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Abstract
The kinematical setting of spherically symmetric quantum geometry, derived
from the full theory of loop quantum gravity, is developed. This extends
previous studies of homogeneous models to inhomogeneous ones where
interesting field theory aspects arise. A comparison between a reduced
quantization and a derivation of the model from the full theory is presented
in detail, with an emphasis on the resulting quantum representation. Similar
concepts for Einstein–Rosen waves are discussed briefly.

PACS numbers: 04.60.P, 04.60.K

1. Introduction

Since general relativity predicts singularities generically, and in particular in physically
interesting situations such as cosmology and black holes, it cannot be complete as a physical
theory. The situation improves when one quantizes general relativity in a background
independent manner, following loop quantum gravity [1–3]. The dynamics of the full theory
is not yet settled and is rather complicated, as expected for a full quantum theory of gravity.
Even classically one usually introduces symmetries for physical applications, which can also
be done in loop quantum gravity directly. This in fact led to the conclusion that isotropic
models in loop quantum cosmology [4] are non-singular [5] while at the same time they show
the usual classical behaviour at large scales [6].

One has to keep in mind, though, that symmetric models in a quantum theory play a
role different from symmetric classical solutions. While the latter are exact solutions of
the full theory, the former are obtained from the full theory by completely ignoring many
degrees of freedom which violates their uncertainty relations. One thus should weaken the
symmetry by looking at less symmetric models, and check if results obtained are robust. For
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the isotropic results, this has been shown to be the case in a first step, reducing the isotropy by
using anisotropic but still homogeneous models [7, 8]. This did not only show that the same
mechanism for singularity freedom applied, and this in a more nontrivial way, but also led to
new applications [9]. The latter allow tentative conclusions even for general, inhomogeneous
singularities [10].

Nevertheless, one should go ahead and reduce the symmetry further. The next step must
deal with inhomogeneous models, which for simplicity can first be taken to be 1+1 dimensional.
This would also allow new physical applications concerning, e.g., spherically symmetric black
holes and cylindrical gravitational waves. Furthermore, they allow additional tests of issues
in the full theory which trivialize in homogeneous models, including field theory aspects, the
constraint algebra and the role of anomalies, and specific constructions of semiclassical states
using graphs. For (1+1)-dimensional models several alternative background independent
quantization schemes have been applied, which can then be compared with loop results. The
spherically symmetric model has been dealt with in the Dirac programme [11] as well as
in a reduced phase space quantization [12, 13]. Einstein–Rosen waves can be mapped to a
free field on flat spacetime allowing standard Fock quantization techniques [14], and there
are several other interesting models with a two-dimensional Abelian symmetry group which
have been quantized and studied extensively [15–27]. A wide class of models, which have
finitely many physical degrees of freedom and also include the spherically symmetric model,
are given by dilaton gravity in two dimensions [28] or, more generally, Poisson sigma models
[29, 30]. These models have been quantized exactly in a background independent way with
reduced phase space, Dirac or path integral methods.

The reason for the simplification in homogeneous models, which lead to explicit
cosmological applications, is not just the finite number of degrees of freedom, but also a
simplification of the volume operator (which at first sight is not always explicit [31]). In
isotropic as well as diagonal homogeneous models the volume spectrum can be computed
explicitly, which is not possible in the full theory. Since the volume operator plays a major
role in defining the dynamics [32], also the evolution equation can be obtained and analysed
in an explicit form. One can see that this is a consequence of either a nontrivial isotropy
subgroup of the symmetry group, or of a diagonalization condition. Similar simplifications
can be expected more generally, in particular in those inhomogeneous models which have
a nontrivial isotropy group (spherical symmetry) or a diagonalization condition on the basic
variables (polarized waves).

Nevertheless, the explicit reduction of spherically symmetric models done later in this
paper, and also that of polarized cylindrical waves, shows that suitable canonical variables
display a feature different from both the full theory and from homogeneous models: flux
variables (canonical momenta of the connection) are not identical to the densitized triad which
contains all information about spatial geometry. (A similar feature, though in a different
manner, happens in the full theory when a scalar is coupled non-minimally [33].) Instead,
the triad is a rather complicated function of the basic variables and in particular depends
also on the connection. This seems to lead to an unexpected complication for the volume
operator, and shows that 1+1 models are more complicated than homogeneous ones not just
for the obvious reason of having infinitely many kinematical degrees of freedom, but also due
to their canonical structure. The complicated expression for the triad could, a priori, even
lead to a continuous volume spectrum, which would be difficult to reconcile with the full
theory and homogeneous models. We will deal with the volume operator elsewhere [34], but
already in this paper, where we introduce the kinematical set-up and discuss states and basic
operators for connections and their momenta, we can see that this issue can have an influence
on semiclassical properties.
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We will start by recalling the definition of symmetric states in a quantum theory of
connections, and then reduce the full phase space to that of the spherically symmetric sector.
We introduce the states of the model by two procedures, first by loop quantizing the classically
reduced phase space and then by reducing states of the full theory to be spherically symmetric.
Both procedures lead to the same result, which is a ‘mixed’ quantization based on generalized
connections, as in the full theory [35], as well as elements of the Bohr compactification of
the real line, which is characteristic for homogeneous models [36]. Quantum numbers of the
reduced quantization match with the spin labels obtained by restricting full states, and gauge
invariant reduced states satisfy the reduced Gauss constraint. Basic operators on these states
are given by holonomies and fluxes, which suggest conditions for the semiclassical regime.
Finally, we will briefly discuss the model of Einstein–Rosen waves.

2. Symmetric states

Let � be a manifold carrying an action of a symmetry group S such that there is a dense subset
of � where the group action has an isotropy subgroup isomorphic to F < S. In this case �,
except for isolated points (symmetry axes or centres), can be decomposed as � ∼= B × S/F

with the reduced manifold B = �/S. On the symmetry orbits S/F there is a natural invariant
metric which follows from the transitive group action, as well as preferred coordinates. On B,
on the other hand, there is no natural metric and no preferred coordinates.

A given symmetry group S acting on a manifold � defines a class of inequivalent principal
fibre bundles P(�,G), for a given group G, which carry a lift of the action of S from � to
P [37, 38]. For each such symmetric bundle there is a set of invariant connections having
a LG-valued 1-form on P satisfying s∗ω = ω for each s ∈ S, giving rise to different
embeddings rk:A(k)

inv → A in the full space of connections. Here, k is a label (topological
charge) characterizing the type of symmetric bundle used. In a gravitational situation, where
there is an additional condition that spaces of connections must allow non-degenerate dual
vector fields, the would-be non-degenerate triads, usually only one value for the label k can be
used such that we will suppress it later on.

An invariant connection then has the general form A = AB + AS/F where AB is a reduced
connection over B, in general with a reduced gauge group, and AS/F contains additional fields
in an associate bundle transforming as scalars taking values in a certain representation of
the reduced structure group. The different forms rk of embedding invariant connections into
the full space of connections are classified by homomorphisms λk: F → G up to conjugacy
in G. This map also determines the reduced structure group for the connections AB as the
centralizer ZG(λk(F )) in G. The additional fields in AS/F are the components of a linear map
φ:LF⊥ → LG where the space S/F is assumed to be reductive, i.e. there is a decomposition
LS = LF ⊕LF⊥ such that LF⊥ is fixed by the adjoint action of F. There are additional linear
conditions φ has to satisfy when it comes from a full connection, namely

φ(Adf X) = Adλk(f )φ(X) (1)

for all X ∈ LF⊥ and f ∈ F .

2.1. Reduced loop quantization

Loop quantum gravity provides techniques to quantize theories of connections, possibly
coupled to other fields, in a background independent manner. Following this procedure, the
component AB , which plays the role of the connection of the reduced theory, will be quantized
by using its holonomies along curves in B as basic variables [35]. This leads to the space of
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generalized reduced connections, ĀB . Scalars like those in AS/F can be quantized according
to [39, 40] with the result that the classical real values of the field are replaced by values
in the Bohr compactification of the real line. In this way, the space ĀB×S/F of generalized
connections and scalar fields becomes a compact group which carries a Haar measure µ0.
The Hilbert space L2(ĀB×S/F , µ0) is then obtained by completing the space of continuous
functions on this group with respect to the Haar measure.

Holonomies of the connection and analogous expressions for the scalar act as
multiplication operators, while the momenta of the connection components, which can be
written as fluxes, act as derivative operators. Both sets of basic operators are subsequently
used to quantize more complicated, composite expressions.

2.2. Symmetric states from the full theory

Using the connection representation of states on the space of generalized connections,
symmetric states can be defined in the full theory as distributional states supported only
on invariant connections [41, 42] for a given symmetry. It is clear that such a state can also be
represented as a function ψ on the space of reduced connections as before, but in addition it
acquires an interpretation as a distribution in the full theory, i.e. as a linear functional on the
space of cylindrical states depending only on finitely many holonomies and scalar values: for
any cylindrical function f on the full space of connections,

�[f ] :=
∫
Ā(k)

B×S/F

dµ0(A)ψ(A) · r∗
k f (A) (2)

defines a distribution in the full theory. Symmetric states thus form a subspace of the full
distributional space which, using the measure on Ā(k)

B×S/F can be equipped with an inner
product.

Operators Ô of the full theory act on distributions � via the dual action which defines
Ô� by

Ô�[f ] = �[Ô†f ] for all f ∈ Cyl.

In general, however, Ô� will not be a symmetric state even if � is. The reason is that
on states in the connection representation only the condition of having invariant A has been
incorporated, but not the condition for invariant momenta E. Then, even classically the flow
generated by a phase space function would in general not be tangential to the subspace given
by invariant connections and arbitrary triads.

For general operators it is therefore necessary to implement the condition for invariant
triads, which must be done by modifying the operators suitably. This is a complicated
procedure which has not been developed in detail yet. Fortunately, one can use particular
operators in the full theory whose dual action leaves the space of symmetric states invariant
such that one can directly use them in the reduced model. Classical analogues of those
operators generate a flow which is tangential to the subspace of invariant connections in phase
space even if triads can be arbitrary. It is easy to see that such functions have to be linear in
the triads (which is, however, not a sufficient condition). In fact, the reduced basic variables,
holonomies and fluxes, are linear in the triads, and can be written such that they generate a
flow parallel to invariant connections. Moreover, for the basic quantities, the classical Poisson
∗-algebra is represented faithfully on the Hilbert space such that the classical flow on phase
space corresponds to a unitary transformation in the quantum theory. Thus, quantizations
of basic variables will map symmetric states to symmetric states and can be used directly to
derive the reduced operators. States as well as basic operators of a model are then defined
directly in the full theory, and more complicated operators can be constructed from the basic
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ones following the lines of the full theory. An advantage of relating the model to the full
theory in this way is that there is a unique (under weak conditions) diffeomorphism invariant
representation of the full holonomy/flux algebra [43] while within models one usually has
several options.

The reduced theory is usually not a pure gauge theory even in the absence of matter
since some components φ of the full connection play the role of scalar fields in the reduced
model. Another difference to the full theory is that often the model has a reduced gauge group.
States of the full theory and the model are then based on different groups. Nevertheless,
representations of the reduced structure group automatically occur when the reduction from
full states is done. For an explicit representation of states and operators, an Abelian gauge
group is most helpful since all irreducible representations are then one dimensional and there
are no complicated coupling coefficients between different representations. In fact, a nontrivial
isotropy subgroup of the symmetry group often, as in the spherically symmetric case, implies
an Abelian gauge group. Similarly, diagonalization conditions imposed on connections and
triads can lead to Abelian gauge groups. On the other hand, a nontrivial isotropy group or
additional diagonalization conditions lead to additional complications since the relations (1)
have to be taken care of. Moreover, even though the reduced connection may be Abelian,
its holonomies do in general not commute with expressions (point holonomies) representing
scalars since this would be incompatible with a non-degenerate triad. Simplifications of an
Abelian theory, such as spin network states with an Abelian group, then are not always obvious.

In many cases, the combined system of the reduced Abelian connection plus scalar fields φ

can be simplified taking into account the special form of a given class of invariant connections.
A model can be formulated as essentially Abelian if connection components along independent
directions along B and in the orbits are perpendicular in the Lie algebra. For instance, in the
(1+1)-dimensional case, a connection in general has the form

A = Ax(x)�x(x) dx + Ay(x)�y(x) dy + Az(x)�z(x) dz + field independent terms (3)

where x is the inhomogeneous coordinate on B and �I (x) ∈ LG. (Depending on the symmetry,
there can be additional terms not depending on fields AI , as happens in the spherically
symmetric case discussed later.) The fields Ay and Az together with components of �y and
�z comprise the field φ determining AS/F and are thus subject to (1). Simplifications occur
if we have tr(�x�y) = tr(�x�z) = tr(�y�z) = 0, as happens in the spherically symmetric
case or for cylindrical gravitational waves with a polarization condition. Then, holonomies of
invariant connections take a corresponding form with perpendicular internal directions, and
thus obey special relations that would not hold true for holonomies of an arbitrary connection.
The most important relation which will be used later is

Lemma 1. Let g := exp(A) and h := exp(B) with A,B ∈ su(2) such that tr(AB) = 0. Then

gh = hg + h−1g + hg−1 − tr(hg). (4)

Proof. Since equation (4) is invariant under conjugation of both g and h with the same
SU(2)-element, we can first rotate A to equal aτ1 for some a ∈ R. Then, tr(AB) = 0 implies
that B = b2τ2 + b3τ3 which can be rotated to B = bτ2 while keeping A fixed.

The proof proceeds by directly computing all products involved, using exp(aτi) =
cos(a/2) + 2τi sin(a/2). �

Thus, even though reduced holonomies do not all lie in an Abelian subgroup, they are
almost commuting in the sense that products of two holonomies can always be expanded into
terms where the order is reversed. It turns out that this is sufficient for a simplification of the
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representation of states and basic operators, and in turn of other ones like the volume operator.
This has been exploited in homogeneous models, where the special form of connections was
a consequence of the nontrivial isotropy [4] or a diagonalization condition [7]. Similarly in
(1+1)-dimensional models, a nontrivial isotropy group or a diagonalization condition can lead
to connection components which are perpendicular for independent directions. As we will
discuss in what follows, this leads to a similar simplification in the representation of states, but
in inhomogeneous models there can be an additional complication for the volume operator.

3. Classical phase space

In the main part of this paper, we are interested in spherical symmetry where S ∼= SU(2)

(in general, the action on P does not project to an SO(3) action, even if it does so on �)
and, outside symmetry centres, F ∼= U(1) such that S/F ∼= S2. The reduced (radial) manifold
B is one dimensional. On the orbits we have an invariant metric which can be written as
dϑ2 + sin2 ϑ dϕ2 in angular coordinates which will be used from now on. A coordinate on B
will be called x in what follows, but not fixed. The reduced phase space of this model has
been studied in ADM variables [12] and complex Ashtekar variables [11, 13], which can be
used for a reduced phase space or Dirac quantization. Many relations in complex Ashtekar
variables also apply here, but one should be cautious since our notation is slightly different and
in some places adapted to a loop quantization. The classical model in real Ashtekar variables
and preliminary steps of a loop quantization have been described in [41, 42].

Any invariant connection allowing a non-degenerate dual vector field can be written as

A = Ax(x)�3 dr + (A1(x)�1 + A2(x)�2) dϑ

+ (A1(x)�2 − A2(x)�1) sin ϑ dϕ + �3 cos ϑ dϕ (5)

with three real functions Ax,A1 and A2 on B. The su(2)-matrices �I are constant and are
identical to τI = − i

2σI or a rigid rotation thereof. An invariant densitized triad has a dual
form,

E = Ex(x)�3 sin ϑ
∂

∂x
+ (E1(x)�1 + E2(x)�2) sin ϑ

∂

∂ϑ
+ (E1(x)�2 − E2(x)�1)

∂

∂ϕ
(6)

such that the functions Ex,E1 and E2 on B are canonically conjugate to Ax,A1 and A2:

B = 1

2γG

∫
B

dx(δAx ∧ δEx + 2δA1 ∧ δE1 + 2δA2 ∧ δE2) (7)

with the gravitational constant G and the Barbero–Immirzi parameter γ .
It will later be useful to keep in mind a peculiarity of one-dimensional models concerning

the density weight of fields. As in the full theory, the connection has density weight zero,
and the densitized triad is a vector field with density weight one. But in one dimension,
the transformation properties with fixed orientation imply that a 1-form is equivalent to a
scalar of density weight one, while a densitized vector field is equivalent to a scalar without
density weight. Under a coordinate change x �→ y(x), a densitized vector field, for instance,
transforms as Ea = Ẽb∂xa/∂yb|det ∂y/∂x|, which implies Ex = Ẽx · |y ′(x)|/y ′(x) = ±Ex .
Thus, Ex can be seen as the component of a densitized vector field on B or as a scalar, while
E1 and E2 are densitized scalars (or 1-form components). Similarly, Ax is the component of
a 1-form on B or a densitized scalar, while A1 and A2 are scalars (or densitized vector field
components).

These variables are subject to constraints which are obtained by inserting the invariant
forms into the full expressions. We have the Gauss constraint

G[λ] =
∫

B

dx λ(Ex′ + 2A1E
2 − 2A2E

1) ≈ 0 (8)
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generating U(1)-gauge transformations, the diffeomorphism constraint

D[Nx] =
∫

B

dx Nx(2A′
1E

1 + 2A′
2E

2 − AxE
x′) (9)

and the Euclidean part of the Hamiltonian constraint

H [N ] = 2
∫

B

dx N(|Ex |((E1)2 + (E2)2))−1/2
(
Ex(E1A′

2 − E2A′
1)

+ AxE
x(A1E

1 + A2E
2) +

(
A2

1 + A2
2 − 1

)
((E1)2 + (E2)2)

)
. (10)

In what follows it will be more convenient to work with variables that are better adapted
to the gauge transformations. We introduce the gauge invariant quantities

Aϕ(x) :=
√

A1(x)2 + A2(x)2, (11)

Eϕ(x) :=
√

E1(x)2 + E2(x)2 (12)

and the internal directions

�A
ϕ (x) := (A1(x)�2 − A2(x)�1)/Aϕ(x), (13)

�E
ϕ (x) := (E1(x)�2 − E2(x)�1)/E

ϕ(x) (14)

in the �1–�2 plane. Furthermore, we parametrize �A
ϕ (x) and �E

ϕ (x), which in general are
different from each other, by two angles α(x), β(x):

�A
ϕ (x) =: �1 cos β(x) + �2 sin β(x), (15)

�E
ϕ (x) =: �1 cos(α(x) + β(x)) + �2 sin(α(x) + β(x)). (16)

Note that cos α = �A
ϕ · �E

ϕ is gauge invariant under U(1)-rotations, while the angle β is pure
gauge.

In these new variables, the symplectic structure becomes

B = 1

2γG

∫
B

dx(δAx ∧ δEx + 2δAϕ ∧ δ(Eϕ cos α) + 2δβ ∧ δ(AϕEϕ sin α))

= 1

2γG

∫
B

dx(δAx ∧ δEx + δAϕ ∧ δP ϕ + δβ ∧ δP β) (17)

with new momenta

P ϕ(x) := 2Eϕ(x) cos α(x) (18)

conjugate to Aϕ and

P β(x) := 2Aϕ(x)Eϕ(x) sin α(x) = Aϕ(x)P ϕ(x) tan α(x) (19)

conjugate to β. The Gauss constraint then takes the form

G[λ] =
∫

B

dx λ(Ex′ − P β) ≈ 0 (20)

which is easily solved by P β = Ex′, while the function Ax + β ′ is manifestly gauge invariant.
Using these variables, the situation is different from that in the full theory in that the

momentum conjugate to the connection component Aϕ is not the triad component Eϕ , which
together with the momentum Ex would directly determine the geometry

ds2 = Ex(x)−1Eϕ(x)2 dx2 + Ex(x)( dϑ2 + sin2 ϑ dϕ2). (21)

Instead, the momentum P ϕ is related to Eϕ through the angle α. This angle is a
rather complicated function of the variables, depending also on connection components:
tan α = (AϕP ϕ)−1P β . This will complicate the quantum geometry since the fluxes P will be
basic variables with simple quantizations, while geometric operators like the volume operator
will be more complicated. In homogeneous models [7, 4], on the other hand, this complication
does not appear since the Gauss constraint (20) with constant Ex implies P β = 0 and thus
α = 0.
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4. Kinematical Hilbert space

By definition, symmetric states can be described by restricting states of the full theory to
invariant connections, which are of the form (5) in the spherically symmetric case (from a
different point of view, focusing on coherent states, spherical symmetry has been considered
in [44]). Using all states in the full theory, this leads to a complete, but not independent set
of symmetric states, which then must be functionals of Ax(x),A1(x) and A2(x). That such
functionals have to be expected is also obvious from the reduced point of view where one just
quantizes the classically reduced phase space. However, the class of functions obtained in this
way depends on the quantization procedure, a loop quantization giving different results than,
e.g., a Wheeler–DeWitt like quantization (as happens already in the isotropic case where both
quantizations result in inequivalent representations [36]).

We first follow a reduced quantization point of view analogous to that followed in [36].
In constructing the quantum theory we perform the steps of the full loop quantization, thus
obtaining a loop quantization of the reduced model. Thereafter, we will reduce states from
the full theory and implement the reduction there, leading to the same results in particular for
basic operators.

4.1. Reduced quantization

We start by choosing elementary functions on the classical phase space that will be promoted
to basic operators of the quantum theory, acting on a suitable Hilbert space. The hallmark of
loop quantizations is that those basic quantities are chosen to be holonomies of the connection
and fluxes of the densitized triad. This choice incorporates a smearing of the classical fields
along lines and surfaces, which is necessary for a well-defined representation, and does so in
a background independent manner. From the reduced point of view, Aϕ is a scalar for which
there are analogous techniques [40, 39] which we will use below.

4.1.1. Cylindrical states. A loop quantization in the connection representation is based on
cylindrical functions which depend on the connection only via holonomies. If we just consider
the space AB of reduced U(1)-connections given by Ax(x) on B, cylindrical functions are
continuous functions on the space of generalized connections ĀB . As in the full theory, ĀB

can be written as a projective limit over graphs in B, which in the one dimensional case are
simply characterized by a disjoint union of non-overlapping edges, g = ⋃̇

iei , whose vertex
set V (g) is the union of all endpoints of the ei . Choosing an orientation of B, we fix the
orientation of all edges to be compatible with that of B. Holonomies then define spaces Ag

B

of maps from the set of edges of a given graph of n edges to SU(2)n, which for classical
connections reduces to AB : g → U(1), e �→ h(e) := exp 1

2 i
∫
e
Ax(x) (the factor 1/2 comes

from taking matrix elements of �3-holonomies). The space of generalized connections is
obtained as the projective limit

ĀB = proj limg⊂B Ag

B (22)

with the usual projections pgg′
(
Ā

g

B

)
:= Ā

g

B

∣∣
g′ for g′ ⊂ g.

Since Aϕ transforms as a scalar, its holonomies with respect to edges in B would not
be well defined. Instead, following [39, 40] one considers ‘point holonomies’ exp(iµAϕ(x))

such that, for a fixed point x ∈ B, the relevant space of states is the space C(R̄Bohr) of
continuous (almost periodic) functions on the Bohr compactification of the real line R � Aϕ(x).
The remaining independent scalar function in the connection, β(x), takes values in the
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circle S1 which is already compact. Corresponding point holonomies are simply exponentials
exp(iβ(x)) ∈ U(1).

Since all points are independent, the space of generalized fields ĀS2 is again a projective
limit, this time over sets of points {xi}i=1...m ⊂ B, which can be taken as the vertex set V (g) of
a graph g. For a fixed graph, we obtain the spaceAg

S2 of maps from the set V (g) of m vertices to
(R̄Bohr×U(1))m, which for classical fields is AS2 : V (g) → R̄Bohr×U(1), v �→ (Aϕ(v), eiβ(v)).
The space of generalized fields is

ĀS2 = proj limg⊂B Ag

S2

which can easily be combined with ĀB to obtain the space of generalized spherically symmetric
connections

ĀB×S2 = proj limg⊂B Ag

B ⊗ Ag

S2 . (23)

Since ĀB×S2 is the projective limit of tensor products of compact groups, U(1) and
R̄Bohr, it carries a normalized Haar measure which is analogous to the Ashtekar–Lewandowski
measure in the full theory and will be called µ0. The kinematical Hilbert space is then obtained
by completing the space of cylindrical functions on ĀB×S2 with respect to µ0. Holonomies
defined above act by multiplication on this space.

As in the full theory, one can use spin network states as a convenient basis, which in the
connection representation become functionals of Ax,Aϕ and β. They are cylindrical states
based on a given graph g whose edges e are labelled by irreducible U(1)-representations
ke ∈ Z, and whose vertices v are labelled by irreducible R̄Bohr-representations µv ∈ R as well
as irreducible S1-representation kv ∈ Z. The value of such a spin network state in a given
(generalized) spherically symmetric connection A then is

Tg,k,µ(A) =
∏
e∈g

ke(h
(e))

∏
v∈V (g)

µv(Aϕ(v))kv(β(v))

=
∏
e∈g

exp

(
1

2
ike

∫
e

Ax(x) dx

) ∏
v∈V (g)

exp(iµvAϕ(v)) exp(ikvβ(v)). (24)

Since Aϕ and β are scalars on B, they are not integrated over in the states. On the other hand,
Ax as a connection component is integrated to appear only via holonomies. Alternatively, as
discussed before, we can view the one-dimensional connection component Ax as a density-
valued scalar. Also from this perspective it would have to appear integrated along regions in
the above form. Since Aϕ is by definition non-negative, we will restrict the states to only those
values.

4.1.2. Flux operators. For the flux of Ex it is also helpful to view it in the unconventional
way as a scalar. At a given point x,Ex(x) will then simply be quantized to a single derivative
operator without integration:

Êx(x)f (h) = −i
γ �2

P

4π

∑
e

∂f

∂h(e)

δh(e)

δAx(x)
= γ �2

P

8π
· 1

2

∑
e�x

h(e) ∂f

∂h(e)
, (25)

where f is a cylindrical function depending on the holonomies h(e) = exp
(

1
2 i

∫
e
Ax dx

)
. To

simplify the notation, we assumed that x lies only at boundary points of edges, which can
always be achieved by subdivision, and which contributes the additional 1

2 . The other flux
components, P ϕ and P β , are density-valued scalars and thus will be turned to well-defined
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operators after integrating over regions I ⊂ B. We obtain∫
I
P̂ ϕf (h) = −i

γ �2
P

4π

∫
I

δ

δAϕ(x)
dx f (h) = −i

γ �2
P

4π

∫
I

dx
∑

v

∂f

∂h(v)

δh(v)

δAϕ(x)

= − i
γ �2

P

4π

∑
v

∫
I

dx
∂f

∂h(v)
δ(v, x) = −i

γ �2
P

4π

∑
v∈I

∂

∂Aϕ(v)
f (h) (26)

with h(v) := Aϕ(v), and similarly∫
I
P̂ βf (h) = −i

γ �2
P

4π

∑
v∈I

∂

∂β(v)
f (h). (27)

Acting on spin network states (24), we obtain

Êx(x)Tg,k,µ = γ �2
P

8π

ke+(x) + ke−(x)

2
Tg,k,µ (28)

∫
I
P̂ ϕTg,k,µ = γ �2

P

4π

∑
v∈I

µvTg,k,µ (29)

∫
I
P̂ βTg,k,µ = γ �2

P

4π

∑
v∈I

kvTg,k,µ (30)

where e±(x) are the two edges (or two parts of a single edge) meeting in x. Thus, spin
networks are eigenstates of all flux operators and all flux operators have discrete spectra
(normalizable eigenstates). Note in particular that

∫
I P̂ ϕ is self-adjoint even though the range

of Aϕ is restricted to non-negative values. In a Schrödinger representation the corresponding
derivative operator would not have a self-adjoint extension, which is the case here on the
restricted Bohr Hilbert space.

Knowing the flux operators allows us to quantize and solve the Gauss constraint (20).
Restricting attention for simplicity to piecewise constant λ, it suffices to quantize the integrated
density Ex′, which can be done easily by using

∫ x+

x−
Ex′ dx = Ex(x+) − Ex(x−). Thus,

Ĝ[λ]Tg,k,µ = γ �2
P

8π

∑
v

λ(v)(ke+(v) − ke−(v) − 2kv)Tg,k,µ = 0 (31)

which is solved by

kv = 1
2 (ke+(v) − ke−(v)) (32)

for all vertices v of a given spin network. Since the kv must be integer, all differences
ke+(v) − ke−(v) must be even, restricting the allowed values. The labels kv are then determined
completely by the edge labels ke and can be dropped, while the other vertex labels, µv , are not
restricted by the Gauss constraint. In fact, when (32) is satisfied, the spin network (24) takes
the form

Tg,k,µ =
∏

e

exp

(
1

2
ike

∫
e

(Ax + β ′) dx

) ∏
v

exp(iµvAϕ(v)) (33)

which depends only on manifestly gauge invariant quantities.
The diffeomorphism constraint only generates transformations along B, which can be

dealt with by group averaging in complete analogy with the full theory (see also [41, 42] for
more details).
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4.2. Spherically symmetric states from the full theory

Since symmetric states are by definition full states supported on invariant connections, one
can, for a given symmetry action, find the form of symmetric states by restricting a complete
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Inserting these holonomies is most easily done for an alternative form of the states rather
than the spin network basis. All states can be obtained (in an overcomplete way) as products
of Wilson loops which in our case are composed of radial or orbital holonomies. (If B has a
boundary, there can be open ends of the loop where gauge transformations are frozen.) Each
such state is a superposition of matrix elements of the form

h(e1)
x · h

(v1,µ
1
ϑ,1)

ϑ h
(v1,µ

1
ϕ,1)

ϕ · · · h(v1,µ
1
ϑ,n1

)

ϑ h
(v1,µ

1
ϕ,n1

)

ϕ

·h(e2)
x · h

(v2,µ
2
ϑ,1)

ϑ h
(v2,µ

2
ϕ,1)

ϕ · · · h(v2,µ
2
ϑ,n2

)

ϑ h
(v2,µ

2
ϕ,n2

)

ϕ

·h(e3)
x · · ·

with radial edges e1, e2, e3, . . . , and vertices v1, v2, . . . , where v1 is the endpoint of e1 and the
starting point of e2. (A given edge e can appear several times in such an expression since it can
be traversed back and forth with running through orbital edges in between.) The parameters
µi

ϑ/ϕ,j are the parameter lengths of orbital edges and can take any real value.
To simplify the general expressions evaluated in spherically symmetric connections we

assume that the states are gauge invariant under gauge transformations around �3, constant
on the orbits (which still allows also open graphs). We can then gauge the angle β(x) to be
constant (with a local gauge transformation exp(−β(x)�3), possibly up to a global gauge
transformation if there is a boundary). Then also �A

ϕ is constant and we can apply lemma 1
to (almost) commute the holonomies. In particular, we can order the radial holonomies
according to coordinate values x of their starting points, also re-orienting them if necessary
such that they run in the positive orientation of B. Between different edges there are vertices
which can have the following forms:

· · · (h(e−)
x

)k− · h(v,µ)
ϕ · (

h(e+)
x

)k+ · · · ,
· · · (h(e−)

x

)k−
�3 · h(v,µ)

ϕ · (
h(e+)

x

)k+ · · · or (37)

· · · (h(e−)
x

)k− · h(v,µ)
ϕ · �3

(
h(e+)

x

)k+ · · ·
where possible factors of �3 come from exp

(
1
2π�3

)
in ϑ-holonomies (35).

Matrix elements of the resulting products of holonomies can easily be seen to be
superpositions of states of the form (33), keeping in mind that we chose the gauge such
that β is constant along B. It is also possible, though more tedious, to follow this procedure
without fixing the gauge. We just mention the example of a single ‘rectangular’ loop made
of one radial edge with holonomy hx and two orbital ones along the equator at x± with
holonomies h±. The corresponding Wilson loop is

tr(hxh+h
−1
x h−1

− ) = tr

((
cos

1

2

∫
Ax + 2�3 sin

1

2

∫
Ax

)

×
(

cos
1

2
Aϕ(x+) + 2�A

ϕ (x+) sin
1

2
Aϕ(x+)

)

×
(

cos
1

2

∫
Ax − 2�3 sin

1

2

∫
Ax

)

×
(

cos
1

2
Aϕ(x−) − 2�A

ϕ (x−) sin
1

2
Aϕ(x−)

))

= 2 cos
1

2
Aϕ(x+) cos

1

2
Aϕ(x−)

+ 2 cos

(∫
Ax + β(x+) − β(x−)

)
sin

1

2
Aϕ(x+) sin

1

2
Aϕ(x−) (38)
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where we used tr
(
�A

ϕ (x+)�
A
ϕ (x−)

) = − 1
2 cos(β(x+) − β(x−)) and tr

(
�3�

A
ϕ (x+)�

A
ϕ (x−)

) =
1
4 sin(β(x+) − β(x−)). This state can clearly be written as a superposition of states (33).

Thus, the states obtained before from a loop quantization of the classically reduced phase
space also emerge as symmetric states in the full theory. This is true, however, only with a slight
restriction since full gauge invariant spin network states evaluated in spherically symmetric
connections satisfy an additional condition: the gauge transformation exp

(
1
2π�3

)
changes the

sign of A1 and A2 everywhere, which means that all those states will be even under changing
the sign of all Aϕ(x), as e.g. (38). This can easily be imposed as an additional condition on
the reduced states, and it will be respected by operators coming from full ones.

4.2.2. Flux operators. In general, the dual action of operators of the full theory applied to
distributional symmetric states will not lead to another symmetric state. The reason is that
symmetric states only incorporate the condition for the connection to be invariant, but if full
operators are used there is no condition for an invariant triad. In such a case, even classically
the Hamiltonian flow generated by an arbitrary function on the phase space would in general
leave the subspace of invariant connections with arbitrary triads (while the flow would always
stay inside the subspace of invariant connections and invariant triads if the symmetric model
is well defined). There are, however, notable exceptions which allow us to obtain all operators
for the basic variables directly from the full theory. This is true for holonomies of Ax and Aϕ

which commute with connections, anyway. But we can also find special fluxes whose classical
expressions generate a flow that stays in the subspace of invariant connections. For instance,
for the �3-component of a full flux for a symmetry orbit S2, F 3

S2(x) := ∫
S2 �3 · (iE(x) dx) d2y,

we have {
Ai

a(x), F 3
S2

}|Ainv×E = γ κ�i
3δ

x
a

∫
S2

δ(x, y) d2y

which defines a distributional vector field on the phase space parallel to the subspace Ainv × E
of invariant connections (parallel to Ax). If we would look at any other internal component,
e.g., F 2

S2 using �2, on the other hand, the Poisson bracket would be proportional to �i
2δ

x
a ,

which is not parallel to the subspace of invariant connections. Similarly, one can see that the
flux

FI×S1 :=
∫
I×S1

(
�A

ϕ (x) · (iE(x) dϕ) dx dϑ + �A
ϑ (x) · (iE(x) dϑ) dx dϕ

)
for a cylindrical surface along an interval I ⊂ B generates a flow parallel to Aϕ , which leaves
the space of invariant connections invariant.

These two fluxes are sufficient for the basic momenta since∫
S2

�3 · (iE(x) dx) d2y = 4πEx(x)

and∫
I×S1

(
�A

ϕ (x) · (iE(x) dϕ) dx dϑ + �A
ϑ (x) · (iE(x) dϑ) dx dϕ

) = 4π

∫
I
P ϕ(x) dx

whose quantizations can thus be obtained directly from the full theory. Note that this would not
be possible for Eϕ , for instance, since its corresponding flux would generate a transformation
changing the invariant form of A (since any full expression reducing to Eϕ upon reduction
would involve the nonlinear function �

ϕ

E depending on the triad components).
For the flow F 3

S2(x) we obtain the �3-component of an invariant vector field associated
with the edges containing x. The pull back to invariant connections in (2) ensures that the dual
action on the distribution � can be expressed by an invariant vector field on the representation
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ψ where only radial holonomies h(e)
x of the form (34) appear. For the explicit expression we

again assume that x is an endpoint of two edges, e+(x) and e−(x) which can be achieved by
appropriate subdivision, and obtain

F̂ 3
S2(x) = 1

2
iγ �2

P

(
tr
(
�3h

(e+(x))
x

)T ∂

∂h
(e+(x))
x

+ tr
(
�3h

(e−(x))
x

)T ∂

∂h
(e−(x))
x

)
. (39)

Since �3 commutes with radial holonomies h(e)
x , we do not need to distinguish between left

and right invariant vector field operators. According to the derivation of states above, they
can be seen as polynomials in the radial holonomies. The action of a derivative operator
tr
(
�3h

(e)
x

)T
∂
/
∂h(e)

x with respect to h(e)
x then amounts to replacing

(
h(e)

x

)k
by k�3

(
h(e)

x

)k
and

�3
(
h(e)

x

)k
by − 1

4k
(
h(e)

x

)k
(note that insertions of �3 appear automatically as in (37); in

any case, they would occur when considering a more general class of gauge non-invariant
states in the full theory which are invariant from the reduced point of view). Eigenstates
of the derivative can then be obtained by forming linear combinations such that only the
combinations

(
h(e)

x

)k ±2i�3
(
h(e)

x

)k
appear, which are mapped to ∓ 1

2 ik
((

h(e)
x

)k ±2i�3
(
h(e)

x

)k)
.

In this way, one obtains eigenstates of Êx(x) = (4π)−1F̂ 3
S2(x) and a spectrum identical

to (28).
The operator Êx also appears in the Gauss constraint. A gauge invariant state in the full

theory in particular satisfies �3 · (
JL

(
h(e+(x))

x

) − JR

(
h(e−(x))

x

)
+ JL

(
h(x)

ϕ

) − JR

(
h(x)

ϕ

)) = 0 in
any vertex x where we can assume the form (37) for the spin network (a general vertex would
just be a superposition of those vertices). The operators �3 · J (

h(e±(x))
x

)
simply give operators

Êx where we do not need to distinguish between right and left invariant ones, while for the
derivative operators with respect to ϕ-holonomies we have

�3 · (
JL

(
h(x)

ϕ

) − JR

(
h(x)

ϕ

)) = −i

(
tr
(
h(x)

ϕ �3
)T ∂

∂h
(x)
ϕ

− tr
(
�3h

(x)
ϕ

)T ∂

∂h
(x)
ϕ

)

= i tr
[
�3, h

(x)
ϕ

]T ∂

∂h
(x)
ϕ

= i tr
∂h(x)

ϕ

∂β(x)

∂

∂h
(x)
ϕ

= i
∂

∂β(x)

using
[
�3, h

(x)
ϕ

] = ∂h(x)
ϕ

/
∂β(x) with �A

ϕ (x) = cos β(x)�1 +sin β(x)�2. The right-hand side
is then simply proportional to P̂ β(x) and we see that the �3-component of the full quantum
Gauss constraint is identical to the reduced Gauss constraint. (The remaining components of
the full Gauss constraint would not fix the space of symmetric states and thus cannot be dealt
with in this way. They would have to be satisfied identically.) In what follows we use the
above equation to define the operator P̂ β which then has the spectrum (30) as in the reduced
case.

It remains to look at the full quantization of∫
I
P ϕ dx = 1

4π

∫
I×S1

(
�A

ϕ · (iE dϕ) dx dϑ + �A
ϑ · (iE dϑ) dx dϕ

)
acting on symmetric states. Since they are now �A

ϕ -components of derivative operators with
respect to hϕ , the end result is again a simple derivative operator acting on powers hµ

ϕ , which
gives a spectrum proportional to that in (29). It is only proportional since we chose the surface
for this flux using the great circle S1, which contributes a factor 2π . Choosing other circles
on the orbits would change the factor which, anyway, can always be absorbed by a unitary
transformation. (Such a rescaling is unitary for this operator, as in the isotropic case [36],
since the range of eigenvalues µ is the real line.)
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4.3. Reduced states from the full point of view

The derivations presented above demonstrate that the states obtained from the purely reduced
point of view are also necessary in this form when viewing them as being obtained by restricting
full states. Also basic flux operators obtained in the reduced quantization and from the full
theory via the dual action on distributional symmetric states agree. Thus, the model can be
seen as a symmetric sector of the full theory, associated with a subspace of the distribution
space Cyl∗.

Full symmetric states which satisfy the 3-component of the full Gauss constraint are
also gauge invariant from the reduced point of view. In fact, we can directly take the dual
action of the 3-component of the Gauss constraint to obtain the reduced constraint (the other
components do not map the space of symmetric states to itself ). In the reduced model, this
has as a consequence that the difference of labels associated with neighbouring radial edges
has to be even. The analogue in the full theory can be seen by considering vertices where
radial and orbital edges meet. After inserting invariant connections, a state with such a vertex
is equivalent to a superposition of states with a vertex having one incoming radial edge, a
composition of several orbital edges and an outgoing radial edge. From this point of view, this
gauge invariant vertex is a 2(n + 1)-vertex with the ingoing and outgoing radial edges with
representations j− and j+, respectively, as well as n-closed orbital edges which each contribute
one incoming and one outgoing part with spin ji . For an intertwiner we can first construct the
tensor product of the orbital representations,

⊗n
i=1 ji ⊗ ji = ⊕

i li where only integer li occur
in the decomposition. The vertex intertwiner maps this representation to the tensor product
j+ ⊗ j−, which for integer li is possible in a nontrivial way only if j+ and j− are either both
integer or both 1/2 times an integer. Thus, j+ − j− ∈ Z, which is equivalent to the fact that
the difference of charges k+ − k− must be even.

Similarly, the reduced diffeomorphism constraint can be obtained directly from the dual
action of the full diffeomorphism constraint for a radial shift vector. For other shifts, the dual
action would not fix the space of symmetric states. For a radial shift, then, the constraint
generates transformations which move vertices along the radial manifold, which is the same
as the action generated by the reduced diffeomorphism constraint. Thus, also the reduced
diffeomorphism constraint can be obtained via the dual action on symmetric states which
leads to the same results as quantizing the classically reduced constraint. The Hamiltonian
constraint, on the other hand, is nonlinear in the triads such that its dual action cannot be used.

We thus have seen how states and basic operators of the reduced model can be obtained
from the full theory. Composite operators can then be built from the basic ones within the
model. An analogous derivation of composite-reduced operators from those in the full theory
is more complicated since a direct application of the dual action would not fix the space of
symmetric states.

It follows from these considerations that the representation of the reduced model is
determined by that of the full theory. Since the diffeomorphism covariant holonomy/flux
representation of full loop quantum gravity is unique under certain weak conditions [43], a
representation for the model is selected naturally. Starting from the classically reduced model,
on the other hand, would have left open the choice of representation. In such a case, the
representation is usually selected in such a way that explicit calculations are possible, which
does not say anything about physical correctness. Even working in the framework of this paper
and using the same variables, there would be other possibilities. For instance, viewing the
scalar density P ϕ as a 1-form, which in one dimension has the same transformation properties
if the orientation is preserved, suggests to quantize it via holonomies. In this case, Aϕ rather
than P ϕ would become discrete. Similarly, we could use point holonomies for the densitized



3748 M Bojowald

vector field component Ex , which can also be viewed as a scalar. This would give a discrete
Ax . All these alternatives are possible only in the reduced model due to the special behaviour
under coordinate transformations. But they are not possible in the full theory and thus cannot
be obtained when the link between the model and the full quantization is taken into account.
Studying these representations further can shed light on physical properties and effects that
are unique to the loop representation of the full theory.

4.4. Semiclassical geometry

The flux eigenvalues allow us to find conditions for states which would be expected in regimes
where the spatial geometry is almost classical. Comparing (21) with the Schwarzschild
solution at large radius, or general asymptotic conditions, shows that Ex (corresponding to
r2 for Schwarzschild) should be large together with Ex′ = P β . This implies that the edge
labels ke and the differences ke+(v) − ke−(v) = 2kv have to be large compared to one since
eigenvalues of Êx and P̂ β are directly given by the labels without summing over vertices.
This is analogous to the homogeneous case where for a semiclassical geometry all labels have
to be large.

The situation is different for the other triad components. From the metric we see that
also Eϕ has to be large which, for generic α implies that P ϕ must be large. However, the
quantization of the density P ϕ is well defined only if it is first integrated over an interval in
B, which means that the relevant eigenvalues are given by a vertex sum

∑
v µv , which needs

to be large. This can be realized by large individual µv , or by a dense distribution of vertices
such that many small µv add up to a large value. This situation is analogous to that in the full
theory where geometric operators are always given by vertex sums. It is then expected that
states with many small labels are relevant for a semiclassical geometry since they dominate
the counting of states.

At this point, the difference between P ϕ and Eϕ suggests possible consequences for
semiclassical physics. If we fix a µϕ (which happens, e.g., if we consider the dynamics [36])
and restrict the operators to a separable subspace of our Hilbert space generated by eiµϕAϕ , we
would have a discrete set µϕn of eigenvalues with integer n. Then, the sum

∑
v µv = µϕ

∑
v nv

would still be of the same form and not become denser at large eigenvalues (as would happen
in the full theory for, e.g., the area operator). The triad component Eϕ , which appears in the
metric (21), however, is a more complicated function of the basic variables and thus is likely
to have a more complicated vertex contribution which could lead to crowded eigenvalues [34].

5. Other 1+1 models

There are many other models in 1+1 dimensions which have infinitely many physical degrees
of freedom, but are integrable [14, 45], and which would be interesting to compare with a
loop quantization. The general form of an invariant connection in those cases is (3) where
the �I(x) ∈ su(2), tr(�I (x)2) = − 1

2 can be restricted further depending on the symmetry
action. In general, however, they do not satisfy tr(�I�J ) = − 1

2δIJ , which was the case in
the spherically symmetric model with its nontrivial isotropy group and was responsible for the
simplified structure of states and basic operators.

In cylindrically symmetric models with a space manifold � = R× (S1 ×R), for instance,
the symmetry group S = S1 × R acts freely, and invariant connections and triads have the
form

A = Ax(x)�3 dx + (A1(x)�1 + A2(x)�2) dz + (A3(x)�1 + A4(x)�2) dϕ (40)
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E = Ex(x)�3
∂

∂x
+ (E1(x)�1 + E2(x)�2)

∂

∂z
+ (E3(x)�1 + E4(x)�2)

∂

∂ϕ
(41)

such that tr(�3�z) = 0 = tr(�3�ϕ), but in general tr(�z�ϕ) �= 0.
The corresponding metric is

ds2 = (Ex)−1(E1E4 − E2E3) dx2 + Ex(E1E4 − E2E3)−1(((E3)2 + (E4)2) dz2

− (E2E4 + E1E3) dz dϕ + ((E1)2 + (E2)2) dϕ2) (42)

which is not diagonal. To simplify the model further, one often requires that the metric
is diagonal, which physically corresponds to selecting a particular polarization of Einstein–
Rosen waves. This is achieved by imposing the additional condition E2E4 + E1E3 = 0
which, in order to yield a non-degenerate symplectic structure, has to be accompanied by
A2A4 + A1A3 = 0 for the connection components. Thus, polarized cylindrical waves of this
form also have perpendicular internal directions since now tr(�z�ϕ) = 0 for both A and E,
and similar simplifications as in the spherically symmetric case can be expected.

The form of the metric now is

ds2 = (Ex)−1EzEϕ dx2 + Ex(Eϕ/Ez dz2 + Ez/Eϕ dϕ2) (43)

with

Ez :=
√

(E1)2 + (E2)2, Eϕ :=
√

(E3)2 + (E4)2. (44)

Einstein–Rosen waves are usually represented in the form

ds2 = e2(γ−ψ) dr2 + e2ψ dz2 + e−2ψr2 dϕ2 (45)

with only two free functions γ and ψ . Thus, compared with (43) one function has been
eliminated by gauge fixing the diffeomorphism constraint.

In fact, this form can be obtained from the more general (43) by a field-dependent
coordinate change [46]: the symmetry reduction leads to a spacetime metric ds2 =
e� dU dV + W(e−� dx2 + e� dy2) which indeed has a spatial part as in (43) with three
independent functions �, W = Ex and � = log(Eϕ/Ez). One then introduces t := 1

2 (V −U)

and ρ := 1
2 (V + U) such that ds2 = e�(−dt2 + dρ2) + ρ(e−� dx2 + e� dy2). Finally, defining

� = 2(γ − ψ), e−2ψρ := e−� and renaming x =: ϕ, y =: z leads to the metric (45).
Einstein’s field equations then imply that ψ behaves as a free scalar on a flat spacetime, which
can be quantized with standard Fock techniques [14]. However, to arrive at this form of
the metric, several coordinate transformations have been performed which mix coordinates
with the physical fields. This potentially eliminates any contact the model may have with
a full theory and indicates that results may be very particular to this kind of model. From
the point of view taken here, where the quantum representation comes directly from the full
theory, a subsequent transformation in such a way is impossible, which also means that the
quantization of the model will be more complicated. We will see soon that the transversal
geometry given by (43) becomes discrete after loop quantizing, which ψ when treated as an
ordinary scalar will not be. Thus, the quantum geometries obtained from both representations
differ from each other, which can also lead to differing physical results (as in the homogeneous
case, where loop properties are extremely different from Wheeler–DeWitt results concerning
the issue of singularities and also phenomenology). This may in particular be of interest
in view of large quantum gravity effects derived from wave models [17–19]. On the other
hand, a direct comparison between different quantizations is made more complicated by the
coordinate-dependent field transformation.

We now present the initial steps of a loop quantization along the lines followed in the
spherically symmetric model. This will allow us to see some properties of the quantum
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geometry. Most of the steps to arrive at the kinematical Hilbert space and basic operators can
be done almost identically to those followed before.

In analogy with the spherically symmetric model, we now introduce

Az :=
√

A2
1 + A2

2, Aϕ :=
√

A2
3 + A2

4 (46)

�A
z := A1�1 + A2�2

Az

, �A
ϕ := A3�1 + A4�2

Aϕ

(47)

and analogously Ez,Eϕ,�z
E and �

ϕ

E . Furthermore, we write

�A
ϕ = cos β�1 + sin β�2, (48)

�
ϕ

E = cos(α + β)�1 + sin(α + β)�2. (49)

With the polarization condition, this implies

�A
z = −sin β�1 + cos β�2 �z

E = −sin(α + β)�1 + cos(α + β)�2

such that we have only two angles, β which is pure gauge and α as in the spherically symmetric
model.

The symplectic structure tells us that momenta of Az and Aϕ are not given by triad
components directly, but by P z := Ez cos α and P ϕ := Eϕ cos α. The momentum of β is
P β := (AzE

z + AϕEϕ) sin α, which is related to Ex by the same Gauss constraint as in the
spherically symmetric case.

The adaptation of the construction of states and operators to this model is now
straightforward, the only difference being that we have one additional degree of freedom
per point on B, given by Az for which we have additional holonomies exp(iµzAz) in vertices
of spin network states. As before, flux operators do not give us direct information about the
geometry since fluxes are related to the triad in a more complicated way. Still, the orbital
components of the metric in the z and ϕ directions are easily accessible since Ez/Eϕ = P z/P ϕ

thanks to a cancellation of cos α. Thus, the spectrum of the orbital geometry can easily be
computed, after using techniques as in [47] to quantize the inverse momenta. The radial
geometry, however, and thus the volume are more complicated, similarly to the spherically
symmetric volume.

6. Conclusions

As discussed in this paper, states and basic operators for symmetric models can be obtained
from full loop quantum gravity in a direct way and lead to considerable simplifications even
in inhomogeneous models. Hopefully, this will eventually lead to explicit investigations of
important problems in the full theory, such as general field theory aspects (in particular relating
loop to standard field theory techniques, e.g., [27, 48–50]), issues of the constraint algebra
[32, 51–54] and the master constraint [55], as well as explicit constructions of semiclassical
states [56–59]. Even though, compared to homogeneous models, the system is much more
complicated with infinitely many kinematical degrees of freedom, the situation is simpler than
in the full theory.

In addition to the structure of states and basic operators discussed before, an advantage is
that fluxes commute with each other such that there exists a flux representation. Transforming
to such a representation from the connection representation has been of significant advantage
in homogeneous models, but is not possible in the full theory with its non-commuting fluxes
[60]. Even so, the Hamiltonian constraint equation will turn into a functional difference
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equation with infinitely many independent variables for which most likely new techniques
would have to be developed.

An unexpected complication can arise in inhomogeneous models since momenta
conjugate to the connection may not be identical to triad components. Thus, even though
basic operators are easy to deal with explicitly, this does not necessarily translate to direct
access to the quantum geometry, most importantly the volume operator. Since the volume
operator also plays an important role in defining the dynamics [32] and other interesting
operators, a complicated volume operator whose spectrum is not known explicitly would
probably render calculations in the model almost as hard as those in the full theory. It turns
out that the spherically symmetric model still allows us to diagonalize the volume operator
explicitly, and to develop an explicit calculus rather similar to that in homogeneous models
[34]. This fact opens up the possibility of new conceptual investigations and applications to
the physics of black holes.
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