


PREFACE 

          Numerical grid generation has now become a fairly common tool for use in the
numerical solution of partial differential equations on arbitrarily shaped regions. This is
especially true in computational fluid dynamics, from whence has come much of the impetus
for the development of this technique, but the procedures are equally applicable to all
physical problems that involve field solutions. Numerically generated grids have provided
the key to removing the problem of boundary shape from finite difference methods, and
these grids also can serve for the construction of finite element meshes. With such grids all
numerical algorithms, finite difference or finite element, are implemented on a square grid in
a rectangular computational region regardless of the shape and configuration of the physical
region. (Finite volume methods are effectively a type of conservative finite difference
method on these grids.) 
          In this text, grid generation and the use thereof in numerical solutions of partial
equations are both discussed. The intent was to provide the necessary basic information,
from both the standpoint of mathematical background and from that of coding
implementation, for numerical solutions of partial differential equations to be constructed on
general regions. Since these numerical solutions are ultimately constructed on a square grid
in a rectangular computational region, any solution algorithm that can treat equations with
variable coefficients is basically applicable, and therefore discussion of specific algorithms is
left to classical texts on the numerical solution of partial differential equations. 
          The area of numerical grid generation is relatively young in practice, although its roots
in mathematics are old. This somewhat eclectic area involves the engineer’s feel for physical
behavior, the mathematician’s understanding of functional behavior, and a lot of
imagination, with perhaps a little help from Urania. The physics of the problem at hand must
ultimately direct the grid points to congregate so that a functional relationship on these
points can represent the physical solution with sufficient accuracy. The mathematics controls
the points by sensing the gradients in the evolving physical solution, evaluating the accuracy
of the discrete representation of that solution, communicating the needs of the physics to the
points, and by providing mutual communication among the points as they respond to the
physics. 
          Numerical grid generation can be thought of as a procedure for the orderly distribution
of observers, or sampling stations, over a physical field in such a way that efficient
communication among the observers is possible and that all physical phenomena on the
entire continuous field may be represented with sufficient accuracy by this finite collection
of observations. The structure of an intersecting net of families of coordinate lines allows the
observers to be readily identified in relation to each other, and results in much more simple
coding than would the use of a triangular structure or a random distribution of points. The
grid generation system provides some influence of each observer on the others, so that if one
moves to get into a better position for observation of the solution, its neighbors will follow to
some extent in order to maintain smooth coverage of the field. 
          Another way to think of the grid is as the structure on which the numerical solution is
built. As the design of the lightest structure requires consideration of the load distribution, so
the most economical distribution of grid points requires that the grid be influenced by both
the geometric configuration and by the physical solution being done thereon. In any case,
since resources are limited in any numerical solution, it is the function of the numerical grid
generation to make the best use of the number of points that are available, and thus to make
the grid points an active part of the numerical solution. 



          This is a rapidly developing area, being now only about ten years old, and thus is still
in search of new ideas. Therefore no book on the subject at this time could possibly be
considered to be definitive. However, enough material has now accumulated in the literature,
and enough basic concepts have emerged, that a fundamental text is now needed to meet the
needs of the rapidly expanding circle of interest in the area. It is with the knowledge of both
these needs and these limitations that this text has been written. Some of the techniques
discussed will undoubtedly be superceded by better ideas, but the fundamental concepts
should serve for understanding, and hopefully also for some inspiration, of new directions.
The only background assumed of the student is a senior-level understanding of numerical
analysis and partial differential equations. Concepts from differential geometry and tensor
analysis are introduced and explained as needed. 
          Numerical grid generation draws on various areas of mathematics, and emphasis
throughout is placed on the development of the relations involved, as well as on the
techniques of application. This text is intended to provide the student with the understanding
of both the mathematical background and the application techniques necessary to generate
grids and to develop codes based on numerically generated grids for the numerical solution
of partial differential equations on regions of arbitrary shape. 
          The writing of this text has been a cooperative effort over the last two years, spurred
on by the institution of a graduate course in numerical grid generation, as well as an annual
short course, at Mississippi State. The students in both of these courses have contributed
significantly in revising the text as it evolved. The last appendix is the result of a class
assignment prepared by Col. Hyun Jin Kim, graduate student in the computational fluid
dynamics program, who also compiled the index. Our colleage, Dr. Helen V.
McConnaughey of Mathematics contributed significantly through continual discussions and
wrote most of Chapter IV. 
          We are indebted to a large number of former students and fellow researchers around
the world for the development of the ideas that have crystallized into numerical grid
generation. The complete debt can be acknowledged only through mention of the
bibliographies contained in the several surveys cited herein. A list here would either be too
long to note the strongest influences or too short to acknowledge all the significant ones. We
must, however, acknowledge the many long and fruitful discussions with Peter Eiseman of
Columbia University. 
          0f vital importance is the support that has been provided for the research from which
the developments discussed in this book have emerged, including NASA; the research
offices of the Air Force, Army, and Navy; the National Science Foundation, and various
industrial concerns. The interest and contributions of a number of contract monitors has been
essential over the years. We are especially appreciative of Bud Bobbitt and Jerry South of
NASA Langley Research Center, who provided the initial support for an unknown with an
idea. 
          Particular debts are owed to W. H. Chu for an idea in the Journal of Computational
Physics in 1971, and to Frank Thames who put the idea into a dissertation. 
          In the preparation of the text we had the conscientious and untiring efforts of two most
able secretaries, Rita Curry and Susan Triplett, who typed on in good spirits through a year
of numerous revisions and frustrations as the text evolved. 
          Finally, we were particularly fortunate to have the services of Yeon Seok Chae,
graduate student in the computational fluid dynamics program and illustrator par excellence,
who did all the figures with understanding of the intended meaning as well as artistic
competence. His meticulous efforts were extensions of our thoughts. 
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I. INTRODUCTION

          The numerical solution of partial differential equations requires some discretization of
the field into a collection of points or elemental volumes (cells). The differential equations
are approximated by a set of algebraic equations on this collection, and this system of
algebraic equations is then solved to produce a set of discrete values which approximates the
solution of the partial differential system over the field. The discretization of the field
requires some organization for the solution thereon to be efficient, i.e., it must be possible to
readily identify the points or cells neighboring the computation site. Furthermore, the
discretization must conform to the boundaries of the region in such a way that boundary
conditions can be accurately represented. This organization is provided by a coordinate
system, and the need for alignment with the boundary is reflected in the routine choice of
cartesian coordinates for rectangular regions, cylindrical coordinates for circular regions,
etc., to the extent of the handbook’s resources. 

          The current interest in numerically-generated, boundary-conforming coordinate
systems arises from this need for organization of the discretization of the field for general
regions, i.e., to provide computationally for arbitrary regions what is available in the
handbook for simple regions. The curvilinear coordinate system covers the field and has
coordinate lines (surfaces) coincident with all boundaries. The distribution of lines should be
smooth, with concentration in regions of strong solution variation, and the system should
ultimately be capable of sensing these variations and dynamically adjusting itself to resolve
them. 

          A numerically-generated grid is understood here to be the organized set of points
formed by the intersections of the lines of a boundary-conforming curvilinear coordinate
system. The cardinal feature of such a system is that some coordinate line (surface in 3D) is
coincident with each segment of the boundary of the physical region. The use of coordinate
line intersections to define the grid points provides an organizational structure which allows
all computation to be done on a fixed square grid when the partial differential equations of
interest have been transformed so that the curvilinear coordinates replace the cartesian
coordinates as the independent variables. 

          This grid frees the computational simulation from restriction to certain boundary
shapes and allows general codes to be written in which the boundary shape is specified
simply by input. The boundaries may also be in motion, either as specified externally or in
response to the developing physical solution. Similarly, the coordinate system may adjust to
follow variations developing in the evolving physical solution. In any case, the
numerically-generated grid allows all computation to be done on a fixed square grid in the



computational field which is always rectangular by construction. 

          In the sections which follow, various configurations for the curvilinear coordinate
system are discussed in Chapter II. In general, the computational field will be made
rectangular, or composed of rectangular sub-regions, and a wide variety of configurations is
possible. Coordinate systems may also be generated separately for sub-regions in the
physical plane and patched together to form a complete system for complex configurations.
The basic transformation relations applicable to the use of general curvilinear coordinate
systems are developed in Chapter III; the construction of numerical solutions of partial
differential equations on those systems is discussed in Chapter IV; and consideration is given
in Chapter V to the evaluation and control of truncation error in the numerical
representations. 

          Basically, the procedures for the generation of curvilinear coordinate systems are of
two general types: (1) numerical solution of partial differential equations and (2)
construction by algebraic interpolation. In the former, the partial differential system may be
elliptic (Chapter VI), parabolic or hyperbolic (Chapter VII). Included in the elliptic systems
are both the conformal (Chapter X), and the quasi-conformal mappings, the former being
orthogonal. Orthogonal systems (Chapter IX) do not have to be conformal, and may be
generated from hyperbolic systems as well as from elliptic systems. Some procedures
designed to produce coordinates that are nearly orthogonal are also discussed. The algebraic
procedures, discussed in Chapter VIII, include simple normalization of boundary curves,
transfinite interpolation from boundary surfaces, the use of intermediate interpolating
surfaces, and various other related techniques. 

          Coordinate systems that are orthogonal, or at least nearly orthogonal near the
boundary, make the application of boundary conditions more straightforward. Although
strict orthogonality is not necessary, and conditions involving normal derivatives can
certainly be represented by difference expressions that combine one-sided differences along
the line emerging from the boundary with central expressions along the boundary, the
accuracy deteriorates if the departure from orthogonality is too large. It may also be more
desirable in some cases not to involve adjacent boundary points strongly in the
representation, e.g., on extrapolation boundaries. The implementation of algebraic turbulence
models is more reliable with near-orthogonality at the boundary, since information on local
boundary normals is usually required in such models. The formulation of boundary-layer
equations is also much more straightforward and unambiguous in such systems. Similarly,
algorithms based on the parabolic Navier-Stokes equations require that coordinate lines
approximate the flow streamlines, and the lines normal thereto, especially near solid
boundaries. It is thus better in general, other considerations being equal, for coordinate lines
to be nearly normal to boundaries. 

          Finally, dynamically-adaptive grids are discussed in Chapter XI. These grids
continually adapt during the course of the solution in order to follow developing gradients in
the physical solution. This topic is at the frontier of numerical grid generation and may well
prove to be one of its most important aspects. 

          The emphasis throughout is on grids formed by the intersections of coordinate lines of
a curvilinear coordinate system, as opposed to the covering of a field with triangular



elements or a random distribution of points. Neither of these latter collections of points is
suitable for really efficient numerical solutions (although numerical representations can be
constructed on each, of course) because of the cumbersome process of identification of
neighbors of a point and the lack of banded structure in the matrices. Thus the subject of
triangular mesh generators, per se, is not addressed here. (Obviously a triangular mesh can
be produced by construction rectangular mesh diagonals.) 

          Considerable progress is being made toward the development of the techniques of
numerical grid generation and toward casting them in forms that can be readily applied. A
comprehensive survey of numerical grid generation procedures and applications thereof
through 1981 was given by Thompson, Warsi, and Mastin in Ref. [1], and the conference
proceedings published as Ref. [2] contains a number of expository papers on the area, as
well as current results. Other collections of papers on the area have also appeared (Ref. [3]
and [4]), and a later review through 1983 has been given by Thompson in Ref. [5]. Some
other earlier surveys are noted in Ref. [1]. A later survey by Eiseman is given in Ref. [37].
The present text is meant to be a developmental treatment of the techniques of grid
generation and its applications, not a survey of results, and therefore no attempt is made here
to cite all related references, rather only those needed to illustrate particular points are noted.
The surveys mentioned above should be consulted directly for references to examples of
various applications and related contributions. (Ref [l] gives a short historical development
of the ideas of grid generation.) Other surveys of particular areas of grid generation are cited
later as topics are introduced. 

          Finally, in regard to implementation, a configuration for the transformed
(computational) field is first established as discussed in Chapter II. The grid is generated
from a generation system constructed as discussed in Chapters VI -- X. (If the grid is to be
adaptive, i.e., coupled with the physical solution done thereon, then the gr1d must be
continually updated as discussed in Chapter XI.) In the construction of the grid, due account
must be taken of the truncation error induced by the grid discussed in Chapter V. The partial
differential equations of the physical problem of interest are transformed according to the
relations given in Chapter III. These transformed equations are then discretized, cf. Chapter
IV, and the resulting set of algebraic equations is solved on the fixed square grid in the
rectangular transformed field. 



II. BOUNDARY-CONFORMING COORDINATE SYSTEMS 

1. Basic Concepts 

          To provide a familiar ground from which to view the general development to follow,
consider first a two-dimensional cylindrical coordinate system covering the annular region
between two concentric circles: 

Here the curvilinear coordinates (r, ) vary on the intervals [r1,r2] and [0,2 ], respectively.

These curvilinear coordinates are related to the cartesian coordinates (x,y) by the
transformation equations 

(1)

The inverse transformation is given by 

(2)

Note that one of the curvilinear coordinates, r, is constant on each of the phys1cal
boundaries, while the other coordinate, , varies monotonically over the same range around
each of the boundaries. Note also that the system can be represented as a rectangle on which
the two physical boundaries correspond to the top and bottom sides: 



The transformed region, i.e., where the curvilinear coordinates, r and  the independent
variables, thus can be thought of as being rectangular, and can be treated as such from a
coding standpoint. These points will be central to what follows. 
          The curvilinear coordinates (r, ) can be normalized to the interval [0,1] by introducing
the new curvilinear coordinates ( , ), where 

(3)

or 

(4)

The transformation then may be written 

(5a)

(5b)

where now  and  both vary on the interval [0,1]. This is thus a mapping of the annular
region between the two circles in the physical space onto the unit square in the transformed
space, i.e., each point (x,y) on the annulus corresponds to one, and only one, point ( , ) on
the unit square: 

The bottom (  = 0) and top (  = 1) of the square correspond, respectively, to the inner and
outer circles, r = r1, and r = r2. The sides of the square,  = 0 and  = 1 correspond to  = 0



and  = 2 , respectively, and hence to the two coincident sides of a branch cut in the
physical space. Therefore, boundary conditions are not to be specified on these sides of the
unit square in the transformed space. Rather these sides are to be considered re-entrant on
each other with points adjacent to one, outside the square, being equivalent to points adjacent
to the other, inside the square. 

          Conceptually, the physical region can be considered to have been opened at the cut 
= 0 and 2  and then deformed into a rectangle to form the transformed region: 

Here, point correspondence across the re-entrant boundaries (indicated by the dashed
connecting line) in the transformed region is illustrated by the coincidence of the pair of
circled points. This conceptual device and mode of illustration for the the point
correspondence across re-entrant boundaries will serve later for more general configurations.

          These simple concepts extend to more complicated two-dimensional configurations,
the central feature being that one of the curvilinear coordinates is made to be constant on a
boundary curve (as was r above), while the other varies monotonically along that boundary
curve (as does ). The transformation to the rectangle is achieved by making the range and
direction of variation of the varying coordinate the same on each of two opposing boundaries
(as  varies from 0 to 2  on each circle above). 

The physical space thus transforms to the rectangle shown above regardless of the shape of
the physical region. (It is not necessary to normalize the curvilinear coordinates to the
interval [0,1], and in fact, any normalization can be used. In computational applications the
normalization is more conveniently done to different intervals for each coordinate. The field
in the transformed space is then rectangular, rather than square.) Familiar examples of this
are elliptical coordinates for the region between two confocal ellipses, spherical coordinates
for two spheres, parabolic coordinates for two parabolas, etc. 

          These, same concepts will be extended later to completely general configurations
involving any number of boundary curves and branch outs. The extension to three



dimensions follows directly, using boundary surfaces instead of curves, i.e., one curvilinear
coordinate will be made constant on a boundary surface, with the other two forming a
two-dimensional coordinate system on the surface. 

Returning to the concentric circles, if the functional dependence of  on , and/or that of r
on , had been made more general than the simple linear normalizations given by Eq. (4),
the corresponding coordinate lines would have become unequally spaced in the physical
space, while remaining as radial lines and concentric circles: 

The transformation, from Eq. (1), is now given by 

(6a)

(6b)

          In this case the points on the inner and outer circular boundaries are not equally spaced
around the circles in the physical space for equal increments of , although they remain
equally spaced on the top and bottom of the unit square in the transformed space by
construction. The spacing around these circles is determined by the functional dependence of

 on , and, since the points are located at equal increments of  by construction, this
functional relationship is defined by the placement of these points around the circles. This
point, that the coordinate system in the field is determined from the boundary point
distribution, will be central to the discussion of grid generation to follow. The distribution of
circumferential lines is controlled here by the functional relationship between r and , which
is not related to any boundary point distribution. Thus factors other than the boundary point
distribution may be expected to be involved in grid generation, as well. That the point
distribution on the boundaries may be controlled by direct placement of the points, while the
coordinate line distribution in the field must be controlled by other means will also continue
to appear in the developments to follow. 

          The one-dimensional functional relationship between  and  in Eq. (6) requires that
the relative distributions of boundary points around the inner and outer circles be the same.
This restriction can be removed by making  a function of , as well as of , while
retaining the periodic nature of the dependence on . In this case the ooordinate lines of
constant  will no longer be straight radial lines, although they will continue to connect
corresponding points on the inner and outer circular boundaries. Similarly the
circumferential coordinate lines (lines of constant  here) can be made to depart from circles
by making r dependent on both  and , but with the restriction that the dependence



vanishes on the inner and outer circular boundaries (where  = 0 and  = 1, respectively,
here). 

Obviously certain constraints will have to be placed on the functions ( , ) and r( , ) to
keep the mapping one-to-one. All of these considerations will reappear in the general
developments that follow. 

          Finally, it should be realized that the intermediate use here of the cylindrical
coordinates (r, ) in defining the transformation between the curvilinear coordinates ( , )
and the cartesian coordinates (x,y) has been only in deference to the familiarity of the
cylindrical coordinates, and such intermediary coordinates will not appear in general. The
generalized statement for the simple configuration under consideration here is as follows:

Find (x,y) and (x,y) in the annular region bounded by the curves x2 + y2 =  and x2 + y2

= , subject to the boundary conditions 

          Specified monotonic variation of  over [0,1] on x2 + y2 =  and on x2 + y2 = 
with same sense of direction on each of these two curves. 

          It is the inverse problem that will be treated in fact, however, i.e., find x( , ) and
y( , ) on the unit square in the transformed space (0    1, 0    1), subject to the
boundary conditions 



x( ,0) and y( ,0) specified on  = 0 such that x2(  = 0) + y2 ,0) =  

x( ,1) and y( ,1) specified on  = 1 such that x2(  = 1) + y2( ,1) =  
Periodicity in : x(1 + , ) = x( , ) y(1 + , ) = y( , ) 

The simple form for the transformation given by Eq. (6) is made possible by choosing the
same functional dependence of x and y on  on the boundaries,  = 0 and  = 1. The
familiar cylindrical coordinate system is thus a special case of the general grid generation
problem for this simple configuration applicable to the region between two concentric
circles, as is the elliptical coordinate system for two ellipses, etc. 

2. Generalization 

          Generalizing from the above consideration of cylindrical coordinates, the basic idea of
a boundary-conforming curvilinear coordinate system is to have some coordinate line (in 2D,
surface in 3D) coincident with each boundary segment, analogous to the way in which lines
of constant radial coordinate coincide with circles in the cylindrical coordinate system. The
other curvilinear coordinate, analogous to the angular coordinate in the cylindrical system,
will vary along the boundary segment and clearly must do so monotonically, else the same
pair of values of the curvilinear coordinates will occur at two different physical points. (It
should be clear that the curvilinear coordinate that varies along a boundary segment must
have the same direction and range of variation over some opposing segment, e.g., as the
angular variable varies from 0 to 2  over both of two concentric circles in cylindrical
coordinates). 

          With the values of the curvilinear coordinates thus specified on the boundary, it then
remains to generate values of these coordinates in the field from these boundary values.
There must, or course, be a unique correspondence between the cartesian (or other basis
system) and the curvilinear coordinates, i.e., the mapping of the physical region onto the
transformed region must be one-to-one, so that every point in the physical field corresponds
to one, and only one, point in the transformed field, and vice versa. Coordinate lines of the
same family must not cross, and lines of different families must not cross more than once. 

          In this chapter a two-dimensional region will be considered in most of the discussions
in the interest of economy of presentation. Generalization to three dimensions will be evident
in most cases and will be mentioned specifically only when necessary. As noted above, the
curvilinear coordinates may be normalized to any intervals, just as the radial and angular
coordinates of the cylindrical coordinate system can be expressed in many different units.
Since the interest of the present discussion is numerical application, it will be generally
convenient to define the increments of all the curvilinear coordinates to be uniformly unity,
and then to normalize these coordinates to the interval [1,N(i)], where N(i) is the total number
of grid points to be used in the i direction. (The three curvilinear coordinates will be
indicated as i, i = 1,2,3, in general. In two dimensions, however, the notation ( , ) will
often be used for the two coordinates 1 and 2 .) The computational field, i.e., the field in
the transformed space, thus will have rectangular boundaries and will be covered by a square
grid. (It will become clear later that the actual values of the increments in the curvilinear
coordinates are immaterial since they do not appear in the final numer1cal expressions.
Therefore no generality is lost in making the grid square and of unit increment in the



transformed field.) 

A. Boundary-value Problem -- Physical Region 

          The generation of the curvilinear coordinate system may be treated as follows: with
the curvilinear coordinates specified on the boundaries, e.g., (x,y) and (x,y) on a
boundary curve  (this specification amounting to a constant value for either  or  on each
segment of , with a specified monotonic variation of the other over the segment), generate
the values, (x,y) and (x,y), in the field bounded by . This is thus a boundary value
problem on the physical field with the curvilinear coordinates ( , ) as the dependent
variables and the cartesian coordinates (x,y) as the independent variables, with boundary
conditions specified on curved boundaries: 

 

(In these discussions, the transformation is assumed to be from cartesian coordinates in the
physical space. The transformation can, however, be from any system of coordinates in the
physical space.) 

B. Boundary value Problem - Transformed Region 

          The problem may be simplified for computation, however, by first transforming so
that the physical cartesian coordinates (x,y) become the dependent variables, with the
curvilinear coordinates ( , ) as the independent variables. Since a constant value of one
curvilinear coordinate, with monotonic variation of the other, has been specified on each
boundary segment, it follows that these boundary segments in the physical field will
correspond to vertical or horizontal lines In the transformed field. Also, since the range of
variation of the curvilinear coordinate varying along a boundary segment has been made the
same over opposing segments, it follows that the transformed field will be composed of
rectangular blocks. 

          The boundary value problem in the transformed field then involves generating the
values of the physical cartesian coordinates, x( , ) and y( , ), in the transformed field
from the specified boundary values of x( , ) and y( , ) on the rectangular boundary of the
transformed field, the boundary being formed of segments of constant  or , i.e., vertical or
horizontal lines. With  = constant on a boundary segment, and the increments in  taken to
be uniformly unity as discussed above, this boundary value specification is implemented
numerically by distributing the points as desired along the boundary segment and then
assigning the values of the cartesian coordinates of each successive point as boundary values



at the equally spaced boundary points on the bottom (or top) of the transformed field in the
following figure. 

Boundary values are not specified on the left and right sides of the transformed field since
these boundaries are re-entrant on each other (analogous to the 0 and 2  lines in the
cylindrical system), as discussed above, and as indicated by the connecting dotted line on the
figure. Points outside one of these re-entrant boundaries are coincident with points at the
same distance inside the other. The problem is thus much more simple in the transformed
field, since the boundaries there are all rectangular, and the computation in the transformed
field thus is on a square grid regardless of the shape of the physical boundaries. 

          With values of the cartesian coordinates known in the field as functions of the
curvilinear coordinates, the network of intersecting lines formed by contours (surfaces in
3D) on which a curvilinear coordinate is constant, i.e., the curvilinear coordinate system,
provides the needed organization of the discretization with conformation to the physical
boundary. It is also possible to specify intersection angles for the coordinate lines at the
boundaries as well as the point locations. 

3. Transformed Region Configurations

          As noted above, the generation of the curvilinear coordinate system is done by
devising a scheme for determination of the field values of the cartesian coordinates from
specified values of these coordinates (and/or curvilinear coordinate line intersection angles)
on portions of the boundary of the transformed region. Since the boundary of the
transformed region is comprised of horizontal and vertical line segments, portions of which
correspond to segments of the physical boundary on which a curvilinear coordinate is
specified to be constant, it should be evident that the configuration of the resulting
coordinate system depends on how the boundary correspondence is made, i.e., how the
transformed region is configured. 

          Some examples of different configurations are given below, from which more
complex configurations can be inferred. In these examples only a minimum number of
coordinate lines are shown in the interest of clarity of presentation tation. In all of these
examples, boundary values of the physical cartesian coordinates (and/or curvilinear
coordinate line intersection angles) are understood to be specified on all boundaries, both
external and internal, of the transformed region except for segments indicated by dotted
lines. These latter segments correspond to branch cuts in the physical space, as is explained



in the examples in which they appear. Such re-entrant boundary segments always occur in
pairs, the members of which are indicated by the dashed connecting lines on each of the
configurations shown. Points outside the field across one segmentof such a pair are
coincident with points inside the field across the other member of the pair. The conceptual
device of opening the physical field at the cuts is used here to help clarify the
correspondence between the physical and transformed fields. In many cases an example of
an actual coordinate system is given as well. References to the use of various configurations
may be found in the surveys given by Ref. [1] and [5], and a number of examples appear in
Ref. [2]. 

A. Simply-connected Regions 

          It is natural to define the same curvilinear coordinate to be constant on each member
of a pair of generally opposing boundary segments in the physical plane. Thus, a
simply-connected region formed by four curves is logically treated by transforming to an
empty rectangle: 

Similarly, an L-shaped region could remain L-shaped in the transformed region: 

Here, for instance, the cartesian coordinates of the desired points on the physical boundary
segment 4-5 are specified as boundary conditions on the vertical line 4-5, in corresponding
order, which forms a portion of the boundary of the transformed region. 

          The generalization of these ideas to more complicated regions is obvious, the
transformed region being composed of contiguous rectangular blocks. An example follows: 



          The physical boundary segment on which a single curvilinear coordinate is constant
can have slope discontinuities, however, so that the L-shaped region above could have been
considered to be composed of four segments instead of six, so that the transformed region
becomes a simple rectangle: 

Here the cartesian coordinates of the desired points on the physical boundary 5-4-3 are the
specified boundary values from left to right across the top of the transformed region.
Whether or not the boundary slope discontinuity propagates into the field, so that the
coordinate lines in the field exhibit a slope discontinuity as well, depends on how the
coordinate system in the field is generated, as will be discussed later. 

          It is not necessary that corners on the boundary of the transformed region correspond
to boundary slope discontinuities on the physical boundary and a counter-example follows
next: 



In this case, the segment 1-2 on the physical boundary is a line of constant , while the
segment 1-4 is a line of constant . Thus at point 1 we have the following coordinate line
configuration: 

 

The lines through point 1 are as follows: 

so that the angle between the two coordinate lines is  at point 1, and consequently the
Jacobian of the transformation (the cell area, cf. Chapter III) will vanish at this point. The
coordinate species thus changes on the physical boundary at point 1. (Difference
representations at such special points as this, and others to appear in the following examples,
are discussed in Chapter IV.) Since the species of curvilinear coordinate necessarily changes
at a corner on the transformed region boundary, the identification of a concave corner on the
transformed region boundary with a point on a smooth physical boundary will always result
in a special point of the type illustrated here. (A point of slope discontinuity on the physical



boundary also requires special treatment in difference solutions, since no normal can be
defined thereon. This, however, is inherent in the nature of the physical boundary and is not
related to the construction of the transformed configuration.) 

          Some slightly more complicated examples of the alternatives introduced above now
follow: 

Still another alternative in this case would be to collapse the intrusion 2-3-4-5 to a slit in the
transformed region: 



Here the physical cartesian coordinates are specified and are double-valued on the vertical
slit, 2-9-5, in the transformed region. The cartesian coordinates of the desired points on the
physical boundary 2-9 are to be used on the slit in the generation of the grid to the left of the
slit in the transformed region, while those on the physical boundary 5-9 are used for
generation to the right of the slit. Solution values in a numerical solution on such a
coordinate system would also be double-valued on the slit, of course. This
double-valuedness requires extra bookkeeping in the code, since two values of each of the
cartesian coordinates and of the physical solution must be available at the same point in the
transformed region so that difference representations to the left of the slit use the slit values
appropriate to the left side, etc. Difference representations near slits are discussed in Chapter
IV. With the composite grid structure discussed in Section 4, however, this need for
double-valuedness, and the concomitant coding complexity, with the slit configuration can
be avoided. 

          The point 9 here requires special treatment, since the coordinate line configuration
there is as follows: 

The coordinate lines through point 9 are as follows: 



Here the slope of the coordinate line on which  varies is discontinuous at point 9, and the
line on which  varies splits at this point. Such a special point will always occur at the slit
ends with the slit configuration. 

B. Multiply-connected Regions 

          With obstacles in the interior of the field, i.e., with interior boundaries, there are still
more alternative configurations of the transformed region. One possibility is to maintain the
connectivity of the transformed region the same as that of the physical region, as in the
following examples showing two variations of this approach using interior slabs and slits,
respectively, in the transformed region. The slab configuration is as follows: 

In coding, points inside the slab in the transformed region are simply skipped in all
computations. 

          This configuration introduces a special point of the following form at each of the
points corresponding to the slab corners in the transformed field: 

The coordinate lines through 



point 7 are shown below: 

This type of special point, where the coordinate species changes on a smooth line, occurs
when a convex corner in the transformed field is identified with a point on a smooth contour
in the physical field. Both coordinate lines experience slope discontinuities at this point. 

          The slit configuration is as shown below: 

(An obvious varition would be to have the slit vertical.) In this slit configuration, the point 5
and 6 are special points of the form shown on p. 26 characteristic of the slit configuration,
and will require special treatment in difference solutions. 

          The transformed region could, however, be made simply-connected by introducing a
branch cut in the physical region as illustrated below: 

Conceptually this can be viewed as an opening of the field at the out and then a deformation
into a rectangle: 



Here the coincident coordinate lines 1-2 and 4-3 form a branch cut, which becomes
re-entrant boundaries on the left and right sides of the transformed region. All derivatives are
continuous across this cut, and points at a horizontal distance outside the right-side boundary
in the transformed region are the same as corresponding points at the same horizontal
distance on the same horizontal line inside the left-side boundary, and vice versa. (In all
discussions of point correspondence across cuts, "distance" means distance in the
transformed region). In coding, the use of a layer of points outside each member of a pair of
re-entrant boundaries in the transformed region holding values corresponding to the
appropriate points inside the other boundary of the pair avoids the need for conditional
choices in difference representations, as discussed in Section 6 of this chapter. 

          Boundary values are not specified on the cut. (This cut is, of course, analogous to the
coincident 0 and 2  lines in the cylindrical coordinate system discussed above.) At the cut
we have the following coordinate line configuration, as may be seen from the conceptional
deformation to a rectangle: 

 

so that the coordinate species and directions are both continuous across the cut. 

          This type of configuration is often called an O-type. Another possible configuration is
as shown below, often called a C-type: 



Opening the field at the cut we have, conceptually, 

with 1-2-3-4 to flatten to the bottom of the rectangle. Here the two members of the pair of
segments forming the branch cut are both on the same side of the transformed region, and
consequently points located at a vertical distance below the segment 1-2, at a horizontal
distance to the left of point 2, coincide with points at the same vertical distance above the
segment 4-3, at the same horizontal distance to the right of point 3. The point 2(3) is a
special point of the type shown on p. 26 for slit configurations. 

          The coordinate line configuration at the cut in this configuration is as follows: 

where it is indicated that  varies to the right on the upper side of the cut, but to the left on
the lower side. The direction of variation of  also reverses at the cut, so that although the
species and slope of both lines are continuous across the cut, the direction of variation
reverses there. 

          It is possible to pass onto a different sheet across a branch cut, and discontinuities in
coordinate line species and/or direction occur only when passage is made onto a different
sheet. It is also possible, however, to remain on the same (overlapping) sheet as the cut is
crossed, in which case the species and direction are continuous, and this must be the
interpretation when derivatives are evaluated across the cut, as is discussed in Section 5 to
follow. These concepts are illustrated in the following figure, corresponding to the C-type
configuration given on p. 30: 



In the present discussion of configurations, the behavior of the coordinate lines across the cut
will always be described in regard to the passage onto a different sheet, since this is in fact
the case in codes. It is to be understood that complete continuity can always be maintained
by conceptually remaining on the same sheet as the cut is crossed. Much of this complexity
can, however, be avoided with the use of an extra layer of points surrounding the
transformed region as will be discussed in Section 6. 

          Although in principle any region can be transformed into an empty rectangular block
through the use of branch cuts, the resulting grid point distribution may not necessarily be
reasonable in all of the region. Furthermore, an unreasonable amount of effort may be
required to properly segment the boundary surfaces and to devise an appropriate point
distribution thereon for such a transformation. Some configurations are better treated with a
computational field that has slits or rectangular slabs in it. 

          Regions of higher connectivity than those shown above are treated in a similar
manner. The level of connectivity may be maintained as in the following illustration: 



Here one slit is made horizontal and one vertical just for generality of illustration. Both
could, of course, be of the same orientation. Slabs, rather than slits, could also have been
used. The example has three bodies. 

          With the transformed region made simply-connected we have, using two branch cuts,
a configuration related to the 0-type shown above for one internal boundary: 

The conceptual opening here is as follows: 



with segment 2-3-4-5-6-7 opening to the bottom. Here the pairs of segments (1-2,8-7) and
(3-4,6-5) are the branch cuts, which form re-entrant boundaries in the transformed region as
shown. In this case, points outside the right side of the transformed region coincide with
points inside the left side, and vice versa. This cut is of the form described on p. 30, where
both the coordinate species and direction are continuous across the cut. Points below the
bottom segment 3-4, to the left of point 4, coincide with points above the bottom segment
6-5 to the right of point 5. This cut is of the form discussed on p. 31, for which the
coordinate species is continuous across the cut but the direction changes there. There are a
number of other possibilities for placement of the two cuts on the boundary of the
transformed region, of course, some examples of which follow. 





It is not necessary to reduce the connectivity of the region completely; rather, a slit or slab
can be used for some of the interior boundaries, while others are placed on the exterior
boundary of the transformed region. 

          One other possibility in two dimensions is the use of a preliminary analytical
transformation of infinity to a point inside some interior boundary, with the coodinates
resulting therefrom replacing the cartesian coordinates in the physical region. The grid
generation then operates from these transformed coordinates rather than from the cartesian



coordinates. This typically gives a fine grid near the bodies, but may give excessively large
spacing away from the body. 

Thus, for example, if points on the two physical boundaries shown below 

are transformed according to the complex transformation 

z’ = 1/z 

where z = x+iy and z’ = x’+iy’, infinity in the x,y system will transform to the origin in the
x’, y’ system, as shown below. 

Then with the grid generated numerically from the x’, y’ system the following configuration
results: 



References to the use of this approach are made in the survey of Ref. [1]. Somewhat related
to this are various two-dimensional configurations which arise directly from conformal
mapping, cf. Ref. [6] and the survey of Ives on this subject, Ref. [7]. (Conformal mapping is
discussed in Chapter X.) 

C. Embedded Regions 

          In more complicated configurations, one type of coordinate system can be embedded
in another. A simple example of this is shown below, where an 0-type system surrounding an
internal boundary is embedded in a system of a more rectangular form, using what amounts
to a slit configuration. 

          The conceptual opening of this system is best understood in stages: First considering
only the embedded 0-type system surrounding the interior boundary, we have the region
inside the contour 12-13-6-9 opening as follows: 



This then opens to the rectangular central portion of the transformed region shown above,
with the inner boundary contour 8-7-8 collapsing to a slit. The rest of the physical region
then opens as shown below: 

These two regions then deform to rectangles and are fitted to the top and bottom of the
rectangle corresponding to the inner system along the contours 12-13 and 9-6 as shown. 

          Here points at a vertical distance below the segment 11-12 are coincident with points
at the same vertical distance below the segment 10-9 on the same vertical line, and vice
versa, with similar correspondence for the pair of segments 13-14 and 6-5. Points at a
horizontal distance to the left of the segment B-12, at a vertical distance above point 8,
coincide with points at the same horizontal distance to the right of the segment 8-9, at the
same vertical distance below point 8. Similar correspondence holds for the pair 7-13 and 7-6.
Boundary values are specified on the slit 8-7. 

          The composite system shown on p. 40 can also be represented as a slit configuration in
the transformed region: 

with the inner system represented as 

 

and the lower side of the slit considered re-entrant with the left half of the top boundary of
the rectangle corresponding to the inner system, the upper side of the slit being re-entrant
with the right half of this top boundary of the inner region. Now the conceptual opening is as
follows for the inner region: 



Difference representations made above the slit thus would use points below the right half of
the top of the inner region in the transformed region, etc. Similarly, representation made
below the left half of the top of the inner region would use points below the slit. The slit is
thus a "black hole" into which coordinate lines from the outer system disappear, to reappear
as part of the inner system. The slit here, matched with the top of the inner system, is then
clearly a branch cut, and passage through the slit onto the inner system is simply passage
onto a different sheet. 

          Note that the embedded system has its own distinctive species and directions for the
coordinate lines, entirely separate from the outer system. Thus for the inner region the
directions are as follows: 

while for the outer region they are as shown below: 

Thus at a point on the upper interface, 12-13, between the systems the lines are as follows: 



while on the lower interface, 9-6 they are as follows: 

Thus both coordinates reverse direction at the lower interface although the species is
continuous, while both the species and directions are continuous across the upper interface.
This again corresponds to passage onto a different sheet, for the interface between the inner
and outer systems, i.e., the segments 12-13 and 9-6, is actually a branch cut. 

          The points 9(12) and 6(13) here require special notice. For example, at point 9 the
coordinate line configuration is as follows: 

The lines through point 9 are as shown below 



There are thus several changes in species and direction at this point. This type of special
point embodies the form which always occurs with the slit configuration, shown on p. 26,
and occurs here because the embedded region inside the contour 9-6-13-12 is essentially
contained inside a slit defined by the same set of numbers. 

          The above discussion refers to the slit configuration on p. 41. For the configuration on
p. 40, the lines in the outer region are still as diagrammed on p. 43, but the lines in the inner
region now are as follows: 

The coordinate line species and direction given on p. 43 for the upper interface, 12-13, thus
applies here on the entire interface between the two regions. 

          An alternative treatment of the two special points is to place them inside cells as
shown below: 

This results in a six-sided cell surrounding each of these two points which requires special
treatment as discussed in Chapter IV. 



          Embedded systems can also be constructed in the block configuration: 

Here the top of the block, 7-8, in the outer system is re-entrant with the corresponding
segment, 7-8, on a portion of the top of the inner system. The left side of the block, 6-7, and
the bottom of the block, 6-5, are similarly re-entrant with single portions of the top of the
inner system. Finally, the right side of the block, 5-12-8, is re-entrant with two portions, 5-12
and 12-8, of the top of the inner system. Points outside one of these segments in one system
are thus located at corresponding positions inside the other segment of the re-entrant pair in
the other system. The slab sides, matched with the top of the inner system, are thus branch
cuts between the inner and outer systems. 

          Here the coordinate lines proceed as follows for the outer system: 

while those for the inner system are the same as before, as shown on p. 42. This means that
on the left and right sides of the block, i.e., segments 6-7 and 5-8, the line directions are as
follows: 



and on the top and bottom, segments 7-8 and 6-5, the directions are as shown below: 

There are thus changes in coordinate species and/or direction that are different on each side
of the block. 

          The point 8 (and points 7,6 and 5) are special points of the following form: 

The lines through the point are as shown below: 

Here the special points occur in the field instead of on the boundary. 

          An example of a C-type system embedded in another C-type system is given next: 



Here the conceptual opening is as follows: First, considering the system about the upper
body, we have the following configuration: 

which, with the body collapsed to a slit, opens to the rectangle in the center of the
transformed region. Next consider the system about the other body: 

This opens to a rectangle, with the body flattening to a portion of the bottom, which is fitted
to the first rectangle along the segment 11-13. Finally, the outermost portion opens as
follows: 



which opens to a rectangle which is fitted to the first one along the segment 12-14. 

          Again the embedded region inside the contour 14-12-11-13 can be considered to lie
inside a slit. This contour, which forms the interface between the inner and outer systems, is
actually a branch cut between the two systems, across which there are discontinuities in
coordinate species and directon in the same manner as was discussed above for the previous
embedded system. Points below segment 16-12 coincide with points below segment 17-11 in
this case. Points to the left of segment 15-12, above point 15, are coincident with points to
the right of segment 15-11 below point 15. The slit here is formed of the segments 8-15 and
9-15. The coincident points 11 and 12 here must be taken as a point boundary in the physical
region, i.e., fixed at a specified value. Several special points of the types discussed above are
present here. 

          An alternative arrangement of the transformed region that corresponds to exactly the
same coordinate system in the physical region is as follows: 

Here points below segment 3-4, to the left of point 4, coincide with points above segment
6-5, to the right of point 5. When calculations are made on or above the segment 12-14 on
the larger block, points below this segment coincide with points below the corresponding



segment on the smaller block. Similarly, when calculations are made on or below the
segment 13-11 on the larger block points above this segment coincide with points below the
corresponding segment on the smaller block. Finally, points below the segment 7-8, to the
left of point 8, on the smaller block are coincident with points above the segment 10-9, to the
right of point 9. 

          This configuration displays explicitly the correspondence of the embedded region
inside the contour 14-12-11-13 to a slit. Conceptually, coordinate lines from the main system
disappear into the slit and emerge into the embedded system. These coordinate lines thus are
continued from the main system onto another sheet representing the embedded system. This
concept of embedded systems, with continuation onto another sheet through a slit adds
considerable flexibility to the grid configurations and is of particular importance with
multiple boundaries and in three dimensions. The composite structure discussed in Section 4
removes much of the coding complexity associated with systems of this type. 

D. Other Configurations 

          Another arrangement of cuts, where the species of coordinate changes on a continuous
line as the cut is crossed, is illustrated below. The transformed region in this case is
composed of three blocks connected by the cuts. 

Here points outside one section are coincident with corresponding points inside the adjacent
section. 

          The coordinate line configuration on the interface on the right side of block A here is
as follows: 

This same type of configuration occurs, in different orientations, on each of the interfaces.
These interfaces are branch cuts, so that passage onto the adjacent block amounts to passage
onto another sheet in the same manner discussed above. 



          As a final configuration for consideration in two dimensions, the following example
shows a case with fewer lines on one side of a slab than on the other. This does not
necessitate the use of different increments of the curvilinear coordinates in the numerical
expressions, because, as has been mentioned, these increments always cancel out anyway. 

E. Three-dimensional Regions 

          All the general concepts illustrated in these examples extend directly to three
dimensions. Interior boundaries in the transformed region can become rectangular solids and
plates, corresponding to the slabs and slits, respectively, illustrated above for two
dimensions. Examples of three-dimensional configurations can be found in the surveys given
by Ref. [8] and [9]. 

          It is also possible to use branch cuts, as illustrated above for two dimensions, to bring
the interior boundaries in the physical region entirely to the exterior boundary of the
transformed region: 

Physical space                         Computational space 

The correspondence between the physical and transformed fields can, however, become
much more complicated in three dimensions, and considerable ingenuity may be required to
visualize this correspondence. For instance, the simple case of polar coordinates corresponds
to a rectangular solid with two opposing sides having the radial coordinate constant thereon,
and two re-entrant sides on which the longitudinal coordinate is constant at 0 and 2 ,
respectively (corresponding to the cut). The remaining two sides correspond to the north and
south polar axes, so that an axis opens to cover an entire side. There is thus a line, i.e., the
axis, in the physical region that corresponds to an entire side in the transformed region. 



          Three-dimensional grids may be constructed in some cases by simply connecting
corresponding points on two-dimensional grids generated on stacks of planes or curved
surfaces: 

          It should be noted, however, that this procedure provides no inherent smoothness in
the third direction, except in cases where the stack is formed by an analytical transformation,
such as rotation, translation or scaling, of the two-dimensional systems. An example of such
an analytical transformation of two-dimensional systems is the construciton of a
three-dimensional grid for a curved pipe by rotating and translating (and scaling if the
cross-sectional area of the pipe varies) two-dimensional grids generated for the pipe
cross-section so as to place these transformed two-dimensional grids normal to the pipe axis
at successive locations along the axis: 

Another example is the rotation of a two-dimensional grid about an axis to produce an
axi-symmetric grid: 



4. Composite Grids 

          All of the above concepts can be incorporated in a single framework, and the coding
complexity can be greatly reduced, by considering the physical field to be segmented into
sub-regions, bounded by four (six in 3D) generally curved sides, within each of which an
individual coordinate system is generated. The overall coordinate system, covering the entire
physical field, is then formed by joining the sub-systems at the sub-region boundaries. The
degree of continuity with which this juncture is made is a design consideration in regard to
the mode of application intended for the resulting grid. 

          This segmentation concept is illustrated in the figure below. 

The locations of the interfaces between the sub-regions in the physical region are, of course,
arbitrary since these interfaces are not actual boundaries. These interfaces might be fixed,
i.e., the location completely specified just as in the case of actual boundaries, or might be left
to be located by the grid generation procedure. Also the coordinate lines in adjacent
sub-regions might be made to meet at the interface between with complete continuity: 

---Interface 

with some lesser degree of continuity, e.g., continuous line slope only: 

---Interface 



or with a discontinuity in slope: 

or perhaps not to meet at all: 

Naturally, progressively more special treatment at the interface will be required in numerical
applications as more degrees of line continuity at the interface are lost. Procedures for
generating segmented grids with various degrees of interface continuity are discussed later,
and conservative interface conditions are given in Ref. [52], [53]. 

          Now, with regard to placing these concepts in the framework of segmentation, the
sides of an individual subregion (called a "block" hereafter) can be treated as boundaries on
which the coordinate points, and/or the coordinate line intersection angles, are specified, just
as is done for actual boundaries, or a side may be treated as one member of a pair of
re-entrant boundaries, i.e., one side of a branch cut in the physical region across which
complete continuity is established. The other member of the pair may be another side (or



portion thereof) of the same block or may be all (or part of) a side of an adjacent block in the
physical field. Recall that it is not necessary for a coordinate to remain of the same species
across a re-entrant boundary, since the passage is onto a different sheet. This can introduce
some coding complexity, but the treatment is straightforward, and in fact the coding can be
greatly simplified by using an extra layer of points surrounding each block as is discussed in
Section 6. 

          Some of the general concepts have been embodied in the two-dimensional code
discussed in Ref. [19] and in three recent three-dimensional codes, Ref. [13] Ref. [14], and
[51]. 

A. Simply-connected Regions 

          The first L-shaped simply-connected configuration on p. 21 can be interpreted as
being composed of three blocks, with the sides of adjacent blocks forming pairs of re-entrant
boundaries: 

or two blocks with a portion of a side of one block re-entrant with an entire side of another
block: 

Here, and in the examples to follow, solid lines correspond to physical boundaries, while the
dashed lines correspond to the interfaces between the blocks. The dashed arrows indicate the
linkage between the interfaces. (Obviously, any single block can be broken into any number
of blocks connected by re-entrant boundaries across adjacent sides.) In contrast, the
L-shaped configuration on p. 22 corresponds to the use of a single block. Similarly, the
configuration on p. 24 can be formed with three blocks: 



while the first configuration for the same boundary on p. 25 is formed with a single block. 

          The slit configuration on p. 25 can be formed of three blocks: 

or two blocks with only a portion of the adjacent sides of two blocks forming a re-entrant
boundary: 

B. Multiply-connected Regions 

          The configuration with a single cut shown on p. 29 corresponds to the use of a single
block with the left and right sides here being the members of a pair of re-entrant boundaries: 

          The multiply-connected slab configuration on p. 27 can be broken into four blocks: 



Other decompositions should also be immediately conceivable. The slit configuration on p.
28 can be formed with two blocks, again with only portions of adjacent sides serving as
re-entrant boundaries: 

or into four blocks, with entire sides as re-entrant boundaries in all cases: 

          The double-body region on p. 34 opens to a single block as shown there, with portions
of sides as re-entrant boundaries. A five block configuration would use only entire sides as
re-entrant boundaries, however: 



There is no real advantage, however, to the five-block system here. 

C. Embedded Regions 

          The segmentation concept is most useful in the construction of embedded coordinate
systems. For instance, the system on p. 40 can be considered to be formed of three blocks as
follows: 

Here portions of adjacent sides of the two larger blocks are re-entrant with each other, while
each of the remaining portions of these sides is re-entrant with half of one side of the smaller
block. The left and right sides of the smaller block are re-entrant with each other. This
configuration could also have been constructed with eight blocks: 

with only entire sides being involved in re-entrant pairs as shown. 

          With embedded systems the coordinate species often changes as the re-entrant
boundary is crossed. These systems also show that the blocks need be physically adjacent
only in the physical field, and it is in this sense that "adjacent" is always to be interpreted.
The transformed (computational) field should always be viewed as only a bookkeeping



structure. Various constructions are possible for the configurations on p. 48 and 50, and a
two block structure was actually used on p. 50. A further example follows: 



D. Three-dimensional Regions 

          For general three-dimensional configurations, it is usually very difficult to obtain a
reasonable grid with the entire physical region transformed to a single rectangular block. A
better approach in most cases is to segment the physical region into contiguous sub-regions,



each bounded by six curved surfaces, with each sub-region being transformed into a
rectangular block. An individual grid is generated in each sub-region: 

These sub-region grids are patched together to form the overall grads, as in the
two-dimensional cases discussed above. Examples of the use of this segmentation in three
dimensions are found, in particular, in Ref. [11] and [12]. Others are noted in the survey
given by Ref. [9]. 

          As noted above, complete continuity can be achieved at the sub-region interfaces by
noting the correspondence of points exterior to one sub-region with points interior to
another. The necessary bookkeeping can be accomplished, and the coding complexity can be
greatly reduced, by using an auxiliary layer of points just outside each of the six sides of the
computational region, analogous to the procedure mentioned above for two dimensions. A
correspondence is then established in the code between the auxiliary points and the
appropriate points just inside other sub-regions. This approach has recently been
incorporated in an internal region code, Ref. [13], and in two codes for general regions, Ref.
[14] and [51]. This is discussed in more detail in Section 6. 

          General three-dimensional regions can be built up using sub-regions as follows: First,
point distributions are specified on the edges of a curved surface forming one boundary of a
sub-region: 

and a two-dimensional coordinate system is generated on the surface: 



When this has been done for all surfaces bounding the sub-region, the three-dimensional
system within the sub-region is generated using the points on the surface grids as boundary
conditions: 

          In three dimensions it is possible for a line, e.g., a polar axis, in the physical region to
map to an entire side of the computational region as in the illistration below, where the axis
corresponds to the entire left side of the block: 

The system illustrated here could be one of several identical blocks joining together to form
a complete system around the axis. 

          It is illustrated by an exercise that the occurence of a polar axis can be avoided, and
this facilitates the construction of a block structure. Thus a surface grid, having eight
"corners", analogous to the four "corners" on the circle in the 2D grid on p. 23, can be
constructed on the surface of a sphere. This serves much better than a latitude-longitude type



system for joining to adjacent regions. Similarly, the use of the four "corner" system, rather
than a cylindrical system, in a circular pipe allows T-sections and bifurcations to be treated
easily by a composite structure, c.f. Ref. [13]. 

Generally, grid configurations with polar axis should not be used in composite grid
structures. 

E. Overlaid Grids 

          Another approach to complicated configurations is to overlay coordinate systems of
different types, or those generated for different sub-regions: 

Here an appropriate grid is generated to fit each individual component of the configuration,
such that each grid has several lines of overlap with an adjacent grid. Interpolation is then
used in the region of overlap when solutions are done on the composite grid, with iteration
among the various grids. This approach has the advantage of simplicity in the grid
generation, in that the various sub-region grids are only required to overlap, not to fit.
However, there would appear to be problems if regions of strong gradients fall on the
overlap regions. Also the interpolation may have to be constructed differently for different
configurations, so that a general code may be hard to produce. Some applications of such
overlaid grids are noted in Ref. [5]. 

5. Branch Cuts 

          As has been noted in the above discussion of transformed field configurations, it is
possible for discontinuities in coordinate species and/or direction to occur at branch cuts, in
the sense of passage onto another sheet. Continuity can be maintained, however, by
conceptually remaining on the same overlapping sheet as the cut is crossed. All derivatives
thus do exist at the cut, but careful attention to difference formulations is necessary to
represent derivatives correctly across the cut. Although the correct representation can be
accomplished directly by surrounding the computational region with an extra layer of points,



as is discussed in Section 6, it is instructive to consider what is required of a correct
representation further here. 

A. Point Correspondence 

          Points on re-entrant boundaries in the transformed region, i.e., on branch cuts in the
physical region, are not special points in the sense used above. Points on re-entrant
boundaries, in fact, differ no more from the other field points than do the points on the 0 and
2  lines in a cylindrical coordinate system. Care must be taken, however, to identify the
interior points coinciding with the extensions from such points beyond the field in the
transformed space. This correspondence was noted above in each of the configurations
shown above, being indicated by the dashed connecting lines joining the two members of a
pair of re-entrant boundaries. There are essentially four types of pairs of re-entrant
boundaries, as illustrated in the following discussion of derivative correspondence. In these
illustrations one exterior point, and its corresponding interior point, are shown for each case.
The converse of the correspondence should be evident in each configuration. 

          For the configurations involving a change in the coordinate species at the cut, not only
must the coordinate directions be taken into account as the cut is crossed, but also the
coordinate species may need to be interpreted differently from that established across the cut
in order to remain on the same sheet as the cut is crossed. For example, points on an -line
belonging to section A in the figure on p. 52, but located outside the right side of this region,
are coincident with points on a -line of region B at a corresponding distance (in the
transformed region) below the top of this region. 

B. Derivative Correspondence 

          Care must be taken at branch cuts to represent derivatives correctly in relation to the
particular side of the cut on which the derivative is to be used. The existence of branch cuts
indicates that the transformed region is multi-sheeted, and computations must remain on the
same sheet as the cut is crossed. Remaining on the same sheet means continuing the
coordinate lines across the cut coincident with those of the adjacent region, but keeping the
same interpretation of coordinate line species and directions as the cut is crossed, rather than
adopting those of the adjacent region. As noted above, points outside a region across a cut
the transformed space are coincident with points inside the region across the other member
of the pair of re-entrant boundary segments corresponding to the cut in the transformed
space. The positive directions of the curvilinear coordinates to be used at these points inside
the region across the other member of the pair in some cases are the same as the defined
directions there, but in other cases are the opposite directions. As noted above, the
coordinate species may change also. 

          For cuts located on opposing sides of the transformed region, the proper form is
simply a continuation across the cut. Thus in the configuration on p. 29, with a computation
site on the right side of the transformed region, i.e., on the upper side of the cut in the
physical plane, we have points to the right of the site (below the cut in the physical plane)
coinciding with points to the right of the left side of the transformed region (below the cut in
the physical plane) as noted above. When -derivatives and -derivatives for use outside the
right side of the transformed region are represented inside the left side, the positive



directions of  and  to be used there are to the right and upward, respectively, as is
illustrated below. (In this and the following figures of the section, the dotted arrows indicate
the proper directions to be used at the interior points coincident with the required exterior
points, i.e., on the same sheet across the cut, while solid arrows indicate the locally
established directions for the coordinate lines, i.e., on a different sheet.) 

          With the two sides of the cut both located on the same coordinate line, i.e., on the
same side of the transformed region as in the configuration on p. 30, however, the situation
is not as simple as the above. In this case, when the computation site is on the left branch of
the cut in the transformed region (on the lower branch in the physical region), the points
below this boundary in the transformed region coincide with points located above the right
branch of the cut (above the cut in the physical region) at mirror-image positions, as has
been noted earlier. The -derivatives for use at such points below the left branch thus must
be represented at these corresponding points above the right branch. The positive direction
of  for purposes of this calculation of derivatives above the right branch, for use below the
left branch, must be taken as downward, not upward. There is a similar reversal in the
interpretation of the positive direction of . This is in accordance with the discussion on p.
31. These interpretations are illustrated below: 

          In the configuration on p. 40, where two sides of a cut face each other across a void,
there is really no problem of interpretation, since the directions in the configuration are
treated simply as if the void did not exist. This correspondence is as shown below: 

          In all cases the interpretation of the positive directions of the curvilinear coordinates



must be such as to preserve the direction in the physical region, i.e., on the same sheet, as the
cut is crossed. In the cases where the coordinate species change at the cut, the situation is
even more complicated. Thus on the left side, segment 6-7, of the slab interface between the
inner and outer systems in the embedded configuration on p. 46, where the species changes
across the cut, the correspondence is as follows: 

Thus, when a -derivative is needed outside the outer sytem, for use inside the left slab
interface, the positive -direction at the corresponding points inside the inner system must
be taken to coincide with the negative -direction of the inner system. Similarly, an

-derivative would be represented taking the positive -direction to coincide with the
positive -direction of the inner system. In an analogous fashion, a -derivative needed
outside the inner system, for use inside the segment 6-7, would be represented at the
corresponding point inside the outer system, i.e., to the left of the left slab side, but with the
positive -direction taken to be the positive -direction of the outer system. An -derivative
would be represented similarly, taking the positive -direction to be the negative -direction
of the outer system. 

          A -derivative to the left of the right side of the slab in the outer system would be
represented below segment 12-5 or 8-12, as the case may be, but with the positive

-direction taken to be the positive -direction of the inner system. Similarly, an
-derivative would be represented taking the positive -direction to be the negative

direction of the inner system. For a -derivative above the bottom of the slab in the outer
system, the correspondence is to below the segment 5-6 inside the inner system, with the
positive -direction taken to be the negative -direction of the inner system. The

-derivative is represented taking the positive -direction to be the negative -direction of
the inner sytem. Finally, for derivatives below the top of the slab in the outer system, the
correspondence is to below the segment 7-8 inside the inner system, with both the species
and direction of the coordinates unchanged. 

          The proper interpretation of coordinate species and direction across branch cuts for all
the other configurations discussed above can be inferred directly from these examples. A
conceptual joining of the two members of a pair of re-entrant boundaries in accordance with
the dashed line notation used on the configurations given in this chapter will always show
exactly how to interpret both the coordinate species and directions in order to remain on the
same sheet and thus to maintain continuity in derivative representation across the cut.
Examples of the proper difference representation are given in the following section. The
complexities of this correspondence can be completely avoided, however, by using



surrounding layers around each block in a segmented structure as discussed in the next
section. 

6. Implementation 

          As discussed above, the transformed region is always comprised of contiguous
rectangular blocks by construction. This occurs because of the essential fact that one of the
curvilinear coordinates is defined as constant on each segment of the physical boundary.
Consequently, each segment of the physical boundary corresponds to a plane segment of the
boundary of the transformed region that is parallel to a coordinate plane there. The complete
boundary of the transformed region then is composed of plane segments, all intersecting at
right angles. Although the transformed region may not be a simple six-sided rectangular
solid, it can be broken up into a contiguous collection of such solids, here called blocks. 

          Now it is noted in Chapter III that the increments i cancel from all difference
expressions, and that the actual values of the curvilinear coordinates i are immaterial. The
coordinates in the transformed region can thus be considered simple counters identifying the
points on the grid. This being the case, and the transformed region being comprised of a
collection of rectangular blocks, it is convenient to identify the grid points with integer
values of the curvilinear coordinates in each block, and thus to place the cartesian
coordinates of a grid point in ijk, where the subscripts (i,j,k) here indicate position ( i, 2, 

3) in the transformed region. (In coding, a fourth index may be added to identify the
block.) In each block, the curvilinear coordinates are then taken to vary as i = 1,2,...,Ii over
the grid points, where Ii is the number of points in the i-direction. Grid points on a
boundary segment of the transformed region will be placed in ijk with one index fixed. 

          Now each block has six exterior boundaries, and may also have any number of interior
boundaries (cf. the slab and slit configurations of Section 3), all of which will always be
plane segments intersecting at right angles, although the occur ence of interior boundaries
can be avoided if desired by breaking the block up into a collection of smaller blocks as
discussed in Section 4. The boundary segments in the transformed plane may correspond to
actual segments of the physical boundary, or may correspond to cuts in the physical region.
As discussed in Section 5, these cuts are not physical boundaries, but rather are interfaces
across which the field is re-entrant on itself. A boundary segment in the transformed region
corresponding to such a cut then is an interface across which one block is connected with
complete continuity to another block, or to another side of itself, several examples having
been given above in this chapter. 

          Depending on the type of grid generation system used (cf., the later chapters), the
cartesian coordinates of the grid points on a physical boundary segment may either be
specified or may be free to move over the boundary in order to satisfy a condition, e.g.,
orthogonality, or the angle at which coordinate lines intersect the boundary. 

          To set up the configuration of the transformed region, a correspondence is established
between each (exterior or interior) segment of the boundary of the transformed region and
either a segment of the physical boundary or a segment of a cut in the physical region. This



is best illustrated by a series of examples using the configurations of this chapter. The first
step in general is to position points on the physical boundary, or on a cut, which are to
correspond to corners of the transformed region (exterior or interior). As noted in Section 3,
these points do not have to be located at actual corners (slope discontinuities) on the physical
boundary. 

          For example, considering the two-dimensional simply-connected region on p. 23, four
points on the physical boundary are selected to correspond to the four corners of the empty
rectangle that forms the transformed region here: 

 

Now, considering any one of these four points, one species of curvilinear coordinate will run
from that point to one of the two neighboring corner points, while the other species will run
to the other neighbor: 

 

The corresponding species of coordinates will run to connect opposite pairs of corner points: 

Since the curvilinear coordinates are to be assigned integer values at the grid points, i is to
vary from 1 at one corner to a maximum value, Ii, at the next corner, where Ii is the number
of grid points on the boundary segment between these two corners. Thus, proceeding
clockwise from the lower left corner, the cartesian coordinates of the four corner points are
placed in 1,1, 1,J, I,J, and I,1, where I1 = I and I2 = J. 



 

The boundary specification is then completed by positioning I-2 points on the lower and
upper boundary segments of the physical region as desired, and J-2 points on the left and
right segments. The cartesian coordinates of these points on the lower and upper segments
are placed in i,1 and i,J, respectively, for i from 2 to I-1, and those on the left and right

segments are placed, respectively, in 1,j and I,j for j from 2 to J-1. 

          This process of boundary specification can be most easily understood by viewing the
rectangular boundary of the transformed region, with I equally-spaced points along two
opposite sides and J equally-spaced points along the other two sides, conceptually, as being
deformed to fit on the physical boundary. The corners can be located anywhere on the
physical boundary, of course. Here the point distribution on the sides can be conceptually
stretched and compressed to position points as desired along the physical boundary. The
cartesian coordinates of all the selected point locations on the physical boundary are then
placed in as described above. 

          This conceptual deformation of the rectangular boundary of the transformed region to
fit on the physical boundary serves to quickly illustrate the boundary specification for the
doubly-connected physical field shown on p. 29, which involes a cut. Thus I points are
positioned as desired clockwise around the inner boundary of the physical region from 2 to
3, and I points are positioned as desired, also in clockwise progression, around the outer
boundary from 1 to 4. The cartesian coordinates of these points on the inner boundary are
placed in i,1, and those on the outer boundary in i,J, with i from 1 to I. Note that here the

first and last points must coincide on each boundary, i.e., I,1 = 1,1 and I,J = 1,J. The

left and right sides of the transformed region (i=1 and i= I) are re-entrant boundaries,
corresponding to the cut, and hence values on these boundaries are not set but will be
determined by the generation system. The system must provide that the same value appears
on both of these sides, i.e., I,j = 1,j for all j from 2 to J-1. 

          The conceptual deformation of the rectangle for a C-type configuration is illustrated
on p. 31. Here, with I1 the number of points on the segments 1-2 and 3-4 (which must have
the same number of points), I2 points are positioned as desired around the inner boundary in
the physical region in a clockwise sense from 2 to 3, and the cartesian coordinates of these
points are placed in i,1 for i from I1 to I1+I2-1. 

          The first and last of these points must be coincident, i.e. I1,1 = I1 + I2-1,1. Now the

top, and the left and right sides, of the rectangle are deformed here to fit on the outer
boundary of the physical region. (In the illustration given, the two top corners are placed on



the two corners that occur in the physical boundary, a selection that is logical but not
mandatory.) The cartesian coordinates of the J points(positioned as desired on the segment
4-5 of the physical boundary) are placed in I,j, proceeding upward on the physical

boundary from 4 to 5 for j= 1 to J, and those on the segment 1-6 are placed in 1,j, but

proceeding downward on the physical boundary from 1 to 6 for j1 to J. Finally, the cartesian
coordinates of the I selected points on the physical boundary segment 6-5 are placed in i,J,

proceeding clockwise from 6 to 5 for i=1 to I. Since the same number of points must occur
on the top and bottom of the rectangle, we must have I=2(I1-1)+I2. Here the portions of the
lower side of the rectangle, i.e., i from 2 to I1-1, and from I1+I2 to I-1 with j=1, are
re-entrant boundaries corresponding to the cut, and hence no values are to be specified on
these segments. The generation system must make the correspondence i,1 = I-i+1,1 for

i=2 to I1-1 on these segments. 

          The conceptual deformation of the boundary of the transformed regions also serves for
the slab configuration on p. 27, where the interior rectangle deforms to fit the interior
physical boundary, while the outer rectangle deforms to fit the outer physical boundary. On
the inner boundary, the cartesian coordinates of J2-J1+1 selected points on the segment 5-8
of the physical boundary are placed in I1,j for j from J1 to J2, proceeding upward on the

physical boundary from 5 to 8, where J1 and J2 are the j-indices of the lower and upper
sides, respectively, of the interior rectangle and I1 is the i-index of the left side of this
rectangle. Similarly, J2-J1+1 points are positioned as desired on the segment 6-7 of the
physical boundary and are placed in I2,j, where I2 is the i-index of the right side of the

inner rectangle. Also I2-I1+1 points on the segments 5-6 and 8-7 of the physical boundary
are placed in i,J1 and i,J2, respectively, for i from I1 to I2, proceeding to the right on each

segment. The outer boundary is treated as has been described for an empty rectangle. Here
there will be J1-1 coordinate lines running from left to right below the inner boundary, and
J-J2 lines running above the inner boundary. Similarly, there will be I1-1 lines running
upward to the left of the interior boundary and I-I2 lines to the right. Thus the specifications
of the desired number of coordinate lines running on each side of the inner boundary serves
to determine the indicies I1, I2, J1, and J2. Note that the points inside the slab, i.e., I1 < i <
I2 and J1 < j < J2 are simply excluded from the calculation. 

          The slit configuration, illustrated on p. 28, can also be treated via the conceptual
deformation, but now with a portion of a line inside the rectangle opening to fit the interior
boundary of the physical region. This requires that provision be made in coding for two
values of the cartesian coordinates to be stored on the slit. If the i-indices of the slit ends, 5
and 6, are I1 and I2, respectively, then the cartesian coordinates of I2-I1+1 points positioned
as desired on the lower portion of the physical interior boundary, again proceeding from 5 to
6, are placed in a one-dimensional array, while the coordinates of the same number of points
selected on the upper portion of the physical interior boundary, again proceeding from 5 to 6,
are placed in another one-dimensional array. The first and last points in one of these arrays
must, of course, coincide with those in the other. Then the generation system must read
values into i,J1 for i from I1 to I2 (J1 being the j-index of the slit) from the former array for

use below the slit, or values from the latter array for use above. (As has been noted, the use
of a composite structure eliminates the need for these two auxiliary arrays.) Note that the



index values I1 and I2 are determined by the number of lines desired to run upward to the
left and right of the interior boundary, respectively, i.e., I1-1 lines on the left and I-I2 on the
right. Similarly, there will be J1-1 lines below the interior boundary, and J-J1 above. 

          Configurations, such as those illustrated on pp. 24-25, which involve slabs or slits that
intersect the outer boundary are treated similarly, with points inside the slab again being
simply excluded from the calculations. Also multiple slab or slit arrangements are treated by
obvious extensions of the above procedures. Here the indices corresponding to each slab or
slit will be determined by the number of points on the interior boundary segments and the
number of coordinate lines specified to run between the various boundaries. For example, in
the slit configuration shown on p. 33, the ends of the horizontal slit would be at i-indices I1
and I2, where I1-1 lines run vertically to the left of the slit and there are I2-I1+1 points on
the slit. The vertical slit would be at i=I3 where there are I3-I2-1 vertical lines between this
slit and the horizontal slit (and I-I2 lines to the right). Similarly, if the j-indices of the ends of
the vertical slit or J1 and J2, there will be J1-1 horizontal lines below this slit and J-J2 lines
above. With the j-index of the horizontal slit as J3, there will be J3-1 horizontal lines below
this slit and J-J3 above. Provision will now have to be made in coding for two
one-dimensional arrays for each slit to hold the cartesian coordinates of the points on the
segments of the physical interior boundaries corresponding to the two sides of each slit.
Again this coding complexity is avoided in the composite structure. 

          The use of the conceptual deformation of the rectangle to setup the boundary
configuration for the case with multiple interior boundaries on p. 34 should follow with little
further explanation. Here there must be the same number of points on the pair of segments
2-3 and 6-7, which correspond to the two segments forming the interior boundary on the
right. There must also be the same number of points on the pair, 3-4 and 5-6, corresponding
to the cut connecting the two interior boundaries. Finally the number of points on the outer
boundary must, of course, be the same as that on the bottom boundary. Note also that the
values of the cartesian coordinates placed at 2 must be the same as are placed at 7; those at 3
must be the same as those at 6, and those at 4 the same as at 5. Values are not set on the cuts,
of course, but the generation system must provide that values at points on the segment from
3 to 4 are the same as those on the segment 5-6, but proceeding from 6 to 5. Also values on
the segments 2-1 and 7-8 must be the same, proceeding upward in each case. 

          Following the conceptual deformation of the rectangular boundaries of the
transformed region and the indexing system illustrated above, it now should be possible to
set up the more complicated configurations such as the embedded regions shown in Section
3C. As noted there, however, the most straightforward and general approach to such more
complicated configurations is to divide the field into contiguous rectangular blocks, each of
which has its own intrinsic set of curvilinear coordinates and hence its own (i,j,k) indexing
system. The necessary correspondence between the individual coordinate systems across the
block interfaces was discussed in some detail in Section 3C. This block structure greatly
simplifies the setup of the configuration. For example, consider the 3-block structure shown
on p. 49 for the physical field shown on p. 48, for which the blocks are as follows: 



 

 

Here the selected points on the right interior boundary (segment 8-15-9) are placed in i,1 of

the first block, for i from the i-index at 8 to that at 9,proceeding clockwise from 8 to 9 on the
physical boundary. (The difference between these two i-indices here is equal to the number
of points on this interior boundary,less one.) Similary,the selected points on the left interior
boundary (segment 4-5) are placed in i,1 of the second block for i from the i-index at 4 to

that at 5, proceeding clockwise from 4 to 5 on the physical boundary. The selected points on
the outer boundary of the physical region are placed in 1,j of the third block for j from 1 to

J3, in i,J3 for i from 1 to I3, and in I3,j for j from J3 to 1, proceeding from 16 to 1 to 2 to

14 on the physical boundary. Points on the remainder of the physical outer boundary are
placed in 1,j of the second block for j from 1 to J2 and in I2,j for j from J2 to 1,

proceeding from 3 to 17 for the former and from 13 to 6 for the latter, and in 1,j of the first

block for j from 1 to Jl and in I1,j for j from Jl to 1, proceeding from 7 to 13 for the former

and from 14 to 10 for the latter. 

          Since the three blocks must fit together we have I3=I2, (I1+1)/2 equal to the difference
in i-indices between 11 and 13 in the second block and to that between 12 and 14 of the third
block. The quantities J1, J2, and J3 determine how many C-type lines occur in each block,
and can be chosen independently. Here the segment 11-13 on the top of the first block
interfaces with the corresponding segment on the top of the second block. The segment
12-14, which forms the remainder of the top of the first block, interfaces with the



corresponding segment on the bottom of the third block. Finally, the segment 12-16, which
forms the remainder of the bottom of the third block, interfaces with segment 11-17, which
forms the remainder of the top of the second block. The segments 3-4 and 6-5 on the bottom
of the second block interface with each other in the order indicated, as do also the segments
7-8 and 10-9 on the bottom of the first block. 

          In coding, this block structure can be handled by using a fourth index to identify the
block, placing an extra layer around each block, (i=0 and I+1, j=0 and J+1) and providing an
image-point array by which any point of any block can be paired with any point of any other,
or the same, block. Such pairs of points are coincident in the physical region, being on or
across block interfaces, and consequently are to be given the same values of the cartesian
coordinates by the generation system. This imaging extends to the extra layer surrounding
each block, so that appropriate points Inside other blocks can be identified for use in
difference representations on the block interfaces that require points outside the block, (cf.
Section 5). 

          Interface correspondence then can be established by input by setting the image-point
correspondence on the appropriate block sides, i.e., placing the (i,j,k) indices and block
number of one member of a coincident pair of points in the image-point array at the indices
and block number of the other member of the pair. This correspondence is indicated on the
block diagram on pp. 85-86 by the points enclosed in certain geometric symbols. 

          Thus, for the 3-block configuration considered above, the indices (I1-i+1, 1) and block
number 1, corresponding to a point on the segment 9-10 of the first block, would be placed
in the image-point array at the point (i,1) on the segment 7-8 of this block, and vice versa. A
similar pairing occurs for points on the segments 3-4 and 5-6 of the second block. The
indices (I2-i+1, J2) and block number 2, corresponding to a point on the segment 11-13 of
the second block would be placed in the image-point array at the point (i,Jl) of the first block
on the segment 13-11 of that block, and vice versa. The indices (I3-I1+i, 1) and block
number 3 (a point on the segment 12-14 of the third block) would be placed in the array at
the point (i,J1) of the first block for a point on the segment 12-14 of that block. Finally, the
indices (i,1) and block number 3 (point on segment 16-12 of the third block) would be
placed in the array at the point (i,J2) of the second block for a point on the segment 17-11 of
that block. The remaining segments all correspond at portions of the physical boundary and
hence do not have image points. 

          In the same manner the following image correspondence can be set between interior
points and points on the surrounding layers in order to establish difference representations
across the block interfaces: (This correspondence is indicated symbolically on the block
diagram on pp. 85-86 by geometric symbols.): 



          As noted, all of this information would be input into the image-point array. Then with
values of the cartesian coordinates at the image points on the surrounding layer set equal to
those at the corresponding object point inside one of the blocks, it is possible to use the same
difference representations on the interfaces that are used in the interior. 

          The discussion given in this chapter should now allow the image-point input to be
constructed for any configuration of interest. As noted, it is not necessary that the coordinate
species remain the same as the interface is crossed. Thus, for instance, a point on the right
side of one block could be paired with one on the bottom of another block. In such a case the
image point of the point (I+1, j) the first block would be the point (j,2) inside the second
block. Similarly the image of the point (i,0) below the second block would be the point (I-1,
i) inside the first block, The correct difference representation across interfaces is thus
automatically established, eliminating the need for the concern with passage onto different
sheets discussed in detail earlier in this chapter. 

          This greatly simplifies the coding, since with the surrounding layers and the use of the
image points, all of the derivative correspondences are automatic and do not have to be
specified for each configuration. It is only necessary to specify the point correspondence by
input. This construction also allows codes for the numerical solution of partial differential
equations on the grid to be written to operate on rectangular blocks. Then any configuration
can be treated by sweeping over all the blocks. The surrounding layers of points and the
image correspondence provide the proper linkage across the block interfaces. In an implicit
solution the values on the interfaces would have to be updated iteratively in the course of the
solution. The solution for the generation of the grid would similarly keep the interface and
surrounding layer values updated during the course of the iterative solution. 

          This, of course, maintains completecontinuity across the block interfaces. If complete
continuity is not required, then the surrounding layer is not required and the interfaces would
be treated in the same manner as are physical boundaries. However, the surrounding layer
and the point correspondence thereon discussed above might still be needed for the
numerical solution to be done on the grid. 



          The extension of all of the above concepts and structures to three dimensions is direct,
the illustrations having been given in two dimensions only for economy of presentation. 

Exercises 

1. Sketch the grid when the physical region shown below is transformed to an empty
rectangle as indicated. 

2. Locate the cuts on the grid in the physical region for the grids shown on pp. 35-37. 

3. Sketch the grid for a O-grid, a C-grid, and a slit configuration for a cascade arrangement
(a periodic stack of bodies, e.g., turbine blades.) 

4. For the configuration shown below, let body II transfrom form to a slit in a C-type system
about I. Sketch the grid lines and show the transformed region configuration. 

5. Sketch the surface grid on a sphere with eight "corners" on the sphere. This is analogous
to the 2D grid for the circle with four "corners" on p. 23. This configuration would be more
appropriate for embedding a spherical region in a composite structure than would the usual



polar system. 

6. Diagram the transformed region configuration for a polar coordinate system between two
concentric spheres. Here the polar axis will map to an entire side of the transformed region. 

7. Sketch the surface grid on a circular cylinder with a hemispherical cap for two cases: (1)
with a cylindrical-coordinate type grid on the hemisphere and (2) with four "corners" on the
intersection of the hemisphere with the cylinder. The latter case would be more appropriate
for a composite system. 

8. For the two-slit configuration on p. 33, diagram a composite system composed of empty
blocks. Show all cuts and the correspondence between pairs thereof 

9. Sketch the grid and diagram the blocks for a composite two-block system for a circular
pipe T-section. It is necessary to use a cross-sectional grid of the type shown on p. 23,
having four "corners" on the circle, since cylindrical grids would not join with line
continuity. 

10. Diagram the block structure and grid for a six-block composite system for the region
between two concentric spheres, based on the surface grid of Exercise 10. Note that no polar
axis occurs with this configuration. 

11. Consider a region between two boundaries, both of which are formed of cylinders with
hemi-spherical caps, these being coaxial with one inside the other. Sketch the grid and
diagram the blocks for a three-block system, with one block corresponding to the annular
region between the caps, for the following two configurations: (1) with the polar axis
connecting the caps and (2) with no polar axis. In the latter case each of four sides of one
block will correspond to one of four portions of one side of the other block. 

12. Diagram the point correspondence across all the cuts in the two-body 0-grid on p.34.
Also give the relation between the indices of corresponding points on the cuts. Finally give
the relation between the indices of points on a surrounding layer of points and points inside
the field inside the cuts. 

13. For one block of the system on p. 52, give the correspondence between indices of points
on the surrounding layers and points inside adjacent blocks for the cuts. 

14. Sketch the grid for a 2-D composite system having two circular regions embedded in a
grid which is generally rectangular. Let one of the circular regions have a
cylindrical-coordinate type of grid and the other have a grid of the type with four "corners"
on the circle as on p. 23. 

15. Show that is is not possible to handle the point correspondence across the cuts in the
embedded slab type system shown on p. 46 (a 2-block system) by using an extra layer of
points just inside the slab in the outer system. Also show that it is possible to represent the
correspondence across the cuts using surrounding layers if a 4-block composite system is
used. 



III. TRANSFORMATION RELATIONS

          The transformation relations from cartesian coordinates to a general curvilinear system
are developed here using certain concepts from differential geometry and tensor analysis,
which are introduced only as needed. Warsi [15] has given an extensive collection of
concepts from tensor analysis and differential geometry applicable to the generation of
curvilinear coordinate systems. Another discussion is given in Eiseman [16], where these
concepts are developed as part of a general survey on the generation and use of curvilinear
coordinate systems. Eiseman includes a discussion on differential forms, which is a
fundamental part of modern differential geometry, but primarily restricts his development to
Euclidean space. In contrast, Warsi has given a classical development that includes curved
space, but not differential forms. 

          Partial derivatives with respect to cartesian coordinates are related to partial
derivatives with respect to curvilinear coordinates by the chain rule which may be written in
either of two ways. If A is a scalar-valued function, then 

(1)

or, equivalently, 

(2)

Either formulation may be used to relate the cartesian and curvilinear derivatives of the
function A. However, there is a difference in the transformation derivatives which must be
inserted in these relations. In the first ease one must be able to evaluate (or approximate) the
vectors 

whereas, the second case requires 

Thus all the transformation relations may be based on either of these two sets of vectors.
Various properties of, and relationships between, these vectors are developed and applied in
this chapter to provide the necessary transformation relations. 

1. Base Vectors 

          The curvilinear coordinate lines of a three-dimensional system are space curves
formed by the intersection of surfaces on which one coordinate is constant. One coordinate
varies along a coordinate line, of course, while the other two are constant thereon. The



tangents to the coordinate line and the normals to the coordinate surface are the base vectors
of the coordinate system. 

A. Covariant 

          Consider first a coordinate line along which only the coordinate  varies: 

 

Clearly a tangent vector to the coordinate line is given by 

(Coordinates appearing as subscripts will always indicate partial differentiation.) These
tangent vectors to the three coordinate lines are the three covariant base vectors of the
curvilinear coordinate system, designated 

(3)

where the three curvilinear coordinates are represented by i (i=1,2,3), and the subscript i
indicates the base vector corresponding to the i coordinate, i.e., the tangent to the
coordinate line along which only i varies. 

B. Contravariant 

          A normal vector to a coordinate surface on which the coordinate  is constant is given
by : 

 

These normal vectors to the three coordinate surfaces are the three contravariant base vectors



of the curvilinear coordinate system, designated 

(4)

Here the coordinate index i appears as a superscript on the base vector to differentiate these
contravariant base vectors from the covariant base vectors. The two types of base vectors are
illustrated in the following figure, showing an element of volume with six sides, each of
which lies on some coordinate surface. 

 

C. Orthogonality 

          Only in an orthogonal coordinate system are the two types of base vectors parallel,
since for a non-orthogonal system, the normal to a coordinate surface does not necessarily
coincide with the tangent to a coordinate line crossing that surface: 

 

Also for an orthogonal system the three base vectors of each type are obviously mutually
perpendicular. 

2. Differential Elements 

          The differential increments of arc length, surface, and volume, which are needed for
the formulation of the respective integrals, can be generated directly from the co-variant base
vectors. The general arc length increment leads also to the definition of a fundamental metric
tensor. 



A. Covariant metric tensor 

          The general differential increment (not necessarily along a coordinate line) of a
position vector is given by 

An increment of arc length along a general space curve then is given by 

The general arc length increment thus depends on the nine dot products,  (i=1,2,3)
and (j= 1,2,3), which form a symmetric tensor. These quantities are the covariant metric
tensor components: 

(5)

Thus the general arc length increment can be written as 

(6)

B. Arc length element 

          An increment of arc length on a coordinate line along which i varies is given by 

(7)

C. Surface area element 

          Also an increment of area on a coordinate surface of constant i is given by 

(8)

Using the vector identity 

(9)

we have 



(10)

so that the increment of surface area can be written as 

(11)

D. Volume element 

          An increment of volume is given by 

(12)

But, by the identity (9), 

Also from (9), 

and by the vector identity 

(13)

we have 

so that with the dot products replaced according to the definition (5), 



This last expression is simply the determinant of the (symmetric) covariant metric tensor
expanded by cofactors. Therefore 

(14)

so that the volume increment can be written 

(15)

where  (called the Jacobian of the transformation) can be evaluated by either of the
following expressions: 

(16)

3. Derivative Operators 

          Expressions for the derivative operators, such as gradient, divergence, curl, Laplacian,
etc., are obtained by applying the Divergence Theorem to a differential volume increment
bounded by coordinate surfaces. The gradient operator then leads to the expression of
contravariant base vectors in terms of the covariant base vectors, and to the contravariant
metric tensor as the inverse of the covariant metric tensor. 

          By the Divergence Theorem, 

(17)

for any tensor , where  is the outward-directed unit normal to the closed surface S
enclosing the volume V. For a differential surface element lying on a coordinate surface we
have, by Eq. (8), 



(18)

with the choice of sign being dependent on the location of the volume relative to the surface.
Then considering a differential element of volume, V, bounded by six faces lying on
coordinate surfaces, as shown in the figure on p. 98, we have, using Eq. (15) and (18), 

(19)

where the notation  and  indicates the element on i two sides of the which  is
constant and which are located at larger and smaller values, respectively, of . Here, as
usual, the indices (i,j,k) are cyclic. 

A. Divergence 

Proceeding to the limit as the element of volume shrinks to zero we then have an expression
for the divergence: 

(20)

where, as noted, the subscript i on the bracket indicates partial differentiation. 

          A basic metric identity is involved here, since 

The indices (i,j,k) are cyclic, and therefore the last summation may be written equivalently
as 



Since this is then the negative of the first summation we have the identity, 

(21)

This is a fundamental metric identity which will be used several times in the developments
that follow. This identity also follows directly from Eq. (20) for uniform . It then follows
that the divergence can also be written as 

(22)

          Although the equations (20) and (22) are equivalent expressions for the divergence,
because of the identity (21), the numerical representations of these two forms may not be
equivalent. The form given by Eq. (20) is called the conservative form, and that of Eq. (22),
where the product derivative has been expanded and Eq. (21) has been used, is called the

non-conservative form. Recalling that the quantity  represents an increment of

surface area (cf.Eq. (8)), so that  is a flux through this area, it is clear that the
difference between the two forms is that the area used in numerical representation of the flux
in the conservative form, Eq. (20), is the area of the individual sides of the volume element,
but inthe nonconservative form, a common area evaluated at the center of the volume
element is used. The conservative form thus gives the telescopic collapse of the flux terms
when the difference equations are summed over the field, so that this summation then
involves only the boundary fluxes. This would seem to favor the conservative form as the
better numerical representation of the net flux through the volume element. 

          It is important to note that since the conservative form of the divergence, and of the
gradient, curl, and Laplacian to follow, is obtained directly from the closed surface integral
in the Divergence Theorem, the use of the conservative difference forms for these derivative
operators is equivalent to using difference forms for that closed surface integral. Therefore
the finite volume difference formulation can be implemented by using these conservative
forms directly in the differential equations of motion without the necessity of returning to the
integral form of the equations of motion. 

B. Curl 

          Since Eq. (17) is also valid with the dot products replaced by cross products, the
conservative and non-conservative expressions for the curl follow immediately from Eq. (20)
and (22): 



(23)

and 

(24)

These expressions can also be written, using Eq. (13), as 

(25)

and 

(26)

C. Gradient 

Eq. (17) is also valid with  replaced by a scalar, and the dot product replaced by simple
operation on the left and multiplication on the right. Therefore the conservative and
non-conservative expressions for the gradient also follow directly from Eq. (20) and (22) as 

(27)

and 

(28)

D. Laplacian 

          The expressions for the Laplacian then follow from Eq. (20) or (22), with  replaced
by A from Eq. (27) or (28). Thus the conservative form is 



(29)

and the non-conservative is 

(30)

With the product derivative expanded, the non-conservative form, Eq. (30), can also be
written as 

(31)

4. Relations Between Covariant and Contravariant Metrics 

A. Base vectors 

          The expression (28) for the gradient allows the contravariant base vectors to be
expressed in terms ofthe co-variant base vectors as follows. With A= m in (28), we have 

since the three curvilinear coordinates are independent of each other. Then 

(32)



This gives a relation between the derivatives of the curvilinear coordinates ( i)xl
 and the

derivatives (xr) s of the cartesian coordinates. By Eq. (4) the contravariant base vectors

maybe written in terms of the covariant base vectors as 

(33)

          By Eq. (33), 

where here (j,k,l) are cyclic. If j  i, either k or l must be i, and in that case the right-hand
sidevanishessince the three vectors in the triple product may be in any cyclic order and the
cross product of any vector with itself vanishes. When j=i, the right-hand side is simply
unity. Therefore, in general 

(34)

Because of this relation, any vector  can be expressed in terms of either set of base vectors
as 

(35)

and 

(36)

Here the quantities  and , are the contravariant and co-variant
components, respectively, of the vector . 

B. Metric Tensors 

          The components of the contravariant metric tensor are the dot products of the
contravariant base vectors: 

(37)

The relation between the covariant and contravariant metric tensor components is obtained
by use of Eq. (33) in (37). Thus, with (i,j,k) cyclic and (l,m,n) cyclic, 



by the identity (9). Then from the definition (5), 

(38)

Since the quantity in parentheses in the above equation is the signed cofactor of the il
component of the covariant metric tensor, the right-hand side above is the li component of
the inverse of this tensor. Then, since the metric tensor is symmetric we have immediately
that the contravariant metric tensor is simply the inverse of the covariant metric tensor. It
then follows that 

so that, in terms of the contravariant base vectors, the Jacobian is 

(39)

The identity (21) can be given, using Eq. (33), as 

(40)

5. Restatement of Derivative Operators 

          In view of Eq. (33), the cross products of the co-variant base vectors in the expressions
given above for the gradient, divergence, curl, and Laplacian can be replaced directly by the
contravariant base vectors (multiplied by the Jacobian). The components of these
contravariant base vectors i in the expressions are the derivatives of the curvilinear
coordinates with respect to the cartesian coordinates, and this notation, rather than the
cross-products, often appears in the literature. Thus, by Eq. (4), the xj-component of ai can

be written as 

(41)



          The expressions for the gradient, divergence, curl, Laplacian, etc., given above in
terms of the cross products of the covariant base vectors, i, involve the derivatives of the
cartesian coordinates with respect to the curvilinear coordinates, e.g. (xi) j. The expressions

given below in terms of the contravariant base vectors, i, involve the derivatives ( i)xj

when  is evaluated from (39). From a coding standpoint, however, the contravariant base
vectors i in these expressions would be evaluated from the covariant base vectors using Eq.
(33). 

A. Conservative 

          The conservative forms are as follows: 

(42)

(43)

(44)

(45)

By expanding the inner derivative, the Laplacian can be expressed as 

(46)

          For  we have 

(47)

or, with the inner derivative expanded, 

(48)

          In the expressions for the divergence,  may be a tensor, in which case we have 



(49)

From Eq. (42) we have the conservative expressions for the first derivative: 

(50)

where  is the component in the xj-direction. Also, for the second derivative, 

(51)

or, with the inner derivative expanded, 

(52)

          It then follows that all of the above conservative expressions can be written in the
form 

(53)

where the quantity Ai takes the following form for the various operatfons, with i = 1,2,3, 

(54)

(55)

(56)

          matrix product of square matrix  and column vector i. Here i is a vector) 

(57)



(58)

(59)

(60)

(61)

(62)

(63)

(64)

          It is computationally more efficient to evaluate the product i as an entity from Eq.

(33) when the conservative forms are used, in order to avoid the extra multiplication by .

Another alternative is to include  with . 

B. Non-conservative 

          The non-conservative relations are as follows: 

(65)

From Eq. (65) the p operator can be represented by 

(66)

and 



(67)

(68)

(69)

Since 

(70)

by Eq. (37) and (69), the Laplacian can also be written as 

(71)

          Using Eq. (67) and (65) we also have 

Thus, by Eq. (70), the non-conservative expression is 

(72)



A more practical equation than Eq. (70) for the evaluation of 2 j in these expressions can
be obtained as follows. 

          Since 2 =0 it follows from Eq. (71) that 

(73)

But  j= j. Then dotting l into this equation and using Eq. 34, we have 

so that 2 l is given by 

(74)

          The non-conservative form of the divergence of a tensor is, by expansion in Eq. (49), 

(75)

          From Eq.(65) the non-conservative expressions for the first and second derivatives are 

(76)

and 

(77)

          This non-conservative form in terms of the contravariant base vectors is referred to by
some as the "chain-rule conservation" form (Eq. (76) is equivalent to Eq. (1)). In any case
only the conservative form gives the telescopic collapse over the field that characterizes



conservative numerical representations, and it is necessary to substitute for the contravariant
base vectors from Eq. (33) in implementation, since it is the covariant base vectors that are
directly calculated from the grid point locations. 

6. Normal and Tangential Derivatives 

          Expressions for derivatives normal and tangential to coordinate surfaces are needed in
boundary conditions and are obtained from the base vectors as follows. 

A. Tangent to coordinate lines 

          Since the covariant base vectors are tangent to the coordinate lines, the tangential
derivative on a coordinate line along which i varies is given by 

using Eq. (65). In view of Eq. (34), this reduces to 

(78)

B. Normal to coordinate surfaces 

          Also, since the contravariant base vectors are normal to the coordinate surfaces, the
normal derivative to a coordinate surface on which i is constant is given by 

(79)

C. Normal to coordinate lines and tangent to coordinate surfaces 

          The vector  is normal to the coordinate line on which i varies and is also
tangent to the coordinate surface on which i is constant: 



Using Eq. (33) and the identity (13), this vector is given by 

(80)

and the magnitude is given by 

The bracket is the negative of the second and third terms of the determinant, ,
expanded by cofactors. Therefore, we have 

(81)

          The derivative normal to the coordinate line on which i varies and in the coordinate
surface on which i is constant then, using Eq. (65) and (80), is given by 



By Eq. (34). Thus, using Eq. (81), 

(82)

7. Integrals 

Expressions for surface, volume, and line integrals are easily developed from the base
vectors as follow. 

A. Surface integral 

Returning to the Divergence Theorem, Eq. (17), and its counterparts with the dot product
replaced by a cross product or simple operation (the latter with A replaced by a scalar), we
have approximate expressions for the surface integrals over the surface of the volume
element given, using Eq. (15), by 

(83)

with the open circle indicating the product operation, and using the appropriate expression

for  from those given in the developments above. This emphasizes again that difference
representations based on integral formulations, e.g. finite volume, can be obtained by using
conservative expressions for the derivative operators directly in the partial differential
equations. 

B. Volume integral 

          The approximate expression for the volume integral over the volume element, again
using Eq. (15), is simply 



(84)

C. Line integrals 

          Using Eq. (3), the line integral on a coordinate line element on which i varies is
simply 

(85)

where again the open circle indicates any type of operation, and  is any tensor. Also since 

we have for a closed circuit lying on a coordinate surface on which i is constant, 

using Eq. (83), where (l,m,n) are cyclic. But 

Then using the identity (13), we have 

(86)

by using Eq. (34). With (1,j,k) cyclic we have for the circuit integral, 

(87)

8. Two-Dimensional Forms 



          In two dimensions, let the x3 direction be the direction of invariance, and let the 3

curvilinear coordinate be identical with x3. Also, for convenience of notation, let the other

coordinates be identified as 

A. Metric elements 

Then 

and the other base vectors are 

(88)

The covariant metric components then are 

(89)

From Eq. (16), the Jacobian is given by 



(90)

The other contravariant base vectors are, from Eq. (33), 

(91)

and the contravariant metric components are, from Eq. (37) or (38), 

(92)

From Eq. (4) we have = 1 and = 2, so that by Eq. (91), 

(93)

B. Transformation relations 

Divergence (conservative), Eq. (43): 

(94)

(non-conservative), Eq. (67): 



(95)

Gradient (conservative), Eq., (42): 

(96)

(97)

(non-conservative), Eq. (65): 

(98)

(99)

          By Eq. (93), or directly from Eq. (76), these non-conservative forms may be given as 

 

which are the so-called "chain-rule conservative" forms. This form, however, is not
conservative and the relations given by Eq. (93) must be substituted in the implementation in
any case, since it is x , etc., rather than x, that is directly calculated from the grid point

locations. 

Curl (conservative), Eq. (44): 

(100)

(non-conservative), Eq. (68): 

(101)

Laplacian (conservative), Eq. (45): 



(102)

(non-conservative), Eq. (65): 

(103)

Second derivatives (non-conservative): 

(104)

(105)



(106)

Normal derivative (conservative): 

(107)

(108)

(non-conservative): 

(109)

(110)

Tangential derivative (conservative): 

(111)

(112)



(non-conservative): 

(113)

(114)

Surface integral: 

(115)

9. Time derivatives 

A. First Derivative 

          With moving grids the time derivatives must be transformed also. For the first
derivative we have 

(116)

where here, and in Eq. (117) below, the subscripts indicate the variable being held constant
in the partial differentiation. Here the time derivative on the left side is at a fixed position in
the transformed space, i.e., at a given grid point. The time derivative on the right is at a fixed
position in the physical space, i.e., the time derivative that appears in the physical equations

of motion. The quantity  is the grid point speed, to be written  hereafter. Thus we
have, for substitution into the physical equations of motion, the relation 

(117)

with  to come from thetransformation relations given previously. With the time derivatives
transformed, only time derivatives at fixed points in the transformed space will appear in the
equations and, therefore, all computation can be done on the fixed uniform grid in the
transformed field without interpolation, even though the grid points are in motion in the
physical space. The last term in Eq. (117) resembles a convective term and accounts for the
motion of the grid. 

B. Convective terms 

Consider the generic convective terms 



(118)

where  is a velocity, which occur in many conservation equations. Using Eq. (117) we
have 

where now the time derivative is understood to be at a fixed point in the transformed space.
Then using Eq. (42) and (43) for the gradient and divergence, this becomes 

(119)

          By Eq. (16), 

by Eq. (33). But 

so that 

(120)

          We then can write 



(121)

which is a conservative form of the generic convective terms with regard to the quantity,

A. By Eq. (33), the quantity 

(122)

is the contravariant velocity component in the i-direction, relative to the moving grid. Thus
Eq. (121) can be written in the conservative form, 

(123)

          Expanding the derivatives in Eq. (119) and using Eq. (40), we have 

(124)

so that the non-conservative form 

(125)

The last summation is the divergence of the velocity, . (Computationally,  might be
included in the definition of Ui for use in the conservative form in the interest of

computational efficiency, since by Eq. (33) the product  i can be evaluated directly as
the cross product of the co-variant base vectors.) 

          From Eq. (117) we have, with A taken as i, 

(126)



by Eq. (4). Here the time derivative of i is, of course, at a fixed position in physical space.
The quantity Ui introduced above in Eq. (122), thus could be written as 

(127)

Here the  are, of course, the contravariant velocity components. 

C. Second derivative 

          The second time derivative transforms as follows: 

(128)

where the x,y subscripts on the left indicate the variables being held constant, and 

(129)

(130)

(131)

(132)

with (l,m,n) cyclic. 

Exercises 

1. Obtain the covariant and contravariant base vectors for cylindrical coordinates from Eq.
(3) and (4). Show that Eq. (34) holds for this system. 

2. Obtain the elements of arc length, surface area, and volume for cylindrical coordinates. 

3. Obtain the relations for gradient, divergence, curl, and Laplacian for cylindrical
coordinates. 

4. Demonstrate that the identity (21) holds for cylindrical coordinates. 



5. Demonstrate that Eq. (33), (38) and (39) hold for cylindrical coordinates. 

6. Repeat exercises 1 - 5 for spherical coordinates. 

7. Show that the covariant base vectors may be written in terms of the contravariant base
vectors by 

Hint: Cross k into Eq. (33) and use (13), rearranging k subscripts at the end. Recalling that 

 as can be expressed , this gives, a relation for (xl) i in terms of the derivatives

( r)xs
. 

8. Show that the elements of the covariant metric tensor can be expressed in terms of the
contravariant elements by 

Hint: Follow the development of Eq. (38), but with . 

9. Show that Eq. (65) is equivalent to the chain rule expression (1). Also show that the dot
product of j with Eq. (65) leads, after interchange of indices, to the chain rule expression

(4). 

10. Show that 

Hint: Since  depends on  only through the gij, differential g with respect to gjk

with respect to i. Recall Eq. (38). 

11. Show that 2 =0. Hint: Use cartesian coordinates. 

12. Obtain the two-dimensional relations in Section 6 from the general expression. 

13. Verify Eq. (74) for cylindrical and spherical coordinates. 

14. Obtain the normal and tangential derivatives (Section4) for cylindrical and spherical
coordinates. 





IV. NUMERICAL IMPLEMENTATION

1. Transformed Eqations 

          In order to make use of a general boundary-conforming curvilinear coordinate system
in the solution of partial differential equations, or of conservation equations in integral form,
the equations must first be transformed to the curvilinear coordinates. Such a transformation
is accomplished by means of the relations developed in the previous chapter and produces a
problem for which the independent variables are time and the curvilinear coordinates. The
resulting equations are of the same type as the original ones, but are more complicated in
that they contain more terms and variable coefficients. The domain, on the other hand, is
greatly simplified since it is transformed to a fixed rectangular region regardless of its shape
and movement in physical space. This facilitates the imposition of boundary conditions and
is the primary feature which makes grid generation such a valuable and important tool in the
numerical solution of partial differential equations on arbitrary domains. 

          A numerical solution of the transformed problem can be obtained using standard
techniques once the problem is discretized. Since the domain is stationary and rectangular,
and since the increments of the curvilinear coordinates are arbitrary, the computation can
always be done on a fixed uniform square grid. Spatial derivatives at nearly all field points in
the transformed domain can therefore be represented by conventional finite-difference or
finite-volume expressions, as discussed in the next section. In fact, the transformed problem
has the appearance of a problem on a uniform cartesian grid and thus may be treated as such
both in the formation of the difference equations and in the solution thereof. 

          The specific form of the transformed equations to be solved depends, of course, on
which of the realtions in Chapter III are used, i.e., conservative or not. As an example,
consider the generic convection-diffusion equation 

(1)

Equations (III-123), (III-42), and Eq. (III-43) may be used to transform the convective terms,
the gradient, and the second divergence, respectively, and thereby yield the conservative
form: 

(2)

where now the time derivative is understood to be at a fixed point in the transformed region,
and the contravariant velocity components (relative to the moving grid) are given by Eq.
(III-122). Eq. (2) can also be written in the form 



(3)

which clearly shows the conservative form. It is the product A rather than the function A
itself, which is conserved in this form. The derivative inside the j summation can be
expanded and Eq. (III-40) invoked to obtain the simplified form: 

(4)

which is still conservative in regard to the -derivatives. 

          These conservative forms are in the commonly used form 

where the solution vector is , the "flux" vectors i are given by the brackets in (3)

and (4), and the source vector is = . 

          The flux vectors i contain metric derivatives and depend on time and the curvilinear
coordinates through these metric elements, as well as through the solution vector  and this
must be taken into account in the construction of factored solution methods. A general
formulation of split solution methods (encompassing both time splitting, e.g., approximate
factorization, and spatial splitting, e.g., MacCormack method) in the curvilinear coordinates
can, however, be formulated. 

          The non-conservative form of Eq. (1) follows using Eq. (III-125) for the convective

terms, Eq. (III-65) for the gradient, and Eq. (III-67) for the divergence . The
resulting equation may be written 

(5)

since Eq. (III-70) gives 



(6)

(The last summation in Eq. (5) is just , which vanishes for incompressible flow.)
Comparison of Eq. (5) with the original equation, written in the form 

(7)

demonstrates that the equation has been complicated by the transformation only in the sense
that the coefficient ui has been replaced by the coefficient Ui+ ( 2  i), and the Kroniker

delta in the double summation has been replaced by gij, thus expanding that summation from
three terms to nine terms, and through the insertion of variable coefficients in the last
summation. This exemplifies the fact that the use of the general curvilinear coordinate
system does not introduce any significant complications into the form of the partial
differential equations to be solved. When it is conthat the transformed equation (5) is to be
solved on a fixed rectangular field with a uniform square grid, while the original equation (7)
would have to be solved on a fiels with moving curved boundaries, the advantages of using
the curvilinear system are clear. 

          These advantages are further evidenced by consideration of boundary conditions. In
general, boundary conditions for the example being treated would be of the form 

(8)

where  is the unit normal to the boundary and , , and  are specified. From Eq. (III-79)
these conditions transform to 

(9)

for a boundary on which i is constant. For comparison, the original boundary conditions (8)
can be written in the form 

(10)

The transformed boundary conditions thus have the same form as the original conditions, but

with the coefficient nj replaced by gij/ . The important simplification is the fact that the

boundary to which the transformed conditions are applied is fixed and flat (coincident with a
curvilinear coordinate surface). This permits a discrete representation of the derivatives A j



along the transformed boundary without the need for interpolation. By contrast, the
derivatives Axj

 in the original conditions cannot be discretized along the physical boundary

withoutinterpolation since the boundary is curved and may be in motion. 

          This discussion of a generic convection-diffusion equation and associated boundary
conditions should serve to allow specific physcial equations to be transformed. References to
application of these equations are gven in the surveys Ref. [1] and [5]. Several examples also
appear in Ref. [2]. 

2. Discrete Representation of Derivatives 

          Approximate values of the spatial derivatives of a function which appear in the
transformed equations may be found at a given point in terms of the function’s value at that
point and at neighboring points. As noted earlier, with the problem in the transformed space,
only uniform square grids need be considered, hence the standard forms for difference
representation of derivatives may be used. For example, in two dimensions the first, second,
and mixed partials with respect to the curvilinear coordinates  and  are ordinarily
represented at an interior point (i,j) by finite differences or finite-volume expressions which
contain function values at no more than the nine points shown below. 

 

          This centered, nine-point "computational molecule" is usually preferred because of the
associated difference representations which are symmetry-preserving and second-order
accurate. Examples of finite-difference approximations of this type are: 

(11a)

(11b)

(12a)

(12b)



(13)

Other second-order approximations of the mixed partial (f )ij which use the nine-point

molecule are: 

(14)

and 

(15)

          It is clear that at boundary points, where at most first partials must be represented, the
computational molecule cannot be centered relative to the direction of the coordinate 
which is constant on the boundary (see diagram below). 

 

There a one-sided difference must be used to approximate f . The second-order formula
appropriate for the boundary point indicated above is 

 

Any standard text on the subject of finite-difference methods will provide formulas of
alternate order and/or based on other computational molecules. 

          A finite-volume approach uses function values at grid-cell centers and approximates
derivatives at a cell center by line (surface in 3D) integrals about the cell boundary which are
equivalent to averages over the cell. In particular, the identity 



(16)

is used, where V is the volume of D. Thus, if a function is assumed constant along a grid-cell
face, it is a simple matter to evaluate the line integral in (16) when D is a grid cell in
transformed space. In terms of the two-dimensional grid: 

 

this approach gives 

(17a)

(17b)

With an edge value approximated as the average of the center values of the two cells sharing
that face, e.g. 

(18)

the values given by (17) are equivalent to ordinary central differences (cf. Eq. (11)) and
hence are second-order accurate. The first partials of f may also be assumed constant along
each cell edge in order to derive from (16) the following approximations of second and
mixed partials at a cell center: 

(19a)

(19b)

(19c)



(19d)

Now, however, the averaging scheme in (18) cannot be used to approximate edge values of
the derivatives without going outside the nine-point computational molecules shown above.
Instead, a second-order accurate representation can be obtained on the nine-point molecule
using a forward (backward) assignment for the center value of a function and a backward
(forward) assignment for the first partial on a given side. There are four possible schemes of
this type. One uses 

(20)

to evaluate f( , ) at all cell centers according to (17), and then uses 

(21)

to evaluate the second and mixed partials given in (19). This method is equivalent to a
finite-difference scheme which approximates first partials by backward differences of the
function, and then approximates second and mixed partials by forward differences of the first
partials. Consequently, the second derivatives which result are equal to those given in Eq.
(12), while the resulting representations of the two mixed partialsare unequal and only
first-order accurate. If the two mixed partials are averaged, however, the second-order
expression (15) is recovered. This is also true of the reverse scheme: 

(22)

(23)

Expressions (12) and (14) are similarly recovered from the other two possibilities (Eq. 20a,
21a, 22b, and 23b or Eq. 20b, 21b, 22a, and 23a). The symmetry-preserving form (13) can be
recovered by averaging the averaged mixed partial obtained in one of the first two schemes
mentioned and that obtained in one of the remaining two. 

          The manner in which boundary conditions are treated in a finite volume approach
depends on the type of conditions imposed. When Dirichlet conditions are prescribed, it is
advantageous to treat the boundary as the center line (plane in three-dimensions) of a row of
cells straddling the boundary. The centersof these cells then fall on the physical boundary
where the function values are known. When Neumann or mixed conditions are given,
however, the boundary is best treated as coincident with cell faces. 

          Suppose, for example, that boundary condition (9) is to be imposed at the cell edge
=j-1/2 indicated below. 



The edge value of fi,j-1/2 cannot be approximated by the usual averaging scheme (illustrated

by Eq. (18)) since there is no cell center at =j-1. It can, however, be found in terms of
neighboring cell-centered function values by using boundary condition (9) in connection
with the forward/backward scheme used to approximate second derivatives at the cell
centers. 

          Considering the scheme represented by Eq. (20) and (21), the values of f along the cell
edges shown above are: 

It follows from Eq. (17) that the first partials of f at the cell center are 

 

Eq. (21a,b) then give f  and f  along the cell edges enclosing (i,j) in terms of fi-1,j, fi-1,j+1,

fi,j, fi,j+1, fi+1,j, xi and xi+1. In particular, 

Substitution of these expressions into boundary condition (9) then determines the edge value
xi as 



In this way, f, and hence f  and f , are found on all boundary-cell edges in terms of
cell-centered values of f. 

          The finite-difference and finite-volume techniques described thus far are appropriate
for representing all derivatives with respect to the curvilinear coordinates, even those
appearing in the metric quantities. In fact, as it is shown later in this chapter and in chapter
V, the metric quantities should be represented numerically even when analytical expressions
are available. One might have, for example, 

(24)

3. Special Points 

          Many of the expressions given in the previous section break down at so-called "special
points" in the field where special attention is required in the approximation of derivatives.
These points commonly arise when geometrically complicated physical domains are
involved. As indicated in Chapter II, special points can occur on the domain boundary and
on interfaces between subregions of a composite curvilinear coordinate system. They may be
recognized in physical space as those interior points having a nonstandard number of
immediate neighbors or, equivalently, those points which are vertices, or the center, of a cell
with either a nonstandard number of faces or a vertex shared by a nonstandard number of
other cells. (In two dimensional domains, ordinary interior points have eight immediate
neighbors [refer to figure on p.141]; standard two-dimensional interior grid cells have four
sides and share each vertex with three other cells [see diagram on p. 143].) Boundary points
are not special unless they are vertex-centered and have a nonstandard number of immediate
neighbors (other than five in two dimensions see diagram on p. 142 for an ordinary boundary
point) and then are special only when their assocciated boundaryconditions contain spatial
derivatives. Some examples of special cell-centered points and special vertex-centered points
are shown below. 

 

          When a finite-difference formulation is used, the usual approach, as described in



Section 2, can be followed at a special point P if the transformed equations and difference
approximations at that point are rephrased in terms of suitable local coordinates. The local
system is chosen so as to orient and label only the surrounding points to be used in the
needed difference expressions. Choices appropriate to various special points are listed in
Tables 1, 2, and 3. 

          The difficulties encountered at special points in a finite-volume approach are clearly
seen by considering the image in the transformed plane. The first pair of diagrams below, for
example, shows that at centers of cells having the usual number of faces but sharing a vertex
with a nonstandard number of cells, such difficulties amount to mere bookkeeping
complications when only first partials must be approximated. Equations (17) and (18) still
apply, but the indices must be defined to correctly relate the cell centers on the two sides of
an interface. The following diagrams 









also illustrate the breakdown at all special cell-centered points of the previously-described
finite-volume schemes for approximating second and mixed partial derivatives. This is
because the forward/backward orientation of the coordinate system in one segment cannot be
consistently followed across the interface adjacent to, or intersecting, the special points. The
second pair of diagrams displays the additional complication associated with grid cells
having a nonstandard number of edges. Such a cell can occur on an interface between
segments of a composite grid which are joined between grid lines. When the segments are
transformed to their respective images, the separate pieces of the special grid cell cannot be
joined without distorting them. It is thus unclear how to evaluate the volume and the
outward normals of that transformed cell in order to use identity (16) in the transformed
plane. Consequently, at special points of this type and at all special points where second
derivatives must be approximated, the governing equations are best represented locally in the



physical plane where such ambiguities do not exist. 

          Treatment in physical space involves approximation of the original equations by
means of identity (16). Thus, for a two-dimensional N-sided cell of area A with cartesian

centroid P = (p1,p2), vertices  i=1,2,...,N, and edges si joining Vi and Vi+1

(VN+1=V1) along which a function f and its first partial derivatives are constant, this
approach gives 

where the superscripts on f and its derivatives indicate the point or face of evaluation. As in

the previous section, an obvious way to approximate fsi
 is to average the center values of the

two cells sharing edge si. This same averaging scheme cannot be repeated to approximate 

, and , however, without rejecting the recommended strategy of avoiding use of
values at points which are not immediate neighbors of the point at which a quantity is being
evaluated. Instead, we propose the averaging technique: 



where the vertex values are obtained by applying identity (16) to auxiliary cells formed by
joining the midpoints of the edges of each cell to the cell center. To make this more precise,
let V be a vertex common to Q cells and label the cell faces emanating from V as ki with

midpoints 

Then if  is the center of the cell having edges ki and ki+1, and if 

the first partial derivatives of f at V may be approximated by 

where A is the area of the 2Q-faced auxiliary cell M1P1M2P2...MQPQM1 indicated in the
following diagram. 

This technique is applicable to all grid cell centers; however, it is recommended for use only
at points where the methods developed in section 2 break down, since the difference
representations associated with those methods are simpler. 

4. Metric Identities 



          When the transformed equations are in conservative form, it is possible for the metric
coefficients to introduce spurious source terms into the equations, as has been noted in
several works cited in Ref. [1] and as discussed also in Ref. [11] and [12]. This is because
the metric coefficients have been included in the operand of the differential operators and if
the differencing of these coefficients does not numerically satisfy identities (III-40) and
(III-120), the numerical representations of derivatives of uniform physical quantities are
nonvanishing. 

          For example, if the quantity A is constant, the conservative form for the gradient, Eq.
(III-42) gives 

which is precisely Eq. (III-40). Relations (III-43) - (III-45) similarly reduce to (III-40) when 
 is uniform. Therefore, Eq. (III-40), or equivalently Eq. (III-21), is a metric identity which

must be satisfied numerically in order that the conservative expressions for the gradient,
divergence, curl, and Laplacian, etc., vanish when the physical variable is uniform. This
consideration does not arise with the non-conservative forms since the quantity A is
differentiated directly in those expressions. 

          Another metric identity which must be satisfied numerically arises when the grid is
time-dependent. This may be seen by considering a generic conservation equation of the
form 

The conservative relation (III-121) transforms this to 

(25)

where now the time derivative is understood to be at a fixed point in the transformed space.
If A and  are both constants, then Eq. (25) gives 

which vanishes according to Eq. (III-40). Expansion of the left-hand summation subject to
Eq. (III-40) then reveals the additional identity to be satisfied: 

(26)

which is just Eq. (III-120). This equation, therefore, is that which should be used to



which is just Eq. (III-120). This equation, therefore, is that which should be used to

numerically determine updated values of the Jacobian, . For if  is instead updated
directly from the new values of the cartesian coordinates, spurious source terms will appear. 

          The following example provides a simple illustration of differencing schemes which
do, and do not, satisfy the metric identities. The conservative expression for a first derivative
in two dimensions is given in Eq. (III-96) as 

(27)

which for uniform f reduces to 

(28)

Suppose that fx is to be represented at the center of the cell shown below. 

The differencing scheme should satisfy 

One possible candidate is the sequence of central differences represented by 

(29a)

(29b)

          The resulting expressions for the mixed partials are 



which are indeed equal and thus satisfy identity (28). An alternate choice might be to use
central differences for the second differentiation as in Eq. (29a), while approximating the
required edge values of the first partials by the average of the values at the adjacent nodes,
e.g. 

The nodal values are reasonably represented by central differences such as 

This scheme cannot possibly satisfy (28), however, since the points used to represent 

 are: 

while those needed to evaluate  are: 

          It should be noted that the representations in both of these schemes are consistent and
of the same formal order of accuracy. Also, if the metric coefficients at the grid points were
evaluated and stored, it would perhaps be natural to follow the second approach, using
averages of the metric coefficients at the intermediate points. This, however, is not



acceptable since it fails to satisfy the metric identity involved and thus would introduce
spurious non-zero gradients in a uniform field. 

          This example suggests one basic rule that should always be followed: Never average
the metric coefficients. Rather, average the coordinate values themselves, if necessary, and
then calculate the metric derivatives directly. Alternatively, a coordinate system can be
generated with mesh points at all of the half-integer points, as well as at the integer points
used in the physical solution. The metric coefficients can then be evaluated directly by
differencing between neighboring points, even at the half-integer points. For example, 

This approach was used in Ref. [13] and problems with the metric identities were thereby
eliminated. 

          It is also possible to construct difference representations which do not involve any
averaging and yet still do not satisfy the metric identities; schemes which use unsym metric
differences are an example. Fortunately, most reasonable symmetric expressions without
averaging do satisfy the identities. 

          In the representation of the Laplacian using Eq. (III-71), 2 i should be calculated
using Eq. (III-74), rather than using derivatives of the metric tensor elements. 

          Caution is required even when the coordinate transformation is known explicitly. In
that case, the metric coefficients can be evaluated analytically, but the metric identities will
not in general be satisfied numerically when these coefficients are differenced. This is true
even in the simple case of cylindrical coordinates as the following example shows. With 

the partials of y( , ) are 

If the first partial derivative fx is represented as in Eq. (27) and the difference in Eq. (29a) is

used, but the first partials y  and y  are represented exactly, e.g. 



the bracket in Eq. (27) evaluated at  for uniform f becomes 

which does not vanish identically. Thus the metric identity (28) is not satisfied when the
metric derivatives, y  and y , are evaluated analytically. But it was shown above that the
difference form used here, Eq. (29a), does in fact satisfy the metric identity (28) when the
metric derivatives are evaluated numerically without averaging. 

          The use of exact analytical expressions for the metric coefficients therefore does not
necessarily increase the accuracy of the difference representations, and may actually degrade
the accuracy. In Chapter V it is shown further that a detrimental contribution to the
truncation error can be removed by evaluating the metric coefficients numerically rather than
analytically. Accuracy in the representation of the metric coefficients thus has no inherent
value in and of itself. Rather, it is the accuracy of the overall difference representation that is
important. 

          To summarize, the metric identities can often be numerically satisfied through careful
attention to the evaluation of the metric coefficients. These coefficients should be expressed
as differences, not by analytical expressions. They should be evaluated directly from
coordinate values wherever they are needed and should never be averaged, since the use of
averaged values will almost certainly result in failure to satisfy the metric identities.
Intermediate coordinate values needed to construct differences which are compatible with
the metric identities can be obtained by averaging the coordinates at neighboring grid points
or by using a grid with twice as many points in each direction as to be used in the actual
solution. 

          The metric identities may become more difficult to satisfy numerically in three
dimensions and in schemes involving higher-order operators or unsymmetric difference
expressions, as may be needed at boundaries or near the special points discussed previously.
When exact satisfaction is not achieved, the effects of the spurious source terms can be
partially corrected, as discussed in Ref. [12], by subtracting off the product of the metric
identities with either a uniform solution or the local solution. The former amounts to using a
kind of perturbation form, while the latter is, in effect, expansion of the product derivatives
involving the metric coefficients and retention of the supposedly vanishing terms, thus
putting the equations into a weak conservation law form. Thus the gradient could be written,
using Eq. (III-42), as 



where AO is either the local value of A or a uniform value. In view of Eq. (III-40), this

modification does not change the analytical expression for the gradient. Difference
representations based on this form of the gradient will clearly vanish for uniform A equal to
AO. Analogous weakly-conservative expressions for all the other derivative operations of

Chapter III can be inferred immediately. Subtraction of the product of the identity and the
uniform free stream solution was used in Ref. [14], because of the difficulty in satisfying the
metric identities exactly with flux-vector-splitting involving directional differences. 

          All codes should be checked for the presence of spurious source terms arising from the
metric identities by running with uniform non-zero values for all of the dependent variables.
If such a test run produces any changes at all, some failure to satisfy the metric identities has
escaped detection (assuming the code is free from errors), and the difference representations
should be modified or a change should be made to the weakly-conservative form described
above. 

5. Implementation Procedure 

          When a coordinate system has been generated, the values of the cartesian coordinates,
xi will be available as functions of the curvilinear coordinates, i, with i = 1,2,3. Although

these relations might be in the form of analytical equations in the event that the coordinate
system was generated by some analytical means, a more common result is a set of values
generated by a numerical solution. By definition the curvilinear coordinates take on integer
values at the grid points ( i=0,1,2,...Ni where Ni+1 is the i total number of points in the i

direction). Thus the values of x1,x2,x3 will be available at each grid point 1, 2, 3. 

          Difference expressions, such as Eq. (24), are then used at each grid point to evaluate
the components of the three covariant base vectors,  from Eq: (III-3): 

 

As discussed previously, the metric derivatives should not be averaged, but rather should
always be evaluated directly from differences between grid points. Therefore, it may be
necessary in some difference formulations to have coordinate values available at points
between the grid points on which the solution is to be represented. In that case, the
coordinate values at such points should be generated either by averaging the coordinate
values between adjacent main points or by generating the coordinate system with twice as
many grid points in each direction as will be used in the solution representation. 

          The nine elements of the covariant metric tensor can then be evaluated at each point
from Eq. (III-5): 



(Only six of these elements are distinct, of course, since the tensor is symmetric, so only six
dot products actually need to be evaluated.) The Jacobian is then evaluated at each point
using Eq. (III-16): 

Next the three components of each of the three contravariant base vectors are evaluated at
each point from Eq. (III-33): 

and the nine elements of the contravariant metric tensor are evaluated at each point from Eq.
(III-37): 

Again only six elements are distinct. 

          All quantities involved in the transformed derivative operations are now available at

each point. Recall that if conservative forms are to be used, the product i may be stored
at each point, being evaluated from 

to avoid the need for multiplication of i by  in all the operations. 

          In transforming the physical partial differential equations, the gradient, divergence,
curl, and Laplacian operations will have been replaced by either the conservative
expressions, Eq. (III-42)-(III-45), or by the non-conservative expressions, Eq.
(III-65)-(III-71). Derivatives occurring individually will have been replaced by the
expressions given by Eq. (III-50)-(III-52). Finally, derivatives occurring in boundary
conditions will have been replaced by the expressions in Eq. (III-78), (III-79) or (III-82).
Integrals will have been replaced by the relations given by Eq. (III-83)-(III-S7). Thus, with
the metric quantities evaluated at each point, as discussed above, all quantities involved in
the difference representations of the transformed partial differential equations are available. 

          As was noted in Chapter III, the use of the conservative forms of the gradient,
divergence, curl, Laplacian, etc. in the partial differential equations is equivalent to



formulation of difference equations from the integral form of these equations. Hence
finite-volume formulations may be set up directly from the partial differential equations by
using the conservative forms for the derivative operators involved. 

          It should be pointed out again that the transformed partial differential equations are of
the same form and type as the original equations, and are more complicated only in the sense
of having variable coefficients, cross-derivatives, and more terms. The field on which these
equations are solved is rectangular and the grid is fixed, uniform and square. Therefore all
numerical solution algorithms that have been developed for partial differential equations on
cartesian coordinate systems are applicable to these transformed equations, and all the
simplifications that result from the use of uniform square grids are in order, as well. 

Exercises 

1. Verify Eq. (2). 

2. Apply Eq. (16) to the (i,j) cell in the diagram below this equation to obtain Eq. (17). In
(16) interpret the gradient as 

where   and   are unit vectors in the  and  directions, respectively, in the

transformed space. The normal  is    or   , as appropriate, on each of the faces
of the cell. Recall = =1. 

3. Following the procedure given with Eq. (20) and (21), obtain Eq. (12) from Eq. (16)
applied to the (i,j) cell. Show that the two mixed partials obtained in this manner are not
equal, but that their average gives Eq. (15). 

4. Verify the boundary value, fi,j-1/2 given on p.147 

5. In cylindrical coordinates show that the conservative expression for  does not vanish for
uniform f when the metric coefficients are evaluated analytically. 



V. TRUNCATION ERROR 

          Difference representations on curvilinear coordinate systems are constructed by first
transforming derivatives with respect to cartesian coordinates into expressions involving
derivatives with respect to the curvilinear coordinates (the metric coefficients). The
derivatives with respect to the curvilinear coordinates are then replaced with difference
expressions on the uniform grid in the transformed region. The "order" of a difference
representation refers to the exponential rate of decrease of the truncation error with the point
spacing. On a uniform grid this concerns simply the behavior of the error as the point
spacing decreases. With a nonuniform point distribution, there is some ambiguity in the
interpretation of order, in that the spacing may be decreased locally either by increasing the
number of points in the field or by changing the distribution of a fixed number of points.
Both of these could, of course, be done simultaneously, or the points could even be moved
randomly, but to be meaningful the order of a difference representation must relate to the
error behavior as the point spacing is decreased according to some pattern. This is a moot
point with uniform spacing, but two senses of order on a nonuniform grid emerge: the
behavior of the error (1) as the number of points in the field is increased while maintaining
the same relative point distribution over the field, and (2) as the relative point distribution is
changed so as to reduce the spacing locally with a fixed number of points in the field. 

          On curvilinear coordinate systems the definition of order of a difference representation
is integrally tied to point distribution functions. The order is determined by the error
behavior as the spacing varies with the points fixed in a certain distribution, either by
increasing the number of points or by changing a parameter in the distribution, not simply by
consideration of the points used in the difference expression as being unrelated to each other.
Actually, global order is meaningful only in the first sense, since as the spacing is reduced
locally with a fixed number of points in the field, the spacing somewhere else must certainly
increase. This second sense of order on a nonuniform grid then is relevant only locally in
regions where the spacing does in fact decrease as the point distribution is changed. 

          In the following sections an illustrative error analysis is given. The general
development from which this is taken appears in Ref. [17], together with references to
related work. 

1. Order On Nonuniform Spacing 

          A general one-dimensional point distribution function can be written in the form 

(1)

In the following analysis, x will be considered to vary from 0 to l. (Any other range of x can
be constructed simply by multiplying the distribution functions given here by an appropriate
constant.) With this form for the distribution function, the effect of increasing the number of
points in a discretization of the field can be seen explicitly by defining the values of  at the
points to be successive integers from 0 to N. In this form, N+1 is then the number of points
in the discretization, so that the dependence of the error expressions on the number of points
in the field will be displayed explicitly by N. This form removes the confusion that can arise



in interpretation of analyses based on a fixed interval , where variation of the
number of points is represented by variation of the interval . The form of the distribution
function, i.e., the relative concentration of points in certain areas while the total number of
points in the field is fixed, is varied by changing parameters in the function. 

          Considering the first derivative in one dimension: 

(2)

with a central difference for f  we have the following difference expression (with =1 as

noted above): 

(3)

where T1 is the truncation error. A Taylor series expansion then yields 

(4)

Here the metric coefficient, x  is considered to be evaluated analytically, and hence has no

error. (The case of numerical evaluation of the metric coefficients is considered in a later
section.) 

          The series in (4) cannot be truncated without further consideration since the
-derivatives of f are dependent on the point distribution. Thus if the point distribution is

changed, either through the addition of more points or through a change in the form of the
distribution function, these derivatives will change. Since the terms of the series do not
contain a power of some quantity less than unity, there is no indication that the successive
terms become progressively smaller. 

          It is thus not meaningful to give the truncation error in terms of -derivatives of f.
Rather, it is necessary to transform these -derivatives to x-derivatives, which, of course, are
not dependent on the point distribution. The first -derivative follows from (2): 

(5)

Then 

(6)

and 

(7)



Each term in f  contains three -differentiations. This holds true for all higher

derivatives also, so that each term in f  will contain five -differentiations, etc. 

A. Order with fixed distribution function 

          From Eq. (1) we have 

(8)

Therefore if the number of points in the grid is increased while keeping the same relative
point distribution, it is clear that each term in f  will be proportional to 1/N3 and each

term in f  will be proportional to 1/N5, etc. 

          It then follows that the series in Eq. (4) can be truncated in this case, so that the
truncation error is given by the first term, which is, using Eq. (6), 

(9)

The first two terms arise from the nonuniform spacing, while the last term is the familiar
term that occurs with uniform spacing as well. 

          From (9) it is clear that the difference representation (3) is second-order regardless of
the form of the point distribution function, in the sense that the truncation error goes to zero
as 1/N2 as the number of points increases. This means that the error will be quartered when
the number of points is doubled in the same distribution function. Thus all difference
representations maintain their order on a nonuniform grid with any distribution of points in
the formal sense of the truncation error decreasing as the number of points is increased while
maintaining the same relative point distribution over the field. 

          The critical point here is that the same relative point distribution, i.e., the same
distribution function, is used as the number of points in the field is increased. If this is the
case, then the error will be decreased by a factor that is a power of the inverse of the number
of points in the field as this number is increased. Random addition of points will, however,
not maintain order. In a practical vein this means that with twice as many points the solution
will exhibit one-fourth of the error (for second-order representations in the transformed
plane) when the same point distribution function is used. However, if the number of points is
doubled without maintaining the same relative distribution, the error reduction may not be as
great as one-fourth. 

          From the standpoint of formal order in this sense there is no need for concern over the
form of the point distribution. However, formal order in this sense relates only to the
behavior of the truncation error as the number of points is increased, and the coefficients in
the series may become large as the parameters in the distribution are altered to reduce the
local spacing with a given number of points in the field. Thus, although the error will be



reduced by the same order for all point distributions as the number of points is increased,
certain distributions will have smaller error than others with a given number of points in the
field, since the coefficients in the series, while independent of the number of points, are
dependenton the distribution function. 

B. Order with fixed number of points 

          An alternate sense of order for point distributions is based on expansion of the
truncation error in a series in ascending powers of the spacing, x , with the number of

points in the grid kept fixed and the point distribution changed to decrease the local spacing.
From Eq. (9) second-order requires that 

(10)

This is a severe restriction that is unlikely to be satisfied. This is understandable, however,
since with a fixed number of points the spacing must necessarily increase somewhere when
the local spacing is decreased. 

          The difference between these two approaches to order should be kept clear. The first
approach concerns the behavior of the truncation error as the number of points in the field
increases with a fixed relative distribution of points. The series there is a power series in the
inverse of the number of points in the field, and formal order is maintained for all point
distributions. The coefficients in the series may, however, become large for some
distribution functions as the local spacing decreases for any given number of points. The
other approach concerns the behavior of the error as the local spacing decreases with a fixed
number of points in the field. This second sense of order is thus more stringent, but the
conditions seem to be unattainable. 

2. Effect of Numerical Metric Coefficients 

          The above analysis has assumed the use of exact values of x  the metric coefficient.

If the metric coefficient is evaluated numerically, we have, in place of Eq. (3), the difference
expression 

(11)

The Taylor expansion yields 

or 



(12)

The coefficient of fxx here is the difference representation of x  while that of fxxx reduces

to a difference expression of . We thus have T2 given by the last two terms of T1 and the

first term of T1 has been eliminated from the truncation error by evalutating the metric

coefficient numerically rather than analytically. 

          Thus the use of numerical evaluation of the coordinate derivative, rather than exact
analytical evaluation, eliminates the fx term from the truncation error. Since this term is the

most troublesome part of the error, being dependent on the derivative being represented, it is
clear that numerical evaluation of the metric coefficients by the same difference
representation used for the function whose derivative is being represented is preferable over
exact analytical evaluation. It should be understood that there is no incentive, per se, for
accuracy in the metric coefficients, since the object is simply to represent a discrete solution
accurately, not to represent the solution on some particular coordinate system. The only
reason for using any function at all to define the point distribution is to ensure a smooth
distribution. There is no reason that the representations of the coordinate derivatives have to
be accurate representations of the analytical derivatives of that particular distribution
function. 

          We are thus left with truncation error of the form 

(13)

when the metric coefficient is evaluated numerically. As noted above, the last term occurs
even with uniform spacing. The first term is proportional to the second derivative of the
solution and hence represents a numerical diffusion, which is dependent on the
rate-of-change of the grid point spacing. This numerical diffusion may even be negative and
hence destabilizing. Attention must therefore be paid to the variation of the spacing, and
large changes in spacing from point to point cannot be tolerated, else significant truncation
error will be introduced. 

3. Evaluation of Distribution Functions 

In Ref. [17] and Ref. [18] several distribution functions are evaluated on the basis of the size
of the coefficients in the error expression. Some of this evaluation procedure is illustrated in
the exercises. It appears that the following conclusions can be reached on basis of these
comparisons: 

          (1) The exponential is not as good as the hyperbolic tangent or the hyperbolic sine.
(Implementation procedures for all three of these are given in Chapter VIII.) 



          (2) The hyperbolic sine is the best function in the lower part of the boundary layer.
Otherwise this function is not as good as the hyperbolic tangent. 

          (3) The error function and the hyperbolic tangent are the best functions outside the
boundary layer. Between these two, the hyperbolic tangent is the better inside, while the
error function is the better outside. The error function is, however, more difficult to use. 

          (4) The logarithm, sine, tangent, arctangent, inverse hyperbolic tangent, quadratic, and
the inverse hyperbolic sine are not suitable. 

          Although, as has been shown, all distribution functions maintain order in the formal
sense with nonuniform spacing as the number of points in the field is increased, these
comparisons of particular distribution functions show that considerable error can arise with
nonuniform spacing in actual applications. If the spacing doubles from one point to the next
we have, approximately, x  = 2x  - x  = x  so that the ratio of the first term in Eq.

(13) to the second is inversely proportional to the spacing x . Thus for small spacing, such

a rate-of-change of spacing would clearly be much too large. Obviously, all of the error
terms are of less concern where the solution does not vary greatly. The important point is
that the spacing not be allowed to change too rapidly in high gradient regions such as
boundary layers or shocks. 

4. Two-Dimensions Forms 

          The two-dimensional transformation of the first derivative is given by 

(14)

where the Jacobian of the transformation is 

(15)

With two-point central difference representations for all derivatives the leading term of the
truncation error is 

(16)

where the coordinate derivatives are to be understood here to represent central difference
expressions,e.g., 



These contributions to the truncation error arise from the nonuniform spacing. The familiar
terms proportional to a power of the spacing occur in addition to these terms as has been
noted. 

          Sufficient conditions can now be stated for maintaining the order of the difference
representations, with a fixed number of points in each distribution. First, as in the
one-dimensional case, the ratios 

must be bounded as x , x , y , y  approach zero. A second condition must be imposed

which limits the rate at which the Jacobian approaches zero. This condition can be met by
simply requiring that cot  remain bounded, where  is the angle between the  and 
coordinate lines. The fact that this bound on the nonorthogonality imposes the correct lower
bound on the Jacobian follows from the fact that  implies 

(17) 

With these conditions on the ratios of second to first derivatives, and the limit on the
nonorthogonality satisfied, the order of the first derivative approximations is maintained in
the sense that the contributions to the truncation error arising for the nonuniform spacing will
be second-order terms in the grid spacing. 

          The truncation error terms for second derivatives that are introduced when using a
curvilinear coordinate system are very lengthy and involve both second and third derivatives
of the function f. However, it can be shown that the same sufficient conditions, together with
the condition that 

remain bounded, will insure that the order of the difference representations is maintained. 

          It was noted above that a limit on the nonorthogonality, imposed by (17), is required
for maintaining the order of difference representations. The degree to which
nonorthogonality affects truncation error can be stated more precisely, as follows. The
truncation error for a first derivative f x can be written 



(18) 

where T  and T  are the truncation errors for the difference expressions of f  and f .

Now all coordinate derivatives ncan be expressed using direction cosines of the angles of
inclination,   and  , of the  and  coordinate lines. After some simplification, the

truncation error has the form 

(19) 

Therefore the truncation error, in general, varies inversely with the sine of the angle between
the coordinate lines. Note that there is also a dependence on the direction of the coordinate
lines. To further clarify the effect of nonorthogonality, the truncation error terms arising
from nonuniform spacing are considered. 

          The contribution from nonorthogonality can be isolated by considering the case of
skewed parallel lines with x  = x  = x  = y  = y  = 0 as diagrammed below: 

 

Here (16) reduces to 

Since , this may be written 

(20) 

This first term occurs even on an orthogonal system and corresponds to the first term in (13).
The last two terms arise from the departure from orthogonality. For  <= 45° these terms are
no greater than those from the nonuniform spacing. Reasonable departure from orthogonality
is therefore of little concern when the rate-of-change of grid spacing is reasonable. Large
departure from orthogonality may be more of a problem at boundaries where one-sided



difference expressions are needed. Therefore grids should probably be made as nearly
orthogonal at the boundaries as is practical. Note that the contribution from nonorthogonality
vanishes on a skewed uniform grid. 

Exercises 

1. Verify Eq. (4). 

2. Derive Eq. (6) and (7) by repeated differentiation of Eq. (5). 

3. Verify Eq. (12). 

4. Show that the coefficient of fxxx in Eq. (12) can be reduced to a difference representation

of . 

5. (a) Show that with an exponential distribution function, 

the ratio of the second term in Eq. (9) to the third term for very small spacing, s, at  = 0 is
approximately equal to 1/Ns at  = 0 and to 1 at  = N. Hint: Note that s = (x )O

approaches zero as a approaches infinity, and that for large , /(e -1) approaches 1/e . 

(b) Show also that the average value of this ratio over the field is [Ns ln (1/Ns)]-1. Hint: Note
that 

(c) Finally, show that the first term in Eq. (9) causes a fractional error of approximately
-1/6N2ln2 (1/Ns) in fx that does not vary over the field. (Recall that this term can be

eliminated by using numerical metrics, however.) 

6. Show that with a hyperbolic sine distribution function, 

the ratio of the second term in Eq. (9) to the third term for very small spacing, s, at  = 0
vanishes at  = 0 and is approximately equal to 1 at  = N. Show also, however, that the
maximum value of this ratio occurs near /N = 0.9/ln (2/Ns) and is approximately equal to
1/2Ns. Finally, show that the average value of the ratio over the field is equal to[Ns
ln(2/Ns)]-1. Hint: See the preceding exercise. (Note that this distribution gives a smaller



error due to the rate-of-change in the spacing than does the exponential distribution of the
preceding exercise and is particularly advantageous near  = 0 where the spacing is the
smallest.) 

7. Show that with a hyperbolic tangent distribution function, 

the ratio of the second term in Eq. (9) to the third term for very small spacing, s, at  = 0 is
approximately equal to 1/2Ns at  = 0 and vanishes at  = N. Show also that the average of
this ratio over the field is the same as for the hyperbolic sine distribution of the preceding
exercise. This distribution is thus also superior to the exponential distribution. 

8. With the distribution function of the form of Eq. (1), show that the truncation error in Eq.
(3) is a power series in inverse powers of N. (Hint: see Ref. [17]). 

9. Verify Eq. (17). 

10. Expand the differences f  and f  of Eq. (14) in Taylor series about the grid point xij.

Substitute these expansions back in Eq. (14) thereby verifying Eq. (16). Certain identities
will be useful, such as 

 

11. Use the identity  cos  to verify the inequality in (17): 

12. Use the following relations to write the truncation error in Eq. (18) in the form of Eq.
(19). 

 



VI. ELLIPTIC GENERATION SYSTEMS

          As noted in Chapter II, the generation of a boundary-conforming coordinate system is
accomplished by the determination of the values of the curvilinear coordinates in the interior
of a physical region from specified values (and/or slopes of the coordinate lines intersecting
the boundary) on the boundary of the region: 

 

One coordinate will be constant on each segement of the physical boundary curve (surface in
3D), while the other varies monotonically along the segment (cf. Chapter II). 

          The equivalent problem in the transformed region is the determination of values of the
physical (cartesian or other) coordinates in the interior of the transformed region from
specified values and/or slopes on the boundary of this region, as discussed in Chapter II: 

 

This is a more amenable problem for computation, since the boundary of the transformed
region is comprised of horizontal and vertical segments, so that this region is composed of
rectangular blocks which are contiguous, at least in the sense of being joined by re-entrant
boundaries (branch cuts), as described in Chapter II. 

          The generation of field values of a function from boundary values can be done in
various ways, e.g., by interpolation between the boundaries, etc., as is discussed in Chapter
VIII. The solution of such a boundary-value problem, however, is a classic problem of
partial differential equations, so that it is logical to take the coordinates to be solutions of a
system of partial differential equations. If the coordinate points (and/or slopes) are specified
on the entire closed boundary of the physical region, the equations must be elliptic, while if
the specification is on only a portion of the boundary the equations would be parabolic or
hyperbolic. This latter case would occur, for instance, when an inner boundary of a physical
region is specified, but a surrounding outer boundary is arbitrary. The present chapter,
however, treats the general case of a completely specified boundary, which requires an



elliptic partial differential system. Hyperbolic and parabolic generation systems are
discussed in Chapter VII. 

          Some general discussion of elliptic generation systems has been given in Ref. [19],
and numerous references to the application thereof appear in the surveys given by Ref. [1]
and [5]. 

1. Generation Equations 

          The extremum principles, i.e., that extrema of solutions cannot occur within the
field,that are exhibited by some elliptic systems can serve to guarantee a one-to-one mapping
between the physical and transformed regions (cf. Ref. [20] and [21]). Thus, since the
variation of the curvilinear coordinate along a physical boundary segment must be
monotonic, and is over the same range along facing boundary segments (cf. Chapter II), it
clearly follows that extrema of the curvilinear coordinates cannot be allowed in the interior
of the physical region, else overlapping of the coordinate system will occur. Note that it is
the extremum principles of the partial differential system in the physical space, i.e., with the
curvilinear coordinates as the dependent variables, that is relevant since it is the curvilinear
coordinates, not the cartesian coordinates, that must be constant or monotonic on the
boundaries. Thus it is the form of the partial differential equations in the physical space, i.e.,
containing derivatives with respect to the cartesian coordinates, that is important. 

          Another important property in regard to coordinate system generation is the inherent
smoothness that prevails in the solutions of elliptic systems. Furthermore, boundary slope
discontinuities are not propagated into the field. Finally, the smoothing tendencies of elliptic
operators, and the extremum principles, allow grids to be generated for any configurations
without overlap of grid lines. Some examples appear below: 

 

There are thus a number of advantages to using a system of elliptic partial differential
equations as a means of coordinate system generation. A disadvantage, of course, is that a
system of partial differential equations must be solved to generate the coordinate system. 

          The historical progress of the form of elliptic systems used for grid generation has
been traced in Ref. [1]. Consequently, references to all earlier work will not be made here.
Numerous examples of the generation and application of coordinate systems generated from
elliptic partial differential equations are covered in the above reference, as well as in Ref.
[2]. 

A. Laplace system 



          The most simple elliptic partial differential system, and one that does exhibit an
extremum principle and considerable smoothness is the Laplace system: 

(1)

This generation system guarantees a one-to-one mapping for boundary-conforming
curvilinear coordinate systems on general closed boundaries. 

          These equations can, in fact, be obtained from the Euler equations for the
minimization of the integral 

(2)

as is discussed further in Chapter XI. Since the coordinate lines are located at equal
increments of the curvilinear coordinate, the quantity | i| can be considered a measure of
the grid point density along the coordinate line on which i varies, i.e., i must change
rapidly in physical space where grid points are clustered. Minimization of this integral thus
leads to the smoothest coordinate line distribution over the field. 

          With this generating system the coordinate lines will tend to be equally spaced in the
absence of boundary curvature because of the strong smoothing effect of the Laplacian, but
will become more closely spaced over convex boundaries, and less so over concave
boundaries, as illustrated below. (In this and other illustrations and applications in two
dimensions, 1 and 2 will be denoted  and , respectively, while x and y will be used for
x1 and x2.) 

In the left figure we have xx > 0 because of the convex (to the interior) curvature of the

lines of constant  ( -lines). Therefore it follows that yy < 0, and hence the spacing

between the -lines must increase with y. The -lines thus will tend to be more closely
spaced over such a convex boundary segment. For concave segments, illustrated in the right
figure, we have xx < 0, so that yy must be positive, and hence the spacing of the -lines

must decrease outward from this concave boundary. Some examples of grids generated from
the Laplace system are shown below. The inherent smoothness and the behavior near
concave and convex boundaries are evident in these examples. 



B. Poisson system 

          Control of the coordinate line distribution in the field can be exercised by generalizing
the elliptic generating system to Poisson equations: 

(3)

in which the "control functions" Pi can be fashioned to control the spacing and orientation of
the coordinate lines. The extremum principles may be weakened or lost completely with
such a system, but the existence of an extremum principle is a sufficient, but not a necessary,
condition for a one-to-one mapping, so that some latitude can be taken in the form of the
control functions. 

          Considering the equation 2  = Q and the figures above (P1 = P and P2 = Q in the
illustrations here), since a negative value of the control function would tend to make yy
more negative, it follows that negative values of Q will tend to cause the coordinate line
spacing in the cases shown above to increase more rapidly outward from the boundary.
Generalizing, negative values of the control function Q will cause the -lines to tend to
move in the direction of decreasing , while negative values of P in 2  = P will cause

-lines to tend to move in the direction of decreasing . These effects are illustrated below
for an -line boundary: 

 

With the boundary values fixed, the -lines here cannot change the intersection with the
boundary. The effect of the control function P in this case is to change the angle of
intersection at the boundary, causing the -lines to lean in the direction of decreasing . 



          These effects are illustrated in the following figures: 

 

Here the -lines are radial and the -lines are circumferential. In the left illustration the
control function Q is locally non-zero near a portion of the inner boundary as indicated, so
the -lines move closer to that portion of the boundary while in the right figure, P is locally
non-zero, resulting in a change in intersection angle of the -lines with that portion of the
boundary. If the intersection angle, instead of the point location, on the boundary is
specified, so that the points are free to move along the boundary, then the -lines would
move toward lines with lower values of : 

 

          In general, a negative value of the Laplacian of one of the curvilinear coordinates
causes the lines on which that coordinate is constant to move in the direction in which that
coordinate decreases. Positive values of the Laplacian naturally result in the opposite effect. 

C. Effect of boundary point distribution 

          Because of the strong smoothing tendencies that are inherent in the Laplacian
operator, in the absence of the control functions, i.e., with Pi = 0, the coordinate lines will

tend to be generally equally spaced away from the boundaries regardless of the boundary
point distribution. For example, the simple case of a coordinate system comprised of
horizontal and vertical lines in a rectangular physical region, (cf. the right figure below)
cannot be obtained as a solution of Eq. (3) with P=Q=0 unless the boundary points are
equally spaced. 



 

With yy = xx = 0, Eq. (3) reduces to 

and thus P and Q cannot vanish if the point distribution is not uniform on the horizontal and
vertical boundaries, respectively. With P=Q=0 the lines tend to be equally-spaced away from
the boundary. These effects are illustrated further in the figures below. Here the control
functions are zero in the left figure. 

 

Although the spacing is not uniform on the semi-circular outer boundary in this figure, the
angular spacing is essentially uniform away from the boundary. By contrast, nonzero control
functions in the right figure, evaluated from the boundary point distribution, cause the field
spacing to follow that on the boundary. Thus, if the coordinate lines in the interior of the
region are to have the same general spacing as the point distributions on the boundaries
which these lines connect, it is necessary to evaluate the control functions to be compatible
with the boundary point distribution. This evaluation of the control functions from the
boundary point distribution is discussed more fully in Section 2 of this chapter. 

D. General Poisson-type systems 

          If a curvilinear coordinate system, i (i=1,2,3), which satisfies the Laplace system 

is transformed to another coordinate system,  (i = 1,2,3), then the new curvilinear
coordinates, i satisfy the inhomogeneous elliptic system (cf. Ref. [19]) 

(4)



where 

(5)

with the  defined by the transformation from i to i: 

(6)

(It may be noted that if the subsequent transformation is one-dimensional, i.e., if 

 then only the three functions  with i=1,2,3, are nonzero.) 

          These results show that a grid with lines concentrated by applying a subsequent
transformation (often called a "stretching" transformation) to a grid generated as the solution
of the Laplace system could have been generated directly as the solution of the Poisson

system (4) with appropriate "control functions",  derived from the subsequent
concentrating transformation according to Eq. (6). Therefore, it is appropriate to adopt this
Poisson system (4) as the generation system, but with the control functions specified directly
rather than through a subsequent transformation. 

          Thus an appropriate generation system can be defined by Eqs. (4) and (5): 

(7)

with the control functions,  considered to be specified. The basis of the generation system
(7) is that it produces a coordinate system that corresponds to the subsequent application of a
stretching transformation to a coordinate system generated for maximum smoothness. From

Eq. (6), the three control functions  (i = 1,2,3) correspond to one-dimensional stretching
in each coordinate direction and thus are the most important of the control functions. In
applications, in fact, the other control functions have been taken to be zero, i.e., 

 so that the generation system becomes 

(8)

It may be noted that, using Eq. (III-37), Eq. (7) can be written as 

(9)

          Actual computation is to be done in the rectangular transformed field, as discussed in
Chapter II, where the curvilinear coordinates, i, are the independent variables, with the



cartesian coordinates, xi, as dependent variables. The transformation of Eq. (9) is obtained

using Eq. (III-71). Thus we have 

(10)

But 2 =0 and then using Eq. (7), we have 

(11)

This then is the quasi-linear elliptic partial differential equation which is to be solved to
generate the coordinate system. (In computation, the Jacobian squared, g, can be omitted
from the evaluation of the metric coefficients, gij in this equation since it would cancel
anyway, cf. Eq. III-38.) As noted above, the more common form in actual use has been that
with only three control functions, Eq. (8), which in the transformed region is 

(12)

Most of the following discussion therefore will center on the use of this last equation as the
generation system. This form becomes particularly simple in one dimension, since then we
have 

(13)

which can be integrated to give, with  

The one-dimensional control function corresponding to a distribution x( ) thus is given by 

(14)

          In two dimensions, Eq. (11) reduces to the following form, using the two-dimensional
relations given in Section 8 of Chapter III (with 1 =  and 2 = ) 

(15)

where 



(16)

(17a)

(17b)

with  = x + y and 

(18a)

(18b)

(18c)

          This corresponds to the following system in the physical space, from (7), 

(19a)

(19b)

where g = (x y  - x y )2. 

          The two-dimensional form of the simpler generation system (12) with only two control
functions is 

(20)

for which the system in the physical space is, from (8), 

(21a)

(21b)

This generation system has been widely used, and a number of applications are noted in Ref.
[1] and [5]. Several examples appear in Ref. [2]. 

          Substitution of (3) in (10) gives the transformation of the original Poisson system (3)
as 



(22)

This generation system has also been widely used, cf. Ref. [1] and [2], and the
two-dimensional form is 

(23)

corresponding in the physical space to 

(24a)

(24b)

          This system has also been widely used (cf. Ref. [1] and [5]), and its use predates that
of Eq. (21). In general, however, the form of (12), corresponding to the system (8), is
probably preferable over that of (22), which corresponds to (3), because of the simple form
to which the former reduces in one dimension, and because the control functions in (8) are
orders of magnitude smaller than those in (3) for similar effects. 

E. Other systems 

          Other elliptic systems of the general form (4) have been considered, such as with

Pi=gPi where the Pi are the specified control functions, and with ,

where D is the control function. The latter form puts Eq. (4) in the form of a diffusion
equation with the control function in the role of a variable diffusivity: 

(25)

This system also corresponds to the Euler equations for maximization of the smoothness, but
now with the coefficient, D, serving as a weight function, i.e., multiplying the integrand in
Eq. (2), so that the smoothness is emphasized where D is large. Both of these systems have
actually been implemented only in two dimensions, although the formulations are general.
Specific references to these and other related systems are given in Ref. [1] and [5]. 

          Another elliptic system for the generation of an orthogonal grid has been constructed

by combining the orthogonality conditions, ) with a specified distribution of

the Jacobian over the field, . (This system is discussed further in Chapter IX.)
Some two-dimensional applications appear in Ref. [2], as noted in Ref. [5]. 

          The second-order systems allow the specification of either the point distribution on the
boundary (Dirichlet problem): 



 

or the coordinate line slope at the boundary (Neumann problem): 

 

but not both. Thus it is not possible with such systems to generate grids which are orthogonal
at the boundary with specified point distribution thereon. (This assumes that the control
functions are specified. It is possible to adjust the control functions to achieve orthogonality
at the boundary as is discussed in Section 2.) 

          A fourth-order elliptic system can be formulated by replacing the Laplacian operator, 
2, with the biharmonic operator, 4. The analogous form to (4) then is 

(26)

which can be implemented as a system of two second-order equations: 

(27a)

(27b)

From (III-71) and (22) above, the transformed system is 

(28a)

(28b)

This generation system, being of higher order, allows more boundary conditions, so that the
coordinate line intersection angles, as well as the point locations, can be specified on the
boundary. It is therefore possible with this system to generate a coordinate system which is
orthogonal at the boundary with the point distribution on the boundary specified, and for
which the first coordinate surface off the boundary is at a specified distance from the



boundary: 

 

This allows segmented grids to be patched together with slope continuity as discussed in
Chapter II. 

          In the above discussions, generation systems have been formulated based on linear
differential operators in the physical space, e.g., the Laplacian with respect to the cartesian
coordinates, resulting in quasi-linear equations in the transformed space where the
computation is actually performed. It is also possible to formulate the generation system
using linear differential operators in the transformed space, e.g., the Laplacian with respect
to the curvilinear coordinates: 

(29)

The use of some such generation systems is noted in Ref. [1], and such a biharmonic system
is noted in Ref. [5]. Although this certainly produces simpler equations to be solved, since
the computation is done in the transformed space, such systems transform to quasi-linear
equations in the physical space, and hence the extremum principles are lost in the physical
space. This means that there is a possiblity of coordinate lines overlapping in general
configurations. Therefore it is generally best to formulate the generation system using linear
operators in the physical space. 

          As noted above, other variations of elliptic systems of the type discussed here are
noted in Ref. [1] and [5]. Elliptic generation systems may also be produced from the Euler
equations resulting from the application of variational principles to produce adpative grids,
as is discussed in Chapter XI. Still another system, based on the successive generation of
curved surfaces in the three-dimensional region, is given in Section 3B of this chapter.
Finally, quasiconformal mapping (Ref. [22] and [23]) is another example of an elliptic
generation system. 

2. Control Functions 

          For the elliptic generation system given by Eq. (12), the control functions that will
produce a specified line distribution for a rectangular region, and for an annular region, are
given as Eq. (14) and in Exercise 8, respectively. These functions could be used in other
regions, of course, with the same general effect. In such extended use, the former would be



more appropriate for simply-connected regions, while the latter would be appropriate for
multiply-connected regions. Use of the rectangular function in a multiply-connected region
produces a stronger concentration than was intended because of the concentration over
convex boundaries that is inherent in Poisson-type generation systems (cf. Section 1A). 

          With generation systems of the Poisson type, negative values of the control function Pi

> in Eq. (4), or Pi in Eq. (8) (since gii > 0), will cause the i coordinate lines to concentrate
in the direction of decreasing i (cf. Section 1B). Several approaches to the determination of
these control functions are discussed below. 

A. Attraction to coordinate lines/points 

          This effect can be utilized to achieve attraction of coordinate lines to other coordinate
lines and/or points by taking the form of the control functions to be, in 2D, (again with 1=

, 2= , P1=P, P2=Q) 

(30)

and an analogous form for Q( , ) with  and  interchanged. (Here the subscripts identify
particular -lines and are not to be confused with the superscripts used to refer to the
curvilinear coordinates in general.) In this form, the control functions are functions only of
the curvilinear coordinates. 
          In the P function, the effect of the amplitude ai is to attract -lines toward the i-line: 

 

while the effect of the amplitude bi is to attract -lines toward the single point ( i, i): 



 

Note that this attraction to a point is actually attraction of -lines to a point on another
-line, and as such acts normal to the -line through the point. There is no attraction of
-lines to this point via the P function. In each case the effect of the attraction decays with

distance in -  space from the attraction site according to the decay factors, ci and di. This

decay depends only on the distance from the i-line in the first term, so that entire -lines

are attracted to the entire i line. In the second term, however, the decay depends on both

the  and  distances from the attraction point ( i, i), so that the effect is limited to

portions of the -lines. With the inclusion of the sign changing function, the attraction
occurs on both sides of the -line, or the ( i, i) point, as the case may be. Without this

function, attraction occurs only on the side toward increasing , with repulsion occuring on
the other side. A negative amplitude simply reverses all of these effects, i.e., attraction
becomes repulsion, and vice versa. The effect of the Q function on -lines follows
analogously. 

          In the case of a boundary that is an -line, positive amplitudes in the Q function will
cause -lines off the boundary to move closer to the boundary, assuming that  increases off
the boundary. The effect of the P function will be to alter the angle at which the -lines
intersect the boundary, if the points on the boundary are fixed, with the -lines tending to
lean in the direction of decreasing . These effects have been noted in figures above, and
further examples are given below: 



 

The first two figures here show the result of attraction to the two circled points, in
comparison with the case with no control function. The last figure illustrates strong attraction
to the coordinate line coincident with the inner boundary and the branch cut in this C-type
system. If the boundary is such that  decreases off the boundary, then the amplitudes in the
Q function must be negative to achieve attraction to the boundary. In any case, the
amplitudes ai cause the effects to occur all along the boundary (as in the last figure above),

while the effects of the amplitudes bi occur only near selected points on the boundary

(second figure above). 

          In configurations involving branch cuts, the attraction lines and/or points in this type
of evaluation of the control function strictly should be considered to exist on all sheets. In
the 0-type configuration shown on p. 29, where the two sides of the cut are on opposite sides
of the transformed region, the control function P for attraction to the i-line must be

constructed as follows: In the figure below, 



 

when the attraction line is the i=2 line, the =I-1 line experiences a counterclockwise

attraction to this line at a distance of (I-1)-2. However, the i=2 attraction line also appears

as a I+( i-1)=I+(2-1)=I+1 attraction line on the next sheet as the cut is crossed. Therefore,

the =I-1 line also experiences a clockwise attraction to this I+1 line at a distance of
(I+1)-(I-1)=2, and this attraction is, of course, stronger than the first mentioned. In fact, since
the attraction line is repeated on all sheets there strictly must be a summation over all sheets
in Eq. (30), i.e., a summation over k, with i replaced by i+k  where  is the jump in

 at the cut ( =I-1 in the above figure). Thus i in Eq. (30) would be replaced by the

i+k , and the rightside would be summed from k=-  to += . However, because of the

exponential decay, the terms decrease rapidly as k increases, so that only the term with the
smallest distance in the k summation really needs to be included, i.e., only the term giving
clockwise attraction at a distance of 2 from the attraction line for the =I-1 line in the above
figure. Since there is no jump in  across the cut in this configuration, the evaluation of Q is
affected by this out only through the replacement of i as above in the term for the point

attraction, with summation over k of only this part of the right side. Again only the term with
the smallest distance need actually be included. 

          For the C-type configuration on p. 30, with the two sides of the out on the same side of
the transformed region,  is reflected in the cut, and the construction of the control function
Q is as follows. With reference to the figure below, 



 

the attraction line, i=2, is located on both sides of the cut in this configuration. Now the

=3 line above the cut experiences a downward attraction toward the i=2 attraction line at

a distance of 3-2=1. Strictly speaking, this line above the cut should also experience a
downward attraction toward the portion of the i=2 attraction line below the cut as it appears

on the next sheet (and, in fact, on all other sheets), i.e., at cut-( i- cut), where cut is the

value of  on the cut ( cut=1 here). This attraction line on the next sheet is at a distance -[

cut-( i- cut)] from the -line of interest, i.e., at 3-[1-(2-1)]=3 from the =3 line above the

cut. This attraction line on the next sheet is therefore farther away and hence its effect can
perhaps be neglected. However, for lines between the attraction line and the cut, the effect of
the attraction line on the next sheet should be considered. In any case it is necessary to take
into account the attraction lines appearing on the next sheet, those on all other sheets being
too far away to be of consequence. Here the evaluation of the control function P is affected
by the cut only through the point attraction part, with i replaced as above. 

          The third type of cut, illustrated on p. 40, for which the two sides of the cut face across
a void of the transformed region, is treated by replacing  with i-  in both the control

functions, where -1 is the number of -lines in the void. There is no additional
summation in this case. 

          The case on p.52, where the coordinate species changes sign at the cut, requires
individual attention at each cut. For example, the contribution to the control functions in
region A at a point ( , ) from an attraction site ( i, i) in region B would be evaluated

using distances of ( - max)+( max- i) and ( - i) in place of - i and - i, respectively. 

B. Attraction to lines/points in space 

          If the attraction line and/or points are in the field, rather than on a boundary, then the



above attraction is not to a fixed line or point in space, since the attraction line or points are
themselves determined by the solution of the generation system and hence are free to move.
It is, of course, also possible to take the control functions to be funtions of x and y instead of 

 and , and thus achieve attraction to fixed lines and/or points in the physical field. This
case becomes somewhat more complicated, since it must be ensured that coordinate lines are
not attracted parallel to themselves. 

          With the attraction discussed in the previous section, -lines are attracted to other
-lines, and -lines are attracted to other -lines. It is unreasonable, of course, to attempt to

attract -lines to -lines, since that would have the effect of collapsing the coordinate
system. When, however, the attraction is to be to certain fixed lines in the physical region,
defined by curves y=f(x), care must be exercised to avoid attempting to attract coordinate
lines to specified curves that cut the coordinate lines at large angles. Thus, in the figure
below, 

 

it is unreasonable to attract g-lines to the curve y f(x), while it is natural to attract the q-lines
to this curve. 

          However, in the general situation, the specified line y=f(x) will not necessarily be
aligned with either a  or  line along its entire length. Since it is unreasonable to attract a
line tangentially to itself, some provision is necessary to decrease the attraction to zero as the
angle between the coordinate line and the given line y=f(x) approaches 90°. This can be
accomplished by multiplying the attraction function by the cosine of the angle between the
coordinate line and the line y=f(x). It is also necessary to change the sign on the attraction
function on either side of the line y=f(x). This can be done by multiplying by the sine of the
angle between the line y=f(x) and the vector to the point on the coordinate line. 

          These two purposes can be accomplished as follows. Let a general point on the -line
be located by the vector (x,y), and let the attraction line y=f(x) be specified by the
collection of points S(xi,yi) i=1,2,...N. Let the unit tangent to the attraction line be (xi,yi),

and the unit tangent to a -line be  ( ). Then, with  the unit vector normal to the
two-dimensional plane, and with reference to the following figure, 



 

the control functions, P(x,y) and Q(x,y), may logically be taken as 

(31)

The equation for Q simply has  replaced by  in the above. These functions depend on x

and y through both  and  ( ) or  ( ), and thus must be recalculated at each point as the
iterative solution proceeds. This form of coordinate control will therefore be more expensive
to implement than that based on attraction to other coordinate lines. 

          There is no real distinction between "line" and "point" attraction with this type of
attraction. "Line" attraction here is simply attraction to a group of points that form a line,
y=f(x). If line attraction is specified then the tangent to the line y=f(x) is computed from the
adjacent points on the line. If point attraction is specified, then the "tangent" must be input
for each point. The unit tangents to the coordinate lines are computed from Eq. (III-3): 

          The presence of branch cuts introduces no complication with this type of attraction
since the distances involved are in terms of the cartesian coordinates, rather than the
curvilinear coordinates. This form of attraction makes the control functions dependent on
both the curvilinear and cartesian coordinates, and thus attraction to space lines and/or points
involves more complicated equations in the transformed region than does attraction to other
coordinate lines and/or points, since for the former, coefficients of the first derivatives are
functions of the dependent variables. Attraction to lines and/or points in space has not been
widely used, and the use of Eq. (31) has not been fully tested. 

C. Evaluation along a coordinate line 



          As has been noted above, if it is desired that the spacing of the coordinate lines in the
field generally follow that of the points on the boundary, the control functions must be
evaluated so as to correspond to this boundary point distribution. This can be accomplished
as follows. (The developments in this and the next two sections are generalizations of that
given in Ref. [12], and other works cited therein and in Ref. [5].) 

          The projection of Eq. (12) along a coordinate line on which l varies is found by

forming the dot product of this equation with the base vector , which is tangent to
the line. 

 

Thus we have 

(32)

Now assume for the moment that the two coordinate lines crossing the coordinate line of
interest do so orthogonally. Then on this line we have 

 

and 

which leads to an explicit equation for Pl on the coordinate line of interest: 



(33)

          If it is further assumed for the moment that the two coordinate lines crossing the
coordinate line of interest are also orthogonal to each other, i.e., complete orthogonality on
the line of interest, 

 

we have on this line gij = ijgii and gij = ijgii Also, from Eq. (III-38), 

since . But also by Eq. (III-16) g = gllgmmgnn so that gllgll=1. Then Eq. (33) becomes

(34)

which can also be written, using Eq. (III-3), as 

(35)

By Eq. (III-7) the derivative of arc length along the coordinate line on which l varies is 

(36)

Then 



(37)

so that the logarithmic derivative of arc length along this coordinate line is given by 

(38)

which is exactly the i=1 term in the summation in Eq. (34). 

          The unit tangent to a coordinate line on which m varies is 

(39)

and the derivative of this unit tangent with respect to arc length is a vector that is normal to
this line, the magnitude of which is the curvature, K, of the line. The unit vector in this

normal direction is the principal normal, , to the line. 

 

Thus, using Eq. (36), 

(40)

Then 



(41)

so that the curvature is 

(42)

          The component of Km m along the coordinate line on which l varies 

 

is given by 

(43)

since  for . Then the two terms of the summation in Eq. (34) for which 
 can be written as 

(44)



          Thus Eq. (34) can be written 

(45)

where (l,m,n) are cyclic, and using Eq. (III-3), we have 

(46)

and 

(47)

with an analogous equation for (Kn n)(1). The arc length in the expressions (45) for the
control function Pl along the coordinate line on which l varies can be determined entirely

from the grid point distribution on the line using Eq. (46). The other two terms in Pl,

however, involve derivatives off this line and therefore must either be determined by

specifications of the components of the curvature, K , of the crossing lines along the line of
interest, or by interpolation between values evaluated on coordinate surfaces intersecting the
ends of this line. 

 

If it is assumed that the curvatures of these crossing lines vanish on the coordinate line of
interest, then the last two terms in Eq. (45) are zero, and the control function becomes simply

(48)



and then can be evaluated entirely from the specified point distribution on the coordinate line
of interest. 

          The neglect of the curvature terms, however, is ill-advised since the elliptic system
already has a strong tendency to concentrate lines over a convex boundary, as has been
discussed earlier in this chapter. Therefore neglect of the curvature terms will result in
control functions which will produce a stronger concentration than intended over convex
boundaries (and weaker over concave). When interpolation from the end points is used to

determine the curvature term, the entire term (K ) should be interpolated, since individual
interpolation of the vectors l and ( m)  m can give an inappropriate value for the dot

product. 

          It should be noted that the assumptions of orthogonality, and perhaps vanishing
curvature, that were made in the course of the development of these expressions for the
control functions on a coordinate line are not actually enforced on the resulting coordinate
system, but merely served to allow some reasonable relations for these control functions
corresponding to a specified point distribution on a coordinate line to be developed. This
should not be considered a source of error since the control functions are arbitrary in the
generation system (12). 

D. Evaluation on a coordinate surface 

          In a similar fashion, expressions for the control functions on a coordinate surface on
which l is constant can be obtained from the projections of Eq. (12) along the two
coordinate lines lying on the surface, i.e., the lines on which m and n vary, (l,m,n) being
cyclic. 

 

These projections are given by Eq. (32) with l replaced by m and n, respectively. If it is
assumed for the moment that the coordinate line crossing the coordinate surface of interest is
orthogonal to the surface 



 

then , so that Pl is removed from both of these two equations to

yield the equation 

and an analogous equation with m and n interchanged. Solution of these two equations for
Pm and Pn then yields 

(49)

with an analogous equation for Pn with m and n interchanged. Since glm = gln = 0, we have

by Eq. (III-38), glm = gln = 0. Therefore only the five terms, ll, mm, nn, mn, nm, are
non-zero in the summation. Also from Eq. (III-38) we have 

since here . An analogous equation for gnn is obtained by
interchanging m and n. 

          Then Eq. (49) can be rewritten as 

(50)



and an analogous equation for Pn with m and n interchanged. But, again using Eq. (III-38),

we have 

Therefore 

(51)

and the analogous equation with m and n interchanged. This can also be written as 

(52)

and the analogous equation for Pn. 

          All of the terms, except the first, in the above equations can be evaluated completely
from the point distribution on the coordinate surface of interest. 

 



From Eq. (47) the first term in (52) can be written 

(53)

where (Kl l)m and (Kl l)n are the components of the curvature K  for the coordinate line
crossing the coordinate surface of interest along the two coordinate lines on the surface. 

 

These quantities must be either specified on the surface or interpolated from values
evaluated on its intersections with the other coordinate surfaces. If it is further assumed that
the curvature of the crossing line vanishes at the surface, then this first term in Eq. (52)
vanishes also. 

          As was noted for the control functions on a line, the curvature terms should not be
neglected, however, else the concentration will be stronger than intended over convex

boundaries and weaker over concave. Also, it is the entire term K  which should be
interpolated, not the individual vectors involved, else the dot product can have inappropriate
values. 

E. Evaluation from boundary point distribution 

          Using the relations developed in the previous two sections for the control functions on
a coordinate line and on a coordinate surface, an interpolation procedure can be formulated
for evaluation of the control functions in the entire field. If the point distribution is specified
on all the boundary surfaces of a three-dimensional field, the control functions can be
evaluated on these boundaries using the relations in Section D, and then the control functions
in the entire three-dimensional field can be interpolated from these values on the bounding
surfaces using transfinite interpolation (discussed in connection with algebraic grid
generation in Chapter VIII.) 

          To be definite, consider a general three-dimensional region bounded by six curved
sides: 



 

with curvilinear coordinates as shown, which transforms to a rectangular block. From Eq.
(52) the two control functions, Pj and Pk, can be evaluated from the specified boundary-point

distribution on the two faces on which i is constant, i.e., the left and right faces in the
figure. Similar evaluations yield two control functions on each face, with the result that the
control function Pk will be known on the four faces on which k varies, i.e., the front, back,

left, and right faces in the figure. Thus, in general, interpolation for the control function Pk in

the interior of the region is done from the boundary values on the four faces on which k

varies: 

(54)

Here Ii is the maximum value of i, etc., i.e., , i=1,2,3. In an analogous manner
all three control functions can be determined in the interior of the region. 

          It may be desirable in some cases to generate a two-dimensional coordinate system on
a curved surface, as discussed in Section 3, rather than specifing the point distribution on the
surface. The two control functions needed on the surface for this purpose can be determined
by interpolation from values evaluated on the four edges of the surface: 



 

Eq. (45) allows the control function Pi to be evaluated on the edges on which i varies, i.e.,

the top and bottom edges in the figure. This control function on the surface can then be
evaluated by interpolation between these two edges: 

(55)

Both of the necessary control functions on the surface can thus be determined from the
specified boundary point distributions on the edges of the surface. 

F. Iterative determination 

          As noted above, a second-order elliptic generation system allows either the point
locations on the boundary or the coordinate line slope at the boundary to be specified, but
not both. It is possible, however, to iteratively adjust the control functions in the generation
system of the Poisson type discussed above until not only a specified line slope but also the
spacing of the first coordinate surface off the boundary is achieved, with the point locations
on the boundary specified. 

 

          In three dimensions the specification of the coordinate line slope at the boundary
requires the specification of two quantities, e.g., the direction cosines of the line with two
tangents to the boundary. 



 

The specification of the spacing of the first coordinate surface off the boundary requires one
more quantity, 

 

and therefore the three control functions in the system (12) are exactly sufficient to allow
these three specified quantities to be achieved, while the one boundary condition allowed by
the second-order system provides for the point locations on the boundary to be specified. 

          The capability for achieving a specified coordinate line slope at the boundary makes it
possible to generate a grid which is orthogonal at the boundary, with a specified point
distribution on the boundary, and also a specified spacing of the first coordinate surface off
the boundary. This feature is important in the patching together of segmented grids, with
slope continuity, as discussed in Chapter II, for embedded systems. 

          An iterative procedure can be constructed for the determination of the control
functions in two dimensions as follows (cf. Ref. [25]): Consider the generation system given
by Eq. (20). On a boundary segment that is a line of constant  we have   and  
known from the specified boundary point distribution 

 

also , the spacing off this boundary, is specified 

 



as is the condition of orthogonality at the boundary, i.e., , 

 

But specification of , together with the condition 
provides two equations for the determination of x  and y  in terms of the already known

values of the x  and y . Therefore   is known on the boundary. 

          Because of the orthogonality at the boundary, Eq. (20) (Eq. (23) is used instead in Ref.
[25]) reduces to the following equation on the boundary: 

Dotting   and   into this equation, and again using the condition of orthogonality,

yields the following two equations for the control functions on the boundary: 

(56a)

(56b)

All of the quantities in these equations are known on the boundary except  . (On a

boundary that is a line of constant , the same equations for the control functions result, but
now with   the unknown quantity.) 

          The iterative solution thus proceeds as follows: 

          (1). Assume values for the control function on the boundary. 

          (2). Solve Eq. (20) to generate the grid in the field. 

          (3). Evaluate   on -line boundaries, and   on -line boundaries, from the

result of Step (2), using one-sided difference representations. Then evaluate the control
functions on the boundary from Eq. (56). 



Evaluate the control functions in the field by interpolation from the boundary values.
Steps (2) and (3) are then repeated until convergence. 

          This type of iterative solution has been implemented in the GRAPE code of Ref. [24] -
[26], some results of which are shown below: 

 

These grids are orthogonal at the boundary, and the spacing of the first coordinate surface
(line in 2D) off the boundary is specified at each boundary point, the locations of which are
specified. 

          An iterative solution procedure for the determination of the three control functions for
the general three-dimensional case can be constructed as follows. Eq.(52) gives the two
control functions, Pm and Pn, for a coordinate surface on which l is constant (1,m,n cyclic)

for the case where the coordinate line crossing the surface is normal to the surface. Taking
the projection of the generation equation (12) on the coordinate line along which l varies,
we have on this same surface, 

since glm = gln = 0 on the surface. Using the relations for the metric components obtained for

this situation in Section D, this equation reduces to 

(57)

          Since the coordinate line intersecting the surface is to be normal to the surface, we



may write 

(58)

since 

using the identity (III-9). Eq. (57) can then be written 

          With the spacing along the coordinate line intersecting the surface specified at the

surface, we have  known on the surface. Since all the quantities subscripted m or
n in Eq. (52) and (59) can be evaluated completely from the specified point distribution on
the surface, we then have all quantities in these equations for the three control functions on
the surface known except for (gll) l and ( l) l. These two quantities are not independent,

and using Eq. (58), we have 

(60)

Recall also that ( l) =  l l. 

          Therefore, with the control functions in the field determined from the values on the
boundary by interpolation, as discussed in the preceeding section, Eq. (52) and (59) can be
applied to determine the new boundary values of the control functions in terms of the new
values of ( l) l in an iterative solution. Upon convergence, the coordinate system then will

have the coordinate lines intersecting the boundary normally at fixed locations and with the
specified spacing on these lines off the boundary. 



          A similar iterative determination of the two control functions for use in generating a
coordinate system on a surface can be set up using only Eq. (52), and the analogous equation
for Pn, with the first term either omitted, amounting to the assumption of vanishing curvature

of the crossing line at the surface or with this term considered as specified on the surface,
either directly or by interpolation from the edges of the surface (the edges assumed to be on
coordinate lines) to provide two equations for the two control functions, Pm and Pn, on these

edges. Here the two dimensional surface coordinate system is to be orthogonal on the
bounding edges of the surface with the spacing off the edges, and the point distribution
thereon, specified on these edges. 

 

          Since the coordinate system is to be orthogonal on the edges, gmn = 0 there so that the

last term in the bracket in Eq. (52) vanishes. Eq. (52) then reduces to the following
expression 

(61)

and the analogous equation for Pn is 

(62)

These equations can also be written 

(63)

and 

(64)

          If the point distribution is specified along an edge on which m varies, then gmm, m,

and ( m m can all be calculated on this edge. The specification of the spacing from this



edge to the first coordinate line off the edge determines gnn on this edge. Also, because of

the orthogonality on the edge, we have 

(65)

where  is the unit normal to the surface. Note that  will vary along the edge if the

surface is curved. Since the surface normal, , will be known, all quantities in Eq. (63) and
(64) are known except (gnn)  n and ( n  n. These two quantities are not independent and,

in fact, 

(66)

On edges along which n varies, Eq. (65) and (66) are replaced by 

(67)

and 

(68)

and it is (gmm) m and ( m)  m that are not known. 

          The iterative solution then proceeds as described above, with the new control
functions being determined from Eq. (63) and (64), together with Eq. (65) and (66) on edges
along which m varies, or with Eq. (67) and (68) on edges along which n varies. 

3. Surface Grid Generation Systems 

          The grid generation systems discussed in the preceeding sections of this chapter have
been for the generation of curvilinear coordinate systems in general three-dimensional
regions. Two-dimensional forms of these systems serve to generate curvilinear coordinate
systems in general two-dimensional regions in a plane. It is also of interest, however, to
generate two-dimensional curvilinear coordinate systems on general curved surfaces. 



 

          Here the surface is specified, and the problem is to generate a two-dimensional grid on
that surface, the third curvilinear coordinate being constant on the surface. The
configurations of the transformed region will be the same as described in Chapter II for
two-dimensional systems in general, i.e., composed of contiguous rectangular blocks in a
plane, with point locations and/or coordinate line slopes specified on the boundaries. These
boundaries now correspond to bounding curves on the curved surface of the physical region.
The problem is thus essentially the same as that discussed above for two-dimensional plane
regions, except that the curvature of the surface must now enter the partial differential
equations which comprise the grid generation system. 

          As for general regions, algebraic generation systems based on interpolation can be
constructed, and such systems are discussed in Chapter VIII. The problem can also be
considered as an elliptic boundary-value problem on the surface with the same general
features discussed above being exhibited by the elliptic generation system. 

A. Surface grid generation 

          An elliptic generation system for surface grids can be devised from the formulae of
Gauss and Beltrami, of. Ref. [27]. Some related, but less general, developments are noted in
Ref. [9] and [5]. The starting point is the set formed by the formulae of Gauss for a surface,

which for a surface,   = constant, (  = 1,2, or 3) are given by Eq. (34) of Appendix A: 

(69)

where the variation of the indicies ,  and  is over the two coordinate indices different
from . (Greek coordinate indices are used here to set apart the coordinates generated on a
surface from those generated in a three-dimensional region in general). 



 

The unit normal  , the coefficients b  and the surface Christoffels ( ) have all been

defined in Eq. (15), (20), and (33) of Appendix A, respectively. The indices ,  each assume
the two values different from . For each , with ( , , ) taken in cyclic order, we have 

(70a)

(70b)

(70c)

with  assuming the two values, , . 

          A surface grid generation system that is analogous in form to that based on
Poisson-type equations in a plane given earlier can be constructed by multiplying Eq.

(70a,b,c), respectively, by G g , 2G g , G g  and adding. This given, after some

algebra, 

(71)

where 

(72)



(73)

(74)

(75)

          The quantities  and  are the local principal curvatures of the surface 

=constant. It must be noted here the R  as defined in (74) is based on the intrinsic values

of b . That is, the b  are solely determined by the data and coordinates as available in

the surface. If, however, it is desired to use Eq. (71) for generating a series of surfaces in a
three-dimensional space, as in the following section, from the data of a given surface, then it
is desirable to have an extrinsic form for b . To obtain the extrinsic form, we use Eq. (29)

of Appendix A, i.e., 

(76)

Equating the right hand sides of Eq. (69) and (76), taking the dot product with   on both

sides, and noting that , we get 

(77a)

where 

(77b)

Thus 

(78)

          The operator 2 is called the Beltrami second-order differential operator, and in

general is defined as 



(79)

Thus 

(80a)

(80b)

          The generation system is now formed by taking, in analogy with the system (7), 

(81a)

(81b)

where  and  each assume the two values ,  in the summation. Here the  are the
symmetric control functions. Thus the equations for the generation of surface grids are (with 

 = x + y + z) 

(82)

where 

(83)

(84)

(85)



The left-hand side of Eq. (82) here corresponds exactly to that of Eq. (15) for the plane.
However, here we have in place of (18) the relations 

(86a)

(86b)

(86c)

          The effect of the surface curvature enters through the inhomogenous term, in

particular through R ( ) which is, in fact, equal to twice the product of  and the mean

curvature of the surface. Here, as for the plane, the control functions, , are considered to
be specified. This system corresponds to the following system in the physical space, from
(81), 

(87a)

(87b)

Thus the Beltrami operator on the general surface replaces the Laplacian operator in the
plane. If the surface is a plane, the Beltrami operator reduces to the Laplacian. 

          If only the two control functions  and  are included, the surface grid generation
system reduces to the more practical system 

(88)

corresponding to the plane system given by Eq. (20). In the physical plane this system is 

(89a)

(89b)



          Clearly, we could also replace the system (89) with the simplier system 

(90a)

(90b)

in analogy with the sytem (24) in the plane, to obtain the surface grid generation system 

(91)

which is analogous to the plane system (23). 

          Equation (71) is the basic equation for the generation of curvilinear coordinates in a

given surface. From (74) the function R( ) depends on the principal curvatures  and

. The sum  is twice the mean curvature of the surface, and its value is invariant
to the coordinates introduced in the given surface. If the equation of the surface in the form
x3 = f(x1,x2) is available, then from elementary differential geometry 

(92)

where 

For arbitrary surfaces it is always possible to use a nummerical method, e.g., the least square
method, to fit anequation in the form x3=f(x1,x2) or F(x1,x2,x3)=0 and to obtain the needed

partial derivatives to find  +  as a function of x1,x2,x3. (Surface grids have been

obtained for simply and double connected regions in a surface using the above method.) 

          It may be desired in some applications to generate a new coordinate system based on
an already existing coordinate system in a given surface. In the formulation of this problem

Eq. (71) can have the form of R( ) given in (74), (75) or (78). Let the surface on which the
new grid is to be generated be specified parametrically by 

(93)

(For example, the parameters (u,v) might be latitude and longitude on a spherical surface.) If
the specified cartesian coordinates on the surface form a finite set of discrete points, a



smooth interpolation scheme is needed to recover the differentiable functions in (93). To
attain the desired smoothness in the parametric representation (93), it is generally preferable
to divide the given surface into a suitable number of patches such that each patch is
representable by a bicubio spline with suitable blending functions. Having once established
the smooth parametric functions (93), it is now possible to introduce any other desired

coordinate system, say (  ,  ) on the surface. For example, a surface coordinate system 
 ,   of the configuration 

 

might be generated on a surface defined by the parametric coordinates (u,v) in a
latitude-longitude configuration: 

 

Alternatively, a surface may be defined in terms of cross-sections, in which case one of the
parametric coordinates (u,v) runs around the section and the other connects the sections: 

 

          The fundamental equations for the generation of (  ,  ) on the surface 

=constant can be obtained from Eq. (75) in the form 



(94)

Here we have taken 

(95a)

(95b)

Now using the chain rule of differentiation, we can write   ,         etc., in

terms of u, v, uu, etc. Thus,

for example, 

(96)

(97)

(98)

with the  quantities as defined below. Substituting these derivatives in (94), and also in the
expressions for   and  , we get 

(99)

where 

(100)



(101)

(102)

(103)

          To isolate the differential equations for u and v as dependent variables from (99), we
take the dot product of Eq. (99) with u, and then with v, and use the conditions 

Writing 

the required equations are 

(104a)

(104b)

where 

(105a)

(105b)

(105c)

(106a)

(106b)

Note that the metric quantities with an overbar relate to the surface definition in terms of the
parametric coordinates and therefore can be calculated directly from the surface



specification, Eq. (92). 

          Clearly we could redefine the control functions so that (104) is replaced by the
following system, which is analogous in form to the plane system (20): 

(107a)

(107b)

B. Three-dimensional grids 

          As mentioned earlier, the system of Eq. (71), or Eq. (82), is also capable of generating

three-dimensional grids. This capability in the set of equations is incorporated through 
( ) as defined in (78). 

          The strategy of the method is to generate a series of surfaces on each of which two
curvilinear coordinates vary while the third remains fixed. The variation along the third
coordinate is specified as a surface derivative condition, which in turn depends on the given
boundary data. 

          A study of Eq. (82) - (84) shows immediately that for the solution of Eqs. (82) we

need to specify the values of  and    on certain curves  =constant. To fix ideas, let

us consider the problem of coordinate generation between two given surfaces  and 

 as shown below: 

 

The coordinates on these surfaces are   and  . To start solving these equations we

need the values of  and    on the surfaces  and . These values of 

are the input conditions for the solution of Eqs. (82), and are either prescribed analytically or
numerically. On the other hand, the values of   at B and  are available easily, based



numerically. On the other hand, the values of   at B and  are available easily, based
on the values of , simply by numerical differentiation. The values of r   in the field for

each surface to be generated are then obtained by interpolation between the available values
of (   )B and (   ) . A simple formulae which has been used with success is 

(108)

where 

4. Implementation 

          The setup of the transformed region configuration is done as described in Chapter II.
This includes the placing of the cartesian coordinates of the selected points on the boundary
of the physical region into ijk for each block and the setting of the interface

correspondence between points on the surrounding layer for each block and points inside the
same, or another, block via input to an image-point array as described in Section 6 of
Chapter II. 

A. Difference equations 

          Implementation of an elliptic generation system then is accomplished by devising an
algorithm for the numerical solution of the partial differential equations comprising the
generation system. Recall that the use of the surrounding layer for each block, as described
in Section 6 of Chapter II, allows the same difference representations that are used in the
interior to be used on the interfaces. The usual approach is to replace all derivatives in the
partial differential equations by second-order central difference expressions, as given in
Chapter IV, and then to solve the resulting system of algebraic difference equations by
iteration. As noted above, most generation systems of interest are quasilinear, so that the
difference equations are nonlinear. 

          A number of different algorithms have been used for the soltuion of these equations,
including point and line SOR, ADI, and multi-grid iteration (cf. Ref. [1] and [5]). For general
configurations, point SOR is certainly the most convenient to code and has been found to be
rapid and dependable, using over-relaxation, for a wide variety of configurations. The
optimum acceleration parameters and the convergence rate decrease as the control functions
increase in magnitude. Some consideration has been given to the calculation of a field of
locally-optimum acceleration parameters (cf. Ref. [1]), but the predicted values generally
tend to be too high, and the desired increases in convergence rate were not obtained. 

          Since the system is nonlinear, convergence depends on the initial guess in iterative



solutions. The algebraic grid generation procedures discussed in Chapter VIII can serve to
generate this initial guess, and transfinite interpolation generally produces a more reliable
initial guess than does unidirectional interpolation because of the reduced skewness in the
former. In fact with strong line concentration, convergence may not be possible from an
initial guess constructed from unidirectional interpolation, while rapid convergence occurs
from an initial guess formed with transfinite interpolation. With the slab and slit
configurations, the interpolation must be unidirectional between the closest facing boundary
segments as illustrated below: 

 

In a block structure, however, the slab/slit configuration can be avoided so that transfinite
interpolation can be used. 

          Since the coordinate lines tend to concentrate near a convex boundary, very sharp
convex corners may cause problems with the convergence of iterative solutions of the
generation equations. These equations are nonlinear, and therefore convergence of an
iterative procedure requires that the initial guess be within some neighborhood of the
solution. With control functions designed to cause attraction to the boundary, it is possible
for the coordinate lines to overlap a very sharp convex corner during the course of the
iteration, even though a solution with no overlap exists: 

 

          This problem may be handled by first converging the solution with the coordinate
lines artificially locked off the corner. Thus, if newly calculated values of the cartesian
coordinates at a point during the iteration would cause this point to move farther from its
present location than the distance to the adjacent point on the curvilinear coordinate line
running to the corner, then these new values are replaced by the average of the coordinates
of the old point and the adjacent point. After convergence, this lock is removed and final
convergence to the solution is obtained. Note that this problem does not arise when the
curvilinear coordinate line emanating from the corner is the same as that on the boundary, as



in the C-type configuration on p. 30 since then the lines do not wrap around the corner. 

 

          With very large cell aspect ratio, e.g., for g11>>g22, the generation equation is

dominated by the term containing the second derivative along the curvilinear coordinate line
on which the shorter are length lies. This causes the cartesian coordinates to tend strongly
toward averages of adjacent points on this line during the course of the iteration. Therefore,
when strong control functions are used to attract coordinate lines to the boundary in a C-type
configuration, 

 

the points on the cut are very slow to move from the initial guess during the iteration.
Convergence in such a case is very slow, and it is expedient to artificially fix the points on
the cut as if it were a boundary. This will cause the coordinate lines crossing the cut to have
discontinuous slopes at the cut, but since the spacing along these crossing lines is very small,
the error thus incurred in difference solutions on the coordinate system is small. 

B. Control functions 

          Several types of control functions have been discussed in Section 2 which serve to
control the coordinate line spacing and orientation in the field. Most of these functions are
set before the solution algorithm begins, either directly through input or by calculation from
the boundary point distributions that have been input. 

          For the attraction to other coordinate lines/points, described in Section 2A, it is
necessary to input the indices of the lines/points, i.e., the i and i of Eq. (30), to which

attraction is to be made. In the case of attraction to lines, the line is identified by the single
index which is constant thereon, while a point requires the specification of two indices (in
2D, with analogous generalization to 3D). The attraction amplitude and decay factor in Eq.
(30) must also be input for each line/point. The control functions are then calculated at each



(30) must also be input for each line/point. The control functions are then calculated at each
point in the field ( , ) by performing the summations in Eq. (30), those summations being
over all the attraction lines/points that have been input. As noted in Section 2A, these
summations must also extend over some lines/points on other sheets across branch cuts in
some cases. 

          This type of control function was used in the original TOMCAT code (cf. Ref. [1]),
but is not really suitable as a primary means of control function definition because it only
provides control--not control to achieve a specified spacing distribution, since the
appropriate values of the various parameters involved can only be determined by
experimentation. This form does, however, still serve as a useful addition to other types of
control, in that it allows particular ad hoc concentrations or adjustments of line spacing and
orientation to be made. This can be particularly useful near the special points discussed in
Chapter II where the grid line configuration departs locally from the usual simple coordinate
line intersections. 

          The attraction to lines/points in space, implemented through Eq. (31), requires input
similar to that just described, except that here the location of the attraction lines must be
defined in the physical region by inputing a set of points along the line sufficient for its
definition in discrete form. For attraction to a point a unit vector must also be input with each
point. Again, attraction amplitude and decay factors must be input. 

          More important is the evaluation of the control functions from the boundary point
distribution that has been input, as described in Section 2E. With the point distribution
specified on a boundary line, the control functions on this line can be evaluated from Eq.
(45)-(47). Here the derviatives in Eq.(46) are best calculated from Eq. (36) and (37), using
second-order, central difference expressions along the line: 

 

(Recall that .) The curvature terms given by Eq. (47), if included, must either be
input at each point on the line, or, as is more likely, must be interpolated from values on the
ends of the line. In this latter case, the m and n derivatives are off the line and are
evaluated from the point distribution on the other coordinate lines intersecting the line of
interest at its ends, using first-order one-sided difference expressions along these intersecting
lines: 

 



One-dimensional linear interpolation in l then serves to define the curvature term quantities
at each point on the line of interest. Recall that it is the entire curvature term, rather than the
individual vectors involved, that should be interpolated. 

          This evaluation determines the Pl control function on a boundary line on which l

varies. Such an evaluation can be made on each edge of a surface, corresponding to one face
of a block in three dimensions (cf. Section 6 of Chapter II). If it is desired to generate a
two-dimensional grid on this surface, control functions on the surface can be evaluated by
interpolation from the function values on the edges, using linear interpolation between the
two edges on which i is constant to evaluate Pj, and between the two edges on which j is

constant to evaluate Pi (cf. the figure on p. 227). With the control functions thus defined on

the surface, a two-dimensional grid on the surface can now be generated using a surface grid
generation system described as in Section 3. If the surface is a portion of the physical
boundary, then a parametric definition of the surface will need to be input, so that the system
defined by Eq. (107) can be applied. If, however, the surface is simply an interface between
blocks, then its position is arbitrary and either a plane two-dimensional generation system,
such as Eq. (20),can be used, or surface curvature values could be input at each point on the
surface and the surface system Eq. (82) used. The former is the more likely choice. 

          With the grid points on all the block faces defined, either by surface generation
systems or by direct input, two control functions on each face can be evaluated from the
surface point distribution using Eq. (52). Here the m and n derivatives are along coordinate
lines on the surface and thus can be represented by second-order central differences between
points on the surface: 

 

(Recall that ( m) m can be expanded to  m m for evaluation.) The l-derivatives are off

the surface and must either be specified by input at each point on the surface, or, as is more
likely, must be interpolated from values evaluated along the coordinate lines intersecting the
surface at its edges using first-order, one-sided difference expressions. The interpolation
would here properly be two-dimensional transfinite interpolation discussed in Chapter VIII. 



 

          This then serves to determine the two control functions Pj and Pk, on a surface on

which i is constant (cf. the figure on p. 226), so that each control function will be defined
on four faces of the block. Transfinite interpolation among these four faces then determines
this control function in the interior of the block (cf. p. 227). 

          Another possibility is to evaluate the radius of curvature, , of the surface and to

replace the curvature terms in Eq. (45) with  (cf. Exercise 9). Here the radius of
curvature should be interpolated unidirectionally between facing surfaces, and the same
two-directional transfinite interpolation used for the first term of the control function should

be used for the spacing . 

          Still another approach is to solve the three generation system equations for the three
control functions at each point using an algebraic grid, but with the off-diagonal metric
elements set to zero. This will produce a grid which will have a greater degree of smoothness
and orthogonality than the algebraic grid and yet has the same general spacing distribution.
Here the result of the Computer Exercise 6 in Appendix C must be considered since the
algebraic grid influences the spacing distribution. 

          In generation systems that iteratively adjust the control functions during the course of
the solution of the difference equations (Section 2F) to achieve a specified spacing and angle
of intersection, e.g., orthogonality, at the boundary, this spacing and intersection angle are
input for each boundary point and it is, of course, not necessary to calculate the control
functions beforehand. Several references to discussion of such systems are given in Ref. [5].
The GRAPE code is based on this approach, cf. the users manual Ref. [24]. 

C. Surface generation systems 

          A boundary surface in the physical region will typically be input by giving the
cartesian coordinates of points on a series of cross-sections, or other set of space curves: 

 

These input points may then be splined to provide a functional definition of these curves.
These curves are then parameterized in terms of normalized arc length thereon, i.e., so that



this normalized parameter varies over the same range on each curve. 

 

This normalized arc length then provides one parametric coordinate on the surface. The other
coordinate is defined by connecting points at the same value of the first coordinate on the
successive curves, again using a spline fit: 

 

This second coordinate is then also expressed in terms of normalized arc length 

 

(On a sphere these two parametric surface coordinates could correspond to longitude and
latitude, the latter arising from the cross-sections and the former from the connecting
thereof.) 

 

There are other techniques of surface definition and parameterization, cf. especially works
on computer-aided design, but the above decription is representative. The end result of this
stage in any case is (u,v), i.e., the cartesian coordinates on the surface in terms of two
surface parametric coordinates. 

          The two parametric coordinates (u,v) used to define the surface can also be adopted as
the curvilinear coordinates defining the surface grid. However it is more likely that these
coordinates were selected for convenience of input definition of the surface than for the



definition of an appropriate grid thereon. This is particularly true when two such intersection
surfaces, e.g., a wing-body, are input, each with its own set of parametric coordinates.
Therefore, the surface grid generation system defined by Eq. (107) or (104) is used to

generate a new surface coordinate system (  ,  ) by generating values of the parametric

coordinates (u,v) as functions of the curvilinear coordinates (  ,  ), analogous to the
plane generation systems which generate values of the cartesian coordinates as functions of
the curvilinear coordinates. In fact, as noted above, the surface generation system
degenerates to the plane system when the surface curvature vanishes. 

          With (u,v) now available, as described above, the metric elements with overbars can
be calculated from the definitions in Eq. (103), using second-order central differences for all
derivatives as in the plane case. The quantities 2u and 2v are then calculated in the same

manner from Eq. (106). Also the control fucntions are evaluated from the same relations
given above for the plane case. All derivatives in the system (107) or (104) are represented
by second-order central difference epxressions, and the resulting nonlinear difference
equations are solved as in the plane case. 

Exercises 

1. Demonstrate the validity of Eq. (4) -- (6). 

2. For plane polar coordinates (r, ) defined as 

show that the curvilinear coordinates 

are solutions of the Laplace equations 2 =0, 2 =0. 

3. Show that the one-dimensional control function in Eq. (13) that is equivalent to the use of
a subsequent exponential stretching transformation by the function given by Eq. (VIII-26) is
P = - /I. Hint: x/L = ( /I) 

4. Show that the one-dimensional control function in Eq. (13) that corresponds to a
hyperbolic tangent stretching transformation by the function given by Eq. (VIII-32) is 

where u is given by Eq. (VIII-33) and 



5. Show that the one-dimensional control function for the generation system given by Eq.
(23) corresponding to a distribution x( ) is 

Note that this control function will be considerably larger than that for Eq. (12) because of
the higher inverse power of x  

6. Show that a solution of Eq. (20), with P = P( ) and Q = Q( ), for a rectangular region
with  and ,  and , is given by 

where 

7. Show that a solution of Eq. (20), with P = P( ) and Q( ), for an annular region between
two concentric circles of radius r1 and r2 is given, with  and , by 

where 



with F( ) and G( ) given in the preceding exercise. Show also that for P = p /p  and Q

= q /q , R( ) and ( ) become 

8. From the result of the preceding exercise show that the control function Q( ) required to
produce a specified radial distribution r( ) is given by 

9. Show that the first term in the control function Q( ) given in the preceding exercise arises
from the first term in Eq. (45), and that the second term arises from curvature term in (45). 

10. Consider the generating system (23) for plane curvilinear coordinates. Let the control
functions P and Q be defined as follows: 

where k > 0 is a constant. Let it be desired to solve Eq. (23) for the generation of coordinates
in the region of a circular annulus with  = i(r = 1) as the inner circle and  = o(r = R) as

the outer circle. Considering the clockwise traverse in the -direction as positive, set 

where 



in Eq. (23), and show that 

where 

11. Show that the control function P in Exercise 4 has the following values at the boundaries:

Note that an iterative procedure could be set up in the manner of Section 2F in which  and
A are determined from P(0) and P(I) and then these are used in the P( ) of Exercise 4 to
define the control function in the field, rather than interpolating from the boundary values. 

12. Show that the Beltrami operator reduces to the Laplacian for a plane surface. 

13. Verify Eq. (71). 

14. Verify Eq. (77a). 

15. Consider a sphere of unit radius in which it is desired to introduce a coordinate system (
, ) in such a way that (i) is orthogonal, and (ii) the resulting metric coefficients g33 and

g11 are equal. (Such systems are known to be isothermic.) 

(a) Verify by inspection that for isothermic coordinates Eq. (80) is identically satisfied. 

(b) To obtain the isothermic coordinates on a sphere set 



and show that 

(c) Show that the relation between the standard longitude and latitude surface coordinates 
and  where 0  < 2  and 0 <  < , is 

16. Using Eq. (15), (20) and (21) of Appendix A, show that the sum of the principal

curvatures,  + , of a prolate ellipsoid defined as 

     is 

17. Verify the correspondence between Eq. (90) and (91). 

18. Verify Eq. (92). 

19. Let ( , ) be the surface coordinates in the surface on which  = constant. Then as
shown in Appendix A, Eq. (21), 

Let a new coordinate system ( , ) be introduced in the same surface such that  =

( , ), and  = ( , ) are admissible transformation functions. 

(a) Use the chain rule of differentiation to show that the components of the normal  to the
surface are coordinate invariants, i.e., 

(b) Also show that on coordinate transformation 



20. Let it be desired to obtain the 3D curvilinear coordinates in the region bounded by a
prolate ellipsoid as an inner boundary (  = i) and a sphere as an outer boundary (  = o).

The (x,y,z) for both the inner and outer bodies are given below in which  and i are the

parameters of the ellipsoid: 

(a) First write Eq. (91) as three equations in x, y and z for the generation of those surfaces on
which  = constant. Also set P = Q = 0 and transform the three equations mentioned above
from  to , where  = i + ( ). 

(b) Assume the solution is 

and compute all the needed derivatives to find g11, g12, g22 while keeping  fixed. Also

using Eq. (15), (20) and (21) of Appendix A obtain the expressions for the components of

i(3) and R(3). 

(c) Use all the quantities obtained in (b) in the equations written in (a), and show that 

where 



21. Let a surface in the xyz-space by given as 

Show the following: 

(a) The components of the unit normal vector to the surface area are 

(b) The element of area dA on the surface is 

(c) The element of length ds of a surface curve is given by 

(d) The sum of the principal curvatures is given by 

22. (a) Show that the unit tangent vector  to the curve of intersection of two surfaces
F(x,y,z) = 0, G(x,y,z) = 0 is 



where 

and m,n,k are in the cyclic per mutations of 1,2,3. 

(b) Using the formula for the normal vector  to F constant, .i,e., 

find the Cartesian components of . 

23. Verify Eq. (104). 



VII. PARABOLIC AND HYPERBOLIC GENERATION SYSTEMS

          It is also possible to base a grid generation system on hyperbolic or parabolic partial
differential equations, rather than elliptic equations. In each of these eases the grid is
generated by numerically solving the partial differential equations, marching in the direction
of one curvilinear coordinate between two boundary curves in two dimensions, or between
two boundary surfaces in three dimensions. In neither case can the entire boundaries of a
general region be specified -- only the elliptic equations allow that. 

          The parabolic system can be applied to generate the grid between the two boundaries
of a doubly-connected region with each of these boundaries specified. The hyperbolic case,
however, allows only one boundary to be specified, and is therefore of interest only for use
in calculation on physically unbounded regions where the precise location of a
computational outer boundary is not important. Both parabolic and hyperbolic grid
generation systems have the advantage of being generally faster than elliptic generation
systems, but, as just noted, are applicable only to certain configurations. Hyperbolic
generation systems can be used to generate orthogonal grids. 

1. Hyperbolic Grid Generation 

          In two dimensions the condition of orthogonality is simply 

(1)

If either the cell area,  or the cell diagonal length (squared), g11 + g22, is a specified

function of the curvilinear coordinates, i.e., 

(2a)

or 

(2b)

then the system consisting of Eq. (1) and either (2a) or (2b), as appropriate, is hyperbolic. 

          A hyperbolic generation system based on Eq. (1) and (2a) is constructed as follows (cf.
Ref. [28-29]). Eq. (1) and (2a) become, with 1 = , 2 = , x1 = x, x2 = y, 

(3a)

(3b)

where the cell volume distribution, V( , ), is specified. This system is hyperbolic and
therefore a non-iterative marching solution can be constructed proceeding in one coordinate



direction, say , away from a specified boundary. 

          The equations are first locally linearized about a known solution denoted x°, y°. Thus 

(4)

where 

 

 

Then with second-order central differences for the -derivatives and first-order backward
differences for the derivatives we have, with  = i and  = j, 

(5)

with i ij= i+1,j - ij and j= ij - i,j-1 and where A and B, and V° in , are evaluated

at j, and the last term is an added fourth-order dissipation term for stability. With  and 

evaluated using central differences at j,  and  can be evaluated by simulatenous solution
of Eq. (3a) and (3b). Eq. (5) then is a 2x2 block tridiagonal equation which is solved on each
successive -line, proceeding away from the specified boundary, to generate the grid. 

          The cell volume distribution in the field is controlled by the specified function,
V( , ). One form of this specification is as follows. Let points be distributed on a circle
having a perimeter equal to that of the specified boundary at the same are length distribution
as on that boundary. Then specify a radial distribution of concentric circles about this circle
according to some distribution function, e.g., the hyperbolic tangent discussed in Chapter
VIII. Then use the volume distribution from this unequally-spaced cylindrical coordinate
system as V( , ), with  corresponding to the points around the circle, ( ), and 
corresponding to the radial distribution r( ). An example of grids generated by this
procedure follows: 



 

          The specification of the cell volume prevents the coordinate system from overlapping
even above a concave boundary. In this case the line spacing will expand rapidly away from
the boundary in order to keep the cell volume from vanishing, as in the Following figure. 

 

Although this prevents overlap, the rapid expansion that occurs can lead to problems with
truncation error in some eases. This approach is extendable to 3-D with the coordinate lines
emanating from the boundary being orthogonal to the other two coordinates, but the latter
two lines not being orthogonal. There apparently is no system, hyperbolic or elliptic, that
will give complete orthogonality in 3-D. 

          This hyperbolic grid generation system is faster than the elliptic generation systems by
one or two orders of magnitude, the computational time required being equivalent to about
that for one iteration in a solution of the elliptic system. The specification of the cell volume
distribution avoids the grid line overlapping that otherwise can occur with concave
boundaries in a method involving projection away from a boundary. The grid may, however,
be somewhat distorted when concave boundaries are involved. The cell volume specification
also allows control of the gird line spacing, of course, as in the upper part of the second
figure on p. 275, but again concave boundaries may cause the intended spacing to occur in
the wrong coordinate direction, as in the lower part of this figure, since it is only the volume,
and not the spacing in the two separate coordinate directions, that is controlled. As has been
noted, the grid is constructed to be orthgonal. 



          The hyperbolic generation system is not as general as the elliptic systems, however,
since the entire boundary of the region cannot be specified. As noted above, boundary slope
discontinuities are propagated into the field, so that the metric elements will be
discontinuous along coordinate lines emanating from boundary slope discontinuities. Finally,
since hyperbolic partial differential equations can have shock-like solutions in some
circumstances, it is possible for very unsuitable grids to result with some specifications of
boundary point and cell volume distributions. This is in contrast with the elliptic generation
systems which tend to emphasize smoothness because of the nature of elliptic partial
differential equations. 

2. Parabolic Grid Generation 

          Parabolic grid generation sytems may be constructed by modifying elliptic generation
systems so that the second derivatives in one coordinate direction do not appear. The
solution then can be marched away from a boundary in much the same manner as described
above for the hyperbolic systems. Here, however, some influence of the other boundary
toward which the marching progresses is retained in the equations. 

          In Ref. [30] such a parabolic generation system is formed essentially by first
representing all derivatives in an elliptic generation system with second-order central
differences and then replacing all values on the forward line in one coordinate direction, say 

 = j+1, with values specified in some manner in terms of the values on the preceeding lines
and specified values on the outer boundary. This reduces the difference equations to a set of
2x2 block tridiagonal equations to be solved on each coordinate line in succession,
proceeding away from a specified boundary. Control of the coordinate line spacing can be
achieved by certain control functions that are drawn from some analogy with the elliptic
system. It is possible to use the functional specification of the forward values to cause the
grid to be nearly-orthogonal. 

          The parabolic generation system is also faster than the elliptic generation systems to
the same degree as is the hyperbolic system, since again only a succession of tridiagonal
solutions is required. The functional specification of the forward values, with an influence of
an outer boundary, introduces a smoothing effect from this second boundary not present in
the hyperbolic system. Orthogonality is not achieved as directly as with the hyperbolic
system, however. The forms of the forward value specification, and of the control functions,
have not yet been well-developed. 



VIII. ALGEBRAIC GENERATION SYSTEMS 

          As noted earlier, the problem of generating a curvilinear coordinate system can be
formulated as a problem of generating values of the cartesian coordinates in the interior of
the rectangular transformed region from specified values on the boundaries. This, of course,
can be done directly by interpolation from the boundaries, and such coordinate generation
procedures are referred to as algebraic generation systems. Thus ( 1, 2, 3) is given as a
specific function of the curvilinear coordinates. This function contains certain coefficients
which are determined so that the function matches specified values of the cartesian
coordinates, and perhaps derivatives also, on the boundary and perhaps elsewhere.
Evaluation of this interpolation function at constant values of the curvilinear coordinates
then defines the coordinate system. Algebraic grid generation is discussed in Ref. [31] and
[8], as well as in the surveys, Ref. [l], [5] and [37], and in detail in Ref. [32-36]. 

1. Unidirectional Interpolation 

          Unidirectional interpolation means the interpolation is in one curvilinear coordinate
direction only. In this section the cartesian coordinate vector  will be shown as a function
of the coordinate involved in the interpolation, as the unidirectional interpolation is
fundamentally between points. These points can, however, lie on boundary (and perhaps
interior) curves or surfaces, and in this sense the unidirectional interpolation can be
considered to be between these curves or surfaces. Therefore the single-variable functional
relationship ( ) used in this section can be considered to represent dependence on all
coordinates, the interpolation points i being functions of the coordinates along the

boundary curves or surfaces. 

A. Lagrange interpolation 

          The simplest type of unidirectional interpolation is Lagrange interpolation, which is
based on polynomials. In the linear form we have, with , 

(1)

Here 1= (0) and 2= (I), so that ( ) is defined in terms of the two boundary values, 

1 and 2. The grid points are located at the successive integer values of  from 0 to I. One

family of grid lines will be straight lines connecting corresponding boundary points with this
linear interpolation. 

          The general form is 



(2)

with n = ( n), and the functions n being polynomials defined on the entire interval 

 such that 

(3)

In the linear case given above we have, with N=2, 

 

From Eq. (2) and (3), 

 

so that the interpolation function matches  at the N points  = 1, 2, ..., N=I: 

 

          The specified interior points, n for n=2,3,...N-1, are not necessarily grid points, since

the grid points are defined by evaluating the interpolation formula at successive integer
values of , but are simply additional parameters that serve to control the distribution. It is
possible to specify the locations of certain interior grids points, however, by taking the n

corresponding to the specified n to be the value of  at the grid point of interest. 

          The Lagrange interpolation polynomials, defined to satisfy by Eq. (3), are in general 

(4)

The quadratic forms thus are, with N=3, and 2 = I/2. 



for which ( ) is defined in terms of the two boundary values, 1 and 3, and one interior

value, 2. It should be noted that the purpose of the inclusion of the interior points in grid

generation is control of the grid point distribution, not to increase the accuracy of the
interpolation as is normally the case. There is, in fact, no question of accuracy of the
interpolation here, since the aim is just to generate a grid from the boundary values of the
coordinates. 

B. Hermite interpolation 

          Lagrange interpolation matches only function values. It is possible to match both
function, , and first-derivative, ’ =  , values using Hermite interpolation defined by 

(5)

where the Hermite inerpolation polynomials are defined on  and satisfy the
conditions 

 

These polynomials can be obtained from the Lagrange interpolation polynomials by 

(6a)

(6b)



where the prime here indicates differentiation of the polynomial with respect to the

argument, . With N=2 we have 

and the function matches the two boundary values, 1 and 2, and the first derivatives, ’
1

and ’
2, at the two boundaries. 

 

          Extensions of polynomial interpolation to match higher-order derivatives is obviously
possible, the degree of the polynomial increasing with each additional condition or point to
be matched. The polynomials of high degree exhibit considerable oscillation, however, so
such procedures are not of great importance to grid generation. The general form again
includes matches at interior points, which can be used to control the coordinate line spacing,
since the first derivative, ’ =  , is a measure of the grid point spacing here, with 

being unity between points by construction. As with Lagrange interpolation, these specified
interior points may or may not be grid points. 

          It is also possible, of course, to omit points from either of the summations in Eq. (5),
so that  and its first derivatives are not both matched at all points (deficient Hermite
interpolation). Thus, with N=2 and the n=1 term omitted from the second summation, the
two boundary values would be matched, but the first dervative at only the =I boundary
would be matched. Clearly, the Hermite interpolation form, Eq. (5), could be equivalently
defined in terms of the Lagrangian interpolation form, Eq. (2), with 2N points, since both are
polynomial representations. Obviously either approach can be used to control the grid point
spacing in the field. 



          The capability of specifying  , as well as , can be used to make the grid

orthogonal at the boundary. From Eq. (III-33) the unit normal to a i-coordinate surface is
given by 

 

Using Eq. (III-10) this becomes 

 

The condition for orthogonally at the boundary then is that  i be in the direction of the

unit normal to the boundary: 

(7)

where  is the spacing off the boundary to be specified. Since all the
quantities with j and k subscripts can be evaluated from the points on the boundary, it
remains only to specify the spacing, si, off the boundary and to use Eq. (7) for  i on the

boundary in the Hermite expressions. 

C. Other forms of polynomial interpolation 

          As noted above, Hermite interpolation, which matches  and   at N points, can be

equivalently constructed as an interpolant which matches  at 2N points. Another form of
expression of the polynomial interpolation uses the direct expression of the polynomial, so
that 

(8)

Here we must have 

where o and I are the boundaries. This form is not as straightforward as the Lagrange

form for use in grid generation, since in the latter form certain grid point locations can be
specified directly, while in the former the coefficients must be evaluated in terms of these



specified points. 

          Still another form is that of Bezier, using Bernstein polynomials: 

(9)

with 

 

Here we have 

 

Thus the coefficients 1 and N-1 specify the slopes at the boundaries. An advantage of the

Bezier form is that the coefficients define the vertices of an open polygon to which the curve
is an approximation. Thus the general shape of the curve can be inferred by considering the
coefficients to represent points in the field, with the lines from o to 1, and from N-1 to 

N, defining the slopes at the two ends. The shape of the curve can then be designed by the

placement of the vertices in the field as indicated below. Modifications of the curve can thus
be made by adjusting the positions of these vertices. 

 

          Still another form can be defined using piecewise polynomials for the interpolation
functions. Some degree of continuity must be lost in this case, of course. Continuity of the
grid lines can be achieved using the piecewise-linear polynomials shown below (truncated
versions apply at or near the end points): 

 

while slope continuity can be gotten with the following piecewise polynomials: 



 

Such piecewise polynomials allow a greater degree of local adjustment to be made, since the
polynomial n which multiplies the interpolation point n vanishes except in the immediate

vicinity of n. By the conditions (3), any interpolation function n must vanish at all the

interpolation points except n, but need not vanish between the points. Adding more

interpolation points with global polynomials thus means increasing the degree of the
polynomials, since the numbers of zeros must increase, and hence the polynomial becomes
highly oscillitory. 

D. Splines 

          The Lagrange and Hermite interpolation functions given above are completely
continuous at all points. Complete continuity, however, may be attained at the price of
oscillation. Both of these forms fit a single polynomial from one boundary to the other,
matching specified values of the coordinates and perhaps the derivatives thereof (i.e., the
point spacing). As more interior points are included, or as the first derivatives are included,
the order of this global polynomial increases and thus oscillations become more likely. An
alternative approach is to fit a low-order polynomial between each of the specified interior
points, with continuity of as many derivatives as is possible enforced at the interior points.
The interpolation function is then a piecewise-continuous polynomial. 

 

This type of interpolation function is called a spline and is formed as follows for the most
common case of the cubic spline. 

          With a cubic polynomial fitted between points i and i+1 we have a linear variation

of the second derivative between these points and thus 

(10)



After two integrations and evaluation of the two constants ofintegration such that ( i)= i

and ( i+1)= i+1, we have on i i+1 

(11)

Then, after differentiation and setting = i, we have on i i+1, 

(12)

Similar evaluation on the adjacent interval i-1 i gives 

(13)

Equating these two expressions in order to produce continuity of r’ at the interior points, we
have 

(14)

which is a tridiagonal equation for " at the interior points. It is necessary to set some
conditions on " on the boundaries in order to solve this system, and the "natural" spline
uses 1" = I" = 0. This choice minimizes the total curvature, and thus the natural spline is

the smoothest interpolant. This solution defines the i in terms of the i, so that substitution

of these values for i" into Eq. (11) then gives the spline in the general form of Eq. (2),

except that the interpolation functions, n, are, of course, different from the Lagrange

interpolation polynomials. It should be recalled again that the interior points may or may not
be grid points, the latter being defined by the interpolation formula evaluated at successive
integer values of  after the spline has been constructed over the entire field. 



E. Tension splines 

          The spline tends to give a very smooth point distribution. Stronger localized curvature
around the specified interior points can be obtained with the tension spline. Here Eq. (10) on 

i i+1 is replaced by 

(15)

where 2 is a constant to be specified. (The tension spline tends progressively toward a
linear function for large values of , and toward a cubic spline for small values.) Integration
and evaluation of constants then yields, on i i+1, 

(16)

The requirement of continuity of first derivatives at the interior points then yields the
tridiagonal equation 

(17)

where i = i+1 - i and i-1 = i - i-1. Some application of tension splines are given in

Ref. [33]. 

F. B-Splines 



          One further possibility is to use piecewise continuous functions which satisfy the
cardinality conditions by vanishing identically outside some interval around n, as discussed

in Section C above. This type of function allows the interpolation to be modified locally
without affecting the interpolation function elsewhere. The B-splines are an example of this
approach. 

          From Eq. (14) a cubic spline which matches the function at N points, with continuity
of second-derivatives, requires N+2 items of data, i.e., the N values of n (n=1,2,...N) and

the values of " at each boundary. Therefore a cubic spline which has  = ’ = " = 0 at
each boundary can be defined over five points if  is specified at only a single interior point
(since N+2=7 data items can be specified here). If such a spline over five points is joined to
the line  = 0 outside these five points, we have a function which is non-zero only over four
intervals and yet which has continuous second derivatives everywhere. Such a function is

called a B-spline, denoted N4N( ), where the end-points of the non-zero interval are n-4
and n. Similarly, quadratic, linear and constant B-splines are non-zero over three, two, and

one intervals, respectively, and are denoted Nqn, where q = 3, 2, and 1. The end-points of the

interval of non-zero values for these splines are n-q and n. The specification of a single

value in this interval is usually replaced by the specification of the integral over the interval
so that 

(18)

          The practical importance of B-splines is that any spline of order q (the cubic spline is
of order 4) can be expressed as a sum of multiples of B-splines. Thus the cubic spline can be
written as 

(19)

Since the B-splines are non-zero only over four intervals, the modification of one coefficient
here only affects the function over four intervals, thus allowing more localized control of the
resulting grid. 

          The B-splines can be calculated from the recurrence relation 

(20)

Thus N4n( ) requires the successive calculation of N1,n-1, N2,n-1, N2,n, N3,n-1, N3,n, and

finally N4,n. The constant B-spline, NN1,n-1, used to start this calculation, is given on the



4,n 1,n-1
interval n-2 n-1 by N1,n-1=1 and vanishes elsewhere. 

          For the point n we have, in view of the vanishing of the B-splines outside four

intervals, 

(21)

which is a tridiagonal relation (N+1 equations) for the coefficients n, o= o and N= N.

Thus, even though the modification of a single coefficient only affects four intervals, the
modification of an interpolation point requires a re-determination of all the coefficients and
thus affects the function over the entire range. 

          The coefficients, n, in the B-spline representation may be interpreted as the vertices

of an open polygon, to which the curve is an approximation, as for the Bezier form discussed
above. The slopes at the ends are defined by the directions 1- o and N- N-1. The curve

passes close to the mid-point of each side, with the exception of the first and last sides. The
curve also passes through the points ( k-1 + 4 k + k+1)/6 for k = 2,3,...,N-2. These points

are one-third of the way along the straight line joining k to the mid-point of the line joining

k-1 and k+1. Since the B-splines are non-zero only on four intervals, the alteration of one

vertex only affects the curve in its immediate vicinity. An application of B-splines in grid
generation is given in Ref. [39]. 

G. Multi-surface interpolation 

          The multi-surface method, discussed in Ref. [32]-[36], is also a unidirectional
interpolation procedure. This procedure is constructed from an interpolation of a specified
vector field, followed by vector normalizations at each interpolation point in order to cause a
desired telescopic collapse so that the boundaries are matched. The specified vector field is
defined from piecewise-linear curves determined by the boundaries and successive
intermediate control surfaces. Normals to such surfaces are special cases. Polynomial
interpolants for the vector field yield all of the classical polynomial cases along with a
rational method for avoiding disasters such as can occur with direct Hermite interpolation
with excessively large or discontinuous derivatives. Here the immediate surfaces are not
coordinate surfaces, but are used only to define the vector field. These vectors are taken to be
tangents to the coordinate lines intersecting the surfaces, so that integration of this vector
field produces the position vector field for the grid points. 

          A collection of subroutines which automatically perform the necessary parts of grid
construction using this multi-surface procedure has been written and is described in Ref.
[34]. Some of the automation features of this collection are applicable to other grid
construction procedures as well. These subroutines can rotate and move curves, prospect one
curve from another, normalize and parameterize curves, cluster points on a curve, and
perform other such utilitarian functions to aid in the setup of an overall configuration. 



          In the multi-surface interpolation we have 

(22a)

where 

(22b)

and where the n are specified points, with 1= (0) and N= (I), on the boundary

surfaces. (Recall the discussion at the beginning of this section, i.e., that the points can be
considered to lie on curves or surfaces and thus the interpolation, while being fundamentally
between points, can be considered to be between the surfaces on which those points lie.)
Here the telescopic collapse for the series for =I matches the boundary at I. The

intermediate points here, 2, 3...., N-1, are not grid points, but serve only to define the

slopes  , as given by Eq. (24) below. Eq. (22) is a polynomial if the functions n are

polynomials, but such is not required. 

          Since, by differentiation of Eq. (22), 

(23)

we have, for 0= 1< 2<....< n-1=I, 

(24)

if the functions n satisfy the cardinality conditions 

(25)

The polynomials that satisfy these conditions are simply the Lagrange polynomials given by
Eq. (4), here stated as 

(26)

          Using Eq. (24), Eq. (23) can be written as 



(27)

This form thus is based on an interpolation of the first-derivatives  , instead of , the

interpolation expression for  coming from an integration of the interpolation function for 

 . Note, however, that this amounts to the specification of the slope   at particular

values of the curvilinear coordinate n, and not at a specified position in space as is done in

the Hermite form. It is clear from Eq. (24) that the intermediate points, n for n=2,3,....,N-2,

serve to define the slopes  ( n): 

 

Because of the integration involved, the degree of the interpolation polynomial will be one
greater than that of the functions n. 

          Also with Eq. (24), the interpolation for , Eq. (22), can be written 

(28)

and thus is equivalent to a form of deficient Hermite interpolation. In implementation,
however, it is the points n that are specified, as in Eq. (22). Again it should be recalled that

the point nis not the grid point at n, execept for the boundaries 1=0 and N=I. 

          As has been noted, 1 and n are determined by the boundaries: 

(29a)

For N 4, 2 and N-1 are determined by the intended values of   at the boundaries

through Eq. (24): 

(29b)

For N=3 only one of the above equations can be used, i.e.,  can be specified at either



For N=3 only one of the above equations can be used, i.e.,   can be specified at either

boundary but not at both. The use of the intermediate surfaces, instead of direct specification
of the derivatives   as in classical Hermite interpolation, provides a geometric

interpretation that serves to help avoid the overlapping of grid lines that can occur if too
large a value is given for  . 

          Following Ref. [35], consider now for the n the piecewise-linear functions

diagramed below: 

 

with the normalization 

where n = n+1 - n so that each n integrates to unity. These functions are given by,

for n=2,3,....,N-2, 



(30)

With these functions we have 



(31)

Note that Gn(I) = 1 here for all n and that Gn( 1) = 0, 

          These interpolation functions have the form 



 

Now on the interval n n+1 we have 

Gm( )=1 for m=1,2,....,n-1 and Gm( )=0 for m=n+2,n+3,....,N-1. Therefore, on this interval

which, because of the telescopic collapse of the summation, reduces to, for n n+1, 

(32)

Then 

(33a)

and 

(33b)

Also, from Eq. (32), for n n+1 



(34)

so that 

(35a)

and 

(35b)

We thus have on this interval 

 

Thus on the interval n n+1, ( ) is affected only by n, n+1, and n+2.

Conversely n affects only the grid point locations on the interval n-2 n+1.

Therefore local adjustments in the grid point locations can be made without affecting all of
the points. 

          With the grid points located at unity increments of , so that I is the total number of
points, we have, from Eq. (33), the grid points given by 

          The local control provided by these piecewise linear interpolants can be used to
restrict undesirable mesh forms or to embed desirable ones within a global system with
continuous first derivatives (cf. Ref. [34]-[35]). The second derivatives are, however,
discontinuous. As examples, the propagation of boundary slope discontinuities can be
arbitrarily restricted and general rectilinear Cartesian systems can be embedded to simplify
problems over a large part of their domain. 

          In a further development (cf. Ref. [36]) the procedure is extended to use piecewise



quadratic local interpolants, thus achieving continuity of second derivatives, with
discontinuous third derivatives. The conceptual extension to higher order piecewise
polynomial local interpolants, with consequent higher degree of continuity, is also discussed.
Note that because of the integration of n, the level of derivative continuity is always one

greater than that of the piecewise polynomials. 

H. Uniformity 

          It may be desirable for purposes of control of the grid point distribution to have a
uniform distribution of the relative pro)ection of ( )- (0) along the straight line
connecting the boundary points, i.e., (I)- (0). This property has been called "uniformity"
by Eiseman, cf. Ref. [32] - [36], and can be realized as follows: The unit vector along this
straight line is 

so that the relative pro)ection of ( )- (0) along this line is given by 

(36)

where 

(37)

Uniformity is then achieved by choosing the interpolation parameters such that S( ) is
linear. This does not completely determine all the interpolation parameters, however, so that
some remain to be specified as desired. Uniformity is trivially assumed for linear
interpolation of course. 

          For Lagrange interpolation we have, from Eq. (2), 

(38)

so that uniformity is achieved by selecting the n, for n=2,3,....,N-1, to cause all of the terms

in S that are quadratic or higher to vanish. For Hermite interpolation, (5), 

(39)

          For the multi-surface interpolation defined by Eq. (22) we have 



(40)

          For S( ) to be linear we must have 

 

or 

(41)

But, using Eq. (25), we then have 

(42)

as the uniformity condition on the n’s (cf. Ref. [35]). Both the n (for n=2,3,....,N-1) and

the n (for n=2,3,....,N-2) are free to be chosen in order to satisfy the uniformity conditions

(42). Thus a one-parameter family of cubic forms (N=4) results, a two-parametric family of
quartic forms, etc. Substitution of Eq. (42) back into (41) yields a restriction on the choice of
the functions n since these must satisfy the relation 

(43)

          Uniformity is particularly useful when the distribution function, such as those
discussed in the next section, is used to redistribute the points on the grid lines set up by the
interpolation (cf. Ref. [34]-[36]). Thus the interpolation is first applied with I=1 and with the
uniformity conditions enforced. The final grid points then are placed according to the
distribution function on the grid lines set up by the interpolation variable in place of the arc
length, s, in the distribution function s( ). 

I. Functions other than polynomials 

          The interpolation functions in the general forms given by Eq. (2), (5), and (22) do not
have to be polynomials, and, in fact, if the variation in spacing over the field is large, other
functions are better suited for grid generation. With N=2, Eq. (2) can be written in the form 

(44)

where  can be any function such that (0)=0 and (1)=1. Here we have taken 1=1-  and



1

2= . The linear polynomial case is obtained here with ( ) = . The function  in this

form may contain parameters which can be determined so as to match the slope at the
boundary, or to match interior points and slopes. 

          The interpolation function, , in this form is often referred to as a "stretching"
function, and the most widely used function has been the exponential: 

(45)

where  is a parameter that can be determined to match the slope at a boundary. Thus, since,
from Eq. (44) 

(46)

we can determine  from the equation 

(47)

with (  )1 specified. 

          As noted in Chapter V, the truncation error is strongly affected by the point
distribution, and studies of distribution functions have been made in that regard. The
exponential, while reasonable, is not the best choice when the variation of spacing is large,
and polynomials are not suitable in this case. The better choices are the hyperbolic tangent
and the hyperbolic sine. The hyperbolic sine gives a more uniform distribution in the
immediate vicinity of the minimum spacing, and thus has less error in this region, but the
hyperbolic tangent has the better overall distribution (cf. Section 3 of Chapter 5). These
functions are implemented as follows (following Ref. [18]), with the spacing specified at
either or both ends, or a point in the interior, of a point distribution on a curve. 

          Let arc length, s, vary from 0 to 1 as  varies from 0 to I: s(0)=0, s(I)=1. Then let the
spacing be specified at =0 and =I: 

(48)

The hyperbolic tangent distribution is then constructed as follows. 

          First, 

(49)



(50)

Then the following nonlinear equation is solved for : 

(51)

The arc length distribution then is given by 

(52)

where 

(53)

If this is applied to a straight line on which  varies from 0 to I we have for the point

locations: 

 

The points are then located by taking integer values of : 

 

Clearly the arc length distribution, s( ), here is the function  of Eq. (44). 

          With the spacing hs specified at only =0, the construction proceeds as follows. First
B is calculated from 

(55)

and Eq. (51) is solved for . The arc length distribution then is given by 

(56)

With the spacing specified only at =I the procedure is the same, except that Eq. (56) is
replaced by 



(57)

          If the spacing s is specified at only an interior point s= , B is again calculated from
Eq. (55), and then  is determined as the solution of 

(58)

The value of  at which s =  is obtained by solving the nonlinear equation 

(59)

The arc length distribution then is given by 

(60)

          This last distribution is based on the hyperbolic sine. From this a distribution baaed on
the hyperbolic sine with the spacing specified at one end can be derived. Here B is evaluated
from Eq. (55), and then  is determined as the solution of 

(61)

The arc length distribution then is given by 

(62)

if the spacing is specified at =0. With the specification at =I, the distribution is 

(63)

          It is also possible to construct a distribution based on the hyperbolic sine with
specified spacing on each end. Here A and B are again calculated from Eq. (49) and (50), but

 is determined from 



(64)

The distribution is then given by Eq. (52), but with 

(65)

          Finally, a procedure for incorporating the effect of curvature into the distribution
function is given in Ref. [38], where the arc length distribution is given in the inverse form
by 

(66)

where 

(67)

st is the total arc length, K( ) is the curvature, and A( ) is any distribution function (in the

inverse form) that would be used without consideration of curvature. 

2. Multi-Directional Interpolation 

A. Transfinite interpolation 

          In two directions we may write a linear Lagrange interpolation function individually in
each curvilinear direction: 

(68a)

and 

(68b)

This interpolation is now called "transfinite" since it matches the function on the entire
boundary defined by =0 and =I in the first equation, or by =0 and =J in the second,



i.e., at a nondenumerable number of points, cf. Ref. [40] and [41]). 

          The tensor product form 

(69)

where nm = ( n, m) matches the function at the four corners: 

 

It does not, however, match the function on all the boundary. 

          The sum of Eq. (68a) and (68b), 

(70)

when evaluated on the =0 boundary gives 

(71)

This does not match the function on the =0 boundary because of the second term on the
right, which is an interpolation between the ends of this boundary: 

 

Similar effects occur on all the other boundaries, and the discrepancy on the =I boundary is



The discrepancies on both of these boundaries can be removed by subtracting from ( , )
a function formed by interpolating the discrepancies between the two boundaries: 

(72)

But this is simply the tensor product form given by Eq. (69), which matches the function at
the four corners. 

          The function -  then matches the function on all four sides of the boundary, so that
we have the transfinite interpolation form, 

(73)

which matches the function on the entire boundary. By contrast, the tensor product form 

(74)

matches the function only at the four corners on the boundary. This generalizes to the
interpolation from a set of N+M intersecting curves for which the univariate interpolation is
given by 

(75a)

and 

(75b)

where now the "blending" functions, n and m, are any functions which satisfy the

cardinality conditions 



(76)

          The general form of the transfinite interpolation then is 

(77)

while the tensor-product form is 

(78)

Eq. (77) can be written in the form 

But here the first term is the result at each point in the field of the unidirectional
interpolation in the direction, and the bracket is the difference between the specified values
on the = n lines and the result of the unidirectional interpolation on those lines. The

two-directional transfinite interpolation can thus be implemented in two unidirectional
interpolation steps by first performing the unidirectional interpolation in one direction, say

, over the entire field, calling the result 1( , ): 

(79a)

then interopolating the discrepancy on the = n lines over the entire field in the other

direction,  here, calling the result 2( , ): 

(79b)



and then adding 1 and 2. 

(79c)

          The transfinite interpolation form given by Eq. (77) is the algebraically best
approximation, while the tensor product from of Eq. (78) is the algebraically worst (cf. Ref.
[40]). The difference between these two forms should be fully understood. The transfinite
interpolation form, Eq. (77), interpolates to the entirety of a set of intersecting arbitrary
curves, while the tensor product form, Eq. (78), interpolates only to the intersections of these
curves. The interpolation function defined by Eq. (77) with N=M=2, using the Lagrange
interpolation polynomials as the blending functions, is termed the transfinite bilinear
interpolant. With N=M=3, this form is the transfinite biquainterpolant. Other immediate
candidates for the blending functions are the Hermite interpolation polynomials and the
splines, since these all can be expressed in the form of Eq. (75). The spline-blended form
gives the smoothest grid with continuous second derivatives. 

B. Projectors 

          Now let P ( ) be a one-dimensional interpolation function in the -direction which

matches  on the N lines, = n (n=1,2,...N),: 

 

(Note that the subscript  here does not denote differentiation.) Similarly, let P ( ) match 

 on the M lines, = m (m=1,2,...M). These interpolations are performed by projectors, P 
 and P , which are assumed to be idempotent linear n operators. Protectors are discussed

in more detail in Ref. [40]. Some discussion is also given in Ref. [37]. The product projector,
P [P ( )], then matches the function P  ( ), instead of , on the N lines, = n: 

 

Then, since P ( ) matches  on the M lines, = m, it follows that the product projector



 m

will match  at the NxM points ( n, m): 

 

Clearly the same conclusion is reached for the product projector P [P ( )], so that the

protectors P  and P  commute. 

          The sum projector, P  ( )+P ( ) matches +P ( ) on the N lines = n, and

matches +P ( ) on the M lines = m. It should be clear then that the projector, P 

( )+P ( )-P [P ( )] will match  on the N lines = n, since P [P ( )] matches P 

( ) on these lines. Similarly, the projector P ( )+P ( )-P [P ( )] matches  on

the M lines = m. Therefore, since P  + P  = P P , the Boolean sum projector, P P

 = P +P -P P , will match  on the entirety of the N+M lines = n and = m
which includes, of course, the entire boundary of the region. 

          In summary, the individual protectors, P  and P , interpolate undirectionally

between two opposing boundaries: 

 

The product progeotor, P P , interpolates in two directions from the four corners: 

 



The Boolean sum projector, P P , interpolates from the entire boundary: 

 

          In three dimensions, the individual protectors, P , P , and P , interpolate

undirectionally between two opposing faces of the six-sided region: 

 

(matching  on each of the two faces in each case). The double product projector, P P ,

interpolates in two directions from the four edges along which  and  are constant: 

 

(matching  on each of these edges). The Boolean sum projector 

(80)

interpolates in two directions from the four faces on which either  or  is constant: 



 

(matching  on all of these faces). 

          The Boolean sum projector 

(81)

interpolates in three directions, matching  on the four edges on which  and  are constant
and also on the two faces on which  is constant: 

 

The Boolean sum projector 

(82)

interpolates in three directions, with  matched on all twelve edges: 



 

          The triple product projector, , interpolates  from the eight corners: 

 

          Finally the Boolean sum projector 

(83)

matches  on the entire boundary. 

          Much cancellation occurs in the algebraic manipulation of the projectors involved in
developing the above relations, since P P  = P , etc. Thus, for example, 

This is to be expected since interpolation by P  matches the function on all of the two sides

on which  is constant, while P P  matches the function on the four edges on which 

and  are constant. But these edges are contained on the two sides cited, so that nothing is
changed by adding P P  to P  in the Boolean sense. The projector formed as the Boolean

sum of all three of the individual projectors is algebraically maximum, while the triple
product projector is algebraically minimal. 

          The importance of the projectors is that the structure given above allows
multi-directional interpolation to be constructed systematically from unidirectional forms.
With one-dimensional interpolation of the form of Eq. (75) we have 

(84a)

(84b) 

so that 



(85)

which is just the tensor product form given previously in Eq. (78), so that the two-directional
transfinite interpolation corresponding to the projector P P  is just that given by Eq.

(77). As noted above, spline interpolation also falls directly into this form, so that the
multi-directional transfinite interpolation based on splines requires only the determination of
the splines separately in the individual directions. 

          Although Hermite interpolation can be defined in terms of additional points, and thus
be put in this same form also, the use of projectors allows a more direct statement as follows.
For the projectors we have, following Eq. (5), 

(86a)

and 

(86b)

Now 



(87)

Then the two-directional transfinite interpolation can be constructed by substitution of Eq.
(86) and (87) into the projector P P . Here the tensor product form, P P , interpolates

from the values of the function, its two first derivatives, and the cross-derivative at the four
corners of the boundary. The transfinite interpolation form, P P , however, interpolates

from the value of the function and its normal derivative on the entire boundary. 

          The triple product corresponding to Eq. (84) is simply 

(88)

Recall that with the unidirectional form given by Eq. (44), we have in these relations
L=M=N=2 and 



          The above evaluations of the product projectors serve to illustrate the evaluation of
such products for general projectors, i.e., that the effect of the product protectors is simply an
interpolation in one-direction of an interpolant in another direction. This allows the
multi-directional transfinite interpolation to be constructed from the Boolean sums of the
protectors given above using any appropriate unidirectional interpolation forms as the basis
projectors. It should also be noted that the unidirectional interpolation does not have to be of
the same form in all the directions. Thus Lagrange interpolation could be used in one of the
directions while Hermite is used in the other direction of a two-directional construction. As
noted above, the blending functions do not have to be polynomials. In fact, all of the
unidirectional interpolation that was discussed earlier in this chapter can be applied in the
context of multi-directional interpolation based on the protectors. This freedom to combine
different types of univariate interpolation gives considerable flexibility to transfinite
interpolation based on the projector structure, and allows attention to be focused on
developing appropriate unidirectional interpolations, the multi-directional format then
following automatically. 

          The protectors allow the transfinite interpolation to be easily set up as a sequence of
unidirectional interpolations, in the manner discussed above. Thus in the two-directional
case, Eq. (80) can be written as 

(89)

where I indicates the identity operation. But here the first term is clearly the unidirectional
interpolation in the -direction, while the parenthesis (I-P ) is the discrepancy on the

-lines on which  is specified that results from this -interpolation. The second term then

is the unidirectional interpolation of this descrepancy interpolated in the -direction. 

          The two-directional interpolation thus can be implemented by: (1) interpolating  in
the -direction, (2) calculating the discrepancy between  and this result on the -lines that
are to be used in the -interpolation, (3) interpolating this discrepancy in the -direction,
and (4) adding the result of this -interpolation to that of the interpolation. Symbolically
these steps can be stated as the following: 

(90)



Obviously, the order of the unidirectional interpolation is immaterial. 

          Similarly, Eq. (83) can be written as 

(91)

The three-directional interpolation thus can be implemented by (1) interpolating  in the
-direction, (2) calculating the discrepancy between  and this result on the -surfaces and 
-surfaces that are to be used in the interpolation in those directions, (3) interpolating this

discrepancy by two-directional interpolation, and (4) adding this result to that of the
-interpolation. These operations can be stated as 

(92)

Exercises 

1. Show that with N=2 and n constant, the multi-surface interpolation is equivalent to the

linear Lagrange interpolation. Mote that the Lagrange polynomials here satisfy Eq. (25) with

. For other choices of 2, other quadratic polynomials result from Eq. (25), so that

there exists a one-parameter family of cubic forms of the multi-surface interpolation.
Similarly, a two-parameter family of quadratic forms exists, etc. 

2. Show that the quadratic form of the multi-surface interpolation is given by 

3. Show that the quadratic forms of the multi-surface and Bezier interpolations are
equivalent. 

4. Show that with N=4 and n the quadradic Lagrange interpolation polynomials given on p.

282, the interpolation functions for the multi-surface interpolation are given by 



the multi-surface interpolation is equivalent to the cubic Hermite interpolation. 

5. Show that S( ) is given by Eq. (38) for Lagrange interpolation. (Hint: If all the n in Eq.

(2) are the same, the interpolation must reproduce this value, hence the Lagrange
interpolation polynomials satisfy 

6. Show that for quadratic Lagrange interpolation, uniformity requires that 2 be selected

such that 

Note that this does not completely determine 2. 

7. Show that uniformity is achieved with cubic Hermite interpolation with  with
orthogonality at the boundaries if the spacings at the boundaries are given by 

where  is the unit normal to the boundary. This completely specifies the interpolation in
this case. However, as noted in Exercise 1, 2 is a free parameter. 

8. Show that for multi-surface interpolation with N=4 and  uniformity is achieved
with 

9. Show also that with orthogonality at the boundary the result of Exercise 8 completely
determines all of the interpolation parameters, i.e., that 



where  is the unit normal to the boundary. Hint: Use Eq. (7) and (29). For general 2 the

1/6 is replaced by 1/2 - 1/[6( 2/I)] and 1/2 - 1/[6(1- 2/I)] in the above expressions involving

2 and 3, respectively. Some effects of the choice of 2 are shown in Ref. [32]. 

10. Show that local uniformity on the interval n n+1 for the multi-surface

interpolation based on piecewise-linear functions requires that 

where , with  

11. Consider a rectangular physical region with equally-spaced points on the bottom and top,
but with unequal spacing on the left and right sides (but with the same point distribution on
both of these sides). Show that horizontal interpolation will reflect the unequal spacing of the
horizontal grid lines in the field, but that vertical interpolation will not. Show also that the
unequal spacing is reflected with transfinite interpolation. 

12. Show that transfinite interpolation based on linear blending functions will reflect the
unequal boundary point spacing in the field for the rectangular physical region of Exercise
11, but will not for a C-grid. From the consideration of transfinite interpolation as a sequence
of unidirectional interpolations, explain why this is so. 

13. Show that with cubic Lagrange interpolation the locations of the two intermediate
surfaces, 2 and 3, are related to the slopes at both ends. Note the contrast between this

and the multi-surface interpolation where each of the intermediate surfaces depends on only
the slope at one end. 

14. Give the cubic form of Lagrange interpolation. 

15. Show that in two dimensions transfinite interpolation is equivalent to a generation system
based on the fourth - order partial differential equation 

(This is also equivalent to the quadralaterial isoparemetric elements often used to construct
finite element meshes.) 



IX. ORTHOGONAL SYSTEMS

          Orthogonal coordinate systems produce fewer additional terms in transformed partial
differential equations, and thus reduce the amount of computation required. Also, as has
been noted in Chapter V, severe departure from orthogonality will introduce truncation error
in difference expressions. A general discussion of orthogonal systems on planes and curved
surfaces is given in Ref. [42], and various generation procedures are surveyed in Ref. [42]
and Ref. [1]. 

          In numerical solutions, the concept of numerical orthogonality, i.e., that the
off-diagonal metric coefficients vanish when evaluated numerically, is usually more
important than strict analytical orthogonality, especially when the equations to be solved on
the system are in the conservative law form. 

          There are basically two types of orthogonal generation systems, those based on the
construction of an orthogonal system from a non-orthogonal system, and those involving
field solutions of partial differential equations. The first approach involves the construction
of orthogonal trajectories on a given non-orthogonal system. Here one set of coordinate lines
of the non-orthogonal system is retained, while the other set is replaced by lines emanating
from a boundary and constructed by integration across the field so as to cross each line of the
retained set orthogonally. Control of the line spacing is exercised through the generation of
the non-orthogonal system and through the point distribution on the boundary from which
the trajectories start. The point distributions on only three of the four boundaries can be
specified. Several methods for the construction of orthogonal trajectories are discussed in
Ref. [42] and Ref. [1]. If point distributions are to be specified on all boundaries, the field
approach must be taken, and it is to this approach that this chapter is primarily directed. 

1. General Formulation 

          The characteristic criterion for orthogonal coordinates is the vanishing of the
off-diagonal elements of the metric tensor, i.e., gij = gij = 0 for i j. Thus the Jacobian of the

transformation is simply 

(1) 

For brevity, writing 

 

it is easy to show from Eq. (III-74) that 

(2) 

The general differential equations satisfied in the transformed region are, from Eq. (VI-10), 



(3) 

Substituting Eq. (2) in (3) for the Laplacians, these grid generation equations take the
following simpler form for an orthogonal system: 

(4) 

where  is the cartesian coordinate vector. 

          On the other hand, starting from Eq. (2), by writing 

 

and using the chain rule of differentiation, we get the generation equations in the physical
region as 

(5) 

          Another fundamental set of equations for orthogonal coordinates are known as Lame’s
equations, stated as 

(6a) 

(6b) 

where (i,j,k) are cyclic. Equations (6) express essentially the condition that the curvilinear
coordinates are to be introduced in an Euclidean space. (cf. Ref. [27]). In three dimensions,
Eq. (6) represents six equations, although thereare only three distinct metric coefficients,

h1,h2,h3. 

          In summary the equations (2), (4), (5) and (6), together with the vanishing of the
off-diagonal metric elements, are the fundamental equations which any orthogonal
coordinate system must satisfy. 



2. Two-Dimensional Orthogonal Coordinates 

          The fundamental equations for two-dimensional orthogonal coordinates are collected
below as a particular case of the equations (2) - (6): 

I. Transformed plane: g12=0 and (7a)

 
(7b)

 
(7c)

II. Physical plane: g12=0 and (8a)

 
(8b)

 
(8c)

Also, the Laplacians (2) take the simple forms 

 
(9a)

 
(9b)

          Considering Eq. (7a) and (8a), either of which provide the orthogonality condition, it
is a straightforward matter to conclude that there exists a positive function F such that 

 
(10)

and the Eq. (7a) is identically satisfied. In the same manner, from Eq. (8a), 

 
(11)

It is obvious that the positive function F is related to the grid aspect ratio: 

 
(12)



The choice of the sign in Eq. (10) and (11) follows from the right-handedness of the system 
1, 2. 

          Introducing (12) into Eq. (7b), while using Eq. (9), we get 

 
(13)

which forms the basic generation system for plane orthogonal coordinates. Though the
generating equations (7b) and (13) are completely equivalent, nevertheless, the apparent
difference in their structures must be taken into consideration to decide about the type of
boundary conditions for their solution. 

          With Eq. (7b) as the generating system then the two options are: (i) Specify F=h2/h1 as

a known function of 1, 2. This case covers the cases F=  and  where 
=constant. For any constant , Eq. (9) reduce to the Laplace equations 2 1=0, 2 2=0,

and Eq. (7b) becomes 

(14)

For =1, the coordinates 1, 2 are isothermic, i.e., h2=h1, and so are conformal. Cases in

which 1 have also been considered, and specific references are given in Ref. [1]. It is

also of interest to state that starting from a conformal system ( 1, 2), yet another system

( 1, 2) can be established by transforming the Laplace equations 2 1=0, 2 2=0, such

that 1 and  is a product of a function of 1 and a function of 2. (cf. Ref. [1]). (ii)
The other option is to calculate F iteratively. In this case the field values of F are updated by
iteratively changing its values at the boundaries under the orthogonality condition g12=0. 

          With Eq. (13) as the generating system, the two Laplacians 2 1 and 2 2 have to
be specified. Following the nonorthogonal case, let 

(15a)

(15b)

where P1,....,Q2 are arbitrary specified functions of 1, 2. Using Eqs. (9) and (12) one can

rewrite these equations as 

(16a)



(16b)

Thus if P1,....,Q2 are specified, the above equations provide a way to determine F. (Using the

condition 

one can establish a fourth order algebraic equation in F.) It is therefore concluded that the
use of Eq. (13) with P1,....,Q2 specified is equivalent to using Eq. (7b) in which F has

explicitly been specified. 

          The above noted considerations are important in deciding about the type of boundary
data needed for the solution of either Eq. (7b) or Eq. (13). The solution of Eq. (7b) with
specified F, or the solution of Eq. (13) with specified P1,....,Q2, does not allow an arbitrary

point distribution on the domain boundaries. The reason for this as follows: For example, on

a boundary segment 2= =constant if x1( 1, ) is prescribed, then from Eq. (10) the

normal derivative  becomes available. If in addition to x1( 1,  one also specifies

x2( 1,  which amounts to specifying the complete boundary point distribution, then the
problem becomes overdetermined. Thus for the cases under consideration, specification of
the complete boundary point distribution is not possible. That is, Eq. (7b) with F specified,
or Eq. (13) with specified P1,,....,Q2, cannot be solved when the complete boundary point

distribution is prescribed. The appropriate boundary conditions for such problems are
discussed in the context of conformal coordinates in Section A. 

          The specification of the complete boundary point distribution is possible in the case
when Eq. (7b) is solved without specifying F. An iterative approach can be used to update
the values of F based on the changed values at the boudnaries. (cf. Section B). 

A. Conformal systems 

          Considering first conformal systems, i.e., with h2=h1 and F=1, the basic equations

from (9a,b) are 

(17a)

(17b)

          Let the domain in which the conformal coordinates are to be generated be bounded by
a piecewise-smooth curve on which s is the arc length and n the outward normal. The
Cauchy-Riemann equations (17b) on the boundary take the form 



(18)

          Referring to the figure below, let the curves 1 and 2 be those portions on which
1=constant, and the curves 3 and 4 be those on which 2=constant. From Eq. (18) we

readily find that on 1 and 2 the condition , and on 3 and 4 the condition 

, are to be imposed, where the subscript n indicates the normal derivative. 

 

Therefore, for the generation of conformal coordinates, the properly posed boundary value
problems are 

 

on 1 and 2: 1 = , 1 = , respectively 

on 3 and 4: (19)

 

on 1 and 2:  

on 3 and 4: 2 = , 2 = , respectively (20)

          In the transformed plane the governing equations for conformal coordinates are
obtained from (13): 

(21a)

(21b)



Taking 1 and 2 as monotonically increasing parameters having the ranges,
1 , 2 , the given equations of the curves 1, 2, 3, 4,

respectively, can be expressed .in parametric form as 

(22)

          The specification of the boundary data in the form of (21) should at best be regarded
as a statement of the problem, rather than as a procedure, since the exact boundary
point-distribution in this form is not possible a’priori. To develop the procedure itself we
regard the specification in (22) as an initial guess. However, this type of specification

produces an overdetermined situation. For example, if on 1 both x1( , 2) and x2( ,

2) are specified, then from the first equation in (21b),  can be calculated on this

boundary. Thus both 

become specified, which makes the problem overdetermined. Following this logic, we can
isolate the proper arbitrarily specifed boundary values for Eq. (21) as follows: specifying x1(

, 2) on 1, x1( , 2) on 2, x2( 1, ) on 3, and x2( 1, ) on 4. Thus, for

the x1-equation the normal derivative conditions on 3 and 4 are provided by the second

equation in (21b) through the specified x2 values. Similarly, for the x2-equation the normal

derivative conditions on 1 and 2 are provided by the second equation in (21b) through the

specified x1-values. 

          In any numerical procedure, the values of x1 are determined by integration through the

formula 

(23)

and these values in turn give the new values of x2 through the exact functional relations

between x1 and x2 for these curves. Similarly, the values of x2 are calculated by the formula 



(24)

and then the new values of x1 are determined by the functional relations between x1 and x2
for these curves. Further discussion of conformal systems is given in Chapter X. 

B. Other systems 

          For general orthogonal systems, the basic equations for x1 and x2 remain Eq. (13). As

noted earlier, the other constraint besides orthogonality (g12=O) is now to specify the

function F defined in Eq.(12), which is the ratio of the scale factors, i.e., the grid aspect ratio.
One approach is to specify the function F explicitly, in which case, as with the conformal
coordinates, it is not possible to specify an arbitrary point distribution on the boundaries. The
set of equations in (7a) must be used to find the proper x1 and x2 values by integration on the

appropriate boundaries. Another alternative is to specify an arbitrary point distribution on the
boundaries, and leave the function F to be determined iteratively in the course of the solution
for the grid. This is done in a manner similar to that used in the GRAPE code, discussed in
Chapter VI, with new boundary values of the function F being calculated from the present
iterate for the coordinates. The function F in the field is then determined from these
boundary values by either transfinite interpolation or as the solution of Laplace’s equations,
the former being found preferable in the cases considered. (With more distorted boundaries
the Laplace solution might be more reliable than the interpolation.) Different forms of
interpolation, or an equation other than the Laplace, for the determination of the control
function in the field would allow some control of coordinate line spacing in the field.
However, since only a single control function is involved, it is not possible to exercise
control of the coordinate line spacing in the field in both directions. 

          Another approach in which the boundary point distribution can only be fixed in a
specified manner is to take the basic generation equation to be Eq. (7c) which for conformal
coordinates (h2=h1) takes the form 

(25)

where P=2 ln(h1). An exact solution of Eq. (25) can be obtained if appropriate values of P

are known at the boundaries. The important problem then becomes the choice of those points
at the inner and outer boundaries which can be put in orthogonal correspondence with one
another. This can be accomplished if the 1-coordinate, both at the inner and outer
boundaries is selected to satisfy the Laplace equation 2 1=0. This condition can be
satisfied by taking 1 as the angle traced out by the common radii of those concentric circles
which are the conformal maps of the contours in the physical plane. The solution of Eq. (25)
under these conditions then can be used to generate non-conformal coordinates by a
coordinate transformation of the other coordinate 2. 

          An orthogonal grid can be generated by solving the Laplace equations (21a) provided



that the boundary point distribution is compatible. Since a conformal mapping generates an
orthogonal grid, a compatible boundary point distribution can be obtained by conformally
mapping the boundary contour as follows (cf. Ref. [43]): Consider an open physical
boundary contour 

 

where  and  are to be lines of constant 2, while  and a connecting line  to be
generated are to be lines of constant 1. 

          Each point of the set that defines this contour is successively mapped onto the real axis
in the complex plane by a hinge point transformation (such a transformation has the effect of
mapping one point onto the real axis while points already on the real axis remain there): 

 

The straight line  on the real axis is then mapped conformally onto an open rectangle
in the complex plane: 

 

Points are then placed as desired along the sides  and  of this rectangle, these points

on  and  being assigned successive integer values of 1 and 2, respectively. (This
placement of points on these two sides is arbitrary and may be done by any distribution
function desired.) The key to the construction of a compatible boundary point distribution is
then that the points on the other sides of the rectangle, i.e.,  and , are placed with the



same distributions chosen for  and . The points in the physical plane that correspond
to these boundary points on the rectangle in the complex plane are then determined by
exponential spline interpolation among the values at the original set of points defining the
contour, except for the open side of the rectangle where the points in the conformal
transformations. Finally the orthogonal grid is generated by solving the Laplace equations
(21a) with this fixed boundary point distribution. 

C. Systems based on first-order equations 

          Equations (10) are formally related to the Cauchy-Riemann equations (with F=1), but
otherwise form a set of first order nonlinear partial differential equations. In order to
preserve the orientation of coordinates, the sign of F is taken to be positive throughout the
domain. For certain choices of the function F the system is hyperbolic, and the complete
initial-value problem is then 

(26)

Here  = o is the given body contour, and, unlike the elliptic problem, the data on another

boundary cannot be specified. 

          This system may be shown to exhibit the following important properties: 

(i). First, g22 in principle can be expressed as a function of g11. <.p> (ii) Because of (i), F > 0

is a function of 1, 2, and g11, i.e., 

          For brevity, writing 

          we have 

(iii). For a well-posed initial value problem the system of equations in (26) must be
hyperbolic. 

          A test for the well-posedness is that small perturbations produce small effects. Using
this test, for Eqs. (26) to be hyperbolic, the function f(z), defined as 

must be a strictly decreasing function of z. 



3. Three-Dimensional Orthogonal Coordinates 

          The problem of three-dimensional orthogonal coordinate generation, though of much
importance in many practical problems, has received little attention in comparison to its
two-dimensional counterpart. The reason is not so much in the complicated form of the
governing equations but rather in the prescription of the boundary conditions and in their
numerical implementation. 

          Orthogonality in three dimensions is difficult to achieve, and only exists when the
coordinate lines on the bounding surfaces follow lines of curvature, i.e., lines in the direction
of maximum or minimum curvature of the surface. Therefore, three dimensional orthogonal
coordinates will not be available in most cases with nontrivial geometry. It is possible,
however, to have the system locally orthogonal at boundaries, and/or to have orthogonality
of surface coordinates. 

          The governing equations for generation of orthogonal coordinates are obtained in a
straightforward manner and have been listed above as Eq. (4) - (6). The set of equations
which are to be solved for x1,x2,x3 and h1,h2,h3 has Eq. (4) and (6). The set (6) has six

equations for the three unknowns. On the other hand, without imposing the orthogonality
condition, gij = 0 (i j), there are six equations for the determination of six unknowns. Thus

the orthogonality does not reduce the number of the equations which govern the distribution
of the metric coefficients, and it would be wrong to try to select a set of three equations out
of the available six. 

4. Nearly-Orthogonal Systems 

          Since a part of the truncation error is decreased as the grid becomes more orthogonal,
it is of interest to generate grids which are "nearly-orthogonal". Such grids do not
approximate orthogonality sufficiently well, however, for the terms arising from
nonorthogonality in transformation relations to be dropped. The generation of
nearly-orthogonal grids naturally follows some of the procedures discussed above in this
chapter, but with the conditions for orthogonality only partially satisfied. Several procedures
are discussed in Ref. [1] and Ref. [42]. 

          A simple procedure for generating a nearly-orthogonal system from a nonorthogonal
system is to first generate curves of a nonorthogonal system by connecting points obtained
by any specified distribution function along straight lines connecting boundary points on two
arbitrary closed boundaries. Coordinate lines connecting points on each succeeding pair of
curves from the original coordinate system then are constructed as follows: At selected
points on the inner curve, normals are constructed, and the points of intersection with the
next curve outward are determined. Normal directions form the intersection point are
determined and translated to the original point in the inner curve. Then a second point on the
outer curve is determined as before. Finally, the new coordinate lines are constructed as
straight lines joining the selected points on the inner curve with points located halfway
between the corresponding pair of points on the outer curve located as described above. The
resulting lines will not actually be orthogonal to either the inner or outer curve, and the
slopes of these lines will, in fact, be discontinuous at each curve. The observed departures
from orthgonality, however, have been small and the departure may be made arbitrarily



small by the addition of more curves. Since the procedure is applied successively between
pairs of coordinate lines, concave bodies can be treated as well. 

Exercises 

1. The unit tangent vector on a curve C defined in the parametric form  = (s), with s as
the arc length along C, is given by =d /ds. Let C be a plane curve in the xy-plane having 

 as the unit normal vector. Using the condition  and the convention that ( , ,

), in the order shown, form a right-handed triad of vectors, find the components of . Here

 is the constant unit vector along the z-axis. 

2. Let (x,y) and (x,y) be the conformal coordinates in the xy-plane so that the
Cauchy-Riemann equations 

are satisfied. Consider the curve C defined in excercise 1 and the normal derivative operator 

and show that the Cauchy-Riemann equations in the natural coordinates (s,n) are 

3. Let F( i) be a scalar function of position and ( i)=constant be a surface. 

(a) Show that the unit normal vector  to the surface =constant in curvilinear coordinates
is given by 

(b) Prove that the normal derivative of F on the surface =constant is 

 

(c) In particular, for two-dimensional curvilinear coordinates show that 



 

 

(d) Particularize the results in (c) for orthogonal curvilinear coordinates. Write the partial

derivative operator  for orthogonal coordinates. 

4. Consider Eq. (26) of this chapter, which form a system of first-order partial differential
equations for two-dimensional orthogonal coordinates. It was stated subsequently that these
equations form a hyperbolic system if the initial value problem is well-posed. To prove this

assertion consider the perturbed state x+ x, y+ y, F( , ,z+ z), where .
Retaining only the first order terms, develop a system of algebraic equations in ( x) ,( y)

, ( x) , ( y) , and show that the resulting matrix has eigenvalues given by 

2 = -F(F + zFz)

Show from the preceding result that the eigenvalues are real only when zF is a strictly
decreasing function of z. 



X. CONFORMAL MAPPING

          Innovations in conformal mapping continue to extend this classical technique to more
complicated configurations, and surveys of the various techniques available are given in Ref.
[7] and Ref. [1]. Some specific recommendations of techniques and tools are given in Ref.
[7]. Conformal systems have advantage the of introducing the fewest additional terms in
transformed partial differential equations. Considerable understanding of the theory of
functions of a complex variable may be necessary for effective applications, though. 

          Although the complex variable techniques by which conformal transformations are
usually generated are inherently two-dimensional, certain more general cases can be treated
by rotating or stacking two-dimensional systems: 

 

          Systems can also be generated on curved surfaces, as has been done by cartographers,
for stacking. Examples of the use of conformal mapping in the construction of
three-dimensional configurations are noted in Ref. [5]. 

          A curvilinear coordinate system generated by a conformal mapping is very rigid in the
sense that little control can be exerted over the distribution of the grid points. Conformal
mappings also do not exist in three dimensions (except for trivial cases). Furthermore, the
coordinate system tends to be more difficult to construct than when using algebraic or
elliptic systems. In spite of these facts, conformal mappings continue to play a significant
role in grid generation. A number of recent developments and applications of conformal
transformations are noted in Ref. [1], [5], and [7]. 

          The desirability of a coordinate system generated by a conformal transformation lies in
the form of the transformed equations. For example, consider the diffusion equation 

 (1) 

Now  and  satisfy the Cauchy-Riemann equations 

 

(2) 



or equivalently 

 

(3) 

It follows that in this case g12=g21=0 and g11=g22= . Equation (1) can be written in

curvilinear coordinates, using Eq. (III-46), as 

 (4) 

where the Laplacian is defined in terms of the curvilinear coordinates. Therefore it is
observed that the diffusion equation remains essentially unchanged. The only effect of the
transformation is a change in the diffusion coefficient. Neumann boundary conditions are
also unchanged in conformal coordinates. The boundary condition 

 

where  is normal to a =constant coordinate line, is expressed in curvilinear coordinates as

 

1. Construction by Finite-Differences 

          The literature abounds with methods for constructing conformal mappings. As can be
seen in the review article, Ref. [1], these methods may include the construction of
Schwarz-Christoffel transformations, the solution of integral equations, or expansions in
terms of power series or Fourier series. Since this chapter is not intended to be a
comprehensive treatment of conformal mapping, only the simple, yet frequently used, finite
difference method based on elliptic systems is discussed here. 

          Consider the problem of conformally mapping the interior of the contour  onto the
interior of a rectangle. The Riemann Mapping Theorem states that such a mapping exists,
and it also implies that the mapping is uniquely determined by specifying three real
parameters. Suppose we wish to indicate four specific points on  which are to map to the
vertices of the rectangle. If the rectangle is fixed, then the problem is over-determined and
no conformal mapping exists. Therefore, the mapping must determine one of the dimensions
of the rectangular region which we will now denote as the set 

 

Rather than allow a rectangle with variable width, one can equivalently introduce the
parameter M in (3) so that 



 

(5) 

where 

 

The mapping is no longer conformal, but the conformal mapping can be easily obtained by
simply multiplying the  coordinate by M. On the unit square the functions x and y now
satisfy 

 

(6) 

          Two boundary conditions are needed in order to determine a unique solution for this
elliptic system. One condition is derived from the equation of the boundary curve I which
might be 

(7) 

The other condition comes from applying the orthgonality equation, g12=0. This condition

also follows on eliminating the parameter M in Eq. (5). The implementation of the boundary
conditions is done in the following order. First a boundary value for x or y is computed from
the orthogonality constraint. If the boundary point lies along =0, then we may use 

(8) 

A forward difference is used to approximate the derivatives and central differences for the
-derivatives. The same equations are used along  = 1 with backward differences for the
-derivatives. Once an x or y value has been computed from Eq. (8), the other coordinate

value is given by writing (7) in the form 

(9) 

Although either equation in (8) could be used, it is advisable to choose either the first or
second equation, depending on whether x  or y  has the largest absolute value. This

avoids not only the possibility of division by zero but also problems with the solvability of
the implicit equation (7). The same techniques are used along an =constant coordinate line.
In this case the orthogonality constraint can be written as 

(10) 

Now the parameter M must also be determined. It follows from Eq. (5) that 

(10) 



          An iterative algorithm is used to construct the mapping, and any algorithm which can
be used for the elliptic systems in Chapter VI can also be used here. At each iteration a new
set of boundary values for x and y are computed using Eq. (8)-(10). There are two options in
computing a value for M. Either a different value at each point can be computed from Eq.
(11), or a constant value can be computed from a relation such as 

(12) 

where 0 1. Eq. (12) is derived from the equation in Eq. (5) by integrating along an 
constant coordinate line. This same technique can also be used to derive an alternate formula
for finding the boundary values at x and y. Along  = 0, for example, we have 

 

          The constant M, called the conformal module of the region by complex analysts, has a
simple geometric interpretation. From Eq. (11) it is noted that M is simply the aspect ratio of
the grid cells. There exist highly accurate numerical methods for computing both M and the
boundary values for x and y. If these values are computed first, then the system (6) can be
solved by a direct elliptic solver. 

          The only control over the distribution of grid points with a nonformal mapping is by
changing the points which map to the vertices of the rectangular region. However, most of
the advantageous features are retained when the conformal mapping is combined with
one-dimensional stretching transformations. Thus we will consider a new set of
computational variables,  and , with  and  serving as intermediate variables defined by
the one-dimensional equations 

(13) 

If x and y are solutions of Eq. (6), then in terms of the new computational variables, 

(14) 

(15) 

In Eq. (15), the covariant metric tensor components are defined relative to the transformation
from the physical x,y variables to the computational ,  variables. 

          The application of this transformation to the diffusion equation (1) results in the
following transformed equation: 



(16) 

Note that the coefficients of the  and  derivatives in Eq. (16) are functions of  and  ,
respectively. Therefore, only one-dimensional arrays are needed to store these coefficients. It
can be further noted that the steady-state equation (At=0) is a separable elliptic equation

which can be solved using a direct elliptic solver. 

          In the above development the stretching functions given by Eq. (13) are used to
control the grid point distribution. Clearly the derivatives of these functions must be
nonvanishing, and these derivatives may as well be taken to be positive so that the
orientation of the physical boundary is preserved. The function f( ) is a contraction mapping
if f’( ) < 1 and an expansion mapping if f’( ) > 1. Therefore, relative to a conformal
mapping, the =constant coordinate lines will be closer together where f’( ) < 1 and farther
apart when f’( ) > 1. The same control over the =constant coordinate lines is exerted by
the function h( ). Several one-dimensional functions are discussed in Chapter VIII. 

          On any particular boundary segment, say =0, it is in theory possible to match any
desired distribution of grid points provided the correct stretching function f( ) can be
determined. However, there is no known way of generating this stretching function so that
Eq. (14), together with the boundary conditions given by Eq. (7) and g12=0, will have a

solution with the prescribed boundary values along =0. The solution to this problem lies in
the implicit determination of the stretching function in the solution of the elliptic system.
Suppose that h( ) = , so that Eq. (15) can be written as 

 
(17) 

This equation allows Eq. (14) to be written as 

 
(18) 

This quasilinear system can be solved with the orthogonality condition on all boundary
components except  = 0 where we will now impose the Dirichlet condition 

 

where  defines the desired distribution of grid points. 



          The ability to specify grid points along a boundary component extends the usefulness
of conformal mappings. For example, one can assign coordinates around an airfoil and along
the branch cut in a C-type coordinate system so that the coordinate lines pass smoothly
through the cut. In many segmented systems the grid points can be chosen so that coordinate
lines pass smoothly from one sub-region into the next. One disadvantage of this method is
the reported slow convergence in the iterative solution of (18) for certain problems. An
alternate method of achieving the same result would be to generate a conformal mapping
from Eq. (6) and then use interpolation to redistribute the grid lines. Note that the
interpolation scheme may affect the orthogonality of the coordinate system to some degree. 

2. Schwarz-Christoffel Transformation 

          Conformal mappings of circular disks or half-planes onto polygonal regions are
defined by the Schwarz-Christoffel formula. Suppose the points 1, 2,...., n, lie on the real

axis of the -plane. Then the mapping defined by 

 
(19) 

transforms the upper half plane onto a polygonal region with interior angles of  - i = i.

However this is not exactly what is needed in most grid generation problems. Presumably
one would be given a polygonal region with vertices z1, z2,...,zn. Thus the parameters

A,B, 1, 2,..., n must be determined so that the real axis maps onto the given polygon: 

 

          There are several numerical techniques for the approximation of the parameters in the
Schwarz-Christoffel transformations. Since a conformal mapping of a simply-connected
region has three degrees of freedom, three of these parameters must be given in order for the
mapping to be uniquely determined. In certain infinite regions, the value of B can be
calculated from the asymptotic behavior of the mapping function. We can also set zn= n=0,

which implies that A=0 from Eq. (19). The remaining parameters to be determined are

1, 2,..., n-1. Alternately, as is commonly done in bounded regions, we can choose the

values 1, 2, 3 which are to map the points z1,z2,z3. In this case the parameters to be

determined are A,B, 4, 5,..., n. The basic algorithm for determining the unknown
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parameters consists of computing the distances , using Eq. (19) and a quadrature
formula to approximate the integral, and then iterating on the parameters until these
distances are correct. Once these parameters in the transformation have been computed to the
desired accuracy, the image of any point  in the upper half-plane is formed by numerically
evaluating the integral in Eq. (19). 

          Sohwarz-Christoffel transformations are not limited to regions with polygonal
boundaries. They can be used in composition with other conformal mapping methods to map
regions with curved boundaries onto various computational regions. For example, an integral
equation method can be used to map a physical region with curved boundary components
onto the unit disk, which can be easily transformed onto the upper half-plane. Now the upper
half-plane can be mapped onto the computation region, which may consist of several
rectangular blocks, by Eq. (19). There are also direct generalizations of the
Schwarz-Christoffel transformation for regions with curved boundaries. These are obtained
by considering the limiting case of Eq. (19) as n-> . 

          Recent extensions of the Schwarz-Christoffel transformation to curved contours have
made this procedure a powerful tool for treating complicated internal and other
configurations. These improvements also lead to smoother metric coefficients for boundaries
with slope discontinuities than in older methods for the Schwarz-Christoffel transformation.
This procedure for the Schwarz-Christoffel transformation may also be more efficient than
other conformal procedures involving an intermediate mapping of a near-circle for mapping
contours and circles in some eases. Several sources on the recent developments and
applications of the Schwarz-Christoffel transformation are cited in Ref. [1] and [5]. 

3. Construction from Integral Equations 

          Integral equations have played a major role in the solution of partial differential
equations. Mathematicians have often resorted to integral equations when attempting to
prove the existence and uniqueness of solutions. Numerical analysts turned to the so-called
panel methods for solving partial differential equations in two and three-dimensional
regions. These mehtods replaced the partial differential equations by a set of integral
equations and thereby reduced the dimension of the problem, since panel methods only
involve boundary integrals. The application of integral equations depends on the availability
of fundamental solutions of the partial differential equation. Therefore they are especially
useful in the solution of Laplace’s equation. Numerous solutions of Laplace’s equation can
be generated by determining the real and imaginary parts of analytic functions. As most
conformal mappings can be reduced to the solution of boundary-value problems for
Laplace’s equation, it should come as no surprise that integral equations can be a valuable
tool in the construction of conformal mappings. Only the basic integral equation method of
Symm (cf. Ref. [1]) will be presented here. This method has proven to be robust, yet is easily
derived and involves only the solution of a system of linear equations. 

          Suppose the simply-connected region D, bounded by the contour , is to be <1.

Let z=zo be the point in D which maps to the origin =0. If the Dirichlet problem 



 

(20) 

can be solved and the harmonic conjugate h of q can be found, then it can be directly verified
that the analytic function 

 (21) 

maps  onto <1. Due to the form of the series expansion for the exponential, it can also
be shown that this function has a nonvanishing derivative, and hence the conformal mapping
of D onto the unit disk is given by Eq. (21). We now turn to the problem of solving the
boundary value problem in Eq. (20). Suppose there exists a solution of the form 

 
(22) 

for z on . Regardless of the value of the function ( ), the function q(z) is harmonic on D.
In order that q(z) satisfy the boundary condition, it is clear that we need to choose ( ) such
that, for z on , 

 
(23) 

This is then the integral equation for determining the unknown function ( ). The harmonic

conjugate of  is arg(z). Thus the function of h(z) can be expressed as 

(24) 

Note that the function h(z) is only unique up to an addition constant. The addition of a
constant to h(z) results in a rotation of the conformal mapping defined in Eq. (21). 

          The practicality of this method depends on the efficient solution of the integral
equation in Eq. (23). In order to solve this equation numerically, divide  into n intervals,

j, j=1,2,...,n and assume ( ) has a constant value j, on j. Let zj be a fixed point of j.

Now Eq. (23) can be approximated by the linear system of equations 

(25) 

There are two alternatives in computing the coefficients in this system. If the j are assumed

to be straight lines, then the integrals can be calculated analytically. Otherwise, each integral



must be computed numerically. Once these coefficients have been computed, the system can
be solved to yield a step function which approximates the function ( ). The values of j
are now used to estimate the functions q(z) and h(z): 

 

(26) 

Again the above integrals would, in general, be computed numerically. These values of q(z)
and h(z) would be substituted in Eq. (21) to yield the image in the unit disk of any given
point z in the region D. 

          This integral equation method is a very efficient and accurate method. However, it has
one deficiency in regard to grid generation and the numerical solution of partial differential
equations. The transformation which is constructed maps the physical region D onto the
canonical region, which in this case is the unit disk. The unit disk could be the computational
region, or it could be mapped onto a rectangular region by an auxiliary transformation. In
any case, what is needed is the mapping from the unit disk onto the physical region.
Therefore an interpolation scheme would be needed to approximate the inverse of the
computed mapping. 

          It is sometimes more efficient to generate the final grid by solving the Laplace system
numerically with Dirichlet boundary conditions from the conformal transformations,
especially if a fast Poisson solver can be applied. 

4. Elementary Complex Transformations 

          An extensive list of complex mappings is compiled in Ref. [44]. However, these
mappings are only for regions with special boundary curves. If a strictly conformal
transformation is not necessary, then these mappings may be used to create what are called
nearly conformal mappings. For example, suppose an airfoil shape can be modeled as the
image of a circle under the Joukowski transformation 

 (27) 

Under the inverse transformation, a given airfoil will map to a curve which is nearly circular.
The region about the nearly circular curve can be mapped onto the region about a circular
region by a simple algebraic transformation. One scheme for accomplishing this final
mapping would be to divide each complex number on a given ray from the center by the
modulus of the complex number on the curve. The composite mapping in this case would be
a nearly-conformal mapping of the exterior of the airfoil onto the exterior of a circle. The
inverse mapping, which could be explicitly defined, would define a nearly-orthogonal 0-type
grid about the airfoil. 



          Analytic functions are not only of value in mapping regions about airfoils, but are also
helpful in the more general problem of generating grids in the neighborhood of boundary
points with slope discontinuities. With most algebraic methods of grid generation, these
slope discontinuities will propagate into the physical region resulting in non-smooth grid
lines and the associated increase in truncation error in the numerical solution of partial
differential equations. The general idea can be conveyed with the following example.
Suppose we have a region where the boundary has an interior angle of  at the point zo.

Under the mapping 

 
(28) 

the corner is eliminated. While this simple mapping may be useful in transforming the
interior of a contour, the mapping of the exterior region would not be one-to-one. The
elimination of corners for regions surrounding a contour can be effected by applying the
Karman-Trefftz mapping defined by 

(29) 

where  is the conjugate of zo. The exponent a depends on the exterior angle and the region

should be translated, if necessary, so that  is an interior point of the contour. 

 

This transformation may be applied sucoessively to eliminate any number of corners on the
boundary of the physical region. 

          Elementary complex functions can therefore serve to precondition a region. Corners
which are to map to sides of a computational rectangle can be eliminated. Conversely,
right-angle corners can be formed at points of the physical reigon which are to map to
vertices of the computational region thereby eliminating problems of extreme
nonorthogonality. 

          The trend in treating more complicated regions is to break the mapping up into a
sequence of more simple mappings. Contours, such as airfoils, are generally mapped to
near-circles by one or more simple transformations, and then the near-circle is mapped to a
circle by a series transformation, e.g., the Theodorsen procedure. It is necessary for
convergence that the near circle be sufficiently near to being a circle. A series for the
differential form is generally superior to the usual Theodorsen form for general bodies. This



series appears in terms of arc length and surface angle, rather than the polar coordinates of
the Theodorsen form which can lead to infinite derivatives and multiple values. The ordering
of the points can break down in the Theodorsen form for closely spaced points also. The
differential form is applicable, however, as long as there are no corners, even for twisted
contours. In this and other series transformations, the differential form is usually more
tolerant of odd shapes. 

          Multiple-body configurations can be treated by a sequence of transformations which
map each body to a circle in succession, while maintaining previously established circles.
Another procedure, invovles iteratively mapping each body to a circle with no special
consideration of the others. This process generally requires only a few iterations to converge.
Some recent applications are noted in Ref. [1] and [5]. 



XI. ADAPTIVE GRIDS 

          In an adaptive grid, the physics of the problem at hand must ultimately direct the grid
points to distribute themselves so that a functional relationship on these points can represent
the physical solution with sufficient accuracy. The idea is to have the grid points move as the
physical solution develops, concentrating in regions of large variation in the solution as they
emerge. The mathematics controls the points by sensing the gradients in the evolving
physical solution, evaluating the accuracy of the discrete representation of the solution,
communicating the needs of the physics to the points, and finally by providing mutual
communication among the points as they respond to the physics. The basic techniques
involved then are as follows: 

          (1) a means of distributing points over the field in an orderly fashion, so that neighbors
may be easily identified and data can be stored and handled efficiently. 

          (2) a means of communication between points so that a smooth distribution is
maintained as points shift their position. 

          (3) a means of representing continuous functions by discrete values on a collection of
points with sufficient accuracy, and a means for evaluation of the error in this representation.

          (4) a means for communicating the need for a redistribution of points in the light of the
error evaluation, and a means of controlling this redistribution. 

          Several considerations are involved here, some of which are conflicting. The points
must concentrate, and yet no region can be allowed to become devoid of points. The
distribution also must retain a sufficient degree of smoothness, and the grid must not become
too skewed, else the truncation error will be increased as noted in Chapter V. This means
that points must not move independently, but rather each point must somehow be coupled at
least to its neighbors. Also, the grid points must not move too far or too fast, else oscillations
may occur. Finally the solution error, or other driving measure, must be sensed, and there
must be a mechanism for translating this into motion of the grid. The need for a mutual
influence among the points calls to mind either some elliptic system, thinking continuously,
of some sort of attraction (repulsion) between points, thinking discretely. Both approaches
have been taken with some success, and both are discussed below. It should be noted that the
use of an adaptive grid may not necessarily increase the computer time, even though more
computations are necessary, since convergence properties of the solution may be improved,
and certainly fewer points will be required. 

          With the time derivatives at fixed values of the physical coordinates transformed to
time derivatives taken at fixed values of the curvilinear coordinates, no interpolation is
required when the adaptive grid moves. Thus, as given by Eq. (III-116), 

 
(1) 

where xi and i are the cartesian and curvilinear coordinates, respectively. The computation



thus can be done on a fixed grid in the transformed space, without need of interpolation,
even though the grid points are in motion in physical space. The influence of the motion of
the grid points is registered through the grid speeds, (xi)t, appearing in the transformed time

derivative. This is the appropriate approach when the grid evolves with the solution at each
time step. Some methods, however, change the grid only at selected time steps, and here
interpolation must be used to transfer the values from the old grid to the new since the grid
movement is not continuous. 

          In the following discussion, the problem of grid adaption will be formulated as a
variational problem, the ideas being developed first in one dimension and then extended to
multiple dimensions. 

1. One-Dimensional Adaption 

A. Equidistribution 

          A number of studies of numerical solutions of boundary-value problems in ordinary
differential equations have shown that the error can be reduced by distributing the grid points
so that some positive weight function, w(x), is equally distributed over the field, i.e., 

 
(2) 

or, in discrete form, 

 (3) 

where xi is the grid interval, i.e., xi = xi+1 - xi. (The subscript here indicates position on

the line in this one-dimensional case.) With this condition, the grid interval will, of course,
be small where the weight function is large, and vice versa. Thus if the weight function is
some measure of the error, or the solution variation, the grid points will be closely spaced in
regions of large error, or solution variation, and widely spaced where the solution is smooth.
(It may be more appropriate in some cases to replace the equal sign in Eq. (2) and (3) with
"less than or equal", and thus to "sub-equidistribute" the weight function.) 

          This approach has also been applied to redistribute the grid points (or to add points) at
each time step, or at certain intervals, in numerical solutions of initial/boundary-value
problems in one-dimensional partial differential equations. A number of references to the use
of equidistribution are cited in Ref. [45]. It can be shown that the point distribution is
asymptotically optimal if some error measure is distributed evenly, and that this optimum
error is rather stable under perturbations of the point distribution. Thus it is not necessary to
locate the grid points with excessive accuracy. 

B. Equidistribution by transformation 

          The nonuniform point distribution can be considered to be a transformation, x( ),



from a uniform grid in -space, with the coordinate  serving to identify the grid points.
The grid points are conveniently defined by successive integer values of , making  = 1
by construction and the maximum value of , i.e., N, equal to the total number points on the
line. Then x = x  = x  so that x  represents the variation in x between grid points.

Hence the equidistribution statement, Eq. (3), can be represented as 

 (4) 

With the weight function w taken as a function of  this is just the Euler equation for the
minimization of the integral 

 
(5) 

(From the calculus of variations, the function x( ) for which the integral F(x,x )d  is an

extremum is given by the solution of the differential equation .
This equation is called the Euler’s variational equation.) The integral (5) can be taken to
represent the energy of a system of springs, with spring constants w( ), spanning each grid
interval, considering all the points to have been expanded from a common point so that x 
is the extension of the spring at . The grid point distribution resulting from the
equidistribution thus represents the equilibrium state of such a spring system, i.e., the state of
minimum energy. Since x  represents the distance between grid points, this variational

problem can also be interpreted as the minimization of the cumulative spacing between the
grid points in the least-squares sense, subject to the weight function w( ). 

          If the weight function is taken to be a function of x, instead of , then the integral for
which Eq. (4) is the Euler equation is 

 
(6) 

The variational problem in this case is the least-squares minimization over the grid of the
cummulative grid point spacing weighted by the weight function. 

          Integration over , as in both these cases, constitutes a summation over the grid
points, with x  representing the spacing between grid points. In the first case above, i.e.,

Eq. (5), the weight function w( ), being a function of is associated with the grid points
themselves, not with their locations. In the second case, Eq. (6), however, the weight
function w(x) is associated with the locations of the grid points, rather than directly with the
points. Since there is a relation x( ) representing the locations of the grid points, any weight
function can obviously be transformed from one argument to the other. However, in deriving
the Euler equations for a variational problem it is only the direct dependence that is
considered in the partial derivatives  or , i.e., whether the weight function is
determined by the identity of the grid point or by the location of the grid point, w(x),



although implicit differentiation is used in the total derivatives  and 

. 

          The constant in Eq. (4) can be evaluated by normalizing x to the interval (O,L). If  is
normalized to (1,N) we have from Eq. (4), 

 

and hence 

 
(7) 

so that 

 

(8) 

Since x=1/x , the transformation is then determined by 

 
(9) 

Thus 

 
(10) 

so that Eq. (2) is realized by taking equal increments in , i.e.,  varying by equal
increments between grid points as was stated initially. From Eq. (8) the grid point spacing is
given by 

 

(11) 

          An alternative viewpoint results from integrating over x, instead of over , i.e.,
summing over the grid intervals rather than over the grid points. Since  identifies the grid
points, x represents the change in  ,i.e., the number of grid points per unit distance, and

hence is the grid point density. Eq. (4) is now the Euler equation for minimization of the
integral 



(12) 

          Here the integral in question is F( x, )dx, so that the Euler equation is given by 

. 

          Since x can be considered to represent the point density, this variational problem

represents a minimization over the field of the density of grid points in the least-squares
sense, subject to the weight function, and thus produces the smoothest point distribution
attainable. Here the weight function w(x) is associated with the grid point locations, not
directly with the points. If the weight function is associated with the points themselves,
rather than the locations, then w = w( ) and the integral for which Eq. (4) is the Euler
equation is 

(13) 

This variational problem is the least-squares minimization over the field of the cumulative
point density weighted by the weight function. 

          The constant in Eq. (4) is evaluated in this form by writing, 

so that with the normalization as defined above, 

(14) 

The transformation then is given by 

(15) 

Thus 

(16) 



so that again Eq. (2) is realized by taking equal increments in . The point spacing is now
given by 

(17) 

          The grid and solution may be determined separately, perhaps even in an iterative
fashion. However, the transformation allows the grid and solution to be dynamically coupled
so that both evolve together. With the spring analogy approach, Eq. (8) supplies the
following differential equation for the grid: 

 

(18) 

which supplies an additional differential equation to be solved simultaneously with the
differential equation system of the physical problem at hand, with the grid point location x as
the independent variable. Similarly, with the smoothness approach, the differential equation
for the grid is 

 
(19) 

          Eq. (18) and (19) really differ only by the way the constant is evaluated, i.e., whether
by integration over  or over x. This is a real difference in implementation, though, since
integration over  is dependent on the grid, but integration over x is not. Thus, with the
spring analogy approach, the weight function is associated with the grid points, i.e., with ,
and the grid adjusts to achieve a uniform value of w x. The uniform value reached,
however, is dependent on the grid since the right-hand side of Eq. (18) is dependent on the
point distribution. In contrast, in the smoothness approach, where the weight function is
associated with the the grid points, i.e., with x, the grid adjusts to achieve a specified
uniform value of w x, since the right-hand side of Eq. (19) is an integral in physical space,
independent of the grid. In the first approach, the points move to change the spacing x 
between points, while in the second the points move to change the point density x. (Note

that Eq. (4) can also be written as x/w=constant.) Either approach is viable, unless it is

intended that the uniform value of w x be fixed beforehand, as would be the case if the
weight function is taken to be representative of truncation error and a certain bound is to be
imposed on this error. The smoothness approach, i.e., integration over x, has been the most
widely used because it is natural in most physical problems to associate the weight function
with some physical property which varies in space. 

          Implementation of the two forms proceeds as follows: The form based on the grid
point density is implemented using Eq. (15). With the solution u( ) known on the current
grid points at a given time step, the weight function is evaluated at each point and then the



integral in the denominator of Eq. (15) is evaluated by numerical quadrature, i.e., by
summing the product w x over the grid points using coefficients in the summation
appropriate to whatever type of numerical quadrature is intended. The integral in the
numerator is similarly evaluated out to values of the upper limit x that produce the
successive integral values of which define the grid points. Thus we have xi defined by 

 
(20) 

These values of xi then are the new grid point locations, and the solution proceeds to the next

time step. 

          The spring analogy form, however, requires iteration. Here we have, from Eq. (8), the
point locations xi defined by 

(21) 

With the solution known at a given time step, the weight function is evaluated at each grid
point, and the integral in the denominator is evaluated numerically as before. Then the
integral in the numerator is evaluated with the upper limit set at the successive integral
values of  as indicated, and this defines a changed point distribution, xi. The complication

here is that the integral in the denominator, i.e., the constant in Eq. (4), depends on the point
distribution, amounting to a sum of 1/w over the points since =1 by construction
regardless of the distribution. 

(By contrast, the corresponding integral in Eq. (20), i.e., the constant in Eq. (4), does not
depend on the point distribution, being simply an integral of a function in physical space.)
Therefore, this integral must be re-evaluated using the changed point distribution. 

The integral in the numerator is then also re-evaluated for each point, thus changing the point
distribution again. This process must be continued until convergence before the final new
point distribution is obtained. The solution then proceeds to the next time step. The necessity
for iteration with the spring analogy form clearly makes this form more difficult to
implement than the grid point density form. Since no particular advantages of the former
have been noted, preference naturally falls to the latter. 

          A number of examples of both the point density form and the spring analogy form, as
well as other applications of the use of one-dimensional equidistribution are cited in the
survey of adaptive grids given as Ref. [45]. 

C. Weight functions 



          As noted above, the effect of the weight function w is to reduce the point spacing x 
where w is large, and therefore the weight function should be set as some measure of the
solution error, or as some measure of the solution variation. The simplest choice is just the
solution gradient, i.e., 

 (22) 

In this case, Eq. (4) becomes 

which then reduces to 

 

With the solution gradient as the weight function the point distribution adjusts so that the
same change in the solution occurs over each grid interval, as illustrated below: 

 

This choice for the weight function has the disadvantage of making the spacing infinitely
large where the solution is flat, however. 

          A closely-related choice, also based on the solution gradient, is the form 

 
(23) 

An increment of arc length, ds, on the solution curve u(x) is given by 

 

so that this form of the weight function may be written 

 

and then Eq. (4) becomes 



 

which reduces to 

 

Thus, with the weight function defined by Eq. (23), the grid point distribution is such that the
same increment in arc length on the solution curve occurs over each grid interval. For the
curve shown above this gives the following point distribution: 

 

          Unlike the previous choice, this weight function gives uniform spacing when the
solution is flat. The concentration of points in the high-gradient region, however, is not as
great. This concentration can be increased, while still maintaining uniform spacing where the
solution is flat, by altering the weight function to 

 
(24) 

where  is a parameter to be specified. Considering u to be plotted against x/ , we have for
an increment of arc length on this solution curve 

 

so that this weight function is equivalent to 

 

and Eq. (4) becomes 

 

which reduces to 



 

          Thus we have equal increments of arc length on the solution curve with u plotted
against x/  in this case. Now division of the abscissa by a for a flat curve would simply
reduce the spacing by the same factor. However, since the slope steepens as the curve is
compressed to the left by this change of scale, the effect on the spacing where the curve is
not flat will be a greater reduction in spacing. 

In fact, since the 1 in the weight function given by Eq. (24) tends to produce equal spacing,
while the 2ux

2 tends to produce concentration in the high-gradient regions, with infinite

spacing in flat regions, this weight function involves a weighted average between the
tendency toward equal spacing and that toward concentration entirely in the high-gradient
regions. The larger the value of , the stronger will be the concentration in the high-gradient
regions and the wider the spacing in the flat regions. 

          Now a disadvantage of all the above forms of the weight function is that regions near
solution extrema, i.e., where ux=0 locally, are treated similar to flat regions, as is illustrated

below for the form given by Eq. (22): 

 

Although the distributions produced by the solution arc length forms, Eq. (23) and (24),
would have closer spacings near the extrema, the effect is still the same, i.e., to concentrate
points only near gradients, not extrema. 

          Concentration near solution extrema can be achieved by incorporating some effect of
the second derivative uxx into the weight function. A logical approach is to include this

effect through consideration of the curvature of the solution curve: 

 

If the weight function is taken as 

 (25) 



then points will be concentrated in regions of high curvature of the solution curve, e.g., near
extrema, with a tendency toward equal spacing in regions of zero curvature, i.e., where the
solution curve is straight (not necessarily flat). This weight function, however, has the
serious disadvantage of treating high-gradient regions with little curvature essentially the
same as regions where the curve is flat. Thus in the curve shown above, nearly all the points
would be concentrated near the maximum in the curve, with very wide spacing in the
high-gradient regions on both sides. 

          A combination of the weight functions given by Eq. (24) and (25) provides the desired
tendency toward concentration both in regions of high gradient and near extrema. The effect
of the inclusion of the curvature is illustrated below (cf. Ref. [37]) with the function
following): 

 

 (26) 

where  and  are parameters to be specified. Clearly, concentration near high gradients is
emphasized by large values of , while concentration near extrema (or other regions of large
curvature) is emphasized by large . 

          Another approach to the inclusion of the second derivative is simply to take the weight
function as 

 (27) 

where  and  are non-negative parameters to be specified. 

          With this form, (cf. Ref. [46] we have by Eq. (15), with  and ,

(28) 

so that 



(29) 

Then with R1 defined as 

(30) 

we have 

(31) 

Since  = 1/N, where I+1 is the number of points on the coordinate line, the maximum
percentage change in the solution over a grid interval, 

(32) 

is related to the ratio R1, which measures the relative emphasis put on concentration of

points according to the solution gradient by 

(33) 

A guide for the choice of  to limit the maximum percentage solution change over an
interval to a value r can then be obtained using an equality in Eq. (33) with R1 from Eq. (30)

and neglecting the effect of the  term: 

(34) 

The smallest possible value of r is 1/N. 

          With the second derivative term included, the value of  can be continually updated to
keep the same relative emphasis on concentration according to this term, as measured by the
ratio R2. 



(35) 

The transformation can then be written as 

(36) 

where R2 is considered to be constant. In this form, the transformation appears as the

weighted average of one based on the solution gradient and one related to the second
derivative. 

          The replacement of Eq. (24) with the form given by Eq. (27), with  = 0, still leaves a
reasonable form for the weight function, but the clear association with the geometric
properties of the solution curve are lost. In this case the weight function corresponding to Eq.
(23) would, after substitution in Eq. (4), leads to the condition 

which corresponds to an equal distribution of the distance between points on the solution
curve along a right-angle path formed by x and u from one point to the next. While this
distance has some indirect relation to arc length on the solution curve (the chord length being
the hypotenuse of the right triangle formed by this x and u), the direct association with
arc length would seem to be preferable. Following the same reasoning, the use of solution
curve curvature, rather than simply the second derivative, is also preferable. Therefore, the
form given by Eq. (26) is probably more appropriate than that of Eq. (27). A number of other
variations have been used, of course, as is noted in Ref. [45]. 

          Since the numerical evaluation of higher derivatives can be subject to considerable
computational noise, the use of formal truncation error expressions as the weight function is
usually not practical, hence the emphasis above on solution gradients and curvature. Some
problems may arise even with solution curvature, i.e., with second derivatives, in rough
transits. It is common in any case to limit the grid point movement at each time step and/or
to smooth the new point distribution. 

          For systems of equations involving more than one physical variable, one approach is
to use the most rapidly-varying or dominant physical variable in the definition of the weight
function. Another is to use some average of the variations of the several variables. It is also
possible to use entirely different grids for different physical variables, with values transfered
among the grids by interpolation. Examples of each of these approaches are cited in Ref.
[45] and [5]. 

2. Multiple-Dimensional Adaption 



A. Adaption along fixed lines 

          In multiple dimensions, adaption should in general occur in all directions in a mutually
dependent manner. However, when the solution varies predominately in a single direction,
one-dimensional adaption of the forms discussed above can be applied with the grid points
constrained to move along one family of fixed curvilinear coordinate lines, and applications
of this approach are noted in Ref. [45]. 

          The fixed family of lines is established by first generating a full multi-dimensional
grid by any of the grid generation techniques discussed in the earlier chapters, with the
curvilinear coordinate lines of one family therein then being taken as the fixed lines. The
points generated for this initial grid, together with some interpolation procedure, e.g., cubic
splines, serve to define the fixed lines along which the points will move during the adaption.
The one-dimensional adaption discussed above is then applied with x replaced by arc length
along these lines. 

          Examples (cf. Ref. [46]) of application of the point density form discussed above in
this manner are shown in the following figures. The first figure shows an adaptive grid for a
combustion problem, where the adaption is along fixed radial lines. The flame front is
clearly visable here because of the strong concentration of points therein: 

 

The oscillations evident with the fixed grid are removed by the grid adaption. An extension
of this problem appears next with a flowing gas. This gives an example of the use of separate
adaptive grids for different physical variables of the problem, one for the combustion and
one for the fluid mechanics, with values transferred between the two grids by interpolation. 



 

          Adaption through the spring analogy is illustrated next with adaption along fixed lines
between the body and outer boundary in a hypersonic flow problem (cf. Gnoffo in Ref. [45]).
Here the concentration of points makes the shock location evident in the grid: 

 

          Another obvious application of adaption along fixed lines is adaption of boundary
points along a fixed boundary in two dimensions (cf. Nakamura in Ref. [45]). An example of
such adaption along a boundary as a shock forms appears below: 

 

B. Uncoupled adaption 

          One step beyond this one-dimensional adaption along fixed lines is the application of
successive one-dimensional adaptions separately in each of the curvilinear coordinate
directions. This proceeds in the same manner as for the adaption on the fixed lines, simply



using the latest grid to re-define the coordinate lines to serve as the "fixed" lines in the next
direction of adaption, cf. Ref. [56] and [57]. In the latter a torsion spring analogy is used, as
well as the tension springs discussed above, incorporating resistance to movement away
from orthogonality. This is done in effect by adding the term v( )(x-xo)2 to the integral of

Eq. (5), where v( ) is a second weight function and xo is the arc length location of the

intersection of the normal from the adjacent grid line with the line on which the adaption is
occurring. 

C. Coupled adaption 

          The final grid in the one-dimensional adaption discussed above will, of course, be the
result of the grid point movement along the one family of fixed lines, and therefore the
smoothness of the original grid may not be preserved as the grid adapts. Some restrictions on
the point movement have generally been necessary in order to prevent excessive grid
distortion. 

          In multiple dimensions, in general it is desirable to couple the adaption in the different
directions in order to maintain sufficient smoothness in the grid. One approach to such
coupling is to generate the entire grid anew at each stage of the adaption from some basic
grid generation system, be it algebraic or based on partial differential equations. The
structure of the grid generation system serves to maintain smoothness in the grid as the
adaption proceeds. In this approach, which is analogous to the one-dimensional
equidistribution discussed above, the new point locations are determined directly from the

grid generation system, and then the grid point speeds, , for use in the transformed time
derivatives, Eq. (1), are calculated from the change in the point locations by difference
expressions. Another approach is to determine the grid point speeds directly through some
process and then to calculate the new point locations by integrating these point speeds. 

D. Weight functions 

          The one-dimensional weight function, Eq. (23), based on arc length on the solution
curve can be generalized to higher dimensions as follows: Consider a hyperspace of
dimensionality one greater than that of the physical space, with the solution, u, being the
extra coordinate. Let the unit vector in the solution direction be , this being orthogonal to
the physical space. Then the position vector in this hyperspace is given by 

 (37) 

where  is the position vector in physical space. Now, following Eq. (III-5), the covariant
metric element, denoted Gij, in the hyperspace will be 

 

(38) 



where gij is the metric element in physical space. Now 

 
(39) 

so that 

 

and then 

 
(40) 

It can be shown that 

 
(41) 

(This has been verified for one and two dimensions.) 

          In one dimension this reduces to the expression for arc length on the solution curve,
i.e., 

 

In two dimensions Eq. (41) gives an expression for area on the solution surface: 

 (42) 

Thus the extension of the one-dimensional weight function based on arc length on the
solution curve to two dimensions is that based on area on the solution surface: 

 
(43) 

The extension of this form to three dimensions would also seem logical, but has not been
verified. 

3. Variational Approach 

          Considering the grid from a continuous viewpoint, it occurs that something should be
minimized by the grid rearrangement, and thus a variational approach is logical. This is the
natural extension of the equidistribution concept discussed above to multiple dimensions.
The development in this section is a generalization of that in Ref. [47]. (cf. Ref. [1] for
earlier related work.) 

A. Variational formulation 



          The variational formulation for multiple dimensions can be constructed in analogy
with the one-dimensional equidistribution discussed in Section 1. Thus in general a weighted
integral measure of the accumulation of some grid property Q, either over the grid points,
i.e., 

 
(44) 

or over the physical field, i.e., 

 
(45) 

where w is the weight function, will be minimized. The resulting Euler equations then will
constitute the grid generation system. In formulating the variational problem there are
basically three decision points. 

          First, if the integration is taken over  then the integral represents a summation over
the grid points, while integration over x represents a summation over cell volumes in
physical space. With integration over  it is thus the accumulation of some property over the
grid points that is minimized, while with integration over x the accumulation over the
physical cell volumes is minimized. 

          The second question concerns the weight function. If the weight function is directly
dependent on , then the weight is associated with the grid points, while with weight
functions dependent directly on x the weight is associated with location in physical space. As
noted in Section 1 it is this direct dependence of the weight function that figures in the
partial derivatives  and  in the Euler equations, the fact that a change of variable
could be effected by the transformation x( ) notwithstanding. In most applications the
weight function will be based on some solution gradient and hence will be naturally taken as
a function of position in physical space, x. 

          Finally, there is the choice of what property is to be accumulated to be minimized.
This choice depends, of course, on what is expected from the grid. Among the grid
properties that might be considered are the following in computational space (integration
over grid points, i.e., d ): 

(1). square of cell volume: 

 

(2). inverse cell volume: 

 

(3). sum squares of cell edge lengths (average of squares of diagonal lengths): 



 

(4). cell area squared/volume ratio: 

 

(5). cell skewness based on edge tangents: 

 

(6). cell skewness based on face normals: 

 

In two dimensions the two orthogonaly properties, (5) and (6), are equivalent. 

          These six properties correspond in order to the use of the following properties in
physical space, where the integration is over the physical field (dx): 

          (1). inverse point density: 

 

          (2). square of point density: 

 

          (3). 

 

          (4). 



 

          (5). 

 

          (6). 

 

          Similar representations of other grid properties can also be considered, of course. The

one-dimensional forms of properties (1) and (3) in the computational space reduce to ,
while those of properties (2) and (4) become 1/x . Therefore, in analogy with the

one-dimensional equidistribution in Section 1, a weight function with properties (1) and (3)
that is a function of x should actually be squared in the integral (cf. Eq. (6)), i.e., 

 
(46a) 

while w(x) with properties (2) and (4) appears as (cf. Eq. (12)) 

 
(46b) 

Similarly, weight functions that are functions of  should appear as (cf. Eq. (5) and (13)) 

 
(47a) 

 
(47b) 

The construction for integration in the physical space is analogous, but noting that (1) and

(3) correspond to 1/ x, while (2) and (4) correspond to , in one dimension (cf. (5), (6),

(13) and (12), respectively): 

 
(48a) 

(48b) 



          The grid for which the weighted accumulation of the property Q is minimized is
obtained, by the calculus of variations, as the solution of the Euler variational equations for

the integral I. If the integration is over  these equations are 

 
(49) 

where F is the integrand of the integral I. With integration over x the variational equations
are 

 

(50) 

These partial differential equations then constitute the generation system for the grid. Note
that the equations resulting from Eq. (50) must be transformed using the relations in Chapter
III so that the curvilinear coordinates become the independent variables. The equations given
by Eq. (49), however, will already be in this form. 

          A grid generation system which involves competitive emphasis on various grid
properties can be constructed by casting the integral to be minimized as a weighted average
of several of the above integrals, each of which represents an accumulation of a different
grid property. Since the various grid properties do not all have the same dimensions, it is
necessary to scale the various integrals involved, as is done below for the Brackbill-Saltzman
construction. 

          There clearly is no unique construction of the variational formulation for adaptive
grids, and this is an area that is not yet fully developed. The constructions given later in this
chapter are logical and illustrative of the procedure, but should not be considered definitive. 

B. Euler equations 

          The derivation of the Euler equations, hence the grid generation system, is
straightforward but may be algebraically involved. The following developments simplify the
derivation somewhat. Consider first the integral over the grid points 

 
(51) 

where g is the covariant metric tensor, with elements gij defined by Eq. (III-5), and w(x) is a

weight function dependent on x. The Euler equations then are given by Eq. (49). As shown
in Appendix B, the Euler equations produce the following generation system (with 
written as F’): 



 

(52) 

where 

 
(53) 

Here the gradient of the weight function in the last term is expressed using Eq. (III-42), with 
i given by Eq. (III-33). It should be noted that if the weight function in the integral (51)

had been defined as a function of  instead of x, a result different from Eq.(52) would have
been obtained for the generation system (cf. Eq. (9) of Appendix B). The two-dimensional
form of Eq. (52) is given as Eq. (10) of Appendix B. 

          With the variational problem formulated in the physical space, and the weight
functions dependent on x, we have the integral 

 
(54) 

where G is the contravariant metric tensor, i.e., with elements gij from Eq.(III-37). Then
from the Euler equations given by Eq. (50), cf. Appendix B, the generation system is (with 

 written as F’), 

 

(55) 

with 

 

C. Brackbill-Saltzman construction 



          As noted in Chapter V there is a need for smoothness in the grid in order to reduce

certain terms in the truncation error of a solution done on the grid. The quantity 

the extension to multiple dimensions of the  used above with the smoothness form in Eq.
(12). Therefore to maximize the smoothness of the grid it is logical to minimize the integral
of this quantity over the physical field: 

 
(57) 

This amounts to a minimization of the linear point density in the least-squares sense. The
property used here is that given as (4) on p.396, which corresponds to the ratio of the squares
of the cell face areas to the cell volume when the accumulation is over the grid points, as
given by property (4) on p. 395. The corresponding integral over the grid points is 

 
(58) 

Substitution of F from Eq. (57) into Eq. (19) of Appendix B then yields the elliptic grid
generation system 

 (59) 

Thus the smoothest grid is that for which the curvilinear coordinates satisfy Laplace’s
equation. 

          Emphasis on orthogonality and/or on concentration of grid lines can also be
incorporated into the grid generation system by basing the system on the Euler equations for
additional variational principles. Orthogonality can be emphasized by minimizing the
integral Io defined with property (6) on p. 396 as 

(60) 

since each of these dot products vanishes for an orthogonal grid. (Recall that i is normal
to the coordinate surface on which i is constant, cf. Chapter III.) The inclusion of the g3/2,
the cube of the Jacobian of the transformation, as a weight function in Io is somewhat

arbitrary, and causes orthogonality to be emphasized more strongly in the larger cells. With
the accumulation over the grid points, this corresponds to the use of the square of the dot
product of the cell face normals in the variational statement (property (6) on p.395). The
corresponding integral over the grid points is 



(61) 

          Finally, concentration can be emphasized by minimizing the integral Iw defined by 

(62) 

where w(x) is a specified weight function. This causes the cells to be small where the weight
function is large, and uses property (1) on p. 396, i.e., the inverse point density. With the
accumulation over the grid points this corresponds to the use of the square of the cell volume
(property (1) on p. 395), and the integral over the grid points is 

(63) 

          The grid generation system is obtained by minimizing a weighted sum I of these three
integrals: 

(64) 

where N is a characteristic number of points, L is a characteristic length, and W is the
average weight function over the field: 

(65) 

with V being the volume of the field. This sealing in the weighted sum is obtained as
follows: From the above expressions for Is, Io, and Iw we have 

Therefore, the three terms in Eq. (64) should stand in the ratios given. In two dimensions the
factors on Io and Iw both become (N/L)4, since the Jacobian is then proportional to (L/N)3,

rather than to (L/N)3. The characteristic length and number of points might logically be
taken as the cube roots of the volume and the total number of points in the field,
respectively, in three dimensions, the square root being used in two dimensions. 

          Emphasis is varied among the competing features of smoothness, orthogonality, and
adaptivity by the choice of the coefficients o and w. For example, a large o will result in

a grid that is nearly orthogonal, at the cost of smoothness and concentration, with an
analogous effect of w. The Euler equations for this variational problem, which will be the

weighted sums of those for the individual integrals, form the system of partial differential
equations from which the coordinate system is generated. These equations will be



quasilinear, second-order partial differential equations, with coefficients which are quadratic
functions of the first derivatives, and are derived in general as described in the preceeding
section and Appendix B. 

          Clearly the integral I3, Eq. (57), is the multi-dimensional generalization of the

one-dimensional smoothness integral I3, Eq. (12), without the weight function, and the

integral Iw, in Eq. (63), is the extension of the one-dimensional spring analogy integral I1,

Eq. (5), to multiple dimensions, with the spring extension x  generalizing to the volume,

i.e., (the Jacobian  in three dimensions, area in two). This variational approach thus is a
generalization of the one-dimensional equidistribution discussed above to multiple
dimensions. All of the discussion of weight functions given above in regard to
equidistribution therefore has relevance here to the weight function of the integral Iw, Eq.

(63). (The role of the constant in the equidistribution weight function, e.g., the 1 in Eq. (23),
etc., which tends to produce a linear transformation, is taken by the smoothness integral Is of

Eq. (57), which tends to produce an equally-spaced grid in multiple dimensions.) 

          For the three integrals given by Eq. (58), (61), and (63) we have, respectively, with
(i,j,k) cyclic, 

(66) 

(67) 

(68) 

Here, of course, from Eq. (III-14),  

          In two dimensions, g13 = g23 = 0 and g33 = 1, so that these functionals reduce to 

(69) 

(70) 

(71) 

(Here an additive constant in Fs has been dropped since only derivatives of F contribute to

the Euler equations.) Then using Eq. (1) of (Appendix B) the two-dimensional generation
system based on concentration alone is 



(72) 

and the generation system based only on orthgonality is 

(73) 

The generation system based on smoothness (from Eq. (66)) is more complicated, but may
be constructed from the relations given in Appendix B. The complete generation system then
is obtained as the linear combination of the concentration system, Eq. (72), the orthgonality
system, Eq. (73), and the smoothness system. 

          In Ref. [47] this combination is written in the form 

(74a) 

(74b) 

where 

with 



Here the coefficients subscripted s, o, and w, arise from the smoothness, orthogonality, and
concentration integrals, respectively. The coefficients ’w and ’o are, taking account of the

scaling discussed above in connection with Eq. (64), 

 
(75a) 

 
(75b) 

In one dimension, with y  = x  = 0, we have 

Also, for the smoothness integral: 



For the concentration integral: 

and for the orthogonality integral: 

Then 

Now also 

and, taking the -direction to be the one of interest, we also have y  = 0. 

          The generation system in one dimension then reduces to 



The  can be made a part of  so that the one-dimensional generation system
finally is 

 
(76) 

with, for the scaling, 

 
(77) 

This then is the differential equation that can be applied on a boundary curve,interpreting x
as arc length and  as the curvilinear coordinate that varies along the particular boundary. 

          In three dimensions the calculation of the required partial derivatives of F in Eq. (52)
for the concentration integral, i.e., Fw given by Eq. (68), may be expedited by noting that

since , 

 

where cij is the signed cofactor of gij. These second derivatives vanish if k=i or l=j, and are

equal to  gmn otherwise, where (i,k,m) and (j,l,n) are cyclic, the sign being negative when

the progression from i to k is opposite to that from j to l. 

D. Applications 

          The dynamically-adaptive grid is applied by constructing the partial differential
equations which constitute the grid generation system from the Euler equations as discussed
above. These equations are solved numerically by replacing all derivatives with difference
expressions (typically second-order, central differences) in the same manner as discussed in
Chapter IV. As noted in Chapter III, the time derivatives in the equations of the physical
problem to be solved on the grid are transformed according to Eq. (III-116), with the result
that, the grid point speeds appear in the difference equations of the physical problem. The
grid is re-generated at each time step, and these grid point speeds are determined from
difference representations between time steps. Although the difference equations for the grid
and those for the physical solution could be iterated together at each time step, the more
common procedure is to solve each separately at each time step. 

          Grid points on boundaries may, of course, be held fixed, but it is more appropriate in



most cases to allow the points to move along the boundary to adapt as in the field. This can
be accomplished either by using Neumann boundary conditions in the grid generation
systems, i.e., making the system orthogonal at the boundary (cf. Chapter VI), or by applying
the one-dimensional form of the grid generation equations, Eq. (76), in terms of arc length,
along the boundary. 

          Some rather spectacular two-dimensional results of the grid adapting to a reflected
shock are shown below for supersonic internal flow over a step. The formation and multiple
reflections of the shock are made evident by the grid adaption into the shock as it develops.
Here the magnitude of the pressure gradient was used in the weight function, and both
smoothing and bounding was applied to the weight function to control grid distortion. 

 

E. Extensions 

          In two dimensions, the departure of the grid from conformality can be controlled by
basing F on the Cauchy-Riemann conditions: 

 
(79) 

and some applications are noted in Ref. [45]. 

          Finally, another very useful addition to this composite variational system is a control
on the grid point movement, which can be incorporated by taking F as 

(80) 

where ui is the fluid velocity and  is the grid speed. With  represented by a difference

form, and with the fluid velocity evaluated at the previous time step, this F can be considered
to be a function of xi. Again some applications are noted in Ref. [45]. The following

example shows the effectivenss of such control of the grid point movement: 



 

 

4. Other Approaches 

          Several other approaches are discussed in Ref. [45], three of which follow here. 

A. Attraction-Repulsion 

          Another approach to adaptive grids is to let the grid points all move as if under the
mutual influence of forces between all points. Here instead of generating new grid point
locations through the solution of partial differential equations, the grid points move directly
under the influence of mutual attraction or repulsion between points. This is accomplished
by assigning to each point an attraction proportional to the difference between the magnitude
of some measure of error (or solution variation) and the average magnitude of this measure
over all the points. This causes points with values of this measure that exceed the average to
attract other points, and thus to reduce the local spacing, while points with a measure less
than the average will repel other points and hence increase the spacing. 



 

This attraction is attenuated by an inverse power of the point separation distance in the
transformed field. The collective attraction of all other points is then made to induce a
velocity for each grid point. Since each point is influenced by all other points, this is
effectively a type of elliptic generation system. Details of implementation are given in Ref.
[48] and other references cited therein. 

          Smoothing through the addition of diffusion -- like terms in the calculation of the grid
evolution from the grid speeds has also been used. Reflections in boundaries in the
transformed field are used to provide smooth grid motion near and on the boundaries. Since
the transformed field is rectangular, this reflection is not complicated by the shape of the
physical boundaries. A means of including terms that will induce rotational motion into the
grid has been devised to cause the grid lines to align with lines of high gradients such as
shocks. 

 

          This procedure does not exercise any control over either the smoothness or
orthogonality of the grid, so that distortion is possible. Collapse of points into each other is,
however, impeded because attraction will become repulsion as the points approach each
other, since the measure which drives the motion will drop below the average as the spacing
decreases. Collapse is further impeded by the fact that the grid velocity decreases with the
spacing. It has been found necessary to apply some limits and some damping of the grid
speeds to prevent grid oscillation and distortion. In practice, the computed grid speeds are
scaled so that the maximum over the field is a set value, but with the maximum sealing also
limited. Provision is also made for exponential damping of the grid speeds according to the
ratio of the maximum Jacobian to a specified value. 

          Since this procedure has all grid points moving to cause some measure to approach
uniformity over the field, it can be considered an iterative approach to the equidiatribution of
this measure over the field. This occurs because the grid ceases to move when the measure is
uniform, i.e., when the local value is equal to the average value everywhere. Therefore, the
grid can be considered to move so as to minimize the variation in the measure over the field. 

B. Reaction analogy 

          A different, but somewhat related, approach was noted in Ref. [45] and [5] based on a
chemical reaction analogy. Here each grid interval is taken to represent a species



concentration, and the reaction rate constants are made dependent on the difference between
a local error measure for one grid interval compared with another. Each grid interval then is
coupled with every other grid interval through reaction rate equations, so that each interval
grows at the expense of others, and vice versa. A system of ordinary differential equations is
solved for the intervals. This approach, as given, is somewhat inefficient, since there is no
provision for limiting the effect to the nearer points. With each point affected equally by all
other points, the number of ordinary differential equations to be solved is equal to the square
of the total number of points. 

          The rate constants also contain factors designed to limit the range of variation of the
grid intervals. The two-dimensional form given involves essentially applying the
one-dimensional form separately along each family of curvilinear coordinate lines, with
spacing in one cartesian coordinate being adjusted along one family of curvilinear lines, and
the other cartesian coordinate being adjusted along the other family. 

C. Moving finite elements 

          The moving finite element method of Miller (Ref. [49] -- [50]) is a
dynamically-adaptive finite element grid method in which the grid point locations are made
additional dependent variables in a Galerkin formulation. The solution is expanded in
piecewise linear functions, in terms of its values at the grid points and those of the grid point
locations on each element. The residual is then required to be orthogonal to all the basis
functions for both the solution and the grid. The grid point locations are thus obtained as part
of the finite element solution. An internodal viscosity is introduced to penalize the relative
motion between the grid points. This does not penalize the absolute motion of the points. An
internodal repulsive force was also introduced to maintain a minimum point separation. Both
of these effects are strong but of short range. A small long range attractive force is also
introduced to keep the nodes more equally spaced in the absence of solution gradients. Small
time steps are used in the initial development of the solution. The results show that the
oscillations typically associated with shocks with fixed grids are removed with the adaptive
grid, and that dispersion and dissipation are essentially eliminated. An order-of-magnitude
increase in stability was also realized over conventional methods. 

5. Correlations 

          The ultimate answer to numerical solution of partial differential equations may well be
dynamically-adaptive grids, rather than more elaborate difference representations and
solution methods. It has been noted by several authors that when the grid is right, most
numerical solution methods work well. Oscillations associated with cell Reynolds number
and with shocks in fluid mechanics computations have been shown to be eliminated with
adaptive grids. Even the numerical viscosity introduced by upwind differencing is reduced as
the grid adapts to regions of large solution variation. The results have clearly indicated that
accurate numerical solutions can be obtained when the grid points are properly located. 

          It is also clear that there is considerable commonality among the various approaches to
adaptive grids. All are essentially variational methods for the extremization of some solution
property. The explicit use of varational principles allows effective control to be exercised
over the conflicting requirements of smoothness, orthogonality, and concentration, and this



is probably the most promising approach in multiple dimensions. 

          The adaptive grid is most effective when it is dynamically coupled with the physical
solution, so that the solution and the grid are solved for together in a single continuous
problem. The most fruitful directions for future effort thus are probably in the development
and direct application of variational principles and in intimate coupling of the grid with the
physical solution. 

Exercises 

1. Show that Eq. (4) is the Euler equation for the minimization of the integrals (5), (6), (12),

and (13). Hint: For (6) note that in the term , w must be differentiated with
respect to  implicity, i.e., w =wxx . A similar situation occurs with (13). Note, however,

that implicit differentiation is not to be used in the term  for (5) or in  for (12). 

2. Show that Eq. (4) is also the Euler equation for the integrals 

 

3. With the weight function given by w(x)=sin( x/L), find the grid point locations from Eq.
(20). Note the concentration near x=L/2 where the weight function has its maximum value. 

4. For u(x)=(L/ )sin( x/L), obtain the point distribution from Eq. (20) using the weight
functions from Eq. (22), (23), (25), (26) and (27). Use = =1. Plot and compare. 

5. Show that the average of the squares of the diagonal lengths is . 

6. Verify the correspondence between the six grid properties listed on p. 395 with the six

listed on p. 396. Hint: Recall that dx= d . 

7. Verify that the one-dimensional forms of the first four properties on pp. 395-396 are as
stated on p. 396-397. Hint: In one dimension take 

 

8. Show that Eq. (59) is the Euler equation resulting from the integral given by Eq. (57). 



9. Verify Eq. (72) and (73). 

10. Show that with 

 

the generation system is 

 

Hint: Use Eq. (19) of Appendix B. 

11. Show that with  the generation system consists of Laplace equations
in the computational space. 

12. Show that with 

 

the generation system is 

 

13. Show that with , (i,j,k) cyclic, the generation system is 

 

Hint: Note that  and . 



APPENDIX A

DIFFERENTIAL-GEOMETRIC CONCEPTS ON SPACE CURVES AND SURFACES 

1. Theory of Curves 

          In this appendix we consider only those parts of the theory of curves in space which
are needed in the theory of surface geometry for the purpose of coordinate generation. Let C
be a curve in space whose parametric equation is given as 

 

where  is a parameter which takes values in a certain interval a    b. 

 

It is assumed that the real vector function ( ) is p  1 times continuously differentiable for
all values of  in the specified interval, and at least one component of the first derivative 

 

is different from zero. Note that the parameter  can be replaced by some other parameter,
say s, provided that ds/d   0. 

A. Tangent vector 

          Let us consider the arc length s as a parameter. Then the coordinates of two
neighboring points on the curve are (s) and (s+h). The vector (s) defined as 

 
(3) 



 

is the unit tangent vector at the point s on the curve. Since , we immediately see

that . 

          If the curve C is referred to a general coordinate system i, then its parametric
equations are given as 

 

In this case, using the chain rule of differentiation, we can write 

(4) 

where i are the covariant base vectors defined in Eq. (III-1). 

B. Principal normal 

          Since , a single differentiation with respect to s yields 

 

so that the vector d /ds is orthogonal to . The vector 

(5) 

is called the curvature vector. The unit principal normal vector is then defined as 

 (6) 



 

          The magnitude  and its reciprocal  = 1/k(s) are, respectively, the
curvature and the radius of curvature of the curve at the point under consideration. Both the
curvature vector and the principal normal are directed toward the center of curvature of the
curve at that point. 

C. Normal and osculating planes 

          The totality of all vectors which are bound at a point of the curve and which are
orthogonal to the unit tangent vector at that point lie in a plane. This plane is called the
normal plane. The plane formed by the unit tangent and the principal normal vector is called
the osculating plane. 

D. Binormal vector 

          A unit vector (s) which is orthogonal to both  and  is called the binormal vector.
Its orientation is fixed by taking , ,  to form a right-handed triad as shown below: 

 

(7) 

Note that for plane curves the binormal  is the constant unit vector normal to the plane,
and the principal normal is the usual normal to the curve directed toward the center of
curvature at that point. 

          The twisted curves in space have their binormals as functions of s. Because of twisting



a new quantity called torsion appears, which is obtained as follows. Consider the obvious
equations 

(8) 

Differentiating each equation with respect to s, we obtain 

(9a) 

(9b) 

Thus 

(9c) 

From (9a,c) we find that d /ds is a vector which is orthogonal to both  and . Thus
d /ds lies along the principal normal, 

 

To decide about the sign we take the cross product of  with d /ds and take it as a positive
rotation about : 

 

Thus 

(10a) 

and 

(10b) 



E. Serret-Frenet equations 

          A set of equations known as the Serret-Frenet equations, which are the intrinsic
equations of a curve, are the following. Differentiating the equation 

 

with respect to s, we have 

(11) 

Equations (6), (10) and (11) are the Serret-Frenet equations, and are collected below: 

(12a) 

(12b) 

(12c) 

For a plane curve,  = 0, so that 

(13) 

2. Geometry of Two-Dimensional Surfaces Embedded in E3 

          Before taking up the main subject of surface theory, it is important to clarify the
notations which are to be used in the ensuing development. 

          In an Euclidean E3, a set of rectangular cartesian coordinates (x,y,z) can always be
introduced. As before, in E3 a general curvilinear coordinate system will be denoted by i (i

= 1,2,3). With these curvilinear coordinates, a surface in E3 will be denoted by   =
constant, where  = 1,2,3. The following convention is adopted which maintains the

right-handedness of the two remaining current coordinates: On the surface   = constant,

the current coordinates are   ,  , where ( , , ) are cyclic. 

A. First fundamental form 

          Let us consider the surface   = constant. In this surface an element of length ds( )

is then given by 



(14) 

 

where the indices  and  will assume only the two values different from . Eq. (14) is
called the first fundamental form of a surface. 

B. Unit normal vector 

          The unit normal to the surface   = constant is defined as 

(15) 

where again ( , , ) are cyclic. 

 

C. Second fundamental form 

 ( )



          A plane containing the normal  ( ) to the surface at a point P cuts the surface in
different curves when rotated about the normal as an axis. Each curve so generated belongs
both the surface and to the space E3. A study of curvature properties of these curves reveals
the curvature properties of the surfaces in which they lie. We decompose the curvature

vector  at P of C, defined in Eq. (5), into a vector n normal to the surface and a vector

g tangential to the surface as shown below: 

 

Thus 

(16) 

The vector n is the normal curvature vector at the point P, and is given by 

(17) 

where  is its magnitude. To find an expression for  we consider the equation 

 

and differentiate it with respect to s (the arc length along the curve C) to have 

(18a) 

Also, differentiating the equation 

 

 



with respect to  , we get 

(18b) 

Further, 

(18c) 

Thus using Eq. (18b) and (18c) in (18a), we get 

(19) 

where 

(20) 

The two extreme values of  are called the principal curvatures kI and kII and their sum is

given by 

(21) 

The form 

(22) 

is called the second fundamental form. 

3. Christoffel Symbols 

          Certain 3-index symbols, known as the Christoffel symbols, show up in a natural way
when vectors or tensors are differentiated with respect to general coordinates introduced in a
space. Here, by ’space’ we mean a region in which arbitrary independent coordinates can be
introduced; the number of independent coordinates determines the dimensionsion of the
sapce. A space is termed Eulclidean when rectangular cartesian coordinates can be
introduced in it on a global scale. Examples are 2D or 3D regions in a plane or in a
rectangular box, respectively. It must, however, be pointed out that in an Euclidean space,
besides rectangular cartesian coordinates, any general coordinate system can be introduced



without disturbing the basic nature of the space itself. Since this book is mainly concerned
with the general coordinate systems in either 2D or 3D Euclidean spaces, or to 2D surfaces
embedded in a 3D space, we shall restrict our attention to the Christoffel symbols for space
and for surfaces only. 

A. Space Christoffel symbols 

          From the definition of the base vectors i, we first note the following result. For any

two indices i and k, 

 

Thus 

(23) 

We now select any three indices. say i,j,k, and consider the following three equations, 

 

Adding the second and third equations, and subtracting the first equation, while using Eq.
(23), we get 

(24) 

where 

(25) 

is called the Christoffel symbol of the first kind. 



          Eq. (24) implies that 

(26) 

Taking the dot product on both sides of Eq. (26) by l, we obtain 

(27) 

where 

(28) 

is called the Christoffel symbol of the second kind. 

          Eq.(27) implies that 

(29) 

It must be noted that both kinds of Christofiel symbols are symmetric in the first two indices,
viz., 

 

It is also easy to show, based on the definition of  that 

(30) 

The Christoffel symbols  can be computed by using the following expanded formulae: 

(31) 

where the indices l,i,j range from 1 to 3 in 3D, or from 1 to 2 in 2D. 

B. Christoffel symbols in a surface 

          The Christoffel symbols, (25) and (28) are applicable both to 2D and 3D Euclidean
spaces. In fact, if we take (25) and (28) as the definitions of some 3-index symbols without



any consideration of an Euclidean space, then they are also applicable to an n-dimensional
non-Euclidean space. 

          The Christoffel symbols for a 2D surface embedded in a 3D Euclidean space are
defined exactly as for any other space. Since in a surface only two independent coordinates
can be introduced, we again use the Greek indices to emphasize this point and write 

(32) 

(33) 

as the Christoffel symbols of the first and second kind respectively, of a surface. Here the
indices assume only two values. 

          An important point to note here is that for a 2D space the metric coefficients gij do not

depend on one of the cartesian coordinate, say z. On the other hand for a 2D space formed by
a surface in 3D Euclidean space the metric coefficients appearing in (32) and (33) depend on
all three cartesian coordinates. 

          Gauss indirectly introduced the definition of the Christoffel symobls by arguing that in
a surface the base vectors  ,   and the unit normal  (Eq. (15)) form a triad of

independent vectors. Thus any other vector in the surface can be presented as a linear
combination of ,  , . Following this argument, the second derivative of the position

vector  can be expressed as 

(34) 

which are called the formulae of Gauss. Thus, for a surface 3 = constant in which 1, 2

are the current coordinates, Eq. (34) is written as 

(35) 

where Eq. (35) represents the second derivatives 1
 

1,  
1
 

2,  
2
 

2. 



APPENDIX B 

EULER EQUATIONS 

1. Variational Principle in Transformed Space 

          Consider the integral 

 

where  is the covariant metric tensor, with elements gij defined by Eq. (III-5), and w( ) is

a weight function dependent on . 

A. Grid Generation System 

          The Euler equations then are given by 

 
(2) 

as has been noted. Since 

 

and F depends on (xi) j only through the elements of the metric tensor, , we have 

 

(3) 

where i is the unit vector in the xi-direction. Here the operation indicated by the notation, 

 i, is the simple replacement of j by i in F. Also, since F depends on j only

through , we have 



 

or 

 

Therefore, 

 

          Since F depends on  only through the weight function we have 

 

Then the Euler Equations can be written as 

 

or as the vector equation 

 
(6) 

(Note that the symmetric elements of the metric tensor, gjk = g kj, are to be left as distinct

elements in F until after the differentiation has been performed.) 

          Expanding the j-derivative, we then have 

 



But also 

 

so that 

 

          Thus we have the grid generation system, with  written as F’, 

 

(7) 

where 

 
(8) 

This is a quasi-linear, second-order partial differential equation for the cartesian coordinates 
. 

          If the weight function depends directly on , instead of on  in Eq. (1), then 

 in Eq. (2). Also in his case, the  that appears on p. 439 and in the
development that leads to Eq. (7) is replaced by simply w j . Then Eq. (7) is replaced by 



 

(9) 

for a weight function w( ) in Eq. (1). 

B. Two-Dimensional Examples 

          In two dimensions, the generation system (7) becomes (with 1 =  and 2 = ) 



 

If the weight function depends on , rather than on x, the terms  and  in Eq.
(10) become w  and w , respectively, and the last term, -- 1/2 F’ w, vanishes. 

          As an example, consider Fw from Eq. (XI-71). Then we have 



 

Then the generation system based on concentration by Eq. (7) is 

 

(11) 

          With F taken to be a measure of orthogonality, i.e., Fo from Eq. (XI-70), we have, 



 

The generation system based only on orthogonality then is 

 

(12) 

          Finally, for the smoothness integral, Eq, (XI-69), the derivatives needed are 

 



 

 

          The complete generation system is then obtained as the linear combination of the
concentration system, Eq. (11), the orthogonality system, Eq. (12), and the smoothness
system which is formed by substituting the above relations into the general equations (7).
The three-dimensional case follows in an analogous fashion. 



2. Variational Principle in Physical Space 

          With the variational problem formulated in the physical space, consider the integral 

 
(13) 

where  is the contravariant metric tensor, i.e., with elements gij from Eq. (III-37), and the

weight function is a function of . 

A. Grid Generation System 

          Then for the Euler equations, we have 

 

(14) 

Now, 

 

and F depends on ( i)xj
 only through . Then 

 

          Also, since F depends on i only through gik (k = 1,2,3) we have 

 



Therefore, 

 

          Also, since F depends on  only through the weight function, we have 

 

Then the Euler equations can be written 

 

or 

 

Now 

 

and 

 

Then 



 

or, 

 

Now 

 

and 

 

          Then the generation system is, with  written as F’, 

(15) 

where 



(16) 

This can also be written as 

(17) 

(18) 

Then 

(19) 

where Cik is the signed cofactor of Aki. 

          If the weight function in the integral (13) is a function of , rather than , then 
 in the Euler equation (14), and Eq. (15) is replaced by 

(20) 

In this case Si of Eq. (18) are redefined as 

(21) 



APPENDIX C 

CODE DEVELOPMENT AND COMPUTER EXERCISES 

1. Code Development Exercises 

1. Take the computational region to be a rectangle on which the curvilinear coordinates are
defined to be equal to the indices of the field arrays, i.e.,  = I and  = J, with x = X (I,J)
and y = Y (I,J). 

Make provision for reading in values of x and y on any segments of the boundary of the
computational region. Generate x and y in the interior by interpolating linearly between the
top and bottom boundaries. Plot the grid. 

2. Modify the code to allow horizontal (in the computational plane) interpolation, as well,
the choice being specified by input. 

3. Now add the choice of interpolation from the four corners (tensor product interpolation). 

4. Finally add the choice of transfinite interpolation. 

5. Generalize the interpolation to cubic Hermite interpolation, with the grid being orthogonal
at the boundary. 

6. Generalize the interpolation to use the hyperbolic tangent distribution function, rather than
being linear, with specified relative spacing on each end. 

7. Modify the code to provide for reading in x and y on any segment of any horizontal or
vertical line in the computational region. Also provide for the interpolation tion to be done
on any rectangular segment of the computational region (including a segment that is only a
line.) 

8. Add another field array TYPE (I,J) which is a flag to identify each point as one for which
the x,y values are (1) fixed, e.g., specified points on the physical boundary, (2) out of the
computation, e.g., points inside a slab, or (3) to be generated. Provide for the designation (1)
and (2) to be made by input for any rectangular segment of the computational region, the
default being to the designation (3). 

9. Modify the dimensions of the field arrays so that an extra layer of points surrounds the
computational region. Also add two more field arrays, ILINK (I,J) and JLINK (I,J). Provide
for any segments of any horizontal or vertical lines to be designated as image points in
TYPE by input, i.e., points for which the values of x and y are set equal to those at some
other point. Also provide for the indices of these other points to be put in ILINK and JLINK
by input. 

10. Add an elliptic generator, based on Laplace equation, to the code. Use the algebraic
generator (the interpolation) to provide the initial guess for point SOR iteration. 



11. Add control functions to the elliptic generator. Let the control function be evaluated on
the boundaries and interpolated into the field by transfinite interpolation. 

2. Computer Exercises 

1. Generate an algebraic grid between two concentric circles. Use linear interpolation
between the circles. 

2. Generate an algebraic grid between two ellipses, both of which are centered at the origin
but which may have different eccentricities, using interpolation between the ellipses.
Compare grids generated using linear and Hermite interpolation, the latter being orthogonal
at the boundaries. 

3. Generate a C-type algebraic grid for an ellipse inside an outer boundary formed by a
semicircle replacing one side of a rectangle: 

 

Compare (1) vertical interpolation in the computational region boundary, (2) horizontal
interpolation, (3) tensor product interpolation, and (4) transfinite interpolation, using linear
interpolation in each case. Note that (2) and (3) are totally unreasonable. 

4. Generate an algebraic grid for a circular simply-connected region by (1) unidirectional
interpolation, (2) tensor product interpolation, and (3) transfinite interpolation. Note that here
only (3)gives a reasonable grid. Compare linear and Hermite interpolation for (3). 

5. Repeat Exercise 4 with a triangular boundary. 

6. Using the boundary configuration of Exercise 3, but with a hyperbolic tangent point
distribution on the right-hand boundary of the physical region with smaller spacing at the
centerline than at the top and bottom. Compare algebraic grids generated using (1) linear
interpolation between the inner and outer boundaries, (2) nonlinear interpolation, based on
the hyperbolic tangent, between the inner and outer boundaries, (3) transfinite interpolation
with linear blending functions, and (4) transfinite interpolation using the boundary point
distribution (in terms of relative arc length) as the blending functions. Note that only (2) and
(4) preserve the boundary point distribution in the field. 

7. Generate an algebraic grid for a square inside a rectangle using linear interpolation
between the inner and outer boundaries. Note the propagation of the boundary slope
discontinuities into the field. Generate a grid from an elliptic generation system for the same
boundary point distribution and note the difference. 

8. Generate an algebraic grid for a square inside a circle using linear interpolation between



the inner and outer boundaries. Show that it is possible to position the points on the circle
such that the grid overlaps the corners of the square. Generate a grid from an elliptic
generation system for the same boundary point distribution and note the difference. 

3. Listing of Routine for Computer Exercises 

      SUBROUTINE INTERP 
      PARAMETER(NI=20,NJ=20,N=5) 
      COMMON/COORD/X(NI,NJ),Y(NI,NJ) 
      COMMON/CONST/CHOICE,IMAX,JMAX,NA,DS1,DS2 
      COMMON/ATTR/IAL(N),IAX(N),IAY(N),JAL(M),JAX(N),JAY(N) 
      COMMON/COEF/AI(N),BI(N),CI(N),DI(N),AJ(N),BJ(N) 
      COMMON/COEF/CJ(N),DJ(N) 
      DIMENSION P(NI,NJ),Q(NI,NJ),XX(0:NI,O:NJ),YY(0:MI,O:NJ) 
      DIMENSION X1(NI,NJ),X2(NI,NJ),Y1(NI,NJ),Y2(NI,NJ) 
      INTEGER CHOICE 
C  
C     BOUNDARY INTERPOLATION  
C  
C      X          X ARRAY OF XI-ETA COORDINATE  
C      Y          Y ARRAY OF XI-ETA COORDINATE  
C      IMAX       MAX. NUMBER OF GRID IN XI AXIS  
C      JMAX       MAX. NUMBER OF GRID IN ETA AXIS  
C      NA         MAX. NUMBER OF ATTRACTIONS  
C      DSl        SPECIFIED LENGTH OF INITIAL INTERVAL  
C      DS2        SPECIFIED LENGTH OF FINAL INTERVAL   
C      ATTR       ARRAY OF ATTRACTION TO LINES/POINTS  
C      COEF       ARRAY OF COEFFICIENT FOR ATTRACTION  
C  
C      CHOICE    
C         1       VERTICAL INTERPOLATION     
C         2       HORIZONTAL INTERPOLATION   
C         3       TENSOR PRODUCT INTERPOLATION   
C         4       TRANSFINITE INTERPOLATION      
C         5       HERMITE CUBIC INTERPOLATION    
C         6       HYPERBOLIC TANGENT INTERPOLATION    
C         7       ELLIPTIC GRID GENERATION ( SOR ITERATION )       
C         8       ATTRACTION TO COORDINATES           
C             
       IF(CHOICE.EQ.1) GO TO 100  
       IF(CHOICE.EQ.2) GO TO 200   
       IF(CHOICE.EQ.3) GO TO 300                      
       IF(CHOICE.EQ.H) GO TO 400 
       IF(CHOICE.EQ.5) GO TO 500                            
       IF(CHOICE.EQ.6) GO TO 600  
       IF(CHOICE.EQ.7) GO TO 700                                  
       IF(CHOICE.EQ.S) GO TO 800  
C  
C      **** VERTICAL INTERPOLATION ****   
C             
 100   DO 110 I 1,IMAX        
       DO 110 J 1,JMAX     
       RJ1=FLOAT(JMAX-J)/FLOAT(JMAX-1)  
       RJ2=FLOAT(J-1)/FLOAT(JMAX-1)     
C      *** ( EQ. 8-1 )  
       X(I,J)=RJ1*X(I,l)+RJ2*X(I,JMAX)            
 110   Y(I,J) RJl*Y(I.1)+RJ2*Y(I,JMAX)         
       RETURN                                     
C                                                  
C      **** HORIZONTAL INTERPOLATION ****             



C                                                  
 200   DO 210 I=l,JMAX                              
       DO 210 J=1,IMAX                            
       RI1=FLOAT(IMAX-I)/FLOAT(IMAX-1)            
       RI2=FLOAT(I-1)/FLOAT(IMAX-1)   
C      *** ( EQ. 8-1 )                                
       X(I,J)=RI1*X(1,J)+RI2*X(IMAX,J)            
 210   Y(I,J)=RI1*Y(1,J)+RI2*Y(IMAX,J)              
       RETURN                                     
C                                                  
C      **** TENSOR PRODUCT INTERPOLATION ****         
C                                                   
 300   DO 310 I=1,IMAX                              
       DO 310 J=l,JMAX                            
       RI1=FLOAT(IMAX-I)/FLOAT(IMAX-1)            
       RI2=FLOAT(I-1)/FLOAT(IMAX-1)               
       RJl=FLOAT(JMAX-J)/FLOAT(JMAX-1)            
       RJ2=FLOAT(J-1)/FLOAT(JMAX-1)               
C      *** ( EQ. 8-69 )                               
       X(I,J)=RI1*RJ1*X(1,1)+RI1*RJ2*X(1,JMAX) 
      *+RI2*RJ1*X(IMAX,1)+RI2*RJ2*X(IMAX,JMAX) 
       Y(I,J)=RI1*RJ1*Y(1,1)+RI1*RJ2*Y(1,JMAX) 
      *+RI2*RJ1*Y(IMAX,1)+RI2*RJ2*Y(IMAX,JMAX) 
 310   CONTINUE                                      
       RETURN                                      
C 
C      **** TRANSFINITE INTERPOLATION ****             
C 
 400   DO 410 I=l,IMAX                               
       DO 410 J=1,JMAX                             
       RI1=FLOAT(I-1)/FLOAT(IMAX-1)                
       RI2=FLOAT(IMAX-I)/FLOAT(IMAX-1)             
       X1(I,J)=RI1*X(IMAX,J)+RI2*X(1,J)            
 410   Yl(I,J)=RI1*Y(IMAX,J)+RI2*Y(1,J)              
       DO 420 I=1,IMAX 
       DO 420 J=1,JMAX 
       RJ1=FLOAT(J-1)/FLOAT(JMAX-1) 
       RJ2=FLOAT(JMAX-J)/FLOAT(JMAX-1) 
       X2(I,J)=RJ1*(X(I,JMAX)-X1(I,JMAX))+RJ2*(X(I,1)-X1(I,1)) 
 420   Y2(I,J)=RJ1*(Y(I,JMAX)-Y1(I,JMAX))+RJ2*(Y(I,l)-Y1(I,1)) 
C      *** ( EQ. 8-73 ) 
       DO 430 I=1,IMAX                                         
       DO 430 J=1,JMAX                                         
       X(I,J)=X1(I,J)+X2(I,J)                                  
 430   Y(I,J)=Y1(I,J)+Y2(I,J)    
       IF(CHOICE.NE.4) GO TO 740                               
       RETURN                                                  
C                                                               
C      ***  HERMITE CUBIC INTERPOLATION (ORTHOGONAL BOUNDARY) *** 
C                                                               
 500   DO 510 I=1,IMAX                                          
       DO 510 J=1,JMAX                                     
       XX(I,J)=X(I,J)                                 
 510   YY(I,J)=Y(I,J)                       
       DO 520 J=1,JMAX                      
       XX(O,J)=XX(IMAX-1,J)            
       YY(O,J)=YY(INAX-1,J)       
       XX(IMAX+1,J)=XX(2,J)  
 520   YY(IMAX+1,J)=YY(2,J)  
       DO 530 I=1,IMAX       
       DO 530 J=1,JMAX       



       RJJ=FLOAT(J-1)/FLOAT(JMAX-1)
C      *** ( EQ. 8-6 a and b, n=2 )   
       PHI1=(1.+2.*RJJ)*(1.-RJJ)*(1.-RJJ) 
       PHI2=(3.-2.*RJJ)*RJJ*RJJ           
       PSI1=(1.-RJJ)*(1.-RJJ)*RJJ         
       PSI2=(RJJ-1.)*RJJ*RJJ              
C  
C      ** CAL. NORMAL DERIV. **                
C  
       XXI1=.5*(XX(I+1,1)-XX(I-1,1))      
       XXI2=.5*(XX(I+1,JMAX)-XX(I-1,JMAX))
       YXI1=.5*(YY(I+1,1)-YY(I-1,1))      
       YXI2=.5*(YY(I+1,JMAX)-YY(I-1,JMAX))
       UNIT1=SQRT(XXI1*XXI1+YXI1*YXI1)    
       UNIT2=SQRT(XXI2*XXI2+YXI2*YXI2)  
C      *** ( EQ. 3-108 )                    
       XNl=-YXI1/UNIT1*DSl           
       XN2=-YXI2/UNIT2*DS2      
       YN1=XXI1/UNIT1*DSl  
       YN2=XXI2/UNIT2*DS2  
C      *** ( EQ. 8-5 )       
       XX(I,J)=PHI1*XX(I,l)+PHI2*XX(I,JMAX)+PSI1*XN1+PSI2*XN2 
 530   YY(I,J)=PHI1*YY(I,1)+PHI2*YY(I,JMAX)+PSI1*YN1+PSI2*YN2 
       DO 540 I=1,IMAX  
       DO 540 J=1,JMAX 
       X(I,J)=XX(I,J) 
 540   Y(I,J)=YY(I,J)   
       RETURN                                                
C 
C      **** HYPERBOLIC TANGENT SPACING INTERPOLATION **** 
C   
 600   TOL=1.0E-10    
C      *** ( EQ. 8-49, 50 and 51 
       A=SQRT(DS2/DS1)                                       
       B=1./(FLOAT(JMAX-1)*SQRT(DS1*DS2))                    
C      *** INITIAL GUESS BY SERIES EXPANSION                    
       DELTA=SQRT(6.*(B-1.))                
       DO 610 IT=1,20                    
       RESID=SINH(DELTA)/(DELTA*B)-1.         
       IF(ABS(RESID)LT.TOL) GO TO 630      
 610   CALL AITKEN(DELTA,RESID,DELTO,RO,RSO)  
       PRINT 620, RESID,DELTA,IT-1  
 620   FORMAT(//, 5X, ’DELTA IS NOT CONVERGE ?’, 5X, 2E15.5, 
      *5X, I3, //)                   
       GO TO 660                   
 630   CONTINUE                     
C      *** ( EQ. 8-52, 53 and 54 )    
       DO 650 I=1,IMAX             
       DO 650 J=2,JMAX-1           
       RATIO FLOAT(J-1)/FLOAT(JMAX-1)  
       U=.5*(1.+TANH(DELTA"(RATIO-.5))/TANH(.5*DELTA)) 
       S=U/(A+(1.-A)*U)     
       X(I,J)=X(I,1)+(X(I,JMAX)-X(I,1))*S   
 650   Y(I,J)=X(I,1)+(Y(I,JMAX)-Y(I,1))*S    
 660   RETURN    
C   
C      **** ELLIPTIC GRID GENERATION ( SOR ITERATION ) ****  
C      *** CAL. P AND Q ON THE BOUNDARY **   
C   
 700   DO 710 I=1,IMAX    
       DO 710 J=1,JMAX   



       XXI=.5*(X(I+1,J)-X(I-1,J))       
       XXIXI=X(I+1,J)-2.*X(I,J)+X(I-1,J)  
       XETA=.5*(X(I,J+1)-X(I,J-1))    
       XETA2=X(I,J+1)-2.*X(I,J)+X(I,J-1)  
       YXI=.5*(X(I+1,J)-Y(I-1,J))         
       XXIXI=Y(I+1,J)-2.*X(I,J)+Y(I-1,J)  
       YETA=.5*(Y(I,J+1)-Y(I,J-1))        
       YETA2-Y(I,J+1)-2.*Y(I,J)+Y(I,J-1)  
       IF(ABS(XETA2).LT.10E-3) XETA2=0.   
       IF(ABS(YETA2).LT.10E-3) YETA2=0.   
       RXI2=XXI*XXI+YXI*YXI  
       RETA2=XETA*XETA+YETA*YETA                               
C      *** ( EQ. 8-70 )   
       P(I,J)=(XXI*XXIXI+XXI*YXIXI)/RXI2     
       Q(I,J)=(XETA*XETA2+YETA*YETA2)/RETA2  
 710   CONTINUE   
C  
C      **    INTERPOLATE P AND Q BETWEEN BOUNDARY **  
C            P : VERTICAL, Q : HORIZONTAL        
C  
       DO 720 I=1,IMAX       
       DO 720 J=l,JMAX          
       RJ1=FLOAT(JMAX-J)/FLOAT(JMAX-1)             
       RJ2=FLOAT(J-1)/FLOAT(JMAX-1)                   
       RI1=FLOAT(IMAX-I)/FLOAT(IMAX-1)                   
       RI2=FLOAT(I-1)/FLOAT(IMAX-1)                         
       P(I,J)=RJl*P(I,l)+RJ2*P(I,JMAX)                         
       Q(I,J)=RI1*Q(1,J)+RI2*Q(IMAX,J)                         
 720   CONTINUE 
C  
C      **    INITIAL GUESS WITH TRANSFINITE INTERPOLATION **  
C      
       GO TO 400  
 740   CONTINUE  
C  
C      *** ITERATION ( SOR ) ***  
C  
       ITMAX=200 
       TOL=10.E-5                                              
       W=1.8                                                   
       DO 760 IT=1,ITMAX                                       
       ERRX=0.                                                 
       ERRY=0.                                                 
       DO 750 J=2,JMAX-1                                       
       DO 750 I=2,IMAX-1                                       
       XXI=.5*(X(I+1,J)-X(I-1,J))                              
       YXI=.5*(Y(I+1,J)-Y(I-1,J))                      
       XXIXI=X(I+1,J)+X(I-1,J)                                 
       YXIXI=Y(I+1,J)+Y(I-1,J)                                 
       XETA=.5*(X(I,J+1)-X(I,J-1))                             
       YETA .5*(Y(I,J+1)-Y(I,J-1))                             
       XXIETA=.25*(X(I+1,J+1)-X(I+1,J-1)-X(I-1,J+1)+X(I-1,J-l))
       YXIETA=.25*(Y(I+1,J+1)-Y(I+1,J-1)-Y(I-1,J+1)+Y(I-1,J-1))
       XETA2=X(I,J+1)+X(I,J-1)                                  
       YETA2=Y(I,J+1)+Y(I,J-1)                                  
C      *** ( EQ. 6-18 and 6-20 )    
       G11=XXI*XXI+YXI*YXI                                      
       G22=XETA*XETA+YETA*YETA 
       G12=XXI*XETA+YXI*YETA 
       XTEMP=.5*(G22*(P(I,J)*XXI+XXIXI)+G11*(Q(I,J)*XETA+XETA2) 
      *-2.*G12*XXIETA)/(G11+G22)                                     



       YTENP=.5*(G22*(P(I,J)*YXI+YXIXI)+G11*(Q(I,J)*YETA+YETA2) 
      *-2.*Gf2*YXIETA)/(Gll+G22)                                    
       XTENP=W*XTEMP+(1.-W)*X(I,J)                                  
       YTEMP=W*YTEMP+(1.-W)*Y(I,J)                              
       ERRX=AMAXO(ERRX,ABS(XTEMP-X(I,J)))                           
       ERRY=AMAXO(ERRY,ABS(YTEMP-Y(I,J)))                           
       X(I,J)=XTEMP                                                 
       Y(I,J)=YTEMP                                                 
 750   CONTINUE            
       IF(ERRX.LT.TOL.AND.ERRY.LT.TOL) GO TO 78O                    
 760   CONTINUE                 
       PRINT 770,ERRX,ERRY,IT-1                                     
 770   FORMAT(//, 5X, ’X AND Y ARE NOT CONVERGE ?’, 2E15.5,         
      *5X, I5, //)                                                  
 780   CONTINUE 
       IF(CHOICE.EQ.8) GO TO 830                                    
       RETURN   
C 
C      **** ATTRACTION TO COORDINATE LINE/POINT **** 
C 
 800   DO 810 I=1,IMAX  
       DO 810 J=1,JMAX                                              
       P(I,J)=0.                                            
 810   Q(I,J)=0.    
       DO 820 NS=1,NA                                      
       DO 820 I=1,IMAX                                  
       DO 820 J=1,JMAX                               
       XL=FLOAT(I-IAL(NS))                            
       XI=FLOAT(I-IAX(NS))                         
       XJ=FLOAT(J-IAY(NS))                      
       YL=FLOAT(J-JAL(NS))                   
       YI=FLOAT(I-JAX(NS))               
       YJ=FLOAT(J-JAY(NS))            
C      *** ( EQ. 6-30 )         
       P(I,J)=P(I,J)-AI(NS)*(XL/ABS(XL))*EXP(-CI(NS)*ABS(XL))  
      *-BI(NS)*(XI/ABS(XI))*EXP(-DI(NS)*SQRT(XI*XI+XJ*XJ))     
       Q(I,J)=Q(I,J)-AJ(NS)*(YL/ABS(YL))*EXP(-CJ(NS)*ABS(YL))  
      *-BJ(NS)*(YJ/ABS(YJ))*EXP(-DJ(NS)*SQHT(YI*YI+YJ*YJ))     
 820   CONTINUE  
       GO TO 400 
 830   CONTINUE  
       RETURN  
       END  

4. Examples for Computer Exercises 



 



 



 



REFERENCES 
 
1. Thompson, Joe F., Warsi, Z. U. A. and Mastin, C. W., "Boundary-Fitted Coordinate Systems for Numerical Solution 
of Partial Differential Equations -- A Review", Journal of Computational Physics, 47, 1, 1982.  
2. Thompson, Joe F. (Ed.) Numerical Grid Generation, North-Holland 1982. (Also published as Vol. 10 11 of Applied 
Mathematics and Computation, 1982).  
3. Smith, Robert E., (Ed), Numerical Grid Generation Techniques, NASA Conference Publication 2166, NASA 
Langley Research Center, 1980.  
4. Ghia, K. N. and Ghia, U., (Ed), Advances in Grid Generation, FED-Vol. 5, ASME Applied Mechanics, 
Bioengineering, and Fluids Engineering Conference, Houston, 1983.  
5. Thompson, Joe F., "Grid Generation Techniques in Computational Fluid Dynamics", AIAA Journal, 22, 1505, 1984.  
6. Halsey, Douglas, "Conformal Grid Generation for Multi-element Airfoils", Numerical Grid Generation, Ed. Joe F. 
Thompson, North-Holland, 585, 1982.  
7. Ives, David C., "Conformal Grid Generation", Numerical Grid Generation, Ed. Joe F. Thompson, North-Holland, 
107, 1982.  
8. Smith, Robert E., "Three-Dimensional Algebraic Grid Generation", AIAA-83-1904, AIAA 6th Computational Fluid 
Dynamics Conference, Danvers, Massachusetts, 1983.  
9. Thompson, J. F. and Warsi, Z. U. A., "Three-Dimensional Grid Generation from Elliptic Systems", AIAA-83-1905, 
AIAA 6th Computational Fluid Dynamics Conference, Danvers, Massachussetts, 1983.  
10. Coleman, Roderick M., "Generation of Boundary-Fitted Coordinate Systems Using Segmented Computational 
Regions", Numerical Grid Generation, Ed. Joe F. Thompson, North-Holland, 633, 1982.  
11. Rubbert, P. E. and Lee, K. D., "Patched Coordinate Systems", Numerical Grid Generation, Ed. Joe F. Thompson, 
North-Holland, 235, 1982.  
12. Thomas, P. D., "Numerical Generation of Composite Three-Dimensional by Quasilinear Elliptic Systems", 
Numerical Grid Generation, Ed. Joe F. Thompson, North-Holland, 667, 1982.  
13. Miki, Kazuyoshi and Takagi, Toshiyuki, "A Domain Decomposition and Overlapping Method for the Generation of 
Three-Dimensional Boundary-Fitted Coordinate Systems", Journal of Computational Physics, 53, 319, 1984.  
14. Thompson, Joe F., unpublished research, 1984.  
15. Warsi, Z. U. A., "Tensors and Differential Geometry Applied to Analytic and Numerical Coordinate Generation", 
MSUU-EIRS-81-1, Mississippi State University, 1981.  
16. Eiseman, P. R., "Geometric Methods in Computational Fluid Dynamics", ICASE 80-11, NASA Langley Research 
Center, 1980.  
17. Thompson, Joe F. and Mastin, C. Wayne, "Order of Difference Expressions on Curvilinear Coordinate Systems", 
Advances in Grid Generation, FED-Vol. 5, Ed. K. N. Ghia and U. Ghia, ASME Applied Mechanics, Bioengineering, 
and Fluids Engineering Conference, Houston, 1983.  
18. Vinokur, Marcel, "On One-Dimensional Stretching Functions for Finite-Difference Calculations", Journal of 
Computational Physics, 50, 215, 1983.  
19. Warsi, Z. U. A., "Basic Differential Models for Coordinate Generation", Numerical Grid Generation, Ed. Joe F. 
Thompson, North-Holland, 41, 1982.  
20. Mastin, C. Wayne and Thompson, Joe F., "Elliptic Systems and Numerical Transformations", Journal of 
Mathematical Analysis and Applications, 62, 52, 1978.  
21. Mastin, C. Wayne and Thompson, Joe F., "Transformationof Three-Dimensional Regions onto Rectangular 
Regions by Elliptic Systems", Numerische Mathematik, 29, 397, 1978.  
22. Mastin, C. Wayne and Thompson, Joe F., "Discrete Quasiconformal Mappings", Journal of Applied Mathematics 
and Physics (ZAMP), 29, 1978.  
23. Mastin, C. W. and Thompson, J. F., "Quasiconformal Mappings and Grid Generation", SIAM Journal On Scientific 
and Statistical Computing, 5, 305, 1984.  
24. Sorenson, R. L., "A Computer Program to Generate Two-Dimensional Grids About Airfoils and Other Shapes by 
the Use of Poisson's Equations", NASA Ames Research Center, NASA TM 81198, 1980.  
25. Sorenson, Reese L., "Grid Generation by Elliptic Partial Differential Equations for a Tri-Element Augmentor-Wing 
Airfoil", Numerical Grid Generation, Ed. Joe F. Thompson, North-Holland, 653, 1982.  
26. Sorenson, R. L. and Steger, J. L., "Grid Generation in Three Dimensions by Poisson Equations with Control of Cell 
Size and Skewness at Boundary Surfaces", Advances in Grid Generation, FED-Vol. 5, Ed. K. N. Ghia and U. Ghia, 
ASME Applied Mechanics, Bioengineering, and Fluids Engineering Conference, Houston, 1983.  
27. Warsi, Z. U. A., "A Note on the Mathematical Formulation of the Problem of Numerical Coordinate Generation", 
Quarterly of Applied Mathematics, 41, 221, 1983.  



28. Steger, J. L. and Chaussee, D. S., "Generation of Body Fitted Coordinates Using Hyperbolic Partial Differential 
Equations", SIAM J. Sci. Stat. Comput. 1, 431, 1980.  
29. Steger, J. L. and Sorenson, R. L., "Use of Hyperbolic Partial Differential Equations to Generate Body Fitted 
Coordinates", Numerical Grid Generation Techniques, Ed. Robert E. Smith, NASA-CP-2166, 463, 1980.  
30. Nakamura, S., "Marching Grid Generation Using Parabolic Partial Differential Equations", Numerical Grid 
Generation, Ed. Joe F. Thompson, North-Holland, 775, 1982.  
31. Smith, Robert E., "Algebraic Grid Generation", Numerical Grid Generation, Ed. Joe F. Thompson, North Holland, 
137, 1982.  
32. Eiseman, P. R., "A Multi-Surface Method of Coordinate Generation", Journal of Computational Physics, 33, 118, 
1979.  
33. Eiseman, Peter R. and Smith, Robert, "Mesh Generation Using Algebraic Techniques", Numerical Grid Generation 
Technigues, Ed. Robert E. Smith, NASA CP-2166, 1980.  
34. Eiseman, Peter R., "Automatic Algebraic Coordinate Generation", Numerical Grid Generation, Ed. Joe F. 
Thompson, North-Holland, 447, 1982.  
35. Eiseman, Peter R., "Coordinate Generation with Precise Controls Over Mesh Properties", Journal of Computational 
Physics, 47, 331, 1982.  
36. Eiseman, Peter R., "High Level Continuity for Coordinate Generation with Precise Controls", Journal of 
Computational Physics, 47, 352, 1982.  
37. Eiseman, Peter R. "Grid Generation for Fluid Mechanics Computations", Annual Review of Fluid Mechanics, Vol. 
17, 1985.  
38. Eiseman, Peter R. unpublished result referred to in Ref. [33].  
39. Roberts, A., "Automatic Topology Generation and Generalized B-Spline Mapping", Numerical Grid Generation, 
Ed. Joe F. Thompson, North-Holland, 465, 1982.  
40. Gordon, William J. and Thiel, Linda C., "Transfinite Mappings and Their Application to Grid Generation", 
Numerical Grid Generation, Ed. Joe F. Thompson, North-Holland, 171, 1982.  
41. Gordon, W. J. "Blending Function Methods of Bivariate and Multivariate Interpolation", SIAM J. of Numerical 
Analysis, 8, 158, 1971.  
42. Eiseman, Peter R., "Orthogonal Grid Generation", Numerical Grid Generation, Ed. Joe F. Thompson, North-
Holland, 193, 1982.  
43. Ives, D. C. and Siddons, W. D., "Orthogonal Grid Generation", AIAA-84-1248, AIAA/SAE/ASME 20th Joint 
Propulsion Conference, Cincinnati, 1984.  
44. Kober, H., Dictionary of Conformal Representations, Dover, New York, 1952.  
45. Thompson, Joe F., "A Survey of Dynamically-Adaptive Grids in the Numerical Solution of Partial Differential 
Equations", to appear in Journal of Numerical Mathematics, 1984. (also AIAA-84-1606, AIAA Fluid and Plasma 
Dynamics Conference, Snowmass, Colorado, 1984).  
46. Dwyer, H. A., Smooke, Mitchell, D. and Kee, Robert J., "Adaptive Gridding for Finite Difference Solutions to Heat 
and Mass Transfer Problems", Numerical Grid Generation, Ed. Joe F. Thompson, North-Holland, 339, 1982.  
47. Brackbill, J. U. and Saltzman, J. S., "Adaptive Zoning for Singular Problems in Two Dimensions", Journal of 
Computational Physics, 46, 342, 1982.  
48. Anderson, Dale, A., and Rai, M. M., "The Use of Solution Adaptive Grids in Solving Partial Differential 
Equations", Numerical Grid Generation, ed. Joe F. Thompson, North-Holland, 317. 1982.  
49. Miller, Keith and Miller, Robert N., "Moving Finite Elements. I", SIAM Journal of Numerical Analysis, 18, 1019, 
1981.  
50. Miller, Keith, "Moving Finite Elements. II", SIAM Journal of Numerical Analysis, 18, 1033, 1981.  
51. Weatherill, N. C. and Forsey, C. R. "Grid Generation and Flow Calculations for Complex Aircraft Geometries 
Using a Multi-Block Scheme", AIAA-84-1665, AIAA 17th Fluid Dynamics, Plasma Dynamics, and Lasers 
Conference, Snowmass, CO, 1984.  
52. Rai, N. M. "A Conservative Treatment of Zonal Boundaries for Euler Equations Calculations", AIAA-84-0164, 
AIAA 22nd Aerospace Sciences Meeting, Reno, NV, 1984.  
53. Hessenius, K. A. and Rai, M. M., "Applications of a Conservative Zonal Scheme to Transient and Geometrically 
Complex Problems", AIAA-S4-1532, AIAA 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference, 
Snowmass, CO, 1984.  
 

GRID  ILLUSTRATION  REFERENCES 
 
The grids used for illustration are drawn from those in the works cited here:  



 
Page  
20 Anderson, 0. L., Davis, R. T., Hankins, G. B., and Ewards, D. E., "Solution of Viscous Internal Flows on    
Curvilinear Grids Generated by the Schwarz-Christoffel Transformation." in Ref. [2].  
21 Kumar, D., Hester, L. R., and Thompson, J. F., "Development of Partial Channel Flow for Arbitrary Input Velocity 
Distribution Using Boundary-Fitted Coordinate Systems", in Nonsteady Fluid Dynamics, ASME Winter Annual 
Meeting, San Francisco, 53, 1978.  
22, McWhorter, John C., "Solid Mechanics Applications of Boundary Fitted Coordinate Systems", in Ref. [2].  
23  
24, Lee, K. D., Huang, Yu, N. J., and Rubbert, P. E., "Grid Generation for General Three-Dimensional Configurations", 
in Ref. [3].  
25  
27, Coleman, Roderick M., "Generation of Boundary-Fitted Coordinate Systems Using Segmented Computational 
Regions", in Ref. [2].  
28  
29 Thompson, J. F., Thames, F. C., and Mastin, C. W., "'TOMCAT' -- A Code for Numerical Generation of Boundary- 
Fitted Curvilinear Coordinate Systems on Fields Containing any Number of Arbitrary Two-Dimensional Bodies", 
Journal of Comptational Physics, 245, 1977.  
30 Reddy, R. N. and Thompson, Joe F., "Numerical Solution of Incompressible Navier-Stokes Equations in the 
Integro-Differential Formulation Using Boundary-Fitted Coordinate Systems", Proceedings of the AIAA 3rd 
Computational Dynamics Conference, Albuquerque, 1977.  
33 Thompson, J. F., "A Boundary-Fitted Coordinate Code for General Two-Dimensional Regions with Obstacles and 
Boundary Intrusions", Technical Report E-83-8, U.S. Army Engineer Waterways Experiment Station, Vicksburg, 
Mississippi, 1983.  
34 Thompson, J. F., Thames, F. C., and Mastin, C. W., "'TOMCAT' -- A code for Numerical Generation of Boundary-
Fitted Curvilinear Coordinate Systems on Fields Containing any Number of Arbitrary Two-Dimensional Bodies", 
Journal of Comptuational Physics, 245, 1977.  
35, Thompson, J. F., Thames, F. C., and Mastin, C. W., "'TOMCAT' -- A Code for Numerical Generation of Boundary-
Fitted Curvilinear Coordinate Systems on Fields Containing any Number of Arbitrary Two-Dimensional Bodies", 
Journal of Computational Physics, 245, 1977.  
37  
38 Halsey, Douglas, "Conformal Grid Generation for Multi-Element Airfoils", in Ref. [2].  
39 Long, W. S., "Two-Body Coordinate System Generation Using Body-Fitted Coordinate System and Complex 
Variable Transformation", M.S. thesis, Mississippi State University, 1977.  
40 Coleman, R. M. "NUMESH: A Computer Program to Generate Finite Difference Meshes for Arbitrary Double-
Connected Two-Dimensional Regions," CMLD-77-05, David W. Taylor Naval Ship Research and Development 
Center, 1977.  
45 Haussling, Henry J., "Solution of Nonlinear Water Wave Problems Using Boundary-Fitted Coordinate Systems," in 
Ref. [2].  
48 Sorenson, Reese L., "Grid Generation by Elliptic Partial Differential Equations for a Tri-Element Augmentor-Wing 
Airfoil," in Ref. [2].  
52 Thompson, Joe F., General Curvilinear Coordinate Systems," in Ref. [2].  
53a Chen, Brian C-J, Sha, W. F., Doria, M. L., Schmidt, R. C., and Thompson, J. F., "BODYFIG-IFE: A Computer 
Code for the Three-Dimensional Steady-State/Transient Single-Phase Rod-Bundle Thermal-Hydraulic Analysis, 
NUREG/CR-1874, ANL-80-127, Argonne National Laboratory, 198O.  
54 Dulikravich, Djordje S., "Fast Generation of Three-Dimensional Computational Boundary-Conforming Periodic 
Grids of C-Type," in Ref. [2].  
54 Rai Man Mohan, "An Implicit, Conservative, Zoned-Boundary Scheme for Euler Equation Calculations", AIAA-85-
0488, AIAA 23rd Aerospace Sciences Meeting, Reno, 1985.  
55 Ives, David D., "Conformal Grid Generation," in Ref. [2].  
55 Rai, Man Mohan, "A Relaxation Approach to Patched-Grid Calculations with the Euler equations". AIAA-85-0295, 
AIAA 23rd Aerospace Sciences Meeting, Reno, 1985.  
56 Eiseman, P. R., "Alternating Direction Adaptive Grid Generation", AIAA-83-1937,AIAA 6th Computational Fluid 
Dynamics Conference, Danvers, Mass. 1983.  
57 Nakahashi, Kazuhiro and Deiwert, George S., "A Practical Adaptive Grid Method for Complex Fluid-Flow 
Problems", NASA TM 85989, NASA Ames Research Center, 1984.  



57a Jain, Sunil K., "Embedded-Grid Generation with Complete Continuity Across Interfaces for Multi-Element 
Airfoils." ASE 84-270, Ph-D Dissertation, Mississippi State University, 1984.  
57b Sorenson, Reese L., "Grid Generation by Elliptic Partial Differential Equations for a Tri-Element Augmentor-Wing 
Airfoil," in Ref. [2].  
57c Rubbert, P. E. and Lee, K. D., "Patched Coordinate Systems," in Ref. [21.  
58 Halsey, Douglas, "Conformal Grid Generation for Multi-element Air foils," in Ref. [2].  
65a Jain, Sunil K., "Embedded-Grid Generation With Complete Contintuity Across Interfaces for Multi-Element 
Airfoils." ASE 84-270, Ph-D Dissertation, Mississippi State University, 1984.  
65b Sorenson, Reese L., "Grid Generation by Elliptic Partial Differential Equations for a Tri-Element Augmentor-Wing 
Airfoil," in Ref. [2].  
69a Miki, Kazuyoshi and Takagi, Toshiyuki, "A Domain Decomposition and Overlapping Method for the Generation 
of Three-Dimensional Boundary-Fitted Coordinate Systems", Journal of Computational Physics 53, 319, 1984.  
69b Steger, J. L., Dougherty, F. C., and Benek, J. A., "A Chimera Grid Scheme," Advances in Grid Generation, ASME 
Fluids Engineering Conference, Houston, June 1983.  
190a Johnson, Billy H. and Thompson, Joe F., "A Discussion of Boundary-Fitted Coordinate Systems and Their 
Applicability to the Numerical Modeling of Hydraulio Problems," Miscellaneous Paper H-78-9, U. S. Army Engineer 
Waterways Experiment Station, Vicksburg, Mississippi, 1978.  
190b Chae, Yeon Seok, "An Investigation of a Navier-Stokes Solution for Quasi-Three-Dimensional flow". ASE 84-
282, M.S. thesis, Mississippi State University, 1984.  
193 Thompson, J. F., Thames, F. C., and Mastin, C. W., "Automatic Numerical Generation of Body-Fitted Curvilinear 
Coordinate System for Fields Containing any Number of Arbitrary Two-Dimensional Bodies," Journal of 
Computatonal Physics, 15, 299, 1974.  
194 Thompson, J. F., Thames, F. C., and Mastin, C. W., "TOMCAT" -- A Code for Numerical Generation of 
Boundary-Fitted Curvilinear Coordinate Systems on Fields Containing any Number of Arbitrary Two- Dimensional 
Bodies," Journal of Computational Physics, 245, 1977.  
196 Shanks, S. P. and Thompson, J. F., "Numerical Solution of the Navier-Stokes Equation for 2D Hydrofoil in or 
Below a Free Surface," Proceedings of the 2nd International Conference on Numerical Ship Hydrodynamics, Berkeley, 
1977.  
208 Thompson, Joe F., General Curvilinear Coordinate Systems," in Ref. [2].  
232a Sorenson, Reese L., "Grid Generation by Elliptic Partial Differential Equations for a Tri-Element Augmentor-
Wing Airfoil," in Ref. [2].  
232b Sorenson, R. L., "A Computer Program to Generate Two-Dimensional Grids About Airfoils and Other Shapes by 
the Use of Poisson's Equations," NASA TM 81198, 1980.  
350a Ives, David C., "Conformal Grid Generation," in Ref. [2].  
350b Dulikravich, Djordje S., "Fast Generation of Three-Dimensional Computational Boundary-Conforming Periodic 
Grids of C-Type," in Ref. [2].  
383 Dywer, H. A., Smooke, Mitchell, D. and Kee, Robert J., "Adaptive Gridding for Finite Difference Solutions to 
Heat and Mass Transfer Problems", Numerical Grid Generation, Ed. Joe F. Thompson, North-Holland, 339, 1982.  
388, Dwyer, H. A., Smooke, Mitchell, D. and Kee, Robert J., "Adaptive Gridding for Finite Difference Solutions to 
Heat and Mass Transfer Problems," in Ref. [2].  
389a  
389b Gnoffo, Peter A., "A Vectorized Finite-Volume, Adaptive Grid Algorithm for Navier-Stokes Calculations," in 
Ref. [2].  
390 Nakamura, S., "Adaptive Grid Relocation Algorithm for Transonic Full Potential Calculators Using One-
Dimensional or Two-Dimensional Diffusion Equations," Advances in Grid Generation, ASME Fluids Engineering 
Conference, Houston, 1983.  
411, Saltzman, Jeffery and Brackbill, Jeremiah, "Applications and Generalizations of Variational Methods for 
Generating Adaptive Meshes," in Ref. [2].  
412  
350a Ives, David C., "Conformal Grid Generation," in Ref. [2].  
350b Dulikravich, Dgordge S., "Fast Generation of Three-Dimensional Computational Boundary-Conforming Periodic 
Grids of C-Type," in Ref. [2].  
413 Bell, J. B. and Shulin, G. R., "An Adaptive Grid Finite Difference Method for Conservation Laws", Journal of 
Computational Physics, 52, 569, 1983.  


