series in computational and physical processes in mechanics and thermal sciences

Computational Fluid Mechanics and Heat Transfer

Second Edition

John C. Tannehill Dale A. Anderson Richard H. Pletcher

Series in Computational and Physical Processes in Mechanics and Thermal Sciences

W. J. Minkowycz and E. M. Sparrow, Editors

Anderson, Tannehill, and Pletcher, Computational Fluid Mechanics and Heat Transfer
Aziz and Na, Perturbation Methods in Heat Transfer
Baker, Finite Element Computational Fluid Mechanics
Beck, Cole, Haji-Shiekh, and Litkouhi, Heat Conduction Using Green's Functions
Chung, Editor, Numerical Modeling in Combustion
Jaluria and Torrance, Computational Heat Transfer
Patankar, Numerical Heat Transfer and Fluid Flow
Pepper and Heinrich, The Finite Element Method: Basic Concepts and Applications
Shih, Numerical Heat Transfer
Tannehill, Anderson, and Pletcher, Computational Fluid Mechanics and Heat Transfer, Second Edition

PROCEEDINGS

Chung, Editor, Finite Elements in Fluids: Volume 8 Haji-Sheikh, Editor, Integral Methods in Science and Engineering-90 Shih, Editor, Numerical Properties and Methodologies in Heat Transfer: Proceedings of the Second National Symposium

IN PREPARATION

Heinrich and Pepper, The Finite Element Method: Advances Concepts and Applications

COMPUTATIONAL FLUID MECHANICS AND HEAT TRANSFER

Second Edition

John C. Tannehill

Professor of Aerospace Engineering and Engineering Mechanics Iowa State University

Dale A. Anderson

Professor of Aerospace Engineering University of Texas at Arlington

Richard H. Pletcher

Professor of Mechanical Engineering Iowa State University

USA	Publishing Office:	Taylor & Francis 1101 Vermont Avenue, NW, Suite 200 Washington, DC 20005-3521 Tel: (202) 289–2174 Fax: (202) 289–3665
	Distribution Center:	Taylor & Francis 1900 Frost Road, Suite 101 Bristol, PA 19007-1598 Tel: (215) 785-5800 Fax: (215) 785-5515
UK		Taylor & Francis Ltd. 1 Gunpowder Square London EC4A 3DE Tel: 0171 583 0490 Fax: 0171 583 0581

COMPUTATIONAL FLUID MECHANICS AND HEAT TRANSFER, Second Edition

Copyright © 1997 Taylor & Francis, copyright © 1984 by Hemisphere Publishing Corporation. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 **B R B R** 9 8 7

l

This book was set in Times Roman. The editors were Christine Williams and Carol Edwards. Cover design by Michelle Fleitz.

A CIP catalog record for this book is available from the British Library.

 \bigotimes The paper in this publication meets the requirements of the ANSI Standard Z39.48-1984 (Permanence of Paper)

Library of Congress Cataloging-in-Publication Data

Tannehill, John C.
Computational fluid mechanics and heat transfer / John C.
Tannehill, Dale A. Anderson, Richard H. Pletcher. —2nd ed.
p. cm.—(Series in computational and physical processes in mechanics and thermal sciences)
Anderson's name appears first on the earlier ed.
Includes bibliographical references and index.
I. Fluid mechanics. 2. Heat—Transmission. I. Anderson, Dale A.
(Dale Arden). II Pletcher, Richard H. III. Title. IV. Series.
QA901.A53 1997
532'.05'01515353—dc20

96-41097 CIP To our wives and children: Marcia, Michelle, and John Tannehill Marleen, Greg, and Lisa Anderson Carol, Douglas, Laura, and Cynthia Pletcher

CONTENTS

	Preface Preface to the First Edition	xv xix
	Part I Fundamentals	1
1	INTRODUCTION	3
1.1	General Remarks	3
1.2	Comparison of Experimental, Theoretical, and Computational	
	Approaches	5
1.3	Historical Perspective	10
2	PARTIAL DIFFERENTIAL EQUATIONS	15
2.1	Introduction	15
2.2	Physical Classification	15
	2.2.1 Equilibrium Problems	15
	2.2.2 Marching Problems	19
2.3	Mathematical Classification	22
	2.3.1 Hyperbolic PDEs	26
	2.3.2 Parabolic PDEs	29
	2.3.3 Elliptic PDEs	32
2.4	The Well-Posed Problem	33

vii

viii CONTENT	S
--------------	---

2.5	System	is of Equations Differential Equations of Interest	35 40
2.0	Proble	ms	41
3	BASIC	CS OF DISCRETIZATION METHODS	45
3.1	Introd	uction	45
3.2	Finite	Differences	46
3.3	Differe	ence Representation of Partial Differential Equations	52
	3.3.1	Truncation Error	52
	3.3.2	Round-Off and Discretization Errors	54
	3.3.3	Consistency	55
	3.3.4	Stability	55
	3.3.5	Convergence for Marching Problems	57
	3.3.6	A Comment on Equilibrium Problems	57
	3.3.7	Conservation Form and Conservative Property	58
3.4	Furthe	r Examples of Methods for Obtaining Finite-Difference	
	Equati	ons	60
	3.4.1	Use of Taylor Series	61
	3.4.2	Use of Polynomial Fitting	65
	3.4.3	Integral Method	69
	3.4.4	Finite-Volume (Control-Volume) Approach	71
3.5	Introd	uction to the Use of Irregular Meshes	76
	3.5.1	Irregular Mesh Due to Shape of a Boundary	76
	3.5.2	Irregular Mesh Not Caused by Shape of a Boundary	82
	3.5.3	Concluding Remarks	83
3.6	Stabili	ty Considerations	83
	3.6.1	Fourier or von Neumann Analysis	84
	3.6.2	Stability Analysis for Systems of Equations	91
	Proble	ms	96
4	APPL	ICATION OF NUMERICAL METHODS TO	
	SELE	CTED MODEL EQUATIONS	- 101
4.1	Wave	Equation	102
	4.1.1	Euler Explicit Methods	102
	4.1.2	Upstream (First-Order Upwind or Windward)	
		Differencing Method	103
	4.1.3	Lax Method	112
	4.1.4	Euler Implicit Method	113
	4.1.5	Leap Frog Method	116
	4.1.6	Lax-Wendroff Method	117
	4.1.7	Two-Step Lax-Wendroff Method	118
	4.1.8	MacCormack Method	119
	4.1.9	Second-Order Upwind Method	119
	4.1.10	Time-Centered Implicit Method (Trapezoidal Differencing	1.0.0
		Method)	120

	4.1.11	Rusanov (Burstein-Mirin) Method	122
	4.1.12	Warming-Kutler-Lomax Method	123
	4.1.13	Runge-Kutta Methods	124
	4.1.14	Additional Comments	125
4.2	Heat E	Equation	126
	4.2.1	Simple Explicit Method	126
	4.2.2	Richardson's Method	129
	4.2.3	Simple Implicit (Laasonen) Method	130
	4.2.4	Crank-Nicolson Method	130
	4.2.5	Combined Method A	132
	4.2.6	Combined Method B	132
	4.2.7	DuFort-Frankel Method	133
	4.2.8	Keller Box and Modified Box Methods	134
	4.2.9	Methods for the Two-Dimensional Heat Equation	137
	4.2.10	ADI Methods	139
	4.2.11	Splitting or Fractional-Step Methods	141
	4.2.12	ADE Methods	142
	4.2.13	Hopscotch Method	143
	4.2.14	Additional Comments	144
4.3	Laplac	e's Equation	144
	4.3.1	Finite-Difference Representations for Laplace's Equation	145
	4.3.2	Simple Example for Laplace's Equation	146
	4.3.3	Direct Methods for Solving Systems of Linear	140
		Algebraic Equations	148
	4.3.4	Iterative Methods for Solving Systems of Linear	152
	105	Algebraic Equations	155
	4.3.5	Multigrid Method	105
4.4	Burger	rs' Equation (Inviscid)	170
	4.4.1	Lax Method	101
	4.4.2	Lax-wendron Method	187
	4.4.3	MacCormack Method	107
	4.4.4	Rusanov (Burstein-Mirin) Method	180
	4.4.5	Warming-Kuller-Lomax Methoda	109
	4.4.0	Tuned Third-Order Methods	190
	4.4.7	Codunou Schome	192
	4.4.0	Boo Scheme	198
	4.4.9	Enquist Osher Scheme	202
	4.4.10	Linquist-Osher Schemes	202
	4.4.11	TVD Schemes	201
15	9.4.12 Burger	re' Equation (Viscous)	217
4.5	4 5 1	FTCS Method	220
	452	Lean Frog /DuFort-Frankel Method	225
	453	Brailovskava Method	225
	454	Allen-Cheng Method	226
	4.5.5	Lax-Wendroff Method	227
	4.5.6	MacCormack Method	227
	4.5.7	Briley-McDonald Method	229
	4.5.8	Time-Split MacCormack Method	230

	4.5.9 ADI Methods	232
	4.5.10 Predictor-Corrector, Multiple-Iter	ration Method 232
	4.5.11 Roe Method	233
4.6	Concluding Remarks	234
	Problems	234

Part II Application of Numerical Methods to the Equations of Fluid Mechanics and Heat Transfer

247

5	GOVI HEAT	ERNING EQUATIONS OF FLUID MECHANICS AND I TRANSFER	249
5.1	Funda	amental Equations	249
	5.1.1	Continuity Equation	250
	5.1.2	Momentum Equation	252
	5.1.3	Energy Equation	255
	5.1.4	Equation of State	257
	5.1.5	Chemically Reacting Flows	259
	5.1.6	Vector Form of Equations	263
	5.1.7	Nondimensional Form of Equations	264
	5.1.8	Orthogonal Curvilinear Coordinates	266
5.2	Avera	ged Equations for Turbulent Flows	272
	5.2.1	Background	272
	5.2.2	Reynolds Averaged Navier-Stokes Equations	273
	5.2.3	Reynolds Form of the Continuity Equation	275
	5.2.4	Reynolds Form of the Momentum Equations	276
	5.2.5	Reynolds Form of the Energy Equation	278
	5.2.6	Comments on the Reynolds Equations	280
	5.2.7	Filtered Navier-Stokes Equations for Large-Eddy	
		Simulation	283
5.3	Bound	dary-Layer Equations	285
	5.3.1	Background	285
	5.3.2	Boundary-Layer Approximation for Steady	
		Incompressible Flow	286
	5.3.3	Boundary-Layer Equations for Compressible Flow	295
5.4	Introd	luction to Turbulence Modeling	299
	5.4.1	Background	299
	5.4.2	Modeling Terminology	299
	5.4.3	Simple Algebraic or Zero-Equation Models	301
	5.4.4	One-Half-Equation Models	308
	5.4.5	One-Equation Models	310
	5.4.6	One-and-One-Half and Two-Equation Models	313
	5.4.7	Reynolds Stress Models	317
	5.4.8	Subgrid-Scale Models for Large-Eddy Simulation	320
5.5	Euler	Equations	321
	5.5.1	Continuity Equation	322

	5.5.0 Invited Momentum Equations	373
	5.5.2 Inviscid Momentum Equations	325
	5.5.5 Inviscid Energy Equations	320
	5.5.4 Additional Equations	327
	5.5.5 Vector Form of Euler Equations	320
	5.5.6 Simplified Forms of Euler Equations	221
	5.5.7 Shock Equations	222
5.6	Transformation of Governing Equations	222
	5.6.1 Simple Transformations	229
	5.6.2 Generalized Transformation	330
5.7	Finite-Volume Formulation	242
	5.7.1 Two-Dimensional Finite-Volume Method	342
	5.7.2 Three-Dimensional Finite-Volume Method	347
	Problems	348
	NUMERICAL METHODS FOR INVISCID FLOW	
0	EQUATIONS	351
	EQUATIONS	551
6.1	Introduction	351
6.2	Method of Characteristics	352
	6.2.1 Linear Systems of Equations	353
	6.2.2 Nonlinear Systems of Equations	361
6.3	Classical Shock-Capturing Methods	365
6.4	Flux Splitting Schemes	375
	6.4.1 Steger-Warming Splitting	376
	6.4.2 Van Leer Flux Splitting	381
	6.4.3 Other Flux Splitting Schemes	383
	644 Application for Arbitrarily Shaped Cells	385
65	Flux-Difference Splitting Schemes	386
0.0	651 Roe Scheme	388
	6.5.2 Second-Order Schemes	395
66	Multidimensional Case in a General Coordinate System	398
67	Boundary Conditions for the Euler Equations	402
6.8	Methods for Solving the Potential Equation	413
60	Transonic Small-Disturbance Equations	428
6 10	Methods for Solving Laplace's Equation	431
0.10	Problems	437
7	NUMERICAL METHODS FOR BOUNDARY-LAYER	
	TYPE EQUATIONS	441
7.1	Introduction	441
7.2	Brief Comparison of Prediction Methods	442

1.4	DITELU	omparison of Frediction Methods	
7.3	Finite-I	Difference Methods for Two-Dimensional or	
	Axisym	metric Steady External Flows	443
	7.3.1	Generalized Form of the Equations	443
	7.3.2	Example of a Simple Explicit Procedure	445

7.3.2Example of a Simple Explicit Procedure4457.3.3Crank-Nicolson and Fully Implicit Methods447

	7.3.4	DuFort-Frankel Method	459
	7.3.5	Box Method	462
	7.3.6	Other Methods	465
	7.3.7	Coordinate Transformations for Boundary Lavers	466
	7.3.8	Special Considerations for Turbulent Flows	470
	7.3.9	Example Applications	473
	7.3.10	Closure	476
7.4	Invers	e Methods, Separated Flows, and Viscous-Inviscid Interaction	478
	7.4.1	Introduction	478
	7.4.2	Comments on Computing Separated Flows Using the	
		Boundary-Layer Equations	479
	7.4.3	Inverse Finite-Difference Methods	482
	7.4.4	Viscous-Inviscid Interaction	489
7.5	Metho	ods for Internal Flows	496
	7.5.1	Introduction	496
	7.5.2	Coordinate Transformation for Internal Flows	498
	7.5.3	Computational Strategies for Internal Flows	. 498
	7.5.4	Additional Remarks	508
7.6	Applic	cation to Free-Shear Flows	508
7.7	Three	-Dimensional Boundary Layers	512
	7.7.1	Introduction	512
	7.7.2	The Equations	513
	7.7.3	Comments on Solution Methods for Three-Dimensional	
		Flows	519
	7.7.4	Example Calculations	528
	7.7.5	Additional Remarks	530
7.8	Unste	ady Boundary Layers	530
	Proble	ems	532
8	NUM	ERICAL METHODS FOR THE "PARABOLIZED"	
	NAVI	ER-STOKES EQUATIONS	537
8.1	Introd	luction	537
8.2	Thin-I	Layer Navier-Stokes Equations	541
8.3	"Para	bolized" Navier-Stokes Equations	545
	8.3.1	Derivation of PNS Equations	546
	8.3.2	Streamwise Pressure Gradient	555
	8.3.3	Numerical Solution of PNS Equations	562
	8.3.4	Applications of PNS Equations	582
8.4	Parab	olized and Partially Parabolized Navier-Stokes	
	Proce	dures for Subsonic Flows	585
	8.4.1	Fully Parabolic Procedures	585
	8.4.2	Parabolic Procedures for 3-D Free-Shear and Other Flows	592
	8.4.3	Partially Parabolized (Multiple Space-Marching) Model	593
8.5	Viscou	us Shock-Layer Equations	609
8.6	"Coni	cal" Navier-Stokes Equations	614
	Proble	ems	617

9	NUMERICAL METHODS FOR THE NAVIER-STOKES	601
	EQUATIONS	021
9.1	Introduction	621
9.2	Compressible Navier-Stokes Equations	622
	9.2.1 Explicit MacCormack Method	625
	9.2.2 Other Explicit Methods	632
	9.2.3 Beam-Warming Scheme	633
	9.2.4 Other Implicit Methods	640
	9.2.5 Upwind Methods	641
	9.2.6 Compressible Navier-Stokes Equations at Low Speeds	642
9.3	Incompressible Navier-Stokes Equations	649
	9.3.1 Vorticity–Stream Function Approach	650
	9.3.2 Primitive-Variable Approach	659
	Problems	677
10	GRID GENERATION	679
10.1	Introduction	679
10.2	Algebraic Methods	681
10.3	Differential Equation Methods	688
	10.3.1 Elliptic Schemes	688
	10.3.2 Hyperbolic Schemes	694
	10.3.3 Parabolic Schemes	697
10.4	Variational Methods	698
10.5	Unstructured Grid Schemes	700
	10.5.1 Connectivity Information	702
	10.5.2 Delaunay Triangulation	703
	10.5.3 Bowyer Algorithm	705
10.6	Other Approaches	708
10.7	Adaptive Grids	710
	Problems	712
APP	ENDIXES	
Α	Subroutine for Solving a Tridiagonal System of Equations	715
В	Subroutines for Solving Block Tridiagonal Systems of Equations	717
С	The Modified Strongly Implicit Procedure	725
D	Finite-Volume Discretization for General Control Volumes	731
NON	MENCLATURE	737
REF	ERENCES	745
IND	EX	783

PREFACE

Almost fifteen years have passed since the first edition of this book was written. During the intervening years the literature in computational fluid dynamics (CFD) has expanded manyfold. Due in part to greatly enhanced computer power, the general understanding of the capabilities and limitations of algorithms has increased. A number of new ideas and methods have appeared. The authors have attempted to include new developments in this second edition while preserving those fundamental ideas covered in the first edition that remain important for mastery of the discipline. Ninety-five new homework problems have been added. The two part, ten chapter format of the book remains the same, although a shift in emphasis is evident in some of the chapters. The book is still intended to serve as an introductory text for advanced undergraduates and/or first-year graduate students. The major emphasis of the text is on finite-difference/finite-volume methods.

The first part, consisting of Chapters 1-4, presents basic concepts and introduces the reader to the fundamentals of finite-difference/finite-volume methods. The second part of the book, Chapters 5-10, is devoted to applications involving the equations of fluid mechanics and heat transfer. Chapter 1 serves as an introduction and gives a historical perspective of the discipline. This chapter has been brought up to date by reflecting the many changes that have occurred since the introduction of the first edition. Chapter 2 presents a brief review of those aspects of partial differential equation theory that have important implications for numerical solution schemes. This chapter has been revised for improved clarity and completeness. Coverage of the basics of discretization methods begins in Chapter 3. The second edition provides a more thorough introduction to the finite-volume method in this chapter. Chapter 4 deals with the application of numerical methods to selected model equations. Several additions have been made to this chapter. Treatment of methods for solving the wave equation now includes a discussion of Runge-Kutta schemes. The Keller box and modified box methods for solving parabolic equations are now included in Chapter 4. The method of approximate factorization is explained and demonstrated. The material on solution strategies for Laplace's equation has been revised and now contains an introduction to the multigrid method for both linear and nonlinear equations. Coloring schemes that can take advantage of vectorization are introduced. The material on discretization methods for the inviscid Burgers equation has been substantially revised in order to reflect the many developments, particularly with regard to upwind methods, that have occurred since the material for the first edition was drafted. Schemes due to Godunov, Roe, and Enquist and Osher are introduced. Higher-order upwind and total variation diminishing (TVD) schemes are also discussed in the revised Chapter 4.

The governing equations of fluid mechanics and heat transfer are presented in Chapter 5. The coverage has been expanded in several ways. The equations necessary to treat chemically reacting flows are discussed. Introductory information on direct and large-eddy simulation of turbulent flows is included. The filtered equations used in large-eddy simulation are presented as well as the Reynolds-averaged equations. The material on turbulence modeling has been augmented and now includes more details on one- and two-equation and Reynolds stress models as well as an introduction to the subgrid-scale modeling required for large-eddy simulation. A section has been added on the finitevolume formulation, a discretization procedure that proceeds from conservation equations in integral form.

Chapter 6 on methods for the inviscid flow equations is probably the most extensively revised chapter in the second edition. The revised chapter contains major new sections on flux splitting schemes, flux difference splitting schemes, the multidimensional case in generalized coordinates, and boundary conditions for the Euler equations. The chapter includes a discussion on implementing the integral form of conservation statements for arbitrarily shaped control volumes, particularly triangular cells, for two-dimensional applications.

Chapter 7 on methods for solving the boundary-layer equations includes new example applications of the inverse method, new material on the use of generalized coordinates, and a useful coordinate transformation for internal flows. In Chapter 8 methods are presented for solving simplified forms of the Navier-Stokes equations including the thin-layer Navier-Stokes (TLNS) equations, the parabolized Navier-Stokes (PNS) equations, the reduced Navier-Stokes (RNS) equations, the partially-parabolized Navier-Stokes (PPNS) equations, the viscous shock layer (VSL) equations, and the conical Navier-Stokes (CNS) equations. New material includes recent developments on pressure relaxation, upwind methods, coupled methods for solving the partially parabolized equations for subsonic flows, and applications. Chapter 9 on methods for the "complete" Navier-Stokes equations has undergone substantial revision. This is appropriate because much of the research and development in CFD since the first edition appeared has been concentrated on solving these equations. Upwind methods that were first introduced in the context of model and Euler equations are described as they extend to the full Navier-Stokes equations. Methods to efficiently solve the compressible equations at very low Mach numbers through low Mach number preconditioning are described. New developments in methods based on derived variables, such as the dual potential method, are discussed. Modifications to the method of artificial compressibility required to achieve time accuracy are developed. The use of space-marching methods to solve the steady Navier-Stokes equations is described. Recent advances in pressure-correction (segregated) schemes for solving the Navier-Stokes equations such as the use of non-staggered grids and the pressure-implicit with splitting of operators (PISO) method are included in the revised chapter.

Grid generation, addressed in Chapter 10, is another area in which much activity has occurred since the appearance of the first edition. The coverage has been broadened to include introductory material on both structured and unstructured approaches. Coverage now includes algebraic and differential equation methods for constructing structured grids and the point insertion and advancing front methods for obtaining unstructured grids composed of triangles. Concepts employed in constructing hybrid grids composed of both quadrilateral cells (structured) and triangles, solution adaptive grids, and domain decomposition schemes are discussed.

We are grateful for the help received from many colleagues, users of the first edition and others, while this revision was being developed. We especially thank our colleagues Ganesh Rajagopalan, Alric Rothmayer, and Ijaz Parpia. We also continue to be indebted to our students, both past and present, for their contributions. We would like to acknowledge the skillful preparation of several new figures by Lynn Ekblad. Finally, we would like to thank our families for their patience and continued encouragement during the preparation of this second edition.

This text continues to be a collective work by the three of us. There is no junior or senior author. A coin flip determined the order of authors for the first edition, and a new coin flip has determined the order of authors for this edition.

> John C. Tannehill Dale A. Anderson Richard H. Pletcher

PREFACE TO THE FIRST EDITION

This book is intended to serve as a text for introductory courses in computational fluid mechanics and heat transfer [or, synonymously, computational fluid dynamics (CFD)] for advanced undergraduates and/or first-year graduate students. The text has been developed from notes prepared for a two-course sequence taught at Iowa State University for more than a decade. No pretense is made that every facet of the subject is covered, but it is hoped that this book will serve as an introduction to this field for the novice. The major emphasis of the text is on finite-difference methods.

The material has been divided into two parts. The first part, consisting of Chapters 1–4, presents basic concepts and introduces the reader to the fundamentals of finite-difference methods. The second part of the book, consisting of Chapters 5–10, is devoted to applications involving the equations of fluid mechanics and heat transfer. Chapter 1 serves as an introduction, while a brief review of partial differential equations is given in Chapter 2. Finite-difference methods and the notions of stability, accuracy, and convergence are discussed in the third chapter.

Chapter 4 contains what is perhaps the most important information in the book. Numerous finite-difference methods are applied to linear and nonlinear model partial differential equations. This provides a basis for understanding the results produced when different numerical methods are applied to the same problem with a known analytic solution.

Building on an assumed elementary background in fluid mechanics and heat transfer, Chapter 5 reviews the basic equations of these subjects, emphasizing forms most suitable for numerical formulations of problems. A section on turbulence modeling is included in this chapter. Methods for solving inviscid

xx PREFACE TO THE FIRST EDITION

flows using both conservative and nonconservative forms are presented in Chapter 6. Techniques for solving the boundary-layer equations for both laminar and turbulent flows are discussed in Chapter 7. Chapter 8 deals with equations of a class known as the "parabolized" Navier-Stokes equations which are useful for flows not adequately modeled by the boundary-layer equations, but not requiring the use of the full Navier-Stokes equations. Parabolized schemes for both subsonic and supersonic flows over external surfaces and in confined regions are included in this chapter. Chapter 9 is devoted to methods for the complete Navier-Stokes equations, including the Reynolds averaged form. A brief introduction to methods for grid generation is presented in Chapter 10 to complete the text.

At Iowa State University, this material is taught to classes consisting primarily of aerospace and mechanical engineers, although the classes often include students from other branches of engineering and earth sciences. It is our experience that Part I (Chapters 1-4) can be adequately covered in a onesemester, three-credit-hour course. Part II of the book contains more information than can be covered in great detail in most one-semester, three-credit-hour courses. This permits Part 2 to be used for courses with different objectives. Although we have found that the major thrust of each of Chapters 5 through 10 can be covered in one semester, it would also be possible to use only parts of this material for more specialized courses. Obvious modules would be Chapters 5, 6 and 10 for a course emphasizing inviscid flows or Chapters 5, 7-9, (and perhaps 10) for a course emphasizing viscous flows. Other combinations are clearly possible. If only one course can be offered in the subject, choices also exist. Part I of the text can be covered in detail in the single course or, alternatively, only selected material from Chapters 1-4 could be covered as well as some material on applications of particular interest from Part II. The material in the text is reasonably broad and should be appropriate for courses having a variety of objectives.

For background, students should have at least one basic course in fluid dynamics, one course in ordinary differential equations, and some familiarity with partial differential equations. Of course, some programming experience is also assumed.

The philosophy used throughout the CFD course sequence at Iowa State and embodied in this text is to encourage students to construct their own computer programs. For this reason, "canned" programs for specific problems do not appear in the text. Use of such programs does not enhance basic understanding necessary for algorithm development. At the end of each chapter, numerous problems are listed that necessitate numerical implementation of the text material. It is assumed that students have access to a high-speed digital computer.

We wish to acknowledge the contributions of all of our students, both past and present. We are deeply indebted to F. Blottner, S. Chakravarthy, G. Christoph, J. Daywitt, T. Holst, M. Hussaini, J. Ievalts, D. Jespersen, O. Kwon, M. Malik, J. Rakich, M. Salas, V. Shankar, R. Warming, and many others for helpful suggestions for improving the text. We would like to thank Pat Fox and her associates for skillfully preparing the illustrations. A special thanks to Shirley Riney for typing and editing the manuscript. Her efforts were a constant source of encouragement. To our wives and children, we owe a debt of gratitude for all of the hours stolen from them. Their forbearance is greatly appreciated.

Finally, a few words about the order in which the authors' names appear. This text is a collective work by the three of us. There is no junior or senior author. The final order was determined by a coin flip. Despite the emphasis of finite-difference methods in the text, we resorted to a "Monte Carlo" method for this determination.

> Dale A. Anderson John C. Tannehill Richard H. Pletcher

PART ONE

FUNDAMENTALS

PART TWO

APPLICATION OF NUMERICAL METHODS TO THE EQUATIONS OF FLUID MECHANICS AND HEAT TRANSFER