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PREFACE

Numerical grid generation has now become afairly common tool for usein the
numerical solution of partia differential equations on arbitrarily shaped regions. Thisis
especially true in computational fluid dynamics, from whence has come much of the impetus
for the devel opment of this technique, but the procedures are equally applicableto all
physical problems that involve field solutions. Numerically generated grids have provided
the key to removing the problem of boundary shape from finite difference methods, and
these grids also can serve for the construction of finite element meshes. With such grids all
numerical algorithms, finite difference or finite element, are implemented on a square grid in
arectangular computational region regardless of the shape and configuration of the physical
region. (Finite volume methods are effectively atype of conservative finite difference
method on these grids.)

In this text, grid generation and the use thereof in numerical solutions of partia
equations are both discussed. The intent was to provide the necessary basic information,
from both the standpoint of mathematical background and from that of coding
implementation, for numerical solutions of partial differential equations to be constructed on
general regions. Since these numerical solutions are ultimately constructed on a square grid
in arectangular computational region, any solution algorithm that can treat equations with
variable coefficientsis basically applicable, and therefore discussion of specific algorithmsis
left to classical texts on the numerical solution of partial differential equations.

The area of numerical grid generation isrelatively young in practice, although its roots
in mathematics are old. This somewhat eclectic areainvolves the engineer’ s feel for physical
behavior, the mathematician’ s understanding of functional behavior, and alot of
imagination, with perhaps alittle help from Urania. The physics of the problem at hand must
ultimately direct the grid points to congregate so that a functional relationship on these
points can represent the physical solution with sufficient accuracy. The mathematics controls
the points by sensing the gradients in the evolving physical solution, evaluating the accuracy
of the discrete representation of that solution, communicating the needs of the physicsto the
points, and by providing mutual communication among the points as they respond to the
physics.

Numerical grid generation can be thought of as a procedure for the orderly distribution
of observers, or sampling stations, over aphysical field in such away that efficient
communication among the observersis possible and that all physical phenomena on the
entire continuous field may be represented with sufficient accuracy by this finite collection
of observations. The structure of an intersecting net of families of coordinate lines allows the
observers to be readily identified in relation to each other, and results in much more ssimple
coding than would the use of atriangular structure or arandom distribution of points. The
grid generation system provides some influence of each observer on the others, so that if one
moves to get into a better position for observation of the solution, its neighbors will follow to
some extent in order to maintain smooth coverage of the field.

Another way to think of the grid is as the structure on which the numerical solution is
built. Asthe design of the lightest structure requires consideration of the load distribution, so
the most economical distribution of grid points requires that the grid be influenced by both
the geometric configuration and by the physical solution being done thereon. In any case,
since resources are limited in any numerical solution, it isthe function of the numerical grid
generation to make the best use of the number of points that are available, and thus to make
the grid points an active part of the numerical solution.



Thisisarapidly developing area, being now only about ten years old, and thusiis still
in search of new ideas. Therefore no book on the subject at this time could possibly be
considered to be definitive. However, enough material has now accumulated in the literature,
and enough basic concepts have emerged, that a fundamental text is now needed to meet the
needs of the rapidly expanding circle of interest in the area. It is with the knowledge of both
these needs and these limitations that this text has been written. Some of the techniques
discussed will undoubtedly be superceded by better ideas, but the fundamental concepts
should serve for understanding, and hopefully also for some inspiration, of new directions.
The only background assumed of the student is a senior-level understanding of numerical
analysis and partial differential equations. Concepts from differential geometry and tensor
analysis are introduced and explained as needed.

Numerical grid generation draws on various areas of mathematics, and emphasis
throughout is placed on the devel opment of the relations involved, as well as on the
techniques of application. Thistext isintended to provide the student with the understanding
of both the mathematical background and the application techniques necessary to generate
grids and to develop codes based on numerically generated grids for the numerical solution
of partial differential equations on regions of arbitrary shape.

The writing of this text has been a cooperative effort over the last two years, spurred
on by the institution of a graduate course in numerical grid generation, as well as an annual
short course, at Mississippi State. The students in both of these courses have contributed
significantly in revising the text asit evolved. The last appendix is the result of aclass
assignment prepared by Col. Hyun Jin Kim, graduate student in the computational fluid
dynamics program, who also compiled the index. Our colleage, Dr. Helen V.
McConnaughey of Mathematics contributed significantly through continual discussions and
wrote most of Chapter 1V.

We are indebted to alarge number of former students and fellow researchers around
the world for the development of the ideas that have crystallized into numerical grid
generation. The complete debt can be acknowledged only through mention of the
bibliographies contained in the several surveys cited herein. A list here would either be too
long to note the strongest influences or too short to acknowledge all the significant ones. We
must, however, acknowledge the many long and fruitful discussions with Peter Eiseman of
Columbia University.

Of vital importance is the support that has been provided for the research from which
the developments discussed in this book have emerged, including NASA; the research
offices of the Air Force, Army, and Navy; the National Science Foundation, and various
industrial concerns. The interest and contributions of a number of contract monitors has been
essential over the years. We are especially appreciative of Bud Bobbitt and Jerry South of
NASA Langley Research Center, who provided theinitial support for an unknown with an
idea

Particular debts are owed to W. H. Chu for an idea in the Journal of Computational
Physicsin 1971, and to Frank Thames who put the ideainto a dissertation.

In the preparation of the text we had the conscientious and untiring efforts of two most
able secretaries, Rita Curry and Susan Triplett, who typed on in good spirits through a year
of numerous revisions and frustrations as the text evolved.

Finally, we were particularly fortunate to have the services of Y eon Seok Chae,
graduate student in the computational fluid dynamics program and illustrator par excellence,
who did al the figures with understanding of the intended meaning as well as artistic
competence. His meticulous efforts were extensions of our thoughts.
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I.INTRODUCTION

The numerical solution of partial differential equations requires some discretization of
the field into a collection of points or elemental volumes (cells). The differential equations
are approximated by a set of algebraic equations on this collection, and this system of
algebraic equations is then solved to produce a set of discrete values which approximates the
solution of the partial differential system over the field. The discretization of the field
requires some organization for the solution thereon to be efficient, i.e., it must be possible to
readily identify the points or cells neighboring the computation site. Furthermore, the
discretization must conform to the boundaries of the region in such away that boundary
conditions can be accurately represented. This organization is provided by a coordinate
system, and the need for alignment with the boundary is reflected in the routine choice of
cartesian coordinates for rectangular regions, cylindrical coordinates for circular regions,
etc., to the extent of the handbook’ s resources.

The current interest in numerically-generated, boundary-conforming coordinate
systems arises from this need for organization of the discretization of the field for general
regions, i.e., to provide computationally for arbitrary regions what is available in the
handbook for simple regions. The curvilinear coordinate system covers the field and has
coordinate lines (surfaces) coincident with all boundaries. The distribution of lines should be
smooth, with concentration in regions of strong solution variation, and the system should
ultimately be capable of sensing these variations and dynamically adjusting itself to resolve
them.

A numerically-generated grid is understood here to be the organized set of points
formed by the intersections of the lines of a boundary-conforming curvilinear coordinate
system. The cardinal feature of such a system isthat some coordinate line (surfacein 3D) is
coincident with each segment of the boundary of the physical region. The use of coordinate
line intersections to define the grid points provides an organizational structure which allows
all computation to be done on afixed square grid when the partial differential equations of
interest have been transformed so that the curvilinear coordinates replace the cartesian
coordinates as the independent variables.

This grid frees the computational simulation from restriction to certain boundary
shapes and allows general codes to be written in which the boundary shape is specified
simply by input. The boundaries may also be in motion, either as specified externally or in
response to the devel oping physical solution. Similarly, the coordinate system may adjust to
follow variations developing in the evolving physical solution. In any case, the
numerically-generated grid allows all computation to be done on afixed square grid in the



computational field which is always rectangular by construction.

In the sections which follow, various configurations for the curvilinear coordinate
system are discussed in Chapter 1. In general, the computational field will be made
rectangular, or composed of rectangular sub-regions, and awide variety of configurationsis
possible. Coordinate systems may also be generated separately for sub-regionsin the
physical plane and patched together to form a complete system for complex configurations.
The basic transformation relations applicable to the use of general curvilinear coordinate
systems are developed in Chapter I11; the construction of numerical solutions of partial
differential equations on those systems is discussed in Chapter |V; and consideration is given
in Chapter V to the evaluation and control of truncation error in the numerical
representations.

Basically, the procedures for the generation of curvilinear coordinate systems are of
two general types. (1) numerical solution of partia differential equations and (2)
construction by algebraic interpolation. In the former, the partial differential system may be
elliptic (Chapter V1), parabolic or hyperbolic (Chapter VII). Included in the elliptic systems
are both the conformal (Chapter X), and the quasi-conformal mappings, the former being
orthogonal. Orthogonal systems (Chapter 1X) do not have to be conformal, and may be
generated from hyperbolic systems as well as from élliptic systems. Some procedures
designed to produce coordinates that are nearly orthogonal are also discussed. The algebraic
procedures, discussed in Chapter V111, include simple normalization of boundary curves,
transfinite interpolation from boundary surfaces, the use of intermediate interpolating
surfaces, and various other related techniques.

Coordinate systems that are orthogonal, or at least nearly orthogonal near the
boundary, make the application of boundary conditions more straightforward. Although
strict orthogonality is not necessary, and conditions involving normal derivatives can
certainly be represented by difference expressions that combine one-sided differences along
the line emerging from the boundary with central expressions aong the boundary, the
accuracy deterioratesif the departure from orthogonality istoo large. It may also be more
desirable in some cases not to involve adjacent boundary points strongly in the
representation, e.g., on extrapolation boundaries. The implementation of algebraic turbulence
models is more reliable with near-orthogonality at the boundary, since information on local
boundary normalsis usually required in such models. The formulation of boundary-layer
equationsis also much more straightforward and unambiguous in such systems. Similarly,
algorithms based on the parabolic Navier-Stokes equations require that coordinate lines
approximate the flow streamlines, and the lines normal thereto, especially near solid
boundaries. It isthus better in general, other considerations being equal, for coordinate lines
to be nearly normal to boundaries.

Finally, dynamically-adaptive grids are discussed in Chapter XI. These grids
continually adapt during the course of the solution in order to follow developing gradientsin
the physical solution. Thistopicis at the frontier of numerical grid generation and may well
prove to be one of its most important aspects.

The emphasis throughout is on grids formed by the intersections of coordinate lines of
acurvilinear coordinate system, as opposed to the covering of afield with triangular



elements or arandom distribution of points. Neither of these latter collections of pointsis
suitable for really efficient numerical solutions (although numerical representations can be
constructed on each, of course) because of the cumbersome process of identification of
neighbors of a point and the lack of banded structure in the matrices. Thus the subject of
triangular mesh generators, per se, is not addressed here. (Obviously atriangular mesh can
be produced by construction rectangular mesh diagonals.)

Considerable progress is being made toward the development of the techniques of
numerical grid generation and toward casting them in forms that can be readily applied. A
comprehensive survey of numerical grid generation procedures and applications thereof
through 1981 was given by Thompson, Warsi, and Mastin in Ref. [1], and the conference
proceedings published as Ref. [2] contains a number of expository papers on the area, as
well as current results. Other collections of papers on the area have also appeared (Ref. [3]
and [4]), and alater review through 1983 has been given by Thompson in Ref. [5]. Some
other earlier surveys are noted in Ref. [1]. A later survey by Eiseman is given in Ref. [37].
The present text is meant to be a developmental treatment of the techniques of grid
generation and its applications, not a survey of results, and therefore no attempt is made here
to cite all related references, rather only those needed to illustrate particular points are noted.
The surveys mentioned above should be consulted directly for references to examples of
various applications and related contributions. (Ref [I] gives ashort historical development
of the ideas of grid generation.) Other surveys of particular areas of grid generation are cited
later as topics are introduced.

Finally, in regard to implementation, a configuration for the transformed
(computational) field isfirst established as discussed in Chapter 11. The grid is generated
from a generation system constructed as discussed in Chapters VI -- X. (If the grid isto be
adaptive, i.e., coupled with the physical solution done thereon, then the grld must be
continually updated as discussed in Chapter XI1.) In the construction of the grid, due account
must be taken of the truncation error induced by the grid discussed in Chapter V. The partial
differential equations of the physical problem of interest are transformed according to the
relations given in Chapter I11. These transformed equations are then discretized, cf. Chapter
IV, and the resulting set of algebraic equationsis solved on the fixed square grid in the
rectangular transformed field.



[I.BOUNDARY-CONFORMING COORDINATE SYSTEMS
1. Basic Concepts

To provide afamiliar ground from which to view the general development to follow,
consider first atwo-dimensional cylindrical coordinate system covering the annular region
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Here the curvilinear coordinates (r,%) vary on theintervals[r,,r,] and [0,27], respectively.

These curvilinear coordinates are related to the cartesian coordinates (x,y) by the
transformation equations

x(r,8) = r cose

(1)
y(r,8) = r sing
The inverse transformation is given by
r{x,y) = /x2 + yE
)

B(K.?) = tan_T -;-

Note that one of the curvilinear coordinates, r, is constant on each of the physlcal
boundaries, while the other coordinate, &, varies monotonically over the same range around
each of the boundaries. Note also that the system can be represented as a rectangle on which
the two physical boundaries correspond to the top and bottom sides:
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The transformed region, i.e., where the curvilinear coordinates, r and & the independent
variables, thus can be thought of as being rectangular, and can be treated as such from a
coding standpoint. These points will be central to what follows.

The curvilinear coordinates (r,%) can be normalized to the interval [0,1] by introducing
the new curvilinear coordinates (5, ), where

r "'1"1

E = 8/2m, N == 3
or
8(E) = 2, r(n) =ry + (rp = rydn 4)
The transformation then may be written
x(g,m) = [ry + (rp - ry)nlcos(2xE) (5a)
¥y(E,n) = [rq + (rp - ryInlsin(2rg) (5b)

wherenow & and T both vary on theinterval [0,1]. Thisis thus a mapping of the annular
region between the two circlesin the physical space onto the unit square in the transformed
space, i.e., each point (X,y) on the annulus corresponds to one, and only one, point (E ., on
the unit square:

0 Y - &

The bottom (" = 0) and top (" = 1) of the square corresgond, respectively, to the inner and
outer circles, r =r;, and r =r,. The sides of the square, = = 0 and € =1 correspond to & = 0



and © = 27 respectively, and hence to the two coincident sides of a branch cut in the
physical space. Therefore, boundary conditions are not to be specified on these sides of the
unit square in the transformed space. Rather these sides are to be considered re-entrant on
each other with points adjacent to one, outside the square, being equivalent to points adjacent
to the other, inside the square.

Conceptually, the physical region can be considered to have been opened at the cut ©
= 0and 2™ and then deformed into a rectangle to form the transformed region:

El"ﬂ ,.4
e
L] El
_,"” - -'d-v: :-uuq. .L“
H ' i s
1
ot L
kY ,

ML M L ML Ly M e e T e T T T T T R G W e um &

Here, point correspondence across the re-entrant boundaries (indicated by the dashed
connecting line) in the transformed region isillustrated by the coincidence of the pair of
circled points. This conceptual device and mode of illustration for the the point
correspondence across re-entrant boundaries will serve later for more general configurations.

These simple concepts extend to more complicated two-dimensional configurations,
the central feature being that one of the curvilinear coordinates is made to be constant on a
boundary curve (aswasr above), while the other varies monotonically along that boundary
curve (as does ). The transformation to the rectangle is achieved by making the range and
direction of variation of the varying coordinate the same on each of two opposing boundaries
(as © variesfrom 0 to 27 on each circle above).

The physical space thus transforms to the rectangle shown above regardless of the shape of
the physical region. (It is not necessary to normalize the curvilinear coordinates to the
interval [0,1], and in fact, any normalization can be used. In computational applications the
normalization is more conveniently done to different intervals for each coordinate. Thefield
in the transformed space is then rectangular, rather than square.) Familiar examples of this
are elliptical coordinates for the region between two confocal ellipses, spherical coordinates
for two spheres, parabolic coordinates for two parabolas, etc.

These, same concepts will be extended later to completely general configurations
involving any number of boundary curves and branch outs. The extension to three



dimensions follows directly, using boundary surfaces instead of curves, i.e., one curvilinear
coordinate will be made constant on a boundary surface, with the other two forming a
two-dimensional coordinate system on the surface.

Returning to the concentric circles, if the functional dependence of & on &, and/or that of r
on ', had been made more general than the simple linear normalizations given by Eq. (4),
the corresponding coordinate lines would have become unequally spaced in the physical
space, while remaining asradial lines and concentric circles:

The transformation, from Eq. (1), is now given by
x(g,n) = r{n)cosd(E) (6a)

y(E,n) = r{n)sinB(E) (6b)

In this case the points on the inner and outer circular boundaries are not equally spaced
around the circles in the physical space for equal increments of g although they remain
equally spaced on the top and bottom of the unit square in the transformed space by
construction. The spacing around these circlesis determined by the functional dependence of
6 on &, and, sincethe points are located at equal increments of 5 by construction, this
functional relationship is defined by the placement of these points around the circles. This
point, that the coordinate system in the field is determined from the boundary point
distribution, will be central to the discussion of grid generation to follow. The distribution of
circumferential linesis controlled here by the functional relationship between r and 1, which
is not related to any boundary point distribution. Thus factors other than the boundary point
distribution may be expected to be involved in grid generation, as well. That the point
distribution on the boundaries may be controlled by direct placement of the points, while the
coordinate line distribution in the field must be controlled by other means will also continue
to appear in the developments to follow.

The one-dimensional functional relationship between & and & in Eq. (6) requires that
the relative distributions of boundary points around the inner and outer circles be the same.
This restriction can be removed by making & afunction of 7, aswell asof &, while
retaining the periodic nature of the dependence on £ . In this case the ooordinate lines of
constant & will no longer be strai ght radial lines, although they will continue to connect
corresponding points on the inner and outer circular boundaries. Similarly the
circumferential coordinate lines (lines of constant "l here) can be made to depart from circles
by making r dependent on both € and M, but with the restriction that the dependence



vanishes on the inner and outer circular boundaries (where "l = 0 and " = 1, respectively,
here).

Obviously certain constraints will have to be placed on the functions 8 (5 ,) and (5 ,M) to
keep the mapping one-to-one. All of these considerations will reappear in the genera
developments that follow.

Finally, it should be realized that the intermediate use here of the cylindrical
coordinates (r,8) in defining the transformation between the curvilinear coordinates (£ ,M)
and the cartesian coordinates (X,y) has been only in deference to the familiarity of the
cylindrical coordinates, and such intermediary coordinates will not appear in general. The
generalized statement for the simple configuration under consideration hereis as follows:

Find & (x,y) and " (xy) in the annular region bounded by the curves x2 + y2 = 1 and x2 + y2
=73 , Subject to the boundary conditions

n-00n12+y2=r12

2 2 2

n=1o0nx"+y = Irs

Specified monotonic variation of € over [0,1] on x2 +y2 = r{ and on X2 + y2 = 73
with same sense of direction on each of these two curves.

7=1

e, FE{RY
find: {’lg’h?%

e Bnelified £

fe,1]

It isthe inverse problem that will be treated in fact, however, i.e., find x(E , and
y(5,M) on the unit square in the transformed space (0 = § = 1,0= T = 1), subject to the
boundary conditions



x(€,0) and y(& ,0) specified on M = 0 such that x3(& = 0) + y2§,0) = "1

x(& 1) and y(& ,1) specified on T = 1 such that xX(& = 1) +y4(§,1) = 7
Periodicity in 5: x(1+ 5,1) =x(5,1) y(1+5,M) =y(5,")

The simple form for the transformation given by Eq. (6) is made possible by choosing the
same functional dependence of x andy on & on the boundaries, " =0and T = 1. The
familiar cylindrical coordinate system isthus a special case of the general grid generation
problem for this simple configuration applicable to the region between two concentric
circles, asisthe elliptical coordinate system for two ellipses, etc.

2. Generalization

Generalizing from the above consideration of cylindrical coordinates, the basic idea of
a boundary-conforming curvilinear coordinate system is to have some coordinate line (in 2D,
surface in 3D) coincident with each boundary segment, analogous to the way in which lines
of constant radial coordinate coincide with circlesin the cylindrical coordinate system. The
other curvilinear coordinate, analogous to the angular coordinate in the cylindrical system,
will vary along the boundary segment and clearly must do so monotonically, else the same
pair of values of the curvilinear coordinates will occur at two different physical points. (It
should be clear that the curvilinear coordinate that varies along a boundary segment must
have the same direction and range of variation over some opposing segment, e.g., asthe
angular variable varies from 0 to 2 over both of two concentric circlesin cylindrical
coordinates).

With the values of the curvilinear coordinates thus specified on the boundary, it then
remains to generate values of these coordinates in the field from these boundary values.
There must, or course, be a unique correspondence between the cartesian (or other basis
system) and the curvilinear coordinates, i.e., the mapping of the physical region onto the
transformed region must be one-to-one, so that every point in the physical field corresponds
to one, and only one, point in the transformed field, and vice versa. Coordinate lines of the
same family must not cross, and lines of different families must not cross more than once.

In this chapter atwo-dimensional region will be considered in most of the discussions
in the interest of economy of presentation. Generalization to three dimensions will be evident
in most cases and will be mentioned specifically only when necessary. As noted above, the
curvilinear coordinates may be normalized to any intervals, just as the radial and angular
coordinates of the cylindrical coordinate system can be expressed in many different units.
Since the interest of the present discussion is numerical application, it will be generally
convenient to define the increments of al the curvilinear coordinates to be uniformly unity,

and then to normalize these coordinates to the interval [l,N(i)], where NO) js the total number
of grid pointsto be used in the & ' direction. (The three curvilinear coordinates will be
indicated as 51,i = 1,2,3, in general. In two dimensions, however, the notation (5, ™) will
often be used for the two coordinates & 1 and & 2 ) The computational field, i.e., the field in
the transformed space, thus will have rectangular boundaries and will be covered by a square
grid. (It will become clear later that the actual values of the increments in the curvilinear

coordinates are immaterial since they do not appear in the final numerlcal expressions.
Therefore no generality islost in making the grid square and of unit increment in the



transformed field.)
A. Boundary-value Problem -- Physical Region

The generation of the curvilinear coordinate system may be treated as follows:. with
the curvilinear coordinates specified on the boundaries, e.g., 5 (x,y) and "I(x,y) on a
boundary curve I' (this specification amounting to a constant value for either & or T on each
segment of I, with a specified monotonic variation of the other over the segment), generate
the values, & (x,y) and T (x,y), in the field bounded by I'. Thisis thus a boundary value
problem on the physical field with the curvilinear coordinates (5, M) as the dependent

variables and the cartesian coordinates (x,y) as the independent variables, with boundary
conditions specified on curved boundaries:

U= (Constarnt

mopatonic
variation

} Spacified
pf &

(In these discussions, the transformation is assumed to be from cartesian coordinates in the
physical space. The transformation can, however, be from any system of coordinatesin the
physical space.)

B. Boundary value Problem - Transformed Region

The problem may be simplified for computation, however, by first transforming so
that the physical cartesian coordinates (x,y) become the dependent variables, with the
curvilinear coordinates (E ,'1 as the independent variables. Since a constant value of one
curvilinear coordinate, with monotonic variation of the other, has been specified on each
boundary segment, it follows that these boundary segments in the physical field will
correspond to vertical or horizontal lines In the transformed field. Also, since the range of
variation of the curvilinear coordinate varying along a boundary segment has been made the
same over opposing segments, it follows that the transformed field will be composed of
rectangular blocks.

The boundary value problem in the transformed field then involves generating the
values of the physical cartesian coordinates, x(5,M) and y(5 ,M), in the transformed field
from the specified boundary values of x(5 ,™) and y(5 ,M) on the rectangular boundary of the
transformed field, the boundary being formed of segments of constant Eor™,i.e, vertica or
horizontal lines. With Tl = constant on a boundary segment, and the incrementsin £ takento
be uniformly unity as discussed above, this boundary value specification is implemented
numerically by distributing the points as desired along the boundary segment and then
assigning the values of the cartesian coordinates of each successive point as boundary values



at the equally spaced boundary points on the bottom (or top) of the transformed field in the
following figure.

Boundary values are not specified on the left and right sides of the transformed field since
these boundaries are re-entrant on each other (analogous to the 0 and 27 linesin the
cylindrical system), as discussed above, and as indicated by the connecting dotted line on the
figure. Points outside one of these re-entrant boundaries are coincident with points at the
same distance inside the other. The problem is thus much more simplein the transformed
field, since the boundaries there are al rectangular, and the computation in the transformed
field thusis on a square grid regardless of the shape of the physical boundaries.

With values of the cartesian coordinates known in the field as functions of the
curvilinear coordinates, the network of intersecting lines formed by contours (surfacesin
3D) on which acurvilinear coordinate is constant, i.e., the curvilinear coordinate system,
provides the needed organization of the discretization with conformation to the physical
boundary. It is aso possible to specify intersection angles for the coordinate lines at the
boundaries as well as the point locations.

3. Transformed Region Configurations

As noted above, the generation of the curvilinear coordinate system is done by
devising a scheme for determination of the field values of the cartesian coordinates from
specified values of these coordinates (and/or curvilinear coordinate line intersection angles)
on portions of the boundary of the transformed region. Since the boundary of the
transformed region is comprised of horizontal and vertical line segments, portions of which
correspond to segments of the physical boundary on which a curvilinear coordinate is
specified to be constant, it should be evident that the configuration of the resulting
coordinate system depends on how the boundary correspondence is made, i.e., how the
transformed region is configured.

Some examples of different configurations are given below, from which more
complex configurations can be inferred. In these examples only a minimum number of
coordinate lines are shown in the interest of clarity of presentation tation. In all of these
examples, boundary values of the physical cartesian coordinates (and/or curvilinear
coordinate line intersection angles) are understood to be specified on all boundaries, both
external and internal, of the transformed region except for segments indicated by dotted
lines. These latter segments correspond to branch cuts in the physical space, asis explained



in the examples in which they appear. Such re-entrant boundary segments always occur in
pairs, the members of which are indicated by the dashed connecting lines on each of the
configurations shown. Points outside the field across one segmentof such a pair are
coincident with pointsinside the field across the other member of the pair. The conceptual
device of opening the physical field at the cutsis used here to help clarify the
correspondence between the physical and transformed fields. In many cases an example of
an actual coordinate system is given as well. References to the use of various configurations
may be found in the surveys given by Ref. [1] and [5], and a number of examples appear in
Ref. [2].

A. Simply-connected Regions

It is natural to define the same curvilinear coordinate to be constant on each member
of apair of generally opposing boundary segments in the physical plane. Thus, a
simply-connected region formed by four curvesislogically treated by transforming to an
empty rectangle:
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Here, for instance, the cartesian coordinates of the desired points on the physical boundary
segment 4-5 are specified as boundary conditions on the vertical line 4-5, in corresponding
order, which forms a portion of the boundary of the transformed region.

The generalization of these ideas to more complicated regionsis obvious, the
transformed region being composed of contiguous rectangular blocks. An example follows:



The physical boundary segment on which asingle curvilinear coordinate is constant
can have slope discontinuities, however, so that the L-shaped region above could have been
considered to be composed of four segments instead of six, so that the transformed region
becomes a simple rectangle:

Here the cartesian coordinates of the desired points on the physical boundary 5-4-3 are the
specified boundary values from left to right across the top of the transformed region.
Whether or not the boundary slope discontinuity propagates into the field, so that the
coordinate lines in the field exhibit a slope discontinuity as well, depends on how the
coordinate system in the field is generated, as will be discussed later.

It is not necessary that corners on the boundary of the transformed region correspond
to boundary slope discontinuities on the physical boundary and a counter-example follows

next:
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In this case, the segment 1-2 on the physical boundary is aline of constant I, while the
segment 1-4 is aline of constant E Thusat point 1 we have the following coordinate line
configuration:

£

so that the angle between the two coordinate linesis T at point 1, and consequently the
Jacobian of the transformation (the cell area, cf. Chapter I11) will vanish at this point. The
coordinate species thus changes on the physical boundary at point 1. (Difference
representations at such specia points as this, and others to appear in the following examples,
are discussed in Chapter 1V.) Since the species of curvilinear coordinate necessarily changes
at a corner on the transformed region boundary, the identification of a concave corner on the
transformed region boundary with a point on a smooth physical boundary will always result
in aspecial point of the typeillustrated here. (A point of slope discontinuity on the physical



boundary also requires specia treatment in difference solutions, since no normal can be
defined thereon. This, however, isinherent in the nature of the physical boundary and is not
related to the construction of the transformed configuration.)

Some dlightly more complicated examples of the alternatives introduced above now
follow:
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Still another alternative in this case would be to collapse the intrusion 2-3-4-5to adlit in the
transformed region:
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Here the physical cartesian coordinates are specified and are double-valued on the vertical
dit, 2-9-5, in the transformed region. The cartesian coordinates of the desired points on the
physical boundary 2-9 are to be used on the dlit in the generation of the grid to the | eft of the
dlit in the transformed region, while those on the physical boundary 5-9 are used for
generation to the right of the dlit. Solution values in a numerical solution on such a
coordinate system would also be double-valued on the dlit, of course. This
double-valuedness requires extra bookkeeping in the code, since two values of each of the
cartesian coordinates and of the physical solution must be available at the same point in the
transformed region so that difference representations to the left of the dlit use the dlit values
appropriate to the left side, etc. Difference representations near dlits are discussed in Chapter
IV. With the composite grid structure discussed in Section 4, however, this need for
double-valuedness, and the concomitant coding complexity, with the slit configuration can
be avoided.

The point 9 here requires special treatment, since the coordinate line configuration
thereisasfollows:

The coordinate lines through point 9 are as follows:



Here the slope of the coordinate line on which & variesis discontinuous at point 9, and the
lineon which M varies splits at this point. Such a special point will always occur at the dit
ends with the dlit configuration.

B. Multiply-connected Regions

With obstaclesin the interior of the field, i.e., with interior boundaries, there are still
more alternative configurations of the transformed region. One possibility isto maintain the
connectivity of the transformed region the same as that of the physical region, asin the
following examples showing two variations of this approach using interior slabs and dlits,
respectively, in the transformed region. The slab configuration is as follows:
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In coding, pointsinside the slab in the transformed region are ssimply skipped in al
computations.

This configuration introduces a special point of the following form at each of the
points corresponding to the slab cornersin the transformed field:

The coordinate lines through



point 7 are shown below:

Thistype of specia point, where the coordinate species changes on a smooth line, occurs
when a convex corner in the transformed field isidentified with a point on a smooth contour
in the physical field. Both coordinate lines experience slope discontinuities at this point.

The dlit configuration is as shown below:

(An obvious varition would be to have the dlit vertical.) In this dlit configuration, the point 5
and 6 are special points of the form shown on p. 26 characteristic of the slit configuration,
and will require special treatment in difference solutions.

The transformed region could, however, be made simply-connected by introducing a
branch cut in the physical region asillustrated below:

Conceptually this can be viewed as an opening of the field at the out and then a deformation
into arectangle:



Here the coincident coordinate lines 1-2 and 4-3 form a branch cut, which becomes
re-entrant boundaries on the left and right sides of the transformed region. All derivatives are
continuous across this cut, and points at a horizontal distance outside the right-side boundary
in the transformed region are the same as corresponding points at the same horizontal
distance on the same horizontal line inside the left-side boundary, and vice versa. (In all
discussions of point correspondence across cuts, "distance” means distance in the
transformed region). In coding, the use of alayer of points outside each member of a pair of
re-entrant boundaries in the transformed region holding values corresponding to the
appropriate points inside the other boundary of the pair avoids the need for conditional
choices in difference representations, as discussed in Section 6 of this chapter.

Boundary values are not specified on the cut. (Thiscut is, of course, analogous to the
coincident 0 and 2™ linesin the cylindrical coordinate system discussed above.) At the cut
we have the following coordinate line configuration, as may be seen from the conceptional
deformation to arectangle:

so that the coordinate species and directions are both continuous across the cut.

Thistype of configuration is often called an O-type. Another possible configuration is
as shown below, often called a C-type:
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Opening thefield at the cut we have, conceptualy,

with 1-2-3-4 to flatten to the bottom of the rectangle. Here the two members of the pair of
segments forming the branch cut are both on the same side of the transformed region, and
consequently points located at a vertical distance below the segment 1-2, at a horizontal
distance to the left of point 2, coincide with points at the same vertical distance above the
segment 4-3, at the same horizontal distance to the right of point 3. The point 2(3) isa
specia point of the type shown on p. 26 for dlit configurations.

The coordinate line configuration at the cut in this configuration is as follows:
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whereitisindicated that & variesto the right on the upper side of the cut, but to the left on
the lower side. The direction of variation of " also reverses at the cut, so that although the
species and slope of both lines are continuous across the cut, the direction of variation
reverses there.

It is possible to pass onto a different sheet across a branch cut, and discontinuitiesin
coordinate line species and/or direction occur only when passage is made onto a different
sheet. It is also possible, however, to remain on the same (overlapping) sheet asthe cut is
crossed, in which case the species and direction are continuous, and this must be the
interpretation when derivatives are evaluated across the cut, asis discussed in Section 5 to
follow. These concepts are illustrated in the following figure, corresponding to the C-type
configuration given on p. 30:



In the present discussion of configurations, the behavior of the coordinate lines across the cut
will always be described in regard to the passage onto a different sheet, since thisisin fact
the case in codes. It isto be understood that complete continuity can aways be maintained
by conceptually remaining on the same sheet as the cut is crossed. Much of this complexity
can, however, be avoided with the use of an extra layer of points surrounding the
transformed region as will be discussed in Section 6.

Although in principle any region can be transformed into an empty rectangular block
through the use of branch cuts, the resulting grid point distribution may not necessarily be
reasonablein al of the region. Furthermore, an unreasonable amount of effort may be
required to properly segment the boundary surfaces and to devise an appropriate point
distribution thereon for such a transformation. Some configurations are better treated with a
computational field that has dlits or rectangular slabsin it.

Regions of higher connectivity than those shown above are treated in asimilar
manner. The level of connectivity may be maintained asin the following illustration:
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Here one dlit is made horizontal and one vertical just for generality of illustration. Both

could, of course, be of the same orientation. Slabs, rather than dits, could a'so have been
used. The example has three bodies.

With the transformed region made simply-connected we have, using two branch cuts,
a configuration related to the O-type shown above for one internal boundary:

The conceptual opening here is asfollows:



with segment 2-3-4-5-6-7 opening to the bottom. Here the pairs of segments (1-2,8-7) and
(3-4,6-5) are the branch cuts, which form re-entrant boundaries in the transformed region as
shown. In this case, points outside the right side of the transformed region coincide with
pointsinside the |eft side, and vice versa. This cut is of the form described on p. 30, where
both the coordinate species and direction are continuous across the cut. Points below the
bottom segment 3-4, to the left of point 4, coincide with points above the bottom segment
6-5 to theright of point 5. This cut is of the form discussed on p. 31, for which the
coordinate speciesis continuous across the cut but the direction changes there. There are a
number of other possibilities for placement of the two cuts on the boundary of the
transformed region, of course, some examples of which follow.
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It is not necessary to reduce the connectivity of the region completely; rather, adlit or slab
can be used for some of the interior boundaries, while others are placed on the exterior
boundary of the transformed region.

One other possibility in two dimensionsis the use of a preliminary analytical
transformation of infinity to a point inside some interior boundary, with the coodinates
resulting therefrom replacing the cartesian coordinates in the physical region. The grid
generation then operates from these transformed coordinates rather than from the cartesian



coordinates. Thistypicaly gives afine grid near the bodies, but may give excessively large
spacing away from the body.

are transformed according to the complex transformation

Z =17z

wherez = x+iy and 2’ = X’ +iy’, infinity in the x,y system will transform to the origin in the
X',y system, as shown below.
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Then with the grid generated numerically from the x’, y’ system the following configuration
results:



References to the use of this approach are made in the survey of Ref. [1]. Somewhat related
to this are various two-dimensional configurations which arise directly from conformal
mapping, cf. Ref. [6] and the survey of lves on this subject, Ref. [7]. (Conformal mapping is
discussed in Chapter X.)

C. Embedded Regions

In more complicated configurations, one type of coordinate system can be embedded
in another. A ssimple example of thisis shown below, where an O-type system surrounding an
internal boundary is embedded in a system of a more rectangular form, using what amounts
to adlit configuration.
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The conceptual opening of this system is best understood in stages: First considering
only the embedded O-type system surrounding the interior boundary, we have the region
inside the contour 12-13-6-9 opening as follows:



This then opens to the rectangular central portion of the transformed region shown above,
with the inner boundary contour 8-7-8 collapsing to adlit. Therest of the physical region
then opens as shown below:
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These two regions then deform to rectangles and are fitted to the top and bottom of the
rectangle corresponding to the inner system along the contours 12-13 and 9-6 as shown.

Here points at a vertical distance below the segment 11-12 are coincident with points
at the same vertical distance below the segment 10-9 on the same vertical line, and vice
versa, with similar correspondence for the pair of segments 13-14 and 6-5. Points at a
horizontal distance to the left of the segment B-12, at a vertical distance above point 8,
coincide with points at the same horizontal distance to the right of the segment 8-9, at the
same vertical distance below point 8. Similar correspondence holds for the pair 7-13 and 7-6.
Boundary values are specified on the dlit 8-7.

The composite system shown on p. 40 can aso be represented as a dlit configuration in
the transformed region:
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and the lower side of the dit considered re-entrant with the left half of the top boundary of
the rectangle corresponding to the inner system, the upper side of the dlit being re-entrant
with the right half of thistop boundary of the inner region. Now the conceptual opening isas
follows for the inner region:



Difference representations made above the dlit thus would use points below the right half of
the top of the inner region in the transformed region, etc. Similarly, representation made
below the left half of the top of the inner region would use points below the dlit. The dlitis
thus a"black hol€e" into which coordinate lines from the outer system disappear, to reappear
as part of the inner system. The dlit here, matched with the top of the inner system, isthen
clearly abranch cut, and passage through the dlit onto the inner system is simply passage
onto a different sheet.

Note that the embedded system has its own distinctive species and directions for the
coordinate lines, entirely separate from the outer system. Thus for the inner region the
directions are as follows:

while for the outer region they are as shown below:
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Thus at a point on the upper interface, 12-13, between the systems the lines are as follows:
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Thus both coordinates reverse direction at the lower interface although the speciesis
continuous, while both the species and directions are continuous across the upper interface.
This again corresponds to passage onto a different sheet, for the interface between the inner
and outer systems, i.e., the segments 12-13 and 9-6, is actually a branch cut.

The points 9(12) and 6(13) here require special notice. For example, at point 9 the
coordinate line configuration is as follows:

The lines through point 9 are as shown below



There are thus several changesin species and direction at this point. This type of special
point embodies the form which always occurs with the slit configuration, shown on p. 26,
and occurs here because the embedded region inside the contour 9-6-13-12 is essentially
contained inside a dlit defined by the same set of numbers.

The ab