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Surfaces

A. The Notion of a Surface

The notion of a surface may be roughly ex-
pressed by saying that by moving a curve we
get a surface or that the boundary of a solid
body is a surface. But these propositions can-
not be considered mathematical definitions of
a surface. We also make a distinction between
surfaces and planes in ordinary language,
where we mean by surfaces only those that are
not planes. In mathematical language, how-
ever, planes are usually included among the
surfaces.

A surface can be defined as a 2-dimensional
*continuum, in accordance with the definition
of a curve as a 1-dimensional continuum.
However, while we have a theory of curves
based on this definition, we do not have a
similar theory of surfaces thus defined (— 93
Curves).

What is called a surface or a curved surface
is usually a 2-dimensional ftopological mani-
fold, that is, a topological space that satisfies
the second countability axiom and of which
every point has a neighborhood thomeomor-
phic to the interior of a circular disk in a
2-dimensional Euclidean space. In the follow-
ing sections, we mean by a surface such a 2-
dimensional topological manifold.

B. Examples and Classification

The simplest examples of surfaces are the 2-
dimensional fsimplex and the 2-dimensional
fsphere. Surfaces are generally fsimplicially
decomposable (or triangulable) and hence
homeomorphic to 2-dimensional polyhedra (T.
Radé, Acta Sci. Math. Szeged. (1925)). A tcom-
pact surface is called a closed surface, and a
noncompact surface is called an open surface.
A closed surface is decomposable into a finite
number of 2-simplexes and so can be inter-
preted as a fcombinatorial manifold. A 2-
dimensional topological manifold having a
boundary is called a surface with boundary. A
2-simplex is an example of a surface with
boundary, and a sphere is an example of a
closed surface without boundary.

Surfaces are classified as forientable and
fnonorientable. In the special case when a sur-
face is tembedded in a 3-dimensional Euclid-
ean space E3, whether the surface is orien-
table or not depends on its having two sides
(the “surface” and “back™) or only one side.
Therefore, in this special case, an orientable
surface is called two-sided, and a nonorientable
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surface, one-sided. A nonorientable closed
surface without boundary cannot be embed-
ded in the Euclidean space E* (— 56 Charac-
teristic Classes, 114 Differential Topology).

The first example of a nonorientable surface
(with boundary) is the so-called Mébius strip
or Mobius band, constructed as an tidenti-
fication space from a rectangle by twisting
through 180° and identifying the opposite
edges with one another (Fig. 1).

A D

Fig. 1

As illustrated in Fig. 2, from a rectangle
ABCD we can obtain a closed surface homeo-
morphic to the product space S! x S* by
identifying the opposite edges AB with DC
and BC with AD. This surface is the so-called
2-dimensional torus (or anchor ring). In this
case, the four vertices A, B, C, D of the rec-
tangle correspond to one point p on the sur-
face, and the pairs of edges AB, DC and BC,
AD correspond to closed curves ¢’ and b’ on
the surface. We use the notation aba™'b~! to
represent a torus. This refers to the fact that
the torus is obtained from an oriented four-
sided polygon by identifying the first side and
the third (with reversed orientation), the sec-
ond side and the fourth (with reversed orienta-
tion). Similarly, aa ™! represents a sphere (Fig.
3),and a;bya; b a,bya5 b, ! represents the
closed surface shown in Fig. 4.
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Fig. 4

All closed surfaces without boundary are
constructed by identifying suitable pairs of
sides of a 2n-sided polygon in a Euclidean
plane E2. Furthermore, a closed orientable
surface without boundary is homeomorphic to
the surface represented by aa ™! or
arhyai' byt ab,a;'b,t n
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The 1-dimensional *Betti number of this
surface is 2p, the O0-dimensional and 2-dimen-
stonal *Betti numbers are 1, the ftorsion coeffi-
cients are all 0, and p is called the genus of the
surface. Also, a closed orientable surface of
genus p with boundaries ¢, ..., ¢, is repre-
sented by

wieywitoweeowtaybyar byt aba, b,

2

(Fig. 5). A closed nonorientable surface with-
out boundary is represented by

a,0,0,0;...4,a,. (3)
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The 1-dimensional Betti number of this
surface is ¢ — 1, the O-dimensional and 2-
dimensional Betti numbers are 1 and 0, re-
spectively, the 1-dimensional torsion coeffi-
cient is 2, the O-dimensional and 2-dimensional
torsion coefficients are 0, and ¢ is called the
genus of the surface. A closed nonorientable
surface of genus g with boundaries ¢4, ..., ¢,
is represented by

w1 —1
WiC WL o W GWy A4 Ay . Gy, 4)

Each of forms (1)—(4) is called the normal form
of the respective surface, and-the curves a;, b;,
w, are called the normal sections of the surface.
To explain the notation in (3), we first take the
simplest case, aa. In this case, the surface is
obtained from a disk by identifying each pair
of points on the circumference that are end-
points of a diameter (Fig. 6). The surface aa is
then homeomorphic to a tprojective plane of
which a decomposition into a complex of
triangles is illustrated in Fig. 7. On the other
hand, aabb represents a surface like that
shown in Fig. 8, called the Klein bottle. Fig. 9
shows a handle, and Fig. 10 shows a cross cap.
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The last two surfaces have boundaries; a
handle is orientable, while a cross cap is non-
orientable and homeomorphic to the Mébius
strip. If we delete p disks from a sphere and
replace them with an equal number of handles,
then we obtain a surface homeomorphic to
the surface represented in (1), while if we
replace the disks by cross caps instead of by
handles, then the surface thus obtained is
homeomorphic to that represented in (3).
Now we decompose the surfaces (1) and (3)
into triangles and denote the number of i-
dimensional simplexes by «; (i=0, 1,2). Then in
view of the tEuler-Poincaré formula, the sur-
faces (1) and (3) satisfy the respective formulas

bo— oy +a;=2(1—p),
Ag—ay + 0, =2—¢q.

The tRiemann surfaces of talgebraic func-
tions of one complex variable are always sur-
faces of type (1), and their genera p coincide
with those of algebraic functions.

All closed surfaces are homeomorphic to
surfaces of types (1), (2), (3), or (4). A necessary
and sufficient condition for two surfaces to be
homeomorphic to each other is coincidence of
the numbers of their boundaries, their orienta-
bility or nonorientability, and their genera (or
*Euler characteristic «® —a' +2). This propo-
sition is called the fundamental theorem of the
topology of surfaces. The thomeomorphism
problem of closed surfaces is completely solved
by this theorem. The same problem for n
(n=3) manifolds, even if they are compact,
remains open. (For surface area — 246 Length
and Area. For the differential geometry of
surfaces — 111 Differential Geometry of
Curves and Surfaces.)
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A. General Remarks

Symbolic logic (or mathematical logic) is a field
of logic in which logical inferences commonly
used in mathematics are investigated by use of
mathematical symbols.

The algebra of logic originally set forth by
G. Boole [1] and A. de Morgan [2] is actually
an algebra of sets or relations; it did not reach
the same level as the symbolic logic of today.
G. Frege, who dealt not only with the logic
of propositions but also with the first-order
predicate logic using quantifiers (— Sections
C and K), should be regarded as the real
originator of symbolic logic. Frege’s work,
however, was not recognized for some time.
Logical studies by C. S. Peirce, E. Schréder,
and G. Peano appeared soon after Frege, but
they were limited mostly to propositions and
did not develop Frege’s work. An essential
development of Frege’s method was brought
about by B. Russell, who, with the collabor-
ation of A. N. Whitehead, summarized his
results in Principia mathematica [4], which
seemed to have completed the theory of sym-
bolic logic at the time of its appearance.

B. Logical Symbols

If A and B are propositions, the propositions
(A and B), (4 or B), (4 implies B), and (not A)
are denoted by

AAB, AvB, A-B, A,

respectively. We call 714 the negation of A,

A A B the conjunction (or logical product),

A v B the disjunction (or logical sum), and
A— B the implication (or B by A). The propo-
sition (4—B) A(B— A) is denoted by A<—B
and is read “4 and B are equivalent.” 4Av B
means that at least one of 4 and B holds. The
propositions (For all x, the proposition F(x)
holds) and (There exists an x such that F(x)
holds) are denoted by VxF(x) and 3xF(x),
respectively. A proposition of the form VxF(x)
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is called a universal proposition, and one of the
form AxF(x), an existential proposition. The
symbols A, v, =, <, 71,V, 3 are called log-
ical symbols.

There are various other ways to denote
logical symbols, including:

AnB: A&B, A-B,

AvB: A+ B,

A—-B: AoB, A=B,

A~B: A2B, A=B, A~B, Ao cB, A< B,
TA: ~A, A,

VxF(x): (x)F(x), TIxF{x), AxF(x),

IxF(x): (Ex)F(x), TxF(x), \VxF(x).

C. Free and Bound Variables

Any function whose values are propositi
called a propositional function. ¥x and 3x can
be regarded as operators that transform any
propositional function F(x) into the propo-
sitions VxF(x) and 3xF(x), respectively. Vx and
3x are called quantifiers; the former is called
the universal quantifier and the latter the
existential quantifier. F(x) is transformed

into VxF(x) or 3xF(x) just as a function f(x)

is transformed into the definite integral

f¢ f(x)dx; the resultant propositions VxF(x)
and 3xF(x) are no longer functions of x. The
variable x in VxF(x) and in 3xF(x) is called a
bound variable, and the variable x in F(x),
when it is not bound by Vx or 3x, is called a
free variable. Some people employ different
kinds of symbols for free variables and bound
variables to avoid confusion.

D. Formal Expressions of Propositions

A formal expression of a proposition in terms
of logical symbols is called a formula. More
precisely, formulas are constructed by the
following formation rules: (1) If %[ is a formula,
19U is also a formula. If A and B are for-
mulas, A A B, A v B, A — B are all formulas.
(2) If F(a) is a formula and a is a free variable,
then Vx&(x) and IxF(x) are formulas, where x
is an arbitrary bound variable not contained
in §(a) and §(x) is the result of substituting x
for a throughout §(a).

We use formulas of various scope accord-
ing to different purposes. To indicate the scope
of formulas, we fix a set of formulas, each
element of which is called a prime formula (or
atomic formula). The scope of formulas is the
set of formulas obtained from the prime for-
mulas by formation rules (1) and (2).
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E. Propositional Logic

Propositional logic is the field in symbolic
logic in which we study relations between
propositions exclusively in connection with the
four logical symbols A, v, —, and 71, called
propositional connectives.

In propositional logic, we deal only with
operations of logical operators denoted by
propositional connectives, regarding the vari-
ables for denoting propositions, called propo-
sition variables, only as prime formulas. We
examine problems such as: What kinds of
formulas are identically true when their propo-
sition variables are replaced by any propo-
sitions, and what kinds of formulas can some-
times be true?

Consider the two symbols Y and A,
read true and false, respectively, and let A=
{Y, A}. A univalent function from A, or
more generally from a Cartesian product
A x...x A, into A is called a truth function.
We can regard A, v, —, 7 as the following
truth functions: (1) AAB= Y for A=B=Y,
and AAB= A otherwise; (2) AvB= A for
A=B= A, and AvB= Y otherwise; (3)
A—-B=Afor A=Y and B= A, and
A—B=Y otherwisg; (4) TA=A for A=Y,
and 14A=Y for A= A.

If we regard proposition variables as vari-
ables whose domain is A, then each formula
represents a truth function. Conversely, any
truth function (of a finite number of indepen-
dent variables) can be expressed by an appro-
priate formula, although such a formula is not
uniquely determined. If a formula is regarded
as a truth function, the value of the function
determined by a combination of values of the
independent variables involved in the formula
is called the truth value of the formula.

A formula corresponding to a truth function
that takes only Y as its value is called a tau-
tology. For example, Av 1A and ((AU—-B)
—A)— A are tautologies. Since a truth func-
tion with n independent variables takes values
corresponding to 2" combinations of truth
values of its variables, we can determine in a
finite number of steps whether a given formula
is a tautology. If U—B is a tautology (that is,
A and B correspond to the same truth func-
tion), then the formulas A and B are said to be
equivalent.

F. Propositional Calculus

It is possible to choose some specific tau-
tologies, designate them as axioms, and derive
all tautologies from them by appropriately
given rules of inference. Such a system is called
a propositional calculus. There are many ways
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to stipulate axioms and rules of inference for
a propositional calculus.

The abovementioned propositional calculus
corresponds to the so-called classical propo-
sitional logic (— Section L). By choosing ap-
propriate axioms and rules of inference we can
also formally construct intuitionistic or other
propositional logics. In intuitionistic logic the
law of the fexcluded middle is not accepted,
and hence it 1s impossible to formalize intui-
tionistic propositional logic by the notion of
tautology. We therefore usually adopt the
method of propositional calculus, instead of
using the notion of tautology, to formalize
intuitionistic propositional logic. For example,
V. I. Glivenko's theorem [5], that if a formula
A can be proved in classical logic, then 71 12
can be proved in intuitionistic logic, was ob-
tained by such formalistic considerations. A
method of extending the classical concepts of
truth value and tautology to intuitionistic
and other logics has been obtained by S. A.
Kripke. There are also studies of logics inter-
mediate between intuitionistic and classical
logic (T. Umezawa).

G. Predicate Logic

Predicate logic is the area of symbolic logic in
which we take quantifiers in account. Mainly
propositional functions are discussed in predi-
cate logic. In the strict sense only single-
variable propositional functions are called
predicates, but the phrase predicate of n argu-
ments (or n-ary predicate) denoting an n-
variable propositional function is also em-
ployed. Single-variable (or unary) predicates
are also called properties. We say that a has
the property F if the proposition F(a) formed
by the property F is true. Predicates of two
arguments are called binary relations. The
proposition R(a, b) formed by the binary re-
lation R is occasionally expressed in the form
aRb. Generally, predicates of n arguments are
called n-ary relations. The domain of defini-
tion of a unary predicate is called the object
domain, elements of the object domain are
called objects, and any variable running over
the object domain is called an object variable.
We assume here that the object domain is not
empty. When we deal with a number of predi-
cates simultaneously (with different numbers of
variables), it is usual to arrange things so that
all the independent variables have the same
object domain by suitably extending their
object domains.

Predicate logic in its purest sense deals
exclusively with the general properties of
quantifiers in connection with propositional
connectives. The only objects dealt with in this
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field are predicate variables defined over a
certain common domain and object variables
running over the domain. Propositional vari-
ables are regarded as predicates of no vari-
ables. Each expression F(a,,...,a,) for any
predicate variable F of n variables q,, ..., a,
(object variables designated as free) is regarded
as a prime formula (n=0,1,2,...), and we deal
exclusively with formulas generated by these
prime formulas, where bound variables are
also restricted to object variables that have a
common domain. We give no specification for
the range of objects except that it be the com-
mon domain of the object variables.

By designating an object domain and sub-
stituting a predicate defined over the domain
for each predicate variable in a formula, we
obtain a proposition. By substituting further
an object (object constant) belonging to the
object domain for each object variable in a
proposition, we obtain a proposition having a
definite truth value. When we designate an
object domain and further associate with each
predicate variable as well as with each object
variable a predicate or an object to be sub-
stituted for it, we call the pair consisting of the
object domain and the association a model.
Any formula that is true for every model is
called an identically true formula or valid
formula. The study of identically true formu-
las is one of the most important problems in
predicate logic.

H. Formal Representations of Mathematical
Propositions

To obtain a formal representation of a math-
ematical theory by predicate logic, we must
first specify its object domain, which is a non-
empty set whose elements are called individ-
uals; accordingly the object domain is called
the individual domain, and object variables are
called individual variables. Secondly we must
specify individual symbols, function symbols,
and predicate symbols, signifying specific indi-
viduals, functions, and Tpredicates, respectively.
Here a function of n arguments is a univa-
lent mapping from the Cartesian product

D x ... x D of n copies of the given set to D.
Then we define the notion of term as in the
next paragraph to represent each individual
formally. Finally we express propositions for-
mally by formulas.

Definition of terms (formation rule for terms):
(1) Each individual symbol is a term. (2) Each
free variable is a term. (3) f(¢,,...,¢,) is a term
ift,,...,t, are terms and f is a function symbol
of n arguments. (4) The only terms are those
given by (1)-(3).

As a prime formula in this case we use any
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formula of the form F(t,,...,t,), where F is a
predicate symbol of n arguments and ¢, ..., ¢,
are arbitrary terms. To define the notions of
term and formula, we need logical symbols,
free and bound individual variables, and also a
list of individual symbols, function symbols,
and predicate symbols.

In pure predicate logic, the individual
domain is not concrete, and we study only
general forms of propositions. Hence, in this
case, predicate or function symbols are not
representations of concrete predicates or func-
tions but are predicate variables and function
variables. We also use free individual variables
instead of individual symbols. In fact, it is now
most common that function variables are
dispensed with, and only free individual vari-
ables are used as terms.

I. Formulation of Mathematical Theories

To formalize a theory we need axioms and
rules of inference. Axtoms constitute a certain
specific set of formulas, and a rule of inference
is a rule for deducing a formula from other
formulas. A formula is said to be provable if it
can be deduced from the axioms by repeated
application of rules of inference. Axioms are
divided into two types: logical axioms, which
are common to all theories, and mathematical
axioms, which are peculiar to each individual
theory. The set of mathematical axioms is
called the axiom system of the theory.

(I) Logical axioms: (1) A formula that is the
result of substituting arbitrary formulas for the
proposition variables in a tautology is an
axiom. (2) Any formula of the form

VxFx)—- &) or  F)—3IxF(x)

is an axiom, where §(1) is the result of sub-
stituting an arbitrary term ¢ for x in F(x).

(IT) Rules of inference: (1) We can deduce a
formula B from two formulas A and U —-B
(modus ponens). (2) We can deduce A —VxF(x)
from a formula A— F(a) and IxF(x)—>A
from F(a)—U, where « is a free individual
variable contained in neither 2 nor §(x) and
% (a) is the result of substituting a for x in F(x).

If an axiom system is added to these logical
axioms and rules of inference, we say that a
formal system is given.

A formal system S or its axiom system is
said to be contradictory or to contain a con-
tradiction if a formula 2 and its negation 1
are provable; otherwise it is said to be consis-
tent. Since

(UATW-B

is a tautology, we can show that any formula
is provable in a formal system containing a
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contradiction. The validity of a proof by
reductio ad absurdum lies in the fact that

(A—(B A 1B))— 1A

is a tautology. An affirmative proposition
(formula) may be obtained by reductio ad
absurdum since the formula (of propositional
logic) representing the discharge of double
negation

AU

is a tautology.

J. Predicate Calculus

If a formula has no free individual variable, we
call it a closed formula. Now we consider a
formal system § whose mathematical axioms
are closed. A formula 2 is provable in S if

and only if there exist suitable mathematical
axioms €, ..., €, such that the formula

(€ A AG)>A

is provable without the use of mathematical
axioms. Since any axiom system can be re-
placed by an equivalent axiom system contain-
ing only closed formulas, the study of a formal
system can be reduced to the study of pure
logic.

In the following we take no individual sym-
bols or function symbols into consideration
and we use predicate variables as predicate
symbols in accordance with the commonly
accepted method of stating properties of the
pure predicate logic; but only in the case of
predicate logic with equality will we use predi-
cate variables and the equality predicate = as
a predicate symbol. However, we can safely
state that we use function vartables as function
symbols.

The formal system with no mathematical
axioms is called the predicate calculus. The
formal system whose mathematical axioms are
the equality axioms

a=b — (§a)—-§b))

is called the predicate calculus with equality.

In the following, by being provable we mean
being provable in the predicate calculus.

(1) Every provable formula is valid.

(2) Conversely, any valid formula is prov-
able (K. Godel [6]). This fact is called the
completeness of the predicate calculus. In fact,
by Godel’s proof, a formula 2 is provable if
AU is always true in every interpretation whose
individual domain is of fcountable cardinality.
In another formulation, if 7120 is not provable,
the formula A is a true proposition in some
interpretation (and the individual domain in
this case is of countable cardinality). We can

a=a,



1555

extend this result as follows: If an axiom sys-
tem generated by countably many closed
formulas is consistent, then its mathematical
axioms can be considered true propositions
by a common interpretation. In this sense,
Godel’s completeness theorem gives another
proof of the fSkolem-Lowenheim theorem.

(3) The predicate calculus is consistent.
Although this result is obtained from (1) in this
sectton, it is not difficult to show it directly
(D. Hilbert and W. Ackermann [7]).

(4) There are many different ways of giving
logical axioms and rules of inference for the
predicate calculus. G. Gentzen gave two types
of systems in [8]; one is a natural deduction
system in which it is easy to reproduce formal
proofs directly from practical ones in math-
ematics, and the other has a logically simpler
structure. Concerning the latter, Gentzen
proved Gentzen’s fundamental theorem, which
shows that a formal proof of a formula may be
transiated into a “direct” proof. The theorem
itself and its idea were powerful tools for ob-
taining consistency proofs.

(5) If the proposition IxA(x) is true, we
choose one of the individuals x satisfying the
condition 2(x), and denote it by £x(x). When
IxWU(x) is false, we let ex(x) represent an
arbitrary individual. Then

Ax A (x)— WexW(x)) n

is true. We consider ¢x to be an operator as-
sociating an individual ex®(x) with a propo-
sition 2U(x) containing the variable x. Hilbert
called it the transfinite logical choice function;
today we call it Hilbert’s ¢-operator (or ¢-
quantifier), and the logical symbol ¢ used in
this sense Hilbert’s ¢-symbol. Using the &-
symbol, IxA(x) and VxU(x) are represented by

WexA(x), Afex 7 AR)),

respectively, for any 2(x). The system of predi-
cate calculus adding formulas of the form (1)
as axioms is essentially equivalent to the usual
predicate calculus. This result, called the e-
theorem, reads as follows: When a formula € is
provable under the assumption that every
formula of the form (1) is an axiom, we can
prove € using no axioms of the form (1) if €
contains no logical symbol & (D. Hilbert and
P. Bernays [9]). Moreover, a similar theorem
holds when axioms of the form

Vx (U (x)>B(x))—exWAU(x) =exB(x) (2)
are added (S. Maehara [10]).

(6) For a gtven formula 9, call 91" a normal
form of A when the formula

NesA’

is provable and ' satisfies a particular con-
dition. For example, for any formula U there 1s
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a normal form A’ satisfying the condition: 2’
has the form

lel ann%(xl’ ...,X"),

where Qx means a quantifier Vx or Ix, and
B(x,, ..., X,) contains no quantifier and has no
predicate variables or free individual variables
not contained in A. A normal form of this
kind is called a prenex normal form.

(7) We have dealt with the classical first-
order predicate logic until now. For other
predicate logics (— Sections K and L) also, we
can consider a predicate calculus or a formal
system by first defining suitable axioms or
rules of inference. Gentzen’s fundamental
theorem applies to the intuitionistic predicate
calculus formulated by V. 1. Glivenko, A.
Heyting, and others. Since Gentzen’s funda-
mental theorem holds not only in classical
logic and intuitionistic logic but also in several
systems of first-order predicate logic or pro-
positional logic, it is useful for getting results
in modal and other logics (M. Ohnishi, K.
Matsumoto). Moreover, Glivenko’s theorem
in propositional logic [5] is also extended to
predicate calculus by using a rather weak
representation (S. Kuroda [12]). G. Takeuti
expected that a theorem similar to Gentzen’s
fundamental theorem would hold in higher-
order predicate logic also, and showed that
the consistency of analysis would follow if
that conjecture could be verified [13]. More-
over, in many important cases, he showed
constructively that the conjecture holds par-
tially. The conjecture was finally proved by
M. Takahashi [14] by a nonconstructive
method. Concerning this, there are also con-
tributions by S. Maehara, T. Simauti, M.
Yasuhara, and W. Tait.

K. Predicate Logics of Higher Order

In ordinary predicate logic, the bound vari-
ables are restricted to individual variables. In
this sense, ordinary predicate logic is called
first-order predicate logic, while predicate logic
dealing with quantifiers VP or 3P for a predi-
cate variable P is called second-order predicate
logic.

Generalizing further, we can introduce the
so-called third-order predicate logic. First we
fix the individual domain D,. Then, by intro-
ducing the whole class D1 of predicates of n
variables, each running over the object domain
Dy, we can introduce predicates that have D’}
as their object domain. This kind of predicate
is called a second-order predicate with respect
to the individual domain D,. Even when
we restrict second-order predicates to one-
variable predicates, they are divided into vari-
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ous types, and the domains of independent
variables do not coincide in the case of more
than two variables. In contrast, predicates
having D, as their object domain are called
first-order predicates. The logic having quan-
tifiers that admit first-order predicate variables
is second-order predicate logic, and the logic
having quantifiers that admit up to second-
order predicate variables is third-order predi-
cate logic. Similarly, we can define further
higher-order predicate logics.

Higher-order predicate logic is occasionally
called type theory, because variables arise that
are classified into various types. Type theory is
divided into simple type theory and ramified
type theory.

We confine ourselves to variables for single-
variable predicates, and denote by P such a
bound predicate variable. Then for any for-
mula &(a) (with a a free individual variable),
the formula

IPYX(P(x)F(x))

is considered identically true. This is the point
of view in simple type theory.

Russell asserted first that this formula can-
not be used reasonably if quantifiers with
respect to predicate variables occur in &(x).
This assertion is based on the point of view
that the formula in the previous paragraph
asserts that §(x) is a first-order predicate,
whereas any quantifier with respect to first-
order predicate variables, whose definition
assumes the totality of the first-order predi-
cates, should not be used to introduce the first-
order predicate §(x). For this purpose, Russell
further classified the class of first-order predi-
cates by their rank and adopted the axiom

APHYX(P*(x)e F(x))

for the predicate variable P* of rank k, where
the rank i of any free predicate variable occur-
ring in §(x) is <k, and the rank j of any
bound predicate variable occurring in F(x) is
< k. This is the point of view in ramified type
theory, and we still must subdivide the types if
we deal with higher-order propositions or
propositions of many variables. Even Russell,
having started from his ramified type theory,
had to introduce the axiom of reducibility
afterwards and reduce his theory to simple
type theory.

L. Systems of Logic

Logic in the ordinary sense, which is based on
the law of the excluded middle asserting that
every proposition is in principle either true or
false, is called classical logic. Usually, propo-
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sitional logic, predicate logic, and type theory
are developed from the standpoint of classical
logic. Occasionally the reasoning of intuition-
istic mathematics is investigated using sym-
bolic logic, in which the law of the excluded
middle is not admitted (— 156 Foundations of
Mathematics). Such logic is called intuitionistic
logic. Logic is also subdivided into proposi-
tional logic, predicate logic, etc., according to
the extent of the propositions (formulas) dealt
with.

To express modal propositions stating possi-
bility, necessity, etc., in symbolic logic, J. Lu-
kaszewicz proposed a propositional logic called
three-valued logic, having a third truth value,
neither true nor false. More generally, many-
valued logics with any number of truth values
have been introduced; classical logic is one of
its special cases, two-valued logic with two
truth values, true and false. Actually, however,
many-valued logics with more than three truth
values have not been studied much, while
various studies in modal logic based on classi-
cal logic have been successfully carried out.
For example, studies of strict implication
belong to this field.
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412 (IV.13)
Symmetric Riemannian
Spaces and Real Forms

A. Symmetric Riemannian Spaces

Let M be a *Riemannian space. For each point
p of M we can define a mapping o, of a suit-
able neighborhood U, of p onto U, itself so
that o,(x,)=x_,, where x, ([t| <& x=p) is any
tgeodesic passing through the point p. We call
M a locally symmetric Riemannian space if for
any point p of M we can choose a neighbor-
hood U, so that g, is an fisometry of U,,. In
order that a Riemannian space M be locally
symmetric it is necessary and sufficient that the
fcovariant differential (with respect to the
fRiemannian connection) of the fcurvature
tensor of M be 0. A locally symmetric Riemann-
ian space is a *real analytic manifold. We say
that a Riemannian space M is a globally sym-
metric Riemannian space (or simply symmetric
Riemannian space) if M is connected and if for
each point p of M there exists an isometry g,
of M onto M itself that has p as an isolated
fixed point (i.e., has no fixed point except pin a
certain neighborhood of p) and such that o7 is
the identity transformation on M. In this case
o, is called the symmetry at p. A (globally)
symmetric Riemannian space is locally sym-
metric and is a fcomplete Riemannian space.
Conversely, a tsimply connected complete
locally symmetric Riemannian space is a (glob-
ally) symmetric Riemannian space.

B. Symmetric Riemannian Homogeneous
Spaces

A thomogeneous space G/K of a connected
TLie group G is a symmetric homogeneous
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space (with respect to 0) if there exists an in-
volutive automorphism (i.e., automorphism of
order 2) 8 of G satisfying the condition K§ <
K = Ky, where K, is the closed subgroup con-
sisting of all elements of G left fixed by 0 and
K§ is the connected component of the iden-
tity element of K,. In this case, the mapping
aK - 0(a)K (aeG) is a transformation of

G/K having the point K as an isolated fixed
point; more generally, the mapping 0, :aK—
ag0(ay) "' (@)K is a transformation of G/K
that has an arbitrary given point a, K of G/K
as an isolated fixed point. If there exists a G-
invariant Riemannian metric on G/K, then
G/K is a symmetric Riemannian space with
symmetries {6, |a,€G} and is called a sym-
metric Riemannian homogeneous space. A
sufficient condition for a symmetric homoge-
neous space G/K to be a symmetric Riemann-
ian homogeneous space is that K be a com-
pact subgroup. Conversely, given a symmetric

Riemannian space M, let G be the connected
component of the identity element of the Lie
group formed by all the isometries of M; then
M is represented as the symmetric Riemannian
homogeneous space M =G/K and K is a com-
pact group. In particular, a symmetric Rie-
mannian space can be regarded as a Riemann-
ian space that is realizable as a symmetric
Riemannian homogeneous space.

The Riemannian connection of a symme-
tric Riemannian homogeneous space G/K is
uniquely determined (independent of the
choice of G-invariant Riemannian metric), and
a geodesic x,(jt| < 00, xq =a, K) passing
through a point @, K of G/K is of the form
x,=(exptX)ay K. Here X is any element of the
Lie algebra g of G such that 0(X)= — X, where
0 also denotes the automorphism of g induced
by the automorphism 0 of G and exptX is the
fone-parameter subgroup of G defined by the
element X. The covariant differential of any G-
invariant tensor field on G/K is 0, and any G-
invariant fdifferential form on G/K is a closed
differential form.

C. Classification of Symmetric Riemannian
Spaces

The *simply connected tcovering Riemannian
space of a symmetric Riemannian space is also
a symmetric Riemannian space. Therefore the
problem of classifying symmetric Riemannian
spaces is reduced to classifying simply con-
nected symmetric Riemannian spaces M and
determining tdiscontinuous groups of iso-
metries of M. When we take the tde Rham
decomposition of such a space M and repre-
sent M as the product of a real Euclidean
space and a number of simply connected irre-
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ducible Riemannian spaces, all the factors are
symmetric Riemannian spaces. We say that M
is an irreducible symmetric Riemannian space if
it is a symmetric Riemannian space and is
irreducible as a Riemannian space.

A simply connected irreducible symmetric
Riemannian space is isomorphic to one of the
following four types of symmetric Riemannian
homogeneous spaces (here Lie groups are
always assumed to be connected):

(1) The symmetric Riemannian homoge-
neous space (G x G)/{(a, a)|ae G} of the direct
product G x G, where G is a simply connected
compact fsimple Lie group and the involutive
automorphism of G x G is given by (a, b)—(b, a)
((a, b)e G x G). This space is isomorphic, as a
Riemannian space, to the space G obtained by
introducing a two-sided invariant Riemannian
metric on the group G; the isomorphism is
induced from the mapping G x G3(a, b)—
ab'eG.

(2) A symmetric homogeneous space G/K,
of a simply connected compact simple Lie
group G with respect to an involutive auto-
morphism 0 of G. In this case, the closed sub-
group K,={ae G|0(a)=a} of G is connected.
We assume here that 0 is a member of the
given complete system of representatives of the
fconjugate classes formed by the elements of
order 2 in the automorphism group of the
group G.

(3) The homogeneous space G¢/G, where G©
is a complex simple Lie group whose fcenter
reduces to the identity element and G is an
arbitrary but fixed maximal compact subgroup
of G€.

(4) The homogeneous space G,/K, where G,
is a noncompact simple Lie group whose
center reduces to the identity element and
which has no complex Lie group structure,
and K is a maximal compact subgroup of G.
In Section D we shall see that (3) and (4) are
actually symmetric homogeneous spaces. All
four types of symmetric Riemannian spaces are
actually trreducible symmetric Riemannian
spaces, and G-invariant Riemannian metrics
on each of them are uniquely determined up to
multiplication by a positive number. On the
other hand, (1) and (2) are compact, while (3)
and (4) are homeomorphic to Euclidean spaces
and not compact. For spaces of types (1) and
(3) the problem of classifying simply connected
irreducible symmetric Riemannian spaces is
reduced to classifying fcompact real simple Lie
algebras and fcomplex simple Lie algebras,
respectively, while for types (2) and (4) it is
reduced to the classification of noncompact
real simple Lie algebras (— Section D) (for the
result of classification of these types — Ap-
pendix A, Table 5.1I). On the other hand, any
(not necessarily simply connected) irreducible
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symmetric Riemannian space defines one of
(1)—(4) as its funiversal covering manifold; if
the covering manifold is of type (3) or (4), the
original symmetric Riemannian space is neces-
sarily simply connected.

D. Symmetric Riemannian Homogeneous
Spaces of Semisimple Lie Groups

In Section C we saw that any irreducible sym-
metric Riemannian space is representable as a
symmetric Riemannian homogeneous space
G/K on which a connected semisimple Lie
group G acts Talmost effectively (— 249 Lie
Groups). Among symmetric Riemannian
spaces, such a space M = G/K is characterized
as one admitting no nonzero vector field that
is fparallel with respect to the Riemannian
connection. Furthermore, if G acts effectively
on M, G coincides with the connected compo-
nent I(M)° of the identity element of the Lie
group formed by all the isometries of M.

We let M =G/K be a symmetric Riemann-
ian homogeneous space on which a con-
nected semisimple Lie group G acts almost
effectively. Then G is a Lie group that is tlocally
isomorphic to the group I(M)°, and therefore
the Lie algebra of G is determined by M. Let g
be the Lie algebra of G, T be the subalgebra of
g corresponding to K, and 0 be the involutive
automorphism of G defining the symmetric
homogeneous space G/K. The automorphism
of g defined by 6 is also denoted by 6. Then =
{Xeglf(X)=X}. Puttingm={Xeg|O(X)=
— X}, we have g=m+1 (direct sum of linear
spaces), and m can be identified in a natural
way with the tangent space at the point K of
G/K. The tadjoint representation of G gives
rise to a representation of K in g, which in-
duces a linear representation Ad,,(k) of K in m.
Then {Ad,, (k)| ke K} coincides with the fres-
tricted homogeneous holonomy group at the
point K of the Riemannian space G/K.

Now let ¢ be the tKilling form of g. Then t
and nt are mutually orthogonal with respect to
¢, and denoting by ¢, and ¢,, the restrictions
of ¢ to t and m, respectively, ¢ is a negative
definite quadratic form on f. If ¢, is also a
negative definite quadratic form onm, gisa
compact real semisimple Lie algebra and G/K
is a compact symmetric Riemannian space; in
this case we say that G/K is of compact type.
In the opposite case, where ¢, is a fpositive
definite quadratic form, G/K is said to be of
noncompact type. In this latter case, G/K is
homeomorphic to a Euclidean space, and if
the center of G is finite, K is a maximal com-
pact subgroup of G. Furthermore, the group
of 1sometries I{G/K) of G/K is canonically
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isomorphic to the automorphism group of
the Lie algebra . When G/K is of compact
type (noncompact type), there exists one and
only one G-invariant Riemannian metric on
G/K, which induces in the tangent space m
at the point K the positive definite inner
product — ¢, (¢,,)-

A symmetric Riemannian homogeneous
space G/K, of compact type defined by a sim-
ply connected compact semisimple Lie group
G with respect to an involutive automorphism
0 is simply connected. Let g=m+1, be the de-
composition of the Lie algebra g of G with
respect to the automorphism 0 of g, and let g€
be the *complex form of g. Then the real sub-
space ggz\/—l m+1,in g€ is a real semi-
simple Lie algebra and a freal form of g€. Let
G, be the Lie group corresponding to the Lie
algebra g, with center reduced to the identity
element, and let K be the subgroup of G, cor-
responding to f,. Then we get a (simply con-
nected) symmetric Riemannian homogeneous
space of noncompact type G,/K.

When we start from a symmetric Riemann-
ian space of noncompact type G/K instead of
the symmetric Riemannian space of compact
type G/K, and apply the same process as in
the previous paragraphs, taking a simply
connected G, as the Lie group corresponding
to g4, we obtain a simply connected symmetric
Riemannian homogeneous space of compact
type. Indeed, each of these two processes is the
reverse of the other, and in this way we get a
one-to-one correspondence between simply
connected symmetric Riemannian homoge-
neous spaces of compact type and those of
noncompact type. This relationship is called
duality for symmetric Riemannian spaces;
when two symmetric Riemannian spaces are
related by duality, each is said to be the dual
of the other.

If one of the two symmetric Riemannian
spaces related by duality is irreducible, the
other is also irreducible. The duality holds
between spaces of types (1) and (3) and be-
tween those of types (2) and (4) described in
Section C. This fact is based on the following
theorem in the theory of Lie algebras, where
we identify isomorphic Lie algebras. (i) Com-
plex simple Lie algebras g€ and compact real
simple Lie algebras g are in one-to-one corre-
spondence by the relation that g€ is the com-
plex form of g. (ii) Form the Lie algebra g, in
the above way from a compact real simple Lie
algebra g and an involutive automorphism 6
of g. We assume that 8 is a member of the
given complete system of representatives of
conjugate classes of involutive automorphisms
in the automorphism group of g. Then we get
from the pair (g, 0) a noncompact real simple
Lie algebra g4, and any noncompact real
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simple Lie algebra is obtained by this process
in one and only one way.

Consider a Riemannian space given as a
symmetric Riemannian homogeneous space M
= G/K with a semisimple Lie group G, and let
K be the *sectional curvature of M. Then if M
ts of compact type the value of K is >0, and
if M is of noncompact type it is <0. On the
other hand, the rank of M is the (unique) di-
mension of a commutative subalgebra of g
that is contained in and maximal in m. (For
results concerning the group of isometries of
M, distribution of geodesics on M, etc. — [3].)

E. Symmetric Hermitian Spaces

A connected fcomplex manifold M with a
fHermitian metric is called a symmetric Her-
mitian space if for each point p of M there
exists an isometric and fbiholomorphic trans-
formation of M onto M that is of order 2 and
has p as an isolated fixed point. As a real ana-
lytic manifold, such a space M is a symmetric
Riemannian space of even dimension, and the
Hermitian metric of M is a *Kihler metric. Let
I(M) be the (not necessarily connected) Lie
group formed by all isometries of M, and let
A{(M) be the subgroup consisting of all holo-
morphic transformations in I(M). Then A(M)
is a closed Lie subgroup of I{M). Let G be the
connected component A(M)° of the identity
element of A(M). Then G acts transitively on
M, and M is expressed as a symmetric Rie-
mannian homogeneous space G/K.

Under the de Rham decomposition of a
simply connected symmetric Hermitian space
(regarded as a Riemannian space), all the
factors are symmetric Hermitian spaces. The
factor that is isomorphic to a real Euclidean
spaces as a Riemannian space is a symmetric
Hermitian space that is isomorphic to the
complex Euclidean space C". A symmetric
Hermitian space defining an irreducible sym-
metric Riemannian space is called an irreduc-
ible symmetric Hermitian space. The problem
of classifying symmetric Hermitian spaces is
thus reduced to classifying irreducible sym-
metric Hermitian spaces.

In general, if the symmetric Riemannian
space defined by a symmetric Hermitian space
M is represented as a symmetric Riemannian
homogeneous space G/K by a connected semi-
stmple Lie group G acting effectively on M,
then M is simply connected, G coincides with
the group A(M)° introduced in the previous
paragraph, and the center of K is not a *dis-
crete set. In particular, an irreducible sym-
metric Hermitian space is simply connected.
Moreover, in order for an irreducible symmetric
Riemannian homogeneous space G/K to be
defined by an irreducible symmetric Hermitian
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space M, it is necessary and sufficient that the
center of K not be a discrete set. If G acts
effectively on M, then G is a simple Lie group
whose center is reduced to the identity ele-
ment, and the center of K is of dimension 1.
For a space G/K satisfying these conditions,
there are two kinds of structures of symmetric
Hermitian spaces defining the Riemannian
structure of G/K.

As follows from the classification of irre-
ducible symmetric Riemannian spaces, an
irreducible Hermitian space defines one of the
following symmetric Riemannian homogeneous
spaces, and conversely, each of these homoge-
neous spaces is defined by one of the two kinds
of symmetric Hermitian spaces.

(I) The symmetric homogeneous space G/K
of a compact simple Lie group G with respect
to an involutive automorphism 0 such that the
center of G reduces to the identity element and
the center of K is not a discrete set. Here 0
may be assumed to be a representative of a
conjugate class of involutive automorphisms
in the automorphism group of G.

(IT) The homogeneous space G,/K of a
noncompact simple Lie group G, by a maxi-
mal compact subgroup K such that the center
of G, reduces to the identity element and the
center of K is not a discrete set.

An irreducible symmetric Hermitian space
of type (I) is compact and is isomorphic to a
frational algebraic variety. An irreducible
symmetric Hermitian space of type (I1) is
homeomorphic to a Euclidean space and is
isomorphic (as a complex manifold) to a
bounded domain in C* (Section F).

By the same principle as for irreducible
symmetric Riemannian spaces, a duality holds
for irreducible symmetric Hermitian spaces
which establishes a one-to-one correspondence
between the spaces of types (I) and (IT). Fur-
thermore, an irreducible symmetric Hermitian
space M, of type (IT) that is dual to a given
irreducible symmetric Hermitian space M,
=G/K of type (I) can be realized as an open
complex submanifold of M, in the following
way. Let G be the connected component of
the identity element in the Lie group formed
by all the holomorphic transformations of M,.
Then G€ is a complex simple Lie group con-
taining G as a maximal compact subgroup,
and the complex Lie algebra g€ of G€ contains
the Lie algebra g of G as a real form. Let 6 be
the involutive automorphism of G defining the
symmetric homogeneous space G/K, and let g
=m+1 be the decomposition of g determined
by 0. We denote by G, the real subgroup of G©
corresponding to the real form g, = \/?1 m+
fof & Then G, (i) is a closed subgroup of
G whose center reduces to the identity ele-
ment and (i1) contains K as a maximal com-
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pact subgroup. By definition the space M, is
then given by G,/K. Now the group G, acts on
M, as a subgroup of G¢, and the orbit of G,
containing the point K of M, is an open com-
plex submanifold that is isomorphic to M, (as
a complex manifold). M, regarded as a com-
plex manifold can be represented as the homo-
geneous space G¢/U of the complex simple Lie
group G<.

F. Symmetric Bounded Domains

We denote by D a bounded domain in the
complex Euclidean space C" of dimension n.
We call D a symmetric bounded domain if for
each point of D there exists a holomorphic
transformation of order 2 of D onto D having
the point as an isolated fixed point. On the
other hand, the group of all holomorphic
transformations of D is a Lie group, and D is
called a homogeneous bounded domain if this
group acts transitively on D. A symmetric
bounded domain is a homogeneous bounded
domain. The foilowing theorem gives more
precise results: On a bounded domain D,
tBergman’s kernel function defines a Kédhler
metric that is invariant under all holomorphic
transformations of D. If D is a symmetric
bounded domain, D is a symmetric Hermitian
space with respect to this metric. and its defin-
ing Riemannian space is a symmetric Riemann-
ian homogeneous space of noncompact type
G/K with semisimple Lie group G. Conversely,
any symmetric Hermitian space of noncom-
pact type is isomorphic {as a complex mani-
fold) to a symmetric bounded domain. When
D is isomorphic to an irreducible symmetric
Hermitian space, we call D an irreducible
symmetric bounded domain. A symmetric
bounded domain is simply connected and can
be decomposed into the direct product of irre-
ducible symmetric bounded domains.

The connected component of the identity
element of the group of all holomorphic trans-
formations of a symmetric bounded domain D
is a semisimple Lie group that acts transitively
on D. Conversely, D is a symmetric bounded
domain if a connected semisimple Lie group,
or more generally, a connected Lie group
admitting a two-sided invariant tHaar mea-
sure, acts transitively on D. Homogeneous
bounded domains in C" are symmetric
bounded domains if n< 3 but not necessarily
when n>4.

G. Examples of Irreducible Symmetric
Riemannian Spaces

Here we list irreducible symmetric Riemannian
spaces of types (2) and (4) (— Section C) that
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can be represented as homogeneous spaces of
classical groups, using the notation introduced
by E. Cartan. We denote by M,=G/K a sim-
ply connected irreducible symmetric Riemann-
ian space of type (2), where G is a group that
acts almost effectively on M, and K is the
subgroup given by K = K? for an involutive
automorphism § of G. For such an M,, the
space of type (4) that is dual to M, is denoted
by My=G,/K. Clearly dim M, =dim M,. (For
the dimension and rank of M, and for those

- M, that are represented as homogeneous
spaces of simply connected *exceptional com-
pact simple Lie groups — Appendix A, Table
5.1IL) In this section (and also in Appendix A,
Table 5.111), O(n), U(n), Sp(n), SL(n,R), and
SL(n,C) are the forthogonal group of degree n,
the tunitary group of degree n, the *symplectic
group of degree 2n, and the real and complex
fspecial linear groups of degree n, respectively.
Let SO(n)=SL(n,R)NO(n) and SU(n)=
SL(n,C)NU(n). We put

~I, 0 0 I,
ha=\o" 1) »=\_1 o)
q n

-1, 0 0 0
o 1, 0o o
Kyp.o= 0 0 -1, 0}

0 0 0 I

where I, is the p x p unit matrix.

Type Al M,=SU(n)/SO(n) (n> 1), where
0(s)=5 (with 5 the complex conjugate matrix
of s). M, =SL(n, R)/SO(n).

Type AIL. M,=SU(2n)/Sp(n) (n>1), where
O(s)=J,sJ;'. My=SU*(2n)/Sp(n). Here
SU*(2n) is the subgroup of SL(2n, C) formed
by the matrices that commute with the trans-
formation (z,, ..., 2, Zus1» o5 220 = (Zpsss oo
., —z,) in C"; SU*(2n) is called the
quaternion unimodular group and is isomorphic
to the commutator group of the group of all
regular transformations in an n-dimensional
vector space over the quaternion field H.

Type Al M,=SU(p+q)/S(U,x U) (p=
q=1), where S(U, x U)=SU(p+g)N(U(p) x
Ulqg)), with U(p) x U(q) being canonically
identified with a subgroup of U(p+ g), and
0(s)=1, ,s1, ,. This space M, is a fcomplex
Grassmann manifold. My=SU(p, q)/S(U, x U,)
where SU(p, q) is the subgroup of SL(p+4,C)
consisting of matrices that leave invariant the
Hermitian form z,z, + ... +z,2,~ 2,2, —

T ZpegZpge

Type AIV. This is the case g=1 of type AIII.
M, is the (n— 1)-dimensional complex projec-
tive space, and M, is called a Hermitian hyper-
bolic space.

Type BDIL. M,=SO(p+ ¢)/SO(p) x SO(q)
(p=zq=1,p>1,p+q+#4), where 0(s)=1, ,s1, .
M, is the *real Grassmann manifold formed by

>

Tom —Zy, ..

>
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the oriented p-dimensional subspaces in R?*4.
My=S50,(p.4)/SO(p) x SO(g), where SO(p, q) is
the subgroup of SL(n, R) consisting of matrices
that leave invariant the quadratic form x2 + ...
+X2—X2, — ... —Xpy,, and SOy(p, q) is the
connected component of the identity element.

Type BDII. This is the case ¢=1 of type
BDI. M, is the (n— 1)-dimensional sphere, and
M, is called a real hyperbolic space.

Type DIII. M,=S0(2n)/U(n) (n>2), where
U(n) 1s regarded as a subgroup of SO(2n) by

identifying se U(n) with
Res Ims so@n)
€ n),

—Ims Res

and 6(s)=J,sJ, . My=S0*(2n)/U (n). Here
SO*(2n) denotes the group of all complex
orthogonal matrices of determinant 1 leaving
invariant the skew-Hermitian form z,Z,,, —
Zni1Z1t 22T = ZaenZat o F 20200 2on 2y
this group is isomorphic to the group of all
linear transformations leaving invariant a
nondegenerate skew-Hermitian form in an n-
dimensional vector space over the quaternion
field H.

Type C1. M, =Sp(n)/U(n) (n=1), where U(n)
is considered as a subgroup of Sp(n) by the
identification U(n) < SO(2n) explained in type
DIII and 0(s)=5(=J,sJ,!). My=Sp(n,R)/U(n),
where Sp(n, R) is the real symplectic group of
degree 2n.

Type CII. M, = Sp(p+q)/Sp(p) x Sp(q) (p=
q=1), where Sp(p) x Sp(q) is identified with a
subgroup of Sp(p + g) by the mapping

(& 2) (@& 2)

4 0 B 0
10 4 0 B
¢, 0 D, 0
0 ¢, 0 D,
and 0(s)=K, ;sK, ,. Mg=Sp(p,q)/Sp(p) x

Sp(q). Here Sp(p, q) is the group of complex
symplectic matrices of degree 2(p +q) leav-
ing invariant the Hermitian form (z, ...,
Zp1 ) Ky g (21, -+ Z,4); this group is interpreted
as the group of all linear transformations leav-
ing invariant a nondegenerate Hermitian form
of index p in a (p + g)-dimensional vector space
over the quaternion field H. For g=1, M, is
the quaternion projective space, and M, is
called the quaternion hyperbolic space.

Among the spaces introduced here, there are
some with lower p, ¢, n that coincide (as Rie-
mannian spaces) (— Appendix A, Table 5.111).

H. Space Forms

A Riemannian manifold of tconstant curvature
is called a space form; it is said to be spherical,
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Euclidean, or hyperbolic according as the con-
stant curvature K is positive, zero, or negative.
A space form is a locally symmetric Riemann-
ian space; a simply connected complete space
form is a sphere if K >0, a real Euclidean
space if K=0, and a real hyperbolic space if

K <0. More generally, a complete spherical
space form of even dimension is a sphere or

a projective space, and one of odd dimension
is an orientable mantfold. A complete 2-
dimensional Euclidean space form is one of
the following spaces: Euclidean plane, cylinder,
torus, TMobius strip, tKlein bottle. Except for
these five spaces and the 2-dimensional sphere,
any fclosed surface is a 2-dimensional hyper-
bolic space form (for details about space forms

— [6))

I. Examples of Irreducible Symmetric Bounded
Domains

Among the irreducible symmetric Riemannian
spaces described in Section H, those defined by
irreducible symmetric Hermitian spaces are of
types AlIl, DIII, BDI (g=2), and CI. We list
the irreducible symmetric bounded domains
that are isomorphic to the irreducible Her-
mitian spaces defining these spaces. Positive
definiteness of a matrix will be written >»0.

Type L, . (m 2m=1). The set of all m x m’
complex matrices Z satisfying the condition
1. —'ZZ >0 is a symmetric bounded domain
in C™, which is isomorphic (as a complex
manifold) to the irreducible symmetric Hermi-
tian space defined by M, of type AIlI (p=m,
q=m).

Type I1,, (n>=2). The set of all m x m com-
plex fskew-symmetric matrices Z satisfying the
condition I,,—'ZZ >0 is a symmetric bounded
domain in C™™ 12 corresponding to the type
DIII (n=m).

Type HI,, (m > 1). The set of all m x m com-
plex symmetric matrices satisfying the con-
dition I,,—'ZZ >0 is a symmetric bounded
domain in C™™*2 ¢corresponding to the type
CI (n=m). This bounded domain is holomor-
phically isomorphic to the 1Siegel upper half-
space of degree m.

Type IV,, (n=1,m+2). This bounded
domain in C™ is formed by the elements
(zy,---,2,) satisfying the condition |z, |* +
vt lzalP < +)zE + ... +Z2))/2 <1, and
corresponds to the type BDI (p=m,q=2).

Among these four types of bounded
domains, the following complex analytic iso-
morphisms hold: I, , =II, ~III, 2IV,, I, =
I, 5, IV, =101, IV, =1, ,, IV, 11,. (For
details about these symmetric bounded
domains — [2].) There are two more kinds of
irreducible symmetric bounded domains,
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which are represented as homogeneous spaces
of exceptional Lie groups.

J. Weakly Symmetric Riemannian Spaces

A generalization of symmetric Riemannian
space is the notion of weakly symmetric Rie-
mannian space introduced by Selberg. Let M
be a Riemannian space. M is called a weakly
symmetric Riemannian space if a Lie sub-
group G of the group of isometries I{M) acts
transitively on M and there exists an element
ueI(M) satisfying the relations (i) uGu ™' =G;
(ii) 4% € G; and (iii) for any two points x, y of
M, there exists an element m of G such that ux
=my, uy =mx. A symmetric Riemannian space
M becomes a weakly symmetric Riemannian
space if we put G=1I(M) and p=the identity
transformation; as the element m in condition
(iif) we can take the symmetry o, at the mid-
point p on the geodesic arc joining x and y.
There are, however, weakly symmetric Rie-
mannian spaces that do not have the structure
of a symmetric Riemannian space. An example
of such a space is given by M=G==SL(2,R)
with a suitable Riemannian metric, where p

is the inner automorphism defined by

6 -

(Selberg [4]). On a weakly symmetric Rie-
mannian space, the ring of all G-invariant
differential-integral operators is commutative;
this fact is useful in the theory of spherical
functions (— 437 Unitary Representations).
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Symme ric Spaces

A *Riemannian manifold M is called a sym-
metric Riemannian space if M is connected and
if for each pe M there exists an involutive
fisometry ¢, of M that has p as an isolated
fixed point. For the classification and the
group-theoretic properties of symmetric Rie-
mannian spaces — 412 Symmetric Riemann-
ian Spaces and Real Forms. We state here

the geometrical properties of a symmetric Rie-
mannian space M. Let M be represented by
G/K, a t'symmetric Riemannian homogeneous
space. The tLie algebras of G and K are de-
noted by g and f respectively. Let us denote by
7, the tleft translation of M defined by aeG,
and by X* the vector field on M generated by
X eg. We denote by 0 the differential of the
involutive automorphism of G defining G/K
and identify the subspace m={X eq|0(X)

= — X} of g with the tangent space T,(M) of
M at the origin 0 =K of M. The trepresen-
tation of f on m induced from the *adjoint
representation of g is denoted by ad,,.

A. Riemannian Connections

M is a complete real analytic thomogeneous
Riemannian manifold. If M is a fsymmetric
Hermitian space, it is a thomogeneous Kih-
lerian manifold. The tRiemannian connection
V of M is the tcanonical connection of the
homogeneous space G/K and satisfies V, X * =
[X,Y](Yem)for each X et and V, X*=0
(Yem)for each Xem. For each X em, the
curve yy of M defined by y,(t)=(exptX)o
(teR) is a tgeodesic of M such that y,(0)=0
and 7x(0)= X. In particular, the texponen-
tial mapping Exp, at o is given by Exp, X =
(expX)o (X em). For each X em, the *paral-
lel translation along the geodesic arc y,(t)
(0<r<t,) coincides with the differential of
Texptox- If M is compact, for each pe M there
exists a smooth simply closed geodesic passing
through p. Any G-invariant tensor field on M
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is Tparallel with respect to V. Any G-invariant
*differential form on M is closed. The Lie
algebra b of the *restricted homogeneous
holonomy group of M at o coincides with

~ad,,[m, m]. If the group I(M) of all isometries

of M is fsemisimple, one has h= {4 egl(m)|
A-g,=0,4-R,=0}=ad I Here, g, and R,
denote the values at o of the Riemannian
metric g and the tRiemannian curvature R of
M, respectively, and A4 - is the natural action
of A on the tensors over m. If, moreover, M
is a symmetric Hermitian space, the value

Jo at o of the falmost complex structure J
of M belongs to the center of b. In general

belor the center of b. In general,
h={0} if and only if M is *flat, and § has no
nonzero invariant on m if and only if (M)
is semisimple.

B. Riemannian Curvature Tensors

The Riemannian curvature tensor R of M is
parallel and satisfies Ry(X, Y)= —ad,,[X, Y]
(X, Yem). Assume that dim M =2 in the fol-
lowing. Let P be a 2-dimensional subspace of
m, and {X, Y} an orthonormal basis of P with
respect to g,. Then the fsectional curvature
K(P) of P is given by K(P)=g,([[X,Y],X],Y).
K =0 everywhere if and only if M is flat. If M
is of *compact type (resp. of fnoncompact
type), then K >0 (resp. K <0) everywhere.
K >0 (resp. K <0) everywhere if and only if
the frank of M is 1 and M is of compact type
(resp. of noncompact type). For any four
points p, g, p', ¢’ of a manifold M of any of
these types satisfying d(p, 9)=d(p’, q'), d being
the *Riemannian distance of M, there exists
a ¢ I(M) such that ¢(p)=p’ and ¢(q)=¢".
Other than the aforementioned M’s, the only
Riemannian manifolds having this property
are circles and Euclidean spaces. If K >0
everywhere, any geodesic of M is a smooth
simply closed curve and all geodesics are of the
same length. For a symmetric Hermitian space
M, the tholomorphic sectional curvature H
satisfies H =0 (resp. H >0, H <0) everywhere
if and only if M is flat (resp. of compact type,
of noncompact type).

C. Ricci Tensors

The *Ricci tensor S of M is parallel. If ¢,,,
denotes the restriction to m x m of'the *Killing
form ¢ of g, the value S, of S at o satisfies S, =
—3¢.,. I M is tirreducible, it is an Einstein
space. § =0 (resp. positive definite, negative
definite, nondegenerate) everywhere if and
only if M is flat (resp. M is of compact type, M
is of noncompact type, (M) is semisimple). If
M is a tsymmetric bounded domain and g is
the Bergman metric of M, one has S= —g.
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D. Symmetric Riemannian Spaces of
Noncompact Type

Let M be of noncompact type. For each pe M,
p is the only fixed point of the tsymmetry o,
and the exponential mapping at p is a diffeo-
morphism from T,(M) to M. In particular, M
1s diffeomorphic to a Euclidean space. For
each pair p, ge M, a geodesic arc joining p
and ¢ is unique up to parametrization. For
each pe M there exists neither a fconjugate
point nor a *cut point of p. If M is a symmetric
Hermitian space, that is, if it is a symmetric
bounded domain, then it is a ¥Stein manifold
and holomorphically homeomorphic to a
Siegel domain.

E. Groups of Isometries

The isotropy subgroup at o in I(M) is denoted
by I,(M). Then the smooth mapping I,(M) x
m—I(M) defined by the correspondence ¢ x

X ¢ty 18 surjective, and it is a diffeo-
morphism if M is of noncompact type. If M

is of noncompact type, I(M) is isomorphic to
the group A(g) of all automorphisms of gin a
natural way, and I,(M) is isomorphic to the
subgroup A(g, )= {¢e A(9)| ¢(H=T} of A(g),
provided that G acts almost effectively on M.
Moreover, in this case the center of the iden-
tity component I(M)° of (M) reduces to the
identity, and the isotropy subgroup at a point
in I(M)° is a maximal compact subgroup of
I(M)°. If I(M) is semisimple, any element of
I(M)° may be represented as a product of an
even number of symmetries of M. In the fol-
lowing, let M be a symmetric Hermitian space,
and denote by A(M) (resp. H(M)) the group of
all holomorphic isometries (resp. all holomor-
phic homeomorphisms) of M, and by A(M)°
and H(M)° their identity components. All
these groups act transitively on M. If M is
compact or if I{(M) is semisimple, one has
AM)° =I(M)°. If I(M) is semisimple, M is
simply connected and the center of I(M)°
reduces to the identity. If M is of compact
type, M is a trational tprojective algebraic
manifold, and H(M)° is a complex semisimple
Lie group whose center reduces to the identity,
and it is the fcomplexification of I(M)°. In
this case, the isotropy subgroup at a point in
H(M)° is a tparabolic subgroup of H(M)°. If
M is of noncompact type, one has H(M)® =
I(M)°. In the following we assume that G is
compact.

F. Cartan Subalgebras

A maximal Abelian Lie subalgebra in m is
called a Cartan subalgebra for M. Cartan sub-
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algebras are conjugate to each other under the
fadjoint action of K. Fix a Cartan subalge-
bra a and introduce an inner product ( , )

on a by the restriction to a x a of g,. For an
element « of the dual space a* of a, we put
m,={Xem|[H,[H,X]]= —a(H)*X for any
Hea}. The subset 2'={aca*—{0}|m,#{0}}
of a* is called the root system of M (relative to
a). We write m,=dimm, for e 2. The subset
D={Heal|a(H)enZ for some aeX} of ais
called the diagram of M. A connected compo-
nent of a— D is called a fundamental cell of M.
The quotient group W of the normalizer of a
in K modulo the centralizer of a in K is called
the Weyl group of M. W is identified with a
finite group of orthogonal transformations of
a.

G. Conjugate Points

For a geodesic arc y with the initial point o,
any tJacobit field along y that vanishes at 0 and
the end point of y is obtained as the restriction
to y of the vector field X* generated by an
element X ef. For Hea—{0}, Exp,H is a
conjugate point to o along the geodesic y if
and only if a(H)enZ — {0} for some ae2. In
this case, the multiplicity of the conjugate
point Exp, H is equal t0  Xoc 5 aimenz— (0} Ma-
From this fact and Morse theory (— 279
Morse Theory), we get a fcellular decompo-
sition of the tloop space of M. The set of all
points conjugate to o coincides with K Exp, D
and is stratified to a disjoint union of a finite
number of connected regular submanifolds
with dimension <dimM —2.

H. Cut Points

We define a flattice group Tof aby I'=
{A€a|Exp,A=0}, and put C,={Hea|

Max 4r— g0y 2(H, A)/(A, A)=1}. Then, for He
a—{0}, Exp, H is a cut point of o0 along the
geodesic yy if and only if He C,. The set C, of
all cut points of o coincides with K Exp,C,
and is stratified to a disjoint union of a finite
number of connected regular submanifolds
with dimension <dim M — 1. The set of all
points Hirst conjugate to o coincides with C, if
and only if M is simply connected.

I. Fundamental Groups

Let Ty denote the subgroup of a generated by
{2n/(o, a))o| e X'}, identifying a* with a by
means of the inner product ( , ) of a. Thisis a
subgroup of I'. We regard I as a subgroup of
the group I(a) of all motions of a by parallel
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translations. The subgroup W =WT of I(a)
generated by I and the Weyl group W is
called the affine Weyl group of M. W leaves
the diagram D invariant and acts transitively
on the set of all fundamental cells of M. Take a
fundamental cell ¢ such that its closure &
contains 0, and put W, ={we W |w(s)=a}.
Then the fundamental group =,(M) of M is an
tAbelian group isomorphic to the groups W,
and I'/T,. 7,(M) is a finite group if and only if
M is of compact type. In this case, the order
of m,(M) is equal to the cardinality of the set
I'N7 as well as to the index [T':I,]. Moreover,
if we denote by W* the group W, for the
symmetric Riemannian space M* =G*/K* de-
fined by the *adjoint group G* of G and K*=
{ae G*|ah=0a), then W, is isomorphic to a
subgroup of W*. If M is irreducible, W* is
isomorphic to a subgroup of the group of all
automorphisms of the *fextended Dynkin dia-
gram of the root system 2.

J. Cohomology Rings

Let P(g) (resp. P(f)) be the tgraded linear space
of all tprimitive elements in the fcohomology
algebra H(g) of g (resp. H() of ), and P(q, 1)
the intersection of P(qg) with the image of the
natural homomorphism H(g, f)— H(g), where
H(g,1) denotes the relative cohomology alge-
bra for the pair (g, f). Then one has dim P(g, )
+dim P(f)=dim P(g). Denote by A P(qg,I) the
exterior algebra over P(g, ). The fgraded
algebra of all G-invariant polynomials on g
(resp. all K-invariant polynomials on ) is
denoted by I(G) (resp. I(K)), where the de-
gree of a homogeneous polynomial with de-
gree p is defined to be 2p. We denote by I*(G)
the ideal of I(G) consisting of all f'e I{G) such
that f(0)=0, and regard [(K) as an [ *(G)-
module through the restriction homomor-
phism. Then the freal cohomology ring H(M)
of M is isomorphic to the tensor product
AP(g,H® (I(K)/I (G)I(K)). If K is connected
and the tPoincaré polynomials of P(qg), P(%),
and P(g,f)are X7_ ¢*™ 1, ¥ 2% ! and
o+ 127 respectively, then the Poincaré
polynomial of H(M) is given by TTi_;,,(1+
2T (1= 2T, (1 —27)
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414 (XX.1)
Systems of Units

A. International System of Units

Units representing various physical quantities
can be derived from a certain number of fun-
damental (base) units. By a system of units we
mean a system of fundamental units. Various
systems of units have been used in the course
of the development of physics. Today, the
standard is set by the international system of
units (systéme international d’unités; abbre-
viated SI) [1], which has been developed in
the spirit of the meter-kilogram system. This
system consists of the seven fundamental units
listed in Table 1, units induced from them, and
unit designations with prefixes representing
the powers of 10 where necessary. It also con-
tains two auxiliary units for plane and solid
angles, and a large number of derived units

[11.

B. Systems of Units in Mechanics

Units in mechanics are usually derived from
length, mass, and time, and ST uses the meter,
kilogram, and second as base units. Neither
the CGS system, derived from centimeter,
gram, and second, nor the system of gravita-
tional units, derived from length, force, and
time, are recommended for general use by
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Table 1

Quantity ST unit Symbol Description

Length meter m The meter is the length equal to 1,650,763.73 wave-
lengths in vacuum of the radiation corresponding
to the transmission between the levels 2p'° and 5d°
of the krypton-86 atom.

Mass kilogram kg The kilogram is equal to the mass of the interna-
tional prototype of the kilogram.

Time second ] The second is the duration of 9,192,631.770 periods
of the radiation corresponding to the transmission
between the two hyperfine levels of the ground
state of the cesium-133 atom.

Intensity of ampere A The ampere is the intensity of the constant current

electric current maintained in two parallel, rectilinear conductors
of infinite length and of negligible circular section,
placed 1 m apart in vacuum, and producing a force
between them equal to 2 x 10~ 7 newton (m-kg-s™?)
per meter of length.

Temperature kelvin K The kelvin, the unit of thermodynamical tempera-
ture, is 1/273.16 of the thermodynamical tempera-
ture of the triple point of water.

Amount of mole mol The mole is the amount of substance of a system

substance containing as many elementary entities as there are
atoms in 0.012 kg of carbon-12.

Luminous candela cd The candela is the luminous intensity in a given

intensity direction of a source emitting monochromatic
radiation of frequency 540 x 10'2 hertz (=s7?), the
radiant intensity of which in that direction is 1/683
watt per steradian. (This revised definition of
candela was adopted in 1980.)
Table 2
Unit in terms of SI
base or derived

Quantity ST unit Symbol units

Frequency hertz Hz 1Hz=15""

Force newton N I N=1kg m/s?

Pressure and stress pascal Pa 1 Pa=1N/m?

Work, energy, quantity of heat joule J 1J=1N-'m

Power watt W 1W=1J/s

Quantity of electricity coulomb C 1C=1A"s

Electromotive force, potential volt A" 1 V=1 W/A

difference

Electric capacitance farad F 1F=1C/V

Electric resistance ohm Q 1Q=1V/A

Electric conductance siemens S 18S=1Q"!

Flux of magnetic induction weber Wb 1 Wb=1V-s

magnetic flux

Magnetic induction, magnetic tesla T 1 T=1 Wb/m?

flux density

Inductance henry H 1H=1Wb/A

Luminous flux lumen Im llm=1cd-sr

Mluminance lux 1x 11x=1Im/m?

Activity becquerel Bq 1Bg=1s""

Adsorbed dose gray Gy 1Gyv=11J/kg

Radiation dose sievert Sv 1Sv=1J/kg
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the SI Committee. Besides the base units,
minute, hour, and day, degree, minute, and
second (angle), liter, and ton have been ap-
proved by the SI Committee. Units such as the
electron volt, atomic mass unit, astronomical
unit, and parsec (not SI) are empirically de-
fined and have been approved. Several other
units, such as nautical mile, knot, are (area),
and bar, have been provisionally approved.

C. System of Units in Thermodynamics

The base unit for temperature is the degree
Kelvin (°K; formerly called the absolute tem-
perature). Degree Celsius (°C), defined by t=
T—273.15, where T is in °K, is also used.

The unit of heat is the joule J, the same as the
unit for other forms of energy. Formerly, one
calorie was defined as the quantity of heat that
must be supplied to one gram of water to raise
its temperature from 14.5°C to 15.5°C; now
one calorie is defined by 1 cal =4.1855 J.

D. Systems of Units in Electricity and
Magnetism

Three distinct systems of units have been
developed in the field of electricity and mag-
netism: the electrostatic system, which origi-
nates from Coulomb’s law for the force be-
tween two electric charges and defines mag-
netic quantities by means of the Biot-Savart
law; the electromagnetic system, which origi-
nates from Coulomb’s law for magnetism; and
the Gaussian system, in which the dielectric
constant and permeability are taken to be non-
dimensional. At present, however, the rational-
ized MKSA system of units is adopted as the
international standard. It uses the derived units
listed in Table 2 (taken from [2]), where the
derived units with proper names in other fields
are also listed.

E. Other Units

In the field of photometry, the following defi-
nition was adopted in 1948: One candela (cd)
(=0.98 old candle) is defined as 1/(6 x 10°) of
the luminous intensity in the direction normal
to a plane surface of 1 m? area of a black body
at the temperature of the solidifying point of
platinum. The total luminous flux emanating
uniformly in all directions from a source of
luminous intensity 1 cd is defined as 4n lumen
(Im). One lux (Ix) is defined as the illuminance
on a surface area of 1 m? produced by a lumi-
nous flux of 1 cd uniformly incident on the
surface. In 1980, the definition was revised as
shown in Table 1.

414 Ref.
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For theoretical purposes, a system of units
called the absolute system of units is often
used, in which units of mass, length, and time
are chosen so that the values of universal
constants, such as the universal gravitational
constant, speed of light, Planck’s constant, and
Boltzmann’s constant, are equal to 1.
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415 (XX1.41)
Takagi, Teiji

Teiji Takagi (April 21, 1875—February 28,
1960) was born in Gifu Prefecture, Japan.
After graduation from the Imperial University
of Tokyo in 1897, he continued his studies in
Germany, first with Frobenius in Berlin and
then with Hilbert in Gé6ttingen. He returned
to Japan in 1901 and taught at the Imperial
University of Tokyo until 1936, when he re-
tured. He died in Tokyo of cerebral apoplexy.

Since his student years he had been inter-
ested in Kronecker’s conjecture on fAbelian
extensions of imaginary quadratic number
fields. He solved it affirmatively for the case of
Q(\/—_l ) while still in Gottingen and presented
this result as his doctoral thesis. During World
War I, he pursued his research in the theory of
numbers in isolation from Western countries.
It developed into fclass field theory, a beautiful
general theory of Abelian extensions of alge-
braic number fields. This was published in
1920, and was complemented by his 1922
paper on the freciprocity law of power residues
and then by TArtin’s general law of reciprocity
published in 1927. Besides these arithmetical
works, he also published papers on algebraic
and analytic subjects and on the foundations
of the theories of natural numbers and of real
numbers. His book (in Japanese) on the his-
tory of mathematics in the 19th century and
his General course of analysis (also in Japanese)
as well as his teaching and research activities
at the University exercised great influence on
the development of mathematics in Japan.
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Consider the set M, consisting of the con-
formal equivalence classes of closed Riemann
surfaces of genus g. In 1859 Riemann stated,
without rigorous proof, that M, is parame-
trized by m(g) (=0if g=0, =1 ifg=1, =3g—3
if g 22) complex parameters (— 11 Algebraic
Functions). Later, the introduction of a topol-
ogy and m(g)-dimensional complex structure
on M, were discussed rigorously in various
ways. The following explanation of these
methods is due to O. Teichmiiller [1,2], L. V.
Ahlfors [3,4], and L. Bers [5-7]. For the
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algebraic-geometric approach — 9 Algebraic
Curves.

The trivial case g =0 is excluded, since M,
consists of a single point. Take a closed Rie-
mann surface R, of genus g > 1, and consider
the pairs (R, H) consisting of closed Riemann
surfaces R of the same genus g and the tho-
motopy classes H of orientation-preserving
homeomorphisms of R, into R. Two pairs
(R, H) and (R', H') are defined to be con-
formally equivalent if the homotopy class
H'H ! contains a conformal mapping. The set
T, consisting of the conformal equivalence
classes {R, H) is called the Teichmiiller space
(with center at R,). Let §, be the group of
homotopy classes of orientation-preserving
homeomorphisms of R, onto itself. H, is a
transformation group acting on T, in the sense
that each ne 9, induces the transformation
(R, H)>—={R, Hn). It satisfies T,/9,=M,. The
set J, of elements of §, fixing every point of T,
consists only of the unity element if g >3 and
is a normal subgroup of order 2 if g=1, 2. For
the remainder of this article we assume that
g=2. The case g=1 can be discussed similarly,
and the result coincides with the classical one:
T, can be identified with the upper half-plane
and $,/3, is the fmodular group.

Denote by B(R,) the set of measurable
invariant forms pudzdz ! with ||yl <1. For
every pe B(R,) there exists a pair (R, H) for
which some he H satisfies h; = puh, (— 352
Quasiconformal Mappings). This correspon-
dence determines a surjection e B(Ry)—
{R,H>eT,. Next, if Q(R,) denotes the space
of holomorphic quadratic differentials ¢ dz?
on R, a mapping ue B(Ry)— peQ(R,) is
obtained as follows: Consider u on the uni-
versal covering space U (= upper half-plane)
of R,. Extend it to U* (=lower half-plane) by
setting u=0, and let f be a quasiconformal
mapping f of the plane onto itself satisfying
f>=uyf.. Take the tSchwarzian derivative y =
{ .z} of the holomorphic function f in U*.
The desired ¢ is given by w(z):%} on U. Tt
has been verified that two p induce the same
¢ if and only if the same (R, H) corresponds
to u. Consequently, an injection (R, H)>e
T,— @< Q(R,) is obtained. Since Q(R,)=
C™@ by the Riemann-Roch theorem, this in-
jection yields an embedding T,< C™®, where
T, is shown to be a domain.

As a subdomain of C™¥, the Teichmiiller
space is an m(g)-dimensional complex analytic
manifold. It is topologically equivalent to the
unit ball in real 2m(g)-dimensional space and
is a bounded fdomain of holomorphy in C™®.

Let {ay,...,%,,} be a 1-dimensional ho-
mology basis with integral coefficients in R,
such that the intersection numbers are (;, ;)

=04, 0y ) =0, (5,054 ) =0y, L, j=1,.... 9.
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Given an arbitrary (R, H) €T, consider the
fperiod matrix Q of R with respect to the
homology basis Ha,, ..., Ha,, and the basis
oy, ..., w, of tAbelian differentials of the first
kind with the property that [, w;=d,;. Then Q
is a holomorphic function on T,. Furthermore,
the analytic structure of the Teichmiiller space
introduced previously is the unique one (with
respect to the topology defined above) for
which the period matrix is holomorphic.

9, is a properly discontinuous group of
analytic transformations, and therefore M, is
an m(g)-dimensional normal fanalytic space.
9, is known to be the whole group of the
holomorphic automorphisms of T, (Royden
[8]); thus T, is not a fsymmetric space.

To every point 7 of the Teichmiiller space,
there corresponds a Jordan domain D(z) in the
complex plane in such a way that the fiber
space F,={(1,2)|ze D(1), 1 T, C™?} has the
following properties: F, is a bounded domain
of holomorphy of C™®*1 1t carries a properly
discontinuous group ®, of holomorphic auto-
morphisms, which preserves every fiber D(z)
and is such that D(7)/®, is conformally equiva-
lent to the Riemann surface corresponding to
7. F, carries holomorphic functions Fy(t, z),
j=1,...,5g—5 such that for every t the func-
tions F;/F,,j=2,..., 59— 5 restricted to D(1)
generate the meromorphic function field of the
Riemann surface D(7)/®,.

By means of the textremal quasiconformal
mappings, it can be verified that T, is a com-
plete metric space. The metric is called the
Teichmiiller metric, and is known to be a
Kobayashi metric.

The Teichmiiller space also carries a natu-
rally defined Kéahler metric, which for g=1
coincides with the tPoincaré metric if T, is
identified with the upper half-plane. The TRicci
curvature, tholomorphic sectional cruvature,
and *scalar curvature are all negative (Ahlfors
[91).

By means of the quasiconformal mapping
£, which we considered previously in order
to construct the correspondence y+— ¢, it is
possible to regard the Teichmiiller space as
a space of quasi-Fuchsian groups (— 234
Kleinian Groups). To the boundary of T, it
being a bounded domain in C™9, there corre-
spond various interesting Kleinian groups,
which are called tboundary groups (Bers [10],
Maskit [11]).

The definition of Teichmiiller spaces can be
extended to open Riemann surfaces R, and,
further, to those with signatures. A number of
propositions stated above are valid to these
cases as well. In particular, the Teichmiiller
space for the case where R, is the unit disk is
called the universal Teichmiiller space. It is a
bounded domain of holomorphy in an infinite-
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dimensional Banach space and is a symmetric
space. Every Teichmiiller space is a subspace
of the universal Teichmiiller space.
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417 (VIL5)
Tensor Calculus

A. General Remarks

In a tdifferentiable manifold with an faffine
connection (in particular, in a fRiemannian
manifold), we can define an important opera-
tor on tensor fields, the operator of covariant
differentiation. The tensor calculus is a differ-
ential calculus on a differentiable manifold
that deals with various geometric objects and
differential operators in terms of covariant
differentiation, and it provides an important
tool for studying geometry and analysis on a
differentiable manifold.
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B. Covariant Differential

Let M be an n-dimensional smooth manifold.
We denote by &(M) the set of all smooth
functions on M and by X;(M) the set of all
smooth tensor fields of type (r,s) on M. X{(M)
is the set of all smooth vector fields on M, and
we denote it simply by X(M).

In the following we assume that an affine
connection V is given on M. Then we can
define the covariant differential of tensor fields
on M with respect to the connection (— 80
Connections). We denote the covariant deriva-
tive of a tensor field K in the direction of a
vector field X by Vy K and the covariant dif-
ferential of K by VK. The operator Vy maps
X(M) into itself and has the following
properties:

(D) Vy iy =V + Vi, Vey = fVy,

(2) Vxy(K+K')=V, K+ VK,

(3) Vi(K® K')=(VxK)® K'+ K ® (Vs K'),

(4) Vyf=X,

(5) Vx commutes with contraction of tensor
fields, where K and K’ are tensor fields on M,
X, YeX(M) and feF(M).

The torsion tensor T and the curvature ten-
sor R of the affine connection V are defined by

TX,Y)=Vy Y-V, X —-[X, Y],
R(X,Y)Z=Vx(WZ) =V (Vg Z) =V x nWZ

for vector fields X, Y, and Z. The torsion ten-
sor is of type (1,2), and the curvature tensor is
of type (1, 3). Some authors define —R as the
curvature tensor. We here follow the conven-
tion used in [1-6], while in [7, 8] the sign of
the curvature tensor is opposite. The torsion

tensor and the curvature tensor satisfy the
identities

T(X,Y)=—T(Y,X), R(X,Y)=—R(Y,X),
R(X,Y)Z+R(Y,Z)X +R(Z,X)Y
=(Vy T)(Y, Z)+(V, T)(Z, X)+(V, T)(X, Y)
+T(T(X,Y),Z) + T(T(Y, Z), X)
+T(T(Z,X),Y),
(Vx RI(Y, 2)+(Vy R)(Z, X)+(V,R)(X, Y)
=R(X, T(Y,Z))+R(Y, T(Z, X))
+R(Z, T(X, Y)).

The last two identities are called the Bianchi
identities.

The operators Vy and Vy for two vector
fields X and Y are not commutative in general,
and they satisfy the following formula, the
Ricci formula, for a tensor field K:

VX(VYK)_VY(VXK)—V[X,Y]K =R(X,Y) K,

where in the right-hand side R(X, Y) is re-
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garded as a derivation of the tensor algebra
2, XUM).

A moving frame of M on a neighborhood U
is, by definition, an ordered set (e, ..., e,) of n
vector fields on U such that e,(p), ..., e,(p) are
linearly independent at each point pe U. For
a moving frame (e, ...,e,) of M on a neigh-
borhood U we define n differential 1-forms
6',...,0" by 0'(e;) =95}, and we call them the
dual frame of (e,, ..., e,). For a tensor field K
of type (r,s) on M, we define n”** functions
K} on U by
K}::::jrs:K(ejl, e, 00, 0")
and call these functions the components of K
with respect to the moving frame (¢, ..., ¢,).

Since the covariant differentials Ve; are
tensor fields of type (1, 1), n? differential 1-
forms ] are defined by

Ve,=w;®e,

where in the right-hand side {and throughout
the following) we adopt Einstein’s summation
convention: If an index appears twice in a term,
once as a superscript and once as a subscript,
summation has to be taken on the range of
the index. (Some authors write the above
equation as de;= w}e; or De;=wje; ) We call
these 1-forms ] the connection forms of the
affine connection with respect to the moving
frame (e,, ..., ¢,). The torsion forms ®' and
the curvature forms Q] are defined by

O'=dfi+oinl, Qi=dol+oirwf.
These equations are called the structure equa-
tion of the affine connection. V. If we denote
the components of the torsion tensor and the
curvature tensor with respect to (e, ..., e,) by
T;; and Rl (=6(R(e,, e)e))), respectively,
then they satisfy the relations

S ;1
@':57};01/\0", Q}=ER}k10kA01'

Using these forms, the Bianchi identities are
written as

dO + i AQ =Q A1,
dQi+ i A Qf —wf AQ;=0.

Let K be a tensor field of type (r,s) on M
and K" be the components of K with re-
spect to (e, ...,e,). We define the covariant
differential DK;:::_';’S and the covariant deriva-
tive K}::::}:‘k by

,
ek prigedy Ok Ry iy, iy
DK~y =K}y 0*=dK}" T + Zl Koty
e

Jyeedsik Js

s
_ i, a
Zl Kjl.,.a...J'swjl.?
v=
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Then K} | are the components of VK with
respect to the moving frame (e, ..., ¢,). Some
authors write V,K! ¥ instead of K7 [5,6].

Using components, the Bianchi identities
are written as

Rh

h
R ki

uk + Rﬁu“ Th _]k (+ ’I;n i

+ T+ T TG+ Th T

ij*

lj’( I+Rzkl j+Rllj k_'Rmk +R:|aj 7;:+Rxal TI‘\‘;

The Ricci formula s written as

r

Kll i, I(l1 Z Rl, K'l"'”""r

Jr-duekl - j = alk ™y Js

+ T;?K,'-iiii}:,a-

Let (x!,...,x" be a local coordinate system
defined on a neighborhood U of M. Then
(6/éx',...,6/6x") is a moving frame of M on U,
and we call it the natural moving frame asso-
ciated with the coordinate system (x!, ..., x").
Components of a tensor field with respect to
the natural moving frame (6/0x", ..., 8/0x") are
often called components with respect to the
coordinate system (x1, ..., x"). We define an n*
function I}}; on U by w} =T}, dx*, where w] are
the connection forms for the natural moving
frame. T}; are called the coefficients of the
affine connection V. The components of the
torsion tensor and the curvature tensor with
respect to (x! x") are given by

i_Ti i
Ti=T Ty,

Rl = Th— oI+ T50h—TaTk,

where &, =0/0x"

With respect to the foregoing coordinate
system, the components K‘l " "  of the covar-
iant differential VK of a tensor field K of type
(r,s) are given by

iy...a...d,
Jyeeeds

r
ek A ol Z i,
K= gK 2 I K
=

5

. a griy.d,
Z:l I_;]: Kjl~~~” -Jst

v=

C. Covariant Differential of Tensorial Forms

A tensorial p-form of type (r, s) on a manifold
M is an a]t%rnating & (M)-multilinear mapping

of X(M) x ... x X(M) to Xi(M). A tensorial p-
form of type (0,0) is a differential p-form in the
usual sense. A tensorial p-form of type (1,0) is
often called a vectorial p-form.

1f an affine connection V is provided on M,
we define the covariant differential of tensorial
forms. Let o be a tensorial p-form of type (. s).
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The covariant differential D« of o is a tensorial
(p+ D)-form of type (r, s) and is defined by
(p+1)Da(X,, ~~-,Xp+1)

ptl

=3 (=) 'V (X, ..., X
i=1

+3(—1

i<j

Al Xp+l))

D)™ a([X: X1,

Xiveoors Xy oo X oo, X i1

J

where X, means that X; is deleted. If « is of
type (0,0), Dx coincides with the usual exterior
differential da.

The simplest example of a tensorial form is
the identity mapping of X(M), which will be
denoted by . Some authors write this vec-
torial form as dp or dx, where p or x expresses
an arbitrary point of a manifold. We call 0 the
canonical vectorial form of M. The torsion
tensor T can be regarded as a vectorial 2-form,
and we have 2D0=T. The curvature tensor R
can be regarded as a tensorial 2-form of type
(1,1),ie, (X, Y)>R(X, Y)e X](M), and the
Bianchi identities are written as DT=R A 0,
DR =0, where the exterior product R Ao of R
and a tensorial p-form « is defined by

)Xp+2)
D IR(XG, X)Xy, o, X X

i

(p+D(p+ 2R A (X, ...

_22(

i<j
Xp+2)-

In general, 2D%a= R A o holds for an arbitrary
tensorial form a.

Let (¢, -..,e,) be a moving frame of M on a
neighborhood U and 6%, ..., 0" be its dual
frames. A tensorial p-form a of type (r, s) is
written as

1= R ®... Qe @01 Q ... 0%,

on U, where the ocj':;_'_'j;; are the usual differential
p-forms on U. We call them the components of
o with respect to (e, ..., e,). Then the compo-
nents of Da, which we denote by Doc’l " , are
given by

Dair l.’=do(l’ "+ Z wl. N 1.4.(f..41,

Jyeeeds JieenJs weeds
s
v=1

Then we have

Drayh= ¥ O A Y QAL
This is an expression of 2D?a= R A o in terms
of components. The components of the ca-
nonical vectorial form 0 are the dual forms
0l ..., 0"of (e,,...,e,), and we have DOI =@/,
which means that the components of D are
the torsion forms @',
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D. Tensor Fields on a Riemannian Manifold

Let (M, g) be an n-dimensional Riemannian
manifold (— 364 Riemannian Manifolds). The
fundamental tensor g defines a one-to-one
correspondence between vector fields and
differential 1-forms. A differential 1-form o
which corresponds to a vector field X is de-
fined by a(Y)=g(X, Y) for any vector field Y.
This correspondence is naturally extended to a
one-to-one correspondence between X[(M) and
X(M), where r+s=r+5". Let (e, ...,e,) be a
moving frame of M on a neighborhood U and
g;; be the components of g with respect to the
moving frame. Let (g¥) be the inverse matrix of
the matrix (g,). The g¥ are the components of
a symmetric contravariant tensor field of order
2. Let X' be the components of a vector field X
and 2; be the components of the differential 1-
form a corresponding to X. Then X and «;
satisfy the relations o, =g, X’ and X'=gYa;. If
K% are the components of a tensor field K of
type (1, 2) (here taken for simplicity), then

Khij = Ké}gah, K}'i = szgai,

hij h ai bj
K"=K,g"g", ...,

are the components of a tensor field of type
(0,3),(2,1),(3,0), ..., respectively, all of which
correspond to K. We call this process of ob-
taining the components of the corresponding
tensor fields from the components of a given
tensor field raising the subscripts and lowering
the superscripts by means of the fundamental
tensor ¢.

On a Riemannian manifold, we use the
fRiemannian connection, unless otherwise
stated. The covariant derivative with respect to
the Riemannian connection is given by

29(Vy Y, Z)=Xg(Y, X)+ Yg(X,Z)— Zg(X, Y)

for vector fields X, Y, and Z. The coefficients
of the Riemannian connection with respect to
a local coordinate system (x', ..., x") are usu-
ally written as {/;}, called the Christoffel sym-
bols, which are given by {;} =¢“(0gj0+ O:0ha —
Cadi;)/2. The curvature tensor R of the Rie-

mannian connection satisfies the identities

R(X.Y)Z+R(Y,Z)X + R(Z,X)Y=0,
(Vx R)(Y, Z) +(Vy R)(Z, X) +(VzR)(X, Y) =0,
R(X,Y)=~R(Y, X),
g(R(X, Y)Z,W)=g(R(Z, W)X, Y)
=—g(Z,R(X, V)W),
J(R(X, Y)Z,W)+g(R(X, Z)W, Y)
+g(R(X, W)Y, Z)=0.
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In terms of the components, these identities
are

Rl + Rl + Ry =0,
Rf}k,z + R:lkt,j + R:‘lj,k =0,
Rl = —R}

ikjo Rhijk =Rjni=— Rihjk’

Rhijk + thki + thij =0,

where Ry, = Ry dan-

The tRicci tensor S of the Riemannian
manifold is a tensor field of type (0. 2) defined
by

S(X, Y)=trace df the mapping Z—R(Z,X)Y

for vector fields X and Y. The components S;
of the Ricci tensor are given by S;;==R%,;. The
*scalar curvature k of the Riemannian mani-
fold M is a scalar on M defined by k=g/'S;,.
The Ricct tensor and the scalar curvature

satisfy the identities
S(X,Y)=8(Y,X) or §;=S
2gij,-j,k =0;k.

ij>

__pa
Sij,k - Sik.j - Rikj,a’

For a moving frame of a Riemannian mani-
fold, it is convenient to use an orthonormal
moving frame. A moving frame (e, ..., e,) is
orthonormal if ey, ..., e, satisfy g(e;, e) =0
Since the components of the fundamental
tensor with respect to an orthonormal moving
frame are J;;, raising or lowering the indices
does not change the values of the components.
Some authors write all the indices as sub-
scripts. Also they write the dual 1-forms, the
connection forms, and the curvature forms as
6;, w;;, and Q;;, respectively, instead of 6%, w},
and ;. With respect to an orthonormal mov-
ing frame, the connection forms wji and the
curvature forms ¥ satisfy

ije

wj+o{=0 and Q+Q/=0.

On a Riemannian manifold, the divergence
of a vector field and the operators d, J, and A
on differential forms (= 194 Harmonic In-
tegrals) can be expressed by using the covar-
1ant derivatives with respect to the Riemann-
1an connection.

If X" are the components of a vector field
X with respect to a local coordinate system
(x',...,x"), the divergence div X of X is given
by divX=X',.

Let o be a differential p-form on M. o is
written locally in the form a=(1/pY)ay, _; dx™ A
... A dx', where the coefficients %, are skew-
symmetric in all the indices. We call o; _;
the components of & with respect to the co-
ordinate system. Since o is regarded as an
alternating tensor field of type (0, p), we can
define the covariant differential Va of a.

Then the components of du, da, and Ax are
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given by

P+l

(o= 2 (=1 Yoy 2

v=1

_ ab
(5“)1',...[,,,, =Y X, b
. p
_ a
(Aa)il...ip_ A T e Zl Si,,a“il...b...i,,
e

C
- Z Rai,,iwair..b...c...ip:l'

v<w

For a smooth function f and a differential 1-
form f we have

- U e
Af=——=049"/9 GJ):

Nz
(AB);=— g [Bi.a0— SiaBsls
where g =det(g,).

E. Van der Waerden—Bortolotti Covariant
Differential

Let E be a finite dimensional smooth fvector
bundle over a smooth manifold M and I'(E) be
an §(M)-module of all smooth sections of E. A
connection V' in E is a mapping of X(M) x
I'(E) to T'(E) such that

(1) Vi€ +1) = Vi + Vi,
() Vi(fO= X[ E+ Ve,
() Vi iy =ViE+ Vi,

() Vil =f Vi,

for X, YeX(M), &, ne'(E), and fe F(M). V¢
is called the covariant derivative of £ in the
direction X.

An element K of X[(M)® ['(E) is called a
tensor field of type (7, s) with values in E (or
simply an E-valued tensor field of type (r,s)). K
can be regarded as an §(M)-linear mapping of
X}(M) to I'(E) or an §(M)-multilinear map-

s

. ;ﬁ
ping of X(M) x ... x X(M) to X{H(M)® I'(E).
For a given £e'(E), a mapping X -V ¢ de-
fines a tensor field of type (0, 1) with values in
E which we call the covariant differential of £,
denoted by V'¢.

The curvature tensor R’ of V' is a tensor

field of type (0,2) with values in E* ® E (E* is
the dual vector bundle of E), and is defined by

R(X, Y){=Vy(Wy O =W (VO — Vix nd

for any vector fields X and Y and any £eT'(E).

If an affine connection V is given on M, we
can define the van der Waerden—Bortolotti
covariant derivative V, K for Vand V' of a
tensor field K of type (r, s) with values in E. It
is defined by

(VxK)(S)=Vx(K(S))— K(VxS)
for any Se X}(M). If we regard {€I'(E) as an E-
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valued tensor field of type (0,0), we have Vyé=
Vi & The covariant derivative V4R’ of the
curvature tensor R’ of V' is a tensor field of
type (0, 2) with values in E* ® E is defined by

(Vx R)(Y, Z)E=Vi(R(Y, Z)8) — R(Vy Y, Z)¢
—R(Y,VyZ){—R'(Y, Z)Vy&.
The Bianchi identity is written as
(VxR)(Y, Z)+(Vy R)Z, X)+(V;R)(X, Y)
=R(X, T(Y,Z))+ R(Y, T(Z, X))
+R(Z, T(X,Y)),

where T is the torsion tensor of V. The Ricci
formula is given by

(Vx (W K))(S) — (Vy(Vx K)) () = (Vix, 1 K)(S)
=R'(X,Y)-K(S)— K(R(X, Y)-S),

where R is the curvature tensor of V, Ke
X(M)®T'(E) and Se X5(M).

In the following we assume that the fiber of
E is of finite dimension m. A moving frame of
E on a neighborhood U of M is an ordered set
(&, ..., &) of local sections &, ..., &, on U such
that &,(p), ..., &,.(p) are linearly independent at
each point p of U. Let (e, ..., ¢,) be a moving
frame of M on U. Then an E-valued tensor
field K of type (r,s) is locally written as

Kihe, ®.0e®0M®..00:Q%,

where 0!, ...,0" are the dual 1-forms of (e,
.-»¢,). The n"**m functions Kj'"%* on U are
called the components of K with respect to
(eq,...,e,)and (&4, ..., &,). We define the con-
nection forms wj of the connection V' by V¢,
=wg ® ¢,. Then the curvature forms Qf are
defined by

sor o ra A __ 1 pa i i
Qf =dog + o Ao =3RG;00 A0,

where Rj;; are the components of the curva-
ture tensor R, i.e., R'(e;, ¢)¢5=Rj;¢,.

For a given tensor field K of type (r, s)
with values in E, the mapping X -V, K de-
fines a tensor field VK of (r, s+ 1) with values
in E which we call the van der Waerden—
Bortollotti covariant differential of K. Then if
Kj"7* are the components of K with respect
to(eq,...,e, and (&, ..., £,), the components
K34 of VK are given by
K0t =dKyt+ 3 Ky or

1eeeds

- L Kyl el K o
Let f be a smooth mapping of M into a
smooth manifold M’. The differential f, (or df)
can be regarded as a tensor field of type (0, 1)
with values in f*T(M’). Assume that M (resp.
M’) has a Riemannian metric g (resp. g'). We
denote the Riemannian connection of M by V.
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From the Riemannian connection of M’ a
connection V' in f*T(M’) can be defined. Let
(y',...,y™ be a local coordinate system of M’
on a neighborhood V and (x!, ..., x") be a local
coordinate system on a neighborhood U of M
such that f(U)< V. Put &,(p)=(6/éy*)(f(p)) for
a point peU. Then (,,...,¢&,) is a moving
frame of f*T(M'). The components of f, with
respect to (6/dx!,...,8/0x") and (¢, ..., &,) are
given by f*(p)=(0y*/éx‘)(p). The Laplacian

Af of the mapping f is a tensor field of type
(0,0) with values in f*T(M’) and is defined

by (Af Y =g"f%. If Af =0, the mapping f is
called a harmonic mapping (— 195 Harmonic
Mappings).

F. Tensor Fields on a Submanifold

Consider an n-dimensional smooth mani-
fold M immersed in an (n+ m)-dimensional
Riemannian manifold (M, g). If we denote the
immersion M —M by f, then g=f*gis a
Riemannian metric on M, and we denote its
Riemannian connection by V. The induced
bundle f*T(M) splits into the sum of the
tangent bundle T(M) of M and the normal
bundle T+(M). The Riemannian connection on
M induces connections in f*T(M) and in
T+(M) which are denoted by V and V*, re-
spectively. The van der Waerden—Bortolotti
covariant derivative for V and V* is denoted
by V.

For vector fields X and Y on M, the tan-
gential part of Vy Y (here we regard Y as a
section of f*T(M))is V, Y, and we denote the
normal part of V, Y by h(X, Y). Then his a
symmetric tensor field of type (0, 2) with values
in TY(M), and we call h the second funda-
mental tensor of the immersion f. For &e
[(T+(M)), the tangential part of V, £ (here &
is also regarded as a section of f*T(M)) is
denoted by — A4, X and the normal part of Vy &
is Vi & Thus we have

Vi Y=V Y+ h(X,Y), Vié=—A X4V,
h and A are related by
gh(X, Y),)=9g(4: X, Y).

We have the following formulas, called the
equations of Gauss, Codazzi, and Ricci:

GR(X,Y)Z, W)=g(R(X,Y)Z, W)
+g(h(X,Z),h(Y, W))
—g(h(X, W), h(Y, X)),
GR(X,Z,O=g((Vxh)(Y,Z),&)
—g((Wh)(X,2),9),
FRX, V)& m=G(RHX, V)En)
+9([A: A,]1X, Y),
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for X, Y, Z, We X(M) and &, ne(THM)),
where R, R, and R* are the curvature tensors
of V, V, and V*, respectively.

For the manifold M immersed in M, we use
a moving frame (e, ...,e,,¢&,, ..., &,) such that
(ey,...,e,) is an orthonormal moving frame of
M on a neighborhood U and (¢,,...,¢,)isa
moving frame of T-(M) on U with g(¢,, &,)=
3,5~ Then we can define the connection forms
w} for V and o} for V4. If we extend (e, ...,
e, &, ..., £, to an orthonormal moving frame
(@,...,8,,n) of M such that g,(p)=e,(p) (i=1,
...,nmande,, (p)=&,(p) (x=1,...,m)for peU,
then the restriction f*04 and f*®{ of the
dual 1-forms and the connection forms of
M with respect to (€, ..., ,.,) satisfy the
relations

[rO=0, [*0=0, fraj=of,

Jroriy=wp, f*oi =} hit’,
J

where hf are the components of the second
fundamental tensor h with respect to (e, ..., e,,

él?""ém)'

The components hf; , of the covariant dif-

ferential Vi of h are defined by

hE (OF =dhi— hof — hiof + Bl wj.

aj’i

In terms of the components, the equations
of Gauss, Codazzi, and Ricci are given by

Ehijk = Rhijk + Z (h?,-hﬂk - hia;ch:j)’

Dx __ La o
Rijk - hik,j - hij,lu

Riun= RL“Bjk - Z (h;zhgk - hﬁzh:k)-

Let (x!, ..., x") be a local coordinate system
on a neighborhood U of M and (y!,...,y"*™)
be a local coordinate system on a neighbor-
hood V of M such that f(U)c V. Regarding
the differential f, of the immersion f as a ten-
sor field of type (0, 1) with values in f*T(M),
we denote the components of f, with re-
spect to (x!,...,x" and (¥, ..., y"™™) by B¢
(i=1,...,m; A=1,...,n+m). Then we have
B =0y4/0x". We denote by V' the van der
Waerden—Bortolotti covariant derivative for V
and V. Then the components ij of V'f, are
given by
Bfl;=0;Bf —{5:} B + By B} { &},
where 8;=3/0x7, {4}, and {gi,} are the Chris-
toffel symbols of the Riemannian metrics g
and g, respectively.

Let (¢,,...,¢&,) be an orthonormal moving
frame of TH(M) on U and ¢ be the compo-

nents of &, with respect to (y*, ..., y"*™). Then
we have

A _ LarA
Bi=hild,

where h;; are the components of the second
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fundamental tensor with respect to (3/0x!, ...,
A/6x")and (&,,...,&,).

A tensor field K with values in T+(M) can
be regarded as a tensor field with values in
S*T(M), and VK is the normal component of
V'K. For example, if we regard the second
fundamental tensor h as a tensor field with
values in f*T(M), the components of i with
respect to the coordinates (x!, ..., x") and

(y',...,y""™ are equal to Bf,, and we have

a _ pA B~
hij,k —Bi,jk EzGap-
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418 (1X.20)
Theory of Singularities

A. Introduction

Let £, f5, ..., . be tholomorphic functions
defined in an open set U of the complex space
C™. Let X be the analytic set f;"H{0)N...N
£7Y0). Let zoe X, and let g4, ..., g, be a sys-
tem of generators of the ideal .#(X), of the
germs of the holomorphic functions which
vanish identically on a neighborhood of z, in
X. z, is called a simple point of X if the matrix
(0g;/0z;) attains its maximal rank, say k, at z=
Zo. In this case, X is a fcomplex manifold of
dimension n—k near z,. Otherwise, z, is called
a singular point of X.
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B. Resolution of Singularities

Let X be a complex analytic space, and let Y
be its singular locus. A resolution of the sin-
gularity of X is a pair of a complex manifold ¥
and a proper surjective holomorphic mapping
n: X - X such that the restriction 7| ¢_, vy 18
biholomorphic and X —z~'(Y) is dense in X.
H. Hironaka proved that there exists a reso-
lution for any X such that 77!(Y) is a divisor
in X with only tnormal crossings [16, 17].
Suppose that a compact connected ana-
lytic subset ¥ of a complex manifold X has a
tstrongly pseudoconvex neighborhood in X.
Then the contraction X/¥ naturally has a
structure of a fnormal complex analytic vari-
ety such that the projection ¥ - X/¥ is a
resolution of X/¥ (H. Grauert [14]).

C. Two-Dimensional Singularities

Let X be a normal 2-dimensional analytic
space. Then the singular points of X are
discrete.

Among the resolutions of X, there exists a
unique resolution 7: X — X with the following
universal property: For any resolution 7': X' —
X, there exists a unique mapping p: X' X
with 7’ =m0 p. This resolution is called the
minimal resolution.

Let n: X — X be a resolution of a singular
point x of X, and let 4; (i=1,...,m) be the
irreducible components of z~!(x). The matrix
(A;- Ay of the *fintersection numbers is known
to be negative definite (P. Du Val [12]).

The resolution 7: X — X is called good if (i)
each A, is nonsingular, (i) 4;N 4; (i#)) is at
most one point and the intersection is trans-
verse and (iii) no three A,’s meet at a point.
For a given good resolution n: X —» X, we
associate a diagram in which the vertices v;
(i=1,...,m)correspond to 4, (i=1,...,m) and
v; and v; are joined by a segment if and only if
A;NA;# 3.

The geometric genus p (X, x) of a singular
point xe X is the dimension of the fstalk at x
of the first direct image sheaf R'n, 0, where
n: X — X is a resolution of xe X and (g is the
tstructure sheaf of X. The definition is inde-
pendent of the choice of the resolution, and
p,(X,x) is a finite integer.

Among the positive cycles of the form Z =
Yi-imA; (le., n;20) such that Z- 4, <0 for
each i=1,...,m, there exists a smallest one Z,,
which is called the fundamental cycle [3].

(1) Rational singularities. A singular point x
of X is called rational if p (X, x) =0. (The sin-
gularity (X, x) is also called rational even when
dim X 2 3 if the direct image sheaf R'n, 07 =0
for i>0.)
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For a rational singularity xe X, the tmulti-
plicity of X at x equals — Z2 and the local
embedding dimension of X at x is —Z2+ 1.
Hence a rational singularity with multiplicity
2, which is called a rational double point, is
a hypersurface singularity. The following
weighted homogeneous polynomials (— Sec-
tion D) give the complete list of the defining
equations up to analytic isomorphism:

A x" gy 422,

weights (1/(n+1), 1/2, 1/2), n>=1;
D, x"" '+ xy*+2%,
weights  (1/(n—1), (n—2)/2(n—1), 1/2), n=4;

Eg:x*+y*+2%,

weights  (1/4, 1/3, 1/2);
E,:x*y+y3+22

weights  (2/9, 1/3, 1/2);
Eg:x®+y*+27,

weights  (1/5, 1/3, 1/2),

where the labels appearing at the left are given
according to the coincidence of the diagram of
the respective minimal resolutions and the
tDynkin diagrams. Rational double points
have many different characterizations [11].
The generic part of the singular locus of the
unipotent variety of a fcomplex simple Lie
group G (=the orbit of the subregular *funipo-
tent elements in G) is locally expressed as the
product of a rational double point and a poly-
disk. The funiversal deformation of a rational
double point and its fsimultaneous resolution
are constructed by restricting the following
diagram on a transverse slice to the subregular
unipotent orbit (Brieskorn [7]; [34]):

Y—G

|

T— S T/W

where T is a *Cartan subgroup of G with the
action of the Weyl group W, G—T/W is the
quotient mapping by the tadjoint action of G
and Y={(x, B)|xeG and B is a "Borel sub-
group of G with xe B}, and other morphisms
are defined naturally so that the diagram
commutes. Here, Y— T is the simultaneous
resolution of the morphism G- T/W.

(2) Quotient singularities. A singular point
xeX is called a quotient singularity if there
exists a neighborhood of x which is analyti-
cally isomorphic to an orbit space U/G, where
U is a neighborhood of 0 in C* and G is a
finite group of analytic automorphisms of U
with the unique fixed point 0. The quotient
singularities are rational, and their resolutions
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have been well studied [6]. U/G has a rational
double point at 0 if and only if G is conjugate
to a nontrivial finite subgroup of SU(2).

(3) Elliptic singularities. The singularity
(X, x) is called minimally elliptic if p, (X, x)=1
and (X, x) 1s Gorenstein [23]. The following
are examples of minimally elliptic singularities.

A singular point xe X is called simply ellip-
tic if the exceptional set A of the minimal
resolution is a smooth telliptic curve [33].
When A2= —1, —2, —3,(X, x) is a hyper-
surface singularity given by the following
weighted homogeneous polynomials:

E¢:x3+y° +2% +axyz,
(1/3, 1/3, 1/3),
B ix*+y*+ 22 +axyz,
(1/4, 1/4, 1/2), A%=-2;

weights A= -3;

weights
Eg:x®+y* 4+ 2% +axyz,
(1/6, 1/3, 1/2),

(4) Cusp singularities. A singular point xe X
is called a cusp singularity if the exceptional
set of the minimal resolution is either a sin-
gle rational curve with a Tnode or a cycle of
smooth rational curves. Cusp singularities
appear as the boundary of *Hilbert modular
surfaces [18]. The hypersurface cusp singular-
ities are given by the polynomials

weights Ar=—1,

T, . xP+yi+z"+axyz,

pg.re

where 1/p+1/g+ 1/r<1 and a#0.

D. The Milnor Fibration for Hypersurface
Singularities

Let V be an analytic set in CV, and take a
point z,e V. Let S,=S(z,,¢) be a 2N —1)-
dimensional sphere in C¥ with center z, and
radius £ >0, and let K,=VNS,. If ¢ is suffi-
ciently small, the topological type of the pair
(S,, K,) is independent of & [27]. By virtue of
this fact, the study of singular points consti-
tutes an important aspect of the application of
topology to the theory of functions of several
complex variables.

A singular point z, of V is said to be isolated
if, for some open neighborhood W of z, in CV,
WNV—{z,} is a smooth submanifold of W—
{zo}- In that case, K, is a closed smooth sub-
manifold of S,, and the diffeomorphism type
of (S,, K,) is independent of (sufficiently small)
£>0. So far, the topological study of such
singular points has been primarily focused
on isolated singularities. When V is a plane
curve, that is, N=2 and r=1, all the singular
points of ¥ are isolated, and the submanifold
K, of the 3-sphere S, can be described as an
iterated torus link, where type numbers are
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completely determined by the tPuiseaux ex-
pansion of the defining equation f of V at the
point zy [S]. In 1961, D. Mumford, using a
resolution argument, showed that if an alge-
braic surface V' is Tnormal at z, and if the
closed 3-manifold K, is simply connected, then
K, is diffefomorphic to the 3-sphere and z, is
nonsingular [29]. The following theorem in
the higher-dimensional case is due to E. Bries-
korn [8] (1966):

Every Thomotopy (2n - 1)-sphere (n+#2)
that is a boundary of a fz-manifold is dif-
feomorphic to the K, of some complex hyper-
surface defined by an equation of the form
S@)=z8+ ... +z8 =0 at the origin in C"*!,
provided that ns2. The hypersurface of this
type is called the Brieskorn variety. Inspired by
Brieskorn’s method, J. W. Milnor developed
topological techniques for the study of hyper-
surface singularities and obtained results such
as the Milnor fibering theorem, which can be
briefly stated as follows:

Suppose that V is defined by a single equa-
tion f(z)=0 in the neighborhood of z,e C**".
Then there is an associated smooth fiber
bundle ¢:S,— K,—S*, where ¢(z)= f(z)/| f(2)|
for zeS,— K,. The fiber F=¢ !(p)(peS') has
the homotopy type of a finite CW-complex of
dimension n, and K, is (n—2)-connected.

Suppose that z, is an isolated critical point
of f. Then F has the homotopy type of a *bou-
quet of spheres of dimension n [27]. The Mil-
nor number u( ) of f is defined by the nth Betti
number of F, and it is equal to dim¢ Ocn1 . /
(cff0zy, ..., 0f/0z,41), Wwhere Ugnn . is the ring
of the germs of analytic functions of n+ 1
variables at z = z,,. The Milnor monedromy #,
is the automorphism of H,(F) that is induced
by the action of the canonical generator of
the fundamental group of the base space S*.
The *Lefschetz number of h, is zero if z° is
a singular point of V. Let A(t) be the charac-
teristic polynomial of i,. Then K, is a homol-
ogy sphere if and only if A(1)= +1[27]. It is
known that A(t) is a product of tcyclotomic
polynomials.

The diffeomorphism class of (S, K,) is com-
pletely determined by the congruence class of
the linking matrix L(e;, e)) (1<i,j< u(f), where
ey, ..., €, 18 an integral basis of H,(F) and
L(e;, ;) 1s the tlinking number [21, 10].

The Milnor fibration is also described in the
following way. Let E(z, &) be the intersection of
f71(D#) and B(e), the open disk of radius ¢
and center z,, where D¥ is {neC|0<{n| <d}.
The restriction of f to E(e,d) is a flocally triv-
ial fibration over Df if § is sufficiently smaller
than ¢ [27].

Let f(z) be an analytic function; suppose
that f(0)=0and let 3, n++1a,z" be the Taylor
expansion of f at z=0. Let I, (/) be the con-
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vex hull of the union of {p+(R*y"*'} for
peN""TcR"*! with a,#0, where R* ={x¢e
R|x>0}, and let I'(f) be the union of com-
pact faces of I', (). We call I'(f) the Newton
boundary of f in the coordinates z,, ...,z,,,.
For a closed face A of I'(f) of any dimension,
let fy(z)=2% ,cpa,z". We say that f has a non-
degenerate Newton boundary if (¢f,/0z,, ...,
0f4/0z,.1) Is a nonzero vector for any ze(C*)
and any AeI'(f). Suppose that f has a non-
degenerate Newton boundary and 0 is an
isolated critical point of f. Then the Milnor
fibration of f is determined by I'(f) and u(f’),
and the characteristic polynomial can be ex-
plicitly computed by I'(f) [22, 38].

f(z) is called weighted homogeneous if there
exist positive rational numbers r, ..., 7,4,
which are called weights, such that a,=0if
Yl pr# 1. An analytic function f(z) with an
isolated critical point at 0 is weighted homo-
geneous in suitable coordinates if and only if
f belongs to the ideal (¢f/0z,, ..., 0f/0z,,) (K.
Saito [32]). Suppose that f{(z) is a weighted
homogeneous polynomial with an isolated
critical point at 0. Then the Milnor fibration of
1 is uniquely determined by the weights, and

p(N)=TI% <l— 1>. The surface £ ~1(0) for
Fi

n=2is a rational double point if and only if
Yiiorn>1.

n+1

E. Unfolding Theory

An unfolding of a germ of an analytic func-
tion f(z) at O is a germ of an analytic function
F(z,t), where te C™ (m is finite) such that F(z,0)
= f(z). We assume that f has an isolated crit-
ical point at 0. Among all the unfoldings of f,
there exists a universal one, in a suitable sense,
that is unique up to a local analytic isomor-
phism. It is called the universal unfolding of f
[36,37,26] (— 51 Catastrophe Theory). Ex-
plicitly it can be given by F(z,t)=f(z)+ ¢, ¢,(z)
+ ... +1,0,(2), where @(2) (i=1, ..., p) are
holomorphic functions which form a C-basis
of the Jacobi ring Ocurs o Adf/0zy, ..., 0f/Cz,+1)
(=u())

In the universal unfolding F(z,t) of f, the set
of points (zq, ty) such that F(z,ty) has an iso-
lated critical point at z, with the Milnor num-
ber u(f)and F(z,,t,)=0 forms an analytic set
at (z,1)=0. The modulus number of f is the
dimension of this set at 0. This set is some-
times called the u-constant stratum. Let g be a
germ of an analytic function. g is said to be ad-
jacent to f (denoted by f—g), if there exists a
sequence of points (z(m), t(m)) in C**! x C*
that converges to the origin such that the
term of F(z, t(m)) at z(m) is equivalent to g.
Adjacency relations are important for the
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understanding of the degeneration phenomena
of functions. The unfolding theory can be
considered in exactly the same way as that for
the germ of a real-valued smooth function
that is finitely determined [ 36, 26].

The germs of analytic functions with
modulus number 0, 1, and 2 are called simple,
unimodular, and bimedular, respectively. They
were classified by V. I. Arnold [1] (— Ap-
pendix A, Table 5.V). Simple germs corre-
spond to the equations for the rational double
points, and unimodular germs define simply
elliptic singularities or cusp singularities. Every
unimodular or bimodular germ defines a sin-
gularity with p,=1.

F. Picard-Lefschetz Theory

Let f(z) be a holomorphic function such that
f(0)=0 and 0 is an isolated critical point with
the Milnor number u. Let F(z,t) be a universal
unfolding of f at 0. Let f: E(¢, 6)—> D¥ be the
Milnor fibration of f by the second description
in Section D. There exists a positive number r
and a codimension 1 analytic subset A (called
the bifurcation set) of B'(r), the open disk of
radius r with the center 0 in the parameter
space C*, such that for any t,e B(r)—A, f, =
F| gy =, has p different nondegenerate crit-
ical points in B(g). Let py, ..., p, be the critical
points of f, . For each p;, one can choose local
coordinates (y;, ..., y,+1) 50 that f, (v)=f, (p)
+yi+...+ Y. Such an f is called a Morsi-
fication of f.

Let B; be a small disk with center p; in C"*'.
Then for any g; which is near enough to f; (p,).
the intersection f,'(¢;) N B, is diffeomorphic to
the tangent disk bundle of the sphere S”. The
vanishing cycle ¢; is the corresponding n-
dimensional homology class off,o"(q,-) N B;.
(We fix ¢;.) The self-intersection number of ¢; is
given by

¢ N 2(—1y="D2 peven,
e ey =
' 0, n odd.

For a sufficiently small ¢tye B'(r)— A, one has
the following: (1) | f;,(p))| <; (i) the restriction
of f, to E is a fiber bundle over D', where D’
={weC||w|<é,and w#, (p)fori=1,...,u}
and E= f,~' (D)1 B(e); (iii) the restriction of
the above fibration to {w||w|=4§} is equivalent
to the restriction of the Milnor fibration of f
to {w||w|=8}. Let w, be a fixed point of D,
and let F= f,_(wo)NE. Then F is diffeomor-
phic to the Milnor fiber of f. Let I; be a simple
path from w, to g;, and let y; be the loop |w—
S (Pl =la;— f,,(p;)]. We suppose that the
union of the /; is contractible to w,. By parallel
translation of the vanishing cycle e; along /;,
we consider e;e H,(F). The collection {e;|i=
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1,...,u} is an integral basis of H,(F), which is
called a strongly distinguished basis (Fig. 1).

Now let k; be the linear transformation of
H,(F) that is induced by the parallel trans-
lation along l;7;1;!. The Picard-Lefschetz for-
mula says that

he)=e—(=1)"""D2(e ¢> e, for ee H,(F).

Here { , > is the intersection number in
H,(F). For neven, h; is a freflection.

The Milnor monodromy h, of f is equal
to the composition 4, ... h, under a suitable
ordering of the h;. The subgroup of the group
of linear isomorphisms of H,(F) generated by
hy,...,h, s called the total monodromy group.

When f is a simple germ and n=2mod4,
the total monodromy group is isomorphic to
the *Weyl group of the corresponding Dynkin
diagram. Even-dimensional simple singular-
ities are the only ones for which the mono-
dromy group is finite. These are also char-
acterized as the singularities with definite
intersection forms.

E

1]
(s

l, B(e)
f(uﬂ(q‘) F=

f,\:l (do)
I
©

(J

£, (p) O D

t,
° 4

Fig. 1

G. Stratification Theory

The notion of Whitney stratification was first
introduced by H. Whitney to study the sin-
gularities of analytic varieties [39] and was
developed by R. Thom for the general case
[37].

Let X and Y be submanifolds of the space
R". We say that the pair (X, Y) satisfies the
Whitney condition (b) at a point ye Y if the
following holds: Let x; (i=1,2,...) and y,
(i=1,2,...) be sequences in X and Y, respec-
tively, that converge to y. Suppose that the
tangent space T, X converges to a plane T in
the corresponding Grassmannian space and
the secant X;y; converges to a line L. Then L
< T. We say that (X, Y) satisfies the Whitney
condition (b) if it satisfies the Whitney con-
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dition (b) at any point ye Y. Let h be a local
diffeomorphism of a neighborhood of y. One
can see that (h(X), h(Y)) satisfies the Whitney
condition (b) at h(y) if (X, Y) satisfies it at y.
Thus the Whitney condition can be considered
for a pair of submanifolds X and Y of a mani-
fold M using a local coordinate system. Let S
be a subset of a manifold M, and let ¥ be a
family of submanifolds of M. .¥ is called a
Whitney prestratification of S if % is a locally
finite disjoint cover of § satisfying the follow-
ing: (i) For any X € %, the frontier X —X is a
union of Ye.%; (ii) for any pair (X, Y) (X, Ye
&), the Whitney condition (b) is satisfied. A
submanifold X in % is called a stratum. There
exists a canonical partial order in & that

is defined by X < Y ifand only if X c Y —Y.

Let V be an analytic variety, and let % be
an analytic stratification of V that satisfies
the frontier condition (i). Then there exists a
Whitney prestratification . that is finer than
% (Whitney [39]).

For a given Whitney prestratification &,
one can construct the following controlled
tubular neighborhood system: For each X €.,
a ftubular neighborhood | Ty| of X in M and
the projection n,:|Ty|— X and a tubular func-
tion py:| Ty >R™* (=the square of a norm
under the identification of | Ty | with the *nor-
mal disk bundle of X) are given such that the
commutation relations

Ty Ty{m) =7y (m), pymy(m)=py(m)
for meM, X <Y.

are satisfied whenever both sides are defined.

By virtue of this, the notions of vector fields
and their integral curves can be defined on a
Whitney prestratified set so that several im-
portant results on a differentiable manifold
can be generalized to the case of stratified sets.
For example, the following is Thom’s first
isotopy lemma: Let M and P be differentiable
manifolds, and let (S,.%) be a Whitney pre-
stratified subset of M. Let f:S— P be a con-
tinuous mapping that is the restriction of a
differentiable mapping from M to P. Suppose
that the restriction of f to each stratum X of
& is a proper submersion onto P. Then f:S—
P is a fiber bundle [37].

H. b-Functions

Let f(z) be a germ of an analytic function in
C"** with f(0)=0. The h-function of /" at 0
is the monic polynomial b(s) of lowest de-
gree among all polynomials b(s) with the
following property [4,207]: There exists a
differential operator P(z, é/éz, s), which is

a polynomial in s, such that b(s)f*(z)=
P(z,8/0z,5)f"(2). Since b,(s) is always
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divisible by s+ 1, we define by(s)=by(s)/(s +1).
All the roots of l;f(s):O are negative rational
numbers (M. Kashiwara [20]. When f has an
isolated critical point at 0, the set {exp(2mio|
is a root of b,(s)=0} coincides with the set of
eigenvalues of the Milnor monodromy [25].
The name “b-function” is due to M. Sato.
He first introduced it in the study of tprehomo-
geneous vector spaces. Some authors call it the
Bernstein (Bernshtein) polynomial.

I. Hyperplane Sections

Let V be an algebraic variety of complex di-
mension k in the complex projective space P”.
Let L be a hyperplane that contains the
singular points of V. Then the frelative homo-
topy group =,(V, VN L) is zero for i <k. Thus
the same assertion is true for the frelative
homology groups (S. Lefschetz [24]; [28]).

Let f be a holomorphic function defined in
the neighborhood of 0e C*** and f(0)=0. Let
H be the hypersurface f71(0). There exists a
tZariski open subset U of the space (=P") of
hyperplanes such that for each Le U, there
exists a positive number ¢ such that 7;(B(r) —
H,(B(r\—H)NL)=0fori<nand O<r<s,
where B(r) is a disk of radius r (D. T. L€ and
H. Hamm [15]). This implies the following
theorem of Zariski: Let V be a hypersurface of
P, and let P? be a general plane in P". Then
the fundamental group of P*— V is isomorphic
to the fundamental group of P>—C, where C
=V NP2 The fundamental group of P2 —C is
an Abelian group if C is a nodal curve [9, 13].

Suppose that f has an isolated critical point
at 0. Let u"*Y be the Milnor number u(f).
Take a generic hyperplane L. The Milnor
number of f}, is well defined, and we let u =
u(f],)- Similarly one can define 4 of f and
let p*=(u™t0, 1™, ..., u'V). Let f,(z) be a de-
formation of f. Each f; has an isolated critical
point at 0, and ¢ is a point of a disk D of the
complex plane. Let W={(z,1)| f,(z)=0} and
D'={0} x D. W—D’ and D’ satisfy the Whitney
condition (b) if and only if p*(f,) is invariant
under the deformation [35]. The Whitney
condition (b) implies topological triviality of
the deformation.
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419 (XX.18)
Thermodynamics
A. Basic Concepts and Postulates

Thermodynamics traditionally focuses its
attention on a particular class of states of a



1583

given system called (thermal) equilibrium
states, although a more recent extension,
called the thermodynamics of irreversible
processes, deals with certain nonequilibrium
states. In a simple system, an equilibrium state
is completely specified (up to the shape of the
volume it occupies) by the volume V (a posi-
tive real number), the mole numbers N, ..., N,
(nonnegative reals) of its chemical compo-
nents, and the internal energy U (real). (More
variables might be needed if the system were,
e.g., inhomogeneous, anisotropic, electrically
charged, magnetized, chemically not inert, or
acted on by electric, magnetic, or gravitational
fields.) This means that any of the quantities
associated with equilibrium states (called
thermodynamical quantities) of a simple sys-
tern under consideration is a function of ¥,
N,,....,N,,and U.

When n copies of the same state are put next
to each other and the dividing walls are re-
moved, V, N,,...,N,, and U for the new state
will be n times the old values of these variables
under the assumptions that each volume is
sufficiently large and that the effects of the
boundary walls can be neglected. Thermo-
dynamical quantities behaving in this manner
are called extensive. Those that are invariant
under the foregoing procedure are called inten-
sive. More precisely, the thermodynamic vari-
ables are defined by homogeneity of degree 1
and O as functions of ¥, Ny, ..., N,, and U.

By a shift of the position of the boundary
(called an adiabatic wall if energy and chemical
substances do not move through it) or by
transport of energy through the boundary
(called a diathermal wall if this is allowed) or
by transport of chemical components through
the boundary (called a permeable membrane)
(in short, by thermodynamical processes), these
variables can change their values. If these shifts
or transports are not permitted (especially
for a composite system consisting of several
simple systems, at its boundary with the out-
side), the system is called closed. Otherwise it is
called open.

Those equilibrium states that do not under-
go any change when brought into contact
with each other across an immovable and
impermeable diathermal wall (called a ther-
mal contact) form an equivalence class. This
is sometimes called the Oth law of thermo-
dynamics. The equivalence class, called the
temperature of states belonging to it, is an
intensive quantity.

The force needed to keep a movable wall at
rest, divided by the area of the wall, is called
the pressure. It is another intensive quan-
tity. For a (slow) change of the volume by an
amount dV under a constant pressure P, me-
chanical work of amount — PdV is done on
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the system. Together with a possible change
of the internal energy, say of amount dU, the
amount

5Q=dU—PdV (1)

of energy is somehow gained (if it is positive)
or lost (if it is negative) by the system. This
amount of energy is actually transported from
or to a neighboring system through diathermal
walls so that the total energy for a bigger
closed composite system is conserved. This is
called the first law of thermodynamics, and 6Q
is called the heat gain or loss by the system.

If two states of different temperatures T,
and T, are brought into thermal contact,
energy is transferred from one, say T, to the
other (called heat transfer). This defines a
binary class relation denoted by 7; > T,. The
Clausius formulation of the second law of
thermodynamics says that it is impossible to
make a positive heat transfer from a state of
lower temperature to another state of higher
temperature without another change else-
where. By considering a certain composite
system, one reaches the conclusion that there
exists a labeling of temperatures by posi-
tive real numbers T, called the absolute tem-
perature, for which the following is an exact
differential:

0Q/T=(dU—PdV)/T=dS. 2)

The integral S is an extensive quantity, called
the entropy. Furthermore, the sum of the en-
tropies of component simple systems in an
isolated composite system is nondecreasing
during any thermodynamic process, and the
following entropy maximum principle holds:
An isolated composite system reaches an
equilibrium at those values of extensive param-
eters that maximize the sum of the entropies
of component simple systems (for constant
total energy and volume and within the set of
allowed states under a given constraint).

A relation expressing the entropy of a given
system as a function of the extensive param-
eters (specifying equilibrium states) is known
as the fundamental relation of the system. If it
is given as a continuous and differentiable
homogeneous function of V, Ny,...,N,,and U
and is monotone increasing in U for fixed V,
N,, ..., N,, then one can develop the thermo-
dynamics of the system based on the above en-
tropy maximum principle. A relation express-
ing an intensive parameter as a function of
some other independent variables is called an
equation of state.

Another postulate, which is much less fre-
quently used, is the Nernst postulate or the
third law of thermodynamics, which says that
the entropy vanishes at the vanishing abso-
lute temperature.
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B. Various Coefficients and Relationships

The partial derivative ¢/¢x of a function
f(x,y,...) with respect to the variable x
with the variables y, ... fixed is denoted by
(0f/0x),,.... We abbreviate N, ..., N, as N in
the following,.

If the fundamental relation is written as U =
U(V,Ny, ..., N,, S) (instead of S being repre-
sented as a function of the other quantities),
then (2) implies

@U/S)y n=T, (U[3V)ys=—P.

The other first-order partial derivatives of U
are

“j:(0U/aj\‘vj)l/,Nl.,.A?...,N,‘Ss

with y; called the chemical potential (or elec-
trochemical potential) of the jth component.

If a system is surrounded by an adiabatic
wall {i.e., the system is thermally isolated) and
goes through a gradual reversible change
(quasistatic adiabatic process), then the entropy
has to stay constant. If a system is in thermal
contact through a diathermal wall with a large
system {called the heat bath) whose tempera-
ture is assumed to remain unchanged during
the thermal contact, then the temperature of
the system itself remains constant (an iso-
thermal process). The decrease of the volume
per unit increase of pressure under the latter
circumstance is called the isothermal compress-
ibility and is given by

Kp= —V Y QV)OP)y x-

Under constant pressure, the increase of the
volume per unit increase of the temperature is
called the coefficient of thermal expansion and
is given by

2=V U GV/ET)px-

Under constant pressure, the amount of (quasi-
static) heat transfer into the system per mole
required to produce a unit increase of tem-
perature is called the specific heat at constant
pressure and is given by

co=N"1T(ES/3T)p x,

where N=N, +...+ N,. The same quantity
under constant volume is called the specific
heat at constant volume and is given by

e, =N"'T(28/T), .

The positivity of ¢, is equivalent to the convex-
ity of energy as a function of entropy for fixed
values of Vand N.

Because of the first-order homogeneity of an
extensive quantity as a function of other ex-
tensive variables, one can derive an Euler
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relation, such as
U=TS—PV+u, N +...+ 1N,

for a simple system. Its differential form im-
plies the following Gibbs-Duhem relation:

SdT—VdP+ Nydu, + ...+ N,du,=0.

Because of the identity

FEEIE)
ox J\ay) \oy/\éx )’

there arise relationships among second deriva-
tives, known as the Maxwell relations:

(0T/0V)s y= —(OP/3S)y x,
(OV/08)p y =(0T/EP)s 5
(88/8V)p y={(0P/0T)y n.
(8S/0P)y x= —(CV/ET)p 5.

By computing the Jacobian of transformations
of variables, further relations can be obtained.
For example,

cp=c,+ N ' TVa?/iy.

C. Legendre Transform and Variational
Principles

The Legendre transform of a function f(x,, ...,
¥1,.-. ) relative to the variables x is given by

g(plv ‘-~>Y1’~~~)=f"zxjpj
J

as a function of the variables p;= ¢f/0x; and y.
The original variables x can be recovered as
—x;=0g/0p;.

In terms of Legendre transforms, the en-
tropy maximum principle can be reformulated
in various forms:

Energy minimum principle: For given values
of the total entropy and volume, the equilib-
rium is reached at those values of uncon-
strained parameters that minimize the total
energy. This principle is applicable in rever-
sible processes where the total entropy stays
constant.

Helmholtz free energy minimum principle:
For given values of the temperature (equal to
that of a heat bath in thermal contact with the
systemn) and the total volume, the equilibrium
is reached at those values of the unconstrained
parameters that minimize the total Helmholtz
free energy, where the Helmholtz free energy
for a simple system is defined as a function of
T,V,Ny,...,N, by

F=U-TS,
dF = —SdT—PdV+ u, dN, + i, dN,.

Enthalpy minimum principle: For given
values of the pressure and tie total entropy,
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the equilibrium is reached at those values of
unconstrained parameters that minimize the
total enthalpy, where the enthalpy for a sim-
ple system is defined as a function of S, P,
Ny,...,N, by

H=U+PV,
dH=TdS+VdP+u,dN, + ... + i, dN,.

Gibbs free energy minimum principle: For
constant temperature and pressure, the equi-
librium is reached at those values of uncon-
strained parameters that minimize the total
Gibbs free energy, where the Gibbs free energy
for a simple system is given as a function of 7,
P,Ni,....,N, by

G=U-TS+ PV,
dG= —SdT+VdP+ udNy+ ...+ p,dN,.
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420 (XX.8)
Three-Body Problem

A. n-Body Problem and Classical Integrals

In the n-body problem, we study the motions of
n particles P(x;, y;,z;) (i=1,2,...,n) with arbi-
trary masses m,( > 0) following "Newton’s law
of motion,

aw_cv i=1,2,....n, ()

where w; is any one of x,, y;, or z,,

U= k?mmy/r,

ij>
7
with k? the gravitation constant, and
= \/(xi - xj)z +{y; *yj)z +{z; _Zj)2~

Although the one-body and two-body prob-
lems have been completely solved, the prob-
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lem has not been solved for n>2. The three-
body problem is well known and is important
both in celestial mechanics and in mathemat-
ics. For n> 3 the problem is called the many-
body problem.

The equations (1) have the so-called ten
classical integrals, that is, the energy integral
2imi/2)((x)* +(y)* +(2)*)— U =constant
(w=dw/dt), six integrals of the center of mass
>, m;w, = constant, 2, m;w;= (X, m;w;)t +con-
stant, and three integrals of angular momen-
tum X, m;(u;W; — w;ii;) = constant (u #w). Using
these integrals and eliminating the time ¢ and
the ascending node by applying Jacobi’s
method, the order of the equations (1) can be
reduced to 6n—12. H. Bruns proved that alge-
braic integrals cannot be found except for the
classical integrals, and H. Poincaré showed
that there is no other single-valued integral
(Bruns, Acta Math., 11 (1887); Poincaré [2, 1,
ch. 5]). These results are called Poincaré-Bruns
theorems. Therefore we cannot hope to obtain
general solutions for the equations (1) by
fquadrature. General solutions for n> 3 have
not been discovered except for certain specific
cases.

B. Particular Solutions

Let r; be the position vector of the particle P,
with respect to the center of mass of the n-
body system. A configuration r={r,...,r,}
of the system is said to form a central figure
(or central configuration) if the resultant force
acting on each particle P, is proportional to
m;r;, where each proportionality constant is
independent of i. The proportionality con-
stant is uniquely determined as — U/X", m;r?
by the configuration of the system. A con-
figuration r is a central figure if and only if

r is a fcritical point of the mapping r—
U2(r)Xr, mr? [5,6]. A rotation of the sys-
tem, in planar central figure, with appropriate
angular velocity is a particular solution of
the planar n-body problem.

Particular solutions known for the three-
body problem are the equilateral triangle solu-
tion of Lagrange and the straight line solu-
tion of Euler. They are the only solutions
known for the case of arbitrary masses, and
their configuration stays in the central figure
throughout the motion.

C. Domain of Existence of Solutions

The solutions for the three-body problem

are analytic, except for the collison case, i.e.,
the case where minr;=0, in a strip domain en-
closing the real axis of the t-plane (Poincaré, P.
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Painlevé). K. F. Sundman proved that when
two bodies collide at ¢t =t,, the solution is
expressed as a power series in (¢ —t,)' in a
neighborhood of t,, and the solution which

is real on the real axis can be uniquely and
analytically continued across t=t, along the
real axis. When all three particles collide, the
total angular momentum f with respect to the
center of mass must vanish (and the motion is
planar) (Sundman’s theorem); so under the
assumption f #0, introducing s= [*(U + 1)dt
as a new independent variable and taking it
for granted that any binary collision is analyt-
ically continued, we see that the solution of
the three-body problem is analytic on a strip
domain |Im s| < é containing the real axis of
the s-plane. The conformal mapping

w=(exp(rns/20)— 1)/(exp(ns/2d)+ 1)

maps the strip domain onto the unit disk

Jw| < 1, where the coordinates of the three
particles w,, their mutual distances r,;, and the
time ¢ are all analytic functions of w and give a
complete description of the motion for all real
time (Sundman, Acta Math., 36 (1913); Siegel
and Moser [7]).

When a triple collision occurs at t=¢,, G.
Bisconcini, Sundman, H. Block, and C. L.
Siegel showed that as t—1,, (i) the configura-
tion of the three particles approaches asymp-
totically the Lagrange equilateral triangle
configuration or the Euler straight line con-
figuration, (1i) the coilision of the three par-
ticles takes place in definite directions, and
(iif) in general the triple-collision solution
cannot be analytically continued beyond t=t,.

D. Final Behavior of Solutions

Suppose that the center of mass of the three-
body system is at rest. The motion of the
system was classified by J. Chazy into seven
types according to the asymptotic behavior
when t— +o0, provided that the angular mo-
mentum f of the system is different from zero.
In terms of the forder of the three mutual dis-
tances r; (for large t) these types are defined as
follows:

(i) H*: Hyperbolic motion. r;;~ 1.

(ii) HP*: Hyperbolic-parabolic motion. r 5,
rys~tand r ,~t¥.

(iii) HE*: Hyperbolic-elliptic motion. r, 3, r,5 ~1t
and r,, <a (a=finite).

(iv) P*: Parabolic motion. r;~ 1>,

(v) PE*: Parabolic-elliptic motion. 5, 7,5~ t*?
andr, <a.

(vi) L*: Lagrange-stable motion or bounded
motion. r; <a.

(vii) OS*: Oscillating motion. [im, , , supr; = oo,
lim, . supr;<oo.
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Define H™, HE ", etc. analogously but with
t— —co. There are three classes for each of the
motions HP, HE, and PE, depending on which
of the three bodies separates from the other
two bodies and recedes to infinity, denoted by
HP, HE,, PE, (i=1,2, 3), respectively. The
energy constant h is positive for H- and HP-
motion, zero for P-motion, and negative for
PE-, L-, and OS-motion. For HE-motion, h
may be positive, zero, or negative.

We say that a partial capture takes place
when the motion is H™ for t—» —c0 and HE;
for t— +oo (for h>0), and a complete capture
when the motion is HE;” for t— --o0 and L™
for t— +o0 (for h<0). We say also that an
exchange takes place when HE; for t - —co
and HE;" for t—» +oo(t #j). The probability of
complete capture in the domain h <0 is zero
(J. Chazy, G. A. Merman).

E. Perturbation Theories

The radius of convergence in the s-plane for
Sundman’s solution is too small and the con-
vergence is too slow in the w-plane to make it
possible to compute orbits of celestial bodies,
and for that purpose a perturbation method is
usually adopted. When the masses m,, ..., m,
are negligibly small compared with m, for the
n-body problem, the motion of the nth body is
derived as the solution of the two-body prob-
lem for m, and m, by assuming m,=...=

m,_, =0 as a first approximation, and then
the deviations of the true orbit from the ellipse
are derived as tperturbations. In the general
theory of perturbations the deviations are
derived theoretically by developing a disturb-
ing function, whereas in the special theory of
perturbations they are computed by numerical
integration. In general perturbation theory,
problems concerning convergence of the solu-
tion are important, and it becomes necessary
to simplify the disturbing function in deal-

ing with the actual relations among celestial
bodies. Specific techniques have to be devel-
oped in order to compute perturbations for
lunar motion, motions of characteristic aster-
oids, and motions of satellites (e.g., the system
of the Sun, Jupiter, and Jovian satellites).

F. The Restricted Three-Body Problem

Since the three-body problem is very difficult
to handle mathematically, mathematical inter-
est has been concentrated on the restricted
three-body problem (in particular, the planar
problem) since Hill studied lunar theory in
the 19th century. For the restricted three-body
problem, the third body, of zero mass, cannot
have any influence on the motion of the other
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two bodies, which are of finite masses and
which move uniformly on a circle around

the center of mass. In the planar case, let us
choose units so that the total mass, the angu-
lar velocity of the two bodies about their
center of mass, and the gravitation constant
are all equal to 1, and let (g,, q,) be the coordi-
nates of the third body with respect to a rotat-
ing coordinate system chosen in such a way
that the origin is at the center of mass and the
two bodies of finite masses ¢ and 1 —pu are
always fixed on the q,-axis. Then the equa-
tions of motion for the third body are given

by a Hamiltonian system:
dg; OH dp, 0H
o op; di - og,

i=1,2, ©)
with

1 2 2
H=_(pi+p))+4:p1—4:P2:—U(41.45),

1_.
Ut e
Ja w0 +ad Jaru—12+¢3

The equations (2) have the energy integral
H(p, q)=constant, called Jacobi’s integral.
Siegel showed that there is no other algebraic
integral, and it can be proved by applying
Poincaré’s theorem that there is no other
single-valued integral. Regularization of the
two singular points for the equations (2) and
solutions passing through the singular points .
were studied by T. Levi-Civita, and solu-
tions tending to infinity were studied by B. O.
Koopman.

After reducing the number of variables by
means of the Jacobi integral, the equations (2)
give rise to a flow in a 3-dimensional manifold
of which the topological type was clarified by
G. D. Birkhoff (Rend. Circ. Mat. Palermo, 39
(1915)). Since this flow has an finvariant mea-
sure, the equations have been studied topo-
logically, and important results for the re-
stricted three-body problem, particularly on
periodic solutions, have been obtained.

G. Stability of Equilateral Triangular Solutions

Suppose that the origin ¢;=p,;=0 is an fequi-
librium point for an autonomous Hamiltonian
system with two degrees of freedom:

dg; ¢H

dt— ap;’

dp;,  JH
dt = g

i=1,2,

with the Hamiltonian H being analytic at the
origin. When the feigenvalues of the corre-
sponding linearized system are purely imagi-
nary and distinct, denoted by +4,, +4,,and
Avky+ Ak, #0 for 0< |k, |+ |k,| <4 (where k;
is an integer), we can find suitable coordinates
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&, 1; so that the Hamiltonian H takes the form

; . 1 .
H=1,{ +’“2§2+§(C11512+2C12C1C2+522S22)

+Ho+ ...

with {;=¢,n, and real ¢;;. It is necessary that
1=/ —1 &, for the solutions to be real. In ad-
dition, if the condition

D=cy35—2¢3h1s 4,23 #0

is satisfied, then the origin is a stable equi-
librium point of the original system (V. 1.
Arnol’d, J. Moser) [7].

For Lagrange equilateral triangular solu-
tions of the planar restricted three-body prob-
lem, the eigenvalues 4 of the linearized system
derived from (2) are given as roots of the
equation A*4 224+ (27/4)u(1 —)=0 and are
purely imaginary if u(1 —p)<1/27. Applying
the Arnol’d-Moser result, A.-M. Leontovich
and A. Deprit and Bartholomé showed that
the Lagrange equilibrium points are stable
for u such that 0 <pu < uq, where g is the
smaller root of 27u(1 —p)=1, excluding three
values: py, u, at which A, k, +4,k, =0 |k, |+
|k,| <4 and u, at which D=0.

Arnol’d proved that if the masses m,, ..., m,
are negligibly small in comparison with m,,
the motion of the n-body system is Tquasi-
periodic for the majority of initial conditions
for which the eccentricities and inclinations of
the osculating ellipses are small.
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A. Time Series

A time series is a sequence of observations
ordered in time. Here we assume that mea-
surements are quantitative and the times of
measurements are equally spaced. We consider
this sequence to be a realization of a stochastic
process X, {(— 407 Stochastic Processes). Usu-
ally time series analysis means a statistical
analysis based on samples drawn from a sta-
tionary process (— 395 Stationary Processes)
or a related process. In what follows we denote
the sample by X =(X,, X,, ..., Xy).

B. Statistical Inference of the Autocorrelation

Let us assume X, (t an integer) to be real-
valued and weakly stationary (— 395 Station-
ary Processes) and for simplicity EX,=0 and
constder the estimation of the autocorrelation
pn=R,/R, of time lag h, where R,=EX, X,,,.
We denote the sample autocovariance of time
lagh as

~ 1 M

harrm t; X Xevm»

and define the serial correlation coefficient

of time lagh by p,=R,,/R,,. It can be shown
that the joint distribution of {\/T(5,— p,)|

1 <h< H} tends to an H-dimensional fnor-
mal (Gaussian) distribution with mean vec-
tor 0, if one assumes that X, is expressed as
X=X _ b, where 232 _ |b] < +o0,
X2 .12} < +o0, and the &, are indepen-
dently and identically distributed random vari-
ables with E£, =0 and E&} < +o0.

When X, is an autoregressive process of
order K (— Section D) and also a fGaussian
process, it can be shown that the asymptotic
distribution of {ﬁ(ﬁh—ph)l 1<h<K}as T—
oo is equal to the asymptotic distribution of
{ﬁ(p‘h—p,,)l 1<h< K}, where p, is the tmaxi-
mum likelihood estimator of p,. In general,
it is difficult to obtain the maximum likeli-
hood estimator of p,. The statistical properties
of other estimators of p,, e.g., an estimator
constructed by using sgn(X,) (sgn(y) means
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1(y>0),0(y=0), —1 (y<0)) have also been
investigated.

Testing hypotheses concerning autocorre-
lation can be carried out by using the above
results. Let us now consider the problem of
testing the hypothesis that X, is a fwhite noise.
Assume that X, is a Gaussian process and that
a white noise with EX? = ¢ exists, and define
Ci=2(X,— X)(X,,,— X) and §,=C,/C, for
h>0, where X7, ;=X;and X=3%', X,/T.
Then the probability density function of §; can
be obtained and it can be shown that

‘lm+1 g’y <)"m’

i=1 3]

m 1
PG >y)= Z()yj_y)(r—s)/zx’

where 4;=cos2nj/T and

(T-1)/2

A= H (4i—x),  T=3,5,...,
s
T/2-1
A= k]_[ (L—A)J1+4;, T=46,...,
=1
(k#j)
1<m<(T-3)/2 if Tisodd,
1<m<T/2-1 if T is even.

This can be used to obtain a test of
significance.

C. Statistical Inference of the Spectrum

To find the periodicities of a real-valued

*weakly stationary process X, with mean 0, the

statistic, called the periodogram,

T 2

Z X e—21(itl
t

1
’—’7;,4

is used. If X, 1s expressed as

(4

L
X, =Y {mycos2nlyt +mysin2mi,i} + Y,
=1

where {m,}, {m}}, and {Y,} are mutually inde-
pendent random variables with Em;= Em;=0
and V(m)=V(m)=0? and {Y} is independent
and identically distributed with means 0 and
finite variances o2, the distribution of I(4)
converges to a distribution with finite mean
and finite variance at 1% + 4, for 1 <I<L
when T tends to infinity. On the other hand,
the magnitude of I;(4) is of the order of T at
A= +4,, 1 <I< L. This means that we can find
the periodicities of X, by using I.-(4). When
X,=Y,, we find that the distribution of 2I(1)/
o2 (when 1#£0, +1/2) or I(2)/o* (when A=0
or +1/2) tends to the ty? distribution with
degrees of freedom 2 or 1, respectively, and
I(y), I(ps), ..., I(11y) are asymptotically in-
dependent random variables for 0 <y, | <
[y < ... <|ppl < 1/2 when T— oc. Applying
this result, we can test for periods in the data.
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Let f(4) be the spectral density function of a
real-valued weakly stationary process X,. In
general, the variance of | L1, X,e’z’““/ﬁl
does not tend to 0 as T tends to infinity; hence
I(4) cannot be used as a good estimator for
the spectral density. To obtain an estimate of
f(4), several estimators defined by using weight
functions have been proposed by several
authors. Let Wy (1) be a weight function de-
fined on (—o0, 00), and construct a statistic
JO)=["5, Ir()Wr(A—wdp. Let us use f(1)
for the estimation of f(A). Wy(4) is called a
window. An important class of Wr(4) is as fol-
lows. Let W(1) be continuous, W(i)= W(— 1),
WO)=1,|W()l<1,and =, W2 di<
+00, and let H be a positive integer depend-
ing on T such that H— o0 and H/T—0as T—
0. Putting w;= W(j/H), we define W,(4) by
WA =X~ —T+1 wie 2™/% Then 7(2) can be
expressed as Fy=XI 1., R, w,e it
where R,=3XI"X, . ,X,/T for h=0and
Ry=Z 1 Xeuy X,/ T for h<O. Let X, be
stationary to the fourth order (— 395 Station-
ary Processes) and satisfy

o0

Y IRy < 4o,

==

%0
Z |Co,h,l,p|<+w7

hil,p=—w

where C, ., , is the fourth-order joint fcumu-
lant of X, Xy, X,+;» and X, ,. Then we have

lim 2 V(i0) =2/ f " wirds,

tim vy =2 [ word,

o0

V(f()= f(/)f W(A)?da

—c

11m —

T H

A#0, +1/2,

lim );—COV(‘ (4, f(w)=

T—x

A 1)

{w,} or Wy.(}) should have an optimality, e.g.,
to minimize the mean square error off(/l). But,
generally, it is difficult to obtain such a {w,} or
Wy (4).

Several authors have proposed specific
types of windows. The following are some
examples: (i) (Bartlett) w,=(1 —|h|/H) for |h| <
H and w,=0 for |h| > H; (i1) (Tukey) w,=
¥ 2 acos(nlh/H) for |h|< H and w,=0 for
[h|> H, where the a, are constants such that
XE _olayl<4oo, X2 L a=1and gj=a_,.
The Hanning and Hamming windows are a,
=0.50, a,=a_,=0.25,and a,=0 for }/} 22 and
a,=0.54,a,=a_,=0.23,and a;=0for |/| 22,
respectively [2]. Let X, =X __ bg,_;, where
2% . Ibl< +00 and the ¢, are independently
and identically distributed random variables
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with Ee,=0 and Ee} < +o0. Let {4,|1<j <M}
be arbitrary real numbers such that 0< 2, < 4,
<...<Aiy<1/2, where M is an arbitrary posi-
tive integer Then the joint distribution of

‘/T/H(f(/t —EfG I <v< M} tends to the
normal distribution with means 0 and covar-
tance matrix X, which is defined by (1). Let us
assume, furthermore, that lim__,(1 —w(x))/|x}4
=Cand X2 _,|hP|R,| < +00, where C, q, and
p are some positive constants satisfying the
following conditions: (i) when p>q, HY/T-0
(p=1)and H*'"?/T->0(p=1)as T—co and
limy_, T/H?%*! is finite; (ii) when p<q, H?/T
—0(p=1)and H/T-0(p<1)as T—oo and
limg_ T/H>*'=0. Then ./ T/H(f{4,)—
EJ(4,)) in the results above can be replaced
by /T/H(J(h,)— 12

Estimation of higher-order spectra, partic-

ularly the bispectrum, has also been discussed.
Let X, be a weakly stationary process with
mean 0, and let its spectral decomposition be
given by X,= [}, e>™"*dZ(4) (= 395 Station-
ary Processes). We assume that X, is a weakly
stationary process of degree 3 and put R, ,.
=EX, Xy, X, 1p, for any integers h; and h,.
Then we have

/2 172 )
Rhnhz: ezmmlll+h212)dF(;Ll7}'2)'
172 J—172

Symbolically, dF (., },)=EdZ(A,)dZ(4,)
dZ(—2A,—4,). If F(4,,4,) is absolutely contin-
uous with respect to the Lebésgue measure of
R? and 0F(4,, 4,)/04,04,=f(4,,4,), we call
f(A1, 4,) the bispectral density function. When
X, is Gaussian, R, , =0and f(Z;,4,)=0 for
any hy, h, and any 4,, 4,. f(4,,4,) can be
considered to give a kind of measure of the
departure from a Gaussian process or a kind
of nonlinear relationship among waves of
different frequencies. We can construct an
estimator for f(4,, 4,) by using windows as in
the estimation of a spectral density [3].

D. Statistical Analysis of Parametric Models

When we assume merely that X, is a stationary
process and nothing further, then X, contains
infinite-dimensional unknown parameters. In
this case, it may be difficult to develop a satis-
factory general theory for statistical infetence
about X,. But in most practical applications of
time series analysis, we can safely assume at
least some of the time dependences to be
known. For this reason, we can often use a
model with finite-dimensional parameters.
This means, mainly, that the moments (usually,
second-order moments) or the spectral density
are assumed to be expressible in terms of finite-
dimensional parameters. As examples of such
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models, autoregressive models, moving average
models, and autoregressive moving average
models are widely used.

A process X, is called an autoregressive
process of order K if X, satisfies a difference
equation XX a, X, ,=¢,, where the g, are
constants, a,= 1, ax #0, and the ¢, are mutu-
ally uncorrelated with E¢,=0 and V(&) =07 >
0. We usually assume that X, is a weakly sta-
tionary process with EX,=0. We sometimes
use the notation AR(K) to express a weakly
stationary and autoregressive process of order
K. Let {¢,} be as above. If X, is expressed as X,
=L  b¢,_,, where the b, are constants, by =1
and b, #0, X, is called a moving average pro-
cess of order L (MA(L) process). Furthermore,
if X, is weakly stationary with EX,=0 and
expressed as XX (a4, X, =X bh¢,  with a,
=1,by=1, and ay b, #0, then X, is called an
autoregressive moving average process of order
(K, L) (ARMA(K, L) process). Let A(Z) and
B(Z) be two polyhomials of Z such that A(Z)
=YK ,a,Z¥*and B(Z)=X b Z""!, and let
{1 <k <K} and {f| 1 <I<L} be the solu-
tions of the associated polynomial equations
A(Z)=0 and B(Z)=0, respectively, we as-
sume that o, | <1 for 1 <k< K and |fj| <1 for
1 <I< L. This condition implies that X, is
purely nondeterministic. Let the observed
sample be {X,|1<t<T}. If we assume that X,
is Gaussian and an ARMA(K, L) process, we
can show that the fmaximum likelihood es-
timators {d,} and {h,} of {a,} and {b;} are
fconsistent and asymptotically efficient when
T— oo (“asymptotically efficient” means that
the covariance matrix of the distribution of
the estimators is asymptotically equal to the
inverse of the information matrix) [5] (—

399 Statistical Estimation D). Furthermore,
if X, is an AR(K) process, the joint distribu-
tion of {\/T(d,—a)|1<k<K} tends to a K-
dimensional normal distribution with means 0,
and this distribution is the same as the one to
which the distribution of the fleast-square
estimators {4,} minimizing Q=37 ¢, (X, +
YK ja, X, ,)? tends when T—oo. If X, is a
MA(L) or ARMA(K, L) process (L > 1), the
likelihood equations are complicated and
cannot be solved directly. Many approxi-
mation methods have been proposed to ob-
tain the estimates.

When X, is an AR(K) process with |a,| <
I for 1<k<K, R, satisfies XX a,R,_, =0
for h = 1. These are often called the Yule-
Walker equations. R, can be expressed as
R,=XX, Ciaf if the o, are distinct and ay #

0, where {C;} are constants and determined
by R, for 0<h<K—1. When X, is an
ARMA(K, L) process, ZX_ o a, R,_, =0 for
hzL+1, and the C;of R,=X*_, Cio} are
determined by {R,|0<h<max(K,L)}.
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The spectral density is expressed as f(1)=

o | B(e®™H)|*/| A(e*™ ). If X, is Gaussian,

the maximum likelihood estimator of (1) is
asymptotically equal to the statistic obtained
by replacing o, {b}, and {a,} in f(4) with 62,
{b;}, and {4}, respectively, where 7 is the
maximum likelihood estimator of 67, when
T—o0.

When we analyze a time series and intend
to fit an ARMA(K, L) model, we have to
determine the values of K and L. For AR(K)
models, many methods have been proposed to
determine the value of K. Some examples are:
(i) (Quenouille) Let (ZXA(1/2))* =325, A;Z/,
and Gy=X2%,_, A(R;/R,), where 4, is obtained
by replacing {a,} in A; by {4,}, and we con-
struct the statistic 7= X/, Gx.,. Then x7 has a
tx? distribution asymptotically with f degrees
of freedom under the assumption that K > K,
where K, is the true order, as T— 0. Using
this fact, we can determine the order of an AR
model. (ii) (Akaike) We consider choosing an
order K satisfying K; < K< K,, where K; and
K, are minimum order and maximum order,
respectively, specified a priori. Then we con-
struct the statistic AIC(K)=(T — K)log 63(K)
+ 2K, where

T
GHK)= Y (X, +a4, X, 4. +ax X, )T
t=K+1

and {4, |1 <k<K} are the least square esti-
mators of the autoregressive coefficients of an
AR(K) model fitting X,. Calculate AIC(K) for
K=K,,K;+1,...,K,. If AIC(K) has the
minimum value at K =K, we determine the
order to be K [6] (— 403 Statistical Models
F). Parzen proposed another method by using
the criterion autoregressive transfer function
(CAT). Here CAT(K)=1-6%(0)/62(K)+ K/T,
where §2(K)=(T/(T — K))é2(K) and §*(c0) is
an estimator of o%(c0)=exp(['2,10g f(1)dA)
[7]. (iii) We can construct a test statistic for
the null hypothesis AR(K) against the alterna-
tive hypothesis AR(K + 1) (Jenkins) or use a
multiple decision procedure (T. W. Anderson
[81).

Not much is known about the statistical
properties of the above methods, and few
comparisons have been made among them.

Another parametric model is an exponential
model for the spectrum. The spectral density is
expressed by f(1)=C?exp{2 XX, O, cos(2nki)},
where the 6, and C are constants.

We now discuss some general theories of
estimation for finite-dimensional-parameter
models. Let X, be a real-valued Gaussian
process of mean 0 and of spectral density f(4)
which is continous and positive in [ —1/2,1/2],
and let the moving average representation of
X, be X,=X 2, b¢&,_;, where &, is a white noise
and o} = EE2. We assume that f(1)/af =g(1)
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depends only on M parameters 8=(0,, 6,,

..., 0y) which are independent of ¢Z. Then
the logarithm of the flikelihood function can
be approximated by —(1/2){ T'log2no? +

X' X 1{0)X/6}} by ignoring the lower-order
terms in T, where 62 X1(6) is the covariance
matrix of X. Usually, it is difficult to find an
explicit expression for each element of ¥ ;(8).
Another approximation for the logarithm of
the likelihood function is given by

T (1" L)
_5J e ["’gf AT }”“‘

Under mild conditions on the regularity of
g(4), the estimators #=(0,,0,, ..., 0,,) and 8z,
obtained as the solutions of the likelihood
equations, are fconsistent and asymptotically
normal as T tends to infinity. This means that
the distribution of ﬁ(&g —o7) is asymptoti-
cally normal and ﬁ({}g —of)and ﬁ(§~ 0
are asymptotically independent. The asympto-
tic distribution of ﬁ(é—O) is the normal dis-
tribution N(0,I" '), where the (k, [)-component
I, of I' is given by

rkl=1f”2 (aloﬁgg(},).ﬁlogg(/l)> "
2] 1p 00, a0, o

E. Statistical Analysis of Multiple Time Series

Let X,=(X", X2, ..., XY be a complex-
valued weakly stationary process with EX,=0
and EX,X,=R,_,. R,_; is the p x p matrix
whose (k, I)-component is R®P=EX® X We
discuss the case when ¢ is an integer. R, has
the spectral representation

12
R,,:J > dF(A),
172

where F(4) is a p x p matrix and F(4,)— F(4,),
A, = 4,, is Hermitian nonnegative. Let f*'(})
be the (k, [)-component of the spectral density
matrix f(2), ie., F,(A)=[%,, f(p)du, of the
absolutely continuous part in the Lebesgue
decomposition of F(4). The function f*!(4) for

k#11is called the cross spectral density function.

[*%!(4) represents a kind of correlation between
the wave of frequency 4 included in X and
the one included in X

Let X,=(X{", X, ..., X" and Y,=
(,0, Y3 . Y9 be two complex-valued
weakly stationary processes with EX, =0,
EY,=0, EX,X.=RX , EY,Y.=RY , and
EX,Y.=RXY. We assume Y,=X2 _ 4,X
where A, is a ¢ x p matrix whose components
are constants depending on s. Put A(4) =
T2 Ae ™% 4(2) should exist in the
sense of mean square convergence with respect
to the spectral distribution function F for X,.

t—5
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The function A(4) is called the matrix fre-
quency response function.

As a measure of the strength of association
between X and X at frequency 4, we intro-
duce the quantity y*!(2) =| /S D) /f* A 1(2).
p%1(}) is called the coherence. Let X* =
> aktxX® 1, where n, is a weakly sta-
tionary process with mean 0 and uncorrelated
with X, —0 <s< . If E|3,|>=0, y*'(1)=1.
If E|Z®, d' X =0, y*!(i)=0. Generally,
we have 0<yR (A< 1.

For the estimation of F(4), A(4), and y*'(4),
the theories have been similar to those for the
estimation of the spectral density of a scalar
time series. For example, an estimator of f(4)
is given [11] in the form

foy= ¥ Rowe2m
h=—(T-1)

where

~ T-n

Rh = X+ yh\xt/T

and the w, are the same as in Section C.

We can define an autoregressive, moving
average, or autoregressive moving average
process in a similar way as for a scalar time
series. The g, and b, in Section D should be
replaced by p x p matrices and the associated
polynomial equations A(Z)=0 and B(Z)=0
should be understood in the vector sense [11].
There are problems with determining the coeffi-
cients uniquely or identifying an ARMA(K, L)
model, and these problems have been dis-
cussed to some extent.

F. Statistical Inference of the Mean Function

Let X, be expressed as X,=m,+ Y, where m, is
a real-valued deterministic function of t and Y,
is a real-valued weakly stationary process with
mean 0 and spectral distribution function F(4).
This means that EX,=m,. We consider the
case when m, =3, Cio”, where C=(C,, C,,
..., Cy)' 1s a vector of unknown coefficients
and ¢, = (0", 0!?, ..., ™Y is a set of known
(regresston) functions.

Let us construct flinear unbiased estimators
{C;=ZI,7,X,|1 <j< M} for the coefficients
C;, where the y; are known constants. Put
b=(¢,,9,,-..,07). Then the 'least squares
estimator of C is given by C=(&'®) ' &'X
when @'® is nonsingular. Let 2 be the covar-
iance matrix of X. Then the tbest linear un-
biased estimator is C*=(®'2 1®) '@’ 21X,
We put |¢17 =2 ,(¢{")* and assume that
limy_, |17 =00, lim_. [@9F4/l0]F
=1for 1<j< M and any fixed h and assume
the existence of Y'¥ =lim,_ . X, o9, 0%/
P ¢ ll@™ || for 1 <j, k<M. We also assume
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that F(4) is absolutely continuous and F'(1)=
f(4) 1s positive and piecewise continuous.

Let ¢, be the M x M matrix whose (j, k)-
component is ¥4¥ . Then y, can be repre-
sented by

1/2

V= J e 4G (2),
—1/2

where G(1) — G(p) is a nonnegative definite

matrix for 2> p. Assume that , = G(1/2)

—G(—1/2) is nonsingular and put H(4)=

Wo V2G(A, V2, and for any set S, H(S)=

s H(dA). Supposc further that §,, S,,..., S,

are ¢ sets such that H(S)>0, X9_, H(S)=

I, H(S)H(S,)=0, j #k, and for any j there is

no subset S < §; such that H(S;)>0, H(S;—S])

>0and H(S))H(S;—S5])=0. We have g< M.

It can be shown that the spectrum of the re-

gression can be decomposed into such disjoint

sets Sy, ..., S,. Then we can show that Cis

asymptotically efficient in the sense that the

asymptotic covariance matrix of € is equiva-

lent to that of C* if and only if f(4) is constant

on each of the elements S;. Especially, if ¢y’ =

tie?m € is asymptotically efficient.

G. Nonstationary Models

It is difficult to develop a statistical theory for
a general class of nonstationary time series,
but some special types of nonstationary pro-
cesses have been investigated more or less in
detail. Let X, (¢ an integer) be a real-valued sto-
chastic process and V be the backward dif-
ference operator defined by VX, =X, — X, ,
and VX, =V(V" 1 X)) for d>2. We assume
that X, is defined for t > ¢, (¢, a finite integer),
and EX? < +oc0. For analyzing a nonstation-
ary time series, Box and Jenkins introduced
the following model: For a positive integer d,
Y,=V4X,, t>t,+d, is stationary and is an
autoregressive moving average process of
order (K, L) for t 2t,+d+max(K, L). They
called such an X, an autoregressive integrated
moving average process of order (K, d, L) and
denoted it by ARIMA(K,d, L). The word
“integrated” means a kind of summation;

in fact, X, can be expressed as a sum of the
weakly stationary process Y, ie.,

X, =X, +(VXo)t +(V2 X,) (Z Z)

s;=1s =1

+(vd—1XO)< Z ) Zz >

Sy = s=1

t Sd S2
+3Y Y LYY
s;=1s, ;=1 s =1

when ty= —d + L. Using this model, methods
of forecasting and of model identification and
estimation can be discussed [13].
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Another nonstationary model is based on
the concept of evolutionary spectra [14]. In
this approach, spectral distribution functions
are taken to be time-dependent. Let X, be
a complex-valued stochastic process (¢t an
integer) with EX,=0 and R, ;= EX, X,. In the
following, we write simply | for {'},. We now
restrict our attention to the class of X, for
which there exist functions {u,(4)} defined on
[—1/2, 1/2] such that R, ; can be expressed as

R, .=[u,(A)u,(2)du(%), where pu(2) is a measure.

u,(1) should satisfy {|u,(A)]*du(}) < +co. Then
X, admits a representation of the form X, =
ju,(}t) dZ (1), where Z(/) is a process with
orthogonal increments and E|dZ(2)|? =du(4).
If u,(4) is expressed as u,(4)=y,(1)e>™ " and
7,(4) is of the form y,(2)= | e*™™ d[,(w) with
|dT",(w)| having the absolute maximum at w=
0, we call u,(4) an oscillatory function and
X, an oscillatory process. The evolutionary
power spectrum dF,(4) is defined by dF,(4)=
17D du(A).

Other models, such as an autoregressive
model whose coefficients vary with time or
whose associated polynomial has roots outside
the unit circle, have also been discussed.
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422 (IV.7)
Topological Abelian Groups

A. Introduction

A commutative topological group is called a
topological Abelian group. Throughout this
article, except in Section L, all topological
groups under consideration are locally com-
pact Hausdorff topological Abelian groups
and are simply called groups (— 423 Topolog-
ical Groups).

B. Characters

A character of a group is a continuous func-
tion y(x) (xe G) that takes on as values com-
plex numbers of absolute value 1 and satis-
fies y(xy)=yx(x)x(y). Equivalently, y is a 1-
dimensional and therefore an irreducible
Tunitary representation of G. Conversely
any irreducible unitary representation of G
is 1-dimensional. Indeed, for a topological
Abelian group, the set of its characters coin-
cides with the set of its irreducible unitary
representations. If the product of two char-
acters x, z' is defined by yx'(x) = y{(x)yx’(x), then
the set of all characters forms the character
group C(G) of G. With tcompact-open topo-
logy, C(G) itself becomes a locally compact
topological Abelian group.

C. The Duality Theorem

For a fixed element x of G, x(x) (e C(G)) is

a character of C(G), namely, an element of
CC(G). Denote this character of C(G) by x(y),
and consider the correspondence G2 x—x(y).
That this correspondence is one-to-one follows
from the fact that any locally compact G has
fsufficiently many irreducible unitary repre-
sentations (— 437 Unitary Representations)
and the fact that if G is an Abelian group, then
any irreducible unitary representation of G is a
character of G. Furthermore, any character
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of C(G) is given as one of the x(y); indeed, by
this correspondence, we have G=CC(G)
(Pontryagin’s duality theorem).

By the duality theorem, each of G and C(G)
is isomorphic to the character group of the
other. In this sense, G and C(G) are said to be
dual to each other.

D. Correspondence between Subgroups

Let G, G' = C(G) be groups that are dual to
each other. Given a closed subgroup ¢ of G,
the set of all ¥’ such that y'(x)=1forall xing
forms a closed subgroup of G', usually denoted
by (G, g). The definition of (G, g') is similar.
Then g—(G',g)=g' gives a one-to-one corre-
spondence between the closed subgroups of G
and those of G'. If g, > ¢,, then g, /¢, and
(G',g,)/(G',g,) are dual to each other. If the
group operations of G, G’ are written in addi-
tive form, with O for the identity, then x(x")=1
is written as x(x')=0. In this sense, (G, g) is
called the annihilator (or annulator) of g.

E. The Structure Theorem

Let ¥ be the set of all groups (more precisely,
of all locally compact Hausdorff topological
Abelian groups). If G,, G, e, then the direct
product G, x G,e¥, and if GeW and H is a
closed subgroup of G, then He and G/He .
In addition, if H is a closed subgroup of a
group G such that HeU and G/H e, then
Ge . In other words, U is closed under the
operations of forming direct products, closed
subgroups, quotient groups, and fextensions
by members of A. Furthermore, the operation
C that assigns to each element of  its dual
element is a reflexive correspondence of U
onto U, and if G > H, the annihilator (C(G), H)
of H is a closed subgroup of C(G). Also,
C(G/H)=(C(G), H), C(H)=C(G(C(G),H).
Furthermore, C(G, x G,)= C(G,) x C(G,).
Finally, H =(G,(C(G), H)) (reciprocity of
annihilators).

Typical examples of groups in U are the
additive group R of real numbers, the additive
group Z of rational integers, the 1-dimensional
*torus group T=R/Z, and finite Abelian
groups F. The torus group T is also isomor-
phic to the multiplicative group U(1) of com-
plex numbers of absolute value 1. The direct
product R” of n copies of R is the vector group
of dimension n, and the direct product T" of
n copies of T is the torus (or torus group)
of dimension n (or n-torus). Both T" and F
are compact, while R” and Z" are not. We
have C(R)=R, C(T)=Z, C(Z)=T. Any finite
Abelian group F is isomorphic to its character
group C(F). The direct product of a finite
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number of copies of R, T, Z, and a finite
Abelian group F, namely, a group of the form
R'x T™x Z" x F, is called an elementary topo-
logical Abelian group.

Any group in ¥l is isomorphic to the direct
product of a vector group of some dimenston
and the extenston of a compact group by a
discrete group (the structure theorem). Hence,
if the effect of the operation C is explicitly
known, then the problem of finding the struc-
ture of groups in A is reduced to the pro-
blem concerning discrete groups alone. For
the structure of groups in 2, the following
theorem is known: If Ge 2 is generated by a
compact neighborhood of the identity e, then
G is isomorphic to the direct product of a
compact subgroup K and a group of the form
R” x Z™ (n, m are nonnegative integers). Then
any compact subgroup of G is contained in K,
which is the unique maximal compact sub-
group of G. A group Ge generated by a
compact neighborhood of ¢ is the *projec-
tive limit of elementary topological Abelian
groups. L. S. Pontryagin first proved a struc-
ture theorem of this type and then the duality
theorem.

F. Compact Elements

An element a of a group Ge ¥ is called a com-
pact element if the cyclic group {a"|neZ} gen-
erated by a is contained in a compact subset
of G. The set C, of all compact elements of G
is a closed subgroup of G, and the quotient
group G/C, does not contain any compact
element other than the identity. In particular,
if G is generated by a compact neighborhood
of the identity, then C, coincides with the
maximal compact subgroup K of G. Let C,

be the set of all compact elements of a group
Ge . The annthilator (C(G), Cy) is a con-
nected component of the character group
C(G) of G. If G is a discrete group, then a
compact element of G is an element of G of
finite order.

G. Compact Groups and Discrete Groups

Suppose that two groups G, X €U are dual to
each other. Then one group is compact if and
only if the other group is discrete. By the du-
ality theorem, the properties of a compact
Abelian group G can be stated, in principle,
through the properties of the discrete Abelian
group C(G). The following are a few such
examples. Let G be a compact Abelian group.
Then its *dimension is equal to the frank of the
discrete Abelian group C(G). A subgroup Y of
a discrete Abelian group X is called a divisible
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subgroup if the quotient group X/Y contains
no element of finite order other than the iden-
tity. A compact Abelian group G is locally
connected if and only if any finite subset of the
character group C(G) is contained in some
divisible subgroup of C(G) generated by a
finite number of elements. Hence if' a compact
locally connected Abelian group G has an
fopen basis consisting of a countable number
of open sets, then G is of the form T* x F,
where F is a finite Abelian group and T is the
direct product of an at most countable number
of 1-dimensional torus groups T.

H. Dual Decomposition into Direct Products

Let G be a compact or discrete Abelian group,
and let M= {H,|xe A} be a family of closed
subgroups of G. Let A(R)={",. 4 H,, and
denote by X(9) the smallest closed sub-
group of G containing | J,. 4 H,. Then, with
Q={(C(G), H,)|xe A}, the relations A(Q)=
(C(G), Z(M)) and X(Q)=(C(G), A(IN)) hold.
Furthermore, suppose that G is decomposed
into the direct product G=1I1,., H,, and for
each ae A put K,=2(M—{H,}), X,=

(C(G), K,). Then X, is the character group of
H,, and C(G) can be decomposed into the
direct product C(G)=T1,., X,. This decompo-
sition of C(G) into a direct product is called
the dual direct product decomposition corre-
sponding to the decomposition G=[1,., H,.

I. Orthogonal Group Pairs

Suppose that for two groups G, G’ there exists
a mapping (x, x")— xx" of the Cartesian prod-
uct G x G" into the set U(1) of all complex
numbers of absolute value 1 such that

(x1X)x" = (3, ) (x,),
X(x} x3) = (xx}) (xx3).

Then G, G’ are said to form a group pair. Sup-
pose that G, G’ form a group pair, and con-
sider xx' to be a function x(x') in x". If two
functions x,(x") and x,(x') coincide only when
Xx; =X, and the same is true when the roles

of G and G’ are interchanged, then G, G are
said to form an orthogonal group pair. If G is
a compact Abelian group, G’ is a discrete
Abelian group, and G, G’ form an orthogonal
group pair, then G, G’ are dual to cach other.

J. Commutative Lie Groups

An elementary topological Abelian group
R'x T™ x Z" x F is a commutative Lie group.
Conversely, any commutative Lie group G
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generated by a compact neighborhood of the
identity is isomorphic to an elementary topo-
logical Abelian group. In particular, any con-
nected commutative Lie group G is isomor-
phic to R' x T™ for some ! and m. A closed
subgroup H of the vector group R” of dimen-
sion n is isomorphic to R? x Z4 (0 <p+g<n).
More precisely, there exists a basis g, ..., a, of
the vector group R” such that H={>?_, x;a;+
Zh-prina; x;€R, n;e Z}. Hence the quo-

tient groups of R” that are *separated topolog-
ical groups are all isomorphic to groups of the
form R x T™ (0 <14 m<n). Any closed sub-
group of the torus group T” of dimension n is
isomorphic to a group of the form T? x F

(0< p<n), where F is a finite Abelian group.
Hence the quotient groups of T” that are
separated topological groups are all isomor-

" phic to T™ (0< m<n). A tregular linear trans-
formation of the linear space R" is a continu-
ous automorphism of the vector group R”,
and in fact, any continuous automorphism of
R" is given by a regular linear transformation.
Indeed, the group of all continuous automor-
phisms of R” is isomorphic to the fgeneral
linear group GL(n, R) of degree n. Any continu-
ous automorphism of the torus group T"=
R"/Z" of dimension n is given by a regular
linear transformation ¢ of R" such that ¢(Z")
=Z". Hence the group of continuous auto-
morphisms of T" is isomorphic to the multi-
plicative group of all n x n matrices, with de-
terminant + 1 and with entries in the set of
rational integers.

K. Kronecker’s Approximation Theorem

Let H be a subgroup of a group Ge? (not
necessarily closed). Then (G,(C(G), H)) coin-
cides with the closure H of H. In particular, H
is tdense in G if and only if the annihilator
(C(G), H) consists of the identity alone. Now
let G=R" and let H be the subgroup of R”
generated by 0=(0,, ...,0,)e R" and the na-
tural thasis e, =(1,0,...,0),...,¢,=(0,...,0, 1)
of R". Then H is dense in R” if and only if

(R", H)={0}; that is, 6, ...,0,, 1 are linearly
independent over the rational number field Q
{Kronecker’s approximation theorem). This
theorem implies that the torus group T" of
dimension n has a cyclic subgroup and a 1-
parameter subgroup that are both dense in T".

L. Linear Topology

Consider the discrete topology in a field Q.
Suppose that an Q-module G has a topology
that satisfies THausdorff’s separation axiom
and is such that a base for the neighborhood
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system of the zero element 0 consists of Q-
submodules, and suppose that G together with
this topology constitutes a topological Abelian
group. Then this topology is called a linear
topology. If a linear topology is restricted to a
Q-submodule, then it is also a linear topology.
If G is of finite rank, then any linear topology
is the discrete topology. The discrete topology
on G is a linear topology. Let H be a Q-
submodule. Then the subset V=H +g of G
obtained by translating H by an element g of
G is called a linear variety in G. If V is a linear
variety, then Vis also a linear variety. If Q-
modules G, G’ have linear topologies, a homo-
morphism of G into G’ is always assumed to
be open and continuous with respect to these
topologies. A linear variety Vin G is said to be
linearly compact if, for any system {1} of
linear varieties closed in V with the *finite
intersection property, we have (), V,# &. In
this case V is closed in G. If linearly compact
Q-submodules can be chosen as a base for the
neighborhood system of the zero element of
G, we say that G is locally linearly compact.
The set Cy(G) of homomorphisms of an Q-
module G with linear topology into Q is also
an Q-module. For any linearly compact Q-
submodule H of G, let U(H)={y|z(g)=

0, ge H}. Then, with {U(H)} as a base for the
neighborhood system, a linear topology can
be introduced in C(G). According as G is
discrete, linearly compact, or locally linearly
compact, C,(G) is linearly compact, discrete,
or locally linearly compact. Let G, H be Q-
modules each of which has a linear topology,
and let ¢:G3g—@,eCo(H), y:Hah—iye
Cq(G) be homomorphisms such that ¢ (h)=
Vu(9). Then if one of ¢, 1s an isomorphism,
so is the other. This is an analog of the Pon-
tryagin duality theorem and is called the
duality theorem for Q-modules. In particular,
a linearly compact Q-module is the direct sum
of 1-dimensional spaces (S. Lefschetz [3]).
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A. Definitions

If a *fgroup G has the structure of a ftopolog-
ical space such that the mapping (x, y)—xy
(product) of the Cartesian product G x G into
G and the mapping x—x ! (inverse) of G into
G are both continuous, then G is called a topo-
logical group. The group G without a topo-
logical structure is called the underlying group
of the topological group G, and the topolog-
ical space G is called the underlying topological
space of the topological group G. Let G, G’ be
topological groups. A mapping f of G into G’
is called an isomorphism of the topological
group G onto the topological group G’ if f

is an fisomorphism of the underlying group

G onto the underlying group G’ and also a
thomeomorphism of the underlying topolog-
ical space G onto the underlying topological
space G'. Two topological groups are said to
be isomorphic if there exists an isomorphism of
one onto the other.

B. Neighborhood Systems

Let N be the neighborhood system of the
identity e of a topological group G. Namely, 9t
consists of all subsets of G each of which con-
tains an open set containing the element e.
Then 9 satisfies the following six conditions:
) IfUeNand UcV, then VeN. (i) If U,
Ve, then UNVeN. (iii) If UeN, then ec U.
(iv) For any U eM, there exists a We N such
that WW={xy|x,ye W} U. (V) If UeN,
then U 'eM. (vi) If UeN and aeG, then
aUa 'eN. Conversely, if a nonempty family R
of subsets of a group G satisfies conditions (i)—
(vi), then there exists a ftopology D of G such
that 9 is the neighborhood system of e and

G is a topological group with this topology.
Moreover, such a topology is uniquely deter-
mined by . tLeft translation x—ax and 'right
translation x— xa in a topological group G are
homeomorphisms of G onto G; thus if 9t is the
neighborhood system of the identity e, then
alt =Na is the neighborhood system of q,
where adt={aU|UeN}.

If the underlying topological space of a top-
ological group G is a THausdorff space, G is
called a T,-topological group (Hausdorff topo-
logical group or separated topological group).
If the underlying topological space of a topo-
logical group G is a 'T,-topological space,
then, as is eastly seen, it is a TT,-topological
space. If it is a T,-topological space, then by
the fact that the topology may be defined by a
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funiformity, it is a fcompletely regular space,
hence, in particular, a Hausdorff space (— Sec-
tion G). Thus a topological group whose un-
derlying topological space is a T,-topological
space is a T,-topological group.

C. Direct Product of Topological Groups

Consider a family {G,},. , of topological
groups. The Cartesian product G=]],.,G, of
the underlying groups of G, is a topological
group with the fproduct topology of the un-
derlying topological spaces of G,. This topo-
logical group G=T1,., G, is called the direct
product of topological groups G, (x€ A).

D. Subgroups

Let H be a subgroup of the underlying group
of a topological group G. Then H is a topolog-
ical group with the topology of a ftopological
subspace of G (*relative topology). This topo-
logical group H is called a subgroup of G. A
subgroup that is a closed (open) set is called a
closed (open) subgroup. Any open subgroup is
also a closed subgroup. For any subgroup H
of a topological group G, the closure H of H
is also a subgroup. If H is a normal subgroup,
so is H. If H is commutative, so is A. In a T,-
topological group G, the fcentralizer C(M)=
{xeG|xm=mx (me M)} of a subset M of G

is a closed subgroup of G. In particular, the
feenter C= C(G) of a T,-topological group is a
closed normal subgroup.

E. Quotient Spaces

Given a subgroup H of a topological group G,
let G/H={aH|ae G} be the set of tleft cosets,
and let p be the canonical surjection p(a)=aH
of G onto G/H. Consider the fquotient topo-
logy on G/H, namely, the strongest topology
such that p is a continuous mapping. Since
a subset A of G/H is open when p~!(A4) is an
open set of G, p is also an topen mapping.
The set G/H with this topology is called the
left quotient space (or left coset space) of G by
H. The right quotient space (or right coset
space) H\G={Ha|ae G} is defined similarly.
The quotient space G/H is discrete if and only
if H is an open subgroup of G. The quotient
space is a Hausdorff space if and only if H is a
closed subgroup. If G/H and H are both fcon-
nected, then G itself is connected. If G/H and
H are both fcompact, then G is compact. If H
is a closed subgroup of G and G/H, H are both
flocally compact, then G is locally compact.
Suppose that H is a normal subgroup of a
topological group G. Then the quotient group
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G/H is a topological group with the topology
of the quotient space G/H. This topological
group is called the quotient group of the topo-
logical group G by the normal subgroup H.

F. Connectivity

The *connected component G, containing the
identity e of a topological group G is a closed
normal subgroup of G. The connected compo-
nent that contains an element ae G is the coset
aGy=Gya. Gy is called the identity component
of G. The quotient group G/G, is *totally dis-
connected. A connected topological group G
is generated by any neighborhood U of the
identity. Namely, any element of G can be
expressed as the product of a finite number of
elements in U. Totally disconnected (in partic-
ular, discrete) normal subgroups of a con-
nected topological group G are contained in
the center of G.

G. Uniformity

Let 91, be the neighborhood system of the
identity of a topological group G, and let U,
={(x,1)eG x G|yexU} for UeN,. Then a
tuniformity having {U,)Ue%,} as a base is
defined on G. This uniformity is called the left
uniformity of G. Left translation x—ax of G is
*uniformly continuous with respect to the left
uniformity. The right uniformity is defined
similarly by U,={(x, y)] ye Ux}. These two
uniformities do not necessarily coincide. The
mapping x—x ! is a funiform isomorphism of
G considered as a uniform space with respect
to the left uniformity onto the same group G
considered as a uniform space with respect to
the right uniformity. A topological group G

is thus a funiform space under a uniformity
fcompatible with its topology, and hence it is
a completely regular space if the underlying
topological space is a T,-space.

H. Completeness

If a topological group G is *complete with
respect to the left uniformity, then it is also
complete with respect to the right uniformity,
and conversely. In this case the topological
group G is said to be complete. A locally com-
pact T,-topological group is complete. If a T,-
topological group G is isomorphic to a dense
subgroup of a complete T,-topological group
G, then G is called the completion of G, and G
is said to be completable. A T,-topological
group G is not always completable. For a T,-
topological group G to be completable it is
necessary and sufficient that any tCauchy filter
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of G considered as a uniform space with res-
pect to the left uniformity is mapped to a
Cauchy filter of the same uniform space G
under the mapping x—x"!. Then the com-
pletion G of G is uniquely determined up to
isomorphism. A commutative T,-topological
group always has a completion G, and G

is also commutative. If each point of a T,-
topological group G has a ftotally bounded
neighborhood, there exists a completion G,
and G is locally compact.

I. Metrization

If a *metric can be introduced in a T,-
topological group G so that the metric gives
the topology of G, then G is said to be metri-
zable. For a T,-topological group G to be met-
rizable it is necessary and sufficient that G
satisfy the *irst axiom of countability. Then
the metric can be chosen so that it is left in-
variant, i.e., invariant under left translation.
Similarly, it can be chosen so that it is right
invariant. In particular, the topology of a
compact T,-topological group that satisfies
the first axiom of countability can be given by
a metric that is both left and right invariant.

J. Isomorphism Theorems

Let G and G’ be topological groups. if a homo-
morphism f of the underlying group of G

into the underlying group of G’ is a contin-
uous mapping of the underlying topological
space of G into that of G, f'is called a con-
tinuous homomorphism. If f is a continuous
open mapping, f is called a strict morphism (or
open continuous homomorphism). A continuous
homomorphism of a *paracompact locally
compact topological group onto a locally
compact T,-topological group is an open
continuous homomorphism.

A topological group G’ is said to be homo-
morphic to a topological group G if there
exists an open continuous homomorphism [ of
G onto G'. Let N denote the kernel f ~!(e) of f.
Then the quotient group G/N is isomorphic to
G', with G/N and G’ both considered as topo-
logical groups (homomorphism theorem). Let
£ be an open continuous homomorphism of a
topological group G onto a topological group
G, and let H' be a subgroup of G'. Then H=
J1(H’)is a subgroup of G, and the mapping
¢ defined by @(gH)=f(g)H’ is a homeomor-
phism of the quotient space G/H onto G'/H'.
In particular, if H' is a normal subgroup, then
H is also a normal subgroup and ¢ is an iso-
morphism of the quotient group G/H onto
G'/H' as topological groups (first isomorphism
theorem). Let H and N be subgroups of a topo-
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logical group G such that HN = NH. Then the
canonical mapping f:h(HNN)—hN of the
quotient space H/HNN to HN/N is a con-
tinuous bijection but not necessarily an open
mapping. In particular, if N is a normal sub-
group of the group HN, then f is a continuous
homomorphism. In addition, if f is an open
mapping, the quotient groups H/HN N and
HN/N are isomorphic as topological groups
(second isomorphism theorem). For example, f
is an open mapping (1) if N is compact or (2) if
G is locally compact, HN and N are closed
subgroups of G, and H is the union of a count-
able number of compact subsets. Let H be a
subgroup of a topological group G and N be a
normal subgroup of G such that H > N. Then
the canonical mapping of the quotient space
(G/N)/(H/N) onto G/H is a homeomorphism.
In particular, if H is also a normal subgroup,
the quotient groups (G/N)/(H/N) and G/H are
isomorphic as topological groups (third iso-
morphism theorem).

K. The Projective Limit

Let {G,} ,. 4 be a family of topological groups
indexed by a *directed set 4, and suppose that
if 2 < f, there exists a continuous homomor-
phism f,;:G;— G, such that f, = f,,0 f,, if
a < f<y. Then the collection {G,, f,4} of the
family {G,},. 4 of topological groups together
with the family { f;} of mappings is called a
projective system of topological groups. Con-
sider the direct product [1,., G, of topological
groups {G,}, and denote by G the set of all
elements x ={x,},., of 1 G, that satisfy x,=
Jup(xp) for a< 3. Then G is a subgroup of
[1G,. The topological group G obtained in
this way is called the projective limit of the
projective system {G,, f,;} of topological
groups and is denoted by G :liln G,. Ifeach G,
is a T,-topological (resp. complete) group, then
G is also a T,-topological (complete) group.
Now consider another projective system
Gy, [} of topological groups indexed by the
same A, and consider continuous homomor-
phisms u,:G,— G, such that u,0 f,, = f,0u,
for o< . Then there exists a unique continu-
ous homomorphism u of G =1£Ln G,into G'=
lir_n G, such that for any ae A, u,0 f,=f, ou
holds, where f,( f,) is the restriction to G(G’) of
the projection of T1 G, (IT1 G) onto G,(G). The
homomorphism u is called the projective limit
of the family {u,} of continuous homomor-
phisms and is denoted by u:ll;_m u,. Let G be
a T,-topological group, and let {H,},_, be a
decreasing sequence (H, > Hy, for < f) of
closed normal subgroups of G. Consider the
quotient group G/H,, and let f,, be the canon-
ical mapping gH,—gH, of G, to G, for a < f8.
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Then {G,, f,,} is a projective system of topo-
logical groups. Let f, be the projection of G
onto G,=G/H,, and let f=1i(_mf;. Now assume
that any neighborhood of the identity of G
contains some H, and that some H, is com-
plete. Then _/':liin]; is an isomorphism of G
onto liin G/H, as topological groups. (For a
general discussion of the topological groups
already discussed — [1,4].)

L. Locally Compact Groups

For the rest of this article, all topological
groups under consideration are assumed to

be T,-topological groups. The identity com-
ponent G, of a locally compact group G is the
intersection of all open subgroups of G. In
particular, any neighborhood of the identity of
a totally disconnected locally compact group
contains an open subgroup. A totally dis-
connected compact group is a projective limit
of finite groups with discrete topology.

A T,-topological space L is called a local Lie
group if it satisfies the following six conditions:
(1) There exist a nonempty subset M of L x L
and a continuous mapping u: M — L, called
multiplication (u(a, b) is written as ab). (ii) If
(a, b), (ab, ¢), (b, ¢), (a,bc) are all in M, then (ab)c
=a(bc). (i) L contains an element e, called the
identity, such that L x {e} < M and ae=a for
all ae L. (iv) There exists a nonempty open
subset N of L and a continuous mapping v: N
— L such that av(a)=e for all ae N. (v) There
exist a neighborhood U of e in L and a homeo-
morphism f of U into a neighborhood V
of the origin in the Euclidean space R". (vi) Let
D be the open subset of V' x V defined by D=
VeV VIS THx), £ eM, fH(x),
J'(»eU}. Then the function F:D—V defined
by F(x,y)=fu(f 1 (x), f~'(y)) is of fclass C*.

For any neighborhood U of the identity e of
a connected locally compact group G, there
exist a compact normal subgroup K and a
subset L that is a local Lie group under the
*induced topology and the group operations of
G such that the product LK is a neighborhood
of e contained in U. Furthermore, under (I, k)
—lk, LK is homeomorphic to the product
space L x K. Any compact subgroup of a
connected locally compact group G is con-
tained in a maximal compact subgroup, and
maximal compact subgroups of G are *conju-
gate. For a maximal compact subgroup K of
G, there exists a finite number of subgroups
H,,...,H, of G, each of which is isomorphic to
the additive group of real numbers such that G
=KH, ... H,, and the mapping (k,h,, ..., h,)
—khy ... h, is a homeomorphism of the direct
product K x H, x ... x H, onto G. Any locally
compact group has a left-invariant positive
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measure and a right-invariant positive mea-
sure, which are uniquely determined up to
constant multiples (— 225 Invariant Mea-
sures). Using these measures, the theory of
harmonic analysis on the additive group R of
real numbers can be extended to that on G (—
69 Compact Groups; 192 Harmonic Analysis;
422 Topological Abelian Groups; 437 Unitary
Representations).

M. Locally Euclidean Groups

Suppose that each point of a topological
group G has a neighborhood homeomorphic
to an open set of a given Euclidean space.
Then G is called a locally Euclidean group. If
the underlying topological space of a topolog-
ical group has the structure of a freal analytic
manifold such that the group operation (x, y)
—xy ! is a real analytic mapping, then G is
called a *Lie group. A Lie group is a locally
Euclidean group.

N. Hilbert’s Fifth Problem

Hilbert’s fifth problem asks if every locally
Euclidean group is a Lie group (— 196 Hil-
bert). This problem was solved affirmatively
in 1952; it was proved that any flocally con-
nected finite-dimensional locally compact
group is a Lie group (D. Montgomery and L.
Zippin [3]). In connection with this, the rela-
tion between Lie groups and general locally
compact groups has been studied, and the
following results have been obtained: A neces-
sary and sufficient condition for a locally
compact group to be a Lie group is that there
exist a neighborhood of the identity e that
does not contain any subgroup (or any normal
subgroup) other than {e}. A locally compact
group has an open subgroup that is the projec-
tive limit of Lie groups. Hilbert’s fifth problem
is closely related to the following problem:
Find the conditions for a ftopological trans-
formation group operating *effectively on a
manifold to be a Lie group (— 431 Transfor-
mation Groups).

0. Covering Groups

Let ® be the collection of all farcwise con-
nected and flocally arcwise connected T,-
topological groups. Suppose that G*e® is a
fcovering space of Ge ® and the fcovering
mapping f: G*— G is an open continuous
homomorphism, with G* and G considered as
topological groups. Then G* (or, more pre-
cisely, (G*, /) is called a covering group of G.
Then the kernel f ~!(e)=D of [ is a discrete
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subgroup contained in the center of G*, and
G*/D and G, considered as topological groups,
are isomorphic to each other. Let n,(G) be the
*fundamental group of G. The natural homo-
morphism f*:7,(G*)—n,(G) induced by fis
an injective homomorphism, and if we identify
7,(G*) with the subgroup f*(m,(G*)) of m,(G),
we have D =n,(G)/n,(G*). Conversely, if D is
any discrete subgroup contained in the center
of G*e ®, then G* is a covering group of G
=G*/D. For any covering space (G*, f) of
Ge®, a multiplication law can be introduced
in G* so that G* is a topological group be-
longing to & and (G*, f) is a covering group of
G. In particular, any Ge ® has a *simply con-
nected covering group (G, ¢). Then for any
covering group (G*, f) of G, there exists a
homomorphism f*:G—G*, and (G, f*)is a
covering group of G*. Furthermore, o= fof*.
Hence, in particular, any simply connected
covering group of G is isomorphic to G, with
G and G considered as topological groups.
This simply connected covering group (G, ) is
called the universal covering group.

Let G and G’ be topological groups, and let
e and ¢’ be their identities. A homeomorphism
f of a neighborhood U of e onto a neighbor-
hood U’ of ¢ is called a local isomorphism of G
to G'if it satisfies the following two conditions:
(i) If @, b, ab are all contained in U, then f(ab)
= f(a)f(b). (i) Let f =g, thenif &, &', a'b’
el’, g(a'b’y=g(a')g(b') holds. If there exists
a local isomorphism of G to G', we say that G
and G' are locally isomorphic. If G* is a cover-
ing group of G, then G* and G are locally
isomorphic. For two topological groups G and
G’ to be locally isomorphic it is necessary and
sufficient that the universal covering groups of
G and G’ be isomorphic. For two connected
Lie groups to be locally isomorphic it is neces-
sary and sufficient that their *Lie algebras be
isomorphic.

Let f be a mapping of a neighborhood U of
the identity of a topological group G into a
group H such that if g, b, ab are all contained
in U, then f(ab)= f(a)f(h). Then [ is called a
local homomorphism of G into H and U is
called its domain. A local homomorphism of a
simply connected group Ge® into a group H
can be extended to a homomorphism of G into
H if the domain is connected [2,4].

P. Topological Rings and Fields

If a ring R has the structure of a topological
group such that (x, y)—x+ y (sum) and (x, y)
—xy (product) are both continuous mappings
of R x R into R, then R is called a topological
ring. If a topological ring K is a field (not

necessarily commutative) such that x—x !
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(inverse element) is a continuous mapping of
K*=K —{0} into K*, then K is called a topo-
logical field. Let us assume that K is a topo-
logical field that is a locally compact Haus-
dorff space and is not discrete. If K 1s con-
nected, then K is a Tdivision algebra of finite
rank over the field R of real numbers; hence
it is isomorphic to the field R of real numbers,
the field C of complex numbers, or the tqua-
ternion field H. If K is not connected, then K
is totally disconnected and is isomorphic to a
division algebra of finite rank over the fp-adic
number field Q,, or a division algebra of finite
rank over the Hformal power series field with
coefficients in a finite field [4].

For various important classes of topological
groups — 69 Compact Groups; 249 Lie
Groups; 422 Topological Abelian Groups; 424
Topological Linear Spaces.

References

[1] N. Bourbaki, Eléments de mathématique,
Topologie générale, ch. 3, Actualités Sci. Ind.,,
1143c¢, Hermann, third edition, 1960; English
translation, General topology, pt. 1, Addison-
Wesley, 1966.

[2] C. Chevalley, Theory of Lie groups I,
Princeton Univ. Press, 1946.

[3] D. Montgomery and L. Zippin, Topolog-
ical transformation groups, Interscience, 1955.
"[4] L. S. Pontryagin, Topological groups, first
edition, Princeton Univ. Press, 1939, second
edition, Gordon & Breach, 1966. (Second
English edition translated from the second
Russian edition, 1954.)

424 (XIL.5)
Topological Linear Spaces

A. Definition

A tlinear space E over the real or complex
number field K is said to be a topological
linear space, topological vector space, or linear
topological space if E is a ftopological space
and the basic operations x + y and ax (x, ye E,
ae K) in the linear space are continuous as
mappings of E x E and K x E, respectively,
into E. The coefficient field K may be a gen-
eral ftopological field, although it is usually
assumed to be the real number field R or the
complex number field C, and accordingly E is
called a real topological linear space or a com-
plex topological linear space. Topological linear
spaces are generalizations of fnormed linear
spaces and play an important role in the study
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of Hfunction spaces, such as the space of dis-
tributions, that are not *Banach spaces.

Each topological linear space E is equipped
with a tuniform topology in which translations
of the neighborhoods of zero form a tuniform
family of neighborhoods, and the addition x
+ y and the multiplication ax by a scalar « are
uniformly continuous relative to this uniform
topology. In particular, if for each x#0 there
1s a neighborhood of the origin that does not
contain x, then E satisfies the fseparation
axiom T, and hence is a fcompletely regular
space. The tcompletion E of E is also a topo-
logical linear space.

We assume in this article that K is the real
or complex number field and E is a topological
linear space over K satisfying the axiom of T,-
spaces. Then E is finite-dimensional if and only
if E has a ttotally bounded neighborhood of
zero. The topology of E is tmetrizable if and
only if it satisfies the *first countability axiom.

B. Linear Functional

A K-valued function f(x) on E is said to be a
linear functional if it satisfies (i) f(x + y)= f(x)
+ f(y) and (ii) f(ox) =af(x). A linear functional
that is continuous relative to the topologies

of E and K is said to be a continuous linear
functional. (Sometimes continuous linear
functionals are simply called linear functionals,
while abstract linear functionals are called
algebraic linear functionals.) The following
three statements are equivalent for linear
functionals f(x):(i) f(x) is continuous; (ii) the
half-space {xe E|Re f(x)>0} is open; (iii) the
hyperplane {xe E| f(x)=0} is closed.

C. The Hahn-Banach Theorem

A linear functional f(x) defined on a linear
subspace F of E can be extended to a continu-
ous linear functional on E if and only if there
exists an open tconvex neighborhood V of the
origin in E that is disjoint with {xe F|f{x)=1}.
Furthermore, if f{x) can be extended, at least
one extension f(x) never takes the value 1 on
V (Hahn-Banach theorem).

D. Dual Spaces

The set E’ of all continuous linear functionals
on E is called the dual space of E. 1t is often
denoted by E* and is also called the conjugate
space or adjoint space. It forms a linear space
when f+g and of (f,ge E', xe K) are defined
by (f+g)(x)=f(x) +g(x) and (of ) (x) = a( f(x))

for xeE.
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E. Locally Convex Spaces

A topological linear space is said to be locally
convex if it has a family of convex sets as a
thase of the neighborhood system of 0. It
follows from the Hahn-Banach theorem that
for each x #0 in a locally convex space E there
is a continuous linear functional f such that
f(x)#0. A subset M of E is said to be circled if
M contains aM = {ax|xe M} whenever |a|< 1.
A set that is both circled and convex is called
absolutely convex. In a locally convex space, a
family of absolutely convex and closed sets can
be chosen as a base of the neighborhood sys-
tem of the origin. Let A and B be subsets of E.
A is said to absorb B if there is an 2> 0 such
that a4 > B. A set V that absorbs every point
xeE is called absorbing. Neighborhoods of 0
are absorbing.

F. Seminorms

A real-valued function p(x) on E is said to be
a seminorm (or pseudonorm) if it satisfies (i)
0<p(x)< + 0 (xeE); (i) p(x+y) < p(x) +

p(y): and (iii) p(ax)=|«|p(x). The relation V=
{x|p(x)<1} gives a one-to-one correspon-
dence between seminorms p(x) and absolutely
convex absorbing sets V' whose intersection
with any line through the origin is closed.

In terms of seminorms, the Hahn-Banach
theorem states: Let E be a linear space on
which a seminorm p(x) is given. If a linear
functional f(x) defined on a linear subspace F
of E satisfies | f(x)| < p(x) on F, then f(x) can
be extended to the whole space E in such a
way that the inequality holds on E.

The topology of a locally convex space is
determined by the family of continuous semi-
norms on it. Conversely, if there is a family
of seminorms {p,(x)} (A€ A) on a linear space
E over K that satisfies (iv) p,(x)=0 for all
4 implies x=0, then there exists on E the
weakest locally convex topology that renders
the seminorms continuous. This topology is
called the locally convex topology determined
by {p(x)}.

We assume that E is a locally convex space
whose topology is determined by the family of
seminorms {p,(x)} (¢€A). Then a net x, of E
converges to x if and only if p,(x, —x)—0 for
all e A. If F is a locally convex space whose
topology is determined by the family of semi-
norms {g,(y)}, then a necessary and sufficient
condition for a linear mapping u: E—F to be
continuous is that for every g, (y) there exist a
finite number of 4,,...,4,€A and a constant
C such that q,(u(x))<C(p; (x)+...+p;,(x))
(xeE).

A set is said to be bounded if it is absorbed
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by every neighborhood of zero. When the
topology of E is determined by the family
{pa(x)} of seminorms a set B is bounded if and
only if every p, is bounded on B. Totally
bounded sets are bounded. The unit ball in

a normed space is bounded. Conversely, a
locally convex space is normable if it has a
bounded neighborhood of 0. A locally convex
space is called quasicomplete if every bounded
closed set is complete. Since Cauchy sequences
{x,} are totally bounded, all Cauchy sequences
converge in a quasicomplete space (i.e., the
space is sequentially complete).

G. Pairing of Linear Spaces

Let E and F be linear spaces over the same
field K. A K-valued function B(x, y) (xeE,
yeF)on E x F is called a bilinear functional or
bilinear form if for each fixed ye F (resp. xe E),
it is a linear functional of x (resp. y). When a
bilinear functional {x,y> on E x F is given so
that <x, y>=0for all ye F (all xe E) implies
x=0(y=0), then E and F are said to form a
(separated) pairing relative to the inner product
{x,y>. A locally convex space E and its dual
space E’ form a pairing relative to the natural
inner product {x, x> =x'(x) (xe E, x'e E").

H. Weak Topologies

When E and F form a pairing relative to an
inner product {x, y, the locally convex top-
ology on E determined by the family of semi-
norms {|{x, y>||ye F} is called the weak top-
ology (relative to the pairing (E, F>) and is
denoted by a(E, F). A net x, in E is said to
converge weakly if it converges in the weak
topology. When E and E’ are a locally convex
space and its dual space, o(E, E') is called the
weak topology of E, and ¢(E', E) the weak*
topology of E'. The weak topology on a lo-
cally convex space E is weaker than the orig-
inal topology on E. Consequently, a weakly
closed set is closed. If the set is convex, the
converse holds, and hence a convex closed set
is weakly closed. Also, boundedness is pre-
served if we replace the original topology by
the weak topology. Thus a weakly bounded
set 1s bounded.

Let E and F form a pairing relative to
{x,y>, and let A be a subset of E. Then the set
A° of points yeF satisfying Re{x, y) = —1 for
all xe A4 is called the polar of A (relative to the
pairing). If 4 is absolutely convex, A° is also
absolutely convex and is the set of points y
such that |[{x,y>|<tforall xed. ff Aisa
convex set containing zero, its (weak) closure
is equal to the bipolar A°°=(A4°) (bipolar
theorem). In general, let A be a subset of a
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topological linear space E. We call the smallest
closed convex set containing A the closed
convex hull of 4. If E is locally convex, the
bipolar 4°° relative to E' coincides with the
closed convex hull of AU{0}.

A subset B of the dual space E’ is fequi-
continuous on E if and only if it is contained
in the polar V* of a neighborhood V of 0 in E.
Also, V° is weak*- compact in E’ (Banach-
Alaoglu theorem).

I. Barreled Spaces and Bornological Spaces

An absorbing absolutely convex closed set in a
locally convex space E is called a barrel. In a
sequentially complete space (hence in a quasi-
complete space also), a barrel absorbs every
bounded set. A locally convex space is said to
be barreled if each barrel is a neighborhood of
0. A locally convex space is said to be quasi-
barreled (or evaluable) if cach barrel that ab-
sorbs every bounded set is a neighborhood of
0. Furthermore, a locally convex space is said
to be bornological if each absolutely convex set
that absorbs every bounded set is a neighbor-
hood of 0. Bornological spaces are quasi-
barreled. However, they are not necessarily
barreled. Furthermore, barreled spaces are not
necessarily bornological. A metrizable locally
convex space, 1.e., a space whose topology is
determined by a countable number of semi-
norms, is bornological. A complete metrizable
locally convex space is called a locally convex
Fréchet space ((F)-space or simply Fréchet
space). To distinguish it from Fréchet space as
in 37 Banach Spaces, it is sometimes called a
Fréchet space in the sense of Bourbaki. (F)-
spaces are bornological and barreled.

A continuous linear mapping u: E—F of one
locally convex space into another maps each
bounded set of E to a bounded set in F. Con-
versely, if E is bornological, then each linear
mapping that maps every bounded sequence
to a bounded set is continuous.

J. The Banach-Steinhaus Theorem

In the dual space of a barreled space E, each
(weak*-)bounded set is equicontinuous. Thus
if a sequence of continuous linear mappings
u, of E into a locally convex space F con-
verges at each point of E, then u, converges
uniformly on each totally bounded set of E,
and the limit linear mapping is continuous
(Banach-Steinhaus theorem).

K. The S-Topology

Let E and F be paired linear spaces relative
to the inner product {x, y>. When a family S
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of (weakly) bounded sets of F generates a
dense subspace of F, the family of seminorms
{sup,.5|{x,y>|| Be S} determines a locally
convex topology on E. This is called the -
topology or topology of uniform convergence on
members of S, because x,—x in the S-topology
is equivalent to the uniform convergence of
{x,,y>—<x,yy on each BeS. The space E
with the S-topology is denoted by Eg. The
weak topology is the same as the topology

of pointwise convergence. The S-topology in
which S is the family of all bounded sets in F
is called the strong topology and is denoted by
P(E, F). The dual space E’ of a locally convex
space E is usually regarded as a locally convex
space with the strong topology B(E', E). Tt is
called the strong dual space. The topology of a
locally convex space E is that of uniform con-
vergence on equicontinuous sets of E'. The
topology of a barreled space E coincides with
the strong topology S(E, E').

L. Grothendieck’s Criterion of Completeness

Let E and F be paired spaces, and let S be a
family of absolutely convex bounded sets of F
such that: (i) the sets of S generate £; (ii) if B,,
B, €S, then there is a By €S such that Byo B,
and B; > B,. Then Eg is complete if and only
if each algebraic linear functional f(y) on F
that is weakly continuous on every BeS is ex-
pressed as f(y)=(x, y) for some xe¢ E. When
E is not complete, the space of all linear func-
tionals satisfying this condition gives the com-
pletion Eg of E.

M. Mackey’s Theorem

Let E, F, and § satisfy the same conditions

as in Section L. Then the dual space of Eg is
equal to the union of the weak completions of
4B, where 1>0 and Be S (Mackey’s theorem).

N. The Mackey Topology

When E and F form a pairing, the topology on
E of uniform convergence on convex weakly
compact sets of F is called the Mackey topol-
ogy and is denoted by t(E, F). The dual space
of E endowed with a locally convex topology
T coincides with F if and only if T is stronger
than the weak topology o(E, F) and weaker
than the Mackey topology t(E, F) (Mackey-
Arens theorem). A locally convex space is said
to be a Mackey space if the topology is equal
to the Mackey topology t(E, E'). Every quasi-
barreled space is a Mackey space.
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0. Reflexivity

Let E be a locally convex space. The dual
space E" of the dual space E’ equipped with
the strong topology contains the original space
E. We call E semireflexive if E”=E, and reflex-
ive if in addition the topology of E coincides
with the strong topology B(E, E'). E is semi-
reflexive if and only if every bounded weakly
closed set of E is weakly compact. E is re-
flexive if and only if E is semireflexive and
(quasi)barreled.

A barreled space in which every bounded
closed set is compact is called a Montel space
or (M)-space. (M)-spaces are reflexive, and
their strong dual spaces are also (M)-spaces.

Many of the function spaces that appear
in applications are (F)-spaces or their dual
spaces. For these spaces detailed consequences
of the countability axiom are known [7,8]. A
convex set C in the dual space E’ of an (F)-
space E is weak*-closed if and only if for every
neighborhood V of 0in E, CNV° is weak*-
closed (Krein-Shmulyan theorem). The
strong dual space E’ of an (F)-space E is
(quasi)barreled if and only if it is bornological.
In particular, the dual space of a reflexive (F)-
space is bornological.

P. (DF)-Spaces

A locally convex space is called a (DF)-space
if it satisfies: (i) There is a countable base of
bounded sets (i.e., every bounded set is in-
cluded in one of them); (ii) if the intersection

V of a countable number of absolutely con-
vex closed neighborhoods of 0 absorbs every
bounded set, then V is also a neighborhood of
0. The dual space of an (F)-space is a (DF)-
space, and the dual space of a (DF)-space is an
(F)-space. A linear mapping of a (DF)-space E
into a locally convex space F s continuous if
and only if its restriction to every bounded set
of E 1s continuous. A quasicomplete (DF)-
space is complete.

Q. Bilinear Mappings

A bilinear mapping b(x, y) on locally convex
spaces E and F (xe E, ye F) to a locally convex
space G is said to be separately continuous if
for each fixed ye F (x€ E) it is continuous as a
function of x (y). The linear mappings obtained
from b(x, y} by fixing x (y) are denoted by
b.(y) (b,(x)). We call b(x, y) hypocontinuous

if for each bounded set B of E and B’ of F,
{b{»)xeB} and {b,(x)| ye B’} are equicon-
tinuous. A continuous bilinear mapping is
hypocontinuous. However, the converse is
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not always true. A separately continuous bi-
linear mapping is not necessarily hypocontinu-
ous. If both E and F are barreled, however,
then every separately continuous mapping

is hypocontinuous. If E is an (F)-space and

F is metrizable, then every separately continu-
ous bilinear mapping is continuous. Simt-
larly, if both E and F are (DF)-spaces, then
every hypocontinuous bilinear mapping is
continuous.

R. Tensor Products

It 1s possible to introduce many topologies in
the Ttensor product E ® F of locally convex
spaces E and F. The projective topology (or
topology =) is defined to be the strongest topol-
ogy such that the natural bilinear mapping
Ex F-»E® F is continuous. The dual space
of E®,F is identified with the space B(E, F)
of all continuous bilinear functionals on E x
F. The completion of E® , F is denoted by
E ® F. The topology of biequicontinuous con-
vergence (or topology ¢) is defined to be the
topology of uniform convergence on sets V* x
U“, where IV and U are neighborhoods of 0
in E and F, respectively, considering the ele-
ments of E® F as linear functionals on E' ® F’
by the natural pairing of E® F and E'® F'.
The completion of E ®, F is denoted by E ®
F. The dual space of E®, F coincides with
the subspace J(E, F) of B(E, F) composed of
the union of the absolute convex hulls of the
products V° ® U° of equicontinuous sets. The
elements of J(E, F) are called integral bilinear
functionals.

Closely related to E (fb F is L. Schwartz’s
¢ tensor product E¢ F [12]. (They coincide if E
and F are complete and if E or F has the tap-
proximation property.) E¢ F can be regarded
as (1) a space of vector-valued functions if E is
a space of functions and F is an abstract lo-
cally convex space, especially a space of func-
tions of two variables if E and F are, respec-
tively, spaces of functions of one variable, and
(i1) a space of operators G- F if E is the dual
space G’ of a locally convex space G.

S. Nuclear Spaces

Let E be a locally convex space, V be an ab-
solutely convex closed neighborhood of the
origin, and p(x) be the seminorm correspond-
ing to V. Then we denote by E, the normed
space with norm p(x) obtained from E by
identifying the two elements x and y with
p(x—y)=0.If U<V, then a natural linear
mapping ¢, ,:Ey—E, is defined.

A locally convex space E is said to be a
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nuclear space (resp. Schwartz space or simply
(S)-space) if for each absolutely convex closed
neighborhood V of 0 there is another U such
that ¢y , is a Tnuclear operator (resp. fcom-
pact operator) as an operator of E, into the
completion of E,. A nuclear space or (S)-space
is an (M)-space if it is quasicomplete and
quasibarreled. A locally convex space E is a
nuclear space if and only if the topologies =
and ¢ coincide on the tensor product EQ F
with any locally convex space F. Accordingly,
it follows that B(E, F)=J(E, F). This can be
regarded as a generalization of Schwartz’s
kernel theorem, which says that every sepa-
rately continuous bilinear functional on 2, x
2, is represented by an integral with kernel

in &,,. The theory of topological tensor prod-
ucts and nuclear spaces is due to Grothen-
dieck [9].

A locally convex space E is a nuclear (F)-
space if and only if E is isomorphic to a closed
subspace of C*(—o0, o0) (T. Komura and Y.
Komura, 1966). An example of a nuclear (F)-
space without basis is known (B. S. Mityagin
and N. M. Zobin, 1974).

T. Gel'fand Triplet

Let H and L be Hilbert spaces. If L is a dense
subspace of H and the injection LoH isa
tHilbert-Schmidt operator, then H=H' is
regarded as a dense subspace of L’ and the
injection H'— L’ is a Hilbert-Schmidt operator.
In this case, (L, H, L') is called a Gel’fand trip-
let (or a rigged Hilbert space).

A subset of H is called a cylindrical set if it
is expressed in the form Py '(B) by the ortho-
gonal projection P, onto a finite-dimensional
subspace F and a Borel subset Bof F. If a
finitely additive positive measure u with {|g/
=1 defined on the cylindrical sets of H satisfies
(i) u is countably additive on cylindrical sets
for a fixed F and (ii) for any £> 0 there exists
a 6>0 such that | x|| <& implies p{ye H|
[{x,y>| =1} <¢, then p is the restriction of a
countably additive measure /i defined on the
Borel subsets of L’ (Minlos’s theorem, 1959).

Let T be a self-adjoint operator in H. Then
T has a natural extension 7' in L’ and almost
every continuous spectrum A of T has an asso-
ciated eigenvector x, in L': T, =Ax,, x,€ L.

U. The Extreme Point Theorem

Let A be a subset of a linear space E. A point
xe A s said to be an extreme point if x is an
extreme point of any real segment containing
x and contained in A. If A is a compact convex
subset of a locaily convex space E, A is the
convex closed hull of (i.e., smallest convex
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closed set containing) the set of its extreme
points (Krein-Milman theorem). In applica-
tions it is important to know whether every
point of A4 is represented uniquely as an inte-
gral of extreme points. For a metrizable con-
vex compact subset 4 of a locally convex
space E, the following two conditions are
equivalent (Choquet’s theorem): (i) A is a sim-
plex, ie., if we put A={(ix, )| xe 4, >0}

c E x R, the vector space A — A becomes a
flattice with positive cone A; (ii) for any xe 4
there exists a unique positive measure g on
A with ||ull; =1 such that {(x)={, I(y)du(y)

" (leE') and the support of u is contained in the

set of extreme points of A.

V. Weakly Compact Set

A subset of a quasicomplete locally convex
space is relatively weakly compact if and only
if every sequence in the set has a weak ac-
cumulation point (Eberlein’s theorem). If E is a
metrizable locally convex space, every weakly
compact set of E is weakly sequentially com-
pact (Shmul’yan’s theorem). If E is a quasi-
complete locally convex space, the convex
closed hull of any weakly compact subset is
weakly compact (Krein’s theorem). [ E is not
quasicomplete, this is not necessarily true.

W. Permanence

Each subspace, quotient space, direct product,
direct sum, projective limit, and inductive limit
(of a family) of locally convex spaces has a
unique natural locally convex topology. These
spaces, except for quotient spaces and induc-
tive limits, are separated, and a quotient space
E/A is separated if and only if the subspace A
is closed. The limit of a sequence E, < E, ...
is said to be a strictly inductive limit if E, has
the induced topology as a subspace of E,,, . If
E is a strictly inductive limit of a sequence E,,
such that E, is closed in E,,, or if E is the
inductive limit of a sequence E, cE, ... such
that the mapping E,— E, ,, maps a neigh-
borhood of 0 to a relatively weakly compact
set, then E is separated and each bounded set
of E is the image of a bounded set in some E,.
If E=| ] E, is the strictly inductive limit of the
sequence {E,}, then the topology of E, coin-
cides with the relative topology of E, < E. The
strictly inductive limit of a sequence of (F)-
spaces is called an (LF)-space.

Any complete locally convex space (resp.
any locally convex space) is (resp. a dense
linear subspace of) the projective limit of
Banach spaces. Every (F)-space E is the projec-
tive limit of a sequence of Banach spaces E, «
E,«....In particular, E is said to be a count-
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ably normed space if the mappings E—E, are
one-to-one and ||x||,< ||x||,., for all xe E with
E considered as a subspace E,. We call E a
countably Hilbertian space if, in particular, the
E, are *Hilbert spaces. An (F)-space with at
least one continuous norm is a nuclear space if
and only if it is a countably Hilbertian space
such that the mappings E, ., — E, are Hilbert-
Schmidt operators or nuclear operators.

A locally convex space is bornological if
and only if it is the inductive limit of normed
spaces. A locally convex space is said to be
ultrabornological if it is the inductive limit of
Banach spaces, or in particular, if it is quasi-
complete and bornological.

Properties of spaces, such as being complete,
quasicomplete, semireflexive, or having every
bounded closed set compact, are inherited
by closed subspaces, direct products, projec-
tive limits, direct sums, and strictly inductive
limits formed from the original spaces, and
properties of spaces, such as being Mackey,
quasibarreled, barreled, and bornological, are
inherited by quotient spaces, direct sums, in-
ductive limits, and direct products formed
from the spaces. (For direct products of high
power of bornological spaces, unsolved prob-
lems still exist concerning the inheritance of
properties.) Quotient spaces of (F)-spaces are
(F)-spaces, but quotient spaces of general
complete spaces are not necessarily complete.
There are examples of a Montel (F)-space
whose quotient space is not reflexive and a
Montel (DF)-space whose closed subspace is
neither a Mackey space nor a (DF)-space. The
property of being a Schwartz space or a nu-
clear space is inherited by the completions,
subspaces, quotient spaces of closed subspaces,
direct products, projective limits, direct sums
of countable families, and inductive limits of
countable families formed from such spaces.
Tensor products of nuclear spaces are nuclear
spaces. Y. Komura gave an example of a non-
complete space that is quasicomplete, borno-
logical, and nuclear (and hence a Montel
space).

X. The Open Mapping Theorem and the
Closed Graph Theorem

Let E and F be topological linear spaces. The
statement that every continuous linear map-
ping of E onto F is open is called the open
mapping theorem (or homomorphism theorem),
and the statement that every linear mapping of
F into E is continuous if its graph is closed in
F x E 1s called the closed graph theorem. These
theorems hold if both E and F are complete
and metrizable (S. Banach).

A locally convex space is said to be B-
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complete (or fully complete) if a subspace C of
E’ is weak*-closed whenever CNV° is weak*-
closed for every neighborhood V of 0 in E. (F)-
spaces and the dual spaces of reflexive (F)-
spaces are B-complete. B-complete spaces are
complete, and closed subspaces and quotient
spaces by closed subspaces of B-complete
spaces are B-complete. If E is B-complete and
F is barreled, then the open mapping theorem
and the closed graph theorem hold (V. Ptak).

Both theorems hold also if F is ultraborno-
logical and E is a locally convex space ob-
tained from a family of (F)-spaces after a finite
number of operations of taking closed sub-
spaces, quotient spaces by closed spaces, direct
products of countable families, projective
limits of countable families, direct sums of
countable families, and inductive limits of
countable families. This was conjectured by
Grothendieck and proved by W. Stowikowski
(1961) and D. A. Raikov. Later, L. Schwartz,
A. Martineau, M. De Wilde, W. Robertson,
and M. Nakamura simplified the proof and
enlarged the class of spaces E [15].

(LF)-spaces, the dual spaces of Schwartz (F)-
spaces, and the space & of distributions are
examples of spaces E described in the previous
paragraph.

Y. Nonlocally Convex Spaces

The space L, for 0< p<1 shows that non-

~ locally convex spaces are meaningful in func-

tional analysis. Recently, the Banach-Steinhaus
theorem, closed graph theorems, etc. have
been investigated for nonlocally convex topo-
logical linear spaces [13].

Z. Diagram of Topological Linear Spaces

The spaces in Fig. 1 are all locally convex
spaces over the real number field or the com-
plex number field and satisfy the separation
axiom T,. The notation A— B means that
spaces with property 4 have property B. Main
properties of dual spaces are listed in Table 1.
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A. Introduction

Convergence and continuity, as well as the
algebraic operations on real numbers, are
fundamental notions in analysis. In an abstract
space too, it is possible to provide an ad-
ditional structure so that convergence and
continuity can be defined and a theory analo-
gous to classical analysis can be developed.
Such a structure is called a topological struc-
ture (for a precise definition, — Section B).
There are several ways of giving a topology to
a space. One method is to axiomatize the
notion of convergence (M. Fréchet [1], 1906;
— 87 Convergence). However, defining a
topology in terms of either a neighborhood
system (due to F. Hausdorff [3], 1914), a clo-
sure operation {due to C. Kuratowski, Fund.
Math., 3 (1922)), or a family of open sets is
more common.

B. Definition of a Topology

Let X be a set. A neighborhood system for X is
a function U that assigns to each pcint x of X,
a family U(x) of subsets of X subject to the
following axioms (U):
(1) xe U for each U in U(x).
) IfU,, Uyel(x), then U, N U, el(x).
(3) If Uel(x) and U <V, then Vel(x).
(4) For each U in U(x), there is a member W of
U(x) such that UeU(y) for each y in W.

A system of open sets for a set X 1s a family
O of subsets of X satisfying the following
axioms (O):
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M) X, Ze.
(2)If0,,0,e9D, then 0, N0,€0.
(3) 1 0,0 (i€A), then | J,,, 0, 0.

A system of closed sets for a space X is a
family & of subsets of X satisfying the follow-
ing axioms (F):

()X, FeF.
Q) If F,F,e®, then F,UF,e®.
(I F,ed (AeA), then (), F, €&

A closure operator for a space X is a func-
tion that assigns to each subset 4 of X, a
subset A“ of X satisfying the following axioms
(C):

) F*'=2.

(2) (AUB)Y*=A°UB-".
3y A=A~

(4) A%= A%,

An interior operator for a space X is a func-
tion that assigns to each subset 4 of X a
subset A7 of X satisfying the following axioms
(I): '

M Xi=X.

(2 (ANB)}i=A'NB'.
(3) Aic A.

@) A=A

Any one of these five structures for a set X,
ie., a structure satisfying any one of (U), (0),
(F), (C), or (1), determines the four other struc-
tures in a natural way. For instance, assume
that a system of open sets O satisfying (O) is
given. In this case, each member of O is called
an open set. A subset U of X is called a neigh-
borhood of a point x in X provided that there
is an open set O such that xe O <= U. If U(x) is
the family of all neighborhoods of x, the func-
tion x—(x) satisfies (U). The complement of
an open set in X is called a closed set. The
family & of all closed sets satisfies (F). Given a
subset 4 of X, the intersection A¢ of the family
of all closed sets containing A is called the
closure of A, and each point of 47 is called an
adherent point of A. The closure A*is the
smallest closed set containing A, and the func-
tion A— A“ satisfies (A). The closure 4 is
also denoted by A or C1 4. Dually, there is a
largest open subset A” of A. The set A’ (also
denoted by A° or Int A) is called the interior of
A, and each point of 4° is called an interior
point of A. The closure and interior are related
by A°=X—(X—A)and A=X —(X —A)°.
The correspondence A— A° satisfies (I). Con-
versely, open sets can be characterized vari-
ously as follows:

A is open<> AeU(x) for each x in A4

<> X—Ae®
<(X—A)=X—-4
<> A°=A.

When a structure satisfying (U), (F), (C), or
(I) is gtven, one of the four characterizations of
open sets can be used to define a system of
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open sets satisfying (Q) and hence the other
structure.

A topological structure or simply a topology
for a space X is any of these five structures for
X. If two topologies 1, and z, for X give rise
to identical systems of open sets, then 7, and 7,
are considered to be identical. For this reason
“topology” frequently means simply “system of
open sets” in the literature. A topological space
is a set X provided with a topology 7 and is
denoted by (X, 7) or simply X when there is no
ambiguity.

C. Examples

(1) Discrete Topology. Let X be a set, and let
the system D of open sets be the family of all
subsets of X. The resulting topology is called
the discrete topology, and X with the discrete
topology is a discrete topological space. In this
space, A= A°= A for each subset A, and A is a
neighborhood of each of its points.

(2) Trivial Topology. The trivial (or indiscrete)
topology for a set X is defined by the system of
open sets which consists of X and ¢ only. If
AZ X, then A°=¢, and if A+, then A=X.
Each point of X has only one neighborhood,
X itself.

(3) Metric Topology. Let (X, p) be a tmetric
space, t.e., a set X provided with a fmetric p.
For a positive number ¢, the e-neighborhood
of a point x is defined to be the set Uy (x)=
{ylyeX, p(x,y)<e}. Let U(x) be the family

of all sets ¥ such that U,(x)= V for some &;
then the assignment x — U(x) satisfies (U) and
hence defines a topology. This topology is the
metric topology for the metric space (X, p).

(4) Order Topology. Let X be a set flinearly
ordered by <. For each point x in X, let H(x)
be the family of all subsets U such that xe
{yla<y<b}<U for some a, b. The function
x—U(x) satisfies (U) and defines the order
topology for the linearly ordered set X.

(5) Convergence and Topology. We can define
the notion of convergence in a topological
space, and conversely we can define a topology
using convergence as a primitive notion (— 87
Convergence). In particular, for a metric space,
the metric topology can be defined in terms of
convergent sequences (— 273 Metric Spaces).

D. Generalized Topological Spaces

When a space X is equipped with a closure
operator that does not satisfy all of (C), the
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space is called a generalized topological space
by some authors. Topological implications of
each axiom in (C) have been investigated for
such spaces.

E. Local Bases

Let X be a topological space, and let x be a
point of X. A collection U,(x) of neighbor-
hoods of x is called a base for the neighborhood
system (fundamental system of neighborhoods
of a point x or local base at x) if each neigh-
borhood of x contains a member of U,(x). Let
{Uy(x)|xe X} be a system of local bases; then
the system has the following properties (U,):
(1) For each V in Uy(x), xe V < X.

(2)If V;, V,eUy(x), then there is a Vy in U(x)
such that V,c VN V,.

(3) For each V in Uy(x), thereexistsa WV
in U,y (x) such that for each y in W, V contains
some member of Uy{y).

Conversely, suppose that {U,(x)|xe X} is
a system satisfying (Uy). For each x in X,
let 2U(x) consist of all subsets V of X such
that V > U for some U in H(x). Then the sys-
tem {U(x)[xe X} satisfies (U) and therefore
defines a topology for X. This topology is
called the topology determined by the system
{Ug(x) | xe X}

For instance, in a metric space X, the set of
e-neighborhoods of x(e >0) is a local base at x
with respect to the metric topology. In an
arbitrary topological space, the collection of
all open sets containing x, i.e., the open neigh-
borhoods of x, is a local base at x.

Two systems satisfying (U,) are called
equivalent if they determine the same topology.
For systems {U,(x)|xe X} and {By(x)|xe X}
to be equivalent it is necessary and sufficient
that for each x in X each member of Uy(x)
contain a member of B,(x) and each member
of B,(x) contain a member of U, (x).

Sometimes the word “neighborhood” stands
for a member of a local base or for an open
neighborhood. However, this convention is
not used here.

F. Bases and Subbases

A family O, of open sets of a topological space

X is called a base for the topology (base for the

space, or open base) if each open set is the

union of a subfamily of O,. A base O, for the

topology of a topological space X has the

following properties (O,):

) JOe=xX.

Q) If W, W,e D, and xe W, N W,, then there is

a W in O, such that xe W, W, N W,.
Conversely, if a family D, of subsets of a set
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X satisfies (O,), then Dy, is a base for a unique
topology. A member of D, is called a basic
open set.

A family D, of open sets of a topological
space X is a subbase for the topology (or sub-
base for the space) if the family of all finite
intersections of members of D, is a base for
the topology. If D, a subbase for the topol-
ogy of a topological space X, then { | Dy=X.
Conversely, if O, is a family of subsets of a
set X such that | ] Oo0=X, then the family of
all finite intersections of members of O, is a
base for a unique topology 7. A subset of X is
open for 7 if and only if it is the union of a
family of finite intersections of members of
Dgo- The system of open sets relative to 7 is
said to be generated by the family O,,. Thus
any family of sets defines a topology for its
union.

A set & of subsets of a topological space is
called a network if for each point x and its
neighborhood U there is a member Fe § such
that xe F< U (A. V. Arkhangel’skii, 1959). If
all Fe & are required to be open, the network
& is exactly an open base.

G. Continuous Mappings

A mapping f on a topological space X into a
topological space Y is called continuous at a
point a of X if it satisfies one of the following
equivalent conditions:

(1) For each neighborhood V of f(a), there is a
neighborhood U of a such that f(U)<=V. (1)
For each neighborhood V of f(a), the inverse
image f (V) is a neighborhood of a.

(2) For an arbitrary subset 4 of X such that
ae A, f(a)e f(A).

Continuity can also be defined in terms of
convergence (— 87 Convergence).

If f is continuous at each point of X, [ is
said to be continuous. Continuity of f is equiv-
alent to each of the following conditions:

(1) For each open subset O of Y, the inverse
image f~1(0) is open in X.

(1) The inverse image under f of each member
of a subbase for the topology of Y is open in
X.

(2) For each closed subset F of Y, the inverse
image f !'(F) is closed.

(3) For each subset 4 of X, f(A)c f(A).

The image f(X) of X under a continuous
mapping f is called a continuous image of X.
Let X, Y, and Z be topological spaces, and let
[:X—>Yand g: Y>Z be mappings. If f is con-
tinuous at a point a of X and g is continuous
at f(a), then the composite mapping go f: X
—Z is continuous at the point a. Hence if f
and g are continuous, so is go f.

When a continuous mapping f: X > Y is
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thijective and f ! is continuous, the mapping
£ is called a homeomorphism (named by H.
Poincaré, 1895) or topological mapping. Two
topological spaces X and Yare homeomorphic,
X ~ Y, if there is a homeomorphism f: X —Y.

The relation of being homeomorphic is an
tequivalence relation. A property which, when
held by a topological space, is also held by
each space homeomorphic to it is a topological
property or topological invariant. The problem
of deciding whether or not given spaces are
homeomorphic is called the homeomorphism
problem.

A mapping f: X - Y is called open (resp.
closed) if the image under f of each open (resp.
closed) subset of X is open (closed) in Y. A
continuous bijection that is either open or
closed is a homeomorphism.

A continuous surjection f: X — Yis called a
quotient mapping if U < Y is open whenever
f~Y(U)is open (— Section L). If moreover
£1£71S) is quotient for each S Y as a map-
ping from the subspace (— Section JI) f~'(S)
onto the subspace S, then f is called a hered-
itarily quotient mapping. Open or closed con-
tinuous mappings are hereditarily quotient
mappings.

H. Comparison of Topologies

When a set X is provided with two topologies
17, and 1, and the identity mapping: (X, 7,)
—(X, 7,) is continuous, the topology 1, is said
to be stronger {larger or finer) than the topol-
0gy 1,, 7, is said to be weaker (smaller or
coarser) than 7, and the notation 7, =1, or
1, <71, is used. Let O;, &, U;, and q; be the
system of open sets, system of closed sets,
neighborhood system, and closure opera-
tion for X relative to the topology 1, (i=1,2),
respectively. Then each of the following is
equivalent to the statement 7, > 1,:

(1) O,>0,.

2) §1=> &,

(3) For each x in X, U, (x) > U,(x).

(4) A% < A" for each subset 4 of X.

Let S be the family of all topologies for X.
Then S is ordered by the relation >. The
discrete topology is the strongest topology for
X.If {z,| A€ A} is a subfamily of S, then among
the topologies stronger than each t,, there is a
weakest one 7, =sup{t,| A€ A}. Similarly,
among the topologies weaker than each 1,
there is a strongest one 7, =inf{z;|AeA}. In
fact, let O, be the family of all open sets rela-
tive to 1,; then the system of open sets for 1, is
generated by { J,.4 ©;, and the system of open
sets for 1, is precisely ();.40;. The family S is
therefore a fcomplete lattice.
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I. Induced Topology

Let f be a mapping from a set X into a topo-
logical space Y. Then the family {f ~}(0)|O is
open in Y} satisfies axioms (O) and defines a
topology for X. This topology is called the
topology induced by f (or simply induced topol-
ogy), and it is characterized as the weakest
one among the topologies for X relative to
which the mapping f is continuous.

J. Subspaces

Let (X, 7) be a topological space and M be a
subset of X. The topology for M induced by
the inclusion mapping f: M — X, i.e., the
mapping f defined by f(x)=x for each x in M,
is called the relativization of t to M or the
relative topology. The set M provided with the
relative topology is called a subspace of the
topological space (X, 7). Topological terms,
when applied to a subspace, are frequently
preceded by the adjective “relative” to avoid
ambiguity. Thus a relative neighborhood of a
point x in M is a set of the form M N U, where
U is a neighborhood of x in X. A relatively
open (relatively closed) set in M is a set of the
form M N A, where A is open (closed) in X. For
a subset A of M, the relative closure of A in M
is MN A, where A is the closure of 4 in X. A
mapping f: X — Y is called an embedding if f is
a homeomorphism from X to the subspace
f(X), and in this case X 1s said to be embedded
into Y. A property P is said to hold locally on
a topological space X if each point x of X has
a netghborhood U such that the property P
holds on the subspace U. A subset 4 of X is
locally closed if for each point x of X, there
exists a neighborhood V of x such that V1 A 1s
relatively closed in V. A subset of X is locally
closed if and only if it can be represented as
ONF, where O is open and F is closed in X.

K. Product Spaces

Let X be a set, and for each member A of an
index set A, let f, be a mapping of X into a
topological space X,. Then there is a weakest
topology for X that makes each f, continuous.
In fact, this topology is sup{z,}, where 7, is the
topology for X induced by f,. In particular, let
{X,|2€A} be a family of topological spaces,
and let X be the Cartesian product I'T, ., X;.
Then the weakest topology for X such that
each projection pr,: X — X, is continuous is
called the product topology or weak topology.
The Cartesian product [1,., X, equipped with
the product topology is called the product
topological space or simply the product space



4251
Topological Spaces

or direct product of the family {X,|2e A} of
topological spaces. If © is the family of all
open subsets of X, the union { J, pr; ' (C))
is a subbase for the product topology. If
x=1{x,} is a point of X, then sets of the type
m?qPrfl(Uj)zni;e;.,....;."/\/;; xUpx...xU,
form a local base at x for the product to-
pology, where 4, ..., A,€A and U, is a neigh-
borhood of X3, Each projection pr,: X - X is
continuous and open, and a mapping f from a
topological space Y into the product space
I1, X, is continuous if and only if pr,0 f: Y
— X, 1s continuous for each 4. Given a family
{f,} of continuous mappings f;: X,— Y,, the
product mapping I1, f,:I1, X, —I1, Y, is con-
tinuous with respect to the product topologies.
For the Cartesian product [T, X; of a family
{X,|%€ A} of topological spaces, there is an-
other topology called the box topology (or
strong topology). A base for the box topology
is the family of all sets [1,0,, where O, is open
in X, for each 4. For a point x={x,}, the
family of all sets of the form [1, U, is a local
base at x relative to the box topology, where
U; is a neighborhood of x;, for each 4. With
respect to the box topology, each projection
pr,;:I1, X, — X, is continuous and open, and
the product mapping [1/;:T1, X,-11,Y, ofa
family { f,} of continuous mappings f,: X, - Y,
is‘continuous. For a finite product of topolog-
ical spaces, the product topology agrees with
the box topology, but for an arbitrary product
the product topology is weaker than the box
topology. For the Cartesian product of topo-
logical spaces the usual topology considered is
the product topology rather than the box
topology.

L. Quotient Spaces

Let f be a mapping of a topological space

X onto a set Y. The quotient topology for Y
(relative to the mapping f) is the strongest
topology for Y such that [ is continuous. A
subset O of Y is open relative to the quotient
topology if and only if f1(0) is open. Given
an equivalence relation ~ on a topological
space X, the *quotient set Y =X/~ provided
with the quotient topology relative to the
projection ¢: X — Y is called the quotient topo-
logical space (or simply quotient space). A
mapping f from the quotient space Y=X/~
into a topological space is continuous if and
only if fo ¢ is continuous.

A partition of a space X is a family {4,|ie
A} of pairwise disjoint subsets of X such that
(J,4,=X. A partition {4,} of a topological
space X determines an equivalence relation ~
on X such that the family {A4,} is precisely
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the family of all equivalence classes under ~,
and therefore the partition determines the
quotient space Y= X/~. This space is called
the identification space of X by the given par-
tition. Each member A; of the partition can
be regarded as a point of Y, and the projec-
tion ¢: X — Y satisfies ¢(x)= A, whenever xe
Aj,. A partition {4,]|Ae A} of a topological
space is called upper semicontinuous if for
each A4, and each open set U containing 4;,
there is an open set Vsuch that A, cV c U,
and V is the union of members of {A4,]1€A}.
A partition {A4,| 1€ A} is upper semicontinu-
ous if and only if the projection ¢: X > Y=
{A,| e} is a closed mapping.

M. Topological Sums

Let X be a set, and for each member 4 of an
index set A, let f, be a mapping of a topo-
logical space X, to X. Then the family {0 c

X | f71(0) is open for any A} satisfies the
axioms of the open sets. This topology 7 is
characterized as the strongest one for X that
makes each f, continuous. A mapping g on X
with 7 to a topological space Y is continuous if
and only if go f,: X, > Y is continuous for each
AieA. The simplest is the case where X is the
disjoint union of X, and f; is the inclusion
mapping. Then we call the topological space X
the direct sum or the topological sum of {X,}
and denote it by ® X, or L1 X,. More gener-
ally let the set X be the union of topological
spaces { X}, such that for each 4 and peA
the relative topologies of X;N X, from X, and
X, coincide. Then we call the topology T the
weak topology with respect to {X,}. If X,NX,
is closed (resp. open) in X, for any 4, then X,
is closed (resp. open) in X and the original
topology of X, coincides with the relative
topology. If, moreover, for each subset I of A,
F= U,lerX,1 is closed and the weak topology
of F with respect to { X}, coincides with the
relative topology induced by 7, then X with ©
is said to have the hereditarily weak topology
with respect to { X} (or to be dominated by
{X,})- A topological space has the hereditarily
weak topology with respect to any locally
finite closed covering, and every CW-complex
(— 70 Complexes) has the hereditarily weak
topology with respect to the covering of all
finite subcomplexes.

When {X,} is an increasing sequence of
topological spaces such that each X, is a sub-
space of X, then the union X =| ) X, with
the weak topology is called the inductive limit
of {X,} and is denoted by li_I}’l X,. Each X, may
again be regarded as a subspace of X.
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N. Baire Spaces

For a subset 4 of a topological space X, the
set X — A4 is called the exterior of A4, and the set
ANX = A is called the boundary of 4, de-
noted by Bd A, Fr A4, or ¢A. A point belonging
to the exterior (boundary) of 4 is an exterior
point (boundary point or frontier point) of A. If
the closure of 4 is X, then A4 is said to be dense
in X. When X — A is dense in X, i.e., when the
interior of A is empty, A4 is called a boundary
set (or border set), and if the closure 4 is a
boundary set, A4 is said to be nowhere dense.
The union of a countable family of nowhere
dense sets is called a set of the first category
(or meager set). A set that is not of the first
category is called a set of the second category
(or nonmeager set). The complement of a set of
the first category is called a residual set. In the
space R of real numbers, the set Q of all ra-
tional numbers is of the first category, and the
set R—Q of all irrational numbers is of the
second category. Both Q and R —Q are dense
in X and hence are boundary sets. The union
of a finite family of nowhere dense sets is no-
where dense, and the union of a countable
family of sets of the first category is also of the
first category. A subset A of X is nowhere
dense in X if and only if for each open set O,
ON A is not dense in O.

A topological space X is called a Baire space
(Baire, 1899) if each subset of X of the first
category has an empty interior. Each of the
following conditions is necessary and sufficient
for a space X to be a Baire space:

(1) Each nonempty open subset of X is of the
second category.

(2)If Fy, F,, ... is a sequence of closed subsets
of X such that the union { J;2, F, has an inte-
rior point, then at least one F, has an interior
point.

(3) If 04, 0,, ... is a sequence of dense open
subsets of X, then the intersection ()2, 0, is
dense in X.

An open subset of a Baire space is a Baire
space for the relative topology. A topological
space that is homeomorphic to a complete
metric space (— 436 Uniform Spaces I) is a
Baire space (Baire-Hausdorff theorem). A
locally compact Hausdorff space (— Section
V) is also a Baire space. The class of Cech-
complete completely regular spaces (— Section
T) includes both of these spaces, but there are
also Baire spaces that are not in the class. A
subset A of a topological space is said to sat-
isfy Baire’s condition or to have the Baire
property if there exist an open set O and sets
P,, P, of the first category such that A=
{OU P,)—P,. A 'Borel set satisfies Baire’s
condition.
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0. Accumulation Points

A point x is called an accumulation point, or a
cluster point of a subset 4 of a topological
space X if xe A —{x}. The set of all accumula-
tion points of a set A is called the derived set
of A and is denoted by 4’ or A A point x
belongs to A’ if and only if each neighborhood
of x contains a point of 4 other than x itself. A
point belonging to the set 4A°= A4 — A’ is called
an isolated point of A, and a set A4 consisting of
isolated points only, i.e., A= A%, is said to be
discrete. If each nonempty subset of 4 contains
an isolated point, then A is said to be scat-
tered; and if A4 does not possess an isolated
point, i.e., 4= A’, then A is said to be dense in
itself. The largest subset of 4 which is dense in
itself is called the kernel of 4. If A=A, then A
is called a perfect set.

If x is an accumulation point of A, then for
each neighborhood U of x, UN(A— {x})# &.
Furthermore, it is possible to classify an ac-
cumulation point of A according to the fcar-
dinality of UN(A4 —{x}). A point x is called a
condensation point of a set A if for each neigh-
borhood U of x, the set UM A4 is uncountable.
A point x is a complete accumulation point of
A if for each neighborhood U of x, the set
U N A4 has the same cardinality as A.

P. Countability Axioms

A topological space X satisfies the first count-
ability axiom if each point x of X has a coun-
table local base (F. Hausdorff [3]). Metric
spaces satisfy the first countability axiom. In
fact, the family of (1/n)-neighborhoods (n=
1,2, ...) of a point is a local base of the point.
The topology of a topological space that
satisfies the first countability axiom is com-
pletely determined by convergent sequences.
For instance, the closure of a subset 4 of such
a space consists of all limits of sequences in 4
{— 87 Convergence). A topological space X is
said to satisfy the second countability axiom or
to be perfectly separable if there is a countable
base for the topology. tEuclidean spaces satisfy
the second countability axiom. If X contains a
countable dense subset, X is said to be sepa-
rable. A space that satisfies the second count-
ability axiom satisfies the first and is also a
separable Lindelof space (— Section S). How-
ever, the converse is not true. Each of the
following properties is independent of the
others: separability, the first countability
axiom, and the Lindel6f property. If a metric
space is separable, then it satisfies the second
countability axiom. There are metric spaces
that are not separable.
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Q. Separation Axioms

Topological spaces that are commonly en-
countered usually satisfy some of the following
separation axioms.

(T,) Kolmogorov’s axiom. For each pair of
distinct points, there is a neighborhood of one
point of the pair that does not contain the
other.

(T,) The first separation axiom or Fréchet’s
axiom. For each pair x, y of distinct points,
there are neighborhoods U of x and Vof y
such that x¢ Vand y¢ U.

Axiom (T,) can be restated as follows:

(T}) For each point x of the space, the sin-
gleton {x} is closed.

(T,) The second separation axiom or Haus-
dorff’s axiom [3]. For each pair x, y of dis-
tinct points of the space X, there exist disjoint
neighborhoods of x and y.

Axiom (T,) is equivalent to the following:

(T%) In the product space X x X the diago-
nal set A is closed.

(T;) The third separation axiom or Vietoris’s
axiom (Monatsh. Math. Phys., 31 (1921)).
Given a point x and a subset 4 such that x ¢ A4,
there exist disjoint open sets O, and O, such
that xe O, and A< 0,. (In this case, the sets
{x} and A are said to be separated by open
sets.)

Axiom (T;) can be restated as (T3) or (T53):

(T5) For each point x of the space, there is a
local base at x consisting of closed neighbor-
hoods of x.

(T%) An arbitrary closed set and a point not
belonging to it can be separated by open sets.

(T,) The fourth separation axiom or Tietze’s
first axiom (Math. Ann., 88 (1923)). Two dis-
joint closed sets F, and F, can be separated by
open sets, i.e., there exist disjoint open sets O,
and O, such that F; <0, and F,<0,.

(T,) Tietze’s second axiom. Whenever two
subsets 4, and A, satisfy A, NA,=A; NA,=
&, A, and A4, can be separated by open sets.

It is easily seen that (T)=(T,), (T,) and
(T3) =(Ty), (T,) and (T,) = (T5). Axiom (T,) is
equivalent to each of (T}) and (T}):

(T,) Whenever F; and F, are disjoint closed
subsets, there exists a continuous function f on
the space into the interval [0, 1] such that f'is
identically O on F, and 1 on F,.

(T,) Each real-valued continuous function
defined on a closed subspace can be extended
to a real-valued continuous function on the
entire space.

The implications (T,) =(T,) and (T,) = (T})
are known as Uryson’s lemma (Math. Ann.,

94 (1925)) and the Tietze extension theorem’
(J. Reine Angew. Math., 145 (1915)), respec-
tively. In addition, there are two more related
axioms:
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(T3,) Tikhonov’s separation axiom. For each
closed subset F and each point x not in F,
there is a real-valued continuous function f on
the space such that f(x)=0 and f is identically
lonF.

(Ts) (N. Vedenisov). For each closed subset
F, there is a real-valued continuous function f
on the space such that F={x| f{x)=0}.

Axioms (T) and (Tg) are equivalent to the
following (T} and (Tj), respectively:

(T) Each subspace satisfies (T,)

(Tg) X satisfies (T,) and each closed set is a
*G4-set.

The following implications are valid: (Ty,) =
(Ty), (Tg) = (Ts), (T,) and (T,) = (Ty).

Table 1 gives a classification of topological
spaces by the separation axioms. Each line
represents a special case of the preceding line.

A 'metrizable space is perfectly normal, but
the converse is false (for metrization theorems
— 273 Metric Spaces). Among the spaces
satisfying the second countability axiom,
regular spaces are normal (Tikhonov’s theo-
rem, Math. Ann., 95 (1925)) and metrizable
(Tikhonov-Uryson theorem; P. Uryson, Math.
Ann., 94 (1925)).

Table 2 shows whether various topological
properties are preserved in subspaces, product
spaces, and quotient spaces. The topological
properties considered are T,, T, == Hausdorff,
T, =regular, CR = completely regular, T,=
normal, Ts =completely normal, M = metriz-
able, C;=first axiom of countability, C;=
second axiom of countability, C = compact,
S=separable, and L = Lindeldf. Each position
is filled with O or x according as the prop-
erty (say, P) listed at the head of the column
is preserved or not in the sort of space listed
on the left obtained from space(s) all having
property P.

R. Coverings

A family M= {M,}, . of subsets of a set X is
called a covering of a subset A of X if A<
(J, M. If M is finite (countable), it is called
a finite covering (countable covering). An open
(closed) covering is a covering consisting of
open (closed) sets.

A family 9 of subsets of a topological space
X is said to be locally finite if for each point x
of X, there is a neighborhood of x which inter-
sects only a finite number of members of M. If
moreover {M,},., is disjoint, then 9N is called
discrete. Mt is called star-finite if each mem-
ber of 9 intersects only a finite number of
members of M. A g-locally finite or o-discrete
family of subsets of X is respectively the union
of a countable number of locally finite or dis-
crete families of subsets of X. A covering IN
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Table 1. Separation Axioms
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Axioms Spaces Satisfying the Axioms

(T,) T,-space (Kolmogorov space)

(T)) T,-space (Kuratowski space)

(T,) T,-space (Hausdorff space, separated space)

(T,) and (T5) T,-space (regular space)

(T;) and (T5y) Completely regular space (Tikhonov space)

(T)) and (T,) T,-space (normal space)

(T,) and (Ty) Ts-space (completely normal space, hereditarily normal space)
(T,) and (Tg) Te-space {perfectly normal space)

Table 2. Topological Properties and Spaces

Space T, T, T, CR 1T, T, M (C (C; C S L
Subspace (0] (@] @) 0] X O @] O @] X X X
Closed subspace o) 0 0 O 0] o 0] o 0] o) X 0]
Open subspace O O O @) X @) O @) O X O X
Product O O O ©) X X X X X O X X
Countable product O O O 0] X X @) 0] ®) 0] 0] X
Quotient space X X X X X X X X X O O O

is called point-finite if cach infinite number

of members of I has an empty intersection. A
covering M is a refinement of a covering N
(written YR <N) if each member of M is con-
tained in a member of . The order of the
covering M is the least integer r such that any
subfamily of MM consisting of r+ 1 members
has an empty intersection.

Let 9 be a covering of X, and let A be a
subset of X. The star of A relative to 9, de-
noted by S(4, M), is the union of all members
of M whose intersection with A is nonempty.
Let M denote the family {S({x}, M)}y and
MWi* the family {S(M, M)} yrem. Then Wt* and
M* are coverings of X, and M< WM< M* <
MA2. A covering 9N is a star refinement of a
covering M if M* <N, and M is a barycentric
refinement (or A-refinement) of 9 if M2 <N.

A sequence Wi, ,M,, ... of open coverings of
a topological space is called a normal sequence
if M2, <M, for n=1,2,...,and an open
covering M is said to be a normal covering if
there is a normal sequence 9, , M, ... such
that M, <. The support (or carrier) of a
real-valued function f on a topological
space X is defined to be the closure of the set
{x] flx)#£0}. Let { f,},.4 be a family of con-
tinuous nonnegative real-valued functions on
a topological space X, and for each « in 4, let
C, be the support of f,. The family { f,},. . 1s
called a partition of unity if the family {C,},.,
is locally finite and X, f,(x)=1 for each x in X.
If the covering {C,},. , is a refinement of a
covering M, the family { f,},. , is called a par-
tition of unity subordinate to the covering t. A
partition of unity subordinate to a covering It
exists only if M is a normal covering (— Sec-
tion X). If p is a continuous Tpseudometric on
a T;-space X, then define a covering M, for

each natural number n by M, ={U(x;2""}, 4,
where U(x;e)={y{p{x, y)<z&}. Then the se-
quence MM, I, ... is a normal sequence of
open coverings. Conversely, given a normal
sequence I, M,, ... of open coverings of X,
there exists a continuous pseudometric p such
that p(x, y)<27" whenever xe S(y,M,), and
p(x,1)=27""! whenever x¢S5(y, M,). If in
addition for each x the family {S(x,M,)|n=
1,2,...} 1s a local base at x, then the metric
topology of p agrees with the topology of X.

S. Compactness

If each open covering of a topological space X
admits a finite open covering as its refinement,
the space X is called compact; if each open
covering of X admits a countable open refine-
ment, X is said to be a Lindel6f space (P. Alek-
sandrov and P. Uryson, Verh. Akad. Wetensch.,
Amsterdam, 19 (1929)); if each open covering
of X admits a locally finite open refinement, X
is called paracompact (J. Dieudonné, J. Math.
Pures Appl., 23 (1944)); and if each open cover-
ing of X admits a star-finite open refinement,
X is said to be strongly paracompact (C. H.
Dowker, Amer. J. Math., 69 (1947)) or to have
the star-finite property (K. Morita, Math.
Japonicae, 1 (1948)). The space X is compact
(Lindeldf) if for each open covering M of X,
there is a finite (countable) subfamily of IR
whose union is X.

The following properties for a topological
space X are equivalent: (1) The space X is
compact. (2) If a family {F,},., of closed sub-
sets of X has the finite intersection property,
i.e., each finite subfamily of {F,},., has non-
empty intersection, then (), F,# . (3) Each
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infinite subset of X has a complete accumu-
lation point. (4) Each fnet has a convergent
*subnet. (5) Each funiversal net and each
fultrafilter converge.

If a subset A of X is compact for the relative
topology, A is called a compact subset. A
subset 4 of X is said to be relatively compact if
the closure of A in X is a compact subset. A
closed subset of a compact topological space is
compact, and a compact subset of a Hausdorff
space is closed. A continuous image of a com-
pact space is compact, each continuous map-
ping of a compact space into a Hausdorff space
is a closed mapping, and a continuous bijec-
tion of a compact space onto a Hausdorff
space is a homeomorphism. The product space
of a family {X,},.. of topological spaces is
compact if and only if each factor space is
compact (Tikhonev’s product theorem, Math.
Ann., 102 (1930)). A compact Hausdorff space
is normal. A compact Hausdorff space is
metrizable if and only if it satisfies the second
countability axiom. A metric space or a funi-
form space is compact if and only if it is
*totally bounded and fcomplete. A subset of a
Euclidean space is compact if and only if it is
closed and bounded. In a discrete space only
finite subsets are compact. The cardinality of a
compact Hausdorff space with the first count-
ability axiom cannot exceed the power of the
continuum (Arkhangel’skii).

There are a number of conditions related to
compactness. A topological space is sequenti-
ally compact if each sequence in X has a con-
vergent subsequence. A space X is countably
compact (M. Fréchet [1]) if each countable
open covering of X contains a finite subfamily
that covers X. A space X is pseudocompact (E.
Hewitt, 1948} if each continuous real-valued
function on X is bounded. Some authors use
compact and bicompact for what we call coun-
tably compact and compact, respectively. N.
Bourbaki [9] uses compact and quasicompact
instead of compact Hausdorff and compact,
respectively. A T;-space is countably compact
if and only if each infinite set possesses an
accumulation point. If X is countably com-
pact, then X is pseudocompact, and if X is
normal, the converse also holds. If a fcomplete
uniform space is pseudocompact, then it is
compact. A space satisfying the second counta-
bility axiom is compact if and only if it is
sequentially compact. If X is sequentially
compact, then X is countably compact, and if
X satisfies the first countability axiom, the
converse is true.

T. Compactification

A compactification of a topological space X
consists of a compact space Y and a homeo-
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morphism of X onto a dense subspace X, of Y.
We can always regard X as a dense subspace
of a compactification Y. If X is completely
regular, then there is a Hausdorff compac-
tification Y such that each bounded real-
valued continuous function on X can be
extended continuously to Y. Such a compacti-
fication is unique up to homeomorphism; it is
called the Stone-Cech compactification of X
(E. Cech, Ann. Math., 38 (1937); M. H. Stone,
Trans. Amer. Math. Soc., 41 (1937)) and is
denoted by (X). Let { f,} . be the set of all
continuous functions on a completely regular
space X into the closed interval I =[0, 1].
Then a continuous mapping ¢ of X into a
parallelotope I =11, I, (I,=1) is defined by
@(x)={f3(x)}1ea» and the mapping ¢ is a
homeomorphism of X onto the subspace ¢(X)
of I (Tikhonov’s embedding theorem, Math.
Ann., 102 (1930)). The closure ¢(X) of ¢(X) in
I* is the Stone-Cech compactification of X.
The natural mapping (X, x X;)—B(X,) x
B(X,) is a homeomorphism if and only if X, x
X, is pseudocompact (I. Glicksberg, 1959).

For a topological space X, let 20 be a point
not in X, and define a topology on the union
X U{oo} as follows: A subset U of X U{co} is
open if and only if etther oo # U and U is open
in X, or coeU and X — U is a compact closed
subset of X. The topological space X U {0}
thus obtained is compact, and if X is not
already compact, the space X U{x} is a com-
pactification of X called the one-point com-
pactification of X (P. S. Aleksandrov, C. R.
Acad. Sci. Paris, 178 (1924)). The one-point
compactification of a Hausdorff space is not
necessarily Hausdorff. The one-point compac-
tification of the n-dimensional Euclidean space
R" is homeomorphic to the n-dimensional
sphere S”.

A completely regular space X is a 1G,-set in
the Stone-Cech compactification §(X) if and
only if it is a Gs-set in any Hausdorff space Y
which contains X as a dense subspace. Then X
is said to be Cech-complete.

U. Absolutely Closed Spaces

A Hausdorff space X is said to be absolutely
closed (or H-closed; P. Aleksandrov and P.
Uryson, 1929) if X is closed in each Hausdorff
space containing it. A compact Hausdorff
space is absolutely closed. A Hausdorff space
is absolutely closed if and only if for each open
covering {N,},., of X, there is a finite sub-
family of {N,},.. that covers X. The product
space of a family of absolutely closed spaces is
absolutely closed. Each Hausdorff space is a
dense subset of an absolutely closed space.
Similarly, a regular space X is said to be r-
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closed if X is closed in each regular space
containing it (N. Weinberg, 1941).

V. Locally Compact Spaces

A topological space X is said to be locally
compact if each point of X has a compact
neighborhood (P. Aleksandrov and P. Uryson,
1929). A *uniform space X is said to be uni-
formly locally compact if there is a member U
of the funiformity such that U(x) is compact
for each x in X (— 436 Uniform Spaces). A
noncompact space X is locally compact and
Hausdorff if and only if the one-point com-
pactification of X is Hausdorff, and this is the
case if and only if X is homeomorphic to an
open subset of a compact Hausdorff space. A
locally compact Hausdorff space is completely
regular, and for each point of the space, the
family of all of its compact neighborhoods
forms a focal base at the point. A locaily
closed, hence open or closed, subset of a lo-
cally compact Hausdorff space is also locally
compact for the relative topology. If a sub-
space A of a Hausdorff space X is locally

compact, then A is a locally closed subset of X.

The Euclidean space R" is locally compact,
and hence each locally Euclidean space, ie., a
space such that each point admits a neighbor-
hood homeomorphic to a Euclidean space, is
locally compact. A topological space is called
g-compact if it can be expressed as the union
of at most countably many compact subsets.

W. Proper (Perfect) Mappings

A mapping f of a topological space X into a
topological space Y is said to be proper (N.
Bourbaki [9]) (or perfect [14]) if it is con-
tinuous and for each topological space Z, the
mapping [ x 1: X x Z— Y x Z is closed, where
(f x 1){(x, z)=(f(x), 2). A continuous mapping
f:X->Yis proper if and only if it is closed and
S/ 7"{y}) is compact for each y in Y. Another
necessary and sufficient condition is that if
{x,}y 18 a 'net in X such that its image { f(x,)}
converges to ye Y, then a subnet of {x,} con-
verges to an xe f~!(y) in X. A continuous
mapping of a compact space into a Hausdorff
space is always proper. For a compact Haus-
dorff space X, a quotient space Y is Hausdorff
if and only if the canonical projection ¢: X —
Y is proper.

For a continuous mapping f of a locally
compact Hausdorff space X into a locally
compact Hausdorff space Y, the following
three conditions are equivalent: (1) f is proper.
(2) For each compact subset K of Y, the in-
verse image [ (K) is compact. (3) If X U {x, |
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and YU {y, } are the one-point compactifi-
cations of X and Y, then the extension f; of
fsuch that f,(x, )=y, is continuous.

The composition of two proper mappings is
proper and the direct product of an arbitrary
number of proper mappings is proper.

X. Paracompact Hausdorff Spaces

A paracompact Hausdorff space (often called
simply a paracompact space) is normal. For a
Hausdorff space X, the following five con-
ditions are equivalent: (1) X is paracompact.
(2) X is fully normal (J. W. Tukey [8]), i.e.,
each open covering of X admits an open
barycentric refinement. (3) Each open covering
has a partition of unity subordinate to it. (4)
Each open covering is refined by a closed
covering {F,|xe A} that is closure-preserving,
ie., U{F;|BeBj is closed for each Bc A. (5)
Each open covering {U,|x€ A} has a cushioned
refinement {1, |xe A}, ie., CHU{V;|BeB})c
U{U,|Be B} for each B< A. The implication
(1)—(2) is Dieudonné’s theorem. The implication
(2)—(1) 1s A. H. Stone’s theorem (1948), from
which it follows that each metric space is para-
compact. The implications (5)—(4)—(1) is
Michael’s theorem (1959, 1957).

For normal spaces, the following weaker
versions of (2) and (3) hold: A T;-space X is
normal if and only if each finite open covering
of X admits a finite open star refinement (or
finite open barycentric refinement). For each
locally finite open covering of a normal space,
there is a partition of unity subordinate to it.

For a regular space X the following three
conditions are equivalent: (1) X is paracom-
pact. (2) Each open covering of X is refined by
a g-discrete open covering. (3) Each open
covering of X is refined by a o-locally finite
open covering. Tamano’s product theorem: For
a completely regular space X to be paracom-
pact it is necessary and sufficient that X x B(X)
be normal (1960).

For a *connected locally compact space X,
the following conditions are equivalent: (1) X
is paracompact. (2) X is g-compact. (3) In the
one-point compactification X U{oc}, the point
oo admits a countable local base. (4) There is a
locally finite open covering {U,},.4 of X such
that U, is compact for each 2. (5) X is the
union of a sequence {U,} of open sets such
that U, is compact and U,c U,,, (n=1,2,...).
(6) X is strongly paracompact.

Every *F_ -set of a paracompact Hausdorff
space is paracompact (Michael, 1953). When a
T,-space X has the hereditarily weak topology
with respect to a closed covering {F,}, then X
is paracompact Hausdorff (normal, completely
normal or perfectly normal) if and only if each
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F; is (Morita, 1954; Michael, 1956). In par-
ticular, every CW-complex is paracompact
and perfectly normal (Morita, 1953).

Y. Normality and Paracompactness of Direct
Products

A topological space X is discrete if X x Yis
normal for any normal space Y (M. Atsuji and
M. Rudin, 1978). There are a paracompact
Lindeldf space X and a separable metric space
Y such that the product X x Y is not normal
(Michael, 1963). The following are conditions
under which the products are normal or
paracompact. Let m be an infinite *cardinal
number. A topological space X is called m-
paracompact if every open covering consisting
of at most m open sets admits a locally finite
open covering as its refinement. When nt is
countable, it is called countably paracompact.
If X has an open base of at most m members,
m-paracompact means paracompact. The
following conditions are equivalent for a topo-
logical space X: (1) X is normal and count-
ably paracompact; (2) The product X x Y is
normal and countably paracompact for any
compact metric space Y; (3) X x I is normal,
where I=[0,1] (C. H. Dowker, 1951). Rudin
(1971) constructed an example of a collection-
wise normal space (— Section AA) that is not
countably paracompact. When m is general
the following conditions are equivalent: (1) X
is normal and m-paracompact; (2) If Yis a
compact Hausdorff space with an open base
consisting of at most m sets, then X x Y is
normal and m-paracompact; (3) X x I™ is
normal; (4) X x {0, [}™ is normal (Morita,
1961). In particular, the product X x Y of

a paracompact Hausdorff space X and a
compact Hausdorff space Y is paracompact
(Dieudonng, 1944).

A topological space X is called a P-space if
it satisfies the following conditions: Let Q be
an arbitrary set and {G(oy, ..., %) |24, ... ,€Q,
i=1,2,...} be a family of open sets such that
Gloy,...,)=G(oy, ..., %, ;). Then there is a
family of closed sets {F(a,, ..., %} %y, ..., %€,
i=1,2,...} such that F(x,,...,0)= G(ay, ..., a,)
and thatif | JZ, G(a,, ..., ;)= X for a se-
quence {o;}, then { J7%; F(ay, ..., %)= X. Per-
fectly normal spaces, countably compact
spaces, Cech-complete paracompact spaces
and g-compact regular spaces are P-spaces.
Normal P-spaces are countably paracom-
pact. A Hausdorff space X is a normal (resp.
paracompact) P-space if and only if the prod-
uct X x Y is normal (resp. paracompact) for
any metric space Y (Morita, Math. Ann., 154
1964).
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The product X x Y of locally compact Haus-
dorff spaces X and Y is a locally compact
Hausdorff space. If, in this case, X and Y are
paracompact, then so is the product. If the
direct product space [T, X, of metric spaces is
normal, then X, are compact except for at
most countably many £, and hence the prod-
uct space is paracompact (A. H. Stone, 1948).

A class % of topological spaces is called
countably productive if for a sequence X; of
members of € their product [] X, is again a
member of 6. The classes of (complete) (sepa-
rable) metric spaces form such examples. The
class of paracompact and Cech-complete
spaces is countably productive (7. Frolik,
1960). A topological space X is called a p-
space if it is completely regular and there
is a sequence M; of families of open sets in
the Stone-Cech compactification B(X) such
that, for each point xe X, xe () S(x, M) X
(Arkhangel’skii, 1963). X is called an M-space
if there is a normal sequence 9, of open
coverings of X such that if K, oK, >...isa
sequence of nonempty closed sets and K; <
S(x, My, i=1,2,...,for an xe X, then (K,
& (Morita, 1963). The class of paracompact
p-spaces and that of paracompact Hausdorff
M-spaces are the same and are countably pro-
ductive. For a covering & of X and an xe X
we set C(x, )= {F|xeFe&}. X iscalled a
2-space if X admits a sequence &; of locally
finite closed coverings such thatif K, o K, >
... is a sequence of nonempty closed sets and
K,cCx,§,),i=1,2,..., for an xe X, then
(VK;# & (K. Nagami, 1969). Z-spaces are
P-spaces. The class of all paracompact X-
spaces is also countably productive. Among
the above classes each one is always wider
than its predecessors. Yet the product X x Y of
a paracompact Hausdorff P-space X and a
paracompact Hausdorff X-space Y is paracom-
pact. Other examples of countably productive
classes are the Suslin spaces and the Luzin
spaces (— Section CC) introduced by Bour-
baki (1958), the stratifiable spaces by J. G.
Ceder (1961) and C. J. R. Borges (1966), the -
spaces by Michael (1966) and the ¢-spaces by
A. Okuyama (1967).

Z. Strongly Paracompact Spaces

Regular Lindelof spaces are strongly paracom-
pact. Conversely, if a connected regular space
is strongly paracompact, then it is a Lindeldf
space (Morita, 1948). Hence a connected non-
separable metric space is not strongly para-
compact. Paracompact locally compact Haus-
dorff spaces and uniformly locally compact
Hausdorff spaces are strongly paracompact.
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These classes of spaces coincide under suitable
funiform structures.

AA. Collectionwise Normal Spaces

A Hausdorff space X is called a collectionwise
normal space if for each discrete collection
{F,loae A} of closed sets of X there exists a
disjoint collection {U,|ae A} of open sets with
F,cU,(ae A) (R. H. Bing, 1951). If X satisfies
an analogous condition for the case where
each F, is a singleton, X is called a collection-
wise Hausdorff space. Paracompact Hausdorff
spaces are collectionwise normal (Bing). Every
point-finite open covering of a collectionwise
normal space has a locally finite open refine-
ment (Michael, Nagami).

A topological space X is called a developable
space if it admits a sequence M;, i=1,2, ..., of
open coverings such that, for each point xe X,
{S(x,U)|i=1,2,...} forms a base for the
neighborhood system of x (R. L. Moore, 1916).
A regular developable space is called a Moore
space. The question of whether or not every
normal Moore space is metrizable is known
as the normal Moore space problem (— 273
Metric Spaces K). Collectionwise normal
Moore spaces are metrizable (Bing).

BB. Real-Compact Spaces

A completely regular space X is called real-
compact if X is complete under the smallest
funiformity such that each continuous real-
valued function on X is uniformly continuous
(— 422 Uniform Spaces). This notion was
introduced by E. Hewitt (Trans. Amer. Math.
Soc., 64 (1948)) under the name of Q-space,
and independently by L. Nachbin (Proc. Inter-
national Congress of Mathematicians, Cam-
bridge, Mass., 1950).

A Lindeldf space is real-compact. If X, and
X, are real-compact spaces such that the rings
C(X,) and C(X,) of continuous real-valued
functions on X, and X, are isomorphic, then
X, and X, are homeomorphic (Hewitt). If X is
real-compact, then X is homeomorphic to a
closed subspace of the product space of copies
of the space of real numbers, and conversely.

CC. Images and Inverse Images of Topological
Spaces

Each continuous mapping f: X - Y is decom-
posed into the product io hop of continuous
mappings p: X =X/~ , h: X/~ > f(X) and i:
J(X)—Y, where ~ is the equivalence relation
such that x, ~x, if and only if f(x,)= f(x,).
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The mapping f is open (resp. closed) if and
only if these mappings are all open (resp.
closed). Then h is a homeomorphism. The
image of a paracompact Hausdorff space
under a closed continuous mapping is para-
compact (Michael, 1957).

Let /: X - Y be a perfect surjection. Then Y
is called a perfect image of X and X a perfect
inverse image of Y. If, in this case, one of X
and Y satisfies a property such as being com-
pact, locally compact, g-compact, Lindelof, or
countably compact, then the other also satis-
fies the property. When X and Y are com-
pletely regular, the same is true with regard
to Cech completeness. Properties such as
regularity, normality, complete normality,
perfect normality, and the second countability
axiom are preserved in perfect images; but
complete regularity and strong paracompact-
ness are not. Perfect images of metric spaces
are also metrizable (S. Hanai and Morita, A.
H. Stone, 1956). Conversely, perfect inverse
images of paracompact spaces are paracom-
pact. If a Hausdorff space is a perfect inverse
image of a regular space (resp. k-space; —
below), then it is a regular space (resp. k-
space). Every paracompact Cech-complete
space is a perfect inverse image of a fcomplete
metric space (Z. Frolik, 1961). A completely
regular space is a paracompact p-space if and
only if it is a perfect inverse image of a metric
space (Arkhangel’skii, 1963). A mapping /: X —
Y is called quasi-perfect if it is closed and
continuous and the inverse image f!(y) of
each point ye Y is countably compact. A topo-
logical space X is an M-space if and only if
there is a quasi-perfect mapping from X onto
a metric space Y (Morita, 1964). Let f: X > Y
be a quasi-perfect surjection. If one of X and
Yis a Z-space, then the other is also a X-space
(Nagami, 1969).

A topological space X is called a Fréchet-
Uryson space (or a Fréchet space) if the closure
of an arbitrary set A < X is the set of all limits
of sequences in 4 (Arkhangel’skii, 1963). X is
called a sequential space if A < X is closed when-
ever A contains all the limits of sequences in
A (S. P. Franklin, 1965). X is called a k’-space
if the closure of an arbitrary set A is the set of
all points adherent to the intersection ANK
for a compact set K in X (Arkhangel’skii,
1963). X is called a k-space if 4 < X is closed
whenever AN K is closed in K for any compact
set K (— Arkhangel’skii, Trudy Moskov. Mat.
Obshch., 13 (1965)). Spaces satisfying the first
countability axiom are Fréchet-Uryson spaces.
The Frechet-Uryson spaces (resp. sequential
spaces) are characterized as the images under
hereditarily quotient (resp. quotient) mappings
of metric spaces or locally compact metric
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spaces. Similarly the k’-spaces (resp. k-spaces)
coincide with the images under hereditarily
quotient (resp. quotient) mappings of locally
compact spaces. The image of a metric space
under a closed continuous mapping is called a
Lashnev space. Any subspace of a Fréchet-
Uryson space is a Fréchet-Uryson space. Con-
versely, a Hausdorff space is a Fréchet-Uryson
space if any of its subspaces is a k-space. Cech-
complete spaces are k-spaces. A Hausdorff
space is called a Suslin space (resp. Luzin space)
if it is the image under a continuous surjection
(resp. continuous bijection) of a complete
separable metric space (Bourbaki [9]; also —
22 Analytic Sets).

In Figs. 1, 2, and 3, the relationships be-
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tween the various properties are indicated
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426 (IX.1)
Topology

The term topology means a branch of mathe-
matics that deals with topological properties
of geometric figures or point sets. A classical
result in topology is the Euler relation on
polyhedra: Let a,, 2, and %, be the numbers
of vertices, edges, and faces of a polyhedron
homeomorphic to the 2-dimensional sphere;
then aq— o, + o, =2 (*Euler-Poincaré formula
for the 2-dimensional case; actually, the for-
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carliest results in topology. In 1833, C. F.
Gauss used integrals to define the notion of
flinking numbers of two closed curves in a
space (— 99 Degree of Mapping). It was in
J. B. Listing’s classical work Vorstudien zur
Topologie (1847) that the term topology first
appeared in print.

In the 19th century, B. Riemann published
many works on function theory in which topo-
logical methods played an essential role. He
solved the homeomorphism problem for com-
pact surfaces (— 410 Surfaces); his result is
basic in the theory of algebraic functions. In
the same period, mathematicians began to
study topological properties of n-dimensional
polyhedra. E. Betti considered the notion of
*homology. H. Poincaré¢, however, was the first
to recognize the importance of a topological
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approach to analysis in general; he defined the
*homology groups of a complex [1]. He ob-
tained the famous tPoincaré duality theorem
and defined the *ffundamental group. He con-
sidered *polyhedra as the basic objects in top-
ology, and deduced topological properties
utilizing fcomplexes obtained from polyhedra
by *simplicial decompositions. He thus con-
structed a branch of topology known as com-
binatorial topology.

In its beginning stages combinatorial top-
ology dealt only with polyhedra. In the late
1920s, however, it became possible to apply
combinatorial methods to general fcompact
spaces. P. S. Alexandrov introduced the con-
cept of approximation of a fcompact metric
space by an inverse sequence of complexes and
the definitton of homology groups for these
spaces. His idea had a precursor in the notion
of fsimplicial approximations of continuous
mappings, which was introduced by L. E. J.
Brouwer in 1911. In 1932, E. Cech defined
homology groups for arbitrary spaces utilizing
the finductive limit of the homology groups of
polyhedra; and *Cech cohomology groups for
arbitrary spaces were also defined. S. Eilenberg
established Tsingular (coyhomology theory
using *singular chain complexes (1944). The
axiomatic approach to (co)homology theory is
due to Eilenberg and Steenrod, who gave
axioms for (co)homology theory in a most
comprehensive way and unified various (co)-
homology theories (1945) (— 201 Homology
Theory.

The approach using algebraic methods has
progressed extensively in connection with the
development of homology theory. This branch
is called algebraic topology. In the 1920s and
1930s, a number of remarkable results in alge-
braic topology, such as the tAlexander duality
theorem, the tLefschetz fixed-point theorem,
and the *Hopf invariant, were obtained. In the
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of higher-dimensional thomotopy groups (—
153 Fixed-Point Theorems, 201 Homology
Theory, 202 Homotopy Theory). J. H. C.
Whitehead introduced the concept of "CW
complexes and proved an algebraic charac-
terization of the homotopy equivalence of CW
complexes. N. Steenrod developed tobstruc-
tion theory utilizing fsquaring operations in
the cohomology ring (1947). Subsequently,

the theory of fcohomology operations was
introduced (— 64 Cohomology Operations,
305 Obstructions). The theory of *spectral
sequences for fiber spaces was originated by
J. Leray (1945) and J.-P. Serre (1951) and was
successfully applied to cohomology operations
and homotopy theory by H. Cartan and Serre
(1954) (— 148 Fiber Spaces, 200 Homological
Algebra). The study of the combinatorial
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structures of polyhedra and *piecewise linear
mappings has flourished since 1940 in the
works of Whitehead, S. S. Cairns, and others.
S. Smale and, independently, J. Stallings
solved the fgeneralized Poincaré conjecture in
1960. The tHauptvermutung in combinatorial
topology was solved negatively in 1961 by B.
Mazur and J. Milnor. E. C. Zeeman proved
the unknottedness of codimension 3 (1962).
The recent development of the theory in con-
junction with progress in fdifferential topol-
ogy is notable. The Hauptvermutung for com-
binatorial manifolds was solved in 1969 by
Kirby, Siebenmann, and Wall. In particular,
there exist different combinatorial structures
on tori of dimension > 5, and there are topo-
logical manifolds that do not admit any com-
binatorial structure (— 65 Combinatorial
Manifolds, 114 Differential Topology, 235
Knot Theory).

The global theory of differentiable manifolds
started from the algebraic-topological study of
fiber bundles and tcharacteristic classes in the
1940s. R. Thom’s fundamental theorem of
fcobordism (1954) was obtained through ex-
tensive use of cohomology operations and
homotopy groups. Milnor (1956) showed that
the sphere S” may have differentiable struc-
tures that are essentially distinct from each
other by using tMorse theory and the findex
theorem of Thom and Hirzebruch. These
results led to the creation of a new field, tdif-
ferential topology (— 56 Characteristic Classes,
114 Differential Topology).

Since 1959, A. Grothendieck, M. F. Atiyah,
F. Hirzebruch, and J. F. Adams have devel-
oped TK-theory, which is a generalized coho-
mology theory constructed using stable classes
of tvector bundles (— 237 K-Theory).

tKnot theory, an interesting branch of top-
ology, was one of the classical branches of
topology and is now studied in connection
with the theory of low-dimensional manifolds
(— 235 Knot Theory).

On the other hand, G. Cantor established
general set theory in the 1870s and introduced
such notions as taccumulation points, fopen
sets, and fclosed sets in Euclidean space. The
first important generalization of this theory
was the concept of *topological space, which
was proposed by M. Fréchet and developed by
F. Hausdorff at the beginning of the 20th
century. The theory subsequently became a
new field of study, called general topology or
set-theoretic topology. 1t deals with the topo-
logical properties of point sets in a Euclidean
or topological space without reference to
polyhedra. There has been a remarkable devel-
opment of the theory since abount 1920, nota-
bly by Polish mathematicians S. Janiszewski,
W. Sierpinski, S. Mazurkiewicz, C. Kuratow-
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ski, and others. The contributions of R. L.
Moore, G. T. Whyburn, and K. Menger are
also important (— 382 Shape Theory, 425
Topological Spaces).

Topology is not only a foundation of vari-
ous theories, but is also itself one of the most
important branches of mathematics. It consists
of thomology theory, thomotopy theory, tdif-
ferential topology, fcombinatorial manifolds,
tK-theory, ftransformation groups, theory of
singularities, tfoliations, *dynamical systems,
fcatastrophe theory, etc. It continues to de-
velop ininteraction with other branches of
mathematics {(— 51 Catastrophe Theory, 126
Dynamical Systems, 154 Foliations, 418 Theory
of Singularities, 431 Transformation Groups).
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427 (1X.12)
Topology of Lie Groups and
Homogeneous Spaces

A. General Remarks

Among various topological structures of tLie
groups and thomogeneous spaces, the struc-
tures of their f(co)homology groups and
thomotopy groups are of special interest. Let
G/H be a homogeneous space, where G is a
Lie group and H is its closed subgroup. Then
(G,G/H, H) is a *fiber bundle, where G/H is
the base space and H is the fiber. Thus homol-
ogy and homotopy theory of fiber bundles
(fspectral sequences and thomotopy exact
sequences) can be applied. The *cellular de-
composition of Stiefel manifolds, fGrassmann
manifolds, and *Kahler homogeneous spaces
are known. Concerning tsymmetric Riemann-
ian spaces, we have various interesting meth-
ods, such as the use of invariant differential
forms in connection with real cohomology
rings and the use of tMorse theory in order to
establish relations between the diagrams of
symmetric Riemannian spaces G/H and homo-
logical properties of their *loop spaces and
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some related homogeneous spaces [4, 5]. Lie
groups can be regarded as special cases of
homogeneous spaces or symmetric spaces,
although their group structures are of partic-
ular importance. A connected Lie group is
homeomorphic to the product of one of its
compact subgroups and a Euclidean space
(*Cartan-Mal’tsev-Iwasawa theorem). Hence
the topological structure of a connected Lie
group is essentially determined by the topolog-
ical structures of its compact subgroups.

B. Homology of Compact Lie Groups

Let G be a connected compact Lie group.
Since G is an *H-space whose multiplication is
given by its group multiplication h, H¥*(G; k)
and H(G;k) are dual fHopf aigebras for any
coefficient field k. Also, H*(G; k) is isomorphic
as a fgraded algebra to the tensor product of
telementary Hopf algebras (— 203 Hopf Alge-
bras), but no factor of the tensor product is
isomorphic to a polynomial ring because G is
a finite fpolyhedron. In particular, if k=R
(the field of real numbers), then H*(G; R) =
Ar(Xy, ..., X)) (the exterior (Grassmann) alge-
bra over R with generators x4, ..., x, of odd
degrees). Here we can choose generators x;
such that i*(x)=1®@ x; +x,® 1, 1 <i<l. The
x; that satisfy this property are said to be
primitive. Since in this case the fcomultiplica-
tion h* is commutative, the multiplication h,,
is also commutative and the Hopf algebra
H,(G; R) is an exterior algebra generated

by elements y; having the same degree as

x; (i=1,...,1). When the characteristic of the
coefficient field k is nonzero, h, need not be
commutative.

The dimension of a fmaximal torus of a
connected compact Lie group G is indepen-
dent of the choice of the maximal torus and is
called the rank of G. The rank of G coincides
with the number [ of generators of H*(G;R). E.
Cartan studied H*(G; R) by utilizing invariant
differential forms. The cohomology theory of
Lie algebras originated from the method he
used in his study. H*(G;R) is invariant under
*flocal isomorphisms of groups G. For *class-
ical compact simple Lie groups G, R. Brauer
calculated H*(G;R), while C.-T. Yen and C.
Chevalley calcutated H*(G; R) for *exceptional
compact simple Lie groups (— Appendix A,
Table 6.IV). The degrees of the generators
have group-theoretic meaning. Suppose that
the degree of the ith generator is 2m;—1, 1<
i<l and that m, <m, <...<m;. When G is
simple, there is a relation m;+m,_,,, = const-
ant (Chevalley’s duality). We have a proof for
this property that does not use classification.

The cohomology groups H*(G; Z,) (where p
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is a prime and Z,=Z/pZ) have been deter-
mined as graded algebras for all compact
simple Lie groups by A. Borel, S. Araki, and P.
Baum and W. Browder (— Appendix A, Table
6.1V).

C. Cohomology of Classifying Spaces

Let (Eg, Bg, G) be a tuniversal bundle of a
connected compact Lie group G and p a prime
or zero. Suppose that the integral cohomology
of G has no p-torsion (no torsion when p=0).
Then HXG,Z )= /\z, (%), ..., x) (HNG Z)=
Az(x%, ..., x}) when p=0), an exterior alge-

bra with degx;=2m;—1, 1 <i</, and the
generators x; can be chosen to be ftransgres-
sive in the spectral sequence of the universal
bundle. Let y,, ..., y; be their transgression
images. Then degy;=2m,, 1 <i</, and the
cohomology of the *classifying space B over
Z,{resp. Z) is the polynomial algebra with
generators y, ..., y,. Let T be a maximal torus
of G. Then Br=E;/T is a classifying space of
T, the "Weyl group W= N(T)/T of G with
respect to T operates on By by *right transla-
tions, and H¥*(T; Z) has no torsion and is an
exterior algebra with ! generators of degree 1.
Thus H¥By; Z)=2Z[u,,...,u;], degu;=2. Let
I, be the subalgebra of H*(By; Z) consisting
of W-invariant polynomials, and let p be the
projection of the bundle (B4, B, G/T). Then
under the assumption that G has no p-torsion
(no torsion), the cohomology mapping p* over
Z,(Z) is monomorphic, and p*: H*(Bg; Z,) =
Iy ® Z, (H¥(Bg; )= 1) [ 1]. In the case of
real coefficients, we have H*(Bg; R)=1, ®

R for all G, and m,, ..., m, are the degrees

of generators of the ring Iy, of W-invariant
polynomials.

Example (1) G=U(n): I=n and G has no
torsion. W operates on H*(B;; Z) as the group
of all permutations of generators u, ..., u,.
Thus generators of I, are the telementary
symmetric polynomials ¢, ...,0, of uy, ..., u,.
Let ¢y, ..., c, be the funiversal Chern classes;
then p*(¢;)=0; and H¥*(By,; Z)=Z[c,,...,¢c,}.

Example (2) G=S0(n): I=[n/2] and G
has no p-torsion for p#2. W operates on
H*(B;;Z) as the group generated by the per-

mutations of generators u, ..., 4, and by the
transformations o{u;) =e;u;, e;= +1, where the
number of u; for which e;= —1 is arbitrary for

odd n and even for even n. Thus the generators
of Iy are the elementary symmetric poly-
nomials o7}, ..., 0, of u?, ..., u? for odd n and
61y ...,0,-, and u, ...y, for even n. Let py, ..., p,
be the funiversal Pontryagin classes and y be
the tuniversal Euler-Poincar¢ class in the case
of even n. Then p*(p)=o0; and p*(y)=u, ...y,
for integral cohomology. Denote the mod p
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reduction of p; and y by p; and %, respectively.
Then H*(Byogi41)s Zp)=Z,[Py. ..., p] and
H*Bsoan L) =Z,[p;,....P,-y, 71 (p=0or
>2).

Example (3) G=0O(n): If we use the subgroup
0 consisting of all diagonal matrices instead of
T, then we can make a similar argument for
Z ,-cohomology. Since @ =(Z,)", H*(B;
2,)=7,[v,,....,v,](Z,[v,,...,0,] isa
polynomial ring with degv,=1), and W, =
N(Q)/Q operates on By by right translations
and on H*(By; Z,) as the group of all permuta-
tions of vy, ..., v,. Let Iy, be the subalgebra
of H*(B,; Z,) consisting of all W,-invariant
polynomials. Then [y, is a polynomial ring
generated by the elementary symmetric poly-
nomials a7, ...,0, of v, ...,v,. The projec-
tion p,: By— By, induces a monomorphic
cohomology mapping p¥ over Z,, and p¥:
H¥*(Boyy; L3)=ly,. Let wy, ..., w, be the funi-
versal Stiefel-Whitney classes. Then pF(w;) =
o; and H¥(By,; Z,)=Z,[w, ..., w,] [2].

D. Grassmann Manifolds

The following manifolds are called Grass-
mann manifolds: The manifold M, ., .(R) con-
sisting of all n-subspaces of R"*™; the mani-
fold M, ., .(R) consisting of all oriented n-
subspaces of R"*™; and the manifold M,,,,, ,(C)
consisting of all complex n-subspaces of C**™.
These are expressed as quotient spaces as
follows: M, (R)=0(n+m)/O(n) x O(m),

M, (R)=SO(n+m)/SO(n) x SO(m), and

M, (C)=U(n+m)/U(n) x U(m). They admit
cellular decompositions by fSchubert varieties
from which their cohomologies can be com-
puted (— 56 Characteristic Classes). M, .(R)
and M,,,, ,(R) have no p-torsion for p#2, and
M, .. ,(C) has no torsion. These spaces are m-,
m-, and (2m + 1)-classifying spaces of O(n),
SO(n), and U (n), respectively. Hence their
cohomologies are isomorphic to those of B
(G=0(n), SO(n), U(n)) in dimensions <m,
<m, and <2m, respectively; and they are poly-
nomial rings generated by suitable univer-

sal characteristic classes in low dimensions.

E. Cohomologies of Homogeneous Spaces G/U
(Rank G=Rank U)

Let G be a compact connected Lie group and
U a closed subgroup of G with the same rank
as G. Denote the degrees of generators of
H*(G;R) and H¥U;R) by 2m,—1,...,2m—1,
and 2n, —1,...,2n,—1, respectively. Then the
real-coefficient Poincaré polynomial P, of the
homogeneous space G/U is given by Py(G/U, 1)
=TIT,(1—>")/(1 —t*") (G. Hirsch). When G, U,
and G/U have no p-torsion, the same formula
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is valid for the Z ,-coefficient Poincaré poly-
nomial [1]. When U is the *centralizer of a
torus, G/U has a complex analytic cellular
decomposition [3]. Hence G/U has no torsion
in this case. This was proved by K. Bott and
H. Samelson by utilizing Morse theory [5]

(— 279 Morse Theory). The case U=T has
also been studied.

F. Homotopy Groups of Compact Lie Groups

The *fundamental group =,(G) of a compact
Lie group G is Abelian. Furthermore, 7,(G)=
0. If we apply Morse theory to G, the varia-
tional completeness of G can be utilized to
show that the loop space QG has no torsion
and that its odd-dimensional cohomologies
vanish [4]. Consequently, when G is non-
Abelian and simple, we have n3(G)~Z. A
fperiodicity theorem on *stable homotopy
groups of classical groups proved by Bott is
used in K-theory (— 202 Homotopy Theory;
237 K-Theory). (For explicit forms of homo-
topy groups — Appendix A, Table 6.VI).

Homotopy groups of Stiefel manifolds are
used to define characteristic classes by *ob-
struction cocycles (— 147 Fiber Bundies; Ap-
pendix A, Table 6.VI).
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Total Differential Equations

A. Pfaff’s Problem

A total differential equation is an equation of
the form

=0, n



where o is a *differential 1-form X7, a,(x)dx;
on a manifold X. A submanifold M of X is
called an integral manifold of (1) if each vector
£ of the *tangent vector space T, (M) of M at
every point x on M satisfies w(&)=0. We de-
note the maximal dimension of integral mani-
folds of (1) by m(w). J. F. Pfaff showed that
m(m) = (n—1)/2 for any w. The problem of
determining m(w) for a given form w is called
Pfaff’s problem. This problem was solved by
G. Frobentus, J. G. Darboux, and others as
follows: Form an talternating matrix

(aij)1<i,jgn 2)
from the coefficients of the *exterior derivative

of w,

do= Z ay(x)dx; Adx;,

HM:

1
2
where a;;= da,/0x;—da;/0x;. Suppose that the
rank of (2) is'2¢. Then the rank of the matrix

<aij yai>
a0 Jicijsn

is 2t or 2t + 2. In the former case m(w)=n—t,
and w can be expressed in the form

!
Z Upi—q duy;
i=1

by choosing a suitable coordinate system
(uy, ..., u,). In the latter case m(w)=n—t—1,
and w can be expressed in the form

1
Z ta; oy duy;+dity,
i=1

by choosing a suitable coordinate system
(uy, ..., u,). This theorem is called Darboux’s
theorem.

A 1-form w is called a Pfaffian form, and
equation (1) is called a Pfaffian equation. A
system of equations w; =0 (1 <i<s) for 1-form
w;, 1s called a system of Pfaffian equations or a
system of total differential equations [6, 12,26].

B. Systems of Differential Forms and Systems
of Partial Differential Equations

Let Q be a system of differential forms o/,
0<p<n, 1<i<v,, on X, where o/ is a p-form
on X. A submanifold M of X is called an
integral manifold of Q=0 if for each p (0<p<
dim M), any p-dimensional subspace E, of
T.(M) satisfies wf(E,)=0 (1<i<v,) at every
point x on M. Denote the maximal dimension
of integral manifolds of Q=0 by m(£2). The
problem of determining m(Q) for a given sys-
tem Q is called the generalized Pfaff problem, -
and will be explained in later sections. By
fixing a local coordinate system of X and
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dividing it into two systems (x,,...,x,) and
(V15 ..., V) (m=n—r), we can consider the
problem of finding an integral manifold of Q
=0 defined by

Va=Yu(X1,..00%,),  I<a<s<m

This problem can be reduced to solving a
system of partial differential equations of the
first order on the submanifold N with the local
coordinate system (x, ..., X,).

Consider a system of partial differential
equations ®=0 of order I:

P YD) =0,  1<ASs, 3)

with 1<igr, <o, f<m, j + ... +j, <1, where

Jyedr B
Pr = oxir .. éxj’ “
A submanifold defined by y,=y,.(x,, ..., X,),
1<a<m, is called a solution of & =0 if it satis-
fies (3) identically. The problem of determining
whether a given system ® =0 has a solution
was solved by C. Riquier, who showed that
any system can be prolonged either to a pas-
sive orthonomic system or to an incompatible
system by a finite number of steps. A system
of partial differential equations is called a
prolongation of another system if the former
contains the latter and they have the same
solution. A passive orthonomic system is one
whose general solution can be parametrized by
an infinite number of arbitrary constants. A
solution containing parameters is called a
general solution if by specifying the parameters
we can obtain a solution of the *Cauchy prob-
lem for any initial data. A system (3) s said to
be incompatible if it implies a nontrivial rela-
tion f(xy,...,x,)=0 among the x.

The problem of solving a system ® =0 of
partial differential equations can be reduced to
that of finding integral manifolds of a system
of differential forms X as follows: Let J' be a
manifold with the local coordinate system

(Xis Vo P} S 1 <igr, 1<, B<m,

it i,
and X be a system of O-forms ¢, (I </ <s)and
1-forms

- i pidx;,
i=

d J1 dr zph At ]rdx

(1<a, <m,j, +...+j,<I). Then an integral
manifold of X=0 of the form
yz:yu(xl’--'axr)s lgagm,
Py =pl i x),

S+ +iL <l
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gives a solution y, =y, (x,,...,x,), | <a<m, of

®=0, and y; and p)'7" satisfy (4).
Conversely, a solution y, = y,(x,,...,x,),

I <a<m, of =0 gives an integral manifold

of =0 if we define pj(x,, ..., x,) by (4)

[23,24,26].

C. Systems of Partial Differential Equations of
First Order with One Unknown Function

Consider a system of independent *vector
fields on N:

[¢

R

)
—, 1<Ai<s.
0x;

L,= ; bi(x)

We solve a system of inhomogeneous
equations

Ly = fi(x)y—gz(x)=0, , 5

for a given system of f,(x) and g,(x). The sys-
tem (5) is called a complete system if each of
the expressions

Ll Ly =(Lafu— L)y = (fug:— f39,)

_(ngu_Lug,l)s

is a linear combination of the left-hand sides of
(5), where [L, L] means the fcommutator of
L, and L. This condition is called the com-
plete integrability condition for (5). Suppose
that the homogeneous system

1<A<s

I<a<u<s, (6)

L,y=0, 1<i<s, N

is complete. Then it has a system of ffunction-
ally independent solutions y,, ..., y,_,, and any
solution y of (8) is a function of them: y=
Y(yi,..., ¥, If the inhomogeneous system
(5) is complete, then the homogeneous system
(7) is complete. This notion of a complete
system is due to Lagrange and was extended
to a system of nonlinear equations by Jacobi
as follows (— 324 Partial Differential Equa-
tions of First Order C).

Consider a system of nonlinear equations

Fi(xys o 0s X ¥oP1s -, p)=0, 1<A<s, 8)

where p;=0dy/0x;. The system (8) is called an
involutory system if cach of [F,, F,], <4<
U<s, is alinear combination of F, ..., F,.

Here *Lagrange’s bracket [F, G] is defined by

r OF (0G oG
F,.G1=Y% — —
[F.G] i;é‘p;<5xi+p'(7y>

i 6G [ OF N oF

=1 0p; \0x; b dy )’

Suppose that the system (8) is involutory and
Fy, ..., F;are functionally independent. Then,

in general, we can solve the following ¥Cauchy
problem for an (r — s)-dimensional submani-
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fold N,_, of N: Given a function f on N,__, find
a solution y of (8) satisfying y=f on N,_,. We
can construct a solution by integrating a sys-
tem of ordinary differential equations called a
fcharacteristic system of differential equations.
Hence the solution of these problems may be
carried out in the C¥-category (— 322 Partial
Differential Equations (Methods of Integra-
tion) B) [7, 11].

D. Frobenius’s Theorem

Let X be a *differentiable manifold of class C*
and Q be a system of independent 1-forms w,,
1<i<s, on X. Then the system of Pfaffian
equations Q=0 is called a completely inte-
grable system if at every point x of X,

s
d‘UiZZOij/\wj, I<i<s,
j=1

for 1-forms 0, on a neighborhood of x. Sup-
pose that Q=0 is completely integrable. Then
at every point x of X, there exists a local co-
ordinate system (f, ..., f, Xg415--.,X,) In A
neighborhood U of x for which a tangent vec-
tor & of X at ze U satisfies w,(£)=0, 1 <i<s,
if and only if £f;=0, 1 <i<s. In this case, each
of the df; is a linear combination of ®,, ..., w,,
and conversely, each of the w; is a linear com-
bination of df}, ..., df,. In general, a function f
for which df 1s a linear combination of
Wy, ..., 0, 1s called a first integral of Q=0.
The theorem of the previous paragraph
is called Frobenius’s theorem, which can be
stated in the dual form as follows: Let D(X) be
a fsubbundle of the ftangent bundle T(X) over
X. The mapping X 3x—D_(X) is called a dis-
tribution on X. It is said to be an involutive
distribution if at every point x of X we can
find a system of independent vector fields L;
(1<i<s) on a neighborhood U of x such that
the L;(z) (1 <i<s) form a basis of D,(X) at
every ze U and satisfy [L,;, L;,]=0(L,, ..., L),
1<i<j<s,on U. A connected submanifold M
of X is called an integral manifold of D(X) if
T.(M)=D_(X) at every point x of M. Suppose
that D(X) gives an involutive distribution on
X. Then every point x of X is in a maximal
integral manifold M that contains any integral
manifold including x as a submanifold.

E. Cartan-Kihler Existence Theorems

Let X be a freal analytic manifold. Denote the
fsheaf of rings of differential forms on X by
A(X) and its subsheaf of ¢(X)-mcdules of p-
forms on X by A (X), 1 < p<n, where ¢(X)is
the sheaf of rings of O-forms on X. A subsheaf
of ideals X is called a differential ideal if it is
generated by Z,, 0<p<n, and contains dZ,
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where Z,= 2N A (X). Consider a differential
ideal 2 on X. Denote the *Grassmann mani-
fold of p-dimensional subspaces of T,.(X) with
origin xe X by G,(x), and the Grassmann
manifold ( J,.x G(x) over X by G,(X). An
element E,, of G,(x) is called a p-dimensional
contact element with origin x. An element E,
of G,(x) is called an integral element of X, if
w(E,)=0 at x for any p-form w in 2 further-
more, E, is called an integral element of 2

if any element E, contained in £, 0<g<p, is
an integral element of X,. In particular, 0-
dimensional and 1-dimensional integral ele-
ments are called integral points and integral
vectors, respectively. It can be proved that an
element E, is an integral element of X' if and
only if it is an integral element of X,. The polar
element H(E ) of an integral element E, with
origin x is defined as the subspace of T,(X)
consisting of all vectors that generate with E,
an integral element of 2. Let (£,)°, 0<p<n, be
the subsheaf of ¢(X)-modules in ((G,(X))
consisting of all O-forms

a

i eneipZi iy
1<i, < <ip<n

on G,(X) derived from a p-form

ai, g, dX Ao ndXg €2,
1<iy <. <ip<n

where z; _; is the fGrassmann coordinate of
E,. An integral element EJ is called a regular
integral element if the following two conditions
are satisfied: (i) (2,)° is a regular local equation
of 12, at EJ, where 12, is the set of all integral
elements of X; (ii) dim H(E,)=constant around
EY on 1%, This definition, due to E. Kihler, is
different from that given by E. Cartan [4].

Here, in general, a subsheaf @ of O(X) is
called a regular local equation of I® at an
integral point x, if there exists a neighborhood
U of x, and *cross sections ¢, ..., ¢; of ® on
U that satisfy the following two conditions: (i)
de,,...,do,are linearly independent at every x
on U; (ii) a point x of U is an integral point of
@ if and only if @, (x)=... = @,(x)=0.

First existence theorem. Suppose that we are
given a p-dimensional integral manifold M
with a regular integral element T,(M) at a
point x on M. Suppose further that there exists
a submanifold F of X containing M such that
dimF=n—t,,,, dm(T(F)NH(E,))=p+1,
where E,=T.(M)and t,,, =dimH(E)—p— 1.
Then around x there exists a unique integral
manifold N such thatdimN=p+1and F>
NoM.

This theorem is proved by integrating a
system of partial differential equations of
Cauchy-Kovalevskaya type. E. Cartan [2—4]
also tried to obtain an existence theorem by
integrating a system of ordinary differential
equations.
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A chain of integral elements E,c E, < ...
CE, is called a regular chain if each of E,
(0<p<r)is a regular integral element. For a
regular chain E,c E, =...cE,, define ¢, by
tyey=dimH(E)—p—1,0<p<r, and define s,
by s,=t,—t,.;, —1(0<p<r), s,=t,, where t,
=dim1X,. Then we have 5,20 (0<p<r), 5
+...+s,=t,—r and we can take a local co-
ordinate System (Xy, ..., X,, Vs .o Vi) M=0—F,
around E, that satisfies the following four
conditions:

)

(iy IZ,is defined by y, ,41=-..=yn=0;
i) HE)={=m.....0
ii =

P ox, X,

0 0 }
ayso+...+sp, 1+1 T ’OYto—r '

O<p<r;
s .
(i) E,=4—— .4 1<p<r;
Ox, 0x,

{iv) Ey=(0,...,0,0,...,0).
The integers s,, ..., s, are called the characters
of the regular chain Ey<...CE,.

Second existence theorem. Suppose that a
chain of integral elements E < ... c E, is regu-
lar, and take a local coordinate system satisfy-
ing (i)—(iv). Consider a system of initial data

fl,...,fSO,
fsoﬂ(xl)s ’f;0+s,(x1)’

.f;0+s1+1(x1 > xz), 3fs0+sl+sz(xl’ x2)7

fs0+...+s,,1+1(x1 LI ’xr)’ !ftofr(xl’ ,X,).

Then if their values and derivatives of the
first order are sufficiently small, there exists
a unique integral manifold defined by y,=
ValXps .o %,) =0, 1 <a<ty—r<f<m,
such that

ValXi, X, 0,0, 0)= filx s .., Xp),

Sot .S, <a<Sy+...+5,, 0<p<r

This theorem is proved by successive appli-
cation of the first existence theorem. These
two theorems are called the Cartan-Kihler
existence theorems. 2 is said to be involutive at
an integral element E, if there exists a regular
chain E,<...cE,. An integral manifold pos-
sessing a tangent space at which X is involutive
is called an ordinary integral manifold or ordi-
nary solution of X An integral manifold that
does not possess such a tangent space is called
a singular integral manifold or singular solution
of Z.

Cartan’s definition of ordinary and regular
integral elements is as follows: An integral
point E is an ordinary integral point if X, is a
regular local equation of 12, at EJ. An ordi-
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nary integral point EJ is a regular integral
point if dim H(E,) is constant on 1.2, around
Eg. Inductively, an integral element E9 is
called an ordinary integral element if (2)°
is a regular local equation of /2, at E) and
ES contains a regular integral element ES .
An ordinary integral element EY is a regular
integral element (in the sense of Cartan) if
dim H(E,) is constant on IZ, around EJ. It can
be proved that X is involutive at an integral
element E, if and only if E, is an ordinary
integral element of 2. An integral manifold
possessing a tangent space that is a regular
integral element of X is called a regular in-
tegral manifold or regular solution of 2. Let
m,,, be the minimal dimension of H(E,),
where E, varies over the set of p-dimensional
ordinary integral elements, and g be an integer
such thatm,>p (1<p<g) and m,., =p. Then
this integer g is called the genus of X It is the
maximal dimension of ordinary integral mani-
folds of 2. However, in general, it is not the
maximal dimension of integral manifolds of 2.
D. C. Spencer and others have been trying
to obtain an existence theorem in the C*-
category analogous to that of Cartan and
Kahler. (For a system of linear partial dif-
ferential equations — [2,4,11,13,25,27].)

F. Involutive Systems of Partial Differential
Equations

To give a definition of an involutive system of
partial differential equations, we define an
involutive subspace of Hom(V, W), where V
and W are finite-dimensional vector spaces
over the real number field R. Let 4 be a sub-
space of Hom(V, W). For a system of vectors
Uy, L, i V, A(vy, ..., v,) denotes the sub-
space of 4 that annihilates vy, ...,v,. Let g,

be the minimal dimension of A(v,, ..., u,) as
{vy,...,v,) varies, where 0<p<r=dim V. A
basis (vy, ..., v,) of V is called a generic basis if
it satisfies g, =dim A(v,, ..., v,) for each p.
There exists a generic basis for any A. Let W&
S(V*) be the subspace of Hom(V, Hom(V, W))
consisting of all elements ¢ satisfying &(u)o=
¢(v)u for any u and v in V. Then the prolonga-
tion pA of A4 is defined by pA =Hom(V, A)N
W ® $2(V*). For any basis (v,,...,v,) of V, we
have the inequality

.
dimpA< Y dimA(v,,...,v,).
p=0

The subspace A is called an involutive subspace
of Hom(V, W) if dim pA =X}, -, g, This notion
of an involutive subspace was obtained by V.
W. Guillemin and S. Sternberg [13].

A triple (X, N; n) consisting of two mani-
folds X, N and a projection = from Xonto N is
called a fibered manifold if the tdifferential =,
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is surjective at every point of X. Take the set
of all mappings f from a domain in N to X
satisfying no f =identity for a fibered manifold
(X, N;m). Then an tl-jet ji(f) is an equivalence
class under the equivalence relation defined as
follows: ji{( f)=jl(g) if and only if x=u, f(x)=
g(u), and -

6i1+”'+i’f

. -(x
Oxit...0xkr

gt ting

P L))

OXp ... ox)
iy+...+i,</, where (x, ..., x,) is a local co-
ordinate system of N around x=u (— 105
Differentiable Manifolds X).

Denote the space of all [-jets of a fibered
manifold (X, N; n) by JY(X, N;7) or simply J'.
Then a subsheaf of ideals ® in ((J') is called a
system of partial differential equations of order
lon N. A point z of J' is called an integral
point of @ if ¢(z)=0 for all pe®. The set of all
integral points of ® is denoted by I®. Let 7’ be
the natural projection of J' onto J'"!. Then at
a point z of J', we can identify Ker z), with
Hom(T,(N),Kerxl), where x=nn'...n'z. The
principal part C,(®) of @ is defined as the sub-
space of Ker} that annihilates ®. The pro-
longation p® of ® is defined as the system
of order I+ 1 on N generated by ® and é,®,

1 <k<dim N, where 0, is the formal derivative
with respect to a coordinate x, of N:

0
@) () =7 )

= O(JY.
P peO(J)

Let w be an integral point of p® and z be

n'*!'w. Then we have the identity

pC.(0)=C,(p®).

The following definition of an involutive
system is due to M. Kuranishi [19]: @ is invo-
lutive at an integral point z if the following two
conditions are satisfied: (i) @ is a regular local
equation of I® at z; (ii) there exists a neighbor-
hood U of z in J! such that (z'*})~' U N I(p®d)
forms a fibered manifold with base UNI® and
projection 7'*!,

A system of partial differential equations is
said to be involutive (or involutory) if it has an
integral point at which it is involutive. Fix a
system of independent variables (y,, ..., yy) in
X. Then a system of differential forms is said
to be involutive (or involutory) if it has an in-
tegral element at which it is involutive and
dy, A...Adyy#0. It can be proved that these
two definitions of involutive system are equiva-
lent [19,25].

G. Prolongation Theorems

Cartan gave a method of prolongation by
which we can obtain an involutive system
from a given system with two independent
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variables, if it has a solution. He proposed the
following problem: For any r> 2, construct a
method of prolongation by which we can
obtain an involutive system from a given sys-
tem with r independent variables, if it has a
solution. To solve this problem, Kuranishi
prolonged a given system @ successively to
p'®,t=1,2,3,..., and proved the following
theorem: Suppose that there exists a sequence
of integral points z* of p'® with n'*'z' =2z'",
t=1,2,3,..., that satisfies the following two
conditions for each t: (i) p'® is a regular local
equation of I(p‘®) at z*; (ii) there exists a
neighborhood V' of z* in I(p'®) such that
7'*'V* contains a neighborhood of z'"! in
I(p*~!®) and forms a fibered manifold

(V, 72"V a'*Y. Then p'® is involutive at z*
for a sufficiently large integer ¢.

This prolongation theorem gives a powerful
tool to the theory of finfinite Lie groups. How-
ever, if we consider a system of partial dif-
ferential equations of general type, there exist
examples of systems that cannot be prolonged
to an involutive system by this prolongation,
although they have a solution. To improve
Kuranishi’s prolongation theorem, M. Mat-
suda [22] defined the prolongation of the
same order by p,® = p®N O(J) for a system &
of order [. This is a generalization of the classi-
cal method of completion given by Lagrange
and Jacobi. Applying this prolongation suc-
cessively to a given system @, we have ¥ =

o1 p§®. Define the p,-operation by p, =
U2, pp. Then applying this prolongation
successively to ¥, we have the following theo-
rem: suppose that there exists a sequence of
integral points z* of pi ¥ with z'*'z'=2""1,
t=1,2,3,..., that satisfies the following two
conditions for each ¢: (i) pi 'V is a regular local
equation of I(pL V) at z¥ (ii) dim pC(pL W) is
constant around z* on I(p} V). Then pL ¥ is
involutive at z* for a sufficiently large integer ¢.

To prove this theorem Matsuda applied the
following theorem obtained by V. W. Guil-
lemin, S. Sternberg, and J.-P. Serre {25, ap-
pendix]: suppose that we are given a sub-
space A, of Hom(V, W) and subspaces A, of
Hom(V, A,_,) satisfying 4, cpA,_,t=1, 2,
3,.... Then A4, is an involutive subspace of
Hom(V, A4,_,) for a sufficiently large integer t.
Thus Cartan’s problem was solved affirma-
tively. To the generalized Pfaff problem these
prolongation theorems give another solution,
which differs from that obtained by Riquier.

H. Pfaffian Systems in the Complex Domain

Consider a linear system of Pfaffian equations

M=

m
du=3% Y af(x)yudx,, i=1,...,m,
=1

k

1l

1
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where x =(x, ..., x,) is a local coordinate of a
complex manifold X and af; are meromor-
phic functions on X. If we put u="(u,, ..., u,,)
and A*(x)=(ak(x)), k=1, ..., n, the system is
written as

du= ( Y Ak(x) dxk> u. 9
k=1

System (9) is completely integrable if and only
if

oAl oA
ﬁ_ﬁs[AaAJ]’ ]7l=1,...,n.

Suppose that (9) is completely integrable. If the
A¥(x) are holomorphic at x®=(x?, ..., x)e X,
there exists for any u®e C™ one and only one
solution of (9) that is holomorphic at x° and
satisfies u(x®)=u®. This implies that the solu-
tion space of (9) is an m-dimensional vector
space; the basis of this space is called a funda-
mental system of solutions. Therefore any
solution is expressible as a linear combination
of a fundamental system of solutions and can
be continued analytically in a domain where
the A¥(x) are holomorphic. A subvariety of X
that is the pole set of at least one of the A*(x)
is called a singular locus of (9), and a point on
a singular locus is called a singular point.

R. Gérard has given a definition of regular
singular points and an analytic expression of a
fundamental system of solutions around a
regular singular point, and he studied systems
of Fuchsian type [8; also 9, 30].

Let Q=X"_, A*(x)dx,. Then the system (9)
can be rewritten as

(d—Qu=0.

If we consider a local coordinate (x,u) of a
fiber bundle over X, the operator d—Q in-
duces a meromorphic linear connection V over
X. Starting from this point of view, P. Deligne
[5] introduced several important concepts and
obtained many results.

The first results for irregular singular points
were obtained by Gérard and Y. Sibuya [10],
and H. Majima [20] studied irregular singular
points of mixed type.

The systems of partial differential equations
that are satisfied by the hypergeometric func-
tions of several variables are equivalent to
linear systems of Pfaffian equations [1]. This
means that such systems of partial differential
equations are tholonomic systems. M. Kashi-
wara and T. Kawai [15] studied holonomic
systems with regular singularities from the
standpoint of microlocal analysis. Special
types of holonomic systems were investigated
by T. Terada [28] and M. Yoshida [29].

Consider a system of Pfaffian equations

=0, j=1,...,r, (10)
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where ;=24 4 (x}dx, and x=(x,,...,x,).
Suppose that a; are holomorphic in a domain
D of C" and that dw;Aw; A...Aw,=0in D.
Denote by S the zero set of w; A... Aw,=0. A
point of S is called a singular point of (10). If
the codimension of S is > 1, then system (10) is
completely integrable in D —S. The following
theorem was proved by B. Malgrange [217:
Let x®e S, and suppose that the codimen-

sion of S is >3 around x% then there exist
functions f}, j=1,....,r,and gy, j, k=1,...,r,
that are holomorphic at x° and satisfy ;=
Zi=1 gy df and det(g; (x°)) #0.
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429 (XI1.6)
Transcendental Entire
Functions

A. General Remarks

An entire function (or integral function) f(z) is a
complex-valued function of a complex variable
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z that is holomorphic in the finite z-plane,
z#oc. If f(z) has a pole at oc, then f(z)is a
polynomial in z. A polynomial is called a
rational entire function. If an entire function is
bounded, it is constant (fLiouville’s theorem).
A transcendental entire function is an entire
function that is not a polynomial, for example,
expz, sinz, cosz. An entire function can be
developed in a power series X2, a,z" with
infinite radius of convergence. If f(z) is a tran-
scendental entire function, this is actually an
infinite series.

B. The Order of an Entire Function

If a transcendental entire function f(z) has a
zero of order m (m>=0) at z=0 and other zeros
at oy, Ay, .oy Oy . (O<]org [ <o | <o <>
2c), multiple zeros being repeated, then f(z)
can be written in the form

f)=es@zm ] <1 ,L) g

k=1 Ay
where g(z) is an entire function, g,(z)=(z/x,) +
(1/2)(z/ou)* +(1/3)(z/o4)* + ... +(1/py) (2/o)™,
and p,, p,, ... are integers with the property
that 22, |z/2, /™"t converges for all z (Weier-
strass’s canonical product).

E. N. Laguerre introduced the concept of
the genus of a transcendental entire function
f(z). Assume that there exists an integer p for
which X% 5o, |~ "%V converges, and take the
smallest such p. Assume further that in the
representation for f(z) in the previous para-
graph, when p, =p,=...=p, the function g(z)
reduces to a polynomial of degree ¢; then
max(p, q) is called the genus of f(z). For tran-
scendental entire functions, however, the order
is more essential than the genus. The order p
of a transcendental entire function f(z) is de-
fined by

=limsuploglog M(r)/logr,
where M(r) is the maximum value of | f(z)| on
|z| =r. By using the coefficients of f(z)=X a,z",
we can write
p=limsupnlogn/log(1/|a,|).

The entire functions of order 0, which were
studied by Valiron and others, have prop-
erties similar to polynomials, and the en-
tire functions of order less than 1/2 satisfy
lim, ., min_, |f(z)]=cc for some increasing
sequence r,1 20 (Wiman’s theorem). Hence
entire functions of order less than 1/2 cannot
be bounded in any domain extending to infin-
ity. Among the functions of order greater than
1/2 there exist functions bounded in a given
angular domain D:a<argz <o+ n/u. If | f(2)|
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<expr? (p<p) and f(z) is bounded on the
boundary of D, then f(z) is bounded in the
angular domain (— 272 Meromorphic Func-
tions). In particular, if the order p of f(z) is an
integer p, then it is equal to the genus, and
¢g(z) reduces to a polynomial of degree <p (J.
Hadamard). These theorems originated in the
study of the zeros of the fRiemann zeta func-
tion and constitute the beginning of the theory
of entire functions.

There is some difference between the prop-
erties of functions of integral order and those
of others. Generally, the point z at which f(z)
=w is called a w-peint of f{z). I {z,} consists

of w-points different from the origin, the in-
fimum p, (w) of k for which ¥ 1/|z,|* converges
is called the exponent of convergence of f —w.
If the order p of an entire function is integral,
then p, (w)=p for each value w with one pos-
sible exception, and if p is not integral, then
py(w)=p for all w (E. Borel). Therefore any
transcendental entire function has an infinite
number of w-points for each value w except for
at most one value, called an exceptional value
of f(z) (Picard’s theorem). In particular, f(z)
has no exceptional values if p is not integral.
For instance, sinz and cosz have no excep-
tional values, while ¢” has 0 as an exceptional
value. Since transcendental entire functions
have no poles, o can be counted as an excep-
tional value. Then we must change the state-
ment in Picard’s theorem to “except for at
most two values.” Since the theorem was ob-
tained by E. Picard in 1879, problems of this
type have been studied intensively (— 62
Cluster Sets, 272 Meromorphic Functions).

After Picard proved the theorem by using
the inverse of a *fmodular function, several
alternative proofs were given. For instance,
there is a proof using the Landau-Schottky
theorem and *Bloch’s theorem and one using
*normal families. Picard’s theorem was ex-
tended to meromorphic functions and has also
been studied for analytic functions defined in
more general domains. There are many fully
quantitative results, too. For instance, Valiron
[3] gave such results by performing some
calculations on neighborhoods of points where
entire functions attain their maximum ab-
solute values.

Thereafter, the distribution of w-points in a
neighborhood of an essential singularity was
studied by many people, and in 1925 the Ne-
vanlinna theory of meromorphic functions was
established. The core of the theory consists of
two fundamental theorems, *Nevanlinna’s first
and second fundamental theorems (— 272
Meromorphic Functions). Concerning com-
posite entire functions F(z)= f(g(z)), Polya
proved the following fact: The finiteness of the
order of F implies that the order of f should
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be zero unless g is a polynomial. This gives
the starting point of the factorization theory,
on which several people have been working
recently. Several theorems in the theory of
meromorphic functions can be applied to

the theory. One of the fundamental theorems
is the following: Let F(z) be an entire func-
tion, which admits the factorizations F(z)=
P,.(f..(z)) with a polynomial P,, of degree m
and an entire function f,, for all integers m.
Then F(z)= Acos./H(z) + B unless F(z)=
Aexp H(z)+ B. Here, H is a nonconstant entire
function and A, B are constant, A #0.

C. Julia Directions

Applying the theory of tnormal families of
holomorphic functions, G. Julia proved the
existence of Julia directions as a precise form
of Picard’s theorem [5]. A transcendental
entire function f(z) has at least one direction
argz =0 such that for any ¢>0, f(z) takes on
every (finite) value with one possible exception
infinitely often in the angular domain § —¢g<
argz <@+ e¢. This direction argz=4 is called

a Julia direction of f(z).

D. Asymptotic Values

TAsymptotic values, fasymptotic paths, etc.,
are defined for entire functions as for mero-
morphic functions. In relation to fIversen’s
theorem and *Gross’s theorem for inverse
functions and results on fcluster sets, fordinary
singularities of inverse functions hold for entire
functions in the same way as for meromorphic
functions. Also, as for meromorphic functions,
ftranscendental singularities of inverse func-
tions are divided into two classes, the fdirect
and the findirect transcendental singularities.
The exceptional values in Picard’s theorem
are asymptotic values of the functions, and
o0 is an asymptotic value of any transcenden-
tal entire function. Therefore f{z)— oo along
some curve extending to infinity. Between
the asymptotic paths corresponding to two
distinct asymptotic values, there is always an
asymptotic path with asymptotic value co. By
tBloch’s theorem, A. Bloch showed that the
fRiemann surface of the inverse function of a
transcendental entire function contains a disk
with arbitrarily large radius. Denjoy conjec-
tured in 1907 that u < 2p, where p is the order
of an entire function and g is the number of
distinct finite asymptotic values of the func-
tion, and L. V. Ahlfors gave the first proof
(1929). This result contains Wiman’s theorem.
There are transcendental entire functions with
u=2p. It was shown by W. Gross that among
entire functions of infinite order there exists
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an entire function having every value as its
asymptotic value.
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Transcendental Numbers

A. History

A complex number « is called a transcendental
number if « is not falgebraic over the field of
rational numbers Q. C. Hermite showed in
1873 that e is a transcendental nuraber. Fol-
lowing a similar line of thought as that taken
by Hermite, C. L. F. Lindemann showed that
7 is also transcendental (1882). Among the 23
problems posed by D. Hilbert in 1900 (— 196
Hilbert), the seventh was the problem of estab-
lishing the transcendence of certain numbers
(e.g., Zﬁ). This stimulated fruitful investiga-
tions by A. O. Gel'fond, T. Schneider, C. L.
Siegel, and others. The theory of transcen-
dental numbers is, however, far from complete.
There is no general criterion that can be uti-
lized to characterize transcendental numbers.
For example, neither the transcendence nor
even the irrationality of the tEuler constant
C=lim,_(1+1/2+...+1/n—logan) has been
established. A survey of the development of
the theory of transcendental numbers can be
found in [18], in which an extensive list of
relevant publications up to 1966 is given.

B. Construction of Transcendental Numbers

Let Q be the field of talgebraic numbers. Sup-
pose that a is an element of Q that satisfies the
irreducible equation f(x)=a,x"+a, x" "  + ...
+a,=0, where the g, are rational integers,
a,#0, and ag,4a,, ..., a, have no common
factors. Then we define H(x) to be the maxi-
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mum of |g;] (i=0,...,n) and call it the height
of a. J. Liouville proved the following theorem
(1844): Let ¢ be a real number (£¢ Q). If
inf{q"|&—p/q|| p/ge Q} =0 for any positive
integer n, then & is transcendental.

Transcendental numbers having this prop-
erty are called Liouville numbers. Examples
are: (i) £ =X, ¢ ", where ¢ is an integer not
smaller than 2. (i) Suppose that we are given
a sequence {n,} of positive integers such that
n,— o0 (k—o0). Let £ be the real number
expressed as an finfinite simple continued frac-
tion by + 1/b, + 1/b,+ .... Let B, be the denomi-
nator of the ith fconvergent of the continued
fraction. If b, ;> Bjk™* for k> 1, then {is a
Liouville number.

On the other hand, K. Mabhler [8,9] proved
the existence of transcendental numbers that
are not Liouville numbers. For example, he
showed that if f(x) is a nonconstant inte-
gral polynomial function mapping the set
of positive integers into itself, then a number
& expressed, e.g., in the decimal system as
Oy,y,¥s3... is such a number if we put y,= f(n),
n=1,2,3,.... (In particular, from f(x)=x we
get the non-Liouville transcendental number &
=0.123456789101112....) Mabhler proved this
result by using *Roth’s theorem (1955) (— 182
Geometry of Numbers). Both Liouville and
Mabhler utilized the theory of *Diophantine
approximation to construct transcendental
numbers.

On the other hand, Schneider [10-12] and
Siegel [3] constructed transcendental num-
bers using certain functions. Examples are:
expa (1€ Q, 2 #0) of (4eQ, a0, 1; fc Q- Q);
J(t), where J is the *'modular function and
is an algebraic number that is not contained
in any imaginary quadratic number field;
»(2mi/a), where @ is the Weierstrass -
function, x€Q, and « #0; and B(p, q), where B
is the TBeta function and p,qe Q — Z.

Since e=exp 1 and | =exp2xi, the tran-
scendence of ¢ and = is directly implied by the
transcendence of expa (xeQ, x#0).

C. Classification of Transcendental Numbers

(1) Mahler’s classification: Given a complex
number ¢ and positive integers n and H, we
consider the following:

a,eZ,

w,(H, i):min{

n
2 a8
v=0

la<H, Y mé"#o},
v=0

w,(§)=w, =limsup(—logw,(H., {)/log H),

Hox

w()=w=limsupw,({)/n,

nox
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and let p=the first number » for which w, is
oc. Then we have the following four cases:
) w=0, u=o0; (ii) 0 <w < 00, u= o0; (i) w=
w=o0; (iv) w= 00, < o0, corresponding to
which we call £ an A-number, S-number, T-
number, or U-number. The set of A-numbers
is denoted by A, and similarly we have the
classes S, T, and U. It is known that A=Q.
If two numbers ¢ and n are talgebraically
dependent over Q, then they belong to the
same class. If £ belongs to S, the quantity 0(&)
=sup{w,(&)/nln=1,2,...} is called the type of
¢ (in the sense of Mahler). Mahler conjectured
that almost all transcendental numbers (except
a set of Lebesgue measure zero) are S-numbers
of the type 1 or 1/2 according as they belong
to R or not. Various results were obtained
concerning this conjecture (W. J. LeVeque, J.
F. Koksma, B. Volkmann) until it was proved
by V. G. Sprindzhuk in 1965 [14, 15]. The
existence of T-numbers was proved by W. M.
Schmidt (1968) [16]. All Liouville numbers are
U-numbers [7]. On the other hand, loga (x€Q,
a>0, a# 1) and x are transcendental numbers
that do not belong to U.

(2) Koksma’s classification: For a given
transcendental number ¢ and positive numbers
nand H, we consider the following:

wi(H, &)=min{|&—a||xeQ,
H@<H, [Q(:Q]<n},
wi(&)=wk =limsup(—log(Hw*(H, ¢))/log H),

H-o

w¥(&)=w*=limsupwg({)/n,

and let g* =the first number » for which w} is
o0. Then we have the following three cases: (i)
w* < oo, u* = oo; (il) w¥ = p* = co; (iii) w* = o0,
u¥ < o0, We call £ an S*-number, T*-number,
or U*-number according as (i), (ii), or (iii) holds
and denote the set of S*-numbers by S*, etc. If
¢ belongs to 8*, we call 0*(&) =sup{w}(&)/n|n
=1,2,...} the type of ¢ (in the sense of Kok-
sma). It can be shown that S=S* T=T* and
U=U*, and that if €8, then 0*(&) <0(&) <
0*(&H+ 1.

D. Algebraic Independence

Concerning the algebraic relations of tran-
scendental numbers, we have the following
three principal theorems:

(1) Let a4, ..., %, be elements of Q that
are linearly independent over Q. Then
expay, ...,expa,, are transcendental and alge-
braically independent over Q (Lindemann-
Weierstrass theorem).

(2) Let J,{x) be the Bessel function and « a
nonzero algebraic number. Then J,(«) and
Jo(a) are transcendental and algebraically
independent over Q (Siegel).
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(3) Let a4, ..., a, be nonzero elements of Q
such that logx,, ..., loga, are linearly inde-
pendent over Q. Then 1, loga,, ..., logx, are
linearly independent over Q (A. Baker).

Besides these theorems, various related
results have been obtained by A. B. Shidlovskii,
Gel'fond, N. I. FeI’dman, and others. A quanti-
tative extension of theorem (3), also by Baker,
will be discussed later.

First we give more detailed descriptions
of theorems (1) and (2). Let a4, ..., 2, be
as in theorem (1), s=[Q(x,, ..., a,):Q],
P(X,,...,X,) be an arbitrary polynomial in
Q[X,,...,X,] of degree n, and H(P) be the
maximum of the absolute values of the coeffi-
cients of the polynomial P. Then there exists a
positive number C determined only by the
numbers «,, ..., «, and n(=deg P) such that

—ZS(Z(ZS'"";'"+")~1)

[P(e*, ..., e*m)| > CH(P)

In particular, if o is a nonzero algebraic
number, then expa belongs to S and ((exp )
<8s% +6s.

(2') Let a be a nonzero algebraic number,
s=[Q(x):Q], PeQ[X,, X,], deg P=n. Then
there exists a positive number C determined
only by o and n such that | P(Jy(a), Jo(2))| >
CH(P) "825‘3"3.

Theorems (1) and (2) are actually special
cases of a theorem obtained by Siegel. To state
this theorem, the following terminology is
used: An entire function f(z2)=X7,C," z"/n!
is called an E-function defined over an *alge-
braic number field K of finite degree if the fol-
lowing three conditions are satisfied: (i) C,e K
(n=0,1,2,...). (i) For any positive number ¢,
C,=0(n®). (iii) Let g, be the least positive
integer such that C, g, belongs to the ring O of
algebraic integers in K (0<n, 0<k<n). Then
for an arbitrary positive number ¢, g,= O(n*").

A system { f1(z), ..., fu(2)} of E-functions
defined over K is said to be normal if it satis-
fies the following two conditions: (i) None of
the functions f;(z) is identically zero. (ii) If the
functions w, = f,(z) (k=1, ..., m) satisfy a sys-
tem of thomogeneous linear differential equa-
tions of the first order, then wy, = X7%, @y (2)w,
where the Q,,(z) are rational functions of z,
with coefficients in the ring O. The matrix (Q,,)
can be decomposed by rearranging the order
of the indices k, I if necessary into the form

W,. 0
0o W)

where

Qll,t"'le(,t ,,
o L ey, Y m=m.

w=| ... ..
t=1
Qm,l.l"' Qm,ml.r
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The decomposition is unique if we choose r

as large as possible, in which case we call

Wi, ..., W, the primitive parts of (Q,,). The
requirement is that the primitive parts W, are
independent in the following sense: If there are
numbers C;, € K and polynomial functions

P, (z)e K[z] such that

r Plt(Z)
Z(Clt“'Cmrt)VV; =0,
P, (2)

then C, =0, P,,(z)=0.

Let N be a positive integer. A normal sys-
tem { fi(z), ..., fu(2)} of E-functions is said to
be of degree N if the system {F, _ , (z)=

m

fl(z)m ..-fm(z)nmlniZO, Zrin:l n,-éN} 1s also

a normal system of E-functions. Then the
theorem obtained by Siegel [4] is: Let N be an
arbitrary positive integer and { f,(2), ..., f.(2)}
be a normal system of E-functions of degree
N defined over an algebraic number field of
finite degree K satisfying the system of differen-
tial equations fi(z)=2L, Q. /(2)fi(z), where
Qu(2)eO(z), 1 £k <m. If o is a nonzero alge-
braic number that is not a tpole of any one
of the functions Q,(2), then f\(z), ..., f.(«) are
transcendental numbers that are algebraically
independent over the field Q.

Theorem (3) at the beginning of this sec-
tion implies, for example, the following: (i) If
ay,...,a, and B, ..., B, all belong to Q and
y=o,logp +... +uo,logf,#0, then y is tran-
scendental. (i) If o, ..., o, By, By, ..., B, are
nonzero algebraic numbers, then e®oxfi ... ofn
is transcendental. (iii) If a4, ..., 2, are alge-
braic numbers other than 0 and 1. and f;,
..., B, also belong to Q, with 1, . ..., B,
linearly independent over Q, then ofi .. afr
is transcendental.

Baker [17] also obtained a quantitative
extension of theorem (3): Suppose that we
are given integers A >4, d >4 and nonzero
algebraic numbers a, ..., a, (n>2) whose
heights and degrees do not exceed 4 and d,
respectively. Suppose further that 0 <d <1,
and let loga,, ..., loga, be the principal values
of the logarithms. If there exist rational in-
tegers by, ..., b, with absolute value at most H
such that

0<|b1 logal +4..+bnloga"|<e*6}l’

then
H<(4"5 1d™log A)2" V",

This theorem has extensive applications in
various problems of number theory, including
a wide class of *Diophantine problems [19].

A number of new, interesting results on the
algebraic independence of values of exponen-
tial functions, elliptic functions, and some
other special functions have been obtained
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recently by D. Masser, G. V. Chudnovskii, M.
Waldschmidt, and other writers. In particular,
Chudnovskii (1975) obtained the remarkable
result that I'(1/3) and I'(1/4) are transcenden-
tal numbers. See [20-24].
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Transformation Groups

A. Topological Transformation Groups

Let G be a group, M a set, and f a mapping
from G x M into M. Put f(g,x)=g(x) (geG,
xeM). Then the group G is said to be a trans-
formation group of the set M if the following
two conditions are satisfied: (i) e(x)=x (xe M),
where ¢ is the identity element of G; and (ii)
(gh)(x)=g(h(x)) (xe M) for any g, heG. In
this case the mapping x—g(x) is a one-to-one
mapping of M onto itself.

Let G be a transformation group of M. If G
is a topological group, M a topological space,
and the mapping (g, x)—g(x) a continuous
mapping from G x M into M, then G is called
a topological transformation group of M. In
this case x—g(x) is a homeomorphism of M
onto itself. The mapping (g, x)—g(x) is called
an action of G on M. The space M, together
with a given action of G, is called a G-space.

For a point x of M, the set G(x)={g(x)|
geGj is called the orbit of G passing through
the point x. Defining as equivalent two points
x and y of M belonging to the same orbit, we
get an equivalence relation in M. The quotient
space of M by this equivalence relation, de-
noted by M/G, is called the orbit space of
G-space M.

If G(x)={x}, then x is called a fixed point.
The set of all fixed points is denoted by M¢.
For a point x of M, the set G,={geG|g(x)=
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x} is a subgroup of G called the isotropy
subgroup (stabilizer, stability subgroup) of G at
the point x. A conjugacy class of the subgroup
G, is called an isotropy type of the transforma-
tion group G on M.

The group G is said to act nontrivially (resp.
trivially) on M if M # M€ (resp. M = MY). The
group G is said to act freely on M if the iso-
tropy subgroup G, consists only of the identity
element for any point x of M.

The group G is said to act transitively on M
if for any two points x and y of M, there exists
an element g€ G such that g(x)=y.

Let N be the set of all elements g€ G such
that g(x)=x for all points x of M. Then N is a
normal subgroup of G. If N consists only of
the identity element e, we say that G acts effec-
tively on M, and if N is a discrete subgroup of
G, we say that G acts almost effectively on M.
When N # {e}, the quotient topological group
G/N acts effectively on M in a natural fashion.

An equivariant mapping (equivariant map)
(or a G-mapping, G-map) h: XY between G-
spaces 1s a continuous mapping which com-
mutes with the group actions, that is, h(g(x)=
g(h(x)) for all ge G and xe X. An equivariant
mapping which is also a homeomorphism is
called an equivalence of G-spaces.

For a G-space M, an equivalence class of the
G-spaces G(x), xe M, is called an orbit type of
the G-space M.

B. Cohomological Properties

We consider only *paracompact G-spaces and
*Cech cohomology theory in this section. We
shall say that a topological space X is finitistic
if every open covering has a finite-dimensional
refinement. The following theorems are useful
[1-3].

(1) If G is finite, X a finitistic paracompact
G-space, and K a field of characteristic zero or
prime to the order of G, then the induced
homomorphism n*: H*(X/G; K)» H*(X; K)°¢
is an isomorphism. Here, 7 is a natural projec-
tion of X onto X/G. The group G acts natu-
rally on H*(X; K), and H*(X; K)° denotes the
fixed-point set of this G-action.

(2) Let X be a finitistic G-space and G cyclic
of prime ordor p. Then, with coefficients in
Z/pZ, we have

(a) for each n Z rank H{(X€)< ) rank H'(X),

(b)  x(X)+(p— (X =py(X/G).

Here the TEuler-Poincaré characteristics y( )
are defined in terms of mod p cohomology.
(3) Smith’s theorem: If G is a p-group (p
prime) and if x is a finitistic G-space whose
mod p cohomology is isomorphic to the n-
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sphere, then the mod p cohomology of the
fixed-point set X ¢ is isomorphic to that of the
r-sphere for some —1<r<n, where (—1)-
sphere means the empty set.

(4) Let T* denote the k-dimensional toral
group. Let X be a T*-space whose rational
cohomology is isomorphic to the n-sphere, and
assume that there are only a finite number of
orbit types and that the orbit spaces of all
subtori are finitistic. Let H be a subtorus of T*.
Then by the above theorem the rational coho-
mology of X# is isomorphic to that of the
r(H)-sphere for some —1 <r(H)<n. Assume
further that there is no fixed point of the T*-
action. Then, with H ranging over all subtori
of dimension k— 1, we have

n+1=3 (r(H)+1).
H

C. Differentiable Transformation Groups

Suppose that the group G is a transformation
group of a differentiable manifold M, G is a
*Lie group, and the mapping (g, x)—=g(x) of

G x M into M is a differentiable mapping.
Then G is called a differentiable transformation
group (or Lie transformation group) of M, and
M is called a differentiable G-manifold.

The following are basic facts about compact
differentiable transformation groups [3,4]:

(5) Differentiable slice theorem: et G be a
compact Lie group acting differentiably on a
manifold M. Then, by averaging an arbitrary
*Riemannian metric on M, we may have a G-
invariant Riemannian metric on M. That is,
the mapping x—g(x) is an fisometry of this
Riemannian manifold M for each ge G. For
each point xe M, the orbit G(x) through x is a
compact submanifold of M and the mapping
g+ g(x) defines a G-equivariant diffeomor-
phism G/G,=G(x), where G/G, is the left quo-
tient space by the isotropy subgroup G,. G,
acts orthogonally on the ftangent space T.M
at x (resp. the tnormal vector space N, of the
orbit G(x)); we call it the isotropy representa-
tion (resp. slice representation) of G, at x. Let E
be the fnormal vector bundle of the orbit G(x).
Since G acts naturally on E as a bundle map-
ping, the bundle E is equivalent to the bundle
(G x N,)/G, over G/G, as a tG-vector bundle,
where G, acts on N, by means of the slice
representation and G, acts on G by the right
translation. We can choose a smal] positive
real number ¢ such that the fexponential
mapping gives an equivariant *diffcomorphism
of the ¢-disk bundle of E onto an invariant
ftubular neighborhood of G(x).

(6) Assume that a compact Lie group G acts
differentiably on M with the orbit space M* =
M/G connected. Then there exists a maximum
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orbit type G/H for G on M (i.e., H is an iso-
tropy subgroup and H is conjugate to a sub-
group of each isotropy group). The union My,
of the orbits of type G/H is open and dense in
M, and its image M, in M* is connected.

The maximum orbit type for orbits in M
guaranteed by the above theorem is called the
principal orbit type, and orbits of this type are
called principal orbits. The corresponding
isotropy groups are called principal isotropy
groups. Let P be a principal orbit and Q any
orbit. If dim P> dim Q, then @ is called a sin-
gular orbit. If dim P=dim Q but P and Q are
not equivalent, then Q is called an exceptional
orbit.

(7) Let G be a compact Lie group and M a
compact G-manifold. Then the orbit types are
finite in number.

By applying (5) and (6) we have that an iso-
tropy group is principal if and only if its slice
representation is trivial.

The situation is quite different in the case
of noncompact transformation groups. For
example, there exists an analytic action of
G=SL(4,R) on an analytic manifold M such
that each orbit of G on M is closed and of
codimension one and such that, for x, ye M,
G, is not isomorphic to G, unless x and y lie
on the same G-orbit [5].

D. Compact Differentiable Transformation
Groups

Many powerful techniques in *differential
topology have been applied to the study of
differentiable transformation groups. For
example, using the techniques of fsurgery, we
can show that there are infinitely many free
differentiable circle actions on thomotopy
(2n+ 1)-spheres (n > 3) that are differentiably
inequivalent and distinguished by the rational
fPontryagin classes of the orbit manifolds

(W. C. Hsiang [6]). Also, using *Brieskorn
varieties, we can construct many examples of
differentiable transformation groups on homo-
topy spheres [3,4, 7]. Differentiable actions
of compact connected Lie groups on homol-
ogy spheres have been studied systematically
(Hsiang and W. Y. Hsiang [4]).

The Atiyah-Singer findex theorem has
many applications in the study of transfor-
mation groups. The following are notable
applications:

(8) Let M be a compact connected foriented
differentiable manifold of dimension 4k with
a tspin-structure. If a compact connected
Lie group G acts differentiably and nontriv-
ially on M, then the A-genus (o (M),[M]D>
of M vanishes (where /(M) denotes the *4-
characteristic class of M) (M. F. Atiyah and F.
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Hirzebruch [8], K. Kawakubo [9]). For fur-
ther developments, see A. Hattori [ 10].

(9) Let M be a closed oriented manifold with
a differentiable circle action. Then each con-
nected component F, of the fixed point set
can be oriented canonically, and we have

I(M)=;I(Fk),

where I( ) denotes the *Thom-Hirzebruch
index [8,9].

Let G be a compact Lie group and G—
EG— BG the funiversal G-bundle. Then the
*singular cohomology H*(EG x ;X) is called
equivariant cohomology for a G-space X and is
an H*(BG)ymodule. Let G=U(1), M a dif-
ferentiable U(1)-manifold, F =M% and i: F—
M the inclusion mapping. Then the flocaliza-
tion of the induced homomorphism

S7Ui*:STUH*(EG x (M)—S ' H*(BG x F)

is an isomorphism, where $ 7! denotes the
localization with respect to the multiplicative
set § = {at*} with a, k ranging over all posi-
tive integers and ¢ the generator of H*(BG).
Theorems (8) and (9) can be proved by the
above localization isomorphism.

Let M be a differentiable manifold. The
upper bound N(M) of the dimension of all the
compact Lie groups that acts effectively and
differentiably on M is called the degree of
symmetry of M. It measures, in some crude
sense, the symmetry of the differentiable mani-
fold M. The number N(M) depends heavily on
the differentiable structure. For example,
N(S™y=m(m+ 1)/2 for the standard m-sphere,
but N(Z™ <(m+1)%/16+5 for a thomotopy
m-sphere (m > 300) that does not bound a
*r-manifold [11]. Also, N(P(C))=n(n+2)
for the complex projective n-space P,(C), but
N(hP,(C)) <(n+1)(n+2)/2 for any homotopy
complex projective n-space hP,(C) (n=13)
other than P,(C) (T. Watabe [12]).

Let X be a differentiable closed manifold
and h: X — P,(C) be an orientation-preserving
*homotopy equivalence. There is a conjec-
ture about the total A-classes that states: If X
admits a nontrivial differentiable circle action,
then o7 (X)=h*.o7(P,(C)) (T. Petrie [13]). It is
known that if the action is free outside the
fixed-point set, then the conjecture is true
(T. Yoshida [14]).

E. Equivariant Bordism

Fix a compact Lie group G; a compact ori-
ented G-manifold (y/, M) consists of a compact
‘oriented differentiable manifold M and an
orientation-preserving differentiable G-action
V:GxM->Mon M.
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Given families F = F' of subgroups of G, a
compact oriented G-manifold (¢, M) is (F, F')-
free if the following conditions are satisfied: (i)
if xe M, then the isotropy group G, is conju-
gate to a member of F; (ii) if xe 0M, then G, is
conjugate to a member of F'.

If F’ is the empty family, then necessarily
(M is empty and M is closed. In this case we
say that (, M) is F-free.

Given (¥, M), define —(f, M)=(y, — M)
with the structure precisely the same as (y, M)
except for forientation. Also define d(y, M)=
(¥, 6M). Note that if (y, M) is (F, F')-free, then
(, 0M) is F'-free. Define (y, M) and (y/', M’) to
be isomorphic if there exists an equivariant
orientation-preserving diffeomorphism of M
onto M.

An (F, F')-free compact oriented n-
dimensional G-manifold (y, M) is said to bord
if there exists an (F, F)-free compact oriented
(n+ 1)-dimensional G-manifold (®, W) to-
gether with a regularly embedded compact n-
dimensional manifold M, in W with M,
invariant under the G-action @ such that
(®, M,) is isomorphic to (¥, M) and G, is con-
jugate to a member of F' for xe dW — M, .
Also, M, is required to have its orientation in-
duced by that of W.

We say that (y,, M,) is bordant to (y,, M,) if
the disjoint union (¥, M)+ (¥,, — M,) bords.
Bordism is an equivalence relation on the class
of (F, F')-free compact oriented n-dimensional
G-manifolds. The bordism classes constitute
an Abelian group O¢(F, F') under the oper-
ation of disjoint union. If F’ is empty, denote
the above group by O¢(F). The direct sum

OS(F,F)=POS(F, F)

1s naturally an Q-module, where Q is the
toriented cobordism ring. If F consists of all
subgroups of G, then O(F) is denoted by O¢.
Suppose now that F o F” are fixed families
of subgroups of G. Every F'-free G-manifold
is also F-free, and so this inclusion induces
a homomorphism «: Q%(F')—Q%(F). Simi-
larly every F-free G-manifold is also (F, F)-
free, inducing a homomorphism $: 0%(F)—
OF(F, I). Finally, there is a homomorphism
0:08(F, F')-»0OS_,(F') given by d(f, M)=
(Y, 6M). Then the following sequence is exact

[15]:

- SOE(F)B08(F) 5 OS(F, F)508 (F)5 ...

A weakly almost complex compact G-
manifold (i, M) consists of a f'weakly almost
complex compact manifold M and a differ-
entiable G-action y: G x M —» M that preserves
the weakly almost complex structure on M.
US(F, F'), US are defined similarly, and they
are U, -modules, where U, is the fcomplex
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cobordism ring of compact weakly almost
complex manifolds.

To study O¢ and U, (co)bordism theory is
introduced (P. E. Conner and E. E. Floyd
[16]), which is one of the *generalized (co)-
homology theories. Miscellaneous results are
known, in particular, for G a cyclic group of
prime period. By means of the equivariant
*Thom spectrum, equivariant cobordism
theory can be developed (T. tom Dieck [17]);
this is a multiplicative generalized cohomology
theory with Thom classes (— 114 Differential
Topology; also — 201 Homology Theory, 56
Characteristic Classes).

F. Equivariant Homotopy

Let G be a compact Lie group. On the category
of closed G-manifolds, we say that two objects
M, N are y-equivalent if y(M7)= y(N*) for all
closed subgroups H of G, where y( ) is the
fEuler-Poincaré characteristic. On the set of
equivalence classes A(G), a ring structure is
imposed by disjoint union and the Cartesian
product. We call A(G) the Burnside ring of G.
If G s finite, A(G) is naturally isomorphic to
the classical Burnside ring of G [18].

Denote by S(V) the unit sphere of an or-
thogonal G-representation space V. Let V,

W be orthogonal G-representation spaces.
The equivariant stable homotopy group
LLS(V), S(W)]1], which is defined as the direct
limit of the equivariant homotopy sets [S(V +
U), S(W+ U)]g taken over orthogonal G-
representation spaces U and suspensions, is
denoted by w, for x=V — WeRO(G). The
*smash product of representatives induces a
bilinear pairing w, X w3 =, 5. Then wg is a
ring, and w, is an wmy-module. The ring oy, is
isomorphic to the Burnside ring of G, and w, is
a *projective w,-module of rank one. The w,-
module @, is free if and only if S(V) and S(W)
are stably G-homotopy equivalent [18].

Let E be an orthogonal G-vector bundle
over a compact G-space X. Denote by S(E) the
sphere bundle associated with E. Let E, F be
orthogonal G-vector bundles over X. Then E
and F have the same spherical G-fiber homo-
topy type if there exist fiber-preserving G-
mappings f:S(E)—>S(F), ':S(F)-S(E) and
fiber-preserving G-homotopies h,: S(E)— S(E),
h;:S(F)—S(F) such that hy=f"o f, h, =identity,
hoy=fof’, by =identity. Let KO4(X) be the
fequivariant K-group of real G-vector bundles
over X. Let T;(X) be the additive subgroup of
KO4(X) generated by elements of the form [E]
—[F], where E and F are orthogonal G-vector
bundles having the same spherical G-fiber
homotopy type. The factor group J4(X)=
KO4(X)/T;(X) and the natural projection
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Jo: KOg(X)—J;(X) are called an equivariant
J-group and an equivariant J-homomorphism,
respectively (— 237 K-Theory).

In particular, J;({x,}) is a factor group of
the real representation ring RO(G). *tAdams
operations on representation rings are the
main tools for studying the group Jg({x,})

[18].

G. Infinitesimal Transformations

Let f:G x M— M be a differentiable action of
a Lie group G on a differentiable manifold M.
Let X be a tleft invariant vector field on G.
Then we can define a differentiable vector field
f*(X)on M as

S (X)gh=lim (h( f(exp(—X). )= b))t

for each ge M and any differentiable function
h defined on a neighborhood of g. It is easy
to see that f7(X),=0if and only if g is a
fixed point of the one-parameter subgroup
{exp(tX)}. A vector field f1(X) is called an
infinitesimal transformation of the differenti-
able transformation group G.

The set g of all infinitesimal transformations
of G forms a finite-dimensional tLie algebra
(the laws of addition and *bracket product are
defined from those for the vector fields on M).
If G acts effectively on M, g is isomorphic to
the Lie algebra of the Lie group G (— 249 Lie
Groups). In fact, the correspondence X —
[7(X) defines a Lie algebra homomorphism
[ from the Lie algebra of all left invariant
vector fields on G into the Lie algebra of all
differentiable vector fields on M [19].

The following fact [20] is useful for the
study of noncompact real analytic transfor-
mation groups. Let g be a real *semisimple
Lie algebra and p:g— L(M) be a Lie algebra
homomorphism of g into a Lie algebra of real
analytic vector fields on a *real analytic mani-
fold M. Let p be a point at which the vector
fields in the image p(g) have common zero.
Then there exists an analytic system of coordi-
nates (U;u,, ..., u,,) with origin at p in which
all the vector fields in p(g) are linear. Namely,
there exists a;;€ g* = Homg(g, R) such that

0

p(X),= —;“u(x)“j(q)a;

i

Xeq, geU.

The correspondence X —(a;(X)) defines a Lie
algebra homomorphism of g into sl{m, R).

For example, we can show that a real ana-
lytic SL(n, R) action on the m-sphere is charac-
terized by a certain real analytic vector field on
(m—n+1)-sphere (S<n<m<2n—2) [217. In
particular, there are infinitely many (at least the
cardinality of the real numbers) inequivalent
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real analytic SL(n, R) actions on the m-sphere
3<n<m).

Conversely, let g be a finite-dimensional Lie
algebra of vector fields on M. Although there
is not always a differentiable transformation
group G that admits g as its Lie algebra of
infinitesimal transformations, the following
local result holds, Let G be the fsimply con-
nected Lie group corresponding to the Lie alge-
bra g. Then for each point x of M, there exist
a neighborhood U of the identity element e
of G, neighborhoods V, W (V¥ =« W) of x, and a
differentiable mapping f of U x V into W with
the following properties. Putting f(g, y)=g(y)
(9e U, ye V), we have: (i) For all ye V, e(y)=y.
(i) If g, he U, ye V, then (gh)(y) =g(h(»)), pro-
vided that ghe U, h(y)e V. (iii} Let X be an
arbitrary element of g. Put g,=exp(—tX), the
corresponding one-parameter subgroup of G.
If >0 is taken small enough, then we have
g€ U for |t| <& so that g,(y)(jt| <&, ye V) is well
defined. Therefore ¢, determines a vector field
X on V by the formula

th=‘,ij§ (h(g () —h(»)/t.

The vector field X coincides with the restric-
tion of X to V. This local proposition is often
expressed by the statement that g generates a
local Lie group of local transformations, which
is called Lie’s fundamental theorem on local
Lie groups of local transformations.

H. Criteria

[t is important to know whether a given trans-
formation group is a topological or a Lie
transformation group. The following theorems
are useful for this purpose [22,23]:

(10) Let G be a transformation group of a
flocally compact Hausdorff space M. If we
introduce the *fcompact-open topology in
G, then G is a topological transformation
group of M when M is locally connected or M
is a funiform topological space and G acts
fequicontinuously on M.

(11) Suppose that M is a *C!'-manifold and
G is a topological transformation group of M
acting effectively on M. If G is locally compact
and the mapping x—g(x) of M is of class C!
for each element g of G, then G is a Lie trans-
formation group of M.

(12) Assume that G is a transformation
group of a differentiable manifold M and G
acts effectively on M. Let g be the set of all
vector fields on M defined by one-parameter
groups of transformations of M contained in G
as subgroups. If g is a finite-dimensional Lie
algebra, then G has a Lie group structure with
respect to which G is a Lie transformation
group of M, and then g coincides with the Lie
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algebra formed by the infinitesimal transfor-
mations of G.

By applying theorems (10), (11), and (12) we
can show that the following groups are Lie
transformation groups: the group of all fiso-
metries of a TfRiemannian manifold; the group
of all affine transformations of a differentiable
manifold with a flinear connection (generally,
the group of all transformations of a differenti-
able manifold that leave invariant a given
tfCartan connection); the group of all analytic
transformations of a compact complex mani-
fold (this group is actually a complex Lie
group); and the group of all analytic (holomor-
phic) transformations of a bounded domain
i C".

For related topics — 105 Differentiable
Manifolds, 114 Differential Topology, 122
Discontinuous Groups, 153 Fixed-Point
Theorems, 427 Topology of Lie Groups and
Homogeneous Spaces, etc.
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432 (V1.8)
Trigonometry

A. Plane Trigonometry

Fix an orthogonal frame 0-XY in a plane, and
take a point P on the plane such that the angle
POX is o. Denote by (x, y) the coordinates of
P, and put OP=r (Fig. 1). We call the six ratios
sina = y/r, cosa=Xx/r, tana=y/x, cota=x/y,
seca=r/x, coseca=r/y the sine, cosine, tan-
gent, cotangent, secant, and cosecant of «, re-
spectively. These functions of the angle a are
called trigonometric functions or circular func-
tions (— 131 Elementary Functions). They

are periodic functions with the fundamental
period = for the tangent and cotangent, and 2n
for the others. The relation sinZa+cos?a=1
and the addition formulas sin(x + )=sinoacos
tcosasinff, cos(a + ff)=cosacos f Fsinasin ff
follow from the definitions (— Appendix A,
Table 2). Given a plane triangle ABC (Fig. 2),
we have the following three properties: (i) a=
bcos C+ ccos B (the first law of cosines);

(11) a® = b* + ¢ — 2bccos A (the second law of
cosines); (iti) a/sin A =b/sin B=¢/sinC =2R,
where R is the radius of the circle circum-
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scribed about AABC (laws of sines) (— Ap-
pendix A, Table 2). Thus we obtain relations
among the six quantities @, b, ¢, /. A, £ B, and
£ C associated with the triangle ABC. The
study of plane figures by means of trigono-
metric functions is called plane trigonometry.
For example, if a suitable combination of
three of these six quantities (including a side)
associated with a triangle is given, then the
other three quantities are uniquely determined.
The determination of unknown quantities
associated with a triangle by means of these
laws is called solving a triangle.

e

Plxy)
I
I
T :L/
{a :
() X X
Fig. 1
A
¢ b
B a C
Fig. 2

B. Spherical Trigonometry

The part ABC of a spherical surface bounded
by three arcs of great circles is called a spher-
ical triangle. Points 4, B, C are called the
vertices; the three arcs a, b, ¢ are called the
sides; and the angles formed by lines tangent
to the sides and intersecting at the vertices are
called the angles of the spherical triangle (Fig.
3). If we denote the angles by 4, B, C, we have
the relation A+ B+ C—n=E>0,and E is
called the spherical excess. Spherical triangles
have properties similar to those of plane trian-
gles: sina/sin A =sinb/sin B=sin¢/sin C (laws
of sines), and cosa =cosbcosc+sinbsinccos 4
(law of cosines). The study of spherical figures
by means of trigonometric functions, called
spherical trigonometry, is widely used in astron-
omy, geodesy, and navigation (— Appendix
A, Table 2).

<.

&

Fig. 3
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C. History

Trigonometry originated from practical prob-
lems of determining a triangle from three of
its elements. The development of spherical
trigonometry, which was spurred on by its
applications to astronomy, preceded the devel-
opment of plane trigonometry. In Egypt,
Babylon, and China, people had some knowl-
edge of trigonometry, and the founder of
trigonometry is believed to have been Hippar-
chus of Greece (fl. 150 B.C.). In the Almagest
of Ptolemy (c. 150 a.p.) we find a table for
2sina for a=0, 30, 1°, 1°30/, ... that is exact
to five decimal places, and the addition for-
mulas. The Greeks calculated 2sina, which is
the length of the chord corresponding to the
double arc. Indian mathematicians, on the
other hand, calculated half of the above quan-
tities, that is, sine and 1 —cosa for the arc o.
In the book by Aryabhatta (c. 500 A.p.) we
find laws of cosines. The Arabs, influenced by
Indian mathematicians, expressed geometric
computations algebraically, a technique also
known to the Greeks. Abtl Wafi (in the latter
half of the 10th century A.D.) gave the correct
sines of angles for every 30’ to 9 decimal places
and studied with Al Battani the projection
triangle of the sundial, thereby obtaining the
concepts of sine, cosine, secant, and cosecant.
Later, a table of sines and cosines for every
minute was established by the Arabs. Regio-
montanus (d. 1476), a German, elaborated on
this table. The form he gave to trigonometry
has been maintained nearly intact to the pre-
sent day. Various theorems in trigonometry
were established by G. J. Rhaeticus, J. Napier,
J. Kepler, and L. Euler (1748). Euler treated
trigonometry as a branch of analysis, gen-
eralized it to functions of complex variables,
and introduced the abbreviated notations that
are still in use (— 131 Elementary Functions).
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433 (XX.12)
Turbulence and Chaos

Turbulent flow is the irregular motion of fluids,
whereas relatively simple types of flows that
are either stationary, slowly varying, or peri-
odic in time are called laminar flow. When
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a laminar flow is stable against external dis-
turbances, it remains laminar, but if the flow is
unstable, it usually changes into either another
type of laminar flow or a turbulent flow.

A. Stability and Bifurcation of Flows

The velocity field u(x, ), x being the space
coordinates and ¢ the time, of a flow of an
incompressible viscous fluid in a bounded
domain G is determined by the *Navier-Stokes
equation of motion,

Ju

ct

1
+(u-grad)u—vAu+—gradp=0, ()
0

and the equation of continuity,
diva=0, 2)

with the prescribed initial and boundary con-
ditions, where A denotes the Laplacian, p the
pressure, p the density, and v the kinematic
viscosity of the fluid. Suitable extensions must
be made in the foregoing system of equations if
other field variables, such as the temperature
in thermal-convection problems, are to be
considered.

The stability of a fluid flow is studied by
examining the behavior of the solution of
equations (1) and (2) against external distur-
bances, and, in particular, stability against
infinitesimal disturbances constitutes the linear
stability problem. The stability characteristics
of the solution of equations (1) and (2) depend
largely upon the value of the fReynolds num-
ber R=UL/v, U and L being the representa-
tive velocity and length of the flow, respec-
tively. Let a stationary solution of equations
(1) and (2) be uy(x, R). If the perturbed flow
is given by u,(x, R)+v(x, R)exp(at), v being
the perturbation velocity, and equation (1) is
linearized with respect to v, we obtain a *linear
eigenvalue problem for o. The flow is called
linearly stable if max(Re o) is negative, and
linearly unstable if it is positive. For small
values of R, a flow is generally stable, but it
becomes unstable if R exceeds a critical value
R_, which is called the critical Reynolds num-
ber [1].

The instability of a stationary solution gives
rise to the *bifurcation to another solution
at a "bifurcation point R, of the parameter R.
If Img =0 for an eigenvalue ¢ at R=R_, a
stationary solution bifurcates from the solu-
tion u, at R, and if Imo #0, a time-periodic
solution bifurcates at R_. The latter bifurca-
tion is called the Hopf bifurcation. A typical
example of stationary bifurcation is the gener-
ation of an axially periodic row of Taylor
vortices in Couette flow between two rotating
coaxial cylinders, which was studied by G. L.
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Taylor (1923), with excellent agreement be-
tween theory and experiment [2]. Hopf bifur-
cation is exemplified by the generation of
Tollmien-Schlichting waves in the laminar
*boundary layer along a flat plate, which was
predicted theoretically by W. Tollmien (1929)
and H. Schlichting (1933) and later confirmed
experimentally by G. B. Schubauer and H. K.
Skramstad (1947) [3].

In either type of bifurcation (Ime=0 or #0)
the bifurcation is called supercritical if the
bifurcating solution exists only for R>R,,
subcritical if it exists only for R<R_, and
transcritical if it happens to exist on both sides
of R.. The amplitude of the departure of the
bifurcating solution from the unperturbed
solution u, tends to zero as R—R_. The be-
havior of the bifurcating solution around the
bifurcation point R_ is dealt with systemat-
ically by means of bifurcation analysis. In
supercritical bifurcation, the bifurcating solu-
tion ts stable and represents an equilibrium
state to which the perturbed flow approaches
just as in the cases of Taylor vortices and
Tollmien-Schlichting waves. On the other
hand, for subcritical bifurcation the bifurcat-
ing solution is unstable and gives a critical am-
plitude of the disturbance above which the
linearly stable basic flow (R < R,) becomes
unstable. In this case, the instability of the
basic flow gives rise to a sudden change of the
flow pattern resulting in either a stationary
(or time-periodic) or even turbulent flow. The
transition to turbulent flow that takes place
in Hagen-Poiseuille flow through a circular
tube and is linearly stable at all values of R
(R.= o0) may be attributed to this type of
bifurcation.

The concept of bifurcation can be extended
to the case where the flow u, is nonstationary,
but the bifurcation analysis then becomes
much more difficult.

B. Onset of Turbulence

The fluctuating flow resulting from an insta-
bility does not itself necessarily constitute a
turbulent flow. In order that a flow be turbu-
lent, the fluctuations must take on some irreg-
ularity. The turbulent flow is usually defined
in terms of the long-time behavior of the flow
velocity u(x, r) at a fixed point x in space. The
flow is expected to be turbulent if the fluctuat-
ing velocity

du(x, t)y=u(x,1)

[T
lim T_[ u(x,r)dt (3)

T—x 0

satisfies the condition

1 T
lim lim )j Su(x, )oux, t+1)dt =0, 4)
1= T T 0
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where the subscripts label the components.
Condition (4) implies that the *dynamical
system of a fluid has the mixing property. This
condition also states that the velocity fluctu-
ation du; has a continuous frequency spectrum.
In practical situations the frequency spectrum
of a turbulent flow may contain both the line
and continuous spectra, in which case the flow
is said to be partially turbulent.

L. D. Landau (1959) and E. Hopf (1948)
proposed a picture of turbulent flow as one
composed of a tfquasiperiodic motion, u(f)=
f(w, t,w,t,...,w,1), with a large number of
rationally independent frequencies w,, ..., w,
produced by successive supercritical bifurca-
tions of Hopf type. This picture of turbulence
is not compatible with the foregoing definition
of turbulence, since it does not satisfy the
mixing property (4). The fact that the gener-
ation of real turbulence is not necessarily
preceded by successive supercritical bifurca-
tions casts another limitation on the validity
of this picture.

The concept of turbulence is more clearly
exhibited with respect to a dynamical system
of finite dimension. Although we are without
a general proof, it is expected that the Navier-
Stokes equation with nonzero viscosity v can
be approximated within any degree of ac-
curacy by a system of finite-dimensional *first-
order ordinary differential equations
ax F(X 5
T (X). &)
Thus the onset and some general properties of
turbulence are understood in the context of
the theory of fdynamical systems. Turbulence
is related to those solutions of equation (5)
that tend to a *set in the fphase space that
is neither a fixed point, a tclosed orbit, nor a
ftorus. A set of such complicated structure is
called a nonperiodic fattractor or a strange
attractor. Historically, the strange attractor
originates from the strange Axiom A attrac-
tor that was found in a certain class of dy-
namical systems called the Axiom A systems.
However, this term has come to be used in a
broader sense, and it now represents a variety
of nonperiodic motions exhibited by a system
that is not necessarily of Axiom A type. The
above-mentioned Landau-Hopf picture of
turbulence was criticized by D. Ruelle and F.
Takens (1971), who proved for the dynamical
system (5) that an arbitrary small perturbation
on a quasiperiodic *flow on a k-dimensional
torus {k >4) generically (in the sense of residual
sets) produces a flow with a strange Axiom A
attractor [4].

There exist a number of examples of first-
order ordinary differential equations of rela-
tively low dimension whose solutions exhibit
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nonperiodic behavior. An important model
system related to turbulence is the Lorenz
model (1963) of thermal convection in a hori-
zontal fluid layer. This model is obtained by
taking only three components out of an in-
finite number of spatial *Fourier components
of the velocity and temperature fields. The
model is written as

‘dI’:*O'X“rO‘Y,

ay

—=—XZ+rX-Y,

dt

1Z_xvy_bz (6)
dr ’

where o (>b+ 1) and b are positive constants
and r is a parameter proportional to the Ray-
leigh number. Obviously, equations (6) have

a fixed point X = Y=Z=0 representing the
state of thermal convection without fluid flow.
For r < 1, this fixed point is stable, but it be-
comes unstable for r> 1, and a pair of new
fixed points X =Y=1+./b(r—1), Z=r—1
emerges supercritically. This corresponds to
the onset of stationary convection at r=1. At a
still higher value of r=c(c +b+3){c—b—1), a
subcritical Hopf bifurcation occurs with re-
spect to this pair of fixed points, and for a
certain range of r above this threshold the
solutions with almost any initial conditions
exhibit nonperiodic behavior. This corre-
sponds to the generation of turbulence. The
property

X 8y oz

" = 1 7
ix (3Y+9Z (c+b+1)<0, (7)

where the dots denote time derivatives, shows
that each volume element of the phase space
shrinks asymptotically to zero as the time
increases indefinitely. This property is char-
acteristic of dynamical systems with energy
dissipation, in sharp contrast to the ‘measure-
preserving character of tHamiltonian systems
[5]

For a certain class of ordinary differen-
tial equations, the bifurcation to nonperiodic
motion corresponds neither to the bifurcation
of tori, just as in the Ruelle-Takens theory, nor
to subcritical bifurcation, as in the Lorenz
model. Such a bifurcation takes place when
nonperiodic motion emerges as the conse-
guence of an infinite sequence of supercritical
bifurcations at each of which a periodic orbit
of period T bifurcates into one of period 2T.
If we denote the nth bifurcation point by r,,
the distance r,,, —r, between two successive
bifurcation points decreases exponentially with
increasing n, and eventually the bifurcation
points accumulate at a point r,, beyond which
nonperiodic motion is expected to emerge. It is
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not yet clear if any of the above three types of
bifurcation leading to nonperiodic behavior is
actually responsible for the generation of real
turbulence.

Some important properties of a dynamical
system with a nonpertodic attractor, which
may be either a flow or a *diffeomorphism, can
be stated as follows:

(i) The distance between two points in the
phase space that are initially close to each
other grows exponentially in time, so that the
solutions exhibit a sensitive dependence on the
initial conditions.

(i) The nonperiodic attractor has fLebesgue
measure zero, and such a system is expected to
have many other fergodic finvariant measures.

The irregular behavior of a deterministic
dynamical system is also called chaos, but this
concept is more abstract and general than
that of turbulence, and covers phenomena ex-
hibited by systems such as nonlinear electric
circuits, chemical reactions, and ecological
systems.

C. Statistical Theory of Turbulence

The statistical theory of turbulence deals with
the statistical behavior of fully developed
turbulence. The turbulent field is sometimes
idealized for mathematical simplicity to be
homogeneous or isotropic. In homogeneous
turbulence the statistical laws are invariant
under all parallel displacements of the coordi-
nates, whereas in isotropic turbulence invar-
iance under rotations and reflections of the
coordinates is required in addition.

The instantaneous state of the fluid motion
is completely determined by specifying the
fluid velocity u at all space points x and can
be expressed as a phase point in the infinite-
dimensional fphase space spanned by these
velocities. The phase point moves with time
along a path uniquely determined by the solu-
tion of the Navier-Stokes equation. In the
turbulent state the path is unstable to the
initial disturbance and describes an irregular
line in the phase space. In this situation the
deterministic description is no longer useful
and should be replaced by a statistical treat-
ment. Abstractly speaking, turbulence is just a
view of fluid motion as the random motion of
the phase point u(x) (— 407 Stochastic Pro-
cesses). The equation for the fcharacteristic
functional of the random velocity u(x) was first
given by E. Hopf (1952). An exact solution
obtained by Hopf represents a fnormal distri-
bution associated with a white energy spec-
trum, but so far no general solution has been
obtained [6].

Besides the formulation in terms of the
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tprobability distribution or the characteristic
functional, there is another way of describing
turbulence by fmoments of lower orders. This
is the conventional statistical theory originated
by G. L. Taylor (1935) and T. von Karman
(1938), which made remarkable progress after
World War II. The principal moments in this
theory are the correlation tensor, whose (i, j)-
component is the mean of the product of two
velocity components ; at a point x and u; at
another point x +r,

By(n)= Cu(x)u;(x + 1)), (®)

and its TFourier transform, or the energy spec-
trum tensor,

1

d)ij(k)=(2n)3 JBij(r)exp(—\/——-l k- ndr. (9

In isotropic turbulence ®@;; is expressed as

kik;
kl

cDij(k)'——WE(k)(éij_ ) k=k|, (10
where E(k) is the energy spectrum function,
representing the amount of energy included in
a spherical shell of radius k in the wave num-
ber space. The energy of turbulence & per unit

mass is expressed as

L 2tp =1
&= <lul >—53i,-(0)—2fd>i,~(k)dk

=FE(k)dk. (11)

The state of turbulence is characterized by
the Reynolds number R = E}?/(vk}?), where E,
and k, are representative values of E(k) and k,
respectively. For weak turbulence of small R,
E(k) is governed by a linear equation with the
general solution

E(k,t)= E(k,0)exp(—2vk?t), (12)

E(k,0) being an arbitrary function. Thus E(k)
decays in time due to the viscous dissipation.
For strong turbulence of large R, it is difficult
to obtain the precise form of E(k), and this is
usually done by way of some assumption that
allows us to approximate the nonlinear effects
[7].

Some of the similarity laws governing the
energy spectrum and other statistical functions
can be determined rigorously but not neces-
sarily uniquely. For 3-dimensional incompress-
ible turbulence, the energy spectrum satisfies
an inviscid similarity law

E(k)/Eq= F(k/ko) (13)

in the energy-containing region k == 0(k,) char-
acterized by a wave number k,, and a viscous
similarity law

E(k)/Eg=R™**F)(k/(R¥*k,)), (14)
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in the energy dissipation region k= O(R¥*k,),
where F, and F, denote dimensionless func-
tions generally dependent on the initial con-
dition and the time [6].

that
If an assumption is made to the effect t

the statistical state in the energy-dissipation re-
gion depends only upon the energy-dissipation
rate ¢ = —d&/dt besides the viscosity v (or R),
then (14) becomes Kolmogorov’s equilibrium
similarity law (1941):

E(k)=e"v*F(k/(g'/*v™3%)), (15)

where F is a dimensionless function. For
extremely large R (or small v) there exists

an inertial subregion between the energy-
containing and energy-dissipation regions such
that the viscous effect vanishes and (15) takes
the form

E(k)=Ke¥k 53, (16)

where K is an absolute constant. Kolmogorov’s
spectrum (16) has been observed experimen-
tally several times, and now its consistency
with experimental results at large Reynolds
numbers is well established [8].

Kolmogorov (1962) and others modified (16)
by taking account of the fluctuation of & due
to the intermittent structure of the energy-
dissipation region as

E(k)=K'e2P k™53 (Lk) ™9, 17

where ¢ is now the average of the fluctuating e,
 is the covariance of the log-normal distribu-
tion of ¢, and L is the length scale of the spatial
domain in which the average of ¢ is taken [8].
A similar modification, with the exponent
—u/3 in place of —u/9, is obtained using a
fractal model of the energy-cascade process.
These corrections to E(k), based upon the
experimentally estimated p of 0.3-0.5, are

too small to be detected experimentally,

but the deviation is expected to appear more
clearly in the higher-order moments [8-10].
It should be noted that Kolmogorov’s spec-
trum (16) itself does not contradict the notion
of intermittent turbulence and gives one

of the possible asymptotic forms in the limit
R—>w.

The 1-dimensional Burgers model of tur-
bulence satisfies the same similarity laws as
(13) and (14), but it has an inviscid spectrum
E(k)ock 2 instead of (16). Two-dimensional
incompressible turbulence has no energy-
dissipation region, and hence Kolmogorov’s
theory is not valid for this turbulence. It has
an inviscid spectrum E(k)ock 3, first derived
by R. H. Kraichnan (1967), C. E. Leith (1968),
and G. K. Batchelor (1969). These inviscid
spectra for 1- and 2-dimensional turbulence
have been confirmed by numerical simulation

[11].
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Unified Field Theory

A. History

Unified field theory is a branch of theoretical
physics that arose from the success of fgen-
eral relativity theory. Its purpose is to dis-
cuss in a unified way the fields of gravitation,
electromagnetism, and nuclear force from the
standpoint of the geometric structure of space
and time. Studies have continued since 1918,
and many theories of mathematical interest
have been published without attaining, how-
ever, any conclusive physical theory.

A characteristic feature of relativity theory is
that it is based on a completely new concept of
space and time. That is, in general relativity
theory it is considered that when a gravita-
tional field is generated by matter, the struc-
ture of space and time changes, and the flat
fMinkowski world becomes a 4-dimensional
fRiemannian manifold (with signature (1, 3))
having nonvanishing curvature. The *funda-
mental tensor g; of the manifold is interpreted
as the gravitational potential, and the basic
gravitational equation can be described as a
geometric law of the manifold. It is character-
istic of general relativity theory that gravita-
tional phenomena are reduced to space-time
structure (— 359 Relativity). The introduction
of the Minkowski world in *special relativity
theory was a revolutionary advance over the
3-dimensional space of Newtonian mechanics.
But the inner structure of the Minkowski
world does not reflect gravitational phenom-
ena. The latter shortcoming is overcome by
introducing the concept of space-time repre-
sented by a Riemannian manifold into general
relativity theory.

When a coexisting system of gravitational
and electromagnetic fields is discussed in gen-
eral relativity theory, simultaneous equations
(Einstein-Maxwell equations) must be solved
for the gravitational potential g; and the
electromagnetic field tensor F;;. Thus the
gravitational potential g;; is affected by the
existence of an electromagnetic field. As the
validity of general relativity began to be ac-
cepted, it came to be expected that all physical
actions might be attributed to the gravita-
tional and electromagnetic fields. Thus various
extensions of general relativity theory have
been proposed in order to devise a geometry
in which the electromagnetic as well as the
gravitational field directly contributes to the
space-time structure, and to establish a uni-
fied theory of both fields on the basis of the
geometry thus obtained. These attempts are
illustrated in Fig. 1.
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4-dimensional Special relativity

flat space theory
l<—- Gravitational field

4-dimensional e r e General relativity
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<nified field
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Fig. 1

B. Weyl’s Theory

The first unified field theory was proposed by
H. Weyl in 1918. In Riemannian geometry,
which is the mathematical framework of gen-
eral relativity theory, the fcovariant derivative
of the ffundamental tensor g; vanishes, i.c.,

ngk_agjk/ax %kr =0, (1

where I}, is the *Christoffel symbol derived
from g;;. Conversely, if I'}, is considered as the
coefficient of a general taffine connection and
(1) is solved with respect to I}j, under the con-
dition I} =T5;, then the Christoffel symbol
derived from g;; coincides with ;. In this
sense, (1) means that the space-time manifold
has Riemannian structure. On the other hand,
Weyl considered a space whose structure is
given by an extension of (1),

Vigjk = 2Aigjk’ (2

and developed a unified field theory by regard-
ing A; as the electromagnetic potential. This
theory has mathematical significance in that it
motivated the discovery of Cartan’s geometry
of connection, but it has some unsatisfactory
points concerning the derivation of the field
equation and the equation of motion for a
charged particle.

The scale transformation given by g,;=p?g;
is important in Weyl’s theory. If in addition to
this transformation, A, is changed to

gja 1k

A;=A;—8logp/Ox', &)

then (2) is left invariant and the space-time
structure in Weyl’s theory remains unchanged.
We call (3) the gauge transformation, cor-
responding to the fact that the electromagnetic
potential A, is determined by the electro-
magnetic field tensor F;; up to a gradient vec-
tor. In the *ield theorles known at present, the
gauge transformation is generalized to various
fields, and the law of charge conservation is
derived from the invariance of field equations
under generalized gauge transformation.

C. Further Developments

A unified field theory that appeared after
Weyl’s is Kaluza’s 5-dimensional theory (Th.
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Kaluza, 1921). This theory has been criticized
as being artificial, but it is logically consistent,
and therefore many of the later unified field
theories are improved or generalized versions
of it. The underlying space of Kaluza’s theory
is a 5-dimensional Riemannian manifold with
the fundamental form

ds? =(dx*+ A, dx*)? + g, dx"dx”,

where A4; and g;; are functions of x! alone (a, b,
b j=0,1,2, 3). The field equation and the
equation of motion of a particle are derived
from the variational principle in general re-
lativity theory. The field equation is equivalent
to the Einstein-Maxwell equations. The trajec-
tory of a charged particle is given by a geo-
desic in the manifold, and its equation is re-
ducible to the Lorentz equation in general
relativity.

After the introduction of Kaluza’s theory,
various unifield field theories were proposed,
and we give here the underiying manifolds or
geometries of some mathematically interesting
theories: a manifold with *affine connection
admitting absolute parallelism (A. Einstein,
1928); a manifold with *projective connec-
tion (O. Veblen, B. Hoffman, 1930 [4]; J. A.
Schouten, D. van Dantzig, 1932); wave geome-
try (a theory based on the linearization of the
fundamental form; Y. Mimura, 1934 [3]);a
nonholonomic geometry (G. Vranceanu, 1936);
a manifold with fconformal connection (Hoff-
man, 1948).

The investigations since 1945 have been
motivated by the problem of the representa-
tion of matter in general relativity theory.
Einstein first represented matter by an energy-
momentum tensor T; of class C°, which must
be determined by information obtained from
outside relativity. Afterward he felt that this
point was unsatisfactory and tried to develop
a theory on the basis of field variables alone,
without introducing such a quantity as T;,.
This theory is the so-called unitary field theory,
and a solution without singularities is required
from a physical point of view. His first attempt
was to remove singularities from an exterior
solution in general relativity by changing the
topological structure of the space-time mani-
fold. This idea was then extended to a unified
field theory by J. A. Wheeler, and an interpre-
tation was given to mass and charge by apply-
ing the theory of tharmonic integrals (1957)
[21.

Einstein’s second attempt was to propose
a nonsymmetric unified field theory (1945)

[1, Appendix II; 6]. The fundamental quantities
in this theory are a nonsymmetric tensor g
and a nonsymmetric affine connection [.

The underlying space of the theory can be con-
sidered a direct extension of the Riemannian
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manifold, since (1) is contained in the field
equations (notice the order of indices in this
equation). E. Schrodinger obtained field equa-
tions of almost the same form by taking only
[, as a fundamental quantity (1947) [5].
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A. Uniform Convergence of a Sequence of
Real-Valued Functions

A sequence of real-valued functions { f,(x)}
defined on a set B is said to be uniformly con-
vergent (or to converge uniformly) to a function

S(x) on the set B if it converges with respect

to the *norm [|@ [ =sup{|p(x)||xe B}, ic.,
lim,_, .|l f,—/f1{=0(~ 87 Convergence). In
other words, { f,(x)} converges uniformly to

[f(x)on B if for every positive constant ¢ we

can select a number N independent of the
point x such that | f,(x) —f(x)| <& holds for all
n> N and x e B. By the fcompleteness of the
real numbers, a sequence of functions { f,(x)}
converges uniformly on B if and only if we can
select for every positive constant ¢ a number N
independent of the point x such that | f,,(x)—

1.(x)] <& holds for all m, n> N and xeB.

The uniform convergence of a series 3, f,(x) or
of an infinite product [T, f,(x) is defined by the
uniform convergence of the sequence of its
partial sums or products. If the series of the
absolute values X, | f,(x)] converges uniformly,
then the series X, f,(x) also converges uni-
formly. In this case the series X, /,(x) is said to
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be uniformly absolutely convergent. A sequence
of (nonnegative) constants M, satisfying

| 1{x)[< M, is called a dominant (or majorant)
of the sequence of functions { f,(x)}. A series of
functions X, ,(x) with converging majorant
series X, M, is uniformly absolutely conver-
gent (Weierstrass’s criterion for uniform
convergence).

Let {/,(x)} be another sequence of functions
on B. The series X, 2,(x) f,(x) is uniformly
convergent if either of the following conditions
holds: (i) The series X, f,(x) converges uni-
formly and the partial sums of the series
ol Anx) = 4,51 (x)| are uniformly bounded, t.e.,
bounded by a constant independent of xe B
and of the number of terms; or (ii) the series
2ol An(X) = 4,4, (x)} converges uniformly, the
sequence {4,(x)} converges uniformly to
0, and the partial sums of %, ,| f,(x)| are
uniformly bounded.

B. Uniform Convergence and Pointwise
Convergence

Let { f,(x)} be a sequence of real-valued func-
tions on B, and let f{x) be a real-valued func-
tion also defined on B. If the sequence of
numbers { f,{xo)} converges to f(x,) for every
point x, & B, we say that { f,(x)} is pointwise
convergent (or simply convergent) to the func-
tion f(x). Pointwise convergence is, of course,
weaker than uniform convergence. If we repre-
sent the function f{(x) by the point [T, f(x)=
[ /7] of the *Cartesian product RE=T], R,
then the pointwise convergence of { f,(x)} to

J(x) is equivalent to the convergence of the
sequence of points {[ f,]1} to [ /] in the fprod-
uct topology of RZ,

When B is a ftopological space and every
f,(x) is continuous, the pointwise limit f(x) of
the sequence { f,(x)} is not necessarily con-
tinuous. However, if the sequence of continuous
functions | f,(x)] converges uniformly to f'(x)
then the limit function f(x) is continuous. On
the other hand, the continuity of the limit does
not imply that the convergence is uniform. If
the set B is fcompact and the sequence of
continuous functions { f,(x)} is monotone (i.e.,
SoX)< S (x) for all noor f,(x) =/, (x) for all n)
and pointwise convergent to a continuous
function f(x), then the convergence is uniform
(Dini’s theorem).

C. Uniform Convergence on a Family of Sets

Let B be a topological space. We say that a
sequence of functions { f,(x)} is uniformly
convergent in the wider sense to the function
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f(x), depending on circumstances, in either of
the following two cases: (1) Every point x,e B
has a neighborhood U on which the sequence
{ /,(x)} converges uniformly to f(x); or (ii})
{ 7.(x)} converges uniformly to f(x) on every
compact subset K in B. If B is flocally com-
pact, the two definitions coincide. The term
uniform convergence on compact sets is also
used for (ii).
In general, given a family £ of subsets in B,

we may introduce in the space & of real-

valued functions on B a family of fseminorms
i f 1k =sup{lf(x)}| xe K} for every set Ke#.
Let T be the topology of Z defined by this
family of seminorms (— 424 Topological
Linear Spaces). A sequence { f,(x)} is called
uniformly convergent on 2 if it is convergent
with respect to T. In particular, when 2 coin-
cides with { B}, {{x}|xe B}, or the family of all
compact sets in B, then uniform convergence
on £ coincides with the usual uniform conver-
gence, pointwise convergence, or uniform
convergence on compact sets, respectively. If 2
is a countable set, the topology T is tmetri-
zable. Most of these definitions and results
may be extended to the case of functions
whose values are in the complex number field,
in a *normed space, or in any funiform space.

D. Topology of the Space of Mappings

Let X, Y be two topological spaces. Denote by
C(X, Y) the space of all continuous mappings
[ X - Y. This space C(X, Y), or a subspace #
of C(X, Y), is called a mapping space (or func-
tion space or space of continuous mappings)
from X to Y. A natural mapping ®:# x X »Y
1s defined by ®( £, x) —f(x feF xeX). We
define a topology in .# as follows: for a com-
pact set K in X and an open set U in Y, put

W(K, U)—{fef! f(K)eU}, and introduce a
topology in # such that the base for the to-
pology consists of intersections of finite num-
bers of W(K, U;). This topology is called the
compact-open topology (R. H. Fox, Bull. Amer.
Math. Soc., 51 (1945)). When X is a tlocally
compact Hausdorff space and Yis a *Haus-
dorff space, the compact-open topology is the
*weakest topology on # for which the func-
tion @ is continuous. If, in this case, # is
compact with respect to the compact-open
topology, then the compact-open topology
coincides with the topology of pointwise
convergence.

In particular, when Y is a fmetric space (or,
in general, a funiform space with the uniform-
ity M), the compact-open topology in # coin-
cides with the topology of uniform conver-
gence on compact sets. A family # is called
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equicontinuous at a point xe X if for every
positive number ¢ (in the case of uniform
space, for every Vell) there exists a neighbor-
hood U of x such that p(f(x), f(p)) <e (f(x),
f{p)e V) for every point pe U and for every
function fe # (G. Ascoli, 1883-1884). If X is a
*locally compact Hausdorff space, a necessary
and sufficient condition for # to be relatively
compact (i.e., for the closure of # to be com-
pact) with respect to the compact-open top-
ology (i.e., to the topology of uniform conver-
gence on compact sets) is that # be equicon-
tinuous at every point xe X and that the set
{f(x)|feF } be relatively compact in Y for
every point x€ X (Ascoli’s theorem). In partic-
ular, when X is a g-compact locally compact
Hausdorff space and Y is the space of real
numbers, a family of functions # that are
equicontinuous (at every point xe X ) and
uniformly bounded is relatively compact.
Hence, for any sequence of functions { f,}

in %, we can select a subsequence { f,,,}
which converges uniformly on compact sets
(Ascoli-Arzela theorem).

E. Normal Families

P. Montel (1912) gave the name normal family
to the family of functions that is relatively com-
pact with respect to the topology of uniform
convergence on compact sets. This terminol-
ogy is used mainly for the family of complex
analytic functions. In that case, it is customary
to compactify the range space and consider Y
to be the *Riemann sphere. Using this notion,
Montel succeeded in giving a unified treatment
of various results in the theory of complex
functions.

A family of analytic functions # on a finite-
dimensional *complex manifold X is a normal
family if it is uniformly bounded on each com-
pact set (Montel’s theorem). Another criterion
is that there are three values on the Riemann
sphere which no function fe % takes. More
generally, three exceptional values not taken
by fe.# may depend on f, if there is a positive
lower bound for the distances between these
three values on the Riemann sphere. This gives
an easy proof of the *Picard theorem stating
that every ftranscendental meromorphic func-
tion f(z) in |z] < oo must take all values except
possibly two values. In fact the family of func-
tions fi(z)=f(2/2"),n=1,2,3,...,in {1 < |z}
<2} cannot be normal. Using a similar proce-
dure, G. Julia obtained the results on tJulia’s
direction.

F. Marty introduced the notion of spherical
derivative | /' (2)1 /(1 +1/(2)|%) for the analytic
or meromorphic function f(z) and proved that
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for a family # ={ f(z)} of analytic functions to
be normal, it is necessary and sufficient that
the spherical derivatives of fe % be uniformly
bounded. This theorem implies Montel’s
theorem and its various extensions, including,
for example, quantitative results concerning
tBorel’s direction.

A family & of analytic functions of one
variable defined on X is said to form a quasi-
normal family if there exists a subset P of X
consisting only of isolated points such that
from any sequence { ,}(f,€ %) we can select a
subsequence { f,.,,} converging uniformly on
X — P_If P is finite and consists of p points,
the family 7 is called a quasinormal family of
order p. For example, the family of at most *p-
valent functions is quasinormal of order p.

The theory of normal families of complex
analytic functions is not only applied to fvalue
distribution theory, as above, but also used to
show the existence of a function that gives the
extremal of functionals. The extremal function
is usually obtained as a limit of a subsequence
of a sequence in a normal family. A typical
example of this method is seen in the proof of
the *Riemann mapping theorem. This is per-
haps the only general method known today in
the study of the iteration of *tholomorphic
functions. By this method, Julia (1919) made
an exhaustive study of the iteration of mero-
morphic functions; there are several other in-
vestigations on the iteration of elementary
transcendental functions. On the other hand,
A. Wintner (Comm. Math. Helv., 23 (1949))
gave the implicit function theorem for analytic
functions in a precise form using the theory of
normal families of analytic functions of several
variables.
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Uniform Spaces

A. Introduction

There are certain properties defined on *metric
spaces but not on general ftopological spaces,
for example, fcompleteness or funiform con-
tinuity of functions. Generalizing metric spaces,
A. Weil introduced the notion of uniform
spaces. This notion can be defined in several
ways [3,4]. The definition in Section B is that
of Weil [ 1] without the *separation axiom for
topology.

We denote by Ay the diagonal {(x, x)|xe X }
of the Cartesian product X x X of a set X with
itself. If U and Vare subsets of X x X, then the
composite Vo U is defined to be the set of all
pairs (x, y) such that for some element z of X,
the pair (x, z) is in U and the pair (z, y)isin V.
The inverse U ! of U is defined to be the set of
all pairs (x, y) such that (y,x)e U.

B. Definitions

Let % be a nonempty family of subsets of
X x X such that (1) if Ue# and U <V, then
Ve, (ii) if U, Ve, then U N Ve, (iii) if
Ue,then Ay cU; (iv)if Ue#, then U 'e
4; and (v) if Ue%, then Vo V< U for some
Ve. Then we say that a uniform structure
(or simply a uniformity) is defined on X by
. If a uniformity is defined on X by %, then
the pair (X, %) or simply the set X itself is
called a uniform space, and % is usually called
a uniformity for X.

A subfamily 4 of the uniformity % is called
a base for the uniformity % if every member of
% contains a member of Z. If a family % of
subsets of X x X 1s a base for a uniformity %,
then the following propositions hold: (i) if
U, Ve %, then there exists a We % such that
Wc UNV; (i) if Ue#, then Ay, < U; (iv') if
Ue 4, then there exists a Ve # such that
Ve UL (V) if Ue, then there exists a Ve
such that Vo Vo U. Conversely, if a family %
of subsets of a Cartesian product X x X satis-
fies (ii")—(v'), then the family # ={U|Uc X x X,
Ve U for some Ve #} defines a uniformity on
X and 4 is a base for . Given a uniform
space (X, %), a member Vof % is said to be
symmetric if V=V "!, The family of all sym-
metric members of % is a base for %.

C. Topology of Uniform Spaces

Given a uniform space (X, %), an element
xeX,and Ue, we put U(x)={y|yeX,(x,y)
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e U }. Then the family #(x)={U(x)|Ue#}
forms a neighborhood system of xe X, which
gives rise to a topology of X (— 425 Topo-
logical Spaces). This topology is called the
uniform topology (or topology of the uni-
formity). When we refer to a topology of a uni-
form space (X, %), it is understood to be the
uniform topology; thus a uniform space is

also called a uniform topological space. If 4 is
a base for the uniformity of a uniform space
(X, %), then #(x)={U(x)]UeB} is a base for
the neighborhood system at each point xe X.
Each member of % is a subset of the topolog-
ical space X x X, which is supplied with the
product topology. The family of all open
(closed) symmetric members of # forms a

base for %. A uniform space (X, %) is a *T, -
topological space if and only if the intersection
of all members of % is the diagonal Ay. In this
case, the uniformity of (X, %) is called a T, -
uniformity, and (X, %) is called a T, -uniform
space. A T, -uniform space is always 'regular; a
fortiori, 1t is a T,-topological space. Hence a
T, -uniform space is also said to be a Haus-
dorff uniform space (or separated uniform
space). Moreover, a uniform topology satisfies
*Tikhonov’s separation axiom; in particular, a
T, -uniform space is fcompletely regular.

D. Examples

(1) Discrete Uniformity. Let X be a nonempty
set, and let # = {U|AycUc<=X x X }. Then
(X, %) is a T,-uniform space and #={Ay}isa
base for %. This uniformity is called the dis-
crete uniformity for X.

(2) Uniform Family of Neighborhood System.
A family {U,(x)},. 4(xe X} of subsets of a set X
is called a uniform neighborhood system in X if
it satisfies the following four requirements: (i)
xe U,(x) for each ae A and each xe X; (i1) if x
and y are distinct elements of X, then y¢ U,(x)
for some o€ A; (iii) if x and f are two elements
of A, then there is another element ye A such
that U,(x) c U,(x)N Uy(x) for all xe X; (iv) if «
is an arbitrary element in A4, then there is an
element f§ in A such that ye U,(x) whenever x,
y€ Up(z) for some z in X. If we denote by

U, (o€ A) the subset of X x X consisting of all
clements (x, y) such that xe X and ye U,(x),
then the family {U,|xe A} satisfies all the
conditions for a base for a uniformity. In par-
ticular, it follows from (ii) that (,., U, = Ay,
which is a stronger condition than (i) in
Section B. For instance, if {U,|x€ A} is a base
for the neighbdrhood system at the identity
element of a T,-topological group G, then we
have two uniform neighborhood systems
{ULx)} and {U!(x)}, where Ul(x)=xU, and
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Ul(x)= U,x. Two uniformities derived from
these uniform neighborhood systems are called
a *left uniformity and a fright uniformity,
respectively. Generally, these two uniformities
do not coincide (— 423 Topological Groups).

(3) Uniform Covering System [4]. A family
{1, },. 4 of Tcoverings of a set X is called a
uniform covering system if the following three
conditions are satisfied: (i) if ! is a covering
of X such that U< U for all xe A, then U
coincides with the covering A= {{x}} .x;

(it) if o, e A, then there is a ye A such that
U, < U, and U, <WU; (ii1) if «€ A, then there
is a fe A such that U, is a tA-refinement of
U, ((Up)2<U,). For an example of a uni-
form covering system of X, suppose that we
are given a uniform neighborhood system
(U e (x€ X). Let U= {U,() }au (2 A).
Then {#,},. 4 i a uniform covering system.
On the other hand, for a covering W={U,},4,
let S(x, ) be the union of all members of

U that contain x. If {2}, , is a uniform
covering system and U, (x)=S(x, U,), then
{U(X)}4e4 (x€ X) is a uniform neighborhood
system. Hence defining a uniform covering
system of X is equivalent to defining a T, -
uniformity on X.

(4). In a metric space (x, d) the subsets i, =
{(x,y)|d(x, Yy<r}, r>0, form a base of uni-
formity. The uniform topology defined by this
coincides with the topology defined by the
metric.

E. Some Notions on Uniform Spaces

Some of the terminology concerning topolog-
ical spaces can be restated in the language of
uniform structures. A mapping f from a uni-
form space (X, %) into another (X', %) is said
to be uniformly continuous if for each member
U’ in %' there is a member U in % such that
(f(x), f(y)e U’ for every (x, y)e U. This con-
dition implies that fis continuous with respect
to the uniform topologies of the uniform
spaces. Equivalently, the mapping is uniformly
continuous with respect to the uniform neigh-
borhood system {U,(x)}, 4 if for any index 8
there is an index o such that ye U,{(x) implies
JeUy(f(x). Iff: X>X and g: X'> X" are
uniformly continuous, then the composite
gof:X—X"is also uniformly continuous. A
bijection f of a uniform space (X, %) to another
(X', ') is said to be a uniform isomorphism if
both fand f ! are uniformly continuous; in
this case (X, %) and (X', %’) are said to be
uniformly equivalent. A uniform isomorphism
is a homeomorphism with respect to the uni-
form topologies, and a uniform equivalence
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defines an equivalence relation between uni-
form spaces.

If %, and %, are uniformities for a set X, we
say that the uniformity %, is stronger than the
uniformity %, and %, is weaker than %, if the
identity mapping of (X, %,) to (X, %) is uni-
formly continuous. The discrete uniformity is
the strongest among the uniformities for a set
X. The weakest uniformity for X is defined by
the single member X x X; this uniformity is
not a T,-uniformity unless X is a singleton.
Generally, there is no weakest T,-uniformity.
A uniformity %, for X is stronger than an-
other %, if and only if every member of %, is
also a member of %, .

If fis a mapping from a set X into a uniform
space (Y,77) and g is the mapping of X x X into
Y x Y defined by g(x, y)=(f(x), f()), then
B={g (V)| Ve satisties conditions (ii')~
(v') in Section B for a base for a uniformity.
The uniformity % for X determined by 4 is
called the inverse image of the uniformity ¥~
for Y by f; % is the weakest uniformity for X
such that f'is uniformly continuous. Hence a
mapping f from a uniform space (X, %) into
another (Y, ¥7) is uniformly continuous if and
only if the inverse image of the uniformity ¥~
under f'is weaker than the uniformity %. If A is
a subset of a uniform space (X, %), then there
is a uniformity ¥~ for A determined as the
inverse image of % by the inclusion mapping
of 4 into X. This uniformity ¥~ for A4 is called
the relative uniformity for 4 induced by %, or
the relativization of % to A, and the uniform
space (A4, 77} is called a uniform subspace of
{X,4). The uniform topology for (4,77) is the
relative topology for 4 induced by the uniform
topology for (X, %).

If {(X,, %)} 2e4 18 a family of uniform
spaces, then the product uniformity for X =
IT,.4 X; is defined to be the weakest uni-
formity % such that the projection of X
onto each X; is uniformly continuous, and
(X, %) is called the product uniform space of
$(X,,%,)} sen- The topology for (X, %) is the
product of the topologies for (X;,%,) (A€ A).

F. Metrization

Each *pseudometric d for a set X generates a
uniformity in the following way. For each
positive number r, let V; . ={(x, y)e X x

X |d(x,y)<r}. Then the family {V, ,|r>0}
satisfies conditions (ii')—(v) in Section B for a
base for a uniformity %. This uniformity is
called the pseudometric uniformity or uniform-
ity generated by d. The uniform topology for
(X, %) is the pseudometric topology. A uni-
form space (X, %) is said to be psendometrizable
(metrizable) if there is a pseudometric (metric)
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d such that the uniformity # is identical with
the uniformity generated by d. A uniform
space is pseudometrizable if and only if its
uniformity has a countable base. Conse-
quently, a uniform space is metrizable if and
only if its uniformity is a T, -uniformity and
has a countable base. For a family P of
pseudometrics on a set X, let V; ,={(x,y)e
X x X|d(x,y)<r} for de P and positive r.
The weakest uniformity containing every
V,,(de P,r>0)is called the uniformity gen-
erated by P. This uniformity may also be de-
scribed as the weakest one such that each
pseudometric in P is uniformly continuous on
X x X with respect to the product uniformity.
Each uniformity % on a set X coincides
with the uniformity generated by the family Py
of all pseudometrics that are uniformly con-
tinuous on X x X with respect to the product
uniformity of % with itself. It follows that each
uniform space is uniformly isomorphic to a
subspace of a product of pseudometric spaces
(in which the number of components is equal
to the cardinal number of Py) and that each
T,-uniform space is uniformly isomorphic to a
subspace of a product of metric spaces. A
topology 7 for a set X is the uniform topology
for some uniformity for X if and only if the
topological space (X, 1) satisfies “Tikhonov’s
separation axiom; in particular, the uniformity
is a T,-uniformity if and only if (X, 7) is fcom-
pletely regular.

G. Completeness

If (X, %) is a uniform space, a subset 4 of X is
called a small set of order U(Ue#)if Ax Ac
U. A ffilter on X 1s called a Cauchy filter
(with respect to the uniformity %) if it contains
a small set of order U for each U in %. If a
filter on X converges to some point in X, then
it is a Cauchy filter. If f is a uniformly con-
tinuous mapping from a uniform space X into
another X', then the image of a base for a
Cauchy filter on X under f'is a base for a
Cauchy filter on X'. A point contained in the
closure of every set in a Cauchy filter  is the
limit point of . Hence if a filter converges to
x, a Cauchy filter contained in the filter also
converges to x.

A tnet x() = {x,} ey (Where Wis a directed
set with a preordering <) in a uniform space
(X, %) is called a Cauchy net if for each U in %
there is a 7 in W such that (x,, x;)e U for every
x and f such that y <o, y<p. If Wis the set N
of all natural numbers, a Cauchy net {x, } .~
is called a Cauchy sequence (or fundamental
sequence). Given a Cauchy net {x,},.q, let A,
={xz|fza}. Then B={A,]acN} is a base for
a filter, and the filter is a Cauchy filter. On the
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other hand, let B be a base for a Cauchy filter
- For U, VeB, we put U< Vif and only if

U o V. Then B is a directed set with respect to
<. The net {x, } 4, Where x,, is an arbitrary
point in U, is a Cauchy net. A proposition
concerning convergence of a Cauchy filter is
always equivalent to a proposition concerning
convergence of the corresponding Cauchy net.

A Cauchy filter (or Cauchy net) in a uni-
form space X does not always converge to a
point of X. A uniform space is said to be com-
plete (with respect to the uniformity) if every
Cauchy filter (or Cauchy net) converges to a
point of that space. A complete uniform space
is called for brevity a complete space. A closed
subspace of a complete space is complete with
respect to the relative uniformity. A pseudo-
metrizable uniform space is compilete if and
only if every Cauchy sequence in the space
converges to a point. Hence in the case of a
metric space, our definition of completeness
coincides with the usual one (— 273 Metric
Spaces).

A mapping / from a uniform space X to an-
other X' is said to be uniformly continuous on
a subset A of X if the restriction of fto A is
uniformly continuous with respect to the rela-
tive uniformity for A. If f1s a uniformly con-
tinuous mapping from a subset 4 of a uniform
space into a complete T,-uniform space, then
there is a unique uniformly continuous exten-
ston f of f on the closure A.

Each T,-uniform space is uniformly equiva-
lent to a dense subspace of a complete T, -
uniform space; this property is a generaliza-
tion of the fact that each metric space can be
mapped by an isometry onto a dense subset of
a complete metric space. A completion of a
uniform space (X, %) is a pair (f,(X*, %%*)),
where (X*, % *) is a complete space and f is
a uniform isomorphism of X onto a dense
subspace of X*. The T,-completion of a
T;-uniform space is unique up to uniform
equivalence.

H. Compact Spaces

A uniformity % for a topological space (X, 7) is
said to be compatible with the topology t if the
uniform topology for (X, %) coincides with 7.
A topological space (X, 1) is said to be unifor-
mizable if there is a uniformity compatible
with . If (X, t) is a compact Hausdorff space,
then there is a unique uniformity % compa-
tible with t; in fact, % consists of all neighbor-
hoods of the diagonal A, in X x X; and the
compact Hausdorff space is complete with this
uniformity. Hence every subspace of a com-
pact Hausdorff space is uniformizable, and
every *locally compact Hausdorfl space is
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uniformizable. Any continuous mapping from
a compact Hausdorff space to a uniform space
is uniformly continuous. A uniform space

(X, %) is said to be totally bounded (or precom-
pact) if for each U €% there is a finite covering
consisting of small sets of order U; a subset of
a uniform space is called totally bounded if it is
totally bounded with respect to the relative
uniformity. A uniform space X is said to be
locally totally bounded if for each point of X
there is a base for a neighborhood system
consisting of totally bounded open subsets. A
uniform space is compact if and only if it is
totally bounded and complete. If fis a uni-
formly continuous mapping from a uniform
space X to another, then the image f(A) of

a totally bounded subset A of X is totally
bounded.

I. Topologically Complete Spaces

A topological space (X, 7) is said to be topo-
logically complete (or Dieudonné complete) if it
admits a uniformity compatible with t with
respect to which X is complete. Each para-
compact Hausdorff space is topologically
complete. Actually such a space is complete
with respect to its strongest uniformity. A
Hausdorff space which is homeomorphic to

a *'G,-set in a compact Hausdorff space is

said to be Cech-complete; A metric space is
homeomorphic to a complete metric space if
and only if it is Cech-complete. A Hausdorff
space X is paracompact and Cech-complete if
and only if there is a fperfect mapping from X
onto a complete metric space.
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Unitary Representations

A. Definitions

A homomorphism U of a ftopological group G
into the group of funitary operators on a
*Hilbert space § (#{0}) is called a unitary
representation of G if U is strongly continuous
in the following sense: For any element xe 9,
the mapping g— U, x is a continuous mapping
from G into $. The Hilbert space $ is called
the representation space of U and is denoted
by H(U). Two unitary representations U and
U’ are said to be equivalent (similar or isomor-
phic), denoted by U = U’, if there exists an
*isometry T from H(U) onto H(U’) that satis-
fies the equality To U,=U,o T for every g in
G. If the representation space $H(U) contains
no closed subspace other than $ and {0} that
is invariant under every U,, the unitary repre-
sentation U is said to be irreducible. An element
x in H(U) is called a cyclic vector if the set of
all finite linear combinations of the elements
U,x(geG) is dense in H(U). A representation
U having a cyclic vector is called a cyclic
representation. Every nonzero element of the
representation space of an irreducible repre-
sentation is a cyclic vector.

Examples. Let G be a ftopological transfor-
mation group acting on a tlocally compact
Hausdorff space X from the right. Suppose
that there exists a fRadon measure y that is
invariant under the group G. Then a unitary
representation R* is defined on the Hilbert
space $=L2(X, 1) by the formula (R%f)(x)

= f(xg) (fe D, xe X,geG). The representation
R* is called the regular representation of G

on (X, p). If G acts on X from the left, then
the regular representation L* is defined by
(LEf)(x)=f(g~'x). In particular, when X is
the *quotient space H\G of a flocally compact
group G by a closed subgroup H, any two
invariant measures g, y’ (if they exist) coincide
up to a constant factor. Hence the regular
representation R* on (X, u) and the regular
representation R* on (X, i) are equivalent. In
this case, the representation R* is called the
regular representation on X. When H={e}, a
locally compact group G has a Radon measure
1 #0 that is invariant under every right (left)
translation h—hg (h—gh) and is called a right
(left) *"Haar measurc on G. So G has the regu-



437 B
Unitary Representations

lar representation R (L) on G. R (L) is called
the right (left) regular representation of G.

B. Positive Definite Functions and Existence
of Representations

A complex-valued continuous function ¢ on a
topological group G is called positive definite
if the matrix having ¢(g; ' g;) as the (i,j)-
component is a tpositive semidefinite Her-
mitian matrix for any finite number of ele-
ments gy, ..., g, in G. If U is a unitary repre-
sentation of G, then the function ¢(g) =(U,x, x)
is positive definite for every element x in H(U).
Conversely, any positive definite function ¢(g)
on a topological group G can be expressed as
¢(g9)=(U,x, x) for some unitary representation
U and x in H(U). Using this fact and the
tKrein-Milman theorem, it can be proved that
every locally compact group G has sufficiently
many irreducible unitary representations in the
following sense: For every element g in G other
than the identity element e, there exists an
irreducible unitary representation U, generally
depending on g, that satisfies the inequality

U, # 1. The groups having sufficiently many
finite-dimensional (irreducible) unitary repre-
sentations are called fmaximally almost
periodic. If a connected locally compact group
G is maximally almost periodic, then G is the
direct product of a compact group and a vec-
tor group R™. On the other hand, any non-
compact connected tsimple Lie group has no
finite-dimensional irreducible unitary repre-
sentation other than the unit representation
g—1(— 18 Almost Periodic Functions).

C. Subrepresentations

Let U be a unitary representation of a topo-
logical group G. A closed subspace 9 of $(U)
is called U-invariant if M is invariant under
every U, (g€ G). Let 9t {0} be a closed invar-
iant subspace of $H(U) and V, be the restric-
tion of U, on . Then V is a unitary represen-
tation of G on the representation space 9t and
is called a subrepresentation of U. Two unitary
representations L and M are called disjoint if
no subrepresentation of L is equivalent to a
subrepresentation of M; they are called quasi-
equivalent if no subrepresentation of L is dis-
joint from M and no subrepresentation of M is
disjoint from L.

D. Irreducible Representations

Let U be a unitary representation of G, M
be the fvon Neumann algebra generated by
{U,|g€G}, and M’ be the t‘commutant of M.
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Then a closed subspace M of H(U) is invariant
under U if and only if the fprojection operator
P corresponding to 9t belongs to M'. There-
fore U is irreducible if and only if M’ consists
of scalar operators {a1|x€C} (Schur’s lemma).
A representation space of a cyclic or irreduc-
ible representation of a tseparable topological
group is fseparable.

E. Factor Representations

A unitary representation U of G is called a
factor representation if the von Neumann
algebra M = {U,|ge G} is a Hfactor, that is,
MNM’ ={ual|aeC}. Two factor representa-
tions are quasi-equivalent if and only if they
are not disjoint. U is called a factor represen-
tation of type I, I, or HI if the von Neumann
algebra M is a factor of type I, I, or II,
respectively (— 308 Operator Algebras). A
topological group G is called a group of type 1
(or type I group) if every factor representation
of G is of type I. Compact groups, locally
compact Abelian groups, connected tnilpotent
Lie groups, connected fsemisimple Lie groups,
and real or complex flinear algebraic groups
are examples of groups of type I. There exists a
connected solvable Lie group that is not of
type I (— Section U), but a connected solvable
Lie group is of type I if the exponential map-
ping is surjective (O. Takenouchi). A discrete
group G with countably many elements is a
type I group if and only if G has an Abelian
normal subgroup with finite index (E. Thoma).

F. Representation of Direct Products

Let G, and G, be topological groups, G the
fdirect product of G, and G, (G=G, x G,), and
U, an irreducible unitary representation of G;
(i=1,2). Then the ftensor product representa-
tion U; ® U,:(gy,92)-U,, ® U, is an irreduc-
ible unitary representation of G. Conversely,
if one of the groups G, and G, is of type I, then
every irreducible unitary representation of G
is equivalent to the tensor product U, ® U,

of some irreducible representations U, of G;
(i=1,2).

G. Direct Sums

If the representation space § of a unitary
representation U is the fdirect sum @,.; H(a)
of mutually orthogonal closed invariant sub-
spaces {9(2)},es, then U is called the direct
sum of the subrepresentations U(x) induced on
() by U, and is denoted by U= P,.; U ().
Any unitary representation is the direct sum of
cyclic representations. A unitary representa-
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tion U is called a representation without multi-
plicity if U cannot be decomposed as a direct
sum U; @ U, unless U, and U, are disjoint. If
U is the direct sum of {U(2)},., and every U(x)
is irreducible, then U is said to be decomposed
into the direct sum of irreducible representa-
tions. Decomposition into direct sums of
irreducible representations is essentially
unique if it exists; that is, if U= @,e; U(®)

= @ges V(P) are two decompositions of U
into direct sums of irreducible representations,
then there exists a bijection ¢ from I onto J
such that U(a) is equivalent to V(p(«)) for
every a in I. A factor representation U of type
I can be decomposed as the direct sum U =
@.e; Ul@) of equivalent irreducible represen-
tations U(x). In general, a unitary representa-
tion U cannot be decomposed as the direct
sum of irreducible representations even if U is

437K
Unitary Representations

of factor representations of G endowed with a
suitable structure of a measure space. The
space G* is called the quasidual of G. The
measure p is determined by U up to fequiva-
lence of measures.

J. Duals

A topology is introduced on the set G of all
equivalence classes of irreducible unitary rep-
resentations of a locally compact group G in
the following way. Let H, be the n-dimensional
Hilbert space I,(n) and I, the set of all irreduc-
ible unitary representations of G realized on
H, (1<n< o). We topologize [, in such a way
that a tnet {U*},., in I, converges to U if and
only if (U} x, y) converges uniformly to (U, x, y)
on every compact subset of G for any x and y

decomposition.

H. Direct Integrals

Let U be a unitary representation of a group G
and (X, p) be a fmeasure space. Assume that
the following two conditions are satisfied by
U: (i) There exists a unitary representation
U(x) of G corresponding to every element x
of X, and $H(U) is a *direct integral (— 308
Operator Algebras) of H(U(x)) (xe X) (written
H(U) =[x HU(x))dp(x)); (i) for every g in G,
the operator U, is a decomposable operator
and can be written as U, = |y U,(x)du(x). Then
the unitary representation U is called the
direct integral of the family {U(x)},.x of uni-
tary representations and is denoted by U =

[x U(x)du(x). i every point of X has mea-
sure 1, then a direct integral is reduced to a
direct sum,

1. Decomposition into Factor Representations

We assume that G is a locally compact group
satisfying the fsecond countability axiom, and
also that a Hilbert space is separable. Every
unitary representation U of G can be decom-
posed as a direct integral U = [ U(x)du(x)

in such a way that the center A of the von
Neumann algebra M”={U,|ge G}" is the set
of all *diagonalizable operators. In this case
almost all the U(x) are factor representations.
Such a decomposition of U is essentially
unique. There exists a fnull set N in X such
that for every x and x" in X — N (x#x’), U(x)
and U(x’) are mutually disjoint factor repre-
sentations. Hence the space X can be identified
with the set G* of all quasi-equivalence classes

equivalence classes of n-dimensional irreduc-
ible unitary representations of G with the
topology of a quotient space of I, and G =

U G, be the direct sum of topological spaces
G,. Then the topological space G is called the
dual of G. G is a locally compact *Baire space
with countable open base, but it does not
satisfy the tHausdorff separation axiom in
general. If G is a compact Hausdorff topolog-
ical group, then G is discrete. If G is a locally
compact Abelian group, then G coincides with
the fcharacter group of G in the sense of
Pontryagin. If G is a type I group, then there
exists a dense open subset of G that is a locally
compact Hausdorff space. The fg-additive
family generated by closed sets in G is denoted
by 8. In the following sections, a measure on
G means a measure defined on B.

K. Irreducible Decompositions

In this section G is assumed to be a locally
compact group of type I with countable open
base. For any equivalence class x in G, we
choose a representative U(x)e x with the rep-
resentation space H(U{(x))=1,(n) if x 1s n-
dimensional. For any measure y on G, the
representation U*=f, U(x)dp(x) is a unitary
representation without multiplicity. Con-
versely, any unitary representation of G with-
out multiplicity is equivalent to a U* for some
measure g on G. Moreover, U* is equivalent to
U" if and only if the two measures y and v are
equivalent (that is, u is absolutely continuous
with respect to v, and vice versa). A unitary
representation U with multiplicity on a sepa-
rable Hilbert space $ can be decomposed as
follows: There exists a countable set of mea-
Sures [y, i, ..., 4, whose supports are mutu-
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ally disjoint such that U = [ U{x)du,(x) ®
26 U (x) @ ... @ o0 U (x)dpe ()
The measures gy, iy, ..., i, are uniquely
determined by U up to equivalence of mea-
sures. Any unitary representation U on a
separable Hilbert space $ of an arbitrary
locally compact group with countable open
base (even if not of type I) can be decomposed
as a direct integral of irreducible representa-
tions. In order to obtain such a decompo-
sition, it is sufficient to decompose $ as a
direct integral in such a way that a maximal
Abelian von Neumann subalgebra A of M’
={U,lge G} is the set of all diagonalizable
operators. In this case, however, a different
choice of A induces in general an essentially
different decomposition, and uniqueness of the
decomposition does not hold. For a group of
type [, the irreducible representations are the
“atoms” of representations, as in the case of
compact groups. For a group not of type L, it

natnral ta tal
is more natural to take the factor represen-

tations for the irreducible representations,
quasi-equivalence for the equivalence, and the
quasidual for the dual of G. Therefore the
theory of unitary representations for a group
not of type I has different features from the
one for a type I group. The theory of unitary
representation for groups not of type I has not
yet been successfully developed, but some
important results have been obtained (e.g., L.
Pukanszky, Ann. Sci. Ecole Norm. Sup., 4
(1971)).

Tatsuuma [ 1] proved a duality theorem for
general locally compact groups which is an
extension of both Pontryagin’s and Tannaka’s
duality theorems considering the direct in-
tegral decomposition of tensor product
representations.

L. The Plancherel Formula

Let G be a unimodular tocally compact group
with countable open base, R(L) be the right
(left) regular representation of G, and M, N,
and P be the von Neumann algebras generated
by {R,}, {L,}, and {R,, L}, respectively. Then
M’ =N, N'=M, and P’=MNN. If we decom-
pose 9 into a direct integral in such a way
that P’ is the algebra of all diagonalizable
operators, then M(x) and N(x) are factors for
almost all x. This decomposition of $ pro-
duces a decomposition of the two-sided regu-
lar representation {R,, L } into irreducible
representations and a decomposition of the
regular representation R(L) into factor repre-
sentations. Hence the decomposition is realized
as the direct integral over the quasidual G* of
G. Moreover, the factors M(x) and N(x) are of
type I or 11 for almost all x in G*, and there
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exists a *trace t in the factor M(x). For any f
and g in L,(G)N L,(G), the Plancherel formula

J f (S)g(S)dS=J HUF () Up(x)) dplx) (m
G G*

holds, where U, (x)= [ f(s)U(x)ds and U* is
the tfadjoint of U. The inversion formula

h(S):J HU(X)UE(x))dp(x) @
G*

is derived from (1) for a function h= g
(f,g€e L, (G)NL,(G)). In (1) and (2), because of
the impossibility of normalization of the trace
t in a factor of type IT, the measure u cannot
in general be determined uniquely. However, if
G is a type [ group, then (1) and (2) can be
rewritten as similar formulas, where the repre-
sentation U(x) in (1) and (2) is irreducible, the
trace t is the usual trace, and the domain of
integration is not the quasidual G* but the
dual G of G. The revised formula (1) is also
called the Plancherel formula. In this case the
measure y on G in formulas (1) and (2) is
uniquely determined by the given Haar mea-
sure on G. The measure y is called the Plan-
cherel measure of G. The support G, of the
Plancherel measure y is called the reduced dual
of G. The Plancherel formula gives the direct
integral decomposition of the regular repre-
sentation into the irreducible representations
belonging to G,. Each U in G, is contained in
this decomposition, with the multiplicity equal
to dim H(U).

M. Square Integrable Representations

An irreducible unitary representation U of a
unimodular locally compact group G is said to
be square integrable when for some element
x#0, in H(U), the function ¢(g)=:(U,x, x)
belongs to L(G, dg), where dg is the Haar
measure of G. If U is square integrable, then
¢..,(9)=(U,x, y) belongs to L*(G, dg) for any x
and y in $(U). Let U and U’ be the two square
integrable representations of G. Then the
foliowing orthogonality relations hold:

J (Upx, y)(Ugu, v) dg
G

0 if U is not
:{ equivalent to U', 3)

dg'(x,u)(v,y) fU=U".

When G is compact, every irreducible unitary
representation U is square integrable and

finite-dimensional. Moreover, the scalar d;; in
(3) is the degree of U if the total measure of G
is normalized to 1. In the general case, the

scalar d;, in (3) is called the formal degree of U
and is determined uniquely by the given Haar
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measure dg. Let y be an element in H(U) with
norm 1 and V be the subspace {¢, ,|xe $(U)}
of L?(G). Then the linear mapping T:x—>\/dvu
@, 1s an isometry of H(U) onto V. Hence U is
equivalent to a subrepresentation of the right
regular representation R of G. Conversely,
every irreducible subrepresentation of R is
square integrable. Thus a square integrable
representation is an irreducible subrepresen-
tation of R (= L). Therefore, in the irreducible
decomposition of R, the square integrable
representations appear as discrete direct sum-
mands. Hence every square integrable repre-
sentation U has a positive Plancherel measure
4#(U) that is equal to the formal degree d,.
There exist noncompact groups that have
square integrable representations. An example
of such a group is SL{2,R) (— Section X).

N. Representations of L,(G)

Let G be a locally compact group and L,(G)
be the space of all complex-valued integrable
functions on G. Then L,(G) is an algebra over
C, where the convolution

(f*g)(S)=J flst™g(t)dt
G

is defined to be the product of f and g. Let A
be the fmodular function of G. Then the map-
ping f(s)> f*(s)=A(s""}f(s 1)is an *invol-
ution of the algebra L,(G). Let U be a unitary
representation of G, and put U= [ U,f(s)ds.
Then the mapping /- U’ gives a nondegen-
erate representation of the Banach algebra
L,{(G) with an involution, where nondegenerate
means that {Ux|feL,(G), xe H(U)}* reduces
to {0}. The mapping U — U’ gives a bijection
between the set of equivalence classes of uni-
tary representations of G and the set of equiv-
alence classes of nondegenerate representa-
tions of the Banach algebra L,(G) with an
involution on Hilbert spaces. U is an irreduc-
ible (factor) representation if and only if U’ is
an irreducible (factor) representation. There-
fore the study of unitary representations of G
reduces to that of representations of L, (G). If
Uy is a tcompact operator for every f in L,(G),
then U is the discrete direct sum of irreducible
representations, and the multiplicity of every
irreducible component is finite. (See [2] for
Sections A-N.)

0. Induced Representations

Induced representation is the method of con-
structing a representation of a group Gin a
canonical way from a representation of a
subgroup H of G. 1t is a fundamental method
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of obtaining a unitary representation of G. Let
G be a locally compact group satisfying the
second countability axiom, L be a unitary
representation on a separable Hilbert space
H(L) of a closed subgroup H of G, and m, n,

A, and ¢ be the right Haar measures and the
modular functions of the groups G and H,
respectively. Then there exists a continuous
positive function p on G satisfying p(hg)=
S(MA(hy " p(g) for every hin H and g in G.
The *quotient measure y=(pm)/n is a quasi-
invariant measure on the coset space H\G (—
225 Invariant Measures). Let § be the vector
space of weakly measurable functions f on G
with values in $H(L) satisfying the following
two conditions: (i) f(hg)= L,f(g) for every hin
H and g in G; and (i) | f11* = [y.c 1/ (9)11* du(g)
< + o0, where g represents the coset Hg. By
condition (i), the norm | f(g)| is constant on a
coset Hg=g and is a function on H\@G, so the
integral in condition (ii) is well defined. Then $
is a Hilbert space with the norm defined in (ii).
A unitary representation U of G on the Hilbert
space $ is defined by the formula

(US)g)=+/p(g)/p(9) S(g9)-

U is called the unitary representation induced
by the representation L of a subgroup H and is
denoted by U =U" or Ind§ L. Induced repre-
sentations have the following properties.

(1) UL1®La = UL @ ULz or more generally,
Ulvede) ~ [ 49 dyy(x). Therefore if U* is
irreducible, L is also irreducible (the converse
does not hold in general).

(2) Let H, K be two subgroups of G such
that H<= K, L be a unitary representation of H,
and M be the representation of K induced by
L. Then two unitary representations U™ and
U* of G are equivalent.

An induced representation UL is the repre-
sentation on the space of square integrable
sections of the fvector bundle with fiber H(L)
*tassociated with the principal bundle (G, H\
G, H) (— G. W. Mackey [3], F. Bruhat [4]).

P. Unitary Representations of Special Groups

In the following sections we describe the fun-
damental results on the unitary representa-
tions of certain special groups.

Q. Compact Groups

Irreducible unitary representations of a com-
pact group are always finite-dimensional.
Every unitary representation of a compact
group is decomposed into the direct sum of
irreducible representations. Irreducible unitary
representations of a compact connected Lie
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group are completely classified. The characters
of irreducible representations are calculated in
an explictt form (— 69 Compact Groups; 249
Lie Groups). Every irreducible unitary repre-
sentation U of a connected compact Lie group
G can be extended uniquely to an irreducible
holomorphic representation U€ of the com-
plexification G¢ of G. U€ is holomorphically
induced from a 1-dimensional representation
of a Borel subgroup B of G* (Borel-Weil
theorem; — R. Bott [5]).

R. Abelian Groups

Every irreducible unitary representation of
an Abelian group G is 1-dimensional. fStone’s
theorem concerning one-parameter groups

of unitary operators, U,=(*_e'*dE,, gives
irreducible decompositions of unitary repre-
sentations of the additive group R of real
numbers. ‘Bochner’s theorem on Tpositive
definite functions on R is a restatement of
Stone’s theorem in terms of positive definite
functions. The theory of the tFourier trans-
form on R, in particular tPlancherel’s theorem,
gives the irreducible decomposition of the
regular representation of R. The theorems of
Stone, Bochner, and Plancherel have been
extended to an arbitrary locally compact
Abelian group (— 192 Harmonic Analysis).

S. Representations of Lie Groups and Lie
Algebras

Let U be a unitary representation of a Lie
group G with the Lie algebra g. An element x
in H(U) is called an analytic vector with respect
to U if the mapping g— U, x is a real analytic
function on G with values in $(U). The set of
all analytic vectors with respect to U forms a
dense subspace A =A(U) of H(U). For any
elements X in g and x in A(U), the derivative
at t=0 of a real analytic function U,,,,yx is
denoted by V(X)x. Then V(X)is a linear
transformation on 2, and the mapping V: X
— V(X) is a representation of g on 2. We call
V the differential representation of U. The rep-
resentation V of g can be extended uniquely
to a representation of the tuniversal en-
veloping algebra B of g. Two unitary repre-
sentations U and U of a connected Lie
group G are equivalent if and only if there
exists a bijective bounded linear mapping T
from $(U") onto H(U?) such that T maps
A(UW) onto A(UP) and satisfies the equality

(To VX)) x=(VP(X)o T)x

forall X in g and x in W(U™"). Let X4, ..., X,
be a basis of g and U be a unitary representa-
tion of G. Then the element A= X?4 ... + X2
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in the universal enveloping algebra B of g is
represented in the differential representation V
of U by an tessentially self-adjoint operator
V(A). Conversely, if to each element X in g
there corresponds a (not necessarily bounded)
fskew-Hermitian operator p(x) that satisfies
the following three conditions, then there
exists a unique unitary representation U of the
simply connected Lie group G with the Lie
algebra g such that the fclosure of V(X) coin-
cides with the closure of p(X) for every X in g:
(i) There exists a dense subspace © contained
in the domain of p(X)p(Y) for every X and Y
in g; (ii) for each X and Y in g, ¢ and b in R,
and x in O, p(aX +bY)x=ap(X)x+bp(Y)x,
p(LX, YD x=(p(X)p(Y)—p(Y)p(X))x; (iii) the
restriction of p(X,)*>+ ... + p(X,)*> to Dis an
essentially self-adjoint operator if X,,..., X, is
a basis of g (E. Nelson [6]).

T. Nilpotent Lie Groups

For every irreducible unitary representation of
a connected nilpotent Lie group G, there is
some 1-dimensional unitary representation of
some subgroup of G that induces it. Let G be a
simply connected nilpotent Lie group, g be the
Lie algebra of G, and p be the contragredient
representation of the adjoint representation of
G. The representation space of p is the dual
space g* of g. A subalgebra b of g is called
subordinate to an element f in g* if / annihi-
lates each bracket [ X, Y] for every X and Y in
b: (f,[X, Y])=0. When |) is subordinate to f, a
1-dimensional unitary representation L of the
analytic subgroup H of G with the Lie algebra
b is defined by the formula 1 (exp X)=e?™V-%)
(X eb). Every 1-dimensional unitary represen-
tation 4, of H is defined as in this formula by
an element f in g* to which b is subordinate.
The unitary representation of G induced by
such a 4, is denoted by U(f,b). The represen-
tation U(f,}) is irreducible if and only if b has
maximal dimension among the subalgebras
subordinate to f. Two irreducible represent-
ations U(f,h) and U(f,}y) are equivalent if and
only if fand f” are conjugate under the group
p(G). Therefore there exists a bijection be-
tween the set of equivalence classes of the
irreducible unitary representations of a simply
connected nilpotent Lie group G and the set of
orbits of p(G) on g* (A. A. Kirillov [7]).

U. Solvable Lie Groups

Let G be a simply connected solvable Lie
group. If the exponential mapping is bijective,
G is called an exponential group. All results
stated above for nilpotent Lie groups hold for
exponential groups except the irreducibility
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criterion. In this case the representation U( £, b)
1s irreductble if and only if b is of maximal
dimension among subordinate subalgebras
and the orbit O = p(G)f contains the affine
subspace f+ b=+ {g|g(b)=0} (Pukanszky
condition),

The situation is more complicated for gen-
eral solvable Lie groups. The isotropy sub-
group Gy={geGlplg)f = [} at feg* s, in
general, not connected. A linear form f is
called integral if there exists a unitary charac-
ter 1, of G, whose differential is the restriction
of 2zif to g, (the Lie algebra of G;). Using the
notion of “polarization,” an irreducible unitary
representation of G is constructed from a pair
(fin,) of an integral form feg* and a character
#;- It G is of type 1, then every irreducible
unitary representation of G is obtained in this
way. A simply connected solvable Lie group G
is of type I if and only if (i) every feg* is in-
tegral and (ii) every G-orbit p(G)f in g* is
locally closed (Auslander and Kostant [8]).

As an example, let « be an irrational real
number. Then the following Lie group G is not

e’ 0 z
of type I:G=<| 0 ™ w) |teR,z,weC}.
0 0 1

V. Semisimple Lie Groups

A connected semisimple Lie group is of type L.
The character y =y, of an irreducible unitary
representation U of G is defined as follows: Let
C§(G) be the set of all complex-valued C*-
functions with compact support on G. Then
for any function f in C&(G), the operator U,
= [ U,f(g)dg belongs to the ftrace class, and
the linear form y: f— T,U, is a *distribution in
the sense of Schwartz. The distribution y is
called the character of an irreducible unitary
representation U. A character y is invariant
under any inner automorphism of G and is a
simultaneous eigendistribution of the algebra
of all two-sided invariant linear differential
operators on G. Two irreducible unitary repre-
sentations of G are equivalent if and only if
their characters coincide. The distribution y is
a tlocally summable function on G and coin-
cides with a real analytic function on each
connected component of the dense open sub-
manifold G’ consisting of regular elements in
G. In general, y is not real analytic on all of G
(Harish-Chandra [9,I11; 10].

W. Complex Semisimple Lie Groups

There are four series of irreducible represen-

tations of a complex semisimple Lie group G.
(1) A principal series consists of unitary

representations of G induced from 1-
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dimensional unitary representations L of a
*Borel subgroup B of G. L is uniquely deter-
mined by a unitary character ve Hom(A4, U(1))
= A* of the *Cartan subgroup 4 of G con-
tained in B. Hence the representations in the
principal series are parametrized by the ele-
ments in the character group A* of the Cartan
subgroup 4. If we denote U™ by U”, two repre-
sentations U” and U"(v, v’ € A¥) are equivalent
if and only if v and v’ are conjugate under the
*Weyl group W of G with respect to A.

(2) A degenerate series consists of unitary
representations induced by 1-dimensional
unitary representations of a tparabolic sub-
group P of G other than B. (A parabolic sub-
group P is any subgroup of G containing a
Borel subgroup B.)

(3) A complementary series consists of irre-
ducible unitary representations U* induced by
nonunitary I-dimensional representations
L of a Borel subgroup B. In this case, con-
dition (ii) in the definition of UL (— Section O)
must be changed. When L is a nonunitary
representation, then the operator U/ is not a
unitary operator with respect to the usual L,-
inner product (ii). However, if L satisfies a
certain condition, then UqL leaves invariant
some positive definite Hermitian form on the
space of sufficiently nice functions. Completing
this space, we get a unitary representation U~
The representations thus obtained form the
complementary series.

(4) A complementary degenerate series con-
sists of irreducible unitary representations
induced by nonunitary 1-dimensional repre-
sentations of a parabolic subgroup P # B.

Representations belonging to different series
are never equivalent. It seems certain that any
irreducible unitary representgtion of a con-
nected complex semisimple Lie group is equiv-
alent to a representation belonging to one of
the above four series, but this conjecture has
not yet been proved. Moreover, E. M. Stein
[11] constructed irreducible unitary repre-
sentations different from any in the list ob-
tained by I. M. Gel'fand and M. A. Naimark
(Neumark) [12]. These representations belong
to the complementary degenerate series. The
characters of the representations in these four
series are computed in explicit form. For ex-
ample, the character x, of the representation
U” in the principal series can be calculated as
follows: Let 4 be a linear form on a Cartan
subalgebra a such that v(exp H)=e*™ for
every H in q, let D be the function on A4 de-
fined by D(exp H) =T1,|e**V? — g #12}2,
where « runs over all positive roots. Then the
character y, of a representation U” in the
principal series is given by the formula
ZlexpH)=D(expH)™' Y ¥

seWw
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In the irreducible decomposition of the regular
representation of G, only irreducible represen-
tations belonging to the principal series arise.
Hence the right-hand side in the Plancherel
formula is an integral over the character group
A* of a Cartan subgroup A. Under a suitable
normalization of the Haar measures in G and
A*, the Plancherel measure u of G can be
expressed by using the Haar measure dv of A*:

du(=wTTI(& 0/(p, 0| dv,

where w is the order of the Weyl group, p is
the half-sum of all *positive roots, and « runs
over all positive roots (Gel'fand and Naimark

[12]).

X. Real Semisimple Lie Groups

As in the case of a complex semisimple Lie
group, a connected real semisimple Lie group
G has four series of irreducible unitary repre-
sentations. However, if G has no parabolic
subgroup other than a minimal parabolic
subgroup B and G itself, then G has no repre-
sentation in the degenerate or complementary
degenerate series. Examples of such groups are
SL(2,R) and higher-dimensional tLorentz
groups. In general, the classification of irreduc-
ible unitary representattons in the real semi-
simple case is more complicated than in the
complex semisimple case. Irreducible unitary
representations arising from the irreducible
decomposition of the regular representation
are called representations in the principal
series. The principal series of G are divided
into a finite number of subseries corresponding
bijectively to the conjugate classes of the fCar-
tan subgroups of G.

A connected semisimple Lie group G has a
square integrable representation if and only if
G has a compact Cartan subgroup H. The set
of all square integrable representations of G is
called the discrete series of irreducible unitary
representations. The discrete series is the sub-
series in the principal series corresponding to a
compact Cartan subgroup H. The representa-
tions in the discrete series were classified by
Harish-Chandra. Let b be the Lie algebra of
H, P the set of all positive roots in | for a fixed
linear order, n the polynomial [1, . H,, and
F the set of all real-valued linear forms on
\/—-1 h. Moreover, let L be the set of all linear
forms A in & such that a single-valued char-
acter &, of the group H is defined by the for-
mula &,(exp X)=e*®, and let L’ be the set
of all 4 in L such that n(1) #0. Then for each
A in L', there exists a representation w(4) of
G in the discrete series, and conversely, every
representation in the discrete series is equivalent
to w(2) for some A in L'. Two representations
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w(i,) and w(l,) (4, A,€L’) are equivalent if
and only if there exists an element s in W;=
N(H)/H such that A, =s4,, where N(H) is the
normalizer of H in G (W; can act on & as a
linear transformation group in the natural
way). The value of the character ,.on the
subgroup H of the representation w(2) (1€ L)
is given as follows: Let &(4) be the signature of
n(A)=TI1,.pA(H,), and define g and A by g=
(dim G/K)/2 and A(exp H) = [T, p(e“"? —

e M%) Then the character y;, of the repre-
sentation w(4) has the value (—1)?e(4)y,(h) =
A(h) 7' Zoew,(dets)é; (h) on a regular element
hin H. The formal degree d(w(4)) of the
representation w(4) is given by the formula
d(w(A))=C 1 [W,]|n(A)|, where C is a positive
constant (not depending on ) and [W,] is the
order of the finite group W (Harish-Chandra
[13]). A formula expressing the character y; on
the whole set of regular elements in G has been
given by T. Hirai [14]. The representations in
discrete series are realized on L2-cohomology
spaces of homogeneous holomorphic line
bundles over G/H (W. Schmid [15]). They are
also realized on the spaces of harmonic spinors
on the *Riemannian symmetric space G/K
(M. Atiyah and Schmid [16]). They are also
realized on the eigenspaces of a Casimir opera-
tor acting on the sections of vector bundles
on G/K (R. Hotta, J. Math. Soc. Japan, 23;

N. Wallach [17]). An irreducible unitary rep-
resentation is called integrable if at least one
of its matrix coefficients belongs to L'(G).
Integrable representations belong to the dis-
crete series. They have been characterized by
H. Hecht and Schmid (Math. Ann., 220 (1976)).
The theory of the discrete series is easily ex-
tended to reductive Lie groups.

The general principal series representations
of a connected semisimple Lie group G with
finite center are constructed as follows. Let K
be a maximal compact subgroup of G. Then
there exists a unique involutive automorphism
0 of G whose fixed point set coincides with K.
0 is called a Cartan involution of G. Let H be a
f-stable Cartan subgroup of G. Then H is the
direct product of a compact group T=HNK
and a vector group A. The centralizer Z(A) of
A in G is the direct product of a reductive Lie
group M =60{(M) and A. M has a compact
Cartan subgroup T. Hence the set M, of the
discrete series representations of M is not
empty. Let « be an element of the dual space
a* of the Lie algebra a of A and put g, =
{Xeq|[H,X]=oa(H)X(VYHea)} and A=
{aea*|g,#{0}}. Let A be the set of posi-
tive elements of A in a certain order of a* and
putn=2%,.,+9,and N=expn. Then P=MAN
is a closed subgroup of G. P is called a cuspidal
parabolic subgroup of G. Let De M, and vea*.
Then a unitary representation D ® e™ of P
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is defined by (D @ e'*) (man) = D(m)e**1oe?
(meM,ae A,ne N). The unitary representation
7p,, of G induced by D ® e is independent of
the choice of A* up to equivalence. Thus 7 ,
depends only on (H, D, v). The set of represen-
tations {n, ,| De My, vea*} is called the prin-
cipal H-series. If v is regular in a* (i.e., (v,a) #0
for all xeA), then =y, , is irreducible. Every n;,
is a finite sum of irreducible representations.
The character 0, , of nj, , 1s a locally sum-
mable function which is supported in the
closure of | ),.qg(MA)g™". If two Cartan
subgroups H, and H, are not conjugate in G,
then every H,-series representation is disjoint
from every H,-series representation. Choose

a complete system {H,, ..., H,} of conjugacy
classes of Cartan subgroups of G. Then every
H; can be chosen as 0-stable, The union of the
principal H;-series (1 <i<r) is the principal
series of G. The right (or left) regular represen-
tation of G is decomposed as the direct integral
of the principal series representations. Every
complex-valued C*-function on G with com-
pact support has an expansion in terms of the
matrix coefficients of the principal series repre-
sentations. Harish-Chandra [ 18] proved these
theorems and determined explicitly the Plan-
cherel measure by studying the asymptotic
behavior of the Eisenstein integral [19,20].

Y. Spherical Functions

Let G be a locally compact funimodular group
and K a compact subgroup of G. The set of all
complex-valued continuous functions on G
that are invariant under every left translation
L, by elements k in K is denoted by C(K\G).
The subset of C(K\G) that consists of all two-
sided K-invariant functions is denoted by

C(G, K). The subset of C(G, K) consisting of all
functions with compact support is denoted by
L=L(G.K). Lis an algebra over C if the prod-
uct of two elements f and g in L is defined by
the convolution.

Let 4 be an algebra homomorphism from L
into C. Then an element of the eigenspace F(4)
={h e C(K,G)|f+y =AW (VfeL)} is called
a spherical function on K\G. If F(A) contains a
nonzero element, then F(1) contains a unique
two-sided K-invariant element @ normalized
by w(e)=1, where e is the identity element
in G. This function w is called the zonal spher-
ical function associated with A. In this case,
the homomorphism 4 is defined by A(f)=
fef{g)w(g ") dg. Hence the eigenspace F(4)
is uniquely determined by the zonal spherical
function w. A function w#0 in C(G,K)is a
zonal spherical function on K\G if and only
if w satisfies either of the following two con-
ditions: (i) The mapping f— {f(g)w(g Y)dg is
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an algebra homomorphism of L into C; (i1) w
satisfies the functional equation

J w(gkh)dk = w(g)w(h).

When G is a Lie group, every spherical func-
tion is a real analytic function on K\G.

Z. Expansion by Spherical Functions

In this section, we assume that the algebra L
of two-sided K-invariant functions is com-
mutative. In this case there are sufficiently
many spherical functions of K\G, and two-
sided K-invariant functions are expanded by
spherical functions. An irreducible unitary
representation U of G is called a spherical
representation with respect to K if the represen-
tation space $H(U) contains a nonzero vector
invariant under every U,, where k runs over K.
By the commutativity of L, the K-invariant
vectors in $H(U) form a 1-dimensional sub-
space. Let x be a K-invariant vector in $H(U)
with the norm ||x| = 1. Then w(g)=(U,x, x) is
a zonal spherical function on K\G, and for
every y in H(U), the function ¢,(g)=(U,x, y)
is a spherical function associated with w.
Moreover, in this case the zonal spherical
function w is a positive definite function on G.
Conversely, every positive definite zonal spher-
ical function w can be expressed as w(g)=
(U,x, x) for some spherical representation U
and some K-invariant vector x in $(U).

The set of all positive definite zonal spher-
ical functions becomes a locally compact space
Q by the topology of compact convergence.
The spherical Fourier transform of a function
S in L{(K\G) is defined by

f(w)=J f(g)w(g™")dg.
G

There exists a unique *Radon measure y on
Q such that for every fin L, f belongs to
L, (€, w). Also, the Plancherel formula

j F5)96) ds = j F)d@) due) @
G Q

holds for every f and g in L, and an inversion
formula f(s)= {, f(w)w(s)du(w) holds for a
sufficiently nice two-sided K-invariant func-
tion f[21]. Identifying a positive definite zonal
spherical function with the corresponding
spherical representation, we can regard Q as

a subset of the dual G of G. The Plancherel
formula for two-sided K-invariant functions is
obtained from the general Plancherel formula
on G by restricting the domain of the integral
from G to Q. When G is a Lie group and L is
commutative, a spherical function on K\G can
be characterized as a simultaneous eigenfunc-
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using a generalized fassociated Legendre func-
tion ‘B%. Many properties of special functions
can be proved from a group-theoretic point of
view. For example, the addition theorem is
merely the homomorphism property U, =

U, U, expressed in terms of the matrix com-
ponents of U. The differential equation satis-
fied by these special functions is derived from
the fact that a zonal spherical function w is an
eigenfunction of an invariant differential oper-
ator. The integral expression of such a special
function can be obtained by constructing a
spherical representation U in a certain func-
tion space and calculating explicitly the inner
product in the expression w(g)=(U,x, x) (N.
Ya. Vilenkin [26]).

CC. Generalization of the Theory of Spherical
Functions

The theory of spherical functions described in
Sections Y—BB can be generalized in several
ways. First, spherical functions are related to
the trivial representation of K. A generaliza-
tion is obtained if the trivial representation of
K is replaced by an irreducible representation
of K. The theory of such zonal spherical func-
tions is useful for representation theory [20].
For example, the Plancherel formula for
SL(2,R) can be obtained using such spherical
functions (R. Takahashi, Japan. J. Math., 31
(1961)). Harish-Chandra’s Eisenstein integral
is such a spherical function on a general semi-
simple Lie group G. He used it successfully to
obtain the Plancherel measure of G. Another
generalization can be obtained by removing
the condition that K is compact. In particu-
lar, when K\G is a symmetric homogeneous
space of a Lie group G, the algebra & of all G-
invariant linear differential operators is com-
mutative if the space K\G has an invariant
volume element. In this case, a spherical func-
tion on K\G can be defined as a simultaneous
eigenfunction of 2. The character of a semi-
simple Lie group is a zonal spherical func-
tion (distribution) in this sense. The spherical
functions and harmonic analysis on sym-
metric homogeneous space have been studied
by T. Oshima and others. T. Oshima and J.
Sekiguchi [27] proved the Poisson integral
theorem {(— Section AA) for a certain kind of
symmetric homogeneous spaces.

The spherical functions and unitary repre-
sentations of topological groups that are not
locally compact are studied in connection with
probability theory and physi