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TEN 
GRID GENERATION 

10.1 INTRODUCTION 

One of the first steps in computing a numerical solution to the equations that 
describe a physical process is the construction of a grid. The physical domain 
must be covered with a mesh, so that discrete volumes or elements are identified 
where the conservation laws can be applied. A well-constructed grid greatly 
improves the quality of the solution, and conversely, a poorly constructed grid is 
a major contributor to a poor result. In many applications, difficulties with 
numerical simulations can be traced to poor grid quality. For example, the lack 
of convergence to a desired level is often a result of poor grid quality. In this 
chapter, techniques for generating grids using both structured and unstructured 
approaches will be discussed. Since grid generation is a very large field, only the 
basic ideas of a limited number of methods will be presented. 

Structured grid generation can be thought of as being composed of three 
categories: 

1. Complex variable methods 
2. Algebraic methods 
3. Differential equation techniques 

Complex variable techniques have the advantage that the transformations used 
are analytic or partially analytic, as opposed to those methods that are entirely 
numerical. Unfortunately, they are restricted to two dimensions. For this reason, 
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the technique has limited applicability and will not be covered here. For details 
of the application of complex variable methods, the works by Churchill (19481, 
Moretti (19791, Davis (19791, and Ives (1982) should be consulted. Algebraic and 
differential equation techniques can be used on complicated three-dimensional 
(3-D) problems. Of the structured methods, these have received the most use 
and will be discussed in this chapter. Unstructured methods are primarily based 
on using triangular or prismatic elements, although recently, randomly shaped 
cells with arbitrary connectivity have been increasingly used in flow simulations. 
Unstructured grid generation schemes may be thought of as being divided into 
three groups: 

1. Point insertion schemes 
2. Advancing front methods 
3. Domain decomposition techniques 

Details of point insertion methods will be discussed. However, only the procedure 
for constructing grids satisfying the Delaunay (1934) criterion using point 
insertion will be given. The detailed description of advancing front schemes or 
those using arbitrarily shaped cells is beyond the scope of this text. Domain 
decomposition techniques rely on recursively subdividing domains to provide a 
cell structure that may be used to complete a field calculation. These methods 
will not be discussed in detail in this chapter, but some information on the basic 
idea will be included. 

Early work using finite-difference methods was restricted to problems where 
suitable coordinate systems could be selected in order to solve the governing 
equations in that base system. As experience in computing solutions for complex 
flow fields was gained, general mappings were employed to transform the 
physical plane into a computational domain. Numerous advantages accrue when 
this procedure is followed. For example, the body surface can be selected as a 
boundary in the computational plane, permitting easy application of surface 
boundary conditions. In general, transformations are used that lead to a 
uniformly spaced grid in the computational plane, while points in physical space 
may be unequally spaced. This situation is shown in Fig. 10.1. When this 
procedure is used, it is necessary to include the metrics of the mapping in the 
differential equations. 

In applying finite-volume methods to the solution of physical problems, the 
direct application of the conservation statement to elements in the physical 
plane can be made without transforming the original differential equations. As 
we have seen in previous chapters, the discrete equations may be generated with 
this procedure and the metrics that appear with the generalized mapping now 
appear through the direct use of the volumes and the surface areas of the cell 
faces. With either approach, the physical domain is divided into volumes or cells. 
Techniques for creating the cell or element structure forms the basis of grid 
generation. 
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Figure 10.1 Mapping to computational space. 

10.2 ALGEBRAIC METHODS 
In Section 5.6 we used algebraic expressions to cluster grid points near solid 
boundaries to provide adequate resolution of the viscous boundary layer. In 
another example, a domain-normalizing transformation was used in order to 
align the grid lines with the body and shock wave in physical space. These are 
examples of simple algebraic mappings. To generate computational grids using 
this technique, known functions are used in one, two, or three dimensions to 
take arbitrarily shaped physical regions into a rectangular computational domain. 
Although the computational domain is not required to be rectangular, the usual 
procedure uses a rectangular region for simplicity. 

The simplest procedure available that may be used to produce a boundary 
fitted computational mesh is the normalizing transformation discussed in Section 
5.6.1. Suppose a body fitted mesh is desired in order to solve for the flow in a 
diverging nozzle. The geometry of the nozzle is shown in Fig. 10.2, and the 
describing function for the nozzle is given as 

ymax = x 2  1.0 < x < 2.0 (10.1) 

In this example, a computational grid can easily be generated by choosing 
equally spaced increments in the x direction and using uniform division in the y 
direction. This may be described as 

( = X  

Y 
77=- 

Ymax 

(10.2) 

where y,,, denotes the y coordinate of the nozzle wall. In this case the values 
of x and y for a given ( and 77 are easily recovered. The mesh generated in the 
physical domain is shown in Fig. 10.3. 
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Nozzle geometry. 

x= l  x=2 

Figure 103 Computational mesh in physical space. 

Care must be exercised when the metrics of the transformation are derived. 
In particular, the qx derivative of Eq. (10.2) is written 

and 
1 

- -  
1 

q y = - -  
Ymax t 2  

(10.3) 

(10.4) 

In the example just completed, the transformation was analytic and the 
point distribution was obtained through the given mapping. The same normaliz- 
ing transformation could have been constructed by assigning points in the 
physical plane along constant 5 and constant q lines and numerically computing 
the metrics by using second-order central differences. This has the advantage of 
permitting assignment of grid points in the physical plane where desired. The 
disadvantage is that all metrics must be determined using numerical techniques. 
In this case the transformation would be numerical and not algebraic. 
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If numerical methods are used to generate the required transformation, the 
terms x5 ,  x 7 ,  y t ,  and y7 are determined using finite differences. The quantities 
tX, (,,, qx, and qy appear in the differential equation, which must be solved. 
These quantities are obtained from the expressions 

y7 6 = -  
X I  

(10.5) 

x5 

where the inverse Jacobian (I) is given by 

77y = j- 

I = (W1 = xty7 - y s x 7  

More details will be presented in the section treating mappings governed by 
differential equations. 

Example 20.2 Compare the metrics for the simple normalizing transformation 
just discussed by computing them analytically and also by using a finite-difference 
approximation. 

Solution We select the point (1.75,2.2969) in the nozzle of Fig. 10.3 to compare 
the metrics. From Eq. (10.3), the analytic evaluation is 

2(0.75) 
1.75 

qx = - ~ = -0.85714 

The numerical calculation is performed by using Eq. (10.5). The inverse Jacobian 
(I) is evaluated first as 

0 3.0625 - 1.53125 
= 3.06250 I = p: - p7 = 2(0.25) 

Next, the yt term is computed as 
3 - 1.6875 

= 2.6250 
yt = 0.5 

Thus 
2.6250 
3.0625 

qx = -- = -0.85714 

In this example, the metrics computed by analytical and numerical methods give 
equally good results. Of course, this is not true for many problems. 
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(290 )  Figure 10.4 Trapezoid to rectangle mapping. 

Example 10.2 The trapezoidal region shown in Fig. 10.4 is mapped into a 
corresponding rectangular region by the equations given by 

x =  - - ( s ‘i ( 1 q ,  (10.6) 
77+1 

Y = 2  
In this example the physical domain is mapped into a rectangular region 
centered at the origin. This demonstrates the use of a normalizing transformation 
in one direction along with a simple translation. 

This choice of parameterization will give a different grid even for the case 
where Lagrange interpolation is used. While the preceding examples show 
acceptable results for computational grids, it is not always possible to construct a 
satisfactory grid without a more systematic approach. In particular, the 
application of general interpolation techniques provides a more formal approach 
toward the generation of grids using algebraic methods. 

Smith and Weigel (1980) developed a flexible method of directly providing 
grids using interpolation between surfaces. In this method, the domain of 
interest is defined by an upper and a lower boundary in the physical plane. As 
shown in Fig. 10.5(a), these boundaries are denoted by 

rl = rg,(5> (10.7) 

r2 = rB,(O (10.8) 
The upper and lower boundaries have been parameterized using the computa- 
tional coordinate as the parameter. These curves may also be written in terms of 
the scalar coordinates 

xg ,  = XI( 5 )  

(10.9) 



GRID GENERATION 685 

Y Y 

Figure 10.5 Algebraic interpolation domains. (a) Open domain for two-surface methods. (b) Closed 
domain for transfinite interpolation. 

The range on 5 in the computational plane is 

and the transformation is defined so that at 77 = 0, 
0 9 5 9 1  

and at 77 = 1, 

(10.10) 

(10.11) 

A function defined on 0 G 77 G 1 with parameters on the two boundaries 
completes the algebraic relation. This is chosen to be of the form 

If linear variations across the domain are selected, the grid is determined on 
the basis of Lagrange interpolation, and the form of the expression for ( x ,  y) is 

r( 5 , ~ )  = (1 - v)rl( 5) + vr2( 5 )  (10.13) 
or in scalar form, 

x = (1 - 77)x1(5) + 77x2(5) 

y = (1 - 77)y1(5) + 77y2(5) 

Example 10.3 To demonstrate the use of this approach, suppose we wish to map 
the trapezoid defined by the equations 

x = o  
x = l  
y = o  
y =  1 + x  
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into the computational plane. In this case, the upper and lower boundaries may 
be written 

xBl = x 1 ( 5 )  = '$ 

YEl = y 1 ( 6 )  = 

X B ,  =x2(5 )  = 6 
YE, = Y 2 ( 5 )  = + 6 

This produces the mapping required in Eq. (10.13) and is of the form 
x = &  

y = (1 + 0 7 7  
This parameterization produces the simple normalizing transformation 

discussed earlier in this section. In this example, both the right and left 
boundaries are also correctly mapped. This is coincidental and will not occur in 
more general problems. A different point distribution can be obtained by 
choosing a nonlinear function for the boundary parameterization. For example, 
if 

x1 = 5 2  

x2 = ( 2  

x = p  

y = 770 + t 2 )  

then 

In this case, the nonlinear boundary parameterization produces some clustering 
of the grid points. However, the ability to cluster points is limited to the 
influence of the boundary point distribution on the interior through interpola- 
tion. 

Additional control of the grid point distribution can be attained if higher- 
order interpolation polynomials are used. Hermite interpolation is often 
employed, since the derivatives specifying the initial slope of the constant 
coordinate curves leaving the boundaries are also included in the interpolation. 
The expression for the interpolated grid coordinates is of the form 

(10.14) 
where the functions are given by 

fi(77) = 2773 - 3,,2 + 1 

f2w = -2773 + 3772 

f3(77) = q3 - 2q2 + 77 
(10.15) 



GRID GENERATION 687 

This additional flexibility can be used to produce orthogonality at the upper and 
lower boundaries [see Kowalski (1980) for details]. 

In most problems, the boundaries are not analytic functions but are simply 
prescribed as a set of data points. In this case, the boundaq must be 
approximated by a curve fitting procedure to employ algebraic mappings. 
Eiseman and Smith (1980) discuss possible methods of accomplishing this and 
particularly recommend tension splines. Tension splines are suggested because 
higher-order approximations including cubic splines tend to produce wiggles in 
the boundary. The tension parameter in the tension spline allows control of this 
phenomenon. 

With the simple interpolation schemes investigated thus far, only two 
boundaries are matched. Unfortunately, many problems include the necessity of 
matching four boundaries enclosing the physical domain. Gordon and Hall 
(1973) describe transfinite interpolation, and Rizzi and Eriksson (1981) provide 
application details for generating boundary conforming grids with algebraic 
interpolation. To understand transfinite interpolation, consider the geometry of 
the physical domain given in Fig. 10.5(b). The simple interpolation scheme of 
Eq. (10.13) does not produce a grid that matches the boundaries denoted by 3 
and 4 in Fig. 103b). In fact, this simple interpolation produces an error at these 
boundaries that may be specifically identified. The error at boundaries denoted 
by 3 and 4 may be written 

(10.16) 

where the maximum and minimum values of 5 are taken to be 0 and 1, 
respectively, to define the left and right boundaries of the domain and the 
subscript, inter, indicates the interpolated values of (x, y ) .  If Lagrange interpol- 
ation is used, these errors are given by 

e3 = r3(77) - (1 - v)rl(0) - vr2(0) 
(10.17) 

e4 = r4(7)) - (1 - rl)rl(l) - 77r2(1) 

To eliminate these errors, we interpolate them onto the domain, so the errors at 
both the left and right boundaries are eliminated. The expression for the 
interpolated error may be written 

The expression for the interpolated computational coordinates is written 

and the final result becomes 
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This result shows that the transfinite interpolation (TFI) is composed of 
interpolations between the corresponding edges and an interpolation from each 
of the corner points. This interpolation will match all of the edge data required 
by a fixed domain. If Hermite interpolation is used, a different final result is 
obtained that matches the domain boundaries and also the initial slope 
requirements. In this case, it is possible to control the orthogonality of the mesh 
at the boundaries, and details can be found in the work of Chawner and 
Anderson (1991). The TFI method can also be used when only three boundaries 
are matched. This can be accomplished by noting that the error need not vanish 
on the fourth boundary, but may create a fourth boundary that assumes any 
shape. This is similar to using a TFI scheme to create a grid on an open domain. 
When transfinite interpolation is used, it must be remembered that no control 
over the Jacobian of the transformation is maintained. Grid crossing can and 
will occur when different parameterizations of the boundaries are used or when 
the derivatives at the boundaries (Hermite) are given certain values. These 
behavior traits can be seen through the applications provided by the problems at 
the end of this chapter. 

The basic idea behind the most common algebraic methods used to construct 
grids was presented in this section. With this basic understanding of the TFI 
scheme, the method can be developed with considerably more rigor. However, 
the intent here is to introduce the most common methods of grid generation, 
and a more sophisticated presentation will not be included. 

10.3 DIFFERENTIAL EQUATION METHODS 
In the previous section, algebraic methods were presented that can be used to 
produce usable grids. Any procedure that results in an acceptable grid is a valid 
one. One of the most frequently used and most highly developed procedures is 
the differential equation method. If a partial differential equation is used to 
generate a grid, we can exploit the properties of the solution of the grid- 
generating equation in producing the mesh. All three classes of partial 
differential equations have been used to produce grid construction methods, and 
a short discussion of each is presented in this section. 

10.3.1 Elliptic Schemes 
Elliptic partial differential equations (PDEs) have the property that the solutions 
are generally very smooth. This smoothness can be used to advantage, and for 
this reason, Laplace's equation is a good choice. To better understand the 
choice of Laplace's equation, consider the solution of a steady heat conduction 
problem in two dimensions with Dirichlet boundary conditions. The solution of 
this problem produces isotherms that are smooth (class C" properties) and are 
nonintersecting. The number of isotherms in a given region can be increased by 
adding a source term. If the isotherms are used as grid lines, they will be 
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smooth, nonintersecting, and can be densely packed in any region by controlling 
the source term. 

One of the attractive features of using Laplace’s equation is that the 
Jacobian is guaranteed to be positive as a result of the maximum principle for 
harmonic functions. Unfortunately, this theorem only applies to the analytic 
equations and solution (Thompson et al., 1985). When the differential equation 
is discretized, the truncation errors may lead to grid crossing even though the 
maximum principle holds for the solution of the analytic equation. This point 
must be clearly understood. If the numerical formulation of the differential 
equation satisfies the consistency condition, then the maximum principle will be 
satisfied in the limit of vanishing mesh size. However, no promises can be made 
for finite mesh sizes. In some cases, an estimate can be made to determine when 
mesh crossing will occur (see Prob. 10.14). 

This idea of using elliptic differential equations is based on the work of 
Crowley (1962) and Winslow (1966) and transforms the physical domain into the 
computational plane, where the mapping is controlled by a Poisson equation. 
Thompson et al. (1974) have worked extensively on using elliptic PDEs to 
generate grids. When the Poisson grid generators are used, the mapping is 
constructed by specifying the desired grid points ( x ,  y )  on the boundary of the 
physical domain with the interior point distribution determined through the 
solution of the equations 

(10.21) 

where ( 6 , ~ )  represent the coordinates in the computational domain and P and 
Q are terms that control the point spacing on the interior of D. Equations 
(10.21) are then transformed to computational space by interchanging the roles 
of the independent and dependent variables. This yields a system of two elliptic 
equations of the form 

where 
ff = x; + y;  

P = x,x, + Y,Y, 
y = xi  + y; 

(10.22) 

This system of equations is solved on a uniformly spaced grid in the computa- 
tional plane. This provides the ( x ,  y) coordinates of each point in physical space. 
For simply connected regions, Dirichlet boundary conditions can be used 
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Figure 10.6 Application of Thompson scheme. 
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at all boundary points. The advantages of using this technique to generate a 
computational mesh are many. The resulting grid is smooth, the transformation 
is one to one, and complex boundaries are easily treated. Of course, there are 
some disadvantages. Specification of P and Q is not an easy task, grid point 
control on the interior is difficult to achieve, and boundaries may be changing 
with time. In the latter case, the grid must be computed after each time step. 
This can consume large amounts of computer time. 

A simple example demonstrating the application of the Thompson scheme is 
shown in Fig. 10.6. The region between two concentric circles is mapped into the 
computational domain, and the resulting constant 6 and 77 surfaces in physical 
space are shown. The inner circle is of radius r,, and the outer circle is of radius 
r l .  For this problem, the circle is cut at 8 = 0 and mapped into the region 
between 1 and &,,a, and 1 and q,,, in computational space. In this problem the 
mapping is determined by a solution of two Laplace's equations, 

v y = o  
v27 = 0 

subject to boundary conditions 

The solution is of the form 

x = R cos 4 
y = R sin 4 
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where 

This solution is interesting, in that a uniform grid in the physical domain is not 
achieved in this case. The distribution in the radial direction is a series of 
concentric circles. To obtain the mapping with a series of uniformly spaced 
concentric circles, P = 0 and Q = 1/77 (see Prob. 10.9). 

As previously noted, one of the difficulties with this scheme is point control 
on the interior of the domain. This requires that methods for developing P and 
Q be devised in order to obtain the desired point distribution. Middlecoff and 
Thomas (1979) have developed a method that provides approximate control of 
point spacing by evaluating P and Q according to the desired point distribution 
on the boundary. 

In order to demonstrate this idea, we suppose that a solution of Eq. (10.21) 
is required subject to Dirichlet boundary conditions. We elect to write P and Q 
in the form 

(10.23) 

where 4 and $ will be specified through the boundary conditions. With this 
convention, our original system [m. (10.2211 may be written 

Middlecoff and Thomas (1979) proposed writing these equations along either 
constant 5 or 77 surfaces corresponding to the boundaries of the domain, 
assuming that the grid was orthogonal at the boundaries and that the opposite 
family of lines had zero curvature at the intersection. If we are interested in 
finding the values of 4 along a constant 77 boundary, it is assumed that the 
constant 6 curves intersecting this boundary have no curvature at the intersection 
point and that the two are orthogonal. If S represents arc length along the 
constant 77 boundary, then the expression relating this arc length to the grid 
control function 4 is 

s,, + +st = 0 (10.25) 

In a similar fashion, if arc length along the constant 5 boundaries is denoted by 
N ,  the equation for the relationship between N and the grid control parameter 
t+b is given by 

N,, + @N, = 0 (10.26) 
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Since S and N represent arc length along the boundaries, the values of (x,y) 
specified on the domain boundaries permit S and N to be determined. Finite- 
difference forms of the above two equations may be used to find the values of + 
and + that are needed to determine the interior grid from the Thomas and 
Middlecoff (TM) form of the Thompson scheme. The interior values for + and 
+ are found by interpolating the boundary values onto the interior. A simple 
Lagrange interpolation is usually adequate. 

The interior point distribution or clustering is determined by either P and 
Q in the Thompson formulation or by + and + in the TM formulation of the 
Poisson grid generation equations. In order to control grid point distribution on 
the interior of the domain, it is important to understand how the construction of 
these grid control functions influences grid point location. In the original TM 
formulation, the values of 4 and + were determined from the boundary and 
interpolated to determine the interior distribution. Next we discuss why the 
values of + and + found from the approximations at the boundaries result in 
control of the grid points. 

Anderson (1987) examined the TM form of the Poisson grid generation 
equations written along the constant coordinate lines without the assumption of 
orthogonality and zero curvature of the intersecting family. The resulting 
equations show that 

Nq sin 8 
4 -  ( p ,  - 2u,)cot 8 - (10.27) 

and 

* + b , - 2 p J c o t 8 + -  = o  (10.28) 
S, sin 8 1 

In these expressions, the first terms inside the square brackets are the same as 
the TM terms that are associated with the orthogonality and local curvature of 
the grid. The values of u and p represent the local inclination of constant 6 
and q lines, respectively, and 8 is the angle of intersection between the two 
families of curves. If the grid control parameters are sufficiently large in 
comparison with the other terms, the grid will be determined primarily by the 
values of 4 and +. The governing equations for the arc lengths are then 
consistent with the TM formulation. The expressions given by Eqs. (10.27) and 
(10.28) are equidistribution laws, and the values of the grid control parameters 
are related to weight functions for this equidistribution. Consider the equidistri- 
bution of a weight function w in the discrete form 

( A S ) w  = const = C (10.29) 
where A S  is the distance between any two mesh points along a constant 71 
curve. If A S  is large, w is small, and vice versa. This shows that control of the 
mesh spacing can be attained by correctly formulating the weight function. The 
continuous equivalent of the discrete equidistribution law may be written 

s , w  = c (10.30) 
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where the arc length derivative is now controlled by the weight function. If this 
equation is differentiated, we obtain 

s,, + S , W [ / W  = 0 (10.31) 

This is similar to the form of the original TM equation and shows that the TM 
method of finding the correct values of 4 and $ is an approximate equidistribu- 
tion law with 

4 = w,/w (10.32) 

The grid spacing control described above shows why control can be exercised 
by proper construction of the weight functions, or equivalently, the values of 4 
and $. Geometric functions that provide clustering near points or lines have 
been developed and are generally written in the form of an exponential 
(Thompson, 1975, 1980). A function that clusters near the line 77 = vj is of the 
form 

$( 6 , ~ )  = -A sgn (77 - qj)&’l’-vJ1) (10.33) 

where A and B are positive constants. To cluster near a point (tj, qj), the 
function has a correction to the distance and is of the form 

+((, 77) = -A sgn (77 - ~ j ) e [ - ~ ~ ( , - ~ J ) ’ + ( ~ - ~ J ) 2 ~  (10.34) 

where the constants A and B are taken to be positive. A corresponding 
expression may be written for 4. 

Other techniques for the control of interior grid point locations with control 
of the orthogonality at the boundaries have been developed. Sorenson and 
Steger (1983) and Hilgenstock (1988) have presented methods for the control of 
the orthogonality at boundaries and the spacing of the first mesh interval on the 
interior. These procedures use an iteration scheme to attain orthogonality at the 
boundaries and satisfy the specified spacing. The orthogonality constraint is 
typically allowed to attenuate into the interior to prevent overspecification of 
the problem. If orthogonality at the boundary is a critical issue for a given 
application, these methods are very effective. 

Other variations on the use of elliptic differential equations may be found in 
the literature. One of the interesting variations has been presented by Winslow 
(1981). In the original Poisson grid generation equations, the control of the arc 
lengths requires that two grid control parameters (in two dimensions) be 
specified. A simpler approach might only require the specification of the grid 
cell area or volume. This would necessitate prescription of only one parameter, 
regardless of the number of dimensions in the problem. Winslow (1981) called 
this parameter the diffusion and wrote the governing equations in the form 

v - ( D V t )  = 0 
v - ( D V v )  = 0 

(10.35~) 
(10.35b) 

The parameter D may be specified to control the spacing of the computational 
coordinates, as can be seen if these equations are integrated over an arbitrary 
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control volume. Anderson (1990) has shown analytically that the diffusion 
parameter is approximately proportional to the Jacobian of the transformation. 
Consequently, to specify the cell area or volume, the diffusion is set equal to the 
desired volume multiplied by a scaling factor. Of course, the simplicity of this 
approach must be traded off against the loss of ability to control anything except 
the cell volume. 

General construction of orthogonal grids using elliptic methods is also of 
great interest, especially if the mesh spacing is also controlled. This may be 
accomplished in 2-D problems, and the works of Eiseman (1982), k i n a  (1986), 
and Sharp and Anderson (1991) are recommended reading. 

Many other researchers have contributed to the state of the art in elliptic 
grid generation, and the interested reader is encouraged to consult the many 
conference publications on grid generation and the recent review paper by 
Thompson (1996). 

10.3.2 Hyperbolic Schemes 

Hyperbolic systems can also be used to generate grids. The advantage in using 
this type of partial differential equation is that the grid may be generated by 
solving the governing equations only once. This type of grid generation scheme 
is usually applied to problems with open domains consistent with the type of 
PDE describing the physical problem. The initial point distribution is specified 
along an initial data line with appropriate boundary conditions, and the solution 
is marched outward. The outer boundary at the end of the computation must be 
accepted wherever it occurs, with the shape that has resulted from the 
calculation. Steger and Sorenson (1980) described a method using a system of 
hyperbolic equations to generate a mesh. They have proposed an arc length 
orthogonality scheme and a volume orthogonality method. Only the latter will 
be presented in detail here. 

In a 2-D problem, the Jacobian of the transformation controls the magnifi- 
cation of area elements between the physical and computational planes. If we 
imagine that mesh spacing in computational space is given by A &  = AT = 1, 
then the area elements are also one unit in size. The inverse of the Jacobian, 

(10.36) 

then represents the area in physical space for a given area element in 
computational space. If I is specified as a function of position, then Eq. (10.36) 
can be used as a single equation specifying grid control in the physical plane. A 
second equation is obtained by requiring that the grid lines be orthogonal at the 
boundary in physical space. Along a boundary where & ( x , y )  = const, we may 
write 

d & = O = & , d x + & , d y  
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or 

(10.37) 5, Y ,  2) = - _ -  _ -  
t=const tY xa 

Along an 7 = const surface 

(10.38) 

If we require that 6 and 7 surfaces be perpendicular, the slopes must be 
negative reciprocals. This requirement becomes 

xgx, + Y { Y ,  = 0 (10.39) 

The system given by Eqs. (10.36) and (10.39) is linearized by expanding 
about a known state denoted by the tilde. Using this convention, we may 
linearize one of the terms in Eq. (10.39) as 

x t y ,  = ( 2  + x  -.a& + y  -y) ,  
= i c y , ,  + y , ( ~ ~ - i ~ )  +.F,(y,  - 9 , )  + O(A2) 

=ysx t  + f,y, - i t y ,  + O(A2) 

If the other terms are linearized in a similar manner, we obtain 

[ A]wt + [ B]w, = f 
where 

(10.40) 

(10.41) 

(10.42) 

The eigenvalues of [ B ] - ' [ A ]  must be real if the system is hyperbolic in the 7 
direction. These eigenvalues are 

(10.43) 

This shows that Eq. (10.41) is hyperbolic in the 7 direction and can be marched 
in 77 so long as if + y i  z 0. 

The procedure to use in generating a grid with this scheme is to assume the 
body is the 7 = 0 surface and specify the distribution of points along the body. 
Next, the inverse Jacobian I in Eq. (10.36) is computed. Steger and Sorenson 
suggest that I be determined by laying out a straight line with length equal to 
that of the body surface ( 1 )  and distribute the body points on this line. Next, a 
line parallel to the first is drawn at an 7 = const surface as desired. Once this is 
done, the quantity I is easily determined by estimating the area elements of the 
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SPECIFIED 
CONTROL 
VOLUME 
G R I D  

Figure 10.7 Area element computation. 

grid. This procedure is illustrated in Fig. 10.7. The system of governing equations 
given by Eq. (10.41) is now solved using any standard method for solving systems 
of hyperbolic PDEs. 

Since we specify I in this scheme, a smoothly varying grid is obtained if I is 
well chosen. However, poor selection of the I variation leads to possible 
“shocks” or discontinuous propagation of this information through the mesh. It 
is also true that discontinuous boundary data are propagated in the mesh. On 
the other hand, the mesh is orthogonal and is generated very rapidly. Figure 
10.8 shows the grid generated about a typical airfoil shape. In this case, points 
have been clustered near the body in order to permit resolution of the viscous 
boundary layer. 

Figure 10.8 Grid for an airfoil configuration. 
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10.3.3 Parabolic Schemes 
Parabolic PDEs are also solved by advancing the solution away from an initial 
data surface while satisfying boundary conditions at the ends of the domain. As 
was true for hyperbolic grid generators, parabolic generators should be useful in 
producing grids using a single-pass strategy. Nakamura (1982) and Edwards 
(1985) developed the basic ideas used in parabolic grid generation, and these 
techniques provide another way of producing acceptable grids. 

The idea of parabolic grid generation is based on using the Laplace or 
Poisson grid generator and specially treating the parts of the equation that 
control the elliptic behavior. In order to understand the basic idea, consider 
Laplace’s equation as the fundamental generating equation. The geometry of 
the domain is assumed to be consistent with that shown in Fig. 10.7 for the 
hyperbolic case. The initial data are given as the coordinates of all points along 
the r)  = 0 surface. The idea is to advance the solution for the grid outward from 
this surface subject to the boundary conditions along the minimum and maximum 
6 edges. 

If either Laplace’s or Poisson’s equation is used, the problem is elliptic, and 
the solution cannot be advanced in the r )  direction because the central dif- 
ferencing requires that information from the advanced ( j  + 1) level be used. To 
illustrate this problem, consider the differencing of the second derivative, 

d2r  

dV2  

If a second-order central difference is used, this is represented as 
rj+l - 2rj + rj-l 

If the integration of the equation is started with given data at the location 
indicated by j - 1, the unknown level is then indicated by j .  However, the 
difference equations show that information from the next level at j + 1 is 
needed. We supply this information by assuming that this can be approximated 
by replacing any value at j + 1 by the outer boundary value, as originally 
suggested by Nakamura. It is also necessary to use this idea in evaluating the 
cross-derivative terms and first-derivative terms. When this approach is selected, 
the grid generation equation in discrete form may be solved as a marching 
problem, with the unknowns at the jth level constituting the values to be 
determined. At each step, the j + 1 level information is supplied by simply 
continuing to use the values on the outer boundary of the domain. This method 
creates a technique that allows a solution to the elliptic equation to be 
computed via a marching scheme. It has the conceptual advantage of producing 
a grid in a single pass. 

The original parabolic methods of Nakamura (1982) and Edwards (1985) 
used the outer boundary to evaluate the necessary j + 1 point data in solving 
Laplace’s equation. Other methods may be used to approximate the information 
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needed at the advanced levels. One way is to use a reference grid (Noack, 19861, 
where an initial grid is constructed using any simple method, usually an 
algebraic scheme, and the reference grid point locations are used to supply the 
needed advanced point information for the solution of Laplace’s equation. If, 
after the initial solution is computed, the reference grid is taken to be the first 
iterative pass from a Laplace or Poisson equation solution, an additional pass 
through the grid solver is made, and this process is repeated until a satisfactory 
grid is produced. This effectively becomes a solution to the elliptic equation that 
has not been completely converged. Hodge et al. (1987) also extended the idea 
of parabolic grid generation by using the Poisson equation in place of Laplace’s 
equation and also provided some latitude in the selection of the direction that 
the equations could be parabolized. 

At this point, no information has been given to suggest a means to control 
the grid spacing. In the works of Nakamura (1982) and Edwards (1985), grid 
control was accomplished by using nonuniform spacing in the computational 
domain. This variation in the cell sizes in the computational domain was used in 
solving a Laplace grid generation equation, providing control of mesh spacing in 
the physical domain. Some control of orthogonality was also provided by altering 
the location of the outer boundary points. This effectively is accomplished by 
altering the source terms that appear in the difference equations. The reference 
grid was used by Noack (1985) as a means of controlling the space of the grid 
points. Hodge et al. (1987) has given some guidance in the selection of the 
source terms in the Poisson equation for parabolic grid generation. 

Parabolic grid generation has the advantage that no grid shocks occur as is 
possible in the hyperbolic case. In this sense, we expect grids to be relatively 
smooth. However, the effort required to set up the reference grid, or the outer 
boundary, as well as select a variable step size to control the grid point locations 
is time consuming. As with any method, there are advantages and disadvantages. 
However, if sufficient familiarity with these techniques is gained through 
experience, parabolic grid generation can be very effective. 

10.4 VARIATIONAL METHODS 

Variational methods have recently gained in popularity as a grid generation tool. 
When a function is minimized, several measures of mesh quality can be 
included. Brackbill and Saltzman (1980) and Brackbill (1982) have developed a 
technique for constructing an adaptive grid using a variational approach. In 
their scheme, a function that contains a measure of grid smoothness, orth- 
ogonality, and volume variation is minimized using variational principles. The 
smoothness of the transformation is represented by the integral 

(10.44) 
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A measure of orthogonality is provided by 

1, = / (Vt  * VvI2I3 dV (10.45) 
D 

and the volume measure is given as 

I,= j w 1 d V  
D 

(10.46) 

where w is a given weighting function. 
The transformation relating the physical and computational domains is 

determined by minimizing a linear combination of the above three integrals. 
This linear combination with coefficient multipliers A, and A, is written 

Z, = I, + A,I, + AoIo (10.47) 

In order to minimize I,, the Euler-Lagrange equations must be formed (Wein- 
stock, 1952). As an example, the smoothness measure, Eq. (10.44), may be 
written 

x; + x i  + ys" + y; 
I s = / / (  1 ) d t d v  (10.48) 

when the variables are interchanged and the integration is performed in compu- 
tational space. If we construct the Euler-Lagrange equations corresponding to 
I,, they are of the form 

If the differentiation is performed, these expressions may be written 

AbX,,  - 2px,, + yx,,) - H a y , ,  - W Y , ,  + YY,,) = 0 
(10.50) 

The coefficients A, B ,  C ,  a ,  p, and y are functions of the metrics, and their 
evaluation is left as an exercise (see Prob. 10.13). If 

- B ( a ~ . r ,  - 2/3~,5 ,  + YX, , )  + C ( a y , ,  - 2Py6, + YY,,) = 0 

B ~ - A C Z O  
these equations may be written as 

a x t ,  - 2pxt,  + yx,, = 0 

"Yt ,  - W Y , ,  + YY,, = 0 
(10.51) 

This is the form of the original mapping given by Winslow and is also the basic 
system of equations for Thompson's work. If It as defined in Eq. (10.47) is 
minimized, each of the integrals, Z, and Z,, contribute terms to a significantly 
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more complicated set of Euler-Lagrange equations than those given in Eq. 
(10.51). 

The use of a variational approach provides a solid mathematical basis for 
the grid but also entails additional effort in solving more PDEs. The Euler- 
Lagrange equations must be solved in addition to those governing the fluid 
motion. In the example shown here, the adaptive grid is constructed by 
implementing a new mesh after each iteration or time step and computing the 
grid speed by using a backward difference. The variational approach clearly 
offers a powerful method for constructing computational grids. The disadvantage 
is that a considerable effort must be expended in solving the equations that 
govern the grid generation. If a linear combination of the integrals of Eq. (10.47) 
is used, the A’s must also be selected. However, some remarkable results have 
been obtained with the proper choice of these coefficients. 

The book by Knupp and Steinberg (1993) is a good source for a 
comprehensive treatment of the application of variational methods to the grid 
generation problem. Examples of the application of direct methods may be 
found in the literature, and typical of this is the work of Kennon and Dulikravich 
(1985) and Carcaillet (1986). Future applications of the variational approach will 
likely involve more work on direct minimization of integrals as opposed to the 
construction of the Euler-Lagrange equations. This simplifies the work by 
eliminating the laborious construction of the governing differential equations by 
using additional CPU time. Integrals representing a measure of desired qualities 
in a grid can be minimized with a number of well-proven methods that are 
readily available in the literature. The Euler-Lagrange equations can in practice 
be obtained with symbolic manipulators that also remove much of the difficulty 
in application if this classical approach is used. Variational techniques are a 
powerful way to formulate measures of grid quality and provide guidance in the 
construction of grid generation schemes. With continuing improvements in CPU 
power and inexpensive storage, more extensive use will be made of these 
methods. 

10.5 UNSTRUCTURED GRID SCHEMES 

Unstructured grid generation schemes have gained in popularity in recent years 
for a number of reasons. The increase in computer power and the reduction in 
memory costs have been major factors. One of the attractive features of 
unstructured mesh generation schemes is the promise they seemingly hold of 
ultimately providing a method that automates the grid generation process. In 
constructing grids using a structured approach, the grid must be segmented into 
blocks due to the topology of the domain and the configuration of interest, with 
the logical structure defined to provide appropriate connectivity. The flow solver 
must also be written to interpret and use the data format produced by the grid 
generator. This process of generating a structured mesh is a time-intensive task 
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for engineers and scientists working in the field. Although good progress has 
been made in attempting to automate the blocking and subdivision for structured 
grids (Dannenhoffer, 1991, 1995, 1996), interactive grid generation is still used 
for the majority of structured mesh problems. When an unstructured approach 
is employed, defining the configuration of interest forms the most complex 
portion of the problem for the user, and the unstructured grid generator is 
employed to create the grid automatically. This is the case at least in concept, 
although in reality, the ability to generate grids automatically, in general, is still 
beyond the state of the art. For unstructured grids, the connectivity information 
stored is cell-to-cell as opposed to block-to-block, so additional storage is 
necessary when compared to the structured approach. However, the increase in 
available CPU power and memory makes the trade-off between CPU time and 
engineering hours favor the unstructured approach. There are other factors that 
may play an equally important role. One consideration is the solver efficiency. 
Due to the problem of random cell location and connectivity, unstructured 
solvers are usually not as computationally efficient as their structured 
counterparts. One must also try to construct cells where the volumes are as 
nearly equal or change very smoothly to avoid the problem of introducing errors 
in the solutions that are grid induced. This problem of the smoothly changing 
volume size is common to both techniques. Unstructured mesh schemes must 
also be monitored to reduce the thin or so-called high aspect ratio cells that are 
created in the generation process, since these cells contribute to increased 
errors. 

Other considerations are of importance in the construction of grids for 
solution of flow problems. The grid point or cell densities that give adequate 
resolution for flow problems create difficulties for both structured and 
unstructured grids. For example, in the boundary layer, the use of structured 
mesh schemes naturally suggests a cell shape that is elongated in the flow 
direction. This configuration is consistent with the boundary layer assumptions, 
in that more cells appear in the normal direction as compared to the flow 
direction, where only small changes in the flow may occur. On the other hand, 
the use of unstructured grids, for example, triangles in a 2-D problem and 
tetrahedra in 3-D, requires a higher cell density in the boundary layer because 
the cells need to be as nearly equilateral (analogous to orthogonality in structured 
meshes) as possible in order to avoid grid-induced errors in the solution. The 
storage requirements are much larger for the unstructured grid. This can be 
visualized by imagining that a 2-D structured mesh is used as a base and the 
mesh is then triangulated by simply inserting the diagonal in each cell. In this 
example, the number of cells produced is larger by a factor of 2 for the 
unstructured result. In 3-D problems, the number of cells produced using this 
procedure is at least a factor of 5 larger. In addition, the cells produced may be 
long and narrow (high aspect ratio), and mesh refinement is then needed to 
reduce this aspect ratio. 

In this section, the procedure for construction of a Delaunay (1931) mesh 
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will be outlined using the Bowyer (1981) insertion scheme. This is intended to 
provide an introduction to some of the concepts associated with the logic for 
constructing unstructured grids. 

10.5.1 Connectivity Information 
As a starting point, consider the connected triangles shown in Fig. 10.9. We 
must determine what information is necessary to completely identify the cell and 
all of the neighbors of that cell in the computational mesh. In generating an 
unstructured mesh, the point locations are arbitrary, and we may choose to 
place them at any desired position. As in the structured case, each point must be 
identified. We consider a point insertion scheme where each point is in- 
dependently inserted and the cell connectivity resulting from this insertion is 
determined. This suggests that points be identified sequentially as they are 
inserted. If 35 points have been inserted into the mesh, the next point that needs 
to be inserted is identified as number 36. In addition to the identification of the 
grid point number, the coordinates of this point must be known and stored as 
[x(36), ~(3611. 

After a grid point is inserted into an existing mesh, logic for establishing the 
new connectivity is employed. Data that identify the grid points that form a 
given cell are needed. As each cell is formed, the cell is numbered, and the 
forming points for that cell are also stored. For example, the convention can be 
taken that the forming points for this 2-D example are numbered in a 
counterclockwise direction around each triangle. We number these as forming 
point one, fpl(ncel0, and continue around the triangular cell including all three 
points. This is illustrated in Fig. 10.9. In this figure, the three triangles that 
constitute the cell structure are formed by using five points, which are numbered 
on the exterior of each triangle vertex. The number assigned to each cell is 
shown in parentheses on the interior, and the forming point convention shows 
the local identification of the forming points as 1,2,3 on the interior of each cell 
near the vertices where the forming points are located. 

In addition, the neighbor cell information is needed. Cells are considered to 
be neighbors if they share a common face. As a convenient convention, we may 

1 

3 

2 

Figure 10.9 Notation for unstructured cells. 
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identify the first neighbor of a cell as that cell opposite to forming point 1. For 
example, if cell 2 is given as shown in Fig. 10.9, the second neighbor is identified 
as cell 1, and the first neighbor is cell 3. The neighbor information for this figure 
is given as 

neil(1) = 2 
neil(2) = 3, 
nei2(3) = 2 

nei2(2) = 1 

In general, each triangular cell will have three neighbors. In this example, the 
first and third cells have only one and the second cell has two neighboring cells. 
The forming point information for these cells would be stored as 

fpl(1) = 1 fp2(1) = 2 fp3(1) = 4 
fpl(2) = 2 fp2(2) = 3 fp3(2) = 4 

fpl(3) = 3 fp2(3) = 5 fp3(3) = 4 

The data contained in the cell-numbering scheme, the neighbors, and the 
forming points are sufficient to establish any of the parameters that are needed 
in the mesh or in a computational fluid dynamics (CFD) code using the cell 
structure derived from this mesh. 

The discussion in this section regarding the information storage for a 
triangular mesh is also applicable to a 3-D tetrahedral cell structure except that 
the convenience of some of the numbering conventions identifying the neighbors 
may not apply. The same data are required when rectangular cells are mixed 
with triangles in a 2-D case. Of course, when mixed-cell hybrid grids are used, 
the flow solver must be written to accept any cell structure and any arbitrary 
connectivity. 

10.5.2 Delaunay Triangulation 
When an unstructured grid is constructed, the task is simplified if a fixed set of 
rules is followed, leading to a grid that has certain attractive properties. The 
Delaunay triangulation provides a grid where a fixed set of rules applies to the 
construction, and the grid properties include the following: 

1. Given a set of points, the triangulation is unique. 
2. The triangulation produces the most equilateral mesh for the given point set. 
3. The grid point generation and the triangulation are decoupled. 

The origins of this approach go back to the work of Dirichlet (18501, where 
a technique for decomposing a given domain into a set of convex polygons was 
studied. The geometric dual of this construction is called the Delaunay trian- 
gulation. The Delaunay triangulation has a number of implementations and 
includes the diagonal swapping (Cendes et al., 19851, the Bowyer insertion 
scheme (Bowyer, 1981), and the sweepline method (Fortune, 1987). While this 
approach has the advantages enumerated above, there are disadvantages as well. 
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These include the following: 

1. Lack of uniqueness when four points lie on a circle and the counterpart in 

2. The complex logic required to preserve boundaries 
3. The lack of uniqueness resulting from the numerical implementation of the 

4. The solution errors associated with high aspect ratio or elongated cells 

3-D 

analytical theory of the triangulation 

(slivers) 

These issues will become clear as the details of the triangulation emerge. 
Given a point set P = p i ( x i )  that is not colinear and does not have four 

points that lie on a circle, the set of points that is closer to vertex ui than any 
other vertex is called the Voronoi polygon (Voronoi, 1908). This is illustrated in 
Fig. 10.10, where the Voronoi polygons are shown for a finite set of points. The 
dashed lines are the Voronoi polygons formed by constructing cells with sides 
corresponding to the perpendicular bisectors of the line segments in the 
triangulation. The vertices of the polygons are formed from the intersection of 
the perpendicular bisectors of the lines connecting the points, P = pi (x i ) .  As the 
mesh grows, more cells are added due to the addition of more line segments 
connecting the points in the triangulation. As the tesselation continues, the 
boundary polygons are those on the convex hull of the domain. The complete set 
of polygons including those closed on the interior and those open on the 
boundary of the domain is referred to as the Voronoi tesselation of the domain. 

When the nuclei (point pi contained in the polygon) of the Voronoi 
polygons are connected to the two nearest neighbors, the resulting structure is 
called the Delaunay triangulation or Delaunay tesselation. This is also shown in 
Fig. 10.10. In CFD, the cell structure used for a finite-volume solution of a flow 
problem may be applied to either the Voronoi polygons or the Delaunay 
tesselation. For the 2-D discussion presented here, the triangular cells always 
have three cell faces, while the Voronoi cells, sometimes called the mesh dual, 
may have a random number of edges. This suggests that a flow solver that uses 
the Delaunay triangulation for control volumes may have simpler logic and be 
easier to construct. 

Although the discussion has centered on 2-D space, the ideas are also 
applicable to 3-D. In that case, the edges of the cell are planes, and the cells are 
tetrahedra or polyhedra. The increase in complexity of the grid generation 
problem in going from 2-D to 3-D is dramatic. Consequently, only 2-D cases will 
be considered here. 

The circumcircle test is the simplest method to construct the Delaunay 
mesh and determine the connectivity of a set of points. For the planar case, 
three points determine a circle. For a triangular cell, the cell is a valid cell if no 
other point falls within the circle defined by the forming points of the circle. 
This is the standard test used in the Bowyer algorithm to complete the 
connections for the Delaunay tesselation. Figure 10.11 shows four points that 
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Figure 10.10 Voronoi (dashed lines) 
Delaunay (solid lines) tesselations. 

and 

Figure 10.11 Circumcircle test. (a) Incorrect connectivity. (b) Correct connectivity. 

are to be connected but the proper connections must be established. The first 
connection shows that the circle formed by connecting points 1, 2, and 3 
encloses point 4. This violates the circle criterion, and other connections must 
be made. The proper connections and the associated circumcircles are also 
shown where points 1, 2, and 4 form one cell, and points 2, 3, and 4 form the 
second cell. 

10.5.3 Bowyer Algorithm 

Bowyer (1981) developed a scheme that can be used to triangulate a set of 
points. This approach is usually termed the “Bowyer insertion algorithm” 
because the scheme is based on inserting points into a valid Delaunay mesh and 
retriangulating the mesh. The basic technique relies on the circle test and a 
series of data tree searches to determine the new connectivity. The search can 
be efficiently carried out and the method can be used to refine the grid by 
simply inserting additional points, and finding the new connectivity as each point 
is inserted. The Bowyer algorithm consists of a number of steps as described 
below. 
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Step 1. Generate a set of grid point locations that are desired for the domain of 
interest. This set should include the boundary points and all of the 
interior points. The points can be generated a number of ways including 
the following: 
a. A random number generator 
b. Structured grid generator such as TFI or elliptic generation 
c. A self-adjusting method that determines the largest cell in the mesh, 

the highest aspect ratio, or some other characteristic of the generated 
grid and inserts a point at the circumcenter of the circle or some 
other predetermined location to refine the mesh to the desired level. 

d. Methods based on domain decomposition (discussed in more detail 
below) 

Step 2. Create an initial supertriangle that completely encloses the entire 
domain. This may be any valid triangulation and the simplest geometry 
is a supertriangle or a rectangle that is triangulated. 

Step 3. Insert a mesh point from the list established in Step 1 in the existing 
triangulation, and delete the first triangle that fails the circumcircle test. 
This will be the cell where the point is inserted. 

Step 4. Initiate a search of the neighbors of the first deleted cell to determine if 
any other neighbor cells have violated circumcircles. If a neighbor cell is 
deleted, the common face between that neighbor and the first deleted 
cell must be removed, and the search proceeds through the neighbors of 
this cell. The tree search continues until the complete list of deleted 
cells is compiled. 

Step 5. Establish the new connectivity by connecting the newly inserted point 
with the boundary points of the cavity created by the deleted cells. Add 
each of the new cells to the list of valid triangles. 

Step 6. Repeat this procedure, starting with Step 3, until all the grid points 
generated in Step 1 have been inserted. 

The Bowyer insertion technique described above provides a correctly tri- 
angulated mesh for convex domains. Unfortunately, most of the domains that 
surround practical shapes are not convex. However, the unstructured grid can be 
constructed by beginning with the superstructure and filling the entire super- 
structure as well as the body interior and including the boundary of the physical 
domain. This valid triangulation must undergo a postprocessing phase to remove 
all triangles interior to the body and those triangles between the outer boundary 
of the superstructure and the outer boundary of the domain. 

One of the problems that must be addressed is that of preserving the 
integrity of the body surface when a given set of points is triangulated. When the 
set of points for a domain is compiled, the outer boundary of the domain and 
the boundary of the body are usually the first points selected to insert into the 
initial superstructure. The interior points between these two boundaries may be 
determined by any of the methods noted in step 1. However, the integrity of the 
body surface must be preserved, and without some special checks, this cannot be 
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Figure 10.12 Surface fidelity violation near an airfoil trailing edge. 

guaranteed. Figure 10.12 shows a connection across a body surface near an 
airfoil trailing edge where an improper connection has been made. This must be 
corrected as part of the postprocessing phase of the grid generation. Two 
popular ways of dealing with this problem are diagonal swapping routines or 
point insertion schemes that delete and reform the triangles so that the surface 
segment forms a cell edge. 

An example of a grid constructed for an NACA 0012 airfoil is given in Fig. 
6.14. This grid shows the mesh density increasing near the body in order to 
provide the resolution desired for accurate pressure calculations using an Euler 
code. The process of constructing this grid follows the steps given above, and a 
good reference source for additional details on constructing unstructured grids 
using the Bowyer scheme is that of Holmes and Snyder (1988). 

Baker (1987) studied the Bowyer insertion scheme and has shown that the 
method is based upon two theorems. 

Theorem 1 Given a Delaunay triangulation T of a planar set of points S, 
introduce a new point p E S and remove all triangles that fail the Delaunay 
circle test. All the edges of the Delaunay cavity are visible from point p. 

Theorem 2 The retriangulation of a Delaunay cavity, by joining the point p 
to each of the boundary points of the cavity is Delaunay. 

One additional issue addressed by Baker deals with the problem of precision 
in applying the circle test. Since the circle test is performed with a computer 
with finite accuracy, the precision of the test will determine whether or not the 
circle test is satisfied. As a consequence, if care is not exercised, the test may 
actually hinge on the round-off error of the machine. Baker has stated the 
following theorem, regarding the precision of this test. 

Theorem 3 Let pi  be a finite point set, and let d ( p , , p j )  represent the 
Euclidian metric. If L represents max [ d ( p , ,  p i ) ]  and E represents min [&pi, pi)], 
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the precision of the floating point accuracy used in the circle test with Delaunay 
triangulation must be greater than e2 /L2 .  

This places a substantial restriction on the precision of the test procedure. 
When standard engineering workstations are used, it is imperative that double- 
precision arithmetic be employed. 

In addition to the point insertion scheme provided by the Bowyer approach, 
a Delaunay mesh may be constructed by using the sweepline algorithm first 
suggested by Fortune (1987). This is an advancing front method that builds 
Delaunay cells as the front proceeds over the domain including the configuration 
that is the object of the study. For details on the application of this scheme, 
the work of Fang et al. (1993) for the 2-D case and Fang (1995) for the 3-D case 
is recommended. 

10.6 OTHER APPROACHES 
In Section 10.5.3, the Bowyer insertion scheme was outlined as a technique for 
constructing a Delaunay mesh. Other important methods of constructing 
unstructured grids have been developed using advancing fronts. While these 
schemes forego the Delaunay criterion, they have been used with good success 
in a variety of applications (Lijhner and Baum, 1990; Lijhner and Parikh, 1988). 
With this approach, the grid is advanced by adding cells at the front as it 
advances into the domain. These fronts are usually started from known structures 
such as a body or other boundary and may be composed of either structured or 
unstructured cells. When advancing fronts collide, rules are needed for treating 
the collisions and constructing cells under such circumstances. Unfortunately, 
these rules are constructed to treat individual exceptions, and general theorems 
providing construction rules are difficult to identify. However, advancing front 

Figure 10.13 Hybrid grid for NACA 0012 airfoil. 
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schemes have been used to grid very complex configurations, and these grids 
have been used with success in solving very difficult fluid mechanics problems. 

The concept of hybrid grids is also of great interest in applications in CFD. 
The works of Kallinderis and Ward (1993), Kallinderis (19961, and Noack et al. 
(1996) are representative of the state of the art. These methods are mixed, in 
the sense that combinations of structured and unstructured grids are used to 
completely cover the domain. Regions around bodies are usually grided with a 
structured body-conforming scheme, and the zones away from walls are covered 
with unstructured sections. The interface between these different zones requires 
logic to provide the connectivity to close the problem. This approach shows 
great promise as a technique to simplify the automatic grid generation problem. 
As an example, Fig. 10.13 shows a hybrid grid around an NACA 0012 airfoil. 

The use of rectangular grids has also been of interest for some time in the 
CFD field. These schemes are based on using quadtree or octree data structures 
(Yerry and Shephard, 1983, 1984). Rectangular grid schemes have the promise 
of completely automating the grid generation process. The idea involves recursive 
subdivision of a domain until the body surface is identified at the highest 
refinement level in the mesh. After the refinement level is satisfied, the 
body-surface cells are then specially treated by considering the way the body 
slices these cells (Karman, 1995a, 1995b; Coirer and Powell, 1995). This is a very 
natural scheme to consider and forms an automated way to grid a domain once 
the logic for the sliced cells is complete. However, the problem of storage and 
data management must be carefully considered. The use of domain subdivision 
methods requires large storage, and usually, long computation times are 
necessary. The problem becomes clear when considering the resolution required 
to solve for flow in the turbulent boundary layer of a typical vehicle. In many 
cases, the refinement in the boundary layer may be extreme to achieve the 
desire level of refinement. A sketch of the idea used with rectangular cell 

Figure 10.14 Domain subdivision using rectangular cells. 
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subdivision is shown in Fig. 10.14. The body has a nearly circular geometry, and 
note that the subdivision is completed so that only one level of refinement is 
accomplished at any cell boundary. This is desirable from both a logic and a 
solver accuracy point of view. The effectiveness of this approach is apparent 
when one considers the simplicity of the concept applied to very complex 
objects. Again, the major difficulty is in defining logic to produce correct 
body-surface cells. This idea of subdivision is not restricted to rectangular cells 
but can also be applied using other geometric structures as a base. 

As is true in most of the hybrid and unstructured schemes, the issue is one 
of deciding what trade-off of labor hours versus CPU time is a good one. If an 
automated approach using any of these successful schemes can be utilized to 
completely solve for the flow around a vehicle in a matter of days, this becomes 
an attractive option. This is especially true when the calculation can be completed 
on an engineering workstation. Of course, the flow solver must be written to 
take advantage of the special features of these grid generation schemes. Future 
research will define the optimum use of these techniques. 

10.7 ADAFTIW GRIDS 

Techniques for generating grids as a prelude to numerically solving a PDE were 
presented in the previous section. One problem in solving a PDE with this 
approach is that the grid is constructed and points are distributed in the physical 
domain before details of the solution are known. As a consequence, the grid 
may not be the best one for the particular problem. 

Adaptive methods for solving PDEs have been developed to aide in increas- 
ing the accuracy of computed solutions. These methods have been classified into 
three categories. These categories naturally appear if one views the adaptivity as 
a means of reducing some measure of the global error in the solution. 

In finite-element theory (Oden, 1988), the adaptive method is referred to as 
an h method if mesh refinement is used, an r method if the number of grid 
points is fixed but is redistributed, and a p method if the order of the solution 
scheme is increased. In finite-difference and finite-volume applications, the h 
and r ideas are the most popular due to the way these methods are constructed. 

The adaptive grid strategies that are followed when a fixed number of points 
are redistributed to improve the solution are usually based on an application of 
the equidistribution scheme outlined previously in this chapter. Early 
applications of this idea include the works of White (1982), Dwyer et al. (1979, 
19801, and Gnoffo (1980). These authors applied the equidistribution idea in one 
dimension in solving a variety of problems in fluid mechanics and heat transfer. 
The application of the equidistribution idea to multidimensional problems has 
been accomplished in several ways. The simplest to understand are the Poisson 
grid generators with control functions based on equidistribution of a weight 
function as given in Eq. (10.321, or using Eqs. (10.35a) and (10.3%) with the 
diffusion set equal to a constant times the desired cell volume. Other approaches 
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that have been applied with success are the spring analogy of Nakhashi and 
Diewert (1986) and the application of the strict equidistribution law to 
multidimensional problems by Anderson (1983) and Eiseman (1983). Variational 
methods as outlined in Section 10.4 based on the original work of Brackbill and 
Saltzman (1982) are also useful in constructing adaptive grids. These methods 
have been applied to structured meshes in most cases. Mesh redistribution 
schemes have also been applied to unstructured meshes. The difficulty is that 
the connectivity must be altered for these cases if the mesh point movement is 
very large. While the mechanics of changing this connectivity are automatically 
accounted for in the grid generation algorithm, the associated redistribution of 
the flux terms for the fluid dynamic variables may not be as easily accomplished 
when compared with the structured grid approaches. Other ways of r adaption 
of unstructured grids based on measures of solution quality can be cited. 
Hagmeijer and Kok (1996), Catherall (19961, Carpenter and McRae (1996), and 
Riemslagh and Vierendeels (1996) give representative results using these 
methods. 

Adaptive grid construction is applied to both steady flow problems and to 
time-accurate flow calculations. For adapting grids in a steady flow problem, the 
grid is adapted or refined after a predetermined number of iterations or time 
steps have been taken. When the solution converges, the grid will stop adjusting 
to the changes that occur and will reflect the properties that appear in the 
solution that have been used to calculate the grid motion and refinement. In the 
time-accurate case, the grid point motion and refinement are performed in 
conjunction with the time-accurate solution of a physical problem. This requires 
the time-accurate coupling of the PDEs of the physical problem and those 
describing the grid movement or the mesh refinement. 

Grid movement schemes can produce substantial improvements in solution 
quality. However, mesh refinement methods promise significantly better results 
because no limitations exist that define the limit on grid resolution that can be 
attained. The Bowyer scheme for generating an unstructured mesh was presented 
in Section 10.5.3 and can be used as a simple technique to refine a grid to the 
desired level. The idea of mesh refinement can be applied without limitation to 
any grid. The idea works if one starts with structured, unstructured, or hybrid 
grids that are formed of arbitrarily shaped cells. Of course, the use of grid 
refinement necessitates storage of information as if the grid was unstructured 
even though the original grid, before refinement, was structured. The rectangular 
grid schemes that use subdomain division are based on refinement of the mesh 
until a desired cell size is achieved. The division of cells using either triangular 
or rectangular shapes (2-D case) relies on splitting an edge or edges of existing 
cells. When triangular grids are used, the splitting results in construction of new 
cells where connecting nodes produce either four new cells when each edge is 
divided or two new cells when only one edge is split. In the case of rectangular 
cells, the subdivision of cells based on edge splitting leads to extra nodes that 
appear in the center of edge segments when a cell is divided on one side. This 
does not create problems, since the numerical method is assumed to be cell 
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based and the flux terms can be associated with the parent cells and redistributed. 
The major issue for refinement is correctly managing the database associated 
with the changing mesh and selecting an appropriate criterion to use to 
determine the need for additional subdivision. Numerous recent papers show 
results that illustrate the use of these methods. Examples of recent work include 
Schneiders (19961, Kallinderis et al. (1993, 1995, 19961, Noack et al. (1996), and 
Smith and Johnson (1996). 

PROBLEMS 
10.1 Verify the equations for the transformation metrics given in Eq. (10.5). 
10.2 Suppose that a physical domain is defined on the interval 0 < x < 1 with an upper boundary 
given by 

yupFr = 1 + 0.2sin ( P X )  

and a lower boundary given by 
y,,,,, = 0.lcos ( P X )  

Devise a transformation that provides a uniform distribution of mesh points between the upper and 
lower boundaries. Use a simple normalizing transformation. 
10.3 In Prob. 10.2 the interval was defined by two x = const lines. If the left boundary is defined as 

yL = lox 

yR = 4(x - 1) 
and the right boundary is defined by 

with the same upper and lower boundaries, determine a normalizing transformation to provide equal 
grid spacing in the physical plane. Why does this become so much more complicated than the 
transformation of Prob. 10.2? 
10.4 Work Prob. 10.2 using the algebraic method demonstrated in Example 10.3. Use linear 
functions to verify your results and then use cubic functions. 
10.5 Work Prob. 10.3 using linear functions with the method given in Example 10.3. 
10.6 Suppose that you are required to solve a system of PDEs in ( t ,  x ,  y) on the rectangular domain 

O < x < l  
O < y < l  

A surface F(t ,  x ,  y )  = 0 is to be tracked similar to a shock and computed as part of the solution. 
Devise a transformation that converts the physical plane into two rectangular computational 
domains joined at the boundary F ( t ,  x ,  y )  = 0. Assume that the surface is smooth and always 
intersects the left and right boundaries in physical space. 
10.7 Verify the transformation given in Eq. (10.14) and the associated fi functions. 
10.8 The Thompson scheme for generating grids is based upon Eq. (10.21). Derive the computational 
domain equations given in Eq. (10.22). 
10.9 Show that the mapping governed by the differential equations 

v q =  0 

maps uniformly spaced circles in physical space into a uniform rectangular grid in the computational 
plane. 
10.10 Show that a solution of the Cauchy-Riemann equations is a solution of Laplace’s equation but 
the reverse is not necessarily true. 
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10.11 Repeat Prob. 10.3 and use the Thompson technique to obtain the mapping using the method 
of Middlecoff and Thomas [Eq. (10.25) and Eq. (10.26)] to effectively determine P and Q. Discuss 
your result, and point out any difficulties encountered in establishing your choice in selecting 4 and 
*. 
10.12 Construct the Euler-Lagrange equations that result when a mesh is obtained using a 
midimization of the orthogonality measure given by Eq. (10.45). 
10.13 Complete the differentiation indicated in Eq. (10.49), and determine the coefficients identified 
in Eq. (10.50). 
10.14 Consider the 1-D form for the Poisson equation. Use a central difference for the second 
derivative and estimate the maximum value of the control function that may be used before grid 
crossing occurs. 
10.15 The equations given in Prob. 10.2 define the upper and lower boundaries of a physical 
domain. If the right and left boundaries are straight lines connecting the end points of these defining 
equations, use transfinite interpolation with Lagrange polynomials to construct a grid covering this 
domain. 
10.16 Work Prob. 10.15 using Hermite polynomials. Show that the proper choice of the coordinate 
line slopes at the boundaries must be made to prevent grid crossing. 
10.17 Develop the TFI expression that may be used to grid an open domain where the outer 
boundary is not prescribed. Construct a numerical example illustrating this application. 
10.18 You have been assigned the task of constructing a grid for a NACA 0012 airfoil. Use 
parabolic grid generation with Laplace’s equation to construct this grid. Select the outer boundary to 
be uniformly two chord lengths from the body, and use the outer boundary as the forward point in 
the difference approximation. 
10.19 Construct an algorithm using the Bowyer insertion scheme to correctly triangulate a given set 
of points. Assume the initial Delaunay triangulation is given by a single triangle and insert a total of 
10 points to verify your work. 
10.20 Using the computer code from Prob. 10.19, insert points in the supertriangle defining a 
rectangular outer boundary enclosing a NACA 0012 airfoil. 
10.21 With the code developed in Prob. 10.19, insert points between the airfoil boundary and the 
outer boundary to provide adequate resolution to complete a flow field computation. Base the 
refinement on selecting the largest triangle, and insert a point at the circumcenter of this triangle. 
Perform this exercise for several grid point densities. Discuss your results and include any problems 
you identify with this technique. 
10.22 Devise a method to eliminate cells interior to the airfoil and exterior to the rectangular outer 
boundary using the code from the previous problem. Be sure to reorder the cell structure as a 
continuous list for ease of use with a flow solver. 
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