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PREFACE

This book should really be attributed to Bailey and Slater. It was
Professor Bailey’s intention to write a comprehensive work on hyper-
geometric functions, with my assistance. This present work is based
in part on notes for a series of lectures which he gave in 1947-50 at
Bedford College, London University. The rest of the book contains
the results of my own researches into the general theory. It also
covers the great advances made in the subject since 1936 when
W. N. Bailey’s Cambridge Tract ‘ Generalized Hypergeometric Series’
was first published.

The theory of generalized hypergeometric functions is fundamental
in the field of Mathematical Physics, since the general functions
studied here contain as special cases all the commonly used functions
of analysis. The present work should prove of use and interest to
all Mathematical Analysts and Theoretical Physicists. The generalized
Gauss function is also used increasingly in Mathematical Statistics,
and the basic analogues of the Gauss functions have many interesting
applications in the field of Number Theory.

I should like to thank Dr Theo Chaundy for a very careful reading

of the manuscript, and several helpful comments.
L.J.S.

Cambridge
June, 1964



1
THE GAUSS FUNCTION

1.1 Historical introduction
The series

1482 @t Dbb+1)2* alat1)(@+2)bb+1)(+2) 2"
¢ 1! 0A0+Hv 21 0A0+HVAG+wV ST
(1.1.1)
is called the Gauss series or the ordinary hypergeometric series. It is

usually represented by the symbol
oFila, b; ¢; z].

The variable is 2, and @, b and ¢ are called the parameters of the
function. If either of the quantities a or b is a negative integer —n, the
series has only a finite number of terms and becomes in fact a

polynomial o[ —n,b; ¢; 2].

For example, suppose that @ = — 2, then the series becomes

. . 2%z b(b+1)z2
that is mﬁmlw,vvo,&lwlq.*.i,

(1.1.2)

since all the later terms are zero.

In his work Arithmetica Infinitorum (1655), the Oxford professor
John Wallis (1616-1703) first used the term ‘hypergeometric’ (from
the Greek Jmep, above or beyond) to denote any series which was
beyond the ordinary geometric series

l+z+at+ad+....
In particular, he studied the series
lvae+a(a+1)+afa+1)(a+2)+....

During the next one hundred and fifty years many other mathe-
maticians studied similar series, notably the Swiss L. Euler (1707~
1783)t "+ho gave amongst many other results, the famous relation

oFi[—n,b; ¢; 2] = (1 =2)¢t7 b Fc+n,c—b; c; z], (1.1.3)

t Euler (1748). Full details of all references are to be found in the bibliography.

1 SGH



2 THE GAUSS FUNCTION
In 1770, the Frenchman, A. T.Vandermonde (1735-1796) stated
his theorem, an extension of the binomial theorem, in the form
(c—D) (c—b+1)(c—b+2)..c—b+n— 1)
elc+1) (c+2) (e +3)...(c+n— 1)

Ji[—n,b; 1] =

(1.1.4)

but during the next forty years the Gottingen school under C.F.
Hindenberg (1741-1808) wasted much effort on various complicated
extensions of the binomial and multinomial theorems. All this was
changed dramatically, when on 20th January, 1812,C. F. Gauss (1777~
1855) delivered his famous thesis Disquisitiones generales circa
seriem infinitam 't before the Royal Society in Gottingen. In it, this
brilliant mathematician defined the modern infinite series of (1.1.1)
above and introduced the notation Fla,b; c; 2] for it. He also proved
his famous summation theorem
[e)Tc—a—D)

oFle,b; ¢ 11 = T(o—a) T(c=5)’ (1.1.5)

and he gave many relations between two or more of these series. He
showed clearly that he was already regarding ,Fi[a, b; ¢; z]asa function
in four variables, rather than as a geries in 2z, and in a note added
10 February, 1812, he gave a remarkably full discussion of the con-
vergence of such series.

The next major advance was made in 1836 by E. E. Kummer (1810~
93), who first used the term ‘hypergeometric’ for series of the type
(1.1.1) only. He showed that the differential equation

2
m+?IC+Q+S&WWIQoQMP (1.1.6)
is satisfied by the function

2(1—2)

oFila, b; ¢; 2},
and has in all twenty-four solutions in terms of similar Gauss func-
tions.} In 1857§, G. F. B. Riemann (1826—66) extended this theory by
the introduction of his P functions, which in a way, are generalizations
of the Gaussian Fila,b; ¢; 2].

Riemann also discussed the general theory of the transformation of
the variable in a differential equation and this theory was applied to
Kummer’s work by J. Thomae who, in 1879, worked out in detail the
relationships between Kummer’s twenty-four solutions. ||

t Gauss (1812). 4+ Kummer (1836).
§ Riemann (1857). {| Thomae (1879).

HISTORICAL INTRODUCTION 3

The first integral representation of th ;
e Gauss f
Eulert who showed that unction goes back to

2Fil—n,b; ¢; 2] = ! <
clc+1)(c+2)...(c+n~1)

~
nI:Ipl.nﬁl I
x‘_.c (I—t)etm=1(1—tz)0dt. (1.1.7)

The basic idea of representing a function by a contour integral with
gamma functions in the integrand seems to be due to S.Pincherle
(1853-1936) who used contours of a type which stems from H.wmmBEE,m
work. This side of the subject was developed extensively by R. Mellin
and E.W.Barnes.] In 1907, Barnes published his contour m.sg ral
representations of Kummer’s twenty-four functions, and Famu.m in
1910,§ he proved the integral analogue of Gauss’s ermo“umg u

1
2mi

‘.-s I(a+8) T(b+3) T(c—s) T(d—s)ds
_ Fla+c)a+d)T(d+c)T(b+d)
Ta+b+o+d) - (118)

1.1.1 The Gauss series and its convergence. Let us write
(@), = alea+1)(a+2)(a+3)...(a+n—1), (1.1.1.1)

and in particular, (a), = 1, so that, for e
’ = » xample (3), = K
= 2520, and (1), = n!. Then ple (3); = 3.4.5.6.7,

_a+n)
P 3 ﬂ
and $~W.H1HHSAQ\v3 = Imx&. AﬂﬂwwV

If a is a negative integer —m, then
AQV.: = A|3sw.=. if m> n,
and (@), =0 if m<mn,

s0 that (~3)g = (—3)(=2)(~1) = -6, but (=3), = 0.
In this notation, the Gauss function becomes

2Fila,b; ¢; 2] = SW ﬁ%ﬁ (1.1.1.4)

e«w”ﬂmﬂ.o a, b, ¢ and z may be real or complex. From this, we see that if
either of the numbers a or b is zero or a negative integer, the function

t Euler (1748).
§ Barnes (1910). } Barnes (1907a).



4 THE GAUSS FUNCTION

reduces to a polynomial, but if ¢ is zero or a negative integer, the
function is not defined, since all but a finite number of the terms of the
series become infinite. Also we have immediately

d ab
mlui.%.s ¢; 2]) = hla+ 1,b+1;¢+1;2.  (LLL5)
Some alternative notations for the Gauss function, which are in

common use, are:
Appell (1926) and Bailey (1935a),

»b;
Nﬁ_waﬁ m_ = ,Fa,b; c; 2], (1.1.1.6)
F(a,b; ¢; 2) =  Fila,b; ¢; 2], (1.1.1.7)
Meijer (1953c),
®fa,b; ¢; 2] = Fla,b; ¢; z]{T(¢), (1.1.1.8)

MacRobert (1947), p. 352,

E@2;a,b;1;¢; — 1/2) = EIQH\..V%V JFila,b; c; 2], (1.1.1.9)
Meijer (1941a),

QmA|N
Riemann (1857),

0 © 1
P{ 0 a 0 z | =,Fla,b;c; 2] (1L1.1.11)
l-¢c b c—a-b

—a, — (@) T
xﬂ |Nv LG JFila,b;c;2],  (1.1.1.10)

(@)a (0)
Let u, = .- =, then we have
(©)n (Dn
(L+n)(c+n)Upiq = (@+n) (b+n)u,. (1.1.1.12)
The ratio of the two successive terms u, and %, of the Gaussian
series is
(@+n)(b+n) C.*..ii.c.fv?&m (1.1.1.13)

c+n)(i+m)  (L+e/n)(1+1/m)”
g0 that as n — o0, the ratio
[niaf2a] > |2]-
Hence, by D’Alembert’s testt, the series is convergent for all values

of z, real or complex such that |z| < 1, and divergent for all values of
2 real or complex, such that |z] > 1.

+ Bromwich, Infinite Series, (1947), p. 39.

HISTORICAL INTRODUCTION 5
When |2} = 1,

vafinl = | {1+ 552 01} 112 L0y,

14+ 2520
n

+0(1/n?)

“ a+b—c-1

< 1+ {Rl(a+b—c—1)/n}+O(1/n?). (1.1.1.14)
,EE? when z =1, by Raabe’s testf, the series is convergent if
Rl{c —a- b) > 0, and divergent if Rl (¢ —a—5) < 0.
It is also divergent when Rl (c—a —b) = 0, for in this case

1 C
_§§+H\§2_ >1—- e
. n n
where (' is a constant.
When [2] = 1, but z + 1, the series is absolutely convergent when
Rl(¢c—a—b) > 0, convergent but not absolutely so when
—1<Rl(c—a-b) <0,
mE.w divergent when Rl (c—a—b) < —1. If Rl(¢c—a—5) = — 1, more
delicate tests are needed. In this case, we find that
_Rl(a+b—ab+1)
2

_§3+~\§=_ =
n

+0(1/n%).  (L.1.1.15)

Hence the series is convergent if Rl(a +b) > Rlab i :
, and
Rl(a+d) < Rlabd. (@+9) ab, and divergent if

For example, the series
1-3+3-4+5—-6+... = }{1+,R(2,2; 3; —1]}, (L1.1.16)
is divergent.
We note also that

(@) (0)s

©)anl —>0asn—»>00,if0 < RI(1+c—a-5) < 1. (1.1.1.17)

1.2 The Gauss equation
The differential equation

d
NCINV&“,N+?|C+a+3&MINI%QHo. (1.2.1)

is o.mzom the Gauss equation or the hypergeometric equation. In the
region |z| < 1, one solution is
Y1 = o Fi[a,b; c; 2]. (1.2.2)
t Bromwich (1947), p. 40.
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This can be verified by direct differentiation of the series (1.1.1), w.:a
substitution in the above differential equation. But an alternative
form of writing this equation is

d (4 ~ (-3 4 v 1.2.3
M.NANMN+0I&@.‘ANMIN+QV Anmu.fc Y, ( )
and this leads to an elegant proof, for

Anm+av@ = W §A§+£Na.

dz neo (O)pn!
Hence An %m + av AN mmm + vv y= Mo SVMMW:AMW@H z".
Similarly, An %m+ c— Hv y= Mﬂ mﬁvﬂw 2",
Hence WANW+GI~Y\ = Mﬂigsusir

— W Am‘vs\.z@va;u n

z".
n=0 AOV,:S\_.
The Gauss equation can be rewritten

d2y " c ~+a+J%\ ab (1.2.4)

- dy _ -0,
e 1=z J& #i-27

from which 0 and 1 are seen to be regular mmzm&pﬂmamm. If we write 1/z
for z. we find that infinity is also a regular singularity of the Gauss
equation.

d .
In the notation of operators, where A = 2 the Gauss equation

can also be written )
DAD+0|S@HNAD+QZD+SQ. (1.2.5)

1.2.1 The connexion with Riemann’s equation, We shall now
show that any equation of the general form

QNQ 3 kAv .Q'w\ 3 w_u m\ = Qv
@.T Avmu Nln_.v dz + Acmn NIN.\V (z—2) (z—2,) (z—2g) (L2.1.1)

where 4, and B, are constants, can be reduced to a Gauss mﬁﬁpﬁ.oz“
wnoiao&.. that 4,+ 4,+ 44 = 2, to ensure that the ‘point at infinity

1 Whittaker & Watson (1947), § 10.3.

THE GAUSS EQUATION 7

is an ordinary point of the equation. We shall also exhibit the inter-
connexions between several well-known differential equations, as
incidental to the proof given here.

First we note that in the equation (1.2.1.1) every point, including
infinity, is an ordinary point of the equation, except the points z = z,,
z=zyandz = z;. Soletus write 0 = z,—~ 25, ¢ = 2z;—z, and ¥ = 2, —2,,
where 6+ ¢+ = 0. The indicial equation, formed for expansion
about z = 2,, is B

1

-1)+A4,p+—>7 =0,
bAb v 1P . ﬁf\\
with roots o and a’ say. Then we can write
Ay =1-a—a and B;=-d¢yaa’.

Similarly, by considering the indicial equations formed for expansions
about z = 2, and z = z,, respectively, we can write

Ay=1-f-F', By=—y0pf,
and Ay =1—-y—y', By=—-0¢yy,
where, since 4, + 4,+ 44 = 2, we must have
ata'++4 +y+y =1
The given equation then becomes Riemann’s equation

A%y (l—a-a' 1-p-p 1-y—y\dy
&Nm.,rA z2—2, + z2—2, + z—2g vm

S A N
(2—2)0 (2—29)9 (2—2) ¥ (2—2)) (2—2,) (2—25)"
(1.2.1.2)

This equation is also known as Papperitz’s equation.t Its solution is
usually written in terms of Riemann’s P function as

1 % %
u=Pya g v =zp, (1.2.1.3)
9\ %\ \V\\

or, in terms of the Gauss function, as

u = (2=2)* (2 —2)"*7 (z—2,)"

’ . , (2—2) (23—25)
Xmmuw 9+%+v\“9+h +v; 1+a—-a'; ANI-|:&uINHv .

(1.2.1.4)
1 Papperitz (1885).



8 THE GAUSS FUNCTION

Twenty-four solutions of Riemann’s equation can be fm\%@b Q.oéw
immediately, simply by interchanging the triads (z;, @, '), (22,5, 8")
and (z3,7,7’), in a cyclic order. o

If, in (1.2.1.2) we write ¢ = {(z—2,) 0}/{(z —22) (— $)}, and divide by
(tp + 0)%/(0%¢*)?), the equation (1.2.1.2) becomes

dzy A} Ay v dy Amm oy . Ev _Y __o.
T\t \ i—1/tt-1)
e "\ ¢ Te-1/de A . (1.2.1.5)

If further we write y = t2(t—1)7 ¥, (1.2.1.5) reduces to
2 , nmadY
mamw.\+3w+9|9,+q\lu\vlc+alaaum|h
+{a+y)(1—a'=y)+BBYY = 0. (1.2.1.6)
Finally, if we write a +b for 1 +a—a’+y —v', ab for
(@+7)(1—a' =)+ 86

and ¢ for 1+a—a, (1.2.1.6) reduces to the ordinary npcmw .maswaoc
(1.2.1). Thus we see that, in general, for m.B% onﬂwmnaob with three
ordinary singularities at z;, 2, and 2, these mEME@ESom. can .Uo trans-
formed into the three singularities of the Gauss equation simply by

writing z for {(z —2,) (23— 2)}[{(z — %) (23— 2)}

tt—1)

1.3 Kummer’s twenty-four solutions

w0
Let us assume that y=12¢ Mozs 2", (1.3.1)
n=

(where u, # 0) is any solution of the Gauss equation (1.2.1). Then, by
direct differentiation of this series, we find that

upg(g+e—1)271 + M%SE@ +n+1)
n=

X (g+7n+c)—u,(g+nt+a) (g+n+b)}z9tm = 0. (1.3.2)

Hence we must have as the indicial equation

glg+c—1) =0, (1.3.3)
and in general

@+n+e) (@+n+ 1) Uppqy = (g+n+0) (gHn+0) Uy (1.3.4)
The root g = 0 of the indicial equation (1.3.3) leads to the solution
yy = Filab; ¢ 2],

KUMMER’S TWENTY-FOUR SOLUTIONS 9

provided that cis not zero nor a negative integer, and the root g = 1 —c,
gives a second solution in which

(1+n)(2—c+n)uyyy = (@+1—c+n)(b+1—c+n)u, (1.3.5)
This solution is
Yo =27 R [14+a—c,1+b—c; 2—c¢; 2], (1.3.6)

provided that ¢ is not a positive integer > 2. Hence one complete
solution of the Gauss equation (1.2.1) is

y = A,Fa,b; c; 2]+ B2y F{l1+a—c¢,1+b—c; 2—c; 2], (1.3.7)

for |z| < 1, and for ¢ not an integer, where 4 and B are constants.
When ¢ = 1, the two solutions are equivalent, and we have to follow

the usual Frobenius processt in order to find that a second solution
is now

_ 1. o [2fle+g),(d+9), n
Y2 = ofila,0; 1; 2llogz+ B %“:Jéi:ss?u% .

(1.3.8)

When ¢ = 0, or a negative integer, the second solution (1.3.6) is still
valid but the first solution has to be replaced by

Y =2 F[l+a—c,1+b—c; 2—c; z]logz

swﬁa+saalfur :
+:M= m@?o¢.$=2+$::nuglnn . (1.3.9)

When c is a positive integer > 2, the first solution is still valid but
the second solution has to be replaced by

_ o o [2[(@+9).(b+g), »
Ya = ofila,b; ¢; 2)logz+ %"eir (1 +33Z1N .
(1.3.10)

If a or bis a negative integer, as we have already seen, our first solution
reduces to a polynomial in 2, and if 14+ a—c or 1+b—c is a negative
integer, the second solution reduces to a polynomial in 2.

When we are dealing with solutions of this type, it is useful to
remember that if
° ' (@+9)a (0+9)n

) = Cr g 1+,

t Whittaker & Watson (1947), § 10.3.



10 THE GAUSS FUNCTION .
then
1 m?:w+ 1 + 1 _ 1 . 1
Un(g) 09 ST e T gre+n—1 gtat+n—1 gtb+n—l
1 0
= Uy R 1.3.11
o) e @b 131D

(see Copson, Functions of a complex variable (1950), p. 248).
Next let us substitute (1—z)*w for y in the Gauss equation. It

becomes

NCINVWMINM+?I3+@+H+MSNWMW
—1)z—k{e—(a+b
+ ﬁ% bw-lmwﬁm“wg ls”_ w=0. (13.12)

This equation is also of hypergeometric type if 1-z divides
exactly into k(k—1)z—k{c— (@+b+1)z}, that is, if either k¥ =0, or
k=c—a—b. When k=0, the two solutions (1.2.2) and (1.3.6) are
given, but when L =c—a—>b, then two new solutions are given,

valid in the region|z| < 1. These are
Yy = (1—z)-ot Flc—a,c—b; ¢; 2] (1.3.13)

and y, = (1 =220 B[l —a,1-b; 2—c; 2]. (1.3.14)

Since the Gauss equation is of order two, it can have only two
linearly independent solutions. Hence there must exist constants A

and B such that
(1-z)y-ob,Flc—a,c—b; ¢; 2]
= A, Fa,b; ¢; 2]+ B2 [l +a—c,1 +b—e; 2—c; 2z}
Now the left-hand side of this equation can be expanded in integral

powers of z, but 2!~ cannot, since ¢ is not an integer, by hypothesis.
Hence B = 0. If however we put z = 0, we find that we must have

A = 1. Hence y; = ¥, thatis
JHila,b; ¢; 2] = (1 —z)-o-b Flc—a,c—b;c; 2). (1.3.13)

This is the result usually known as Euler’s identity. In a similar way
we can show that y, = y,, thatis
Jl+a—c,1+b—c; 2—c;z] = (1—z)e?h(l1-a,l -b; 2—c; 2]
(1.3.16)

KUMMER’S TWENTY-FOUR SOLUTIONS 11

1.3.1 The region |1-z] <<1. Next let us substitute 1 — Z for z in
the Gauss equation (1.2.1). It becomes

d
ETNJWATEtl ETmzmwég =0. (1.3.1.1)

This is also a Gauss type equation satisfied by

ys = JBila,b; 1+a+b—c; Z). (1.3.1.2)

Hence four further solutions of the original Gauss equation (1.2.1) are
¥s = ofla,b; 1+a+b—c; 1-2], (1.3.1.3)

Yo = (1 —-2z)°-2 0, Flc—a,c~b; 1 —a—b+c; 1 —2], (1.3.1.4)

Y =2 B [1+a—c, 14b—¢; 1+a+b—c; 1 —2] (1.3.1.5)

and
Y = (L—2)-0-021¢ F[l—a,1-b; l—a—b+e¢; 1 —2], (1.3.1.6)

all valid in the region |1 —2| < 1. These new solutions hold provided
that a, b and ¢ are not negative integers nor zero. If any of the
coefficients are integers or zero special solutions can be found corre-
sponding to those of the preceding section (1.3.8-1.3.10).

1.3.2 The regions |z] >1 and |1-z] > 1. In the Gauss equation

(1.2.1), next let us substitute 1/z for z, and 2°Y for y. The equation
becomes then

a2y d
NCINV%.Tﬁ+a|oIBalev&a|Mlaﬁ+al3 Y=o,

. (1.3.2.1)

which is a Gauss type equation also, with the two solutions
=gF[a,1+a—c; 1+a—b; 2]

and Y =262, F[b,1+b—c; 1+b—a; z].

mwc.oo by substitution, we can find four further solutions of our
original equation,

Yo = (—2) % F[a, 1 +a—c; 1 +a—b; 1/z], (1.8.2.2)
Yo = (—2)2,F[b,1 +b—¢; 1 +b—a; 1/z], (1.3.2.3)

ond Y = (=2 (1—2) o0, F[l1-bc—b; 1+a—b; 1/z] (1.3.2.4)

Yz = (—2) (1 —z)~2 b F[1~a,c—a; 1+b~a; 1/z]. (1.3.2.5)

All these solutions are valid in the region |z| > 1.
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If we combine the above results in 1 —z and 1/z, we obtain a further
four solutions again,

s = (1—2)"%Ala,c—b; l1+a-b; 1j(1—-2)], (1.3.2.6)

Y = (1—2)PF[b,c—a; 1+b—a; 1/(1-2)}, (1.3.2.7)
— (= (l =z} 1, F[l+a—c,1=b; 1+a—b; 1/(1—-2)]

tha = (AL mTA (1.3.2.8)
and b-1 b—c,1 1+4b—a; 1/(1-2)]
= (—2z)l—¢ (1l —2z)01 l1+4b—-c¢,1—a; —a; —2)].

Y= (—2)°(1-2) oAl (15.2.9)

These four solutions are valid in the region |1—z| > L.

1.3.3 The regions Rl(z) >} and Rl(z) <. In the region
|(z=1)fz| < 1,
that is in the half plane Rl(z) > }, we can now deduce the four
solutions
Yy = 2% Fla,1+a—c; 1+a+b—c; 1- 1/z], (1.3.3.1)
s =20 B0, 1+b—c; 1+a+b—c; 1 - 1/z], (1.3.3.2)
Yyo = (1—2)-¢ 020, F[1-b,c—b; 1 —a—b+c;1-1fz] (1.3.3.3)
and
Yoo = (1 —2)0228 ¢ [l —a,c—a; l1—a—b+c; 1-1[z], (1.3.3.4)

by combining our results for 1—z and 1 /z. Finally from a further
combination of the results in 1 —z and 1/z, we can deduce the last
group of four solutions to the Gauss equation (1.2.1). These are

Yoy = (1 —z)y 2, Fla,c-b;¢; z{(z—1)], (1.3.3.5)

Yae = (1—2)72,Fi[b,c—a; ¢; 2/(z—1)], (1.3.3.6)

Yog = (1 —2) 1 Fla—c+1,1-b; 2—¢; 2/(2—1)] (1.3.3.7)
and

Yoy = 20 (1 —2) 1 Flb—c+1, 1 ~a; 2—c;z/(z—1)]. (1.3.3.8)
These results are valid in the region |z/(z—1)| < 1, that is in the half
plane Rl(z) < }. . .

Thus, provided that a, b and ¢ are not integers nor zero, Qa.w now have
twenty-four solutions of the Gauss equation C.w.. 1), which among
them, provide complete solutions valid in any region of the o.on_oN
z-plane. The existence of these twenty-four solutions was first discussed
by Kummer (1836).

KUMMER’S TWENTY-FOUR SOLUTIONS 13

1.3.4 Products of Gauss functions. Later on, we shall find
general theorems concerning products of generalized hypergeometric

functions (see §2.6). For the moment we note that, from (1.3.15),
we can deduce

Hilz s w; LAl —n—v,1-n—w; 1-n—2z; {]

= g F[u—a,u—y; u; (] Fv—2 w2 1-n—z; L], (1.3.4.1)
provided that (1 -g)u—=v = (1 - {)ltntvtw—z, (1.3.4.2)

There are a number of similar results which can be deduced from
relations like (1.3.15) under conditions similar to (1.3.4.2) above. This
condition (1.3.4.2) is equivalent to

U—zr—y=1l+n+v+w—z (1.3.4.3)
provided that { + 1.

1.4 Contiguous functions and recurrence relations

Two Gauss functions are said to be contiguous if they are alike except

for one pair of parameters, and these differ by unity. Thus ,F\[a, b; c; 2]
is contiguous to the six functions

Hlat1,b5¢; 2], SFla,btl;c;2] and ,Ffa,b;c+1; 2]

Any three of these functions can be connected by a linear relation in z.
Such a relationship is called a recurrence relation. These relationships
are of great use in extending numerical tables of the function, since
for one fixed value of z, it is necessary only to calculate the values of
the function over two units in @, b and ¢, and apply some recurrence
relations in order to find the function values over a large range of
values of a, b and c, in this particular z plane. There are fifteen recur-
rence relations given by Gauss. If we write F for

oFila,b;¢;2], and Fla+1], F[b+1l] and Flc+1]

for the six contiguous functions, these equations are

fc—2a+(a—b)z} F+a(l—2)Fla+1] = (c—a) Fla—1], (1.4.1)
(b—a)F+aFla+1] = bFb+1], (1.4.2)
(c—a-b)F+a(l—2)Fla+1] = (c-b) F[b—1], (1.4.3)

a+(d—-c)2} F+(c—a)(c—b)zF[c+1] = ac(l —2) Fla +1], (1.4.4)
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c—a—1)F+aFla+1] = (c— 1) Fle-1], (1.4.5)
(c—a—b)F+b(1—2)Fb+1] = (c—a)Fla—1], (1.4.6)
(b—a)(1—-2)F+(c—b)F[b—1] = (c—a) Fla— 1], (1.4.7)
c(1—2)F+(c—b)zF[c+1] = cFla—1], (1.4.8)
?IH+C+v|3&§+@l8~%«l: = (c—1)(1—2) Flc—1], (1.4.9)
fe—2b+(b—a)z} F+b(1—2) Fb+1] = (c—b) F[b—1}, (1.4.10)
efb+(@—c)z} F+(c—a)(c—-b)zFc+1] = be(l—z)Flb+1], (1.4.11)
(c—=b—1)F+bF[b+1] = (c—1)Flc—1], (1.4.12)
¢(1-2) F+(c—a)2Flc+1]) = cF[b—1], (1.4.13)

bp-1+(1+a-c)z}F+(c—b)Flb-1] = (c—=1)(1—2)Flc—1],
(1.4.14)
cle—1+(l+a+b—2c)2} F +(c—a) (c—-b)zF[c+1]

—clc=1)(1-2)F[c—1]. (1.4.15)

In every case we assume that @, b and ¢ are not zero nor integers
such that the equations above would cease to have any real meaning.
All these relations can be proved by the expansion of the various
power series in z, so that we can equate the coefficients of z* throughout.

The series Fla+lb+m; ctn; 2]
for I, m,n integers, are called the associatedseries. These series can
always be expressed in terms of a linear relation between F and one
of its contiguous functions. For example, we can show that

(c—a)(c—b)Fla,b; c+1;2]
= e?lalgsﬁ?,?&&+%2l~7ﬂ?+ 1,b+1;¢c+1;2], (1.4.16)
for the coefficient of 2" on the right is

OAOIIQIWVE—.TQ@ ﬁE.T Hv:|9® (a+ wv:lu A®+ 1),

:va AOVS A.:.: Ao+ 53 A:,BIH Ao+ c.zlu

_ (@)a(®)s {(c—a—b)(c+n)+(at+n) (b+n)—n(c+mn)}

~ (Dalet+ 1

(@) B
SIS A

which is the coefficient of 2» on the left of (1.4.186).
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The Q&wmm function can be represented as a continued fraction in
some special cases. Thus, since

u.mﬁa,@.*.wmn.ff Nu_lnmﬁa.@w c; 2]

a@+:§ da+1,0+1;¢+2;2], (1.4.17)

we can deduce that

nmw?.@+ra+f&l a?IS @+C€la+~
Fila,b; ¢; 2] .L\AT%JE“\AT c+1)(@Er2) & A

1

LmEV a&:?is
(c+2)(c+3) z A I-ﬁﬁﬂ_ﬂbl n\AHl

...|3+3|~Zalv+3ISN TI (b+n)(c—a+n)z
(c+2n—-2)(c+2n-1) (c+2n—1)(c+2n)

X

JHla+n,b+n+1; c+2n+1; 2]
v vv (1.4.18)

JFla+n,b+n; c+2n; 2]
In particular, if b = 0, ,Fj[a,b; ¢; 2] = 1, and we findt that
Ffa H.o+~.m”_HH\A-II§ \Awlw.?lm«+:
2517 B ’ PR D _
o+ D\ Ternera/

|S+ss:@+3lf
Ao+w3lea+w3l:\A~I

|iola+3m§.mmﬁa+?3+ro+m3+r&
(c+2n—-1)(c+2n) Fla+n,n;c+2n;z] Vvv

(1.4.19)

1.4.1 Differential properties. If the Gauss series is differentiated
term by term in z, it gives

d ab
mm?mw?‘ow ¢; 2]} = Msﬂ_”a+ Lb+1;c+1;2). (1.4.1.1)
When this process is repeated, we find that in general

d»
@?ﬁ?kx ¢; 2]} = P@%»E?+?@+§ c+n; 2]

(1.4.1.2)
t Gauss (1866) p. 135.
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There are seven other differential relations which are proved in a
similar way. These are

%Ezl 2Fila,b; ¢; 2]}

= (a), 2% 1 Fila+n,b; ¢; 2], (1.4.1.3)
%&MmNa|§+Slqu |&v9+eln NN&HHQ\' Wq c; N”_w

=(c—a), 2% Y1 —2)st ", Fla—n,b; ¢; 2], (1.4.1.4)
MW“..M: —2)2+=2,Fy[a,b; ¢; 2]}

= @IlE.C!nvatvélsnﬂ?s@p c+mn; 2], (1.4.1.5)

B (©)n
aaa??ﬂ JJila,b; ¢; 21}

= (c—n), 2 1,Fa,b; c—n; 2], (1.4.1.6)
{1 =2) 2 Rlab; s 2)

AI )" (@) AAM VSi —) Jila+n,b; c+n; 2], (1.4.1.7)
¢ n

& 2P Elabi 6 4]

= (c—n), 211 —2)’ <, Fla—n,b; c—n; 2], (1.4.1.8)

m {ze-1(1 —2)**0—<  Fi[a, b; ¢; 2]}
= (c—n), 22 11 —z)etcn, Fla—n,b—n; c—n; z]. (1.4.1.9)

If we put a+n, b+n, ¢c+n for a, b and ¢ in (1.4.1.3) and apply
Euler’s identity (1.3.15), we can deducef

Mw& Tstl; I&v3+a+vla Nu_w«.*-s\ b+n; c+n; Nuw
= (¢), 22 Y1 —2z)**, F[a,b; ¢; 2. (1.4.1.10)
In particular, if @ = —n, we have
M.Ns AN:tln c _ Nvuluw

= (¢), 2= Y1 —z)Pc " Fi[ —n,b; ¢; z]. (1.4.1.11)

1 Jacobi (1829).
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1.5 Special cases of the Gauss function

Most of the more elementary functions which occur in Mathematical
Physics, can be expressed in terms of the Gauss function. For example

Flab b2l = 3 Buom - S gy a—1)...(—a— :+:T%

:lo 3_ n=0

that is oH[a,b; b; 2] = (1-2)=. (1.5.1)

3

This is simply a statement of the Binomial theorem for |z| < 1.
Similarly,

ALY 2 - = 3
= log (1 +2), (1.5.2)
for 2| < 1,and  LF[},1; §; 22] = .mw_ommwww. (1.5.3)

Also
JFil1,6; 1; 2/6] = 1+ WE+:sa+w\s...:+§|:\SM_

(1.5.4)
o0 N3

Hence Hm (1,05 1; 2/0]} = 3 — =e®. (1.5.5)
b0 n=07:

From this result, expressions for the various trigonometric and
hyperbolic functions can be deduced. Thus

o3+ 3a, 1 —3a; 3; (sinz)?] = sinaz, (1.5.6)
oFi[da, —}a; §; (sinz)?] = cosaz, (1.5.7)
oFil3+ 30,1 —1a; §; (sinh 2)?] = sinh ez, (1.5.8)
of1l3¢, —3a; §; (sinh 2)!] = coshag, (1.5.9)

1
(1 1 &5 2] = sinlg, (1.5.10)
A3, 1; 85 —2%] = isLn. (1.5.11)

The Legendre polynomial P,(z) is defined as the coefficient of z» in
the expansion, in ascending powers of z, of (1 — 22z + 2%)-%.
By direct expansion, we can prove that the coefficient is in fact

2Hal—m, 1 +n; 1; 1~ 12] = P(x). (1.5.12)

SGH
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This result is known as Murphy’s formula.t An m.:mgpaﬁo way of
deducing this result is to start from Rodriguez’s formula which states

that

Then we have

1 d»

a1 =a (1 =2) =37

Px) =

ol 2 rom(1 - gyeem {1y,

27n! Q&S =0

—1)* 2 (—n), — —
HAm:S* EMqu m! Al: 2 §\+§\ CSC Hv A v

(=n)m (= 1)"

n
ISM minl2m™

(nAm—1), (1 —-2)",
=,F[-n,14n;1; 1—3z]. (1.5.14)
The general Legendre function of the first kind is

(z+ Dim(z—1)4m
(1 —m)

Ppz) = JF—n,1+n; 1—m; §—1z], (1.5.15)
om

= & (2o F[-m—n,l—m+n; 1—m; }— 1],
_.Jﬁﬂls‘NVAN V 2 HH 2

(1.5.16)

(by 1.3.15), for |arg (2 + 1)| < , thatis, for z not on the real axis from

+1to —oo. o
The general Legendre function of the second kind is

H+3+3\v —1-n —tm (, _ 1)im-n-1
T tn) o-1-n(z 4 1)t (2 — 1)

x o Fy[1+7n,1—m+n; 2+2n; 2/(1—2)]. (1.5.17)

r
Qnte) = eimm ot

The Gegenbauer function is

Cut) = @+ D Er ot Rl -y —m b4yt ns b 1 -0,

(1.5.18)

for » an integer > 0.

+ Whittaker & Watson (1947), § 15.22.
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Other elementary forms are

Rla,a+3; 32l = $(1+2h) 20+ J(1—2t) %, (1.5.19)

ofila—1%,a; 20; 2] = {§ + §(1 —2)ijr 20 (1.5.20)
and oFi[2a,a+1; a; 2] = (1 +2)/(1 —z)2et1, (1.5.21)
The Confluent Hypergeometric function or Kummer’s function is
Ma,c,z)= 3 Yn Na. (1.5.22)

n= o ©)nn
This can also be deduced as a special case of the Gauss function. In
fact lim {,F,[a,b; ¢; 2/b]} = M(a,c,z2). (1.5.23)

b—>w

Thus all those functions which have one variable and one or two
parameters are special cases of Kummer’s function and are also special
cases of the more general Gauss function with its three parameters.
These functions include all the Bessel functions, the Error functions,
the Hermite polynomials, the Airy functions, the Coulomb Wave
functions, the Weber functions, the Whittaker functions and in fact
all the commonly used functions of Mathematical Physics.t Thus it
should always be remembered that every theorem about general
hypergeometric functions will have interesting special cases, giving
theorems about these simpler functions.

1.6 Some integral representations
When a = 0 but b + 0, the hypergeometric mpsmao: reduces to

2(1— m~@+~ﬁe b+ :& = 0. (1.6.1)
This equation can be integrated directly to %4@
dy -1
& = Az°(1 —z)¢ (1.6.2)
4
and so y=A} 2¢(1-z)t-1dz. (1.6.3)

&
Similarly if @ + 0 but b = 0, by the symmetry in ¢ and b we have

4
y=4) #(1-z)'dz (1.6.4)
£

1 See Erdélyi (1953) or Slater (1960) for complete lists of these functions, the
relationships between them and their interconnexions.
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We shall now seek a similar integral representation for the general
Gauss function. Let

I= ._._ P11 —t)e-0-1 (1 —at)-odt, (1.6.5)
0
where |z| < 1. This integral exists and is convergent if Rl (b) > 0, and
Rl{c—b) > 0. Now ° (a), 2
(1—2t)% = :Mo I
L& (@)n2™ o in b
Hence I H._.o =Mo M_ go+n—1(1 —¢)c-b-1dt

- 3 G [Jprma-ga
0

n=0 n!

2 (@), ,L(b+n) I'(c-b)
= 2 YT T+
-5 T )
A ZMVLV oFila, b; ¢; 2.
Hence we can say that
1
s e

SR

rOTe=b)o (1.6.6)
provided that |z| < 1, Ri(c—b) > 0, and Rl(b) > 0. This E.emmg_ is
known as Pochammer’s integral. It can be transformed in many
ways, to give other elementary integrals for the Gauss function. For

example, let us put —s=t/(t—1)
. for t, then we find that o .
JFfa,b;c; 1—2] = T sP1(1 4 8)a¢ (1 +s2)~%ds,

() T(c—b)Jo (1.6

for Rl(c) > R1(b) > 0, |argz| < 7.
Similarly, if we write 1/s for £, we find that
HAnv ® c—b-1 nIAmI :Nvlngm
Fla,b;c; 1/z] = 1|1||l._‘ (s—=1) s ,
- FE)T(e=0)]s (1.6.8)
for 1+Rl1(a) > Rl(c) > RI(b), and |arg (z— 1)| < w. If we substitute
e~ for t, we find that

. ope . HJAOV ~ Smlzﬁwlmlvnlolwc|N®Lvln nwnu
e roren) (1.6.9)

for Rl(c) > R1(b) > 0.
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If we substitute sin?t for ¢,

Wﬂ 1 &QIH NG|NO|H
oFila,b; ¢; 2] = __2le) (sin)?*~1(cost)

T®)T(c—b)), (I—zsin?t)e

dt,
(1.6.10)

again under the condition that Rl(c) > Rl () > 0. Other integrals in
the same group are

e 2T(e) 7 (sin£)®1(1 4 cost)—2
mﬂ.ﬁm«vv. c; &“_ - H‘.AVV HJAcnl@vn—.c AH|WN+W&OOm«vn

dt,

(1.6.11)
if we put (3 cost—1) for ¢,

JHla,b; c; 2] = d¢,

(1.6.12)

| wﬂﬁov SAoomTSmnlnoiAmmbﬁnvmnlwclw
I'(d) EQIS‘—.Q {(cosh )2 —z}e

if we put 1/(cosh?¢) for ¢,

_ 25-6T(c) [~ (sinh ¢)2e-2¢+1 (cogh £ — 1)2e-a—b-1

JHla,b;c; 2] = o) Te—b)), ( —z+ % cosht)e

de,

(1.6.13)
if we put 1/(3 + § cosht) for ¢, and

_2T(e) ® (sinh £)%-1 (cosh t)2a—2c+1 dt

L'@)T(c—b)Jy {(cosht)®—z(sinht)Z}s

(1.6.14)

if we put tanh?¢ for ¢. These last four integrals all hold under the con-
vergence conditions Rl (c) > Rl (3) > 0.

The convergence conditions for the Pochammer integral (1.6.6) can

be relaxed if we take the integral round more complicated contours.
Thus, let us consider the integral

ofila,b; ¢; 2] =

at
bm % %L:|:?T:T§A&. :.95
0
round a contour which encircles the point +1, once in an anti-
clockwise direction. This contour can be deformed into the real axis
(0, 1—¢), the circle C centre + 1, and radius ¢, and the real axis again
(1—¢,0).
Then

I, = [1—exp{2(c—b) g:.ﬁé (1 = t)e-b-1 (1 —t2)~2dt
0

+ % =11 —)e--1 (1 — tz)-=dt.
C
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1
But -_. 11 —t)e-b-2(1—t2)*dt >0 as €0,

1—¢

and n_- %IHG lSaloL: _ muvla dt—>0 as e€—>0.
C
Hence
1
I, = [1 —exp{2(c>b) )| f1 - £)e-b-1(1 —tz)-e dt,
0

that is
il(c) exp {im(b—c)}

2Fr(2, b5 ¢ 2] = 5N T b) sin {(c — b))

:i
x 5. %L:ls??éIEA%c.@.:s
0
forc—b#+1,2,3,..., larg(1—2)| <=, RI(d) > 0, only.

By considering the integral round a similar contour taken from + 1,
round O, on the real axis, we can show that

—il(c)exp (—imb) (©OD
9T'(6) T'(c —b) sin (wb) 1

hle,b;c; 2] = p-1(1 — f)e-b-1 (1 —t2)-¢dt,

(1.6.17)
forb+ 1,2,3,..., |arg(—2)| < #, and Rl(c—-b) > 0, only.

Finally if we consider the integral taken round the double looped
Pochammer contour of Fig 1.1, we can dispense with both convergence
conditions and show that

—T'(c)exp (—1tme)

25112, 85 ¢ 2] = G54 T(c = b) sin (7b) sin {r(c— b)}

(14,04, 1—,0-)
x .— #-1(1 — =01 (1 —tz)edt, (1.6.18)
for all arg z and for b,and c—b + 1, 2,3,... only.

1.6.1 The Barnes-type integral. Let us consider the contour

Eamé Ea+s§+$2|&
I = ‘_.Q Lo T%%. c.@.r:

We can see that the integral has sequences of poles at
g=—a-n, s=—b—-n, and s=n, for n=0,1,2,...,

so we shall take the integral round the contour C, consisting of the
imaginary axis indented to the right to exclude all the poles of I'(a + 5)
and T'(b +8), and to the left to include the first N poles of I'( — s), only.
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We take that section of the axis which lies between the points +iN
only. The rest of the contour consists of the rectangle formed mH..oa
the three straight lines y = + N, and z = N +}, joining the points
iN, N+1+iN, N+}—iN and —iN. Here N is any integer greater
than |Im (@)| + |Tm ()].
Now
N
I =27 3, Residue {I'(a+s) ['(b+8) ['(—8) (—2)*/T(c+3)},
" (1.6.1.2)

within the contour C. But the only poles within C are those of I'( —s),
and I'(—s) has the residue (— 1)

n!
t its pole ¢ = n. Hence
at1its p N D(a+n)T(b+n)z

— _omi 3 Dlatm) Tb+n)z" 1.6.1.3
Ie=—2m %~ Tetnynl (1.6.13)

But +iN N+3—iN N+E+iN -_;2
= = + + s
No .‘. c ._. —iN * —iN .—, N+3-iN N+i+iN

= —Iy+Jy+d+d5, (1.6.1.4)
say.
Now, when |s| is large, and |args| < m,
MNa+s)T'(b+3)
T'e+38)(1+3)

= |s|Ri@+t—==Dexp{—Tm(a+b—c—1)args}{l+o(1)},
< ANRl@tb—-D,

where A is independent of N. Thus, for the integral J;, we have

s =2x—1N,
and so
27
[T(—8)T(1+35)| = exp {m(N +ix)}—exp { — (N +iz)}’
< 4me "N,
Also |(—2)*| = |2|exp{N arg(—2)},

A

|2z|zexp {(m—€) N},

where ¢ is small and positive. Hence

| < ._.zt., ANRUa+b—c-D 471 =N ||z e7-9N 4z,

0
< dre—NANRle+b—<-(N + 1)
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since |2| < 1,if |z| < 1. Now e~V tends to zero faster than
NRl@+—e-1 5 o

a8 N —>oco. Hence J; -0, as N —oco. Similarly J; > 0, as N > 0.

For J,, we have s = N+}+dy,
where — N <y < N. Hence
ID(—8) D(1+8)| = —

|cosh (mry)|

< 2memivi,

Also |(=2)°| = [2|¥+{exp {—yarg (—2)}.
Hence

N
|| < ._‘ ANRlatb—c0 9 e-11Wl 2| Nthexp { — yarg (—2)} dy,
'L’ﬂ

N
< 2mA |2+ NRI@+b—c-D .‘ —r
-N

< 47 A || ¥+ NRI@t0-c-D g g—sN,

S
Now |2|¥+1 tends to zero faster than NRl(@+b—c-1 - 0, since |z| < 1.
Hence J, > 0, as N — co. Further

_{* a+s)'(b+8)T(—s)
1= Tt 9)

(—=2)*ds as N - oo,

so that from (1.6.1.3) and (1.6.1.4) we have finally

® I'a+n)T(b+n)e"

n..wﬁ.:nol Totmnl (1.6.1.5)
that is
o I'(c) i T(a+8)T(b+s)T(—s) .
mm.:&v@v ¢ Nu = i HJAQV HJAQV i H4A0+.wv A|Nv Q.w,
(1.6.1.6)

provided that |z| < 1, and that |arg (—z)| < 7.

This integral is truly convergent, and not a Cauchy value, as the
integrand is continuous near the origin. From this we can see that
we can think of ;F\[a, b; ¢; z], when represented by this integral, as an
analytic function, regular in the entire z-plane cut along the real
z axis from O to co. It is the analytic continuation of the series
2Fi[a,b; ¢; 2], in any closed domain D of this cut z-plane, since the
integral converges uniformly in z and in s within D, and so it is nom._:ma
in the cut z-plane. Sometimes, as an alternative, the semi-circular
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contour of Fig. 4.1 below, with centre 0, and radius R lying to the

right of the imaginary y axis is taken instead of the rectangular
contour used here. The proof only differs in details.t
1.6.2 The Borel integral. We shall show that if
F(z) = W a, 2", (1.6.2.1)
n=0

and this series is convergent for |2| < R, and

- Sa’ 1.6.2.2

eANV - 8MH°Q3§_~ A v

then I= .‘.8oLeAu3 dt, (1.6.2.3)
0

exists and I = F(z), (1.6.2.4)

for |z| < R. For, since F(z) is a convergent series, we must have

lim |(a,)"] = 1/R,

n—»w
g0 that la,] < (M{R)",

where M is a positive constant. From this we deduce, using Stirling’s
approximation, that
i/n
lim Aah_,v
n!

n—

n—» @

< W lim (n!)-m,
M

lim (J2mnntden)-tin,

n—o

<E

and this tends to zero as n tends to infinity. Hence the series ®(z) is
convergent for |z| < R, and the integral

._.smL | D(22)| dt
0

© © * la. 1 |zt|™
exists, Now .‘. e~ |P(z2t)| dt M-_. e 3 [2n| __ | d.
0 0 n=0 %

& [ 12al |2

But by etjtindt = T |ag| |2[",
n=0 0

0 3H n=

1 See Bailey’s Tract (1935), § 1.6.
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which is convergent for |z| < R. Hence the order of summation and
integration can be reversed, and we have

% “et Ot = 3 a2 (1.6.2.5)
0 n=0

If in every direction (O, z) from the origin, we find the first singular
point of F(z) and through this point draw the line LL’ perpendicular
to Oz, then the region contained within the set of lines LL’ is called
the Borel polygon of summability, and any series of the type F(z), for
which such a Borel polygon exists, is said to be summable in the Borel
sense or summable-B. The Borel integral is equal to F(z) at all
points within its polygon, since it is convergent and analytic every-
where within this region, and we have seen that it is equal to F(2) at
some point within this region.}

In particular, since the Gauss function is convergent for |z| < 1,
then the corresponding integral exists and is in fact. -

8 8 @ 3
NES?&& nb 3 iﬁ& d,  (1.6.2.6)

within the region |2| < 1, since the only singularities of F(z) lie on the
line |2| = 1.

1.7 The Gauss summation theorem
We have already noted that a linear relation exists between any three
Gauss functions of the type

JFila+l,b+m; c+n;2),
where I, m and » are integers, and in § 1.4, we proved one such result
which is of particular importance. This is
(c—a)(c—b),Fa,b; c+1; 2] = c(c—a—b),F[a,b; c; 2]
+ab(l—z),Fila+1,b+1; c+1; 2], (1.7.1)

where |z| < 1. In this result let z - 1 ‘from below’, that is through
real values of z less than one. Then, provided that Rl (c—a—b) > 0,

and that a, b, ¢ are not zero nor negative integers, all three series exist
and have finite values. Hence in the limit, as z — 1, we find that

Alade 1] = A b e g

c(c—a—b

T See Dienes, The Taylor Series (1931), pp. 302-311, for further notes on the Borel
polygon,
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Let us apply this formula n times. Then we have

JMla,b; c; 1] = MMV M«ovam MW“ Fila,b; c+n; 1]. (1.7.3)

This result is Gauss’s reduction formula. Now
_T(c+n)
HOV.B. = HJAQV .
Hence
(c—a),(c—b), T()T(c—a-b)T(c—a+n) Tc—b+n)

©),(c—a—b), T(c—a)l(c-b)I'(c+n)T(c—a—b+n)

[(c){c—a—1b)
T(c—a)T(c—b)’

-

asn — o0. Also
_nm.pmavw.. c+mn; :_ <1+ 3 _ _VBQEVS

m=1 8@ §| _o_vz«

b|
< ~+w@a_|__n_n~u:a_+u |b] +1; n—[e] +1; 1],

el __N__E forn > o], (1.7.4)

where M is a constant, and this tends to one as n tends to infinity.

Hence
(c—a)plc—b)y L) T(c—a—b)
A0v§ AGI|§|S(§ N‘N‘A_M_HQJG c+n; HH— —> .IAO Q\V HJ\AO|~VV Aﬂ.ﬂmv
as n —> 00, so that, by (1.7.3),
JFila,b;¢; 1] =

provided that Rl(c—a—b) > 0.
This important result is known as Gauss’s theorem. As a special
case, when b is a negative integer —m, we have the result known as

Vandermonde’s theorem
JFifa, —m; ¢; 1] = (6= a)p[(C)- (1.7.7)
This holds true for all values of @ and ¢, since the series terminates,

except negative integer values of ¢ less than a, or m, when the series
is not defined. Thus

Fi—4, -2 —3; 1] = (= 3+4)/(—-3), = 1.2.3/{(-3) (- 2)},
=1,

I'(c) T(c—a—b)

Tl a Tlo—t) (1.7.6)

but
Fi—d4, —3; —25 1] = (—2+4)g/(—2)s = 2.3.4/{(-2) (- 1) 0}.
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An alternative method of proof of Gauss’s theorem is to put z = 1

:.H the Pochammer integral (1.6.6). This integral then reduces to a
simple Beta function,

1
.s ST A= —gedy,

and this can be evaluated immediately in terms of Gamma functions.
We shall next show that

lim [oF[a,b; a+b; 2lflog {1/(1-2)}] = EN%MNV (1.7.8)
and that
Jim (e, by 5 2){(1-2et)) = LPEL0D, a2

for Rl(c) > Rl(a+b).
Both these results depend on the following lemma: if

3 =M~a nspsm M~ b, z" are two series convergent for |z| < 1,
= =

©
(ii) M_ |a,| is a divergent series,
e

(iii) :Muw_a:_ma < K| ¥ a,2"| when 0 < [z[ < 1, and K is inde-
pendent of 2,
and (iv) A = lim (b,/a,) exists, then shall
n—>«

1=t E e Ze))

Now log{l/(1-2)} = 2+22/2+...+2%/n+ .... Let a, = 1/n. This is

positive for all positive values of n, and 3, a, is divergent. Also

n=1
sMuw_ns_ < 2 M_as = 2 [log{1/(1-2)}|,
since 5 3\3 = log{1/(1-2)},

and the conditions of ero lemma are satisfied for a,,.
HLQ& ©
oHila,b;¢;2]= X b,z
n=0

This is a convergent series for |2| < 1, and

b Fe+b)T(a+n) H.S.I& Ta+b) w

"T T@T@)Te+b+n)n! ~ T(@) @) n
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for n large enough. Hence

r b
_WKSELuﬁmmmw

which satisfies condition (iv) above, and our first result (1.7.8) follows.
For the second result (1.7.9) we have

(- anlnla = 2 a,2",

n=0
where a, = (a)/n! = Na+b—c+n)[{T(@a+b—c)n!}.
Hence a, ~ noetv-ctn-typ-n-4/T(a+b—c),

~ natt=cTa+b—c),

if Rl(c) > Rl(a+b).

Hence X |a,| is divergent, but Za, 2" is convergent to the value
(1=z)2? for |z| < 1, and

T |a,| 2 < 2|(1—z)ed|.
Also Hla,b; ¢; 2] = Zb, 2™
D) T(a+n) (b +n) N L(c)

=~ T(@)T@)Tc+n)n! ~ T@) ()
and lim (b,/a,) = .ﬁu ,

n—

potb—c-1

Hence b

from which our second result follows.
Alternatively, without using the lemma, we could say that, by
Euler’s identity, (1.3.15),

lim {(1 —z)2+—<,F[a,b; ¢; 2]} = lim {F;[c—a,c—b; ¢; 2]}

z2—1 z—>1
_TTa+b-c)
-~ T@reyp
The result (1.7.8) also can be proved without the lemma. Heret the
limitis 5 P
lim MNA»EH_”P b; a+b; N:\wluﬁom 1/(1-2)},

z2—+1

as z > 1.

v .
= lim A%vﬁln:ﬁma+ Lb+1l;a+b+1; .&“.

z2—1

- :BA% Ea,owi@i“&“. by (1.3.15)

z—1 @.T@n

ab T(a+b+1)
- o —, by (1.7.6
= arbP@ryrery: o 70

+ By de I’Hospital’s theorem.
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wherea+b+1 > a+b,

_T(a+b)
"T@T@E)"

These alternative proofs for (1.7.8) and (1.7.9) are due to T. Chaundy.

1.7.1 Another special summation theorem. Within the circle
2| < 4, we have the expansion

(1—=2)"2,F[a,b; ¢; —z/(1—2)] = W EAI 1)r27(1 INv|mHn

r=0 Aevﬂﬂ_
_ 22 @) atn,,
B wMo aMc Acvnimu A.l: 7.
(1.7.1.1)

The coefficient of z* in this double series is

< A v Avvﬁ AQ.TQ.V:.Iﬂ A - Hv.. _ Am«v: 2 A@vw A I.S\vi

B @@t Tl @
= ﬁlv_ﬁéla,s ¢; 1]
_ Aava Aa - @vs
=t (1.7.1.2)

by Vandermonde’s theorem (1.7.7), since
AQ\V: 1 A - §vﬁ A - :i
AQ.Tﬂ.v!.l*”g and §"|4.§|_| .

Many such useful formulae connecting coefficients of this type will be
found in Appendix I.

Thus we have proved that
(1-2)"%3h[a,b; ¢; —2/(1—2)] =, Fi[a,c—b; c; 2], (1.7.1.3)

for |z| < §. By analytic continuation, this result can be extended to
all the values of z in the region |z] < 1, Rl(z) < 1. In terms of the
solutions y, to y,, of Gauss’s equation (1.2.1), we have now proved that

Yi="Ya-

If we let z > — 1, and apply Abel’s theorem we shall find that when
Rl(d—a)> —-1,

Hila,c—b; ¢; —1] = 272,F[a,b; c; }]. (1.7.1.4)
If, in Pochammer’s integral (1.8.6), we put
z=—1 and a=1+b-c¢,
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we find that

I'(6)T(c~—b)
I'(c)

1
b, 1+b—c;¢; —1] = ._.o fo-1(1 — g2)e-b-14,
(1.7.1.5)

This integral is a Beta function, and so it can be evaluated in terms of
Gamma functions. From this we find the summation theorem

I(1+a—b)I'(1+}a)

TA+a) (1 +3a—b)
(1.7.1.6)

Fila,b; 1+a—b; —1] =29

This is Kummer’s theorem.
Similarly, if we put = 1—a and z = }, we are led to
20T(1—a)(c+a
L'(c)

- 1
1) JHAla,1-a;c; 3] = .—,o (2t —12)—a (1 —f)cte—2ds.
(1.7.1.7)
If, in this integral, we take (1 —t)? as the new variable, it also becomes
a Beta function, whence we can deduce Bailey’s summation theorem
for a ,F)[}] series. This is
L(3e) '(3c+1)
—a;c; 3= 1.7.1.
N&JH_MQ.H a, c; g MJAWO+WQ\VHJAW+WO|W§V. A 7 H@v
Alternatively, we can apply Kummer’s theorem to the left side of
(1.7.1.4) above and deduce this same result.
Kummer’s theorem (1.7.1.6) can also be applied to (1.7.1.4) in
another way. When ¢ = }(a+b+ 1), this leads us to the summation

theorem
régr la+1b
2Fila,b; He+b+1); 3] = %@W

This is the result usually called Gauss’s second summation theorem.

(1.7.1.9)

1.8 Analytic continuation formulae

As we saw above, the Gauss equation (1.2.1) can have only two
independent solutions in any one domain. Hence there exist linear
relationships connecting any three of the twenty-four solutions. In
particular, by Euler’s identity (1.3.15), we find that the twenty-four
solutions can be reduced to six equivalent groups, two solutions of
each group being valid in each of the three regions of convergence.

Thus Y1 =Ys=Yn = Y2 (1.8.1)

ANALYTIC CONTINUATION FORMULAE 33
for 2| < 1and Rl(z) < %,

Yo = Ys = Yo3 = Yaq (1.8.2)
for |z < 1and Rl(z) < 1,

Ys =Y = Y17 = Y1s (1.8.3)
for |z—1| < 1and Rl(2) > },

Y = Ys = Y19 = Y20 (1.8.4)
for [z—1| < 1and Rl (z) > },

Yo = Y11 = Y13 = Y15 (1.8.5)
for |2| > land [z—1]| > 1,

Y0 = Y12 = Y14 = Yo (1.8.6)
for |z| > land |2—1] > 1.

Thus we can express any one of these solutions in terms of the two
solutions valid in the same domain. We can express y, valid for
|z—1| < 1, in terms of y, and y, valid for |2 < 1, and we can use these
results to connect a solution in any one of the three zones with two
solutions in any other of the three zones. There are several different
methods of proving such relations. The first one we give depends on
the Gauss summation theorem. -

Suppose that we require a relation which expresses y, valid Yor

|z—1| < 1in terms of ¥, and y, valid for |z| < 1. We know that such
a relation exists and that it must have the form

Y5 = Ay, + By,,
that is

oHila,b; 1+a+b—c; 1—2]
= A ,F[a,b; ¢; 2]+ Bl ,F[1+a—c,1+b—c; 2—c; 2], (1.8.7)

where we have to find values for 4 and B. Now let z - 0. Then we
find that
Hla,b; 1+a+b—c; 1] = 4,
provided that Rl(1+a+b—c) > Rl(a+b), that is provided that
1 > Rl(c). Hence, by Gauss’s theorem, (1.7.6),
_TIl+a+b—c)I'(1—c)

klﬂﬁ.ralnv D(14+b—¢)° (1.8.8)

Next let z > 1. Then, if Rl(c) > Rl(a+b), we have

1=A,F[a,b;c; 11+ B, Fi[l+a—c,1+b—c¢; 2—¢; 1],

3 SGH
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from which we can deduce that

I'l+a+b—c)(c—1)
T(a) () ’

B= (1.8.9)

s0 that our complete result is

Frl+a+b—c)(1—c)

Nl+a—-c)T(1+b-c)

'l+a+b—c)l'(c—1)
[(a) I'(2)

oFa,b; 1+a+b—c; 1-2] =

Ala, b; ¢; 2]

2, R{l1+a—c,l4+b—c; 2—c; 2],
(1.8.10)

+

provided that 1 > Rl(c) > Rl(a+b).

This last result can be extended to provide the analytic continua-
tion of ,Fy[a, b; c; z] over the whole of the complex z-plane, excluding
only the negative real axis, and for all values of a, b and ¢ real or
complex, excluding zero and those integer values which cause one of
the functions to be completely indeterminate.

For 0 < |z] < 1, we have

L) Ne—a—10)

A= e Te=b)’ (1.8.11)

if Rl(c) > Rl(a+b) as z—1. But on the other hand, if
Rl(c) < Rl(a+b) asz—1,

then (1 —z)e—a-b Mwmwwhwﬂﬂwvl °)

L) Hﬁ,ﬂwmﬁwﬁv-e. (1.8.12)

Again, when Rl (c) < 1, asz > 0, an equation is obtained of the form
1=AH+BK,

~ A+ B(1 -z}

so that B =

that is
1=A,F[a,b; 1+a+b—c; 1}+ By Fi[c—a,c—b; 1 +c—a—b; 1].

(1.8.13)
But, when Rl(c) > 1, ag 21~ ¢ > 0,

1—c P(l+a+b Havlﬁﬂmllc — ATV TR A
1~ Azt T TIND) + Bzt o 8 Enl b)

(1.8.14)
which gives an equation of the form AL+ BM = 0. Hence in any case,

there are always two equations to be solved for the two constants
needed, for all values of a, b and ¢, except zero and those integral
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values noted above. These equations are usually summed up by the
following morﬁbm,

Rl(c) > Rl(a+b) Rl(c) < Rl{a+b)

Rl(c) > 1 7_ = constant B = constant
!

AL+BM =0 AL+BM =0
Rl(c) <1 | 4 = constant B = constant

AH+BK =1 AH+BK =1

1.8.1 Analytic continuation using Barnes’s integrals. Another
method of proof of equation (1.8.10) relies on the Barnes contour
integral. We shall show that

[(a) T'() @) T®—a)  TI'(d)I(a-b)
HJA w Y= HJAola«v Yo —JAG @v Y10 :.w.HHv

Now, if m is any positive integer, we have

1 (i Da+s)T(b+s)T(—s)

N = — )8
) i T(c+s) (=2)ds,
+i0 —_
R Exﬁia% (—z)vds
2 ) o ico I({c+s)
?
+ X (Residues of the integrand at s = —a —n)
n=90
+ W (Residues of the integrand at s = —b—n), (1.8.1.2)
n=0
that is L=L+3,+%, (1.8.1.3)

where p and ¢ are integers < m, which tend to infinity with m. The
path of integration of the first integral is indented, as in Fig. 1.2 above,
to avoid any poles, and the path of integration of the second integral

is indented to avoid the pole at s = —m which would otherwise lie
upon it, but will now lie to its left.
Now the residue at $ = —a—n is
(=)'T@+n)T'b-—a—-n) _ N\—a—n
T(1+n) lomazn) (™
Hence
Ia)T'(d~a) _
Z,>- Mle—a) (—2)3H[a,1+a—c; 1+a—b; 1/z],

(1.8.1.4)
3-2
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as m — 0. Similarly,

_ D®)T(a-b)

— )t e e
Z, T(c—b) (—2) bR, 1+b—c; 14+b—a; /7],
(1.8.1.5)
as m — oo, and I = mﬂﬂwov fila, b; c; 2] (1.8.1.6)
Now
_ iw .HSI§+$H@I§\+$ m .
~»|Iw3 —im EQI\S.TWZJC|§+$mms§$ﬁiuv ds
(1.8.1.7)
and, when |arg (—z)| < 7—¢, for € > 0, then
|(—2)%] = | exp [{log |z| + ¢ arg (- 2)}s]],
< _N_ RI(8) g(7—€) d:@,
< |z| elr-eyImis), (1.8.1.8)
Hence
z—m 10
_N _ wa.s .‘,lms _HB A.wv_w:§+uleld Qe Im(s) _N_ elr—e) H.«.Q%“
(1.8.1.9)
1-m
< _N_ 27 e~tiIm@iedg, (1.8.1.10)
2m —1iw

for |Im (s)| large. Now this integral is bounded for all z and m when
|arg (—2)| < m—e. Hence L0,
as m — o0, and we have the final result

I'(a) T(b)
- T(e)

I'(@)T'(b—a)
T'(c—a)
LLOT@=8) b pls14b—c; 1+b—a; 1/2],
I(c—b)
(1.8.1.11)
if |arg (—2)| < m.

There are, in all, twelve such results connecting any one of the three
pairs of solutions (y;,¥s), (¥s, %), and (¥, ¥50), With any one of the
remaining four solutions. These relations express any one of these six
solutions in terms of a pair of solutions in another domain.

In & similar way, we can prove the following eight relations which
hold between these six solutions. They connect any three solutions
which are not defined in the same domain. If Im (2) > 0, the upper

Fila,b; ¢ 2] = —<— (=2)"% Fla,1+a—c; 1+a—>b; 1/z]
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signs should be taken in the exponentials, throughout, and if
Im (z) < 0, the lower signs should be taken.

I'b
exp ( + i7b) N wv Mm.ﬂr%l aavv "
I'e)Tc~b
vih Dy rexplrin(l+b—c) wm +w ENV Yy,

HAAQ:.J:..T@lov (1.8.1.12)

I'(l+a+b—c¢) Ys
_T@)T(c—a)
I'(c)

exp( tima) =~

F(l1+b—c)T(c—a)
T(l+b—_a)

y+exp{+in(l+a—c)}

i (1.8.1.13)
mxvﬁw&aﬁ+@loz|~mﬁy~|lﬂww%$
_T _ -
C+Wﬁwww: @w\n+exwﬁwmip+@lnwdﬁ.ﬁm %vvw\?
ra (1.8.1.14)
exp{+in(l+a—c)} = T wﬁflaw_ﬂwku
Fl4+a-— -
R R
(1.8.1.15)
exp{+im(c— SWE MWV.S*
T'() [(c—b (1—a)T
IKIWAV vm}+oxwﬁ+§ﬁl~vvwi”§e (1.8.1.16)
r
exp{ +im(c—a)} H‘AannaﬁwwM«H %VV.SW
I'a)T
v‘nﬁnothvw\H+mem+§u avwﬂprrwﬁmwﬁ\? (1.8.1,17)
T(1—b)T(1+b— . _ _
= ﬁwwAlnv QVQ».TQNMVNH\S.\C!SWH)AQﬂmv.ﬁmu.@@v avw\::

(1.8.1.18)
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[(1-a)T(c—b)

Tltc—a—b) 2
_I'l-a)T'(1+a-c)
- I'2—e¢)

exp{+¢n(l—a)}

T(c—b)T(1+a—c)
T(1+a—b) I
(1.8.1.19)

Yy +exp{+in(l—a)}

1.9 Numerical evaluation of the Gauss function

The Gauss function has one variable z and three parameters @, b and c.
Since all of these may be complex numbers, the actual production of
any tables of the function’s numerical values would seem to serve
little useful purpose, as complete tabulation with provision for inter-
polation, even over strictly limited ranges of real values, would be
too bulky to be handled easily. However this fact does not debar us
from considering the question ‘ How do we set about the evaluation of
the function for any given short range of values?’

The use of an electronic computer enables us to produce the
numerical value of the function at any desired point, provided that
we can find a method of evaluation which leads to numerical answers
which have real meaning, that is, answers in which the accumulated
errors, due to the length of the calculation, have not totally over-

whelmed the significant figures in the answers produced. We give a .

rather extreme example to illustrate this point. Suppose that our
computer, using floating decimal point facilities, can only carry three
significant figures and that at each step in the calculation a possible
error ¢ is left which is less than or equal to half a unit in the third
figure retained, that is, if all our figures lie in the range 0-1 < z < 0-9,
then ¢ < + 0:0005.

Under these conditions, a simple sum of two terms might produce
an error big enough to obscure the third significant figure; for example,
we can only say that (0-1 + 0-0005) + (01 + 0-0005) lies between 0-199
and 0-201. If several hundreds of terms like these are summed the
possible accumulated error grows considerably, even when all the
terms to be summed are of the same approximate size. If the terms
alternate in sign the situation is aggravated, and the loss of significant
figures usually becomes serious very quickly indeed. Thus we must
make quite sure that the process we are using has only random errors
in the last figure retained, and no error of predictable sign occurs such
a8 & rounding off error always in the same direction.

NUMERICAL EVALUATION OF THE GAUSS FUNCTION 39
When a, b, ¢c and x are all positive, a straight-forward summation

of the series WFi[a,5; ¢; 2]

will produce the numerical value of the Gauss function for all finite
positive values of @, b and ¢, and for 0 < < . When } < z < 1, the
number of terms to be summed becomes too large, and the accumu-
lated errors begin to obscure the significant figures, as noted above.
So, in this range of values of z, it is better to evaluate the Gauss
function of 1—z, that is, the solution y; of the Gauss equation. The
complete solution of the equation is then of the form Ay, + By, as
usual.

When z =1, we have the Gauss theorem (1.7.6) to provide an
explicit sum, For example, using five figure tables,

'(0-3) I'(0-2
1/{;F;[0-1,0-2;0-4;1]} = ﬂM@..pW_JIMEW,
_ 0:2T(1-2)0-3T(1-3)
T 0-4T(1-4)0-1T(1-1)°
_ 3x0-91817 x 0-89747
"~ 2x0-88726 x 0-95135°

_2-47209

~ 1-68818°

= 1-46435.
When z > 1, we can use the solutions y, and y,, and the analytic
continuation formulae of (1.8.1.12-19).

When values of the function have been found over appropriate
ranges of positive values of @, b and ¢, the tabulation can be extended
in the usual way, to a wide range of negative values of a, b and ¢, by
the use of the recurrence relations (1.4.1-15), provided that we avoid
always any integer or zero values of @, b and ¢ for which the functions
used are not defined. For example if we know that

F[0°1,0-2; 0-3; 0-2] = 1-015,
and that oFi[11,0-2; 0-3; 0-2] = 1-545,
we can deduce from the recurrence relation (1-4-1) that
[~ 09,0:2; 0-3; 0-2] = 1-024.
The fact that the function is always symmetrical in a and & should
never be forgotten. Thus we can also say that

F[0-2, —0-9; 0-3; 0-2] = 1-024.
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2
THE GENERALIZED GAUSS FUNCTION

2.1 Historical notes

The idea of extending the number of parameters in the Gauss function
seems to have occurred for the first time, in the work of Clausen (1828).
He introduced a series with three numerator parameters and two
denominator parameters. Over the next hundred years the well-
known set of special summation theorems associated with the
names of Saalschutz (1890), Dixon (1903) and Dougall (1907) were
developed.

These are all for series in which 4 = B+1, and z = 1. It can be
shown that Dougall’s theorem, giving the sum of a ,F(1) series, is the
most general possible theorem of this kind. The whole theory as it
existed then was analysed exhaustively and brought to perfection by
W.N. Bailey, in a long series of papers during the decades of 1920-50.
Indeed at this time L.J.Rogers is reported to have said ‘Nothing
remains to be done in the field of hypergeometric series’. The whole
theory of the general function ,Fy(z) was still untouched. The first
attempts at a general transformation theory were already being made
by Whipple (1934, 1937), and the concept of the asymptotic expan-
sions for the function were already implicit in the work of Barnes
(1907 ). This side of the theory was developed by MacRobert (1938,
1939) before 1939, and later by Sears (1951a,b,¢), Slater (1952¢,
19555, ¢, ¢) and Meijer (1941-56).

2.1.1 Definitions. The series

14 B0 0g 2 a;a~+59»€»+C.:akﬁm+:W
F 5 By by 117 By (0 + 1) bylby +1) .- bylbg+ 1) 21

— - AﬁwvﬂAqu.:...A@kvapN« 21.1.1
= Z Gy Byt D

is called the generalized Gauss function, or generalized hypergeo-
metric function. It has A4 numerator parameters a,,a,,as,...,04,
B denominator parameters b, by, b, ..., by, and one variable z. Any
of these quantities may be real or complex but the b parameters must
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not be negative integers, as in that case the series is not defined. The
sum of this series, when it exists, is denoted by the symbol

aFplay,ag,a5,...,0, by,by, b5, ..., bp; 2] (2.1.1.2)

If any of the a parameters is a negative integer, the function reduces
to a polynomial. This notation was due to Barnes (1907%).

These notations can be shortened still further to
et Alﬁn«vkvz 2"

>

n=0 AASMVQ-S*
Similarly, for a product of several Gamma functions, we can write
Pa,) I'(ay) I'(as) ... T'(a,,) -7 _Hac ag, :;am”_
(b)) (b)) T(65) ... T6g) ~ by, by -.vs b
= I'[(a); (b)], (2.1.1.4)

where it is understood that there are always 4 of the a parameters and
B of the b parameters, if this is not shown explicitly. A dash will be
used to denote the omission of a zero factor in such a sequence of
parameters. Thus, (a)’ — a,, will indicate the sequence

= 4Fgl(a); (b); =]. (2.1.1.3)

G =Gy Bg = Qs+ ey Ay ) = oy O 1 — B G o — By ooy g — Q.

Such contracted notations will be found to be absolutely vital to the
proper understanding of the more advanced parts of the theory.
There are several alternative notations for the general hypergeo-
metric function. Thus, to avoid the difficulty of restricting the b
parameters to values which are not negative integers, several authors
use
48BlA1, 85, .05 by, by, .. b 2] = (Fgl(a); (B); 2)/T[by, by, ..., byg).
(2.1.1.5)

This form of the function is defined numerically at those points where
4Fp(2) is not defined. An alternative symbol 1 is

4Pp[21, 8z, . 045 By, by, ..., 055 2] = (Fyl(a); (b); 2)/T[by, by, ..., b5).
(2.1.1.6)

This symbol will not be used in the present work since it would be
confused with the very similar symbol used for the corresponding
basic general hypergeometric series, to be considered in Chapter 3.

t See Erdélyi (1939a).
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Several special symbols have been used to represent the asymptotic
forms of the function. One of the most widely used of these is

B(4; a,,aq,...,a4; B; by,b,,...,05, —1/2)
= I'[(a); (b)) Fpl(a); (b); 2). (2.1.1.7)

This is MacRobert’s E-function.t Much of the later general theory has
been developed in terms of Meijer’s G-function,

Hla«tﬂlan.:;ulam v
0,1=b;,1—b,,...,1-bp

= I'[(a); (0)] 4Fpl(a); (B); z]. (2.1.1.8)

In the general series  Fp(2), if the sum of the numerator parameters
exceeds the sum of the denominator parameters by one, that is if

by+by+ ... +thp=a;+ay+ ... +a,+1, (2.1.1.9)

1 A
QmwiAlN

the series is said to be Saalschutzian. If A = B+1, and

l+a, =b +a;=by+ag=... =bg+ag,,, (2.1.1.10)
the series is said to be well-poised, and if all pairs but one of the pairs
of parameters satisfy these relations, the series is said to be nearly-
poised. Since the order of the parameters can always be interchanged
in the series without altering it, the pair of unequal parameters can
always be brought to occupy either the first or the last places in the
sequence. Such series are then said to be nearly-poised series of the
first or second kind respectively. These three terms, Saalschutzian,
well-poised and nearly-poised are all due to Whipple (1925, 1926a).

2.1.2 Differential equations. The series ,Fg[(a); (b); 2] satisfies
the differential equation

d/ d d d
ANQWNAN%nT@ﬂ'HV ANQIN:T@N‘HV N A Q.|N+@.Q|Hv

d d d
INANH+SV Analn.rasv ANMN‘I{V_Q =0. (2.1.2.1)

The rank of this equation is the greater of 4 and B+1. When 4 < B,
this becomes Poole’s equation §

B . ﬂw_.w\ Q.m..._.uw\
tm_u,. Ya,z—b,) Eps +ayy +28 BT = 0. (2.1.2.2)
+ MacRobert (1938). 1 Meijer (1934), p. 11; (19464), p. 229.

§ Poole (1935).
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This equation has a regular singularity at z = 0, and an irregular
singularity at z = co.
When 4 = B+ 1, the equation (2.1.2.1) becomes
B nm.@\ Qm+~w\

Tz b) ey + 2 (1-2) gy = 0. (21.2.3)

This is a Fuchsian equation with regular singularities at z = 0, z = 1,

and z = co. We shall see later that it has B+ 1 linearly independent
solutions for |z| < 1, that is the function

sntpl(@); (b); 2]
and the B similar functions
B l+a,-b,1+a,—b,, ..., 1+ag.,—b,;
21-by F h 1 v 2 v? 4 B-+1 »?
BB | 140, b, 14+by—b,,...%...,  +bp—10,,2—b,; &
=2t g (Fyll+(a)—b,; 1+ (b)Y —b,,2—b,;2z] (2.1.2.4)
forv =1,2,3,...,B. Here the % indicates in an alternative way, that
the expression 1+b,— b, is omitted from the sequence in the denomi-
nator. In fact, it has become the factorial term in the series. Again
it is assumed that no two of the b-parameters differ by an integer, or
some of the solutions would become infinite.
If A =2d/dz, in terms of such operators, the generalized hyper-
geometric equation (2.1.2.1) can be written
AA+b6,— 1) (A+by,—1) ... (A+by—1)y
=2(A+a)(A+ay)...(A+a,)y. (2.1.2.5)

Let us suppose that  y = 2# wm u,(p) 2*,

n=0

is any solution of the equation (2.1.2.1), and let us substitute this
series and its derivatives with respect to z into the above equation
(2.1.2.5). Then we shall find that the ‘indicial equation’ (that is the
sum of the coefficients of z# equated to zero) is

plp+b—1)(p+b,—1)...(p+bg—1) = 0. (2.1.2.6)
Hence solutions are given by
p=0, 1-b, 1-b, ...,1-by
The other coefficients must be connected by the relation
p+m)(p+n+b—1).. (p+n+by—1)u,(p)
=(p+n+a,—1){p+tnta,—1)...(p+n+a,—Vu, ,(p). (2.1.2.7)
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Hence Un(p) = (p+ (@)= 1), f{(p+(B) — 1), n}, (2.1.2.8)

and the complete set of solutions is given in (2.1.2.4) above.

The radius of convergence of the resulting series is 0; 1 or o,
according as A—1>B, A—1=Bor A-1<B. If A-1 > B, the
formal solution in series breaks down, but if A — 1 < B, there are B+1
solutions obtainable, provided that «,(0) and %, (1 — B,) do not become
infinite for any values of # or ». When 4 —1 < B, each solution is a
power series in z, which is convergent everywhere in the z-plane,
multiplied by the factor 2° or z21-%. When 4 —1 = B, each solution is
a power series multiplied by 2° or 2'-% as before, but in this case, the
solutions are convergent for |z| < 1, only. However, they can all be
extended outside this circle of convergence, by analytic continuation,
and the use of integrals of the Borel type.

2.1.3. Integration of the generalized function. The integration
of the generalized hypergeometric function ,Fjp(z) with respect to z is
quite straightforward. We have

Z
% Al (0); 212

(b —1)(hp—1)... (bp—1) N
= @) (1) (e, 1) WfEl@ 1 )= L 2] - 1),

and in general (2.1.3.1)
[0 st @1: e
= (- mu Mww Fyl(@)—n; (¢)—n; 2]
- 3 Q=D C DRI (513

<1 (Q=@)m-n

Integration with respect to a parameter is not so simple, since even

% *(@)yda

involves all the symmetric functions up to order » and the formal
result for an integral of the type

._.m 1Fpl(a) +3; (b); 2}ds
0
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would be of the same degree of complexity as the coefficient of 2 in
the expansion

T (—z)m= m A,z
8=1

n=0

2.2 The convergence of the general series
The series 4Fp(z) converges for all values of z, real or complex when
A < B, for, if u, 2" is the n’th term of our series,
< ey +nllay+n ... jag+n] 2|
|by+n| |by+n|... |bg+n|(1+n)

Uni1
Uy

< _W_lg‘.\*lwwHAH t _&H_?\v (1 + _an_\@v AWH_N% (2.2.1)
(14 1/n) (1 +|by|fn) (1 + |by|[n)... (1 + |bg|/n) * "7
and this expression tends to zero as n — oo, provided that 4 < B.
Also, we can see that if 4 = B+1, the series is convergent when
|z| < 1. It also converges when z = 1, if

B 4
W_AM?I Maev > 0,
v=1 v=1

B
and when z = — 1, if H&AMFIWQQVI?
y= v=1

=1

If A > B+1, the series never converges, except when z = 0, and the
function is only defined when the series terminates, that is when one
or more of the a parameters is zero or a negative integer.

In particular, the series

alhla,b,c; d,e; 2]
is convergent if |z| < 1,

or if z=1 and Ri(d+e¢—a—-b—c¢)> 0,
or if z=—1 and Rl{d+e—a—-b—c)>—1.

2.2.1 Contiguous hypergeometric functions. Any two hyper-
geometric functions

4Fpl(@); (b); 2] and Fpl(a’); (0'); 2]

are said to be contiguous, when all their parameters are equal except
one pair, and this pair of parameters differs only by unity, for example,

ofal; 61,05+ 15 2] is contiguous to  (Fy[; by, by; 2].
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Similarly, any two hypergeometric functions are said to be associated,
when their parameters differ by integers only. Thus

oFlay, ag; by, by, bg; 2]  and  Fy[a; +m,ay+n; by —p,by—q,bg—1; 2]

are associated functions, for all integer values of m, n, p, g and ». When
A = B+ 1, alinear relationship can always be found between any B + 2
contiguous functions. Similar linear relationships also exist between
any generalized Gauss function and its associated functions.

2.2.2 Special cases of generalized hypergeometric functions.
All the functions of mathematical physics can be expressed in terms of
generalized Gauss functions. They form a table of increasing com-
plexity as the number of parameters increases. Thus we have the
exponential, trigonometric and hyperbolic functions which are all

based on series of the type
22

8-
oﬁ:,&l:i w, .+wﬂ+...nmn. (2.2.2.1)

in which there is one variable and no parameters. If we introduce one
parameter, we have two general types, the Binomial functions based on

Folas 2] = (1—2)7%, (2.2.2.2)

afa+ 1)z (a v N:

=14az+— wm...‘l+ -+

+..,

and the Bessel functions based on
oFil ; b; 2] = T'(b) (32)071J,_,(2iz}). (2.2.2.3)

With two parameters, we have the confluent hypergeometric and
Whittaker functions based on Kummer’s functions

JHila; b; 2] = M(a,b,z), (2.2.2.4)
their asymptotic representations based on
Folb—a,1—a; ; 1/z] ~ 2> %e*I'(a) M(a,b,2)/T'(b), (2.2.2.5)
and the function ofel 3 @, b; 2]

which is only defined if @ and b are not negative integers.
With three parameters, we have the Gauss function

Hle,b; c; 2]

and the three functions  Fyla,b,¢; ; 2],
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which is either & divergent series or a polynomial,
Fla; b,c; 2]
which is the product of two confluent hypergeometric functionst, and
ofyl s a,b,¢; 2]

Other special cases arising out of this group, with three parameters,
are the products of two Bessel functions, like

sin 7y
v

J(izt) J_ (iz}) = iy v+1, —v+1;2],  (2.2.2.6)

2 % nlev 9-2v G .
JYizd) = Efrswn Falv+3v+1,20+152)  (2.2.2.7)
and iz} = .AI|NV;- 2% Kv+ L v+1,2v41; —2),

(2.2.2.8)
Lommel’s function,}

(2¢z)#+1

Sun208) = o S B e B b+ 2]
(2.2.2.9)
and Struve’s functions
y2 1
H,(2iz) = %E: fy+did (2.2.2.10)
. (sz)+1
and L (2:2) = NEINCEE) L1 8,v+3; —2) (2.2.2.11)

Finally, as an example of a series with five parameters, we quote
the general multiplication theorem for Bessel functions,

wxi.\ » 1

.N..w. GNV n+tv+hin+ v+l

W(12)J,(12) = wigﬂ:+32_+5~® T+u, 14w, Lpty; ]
(2.2.2.12)

2.2.3 Reversal of the series. Since it is possible to reverse the
order of any finite series, for the terminating general hypergeometric
series, we find that if (a), occurs in the rth term of the original series,
then (a),,_, occurs in the corresponding term r places from the end.
Hence we can reverse the order of the terms from the end to the
beginning of the series simply by writing

@y = 77— -2 (2.2.3.1)

t Whipple (1927d). { Watson (1948a), p. 346.
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in place of (a),. In particular ! becomes (—1)"(1), and the factorial
(—m), becomes (1),. In general, we can write

anFpl(a), —m; (b); 2]

= ﬁ%: gFall =), 1—m; 1—(a); (—1)4+#[z]. (2.2.3.2)
Any finite hypergeometric series can be reversed in this way. In
particular, a well-poised series when so reversed remains well-poised,
a nearly-poised series of the first kind becomes a nearly-poised series
of the second kind and a nearly-poised series of the second kind
becomes a nearly-poised series of the first kind.
It is also possible to split a finite series into two parts, and reverse
the order of one of the parts only, thus

anFpll@), —2m; (b); 2] = 4.1 Fpl(a), —2m; (0); 2]

. _ 1)4+E
+(- Cin»slMMMWW“Hwi@m_Hp —b)—m,1-2m;1—(a)—m; .Alnv.iiu_a.

(2.2.3.3)

Here the suffix m indicates that only the first m terms of the F series
are to be included in the expansion.

2.3 Special summation theorems

In chapter one, we gave detailed proofs of the two fundamental
summation theorems of Gauss and Vandermonde. In this section we
shall give proofs of four further special summation theorems, those
which carry the names of Saalschutz, Kummer, Dixon and Dougall.
Then we shall discuss the underlying general transformation theorem,
known as Bailey’s theorem, from which there can be deduced proofs
of these four special summation theorems, and of many other results.

2.3.1 Saalschutz’s theorem. We have already proved Euler’s
identity (1.3.15). This can be rewritten as

JFile—a,c—b; ¢c; z] = (1 —2)tv—,Ka,b; c; z]. (2.3.1.1)
Now the coefficient of 2» on the left-hand side of this identity is

(c— )y (c—b)y

€nn! 7
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and this expression must be equal to the coefficient of z* on the right-
hand side, that is to the coefficient of z* in the double series
o (@), (b),2" & (c—a—b),2*
2o S
which is formed by the expansion of (1 —z)2+—¢ in powers of z.
If we put s = n—r, we find that this coefficient is in fact
2 (@, (0)(c~a=b),., |
e (C),rl(n—1)!
Aolalvvs\ d Aavw A@vﬂﬁ|3vﬁ
n! reori(e),(1—c+a+b—mn),

n

=———"3Kla,b, —n; ¢, 1 +a+b—c—n; 1]. (2.3.1.2)
Hence .
(c—a)p(c~-b),
Anvs Ac —a— @vs.
This is Saalschutz’s theorem.} It gives the sum of the series

= glla,b, —n;¢c,1+a+b-c—n; 1]. (2.3.1.3)

d,1+a—e1+b—el+c—e
l—e,d—a,d—b,d—c ;, (2.3.1.4)

provided that one of the numerator parameters is a negative integer
—n, and that

sFyla,b,c;d,e; 1]1=T

d+e=14+a+b+e, (2.3.1.5)

that is to say, that the series is Saalschutzian. When n — o0, the result
(2.3.1.3) reduces to Gauss’s theorem (1.1.5), since

(-n)/(1+a+b—c—n),—>1 as n—>o0.

The difference between the sum of the denominator parameters and
the sum of the numerator parameters is called the parametric excess
of the series, and it is usually denoted by s. In this case,

s=d+e—a—-b-c,

and in a Saalschutzian series s = 1, always.

2.3.2 Kummer’s theorem. First we shall prove Kummer’s
quadratic transform

e, b; 1+a—b; 2]
= (1-2)"%,Fia,}+3a—-b; 1+a—b; —42/(1-2)?] (2.3.2.1)

1 Saalschutz (1890).

4 sSGH
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where we must have |4z| < |1—2|?

in order that both the series are convergent. Now, within the circle
|z| < 3—24/2, both series can be expanded in increasing powers of z.
The coefficient of 2" on the right is

l AWQV‘; TW + .um.a - Ovﬁ A - hvs AQ + M.Bv?rs

:Mu,.o T (I+a=-b),nl(N-n)!

- e e ead
since AJW% — (~1)(=N), (2.3.2.3)
and (—4)* (@ +2m)y_, = ﬁg

- wﬁ. (2.3.2.4)

The series on the right of (2.3.2.2) is summable by Saalschutz’s
theorem, and its sum is

IAW+WQV»<AH|@|ZVN<|"I A@v?< - .Nwwm
(ra-bly(G-ta—N)y_ (ta-bjy 3%
so that the coefficient of 2 on the right-hand side of (2.3.2.1) is in fact
(@ @y
(1+a—d)y N!

which is the coefficient of zV¥ on the left-hand side of (2.3.2.1) above.
By analytic continuation, this result is true everywhere within that
loop of the curve

Ja2] = 1~z
which surrounds the origin.

Now let z > — 1. This point lies on the above curve, so that, by
Abel’s theorem on continuityt, we have

Fla,b; 1+a—b; —1] = 2-2,F[}a, 3+ 3a—b; 1 +a—b; 1]. (2.3.2.6)

We can sum the series on the right-hand side by Gauss’s theorem,
(1.1.5), and this gives us

TI«I?W H+alo. ~+wa”_
|n H w.w.m.q
2 ﬂ_H_+_N,a|Pw+WL ﬁ_HH+waloL+a > )

since ' +3a) T{a) = 217t [(a). (2.3.2.8)

+ Whittaker & Watson (1947), § 3.71.
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Both the hypergeometric series are convergent if
RI(1-28) > —1,
that isif RI(b) < 1.
Hence finally we get Kummer’s theorem

. ) _n[l4+a-b, 1+ia
Fila,b; 1+a—b; —1] = ﬁ_ﬁiwanfg g (2.3.2.9)

if R1(b) < 1. The series which is summed by this theorem, is known as
Kummer’s series. It is the simplest type of well-poised series.

2.3.3 Dixon’s theorem. This theorem was first proved in 1903.1
It gives the sum, in terms of Gamma functions, of the series
slsla,b,¢c; 1+a—b,1+a—c; 1]
provided that this series is convergent, that is provided that
Rl(a—2b—2c) > —3.

A simple direct proof, due to Watson,§ is based on interchanges in
the order of summation of a double series, and makes use of the sum-
mation theorems of both Gauss and Kummer. That proof was given
in detail by Bailey| and will not be repeated here. The following
alternative proof is due originally to Bailey.§ We shall show first that

ab(l1—2)gFla+1,b+1,¢; 1+a—b,2+a—c; 2]
+{a—c+1)(a—2b—2c+2)Ffa,b,¢; 1+a—b,1+a—c; 2]
=(a—2c+2)(a—b—c+ 1) Fa,b,c—1;1+a—-b,2+a—c; z].
(2.3.3.1)
This is a relation between three Saalschutzian ,F,(z) series. It can be
proved very simply, by comparing the coefficients of 2z on both sides
of the equation, and checking that they are in fact equal. Next let

z > 1, in the above relation. For the series to be convergent now, we
must have Rl (a — 2b — 2c¢) > 0. Then we find that

F = Fa,b,¢c; 1+a—-b,14+a—c; 1]

_(l+3a-c)(1+a-b-c
T (l+a—c)(l+3a—-b—c

wwﬁn_”a“ be—-1;1+a—-b,2+a-c; 1].

‘ (2.3.3.2)

t Kummer (1836), p. 53. 1 Dixon (1903).
§ Watson (1924 a). || Bailey (1935), § 3.1.
9 Bailey (1937a).
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Now let us write ¢— 1 for ¢, and repeat this process » times. Then
we have

A+3e—-c),(1+a—b—c),

%IAI.Q . 0Fia—=b=0) Fla,bc—n;1+a—-b,1+a—c+n;l1].
" " (2.3.3.3)
Anls\vwll; 1V
When n — o0, C+a|n+3ﬂ|l 1y,

so that, if R1(b) < 1,

l+a—c, 14+ia—b—c¢ |

— ] . H IIQ. |H .
%Iﬁ—uu.fwalovw.*.alvlo oAla,b; 1+a ]

(2.3.3.4)

This ,F,(—1) series can be summed by Kummer’s theorem (2.3.2.9)
so that finally we have

oFla,b,c; 1+a—b,1+a—c; 1]

_T ~+W9“w+w9|~v|nuw+@|~vv H+9|cg. (2.3.3.5)
l+a, 1+a—b—c, 1+}a—b1+za—c

By analytic continuation, we can dispense with the condition
RI(b) < 1, so that the result holds under the single condition for
convergence that Rl (}a—b—c) > — 1.

This result is Dixon’s theorem.} It gives the sum of a well-poised
oFy(1) series, and it includes as a special case the sum of the cubes of
the binomial coefficients.

In particular, if ¢ = —n, the result reduces to

(1+a),(1+3a—b),
Aw +w~.§w=:. +Q\|®v§.
(2.3.3.6)

w.N-N_”aqu -N; H+a|®»ﬂ+a+§w H”_ —

Finally, when ¢ - —c0, Dixon’s theorem reduces to Kummer’s
theorem,
A generalization of Dixon’s theorem is

sfla, b,c; e, f; 1]

ns? ||.@+°;w.w.w.q
Iﬂﬁa.o.fm,ofbummﬁa a..\.a.m“.fr.mv?ﬁ v

where s = ¢+f—a—b—c, and we must have Rl (s) > 0,and Rl (a) > 0,
in order that the two series are convergent. These two series have the

+ Dixon (1903).
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property that if one of them is well-poised then so is the other one.
Again we shall make use of Gauss’s theorem, and then the proof follows
the lines of Watson’s proof of Dixon’s theorem, referred to above. Let

F=T _Ha 5. Flabc; e.f; 10, (2.3.3.8)
B a+n,b+n,c+n
B Moﬂ @+:,\+3L+§H_

hd b+n,c+n

— ’ _ P _ -1
smcﬁ a+.\la+3‘~+3u_»w#@ a,f—-a;e+f—a+n; 1],
by Gauss’s theorem. This ,F,(1) series is convergent when the original
k(1) series is convergent. Hence we have

P M Mﬂ_wo+3 c+n,e—a+m,f—a+m H_
n—0m=0 Le—a,f—a,e+f—a+n+mm+1,n+1

(2.3.3.9)

For large enough values of m and =, all these factors have ultimately
the same sign, so that the double series is absolutely convergent, the
order of summation can be interchanged and Gauss’s theorem can be
applied again.

This time we find that

1 @0®|9+§.\. a+m . .
r= Ncﬂ etf—a+m,e—a,f—a,l+m b, c; e+f—a+m; 1]

_ _Hala+§~\.!a+§‘m+%la+§“
B a_\, e o et+f—a+m,e+f—a—b+m,

e+f—a—b—c+m
e+f—a—c+m,l+m

(2.3.3.10)
so that

F = H«ﬁ@uT.\.lQl@'O?\.'QJ&IIQu@vO
-~ le+f-a-be+f-a—c,e—a,f—

alav.\.|9‘®+.\.|§|®|0w
x&_H e+f—a—be+f—a—c; m_. (2.3.3.11)

which gives the required result,
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From this we can deduce Watson’s summation theorem. We have,
putting e = }(a+b+ 1) and f = 2c in (2.3.3.7),

oFsla, b,¢; Ha+b+1),2¢; 1]

T ta+3b+14, 2, wlwa|w~w+ou_

T T Lesd-la+dbtec,i+ia—1b+e
2c—a,}+3b—3a,4—3a—-3b+c
t—da—3b+2c,3—3a+1b+c;
This last series is well-poised so that it can be summed by Dixon’s
theorem (2.3.3.5) above, to give us Watson’s theorem,

sfala, b,¢; 3 +3a+1b,2¢; 1]
r3+c—3a—3b, 1 +1ia+1b, 2, 4a,

1-la+3b+ec,14+c—3a,3+2c—3a—3b
1-la+ib+c,c,a,t+3a—-3b+c,
5 1—-3b+c,1+2c—a,tb—-}
um,w+9w+wa+%_wlwa|%+ﬁ
L3 +da,3+80, k- da+e i—db+c]’
provided that the series is convergent, that is that
Ri(3—3a—%b+¢c) > 0.

When ¢ > co, this result reduces to Gauss’s second summation
theorem (1.7.1.9). This result was first proved by Watsont for
terminating series. The more general result for non-terminating series
is actually due to Whipple.}

In a similar way, we can deduce Whipple's summation theorem,
from (2.3.3.11), for the second series in (2.3.3.11) is summable by
Watson’s theorem if

c=8=¢e+f—a—-b—-c, 1+2c—a-b=2,
and l+c—a=4§e—a)+¥f-a)+3
that is when a+b = 1, and e+f = 1+ 2¢c. Under these conditions we
find that

sFyla,1—a,c;e,14+2c—e; 1]

e,1+2c—e H_
le+ia, }+3e—}a,3+c—let+ia,1+c—te—ja
(2.3.3.14)
provided that Rl (¢ +f—a—b—c) > 0, that is provided that Rl (¢) > 0.

x oF, w H“_. (2.3.3.12)

(2.3.3.13)

= wwlﬁaﬂ_w

+ Watson (1925). t Whipple (1925), p. 113.
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When ¢ — o0, this result reduces to Bailey’s summation theorem
(1.7.1.8).

2.3.4 Dougall’s theorem. The last result in this group of special
summation theorems, is Dougall’s theorem¥. This theorem states that

a, 1+ 1a, b, c, d, e, fiy

F,
e 3a,1+a-b,1+a—c,1+a—d,1+a—e,1+a—f;

l+a-bl+a—c,l+a—d,1+a-f,1+a~b—c—d,
l+a-b—-c—f,1+a-b-d—-f,1+a—c—d—f
l1+a,1+a-b-c,1+a~b-d,1+a—-c—d, !
l+a-b-f,1+a~c—fl+a—d—f,1+a-b—c—d—f
(2.3.4.1)

=T

provided that the series terminates and that
1+2a =b+c+d+e+f. (2.3.4.2)

This theorem gives the sum of a well-poised ,#(1) series in which the
sum of the denominator parameters exceeds that of the numerator
parameters by two. The most elementary proof, on the lines of
Dougall’s original proof, is by induction.

The result is obviously true when f = 0. Suppose that it is true when
f=-1,-2,...,1—m. The Gamma functions on the right are sym-
metrical in b,¢,d and f. Hence, by this symmetry, the result is true
when ¢ =0, —1, —2,...,1—m, and f has any value, and also when
d=0,-1,-2,...,1—m, and f has any value. But

d=142a~b—c—e—f.
Hence the result is also true when ¢ has one of the 2m values
0,-1,-2,...,1—-m,1+2a-b—-d—e,14+2a—-b—-d—e+1,...,
1+2¢—b—d—e+m—1,

and f has any value. In particular, it is true when f = —m. In this
case, (2.3.4.1) can be rewritten as

(I+a=b),(l1+a—c),(1+a—d),(1+a—b—c—d), F(l)
=(1+a),(l+a—b—c), (1 +a-b-d),(1+a~c—d),. (2.3.4.3)

This equation expresses an equality between two polynomials in ¢,
eaci of degree 2m, when ¢ assumes any one of the above 2m values.
Suppose now that ¢ = a+m, in (2.3.4.3). This value is not one of our

1 Dougall (1907).
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9m values, but it is a pole of the last term of the ,F(1) series. From this
fact, that it is a pole, by using the last term only, we can check that
(2.3.4.3) holds for ¢ = a+m. Hence (2.3.4.3) holds for 2m +1 values
of ¢ and since it is only of degree 2m in ¢, it must hold for all values of ¢,
when f = —m, if it holds whenf=0,-1,-2,...,1-m. But it holds
for f = 0. Hence it holds for f = — 1, and so finally it holds forf = —m,
by induction, and for all values of c.

If we put f = —m, and substitute 14+2a—b—c—d+m for e, we
can write the result as

7 a,1+ 3a, b, c, &L+walolal&+§‘l§\wﬂ
e la,14+a—-b,1+a—c,1+a—-d,b+c+d—a—m,1+a+m;
IC+£sﬁ+a|@lavaﬁ+a|@|§%2+alnl&vs
T (+a-b),(1+a—c),(1+a—d),(1+a-b—c—d),’
(2.3.4.4)
In this expression, we can let m — co. We find then that we have
F a,1+1a, b, c, &ww
54 la,1+a-b,1+a—c,1+a—d;
-T ~+a|?~+al9~+a|&.~+a|@.ln|
- l+a,1+a-b—¢,1+a—-b—d,1+a—c—d]’
(2.3.4.5)

provided that the series is convergent, that is provided that
Rl(b+c+d—a) < L.

This result gives the sum of a well-poised infinite ;F,(1) series. If the

series terminates, that is, if d = —m, the theorem becomes
7 a,1+1a, b, c, —m;
574 la,14a-b,1+a—c,1+a+m;

_(1+a),(1+a=b-0), s
= (i1acbp(ra—o), O

Ifd > — 0, (2.3.4.6) reduces further to
7 a,l+1a, b, ¢ _q]= H‘_H~+9I@L+ala
73 la,1+a-b,1+a—c; “ " l14a,14+a=-b—-c]’

(2.3.4.7)
provided that Rl (b+c—3a) < 1.
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If now ¢ = —m, we find that
1 .
B a.~+ma. . b, -m; 1 - (1+a),
3, 1+a—b,1+a+m; (1+a-"b),
(2.3.4.8)
and when we let ¢ - —oo, this result becomes
a,1+%a b; l4+a-b
NJ W, ) .
2 Nﬁ ta1sap L= _J_H:a H_ (2.3.4.9)
which is & special case of Dixon’s theorem. In particular,
a,1+1a —m;
Nm_ ’ 2%, H _ ¢
oF, talsatm | = A+ (2.3.4.10)

.H». we put d = }a, in (2.3.4.5), we can deduce Dixon’s theorem
directly.

A similar method of induction can be used to prove the following
more general result, connecting two well-poised ¢Fj(1) seriest,

a, 14 1a, b ¢ d
QNW ’ y ’
ta,1+a-b,14+a~c,1+a—d,
e f g, ki
l+a—el1+a~f,1+a—g,1+a—h;
_ _J_HH +a—e,l+a—f,1+a—g,1+a—h,1+a—f—g—h,
l+a—f-g,1+a—f-h,1+a—g—h,1+a—e—f—g—h,
l+a—e—g—h,1+a—e—f—h,1+a—e—~f—g
l+a,l1+a—e—g,1+a—e—f,1+a—e—h H_
xvm._u\n,H+w?w+ola,w+o|a,w+mla, e,
8 tk,1+a-b,1+a—c,1+a—d,1+k—e,

.\., g, wﬁ 1
L+k—fil+k—g,1+k—h; " |’

(2.3.4.11)
where k=14+2a-b—c—d, (2.3.4.12)
b+c+d+e+f+g+h=2+3a, (2.3.4.13)

and % is a negative integer.

Since this relation will appear as a deduction from the more general

Mrmoa% later (see §2.4.4 and §4.5.2), a detailed proof will not be given
ere.

t Bailey (19294, b).
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2.4 Bailey’s transform

The theorem to be considered now, was first stated explicity by
W.N. Bailey in 1944,1 though the germ of the idea can be found in
the work of Abel more than one hundred years earlier. If we have a
doubly infinite array of objects f(r,s) which can be represented as
points in a plane, (7, ), we can form a doubly infinite sum

S fire)

r=0 8=0

by summing the terms parallel to the z-axis and parallel to the y-axis,
but we can also form a single infinite sum of finite quantities

T f(r,s)

1

O e e [ [} [ ®
N \

AN ()
¢ B W e o o o
N\ AN N

N N N
¢ o B W e o o
N N N AN

N N by N

———0—0—0—& x
0

Fig. 2.1

by summing along the diagonal directions first, and then outwards,
perpendicular to the diagonals, (see Fig. 2.1). This method of inter-
changing the order of summation to reduce two infinite sums to one
infinite sum and one finite sum is fundamental in the study of general
transformations of hypergeometric series.

Formally we have,

s.\. ﬁ: — (2.4.1)

Oy Up—p Vptr

and Yn = %ﬂ Uy Vpi> Awhwv

iMs Ipde

T

t Bailey (1949), § 1.
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where a,, 8,, u, and v, are any functions of r only, such that the series
YV €X18L8, then

T Yn= X B0, (2.4.3)
n=0 n=0
For UY=L X0, 0% Vi,
n=0 n=0r=n

By hypothesis, this double seriesis convergent. Hence we can exchange
the order of summation from rows to diagonals, and write

@©

K r
2o V=2 X &y J, Up_nVrin
n=0 r=0n=0

= m @a%w.

r=0
When the functions being used in this transformation are infinite
series, the change in the order of summation has to be justified
separately for each form of function, but when the functions used are
finite series, as frequently happens, no such justification is needed.
In order to investigate transformations of general hypergeometric
geries, by the use of this theorem, let us suppose that
A§~vn A‘Swvn v quv%s@q
U, = 2.4.4
"7 e )y (e 249
(¥y), (Vg), ... (vp), 0"
v, = 2.4.5
FANTANSHTAN (2:49)
S = A&va A&nvw te A&va &W
r AQqu AQNV». vee AQva
and a, = A&Lﬁ AQNVn v Am«kvxw\x.
. Q«Lﬁ Qanw Q«EV.\\H
All these parameters and the variables u, v, z and y are independent
of r. Then with these values of ,, v, and 8,, since, if we write 8 for 7 + =,

(2.4.6)

(2.4.7)

@0Q
Tn = Mc%u.*s Ug Vs i0ns
8=
we find that

_ (@1)a(da)n - (dp)n (¥1)2n (Va)an - - (Vpr)an T"0*"
(91)n (92)n - Ge)n (F1)an (fodon -+ (fF)en

» 7 Uy, Ug, -y Uy, By + 1, dp+ 1, ..,
v+p+v Yg+ri6
€1,€5 . g+, gat 1, ...,

dp+n,v,+2n,v,+2n, ..., vy + 2n; H_
uwox | .

Yn

go+n,fi+2n,fo+2n, ..., frt+2n;
(2.4.8)
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and
\w — ::V: AQ\mv: s A\gqv: AGL: A@,Nus ot Aeq\vs unor

Aawvu« Amwvs. e Ammva A_\Hvs Camvﬁ s A.\.N.va\

l-n—e,1-n—e..,1 —n—eg,a,a,....,04
l-n—u;, 1 —n—uy, ..., 1—n—ug, by by, oo Ry
VNV, LU R, (- :H+mlq:e.cu_.
fitnfotn, . fetn;

X prarv £ QiT_%_H

(2.4.9)
The complete theorem is, when stated in the contracted notation,

& (@) (@)n (2))2n 2"y V%"
o ((B)a (@ ((Nen

(@), (d) +n, () + 2n;
Xvpw Il ?ﬁ?y @)+, (F) +2n; s&

2 ((d)) (4)a (2))p wm0"2

n

i

=2 ()P (@)n

l-n— —n i
<aomraornn [0 Gyt 0 )
(2.4.10)

This result contains as special cases very many relationships
between generalized hypergeometric series. In the first place, when-
ever one of the inner series can be summed by one of the known sum-
mation theorems, the equation (2.4.10) will assume a simpler form.
The two main summation theorems are Dougall’s theorem and
Saalschutz’s theorem, since these two results contain most of the
other summation theorems as special cases. They both involve
terminating series, and we can apply them in turn to either side of
(2.4.10).

2.4.1 Saalschutzian transformations. Let usdenote the series on
the left of (2.4.10), y.psy Fesric(uvz), by F, and the series on the
right of (2.4.10), 4, zips1 Fursrsrl(— 1) EVuvy] by F,, and let us
suppose first that F, can be summed by Saalschutz’s theorem. There
are then ten possible forms for F,,, of which only four lead to series for
F, which are also summable. These four cases are;

(1) F,= oFldy+n,dy+n,dg+n; f+2n,9+n; 1]
mw. = h+wmwm+~:9v, — 1N, Q&..\..Ts\w —¥]
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(2) F, = ;F)[v+2n,d+n,u; f+2n,9+n; 1]
Fp= 4o Fgil(@),v+n, —n; (A), 1 —u—n,f+n; y]
(3) F, = 3Fy[dy+n,dy+n,u; g+ 7,9, +n; 1]
By = 41 Fy (@), —n; (h),1—a—n; y]
(4) ﬁ‘ = 3 Bpld+n,uy, uy; g+, €5 1]
Fy= g02Fgaf(@), 1 —e—n,—n; (h),1 —uy —n,1 —uy—n;y].

In all these four series for F,, the parameters are subject to the usual
restrictions for Saalschutz’s theorem, that one of the numerator para-
meters is a negative integer, and that the sum of the numerator para-
meters exceeds that of the denominator parameters by one.

In case (1), when we sum F,, by Saalschutz’s theorem, if we take

8 - A&Hva A&»vq_ A - zvx
" @)n
- (9 —d)n (g —da)y (dy)n (d)y (= N),, (= 1)
Dy (g—di—dy)y (1+dy—g—N), (1 +dy—g—N), (1-+d, +dy~g),,’
Lot o — @)@ G+ 3N (=1 (— 1)
: " 3:.\.|@HV3A.\.|§NV§AW.\.|W 1 '
Then we can sum F, as a well-poised ,Fy(1) series provided that
f=1+d,+d;,—N—g, to give
| o= MO
" 3_A.\,|§uv3 A.\.lamvav
and Bailey’s transform gives us
»Mw_”..\ml ay—ay,dy,dy, — N; HH_ — @ —d)nlg— &m..v..e
—0y,f—5,9; (9 (g—dy—dy)y
X d.mmwh.\.ll Hu W.\,lT Wv gnv an &ﬂ- &Mu |N<‘u HH—

then

Vn

s f-anf-af—di,f—dof+N;
(2.4.1.1)
where g=1+4+d,+d,—f—N.
This transforms a Saalschutian  Fy(1) series into a well-poised
7F5(1) series, with the special form of the second numerator parameter.
It was given by Whipple.t
If further we assume that

2f=1+a,+a,+d, +d,— N,
+ Whipple (19263), 7.7.
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the ,Fy(1) series reduces to a gFy(1) series, which can then be summed
by Saalschutz’s theorem, and the sum of the ,Fy(1) series is then found.
This proves to be simply the deduction of Dougall’s theorem from
Saalschutz’s theorem.

When f = 1+a, and d, = }a, (2.4.1.1) reduces to

¢ d, =N
m._“H+a @:.a ¢,1+a—-d,1+a+N,;
_(1+a)y(l+3a— &z@ l+a—b-c, ia, d, - N; L.
T (1+ia)y(l+a—d)y* ¥ 1+e-b,1+a—c,d—4a—N;

(2.4.1.2)

This transforms a well-poised ;F;(1) series into a Saalschutzian  Fy(1)
series. When b = 1+ 1a, the ,Fy(1) series reduces to a ;F,(1) series,
which can be summed by Saalschutz’s theorem, and we deduce again
the sum of a well-poised ;F;(1) series.

In the second case, we can sum both F, and F,; by Saalschutz’s
theorem. If we take d

T (L+v+dtu—f),’

l+v+d+u—f,l+v-f,1+d-f1+u \”_
—fil+d+u—f,1+v+u—f,1+v+d—f
(@) (f —d— 1)y (39), (B + $)n
=D (L +o+d—1), A - 30, G+E-Tu)

provided that neither » nor d is a negative integer.

then v, = H‘_H

Let
A - .I\Rvs.
st WQ.TWQ\V:. W.TPQ.TW‘KV# .\.|€v§
then b= 0 0, BN G Dt
Hence

I H+e+@+g|&H+e|\.~+&|\,~+§|ﬂ_
1-fil+d+u—f,1+d+v—f,1+u+v~-f

7 f-v—u, d,f-d-wu, iv,3v+1; H”_
X% fod 1tvtd—f 3 +3f-du i -

_ v, 3u+3v, 3+ 3u+ o, f—o, d;

' 1
lmﬂ_m p+3f 4 frul+utv+d—f;

(2.4.1.3)
+ Whipple (1926b), 5.2.
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This transforms a nearly-poised terminating  F(1) series into a
Saalschutzian ;Fy(1) series.t Alternatively, we can sum Fyby Dougall’s
theorem, If
" (v—u), (1+4v—u), (2)), (32)n (@3)n
" (-3, T+ v—2—ay), (T+v—u—ay), (1 +v—u—ag),n!

_ Aev.: A§+9Hv3 AQ\.TS vS A§+Q\uv§
then £, = 2+el§|§v=:+e|§la»uvaﬁ+el§19wvai

provided that 1 +v—u = a, +a, +ag+u. Hence we find that
I u—v,d+2u—mv, 2u, §+eH_

d+2u, u, d+u—v,2u—v

o F| DU utay,utag, d; 1 ]
l+v—u—a,l+v—u—a,l+v—u—ayd+2u;

- .F _Helg. 1+3v—3u, a,, ay, ag,
T s v—du,1+v—u—0,1+v-—u—ayl+v—u—a,,
d,1+v—2u—d, v, }+3v; _...
l+v—u—d, utd, 1 +3v—u, 3 +3v—u;

(2.4.1.4)
provided that either v or d is a negative integer. This is a transforma-

tion of a well-poised ¢ Fy(1) series into a nearly-poised ,F}(1) series, when
both series terminate.}

In particular, if we take a; = —u, the ;F,(1) series reduces to unity,
and the ,Fy(1) series becomes a ,F,(1) series. Hence we find that
.%_Helgl+wélw$ —u, d,1 +v—-2u—d,
e bo—du, 140, 14+v—u—-d, d+u,
we. 1+30 ’ HH_
1+3v—u,i+3v—u;

u—v,d+2u—v,2u,u+v
= ﬁ—u&+w§,§.&+gle, m@leu_. (2.4.1.5)

where d is a negative integer. This sum of a special ,F}(1) series is not
a particular case of Dougall’s theorem, unless v+ 3 = «.§ If we apply
the transformation of a ,F(1) series into a ,Fy(1) series given above
(2.4.1.1), we can deduce another special summation theorem ||

F ﬁwelwgv,.w}*...welw\g“e.*.gw —n; 1 Agv:‘
a3 Wit+in,l+o—u; | (@),

t Bailey (19205), 6.4. { Bailey (1929), 8.1.
§ Bailey (19205), 7.42. | Bailey (19295), 8

(2.4.1.6)
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Various other special transformations can also be deduced from this
result.
In the third case, we can sum both F, and F, by Saalschutz’s
theorem. If we take
S = A&vs. A ~N v§ o
" AQV§AH+§+&|QIVJS

(@—d)y(@—w)y (@) (—N),

h = .
shen "n = g —d—wy g—w, (1 +d—g—N),
— AQH? A&mv§
Let %n = (ay+a,+u),n!
(ay+u), (@ +u),
Then P = (@, +ag+u),n!

Henece the transformation theorem leads us to the result

7 @, +u,a,+u,d, -N; 1
3 g tagtu,g,l+utd—g-N;
AQ &VZ Q §v2 @ ﬁ@: a3, d, -N; 1
T (xg—d—u)y*3la, taytu,g—u,1+d—g—N;
(2.4.1.7)

This is a transformation between two terminating Saalschutzian
+F5(1) series. Again other summation theorems can be applied to
F,, to give other specialized transformations between ,Fy(1) series
and 4F(1) series.

The fourth case stated above, leads only to a relation between two
aF3(1) series,

2.4.2 Vandermonde transformations. Let us suppose next that

the series for F, can be summed by Vandermonde’s theorem (1.7.7).

Then, 1
en, if w:"@.
)
we find that ) Fanl— 1)
_ Q.Ql.\.l A&v::.*. —%n 2n\ u
%3|H‘F|.\,Q]& AH..T.\..uT&‘IQvﬁ
If a “AIC:
* al(a),’

the series for F,; can also be summed by Vandermonde’s theorem,

to give C(Dall @) (— 1)
= i (@),

B
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Hence we find that

3 _H\:\ MM, HH_

&wu..T.\.lQuw.\ww.\..Tm“
okl PPy L T +&+t|$$&%-mn@

. (2.4.2.1)
provided that either d or fis a negative integer.

Iffurther,a = 1 + f, the ;F,( — 1) series reduces to unity, and we have
n.Nﬁw &v~+.\..|@, W.\.. .W.\..Tww Hu ”H;ﬁ%|.\q@|
1+fid+3f+3d- 49,1+ 3f+3d~ig; g.9-f-

(2.4.2.2)

where either d or f is again a negative integer. This gives the sum of a
finite special Saalschutzian (Fy(1) series.
Next let
An.vs. A - :3

" alk), (1 +f+a—h),’
then the series for ¥, is summable by Saalschutz’s theorem, to give

\.w _ A.\.V$AN@|§VS.A~+.\..I\5=
" h,(1+f+a—h), "

a

Hence
_H\L+.\.|Fvl.a,& Qm \
oI
h1+f+a—h,g; —d
9 wﬁ 1+f-g, 1f, b1
\:+\+a —hi+3f+3id— e.:w\i,& M?
(2.4.2.3)

This is a transformation between a nearly-poised ,Fy(1) series and a
Saalschutzian ;Fj(1) series.t Either f or d must be a negative integer,

If we take d = — N, the other parameters a,f,g and % in the
sF3(1) series can be chosen in four ways, in order that this series can be
reduced to a summable Saalschutzian ,F,(1) series. If we carry out

these summations, writing a for f and 4 for g, we find the four further
summation theorems:

wsiwslzu L LTTT@:T?A
572 W@« Ow A@vz '

t It is due to Whipple (19265), § 3.5.

(2.4.2.4)

SGH
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This gives the sum of a nearly-poised +Fa(1) series, with the special
form of the first parameter.

a, b, -N; 1 IAQIMSZAH.TwalvVZAI@?
wwm_u 14a—-b,1+2—N; | (+a-b)y(la—b)y(—2b)y"
(2.4.2.5)
This sums another type of nearly-poised ,F,(1) series.
1+ 1a, b, —N; 1 _(@a=2b)y(—D)y
Js la,1+a—b,1+2b—-N; G+a b)y (—2b)y'
(2.4.2.6)

This gives the sum of a nearly-poised ,Fy(1) series with the special
form of the first parameter.

%4 Q&H.f.wﬁ\ Gu |N/«.w
43 la,1+a-b,2+2b—N,;

_(a—2-1)y(E+ia—bw(—b—1)x
T (l+a-b)y(Ga-E-b)y(—20-1)y

(2.4.2.7)

This gives the sum of another type of nearly-poised +F3(1) series, also
with the special form of the first parameter.

These four theorems can themselves be used to sum the series for Fj.
Thus if we use the theorem (2.4.2.4) we find that if

(D1 ENa (=D
% T T (3 )n (B

(f+2=h),(h—f-1),
n! Q&: (1 +.\,I3: )

Thus, if 8, = (d), 2" so that
= @/ -z,

then fo =

we find that

1+ifd;, —=x f+2-hh-f-1,d;
I f MM\@ — nﬁ_lavau@_w _+\|me&
(2.4.2.8)

If now we use (2.4.2.4) to sum the series for ﬁ? when

a W I

" . 3; w..\.vs ’

A.c .\ Mv n
then we find that Bu= (V)2n A\ellnq.vﬂ
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and if 8, = (d,), (d,), the series for F, can be summed by Gauss’s
theorem to give

r _”ﬁ v—d;—d, (21)n (ds)n
elamfei& AQE&HVQ«A\C'&va.
Thus we find the transformation

H,_”ee d,— %~+q\. dy, dy; 1
dy,v— &w tf,v—d,v— &m.

v—4f -4, v~ 3f,dy, dy; :
=,k _HN i Lo+l eew& HH_, (2.4.2.9)

provided that Rl (v —d, —d,) > 0, and that Rl (f) < 0.

Again, if we apply (2.4.2.5) to the summation of the series for F
and take N
(@)y (= 3€)y,

n!l(L+a+le),

Vn =

o, =
then we find that

B, = (@+e),(1+1a+1le), (Je),

" oal(l+a+ie), (Ga+tie),

Hence, if ,, = ™, so that y,, = x*/(1 —z)¢, we deduce the result that

—1p- 1 .
umw_uav ke; &H_ = :I»uvnu.mw—H&.Tm,H.*.wa.TMm, ke 8H_

l+a+je; 1+a+ide, }a+ie;
(2.4.2.10)

This is a transformation of a particular well-poised ,F,(x) series into

a well-poised ,F(x) series. It is a combination of two results due to
W.N. Bailey.t

2.4.3 Well-poised transformations. We shall suppose next that
F, can be summed by Dougall’s theorem, as a ,F,(1) series which is
well-poised, in either a d parameter, a » parameter, or a v parameter.
Now F, cannot be well-poised in a d parameter, since in that case
terms involving {n would arise. Also when F, is well-poised in a u
parameter, the corresponding series Fj cannot be summed for any
values of «,, which must be independent of n. Thus F, can only be well-

poised in a v parameter, and in this case the wmanoemwm are always
subject to the restriction

ditntdytn+t. . +dptntutup+ .. dug+vg+2n+ v,
+2n+ ...+ v+ 20 = 1420, +4n.
1 Bailey (1929a), 4.07, 4.08.
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There are thus only three possible cases in which F, can be summed as
a ,Fy(1) series, which is well-poised in an f parameter. Of these three
cases, one results in a series for Fj which cannot be summed, and the

other two remaining cases are:

vy + 20,1+ 39, +n,v,+ 27, Uy,
(1) ﬁ,\nqmm_H v, +n, 1 +o,— vy, 1+ vy —u, +2n,
Uy, d+n, |2+EHH_
1+v,—tuy+ 20,1+, —d+n,1+v,+ N+n;

(@), 2,40, 0,+ 0,0~V — N, —N;
ﬁuumiwzi (R),1—u,—n, 1 —upg—n,1+v,—u +n, ¥,
142, —uy+m;

where 1420, = vy+u,+u, +d—N.

v+ 2n, 1+ v +n,d,+n,dy+n,ds+n,
lv4n, l1+v—d +n,1+v—dy+n,

e: Slbﬁ ~H_
1+v—d;+mn, 1+v—u+2n,1+v+N+n;

(@), v+mn, —n; H_
By = arlriee _”AS“ l1-u—n,l to—utn;? ]’

(2) F, =K

where 142 =u+d,+dy+ds—N.

In the first case we sum both F, and F; by Dougall’s theorem. If

S = A“_. +..we_.v= A&vsﬁ‘lzva—
* T Go)a (1 +o—d) (4o + ),

then
_ C+e~vzc+e_|©nl&v.7|ﬁﬁ.‘_+epleuwgpvzﬁ+e~|&l§v2
0= (40, — vg)y (1403 — D)y (1+ 0= )y (10, — vy —d— )y
C+,eul‘§|‘§nl&v=3+e~|§l§»+~<v:
xC+e~|§~lguvmzc+e~|&|§t=3+e~+~<l§»va
= Agmvn.a A&V:.A!lzv: ,
(1+v,+ N —uy), (1 +v—d— %),

where Uyt uy+d— N+vy, =1+ 20,

Let v, —u, = v, —¢;, and

. Aeu — Q\—vs ﬁw + .méw - .w.muva Aﬁvﬁ
%n = (3o, —3uy), 1 +vy—uy —a),nl’
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where 1+ 20, — 2u; = 2u,+a. Then a = 1 - 2u,, and
8, = (¥1)n (V2)n (1 + %y — 205),, (1 —up),, (323 + 305), (3 4 J2s + §00),,

" (L vy —vp), (Vg + ), (Va + %), (14 Buty — $utg), (B + 30y — Juy), m!
provided that u;, 4, and hence v, are not negative integers. Thent
(L+o)y (140, —uy —d)y (1 + v, — v —uy )y (L + 9, — v, — d)

I+ =)y (L+ oy —d)y (L +v—up)y (1 + v, — vy —d — )y

. Nu_Heﬂlgc_+weplw§.leﬁeenleylbﬁe»+&let d,
58 weulwgten.*.\&eH+e~+2‘I§§~+e~l&|§».~+ewl§!&.
WGNq WQ&LIW; .Izw 1
V+ 3o, —duy — Jug, § + 4oy — duy — dug, 140, — 4y + N
_ m,_”etu+we: Vo, 1+ 2y — Quy, 1 — uy, Ju, + 30,
s78 3o, 140 — 05, 0y + Uy, vy + %y, 1+ 30, — Jutg,
3430+ vy, d, - N, 1
um.lT.Weul:m\ngthQHl&“~+§n+.2w ’
(2.4.3.1)

where v, —u;, = v,—u, and 1+ 20, = 4, +u,+v,+d—N.
If we use Saalschutz’s theorem (2.3.1.3) in place of Dougall’s
theorem, to sum one of the series, we find that

Nu_”a, b, c, d, —m; 1 l2+w~nlavsﬁf+~nlav§.
¥4 1+e-bl+a—c,l+a—d, w; | (1+k),(1+2k—2a),
5 M.,_Hw.:w\p ta,  i+ia,

o8 e 14+k—3a,3+k—1a,
k+b—-a,k+c—a,k+d—a,l+a—w, —-m;
l1+a-b,1+a—c,1+a—-d, k+w—-a,1+k+m; |’

(2.4.3.2)

wherek = 1+2a—b—c—d,and w = 2a — 2k — m. This is a transforma-
tion between a nearly-poised Saalschutzian ;F,(1) series and a special
well-poised ¢Fy(1) series.

Similarly, if we use the summation theorem (2.4.2.6) to sum one of
the series, we can deduce that

7 a,l+}a, b, c, &vlsﬁw _ (2k—a),, (k—a),,
675 ta,1+a-b,1+a—c,1+a—-d, w; (1+ k), (2k —2a),,
< gl B+ d+ie,1+3a,
878 e, t+k—1a,k—la,
k+b—a,k+c—a,k+d—a,l+a—w, —m;
l+a-b,1+a-c,1+a—-dk—a+w,1+k+m; H_.

(2.4.3.3)
t Bailey (1928), 7.41.
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where again k = 1+2a—b—~c—d but w = 1+ 2a— 2k — m. This trans-
forms a nearly-poised Saalschutzian ¢Fj(1) series into a special
terminating well-poised ¢Fg(1) series.

If we use the theorem (2.4.2.5), we can deduce that

N_ s Qu c, &n —m, 1
anH+ale+alaL+al&,§

(k—a)y, (1 +2k—a),_, (2k—a+2m)
(1+k),, (2k—2a),,

<. F k,1+3k.  1+ia, $a,
78 ,.WN?W:TNO'WQJH_.:TW‘WQV
k+b=—ak+c—ak+d—a,l+a—-w, —m;
l+a-b,1+a—c,1+a~d, k—a+w,1+k+m; |’

(2.4.3.4)

where w = 1+ 2a—2k—m. This transforms a nearly-poised termi-
nating . F,(1) series into a special terminating well-poised 4F(1) series.
In this ,Fj(1) series, it should be noted that the sum of the denominator
parameters exceeds the sum of the numerator parameters by two.
Finally, if we apply the theorem (2.4.2.7), we can deduce that

ta,1+a—-b,1+a—-c,1+a—-d, w;

(k—a—1),(2k—a),_, (2k—a+2m—1)
(1+k),, (26— 2a—1),

k,1+k,3+3a, l+1ia,
1k} +k—-3a,k—}a,
k+b—ak+c—a,k+d—a,l+a—w,
l+a-b,1+a—¢c,1+a—-d,k—a+w, :;?*.5
(2.4.3.5)

x oFy

B!

where w = 24 2a—2k—m. This expresses a nearly-poised Fy(1)
geries in terms of a special terminating well-poised o Fy(1) series. Again,
the sum of the denominator parameters in the gF;(1) series exceeds
the sum of the numerator parameters by two.

2.4.4 Dougall transforms. The result (2.4.3.1) is a very general
relation between two well-poised oFy(1) series, but it is not the most
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general one known. That is given by the second case of §2.4.3, when
both F, and Fj, are summed by Dougall’s theorem. If we take

8 : + Mev.: A& A&uvz &uvs A vs.

" WGVSAHITQ &HV:AHlTQ &uvﬁ:.u*ue &wvﬁﬂﬂn*ue.fzv:
then

A+o)y(l+v—u—d)y(1+v—u—dy)y (1 +v—u—dy)y

)\‘:. = - e — —— e

I+v—u)y(1+v— &HVZATT@ &mv>2+e da)n

A v A»V§A&wvsﬁ|m<v§ e
C+e w—d), (1+v—u—dy), (1 +v—u—dy), (1 +v—u+N),

provided that u+d, +dy+dy— N = 1 + 20.

If
a (v —u)y (14 30— 3u), (@) (35),, (33)n
e S_Aué M§V:A~+e U — QAV A~+§ U— Q~V§A~+e|§lauvﬁ.
HTGS m.: _— Aeva A\S + 9. v Ag + QNV: Ag + qu

W (V+v—u—ay), (1 +v—u—a,), (1+v—u— as),,

provided that 1+ 20 —2u = a; + a,+a,+ .
Hence we find that

A+o)y(A+v—u—d)y(1+v—u—dy)y (1 +v—u—dy)y

(I+v—w)y(14+v— &ﬂv C+e do)y (1 +v—dg)y

8 oww_He —u, 14+ 3v—Lu, a,, s, s,
w—du,l+v—u—a,l+v—u—ay, 1 +v—u—a,,
dy, d, dy, - N;
1+v—u—dy,l1+v—u—dy, 1 +v—u—ds 1 +v—u+N; ~H_
_ E_He,_.*.mc, U+ ay, Uu+a,, U+ dg,
578 W ltv—u—a,l+v—u—ayl+v—u—a,
dy, da, ds, -N;
l+v—d,,14+v—dy, 1+v—ds, 1 +v+ N, _.H_

(2.4.4.1)

This is the relation between two general well-poised ¢Fy(1) series
referred to above (2.3.4.11). This is one of the most general simple
transformations of terminating well-poised series which has been
found.

If we substitute a; + ay + a3+ 2N — 1forv,and 1 + 2v~u+ N —d, ~d,
for d;, and then let a; — o0, we can deduce Whipple’s result (2.4.1.1),
which transforms a well-poised ,Fy(1) into a Saalschutzian ,F(1)
series.
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We shall now outline the extension of Whipple’s result to non-
terminating series. First, we substitute for v and a; in terms of the
other parameters and then rewrite (2.4.4.1) in the form

7 a,1+1a, p+m, c, d, e,
o8 wa,~+alml§vp+al9H+QI&L+QIP
fs g —-m;

1+a-f,1+a—g l+a+m;

:.TQVS a.l\nvSA.\. Nnvs g-— \nvﬁ
T (ChpQta—eu(l+a—f)u(l1+a—g),

k—m,1+ik—3m, k+f-a,k+c—m—a,k+d—m—a, e

F,
X078 wwl,.wsﬁH+a|\w|§,~+plo,_+al&L+w|§l?
[ g, —m;
l+k—m—f,1+k-m—g,1+k;
(2.4.4.2)

where k=e+f+g—1—a, f=2+3a—c—d—e—f—g, and m is a
positive integer.

Suppose now that we try to let m — oo, through positive integer
values. The first ,Fy(1) series behaves correctly and tends to

7 Q\VH+M9 c, &. €, .\.u Q.w
6 la,1+a—c¢,1+a—d,1+a—el+a~f1+a—g;

as m — 0. This series converges provided that
Rl(2+2a—c—d—e—f—g) > 0.

Trouble arises however with the other ,Fy(1) series, as now the ends
of the finite series remain finite, while the middle terms becoimne small.
To overcome this difficulty, we split the zFy(1) series into two parts,
and reverse the order of the terms in the second half of this finite
series, as in §2.2.3. As m —> oo, the first half of the series tends to

k+f—-a, e m;

o l+a—c,1+a—d,1+k;

and the second half of the series, when reversed, tends to

, @‘\ﬁ .\.ll g—a;
%u_”:a c—k,1+a—d—k,1-k; !

as m — o0,

BAILEY’S TRANSFORM 73
The complete result is
B[ 1+1a, c, d, €, £ 9 4
ta,1+a—c,1+a—-d,1+a—~e,1+a~f,14+a— g;

_ ﬂ_H_+aI9~+al.\.L+alm.:.al@l.\lm
1+a,1+a—e~f,1+a—f—g,14+a—g-—
xpﬁ_wrralnl&. e, f, 9
l+a—c,1+a-d,e+f+g—a;
+HJ_HH+9|P_+QI&V l+a—el+a—f,14+a—yg,
1+a,1+a—c—d, e, 5 ¢

e+f+g—1-a,24+2a—c—d—e—~f—g
m+malolm|\|.ﬁw+wal&|ml.\.lnu_

xpﬁ_uw+wala|&|mlxl9~+alx|.$

M+Q\|®|\|Q~
l+a—g—e l+a—e—f; .
2+2a-c—e~f—¢,2+2a—-d—e—f—g; H_,
provided that R1(2+2a—c—d—e—f—g) > 0. (2.4.4.3)

This is the generalization of Whipple’s result (2.4.1.1) when the
series do not terminate. The ,F(1) is well-poised and the two ,Fy(1)
series are both Saalschutzian and are always convergent. If

l1+a—c~d,e,f or g
isa bmmme:a integer, the second part of the right-hand side of (2.4.4.3)
vanishes and the result reduces to Whipple’s transformation (2.4.1.1)
of a well-poised ,F(1) series into a Saalschutzian ,F,(1) series.

If f+g = 1+ ain(2.4.4.3), the first JF5(1) series on the right vanishes
because of the factor I'(1+a —f—-g) in the denominator. The ,F(1)
series becomes a F(1) series, and the result reduces to the summation
theorem for a well-poised ;F,(1) series (2.3.4.5).

If ¢ = 0, in (2.4.4.3), the ,F(1) series reduces to 1, both the ,Fy(1)
series reduce to zF;(1) series, and equation (2.4.4.3) becomes, after
some reduction,

7 S, g;
8 »h~+a,m+.\_+w a; HQ

_ ﬁ_HH+a,~+sl.\|$H+alalnu~+alal.\.
~+9|®,~+al\,~+alnu~+alm|\lnu_
Iﬁ_H~+aL+alm|\L+alal.9H+@|\|m,m+x+nlaiﬂ
H+§|ml&.lmvw+walml.\lm.@ 59

xwu_”:.a —f-9,1+a—e—g,1+a—e—f; H_

N+Q\I|®|a~a Q‘N+w&|® .\. g; Awﬁﬁﬁv
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This reduces to Saalschutz’s theorem, when ¢, f or ¢ is a negative
integer. Thus (2.4.4.4) is a generalization of Saalschutz’s theorem,
when the restriction that the zF,(1) series must be finite is removed.
In Bailey (1935) p. 21, a second form of (2.4.4.4) is given which,
however, is not symmetrical in e, f and g.

2.4.5 Some possible extensions of Bailey’s theorem. There is
no need, when using Bailey’s theorem, to assume that the a,’s, 8,’s
v,’s and 8,s are all non-zero. It is quite possible to make use of the
theorem when «, is defined by

_ _((a)), .
a, = OX when 7 is even, (2.4.5.1)
and a, =0 when r is odd,
since (@)er = (30), (3 + 3a), 2%, (2.4.5.2)

Similarly, we might define

((a)),

=T w i iple of three,
a, @®).rl when 7 is a multiple of three (2.4.5.3)
and a,=0 when r is not,
since (@ = (30), (3 +30), (§ +3a), 3% (2.4.5.4)

In general, we could define

((@)),

a, = ——" when r is a multiple of m,

((®)), ! (2.4.5.5)
and a,=0 when r is not,
and use the fact that
(@) = (@/m), (1 +a)/m), (2 +a)/m),...((m— 1 +a)/m),m™. (2.4.5.6)
See Slater, M.A. Thesis, London (1949) for full details of such processes

and the results they lead to.
Again we might study series involving
((@))mr
A =7, (2.4.5.7)
((6)) e ()
for all integer values of r, or for general real or complex values of 7,
since we can assume that

I'a+7)

Aavn = a . Awh@wV

A systematic study of such series has not yet been carried out,
although isolated examples of such series occur in the literature. }

1 See M. Jackson (19495).
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2.5 Products of hypergeometric series
and Orr’s theorem

Several relations connecting products of hypergeometric series, have

been proved by Orr (1899). His most important results are these
three theorems.

Theorem 1. If

(1 —2z)2+0—¢,F (20, 2b; 2¢; 2] = M“ca:N:v (2.5.1)
ne
then

ce4 1 . c—b- ] e ()
oFi[a,b; e +1; 2] Filc~a,c Pa+wuuu_lamo€+wlvnaa:§.

(2.5.2)
Theorem II. If
(1—z)etb—e=t F[2a,2b; 2c; 2] = W b, 2", (2.5.3)
n=0
then
Fla.b:c: Flc— _ . . _ . @.Tww:
ofila,b; ¢; 2] Flc—a+d,c-b+};¢+1;2] = 3 b, 2"
S\HcﬁanT Hvﬁ
(2.5.4)

Theorem III. If
(1—z)erd=e-1,F[2a—1,2b; 2c—1;2) = Sc,2%,  (2.5.5)

n=0

then

- -1
JFila.b; 6 2]y Ble—a+he—b-};c;2) = § EoBug on,
n=0 Anvs.
(2.5.6)
A special case when ¢ = a+5, of the first of these theorems was

published by Clausen as long ago as 1828.1 It concerns the square of
a Gauss series

oFila.b; a+b+4; 2]2 = ;Fy[2a,2b,a +b; 2a+2b,a+b+1; 2. (2.5.7)

The general case was discovered as an outcome of certain relations in
planetary theory. Forty years later Orr published his proof based on
a differential equation satisfied by the product of two hypergeometric
series. Since then several alternative proofs have been given.f The
simplest proofs are those of Whipple, reproduced here.

1 Cayley (1858).
1 See Edwardes (1923); Watson (1924b); Whipple (19275, 1929).
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Let us compare the coefficients of 2 in the three theorems. Then the
identities which we have to prove are seen to be

2a,2b, —n;
b b ’ H.
«ﬁhm?~+a+@le|3“ H—

A.o Q\vﬁlﬁa||@v=.m,_ @@ clOS“.IB. H
T (@nlc—a—b)," L c+}l+a—conl+b-c—n; I’

2a,2b, —n;
b ’ H H
»ﬁﬁ 2¢,4+a+b—c—n; H_

Ao Q\.va: c—b+1), N*J_HQ\ b, —c—n, —n; wu_
Y+b—c—n

(2.5.8)

Tt Palcti-a-b)," a—c—n
(2.5.9)
and
2a—1,2b, —n;
umw—w 2—-1,3+a+b—-c—mn; MH_
_(c—a+§)alc—b—1%) @ﬁa,ovwlnla‘lsn .
Tl—Dalcti—a-b),"?L cit+a-c-mitb—c-n; |
(2.5.10)

First we can deduce (2.5.10) from (2.5.9), for the series on the right-
hand side of (2.5.9) and (2.5.10) are both Saalschutzian. If we re-write
(2.5.10) with ¢+ and ¢+ for @ and ¢ respectively, we can then see
that the right- EEQ side of (2.5.10) can be transformed into the right-

hand side of (2.5.9), by the application of (2.4.1.7), which is a relation
between two terminating Saalschutzian ,Fy(1) series, and so the third
theorem can be deduced from the second theorem. Next we can
deduce (2.5.8) from (2.5.9) and (2.5.10). Let us multiply (2.5.9) by

c|a, and write a+1 and ¢+ 1 fora and ¢ respectively in (2.5.10). Then
we can subtract term by term, and we find that we have deduced
(2.5.8) with ¢ + % written in place of ¢. Hence we can deduce the first
theorem from the second one.

Tt remains only for us to prove the second theorem. We shall make
use of three transformations, first, the transformation of a Saal-
schutzian ,Fy(1) series, (2.4.1.7) used above, secondly, the trans-
formation of a nearly- woama oF(1) series into a Saalschutzian ,F5(1)
series, {(2.4.2.1) with ¢ = }+ }a), and thirdly the formula

ofela,b, —m; e, f; 1]

Aa Qv:cq Qva |.w.nc|3w w
Ea,CJ: Ni_H l+a—e—n,1+a—f-n; HH_, B.o.:v
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Swa.no 8=e+f—a—b+n. This can be deduced from (2.4.1.7) by
letting d — c0. Thus we find that

E_Hwa,w?ls\w 1
¥ 2%,i+at+b-c—mn; H_

_(+a-b+c),(2c—2a), 2a,+a+b—c, —n:

= (20, (3—a_b W o1+ !
(2¢), (§—a—-b+c), t+a—-b+ec,142a—-2—n

IA

MH_.Q ~V+n m,_”@nlo,wn+§,|§ H
(1-a- v+&:» e,c+ii+a—b+c; H_

?a+33?o+ea Nu_uav |a3l§.
T (f—a-b+e)(c+ D), t+a—c—n,i+b—c—n; m_

This proves the result (2.5.9), and so the second theorem is proved.

When ¢ = a +b, corresponding to Clausen’s theorem, deduced from
the first theorem, we find from the second and third theorems, the two
further results given by Orr, ,

oFla,b; a+b—1%; 2], B [a,b; a+b+1; 2]

and = 3F3[2a,2b,a+b; 2a+2b—1,a +b+3; 2] (2.5.12)

oFla,b;a+b-1; 2] Fa,b—1;a+b-1; 2]
=4F[2a,2b -1 a+v|~ 2a+2b—2,a+b—-1;2]. (2.5.13)

Five further theorems of a S%o similar to Orr’s theorems have been
proved by Bailey (1935a).

Theorem IV. If
(1—z)e+d——4 F[2a,2b,¢; %,a+b+}; 2] = ¥ a,zm (2.5.14)

n=0

then
oBila,b; a+b+3; 2], R +c—a,3+¢c—b; 2c—a—b+1; 2]

-5 ¢+ e
sMcAm%V%;Hﬂ.asua. (2.5.15)

By comparing the coefficients of z", we see that the identity to be
proved is

hmw_uwgu M@uav —n; w6v9+@+.w.u..w.rl3+9+~ulnow u.“_
_(+c—a) (+c-b), E_Havw.fa.fa 2 —n, —n;
?+$=@ a—b+c),* t+o—c—n,3+b—c—n, a+o+w
(2.5.16)
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This follows fairly easily from the application of (2.4.1.7), the trans-
formation of two Saalschutzian ,Fy(1) series, and (2.4.2.3), a trans-
formation of a nearly-poised Saalschutzian ,Fy(1) series.t

As special cases of theorem IV, we find} that whenc¢ =a+b—

oJFila,b; a+b+1; 2] Fifa,b; a+b—14; 2]
= o Fp[2e,2b,a+b; a+b+%,2a+2b—-1; 2] (2.5.17)
and§ if ¢ = a + b,
Fila,b; a+b+3; 2] Fifa+4.0+4; a+b+4; 2]
=(1—2z)1,F,[2a,2b,a+b; a+b+1%,2a+2b; 2], (2.5.18)

which also follows as an immediate consequence of Clausen’s theorem.
If ¢ = a—1, theorem IV reduces to

35[2a,2b,a—1; 2a—1,a+b+ ;7]
=(1—2) b, F[b,a—b—1%; a+b+i;2]. (2.5.19)
Theorem V. If
(1 —z)etb—<—% F[2a,2b,c; 2c,a+b+3; 2] = aMa z7, (2.5.20)

then

JHi[b,e—b;c+1; 2] Filat+ic—a+dc+i;2] = T L

The identity implied here is
Fu(2a,2b,¢c, —n; 2c,a+b+L,a+b+i—c—n; 1]

_ (at+dplc+i—a),
T (a+b+d),(3—a—b+o),

x Jyb,c=b—c—m, —n;¢c+1,3—a—n,t+a—c—n; 1].
(2.5.22)

This follows immediately from (2.5.15) of theorem IV and the applica-
tion again of (2.4.1.7).

Theorem VI. If
(1—2)o+0-¢ F[2a, 2b,c+ 3; 26,a+b+3; 2] = 3 b, 27, (2.5.23)

n=0

1 Whipple (1926a), 10.11 and Whipple (19265), 6.5.
t Orr (1899), 59°. § Orr (1899), 54,
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then
ofila,b; a+b+14; 2], Fi[c—a,c—b; 2c—a—b+};2]
v (o) n
M Go—a- w+wv=@ 2" (2.5.24)
The identity implied here is
oI(2a,2b,c+3, —n; 2c,a+b+ 3, 1—n+a+b—c; 1]
_(e—a),(c-b), Nﬁa,@.w,ra;;lwal? -n; ]
(€)p(c—a-b), a+b+i,14a—c—n,1+b—c—mn; H_
2.5.25)
This theorem is analogous to Cayley’s theorem, and the proof of this
identity follows on similar lines.t

Theorem VII. If

oFila,b; c; 2], Fi[a,b; d; 2] = Y ¢, 27, (2.5.26)
n=0
then
Bl b de+3d et -1 atbod dx(l-z)] = 3 SFEUn,
n=0 AQ..‘TWV.;
(2.5.27)

Theorem VIII. If
JHila,b; ¢; 2] F\[a,d; ¢c; 2] = 3 d, 2, (2.5.28)
n=0
then
(1 =2z)-2 Fyla,b,d,c—a; $b+3d, 10 +3d+ 4, ¢; —22/4(l —2))
- (9 n, 9 5
=3 at%& 2 (2.5.29)

The proofs of these two theorems follow on similar lines, but these are
now based on the identity

dl—-myz,l-m—u; 1—m—y, 1 —m—2z,w; 1]

r w,w+u—1+2m
8+3‘8l~+§+§\
_HIS w,i—3m, —jm,1—-m—y—2,1—m—u;
X g1y 1
_131?HISINuwnlwglwslﬁLlwzlwslsw ’
(2.5.30)

which is the form assumed by (2.4.2.3) when z = fis a negative integer
—m, and 7 is not necessarily a positive integer.}

t See Bailey (19325). { Whipple (19265), 6.6,
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In particular, from theorem VII, ifd = a+b—c+ 1, then
JFila,b; ¢; 2] F[a,b; a+b—c+1; 2]
= Jyla,b,3a+3b,da+3b+%;a+b,c,a+b—c+1; 42(1 —2)].

(2.5.31)
This relation holds inside that loop of the lemniscate

|42(1 —2)| = 1,
which surrounds the origin.
If ¢ = d = b, we obtain Kummer’s quadratic transform (2. 3.2.1).
From theorem VIII, ifd = c—b,
oila, b; c; 2] JFy[a,c—b; c; 2]
= (1-2)*,Fla,b,c—a,c—b; ¢, 3c, dc+1; —2%/{4(1 —2)}] (2.5.32)
and when ¢ = d = b, we obtaint
(1—2)"2,F[a,b; a+b+1; —2%{4(1 —2)}] = JF[2a,a+b; 20+ 2b; z].
(2.5.33)
Finally, if we generalize (2.5.29) by putting z + = for z in (2.5.28),
we have
Theorem IX. Ifc+c’ =a+a +b+d', and
»Nﬂnm@»@w c; Nu NN*..»HQ\. @J O\W NH = Mcm.: Nsv
e
then
(1 =z~ Fla,c—b,3c+ic , dc+ i’ ~La+a,b+b',c; — 42/(1 —2)?]
B () (c+c'=1), "
= Pl Ch L M . (2.5.34
Zolata),@rp), " B3

When o' =¢—5b,0' =1-5, and ¢’ = 1 +a—b, this gives us (2.5.32)
again,

2.6 Partial sums of hypergeometric series

A number of results exist which express the sum of the first » terms
of a Gauss series with unit argument in terms of an infinite gFy(1)
series. The earliest of these results are due to Hill (1907, 1908) and
Whipple (19305). Ramanujan stated the identity

1 2 1 1.3\2 1 s
M+AMV a+ﬁm|\mv §|+w+ to infinity
I'(n) | 1\? va“ _ 2.6.1
HT‘AS‘.TWVV T+Amv + W +...; to n terms, (2.6.1)

1 Bailey (1928), 4.22.
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Proofs of this theorem were given by Darling (1930) and Watson
(1930f). Watson’s proof which is reproduced here, is particularly
simple. In the relation (2.3.3.1), connecting three 4F,(1) series, let us
write ¢ = f+n—1, where n is a positive integer. Then we find that

mvﬂlglw Q.@‘u.lesw
shala, b, f+n—1;¢,f,1]1=T ala,mlwu_wm_ﬁ atb—e+Lf; "

(2.8.2)
Now let ¢ > a+b+n, and we find that

JJHla,b; f; 1] to n terms

la+§@+saea+31:
|ﬁﬁ§,a+@+:u_uﬁ_u atbinf; '] 263

Ramanujan’s result (2.6.1) is the particular case of (2.6.3) in which
a=b=14% and f=1. The method of proof holds when f> a+b.
Various generalizations of this result have been given by Whipple
(19305), Hodgkinson (1931) and Bailey (19315). Bailey’s generaliza-
tion is the elegant result

-1
r rrmy+m A LY, vtm=1; 1{ to n terms
m,x+y+m v, Zz+y+m;
—1:
= ﬁ_ua‘*.s“@.fsu_ 35 LY, v+n—1; _H_ to m terms. (2.6.4)
nT+Yy+n vV, T+Y+n;

Three alternative proofs are given by Bailey (193154). The most
straightforward of these is similar to that used in the usual proof of
Dougall’s theorem by induction.

We suppose, without loss of generality, that % > m. Then, in the
terms of the series on the left, the factors v+ 7 in the denominator
cancel with the factors in the numerator when r > m— 1. Thus, if we
multiply (2.6.4) straight across by (v),,_,, we obtain two polynomials
in » of degree m — 1. If we can now prove that these two polynomials
are equal for m values of v, we shall have established our result. But
for each of the m values v = —n+1, —n, —n—1,..., —n—m+2, the
partial series become complete hypergeometric series, which are
summable by Saalschutz’s theorem, and their equality can be seen
immediately. Hence our result (2.6.4) is proved.

In particular, when m — oo in (2.6.4), the theorem reduces to (2.6.3)
above, which is now seen to be true for all values of the parameters.
Many alternative forms of (2.6.2) can be deduced, simply by trans-

6 SGH
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forming the series 3F,(1). Thus, if we use the relation (2.3.3.1) again,
between three such series, we find thatf

JFila, b; c; 1] to » terms

l+a—c,1+b—c¢c (@), (0), _H~ a,1—b,n; H:
= ——tn R, 1
1_H HIPH+&+@IQH_ T (c=1),n!* 2 2—c,1+n;
(2.6.5)
provided that R (1+a+b—c) > 0.

Again if we make use of (2.3.3.7), a relation between two Fy(1)
series, we havel

o Fi[a, b; ¢; 1] to n terms

.. |~.
NHJ a+§.o+§ _Ha a.o?i.a“ MH_, Aw.@.mv
n,l+a+b—c,c+n|? c,C+1;

under the same restriction RI(1+a+b—c¢) > 0.
We can rewrite Whipple’s transformation of a (Fy(1) series into a
+Fs(1) series, (2.4.1.1), in the form

Laltx, g, 25 w,v,w; 1]

-T v+w—t,1+zx—u,l+y—u,1+z—u
T T llty+z—ul4ztz—u,ltr+y—u,l-u

7 a,l1+ia,w—t,v-t, z, Y, %
el la, w, o l+y+e—u,l+ztr—ul+z+y—u; |’

(2.6.7)

wherea = x+y+z—u,and u+v+w—t—x—y—2z = 1,and one of the
parameters ¢, z,y or z is a negative integer. Then, if we put ¢ = 1-=,
and let # - 1 —n, we find the result that

e+8+§lra+§:@+§.n+3u_

. : 1], =
lz,y,2; v, w; 1], ﬂﬁ§.®+n+3.u+a+?&+@+§

P a,l+da,w+n—1,v+n—1, x, Y, zZ; yu_
X% 1a, », w,y+z+n,z+z+n,c+y+n; |’
(2.6.8)

where @ = z+y+2+n—1, and the 4Fy(1) series on the left is Saal-
schutzian. Again we can deduce (2.6.2) from this result if we sub-
stitute for w and let 2 - 0.

+ Whipple (19305). 1 Hodgkinson (1931).

PARTIAL SUMS OF HYPERGEOMETRIC SERIES 83

Further, this well-poised ,F(1) series can be transformed in various
ways, into two Saalschutzian ,Fy(1) series. In particular, using the
formula (2.4.4.3) we findt that

abalz,y,2; v,w; 1],

=T z+n,y+n,2+n r[ww-v
nv+n—1l,w+n—1 v+u—l,w—z,w—y,w—z2
V-2, v—~Y,v—2, —1; ,V—
x»m.u—H Y, v—2,0+n ]y pfee—»
v,v+1—w,v+n; w+n—l,v—z,v—-y,v—2
W—2,W—Y,Ww—2,Ww+n—1;
X o F, ?
: u_“ w,w+1l—v,w+n, HH_“ (2.6.9)

In a similar way, using the two relations (2.4.3.1) and (2.4.4.1)
connecting four well-poised ,Fy(1) series, we can obtain two formulae
each of which gives the sum to # terms of a well-poised ,F}(1) series in
terms of two infinite well-poised ,F(1) series.

2.6.1 A partial summation theorem. We shall let
anfalagay, a0 1+b,14b,,..., 145, 1]y

_ W __ () (1)n (@3)n---(24)s
- Suo\:\ﬁ :. +@HVSAH +~vnv3...c +®kv§
N
= Ya, (2.6.1.1)
n=0
and U, = (@qp+1n) (a,+n) (@ +n)...(a +n)a,.
Then Vp—Vp_y = A {(ag+7) (@, +2)(ag+n)...(a +7)

— (b, +7) (by+7)...(b4+7)}, (2.6.1.2)

: (@+n-L)(@+n—1)..(as+n—1)
S T bt byt )b tm) O

Let us suppose now that the terms in powers of % in (2.6.1.2) vanish.
This implies that

Gt +ay+ ... ta, =b +b+ ... +by,

o8+ 8o+ ... +a,y 16, =b by +bb5+...+b,_ L&: (2.6.1.3)

QyAyQy... a4 = by byby... b ,,

t Darling (1930), p. 335.
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that is that —a,, — @y, — @y, ..., — a4 are the roots of the equation
A 4 O x4+ Cpzd 1t +...+Cy4 =0, (2.6.1.4)
and that —b,, —b,, ..., — b are the roots of the equation
x4+ C xA- 14+ Cyad2+...+C, = 0. (2.6.1.5)

It follows that Vp—Vpoy = 0y Qg Gy g...Cu,
Vp-1~ Vng = Xn1 % 0102.--Cu>

¥y — Vg = Oy By Gy Ay... Ay,
Uy = gy Gp...Q 4.

n

So, by addition, v, = 0 0y0, ... Ly, (2.6.1.6)

r=0
that is
anFalagay, ..o 1+by, .0, +b 5 1y

_ _Otay(rady(+ay.(Ltady oo n
T NU(T+b)y (L+ba)y (1 + byl (15 by

under the conditions (2.6.1.3).
Further, if N - 0, in (2.6.1.7), we have

annFal@g @1 gy st LDy, 14045 1]

uﬁ H+FL+~;,:.L+F H_. E.m.w.wv
1+ag,14a,1+a,,...,1+a0,

under the same set of conditions. Since q,+ Za, = Zb,, this series is
always convergent for all values of a,,a,, ..., @4, and by, by, ..., b 4.

In particular, _(1+a), (1 +..o.wa

; ; = 2.6.1.9
2Fila.6; 1+a+b; 1), nl(l+a+b), ( )
1+a),(140),(1+¢),
and  Blab,¢;d,atbte—d; 1], = A::&HAifT&s
(2.6.1.10)
where bec+ca+ab=(d—1)(a+b+c—d—1).

As n >0, (2.6.1.9) becomes Gauss’s theorem, and (2.6.1.10) be-
comes a disguised form of Dixon’s theorem,

d,a+b+c—d

, (2.6.1.11)
l1+a,1+48,14¢

FHla,b,c; d,a+b+c—d; 1] = r

where beteca+ab=(d—-1)(a+db+c—-d—1).
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3
BASIC HYPERGEOMETRIC FUNCTIONS

3.1 Historical introduction

A different view of the problem of generalizing the Gauss function was
taken by E.Heine, in his book.t In this work, he defined a basic

number as 1—
a, = H||M_. (3.1.1)
—na
where g and @ are real or complex numbers, so thatasq — 1, HH M - a.

This passage to the limit is of the type known as de ’'Hospital’s limit.
Using this concept, Heine then defined the basic analogue of the
Gauss function as the infinite series
14+ U=g =gz (1-¢7) (1-g*+)(1-¢%) (1-¢*+)22
(1-¢)(1-9) (1-¢)(1-¢*)(1-q)(1-¢7

+ sy
(3.1.2)
where |g| < 1, so that as ¢ — 1, this series — ,F[a, b; c; 2], the Gauss
series.
A very early example of such a series is contained in Euler’sidentity}
1+ 3 (—1)n{ghenDpghntni} = [] (1—¢7),  (3.1.3)
n=1 n=1
and several interesting results were given by Gauss, § for example
1+ 3 ginviD = [T {(1-¢%)/(1 g 1)} (3.1.4)
n=1 n=1

The earliest example of an algebraic infinite product is the partition
function

1/ 11 (1 —aq)
n=0
discussed by Euler.| Gauss also studied these infinite products. For
example he gave
(T+a8+22+..)— (@B + 2+ 20+ ..)
= x(1 —2?) (1 + 219) (1 + 214) (1 — 222) (1 — 229)...
(L+a12) (1 — 224) (1 4+ 2%9)...(1 +2%) (1 + 219) (1 +224)... (3.1.5)

1 Hoine (1898). Handbuch die Kugelfunctionen.
t Euler (1748). § Gauss (1866).
|| Euler (1748), p. 304. 1 Gauss (1868), p. 448, eq. 22; p. 454, eq. 57.
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and
(1—2%) (1 —219) (1 —z18). .. (1 —22) (1 — %) (1 —214)...
= (1-22—2t+ 20+l )/{(1—a8)(1—21?)(1—=x)...}
(8.1.6)
that is, in the modern notation,
TT{(1—2%%) (128~ (129} = 1+ 3 (~ 1" asn(@r+27).
n=1 n=1 3.1.7)
These results clearly foreshadowed the work of C.G.J.Jacobi

(1804-1851), who, in his Fundamenta Nova (1829), defined the four
theta functions

3.2, q) = wM,,A — 1ym g+ sin {(2n +1) 2}, (3.1.8)
8,(2,q) = wM%sé, cos {(2n +1)2), (3.1.9)
84(2,9) = 1 +NMH%. cos (2n2), (3.1.10)
34z q) = _+MM~T 1) g™ cos (2nz). (3.1.11)

He deduced most of the known relations between these functions by
purely algebraic methods. Jacobi also stated the theorem

1+ M Al CS&E%AN?..T NL:J

n=1

= m QH — ga@n—1)zb) (] — goln-1 NIJ (1 I&anvv. (3.1.12)

n=1
which is fundamental in most of the later work on infinite products.
From this theorem it follows that

Nz, q) = —igte® i {(1 — g% e¥) (1 — gPn—2e—%i) (1 —g?m)},
" (3.1.13)
Ba(e,q) = gho¥ IT {(1+ ¢ e%) (1 + g —2e~5) (1 g2}, (3.1.14)
n=1

Balng) = T {1+ e (Legnle) =g, (3.115)

Suz.q) = TL{(1—g¥rtetis) (1~ gin-le—tis) (1 g2} (3.1.16)
n=1
The series in equations (3.1.8-12) can be expressed in the forms

¥ (—1)pznErtd and ¥ (—1)ngntanth),

n=—w0 nr= — O
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They are thus very early examples of ‘bilateral’ series, that is to say,
series which are infinite in both directions, though it is doubtful
whether Gauss or Jacobi recognized this fact. Jacobi, in particular,
gave very many examples of basic series, arising from the study of
elliptic modular functions.

Most of the early examples were collected and investigated systema-
tically, by Heine, and it became apparent in his work, that a theory
almost exactly parallel and certainly as extensive as that for the
Gauss functions could be developed for these basic hypergeometric
functions. This development was carried out by F. H. Jackson (1870-
1960), who throughout his long life, studied the concept of the basic
number at length. He gave the basic analogues of most of the special
summation theorems. In particular, he proved the basic analogue of
Dougall’s theorem as early as 1909, though the proof was not published
until 1921.1 He also developed the concepts of g-difference equations
as basic analogues of the ordinary difference equations, and g-inte-
gration] as the analogue of integration.

Practically every branch of normal function theory has been
extended to the basic number field, so that now we have basic ex-
ponential, trigonometric, and hyperbolic functions, basic analogues
of Bessel, Weber and Airy functions, and basic Legendre, Laguerre,
Hermite and Gegenbaur polynomials.§ Most of the actual applica-
tions of the g-concept have occurred in the field of pure mathematics,
particularly in number theory, modular equations and elliptic inte-
grals. The main obstacle to their application in applied mathematics
was the difficulty of actual numerical evaluation in all but the simplest
cases. With the advent of electronic computers, this difficulty has
largly vanished, though much remains to be done in almost every part
of g-function theory.

3.2 The convergence of Heine’s series

In Heine’s series (3.1.2), a, b, ¢, g and z may be real or complex numbers.
If the nth term of the series is «,, then we have

v - C IQ:V C Ieniw.:: IQn+:wHV : lmwv :. Pmoiv...c IQW,ITJ 27
" (1=)(1—¢?)...(1 =¢") (1 - ¢°) (1 = g°*1)...(1 — g*+n)
(3.2.1)

t Jackson (1921a). 1 F.H.Jackson (1951).
§ Jackson (190054, 19213, 1942); Hahn (1949a, 1950, 1955).
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Upyy _ (L—g®™)(1— nisv (3.2.2)
u, (L—g*)(1— ) °
and this expression —» 2, as n - 0, provided that |¢| < 1. Hence, when
lg| < 1, Heine’s series is absolutely convergent for |z| < 1.
The product

so that

I1(1—-agq®)
n=0
is absolutely convergent for all finite values of a, real or complex,
when |g| < L.

If |¢| > 1, we can write ¢ = 1/p, where |p| < 1. Then Heine’s series
becomes

(1=p) (1=p)z  (1=g~)(L=p=) (1=p) L =p* )2

o=y T (-p(I-p=N(-pH(1-p5
c e:H v 1+c—a—b
=L+
+GI®JCI P (1-p%) (1- @a+JNN%E+?a|s+ (3.2.3)

(1-p)(1=pt) (1 —p) (1-p?)

This series is of exactly the same type as Heine’s series, with
g replaced by p, and z replaced by zp*+tc—2-. This new series is con-
vergent if |p| < 1, and |zp'+-9-%| < 1, that is |¢| < 1. Thus it can
always be supposed without any loss of generality, that |¢| < 1, for,
if it is not, the above process of putting 1/p for ¢ will always reduce the
series to a similar series in which |p| < 1. This concept of inversion
with respect to the base ¢ can be extended throughout the theory
without much difficulty.

3.2.1 Notation. We shall write
Saw 3: = C — nav C lmeiv C — Qn+mv:.3 Imai.luv. ﬁw.m.ﬁ.:
In this notation, we have

.sawmru w.w.rm
Jim ({5 20) = (o) 8212

Thus, if ¢ = 0-9, and @ = 0-1, we have
(0-9%1; 0-9), = (1—0-991) (1 — 0-911) (1 — 0-9%1)

, sséwT. (1-¢*Y) (1—g") (1—g¢*1)
and Hnséw R Y ey s
=01x11x21,
= (0-1),.
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Normally, we shall follow Watson’s notation and write a in place of ¢,
for ease in printing, so that

@; 9)n = (1—a)(1-ag)(1-ag?)...(1—aq™?)

E MC —ag™){(1 —ag™t™)}, (3.2.1.3)
and in particular (@; @) =1

Il

for all values of a, real or complex.

Then Heine’s series becomes the basic hypergeometric function
which we shall write as
2 DP4(a, b; ¢; ¢,2]

(1-a)(1-b) _ (1—a)(1—aq)(1-5)(1—bg)
(I1-0)(1-9)  (I-¢)(1-cq)(1-g)(1—¢?)
5 @D 05 D,

TG Dnl D (8214
where |¢| < 1, and |2] < 1. Here a, b and ¢ are the parameters, z is the
variable and g is called the base of the series.

This symbol, due originally to Heine, and extended by F.H.
Jackson, must not be confused with the symbol given in (2.1.1.6)
above, which has been used by both Erdélyi and Meijer to represent
an entirely different ordinary hypergeometric function.

Two separate passages to the limit are possible with the function
(@; @), The first of these is that in which ¢ - 1, considered above. The
other passage to the limit is that in which » —co. Here we find that

22+.

lim (a; ), = moclée. (3.2.1.5)

n—>aoK

and if we make both passages to the limit together, we have
S (C); u ooy (L—agh)
lim lim "|= = lim e 3.2.1.6
a1 n—>w (&5 Dn a.._amo (1-g") ( )
= 1/T'(log a). (3.2.1.7)

Similarly, reversing the order of the two limiting processes, we have

lim lim "E 3:““ lim (a), = 1/[(a). (3.2.1.8)

n—->wo g—+1 AQ Qv: n-—+ o

Alternative notations for the product (a; q), have been used at
various times. Thus we find

(a)g » (Bailey (1935), §8.1)
or [a}, (Jackson (1941a)).
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The base g can itself be a simple function, so that for example, we
might write

(@ qt), = (1—-a) (1—agh) (1 —ag) (1 -agh)...,  (3.2.19)
and this must be distinguished carefully from
(agt; ¢), = (1 —agh) (1 —agh) (1—agh)....  (3.2.1.10)

The disadvantages of the alternative notations can be seen clearly
from the above example, for in such a case (a)u, , involves double
suffixes which are very difficult to print, and [a], does not state ¢
explicitly, so that no distinction can be made between the two pro-
ducts (a; ¢t), and (ag¥; ¢), in (3.2.1.9) and (3.2.1.10) above.

The general basic hypergeometric series is defined as

4Pglay,a,, ..., a,; by, by, b5 4,2]

= v (24 Da (@ D (245 Dn?” 391.11
= 200 0 b OO Dulgs D oY
in which there are always A of the a parameters, and B of the b para-

meters. In such a case, the product of products

(a1; D (B35 Q- (245 Da
can be shortened still further to
((@; s

where it is understood that there are always A of the a parameters.
So we may write (3.2.1.11) as

o _((a; g))g 2" @
-, = a);(d); ¢, z]. 3.2.1.12
2 (5 Dnlgig), - 4@k G
The general infinite products play a role in the present basic theory
parallel to the role of the Gamma functions in the ordinary hyper-
geometric field. So, in a similar way, we can shorten the notation for
them. We shall write

(1~a,¢") (1 —ayq™)...(1 —a,q")
0(1—0,9") (1 =b3¢™)...(1 —bgq")

a.a..:.a, l .. n
=1 _H@“s“.:; m, H_ = II[(a); (b); ¢}, (3.2.1.13)

where again it is understood that there are always A of the a para-
meters, and B of the b parameters, as usual.

i
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As an alternative to this notation, some writers have had

T« QuB = U— |QA~§V

We shall occasionally be forced to extend our notation even further,
and write for example
Po@slla); 0); ¢.972)

to indicate a series in which 2» is replaced by z%¢™* in the n’th term.
This can only be done if there is no possibility of confusion with Zrgmn
occurring in the n’th term, so that the use of 7 in such an index will
have this special meaning and » will be avoided in the normal index,
m being used in its place. In any doubtful case, the general term of the
series should be written out in full.

3.2.2 Some simple results. In order to become a little more
familiar with the basic hypergeometric notation, we shall discuss first
a few simple and elegant results. As particular cases of the 2P (2)
series, we have

z z 22 zn
o < g2 —_
~|Qw M_HQ.QnQ.Q.&u u..IQ-THI.QnuT'THI.Q;.T
(3.2.2.1)
and
z z 22 zn
e ] wu > vN 3 D
14" 109, 9% ¢; 9,2 = —gtiogt+ gt
(3.2.2.2)

If we divide (3.2.2.2) throughout by 2% and replace g, z by ¢2, ge?=,
where z is real, the imaginary part of the series becomes
gisinz mw sin 3z ¢*tisin (2n+ 1)z Kk 2Kz

H|Q + Q@ +...+ HlQMﬂi.n +...|||w|3.»mb|lﬂ~ R

(3.2.2.3)
This is another illustration of the close connection between the theory
of elliptic functions and that of basic hypergeometric functions, of

which the elliptic functions are always special cases.
Again

2z + 222 + 2zn
1+g 14¢2 ...+H+m=

oPile, —1; —gq; ¢,2] =1+ o
(3.2.2.4)

In a similar way, from this series (3.2.2.4) we can derive a series for

dn (2Kz/m).
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As the basic analogues for the binomial theorem, we have

10ola; 5 ¢,2) = 1+7— N+M_ Mr Sv 2+...  (3.225)
1-
and 1 Ple; ;¢,92] = ~+I||QN+M~ MWM vv e

3.2.2.6

By the subtraction of (3.2.2.6) from (3.2.2.5), we find that A )

Dola; 5 g2 —1Qla; 5 ¢,92] = (1—a)z,Pglag; ; ¢:2) (3.2.2.7)
Similarly,

Dla; ; ¢,2]1—a,Dola; ; 7,92 = (1—a) Polag; 5 ¢.2].  (3.2.2.8)
If we eliminate the series on the right-hand side of (3.2.2.7) and
(3.2.2.8), we have

(1—2),Qqla; ; ¢,2] = (1 —az2),Pola; ; .92].  (3.2.2.9)

Next let us apply the process (3.2.2.9), n times in succession; then
e gt 1Dola; 5 q,2] = ﬁmﬂwﬁeo?w 5 4,972], (3.2.2.10)
so that, for |g| < 1,asn > o, ¢"z > 0, and ; Qy[a; ; ¢,9"2] > 1, and we
have Heine’s theorem

1Dola; ; ¢,2] = momﬁ —azq")f(1 —2q")}, (3.2.2.11)
that is
(1-a)_, (1-a)(1—aq) _(-ay(1- —azg) (1—azg’)...
i @i 2 T T () (1—ag)...
(3.2.2.12)

From this result, we can deduce immediately, that
1Oola; 5 4,2)1 D005 5 ¢,a2] = (Dolad; ; g,2]. (3. 2.2.13)

If @ = 0, a special case of this result is

ool 5 4,21 =1 moclsg (3.2.2.14)
that is .
1+ 2 B = 1J{(1—2)(1—2g) (1 —2g®)..}.

1-¢ (1-¢)(1—¢?)
Further, when z = ¢, .
oPols g =1/ T (A-9), (3.2.2.16)

r=1

(3.2.2.15)
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2
~+F+ R S

I—¢ =gt = H1-91-¢)1~g)..}.

(3.2.2.17)

Alternatively, we can replace z in (3.2.2.11) by z/a, and let a - 0.
Then we find that

2 gz? (— 1) ginin-D gn
- + , —e e L
_lmﬁﬂlmvﬁlmwv SWS:

=(1-2)(1—q2) (1—¢%)..., (3.2.2.18)

and finally, if 2z = ¢,

q q° (— 1) gintn+D
e o 2
I-¢ (1-¢)(1-¢? (T Da

=(1-¢)(1-¢%)(1—¢?.... (3.2.2.19)

It has already been noted that there is a difficulty in the repre-
sentation of series like those in (3.2.2.18) and (3.2.2.19) without
ambiguity in our present notation, which is by no means perfect.
Nevertheless, there are many quiet corners of the subject, like this
one, which have given much pleasure and intellectual delight to many
mathematicians during the past two centuries.

+...

3.3 Special theorems on the summation of basic series

In the following sections we shall give the basic analogues, in so far
as these exist, of all the special summation theorems of the ordinary
hypergeometric series. In the first place, here are some necessary
definitions, which are the analogues of the corresponding properties
of ordinary series.

A series in which the product of each pair of numerator and denomi-
nator parameters is constant is called a well-poised basic series. For
erample SO0, b,c; agfb,agc; g,7]
is said to be a series well-poised in a. If this property holds except for
one pair of parameters, this pair can be made to stand either first or
last in the sequence of parameters, and such a series is then said to be
a nearly-poised basic series of the first or second kind respectively.
A series in which the product of the numerator parameters is ¢ times
the product of the denominator parameters, is said to be a Saal-
schutzian basic series.
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In general, if a transformation exists connecting several basic series,
then, by a simple passage to the limit, as ¢ > 1, we can always deduce
the corresponding transformation for ordinary hypergeometric series.
The converse is not always true. While basic analogues exist of most
of the main summation theorems and well-poised transformations,
some of the transformations of nearly-poised and Saalschutzian series
have no known basic analogues.

3.3.1 Jackson’s theorem. First we shall prove the basic analogue
of Dougall’s theorem, which is called Jackson’s theorem.t From
Jackson’s theorem, we can deduce all the simpler basic summation
theorems, just as, from Dougall’s theorem, we could deduce all the
simpler ordinary summation theorems.

Jackson’s theorem states that

e h&«v Q)\QJ IQ)\QJ ~vv Ov &« &w Q|7._.w mw Qg
857 Ja, —4a,aqfb,aglc, ag/d, agfe, ag¥+l;

_ (ag; @)y (ag/ed; 9)w (ag/bd; 9w (29/b¢; Oy (g4 4 3
(aq/b; q)w (agfc; Q)x (ag/d; q)n (agfbed; @)y’

where N is a positive integer, and
a2qN+! = bede. (3.3.1.2)
This condition corresponds to Dougall’s condition,
142 =b+c+d+e—N.

The relation (3.3.1.2) states that the product of the denominator
parameters must be g% times that of the numerator parameters. The
series is terminating, since

@ @y = 1=g) (1—g ). (L-g V),
The series is well-poised since
ag = (gyja)ya = blagfb) = ... = g~N(ag™*),

and so we can say that Jackson’s theorem gives the sum of a termi-

nating well-poised 4®,(g) series. The special forms of the second and

third parameters produce in the (r + 1)th terms of the series, the factor
| Swn
1-a

1 F. H. Jackson (1921a).
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just as in the ,Fg(1) series, the parameters 1+ }a and }a, produce the
factor (@ +2r)/a in the (r + 1)th term of the series. Thus, if we write
q°® for a and then let ¢ > 1, we have

lim AH Ina+¥v _a+2r
-1\ 1—¢° a

Thus, instead of a theorem on a ;F,(1) series, we shall expect to deduce
a theorem on a {®4(q) series, and instead of a transformation of a ,Fy(1)
series, we shall hope to find a transformation between ,,®4(g) series.
The proof is by induction on the same lines as the standard proof of
Dougall’s theorem. Thus, the result is obviously true when N = 0.
Suppose that the theorem is also true when N = 1,2,3,..., N, —1. By
symmetry, the result is also true if ¢ or d has one of the values 1,41,
q72,q73,...,¢"Not1, that is if ¢ or a?g/(bcef) has one of these values. In
particular, it is true then, when N = N, and ¢ takes one of the 2N,
values above. But, when N = N,,, if we multiply the formula by

(ag/c; Q)n, (aglbed; g)x,,

we see that we have an equality between two polynomials in ¢, each of
degree 2N,. Now ¢ = aq™o is a pole of the last term only of the series,
and we can see that our equation holds for this value of ¢ also. Hence
it is an identity in ¢, and the proof is completed by induction from
.z = O. ﬁo 2 = 20.
In (3.3.1.1) let us substitute
. 2,N+1
G i
bed
and consider what happens as N — 0. In the (» + 1)th term, the factor

(q™"; @), (a*¢"*fbed; g),
(bedg]a; @), (ag**™; @),

occurs. Now as N — co,

2aN+1 .
(a%g ?\wm&wwnlvq -1,

Asﬂ.fzw Qvﬂ

Also
E = AQZ|H:QZIH|:..AQ.ZL.+~I.:

(bodg~N]a; ), (g™ — bedja) (g% ~bed/a)...(¢¥ "1 = bed]a)

¢Aw.ﬁo~l&v, as N —» 0.
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Thus the ®,(g) series becomes a ¢®y(ag/bcd) series, and Jackson’s
theorem becomes

aé«a.lia.?p& a &”_
s Ja, —4a, ag/b,aqfc, \&m.s\ ‘

_ [ 9, 24/cd, ag/bd, ag/be; 3.3.1.3
=1 a&?a&?a@\&.a&a&wn . (3.3.1.3)

This gives the sum of a well-poised {@;(ag/bcd) series, and it is the basic
analogue of the ;¥,(1) summation theorem (2.3.4.5).
If d = ¢V, where N is an integer, the series terminates, and the
theorem reduces to
-N .
aem_ws O ol v, ©98 @o.m_

3
V+1. Qv
’

Ja, I»\a,a&@.a&n.amw
_ (a; 9w (ajbe; SQ. (3.3.1.4)
(a/b; ) (afc; @)
This corresponds to (2.3.4.6), which is the sum of a well-poised

terminating ;F,(1) series.
In (3.3.1.3) let d = 4/a. Then we shall find that

a.nia.a“a v g
nemﬁ I.)\Qc Q\Q\@vgxov Qvﬁz\a«: nv
éé\&pn,\%,aaoﬁu_ .
I . (3.3.1.5)
aglb, agje, ala, gJajbe; *

If, in this series, we replace ¢, b and ¢ by ¢4, ¢® and ¢¢, respectively, and
then let ¢ — 1, we obtain Dixon’s theorem, 8o that (3.3.1.5) is in fact
a basic analogue of Dixon’s theorem (2.3.3.5). It should be noted that
the sum of the series

wen_ﬂa«‘ @‘ c; QQ\@u QQ\OW q, &u

which would provide an exact analogue of Dixon’s series, cannot be
found by this method.

3.3.2 The basic analogue of Saalschutz’s theorem. In ,q ack-
son’s theorem (3.3.1.1), let us write ag/d in place of d and substitute
adgnbe for e. The theorem then becomes

o a,q\a, —gyja, b, ¢, edgrfbe, ¢, agld; Q,L
877 Ja, —a,aq/b,ag/c,beg{d, aq™t, d;

_ (ag; @) (d/c; Dn (@[55 9)n (a4/b¢; Dn (3.3.2.1)
= (ag/b; @)a (@g/c; 9 (d; @)y (d]bC; @)y
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Now let @ — c0, in this finite series. We find that

bed _ (@e; ), (@b ),
3®» d, begi-"/d; n,& = @ q).@kc; 9, (3.3.2.2)

This is the basic analogue of Saalschutz’s theorem (2.3.1.3).
We can now show that

© o ®,[a,b; ¢; g,2] = 3 @,[c/a,cfb; ¢; q,abzfc],Dylab/c; ; ¢,2]. (3.3.2.3)

This is the basic analogue of Euler’s transform (2.3.1.1). If we compare
the coefficients of z* on both sides of this equation, and use the above
theorem (3.3.2.2), the proof follows immediately.
Again, in (3.3.2.2), let n —»co, through positive integral values.
Then, for » large, we have
@ 9.7 (1-¢g)(—-g)...(1—g" )¢

(bog™/d; @),  (1—beg*™/d) (1 —bog>—/d)...(1—beg™™/d)
A _ :ﬂ ml:mu+n+:.+¢|c q
.A,I 1y (beg—™ \&, n~+»+...+¢|_v

~

Qﬁlav 4
= (Bojdy =7

— (dfbey” as n -0, (3.3.2.4)

provided that |dfbc| < 1. Hence (3.3.2.2) leads us, as n — o0, to the
result that :
2 D4[b,¢; d; q,d[bc] = T[d]c,d[b; d,dfbe; q]. (3.3.2.5)

This is the basic analogue of Gauss’s theorem (1.1.5).
If now we put ¢ = ¢g~¥, where N is an integer, in (3.3.2.5), or,
alternatively, if we let ¢ - o0, in (3.3.2.2), we get

(o, q; d; g, dgp) = LDy (3.3.2.6)
d; O~
This is a kind of analogue of Vandermonde’s theorem, (1.7.7), but its
usefulness is restricted by the presence of ¢% in the variable of the
2©1(dg”™/b) function.
An alternative result can be obtained if we let ¢ > 0, in (3.3.2.2).
This process leads us to the theorem

(d/b; g), b
d; 9)n

7 SGH

2 Di[b, 97 d; ¢,9) = (3.3.2.7)
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which is a very much more useful result, as the variable of the ,®,(¢)
function is simply ¢, and does not depend on the number of terms in
the series.

3.4 Applications of Bailey’s transform to basic series
A direct basic analogue of the general transformation (2.4.10) will
now be deduced from the application of Bailey’s transform. Let us
suppose that

— Agnvammmww|v A\SQ‘ Qvﬁ.ﬂ\q w 41

U= (s D g: D (e Dr {0 D (3.4.1)

_ (0 @) (85 @), .. (095 @), 0" 3.49

U s e Dree s O (3.42)

_ (@1 9, (@53 9), - (p; 9), & 4.3

5= @1 Dr @25 D)r - G5 Dr (8.4.3)

PSQ o = AQQ“ va Aam“ va Aa«kw%vsw\q = Aw«m#v

T (ks Or By @)y (B D)0 (g5 ),
Then

v _ (@1 On(ds; O)n - pi D (915 Dan (V93 Dan - (V5 Dan
* 00 D02 D G Do i Dan (Fos Dan - U5 Dan

Upy Uy ooy Uy, B % Ao g™y ..., dp @7,
QMvQNu .-.V®EuQMQ§uQNQ3~ ...uQQQS‘u

ens_ve%:,:.,e_\%:w
m %g,bwma, cofeqiny DU

TLye 2N
XX Q+U+wem+~.,+®_”

(3.4.5)
and

B, = (215 D (Mg D oo Uy O (015 D (V2 D --- (V9 @) w™0"
"G Dalers Dalens Dn - (ex5 D (15 Dn s Do frs D

. o hmT:\at gt ey, ..., eg, 0,04, ..., @4, U, 47,
m+k.:nEQ+m+m.| | |
QH s\ﬁt QH 3\..&? ..J m_. 3\20: N@E N@». .... N«NT\.H st

epmavevmmus * |:a+m,|qm_
g, uvy(—q)*™ ‘ .
\»nst:.?e ; Y

(3.4.8)
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The complete theorem, is then, when stated in the contracted
notation,
S (@5 9)n (45 @) (¥; @))an Ty 0"

2o (055 D) (@ D) Dhan @5 D)

si&fsﬁ
(1) .
X UArDTEEG| () (gqn), (fgn); g&

w (d; O)n ((u; e:xe. ) u v
n=0(2; O ((&; D ((f5 )0 (@ D

1-n n —n.
X ;+m+w+~eo‘+-+§—HMMW“ MMT:“MVV‘“AMWQWV“W ¢ (— ch+m.|9§|c Qew\u_ .

(3.4.7)

Here, and in (3.4.6) above, the factor (n—1) has been put in the
variable to show that the »’th term of the series contains the variable

(- 3G+M|9 in(n-1) urvryn,

The result (3.4.7) is to be interpreted as having a meaning only when
all the series involved are either convergent or terminating.
In particular, in Bailey’s transform, let

(% D (z; Q2™
w\ﬁNS

=1/(g; @)y vn = 1/(2;¢), and &, =

Then we can sum the series for y,, by the basic analogue of Gauss’s
theorem, (3.3.2.5), and we get

o =TI xfy, z/z; mg (Y Dnlz; Quz® (3.4.8)

x,zfyz; " _|(@/y; @ (@/2; @)ny™2®’
Hence, from Bailey’s transform, we have
2 (Y (@ Duzy 2" fy
n=

a\?a\u. v.mvsasa
g H_ = a\w\ D @l Py D)

h o= 3 =
wnere = 7
"0 (@ Qe (4 Qs

This relation will be used later (§7.3.1) in the deduction of some
further identities of the Rogers—Ramanujan type.

and oy =1,
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3.4.1 Basic Saalschutzian transforms. This basic analogue of
Bailey’s transform, (3.4.7), will now be applied to the deduction of
transformations of basic series, using the basic analogue of Saalschutz’s
theorem (3.3.2.2). As before, we shall denote the series on the left of
(3.4.7) p+pirPrspsclurr] by @4 and the series on the right-hand
side of (3.4.7) ig+r1Purmrl—q"uvy] by @,. Let us suppose that
@, is summable by (3.3.2.2). One possible form for @, is

&H QSV &w Q.au Qzlzw Q
He . w.».u.ﬁ
e< 3 nh\&ms‘t., &H &n Qﬁl?\.\.w %491, A v

then we have _
Oy = 41 Prnll@),g7; (R).f0Y; ¢ — 9] (3.4.1.2)
Let
(@5 @)n (023 Dn (9435 O (& D (€3 P (=1 gF D"
(@5 Dn Was @) (—Na; 9)n(ag/d; 9)n (agle; @), d7e"

— Q\.Q)\chmz\h: &“ €, lew n+1
then e\lmeu_u Ja, —a,aq/d, agle, agh+; g,aq™/de |.

A, =

bd

(3.4.1.3)

This series can be summed as a well-poised terminating ¢®; series, by
(3.3.1.4), to give

ISSVL&??
Cs = (@fd;q), (@le; ) (3.4.1.4)

This result, when combined with (3.4.1.1), leads to Watson’s
analogue of Whipple’s transform (2.4.1.1),

a, QI\Q“ - Q)\Q; ¢, &- e, .\.v g, Q.wQM
s Pz

Ja, —a,aglc,ag)d, agle, aglf, aqly; T odefy

_ Taq, aq/fg, agleq, aqlef; agled, e, [, g;
- :_Hé\s aqlf, aglg, aglefg; QH_ ‘eu_w efgja, agfc,aqid; T QH_ :
(3.4.1.5)

This transforms a well-poised ,®, series with the special forms of the

second and third parameters, into a Saalschutzian ,®, series. It con-

tains as special cases, very many of the classical identities, (see §3.5.1).
Next let us suppose that

gmﬂ Nn\bc QIZIQ
Q, = uG»_HQQ»..i, k/agY, 9|
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Then @, can be summed as a well-poised (@, series, by Jackson’s
theorem, and we find finally, after some reduction, that

meh._”a, b, ¢ d, ¢%; H_LE\S 9y (K%/a; q)x

ag/b, agle, ag|d, a*q¥[k% U] T (kg; @)y (Kqla%; q)x

% 1D W,Zw,lir kbja, koja, kdja, \/a, —ya, /(ag),
12711
vk, —k,aq/b, agle, agjd, ky/(g/a), - ky(gla),
~lag), gV, g
kglJa, —kgl\Ja,aq~N |k, kgN+; FQH_
(3.4.1.6)

This is a transformation between a Saalschutzian nearly-poised ,®,(g)
series and a well-poised ;,®,,(q) series. It is the analogue of (2.4.1.4).

If we take ¢ = gfa, and d = —g¢/a, so that k = — a/bg then four of the
parameters cancel out and the ,,®,,(g) series reduces to a terminating
well-poised ;@,(g) series which has the special forms of the second and
third parameters. This can be summed by Jackson’s theorem, and,
after some reduction, we find that

QJQ)\Qu.IQ)\Q\. Wv QI»?_.M
me.,_u Ve, —da,aq/b, b*g*~; iH_
= AQ\\@wm Qu?ln AH\WQW QvZAH |§Q|w;._.<|~\vmv
(@glb; O U O 0 SALD

This series is nearly-poised and Saalschutzian, and this result corre-
sponds to (2.4.2.6), of which it is a basic analogue.

3.4.2 Basic well-poised transforms. Next, we shall suppose that
®, can v.o summed by Jackson’s theorem (3.3.1.1) as a well-poised
s@4(g) series. As before, @, must be well-poised in a » parameter to
produce & summable @ series. So let

O, — meq—ukﬁmﬁ Qn+-)\wo“ I.Ql._.)\wn. mmwln. Nn\s. .\.Q*.
Y nf\wu —g"\Jk, kq®*"[e, ag?r 1, kqrif,
g9, g,
kg +i)g, kgm+NH1; 9|,

, 3.4.2.1
where akgVN ! = efg. ( )

Then we can take a, = (a; 9), (q/a; 9),,
so that
a,gya, —gifa, b, ¢, d kg —n;
O, = D A N ’ s s KG™, [/
8L Ja, —Ja,aq/b,agjc,aq/d, ag |k, ag'+m; EH_.
(3.4.2.2)
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where a’q = bedk. Then summing @, by Jackson’s theorem also, we
find that

uSﬁea@é&wmvié\&éis\gwsa

When we substitute these values of ®, and @, in (3.4.7), after some
reduction, the theorem leads us to the result

D Quﬁé\ﬂc |Q)\§. ¢, &u e, .\w g, \ev .Qu q QQ
1079 »\P |)\9.QQ\PQ&\&,g\@.g\\vg\?aa\?g\.ﬁ ’

_ ni[[@e aalfs, aqifh, ag/fj, aa/gh. aq/gj, eq/tj, aq/fohs;
ag/f.aq/g,aq/h,aq/j,aq/ghj, aq/fkj, aq/fgk.aq/fe);

N&m)\?lm»\w.aa\a,w&\a.wm\av\.Q,F.ﬁ H_
Jk, —Jk, agic, ag/d, agle, kqlf, kglg, ka/h, kefj; T7 |’
(3.4.2.4)

where k = a?q/cde, aq® = cdefghj, and f, or g, or k or j is of the form
gV, where N is a positive integer.

This is a relationship between two terminating ,,®,(¢) series, both
well-poised with the special form of the second and third parameters.
It is the basic analogue of (2.4.4.1), the relation between two well-
poised ,Fy(1) series, and it was first given by Jackson.} It is one of the
few results in the special theory which involves as many as six free
parameters, and in consequence, it contains many interesting special
cases.

Thus, in (3.4.2.4), let us replace ¢ and k by their values in terms of
the other parameters, and put j = ¢~~. Then we can let N tend to
infinity, and, arguing in the same way as we did for the formula
(2.4.4.3), which expresses a well-poised ,Fz(1) series in terms of two
Saalschutzian ,Fy(1) series, we can derive the basic analogue of this
result, namely,

ea“i&l?\?&@.&.PE,Z& Nm_
. ﬁ Vo, —a,aqld, agle, agjf, aglg,agfh; © 19
[ 24> 24lfg. aq/fh, agigh; & o _Hé\%. fo ko QH_
aqlf, aglg. aq/h, aq/fgh; * 1* L aq/d,aqle, fghja; *
+=_H§§%“ [ 9, &, a’q*ldfgh,a’q?[efgh; QH_
aq/d, agle, aq/f, aqlg, aqfh, a®q*/defgh, fgh|ag;
aq/gh, aq/fh, aq(fg, a®q®(defgh;
ag?/fgh, a*q?(dfgh, a®q*[efgh; ¢ & ' (3.4.2.5)
+ F.H.Jackson (1921a).

q

% 109y

x 4@y
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This is a generalization of (3.4.1.5), and from it, we can see that
(3.4.1.5) is true provided only that the series on the right terminates,
and the series on the left converges.

We can substitute an ;®,(g) series for each of the ,d4(q) series on the
right of (3.4.2.5), using (3.4.1.5), and then we obtain an identity
between three well-poised ¢®,(q) series.

3.5 The Rogers~Ramanujan identities
These two remarkable results are
g ¢t g™
1+ =+ — 1 e
I~ (-8 T I—gU-g) (1 =g (I=¢")
=1{(1-9)(1-¢")(1—¢9(1—¢° ... (1—¢***) (1 —g*"+4) ...} (3.5.1)
and
QM Qa QSQ&.C
1+ + :
¢ I=g-¢ T u—gu-g. (Zg) "
=1{1- (1 - (1-¢") (1 —¢°) ... (1 —go+2) (1 — g®n¥3) ...}
(3.5.2)

When they are restated in the more contracted notation of basic
series, these identities become

+..

© Qéu
= 1/I1(q, ¢%; ¢° .5.
and m, gD 1/11(g2, ¢%; ¢°
N P = » 4% . 5.4
1n=0{%: D s ) (5.54)

These identities were first stated by L.J.Rogerst in 1893. They
were later rediscovered quite independently by S.Ramanujan, and
they were stated by him, without proof. Some controversy arose but
this was finally settled by G.H.Hardy who arranged for both
claimants to publish proofs in 1919f. The simplest of the several
proofs given by Rogers and the proof given by Ramanujan both
depended on proving the more general formula

2 1y _p(L=ag*) (a; q) % g™
1+ (-1 auswwima :A * = Tl(a;
n=1 (1-a)(¢; 9)n (@ Ssmc (4 Dn

t Rogers (1894). I Ramanujan & Rogers (1019).
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The two results (3.5.1) and (3.5.2) can be deduced from this by putting
= 1, and a = q, respectively as we shall show later.

During the 1920’s about six other methods of proving (3.5.1) and
(3.5.2) were published. Finally, in 1929, G. N. Watson put forward his
elegant proof, using basic series.t This proof depended on Watson’s
transformation (3.4.1.5) of a well-poised @, series into a Saalschutzian
4P series.

In this formula, put g = ¢~¥, where N is a positive integer, and then
let ¢ - 00. The part of the (r + 1)th term of the series involving ¢ is

(¢; @)c _ (= 1yergt—D(1—1/c) (1 —1/cg) ... (1—1/eg™?)
(agfc; 9), (1 -agfc) (1-ag¥/c) ... (1 —ag™7/c)
and this expression tends to (— 1ygd D as ¢ - c0.

Similar results follow when we let 4, e, and f tend to infinity in turn,
and we find, finally, that (3.4.1.5) has been reduced to

Ag. valn A~ —- mwv Qm@mw»@.&w@lzw Qvn
1+ M ) ] )
= (q; 9), (ag™+; q),
(— 1)y ghr+D(gY; g),a7¢™"
@ 9), ’

N
= mHAT L: M (3.5.6)

_ (@ 99"
Now let N> If kﬁnAZV = NE ,
then 4 (N) — (— 1) gD as N - oo, for any fixed value of . For all

values of N,

4,)| < _ L T -ag

< K, a constant,

since this infinite product is convergent. Hence, in the series on the
left of (3.5.6) the modulus of each term is

<K QMM Mv? (1-ag®)a®g¥*(—1) gt = K|u, ],
@ Aﬂ —ag™ 2 —
and _gﬂ.*.ﬂ_ ~ .:.:c Alﬂlﬂmfﬁv a«ww@wn lei 1)

= _ amnnmzmql: _ ,

which is the term of a convergent series. We can argue in a similar way,
about the behaviour of the series on the right-hand side of (3.5.6) as
N >0, and apply Tannery’s theorem, to show that when N — oo,

(8.5.6) becomes (3.5.5).
1 Watson (19309).

THE ROGERS-RAMANUJAN IDENTITIES 105

In order to deduce (3.5.1) from (3.5.5), let us put @ = 1, in (3.5.5).
Then we find that
@ mwu

M N ¢ U o B
(g ev N m_ﬁ 1y 0=¢) girer-n,

1+ T (=1 (1 +g)giery,
r=1

=14 oMoU A _ Hvx Mﬁwlmnlc +Qw1uw+5wv

r=1

uMT:ﬁ%@Em. a.m..:
F=—c0

But Jacobi’s formula for the summation of elliptic integrals, (3.1.12),
can be re-expressed in the form

o0

(=112 = TT (1=2g4) (1 g2=4j2) (1~ )

r=-w

. I(2q,q/2,4% ¢, (3.5.8)
if g] < 1.

Hence, if we replace g by g% and put ¢? for z, we can rewrite (3.5.8)as
X (—1yghgd” = [T (1-¢5%) (1—¢53) (1 —¢5"). (3.5.9)
r=—x n=1

So it follows, from (3.5.7), that

© mau _ © C _ Qm:lnv 2 - Qm.:luv c — Qm;v
_ m {1/(1 — gsn-1) (1 — gdn—4)}, (3.5.10)

The second Rogers-Ramanujan identity follows in a similar way,
when we put @ = ¢ in (3.5.5). These series, infinite in both directions,
which we have used above, are further examples of bilateral basic
geries, to be discussed more fully in Chapter 7.

3.5.1 Some further identities. If,in (3.4.1.5), we put c¢d = ag, and
then let e, f and g tend to infinity, we obtain

1+ m (=1 Qs«mws\aqelc 1 — qg2» (ag; «er: _ 1—
n=1 A 1 V AQV QVS :—.IH A QQ v
(3.5.1.1)
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When a = 1, this gives us the result
w0

(- wvsﬁnwiualc.fmwsaa,vcv =] (1-¢g®. (3.5.1.2)
1 n=1

1+

iMs

This is a classical result, in the theory of partition functions, due
originally to Euler.

Again, if we put ¢d = ag,e = 4/(ag) and then let f and g tend to
infinity, we obtain, from (3.4.1.5),

o (a; 9) = (1—aq)
1+ adngnin-9 (1 — ggony 1100 — S bl
:MH ? (1=ag™) (9 Dn sWW (1—atgnt)
(3.5.1.3)
In particular, if @ = 1, we have, on writing ¢? for ¢,
© © —n%
1+ Mﬁwistv =11 E (3.5.1.4)

n=1 n=1 Clnn.\«l&.

This is another classical result, due originally to Gauss.]
Finally, if we put ¢ = \Ja, d = —\/a, and then let e, fand g tend to
infinity, we obtain the relation

Z (a; a i i Tee:a@J
1 " 1/ an dn@ntl) 1—ag®) i1+ IR AR L Bui N
+=l (7:Dn e %_u ") n=1(7:Dn (2q; Dn
(3.5.1.5)
from (3.4.1.5). In particular, whena = 1,
1+ M_%,\.:ﬁ Qn)? = :_E:Aé, (3.5.1.6)
n= n=

and, when a = ¢, we can deduce from (3.5.1.5), by the use of (3.5.1.4)
that

© A.IQWQVSQ.;?IYC _ @ :..IQa:v
R e M LY (e T M
A very large number of such results exists. They arise naturally in
various branches of number theory, and the theory of elliptic modular
functions. A systematic attempt to seek and list them is made in
Slater (1951, 1952a) in which 120 such results are deduced. Some of

the most interesting of these will be given in §7.3.1.

3.5.2 Numerical evaluation of infinite products. Since the
infinite product

-]

I1(1—aq™)

n=0

t Euler (1748). M.Owcmm (1866).

THE ROGERS-RAMANUJAN IDENTITIES 107

plays a part in the theory of basic functions, similar to that of the
Gamma function in the theory of ordinary hypergeometric functions,
as we have seen, so it is pertinent to enquire how such products can
be evaluated numerically. While the Gamma function has an extensive
literature, this type of product has very little.

For real values of ¢ and a, the usual method of evaluation is to sum
the series in the formula

Semeflionl s

n=0 n=90
Difficulties arise when 0'89 < ¢ < 1, but these can be overcome if
logarithms are introduced, thus
@

log, T1
n

noﬁ —ag") = aoMnoUowom.. (1—ag™). (3.5.2.2)

Two short numerical tables are given in Appendix V and VI. The
first of these is of the function

_\_ _._cc IS:V_
n=
over the range

a = —0-90(0:05)0-95, ¢ = 0-0(0-05) 1-0,

to seven significant figures, and the second table is of the function

o)
for q = 0-0(0-005) 0-995,

also to seven significant figures. Both tables were calculated in the
Mathematical Laboratory of Cambridge University, by kind per-
mission of the director of the laboratory, Dr M. V. Wilkes. The original
calculations were made by the author, in 1953, who used the electronic
computer Edsac I, and later, the calculations were repeated and

“checked, in 1959, by & research student E. Sugden, who used the

electronic computer Edsac II.
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4
HYPERGEOMETRIC INTEGRALS

4.1 Elementary integral transforms

Many integral representations of the general hypergeometric series
4Fi(z) have been given in the literature. These fall into two main
groups, simple integral transforms of the Euler type, first generalized
by Pochammer,t and Barnes-type contour integrals. We shall con-
sider the simple Euler-type integrals first. These are very useful in
numerical work, but not so fruitful as the Barnes-type integrals as a
source of new transformations.

Let 1= .‘; fe=1(1 —g)d—1 LFsl(a); (0); 2t)dt, (4.1.1)
0

where |z| < 1. This integral exists and is convergent ifR1(Za—c) > 0,
and R1(Zb—Za+d—c) > 0. Now, as before, we can exchange the
order of summation and integration, and we find that

| 8 Qavvans u faluulsalnlw&
.Nl.:.MHUo 2@533_-“@% A v

o[ 4] cFonte, @ 4,032
by (1.6.6), so that we have the general Kuler transform

d
anFpale, (@); 4, (), 2] = H‘_Hov d-c

. _. L1 — t)i=o-1  Fyl(a); (b); t]dt. (4.1.2)
0

i

This integral can itself be expressed as an Euler transform involving
an , ,F,_,(tz) series, and so we can go on right back to the simple
Euler integral for the Gamma function. In this way, we can produce
a multiple Euler integral for the general hypergeometric function

antsla, (@); (b); 2]

_ ﬂ_HMMW GI@L ._.M .—.M :..‘,M«maiﬁlzmeéTmCINSAEAM.H.E

where B = A.
1 Pochammer Qw.ﬂov‘
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Integrals of this type have been studied by Erdélyi (1939). A o_Omm_w
related integral is

4Fgl(a); d,(b)’; 2]
d 1
=T ??Lb P11 —t)3-01  Fil(a); (b); t2]dt,  (4.1.4)

where the dash indicates that b, is left out of the b sequence.

4.2 Barnes-type integrals

Foremost in the theory of general transforms of the series ,Fy(z) are
the contour integrals of the Barnes type. These have a group of
Gamma functions as the integrand, and they are evaluated by con-
sidering the sum of the residues of the integrand at the sequences of
its poles which fall within the contours considered. The integral round
a contour is usually split up into integrals round various parts of the
contour. Then the proof of the theorem consists of arguments to show
that most of these partial integrals become zero, as the contour is
expanded towards infinity, leaving, as the result, a single infinite
contour integral expressed as some infinite series of residues.

Before we go on to consider the integrals connected with the general
transformation theory of the ,Fj(z) series, we shall first study the
integral analogues of the special summation theorems connected with
the names of Gauss, Dougall, Dixon and Saalschutz. Most of these
were proved by Barnes himself in the early years of this century.

4.2,1 Barnes’s first lemma. The first relationship which we shall
consider, is usually known as Barnes’s first lemma,} though it is in
fact the integral analogue of GGauss’s theorem.

Let 1

Ie=55

.‘. Ia+s,b+s,¢c—s,d—s]ds, (4.2.1.1)
c

where C is the contour of Figure 4.1, which consists of the imaginary
axis Oy, from —iR to + iR, and the semi-circle of radius R, centre O,
which lies to the right of Oy. This contour is traversed in a clockwise
direction. It is indented along the axis Oy, where necessary, to ensure
that all the poles of the integrand in the sequences

s=c¢+mn, d+n, (n=0,1,2,.. . [R])

1 Barnes (19074, b, c). 1 Barnes (1907b), § 15.
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provided that Rl(e—c+$) > 0, so that we can justify the interchange
in the order of summation and integration. Then we find that

@b, Mla_& B o“_ JFyla,b,c; d,e; 1]

Nﬁ_Hm QIH...‘.E H,_Ha+.w,v+u,&|alalmkln+_ﬁI.wu_%
e—c | 2mJ i e+8

(4.2.2.1)
when we have summed the inner series by Gauss’s theorem.

Now take d = ¢, so that the ;F,(1) series reduces to a ,F;(1) series,
which is also summable by Gauss’s theorem. Then, if we replace e—c
by cand d—a—b by 1—d, (4.2.2.1) becomes

r

1 [ix H,_Ha+.ﬁ@+9a+?~l&|$IQH_%

2m ) _i0 e+s

nd_wabpT&+9Ta+§|m+m_, (4.2.2.2)
e—a,e—b,e—¢

and the condition ¢ = d becomes the Saalschutzian condition that
1+a+b+c=d+e. If this integral is evaluated by considering the
residues at the poles to the right of the imaginary axis, we obtain a
relation similar to (2.4.4.4), which reduces to Saalschutz’s theorem
when one of the parameters a, b, or ¢ is a negative integer.

4.2.3 The integral analogue of Dougall’s theorem. Let us con-
sider the integral

L 1 ‘J.s d—Hn+m.~+wa+u.@+?n+.ﬁ&+?olal,flmu_%.

T om la+s1+a—c+s,1+a—d+s

—i®

(4.2.3.1)

This is the integral analogue of the well-poised ;F;(1) series, with the
special form of the second parameter. If we consider the residues at
the poles to the right of the contour, in the usual way, we find that this
integral can be expressed in terms of two well-poised s F,(1) series which
are themselves summable. We can thus evaluate 7, in terms of Gamma
functions, and we find that

?9&.@+a|9~.+&lau_

L =10 l1+a—c—d,b+c+d—a ]’

(4.2.3.2)

This is the integral analogue of the ;F;(1) summation theorem.
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In a similar way, the more general integral

N»HM. i H,_Ha+,f~+wa+m,v+.ﬁo+,f&+.f®+u.
2m ) _iw la+s,1+a—c+s,1+a—d+s,
f+s,b—a—s, —s
1+a—e+s,1+a—f+s
(4.2.3.3)

can be expressed in terms of two well-poised ,F5(1) series. But these
two series can only be summed by Dougall’s theorem when they
terminate, and then the contour cannot be drawn to separate the
increasing and decreasing sequences of poles. We can, however, get
round this difficulty in the following way. From Barnes’s second
lemma, we have

ds

_H&+.w,®+m.\+.w
r
l+a—-d+s,1+a—e+s,1+a—f+s
R r d+te+t.f+t,1+a~d—e—f—t, 8t Y
2mi) o Ll+a+s+t,l1+a—e—f,1l4+a—-d—f,1+a—d—e

(4.2.3.4)
Thus we can make our single integral into a double integral, and inter-
change the order of summation and integration, to give us
L L[ p[d+te+tfrtl+a—d—e—f—t
27 omi) i Ll+a—e—f,1+a—d—f,1+a—-d—e
1 too —_ — — —
oL I a+s,1+3a+s,b+s8,¢c+s,b—a—s, —s,5—t dsl .
2mi) 1w |ats,1+a—c+s,1+ats+t
(4.2.3.5)
The lower bound of the distance between the s and ¢ contours is
supposed to be positive, the contours being modified if necessary, to
ensure that this is so. The integration with respect to s can now be
carried out, if we make use of (4.2.3.2) above, to give us
b,c,b+c—a
l+a—e—f,1+a—d—f,1+a—d—e

1 ﬁs &iaikiaél“.T:T&ITTwLH_&

I,=1T

X

2m l.sﬂ l+a—c+t,b+c—a—t

(4.2.3.6)
This integral can be evaluated by Barnes’s second lemma provided
that 1+2a=b+c+d+e+f,

8 SGH
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so that
b,c,d,e,fb+c—a,b+d—a,b+e—a,b+f—a
IL=4T|1+a—-d—-e1+a—~c—e¢,1+a—c—d,1+a—c—f, .
1+a—-d-f,1+a—e—f

4.2.3.7
This is the integral analogue of Dougall’s theorem. ( )

If further we consider the poles of the integrand of I, which lie to
the right of the contour, we can obtain the formula

p[e1+ie, b, ¢ d, e 5 HH_
e ia,1+a-b,1+a—c,1+a—d,1+a—e 1 +a—f;

_T l+a—-c,1+a—-d,1+a—e,1+a—-f,b+c—a,

a l4a,b—a,14+a—d—e,1+a—c—e,14+a—c—d,
b+d—abt+e—a,bt+f—a Q
l+a—c—f,1+a—d—f,1+a—e—f

1+20—a,b+c—a,b+d—a,b+e—a,b+f—a,a—b,

~-T l+a—c,1+a—d,1+a—e,1+a—f
1+b—¢c,1+b—d,1+b—¢,1+b—f,b—a,1l+a,c,d,e,f
7 2b- a,1+b—1a, Po.fola,®+&la.@+mla,v+\.laﬁ
X% b—3a,1+b—al+b—c,1+b—d,1+b—el+b—f; |
(4.2.3.8)

where 1+2a =b+c+d+e+f.

This is the form assumed by Dougall’s theorem when we remove
the restriction that one of the parameters must be a negative integer.

In this result there is an apparent lack of symmetryin b,¢,d, e and f,
although we know that there must be such symmetry, in fact, on both
sides of the equation. This apparent asymmetry arises from the
inherent asymmetry in Barnes’s lemmas, that is from the terms in
I'(1—b—3) and I'(d —a — b — 8) respectively.

4.3 Relations between ;F;(1) series

We have already proved, in (2.3.3.7), a fundamental relation between
two ,F,(1) series, which can be written

d e s d—a,e—a,s; H_
de1=Tl%® 1
JFola,b,c; de; 11=T a.?&:iau_ of> s4+b, s+c; s

(4.3.1)

where s = d +e—a—b—c. If one of these two series is well-poised then
so i the other one.
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A second relation, this time between three ,F,(1) series, will now be
proved by the use of Barnes-type contour integrals. We shall consider
the integral 1 . —s,a+s,b+s,c+s

I=_— m%ﬁ&ﬁh Qm“

2mi) o d+s,e+s
taken round the semi-circular contour of Fig. 4.1, which was used in
the proof of the Barnes’slemmas. This integral, as we know, is equal
to minus the sum of the residues at the poles of the integrand within
this semi-circular contour to the right of the imaginary axis Oy. But
it is also equal to the sum of the residues at the poles of the integrand

within a similar semi-circular contour to the left of the imaginary
axis Oy. Hence we find that

a,b,c a,b,c;
1 ﬂ_u &M_Lw f.@
_ otina a,b—a,c—a7! a,1+a—-d,1+a—e;
oel &Im“mlau_um.m l+a-b,1+a—c;

(4.3.2)

HH_ +idem {(a; b, ¢).
(4.3.3)
Here the expression ‘idem(a; b,c)’ means the sum of the similar

expressions with b and ¢ respectively interchanged with a.

1f now, we multiply these two relations by e and subtract, we
find that

e,b,¢; _pn[1-a,dec—b
um.»_u d,e; ~H_ - HJ_”«WIF&IFH.T@IPQH_

b,14b—d,1+b—e¢; l—a,d,e,b—c
X aFy 1+b—c,1+b—a; HH_+HJ,_H@|F&I9H+QIP@H_

c,1+c—e, 1+c—d; L
l+c—b,1+¢c—a; |’
This is a general relation connecting three general ,F,(1) series.
The results (4.3.1) and (4.3.4) above are two of many relations due
to Thomae,t who approached the subject through the calculus of
finite differences.
“Since there are five unrestricted parameters in the general 4Fy(1)
series, we may in general expect to find that there are

5! =120

x o F, (4.3.4)

such different series.

In 1923, Whipple investigated the interconnexions between

Thowae’s many formulae.; He introduced the following notations;

let Toy Ty, Ta T3y Tg 75

+ Thomae (1879). { Whipple (1925).
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be six parameters such that
o+ 71+ 7+ rstrs+r5 =0,
and let A = 3+ N+ T+ Bon = 1+75— Ty
Also, g, k and j are used to represent those three numbers out of the

six integers 0, 1, 2, 3, 4, 5 not already represented by [, m and =.
Then we can define the two functions

1 a o o P
F(l;m,n)= — o) gmnr “hmnr “imns uH_. 4.3.5
BA v ﬁmﬂi&i&%%ﬁua 2 35%8& A V
1 gpis Wgis ok s
d F;mmn)=.—"—  F| » wr ok HH_. 4.3.6
an §A " Sv H%R-E.;Lw?:l%?“_u 2 ?;.%?—w A v

The condition that the series

E,(l; m,n)
Rl{a;) > 0,
and the condition that the series

F.(1; m,n)
Rl(a;,,) > O.
Any F, function can be obtained from any F, function simply by
changing the signs of all the r parameters. By permutation of the
suffixes I, m, n over the six numbers 0, 1, 2, 3, 4, 5, sixty ¥, functions
and sixty F, functions can be written down.

Let Ups =@, Apgs=b, Ag5=0¢, fp=d, fun=¢
and Ay =8=d+e—a—-b—c.
Then the yF,(1) series occurring in the definition of F,(0; 4, 5) is
oFla,b,c; d,e; 1],

and all the a’s and f’s occurring in these one hundred and twenty
3F3(1) functions can be expressed in terms of a, b, ¢, d and e. In table
4.1, these values for « and £ are given explicitly.

is convergent is

is convergent is

4.3.1 Two-term relations. The fundamental transform (4.3.1) can
be rewritten in the above notation as

F,(0; 4,5) = F,(0; 2,3). (4.3.1.1)
By the interchange of 7, and r, in the definition, we find that this
implies that F,(0; 1,5) = F,(0; 2,3), (4.3.1.2)
and thus F,(0; 4,5) = F,(0; 1,5). (4.3.1.3)

Accordingly, we find that all the permutations of the indices 1 to 5
are legitimate, and that all the ten expressions F,(0; m, ») are equal
and may be denoted by the symbol F,(0). Similar results are true for
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Table 4.1
Expressions for o and f in terms of a, b, ¢, d and e
thg=1-¢ Aga=1-b Gy =1—e+a ays=1—d+a
s =1l—a Qpoy = 1—e+d Qgps = 1 —d+b
tsa=1—e+c g5 =1—-d+e¢ Qggs = 1—¢
tigs =8 gy =d—c Ryg; =€—C
tsa =d—b gz =e—b Qs =0a
s =d—a Qogy =€—0a %5 = b RfTHERY
Bun=2-8—a Po=2-s-b Pus=2-s-c ou=2-d Pos=2-e
fro=8+a Pre=1+a—b Pu=1+a—c Bu=1-b—ct+e fyy=1-b—c+d
Poo=8+b Beaa=1—a+b Pas=1+b—c¢c Pau=1l—a—c+e By=1—a—-c+d
Pao=8+c¢c fau=1l+c-a Psz=1+c¢—b Pu=1l—a—b+te fy=1—a—-b+d
Pro=2 Bu=1+btc—e fyu=l+atc—e fy=1+atb—e fy=1+d—e
Pwo=c¢e Baa=1+btec—d Byu=1l+a+c—d By=1+a+b—d fs,=1—d+e

s=d+e—a—-b-—ec.

all the other ¥, and F,, series. Thus the sixty F, series may be divided
into six groups of ten series each; the members of any one group are
all equal to one another. A similar remark applies to the sixty F, series,
and the twelve representative series, representing the twelve groups,
will be denoted by F,(v) and F, (v),v = 0,1,2,3,4,5.

In tables 4.2 and 4.3, the parameters of the F, functions and the
F, functions are given in terms of a, b, ¢, d and e. Only the representa-
tive forms are given. The permutation of the indices 1, 2 and 3 corre-
sponds to the permutation of the parameters a, b and ¢, whilst the
permutation of the indices 4 and 5 corresponds to the permutation of
the parameters d and e. Thus F,(2) and F,(3) are of the same general
type as F(1), in the sense that they can be derived from F,(1) by the
interchange of b or ¢ with a respectively. Similarly, F,(5) is of the
same general type as F,(4) and can be derived from it by the inter-
change of d and e.

4.3.2 Three-term relations. The fundamental three-term relation
(4.3.4) can be written in the present notation as
sin (mf,,) F(0) = = F,(2) _ F3)
Tl (ggs) 7 I'lot130, 1355 %345] T4, 21as) Xags]’
(4.3.2.1)

By changing the signs of all the r’s, we obtain

Tl ays) " Tlotgas, %20 %12]  Tltgss, s, g13]”
(4.3.2.2)
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Table 4.2
Numerator parameters Denominator parameters
m,n s A N s A N
F,(0) 4,5 a, b, ¢, d, e,
2,3 8, d—a, e—a, 8+b, g+c,
1,4 a, d—b, d—c, d, s+a,
F (1) 0,2 1—-d+b, 1—e+b, l-a, 14b—a, 2—8-—-ua,
0,4 1—-8, 1—e¢+d, l—e+c, 1+b+c—e, 2—-8—a,
2,3 d—a, e—a, l—a, l—a+b, l—a+ec,
2,4 b, d—a, l—e+b, 1+b+c—e, l1+b—a,
4,5 1-—s, b, c, 1+b+c—e, l+b+c—d,
F(2) 0,1 l1-d+a, l—e+a, 1-b, l14a-0b, 2—-8-b,
0,4 l—-s, 1—e+a, l—e+ec, l+a+c—e, 2—-s8-b,
1,3 d—b, e—b, -8, 1-b+a, 1-b+c,
1,4 a, d-b, 1—e+a, l+a+c—e, l1+a—b,
4,5 1—as, a, ¢, l+a+c—e, l+a+c—d,
F,(3) 0,2 1—d+b, 1—e+b, l—e¢, 1+b—c, 2—-s8—c,
0,4 1-8, 1—e+bd, l1—e+a, 14+b+4+a—e, 2—-8—c,
2,1 d—ec, e—c, l—c¢, l—c+b, l—c+a,
2,4 b, d—e¢, l1—e+bd, l+b+a-—e, 1+b—c,
4,5 1—s, b, a, l1+b+a—e, 1+b+a-—d,
F(4) 0,1 1-d+a, 1-b, l-c¢, 2—d, l1+e—b—cg,
0,5 l—-d+a, 1-d+b, 1—d+c, 2-d, l—d+e,
1,2 e—c, l—e¢, 8, l+e—a—c¢, l4+e~-b—c,
1,5 l1-d+a, e—¢, e—b, l4e—d, l4e—b—c,
F(5) 0,1 l—e+a, 1-b, l—c, 2—e, l+d-b—c,
0,4 l—e+a, 1l—e+b, l—e+c, 2—e, 1—-e+d,
1,2 d—c, 1—e¢, 8, 1+d—a—e¢, l1+d-b-gc,
1,4 l—e+a, d—c, d—b, l1+d~e, 14+d—-b-c,
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Table 4.3
Numerator parameters Denominator parameters
m,n r A N I A— N
F0) 4,5 1—a, 1-b, l—c, 2-d, 2—e,
2,3 l1-s, 1-d+a, l—e+a, —8-—-b, 2—g—c¢,
1,4 l—a, 1—d+b, 1-d+e, 2-d, 2-s—a,
F. (1) 0,2 d—b, e—b, a, l+a-b, 8+a,
0,4 8, e—b, e—c, 1—b—c+e, 8+a,
2,3 l1-d+a, 1—¢e+a, a, l14+a-0, l4+a—c,
2,4 1-5, l—d+a, e—b, 1—b—c-+e, l1+a-b,
4,5 38, 1-b5, 1-e¢, l-6-c+e, 1—b—c+d,
F(2) 0,1 d—a, e—a, b, 1+b—a, 8+b,
0,4 8, e—a, e—c, l-a—c+e, s+b,
1,3 1—-d+b, 1—e+b, b, 14b—a, 1+b—c¢,
1,4 1—a, 1-d+b, e—a, l—a—c+e, 14+b-—a,
4,5 s, l—a, 1—e¢, l—a—c+e, 1—a—c+d,
F(3) 0,2 d-=b, e—b, ¢, l4c-b, s+c,
0,4 s, e—b, e—a, 1-b—a+e, s+¢,
2,1 l1-d+¢, l—e+c, c, 14c-b, l14c—a,
2,4 1-b6, 1—-d+ec, e—b, 1-b—a+e, l4c-b,
4,5 8, 1-86, l1-a, l—b-a+e, 1—b—a+d,
F4) 0,1 d—a, b, ¢ d, 1—e+tb+ec,
0,56 d—a, d—», d—e, d, 1+d—e,
1,2 l—e+4c ¢, 1—s, l—et+a+e, l—e+4b+c,
1,5 d—a, l—e+4c, l—e+b, l+d—e, l—e+b+c,
F.(5) 0,1 e—a, b, c, e, 1—-d+b+e,
0,4 e—a, e—b, e—c, e, 1+e-d,
1,2 l1-d+e, ¢, 1-s, l1-d+a+e¢, l—d+b+c,
1,4 e—a, l—d+e¢, 1—d+b, l+e—d, 1—-d+b+c,

s=e+f—a—b—ec.

If we combine three equations of the type (4.3.2.1) we find that
sin (mf) Fp(0) | sin (mBs) Fp(4) | sin (mfoy) Fp(5)

Tocg9, %orss Foas]  L'[X12as X130 ame oty5 21355 wa&

o,
(4.3.2.3)

+

and, again by changing the signs of all the #’s, or by combining three
equations like (4.3.2.2), we obtain
sin (mfy,) F,,(0) ,wE (mfBos) Fa(4)
T(otaas: Faasr F14s] T35 Yozss Zo15)

sin (m8,,) F(5)

= 0.
Iaoas; o245 %o14]

(4.3.2.4)

+

s=d+e—a—b—c.

Now, if we eliminate F, (2) from the relation corresponding to
(4.3.2.1) which connects F,(5), F,(0) and F,(2), and the relation of
type (4.3.2.2) which connects F,(2), F,,(0) and F,(5), it follows that

F(0) sin (7445) F(0)

+ = K, F (5b),
I'[at120, %130, X230 X240 %140> %aso) I[et1a3, Xyogs %1345 Xog) o £n(5)
(4.3.2.5)
where
5
m Ky =1 3 cos {m(r,+ 2r,)} — 1 cos (37r,),
n=1

= 8IN (7o) 45) SiN (TeLyy5) SIN (70tgy5) + 8IN (710495) sin (mf40) sin (7f50).
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The corresponding analogue for F,(0) is
F,(0) sin (mf50) F5,(0)

+
r [%o45> Xo3s> Co2s Xo15)

= K, F,(5).
(4.3.2.6)
All the three-term relations possible between the 120 hypergeo-
metric 4F,(1) series are summed up in the six relations above. These

play a role similar to that of the recurrence relations for the Gauss
function (§1.4).

[otggs, Xogss X1ass X135 X235 L126)

4.3.3 Relations between finite series. When one parameter, say c,
is a negative integer, —m, the series

aFfa,b,c; e, f; 1]

terminates, and it can be written in the reverse order, as in §2.2.3.
From (4.3.2.1), when a5 = ¢ = —m, we find that

T :aﬂ_ugse aEESufwv. ?w.w.:
23> Xo1

There are eighteen such terminating series altogether. Three of these

are F,(0; 4,5), F,(0;3,5) and F,(0; 3,4).
When they are reversed, these three series become

F(3;1,2), F,(4;1,2) and F,(5;1,2).
The six relations between these eighteen series are then

I[at195, 0100; 125] Fp(0) = T'[tga, %oza, %g2s] Fp(1)s (4.3.3.2)

= ['[0tg13, @grar X151 Fp(2), (4.3.3.3)

= (= 1)™ I'[oty93, %ozs Xons] Fo(3),  (4.3.3.4)

= (= 1) o154 Xp2as 014l Fo(4),  (4.3.3.5)

= (= 1)™ I'[atyp5, a5 Xors] Fn(5). (4.3.3.6)

The other possible series, such as F,(0), do not lead to any specially
simple results.

4.3.4 The non-terminating form of Saalschutz’s theorem. If
we interchange the indices 2 and 5 in (4.3.2.1) we obtain

F(0; 4,5) = -0 T'| %088 QEH_ F.(5; 0,3)

sin ( ah%w Xp34) X134>

o
H,_H 035 F (3;0,5). (4.34.1
mE Qﬁamv R:u,ﬁxﬁm.nza n{ ) ( )
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This can be rewritten in the standard notation as

a,b,c; d,d—a-b a,b,e—c;
H 1 — 3 3 s Uy ]
2 de H_ ﬁ_”&la“&lv wmm_H 1+a+b—d,e; uH_

d,e,a+b—d,d+e—a—b—c
HJ >
+ ﬁ a,be—c,dt+e—a—->b ;

d—a,d—b,d+e—-a—-b—c;

l1+d—a—-b,d+e—a—b;
This formula has an interesting connexion with Saalschutz’s theorem.
Ifd+e=1+a+b+c,the first series on the right-hand side reduces to a
oF1(1) series, which can be summed by Gauss’s theorem. We thus obtain

a,b,d+e—a—-b—1; _[de.d—a—-be—a-b
umwh d,e; H.u._lﬂ_u &IP&IF«IP&I@H_

+ 1 H._H&, e H_ 7 d—a,d-b,1; H_
a+b—d |a,bd+e—a—b]|%?% 1+d—a—>, &+m|a b

(4.3.4.3)

If a, or b is a negative integer, the second term on the right vanishes

and we obtain Saalschutz’s theorem. Thus (4.3.4.3) gives us again a

form of Saalschutz’s theorem, when we have removed the condition

that one of the numerator parameters must be a negative integer.
This result should be compared with (2.4.4.4).

x gFy 1]. (4.3.4.2)

4.3.5 Relations between Saalschutzian ,F,(1) series. Just as
there were 120 combinations of the five free parameters in the general
aF5(1) series, so we shall expect to find 120 possible combinations of the
five free parameters which occur in the general well-poised ,Fg(1)
series, and in the terminating Saalschutzian ,F,(1) series.

We have already found, in (2.4.1.7), a relation between two ,F,(1)
Saalschutzian series. This result can be rewritten as

Fale,y,2, —n; w,0,w; 1]

(v —2)n (w—2),

T @),
X JFolu—x,u—y,2, —n; 1—v+2—n,1—w+z—n,w; 1],
(4.3.5.1)
provided that the parameters are subject to the condition
ut+v+w=1l4+r+y+z—n, (4.3.5.2)
which in effect, gives us five free parameters. In this form, we can see
that this result can also be proved directly, simply by equating the
coefficients of {” in (1.3.4.1).
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Since they are both finite, the series in (4.3.5.1) can be written in
the reverse order, and so we can obtain two more Saalschutzian series
related to the given .F,(1) series. If we interchange the parameters z, y
and z or %, v and w in (4.3.5.1) we can obtain nine distinct ,F5(1) series,
each related to the given ,Fy(1) series, as well as the ten equivalent
series obtained simply by reversing the order of the terms. Since the
number of series involved is fairly large, it is convenient again to use
the ideas in notation developed by Whipple.t

We shall use 74,7y, ..., 7 for our six parameters, such that

r1+79+ ... +1rg=0, (4.3.5.3)

and we shall write ¢ =4n-1), (4.3.5.4)

€y =71 +7;—@, (4.3.5.5)

8y =ri—r1;—m, (4.3.5.6)

so that Elat€yteg=1—n (4.3.5.7)

and O1p = €13— €g3— 7. (4.3.5.8)

Now let

S(k,1,m) = (1" Hﬁ HMWNM.«M S HMM 2 LTe?H_

x oF _Hms.b%m? " HH_. (4.3.5.9)

l-n—€rl—n—€gy, 1 —n—€gg; 4

where K, L and M are the three suffixes out of 1,2, ..., 6 which have
not already occurred in k, 1, m.
Then the definition may be rewritten

S Lm) = 5 oColeinly (€en)p € (€athnop (s s Cacr)ap

(4.3.5.10)
By reversal of the series, we find immediately that

S(k,1,m) = S(K, L, M). (4.3.5.11)

4.3.6 Relations between finite ,F;(1) series. Whipple’s trans-
form (2.4.1.1) connects a well-poised ,F,(1) series and a finite Saal-
schutzian ,#,(1) series. There are two distinct cases, one in which the
+Fy(1) series and the ,Fy(1) series both terminate, and the other case in
which the ,F;(1) series does not terminate although the ,Fy(1) series
does, If u+v+w=1+x+y+z—mn, (4.3.6.1)

+ Whipple (1926a), § 8.5.
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erm formulae in the two cases can be written
gl y, 2, —n; w,v,w; 1]

_ ﬁ—”e+gla,~+elgl+n|§“HISIQ
l+y—n—-u,1+z—n—u,l+y+z—u,l—u

< F a,l+ie,w—x,0v—z, Y,
e ia, v, wl+z—u-—mn,
z, -7
1
l+y—u—n,l14+y+z—u; H_“
(4.3.6.2)
in which a=y+z—n—u=wtv—x—1, (4.3.6.3)

and
Falz,y, 2, —n; w,0,w; 1]

|ﬂ—”e+§+3,H+&I§L+QI§L+NI:

l+y+2z—u,l+z4+2—u,l1+x+y—u,l—u
b,1+1

B[ +3b,w+n,v+n, x,

3b, v, w,l+y+z—u,

Y z; H_
1
l+z4+ox—u,l+z+y—u; ?
(4.3.6.4)
where b=z+y+z—u=v+w+n—1. {4.3.6.5)
Again we shall use Whipple’s notation, and write

Wik K) = T )Tt = e 1w 17 s
H+3\+%~«N“ Hnls\lmswu ﬂ|§|m~wu

1—exy
l—-n—e€g;,1 l:l&ﬁ:u_
x . F, _H&QN“ 1+ 36k, €x3> €kLs
¥k l—n—egy,l—n—egy,
€m» €xts n; wg
l1-n—¢€,x,1—n— m~NL+3+&nN.
(4.3.6.6)
where all the possible permutations of the numbers 1, 2, 3,4, 5 and 6,

are allowed in the suffixes k, I, m, K, L, M. This definition can be
rewritten

(Lo _ (re—71%+ 20— 1) (€11)p (€tm)p (€xr)
Wik; K) =(-1 P P
(ks K) = (=1 3,0, Wm0 e S rE)y
(€x31)p Exn—p ExmIn-n (€RLIn—p (Exrt)n—
bl et woan

X
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By the reversal of this series, we have immediately
W(k; K) = W(K; k). (4.3.6.8)
Equation (4.3.6.3) above can now be rewritten
8(1,2,3) = W(1; 4) = 8(1,2,5) = W(2; 6) = 8(2,3,5), (4.3.6.9)

and so on.

Formally, we can write down twenty S series and thirty W series,
but if we make no distinction between a given series and that obtained
from it by a reversal of the terms, each series is counted twice, so that
there are in fact, ten distinet S series and fifteen distinct W series,
and these twenty-five series are all equal to one another.

4.3.7 Relations between non-terminating ,Fg(1) series. In
(4.3.6.4), the first parameter on the right is

b=v+w+n—1=—¢—2r —r;—7g,

so that we shall write Ag; 56 =

and represent the series as

W(K; L, M)

_ ﬂhw +Ag; Ll =6k 1 —6r, 1 —€xp, 1 —€gap 1 —€ng H—
1+n+8g, 1+ n+8g, 1+0n+8,x,1 —n—€x;, 1 —n—€gy, €03
Ag;r,an VH 3k, 1 1 — €, L —€x a1 €15 €ams €

x . Fy e, ranl—n—exyn Y —n—egp, 1+n+8,k, 1

l4n+dg, 1 +n+0,k;
(4.3.7.1)

This series W(K; L, M) is always convergent if Rl(e;,,) > 0. Then
(4.3.6.2) can be rewritten in the form

8(1,2,3) = W(4; 5,6). (4.3.7.2)

Since S(4, 5, 6) is the same series as S(1, 2, 3) written in the reverse
order, there are six non-terminating well-poised ,Fy(1) series corre-
sponding to each Saalschutzian  Fy(1) series. It should be noted,
however, that not all the six series can be convergent, since the €’s
have a negative sum. The total number of non-terminating well-
poised ,Fy(1) series derived from the ten equal Saalschutzian ,Fy(1)
series is in fact sixty.
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By the combination of (4.3.7.2) with the relations between the
S-series we find the following formulae;
W(4; 5,6) = 8(1,2,3) = S(4, 5, 6),
=8(1,2,4) = 8(3,5,6), (4.3.7.3)
= 8(1,2,5) = 8(3,4, 6),
W(4; 5,6) = W(1; 4) = W(4; 1),
W(l; 5) = W(5; 1),
W(l; 2) = W(2; 1), (4.3.7.4)
W(4; 5) = W(5; 4),
W(5; 6) = W(6; 5),
W(5; 4,6),
W(s5; 1,6),
(5; 1,2),
(5; 1,4),

W(4; 5, 6)

(4.3.7.5)

W(4; 5,6)

I
=
=

. _,mv,v @.w.;v
. 1,2),
W(4; 5,6) = W(1; 2,3),
= W(1; 2,4),
- W(1; 2,5), (4.3.7.7)
— W(1; 5,6),
= W(1; 4,5).

i
3
-~

Thus, associated with a given non-terminating well-poised series
there are three distinct Saalschutzian ,F,(1) series, five ,F;(1) termi-
nating well-poised series, and eleven ,Fi(1) non-terminating well-
poised series. Also, associated with a given terminating well-poised
+F5(1) series there are two distinct Saalschutzian ,Fy(1) series, three
terminating well-poised ,F(1) series, and eight non-terminating well-
poised ,F;(1) series. As before, we tabulate the parameters associated
with a given well-poised series, as did Whipple. Only numerator
parameters are given, and the second parameter of the well-poised
series is omitted in each case. The parameters tabulated are for

S(1,2,3); €93, €13, €190 — N3 L =1 — €55, 1 — — €45, 1 =1 — €.

+ Whipple (1926b).
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Those tabulated for W(1; 4) are

0145 €165 €150 €135 €120 — T

and the parameters shown for W(4; 5, 6) are

Ay; 505 1 — €45 1 — €465 €93, €13, €10

All these results are due to Whipple.t In a later paper,] he goes on to
investigate the inter-connexions which hold among groups of three
well-poised ,Fg(1) series. In particular, he proves that

sin{m(d+e+f—a)}¥(a; b,c,d, e, f)

I'b+d—a,b+e—a,b+f—a,1—c]
_sin{n(b—a)}¥le+f—c;e.fil+a—b—c,1+a—c—d,e+f—a]

Tl+ae—e—f,il1+a—d—f,1+ta—d—e,1—s]

sin {mr(c— )} ¥r{2b—a; bb+c—a,b+d—a,bte—a,b+f—a]

+

I'd,e,f,1+a—b—c] ?
(4.3.7.8)

Table 4.4

Parameters of associated series; master series well-poised and terminating

W(l; 2)
W(2; 1)

w(; 3)
W(3; 1)

wW(2; 3)
W(3; 2)

W(3; 4)

5(1,2,3)
8(4,5, 8)

8(1,3,4)
5(2, 5, 6)

W(1; 2,3)
W(2; 1,3)
W(3; 1,2)
W(l; 3,4)
W(2; 3,4)
W(3; 1,4)
W(3; 2,4)
W(3; 4,5)

a; c,d,e,f, —n;
—-a-2n;¢c—a-n,d—a—n,e—a—n,f—a—n, —n;

s+a—c; 8,d,ef, —n;
c—a-8—2n;¢c—a—n,1+a—e~f,1+a—d—-f,1+a—d—e, —n;

s—c—n; s, d—a—-n,e—a—n,f—a—n, —n;
c—s—n;¢,1+a—e—f,1+a—-d—f,1+a—d—e, —n;

¢c—d—-n;c,c—a—n,l1+a—-d—f,1+a—d—e, —n;

8,¢,c—a—n, —n; c+f—a—n,c+e—a—n,c+d—a—n;
l+a—¢c—d,1+a—c—f,1+a—c—e, —n;1—n—8,1l—n—c,l+a—c;

c,d,1+a—e—~f, —n;l+a—e,1+a—f,c+d—a—n;
e—a—n,f—a-n,14+a—c—d,—n; 1-n—c¢,l—n—d,etf—a—n;

l-s—n—c;l1—8,1~¢; 1+a—c—d, 1 +a—c—e, 1 +a—c—f;
l—s+a—c; l—s,l4+n+a—c;l1+a—c—d,1+a—c—e, 1 +a—c—f;
l1+a—2¢;1—¢,1+n+a—c; 1+a~c—d,1+a-c—e,1+a—c—f;
l-¢c—d—n; 1=-¢,1—d; e—a—n,f—a—n,1+a—c—d;
e+f—g;l—c+a+n,l—d+a+n;efil+ta—c—d;
e+f—c—a—n;l—¢cet+f—a;e—a—n,f—a—n,1+a—c—d;
e+f—c;l—c+a+n,e+f—asef,l+a—c—d;

s—c; e+f—a,d+f—a; s, f,f—a—n;

s=c+dte+f—2a-n~-1.
+ Whipple (1924, 19264, b). 1 Whipple (1936).
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Table 4.5

Parameters of associated series; master series well-poised and non-terminating

W(4; 5, 6)
W(5; 4, 6)

W(5; 1,6)
w(s; 1,2)
W(5; 1,4)
W(4; 1,5)
W(4; 1,2)
W(1; 2,3)
W(l; 2,4)
w(l; 2,6)
W(1; 5,6)
W(l; 4,5)

S(1,2,3)
S(4, 5, 6)
S(1,2, 4)
S(3, 5, 6)

S(1,2,5)
S(3, 4, 8)

w(l; 4)
W4; 1)

W(l; 5)
w(5; 1)
W(l; 2)

W(4; 5)
W(5; 4)

W(s; 6)

where

c+d—-n-1;c¢,d; e,f,g;
c—t—m;c,1—t; e,f,9;

1+e—t—d; 1-d+e+n,l—t;e,l—n—f—t,1-n—g—t;
l+e+f—2d+n; 1-d+e+n,l1—d+f+n;l—n~g—t,c—g—m,1—d;
c—d+e; 1—d+e+n,c;e,c—f—n,c—g—n;
ctet+t—1;e+t+n,c;e,c—f—n,c—g—n;
e+f+2t+n—1;et+t+n,f+t+n;d—g—n,c—~g—n,t;
1-f—g—n;1-f,1—g; 1—e¢c,1—d,¢;

e—g+t; 1—g,et+ttn;d—g—n,c—g—n,t;
l1-d+e—g;1—g,1—d+e+n; l—g—t—n,c—g—n,1—d;
l—c—d+2+n;1-d+e+n,l-c+et+n;e,l—n—f—t,1-n—g—t;
cte—f—g—n;et+t+n,l—d+e+n; e,c—f—n,c—g—mn;

efigy —n;c—n,d—n,1—t—n;
l—c¢,1-d,t,—n;1—e—n,1—f—n,1—g—mn;
l-n—e—t,1-n—f—t,9, —n; 1 —=d+g,1—c+g,1~t—n;
d—g—n,c—g—n,t, —n; e+t,f+t,1—g—n;

d—e—n,d—f—n,g, —n; g+, 1—c+g,d—n;
l-n—g—t,c—g—n,l—d, —n; 1 =d+e,1-d+f,1—g—n;

ct+d—e—-2n-1; f,g,d—e—n,c—e—n, —n;
l-c—d+e;1—n—f—t,1—-n—g—t,1—¢,1—-d, —n;

f+g—-d;f.g,1—n—e—t,c—e—n, —n;
d—f—g—2n;d—f-n,d—g—n,1—c,t, —n;

f—e-n;f,l—n—e—t,d—e—n,c—e—n, —n;

l-d—t—-n;1-n—e—t,1-n—f—¢t,1-n—g—t,1—d, —n;
d+t—n—1;d—e—n,d—f~n,d—g—n,t, —n;

d—c—n;d—e—n,d—f—n,d—g—n,1—¢, —n;

t=ct+d—e—f—g—2n.

Yla; b,c,d, e, f]

_ H‘_Hu.fa
- ~+alo.u+al9~+al&u~+9I@L+§l.\.LIL

x 1By

and

a-+wa. P P &, 9 b
WQan*laI@u MuTQ!nOv H+Q\|&»H+a«|®n HuTQ'.\.w MQ

s=btctd+e+f—2a—1.
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This is a general relation between three well-poised ,Fg(1) series.
The proof depends on the result (2.4.4.3) connecting a well-poised
+F3(1) series and two Saalschutzian ,Fy(1) series. Each of the ,Fy(1)
series can be expressed as a well-poised ,Fg(1) series, as in (4.3.7.2)
above, and the result follows directly.

If we write

it

3xg+ 2y + 2+ 23+ 24+ %5,

[~
f

1
g
F—To— T+ X+ T+ X+ T,
w+&pl&m+a»+ap+&?
w
~

[S VI Y
I

To+ Ty +Ty— g+ 24+ X5, (4.3.7.9)

€= g3—2pF T+ T+ Tg—Ty+ T
and f=3—mpta,+ X+ 23+ 34— 5,
so that 8= 1+xytx,+ X+ 23+ 24+ 75,

we can deduce a large number of equivalent relations between three
well-poised ,Fy(1) series simply by permuting the six parameters,
Zg, X1, Tg, Ty, T4, Tg. 10 this way, Whipple deduced three-term relations
of the above type between 196 allied well-poised ,Fg(1) series.

4.4 Products of hypergeometric series

We have already seen that, by a simple application of Euler’s trans-
form (1.1.3), we can deduce an identity between products of two
Gauss functions (§2.5), such as

oFila,b; c; 2], F[1—a,1—-d; 2—¢;2]
= F[l+a—c,1+b—c; 2—c; 2] Filc—a,c—b; c; z]. (4.4.1)

By the use of a special type of contour integral, we shall now show that
relations of this type can be generalized. For series of the type 3Fy(2),
the formulae to be proved are

la,b,c; d,e; z]3F[1—a,1-b,1~c;2—d,2—e¢; 2]

_e—1 7 ~+QI&L+@...&L+OI&H,& 7 d—a,d—b,d—c; NH_
Te—d3? 2—d,1+e—d;" |** d,1+d—e;
d— l+a—e, H+o|a,w+olm 7 mlﬁkl?alﬁw
d— wlavu.r&laq 372 e,1+e—d;
(4.4.2)
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which reduces to (4.4.1) above when ¢ = ¢ - o0, and

(1 —z)etbted—e Fla,b,c; d,e; 2]

_e—1 d—a,d-b,d—c; e—a,e—b,e—c;
Iml u.m.m d,1+d—e; H_um.m_H e—1,1+e—d; "

-+

d—1 e—a,e—~b,e—~c; d—a,d—b,d—c;
&Imu@_” e, 1+e—d;° of2 d—1,14+d—e¢; NH_ (4.4.3)

which reduces to Euler’s transform when ¢ = ¢ — co.

First, let us equate to zero the coefficients of 2™ on both sides of
(4.4.2). Then we shall see that the formula to be proved is

m" T:SJ:@::?J&
r=0 r! A |J_A&|~|».v$+~Am|~]J3+u

(=1y(l+a—d-r), (1+b-d—1),(1+c—d—r),
rin—r)(1-d—1r),,(e—d—7), 4,

+

+

Al:w:+al@1332+@Iml3=2+nlmlla o
rte—r)l(l—e—r), y(d—e—7)p IVH .
(4.4.4)

The contemplation of this formula suggests to us that it might be
proved by a study of the contour integral

(@—8)n (b—8), (c—9)
1 = “°n 7
' I‘.QA|%V=+~A&I.HIQVS+HA®|H|MVS+HQ%

taken round a large circle |s| = R, of centre O and radius R. This
integral tends to zero as R — co. When we equate to zero the sums of
the residues of the integrand at the three sequences of poles

(4.4.5)

s=r, s=1-d—r and s=1-e—r, forr=0,1,2,...,[R]

which lie within this circle, we obtain (4.4.4) immediately.
A proof of (4.4.3) is rather more complicated, and is based on the

ntegral T N N M
S Y Y S B S Py B W

When m = 0, this reduces to (4.4.5), and when m = 1,2 or 3, we can
deduce three identities similar to (4.4.4) in form. By the use of some
algebraic reduction, finally we can deduce (4.4.3). Outlines of such

proofs are given in Bailey (1935) §10.3, Bailey (1933a), Burchnall
(1932), and Darling (1932).

(4.4.6)

9 SGH
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4.5 A general integral
Next we shall discuss a general contour integral of the Barnes type for
the series (Fg(1). Let

s, —8
= . 4.5.1
Ig mE\ :_..—H@V.Tw Q% ( )

This integral is taken in a clockwise direction round the contour R,
consisting of a large semi-circle, of centre O and radius R, lying to the
right of the imaginary axis. This contour is indented in the usual way,

¥

/ X X X

/ § =—a,~n|

/

D(—R, 0) /] C(R, O)

\

/
!
t
]
\

\ X X X
\ ¥ “IQ—IE

A(O, —R)

Fig. 4.2

to ensure that all the poles of the integrand in the increasing sequence
s=mn,n=0,1,2,..,[R], lie to the right of the indented imaginary
axis, and that all the poles of the integrand in the decreasing sequences,
thatiss = —a,—n, —a,—n, —a3—n, ..., —a4—n,forn =0,1,2,3,.
lie to the left of the indented imaginary axis. This implies that
|R| > max|a,|.

Now we can split I, up into two integrals, I,p, the integral taken
along the imaginary axis Oy, from 4(0, R) to B(0, R) and Iy, the
integral taken round the semi-circle BCA, of radius R, that is

= Lip+Ipca (4.5.2)
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Also, I, is equal to the sum of all the residues of the integrand at its
poles within the contour, and, since the nom&ﬁo of I'(—s)ats=nis
(= 1)*1/n!, we find that

(B [(@) +7] (= )t
M. r (®) +s”_]m_l. (4.5.3)
Now, on this mﬁbm-omuo_m s = Re?, (4.5.4)
=1 (@) + Re%, — Ret 6
Hence Ipoq = wﬁ H,_HAS +Re Ret? do. {4.5.5)

Here the negative sign arises since the integral is taken clockwise,
that is from + 47 to — }or. Then

1 (i
[ pcal = o lwawDQTJmm_ (4.5.6)
where k= EA >b,— M av (4.5.7)
=l
so that, as R —» o0, Igoq >0,

provided that £ > 0, and that 4 = B+1.
Also, as B — o0,
1 [ (a)+s, —8
NkleNlmm I?oH‘_ AvvuT%

When k& > 0, this integral I exists and is equal to the sum of all the
residues of the poles in the increasing sequence, s = 7, that is

EL;T:i
I=liml= 3 %@i@% ?m.e

ds. (4.5.8)

so that we have finally,

i) Tl T as = [ ] abastn 5 -
(4.5.10)
where R1(Zb—3a) > 0,and 4 = B+1 >
We can deduce many well-known results from this integral, by
taking special values of 4 and B. Thus, if 4 = 1, and B = 0, we have

1 T

Na+s)'(—s)ds

I(a) Fyla; ; —1]

2m;
= I'(a) 27, (4.5.11)
provided that Rl(a) < 0.
IfA=2,and B=1,
1 = Na+s)Th+s)I(—8) ; [(a)I'(b)
27 ) o Tc+9) ds = =Ty shleb; ¢ 1]

(4.5.12)
9-2



132 HYPERGEOMETRIC INTEGRALS
where Rl{c—a—5) > 0. This is the limiting form of (1.6.1.6) when

zZ| =»> —

| _Hs an exactly similar way, we can consider the integral I, taken
clockwise round an indented contour, consisting of part of the
imaginary axis and a semi-circle to the left of Oy, that is round the
contour DBA4 of Fig. 4.2. The integral is again split into two parts so

ﬂ:m\ﬂ NN- = .NquthNhUNw. AQ.Q.MWV
Then Lipp—>0 as R— o0,
and Io,—»>1 asR-> .

The sequence of residues in this case, is however, the double sequence
=-q,—-n, forv=1,23,..,v..,4, n=012..,[R],
so that we have
= a, AQV a, a,, 1+ a,—- AOVv
= ’ -1 4.5.14
SRR gt P Rgvema el B

where, for convergence, we must have 4 = B+1, and

B

R1Y (b,—a,) > 0.

v=1
The dash in the notation 1+a,— (a)’ indicates that the denominator
parameter 1+ a,— a, has in fact become the factorial element in each

term of the series, and so is not written explicitly in the F notation.
We can thus state the complete theorem

ari| o TLre s

4 la,(a)—a, a,l+a,—(); H_
=MH HJﬁ vi - G_\g k@kluh 1+ a,— AQ\VJ !

_ @ (@);
= H,_HASU_ »@Lﬁ@: HH_ (4.5.15)
provided that RI W_S..IQL > 0,

and that 4 = B+ 1.

4.5.1 The main theorem for ,F3(1). Next, we shall consider
ways of making this result (4.5.15) more general. If we look at the
various results due to Barnes, Whipple and Bailey, we see that their
results involve not only sequences of poles of the type (a)+3 in the

t Barnes (1907b); Whipple (1926¢); Bailey (1935), § 6.7.
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numerator and in the denominator, but also sequences of poles of the
type (a)—s in both the numerator and denominator. Hence we are
led to study next the general hypergeometric integral

a)+s,(b)—s
»w waev" h +,w A& &.mv Ahmuuw

where there are 4 of the a parameters, B of the  parameters, C of the
¢ parameters, and D of the d parameters. Again we consider the
integral taken in turn round the two semi-circular contours 4 BC, and
ABD, where the imaginary axis Oy is now indented so that all the
increasing sequences of poles

=b,+n, forv=123,..,9,..,8B n=0,12..[R],
lie to the right of Oy and all the decreasing sequences of poles
s$=—a,—n, p=123,...4,..,.4, n=0,1,2,...,[R],

lie to its left.
Then we let B — oo, as before, and find the main theorem

ari) L Oan -e] 2

vl VA@V.TQ A®v+§\.u~+9..lﬂﬁvw
M ﬂ_HA& M. () +a\.H_ m+o~w_+cl_H~ +a,—(a), &v +a,; (= _K+QH_

r| (@ +b,(b)-b (@+b,14+5,—(d); , . pip
=rx~ on.*.@_; A&vlw—gg k+b§w+QI_ ﬁﬁov.*.@ﬁw.*@v.lAOvﬁ A Hv Qw
(4.5.1.2)
where RiZ(c+d—a-b) > 0,
and A-C=B-D>

This is a general theorem of great power, and it contains within
itself as special cases, all the Barnes-type integral analogues of
§§4.2.1-4.2.3.

This theorem was originally due to Whipple. Whipple realized that
such general relations must exist when he published the special case
for (Fy(1) series.T Sears gave the more general form of the result in his
thesis in 1949, and later he published four papers containing all his
results.I In these papers Sears also restated Whipple’s corresponding
results for well-poised series which we shall consider in §4.5.2.

+ Whipple (1936). 1 Sears (19514, b, ¢, d).



134 HYPERGEOMETRIC INTEGRALS

4.5.2 General theorems for well-poised series. We shall now
state the four general theorems for well-poised series given by Sears.
First let us consider the integral

«.8 Aﬁ.v..*.m A9v19o|.m. q:..m
bu% ﬂsﬁ_w 14ay—(b)+8,1—(b)— H_% %,ﬁ.m.w.:

where there are 4 + 1 of the ¢ parameters, including a,, and A -1 of
the b parameters, such that

Rl(Aa,+ A —1—Sa—3b) > 0.

The usual contour integration round the two semicircular contours
of Fig. 4.2 leads us to the following result,t

r (@), (@) —aq H_
1 4a,— (b), 1— (), day, — 1ay, 1 —3ay, 1 + 44,

ay, (@), (b);
X 9akou- H_Hﬂcgn&o (@), 1 +ay—(b); HH_

4 ay—a,, (@) —a,,a,,a,—a,+ (@)
= Ya'll+a, IASL+ao|a<|§,waalas

e wac.fai H+&=|w@?~+§w+wao
a,—ay+(a), 8, — 2y + (b), 4, ~H_ 4.5.2.2
XNhﬁzluﬁﬂn*rawlﬁ@vﬁ~+9=|A@v,H+9<|§ow . A o v

This theorem expresses & ,,F, ,_,(1) series, well-poised in g, in terms
of A other ,F,,_,(1) series, each well-poised in 2a,— a,.
In & similar way, the integral

+m3v|alm a%
I, = .‘. ﬂ_HH +ag— AS+% ﬂlASIL m% Ap.m.m.wv

leads us to the result]

(a), (@)—a ay, (@), (b) _
r l4ay— GV.HHIAS, la,, 1— wabwk@ﬁ|~_“~+§|€v, 1+a,— (b); uu_
0 — 0,y @, (@) —a,,a,—ay+ (@)

EMHQ 3 _+a —(8), 1 +1a,— 3ao, 1 +2,—a,— ()1 +W§|w§u_

Slaaiaya‘laﬁis,aal _H_ Pm.w.»
xNmﬁﬁlﬂ_uw.ravlﬁavoH+a_.I§‘a=Iao+ﬁ ( )

provided that Rl(da,+A—-1—-Za—-32b) > 0.

t+ Sears (1961a), 11.11. t Sears (1951a), 11.12.
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This theorem expresses a ,,F,,_;(— 1) series, well-poised in a,, in
terms of 4 other ,,F,,_,(— 1) series, well-poised in 2a,— qj,.

If, next, we assume that there are 4+1 of the a parameters,
including a,, and 4 of the b parameters, we get the integral

Qv+.w AQ\ Bo—$ 718
b= /_. ﬁu +a,— S+a.o 1— ASIuH_ e ds. (4.5.2.5)

This differs only by a factor e from the integral I,, and it leads us to
the resultt
ﬂﬁao“ AQ\V“ Aa«v - Qd g
I+ @y — AS, 1— w@? w&? 1- W@c

ag, (2), (B);
x§+%§_”~+ac|€v,~+ao|§“ ~H_
—a,, AQ\VI..QE a,—q .IAQV
MQ\ F H+9 IA@V +W95HH:QOlQrIA@v.W+WQ=|QL

a,, &, — o+ AQVv a,—ay+ A@r
X mk+~§mkﬁu .Ta«e |§9 1 +9—.l Aﬁvﬁ 1 +&=| AS“ 1 Tm.m.w.mv
provided that  Rl(A4ey,+ ja,+4 —-Za—2b) > 0.
This theorem states a relation between a ,,. ,F, (1) series, well-
poised in @, and 4 other , ., F, ,(1) series, each well-poised in 2a, — a,.
Finally, if we assume that there are 4 +2 of the a parameters,
including a,, and 4 — 1 of the b parameters, the integral
N»".‘,. r ASV.TQ“?«v«IQcI.%

—im Ll+ag—(b)+s,1—(b)—
which differs from (4.5.2.3) above by a factor of e also, leads us to
this relationf between a ,,,,F, ,(—1) series, well-poised in @, and
A4 +1 other 5, F, ,(— 1) series, each well-poised in 2a, — a;

mH_ etrieds  (4.5.2.7)

r Qp» AQVVAQVIQQ
1+ay—(b), 1 —(b),3a, 1 - }a,
ay, (@), ®);
X ﬁi@ﬁ? +a,—(a), 1 +a,—(b); _H_
(@) —a,,a,,a,—ay+(a)
Ma Plita,~ )1 +a,—a, — (), 3a,—ag, 1+a, l;“_

a,,a,—day+(a),a,—ay+ (b);
¥ v 0 v ot _ ’
X 24+1 w\_—HH+§la€~+§IA Y, 1+a,— (b); 1| (4.5.2.8)

provided that Rl(da,+ }a,+ A4 -1 —Za—b) >

t Sears (1951a), 11.13. 1 Sears (1951a), 11.14.



136 HYPERGEOMETRIC INTEGRALS

4.6 The general integral for ,Fx(z)

The result (4.5.1.2), although very general, still does not contain, as
special cases, all the Barnes-type integrals that we have used in the
preceding chapters. In particular, it makes no provision for the
inclusion of the variable z in our general series. But the Barnes-type
integral for ,F(a, b; ¢; z) of § 1.6.1 gives us the clue as to how this may
be done. This time we consider

&.TW,@vl.m
~o mmm HJ_HS.*..WVEVI,@H_%%_ T».m.:

taken round the rectangular contour of Fig. 1.2, in a clockwise
direction. It is now necessary that N be an integer such that

N > max{|Ima,|, |Imb,},
in order that all the sequences of poles may fall between the lines
BC and DA.

Again, we indent the imaginary axis between 4 and B so that all the
poles in the ascending sequences

s=b,+n, (v=1,2,3,...,B;,2=0,1,2,...,N),
fall within the contour, and all the poles in the descending sequences
s=-—a,—n, (p=12, w,A;n=0,1,2,...,N),
fall outside the contour.
Again I splits up into four integrals,
I, J,J, and J,,
and, by arguments exactly parallel to those of §1.6.1, we can show
7
that as N — oo, ,\plvo, .\mlvo‘ J, 0,

a)+s,(0)—s7
and Iy — I(z) = wﬂs —J_an+m &VIuH_N ds (4.6.2)
provided that }7 |4 +~wIQIb_ > |argz|, and that B+ C > A+ D.
But the sum of the residues of I, at the poles of the integrand within
the contour C, becomes, as N — co,

— Y §v+®—: vlwz
WANV B vluNo ﬁh +QE v.louu

b, 1+b,—(d);
xm+b.m_m+olp Ma.w..w_.u.@wﬂ ?v.*ﬁ.vv_:AICm+u H_ (4.6.3)
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Hence we have now shown that
I(2) = X(2), (4.6.4)
B

when B+C > 4+ D.
If we consider the similar contour FEBA, symmetrical about Oy,
to ABCD, we can show that, when 4 +D > B+ O,

I(z) = Z(2), (4.6.5)
A
provided that 37 _m +B-C—D| > |argz|, where
- (@)—a,, () +a, H_
2(z) = a.T G
A ANV ﬁ Q\t A&v ta

(b)+a,,1+a,—(c); T:}é
F
X pac %ET o e (4.6.6)
since the ‘a’ sequences of poles are now included within the contour
instead of the ‘b’ sequences of poles, as before.

4.6.1 Asymptotic integrals. As yet we have not deduced any
asymptotic transforms from our integrals. But the series of (4.6.6)
above which involves powers of 1/z, coupled with the arguments of
§1.8.1, for the analytic continuation of the Gauss function, lead us to
the required theorem.

Exactly similar arguments to those of §1.8.1, give us the results

I(z) ~X(2) when A+D < B+C, (4.6.1.1)
4

and I(z) ~ X(2) when B+C < A+ D. (4.6.1.2)
B

Thus we can combine all our results into one theorem, which will
include all the known transformations of the Gauss-type series within
itself.

4.6.2 The main theorem for ,Fg(z). We shall now state the
general theorem in full. If

Hﬂ.s A&+.f§|mm
:nv wﬁ._.l.sd () +s, Evlmu_u %, A».m.m.s

S(z) = W z=] _HE% —a, )+ a\.u_

A 2=1 (¢)—a, Ev+a§

AvvuTQ\t H+Q\§|AQVW .4I
XWJ«.QNHA.TNVthHIT&EIAQV\u A&qun«\: Alwv\n.*A\N ﬂg

(4.6.2.2)
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. X Aa«vlT@-; AQV —%
and WUA )= M_uo r (c)+b,, (d)—b VH_

AQV.TOE ~+@<|A&vw
Xk+~v~ﬁm+ﬁ.lw H+@—.|A@V~u AOV.TQS

then, provided that im|A+B—C—D| > |arge|,
(i) I(z) = 5(z) ~ Z(2) when B+C < 4+ D, (4.6.2.4)
4 B

(- :m,em_. (4.6.2.3)

(i) I(2) = 3(z) ~ X(2) when B+C > A+D, (4.6.2.5)
B A

and (iii), if we put z = 1,
IN)=Y1)=3X(1) when A-C=B-D>0, (4.6.2.6)
4 B

provided that RiX(c+d—a—-b) > 0.

The proof of this theorem follows on exactly the same lines as the
proofs of the previous theorems, (4.5.15) and (4.5.1.2). We consider
the integration round semi-circular contours to the left and to the
right of the imaginary axis Oy; then we evaluate the various sequences
of residues. Finally we let the radius of the contour become infinite,
and establish the necessary conditions for convergence, or for the
existence of an asymptotic expansion. This theorem was implicit in
some of Whipple’s later work, but it was developed fully and stated by
Meijer (19415-f).

4.7 Contour integrals of hypergeometric functions

The theorem stated in §4.6.2, general as it is, still does not represent
the fullest possible extent of the generalizing process yet attained. The
next step is to introduce the concept of summation into the integrand
of the contour integral. Thus we consider the effect of replacing
I(z), X 4(2), and Zg(2) in the theorem of §4.6.2 by

L[ 3 (@) (@) +mets () +m=s]

Ma‘s IaBiMuo Aaun:g_ﬂﬁﬁovu*-s.T% A&v+§ mgN Q%u
M = [(e)—a,—n,(b)+a,+2m+n

X (z) = M 2 MH,_HE a,~n, (d)+a, +m§+L

AM pg=1 m=0 n=0

I ,(z) =
(4.7.1)

((e))n 2™(— 1)
:.\vvs. 93&_\.3_ zatmin AP.Q.NV

x
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4 _ (@) +b,+2m+n, (b) —b,—

an Nw,mm ANV le‘» .SMO aMIUoH,_HAOV +®w+ w§\+3¢ A&v - ®2|M‘Q

((e))p @mebtmin(— 1)n
(N m! n!

Under conditions which make the convergence of the various series,

absolute and uniform, we can let M — o, and prove the following
theorem:

i #m|A+B—-C-D| > |argz|,

(a), (b), (e);
k+w+m§0+b+m,_wnnvv A&v, CJ“ &H_

18 absolutely and uniformily convergent in x, then

X

(4.7.3)

and the series

) Iz)= T (&)~ 3 (2), (4.7.4)
A4, D,
when B+C < A+ D, or when B+C = A+ D and |z| > 1;0r
(i) I(z)= 3 (2)~ X (2) (4.7.5)
B, A,

when B+C > A+ D, or when B+C = A4+ D and lz] < 1;

- (@)+s,(b
where  I.(z) wﬂ.‘,is ﬁaTr.ﬁ &WIMH_

?&+«.LSIP§W
(c) +5, (d)—s, (f); agum%.

M (2) = Nla:ﬁ_wﬁav —a, (b)+ SkH_
w=1

X a+Brefcinir (4.7.6)
(d)+a

. M M 28+9L§.+:C+a ~(0)) ((€)),p 2™( — 1)\ +On
m=0n=0 () + &, )emin (1 + @, — (@)'), () mInizmn

(4.7.7)

nd (a) +b,,(b)'—b
@ m..MmoAv _.M r (€)+b,, (d)—-b H—NS

b4

X m 3 :av.*.@ vmibﬁﬁ.*.@ IA&VV.:. ((e))m x™(— 1)\ B+Din ym+n
m=0n=0 () +0,)amen (148, — (B)), ( (). m!nl o
(4.7.8)

In marticular,
(iii) when A—C=B-D>0,2=1, and RlZ(c+d—a-b) > 0

we have
L= M= 3. (4.7.9)

A, @ B,
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The conditions for the series ., 5. zFc,p.#(x) to be absolutely and
uniformly convergent in x, are either

(i) A+B+E<C+D+F+],
or (ii) A+B+E = C+D+F+1,and either
(@) |z| <1,
or (b) zx=1,and RIZ{c+d+f—a—-b—e) > 0.

The proof of this theorem follows on exactly the same lines as the
proofs of the previous theorems (4.5.1.2) and (4.6.2.4, 5, 6) of which
this is a generalization. We simply carry out the contour integration
round the two finite semi-circular contours of Fig. 4.2 and evaluate
the sequences of residues. Then we investigate the conditions under
which the radius of the contours and the number of terms in the series
under the integrand can both become infinite at the same time.

As an example on this theorem, let A=B=C=D=1,z2=1,
and ¥ = F = 0. Then

a+s8, -8 ats, —s; .
::Hw|3 lsﬁ_ua+.w d- ”_wmw_uo.*.m.&l& &H_Q.m (4.7.10)
A \vmsi..: u.l.&vﬁm.:
and we have I(1)= ho P sMc:Mc T Oanmlal (4.7.11)
provided that Rl(c+d—a) > 0.

The series in » is summable by Gauss’s theorem, (1.1.5), and so
a,c+d—a—1 ta,3a+3%
= F,
e %Ts?&x rL # NFSFW —hicrid "

(4.7.12)
If now we introduce one e parameter, we find that

a+s8, — Ta+s,e, —s;
MS._,ls _H?I d- H_ d _H?Tf d—s; aH_ as
=T ala,o+&|_,&u_ _Hwo+£ wo+£+w (4.7.13)

and, in general, when there are E of the ¢ parameters, and F of the
f wmumEmgum we find that

a+s, —s a+8,(e), —8;
’ d
mE —iw T?f&lm m.;ﬁfn_u +s,d—s, (f); H_ s
a,c+d—a—1 1a,ta+ %, (e);
% praFosg T2 3T B )

c—a,c+d—1,d le+3d—13, dc+3d, (f); H_
(4.7.14)
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provided that either

(i) E < F+1,
or (ii) & = F+1, and either
(@) |z] <1,

or (b) z=1,andRl(c+d—a+Zf—Ze) >
In particular,

1 i

IMa+s, —s]Fila+s, —s; b; 1]ds
= 27I'(a) o F\[}a, $ + 4a; b; 1]

||ea,~r@|al,w
lm ﬁﬁgnwa,@uwlwaﬁ_. (4.7.15)

if we sum by the binomial theorem, and then by Gauss’s theorem.

2m {0

4.7.1 Mixed integrals of Gamma functions and hypergeo-
metric functions. We have assumed, so far, that all the parameters,
which occur in the Gamma functions must also occur in the F-func-

tions, but this is an unnecessary restriction, and in Bailey (19295),
§6.3(1), we find the result

N,_ a, @Hu Q\M- wa A\uvw H
RBHa7843| k—ay, k— ay, k—ay, (0);
_T k—a,k—ayk—a,
QTSN.Q?#lﬁw|§&.~n|§u|&7N|§H|Q»H—
x] H, a,+8,a,+8,a3+8,k—a,—a,—a;—3s, —§
2mi k+s
Q y T 9y
X peaFses Aqwn\wi m_ ds. (47.1.1)

The proof follows, by expansion and the interchange of the order of
summation and integration, from Barnes’s second lemma, (4.2.2.2)
written in the form,

ﬂap+3§+§ §+3w§lae\n§lacwaﬂlau
k—a,+nk—ay+nk—ag+n

{0
1 p| @t a:ts,a5+8,k—a,—a,~a;—s,n—s

—io k+n+s ds.

wa

(4.7.1.2)
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Bailey goes on to seek those special cases of the g, ,Fg,,(1) series
under the integrand on the right of (4.7.1.1) above, which can be
summed, in order to find a pure Barnes-type integral to represent
special cases of the g, ,Fy,q(1) series on the left of (4.7.1.1). Thus, if
the series on the right can be summed by Dixon’s theorem, we can
obtain an integral representing the series

Fila,b,c,d,e; l1+a—b,1+a—c,1+a—d,1+a—e; 1].

When, further, b = 1+ }a, the integral can be evaluated by Barnes’s
second lemma (4.2.2.2), to give the formula (4.2.3.2) which is the
integral analogue of the ;F,(1) summation theorem.

Again, we can adjust the parameters in (4.7.1.1) above, so that the
series on the right can be summed by Dougall’s theorem, (2.3.4.1),
and we obtain

7 a, 1+ 3a, b, c, d, e, 5 1
e 3a,1+a~bl+a—c,1+a—d,1+a—el+a—f;

Iﬁ_H_+al?~+alo.~+a|&v~+ala.H+al.\. H_
~ “|1l4a,b,c,d,1+a—c—d,1+a-b—-d,1+a—e—f,1+a—-b—c
1 (i b+s,c+s,d+s,1+a—e—f+s,
xm|3. ,hsﬂ l+a—b—c—d—s, —s|ds.
- l+a—e+s,1+a—f+s
(4.7.1.3)
In particular, when f = —», and

1+2a=b+c+d+e—n,

the integral on the right can be evaluated by Barnes’s second lemma,
(4.2.2.2), and we obtain Dougall’s theorem again (2.3.4.1). We cannot
use this result on the right of (4.7.1.1) to get further transforms, since
we would now have to have the condition

142a =7 +ry+rgt+ry—s,

where 7, 74, 75, 74 and a are all supposed to be independent of s, and so
the process comes to an end, for well-poised series. It can be noted
that, if we evaluate the integral on the right of (4.7.1.1) by considering
the residues at poles on the right on the contour of Fig. 4.2, we can
obtain the transformation (2.4.4.8) of a well-poised ,F(1) series, in
terms of two Saalschutzian ,Fy(1) series.

This paper,f contains the earliest examples, which I have found in

1 Bailey (1929).
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the literature, of integrals of this type (4.7.1.1), and this integral
suggests immediately that the theorem of §4:7 can be generalized, as

in nrm.».o=o§bm paragraph, by the introduction of sequences of Gamma
functions in the integrand which do not occur also in the F-functions.

4.7.2 The mixed integral theorem. If

I(z) = — a)+8,(b)—s,(g9)+8,(h)—s
(2) wﬁo lssﬁﬁavl—.m (d)—8,(j)+s, (k) — .m.H_

AQV +38, Qwv -8, AQVw
X k+“+@.&4§+~v+@hAOv + .w. Aamv —s, A—\,Vw

(@) —a,, () +a,(9)~a, k) +a,
r !
M M (¢)—a,( &+a\.\”§ a,, Q&+: H_
AAS + &\.v»§+$ AQ& + 9\v§+3 AAmVVS : + ﬁt - Anvv:
x M M : + Q - QVVS+8&.§NIR:I§I§A - :s‘xk.rodlo.l.b
m=0n=0(1 +Q - An.v v: A“_. +§ - AQVV§+3 AA.\.VVS
AA&V |+| 9\v»5+3 AQQV + ﬁkvﬁi.ﬁ 3@_ 3_
r[ (@) =9, () +9,, (9) -9, (h) +$H_
3 90 (D) 4G, () =9, (k) +g,
(@) = 9,)n-n(®O) + 9 )ipin (L + 9= (F)n
R ((8)-+ g ((€) 2m2 =2~ 10
m=0n=0((c)— vi §AA&V+Q§V§+§A—+Q§|AQV )n ’
(B)+ 9,0 (N m!n!

AQV.T@ @v v @ Sv v Tm.q.w.wv
HJ .5 | E Q + —;
= 0= m_ rois,: b, (j) +b,, (k) — b Q

:Q\v + @evN§+= AAQV + &vvi.r:. AH + @ A&vvs
« 3 B (b= (B)ugl(e)uamtmin 1D
m=0 n=0 c +® - Avv v: C. + @ Qovvifa 23 + vcvwi.r:
(D) +0,)msn (F))um! !
AQV.TN«E AOV \p_: AQV.T*« s Qwv l.\@
M.A v
o0 by by (@)=, () + By (B) —

AA@V + \~<v§+: AAOV - \pvvwslﬁ AAQV + \«evﬂ
i (())m (1 + A, — (k) @™2hs +7( — 1)K
(L +h,~ (3) ), ((€) + 2 Y pin (D) = ) ’
(N ((G) +4,), m!n!
(4.7.2.3)

aH_ 2ds, (4.7.2.1)

@

IIM

X
||M8

2
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where the series 4, p.zFci+p+p(2) is absolutely and uniformly con-
vergent in z, then, provided that

}3m(A+G+B+H-C-D—-J~-K)> |argz|,

we have
@) Iz)= X ()~ X (2), (4.7.2.4)

A, © B,x

either (¢) when A+G+D+K > B+H+C+J,

or (b) when

A+G+D+K=B+H+C+J and [z > 1],

and (ii) Iz)= 3 ()~ X (2), (4.7.2.5)

B, o A, 0

either (a) when A+G+D+K <B+H+C+J,
or (b) when

A+G+D+K=B+H+C+J and |¢| <1l
Also, provided that z = 1, and
Rl1Z(c+d+j+k—a—b—g—h) >0,

(iii) I = % M= %) (4.7.2.6)
when A+G@-C-J=B+H-D-K>0.

Since this theorem is the most general of the series of theorems we
have been considering, we shall give more details of the proof. So, let
us write the integral (4.7.2.1) above as

16) = feas, (4.7.2.7)
and consider the two integrals
Ligep = .‘. f(s)ds, (4.7.2.8)
A4BCD
ADEF

taken round the two rectangular contours of Fig. 4.3,

A(—iN), B(L-iN), C(L+:iM), D@M),
and A(-iN), D(GEM), E(-K+iM), F(—K-—iN),
indented so that the first L poles of each of the ascending sequences of

poles @) +m+n and (k)+n form=0,1,2, .. [L],
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fall within the right-hand contour 4BCD, and the first K poles of
each of the decreasing sequences of poles,

—(@)—m—-n and —(g)—n forn=0,12,..,[K],

|y
E(—K+iM) DGEM)

C(L+iM)

V—
‘XXXXXXXXXXVX

X

X X X X X

1 -a, N

|

¥

!

“. Iy

| X X X X X X

"

] 0 > X

|

|

1

| &,

x“x X X X X[X %)

|

|

]

|

1

e - p—

F(—K—iN) A(—iN) B(L —iN)
Fig. 4.3

fall within the left-hand contour ADEF. Then, by considering the
residues at these poles, we find that

> () = Ligep

B, L
iM

L
16 ds+ [ fle- i) do

—1iN
M

" s rsyas— [ frinaz,
1]

—iN

= — Iy, y(2) +Jy+Jp—J; say, (4.7.2.10)

10 SGH
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and ¥ (2) = Lippr,
A, K

M 0
= f(s %l% fx+:M)dx
—iN -K
4 0
- 2|N+$%+% fx—iN)dx,
—iN -K

= Iy, n(z)—Jy—J5+Jg say. (4.7.2.11)
Now || ~ e¥eNS S 4, Neas5=0-Dim .’ Nl (47.2.12)
where = ‘
a = |argz| —3n(d+B+G+H—-C-D—-J-K),
f=Rl{Z@+b+g+h—c—d—j—k)}
-3¥4+B+G+H-C~-D-J-K),
vy=A-B+G@-H-C+D-J+K.
Hence [y} ~ |z|FN-Le P, (4.7.2.13)

as N — oo, that is J; - 0, under the conditions stated in the theorem.
Similarly, we can show that J;,J; and J; — 0, and that

Iy y(z) > 1(z) as M and N — co.

i

Further L>dp=| flL+s)ds (4.7.2.14)
and Jyodg = f(—K+s)ds, (4.7.2.15)
so that we now have, -

I2)= 3 () +Jg = Z @+ (4.7.2.16)
4K

Now, as K - o0, Jx = 0, and J;, is bounded for finite values of L,
provided that a < 0, and either (a) y < 0, or (b) y = 0, and |2| > 1.

Hence I(z) = MS 3 (2). (4.7.2.17)

B, x

Similarly, as L - o, J; — 0, and Jx is bounded for finite values of K,
provided that @ < 0, and either (a) y < 0, 0r (b)) y = 0, and |z| < 1.

Hence Ie)= 5@~ T @ (4.7.2.18)
Finally,ifz =1, ' '
Rl{Z(c+d+j+k—a—b—g—h)} >0,
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and A+G-C—-J=B+H-D-K >

then Jg—>0and J, >0 as K-> o0and L-> o0,

and we have IN)=YX M= Q1) (4.7.2.19)
A, B, o

4.7.3 Some examples on the mixed theorem. The theorem,
which we have just proved is one of the central theorems of the general
theory, so we shall now give some examples of its application. Let us
consider first, the integral

7= L i I a,+8,a,+8,a3+8,b—s, l,w“_
oM e c+s
d, (e ;
x@ﬁmwai—H .DA W+.w wga . (4.7.3.1)
Here
_ planasasb
k.MB =T [ u

1

had ASHV.S A«vas Aﬁwvuﬁuﬂ AQV v3 A&quAl Hvs F ﬁah +m, ay + m,az + m;

T @l —bhmi 3 ot 2m, 1 —btm;

+ﬁ_.\.§+?an+?§+@. IaH_

c+b
v @mm@eﬁlss @y +b,ay+b,a5+b;
R risairom S D (4.7.3.2)
and
—H@+a\: (a) — Eaxu_
.s ku_
% < A&vs_: vvq:?« m a &+9 va«§+§uﬂ+a\|a|5m 1.
3"02.\.53 Aa n« 3@* M+9§|An«v ;
(4.7.3.3)
The conditions of the third case of the theorem are satisfied, so that
I=Y =13. . (4.7.3.4)
4, B,

‘When we impose the condition that
C—ay—@y,—a;=b, (4.7.3.5)

we find that in (4.7.3.2) and (4.7.3.3), the five series in m are all ;F,(1)
series of the Saalschutzian type. If now we make use of the non-

10-2
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terminating form of Saalschutz’s theorem (2.4.4.4), we find that the
first two series in m in (4.7.3.2), combine into a single product of
Gamma functions, and we have

I-T ay,09,03, 0+ a;,b+a,b+a,
C—ay,C—ay, C—ay

d,a,,a,, a3 (€);
. .N*J y W]y Way, W3,y b H . 7.3,
X pit4 w+w—ﬂnla~.nlam,ola?qvw (4.7.3.6)

When, further, £ = F, this is Bailey’s original result, (4.7.1.1).

4.8 Mellin transforms

The next possibility which we shall consider is that of deducing still
more general relations between hypergeometric series, by the intro-
duction of the concept of Mellin integral transforms. We state the
Mellin transform theorem thus:
if 1 c+i0

fx) = |.‘, ~ xg(s)ds, (4.8.1)

2m
then g(s) = ‘ﬁ " 2 (2) dz, (4.8.2)
0

provided that g(s) exists in the Lebesgue sense, over the range 0 to
infinity. The Mellin transform can be translated into a Laplace trans-
form by putting e for « in both integrals, and into a Fourier trans-
form by putting e'® for = in both integrals. See Erdélyi (1954), §7,
or Titchmarsh (1948a), for detailed proofs of this theorem, and its
various transformations.

If we now apply the Mellin transform to the four theorems of § 4.5.1,
§4.6, §4.7 and §4.7.2 on the evaluation of contour integrals with
hypergeometric or Gamma functions in the integrand, we can deduce
immediately four further general theorems on hypergeometric
transforms.

Theorem L. If g(s) = ﬁ_HA& HM Aww.l.,,wu_ (4.8.3)
— \m. a, A9v~ -a, A@v +Q\\«
2@ = 22T () a, §+$H_

b)+a,, T+a,~ () 1 iac
XNW.TQ.NH&.TUIH “_...Ta.kMAa«v..A&vAaﬂ}w A Hv x Anh.m.nn.v
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d 1/ 20 AQ\V.TN»EA@ |~vg
p: mﬁ ) = P2 ﬁ_” ¢)+b,, (d)—b
(@)+b,,1+b,—(d); .
xﬁvw?ro[“_“@ b b by (-1) \au_. (4.8.5)

then i) gls) = .‘ ® 1% (z) de (4.8.6)
0 A
ifA+D > B+C,
1 )
(i) g(s) H.—,o &QLWA&VQ&+.—,~ &QLWC\.@V% (4.8.7)
if A+D = B+C,
and i) g(s) = ﬁ%Lm:E% (4.8.8)

if A+ D < B+C, provided that, in all three cases,
A+B>C+D,
—Rl(a,) < Ri(s) < R1(},)

and Rl(c,), Rl1(d,) = — N, for N a positive integer or zero, and for all
infeger values of v.

The proof follows from the application of the Mellin transform to
the theorem of §4.6. We have, from (4.6.4) and (4.6.5),

f(x) = meay (4.8.9)
if4d+D>B+C,orif A+D=B+Cand0 < a < 1. Also
/@) = () (4.8.10)

ifA+D < B+C,orif A+D=B+C,and 1 < x < o0,
We must always have 4 + B > C+ D for f(x) to exist at all, under

the condition i7(A+B—-C—-D) > |arga],

and the theorem follows at once, under the stated conditions.
It should be noted that

g(—s)—>g(s) when f(l/z)— f(z),

and so, given any g(s) which falls under the case (iii) above, it is

possible to regard it as cquivalent to a function g{ —s) which can be

treated under case (i) simply by the substitution of &’s for a’s, d’s for

¢’s, and vice versa. Also, when A+ D = B+C, X(1/xz) is the analytic
B

continuation of Y (x) for 1 < z < o0.
4
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If B=0 and A =C, we must also have D = 0, since always
A+ B > C+D. In this particular case, the integral over the range
one to infinity is zero, and

1
g(s) u.ﬁ a* 13 (z) dz. (4.8.11)

0 A

If we have f(x) expressed as the contour integral of (4.8.1) above,
without giving its evaluation in terms of hypergeometric series, we
obtain the Mellin transform of Meijer’s G-function.

4.8.1 The most elementary cases. If g(s) contains only one
Gamma function in 8, there are two possibilities arising out of

Theorem I, ) _T(a+s) and g(s) = T(b—s).

These two cases transform into one another under the rule for g(s) into
g(—s), and they both lead to the Euler integral of the second kind

I'(a+s) H.‘. zts-le~T de. (4.8.1.1)
0
The possibilities which arise when g(s) contains two Gamma

functions only in s, reduce in the same way, to four distinct casest;
two Euler integrals of the first kind,

g+?olulﬂiauu ..
H,_H a+b H—l._.oa Hﬁo?+@..leum&

+._.W&Tu|fm.o?+9 ; —1l/z]dz, (4.8.1.2)

E& H,_Ha+om+nu aH_ ._. ei:-§i+ao..au_a&?.mp.wv

and two integrals of Bessel functions,

i afﬂ_ ‘_. wto-1 Pl a+d; —z]de, (4.8.1.4)
and Ia+s,b+s] H.‘S&%ﬁanwzvlavoﬁ? 1+a-b; z]da
0

+._.88»+~THEQISQST 1+b—a; z]dx. (4.8.1.5)
0

1 See H—.m&%m (1954), § 7.3, (15), (17), (20), (22) and (23).
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When g(s) contains three Gamma functions in & we find that there
are five distinct possibilities. The first of these is

a+s,b—
H,—H H_ ._. gste-1 a+b Fle+b; a+d; —zx]dz.

a+d
(4.8.1.6)
This is an integral of a confluent hypergeometric function, which in its
turn can be expressed as an integral of a Whittaker function.
The special case b = }, d = 1 +a, leads us to

awn_uisul\“_ u._. w1e~12K (1z) dz, (4.8.1.7)
0

s+13
where |Rl(v)| < Rl(s), and the corresponding caset for g(—s) leads
us to }—s,8+v ©
) ﬁ 1+v—s g u.‘ 0 w*-le 2L ({x) dz, (4.8.1.8)

where —RI1(v) < Rl(s) < .
The second case is
Ia, +8,a,+38,b—s]

8 .
H&islﬁalavavm‘ ~
.‘Vo (az—a,,a,+b], H_.|,~+§Hlamw z |dz

[ <] W.
+| a*te1D(a, ~ay a+ 0], 5| 2T
.‘.c [a,—aj,a,+ 8], H_H~+a~l§w &H_m&
(4.8.1.9)
Here, if we write u — 4 = a), 4 — 4 = a,, —~x = b, (4.8.1.9) leads us to}

s+p—4t,8—pu+%, —k— a
HJ = §—1
_H Y+p—x,3—p—x x—.o N 0ma§.\_ﬁav&«.
(4.8.1.10)

where |Rlx—3| <RI(s) < —Rl{x).
The remaining three results§ in this group are

a+8,b+s © b—a l+a—c
r —_ s+a—1 L
_H c+s H_ ._‘o ¥ ﬂ_”ala”_ pﬁ_HTral&w au_me
© 145—c;
s+b—1 ’
+% gord-1p| H_ _H:TS - H_%. (4.8.1.11)
a+m@+w
ﬂ_H H_ “. H«+9LH._H&+9H_ oFyl; 1+a—b,d+a; z]dz

-b
+.‘.o Ra+o|uﬂ_um+v.|._ ofel; 1+b—a,d+b; z]dx, (4.8.1.12)

t See Erdélyi (1954), § 7.3 (25) and (26).
1 See Erdélyi (1954), § 6.8 (7).
§ See Slater (1955¢), egs. (3.11), (3.12) and (3.13).
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and I'la,+s,a,+s,a3+ 8]

v %i::-ié 14a,—(a)'; —7]de.
(4.8.1.13)

Finally, when g(s) contains four Gamma functions in s we can find
ten distinct cases, each of which can be extended to the general hyper-
geometric series. Thus the extension of (4.8.1.13) above is

I[(@)+s] = X I'(e) —a,]

\al

[t Fal 1, @)'s (- 14
’ (4.8.1.14)

When sequences of ¢ and ¢ parameters only occur, we have

o= Erloo]

x.—¢”a«+§nuo§m|~—um+a w— () (—=1)4+Cy H_ma

1+a,—(a);
(4.8.1.15)
when 4 > C, and
(@y+s A& —a, ata -1 1+a,-(c);
tlore] = Erlo el mal o o ] o
(4.8.1.16)

when 4 = C,
When only sequences of @ and d parameters occur, we find that

@)+ @ =7 (% sre
%@& Mﬂ d)+a, ﬁ et
x Farpaal; 1+a,— (@), (d)+a,; (= 1)4z]de, (4.8.1.17)
for 4 > D, and

(a)+s AQV —a, ® Star,—1
r (¢)+8,(d)— H_ (c)+s, EV ,,,H:.o ’
1+a,—(c);

x oFarp- H_”H +a,—(a), (@) +a,;
for 4 > C+ D.

(— :.io&g dz, (4.8.1.18)
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When only sequences of @ and b parameters occur, we have

Ff(a)+s, (b)—s] = MHJ: a)' —a, (b)+a,]

ns
© ) _ A@v } @ .

s-+a,—1 | k
x.“o x5+ wNTH_ a, Aav ,A )4z _&& (4.8.1.19)
for A > B, and

Tl(@)+5, () —s] = % (Tl(@) —a,, () +a,]
p

1

x .—.H attel F, L_HGV T (=14 RH_ dx

0 14 a,— (@);
+T[(@)+8,, () 3_._.“.0 U

x 4F4 1[(@)+b,; 145, — (b); (—)4z]dz}, (4.8.1.20)
for A = B.

Further,

e U e

0)+a,l+a,—(c);

— 1}4+C
Lta, (@) (—1)4+Cz [dz, (4.8.1.21)

X gecFa
for A > w+9 and

_HE & +,,,. \.u _HE 3\: AMV o H: M e

®)+ea,l+a,—(c);

At I PR TR B b
(@)+b,, (b) —b, o—by—
+Wwﬂ—“ (€)+b, H_._.H =
Mv .
<aa )Ly, gy 0] 0 (4.8.1.22)

for A = B+ C, and finally,

§+%,§$k.svrg,eras
HJ ” o nt.l.
(@) s ; ZIL T @%a, m_ % , T

X m@&&..y_u
for B = D.

A@VI*IQFV
~+a\.\13v£&+a\t I:m H_m.e Am:&v
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Many special cases of these results are well-known. In particular
when A = 2, we have, from (4.8.1.16),

a+s,b+s|  [b-a
r o+$&+au_ =T QIP&IAL

1 l+a—c,1+a—d;
+a—1 ’ 4
x“.o% NB_H 1 +a—b: &H_a&

1+b—¢,1+0—d;
v F 3 b
+H, o o& vg.‘. &~+ wmm—.n. ~@aw &m&.

(4.8.1.24)
From (4.8.1.20), we have

I'ae+s,b+s,c—8,d—3]

1 c+a,d+a;
= _ +a—1 ’ !
= I'[d a,o+a,&+&._.o&m @ wﬁ_” 1 +a—b: &H_m&

o+b,d+b;
+T[a- @i:ii R AR &&

_ ® 1 a+c¢,b+c;
+Ta+ec,b+c,d &.“H 8¢ wﬂ_u +o—d: 1/z | d=
a1 a+d,b+d;
+Ta+d,b+d,c— &“. xs Nm_.l. 1+d—c; 1/z | dz.
(4.8.1.25)

Similar results involving the Gauss oF(z) functions follow from
(4.8.1.22) and (4.8.1.23). Results of this kind are well known, but
frequently they are quoted incompletely in the literature.

4.8.2 The second theorem. We consider next the Mellin trans-
form of a general hypergeometric function. Suppose that

(@)+s,(b)—8 (@) +s, (B)—s, (e);
g(s) = () +3, (d) |m@ k+W+H.Nm_Q+U+Nu () +s, A&v —s, A.\.v. m\g y
(4.8.2.1)
_”A a) —a, () +a, M () +@,)om
AOV n«\t A&V +a A&V + ﬁ\quS

2&55 RSQ.S AOV +&+M§u~+9|AGVW | ‘
(st~ BroFar0a| (4) 4 a4 2m, 140, (@); :\:om_

A
(@) = Xawl
A

p=1
X N

(4.8.2.2)
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and
5 — AQV +.®S + @ vmi
= by w
WAH\nHV :mu.&. H,h v + &E A& QSIO A nv +®cvm~=
2«:3 lsm\s (@)+b,+2m,1+b,—(d); )
a " aenfpioa T& +b,+2m,1+b,—(b); (- :mé\pu_ )

(4.8.2.3)

Now, let us apply the Mellin transform of §4.8, to the results of the
theorem of §4.7. We find Theorem I1.
IfA+B>C+D,A+B+E <C+D+F+1,

—Rl(a,) < Rl(s) < RI(3,),
and Rl(c,), Rl(d,), R1(f,) + — N, for all values of v, then

) g(s) = _. ¥ o1 5(2) da (4.8.2.4)
0 A
for A+D > B+C,

(i) gls) = .‘.H&THWA&VQ&+.‘.8&TH WC\&V dz  (4.8.2.5)

0 1

for A+ D =B+C,and

(iii) g(s) = ho 2151 fx) da (4.8.2.6)

for A+D < B+C.
Again, we can see that (i) and (iii) are equivalent under the

transform 9(s) > g(—s),

and that in (ii) X (1/x) is the analytic continuation of ¥ (z) for
B 4

l <z < o0l
In particular, if B = D = 0, then we must have A = C. The second
integral in (ii) is then zero, and

g(s) = ._, M 13 (z) do. (4.8.2.7)

In order to justify the application of the Mellin transform here, we
need only notice that, under the conditions of this theorem, g(s) is a
function of bounded variation, on this part of the real axis.t

t See Titchmarsh (1948a), Theorem 29.
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4.8.3 Simple cases of the second theorem. The simplest possi-
bility is to consider a function containing one a parameter only.
This gives us

Ia+s) , Fla+s; ; y] N%. z8ta-lezy—zdy, (4.8.3.1)
0
for |y| < 1. This is another variation of Euler’s integral of the second

kind.
When an f parameter is added we find that

D(a+s),Fila+s; f; 9] = _.c a*te-le=~2 K[ ; f; zyldx,

(4.8.3.2)

and when sequences of e and f parameters are added also, we havet

Dla+ ) pFila+a, 0 (1) 4] = [ oretes sFylle)s (1) 2y d,
(4.8.3.3)
where B < For E = Fand |y| < 1.
When g(s) has two gamma functions involving s in it, there are four
possibilities, which arise. The first of these is

Tla+s,b+s]Fila+s,b+s; f; y)

= Tb-a)f &Rl 1+a-b; aloFy(: ; oy]da

+Eal3.‘.8 221 Bl 14+ b—a; 2] B[ [ xylde.  (4.8.3.4)
0

From this result, we can deduce various integrals of products of
Bessel functions. When sequences of e and f parameters are added to
g(8), we have

Tla+s,b+s] gielpla+s,b+s,(e); (f); ¥l

— T(6—a) % st BT Lt anb; o pEl0); (f); 2ylde

+ z?sho 21 B 5 1+b—a; 2] gFel(e); (f); oyl da,

(4.8.3.5)
where £ < F.

t Erdélyi (1954), §§ 6.3 (1), 7.6 (24) and 7.6 (27).
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This is a general type of Hankel transform. The extension to a
general number of ¢ parameters is

Il(@) + 8] 4+uFrl(@) +3, (e); (f); y]

A o«
— 3 I[(a) ~a,] % et oF, [ 1k, — (@) 2 gFelle); (F); a)da,

p—1
for B < (4.8.3.6)
or B

The second possibility is to introduce an a + s parameter and a b — ¢
parameter into g(s). This gives us

I'la+s,b—s]Fila+8,b—s; f; y] = Ta+ S.‘,s aste-1(1 4 g)—e-b
0

x o Fi[a+1b, L+ fa + 3b; f; day/(1 +2)?] dz,
(4.8.3.7)

and when sequences of e and f parameters are added to g(s), we find
that

ﬂﬁ§+%.®|%uh+m§~ﬂﬁ9+%.®|%vAQVW A.\.vv m\u

= H—.JAQ + Wvl‘ls &m_.*.ﬁlmﬂu. + N\.v|ﬁlw
0

s 107 b o B0ty

BrtE ) (I+2)?
for E < F. When 4 > 1, or B > ], the double series under the inte-
grand is neither separable nor summable, and so in general it cannot
be reduced to a single summation.

In the third case, when an a + s parameter, and a ¢ + s parameter are
both present in g(s), we have

dr, (4.8.3.8)

1
Ila+s,c—a; c+s],Fla+8; c+s; y) H.—. zora-lezy(1 — g)—a-1dyg,
0

(4.8.3.9)
When we add an e parameter, we find that

Ila+s,c—a; c+s],F(a+s,¢; c+s; y)

~
u;. QZ;TVZ:HQT&Hﬁ.m.w.::
0
for |y| < 1, and when we add an f parameter also, we have

I[a+s,c—a;c+s]Fyla+s,e; cts,f; y]

H.—,o astel(1—z)—et File; f; xylde. (4.8.3.11)
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For general values of E and F, when we have added sequences of both
e and f parameters to g(s), we find thatt

Pla+s,c—a; c+8] gruFpala+s,(e); c+35,(f); ¥
= .‘.HH?ELCI&V?TH eFelle); (f); zylde, (4.8.3.12)
0

for E < F+1l,orfor B = F+1and |y < L
For A = C > 1, the double series under the integrand is separable,
but not summable, in general, and the theorem leads to the result that

I(a) +8; (€)+ 8] g1 xFysrl(@)+38,(e); () +s,(f); ¥]
4 , 1
= \mpﬂm&v —a,; (¢) ...Q.L._.o gstau—1

X 4Fa a1 +a,—(c); 1 +a,—(a)’; )eFrlle); (f); xylde,
(4.8.3.13)
for E < Forfor E=F and |y| < 1.
Here the most interesting particular case is probably 4 = 2, which
leads us to a ,F(x) Gauss series under the integral. In particular, when
E = F = 0, we have

I'la+s8,b+s; cts,d+s],Ffat+s,b+s;c+s,d+38; y]
=I'{b—a;c—a,d- &.ﬁ zste—leg—ay
x Fi[l1+a—c,1+a—d; 1+a—b; z]dx
+I'fa—b; oIP&IS._.M xs+b-le-2y

x F[1+b—¢c,1+b—d; 1+b—a; x]dz.  (4.8.3.14)
For 4 > C > 1, the corresponding general result is
I(a)+s; () + 58] grxFoirl(@) +3,(e); () +3,(f); ]
- MH:Q —a,; (0)- a\__._.wafélﬂ

x o Fy [l +a,—(c); 1+a,—(a); (—1)4+Ca]
x uFpl(e); (f); xyldz, (4.8.3.15)

1 Erdélyi (1954), §§ 7.5 (26), 7.5 (18) and 6.9 (10).
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and, in particular, for 4 = 2,C = 1, E = F = 0, we find that

Ila+s,b+s; c+s]Fa+s,b+s; c+s; y]

=I'[b—a; ot&._.o zste-le=2V \Fill+a—c; 1+a—b; —z]dx

+I'[a-1b; QIS_. a*tt-le==V Fi[1+b—c; 1+b—a; —2]dz,
0
4.8.3.16
for |y| < L. A )
The fourth case is

Ma+s,a+d; d—s],Fila+s; d—s; z)

,_. z8+a—1 M

uﬂaﬂ\-

S ey miofils atd+2m; —2lds. (4.83.17)

Here, the double series under the integral sign is neither separable, nor
summable, and the introduction of further a, d, e or f parameters does
not alter this state of affairs.
When g(s) contains three different parameters involving s, three
further groups of cases arise. First, we have
g(8) = Ila+s,b—s; d—sl,Fi[a+s,b—s;d—s; y], (4.8.3.18)
where |y| < 1, and its extensions

QAWV = HH@.T.wu@.I..ww &'%H_H.Tm.mw...fumﬁn*n%.@'%‘ AQV. &lh“ A.\.Vw Q“_“

(4.8.3.19)
where £ < F, and
g(s) = T[(a) +3, ()~ 8; (@) —5) 4upsuFprp me H Mwwlm (e); .@H_ .
(4.8.3.20)

where A+ B+E < D+F+1,and A+B >
Secondly, we have
9(8) = 'la+s,b—s; c+s],Fifa+s,b+s;c+s; 9], (4.8.3.21)
where |y| < 1, and its extensions,
g(8) = Lla+s,b—s; c+ 8] pioFpila+s,b—3,(e); c+s,(f); ¥l

4.8.3.22
where F < F, and A )

9(s) = I'l(@) + 3, (b) — 8; (c) +5] m+m+m§o+~._wﬁv .AMW...MNV M\wx t€); QH_ ,

4.8.3.23
where A+ B+E < C+F+1,and A+B > C. A )
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Thirdly, we have

g(s) = I'la; +s,a5+s,a3+8; c+8,d—s]
x Fola;+8,a5+8,a5+8; c+s,d—s; y], (4.8.3.24)
and its extensions,

g(e) = I'[a, +s,a,+s,a5+8; c+8,d— 8]

x ENEM_HS +w Mﬁw%m}w (e); & | (4.8.3.25)
where B < F+1, and
g(s) = T[(@)+5; (&) +3, (d)—s] %x@?uiﬁwﬁw mwn ) .c“_ .
(4.8.3.26)

where 4 > C+D,and A+E < C+D+F+1.

In these three groups, however, the inner double sum is neither
separable nor summable, owing to the presence of an a and a d para-
meter, or a b and a ¢ parameter at one and the same time.
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5
BASIC HYPERGEOMETRIC INTEGRALS

3.1 Basic contour integrals

All the results of the previous chapter can be generalized even further
in terms of basic hypergeometric functions. But, before we can do this
successfully, it is necessary to develop the concept of a basic contour
integral. The earliest attempt to produce a basic analogue of the
Barnes-type integral seems to have been due to G. N. Watson (1910a).

This attempt was not very successful, since the poles were taken in
the g-plane, so that no direct analogues could be found. The subject
was neglected for nearly forty years. In the meantime, the general
transformation theory of basic series was being developed by other
methods, but these methods of proofs were often long and unsatis-
factory. The desire to produce simple, unified and elegant proofs on
the lines of the Barnes-type contour integrals led to a renewed interest
in the possibility of defining a basic contour integral.

In the first place, we shall consider in detail the proof, by the use of
such a contour integral, of a particular relation between four ,®, basic
series, to illustrate the general method. Suppose thata, b, ¢, d, e and z
are complex numbers such that none of the members of the sequences

—loga—n, —logb—=n, l—loge+n and =,

forn =0,1,2,...,coincide. Let

Py(s) = (g°z¢/e; q)x (g °fc; @) aﬁ. Qv (g*+%e/fz¢; q)x
(@9%; @) (¢ */e; @)n (bg°; Qv (9% D
where 0 < ¢ < 1, thatis,¢ = e and ¢ > 0.

This restriction, that g is real, is not such a drastic one as it appears,
for, when the result has been proved for g real, it can easily be extended
to complex values of g. The restriction is only introduced to simplify
and shorten the proof, by making sure that the strip contours to be

considered will all lie parallel to the real axis.
Thus,

Qma = e—(log a+mc.

and has the period 2mi/t. Hence 1/(ag®;q)y has poles in the s-plane, at
all the points s = —loga + n + 2kmift, one set of poles in every strip of
width 27/¢.

II SGH
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Thus, we are led to consider the integral

Iy = .Tz@ ds, (5.1.1)

taken in a clockwise direction round the rectangular contour of
Fig. 5.1,
A(—1inft), B(imft), C(2N +injt), D(2N ~int),

y

E B C

r—=——==- o

" x|x x x x(x x ¥ x x

}

|

|

|

" \ X X X [x)x

1

—2NF= N\ 2N

[Ta O\

|

|

|

IX X} X X X X X X

_I.l'\

|

|

|

|

b — <

F A D
Fig. 5

for large enough values of N. This contour is indented, if necessary,
to ensure that the first N of the points in the increasing sequences
1-loge+n and n, forn=0,1,2,...,N-1,
lie within ABCD, and that all the points in the decreasing sequences
—loga—n and —logb—=n, forn=0,1,2,...,N-1,
lie to the left of AB.
Now, by the periodicity of Py(s), in 2mi/t,
.—, Py(s)ds+ Py(s)ds = (5.1.2)

D4
On CD, s = 2N +ir, where — 7/t < r < m/t. Hence,
inft

i
I, - Py(s)ds = @.._. NEVZEZI%.V — Py(2N +ir)]dr. (5.1.3)
: 0

—inft
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Now 1 —eRI0B DN  |] — qg2N+ir| < ] 4 eRIMoB @) g2V,
and
Rl(a) 21 - ¢*¥/Rl(a)} < |1 -ag~?¥+| < Rl(a)¢~2¥{1 + Rl (a) ¢*"}.
Hence
(@g®™*; q)y (bg2N; q)y
(cg®™*; q)y (dg~2N%; q)y
(Rl{a)g si%. e —RI(b) g+, q)y
(R1(c)¢®; q)y (—RI(d)¢™; g)y
< OAQZEQQN b—log &V.

< E (log b—-log &w

Accordingly,

inft
Ii—|" Pys)ds

‘ —inft

< O(g¥ Ridog 3.‘.% dr,
0

< 0@2 Ridog Sv.

and this expression — 0, as N — oo, provided that Rlz > 0.
Hence
t t inft Qplm\o_ &Qa. QH+m®\nN, wluuo\aw

2m v>I=5n o

2mi) —inn Lag’ g fe, bg’, g7 QH_ ds, (5.1.4)

as N - oo, forgrealand 0 < ¢ < 1.
But Py(s) has poles at all the points which fall within the strip
ABCD in the s-plane, that is at

l-loge+n and =»n forn=0,12,...,

or at 1 -loge+n+2mK |t and n+ 2miK/t, for some integer K, if the
original points do not fall within this strip. Of each set of poles, only
one can occur in any one strip. From this result (5.1.4) and a con-
sideration of the residues of I, we have

o _ e 9w leqiez; a)n (zofe; )y

N (s an(gles Dx (b; 9y (45 Oy
¥ (@5 @)n (b5 9)nlc; @)

* 2@ 0 @ ), € 0

(efe; @)n (gd/e; Q)n (@%fcz; Q)n (26]0; Q)n
(gafe; @)n (gble; Qn(ef/a; On (@; Qy

Y. (agfe; 9)n(gble; @)n (gc]e; 9)

n=0 (T Dn(qd/e; 9), (@®/e; @)n

mﬁ

21+ 0(ng")]

-+

X

22?1+ O(ng™)]. (5.1.5)

I1-2
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When N — oo, using Tannery’s theorem, we find that

gjc,d, gelcz, czle; ab,c;
wE :_H a,qgle,b,q; H_we» d,e; q,%
efc,qdfe, ¢*[cz, cz/q; _Hma\m ,gb/e, gefe; H_
+:ﬁﬂm~\m gble,efq,q; q |sPe qdje, ¢*le; g,z |. (5.1.6)

In the same way, from a consideration of the poles of Py(s) in a
similar strip to the left of AB, we find that

IN _ :_Hma c,dja, qefcaz, cazle; H_ _Hma /d,qale,a; 7 Q\NH_

2m bla,qale,a,q; gajb,qajc;
gbjc,dfb, qechz, cbz/e; H_ _H%E,%\?ow Q
all afb, gble,b,q; el gbja,gpje; @Y7 ] BT

where y = gdefabc, and Rl (y) >

By analytic continuation, these results (5.1.6) and (5.1.7) will hold
also for |q| < 1, and when we equate (5.1.6) and (5.1.7) our final result
connecting four ,®, series follows under the conditions

|defabe| < |z] < 1, |g| < 1.

When g — 1, that is when ¢t - 0, (5.1.6) and (5.1.7) reduce formally
to the special cases of (4.6.3) and (4.6.6) when 4 = B =2, and
Q = b =

5.2 General basic integral theorems
For an immediate extension of the result (5.1.6), let us consider the
integral
I, = .ﬁ Py(s)ds, (5.2.1)
where
- 1 . -8
Pys) = L2/ D ( ES D (917023 Qn (02g5 Oy (5 9 9)

s ’

(@ ¢% Q)x (@**/[d); Ox (a5 D

o= MH MN Mo and there are 4 +1 of the a parameters, 4 of the b
N sem
parameters, and C of the ¢ and d parameters. If this integral is taken

round the same two strip contours of § 5.1, we have

inft
N../..li“ Nw?.A%v Q.ww — QAQ?.HQQOW va

—inmft i
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to the right of 4B, and

_ QGZ@:EN QIBVJ

imft
I,— ._. Py(s)ds

—inft

to the left of AB, where

o bababadidy e

@305...0,4,3CCz...C0

Thus, if Rl (log £) > Rl(logz) > 0, I exists and tends to I as N — oo,

where )
H.‘y:i ﬁnﬂlu\ av ASQ Qui\&a &Q‘mlw H_Q%.

5.2.3
& wm |w\ uQ|hn A v

—injt
From a consideration of the residues of the integrand within the

same strips . )
(2N —imjt, imjt, —in[t, + 2N +inm/t)
we deduce that

wﬂl : ﬂwow\ﬂwv w\wa e & eqe,?oﬁww.mwM @&
Bl
xm...%zﬁm,mﬁ #10,47]
=B g 4]
y E:@amﬁmwﬂ NMH\\MNWM@; o

i0---Cq o9 \wmcvuvn...f&p&m:.&c

where a=
2---dp A18y...0,4,16Cy...Co

under the convergence conditions
lgl < 1, || < 1,|gbyby... b f(a1a5...a.y)| < 1.

This is Sears’s general basic theorem.t As we shall see now, it can
itself be generalized still further.

The first step is to try to improve the symmetry in the integrand,
in the hope that we might be able to remove the restrictions on the
number of parameters, that is that the number of a parameters should
have to be equal to the number of b parameters plus one, and similarly

t Sears (19514d), §4.3.
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that the number of ¢ parameters should have to be equal to the
number of d parameters. With thisend in imdﬁ we consider the integral

NH_. ,.\“\s _Hes &ﬁ Q% (5.2.5)

in which there are 4 of the a parameters, B of the b parameters, C of
the ¢ parameters and D of the d parameters. Again we assume, for the
moment, that ¢ is real, only to ensure that our strip contours will all
lie parallel to the real axis. All the other parameters in (5.2.5) are
assumed to be complex, and they can take any values for which the
resulting series do not become infinite or undefined numerically. Thus

€1,€qy ---sCo and dy,d,, ..., dp
are complex numbers such that none of the members of the sequences
—~logc,—n and logd,+n,
coincide for = = 0, ~ 2,...,v=12..Cpu=12..D.

L@a D (B)2; D)y
Let M (O D (@7 Dy’ (5.2.6)

Then, by considering the integral

N

Iy r=|TI(s)ds (6.2.7)

taken round the contour A BCD of Fig. 5.1, we find, as before, that
N

N
2mily p = mwﬂ@%+ obﬂ@mm.

that is ’
£ (int N 1 [t N . N )
Iy p— 7] II(s)d p {TI(2R +ir) —TI(2R —¢r)} dr.
(5.2.8)
N (=Rl(a)¢*%; q)y (—**/R1(b); @)w
Let R : 5.2.9
° TR = Rie) g gy (¥ RI@: gy~ 0D
Then, as before,
~
TR >1 as R ->owo,
N N
and TT(2R +4r) < TI(R) ¢%,
where k=NZRIb-2ZR1d)+2(D-B)NR
t inft N
Hence I =] B I1(s)ds
F/<
.‘. dr O(g%) TI(R)',
< QSJEE\? (5.2.10)
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Let Iy = lim Iy p.
N—»

Then, provided that D > B,

7 1 (iatt N
N omi it :A.m.v ﬁw%v AQ.M.HHV
and, if D = B,
i £ [imt N
Tzlw|1. I[I(s)ds| < QQMN;IMWEVQ&. (5.2.12)
) —ingt

N
But I, hasresidues within the strip A BCD at the poles of [](s). Hence

1 2 ¥(a)d, (b)/d,;
Ty = W.d (©)d,, d)/d,; !

S ((©)dy; 0499,/ (0); Da n
n=0((@)d,; ), (¢4,/(d); @), "’
where Q, = (—qirtid vbluE.

g,
Now let ¥ - o0, and we find, if D > B, orif D = B and
RI(b;b,...b5) < RL(d,dy...dp),

(@)d,, (b)/d,; ()d,, d,/(b);
(©)d,, (@d)'/d,; ? m40® - av&sm&\@.nbu_

x (5.2.13)

that
D
RRL
(5.2.14)
»/._4

Similarly, by considering the residues of [](s) in a similar strip to the
left of AB, we have,if C > Aorif C = 4 and

Rl{a,a,...a,) < Rl(c¢,¢,... ¢5),

then
S ®)e. (@)fe,; @e, ge.f@);
-3 o 6, (c) fc,; 0] aen®aecai eprac, () A
(5.2.15)
T n«n Ay ... &
where Q, = (—qintc )0 i

Hence we have the main theorem,

svfs\& @f&?
m: ©d, &Ek w0y im_

: ~: 4 \hu
Muu A ve\t Anv \O\t q k+Nver+OIH AOV 0\: QO\«\ Ov Q“ @k , Amwwmv
provided that

(i) D>B or D=B and |bb,...by| < |dyd,...dy),

and (i) C>4 or C=4 and |a,a,...a4) < |c,cy... 0.



168 BASIC HYPERGEOMETRIC INTEGRALS

It should be noted that the results corresponding to (5.2.14) and
(5.2.15) for ordinary hypergeometric series, (4.6.2.4) and (4.6.2.5)
cannot be deduced simply by letting ¢ - 1, in (5.2.14) and (5.2.15),
since this would require that ¢ - 0, in the integrals of (5.2.7). However,
these results can still be proved directly by the use of analogous
Barnes-type contour integrals, as we saw in §4.6.2.

We give here a few examples of the use of this theorem (5.2.16).
First, if A = C and B = D, it reduces to the previous theorem, (5.2.4).
IfA=B=C=D,wehave

;se\% 3&3@, @
Mz?s.@ '1a,; 9| 2a%ea] (o) 3.333&‘& &&

M :T& c,, (b)fc,; & y eﬁ-ﬁ& ¢, 5\6 ) 010,...0 L

05 on \0-: AOV Co» an\Aav > E C1Cp---Cy
(5.2.17)
where

161y by] < |dydy...dyl, |ayay...a ] < ]eicy...c4) and |g < 1.
In particular, if A = 1, then

ﬁmm E& H_ _H& ,9d/b; m.snm_ ., &wﬁ\s ea@ (5.2.18)

provided that |b| < |d|, |a| < |c| and that |g| < 1.
Similarly,ifC =2,D=1,4 = B =0, then

2Daled, de; 5 g, —giv+i]
= Il[de; dfc; 1D [ce; ge/d; ¢,g"*¢/d]

+ I[ce; ¢fd; q),Dy[de; gdfc; g, 97t d[c], (5.2.19)
for all values of ¢,d and e, and |g| < 1. This is a basic analogue of a

well-known result in the theory of Whittaker functions.
The theorem (5.2.16) can be generalized further by the introduction
of a free parameter 2. We can achieve this by writing 4+ 1for 4, B+1
for B, z for bg,,, and g/z for a ,,. Then the theorem can be rewritten

av&gan&\u,u\&; Ao&:m&\
M:TS @ & 50Can| (0yd g fiay; Q,i

:&,SV\&,&&,SS‘W Easme‘\AaVW\
M I A& OE AQV \a_: QH— h+be~w+clp va ¢, qc, \on : q, ng ’
(5.2.20)

'

where lgl <1, Q, = (—gi**id,)P-B- ﬂo om & .
. dp

t Slater (1960), (1.9.4).

GENERAL BASIC INTEGRAL THEOREMS 169
and Q = (—girtigo-an e ad,
€1€s..-Co?

The conditions for convergence now become
(i) D>B+1, or D=B+1
and |byb,...bp2| < |did,...dp,,,
and (ii) C > A+1, or C=4+1
and [@,a,...a,¢) < |26,Cy... €441
In particular,if A = B=0,C = D = 1, we have

n[ .00

2c, q/zc; QH_ 1Qoled; 5 g,2/d) = Qgled; ; g,q/2c], (5.2.21)

provided that |z/d| < 1 and that |g/zc| < 1.
IfAdA=B=0,C=2,and D =1, we find that

qd/z, z/d;

c;d, cod; g

— NQT Q\NOH. _ w +m
D_HQH&, CafCy; H— _Hmou\& & - \NoHH_

209, q/2s;
II y 2 —gint+i
+ de,, ¢, /cy; H_ _Hma»\& q —q \NQ&H_ , (5.2.22)
provided that |z/d| < 1, and, finally,if A = B=1,C = 3,and D =
we have

Il :Qole,d,ead; 5 q,2/d)

W I ad,,bld,,z(d, qd [z, (@ ¢, d,, nm&s cw&s qd,[b; bz
A Led, epd, c5d,, (d)'/d,; 1197 ad,, ¢d, /(@ 3.4
3 be,, afc,,z2c,,q/zc,; H_ d ¢, & c, In?+m§
= :_Hn o < %0 O, 1 , H—.
N &H Q\t &N O\t Anv \Otw 7 @O\t Qak\AO 7 21 CyCg
(5.2.23)

provided that |bz| < |d, d,|.

5.3 Well-poised basic integrals

There are four integrals which provide the basic analogues of §4.5.2.
These lead to the four general transformations of basic well-poised
series first given by Sears.t The first of these integrals is
5= -—J.ax I q=s/(b), ¢ +4ad, glcag b, qristmitg} gi-siningst. H_ ods
—imt L(@) Q5 (@) g~*/ay; ’
(6.3.1)
where there are M of the a parameters, and M — 1 of the b parameters.

t Sears (19514), (7.2), (7.3), (7.4) and (7.5).
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This integral Hmmmm us in the usual way to the result
I Q&e\ﬁvv Q\AQV ac, ln«ovwﬁ ot IQQoIWH Qg

ag, (@), (@)/aq;
a0, (@), (B);
x Naewa-HF“c\@ 400/(0); 2@

- w _ —%.
Ma 11[[9%/(®), 900/a,(b), adfa,, ~abja, ga,a5t, —ga,agt; &
Aav\ﬁi vAQ \9?
a,(a)/a,, a,(b)/ay; H_
xgewz-uﬁs\ae ga,/(a)qa,jb); ¥¥ ] (532
where y=—qMad-Y(a,ay... A3 b1 by ... by 1)

This theorem expresses a well-poised ,,,®P,,,_, series in terms of
M other well-poised ,;,®,,,_; series. It can be thought off as the
process of ‘pivoting on a,’.

If, in the integral (5.3.1), we add an extra term mwew we obtain the
integral
I H.‘.e.i“ E—HQTQ\ASVQTLSQ\GYQTIaw , g\~ }, glrstmitgd

209" (@) 45 4% 4*(@)/a;
gi-etmilggd

—inft

, wlwa«c vmw.fwaw

H_ ¢*ds. (5.3.3)

From this integral we can deduce the second well-poised theorem,
zﬁﬁﬁo\ A&Y&c“ |Q6wv qay t s —qq ot Qwﬁc b an«o, Qg

AQV Aav Q\eu
a, (@), ®); ,
g Ee?ﬁr\@ qao/(5); Q.L

qa,/(b), %o\ ,(b), tadas, gtaba;, ab/fa,,
So\ﬂ.: \Q-; Q—; Qvﬁﬁv\ac ’

.IQ\%\Q\-: QQ:Q&«w‘ loﬂavﬁélw. Q;

ESV\@.E@\F
x§e§|%§\ae§“£ ?.ws,iu_, (5:3.4)

where y = —qM¥a¥ (@ 0,a,... a3 b, b, ... by).
Similarly, § by putting M + 1 for M and by, = Qwa? we obtain

it [qi=o/(b), ¢t az t, gt 0ad, ¢ ~vait, gt rrmilad,
L=|"_ul7

Mam

—imft v va Am«v mlw\ﬁow

1—s-taifl, —%.
¢ QH_ g*ds, (5.3.5)

¥ Sears (19514d), (7.2). 1 Sears (19514}, (7.3).

§ Sears (1951d), (7.4).
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from which we can deduce that
:ﬁﬁgc @v Q v Qwaolwv QM- IIQ\W.QQQIW |Q9 w Q;
acu Qv Agv\ac'
ay, (@), (b); H_
X a3yf.. e 3 ¢ s
2341 N.S—HQQO\AS qa,/(b) m Yy
M1 ?:e%&??@?w?%s

= Yall ,
2% aofa, (@)fa,a,, (@) a/a
—~a}fa,,qa, a5, —qa,a5t; QH_
c?«v\ﬁov ea@V\ﬁcu Q
X 91711 P , , (5.3.6
ra®er g0 e qn s ¥Y | 39
where y = —qM+iall+¥/(aga, ... ay by ... by).

Finally,t if we have M of the b parameters, we find the integral

injt 1-s 14e .
g2/ (b), ¢ t5a,/(b); .n._ _

L= n ods, (5.3
" i L2005 (@)0%,07, (@) gag; 1|7 (8.3.7)

from which it follows that

11[740/(0). 4/(0), 0§, — ad, qazt, —qait; &

ay, (@), (a)/a,;
an AQVu HOVW "
% aar1 e _“?_\Aay gao/(d); T “_

= m a. :ﬁng—.\Avvu QQQ\&Eﬂvvu g%\atu IQW\g!u Qaza@lwu |Q§<§O|*w Qg
S0 Lagla,, (@) fa,, a,,a,(a)/ay;
a,,a A Q\cv @V\gc.

X o741 P
DTV g la) qa, afm&.\\@v“

q, w\H_ , (5.3.8)

where Y = —gMall~Y(a,...ayb,...by).

5.4 Asymptotic forms for basic integrals

We can extend the main result of §5.2, (5.2.16), still further, if we
introduce the concepts of asymptotic expansions, and analytic con-
tinuation into our basic integrals. In order to do this, we are going to

t Sears (19514d), (7.5).
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investigate next the form that (5.2.16) would assume if the restrictions
D > B+1andC > A+ 1 wereremoved. We shall restate this previous
theorem shortly thus;

?E% _TN®O@) if D=Band RIZ(b—d)>0,0rif D> B,
and
.—.:3% =3[P(c) if C =4 and RlZ(a—c) > 0, orif C > 4.

Now, in all cases, even when C < A4 or when D < B, we have, for
R fixed,

N

Tl ds|< 1|1+ (a) g |1+ (b) g"~*

_ () g%+ |1 —(d)

7| |L+g+m+R]z| |1 +2¢"F].

DN
The next term of the series 3] ®y(d) is of the same order in E as

N N
T1(s)ds; similarly, for B’ fixed, I1(s) dsis also bounded above
DC FE

as N — oo, and this integral is of the same order in £’ as the (B’ + 1)th
term in the series CN
I DpAo).

Hence, we can say that when D < B,

H ,..a\n A&w Qu, nfru\nM @v Qlu.wmlmp Q
- II Qm
omi) _imp L), ax,u. 7
(@)d,, qd [z, (b)[d,, 2[d,; H_ .
~ - : ” # H F
M [ 4, @)/d,.q; e
(c)d,, qd,/(b);
x W+Oek+blw AQ &\Ht Q&\\ &V ; q, @.:
1b5...bp2
& dp’

(5.4.1)

where Q,= (- %E&&LULW
and, when €' < A,

~@.a\~ APVQQT@\NASQI.@NnL H_
|. : ds
2m) e L(C) G & q

L (@)/c,, 26, q/zc,;
1 E@e e 4]

@??>a:~ w
X k...bew;..o.luﬁﬁs C,r an:nv\w q, @vg ’ AL.A.MV

Q‘ Q*=+w0 lek E.&Q

where > C1Cg . O "
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As an example on the application of this theorem, let A = B = 0,
Q = 1 and D = 2, then we have

inft 1+s -8,
1 :ﬁ q°[2, 247 Tm

wns —imt Lag®, g %(b, g%
=1 _Ha\w\w. e H_ 1Oi(a; b; g, —gin—izb)
+:_HQM\MN@~M\M” ; Dilga/b; ¢2b; q, —qintiz]
~ :WM\M\MNQ & 2 Polgafb, a; ; g,q/az], (5.4.3)

andif A =C=D =1, B=0,then
1 it bg®, ¢z, xg~5; b, :e z;
M|§s. it zﬁg vﬂlmv g ds = ﬁ g HGH_”Q G q, uﬂ”_
bla,ljax,azx; -
~ 11 aq. q | :Dola, qajb; ; q, — gbg~¥n—%/2ax]. (5.4.4)
These two results provide basic analogues of the asymptotic forms for
the confluent hypergeometric functions.t

5.5 Contour integrals of basic functions
A process of generalization, exactly similar to that for the ordinary
hypergeometric functions, will now be carried out for the basic
functions. The first step is to replace the integrand
(@) g’ (b)g*;

1] o @ 1] &80

in the main theorems of § 5.2 and §5.4 by the general function
M | @G - ((€); mg™
©)gm*, @) g™ J(F); D (@5 D

Then, ann oosm:uosm which make the convergence of the above
series absolute and uniform, we can state our main theorem thus;

inft —8.
et I=_" :_H§~ , 6) Q& QH_

2me) _inp
c)q?, (dygs, (e
B T

(5.5.2)

(@)d,, \&z < ((©)dy; Dam
M — : ; A 1/2m+n
D hM AO .=‘ &v \& sMo 3N;o AAQH &\3 vav:.*.ﬁ.
(9d,/(0); )n ((€); Qm §©;

(9d,/[d); Q)n (@5 9)a ((F); .
t Slater (1960), (4.1.2) and E.fv‘

X -

, (5.5.4)
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B m:@s@@? 5 3 (@0 Qoo

p=1 (d)e,, Anv\\o_: m=0 n=0 Q@V G va§+=
(ge,/(@); 9)n ((€); D"

. 5.5.5
@0 J(©) D (@5 D S D Dm’ (5.5.9)
b, b, .
= in+4\D-B
where Q.=(- m +2) 4.4, &
[ WS..T* Q'k,@u.gw..-gkﬂ
and & =(-cg ) €1Cy...Co

Then, for |¢| < 1,¢ > 0,

(i) I=32pi D> B,orif D=DBandRl(b,b,...bg[dd,...dp) > 0,
and I ~ Zpif D < B; also

(i) I=354 C>A,0orifC=Aand Rl(g,a,...a4/¢,¢,...¢0) > 0,
and I ~Z,if C < A.

5.5.1 The general theorem. Again, it is not necessary to assume,
in the integral of (5.5.3), that all the parameters which occur in the
products in the integrand must also occur in the ® function. Also, we
can introduce an independent variable z, and thus we can state the
theorem in its most general form;

o _ il @) a5 (075 (9) ¢ (R) g%, 295, ¢ %z;
@ =T oo @yg, e, () = @ N
_ .t o ©¢% g () T4
I omi l.a:d@VQ+b+mem+m+m,_”A&m ®) g (F); q, H_ 3,

(5.5.1.2)
C ® o
=X M(fe) T X

y=1 m=0 n=>0
(D) ¢,; Damin (26.1(@); DalF) €5 Dmsn
(96,/(9); Dmsn ((€); Pmx™e™ o] o7
AAQV o—: Qvn§+§ AQQ \on esAva o_: Qvifa
(2¢,/(3); Dman () D (@5 D (T D

.. H\_wwv 3Mo 3M
AAav\.w.e.. Qvu:l.x‘ Q&VQE Qvﬁiﬁ AQ.?\AQV“ mvs
L (k)5 @ l(€); Dma™B"
(@D D (O3 Den @l G5 D (R G5 D)

(f); D (@5 D (@5 D
(5.5.1.3)
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where oy = Alo_.m*fwvoiAE.
€1Cy...Co
(5.5.1.4)
oy = (—¢, gim+inth) |QLE.
NJedr
and B = (—j,zqirtys-619192::- e, 5.5.1
I (5.5.1.5)
ME&L M M
#=1 mm0 n=0

(©) 4 Domin (94,/0); Dul() 415 Dincin (98,/(R); Qrnsn

((e); Pma™yryg+"
23 &\: Damin 3&\“\?& D ((9) &E Drion Q&\h\ k); Dmin

((F); D (@; Din (g 9)se

+ M::ﬁ S

p=1 m=0 n=0

(@) ks D (OVk; Dmon () ks O (gk I (R); @)
((¢); @)mamo™
AA v\ﬂﬁ QV§+§A \No\t Qv§+§ AAQV Nnk“ Qvﬁ Q\n\.\ \nv &v:. o

(5 DT O (@5 D

(5.5.1.6)

D e
B (5.5.1.7)

ve=(—d %i?éa-m-% SaEL

kyky.. kg
and 8= (—k,gri)E-H- HL (5.5.1.8)

kiky...
Then, when |q| < 1,t > 0 and Rlz > 0, we have

(@) I =2pif (@)D > BorD = Band Rl(b,b,...bp/dyd, ... dy) > 0,
and (b) K >H+1o0or K=H+1 and Rl(hhy... hylkiks... kg) > 0,

ard I ~Zpif(c) D <Bor(d)K < H+1,

(i) I =2¢if(@)C > AorC = AandRl(a,0,...a /¢, ¢y ...0) = 0,
and (b)J > G@+1 or J =G+1 and Rl(g,9,...9g/i1js...j;) = O, and
I~Z,if(c)C<dor(d)d < G+1.

We shall give a short outline of the proof of this theorem. It will be
agsumed in this proof, that ¢ is real, and ¢ = exp (—1¢), ¢t > 0, though
this restriction can always be removed from the final results, by
analytic continuation over the circle |g| < 1. Now

aq® = exp(—tloga —ts),
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and this expression has a period of 27i/t. Hence the product 1/n(aq®; ¢)
has poles at all the points s = —loga —n + 2mi/t, one set in each strip of
width 27/t. So let us consider the contour integral

M P
21} ds
t (@) g™, (0) g% (@) ¢ (R) 4%, 2¢°, ¢~ [2; H_%
= ) 201 @ gmor @y ()4 14
(5.5.1.9)
taken round the rectangular contours of Fig. 6.1,

A(—mift), B(mijt), C@N+mift), D@N —mift)
d
o _mift), B(mift), B(-2N’+mijt), F(—2N —mift),

where N and N’ are integers, such that P > max (¥, N’). Both con-
tours are indented so that the first 2V of each ascending sequence of
poles of MP

2 11g%

fall inside ABCD and the first 2N’ of each descending sequence of
poles fall inside ABEF. This implies that none of the sequences of
poles coincide or overlap. By the periodicity of the integrand in
2mift, it follows that

M P M P
Y 1I(g*) ds = 2 11(g%) ds :
BC AD
M P M P
and TI(g)ds=| XTI(g9d
FA4 EB
M P M P
Hence Ip vy = ZIl{gY)ds+ Y 1I(¢g%)ds
AB CD
M P M P
and —Ip ooy = > 1I(g°)ds+ >Tl(g®)d
AB EF

But Ip n 3 =t Z (residues of M ESJ within ABCD),

M P

and —Jp yo 5 =t Z (residues of 3 [](¢—*) within ABEF)

DMN P KMNP

so that va. NMT M M M :A&k QS—.T:.V + M M :A\ﬂ% Qﬁ.v.

C MNP .\

N’ P
and  —Ip g = 52 S 1@ e) + £ 5 2110
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Hence
M P DMNZP
ZII(g)ds = TX X T1(d,q™*")
4B KM M P
+MMM_§ M+ | XII(g)ds,
CMNP be
=3 X XIlg™™"/e,)
. JMN P M P
+ X 2211 ™)+ ME@ ds,
M P t nft M .
where  Sligds| <y, H ’ :M_EQE, | dr
M P t mt M P
and Mﬂ g°)ds 5 liM | [T(g¥+r) | dr.

Now [p¢ is vozbmmm above as P — oo, and, for N fixed, [p is of the
same order in N as
DM EM o

2 XIIE, g™+ + Z E 1 (K, gN1Y).

Similarly, ._. rr 18 bounded above as P — oo, and, for N’ fixed, .ﬁ rgisof
the same order in N’ as

CM o , ©
I ™ e, + D N1,
Hence, as ¥, N’ - o0, we have
nft M « w©

S ds = 33311 E%fm 3 Sk, ¢,

—anft

= EE R e)+ XL TT@ ), (5:5.110)
that is to say, I=2Z,=%, (5.5.1.11)
when all these series are convergent. Also,

I~%, (5.5.1.12)
ifC<dorif/ <G+1,and I~Z, (5.5.1.13)

ifD<Borif K < H+1.

5.5.2 Some special cases. We shall now give a few examples on
this fundamental theorem. Firstly, we have
t inft
om i.éEe cq®, 47 911Poleq’; 5 g, x]ds
= Ilfez; ¢,z; q1,Qy(c; cx; g, —ginH].  (5.5.2.1)

12 SGH
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We have summed here by Heine’s theorem (3.2.2.11). The function on
the right is one of the basic confluent hypergeometric functions. This
is the same result that we should have obtained if we had applied the
theorem of § 5.2 to the integral

t inft

v 8 cat. g-8. ) 5.5.2.2
5 1.%:?8?8& ,x; glds ( )

If, in the theorem of §5.5.1, we take
A=1, B=C=D=E=F=H=0, J=K=G=1,
we have
i /e
1H{ag®, ¢; kg*, 7% q)o®al ; a¢’; ¢, 2] ds

= (k; @)y (— 1 ginintd

= I[a; k; &smo CTRC) o®@i[; aq™; q,2], (5.5.2.3)

where Rl(g/k) > 0, and Ri(z) > 0. In terms of the basic Bessel
functiont defined as

278 ) _impt

¥

(%) = ﬂoepr ve; g, —2%/4], (5.5.2.4)
(5.5.2.3) becomes
t inft
— . 8 8. . Soeg
2m lma::_”@Q. Nnﬁ 4 ﬁnbaﬁrpﬁuvw r—sds

® an N —1)» gintn+1 on .
= M[a,a; k,a?/g; a:mcﬁ MV: Asivsm&aa: &%L@. (5.5.2.5)

For the series ,@,, we find, from the integral

I@) = o -k: [agt, g; cg*,q~*; 41, ®s[cq"; ag®; g,z]ds, (5.5.2.6)
that I(z) = lfaje, cx; ¢, z; q],P4[c, gcla; cx; q,afc], (5.6.2.7)
from a consideration of the sequence of poles

=—-logec—m—n (n=0,1,2..),
where Rl (a/c) > 0. Also

® . — 1Y» ginin+l)

from a consideration of the sequence of poles

1Di[cq®; agm; q,x], (5.5.2.8)

s=n (=0,1,2..).

t Jackson (1905¢).
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In particular, when # = ¢, we can sum the ,®, series by the basic
analogue of Gauss’s theorem (3.3.2.7), or, alternatively, we can see
that the series of , @, functions is now orthogonal, and so will reduce to
unity. Thus, we find that

t [int
i I{ag®,¢; cq*, 7 911 Pileg’; ag’; ¢,q]ds = M[a; c; g].

—inft
‘ (5.5.2.9)

I12-2
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6
BILATERAL SERIES

6.1 The process of generalization

There are many ways of extending the definition of the Gauss function.
We have already considered increasing the number of parameters, in
order to produce the generalized functions of Chapter 2, and the intro-
duction of a base g to produce the basic series of Chapter 3. Indeed,
the whole historical development of the subject has come from the
inborn habit of the hypergeometric mathematician of trying to pro-
duce a general theory, when faced with some elementary series which
does not fit into one of the forms already known. Such a situation
faced Dougall in 1907,1 when he discovered the formula
== T(a+n)T(b+n)
auMls T(c+n) T(d+n)
_ e Ne+d—a~-b-1)
~ sin (ma)sin (7b) Lc—a) T(d—a) T(c—b) T({d—b)’
where Rl (¢c+d—a—b—1) > 0.
When d = 1, this reduces to Gauss’s theorem (1.7.6) but the series

on the left of (6.1.1) is not an ordinary Gauss series, forit is infinite in
both directions. Such a series is called a bilateral series.

(6.1.1)

6.1.1 Notation. Let us extend the definition of (a), to have a
meaning for negative integer values of n. We shall write
@, - De=m _ (=" (-1

"~ T (I-a), (1-a)@—a)(3-a)..(n-a)
and we shall use the symbol H for those series which are infinite in both
directions, so that the general bilateral series is defined as

SM (@) n (@2)n (@3)n - - Aakv:.
w0 (B)n (Bo)n (Ba)n - (ba)n -
When there is no danger of ambiguity, this notation can be contracted
further to ®

W2, AM@WWQ. 2t = Hyl(a); (b); 2], (6.1.1.3)

+ Dougall (1907), eq. 26.

(6.1.1.1)

QHuQNVQG. ...nakw

"=  Hp

by, ba, by, ..., bp; NH_. (6.1.1.2)

THE PROCESS OF GENERALIZATION 181

where it is understood that there are always A4 of the a parameters and
B of the b parameters, as usual.

Alternative names for such series are Dirichlet series, or Laurent
series.

We can always write

aHgl(a); (0); 2] = gH [(1-0); (1—a); 1/z].  (6.1.1.4)

This merely expresses the fact that the series has an unaltered sum,

when the order of the terms is exactly reversed, provided that both
series are finite, in both directions.

The function ,Hy[z]is defined for all real and complex values of the

parameters

Ay, Aoy Oy ooy B gy 01,05, 05, ..., b

except zero or integers, and for all values of the variable z such that
[z] = 1. If 2 = — 1, we must have

RI(by+b,+...+bg—a;,—ay—...—a ) > 1 (6.1.1.5)
for convergence, and if z = 1
RI(b,+b,+...+bp—a;—ay,—...~a,) > 0. (6.1.1.6)

If any one of the a parameters is a negative integer, the series termi-
nates above, and, if any one of the b parameters is a positive integer
the series terminates below. If any one of the @ parameters is a positive
integer, or if any one of the b parameters is a negative integer, the
series is not defined.

6.1.2 The generalized Gauss theorem. In this notation, the
formula (6.1.1) becomes

¢, d,1-a,1-b,c+d—a—-b—1
_J_H —ad—acbdb H_ . (6.1.2.1)
We shall now give two ways of deducing this theorem.

The first method of proof depends on the fact that any H series can
always be expressed as two F series, so that, for general values of d, we
can rewrite the H series as

mmmﬁau @» 0- &w MH

waﬁauww Q“&w HH_ =

_ (e=2)(d-2), (c—1)(d-1) (@), (B)g

~ T @ 2),0672), +S|:QT:+H+ +E @)
_=1)d-1) [Le—2,d-2; 1,a,b;
T {a-1)(b I:.%_H a—2,b—2; H“_Jmﬁ e, 1| (6:122)

But, if we put ¢ = 1, in the formula (4.3.4) connecting three ,F,(1)
series, we find immediately, that the expression on the right of



182 BILATERAL SERIES

(6.1.2.2) is equal to the expression on the right of (6.1.2.1) above, by
a simple use of Gauss’s theorem.

In general, when 4 = B, it should be noted that we can always write
aH [(a); (b); 2] = ki@hi. (a); (b); 2]

1-b
+ E MHI twmimvmrﬁls“ (2—a); 1/2]. (6.1.2.3)

Alternatively, we can prove (6.1.2.1) by evaluating the residues at
the poles within semi-circles to the right and to the left of the imaginary
axis, of the integral
LI _J_Hly:.w,i.ii ds. (6.1.2.4)

I=—
2m) _ie c+8,d+s

Another formula,{ due to Dougall, is
I ﬁm + }a, b, c, d, e; _H_
5 ta,14+a-b,1+a—c,1+a—d,1+a—e;

1-b,1—¢c,1—-d,1—¢,14+a-b,1+a—¢,1+a—d,
= ﬂ_uw +a,1—a,1+a-b—c,1+a-b—-d,1+a—-b—e,
l14a—e,14+2a—b—-c—d—e
l1+a—c—d,1+a—c—e,1+a—d—e
(6.1.2.5)
where, for convergence, we must have
RI(3+4a—2b—2c—2d—2¢) > 0.

This is the bilateral analogue of Dougall’s theorem (2.3.4.1). It can be
deduced directly from the result (4.3.7.8) which is a relation between
three well-poised ,Fy(1) series. If we write f= 1, then the second
+F(1) series on the right reduces to a well-poised ;F,(1) series, which
we can sum by (2.3.4.5). The other two ,Fy(1) series combine to
form the yH(1) series, and (6.1.2.5) above follows after a little
reduction,

If we put e = a, (6.1.2.5) itself reduces to the summation theorem
(2.3.4.5) for the well-poised ;F,(1) series. But if e = }a, (6.1.2.5)
reduces to

b c d;
b bd uH
ama_”:a b,1+a—c,1+a—d;
T 1-8,1—-¢,1-d,14a-b,14+a—c,1+a—d,
- _”~+nlol&“~+alvl&.~+a!olo.w+walav

1-}a,1+3a,1+3a—b—c—d
1+3a~c,1+%a—-d,1+a,1—-a
(6.1.2.6)
+ Dougall (1907), eq. 33.
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When d = a, (6.1.2.6) reduces to Dixon’s theorem for the sum of a
well-poised ;Fy(1) series (2.3.3.5). Alternatively, if we replace d and
ein (6.1.2.5) by 1+a—d, and 1+a—e, and then let a - + oo, we can
deduce the ,H,(1) summation theorem (6.1.2.1) again. We cannot,
however, deduce the sum of an infinite ,H;(1) series in this way, for,
if we use Dougall’s theorem, the finite ,H;(1) series is only the normal
7F5(1) series which has been displaced from the origin by n terms.

6.2 A method of obtaining bilateral transformations

An elementary method of obtaining transforms between bilateral
series, due to Bailey, depends on the fact that a terminating series

n n
> u, can berewrittenas Y, u,,,.

r=—n
Hence, any known transformation of terminating hypergeometric
series can be re-expressed as a relation between finite bilateral series,
and, under suitable circumstances, we can then let n — c0, to obtain
relations between infinite bilateral series.

We shall start from the well-known result of Whipple (4.3.6.2) con-
necting a well-poised ,Fg(1) series and a Saalschutzian ,Fy(1) series,
andin this, wereplacem, a,b,¢,d,eby 2n,a—2n,b—n,c—n,d—n,e—n
respectively. Then, after a little reduction, we find that
. _Ha n, 1+ }a, b, c, d, e, n; _H_

n+l, la,1+a-b14+a—cl+a- &H+alaw+@+§

_(+a),(1-a),(1+a—d—e),(1+a—-b—¢),
(1-8),(1-0), (I+a—d), (1 +a—e),
1+a—b—c+mn, d, e, —n;
x»mp_u 1+n,1+a-b,14+a—c,d+e—a—mn; _H_. (6.2.1)
This ,H,(1) series can be called Saalschutzian, since the sum of the
denominator parameters equals two plus the sum of the numerator
parameters. We can now let n — oo, through positive integer values,
and apply Tannery’s theorem to the upper and lower ends of the
series, to obtain

u. + ﬁﬂu @u Qu &n Qu
umu_” ; u.H_

ta,1+a-b,1+a—c,1+a—d,1 +a—e;

Iﬁ_HmlPHInL+al&v l+a—e
T Lll+4a,l1—a,l+a—d—e l+a—b—c

d, e;
meN_H:aL..:alﬁ _H_, (6.2.2)
1 Bailey (1936), § 3.
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provided that RI(1+2a—b—c—d—e) > 0.

This result can be used to provide an alternative proof of (6.1.2.5), if
we use (6.1.2.1) to sum the ,H,(1) series.

In a similar way, we can start from a relation between two well-
poised 4F;(1) series (2.3.4.11) and deduce that

ama_”rrwa, b, c, d, e, i ~H_

ta,1+a-b,1+a—c,1+a—d,1+a—e1+a—f;

_T 1-b,1—-¢c,1-d,1+a—e¢,1+a—f,1+2a—b—c—d
- "Ll+ae,1-a,l+a—e—f,1+a—c—d, 1 +a—-b—d,1+a—-b—c

14+2a-b—c—d, e, T
xwmu_H l+a-b,14+a—c,1+a—d; 1] (623)

provided that Rl(2+3a—b—c—d—e—f) > 0.
If 1+2¢a =2b+c+d, c=¢ and d=F

then the ,H,(1) seriest can be summed by (6.1.2.6) and we find that

H, 1+ 1a, b, 3 d, ¢ d
6 ia,1+a-b,1+a—c,1+a-d,1+a—c,1+a—d;

_ ﬂ_leolloLl&“ l+a—c,1+a—-d,1+2a—-b—c—d,
1+a,1—a,14+a—c—d,1+a—c—-d,1+a—-b—d,
b+c+d—2a,1—c¢c,1—d,b+c+d—a,l+a—c,
14a-b—¢,14a—c—d,b+c—a,b+d—a,

l+a-d,1—-3a,1+3a,b—}a
c+d—3a,1+}a—c,1+3a—-d,1+a,1—aq
(6.2.4)
provided that 1+2a¢ =2b+c+d,
and that Rl(1+ta+b+c—d) > 0.

We can generalize the result (6.2.1) immediately, to series which do
not terminate above. The series

Q.ISJW.T a, Qu c, &“ e, .\.n
th : -f; _H_

1+n, la,1+a-b,l+a—c¢,1+a—d,1+a—el+a

which only terminates below, can be expressed as a well-poised ,F(1)
series displaced n places from the origin. This, in its turn, is equivalent

+ Bailey (1938), § 3.
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to two Saalschutzian ,Fy(1) series, by (2.4.4.3). One of these ,Fj(1)
series can be replaced by a Saalschutzian ,H,(1) series, and we find that

qmq_Hal:‘ 1+ ia, b, c, d, e, “f
l+n, la,14a-b,1+a-c,1+a-d,1+a—e,1+a—f;
_ H;_“H+a|&,~+alm,~+al.\.ula,~l~v+:. l—c+n
l+a,1-b,1—¢c,1—a+n

x“ﬁ—H~+al&lml.\L+alvlc H_

l+a—e-f,l+a—d—~f,1+a—-d—e,1+a—-b—c+n
xpmbﬁ d, e, fil+a—b—c+mn; 1
l14a—-b,1+a-c, 1 +n,d+e+f—a;
+ﬂ_HH+al?H+9IP&+®+.\.I~Ia“m+malololalml
l+a—-b—c,e,f,24+2a—-b—d—e~f \H_
(Dp(2+2a—b-—c—d—e—f),
(2+2a—c—d—e—f),(2+2a—d—e—f),
ﬁm+ma|@la|&|m|\.+§.H+alal.\.,
X By
2+a-d—e—f+n,2+2a-b—d—e—f,
l+a—d—f,1+a—d—e; 1
2+2a—c—d—e—f; )

x

(6.2.5)
Next, let n — 00, and we have

ﬂﬁ:ws b, ¢, d, e, Iy
6 3a,1+a-b,1+a—c,1+a—d,1+a—e,1+a—J; B
_ H,—HH+QI&“H+a|®.~+al.ﬁ~l@v~ln
l-a,1+a,1+a—-b—c

x“ﬁ_H:TaI&ImI\
l+a—e—f,1+a—d—f,1+a—-d—e

d (4 .\.
H ’ ? 2
x“w whﬂ+9|@v~+glov&+a+.\.|§m HQ
+ﬂ_HH+aI@L+a|Pw+a|&lml.ﬁ&+@+\lal_
&,mv.\uw+w§|@|&|®|.\ww+wa«|0|&|m|.\. g
l+a—e—f,1+a—-d—f,1+a—d—e;
F, ’ ) ;
. »_Hm+mnlo|&|m|\vm+malalalmlb HH_“ (6.2.6)

This is the generalization of (6.2.3) when the restriction on the
parameters is removed.
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6.3 General bilateral transforms and

The first result we shall consider is a very ele
between M series of the type 5, H,,(1). Weshall o

proof.

First, let us consider the general theorem (4.5,

and C = D. Then we have

(a)—a, (b)+a ®»+a, 1+
M HJ AGV n« ﬁ&vu*vﬁ\m k+0§k+Q|HﬁH+Q§MAQV\v

AQ\V + 05 A@v - @: AQV + @t

=20 +b,, (d)-b, &%E-H? +b,,1-

where Rl{Z(c+d~a-b)} >0 and s

Now, let us combine each series on the left w
the right and choose values of the parameter
bilateral series, as in (6.1.2.3) above. After som

result

:.SVQQIEV
\Mﬁ 1+()—a, al& EEE_H

In this result, there are A of the a, b and ¢ parame
RI{Z(®—c)} > 0.

In particular, if A = 2, we have

T l+a,—a,,a,—a, H 144
1+b,—a,1+by—a;,a,—¢;,a,—C, | ¥ 2| 1 +i
+H4ﬁu.+a~law~9&tlpu.

M+G~|Q‘N~H+@NIQNVQ

< H 14¢,—ay 1+c,—a,
1+b,—ap, 1+b,—a,

This is a relation between two ,H,(1) series. ] .

second ,H,(1) series reduces to a ,F}(1) series, wh
Gauss’s theorem, and we have another proof of tk

(6.1.2.1).
A second method of ?.oo». depends on the
integral L HJ_H a)+8,1—(a)—
wﬂ; —io n&v+mv~|ﬁev|.

h,

|
T ———————
e ————————————————
I

T
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Similarly, from the integral

~N H._J.s d AS+$~+aoI3V+mLIASIm. Evlacl.wu_ m»ﬂ.wm.ﬁ
(6.3.1.3)
where there are N + 2 of the a parameters, including a,, and 2N of the
b parameters, we deduce
r Am« H.TQ\QIA@Y 1- AQ\ Qv Qog >mw <ﬁ A@vv HQ
1+a,—(b),1-(d) TLl+a,—
N+l Ml—-a,l+ay—a,l+a,—a,—(a),(a) —a,a,a—a,

M HJ ~+9 |A@Vv
a,+(a)—a,,1 +a,—(a)
1+a,~a,—(b)
§=|90+A@vw
X onHon 1+ a, — (b); _.H_ , (6.3.1.4)
provided that
RI(N+Nayg—1—=b;—-by—... —byy) > 0.

This expresses a ,yH,y(1) series well-poised in a,, in terms of N +1
other ., H,, (1) series, each well-poised in 2a, —a,,.
From the two integrals
I 0 r (@) +s8,1+ay—(a)+s,1—(a)—s, Aavlaolmu_ omis ds
s 14ao—(b) +2,1—(b)—s
(6.3.1.5)

¢

and
7 i r Aav+.ﬁ~+aol?~v+.w._Iﬁavl.w;av|aelogowﬁ.m%
a= 1+ag—(b)+8,1—(b)—s ’

—fac

(6.3.1.6)
where there are N + 1 of the a parameters, including a,, and 2N —1 of
the b parameters in both integrals, we can deduce the two results

ag, 1 +ag—(a),1—ay, 1 —(a), (@) —a,
Tl 1+ay—(b),1— (D), 3ae, 1 — 3y, $(1 —ag) (1 —ay),

; 11 +ay) F 2(1+ay)
(b);
wa|pmw<|-_H~+ao (b); + HH_

r ay—a,l—a,l+a,—a,—(a),(a) —a,a,l+a,—a,

M hu.f& |AS“~+Q°|& IAS WQQIQ_:w..TQ\ Iwae
Q-.-TAQV.IQ\?HuTQ\:IAQV
w@:.*..w:.|§avﬂmw9v+wA~|a«ovw, .IWQe.TWAH |&.ov

Hﬂwnw|90v|w@ew

a+olaw
xpfmsf_w_# aﬁw E.w HLH_. a.w.Z.s
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Here either all the upper signs are to be taken throughout, in which
case we must have

RI2N —4+ (2N —1)ay—2(b; + by + ... +byy_)} > O,

or all the lower signs have to be taken throughout, in which case we
must have

RI{2N ~ 3+ (2N — 1) ag—2(b; + by + ... +byy_y)} > 0.

These last two results express a ,y_,H,y_;( + 1) series, well-poised in
@, in terms of N other ,y_,H,y ,(+ 1) series, each well-poised in
2a, — a,.

It should be noted that the results (6.3.1.2), (6.3.1.7) and (6.3.1.8)
can all be deduced directly from (6.3.1.4). Thus, (6.3.1.8) follows by
taking b,y = }+ §a,, in (6.3.1.2), (6.3.1.2) follows from (6.3.1.7) by
putting N +1 for N in (6.3.1.7) and then letting b,y,, > —o0 and
@y;1 >0, and finally (6.3.1.7) follows from (6.3.1.4) by taking
Uy =boy = $+30,in (6.3.1.4).

In particular, when & = 2, in (6.3.1.4), and a, = b,, a, = b,, the
two series on the right reduce to two well-poised ;F,(1) series, which
can be summed by Dixon’s theorem (2.3.3.5) to give the sum of a
well-poised gH,(1) series (6.1.2.6).

When N =3, in (6.3.1.4), and a, = b}, a, = by, a3 = b, = 1+ }a,,
one of the ¢H;(1) series on the right vanishes, and the other two reduce
to well-poised ;¥,(1) series, which can be summed by (2.3.4.5) to give,
on reduction, the sum of a well-poised ,H,(1) series (6.1.2.5). Similarly,
when N = 4, we have a relation between five well-poised ,H,(1) series,
and the special case of this result is a relation expressing a well-poised
-H;(1) series with the special form of the first parameters, in terms of
three well-poised ,Fy(1) series, all with the special forms of the second
parameters.
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7
BASIC BILATERAL SERIES

7.1 Introduction

The next step is to generalize the bilateral series by the introduction
of the base ¢ to produce basic bilateral series, just aswedid in Chapter 3,
in order to produce basic hypergeometric series.

The first thing to do is to extend the definition of (a; ¢), to include
negative integers. We shall write

1
(@; ) = (1=ajg)(1—ajg®) ... (1—alg™)
%. (7.1.1)
AQ@ QVS.QS
1 MMH_ Hw H_ (7.1.2)

Then the general basic bilateral series is written as

aa..a. aS:SAaNéa...Aa&ss
ﬁeem .H_l ; %.G._.wv
4B 9.3...., - ﬁMla@:sisw D -+ (g5 P

This series is convergent for |g| < 1, for all values, real or complex, of

the parameters
P . @y, 8, .04, by, by, ..., bp,

and for |2| <

When there is no danger of confusion, this notation can be con-
tracted further, as usual, to

Hall@); 0y g2 = 3 smmww,w“%“ (7.1.4)

where there are always A of the a parameters and B of the b parameters.

In some ways, these basic bilateral series are of more fundamental
importance than their ordinary bilateral counterparts, as these basic
series contain, as special cases, many interesting indentities connected
with theta functions and Ramanujan identities.

Let us use (7.1.1) to transform (a; ¢)_,, then we can reverse the
order of any basic bilateral series, thus

3, | n\s,lf- 7.1.5
k..mah ®); q, u| ¥, (/a); Quﬁun«» Q&NQ. (7.1.5)
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7.1.1 The (¥, summation theorem. Let us seek a relation con-
necting three well-poised ;®,(q) series (§3.4.2) and in it, let us take
¢ = gfa. Then the second series on the right reduces to a well-poised
summable (P4(g) series, and the two remaining series combine together
to form a well-poised ¢¥4(g) series.

After some reduction, we find the ;¥ summation theorem

ga, —qia, b, ¢, d,
aﬁ_H “\\a. — «a, aq/b, agjc, ag/d, 8\9 % awm\@&au_
=1 aq, aqfbc, aq/bd, ag/cd, ag/ce, ag/de, q,q/a; Q; (7.1.1.1)
Q\WVQ\OVQ\&vQ\mwg\ovg\&v&m\&v@nﬁ\@&aw ' o
This is the basic analogue of (6.1.2.5), the ;H,(1) summation theorem,
and the extension to bilateral series of the result (3.3.1.3), the 4@,
summation theorem.
There are many interesting special cases of thisresult. In particular,
ifb=c=d =e¢=at, and a? is put for a, we have
o (d+aeg)g» 1 [6%4¢.9.49,9,¢ 9/
o (1=agP = Ta:_uss q/a,q/a, g/a,a,a,a; &v i
Two direct proofs of this fundamental result (7.1.1.1) are given in
Slater & Lakin (1956). The first of these uses operators, and the

second is a direct proof using contour integration, based on the
integral 1 it

prd Py (s)ds, (7.1.1.3)

where . .
O et s B ] P

and, asusual,q = e~ ¢ > 0. The integral is taken round the rectangular
contour of Fig. 5.1,

F(—2N—inft), E(—2N+injt), C(2N +inft), D(2N —in/t).
It is assumed that none of the members of the sequences of poles of the
integrand, ag*™, bg*n, cqt™ (n =0,1,2,...)
coincide or fall on the contour, and that the contour is indented, if

necessary, to avoid this event.
Then, by the periodicity of the integrand, we have

Jootl o

1T Watson (1933b), eq. 4.7.
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Also .“ .‘, {Py(2N —ir) — Py(2N +r)}dr
oD T 2m

and .‘. - wﬁ-_. {Py(—2N —ir)— Py(— 2N +ir)}dr.

Both these integrals tend to zero as N — oo, provided that
RI{g*/(abcde)} > 0.

Thus, we can equate to zero the sum of the residues at the poles of
Py(s) in the s-plane. Now

has poles within FECD at

1/(ag®; q)

8 = loga—n+2mikt
for some integer k. Hence Py(s) has increasing sequences of poles at
s=loga+n, logb+n, logc+n
and decreasing sequences of poles at
s=—loga—n, —logb—=n, -—logc—n,
forn=0,1,2,....

If we combine the residues at s = loga+n and s = —loga—= and
make use of the symmetry of the integrand, we find that
© ag**/d, g1~ [ad, g1+ ale, ¢~ ae, ¢+ alf, ﬁ " /af; g

I
amo a*q™, q,abq", bg~"[a, acq™, cq"/a;

X @QHH,QH@B+M%B (a; b,¢)=0. (7.1.1.4)
(@™ Dn

Here ‘idem (a; b, c)’ means that all the preceding expression has to
be repeated with b and a interchanged, and then with ¢ and a inter-
changed. This notation, due to Sears, is sometimes useful as a con-
tracted notation for cyclic expressions, instead of making use of

summation signs and suffixes.
If we rewrite these series in the usual notation, we find that we have

é\:\&é\:\%a&:\e\
mz a?q,ab,bla,ac,cla; QH_

aﬁam.léua@vaa,a&“amva\w No& H_
o vaatoanfd e gt )
+idem (a; b,¢) = 0. (7.1.1.5)
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This relation between three ,®,(g) series is the basic analogue of
(4.3.7.8), the result due to Whipple. If now, we put ¢ = g/a, the first
and third series combine to give

I aq/d, agle, ag/f, q/ad, gjae, m\a\
a?q,ab, q,bja, qla?;

aq, —agq,ab,ad, ae, af;

X o'
ﬁé§§§§e
and the second series reduces to

b2,bg, —bg, bd, be, bf;
@ ﬁ bbb, b by, @210 |

_ 11 [%°0 9/de. a/ef. q/df; .
bg/d, bgje, by|f, q/bdef;

when it is summed by the theorem (8.3.1.3). Then, after a little further
reduction, we have the required result (7.1.1.1).

aftvdef) |

7.2 General transformations
In the general theorem on basic series (5.2.4), let us write

di=e,, dy=a,.. dp=a,, b =g,
andlet A = B—1 = C = D. Then all the series of the general type

4+8:1P415(4:7)
reduce to series of the type
4+1P4(4,2)

and we can rewrite (5.2.4) in the form
4 4
PO = 3 Pla) 0(a)+ P@) Blg)~ T PG Oy,  (1.21)

where P, P(a;), P(b;), P(q), are the products preceding the series @,
O(a;), P(b;), D(q) respectively. Now, if we write —n—1 for n in the

series @(q), since ©

|H
MhinM\TSIC. G.w.wv
n=0 n=—w
we can reverse the ®(g) series as in (7.1.5) above. If we denote the
reversed series by ©'(q), we find that

®'(q) = Kd(q), (7.2.3)

13 SGH
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where K is some constant independent of n. Also
so that PO — P(q) O(g) = P{®+D'(q)}, (7.2.4)

and the series ® and ®’(¢) can be combined together to form a basic
bilateral series ¥'(¢). In a similar way, we find that each of the series
P(a;) d(a,) will combine with one of the series P(b;) ®(b;) to form a
basic bilateral series ¥'(a;).

If we write
¢, for by, cyforbds, ..., cyford,yy,

we have the general theorem

NB&&;S;&%%@“
i R %%@i&
a S\@ P*lazx, a;f(c), gb)a; | o [9(0)fas
= &, H% a;, qla;, a;f(a), g(a)/a;; &m m_ﬁﬁs\sw Q.NH_,
_ (7.2.5)
where @ =c¢,Cy...C4/0105...04, |2 <1 and |g| <L

This expresses a general )V ,(z) series in terms of 4 other series of the

same type.
If we let ¢ > 1, we obtain the ordinary bilateral theorem (6.3.3)

again.
If we put b, = g, the ¥'(2) series on the left of (7.2.5) becomes an
4 _,(2) series, and if we put

ay=by, ay=0by, .. ag=by Q<A

the first Q of the ¥ series on the right of (7.2.5) become ,®,_,(2)
series. Similarly, if we reverse the last A — R bilateral series and put

9Cr+1 = AR+ 9Cr+z = Bpyos ooy 404 = Q4

these R series will also become ,® ,_,(z) series, where B < 4.

If we carry out all these processes, and put R = @ we find that
(7.2.5) reduces to a re-statement of (5.2.4). Thus, although we have
deduced (7.2.5) from (5.2.4), it is also possible to deduce (5.2.4) from
(7.2.5), and neither should be considered as a special case of the other

result.
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. In particular, if 4 = 2,d = ¢, and z = c/ab, in (7.2.5), the first series
1s summable by Gauss’s analogue (3.3.2.5) and we have
N —Ho\m\, qefic, q,9/a, q/b, c/a, c/b;
q
e.f, /e, q/f, c/ab;

_ 9 [ elab,g*fle, ela, efb, gcle, g2fe; ele, elq; .
miu e,qle. e/f. gfe: H_wﬁwh MM\M 7.9 H_f%BAﬁb.

o . 7.2.6
This is a relation between two ,¥',(q) series. A )

If4A=3,and e, =d, a, = ¢, ay = f, in (7.2.5), in a similar way, we
can obtain a relation which expresses a general a¥'5(2) series in terms
of three 4@,(2) series.

7.2.1 Well-poised bilateral transforms. We shall now deduce
four transforms of well-poised bilateral series, from the four general
results for well-poised basic series.

H.s the result (5.3.2) which expressed a well-poised basic 231 Pazr—1(q)
series in terms of M other similar series, let us suppose that M is odd,
so that

N=2M+1, ay=qa, ay,=9¢q, a;=qa,fa,

a; = Qﬁu\m«@ . Ay =gqa \a
. . 1A +1
Then, if we write ik

a,fora,, a,fora, ..., ayforay,,,

we find that there are now 4 + 2 parameters in all. We can combine
the series in pairs as before, and we have after some reduction,

: QQ\AWY Q\A@v“ \QJ | )\Q: Q\)\Qv |Q\ .\Qw
F, (@), ag/(a), gla glla), @)fa; | L

—aNgV
X ovFax _.v.@ );9a/(b); ¢, b b, e mm!.,u_
-+ Oan

_ W o 1| % q/(b), aqla,(b), yaja,, — Jala,,qa,/\a, —qa,/a; .
afa,,q/a,, a,, (@)/a,, (2)a,/a, ga/(a) a,, g2, /2, 9,/ (a)
NN
X o Fpn )a; L S 7
2N m.,_”ma\ Qé v L ban ]’ 7.2.1.1)
where there are N of the a parameters and 2N of the b parameters.
This expresses a well-poised ,,W,(g) series in terms of N other well-

poised ,,'¥,y(g) series. Here the element a can be thought of as the
pivot element. If, in this result, we write

a; = v._<+t ay = by, ..o, Qg = Ff? Q@ <N,
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we get a result which expresses a well-poised ,,'¥',y(g) series in terms
of Q ordinary ,y®,y_,(g) series and N — @ bilateral 55, 5(g) series.

If, further, we let N = @, and take b, = a, we find that (7.2.1.1)
reduces again to (5.3.2). Thus, once again, we can say that (7.2.1.1)
can be deduced from (5.3.2) and also that (5.3.2) can be deduced from
(7.2.1.1), so that the two results are complementary.

If we suppose that M is odd in (5.3.2), we only obtain the same
result as if we had supposed that M was even and then put ay = byy.

When
=b, =gJa and a,=b,=—gya,

two of the series on the right of (7.2.1.1) vanish, and then the theorem
becomes one which expresses a well-poised 51" (¢) series in terms of
N — 2 well-poised V', (g) series, all with the special forms of the first
and second parameters.

In particular, if ¥ = 3, we find that

Qz\g lm»\a Po.&.
| Yo o aalb,agfo,aqld,agle, 7 g&
:_HS ,q/a,qf[b,qflc, qf/d, qfle, aq bf, aq/cf, aq/df, aq/ef;
aq/f? qf*la, aqfb,aq/c,aq/d, agle,q/b, q/c, q/d, qle;
afiNa, —af |, bfja ofla, dfa, effa;  ga®T .
Vol 1o, — f]ya,af b, af o, af d, afle; & §L. (72.12)

In a similar way, from Sears’s other three basic well-poised theorems
(5.3.4,6 and 8), we can obtain three basic bilateral well-poised
theorems. Thus, from (5.3.4) we have

aisﬁs_ .a.@. !Q..@_
:F, (2), ug/(a), g/(a), (@)/a; & = N.,_F% T @L
N[ @, 4/(B), agfa,(B);
= 2 (@)/a,, ag/a,(a),a,(a)/a, 4,/(a),a,, 9afa,, a,ja; &

!A@V\ QZ&Z r
X N.zﬂ*\.ﬂ.zﬁgav\AWVu Qu@ @m °N< , A-M.W.WV

q

where there are N + 1 of the @ parameters and 2N of the b parameters.
This expresses a well-poised 4 5y(g) series in terms of N +1 other
series of the same type.

+ M. Jackson (1960a), §2.1.
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From (5.3.6 and 8) we deduce, in the same way,

:_H%\a &3)\3f\&&%l%&,\sl&% H_
2,9, (a), q/a,q/(a), (a)/a, ag/(a);

. §, +nz.§z.
s ¥ gy, 9505 b

uWa :_Hms\@v_%\ﬁsv Hai\s\av,H)\ss\as%\as
v=1 Y QQ\Q\%QY AQ\V\QS Q\QS Q\ﬂz. QcAQv\Q qa, \9 a9,
- )\Q ays Q&.\\)\a«v —4qa, \)\Q ;
qa,/(a);

w\a+m.<|wa2|w
S . [Q 7.2.1.4
R o e 7214

Here either all the upper or all the lower signs must be taken
throughout, and there are N of the @ parameters and 2N —1 of the
b parameters. These results express a well-poised ,y_;¥,v_,(q) series
in terms of V other similar series. Again, we can reduce any of the

on_1Y an_1(q) series to 45 _, Pyx_,(q) series, and so obtain re-statements
of (5.3.4, 6 and 8).

7.3 The theta functions

Some of the best known of the functions which can be classed as basic
bilateral series, are the & (theta) functions, of elliptic function theory.
There are four of these functions, and the first one is usually defined as

8.(2) = —i m (—1)*exp {mir(n+3)2+ 2+ 1)iz), (7.3.1)

where Im7 > 0. Let us write
g=e"" and a=e%,
then H(z)=—1 T (—=1)pgrtdgin+e
n=—ow
Now, if |z] < 4, any positive constant, we have

|gn+ g 2| g _m_ﬁicn e2nd,

But, by D’Alambert’s test, this is a term of a convergent series, so that

<L
M Q?.vau -

n=1
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are both absolutely convergent series, that is, the bilateral series of
#,(2) is absolutely convergent, for all |z| and so $,(z) is an integral
function.

The other & functions are defined as

@

By(z) = T grt¥ainh, (7.3.2)
Bq(2) = uMo“ g~ a® (7.3.3)
and )= X (~1rgrtamn. (7.3.4)

The absolute convergence of these three series can be established in a
similar way.
We can see immediately, from these definitions, that
By(2) = H4(2+ 3m) (7.3.5)
and that PH3(2) = Fy(z 4+ m). (7.3.6)
If we select the terms in » and —#» and combine them, we can
express all four functions as trigonometric series, thus

9,(2) = wsw_T 1)r g+ sin {(n + 1) 2}, (7.8.7)
3y(2) = wﬂwﬂmsé. cos{(n+1)z), ' (7.3.8)
8.2 = 1+ MM_%. cos (2n2) (7.3.9)
and 8,2) =1+ MMHT 1) g cos (2n2). (7.3.10)

Thus, #,(z) is an odd function of z and the other theta functions are
even functions of z.
When z = 0, thena = 1, and

$(0) = 0, (7.3.11)
B5(0) = A (7.3.12)
95(0) = M 7, (7.3.13)
B4(0) = Im (—L»gm". (7.3.14)
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We can express all four & functions in terms of infinite products.
The usual method of proof shows that if

fz) = m {1 —2¢*-1cos (22) + gin—2
n=1 .
then S 2)

is a doubly periodic function with periods 7 and 77, with no poles.
Hence it is a constant, independent of z. This constant can then be
shown to be o

II (1—-¢*),

n=1
so that we have finally.

P(2) = smH {(1—g?) (1 - 2¢?1cos (22) +¢tn-2)}.  (7.3.15)

A more direct proof follows immediately from Jacobi’s formula
(3.1.12).

We have finally

o

%(z) = —iagt TT {(1-ag®™) (1—¢2") (1 —g*"2a)}, (7.3.16)

n=1

9ulz) = agh TT (1~ ing™) (1—¢™) (L +igh~¥a)),  (7.8.17)

Dq(z) = Qmﬂ {(1+ag> (1 —g®™ (1 + g 1a)} (7.3.18)
and B,(z) = m {(1—ag®-1)(1 —g®)(1— g a)}. (7.3.19)
n=1

Many further relations can be found in standard works on elliptic
functions and, in particular, in a series of papers by Rogers (1894).

7.3.1 Further identities of the Rogers—Ramanujan type. Most
of the known identities of this type can be deduced from the
summation theorems for basic bilateral series, and we shall now
consider one such process of deduction in greater detail.

In the ¢¥y summation theorem (7.1.1.1), let us write b = ¢—3,
¢ = ¢3~™B and d = ¢@-"3 and put ¢? for q. Then we find that

:m: (1 —ag*) (g™; @)s, @*4**"(e; ¢°),
r=—N Am - n«v Agwgw vaﬂ &ﬂﬁﬁwﬁ\am Qwvw

_ - [a.q%a,q%le, qaje; 3 18 Dn(ag; q), (a¥e; ¢3),
=1l 2 31, A2 q
7, 9% ¢%le, a®/e; (@3 @)sn (ag/e; q),

, (7.3.1.1)
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where a is some power of g, so that the series terminates below. For
example, let a = g, then (7.3.1.1) becomes

7 Pl r+1) 2
o s LT o L el T o SEF P
r= 2103 (@ Dassrir (G Dn-zr (@€ ), (@ Dan (G%/€; Da
Now let ¢ - o0, and we get
B (=gt 1 (7.3.1.3)

r=—(n/3] (7 Darare1(d Dn—ar B (¢; mqu—.
But

gD (1 — gfr+1) = grér-1) (1 —gn+3r+l) _ ger+DGrel) (] — gn=3r)  (7.3.1.4)

so that

{n/3] Ql@nlb [(n—=1)/3] QQI.C @r+1) 1

Rms\s (95 Dnrar (@5 sfslTLmié (@ Drsors D Dnsr (@ Dan

(7.3.1.5)

that is

1— q In{3] QJ@.IC + Qw@l.b {(n+1)/3) QANTTC @r+1)

@Ot Dot T 24 (@ Door @ Vs Z GO G D

[(n—-1)/3] QANﬂIHV (3r-1) L H
T A GO @ D @ D

. (7.3.1.6)

If, in (3.4.9), which is Bailey’s transform with vy, summed by the
basic Gauss theorem, we put

1
bn = (@5 Qen’
and gy = —ger DO, (7.3.1.7)
Ay, = Qi@ﬂld + Qi@=+5u
Ugppy = —gomHVERD,

and make use of the above identity (7.3.1.6), we can deduce the result

2 (U D (25 92" _
SMQ Su &vmsm\:ns

:_He@. 2% ] 5 W5 Da 25 9y 27
z, &\N\Nw n=0 Aﬂ\m\ QV:. AH\N m.vﬁ w\q.&ﬁ

(7.3.1.8)
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In particular, when z = ¢, y = ¢}/u and z = ¢}/», we have

w Amw\z.mAnw\m.§gsewan :_H %e% Q
o (g; ag g, uv;

X

& (@[5 D)an (@4V5 Din 20 0n
n=0 ?\\Qw 9sn Aeew an
| gron—n _ (1 —ugP—4) (1 — vg?n—t) gl2m-DGn-1)
’ (u— Qu.:lwv (v— Q?TwV

wiw — g3n+d) gl2n+1) (3n+1)
Jv—g*t)g |“ (7.3.1.9)

(u—q
n@n+1)
te (1— u:+3 (1 Iemus+mv

This is one of the classical results proved by L.J. Rogers (1894 and
1916).

He wrote it in the form

AGy+a+a,+...=b Ivma b .9 +~&.S +q7) - m@»» oucmum.*...;
" (7.3.1.10)
$
where Oy, = (@*/4; )n .m \e Q) W™
4, vgt; w (v n
and by = :Ws vt ;@ \: 0a (@5 @)y umo
g, uv; (uqt; @), (vgt; q),

Many sets of values of «, and 4, can be deduced, similar to those in
(7.3.1.7) by application of the various basic summation theorems, and
a little algebra. In every case, a result corresponding to the transform
(7.3.1.9) can be found.

Now, if special values are given to « and vin (7.3.1.9), one side of the
result reduces to series which can be summed by Jacobi’s theorem
Aw._.uwv. For example, let 4 = v = 0. Then

AH — SV m QS m Aw +Qwo31umv Aﬂ +Q2§.I=v Aw _ Quow_v
n=1 0(¢; Dan net

—q° u (14 g%0n—%) (1 4 ¢80n—4) (1 —g30%),  (7.3.1.11)
n=1
and, if u = 1,9=0, on writing ¢2 in place of g, we get
-] ﬁﬂl NS.V oo AIHV‘:\%»
o= .2 (=g 4*)a (g% 4)n
= : A~ — mbmﬁluwv AH —_ QANSINMV AH — Qbmﬁv

n=31

+N : H|Qhw.=lu 1-— nw\aluJAH Qn»ﬁv quﬂﬂwv

Nl
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Since at least eighty sets of values of «, and £, have already been
discovered, and there are at least twenty sets of values of  and v,
which have been investigated in the literature, the total possible
number of such identities is very large indeed. We give below a few of
the most interesting. For further lists, see Slater (1951) and (1952a).

I (1-g" ) (1= g"™9) (1-g™)

= m (1—¢*) > grry (7.3.1.13)
e} ? n=0(q% @) (— ¢ Dansar’
I (1—g™2) (1— g5 (1—q™)
n=1
= m (1—¢*) m g (7.3.1.14)
o T B (R (1 Den
T (1—g™%) (1—g™4) (1 —q'™)
n=1
n (1—¢*") M il ; (7.3.1.15)
a1 0(@% ¢ (—4; @a2n
m Aw |ch3lmv AH — QNOSIHJ Aw |ch3v
n=1
Ol i) ¢ 73.1.16
T a1 (L) 2 s o(¢; Dan’ . (7:3.1.19)
: Au.l quleA mglmnv:l wq,:v
n FE q.w.w.mq
§mHAH Q v M“_ AQ. Qvﬁ Aﬂw vas.v» A v
m AH .l@mqaplmv AH |Qm.3~lmuv Am —_ Qwu.:v
n=1
- ny 5o (0% P g2 7.3.1.18)
I:ﬂ—% VV (g5 D (g; S»?& (

E AH —_ qus.lwv Ah —_ quﬁlwmv A_. — mmqﬁv

(% °)n g™+ G.w.is
0 (@ Dn (& Dania”

1 (1—g2»-12) (1 — g2™n—18) (1 — g2™™)

Cl SM

ls :sﬁmuv?&i q.w.rmo
I.sm Aﬂ Q vﬁMc Amn QVS AQV vasln A v
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:..IQ@m:Iw w| 361 — uuVAHI. SQJ

(1—g¢%) m (= ¢ a1 (g5 ¢6), gm0 ¥
11+ e (9% 6¥)enss (g% @)

1T (1= g%1=) (1 - gn-27) (1 — gson)
. m (6" 2 (=0 Par (0% g™

n=

,  (7.3.1.21)

|
7::18

21 (1+g2 1,2, S.,:m Vensa(@% 0 (7:3.1.22)
and
T (1—g%n-15) (1 — g¥on-21) (1 — gn)
n=1
01 AT 5 CH O O™ g o

n=1 (1+@** 1) 20 (9% 4%)9n_1 (4% @),

There are similar results,t involving products of powers of ¢%2, g%
g** and ¢*, and it is probable that many other similar results remain
to be discovered. Thus, in place of (3.4.9), which depends on the basic
analogue of Gauss’s theorem, we might try to use (3.4.7) as our
fundamental equation, and sum the series for y,, by the basic analogue
of Saalschutz’s theorem as a 40, series, or by Jackson’s theorem
(3.3.1.1) as a well-poised 4@, series, or even by (7.1.1.1) as a basic
e ¥ series. All these summation theorems would provide more general
results than (3.4.9) which was used above. So they would probably
lead to even more general identities of the Rogers—Ramanujan type.

7.4 Equivalent products
The simple question ‘ When is a set of products of the general type

II[(a); (B); ¢*]

equivalent to other sets of similar products?’ quickly leads us deep
into some of the more recondite branches of the theories of elliptic
functions, generalized basic hypergeometric functions, modular funec-
tions and partition functions. Thus, since a sigma function can be
written

0(z) = 2y exp [(p, 22 + miz)[20,)

[1- mxv (miz/2w,)
X SMMH - va-vm u

wi
[1—exp (—miz/2w,) mnslﬁvu (7.4.1)

t Slater (1952a).
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we shall now show that the general theorem on sigma functionst which
is usually stated as

W QAQQ. - @wv Q‘Aa«q - @mv e QA91 - Osv =0
r=1 Q.AQJ. - qu qﬁﬁs - Q\Nv e Q.AQQ - leuv QAQ:. - Q\I,.Hv e QADJ. - Qﬁu ’
(7.4.2)
where @ +ag+...+a, =b+by+...+b,,
can be rewritten in terms of ordinary products.
Let us put a, for exp (ma,/2w,)
and b, for exp (mib,/2w,)

in each sigma function, and replace g by gt. Then (7.4.2) becomes

m N a,/(b),q(d)/a,, ¢; QH_

ZM o @y, q@ya,; 1= (7.4.3)

where a, a, ... a, = b, b, ... b,. This relation involves » products each of
1n(n— 1) theta functions and there are 2n — 2 independent parameters.
In particular, if » = 3, we have

H[ag/b,bja,aqlef, ef|a, aq[df, df|a, ag/bde, bdeja; q]
= M[aq/f,fla, aq[be, beja, aq/bd, bdja, ag/def, def/a; q]

~ 1104, 14, . gfe,baif, b, atgfbdef, bieflat; ). (7.4.9)

This result is due to Bailey (1936), § 5.2. He deduced it indirectly from
the relation connecting three basic ¢@, series referred to in §3.4.2. In
the notation for theta functions, (7.4.4) can also be rewritten as

H3(@) F3(b+¢) F3(b+d) F5(a+c+d)
= B4(b) Fy(a +¢) F3(a +d) ¥5(b +c+d)
+3(c) 9 d) N B —a)Ne+b+c+d). (7.4.5)

If, in (7.4.4), we put b = a.jg = —f, d = e = — 1, and replace ¢ by ¢*,
we find that

© 8 © 8 d 8
{m (- +16g{ [ 9] = (T 01 g, (1.4
n=1 n=1 n=1
This is another of Jacobi’s classical results.

+ Whittaker & Watson (1947), p. 451, ex. 3.
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Again, if in (7.4.4) we replace g by g3, write g for a, ¢z for b, z for d,
gz for e, and ¢ for f, and multiply across by

M_H: =1 —g"/z) (1 — g~ 2)},

we find, after some algebra, that

8

(L+g7/2) (1+97712) (1— ") (1 —g*2f22) (1 — g2 122)

n=

= —W (1- muzlmmwv (1 IQ?V (1- m«:L\NJ
+2 WMHHC lmu:lm\uuv (1- musv (1— QH:THN.J. (7.4.7)

If» = 4, in (7.4.3), we have

ablibcfa, agfbe, bd|a, aq/bd, beja, aq[be, bf|a, aq/bf, g/a, aqlg, ke,
aqlh,glk, hqlg; q]—abll[ch/a, ag/ch, dhja, aqdk, ehja, aq/eh,
fhia, aqlfh, bla, aq/b,g/a, aqlg, 9/b, bqlg; q]1—agll[cg/a, ag/cg,
dgla,aq/dg, egla, aqleg. fgla, aq/fg, bja, agfb, hja, ag/h, bk, hq[b; 4]
+bkll[c,g/c,d,q/d, e, gle. [, q/f, b[k, ha[b, 9|k, hqlg, g/b,
bglg; q1 =0, (7.4.8)
provided that a®q® = bedefgh.
This is equivalent to a relation between four products, each con-
taining seven theta functions, and involving six independent para-

meters. It can be deduced from the relation between ,,®, series
(3.4.2.4), just as (7.4.3) can be deduced from a relation between @,
series.

These facts suggests that (7.4.3) can be deduced directly from the
general theorem (7.2.5) on basic bilateral series, and this is in fact the

~ case. For, in (7.2.5), let us take

by=c¢,by=cy..,bpy 1 =Car1,bpr = qzCyy.

Then we have (7.4.3) above immediately.

Even this result (7.4.3) is not the most general known theorem on
infinite products. A more general result is given by taking

@N = @H Q:Eu ...u@@\ = @u QH]H\N—NV

Gy =€ QHE&. s Gy = € leu?‘.

d
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in (7.2.5), if we put ¢ for g, —z2g/c for 2, and thenlet ¢, > coand b, - 0.
We find the theorem

[z +M /o, ot[2q™~1; g% I1[q~M2, ¥ [z; ¢*¥]
[(a), ¢¥/(a); ¢*]
1 g2 Tl[a,qM'2/a, aja,2gM3; ¢¥) l[z/alf, ag! [2g*M; g .j

=Za. e, ¢, @) ey q4@) e 47

where a = a,a,85... a,;, and there are M of the a parameters. This is
a modular equation connecting products in ¢*¥, and products in ¢%.
Similar results follow from the theorems on transformations of well-
poised bilateral series.

Thus, in (7.2.1.1), since

(7.4.9)

: Av st. A - :893% nn+1) n
i =g, e
if we let by,b,bg, ...,byy > 0, we have, on summing by Jacobi’s
theorem (3.1.12),
N[a,¢*/a; ¢*] [a"g", a~Ng"; ¢*¥]
[a, (a), ga/(a), ¢/a, 9/(a), (@)/a; 4]
W M[a/a?, g%a2; ¢*] 11[a2¥g™[a¥, aVgN a2V, g2V (7.4.10)
“Mafa,, (@) [a,,9,/(@), 2, a,(@)]a,g/a,,gaf(@) a,; 4]

This is a general relation between products in ¢>¥ and products in g,
with N 4 1 free parameters a,a,, a,, ..., ay.

Three further similar results can be deduced, from (7.2.1.3) and
(7.2.1.4) in the same way, though, since (7.2.1.1) to (7.2.1.4) are all
special cases of (5.3.2), so (7.4.10) above, and these three further
results can all be thought of as special cases of (7.2.5). When seeking
to prove any given modular equation, it is probably best to start from
(7.2.5) which is the general theorem, and make the necessary trans-
formations and passages to the limit as required to prove each special
case. We shall now give some examples of this process.

In (7.2.5), put @ = by, @, = by.y, @y = by.s,..., and ay = byy in
order to deduce Sears’s general theorem for well-poised series (5.3.2).
Further, let

by, by ..,y >0, ay=a; ¢V, a3 = memr% ey Oy = QUUN,
and write ¢V for g, ¢V for a, and g¥¥+? for a,. Then, since

@; @M wn = (@5 Dn (ag"Y; ) (@Y D - (@5 @), (7.4.11)

B TS R
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after considerable reduction, we find, for N even and positive, that
II[g™, ¢V; ¢2V]

— 1)V NN—- »
ﬂ_nﬁ ; Qeﬁﬂswcfé gt q :MoA 1)¥n gt Dn (n+1)

I_/_.Mlu 1 nwzisi D_”nlm,r ,QP<+§+H“ m»ﬁ
50 TI[g-+—F+IN guebtdN g gi=s, =1 g g2 aN=ei N

H 8
" g™ 1.2

Let us now put ¢2 for ¢, and 2N for N throughout, so that we can
reduce the resulting products to their simplest forms. Then we find
that we can reverse the order of the second half of the series in %, that
is put 2N —s— 1 for s, and then put —»— 1 for » in the second half of
each series. We see that the power of ¢ is now

A — 1)Nn gsN=-D o+ HN-D) (Na+D (7.4.12)

2N(@2N - 1)n2+ 25+ 1) (2N —1)n+s(s— 1)+ 2N —1,

in each series. Thus the first half of each of the n series will combine
with the second half of each of the » series, to give series summable by
Jacobi’s theorem. When we have carried out this summation we have
the result

(1 —g¥Nn—8)2 (] — g2m)2 (1 4 gANEN-D )2

(= 1)¥¢ §<|»H— (1= g2ny2 (1= g2n-1y2

N- @ (] _ gENn—4s—2) (] _ ,8NN—8N+4s+2
18 als—D) (1—-g¢ )(1—¢ )
M (=1)2¢% E 1 (1= gAN-2N—25-1) (] _ gaNn—2N+2s+)

8=

x I (1+g@N-D@Nn-2N+25+1)) (] 4 g@N-DANn—2N-25-1)  (7.4.13)
=1

This is a general modular equation connecting ¢4¥ and gt¥eyN-b,
For example, if N = 2, this result gives

:. Qnmslpvw : —_ ms.wm C + Qm»av
q E_ (1 lww:vm (1- wvaw

AH Qwa:\l&v :. — Has.IH»v AH + QM»S Huv AH + QM&Q_IOV
=5 (1=

© HH — H@.;Iav AH — Haﬁlﬂcv AH +Qw»§luv AH +QNbSINHv

;I.:HH_ e (1—gbn— JCl &) , (7.4.14)

+E
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and, if N =

L) AHI 24n— thAﬂl MSVN HlTQmoS
Tl T A gy

© (] —gHn2) (] — gHn—22) (1 4 g80n—25) (] 4 gb0n-=35)
=L (T gi9=) (1 - g%)
© (1 — g24n—8) (1 — g24n—18) (1 4 g80n-5) (] 4 gin~45)
- :mu . (1- SSLJ 1= mE:..wv -
+ Qm m— AH KIIQwanIHov AH —_ QMBSIH»v AH + Qgﬁlmv AH + Qacﬁlmmv . A.NP Hmv

w1 (1=g™ 1) (1—g™Y)
As a second example, let us put

@ = by, = byyy, B =byyg, sty = byy,
in (7.2.5) again, and suppose now that there are 2 4 4 parameters in

all. We let the last M + 1 of these parameters tend to infinity, and then
write
Qyree = QB Bz = —qNay, 5= @'May,  ay, = ¢ Ma,

We can now put s—2 for s, ¢*¥ for g, ¢?M for a_c and ¢gM+! for a,.
Then, after all these substitutions, we have, for M even and positive,

oMoU A~ —_ QN@N.*P«&S.V A —1 vﬁ QSER&N.*& n+M-1}

T M~-1 —_ gM-1- Nm:_uﬂwhng QN.SH_ H.—_”Qu M QuT«N «qu_

wMo [T[g%+2; g2) T[g¥—2s—1, gM+2s41 =% gi=s g-2; g2M]

i — gAMR4s4+2Y (. 1\ MM+1) n—M+1+28(M+1)
Z(1-a (=1 (7.4.16)

X N[ ¢ 5, ..., g2 ——2; gand|’

Again, we can put 2N for M in this result and remove the negative
powers of g from the products. We find that the first series is of the
Jacobi type, so again we can put 2N — 1 —s for s in the second half of
each series, and combine the resulting series together in pairs. These
series are again summable by Jacobi’s theorem, and we find the
general result

(1 — gANEN+Dn—8N%) (] _ AN@NFDn—4N) (] — ¢2n)2

— 1)N-1g2N-2 A
(=1 I, (T~ g™ (1= g
2N -1 S (1= qANEND) 1t 25N +1-AN1-aN+1)
= Mo (=1)7¢™ D L (1= g3Nn—2N-25-T) (] — g4Nn—2N+2s+1)
8=

X m— C!m?ﬁ»&#:ainkm?.ivl;;lpv. G.».:V
n=1
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Again this is a type of general modular equation, connecting powers of
Q?/_AN.ZHTHV and QPZ.
If N =1, we have
m (1—qi2n-8) (1 I.QS:LV (1- mwhvm
ne1 AH _ bﬁvm AH — Nﬁlﬂvw
_ @ c QE:IJ AH —_ HNSIJ © :. — QHNSIJ :. — Qawa.n:v
amr (L) (1= gy ~ L gy gy (F419)

and, if N = 2,

AH anﬁ'qu AH —_ ncs.lmv HH QMSV

-9 H—a (I—g®7)2 (1 — g2n-1)2
_ m AH — Qnoslmwv :. — QSSI:V _ m :, _ onﬁlwuv :. — Qboslﬁv
nm1 (1=g" %) (1—¢g"%) o (1-g*)(1—g*?)
-] AH QbOw«le AH Q»cSlqu Aﬂ th.*.uv AH _— mﬁos\lhqv
1L T gy L g g
(7.4.19)
7.5 Basic bilateral integrals
The main integral is
_ [ q=°/(c), (0) ¢° ¢ +*(ax), g *xax;
! % l.é:_HE ¢°.q4'~/(a), ¢*%, 47 QH_ ds @5
where a= 2%
a,ay...a, "

and there are 4 of the @ parameters, and 4 of the b and ¢ parameters
also. By a consideration of the residues of this integral, in strip con-
tours, similar to those of Fig. (5.1), we can give a direct proof of the
general transformation of bilateral series (7.2.5), which was deduced
above from the general transformation of ordinary basic series,

In a similar way, from the integral

I - .ﬁé _HQI\AS » g+ 0a,/(D),
! Qo«bﬂw Aa« Q Q Iw\Q\ov Qulw\AQVv
Hlm&w“ ILS w ~+u+a:~§w Iu+i=§ w
0,9 HT ds

q"**aof(a), ( -“\a_a

—inft

(1.5.2)

and three similar integrals, we can give direct proofs of the four
general transformation theorems for well-poised basic bilateral series
of any order.

14 SCGH
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8
APPELL SERIES

8.1 Notation

We have already generalized the Gauss series by increasing the
number of parameters, and by making the series infinite in both
directions. Another way in which the series can be generalized is by
increasing the number of variables. Thus we are led to the study of
double series in two variables. Such series are called Appell series.
The simplest case is the product of two Gauss functions
- (@) (@)n (B) (B)5 2™y™

oFla,b; c; 2] F[a’,b; ¢; y] lsMnc =Mc (©)m (€)ym!in!

(8.1.1)

This series, in itself, gives us nothing new, but if one or more of the
three pairs of products

(@ (@)ns (B)n(0)ns () (€)n
is replaced by a composite product of the general type

A9v§+=

we are led to some entirely new functions.
Five possibilities arise,
Mom M AQV§+: A0v§+= nﬁ*;m\.z.

m=0 n=0 on§+3§_3_

W W (@)y @)y zmy™ ™

N=0 m=o (€)y (N —m)!m!

(@)y B)x E+y)Y
N=0 (c)y V!

= ,Fla,b; ¢; x +y). (8.1.2)

Ms

This is just an ordinary Gauss series. The summation is by the use of
the binomial theorem. Next

N‘JHQ Ny @~ G &qu —_ m M Aa«v§+3 A@vs A@ Vﬁaﬁg. Aw.H.“WV

m=0 n=0 A0v§+:§_3_
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This is the Appell function of the first kind. It exists for all real or
complex values of a, b, b’, ¢, z and y, except ¢ a negative integer.

Rla;bbiecinyl= 3 5 OnnlinOniir gy 4

m=0

which exists for all real or complex values of a,b,%’, ¢, ¢’, z and y except

¢, ¢’ negative integers.

, (8.1.5)
which exists for all values except ¢ a negative integer.

Blasbic, e zyl=3 3 OnnBnmz™ g g

m=90 n=0 AOV§AQV:§_8_ ’

which exists for all values except ¢, ¢’ negative integers.

The standard work on these functions is Appell & Kampé de
Tériét (1926). A great amount of work was also done by Jakob Horn,
which he published in a long series of papers extending over fifty years.

Horn defined thirty types of double series, including series with
suffixes of the type m —n as well as the normal m + » suffixes, and he
investigated the relationships between them, {see Erdélyi and others
(1953), Vol. I, Chap. 5}.

We can rewrite the series for F; in terms of a Gauss function, so that

3 (@) (B)rp 2™

Fila; b,b; ¢; z,y] = o 0o m!

JHla+m,b; c+m; yl. (8.1.7)

All four Appell functions reduce to ordinary Gauss series ,F,[z] when
y = C. The first three functions also reduce to ordinary ,¥,[x] series
when b’ is zero.

8.1.1 The convergence of the double series. We shall now prove
that the four double series for F), F,, F, and F, are in fact convergent
under certain conditions. The general term of F, is

c,a+m+n,b+m,b +n
A_ampnr =T] " ’ ’ g,
mn Y _Ha,vwwna+§+?§+r3+ﬂu_& y

By Stirling’s formula, for large values of m and =,

~ ¢ b—1,,b"—1 a—c
A, H,_Ha.v.om_ss n¥ N m+-n)*c,

14-2
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Let N be an integer, such that
c
]

then | A amy| < N [z]" [y]" (m -+ ) Rie-0l BRIt gRie-s,

N>

so that F, is convergent when |z| < 1 and |y| < 1. Conversely, this
series is divergent if either |z| > 1, orif |y| > 1.
Similarly, if the general term for F, is 4,,, 2™y", then

|4 2™y| < ZAMWVSA%W (m 4+ n)RU@-1 RIG=0 gRIG—) || m |y |n,
n

If k is a positive number, such that
k > max[R1{(b—c), R (&' —¢)],

then mRIO-0 g RIG'~) < mknk < [1(m +n)]%,
so that
] © &/ﬂ 8 © 1
M M _kﬁ.s.:.&q:w\:_ M A VS+= A3+§v§+w:avlu_8_§_w\_=v
m=0 n=0 3 o n=0 :VSA::

Mﬂenﬁﬂ:& HA_.&._.*._Q_VQ.

».Ho

where r = m+n, and this series is convergent when |2|+|y| < 1.

Hence F, is convergent when |z| + |y| < 1.
For the series F,, we find that
(D (1)

A 8.5 n| < 2§EAQ+SIm3w~:n +b)-2 A§+§vwlmﬁg
"] Wit

|=1™ |y1™,
that is
| 2™y"| < NmRUeHD-2pRIG -2 (g 4 m)1RIO || m [y|,
and so the series F, is convergent when |z| < 1 and |y| < 1.
Finally, for F,, we find that

2
|4, 2™y?| < N(m + n)RI@tb-2gp1-RI0 p1-RIE D H_ |=|™ |y|™

(D (Da

Again, if k is a positive number such that
k> max[1-Rl(c),1-Rl(¢')],

then
S 2k+Rl(a+b)-2 H V§+§ m
3 3 Apenyr] < i E 5 men) Slasn Pigimpyy,
m=0n=0 §ho n=0 S
< Mﬁm»lrmc@ib -2 M Av _H—« m_w\_m
] r=0 $=0
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(where r = m +n)

o0
< 3 rRRIGHD-2 (x| + J]y|)?
r=90

and this series is convergent if ./|z| + \/ly| < 1. Hence F, is convergent
under the same condition.

8.1.2 Partial differential equations satisfied by the Appell

functions. If
B = s M\rs amyn, (8.1.2.1)

m=0 n=
_{a+m+n) 3+5f

th
. 4 (L+m)(c+m+n)" ™"

mil,n = (8.1.2.2)
_(@a+m+n) G~+3\~
(L+n)(c+m+n) ™™
o 0

Let ml&mm and ﬁmw\ww.

and A

(8.1.2.3)

m,a+l =

Then by direct substitution in the equations, we see that F, satisfies
the differential equations

“%+&+3 m+31|m B+d+c—1)

“
Aaéiv@i T&%i:é::n

2 2
Zo«ime%mw. mmw ».MWN.W QMWN.I and “nw,n'.

Then F| satisfies the equations

z(l-z)r+y(l—x)s+{c—(a+b+1)x}p—byg—abz = 0, 8195
@:|§+%|S@+?|S+%+:ST%&T%wuo.v (8.1.2.6)

Similarly, we can show that F, satisfies the equations

z(l—2)r—zys+{c—(a+b+ 1)z} p—byg—abz = 0, 8126
QCIS“I&%+?‘IA9+~&+C&mlom«%l&qnHo@ (8.1.2.6)
Fysatisfies the equations
z(l-z)r+ys+{c—(a+b+1)a}p—abz = 0, 8197
QCIS~+§+?IE‘+~&+:Snle@wHo.w (8.1.2.7)
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and F, satisfies the equations

(1 —x)r—y2—2zys+cp—(a+b+1) (zp+yq)—abz = o,v (8.1.2.8)
y(l—y)t—a%r—2xys+c'q—(a+b+1) (xp+yq)—abz = 0.

8.2 Integrals representing Appell functions
Let us consider the integral

I= .—.aurpeorpﬁ —u—v)e U] —ux—vy)*dudy, (8.2.1)

taken over the triangular region 0 < %, 0 < v, u+v < 1. Thepara-

meters a, b, b’, ¢ are assumed to be mc.ow 35& the double integral has a

meaning and is convergent.
Now, provided that

<1,

(1—ux—vy) @ = (l—ux)® 3 1= uz

me=0 A_.v.s

b A&sA vy vs

— e A&vieﬁm\ic Qﬂvlali

m= o:.vs

2 (@)m

M (@ ymyym M E+3v=

Y E T,

80 that

e w @min b—l4ngb—14n(] _ e-b-b'-1 g &
=3 3 "y .‘..‘\z P (] —yu — ) udv
M- o:ﬂonﬂvsc.vﬁ

2 (@)min nym b+n,b" +n,c—b—b"
S-Mnc:MoA:q:A::& r c+m-+n

Finally, we find that
— c . oo, ) 8.2.2
.NI.HJ @vOfOI@l@‘g@H_”QJ @v@uo. &»@u A v

In a similar way, by expanding the integrand in powers of z and y and
integrating term by term, we can show that

.‘. ! .‘. ! wub=1p¥-1(1 — u)e-b=1(1 — )¢ ~¥-1(1 — uz — vy)~*dude
oJo

¢, c

= ﬁ_ﬁv.walvno laH_EE b,b’;¢c.¢s z,yl, (8.2.3)
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and .‘.goL W1 — 2 — v)e~b-01(] — yz)=7 (1 — vy)~% du dv
= HJ_HPO _aM@l@ H_ Fja,a’; b,b"; ¢; z,y], (8.2.4)

where the integral is taken over the triangle
20, v20, utv<gl
No similar integral for F, has been found.
We can also deduce a single integral for the function F,. Let
1

N\ H.‘, §aL2IS?T-Clﬁﬁvéﬁlgvnedz.
0

Then I'= M M zaLCISTpL (b)m umgm % V:\zs.@s du,
m=0 n=0 (), (1),

0 (1) (1)n

8 A®v§A® v= 5 Q.ATSS.TS:GI»Q\
.SMUo SMcvasAHv.:.& w\ HJﬁ ct+m+n Qv

— W m @Slﬁg &5@:-‘» §a+5+.=lw A_. — Q\valalw Q\&.
m=0 n=0 0

so that I'= _J_Ha e Tga b,b; ¢; 2,y (8.2.5)

In the four integrals given above, powers of various linear functions
of w and » occur. Thus, in (8.2.1), we have powers of u, v, 1 — x— v, and
1—uz—vy. In(8.2.3) wehave powersof u,v, 1 —u, 1 —vand 1 — ux — vy,
in (8.2.4) we have powers of %,v,1—u—v,1 —uz and 1—-vy, and in
(8.2.5) we have powers of u, 1 —u, 1 —uz and 1—wy.

These suggest that more general integrals of the type

I H-:‘gnleulwﬁ — )1 (1—v)? (1~ u—o)e 1 (1 —uz)~?
x (1—vy) (1 —ur—vy)t1dudy (8.2.6)

might be studied in order to discover more general relations between
similar functions of two variables.

8.2.1 Single Barnes-type integrals for Appell functions. From
the general theorem of §4.7.2, we can deduce immediately single
contour integrals of ordinary hypergeometric functions which repre-
sent the various Appell functions, and lead to their asymptotic
expansions when one of the variables is large. In particular, for the
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four functions F,, F,, F; and F,, we find that, if lz] <1, |z] <1and
_E.mu_ < m, then
b—s, ©+m~_ 7 b—s,e; e”_&nw%
mql_,ne H,ﬁ 1 d-s;

v+9x+m
d+g

- @ii, b E G+ min(l+0=)n@m me_ yn,-mn
~E cHJ—“ §Mo aw‘o c.*.@ wpv§.+:§\:i v A v

b—h,g+h M M @ R)m—n m.H5|:-.®w=&§hl 1)rz—n.

_ & T d=h), _min
d m=0 n=0 s (8.2.1.2)

b=sg+s I.. |ua,w
wa.e-_. —H +s, an,wgmmﬂg .f@?\.. Hu&

=2T b+g; e.ht+g; d+g;x, —2], (8.2.1.1)

+22T

_@+ . .
= Flb+g;e,1+g-j; k+g.f; 2], (8.2.1.3)
2T g.k+g o[0+9 g-J

zZ X

zNL;, @i a@+33+s:+a sﬁs_Si avs&ls-a.
j+b,k—b_ | pimo im0 (J+Bmin (Hmm!n!

(8.2.1.4)
1 (= g+s,h—8k—

smil . r des JFile.f; d—s;x]2*ds
=27 Q+~N.Q&+~n g +he; g+kfig+d; 2, —2], (8.2.1.5)
g
.Qi, » kb (@+2)n (€)m (HIma™2™

~2h

smo m (L+h—k), (d—h),_m!n!

A PR L TICL T el
+N1§—H.Q 3M°i_ﬂinssanssés_i (8.2.1.6)

ﬂ_H -8, ol.w Q.T.m.\._ mmiﬂ_ﬂvlu,nlmw.\w nﬁnluﬁm

mqﬂs

n% ﬁ_”v +%l,fem+m.|._ ﬂ@+$a+m;+?bﬁ|&,Am.w.m.d

c— o n +b @+ D) pin L +b—=K)p @™ (= 1yming-mn

smo 3Mo |q.+§®\| 83 A.\.VE\E\:@‘
b G Q+a 5 @.T 3:13: te— Nnv5+§.&.§ — 1 yming—-m-—n_
+n|nH,_” sMo :Mmo (14c—b), (f).m!n! (1)

~z T

(8.2.1.8)
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These integrals are due to Appell (1926) and the asymptotic expan-
sions are due to Slater (19558, § 5). In a similar way, contour integrals

and asymptotic expansions can be deduced for the thirty other series
defined by Horn.

8.3 Linear transformations

Several linear transformations of Appell functions are known. In the
single integral (8.2.5) for the F, series given above, let us put

u=1—w»

Then

1
F = ﬂ_”a M QH_._. vl =) N (1 -z +v2) 2 (1 —y+oy)~¥ do
T & 0
= ﬂ—ug MlaH_CI&VIQCIS|q 01 —9)4=1{1 4 v/(1 —2)}7b

x{l+oy/(1-y)}¥dv, (8.3.1)
so that

Flla; b,¥; ¢; z,9]
= (1-2)2(1—y) ¥ Fc—a; b,b'; ¢; af(z—1),y/(y—1)]. (8.3.2)
If b" = 0, this result reduces to (1.7.1.3), a relation between two Gauss
functions. There exist five such changes of variable which leave

unaltered the fundamental form of the integral.

Next let us dﬁ% Q\"e\AHI&..‘Te&V

This transformation is chosen so that 4 = 0 when v = 0, and » = 1,
when » = 1. Then

l—ux = (1-x)/(1 —x+vx),
l-uy = (1—c+vx—vy)/(l —x+ox),
l—-u=(1-2)(1-v)/1—z+vx)

and du = {(1 -z)/(1 -z +vz)?} dv.
Hence

Elas bV cml =T @ Ja-ames1-a)v g

x % 011 — 0111 ~ (z— ) (1 — &) {1 — vy — (1 — )} do,
0



218 APPELL SERIES
go that

Fla; b,b'; ¢; z,y]

= (1—z)°Ffa; ~b—b"+c,b';¢; —ax(l—2), (y—2)/(1 —2)]. (8.3.3)
Again, if b’ = 0, this result reduces to (1.7.1.3).

In particular, if ¢ = b+,

Fila; b,b'; b+d'; 2,y] = (1—2)"2,F[a,b’; b+b"; (y—2)/(1-2)].
(8.3.4)

Thus, in this particular case, F, reduces to an ordinary Gauss function.

Appell (1926) gives several further cases of such reductions.
In a similar way, we can prove that

Fla; b,b’; c; z,y]
= (1—y)*Ffa; bc=b-b";¢; (x—y)/A—-y),y/ly—1)]. (8.3.5)

If we write u=v/(l-z+ovr) and v=1-V,

so that u = (1 — V)/(1 -2 V), we find that

Fla; b,0';¢; 2,¥]
= (1—z) (1 -y) ¥ Flc—a; c—b-b",b"; ¢; z, (w—y)/(1 - y)]
(8.3.6)
and, in a similar way,

Fa; b,b; ¢; ,¥]

= (1—2)(1—y)2YFc—a; bc—b-b'; ¢; (y—2)/(1 —x),y]).
(8.3.7)

From these five transformations, we can see that there are at least six
equivalent solutions of the differential equations (8.1.2.5) satisfied by
the F) function.

It has been shownt that there are sixty integrals of these equations.
Each integral involves an F, function and there exists a linear relation
connecting any four of these integrals. These sixty solutions thus
correspond to Kummer’s twenty-four solutions for the ordinary
Gauss equation. .

We can deduce three transformations of the F, function in a similar
way. First put « = 1—’ in the double integral (8.2.3). Then

F)la; b,b'; ¢,¢’; z,¥]
= (1—z)* Fyla; c—b,b"; ¢, ¢’; zf(x—1),y/(1 - 2)]. (8.3.8)

t Appell (1926), pp. 62-4.
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Next put v = 1 —~¢’, then
Fyla; b,b'; ¢,¢’; z,y]
=(1-y) " Fla; b,c’'—b"; ¢,c’; 2/(1-y),y/ly—1)], (8.3.9)
and finally put = 1 — %’ and v = 1 —+', so that
Fyla; b,b"; ¢,¢"; z,9]
=(l-z—y)?Ffa; c-b,¢'-b"; ¢c,¢’; zf(z+y—1),y/(x+y—1)].
(8.3.10)
Various more complicated substitutions have been tried, but these
all break down and lead to no useful results. In transformation of the
integral for the F, function, another trouble arises, as the integration

in this case should be carried out over a triangular region. Similarly,
for the F, function there are no known transformations,

8.3.1 Cases of reducibility of F,, F, and F,. Ifx = y, the result
(8.2.6) gives us the special case

Fla; b,0";¢; z,2] = (1—z)~* Y Flc—a,c—b-b"; c; x]
= H[a,b+b’; c; z]. (8.3.1.1)
Ifc = b+b’, (8.2.5) gives us the special case

Fila; b,0';b+0; 2,91 = (1—y)~%,F[a,b; b+ 05 (x—y)/(1—-y)].

8.3.1.2
If ¢ = b, (8.2.8) gives us the special case A )

Fyfa; b,b'; b,¢'; z,y] = (1 —2)*,F[a,b’; ¢'; y/(1—2)]. (8.3.1.3)

Of these formulae, the second one shows that the function F, reduces
to an ordinary hypergeometric function when ¢ = b+ b’, and the third
one shows that the function F, reduces in the same way, when ¢ = b,
and, by symmetry, when ¢’ = b’.

We can write
& (@) (B) 2™

e b0 ¢ 2,91 = 3

2T (o, 2hlatmbietm;yl. (83.1.4)

But Fila,b; ¢; y] = (1 -y)~?,Fi[a,b; c; y/(y—1)],
so that
.NWMQL @v @ﬁ Ow &um\u
, = b
= 1=y 5 D0 Omomis o Brab e yiy—1)

m=90 vas on§
(L—y) ¥ Fla,c~a; b,b; ¢; z,y/(y— 1)1 (8.3.1.5)
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Thus, any F, function can always be expressed in terms of an F;
function, but the converse is not true, except in the special case when
¢ = a+a’. Since the ¥, function reduces to an ordinary hypergeometric
geries when ¢ = b+b’, we can also expect that the F, function will
reduce to an ordinary hypergeometric series when ¢ = a+a’ = b+b'.
In fact we have

Ffla,c—a; b,e—b; c; x,y/(y—1)]

)
= (1—g)¥-2(l—9y)2,F]|ab;c—-b; . (8.3.1.6
In a similar way, we can always express any general F; function in
terms of a special ¥, function, in which ¢’ = a. In fact,

Aﬂ |w\vlv~ M_..w_”n«w @.@J c,a; &.Q\AQI ~v“_

e 2 (@ B)pm
|:. y .5Mc AQVSC.VS

S @n®a” p

m=0 AQVSA:»S

_ < AQ\VSAOVSHSAQ\|@J§ e f a1 —

"2 O @, Ho0o T iEYmammi 1=y
{from (1.8.1.12)},

=T (0)m (@ = b)yy (B),, (— ) 2™ (1 — )"

m=0 n=0 A~VSA~V§AQVSAH+O\|Q 3.5

_ - @v:.@ﬁg vvai_ev Aluv.;&ql.u: w\v.a

|=Muc uM“o A:mcvaﬁovaiwﬁﬂ.*.v.l& - mva

- Avvﬁfm AQ ~u vu A® vB 8=+mﬁw QV.B

Fle+m,b'; a; y/(y—

- :Mo .wMo :.V.L:s T&:fw
= F[b; a—-b',b"; ¢c; z,2(1 —y)]. (8.3.1.7)

Thus, any F, function always reduces to an ¥, function when ¢’ = a.
If, further, c —a = a’, we can express a special F, series in terms of a
Gauss function. The formula is

Fya; b,b'; a,a; z,y]
= (L—2) (L) ¥ ,Fi[b,b'; a; zy/{(1—2) (1-9)}). (8.3.1.8)
This can be proved in a similar way, by expanding the right-hand side
in powers of x and y.
All these results hold for infinite series, provided that |z| and |y| are

small enough; that is, they hold for values of « and y in some simply
connected domain about the origin.
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In some particular cases, transformations exist between an F,

function and an Fj function, but no general transformations of this
type have been found.

8.4 The expansion of the F, function in terms of Gauss
functions

In 1920, G. N. Watsont proved that
oFila,b; c; 2],F\(a,b; ¢; Z]

uﬂ_w.e a- @H_Ea@ c,at+b—c+1; 22, (1-2)(1—2)]

c—a,c—b

+ H,_Ho 9+®|a.1._ (1—z)e-e=b(1 — Z)e-a~b

xFlc—a,c—b;c,c—a—b+1;2Z,(1-2)(1-2)]. (8.4.1)

This expresses the sum of two F, series, in terms of the product of two
Gauss functions.} The second part of the expression on the right-hand
side vanishes when a or b is a negative integer, and we have

o3[ —n,b; c; 2] H[—n,b;¢; Z]

Hmol@%mﬁml?v“avwles.rwlﬁaN“CINZHIN:. (8.4.2)
But "
H[—n,b; 5 Z] = ??&S: 2Fi[—n,b; 1—n+b—c; 1-Z]. (8.4.3)
Hence

oFi[—n,b; ¢; 2] Fi[~n,b; 1—n+b-—c; 1-Z]
=F[-nb;¢c,1-n+b—c;2Z,(1-2)(1-2)]. (8.4.4)
We shall now prove that in fact this result holds when « is not a
negative integer. Let us write z/(x— 1) for z and 1/(1 —y) for Z, and

consider U,,, the coefficient of ™y” in the expansion in series of the
function

D(z,y) = (1-z) e (1-y)?

F, - a y
x T; Catbmetli o= 1=a) - L.

(8.4.5)
t Watson (1920). 1 See also Watson (1948q), §11.6.
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We find that

__1\r+8 Aﬁvviﬂ @vlfa AQ +7+ .wwilw G +r+ .wvﬁl,.w.
Q§3 nMo mMoA Hv i vaﬂAﬂvaAnvaw+§+@IowmAHv§lA~V:lm
— 1 W M A§v§+m A - gvu QVVS,LI. A - 331

3,3_?@ om0 r1(1+a+b—c)s!(c),

= %»ﬁi? —n; l+a+b—c; 11,F[b+n, —m; ¢; 1]

_ (@) (B)alc=b—n)y (1 +b—c—m),
m!n!(c),,(1+a+b—c),
provided that |z| and |y| are small enough. The ,F, series have been
summed by Vandermonde’s theorem. Also
Ao|®|3\v§ = Aal®v3l~=A| :3: +@lov§

A9v§ Avvs AH + b |0V§ Ao lwvﬁ.
min! (€)m(L+a+b—c), ’ (8.4.9)

b3

so that U=

after some reduction. Hence

O(z,y) = JFla,c—b; c; z] Fi[b,1+b—c; L+a+b—c; y]l, (8.4.7)
= (1—x)"¢,Fa,b; ¢c; z/(x—1)](L—y)~*
x  Fila,b; 1+a+b—c; y/(y—1)], (8.4.8)
provided that

lof{@—1) -y}t + |yA{z- D L-yht < 1.
Hence finally we have the result that

Fa,b; ¢, 1 +a+b—c; zf{(z—1) 1 -y}l yf{le-1)(1-y)}]

=, Fja,b; ¢; z[(x—1)] Fi[a,b; 1+a+b—c; y/(y—1)]. (8.4.9)
This result gives the complete expression of the ¥, function in terms of
ordinary Gauss functions when

c+¢ =1l4+a+b,

but this result is only a special case of a still more general expansion,
due to Burchnall & Chaundy (1940) and (1941 e), which we shall now

prove,
Let us consider the coefficient U,,,, of 2™y™ in the expansion in series

of the function
O(z,y) = (1 —2)2(1-y)™
x Fya,b; ¢,¢'; zf{(z—1) (1-p}hyH{-1)(1 —-y)}. (8.4.10)

[ N VDS SUNSU o FCIN PR

THE EXPANSION OF THE F;, FUNCTION 223
We find that

M M A - :»‘+a Aa«vw+« @v}é AQ +r+ .wvwzle. A@ +7r+ .wvalm
+Z0 oo r18!(c), (¢ ), (m—r)! (n—s)! .
_ (@), (B)s

min!

A&vs A®v§ Ao —b-— §v3 An~ —a— §v§
minl (o), (¢,

sfila+m, —m; ¢; 1]1,F\[b+n, —n; ¢'; 1),

?

by Vandermonde’s theorem. But, by Saalschutz’s theorem, we can
re-expand these last two products to give

Q.l AQVS@V:AQ\|QV§A0|®V§ ~+8+~wlola\v |§¢)3.
mn — [ ot wﬁm ' 1.
mlin!(c), (¢) l+b—c-m,1+a—¢ —n;
(8.4.11)

n

Now let r be the subscript in the 4Fj(1) series and let us replace m and =
by 7+ s and 7+ respectively, in U,,,. Then

q\.fq = Egms_i M@.vl.m A VTI Ao\ . Qvl.w Aa - vvni (1+a+ b—c— e\v*
’ r=0 Q._.w::ovniw Ac\vni Ae|~v+%vq Ao\l.&.,*.«vw ’

and so

e?S
um 5 M (@)rss (B)rss (¢ —a) (c—b)s (1 +a+b—c—c'),ar+syr+t

0 s=0 t=0 r18lel(c) s (c)pyy

- W zy"(a), (b), (1 +a+b—c—c'),
r=0 i), (¢'), o

a+r,c—b; b+7r,¢ —a;
xnﬁ_ﬂ s &H_NB_H o @H_ (8.4.12)

< P —xyy(l-y)(a),(b),(l1+a+b—c~c'),
1lo r! Anvﬂ Aa v1 ‘
X Fla+r,b+7; c+r; 2f(x— D] Fla+b,b+7; ¢ +r; ylly—1)).
(8.4.13)

Now put z for z/(x— 1), and y for y/(y— 1), and we find the final
result that

Nw_”a«vmvw ¢, OJ &Awlw\f m\:. |&Z
< AQ\V..AWV.,G.uTQ\uT@.IOln v.,

(1-2z)-2(1-y)* 5

— A IONCIN i
a+r,b+r; a+r,b+7r;
8 Nﬁ_H c+7; aH_ E_H ¢ +r eu_. (8.4.14)
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If we put 1 +a+b—c¢ = ¢’ in this result we can deduce the previous
result (8.4.9) as a special case.

8.4.1 An integral for F,. Now let us replace the two Gauss func-
tions in (8.4.14) above by their integral representations, using (1.6.6).
We find that

F, = Fj[a,b; ¢,¢’; z(1-y),y(1 - 2)]

_ 3@, k),(+atb—c—c) a2y
- 0 :.vq. Aavw Aodn

. H;h c+r Ql" uetr=11 — y)e-a-1(1 — uz)-d—"du
a

a+r,c—

M

xﬂqi g .‘ H%J:Lc|3?T:_|§li%,Am.p._.:
b+r,¢’~bl)e

provided that Rl(¢’) > R1(b) > 0, and Rl(c) > Rl(a) > o.. .
Now let us interchange the order of summation and integration,
so that

fi= H__Havo aolvu_

VCQL._.H ug=byd=1(1 — 4)e=0~1 (1 — )¢ -1 (1 —ux) = (1 — vy)
0Jo

© (L+a+b—c—c), (wvay)
r=0 A:‘.Awlﬁﬁvn:|@q\vq

Then, by using the binomial theorem to perform the summation, we
deduce that

Fja,b; ¢,¢'; o(l —y), y(1 —x)]

ﬂ_unvo aolog

« % ' .ﬁ a1 911 —ae)r-e-1 (1 — 0)¢~0-1 (1 — ) (1 - )
0/O

x [1 = (uvxy)/{(1 —ux) (1 —vy)}lete—e-t-1dudy, (8.4.1.2)

provided that |z| and |y| are small enough to make the double integral
convergent. This proof is due to Bailey (1941a). An alternative proof
is that of Burchnall & Chaundy (1941a).

X
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8.5 Double Barnes-type integrals

Just as it is possible to generalize the ordinary hypergeometric
function into a double series, or Appell function, so it is possible to

generalize the ordinary Barnes-type integral into a double contour
integral. We shall let

(@)+s,(B)—s, (c)+¢, (d)—t
Pty = % &) +s, (f) - is+:I&.Ii“é,TL“ (8.5.1)

where, as usual, there are 4 of the a parameters, B of the b parameters
and so on.

Now consider the integral

I = g. .‘ T'(s,£) ds dt, (8.5.2)

taken round a semi-circular contour ABCD to the right of the

Imaginary axis in the s-plane, as in Fig. 4.1, and a similar contour
A’'B'C’D’ in the ¢-plane. Then

i i
= % w % I'(Re¥, Rei®) R2e0+9 df dg
—inJ -1

.‘. .‘. I'(s, Re®?) Rie® dsd¢

.‘< H_ Re¥ t) Rie?®dO dt
—iR

iR
% ;. I'(s,#)dsdt,
—iRJ —IR

=Ji+dy+J5+J, say. (8.5.3)

Also I, is equal to the sum of the residues with respect to ¢ at those
poles within 4"B'C"D’ and the residues with respect to s at those poles
within ABCD, of I'(s, ).

Now, under suitable convergence conditions,

.\m,.\mvnm&lvo as R - .

Hence —L>-lmJ,=1I= II» .‘. I'(s, t)dsdt. (8.5.4)
R—w 4 —to) —iw
Also -1 - M M W 2o, +m,d,+n), (8.5.5)

#=1v=1 m=0 n=0

provided that these double series are all absolutely convergent,.

15 SGH
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In a similar way, it follows from the integral

_. _. T'(s, t)ds d,
A'C'D'A’'d ACDA

where ACDA is a semi-circular contour in the s-plane to the left of
AC,and A’C’D’ A’ is a similar contour in the ¢-plane to the left of 4°C”,
that 4 ¢ o o
I= M x 2 M A|Q\\~|3~. I.Gzln»@v. Awmmv

p=1v=1m=0 n=0
Hence, under the convergence conditions
(i) Rl{Z(a+b+c+d—e—f—g—h—j—k)
+2+F+H+K-B-D} <0,
(i) RI{Z(@+b—e—f-j—k)+1-B+F+K} <0,
(ili) RI{E(c+d—g—h—j—k)+1-D+H+K} <0,
(iv) A-B-E+F-J+K=0
and (v) C-D-G+H-J+K =0,
we find that

(@)+8,(b)—s, (c)+¢, (d)—1 ds dt
»:;iL, dﬁ@ )+, (f) =8, (g)+8, (R)—¢t, () +8+¢, EITM_ i

A@v a, vi + Q\\t Aav — Gy A&v +¢, ”_
" hAmv Q\C .\.v.TQ..ZAQv'n_:Qovn*uo-:A.“.v|§§|Q§an+9}+0=
- - AA v +Q\.v§ AA&V + GL.: AH B Aav + Q\vi AH - AQV + nwvs.

X B 0T a,— (@) (146, — (@) () + @) () F0,)a

:. - CV + 9\« + ovvﬁiﬁ
AAN& + Q\\« + G=V§+§
g Aﬂv + O\t AOV - A v + &—: A&v &e
— ﬁ®v+®§vA.\.v| \t QvuT&EQ@ &EAbvnTv +&-:AN3 @ II&
o (@) +b,)m () + ) (1 = (f) + D) (1= (A) +4d,),,

«Z, 2,045, o0+ 8, D 0 (4,
:. - Qov + @\ + &=v5+=.
ACV + @} + &—.v§+3

If there are no terms in j and % in the integrand, thatisif J/ = K = 0,
the theorem reduces to one about series of products of ordinary hyper-
geometric functions. We have already had an example of this type mm
relation in (8.4.14). This result can be deduced directly from (8.5.7), if
we take J = K = 0 in that relation.

MM

p=1r=1

X

(— CE+@+_: 3+6+Q+.~§_ ,

B
M

=1»=1

M

% (— 1)B+F+E) m+(D+H+E) s“ . (8.5.7)
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8.5.1 Integrals of Appell functions. The general theorem of
§4.7.2 can be amended to provide a Barnes-type single contour integral

of each of the four Appell functions. These integrals can be summed up
in the formula,

I(z) = —— . ﬁ_HAo +9 Slmu_ FO(x,y)2°ds, (8.5.1.1)

mﬁ

where F¥(z,y), (v=1,2, 3, 4) are aro four Appell functions,

If we substitute the parameters of each Appell function in turn in
the expansions of £, ,(z) and = B, (%), givenin §4.7.2, and amend the
convergence conditions accordingly, we can find, for each Appell
function, three complicated expansions of the general forms

I(2) = £, ,(2) ~ g . (2), (8.5.1.2)
I(z) = Zp o(2) ~ Z 4 o(2) (8.5.1.3)
and I1) =2, (1) = 25 .(2). (8.5.1.4)

The exact forms of these expansions have not been published nor
investigated in detail.

8.6 Lauricella functions

The concept of a double hypergeometric series can be extended to
triple, quadruple or multiple sums, in general, though the results
become progressively more complicated. Such series were first studied
by Lauricella (1893), whose name they carry. The theory of general
multiple series was investigated more fully by Appell (1926, Chapter
VII).

Lauricella defined the four functions

Fyla,b1,by,...,6,,61,C0, .0, Cpy @y, Ty -0, T, ]

— 2 G A v=-+3- . +§3A®Hv§; A@ VSu AQ,:VS:
- MH“ MH Aouv:: AO»VSu Aos.vv:s, A::: Aﬂvw:.» cee :.vs:

where, for convergence,

afays... xpn,

(8.6.1)

] + [zl 4+ .+ | < 1.

Fplay, ag, ..., a,,b1,b,, ..., b, ¢,2,, 2, e 2,

S L VA VN A RS OV P

Trafe .. apn,
0 A0V§»+§n+:.+§s Auviy AHVSS . AHY;: 2 "

(8.6.2)
15-2
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where, for convergence
ly| < 1, |®e] < 1,..., |2} < 1.
Fola,b,cy,69, .00y Cpy Ty, Ty oeny 2]

= W wna“ (@t gt smn ﬁvV§_+§-+.uuH;=.ham=_&m=n...&w_u. (8.6.3)
\::”

0 mmo (©0)my €y - Cadmy Dy (Wingee- Wiy

where, for convergence
_aw_+_&w_++_&w_ <1
and Fpla, by, by, ..., 0, ¢, 2,2, ..., 2,]

_ = = A9v§~.75n+...+§sﬁ~vwv3: Avwvwsﬁvavaf m, ,my m.
T2 B Omemerotm, D, Wy oe Dy L T
(8.6.4)

where, for convergence,
lzy| < L ]as) < 1,..., 2, < 1.

Appell gives multiple Euler-type integrals for these functions and
he states the general forms of the systems of partial differential
equations which are satisfied by them.

As we shall see below, there exist single contour integrals repre-
senting such functions, but the method of getting at these series by
the use of multiple contour integrals has not been worked out
systematically.

8.6.1 Integrals of products of hypergeometric functions. The
general theorem of §4.7.2 can be extended further to provide general
transformations and asymptotic expansions of products of hyper-
geometric functions, by considering integrals of the general type

1 e (@) +s,(b)—s
&= %@ +s, aTL

(@) +s,(b)—s,(e); &

X \~\+w\+ﬂwﬁt+b~+~ﬂ AQ\V +s, A&sv =S A.\.v“

‘ v @\\ Iv w
X 4rsiracFospran MMWHM AMSV JM %W“ QH_ 2#ds. (8.6.1.1)
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Among the simplest integrals of this type are a group of integrals
of (F(z) functions, that is Bessel functions. Thus
1 (i
o) [[1-b+s,1—a—s],F[; a+s; x]oFi[; b—8; y]ads
= 217414 2)2+2'[2 —q - b]

@ &§AH+NV§N1§
x3ni.a+-l..:§:vm=eﬂhh a+b+m—1; (1+2)y]l, (8.6.1.2)

where |z| < |z] < 1, |y| < 1, and |argz| < 7.
. In particular, if z = 1, from the third part of our theorem, we shall
ave

1
2me

10
.‘.|§ Pll-b+s,1—a-s]F[; a+s; x]oFy[; b—s; ylds
= 2a+b-2T[2_ g —b _ e . .
H ¢ HSMHUcA&+®|:§A:S¢§uH~9+®+§|H.Nw\u_v
(8.6.1.3)

or, since  J,(z) = 2°2~4T[1+al}~! F[; 1 +a; —}2?],

1 10
smi) .. Jas(¥/2%) cosec {m(a+ 8)} J,_(y/2}) cosec {m(b — 8)}ysr—eds
—_ . 8‘ Al H&.N m
B R T R CLAPY
Also, since
L@} = 32){T[1 +al} A1 ; 1+a; $a?],
1 k1)

omi) . L.o(2/2}) cosec {m(a + )} I,_,(y/2}) cosec {n(b—s)}yx—rds

—_ &nm\e HJ_” - — m& m IIAW&.VmS

2o (Lt a+b), (1), atvem(®)- (8.6.1.5)

Similar results hold for the other types of Bessel function.

Another example of this type of integral of products of series is
Meixner’s integral

1 o
i Ls:wa+o+m,wa+v|?walmluvwalo+&
x Fil3a —b—s; a; 2], F[3a~b+s; a; y]ds
= I'[a +2b,a — 2b] ,F\[a— 2b; 2a; x+y). (8.6.1.6)

Hw@.@.mm a group of similar results, involving other confluent hyper-
geometric functions and Whittaker functions, but they do not all
reduce so elegantly.
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Integrals of the general type (8.6.1.1) can be used to deduce contour
integrals representing the Lauricella functions. Thus, for the o.,.m.cmm
function, an integral corresponding to Meixner’s integral above is

1

5 ‘ la+s,a —s] Fila+8,b; c; z],Fi[a’—s,b'; ¢; ylds
M) —io

T 0 WO ) S . MNP IR
=2 Tt el 2 2 o) ), (), 20" 0% (G610
where |z| < 1and |y| < 1. This Lauricella function on the Emg-rmbm
side, is an example of the simplest kind of generalized Appell function,
with three denominator parameters and two numerator parameters,
and two variables.
A second example is

1 (i I a+8,a —s N‘J—Ha+m,ow&“_-ﬁ_Ha‘\lm.vww\”_%
2m) —i Le+S, ¢ —51¥ M ct+8; ¢ —3;

a+a,c+c’ —a—a' —1 oMo“ W (@48 )0 (D) (B)y —

c—a, ¢ |&\“ c+ ¢'—1 m=0 n=0 AG +.0\ - Hv3+§ AHVQ A~v§
(8.6.1.8)

=T

where |z| < 1and |y| < 1. Many similar examples can be constructed,
and isolated examples of integrals of this type are scattered throughout
the literature.

8.7 The general contour integral of Lauricella functions
We have already given several applications and oxgbmmo.:m of the
theorem of §4.7.2. We shall now state the extension of this general
theorem to integrals of Lauricella functions. Let

1= % 3

274} —iw m=0 n=0
HJ A9v+§§§+~\9§+%v A®V+§v§+ew3|hg Nak&ﬂ;.wevhw%u A@..M._.v
% () +um+v,n+s,(d)+usm+vgn—s
4 » = @ (@) +u,m+v,n—a,—u,m—v,n—p,
= T .
Mm \Ww §Mno :Mo eMo (c)+u,m tvm—a,—~um—v,n—p,
AS+§e§+ee3+a§+§.§\+ex3+%u_
(@) +ugm+vgn+a,+um+v,n+p
x A,, B, z-oxtum—oun—p_ (8.7.2)
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and
T, = W W Wﬁ_uﬁav+:a§+eas+@=+§§+$§+§
1m=12=0 5=0 L(C)+um+vmn+b,+um+on+p,
®) +uym+v,n—b,—um—vn—p
@) +ugm+vm—b,—um—vn—p

X A, Bybriwmivnte(8.73)

o]

v

i

In these expressions, the u’s and v’s are zero or positive or negative
integers, and the 4,, and B, are expressions independent of s, such
that the double series under the integral is absolutely and uniformly
convergent in x and y. Then, provided that

}1(4+B—C—-D) > |argz|,
we have

(i) I =ZX,4~ Zg, either (a) when 4 +D > B+C, or (b) when
A+D=B+Cand |2]| > 1,

(i) I =3g ~ I, either (a) when 4+D < B+C, or (b) when
A+D = B+Cand 7] < 1,

(iii) I =%, =Xy, when A—C=B-D > 0, provided that
z=1,and R1Z(c+d—a—b) > 0.

Similar theorems will hold for integrals of all the other types of
function, involving double, triple, or multiple summation of products
of Gamma functions of the general type

Tla+wum+vn+wp+... +4],

where a is complex, and u, v, w, ... are integers or zero.

From such integrals, we can deduce contour integrals representing
the known types of functions which can properly be called hyper-
geometric. In every case, each integral will lead to an asymptotic
expansion, an analytic continuation, or a simple equation connecting
finite sums of such functions. It is clear also that a theory of the
multiple solutions of the differential equations which underlie each
type of integrand, can be developed on lines similar to the investiga-
tions of Meijer (1946 a—56), which are based on the first theorem above,
that is (4.6.1). However, such results for these general functions
become progressively more complicated and numerous at every stage.
Also, the problem of devising reasonably short notations, which
express clearly the results found, quickly becomes acute.
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9
BASIC APPELL SERIES

9.1 Notation

Just as we can extend the concept of a hypergeometric function to a
basic function, so we can extend the concept of a double hyper-
geometric series to a basic double series. The four basic Appell series,
analogous to the four ordinary Appell functions, can be defined as

’ 8 8 AQ\ QVS.T:. A@ Qvﬁ A Qv# RS@\:\
OW[a: b b ¢ z,y] = , (9.1.1
HQJ ’ % ”E m=0 .:M.Uc Su 3.5 S. 3 An, 33+= A v

22 (8 DB D (B P2y
m=0n=0 AQ“ QVSAQ st\ﬂo QVSAO Qv? Awwmv

, , -3 (@; Dm (@5 )n (B; D (b5 Dy T™Y™
D9q,a’; b, b'; ¢; 2,y = o

H m\u m=>90 SMo AQ, QVE AQM st Anv Qv5+$
(9.1.3)

O3[a; b,b’; ¢,¢'; x,y] =

and
' & o (@ Duin (b Qin2™Y"
dW[a: b; c,¢’; z,y] = mtn min= . (9.1.4
H U= 220G 0 @5 9006 D@5 0 Y
These basic Appell functions were first discussed by F. H. Jackson
(1942, 1944). Alternative forms of all four functions can occur, in
which, in the general term, y"g¥"®D replaces y".

9.2 Integrals representing these functions

We can form basic contour integrals representing the four basic
Appell functions, by the use of the general theorem of §5.5.1. Thus

t (it &QI«V 2q°, mwlm\uw bg—,e;
271} _impt 1 hglﬁ ¢*, kq=; QH_ 2P _H&mlm g,z H_ ds

=1 MMM\N ;ee@ e, k; d; 2,72]
d/b,zb,q/zb;
o [ g | it e gbid, abk; a0, af o
daJk, 2k, q/(2R); (B/k; Dn-n (& D k3 D™
* i G\NP an q; Q:Mos.Mo A&\Nn Q m— 3AQ~ Qvi S. mvan.in: ’

(9.2.1)
where Rlz >0, RI(b/d) >0, Rlz>0, RIl(g/kz)> 0.
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The three other integrals for the other basic Appell functions are:

2N I N N 7
I nu_ 2 P1ldg %, ¢; £ ¢, %] ds

M\\N& —injt &thu Nnal.wu Qm.

—_ 2, Q\Nu \«»
=1 _H& k,q; nu_ DOd; k,¢; b f; 2,2]

2k, qfzk, h w d (qk/h;
N :T\\“ ok, / $ 3 k(R 9)n @3 QDo (k5 @),
y K, 45 m=0n=0 A.\. QVS q; vazAQ Qv
X (€; @)y 2Mg—inin=1( _ 1)n pnf—2np—n 4 ] =, /24, h/d;
; (=1 T  wdd,g 0

v v 997 Dmin (@5 Dmsn (€5 Q) 2™
x M M m+n b m+n 2 Q m

w=02=0(98/%; Q)in (f; D (&5 Do (&5 @)

x hin(dzk)—m—n &s+alw§§+»3+s‘ (9.2.2)
where Rlz > 0, and Rlz > 0.

t inft ®Q|bu NQ&W QH'N\N
23 —inpt 11 _“».mﬂ kqe, g% H_ 2 Pile.f; bg~%; ¢, 2] ds

bj,2[j, qjlz; e .
_H@ 5@ ge@:e“ e; J.f; b; 2l z]

blk, 2k, qlzk; ® (Gk; @) (e . m(_ 1\n ghnin+8)
kg 4 EZ B3 Do (@5 Do (@5 D) G5 D
KR 05 U5 Dn (&5 O (f; @) amginnt(— 1)

Q‘\nwﬂw m=0n=0 (B; QVSIS (g g §AQ\\P 9r (g vsx\é&\;
(9.2.3)

where Rlz > 0 and Rl(z/j) > 0.
Finally,

2 :_HSA 24°, ¢*~/z;

2mi) i Ldg, g%, g5 & 2P1[dg™,¢7%; f; ¢, 2] ds

_ ki 2[5, qj/z; s, .
=11 s QH_ OW(dy; 7; by, f; 27, x)

oI w\& E5 415 TS S (G5 Dinen (G35 Qin (— "
B ~\& q; m=0 n=0 A&Q‘ v§+=. Avu va: AQu QVQ: AQ, QVS

X Q\w§+§lw§¢=+n§ §§+3A&NVI§I=
+1 w‘ N.u Q.\N W m C sti: (qgd/h; Dmin ( :..&va:
2Js @5 11=0 120 (/85 Dt (@ Do (F3 O (@ D
X gimn—fmini2n) pmin(dy)-m-n (9.2 4)

where R1(2/j) > 0, and Rlz > 0.
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In particular, from (9.2.1), when z = qb%/d?, ¢ = d/k and x = qkb?/d?,
we can sum the series on the left-hand side and we find that

OUb; dfk, k; d; qkb?/d3, gb®/d?]
k,qfk,d[b,qbld, qb%[d?, d?[b3, d3/(b%k);

d,/d, kfb, gb]k, gb%/d?, d2/b?, d%/(5k);
b,q/b,dlk,d[b, gb%k|d?, d?|(b%k), qb3[d®; 9.2.5)
d,b/k,qk/b, gb%/d?, d?[b?, d[(bk), gb®/d?; g|- 92

=11

+1

This is an example of a summation theorem for one of the basic
Appell functions. There does not seem to have been any systematic
attempt to find any other such summation theorems. Agarwal (1954)
has given several other integrals, but he has not investigated any
possible special cases which might be summable.

9.3 Basic double integrals

We seek next the basic analogue of theorem (8.5.6) for Appell series,
so we are led to consider the integral

1, L::?:%&, (9.3.1)

T
where , “
_al@e e @ e Ryat, () ¢+, (k) g
)= 1 e O )% ] w2

This integral is taken first round the contour ABCD of Fig. (5.1) in
the s-plane, and then round a similar contour 4'B’C’D’ in the ¢-plane,
This process leads us to one double sequence of residues. Next the
integral is taken round the contour ADEF of Fig. (5.1) to the left of
the Oy axis in the s-plane, and then round a similar contour 4’D'E’F’
in the ¢-plane. This process leads us to a second double sequence of
residues. Both the contours in the s-plane are indented so that the
first N + 1 poles of each increasing sequence of poles fall within A BCD
and the first N +1 poles of each decreasing sequence of poles fall
within ADEF. The two contours in the ¢-plane are indented in a
similar way.
Now

1 (im pintt
et .‘ (IR 48, R+1t)~ TI(s, R+2)

am® ) i) —inst
— (R +s,t)+ (s, )} dsdt
=Jy—Jy—Jy+1, say. (9.3.3)
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.sta, as 1, is equal to the double sum of the residues to the right of the
imaginary axis, we find that

4 C © ©
L> 3 ¥ ¥ ¥ Mig™a,q/c,) as N—>w.
p=lr=1m=0n=0
Also, under suitable convergence conditions, Jj, J,, and Jy >0, as
N —>o0. Hence I, > I as N — . Similarly, from the integration
round contours to the left of the imaginary axis, we get

3 D o o
I= [,q™,d, g
\W.w ‘Wsm?mo (6.9™,d,q"). (9.3.4)
The complete theorem is then
1 infl inft
(s, t) ds dt

am? ) _iand —innt

5 % (a1 5 3 @0 Du(@0; ),

p=1ly=1 m=0n=0 :.\.vﬁkw QVSQN@VQ_L Qv:
 (3%/(€); D (96,/(9); ) (99,2, (5); Dmin
(00,/@); Qm@ef(c); @) "
- Mw ‘M Mp,d) 3 3 Db Dnl0)d:i ) (@); D

m=0n=0 ((e) 0.:“ D (@ d,; @ () mvt d,; Domin
(99,/(R); Q) (9]0, 8,(%)); Dinin -,
(90,/0); O (@d,/(d); @), ™

X

(9.3.5)
where
@.5 —_ AI HVA.AI@I.J mHC-G-J)n :A&.\Qvﬁ. :AQ&\GVS Q\Athlhl.bs_

x n_mQIQI.\ n QE —E) }m(m+1)HO—G) n(n+1) m.l.m.\ (m-+n) 4 n+1)
and

©M€ = (— 1)B-F-K)m+(D-I-K)n :A_\.&\sﬁ I Q&o\&v n &WI!INVS
x d{P—H-E)n g(B—F) mim+ D+D—H) dnin-+1) g Emim) min+1),

The conditions for convergence are:

() B+D>F+H+2K,orB+D=F+H+2K and
RIII{fkh|(bd)} > 0,

(i) B>F+K,orB=F+K and RIII(f%/b) > 0,
(i) D>H+K,orD=H+K and RIII(k&/d) > 0,

(iv) A+C>E+G+2J,or A+C = E+G+2J and
Rl I{egj/(ac)} > 0,

(v) 4> E+J,or 4 = E+J and RlII(¢j/a) > 0,
(vi) C>@+J,0orC=@G+.J and RITII(ejjec) > 0.
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The first set of double series are all convergent if
(vii) A>E+J,00C>G+J,o0rA=E,C=GandJ =0,
and the second set of double series are all convergent if
(viii) B> K+ F,orD > K+H,orD=H,B=Fand K =0.

If any of these convergence conditions are not satisfied, the equality
sign in the theorem can be replaced by an asymptotic approximation.

As a special case, when J = 0 and K = 0, the theorem gives trans-
formations between products of ordinary hypergeometric series.
Again this method can be extended to triple integrals, and, in general,
to multiple integrals, though again the results quickly become very
complicated and they have not been investigated systematically in
the literature.

9.3.1 Single basic integrals of Appell functions. As we might
expect, the general theorem of §5.5.1 can be extended to provide a
basic contour integral of each of the four basic Appell functions. These
integrals are expressed in the integral
t (it (@) gt (B) g% 2¢% 425 y
I = 2] oo 11 (©) ¢ (d) g QH_ DYz, y]ds, (9.3.1.1)
where O%[z,y], (v=1,2, 3,4) are the four basic Appell functions.

9.3.2 Integrals of products of basic functions. The general
theorem of §5.5.1 can also be extended to include products of basic
functions in the integrand, by considering integrals of the general type
LN _HAS g%, (b) g, 24% ¢*~*/2; QH_
2m) e L()G% (@)%

(€) g% (@) g (e); H_

* o m@amr| (o) g, @) g () 0

") g% (d") g% (9);
X Q-+§+Qek.+mn+m~ MQ‘\VVMJ MOJ Ml.wu QQVQ q.Y Q.wu

NIII

(9.3.2.1)

where Rlz > 0, Rly > 0and |g| < 1.
Then (i) I=3%,
when (a) C > A or when
C=A and Rl{(a;a,...a42)/(c;cs...¢c)} > O,
() " > 4’ or
¢'=A4' and Rl{(aja,...aj)/(cic5...c0)} > 0,
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and (¢) C" > A” or
C"=A4" and Rl{(ajaj...a%)/(cc; g} > 0.
(i) I~Zy when () C <A, or (b) C'< A’, or (c) C" < A",
Also (iii) I=3%, when (a¢) D> B

or when
D=B and WZGHS...om&\EH&»...&buvw >0,

(b) D’ > B’ or
D'=B and RI{(bjb;...b3)/dd;...dp)} > 0,
and (c) D" > B” or
D”=B" and RI{(bd;...b%)/(d|d;... dp)} > O.
(iv) I~Z;, when (@) D< B, or (b)) D’ < B’, or (¢c) D" < B".
The proof follows on the same lines as that of § 5.5.1. Asan example

of this theorem, we quote the basic analogue of Meixner’s integral
(8.6.1.6), which is
t inft
B3 _onn e, g; cg®, 7% g1, Pileq®; a; ¢, 2], D1[g%; b; ¢,y)ds
_ 3 % Dy (—1pghovan
p=0m=0 AQ“ Qvﬁ AQ“ Qvﬁ AQ“ QVS
where Rlz > 0 and Rly > 0.

1DQi(cg?+™; b; q,y1, (9.3.2.2)

9.4 The general contour integral of basic Lauricella functions

We have had several generalizations and extensions of the theorem of
§5.5.1; we shall now state the basic analogue of the theorem of §8.7
for the Lauricella functions. We shall write

t inft ] o

I= ey I(g®
1) oo sMo =M.o (¢)4,, B, ds, (9.4.1)
éwnmu.m AQV Uq M-+Vg N+8 @ p MA-Vp N—8 8 gl1—8[,-
:S,Jm:h Q. .. VQA 1297, q \NVQ
Acv Qﬁa§+en:+ov A&v méai;émalum s
A = (@ Dua™ o (9 9y
™G D () D "G Da () @)
Also, let m (f); @) (@ D ((B); 9)a
C o @© © —Uy M~y N~
| Mﬁ.m ~ M M M =AQ ? ﬁ\eevkﬁvs.m A|HvBQ*E€+C
v=1m=0n=0p=0 AQW QVE "
and

D @ © @ : & Uy M+v, n4p
Z,=3 3 %S 1(d, g :..,Lm B,(— 1) gtpw+D)
p=1m=0n=0p=0 AQ- Qvﬁ men ’

where all the u’s and v’s are integers or zero, and
lg] < 1,Rlz > 0,Rly > 0.
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Then I=23; or I~Z.
Also I=2, or I~2ZXZy,

under the various conditions for convergence or divergence, similar to
those outlined in the previous sections.

In this way, we can apply the ideas of §5.5.1, to contour integrals
with all the types of function which can occur in the integrand. These
integrands can, therefore, involve double, triple or multiple summation
of groups of products of the general type

H.:AQV %§+é$+$u+. . “mmv“

where the a’s are complex numbers and the u,v,w, ..., are integers or
ZEero,

From contour integrals of this type, we can deduce integrals repre-
senting all the known types of functions which can properly be called
basic hypergeometric. In every case, each integral will lead to trans-
formations, analytic continuation formulae, or asymptotic repre-
sentations of sums of such functions.

Relations between products of the type (2),
(@), =ala+1)(@a+2)(a+3)...(a+n— 1}, (a)g=1.

AQV:‘ =

and, in general,

and, in general,

and, in general,

and, in general,
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I'a+n)
@) -
— A&vn:.

AQ\.TS\VQ- - Am«v\a >

(@)1
kn), = 1 Lktbn
AQ\.T va Aavks. ’

(@a—n), =(—-1)Q1 —a),,

(@=tn), = (Z L=

AH IQV (k=Dn °
_ (=1
Agvlﬂp - g-
_ .Eali
@ =T
— (=1)"(a)x
AQ\V..;..l:, = i
_@
(@+n)y_p, = @lv.m
(a+kn)y_, = @)@+ N)gpa
P n AQVNQ« .
- _(a)y(=1)*(1-qa),
?« Su.ela B :. -aq— Ném: ’
(a—tm)y_, = (ZU" @)y (1-a),
o :Ialzvcniv: '
. @» 4 Ag +>1v§
AQ + 3\v.__< = z% .
— —_ AH - Qv§ Agv._d
Am« \\&2 - N~ |§Iy.ﬂ§.
@+ n)y_g, = 1 @)y

(1-a-N),(a),’

239

(1.1
(1.2)

(I 3)
(1.4)
(1. 5)
(1. 6)
(L.7)
(. 8)
(. 9)

(1.10)

1.11)

(1.12)

(1.13)
(1. 14)
(I. 15)

(1. 16)
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and, in general,

APPENDIX 1

AQVZ AQ + N(Jw:lui

AQLIN§VZ|m§u" S ——

AQV kn
_ (@n(-a)

AQ l§v2lm= - c —a— L?Jm:.v

and, in general,

_(@)x(=1)* (1 —a),

AQ — ~n3v2lu..= = AH —a-— N(Ju.s .
_ Angs
(@+n)g, = @),
and, in general,
(@esm
+hn)g, =
(@t k), = =022

Aal\z\vma = Al :3 A@vﬁc la\vqt

and, in general,
(@a—kn);, =

(@)en,
and, in general,

(@)n = (@fR), ((@+1)[E), (@ +2)[k), ... ((@+F—1)[k), BF™.
'l-2)=

(@i (— D" (A=), i 2 K,
(1= a), (1)
(1 =@)g—jn
(1a), (3a+3). 2%,

, if j<k

3 —_—
sin (m2) T'(z)

U(1+2) =2! Hu_. wretdu.

0

T'(a—n) = I'(a)/(a—n),.
a—mn) = T'(a) (= 1)*/(1 - a),.

(1.23)
(I. 24)

(I. 25)

(I. 26)

(I.27)

(I 28)

(I 29)
(1. 30)
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Relations between products of the type (a; 9),
@ @ = (1-a)(1~ag)(1-ag?) ... (1—ag™), (a;q), = 1. (IL. 1)
.y~ g (1—ag’) a;
0= I o agnen = e 1] (-2
(@™ 91, = oD, (IL.3)
and, in general,
a; -
(ag*"; q), = Alawww . (IL. 4)
(@g™"; @)n = (—a)r g+l (gfa; g) ., (I1. 5)
and, in general,
Aaalwaw @p = (—a) Hn-1)n—kn P&Nﬁ; Qva:| .
A v 1 AQ\Q& QVQICS. AHH mv
. B A|l.9vl=mw=§+c -
(@ q)_ = @a g (IL.7)
) - © AI.MI.Q\QI:.TJ
(a; q)_, ,mv T=ag) (1. 8)
. (a; g)ygtntin (@™ @)y
(@ QPyn = N = \2q 5 9N
2 @ Ne; n(—a)* g™~ (a;q)_,
@ (IL. 9)
a;
(@9™; On-_n = SJ.MVIM ; (L. 10)
and, in general,
o . a; d Zw -
(ag"™; q)y_p = LM“;AMQSM&FE,. (I1.11)
. _ @; 9)v(g/a; g), (—1)" gin+n-2nn
(@g™; @)y_p = 2 @ es.wa —. (IL12)
. (@; 9y (q/a; 9),
(3™ @)y = = mmvl% gV, (IL.13)
. . N.
(eq™; @)y = (@ 9y (027 g)n, (I1.14)

(a; 9),
16

SGH
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" q) - AQ\W Qv(. (— Hvs.ﬂw?#:s. .
Ag D=t = AQJ Qv:. AQHIZ\QW Qvﬁ 93@73

(a; Qwvﬁ = A)\Q. (- »\Qw Qvﬂ«

(@; Q)2n = (@; 9% (2q; §P)p
(@; Q)sn = (25 %), (ag; ¢°)n (24%; @)
g™ g, _ (=1rgt Y
(9 Dn (@ Dn-r

(I1. 15)

(I1. 16)
(IL.17)
(IL. 18)

(IL. 19)
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Summation theorems for ordinary hypergeometric series

The binomial theorem,
ole; 5 2] = (1-2),
Saalschutz’s theorem,

_ A-|m~.v Anlmvvs
Nﬂ?«@ n, G& ~“_|A0v§AG Q\|3M
provided that c+d = a+b—n+1.

Gauss’s theorem

2
¢c,c—a—>b
c—a,c~b

oJHila, b c; 11 = ﬁ_u
or, when b = —n, Vandermonde’s theorem,

Jila, —n;c; 1] = ]Aemvavg.

Kummer’s theorem,
oHla,b; 1+a—b; —1] = _J_H
Gauss’s second theorem,

b+ia+1b
100,85 3+ da+3b; 3] =T Wmm%wme

Bailey’s theorem,
c ¢
Flal-ooy-r[iobe
3¢+3a,5+3C—30
Dixon’s theorem,

a b c;
b 3 ] H
uﬂ_u l+a—-b,1+a-c: H_

d 1+}a,1+a-b,1+a—c,1+3a-b—c
l+a,1+3a-b,1+3a—¢,1+a-b—c¢

l+a-b,1+1a
l1+a,1+%a-b

(IT1. 1)

(I11. 2)

(I11. 3)

(II1. 4)

(T1L. 5)

(I11. 6)

(I11. 7)

, (IIL 8)

(I11. 9)

or, if ¢ = —n,
Nu . ISWH .IC.TQQ:C.TWQI@?
H+a b,1+a+n; | (1+3a),(1+a-b),
F a, 1+ ia, b, F 1 l+a—-b,14+a—c
a8 ta,1+a-b, ~+ala l+a,14a—b—c|’

(I11. 10)

16-2
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or,ifc = —n
a, H.Twa b, —n; Iﬂu_ (1+a), 11 11)
N__H ta,1+a—b,1+a+mn; (1+a-0), (
7 a,l+1a, b, ¢, &WH
e, 1+a—b,1+a—c,1+a—d;
T l+a-b,l1+a—c,1+a—-d,1+a-b—c—d (I11.12)
l1+a,l1+a—b—c,1+a—b—d,1+a—c—d
or,ifd = —mn,
a,1+3a b, ¢ n; H_ (1+a), (1+a—b—oc),
.Nq » H u. —
8 »_H la,1+a-b,1+a— 9~+a+: (1+a—b),(1+a—c),

(ITT. 13)
Dougall’s theorem,

Qv ﬂ + Wn«v Qw c, &v €, |3¢ HQ

%o ja,1+a-b,1+a—c,1+a—-d,1+a—e,1+a+n;

(1+a),(1+a~b—c),(1+a—-b-d), (1 +a-c—d),
T (l+ae-b),(0+a—c),(l+a—d),(l+a—b—c-d),’

(I11. 14)

provided that 1+2a =b+c+d+e—n.
Nearly-poised summation theorems,

.ﬁﬁa:wa " L b-a—1-n)2=% (1115

(®),
rl® b, - _(a—2b), (1+3a—b),(=D),
32| 14a-b,142—-n; | (+a-=0b),(3a-0b) A 2b),,’
(IT1. 186)
a,1+}a, b, —n; (@—2b), (—b), IIL 17
%u_w la,14+a~b,1+2b—n; HH_ (L+a-b),(—2b),’ ( )

and

7 a,l+1a, b, ,HH_
a3 }a,1+a~b,2+2b—n;

_(@=2-1), (at+}=b),(-b-1),
- :.+Q|GV=\AWQ\'IW|~&§A|NO]Hv?
a,1+ a, id, 1+3d,a-d,14+2a—d+n,—n; ~H_
qmw_u la,1+a—3d,a+i—-3d,1+d,d—a—n,1+a+n;
(1+a), (1+2a—2d),

= n ~-. (I111.19
T (l4+a—d),(1+2a—4d), ( )

(ITI. 18)
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$a,3+3a,b+n, —n; _(b—a),
o3 B4 +1 144, _H_ = (I11. 20)
a, 1 +4a, b; $+3a,14+a-b
&ﬁ 10 14ta b L r H+a,w+wa|%_. (ITL. 21)

a,1+4a, b, c;
»N*w_u 2 wu_

ta,14a—-b,14+a—c;
_pl3tiel+a—b1+a—c,t+ia—b—¢
=T l+a,4+3a-b,3+3a—c,1+a—b—c|" (I11. 22)
Watson’s theorem,
K b, ¢; HH_|ﬂ_w@?rw“w+wa+wv“wlwa|%+ou_
TEli+da+4b,20; | Li+da i+ i—date,i—tb+c]
Whipple’s theorem, (ITL. 23)

oFila,b,c; d,e; 1] = NE%_H%% to+id, 3d+4e, wiwL

@HOA&@QQ that a4+ b = 1, and that d+ ¢ = 1+ 2e¢. AHHH. 24)
e, 1+de,  -n; ] _ (1+a),
2 _H 3, 1+a+n; HH_ (3 +1a), (111. 25)
a,1+3a, b, —n; (1+a), (3 +3a—b)
H = n n .N
»&w_u $0,1+a—b,1+a+n; g G+1a),(1+a-b), (I11. 26)
m,_ anHl*l.WQ Ou Qu &- ﬂ Iﬂ
s to,1+a-b,1+a—c,1+a—d,1+a—e;

l+a—b,1+a—c,1+a—d,1+a—e,
=TI
a,14+a,1+a—c—d,a+c+e,
ITM?%T?TWTKIWQ
1+ja—4b—3d, 1+ damjo—te |’
where 1 =b+¢ =d+e. (I11. 27)
Bilateral series,

a,b; _ c,d,l1—a,c+d—a—b—1
EN_M,&W L = ﬂ_HnLﬁTniLiTNV “_ (I11. 28)

1+ 4a, b, c, d, €;
mmu_u 2 HH_

3a,1+a-b,1+a—c,1+a—-d,1+a—e;
Hd_HMIFwlauH!&LIP~+malvlol&l9~+al~r
l+e,1-a,1+a—b—c,1+a-b—d,1+a—b—e,
l+a—c,1+a—d,1+a—e
~+alal&.~+alnla._+alalau_
(11I. 29)
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and if e = a,

H, b, ¢, d;
~+a~:+ao~+a&

1-b,1-¢,1-d,1—-3%a,1+3a~b—c—d,1+a-b,

- wﬁ:a. l1—a,1+a—b—c,1+a—b—d,1+3a—b,
l+a—c¢,1+a—d,1+3a
l1+3a—c,1+3a—d,1+a—c—d

(I11. 30)

1

Saalschutz’s theorem, in the non-terminating form,

@_H f g; H_
2| 1+a,e+f+g—a;

H+a._+a|@|\,w+alml? ~+a|\lm,®+\+nlaluu_
+T
l+a—e—f-g,2+2a—e—f—g,¢e.f,9

7 l1+a~f-g,1+a—-e—g¢,1+a— aI.N..
%872 2+a—e—f—g,2+20—e—f— ?

ld_Ha+.xlak+.ela,.\+el&. (IL1.31)

Dougall’s theorem in the non-terminating form,

a, 1+ 1a, b, c, d, e, b ~H_

4 la,1+a~-b,1+a—¢c,1+a—-d,1+a—e,1+a—f;

+HJ_H~+wvla,@+nla,o+&|a.@+®la.o+x|?

1+b—¢,14+b—-d,1+b—e,1+0—f,b—aqa,
al?~+al9~+al&._+al®.~+9I\”_
1+a,¢,d,ef

o %_Hmvla,u+@ ia, b,b+c—a,b+d—a,b+e—a,b+f—a; 1
e b—3}a,1+b—a,14+b—c,1+b—d,1+b—e,1+b—f;
_r l+a—-c,1+a—-d,1+a—e,l1+a—f,b+c—a,

B _”~+P@IF~+a|&l®.~+alolal+alo|&,
b+d—a,b+e—a,b+f—a H_
l+a—c—f,1+a—d—f 1+a—e—f

(I11. 32)
where 14+2a = b+c+d+e+f.
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Summation theorems for basic series
Vandermonde’s analogue,

2Pile, ¢ b; ¢,q] = Cm.lwaa . (IV. 1)
Gauss’s analogue, o
cla,c/b;
2 Dyla,b; ¢; q,clab] =11 _Ho ¢/ab; m& , (Iv.2)
or, when b = g™
cla; @),
neuma. qg";c¢; g, cq"fa] = m\%. (IV.3)
Saalschutz’s analogue, T
wewﬁa. @» Qleew Gv&m q, QM = AO\Q st. AO\@ Q Py AH<. ﬁv

(¢ @) (c/ad; ),
provided that cd = abg'—™.

Dixon’s analogue,
Q, IQ)\Qu @n le.w g AQ\Q. Qv A)\S\vu q v
e 14n — n n
43 — )\9. g\@. QQH.I—H q, )\&\0 A)\Sv Qv:. AQQ\O. st. AH< mv
or for general c,
@ —gva, b, , Ng/b, b
Aeu Q( \ @v Q)\Q\WGQ aq )\Q\Q\ )\g\o g\ C; Q;

— Ja,aq/b,ag/c aqib, aqfe, \Jaq, Jagqlbc;
(IV. 6)

a,q4/a, Im)\a, b, ¢, d;
@emﬁ Ja, — ya,aqfb, agfc, ag/d; E\g&
,yaq/cd, aq[bd, aq/be;
u:ﬁ% agled,aqfbd, aqfbe; T 1y
ag/b, agje, agld, agfped; 1|~ V-7)
Jackson’s theorem,
e ﬁg Q)\Q IIQQQ Qv O- &v mu Qlﬁe
"L ya, — ya,aq/b,aqfc,ag/d, agfe, agi+n; 17
- (0a), (agfb0), (agjcd), (09/6d)y 1y o

~ (ag/b), (ag/c), (aq[d), (ag[bcd),’

provided that
. a%q = bedeq,
a,qya, —qa, b, ¢, gV, 14N
P Ve, — Ja,aqfb,aqfc, ag+y; 9,29+ fbc

_ (ag; Qv (Wag/b; q)y
(afb: qy (agie: 9)y”  LV-9)
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Euler’s theorem,
o@ol; 5 ¢,2] = 1/11(z; ¢). (IV.10)
Heine’s theorem,
az;
1®las 5 g2l =111 - g . (Iv.11)

Basic bilateral series, Jacobi’s theorem,

@, 0%2,9/0%, 4; IV.12
¥ila; b; ¢,2] = :_H\asai; q], ( )
k4 . ' g, —agjbe
22| ag/b, S\a
-m aq/bc;

a/b,qfe, aqfb, agje, — agfbe; |
x :EN\%, ag?/c®, 9% aq,q/a; ¢*], (IV.13)
\ Q)\a«. .IQ»\Q, @» ¢, &“ vn«w @&@g
| Ve aqlagie, agfd, agje; %Y
aq, aqjbc, aqlbd, aqlbe, aglcd, aq/ce, aq/de, q, q/a; H_ (IV.14)
a/b,q/c,q/d, q/e, aq/b, aq/c, ag/d, aqle, a*q/bede;
The non-terminating form of Jackson’s theorem,

Qvﬂ)\ﬁ. .IQ)\Q. @v c, &u €, .\.w

=1I

| o, —Va,aglb,age, aafd, agje, agif; 1
bgjc,bgld, bqle,bqlf,aq,c,d,¢,f,bla;
+11 —Howig beja,bd/a, beja, bf [a, aglc, ag/d, aqje, aq[f, afb;
b%a, gb/Ja, —gb/Ja, b,bcja,bd/a, befa, bfla;
1| b1 da, —la,baja,baie, bajd, baje,baif; ©

nﬁv@\aé\%é\g2\&:&%3\&@&& H_ E:mv
agfc,aq/d, agle, ag[f, be/a, bd]a, bela, bfla;
where a?q = bedef. ,
The basic analogue of the non-terminating form of Saalschutz’s
theorem,

a, e c; a,b,c; Ta\m ,qb/e, no\m.
-2 :
1 H_wemﬁ e.f; 2 q*e, qfle;
S B e e

|9$m,\\a,\\?\\& E.S
l:_Ha.?a.é\pg\m,s\sm ; ( )
where ef = gabc.
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APPENDIX V

Table 1 1 mClS:v
n=0

a = -0-90

0-52631548
0-50246091
047807310
0-45289097
0-42668491

0-39925062
0-37040698
0-33999878
0-30905880
0-27406231

0-23849058
0-20135928
0-16307631
0-12443515
0-08682771

0-05250466
0:02471088
0-007041
0-0003
0-0000

0-00000000

a=-—085

0-54054030
0-51734652
0-49352871
0-46883510
0-44303758

0-41592615
0-38730716
0-35700492
0-32487019
0-29079755

0-25475774
0-21685347
0-17741297
0-13714206
0-09735812

0-06030678
0-02942449
0-008904
0-0006
0-0000

0-00000000

a =-—0-80

0-55555556
0-53306550
0-50986729
0-48571737
0-46038855

0-43366508
0:40534013
0-37521726
0-34311687
0-30889210

0-27245804
0-23384509
019329080
0-15139534
0-10937324

0:06942476
0-03513521
0-011301
0-0011
0-0000

0:00000000
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a=-075

0-57142857
0-54968941
0-52716498
0-50361931
0-47882695

0-45256307
0-42461071
0-39475116
0-36277383
0-32848831

0-29175072
0-25251266
0-21090974
0-16741712
0-12311483

0-08010961
0-04207657
0-01439873
0-001674
0-0002

0-00000000
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q a =-—070 a =—0656 a = —0-60 a =065 q a = —0-30 @ =—025 @ =—020 4 =—015
0-00 0-58823517 0-60608061 0-62500000 0-64516121 0-00 0-76923072 0-80000000 0-83333333 0-86956517
0-05 0-566729803 0-58598112 0-60583936 0-62698658 0-05 0-75726492 0-78960392 0-82464844 0-86275143
0-10 0-54550666 056498774 0-58571542 0-607810756 0-10 0-74434403 0-77832520 0-81518154 0-85528877
015 0-52263204 0-54285780 056441165 0-58742344 0-15 0-73030049 0-76601072 0-80479782 0-84706540
0-20 0-49844819 0-51936579 0-54170319 0-56560093 0-20 0-71493845 0-75247911 0-79333544 0-83794560
025 0-47272728 0-49427815 0-51735132 0-54210017 0-25 0-69802547 0-78751221 078059740 0-82776220
0-30 0-44523837 0-46734921 0-49109839 0-51665276 0-30 0-67928159 072084379 0-76634045 0-81630658
0-35 0-41573830 0-43831883 0-46266399 0-48895936 0-35 0-65836524 0-70214485 0-75025992 0-80331428
0-40 0-38398496 0-40691322 043174321 0-45868507 0-40 0-63485434 0-68100186 0-73106844 078844481
0-45 0-34974717 0-37285141 0-39800908 0-42545784 045 0-60822126 0-65689051 0-71096577 077125185
0-50 0-31281674 0-33586256 0-36112437 0-38887346 0-50 0-57779912 0-62913362 0-68659468 0-75113887
0-55 0-27306043 0-29572291 0-32077030 0-34851487 0-55 0-54273731 0-59684563 0-65797571 0-72729084
0-60 0-23050060 0-25233036 0-27671005 0:30400173 0-60 0-50194448 0:55885248 0-62390843 0-69856562
0-85 0-18546683 0-20584866 0-22892021 0-25510367 0-65 045402284 051358015 0-58272002 0-66331639
070 0-13886993 0-15698049 0-17785536 0-20198523 0-70 0-39721711 0-45891157 0-53203284 0-61903079
0-75 0:09266613 0-10746615 0-12496486 0-14572203 078 0-32947115 0-39204961 0-46842183 0-56210621
0-80 0-05054242 0:06090435 0-07363421 0-08933409 0-80 0-24892520 0-30960504 0-38700631 0-48633319
0-85 0-01841635 0-02365363 0-03051320 0-03954215 0-85 0:15604030 0-20891974 0-28155273 0-38207636
0-90 0-002446 0-003569 0-005243 0-00775262 0-90 0-06133182 0-09514910 0-14903849 023583887
0-95 0-000 0-000 0-000 0-000 0-95 0-0 0-0 0-0 00
1-00 0-00000000 0-00000000 0-00000000 0-00000000 100 0:00000000 0-00000000 0-00000000 0-00000000

7 a = —0-50 a=-045 @ =-040 @ =—035 q a=-010 a=-006 a=0 @=005 «=010
0-00 0-66666667 0-68965510 0-71428571 0-74074074 0-00 0-90909091 0-95238093 1-00 1-05263156 11111111
0:05 0-64955170 0-67368149 0-69954366 0-72733073 0-05 0-90433005 0-94988093 1-00 1.05540860 1-11698849
0-10 0-63141095 0-65667219 0-68377291 0-71291804 0-10 0-89909088 0-94711650 1.00 1-05850920 1-12358272
015 0-61204046 0-63843029 0-66678457 0-69732333 0-15 0-89329063 0-94404156 100 1.06199128 113102440
0-20 0-59121844 0-61873727 064836507 0-68034032 0-20 0-88682773 094059892 100 1-06592791 113947927
0-25 0-56869888 0-59734593 0-62826846 066172771 025 0-87957590 0-93671690 1-00 107041234 1-14916150
0-30 0-54420434 0-57397219 0-60620743 0-64119909 0-30 0-87137583 0-93230406 1-00 1-07556558 1-16034989
0-35 0-51741855 0-54828588 0-58184180 0-61840992 0-35 0-86202334 0-92724208 1-00 108154733 1-17341697
0-40 0-48797892 0-51989999 0-55476526 0-59294138 0-40 0-85125236 0-92187492 1-00 108857292 1-18886968
0-45 0:45547020 0-48835980 0-52448923 0-56427938 0-45 0-83870923 0-91449252 100 109693948 120741631
0-50 0-41942238 0-45313276 0-49042475 0-53178860 0-50 0-82391363 0-90630501 100 1-10706901 1-23007668
0-556 0-37931891 0-41360450 0-45186531 0-49468133 055 0-80619624 0-89640107 1-00 1-11958151 195837390
0-60 033462960 0-36909223 0-40797807 0-45198500 060 0-78459628 0-88417672 1-00 1.13542623 1-99468667
065 028489938 0-31890271 0-35782528 O.»owuwumw 085 0-75768502 0-86870795 1-00 1-15613326 1-34294464

0-70 0-22996164 0-262500566 0-30047280 034494253 0-70 0-72324581 084850682 1-00 1-18433706 1-41012744

0-75 0-17042903 0-19994385 0-23533651 0-27794846 075 0-67765707 0-82101593 100 1.22498863 150090168

0-80 0-10877617 0-13295599 0-16316431 0-20108438 0-80 0-61461780 0-78144489 1-00 1-28860510 1.67299843

0-85 0-05148837 0-08738086 0-08864451 0-11726684 0-85 0-52232588 0-71969073 1-00 140206924 1-98497175

0-90 0-01154307 0-01731472 0-02617512 0-03989475 ) 0-90 0-37725038 0-61044293 1.00 1-65986682 279441768

0-95 0-0 0-0 0-0 0-0 0-95 0-2 0-4 1-00 2.75418435 77971904

1-:00 0-00000000 0-00000000 0-00000000 0-00000000 1-:00 0-00000000 0-00000000 1-00 @ 0
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q a =015 a =020 a =025 a = 0-30 q a =065 a = 060 a =065 a =070
0-00 1-17647054 1-25000000 1-33333333 1-42857135 0-00 222229292292 2-50000000 2.85714242 3-33333333
0-05 1-18582882 1-26329108 1-35109975 1-45147209 0:05 2.28837309 2.58139473 2-95817842 3-46060495
0-10 1-19638000 1-27835036 1-37132958 1-47767806 0-10 2.36600853 2.67741270 307798255 3-61230453
0-15 1-20834580 1-29551361 1-39450168 1-50784791 015 2.45775443 2.79149606 3.22110646 379453477
0-20 1-22200984 1-31521350 1-42123718 1:54284156 0-20 2.56716207 2.92831947 3-39377254 401569876
0-25 1:23774016 1-33801539 1-4523563567 1-58379870 0-25 2-69906491 3-09435012 3-60465580 4-28760380
0-30 1-266021956 1-36467082 1-48894609 1-63225817 0-30 2-86032388 3-29874731 3-86614724 4-62726326
0-35 1-27750766 1-39619929 1-53251355 1-69034429 035 3-06078757 3-55485492 419647372 50599538
0-40 1-30309495 1-43401748 1-58515956 1-76106811 0-40 3-31515505 3-88278186 4-62340686 58246274
0-45 1-33405243 1-48015087 1-64992600 1-84883368 045 364621480 4-31409013 5-1910899 6-3840135
0-50 1-37223194 1-53759583 1-73137321 1-96033131 0:50 4-09101255 4-90082825 5-9734008 7.4447096
0-55 1-42044386 1-61097247 1-83664396 2:10620481 0-55 4-71339665 5-7342342 7.1021246 90003320
0-80 1-48316334 1-70777906 1-97765111 2:30439117 0-60 56318263 6-9870710 8:8321041 11-4335502
0-65 1-56796160 1-84100204 2-17503302 2-58742424 0-65 6318269 9-0209660 11-7108091 15-5889209
0-70 1-68869897 2-03512853 2-46974116 3-02033108 0-70 9-6434756 12-7025101 17-0943101 23-6317798
075 1-87361155 2:34201447 295111913 3-75174241 0-75 14-8600725 20-5483390 29.0982994 42-4442405
0:80 2-18976707 2-89159989 3-85546653 5-1956037 0-80 28-4718544 42-3698870 64-811264 102-558239
0-86 2-83985074 4-10944635 6-0209939 8-9428294 0-85 84-328123 141:926010 247-11411 448448464
0-90 477680298 8-30161101 14-6892657 26-5085132 0-90 741-91428 1598:74491 3611-5281 8635:9006
0-95 22-7378273 68-464270 213-43837 691-11111 0-95 — — _ _
1-:00 © @© () o] 1-00 0 [ ) P

¢ a = 035 a = 0-40 a = 0-45 a = 0-50 - q a = 075 @ = 0-80 a =085 a = 0-90
0-00 1-53846144 1-66666667 1-81818182 2-00000000 0-00 4-00000000 5-00000000 6-66666667 10:00000000
0-05 1:56730757 170247214 1-86223752 2-05398421 0-05 4-16406084 52193187 6-9781807 10-4960538
0-10 1-60048246 1-74385833 1-91341791 2-11701817 0-10 4-36063428 5-4834836 7.3553796 11-0999020
0-15 1-63887133 1:79199738 1-97326120 2-19111187 0-15 4:5980905 5-8043936 7.8162251 11-8419271
-0-20 1-68363740 1-84843972 2-04381535 2-27895874 0-20 4-8880383 61986754 8-3860104 127652500
0-25 1-73633319 1-91526911 2:12785250 2-38423079 0-25 5:2469214 6-6900756 9-1011700 13-9325418
0:30 1-79907128 1-99534310 2-22920393 2:51204374 0-30 5-6986501 7-3134498 10-0157070 15-4376338
0-35 1-87479348 209267608 2-35329983 2-68971356 0:35 6-2791135 8-1216759 11-2124569 17-4261209
0-40 1:96771097 2:21307203 2-50807075 2:86803484 0-40 7-0442714 9-1982146 12-8238355 20-1338528
0-45 2-08405404 2-36521658 2-70552286 3-12354330 0-45 8-0854737 10-6812440 150723280 930632830
0-50 2-23341299 2:56265968 2-96464089 3-46274644 0-50 9-5604302 12:8132974 18-3552751 29.6464039
0-55 2-43128658 2:82764608 3-31709223 3-93058168 0-55 11-7610326 16-0521758 23-4383707 38-6250463
0-60 2-70428863 3-19910371 3-81936477 4-60878229 0-60 15-2774586 21-3458726 31-9476659 54-0443888
0-65 3-10181750 3-75098459 4-58132189 5-6601578 0-65 21-4495129 30-9113793 47-8076344 83-755752
0-70 3:72552471 4-63999709 58427943 7-4510494 070 33-8388121 50-8718967 82-308702 151-362397
075 4-81679978 6-2529040 8-2193356 10-9600859 0-75 64-329199 102-741685 177-383329 349-975351
0-80 7-0845879 9-7883809 13-7262705 19-5767617 0-80 169-479541 296-91158 566-44822 1246-4538
0-85 13-4840856 20-6749449 32-3023422 515567364 0-86 857-44976 1756-8741 3973-0984 10545:708
0-90 48-8854119 92-342659 179-176364 3568-362727 0-90 22164-017 62359-823 199343-62 —

0-95 2332-8737 8244-9779 30668-661 120818-95 0-95 —_ — o L
1-00 ) [=¢) @ @0 1-00 oo © © ©
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0-000
0-005
0-010
0-016
0-020

0:025
0-030
0-0356
0-040
0-045

0-050
0:0565
0:060
0:085
0-070

0-0756
0-080
0-085
0-080
0-095

0-100
0-106
0-110
0-115
0120

0-125
0-130
0-135
0-140
0-145

0-150
0-155
0-160
0-165
0-170

0-176
0-180
0-186
0-190
0-196

0-200
0-205
0-210
0-216
0-220

1-00000000
1-00505036
101020304
1-:01546036
1-02082481

1-:02629888
1-03188522
1-03758649
1-04340654
1-04934525

105540860
108159870
106791878
1-07437215
1-08096222

1-08769259
109456695
1-10158909
1-10876302
1-11609282

1-12358272
113123716
1-13906071
1-14706812
1-15523429

1-16359437
1:17214380
1-18088764
1-18983189
1-19898258

1-208345680
1-21792792
1-22773588
1-23777595
1-248055697

1-25868323
1-269365667
1-28041112
1-29172835
1-30332608

1-31521351
1-32740021
1-33989624
1-36271201
136585838

0-225
0-230
0-235
0-240
0-245

0-250
0-255
0-260
0-265
0-270

0-275
0-280
0-285
0-290
0-295

0-300
0:305
0-310
0-315
0-320

0-325
0-330
0-335
0-340
0-345

0-350
0-356
0-360
0-365
0-370

0-376
0-380
0-385
0-390
0-395

0-400
0-405
0-410
0-415
0-420

0-425
0-430
0-435
0-440
0-445

APPENDIX VI

Table2 1/ 11 (1—g")
n=1

1-379348756
1-39318901
1-40739756
1-42198535
1-43696598

1-45235357
1-46816304
1-48440987
1-50111034
1-51828156

1-53594131
1-55410838
1-57280248
1-59204415
1-61185513

1-63225817
1-85327718
1-67493735
1-69726512
1-72028840

1-74403653
1-76854041
1-79383267
1-81994774
1-84692189

1-87479348
1-90360298
193339334
1-96420976
1-99610032

2-02911579
2-06331004
2-09874026
2-13546701
2:17365479

2-21307203
2-25409152
2-29689077
2-34095233
2-38696419

2-43482019
2-484620856
2:536472562
2-59049039
2-64679675

¢

0-450
0-455
0-460
0-465
0-470

0-476
0-480
0-485
0-490
0-495

0-500
0-505
0-510
0-516
0-520

0-526
0-530
0-535
0-540
0:546

0550
0-566
0-560
0-565
0-570

0-575
0-580
0-585
0-590
0-595

0-600
0-605
0-610
0-615
0-620

0-625
0-630
0-636
0-640
0-645

0-650
0855
0:860
0-665
0-670

270552286
2:76680960
2-83080798
2-89768016
2-96760068

3-04075722
3-11735207
3-19760323
3-28174626
3-37003560

3-46274645
3:56017687
3-66265026
3-77051755
3-88416028

4-00399359
4-13046989
426408291
4-4056372156
4-55492779

471339669
4-88148860
5-05998364
5-24974063
5-45170608

56669261
598655672
6-1418817
6-4043230
6-6854644

6-9870710
7-3111135
7-6697976
8-0355970
8-4412919

8-8800146

9-3553018

9-8711576
10-432125
11-043376

11-710809
12-441174
13-242219
14-122861
15-093397

q

0-675
0-680
0-685
0-690
0-696

0-700
0-705
0-710
0-715
0-720

0-725
0-730
0-735
0-740
0-745

0-750
0-755
0-760
0765
0-770

0-776
0-780
0-785
0-790
0795

0-800
0-805
0-810
0-815
0-820

0-825
0-830
0-835
0-840
0-845

0-850
0-855
0-860
0-865
0-870

0-875
0-880
0-885
0-890
0-895

16-1657587
17-3538181
18-6737604
20-1445401
21-7884436

23-6317798
25-7057391
28-0474623
30-7013834
33-7209194

37-1706139
41-1288727
45-6014768
50-9761207
57-1283279

64-329201
72-805690
82-844246
94:809207
109-167748

126-524054
147-666645
173-634578
205-811192
246-058392

296-91159
361-86667
445-80793
555-65889
701-38435

897-56537
1165-9218
1539-4369
2069-2566
2836-5063

3973-0986

5699-4012

8394-6331
12733-016
19957-261

32451-278

54996-208

97670-67
182042-54
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Abel's theorem, 58
analytic continuation of, Gauss functions,
32
hypergeometric functions, 114
associated series, 14
associated transformations, 14
asymptotic series, basic analogue, 117
extensions of Orr’s theorem, 77
Gauss’s, 137
generalized hypergeometric, 146

Bailey’s theorem, 58
basic analogue, 98
partial summation, 81
Barnes type contour integrals, 109
basic analogue of, 161
Gauss theorem, 22
general theorems for, 130
basic series, analogue of Dixon's
theorem, 96
Dougall’'s theorem, 94
Gauss's theorem, 97
Saalschutz’s theorem, 96
Vandermonde’s theorem, 97
basic series, convergence of, 87
functions expressed as, 86
Gauss analogue, 97
general transformation theory for, 98
Heine series for, 87
inversion of base in, 88
notations for, 88
numbers in, 106
parameters in, 90
transformation by basic integrals, 164
well-poised transformations for, 169
Bessel functions, 47
beta functions, 32
bilateral series, 180
basic analogue of, 190
binomial theorem, 17
Borel contours, 27
integrals, 26

Cauchy values, 25
Cayley’s product, 79
Clausen’s theorem, 75
~onfluent hypergeometric functions, 19
contents, vii
contiguous functions, 13
Gauss series, 14
goneralized, 45
continuous fractions, 15

contour integrals, Barnes type, 109
basic analoguo of, 161
Borel type, 26
Pochammer’s, 22
convergence of, basic series, 87
bilateral series, 181
generalized hypergeometric series, 45
Coulomb functions, 19

D’Alambert’s test, 4
de I’Hospital’s limit, 85
differential equations, 42
Gauss equation, 5
operators in, 43
Riemann’s, 6
singularities in, 5
special cases in, 17
differentiation of, Gauss functions, 15
general] functions, 42
divergence of series, 45
Dixon’s theorem, 51
extension to infinite series, 52
double series, convergence of, 211
Dougall’s theorem, 55
contour integral analogue for, 114
extension to infinite series, 114
Jackson’s basic analogue for, 94
proof by induction, §5
special cases of, 57
transformations based on, 67

E-functions, 42
elliptic functions, 91
elliptic modular functions, 87
equivalent products, 203
Erdélyi’s notations, 41
error functions, 19
Euler identities, 83
integrals, 44
partition functions, 85
series, 1
theorem, 85
transformations, 10
even and odd products, 93

Frobenius’s process, 43
Fuchian equations, 42

G-functions, 42

Gauss, basic analogue of hig theorem, 97
equation, twenty-four solutions of, 32
function, analytic continuation of, 35



272 GENERAL INDEX

Gauss function, definition of, 1
history of, 2
integrals for, 19
notations for, 4
numerical evaluation of, 38
quadratic transform of, 49
Gauss series, convergence of, 3
Gauss second summation theorem,
31
Gauss theorem, 27
basic analogue of, 97
integral version of, 109
symmetry in proof of, 28
Gegenbaur functions, 18
polynomials, 18
generalized hypergeometric function, see
hypergeometric function, genera-
lized
geometric series, 1

Heine's basic series, 85
convergence of, 87
definition of, 85
inversion of base of, 88
Hill’s theorem, 80
Hospital’s limit, see de I1'Hospital's
limit
hyperbolic functions, 17
hypergeometric functions, definitions of,
1
history of, 1
integrals for, 19
notations for, 4
series for, 1
hypergeometric functions, generalized,
contracted notations, 40
definitions, 41
differential equations for, 42
general transformations of, 58
history of, 41
integrals for, 108
integration of, 44
notations for, 42
products of, 128
series for, 41

Indicial equation, 43
Infinite products, connection with
Gamma functions, 90
evaluation of, 106
notations for, 88
tables of, 249
Infinite series, 1
Integrals, basic analogues of, 161
Barnes type, 162
contours for, 162
double, 225
Euler’s, 3

of generalized hypergeometric func-
tions, 44
Pincherle’s, 3
Pochamrmer’s, 22
triple, 108
integral analogues of Gauss’s theorem,
109
integral equations, 138

Jackson’s theorem, 94
Jacobi's theta functions, 86
Jacobi's theorem, 86

Kummer’s equation, definitions, 4
twenty-four solutions for, 8

Kummer’s functions, 8

Kummer’s quadratic transform, 49

Kummer’s series, 31

Kummer’s theorem, 32

Legendre functions, 17
polynomials, 18
logarithmic solutions, 10

MacRobert’s E-functions, 42
Maijer’s G-functions, 42
multinomial theorems, 2
Murphy’s formula, 18

nearly-poised series, 42
bagsic series, 94
definition of, 42
first and second kinds, 42
summation theorems for, 65
transformations of, 62
notations, basic series, 89
gammaea functions, 41
Gauss series, 4
hypergeometric series, 40
infinite products, 90
theta functions, 86

operators in differential equations, 43
Orr’s theorems, 75

Papperitz’s equation, 7
partial sums of hypergeometric scries,
80

partition functions, 85

Pincherle, 3

Pochammer’s contour integral, 22

poles of Gauss’s function, 6
of generalized function, 43

Poole’s equation, 42

Preface, xii

products, of Gauss functions, 75
of generalized functions, 128
infinite, 90
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m.&ﬂouohoo equations, 87
g-series, 85

Raabe’s test, 5
radius of convergence, 5
Ramanujan, 103
ngcﬂnwoﬂao relations for Gauss functions,
Reimann’s equation, 7
P-functions, 4
reversal of series, 47
Rodriguez’s formula, 18
Rogers-Ramanujan identities, 103
Watson's proof of, 105

Saalschutz’s theorem, 48
Saalschutzian series, basic analogue of,
96
integral analogue of, 112
summation theorem for, 48
transformations of, 60
Sears’s well-poised theorems, 134
singularities, irregular, 2
regular, 43

Slater’s general transformation, 143
partial summation theorem, 83
symmetry in the Gauss functions, 27

Tannery’s theorem, 164
theta functions, 197
trigonometric functions, 17

Vandermonde's basic analogues, 97
theorem, 28
transformations based on, 64

Watson’s analogue of Whipple's theorem,
100
Watson’s theorem, 54
well-poised series, basic analogues of, 101
contour integrals for, 112
definitions, 42
integrals of, 134
summation theorems of, 55
transformations based on, 13
Whipple’s transforms, 115
Whipple's theorem, 10
Whittaker’s functions, 19



