Computational Fluid Mechanics and Heat Transfer
Second Edition

John C. Tannehill
Dale A. Anderson
Richard H. Pletcher
Series in Computational and Physical Processes in Mechanics and Thermal Sciences

W. J. Minkowycz and E. M. Sparrow, Editors

Anderson, Tannehill, and Pletcher, Computational Fluid Mechanics and Heat Transfer
Aziz and Na, Perturbation Methods in Heat Transfer
Baker, Finite Element Computational Fluid Mechanics
Beck, Cole, Haji-Shiekh, and Litkouhi, Heat Conduction Using Green’s Functions
Chung, Editor, Numerical Modeling in Combustion
Jaluria and Torrance, Computational Heat Transfer
Patankar, Numerical Heat Transfer and Fluid Flow
Pepper and Heinrich, The Finite Element Method: Basic Concepts and Applications
Shih, Numerical Heat Transfer

PROCEEDINGS

Chung, Editor, Finite Elements in Fluids: Volume 8
Haji–Sheikh, Editor, Integral Methods in Science and Engineering–90
Shih, Editor, Numerical Properties and Methodologies in Heat Transfer: Proceedings of the Second National Symposium

IN PREPARATION

Heinrich and Pepper, The Finite Element Method: Advances Concepts and Applications
COMPUTATIONAL FLUID MECHANICS AND HEAT TRANSFER

Second Edition

John C. Tannehill
Professor of Aerospace Engineering and Engineering Mechanics
Iowa State University

Dale A. Anderson
Professor of Aerospace Engineering
University of Texas at Arlington

Richard H. Pletcher
Professor of Mechanical Engineering
Iowa State University

Taylor & Francis
Publishers since 1798
USA

Publishing Office: Taylor & Francis
1101 Vermont Avenue, NW, Suite 200
Washington, DC 20005-3521
Tel: (202) 289–2174
Fax: (202) 289–3665

Distribution Center: Taylor & Francis
1900 Frost Road, Suite 101
Bristol, PA 19007–1598
Tel: (215) 785–5800
Fax: (215) 785–5515

UK

Taylor & Francis Ltd.
1 Gunpowder Square
London EC4A 3DE
Tel: 0171 583 0490
Fax: 0171 583 0581

COMPUTATIONAL FLUID MECHANICS AND HEAT TRANSFER, Second Edition

Copyright © 1997 Taylor & Francis, copyright © 1984 by Hemisphere Publishing Corporation. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

1234567890BR87

This book was set in Times Roman. The editors were Christine Williams and Carol Edwards. Cover design by Michelle Fleitz.

A CIP catalog record for this book is available from the British Library.

The paper in this publication meets the requirements of the ANSI Standard Z39.48–1984 (Permanence of Paper)

Library of Congress Cataloging-in-Publication Data

Tannehill, John C.
p. cm.—(Series in computational and physical processes in mechanics and thermal sciences)
Anderson's name appears first on the earlier ed.
Includes bibliographical references and index.
QA901.A53 1997
532'.05'01515353—dc20

ISBN 1-56032-046-X (case)
To our wives and children: Marcia, Michelle, and John Tannehill
Marleen, Greg, and Lisa Anderson
Carol, Douglas, Laura, and Cynthia Pletcher
CONTENTS

Preface
Preface to the First Edition

Part I Fundamentals

1 INTRODUCTION

1.1 General Remarks
1.2 Comparison of Experimental, Theoretical, and Computational Approaches
1.3 Historical Perspective

2 PARTIAL DIFFERENTIAL EQUATIONS

2.1 Introduction
2.2 Physical Classification
 2.2.1 Equilibrium Problems
 2.2.2 Marching Problems
2.3 Mathematical Classification
 2.3.1 Hyperbolic PDEs
 2.3.2 Parabolic PDEs
 2.3.3 Elliptic PDEs
2.4 The Well-Posed Problem
2.5 Systems of Equations 35
2.6 Other Differential Equations of Interest 40
Problems 41

3 BASIC S OF DISCRETIZATION METHODS 45

3.1 Introduction 45
3.2 Finite Differences 46
3.3 Difference Representation of Partial Differential Equations 52
 3.3.1 Truncation Error 52
 3.3.2 Round-Off and Discretization Errors 54
 3.3.3 Consistency 55
 3.3.4 Stability 55
 3.3.5 Convergence for Marching Problems 57
 3.3.6 A Comment on Equilibrium Problems 57
 3.3.7 Conservation Form and Conservative Property 58
3.4 Further Examples of Methods for Obtaining Finite-Difference Equations 60
 3.4.1 Use of Taylor Series 61
 3.4.2 Use of Polynomial Fitting 65
 3.4.3 Integral Method 69
 3.4.4 Finite-Volume (Control-Volume) Approach 71
3.5 Introduction to the Use of Irregular Meshes 76
 3.5.1 Irregular Mesh Due to Shape of a Boundary 76
 3.5.2 Irregular Mesh Not Caused by Shape of a Boundary 82
 3.5.3 Concluding Remarks 83
3.6 Stability Considerations 83
 3.6.1 Fourier or von Neumann Analysis 84
 3.6.2 Stability Analysis for Systems of Equations 91
Problems 96

4 APPLICATION OF NUMERICAL METHODS TO SELECTED MODEL EQUATIONS 101

4.1 Wave Equation 102
 4.1.1 Euler Explicit Methods 102
 4.1.2 Upstream (First-Order Upwind or Windward) Differencing Method 103
 4.1.3 Lax Method 112
 4.1.4 Euler Implicit Method 113
 4.1.5 Leap Frog Method 116
 4.1.6 Lax-Wendroff Method 117
 4.1.7 Two-Step Lax-Wendroff Method 118
 4.1.8 MacCormack Method 119
 4.1.9 Second-Order Upwind Method 119
 4.1.10 Time-Centered Implicit Method (Trapezoidal Differencing Method) 120
4.1.1 Rusanov (Burstein-Mirin) Method 122
4.1.12 Warming-Kutler-Lomax Method 123
4.1.13 Runge-Kutta Methods 124
4.1.14 Additional Comments 125

4.2 Heat Equation 126
4.2.1 Simple Explicit Method 126
4.2.2 Richardson's Method 129
4.2.3 Simple Implicit (Laasonen) Method 130
4.2.4 Crank-Nicolson Method 130
4.2.5 Combined Method A 132
4.2.6 Combined Method B 132
4.2.7 DuFort-Frankel Method 133
4.2.8 Keller Box and Modified Box Methods 134
4.2.9 Methods for the Two-Dimensional Heat Equation 137
4.2.10 ADI Methods 139
4.2.11 Splitting or Fractional-Step Methods 141
4.2.12 ADE Methods 142
4.2.13 Hopscotch Method 143
4.2.14 Additional Comments 144

4.3 Laplace's Equation 144
4.3.1 Finite-Difference Representations for Laplace's Equation 145
4.3.2 Simple Example for Laplace's Equation 146
4.3.3 Direct Methods for Solving Systems of Linear Algebraic Equations 148
4.3.4 Iterative Methods for Solving Systems of Linear Algebraic Equations 153
4.3.5 Multigrid Method 165

4.4 Burgers' Equation (Inviscid) 176
4.4.1 Lax Method 181
4.4.2 Lax-Wendroff Method 184
4.4.3 MacCormack Method 187
4.4.4 Rusanov (Burstein-Mirin) Method 188
4.4.5 Warming-Kutler-Lomax Method 189
4.4.6 Tuned Third-Order Methods 190
4.4.7 Implicit Methods 192
4.4.8 Godunov Scheme 195
4.4.9 Roe Scheme 198
4.4.10 Enquist-Osher Scheme 202
4.4.11 Higher-Order Upwind Schemes 204
4.4.12 TVD Schemes 207

4.5 Burgers' Equation (Viscous) 217
4.5.1 FTCS Method 220
4.5.2 Leap Frog/DuFort-Frankel Method 225
4.5.3 Brailovskaya Method 225
4.5.4 Allen-Cheng Method 226
4.5.5 Lax-Wendroff Method 227
4.5.6 MacCormack Method 227
4.5.7 Briley-McDonald Method 229
4.5.8 Time-Split MacCormack Method 230
CONTENTS

4.5.9 ADI Methods 232
4.5.10 Predictor-Corrector, Multiple-Iteration Method 232
4.5.11 Roe Method 233

4.6 Concluding Remarks 234
Problems 234

Part II Application of Numerical Methods to the Equations of Fluid Mechanics and Heat Transfer 247

5 GOVERNING EQUATIONS OF FLUID MECHANICS AND HEAT TRANSFER 249

5.1 Fundamental Equations 249
5.1.1 Continuity Equation 250
5.1.2 Momentum Equation 252
5.1.3 Energy Equation 255
5.1.4 Equation of State 257
5.1.5 Chemically Reacting Flows 259
5.1.6 Vector Form of Equations 263
5.1.7 Nondimensional Form of Equations 264
5.1.8 Orthogonal Curvilinear Coordinates 266

5.2 Averaged Equations for Turbulent Flows 272
5.2.1 Background 272
5.2.2 Reynolds Averaged Navier-Stokes Equations 273
5.2.3 Reynolds Form of the Continuity Equation 275
5.2.4 Reynolds Form of the Momentum Equations 276
5.2.5 Reynolds Form of the Energy Equation 278
5.2.6 Comments on the Reynolds Equations 280
5.2.7 Filtered Navier-Stokes Equations for Large-Eddy Simulation 283

5.3 Boundary-Layer Equations 285
5.3.1 Background 285
5.3.2 Boundary-Layer Approximation for Steady Incompressible Flow 286
5.3.3 Boundary-Layer Equations for Compressible Flow 295

5.4 Introduction to Turbulence Modeling 299
5.4.1 Background 299
5.4.2 Modeling Terminology 299
5.4.3 Simple Algebraic or Zero-Equation Models 301
5.4.4 One-Half-Equation Models 308
5.4.5 One-Equation Models 310
5.4.6 One-and-One-Half and Two-Equation Models 313
5.4.7 Reynolds Stress Models 317
5.4.8 Subgrid-Scale Models for Large-Eddy Simulation 320

5.5 Euler Equations 321
5.5.1 Continuity Equation 322
CONTENTS

5.5.2 Inviscid Momentum Equations 323
5.5.3 Inviscid Energy Equations 326
5.5.4 Additional Equations 327
5.5.5 Vector Form of Euler Equations 328
5.5.6 Simplified Forms of Euler Equations 329
5.5.7 Shock Equations 331

5.6 Transformation of Governing Equations 333
5.6.1 Simple Transformations 333
5.6.2 Generalized Transformation 338

5.7 Finite-Volume Formulation 342
5.7.1 Two-Dimensional Finite-Volume Method 342
5.7.2 Three-Dimensional Finite-Volume Method 347

Problems 348

6 NUMERICAL METHODS FOR INVISCID FLOW EQUATIONS 351

6.1 Introduction 351
6.2 Method of Characteristics 352
6.2.1 Linear Systems of Equations 353
6.2.2 Nonlinear Systems of Equations 361

6.3 Classical Shock-Capturing Methods 365

6.4 Flux Splitting Schemes 375
6.4.1 Steger-Warming Splitting 376
6.4.2 Van Leer Flux Splitting 381
6.4.3 Other Flux Splitting Schemes 383
6.4.4 Application for Arbitrarily Shaped Cells 385

6.5 Flux-Difference Splitting Schemes 386
6.5.1 Roe Scheme 388
6.5.2 Second-Order Schemes 395

6.6 Multidimensional Case in a General Coordinate System 398
6.7 Boundary Conditions for the Euler Equations 402
6.8 Methods for Solving the Potential Equation 413
6.9 Transonic Small-Disturbance Equations 428

6.10 Methods for Solving Laplace’s Equation 431
Problems 437

7 NUMERICAL METHODS FOR BOUNDARY-LAYER TYPE EQUATIONS 441

7.1 Introduction 441
7.2 Brief Comparison of Prediction Methods 442

7.3 Finite-Difference Methods for Two-Dimensional or Axisymmetric Steady External Flows 443
7.3.1 Generalized Form of the Equations 443
7.3.2 Example of a Simple Explicit Procedure 445
7.3.3 Crank-Nicolson and Fully Implicit Methods 447
CONTENTS

7.3.4 DuFort-Frankel Method 459
7.3.5 Box Method 462
7.3.6 Other Methods 465
7.3.7 Coordinate Transformations for Boundary Layers 466
7.3.8 Special Considerations for Turbulent Flows 470
7.3.9 Example Applications 473
7.3.10 Closure 476

7.4 Inverse Methods, Separated Flows, and Viscous-Inviscid Interaction 478
7.4.1 Introduction 478
7.4.2 Comments on Computing Separated Flows Using the Boundary-Layer Equations 479
7.4.3 Inverse Finite-Difference Methods 482
7.4.4 Viscous-Inviscid Interaction 489

7.5 Methods for Internal Flows 496
7.5.1 Introduction 496
7.5.2 Coordinate Transformation for Internal Flows 498
7.5.3 Computational Strategies for Internal Flows 498
7.5.4 Additional Remarks 508

7.6 Application to Free-Shear Flows 508

7.7 Three-Dimensional Boundary Layers 512
7.7.1 Introduction 512
7.7.2 The Equations 513
7.7.3 Comments on Solution Methods for Three-Dimensional Flows 519
7.7.4 Example Calculations 528
7.7.5 Additional Remarks 530

7.8 Unsteady Boundary Layers 530

Problems 532

8 NUMERICAL METHODS FOR THE “PARABOLIZED” NAVIER-STOKES EQUATIONS 537

8.1 Introduction 537
8.2 Thin-Layer Navier-Stokes Equations 541
8.3 “Parabolized” Navier-Stokes Equations 545
8.3.1 Derivation of PNS Equations 546
8.3.2 Streamwise Pressure Gradient 555
8.3.3 Numerical Solution of PNS Equations 562
8.3.4 Applications of PNS Equations 582

8.4 Parabolized and Partially Parabolized Navier-Stokes Procedures for Subsonic Flows 585
8.4.1 Fully Parabolic Procedures 585
8.4.2 Parabolic Procedures for 3-D Free-Shear and Other Flows 592
8.4.3 Partially Parabolized (Multiple Space-Marching) Model 593

8.5 Viscous Shock-Layer Equations 609
8.6 “Conical” Navier-Stokes Equations 614

Problems 617
9 NUMERICAL METHODS FOR THE NAVIER-STOKES EQUATIONS 621

9.1 Introduction 621
9.2 Compressible Navier-Stokes Equations 622
9.2.1 Explicit MacCormack Method 625
9.2.2 Other Explicit Methods 632
9.2.3 Beam-Warming Scheme 633
9.2.4 Other Implicit Methods 640
9.2.5 Upwind Methods 641
9.2.6 Compressible Navier-Stokes Equations at Low Speeds 642

9.3 Incompressible Navier-Stokes Equations 649
9.3.1 Vorticity-Stream Function Approach 650
9.3.2 Primitive-Variable Approach 659
Problems 677

10 GRID GENERATION 679

10.1 Introduction 679
10.2 Algebraic Methods 681
10.3 Differential Equation Methods 688
10.3.1 Elliptic Schemes 688
10.3.2 Hyperbolic Schemes 694
10.3.3 Parabolic Schemes 697
10.4 Variational Methods 698
10.5 Unstructured Grid Schemes 700
10.5.1 Connectivity Information 702
10.5.2 Delaunay Triangulation 703
10.5.3 Bowyer Algorithm 705
10.6 Other Approaches 708
10.7 Adaptive Grids 710
Problems 712

APPENDIXES
A Subroutine for Solving a Tridiagonal System of Equations 715
B Subroutines for Solving Block Tridiagonal Systems of Equations 717
C The Modified Strongly Implicit Procedure 725
D Finite-Volume Discretization for General Control Volumes 731

NOMENCLATURE 737

REFERENCES 745

INDEX 783
Almost fifteen years have passed since the first edition of this book was written. During the intervening years the literature in computational fluid dynamics (CFD) has expanded manyfold. Due in part to greatly enhanced computer power, the general understanding of the capabilities and limitations of algorithms has increased. A number of new ideas and methods have appeared. The authors have attempted to include new developments in this second edition while preserving those fundamental ideas covered in the first edition that remain important for mastery of the discipline. Ninety-five new homework problems have been added. The two part, ten chapter format of the book remains the same, although a shift in emphasis is evident in some of the chapters. The book is still intended to serve as an introductory text for advanced undergraduates and/or first-year graduate students. The major emphasis of the text is on finite-difference/finite-volume methods.

The first part, consisting of Chapters 1–4, presents basic concepts and introduces the reader to the fundamentals of finite-difference/finite-volume methods. The second part of the book, Chapters 5–10, is devoted to applications involving the equations of fluid mechanics and heat transfer. Chapter 1 serves as an introduction and gives a historical perspective of the discipline. This chapter has been brought up to date by reflecting the many changes that have occurred since the introduction of the first edition. Chapter 2 presents a brief review of those aspects of partial differential equation theory that have important implications for numerical solution schemes. This chapter has been revised for improved clarity and completeness. Coverage of the basics of discretization methods begins in Chapter 3. The second edition provides a more thorough introduction to the finite-volume method in this chapter. Chapter 4 deals with the
application of numerical methods to selected model equations. Several additions have been made to this chapter. Treatment of methods for solving the wave equation now includes a discussion of Runge-Kutta schemes. The Keller box and modified box methods for solving parabolic equations are now included in Chapter 4. The method of approximate factorization is explained and demonstrated. The material on solution strategies for Laplace’s equation has been revised and now contains an introduction to the multigrid method for both linear and nonlinear equations. Coloring schemes that can take advantage of vectorization are introduced. The material on discretization methods for the inviscid Burgers equation has been substantially revised in order to reflect the many developments, particularly with regard to upwind methods, that have occurred since the material for the first edition was drafted. Schemes due to Godunov, Roe, and Enquist and Osher are introduced. Higher-order upwind and total variation diminishing (TVD) schemes are also discussed in the revised Chapter 4.

The governing equations of fluid mechanics and heat transfer are presented in Chapter 5. The coverage has been expanded in several ways. The equations necessary to treat chemically reacting flows are discussed. Introductory information on direct and large-eddy simulation of turbulent flows is included. The filtered equations used in large-eddy simulation are presented as well as the Reynolds-averaged equations. The material on turbulence modeling has been augmented and now includes more details on one- and two-equation and Reynolds stress models as well as an introduction to the subgrid-scale modeling required for large-eddy simulation. A section has been added on the finite-volume formulation, a discretization procedure that proceeds from conservation equations in integral form.

Chapter 6 on methods for the inviscid flow equations is probably the most extensively revised chapter in the second edition. The revised chapter contains major new sections on flux splitting schemes, flux difference splitting schemes, the multidimensional case in generalized coordinates, and boundary conditions for the Euler equations. The chapter includes a discussion on implementing the integral form of conservation statements for arbitrarily shaped control volumes, particularly triangular cells, for two-dimensional applications.

Chapter 7 on methods for solving the boundary-layer equations includes new example applications of the inverse method, new material on the use of generalized coordinates, and a useful coordinate transformation for internal flows. In Chapter 8 methods are presented for solving simplified forms of the Navier-Stokes equations including the thin-layer Navier-Stokes (TLNS) equations, the parabolized Navier-Stokes (PNS) equations, the reduced Navier-Stokes (RNS) equations, the partially-parabolized Navier-Stokes (PPNS) equations, the viscous shock layer (VSL) equations, and the conical Navier-Stokes (CNS) equations. New material includes recent developments on pressure relaxation, upwind methods, coupled methods for solving the partially parabolized equations for subsonic flows, and applications.
Chapter 9 on methods for the “complete” Navier-Stokes equations has undergone substantial revision. This is appropriate because much of the research and development in CFD since the first edition appeared has been concentrated on solving these equations. Upwind methods that were first introduced in the context of model and Euler equations are described as they extend to the full Navier-Stokes equations. Methods to efficiently solve the compressible equations at very low Mach numbers through low Mach number preconditioning are described. New developments in methods based on derived variables, such as the dual potential method, are discussed. Modifications to the method of artificial compressibility required to achieve time accuracy are developed. The use of space-marching methods to solve the steady Navier-Stokes equations is described. Recent advances in pressure-correction (segregated) schemes for solving the Navier-Stokes equations such as the use of non-staggered grids and the pressure-implicit with splitting of operators (PISO) method are included in the revised chapter.

Grid generation, addressed in Chapter 10, is another area in which much activity has occurred since the appearance of the first edition. The coverage has been broadened to include introductory material on both structured and unstructured approaches. Coverage now includes algebraic and differential equation methods for constructing structured grids and the point insertion and advancing front methods for obtaining unstructured grids composed of triangles. Concepts employed in constructing hybrid grids composed of both quadrilateral cells (structured) and triangles, solution adaptive grids, and domain decomposition schemes are discussed.

We are grateful for the help received from many colleagues, users of the first edition and others, while this revision was being developed. We especially thank our colleagues Ganesh Rajagopalan, Alric Rothmayer, and Ijaz Parpia. We also continue to be indebted to our students, both past and present, for their contributions. We would like to acknowledge the skillful preparation of several new figures by Lynn Ekblad. Finally, we would like to thank our families for their patience and continued encouragement during the preparation of this second edition.

This text continues to be a collective work by the three of us. There is no junior or senior author. A coin flip determined the order of authors for the first edition, and a new coin flip has determined the order of authors for this edition.

John C. Tannehill
Dale A. Anderson
Richard H. Pletcher
This book is intended to serve as a text for introductory courses in computational fluid mechanics and heat transfer [or, synonymously, computational fluid dynamics (CFD)] for advanced undergraduates and/or first-year graduate students. The text has been developed from notes prepared for a two-course sequence taught at Iowa State University for more than a decade. No pretense is made that every facet of the subject is covered, but it is hoped that this book will serve as an introduction to this field for the novice. The major emphasis of the text is on finite-difference methods.

The material has been divided into two parts. The first part, consisting of Chapters 1–4, presents basic concepts and introduces the reader to the fundamentals of finite-difference methods. The second part of the book, consisting of Chapters 5–10, is devoted to applications involving the equations of fluid mechanics and heat transfer. Chapter 1 serves as an introduction, while a brief review of partial differential equations is given in Chapter 2. Finite-difference methods and the notions of stability, accuracy, and convergence are discussed in the third chapter.

Chapter 4 contains what is perhaps the most important information in the book. Numerous finite-difference methods are applied to linear and nonlinear model partial differential equations. This provides a basis for understanding the results produced when different numerical methods are applied to the same problem with a known analytic solution.

Building on an assumed elementary background in fluid mechanics and heat transfer, Chapter 5 reviews the basic equations of these subjects, emphasizing forms most suitable for numerical formulations of problems. A section on turbulence modeling is included in this chapter. Methods for solving inviscid
flows using both conservative and nonconservative forms are presented in Chapter 6. Techniques for solving the boundary-layer equations for both laminar and turbulent flows are discussed in Chapter 7. Chapter 8 deals with equations of a class known as the “parabolized” Navier-Stokes equations which are useful for flows not adequately modeled by the boundary-layer equations, but not requiring the use of the full Navier-Stokes equations. Parabolized schemes for both subsonic and supersonic flows over external surfaces and in confined regions are included in this chapter. Chapter 9 is devoted to methods for the complete Navier-Stokes equations, including the Reynolds averaged form. A brief introduction to methods for grid generation is presented in Chapter 10 to complete the text.

At Iowa State University, this material is taught to classes consisting primarily of aerospace and mechanical engineers, although the classes often include students from other branches of engineering and earth sciences. It is our experience that Part I (Chapters 1–4) can be adequately covered in a one-semester, three-credit-hour course. Part II of the book contains more information than can be covered in great detail in most one-semester, three-credit-hour courses. This permits Part 2 to be used for courses with different objectives. Although we have found that the major thrust of each of Chapters 5 through 10 can be covered in one semester, it would also be possible to use only parts of this material for more specialized courses. Obvious modules would be Chapters 5, 6 and 10 for a course emphasizing inviscid flows or Chapters 5, 7–9, (and perhaps 10) for a course emphasizing viscous flows. Other combinations are clearly possible. If only one course can be offered in the subject, choices also exist. Part I of the text can be covered in detail in the single course or, alternatively, only selected material from Chapters 1–4 could be covered as well as some material on applications of particular interest from Part II. The material in the text is reasonably broad and should be appropriate for courses having a variety of objectives.

For background, students should have at least one basic course in fluid dynamics, one course in ordinary differential equations, and some familiarity with partial differential equations. Of course, some programming experience is also assumed.

The philosophy used throughout the CFD course sequence at Iowa State and embodied in this text is to encourage students to construct their own computer programs. For this reason, "canned" programs for specific problems do not appear in the text. Use of such programs does not enhance basic understanding necessary for algorithm development. At the end of each chapter, numerous problems are listed that necessitate numerical implementation of the text material. It is assumed that students have access to a high-speed digital computer.

We wish to acknowledge the contributions of all of our students, both past and present. We are deeply indebted to F. Blottner, S. Chakravarthy, G. Christoph, J. Daywitt, T. Holst, M. Hussaini, J. Ievalts, D. Jespersen, O. Kwon, M. Malik, J. Rakich, M. Salas, V. Shankar, R. Warming, and many others for
helpful suggestions for improving the text. We would like to thank Pat Fox and her associates for skillfully preparing the illustrations. A special thanks to Shirley Riney for typing and editing the manuscript. Her efforts were a constant source of encouragement. To our wives and children, we owe a debt of gratitude for all of the hours stolen from them. Their forbearance is greatly appreciated.

Finally, a few words about the order in which the authors' names appear. This text is a collective work by the three of us. There is no junior or senior author. The final order was determined by a coin flip. Despite the emphasis of finite-difference methods in the text, we resorted to a "Monte Carlo" method for this determination.

Dale A. Anderson
John C. Tannehill
Richard H. Pletcher
PART ONE

FUNDAMENTALS
PART

TWO

APPLICATION OF NUMERICAL METHODS TO THE EQUATIONS OF FLUID MECHANICS AND HEAT TRANSFER