
CHAPTER 

NINE 
NUMERICAL METHODS FOR THE 

NAVIER-STOKES EQUATIONS 

9.1 INTRODUCTION 

For certain viscous flow problems, it is not possible to obtain an accurate 
solution using the simplified flow equations discussed in Chapters 6-8. Examples 
of such flow problems include shock-boundary-layer interactions, leading edge 
flows, certain wake flows, and other flows that involve strong viscous-inviscid 
interactions with large separated flow regions. For these cases, it becomes 
necessary to solve the complete set of Navier-Stokes (N-S) equations (or the 
Reynolds averaged form of these equations). Unfortunately, these equations are 
very complex and require a substantial amount of computer time and storage in 
order to obtain a solution. However, if the flow is incompressible, the equations 
can be simplified, and the required computer time is decreased accordingly. 

Numerical schemes for solving the N-S equations are based on the same 
methods described in Chapter 6 for the Euler equations. Since the N-S equations 
consist of the Euler equations plus shear-stress and heat flux terms, the only 
change that is required is to discretize the additional terms in an appropriate 
manner. Because of the dissipative nature of the viscous terms, they are almost 
always discretized using central differences. One of the major differences that 
occurs when solving the N-S equations, as compared to the Euler equations, is 
the need to use fine meshes in order to properly resolve viscous layers. In many 
cases, this requirement will lead to meshes (cells) with large aspect ratios in the 
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viscous regions of the flow field. When the aspect ratio of the cells becomes 
large, a typical numerical scheme produces larger truncation errors (T.E.s), and 
the rate of convergence is decreased. Another consideration that must be taken 
into account when solving the N-S equations is the amount of numerical 
dissipation that is present in the numerical method. This numerical dissipation 
may be inherent in the scheme or could be explicitly added (i.e., smoothing 
terms). Obviously, the numerical dissipation should be substantially less than the 
actual physical dissipation in order to obtain an accurate solution. 

The unsteady compressible N-S equations are a mixed set of hyperbolic- 
parabolic equations in time, while the unsteady incompressible N-S equations 
are a mixed set of elliptic-parabolic equations. As a consequence, different 
numerical techniques have been used in the past to solve the N-S equations in 
the compressible and incompressible flow regimes. These techniques are 
discussed in this chapter beginning with the techniques for solving the 
compressible N-S equations. Recently, methods have been developed to effici- 
ently solve the compressible N-S equations at very low Mach numbers. With 
these methods, it becomes possible to solve both compressible and incompres- 
sible flows using the same approach. These methods are discussed in Section 
9.2.6. 

9.2 COMPRESSIBLE NAVIER-STOKES EQUATIONS 
The compressible N-S equations in Cartesian coordinates without body forces or 
external heat addition can be written (see Section 5.1.6) as 

d U  d E  d F  dG 
- + - + - + - = o  
d t  d x  dy dz 

where U, E, F, and G are vectors given by 

E =  

(9.1) 

(9.3) 
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PV 
puv - 

PV2 + P 

- urxy - 

pvw - 

PW 
puw - 

pvw - 

PW2 + P 
- urxz - 

(9.4) 

(9.5) 

and the components of the shear-stress tensor and heat flux vector are given by 

dw du 
r x r = p - + -  - ( d x  d z )  - rzx 

dT 

d X  

JT 

dY 
dT 
dZ 

q = - k -  
X 

q = - k -  
Y 

q = -k -  
z 

(9.6) 

These equations can be expressed in terms of a generalized orthogonal cur- 
vilinear coordinate system (xl, x 2 ,  x g )  using the formulas in Section 5.1.8. In 
addition, the compressible N-S equations can be written in terms of a generalized 
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nonorthogonal curvilinear coordinate system ( (,q, 5 using the general 
transformation described in Section 5.6.2: 

(9.7) 

c =  C ( X , Y , Z >  

The transformed equations are given in Chapter 8 as Eqs. (8.34)-(8.36). 
The thin-layer approximation to the compressible N-S equations is discussed 

in Section 8.2. This approximation allows one to drop a number of terms from 
the complete N-S equations. However, the mathematical character of the 
resulting equations is identical to that of the complete N-S equations, and as a 
result, the two sets of equations are normally solved in the same manner. The 
thin-layer N-S equations are given in Chapter 8 for a Cartesian coordinate 
system [Eqs. (8.2)-(8.6)] and for a general nonorthogonal coordinate system 

For turbulent flows, it is convenient to use the Reynolds averaged equations 
instead of the N-S equations. Employing the Boussinesq approximation (see 
Section 5.4.2), the N-S equations can be changed to a modeled form of the 
Reynolds averaged equations by replacing the coefficient of viscosity p with 

and by also replacing the coefficient of thermal conductivity k with 

[Eqs. (8.9)-(8.12)]. 

p + pT 

k + k ,  

where pT is the eddy viscosity and k ,  is the turbulent thermal conductivity. The 
turbulent thermal conductivity can be expressed in terms of the eddy viscosity 
using the turbulent Prandtl number Pr,: 

Techniques for determining p T  are described in detail in Section 5.4. 
As mentioned previously, the unsteady compressible N-S equations are a 

mixed set of hyperbolic-parabolic equations in time. If the unsteady terms are 
dropped from these equations, the resulting equations become a mixed set of 
hyperbolic-elliptic equations, which are difficult to solve because of the 
differences in numerical techniques required for hyperbolic and elliptic types of 
equations. As a consequence, most solutions of the compressible N-S equations 
have employed the unsteady form of the equations. The steady-state solution is 
obtained by marching the solution in time (or pseudo-time) until convergence is 
achieved. This procedure is called the time-dependent approach and is the 
method that will be discussed in this chapter for solving the compressible N-S 
equations. 

Both explicit and implicit schemes have been used with the time-dependent 
approach to solve the compressible N-S equations. Nearly all of these methods 
are at least second-order accurate in space and are either first- or second-order 
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accurate in "time." If an accurate time evolution of the flow is required, the 
numerical scheme should at least be second-order accurate in time. On the 
other hand, if only the steady-state solution is desired, it is often advantageous 
to employ a scheme that is not time accurate, since the steady-state solution can 
usually be achieved with fewer time steps (iterations). Because of the added 
complexity, only a handful of third-order (or higher) time-accurate methods 
have appeared in the literature to solve the compressible N-S equations. Many 
feel that a second-order method is the optimum choice, since higher-order 
accuracy is at the expense of more computer time. For a complete review of 
nearly all papers that report solutions to the compressible N-S equations prior 
to 1976, the reader is urged to consult the excellent survey paper of Peyret and 
Viviand (1975). More recent reviews are given by MacCormack (1985,1993). We 
will now begin our detailed discussion of methods for solving the compressible 
N-S equations. 

9.2.1 Explicit MacCormack Method 

When the original MacCormack (1969) scheme is applied to the 3-D compressible 
N-S equations given by Eq. (9.11, the following algorithm results. 

Predictor: 

(9.9) 

Corrector: 

A t  

Az - - ( G l c  - 

where x = i Ax, y = j Ay, and z = k Az. This explicit scheme is second-order 
accurate in both space and time. In the present form of this scheme, forward 
differences are used for all spatial derivatives in the predictor step, while 
backward differences are used in the corrector step. The forward and backward 
differencing can be alternated between predictor and corrector steps as well as 
between the three spatial derivatives in a sequential fashion. This eliminates any 
bias due to the one-sided differencing. An example of a suitable sequence is 
given in Table 9.1. 

The derivatives appearing in the viscous terms of E, F ,  and G must be 
differenced correctly in order to maintain second-order accuracy. This is 
accomplished in the following manner. The x derivative terms appearing in E 
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Table 9.1 Differencing sequence for MacCormack scheme 

Predictor Corrector 

Step x Derivative y Derivative z Derivative x Derivative y Derivative z Derivative 

1 F  F F B B B 
2 B  B F F F B 
3 F  F B B B F 
4 B  F B F B F 
5 F  B F B F B 
6 B  F F F B B 
7 F  B B B F F 
8 B  B B F F F 
9 F  F F B B B 
. .  
. .  

F, forward difference; B, backward difference. 

are differenced in the opposite direction to that used for d E / d x ,  while the y 
derivatives and the z derivatives are approximated with central differences. 
Likewise, the y derivative terms appearing in F and the z derivative terms 
appearing in G are differenced in the opposite direction to that used for d F / d y  
and d G / d z ,  respectively, while the cross-derivative terms in F and G are 
approximated with central differences. For example, consider the following term 
in F, which corresponds to the x-momentum equation: 

dU dU 
F2 = PUV - p- - p- 

d y  dx 
(9.11) 

In the predictor step, given by Eq. (9.91, this term in Fi:,,k is differenced as 

while in the corrector step, given by Eq. (9.101, this term in 
differenced as 

uiFj- l , k  - uiF?,l;- 1 ,  k 

~ 

- n+l 
2 A x  pi, j -  1 ,  k 

(9.12) 

F F , , ,  is 

(9.13) 

Because of the complexity of the compressible N-S equations, it is not 
possible to obtain a closed-form stability expression for the MacCormack 
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scheme applied to these equations. However, the following empirical formula 
(Tannehill et al., 1975) can normally be used: 

(9.14) 

where (T is the safety factor ( E 0.9), 
Levy (CFL) condition (MacCormack, 1971) 

is the inviscid Courant-Friednchs- 

Re, is the minimum mesh Reynolds number given by 

where 

(9.17) 

and a is the local speed of sound, 

a = E  

Before each step, At can be computed for each grid point using Eq. (9.14). The 
smallest value of At is then used to advance the solution over the entire mesh. 
If only the steady-state solution is desired, Li (1973) has suggested that the 
solution at each point be advanced using the maximum possible Ar, as computed 
from Eq. (9.141, in order to accelerate the convergence of the solution. This 
procedure is referred to as local time stepping. In addition, multigrid procedures 
(see Section 4.3.5) can also be used to accelerate the convergence of N-S 
calculations. 

After each predictor or corrector step, the primitive variables ( p, u,  u, w, e,  
p ,  T )  can be found by “decoding” the U vector, 

U =  (9.18) 
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in the following manner 

(9.19) 

MacCormack (1971) modified his original method by incorporating time 
splitting into the scheme. This revised method, which was applied to the viscous 
Burgers equation in Section 4.5.8, “splits” the original MacCormack scheme into 
a sequence of one-dimensional (1-D) operations. As a result, the stability 
condition is based on a 1-D scheme that is less restrictive than the original 3-D 
scheme. Thus it becomes possible to advance the solution in each direction with 
the maximum possible time step. This is particularly advantageous if the 
allowable time steps ( A t x ,  At,,  At,)  are much different because of large 
differences in the mesh spacings ( A x ,  A y ,  A z ) .  In order to apply this algorithm 
to Eq. (9.1), we define the 1-D difference operators L,(At,) ,  L,(At,), and 
,!,,(At,) in the following manner. The L, (Atx )  operator applied to u T j , k ,  

is equivalent to the two-step formula 

These expressions make use of the dummy time indices * and **. The L,(At,) 
and L,(At , )  operators are defined in a similar manner. That is, the L,(At , )  
operator applied to U z j ,  k ,  

ut 7, k = L, ( At, >u? j ,  k (9.22) 
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is equivalent to 

and the L J A t , )  operator applied to U z j , k ,  

is equivalent to 
u t T , k  = L,(At , )Ut j ,k  (9.24) 

As mentioned in Section 4.5.8, a sequence of operators is consistent if the 
sums of the time steps for each of the operators are equal and is second-order 
accurate if the sequence is symmetric. A sequence that satisfies these criteria 
and is applicable to Eq. (9.1) is given by 

Ui'f;,: = L , ~ A t , ~ L , ~ A t , ~ L , ~ A t , ~ L , ~ A t 2 ~ L y ~ A t y ~ ~ , ~ A t x ~ U ~  i , k  (9.26) 

Another sequence that satisfies these criteria, and is applicable when A y  a 
min (Ax, Az), is given by 

(9.27) 

where m is an integer. 
The algorithms resulting from a sequence of operators such as Eqs. (9.26) 

and (9.27) are stable if the time step size in the argument of each does not 
exceed the maximum allowed for that operator. Since it is not possible to 
analyze the stability of each operator applied to the complete N-S equations, a 
l-D form of the empirical stability formula, given by Eq. (9.14), can be used for 
each operator: 

u A x  
Atx Q (lul + a>(l  + 2/Re,,) 

u A z  

(9.28) 

where u is the safety factor and a is the local speed of sound. 
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Computations involving the compressible N-S equations sometimes become 
unstable (i.e., “blow up”) because of numerical oscillations. These oscillations 
are the result of inadequate mesh refinement in regions of large gradients such 
as shock waves and are accentuated when central differences are used for the 
spatial derivatives, as in the present MacCormack scheme. In many cases, it is 
impractical to refine the mesh in these regions, particularly if they are far 
removed from the region of interest. For such situations, MacCormack and 
Baldwin (1975) have devised a “product” fourth-order smoothing scheme, which 
is an alternative to the fourth-order type of smoothing given by Eq. (8.98). In the 
MacCormack type of smoothing, dissipation terms are added to each operator. 
For example, they are added to the ,!,,(Atx) operator in the following manner: 

where 

(9.30) 

and 0 < E,  G 0.5 for stability. Thus an artificial viscosity term of the form 

(9.31) 

has been added to the N-S equations. This smoothing term has a very small 
magnitude except in regions of pressure oscillations, where the T.E. is already 
producing erroneous results. 

The explicit MacCormack algorithm is a suitable method for solving both 
steady and unsteady flows at moderate to low Reynolds numbers. However, it is 
not a satisfactory method for solving high Reynolds numbers flows, where the 
viscous regions become very thin. For these flows, the mesh must be highly 
refined in order to accurately resolve the viscous regions. This leads to small 
time steps and, subsequently, long computing times if an explicit scheme such as 
the MacCormack method is used. In order to explain this further, let us consider 
the 2-D flow over a flat plate at high Reynolds number. In this case, a very fine 
mesh is required near the flat plate in order to resolve the boundary layer, but a 
coarser grid can be used in the inviscid portion of the flow field, as illustrated in 
Fig. 9.1. In the coarse grid region, the MacCormack time-split scheme can be 
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Y 

f 

Figure 9.1 Mesh for high Reynolds number flow over a flat plate. 

applied in the following manner: 

where 
At d min ( 2  A t x ,  mesh 

In the fine grid region the following sequence of operators can be used: 

where m is the smallest integer such that 
At 
- G min ( A t , ,  2 
m mesh 

(9.32) 

(9.33) 

(9.34) 

(9.35) 

For high Reynolds numbers, the fine-grid region becomes very thin, requiring 
Ay to be very small. This causes At, in the L, operator to be very small and the 
integer m to be very large. Consequently, a substantial amount of calculation 
time is required in the fine-grid region. To overcome this difficulty, MacCormack 
(1976) developed a hybrid version of his scheme, which is known as the 
MacCormack rapid solver method. This hybrid method is part explicit and part 
implicit. For the flat-plate problem described above, the rapid solver method is 
implemented by replacing the L , ( A t / 2 m )  operator in Eq. (9.34) with 

L ~ H  ("i. 2 m  Y P  ( K )  2 m  

where the L,, operator is applied to the inviscid (hyperbolic) portion of the N-S 
equations, i.e., 

au a F ,  
at  ay 
- + - = o  (9.36) 
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with FH defined as 

(9.37) 

The LHp operator is applied to the viscous (parabolic) portion of the N-S 
equations: 

d U  d F ,  
d t  d y  

+ - -  - 0  - (9.38) 

where Fp = F - FH. The Ly,  operator solves Eq. (9.36) using either the method 
of characteristics or the original MacCormack scheme (Li, 1977; Shang, 1977). 
The Lyp operator solves Eq. (9.38) using an implicit scheme such as the 
Crank-Nicolson or Laasonen schemes. Thus it is possible to solve Eq. (9.36) and 
(9.38) using a time step that is not limited by the viscosity stability constraint. 
The rapid solver method has proved to be from 10 to 100 times faster than the 
time-split scheme for high Reynolds number flows. However, because of its 
complexity, more traditional implicit schemes (see Sections 9.2.3 and 9.2.4) are 
preferred when solving high Reynolds number flows. 

9.2.2 Other Explicit Methods 

In addition to the MacCormack scheme, other explicit methods that have been 
used to solve the compressible N-S equations include the following: 

1. Hopscotch method (Section 4.2.13) 
2. Leap frog/DuFort-Frankel method (Section 4.5.2) 
3. Brailovskaya method (Section 4.5.3) 
4. Allen-Cheng method (Section 4.5.4) 
5. Lax-Wendroff method (Section 4.5.5) 
6. Runge-Kutta method (Section 4.1.13) 

These methods were discussed in earlier sections (as indicated), where they were 
applied to model equations. When these methods are applied to the more 
complicated compressible N-S equations, certain difficulties can arise, as we 
have seen before. For example, the mixed-derivative terms create a problem for 
the hopscotch method. If these terms are differenced in the usual manner by 
applying Eq. (3.50, the hopscotch method is no longer explicit, since a matrix 
solution is required. This problem can be circumvented by lagging the mixed- 
derivative terms (i.e., evaluating them at the previous time level). 
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All of the above methods, except the Lax-Wendroff and Runge-Kutta 
schemes, are first-order accurate in time, so that they cannot be used to 
accurately compute the time evolution of a flow field. In addition, all of the 
methods have a stability restriction that limits the maximum time step. However, 
the stability conditions for the hopscotch and Allen-Cheng methods are 
independent of the viscosity, which gives them an advantage over the other 
methods. The allowable time step for the hopscotch method is given by the 
inviscid CFL condition, which for a 2-D problem becomes 

(9.39) 

if Ax = Ay. An advantage of the Brailovskaya method is that the viscous terms 
need to be computed only once during the two-step procedure. 

Of the six explicit methods listed above, only the Runge-Kutta method is 
widely used to solve the compressible N-S equations. The Runge-Kutta method, 
developed by Jameson et al. (1981, 1983) to solve the Euler equations, has been 
extended to the N-S equations by Swanson and Turkel (1985, 1987), Martinelli 
et al. (1986), Martinelli and Jameson (1988), and Turkel et al. (1991). This 
method utilizes a blend of second- and fourth-order damping terms and employs 
local time stepping, implicit residual smoothing, and multigrid to accelerate the 
convergence to steady state. The Runge-Kutta method is employed in the 
computer code TLNS3D (thin layer N-S program for 3-D flows) developed at 
NASA Langley Research Center (Vatsa and Wedan, 1989). 

9.2.3 Beam-Warming Scheme 

Prior to the mid-l970s, the numerical methods available to solve the compressible 
N-S equations were nearly all explicit and were limited in time step size by the 
CFL condition. As a consequence, it was difficult to compute high Reynolds 
number flows because of the fine meshes required to resolve the viscous regions. 
This difficulty was overcome with the application of noniterative implicit methods 
to the N-S equations. Briley and McDonald (1974) and Beam and Warming 
(1978) were the first to apply this type of scheme to solve the compressible N-S 
equations. We will describe the Beam-Warming scheme in this section. 

The Beam-Warming numerical scheme for solving the compressible N-S 
equations belongs to the same class of alternating direction implicit (ADI) 
schemes developed by Lindemuth and Killeen (1973) and McDonald and Briley 
(1975). Under certain conditions, these schemes can be shown to be equivalent. 
The Briley-McDonald scheme is discussed in Section 4.5.7, where it is applied to 
the viscous Burgers equation. 

For simplicity, we will apply the Beam-Warming finite-difference scheme to 
the 2-D compressible N-S equations, which can be written in the following 
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vector form: 

where 

E(U) = 

(9.40) 

(9.41) 

In the Beam-Warming scheme the solution is marched in time using the 
following difference formula: 

(9.42) 

where AnU = U n + l  - U". This general difference formula, with the appropriate 
choice of the parameters 8, and e,, represents many of the standard difference 
schemes, as we have seen from Section 8.3.3. For the compressible N-S equations, 
either the Euler implicit scheme (0 ,  = 1,0, = 01, which is first-order accurate 
in time, or the three-point backward implicit scheme (0 ,  = 1,8, = 31, which is 
second-order accurate in time, is normally used. 
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uu 

After substituting Eq. (9.40) into Eq. (9.42), we obtain 

I I 
- U  ; - u ; o  

I I 

1 d + A"V1 + A"V2) + -(-A"F + A"W, + A"W2) 
JY 

- 
- 1  I 0  

( y  - 3)u 1 1 - y  

I -y 

-U 1 0  
0 1 0 1  

uu I - u  I 

I 

2 2 I 
I I 

(3u2 + u2)  I Y E P  I YE, Y - 1  
- + (1 - y)u(u2 + u2) I ( y  - 1)uu I - ~ + - 

I 
2 I p  I 

I P - 

1 d 
-En + V; + V . )  + - ( - F" + W; + W; ) 

dY 

1 82 1 +- 
1 + 8, (9.43) 

This difference formula is in the so-called delta form, which is discussed in 
Section 4.4.7. The delta terms are linearized using truncated Taylor-series 
expansions. For example, A" E is linearized using 

(U"" - U") + O[(At)'] (9.44) 

which can be rewritten as 

A"E = [A]" AnU + O[(At)'] 

where [A]  is the Jacobian matrix dE/dU given by 

(9.45) 

[ A ] =  - 

(9.46) 

and y is the ratio of specific heats. This Jacobian matrix is derived assuming a 
perfect gas. In a like manner, A"F can be linearized as 

AnF = [B]" A"U + O[(At)'] 

where [B]  is the Jacobian matrix dF/dU given by 

(9.47) 

[ B ]  = - 
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The viscous delta term AnVl(U, U,) is linearized by writing 

A"Vl = ( 2)" AnU + (5)' A"U, + O[(At)2] 
dux 

= [PI" A"U + [R]" AW, + 0 [ ( A t l 2 ]  

= ( [ P I  - [R,])" A"U + - ( [ R ] "  A"U) + O[(At)2] 
d 

d X  
(9.49) 

where [PI is the Jacobian dV,/dU, [El is the Jacobian dVl/dU,, and [ R , ]  = 

d[Rl/dx. These matrices can be written as 

1 
[ R ]  = - 

P 

0 I 1 0  1 0 1 0  

4 1 4  I 

I 7c" I 
- PV l o  

I I 
I 

I 
I 

0 I 0  - -pu 
3 

I /I 1 0  

1 C" 

I -(ip-+( p - : ) v 2 - - -  k 4 1 I ( ; p - $ ) . ~ ( p - ~ ) v l -  1 k  

I 
C" P 1 

(9.51) 

The matrix for [PI - [R,] is obtained by assuming that p and k are locally 
independent of U. In a like manner, A" W2(U, Uy) is linearized as 

d 
A"W2 = ( [ Q ]  - [ S , ] ) "  A"U + - ( [ S ] "  A"U) + O[(At)2] (9.52) 

dY 

where 
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1 

P 
[SI = - 

and 
- 

0 ; o ; o  I o -  
0 I 0  

I 
- CLU I p l  
4 ' 4  

3 - -pv I 0 I TC" 1 0  

- ( ; p - E ) v z - (  p-+-- k 4 I I (2). ( ; p - E ) v  1 
- I 

C" P - 

A"V2 = A"-'V2 + O[(At)'] 

A"W; = A"-'W, + O[(At)'] 
(9.55) 

for a uniform time step At. By evaluating the cross-derivative terms in this 
manner, the block tridiagonal form of the final equations is maintained. The 
Steger method (Steger, 1977) for linearizing viscous terms, described in Section 
8.3.3, can be used in place of the linearizations given by Eqs. (9.49) and (9.52). 
The Steger form of linearization is particularly useful when coordinate trans- 
formations have been applied to the N-S equations. 

Substituting Eqs. (9.451, (9.471, (9.491, (9.52), and (9.55) into Eq. (9.43) yields 

where [ Z ]  is the unity matrix. In Eq. (9.561, expressions such as 

should be interpreted as 
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The left-hand side (LHS) of Eq. (9.56) is approximately factored in the following 
manner: 

= LHS of Eq. (9.56) + O[(At)3] (9.57) 

LHS of Eq. (9.57) = RHS of Eq. (9.56) (9.58) 
It should be noted that the approximate factorization introduced by Eq. (9.57) 
may limit the size of the allowable time step because of the added T.E. The 
partial derivatives in Eq. (9.57) are evaluated using second-order accurate 
central differences. 

The Beam-Warming algorithm is implemented in the following manner: 

and the final form of the Beam-Warming algorithm becomes 

Step 1: 

= RHS of Eq. (9.56) 
Step 2: 

(9.59) 

( [ I ]  + %[ ; ( [ I l l  - [Q] + [S,])' - 7 [ S ] "  d 2  A'U = A'U, (9.60) 
dY 

Step 3: 
Un+l = Un + A'U (9.61) 

In Step 1, A'U, represents the remaining terms on the LHS of Eq. (9.57). 
Equations (9.59) and (9.60) represent systems of equations that have the same 
block tridiagonal structure as shown in Eq. (8.96) except that for the 2-D 
compressible N-S equations, the blocks are 4 X 4 matrices. 

Warming and Beam (1977) have studied the stability of their algorithm by 
applying it to both the 2-D wave equation, 

(9.62) u, + c*u, + c2uy = 0 

and the diffusive equation, 

u, = au,, + b U x y  + cuyy (9.63) 

The latter equation is parabolic if b2 < 4ac and (a, c )  > 0. They found that the 
algorithm is unconditionally stable when applied to Eq. (9.621, provided that 
O2 > 0. When applied to Eq. (9.631, the algorithm is unconditionally stable, 
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provided that O2 2 0.385. Note that neither the leap frog scheme ( 8 ,  = 0,8, = 
- $1 nor the trapezoidal scheme (8 ,  = $, 8, = 0) is unconditionally stable when 
applied to Eq. (9.63). However, the three-point backward scheme ( 8 ,  = 1,8, 
= 3) is unconditionally stable and can be used when second-order temporal 
accuracy is desired. 

In order to suppress oscillations that will occur near flow field discontinuities 
as a result of the central differences that are used for the spatial derivatives, it is 
necessary to add damping (artificial viscosity) to the Beam-Warming scheme. 
This can be accomplished by adding a fourth-order explicit dissipation term of 
the form given by Eq. (8.98) to the RHS of Eq. (9.56). In addition, if only the 
steady-state solution is of interest, a second-order implicit smoothing term can 
also be added to the LHS of Eq. (9.56). This latter smoothing term can be 
second order, since it has no effect on the steady-state solution where A"U = 0. 
After the smoothing terms are added, the final differenced form of the algorithm 
becomes as follows: 

Step 1: 

( [ I ]  + "'"" S,([AI - [PI + [R , ] )"  - 8,2[R]" - ..8,2]] A"U, 
1 + e, 

= RHS of Eq. (9.56) - ee( 8," + s,")U" (9.64) 

Step 2: 

(9.65) 

Step 3: 

u n + l  = U" + AnU (9.66) 

where 8, a2 ,  and a4  are the usual central-difference operators and E,  and E; 

are the coefficients of the explicit and implicit smoothing terms, respectively. 
Using a Fourier stability analysis, it can be shown that the coefficient of the 
explicit smoothing term must be in the range 

1 + 28, 

8(1 + 8, )  
O < E e <  (9.67) 

to ensure stability. 
DCsidCri et al. (1978) have investigated the possibility of maximizing the rate 

of convergence of the time-dependent solution by using the proper ratio of the 
coefficients of the smoothing terms. They found that when the Beam-Warming 
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scheme (with Euler implicit differencing) is applied to the Euler equations, the 
rate of convergence is optimized when 

‘i 

% 
_ -  - 2  (9.68) 

Beam and Warming have pointed out that their algorithm can be simplified 
considerably if p is assumed locally constant. In this case, ( px, p,,) = 0 and Eqs. 
(9.50) and (9.53) reduce to 

(9.69) 

If only the steady-state solution is desired, Tannehill et al. (1978) have suggested 
that all the viscous terms on the LHS of the algorithm (i.e., [PI, [R,], [RI, [Ql, 
[S,], [S]) can be set equal to zero, provided that implicit smoothing (q > 0) is 
retained. This takes advantage of the fact that the LHS of Eq. (9.57) approaches 
zero as the steady-state solution is approached. With this simplification, the 
complexity of the Beam-Warming algorithm is greatly reduced, particularly if a 
non-Cartesian coordinate system is employed. It is believed that this simplifying 
technique can be used in all moderate to high Reynolds number computations, 
since tests confirm that the convergence rate is not affected for these cases. To 
reduce computation time further, Chaussee and Pulliam (1981) have transformed 
the coupled set of thin-layer N-S equations into an uncoupled diagonal form. 

The Beam-Warming scheme is employed in the widely used ARC3D code 
(Pulliam and Steger, 1980) developed at NASA Ames Research Center. This 
code has recently been incorporated into the OVERFLOW code (Buning et al., 
1994), which is an outgrowth of both the ARC3D code and the flux-vector 
splitting F3D code (Steger et al., 1986). In addition, the Beam-Warming scheme 
is used in the Transonic Navier-Stokes (TNS) code developed by Holst et al. 
(1987). 

9.2.4 Other Implicit Methods 
MacCormack (1981) developed an implicit analog of his explicit finite-difference 
method. This method consists of two stages. The first stage uses the original 
MacCormack scheme, while the second stage employs an implicit scheme to 
eliminate any stability restrictions. The resulting matrix equations are either 
upper or lower block bidiagonal equations, which can be solved in an easier 
fashion than the usual block tridiagonal systems. A major disadvantage of this 
scheme is due to the difficulties encountered in applying non-Dirichlet boundary 
conditions. 

Obayashi and Kuwahara (1986) modified the Beam-Warming scheme by 
applying lower-upper (LU) factorization (see Section 4.3.4) in conjunction with 
flux-vector splitting (see Section 6.4.1). As a result, each AD1 operator is 
decomposed into the product of lower and upper bidiagonal matrices, which are 
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easier to solve. This technique is referred to as LU-AD1 factorization and is 
similar to that used in the “implicit” MacCormack scheme described above. 

The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit scheme was 
developed by Yoon and Jameson (1987, 1988) to obtain steady-state solutions of 
the unsteady Euler and N-S equations. The LU-SGS method employs an 
approximate Newton iteration procedure that permits scaler diagonal inversions 
as opposed to the block matrix inversions required in the conventional line 
Gauss-Seidel (LGS) methods. The LU-SGS method ensures that the matrix is 
diagonally dominant without resorting to flux splitting. Rieger and Jameson 
(1988) extended the LU-SGS scheme to three dimensions. This scheme is widely 
used to solve the compressible N-S equations. It can be combined with an 
upwind scheme (see next section) to eliminate oscillations near flow field 
discontinuities. 

9.2.5 Upwind Methods 
The central-difference schemes described previously for solving the compressible 
N-S equations almost always require additional dissipation for numerical stability. 
Upwind schemes, on the other hand, inherently possess the needed dissipation 
to control these numerical instabilities. Upwind schemes were initially applied to 
the Euler equations in the early 198Os, as described in Chapter 6. Shortly 
thereafter, in the mid-l980s, they were applied to the compressible N-S equa- 
tions. The extension to the compressible N-S equations is straightforward, since 
the additional shear-stress and heat flux terms are centrally differenced. 
However, an important consideration that must be taken into account when 
solving viscous flows with upwind schemes is whether they will produce excessive 
dissipation that will swamp the natural dissipation in boundary-layer regions. 
This problem is effectively eliminated by using higher-order upwind schemes. 

Some of the earliest applications of upwind schemes to the compressible 
N-S equations were by Lombard et al. (1983), Coakley (1983b), MacCormack 
(1985), Chakravarthy et al. (19851, and Thomas and Walters (1985). Lombard et 
al. (1983) employed an implicit, upwind flux-difference splitting algorithm called 
the conservative supracharacteristics method (CSCM). Coakley (1983b) and 
MacCormack (1985) used implicit upwind finite-volume schemes similar to the 
flux-vector splitting method of Steger and Warming (1981). MacCormack applied 
LGS and Newton iteration procedures to solve the resulting matrix equations. 

Chakravarthy et al. (1985) employed a family of high-order accurate total 
variation diminishing (TVD) schemes (Chakravarthy and Osher, 1985) based on 
Roe’s approximate Riemann solver to model the convection terms in the 
compressible N-S equations. (See Section 4.4.12 for a discussion of TVD 
schemes.) This work has led to a series of widely used, unified computer 
programs (the USA-series of codes) that were developed at Rockwell 
International Science Center. These codes can be used for a wide variety of flow 
situations, including steady and unsteady flows; low-speed, subsonic, transonic, 
supersonic, and hypersonic flows; internal and external flows; and perfect-gas 
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and real-gas (equilibrium and nonequilibrium chemistry) flows (Palaniswamy et 
al., 1989). 

Thomas and Walters (1985) initially used the flux-vector splitting method 
developed by van Leer and co-workers (van Leer et al., 1982; Anderson et al., 
1985) to solve the thin-layer compressible N-S equations. This implicit upwind 
finite-volume method includes third-order accurate spatial differencing along 
with either approximate factorization or LGS relaxation to solve the resulting 
matrix equations. Since it has been shown (van Leer et al., 1987) that flux-vector 
splitting schemes will produce excessive dissipation in boundary layers, as 
compared with Roe and Osher’s approximate Riemann solvers, Thomas and 
Walters have incorporated Roe’s flux-difference splitting into their algorithm. 
This work has led to the widely used Computational Fluids Laboratory 3-D 
(CFL3D) code developed at NASA Langley Research Center (Vasta et al., 
1987). 

Since the initial applications of upwind schemes to the compressible N-S 
equations, numerous investigators have refined these procedures and have 
applied them to ever more complicated problems. For example, flow problems 
involving finite-rate chemistry and thermal nonequilibrium have been success- 
fully computed using the compressible N-S equations. Included in this latter 
category is the work of Gnoffo (1986, 1989), who developed the Langley 
aerothermodynamic upwind relaxation algorithm (LAURA) code. This code was 
developed primarily to solve 3-D external hypersonic flows in chemical and 
thermal nonequilibrium. It uses an implicit upwind finite-volume algorithm 
based on Roe’s scheme with second-order TVD corrections (Yee, 1985a, 1985b). 
The fluids, chemistry, and thermodynamics are fully coupled in the code. 

Candler and MacCormack (1988) extended the upwind algorithm of 
MacCormack (1985) to account for chemical and thermal nonequilibrium 
processes. Molvik and Merkle (1989) developed the TUFF code to solve 3-D 
external reacting hypersonic flows. The TUFF code uses an implicit upwind 
finite-volume algorithm and employs a temporal Riemann solver that fully 
accounts for the multicomponent mixture of gases. Higher-order accuracy is 
obtained using Chakravarthy and Osher’s (1985) TVD scheme. The code has 
been enhanced to permit the calculation of the internal reacting flow in scramjet 
engines (Molvik et al., 1993). 

9.2.6 Compressible Navier-Stokes Equations at Low Speeds 
Until recently, most algorithms designed for compressible flows were observed 
to become very inefficient or inaccurate at low Mach numbers. The traditional 
remedy was to solve the incompressible form of the equations for problems 
requiring solutions in the low-speed regime. This appears unreasonable. The 
incompressible equations are merely a subset of the compressible equations, and 
it is well known that the physics itself is usually no more complex merely 
because the Mach number is low. For most flows, no important changes would 
be observed if the Mach number were reduced from, say, 0.2 to 0.01 if all other 
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dimensionless parameters of the flow remained the same. If no significant 
changes in flow structure are noted as the Mach number drops from about 0.2 
toward zero, any difficulties encountered must be due to an inappropriate 
construction of the numerical algorithm itself. The computational difficulties are 
believed to arise from two separate mechanisms: (1) an ill-conditioned algebraic 
problem and (2) round-off errors due to a disparity between magnitudes of 
variables. The first mechanism is the most troublesome. These difficulties have 
been addressed by several investigators, including Turkel(1987,1992), Feng and 
Merkle (19901, Choi and Merkle (1991), and Peyret and Viviand (1985). 

The key issues can be outlined sufficiently by using the 1-D N-S equations 
as they apply to an ideal gas. Nondimensional variables are defined as 

(9.70) 

where the tildes denote the dimensional variables, subscript ref denotes 
dimensional reference quantities, and the Mach number M is based on reference 
quantities and the gas constant: 

We will solve for the primitive variables p, u, and T rather than the “conserved” 
variables p, pu, and E, for two reasons. First, we know that the primitive 
variables are appropriate for low-speed flows because they are widely used in 
incompressible formulations. If we elect to solve the compressible equations for 
the same primitive variables, it should be possible to detect what, if anything, is 
causing the numerical difficulty as M approaches zero and the equations reduce 
to a variable-property version of the incompressible flow equations. Second, it is 
possible to identlfy and remedy the source of numerical difficulties more quickly 
if we choose to solve for the primitive variables rather than the conserved 
variables. 

Substituting for density by using the ideal gas equation of state and utilizing 
primitive variables p, u, and T, the conservation equations for mass, momentum, 
and energy can be written 
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where 

E =  

P 

U 

T 

PU 

RT 
- 

P U 2  

RT + p  

Q =  

P 
RT 
PU 
RT 

E, = 

0 

4p du 

3Re  dx  
-- 

4(y- 1)M2pu du p dT -+-- 
3 Re dx  RePr d x  

(9.7 

The Reynolds and Prandtl numbers are defined as 

The Prandtl number of the fluid is assumed to be constant. The viscosity and 
thermal conductivity can be evaluated from Sutherland’s equation. Note that the 
equations are in the strong conservation-law form even though primitive variables 
are used. Some of the computational fluid dynamics (CFD) literature gives the 
impression that “conserved” variables must be used to achieve the favorable 
properties of the conservation-law form of the equations. This is simply not true. 
It will be indicated below how the conservation-law form of the discretized 
equations can be satisfied using primitive variables. 

First, we will consider the consequences of the reference Mach number 
approaching zero. Note that p / R T  = p/pref and R = l/(yM2). We observe 
that the combination p / R T  approaches a perfectly acceptable finite limit as M 
goes to zero. Note that E and E, will reduce to a form appropriate for a fluid 
whose density may be a function of temperature but for which the density 
cannot be altered by changes in pressure alone, i.e., dp/dp) ,  = 0. This is the 
sense in which the compressible N-S equations reduce to an incompressible 
form by virtue of the zero Mach number limit. Solutions to this system under 
isothermal conditions can be made to behave as close to the incompressible 
limit [(l/pXDp/Dt) = 01 as desired by choosing the reference Mach number to 
be sufficiently low. 
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To consider the mathematical properties of the 1-D conservation equations, 
it is convenient to write Eq. (9.71) as 

dq Jq dE" 
[ A , ] -  + [ A x ] -  = - 

d t  dx dx 
(9.73) 

where [ A , ]  and [ A , ]  are Jacobian matrices to be evaluated at the most recent 
iteration level and q is the vector of unknown primitive variables given in Eq. 
(9.72). The Jacobian matrices can be written as 

[ A , ]  = 

[ A , ]  = 

Y M 2  
T 

yM2u 
T 

- 0 P 
RT= 

P U  - P - 
RT R T ~  

y M 2 u  
T 

yM2u2  
T 

+ 1  

P 
RT 
- 

2PU 
RT 

(9.74) 

PU 

R T ~  

PU2 
R T ~  

-- 

-- 1 
( y -  1 1 ~ 3  ( y -  1) ( y -  1)  

y M 2 u  + y M 4  - + 3yM4p2-  - yM4pu3- 
2T R 2T 2T2 

(9.75) 

In the above, R has been replaced by l /(yM2) in those terms that will vanish as 
M goes to zero. Notice that the variable property incompressible form (in the 
sense of d ~ / d p ) ~  = 0)  of the equations is recovered as M goes to zero. Notice 
also that as M goes to zero, the terms containing the time derivative of pressure 
tend toward zero unless a vanishingly small time step is used. We shall show 
next that singular behavior of the coupled time-dependent system accompanies 
the vanishing of the pressure-time derivatives. 

The mathematical nature of the time-marching problem can be established 
by writing the system as 

(9.76) 

and considering the eigenvalues of [ A , ] - l [ A , ] ,  which in this case are u, u + a, 
and u - a in terms of nondimensional variables. The parameter a is the 
nondimensional local speed of sound. The problem can be solved by a marching 
method, since the eigenvalues are real. As M becomes small, [ A , ]  becomes ill 
conditioned. That is, the determinant of [ A , ]  becomes small, and errors are 
expected to arise in computing [ A , ] - ' .  In the limit as M goes to zero, the 
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inverse of [A,] does not exist (the first column and third row vanish), and the 
system is singular. 

The magnitudes of the eigenvalues of the matrix product [ A , ] - l [ A , ]  also 
provide information about the properties of the system. As M is decreased in 
the subsonic regime, the eigenvalues of the matrix product [A , ] - ’ [  A,] begin to 
differ more and more in magnitude, the ratio of the smallest eigenvalue to the 
largest being approximately the ratio of the convective speed to the acoustic 
speed. The condition and degree of “stiffness” of the system can be related to 
the relative magnitudes of the eigenvalues. When the eigenvalues differ greatly 
in magnitude, convergence to a steady-state solution is usually slow, or for 
time-dependent solutions, the allowable time step becomes very small. This 
occurs because greatly varying signal speeds appear in the equations and the 
traditional solution schemes attempt to honor all of them, creating a “stiff” 
system. Since M has almost no influence on the physical characteristics of the 
flow at very low values of M (it effectively “cancels out” of the physics), it must 
be possible to devise a solution scheme in which M has very little influence on 
the convergence rate (‘‘cancels out”) of the numerical scheme over the range in 
which it is an unimportant physical parameter. 

Another observation is that the pressure is eliminated as an unknown in the 
time derivative as M approaches zero. This indicates that the solution to the 
incompressible equations cany no direct pressure history and thus the pressure 
field is established anew at each time step. 

To compute flows at very low M, one could of course, adopt a fully 
incompressible scheme, as has often been the case in the past. On the other 
hand, there are advantages to maintaining the variable-property fully coupled 
arrangement, and we will indicate that it is possible to modify the compressible 
formulation so that it will work well for vanishingly small Mach numbers with 
virtually no sacrifice in accuracy or efficiency. 

To overcome the awkward mathematical situation that arises with the 
unsteady form of the coupled compressible equations at low M, it is necessary to 
make changes in the formulation of the time terms. At least two alternatives 
exist. The existing time terms can be modified to permit efficient solutions to be 
obtained to the steady-flow equations, or an efficient scheme can be obtained by 
adding a pseudo-time (artificial time) term that vanishes at convergence at each 
physical time step. This latter approach is recommended because it permits 
time-accurate solutions to the N-S equations to be obtained when they are 
needed. 

Although the pseudo-time term can take many different forms and still be 
effective, a suitable arrangement can be obtained by simply adding a term to 
each equation having the same form as the physical time term but with M 
removed from the coefficients to the unknown pressure that cause the fatal ill 
conditioning. The equations then become 

(9.77) 
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where T is a pseudo-time and the preconditioning matrix [A,] is given by 

- I T 
U 
- 

,I = I T 

- 0 
P 

R T ~  
- 

P U  - -__ P 
RT R T ~  

(9.78) 

Note that [A,] is formed from [A,] by simply dividing the first column of [A,]  
by y M 2  (equivalent to multiplying by the nondimensional gas constant R).  
Presumably, dividing by only M 2  would have the same effect. It is also quite 
likely that the preconditioning matrix can be simplified somewhat by setting 
some of the off-diagonal entries in the second and third columns equal to zero. 
The form above has the conceptual advantage of being easily developed from 
[A,] (with minimal change) using commonsense logic. 

The hyperbolic system is solved by advancing in pseudo-time until no 
changes occur at each physical time step. At that point, the time-accurate 
equations are satisfied. Obviously, this involves “subiterations,” but that is 
consistent with the observation that for a completely incompressible flow, the 
pressure field must be established at each physical time step with no direct 
dependence on a previous pressure field. The addition of the pseudo-time term 
changes the eigenvalues of the hyperbolic system, so that they are clustered 
closer together in magnitude, effectively at speeds closer to the convective 
speed. The hyperbolic system being solved is in T and x ,  and it is now the 
eigenvalues of the matrix product [A,]-’[  A,] that characterize the system. This 
is similar to marching in pseudo-time to a “steady” solution at each physical 
time step. The eigenvalues of [A, ] - ’ [A, ]  are 

u , ;  u(1 + y M 2 )  d u 2 ( 1  - y M 2 ) 2  + 4 y T ]  [ 
If we assume a value of 1.4 for the ratio of specific heats and evaluate u and T 
at the reference values, the above expressions give 2.275 for the ratio of the 
magnitudes of the largest to the smallest eigenvalues in the limit of zero Mach 
number. Without preconditioning, this ratio approaches infinity at the zero 
Mach number limit. For M = 0.3 the ratio is 2.89 with preconditioning. 

The second and minor source of difficulty with the coupled compressible 
formulation at low M is related to the differences in the relative magnitudes of 
the nondimensional dependent variables. The magnitudes of the velocity and 
temperature remain of order 1, but the nondimensional pressure tends to 
increase without limit as M decreases. This permits round-off errors to become 
significant. Again, this is not a problem of physical origin. Using double-precision 
arithmetic, no difficulties will usually be observed until M decreases to about 
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or To completely eliminate the problem, a “gauge” or relative 
pressure can be introduced, so that differences in pressure (originating from 
pressure derivatives) become differences in the gauge pressure. This procedure 
is very easy to implement. The nondimensional thermodynamic pressure p is 
replaced by the sum of p,, a constant, and p g ,  the variable part of the pressure. 
The constant part is selected to be as large as possible for the problem at hand. 

Although the discussion above utilized primitive variables, the results can be 
interpreted in terms of the more traditional conserved variables (Feng and 
Merkle, 1990). However, there are no particular disadvantages to using the 
primitive variables for computations, and the required form of preconditioning 
is much easier to develop in terms of primitive variables. We shall indicate how 
the preconditioned system can be solved by an implicit scheme while maintaining 
the conservation-law form of the discretized equations. Putting Eq. (9.77) in 
conservation-law form except for the pseudo-time term gives 

dq dQ(q> dE(q) dE,(q) 
[ A  ] - +  -+ --- = o  

d r  d t  d X  dX 

The vectors Q, E, and E, can be linearized by iterating at each pseudo-time step 
using a Newton method: 

(9.79) 

Q = Q +  [A, ]Aq E = E +  [Ax]Aq E , = E , +  [A,]Aq 

where the Jacobian matrices [A,] and [ A , ]  have been defined previously and 

r o  0 0 1  

[ A , ]  = 
0 

4P d -- 
3Re  dx 

0 

4 ( y -  l)M$ du p, d - -- 
3Re dx RePr d x  

0 

(9.80) 

In the above, the tilde indicates evaluation at the most recently determined 
values (from the previous iteration) and the A indicates changes from the 
previous pseudo-time iterations. Equation (9.79) can then be written as 

= -(” +-- - )  d E  aE, 
d t  dx dx 

(9.81) 

Further details will depend somewhat on the discretization scheme selected. For 
example, if a centrally differenced fully implicit discretization is employed, the 
algebraic system can be solved using the block tridiagonal algorithm given in 
Appendix B. The algebraic system is solved for Aq, the change between 
pseudo-time iterations. When the changes vanish at each physical step, the LHS 
goes to zero. The RHS is the discretized original partial differential equation 
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(PDE) (the residual) in conservation-law form evaluated using q from the most 
recent pseudo-time iteration. Thus the conservation-law form of the equation is 
satisfied at each physical time step when iterative (pseudo-time) convergence is 
achieved. 

The procedure readily extends to the 2-D and 3-D N-S equations. For 
example, in 2-D the matrix [A,] becomes 

[ A , ]  = 

P 
R T ~  
PU 

R T ~  

-- 
1 
T 
U P 
T RT 

0 0 

0 

- 

-- - - 
v - 
T 

1 u2 + v 2  pu PV p(u2 + v2) 
- + -  - - - 
y 2c,T Rc,T Rc,T 2c,RT2 

(9.82) 

Further details on implementing this procedure for the 2-D N-S equations can 
be found in the work by Pletcher and Chen (1993). 

9.3 INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 
From the above discussion on solving the compressible N-S equations at low 
speeds, it should be evident that the preconditioned compressible form of the 
N-S equations can be solved efficiently at vanishingly small M. For low-speed, 
nearly “incompressible” gas flows where property variations may be important 
or where the presence of heat transfer requires a solution to the energy 
equation, solving the compressible form of the equations may be the best choice. 

When heat transfer or significant property variations are not present, the 
traditional incompressible form of the N-S equations is usually selected for 
numerical solution. Panton (1984) provides a useful discussion of the limiting 
forms of the N-S equations and the range of applicability of the incompressible 
form of the equations. 

The incompressible N-S equations for a constant property flow without body 
forces or external heat addition are given by (see Chapter 5 )  

continuity: 

momentum : 
v . v = o  

DV 
p z  = -v p + pv2v 

(9.83) 

(9.84) 

energy: 
DT 

pc,- = kV2T + @ 
Dt 

(9.85) 
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These equations (one vector, two scalar) are a mixed set of elliptic-parabolic 
equations that contain the unknowns (V, p, T ) .  Note that the temperature 
appears directly only in the energy equation, so that we can uncouple this 
equation from the continuity and momentum equations. This uncoupling is 
exact if the fluid properties are independent of temperature. For many 
applications, the temperature changes are either insignificant or unimportant, 
and it is not necessary to solve the energy equation. However, if we wish to find 
the temperature distribution, this can be easily accomplished, since the unsteady 
energy equation is a parabolic PDE, provided that V has already been computed. 
With this in mind, we will focus our attention on methods for solving the 
continuity and momentum equations during the remainder of this chapter. 

The 2-D incompressible N-S equations written in Cartesian coordinates 
(without the energy equation) are 

continuity: 
du dv - + - = o  
a x  d y  

x momentum: 

d 2 u  d 2 U  

a x 2 + d y Z  

(9.86) 

(9.87) 

y momentum: 

d2v d2v 
(9.88) - + u - + v - = - - - + v  - + -  

where v is the kinematic viscosity p / p .  These equations are written in the 
primitive-uuriuble form, where p ,  u, v are the primitive variables. Incompressible 
flows have been solved successfully by using both primitive and derived (such as 
vorticity and stream function) variables. Both approaches will be discussed here. 
We start with the vorticity-stream function technique in Section 9.3.1. Methods 
for solving Eqs. (9.86)-(9.88) for the primitive variables will follow in Section 
9.3.2. 

dv dv av 1 dP 
d t  d x  dy P dY ( d X 2  d y ’ j  

9.3.1 Vorticity-Stream Function Approach 
The vorticity-stream function approach has been one of the most popular 
methods for solving the 2-D incompressible N-S equations. In this approach, a 
change of variables is made that replaces the velocity components with the 
vorticity 4‘ and the stream function $. The vorticity vector t; was defined in 
Chapter 5 as 

J = V X V  (9.89) 
The magnitude of the vorticity vector is 

151 = IV x VI (9.90) 
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while the scaler value of vorticity for 2-D flows 

dv du l = - - -  
dx d y  

for a 2-D Cartesian coordinate system. Also 
stream function IC, is defined by the equations 

= u  - 
dY 

can be written as 

(9.91) 

in this coordinate system, the 

(9.92) 

- -v 
d* - -  
d X  

Using these new dependent variables, the two momentum equations [Eqs. (9.87) 
and (9.88)] can be combined (thereby eliminating pressure) to give 

or 

(9.93) 

(9.94) 

This parabolic PDE is called the vorticity transport equation. The 1-D form of 
this equation, 

(9.95) 

is the 1-D advection-diffusion equation, which is often used as a model equation. 
In addition, the nonlinear Burgers equation can be used to model the vorticity 
transport equation. In fact, the numerical techniques described in Section 4.5 to 
solve the nonlinear Burgers equation can be directly applied to the vorticity 
transport equation. 

An additional equation involving the new dependent variables 5 and J, can 
be obtained by substituting Eqs. (9.92) into Eq. (9.90, which gives 

a2$ a2* 
- + 2 = - l  
d X 2  d y  

v2*= - 5  
or 

(9.96) 

(9.97) 

This elliptic PDE is the Poisson equation. Methods for solving equations of this 
type are discussed in Section 4.3. 

As a result of the change of variables, we have been able to separate the 
mixed elliptic-parabolic 2-D incompressible N-S equations into one parabolic 
equation (the vorticity transport equation) and one elliptic equation (the Poisson 
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equation). These equations are normally solved sequentially using a time- 
marching procedure, which is described by the following steps: 

1. 
2. 

3. 

4. 
5. 

6. 

Specify initial values for [ and $ at time t = 0. 
Solve the vorticity transport equation for [ at each interior grid point at time 
t + At.  
Iterate for new $ values at all points by solving the Poisson equation using 
new [ at interior points. 
Find the velocity components from u = qY and v = - +hx. 
Determine values of [ on the boundaries using $ and [ values at interior 
points. 
Return to Step 2 if the solution is not converged. 

An alternative sequential procedure has been used successfully by Mallinson 
and de Vahl Davis (1973) that is based on a pseudo-transient representation of 
Eq. (9.96): 

d r  

The pseudo-time step is an additional parameter in the scheme that can be 
varied in order to accelerate convergence. Upon convergence, the pseudo-time 
term vanishes, and Eq. (9.96) is satisfied. 

The vorticity-stream function system can also be solved efficiently in a 
coupled rather than sequential manner. Rubin and Khosla (1981) solved the 
2 X 2 coupled system for $ and f using the modified strongly implicit procedure. 
The coupled procedure was also used in combination with multigrid acceleration 
by Ghia et al. (1982). 

The pressure does not appear explicitly in the vorticity-stream function 
formulation. However, in those applications where the pressure is of interest, it 
can be readily determined from the velocity solution by solving an additional 
Poisson equation. This equation is derived by differentiating Eq. (9.87) with 
respect to x: 

d du du  ’ d 2 U  dv du d 2 U  1 d’p d + v- ( V 2 U )  +-- = - -- -(-) at dx +(z) dx dy  dxdy p dX2  dx 
(9.98) 

differentiating Eq. (9.88) with respect to y ,  

d dv d 2 v  du av d 2v 1 d 2 p  d 
+v,+--+u-=--- + v-(V2u) -(-) d t  dy + (:r dy dy  ax d x d y  P d Y 2  dY 

(9.99) 
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and adding the results to obtain 

dX2 d x d y  

d 

Using the continuity equation, Eq. (9.100) can be reduced to 

In terms of the stream function this equation can be rewritten as 

v2p = s 
where 

.-2.[i$)($) - (j32] 

(9.101) 

(9.102) 

(9.103) 

Thus we have obtained a Poisson equation for pressure that is analogous to Eq. 
(9.97). In fact, all the methods discussed in Section 4.3 for solving Eq. (9.97) will 
also apply to Eq. (9.102) if S is differenced in an appropriate manner. A suitable 
second-order difference representation is given by 

For a steady flow problem, the Poisson equation for pressure is only solved 
once, i.e., after the steady-state values of 5 and @ have been computed. If only 
the wall pressures are desired, it is not necessary to solve the Poisson equation 
over the entire flow field. Instead, a simpler equation can be solved for the wall 
pressures. This equation is obtained by applying the tangential momentum 
equation to the fluid adjacent to the wall surface. For a wall located at y = 0 in 
a Cartesian coordinate system (see Fig. 9.2), the steady tangential momentum 
equation ( x  momentum equation) reduces to 

(9.105) 

or 

(9.106) 
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Figure 9.2 Grid points normal to a flat plate at y = 0. 

which can be differenced as 

) (9.107) 

In order to apply Eq. (9.107) the pressure must be known for at least one point 
on the wall surface. The pressure at the adjacent point can be determined using 
a first-order one-sided difference expression for d p / d x  in Eq. (9.107). 
Thereafter, Eq. (9.107) can be used to find the pressure at all other wall points. 
For a body intrinsic coordinate system, Eq. (9.106) becomes 

Pi+l,l -Pi-1,1 -Xi,1 + 4Ji,2 - 5i,3 
2 A x  =-’( 2 A y  

(9.108) 

where s is measured along the body surface and n is normal to it. 
The time-marching procedure described earlier for solving the vorticity 

transport equation and the Poisson equation requires that appropriate 
expressions for I) and J be specified at the boundaries. The specification of 
these boundary conditions is extremely important, since it directly affects the 
stability and accuracy of the solution. Let us examine the application of 
boundary conditions on a wall located at y = 0. At the wall surface, tc, is a 
constant that is usually set equal to zero. In order to find J at the wall surface, 
we expand tc, using a Taylor series about the wall point (i, 1): 

Since 

3) - - U i , 1  = 0 
dY i . 1  

(9.1 10) 



NUMERICAL METHODS FOR THE NAVIER-STOKES EQUATIONS 655 

and 

i ,  1 

we can rewrite Eq. (9.109) as 

or 

(9.111) 

(9.1 12) 

This first-order expression for &, often gives better results than higher-order 
expressions, which are susceptible to instabilities at higher Reynolds numbers. 
For example, the following second-order expression, which was first used by 
Jensen (19591, leads to unstable calculations at moderate to high Reynolds 
numbers: 

(9.113) 

Briley (1970) explained the instability by noting that the polynomial expression 
for +, assumed in the derivation of Eq. (9.1131, is inconsistent with the 
evaluation of u = J+/Jy at (i, 2) using a central difference. By evaluating u at 
(i, 2) using the following expression, which is consistent with Eq. (9.1131, 

Briley found his computations to be stable even at high Reynolds numbers. 
A classical problem that has wall boundaries surrounding the entire 

computational region is the driven cavity problem illustrated in Fig. 9.3. In this 
problem the incompressible viscous flow in the cavity is driven by the uniform 
translation of the upper surface (lid). The boundary conditions for this problem 
are indicated in Fig. 9.3. The driven cavity problem is an excellent test case for 
comparing methods that solve the incompressible N-S equations. A standard test 
condition of Re, = 100 is frequently chosen in these comparisons, where 

u1 
Re, = - 

V 
(9.115) 

and 1 is the width of the cavity. Two-dimensional computational results are 
available from numerous investigators, including Burggraf (1966), Bozeman and 
Dalton (19731, Rubin and Harris (1975), and Ghia et al. (1982). The Ghia et al. 
results are among the most detailed, having been computed on a 257 X 257 grid. 
Unsteady 2-D driven cavity results can be found in the works by Soh and 
Goodrich (1988) and Pletcher and Chen (1993). Three-dimensional 
computational results have been reported by Iwatsu et al. (1993) and Freitas et 
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y t  
u = g y = u  

3 = -gyy 

v = o  
g = o  

u = o  $ I t  

U 

v = -$I, = 0 ) Is g - 0  
5 = -$,, 

u = + y = o  

5 = -gyy 

v = o  
g = 0  

Figure 9.3 Driven cavity problem. 

al. (1985). Experimental data are available in the works by Mills (19651, Pan and 
Acrivos (1967), and Koseff and Street (1984). 

and I) at other types of 
boundaries, such as symmetry lines, upper surfaces, inflow and outflow planes, 
and slip lines, is extremely important, and care must be taken to ensure that the 
physics of the problem is correctly modeled. An excellent discussion on how to 
treat these various boundaries can be found in the works by Roache (1972) and 
Fletcher (1988). 

An alternate way of solving the incompressible N-S equations written in the 
vorticity-stream function formulation, involves using the steady form of the 
vorticity transport equation 

The specification of appropriate values for 

d l  Jl 
d x  dy 

u- + v- = V V 2 l  (9.116) 

This equation is elliptic and can be solved using methods similar to those 
employed for the Poisson equation. This approach has been successfully used by 
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several investigators, but it appears to be susceptible to instabilities. For this 
reason, the transient approach is recommended over this steady-state method. 

The extension of the vorticity-stream function approach to 3-D problems is 
complicated by the fact that a stream function does not exist for a truly 3-D 
flow. However, the vorticity-stream function approach can be generalized to 
3-D by making use of a vectorpotential. Several variations have been used. The 
earliest method, generally referred to as the vorticity-potential method (see, for 
example, Aziz and Hellums, 1967), expressed the velocity as the curl of a vector 
potential: 

JI = +xi + rG;j + @$ (9.117) 

which satisfies the continuity equation 

so that 

and 

v . v = o  

v=vxlJJ  

d*y d*x 

d x  d y  
w=--- 

After inserting Eq. (9.119) into Eq. (9.89), we obtain 

Since the vector potential can be arbitrarily chosen to satisfy 

we can simplify Eq. (9.120) to yield 

v x ( V  x J I )  = g 

v . J I = o  

(9.118) 

(9.119) 

(9.120) 

(9.121) 
This vector Poisson equation represents three scalar Poisson equations that 
must be solved after each time step. Likewise, the vorticity transport equation 
for a 3-D problem is a vector equation, which must be separated into three 
scalar parabolic equations: 

V 2 J I =  - g  

dlx dlx J l x  dlx dU dU dU 
- + u- + u- + w- - 5,- - 5 - - 6- = V V 2 l X  
d t  dx dy dz dx d y  dz 

d lY  d l y  d l y  Jl)’ du d U  d U  

d t  dx d y  dz dx Y d y  az 
- + U- + U- + W -  - f;- - 5 - - lz- = v V ’ ~  (9.122) Y 

dl2 dl2 dl2 d l ,  d W  d W  d W  
- + u- + v- + w- - lx- - 5 - - 12- = vv25, 
dt dx dy dz d x  d y  dz 

to find the three components (lx, ly, lz) of the vorticity vector, although only 
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two of the above vorticity transport equations are actually independent. Given 
two components of the vorticity vector, the third can be found from a linear 
combination of derivatives of the other two. In practice, this approach requires 
the solution of three parabolic and three elliptic equations at each time level. 
Although the vorticity-potential method would appear to require more 
computational effort than the primitive-variable formulation, Aziz and Hellums 
(1967) reported that the vorticity-potential method was faster and more accurate 
than a method based on the primitive-variable approach. 

More recent studies utilizing derived variables have made use of a variation 
of the vorticity-potential method known as the dual-potential method. This 
variation was motivated by the discovery by Hirasaki and Hellums (1970) that 
the boundary conditions for problems with inflow and outflow can be simplified 
if the velocity is composed of the sum of a scalar potential and a vector 
potential. This formulation is based on the Helmholtz decomposition theorem, 
which states that any vector field can be split into a curl-free and a divergence- 
free part. Thus the dual-potential approach represents the velocity as 

v = v4+ v x JI (9.123) 
where V4 is the curl-free part and V x JI is the divergence-free (or solenoidal) 
part. In addition, it is possible to select JI, such that V - J I  = 0 as before. 
Because V X JI is divergence free, the continuity equation requires that 

v24 = 0 (9.124) 
The relation between the vector potential and vorticity is obtained by taking the 
curl of Eq. (9.1231, 

VJI - V ( V . J I >  = -5 (9.125) 
Because the vector potential has been selected to be solenoidal, it follows that 

V J I = - &  2 (9.126) 
The solution procedure for the dual-potential formulation is nearly the same as 
given above for the vector-potential formulation, except that in the general case, 
an additional Laplace equation, Eq. (9.1241, needs to be solved for the scalar 
potential 4. The velocity components are then determined from the scalar and 
vector potentials as 

d 4  w z  wy 
dx dy dz 

u = - + - - -  

(9.127) 

w=-+Y- -  d4 a* w x  

dz dx ay 

Notice that the part of the velocity components that is derived from the 
vector-potential function is the same as observed earlier for the vector-potential 
formulation. In fact, when the dual-potential formulation is applied to a viscous 
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problem in which there is no throughflow, i.e., a flow in which the boundary 
conditions on all boundaries are the no-slip conditions (such as the driven cavity 
problem), a trivial solution of 4 = 0 satisfies the Laplace equation for the scalar 
potential as well as the required boundary conditions. Thus, for such problems, 
the scalar potential is not needed. It is only when throughflow exists that the 
merits of including the scalar potential become evident. Accommodating 
throughflow boundary conditions with the vector potential alone can be done 
but is overly complex (Hiraski and Hellums, 1970). Further details on the 
treatment of boundary conditions for the dual-potential method can be found in 
the works of Aregbesola and Burley (1977), Richardson and Cornish (19771, 
Morino (1986), and Gegg et al. (1989). 

Before moving on to a discussion of the primitive-variable approach, we will 
briefly describe an approach that can be considered a hybrid of the stream 
function-vorticity approach and the primitive-variable approach. In this hybrid 
vorticity-velocity approach, the dependent variables are the vorticity components 
(l,, &, 5,) and the velocity components (u, u, w). The vorticity components are 
obtained by solving Eq. (9.122), and the velocity components are determined 
from 

v2v = -v x g (9.128) 
This vector equation is derived by taking the vector cross product of the del 
operator with the definition of the vorticity vector and then simplifying the 
resulting expression, 

v x (V x V) = v x 5 (9.129) 
using the appropriate vector identity. Agarwal (1981) states that this hybrid 
vorticity-velocity approach avoids the necessity of using a staggered-grid 
arrangement, which is required in some primitive-variable approaches. Other 
applications of the vorticity-velocity approach can be found in the works of 
Dennis et al. (1979), Gastski et al. (1982), Fasel and Booz (19841, Farouk and 
Fusegi (19851, Osswald et al. (1987), and Guj and Stella (1988). 

9.3.2 Primitive-Variable Approach 
General. The approaches based on derived variables such as the vorticity-stream 
function and dual-potential methods lose some of their attractiveness when 
applied to a 3-D flow, as discussed in the last section. Consequently, the 
incompressible N-S equations are most often solved in their primitive-variable 
form (u,  u, w, p )  for 3-D problems. Even for 2-D problems, the use of primitive 
variables is quite common. 

The incompressible N-S equations written in nondimensional primitive- 
variable form for a Cartesian coordinate system are given by the following. 

continuity: 
du" dU* dW* - + - + - -  - 0  
d X *  dy* dZ* 

(9.130) 
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x momentum: 

dU* dU* dU* dU* 
- + u*- + v*- + w*- 
at* d X *  dY * dZ* 

- - -- dP* +++-+- 1 d 2 U *  d 2 U *  d2U* 

dx* Re, dx*’ dy*’ dz*’ 
(9.131) 

y momentum: 

dV* dU* dV* dV* dP* +-[- 1 a%* .+-I a2v* d2V* 
__ +u*- +v*- +w*7 = -- 
dt* d X *  dy* dz dy* Re, dx*’ dy*’ dz*’ 

(9.132) 

z momentum: 
dW* dW* dW* dW* 
- +u*- + v*- + w*- 
dt* d X *  dY * dZ* 

- - -- ap* +-[-+-+- 1 d 2 W *  d 2 W *  d 2 W *  

dz* Re, dx*’ dy*‘ dZ* ’ 
These equations are nondimensionalized using 

(9.133) 

(9.134) 

Notice that no time derivative of pressure appears in these equations. For an 
incompressible fluid, pressure waves propagate at infinite speed. The pressure is 
determined through the governing equations and boundary conditions, but it 
also can be shown to be governed by an elliptic PDE. 

Methods for solving the incompressible N-S equations in primitive variables 
can be grouped into two broad categories. The first we shall refer to as the 
coupled approach. In this approach the discretized conservation equations are 
solved, treating all dependent variables as simultaneous unknowns. For the 
time-dependent N-S equations this is implemented in what is known as the 
artificial compressibility (also known as the pseudo-compressibility) method. An 
artificial-time derivative of pressure is added to the continuity equation to 
permit the solution to the coupled hyperbolic system to be advanced in time. 
Without the addition of such a time derivative, the algebraic system of equations 
resulting from a coupled time-dependent discretization is singular. This occurs 
in a manner similar to the singular behavior noted in Section 9.2.6 for the 
compressible time-dependent formulation taken to the incompressible limit. The 
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addition of the artificial-time term plays a role similar to that of preconditioning 
applied to the compressible formulation. Upon convergence, the artificial-time 
term vanishes, as will be explained below. On the other hand, it will be seen that 
the steady-flow incompressible equations can be solved by a coupled 
discretization without the addition of artificial terms. 

The second strategy often employed for the incompressible N-S equations 
will be referred to as the pressure correction approach. Such methods are also 
known as pressure-based, uncoupled, sequential, or segregated methods. The 
distinguishing feature of this approach is the use of a derived equation to 
determine the pressure. Typically, the momentum equations are solved for the 
velocity components in an uncoupled manner. The x momentum equation is 
solved for the x component of velocity, the y momentum equation is solved for 
the y component of velocity, etc. In doing so, the equations are linearized by 
using values lagged in iteration level for the other unknowns, including pressure. 
The velocity components have thus been computed without using the continuity 
equation as a constraint. Usually, a Poisson equation is developed for the 
pressure, or changes in the pressure, that will alter the velocity field in a 
direction such as to satisfy the continuity equation. Such an equation for 
pressure can be derived from the conservation equations in a rigorous manner. 
However, several well-known schemes use an approximate formulation for the 
pressure equation, which is justified as long as the iterative procedure produces 
a solution that satisfies all of the discretized conservation equations, including 
the continuity equation. 

The literature on numerical schemes for the incompressible N-S equations 
is quite extensive. A great many numerical schemes, each differing from others 
in some detail but falling within the two basic approaches defined above, have 
been proposed for solving the incompressible N-S equations. Only a few specific 
examples will be given here. 

Coupled approach: The method of artificial compressibility. One of the early 
techniques proposed for solving the incompressible N-S equations in primitive- 
variable form was the artificial compressibility method of Chorin (1967). In this 
method, the continuity equation is modified to include an artifical compressibility 
term that vanishes when the steady-state solution is reached. With the addition 
of this term to the continuity equation, the resulting N-S equations are a mixed 
set of hyperbolic-parabolic equations, which can be solved using a standard 
time-dependent approach. In order to explain this method, let us apply it to Eqs. 
(9.130H9.133). The continuity equation is replaced by 

d$* dU* dV* dW* 

di*  d X *  dy* dZ* 
- + -  + -  + - = o  (9.135) 

where 5* is an artificial density and t'* is a fictitious time that is analogous to 
real time in a compressible flow. The artificial density is related to the pressure 
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by the artificial equation of state, 

p* = fj$* (9.136) 

where /? is the artificial compressibility factor to be determined later. Note that 
at steady-state the solution is independent of $* and f*, since d$*/dt'* + 0. 
After replacing t* with f* in Eqs. (9.131)-(9.133) and substituting Eq. (9.136) 
into Eq. (9.133, we can apply a suitable numerical technique to the resulting 
equations and march the solution in t'* to obtain a final steady-state incom- 
pressible solution. Obviously, this technique is applicable only to steady-flow 
problems, since it is not time accurate. 

In order to facilitate the application of the numerical scheme, Eqs. (9.130)- 
(9.133) and Eqs. (9.13349.136) can be combined into the following vector form: 

du* de* df* ag* d 2  d 2  - + -  [D]u* (9.137) 
+ -) dZ* 

where 

0 0 0 0  

[ D 1 =  0 0 1 0 [:: : :: :I 
Note that since Eq. (9.136) represents an artificial equation of state, then p1I2 
plays the role of an artificial sound speed. Defining Jacobians, 

de* df*  J g* 
[ A ]  = - [ B ]  = - [ C ]  = - 

d U* d U* d U* 

the LHS of Eq. (9.137) can be rewritten as 

d U* d U* d U* d U* 
- + MI- + [ B I T  + LC1-j-p 
d t'* d X *  dY 

(9.139) 

(9.140) 
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where 

The eigenvalues of [ A ] ,  [ B ] ,  and [ C ]  are 

( u , u , u  f d m ) ,  ( u , u , u f  pz), (w,w,w f pz) 
respectively. This suggests that the magnitude of p should be close to that of 
the convective velocities to avoid the stiffness associated with a disparity in the 
magnitudes of the eigenvalues. Although the artificial equation of state suggests 
that P ' I2  is an artificial speed of sound, the eigenvalues above indicate that the 
effective acoustic wave speeds are really the quantities under the radicals in the 
eigenvalues above ( d m ,  for example), which are functions of the velocity 
components as well as p. The optimum value of P may be somewhat problem 
dependent. Kwak et al. (1986) suggest that a value of p in the range 0.1-10.0 
will work well for most problems. On the high side, the problem is one of 
stiffness, which retards the convergence rate. On the low side, the value of 
@At'* should be large enough to permit pressure waves (which actually should 
move at infinite speed in the incompressible limit) to propagate far enough to 
reasonably balance viscous effects during the artificial transient, or the pseudo- 
time iterations will tend not to converge. 

In the original paper of Chorin, the leap frog/DuFort-Frankel finite- 
difference scheme (see Section 4.5.2) was used. Since that time, a variety of 
numerical schemes have been used to solve the hyperbolic system of equations, 
including the multistage Runge-Kutta explicit method, approximate-factorization 
implicit schemes, the LU-SGS implicit scheme, and the coupled strongly implicit 
scheme. Generally, it is believed that any numerical solution strategy that is 
appropriate for solving the time-dependent compressible N-S equations as a 
coupled system will also work for solving the discretized equations resulting 
from the artificial compressibility formulation. On balance, it seems that implicit 
formulations have been favored over explicit methods for incompressible viscous 
flow applications. 

Over the years, a number of investigators have reported good success with 
the artificial compressibility method in a number of impressive applications 
using a variety of algorithms. Among these are the works of Steger and Kutler 
(1976), Choi and Merkle (19851, Kwak et al. (1986), Hartwich and Hsu (19871, 
and Hartwich et al. (1988). Initially, such methods were considered to be only 
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suitable for obtaining steady solutions because the solutions had to be iterated 
to time convergence for the artificial term to vanish. It has now been 
demonstrated (Merkle and Athavale, 1987; Pan and Chakravarthy, 1989; Rogers 
et al., 1989; Chen and Pletcher, 1993) that this approach can be made time 
accurate by considering the time terms in the momentum equations to be the 
real, physical time terms, and the time term added to the continuity equation to 
be in pseudo-time. The solution is then iterated to pseudo-time Convergence at 
each real (physical) time step. Pseudo-time terms can also be added to the 
momentum equations (while leaving physical time terms intact) as an option to 
aid in maintaining diagonal dominance of the algebraic system, When the 
pseudo-time term (or terms) vanish, the solution obtained satisfies the complete 
time-dependent N-S equations. This approach employing pseudo-time terms in 
all equations will be discussed next in some detail. 

To obtain time-accurate solutions to the N-S equations by the artificial 
compressibility method, Eq. (9.137) is modified by retaining the physical time 
terms but adding pseudo-time terms to give 

d U* d U* d U* d U* d U* 
[ A  1 -  + [ A , ] -  + [ A ] -  + "7 + [CI: di* at* d X *  dY dz 

=++- 1 d 2  d 2  

Re, ax*' dy*2 
(9.141) 

where u*, [ A ] ,  [ B ] ,  [ C ] ,  and [ D ]  are as defined previously and 

The above formulation works well with the parameters a,  b, c,  d set equal to 1, 
although other values may enhance the convergence rate or robustness of some 
algorithms. At each physical time step, the computations are advanced in 
pseudo-time until convergence (no further changes in the variables are observed). 
The equations are often solved in conservation-law form with the linearization 
achieved by a Newton method, whereby the Jacobians are evaluated using the 
most recently computed values. Notice that numerical errors associated with the 
linearization can be driven to zero during the pseudo-time iteration cycle, and at 
iterative convergence, the conservation-law form of the equations is satisfied. 
This strategy follows the pattern described in Section 9.2.6 for solving the 
compressible N-S equations in primitive variables. The eigenvalues of the system 
are the eigenvalues of [ A , ] - ' [ A ] ,  [A, ] - ' [B] ,  and [ A p ] - ' [ C ] .  The eigenvalues 

of [ A , ] ~ ' [ A ]  are u* /c ,  u*/d,(u*/b) f d ( ~ * ~ / b ~ )  + ( P / a b ) .  The other 
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eigenvalues are obtained from the above expression by replacing u* with v* to 
obtain the eigenvalues of [A, ] - ' [B]  and by replacing u* with w* to obtain the 
eigenvalues of [ A , ] - l [ C ] .  For a = b = c = d = 1 the eigenvalues are seen to 
be the same as for the original steady-flow pseudo-compressibility formulation 
of Chorin. 

Some flexibility exists in establishing [A, ] ,  and for some choices, the 
eigenvalues are altered somewhat. For example, we can add a pseudo-time 
derivative of pressure to each momentum equation. Taking some liberties with 
the form of the coefficients of that term, we find the following candidate 
preconditioning matrix: 

[ A , ]  = 

1 0 0 0  
au 

P 
1 0 0  - 

av  

P 
0 1 0  - 

aw 
- 0 0 1  
P 

where a is an arbitrary constant. Using this last form for [A,], we compute the 
eigenvalues of [ A , ] - ' [ A ]  to be u, u,u - +(a. f da2u2 - 4au2 + 4u2 + 4P).  
Notice that this result reduces to the eigenvalues for the original Chorin scheme 
if a = 0. However, if a = 2, the eigenvalues become u, u, k and the 
effective acoustic speed becomes independent of the velocity and equal to P I / ' .  

We close this discussion with the reminder that adding the pseudo-time terms to 
the momentum equations is not essential for time accuracy if pseudo-time 
convergence is achieved at each physical time step (see Pan and Chakravarthy 
et al. 1989). 

Note that the strategy employed in the time-accurate version of the artificial 
compressibility scheme bears some resemblance to that suggested in Section 
9.2.6 for solving the preconditioned compressible N-S equations. In fact, if 
isothermal conditions are assumed, the application of the preconditioned 
compressible formulation to low-speed flows becomes effectively an artificial 
compressibility scheme to the extent that percentage changes in the density 
remain small. 

Coupled approach: Space marching. It is possible to solve the steady form of 
both the compressible and incompressible N-S equations by coupled space- 
marching methods. Because the steady-flow system of equations is elliptic for 
subsonic flows, repeated calculation sweeps are made from inflow to outflow 
until convergence is achieved. Examples of coupled space-marching methods 
applied to the steady N-S equations can be found in the works of Bentson and 
Vradis (1987), TenPas and Pletcher (1987, 19911, Vradis et al. (1992), and 
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TenPas and Hancock (1992). Following the formulation of TenPas and Hancock 
(1992), the 2-D incompressible continuity and momentum equations are written 
in the form 

de* df*  1 
(9.142) 

where 
U* v* 0 0 0  

v*’ + p  0 0 1  
u* = e* = [u*i;/*] f* = [ u*v* ] [Dl = [o 1 01 

The solution is to be advanced by marching in the “streamwise” direction, which 
we shall assume to be the positive x direction. For an implicit space-marching 
strategy to work successfully, attention must be given to two details. The first is 
the manner in which the streamwise pressure gradient is treated. It is essential 
in the marching sweep to treat the downstream value of pressure as given either 
from an initial estimate or from the value computed from the most recent 
sweep. Note that this is the downstream and not the downwind value, in that the 
downstream value is fixed regardless of the local flow direction. For example, if 
the marching solution is being advanced from marching level i to i + 1, the 
pressure gradient term in the x momentum equation would be forward 
differenced (either first order or second order), treating the value of pressure at 
i + 1 as unknown. For a first-order representation, this would give 

where pi+‘ would be evaluated from the previous sweep (i.e., “fixed”) as the 
solution at i + 1 is computed, but p i + l  would be an unknown. The transverse 
pressure gradient term in the y momentum equation is discretized at the 
unknown i + 1 level using forward (rather than central) second-order differences 
to prevent even-odd decoupling. The pressure is fixed by the boundary conditions 
at the downstream boundary. The fixing of the downstream pressure at each 
marching step is consistent with the physical and mathematical nature of the 
steady incompressible flow problem, in that the local solution should be 
influenced by information coming from all directions. 

The second concern in the space-marching procedure is to ensure that the 
difference stencil honors the appropriate zone of dependence in a manner that 
maintains diagonal dominance in the implicit solution algorithm. To achieve 
this, the streamwise convective derivative in the momentum equations is 
invariably upwinded. In regions where the flow is reversed, as behind a step in a 
rearward-facing step flow, the differencing direction changes. The upwind value 
is treated as known, and the downwind value is unknown, which is the value at 
i + 1 in the present discussion. The streamwise second-derivative terms are 
differenced centrally, with the i + 1 values treated as unknowns, and the 
upstream and downstream values lagged to the most recently computed values. 
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The continuity equation is differenced in a form equivalent to a finite-volume 
approximation for a control volume shifted upstream between i and i + 1. This 
allows for global mass conservation to be ensured at each marching sweep. The 
streamwise derivative uses second-order central differences, while the derivative 
in the transverse direction is approximated by a second-order backward differ- 
ence. The need to march in the predominant flow direction restricts somewhat 
the available options for grid construction when generalized coordinates are 
used. For most flow configurations, the use of space marching is limited to “H” 
grids (see Thompson et al., 1985). 

Multiple marching sweeps are required in space-marching schemes in order 
to develop the final pressure distribution because the downstream value of 
pressure in the streamwise momentum equation is always fixed at the value 
determined at the previous sweep until convergence is achieved. It has been 
observed that convergence can be accelerated by “correcting” the pressure 
between streamwise sweeps. Presumably, this accelerates the rate at which 
information travels upstream. The pressure correction usually takes the form of 
a single sweep from downstream to upstream of an approximate Poisson 
equation for the pressure. More details on space-marching schemes for the 
complete N-S equations can be found in the work of TenPas (1990). Such 
schemes have been demonstrated for computing developing 2-D and 3-D flows 
in a channel, flows over a rearward-facing step, and flow over a cylinder at low 
Reynolds numbers. Space-marching procedures have also been employed for the 
compressible N-S equations in the subsonic regime (TenPas and Pletcher, 1991; 
Pappalexis and TenPas, 1993). 

Pressure-correction approach: General. The general pressure-correction ap- 
proach is characterized by a formulation in which the momentum equations are 
solved sequentially for the velocity components using the best available estimate 
for the pressure distribution. Such a procedure will not yield a velocity field that 
satisfies the continuity equation unless the correct pressure distribution is 
employed. If mass sources exist, the pressure is improved in a separate step in a 
manner that will eliminate the mass sources (satisfy continuity). If the pressure 
changes, the solution to the momentum equations will change, and particularly, 
in implicit schemes, the sequence is repeated iteratively until a divergence-free 
velocity field is established. Such schemes have often been called “pressure- 
based” schemes, as contrasted with coupled-solution schemes (such as the 
artificial compressibility scheme) which have been referred to as “density 
based.” This terminology (pressure or density based) is being abandoned here 
because even in coupled approaches, it is increasingly common to employ 
primitive variables (u ,  v, p, T, for example), where the density no longer appears 
as a variable. This is especially evident in schemes employing low Mach number 
preconditioning. Thus the terminology “pressure correction” is being suggested 
as being more descriptive than “pressure based,” since both coupled and 
sequential schemes are likely to employ pressure as a dependent variable. 

Pressure-correction methods have been widely used for solving the incom- 
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pressible N-S equations. The methods differ primarily in the algorithms used to 
solve the component equations and the strategy employed to develop an 
equation to be solved for an improved pressure. Such an equation is most often 
a Poisson equation. Early forms of these methods employed staggered grids to 
avoid even-odd decoupling of the pressure. More recently, regular (colocated) 
grids have been employed satisfactorily. 

Some of the most commonly used variations of the pressure-correction 
method are the marker-and-cell (MAC) method of Harlow and Welch (19651, 
the SIMPLE and SIMPLER methods of Caretto et al. (1972) and Patankar 
(1980), the fractional-step method (Chorin, 1968; Yanenko, 1971; Marchuk, 
1975), and the primitive-variable implicit split operator (PISO) method of Issa 
(1986). A sampling of these methods will now be discussed. 

Pressure-correction approach: Marker-and-cell method. Perhaps the earliest 
pressure-correction scheme for solving the incompressible N-S equations was 
the MAC method introduced by Harlow and Welch (1965) and Welch et al. 
(1966). The scheme was based on a staggered grid similar to that introduced in 
Chapter 8. The marker-and-cell terminology arose because the method had the 
capability to resolve time-dependent free surface flows by tracing the paths of 
fictitious massless marker particles introduced on the free surface. The solution 
was advanced in time by solving the momentum equations for velocity 
components using the best current estimate of the pressure distribution, much 
as indicated in Section 8.4.3. Such a solution initially would not satisfy the 
continuity equation unless the correct pressure distribution was used. The 
pressure is improved by numerically solving a Poisson equation derived in the 
same manner as Eq. (9.100). In nondimensional form this equation can be 
written as 

dD* 
dt* 

VZP* = s; - - (9.143) 

where 

and D* is the local dilatation term given by 

D* = u: + u; + w: 

and terms such as u: denote d u * / d x * .  The value of S; is determined from the 
solution of the momentum equations using the provisional values of pressure. 
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counter and LIT:; is set equal to zero. That is, the correction in pressure is 
required to compensate for the nonzero dilation at the rn iteration level. The 
Poisson equation is then solved for the revised pressure field. Depending on the 
details of the discretization method employed (explicit, implicit, etc.), the 
improved pressure may then be used in the momentum equation for a better 
solution at the present time step. If the dilation (divergence of velocity field) is 
not zero, the cyclic process of solving the momentum equations and the Poisson 
equation is repeated until the velocity field is divergence free. 

A point that needs careful attention in all schemes requiring the solution of 
a Poisson equation is the proper application of boundary conditions. These 
boundary conditions are Neumann as derived from the momentum equations. 
When a staggered grid is used, the pressure at the boundary itself is not 
required for the solution of the momentum equations. However, in representing 
the Neumann boundary condition, the pressure at a point below the boundary (a 
fictitious point) is called for. It is shown in Chapter 8 (Section 8.4.3) that this 
pressure cancels out of the representation of the boundary condition if it is 
evaluated implicitly at the current iteration level. To achieve convergence of the 
Poisson equation, the solution must satisfy the integral constraint, 

(9.144) 

where C is the closed boundary of the solution domain of area A and ds is a 
differential length along C. On a staggered grid (see Chapter 8) this is satisfied 
automatically. When a nonstaggered mesh is used, the possible inconsistency 
arising from Eq. (9.144) can be circumvented (Ghia et al., 1977a, 1979, 1981; 
Briley, 1974) by reducing the source term of the Poisson equation [RHS of Eq. 
(9.14311 at every point by the same fixed amount computed as required to satisfy 
the global constraint of Eq. (9.144). With the nonstaggered mesh, the pressure 
gradient at the wall is required. A technique for its computation will be 
illustrated for a wall located at y = 0 as shown in Fig. 9.4. Note that a fictitious 
row of grid points for pressure has been added below the wall surface in this 

l i ,  0 

Figure 9.4 Grid points for determination of pressure boundary condition. 
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nonstaggered grid. At the wall surface, the y momentum equation [Eq. (9.132)] 
reduces to 

(9.145) 

This equation can be differenced using the familiar second-order accurate 
central-difference expressions 

0 

2 Ay* 
(9.146) 

\ 
where vTo is the value of v* at the fictitious point. An expression for uiT0 can be 
determined from the continuity equation, which reduces to 

(9.147) 

at the wall. Using a third-order accurate finite-difference expression for this 
reduced form of the continuity equation, 

0 

allows us to compute vTo and retain second-order accuracy in Eq. (9.146). 
Similar techniques can be used to find the pressure gradient at other boundaries 
in order to solve the Poisson pressure equation. 

A very large number of methods can trace their ancestry back to the MAC 
method. In 1970, Amsden and Harlow (1970) introduced a simpler MAC 
procedure (SMAC), which employed a second Poisson equation for a velocity 
potential that would drive a corrective velocity in order to satisfy the continuity 
equation. Such a procedure is described in Chapter 8 in connection with the 
partially parabolized procedures for subsonic flows. The original MAC and 
SMAC schemes employed an explicit time-marching procedure. Implicit 
discretizations have been widely used in more recent variations of these schemes 
(Deville, 1974; Briley, 1974; Ghia et al., 1979). 

Pressure-correction approach Projection (fractional step) methods. A key 
feature of the MAC method is the splitting of the solution into two distinct 
steps, one of which is the solution of a Poisson equation for the pressure. A 
great many variations to this “splitting” of the solution procedure have been 
suggested. One such variation proposed by Chorin (1968) and Temam (1969) is 
known as the projection method, or the method of fractional steps. The projection 
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method was originally formulated on a regular rather than a staggered grid. 
Another difference is in the way the pressure Poisson equation is developed. In 
the original formulation proposed by Chorin, the pressure gradient terms are 
omitted from the momentum equations in the first step. The unsteady equations 
are advanced in time to obtain a provisional nondimensional velocity V*. In a 
second step, we wish to correct this provisional velocity by accounting for the 
pressure gradient and the continuity equation. This is achieved by considering 

+ v p n + 1  = 0 (9.149) 

subject to the continuity constraint V V"' = 0. By taking the divergence of 
Eq. (9.149) subject to the continuity constraint above, we obtain the Poisson 
equation: 

- v* v n +  1 

At  

v - v* 
At  

~ 2 ~ n f 1  = - (9.150) 

The solution procedure consists of first computing V* from the momentum 
equations while neglecting the pressure gradient terms. The pressure Poisson 
equation is then solved for the pressure field, after which the velocities are 
computed from Eq. (9.149). More recently, investigators have found that the 
procedure also works well if a provisional pressure distribution is used in the 
momentum equations in the first step, where provisional velocities are 
determined. Then the p in Eq. (9.149) becomes a pressure correction, which can 
be determined from the solution to the Poisson equation. 

The projection method has been implemented on both regular and staggered 
grids. On a staggered grid the scheme is very similar to the MAC method. Both 
explicit and implicit formulations have been employed. A rather detailed 
discussion of the projection method that points out similarities between it and 
the MAC scheme is provided by Peyret and Taylor (1983). 

Pressure-correction approach SIMPLE family of methods. The semi-implicit 
method for pressure linked equations (SIMPLE) algorithm of Caretto et al. 
(1972) and Patankar and Spalding (1972) which is introduced in Section 8.4.1 for 
the solution of the partially parabolized N-S equations can also be applied to the 
incompressible N-S equations (see Caretto et al., 1972; Patankar, 1975, 1981). 
This procedure is based on a cyclic series of guess-and-correct operations to 
solve the governing equations. The velocity components are first calculated from 
the momentum equations using a guessed pressure field. The pressures and 
velocities are then corrected, so as to satisfy continuity. This procedure continues 
until the solution converges. The main distinction between this method and the 
MAC and projection methods is in the way in which the pressure and velocity 
corrections are achieved. 

In this procedure, the actual pressure p is written as 

P = P o  +P'  (9.151) 
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where p o  is the estimated (or intermediate) value of pressure and p’ is the 
pressure correction. Likewise, the actual velocity components (for a 2-D flow) 
are written as 

u = uo + u’ 
u = u,, + u’ 

(9.152) 

where uo, u,, are the estimated (or intermediate) values of velocity and u’, u’ are 
the velocity corrections. The pressure corrections are related to the velocity 
corrections by approximate forms of the momentum equations: 

du’ 

(9.153) 

Since the velocity corrections can be assumed to be zero at the previous 
iteration step, the above equations can be written as 

(9.154) 

where A is a fictitious time increment divided by density. After combining Eqs. 
(9.152) and (9.154) and substituting the result into the continuity equation, we 
obtain 

0 
f 

(:A:) - (2 + 2) + A (  
+ $) = 0 (9.155) 

or 
1 

V p ‘  = -(V * V0) 
A 

(9.156) 

where V,, is the estimated velocity vector. This Poisson equation can be solved 
for the pressure correction. Note that if the estimated velocity vector satisfies 
continuity at every point, then the pressure correction is zero at every point. In 
the actual SIMPLE algorithm, an equivalent differenced form of Eq. (9.156) is 
used as shown by Raithby and Schneider (1979). 

1. Guess the pressure ( p o l  at each grid point. 
2. Solve the momentum equations to find the velocity components (uo, uo). A 

staggered grid in conjunction with a block-iterative method is recommended 
by Patankar and Spalding. 

The SIMPLE procedure can now be described by the following steps: 
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3. Solve the pressure-correction equation [i.e., Eq. (9.15611 to find p' at each 

4. Correct the pressure and velocity using Eqs. (9.151) and (9.154): 
grid point. 

P = P o  +PI 

5. Replace the previous intermediate values of pressure and velocity ( p o ,  uo, uo) 
with the new corrected values ( p ,  u, u), and return to Step 2. Repeat this 
process until the solution converges. 

The SIMPLE procedure has been used successfully to solve a number of 
incompressible flow problems. However, in certain cases it is found that the rate 
of convergence is not satisfactory. This is due to the fact that the pressure- 
correction equation tends to overestimate the value of p' even though the 
corresponding velocity corrections are reasonable. Because of this, Eq. (9.151) is 
often replaced with 

where ap is an underrelaxation constant. For the same reason, underrelaxation 
is also employed in the solution of the momentum equations. In the present 
formulation, underrelaxation can be accommodated by varying the parameter A 
in Eqs. (9.154) and (9.156). 

A large number of variations of the SIMPLE strategy have been proposed 
for the purpose of improving the convergence rate of the scheme. Among them 
are the SIMPLE revised (SIMPLER) scheme (Patankar, 1981) and the SIMPLEC 
scheme (van Doormal and Raithby, 1984). 

The SIMPLER algorithm appears to make use of a feature contained in the 
fractional-step method, whereby provisional velocities are defined from a 
momentum equation in which the pressure gradient is absent. Patankar refers to 
these as pseudo-velocities. The algorithm starts with a guessed velocity field. 
With this, coefficients are computed for the momentum equations, and pseudo- 
velocities are obtained by solving a form of the momentum equations in which 
the pressure gradient is missing. These velocities are treated much as the 
provisional velocities of the SIMPLE algorithm to obtain a Poisson equation for 
pressure, making use of the continuity equation. The Poisson equation is solved 
for the pressure, which is then used to obtain a solution to the momentum 
equations. Velocity corrections are then computed as required to satisfy the 
continuity equation using the p' (or an alternative) procedure of the SIMPLE 
algorithm. This usually will require the solution of another Poisson-like equation 
for the p' field that will drive the corrections. Only the velocities are corrected 
with the p' solution. This revised scheme makes use of a more exact (less 
approximate) procedure for revising the pressure. Looking more closely at the 

P = P o  + ffPPI 
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algorithm, it should be evident that if the first velocity field is the correct one 
and continuity is satisfied, then the pressure field computed with the help of the 
pseudo-velocities will also be the correct one. Thus, when the momentum 
equations are solved with this pressure field, a mass-conserving velocity field will 
be computed, and no further iterations will be required. 

The SIMPLEC procedure developed by van Doormal and Raithby (1984) 
attempts to improve on the convergence rate of SIMPLE by using a more 
complete or consistent approximation to the momentum equations to compute 
p’ .  The scheme attempts to approximate the effects of some terms in the 
momentum equations neglected in the SIMPLE algorithm for p‘.  This is 
equivalent to modifying the A in Eq. (9.154). With this modification, van 
Doormal and Raithby reported that it was no longer necessary to underrelax the 
pressure correction. They also observed that SIMPLEC performed more 
efficiently than both SIMPLE and SIMPLER for the several test cases they 
considered. Other suggested improvements to SIMPLE and SIMPLER were 
included in their paper, which should be consulted for further details. 

Pressure-correction approach SIMPLE on nonstaggered grids. Until the early 
1980s the SIMPLE family of methods was generally only employed on staggered 
grids. It is not straightforward to implement staggered grid schemes on general 
nonorthogonal curvilinear coordinate systems. However, use of nonstaggered 
(colocated) grids with the SIMPLE family of methods was observed to result in 
decoupling of the velocity and pressure fields, yielding “wiggles” in solutions. 
This provided motivation for numerical experimentation, and in 1981, several 
investigators (Hsu, 1981; Prakash, 1981; Rhie, 1981) reported success in 
implementing pressure-correction schemes on a regular grid. In effect, fourth- 
order pressure smoothing or dissipation was added to the continuity equation to 
achieve this result. The description given here follows the report of Rhie and 
Chow (1983). 

The colocated scheme of Rhie and Chow (1983) follows the SIMPLE 
sequence. However, all variables are located at the same grid points. The 
momentum equations are solved using the best guess for the pressure field. 
Until the correct pressure field is established, this velocity field will not satisfy 
the continuity equation. The “trick” comes into play in computing the mass 
sources needed to correct the velocities and pressure. It is required in the 
SIMPLE strategy to compute the mass sources in each computational control 
volume or cell. On a colocated grid in which the grid points are on the interior 
of each control volume, this means that velocities need to be interpolated to the 
cell faces. Assuming a uniform grid in the Cartesian coordinate system, a simple 
linear interpolation would ordinarily be considered, giving for example, in two 
dimensions 

where 6 is the provisional x component of velocity obtained from solving the x 
momentum equation with a provisional pressure field. Inspection of the 
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momentum equations used to compute the velocities at i and i + 1 reveals that 
the cell-face velocity indicated above depends on velocities computed using 
centrally differenced pressure gradient terms formed from differences over two 
grid spacings. The Rhie-Chow interpolation scheme can be interpreted as an 
attempt to estimate the cell-face velocity that would have been computed if the 
resultant pressure gradient influencing the cell-face velocity were ( p i +  - 

p i ,  j ) / A x  (adjacent nodes only) instead of ( p i + 2 ,  - p i ,  + p i+  1, - p i -  1, j > / 4  Ax, 
which follows from the momentum equations. The problem with the second 
expression is that it is insensitive to “checkerboard” oscillations because the 
differences are between every second node. The interpolation scheme to obtain 
cell-face velocities for computing the mass sources, as in Eq. (9.155), can be 
written as 

(9.157) 

where the subscript li denotes a value linearly interpolated to the cell face at 
i + 1/2 and B is the coefficient of the pressure gradient term in the momentum 
equation after it has been rearranged to isolate u i , j  on the LHS. Thus Eq. 
(9.157) can be thought of as correcting the linearly interpolated velocity by 
providing a local value of the pressure gradient instead of the one resulting from 
the centrally differenced forms used in the momentum equations. For the 
uniform Cartesian grid example initiated above, Eq. (9.157) can be written as 

- 1 ‘ i , j  + ‘ i + l , j  

2 
P i + l , j  - P i , j  - Pi+2, j  - P i , j  + P i + l , j  - P i - l , j  

+ Bli( A x  4 A x  
- 

‘ i +  1 / 2 ,  j - 

(9.158) 

which can be further rearranged into the form 

The term in parentheses can be recognized as the fourth difference commonly 
used in fourth-order dissipation, which formed the basis for the earlier 
observation that fourth-order dissipation of pressure is being added to the 
continuity equation. The cell-face values of velocities computed as indicated 
above are then used to compute the mass source term. To enforce mass 
conservation, velocity and pressure corrections are introduced as in SIMPLE. 
The pressure Poisson equation is solved for the pressure corrections, and then 
the velocity corrections at the nodes can be computed from a simplified 
relationship between nodal velocities and the pressure gradient having the form 
of Eq. (9.154). These correction relationships follow the discretization used in 
the momentum equations and do not make further use of the special interpola- 
tion formula for cell-face velocities discussed above. 

Several investigators have compared the accuracy and computational 
efficiency of the colocated and staggered-grid version of the SIMPLE family of 
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methods. Among these studies are the works of Bums et al. (19861, Perk et al. 
(1988), and Melaaen (1992). Generally, the accuracy and convergence rate of 
both formulations have been found comparable. Examples have been cited in 
which each of the two schemes has been slightly more accurate than the other. 
Generally, however, the difference between the two results has been less than 
the estimated numerical error in the calculations of either scheme. There seems 
to be general agreement that the colocated approach is more convenient for 
working in curvilinear nonorthogonal coordinate systems and in three dimen- 
sions. Implementation of multigrid is also more straightforward with the colo- 
cated arrangement. 

The SIMPLE family of methods has also been applied to compressible 
flows. For details, refer to the works of van Doormaal et al. (19871, Karki and 
Patankar (1989), McGuirk and Page (1989), and Shyy et al. (1992). 

Pressure-correction approach PIS0 (pressure-implicit with splitting of 
operators) method. A predictor-corrector strategy was proposed by Issa (1985) 
for solving the discretized time-dependent N-S equations in a sequential 
uncoupled manner. The scheme is applicable to both the incompressible and 
compressible forms of the equations and has been implemented on both 
colocated and staggered grids. The scheme is largely implicit, and various 
strategies for solving the simultaneous algebraic equations can be employed. 
The splitting strategy will be outlined here for incompressible flow using 
symbolic operator notation. 

One predictor step and two corrector steps are utilized. Let the asterisks 
denote intermediate values computed during the splitting process. The calcula- 
tion proceeds in the following steps. 

1. Predictor step. The pressure field prevailing at time level n is used in the 
implicit solution of the momentum equations. This step is identical to the 
first step in the SIMPLE algorithm when the latter is applied to a time- 
dependent flow: 

Index notation is employed in Eq. (9.160), and the operator H stands for the 
finite-difference representation of the spatial convective and diffusive fluxes 
of momentum. The operator Ai is the finite-difference equivalent of d / d x i .  
This velocity field will not generally satisfy the continuity equation. 

2. First corrector step. In this step a new pressure field p* is sought along with a 
revised velocity field u?* that will satisfy conservation of mass. Treating the 
velocities explicitly, the momentum equation is considered in the form 

P 
At 
-(u?* - u;) = H ( u ? )  - Aip* + Si (9.161) 
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Requiring that AiuT* = 0 and taking the divergence of Eq. (9.161) gives a 
discretized Poisson equation: 

P 
At 

A:p* = A i H ( u T )  + AiSi + - AiuY (9.162) 

Note that the Poisson equation can be immediately solved for pressure p * ,  
since the RHS contains quantities already determined in the predictor step. 
This pressure field can then be used in Eq. (9.161) to compute uT*, which by 
design should satisfy the continuity equation. 

3. Second corrector step. This step is essentially a recorrection, using the strategy 
outlined above. The momentum equation is considered in the form 

P 
-(UT** - u;) = If(@*) - hip**  + Si 
At 

(9.163) 

Taking the divergence of Eq. (9.163) and requiring the continuity equation to 
be satisfied with the new velocity field, A,,;** = 0, gives an equation that 
can be solved for an updated pressure field: 

(9.164) 

The pressure field is first determined from Eq. (9.164) and then used in the 
momentum equation, Eq. (9.1631, where the updated velocity field, uT**, is 
computed. Following this format, more recorrections can be made, but Issa 
(1985) suggests that the two correction steps should be sufficient for most 
purposes. 

P 
At 

A:p** = AiH(uT*)  + AiSi  + - A , U ~  

Issa (1985) discusses the errors associated with the method and argues that 
the splitting errors are sufficiently small that time-accurate solutions can be 
obtained without iterative application of the algorithm using time steps dictated 
only by the accuracy of the difference scheme. The favorable features of the 
scheme were demonstrated by Issa et al. (1986) in a paper that considered 
time-dependent and subsonic compressible flows. A successive overrelaxation by 
lines procedure was used to solve the simultaneous linearized algebraic equations 
resulting from a finite-volume discretization on a staggered grid. 

PROBLEMS 

9.1 Show how all the terms in the 2-D y momentum equation are differenced when the explicit 
MacCormack (1969) method is applied to the compressible N-S equations. 
9.2 Repeat Prob. 9.1 for the 2-D energy equation. 
9 3  Apply the explicit MacCormack scheme to the N-S equations written in cylindrical coordinates 
(see Section 5.1.8), and show how all the terms in the r momentum equation are differenced. 
9.4 Apply the Allen-Cheng method instead of the explicit MacCormack method in Prob. 9.1. 
9.5 Derive the Jacobian matrix [ A ]  given by Eq. (9.46). 
9.6 Derive the Jacobian matrix [ B ]  given by Eq. (9.48). 
9.7 Derive the Jacobian matrix [ R ]  given by Eq. (9.51). 
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9.8 Derive the Jacobian matrix [S] given by Eq. (9.54). 
9.9 Derive the matrix [PI - [ R,] given by Eq. (9.50). 
9.10 Derive the matrix [Q]  - [S , ]  given by Eq. (9.53). 
9.11 Determine the amplification factor G for the explicit MacCormack scheme applied to the 
linearized Burgers equation. Does Eq. (4.313) satisfy [GI d 1 for all values of p when v = f and 

9.12 Repeat Prob. 9.11 for v = 1 and r = $. 
9.13 Use the explicit MacCormack method to solve the linearized Burgers equation for the initial 
condition 

and the boundary conditions 

r = +? 

U ( X , O )  = 0 0 b X  < 1 

u(0 , t )  = 100 
u(1, t )  = 0 

on a 21 grid point mesh. Find the steady-state solution for the conditions 

r = 0.5 
v = 0.5 

and compare the numerical solution with the exact solution. 
9.14 Derive the Jacobian matrix [ A , ]  given by Eq. (9.74). 
9.15 Derive the Jacobian matrix [ A , ]  given by Eq. (9.75). 
9.16 Formulate a preconditioned implicit scheme for solving the 2-D compressible N-S equations at 
low Mach numbers using primitive variables. Derive all necessary Jacobian matrices. Explain your 
work. 
9.17 Explain how preconditioning can be applied to the 2-D compressible N-S equations when 
conserved variables are employed in an implicit formulation. 
9.18 Obtain Eq. (9.124). 
9.19 Solve the square driven cavity problem for Re, = 50. Use the forward-time, centered-space 
(FTCS) method (Section 4.5.1) to solve the vorticity transport equation and the successive 
overrelaxation method to solve the Poisson equation. Employ a first-order evaluation of the vorticity 
at the wall, and use an 8 x 8 grid. 
9.20 Repeat Prob. 9.19 for Re, = 100 and a 15 X 15 grid. 
9.21 Derive the vorticity transport equations for a 3-D Cartesian coordinate system. 
9.22 Use the artificial compressibility method to solve the square driven cavity problem for 
Re, = 100. Apply the leap frog/DuFort-Frankel finite-difference scheme to the governing equations 
on a 15 x 15 grid. Determine pressure at the wall using a suitable finite-difference representation of 
the normal momentum equation applied at the wall. 
9.23 Use the method of artificial compressibility to solve the steady square driven cavity problem for 
Re, = 100. Use a coupled implicit scheme. Compare your solution from a 21 X 21 grid with the 
results of Ghia et al. (1982). 
9.24 Add a pseudo-time term to the method of Prob. 9.23, and compute the driven cavity problem 
for Re, = 100 in a time-accurate manner, starting the lid impulsively from rest. Plot the x 
component of velocity at the center of the cavity as a function of time. 
9.25 Use a preconditioned compressible formulation for the 2-D N-S equations to solve the steady 
driven cavity problem for Re, = 100. Obtain solutions at Mach numbers of 0.2, 0.1, 0.01, and 0.001. 
Compare the convergence histories of the scheme for the Mach numbers specified. 
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