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Abstract

This article discusses some methods of describing and referring to mathe-
matical objects and of consistently and unambiguously signaling the logical
structure of mathematical arguments.
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1 Introduction
This article discusses some methods of describing and referring to mathe-
matical objects and of consistently and unambiguously signaling the logical
structure of mathematical arguments that, in many texts, remain buried
under a few unsystematic hints.

In section 2, we discuss the problems involved in referring to mathemati-
cal objects and properties. Section 3 discusses certain special aspects of def-
initions and makes some notational suggestions. Section 4 discusses certain
individual words used to communicate the logical structure of mathematical
arguments, and Section 5 suggests some strategies for writing proofs.
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Many ideas of this paper are treated further in [28].

2 Referring to mathematical objects
2.1 Suggestive names

Mathematicians may name a type of object or property using a word that
already exists in English. Such a word is usually chosen to suggest some
aspect of the technical meaning. They also create words, usually from Latin
or Greek roots, or name them after mathematicians. The Greek or Latin
roots of a created name also may suggest the meaning of the word. We will
use the phrase suggestive name to describe names that clearly suggest
some aspect of the meaning to an educated person. In contrast, personal
names and many created names (at least for readers unfamiliar with the
roots used) are a kind of black box; the name gives no clue to the meaning.

In the next three subsections we consider three problems that can arise
with names.

2.1.1 Cultural dependence The suggestiveness of a name will inevitably
be culture-dependent. For example, the phrase “fixed point” is supposed
to indicate that the point is thought of as standing still. The phrase is based
on a use of the word “fix” that is uncommon in American colloquial English,
in which “fix” most commonly means “repair”. One wonders whether a word
such as “clockwise” will convey anything to students twenty years from now.

2.1.2 Cognitive dissonance The connotations of a word or phrase used
to name a type of mathematical object sometimes create an expectation in
the student that the object has properties different from the ones it actu-
ally has. This is a form of cognitive dissonance. The seminal work on
cognitive dissonance is [5]. See also [3].

Example The use of the symbol ⊂ in a context such as A ⊂ B causes
cognitive dissonance for many students. In texts in research mathematics
the statement “A ⊂ B” commonly means that A is included as a subset in
B, carrying no implication that A is different from B. However, students
who are used to the difference between m < n and m ≤ n often expect that
A ⊂ B should mean A is a proper subset of B and that one should express
the idea that A is included in and possibly equal to B by saying A ⊆ B.
Common usage in research thus fails to parallel the usage for inequalities;
that is one type of cognitive dissonance. In recent years, usage has changed
in high school and lower level college texts, so that A ⊂ B is often expressly
defined to mean that A is a proper subset of B.
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Example In mathematical logic, the expression “∃r(r ∈ R and πr2 < x)”
is an instance of what in some texts is called a formula. With the usual
meanings of the symbols (R denotes the set of real numbers) the formula
becomes a true sentence if x is instantiated at 3, and a false sentence if x is
instantiated at −3. On the other hand, the expression πr2 is an example of
a term. When some real number is sustituted for r, this term evaluates to
a number.

The word “formula” can cause cognitive dissonance. In colloquial usage,
this word may refer to a complex expression for an object that allows one
(with sufficient knowledge) to produce it. Thus, in chemistry the formula
for hydrochloric acid is HCl. And in mathematics one might say that a
formula for the area of a circle is πr2. The way in which the word “formula”
is used in these examples corresponds to what logicians call terms rather
than to what they call formulas. Even students in graduate logic courses
are sometimes confused by this.

On the other hand, other students, if asked what the formula for the
area of a circle is, might respond “A = πr2”. For such students there may
be no cognitive dissonance with the logician’s use of the word “formula”.

2.1.3 Overdependence on connotations In studying literature, the
student may understand that the language is given to one complete with
a vast baggage of cultural understanding. In consequence, literature brings
into play complex meanings that depend on the reader’s immersion in the
ambient culture or on the reader’s understanding of the culture in which the
author worked.

Exposure to a liberal-arts tradition may therefore lead a student to
expect, perhaps unconsciously, to extract the meaning of a word such as
“group” in a text from the student’s own experience with the word, from
the context in which it appears, and from the cultural context. This student
may not take the explicit definition of a word sufficiently seriously. Mathe-
maticians and other scientists are used to inventing their own terminology.
The definition of a word such as “group” in a mathematics text may require
students to abandon most of their previous understanding of the word and
start afresh, the exact opposite of what is expected in a literature course;
and students are seldom, if ever, told this.

Mathematical authors are of course free to change the language. How-
ever, in doing so they are well advised to respect the givenness of the lan-
guage and not to do such violence to it as would confuse or burden the user
unreasonably. The meaning of a new technical word that is also a word
in ordinary English should therefore be consonant as far as possible with
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the meaning and connotations of the word in everyday use. And the com-
ments above about cultural differences and cognitive dissonance illustrate
that suggestive notation may nevertheless have hidden traps.

We emphasize that the problem that students do not take the definition
of a technical word seriously involves much more than being led astray by
connotations. This is one of the main problems with teaching students who
are just beginning to study abstract mathematics. The description of the
way in which students cling tenaciously to their misconceptions about limits
(only some of which are caused by connotations of the word “limit”) in [25]
is a good case study of this problem.

2.2 Type labeling

If it has been established on some early page of a text that S3 denotes the
symmetric group on three letters, then in referring to it many pages later
in the book, an author is well advised to say, “Not every monoid with three
elements can be embedded into the group S3” instead of merely “Not every
monoid with three elements can be embedded into S3”. This constitutes
giving the type of the symbol S3; i.e. it is of type “group”. It may be
desirable to use even more explicit typing, for example in the expression
“the symmetric group S3”, where the phrase “symmetric group” gives the
type of S3.

We recommend declaring the type of nonstandard1 symbols as illustrated
above, whenever the symbols are used for the first time after an absence of
several pages. Jeffrey Ullman, in a guest appearance in [12], flatly proposes
always giving the type of a symbol. Russian authors of mathematics seem to
do this a lot, although that may be because one cannot attach grammatical
endings to symbols.

2.3 Associating fonts to types

Systematically using a particular font to typset symbols naming a particular
type of mathematical entity (for instance, uppercase Roman for topological
spaces, lowercase Greek for continuous maps) may give the reader a kind of
subliminal support in keeping track of the different types of mathematical
objects in the text. The authors in their research paper [1] carried out this
idea explicitly. (This article is discussed further in section 2.5.)

1Of course, “standard” is a variable notion that depends on the subject matter and
the expected educational level of the reader.
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2.4 Suppression of parameters

One commonly refers to a structure, say a group (G, ×), by the name of
its underlying set. Since specifying a group requires specifying a set and a
multiplication on it (with certain properties), referring to it by its underlying
set alone is an example of suppression of parameters.

A more subtle example concerns the definition of continuity, which is
commonly begun this way: “For every ε > 0, there is a δ > 0 for which. . .”
Exhibiting the dependency of δ on ε explicitly could be accomplished by
writing δε or δ(ε); however, the asserted δ is not uniquely determined by
ε, and this notation suggests a function. One could always label the de-
pendency explicitly: “For every ε > 0, there is a δ > 0 depending on ε for
which. . .”

Functions are often referred to by the expressions which define them,
as in the sentence, “The function x2 is differentiable everywhere.” This
practice, too, constitutes suppression of parameters: To specify a function,
one normally gives it a name, defines its domain and perhaps its codomain,
and then gives a rule that allows one to evaluate the function at an element
of the domain. The rule is commonly specified by an algebraic expression.
To refer to “the function x2” constitutes omitting all the parameters except
the expression.

The styles of parameter suppression that we have mentioned are not
going to go away soon. There are strong arguments in favor of continuing
at least some of them. Students must be made aware of the phenomenon of
parameter suppression when they have achieved the sophistication necessary
to understand what it means. This may require quite a bit of work in
some cases, for example when teaching the concept of function to beginning
calculus students.

2.5 Mnemonic Symbols

The authors in their research paper [1] (already mentioned in 2.3) have ex-
perimented with using a system of symbolic names for mathematical objects
and types of objects that will be called here the Explicit Symbolic Style.
This style is distinguished by the following features:

1. Each name (particularly those involving functorial constructions) in-
cludes all the parameters (see 2.4), usually in square brackets.

2. An object or type is denoted by an abbreviation that includes suffi-
ciently many letters to remind the reader of its meaning. (Dropping
vowels and repeated consonants is a rough recipe.)
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A style similar to the Explicit Symbolic Style is common in writing computer
programs and the particular usage in the paper cited here is based on that
of Mathematica.

Example : An article on groups that using the Explicit Symbolic Style
could use Ctr[G] to denote the center of a group G. In the usual style of
research papers and textbooks in group theory, one might denote the center
of the group currently under discussion by C (thus omitting the name of the
group and requiring the reader to remember that C stands for the center),
but in the Explicit Symbolic Style one would refer to the center as Ctr[G]
every time one mentions it.

Such a style would in many instances not be suitable for calculations
involving the center of some specific group (particularly if made in private)
because it is indeed easier to write C than Ctr. If one were trying to come
up with a proof involving the center of G (typically sitting at a desk and
writing down statements and formulas by hand) it would be inconvenient to
have to write Ctr[G] every time. We would perhaps write C or CG depending
on the circumstances. Even if one were investigating the properties of the
construction Ctr that depended on the group, one would be more likely in
private to write C(G) instead of Ctr[G].

We are not proposing that one write Ctr[G] in private; we propose only
that this style be used in mathematical books and papers. Modern word
processors and typesetting systems allow global changes and macros. This
has made it easy to use symbols such as Ctr[G] in the final version of a book
or paper. Thus the use of symbolic notation convenient for hand calculation
need no longer jeopardize ease of understanding.

3 Definitions
In mathematical discourse, definitions are frequently signaled as such by the
word “Definition” and by the fact that the defined word is put in italics or
boldface. The latter device, however, is hardly universal. One could draw
attention to this even more vividly as follows:

Definition: n | m (read n divides m) :⇔ there exists q ∈ Z such that
m = qn.

Definition: n is even :⇔ 2 | m.
or alternatively,

Definition: n is said to be even :⇔ 2 | m.

This format uses the Pascal colon to indicate that the equivalence holds
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by definition, not because it is true from previous remarks. The asymmetry
of the symbol “:⇔” distinguishes what is being defined from the definition.
This device is used by Noll [19] and Schäffer [21, page 3]. Following Noll
and Schäffer, we suggest reading the symbol “:⇔” as “by definition if and
only if”.

The alternative form with “said to be” (which could also be “is called”
in other situations) may be used as a convention that does not commit the
author to the existence of mathematical objects. (Belief in the existence
of mathematical objects is roughly speaking what is commonly called “Pla-
tonism”.) This wording is intended to communicate the attitude that the
statement “4 is even” is simply a way of talking, rather than a statement
such as “Mars is red” that is about real things.

An analogous use of the colon with the equals sign (suggested by the
use in Pascal) has become common; for example, given the radius r and
circumference c of a circle, one may define π := c/2r.

Definitions are discussed further in the entry for “if” in the next section.

4 Signaling logical structure
In this section, we list a few common words and phrases that are typically
used by mathematicians to express the logical structure of their arguments.
Some of these have multiple meanings and others have meanings that differ
from common English usage. The texts [4] and [10] are essentially attempts
at providing a theoretical basis for the analogous problem of discovering the
logical structure of discourse in ordinary English rather than in mathemat-
ical writing, and many of the problems discussed here are also described
there.

a, an In mathematical writing, the indefinite article may be used with the
name of a type of mathematical object to indicate an arbitrary object of
that type. For example, the sentence “A positive integer is the sum of four
squares” means the same as the formula

∀n∃a∃b∃c∃d(n = a2 + b2 + c2 + d2)

where n, a, b, c, and d are all positive integers. The statement is true
for every positive integer n without exception. Students asked to prove
that a positive integer is the sum of four squares occasionally choose a
particular integer (for example 12) and show that it is the sum of four
squares, thinking they have done what the problem asked for. This usage of
the indefinite article is deprecated by Gillman [7, page 7]. We recommend
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that mathematical authors write, “Every positive integer is the sum of four
squares”. See also the discussion under “any” below.

This usage occurs outside mathematics as well and is given a theoretical
treatment in [10], section 3.7.4. In ordinary English sentences, such as

A wolf takes a mate for life.

([10], page 294), the meaning is that the statement is true for a typical in-
dividual (typical wolf in this case). In mathematics, however, the statement
is required to be true without exception. The idea that concepts are based
on prototypes (typical examples) is one of the main points of [15] and [14].

any The word “any” in mathematical writing is one of many ways of ex-
pressing the universal quantifier. For example, the sentence, “Any positive
integer can be written as a sum of four squares” means that every positive
integer is the sum of four squares. However, just as mentioned in the dis-
cussion of “a, an”, students sometimes interpret a sentence such as “Prove
that any positive integer can be written as a sum of four squares” as an
instruction to pick a positive integer and write it as a sum of four squares.
Such misinterpretation does not seem to occur with “all” and “every”. This
discussion is based on Halmos’ discussion in [23, p. 38].

if In definitions, it has been a convention to use “if” to mean “if and only
if”. It is probably better to write if and only if. Even that does not make
it clear that this is a matter of definition rather than of logical equivalence.
The colon convention described in Section 3 makes it completely clear that
the statement is a definition.

Some might argue that the use of “if” in a labeled definition is a standard
convention and is therefore unambiguous. This is a reason for teaching the
students the convention; in this case, doing so is vital, because the convention
is so common. But if a completely explicit way of pointing out a definition
is possible, why not use it?

It is appropriate to make another point here about conventions. The
colon convention for definitions has the advantage that every time it is used,
it signals a definition. It is “context-free”. The convention that “if” inside
a labeled definition means “if and only if”, on the other hand, is context-
sensitive — the word “if” changes its meaning depending on the context
in which it is used. This places more of a burden on the reader than a
context-free convention does.

Of course, “if” is also used to signal an implication: A sentence such as
“If x > 4, then x > 2” translates into the implication “(x > 4) ⇒ (x >
2)”. In this connection, the word “implies” may improve clarity, since the
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resulting English sentence mirrors the structure of the symbolic notation
more closely: “x > 4 implies that x > 2”.

let This seems to have at least three different meanings.

In definitions: “Let f(x) = x2”, or “Let S = {1, 3, 5}.” This appears to us
to be used primarily to give local definitions: definitions that hold only in
the current paragraph or subsection. (We thank one of the referees for this
insight.)

To choose a witness: To pick an arbitrary object from a collection of objects
known to be nonempty, or, to express it in logical terms, to choose a witness
to an existential statement that is known to be true. For example:

Given that G is a noncommutative group, let x and y be elements
for which xy 6= yx . . .

The following is a more explicit version of the same statement.

Let the noncommutative group G be given. Since G is noncom-
mutative, the collection {(x, y) ∈ G×G | xy 6= yx} is nonempty.
Hence we may choose a member (x, y) of this set. . .

We prefer such an explicit version in texts for students inexperienced in
mathematical proofs, because it makes a clear distinction between this use
of “let” and the other two discussed here.

To prove a universal statement: To pick an arbitrary object from a col-
lection with the purpose of proving a statement about all elements in the
collection, using

Example: To prove that every even integer greater than 4 is the sum of
two primes, one might begin: “Let n be an even integer greater than 4.”2 A
way of making this usage more explicit for beginners would be to start the
proof with, “Let the integer n be given. We assume that n is even and bigger
than 4. . .”, and to finish with a statement such as, “Since n was arbitrary,
we may conclude. . .”.

some The word “some” is used in mathematical discourse to indicate the
existential quantifier. Therefore, the statement, “Some of the computers
have sound cards”, allows as a possibility that only one computer has a
sound card, and it also allows as a possibility that all the computers have
sound cards. Neither of these interpretations reflect ordinary English us-
age, in which the sentence quoted would lead one to expect that more than

2The authors are not sure how this proof would continue.
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one computer has a sound card, and perhaps also that more than one does
not have a sound card. In general, the passage from the quantifying En-
glish expressions in ordinary discourse to their interpretations as quantifiers
in logical notation is fraught with difficulty. Some of the basic issues are
discussed in [4, Chapter 3]; see also [10, 6].

the The indefinite and definite articles are used in a crucial way in mathe-
matical writing, and it has become clear that students whose native language
is not English often miss the significance of this usage. The problem can
arise in exercises of this sort: “Let E be the set of even integers. Show that
the sum of any two elements of E is even.” Students have given answers
such as this: “Let E = {2, 4, 6}. Then 2 + 4 = 6, 2 + 6 = 8 and 4 + 6 = 10,
and 6, 8 and 10 are all even.”

This problem can be avoided by beginning, “Let E be the set of all even
integers. . .”

when Used to mean “if”, as in: “When a function has a derivative, it
is necessarily continuous.” Modern dictionaries [18] record this meaning of
“when”, but the original Oxford English Dictionary does not. The variant
“whenever” is often used when otherwise there would be two “if”s in a row,
as in: “A relation α is symmetric if whenever xαy then yαx”.

5 Consistent usage in proofs
The distinctions we have made in the preceding section concerning the words
used to express logical structure show how little of that structure is actually
signaled in most mathematical writing. Our suggestions concern the use
of more precise words or phrases for certain specific purposes. It may be
argued that the same word or phrase should always be used to denote the
same logical structure. For example, always use “if”, not “when” or “in the
case that”. Even the adoption of this practice along with the use of most
suggestive possible word may fail to be clear enough; the student must be
aware of what are after all conventions for associating English phrases with
logical constructions.

5.1 The Telegraphic Style

The logical structure of a proof may be displayed explicitly by using no-
tation from symbolic logic. The argument for doing this is that students
should learn elementary logical notation just as they should learn algebraic
notation, and, just as they should be able to follow an algebraic calculation
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embodied in a sequence of equations or inequalities, they should be able to
follow a logical argument expressed in symbolic notation.

Most mathematicians writing about mathematical writing seem to rec-
ommend against excessive symbolism. See for example Halmos [23, page 38];
Schiffer [23, page 57]; Knuth, Larrabee and Roberts [12, page 1]; and
Gilman [7, page 17].

However, some mathematicians, such as Gries [8] do advocate a free
but judicious use of both logical and general mathematical symbols instead
of words to ensure clarity. It seems reasonable to call such a style the
telegraphic style. An example of such usage would be to replace the
statement

A relation α on a set S is symmetric if and only if, for all (x, y) ∈ S × S, if
xαy then yαx

by the telegraphic statement

(α ⊆ S × S is symmetric) :⇔ ∀(x, y) ∈ S×S(xαy ⇒ yαx)

The telegraphic style may place a burden on some readers to the extent
that they have to develop a facility in deciphering the symbolism. Its use
may be justified when the concept being described is especially complex.

There is a feeling among some educators that logical symbols such as
“∀” and “⇒” should be as ubiquitous as π. It would be interesting to know
if students who were taught symbolic notation at an early age could read
and understand mathematics written in the telegraphic style as easily and
rapidly as they could understand mathematics written in English prose (with
nonlogical symbols but not logical symbols).
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