In memory of recently departed friends
Geoff Hayes, Lev Brutman
Preface

Over thirty years have elapsed since the publication of Fox & Parker’s 1968 text *Chebyshev Polynomials in Numerical Analysis*. This was preceded by Snyder’s brief but interesting 1966 text *Chebyshev Methods in Numerical Approximation*. The only significant later publication on the subject is that by Rivlin (1974, revised and republished in 1990) — a fine exposition of the theoretical aspects of Chebyshev polynomials but mostly confined to these aspects. An up-to-date but broader treatment of Chebyshev polynomials is consequently long overdue, which we now aim to provide.

The idea that there are really four kinds of Chebyshev polynomials, not just two, has strongly affected the content of this volume. Indeed, the properties of the four kinds of polynomials lead to an extended range of results in many areas such as approximation, series expansions, interpolation, quadrature and integral equations, providing a spur to developing new methods. We do not claim the third- and fourth-kind polynomials as our own discovery, but we do claim to have followed close on the heels of Walter Gautschi in first adopting this nomenclature.

Ordinary and partial differential equations are now major fields of application for Chebyshev polynomials and, indeed, there are now far more books on ‘spectral methods’ — at least ten major works to our knowledge — than on Chebyshev polynomials *per se*. This makes it more difficult but less essential to discuss the full range of possible applications in this area, and here we have concentrated on some of the fundamental ideas.

We are pleased with the range of topics that we have managed to include. However, partly because each chapter concentrates on one subject area, we have inevitably left a great deal out — for instance: the updating of the Chebyshev–Padé table and Chebyshev rational approximation, Chebyshev approximation on small intervals, Faber polynomials on complex contours and Chebyshev (L_∞) polynomials on complex domains.

For the sake of those meeting this subject for the first time, we have included a number of problems at the end of each chapter. Some of these, in the earlier chapters in particular, are quite elementary; others are invitations to fill in the details of working that we have omitted simply for the sake of brevity; yet others are more advanced problems calling for substantial time and effort.

We have dedicated this book to the memory of two recently deceased colleagues and friends, who have influenced us in the writing of this book. Geoff Hayes wrote (with Charles Clenshaw) the major paper on fitting bivariate polynomials to data lying on a family of parallel lines. Their algorithm retains its place in numerical libraries some thirty-seven years later; it exploits the idea that Chebyshev polynomials form a well-conditioned basis independent
of the spacing of data. Lev Brutman specialised in near-minimax approxima-
tions and related topics and played a significant role in the development of
this field.

In conclusion, there are many to whom we owe thanks, of whom we can
mention only a few. Among colleagues who helped us in various ways in the
writing of this book (but should not be held responsible for it), we must name
Graham Elliott, Ezio Venturino, William Smith, David Elliott, Tim Phillips
and Nick Trefethen; for getting the book started and keeping it on course, Bill
Morton and Elizabeth Johnston in England, Bob Stern, Jamie Sigal and others
at CRC Press in the United States; for help with preparing the manuscript,
Pam Moore and Andrew Crampton. We must finally thank our wives, Moya
and Elizabeth, for the blind faith in which they have encouraged us to bring
this work to completion, without evidence that it was ever going to get there.

This book was typeset at Oxford University Computing Laboratory, using
Lamport’s \LaTeX 2ε package.

John Mason
David Handscomb
April 2002
Contents

1 Definitions
 1.1 Preliminary remarks
 1.2 Trigonometric definitions and recurrences
 1.2.1 The first-kind polynomial T_n
 1.2.2 The second-kind polynomial U_n
 1.2.3 The third- and fourth-kind polynomials V_n and W_n
 (the airfoil polynomials)
 1.2.4 Connections between the four kinds of polynomial
 1.3 Shifted Chebyshev polynomials
 1.3.1 The shifted polynomials $T_n^*, U_n^*, V_n^*, W_n^*$
 1.3.2 Chebyshev polynomials for the general range $[a, b]$
 1.4 Chebyshev polynomials of a complex variable
 1.4.1 Conformal mapping of a circle to and from an ellipse
 1.4.2 Chebyshev polynomials in z
 1.4.3 Shabat polynomials
 1.5 Problems for Chapter 1

2 Basic Properties and Formulae
 2.1 Introduction
 2.2 Chebyshev polynomial zeros and extrema
 2.3 Relations between Chebyshev polynomials and powers of x
 2.3.1 Powers of x in terms of $\{T_n(x)\}$
 2.3.2 $T_n(x)$ in terms of powers of x
 2.3.3 Ratios of coefficients in $T_n(x)$
 2.4 Evaluation of Chebyshev sums, products, integrals and derivatives
 2.4.1 Evaluation of a Chebyshev sum
 2.4.2 Stability of the evaluation of a Chebyshev sum
 2.4.3 Evaluation of a product
 2.4.4 Evaluation of an integral
 2.4.5 Evaluation of a derivative

© 2003 by CRC Press LLC
3 The Minimax Property and Its Applications

3.1 Approximation — theory and structure
 3.1.1 The approximation problem
3.2 Best and minimax approximation
3.3 The minimax property of the Chebyshev polynomials
 3.3.1 Weighted Chebyshev polynomials of second, third and fourth kinds
3.4 The Chebyshev semi-iterative method for linear equations
3.5 Telescoping procedures for power series
 3.5.1 Shifted Chebyshev polynomials on [0, 1]
 3.5.2 Implementation of efficient algorithms
3.6 The tau method for series and rational functions
 3.6.1 The extended tau method
3.7 Problems for Chapter 3

4 Orthogonality and Least-Squares Approximation

4.1 Introduction — from minimax to least squares
4.2 Orthogonality of Chebyshev polynomials
 4.2.1 Orthogonal polynomials and weight functions
 4.2.2 Chebyshev polynomials as orthogonal polynomials
4.3 Orthogonal polynomials and best L_2 approximations
 4.3.1 Orthogonal polynomial expansions
 4.3.2 Convergence in L_2 of orthogonal expansions
4.4 Recurrence relations
4.5 Rodrigues’ formulae and differential equations
4.6 Discrete orthogonality of Chebyshev polynomials
 4.6.1 First-kind polynomials
 4.6.2 Second-kind polynomials
 4.6.3 Third- and fourth-kind polynomials
4.7 Discrete Chebyshev transforms and the fast Fourier transform
 4.7.1 The fast Fourier transform

© 2003 by CRC Press LLC
4.8 Discrete data fitting by orthogonal polynomials: the Forsythe–Clenshaw method
 4.8.1 Bivariate discrete data fitting on or near a family of lines or curves
4.9 Orthogonality in the complex plane
4.10 Problems for Chapter 4

5 Chebyshev Series
 5.1 Introduction — Chebyshev series and other expansions
 5.2 Some explicit Chebyshev series expansions
 5.2.1 Generating functions
 5.2.2 Approximate series expansions
 5.3 Fourier–Chebyshev series and Fourier theory
 5.3.1 L_2-convergence
 5.3.2 Pointwise and uniform convergence
 5.3.3 Bivariate and multivariate Chebyshev series expansions
 5.4 Projections and near-best approximations
 5.5 Near-minimax approximation by a Chebyshev series
 5.5.1 Equality of the norm to λ_n
 5.6 Comparison of Chebyshev and other orthogonal polynomial expansions
 5.7 The error of a truncated Chebyshev expansion
 5.8 Series of second-, third- and fourth-kind polynomials
 5.8.1 Series of second-kind polynomials
 5.8.2 Series of third-kind polynomials
 5.8.3 Multivariate Chebyshev series
 5.9 Lacunary Chebyshev series
 5.10 Chebyshev series in the complex domain
 5.10.1 Chebyshev–Padé approximations
 5.11 Problems for Chapter 5

6 Chebyshev Interpolation
 6.1 Polynomial interpolation
 6.2 Orthogonal interpolation
 6.3 Chebyshev interpolation formulae

© 2003 by CRC Press LLC
6.3.1 Aliasing
6.3.2 Second-kind interpolation
6.3.3 Third- and fourth-kind interpolation
6.3.4 Conditioning
6.4 Best \(L_1 \) approximation by Chebyshev interpolation
6.5 Near-minimax approximation by Chebyshev interpolation
6.6 Problems for Chapter 6

7 Near-Best \(L_\infty \), \(L_1 \) and \(L_p \) Approximations
7.1 Near-best \(L_\infty \) (near-minimax) approximations
7.1.1 Second-kind expansions in \(L_\infty \)
7.1.2 Third-kind expansions in \(L_\infty \)
7.2 Near-best \(L_1 \) approximations
7.3 Best and near-best \(L_p \) approximations
7.3.1 Complex variable results for elliptic-type regions
7.4 Problems for Chapter 7

8 Integration Using Chebyshev Polynomials
8.1 Indefinite integration with Chebyshev series
8.2 Gauss–Chebyshev quadrature
8.3 Quadrature methods of Clenshaw–Curtis type
8.3.1 Introduction
8.3.2 First-kind formulae
8.3.3 Second-kind formulae
8.3.4 Third-kind formulae
8.3.5 General remark on methods of Clenshaw–Curtis type
8.4 Error estimation for Clenshaw–Curtis methods
8.4.1 First-kind polynomials
8.4.2 Fitting an exponential curve
8.4.3 Other abscissae and polynomials
8.5 Some other work on Clenshaw–Curtis methods
8.6 Problems for Chapter 8

© 2003 by CRC Press LLC
9 Solution of Integral Equations

9.1 Introduction

9.2 Fredholm equations of the second kind

9.3 Fredholm equations of the third kind

9.4 Fredholm equations of the first kind

9.5 Singular kernels

9.5.1 Hilbert-type kernels and related kernels

9.5.2 Symm’s integral equation

9.6 Regularisation of integral equations

9.6.1 Discrete data with second derivative regularisation

9.6.2 Details of a smoothing algorithm (second derivative regularisation)

9.6.3 A smoothing algorithm with weighted function regularisation

9.6.4 Evaluation of $V(\lambda)$

9.6.5 Other basis functions

9.7 Partial differential equations and boundary integral equation methods

9.7.1 A hypersingular integral equation derived from a mixed boundary value problem for Laplace’s equation

9.8 Problems for Chapter 9

10 Solution of Ordinary Differential Equations

10.1 Introduction

10.2 A simple example

10.2.1 Collocation methods

10.2.2 Error of the collocation method

10.2.3 Projection (tau) methods

10.2.4 Error of the preceding projection method

10.3 The original Lanczos tau (\(\tau\)) method

10.4 A more general linear equation

10.4.1 Collocation method

10.4.2 Projection method

10.5 Pseudospectral methods — another form of collocation
10.5.1 Differentiation matrices
10.5.2 Differentiation matrix for Chebyshev points
10.5.3 Collocation using differentiation matrices
10.6 Nonlinear equations
10.7 Eigenvalue problems
 10.7.1 Collocation methods
 10.7.2 Collocation using the differentiation matrix
10.8 Differential equations in one space and one time dimension
 10.8.1 Collocation methods
 10.8.2 Collocation using the differentiation matrix
10.9 Problems for Chapter 10

11 Chebyshev and Spectral Methods for Partial Differential Equations
11.1 Introduction
11.2 Interior, boundary and mixed methods
 11.2.1 Interior methods
 11.2.2 Boundary methods
 11.2.3 Mixed methods
11.3 Differentiation matrices and nodal representation
11.4 Method of weighted residuals
 11.4.1 Continuous MWR
 11.4.2 Discrete MWR — a new nomenclature
11.5 Chebyshev series and Galerkin methods
11.6 Collocation/interpolation and related methods
11.7 PDE methods
 11.7.1 Error analysis
11.8 Some PDE problems and various methods
 11.8.1 Power basis: collocation for Poisson problem
 11.8.2 Power basis: interior collocation for the L-membrane
 11.8.3 Chebyshev basis and discrete orthogonalisation
 11.8.4 Differentiation matrix approach: Poisson problem
 11.8.5 Explicit collocation for the quasilinear Dirichlet problem: Chebyshev basis

© 2003 by CRC Press LLC
11.9 Computational fluid dynamics
11.10 Particular issues in spectral methods
11.11 More advanced problems
11.12 Problems for Chapter 11

12 Conclusion

Bibliography

Appendices:

A Biographical Note

B Summary of Notations, Definitions and Important Properties
 B.1 Miscellaneous notations
 B.2 The four kinds of Chebyshev polynomial

C Tables of Coefficients