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Abstract 

Mathematical software systems, such as Mathematica, Maple, Derive, and so on, are substantially based on 
enormous advances in the area of mathematics known as Computer Algebra or Symbolic Mathematics. In fact, 
everything taught in high school and in the first semesters of a university mathematical education, is available in 
these systems 'at the touch of the button'. Will mathematics become unnecessary because of this? In the three 
sections of this essay, I answer this question for non-mathematicians, for mathematicians and for (future) students 
of mathematics. 

1 Computer Algebra: Mathematics at the touch of the button 

Many non-mathematicians remember mathematical education as something burdensome: endless drills of  things 
that one never really understood! Or, particularly perfidious, exercises that require a special trick to solve them. The 
inventor was a colossus, we petty students peep about at the exercises. Above all, the students ask: 'Will we ever 
need this? Who of us, having graduated, will ever differentiate or integrate a function again? Not even extracting a 
root will really occur later, and if  it does, we simply use the pocket calculator! How many of  us have, in later life, 
been assigned problems from mathematics classes ("Two trains travelling from A to B with speed u . . . .  ")?'  

It is not just that a lot o f  people never need mathematics, many people of  great influence are proud of  having 
been weak in mathematics in school and 'nevertheless' got somewhere. (I experience it frequently, for example, 
when economic delegations, company representatives, politicians and others visit the prosperous Software-Park in 
Hagenberg, which was founded by our institute RISC. Most visitors are impressed by the economic dynamics result- 
ing from the connection of  mathematical research and economy, but at the outset many confess, with an embarrassed 
or superior smile, that mathematics were always incomprehensible or uninteresting to them.) 

Meanwhile the situation has become much more extreme. There exist not only pocket calculators, with which 
everything one learns up to the age of  fourteen in "Calculations', can be done by pressing buttons. Now there are 
also software systems (like Mathematica, Maple, Macsyma, Derive, etc.), which make everything one learns in high 
school or in the mathematical lectures of  the engineering sciences available at the touch of  a button, even almost 
everything presented in the first two years of  a regular mathematics program - and also a lot more. These systems 
also provide graphical user interfaces, which make the handling very simple for everybody. Hundreds of  ready-to- 
use software packages, programmed on the basis of these mathematical software systems, can be downloaded easily 
from the Internet and can be executed on the computer at home for applications in the natural sciences, medicine, 
economy and many more areas. 

Do you want to calculate, for example, how a robot, whose platform is controlled by 6 rods, reacts to a displace- 
ment of these rods? Or to compare the quality of financial products? Or to calculate the diffraction of  a complex 
optical system of lenses? Or to study how the easiest cellular structures evolve over thousands of  generations? And 
this all with graphical input and output, and animated illustrations? You only have to visit the homepages of the 
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c o m m o n  mathematical  software systems (e.g. www.wolf ram.com for Mathematica),  download one of  these systems 
via the Internet (for which - thank god! - you have to pay something),  and navigate through the application pages. In 
many cases you will find a prepared software package for your  application; you can teach yourself  the professional 
use of  the appropriate package through interactive introductory examples, and, if necessary, you can quickly build, 
from the existing functionalities of  your package, new functionalities, which are optimally suited to your  needs. One 
example of  such an application can be found in appendix 1. 

The qualitative innovation of  today's mathematical  software systems - as opposed to the collections of  numerical  
algorithms 1 twenty years ago - is the development  of  methods  that can be used to calculate with a computer  ' like 
a human being' .  This means that one can work not just  with (rounded) numbers  in the computer  but also with 
formulas, symbolic  expressions, verbal structures, which represent the considered mathematical  problems exactly 
and which then allow 'exact '  solutions 'in closed form' ,  'analytically' ,  or 'symbolically ' .  Many  of  the things, which 
had to be developed by mathematicians arduously and with much  consideration 'with paper and pencil '  before one 
could start writing a computer  program for the (numerical) solution of  a given problem, can be done today by the 
computer  with the methods  of 'symbolic mathematics '  (or ' computer  algebra',  as it is also called). Owing  to the 
essential contribution of  computer  algebra, the situation regarding the usability of  existing mathematical  knowledge 
and mathematical  problem-solving techniques has now changed radically within a few years. Nowadays,  in fact, the 
whole of  the mathematics  one learns in high school and in the first semesters at university - including the steps that 
require ' thinking'  - is 'available at the computer ' .  

For the example in appendix 1, this means  not  only that given images can be compressed with a system of  
wavelets, e.g. for fast transmission, but also that usable systems of  wavelets can be developed today at the computer,  
see [2], with the methods  of  computer  algebra (in this case with the methods of  so-called Gr6bner-bases [1]). Until  
recently, the latter task had to be solved by mathematicians  "non-numerically'  and 'with paper and pencil ' ,  before 
an image compression procedure could emerge f rom such a wavelet system. 

If  the methods  of  mathematics are available for everybody now at the touch of  the button, and if even the 'paper 
and pencil work'  of the mathematicians is now done with the methods of  computer  algebra by the computer,  if any- 
one, in fact, even without a special mathematical  education, can solve the most  complicated mathematical  problems, 
and if even people who are proud of  'having always been bad in mathematics '  can start, as playfully as in a video 
game, the most  sophisticated mathematical  machinery, what  actually remains to be done by the mathematicians? Is 
computer  algebra the end of  mathematics? 

For users of  today's  computer-algebra-based software systems, it might  be enough to know that they now have 
the potency of  mathematics,  including mathematics  that even the best mathematicians do not  carry in their heads, 
available at the touch of  the button and without the strain of  thinking. For  them, the question about the end of  
mathematics is probably irrelevant. It might  be much  more  important that the message gets across to the 'broad 
public'  as soon as possible that mathematics can now be used by everybody at the touch of  the button. 

But for the mathematicians themselves the question about the end of  mathematics  may sound disturbing. Will 
we soon have ourselves rationalized out of  business? Will we soon have to confess honestly that our institutes 
are too big, that the public money spent on mathematics  in the universities is too opulent, and that the hours for 
mathematical  education in schools and also in those university programs in which mathematics  is just  an auxiliary 
science, are way out of  proportion? Are we honestly allowed to motivate young people to study mathematics  or to 
become mathematics teachers? Shouldn ' t  we rather turn our attention instead to the contents of  those subjects that 
need 'real creativity' (e.g. the political sciences or biotechnology),  since apparently even the "creative' things in 
mathematics are done 'by the computer '?  

1Numerical Mathematics: All mathematical problems are replaced by approximate, 'finite' problems. These substitute problems are then 
solved approximately by rounded numbers. 
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2 Computer Algebra: Trivial or Trivialized Mathematics? 

The answer to these questions should be simple and natural for mathematicians, but it is surprising how many 
mathematicians (among them also a lot of 'pure' mathematicians and especially many mathematics teachers) have a 
very diffused conception of what today's situation of the automation of  mathematics means for mathematics itself. 
There are two main groups with apparently contradictory opinions to these questions: 

The pur is t s :  they believe that what is done today in mathematical software packages with numerical and com- 
puter algebra methods is just 'trivial' mathematics. As a 'real' mathematician, one should not and need not meddle 
with these things and one should leave these systems to users or to those mathematicians who are not capable of 
doing 'real' mathematics. The purists among the mathematicians are using the computer at best to read email, to 
search for literature in the web, or to type a work in IbTEX. In their opinion, one should banish these software systems 
from mathematical education, in order that the students are not corrupted by these systems. 

The popul i s t s :  they believe that the parts of mathematics which are accessible today in mathematical software 
systems need not be taught anymore or just as a 'black box'. Then the head would be free for the 'creative parts' of 
mathematics and their applications, whatever they might be. Extreme supporters of this opinion even believe that the 
time of proofs is over, in the sense that, to develop new mathematical results, one should rather do experiments on 
the computer - like a physicist - using existing systems, instead of verifying results with the 'old-fashioned' method 
of proof. 

I do not agree with either of these opinions and instead I think the following: 

• Mathematics is characterized by the method of proving. Although experimenting with examples (today: ex- 
perimenting using mathematical software systems) is certainly essential for gaining new conjectures and al- 
though ideas for proofs typically evolve from examples, the method of proving is, in the end, the essence of 
mathematics. 

• 'Slaying' an infinite number of instances of a problem with one  good theory, o n e  new insight, one  new proof, 
or one  new method, has always been the aim of mathematics. At the moment, when the infinitely many 
instances of a problem can be treated by means of a nontrivial theorem, including its nontfivial proof, and 
resulting method, then the corresponding problem area of mathematics is 'trivialized'. The computer age 
differs from earlier mathematical times only in the way that the notion of the 'method' ,  which is used to kill 
the infinite number of instances of a problem, has a more concrete and extreme meaning: a method for a 
problem, a method which can be executed on a computer, solves that problem so completely that no form of 
creativity is needed while applying this method to any one instance of the problem. Thus, mathematics is used 
to make unnecessary an infinite number of reflections at the level of an instance of a problem, by means of 
thinking thoroughly one time (working on the 'basic' level). In other words, with nontlrivial mathematics on 
a level A, a complete area of mathematics is 'trivialized' on a level B. (One example: level A is the Liouville 
theory of the necessary field extension for the description of elementary transcendental functions; level B is 
the problem of integrating elementary transcendental functions with the Risch algorithm. A simple example: 
level A is theorems about the invariance of solution spaces of linear systems with respect to row operations; 
level B is solving linear systems, given by matrices, with the Gauss algorithm.) 

• The more one strives to solve problems in mathematics not just "by any means'  but by computer executable 
algorithms, the more sophisticated is the mathematics (i.e. more delicate theories, deeper theorems, more diffi- 
cult proofs) necessary to make solutions possible. This is true because it is certainly more difficult (it requires 
more thinking) to reduce a given problem to well defined building blocks (e.g. to already available algorithms) 
using well defined methods (e.g. recursions, finite loops) instead of reducing it by using powerful reduction 
constructs (e.g. set building quantors, set union quantors) to mighty axiomatic 'black boxes' (e.g. the axiom 
of choice). (One example is given in appendix 2.) In other words, what we have now available in mathemat- 
ical software systems is not trivial mathematics, but rather, mathematics tnvialized by extremely nontrivial 
mathematics! 
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This has the following consequence for the 'sociology of mathematics ' .  It should not be those mathemati-  
cians who  are incapable of  doing 'real'  ( 'pure ' )  mathematics  who should deal with algorithmic mathematics  
(e.g. computer  algebra), it should be the reverse: algorithmic mathematics needs the best mathematical  heads. 
Or another way: "pure' mathematicians,  who  only know the computer  so far f rom writing emails, should 
earnestly occupy themselves with making their working areas more  algorithmic and they will find a lot o f  
stimulation and newer, more interesting, and mathematical ly extremely difficult questions, which can only be 
answered by an enormous deepening of  the mathematical  theory. 

The algorithmic development  of  mathematics  will never be finished. Thus  one need never fear that reduc- 
tion to algorithms will be the end of  mathematics.  Higher and higher problem areas of  mathematics will 
be algorithmically opened, making deeper and deeper mathematics necessary. In this sense, the surface o f  
algorithmization is just  scratched, despite the enormous  development  of  compute r  algebra. Compared  with 
what is not yet understood, penetrated, algorithmized, or tfivialized, what  can be done with the computer  will 
always be a tiny fraction. The impossibility of  finishing the algorithmization of  mathematics  is not just  the 
practical experience o f  all the workers on that field - because every time, when another piece of  mathematics  
is algorithmized, new horizons appear - it is also an intrinsic property o f  mathematics ,  which is provable (!) 
and constitutes a practical manifestation of  Gtidel 's incompleteness theorem. 

This has the following consequence for the didactics of  mathematics. On the one hand, it is very naive 
to exclude the computer  from mathematics  today; on the contrary, it is not just  an auxiliary tool but the 
motive and driving force for the rigorous development  of  the basic aim of  mathematics ,  which is to make 
difficult problems solvable - by extensive thinking - systematically and even automatically, It was and still 
is 'politically'  a serious mistake to let the using of  computers,  i.e. the algorithmic solution of  problems, drift 
away f rom mathematics  and to neglect  the banished child 'computer  science' .  On  the other hand it is also 
naive to use the computer  as a 'black box'  in places where one needs to develop comprehension of  what  the 
problem is and what  the corresponding basic mathematical  concepts, insights, and reasons are. There is no 
absolute answer to the question of  where in mathematical  education 'the computer '  should be used. It is rather 
the case that for a given topic the blind use of  existing algorithms is pointless during the phase in which new 
concepts, insights and reasons have to be worked out - ' the white box phase o f  the lesson'.  However, in the 
phase in which all discussions of  the basic concepts are completed,  it is equally pointless to exclude the use of  
existing algorithms - "the black box phase of  the lesson'.  For a detailed description of  this 'white box/black 
box principle'  see [3]. 

3 Computer Algebra: Key Technology of the information society 

Of course, mathematics  is not at its end; it is dynamic  as never before. Especially because o f  the explosive devel- 
opment  of  the algorithmization of  mathematics,  we rather have to speak about a new beginning of  mathematics.  In 
the application of  mathematics  to itself, there lies an enormous  driving force, which has reached a new dimension 
especially through new mathematical  software systems, and there is an unprecedented dynamism in mathematical  
research, education and applications. 

• In all areas of  mathematical  research it is now possible to get theoretical st imulation by extensive and easy 
experimentation with the parts of  mathematics  already algorithmized. 

The aim of  the algorithmization of  more  and more  parts of  mathematics in a more  and more  efficient form 
yields a lot of  new questions and problems to mathematical  research. To get answers and solutions one has to 
develop new or deepened ideas, definitions and theories. 

• Mathematical  education in the subjects in which mathematics is just  an auxiliary science will change dra- 
matically, and will provide a more comprehensive and enriched view of  the problem solving capacity of  
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mathematics to a wider range of  people. 

The education of the new generation of mathematicians will change drastically. It will be possible to grasp 
basic mathematical thoughts in a more comprehensive and thorough manner in less time, and advance to the 
actual topics of research more quickly. Therefore the new generation of mathematicians will be able to work 
at the frontier of mathematical research earlier. 

A high level of formal education is necessary especially for the algodthmization of abstract areas in math- 
ematics, and therefore the abstraction of mathematics will be raised even higher, because the automation of  
thoughts requires their complete formalization and a faultless formal plumbing of their depths. 

The thinking technology of mathematics - the working in abstract models - is at the heart of  technological 
progress on the basis of natural sciences. Algorithmic mathematics, and especially the most abstract peculiarity of  
algorithmic mathematics in the form of symbolic computation (computer algebra), has the automation of working 
in abstract models as an aim. All technological progress aims at the automation of problem solving in all areas. 
Computational mathematics aims at the core area of the progress spiral, at the automation of the thinking technology. 
Therefore it should be obvious that computational mathematics is one of the technologies, if not the key technology, 
of today's information society. 

Only a few people are really aware of this simple fact, and I want to stress it here for following reasons. 

It is rammed into today's youth (and they see it every day) that technology development, and the economy 
building on that, is the result of the decisions of the people working in politics, finance, marketing, and man- 
agement. Without playing down the contribution of all these areas, one has to clarify the intnnsic logic of 
technological and economic progress to prevent it from sinking into oblivion. The driving force of success 
comes from the creativity of  the technological disciplines. Somebody who is studying technology or mathe- 
matics stands in the 'eye of the hurricane' of modem developments and not just somewhere in a back room. 
Today it is motivating as never before for a young person to get involved with the adventure of mathematics 
based technology. 

Algorithmic mathematics, especially, has an enormous range, which requires the combination of the best 
techniques of logic, mathematics, and computer sciences. Algorithmic mathematics has theoretical depth and 
practical power. It lives in the world of international academic research as well as in the world of the hottest 
information- and communication-technology companies. The best students particularly should feel motivated 
to build their careers in this area. 

The people who are politically responsible have to see clearly where the power sources of technological 
progress and economical development lies. Therefore everything must be done to open the doors for the 
young to a modem comprehension of mathematics and to establish the best conditions in the education and 
research institutions, which are responsible for this basic area of the technological and economical structure. 

In recent years it has become fashionable to re-discover applications in research funding programs. Though 
this has been important as a reaction to the ivory tower behaviour of some scientists, it is dangerously over- 
drawn today in many places (see e.g. the fifth framework program of the EU). The driving force in the 'eye 
of the hurricane' of technological and economic progress is and will be the finer and finer understanding of 
nature's structure and the more and more efficient use of the scientific technology of thinking, whose essence 
is mathematics and, today, self-automated mathematics. 
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Appendix 1: Wavelet-transformation of a ultrasonics image 

The first image is a section of a three dimensional  ultrasonics dataset of  an embryo. This image needs approx- 
imately 16MB of memory  and the transmission of  many hundreds of  such sections needs a correspondingly long 
time. The second image shows the same section after a data compression and subsequent decompress ion with the 
new wavelet method  based on Grrbner  bases. The  compressed image needs just 1/25 of  the memory  of  the original 
imaget Therefore the transmission time also reduces to 1/25. The compressed image cannot be dist inguished from 
the original with the bare eye. The third image shows the difference set intensified 12 times, and demonstrates that 
there is in fact almost no difference between the original and the compressed/decompressed original. 

With this method,  therefore, the transmission performance in time-critical applications, such as in medicine,  can 
be increased dramatically with no suffering of  the quality of  the information. 

Appendix 2: Non-constructive proof of the existence of Gr~ibner bases 

Let P be the set of  multivariate polynomials  over a field. For F C_ P, I (F )  := {~i%l h i e  [hi E P,j~ E F } is the ideal 
produced by F.  For sets T of  power products let I (T)  be the set of  all multiples of  elements in T. Moreover  let L ( f )  
be the highest power product  that occurs in the polynomial  f (within a fixed allowed order o f  the power  products) 
and correspondingly let L ( F )  be the set of  all highest power  products of  polynomials  in F .  This set F is called 
Gr~bner basis if I (L(F))  = L( I (F) ) .  The problem is now to find for every set of  polynomials  F a set o f  polynomials  
G such that I(G) = I (F)  and that G is a Grrbner  basis. In fact this problem is very important as one can show that 
many fundamental  problems in commutat ive algebra (algebraic geometry) can be solved algorithmically if one can 
find not only some basis but a GrObner basis for the ideal of  polynomials  in question. The construction of  Grrbner  
bases is therefore a key problem of  algebraic geometry. 

A first 'solution'  of  this problem is to set G :=  I (F) .  The  proof  that this solution has the required properties 
results directly from the definitions and simple properties of  ideals. This solution has the three properties which 
sharp tongues refer to as the typical properties of  mathematical  statements: it is prompt  and correct but 'entirely 
useless' .  In our case the solution is useless in the sense that the definition of the function I uses the set building 
quantor, which describes an infinite non-algorithmic process in this case. 

A second solution can be 'constructed'  in the following way: At first one defines 

M ( F )  :=  {s G L( I (F ) )  l~t G L( I (F ) ) ( t  ¢ s A t l s )  } . 

Owing to Dixon's  lemma, M(F)  is always finite. Let  now S be a function of  choice, which has the following property 

Vt E M ( F ) ( S ( F , t )  E I (F)  At  = L(S(F , t ) ) )  . 
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Then 
G : =  {S(F,t) It E M(F) } 

has the required properties. For the proof note that the highest power product of a polynomial f E I(F) is always a 
multiple of the highest power product of a polynomial in G. Thus, by subtracting a suitable multiple of a polynomial 
in G, the polynomial f can be reduced to a polynomial in an ideal with a lower highest power product. Since allowed 
orders are Noethefian, f can be reduced to zero in finitely many steps by using polynomials in G. 

This solution of the problem is still prompt (i.e. producible in a few steps of thinking) and also correct, but it is 
already much more 'useful' in the sense that one knows at least that the constructed G must be always finite (which 
gives Hitbert's basis theorem as a corollary after all). But still the solution is 'not really useful', since, even in the 
case of a finite F, the intermediate steps for constnacting G use a lot of 'infinite' operations (the construction of I(F), 
the 3-quantor with an infinite range and finally the function of choice S), which cannot be executed algofithmicaUy. 

A third solution, which is 'really useful' (i.e. which yields a suitable G for every arbitrary F in a finite number 
of algorithmic steps) needs a much more complicated proof (thus many more steps of thinking) with additional 
mathematical ideas (concepts), which are not included in the structure above, see [1]. And only with the complete 
algorithmic solution o f  the construction problem of Grtibner bases will all the many other fundamental problems 
of algebraic geometry (theory of ideals of polynomials) for example the construction of syzygies, the complete 
solution of algebraic equation systems, the problem of implicitization, the problem of inverting polynomial maps, 
etc. be algorithmically solvable. Even more theory is necessary if one wants to construct Grtibner bases efficiently, 
this means with the least possible effort. There are dozens of paper about this topic. This means: The more 
algofithmically and then the more efficiently one likes to solve mathematical problems, more mathematical theory 
and the more difficult proofs become necessary and not the opposite. 
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