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Abstract

In this paper we give an elementary approach to univariate polynomial subresultants theory.
Most of the known results of subresultants are recovered, some with more precision, without using
Euclidean divisions or existence of roots for univariate polynomials. The main contributions of this
paper are not new results on subresultants, but rather extensions of the main results over integral
rings to arbitrary commutative rings.c© 2003 Elsevier Science Ltd. All rights reserved.

Keywords:Polynomial determinant; Subresultant sequence

1. Introduction

The Euclidean remainder sequence played a fundamental role for comput-
ing gcds in Euclidean domains such asK[y], where K is a commutative field
(seeGathen and Luking, 2000; Loos, 1982for a historical note). Also, in 1835 Sturm
(seeSturm, 1835) found out a method to compute the number of real roots of a polyno-
mial P using the Euclidean remainders ofP and its derivative modulo some sign changes.
Sturm’s solution of the real root counting led later to a solution of the quantifier elim-
ination problem over the reals (Tarski, 1951). In contrast to the algorithmic possibili-
ties it offers, the Euclidean remainder sequence has a relatively bad numerical behaviour
(seeLickteig and Roy, 2001). Moreover, because of the denominators appearing in its coef-
ficients, when the input coefficients are parameter dependent, the Euclidean remainder
sequence has bad specialization properties.

In Collins (1967)Collins studied the connection between subresultants and Euclidean
remainders (see alsoLoos, 1982; Gathen and Luking, 2000for further precisions). He
proved in particular that the polynomials in the two sequences are pair-wise proportional,
and thus they accomplish the same algorithmic tasks. Contrary to the Euclidean remain-
der sequence, the subresultant sequence has a good behaviour under specialization and a
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well controlled growth of coefficient size (seeLombardi et al., 2000for optimal complex-
ity bounds). Moreover, there are actually many efficient algorithms to compute subresul-
tants (seeLombardi et al., 2000; Ducos, 2000; Reischert, 1997; Gathen and Luking, 2000;
Gathen and Gerhard, 1999; Lickteig and Roy, 1996a, b, 2001). The connection between
subresultants and the Euclidean remainders offers as well a tool for proving facts about sub-
resultants. Indeed, to prove any fact about subresultants one can first do it for the Euclidean
remainder sequence and then transfer it to subresultants via the established connection. A
typical instance of this way of reasoning is given inHong (1997)where the behaviour
of subresultants under composition is studied. Recently, Hong developed in(Hong, 1999)
an alternative method for proving facts about subresultants. His method is based on an
explicit expression of subresultants in terms of the roots of the input polynomials, and
hence it offers the possibility of geometric reasoning.

These two methods are hard to generalize to other graded rings, the first one is based on
a division process and the second one uses the existence of roots for univariate polynomials.
These two concepts are closely related to univariate polynomials over integral rings.

In this paper we give an elementary approach to subresultants theory. By “elementary”
we mean that every thing will be deduced from algebraic identities, and hence holds over
arbitrary commutative rings. The paper is structured as follows: inSection 2we study
polynomial determinants and their basic properties. InSection 3we recall some fundamen-
tal properties of subresultants.Section 4is devoted to a systematic study of the algebraic
identities fulfilled by subresultants. We give in this section new algebraic identities from
which we deduce a new proof of the gap structure theorem (Lickteig and Roy, 1996a). In
Section 5we give elementary proofs of some well-known facts on the behaviour of subre-
sultants under operations on polynomials.

2. Polynomial determinants and their basic properties

In the remainder of this paperA will be a commutative ring andm ≤ n will be two
positive integers. We denote byMm,n(A) theA-module ofm×n matrices with coefficients
in A. Consider the freeA-modulePn of polynomials with coefficients inA of degree at
mostn − 1 equipped with the basisBn = [yn−1, . . . , y, 1]. A sequence of polynomials
[P1, . . . , Pm] in Pn will be identified with them× n matrix whose row coefficients are the
coordinates of thePi ’s in the basisBn.

Definition. Let M = (ai, j ) be a matrix inMm,n(A). For 0 ≤ j ≤ n − m let dj be
the m × m minor of M extracted on the columns 1, . . . , m − 1, n − j . The polynomial
DetPol(M) = ∑

j dj y j is called the polynomial determinant ofM.

The following well-known lemma shows that the polynomial DetPol(M) is the determinant
of a matrix with coefficients in the ringA[y].
Lemma 2.1. Let M be a matrix inMm,n(A). For any i = 1, . . . , m let Pi = ∑

j ai, j yn− j

and M′ be the m× m matrix whose m− 1 first columns are the m− 1 first columns of M
and the coefficients of the last column are P1, . . . , Pm. ThenDetPol(M) = Det(M ′).
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2.1. Row and column operations

A row (respectively column) operation on a matrixM ∈ Mm,n(A) consists in
multiplying to the left (respectively to the right)M by an m × m (respectivelyn × n)
matrix. It is relatively obvious to see that polynomial determinants behave nicely under
row operations. More precisely we have:

Lemma 2.2. Let M be a matrix inMm,n(A). Then for any m× m matrix U one has
DetPol(U M) = Det(U)DetPol(M).

In contrast to row operations, polynomial determinants do not behave in a “nice” way under
arbitrary column operations. Nevertheless, some results on this behaviour can be stated for
specific classes of column operations. For our purpose, seeSection 5, we consider column
operations given by upper triangular matrices. Since we identify matrices with lists of
polynomials, a column operation on a matrix can be viewed as applying an endomorphism
of the A-moduleA[y] to its rows. Column operations given by upper triangular matrices
correspond to a special class of endomorphisms that we precise in the following definition.

Definition. We say that an endomorphismφ of the A-moduleA[y] preserves degrees if
for any integerd it sends any polynomial of degreed to a polynomial of degree≤ d. If
moreover,φ sends any monic degreed polynomial to a monic degreed polynomial then
we say thatφ preserves degrees and volumes.

Given an endomorphismφ preserving degrees andn a positive integer, the restriction
φn of φ to Pn is an endomorphism whose matrix inBn is lower triangular. If moreover
φ preserves volumes, the diagonal coefficients of this matrix are equal to 1 and so
Det(φn) = 1. The following lemma tells how polynomial determinants behave under
transformations by endomorphisms preserving degrees.

Lemma 2.3. Letφ be an endomorphism ofA[y] preserving degrees. Then for any m× n
matrix [P1, . . . , Pm] one has

DetPol([φ(P1), . . . , φ(Pm)]) = αnφ(DetPol([P1, . . . , Pm]))
whereαn ∈ A depends only onφ, n and m. Ifφ is one to one thenαn = Det(φn)

Det(φn−m+1)
−1, andαn = 1 if moreoverφ preserves degrees and volumes.

Proof. The matrix U = (ui, j ) of φn in the basisBn is lower triangular. Letcj

(respectivelyc′
j ) be the j th column of[P1, . . . , Pm] (respectively[φ(P1), . . . , φ(Pm)]).

Since[φ(P1), . . . , φ(Pm)] = [P1, . . . , Pm]UT andUT is upper triangular one has

c′
j = u j , j cj +

j −1∑
i=1

u j ,i ci j = 1, . . . , n. (1)

According to Lemma 2.1the polynomial DetPol([φ(P1), . . . , φ(Pm)]) is the determi-
nant of the matrixK built with the columnsc′

1, . . . , c′
m−1 and the column of coef-

ficients φ(P1), . . . , φ(Pm). Using multilinearity of determinants and the relation(1)
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one gets Det(K ) = (∏m−1
j =1 u j , j

)
Det(K ′) where K ′ is the matrix whosem − 1 first

columns arec1, . . . , cm−1 and the coefficients of the last column areφ(P1), . . . , φ(Pm).
According to the linearity of Det(K ′) with respect to the last column ofK ′ one gets
DetPol([φ(P1), . . . , φ(Pm)]) = αnφ(DetPol([P1, . . . , Pm])) with αn = ∏m−1

j =1 u j , j . The
quantityαn obviously depends only onφ, n and m. Moreover, ifφ is one to one then
αn = Det(φn)Det(φn−m+1)

−1. �

3. Subresultants and their basic properties

Let p, q be nonnegative integers andP, Q ∈ A[y] be two polynomials with deg(P) ≤
p and deg(Q) ≤ q. Let δ(p, q) = min(p, q) if p �= q andδ(p, q) = q − 1 if p = q and
p > 0 (note here that we exclude the casep = q = 0). Let us write

P = a0yp + a1yp−1 + · · · + ap

Q = b0yq + b1yq−1 + · · · + bq .

For 0 ≤ i ≤ min(p, q) − 1 we let thei th Sylvester matrix ofP, p and Q, q to
be Sylvi (P, p, Q, q) = [yq−i−1P, . . . , P, yp−i−1Q, . . . , Q]. When p �= q we let the
δ(p, q)th Sylvester matrix ofP, p and Q, q to be [yq−p−1P, . . . , P] if p < q and
[yp−q−1Q, . . . , Q] if q < p. Theqth Sylvester matrix is not defined whenp = q.1

Definition. Let P, Q ∈ A[y] be two polynomials, with deg(P) ≤ p and deg(Q) ≤ q. For
any i ≤ δ(p, q) the polynomial determinant of the matrix Sylvi (P, p, Q, q), denoted by
Sri (P, p, Q, q), is called thei th subresultant ofP, p andQ, q. The coefficient of degree
i of the polynomial Sri (P, p, Q, q), denoted by sri (P, p, Q, q), is called thei th principal
subresultant coefficient ofP, p andQ, q.

When deg(P) = p and deg(Q) = q we write Sylvi (P, Q), Sri (P, Q) and sri (P, Q) for
short instead of Sylvi (P, p, Q, q), Sri (P, p, Q, q) and sri (P, p, Q, q). The polynomial
Sri (P, p, Q, q) is of degree at mosti , in particular Sr0(P, p, Q, q) is constant and
is nothing but the resultant ofP and Q provided that deg(P) = p and deg(Q) = q.
Let us note on the other hand that the matrix Sylvi (Q, q, P, p) is obtained from
Sylvi (P, p, Q, q) by row exchanges in such a way that

Sri (Q, q, P, p) = (−1)(p−i )(q−i )Sri (P, p, Q, q). (2)

Following this fact one can assume without loss of generality thatq ≤ p.

3.1. Specialization of subresultants

In this subsection we give a fundamental result concerning specialization of subresul-
tants. A detailed study of the question, together with a proof of the result we give here, can
be found inGonzález-Vega et al. (1990, 1994).

1 When p = q and the ringA is integral then Sylvq(P, p, Q, q) is actually defined as[b−1
0 Q]. In our case we

do not define it for this case because we do not assumeA to be integral.
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Lemma 3.1. Let p ≥ q ≥ 0 and P, Q ∈ A[y] be two polynomials withdeg(P) ≤ p and
deg(Q) ≤ q. Then:

(i) if deg(P) < p anddeg(Q) < q then

Sri (P, p, Q, q) = 0 for i = 0, . . . , δ(p, q),

(ii) if deg(P) = p anddeg(Q) ≤ s < q then

Sri (P, p, Q, q) =
{

aq−s
0 Sri (P, p, Q, s) for i = 0, . . . , s

0 for i = s + 1, . . . , δ(p, q),

(iii) if deg(P) ≤ s < p, deg(Q) = q and s≥ q then

Sri (P, p, Q, q) = (−1)µi bp−s
0 Sri (P, s, Q, q) for i = 0, . . . , δ(s, q)

whereµi = (q − i )(p − s),

(iv) if deg(P) ≤ s < p, deg(Q) = q and s< q then

Sri (P, p, Q, q) =
{

(−1)µi bp−s
0 Sri (P, s, Q, q) for i = 0, . . . , s

0 for i = s + 1, . . . , δ(p, q) .

3.2. B́ezout identities

Let p ≥ q ≥ 0 and P, Q ∈ A[y] be two polynomials with deg(P) ≤ p and
deg(Q) ≤ q. Let 0 ≤ i ≤ δ(p, q) and let M be the matrix whosep + q − 2i − 1
first columns are thep+q −2i −1 first columns of Sylvi (P, p, Q, q) and the coefficients
of the last column areyq−i−1P, . . . , P, yp−i−1Q, . . . , Q. FollowingLemma 2.1one has
Sri (P, p, Q, q) = Det(M). Moreover, by expanding Det(M) with respect to the last
column ofM one gets

Sri (P, p, Q, q) = Ui (P, p, Q, q)P + V i (P, p, Q, q)Q (3)

where deg(Ui (P, p, Q, q)) ≤ q − i − 1 and deg(V i (P, p, Q, q)) ≤ p − i − 1 (see
Habicht, 1948). This last identity is called thei th Bézout identityof P, p andQ, q. Let us
note that the coefficients of Ui and Vi are, up to signs, minors of orderp + q − 2i − 1
extracted on Sylvi (P, p, Q, q), and so they belong to the ring generated by the coefficients
of P andQ.

Proposition 3.1. If one at least of the coefficients ofSri (P, Q) is regular, i.e. not a zero
divisor in A then the polynomialsUi (P, p, Q, q) andV i (P, p, Q, q) are uniquely deter-
mined overA by the conditionsdeg(Ui (P, p, Q, q)) ≤ q − i − 1, deg(V i (P, p, Q, q)) ≤
p − i − 1 and the relation(3).

4. The chain rule of subresultants

In this section we will be concerned with some algebraic identities fulfilled by the
subresultant sequence. For this reason we assume that the coefficients ofP and Q are
indeterminates and we letZ[a, b] be the ring generated by these coefficients. If the formal
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degreesp andq of P and Q are understood from the context then we denote by Sri the
i th subresultant ofP, p andQ, q and write Sri = sri yi + sri,i−1yi−1 + · · · + sri,0. Let us
first recall the generic chain rule of subresultants, usually known as the Habicht theorem
(Habicht, 1948; Loos, 1982; Collins, 1967; Brown and Traub, 1971; Ho and Yap, 1996).

Theorem 4.1. Let p≥ q > 0 and P, Q ∈ Z[a, b][y] be two polynomials.

(i) If deg(P) ≤ q + 1 anddeg(Q) ≤ q then for any j< i ≤ q − 1 one has

sr2(i− j )
i+1 Srj = Srj (Sri+1, i + 1, Sri , i ),

(ii) if deg(P) = p anddeg(Q) = q then for any j< i ≤ δ(p, q) − 1 one has

sr2(i− j )
i+1 Srj = Srj (Sri+1, i + 1, Sri , i ).

The original proof of this result is due to Habicht and consists in using induction oni
starting fromq − 1. The initialization step is achieved by using the fact that Srq−1 is
the pseudo-remainder ofP by Q. We can hide this pseudo-division by using the B´ezout
identity corresponding to Srq−1. The rest of the proof consists in using suitable row
operations on Sylvester matrices so that the chain rule of subresultants can be seen as a
consequence of the behaviour of polynomial determinants under row operations and the
existence of B´ezout identities.

4.1. New algebraic identities of subresultants

The generic chain rule of subresultants is not enough to handle in a precise way the
cases where some polynomials in the subresultant sequence drop down in degree. In this
subsection we give some algebraic identities fulfilled by the subresultant sequence which,
to our knowledge, are not known. These algebraic identities, which are interesting in their
own right, permit to build a new proof of thegap structure theorem. They also allow, as we
shall see inCorollary 5.1, to give precisions on gcds computations over integrally closed
domains. First we start by proving some irreducibility results concerning the coefficients
in the subresultant sequence. For this aim the following elementary lemma will be used.

Lemma 4.1. Let A be a UFD and S∈ A[x1, . . . , xr , y1, . . . , ys] be a homogeneous
polynomial such that S(x1, . . . , xr , 0, . . . , 0) is irreducible over A. Then S is also
irreducible overA.

We can now state the irreducibility results concerning the principal subresultant coeffi-
cients.

Lemma 4.2. Let p≥ q > 0 and P, Q ∈ Z[a, b][y] be two polynomials withdeg(P) = p
and deg(Q) = q. Then the principal subresultants coefficientssri are irreducible, and
pair-wise distinct inZ[a, b]. In particular, for any i ≤ δ(p, q) − 1 the polynomialSri is
primitive overZ[a, b].
Proof. Let us note that the sri, j ’s are homogeneous polynomials in terms of theak’s and
bl ’s. Also, it is a classical fact that sr0 is irreducible overZ.
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Next we prove by induction onq that the sri ’s are irreducible and pair-wise distinct
in Z[a, b]. For q = 1 and anyp ≥ 1 the coefficients in question are sr1 = b0 and
sr0, and they are irreducible overZ and distinct. Thus the result is true forq = 1 and
any p ≥ q. Assume that the result is still true for a givenq > 1 and anyp ≥ q, and
let us prove it forq + 1 and anyp ≥ q + 1. For this letP and Q be polynomials of
degrees respectivelyp andq + 1 such thatp ≥ q + 1. Then using Taylor expansions
one can write each sri , i ≥ 1, in the form sri = sri (P1, Q1) + apCi + bq+1Di with
P1 = a0yp + · · · + ap−1y = y P2 and Q1 = b0yq+1 + · · · + aqy = yQ2. A direct
computation (as we shall see inProposition 5.2) shows that sri (P1, Q1) = sri−1(P2, Q2)

for any i ≥ 1. Thus sri−1(P2, Q2) is the constant term of sri with respect toap andbq+1.
According to the induction hypothesis the sri−1(P2, Q2)’s are irreducible overZ and pair-
wise distinct. Since the sri ’s are homogeneous they are irreducible and pair-wise distinct
overZ for i ≥ 1. The fact that sr0 = 0 for ap = bq+1 = 0 while the other sri ’s do not
implies that there is no divisibility relation between sr0 and the other coefficients.

Let us now prove that Sri is primitive. Letc be its content and assume thati ≥ 1 (the
casei = 0 is obvious). Thenc divides sri , and according to the relation sr2

i+1Sri−1 =
Sri−1(Sri+1, i + 1, Sri , i ) given byTheorem 4.1c divides sr2i+1sri−1. Thereforec is a unit
in Z since sri and sr2i+1sri−1 are co-primes. �

Theorem 4.2. Let p ≥ q > 0 and P, Q ∈ Z[a, b][y] be two polynomials with
deg(P) = p anddeg(Q) = q. Then:

(i) for any0 ≤ i ≤ q − 2

sr2i+1P = Ui Sri+1 + Vi Sri

sr2i+1Q = U ′
i Sri+1 + V ′

i Sri

with deg(Ui ) ≤ p − i − 1, deg(Vi ) ≤ p − i − 2, deg(U ′
i ) ≤ q − i − 1 and

deg(V ′
i ) ≤ q − i − 2,

(ii) for any0 ≤ i ≤ δ(p, q) − 1 and j < i

sr2i+1Srj = Ui, j Sri+1 + Vi, j Sri

with deg(Ui, j ) ≤ i − j − 1 anddeg(Vi, j ) ≤ i − j ,
(iii) for any0 ≤ i ≤ δ(p, q) − 1 and j < i the identity

sr2(i− j −1)

i+1 Ui, j Sri+1 + sr2(i− j −1)

i+1 Vi, j Sri

is the B́ezout identity corresponding toSrj (Sri+1, i + 1, Sri , i ).

Proof. (i) For these identities we use a descending induction oni . To start induction we
shall distinguish two cases.

– If p > q then one has sr2
qSrq−2 = Srq−2(Srq, q, Srq−1, q−1) = sr2q−1Srq+V1Srq−1,

with deg(V1) ≤ 1, according toTheorem 4.1and Bézout identities. On the other
hand, the(q − 1)th Bézout identity ofP and Q givesbp−q+1

0 P = U Q + Srq−1

with deg(U) ≤ p − q. Multiplying this last relation bybp−q−1
0 and using the
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relation Srq = bp−q−1
0 Q one gets sr2q P = U ′Srq + V ′Srq−1, and multiplying

this last equality by sr2
q−1 and replacing sr2

q−1Srq by sr2qSrq−2 − V1Srq−1 one gets

sr2qsr2q−1P = U ′sr2qSrq−2+ (V ′sr2q−1−U ′V1)Srq−1. This last relation shows that sr2
q

divides the content of(V ′sr2q−1 − U ′V1)Srq−1. Since Srq−1 is primitive sr2q divides

the content ofV ′sr2q−1 − U ′V1, and simplifying by it one gets a relation sr2
q−1P =

Uq−2Srq−1 + Vq−2Srq−2, with deg(Uq−2) ≤ p − q + 1 and deg(Vq−2) ≤ p − q.

For the polynomialQ we applyTheorem 4.1and Bézout identities to get the
relation sr2qSrq−2 = Srq−2(Srq, q, Srq−1, q − 1) = sr2q−1Srq + V1Srq−1 with

deg(V1) ≤ 1. Since Srq = bp−q−1
0 Q, srq = bp−q

0 and Srq−1 is primitive the term

bp−q−1
0 divides the content ofV1. Simplifying by it we get the desired relation.

– If p = q then let us simplify in two different ways Srq−2(Srq−1, q, Q, q). On
the first hand, according to the relation Srq−1 = −b0P + a0Q and Lemma 2.2
one has the relation Srq−2(Srq−1, q, Q, q) = Srq−2(−b0P, q, Q, q) = b2

0Srq−2.
On the other hand, usingLemma 3.1(iv) and the relation(2) one gets the relation
Srq−2(Srq−1, q, Q, q) = b0Srq−2(Q, q, Srq−1, q − 1). The Bézout identity of
Srq−2(Q, q, Srq−1, q−1) writes as Srq−2(Q, q, Srq−1, q−1) = sr2q−1Q+V1Srq−1,

with deg(V1) ≤ 1. Thusb2
0Srq−2 = b0(sr2q−1Q + V1Srq−1), and simplifying by

b0 one finally gets sr2q−1Q = U ′
q−2Srq−1 + V ′

q−2Srq−2, with deg(U ′
q−1) ≤ 1 and

V ′
q−2 = b0. To prove the relation corresponding toP we multiply the last relation by

a0 and replacea0Q by Srq−1 + b0P to getb0sr2q−1P = (a0U ′
q−2 − sr2q−1)Srq−1 +

a0b0Srq−2. Thusb0 divides the content ofa0U ′
q−2 − sr2q−1 since Srq−1 is primitive,

and simplifying byb0 one gets the desired relation.

At the close of the cases studied above we conclude that the identities of (i) are fulfilled
for i = q − 2. Now assume that the same holds for a given 1≤ i < q − 2 and let us prove
it for i − 1. According to the induction hypothesis one has

sr2i+1P = Ui Sri+1 + Vi Sri (4)

with deg(Ui ) ≤ p − i − 1 and deg(Vi ) ≤ p − i − 2. On the other hand, one has
sr2i+1Sri−1 = Sri−1(Sri+1, i + 1, Sri , i ) = sr2i Sri+1 + V1Sri , with deg(V1) ≤ 1 according
to Theorem 4.1and Bézout identities. Multiplying(4) by sr2i and replacing sr2

i Sri+1 by
sr2i+1Sri−1 − V1Sri one gets sr2i+1sr2i P = (Vi −Ui V1)Sri +Ui sr2i+1Sri−1. This last relation
shows that sr2i+1 divides the content ofVi −Ui V1 since Sri is primitive. Simplifying by sr2i+1
one finally gets a relation of the form sr2

i P = Ui−1Sri + Vi Sri−1 with deg(Ui−1) ≤ p − i
and deg(Vi−1) ≤ p−i −1. Using similar arguments one obtains the relation corresponding
to Q.

(ii) For the proof of the identity we use an ascending induction oni starting from
the casej + 1 which is given byTheorem 4.1. Assume now that for a givenj + 1 <

i < q − 1 one has sr2
i+1Srj = Ui, j Sri+1 + Vi, j Sri with deg(Ui, j ) ≤ i − j − 1 and

deg(Vi, j ) ≤ i − j . Theorem 4.1and Bézout identities give another identity of the form
sr2i+2Sri = sr2i+1Sri+2 + V1Sri+1 with deg(V1) ≤ 1. Combining these two last identities
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after multiplying the first one by sr2
i+2 and taking into account the fact that the Sri ’s are

primitive one gets the desired relation.
(iii) Let us write the Bézout identity corresponding to Srj (Sri+1, i +1, Sri , i ) in the form

Srj (Sri+1, i + 1, Sri , i ) = USri+1 + VSri with deg(U) ≤ i − j − 1 and deg(V) ≤ i − j .
According to the identity of (ii) andTheorem 4.1one also has Srj (Sri+1, i + 1, Sri , i ) =
sr2(i− j −1)

i+1 Ui, j Sri+1 +sr2(i− j −1)

i+1 Vi, j Sri , with deg(Ui, j ) ≤ i − j −1 and deg(Vi, j ) ≤ i − j .

SinceZ[a, b] is integral and Srj (Sri+1, i + 1, Sri , i ) �= 0 one hasU = sr2(i− j −1)

i+1 Ui, j and

V = sr2(i− j −1)

i+1 Vi, j according toLemma 3.1. �

4.2. The gap structure theorem

In this subsection we give a new proof of the gap structure theorem of subre-
sultants (Lickteig and Roy, 1996a), which is a refinement of the subresultant theorem
(Habicht, 1948; Collins, 1967; Brown and Traub, 1971; Loos, 1982; Gonz´alez-Vega et al.,
1990; Ducos, 2000). Actually this theorem is formulated over an integral ring. Here we
give a version where the ring is arbitrary.

Theorem 4.3. Let A be a commutative ring, p≥ q be positive integers and P, Q ∈ A[y]
be polynomials withdeg(P) = p anddeg(Q) = q. Let0 ≤ j ≤ δ(p, q), and assume that
srj is regular inA andSrj −1 �= 0 is of degree k< j − 1. Then:

(i) Sr j −2 = · · · = Srk+1 = 0,

(ii) sr j −k−1
j Srk = srj −k−1

j −1,k Srj −1,

(iii) sr2
j Srk−1 = (−1) j −ksrj −1,ksrkSrj + Cj Srj −1, with Cj ∈ A[y].

Proof. The facts (i) and (ii) follow obviously fromTheorem 4.1and Lemma 3.1(ii).
(iii) Let us write the Bézout identity of Srk−1(Srj , j , Srj −1, j − 1) in the form
Srk−1(Srj , j , Srj −1, j −1) = USrj +VSrj −1 with deg(U) ≤ j −k−1 and deg(V) ≤ j −k.

Using Lemma 3.1one getsU = (−1) j −ksrj −k−1
j srj −k+1

j −1,k , and using the relation (ii) one

getsU = (−1) j −ksr2( j −k−1)
j srj −1,ksrk. Now usingTheorem 4.4(ii) and (iii) one has

sr2j Srk−1 = Uj Srj + Vj Srj −1 andU = sr2( j −k−1)
j U j . Since srj is regular inA we have

Uj = (−1) j −ksrj −1,ksrk and this proves the desired relation.�

5. Behaviour with respect to operations on polynomials

In this section we study how subresultants behave with respect to some elementary
operations on polynomials. The results of this section are classical and can for instance be
found inChardin (1991), Cohen et al. (1999), Hong (1999)andCheng (2001). The proofs
we give for the results of this section are elementary in so far as only properties of
polynomial determinants are used.

It is a classical fact that the resultant is invariant under translation. The following
proposition shows that subresultants “commute” with translation.
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Proposition 5.1. Let p≥ q be two positive integers and P, Q ∈ A[y] be two polynomials
with deg(P) ≤ p anddeg(Q) ≤ q. Then for anyα ∈ A one has:

Sri (P(y + α), Q(y + α)) = Sri (P, Q)(y + α) for i = 0, 1, . . . , δ(p, q).

Proof. For 0 ≤ i ≤ δ(p, q) one has Sri (P(y + α), Q(y + α)) = DetPol(Mi )

where Mi = [yq−i−1P(y + α), . . . , P(y + α), yp−i−1Q(y + α), . . . , Q(y + α)].
By using a suitable row operation one can transform the matrixMi into the matrix
M ′

i = [(y + α)q−i−1P(y + α), . . . , P(y + α), (y + α)p−i−1Q(y + α), . . . , Q(y + α)],
so that Sri (P(y + α), Q(y + α)) = DetPol(M ′

i ). On the other hand, if we letφ
be the automorphism ofA-algebras defined byφ(y) = y + α then we have the
relationM ′

i = [φ(yq−i−1P(y)), . . . , φ(P(y)), φ(yp−i−1Q(y)), . . . , φ(Q(y))], and using
Lemma 2.3we get DetPol(M ′

i ) = φ(DetPol(Sylvi (P, Q))), which gives Sri (P(y +
α), Q(y + α)) = Sri (P, Q)(y + α). �
The following proposition concerns the behaviour of the subresultant sequence when the
polynomialsP andQ have a common factor.

Proposition 5.2. Let p ≥ q be two positive integers and P, Q, R ∈ A[y] be polynomials
with deg(P) ≤ p, deg(Q) ≤ q anddeg(R) = r . Then:

(i) Sri (P R, p + r, QR, q + r ) = 0 for i = 0, . . . , r − 1,
(ii) Sri (P R, p + r, QR, q + r ) = aµi Sri−r (P, p, Q, q)R for i = r, . . . , δ(p, q) + r ,

whereµi = p + q + 2r − 2i − 1 and a is the leading coefficient of R.

Proof. First we prove the result in the case whereR = yr . For any 0≤ i ≤ δ(p, q) + r
ther last columns ofSi = Sylvi (yr P, p + r, yr Q, q + r ) are zero.

– If i ≤ r − 1 then any coefficient of Sri (yr P, p + r, yr Q, q + r ) is the determinant
of a sub-matrix ofSi involving at least one of itsr last columns. Therefore
Sri (yr P, p + r, yr Q, q + r ) = 0.

– If i ≥ r then by deleting ther last columns of Si one gets the matrix
Sylvi−r (P, p, Q, q). Therefore Sri (yr P, p+r, yr Q, q+r ) = yr Sri−r (P, p, Q, q).

Now consider a degreer polynomialR and letφ be the homomorphism ofA[y] defined
by φ(yi ) = yi if i ≤ r − 1 andφ(yi ) = yi−r R if i ≥ r . It is clear thatφ preserves degrees
and thatφ(Si ) = Sylvi (P R, p + r, QR, q + r ). This gives the relation Sri (P R, p +
r, QR, q + r ) = ap+q+2r−2i−1φ(Sri (yr P, p + r, yr Q, q + r )) according toLemma 2.3.
The desired relation is deduced from this last one and the relation corresponding to the
caseR = yr . �

Corollary 5.1. Let A be a commutative ring and p≥ q be two positive integers. Let
P, Q ∈ A[y] be two polynomials withdeg(P) = p anddeg(Q) = q.

(i) If the polynomials P and Q have a common divisor of degree k then

sri = 0, i = 0, 1, . . . , k − 1. (5)

(ii) If A is integral, thesri ’s satisfyEq. (5) andsrk �= 0 thenSrk is a gcdof P and Q
over the fractions field ofA.
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(iii) If A is a UFD and P or Q is primitive, thesri ’s satisfyEq. (5) andsrk �= 0 then the
primitive part ofSrk is agcdof P and Q overA.

(iv) If A is integrally closed and P or Q is monic, thesri ’s satisfyEq. (5) andsrk �= 0
thensr−1

k Srk ∈ A[y] and is agcdof P and Q overA.

Proof. (i) and (ii) are direct consequences ofProposition 5.2.

(iii) Assume thatA is a UFD and for example thatP is primitive. Then the gcd ofP and
Q overA is primitive. Since the primitive partS′ of Srk is a gcd ofP andQ overK,
it is also a gcd ofP andQ overA.

(iv) Assume thatA is integrally closed and for example thatP is monic. We have
P = sr−1

k Uksr−1
k Srk with sr−1

k Uk and sr−1
k Srk monic with coefficients inK. SinceA

is integrally closed andP has its coefficients inA both of sr−1
k Uk and sr−1

k Srk have
their coefficients inA. On the other hand, one hasQ = sr−1

k U ′
ksr−1

k Srk and Q and
sr−1

k Srk have their coefficients inA. Thus sr−1
k U ′

k ∈ A[y]. �
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González-Vega, L., Lombardi, H., Recio, T., Roy, M.-F., 1994. Sp´ecialisation de la suite de Sturm.
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