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PREFACE 

Almost fifteen years have passed since the first edition of this book was written. 
During the intervening years the literature in computational fluid dynamics 
(CFD) has expanded manyfold. Due in part to greatly enhanced computer 
power, the general understanding of the capabilities and limitations of algo- 
rithms has increased. A number of new ideas and methods have appeared. The 
authors have attempted to include new developments in this second edition 
while preserving those fundamental ideas covered in the first edition that 
remain important for mastery of the discipline. Ninety-five new homework 
problems have been added. The two part, ten chapter format of the book 
remains the same, although a shift in emphasis is evident in some of the 
chapters. The book is still intended to serve as an introductory text for advanced 
undergraduates and/or first-year graduate students. The major emphasis of the 
text is on finite-difference/finite-volume methods. 

The first part, consisting of Chapters 1-4, presents basic concepts and 
introduces the reader to the fundamentals of finite-difference/finite-volume 
methods. The second part of the book, Chapters 5-10, is devoted to applications 
involving the equations of fluid mechanics and heat transfer. Chapter 1 serves as 
an introduction and gives a historical perspective of the discipline. This chapter 
has been brought up to date by reflecting the many changes that have occurred 
since the introduction of the first edition. Chapter 2 presents a brief review of 
those aspects of partial differential equation theory that have important implica- 
tions for numerical solution schemes. This chapter has been revised for im- 
proved clarity and completeness. Coverage of the basics of discretization meth- 
ods begins in Chapter 3. The second edition provides a more thorough introduc- 
tion to the finite-volume method in this chapter. Chapter 4 deals with the 
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application of numerical methods to selected model equations. Several additions 
have been made to this chapter. Treatment of methods for solving the wave 
equation now includes a discussion of Runge-Kutta schemes. The Keller box 
and modified box methods for solving parabolic equations are now included in 
Chapter 4. The method of approximate factorization is explained and demon- 
strated. The material on solution strategies for Laplace’s equation has been 
revised and now contains an introduction to the multigrid method for both 
linear and nonlinear equations. Coloring schemes that can take advantage of 
vectorization are introduced. The material on discretization methods for the 
inviscid Burgers equation has been substantially revised in order to reflect the 
many developments, particularly with regard to upwind methods, that have 
occurred since the material for the first edition was drafted. Schemes due to 
Godunov, Roe, and Enquist and Osher are introduced. Higher-order upwind 
and total variation diminishing (TVD) schemes are also discussed in the revised 
Chapter 4. 

The governing equations of fluid mechanics and heat transfer are presented 
in Chapter 5. The coverage has been expanded in several ways. The equations 
necessary to treat chemically reacting flows are discussed. Introductory informa- 
tion on direct and large-eddy simulation of turbulent flows is included. The 
filtered equations used in large-eddy simulation are presented as well as the 
Reynolds-averaged equations. The material on turbulence modeling has been 
augmented and now includes more details on one- and two-equation and 
Reynolds stress models as well as an introduction to the subgrid-scale modeling 
required for large-eddy simulation. A section has been added on the finite- 
volume formulation, a discretization procedure that proceeds from conservation 
equations in integral form. 

Chapter 6 on methods for the inviscid flow equations is probably the most 
extensively revised chapter in the second edition. The revised chapter contains 
major new sections on flux splitting schemes, flux difference splitting schemes, 
the multidimensional case in generalized coordinates, and boundary conditions 
for the Euler equations. The chapter includes a discussion on implementing the 
integral form of conservation statements for arbitrarily shaped control volumes, 
particularly triangular cells, for two-dimensional applications. 

Chapter 7 on methods for solving the boundary-layer equations includes 
new example applications of the inverse method, new material on the use of 
generalized coordinates, and a useful coordinate transformation for internal 
flows. In Chapter 8 methods are presented for solving simplified forms of the 
Navier-Stokes equations including the thin-layer Navier-Stokes (TLNS) equa- 
tions, the parabolized Navier-Stokes (PNS) equations, the reduced Navier-Stokes 
(RNS) equations, the partially-parabolized Navier-Stokes (PPNS) equations, the 
viscous shock layer (VSL) equations, and the conical Navier-Stokes (CNS) 
equations. New material includes recent developments on pressure relaxation, 
upwind methods, coupled methods for solving the partially parabolized equa- 
tions for subsonic flows, and applications. 
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Chapter 9 on methods for the “complete” Navier-Stokes equations has 
undergone substantial revision. This is appropriate because much of the re- 
search and development in CFD since the first edition appeared has been 
concentrated on solving these equations. Upwind methods that were first 
introduced in the context of model and Euler equations are described as they 
extend to the full Navier-Stokes equations. Methods to efficiently solve the 
compressible equations at very low Mach numbers through low Mach number 
preconditioning are described. New developments in methods based on derived 
variables, such as the dual potential method, are discussed. Modifications to the 
method of artificial compressibility required to achieve time accuracy are 
developed. The use of space-marching methods to solve the steady Navier-Stokes 
equations is described. Recent advances in pressure-correction (segregated) 
schemes for solving the Navier-Stokes equations such as the use of non-staggered 
grids and the pressure-implicit with splitting of operators (PISO) method are 
included in the revised chapter. 

Grid generation, addressed in Chapter 10, is another area in which much 
activity has occurred since the appearance of the first edition. The coverage has 
been broadened to include introductory material on both structured and un- 
structured approaches. Coverage now includes algebraic and differential equa- 
tion methods for constructing structured grids and the point insertion and 
advancing front methods for obtaining unstructured grids composed of triangles. 
Concepts employed in constructing hybrid grids composed of both quadrilateral 
cells (structured) and triangles, solution adaptive grids, and domain decomposi- 
tion schemes are discussed. 

We are grateful for the help received from many colleagues, users of the 
first edition and others, while this revision was being developed. We especially 
thank our colleagues Ganesh Rajagopalan, Alric Rothmayer, and Ijaz Parpia. 
We also continue to be indebted to our students, both past and present, for their 
contributions. We would like to acknowledge the skillful preparation of several 
new figures by Lynn Ekblad. Finally, we would like to thank our families for 
their patience and continued encouragement during the preparation of this 
second edition. 

This text continues to be a collective work by the three of us. There is no 
junior or senior author. A coin flip determined the order of authors for the first 
edition, and a new coin flip has determined the order of authors for this edition. 

John C .  Tannehill 
Dale A .  Anderson 
Richard H .  Pletcher 



PREFACE TO THE FIRST EDITION 

This book is intended to serve as a text for introductory courses in computa- 
tional fluid mechanics and heat transfer [or, synonymously, computational fluid 
dynamics (CFD)] for advanced undergraduates and/or first-year graduate stu- 
dents. The text has been developed from notes prepared for a two-course 
sequence taught at Iowa State University for more than a decade. No pretense is 
made that every facet of the subject is covered, but it is hoped that this book will 
serve as an introduction to this field for the novice. The major emphasis of the 
text is on finite-difference methods. 

The material has been divided into two parts. The first part, consisting of 
Chapters 1-4, presents basic concepts and introduces the reader to the funda- 
mentals of finite-difference methods. The second part of the book, consisting of 
Chapters 5-10, is devoted to applications involving the equations of fluid 
mechanics and heat transfer. Chapter 1 serves as an introduction, while a brief 
review of partial differential equations is given in Chapter 2. Finite-difference 
methods and the notions of stability, accuracy, and convergence are discussed in 
the third chapter. 

Chapter 4 contains what is perhaps the most important information in the 
book. Numerous finite-difference methods are applied to linear and nonlinear 
model partial differential equations. This provides a basis for understanding the 
results produced when different numerical methods are applied to the same 
problem with a known analytic solution. 

Building on an assumed elementary background in fluid mechanics and heat 
transfer, Chapter 5 reviews the basic equations of these subjects, emphasizing 
forms most suitable for numerical formulations of problems. A section on 
turbulence modeling is included in this chapter. Methods for solving inviscid 

XiX 
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flows using both conservative and nonconservative forms are presented in 
Chapter 6. Techniques for solving the boundary-layer equations for both lami- 
nar and turbulent flows are discussed in Chapter 7. Chapter 8 deals with 
equations of a class known as the “parabolized” Navier-Stokes equations which 
are useful for flows not adequately modeled by the boundary-layer equations, 
but not requiring the use of the full Navier-Stokes equations. Parabolized 
schemes for both subsonic and supersonic flows over external surfaces and in 
confined regions are included in this chapter. Chapter 9 is devoted to methods 
for the complete Navier-Stokes equations, including the Reynolds averaged 
form. A brief introduction to methods for grid generation is presented in 
Chapter 10 to complete the text. 

At Iowa State University, this material is taught to classes consisting 
primarily of aerospace and mechanical engineers, although the classes often 
include students from other branches of engineering and earth sciences. It is our 
experience that Part I (Chapters 1-4) can be adequately covered in a one- 
semester, three-credit-hour course. Part I1 of the book contains more informa- 
tion than can be covered in great detail in most one-semester, three-credit-hour 
courses. This permits Part 2 to be used for courses with different objectives. 
Although we have found that the major thrust of each of Chapters 5 through 10 
can be covered in one semester, it would also be possible to use only parts of 
this material for more specialized courses. Obvious modules would be Chapters 
5, 6 and 10 for a course emphasizing inviscid flows or Chapters 5, 7-9, (and 
perhaps 10) for a course emphasizing viscous flows. Other combinations are 
clearly possible. If only one course can be offered in the subject, choices also 
exist. Part I of the text can be covered in detail in the single course or, 
alternatively, only selected material from Chapters 1-4 could be covered as well 
as some material on applications of particular interest from Part 11. The 
material in the text is reasonably broad and should be appropriate for courses 
having a variety of objectives. 

For background, students should have at least one basic course in fluid 
dynamics, one course in ordinary differential equations, and some familiarity 
with partial differential equations. Of course, some programming experience is 
also assumed. 

The philosophy used throughout the CFD course sequence at Iowa State 
and embodied in this text is to encourage students to construct their own 
computer programs. For this reason, “canned” programs for specific problems 
do not appear in the text. Use of such programs does not enhance basic 
understanding necessary for algorithm development. At the end of each chapter, 
numerous problems are listed that necessitate numerical implementation of the 
text material. It is assumed that students have access to a high-speed digital 
computer. 

We wish to acknowledge the contributions of all of our students, both past 
and present. We are deeply indebted to F. Blottner, S. Chakravarthy, G. 
Christoph, J. Daywitt, T. Holst, M. Hussaini, J. Ievalts, D. Jespersen, 0. Kwon, 
M. Malik, J. Rakich, M. Salas, V. Shankar, R. Warming, and many others for 
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helpful suggestions for improving the text. We would like to thank Pat Fox and 
her associates for skillfully preparing the illustrations. A special thanks to 
Shirley Riney for typing and editing the manuscript. Her efforts were a constant 
source of encouragement. To our wives and children, we owe a debt of gratitude 
for all of the hours stolen from them. Their forbearance is greatly appreciated. 

Finally, a few words about the order in which the authors’ names appear. 
This text is a collective work by the three of us. There is no junior or senior 
author. The final order was determined by a coin flip. Despite the emphasis of 
finite-difference methods in the text, we resorted to a “Monte Carlo” method 
for this determination. 

Dale A.  Anderson 
John C, Tannehill 

Richard H. Fletcher 
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