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Abstract

In this paper we give an elementary approach to univariate polynomial subresultants theory.
Most of the known results of subresultants are recovered, some with more precision, without using
Euclidean divisions or existence of roots for univariate polynomials. The main contributions of this
paper are not new results on subresultants, but rather extensions of the main results over integral
rings to arbitrary commutative rings(@© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Euclidean remainder sequence played a fundamental role for comput-
ing gcds in Euclidean domains such #&dJy], where K is a commutative field
(see Gathen and Luking, 2000Loos, 1982for a historical note). Also, in 1835 Sturm
(seeSturm, 183% found out a method to compute the number of real roots of a polyno-
mial P using the Euclidean remainders®fand its derivative modulo some sign changes.
Sturm’s solution of the real root counting led later to a solution of the quantifier elim-
ination problem over the realddrski, 195). In contrast to the algorithmic possibili-
ties it offers, the Euclidean remainder sequence has a relatively bad numerical behaviour
(seelickteig and Roy, 2001l Moreover, because of the denominators appearing in its coef-
ficients, when the input coefficients are parameter dependent, the Euclidean remainder
seguence has bad specialization properties.

In Collins (1967)Collins studied the connection between subresultants and Euclidean
remainders (see alsboos, 1982 Gathen and Luking, 200€or further precisions). He
proved in particular that the polynomials in the two sequences are pair-wise proportional,
and thus they accomplish the same algorithmic tasks. Contrary to the Euclidean remain-
der sequence, the subresultant sequence has a good behaviour under specialization and a

E-mail addresselkahoui@ucam.ac.ma (M. El Kahoui).

0014-5793/03/$ - see front matt@ 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0747-7171(02)00135-9



282 M. El Kahoui / Journal of Symbolic Computation 35 (2003) 281-292

well controlled growth of coefficient size (stembardi et al., 200@or optimal complex-

ity bounds). Moreover, there are actually many efficient algorithms to compute subresul-
tants (seecombardi et al., 2000; Ducos, 2000; Reischert, 1997; Gathen and Luking, 2000;
Gathen and Gerhard, 1999; Lickteig and Roy, 19964, b, R0Tke connection between
subresultants and the Euclidean remainders offers as well a tool for proving facts about sub-
resultants. Indeed, to prove any fact about subresultants one can first do it for the Euclidean
remainder sequence and then transfer it to subresultants via the established connection. A
typical instance of this way of reasoning is givenHiong (1997)where the behaviour

of subresultants under composition is studied. Recently, Hong develogddrigy, 1999)

an alternative method for proving facts about subresultants. His method is based on an
explicit expression of subresultants in terms of the roots of the input polynomials, and
hence it offers the possibility of geometric reasoning.

These two methods are hard to generalize to other graded rings, the first one is based on
a division process and the second one uses the existence of roots for univariate polynomials.
These two concepts are closely related to univariate polynomials over integral rings.

In this paper we give an elementary approach to subresultants theory. By “elementary”
we mean that every thing will be deduced from algebraic identities, and hence holds over
arbitrary commutative rings. The paper is structured as followsSdntion 2we study
polynomial determinants and their basic propertie§éntion 3ve recall some fundamen-
tal properties of subresultantSection 4is devoted to a systematic study of the algebraic
identities fulfilled by subresultants. We give in this section new algebraic identities from
which we deduce a new proof of the gap structure theotgokieig and Roy, 1996aln
Section 5we give elementary proofs of some well-known facts on the behaviour of subre-
sultants under operations on polynomials.

2. Polynomial determinants and their basic properties

In the remainder of this papéy will be a commutative ring anth < n will be two
positive integers. We denote byl n(A) the A-module ofmx n matrices with coefficients
in A. Consider the freé&\-moduleP, of polynomials with coefficients i\ of degree at
mostn — 1 equipped with the basi§, = [y" L, ...y, 1]. A sequence of polynomials
[P1, ..., Pm]in Pn will be identified with them x n matrix whose row coefficients are the
coordinates of thé&'s in the basid3,.

Definition. Let M = (a;,j) be a matrix inMmn(A). For 0 < j < n—mletd; be
them x m minor of M extracted on the columns 1., m — 1,n — j. The polynomial
DetPo(M) = Zj djy! is called the polynomial determinant bf.

The following well-known lemma shows that the polynomial DetRb) is the determinant
of a matrix with coefficients in the ring[y].

Lemma2.1. Let M be a matrix inMmn(A). Foranyi=1,....,mletR = Zj aj j yn-]
and M be the mx m matrix whose m- 1 first columns are the m- 1 first columns of M
and the coefficients of the last column arg P ., Pm. ThenDetPolM) = Det(M’).
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2.1. Row and column operations

A row (respectively column) operation on a matit € My n(A) consists in
multiplying to the left (respectively to the rightyl by anm x m (respectivelyn x n)
matrix. It is relatively obvious to see that polynomial determinants behave nicely under
row operations. More precisely we have:

Lemma 2.2. Let M be a matrix inMm n(A). Then for any mx m matrix U one has
DetPolU M) = Det(U)DetPo(M).

In contrast to row operations, polynomial determinants do not behave in a “nice” way under
arbitrary column operations. Nevertheless, some results on this behaviour can be stated for
specific classes of column operations. For our purposessegon 5 we consider column
operations given by upper triangular matrices. Since we identify matrices with lists of
polynomials, a column operation on a matrix can be viewed as applying an endomorphism
of the A-moduleA[y] to its rows. Column operations given by upper triangular matrices
correspond to a special class of endomorphisms that we precise in the following definition.

Definition. We say that an endomorphismof the A-moduleA[y] preserves degrees if
for any integed it sends any polynomial of degrekto a polynomial of degreg d. If
moreoverg sends any monic degreepolynomial to a monic degreg polynomial then
we say that) preserves degrees and volumes.

Given an endomorphismt preserving degrees anda positive integer, the restriction

¢n of ¢ to P is an endomorphism whose matrix By is lower triangular. If moreover

¢ preserves volumes, the diagonal coefficients of this matrix are equal to 1 and so
Det(¢n) = 1. The following lemma tells how polynomial determinants behave under
transformations by endomorphisms preserving degrees.

Lemma 2.3. Let¢ be an endomorphism &f[y] preserving degrees. Then for any>m
matrix [Py, ..., Pm] one has

DetPol[¢(Py), ..., ¢(Pm)]) = ang(DetPol[Py, ..., Pm]))

wherea, € A depends only o, n and m. If¢ is one to one them, = Det(¢n)
Det(¢n_m+1)*1, anday, = 1if moreoverg preserves degrees and volumes.

Proof. The matrixU = (ujj) of ¢n in the basisBy is lower triangular. Letc;
(respectivelyc}) be thejth column of[Py, ..., Pn] (respectivelyi¢ (P1), ..., ¢(Pm)]).

Since[¢(Py), ..., ¢(Pm)] =[P1,..., Pn]JUT andUT is upper triangular one has
j-1
C]:Uj)jCj—i—ZUj)iCi i=1...,n 1)
i=1
According toLemma 2.1the polynomial DetP@[¢ (P1), ..., ¢(Pn)]) is the determi-

nant of the matrixK built with the columnsc],...,c;, ; and the column of coef-

ficients ¢ (P1), ..., ¢(Pm). Using multilinearity of determinants and the relati¢h)
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one gets DeéK) = (]‘[T;luj,j)Det(K’) where K’ is the matrix whosem — 1 first
columns arecy, .. ., cpm—1 and the coefficients of the last column &réPy), ..., ¢ (Pn).
According to the linearity of DéK’) with respect to the last column &€’ one gets
DetPol[¢(Py), ..., ¢(Pm)]) = an¢ (DetPol[Py, ..., Pm]) with an = HT‘;llu,-,,-. The
quantity o, obviously depends only o, n andm. Moreover, if¢ is one to one then

an = Det(¢n)Det(¢n-_my1) . O

3. Subresultantsand their basic properties

Let p, g be nonnegative integers afj Q € A[y] be two polynomials with dg@®) <

p and degQ) < g. Lets(p, q) = min(p, q) if p # qands(p,q) =q—1if p=qand
p > 0 (note here that we exclude the case- q = 0). Let us write

P=agyP+ayP 1+ - +ap

Q:bOyQ+blyQ*1+...+bq_
For 0 < i < min(p,q) — 1 we let theith Sylvester matrix ofP, p and Q,q to
be Syly(P, p.Q.q) = [y9 1P, ..., P,yP--1Q, ..., Ql. Whenp # q we let the

8(p, q)th Sylvester matrix ofP, p and Q, q to be[y9=P~1P, ... P]if p < g and
[yP-9-1Q,..., Qlif g < p. Theqth Sylvester matrix is not defined when= q.*

Definition. Let P, Q € A[y] be two polynomials, with ded®) < p and degQ) < q. For
anyi < 8(p, q) the polynomial determinant of the matrix Sy, p, Q, q), denoted by
Si (P, p, Q, ), is called tha th subresultant oP, p andQ, g. The coefficient of degree
i of the polynomial St P, p, Q, q), denoted by $(P, p, Q, q), is called the th principal
subresultant coefficient @, p andQ, g.

When degP) = p and degQ) = g we write Syly (P, Q), Sr (P, Q) and sr(P, Q) for
short instead of Sy|¥P, p, Q. q), S5 (P, p, Q,q) and sr(P, p, Q, g). The polynomial
S (P, p, Q,q) is of degree at most, in particular Sg(P, p, Q,q) is constant and
is nothing but the resultant d® and Q provided that de@®) = p and degQ) = q.
Let us note on the other hand that the matrix S q, P, p) is obtained from
Sylvi (P, p, Q, q) by row exchanges in such a way that

S6(Q.,q, P, p) = (1P Vsk(P, p, Q, 9. (2)
Following this fact one can assume without loss of generalityghatp.
3.1. Specialization of subresultants

In this subsection we give a fundamental result concerning specialization of subresul-
tants. A detailed study of the question, together with a proof of the result we give here, can
be found inGonzlez-Vega et al. (1990, 1994)

1 when p = g and the ringA is integral then SyIM(P, p, Q, q) is actually defined a[sbng]. In our case we
do not define it for this case because we do not assuitoebe integral.
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Lemma3.l. Let p>q > 0and P, Q € A[y] be two polynomials witdeg P) < p and
degQ) < g. Then:

(i) if degP) < p anddeg Q) < g then
Si(P,p,Q,09) =0 fori =0,..., 3(p, ),
(ii) if degP) = p anddegQ) < s < q then

g-s .
, _Jag "Shi(P,p,Q,s) fori=0,..., s

(i) if degP) <s < p,degQ) = g and s> g then
Si(P, p,Q,q) = (-D"by~°Si(P,s,Q,q  fori=0,..., 8(s, q)

wherep; = (q —i)(p—9),
(iv) if degP) < s < p,degQ) = g and s< g then

, _ | =DHiby~°sh(P,s,Q,q) fori=0,...,s
S“(P’p’Q’Q)‘{o fori =s+1,...,5(p,q).

3.2. Bezout identities

Letp > g = 0andP,Q e Aly] be two polynomials with de@®) < p and
degQ) < q.Let0O < i < é(p,q) and letM be the matrix whosep +q — 2i — 1
first columns are th@ +q — 2i — 1 first columns of SylMP, p, Q, q) and the coefficients
of the last column argd= 1P, ..., P,yP=-1Q, ..., Q. FollowingLemma 2.1one has
S (P, p, Q,q) = Det(M). Moreover, by expanding D@il) with respect to the last
column ofM one gets

Si(P, p,Q.q) =Ui(P, p, Q.q)P + Vi(P. p.Q.9)Q 3)

where degUi (P, p.Q.q)) = q—i —1anddegvi(P,p.Q.q) = p—i—1(see
Habicht, 1948 This last identity is called theh Bézout identityof P, pandQ, q. Let us
note that the coefficients of;land \f are, up to signs, minors of ordgr+q — 2i — 1
extracted on Syl\(P, p, Q, g), and so they belong to the ring generated by the coefficients
of P andQ.

Proposition 3.1. If one at least of the coefficients 8f, (P, Q) is regular, i.e. not a zero
divisor in A then the polynomialb); (P, p, Q, q) andV; (P, p, Q, q) are uniquely deter-
mined ovelA by the conditionsleqU; (P, p, Q,q)) <q—i —1,degqV;(P, p, Q,q)) <
p —i — 1and the relation(3).

4, Thechain ruleof subresultants

In this section we will be concerned with some algebraic identities fulfilled by the
subresultant sequence. For this reason we assume that the coefficiéhtsnofQ are
indeterminates and we I&fa, b] be the ring generated by these coefficients. If the formal
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degreesp andq of P and Q are understood from the context then we denote hytt&r

i th subresultant oP, p andQ, g and write Sy = st; yi + sn,i_ly“1 +---+4sho. Letus

first recall the generic chain rule of subresultants, usually known as the Habicht theorem
(Habicht, 1948; Loos, 1982; Collins, 1967; Brown and Traub, 1971; Ho and Yap).1996

Theorem 4.1. Let p> g > Oand P, Q € Z[a, b][y] be two polynomials.

(i) If degP) < g+ 1anddegQ) < qthenforany j<i <q—1one has
srizﬂl’j)Srj = SIj(Shi+1,1 + 1, S, i),
(ii) if degP) = p anddeg Q) = q then for any j<i < é&(p,q) — 1one has

srizﬂl_j)Srj = SIj(Shi41,i +1,55,i).

The original proof of this result is due to Habicht and consists in using induction on
starting fromqg — 1. The initialization step is achieved by using the fact that Siis

the pseudo-remainder ¢&f by Q. We can hide this pseudo-division by using thezBUt

identity corresponding to §ri. The rest of the proof consists in using suitable row
operations on Sylvester matrices so that the chain rule of subresultants can be seen as a
consequence of the behaviour of polynomial determinants under row operations and the
existence of Bzout identities.

4.1. New algebraic identities of subresultants

The generic chain rule of subresultants is not enough to handle in a precise way the
cases where some polynomials in the subresultant sequence drop down in degree. In this
subsection we give some algebraic identities fulfilled by the subresultant sequence which,
to our knowledge, are not known. These algebraic identities, which are interesting in their
own right, permit to build a new proof of thgap structure theorenThey also allow, as we
shall see inCorollary 5.1 to give precisions on gcds computations over integrally closed
domains. First we start by proving some irreducibility results concerning the coefficients
in the subresultant sequence. For this aim the following elementary lemma will be used.

Lemma 4.1. Let A be a UFD and Se A[Xi,..., X, VY1,...,Ys] be a homogeneous
polynomial such that &i,...,%,0,...,0) is irreducible overA. Then S is also
irreducible overA.

We can now state the irreducibility results concerning the principal subresultant coeffi-
cients.

Lemma4.2. Let p>q > Oand P, Q € Z[a, b][y] be two polynomials witdeg P) = p

and degQ) = g. Then the principal subresultants coefficiesisare irreducible, and
pair-wise distinct inZ[a, b]. In particular, for any i < §(p, q) — 1 the polynomialSy; is

primitive overZ[a, b].

Proof. Let us note that the s|’s are homogeneous polynomials in terms of &is and
b’s. Also, it is a classical fact thatgrts irreducible ovefZ.
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Next we prove by induction oq that the sr's are irreducible and pair-wise distinct
in Z[a,b]. Forg = 1 and anyp > 1 the coefficients in question are;s&= by and
stp, and they are irreducible ovét and distinct. Thus the result is true fqgr= 1 and
any p > g. Assume that the result is still true for a givgn> 1 and anyp > q, and
let us prove it forg + 1 and anyp > q + 1. For this letP and Q be polynomials of
degrees respectivelg andq + 1 such thatp > q + 1. Then using Taylor expansions
one can write each isri > 1, in the form sr = si (P, Q1) + apCi + bg+1Di with
PL = agyP +--- + ap_1y = YR and Q1 = boyd*? + ... + agy = yQy. A direct
computation (as we shall see Rroposition 5.2 shows that $(P1, Q1) = sii_1(P2, Q2)
for anyi > 1. Thus sr_1(P,, Q) is the constant term of swith respect taap andbg1.
According to the induction hypothesis the_sn(P», Q2)’s are irreducible ove¥. and pair-
wise distinct. Since the ¢ are homogeneous they are irreducible and pair-wise distinct
overZ fori > 1. The fact that gy = 0 for ap = bgy+1 = 0 while the other sis do not
implies that there is no divisibility relation between aind the other coefficients.

Let us now prove that Siis primitive. Letc be its content and assume that 1 (the
casei = 0 is obvious). Therc divides sy, and according to the relation?;ESri,l =
S_1(Sh41,i +1, Sk, i) given byTheorem 4.k divides sstn_l. Thereforec is a unit
in Z since sy and sf, St _1 are co-primes. [

Theorem 4.2. Let p > q > 0 and P,Q € Z[a, b][ly] be two polynomials with
deg P) = p anddeg Q) = g. Then:
(i) forany0<i <q-2
sri2+1P =UiShi+1 + Vi Sk
sr2,1Q =U/Sr41 + VS
with degUj) < p—i —1,degV)) < p—i —2,degU/) < g—-i—1and
degV/)) <q—-i -2,
(i) forany0<i <d(p,q)—1andj<i
St 1Sr = Ui jShiy1 + Vi j St
withdegU; j) <i — j —landdegV;j) <i — |,
(i) forany0<i <4(p,g) —1and j < itheidentity

i i
SriZJ(rll ! )Ui,jSI’i.:,_l +SI12J(:1 J )Vi,jSI’i

is the Bezout identity corresponding ®rj (Sti11,i + 1, Sr;, i).

Proof. (i) For these identities we use a descending induction. dio start induction we
shall distinguish two cases.

~ If p> qthenone has §6rq_2 = Skq—2(Sfq, 4, Stg—1, 4—1) = SIz_;Stg+V1Sfg—1,
with degV1) < 1, according toTheorem 4.land BSzout identities. On the other
hand, the(q — 1)th Bézout identity ofP and Q givesby %"'P = UQ + Sig_1
with degU) < p — g. Multiplying this last relation bybS 9" and using the
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relation Sg = by 97Q one gets §P = U'Sry + V'Stg—1, and multiplying
this last equality by %Ll and replacing %Llsrq by SESty—2 — V1Siy_1 one gets
srésrg_lP = U’'siaSrg_2+ (V’srg_l— U’V1)Srq-1. This last relation shows thafsr
divides the content oqv/sré_1 — U’V1)Srg—1. Since Sg_1 is primitive sﬁ divides
the content of\/’srz_1 — U’Vy, and simplifying by it one gets a relatiorﬁgrlP =
Uq-2Srg—1 + Vgq—2Sig—2, with degUq_2) < p—qg+ 1 and degVq-2) < p—a.

For the polynomialQ we apply Theorem 4.1and BSzout identities to get the
relation sgSiq_2 = Sfg-2(Sky. g, Slg-1.94 — 1) = srgflSrq + V1SIg—1 with
degVi) < 1. Since §§ = b)97'Q, sty = bY 4 and Sg_1 is primitive the term
b>~9~" divides the content o¢;. Simplifying by it we get the desired relation.

— If p = ¢ then let us simplify in two different ways §r>(Srfq—1, 9, Q, ). On
the first hand, according to the relationgSt = —bgP + apQ andLemma 2.2
one has the relation §r2(Srq—1,d, Q,q) = Sig—2(—boP,q, Q,q) = bSSrq_z.
On the other hand, usingemma 3.1(iv) and the relation(2) one gets the relation
Srg—2(SIg—1. 0, Q,q) = bSry—2(Q, g, Sig—1,q — 1). The Bézout identity of
Siy-2(Q, g, Stg—1, q—1) writes as S§-2(Q, g, Siq-1, q—1) = srﬁ_lQ+V18rq_1,
with degVy) < 1. Thusb(z)Srq_z = bo(srg_lQ + V1Srg-1), and simplifying by
b one finally gets %r_lQ = Ué_ZSrq,l + V(;_ZSrq,z, with degU(’]_l) < 1 and
Véfz = bp. To prove the relation correspondingfowe multiply the last relation by
ap and replaceoQ by Siy—1 + boP to getbosré_lP = (@Ug_, — srg_l)Srq_l +

agboSrq—2. Thusbg divides the content cﬂoUé_z - sré_l since Sg_1 is primitive,
and simplifying bybg one gets the desired relation.

At the close of the cases studied above we conclude that the identities of (i) are fulfilled
fori = q — 2. Now assume that the same holds for a givenil< q — 2 and let us prove
it for i — 1. According to the induction hypothesis one has

s, P = UiShii1+ Vi Si (4)
with degU;j) < p—i — 1 and degVi) < p —i — 2. On the other hand, one has
S, 1Sh1 = SK_1(Shi1.i 4+ 1, SK, i) = s#Sh 11 + V1S, with deg V1) < 1 according

to Theorem 4.1and BSzout identities. Multiplying4) by s# and replacing $Sr+1 by
sZ, 1 Sh—1— V1St one gets §t ;SPP = (Vi —U; V1)St + U;sZ,; St _1. This last relation
shows that %2&1 divides the content of; —U; V1 since Sris primitive. Simplifying by sf+1
one finally gets a relation of the formi2§|‘ = U;j_1SK + V;Sr_1 withdeqgUi_1) < p—i
and degV;_1) < p—i —1. Using similar arguments one obtains the relation corresponding
to Q.

(i) For the proof of the identity we use an ascending inductioni etarting from
the casej + 1 which is given byTheorem 4.1 Assume now that for a givep+ 1 <

i < q—1onehas $_¢18rj = Ui jShi41 + Vi,jSi with degU;j) < i —j — 1 and
degVi,j) < i — j. Theorem 4.land Bézout identities give another identity of the form
sri2+28ri = sri2+18n+2 + V1S, 1 with deg Vi) < 1. Combining these two last identities
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after multiplying the first one by %1[2 and taking into account the fact that the'Sare
primitive one gets the desired relation.
(iii) Let us write the BEzout identity corresponding to 611,41, Sij, i) in the form

Srj(Sfi+1,i +1,SK,i) =USKi1 + VSE withdegU) <i — j —1landdegV) <i — j.
Acqording to the identity Qf (if) and’heorem 4.Jone also has $(Sri1,1 + 1, SK,i) =
sP' P, s+ TVV S, with degU; ) < i — j — 1and degvij) <i — j.

SinceZ[a, b] is integral and Sr(Sr41,i + 1, Shi, i) # 0 one had) = sr-z(i’j’l)Uu and

o i+1
V= srizfr'l’”l)\/i,j accordingtd.emma 3.1 O

4.2. The gap structure theorem

In this subsection we give a new proof of the gap structure theorem of subre-
sultants [ickteig and Roy, 1996a which is a refinement of the subresultant theorem
(Habicht, 1948; Collins, 1967; Brown and Traub, 1971; Loos, 1982; @leaz\Vega et al.,
1990; Ducos, 2000 Actually this theorem is formulated over an integral ring. Here we
give a version where the ring is arbitrary.

Theorem 4.3. LetA be a commutative ring, p q be positive integers and,®) € A[y]
be polynomials witldeg P) = p anddeg Q) = g. Let0 < j < §(p, ), and assume that
srj is regular inA andSrj_1 # Ois of degree k< j — 1. Then:

(i) Srj_2="---=Sk41 =0,
o ol —k—1 j—k—1g,
(i) ST Sk = S Srj_1,
(iii) sr#St-1 = (1)) 7¥srj_1 ksKSr; + C;Srj_1, with Cj € A[y].

Proof. The facts (i) and (ii) follow obviously fromlrheorem 4.1and Lemma 3.4ii).
(i) Let us write the BSzout identity of S¢_1(Srj, j,Srj—1,j — 1) in the form
Stk—1(Srj, , Srj—1, j—1) = USrj+VSrj_1withdegU) < j—k—1and degV) < j—k.

Using Lemma 3.1one getdJ = (—1)J—ksr} ’k’lsr} :'f“kl, and using the relation (ii) one

getsU = (—1)j*ksr?(j_k_1)srj _1.kStk. Now using Theorem 4.4(ii) and (iii) one has
erZSrk_l = U;jSrj 4+ V;Srj_1 andU = srj?‘“’k’l)uj. Since sy is regular inA we have
Uj = (1)) 7Xsrj_1 kst and this proves the desired relatiori]

5. Behaviour with respect to operationson polynomials

In this section we study how subresultants behave with respect to some elementary
operations on polynomials. The results of this section are classical and can for instance be
found inChardin (1991)Cohen et al. (1999Hong (1999)andCheng (2001)The proofs
we give for the results of this section are elementary in so far as only properties of
polynomial determinants are used.

It is a classical fact that the resultant is invariant under translation. The following
proposition shows that subresultants “commute” with translation.
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Proposition 5.1. Let p> g be two positive integers and, ® € A[y] be two polynomials
with deg P) < p anddeqg Q) < g. Then for anyx € A one has:

SH(P(y+ o), Qly+a)) = Si(P, QY +«) fori =0,1,..., 3(p, Q).

Proof. For 0 < i < §8(p,q) one has S(P(y + «), Q(y + «)) = DetPol(M;)
where M; = [y97-1P(y 4+ ), ..., P(y + ), yP7-1Q(y + ), ..., QY + o).
By using a suitable row operation one can transform the maixinto the matrix
M =[(y+ )% Py+a),....Py+a), Y+ )P 1Q(y + ), .... Qly + @],
so that S(P(y + «), Q(y + «)) = DetPolM/). On the other hand, if we lep
be the automorphism oA-algebras defined by(y) = y + « then we have the
relationM; = [ (Y4~ "1P(y)), ..., ¢(P(y)), (YP'1Q(Y)), ..., #(Q(y))], and using
Lemma 2.3we get DetPalM;) = ¢(DetPolSyly, (P, Q))), which gives St(P(y +
a), QY +@)) = Si(P, Q)(y +a). U

The following proposition concerns the behaviour of the subresultant sequence when the
polynomialsP andQ have a common factor.

Proposition 5.2. Let p > g be two positive integers and, B, R € A[y] be polynomials
withdeg P) < p,degQ) < q anddegR) =r. Then:

@) S(PR p+r,QR q+r)=0fori =0,...,r —1,
(i) Sri(PRp+r,QRg+r) =a*Si(P,p,Q,q)R fori =r,...,8(p,q) +r,
whereu; = p+ g+ 2r — 2i — 1and a is the leading coefficient of R.

Proof. First we prove the result in the case wh&e= y". Forany 0<i < §(p,q) +r
ther last columns of§ = Sylv;(y'P, p+r,y" Q, q +r) are zero.

— If i <r — 1then any coefficient of Sty" P, p+r, ¥ Q, q +r) is the determinant
of a sub-matrix of§ involving at least one of ity last columns. Therefore
SE(Y'P,p+r,yQ,q+r)=0.

— If i > r then by deleting ther last columns of§ one gets the matrix
Sylvi_; (P, p, Q, @). Therefore Sty P, p+r,y'Q,q+r) =y'Sii_ (P, p, Q, ).

Now consider a degreepolynomial R and let¢ be the homomorphism dgk[y] defined
byp(y)=y'ifi <r—21andp(y') =y "Rifi >r. Itis clear that preserves degrees

and that¢(S) = Sylviy(PR p +r, QR g + r). This gives the relation PR, p +

r,QR q+r) =aPtat2—2-14(Sr(y'P, p+r,y Q, q +r)) according td_emma 2.3

The desired relation is deduced from this last one and the relation corresponding to the
caseR=y'. O

Corollary 5.1. Let A be a commutative ring and p= q be two positive integers. Let
P, Q € Aly] be two polynomials witdeg P) = p anddeg Q) = q.
() If the polynomials P and Q have a common divisor of degree k then
st =0, i=01,..., k-1 (5)

(ii) If A is integral, thesr's satisfyEq.(5) andsr # 0 thenSr is agcdof P and Q
over the fractions field oA.
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(i) If Aisa UFD and P or Q is primitive, ther’s satisfyEq. (5) andslk = 0 then the
primitive part ofSr is agcdof P and Q oveA.

(iv) If A is integrally closed and P or Q is monic, tise’s satisfyEq.(5) andsrk # 0
thensr;lsrk € Aly] and is agcdof P and Q oveA.

Proof. (i) and (ii) are direct consequencesRroposition 5.2

(iif) Assume thatA is a UFD and for example th& is primitive. Then the gcd oP and
Q overA is primitive. Since the primitive pa® of Sk is a gcd ofP andQ overK,
it is also a gcd ofP andQ overA.

(iv) Assume thatA is integrally closed and for example th& is monic. We have
P = s tUksr 1SK with sk *Uk and sptSi monic with coefficients irk. SinceA
is integrally closed andP has its coefficients il both of s(luk and s,jlsrk have
their coefficients iPA. On the other hand, one h&g = s, *U/sr*SK and Q and
sr;lsrk have their coefficients iA. Thus sglu‘é eAlyl. O
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