
CHAPTER

TEN
GRID GENERATION

10.1 INTRODUCTION

One of the first steps in computing a numerical solution to the equations that
describe a physical process is the construction of a grid. The physical domain
must be covered with a mesh, so that discrete volumes or elements are identified
where the conservation laws can be applied. A well-constructed grid greatly
improves the quality of the solution, and conversely, a poorly constructed grid is
a major contributor to a poor result. In many applications, difficulties with
numerical simulations can be traced to poor grid quality. For example, the lack
of convergence to a desired level is often a result of poor grid quality. In this
chapter, techniques for generating grids using both structured and unstructured
approaches will be discussed. Since grid generation is a very large field, only the
basic ideas of a limited number of methods will be presented.

Structured grid generation can be thought of as being composed of three
categories:

1. Complex variable methods
2. Algebraic methods
3. Differential equation techniques

Complex variable techniques have the advantage that the transformations used
are analytic or partially analytic, as opposed to those methods that are entirely
numerical. Unfortunately, they are restricted to two dimensions. For this reason,

679

680 APPLICATION OF NUMERICAL METHODS

the technique has limited applicability and will not be covered here. For details
of the application of complex variable methods, the works by Churchill (19481,
Moretti (19791, Davis (19791, and Ives (1982) should be consulted. Algebraic and
differential equation techniques can be used on complicated three-dimensional
(3-D) problems. Of the structured methods, these have received the most use
and will be discussed in this chapter. Unstructured methods are primarily based
on using triangular or prismatic elements, although recently, randomly shaped
cells with arbitrary connectivity have been increasingly used in flow simulations.
Unstructured grid generation schemes may be thought of as being divided into
three groups:

1. Point insertion schemes
2. Advancing front methods
3. Domain decomposition techniques

Details of point insertion methods will be discussed. However, only the procedure
for constructing grids satisfying the Delaunay (1934) criterion using point
insertion will be given. The detailed description of advancing front schemes or
those using arbitrarily shaped cells is beyond the scope of this text. Domain
decomposition techniques rely on recursively subdividing domains to provide a
cell structure that may be used to complete a field calculation. These methods
will not be discussed in detail in this chapter, but some information on the basic
idea will be included.

Early work using finite-difference methods was restricted to problems where
suitable coordinate systems could be selected in order to solve the governing
equations in that base system. As experience in computing solutions for complex
flow fields was gained, general mappings were employed to transform the
physical plane into a computational domain. Numerous advantages accrue when
this procedure is followed. For example, the body surface can be selected as a
boundary in the computational plane, permitting easy application of surface
boundary conditions. In general, transformations are used that lead to a
uniformly spaced grid in the computational plane, while points in physical space
may be unequally spaced. This situation is shown in Fig. 10.1. When this
procedure is used, it is necessary to include the metrics of the mapping in the
differential equations.

In applying finite-volume methods to the solution of physical problems, the
direct application of the conservation statement to elements in the physical
plane can be made without transforming the original differential equations. As
we have seen in previous chapters, the discrete equations may be generated with
this procedure and the metrics that appear with the generalized mapping now
appear through the direct use of the volumes and the surface areas of the cell
faces. With either approach, the physical domain is divided into volumes or cells.
Techniques for creating the cell or element structure forms the basis of grid
generation.

GRID GENERATION 681

Y 17

PHYSICAL PLANE COMPUTATIONAL PLANE

Figure 10.1 Mapping to computational space.

10.2 ALGEBRAIC METHODS
In Section 5.6 we used algebraic expressions to cluster grid points near solid
boundaries to provide adequate resolution of the viscous boundary layer. In
another example, a domain-normalizing transformation was used in order to
align the grid lines with the body and shock wave in physical space. These are
examples of simple algebraic mappings. To generate computational grids using
this technique, known functions are used in one, two, or three dimensions to
take arbitrarily shaped physical regions into a rectangular computational domain.
Although the computational domain is not required to be rectangular, the usual
procedure uses a rectangular region for simplicity.

The simplest procedure available that may be used to produce a boundary
fitted computational mesh is the normalizing transformation discussed in Section
5.6.1. Suppose a body fitted mesh is desired in order to solve for the flow in a
diverging nozzle. The geometry of the nozzle is shown in Fig. 10.2, and the
describing function for the nozzle is given as

ymax = x 2 1.0 < x < 2.0 (10.1)

In this example, a computational grid can easily be generated by choosing
equally spaced increments in the x direction and using uniform division in the y
direction. This may be described as

(= X

Y
77=-

Ymax

(10.2)

where y,,, denotes the y coordinate of the nozzle wall. In this case the values
of x and y for a given (and 77 are easily recovered. The mesh generated in the
physical domain is shown in Fig. 10.3.

682 APPLICATION OF NUMERICAL METHODS

ix
Figure 10.2

Y

x= 1 x=2

Nozzle geometry.

x= l x=2

Figure 103 Computational mesh in physical space.

Care must be exercised when the metrics of the transformation are derived.
In particular, the qx derivative of Eq. (10.2) is written

and
1

- -
1

q y = - -
Ymax t 2

(10.3)

(10.4)

In the example just completed, the transformation was analytic and the
point distribution was obtained through the given mapping. The same normaliz-
ing transformation could have been constructed by assigning points in the
physical plane along constant 5 and constant q lines and numerically computing
the metrics by using second-order central differences. This has the advantage of
permitting assignment of grid points in the physical plane where desired. The
disadvantage is that all metrics must be determined using numerical techniques.
In this case the transformation would be numerical and not algebraic.

GRID GENERATION 683

If numerical methods are used to generate the required transformation, the
terms x5 , x 7 , y t , and y7 are determined using finite differences. The quantities
tX, (,,, qx, and qy appear in the differential equation, which must be solved.
These quantities are obtained from the expressions

y7 6 = -
X I

(10.5)

x5

where the inverse Jacobian (I) is given by

77y = j-

I = (W1 = xty7 - y s x 7

More details will be presented in the section treating mappings governed by
differential equations.

Example 20.2 Compare the metrics for the simple normalizing transformation
just discussed by computing them analytically and also by using a finite-difference
approximation.

Solution We select the point (1.75,2.2969) in the nozzle of Fig. 10.3 to compare
the metrics. From Eq. (10.3), the analytic evaluation is

2(0.75)
1.75

qx = - ~ = -0.85714

The numerical calculation is performed by using Eq. (10.5). The inverse Jacobian
(I) is evaluated first as

0 3.0625 - 1.53125
= 3.06250 I = p: - p7 = 2(0.25)

Next, the yt term is computed as
3 - 1.6875

= 2.6250
yt = 0.5

Thus
2.6250
3.0625

qx = -- = -0.85714

In this example, the metrics computed by analytical and numerical methods give
equally good results. Of course, this is not true for many problems.

684 APPLICATION OF NUMERICAL METHODS

t
rl = CWSTANT

t X

(290) Figure 10.4 Trapezoid to rectangle mapping.

Example 10.2 The trapezoidal region shown in Fig. 10.4 is mapped into a
corresponding rectangular region by the equations given by

x = - - (s ‘i (1 q , (10.6)
77+1

Y = 2
In this example the physical domain is mapped into a rectangular region
centered at the origin. This demonstrates the use of a normalizing transformation
in one direction along with a simple translation.

This choice of parameterization will give a different grid even for the case
where Lagrange interpolation is used. While the preceding examples show
acceptable results for computational grids, it is not always possible to construct a
satisfactory grid without a more systematic approach. In particular, the
application of general interpolation techniques provides a more formal approach
toward the generation of grids using algebraic methods.

Smith and Weigel (1980) developed a flexible method of directly providing
grids using interpolation between surfaces. In this method, the domain of
interest is defined by an upper and a lower boundary in the physical plane. As
shown in Fig. 10.5(a), these boundaries are denoted by

rl = rg,(5> (10.7)

r2 = rB,(O (10.8)
The upper and lower boundaries have been parameterized using the computa-
tional coordinate as the parameter. These curves may also be written in terms of
the scalar coordinates

xg , = XI(5)

(10.9)

GRID GENERATION 685

Y Y

Figure 10.5 Algebraic interpolation domains. (a) Open domain for two-surface methods. (b) Closed
domain for transfinite interpolation.

The range on 5 in the computational plane is

and the transformation is defined so that at 77 = 0,
0 9 5 9 1

and at 77 = 1,

(10.10)

(10.11)

A function defined on 0 G 77 G 1 with parameters on the two boundaries
completes the algebraic relation. This is chosen to be of the form

If linear variations across the domain are selected, the grid is determined on
the basis of Lagrange interpolation, and the form of the expression for (x , y) is

r(5 , ~) = (1 - v)rl(5) + vr2(5) (10.13)
or in scalar form,

x = (1 - 77)x1(5) + 77x2(5)

y = (1 - 77)y1(5) + 77y2(5)

Example 10.3 To demonstrate the use of this approach, suppose we wish to map
the trapezoid defined by the equations

x = o
x = l
y = o
y = 1 + x

686 APPLICATION OF NUMERICAL METHODS

into the computational plane. In this case, the upper and lower boundaries may
be written

xBl = x 1 (5) = '$

YEl = y 1 (6) =

X B , =x2(5) = 6
YE, = Y 2 (5) = + 6

This produces the mapping required in Eq. (10.13) and is of the form
x = &

y = (1 + 0 7 7
This parameterization produces the simple normalizing transformation

discussed earlier in this section. In this example, both the right and left
boundaries are also correctly mapped. This is coincidental and will not occur in
more general problems. A different point distribution can be obtained by
choosing a nonlinear function for the boundary parameterization. For example,
if

x1 = 5 2

x2 = (2

x = p

y = 770 + t 2)

then

In this case, the nonlinear boundary parameterization produces some clustering
of the grid points. However, the ability to cluster points is limited to the
influence of the boundary point distribution on the interior through interpola-
tion.

Additional control of the grid point distribution can be attained if higher-
order interpolation polynomials are used. Hermite interpolation is often
employed, since the derivatives specifying the initial slope of the constant
coordinate curves leaving the boundaries are also included in the interpolation.
The expression for the interpolated grid coordinates is of the form

(10.14)
where the functions are given by

fi(77) = 2773 - 3,,2 + 1

f2w = -2773 + 3772

f3(77) = q3 - 2q2 + 77
(10.15)

GRID GENERATION 687

This additional flexibility can be used to produce orthogonality at the upper and
lower boundaries [see Kowalski (1980) for details].

In most problems, the boundaries are not analytic functions but are simply
prescribed as a set of data points. In this case, the boundaq must be
approximated by a curve fitting procedure to employ algebraic mappings.
Eiseman and Smith (1980) discuss possible methods of accomplishing this and
particularly recommend tension splines. Tension splines are suggested because
higher-order approximations including cubic splines tend to produce wiggles in
the boundary. The tension parameter in the tension spline allows control of this
phenomenon.

With the simple interpolation schemes investigated thus far, only two
boundaries are matched. Unfortunately, many problems include the necessity of
matching four boundaries enclosing the physical domain. Gordon and Hall
(1973) describe transfinite interpolation, and Rizzi and Eriksson (1981) provide
application details for generating boundary conforming grids with algebraic
interpolation. To understand transfinite interpolation, consider the geometry of
the physical domain given in Fig. 10.5(b). The simple interpolation scheme of
Eq. (10.13) does not produce a grid that matches the boundaries denoted by 3
and 4 in Fig. 103b). In fact, this simple interpolation produces an error at these
boundaries that may be specifically identified. The error at boundaries denoted
by 3 and 4 may be written

(10.16)

where the maximum and minimum values of 5 are taken to be 0 and 1,
respectively, to define the left and right boundaries of the domain and the
subscript, inter, indicates the interpolated values of (x, y) . If Lagrange interpol-
ation is used, these errors are given by

e3 = r3(77) - (1 - v)rl(0) - vr2(0)
(10.17)

e4 = r4(7)) - (1 - rl)rl(l) - 77r2(1)

To eliminate these errors, we interpolate them onto the domain, so the errors at
both the left and right boundaries are eliminated. The expression for the
interpolated error may be written

The expression for the interpolated computational coordinates is written

and the final result becomes

688 APPLICATION OF NUMERICAL METHODS

This result shows that the transfinite interpolation (TFI) is composed of
interpolations between the corresponding edges and an interpolation from each
of the corner points. This interpolation will match all of the edge data required
by a fixed domain. If Hermite interpolation is used, a different final result is
obtained that matches the domain boundaries and also the initial slope
requirements. In this case, it is possible to control the orthogonality of the mesh
at the boundaries, and details can be found in the work of Chawner and
Anderson (1991). The TFI method can also be used when only three boundaries
are matched. This can be accomplished by noting that the error need not vanish
on the fourth boundary, but may create a fourth boundary that assumes any
shape. This is similar to using a TFI scheme to create a grid on an open domain.
When transfinite interpolation is used, it must be remembered that no control
over the Jacobian of the transformation is maintained. Grid crossing can and
will occur when different parameterizations of the boundaries are used or when
the derivatives at the boundaries (Hermite) are given certain values. These
behavior traits can be seen through the applications provided by the problems at
the end of this chapter.

The basic idea behind the most common algebraic methods used to construct
grids was presented in this section. With this basic understanding of the TFI
scheme, the method can be developed with considerably more rigor. However,
the intent here is to introduce the most common methods of grid generation,
and a more sophisticated presentation will not be included.

10.3 DIFFERENTIAL EQUATION METHODS
In the previous section, algebraic methods were presented that can be used to
produce usable grids. Any procedure that results in an acceptable grid is a valid
one. One of the most frequently used and most highly developed procedures is
the differential equation method. If a partial differential equation is used to
generate a grid, we can exploit the properties of the solution of the grid-
generating equation in producing the mesh. All three classes of partial
differential equations have been used to produce grid construction methods, and
a short discussion of each is presented in this section.

10.3.1 Elliptic Schemes
Elliptic partial differential equations (PDEs) have the property that the solutions
are generally very smooth. This smoothness can be used to advantage, and for
this reason, Laplace's equation is a good choice. To better understand the
choice of Laplace's equation, consider the solution of a steady heat conduction
problem in two dimensions with Dirichlet boundary conditions. The solution of
this problem produces isotherms that are smooth (class C" properties) and are
nonintersecting. The number of isotherms in a given region can be increased by
adding a source term. If the isotherms are used as grid lines, they will be

GRID GENERATION 689

smooth, nonintersecting, and can be densely packed in any region by controlling
the source term.

One of the attractive features of using Laplace’s equation is that the
Jacobian is guaranteed to be positive as a result of the maximum principle for
harmonic functions. Unfortunately, this theorem only applies to the analytic
equations and solution (Thompson et al., 1985). When the differential equation
is discretized, the truncation errors may lead to grid crossing even though the
maximum principle holds for the solution of the analytic equation. This point
must be clearly understood. If the numerical formulation of the differential
equation satisfies the consistency condition, then the maximum principle will be
satisfied in the limit of vanishing mesh size. However, no promises can be made
for finite mesh sizes. In some cases, an estimate can be made to determine when
mesh crossing will occur (see Prob. 10.14).

This idea of using elliptic differential equations is based on the work of
Crowley (1962) and Winslow (1966) and transforms the physical domain into the
computational plane, where the mapping is controlled by a Poisson equation.
Thompson et al. (1974) have worked extensively on using elliptic PDEs to
generate grids. When the Poisson grid generators are used, the mapping is
constructed by specifying the desired grid points (x , y) on the boundary of the
physical domain with the interior point distribution determined through the
solution of the equations

(10.21)

where (6 , ~) represent the coordinates in the computational domain and P and
Q are terms that control the point spacing on the interior of D. Equations
(10.21) are then transformed to computational space by interchanging the roles
of the independent and dependent variables. This yields a system of two elliptic
equations of the form

where
ff = x; + y;

P = x,x, + Y,Y,
y = xi + y;

(10.22)

This system of equations is solved on a uniformly spaced grid in the computa-
tional plane. This provides the (x , y) coordinates of each point in physical space.
For simply connected regions, Dirichlet boundary conditions can be used

690 APPLICATION OF NUMERICAL METHODS

2

e = O

PHYSICAL
PLANE

Figure 10.6 Application of Thompson scheme.

c-5 2.0
1 .o 1 . 5

C W U T A T I O N A L
PLANE

at all boundary points. The advantages of using this technique to generate a
computational mesh are many. The resulting grid is smooth, the transformation
is one to one, and complex boundaries are easily treated. Of course, there are
some disadvantages. Specification of P and Q is not an easy task, grid point
control on the interior is difficult to achieve, and boundaries may be changing
with time. In the latter case, the grid must be computed after each time step.
This can consume large amounts of computer time.

A simple example demonstrating the application of the Thompson scheme is
shown in Fig. 10.6. The region between two concentric circles is mapped into the
computational domain, and the resulting constant 6 and 77 surfaces in physical
space are shown. The inner circle is of radius r,, and the outer circle is of radius
r l . For this problem, the circle is cut at 8 = 0 and mapped into the region
between 1 and &,,a, and 1 and q,,, in computational space. In this problem the
mapping is determined by a solution of two Laplace's equations,

v y = o
v27 = 0

subject to boundary conditions

The solution is of the form

x = R cos 4
y = R sin 4

GRID GENERATION 691

where

This solution is interesting, in that a uniform grid in the physical domain is not
achieved in this case. The distribution in the radial direction is a series of
concentric circles. To obtain the mapping with a series of uniformly spaced
concentric circles, P = 0 and Q = 1/77 (see Prob. 10.9).

As previously noted, one of the difficulties with this scheme is point control
on the interior of the domain. This requires that methods for developing P and
Q be devised in order to obtain the desired point distribution. Middlecoff and
Thomas (1979) have developed a method that provides approximate control of
point spacing by evaluating P and Q according to the desired point distribution
on the boundary.

In order to demonstrate this idea, we suppose that a solution of Eq. (10.21)
is required subject to Dirichlet boundary conditions. We elect to write P and Q
in the form

(10.23)

where 4 and $ will be specified through the boundary conditions. With this
convention, our original system [m. (10.2211 may be written

Middlecoff and Thomas (1979) proposed writing these equations along either
constant 5 or 77 surfaces corresponding to the boundaries of the domain,
assuming that the grid was orthogonal at the boundaries and that the opposite
family of lines had zero curvature at the intersection. If we are interested in
finding the values of 4 along a constant 77 boundary, it is assumed that the
constant 6 curves intersecting this boundary have no curvature at the intersection
point and that the two are orthogonal. If S represents arc length along the
constant 77 boundary, then the expression relating this arc length to the grid
control function 4 is

s,, + +st = 0 (10.25)

In a similar fashion, if arc length along the constant 5 boundaries is denoted by
N , the equation for the relationship between N and the grid control parameter
t+b is given by

N,, + @N, = 0 (10.26)

692 APPLICATION OF NUMERICAL METHODS

Since S and N represent arc length along the boundaries, the values of (x,y)
specified on the domain boundaries permit S and N to be determined. Finite-
difference forms of the above two equations may be used to find the values of +
and + that are needed to determine the interior grid from the Thomas and
Middlecoff (TM) form of the Thompson scheme. The interior values for + and
+ are found by interpolating the boundary values onto the interior. A simple
Lagrange interpolation is usually adequate.

The interior point distribution or clustering is determined by either P and
Q in the Thompson formulation or by + and + in the TM formulation of the
Poisson grid generation equations. In order to control grid point distribution on
the interior of the domain, it is important to understand how the construction of
these grid control functions influences grid point location. In the original TM
formulation, the values of 4 and + were determined from the boundary and
interpolated to determine the interior distribution. Next we discuss why the
values of + and + found from the approximations at the boundaries result in
control of the grid points.

Anderson (1987) examined the TM form of the Poisson grid generation
equations written along the constant coordinate lines without the assumption of
orthogonality and zero curvature of the intersecting family. The resulting
equations show that

Nq sin 8
4 - (p , - 2u,)cot 8 - (10.27)

and

* + b , - 2 p J c o t 8 + - = o (10.28)
S, sin 8 1

In these expressions, the first terms inside the square brackets are the same as
the TM terms that are associated with the orthogonality and local curvature of
the grid. The values of u and p represent the local inclination of constant 6
and q lines, respectively, and 8 is the angle of intersection between the two
families of curves. If the grid control parameters are sufficiently large in
comparison with the other terms, the grid will be determined primarily by the
values of 4 and +. The governing equations for the arc lengths are then
consistent with the TM formulation. The expressions given by Eqs. (10.27) and
(10.28) are equidistribution laws, and the values of the grid control parameters
are related to weight functions for this equidistribution. Consider the equidistri-
bution of a weight function w in the discrete form

(A S) w = const = C (10.29)
where A S is the distance between any two mesh points along a constant 71
curve. If A S is large, w is small, and vice versa. This shows that control of the
mesh spacing can be attained by correctly formulating the weight function. The
continuous equivalent of the discrete equidistribution law may be written

s , w = c (10.30)

GRID GENERATION 693

where the arc length derivative is now controlled by the weight function. If this
equation is differentiated, we obtain

s,, + S , W [/ W = 0 (10.31)

This is similar to the form of the original TM equation and shows that the TM
method of finding the correct values of 4 and $ is an approximate equidistribu-
tion law with

4 = w,/w (10.32)

The grid spacing control described above shows why control can be exercised
by proper construction of the weight functions, or equivalently, the values of 4
and $. Geometric functions that provide clustering near points or lines have
been developed and are generally written in the form of an exponential
(Thompson, 1975, 1980). A function that clusters near the line 77 = vj is of the
form

$(6 , ~) = -A sgn (77 - qj)&’l’-vJ1) (10.33)

where A and B are positive constants. To cluster near a point (tj, qj), the
function has a correction to the distance and is of the form

+((, 77) = -A sgn (77 - ~ j) e [- ~ ~ (, - ~ J) ’ + (~ - ~ J) 2 ~ (10.34)

where the constants A and B are taken to be positive. A corresponding
expression may be written for 4.

Other techniques for the control of interior grid point locations with control
of the orthogonality at the boundaries have been developed. Sorenson and
Steger (1983) and Hilgenstock (1988) have presented methods for the control of
the orthogonality at boundaries and the spacing of the first mesh interval on the
interior. These procedures use an iteration scheme to attain orthogonality at the
boundaries and satisfy the specified spacing. The orthogonality constraint is
typically allowed to attenuate into the interior to prevent overspecification of
the problem. If orthogonality at the boundary is a critical issue for a given
application, these methods are very effective.

Other variations on the use of elliptic differential equations may be found in
the literature. One of the interesting variations has been presented by Winslow
(1981). In the original Poisson grid generation equations, the control of the arc
lengths requires that two grid control parameters (in two dimensions) be
specified. A simpler approach might only require the specification of the grid
cell area or volume. This would necessitate prescription of only one parameter,
regardless of the number of dimensions in the problem. Winslow (1981) called
this parameter the diffusion and wrote the governing equations in the form

v - (D V t) = 0
v - (D V v) = 0

(10.35~)
(10.35b)

The parameter D may be specified to control the spacing of the computational
coordinates, as can be seen if these equations are integrated over an arbitrary

694 APPLICATION OF NUMERICAL METHODS

control volume. Anderson (1990) has shown analytically that the diffusion
parameter is approximately proportional to the Jacobian of the transformation.
Consequently, to specify the cell area or volume, the diffusion is set equal to the
desired volume multiplied by a scaling factor. Of course, the simplicity of this
approach must be traded off against the loss of ability to control anything except
the cell volume.

General construction of orthogonal grids using elliptic methods is also of
great interest, especially if the mesh spacing is also controlled. This may be
accomplished in 2-D problems, and the works of Eiseman (1982), k i n a (1986),
and Sharp and Anderson (1991) are recommended reading.

Many other researchers have contributed to the state of the art in elliptic
grid generation, and the interested reader is encouraged to consult the many
conference publications on grid generation and the recent review paper by
Thompson (1996).

10.3.2 Hyperbolic Schemes

Hyperbolic systems can also be used to generate grids. The advantage in using
this type of partial differential equation is that the grid may be generated by
solving the governing equations only once. This type of grid generation scheme
is usually applied to problems with open domains consistent with the type of
PDE describing the physical problem. The initial point distribution is specified
along an initial data line with appropriate boundary conditions, and the solution
is marched outward. The outer boundary at the end of the computation must be
accepted wherever it occurs, with the shape that has resulted from the
calculation. Steger and Sorenson (1980) described a method using a system of
hyperbolic equations to generate a mesh. They have proposed an arc length
orthogonality scheme and a volume orthogonality method. Only the latter will
be presented in detail here.

In a 2-D problem, the Jacobian of the transformation controls the magnifi-
cation of area elements between the physical and computational planes. If we
imagine that mesh spacing in computational space is given by A & = AT = 1,
then the area elements are also one unit in size. The inverse of the Jacobian,

(10.36)

then represents the area in physical space for a given area element in
computational space. If I is specified as a function of position, then Eq. (10.36)
can be used as a single equation specifying grid control in the physical plane. A
second equation is obtained by requiring that the grid lines be orthogonal at the
boundary in physical space. Along a boundary where & (x , y) = const, we may
write

d & = O = & , d x + & , d y

GRID GENERATION 695

or

(10.37) 5, Y , 2) = - _ - _ -
t=const tY xa

Along an 7 = const surface

(10.38)

If we require that 6 and 7 surfaces be perpendicular, the slopes must be
negative reciprocals. This requirement becomes

xgx, + Y { Y , = 0 (10.39)

The system given by Eqs. (10.36) and (10.39) is linearized by expanding
about a known state denoted by the tilde. Using this convention, we may
linearize one of the terms in Eq. (10.39) as

x t y , = (2 + x -.a& + y -y) ,
= i c y , , + y , (~ ~ - i ~) +.F,(y, - 9 ,) + O(A2)

=ysx t + f,y, - i t y , + O(A2)

If the other terms are linearized in a similar manner, we obtain

[A]wt + [B]w, = f
where

(10.40)

(10.41)

(10.42)

The eigenvalues of [B] - ' [A] must be real if the system is hyperbolic in the 7
direction. These eigenvalues are

(10.43)

This shows that Eq. (10.41) is hyperbolic in the 7 direction and can be marched
in 77 so long as if + y i z 0.

The procedure to use in generating a grid with this scheme is to assume the
body is the 7 = 0 surface and specify the distribution of points along the body.
Next, the inverse Jacobian I in Eq. (10.36) is computed. Steger and Sorenson
suggest that I be determined by laying out a straight line with length equal to
that of the body surface (1) and distribute the body points on this line. Next, a
line parallel to the first is drawn at an 7 = const surface as desired. Once this is
done, the quantity I is easily determined by estimating the area elements of the

696 APPLICATION OF NUMERICAL METHODS

SPECIFIED
CONTROL
VOLUME
G R I D

Figure 10.7 Area element computation.

grid. This procedure is illustrated in Fig. 10.7. The system of governing equations
given by Eq. (10.41) is now solved using any standard method for solving systems
of hyperbolic PDEs.

Since we specify I in this scheme, a smoothly varying grid is obtained if I is
well chosen. However, poor selection of the I variation leads to possible
“shocks” or discontinuous propagation of this information through the mesh. It
is also true that discontinuous boundary data are propagated in the mesh. On
the other hand, the mesh is orthogonal and is generated very rapidly. Figure
10.8 shows the grid generated about a typical airfoil shape. In this case, points
have been clustered near the body in order to permit resolution of the viscous
boundary layer.

Figure 10.8 Grid for an airfoil configuration.

GRID GENERATION 697

10.3.3 Parabolic Schemes
Parabolic PDEs are also solved by advancing the solution away from an initial
data surface while satisfying boundary conditions at the ends of the domain. As
was true for hyperbolic grid generators, parabolic generators should be useful in
producing grids using a single-pass strategy. Nakamura (1982) and Edwards
(1985) developed the basic ideas used in parabolic grid generation, and these
techniques provide another way of producing acceptable grids.

The idea of parabolic grid generation is based on using the Laplace or
Poisson grid generator and specially treating the parts of the equation that
control the elliptic behavior. In order to understand the basic idea, consider
Laplace’s equation as the fundamental generating equation. The geometry of
the domain is assumed to be consistent with that shown in Fig. 10.7 for the
hyperbolic case. The initial data are given as the coordinates of all points along
the r) = 0 surface. The idea is to advance the solution for the grid outward from
this surface subject to the boundary conditions along the minimum and maximum
6 edges.

If either Laplace’s or Poisson’s equation is used, the problem is elliptic, and
the solution cannot be advanced in the r) direction because the central dif-
ferencing requires that information from the advanced (j + 1) level be used. To
illustrate this problem, consider the differencing of the second derivative,

d2r

dV2

If a second-order central difference is used, this is represented as
rj+l - 2rj + rj-l

If the integration of the equation is started with given data at the location
indicated by j - 1, the unknown level is then indicated by j . However, the
difference equations show that information from the next level at j + 1 is
needed. We supply this information by assuming that this can be approximated
by replacing any value at j + 1 by the outer boundary value, as originally
suggested by Nakamura. It is also necessary to use this idea in evaluating the
cross-derivative terms and first-derivative terms. When this approach is selected,
the grid generation equation in discrete form may be solved as a marching
problem, with the unknowns at the jth level constituting the values to be
determined. At each step, the j + 1 level information is supplied by simply
continuing to use the values on the outer boundary of the domain. This method
creates a technique that allows a solution to the elliptic equation to be
computed via a marching scheme. It has the conceptual advantage of producing
a grid in a single pass.

The original parabolic methods of Nakamura (1982) and Edwards (1985)
used the outer boundary to evaluate the necessary j + 1 point data in solving
Laplace’s equation. Other methods may be used to approximate the information

698 APPLICATION OF NUMERICAL METHODS

needed at the advanced levels. One way is to use a reference grid (Noack, 19861,
where an initial grid is constructed using any simple method, usually an
algebraic scheme, and the reference grid point locations are used to supply the
needed advanced point information for the solution of Laplace’s equation. If,
after the initial solution is computed, the reference grid is taken to be the first
iterative pass from a Laplace or Poisson equation solution, an additional pass
through the grid solver is made, and this process is repeated until a satisfactory
grid is produced. This effectively becomes a solution to the elliptic equation that
has not been completely converged. Hodge et al. (1987) also extended the idea
of parabolic grid generation by using the Poisson equation in place of Laplace’s
equation and also provided some latitude in the selection of the direction that
the equations could be parabolized.

At this point, no information has been given to suggest a means to control
the grid spacing. In the works of Nakamura (1982) and Edwards (1985), grid
control was accomplished by using nonuniform spacing in the computational
domain. This variation in the cell sizes in the computational domain was used in
solving a Laplace grid generation equation, providing control of mesh spacing in
the physical domain. Some control of orthogonality was also provided by altering
the location of the outer boundary points. This effectively is accomplished by
altering the source terms that appear in the difference equations. The reference
grid was used by Noack (1985) as a means of controlling the space of the grid
points. Hodge et al. (1987) has given some guidance in the selection of the
source terms in the Poisson equation for parabolic grid generation.

Parabolic grid generation has the advantage that no grid shocks occur as is
possible in the hyperbolic case. In this sense, we expect grids to be relatively
smooth. However, the effort required to set up the reference grid, or the outer
boundary, as well as select a variable step size to control the grid point locations
is time consuming. As with any method, there are advantages and disadvantages.
However, if sufficient familiarity with these techniques is gained through
experience, parabolic grid generation can be very effective.

10.4 VARIATIONAL METHODS

Variational methods have recently gained in popularity as a grid generation tool.
When a function is minimized, several measures of mesh quality can be
included. Brackbill and Saltzman (1980) and Brackbill (1982) have developed a
technique for constructing an adaptive grid using a variational approach. In
their scheme, a function that contains a measure of grid smoothness, orth-
ogonality, and volume variation is minimized using variational principles. The
smoothness of the transformation is represented by the integral

(10.44)

GRID GENERATION 699

A measure of orthogonality is provided by

1, = / (Vt * VvI2I3 dV (10.45)
D

and the volume measure is given as

I,= j w 1 d V
D

(10.46)

where w is a given weighting function.
The transformation relating the physical and computational domains is

determined by minimizing a linear combination of the above three integrals.
This linear combination with coefficient multipliers A, and A, is written

Z, = I, + A,I, + AoIo (10.47)

In order to minimize I,, the Euler-Lagrange equations must be formed (Wein-
stock, 1952). As an example, the smoothness measure, Eq. (10.44), may be
written

x; + x i + ys" + y;
I s = / / (1) d t d v (10.48)

when the variables are interchanged and the integration is performed in compu-
tational space. If we construct the Euler-Lagrange equations corresponding to
I,, they are of the form

If the differentiation is performed, these expressions may be written

AbX,, - 2px,, + yx,,) - H a y , , - W Y , , + YY,,) = 0
(10.50)

The coefficients A, B , C , a , p, and y are functions of the metrics, and their
evaluation is left as an exercise (see Prob. 10.13). If

- B (a ~ . r , - 2/3~,5 , + YX, ,) + C (a y , , - 2Py6, + YY,,) = 0

B ~ - A C Z O
these equations may be written as

a x t , - 2pxt, + yx,, = 0

"Yt , - W Y , , + YY,, = 0
(10.51)

This is the form of the original mapping given by Winslow and is also the basic
system of equations for Thompson's work. If It as defined in Eq. (10.47) is
minimized, each of the integrals, Z, and Z,, contribute terms to a significantly

700 APPLICATION OF NUMERICAL METHODS

more complicated set of Euler-Lagrange equations than those given in Eq.
(10.51).

The use of a variational approach provides a solid mathematical basis for
the grid but also entails additional effort in solving more PDEs. The Euler-
Lagrange equations must be solved in addition to those governing the fluid
motion. In the example shown here, the adaptive grid is constructed by
implementing a new mesh after each iteration or time step and computing the
grid speed by using a backward difference. The variational approach clearly
offers a powerful method for constructing computational grids. The disadvantage
is that a considerable effort must be expended in solving the equations that
govern the grid generation. If a linear combination of the integrals of Eq. (10.47)
is used, the A’s must also be selected. However, some remarkable results have
been obtained with the proper choice of these coefficients.

The book by Knupp and Steinberg (1993) is a good source for a
comprehensive treatment of the application of variational methods to the grid
generation problem. Examples of the application of direct methods may be
found in the literature, and typical of this is the work of Kennon and Dulikravich
(1985) and Carcaillet (1986). Future applications of the variational approach will
likely involve more work on direct minimization of integrals as opposed to the
construction of the Euler-Lagrange equations. This simplifies the work by
eliminating the laborious construction of the governing differential equations by
using additional CPU time. Integrals representing a measure of desired qualities
in a grid can be minimized with a number of well-proven methods that are
readily available in the literature. The Euler-Lagrange equations can in practice
be obtained with symbolic manipulators that also remove much of the difficulty
in application if this classical approach is used. Variational techniques are a
powerful way to formulate measures of grid quality and provide guidance in the
construction of grid generation schemes. With continuing improvements in CPU
power and inexpensive storage, more extensive use will be made of these
methods.

10.5 UNSTRUCTURED GRID SCHEMES

Unstructured grid generation schemes have gained in popularity in recent years
for a number of reasons. The increase in computer power and the reduction in
memory costs have been major factors. One of the attractive features of
unstructured mesh generation schemes is the promise they seemingly hold of
ultimately providing a method that automates the grid generation process. In
constructing grids using a structured approach, the grid must be segmented into
blocks due to the topology of the domain and the configuration of interest, with
the logical structure defined to provide appropriate connectivity. The flow solver
must also be written to interpret and use the data format produced by the grid
generator. This process of generating a structured mesh is a time-intensive task

GRID GENERATION 701

for engineers and scientists working in the field. Although good progress has
been made in attempting to automate the blocking and subdivision for structured
grids (Dannenhoffer, 1991, 1995, 1996), interactive grid generation is still used
for the majority of structured mesh problems. When an unstructured approach
is employed, defining the configuration of interest forms the most complex
portion of the problem for the user, and the unstructured grid generator is
employed to create the grid automatically. This is the case at least in concept,
although in reality, the ability to generate grids automatically, in general, is still
beyond the state of the art. For unstructured grids, the connectivity information
stored is cell-to-cell as opposed to block-to-block, so additional storage is
necessary when compared to the structured approach. However, the increase in
available CPU power and memory makes the trade-off between CPU time and
engineering hours favor the unstructured approach. There are other factors that
may play an equally important role. One consideration is the solver efficiency.
Due to the problem of random cell location and connectivity, unstructured
solvers are usually not as computationally efficient as their structured
counterparts. One must also try to construct cells where the volumes are as
nearly equal or change very smoothly to avoid the problem of introducing errors
in the solutions that are grid induced. This problem of the smoothly changing
volume size is common to both techniques. Unstructured mesh schemes must
also be monitored to reduce the thin or so-called high aspect ratio cells that are
created in the generation process, since these cells contribute to increased
errors.

Other considerations are of importance in the construction of grids for
solution of flow problems. The grid point or cell densities that give adequate
resolution for flow problems create difficulties for both structured and
unstructured grids. For example, in the boundary layer, the use of structured
mesh schemes naturally suggests a cell shape that is elongated in the flow
direction. This configuration is consistent with the boundary layer assumptions,
in that more cells appear in the normal direction as compared to the flow
direction, where only small changes in the flow may occur. On the other hand,
the use of unstructured grids, for example, triangles in a 2-D problem and
tetrahedra in 3-D, requires a higher cell density in the boundary layer because
the cells need to be as nearly equilateral (analogous to orthogonality in structured
meshes) as possible in order to avoid grid-induced errors in the solution. The
storage requirements are much larger for the unstructured grid. This can be
visualized by imagining that a 2-D structured mesh is used as a base and the
mesh is then triangulated by simply inserting the diagonal in each cell. In this
example, the number of cells produced is larger by a factor of 2 for the
unstructured result. In 3-D problems, the number of cells produced using this
procedure is at least a factor of 5 larger. In addition, the cells produced may be
long and narrow (high aspect ratio), and mesh refinement is then needed to
reduce this aspect ratio.

In this section, the procedure for construction of a Delaunay (1931) mesh

702 APPLICATION OF NUMERICAL METHODS

will be outlined using the Bowyer (1981) insertion scheme. This is intended to
provide an introduction to some of the concepts associated with the logic for
constructing unstructured grids.

10.5.1 Connectivity Information
As a starting point, consider the connected triangles shown in Fig. 10.9. We
must determine what information is necessary to completely identify the cell and
all of the neighbors of that cell in the computational mesh. In generating an
unstructured mesh, the point locations are arbitrary, and we may choose to
place them at any desired position. As in the structured case, each point must be
identified. We consider a point insertion scheme where each point is in-
dependently inserted and the cell connectivity resulting from this insertion is
determined. This suggests that points be identified sequentially as they are
inserted. If 35 points have been inserted into the mesh, the next point that needs
to be inserted is identified as number 36. In addition to the identification of the
grid point number, the coordinates of this point must be known and stored as
[x(36), ~(3611.

After a grid point is inserted into an existing mesh, logic for establishing the
new connectivity is employed. Data that identify the grid points that form a
given cell are needed. As each cell is formed, the cell is numbered, and the
forming points for that cell are also stored. For example, the convention can be
taken that the forming points for this 2-D example are numbered in a
counterclockwise direction around each triangle. We number these as forming
point one, fpl(ncel0, and continue around the triangular cell including all three
points. This is illustrated in Fig. 10.9. In this figure, the three triangles that
constitute the cell structure are formed by using five points, which are numbered
on the exterior of each triangle vertex. The number assigned to each cell is
shown in parentheses on the interior, and the forming point convention shows
the local identification of the forming points as 1,2,3 on the interior of each cell
near the vertices where the forming points are located.

In addition, the neighbor cell information is needed. Cells are considered to
be neighbors if they share a common face. As a convenient convention, we may

1

3

2

Figure 10.9 Notation for unstructured cells.

GRID GENERATION 703

identify the first neighbor of a cell as that cell opposite to forming point 1. For
example, if cell 2 is given as shown in Fig. 10.9, the second neighbor is identified
as cell 1, and the first neighbor is cell 3. The neighbor information for this figure
is given as

neil(1) = 2
neil(2) = 3,
nei2(3) = 2

nei2(2) = 1

In general, each triangular cell will have three neighbors. In this example, the
first and third cells have only one and the second cell has two neighboring cells.
The forming point information for these cells would be stored as

fpl(1) = 1 fp2(1) = 2 fp3(1) = 4
fpl(2) = 2 fp2(2) = 3 fp3(2) = 4

fpl(3) = 3 fp2(3) = 5 fp3(3) = 4

The data contained in the cell-numbering scheme, the neighbors, and the
forming points are sufficient to establish any of the parameters that are needed
in the mesh or in a computational fluid dynamics (CFD) code using the cell
structure derived from this mesh.

The discussion in this section regarding the information storage for a
triangular mesh is also applicable to a 3-D tetrahedral cell structure except that
the convenience of some of the numbering conventions identifying the neighbors
may not apply. The same data are required when rectangular cells are mixed
with triangles in a 2-D case. Of course, when mixed-cell hybrid grids are used,
the flow solver must be written to accept any cell structure and any arbitrary
connectivity.

10.5.2 Delaunay Triangulation
When an unstructured grid is constructed, the task is simplified if a fixed set of
rules is followed, leading to a grid that has certain attractive properties. The
Delaunay triangulation provides a grid where a fixed set of rules applies to the
construction, and the grid properties include the following:

1. Given a set of points, the triangulation is unique.
2. The triangulation produces the most equilateral mesh for the given point set.
3. The grid point generation and the triangulation are decoupled.

The origins of this approach go back to the work of Dirichlet (18501, where
a technique for decomposing a given domain into a set of convex polygons was
studied. The geometric dual of this construction is called the Delaunay trian-
gulation. The Delaunay triangulation has a number of implementations and
includes the diagonal swapping (Cendes et al., 19851, the Bowyer insertion
scheme (Bowyer, 1981), and the sweepline method (Fortune, 1987). While this
approach has the advantages enumerated above, there are disadvantages as well.

704 APPLICATION OF NUMERICAL METHODS

These include the following:

1. Lack of uniqueness when four points lie on a circle and the counterpart in

2. The complex logic required to preserve boundaries
3. The lack of uniqueness resulting from the numerical implementation of the

4. The solution errors associated with high aspect ratio or elongated cells

3-D

analytical theory of the triangulation

(slivers)

These issues will become clear as the details of the triangulation emerge.
Given a point set P = p i (x i) that is not colinear and does not have four

points that lie on a circle, the set of points that is closer to vertex ui than any
other vertex is called the Voronoi polygon (Voronoi, 1908). This is illustrated in
Fig. 10.10, where the Voronoi polygons are shown for a finite set of points. The
dashed lines are the Voronoi polygons formed by constructing cells with sides
corresponding to the perpendicular bisectors of the line segments in the
triangulation. The vertices of the polygons are formed from the intersection of
the perpendicular bisectors of the lines connecting the points, P = pi (x i) . As the
mesh grows, more cells are added due to the addition of more line segments
connecting the points in the triangulation. As the tesselation continues, the
boundary polygons are those on the convex hull of the domain. The complete set
of polygons including those closed on the interior and those open on the
boundary of the domain is referred to as the Voronoi tesselation of the domain.

When the nuclei (point pi contained in the polygon) of the Voronoi
polygons are connected to the two nearest neighbors, the resulting structure is
called the Delaunay triangulation or Delaunay tesselation. This is also shown in
Fig. 10.10. In CFD, the cell structure used for a finite-volume solution of a flow
problem may be applied to either the Voronoi polygons or the Delaunay
tesselation. For the 2-D discussion presented here, the triangular cells always
have three cell faces, while the Voronoi cells, sometimes called the mesh dual,
may have a random number of edges. This suggests that a flow solver that uses
the Delaunay triangulation for control volumes may have simpler logic and be
easier to construct.

Although the discussion has centered on 2-D space, the ideas are also
applicable to 3-D. In that case, the edges of the cell are planes, and the cells are
tetrahedra or polyhedra. The increase in complexity of the grid generation
problem in going from 2-D to 3-D is dramatic. Consequently, only 2-D cases will
be considered here.

The circumcircle test is the simplest method to construct the Delaunay
mesh and determine the connectivity of a set of points. For the planar case,
three points determine a circle. For a triangular cell, the cell is a valid cell if no
other point falls within the circle defined by the forming points of the circle.
This is the standard test used in the Bowyer algorithm to complete the
connections for the Delaunay tesselation. Figure 10.11 shows four points that

GRID GENERATION 705

Figure 10.10 Voronoi (dashed lines)
Delaunay (solid lines) tesselations.

and

Figure 10.11 Circumcircle test. (a) Incorrect connectivity. (b) Correct connectivity.

are to be connected but the proper connections must be established. The first
connection shows that the circle formed by connecting points 1, 2, and 3
encloses point 4. This violates the circle criterion, and other connections must
be made. The proper connections and the associated circumcircles are also
shown where points 1, 2, and 4 form one cell, and points 2, 3, and 4 form the
second cell.

10.5.3 Bowyer Algorithm

Bowyer (1981) developed a scheme that can be used to triangulate a set of
points. This approach is usually termed the “Bowyer insertion algorithm”
because the scheme is based on inserting points into a valid Delaunay mesh and
retriangulating the mesh. The basic technique relies on the circle test and a
series of data tree searches to determine the new connectivity. The search can
be efficiently carried out and the method can be used to refine the grid by
simply inserting additional points, and finding the new connectivity as each point
is inserted. The Bowyer algorithm consists of a number of steps as described
below.

706 APPLICATION OF NUMERICAL METHODS

Step 1. Generate a set of grid point locations that are desired for the domain of
interest. This set should include the boundary points and all of the
interior points. The points can be generated a number of ways including
the following:
a. A random number generator
b. Structured grid generator such as TFI or elliptic generation
c. A self-adjusting method that determines the largest cell in the mesh,

the highest aspect ratio, or some other characteristic of the generated
grid and inserts a point at the circumcenter of the circle or some
other predetermined location to refine the mesh to the desired level.

d. Methods based on domain decomposition (discussed in more detail
below)

Step 2. Create an initial supertriangle that completely encloses the entire
domain. This may be any valid triangulation and the simplest geometry
is a supertriangle or a rectangle that is triangulated.

Step 3. Insert a mesh point from the list established in Step 1 in the existing
triangulation, and delete the first triangle that fails the circumcircle test.
This will be the cell where the point is inserted.

Step 4. Initiate a search of the neighbors of the first deleted cell to determine if
any other neighbor cells have violated circumcircles. If a neighbor cell is
deleted, the common face between that neighbor and the first deleted
cell must be removed, and the search proceeds through the neighbors of
this cell. The tree search continues until the complete list of deleted
cells is compiled.

Step 5. Establish the new connectivity by connecting the newly inserted point
with the boundary points of the cavity created by the deleted cells. Add
each of the new cells to the list of valid triangles.

Step 6. Repeat this procedure, starting with Step 3, until all the grid points
generated in Step 1 have been inserted.

The Bowyer insertion technique described above provides a correctly tri-
angulated mesh for convex domains. Unfortunately, most of the domains that
surround practical shapes are not convex. However, the unstructured grid can be
constructed by beginning with the superstructure and filling the entire super-
structure as well as the body interior and including the boundary of the physical
domain. This valid triangulation must undergo a postprocessing phase to remove
all triangles interior to the body and those triangles between the outer boundary
of the superstructure and the outer boundary of the domain.

One of the problems that must be addressed is that of preserving the
integrity of the body surface when a given set of points is triangulated. When the
set of points for a domain is compiled, the outer boundary of the domain and
the boundary of the body are usually the first points selected to insert into the
initial superstructure. The interior points between these two boundaries may be
determined by any of the methods noted in step 1. However, the integrity of the
body surface must be preserved, and without some special checks, this cannot be

GRID GENERATION 707

Figure 10.12 Surface fidelity violation near an airfoil trailing edge.

guaranteed. Figure 10.12 shows a connection across a body surface near an
airfoil trailing edge where an improper connection has been made. This must be
corrected as part of the postprocessing phase of the grid generation. Two
popular ways of dealing with this problem are diagonal swapping routines or
point insertion schemes that delete and reform the triangles so that the surface
segment forms a cell edge.

An example of a grid constructed for an NACA 0012 airfoil is given in Fig.
6.14. This grid shows the mesh density increasing near the body in order to
provide the resolution desired for accurate pressure calculations using an Euler
code. The process of constructing this grid follows the steps given above, and a
good reference source for additional details on constructing unstructured grids
using the Bowyer scheme is that of Holmes and Snyder (1988).

Baker (1987) studied the Bowyer insertion scheme and has shown that the
method is based upon two theorems.

Theorem 1 Given a Delaunay triangulation T of a planar set of points S,
introduce a new point p E S and remove all triangles that fail the Delaunay
circle test. All the edges of the Delaunay cavity are visible from point p.

Theorem 2 The retriangulation of a Delaunay cavity, by joining the point p
to each of the boundary points of the cavity is Delaunay.

One additional issue addressed by Baker deals with the problem of precision
in applying the circle test. Since the circle test is performed with a computer
with finite accuracy, the precision of the test will determine whether or not the
circle test is satisfied. As a consequence, if care is not exercised, the test may
actually hinge on the round-off error of the machine. Baker has stated the
following theorem, regarding the precision of this test.

Theorem 3 Let pi be a finite point set, and let d (p , , p j) represent the
Euclidian metric. If L represents max [d (p , , p i)] and E represents min [&pi, pi)],

708 APPLICATION OF NUMERICAL METHODS

the precision of the floating point accuracy used in the circle test with Delaunay
triangulation must be greater than e2 /L2 .

This places a substantial restriction on the precision of the test procedure.
When standard engineering workstations are used, it is imperative that double-
precision arithmetic be employed.

In addition to the point insertion scheme provided by the Bowyer approach,
a Delaunay mesh may be constructed by using the sweepline algorithm first
suggested by Fortune (1987). This is an advancing front method that builds
Delaunay cells as the front proceeds over the domain including the configuration
that is the object of the study. For details on the application of this scheme,
the work of Fang et al. (1993) for the 2-D case and Fang (1995) for the 3-D case
is recommended.

10.6 OTHER APPROACHES
In Section 10.5.3, the Bowyer insertion scheme was outlined as a technique for
constructing a Delaunay mesh. Other important methods of constructing
unstructured grids have been developed using advancing fronts. While these
schemes forego the Delaunay criterion, they have been used with good success
in a variety of applications (Lijhner and Baum, 1990; Lijhner and Parikh, 1988).
With this approach, the grid is advanced by adding cells at the front as it
advances into the domain. These fronts are usually started from known structures
such as a body or other boundary and may be composed of either structured or
unstructured cells. When advancing fronts collide, rules are needed for treating
the collisions and constructing cells under such circumstances. Unfortunately,
these rules are constructed to treat individual exceptions, and general theorems
providing construction rules are difficult to identify. However, advancing front

Figure 10.13 Hybrid grid for NACA 0012 airfoil.

GRID GENERATION 709

schemes have been used to grid very complex configurations, and these grids
have been used with success in solving very difficult fluid mechanics problems.

The concept of hybrid grids is also of great interest in applications in CFD.
The works of Kallinderis and Ward (1993), Kallinderis (19961, and Noack et al.
(1996) are representative of the state of the art. These methods are mixed, in
the sense that combinations of structured and unstructured grids are used to
completely cover the domain. Regions around bodies are usually grided with a
structured body-conforming scheme, and the zones away from walls are covered
with unstructured sections. The interface between these different zones requires
logic to provide the connectivity to close the problem. This approach shows
great promise as a technique to simplify the automatic grid generation problem.
As an example, Fig. 10.13 shows a hybrid grid around an NACA 0012 airfoil.

The use of rectangular grids has also been of interest for some time in the
CFD field. These schemes are based on using quadtree or octree data structures
(Yerry and Shephard, 1983, 1984). Rectangular grid schemes have the promise
of completely automating the grid generation process. The idea involves recursive
subdivision of a domain until the body surface is identified at the highest
refinement level in the mesh. After the refinement level is satisfied, the
body-surface cells are then specially treated by considering the way the body
slices these cells (Karman, 1995a, 1995b; Coirer and Powell, 1995). This is a very
natural scheme to consider and forms an automated way to grid a domain once
the logic for the sliced cells is complete. However, the problem of storage and
data management must be carefully considered. The use of domain subdivision
methods requires large storage, and usually, long computation times are
necessary. The problem becomes clear when considering the resolution required
to solve for flow in the turbulent boundary layer of a typical vehicle. In many
cases, the refinement in the boundary layer may be extreme to achieve the
desire level of refinement. A sketch of the idea used with rectangular cell

Figure 10.14 Domain subdivision using rectangular cells.

710 APPLICATION OF NUMERICAL METHODS

subdivision is shown in Fig. 10.14. The body has a nearly circular geometry, and
note that the subdivision is completed so that only one level of refinement is
accomplished at any cell boundary. This is desirable from both a logic and a
solver accuracy point of view. The effectiveness of this approach is apparent
when one considers the simplicity of the concept applied to very complex
objects. Again, the major difficulty is in defining logic to produce correct
body-surface cells. This idea of subdivision is not restricted to rectangular cells
but can also be applied using other geometric structures as a base.

As is true in most of the hybrid and unstructured schemes, the issue is one
of deciding what trade-off of labor hours versus CPU time is a good one. If an
automated approach using any of these successful schemes can be utilized to
completely solve for the flow around a vehicle in a matter of days, this becomes
an attractive option. This is especially true when the calculation can be completed
on an engineering workstation. Of course, the flow solver must be written to
take advantage of the special features of these grid generation schemes. Future
research will define the optimum use of these techniques.

10.7 ADAFTIW GRIDS

Techniques for generating grids as a prelude to numerically solving a PDE were
presented in the previous section. One problem in solving a PDE with this
approach is that the grid is constructed and points are distributed in the physical
domain before details of the solution are known. As a consequence, the grid
may not be the best one for the particular problem.

Adaptive methods for solving PDEs have been developed to aide in increas-
ing the accuracy of computed solutions. These methods have been classified into
three categories. These categories naturally appear if one views the adaptivity as
a means of reducing some measure of the global error in the solution.

In finite-element theory (Oden, 1988), the adaptive method is referred to as
an h method if mesh refinement is used, an r method if the number of grid
points is fixed but is redistributed, and a p method if the order of the solution
scheme is increased. In finite-difference and finite-volume applications, the h
and r ideas are the most popular due to the way these methods are constructed.

The adaptive grid strategies that are followed when a fixed number of points
are redistributed to improve the solution are usually based on an application of
the equidistribution scheme outlined previously in this chapter. Early
applications of this idea include the works of White (1982), Dwyer et al. (1979,
19801, and Gnoffo (1980). These authors applied the equidistribution idea in one
dimension in solving a variety of problems in fluid mechanics and heat transfer.
The application of the equidistribution idea to multidimensional problems has
been accomplished in several ways. The simplest to understand are the Poisson
grid generators with control functions based on equidistribution of a weight
function as given in Eq. (10.321, or using Eqs. (10.35a) and (10.3%) with the
diffusion set equal to a constant times the desired cell volume. Other approaches

GRID GENERATION 711

that have been applied with success are the spring analogy of Nakhashi and
Diewert (1986) and the application of the strict equidistribution law to
multidimensional problems by Anderson (1983) and Eiseman (1983). Variational
methods as outlined in Section 10.4 based on the original work of Brackbill and
Saltzman (1982) are also useful in constructing adaptive grids. These methods
have been applied to structured meshes in most cases. Mesh redistribution
schemes have also been applied to unstructured meshes. The difficulty is that
the connectivity must be altered for these cases if the mesh point movement is
very large. While the mechanics of changing this connectivity are automatically
accounted for in the grid generation algorithm, the associated redistribution of
the flux terms for the fluid dynamic variables may not be as easily accomplished
when compared with the structured grid approaches. Other ways of r adaption
of unstructured grids based on measures of solution quality can be cited.
Hagmeijer and Kok (1996), Catherall (19961, Carpenter and McRae (1996), and
Riemslagh and Vierendeels (1996) give representative results using these
methods.

Adaptive grid construction is applied to both steady flow problems and to
time-accurate flow calculations. For adapting grids in a steady flow problem, the
grid is adapted or refined after a predetermined number of iterations or time
steps have been taken. When the solution converges, the grid will stop adjusting
to the changes that occur and will reflect the properties that appear in the
solution that have been used to calculate the grid motion and refinement. In the
time-accurate case, the grid point motion and refinement are performed in
conjunction with the time-accurate solution of a physical problem. This requires
the time-accurate coupling of the PDEs of the physical problem and those
describing the grid movement or the mesh refinement.

Grid movement schemes can produce substantial improvements in solution
quality. However, mesh refinement methods promise significantly better results
because no limitations exist that define the limit on grid resolution that can be
attained. The Bowyer scheme for generating an unstructured mesh was presented
in Section 10.5.3 and can be used as a simple technique to refine a grid to the
desired level. The idea of mesh refinement can be applied without limitation to
any grid. The idea works if one starts with structured, unstructured, or hybrid
grids that are formed of arbitrarily shaped cells. Of course, the use of grid
refinement necessitates storage of information as if the grid was unstructured
even though the original grid, before refinement, was structured. The rectangular
grid schemes that use subdomain division are based on refinement of the mesh
until a desired cell size is achieved. The division of cells using either triangular
or rectangular shapes (2-D case) relies on splitting an edge or edges of existing
cells. When triangular grids are used, the splitting results in construction of new
cells where connecting nodes produce either four new cells when each edge is
divided or two new cells when only one edge is split. In the case of rectangular
cells, the subdivision of cells based on edge splitting leads to extra nodes that
appear in the center of edge segments when a cell is divided on one side. This
does not create problems, since the numerical method is assumed to be cell

712 APPLICATION OF NUMERICAL METHODS

based and the flux terms can be associated with the parent cells and redistributed.
The major issue for refinement is correctly managing the database associated
with the changing mesh and selecting an appropriate criterion to use to
determine the need for additional subdivision. Numerous recent papers show
results that illustrate the use of these methods. Examples of recent work include
Schneiders (19961, Kallinderis et al. (1993, 1995, 19961, Noack et al. (1996), and
Smith and Johnson (1996).

PROBLEMS
10.1 Verify the equations for the transformation metrics given in Eq. (10.5).
10.2 Suppose that a physical domain is defined on the interval 0 < x < 1 with an upper boundary
given by

yupFr = 1 + 0.2sin (P X)

and a lower boundary given by
y,,,,, = 0.lcos (P X)

Devise a transformation that provides a uniform distribution of mesh points between the upper and
lower boundaries. Use a simple normalizing transformation.
10.3 In Prob. 10.2 the interval was defined by two x = const lines. If the left boundary is defined as

yL = lox

yR = 4(x - 1)
and the right boundary is defined by

with the same upper and lower boundaries, determine a normalizing transformation to provide equal
grid spacing in the physical plane. Why does this become so much more complicated than the
transformation of Prob. 10.2?
10.4 Work Prob. 10.2 using the algebraic method demonstrated in Example 10.3. Use linear
functions to verify your results and then use cubic functions.
10.5 Work Prob. 10.3 using linear functions with the method given in Example 10.3.
10.6 Suppose that you are required to solve a system of PDEs in (t , x , y) on the rectangular domain

O < x < l
O < y < l

A surface F(t , x , y) = 0 is to be tracked similar to a shock and computed as part of the solution.
Devise a transformation that converts the physical plane into two rectangular computational
domains joined at the boundary F (t , x , y) = 0. Assume that the surface is smooth and always
intersects the left and right boundaries in physical space.
10.7 Verify the transformation given in Eq. (10.14) and the associated fi functions.
10.8 The Thompson scheme for generating grids is based upon Eq. (10.21). Derive the computational
domain equations given in Eq. (10.22).
10.9 Show that the mapping governed by the differential equations

v q = 0

maps uniformly spaced circles in physical space into a uniform rectangular grid in the computational
plane.
10.10 Show that a solution of the Cauchy-Riemann equations is a solution of Laplace’s equation but
the reverse is not necessarily true.

GRID GENERATION 713

10.11 Repeat Prob. 10.3 and use the Thompson technique to obtain the mapping using the method
of Middlecoff and Thomas [Eq. (10.25) and Eq. (10.26)] to effectively determine P and Q. Discuss
your result, and point out any difficulties encountered in establishing your choice in selecting 4 and
*.
10.12 Construct the Euler-Lagrange equations that result when a mesh is obtained using a
midimization of the orthogonality measure given by Eq. (10.45).
10.13 Complete the differentiation indicated in Eq. (10.49), and determine the coefficients identified
in Eq. (10.50).
10.14 Consider the 1-D form for the Poisson equation. Use a central difference for the second
derivative and estimate the maximum value of the control function that may be used before grid
crossing occurs.
10.15 The equations given in Prob. 10.2 define the upper and lower boundaries of a physical
domain. If the right and left boundaries are straight lines connecting the end points of these defining
equations, use transfinite interpolation with Lagrange polynomials to construct a grid covering this
domain.
10.16 Work Prob. 10.15 using Hermite polynomials. Show that the proper choice of the coordinate
line slopes at the boundaries must be made to prevent grid crossing.
10.17 Develop the TFI expression that may be used to grid an open domain where the outer
boundary is not prescribed. Construct a numerical example illustrating this application.
10.18 You have been assigned the task of constructing a grid for a NACA 0012 airfoil. Use
parabolic grid generation with Laplace’s equation to construct this grid. Select the outer boundary to
be uniformly two chord lengths from the body, and use the outer boundary as the forward point in
the difference approximation.
10.19 Construct an algorithm using the Bowyer insertion scheme to correctly triangulate a given set
of points. Assume the initial Delaunay triangulation is given by a single triangle and insert a total of
10 points to verify your work.
10.20 Using the computer code from Prob. 10.19, insert points in the supertriangle defining a
rectangular outer boundary enclosing a NACA 0012 airfoil.
10.21 With the code developed in Prob. 10.19, insert points between the airfoil boundary and the
outer boundary to provide adequate resolution to complete a flow field computation. Base the
refinement on selecting the largest triangle, and insert a point at the circumcenter of this triangle.
Perform this exercise for several grid point densities. Discuss your results and include any problems
you identify with this technique.
10.22 Devise a method to eliminate cells interior to the airfoil and exterior to the rectangular outer
boundary using the code from the previous problem. Be sure to reorder the cell structure as a
continuous list for ease of use with a flow solver.

	contents
	GRID GENERATION
	10.1 INTRODUCTION
	10.2 ALGEBRAIC METHODS
	10.3 DIFFERENTIAL EQUATION METHODS
	10.3.1 Elliptic Schemes
	10.3.2 Hyperbolic Schemes
	10.3.3 Parabolic Schemes

	10.4 VARIATIONAL METHODS
	10.5 UNSTRUCTURED GRID SCHEMES
	10.5.1 Connectivity Information
	10.5.2 Delaunay Triangulation
	10.5.3 Bowyer Algorithm

	10.6 OTHER APPROACHES
	10.7 ADAPTIVE GRIDS
	PROBLEMS

