T1-66-S1SO14d9

Aloay | AlobBae)d oseg :Uas0Q UeA ‘[

=BRICS

Basic Research in Computer Science

Basic Category Theory

Jaap van Oosten

BRICS Lecture Series

L S-95-1

| SSN 1395-2048

January 1995

Copyright (© 1995, BRICS, Department of Computer Science
University of Aarhus. All rightsreserved.

Reproduction of all or part of thiswork
iIspermitted for educational or research use
on condition that this copyright noticeis
included in any copy.

See back inner page for alist of recent publicationsin the BRICS
L ecture Series. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540

DK - 8000 AarhusC

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.aau.dk/BRICS/

ftp ftp.brics.aau.dk (cd pub/BRICS)

‘Basic Category Theory

Jaap van Oosten

Jaap van Qosten
BRICS'
Department of Computer Science
University of Aarhus
Ny Munkegade
DK-8000 Aarhus C, Denmark

1Basic Research In Computer Science,
Centre of the Danish National Research Foundation.

Preface

These notes contain the material of a short course on categories I gave in Arhus
in the autumn of 1994, as part of Glynn Winskel’s semantics course. Later on,
while writing, I added some material, but not much.

The style in which they are written reflects my view on category theory: it
is, especially at this low level, practice rather than theory which counts. I have
therefore given many proofs as exercises. If you really want to get a grip on the
subject, I strongly suggest you do as many of them as you can.

The same goes for the examples. They are the flesh and bones of the theory,
and many of them have been chosen so they are a recurring theme; functors

=—— D may be given as examples in chapter 1, be shown to constitute an
adjunction in chapter 5, while this may turn out to be a monadic situation in
chapter 6.

For the same reason, references are omitted. Even a sketchy proof, or a hint
of the crucial argument, is better than an intimidating reference to [R].

Of course, the examples will be best understood by students who are familiar
with the mathematical notions involved, but in general these notes do not require
a lot of mathematical background, except for some basic knowledge of groups,
rings and topological spaces (although examples on the latter may be skipped,
since T have not pursued them through the whole text).

What I did presuppose is some familiarity with logic and the A-calculus.
Although definitions are given, standard facts about substitution and the like
are suppressed (a teacher can easily supply them when he gives the course).
This familiarity does not include a good understanding of set theory or even
an inkling of the size problems one can run into. I've used the terms “set” and
“small” wherever necessary, although I don’t suppose they mean much to many
students. For that reason I’ve also omitted a proof of Freyd’s Adjoint Functor
Theorem and an explanation of the role of the solution set condition.

Apart from chapters 4 and 7, where in spite of the fact that the results are
well-known I haven’t been able to find references where they are treated in a
concise enough form, and so had to develop the material myself, everything is
pretty standard. I have consulted the following sources:

e S. MacLane, Categories for the Working Mathematician, Springer (Berlin)
1971.
Still the best text. For non-mathematicians it may be a little tough going,
but it is worth the trouble.

e F. Borceux, Handbook of Categorical Algebra, (Encyclopaedia of Math-
ematics and its Applications) Cambridge University Press (Cambridge)
1994.

Next best. Gives a lot of material in a very readable style; also on spe-
cialized topics. Three volumes.

A strange error in the definition of Grothendieck universes in the first
chapter, making the definition inconsistent, supports the point about set
theory, I made before.

Many concrete examples. The reader will find many answers to my exer-
cises in this book.

M. Barr & C. Wells, Category Theory for Computing Science, Prentice
Hall (New York) 1990.

At this moment out of print. The emphasis on sketches 1s debatable, for
a first course in the theory. Otherwise a very valuable source.

P.T. Johnstone, Stone Spaces, Cambridge University Press (Cambridge)
1982. Not a book on category theory proper, but a systematic study on
various dualities of the Stone type. A lot of material on posetal structures
like frames, Boolean algebras etc.

A. Asperti, Categorical Topics in Computer Science, Ph.D. Thesis, Pisa
1990. Later reworked into:

A. Asperti & G. Longo, Categories, Types, and Structures: An Introduc-
tion to Category Theory for the Working Computer Scientist (Foundations
of Computing), MIT Press (Cambridge Massachusetts) 1991.

M. Makkai & G. Reyes, First Order Categorical Logic (Lecture Notes in
Mathematics 611), Springer (Berlin) 1977.

“The” book on categorical logic. It is my feeling that a sequel 1s badly
needed. The main ideas are developed here.

S. MacLane & I. Moerdijk, Sheaves in Geometry and Logic (Universitext),
Springer 1992.

Treats topos theory, with important applications to logic. Can almost be
read from scratch.

J. Lambek & P. Scott, Introduction to higher order categorical logic, Cam-
bridge University Press (Cambridge) 1986.

This may very well be a book of the future, but for a first acquaintance
with category theory the approach is too formal for my taste. Gives a
very elaborate account of the correspondences between type theories and
certain types of categories.

Of course this list doesn’t make any pretense whatsoever at being complete or
even a guide into the literature. It mainly reflects my personal attitude.

Acknowledgements. 1T am grateful to the group of students who patiently
and critically sat through my lectures, and in particular to Thomas Hildebrandt

i

and Sgren Bggh Lassen who pointed out mistakes in my original hand-written
notes.

The help of my office mate Vladi Sassone, has been invaluable. A critical
reading by him of the whole first version revealed a couple of embarassing mis-
takes (“the functor (—) x X also has a left adjoint”, ha ha—there is no limit to
what a confused brain can come up with); then he put a lot of effort in the visual
layout of the text, teaching me emacs and INTEX in the process, and designed
the rococo painting which is the title page.

It goes without saying that the remaining errors are mine, and that the poor
visual quality of the text is a testimony of my ignorance of IANTRX, which T am
not proud of.

References

[R] J. Razdajev, Some facts about functors, Novosibirsk Journal of Diving

Research XTVIT (1947), pp. 634-98 (Russian)

1ii

Contents

1

Categories and Functors
1.1 Definitions and examples.
1.2 Some special objects and arrows L. L.

Natural transformations

2.1 The Yoneda lemma
2.2 Examples of natural transformations
2.3 Equivalence of categories; an example

(Co)cones and (co)limits

3.1 Lamits L
3.2 Limits by products and equalizers
3.3 Colimits

A little piece of categorical logic

4.1 Regular categories and subobjects

4.2 Coherent logic in regular categories

4.3 The language £(C) and theory T'(C) associated to a regular cat-
egory C . . L

4.4 FExample of a regular category L.

Adjunctions

5.1 Adjoint functorso

5.2 Expressing (co)completeness by existence of adjoints; preserva-
tion of (co)limits by adjoint functors 0L

Monads and Algebras

6.1 Algebras foramonado
6.2 T-Algebras at least as completeasD
6.3 The Kleisli category of amonad

Cartesian closed categories and the A-calculus

7.1 Cartesian closed categories (cce’s); examples and basic facts . . .

7.2 Typed A-calculus and cartesian closed categories

7.3 Representation of primitive recursive functions in cce’s with nat-
ural numbers object

Index

17
17
24
25

29
29
33

38
39

43
43

48

53
54
59
59

63
63
67

70

73

CATEGORIES

1

1.1

Categories and Functors

Definitions and examples

A category C is given by a class Cy of objects and a class C1 of arrows which
have the following structure.

Each arrow has a domain and a codomain which are objects; one writes

f: X =Y or X L, ¥ if X is the domain of the arrow f, and Y 1ts
codomain. One also writes X = dom(f) and Y = cod(f);

Given two arrows f and g such that cod(f) = dom(g), the composition
of f and g, written gf, is defined and has domain dom(f) and codomain

cod(g):
X=Y =7

Composition is associative, that 1s: given f : X — Y, g :Y — Z and

h:Z —W,h(gf) = (hg)f;

For every object X there is an identity arrow idx, satisfying idxg = g for
every ¢ : Y — X and fidx = f for every f: X — VY.

Exercise 1. Show that idx is the unique arrow with domain X and codomain
X with this property.

Instead of “arrow” we also use the terms “morphism” or “map”.
Examples

a)
b)

0

1 is the category with one object * and one arrow, id,;
0 1s the empty category;

A preorder is a set X together with a binary relation < which is reflexive
(i.e. z < z for all z € X) and transitive (i.e. z <y and y < z imply z < z
for all z,y,z € X). This can be viewed as a category, with set of objects
X and exactly one arrow: » — y iff 2 < y.

Exercise 2. Prove this. Prove also the converse: if C is a category such that
Cq 18 a set, and such that for any two objects X,Y of C there is at most one
arrow: X — Y, then Cq is a preordered set.

d)

A monoid 1s a set X together with a binary operation, written like mul-
tiplication: zy for x,y € X, which is associative and has a unit element
e € X, satisfying ex = ze = z for all z € X. Such a monoid is a category
with one object, and an arrow z for every z € X.

1

CATEGORIES

e) Set is the category which has the class of all sets as objects, and functions
between sets as arrows.

Most basic categories have as objects certain mathematical structures, and the
structure-preserving functions as morphisms. Examples:

f) Top is the category of topological spaces and continuous functions.
g) Grp is the category of groups and group homomorphisms.

h) Rng is the category of rings and ring homomorphisms.

i) Grph is the category of graphs and graph homomorphisms.

i) Pos is the category of partially ordered sets and monotone functions.

Given two categories C and D, a functor F' : C — D consists of operations
Fy : Co — Do and Fy : C; — Dy, such that for each f : X — YV, Fi(f) :
Fo(X) — Fo(Y) and:

o for X Ly L 7, Fi(gf) = Fi(g)Fi(f);
o [(idx) = idp,(x) for each X € Co.

But usually we write just F' instead of Fy, FY.
Examples.

a) There is a functor U : Top — Set which assigns to any topological space
X its underlying set. We call this functor “forgetful”: it “forgets” the
mathematical structure. Similarly, there are forgetful functors Grp — Set,
Grph — Set, Rng — Set, Pos — Set etcetera;

b) For every category C there is a unique functor C — 1 and a unique one
0—C;

¢) Given two categories C and D we can define the product category C x D
which has as objects pairs (C, D) € Cy x Dg, and as arrows:(C, D) —
(C", D) pairs (f,g) with f : C — C"in C, and g : D — D’ in D. There
are functors mp: C x D —Cand m :C x D — D;

d) Given two functors F' : C — D and G : D — & one can define the
composition GF' : C — £. This composition is of course associative and
since we have, for any category C, the identity functor C — C, we have a
category Cat which has categories as objects and functors as morphisms.

2

1. CATEGORIES AND FUNCTORS

e)

Given a set A, consider the set A of strings a; ...a, on the alphabet
AUA™Y (A71 consists of elements a~! for each element a of A; the sets
A and A~! are disjoint and in 1-1 correspondence with each other), such
that for no z € A, zz~! or 2~ 'z is a substring of a;...a,. Given two
such strings @ = ay ... a,, b= by...by, let @%b the string formed by first
taking aq ...anby ...b, and then removing from this string, successively,
substrings of form zz~! or 2~ 'z, until one has an element of A.

This defines a group structure on A. A is called the free group on the set
A.

Exercise 3. Prove this, and prove that the assignment A +— A is part of a
functor: Set — Grp. This functor is called the free functor.

f)

Every directed graph can be made into a category as follows: the objects
are the vertices of the graph and the arrows are paths in the graph. This
defines a functor from the category Dgrph of directed graphs to Cat. The
image of a directed graph D under this functor is called the category
generated by the graph D.

Quotient categories. Given a category C, a congruence relation on C
specifies, for each pair of objects X,Y, an equivalence relation ~xy on
the class of arrows C(X,Y") which have domain X and codomain Y, such
that

o for flg: X =Y and h:Y — Z if f~xy ¢gthen hf ~x 7z hy;
e for f: X —Yand g,h:Y — Z,if g~y z hthen gf ~x 7z hf.
Given such a congruence relation ~ on C, one can form the quotient cat-

egory C/~ which has the same objects as C, and arrows X — Y are
~x y-equivalence classes of arrows X — Y in C.

Exercise 4. Show this and show that there is a functor C — C/~, which takes
each arrow of C to its equivalence class.

h)

An example of this is the following (“homotopy”). Given a topological
space X and points z,y € X, a path from z to y is a continuous mapping
f from some closed interval [0,a] to X with f(0) = z and f(a) = y. If
f:[0,a] — X is a path from z to y and ¢ : [0,b] — X is a path from y to z
there is a path g f : [0,a+b] — X (defined by gf(¢) = { 5((:)_ a) legea)
from z to z. This makes X into a category, the path category of X,
and of course this also defines a functor Top — Cat. Now given paths
f:10,a] — X, g:[0,b] — X, both from =z to y, one can define f ~, , ¢ if

3

CATEGORIES

J)

there is a continuous map I’ : A — X where A is the area:

N

(0,0) (a,0)

(0,1) —— (b, 1)

in IR?, such that

F(t,0)=f(t)

F(t,1)=g(t)

F(0,s)= = s €[0,1]

F(s,t)= gy (s,1) on the segment (b, 1) — (a,0)

One can easily show that this is a congruence relation. The quotient of the
path category by this congruence relation is a category called the category
of homotopy classes of paths in X.

let C be a category such that for every pair (X,Y") of objects the class
C(X,Y) of arrows from X to Y is a set (such C is called locally small).

For any object C' of C then, there is a functor he : C — Set which assigns
to any object C’ the set C(C,C"). Any arrow f : C' — C" gives by
composition a function C(C, ") — C(C,C"), so we have a functor. A
functor of this form is called a representable functor.

Let C be a category and C' an object of C. The slice category C/C has as
objects all arrows ¢ which have codomain C'. An arrow from ¢ : D — C
toh: F— CinC/Cisan arrow k : D — FE in C such that Ak = g. Draw

like:

C

We say that this diagram commutes if we mean that hk = g.

Exercise 5. Convince yourself that the assignment C' +— C/C' gives rise to a
functor C — Cat.

k)

Remember that for every group (G,-) we can form a group (G, *) by
putting fxg=g- f.
For categories the same construction is available: given C we can form

a category C°" which has the same objects and arrows as C, but with
reversed direction; so if f : X — Y in C then f : Y — X in C°". To

4

1. CATEGORIES AND FUNCTORS

make it notationally clear, write f for the arrow ¥ — X corresponding to
f: X — Y in C. Composition in C°F is defined by:

fg=9f
Often one reads the term “contravariant functor” in the literature. What I
call functor, 1s then called “covariant functor”. A contravariant functor F’
from C to D inverts the direction of the arrows, so Fi(f) : Fo(cod(f)) —
Fo(dom(f)) for arrows f in C. Tn other words, a contravariant functor
from C to D is a functor from C°® — D (equivalently, from C to D).

Exercise 6. Let C be locally small. Show that there is a functor (the “Hom
functor”) C(—,—) : C°P x C — Set, assigning to the pair (A, B) of objects of C,
the set C(A, B).

1)

Given a partially ordered set (X, <) we make a topological space by defin-
ing U C X to beopen iffforallz,y€e X, 2 <yand z €U mplyy € U
(U is “upwards closed”, or an “upper set”). This is a topology, called the
Alexandroff topology w.r.t. the order <.

If (X, <) and (V, <) are two partially ordered sets, a function f : X —
Y is monotone for the orderings if and only if f is continuous for the
Alexandroff topologies. This gives an important functor: Pos — Top.

Exercise 7. Show that the construction of the quotient category in example
g) generalizes that of a quotient group by a normal subgroup. That is, re-
gard a group GG as a category with one object; show that there i1s a bijection

between congruence relations on G and normal subgroups of (G, and that for
a normal subgroup N of (G, the quotient category by the congruence relation
corresponding to N, is to the quotient group G/N.

m)

“Abelianization”. Let Abgp be the category of abelian groups and ho-
momorphisms. For every group G the subgroup [G, G] generated by all
elements of form aba=1b~1! is a normal subgroup. G/[(,] is abelian, and
for every group homomorphism ¢ : G — H with H abelian, there is a
unique homomorphism ¢ : G/[G,G] — H such that the diagram

SN

G/1G, G 3 H

commutes. Show that this gives a functor: Grp — Abgp.
5

CATEGORIES

n) “Specialization ordering”. Given a topological space X, you can define an
ordering <; on X as follows: say x < y if for all open sets U, if z € U
then y € U.

For many spaces, <; is trivial (in particular when X is 77) but in case X
is for example the Alexandroff topology on a poset (X, <) as in 1), then
r<;yiff z <y.

Exercise 8. If f : X — Y is a continuous map of topological spaces then
f 1s monotone w.r.t. the specialization orderings <;. This defines a functor
Top — Pos.

1.2 Some special objects and arrows

We call an arrow f: A — B mono (or a monomorphism, or monomorphic) in a
category C, if for any other object C' and for any pair of arrows g, h: C' — A,
fg = fh implies ¢ = h.

In Set, f is mono iff f is an injective function. The same is true for Grp,
Grph, Rng, Preord, Pos,. ..

We call an arrow f : A — B epi (epimorphism, epimorphic) if for any pair
g,h: B—C, gf = hf implies g = h.

The definition of epi is “dual” to the definition of mono. That is, f is epi in
the category C if and only if f is mono in C°P, and vice versa. In general, given
a property P of an object, arrow, diagram,...we can associate with P the dual
property P°P: the object or arrow has property P°P in C iff it has P in C°F.

The duality principle, a very important, albeit trivial, principle in category
theory, says that any valid statement about categories, involving the proper-
ties Py,..., P, implies the “dualized” statement (where direction of arrows is
reversed) with the P; replaced by P7P.

Example. If ¢f is mono, then f is mono. From this, “by duality”, if fg is ep1,
then f is epi.

Exercise 9. Prove these statements.

Tn Set, f is epi iff f is a surjective function. This holds (less trivially!) also
for Grp, but not for Mon, the category of monoids and monoid homomorphisms:

In Mon, the embedding N — Z is an epimorphism.
f
For suppose 7, ——= (M, e,%) two monoid homomorphisms which agree on the
g
nonnegative integers. Then
(=D = F(=1) xg(1) % g(=1) = F(=1) » f(1) xg(=1) = g(—1)
6

1. CATEGORIES AND FUNCTORS

so f and g agree on the whole of Z.

We say a functor F' preserves a property P if whenever an object or arrow
(or...) has P, its F-image does so.

Now a functor does not in general preserve monos or epis: the example of
Mon shows that the forgetful functor Mon — Set does not preserve epis.

An epi f: A — B is called split if there is ¢ : B — A such that fg = idp
(other names: in this case ¢ is called a section of f, and f a retraction of g).

Exercise 10. By duality, define what a split mono is. Prove that every functor
preserves split epis and monos.

f : A — B is an isomorphism if there is ¢ : B — A such that fg = idp
and ¢gf =idy We call ¢ the inverse of f (and vice versa, of course); it is unique
if it exists. We also write ¢ = f~!.

Every functor preserves isomorphisms.

Exercise 11. In Set, every arrow which is both epi and mono is an isomor-
phism. Not so in Mon, as we have seen. Here’s another one: let CRngl be the
category of commutative rings with 1, and ring homomorphisms (preserving 1)
as arrows. Show that the embedding 7 — Q is epi in CRngl.

Exercise 12.
i) TIf two of f, g and fg are iso, then so is the third;
i) if f is epi and split mono, it is iso;

iii) if f is split epi and mono, f is iso.

A functor F reflects a property P if whenever the F-image of something (object,
arrow,...) has P, then that something has.

A functor F' : C — D is called full if for every two objects A, B of C,
F : C(A,B) — D(FA, FB) is a surjection. F'is faithful if this map is always
injective.

Exercise 13. A faithful functor reflects epis and monos.

An object X is called terminal if for any other object Y there is exactly one
morphism Y — X in the category. Dually, X is initial if for all Y there is
exactly one X — Y.

Exercise 14. A full and faithful functor reflects the property of being a termi-
nal (or initial) object.

CATEGORIES

Exercise 15. If X and X’ are two terminal objects, they are isomorphic,
that is there exists an isomorphism between them. Same for initial objects.

2. NATURAL TRANSFORMATIONS

2 Natural transformations

2.1 The Yoneda lemma

A natural transformation between two functors F, G : C — D consists of a family
of morphisms (p¢ : FC — GC)CeCU indexed by the collection of objects of C,
satisfying the following requirement: for every morphism f : C' — C” in C, the
diagram

Fe -5 go

Ffl le

PO == G

commutes in D (the diagram above is called the naturality square). We say
n = (,uc)CECD : F = G and we call pc the component at C' of the natural
transformation p.

Given natural transformations p : ' = GG and v : G = H we have a natural
transformation vu = (vopc)e : F = H, and with this composition there is a

category D~ with functors F' : C — D as objects, and natural transformations
as arrows.

One of the points of the naturality square condition in the definition of a
natural transformation is given by the following proposition. Compare with the
situation in Set: denoting the set of all functions from X to Y by YX | for any
set Z there is a bijection between functions Z — YX and functions Z x X — Y
(Set is cartesian closed: see chapter 7).

Proposition 2.1 For categories C, D and & there is a bijection:
Cat(€ x €, D) = Cat(&, DC)

Proof. Given F' : £ x C — D define for every object F of £ the functor
Fg :C — Dby Fg(C) = F(E,C); for f : C — ' let Fg(f) = F(idg,f) :
Fr(C) = F(E,C) — F(E,C') = Fg(C)

Given ¢ : F — FE’ in &, the family (F(g,id¢) : Fg(C) — FE’(C))CeCD is a
natural transformation: Fg = Fg,. So we have a functor F' +— Fy: £ —D%.

Conversely, given a functor G : & — DC we define a functor G:ExC—Don
objects by G(FE,C') = G(E)(C), and on arrows by G(g, f) = G(9)crG(E)([) =

9

CATEGORIES

G(E)([)G(9)c:
GEYC) = G(E, C) 2% G(rr,) = GEN(C)
G(E)(f)l le')m
G(B, ')~ G(F', ') = G(E)(C)

Exercise 16. Write out the details. Check that G as just defined, is a functor,
and that the two operations

Cat(€ x €, D) == Cat(€, D)

are inverse to each other. [|

An important example of natural transformations arises from the functors h¢ :
C°P — Set (see example i) in the preceding chapter); defined on objects by
he(C")y = C(C',C) and on arrows f : C" — C” so that he(f) is composition
with f: C(C,C) — C(C", C).

Given g : Cy — (5 there is a natural transformation
hg :he, = he,
whose components are composition with g.
Exercise 17. Spell this out.

We have, in other words, a functor
hiy: € — Set€

This functor is also often denoted by Y and listens to the name Yoneda embed-
ding.

An embedding is a functor which is full and faithful and injective on objects.
That Y is injective on objects is easy to see, because ida € he(C) for each object
(', and id¢ is in no other set Ap(FE); that V is full and faithful follows from the
famous
CP

Proposition 2.2 (Yoneda lemma) For every object F of Set and every

op
object C' of C, there is a bijection fc p - SetC (he, F)y— F(C). Moreover, this
bijection is natural in C' and F in the following sense: given g : C' — C in C

10

2. NATURAL TRANSFORMATIONS

/s coP 4
and p: F = F' in Set™ |, the diagram

fe,r

SetC” (he, F) F(C)

Setcop(g,p)l ter F(9)=F'(g)uc

Setcop(hcl7 F/) Y F/(C/)

fc',F’
commautes in Set.

Proof. For every object C’ of C, every element f of he(C") = C(C’,C) is equal
to idef which is he(f)(ide).

If K = (ker|C" € Cp) is a natural transformation: he = F then, ke (f)
must be equal to F(f)(kc(ide)). So & is completely determined by k¢ (ide) €
F(C) and conversely, any element of F/(C') determines a natural transformation
he = F.

: / : /s cr cr

Giveng:C' = CinCand pt: F = F'in Set™ | the map Set™ (g, p) sends
the natural transformation k = (ke |C” € Co) : he = F to A = (Acn|C” € Cy)
where Acw @ heo(C") — F'(C") is defined by

)\Cu(h 0 = C/) = ,UC”(K?C” (gh))

Now
form(A) = Acr(ider)
= pei(kei(g))
= po(F(g)(re(ide)))
= (pe F(g))(for(x))
which proves the naturality statement. [|

Corollary 2.3 The functor Y : C — Setcop is full and faithful
Proof. Immediate by the Yoneda lemma, since
C(C,C") 2 her(C) = SetC (he, hen)
and this bijection is induced by Y. [|
The use of the Yoneda lemma is often the following. One wants to prove that

objects A and B of C are isomorphic. Suppose one can show that for every
object X of C there is a bijection fx : C(X, A) — C(X, B) which is natural in

11

CATEGORIES

X; i.e. given g : X’ — X in C one has that

e(x, A~ e(x, B)
C(g,idA)l lC(g,idB)
(X', A4) f—>C(X’73)

commutes.

Then one can conclude that A and B are isomorphic in C; for, from what
op
one has just shown it follows that h4 and hp are isomorphic objects in Setc ;

that is, Y(A) and Y(B) are isomorphic. Since Y is full and faithful, A and B
are isomorphic by the following exercise:

Exercise 18. Check: if FF : C — D is full and faithful, and F(A) is iso-
morphic to F(B) in D, then A is isomorphic to B in C.

Exercise 19. Suppose objects A and B are such that for every object X
in C there is a bijection fx : C(A4, X) — C(B, X), naturally in a sense you define
yourself. Conclude that A and B are isomorphic (hint: duality + the previous).

This argument can be carried further. Suppose one wants to show that two

functors F,G : C — D are isomorphic as objects of DC. Let’s first spell out
what this means:

Exercise 20. Show that ' and G are isomorphic in DC if and only if there is
a natural transformation p : F' = G such that all components p¢ are isomor-
phisms (in particular, if p is such, the family ((pc)~1|C € Co) is also a natural
transformation G = F').

Now suppose one has for each C' € Cq and D € Dy a bijection
D(D,FC) = D(D,GC)

op
natural in D and C'. This means that the objects hpe and hge of SetD are
isomorphic, by isomorphisms which are natural in C. By full and faithfulness
of Y, FC and GC' are isomorphic in D by isomorphisms natural in C'; which

says exactly that 7" and GG are isomorphic as objects of DC.

2.2 Examples of natural transformations

a) Let M and N be two monoids, regarded as categories with one object as in
chapter 1. A functor F' : M — N is then just the same as a homomorphism

12

2. NATURAL TRANSFORMATIONS

b)

of monoids. Given two such, say F,G : M — N, a natural transformation
F = G is (given by) an element n of N such that nF'(z) = G(z)n for all
r € M,

Let P and @ two preorders, regarded as categories. A functor P — @
is a monotone function, and there exists a unique natural transformation
between two such, F' = G, exactly if F(z) < G(z) for all z € P.

Exercise 21. In fact, show that if D is a preorder and the category C is small,

1.e. the classes Cy and C; are sets, then the functor category DC s a preorder.

0

Q)

Let U : Grp — Set denote the forgetful functor, and F' : Set — Grp the
free functor (see chapter 1). There are natural transformations ¢ : FU =
idgrp and 7 :idge; = UF.

Given a group G, £ takes the string o = g1 ... ¢, to the product g1 -- - g
(here, the “formal inverses” ¢, ! are interpreted as the real inverses in Gh).

Given a set A, n4(a) is the singleton string a.

Let i : Abgp — Grp be the inclusion functor and r : Grp — Abgp the
abelianization functor defined in example m) in chapter 1. There is ¢ :
71 = idabgp and 7 : idgrp = ir.
The components 5 of 7 are the quotient maps G — G/[G, G]; the com-
ponents of £ are iIsomorphisms.

There are at least two ways to associate a category to a set X: let FI(X)
be the category with as objects the elements of X, and as only arrows
identities (a category of the form F(X) is called discrete; and G(X) the
category with the same objects but with exactly one arrow fp, 12 — y
for each pair (z,y) of elements of X (We might call G(X) an indiscrete
category).

Exercise 22. Check that F' and GG can be extended to functors: Set — Cat and
describe the natural transformation p : F = G which has, at each component,
the 1dentity function on objects.

f)

g)

Every class of arrows of a category C can be viewed as a natural transfor-
mation. Suppose S C Cy. Let F(S) be the discrete category on S as in
the preceding example. There are the two functors dom, cod : F(S) — C,
giving the domain and the codomain, respectively. For every f € S we
have f : dom(f) — cod(f), and the family (f|f € S) defines a natural

transformation: dom = cod.

Let A and B be sets. There are functors (=) x A : Set — Set and (=) x B :
Set — Set. Any function f : A — B gives a natural transformation

(=) x A= (—)xB.
13

CATEGORIES

h) A category C is called a groupoid if every arrow of C is an isomorphism.
Let C be a groupoid, and suppose we are given, for each object X of C, an
arrow px in C with domain X.

Exercise 23. Show that there is a functor F' : ¢ — C in this case, which
acts on objects by F(X) = cod(px), and that g = (ux|X € Co) is a natural
transformation: idp = F.

i) Given categories C, D and an object D of D, there is the constant functor

Ap : C — D which assigns D to every object of C and idp to every arrow
of C.

Every arrow f: D — D’ gives a natural transformation Ay : Ap = Apy
defined by (Af)e = f for each C € Cy.

i) TLet P(X) denote the power set of a set X: the set of subsets of X. The
powerset operation can be extended to a functor P : Set — Set. Given a
function f : X — 7V define P(f) by P(f)(A) = f[A], the imageof A C X
under f.

There is a natural transformation 7 : idge; = P such that nx(z) = {z} €
P(X) for each set X.

There is also a natural transformation p : PP = P. Given 4 € PP(X),
so A is a set of subsets of X, we take its union [J(A) which is a subset of
X. Put pux(A) = U(A).

2.3 Equivalence of categories; an example

As will become clear in the following chapters, equality between objects plays
only a minor role in category theory. The most important categorical notions
are only defined “up to isomorphism”. This is in accordance with mathematical
practice and with common sense: just renaming all elements of a group does
not give you really another group.

We have already seen one example of this: the property of being a terminal
object defines an object up to isomorphism. That is, any two terminal objects
are isomorphic. There is, in the language of categories, no way of distinguishing
between two 1somorphic objects, so this is as far as we can get.

However, once we also consider functor categories, it turns out that there is
another relation of “sameness” between categories, weaker than isomorphism of
categories, and yet preserving all “good” categorical properties. Isomorphism of
categories C and D requires the existence of functors F/: C — D and G : D —C
such that F'G = idp and G'F' = idp; but bearing in mind that we can’t really say
meaningful things about equality between objects, we may relax the requirement

by just asking that F'G is isomorphic to idp in the functor category pP (and
14

2. NATURAL TRANSFORMATIONS

the same for GF); doing this we arrive at the notion of equivalence of categories,
which is generally regarded as the proper notion of sameness.

So two categories C and D are equivalent if there are functors F' : C — D,
G : D — C and natural transformations p : idp = GF and v : idp = FG whose
components are all isomorphisms. F' and G are called pseudo inverses of each
other. A functor which has a pseudo inverse is also called an equivalence of
categories.

Exercise 24. Show that a category is equivalent to a discrete category if and
only if it is a groupoid and a preorder.

In this section I want to give an important example of an equivalence of cat-
egories: the so-called “Lindenbaum-Tarski duality between Set and Complete
Atomic Boolean Algebras”. A duality between categories C and D is an equiv-
alence between C°F and D (equivalently, between C and D).

We need some definitions. A lattice is a partially ordered set in which every
two elements 2,y have a least upper bound (or join) z V y and a greatest lower
bound (or meet) z A y; moreover, there exist a least element 0 and a greatest
element 1.

Such a lattice is called a Boolean algebra if every element z has a complement
-z, that is, satisfying zV—2 = 1 and z A—2z = 0; and the lattice is distributive,
which means that z A (yVz) = (2 Ay) V (z Az) for all z,y, 2.

In a Boolean algebra, complements are unique, for if both y and z are com-
plements of x, then

y=yAl=yA(zVz)=(yAz)V(yAz)=0V(yAz)=yAz
so y < z; similarly, z < y so y = z. This is a non-example:

1

x z
\ |
0
It is a lattice, and every element has a complement, but it 1s not distributive
(check!).

A Boolean algebra B is complete if every subset A of B has a least upper
bound \/ A and a greatest lower bound A A.

15

CATEGORIES

An atom in a Boolean algebra is an element z such that 0 < = but for no
y we have 0 < y < z. A Boolean algebra is atomic if every z is the join of the
atoms below it:
z = \/{a|a < z and a is an atom}

The category CABool is defined as follows: the objects are complete atomic
Boolean algebras, and the arrows are complete homomorphisms, that is: f :
B — (' 1s a complete homomorphism if for every A C B,

FO\/ 4) = \/{f(a)la € A} and (N A) = \{f(a)la € A}

Exercise 25. Show that 1 = A® and 0 = \/0. Conclude that a complete
homomorphism preserves 1, 0 and complements.

Exercise 26. Show that A A = = \/{—a|a € A} and conclude that if a function
preserves all \/’s, 1 and complements, it is a complete homomorphism.

Theorem 2.4 The category CABool is equivalent to Set°P.

Proof. For every set X, P(X) is a complete atomic Boolean algebra and if
f:Y — X is a function, then f=!:P(X) — P(Y) which takes, for each subset
of X, its inverse image under f, is a complete homomorphism. So this defines
a functor F : Set®® — CABool.

Conversely, given a complete atomic Boolean algebra B, let G(B) be the set
of atoms of B. Given a complete homomorphism ¢ : B — C' we have a function
G(g) : G(C) — G(B) defined by: G(g)(c) is the unique b € G(B) such that
¢ < g(b). This is well-defined: first, there is an atom b with ¢ < g(b) because
1p = VV G(B) (B is atomic), so 1¢ = ¢(1p) = \/{g(b)|b is an atom} and:

Exercise 27. Prove: if ¢ is an atom and ¢ < \/ A, then there is ¢ € A with
¢ < a (hint: prove for all a,b that a Ab = 0< a < —b, and prove for a, ¢ with ¢
atom: ¢ € a < a < —e).

Secondly, the atom b is unique since ¢ < g(b) and ¢ < g(b’) means ¢ <
g(b) Ag(b') = g(b A b") = g(0) = 0.

So we have a functor G : CABool — Set°P.

Now the atoms of the Boolean algebra P(X) are exactly the singleton sub-
sets of X, so GF(X) = {{z}|z € X} which is clearly isomorphic to X. On the
other hand, FG(B) = P({b € B|b is an atom}). There is a map from FG(B)
to B which sends each set of atoms to its least upper bound in B, and this map
is an isomorphism in CABool. [|

Exercise 28. Prove the last statement: that the map from FG(B) to B,
defined in the last paragraph of the proof, is an isomorphism.

16

3. (Co)CONES AND (CO)LIMITS

3 (Co)cones and (co)limits

3.1 Limits

Given a functor F' : C — D, a cone for F' consists of an object D of D together
with a natural transformation g : Ap = F (Ap is the constant functor with
value D). In other words, we have a family (o : D — F(C)|C € Cy), and the
naturality requirement in this case means that for every arrow f : C'— C’ in C,

D

N

P(C) ———> F(C)

commutes in D (this diagram explains, T hope, the name “cone”). Let us denote
the cone by (D, p). D is called the vertezx of the cone.

A map of cones (D, p) — (D', ') is amap g : D — D’ such that pg = pe
for all C' € Cy.

Clearly, there is a category Cone(F) which has as objects the cones for F'
and as morphisms maps of cones.

A limiting cone for I is a terminal object in Cone(F'). Since terminal objects
are unique up to isomorphism, as we have seen, any two limiting cones are
isomorphic in Cone(F') and in particular, their vertices are isomorphic in D.

A functor F : C — D is also called a diagram in D of type C, and C is the
index category of the diagram.

Let us see what it means to be a limiting cone, in some simple, important
cases.

i) A limiting cone for the unique functor ! : 0 — D (0 is the empty category)
“is” a terminal object in D. For every object D of D determines, together
with the empty family, a cone for !, and a map of cones is just an arrow
in D. So Cone(!) is isomorphic to D.

il) TLet 2 be the discrete category with two objects z,y. A functor 2 — D is
just a pair (A, B) of objects of D, and a cone for this functor consists of
HA
C——A

an object C of D and two maps \ since there are no nontrivial
B

B

arrows In 2.

(C, (pta, #p)) is a limiting cone for (A, B) iff the following holds: for any
object D and arrows f : D — A, g : D — B, there is a unique arrow

17

CATEGORIES

iii)

h: D — C such that

C
1
h//HAl
7/
D—— A HB
\

commutes. In other words, there is, for any D, a 1-1 correspondence

D
between maps D — (' and pairs of maps / \ This is
A B

the property of a product; a limiting cone for (A, B) is therefore called a
product cone, and usually denoted:

Ax B
7N
A B
The arrows 74 and wg are called projections.
A~ a A~
Let 2 denote the category = —bi Y . A functor 2 — D is the same thing

. ! . . .
as a parallel pair of arrows 4 ——= B in D; T write (f, g) for this functor.
g

D

f
A———=RB

g

But up = fua = gpa is already defined from p 4, so giving a cone is the
same as giving a map pa : D — A such that fua = gua. Such a cone is
limiting iff for any other map h : C' — A with fh = gh, there is a unique
k:C' — D such that h = pak.

We call pi 4, if it is limiting, an equalizer of the pair f, ¢, and the diagram

A cone for (f, g) is:

a f .
D —— A ——= B an equalizer diagram.
g

In Sets, an equalizer of f, g is isomorphic (as a cone) to the inclusion
of {a € A|f(a) = g(a)} into A. In categorical interpretations of logical

18

3. (Co)CONES AND (CO)LIMITS

systems (see chapters 4 and 7), equalizers are used to interpret equality
between terms.

Exercise 29. Show that every equalizer is a monomorphism.

Exercise 30. If p—°s Yy —=17Vv is an equalizer diagram, show that e
g
is an isomorphism if and only if f = g.

Exercise 31. Show that in Set, every monomorphism fits into an equalizer
diagram.

Y
iv) Let J denote the category lb A functor F : J — D is specified
r——z
by giving two arrows in D with the same codomain, say f : X — Z|
g :Y — Z. A limit for such a functor is given by an object W together

Py
W——Y
with projections pxl satisfying fpx = g¢gpy, and such that,
X

LA, V4

given any other pair of arrows: s with gr = fs, there 1s a

<=

S

unique arrow V' — W such that

v

commutes.

The diagram

CATEGORIES

is called a pullback diagram. In Set, the pullback cone for f, ¢ is isomorphic
to

{(z,y) € X xY|[f(2) = g(y)}

with the obvious projections.

We say that a category D has binary products (equalizers, pullbacks) iff every
functor 2 — D (2 — D, J — D, respectively) has a limiting cone. Some
dependencies hold in this context:

Proposition 3.1 If a category D has a terminal object and pullbacks, it has
binary products and equalizers.
If D has binary products and equalizers, it has pullbacks.

o2 x
Proof. Let 1 be the terminal object in D; given objects X and Y, if pyl l
Y ——1
-2 x
is a pullback diagram, then pyl is a product cone.
Y
Ax B2 4 x—1s4
Given a product cone wBl and maps gl we write
B B

X Oﬁ) A x B for the unique factorization through the product. Write also
§:Y =Y xV for (idy,idy).
Now given f,g: X — Y if

FE——=X

[o

Y— Y xY

is a pullback diagram, then f —%s Y ——= Vv 1is an equalizer diagram. This
g

proves the first statement.

X
. fr
As for the second: given lf let p—SsXxV —X? 7 be an
9Ty
Y — VA

20

3. (Co)CONES AND (CO)LIMITS

equalizer; then

is a pullback diagram. [|

Exercise 32. Let

b
R ——

Sy

—_—
[y

A
X
a pullback diagram with f mono. Show that a is also mono. Also, if f is iso
(an isomorphism), so is a.

B ——
g

~

Exercise 33. Given:

A—t>pB—>C
R
X—g>Y—h>Z

a) if both squares are pullback squares, then so is the composite square

A—Ls 0

o
Xh—g>Z

b) Tf the right hand square and the composite square are pullbacks, then so
is the left hand square.

Exercise 34. f: A — B is a monomorphism if and only if
ida A

!

EL.
N

—5 B
is a pullback diagram.

21

CATEGORIES

A monomorphism f : A — B which fits into an equalizer diagram

f

g
A—=B—=C(C

is called a reqular mono.

Exercise 35. If

A——>X
BT>Y

is a pullback and g is regular mono, so is b.

Exercise 36. If f is regular mono and epi, f is iso. Every split mono is regular.
Exercise 37. Give an example of a category in which not every mono is regular.
Exercise 38. In Grp, every mono is regular [This is not so easy].

Exercise 39. In Pos, every mono is regular.

Exercise 40. If a category D has binary products and a terminal object,
it has all finite products, i.e. limiting cones for every functor into D from a finite

discrete category.

Exercise 41. Suppose C has binary products and suppose for every ordered

AxB-—"">4
pair (A4, B) of objects of C a product cone wBl has been chosen.
B

a) Show that there is a functor: C x C = c (the product functor) which
sends each pair (A, B) of objects to A x B and each pair of arrows (f :
A— A g:B—=B)tofxg={fra,g7p).

b) From a), there are functors:

(=x=)x—
CxCx———=¢

—x(=x-)

22

3. (Co)CONES AND (CO)LIMITS

(Ax B)yxC
Ax(BxC(C)
formation a = (a4 B c|A, B,C € Cp) from (— x =) x — to — X (— x —)
such that for any four objects A, B,C', D of C:

Show that there is a natural trans-

sending (A, B,C) to

a4AxB,C,D

(Ax B)yxC)x D

(Ax B)x (C x D)
GA,B,cXile laA,B,CXD

(Ax(BxC))xD Ax (B x (C x D))

aA BxC,D { A XaB,c,D

Ax((BxC)x D)

commutes (This diagram is called “MacLane’s pentagon”).

A functor F' : C — D 1s said to preserve limits of type & if for all functors M :
E — C,if (D, p) is alimiting cone for M in C, then (F D, Fu= (F(ug)|E € &))
is a limiting cone for F'M in D.
So, a functor F': C — D preserves binary products if for every product dia-
T F(m
Ax B> p F(Ax B) 2% p(py

gram Ml its F-image F(M)l is again a product

A F(A)
diagram. Similarly for equalizers and pullbacks.

Some more terminology: F is said to preserve all finite limits if it preserves
limits of type & for every finite £. A category which has all finite limits is called
lex (left exact), cartesian or finitely complete.

A category is called complete if it has limits of type & for all small £.

In general, limits over large (i.e. not small) diagrams do not exist. For ex-
ample in Set, there is a limiting cone for the identity functor Set — Set (its
vertex is the empty set), but not for the inclusion functor of the subcategory of
all nonempty sets into Set.

Exercise 42. If a category C has equalizers, it has all finite equalizers: for
every category &£ of the form

every functor £ — C has a limiting cone.

23

CATEGORIES

Exercise 43. Suppose F' : C — D preserves equalizers (and C has equaliz-
ers) and reflects isomorphisms. Then F is faithful.

Exercise 44. Let C be a category with finite limits. Show that for every
object C' of C, the slice category C/C (example j) of 1.1) has binary products:
the vertex of a product diagram for two objects D — C', D/ — C'is D" — ('

where
D' ——D

L

D —C

is a pullback square in C.

3.2 Limits by products and equalizers

In Set, every small diagram has a limit; given a functor F' : £ — Set with £
small, there is a limiting cone for F' in Set with vertex

{(zr)pes. € [[F(EWEL B € &4(F(f)(zp) = 2p)}

So in Set, limits are equationally defined subsets of suitable products. This
holds in any category:

Proposition 3.2 Suppose C has all small products (including the empty prod-
uct, i.e. a terminal object 1) and equalizers; then C has all small limits.

Proof. Given a set I and an I-indexed family of objects (A;|i € T) of C, we
denote the product by Hie] A; and projections by w; : Hie] A; — A;; an arrow
f: X — Hie] A; which is determined by the compositions f; = m; f : X — A;,
is also denoted (f;|i € T).

Now given & — C with & and &; sets, we construct

. . (Wcod(u)luegl)
E——Ilics, F(0) [Luce, Flecod(u))
(F(u)?rdom(u)|u681)

in C as an equalizer diagram. The family (u; = me : E — F(i)|i € &) is a
natural transformation Ag = F because, given an arrow u € &1, say u : i — j,

we have that
E
i) ——————>
(@) T

F(3)

24

3. (Co)CONES AND (CO)LIMITS

commutes since F(u)mie = F(U)Taom(u)e = Teod(u)€ = Tjeé.
So (F,p) is a cone for F', but every other cone (D,v) for F' gives a map
d: D — [];ee, F(7) equalizing the two horizontal arrows; so factors uniquely

through E. [|

Exercise 45. Check that “small” in the statement of the proposition, can
be replaced by “finite”: if C has all finite products and equalizers, C is finitely
complete.

3.3 Colimits

The dual notion of limit is colimit. Given a functor F': £ — C there is clearly a
functor F°P : £°P — C°P which does “the same” as F'. We say that a colimiting
cocone for F'is a limiting cone for F°P.

So: a cocone for F' : £ — C is a pair (v, D) where v : F = Ap and a
colimiting cocone is an initial object in the category Cocone(F).

Examples
i) a colimiting cocone for ! : 0 — C “is” an initial object of C

il) a colimiting cocone for (A, B) : 2 — C is a coproduct of A and B in C:
usually denoted A + B or A U B; there are coprojections or coproduct

inclusions
x

B—— AUB

VB

A

with the property that, given any pair of arrows A EN C, B C thereisa
unique map [g] : AUB — C'such that f = [g]I/Aandgz [5 :|I/B

o 7 N .
iii) a colimiting cocone for 4 ——= B (as functor 2 — () is given by a map
g

B 5 C satisfying ¢f = cg, and such that for any B 2 D with hf = hg

there 1s a unique C 2. D with h = I'e. ¢ is called a coequalizer for f and
g; the diagram A —= B —— (' a coequalizer diagram.

Exercise 46. Is the terminology “coproduct inclusions” correct? That is, it
suggests they are monos. Is this always the case?

In Set, the coproduct of X and YV is the disjoint union ({0} x X)U ({1} x V)
25

CATEGORIES

f
of X and Y. The coequalizer of X ——= 7V is the quotient map Y — Y/ ~
g

where ~ 1s the equivalence relation generated by
;. . . _ oy
y ~y iff there is x € X with f(2) =y and g(z) =y

The dual notion of pullback is pushout. A pushout diagram is a colimiting
r——-Y

cocone for a functor I' — C where T is the category l . Such a diagram
. z
is a square

X AN Y

gl l

7z P

—_—
b
Y

o
which commutes and such that, given \ with af = B¢, there is a

Z—>.[j Q

unique P 2 Q with @ = pa and § = pb. In Set, the pushout of X Ly and
X 2 7 is the coproduct Y U Z where the two images of X are identified:

Y

X
/ \ __________
- x |7

7z

Exercise 47. Give yourself, in terms of X ER Yand X L 7 , a formal definition
of a relation R on Y U Z such that the pushout of f and g is YU Z/ ~, ~ being
the equivalence relation generated by R.

One can now dualize every result and exercise from the section on limits:

26

3. (Co)CONES AND (CO)LIMITS

Exercise 48. f is epi if and only if

is a pushout diagram.

Exercise 49. Every coequalizer is an epimorphism; if e is a coequalizer of
fand g, then eisisoiff f = ¢

Exercise 50. If C has an initial object and pushouts, C has binary coproducts

and coequalizers; if C has binary coproducts and coequalizers, C has pushouts.

Exercise 51. If al lf is a pushout diagram, then a epi implies f epi,
and a regular epi (i.e. a coequalizer) implies f regular epi.

Exercise 52. The composition of two puhout squares is a pushout; if both
the first square and the composition are pushouts, the second square is.

Exercise 53. If C has all small (finite) coproducts and coequalizers, C has
all small (finite) colimits.

Exercise 54. In Pos, X Lyisa regular epi if and only if for all y, ¢/ in

Y:
y<y e3eefH(yRefl@)e<

Show by an example that not every epi is regular in Pos.

Exercise 55. In Grp, every epi is regular.

27

CATEGORIES

4. A LITTLE PIECE OF CATEGORICAL LOGIC

4 A little piece of categorical logic

One of the major achievements of category theory in mathematical logic and
in computer science, has been a unified treatment of semantics for all kinds of
logical systems and term calculi which are the basis for programming languages.

One can say that mathematical logic, seen as the study of classical first
order logic, first started to be a real subject with the discovery, by Godel,
of the completeness theorem for set-theoretic interpretations: a sentence ¢ is
provable if and only if ¢ is true in all possible interpretations. This unites the
two approaches to logic: proof theory and model theory, makes logic accessible
for mathematical methods and enables one to give nice and elegant proofs of
proof theoretical properties by model theory (for example, the Beth and Craig
definability and interpolation theorems).

However the completeness theorem needs generalization once one considers
logics, such as intuitionistic logic (which does not admit the principle of excluded
middle), minimal logic (which has no negation) or modal logic (where the logic
has an extra operator, expressing “necessarily true”), for which the set-theoretic
interpretation is not complete. One therefore comes with a general definition of
“interpretation” in a category C of a logical system, which generalizes Tarski’s
truth definition: this will then be the special case of classical logic and the
category Set.

In this chapter I treat, for reasons of space, only a fragment of first order
logic: coherent logic. On this fragment the valid statements of classical and
intuitionistic logic coincide.

For an interpretation of a term calculus like the A-calculus, which is of
paramount importance in theoretical computer science, the reader is referred
to chapter 7.

4.1 Regular categories and subobjects

Definition 4.1 A category C is called vregular if the following conditions hold:
a) C has all finite limits;

b) For every arrow f, if

is a pullback (then Z % X s called the kernel pair of f), the coequal-
P1

1zeT of po, p1 exists;

29

CATEGORIES

¢) Regular epimorphisms (coequalizers) are stable under pullback, that is: in

a pullback square
|l

—_—

if f 1s reqular epi, so is a.

Exercise 56. Set is regular. Prove that Pos is regular. Show that Top is not
regular [the case of Top may cause you some trouble; don’t worry].

Proposition 4.2 In a reqular category, every arrow f : X — Y can be factored
as f = me : X = E Y where e is regular epi and m is mono; and this

i i
factorization is unique in the sense that if f is also m’e’ : X — B’ — Y withm/
mono and €' reqular epi, there is an isomorphism o : E — E' such that ce = ¢’
and m'oc = m.

Proof. Given f : X — Y we let X = F be the coequalizer of the kernel pair
Po

7 —= X of f. Since fpg = fp there is a unique m : F — Y such that
P

f = me. By construction e is regular epi; we must show that m is mono, and
the uniqueness of the factorization.
Suppose mg = mh for g, h : W — FE; we prove that ¢ = h. Let

v W

(40741)l l(gnh)

XXXWEXE

be a pullback square. Then
Jqo = meqo = mga = mha = meq1 = fq

so there is a unique arrow V' L. 7 such that {g0,91) = (o, p1)b:V — X x X
(because of the kernel pair property). Tt follows that

ga = eqo = epob =eprb=eq1 = ha

I claim that a 1s epi, so 1t follows that ¢ = h. Tt is here that we use the
requirement that regular epis are stable under pullback. Now e x e : X x X —
FE x F is the composite

eXidx

Xx XX poxexp g
30

4. A LITTLE PIECE OF CATEGORICAL LOGIC

and both maps are regular epis since both squares

exid id e
Xx XX pux ExX X ExE
ng l’ﬂg and Wll lﬂ'l
X———>F X——>F

are pullbacks. The map a, being the pullback of a composite of regular epis, is
then itself the composite of regular epis (check this!), so in particular epi.

This proves that m is mono, and we have our factorization.

As to uniqueness, suppose we had another factorization f = m’e’ with m’
mono and €’ regular epi. Then m’e’pg = fpo = fp1 = m’e’p1 so since m’ mono,
e'po = €'p1. Because e is the coequalizer of pg and pp, there is a unique o:

€
—_—

\lg Then m/oce = m’e’ = f = me so since e epi, m = m'o.
i
€

k 7
. . e . .
Now e’ : X — E’ is a coequalizer; say] —= X —— F’ Is a coequalizer
1

diagram. Then it follows that ek = el (since mek = m’e’k = m’e’l = mel and

€
—_—

m mono) SO there iS a unlque T \TT Then mrToe = mT@l = me; Since m
1
€

mono and e epi, 7o = idg. Similarly, o7 = idg:. So ¢ is the required isomor-
phism. [|

Exercise 57. Check this detail: in a regular category C, if l l s a

b
pullback diagram and b = ¢j¢5 with ¢; and ¢o regular epis, then @ = ajay for
some regular epis aq, as.

Subobjects. In any category C we define a subobject of an object X to be
an equivalence class of monomorphisms Y = X, where Y = X is equivalent to
1 m’
follws). We say that YV 2 X represents a smaller subobject than Y’ m X if
there is ¢ : Y — Y’ with m’c = m (o not necessarily iso; but check that o is
always mono).

The notion of subobject is the categorical version of the notion of subset in
set theory. In Set, two injective functions represent the same subobject iff their
images are the same; one can therefore identify subobjects with subsets. Note

Y’ 2 X if there is an isomorphism o : Y — Y’ with m/c = m (then ma~

31

CATEGORIES

however, that in Set we have a “canonical” choice of representative for each
subobject: the inclusion of the subset to which the subobject corresponds. This
choice is not always available in general categories.

We have a partial order Sub(X) of subobjects of X, ordered by the smaller-
than relation.

Proposition 4.3 In a category C with finite limits, each pair of elements of
Sub(X) has a greatest lower bound. Moreover, Sub(X) has a largest element.

Z —=Y

Proof. If Y = X and Y’ . X represent two subobjects of X and l lm
Y —= X
is a pullback, then Z — X is mono, and represents the greatest lowen; bound
(check!).
Of course, the identity X dx x represents the top element of Sub(X). [|

Because the factorization of X 2>V as X 5 E =V with e regular ep1 and
m mono, in a regular category C, is only defined up to isomorphism, it defines
rather a subobject of Y than a mono into Y'; this defined subobject is called the
image of f and denoted Tm(f) (compare with the situation in Set).

Exercise 58. Tm(f) is the smallest subobject of ¥ through which f factors:
for a subobject represented by n : A — Y we have that there is X = A with
f = na, if and only if Tm(f) is smaller than the subobject represented by n.

Since monos and 1sos are stable under pullback, in any category C with pull-
backs, any arrow f : X — V determines an order preserving map f* : Sub(Y) —
Sub(X) by pullback along f: if E Y represents the subobject M of Y and
F——F
”l lm is a pullback, ' =% X represents f*(M).
X T> Y
Exercise 59. Check that f* is well defined and order preserving.

Proposition 4.4 In a regular category, each f* preserves greatest lower bounds
and images, that is: for f : X — Y,

i) for subobjects M, N of YV, f*(M AN) = f*(M)A f*(N);

—_—

i) if gll lg is a pullback, then f*(Im(g)) = Im(g").

32

4. A LITTLE PIECE OF CATEGORICAL LOGIC

Exercise 60. Prove proposition 4.4.

4.2 Coherent logic in regular categories

The fragment of first order logic we are going to interpret in regular categories
is the so-called coherent fragment.

The logical symbols are = (equality), A (conjunction) and 3 (existential
quantification). A language consists of a set of sorts S,T,...; a denumerable
collection of wvariables xf,xg, ... of sort S, for each sort; and a collection of
function symbols (f : S1,...,S, — S). The case n = 0 is not excluded (one
thinks of constants of a sort), but not separately treated. We now define,
inductively, terms of sort S and formulas.

Definition 4.5 Terms of sort S are defined by:
i) x° is a term of sort S if x° is a variable of sort S;
i) ifty, ..., 4, are terms of sorts Sy, ..., S, respectively, and
(f:51,...5, —9)

is a function symbol of the language, then f(ti,...,t,) is a term of sort

S.
Formulas are defined by:
i) T isa formula (the formula “true”);
ii) ift and s are terms of the same sort, then t = s is a formula;
iii) if ¢ and ¥ are formulas then (¢ Av) is a formula;
i) if ¢ is a formula and x a variable of some sort, then Iz is a formula.

An interpretation of such a language in a regular category C starts by choos-
ing for each sort S an object [S] of C, and for each function symbol (f :
S1,...,Sn — S) of the language, an arrow [f]: [Si] x -~ x [Sn] — [S] in
C.

Given this, we define interpretations [¢] for terms ¢ and [¢] for formulas
@, as follows.

Write F'V(t) for the set of variables which occur in ¢, and FV () for the set
of free variables in ¢.

We put [FV()]=[S1]x - x [Sa]if FV(t) = {«}*,...,25"}; the same
for [FV(¢)]. Note: in the products [FV(¢)] and [FV(¢)] we take a copy
of [S] for every variable of sort S! Let me further emphasize that the empty
product is 1, so if FV(t) (or FV(¢))is 0, [FV(t)] (or [FV(¢)]) is the terminal
object of the category.

33

CATEGORIES

Definition 4.6 The interpretation of a term ¢ of sort S is a morphism [1] :
[TFV(#)] — [S] and is defined by the clauses:

i) [z°] is the identity on [S], if *° is a variable of sort S;

ii) Given [t;] : [FV(t;)] — [Si] for i = 1,...,n and a function symbol
(f:S51,...,8, — S) of the language, [f(t1,...,t,)] is the map

(fili=1,...,n)
—

[/]

[FV(f(t,--ita))] [T [S:] —=1[5]

where 1; is the composite

[FV(f(tr, .)] — [FV(t:)] 2 [Si]

i which w; 1s the appropriate projection, corresponding to the inclusion

FV(1:) C FV(f(th, ... t)).

Finally, we interpret formulas ¢ as subobjects [¢] of [FV(¢)]. You should try
to keep in mind the intuition that [(21, ..., 2,)] is the “subset”

{(a1,...,an) € Ay x -~ x Aplofar, ..., an]}

Definition 4.7 The interpretation [¢] as subobject of [FV ()] is defined as
follows:

1) [T] is the mazimal subobject of [FV(T)] = 1;
i) [t=s]—1FV({t=s)] is the equalizer of

L [Fv]

[FV(t:S)]]_) [FV(S)]] W[T]]

if t and s are of sort T'; again, the left hand side maps are projections,
corresponding to the inclusions of FV () and FV(s) into FV(t = s);
wi) ifle]l—=1FV(e)] and [¢] —[FV(¥)] are given and

[FV(¢A1M<FV(¢)]]
[Fv(¥)]

are again the suitable projections, then [(p A)] — [FV(e AY)] is the
greatest lower bound in Sub([FV(e A¥)]) of mi([¢]) and m5([¢]);

34

4. A LITTLE PIECE OF CATEGORICAL LOGIC

w) if[e]l = [FV(e)] is given and © : [FV(@)] = [FV(3zp)] the projec-
tion, let [FV'(p)] be the product of the interpretations of the sorts of the
variables in FV(p)U{x} (so [FV'(e)1 =[FV(p)] if # occurs freely in
o; and [FV' ()] = [FV(e)] x [S] if £ = ° does not occur free in ¢).
Write @ - [FV' ()] = [FV(e)]

Now take [z] — [FV(3xp)] to be the image of the composition:

@y ([e]) = [FV(9)] ™= [FV(3ze)]

We have now given an interpretation of formulas. Basically, a formula ¢ is
true under this interpretation if [¢] — [FV(g)] is the maximal subobject;
but since we formulate the logic in terms of sequents we rather define when a
sequent is true under the interpretation.

Definition 4.8 A labelled sequent is an expression of the form ¥ b, ¢ orb, ¢
where v and ¢ are the formulas of the sequent (but ¢ may be absent), and o
1s a finite set of variables which includes all the variables which occur free in a
formula of the sequent.

Let [o] = [Si1] % ---x [Sa] if 0 = {27*,... 25"}, there are projections
[c] % [FV(e)] and (in case ¢ is there) [o] i [FV(¥)]; we say that the
sequent ¥ b, @ is true for the interpretation if (7y)*([¢]) < (7u)*([¢]) as
subobjects of [o], and &, ¢ is true if (7,)*([¢]) is the mazimal subobject of

[o]-

Exercise 61. Show that the sequent EIxS(xS = l‘S) is true if and only if the
unique map [S] — 1 is a regular epimorphism.

We now turn to the logic. Instead of giving deduction rules and axioms, I
formulate a list of closure conditions which determine what sets of labelled se-
quents will be called a theory. T write k-, for Fy,; and F for Fy.

Definition 4.9 Given a language, a set T' of labelled sequents of that language
is called a theory iff the following conditions hold (the use of brackets around
caters i a, I hope, self-explanatory way for the case distiction as to whether
s or is not present):

i) FTisinT,
Fox =2 isinT for every variable x;
r=yANy=ztpy .y x=2z1sinT for variables x,y,z of the same sort;
i) if (W), @ isin T then (Y) by ¢ is in T whenever o C 7;
wi) if (Y) by pisin T and FV(x) C o then (YA)x o ¢ and x(AY) Fo ¢ are
m T,

35

CATEGORIES

w) if (V) Fs @ and (¥) b, x are in T then (¥) Fo o Ax and (V) Fo X A

are i T';
v) ifth b, @isinT and x is a variable not occurring in ¢ then 3z Fo\ (o) @
s T
vi) if & occurs in ¢ and (V) b, @[t/z] isin T then (V) b, Jxp is in T,
if © does not occur in ¢ and (¥) b, ¢ and (¥) b, Jx(z =) are in T,
then (¢¥) by Jxp isin T
vii) if (V) by is in T then (Y[t/x]) Fo\(oyurv) @lt/x] is in T;
viii) if (V) Fo @[t/x] and (¥)Fot = s are in T then (¥) b, ¢[s/x] is in T,
w) if (W), o and ot x are in T then (V) b, x tsin T

Exercise 62. Show that the sequent ¢ Fpy () ¢ is in every theory, for every
formula ¢ of the language.

As said, the definition of a theory is a list of closure conditions: every item
can be seen as a rule, and a theory is a set of sequents closed under every rule.
Therefore, the intersection of any collection of theories is again a theory, and it
makes sense to speak, given a set of sequents .S, of the theory Cn(S) generated
by S:

Cn(S) = ﬂ{T|T is a theory and S C T'}
We have the following theorem:

Theorem 4.10 (Soundness theorem) Suppose T'= Cn(S) and all sequents
of S are true under the interpretation in the category C. Then all sequents of T
are true under that interpretation.

Before embarking on the proof, first a lemma:
Lemma 4.11 Suppose t is substitutable for x in @. There 1s an obvious map
[t TFV(e) \{z} U FV ()] = [FV(elt/z)] = [FV(e)]

induced by [t]; the components of [t] are projections except for the factor of
[¢] corresponding to x, where it is

[FV(elt/e)]— [PV] Y [{e}]
There 1s a pullback diagram:

[elt/2]] —=1FV(elt/])]

T

[¢] [FV(e)]

36

4. A LITTLE PIECE OF CATEGORICAL LOGIC

Exercise 63. Prove this lemma [not trivial. Use induction on ¢ and proposi-
tion 4.4].

Proof. (of theorem 4.10) The proof checks that for every rule in the list of
definition 4.9, if the premiss is true then the conclusion is true; in other words,
that the set of true sequents is a theory.

i) F T is true by the definition [T] = 1;

[z° = %] is the equalizer of two maps which are both the identity on [S],
so isomorphic to [S]. For # = y Ay = 2z by & = z, just observe
that Fia A Fag < Fi3 if Fj; is the equalizer of the two projections m;, m; :
[STx[STx[ST—T1S51-

ii) This is because if o C 7 and p : [7] — [o] is the projection, p* is monotone.
iii)-iv) By the interpretation of A as the greatest lower bound of two subobjects,
and proposition 4.4.

v) Let

P

[o] ———1To\{x}]

[FV)] [FVEe)]

the projections. Since by assumption p*([¥]) < (pm)*([¢]) there is a commu-
tative diagram

[FV(e)]

u*(l[f]])—ﬂlflf]]
pr(le]) —=T[o\ {=}]

By proposition 4.4, v*([3z¢]) is the image of the map p*([v]) — [o\ {z}],
so v ([4]) < p([¢]) in Sub([o \ {}]).

vi) Suppose z occurs free in . Consider the commutative diagram

[o]

7
™

[Fve)] [FV(elt/al)] —2= [FV(9)] —2= [FV(9) \ {}]

with [{] as in lemma4.11 and the other maps projections. Now [¢] < p*([Jze])

because [¢] — [FV ()] = [FV(e) \ {x}] factors through [3z¢] by defini-
tion; so if 7*([¢]) < #™*([¢[t/2]]) then with lemma 4.11,

o ([eD < a"([elt/=1]) = =" [([D < 7" [p" ([F2e]) = 7" ([F2¢])
in Sub([o]) and we are done.

37

CATEGORIES

The case of x not occurring in ¢ is left to you.
vii) Direct application of lemma 4.11
viii-ix) Left to you. [|

Exercise 64. Fill in the “left to you” gaps in the proof.

4.3 The language £(C) and theory 7'(C) associated to a
regular category C

Given a regular category C (which, to be precise, must be assumed to be small),

we associate to C the language which has a sort C' for every object of C, and a

function symbol (f : C'— D) for every arrow f: C — D of C.

This language is called £(C) and it has trivially an interpretation in C.

The theory T(C) is the set of sequents of £(C) which are true for this inter-
pretation.

One of the points of categorical logic is now, that categorical statements
about objects and arrows in C can be reformulated as statements about the
truth of certain sequents in £(C). You should read the relevant sequents as
expressing that we can “do as if the category were Set”.

Examples

a) C'is a terminal object of C if and only if the sequents F,, z = y and
F Jz(x =) are valid, where z,y variables of sort '

b) the arrow f : A — B is mono in C if and only if the sequent f(z) =
fy) Foy =y is true;

¢) The square

is a pullback square in C if and only if the sequents
h(z?) = d(y") oy I4(f(2) = 2 A g(2) = y)

and
f(ZA) = f(Z/A) /\g(zA) = g(Z/A) I_z,z’ z = z/
are true;

38

4. A LITTLE PIECE OF CATEGORICAL LOGIC

d) the fact that f : A — B is epi can not similarly be expressed! But: f is
regular epi if and only if

bos 3 (f(y) = o)

is true;
g
e) A EENS B ——= (C is an equalizer diagram iff f is mono (see b) and the
h
sequent
9(x7) = h(zP) Fom Iyt (fly) = 2)
is true.

Exercise 65. Check (a number of) these statements. Give the sequent(s) cor-

4—1.p

responding to the statement that gl is a product diagram.

C

Exercise 66. Check that the formulas Jz¢ and Jz(z = = A ¢) are equiva-
lent, that is, every theory contains the sequents

Jzp b, Jx(z =2 A o)

and
Je(z =2 Ap) b, Jzp

for any o containing the free variables of Jz¢.

Exercise 67. Can you express: A L Bis regular mono?

4.4 Example of a regular category

In this section, I treat an example of a type of regular categories which are
important in categorical logic. They are categories of 2-valued sets for some
frame Q. Let’s define some things.

Definition 4.12 A frame Q is a partially ordered set which has suprema (least
upper bounds) \/ B of all subsets B, and infima (meets) \ A for finite subsets A
(so, there is a top element T and every pair of elements x,y has a meet x Ny),
and moreover, A\ distributes over \/, that is,

A\ B=\/{zAblbe B}
forx e Q, BCQ.

39

CATEGORIES

Given a frame Q we define the category Cq as follows:
Objects are functions X Bx Q, X a set;

Maps from (X, Fx) to (Y, Ey) are functions X Ly satisfying the requirement
that Fx(z) < Ey(f(2)) for all z € X.

It is easily seen that the identity function satisfies this requirement, and if two
composable functions satisfy it, their composition does; so we have a category.

Proposition 4.13 Cq is a regular category.

Proof. Let {x} be any one-element set, together with the function which sends
* to the top element of Q. Then {x} — € is a terminal object of Cq.

Given (X, Fx) and (Y, Fy), a product of the two is the object (X XY, Ex xv)
where Exxy(z,y) is defined as EFx(z) A Ey(y).

Given two arrows f, g : (X, Fx) — (Y, Ey) their equalizer is (X', F'x) where
X' C X is{z € X|f(x) = g(x)} and Ex/ is the restriction of Ex to X’.

This is easily checked, and Cg, is a finitely complete category.

An arrow f: (X, EFx) — (Y, Ey) is regular epi if and only if the function f
is surjective and for all y € Y, Ey(y) =\ f~1(y).

For suppose f is such, and g : (X, Fx) — (7, Ez) coequalizes the kernel
pair of f. Then g(z) = g(z') whenever f(z) = f(2’), and so for all y € V', since
f(z) = y implies Ex(z) < Fz(g(x)), we have

By(y) = \{Ex(@)|f(x) = y} < Ez(g(x))

so there is a unique map h : (Y, Ey) — (7, Ez) such that ¢ = hf; that is f is
the coequalizer of its kernel pair.

The proof of the converse is left to you.

Finally we must show that regular epis are stable under pullback. This is

an exercise. [|
X

Exercise 68. Show that the pullback of lf (T suppress reference
Y T> Z

to the Ex etc.) is (up to isomorphism) the set {(z,y)|f(z) = g¢(y)}, with
E(z,y) = Ex(2) A Ey(y); and then, use the distributivity of Q to show that
regular epis are stable under pullback.

Exercise 69. Fill in the other gap in the proof: if f : (X, Ex) — (Y, Ey)
is a regular epi, then f satisfies the condition given in the proof.

Exercise 70. Given (X, Fx) ER (Y, Ey), give the interpretation of the for-
mula Jz(f(x) = y), as subobject of (Y, Ey).

40

4. A LITTLE PIECE OF CATEGORICAL LOGIC

Exercise T1. Characterize those objects (X, Ex) for which the unique map
to the terminal object is a regular epimorphism.

Exercise 72. Give a categorical proof of the statement: if f is the coequalizer
of something, it is the coequalizer of its kernel pair.

Exercise 73. Characterize the regular monos in Cgq.

41

CATEGORIES

5. ADJUNCTIONS

5 Adjunctions

The following kind of problem occurs quite regularly: suppose we have a functor
CE D and for a given object D of D, we look for an object G(C') which “best
approximates” D, in the sense that there is a map D N G(C) with the property
that any other map D - G(C") factors uniquely as G(f)n for f: C' — C”" in C.

We have seen, that if G is the inclusion of Abgp into Grp, the abelianization
of a group is an example. Another example is the Cech-Stone compactification
in topology: for an arbitrary topological space X one constructs a compact
space X out of it, and a map X — (X, such that any continuous map from
X to a compact space factors uniquely through this map.

Of course, what we described here is a sort of “right-sided” approximation;
the reader can define for himself what the notion for a left-sided approxiamtion
would be.

The categorical description of this kind of phenomena goes via the concept
of adjunction, which this chapter is about.

5.1 Adjoint functors

F
Let ¢ === D be a pair of functors between categories C and D.
G

We say that F is left adjoint to G, or G 1s right adjoint to F, notation:
F = G, if there 1s a natural bijection:

C(FD,C) 225 D(D,GC)

for each pair of objects C' € Cy, D € Dy. Two maps f : FD — C in C and
g : D — GC in D which correspond to each other under this correspondence
are called transposes of each other.

The naturality means that, given f : D — D/, g : ¢/ — C in D and C
respectively, the diagram

mp,c

C(FD,C) D(D, GC)
C(Ff,g)T TD(fVGg)
C(FD'.C") = D(D' . GC)

commutes in Set. Remind yourself that given o : D) — C', C(Ff,¢) () :
FD — (' is the composite

F o
D ppy o —=c

43

CATEGORIES

Such a family m = (mp ¢|D € Do, C € Cyp) is then completely determined by
the values it takes on identities; i.e. the values

mD,FD(idFD) :D— GFD
For, given o : FFD — (', since o = C(idpp,)(idrp),

m[)vc(OZ) = mD,C(C(idFDva)(idFD)) =
D(idp, G(«))(mp rp(idrp))

which is the composite

mp,rp(idrp) G(a)

GFD G(CO)

The standard notation for mp pp(idep) is np : D — GF (D).
Exercise T4. Show that (np : D € Dg) is a natural transformation:

By the same reasoning, the natural family (mf)lc |D € Do, C € Cqp) is completely
determined by its actions on identities

malc,c(idGC) :FGC — C

Again, the family (malc o(idge)|C € Cy) is a natural transformation: FG =
idp. We denote its components by ec and this is also standard notation.
We have that mf)lc (B : D — G(C) is the composite

Fp cc
FD—— FGC ——(C

Now making use of the fact that mp ¢ and mBlc are each others inverse we get

that for all & : FD — C' and §: D — GC the diagrams

p—" L qo FD c
ﬂDl TG(EC) and F(nD)l Tsc
. FGFD —> F
GFD ——=GFG(C) GFD 1o FGO

commute; applying this to the identities on F'D and GC' we find that we have
commuting diagrams of natural transformations:

44

5. ADJUNCTIONS

n*xG Fon
G =—GFd F=——= FGF
. \H]GOE X ﬂE*F
idg idp
G F

Here 1% G denotes (ngc|C € Co) and G o ¢ denotes (G(z¢)|C € Cyp).
F

Conversely, given ¢ == 7P with natural transformations 5 : idp = GF
G

and ¢ : F'G = idp which satisfy the above triangle equalities, we have that
FAHdG.

The tuple (F, G, £,n) is called an adjunction. 1 is the unit of the adjunction,
¢ the counit.

F
Exercise 75. Prove the last statement, i.e. given (<T—>D ,nidp = GF

and ¢ : F'G = idp satisfying (G o¢) - (nx G) = idg and (e % ') - (F on) = idp,
we have F' 4 G.
F F.

Exercise 76. Given C=—=17D '<:>25, if /4 4 G1 and Fs 4 G5 then
G Gs

F1F2 5 GQGl.

Examples. The world is full of examples of adjoint functors. We have met
several:

a) Consider the forgetful functor U : Grp — Set and the free functor F' :
Set — Grp. Given a function from a set 4 to a group G (which is an arrow
A — U(G) in Set) we can uniquely extend it to a group homomorphism
from (fi,*) to G (see example €) of 1.1), i.e. an arrow F'(A) — G in Grp,
and conversely. This is natural in A and G, so F' 4 U;

b) The functor Dgrph — Cat given in example f) of 1.1 is left adjoint to the
forgetful functor Cat — Dgrph;

F
¢) Given functors P <T—>) between two preorders P and @, F 1 G if and

only if we have the equivalence
y<Gr)e Fly) <z

for x € P,y € @; if and only if we have FFG(2) < z and y < GF(y) for all
L5 Y5

45

CATEGORIES

d)

In example m) of 1.1 we did “abelianization” of a group G. We made
use of the fact that any homomorphism G — H with H abelian, factors
uniquely through G/[G, G], giving a natural 1-1 correspondence

Grp(G, I(H)) = Abgp(G/[G. G, H)

where I : Abgp — Grp is the inclusion. So abelianization is left adjoint
to the inclusion functor of abelian groups into groups;

The free monoid F(A) on aset A is just the set of strings on the alphabet
A. F : Set — Mon is a functor left adjoint to the forgetful functor from
Mon to Set;

Given a set X we have seen (example g) of 2.2) the product functor (—) x
X : Set — Set, assigning the product ¥ x X to a set Y.

Since there is a natural bijection between functions ¥ x X — Z and
functions Y — ZX | the functor (—)X : Set — Set is right adjoint to
(=) x X;

Example €) of 2.2 gives two functors F,G : Set — Cat. F and G are

respectively left and right adjoint to the functor Cat 9 Set which assigns
to a (small) category its set of objects (to be precise, for this example to
work we have to take for Cat the category of small categories), and to a
functor its action on objects.

Given a regular category C we saw in 4.1 that every arrow f: X — VY
can be factored as a regular epi followed by a monomorphism. This gives

rise to a monotone function: Sub(X) g Sub(Y") defined as follows: if
M € Sub(X) is represented by m, Im¢(M) is the image of fm (see 4.1).
We have seen that Im¢(M) < N & M < f*(N) for any subobject N of
Y, so Imy is left adjoint to f*.

We can also express this logically: in the logic developed in chapter 4, for
any formulas M(x) and N(y), the sequents

Fu(f(x) =y A M(x)) by N(y)
and
M(z) by N(f(2))
are equivalent.

One of the slogans of categorical logic is therefore, that “existential quan-
tification is left adjoint to substitution”.

46

5. ADJUNCTIONS

i) Let C be a category with finite products; for C' € Cy consider the slice
category C/C. There is a functor C* : C — C/C which assigns to D the

object C'x D I8 C of €/C, and to maps D LD the map ide x f.
C* has a left adjoint ¥ which takes the domain: ¥¢(D — ') = D.

i) TLet P :Set’® — Set be the functor which takes the powerset on objects,

and for X L Y, P(f): P(Y) — P(X) gives for each subset B of Y its
inverse image under f.

Now P might as well be regarded as a functor Set — Set°?; let’s write P
for that functor. Since there is a natural bijection:
Set (X, P(Y)) = Set(Y, P(X)) = Set®®(P(X),Y)

we have an adjunction P - P.

Exercise 77. Suppose that C I P is a functor and that for each object C of C
there is an object GC' of D and an arrow £¢ : FGC' — C' with the property that

for every object D of D and any map F'D EN C, there is a unique f :D— GC
such that

FGC

commutes.
Prove that G : Co — Dy extends to a functor G : C — D which is right
adjoint to F, and that (e¢ : FGC — C|C € Cy) is the counit of the adjunction.
Construct also the unit of the adjunction.

Exercise 78. Given ¢ & D, for each object D of D we let (D|G) denote

the category which has as objects pairs (C,g) where C' is an object in C and
¢ : D — GCis an arrow in D. An arrow (C,¢) — (C',¢') in (D] G) is an arrow

f:C — " in C which makes
D
N
!
7 GC

GC

G

commute.
Show that G has a left adjoint if and only if for each D, the category (D|G)
has an initial object.

47

CATEGORIES

5.2 Expressing (co)completeness by existence of adjoints;
preservation of (co)limits by adjoint functors

Given categories C and D, we defined for every functor F' : C — D its limit
(or limiting cone), if it existed, as a pair (D, y) with g : Ap = F, and (D, p)
terminal in the category of cones for F.

Any other natural transformation g’ : Ap, = F factors uniquely through
(D, p) via an arrow D' — D in D and conversely, every arrow D — D gives
rise to a natural transformation p’ : Ap, = F.

So there is a 1-1 correspondence between

D(D', D) and D€ (Aps, F)

which is natural in D’.
Since every arrow [’ — D" in D gives a natural transformation Ap: = Apu

(example i) of 2.2), there is a functor A_y: D — .
The above equation now means that:

Proposition 5.1 D has all limits of type C (i.e. every funcior C LD has a
limiting cone in D) if and only if A_y has a right adjoint.

Exercise 79. Give an exact proof of this proposition.

Exercise 80. Use duality to deduce the dual of the proposition: D has all
colimits of type C if and only if A(_y: D — DC has a left adjoint.

Exercise 81. (Uniqueness of adjoints) Any two left (or right) adjoints of a
given functor are isomorphic as objects of the appropriate functor category.

Exercise 82. D — 1 has a right adjoint iff D has a terminal object, and a
left adjoint iff D has an initial object.

Exercise 83. Suppose D has both an initial and a terminal object; denote
by L the functor D — D which sends everything to the initial, and by R the
one which sends everything to the terminal object. L 4 R.

Exercise 84. Let F' 4 G with counit ¢ : FG = id. Show that ¢ is a nat-
ural isomorphism if and only if G is faithful.

A very important aspect of adjoint functors is their behaviour with respect
to limits and colimits.

F
Theorem 5.2 Let (=—=7D such that FF 1 G. Then:
G

48

5. ADJUNCTIONS

a) G preserves all limits which exist in C;

b) F preserves all colimils which exist in D.

Proof. Suppose M : £ — C has a limiting cone (C,) in C. Now a cone (D, v)
for GM is a natural family D 2 GM(FE), i.e. such that

D2~ GM(E)
Vi lGM(e)
GM(E")

€ .
commutes for every £ — F’ in £.

This transposes under the adjunction to a family (F'D 8 ME|E € &) and
the naturality requirement implies that

FD—>ME
) lM(S)
I/EI
ME

commutes in C, in other words, that (FD,v) is a cone for M in C. There is,
therefore, a unique map of cones from (F D, 7) to (C, p).

Transposing back again, we get a unique map of cones (D,v) — (GC,Gop).
That is to say that (GC, Go p) is terminal in Cone(G M), so a limiting cone for
G M, which was to be proved.

The argument for the other statement is dual. [|

F

Exercise 85. Given (=—=7PD, F 4 G and M : £ — C. Show that the
G

functor Cone(M) — Cone(GM) induced by G has a left adjoint.

From the theorem on preservation of (co)limits by adjoint functors one can
often conclude that certain functors cannot have a right or a left adjoint.

Examples

a) The forgetful functor Mon — Set does not preserve epis, as we have seen
id

in 1.2. In chapter 3 we’ve seen that f is epi iff idl lf is a pushout;

—_—

f
since left adjoints preserve identities and pushouts, they preserve epis;
therefore the forgetful functor Mon — Set does not have a right adjoint;

49

CATEGORIES

b) The functor (=) x X : Set — Set does not preserve the terminal object
unless X is itself terminal in Set; therefore, it does not have a left adjoint
for non-terminal X.

¢) The forgetful functor Pos — Set has a left adjoint, but it cannot have a
right adjoint: it preserves all coproducts, including the initial object, but
not all coequalizers.

Exercise 86. Prove the last example. Hint: think of the coequalizer of the fol-
lowing two maps () — IR: one is the inclusion, the other is the constant zero map.

Another use of the theorem has to do with the computation of limits. Many
categories, as we have seen, have a forgetful functor to Set which has a left
adjoint. So the forgetful functor preserves limits, and since these can easily be
computed in Set, one already knows the “underlying set” of the vertex of the
limiting cone one wants to compute.

Does a converse to the theorem hold? T.e. given G : C — D which preserves
all limits; does GG have a left adjoint? In general no, unless C is sufficiently
complete, and a rather technical condition, the “solution set condition” holds.
The adjoint functor theorem (Freyd) tells that in that case there is a converse:

Definition 5.3 (Solution set condition) G : C — D satisfies the solution
set condition (ssc) for an object D of D, if there is a set Xp of objects of C,
such that every arrow D — GC' factors as

D——=GC

N

G’
for some C' € Xp and f : C" — C in C.

Theorem 5.4 (Adjoint Functor Theorem) Let C be a complete category
and G : C — D a functor. G has a left adjoint if and only if G preserves
all small limits and satisfies the ssc for every object D of D.

I won’t prove the theorem, but you may like to try yourself. It is a, not too
trivial, exercise.

For small categories C, the ssc is of course irrelevant. But categories which
are small and complete are rather special. . .they are complete preorders.

For preorders C, D we have: if C is complete, then G : C — D has a left
adjoint if and only if G preserves all limits, that is: greatest lower bounds A B
for all B C C. For, put

F(d) = N{eld < G(e)}
50

5. ADJUNCTIONS

Then F(d) < ¢ implies (since G preserves) A{G(c)|d < G(e)} < G(¢') which
implies d < G(¢') since d < A{G(c)|d < G(c)}; conversely, d < G(c¢’) implies
d e{c|ld<G(c)} so F(d)= Nc|d < G(e)} < .

51

CATEGORIES

6. MONADS AND ALGEBRAS

6 Monads and Algebras

Given an adjunction (F,G,2,n) : ¢ =D let us look at the functor 7" =
GF:D—D.

We have a natural transformation 7 : idp = T and a natural transformation
p:T? = T. The components up are

T%(D) = GFGFD ") GFD = T(D)
Furthermore the equalities
3 M o nT Tn
T°——=T T—T?<—T

uTl l and Xl /

T2 — T T
hold. Here (Tw)p = T(up) : T°D — TD and (uT)p = prp : T°D — TD
(Similar for nT and T'p).

Exercise 87. Prove these equalities.

A triple (T, u,n) satisfying these identities is called a monad. Try to see the
formal analogy between the defining equalities for a monad and the axioms for
a monoid: writing m(e, f) for ef in a monoid, and 7 for the unit element, we

have
m(e,m(g,h)) = m(m(e,g),h) (associativity)
m(n,e) =me,n) = e (unit)

Following this one calls g the multiplication of the monad, and 7 its unit.

Example. The powerset functor P : Set — Set (example j) of 2.2, with 5
and g indicated there) is a monad (check).

Dually, there is the notion of a comonad (L, é,¢) on a category C, with equalities

L$L2 L
1
1= b ek

Given an adjunction (F, G, £,n), (FG,6 = FnG,¢) is a comonad on C. We call
8 the comultiplication and e the counit (this is in harmony with the unit-counit
terminology for adjunctions).

53

CATEGORIES

Although, in many contexts, comonads and the notions derived from them
are at least as important as monads, the treatment is dual so I concentrate on
monads.

Every adjunction gives rise to a monad; conversely, every monad arises from
an adjunction, but in more than one way. Essentially, there are a maximal and
a minimal solution to the problem of finding an adjunction from which a given
monad arises.

Example. A monad on a poset P is a monotone function 7" : P — P with
the properties < T(z) and T?(z) < T(z) for all z € P; such an operation
is also often called a closure operation on P. Note that T? = T because T is
monotone.

In this situation, let @ C P be the image of T, with the ordering inherited
from P. We have maps r : P — @ and 7 : Q — P such that r7 is the identity
onQandir=T: P — P.

For z € P,y € @ we have z < i(y) < r(2) < y (check); so » 44 and the
operation T arises from this adjunction.

6.1 Algebras for a monad

Given a monad (7,7, 1) on a category C, we define the category T-Alg of T-
algebras as follows:

o Objects are pairs (X, h) where X is an object of C and h: T(X) — X is
an arrow in C such that

0 2Ty
uxl lh and \‘\ lh
T(X) —X X

commute;

e Morphisms: (X, h) — (Y, k) are morphisms X L.y in € for which

7(x) 2L vy

commutes.

54

6. MONADS AND ALGEBRAS

Theorem 6.1 There is an adjunction between T-Alg and C which brings about
the given monad T.

Proof. There is an obvious forgetful functor UT : T-Alg — C which takes (X, h)
to X. I claim that U7 has a left adjoint F'7:

FT assigns to an object X the T-algebra T2(X) = T(X); to X Ly
the map T'(f); this is an algebra map because of the naturality of p. That

T2(X) X T(X) is an algebra follows from the defining axioms for a monad 7',
Now given any arrow g : X — UT(Y,h) we let §: (T(X),pux) — (Y, h) be

the arrow T(X) <Y T(Y) 2y, Thisis a map of algebras since

TZ(X) T_@> TQ(Y) ﬂ) 0%

T(X) 7= TO) —=Y

commutes; the left hand square is the naturality of y; the right hand square is
because (Y, h) is a T-algebra. B

Conversely, given f : (TX,ux) — (Y, h) we have an arrow f : X — Y by
taking the composite X xrx Ly,

Now f:TX — Y is the composite

By naturality of n this is
rx LyZory Ly

which is f since (Y, h) is a T-algebra.
Conversely, ¢ : X — Y is the composite

x2rx "y My

Again by naturality of n and the fact that (Y, h) is a T-algebra, we conclude
that § = g. So we have a natural 1-1 correspondence
C(X,UT(Y, h)) = T-Alg(FT (X), (Y, h))

and our adjunction.

Note that the composite U7 FT is the functor 7', and that the unit 7 of the
adjunction is the unit of 7'; the proof that for the counit ¢ of F7 4 U7 we have
that

72 = T Ty T gt VeF" prpr _ g

55

CATEGORIES

is the original multiplication p, is left to you. [|
Exercise 88. Complete the proof.

Example. The group monad. Combining the forgetful functor U : Grp — Set
with the left adjoint, the free functor Set — Grp, we get the following monad
on Set:

T(A) is the set of sequences on the alphabet AUA™! (A™! is the set {a~!|a €
A} of formal inverses of elements of A, as in example e) of 1.1) in which no
aa™' or a~'a occur. The unit A 22 T'A sends a € A to the string {a). The
multiplication p : T?(A) — T(A) works as follows. Define (=)~ : AUA™! — AU
A7'bya™ = a ' and (a7')” = a. Define also (=)~ on strings by (a; ...a,)” =
a, ...a7. Now for an element of TT(A), which is a string on the alphabet
T(A)UT(A)"!, say o1 ...0,, we let pa(oy...0,) be the concatenation of the
strings &1,...,0, on the alphabet A U A~=! where &; = o; if 0; € T(A), and
7; = (0;)” if 0; € T(A)~1. Of course we still have to remove possible substrings
of the form aa™! etc.

Now let us look at algebras for the group monad: maps T(A) 2. A such that
for a string of strings

a=01,...,0, = <<5%,...,s]f1>,...,<s,1w...,sﬁ">>
we have that
h({hoy, ..., hon)) = h((s%,...,slfl,...,srll,...,sfl"))

and

h({a)) =aforae A

I claim that this is the same thing as a group structure on A, with multiplication
a-b= h({a,b)).
The unit element is given by h({()); the inverse of a € A is h({a™')) since

h({a, h((a™")))) = h({h({a)), h({a™")))) =
h({a,a=')) = h({)), the unit element

Try to see for yourself how the associativity of the monad and its algebras trans-
forms into associativity of the group law.

Exercise 89. Finish the proof of the theorem: for the group monad T, there
is an equivalence of categories between T-Alg and Grp.

This situation is very important and has its own name:

56

6. MONADS AND ALGEBRAS

F
Definition 6.2 Given an adjunction ¢ =—= 1D , F - G there is always a com-
G

parison functor K : C — T-Alg for T'= GF, the monad induced by the adjunc-
tion. K sends an object C' of C to the T-algebra GFG(C) 6 G(C).

We say that C is monadic over D if K is an equivalence.

Exercise 90. Check that K(C) is a T-algebra. Complete the definition of
K as a functor. Check that in the example of the group monad, the functor
T-Alg — Grp defined there is a pseudo inverse to the comparison functor K.

In many cases however, the situation is not monadic. Take the forgetful functor
U : Pos — Set. It has a left adjoint F' which sends a set X to the discrete
ordering on X (z < y iff # = y). Of course, UF is the identity on Set and the
U F-algebras are just sets. The comparison functor K is the functor U, and this
s not an equivalence.

Exercise 91. Why not? [Hint: think of coproducts in both categories. Every
equivalence reflects coproducts]

Another example of a monadic situation is of importance in domain theory.
Let Pos; be the category of partially ordered sets with a least element, and
order preserving maps which also preserve the least element.

There is an obvious inclusion functor U : Pos; — Pos, and U has a left
adjoint F'. Given a poset X, F(X) is X “with a bottom element added”:

Given f: X — Y in Pos, F(f) sends the new bottom element of X to the new
bottom element of Y, and is just f on the rest. If f: X — Y in Pos is a map
and YV has a least element, we have F(X) — Y in Pos; by sending L to the
least element of Y. So the adjunction is clear.

The monad U F : Pos — Pos, just adding a least element, is called the lifting
monad. Unit and multiplication are:

57

CATEGORIES

0-0 §YI¢

nx : X — T(X) pux THX) — T(X)

A T-algebra h : TX — X is first of all a monotone map, but since hnx = 1dx,
h is epi in Pos so surjective. Tt follows that X must have a least element A(L).
From the axioms for an algebra one deduces that & must be the identity when
restricted to X, and h(L) the least element of X.

F
Exercise 92. Given C=—=7D, FF 4 G, T = GF. Prove that the com-
G

parison functor K : C — T-Alg satisfies UTK = G and KF = FT where

T

F
T-Alg =—=7D as in theorem 6.1.
UT

Another poset example: algebras for the power set monad P on Set (exam-

ple j);2.2). Such an algebra h : P(X) — X must satisfy h({z}) = 2 and for
a CP(X):

h({h(A)|A € a}) = h({z|3A € a(z € A)}) = h(| Ja)

Now we can, given an algebra structure on X, define a partial order on X by
putting z < y iff A({z,y}) = v.

Indeed, this is clearly reflexive and antisymmetric. As to transitivity, if x < y
and y < z then

h({z, z})=h({z, h({y, 2})}) =
h({h({z}), h({y, 2 =h({z} U{y, z})
h({z, y} U{zH)=h({h({z, y}), h({z})})=

h({y, z})==

so x < z.

Furthermore this partial order 1s complete: least upper bounds for arbitrary
subsets exist. For \/ B = h(B) for B C X: for x € B we have h({z,(B)}) =
h({z} U B) = h(B) so < \/ B; and if z < y for all # € B then

h({h(B),y})=h(B U {y})
MU,epiz, yH=h({h({z,y})|x € B})—

h({y})=y
58

6. MONADS AND ALGEBRAS

so\V B <uy.

We can also check that a map of algebras is a \/-preserving monotone
function. Conversely, every \/-preserving monotone function between complete
posets determines a P-algebra homomorphism.

We have an equivalence between the category of complete posets and \/-
preserving functions, and P-algebras.

Exercise 93. Let P : Set® — Set be the contravariant powerset functor,
and P its left adjoint, as in j) of 5.1. Let T": Set — Set the induced monad.

a) Describe unit and multiplication of this monad explicitly.

b) Show that Set°P is equivalent to T-Alg [Hint: if this proves hard, have a
look at V1.4.3 of Johnstone’s “Stone Spaces”].

¢) Conclude that there is an adjunction

CABool =—= Set

which presents CABool as monadic over Set.

6.2 T-Algebras at least as complete as D

Let T be a monad on D. The following exercise is meant to show that if D has
all limits of a certain type, so does T-Alg. In particular, if D is complete, so is
T-Alg; this is often an important application of a monadic situation.

Exercise 94. Let £ be a category such that every functor M : £ — D has
a limiting cone. Now suppose M : £ — T-Alg. For objects F of £, let M(F) be

the T-algebra T(mpg) by mg.

a) Let (D,(vg|E € &)) be a limiting cone for UTM : & — D. Using the
T-algebra structure on M(E) and the fact that U7 M(FE) = mg, show
that there is also a cone (T'D, (7g|F € &)) for UT M;

b) Show that the unique map of cones: (T'D,w) — (D, v) induces a T-algebra
structure TD 2% D on D;

¢) Show that T'D 2. D is the vertex of a limiting cone for M in T-Alg.

6.3 The Kleisli category of a monad

I said before that for a monad 7T on a category D, there are a “maximal and
a minimal solution” to the problem of finding an adjunction which induces the
given monad.

59

CATEGORIES

We’ve seen the category T-Alg, which we now write as D7 ; we also write
GT : T-Alg — D for the forgetful functor. In case T arises from an adjunction

F
C == 1D, there was a comparison functor C EpT . In the diagram
G

we have that KF = FT and GTK = G.
Moreover, the functor K is unique with this property.

F
This leads us to define a category T-Adj of adjunctions ¢ =—= 7P such
G

F F’
that GF = T. A map of such T-adjunctions from C=—=7PD to ¢/ =—=7D 1s
G o'

a functor K : C — C' satisfying KF = F/ and G'K = G.
What we have proved about 7T-Alg can be summarized by saying that the
T
adjunction pT =—= P is a terminal object in T-Adj. This was the “maximal”

GT
solution.

T-Adj has also an initial object: the Kleisli category of T, called Dp. Drp
has the same objects as D, but a map in Dy from X to Y is an arrow X ER T(Y)
in D. Composition is defined as follows: given X 4, T(Y)and Y £ T(Z) in
D, considered as a composable pair of morphisms in Dy, the composition ¢f in
D7 1s the composite

x L) 2 (7)1 2)

mD.

Exercise 95. Prove that composition is associative. What are the identi-
ties of Dp?

F
The adjunction Drp '<:>TD is defined as follows: the functor GGy sends the
Gr

object X toT(X)and f: X =Y (f: X = T(Y) in D) to

T(x) "L T2 vy By

The functor Fr is the identity on objects and sends X LyvioxLy™ T(Y),
considered as X — Y in Drp.

60

6. MONADS AND ALGEBRAS

Exercise 96. Define unit and counit; check Fp 4 Grp.

F
Now for every adjunction ¢ =—=7P with GF = T, there is a unique com-
G

parison functor I : Dp — C such that GL = Gp and LFp = F.
L sends the object X to F(X)and f: X =V (so f: X =T(Y)=GF(Y)
in D) to its transpose f: F(X) — F(Y).

Exercise 97. Check the commutations. Prove the uniqueness of I w.r.t. these
properties.

61

CATEGORIES

7. CARTESIAN CLOSED CATEGORIES AND THE A-CALCULUS

7 Cartesian closed categories and the A-calculus

Many set-theoretical constructions are completely determined (up to isomor-
phism, as always) by their categorical properties in Set. We are therefore
tempted to generalize them to arbitrary categories, by taking the character-
istic categorical property as a definition. Of course, this procedure is not really
well-defined and it requires sometimes a real insight to pick the ‘right’ categori-
cal generalization. For example, the category of sets has very special properties:

e f: X — Y ismonoif and only if f¢g = fh implies ¢ = h for any two maps
g,h: 1 — X, where 1 is a terminal object (we say 1 is a generator);

e objects X and Y are isomorphic if there exist monos f : X — Y and
¢ :Y — X (the Cantor-Bernstein theorem);

e every mono X Lyis part of a coproduct diagram

And if you believe the axiom of choice, there is its categorical version:
e Every epi is split

None of these properties is generally valid, and categorical generalizations based
on them are usually of limited value”.

In this chapter we focus on a categorical generalization of a set-theoretical
concept which has proved to have numerous applications: Cartesian closed cat-
egories as the generalization of “function space”.

In example f) of 5.1 we saw that the set of functions ZX appears as the value
at 7 of the right adjoint to the product functor (=) x X. A category is called
cartesian closed if such right adjoints always exist. In such categories we may
really think of this right adjoint as giving the “object of functions (or arrows)”,
as the treatment of the A-calculus will make clear.

7.1 Cartesian closed categories (ccc’s); examples and ba-
sic facts

Definition 7.1 A category C is called cartesian closed or a ccc if it has finite
products, and for every object X of C the product functor (=) x X has a right
adjoint.

2 Asperti, for example, restricts his interpretation of the A-calculus to ccc’s where 1 is a
generator. You might as well immediately restrict to Set, then.

63

CATEGORIES

Of course, “the” product functor only exists once we have chosen a product
diagram for every pair of objects of C. In this chapter we assume that we
have such a choice, as well as a distinguished terminal object 1; and we assume
also that for each object X we have a specified right adjoint to the functor
(=) x X, which we write as (—)% (Many authors write X = (—), but I think
that overloads the arrows notation too much). Objects of the form ZX are
called exponents.
We have the unit

Ny, x

YR (Y x X)X

and counit
£y, X

YX«x Xy

of the adjunction (=) x X - (=)*. Anticipating the view of YX as the object
of arrows X — Y, we call ¢ evaluation.

Examples

a) A preorder (or partial order) is cartesian closed if it has a top element 1,
binary meets £ Ay and for any two elements z, y an element z—y satisfying
for each z:
z<z—yiff zAz <y

b) Set is cartesian closed; Cat is cartesian closed (2.1);

¢) Top is not cartesian closed, however the category of locally compact spaces
and continuous maps 1s;

d) Posis cartesian closed. The exponent YX is the set of all monotone maps
X — Y, ordered pointwise (f < g iff for all z € X, fz < gz inY);

e) Grp and Abgp are not cartesian closed. In both categories, the initial
object is the one-element group. Since for non-initial groups G, (=) x G
does not preserve the initial object, it cannot have a right adjoint;

f) 1 is cartesian closed; 0 isn’t (why?);

g) Setcop is cartesian closed. Products and 1 are given “pointwise” (in fact
all limits are), that is F' x G(C') = F(C) x G(C) and 1(C) is the terminal
1 1n Set, for all C' € C,.

The construction of the exponent G¥ is a nice application of the Yoneda
lemma. Indeed, for GT' to be the right adjoint (at) of (=) x F', we need
for every object C' of C:

SetC” (he x F,G) = SetC (he, GT) =~ GF(C)
64

7. CARTESIAN CLOSED CATEGORIES AND THE A-CALCULUS

where the last isomorphism is by the Yoneda lemma.

op
Now the assignment C' +— Setc (he x F,G) defines a functor C°P — Set,
which we denote by GF. At the same time, this construction defines a

Fooo (0P e .)
functor (—)" : Set — Set™ | which is right adjoint to (=) x F. Tt is
a nice exercise to prove this.

h) A monoid is never cartesian closed unless it’s trivial.

Exercise 98. Show that every Boolean algebra is cartesian closed.
Exercise 99. Show that CABool is not cartesian closed [use 2.3].

Exercise 100. Show that a complete partial order is cartesian closed if and
only if it’s a frame [see 4.4].

Exercise 101. Let Q be a frame. By the preceding exercise, it is cartesian
closed; denote by x—y the exponent in €. This exercise is meant to let you
show that Cgq is cartesian closed.

a) Show that Q also has greatest lower bounds A B for all subsets B.
b) Given objects (X, Ex) and (Y, Ey), define their exponent (Y, Ey)(X*EX>
as (YX, F) where YX is the set of all functions X — Y in Set, and

E(f) = N{Ex(2)—Ey (f(z))|z € X}
Show that this defines a right adjoint (at (Y, Ey)) of (=) x (X, Fx).
Some useful facts:

e (is cartesian closed if and only if it has finite products, and for each pair
of objects X,V there is an object YX and an arrow ¢ : YX x X — Y such

that for every 7 and map 7 x X LV there is a unique 7 L vX such
that

Zx X ! Y

YX x X

commutes.

e In a ccc, there are natural isomorphisms 1%X ~ 1; (Y x Z)X ~YX x 7%
(YZ)X ~ YZXX.

65

CATEGORIES

e TIf a ccc has coproducts, we have X x (Y 4+ 7) ~ (X xY) 4+ (X x Z) and
Y2t X ~ Y72 x VX,

Exercise 102. Prove these facts.

Recall that two maps Z x X — Y and Z — YX which correspond to each
other under the adjunction are calles each other’s transposes.

Exercise 103. In a ccc, prove that the transpose of a composite Z - W Lyx
is
g><1dx

7 x X W><X—>Y

if f is the transpose of f.

Lemma 7.2 In a ccc, given f: X' — X let Y/ : VX — YX' be the transpose
of

yX¥ s x ' ByX xSy
Then for each f: X' — X and g : Y — Y’ the diagram

X
YX - Y/X

v |

1 1
YX 7 Y/X
g

commutes.

Proof. By the exercise, the transposes of both composites are the top and
bottom composites of the following diagram:

d><f
Yled / /

'XX/—>le
9% xid

yX

This diagram commutes because the right hand “squares” are naturality squares
for ¢, the lower left hand square commutes because both composites are the
transpose of Y/, and the upper left hand square commutes because both com-
posites are gX x f. [|

66

7. CARTESIAN CLOSED CATEGORIES AND THE A-CALCULUS

Proposition 7.3 For every ccc C there is a functor C°° x C — C, assigning Y X
to (X,Y), and given g : Y —Y' and f : X' — X, ¢/ : YX = YV'X s cither of
the composites in the lemma.

Exercise 104. Prove the proposition.

7.2 Typed)M-calculus and cartesian closed categories

The A-calculus is an extremely primitive formalism about functions. Basically,
we can form functions (by A-abstraction) and apply them to arguments; that’s
all. Here I treat briefly the typed A-calculus.

We start with a set S of type symbols S1,5,, ...

Out of § we make the set of types as follows: every type symbol is a type,
and if 71 and Ty are types then so is (T1=T5).

We have also terms of each type (we label the terms like ¢:T to indicate that
t is a term of type T):

e we may have constants ¢:T" of type T7;

e for every type T" we have a denumerable set of variables x1:T, 29T, .. ;
e given a term ¢:(71=7T») and a term s:T7, there is a term (¢s):7%;

e given t:T5 and a variable :T) there is a term Az.t: 71 =T5.

Terms Az.t are said to be formed by A-abstraction. This procedure binds the
variable z in ¢. Furthermore we have the usual notion of substitution for free
variables in a term ¢ (types have to match, of course). Terms of form (¢s) are
said to be formed by application.

In the A-calculus, the only statements we can make are equality statements
about terms. Again, I formulate the rules in terms of theories. First, let us say
that a language consists of a set of type symbols and a set of constants, each of
a type generated by the set of type symbols.

An equality judgement is an expression of the form T'|t = s:T (to be read:
“T" thinks that s and ¢ are equal terms of type T ”), where T' is a finite set of
variables which includes all the variables free in either ¢ or s, and ¢ and s are
terms of type T.

A theory is then a set 7 of equality judgements which is closed under the
following rules:

i) Tt =sTin 7 implies Alt = s:T in 7 for every superset A of T;

i) FV(@)|t =T isin 7T for every term ¢:T of the language (again, F'V(t) is
the set of free variables of t);
if T|t = s:T and T'|s = w:T are in 7T then so is Tt = w:T}

67

CATEGORIES

i) ift(z1,...,2,): T is aterm of the language, with free variables 21:51,. .. 2,5y,
and T'|s; = 1:51,..., s, = t,:S, are in 7 then

Tlt[s1/21,- -, snfxn] = tft1 /21, - tn/2n]T
isin 7;

iv) if ¢ and s are terms of type (T1=7T5), z a variable of type T} which does
not occur in ¢ or s, and T U{z}|(tz) = (sx):To is in 7, then T'\ {z}|t =
s:(Th=Ts) isin T;

v) if s:Ty and ¢:T5 are terms and z a variable of type T5, then
FV(s)\{z} U FV()|(Az.s)t) = s[t/z]: Ty
isin 7.
Given a language, an interpretation of it into a ccc C starts by choosing objects
[S] of C for every type symbol S. This then generates objects [T'] for every

type T by the clause
[Ti=T] = [7:]0"]

The interpretation is completed by choosing interpretations
1917

for every constant ¢:7" of the language.

Such an interpretation then generates, in much the same way as in chapter 4,
interpretations of all terms. For a finite set T' = {x1:T1,...,2,:T,} let’s again
write [T'] for the product [T1] x -+ x [T,] (this is only defined modulo a
permutation of the factors of the product, but that will cause us no trouble).

The interpretation of ¢:7" will now be an arrow

Ly

[FV(1)]
defined as follows:
o [z]is the identity on [T] for every variable z:T:
o given [t] : [FV(®)] — [T2]1T) and [s] : [FV(s)] — [Ti] we let
[(ts)]: [FV((ts))] — [T»] be the composite
[rv((esy] TILT pr in s £ 1)

where m; and m; are the projections from [FV((ts))] to [FV(¢)] and
[FV(s)], respectively;

68

7. CARTESIAN CLOSED CATEGORIES AND THE A-CALCULUS

o given[¢]: [FV(t)] — [72] and the variable z:T} welet [Az.t]: [FV(¢)\
{2}] — [T> ™1 be the transpose of

[FV()\ {2} x [1] 5 [7]
where, if z occurs free in ¢ so [FV({) \ {z}] x [T1] = [FV(1)], {is

just [t]; and if # doesn’t occur in ¢, ¢ is [¢] composed with the obvious
projection.

We now say that an equality judgement T'|t = s:T" is true in this interpretation,
if the diagram

[FV()]

(

T []
m/ \m
N A
[FV(s)]

commutes (again, 75, and 7; projections).

Lemma 7.4 Lett(zy,...,2n):T have free variables z;:T; and let t;:T; be terms.
Let

L [FV(A[ti/er, .. ta /e] — [T:]
be the obvious composite of projection and [t;].

Then the composition

fllizl...n

[Vt /o1, ta/ea)] = LT = TPV T T
is the interpretation [t[t1/z1, ..., tn/2n]].

Exercise 105. Prove the lemma [take your time. This is not immediate].

Theorem 7.5 Let S be a set of equality judgements and T = Cn(S) be the
least theory containing S. If every judgement of S is true in the interpretation,
so is every judgement in T .

Proof. Again, we show that the set of true judgements is a theory, i.e. closed
under the rules in the definition of a theory.

i) and ii) are trivial;

ii1) follows at once by lemma 7.4;

69

CATEGORIES

iv) Since T C (T'\ {z}) U {2} and because of the inductive hypothesis, we have
that

[FV(s)] x |[T1]]m|[T1=>T2]] x[T1]

[T\ {z}] [7-]

M /
[FVIOT <[] g [Ti= T2 < 1T]
commutes. Taking the transposes of both maps, we get the equality we want.

v) According to lemma 7.4, [FV(s[t/x])] Lolt/=1l [71] is

[FV(sit/a))] S [PV]2 7]

This 1s the same as

[Fv(sit/a)] "EY [PV \ (e] < [B] P (e < 1] 2 [
which is

[FV((e.s))] VA2V 7]
[|

There is also a completeness theorem: if a judgement T|¢t = s:T is true in all
possible interpretations, then every theory (in a language this judgement is in)
contains it.

The relevant construction is that of a syntactic cartesian closed category
out of a theory, and an interpretation into it which makes exactly true the
judgements in the theory. The curious reader can find the, somewhat laborious,
treatment in Lambek & Scott’s “Higher Order Categorical Logic”.

7.3 Representation of primitive recursive functions in ccc’s
with natural numbers object

Dedekind observed, that in Set, the set w is characterized by the following

property: given any set X, any element 2 € X and any function X ER X, there
is a unique function F': w — X such that F(0) = 2 and F(z + 1) = f(F(x)).

Lawvere took this up, and proposed this categorical property as a definition
(in a more general context) of a “natural numbers object” in a category.

70

7. CARTESIAN CLOSED CATEGORIES AND THE A-CALCULUS

Definition 7.6 In a category C with terminal object 1, a natural numbers ob-
ject is a triple (0, N, .S) where N is an object of C and 1 A N, N 5N arrows

in C, such that for any other such diagram
x f
l— X ——X
there 1s a unique map ¢ : N — X making

12N —2sn

Nk

X —f> X
commute.

Of course we think of 0 as the zero element, and of .S as the successor map. The
defining property of a natural numbers object enables one to “do recursion”,
a weak version of which we show here: we show that every primitive recursive
function can be represented in a ccc with natural numbers object.

Definition 7.7 Let C be a ccc with natural numbers object (0, N, S). We say
that a number-theoretic function F : N¥ — N is represented by an arrow f :
N* — N if for any k-tuple of natural numbers n1, . ..ny, the diagram

0 (§™1,.. 8™)

1 N NE
\ lf
N N

commutes.

Recall that the class of primitive recursive functions is given by the following
clauses:

o The constant zero function A#.0 : N¥ — N, the function Az.z+1: N — N
and the projections AZ.z; : N — N are primitive recursive;

e The primitive recursive functions are closed under composition: if Fy, ..., I} :
N/ — Nand G : N¥ — I are primitive recursive, then sois G({Fy, ..., F})) :
N — IN;

e The primitive recursive functions are closed under definition by primitive
recursion: if G : N¥ — NN and H : NF+? — N are primitive recursive,
and F : N¥+!1 — NN is defined by F(0,7) = G(%F) and F(n + 1,7) =

H(n, F(n,Z), %) then F is primitive recursive.

71

CATEGORIES

Proposition 7.8 In a ccec C with natural numbers object, every primitive re-
cursive function is representable.

Proof. T do only the case for definition by primitive recursion. So by inductive
hypothesis we have arrows G and H representing the homonymous functions.
By interpretation of the A-calculus, T use A-terms: so there 1s an arrow

AE.G(E) 11— NV

and an arrow

AEH(n, ¢(7), %) : NV 5 N — NV

which 1s the interpretation of a term with free variables (b:N(Nk) and n:N; this
map is the exponential transpose of the map which intuitively sends (n, ¢, #) to
(n, (%), ¥). Now look at

AE.G(), AZ.H(n,d(#),7))x S
| PEE@O) gy OFHO@ONXS

By the natural numbers object property, there is now a unique map

F=(F,o):N—-NN)yN
which makes the following diagram commute:

0 S

1 N N
N oy N NIN*) o

(/\ H(n,¢(8),8))x 5
One verifies that ¢ 1s the identity, and that the composite
NE+ M)N(Nk) « N* . N
represents F'. [|

Exercise 106. Make these verifications.

That’s it!!

72

Index

abelianization, 5 comparison functor, 57

adjoint functor theorem, 50 complement in a lattice, 15

adjunction, 45 composition, 1

Alexandroff topology, 5 comultiplication of comonad, 53

algebras for monad, 54 cone for a functor, 17

arrows, 1 congruence relation, 3

associative, 1 coproduct, 25

atom in Boolean algebra, 16 coproduct inclusions, 25

coprojections, 25

Boolean algebra, 15 counit of adjunction, 45

atomic, 16 counit of comonad, 53

complete, 15
diagram commutes, 4

category, 1 diagram of type C, 17
cartesian, 23 domain, 1
cartesian closed, 63 duality principle, 6
complete, 23
discrete, 13 embedding, 10
finitely complete, 23 epi, 6
has binary products, 20 epimorphism, 6
has equalizers, 20 equality judgement in A-calculus, 67
has pullbacks, 20 equalizer, 18
indiscrete, 13 equalizer diagram, 18
left exact, 23 equivalence of categories, 15
lex, 23 equivalent categories, 15
locally small, 4 equivalent formulas, 39
path, 3 evaluation in ccc, 64
quotient, 3 exponents in ccc, 64
regular, 29
slice, 4 frame, 39
small, 13 free group, 3
cee, 63 free monoid, 46
closure operation on poset, 54 functor, 2
cocone for a functor, 25 contravariant, 5
codomain, 1 covariant, 5
coequalizer, 25 faithful, 7
coequalizer diagram, 25 forgetful, 2
coherent logic, 33 free, 3
colimiting cocone, 25 full, 7
comonad, 53 Hom, 5

73

INDEX

preserving a property, 7
preserving limits, 23
reflecting a property, 7
representable, 4

generator, 63
group monad, 56
groupoid, 14
Grp, 2

Grph, 2

homotopy, 3

identity arrow, 1

image of a map, 32

index category of diagram, 17
initial object, 7

inverse of an arrow, 7
isomorphic objects, 8
isomorphism, 7

kernel pair of a map, 29
Kleisli category of monad, 60

labelled sequent, 35
A-abstraction, 67
A-calculus, 67
lattice, 15
distributive, 15
left adjoint functor, 43
lifting monad, 57
limiting cone, 17

MacLane’s pentagon, 23
map, 1

monad, 53

monadic, 57

mono, 6

monoid, 1

monomorphism, 6
morphism, 1

multiplication of monad, 53

natural

74

bijection, 10
natural numbers object, 71
natural transformation, 9

objects, 1

Pos, 2

preorder, 1

primitive recursive function, 71
product category, 2

product cone, 18

product in category, 18
projections, 18

pseudo inverse of a functor, 15
pullback along a map, 32
pullback diagram, 20

pushout, 26

regular epi, 27

regular mono, 22
retraction, 7

right adjoint functor, 43
Rng, 2

section, 7

solution set condition (ssc), 50
specialization ordering, 6

split epi, 7

split mono, 7

stable under pullback, 30
subobject, 31

terminal object, 7

theory in A-calculus, 67
theory in coherent logic, 35
Top, 2

transpose of map, 43
triangle equalities, 45

unit of adjunction, 45
unit of monad, 53

vertex of a cone, 17

INDEX

Yoneda embedding, 10
Yoneda lemma, 10

75

