt is an odd function
~1

of ¢, so that the integral is zero; while if 7 is even (say, equal to 2s), the
integrand is even, so that we have

1 1
j (1 — 2y dt :j (1 — g2p-byes dt
-1

- zj (1 — t2)-teoe

= J (1 — uyr—tus—t du
0

(where we have made the change

of variable u = ¢, du = 2t di)
=Bl + 4,5 + 1)

(by the definition of the beta

function; we must haven > — }

to ensure the convergence of the
integral (sce Section 2.1))
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_ T + )T + )
T T +s+1)
(by theorem 2.7).

_ ~e () D(n -+ HT(s + 3)
Thus ]—Z (25)! I‘(n+s+1)E

1 (Zs)'
= F(n + 2) Z (—— ) (25)| I‘(n +s i 1)2238'\/

(using the corollary to theorem

2.10)
(—1)(x/2)%n
I'(n +s + l)s'

)25
)
(by equation (4.6)).

— X+ B

MR

=T(n + {)}(v/=)

NI

G ) !

2

4.4 RECURRENCE RELATIONS
Theorem 4.8

Thus [Ju(x) =

() < (7)) = ¥ us(e)
(i) & BT} = 5 )
(i) Jox) = Jaa(®) — =Ja(s).

(i) Jo(%) = =Ja() — T
() Ju8) = HJark() — T}
() Jact®) + Jooal®) = ],
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Proor

(i) From cquation (4.6) we have

Ja(x) = Z (— ,rr(n _|_ r +1)\2 <x>2’+"

so that

d 1
- n 2r+2n
e {xn (%)} = z (— r'F(n _}_ r -+ 1) 22r+nx

1
— . - 2r+2n—1
ZO( Y i 7 £ e & 20

=" =1y 2r 4{n—1)
x Z;)( 1) r!(n+7')F(n+y)22r+n2("+")x +n—1

(using the result of theorem 2.2 that I'(x + 1) = xI'(x))

o 2 (— r,F(n E r)<x>2r+(n—-l)

- xn] n—l(x)
(by equation (4.6)).

(Note that in this theorem no restriction is placed on z: it may be integral
or non-integral, positive or negative.)

(ii) We have

d, Hd < . 1 .
CTD;{x ]n(x)}—azz(_l) r!F(n—i—r—l—l)Z"’”“x

< 1
Zo r'l"(n —I— r - 1) 2%rn
2,1

I

2rxtr-1

1
r'F(n + r + 1) 28+’

t

er—l

(since the factor r in the numerator makes the term with
r = 0 vanish; we remember that 0! = 1)

1 1
N z0 (AI)S-H (;+1)'F(n +s ‘}“2) 22(s+1)+n—1(s -+ 1)x2(5+1)—1

(where we havesets =r 1)
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= 1
s+1

— 25
(D™ i s 7 2y e

+1

0

il 1 x\ 2s+n+1
- Z; (=1 si0(m +5 + 2)(5)

S=

= =% a1l

(on use of equation (4.6)).

(iti) From result (i) above, by carrying out the differentiation of the
product on the left-hand side, we have

a1 (%) + 2] (%) = *"Jn (%)

which, on dividing throughout by x*, gives

n ’

:;] n(x) + ] n(x) = ] n —l(x),
and hence T = Jaa®) = ZTole.

(iv) We carry out the differentiation in result (ii) above to obtain

—nal 0] (x) + 2T w) = —2 o)
which, on multiplying throughout by x", gives

—2J®) +Ji®) = ~Taale).
Thus T = 210 = Jual®).

(v) Add results (iii) and (iv) and the result follows immediately.

(vi) Similarly, if we subtract result (iv) from result (iii) we obtain the
required relationship.

Theorem 4.9

All the results of theorem 4.8 remain true when the Bessel functions of the
first kind are veplaced by the corresponding Bessel functions of the second
kind.

Proor

We shall prove that result (i) remains true for Y,(x); a similar method
will prove result (ii), and then results (iti—vi) follow in the same way as they
did in theorem 4.8.
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Thus what we have to prove here is that (d /dx){x" Y, (%)} = 2" Y, _;(x).
We must consider separately the cases of integral and non-integral #.
(a) Non-integral =.

Here we may write

cos m]ﬂ(x) _"J—n(x)

Valw) = sin n7
so that
d
& pore)
[cosmi{xwx» ey
sm nn [COS nw.x ]n l(x) - {_ X ]——n +1(x)}]

(where we have used theorem 4.8 (i) for the first derivative and
theorem 4.8 (ii) for the second)

— 1 x*[cos nrr [ _o(%) + J —n—1)(%)]

sin n7
1

= sin {n = Dy oy VL0t o = Dy e ) T ()]

1
-—*Sll'l (n — l)n X [ Cos (71 - 1)7!]" l(x) +]—(n—l)(x)]
R (n — 1) Jua(%) — J o-1)(%)
sin (n — 1)z
= x" Y,,__l(x).
(b) Integral n.
Here we note that Y,(x) = lim Y ,(x) and that by part (a)

(d/dn){#V,(x)} = %Y, _y(x).

Taking the limit of this result as » —> n gives the required result.

4.5 HANKEL FUNCTIONS
We define the Hankel functions (sometimes called Bessel functions of
the third kind) by
H, V(%) = Ju(x) + 1Y(%)
H,(x) = Ju(x) - 1Yo(x).
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These are obviously independent solutions of Bessel’s equation. Both
are, of course, infinite at x = 0; their usefulness is connected with their
behaviour for large values of x, which we shall investigate in a later section.

Theorem 4.10

All the recurrence relations of theorem 4.8 remain true when J,(x) is
replaced by either H,'(x) or H,(?(x).

ProoF

Again we prove relation (i) only, the remainder following as before.
But we know relation (i) to hold for both J,(x) and Y,(x), so that we have

d
a.;c{xn] n(x)} = x"f ﬂ—l(x)

and -C%c{xn Yul®)} = 20 Yo ().
Hence
d .d .
a‘;c{x"] (%)} £ 1 d;c{x" Yi(a)} = a"Jua(%) & inn Y, _y(x),
so that
S & VAN = 9 {aa(®) £ 1V, )}
which, on remembering the definitions of H{"(x) and H(x), gives
S HP() = wHE ()
(taking the plus sign)
and (—ic—la—c{x"H,(f)(x)} = x"HP (%)

(taking the minus sign).

4.6 EQUATIONS REDUCIBLE TO BESSEL’S EQUATION
Theorem 4.11

The general solution of

2,
x? g—f; + xgg + (A2x% — 0%y =0

is AJ(0x) -+ BY,(ix).
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Proor
Make the substitution { = ix
dy dy
that =
so tha dx dt
d2y dZ
d —Z =
an dx? dt2

Then the given equation becomes

dy
a?z-—i—t +(t2—n2)y:0

which is Bessel’s equation of order #n, so that the general solution is
y = AJ(t) + BY, (1)
and hence, replacing ¢ by Ax, the general solution of the original equation is
y = 4] (Ax) + BY,(Ax).
Theorem 4.12
The general solution of

=20 1 (e (@ my)y =0
s Ax*J(Bx") + Ba* Y (px).

Proor
We first make the change of variable y = x°z.

Then 212 = x‘*d—z + ax* 1z

dx

d?y d2z o1 42 y—
and ik E—+2~c 1 +oc(oc~1)x %z

so that the given equation becomes

d2z dz dz
o2 T o+l 77 . o . a-1 =" o
X P + 2ax in + ol — Da*z - (1 Zoc){x i Lo z}
(P + (@ = s =0
which, on collecting terms in d%z/dx?, dz/dx and 2 becomes
2

d2z dz
22 - — .
¥, - {2ax + (1 Zoc)x}dx

+{oalae — 1) 1 (1 = 20)a -1 B2 | (2 a2y} =0
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which simplifies to

sz + xc—i— + {B%y2:x¥ — n¥ilz = 0. (4.15)
Now change the independent variable x by setting ¢ = 7.
m o fEEed
= y(y — 1)x” 33 + px¥ =L pat— 13::

d2z dz
202V —2 _ y—2
yRETE g Hyly — D

so that equation (4.15) becomes

+ y(y — l)x” + yx" dz + (B — n2y2}z =0,

y2x27 dtz
which, on collecting like terms and cancelhng a common factor of y2, gives
dzz d=
a; -+ t + {pu? —n2z = 0.

But this is just the equation of theorem 4.11 with solution

= AJ.(pt) + BY(ft).
Hence the solution of the original equation is obtained by substituting
back the relationships y = a*z and ¢ = ¥:

y = Ax*[(Bx") + Bx* Y (fx").

4.7 MODIFIED BESSEL FUNCTIONS

Consider the differential equation

dy dy

2 —_ 2 2 —

i -+ X iw (%% + n?)y =0. (4.16)
This has the form of the equation in theorem 4.11 with A2 = —1,

Thus it has the general solution
y = AJ.(ix) + BY,(ix).
Now, the solutions [,(ix) and Y,(ix) have the disadvantage of not
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necessarily being real when x is real. However, we may take the constant
multiple of J,(ix) defined by

L(x) = i-"],(ix)
and use it as one of the independent solutions of equation (4.16). It is easy
to show that it is a real function of x:

I”(x) = i""] n(lx)
l w© 1 H 2r4n
=i-n z (=1y rI0(m + 7 + 1) (g)

r=0
. . 1 '2r‘n<x)2r+n
— q1-n 1Y - 1
! Zo( Ve 1) 2
«© 1 <x>2r+n
I NN SR A b (4.17)
;rlf’(n—i—r-i—l) 2

I,(x) so defined is called the modified Bessel function of the first kind,
and equation (4.16) is called Bessel’s modified equation.

Theorem 4.13
If n is integral, I_,(x) = L(x).
ProOF
I_(x) = i"] _(ix)
= in(—1)],.(ix)
(by theorem 4.1)
= i"( —1)"i"],(x)
= (—1)*L(x)
= I().

We may obtain the second independent solution to Bessel's modified
equation by considering Y,(ix); or alternatively we may employ a method
similar to that used for the definition of Y,(x).

I,(x) and I_,(x) are both solutions of equation (4.16). When =7 is non-
integral they are independent solutions (since J,.(ix) and J_,(ix) are in-
dependent solutions). However, when # is integral I_,(x) = I,(x). Define
now

K(x) = I n(x) — 1(x) (4.18)

2 sinnz

When 7 is non-integral, this is well defined, and 7,(v) and K,(x) together
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provide independent solutions of equation (4.16). When 7 is integral,
K,(x) is indeterminate as it stands and has to be defined by

ml_(x) — I,(x)
Ko fx) = h n2  sinwm
[O/V®) — (/e
) a[cos vxl,_,

(by L’Hépital’s rule)
1
=2 - 2w

As in theorem 4.2, it may be shown that this provides a second in-
dependent solution of Bessel’s modified equation for integral values of #.
The explicit series for K,(x) may be obtained from those for J,(x) and
Y,(x) by use of the following theorem.

Theorem 4.14
K. (x) = -1"“{]n(19,) + 1Yn(1x)} = 1"+1H(”(1x)

Proor
7 I %) — L)

sin n7

Ko(x) =
(by definition (4.18))
_ wit] _y(ix) — 1—“],,(190)
T2 sin n7w
But from the definition of Y,(x) in theorem 4.2 we have that
J —a(ix) = cos nx J.(ix) — sin nn V,(ix).

Hence
Ko(x) — 7 it cos nw Jo(ix) — i"],(ix) — i" sin mw ¥,(ix)
sin nz
1 i—2n-1
_ gin+:{i Yo(ix) + — Coss’i’:m (l.x')} (4.19)
But
—icosnmw — 1~%-1 = —jcosmm - 1.i-

= —1 cos nw + i(e"™/2)~2n

(writing i = €"/2)
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= —icosmm + 1ie-"®
= —icos nx |- i(cos n — isin nx)
= sin nx.

Thus, using equation (4.19) we have

Y, (ix) + Ja(ix)}.

T

K,(x) = 5

4.8 RECURRENCE RELATIONS FOR THE MODIFIED BESSEL
FUNCTIONS

The modified Bessel functions satisfy recurrence relations similar to,
but not identical with, those of theorem 4.8. Also, in contrast to the func-
tions J,(x) and Y,(x), which satisfy the same relations as one another,
I(x) and K,(x) satisfy different relations from one another.

Theorem 4.15
) (L)) = T ().
(i) S8} = 0 s(e).
(i) 2(x) = Lna(#) — “L(x).
(i) Li(x) = L) + Tnaale).
(V) 1) = HInoa(®) + Tosal)}-
() Los®) — Tasa®) = 21,(5).

Proor

We shall prove results (i) and (ii). The remaining results follow from (i)
and (ii) exactly as in theorem 4.8.

(i) From theorem 4.8 (i) we have

d
ST} = 3T s(0).
Replacing x by ix gives

d .. . . .
i (ix){n”x" W)} - 1], (ix),



114 BESSEL FUNCTIONS

which, on using the fact that I,(x) = i—"/,(ix), becomes
1d,. . .
T {iraninl, (x)} = "xmin 1, _y(x)
and this equation, on cancelling a factor of i®*~! throughout, gives
d
cEc{xnl,,(x)} = x"I,_y(x).
(i1) From theorem 4.8 (ii) we have
d
T n = - n4+1\%)»
@) = — ¥
which, on replacing x by ix, becomes

gl o)) = i)

Thus -
1d.. . e 1
L) = — it ()
and hence
1d -
c @) = —ia ()
so that
d
—d—x{x—” W(%)) = 27, (%)
Theorem 4.16

() 5K} = —3Ko 1(0).
(ii) dgx{x—"K,,(x)} = —x"K, ,1(x).
(i) Ki(#) = —Kas(®) — Kol

(iv) Ki(x) = 1—;K,,(x) — Kni().

(v) Kl = —H{Eoa(®) + Ko a0}
() Koa®) — Koa®) = — 2Ko().

cH. 4
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Proor

Again, we prove only results (i) and (ii). Also, in the same way as in
theorem 4.9, we prove the results for non-integral # and appeal to con-
tinuity for a proof in the integral case.

(1) From theorem 4.14 we have

n(x) 1n 'HH(U(LX)

and by theorem 4.10 we know that H{Y(x) satisfies the first recurrence
relation of theorem 4.8.

Hence c%c{an D(x)} = anH (),
which, on replacing & by ix, gives

){1%"H Wix)} = imanH DY (ix).

d(ix

Thus

1d,. 2 .2,

;a{lnx”’y—trn—lKn(x)} = 1”x"7~11“”K,,_1(x)
so that

d
- E&{ann(x)} = ann—l(x)

and hence

LK) = — K ().

(ii) Similarly H{"(x), by theorem 4.10, satisfies the second recurrence
relation of theorem 4.8 so that

S PG} = —a ()
which, on replacing x by ix, gives
i ) = e HE ),
and hence, using theorem 4.14,

1 d

2 2
(1 Nar—n __‘——n—lK _ __3—n —1;7’—114-2]\’ .
. | B 1 X))y = 17X 1 X).
1 (l.\’( 14 "( )} 44 " “( )

SE O
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Therefore

) d )

i—2m-2 a{x—“Kn(x)} = —i—7-2K, (),

from which a common factor of i—2"~2 cancels to give

K} = — Ko e).

4.9 INTEGRAL REPRESENTATIONS FOR THE MODIFIED BESSEL

FUNCTIONS
Theorem 4.17
1 x\* ' —uxt 2\(n—%
(1) I(x) = (\/n)m~——)<—> Jq e (1 — g2)n-2) gt
- (n > —3).
\/ﬂ x\* [* —2t(12 _ 1\ i
(if) Ku(x) = T(n + %)<—2) L e (¢ 1)yr—s dt
(n> —% 2> 0).
ProOF

(i) By equation (4.17) we have
L(x) = i—],(ix)

and by theorem 4.7 we have

5 = rrpla) [0 oo

(n> —1)
so that

L) =1 (\/ﬂ)I‘in 2) <x>" jil (1 — 22yet gt dt
1 2\ ,1
B W@Jr%)(E) j_l(l — t¥r-temat de,

(if) We first show that the integral
P=a j etz —1—tdt (n>-3,x>0)  (420)
1

satisfies Bessel’s modified equation

,d%  dy
i 7 (x2 2\
dx2+x (22 -+ n?)y = 0.
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We have

Eii) — pxn—1 j e—zt(tz _ l)n—é dt + x» j _te—xt(tz _ 1)n—% ds
1 1

and
dzpP J‘°° ,
— — n—2 —ztf42 n—3
I n(n — 1)x ¢ (t* — D2 de
+ an"'lj- —te~o(t? - 1)t d¢
1
b Jw 12 est(g2 — 1)1 ds
1
so that
d:P  dP
2 - 2 2
Xt s +xdx (2% + n3)P

= X" jm {n(n — 1) — 2nxt + x%* +n — xt — x* —n2e 22 — 1)+ dt
1
— gt r (e — 1) — 2(n + Dty e-=((e2 — 1) ds
1
= gni1 r fwe==(t? — 1)+t — (n + )22 — 142t e==t} dt
1

©d 1
— N 41 —~xtf42 n+z
X L t{e (t 1)»+} dt

= —artifeerr — 1P
froomtnd 0’

since the integrated part vanishes at the upper limit, £ = oo, because of
the factor et (remembering that we are considering here x > 0) and at
the lower limit, ¢ = 1, because of the factor (2 — 1)*+} (remembering
thatn + 1 > 0).

Thus P satisfies Bessel’s modified equation and therefore must be of
the form

P = AI(x) + BK,(x).

We show now that 4 = 0. We do this by considering the limit as
x — oo. From the series (4.18) for I,(x) we see that I,(x) consists of a
power series with positive coefficients, and hence I,(x) — <o as x —> co.
Consider now P(x). We have, from the definition, P(x) > 0, and we shall
show that P(x) is less than some quantity which tends to zero as x tends
to infinity so that P(x) itself must tend to zero as x tends to infinity.

Since the asymptotic behaviour of an exponential dominates that of a
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power, we must have (#2 — I)»—% << e*¥/2 for x large enough (say for
x > X).
Then for x > X we have

P(x) < j " et etz gt
1

o)
= x" j e—xt/2 dt

®©
o xn|:_.2_ e——actlzjl
X 1

= 2xn—1 e—%/2

which — 0 as x — 0, again using the fact that the exponential dominates
the power.
Thus we have shown that P(x) — 0 as x — o, whereas I,(x) — co.
Hence P(x) cannot contain any multiple of I,(x) and we must have
P(x) = BK,(x).
To determine the constant B we ¢xamine the behaviour of both P(x)
and K, (x) as x — 0.

For K, (x) only the lowest power of x is important in this limit, and we
may use the definition

together with

1= 3 e i)

to see that the lowest power of x in I,(x) is

i)

and hence in K,(x) is

i )
2sinax T(—n + D\2/

Hence as x — 0, K (x) —

T {2 n . )
2T( — m)sin (B)" which, on making use

of the result of theorem 2.12 that

7T

@I — %) =

sin 7x’
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may be written in the form
(n)Zn -1
Ka(x) —
To study the behaviour of P(x) near x = 0 we make the change of
variable

t=14"2
X
1
so that dt =~ du.
X

Also, whent =1, u =0 and whent = oo, u = oo.
Thus, using equation (4.20),

@0 2\ n—}
P(x) = a» J e-z-"(g? + ‘i> 1du
0 X

x2

= 1 e % j e““(l + %?f) ~2142"—1 du.
x" 0 u

For small values of ¥ we may make the approximations e—*==1 and

<1 + 2x> =1 to obtain
P(x) — L J e Myl dy
X" Jo

1

(by the definition of the gamma function).
Thus for small values of x the result P(x) = BK,(x) reduces to

T n—1
xn xn
ivin, _ T@n
giving = Tz
But by theorem 2.10 we have
I'(2n) = 1)
so that
5 2T 4 1)
(vm)l(m)2n !
2T 4-3)

VT
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Hence

P(x) = T
giving

Ka(x) = 2,,—[‘(;—/—4_—%)1’ (%)

and thus, using the definition of P(x),

K) = 1 ‘/+ 1)<x)" Lw eat(t2 — 1yi-i dt.

4.10 KELVIN’S FUNCTIONS
Consider the differential equation
I R PP
x? e %5, — (ik2x2 J-n?)y == 0. (4.21)
This is of the form of Bessel’s modified equation
g_y 4 x \(}»2302 )y =0

with A% = ik% Hence, since the general solution of Bessel’s modified
equation is
y = AL(Ax) -+ BK,(x),
the general solution of equation (4.21) must be
y = Al (i*kx) 4 BK,(itkx).t
Also, since I,(x) = i—"],(ix), we may take the independent solutions of
equation (4.21) as J,,(i%2kx) and K,(i'/%kx).
Of course, when « is real J,(i%%x) and K,(iV/2x) are not necessarily real;
we obtain real functions by the following definitions:
ber, x = Re J,(i%/%x)
A bei, ¥ = Im J,(i%/%x)
Jn(i¥%x) = ber, x + i bei, x. (4.22)
ker, x = Re i—"K,,(i"/2x)
kei, x = Im i—7K,,(iV%x)
ik, (1” %) = ker, x + ikei, x. (4 23)

+ Strictly speaking, it is a two-valued function with values e‘"/ 4 and c"’”/ 4 We
remove this ambiguity by taking the value el™/4,



§4.11 SPHERICAL BESSEL FUNCTIONS 121

(If n = 0 the notation used is often ber ¥, etc.)
Thus the general solution of equation (4.21) is given by

y = A,(ber, kx + ibei, kx) + Ay(ker, kx + ikei, kx). (4.24)

4.11 SPHERICAL BESSEL FUNCTIONS

Consider the equation

jy + 2 4 + (k2 — I( + 1)}y = 0. (4.25)
This is of the form of the equation of theorem 4.12 with
1—2a=2
=1
Bry? = k2

a? —ny?=— [l +1)
Solving these equations for «, §, y, n gives
o= —Lpf=khy=1Ln=1+4+1}

and hence by theorem 4.12 the general solution of the above equation is
given by

v = Ax, (k) - Bx-tY, (k)
= Ai(kx) + A;y:(kx)
where we have defined the spherical Bessel functions j,(x) and y,(x) by

1 = J () 1 (426
36 = (2 Vet 27)

and A,, 4, are new arbitrary constants related to 4, B by 4,=+/(2k/n)4,
A, = +/(2k/7)B.

Spherical Hankel functions may also be defined in a way exactly anal-
ogous to the definition of Hankel functions:

P(x) = ji(x) + i) (4.28)
() = ju(x) — iy(x). (4.29)

In applications it turns out that the spherical Bessel functions of most
interest are those of integral order. We shall show that such spherical
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Bessel functions may in fact be written in closed form in terms of ele-
mentary functions. First, however, we prove recurrence relations anal-
ogous to those in theorems 4.8, 4.9 and 4.10 for the Bessel functions.

Theorem 4.18
If £.(x) is any of fu(%), ya(x), K(x) or KP(x), then

(1) dix{x"“f,,(x)} = x"+1f, _(x).

() & @) = —h ()

n-+1
x

(iii) £i(x) = f,_y(x) — £,(x).

(iv) fi(x) = 3; (%) — £ ia(%).

(v) @0 -+ D) = nfua(®) — (0 + D @)
1.

() Faa(®) + Faa(8) =~ (%),

Proor
We first prove the results for j, ().
(i) From theorem 4.8 (i) with # replaced by # + § we have

@) = 94  )
which, on using definition (4.26), becomes
i@ @} = ey
and this simplifies to
L i) = v
(ii) From theorem 4.8 (ii) with n replaced by » + } we have
(% fer=in (@)} = —x ().
Again, use of definition (4.26) gives
ety @)} = w2/
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and hence

d . .
a}{x_ Yn(®)} = — X a().
(ii1) If we carry out the diffcrentiation on the left-hand side of (i) above,
we obtain
(%) + (1 + Datja(x) = 2"+, ().
On dividing throughout by x"*1, this gives

y n+1, .
Jn(%) -+ —x_]n(x) :]n—l(x)
and thus

]n(x) - ]n —l(x) ]n( )

(iv) Carry out the differentiation on the left—hand side of (ii) above, and
we obtain

B7a(%) — mAY() = — 2 (%),

Cancelling a common factor of x—" then gives

]n(x) '“]n x) jn+1(x)
and hence
. n. .
Jal®) = ;,]n(x) — Jns1(%)-
(v) Multiply result (iii) by », result (iv) by (n + 1) and add, and we

obtain the required result.

(vi) Subtract result (iv) from result (iii), and we obtain the required
result.

The proofs for y,(x), AP (x), and &P (x) follow in the same way, since
these functions bear the same relationship to Y, (x), H{,(x) and

,‘ﬁ’r;(x) that j,(x) does to [, (x) and by theorems 4.9 and 4.10 the
various Bessel functions all satisfy the same recurrence relations.

Theorem 4.19
sm x
(1) jolx) =
.. Ccos X
(i1) yo(x) .
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(i) AP(x) = —i e—

(iv) hQ(x) =i 9;

Proor
(i) We have, by equation (4.26),

Jo(x) = /(70/2x) ] y(x) = J <%> 2 (—1y ﬁ 1)<x>zr+z
: (from equation (4.6));

but, by the corollary to theorem 2.10, we have
(2r +2)!
1) — .
O(r +1 4 1) Py 1)'\/31

so that we now have
2r +2 | o2r+%
L, 28y - 1)1

vV
Jol%) = gy Zo U@ yiva iz

e

© x‘.zr
=2 0 gy

1 = K2+l 1 .
:o_c; () Gy~ sine

(on recognising the infinite series for sin x)

(ii) We have
o J(2)e
(by definition (4.27))
(ﬁ) cos 3 [y(x) — J4(x)

2x sin Lz

(by the definition of Y,(x) in theorem 4.2)

- JE)re
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= “x/(%c) 2 (_Wr!r(—%lw m 1)@2’4

(by the series (4.7)).
But again, by the corollary of theorem 2.10, we have

D(—3 47 1) =T + )
__(Zr)!\/n

T 22y

so that

Yo%) = \/n Z (= rlérz;rl'\/n ;:
- Z (~1y f;),‘
--1>

= — = COS X,
x

(27) !

(on recognising the infinite series for cos x).

(iii) R () = jo(®) -+ iyo(x)
(by definition (4.28))
1

=_sinx —1-COSX
x x

1 . .
=—D—c(cosx -+ 1sin &)

(iv) 5 () = jo(x) — iyo(x)

. .1
= —SInx +1-Ccosx
X X

i .
—J—c(cosx — isin x)

.e7 %
=1-—,
X
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Theorem 4.20 (Rayleigh’s Formulae)
If n is a non-negative integer, then

@ 7o) = 1y o) (20%);
(i) (%) = —(— 1)nxn<1 :_x)( x)

-
i 106 = —i-1pe(t 1) (5);
(iv) hD(x) = i( —1)"x"(;c é)"(‘—’;).

Proor

We give the proof for (i) only, the proofs for the other three results
being similar. o

We shall use the method of induction; i.e., we shall assume the result
true for n = N, say, and then prove it true for n = N -- 1. Then since
theorem 4.19 guarantees the result true for n = 0, it follows that it must
be true for all positive integral z.

Assuming the result true for # = IV implies that

i) = (—tyer(2 Y0 ),

From theorem 4.18 (ii) we have

Jxnlx) = “xN%{x_ Ta(x)}

bl (2 ()

(using the fact that we are assuming the result to
be true for n = N)

= (= dx<alc ;x> <'s£1ﬁ)
= (—1)N+iy N+1<1 gx_)(% :x> (sin x)

1 d\¥+1/sin x
= (—1\N+1pN+1 il
= (=1 (xdx) ( x )

which thus proves the result true for n = N - 1,
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Hence, by the remarks above, the result must be true for all positive
integral #.

We may use the results of this theorem to write down explicitly the first
few spherical Bessel functions of integral order. We obtain in this way:

sinx cosx

jl(x) = x2 - 77
. 3 1y . 3
Jax) = ) sy peosy,
. 15 6\ . 15 1
Ja(x) = (}? — ;) sin x — <; — ;> oS X; (4.30)
cosx  sinx
) == 5% - 222,

x? x
Yo%) = _(}_ — l) cosx — 3 sin ¥
X3 x x? ’
Yo(x) == —(% — %) cos x — <1;53 — %) sin x. (4.31)
It is to be noted that because of the relationships (4.26) and (4.27) all
the above information concerning spherical Bessel functions of integral

order provides an equal amount of information concerning Bessel func-
tions of half-odd integral order.

4.12 BEHAVIOUR OF THE BESSEL FUNCTIONS FOR LARGE AND
SMALL VALUES OF THE ARGUMENT

Theorem 4.21

As x — oo we havet

(1) Ja(x) ~ <—2—>L cos {x —(n + %)g};

@) )~ (%) sinfe— o+ 05}

(iv) H(x) ~ (;?3—0)1 exp [»i{x —(n + %)g}:';

+ Here we use the symbol ~ rather loosely to mean ‘behaves like’. A more
precise definition is: f(x) ~ g(x) as a1 — a if lim (f(x)/g(x)) 1.

T
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1
(v) L(x) NW’;) e
N K 7 \}
() Ko) ~ () e
(ﬁDjA@rv%ﬁn<x——%9;
(viii) yu(x) ~ —"l—c cos (x — n?n)’

(ix) AP (x) ~ — %exp [i({x — (n7,/2)}];

1
X

(x) £D(x) ~ = exp [—i{x — (n/2)]].

PROOF

We shall first prove result (vi) and then deduce the remainder of the
results from it.

(vi) By theorem 4.17 (ii) we have
— Vr (f)n jw —xt(32 — 1yt d
Ko =1y pla) ), 7@ -

We now make the change of variable

t=142
X

so that dt = ;c du.

Also, when ¢ == 1, u = 0 and when ¢ = o, u = 0.

AN O ) o
Thus K, (x) = T T \2/ Jo e o _;_7 ;du

__n (f) _2(2>""1 J ® _u<u )"‘* nei
Starn/ ) sl gt v
e

= T = D\x - oeu 1+§—x du.

For large values of x we have #/2x small, so that we may take as an

approximation
(1 u \n—1
e
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Then

'\/7! 1 . ® —u,n—-}

K,,(x) Nm —J(Z—x) [ jo eu du
__vm 1
~ Dn + ) v(2%)

-
T \2x )

(iii) From theorem 4.14 we have

e~I'(n + %)
(by definition (2.1))

Ko(x) = g in+1H,()(ix)

129

where, if 7 is non-integral, we take the value of the many-valued function

i*+1 given by /20D,
Then
1) = 2 exp {(— /2 1 1) K

and hence, on replacing ¥ by —ix,

H() = 2 exp ((~im/2)(n + 1)} Ko( i)

Thus HY\(x) ~7—2_; exp {(—in/2)(n + 1)} <:%C)%ei”

X,

- (E)*(i)—; exp {(—in/2)(n + 1)} et
B <—2_>; et exp {(—im/2)(n + 1)} i

X
(on writing —i = e~**/2)

1
H

=(2) ewlits— 0 + D2

JTX,

(iv) Since HP(x) = Ju(x) — 1Y, (x)
and H8(x) = Ju(x) + 1Y,(x)
we have HP(x) = {(H(x)}*

~[(2) exptits - 0 + piwrz]”
(:-) exp [ -if(n 1 B)(/2)1)-



130 BESSEL FUNCTIONS cH. 4

(1) We have
Ju(x) = Re H(x)

~Re (7%) exp [ifs — (n + B)(z/2)}]
- (;f;) cos {x —(n+ %)g}-

Y, (x) = Im HY(x)
i (n% exp [ifx — ( + H/2}]

- (7%) sin {5\— (n + -g)g}.

(v) By definition we have I,(x) = i—"/,(ix) so that, by part (i) above,
we have

2\ 7
~ 17 — 1 _— 1y
L(x) ~1 <nix> cos {1x (n + 2)2}

— jon-d <n£x> Hexp {—x—(n+3)(w/2)i} +exp {x-+(n-+1)(n/2)i)]

(i1) Similarly

— i—n—}

1 .
V) &P {x + (n + 3)/2)i}
(keeping only the dominant term for x — o)
=it 1 exp (x).i+

V(@)

(writing exp (in/2) = i)
1
= V@) <

z\
o) 3 = () T
(by definition (4.26))

Qe

(by result (1) above)

_1008( Jljj)
X 2 2
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1 ( _"«_ﬂ)
—xm 2 .

i) 30 = () Y
(by definition (4.27))

SRS

(by result (ii) above)

(ix)  AD(x) =ju(®) + iyu()
(e =5) Lo (=)
= oo (o= 5) 100 (- 5))
— L exp [its — (mr/2)}

(x)  AO(x) = (BO(x)}*
~ [— al_c exp [i{x— ”(7’/2)}]:'

_ i;exp [—i{x — (n/2)}].

Theorem 4.22

As x — 0 we have

1)~ gy ]! 1)<;)"

S¥OK

131
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(i) 1 2\n
— ~I‘(n)(—) (n 20)
T X,
Vo) ~1
- Inx (n =0);

(ifi) ul) ~ (-2;—%—1)” (n integral);t

. 2n — 1)U .
(iv) yu(x) ~ — T (n integral).

Proor

~
(i) We consider the series (4.6) for J,(x). As x—> 0 only the lowest
power of x will be important. But this lowest power of x is just given by
the term with » = 0, so that we have

16~ e 3)

(ii) When # is not an integer we have

Vi) — 057 Jule) =T ()

sin nx

and we pick out the lowest power of x occurring in this expression. This
will be contained in J_,(x) and will be given by the result of (i) above, so

that we obtain
1 1 x\ "
Y, (x) ~ — — ad
&)~ G T(en 1)(2)

_ F_("_)<%)
T @ \x/?
using the result of theorem (2.12) that
]
I'@)T(1 —n) = e

When 7 is an integer we pick out the dominant term from the series for
Y.(x) given by theorem 4.3. Remembering that a power of x dominates a
logarithm, we see that

2
Yu(x) ~ - Inx (n=0)

4+ By nl! (n double factorial) we mean

n(n — 2)(n — 4) . . 5.3.1if nis odd

* L6.4.2if nis even.
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and Yi(x) ~ — }t(n - 1)!@_" (n = 0)

Il

(iii) We have from definition (4.26)

i) = o] () et
~J )

(VA 1
T2 (B — 1) .. 34TR)
(using repeatedly the fact that I'(n + 1) = nI'(n))
_ ()"
@2n+1)2n—1)...3.1.v/=
(where we have made use of the result of
theorem 2.6 that I'(}) = /=)

x’ﬂ

T @n+ DI

@ = () ¥
~J (2x>{— o9

2n
S ,\/ anF(n + 2)
1 2n

=~ r A = D — D 340
1 @n—1)@2r—3)...3.1.4/n
—V}; xn+1

@1l

xﬂ+l

4.13 GRAPHS OF THE BESSEL FUNCTIONS

We give here some graphs of various Bessel functions; they bring out
rather clearly the behaviour for large and small x discussed in the previous
section,
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Fic. 41 Ja(x),n =0,1,2

V(%)

F16. 4.2 Ya(x),n =0,1,2

ci. 4
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I(x)

I {
| 2 3 X

Fi16.43 Iu(x),n=0,1,2

Fic. 44 Kix),n=0,1,2
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Fic. 46 yu(x),n =0,1,2
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(Graphs oscillate for large x)

y =ber x

-4}

-6

Fic. 4.7 ber x, bei x

y=ker x

Fic. 4.8 ker x, kei x
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4.14 ORTHONORMALITY OF THE BESSEL FUNCTIONS; BESSEL

SERIES
Theorem 4.23

2

|| sreanen ar = S o,

if & and &, are roots of the equation [ (5a) 0.
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Proor

We first show that if &, and &; are distinct roots of the equation J,(£a) = 0
then

[ aremrem e —o.

Ja(é:x) and J,(&,x), being Bessel antions, must satisfy the following
equations

d2 d
x? w]w(gzx) + xa&]m(é:zx) + (512702 — n2)]n(§lx) =0

and

dz d
x? d—‘;é]'n(fgx) + xa]n(fax) + (Efxz - nz)]ﬂ(gix) = 0’

which may be written in the form
df{ d ., 2 -
xdx{xajn(fzx)} 4+ (Eix? — n?)Ju(bx) =0 (4.32)

and xc%c{x(—%c ],,(ij)} + (&x? — n?) J.(Ex) = 0. (4.33)

Multiplying equation (4.32) by (1/x)].(4%), equation (4.33) by
(1/x)].(£:x) and subtracting, we obtain

Jal& Jx)(%c{x%c] n(€ zx)} —J n(ffzx)%{x;—x] n(f,-x)}
+ (8 — &) %] o(Ex) JulEx) = O.

Applying the result #(dv/dx) = (d/dx)(uv) — v(du/dx) to both first and
second terms gives

R FACR L ACR) S AR ST AR

_ (%c {] n(Eix)xdix] ﬂ(E,-x)} + {é ],,(&ix)}x%c JulE,x)

+ (&7 — ENafEx) Ju(Ex) = 0
and thus

S el en} - S {nemegen)
@ — WD) = 0.
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Integrating from 0 to a, we obtain

d d ¢
o) ) — Tueodbes )|
+ (& — & JO %] (E%) J n(€5x) dx = 0.
The first term will now vanish at the upper limit since

Julk:a) = Ju(8ia) =0,

and at the lower limit because it contains a factor x.

Accordingly (& - &) j: xJ (%) J (&%) dx = 0

a
and hence J %] u(E%) Ju(&%) dx = 0
]
provided £, =&
To complete the proof we require to prove that

[ sty s = & Uttt

if Jn(éa) = 0.
Now, if we denote J,(éx) by = we have
x%" 4 xz' + (8% — n?)z =0
which, on multiplication by 22’, becomes
2x%"%" + 2x2"% + 2(E%2% — n¥)zz’ =0
and this is readily seen to be equivalent to

—d— {x%2'2 — n%? 4 E2%%2%} — 28222 = (.

x
Integrating th?s equation from 0 to a gives
[x%2'2 — n22? + &%22%]5 — 262 r xz¥dx =0
which, on replacing = by J,.(éx), becomes 0
[ e} — ey + ey

R AC T
and hence, using the facts that J,(éa) = 0 and n],(0) =0,

[a‘z{fv]"(fx)}zl “ ZEzf::x{‘],.(fhv)}ﬂdx 0,
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Hence

a 1 d 2
Jasteeox =g [{greaf ]
But, by theorem 4.8(iv), we have
d n
(T(S—x)]n(fx) = 45],.(5:0) — Jusi(éx)
which may be rewritten in the form

d n
a';c] ,,(Ex) = .7—6] n(Ex) — 5] n +1(Ex)

so that
2
_[ x{Jn(§%)}2 dx = 2k2 [: 2{; Ja(éx) — f]n+1(‘§x)} :L=a
— s e U ua)
(again using the fact that J,(&q) = 0)
2
5 Unuaéa®
Theorem 4.24
If f(x) is defined in the region 0 < x < a and can be expanded in the form

z ¢, Jn(Ex) where the &; are the roots of the equation [ (éa) = O, then

=1

2 J: xf(x) J (£ x) dx

Ci:

az{]n +1(éia)}2
Proor
We have
f(x) = Z ¢iJu(E %)
so that xf(x) J (&%) = Z cx ] u(&:x) ] u(E5%)

i=1



§4.15 INTEGRALS INVOLVING BESSEL FUNCTIONS 141

and hence
Ja xf(x) J (&%) dx = z ¢ Jax] () ] n(&%) dx
0 i=1 0
= D e g Tnn(Ea)dy
=1
(by theorem 4.23)
2

= &% Ul

Thus

2 L #f (%) (%) d
a? {Jn1(650)}2

C]':

which completes the proof.

[eed

The seriesz ¢ Jo(é:x), with ¢; as given above, is called the Bessel series

t=1
for f(x). The conditions under which f(x) may be expanded in this way are
given in the next theorem, which we quote without proof.

Theorem 4.25
If f(x) is defined for 0 < x < a and J (W x)f(x) dx is finite, then
0

w0

Z c.f n(fix)

i=1
(with c; as defined above) is convergent and has sum f(x) if f(x) is continuous
at x and 3{f(x+) -+ f(x—)} o f(x) is discontinuous at x.

4.15 INTEGRALS INVOLVING BESSEL FUNCTIONS

Theorem 4.26
2(x/2)n—m 1
R e N e AL
(n>m> —1).
ProoF
Consider the integral

1
I- j (1 - e2y-m=1ym 1] (xt) dt

(0
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and substitute the series (4.6) for J,, to obtain

nn—m—1ym+1 r (xt/z)m+2r
I=j(1‘t) t+2( r'F(m+r+1)dt

— S —_ TMJI _ j2yn—m—142m+2r+1
_ZO( 0 i 7 575 Jo 0 8 dt

— S T (x/Z)m+2r _ n—m—1l, m4r
=> (-1 w1+ +1)2j( uyr-m=ymr du

(on making the substitution u = £2).

Butj (1 — uyp-m—tymsr du

=Bn —mm+r+1)
(by the definition of the beta function, pro-
videdn —m >0and m +7» -1 > 0. This
last condition is equivalent to m > —1,
since r takes on values between zero and
infinity.)

_Tn—ml(m +r +1)

(by theorem 2.7).
) x/z m -+ 2r
Hence I=1I'(n —m) z =1y le‘((n 421 +1)

—%F(n—m(

NI%

mon O . (x/2)n+2r
) ; (=1) riln 47 + 1)

= 3T(n — m)<;>m_nf a(%)-
Thus

(x/ 2)" -

which is the required result.

Theorem 4.27

? —ax — 1
.[o e ] (bx) dx = V@ 159 (a > 0).
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Proor
From theorem 4.6 we have

Jo(x) = ;1—[ j: cos (x sin ¢) d¢.

Hence

j: e™ " o(bx) dx = j: e“"‘;lt- '[: cos (bx sin ¢) d¢ dx
1 r i: j: e %% Hexp (ibx sin ¢) + exp (—ibx sin $)} dx:' d¢

T JO
(interchanging the order of integration)

1 J’: [exp {—(a — ibsin ¢)x} n exp {—(a + ibsin qS)x}] dé

" 2n —a + ibsin ¢ —a — ibsin¢
1 (" 1 1
=Z;jo{a—ibsin¢*'a+ibsin¢}d¢

a(® 1
=5Joa2+b2sin2¢d¢°

But this last integral may be evaluated by elementary means (e.g., by
the substitution # == cot ¢) to give

T

j : e olbs) d = 2 a\/(az 5?)

a V(az + 5%
Theorem 4.28

j Jn(bx) dx = —2 (if n is a non-negative integer).
0

Proor
We first prove the result for » = 0 and n = 1, and then show that if the
result is true for n = N, it is also true for n = N + 2, thus proving the

result for all non-negative integral =.
For n == 0 we take the limit as a—- 0 of the result of theorem 4.27,

obtaining

j:_[o(bx) dx -
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For n = 1 we make use of theorem 4.8(ii), which says that

d
—&;{x—"],,(x)} = —x""J, +1(x)

so that, by taking n = 0, we have

ST = ),

and replacing x by bx gives

d
a@ o(bx) = —J(bx)

which is equivalent to

d
;-)d—x Tu(bs) = —J (%)
Hence j: Ju(bs) dx — — 11’ [ ]0(bx):|:
. 1
-

since Jo(o0) = 0 and J4(0) = 1, results which arg implied by theorems
4.21(1) and 4.22(i).
If we now use theorem 4.8(v) and integrate from 0 to oo, we obtain

e}

26] =3 [T e — oty

Remembering that # > 0 so that J,() = J,(0) = 0, we have

0— % j °° Jnr®) — Ju @)} dx

and thus

[Tty = [ sty a.
Replacing n — 1 by N and x by bx gives the result

[ Tty v = [ " 000w v

0 1 [ee]
Thus if jo Ja(bx) dx = 3 we also have J , Jw12(bx) dx = %, and hence

the proof is complete.
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Theorem 4.29
R —az 2*T'(n + o
@ J.o J(bx)an €™ dw = (\/71: L (@® + bz)n+i;
2"+ M(n + 3) ab*
V. (a2 + bz)n+ﬂ’
(a > 0).

(i) j: Ju(brjan+1 6% dx —

PrOOF
(i) From equation (4.6) we have

1 b 2rin
J(bx) = Z( Yo+ 7 1 1) <_2§>

so that

j’: Ju(br)en e dx

i (b)21-+n © u
— - 2r+2n
oy r!I‘(n +r 4+ 1)\2 jo o™ irain dx.

Butj e Pxtr+in dy
0

@ f2rion
= [ e

0 a2r+2'n+1

(writing ¢ = ax)
1

= a21‘+2ﬂ+1

——T(Q2r 4+ 2n +1),

(by definition (2.1) of the gamma function),
so that

_[ ® I (b)xn e di
(4]

_ i 1y ___1_____(é>2r+n 1 1t tme)
4 (=D ril(n +7 + 1)\2 atr+en+l n

i} i i ] 2F(2Lt21>< )* 1
) ( ) rl l‘(r | 11) q2rtintl

(using the result of theorem 2.2 that I'(n |- 1) - nl’(n)).
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But by theorem 2.10 we have

I'(2x) 2021
T " T

so that

jw T(Ba)en e d
0

22r+2n 1 2r+n 1
- Z (—1) -—2F(r 4+ 2)~—~(l—’)

2 a2r+2n+1

ann Z (—1y T(r +n 4 3)b%

a2’r+2n+1 T'
2npn I'(r + n + 1)/ b2\
~ (Ve £ Z oy HEEE)
1 1 b2\ -n—
But (a* + bz)nJr% = a2n+1<1 + ;é)

P Cnm oo Cnnd o Y

7! \a?
(by the binomial theorem)

= 1 i (‘l)f(n +PDr+28)...(n+r— %)(E)r

r! a?

a2n+1

Z( 1)rI‘(n—I—z)(n—l— Dr+3)...(n+r—1% ){b2>’
'n + ) ! \az

—1y I'(n 47 2)<b2>r
T(n + %) 7! ’
on repeated use of the result xI'(x) = I'(x -+ 1) (theorem 2.2).
Hence j . Tu(bx)xm e dx = :i/—il"(n + %) (;2—;—62)7,
_2Twrd)
Vr o (a® + bt

M L
o

a2n~}-1

CcH. 4

(ii) This result follows immediately from result (i) if we differentiate

both sides with respect to a.
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Theorem 4.30

(1) JO Ja(bx)xn+1 exp (—ax?) dx = (2 )n+1 exp (—b%/4a);

(7 b b?
(11)j0 Jn(bx)x+3 exp (—ax?) dx = Wz(n +1— ZE) exp (—b%/4a);
(a > 0).

Proor

The proof is very similar to the proof of theorem 4.29; so we shall not
give it here.

Theorem 4.31

j‘ © 0 (b > a)
(1) | sinax Ji(bx) dx = { 1 )
0 V(@ — b9 (b < a).
1
(i) j cos ax Jo(bx) dx = {W_—az) b >a)
0 0 (b < a).

Proor

We shall obtain these results by replacing the a occurring in theorem
4.27 by ia, although it should be noted that strictly speaking this is not
allowed, since the proof of theorem 4.27 depended on having the real part
of a positive. It is possible to give a procedure justifying taking the real
part of a zero, but we shall not describe it here.

Thus we have

® —iaz 1
jo e % Jo(bx) dx = D)
so that
* (7. 1
jo cos ax Jo(bx) dx — 1 L sin ax Jo(bx) dx = Vo = a¥)
L quating imaginary parts of both sides gives
0 . 1 X
J‘“ sin ax](,(bx) dx = *\’/’(aj_—bz) ifa>b

J’ sinax Jo(by)dx 0 ifa-b.
(43
¥ 1
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Equating real parts of both sides gives

o 1 .
j.o cos ax Jo(bx) dx = m ifb>a

chos ax Jo(bx) dx = 0 if b <a.
0

4.16 EXAMPLES
Example 1
Use the generating function to prove that

Jux +3) = > T®)]acr).

F==—00

We have from theorem 4.5 that

exp {%(x + y)(t - %)} = ni_w Ja(x + )t

so that J,(x -+ y) is the coefficient of * in the expansion

of exp {—%(x + y)<t — %)}

But

o + (e~ )} = on {1t - Y} {15 - )}

= i ],(x)t'. i NEC)

r=—0o0 §=—00

= > e

7,8=-— 00
For a particular value of » we obtain " by taking s = n — 7, so that, for
this value of r, we obtain the coefficient of #* as J,(x)/,._,(y); hence the
total coefficient of " is obtained by summing over all allowed values of 7.

Accordingly the coeflicient of #» is equal to z JH(x)Ju_(y) and thus

r=—100

]n(x + y) = z ]T(x)]'n-—r(y)-

= —
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Example 2

Show that J J—"(@ dx = 1
0 x

n
From theorem 4.28 we have

j:]n(x) e — 1,

But from theorem 4.8(vi) we have

2—n],,(x) = Jn-a(%) + Jo (%)

so that 2n Jo %x) J Jui(x) dx +- j Jn(x) dx
0

=1+

and hence J ]"(x) 1
n

Example 3

If &, are the solutions of the equation J (&) = 0,
S JO(sz) .
show that Z {5,]1 i)}z = —1llnx 0O <x<)

We use theorem 4.25 to write

“pnx= S ol
with - .
2|, - VIn 9] 6w dv
o JE)r

lelnxjo(rfix) dx
0

{(E)5

"T'o cevaluate the integral appearing in the numerator we use the series

(4.6) for J,:
Jo(&.x) Z C0op (r ; )<*£”>
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= 2 (1) (111)2 (%)2’”2

(and we note that since Jo(¢,) = 0 we shall have

z(_ )’(,n)z( ) —0). (4.34)

r=0

We shall also require the integral J 2" In x dx.
0
Integrating by parts gives
1

J x"lnxdx=[ 1
0 n 41

11
=0—j- xm dx
on 1

S (4.35)

1 o+ 1
Thus j xInx J, (§:x) dx
0

= 2 (-1 )r(r,) <§>27J‘ x2+11n x dx
=§( b ,.)< ) { (2r+2)2}

(using equation (4.35))
el 1 é 2r42
; ,Z‘ U e oEs)

G ,zl(_ )r(r')f)zr

52{2(“)@')() “1}

r=0

1 1oq 1
xn+1 lnx] ~J xn+l =~ dx
0 on +1 x

5?’

(using equation (4.34)).
Thus we have
1

SN

(,',-=



§4.16 EXAMPLES 151

and hence

1 _ < Jo(€:x)
e = 2 G TN
Example 4
Show that  Jo(s) Yi) — Jue) Vo) = 2

where A is a constant, and by considering the behaviour for small x show that
A =2/n.

{]ﬂ I n jn I ‘”}
dx

=Ju Y, + LY =T Yu — LY,
=1.Y, =Y,
(all functions having argument x);
but both J,(x) and Y,(x) satisfy the equation
©y" +xy + (@ —n¥)y =0
so that

d ? !
2 _
x dx{]"Y" JnY o}

=Ju{ ¥, — (&* —0?) ¥y} — {—a], — («* — n®)]u} Y,
= —x{J. Y, — J.Va}
Hence, writing [, Y, — ], Y, = 2, we have

z _ =

dv  x
or

& e,

2 x

When integrated this gives
In 2 + In x = constant
which is equivalent to
In zx = constant

and hence sy constant A, say.
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Thus z = %‘ so that, by the definition of z,

A

X

JoY, — Y

For small values of x, we have, by theorem 4.22,
2

Jo(x) ~~ 1, Yo(x) N; ln k4

so that, considering the relationship for n = 0, we have

, , 21 2
JnY” —J”Y,, ~ l.j—t.; — O;l[ln X
_2
T
Hence
2_4
nx  x
.. 2
giving 4= -
and thus
, , 2
T Yila) = Jul) Yala) = ==
Example 5

[ oyt =S 020 — Jus et
We shall show this by first proving that

{01 = S|S0 s}

and then integrating this relationship from 0 to x.
We have

dfe ,
(Tt E(Jn "‘Jn—l]n+l)}

T Jaw) = {J.(0)}

CH. 4
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:t(]n ]n 1]n+1) + - (zjﬂ]n J’;L—]]‘n'i'l '_Jn—l,];ﬂ)

(it being understood that the argument of all Bessel
functions here is ?)

=t(Jn ]n 1]—n+1) *’ ZJn 2(]n 1 ]n+1)
— + 1
- <7—ZT—]n_1 _]'n)]n+1 —"]n—l( n z ]”“)}
(using theorem 4.8(iii), (iv) and (v))
= t(]i —Jn—1]n+1) + "t:;'%]n—l.]n+1
_—a

Integrating from 0 to x now gives

[Jgzae= 2020 — Jareun |
= LU — T s

Example 6

Use the generating function to show that J.(—x) = (—1)"] ().
We have, from theorem 4.5,

o)} -3. s
so that ,,Z 3 Ja(—x)t" = exp [:2{ ( lt }:l
=P [ {( - lt)}]

= i Jax) ()

o
- Z (1)) (x).
N -
LEquating the coceflicients of # on both sides gives

J.C®) D))
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PROBLEMS
(1) Show that

ST ()} = T — T2

#/2
(2) Show that (i) j J o cos B) cos 6 df ~:°’“;"

y

.. — cos x
(ii) J.o Ji(x cos 6) df = PR

(3) Show that J(x)] _(*) — Ju(x)]J_a(x) = A/x where A is a constant;
by considering the behaviour for large values of x, show that

A = (2 sin nn) /7.
(4) Find the solution of the diﬁerential equation
( «/x) iy =0

which is zero at x = 0.
(5) Show that nz:U :% Tua) = Jo{v/(a® — 2ax)}.

(6) Use the generating function to prove that
1= {Jo®)}* + 2{u(x)}* + 2{Js(*)}* +
and deduce that | Jo(x) | < 1, | Ja(%) | < 1/4/2 (n=1,2,3...).

Jn+1(x) 1
(7) Show thatj dx = 2T+ ])1fn > —

(8) Prove that z Jo(Ex)tn = exp { 5 ( 9}2 wknt" 0

n=—

and deduce that I,(x) = Z %T T em(%).
m=0"""

o0

(9) Show that exp {;(t + %)} = Z L(x)tr.

=~ O

(10) Show that J,(x), Y.(x), K.(x) and I,(x) all satisfy the differential
equation

4 3 2 2 2 4 _ 2
d_y+2dy 2n* +1dYy  2n® 4 1dy (n 4n__1)y 0.

dxt  xdx3 x2  dx? x3  dx

x1
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(11) Expand x? in a series of the form Z ¢ Jo(Ax) valid for the region
0 < x < a, where 4, are the roots of the equation Jy(Aa) = 0.

(12) Use the differential equation satisfied by j,(x) to show that

Hence show that

sin {(n — m)m/2}
[ inwso) ds =

if m == n, and use L’Hopital’s rule to deduce that

j {Un(%) dx

44

T22n + 1)

Determine also the values of j Jol®)fufx) dx  (m =2 n) and

j' : ()} de.

(13) Show that

_ J2) % cos {§(n + 2k)m}
(1) bernx—z 1)'°(x ! k!C((:sz{rk’;! !
) bei,x = S (s (/2" sin (30 + 20

0 v S oy T 2

(14) Prove that
1) j ¢t ber ¢t dt = x bei’ x;

(i1) j tbeitdt = —x ber’ x.

(15) Show that, for large values of x,

2 X T .
(1) ber x ~ \/(2 ~)e V2 cos <~ﬁ —§>,

1

N b ve e [ X n)
(i1) bei x V(2rx) ¢ sin <\/2 g/



HERMITE POLYNOMIALS

5.1 HERMITE’S EQUATION AND ITS SOLUTION
Hermite’s equation is given by
dy
dx?
and in applications we are required to find solutions which are finite for all
finite values of x and are such that exp (3x2) y(x) — 0 as x — 0.

The methods of Chapter 1 are applicable, and if we try for a solution of
the form -

d_y
I 2 - — .
X + 2ny =0, 5.1

o
2x, 5) = z axstr
r=0
we find that the indicial equation has roots s = 0 and s = 1, with g, in-
determinate when s = 0, so that s = 0 gives the two independent series
solutions. The recurrence relation for the coefficients then has the form
Ar 2 2(1’ - n)
=, (5.2)
a (r+Dr+2)

This recurrence relation may now be used to construct the two series
solutions. However, from these series it can be shown that both solutions
behave like exp (x2) for large values of x. Thus they cannot satisfy the
requirement that exp (3x2) y(x) — 0 as x — co; this can only be satisfied
if the series terminate. From equation (5.2) we see that this will be so if,
and only if, # is a non-negative integer, for then a, ., and all subsequent
coefficients in the corresponding series will vanish. We shall now write the
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series in descending powers of x. Using equation (5.2), rewritten in the
form

WD+
r = 2(11 — 1’) T+2y

we obtain the series

- . (—1)112 n(n——l)(n—Z)(n~—3)n_4
( ) (n-—2r+1)n2r
1y 2.4, +“}
Uin)
G”Z( l)r 2)r24(n—22r+1)n21

In if n is even
here [§n] = { °
(where [$n] {%(n — 1) if n is odd)

n—2r

[in] n'

(—1) ST
= 2%y (n — 2r)!
The standard solution is obtained by making the choice of 2 for the

arbitrary constant a,; the solution is then denoted by H,(x) and called the
Hermite polynomial of order n:

1n)

Hy(#) = 2( Y i Z,),<2x>" . (53)

5.2 GENERATING FUNCTION

Theorem 5.1
o] t"
2tx—t
€ = ”;0 oy !H,,(x).

PRrOOF

We wish to pick out the coefficient of #* in the power series expansion
of exp (2tx — t?).
Now,

e‘.!h:—t‘ — a2tz o—1?

e e

o0

Z-g;f)r Z .__tZ)s
Y

lrl oy

r':
ra 0
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For a fixed value of s we obtain * by takingr 4 25 = n,i.e.,r = n — 2s,

so that for this value of s the coefficient of #* is just given by
Y (zx)n—Zs
=1 (n — 25)ts)

The total coefficient of 7 is obtained by summing over all allowed
values of s, and, since r =n — 25, this implies that we must have
n — 25 > 0,1e., s < $n. Thus, if n is even, s goes from 0 to 1n, while if »
is odd, s goes from 0 to §(n — 1); that is, in all cases, s goes from 0 to [§n]
with [4n] defined as above.

Thus we have:

[in]
1
coefficient of t* = (—1) —————(2x)-2
; (m — 2s)ls!
1
= ’?Hn(x)s

(by definition (5.3)).
5.3 OTHER EXPRESSIONS FOR THE HERMITE POLYNOMIALS
Theorem 5.2
Ho(x) = (1) o e
(%) = (—1)" e dx"e .

Proor

By use of the generating function of theorem 5.1 and Taylor’s theorem,
which states that

70 = > (5 )0t

n=0
we have
. o m—t':'
Hy(x) = ,:at" N =0
an
T pat—(z—t)*
[at”e ]z:o
an
— a?'| I a—(@—?
€ l:at"e :|t=0
But

2 0



§5.3 OTHER EXPRESSIONS FOR HERMITE POLYNOMIALS

so that
at"f(x —t) = (=1) —f(x —1)
and we have

an
H e (— 1\ o? L o (x—0)
) = (-ip e o]
z'an — 1zt
——(—1) € 5—x—ne

dr
—_— __1 n z!__ ___ml
(—1)rei—e

Theorem 5.3
dz n
H,(x) = 2» {exp (— - Ex—z)} x*F
Proor
1 d 2t Atz
We have 7 cﬁe =te
1d\
d h il 2 2[1;.
an ence (2 dx) € t"e
1 dz < 1 1 2\ 2l
Thos  exp (=3 ) exp (20 - 2 (i) e
_Sempay.,
= n! \2dx

I
s
—
|
—
N
3
o~
1Y)
B3
o
2
]

I

e
e—t‘+ 2tx

Expanding both sides in powers of ¢, we have

exp( 1 ;;2> nZO 2nyngn z Hn(x

(using the generating function property of theorem 5.1).

159

1 The exponential of an operator is defined by its powcer series expansion. Thus, for ex-

4\ & 1/d\" &1 de d <
ample, exp " 2’ Al de : Zn' dn 9° that exp dx f(x) - - z
n 0 n

n 0 (1)

1 drf
n!dx"
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Equating the coeflicients of #* on both sides now gives

foo (i) o0 =T
<P 4 dx? nl  n!

1 d2
H,(x) = 2~ {exp (~-4~_ aﬁ)} xn.

5.4 EXPLICIT EXPRESSIONS FOR, AND SPECIAL VALUES OF, THE
HERMITE POLYNOMIALS

and hence

We may use either the definition (5.3), or theorem 5.2 or theorem 5.3 to
write down an explicit expression for the Hermite polynomial of any order
we choose. For the first few orders we obtain

Hyx) =1

Hy(x) = 2x

Hyx) =4x? — 2

Hy(x) = 8x® — 12x

H,(x) = 16x* — 48x2 4 12
H(x) = 32x% — 160x3 - 120x.

Theorem 5.4

Ho0) = (-1 & 1 0) =0,

Proor
From the generating function of theorem 5.1 with ¥ = 0, we have

PR t"
et = ZOH,L(O)n—!

which, on expanding the left-hand side in powers of ¢, reduces to

EH)” 2 H,(0),

Equating coefficients of corresponding powers of ¢ on both sides gives
H,(0) =0 if n is odd

(which is equivalent to H,, +1(0) = 0 with n a non-negative integer) and

(- 1)" — = Hyu(0)

(with # a non-negative integer)

(2 (2n)!
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which yields
N (2n)
Hy(0) = (1)
5.5 ORTHOGONALITY PROPERTIES OF THE HERMITE
POLYNOMIALS
Theorem 5.5

r_ow " H, (x)H,(x) dx = 2"n!(/7)0 -

Proor
We have e BT z Hn(x)
and e B — z H, (x)

S0 thatj e ™ H,(x)H,(x) dx is the coefficient of (#"s™)/(n!lm!) in

0
the expansion of J e D g SR
—
But

= " jfoo exp {—x% -+ 2(s + t)x} dx
= e [ exp [ (o 4 O (s 0 dy
= |7 e [—fr — (s + 9y dv

= e™ j exp (—u?) du
(changing the variable of integration tou = x — (s - 1))

et/
by the corollary to theorem 2.6
y y

A ZnSntn
n!
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Hence the coefficient of (1%s™)/(n!m!) is zero if m = n and is (4/7)2"n!
when m = n.

® \ 0
Hence j_w e™* Hy(x)H,(x) dx = {( V7)2rn!

or, making use of the Kronecker delta,

j : =t H () Ho(x) dx = (/)27

ifm=n
fm=mn

5.6 RELATIONS BETWEEN HERMITE POLYNOMIALS AND THEIR
DERIVATIVES; RECURRENCE RELATIONS

Theorem 5.6

(i) Hy(x) = 2nH,_y(x) (n > 1); Hyx) = 0.

(i) Hy1(x) = 2xH,(x) — 2nH, _(x) (n > 1); Hy(x) = 2xH(x).
Proor

(1) If we differentiate both sides of the generating function relationship
with respect to x, we obtain

< 0 d
,,Z_O Hn(x);! = 5 &P (2tx — 12)
= 2t exp (2tx — t2)

o tn
— 2t Zo Hy#)~

2 1
=2 Zo Hn(.X')—;r

o m
—2 Zl Hol) =y
Equating coeflicients of t* gives for n = 0
Hyx) =0
and, forn > 1,
H(x) _2H, (%)
nl (m—1)
which reduces to
H,(x) = 2nH,_,(x).
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(ii) Differentiating both sides of the generating function relationship
with respect to ¢ gives

d d < "

_ _ 12y —

3 &P (2t — t?) = P g o
and thus, performing the differentiations,

@x—mn@@mwﬂy_EjmnlAn

We now note that the term with # = 0 does not contribute to the
summation on the right-hand side (we remember that 0! = 1) and thus,
on use of theorem 5.1, the above equation becomes

2« 1) Z T H,(x) = Z )

which is equivalent to

v > L) 2 Z M) = 2( H.(%)

n=0

which may be written in the form

2x Z :;!Hn(x) —2 Z (ni—nl)!Hn_l(x) = ZO :;!H,,H(x),

n=0
Thus, equating coeﬁiaents of t* for n > 1, we have

2H, (x 1
which on multiplying throughout by n! becomes
2xH,(x) — 2nH, _1(x) = H, 1(x).
Similarly, equating coefficients of ¢° gives

2xH(x) = Hy(x).

5.7 WEBER-HERMITE FUNCTIONS

An equation closely related to Hermite’s equation is

dz
54—y =0, (5.4)

If we make the substitution

y =z¢ e

sF M
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we find that the above equation reduces to

d2z dz
o 2x— +@— 1z =0. (5.5)

This is Hermite’s equation of order # with 2z = 4 — 1. If, as is usually
the case in applications, we are looking for solutions of equation (5.4)
which are finite for all values of », we must have a solution of equation (5.5)
which does not tend to infinity any faster than exp (x2/2) as x tends to
infinity, and by the discussion of Section 5.1 this implies that (4 — 1)
must be integral. With #n = {(4 — 1) the solution of equation (5.4) is then
given by

Y, (x) = e /% H,(x).
W.(x) is called the Weber-Hermite function of order =.

5.8 EXAMPLES
Example 1
Prove that, if m < n,

mnl
dxm{Hn( )} = (——“—T —m(‘x)
From the generating function of theorem 5.1 we have that
(&)
is the coefficient of #*/n! in the expansion of
(;7";) exp (2tx — 12).
But ;—:;‘ exp (2tx — 1?) = (2t)™ exp (2tx — t?)

[+ ¢] t"
= 2mn > —H,()
n=0
< 1
— Zm Z n n(x)tn+m

z (r m)! 4 _,,,,(x)t’

settlng r=m - n.
The coeflicient of #* is therefore

1
2 oy ()
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and hence the coefficient of #*/n! is
nl

2yt

which proves the required result.

Examplé 2
Evaluate j x e H,(x)H,(x) dx

We have, from theorem 5.6(ii)
$H,(®) = nH,—i(x) + }H, (%)
so that
j e Hy(x)H,(x) dx
— J e (nH, (%) + Hy o 1(6)}Ho(x) dv
=n2""Yn — DIV _1, m + 3.20n + DY V7)0ns1, m
(by theorem 5.5)
= (V/m)2" 0y 1w + (VA2 (1 + 1)10, 11, me

Example 3

__2 J“’ ot I
Show that P,(x) = vl Jo " H,(xt) dt.
From equation (5.3) we have

—— 1\ n—2r
Ho(x) ;( 1Y s — 2
so that
2 j'°° = I
W 0 [ A ,,(xt) dt
— __2__‘[00 n o —tt Ij] _ n! —n—2ryn—2rgm—2r dp
-~ (va)n! (=1r ri(n — 2r)!
tin] n—2r Tam —2r O
- 2t +1(,:i);3€__2_ I et pen—2r (¢
¢ (Vayrl(n —2r)t Jo
H"J n- 2ril Tant =271
2D e ey

<o (Va2 ”
(by theorem 2.4)
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&L 2n-2r(_pyan-2r (20 — 20)!
— (VA)rl(n — 2r)! 22n=2r(n — 1)1
(by the corollary to theorem 2.10)
[in] |
= > (-1y g 2
2*ri(n — 2r)(n — r)'

n—2r

= Z(Ex)’
(by equation (3.17)).
PROBLEMS
(1) Show that I e (H(%)}* dx = (va)2nl(n + }

(2) If f(x)is a polynomlal of degree m, show that f(x) may be written in
the form

f(x) = > oH{)
r=0
1 ® s
where ¢ = i J_w e f(x)H,(x) dx.

Deduce that j e~ f(x)H,(x) dx = 0 if f(x) is a polynomial of de-

-~
gree less than 7.

(3) Show that ™ = Tzn j e~ " cos 2xt dt.
0

By differentiating this result 2z times with respect to x, show that

4+l __ 1Y &% @
H,(x) = —2——(\—%— L e~ 12 cos 2xt dt,

and obtain a similar expression for Hy, ().

Deduce that H,(x) = 2(=iy e j e i g d,

'\/ 4 —
(4) Use the result of problem 3 to show that
,.(x)H,,(y) - 2xyt — (x* + ¥

n=0

and deduce that

z {II;';SC!)} = (1 — 312 exp {2x%/(1 + 1)}



PROBLEMS 167

(5) Use the result of problem 4 to show that

@ [ @@y e dv =200 + B

. 1 jw {Hn(x)}z e % _ on (1 - x2>n e~
(ii) 2ol ) i 1 4 a2 dx = o\l +x2/ 1 +x2dx'
(6) Prove that

() 20¥,_1(x) = xW(x) + Po(x);
(i) 20%4(3) — 20%, (x) — Yool
(i) W) = 2¥,(x) = Yias).

(7) Evaluate

G) j : Y (x)¥o(x) di;

(ii) j: ¥, (x) () dx.
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LAGUERRE POLYNOMIALS

6.1 LAGUERRE’S EQUATION AND ITS SOLUTION

Laguerre’s equation is
dy
dx?
and in applications we usually require a solution which is finite for all
finite values of x and which tends to infinity no faster than €%2 as x tends
to infinity.

The methods of Chapter 1 apply, and if we look for a solution of the

X

d
+ (- x)d—i Ly =0 (6.1)

form z(x, s) = Z a, x*+" we obtain an indicial equation with double root
r=0 ’
s = 0, and the recurrence relation

a (s +7r—mn)
(s +r+ DY
The two independent solutions are then given by

0%
2(x,0) and [55:}8=0.

The second of these we know from Chapter 1 contains a term of the form
In x, and so is infinite when ¥ = 0. Since we require a solution finite for
all finite ¥ we can only obtain this from z(x, 0). In this case the recurrence
relation takes the form

Ary1 =

Gryy = Gy (erf% (6.2)
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However, the infinite series obtained from this relation may be shown
to behave like e* for large values of x, so that, from our remarks above, it
does not behave well enough as x tends to infinity. The way round this
difficulty is to make the series terminate, and from equation (6.2) we see
that this 'happens if # is a positive integer. For, in this case, a, >0 but
a, ., and all subsequent coefficients will vanish. In such a case the relation
(6.2) is best written in the form

=)

Aryy = ( + 1)2

and we obtain the solution

n nn — 1

yn—1) ... (n—7r+1) }
+(—1) )2 x4 ...
(the highest power of x being x")

:aoz(Al)Tn(n—l)...(n—qul)xr

“~ (r1)?
S n!
= 2 G

We define the standard solution as that for which a, = 1; we shall call it
“the Laguerre polynomial of order #, and denote it by L,(x):

Ly(x) = Z( 1y ﬁw (6.3)

r=

6.2 GENERATING FUNCTION
Theorem 6.1

exp {—uxt/(1 —1)} - i L, (x)t.

T 1 <
Proor
We have
1 = 1( xt )’
{ —_— o RO
(1 oL/l =0k t)Zor! 1 ¢
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1
But (————1 oy
r + D+ 2) (r + 1)(r + 2)(r + 3)23
T 31
+ ...
(by the binomial theorem)

=14+ +1)+

o (r+s
-2

so that we now have

 exp {—xt/1 — )} = z (—1y (Z ?)-283

For a fixed value of r the coefficient of £ in this expansion is obtained by
takingr + s = n, i.e., s = n — r. Thus, for this value of r, the coefficient of
t* is given by

XTI,

n!
U oy — ™

The total coefficient of ¢ is obtained by summing over all allowed values of
r. Since s = n - r, and we require s > 0, we must have r < n. Hence the
total coefficient of #* is given by

2 Gyt 9
(by equation (6.3)),
which proves the required result.

6.3 ALTERNATIVE EXPRESSION FOR THE LAGUERRE
POLYNOMIALS

Theorem 6.2

L(x) = (x” e™)-

Proor
Leibniz’s theorem for the nth-derivative of a product states that

dr . n! d"—u dro
) = 2 o
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so that we have
e dn o~ e dn—r dr .
AE ) = 0 2 e e
But '

dr
e =1 (g —p + "7

q! _
T (¢ —p)'xq "

and hence we obtain

n'dx"( wre™) = Z (n ——r)'r' 7' ¥(—1)ye

—§< (:'>2(n Yo — )t

= Ln(x)
(by definition (6.3)).

171

6.4 EXPLICIT EXPRESSIONS FOR, AND SPECIAL VALUES OF, THE

LAGUERRE POLYNOMIALS

We have an explicit series for L,(x) given by equation (6.3). For the first

few Laguerre polynomials this gives
Lyx) =1
Li(x) = —x +1

Ly(x) = 21'(x2 —4x + 2)
Ly(x) = l'(—x3 + 9x2 — 18x + 6)
Ly(x) = (x4 16x3 + 72x% — 96x 1 24).

Theorem 6.3

Q) L) 1.
(1) 1.,(0) n.
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Proor
(i) Set x = 0 in the generating function of theorem 6.1 and we obtain

@ 1
g L0}t = —

Y
n=0
(using the binomial theorem)
so that equating coefficients of ¢” on both sides gives L,(0) = 1.

(i) L,(x) satisfies Laguerre’s equation (6.1), so that we have
2

d
xd—szn(x) + (1 - x)cT;L,,(x) + nL,(x) = 0.

Setting x = 0 in this equation and using part (i) above we obtain

L;(O) +n=0
and hence L(0) = —
6.5 ORTHOGONALITY PROPERTIES OF THE LAGUERRE

POLYNOMIALS
Theorem 6.4
j e L(x)L,(x)dx = Opp.
0

Proor

From the generating function of theorem 6.1 we have

exp {—at/(1 —8)} i Ly

1—1¢
exp { —xs/(1 —s)} .
and 1 - z I (x s
so that
> e (s = e ORI Z0) exp L=/ =)
n, m=0

Thus j e~2L,(x)L,,(x) dx is-the coefficient of #*s™ in the expansion of
0

I— j“) - exp {—axt/(1 —t)} exp {—xs/(1 —s)}
—Jo 1 —1 1 —s
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e 1= gy o or (T e

N [_ L
U (D S B Ol R (T

exp { (1 + 7 1 =1

1 1
T =1 — 1+ /1= )+ /1)
1

T A= =) £l —s5) +s(1 —9)
1
T1—st
= ) s,
n=0

Thus the coefficient of #*s™ is 1 if n = m and 0 if # £ m, i.e. it is §,,,.
Hence j e 2Ly(x)L,(x) dx = 6,y
0

6.6 RELATIONS BETWEEN LAGUERRE POLYNOMIALS AND THEIR
DERIVATIVES: RECURRENCE RELATIONS

Theorem 6.5
(i) (n + DLy (%) = 2n + 1 — x)L(x) — nL, _,(x).
(ii), #L,(x) = nL,(x) — nL,_,(x).

n—1

(i) Ly(x) = — > Ly(#).
ProoOF =

(i) If we differentiate the generating function with respect to ¢ and use
the fact that d ¢ 1

atl—¢t (1—12)2

we obtain

) 1 x  exp {—uxt/(1 — 1)}
ZL,,(x).nt (‘~ t)zexp{ xt/(1—1)} — (1 =12 Q-2

n 0
which, on further use of theorem 5.1, becomes

o0

ﬁummw ZL( lﬁyimmm

n--0 n U n o0
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Multiplying throughout by (1 — #)2 gives
(1 =12 > L@t = (1 — 1) > L) Z ()
n=0 n=0

and hence

Z:o Ly()ntr=t — 2 ; L(x)nt~ + ; L, (x)ntr+1

— ZO Ly(x)y — nZ:O Ly(x)te+t — xzo Ly(%)rm.

Relabelling the summations so that the general power appears as #* in
each gives

Z Lo ()1 + D» — 2 Z La(x)ntr -+ z Lo _y(x)(n — 1)

- z Lu(x)t — Z Lo_y(x)t* — x Z L(x)r

and then equating the coefﬁments of " on both 31des of the above equation
gives
(n + 1)Ly (%) — 2nLy(%) + (n — 1)L (%)
= Ly(x) — L,_y(x) — xL,(x) (n>1)
which reduces to
(n + 1)Ly 4(x) = (2n + 1 — x)L,(x) — nL, _(x).

(i) If we differentiate the generating function with respect to x we
obtain

iL'(x)t" __t ep{-w/l -1}

1t 1—1¢
t ool
i ZO L (x)tn. (6.4)
Thus
(1 =1 > Liwer = —t > Ly
n=0 n=0
and hence

22

S L - 3> L@ = — > L
n=0 2—0 P



§6.6 LAGUERRE POLYNOMIALS AND THEIR DERIVATIVES 175

which, on relabelling, becomes

D L@t — > Li_y(w)tr = — > L)
n=0 n=1 n=1
Equating coefficients of #* on both sides of the above equation gives
Li(®) = L) = —Laa(x) (w3 1), (65)
If we now differentiate result (i) above with respect to x we obtain
(n -+ DL () = @n + 1 — L) — Li(x) — nLi (%)
and if we use equation (6.5) in the rewritten forms
Liu(®) = L(#) — Ly(#)
and L, 1(x) = Ly(x) + Ln(x),
we shall have
(n + DILix) — Lo®)} = @n + 1 — HLYx) — Li(x)

— n{L(x) + L, (%)}
This simplifies to give

—nL,(x) = —xL,(x) — nL,_,(x)
and hence
xL(x) = nLy(x) — nL,_y(x).

(iii) If, in equation (6.4), we expand 1/(1 — #) in the form Z r we
r=0

obtain
-] a0 ao
> Ly = —t p > L
n=0 r=0 8=0
(e o]
= — > L+,
7,8=0

so that L,(x) is given by the coefficient of #* on the right-hand side of the
above equation. For a fixed value of s we obtain ¢ by takingr + s + 1 = n,
i.e, r =n —s — 1, and then the coefficient of #* is —L(x). We obtain the
total coeflicient of #* by summing over all allowed values of s, which, since
we require 7 > 0, implies thatn — s — 1 > 0,ie,s <n — 1.

This means that we have

n—1
coefficient of t* = z — L(x),
8=0
n—1
and hence Li(x) == - Z L (x).

=0
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6.7 ASSOCIATED LAGUERRE POLYNOMIALS

Laguerre’s associated equation is
d2y dy

Theorem 6.6

If 2 is a solution of Laguerre’s equation of order n - k then d¥z/dx*
satisfies Laguerre’s associated equation.
Proor

Since z is a solution of Laguerre’s equation (6.1) of order » -+ k, we have
dzz dz

Differentiating this equation % times and using Leibniz’s rule for the
kth derivative of a product gives

de+2 de+1 de+1 dk

xdxk+zz+kd k+12'+(1 )d P +k —1. akz
+(n+k)—z—0
Thus
dz d*z d dkz d*z
drige TEHI TG Fage =0

which just states that d*z/dx* satisfies equation (6.6).

From the above theorem and the fact that the Laguerre polynomials
L, (x) satisfy Laguerre’s equation, it follows that (d*/dx*)L,, ,.(x) satisfies
Laguerre’s associated equation. We define the associated Laguerre poly-
nomials by this solution together with the constant factor (—1)*:

L) = (1P £ Lua(e). (6.7
Theorem 6.7
k S R o ) L
Ln(.x) = Z}(_l) (n r)'(k T r)|r| .
ProoF -

From equation (6.3) we have
ntk

n -+ k)!
Lyal®) = z S (n Jr(k — r;!(r!)zxr

r=0
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so that, by equation (6.7),

k k d* ANl * n+ k!
L) = (=1 4 20(414) (n +(k r;'(r')

dr & (n + k)!
— 1)k R 1y x7
0 g 2 G = i
(since (d*/dx*) operating on powers of x less than % gives zero)

kn+k . ( +k)' 7l
=02 DGk i oA

r==k
(since (@ /dx®)xr =#(r —1)...(r —k + 1)

_ . :! k)lxr~k)

n -+ k)!
= (= 1)"2( L)ets (n+k — e P —)s)'(k +s)|sl »
(changmg the variable of summation to s = r — k)
= (n —5)l(k - 9ist”

which is the required result.

,,.

X" -k

6.8 PROPERTIES OF THE ASSOCIATED LAGUERRE POLYNOMIALS

Theorem 6.8 (Generating function)

exp {—xt/(1 — 1)} _ i Lk(x)tm,

(1 — g+t

PROOF
From theorem 6.1

exp —xt/(l{ Z
L, (x)tr.
Differentiating both 51des k times w1th respect to x, we have

d* exp { xt/(l — 1)} < )
o : ZL,xx)t

(since L,(x) 15 a p()lyn()ml.xl of (]L;.V,I'LL nandso, if n -k, will give
zero when differentiated & times).
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Carrying out the differentiation on the left-hand side, we obtain

t \Pexp{—axt/(1 —2)} d* < ik
e
and thus, using equation (6.7),
£ S bexon
(D gy e (/L = 1) = 3 (1L

which, on cancelling a common factor of (—1)¥#, becomes

o (/0 0} S prg

(1 — gye+t
Theorem 6.9

Lix) = e”:!_k %;(e—’”x"“‘).
Proor

Since this is almost the same as that of theorem 6.2, we shall not give
it here.

Theorem 6.10 (Orthogonality property)

+ )
n' 6‘7&1’”'

f: e~ LE(x)[E(x) dv — O

Proor

Again this proof is very similar to a previous one (that of theorem 6.4)
and will be omitted.

Theorem 6.11 (Recurrence relations)
(i) L& () + LE-Y(x) = Li(x).
(i) (2 + DLE(x) = @0 4 & 4+ 1 — L) — (1 + HLE ().
(i) LY (x) = nLEx) — (n + R)LE_\(x).

(iv) LE(x) = — > LK@).
(v) L¥(®) = —LE @)

(vi) LE (@) = > LH@).
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YOOF

(i) Using theorem 6.7 we have
(%) + Li7(%)

:2("1)'@ = :)!4(;}2): Nt Z( (:l)iJ(rkk i 1J)r'r)'r' v

Z_:(_ly(n ; +f)'(k ot T z(— V@ (n'?l;i:i—)'l)!r! ’
Ty ('I),J(;k__llr mImd

:gg“”%p—xi$@1214nﬂﬂkiw*Xnin%”

1
+ (——1)” ;l—!.x”

_"21(_1), (n + & — 1) (n—7)+ k1),
- ‘m—r =Dk +r -l (k1) —71)

xn
+(=1r

< (n + R)! r+(_)n"

- 2, V= i

: (m+ R
N Z(_l —HIE + Al

=

= L¥x) -

(again using theorem 6.7).

(ii) Differentiate k times the result of theorem 6.5(i) with n replaced by
t -+ k, and we obtain

dx dr
n--k + 1)&;;Ln +1c+1(x) = (Zn + 2k + l)ﬂL"“‘(x)

=3 k{xL"”(x)} - (n k)(;i'"k'[‘nolc (%)

ind thus, using Leibniz’s theorem for the kth derivative of a product,

S¥ N
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dk dl.:
(1 + b+ D Lnaals) = @0+ 2k + 1) Lo )
k k—1

d d
bt x@Lnij(x) — ka’xk—_]‘-Ln_i_k(x)

dr
—(n + k)ax—kL"_l R

Making use of definition (6.7) we now have
(n + k4 1)(—1)LE (%)
= (2n -+ 2k + 1)(—1)LE(x) — x(—1)LEx) — R(—1)""'LE}(x)
— (n 4+ k)~ D)Ly a(%)
which, when we take account of part (i) above with » replaced by n - 1,
gives
(n +k + 1)LE ((x) = 2n + 2k + 1)LE(x) — xL(x)
+ R{LE @) — Lix)} — (0 + k)Ly (%)

and this simplifies to
(n + LY 4(x) = 2n + &k + 1 — 2)LEx) — (n + E)LE_(x).

(iil) If we differentiate k times with respect to x the result of theorem
6.5(ii) with » replaced by n + &, we obtain

da d® d*
G @)} = (1 + k) lnsi(%) — (0 + Rl a(2)

which, on use of Leibniz’s theorem for the kth derivative of a product,
becomes

d’° dx dx
w L i®) 4 ksl l®) = (1 4 R) 2L ()

dr
(B ().
Then, by equation (6.7), we have
xL¥ (x) + kLE(x) = (n + R)LE(x) — (n + R)LE_\(x)
and thus
$LE (x) = nLi(x) — (n + BLE (x).

(iv) If we differentiate & times with respect to x the result of theorem

6.5(iit) with n replaced by n 4 k, we obtain

dk n+k—1 dk

a;c;Lmk(x) = - < dka (x)
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n+k—1 dk

so that (1LY @) = — > o)

(since for v < k L,(x) is a polynomial of degree less
than %k and so when differentiated % times just
gives zero)

n—1
dr
—L; (%)
~ dak 0t

(changing the variable of summation to s == r — k)

n—1
= — z (—1)eLX(x).
8=0
n—1
Therefore LX) = — > Liw.
r=0

(v) By theorem 6.7 we have

k! r + )} X"
L ( )_ _z (-— ) (n —(Z)'(k —)%r)'r’

, (n + k)! 1
Z,Z(_” AE TG D

(the term with » = 0 vanishing on differentiation)

= o (n + k)
Z)( D “DIE 4 s+ DB

(changing the variable of summationtos =r — 1)

B "S G . LI
-2 )(n—l &+ 1+ o)t

~ —LE()
(from theorem 6.7).

(vi) Comparing results (iv) and (v) above, we have
n—1
—> Lix) = —Li*i(w)
r=0
which, when # is replaced by n + 1, gives

L (@) -+ > LA@).
r—0
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6.9 NOTATION

It is important to note that certain authors use different definitions for
the Laguerre and associated Laguerre polynomials from those given here.

Sometimes the Laguerre polynomials are defined such that the gen-
erating function has the form

exp {—at/(1 — 1)} <
SR = ;

so0 that Z,(x) thus defined is equal to n!L,(x).}
The associated Laguerre polynomials may be defined by

"
ﬁﬁ&xkﬁ

k dk
Zx) = 3 5Zu(%)
giving the relationship £¥(x) = (—1)kLE_,(x).

6.10 EXAMPLES
Example 1

Prove that L%t (x + y) = Z LH(x)L5_ ().
r=0
We have, from theorem 6.8,

iLffﬁ“)x —I-y)t" — €xXp {_(x +y)t/(1 - t)}

(1 N t)m+ﬂ+2
so that LA+ 1(x + ) is the coefficient of #* in the power series expansion
of
exp {—(x +y)t/(1 — 1)}

(1 _ t)a+ﬂ+2
But
exp {—(x +y)t/(1 —8)} exp {—xt/(1 — &)} exp {—yt/(1 — )}
1 - t)a+ﬁ+2 (1 — )2+t 1 - t)ﬂ+1

=S L S o)
r=0 8=0

(again using theorem 6.8)

e

= > L@y

7, 8=0

1+ We use & to denote alternative definitions, in order to distinguish them from
ours, but it must be remembered that authors adopting these alternative defini-
tions will use L.
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We obtain #* by taking  + s = #; so that for a fixed value of r we have
s = n — r,and hence, for this value of 7, the coefficient of #* is L¥(x)L5 _ ().
The total coefficient of * is obtained by summing over all allowed values
of r, which, since s = n — r and we require s > 0, implies that r < =.
n

Hence the coefficient of ¢ is Z LX(x)LE_ ()

r=0
s0 that L +9) = 2 L)
r=0
Example 2
Show that J,{2+/(xt)} = e—t(xt)m/zi Li(x) .,
& (n +m)!

(where ], is the Bessel function of integral order m).
We shall prove the equivalent result that

ef(xt) ™2 {24/ (1)} = Z (nL:_(Z)l

From equation (4.6) we have

Tul2/(xt)} = Ec_o: (—l)rr!(m1+ 5 {2'\/Z(xt)}2r+m

so that

eX(5t) /2] W2/ (xt)} = €!(xt) ™2 Z (—1y

r=

r+(m/2)
ri(m + r)!(xt) !

1
= z (=1y ri(m + r)!s!xrtrﬂ'

rs=0
We wish to show that the coefficient of # in this expansion is
LE() /(n + m).
'T'o obtain the coefficient of t* we take » + s = n so that for a fixed
value of r we have s == n - - r, and for this value of r the coefficient is

1

_ ri(m 1 r)i(n - Ar)lxr'
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The total coefficient is obtained by summing over all allowed values of 7,
which, since s = n — r and we require s > 0, isgiven by n —r > 0, i.e.,
r < m

Hence the coeflicient of #* is

: 1
ZO U o rim = A

1 & . (n - m)! ”
T (n+ m)! :ZO (=D rim 1 A — )
~ )

(using theorem 6.7),
and the required result follows.

Example 3

Show that J e—LX(¢) dt = e-={LE(x) — LE_ (%)}

x

Integrating by parts, we have

r e~LA(1) dt = [—e—tL;;(t)]:’ - Jw —e-t.L¥(f) di

z x

— e=Li(x) + r L (1) dt

© n—1
= e~*Lk(x) — j e-”{ Lf(t)} dr
(by theorem 6.11(iv)).
Thus

) -1 .
j LKD) dt 4> j e—LX1) dt — e~=LX(x)
z pny RV
and hence

> j " LX) dt = e~=Li(x). (6.8)
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Therefore
@ *. 7=l
j Lt dt = J LKD) dt — > j e-tL¥(f) dt
® r-0v7% r=0""%
= e~*L¥(x) — e—=Lt_,(x)
(by equation (6.8) above)
= e*{Ly(x) — Li_i(x)}
PROBLEMS

(1) Show that L,/(0) = in(n — 1).
(2) If f(x) is a polynomial of degree m, show that f(x) may be expressed
in the form

f(x) = z'": L ()
with ¢ = j: e—*L(x)f(x) dx.

0ifk<n

Deduce that J (—1)ynlif bk =n.

0

e~k L (x) dx == {

(3) Prove that

* Iyl
jo (x — t)n'Ln(t) dt = (’h—gj}.__i,),!xmﬂllzzﬂ(x)‘
(4) Show that
2%k k)1 .
1) = 0 gt | (= (08 .

(5) Prove that
n!:;ﬁ{c%xkl,,‘;(x)} = (m + n)le~® xF-m LE-m(x).
(6) Show that

"
j. ¢ FaR LA dw (o 1{1! )(Zn ki1

)
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(7) If Li(x) is defined for non-integral & by the generalisation of the
result of theorem 6.7

by & TmAk41)
Lix) = ;(“l) (=N + 7 + D)l

1
show that LY*(x) = (—1)* Weﬂ en11(V/%)

r

1
and L Y3(x) = (—1)» ﬁn—!H'”(vx)'
(8) With L¥(x) defined for non-integral & as in problem 7, show that

Dkt 1H1) (* 0
L()l(n + & + 1) (1= )T L(x) dt.

L) =



CHEBYSHEV POLYNOMIALSH

7.1 DEFINITION OF CHEBYSHEV POLYNOMIALS; CHEBYSHEV'S
EQUATION

We define the Chebyshev polynomials of first kind, T',(x), and second
kind, U,(x), by
T,(x) = cos (n cos—1 x) (7.1)
and U,(x) = sin (n cos—' x),] (7.2)
for n a non-negative integer.

Theorem 7.1
() Ta(®) = $l{x +iv(1 — 2D + {x —iv(1 —#)}.
(i) Un(*) = —il{x +iv(1 =2 — {x —iv(1 — 2]
Proor
(i) Let us write ¥ = cos § and we obtain
.T(x) = cos (n cos™ cos 6)
= cos nf
1{ein6 + e—ine}
HE" - )
7{(cos 0 + isin0)* + (cos § — isin 6)"}
=M +iv( =2 + {x —iv(l — 23

(i1) The proof is 51m11ar to that of (1), and so wxll not be glven

II ll !l

1 The transhtcmtlons T(.heblchef I'(.hebu,hcff and Tschebyschcﬁ' are also
found.
1 Sometimes the Chebyshev polynomial of the second kind is defined by

Un(x)  sin{(n {Dcos a}/ V(1 =& {1/~ x) /Ui (%)
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Theorem 7.2
[3n] |
0 L) = ,_ZO( y (zr)l(n 2 )|( — xR,
[2(rn—1)]
@) U = 2 I g gy~ — 1~

r=0

2)r+ixn—2r—-]

Proor

(i) From theorem 7.1(i) we have
Tux) = 3[{x + iv(1 — a3 £ {» —iv(1 — x%)}]
_— %!: ; ncrxn—r{i,\/(l _ xz)}r + 1:2 n Txn—r{“i\/(l . x?)}rJ

(by the binomial theorem)

1< .
—5 ZO "Canr(l — a2y 2 {1+ (—1)}.

Now, when # is odd (—1)" = —1, so that 1 4 (—1)" =0, and when 7
is even (—1)" =1, so that 1 4 (—1)" = 2. Hence we have

T, (x) =1 > rCarr(l — w2,
r even, <n
But if 7 is even we may write 7 == 2¢ with s integral, and the requirement
v < n means that s < n/2. This, since s is an integer, is equivalent to
s < [n/2] with [n/Z] as defined before, namely the greatest integer less
than or equal to n/2.

Thus,
[4n]
Tox) = "Cosx—2(1 — x2)7 128
§=0
[5n] n' \ 1 \ 1
= 2 o g I

(ii) The proof is similar to (i) above.

We may use theorem 7.2 to write down the first few Chebyshev poly-
nomials:
To(x) =1, Uy(x) = 0;
Ty(x) = x, Uix) = v/(1 — x%);
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To(x) = 2x% — 1, Uyx) = v/(1 — x?)2x;
Ty(x) = 4x® — 3x, Us(x) = /(1 — x*)(4x% — 1);
Ty(x) = 8xt — 8x2 + 1, Uyx) = v/ (1 — x2)(8x® — 4x);

Ty(x) = 1625 — 20&3 + 5%,  Uy(x) = +/(1 — x?)(16x% — 12x2 -+ 1).

We note that U,(x) is not actually a polynomial, but is instead a poly-
nomial multiplied by the factor 4/(1 — x2), whereas %,(x) as defined above
is a polynomial of degree 7.

Since T,(cos6) = cosnb and U,(cos ) = sin n, we note that the
Chebyshev polynomials provide expansions of cos #6 and sin #0/sin § in
terms of powers of cos 6.

Theorem 7.3
T,(x) and U,(x) are independent solutions of Chebyshev’s equation

Proor

We give the proof for T,(x); the proof for U,(x) is similar.
We have, from definition (7 1),

ﬂ(x) I o8 (7 cos—1 x)

= —sin(ncos~!x).n.

Y (1 /(1 — %)
(remembering that (d/dx) cos—1x = —1/4/(1 — x?))

— nV(l—l—x_z) sin (n cos~1 x).
Also, ,
d2
BFT"(")
—n
= (’1T?)?/—z sin (n cos—1x) |- (1 — 2)1/2 cos (n cos™* x). (1 — a2z
nx n2

(1 2y sin (n cos—! x) (1 cos (1 cos 'x).
x?)? x?
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Hence
d2T,(x dT,l x
(1 =)o S
nx .
= (l_—x—z)l“’- sin (n cos—! x) — n?® cos (n cos~! x)
nx .
— (m sin (n cos— x) +4- n2 cos (7 cos~1! x)

which proves the required result.

CH. 7

The fact that U,(x) and T,(x) are independent solutions follows from
observing that T,(1) = 1 while U,(1) =0, so that U,(x) cannot be a

constant multiple of T,(x).

7.2 GENERATING FUNCTION

Theorem 7.4
O g = T 2 2, T
(ii) l‘——(ﬁ: )t2 = 12) U, a(x)tm.

Proor

Again we prove only result (i), the proof of (ii) being similar.
Let us write x = cos 8 = (e’ + e7!%), so that we have
1 — ¢ 11—z
1 —2tx+22 1— (9 + e+
1 —1¢2

S ey

=1 —1?) Z sy Z (e~ %)

(by the bmomlal theorem)

2]
=(1 — ) Z =987 4s

r, 8=0
o0 (=)

_ z eir— prts _ z = 8)0gr a2

rs=0 r8=0
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We wish to pick out the coefficient of #* in this summation and show
that it is T'(x) when z = 0 and 2T,(x) otherwise.

We consider the cases # = 0 and # = 1 separately, since for these values
of n we obtain #* from the first summation only, whereas for #n > 2 we
obtain " from both summations.

n = 0 is obtained only by taking r = 0 and s = 0 in the first summation,
so that the coeflicient of 0 is

000 — 1 = Ty(x).
n = 1 is obtained by taking eitherr = lands =0orr =0 and s =1,
so that the coefficient of 2! is
e® + e =2cosh
= 2T(x)

(remembering that T,(x) = T,(cos 6) = cos nf).

For n > 2 we obtain the coefficient of #* by taking r + s == (i.e.,
s = n — r)inthe first summationandr +s + 2 =n(ie,s =n —r — 2)
in the second summation. The coeflicient of ¢* is therefore
n~—2

n
{r—(n—"30 __ i{r—(n—r-2)}0
€ €

r=0 . r=0
n n—2

— im0 z ei2r _ o—in—20 Z oi2r0
r=0 r=0
i20\n+1 i20\n—1

T— ()T g 1 — ()

1 — ot 1 _ o0
(summing to n + 1 and n — 1 terms, re-
spectively, the two geometric series which
both have the common ratio e*)

—in® ei(n+2)9 e—i(n—2)0 . einﬁ

— e—-in@

€

. IR o2l - 1 — 2P
e—lne(l . e2ie) . einﬂ(l _ eQiG)
= 1 — &2° T et

(on rearranging the terms)

- ein + e.—inﬂ
= 2 cos nl
.= 2T(x),

(again remembering that T,(x) - T,(cos 0) == cos n0)
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Theorem 7.5 (Special values of the Chebyshev polynomials)
(@) T.(1) =1,
To(—1) = (1),
T5(0) = (1),
T4n14(0) = 0.
(ii) Un(1) =0,
U(-1) =0,
U,,(0) == 0,
Ujgni1(0) = (—1)

Proor
Again we prove results (i) only.
Setting x = 1 in definition (7.1) gives
Ta(1) =cos(ncos'1) =cosn.0 =cos0 = 1.
Setting x = —1 gives
To(—1) = cos (n cos—! —1) = cos nw = (—1)".
Setting x = 0 gives

T,(0) = cos (1 cos—1 0) = cos ng

/O if n is odd
(=172 if nis even.
Thus all four results are proved.

7.3 ORTHOGONALITY PROPERTIES

Theorem 7.6
1 0 mZEn
(1)‘[ w)dxz n/2 m=mn =0
~1vV(1 — #7) 7T m=mn=0.

1 0 mEn
. Un®)Unlx) , ~
0 [ - {?.’/2 o

ProoF

We prove result (i) only, the proof of (ii) being similar.
If we set x = cos 0 we have
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j L Tofx) Tn(x) j T(cos 0)Ty(cos 0) C

sin 0

14/ —

n 0 do)

= J cos nf cos mH dO
0
(by definition (7.1))
= j 3{cos (n + m)0 - cos (n — m)0} dO
0
1

(provided n — m £ 0)

=0,
If n - m = 0 we have from equation (7.3)
b T (x)T,(x) o
‘[_1 T/_(I——TZ) dx = jo cos? nf) do

- j” (1 + cos 2n) df
0

1 1 . ]"
=§|:0 % sin 2n0 .

(provided n = 0)

o=
|

If n == m = 0 we have from equation (7.4)

[} B0 o [

LWL — )
—_ :’[,
and thus the proof is complete.
7.4 RECURRENCE RELATIONS
Theorem 7.7
1) 7. n+1(x) - 25T (%) + Toa(%) = 0.
(i) (1 -~ ) Ty(x) = ,—nxTn(x) 4o nT, (x).

(1) L ,,,l(a) 2xU,(x) -+ U, () = 0.
(iv) (I *¥)Uy(x) - nvl/,,(x) il (x).

Proor

Again we provide proofs for the polynomials of first kind only.

193

(7.3)

1 . 1 ) . =
= é[“;ﬁ:,“n sin(n )l — - sin(n ’”)9}0

(7.4)
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(i) By writing x = cos 0, the required result is
cos (n + 1)0 — 2 cos 6 cos nfl +- cos (n — 1)§ = 0.
However,

cos (n + 1) — 2 cos 6 cos nd + cos (n — 1)0
= cos nf cos § — sin 70 sin 6 — 2 cos 6 cos n
-+ cos 70 cos 8 4+ sin #0 sin 0
p==] 0’
the result which was to be proved.
(i) By writing x = cos 0, the required result is

d
— cos? = — —
(1 — cos?0) d(cos 6) cos nf n cos O cos nf 4+ n cos (n — 1)0.
But
d 1 d
— 082 0)——— —sin?0( — — —
(1 — cos?0) d(cos ) cos 1 = sin20 < sind a6 <8 nO)

= —sin O(—n sin nf)
= n sin 0 sin 7
and —n cos 0 cos nf + n cos (n — 1)0

= —mn cos  cos § + n(cos nf cos 0 + sin 76 sin §)
= nsin z0 sin 6,

so that the required result is proved.

7.5 EXAMPLES

Example 1

Show that /(1 — x*)T,(x) = U, i(x) — xUy(x).

If we replace x by cos 0 and use the consequences of definitions (7.1)
and (7.2) that

T,(cos B) = cos nf
and U,(cos 0) = sin nf,
we find that the result we require to prove is just
sin 6 cos n = sin (n + 1)0 — cos 0 sin nf.

But sin (n + 1)0 — cos 0 sin n6

= sin n0 cos 6 + cos nd sin 6 — cos 0 sin nf

= cos nf sin 6,
which proves the result.
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Example 2

Show that Zno To(x) = ;{l + —\—/—(—1—1—_?) Umﬂ(x)}.

Again we write ¥ = cos 0, so that we have

S Tu)

r=0
n

= > Tylcos0)
r=0

= Z cos 2r0
r=0

— RC z eino

r=0
1 s ei(‘.3n~l—‘.2)0

= Re 1 — ei2r

(using the result for the sum to n + 1 terms
of a geometric progression)
. ei(2n+2)0)(1 - e—2i0)
(1 _ eizo)(l _ e—ziﬂ)

— cos (2n + —1sin (4n + — Co8 -+ 1s81n
—-Rel 2 2)0 — isin (2 2)0}{1 20 + isin 26
- 1+1-— el o—i20

=Re(1

1 . .
= 0 eos 20 [(1 — cos 20){1 — cos (2n -+ 2)0} + sin 20 sin (2n + 2)0]
1 sin20
= 2{1 o Cos (211 + 2)0 -} Z—SIITi_ s (Zn -+ 2)0}

- 1{1 N sin (2n + 2) cos § — cos (2n - 2)0 sin 0}

sin 0

_ _1_[1 } %iv_,{(z_"_-i-_%_)”;@]
2 sin 0

1{1 o sin(2n 1 1)()}

2l ' sino

l{l U v }

2 (! x?)
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PROBLEMS

(1) Show that 4/(1 — x2)U,(x) = xTu(x) — T\, (%)
(2) Show that T, n(%) + Tp_n(%) = 2T,(x)Tu(x).

n

VT

(4) Show that 2{T(x)}? =1 + T,u(x).

(5) Show that {T,(x)}* — T, (%) T, _s(x) =1 — x2.

(6) Show that T, {Tw(x)} = TW{Tu(*)} = Tou(®).

(7) Show that {1/4/(1 — x?)}U,(x) satisfies the differential equation

(3) Prove that T,(x) =

(1 — 29528 — 3 4 — 1y =0,

(8) Use Chebyshev’s differential equation and the equation in problem (7)
above to show that

™

{in)

To(x) = Z (—1y W(Zx)" —r

and
[3(n=1)] (n )

Uns) = V(1 =) 2 (=1 i@
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GEGENBAUER AND JACOBI
POLYNOMIALS

8.1 GEGENBAUER POLYNOMIALS

It is possible to define new sets of polynomials by generalizing some of
the results already proved for the Legendre, Hermite, Laguerre or Cheby-
shev polynomials. We give here only two particularly useful sets; those
obtained by generalizing in two different ways the generating function of
the Legendre polynomials, given in theorem 3.1. We shall define the
Gegenbauer polynomialt of degree # and order 4, Cl(x), as the coefficient
of " in the expansion of

1
(1 — 2%t 4 13)*
(Note that the Legendre polynomial P,(x) is in fact equal to C}(x).)
Thus

0

(i—jﬂlt—ﬁzy = > Cirm. (8.1)

n=0

It may be shown that such a power series expansion is valid for | ¢ | < 1,
x| <land 1 > - }.

We shall omit proofs of the following propertics. All the results may be
obtained by methods similar to those used in preceding chapters.

+ Also sometimes called the ultraspherical polynomial,
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Theorem 8.1 (Power series expansion)

in) "y
Gl = 2, (i G

Theorem 8.2 (Orthogonality property)

1
J ) (1 — x2)*~1CHx)Cl(x) dx = 2~ 7 Fn + 24) )

(n + H{LA)PCE + 1)

Theorem 8.3 (Recurrence relations)
(i) (2 + 2)Chaa@) = 20 + n + DClyx) — 24 + m)Ci(x).
(ii) nC(x) = 22{xCit1(x) — Ci*3(x)).
(i) (r -+ 24)CA(x) = 24{CH(x) — xCAHi(x)}.
(iv) nCYx) = (n — 1 + 2A)xC}_ (%) — 24(1 — x?)CA=Y(x).
(v) Ci/(%) = 24CR13().

Theorem 8.4 (Differential equation)

CX(x) satisfies the differential equation

d%y dy
— x)—2 — hrld —
(1 — %875 — (22 + D - n(n + 22)y = 0.

8.2 JACOBI POLYNOMIALS

We may generalize the Legendre polynomial generating function even
further. We define the Jacobi polynomial P&f)(x) as the coefficient of #"
in the expansion of

0+8
(I—2at 29 73{1 —t+ (1 2wt + 2) PPt (125t 292
) 2x+8
M (U 2xt ) VRl — (1 — 2t + D) V{1 T2 op (1 — 2t - £2) TP
- Z PEP(x)tn, (8.2)
n=0

We note that the Legendre polynomial P,(x) is in fact equal to
PO %x).

Again the following properties may be proved by methods similar to
those used in previous chapters.
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Theorem 8.5 (Series expansions)
(@) P&P(x)
_ i T(n-tat+D(n+8+1) (x—l)r(x+1)n—f_
S Ta+r+D)I@m+f—r-+1)n—n)lrI\ 2 2
T(n+a+1)T(n+7r+a+p+1) (x—l)’
a--r+D)(m+a-+B+)m—r)r\ 2 /°

—1)"—rl‘(n+ﬂ+1)1‘(n+r+a+,3+1)(x+1>'
T@B+r+DI(n+at+B+Dm—r)lrt \ 2 /°

(i) P#2) = 2 ¢

n
(iii) P-P(x) =
Theorem 8.6 (Orthogonality property)

[* @ —wr + 2pPenePeo) dx

22T 4. 4+ Dl + 8 4 1)
T @2nta B4 Dullm e+ 1)

Theorem 8.7 (Recurrence relations)
@) 2n(x-+B-+n)(a-+B +2n—2)P%F)(x)
— (a+B+2n —1){u? B2 x(a+f4-2m)(a+ B2 —2)} P (x)
— 2a +n—1)(B+n—1)(a-+p+2n)P*9(x).

(i) PiP'(x) = 3(1 4o +B+m)P P+ ().

(iii) (x+1)PP(x) = nPEP(x)-+(B+n)PrP (x).

(iv) (x—1)PP (x) = nPP(x) —(a+m)Pi ().

(v) PP (x) = H(B+m)Py" () +(a+m) Pref ™ a)).

(vi) (a-+B+2mPP~ D (x) = (a-+-f+m)P P (x) + (e +m) PR ().
(vii) (x-+B+2m) Py~ 1P (x) = (a+B+m)P (%) — (B +m)PR().

Theorem 8.8 (Differential equation)
P> satisfies the differential equation

(1 sz)gz); 1{ « (21 2)x}§§ ba(n ta B+ 1)y =0.

As well as being related to the Legendre functions (recall that
P(x) POV CVF)), the Gegenbauer and Jacobi polynomials are
related to cach other and to the Chebyshev polynomials, In fact, the



200 GEGENBAUER AND JACOBI POLYNOMIALS cH. 8

Gegenbauer polynomials are just a special case of the Jacobi polynomials
and the Chebyshev are just a special case of the Gegenbauer:

T2 4+ Dl(n + 27) P-4

RS (7 o e O ®3)
T(x) = = lim Ca) (n>1); (8.4)
" 2 A=>0 j- ' )
Un(®) = V(1 — 5%)Cy1(#). (8.5)

These results will be proved in the next chapter (Example 5, p. 215).
There also exist relationships with the Laguerre and Hermite poly-
nomials, which we shall state but shall not prove:

Li(x) = lim P&A(1 — 2x/B); (8.6)
f—o0
H,(x) = n! lim A="/2C}{(x/+/A). (8:7)
A—>o0

8.3 EXAMPLES

Example 1
dm A — 9m F(A + m) A-lom
Show that a;q—ﬂC,,(x) =2 %) ClLim(x).
From theorem 8.3(v) we have

S i) = 2208w,

so that

a*z-Cf,( x) = ZA—C‘“(x)
= 22.2(% 4+ 1)Ci+¥(x)
= 224 + N)CiYx),
and, if we repeat this process m times in all, we obviously obtain

%}nc,’;(x) =204+ 1)A +2) ... (4 +m — 1)CH ()

T(A + m)

=2 Tty

~— Calnx).
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Example 2

Show that
P = S et 9 S — P,

Leibniz’s theorem for the nth derivative of a product gives

dd_;m{(l . x)a+n(1 + x)an}

n ! dr ® dn—r o+ 7
= 2, ! {d—xr(”x)”* }{d—x;:,u—x) }

X (=1 (a-tn)(a+n—1). .. (e+n—ntr-+1)1—x)*tm-n+r

_ Z L - F'g+n+D(e4-n+1)
T & ?_i(nvr)!(_ ) (B +n—r+1)D(a+r+1

) (1 +x)ﬁ+n—r(1 __x)a+r.
Hence we have

(z_nl?"(l —x) (1 +x)* %{(1 —aft (1 )y

(=1 Z( n!  Te+n+D)I(B+n+1)
= 2l r'(n—r)! D(a+r+1)P(B+n—r41)

Ia+n+1)(B+n+1) x—1\rfx+1\n—r
- ,Z_o I1(°‘+’+1)I1f(ﬂ+n~r+1)r!(n-r)!( 2 )(xz )

= PE()

1—x)y(1 2y

(by theorem 8.5(i)).
PROBLEMS
(1) Show that P#A(—x) = (—1)"P¥ “(x).
D +n+1)
(x, )
(2) Show that P»#(1) - T 0yt

(3) Show that
d m

d.\.m

Pm inlaifiil)
Ha, o, m
e T

"

P 1),
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(4) Use the method of induction to show that
S ) — (7 T 2DC(x) — (n 4 DO (%)
(5) Show that
PEP=0(x) — P~ (x) = PEA(s).

1 d
(6) Show that C,llt%l(X) = m alpn(x).



HYPERGEOMETRIC
FUNCTIONS

9.1 DEFINITION OF HYPERGEOMETRIC FUNCTIONS
Let us define («), (the so-called Pochhammer symbol) by
() =efz+1)...(¢ +7—1)
_ P(a + r)'
INCARN
(x)o = 1.
Then we define the general hypergeometric function

an(“h “z: LR “m; ﬁly ﬂzy L ﬂ'nv x)

(r a positive integer)

by

wF 03y %oy« o By P+ - P %) -2 EZ%E‘;)) = E;‘;"g SR

The notation

F [al) Koy o o o Ay x]
e ﬂl) ﬂz, LA ﬂn;

is also often used.

We shall show that many of the special functions encountered up to now
(and indeed many of the clementary functions) may be expressed in terms
of hypergeometrie functions. We shall confine ourselves to the two separate
cases: . n 1 (in which case the function will be called the confluent
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hypergeometric function or Kummer function) and m =2, n =1 (in
which case we shall merely call it the hypergeometric function).}

Convergence of the series (9.1) needs to be considered. The following
results may be proved using the standard techniques of convergence
theory:

(1) The confluent hypergeometric series is convergent for all values of «.

(ii) The hypergeometric series is convergent if | x | < 1 and divergent if
[ 2| > 1. For x = 1 the series converges if § > a; + a,, while forx = —1
it converges if § > a; + oy — 1.

The following theorem shows the intimate relationships which exist
between the hypergeometric functions and the special functions already
considered.

Theorem 9.1

(i) Pox) = 21«1( nn 41, 1;1—;—x>.

m (n4-m)! (1—x2)m2 ( . . L,—_’f)
(i) Pp(x) = (i—m)l  2m! Fi\m—n, mi+ni1;m+1; 5 )
(iii) Ju(#) = _if<—>n1F1(n b 2n 4 1; 2ia).

(Zn)

(iv) Hon(x) = (—1)" == o275 §; &%),

() Hapa®) = (— 1)"w
(vi) Lo(x) = Fy(—n; 1; x).

T(n +
(vid) LE(x) — %1%:})9 Fu(—n; b+ 1; ).

x 1 Fy(—n; 35 x%).

11—
(viii) Ty(x) = 2F1< 15 To_c)

31—
() Ue) = V1~ —n 115157,

F(n 4 22) ( l—x)
A _ . 1.
(x) Ci(x) = W@ mon 2050+ 4 ).

'I‘The confluent hypergeometric function ,F,(a; 8; x) is often denoted by
M(«, B, x), and the hypergeometric function ,F,(x,, «,; #; x) is often denoted by
F(ay, oy, B, x).
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F(n+oa-+1)

(xi) P{P(x) = alT(aL1)

2F1< —n, mtat Bl atl; 12’“)

Proor

In each case the result may be proved by expanding the hypergeometric
function as a series, using definition (9.1), and comparing with a known
series for the given function. We shall illustrate this method by proving
result (i) only.

We have, from definition (9.1),

1w (= + 1,1 — 02}
2F1(_n’n+1’1: 2 )‘—Z_o (1) f!
We may take # to be a non-negative integer, since it is for only these
values of # that the Legendre polynomials are defined.
Then we have
(=), =(—n)(—n+1)(—n+2)...(—n+7r—1)
=(—1lyn(n—1)n—-2)...(n —r +1)
=(—1)yn!/(n —r)! ifr <nm.
Ifr > n 4 1, then (—n), = 0, for it will contain a zero factor.
Also

r+D),=@m+D)n+2)...(n+7)
= (n + r)!/n!
and
1), =1.2.3.
=rl

so that we now have

2F,(—n,n +1;1; l_gﬁ) _ i (~1y nl (m+nll( — )

= (m—r)t n 7! 2!
: - ZO R _r)!'(r!)g (1 — =)

_ (n + 7)! ,
_ z e r)'(r')z( 1y. 9.2)

To show that this is the same as P,(x), it is easiest to write P,(x) as a
power seriesin (x - 1). We do not as yet have such a power scries, but we
use 'Taylor’s thcorem to write

DY UL (v.3)

r O

where by PU(1) we mean the rth derivative of £2,(1) evaluated at v 1,



206 HYPERGEOMETRIC FUNCTIONS CH. 9

To calculate P,"(1) we use the generating function for the Legendre
polynomials given in theorem 3.1:

v — 2tx o z B,

so that, by differentiating r times with respect to x, we have
i P (r)(x)tn — _.d_T‘ (1 — 2tx + tz)—1/2
S dxr

— (=20 (=3~ = D(—} = 2) . (= =7+ 1)L — 2t )
=21+ DG 4 2) .. G+ — (1 — 2x A 22
—1.3.5...@2r — 1)1 — 2ix + t2)~4—

(27)

— 1 2L — 2% 4 1)

Hence, setting x = 1, we have
N 7)!
ZO Po1)m = é O
_ r(2r)! o
o 2! (=1

- ‘rg')!{l + (4 20+

Lt 1)(27; 22 +3), }
(by the binomial theorem)

_t(2r)! < (27 + s5)! .

= 2 @nist ’

|
z (2r + s) pras

2r + 1)(Zr + 2)

2’r !

¢ ),
2’r' Z (n —~r)'
writing 7 + s = n.

Equating coeflicients of " gives
1 (& +m)!
27l (n — 7)!
=0 forn < r.

P(1) =

forn > r
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Hence, from equation (9.3), we have

Pox) = Z 1 m+n)lx—1y

2rl(n — )t 7!

n+r)!
z 27 ( 7’)')(7")2( - l)r

:2F1<_”,n+1§1;}%x>

(by equation (9.2)).

9.2 PROPERTIES OF THE HYPERGEOMETRIC FUNCTION
Theorem 9.2
Fy(a, B; y; x) = oFy(B, 5 ¥; x).
Proor
This follows immediately from definition (9.1):

oFa(a, B3 75 %) = Z (“();gfg)’ :'C_IT

Theorem 9.3
The differential equation

Ml—@ +&~%a+ﬂ+0ﬂ——~ﬁy—0

(the hypergeometric equatzon or Gauss's equation) has ,F,(a, B; v; x) as a
solution. If y is not an integer a second independent solution is given by
1T 1 =y B+ 1 =y 2 =y ).

Proor

These results may be proved by using the series solution method of
Chapter 1. It is found that the roots of the indicial equation are 0 and
1 - -y, so that they lead to independent solutions provided 9 is non-
integral. It is found that these independent serics solutions are just the
hypergeometric functions given in the theorem.

Theorem 9.4 (Integral representation)

lm

1
2F1(o, 575 %) /f)l ) JU O O R RY) t 1

iy 00
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Proor
From definition (9.1) we have

oFi(a, B3 v; x)

_ i T(e + NI +nT(y) »
= T@rerey +n ot
R\ MR SO Ay \ G
 D(@)L(B)L(y — B) ;, He+) Ly +r) 7!
_ I'(y) S T (0 b NBlr Y
= TG = p 2 T ¢ P IB —h A
(by theorem 2.7)

_ I'(y) N « 47 !  pw—Be1gtr—1 43 X
F(u)F(ﬂ)F(y—ﬂ);P( +).[0(1 ) t( a

(by definition (2.2) of the beta function, which
isvalidify —f>0and § +r > 0)

= ~*E(y) ' Bl p-1 S T 4 7) (aty
LA — B J ST zo e ¢
— ____I:Q})_._ ' _ H\y—=B-148-1 _ —
Ay — f) Jo(l t) P~ (1 — xt)™* dt
(using the binomial theorem).
Theorem 9.5

Each of the following twenty-four functions is a solution of the hyper-
geometric equation :

Vi
Ve

Vs

v,

Vs
Ve

= 2F1(°‘: /3; Vs x)
= (1 —ay Py —a,y — B; 7; %)

—a R %
=(1_x) 2F1(°(77 ﬁ’yyx_1>

— (1 — -8 _ e %
(1 x) 2F1<7 “)ﬂ)y’x_1>

= Fye, 50 -+ +1--p;1 —x)
=x'VFyo -1 Bl e i byl %)
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Vv, =x‘°‘2Fl(a,oc +1—9y;at+gf+1—9y;1 _}c)

Vs =x“’zF1(ﬂ+1 —hia+pf+1—p;1 —i)

Vy = (~x)‘°‘2F1<oc, a+1 —y;a+1-—8; al—)

Vio = (—ap (1 — 2y (1 7 — fu+1-5;1)

Via=(1 - x)_a2F1<“)V —Bie+1—8; 1—_1——"’5)

Vig = (—2)""(1 — x)’"““zFl(a +1—n1—-Fa+1—p r};)
Via = (-—x)"’zﬂ(ﬂ +1—y68+1 - ;10)

Vie=(—x)""1 — x)”‘“*ﬁzFl(l —ay —o; B +1—a; :—)

Vis =(1 — x)-52F1<I3, y—a;f+1—a l—ix>

1
Vieg = (—x)"7"(1 — x)y_ﬂ_lel(ﬂ +1=pl—a;8+1—a 1_:";)

Vig=2""Fa+1—9,+1—9;2—y;%)
Vig=a"""(1 — &y *AF(1 —a,1 — ;2 — y; x)

Vie=a'"(1 — x)y’“'le1<oc +1—=91~8;2—y; Zc‘i_'1>

Vi = a1 — x)y—ﬁ_lel.(ﬂ +1=91—a;2—y; x - 1)
Va =1 — 2y PF(y —a,y — B35y +1 —a — ;1 — x)
V=" (1 —a) *FF (1 —a,1 — B39 +1 —a—p;1 —x)

Vs == 22 7(1 — x)""““”zFl(y ol —asy bl Byl !>

X,

Voo A 71 x)" @ ”.J",(y A1 gy 1« 1 ]>

X,
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Proor

Each function may be verified to be a solution by means of change of
variable, direct substitution and use of theorem 9.3.

Since the hypergeometric equation is of second order, there must be
only two independent solutions, so that a linear relation must exist be-
tween any three of the twenty-four functions given above. In fact, it may
be shown that

V1 =V2:V3:V4;
Vs =Ve=V, =V,
Vo =V = Vu - Vlz,
V13 =Vu= V15 = Vi
V17 = VIS = Vig = Vi,
and Vi = Ve = Viyy = Vi

For the remaining relations the reader is referred to ERDELYI et al.,
Higher Transcendental Functions, Vol. I, pp. 106-8.

The six hypergeometric functions ,Fy(«+ 1, 8; y; &), oFy(a, B 1; y; %),
oFi(a, B; v & 1; x) are said to be contiguous to Fy(«, 8; ¥; x). It may
be shown that between ,Fi(«, #; ¥; %) and any two functions which are
contiguous to it, there exists a linear relationship whose coefficients are
linear functions of x. Since we can choose 2 from 6 in °C, = 15 ways,
there will be 15 such relationships altogether. For details the reader is
referred to ERDELYI et al., Vol. I, pp. 103-4.

9.3 PROPERTIES OF THE CONFLUENT HYPERGEOMETRIC
FUNCTION

Theorem 9.6

The confluent hypergeometric function \F\(«; B; x) is a solution of the
equation
d*y
dx?
(the confluent hypergeometric equation or Kummer's equation). If § is not an
integer a second independent solution is given by

P — B+ 152 — B; ).

d
+w—@£*w:o

x2

Proor
As for theorem 9.3 above.
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Theorem 9.7 (Integral representation)

I'(B) ' a1 gat
a).[o(l_t)ﬁ lext dt

Fifa; B; x) = (6 — )

for > a > 0.

Proor
Similar to theorem 9.4 above.

Theorem 9.8

Solutions of the equation

de 1k lom
o+t m}y=0 (9.4)

dx? x x2

are given by
y = x%—m e—x/2z’
where = 1s a solution of the confluent hypergeometric equation with
o=%—k—m and f=1-2m,

Proor

The result follows immediately on direct substitution and use of
theorem 9.6.

COROLLARY
The independent solutions of equation (9.4) are given by

My (%) = attme2,F(} —k + m; 1 + 2m; x)
and
My, _n(x) = 23" e 2 F(y — k —m; 1 - 2m; ).

Proor

Since the independent solutions of the confluent hypergeometric
equation are

(o B; %)

' BF(« B +152 - B %),
we have, from the theorem, that two independent choices for  are
JUGE kom0 2m; x)

and

and
K () kom0 2m;x),
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so that the corresponding solutions are
xt-meLF(t —k —m; 1 — 2m; x)
and
witme=/2 Fy(t —k -+ my 1 + 2m; x).
M, (%) and M, _,(x) are known as Whittaker’s confluent hypergeo-
metric functions.

Theorem 9.9
Each of the following four functions is a solution of the confluent hyper-
geometric equation:
Vi = 1F(x; B; %)
Ve=a"""Fi(1 + o — ;2 — f; x)
Vi = e Fy(B — o5 B; —x)
Vy=1u"Pe  Fi(1 —a;2— p; —x).
Proor
By change of variable, direct substitution and use of theorem 9.6.

The four confluent hypergeometric functions Fi(« 4 1; 8; x), 1Fy(e;
B + 1; x) are said to be contiguous to ,Fj(«; £; x). It may be shown that
between Fy{a; §; %) and any two functions contiguous to it there exists a
linear relationship whose coefficients are linear functions of x. Since we
can choose 2 from 4 in *C, = 6 ways, there will be six such contiguous
relationships altogether. For details the reader is referred to ERDELYI et al.,
Vol. I, p. 254 (see Bibliography).

9.4 EXAMPLES
Example 1

Show that JFy(w, f; v; 1) = gg)li(y“ );(; = g;

From theorem 9.4 we have

Fio B33 1) = Fri g |, 7 = 77—

BT
. F(y) 1 y—o—f—1
= TG — mjﬁ(l e
. Tw o
= TG — ) D)

(by definition (2.2) of the beta function)
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__ Ty TPy —«—§
I -  Tlr—«
(by theorem 2.7)
_TO'y —« =),
Ty -l —8)

Example 2
Show that

oo B3 75 %) = (1 — x)‘“zFl(“’ v =B x—i_l>

(ie., Vo = V,, using the notation of theorem9.5).
If weset7 =1 — ¢ in theorem 9.4 we have

zFl(ar ﬂ' Ys .‘X')

~ (AL — ﬂ)j (1 —tf P11 (1 --7)}"* d

= R R ( -5

= (1—x)™ (ow =B v; —xi)

on further use of theorem 9.4.

Example 3

Prove the relation of contiguity
y —1 =@y =1 —a— B)x} i B; v; %)
T =) — AxFix By + 15 %)
=y — DA — %) Fy(s B3 — 15 %) =0.
We prove this result by expanding the hypergeometric functions in

power series. Since
2 (“) (,3),
1(‘1) ﬂ Vs x) - ('}’) f'

we sec that the cocflicient of x” on the lcft-hand side above must be

(CONTD) (COM (L)
7 )()"”, 2y 1 o« /f)(y)" o 1)!'
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oy —f) Dt gy B

(+1u-s(n—1)! 1yl
+ ¥y — 1)%
=G et
2y 1P T a1
0D TG e
-1 )F(“ +m)D(B+m)[(y —1)

D)L BT (y +n—1)n!
D(et+n—1)D(B+n—1)D(y—1)

=) BTy 102y m—1)]

_ Tatn =B DG~y —1)a-tn—T)B+n—1)
F@IBTGn—D-D! L G- +n—2)
_Yy—=1—a—Py—1) G-y -Brr—1)

(y+n—2) (y+u—1)y+n—2)
—Ya+n—-1)p+n—1
Ay )((y—{—n—z))\r/j )—'ry(y—l)}
T(«-+n—1)I(B+n—1)T{y—1) 1

= T@IANG+n-DE-1)! apa—Dp+a—2) 77D

Ar(atn—1)B+n—1) —n(y+n—1)2y—1—a—f)

+nly —a)y—B) — (v +n—1)(x+n—-1)(B-tn—1)

+ nly+n—1)(y+n—2)} '
I(a+n—)+n—DI( -1yy—1)

LTy +n—2)(n—1)n(y +n —1)(y+n—2)

DA(—2n+ndn) + y{(«+n—1)B+n—1) 4 o p-+1)

—2n—1m — ne — nf — (a+n—1)p-+-n—-1)

+ n(n—2) + n(n—1)} + w(n—1)(a+L+1) -+ nof

— (n—1)a+n—1)p+n—1) + n(n—1)(n—2)]
=,
Thus the relation is verified.
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Example 4

Show that \Fy(a; f; x) = * 1Fy(f — a; f; —).

From theorem 9.7 we have

T 1
B9 = Fr j (L et
If we make the change of variable =1 — 7, we have
r
er — F(ﬂ) ' A —a—-1 n—2r
T(f — )T(a) j (1= o de

= Fi(f —ea;a; —x)
(using theorem 9.7 again).

Example 5
Show that
v A+ He + 2/1)
O ) = reatn + 7+ 1

P (@)

(i) Ty = 5 lim G0,

(i) U(x) = v/(1 — %) Cl_y(x).
(i) From theorem 9.1(xi) we have
P44 i(x)

 T(r+i-3+1) (¥ . L .1_x>
T s R G LA S SR SR
RAChehg) ( 1= x>
. n!T(A+1) o1\~ m 225 A3 5
~ Tn42a-+3) nll(22)
w41 T(n+24)

Calx)
(by theorem 9.1(x))
I‘(A - ‘)F(n |2/1) Cu

(1) From theorem 9.1(x) we have

I'(n  22) ( | .\'>
AL O .22 o .
Ch(¥) n11(22) I om0 2454 0, )
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The trouble at 4 = 0 comes from I'(24). Hence we have

7 lim ° "(x) Plim _ 1. lim T(n+29) (_ : . 1_16)
250 L 2 a0 TEn = al Il —n, n4-22; A1 5

_Mlim__1 T ( ll:_x)
=3 0 dT@h) al T E

1 1—x
~lm__* 1. 2%
20 22'1-\ 21) 2 1( —n,n; %’ 2 )

1 1—x
— m . 1.
w0 TEAF1y I\ T B >

2
1—x
= 1-2F1<—n, n; % - 2——)

= Tu(x)

(by theorem 9.1(viii)).
(iii) From theorem 9.1(x) we have

F(n—1+2) < l—x)
1 S SO ey . . 1.
Cralx) = 1)|]~_‘(2)2F1 n+1l,n-—-142;1+41%; 2
F(n+1) (_ _,.1~~x>
= n'F(Z) il —-n+1,n + 153, 2

:n2F1<—n +1Lin+1; 8 1—;—x>
1
BRZCEET
(by theorem 9.1(ix)).

PROBLEMS
(1) Show that
(@) (A —x)7* = Fyx, B; B %);
(i) In(1 — x) = —x,F(1,1; 2; x);
(ili) e* = (Fy(a; a; x).
(2) Show that JFy(s; 73 2) = i JFi(o, 5 73 /).
(3) Show that

. _ T+ 8 — (1 +1B)
oFi(, 5 f —a +1; —1) = T + 8T -4 — «)
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and use Example 2 of Section 9.4 to deduce that
PTGy +4) .
I + 3)TG — d« + 37)

oFi(x, 1 — ;95 4) =
(4) Show that

d af '

1 i By %) = ;zFl(oc +1L,B+1;y +1;%)

and deduce that

& By %) = %F( oy ).

(5) Prove the contiguity relationships

(@) (& — B)aFi(2 B3 v5 %)

= aoly(a + 1, B3 75 %) — foFi(o B + 15 75 %);
(i) (¢ — B)xrFa(x; B + 15 %) + f(x -+ — 1)iFi(a; B; %)
— BB — IhFi(e; B — 15 %) = 0.
(6) Use the confluent hypergeometric function to show that
H(x) = (—1)22n! L, }(x?)

and Hyp, (%) = (—1)"220+ 15l Li(x2).
(7) Evaluate the integral

Jm e~ Fi(«; f; x) dx.
)
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OTHER SPECIAL FUNCTIONS

In this chapter we discuss briefly other special functions which the
reader is likely to encounter. Several of these are defined by integrals
which are impossible to express in terms of known functions, and of these
integrals several have no special properties of interest—all the useful
information is contained in a table of values of the function.

10.1 INCOMPLETE GAMMA FUNCTIONS
These are defined by

T'(x, o) — j " etp1dt (10.1)

and V(o) — J e~tto—1 dt, (10.2)
0

From definition (2.1) of the gamma function we see that
D, o) + p(x, o) = T'(x). (10.3)

10.2 EXPONENTIAL INTEGRAL AND RELATED FUNCTIONS
The exponential integrals are defined by

Ei(x) = j

t
’ S a (10.4)

and E(x) = J‘ E; de. (10.5)

x
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We note that
E\(x) = —Ei(—x). (10.6)
(Some authors usc the notation ei(x) for E;(x).)
The logarithmic integral is defined by

. 7 dt
It is easy to see that
li(x) = Ei(ln x) = —E,(--1n ). (10.8)
y
ysEilx)
3
2
L
ob—1 [
02/04 06 08 10 2 14 16 x
_l -
-3
Fi1c. 10.1 Exponential integrals
The sine and cosine integrals are defined, respectively, by
. (* sin ¢
si(x) = S—"tL dr (10.9)
. [ sin ¢
Si(x) = | - dt (10.10)
[* cost
and Ci(x) - “’: dr; (10.11)

(again the reader is warned to beware of different notations).
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OTHER SPECIAL FUNCTIONS

li(x)

2:0F

Li(x)

F16. 10.2 The logarithmic integral

F16. 10.3 Sine and cosine integrals

cH. 10
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The following results may readily be verified:
4

si(0) = — 5» (10.12)
(see Example 1, p. 225)

Si(x) = g + si(x), (10.13)

si(x) = 711 {Ei(ix) — Ei(—ix)}, (10.14)

Ci(x) = 3{Ei(ix) + Ei( —ix)}, (10.15)

Ei(Lix) = Ci(x) + i si(x). (10.16)

The graphs of the above functions are shown in Figs. 10.1-10.3.

10.3 THE ERROR FUNCTION AND RELATED FUNCTIONS

The crror function is defined by

2 j e
erf x = o e dt. (10.17)
By the corollary to theorem 2.6 we see that
erf oo = 1. (10.18)

As a generalisation of the error function we define the functions

1 : .
B) = S Ty JO et dt. (10.19)

(N.B. E\(x) given by this equation is not the same as the E,(x) of the
previous section.)

We see 'that

erf x = Ey(x). (10.20)
The Fresnel integrals are defined by
A/
= 1 - ,2
S(x) L sin 51 dt (10.21)
and Cx) = J cos ’-Z‘ﬁdt. (10.22)
4]

It may be shown that
S(r) ey} (10.23)
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y=erfx

{ 1 |

1'0 20 3-0 X

F1c. 104 The error function

y=C(x)

y=S(x)

| i |

-0
Fic

20 30 40 x
. 10.5 Fresnel integrals
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and that the Fresnel integrals are related to the error function by the rela-
tionship

Clx) + iS(x) = 1{—1 erf {Lg’f(l — i)x}- (10.24)

The graph of the error function is shown in Fig. 10.4 and the Fresnel
integrals in Fig. 10.5.

10.4 RIEMANN’S ZETA FUNCTION

Riemann’s zeta function is defined by

< 1
= = 10.25
) Z ~, (10.25)
This series is divergent for x < 1, convergent for x > 1.

It may be shown that

2
(="
mt
{4 = % (10.26)
y
10' |- y=L(x)-1

10% k-

107!

107

107

104 1 { 1 | 1 I |
2 4 e e 10 12 14 x
I're. 10.6  Riemann's zeta function, (The graph is of {(x) - 1. Note the logarith-
mic scale on the vertical axis, For comparison, the dotted line s the graph of

2 %)
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and that in general {(2n), with n integral, may be expressed in closed
form.

The graph of {(x) — 1 is given in Fig. 10.6. Note the logarithmic scale;
for comparison, the graph of 2-2 is given by the dotted line.

10.5 DEBYE FUNCTIONS
These are defined by

x tn

D,(x) = j d. (10.27)

It may be shown that these functions are related to the Riemann zeta
function by D,(e0) = nli(n + 1).

oet — 1

10.6 ELLIPTIC INTEGRALS

We define the elliptic integrals of the first, second and third kinds
respectively by
F(B. &) = (¢ do

(k, €) = Jo /(1 — k%sin?6)

O<k<l, (10.28)

E(k, ¢) = ”0 V(1 —k2sin20)d8 (0 <k <1), (10.29)
(¢ ds
0 v/(1 — k%sin?6)(1 + a?sin?6)
(0 <k<l1,a k).

Some of the importance of elliptic integrals lies in the following theorem,
which we state without proof.

Ik, ¢, a) = (10.30)

Theorem 10.1 .

If R(x, y) is a rational function of x and y and if P(x) is a polynomial of
degree at most four, with real coefficients, then [R[x, \/{P(x)}] dx can be
expressed in terms of elliptic integrals.

If the upper limit in each of definitions (10.28), (10.29) and (10.30) is
7/2, then we have the definitions of the so-called complete elliptic integrals:

w2 dp
Kik) = J o (1 — k2sin?6) (1031)
E(k) = j:’z V(1 — k*sin®0) do, (10.32)
/2 do
k. a) = jo Vi —Feni o) Farsmeg). 0033
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10.7 EXAMPLES
Example 1

Show that si(0) = —n/2.
From definition (10.9) we have

sigo) = | 0t g,

w I
©
— —[Tenty,
o
To evaluate this integral we consider the integral
®e *sint
I = [T ETEnt g,
@ =) —3
so that si(0) is given by —I(0).
Now,
-]
ar_ _ j e *sin ¢ dt
da 0
© tl
- — —at” (ait _ -1t
L e 2i(e e-1t) dt
= __1. j‘m{e(—a+i)t . c(—a—i)t} de
2iJo
Y T
2iL— o +1 — o —1
1 ( 11 )
T2\ —1i o +1i
w1
T 1+l
Hence, by integrating with respect to « we obtain
I{() = — tan—!« + constant,
But I(0) =0,
so that we must have 0 = — tan-! o0 - constant,
and hence 0= —g— -}- constant,
iving onstant
giving constant

o«

0
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Thus I(o) = —tan~o + 3
I -1 E =1 7_t
so that 1(0) tan-10 + 7= 7%
and hence si(0) = — I(0) = — g
Example 2
Show thatj et si(t) df = — % tan=1!s.
0

Integrating by parts, we have

® . l 1 . ]°° j“’ 1 d .
—st = | — - e—st — —— st
jo e~ si(t) dt s e~ si(t) . p e ; si(z) dt

0

Ly [Ty
—s51(0) +; o g sit) dt

IRYAR: 1j’°° _, sint
. n(‘i)ﬂ“ o O

(using equation (10.12) and definition (10.9))

(with I as defined in Example 1 above)
. + —1-(—— tan—ls + iz)
2s s 2
(as shown in Example 1 above)

tan—1ls

s

Example 3
Show that (i) erf (—x) = — erf x;
(ii) [erfx| < 1.
(i) From definition (10.17) we have

2 zr
erfx = — j e ¥ dt
Vv

wJo
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so that
2 j T 2 j T
—&) = — =— *, —d
erf (—x) Vo et dt o W€ u
(on changing the variable to # — —1)

2 S s

= ——— | e du
vr Jy

= —erf x.

(ii) First suppose # > 0. Then, since ™" > 0, we have erf x > 0.

Also
erf x < —2—( r e " dt + jm e ¥ dt)
= '\/ﬂ /] x

=\/£- e " dt
7 Jo

= erf oo

=1

(by equation (10.18)).
A similar argument holds if x < 0.

Example 4

~

/2 dx 2 { ( 2 7) <J2 n)}
Show that JO m‘s—x) == —»\ﬁ F 3’ é — F 5) 1
We have

jn/2 dx j'n/z —dy
0o V(2 — cosx) ~Ja V{2 - cos(m — y)}
(making the change of variable y =7 — x)

— r Y
~ Jaz /(2 1 cosy)

n dy
-1, Ve T 2 )
/2 2dz
- jn/«; V(3 - - 2sin? 35
(making the change of variable = -~ v/2)
2 A/l dz
\‘/—3‘ .(N V(D §sintg)

LR Y]

[N
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“a{r(59)-r (L)

(by definition (10.28)).

PROBLEMS
(1) Show that

[ee]

R . . . 7,
(1) L cos x Ci(x) dx = jo sin x si(x) dx = gt

T

(i1) j: {Ci(x)}2 dx = j: {si(x)}2 dx = 5

cost

@) I I() = jw (1 ~ e °®? g1, show that
0

dl ~  «
doe  a? +1
and deduce that I(®) = %1n (1 + «2).

© 1
Prove that J et Ci(f) dt = 7 In (1 + s2).
0

(3) Show that erf x = -\%t b %) = 25 33 —a?).

V7
(4) Show that T'(x, t)= C erf {x/+/(4kt)} satisfies the following conditions:
() T(0, 1) = 0;
(i) T'(x,0) = C;
ooy 0T 0T
(111) —87 == k—ax—2

(5) Show that (i) j C(t) dt = xC(x) — 7—1! sin gxz;
0

e 1 7 1
i1 — - a2
(ii) L S(t) dt = xS(x) + - cos pxt — .

n/2

dx *E o dw 1
(6) Show that J-n Ten W) = L N = (\/Z)K<—\72)'
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(7) By making the substitution x = 2 sin 6, show that

2 dx
J, VG e ) — KO
(8) Show that

j : Vi F xczl;1 + 227} I/l—z{K<712) - F(I/l'é %t)} '




APPENDICES

1 CONVERGENCE OF LEGENDRE SERIES

We wish to investigate the convergence of the series obtained in Section
3.1 as solutions to Legendre’s equation.
These series are of the form

o0

z P (A1)
n=0

and D G (A1.2)
n==0

where in both cases we have, from equation (3.7),

" _a(n—l)(l—i-n—{-l)_
n+2 — Yn (n+l)(n—|—2)

We shall discuss only the series (A1.1), since the discussion of the other
series is similar in all respects.

First we note that equation (A1.3) implies that all the terms in the series
(A1.1) for n > [ have the same sign, so that we may apply tests for series
of positive terms.

If x = 1 we may apply d’Alembert’s ratio test:

(A1.3)

oo
if z u, is a series of positive terms and if lim u,/u, ., = «, the series is
=0 —> 0
divergent if « < 1, convergent if « > 1 and the test provides no informa-
tion if & = 1.
Here u, = a,,x?", so that we have

u, Agp X
Uniy  Ggnsa™ 2

2n + 1)2n +2) 1

T @n—D2n +1+1) %

so that
lim % _ 1
) Uy iy x2
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and the series is hence divergent if 2 > 1 and convergent if x2 < 1; that
is, it is divergent if | # | > 1 and convergent if | x | < 1.

If x = 41 we must use Gauss’s ratio test:

if Zu,, is a series of positive terms, and if the ratio u,/u, ., can, for

n=0
n > some fixed N, be expressed in the form
e R 0( )
Up .11
with p > 1 (where by O(1/n*) we mean some function f(n) such that

lim {f(n)/(1/n)} is finite), then > u, is convergent if 4 > 1 and

divergent if u < 1.
Here, since we are considering x = 11, we have
#, Cn + 1)2n + 2)
Unn (@n—D@2n+1+1)
and it is a matter of simple algebra to prove that
- Uy (D1 +n)
] * » T 1 2n — 10 Din
Now, we see that the last term is O(1/n2), since we have

lim I+ 1)(1 + n) 1

n—>w [{41:2 +2n -1+ 1)}n/ "]

lim l(l + 1)1 ‘n)_m%
n—>00 {4112 -+ 2n — l(l + 1);11

= I(I 4 1)/4,

n=0

1

which is finite.

Hence the conditions of Gauss’s ratio test are satisfied; we have y =1
and thus the series is divergent. This means that we have shown that the
I.egendre series is divergent for x = +1.

2 EULER’S CONSTANT

Assuming f(x) to be a continuous, positive and decreasing function, let
us consider the sequence

w, £ 2y () . ... f(m) “"f(.\') dv
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We first show that u, > 0. This follows immediately from Fig. A2.1,
since f(1) + f(2) + ... + f(n) is the area of the rectangles shown, while

Y

////7. =f{x)
I/72/ h /%/

3 n X

Fic. A2.1

Jn f(x) dx is the shaded area underneath the curve, which is obviously less
1

than the area of the rectangles, thus making u, > 0.
We now show that u,, ,; < u,. For we have

s — tty = F(1) + £2) 4+ . + £n) + f(n + 1) — j':“ f(x) da
(1) — £(2) - ... — £(m) + j jf(x) dx

—fn + 1) r“f(x) dx,

n

and from Fig. A2.2 we see immediately that this is negative.

y

\

r=f(x)

n nt i X

Fic. A2.2

Hence u,, ., — u,, << 0,1.e., 4, ,, < u,.
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Thus the u, constitute a decreasing sequence, every member of which is
positive, and thus by a general principle the sequence must possess a
limit as z tends to infinity. Hence lim u, exists.

The choice of f(x) = 1/x will satisfy the conditions that f(x) be con-

tinuous, positive and decreasing.
Then
1 1

Up =145+ 5 +...

23

- 23

=+ ..

—l—l—j 1dx

1%

.{—1——lnn.
n

So we know that lim {1 + (1/2) + (1/3) 4 ... 4+ (1/n) - In n} exists.

N->00

It is called Euler’s constant and is usually denoted by y. It may be shown

that, correct to four decimal places, y = 0-5772.

3 DIFFERENTIAL EQUATIONS

Equation

(1 —a?y” —2xy + Ul +1)y =0

Solutions
Pi(x) Legendre polynomials
Oi(x) Legendre functions of the
second kind
P7(x) Associated Legendre

polynomials
Associated Legendre functions
of the second kind

Q7(x)

x2y” + xy" + (x2 —n¥y =0

% 4 xy —(x2 4+ 0¥y =0
a2y” 4 (1 — 2a)xy”
1 ARYARY (o - nty)}y - 0

Ity Hly 0

W7 2xy” 1

Bessel functions of the first kind

Bessel functions of the second
kind

}Hankel functions

Jn(x)
Yn(x)

HY(x)
HG(x)
I n(x)
Kn(x)
x*Jn(P?)
x* Yn ( ﬂx”)

Ji(x)
wi(x)

Modified Bessel functions

Spherical Bessel functions
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Equation

Solutions

y —2xy 4+ 2ny =0
Y +@G -2y =0

xy”+(1—x)y +ny=0
xy”+(k+1 —x)y +ny—-0

(1 - x2)y” —xy’ bty =0

Hu(x) Hermite polynommls
Wa(x) = exp ( —ix?)Ha(x)
Weber-Hermite functions

Ly(x) Laguerre polynomxals
L*(x) Associated Laguerre polynomials

Z}"ﬂgg} Chebyshev polynomials

1 - xy” — (2}. -+ l)xy'
+ n(n + 20y =0

(1 —x’)y 1 {f—a— (a+ﬁ+2)x}y
+ n(nt+a+f+1)y =0

2(1 = x)y" + {y — (¢ + B + D}y’

CX(x) Gegenbauer polynomials

P, f)x) Jacobi polynomials

oFu(w, B v; %)

—affy =0 Hypergeometric function
wr Vo Fy(a+1—y; B+1—y; 2-y; %)
x" + (B —x)y —ay =0 1Fi(o; B x)
! Confluent hypergeometric function
2 (e~ B 152 — f; %)
o 1 n k n P—m }y _0 My, m(x) | Whittaker’s confluent
Y 4 x x? M, — () hypergeometric functions
4 ORTHOGONALITY RELATIONS
Function : Relation
e e
Legendre polynomials r1 2
| Px)P,(x) = T 10im
Assoaciated Legendre r1 2(l + m)!
- P' m
polynomials | FT@PE@ dx = G g
| [ PHx)PT (%) (1 + m)!
. o 1 == dx = m(l — m)!a”""
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Function Relation
ra at
Bessel functions xJn(Aix) Ju(Asx) dx = E—{ Jr41(Aia)}264;,
JO
where 1; and A; are roots of Ju(da) = 0
[ . 7
Spherical Bessel functions J_ w]m(x)]n(x) dx = mdﬂ'"
Hermite polynomials e~V Hu(x)H,(x) dx = 2"n)(V/7)0pm
J —a
[
Weber-Hermite functions Pa(x) V(%) dix = 2°n(vV/7)0m
J — 0
* 00
Laguerre polynomials e L (x)Ln(x) dx = 0,
Jo
Associated Laguerre [ e~ LA (%) LE(x) dx = (n + kl!(;m
polynomials Jo n!

~l 0 m#n
Chebyshev polynomials L) Tu(x) de_ {n /2 m=n+#0

OIS N DO
r1 U,,,(x)Un(x) dx 0 m+*n
W = JI/Z m=n+0
J -1 0 m=n=0
1
Gegenbauer polynomials (1 — x)*CAX)CHx) dx
ot 2-T(n + 27)
= Pnl(n + DR
1
Jacobi polynomials j (1 = %1 + %P @B(x)PyF)(x)

_ 20+p+1 Tn+a+1Dx+ B +1)
T mta+p+1 almtatf41) ™
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5 GENERATING FUNCTIONS

Function

Lecgendre polynomial

Associated Legendre
polynomials

Bessel functions

@i — sy
2™m IR ™t}

exp {

)

Generating function
(R =1 —2xt + t5)V?

= i tP (%)

r=0

@

z ] ()

n=—00

Hermite polynomials

(4]
exp (2tx — t?) = z %Hn(x)

n=0

Laguerre polynomials

Associated Laguerre
polynomials

Chebyshev polynomials

exp{—xt/(1 —1)}
11—t =

exp{ —xt/(1 —t)}
(1 = gt

1 —
R

v —x%)

Z” t"La(x)

n=0

z“’: t"Lh(x)

n=0

R2

2 o
Ll =T 2 ) T
n=1

i t"Up +1(x)

n=0

Gegenbauer polynomials

1
R

b3
T

[\t

t"Cl()

<

Jacobi polynomials

2a+p

R1—t+Ry1 +t+RP

n=0

1" PP (x)



HINTS AND SOLUTIONS TO
PROBLEMS

CHAPTER 1
(1) The general solution is 4y,(x) + By,(x) in each casc, where 4 and I
are arbitrary constants and y,(x) and y,(x) are given by

< 1

(1) yi(x) =1 +; 21159, (4n —3) "

© 1 n
Ya(x) = x“{l + Z A711.15 ... (40 1 3) }

. valid for all x;

(i) yi(x) = e,
< 1 1 1 1
= % — 1) 1 —_ — - n
yo(x) =Inx.e n;( l)n!< +2+3+...+n>x,

valid for all x;

(i) n(x) = Z( " i3

yz(x)—yl(x)lnx+1+§x+1x2—§‘§x3+
S (= {( 11 1
+n:z42n!(n—3)! ANl +g 3+t

1t 1 §}n
n—2 n—1 n+2x’

valid for all x;
1 4_ 7. (3n — 2)

(iv) yi(x) =1 -+ 3wn|

el

=(1-- %)

. ”{] S B (1 9) }
i) - Z1013.06...Gn 1 7))

valid for [~ ] - 1,
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0 o) = 1 3 N e S,

o) = % + Z(—3)(—1) . .(2.1541121)' 10n + 3) sy
valid for |x | < 1
(vi) yi(x) = %,
(=1
Ya(x) = x?In x - x2 Z L
valid for all x;

(vii) y(x) = x,
AP xt 03R5RL L (20— 3)2
ul®) =1+ 5+ 55 FZ i xo,

valid for | x | < 1;

S 1
(Vi) ) = 2 (1P g™

ne=2

yZ(x) yl(x) Inx 4 27 + gx2 4 33z 48
1 1 1
+z( A T 2)!n!{1—2<1 T +E~_2>

n=3
1 |
L = 3n—1
n—1 n}x ’

valid for all x;
(ix) yi(x) = 1 + $a? + Fqxt 4 oox® + 5552% + zddon” + ..,
Polx) = & + 42 - Faxt 4 thox® - sdex® + séhox” +
valid for all x.

(2) (1) Impossible; (ii) impossible; (iii) possible.
(3) The general solution is Ay,(x) + Byy(x) where A and B are arbitrary
constants, and y,(x) and y,(x) are given by:

: L N27.06. .20 —n 1) 1
On@=1+2 =035 @ 1 =»

x"’

41122 anln 1 1),
yz(x)zx‘l/z{l +Z i3 5 .- (2n e T 1) ) x’;}’
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2
(i) i(¥) =1~ 3

i (=3)(-1)...2n —-5) 1},
Yolx) = % /{1 z n1.3.5... 2z — 1) E}

CHAPTER 2

(1) Use definition (2.1) of the gamma function with a suitable change of
the variable of integration.
(2) Use theorem 2.5.
(3) Use theorem 2,5.
i 5 3) — _7t_
(4) (l) B(-u 4) - sz
(ii) I'(a). (Make the change of variable 1/x = ev.)
(iii) (b — a)y**t*~1B(m, n). (Make the change of variable
=(x —a)/(b — a).)
1o fm+1 .
(@iv) —B( 'p + 1) (Make the change of variable y = x».)

11y +/a_ T(1/n) .
v) —B ————————. (Make the change of variable
<n 2) n 0{(1/n) +1} y = am)
(vi) B(}, 1) =m. (Make the change of variable 4 = 1/(1 + ¢).)
(6) T'(—%) = —2v/7; D(—3) = {5 v
(7) Use theorem 2.12,

CHAPTER 3

(1) Use theorems 3.8(ii) and 3.5.
(2) Use theorems 3.8(vii), 3.8(ii) and 3.5.
(3) Consider (x2 — 1)! as the product (x — 1)*.(x + 1)%.

RN (r -+ ) — D! £y s
we T Ty - nap fTReY
0 . if 7 is even.
Use the result of Example 2.
(5) Differentiate the generating function for the Legendre polynomials
m times and use definition (3.36).
(6) Use theorems 3.8(ii) and 3.5.

{2/71 if n is cven
Uy,

0 if # 1s odd.



240 HINTS AND SOLUTIONS TO PROBLEMS

(7) Use theorem 3.8(i).

(8) Use theorem 3.8(ix).

(10) Use theorems 3.8(viii) and 3.16 and Example 5.

(11) Use definitions (3.61) and (3.36).

(12) Use theorems 3.2 and 3.15 and integrate by parts / times.

CHAPTER 4

(1) Use theorem 4.8(iii) and (iv).

(2) Use the infinite series for J, and J,.

(3) Compare with Example 4.

(4) AxY2];5(4(A/A)x%3) (with 4 an arbitrary constant). Use theorem 4.12.
(5) Use the infinite series for J,.

(6) Use the fact that 1 = exp [%{t—(1/2)}].exp [—x{t—(1/£)}] and pick
out the coefficient of x° on the right-hand side.

(7) Use theorems 4.8(ii), 4.21(i) and 4.22(i).

(8) Use the generating function.

(9) Use the generating function for the J,.

(10) Show that both Bessel’s equation and Bessel’s modified equation may,
by further differentiations, be written in the given form.

. 2 {(/'Lra)2 — 4}
) e = o™ Ty

(12) [* ju(@ia@) dx =0 (m = ).

® 4
: 2 - .
| iy = -
(13) Take real and imaginary parts of the infinite series for J,(i%2x).
E4
(14) Take real and imaginary parts of the integral J t]o(1%21) dt; use
0

theorem 4.8(i) to help evaluate the integral.
(15) Take real and imaginary parts of the asymptotic form of J(i%2x),
given by theorem 4.21(i).

CHAPTER 5
(1) Use theorem 5.6(it) and 5.5.

(3) Use the fact that 2 j

o] o0

e ¥ cos 2xt = j e~ ¥ cos 2xt = Re j

-

o0

0

—_ o)

exp (—1t* ++ 2ixt) dt.
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2n 42

Hop (%) = ( 1)" v
(4) Using the result of problem 3 for both H,(x) and H,(y) gives

et j e Vtntlgin 2xt dt.
0

S H(x)H, 1 © (= :

+ 2ivy — 2uvt) du dv.
Performing the integrations gives the required result.
(7) (1) 20!(v/7)omn
(ii) 2"~ "nl(V/7)0m, oy —2"(n + DIV )0, no1e

n=0

CHAPTER 6

(3) Use equation (6.3) and integrate term by term.
(4) Use equation (5.3) and integrate term by term.
(5) Use theorem 6.9.

(6) \Use theorems 6.11(ii) and 6.10.

(7) Use equation (5.3).

CHAPTER 7

(1-6) Make the substitution x = cos 0.
(8) Use the series solution method of Chapter 1, and remember that # is
integral.

CHAPTER 8

(1) Use definition (8.2) or theorem 8.5.
(2) Use definition (8.2).

(3) Use theorem 8.5(ii).

(4) Use theorem 8.3(i).

(5) Use definition (8.2).

(6) Use theorem 8.1 and cquation (3.17).

CHAPTER 9

(3) Use theorem 9.4,
(0) Usc theorem 9.1,
(7) (1/5) (=, s 8y 8). Use theorem 9.7,
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CHAPTER 10
(1) Integrate by parts.

(2) Write r e—** Ci (¢) dt as a double integral and change the order of
0

the integration.

(5) Integrate by parts.

(6) First prove the equality of the two integrals by making the substitution
v = (n/2) — «x in the first. Then consider the second integral, and make
the substitution cos x = cos? .

(8) Make the substitution x = tan 6.
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