
EIGHT 
NUMERICAL, METHODS FOR THE 

“PARABOLIZED” NAVIER-STOKES EQUATIONS 

The computational fluid dynamics (CFD) “frontier” has advanced from the 
simple to the complex. Generally, the simple methods taxed the available 
computational power when they occupied the frontier. The evolution proceeded 
from methods for various forms of the potential and boundary-layer equations 
to the Euler equations and then to various “parabolized” forms of the Navier- 
Stokes equations that are the subject of this chapter. Most of the schemes were 
developed at a time when the use of the full Navier-Stokes equations was 
prohibitive for many problems because of the large computer memory or CPU 
time required. If such parabolized schemes were considered economical of 
computer resources when they were introduced, they are still so. However, the 
need to save CPU time has diminished in a relative sense because of the 
incredible reduction in cost per operation experienced in recent times. Numerous 
numerical strategies will be discussed in this chapter. They all share the 
common characteristic that the steady form of the governing equations is 
employed, and the solution is “marched” in space. Some of the solution 
strategies to be described in this chapter share aspects in common with methods 
for the full Navier-Stokes equations discussed in Chapter 9. 

8.1 INTRODUCTION 
The boundary-layer equations can be utilized to solve many viscous flow 
problems, as discussed in Chapter 7. There are, however, a number of very 
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important viscous flow problems that cannot be solved by using the boundary- 
layer equations. In these problems, the boundary-layer assumptions are not 
valid. For example, if the inviscid flow is fully merged with the viscous flow, the 
two flows cannot be solved independently of each other, as required by 
boundary-layer theory. As a result, it becomes necessary to solve a set of 
equations that is valid in both the inviscid and viscous flow regions. 

Examples of viscous flow fields where the boundary-layer equations are not 
the appropriate governing equations are shown in Figs. 8.1(a)-(d). The 
hypersonic rarefied flow near the sharp leading edge of a flat plate [Fig. 8.l(a)] 
is a classic example of a viscous flow field that cannot be solved by the 
boundary-layer equations. In fact, very near the leading edge, the flow is not a 
continuum, so that the Navier-Stokes equations are invalid. In the merged-layer 
region, where the flow can first be considered a continuum, the shock layer and 
the viscous layer are fully merged and indistinguishable from each other. 
Further downstream, the shock layer coalesces into a discontinuity, and a 
distinct inviscid layer develops between the shock wave and the viscous layer. 
This is the beginning of the interaction region, which is further divided into the 
strong- and weak-interaction regions. The weak-interaction region eventually 
evolves into the classic Prandtl boundary-layer flow further downstream. 
Obviously, the boundary-layer equations cannot be used in the merged-layer 
region because the viscous layer and the shock layer are completely merged. At 
the beginning of the strong-interaction region, the viscous flow cannot be solved 
independently of the inviscid flow because of the strong interaction. In the 
weak-interaction region, it is possible to solve the inviscid and viscous portions 
of the flow separately, but this must be done in an iterative fashion, as discussed 
in Chapter 7. That is, the boundary-layer equations can be computed initially 
using approximate edge conditions. With the computed displacement thickness, 
the inviscid portion of the flow field can then be determined. This provides new 
edge conditions for the recomputation of the boundary layer. This procedure 
can be repeated until the solution for the entire flow field does not change 
between iterations. Unless the interaction is very weak, it has been observed 
that this iterative procedure is often inferior to solving a set of equations that is 
valid in both the inviscid and viscous flow regions (Davis and Rubin, 1980). 

Figure 8.l(b) illustrates a mixing layer problem for which the boundary-layer 
(thin-shear-layer) equations are not applicable. Across the mixing layer, a strong 
normal pressure gradient exists. Consequently, the usual boundary-layer (thin- 
shear-layer) equations, which contain the normal momentum equation 

JP - = o  
JY 

(8.1) 

are not valid. In this case, a more complete normal momentum equation is 
required. Another example of a flow field where the boundary-layer equations 
may not be applicable is the supersonic flow around a blunt body at high 
altitude, as seen in Fig. 8.l(c). In the region between the shock wave and the 
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Figure 8.1 Examples of flow fields where the boundary-layer equations are not applicable. (a) 
Leading edge of a flat plate in a hypersonic rarefied flow. (b) Mixing layer with a strong transverse 
pressure gradient. (c) Blunt body in a supersonic flow at high altitude. 
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( d )  

Figure 8.1 Examples of flow fields where the boundary-layer equations are not applicable (Cont.). 
(d) Flow along a streamwise corner. 

body (i.e., the shock layer) there exists a strong interaction between the 
boundary layer and the inviscid flow region. As a result, sets of equations that 
are valid in both the inviscid and viscous regions are normally used to compute 
this type of flow field. 

The flow along the comer formed by two intersecting surfaces, illustrated in 
Fig. 8.l(d), provides a final example of a flow for which the boundary-layer 
equations are not applicable. As pointed out in Chapter 7, the boundary-layer 
equations only include viscous derivatives with respect to a single “normal” 
coordinate direction. Very near the comer, viscous derivatives with respect to 
both “normal” directions will be important. Such a flow configuration occurs 
often in applications, as for example, near wing-body junctures and in rectangular 
channels. 

The complete Navier-Stokes equations are an obvious set of equations that 
can be used to solve the flow fields in Fig. 8.1 as well as all other viscous flow 
fields for which the boundary-layer equations are not applicable. In some cases 
they are the only equations that apply. Unfortunately, the Navier-Stokes 
equations are very difficult to solve in their complete form. In general, a very 
large amount of computer time and storage is necessary to obtain a solution 
with these equations. This is particularly true for the compressible Navier-Stokes 
equations, which are a mixed set of elliptic-parabolic equations for a steady flow 
and a mixed set of hyperbolic-parabolic equations for an unsteady flow. The 
time-dependent solution procedure is normally used when a steady flow field is 
computed. That is, the unsteady Navier-Stokes equations are integrated in time 
until a steady-state solution is achieved. Thus, for a three-dimensional (3-D) 
flow field, a four-dimensional (4-D) (three space, one time) problem must be 
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solved when the compressible Navier-Stokes equations are employed. Methods 
for solving the complete Navier-Stokes equations are discussed in Chapter 9. 

Fortunately, for many of the viscous flow problems where the boundary-layer 
equations are not applicable, it is possible to solve a reduced set of equations 
that fall between the complete Navier-Stokes equations and the boundary-layer 
equations in terms of complexity. These reduced equations belong to a class of 
equations that is often referred to as the “thin-layer” or “parabolized” Navier- 
Stokes equations. There are several sets of equations that fall within this class: 

1. thin-layer Navier-Stokes (TLNS) equations 
2. parabolized Navier-Stokes (PNS) equations 
3. reduced Navier-Stokes (RNS) equations 
4. partially parabolized Navier-Stokes (PPNS) equations 
5. viscous shock-layer (VSL) equations 
6. conical Navier-Stokes (CNS) equations 

The sets of equations in this class are characterized by the fact that they are 
applicable to both inviscid and viscous flow regions. In addition, the equations 
all contain a nonzero normal pressure gradient. This is a necessary requirement 
if viscous and inviscid regions are to be solved simultaneously. Finally, the 
equations in this class omit all viscous terms containing derivatives in the 
streamwise direction. 

There are two very important advantages that result when these equations 
are used instead of the complete Navier-Stokes equations. First, there are fewer 
terms in the equations, which leads to some reduction in the required 
computation time. Second, and by far the most important advantage, is the fact 
that for a steady flow all of the equations in this class, except the TLNS 
equations, are a mixed set of hyperbolic-parabolic equations in the streamwise 
direction (provided that certain conditions are met). In other words, the Navier- 
Stokes equations are “parabolized” in the streamwise direction. As a 
consequence, the equations can be solved using a boundary-layer type of 
marching technique, so that a typical problem is reduced from four dimensions 
to three spatial dimensions. A substantial reduction in computation time and 
storage is thus achieved. In this chapter we will discuss the derivation of the 
equations in the “thin-layer Navier-Stokes” class and present a number of 
methods for solving them. 

8.2 THIN-LAYER NAVIER-STOKES EQUATIONS 
The unsteady boundary-layer equations can be formally derived from the 
complete Navier-Stokes equations by neglecting terms of the order of l/(Re,)l/’ 
and smaller. As a consequence of this order-of-magnitude analysis, all viscous 
terms containing derivatives parallel to the body surface are dropped, since they 
are substantially smaller than viscous terms containing derivatives normal to the 
wall. In addition, the normal momentum equation is reduced to a simple 
equation [i.e., Eq. (8.1) for a Cartesian coordinate system] that indicates that the 
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Figure 8.2 Flow over a flat plate. 

normal pressure gradient is negligible. In the thin-layer approximation to the 
Navier-Stokes equations, the viscous terms containing derivatives in the 
directions parallel to the body surface are again neglected in the unsteady 
Navier-Stokes equations, but all other terms in the momentum equations are 
retained. One of the principal advantages of retaining the terms that are 
normally neglected in boundary-layer theory is that separated and reverse flow 
regions can be computed in a straightforward manner. Also, flows that contain a 
large normal pressure gradient, such as those shown in Fig. 8.1, can be readily 
computed. 

The concept of the thin-layer approximation also arises from a detailed 
examination of typical high Reynolds number computations involving the 
complete Navier-Stokes equations (Baldwin and Lomax, 1978). In these 
computations, a substantial fraction of the available computer storage and time 
is expended in resolving the normal gradients in the boundary layer, since a 
highly stretched grid is required. As a result, the gradients parallel to the body 
surface are usually not resolved in an adequate manner even though the 
corresponding viscous terms are retained in the computations. Hence, for many 
Navier-Stokes computations it makes sense to drop those terms that are not 
being adequately resolved, provided that they are reasonably small. This naturally 
leads to the use of the thin-layer Navier-Stokes equations. 

Upon simplifying the complete Navier-Stokes equations using the thin-layer 
approximation for the flow geometry shown in Fig. 8.2, the TLNS equations in 
Cartesian coordinates become as follows: 

continuity: 
dp dpu dpv dpw - + -  + - + - -  - 0  
d t  dx dy dz 

(8.2) 
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x momentum: 

dpu d d d 
- + - ( p  + p u 2 )  + - 

d t  d x  dY 
P U W )  = 0 (8 .3 )  

y momentum: 

z momentum: 

d 
- + - ( P U W )  + dpw d 

+ - ( p  + p w 2 )  = 0 (8 .5 )  d t  d x  

energy: 

dY dY 
E,u+Pu-  /.Lu- --p- -pw- -k-  

du 4 du 

dY 3 dY 

dE, d 

d t  d x  
- + - ( E , u  + P U )  + 

d 

dz 
+ - (E ,w  + p w )  = 0 (8.6) 

These equations are written for a laminar flow, but they can be readily modified 
to apply to a turbulent flow using the techniques of Section 5.4. 

For more complicated body geometries it becomes necessary to map the 
body surface into a transformed coordinate surface in order to apply the 
thin-layer approximation. Suppose we apply the general transformation given by 

6 = 6 ( x ,  y ,  2 7  t )  

‘I 
X PY 

PHYSICAL DOMAIN 

SURFACE J 

COMPUTATIONAL DOMAIN 

t 

Figure 8.3 Generalized transformation. (a) Physical domain. (b) Computational domain. 
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to the complete Navier-Stokes equations (see Section 5.6.2) and let the body 
surface be defined as 77 = 0, as seen in Fig. 8.3. The transformed Navier-Stokes 
equations in strong conservation-law form become 

(f), + ( U 5 t  + E5x + F 5 y  + G5z ) c  + (Urlt + Erlx + Frly + 6% 
J J 

where J is the Jacobian of the transformation and U, E, F, and G are defined by 
Eqs. (5.44). We now apply the thin-layer approximation to the transformed 
Navier-Stokes equations. This approximation allows us to drop all viscous terms 
containing partial derivatives with respect to 5 and 5. The resulting thin-layer 
equations may be written as (Pulliam and Steger, 1978): 

d U ,  d E ,  a F ,  dG,  d S ,  - + -  + - + - = -  (8.9) 
d t  a t  d q  d l  a7 

where 

(8.10) 
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and all the viscous terms are contained in 

1 s, = J (8.11) 

For compactness, Eqs. (8.10) are written in terms of the contravariant velocity 
components (U, V ,  W ) ,  which are defined by 

(8.12) 

The contravariant velocity components U, V ,  W are in directions normal to 
constant t , ~ ,  5 surfaces, respectively. 

Although the TLNS equations are considerably less complicated than the 
complete Navier-Stokes equations, a substantial amount of computer effort is 
still required to solve these equations. The TLNS equations are a mixed set of 
hyperbolic-parabolic PDEs in time. As a consequence, the “time-dependent’’ 
approach can be applied in an identical manner to the procedure normally used 
to solve the compressible Navier-Stokes equations. Thus we will postpone our 
discussion of methods for solving the TLNS equations until Chapter 9, where 
the methods for solving the complete Navier-Stokes equations are discussed. 

8.3 “PARABOLIZED” NAVIER-STOKES EQUATIONS 

The “parabolized” Navier-Stokes (PNS) equations have steadily gained 
popularity because they can be used to predict complex 3-D steady supersonic 
viscous flow fields in an efficient manner. This efficiency is achieved because the 
equations can be solved using a space-marching technique as opposed to the 
time-marching technique that is normally employed for the complete Navier- 
Stokes equations. As a result, the computational effort required to solve the 
PNS equations for an entire supersonic flow field is similar to the effort 
required to solve either the inviscid portion of the flow field using the Euler 
equations or the viscous portion of the flow field using the boundary-layer 
equations. Furthermore, since the PNS equations are valid in both the inviscid 
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and viscous portions of the flow field, the interaction between these regions of 
the flow field is automatically taken into account. 

The term “ parabolized” Navier-Stokes equations is somewhat of a misnomer, 
since the equations are actually a mixed set of hyperbolic-parabolic equations, 
provided that certain conditions are met. These conditions include the 
requirements that the inviscid outer region of the flow be supersonic and the 
streamwise velocity component be everywhere positive. Note that the last 
requirement excludes streamwise flow separation, but crossflow separation is 
permitted. An additional constraint is caused by the presence of the streamwise 
pressure gradient in the streamwise momentum equation. If this term is included 
everywhere in the flow field, then upstream influence can occur in the subsonic 
portion of the boundary layer and a single-pass space-marching method of 
solution is not well posed. This leads to exponentially growing solutions, which 
are often called departure solutions. Several techniques have been proposed to 
circumvent this difficulty, and they are discussed in Section 8.3.2. 

8.3.1 Derivation of PNS Equations 

The derivation of the PNS equations from the complete Navier-Stokes equations 
is, in general, not as rigorous as the derivation of the boundary-layer equations. 
Because of this, slightly different versions of the PNS equations have appeared 
in the literature. These versions differ in some cases because of the type of flow 
problem being considered. However, in all cases the normal pressure gradient 
term is retained, and the second derivative terms with respect to the streamwise 
direction are omitted. 

One of the earliest studies involving the use of the PNS equations was by 
Rudman and Rubin (1968). In their study, the hypersonic laminar flow near the 
leading edge of a flat plate [see Fig. 8.l(a)] was computed using a set of PNS 
equations. Rudman and Rubin derived their PNS equations from the complete 
Navier-Stokes equations using a series expansion technique. This method for 
reducing the complexity of the Navier-Stokes equations is an alternative to the 
order-of-magnitude analysis used in Chapter 5 to derive the boundary-layer 
equations. In the series expansion method, the flow variables are first 
nondimensionalized with respect to local reference conditions in order to 
estimate the magnitude of the various terms in the Navier-Stokes equations. The 
flow variables are then expanded in an appropriate series. Rudman and Rubin 
assumed the following form: 

(8.13) 
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where the superscript asterisk denotes a nondimensional quantity. the subscript 
ref represents the local reference value of a flow variable nondimensionalued 
with respect to the free stream value, L is the characteristic length in the x 
direction, and 6 is the characteristic length in the y direction. The first term in 
the series expansion (denoted with a subscript zero) is used to obtain the 
zeroth-order solution, while both the first and second terms are needed to 
obtain the first-order solution. The relative magnitude of the coefficient E is 
determined later in the analysis. For the relatively thin disturbed region shown 
in Fig. 8.l(a), the gradients normal to the surface are much greater than the 
gradients parallel to the surface, and 6* can be assumed to be small. 

When the expansions are substituted into the 2-D steady Navier-Stokes 
equations, the following nondimensional equations result (for convenience the 
subscript zero has been dropped): 

continuity: 

dP*U* ,p*v* 

d X *  dY* 
+--  - O(E)  (8.14) 

x momentum: 

p*u*- dU* + ,,*,,*- dU* = -A2- JP* + 1 d dU* 

dX* dY * dx*  (6*)'Re,,, 

+ O[ e ,  (Re,,,)-'] ' (8.15) 

y momentum: 

dV* + p * v * , = - ( z )  dV* A 2 d p *  - +  1 
p* u* - 

d X *  dY dY* (6*)2Re,,, 

d dU* + O [  E ,  (Re,,,)-'] (8.16) 

energy: 

A2 p*u*- d T *  d T *  + p * v * - + ( y - l ) p * ( - + d u * )  dU* [ dX* dY * d X *  dy* 

Y 1 d d T *  - _  
Pr ( S *  )2 Reref 
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1 4 dU* dV* dV* dU* + 2p*-- 
- y * & T q  d X *  dy* 

dU* 2 + 2.'--]) dU* au; 
+ € [  .:( p) ay* dy* 

(8.17) 

In the above equations, Reref = ( p , V J / ~ X p ~ f / p ~ e f ) , A 2  = T2f/M,y, and a 
perfect gas is assumed. 

The next step in the process is to determine which terms can be neglected in 
comparison to other terms in Eqs. (8.14)-(8.17). In order to do this, we need to 
obtain estimates for the magnitudes of Reref, A2, and (A/S*)2 in the various 
regions of the flow field. From our previous discussions on boundary layers, we 
know that for a thin viscous layer, Reref is of order l/(S*I2. Also, near the edge 
of the viscous layer, A2 is proportional to ( M 2 ) - ' ,  since T;, = 1 in this region. 
From compressible boundary-layer theory (Schlichting, 1968) it is known that A2 
can achieve a maximum value of the order of ( y  - 1)/2Ay, where A varies 
between Pr-'I2 for an adiabatic wall to about 4 in the cold wall limit. Hence for 
most cases, we can assume A> << 1, provided that M, 2 5. Rudman and Rubin 
(1968) have shown that (A/S*l2 is of order unity in the merged-layer region. 
Further downstream in the strong-interaction region, they have shown that 
(A/S*)2 is very large near the wall but decreases in value to order unity at the 
edge of the boundary layer. Using the above information for the relative 
magnitudes of Reref, A*, and (A/S*)2 in the various regions of the flow field, we 
can now simplify Eqs. (8.14)-(8.17). For the set of equations valid to zeroth-order 
(M,  2 5) ,  we can neglect terms of order A2, and E ;  but we must retain 
terms of order (A/S*)2. As a result, the continuity equation and the y 
momentum equation cannot be reduced further. On the other hand, the x 
momentum equation is simplified, since the streamwise pressure gradient term 
can be dropped and the energy equation reduces to 

dU* 

dY* 
- -  - 0  (8.18) 

If we combine Eq. (8.18) with the x momentum equation, we find that 

u* = const = 1 (8.19) 
or 

u = K  
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Obviously, this is a trivial result (applicable only in the free stream). and we are 
forced to retain higher-order terms [i.e., A2, and E ]  in order to obtain a 
meaningful energy equation. Note that we can eliminate many of the higher- 
order terms by employing Eq. (8.19). The final forms of the zeroth-order 
equations in dimensional form become 

continuity: 
dpu dpv 
- + - = 0  
dx d y  

x momentum: 

(8.20) 

(8.21) 

y momentum: 

dv dU ap 4 a 

(8.22) 

energy: 
d T  dT 

dX JY 
~ u c , , -  + PVC”- = - p  

+ p( $ ) 2  + 4.j ;) 2 

(8.23) 

The zeroth-order equations are valid for leading edge flow fields when 
Mm > 5, while the first-order equations are applicable when Mm 2. The 
zeroth-order equations were derived by neglecting terms of order A’, and 
E .  Since E is the coefficient of the first-order terms, its order is given by the 
largest of ( 6 * )2 and A’. Rudman and Rubin have shown that in order for ( 6 * )’ 
to be very small (i.e., G 0.05) the zeroth-order equations are not valid upstream 
of the point at which 

where xm is the strong-interaction parameter defined by 

Consequently, an initial starting solution is required for the present leading 
edge problem. The same is true for all other problems that are solved using the 
PNS equations. For the present problem it is permissible to employ an 
approximate starting solution located very close to the leading edge because it 
will have a small effect on the flow field further downstream. This is because 
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only a small amount of mass flow passes between the plate and the shock layer 
edge at this initial station as compared with the mass flow passing between the 
plate and the shock wave at stations further downstream. For other problems, 
however, the initial starting solution will have a definite effect on the downstream 
flow field, and in many cases, the starting solution must be determined accurately. 

The set of PNS equations derived by Rudman and Rubin do not contain a 
streamwise pressure gradient term, so that there can be no upstream influence 
through the subsonic portion of the boundary layer. As a result, the equations 
behave in a strictly “parabolic” manner in the boundary-layer region. Because 
of this, Davis and Rubin (1980) refer to these equations as the parabolic 
Navier-Stokes equations instead of the “parabolized” Navier-Stokes equations. 
They use the latter name to refer to the sets of equations that do contain a 
streamwise pressure gradient term. 

The PNS equations derived by Rudman and Rubin have been used to solve 
leading edge flows about both 2-D and 3-D geometries including flat plates, 
rectangular corners, cones, and wing tips (see Lin and Rubin, 1973b, for 
references). The 3-D equations are derived in a manner similar to the 2-D 
equations. The coordinates x ,  y ,  z are first nondimensionalized using L, S y ,  and 
S,, respectively. The velocities u, u, w are nondimensionalized using V,, V-S,*,  
and EST, respectively, where 6; = SY/L and S,* = SJL. Terms of order 
(a,*)’, (S,*)’ ,  S,*S,*, etc., are assumed small. After substituting the series 
expansions into the Navier-Stokes equations and neglecting higher-order terms, 
the 3-D zeroth-order equations become 

continuity: 

dpu dpv dpw - + - + -  = o  
d x  d y  dz 

(8.24) 

x momentum: 

dU dU du a du d du 
p u - + p u - + p w - = -  p- + -  p- (8.25) 

d X  dY dz  d y  ( d y  ) d z (  d z )  

y momentum: 

dv dv dU 
pu- + pv- + pw- 

d X  dY d z  

dp 4 d dU + - -  p- + -  p- + -  p- 
- - -- dY 3 d y  ( Z;) a:( 3 d:( dY 1 

2 d du d W  
p - + p -  + -  p- ---( 3 d y  dx dZ ) d l j  :;) (8.26) 
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z momentum: 

d W  d W  d W  
pu- + pv- + pw- 

d X  dY dZ 

dp 4 d d w  d W  d du + - -  /A- + -  /A- + -  /A- - - -- 
dz 3 d Z (  dz I d; ( d y  ) d x (  dz 1 

_2d(p_+/A- dv dU + -  d dv 

d x )  d y (  5) 3 dz dy 

energy: 

dT dT dT 
puc,- + pvc,- + pwc,- 

dX dY d Z  

d u  dv d w  = - p  - + - + -  ( dx dy d z )  + $($) 

(8.27) 

(8.28) 

A set of PNS equations very similar to those of Rudman and Rubin’s were 
derived independently by Cheng et al. (1970). Cheng et al. included a streamwise 
pressure gradient term in their equations. 

The most common form of the PNS equations (Lubard and Helliwell, 1973, 
1974) and the one that will be used for the rest of this chapter is obtained by 
assuming that the streamwise viscous derivative terms (including heat flux 
terms) are negligible compared to the normal and transverse viscous derivative 
terms. In other words, the streamwise viscous derivative terms are assumed to 
be of 0(1), while the normal and transverse viscous derivative terms are of 
O(Re2l2). Hence these PNS equations are derived by simply dropping all viscous 
terms containing partial derivatives with respect to the streamwise direction 
from the steady Navier-Stokes equations. The resulting set of equations for a 
Cartesian coordinate system (x is the streamwise direction) is given by 

continuity: 

dpu dpv dpw - + - + - -  - 0  
d x  dy dz  

(8.29) 
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x momentum: 
d U  d U  d U  dP d 

~ u - + + v -  + p ~ - =  -- + - 
dX dY dz dx d y  

y momentum: 

(8.31) 

z momentum: 
dW d W  d W  ap 4 a 

(8.32) 

energy 
dT dT dT 

put,- + pvc,- + pwc,- 
d X  dy dz  

dv dw 
(8.33) 

It is interesting to compare this set of PNS equations with the equations of 
Rudman and Rubin [Eqs. (8.24) - (8.28)]. We note that the continuity and 
energy equations are identical but the momentum equations are different. In 
particular, the present x momentum equation contains the streamwise pressure 
gradient term as discussed previously. 

We now wish to express the PNS equations in terms of a generalized 
coordinate system. For the generalized transformation described in Section 
5.6.2, the complete Navier-Stokes equations can be written as 
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where 

U =  

Ei = 

F. = 

G. = 

E, = 

F, = 

G, = 

0 
Txx  

TXY 

Tx 2 

* T x x  + VT*y + K x 2  - 4 x  

0 

TxY 

TYY 

TY 2 

UTxy + UTYy + W T y 2  - q Y  

(8.35) 

and 
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qx = -k (  5,Tt + TxTv + l xT{ )  

qy = -k(5,T, + TyTv + l yT{)  

4,  = -k (  5 , q  + TzTv + l ,T[ )  

Note that the usual E, F, and G vectors have been split into an inviscid part 
(subscript i) and a viscous part (subscript u). The reason for doing this will 
become evident in Section 8.3.3, when we describe numerical procedures for 
solving the PNS equations. The PNS equations in generalized coordinates can 
now be obtained by simply dropping the unsteady terms and the viscous terms 
containing partial derivatives with 
resulting equations become 

- +  dE, 
a5 

where 
1 

, - J  
E - -(tXE; + &F; 

respect to the streamwise direction 6.  The 

dF, dG, - + - -  - 0  
dT d l  

+ 5,G;) 

(8.37) 

1 

and the prime is used to indicate that terms containing partial derivatives with 
respect to 6 have been omitted. Likewise, the shear stress and heat flux terms 
in Eqs. (8.36) reduce to 

Ti, = +P[2(TXU, + < x u { )  - (TyVv + ly$ - (TzWv + 129)] 
T i y  = :P[2(Tyuv + lp{) - ( T x U v  + lx@ - (TzWv + l&)] .:, = +P[2(TzWv + lP{) - ( T x U v  + lx@ - (TyVv + lY$] 
T i y  = P(TyUv + 5,U[ + TxUv + 5 , q )  
Ti, = P(TzUq + lZU, + TxWv + l x W [ )  

= P(T2Uv + !Lq + TyWv + lyW{ 1 
4: = -k(VxTv + lXTl)  

4’ Y = -k(TyTv + JyTs) 

ql = -k(v,T,, + <,Tl) 

For many applications (Schiff and Steger, 19791, the thin-layer approximation 
can also be applied to the PNS equations. With this additional assumption, the 
resulting equations are simply the steady form of the TLNS equations. For the 
generalized transformation described previously, these equations can be written 

(8.39) 
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as 

dE, dF, dG, d S ,  - + - + - = -  
a t  a77 d l  dv 

where E,, F,, G, ,  and S, are defined by Eqs. (8.10) and (8.11). 

(8.43) 

8.3.2 STREAMWISE PRESSURE GRADIENT 
The presence of the streamwise pressure gradient term in the streamwise 
momentum equation permits information to be propagated upstream through 
subsonic portions of the flow field such as a boundary layer. As a consequence, a 
single-pass space-marching method of solution is not well posed, and in many 
cases, exponentially growing solutions (departure solutions) are encountered. 
These departure solutions are characterized by either a separation-like increase 
in wall pressure or an expansion-like decrease in wall pressure. A similar 
behavior (Lighthill, 1953) is observed for the boundary-layer equations when the 
streamwise pressure gradient is not prescribed. The one difference, however, is 
that in the case of the PNS equations, the normal momentum equation allows a 
pressure interaction to occur between the critical subsonic boundary-layer 
region and the inviscid outer region. 

In order to better understand why departure solutions occur, let us examine 
the influence of the streamwise pressure gradient term on the mathematical 
nature of the PNS equations. For simplicity, let us consider the 2-D PNS 
equations and assume a perfect gas with constant viscosity. With these 
assumptions, Eqs. (8.29)-(8.33) can be reduced to the following vector 
representation: 

dE d F  dF, 
- + - = -  
d x  d y  d y  

where 

1 E =  1 P U V  

PU 
pu2 + w p  

1 1  “5 p + -(u2 2 + v 2 )  u 
P 

F =  1 
I “5 p + -(u2 2 + v * )  v 

P 

(8.41) 

(8.42) 
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- - 
0 

uY 

4 
F" = P 7 VY 

4 k 
U U ~  + -wY + -Ty 

3 P - - 
Note that in these equations a parameter w has been inserted in front of the 
streamwise pressure gradient term in the x momentum equation. Thus if w is 
set equal to zero, the streamwise pressure gradient term is omitted. On the 
other hand, if w is set equal to 1, the term is retained completely. 

If we first consider the inviscid limit ( p  -+ O), Eq. (8.41) reduces to the 
Euler equation 

d E  d F  - + - = o  
d x  dy 

which is equivalent to 

U P 0 0 
0 P U  0 w 
0 0 PU 0 

0 pu2+ - 
YU 

puv - 
Y P  

Y - 1  Y - 1  

P I" ,"u 0 
[ B , ]  = 0 0 PV 

Q =  

V 1 

(8.43) 

(8.44) 

(8.45) 

'1 Y P  
0 puv pv2+ - 

y - 1  y - 1  1 
These equations are hyperbolic in x ,  provided that the eigenvalues of [A, I-' [ B,  I 
are real (see Section 2.5). The eigenvalues are 

v 

U 4 . 2  = - 

49 = 

(8.46) 
- b +  d- 

25  
where 

2 ii = [ y  - w ( y  - I ) ] u 2  - wa 

b = - u v [ ~  + y - W ( Y  - l ) ]  
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IB2I = CL 

and a is the speed of sound. If the streamwise pressure gradient is retained 
completely (i.e., w = 11, it is easy to show that the eigenvalues are all real, 
provided that 

u2 + v2 > a2 
or 

M a 1  
This is the usual requirement that must be satisfied if the Euler equations are to 
be integrated using a space-marching technique. However, if only a fraction of 
the streamwise pressure gradient is retained (i.e., 0 Q w Q l), the eigenvalues 
will remain real even in subsonic regions, provided that 

- 
0 0 0  0 
0 1 0  0 

0 0 -  0 

- YP 4 Y 
- ( y  - l ) p 2  Pr 3 ( y - l ) p P r  

4 
3 

u -v 

(8.47) 

where M, = u/a .  This condition on the streamwise pressure gradient is derived 
by assuming that the normal component of velocity (v) is much smaller than the 
streamwise component (u). 

We next consider the viscous limit by ignoring terms in Eq. (8.41) containing 
first derivatives with respect to y. The resulting equations can be written as 

U P 0 0 
U 2  2 PU 0 0 

UV PV PU 0 

2 Y - 1  2 Y - 1  
u(u2  + v2) y p  + p(3u2 + v 2 >  Y U  puv - 

(8.48) 

(8.49) 

These equations are parabolic in the positive x direction if the eigenvalues of 
[A2] - ' [B2]  are real and positive (see Section 2.5). The eigenvalues must be 
positive in order for a positive viscosity to produce damping in the streamwise 
direction. The eigenvalues can be found from the following polynomial (assuming 
u # 0): 

+(:A)( [ w ( y  - 1) - y (  7 ) ] M :  1 + Pr + i] + .;I YM,2 = 0 (8.50) 
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Vigneron et al. (1978a) have shown that the eigenvalues determined from this 
equation will be real and positive if 

u > o  
and 

(8.51) 

(8.52) 

Equation (8.51) prohibits reverse flows, while Eq. (8.52) places a restriction on 
the streamwise pressure gradient term in an identical manner to that given 
previously by Eq. (8.47). From this, we can conclude that the instability caused 
by the presence of the streamwise pressure gradient term in the PNS equations 
is actually an inviscid phenomenon. 

Note that the right-hand side of Eq. (8.52), denoted by f(M,),  is a function 
of the local streamwise Mach number (M,) and becomes equal to 1 when 
M, = 1 and is greater than 1 when M, > 1 (see Fig. 8.4). Hence the streamwise 
pressure gradient term can be included fully when M, > 1. However, when 
M, < 1, only a fraction of this term (i.e., w d p / d x )  can be retained if the 

Mx 

Figure 8.4 Constraint on streamwise pressure gradient term in subsonic regions. 
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eigenvalues are to remain real and positive. Note also that o approaches zero 
close to a wall where M, = 0. Thus we see that space-marched solutions of the 
PNS equations are subject to instabilities (departure solutions) when the 
streamwise pressure gradient term is retained fully in the subsonic portion of 
the boundary layer, since an “elliptic-like” behavior is introduced. A number of 
different techniques have been proposed to circumvent this difficulty, and they 
will now be discussed. 

The obvious technique is to drop completely the streamwise pressure 
gradient term in subsonic regions. This will produce a stable marching scheme 
but will introduce errors in flow fields with large streamwise pressure gradients. 
It should be noted, however, that streamwise pressure variations will still exist in 
the numerical solution being evaluated through the y momentum equation and 
the energy equation. An alternative procedure is to specify the variation of the 
streamwise pressure gradient. Obviously, setting the pressure gradient equal to 
zero is just one of many ways that this can be done. If the streamwise pressure 
gradient is specified, we can remove this term from matrices [A,] and [A,] in 
Eqs. (8.44) and (8.48) and treat it as a source term in the eigenvalue analyses. As 
a consequence, the streamwise pressure gradient will not affect the mathematical 
character of the equations. For the solution of the boundary-layer equations, the 
streamwise pressure gradient is usually known either from the external inviscid 
flow or, for the case of internal flows, from the conservation-of-mass law. 
Unfortunately, for the flow fields normally computed with the PNS equations, 
the streamwise pressure gradient is not known a priori but must be computed as 
part of the solution. 

In several studies the streamwise pressure gradient term has been retained 
in the subsonic viscous region by employing a backward-difference formula, 
which uses information from the previous marching step. For example, when the 
solution at the i + 1 station is computed, d p / d x  can be evaluated from 

(8.53) 

which is a first-order backward-difference expression. Lubard and Helliwell 
(1973) studied the stability (departure behavior) of using a backward-difference 
formula for the streamwise pressure gradient term in both the momentum and 
energy equations. They applied a simple implicit differencing scheme to the PNS 
equations and used a Fourier stability analysis to show that an instability will 
occur if 

A x  <  AX)^^ (8.54) 

This stability condition is highly unusual, since we normally find from a Fourier 
stability analysis that an instability occurs when A x  is greater than some 
(Ax)max. When this analysis is applied to the 2-D PNS equations given by Eqs. 
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(8.48)-(8.49),   AX),^, is given by 

(8.55) 

where p is the wave number ( k ,  A y ) .  Lubard and Helliwell have also shown 
that if the streamwise pressure gradient term is differenced implicitly, like the 
rest of the terms in the PNS equations when simple implicit differencing is 
applied, the minimum allowable step size   AX),,,^,, is doubled. In order to explain 
these unusual stability conditions, Rubin (1981) has observed that (Ax) , i ,  
appears to represent the extent of the upstream elliptic interaction. If ( A x )  > 
(Ax)min ,  the interaction is overstepped, and a forward marching procedure is 
stable. On the other hand, if ( A x )  <   AX),^,,, the numerical solution attempts 
to represent the elliptic interaction, and this leads to departure solutions, since 
upstream effects are not permitted by a forward-marched solution. Rubin and 
Lin (1980) have shown that the extent of the elliptic interaction region is of the 
order of the thickness of the subsonic region. Thus, if the subsonic region is 
relatively large, the minimum allowable A x  may be too large to permit accurate 
(or stable) calculations. 

Another method that has been used to treat the streamwise pressure 
gradient term is called the “sublayer approximation” technique. This method was 
originally proposed by Rubin and Lin (1971) and later applied to the PNS 
equations by Schiff and Steger (1979). In the sublayer approximation technique, 
the pressure gradient term in the subsonic viscous region is calculated at a 
supersonic point outside of the sublayer region. This approximation is based on 
the fact that for a thin subsonic viscous layer, d p / d y  is negligible. Since the 
pressure gradient is specified in the subsonic region, it would appear that this 
technique would lead to stable space-marched solutions. However, it has been 
observed by Schiff and Steger that departure solutions still exist for some cases. 
This may be due to the pressure interaction between the supersonic and 
subsonic regions, which is permitted by the normal momentum equation and the 
energy equation. 

A novel technique for handling the streamwise pressure gradient term was 
proposed by Vigneron et al. (1978a). In this approach, a fraction of the pressure 
gradient term o ( d p / d x )  in the streamwise momentum equation is retained in 
the subsonic viscous region, and the remainder (1 - w X d p / d x )  is usually 
omitted or is evaluated explicitly using a backward-difference formula or the 
“sublayer approximation” technique. For the Vigneron approach, Eq. (8.41) is 
rewritten as 

d E  d P  d F  dF, 
- + - + - = -  (8.56) 
dx ax  d y  d y  

where 

(8.57) 
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and E, F, and F, are defined in Eqs. (8.42). The parameter w is computed using 
Eq. (8.47) with a safety factor (T applied: 

(8 .58)  

Vigneron et al. (1978b) have used a Fourier stability analysis to study the 
“departure behavior” of this technique. They applied the simple implicit (Euler 
implicit) scheme to Eq. (8.561, with d F / d y  omitted, and used a backward 
difference for d P / d x .  As expected, they found that if the “elliptic” pressure 
gradient term d P / d x  is omitted, this technique will always lead to a stable 
space-marched solution, since the equations remain hyperbolic-parabolic. 
However, if this term is retained, an instability results if A x  is less than some 
  AX)^^,,. For w = 0, it was found that  AX),^, is given by Eq. (8.55), which 
confirms the previous findings of Lubard and Helliwell. Thus it is obvious that in 
order to completely eliminate departure solutions, it is necessary to drop the 
term (1 - w ) ( d p / d x )  in subsonic regions when solving the PNS equations with 
a single marching sweep of the flow field. Other techniques for treating the 
streamwise pressure gradient term include those proposed by Lin and Rubin 
(1979), Buggeln et al. (1980), Yanenko et al. (1980), and Bhutta and Lewis 
(1985a). 

For many flow problems the upstream elliptic effects are relatively small 
and the techniques described above will successfully prevent departure solutions 
while permitting an accurate solution to be computed with a single marching 
sweep through the flow field. For other problems where the upstream influence 
is significant (due to separation, wakes, shocks, etc.), the above techniques may 
prove to be inadequate. Either a departure solution results or the inconsistency 
introduced into the PNS equations to prevent the departure solution will lead to 
large errors. For these cases, a global pressure relaxation procedure (Rubin and 
Lin, 1980) can be used. In this procedure, an initial pressure distribution is used 
to determine the pressure gradient at each point in the elliptic region. The 
initial pressure distribution can be obtained by either setting the streamwise 
pressure gradient equal to zero, by using the “Vigneron” technique with 
d P / d x  = 0, or by taking a sufficiently large A x .  With the pressure gradient 
known, the PNS equations can be solved in a stable manner using a space- 
marching technique, provided that the pressure gradient term is differenced in 
an appropriate manner. The resulting solution will contain a new pressure 
distribution that can be used to determine the pressure gradient for the next 
sweep of the flow field. This iteration procedure is continued until the solution 
converges. In order for the elliptic character of the flow field to be properly 
modeled, the pressure gradient term must introduce downstream contributions. 
This can be accomplished by applying appropriate “upwind” differences to the 
“elliptic” and “hyperbolic” components of the pressure gradient term: 

dP JP 
w- + ( l - w ) -  

dP - =  
dX d X  d X  - . I 

T 

hyperbolic elliptic 

(8.59) 
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For example, when the solution at the i + 1 station is computed, the streamwise 
pressure gradient term can be differenced on an equally spaced grid (Rakich, 
1983) as 

where the superscript n + 1 indicates the current iteration level. This type of 
differencing is only possible when the global pressure relaxation procedure is 
used, since pin+2 is normally unknown. 

The global pressure relaxation procedure can be used for problems where 
the upstream influence is significant. Although this procedure requires more 
computer time than a standard PNS calculation that employes one sweep of the 
flow field, it still offers advantages over the complete Navier-Stokes equations. 
One of the primary advantages is that only the pressure must be stored (if 
u > 0) during each sweep of the flow field. The global pressure relaxation 
procedure has been used by several investigators, including Rubin and Lin 
(19801, Rakich (1983), Barnett and Davis (19861, Khosla and Rubin (1987), 
Barnett and Power (1989, Power and Barber (19881, Power (1990), Rubin and 
Khosla (19901, and Miller et al. (1997). 

The concept of splitting the streamwise pressure gradient term into its 
“elliptic” and “hyperbolic” components has led to the introduction of a new set 
of equations called the reduced Navier-Stokes (RNS) equations (Rubin, 1984). 
The RNS equations are derived from the complete unsteady Navier-Stokes 
equations by dropping the streamwise viscous terms, omitting the viscous terms 
in the normal momentum equation, and splitting the streamwise pressure 
gradient using Eq. (8.59). In most applications, the time-derivative terms are 
also omitted. For supersonic flows with embedded “elliptic” regions, the global 
pressure relaxation procedure (just described) can be used to solve the RNS 
equations. For subsonic flows the RNS equations are solved using the techniques 
described in Section 8.4.3 for the PPNS equations. 

8.3.3 Numerical Solution of PNS Equations 

As discussed previously, the PNS equations are a mixed set of hyperbolic- 
parabolic equations in the streamwise direction, provided that the following 
conditions are satisfied. 

1. Inviscid flow is supersonic. 
2. Streamwise velocity component is everywhere greater than zero. 
3. Streamwise pressure gradient term in streamwise momentum equation is 

either omitted or the “departure behavior” is suppressed using one of the 
techniques described in the last section. 

If these conditions are met, the PNS equations can be solved using methods 
similar to those employed for the parabolic boundary-layer equations. Thus the 
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solution can be marched downstream in a stable manner from an initial data 
surface to the desired final station. 

Early schemes. Some of the earliest solutions of the PNS equations were 
obtained using explicit finite-difference techniques (Rudman and Rubin, 1968: 
Boynton and Thomson, 1969; Rubin et al., 1969; Cresci et al., 1969; Cheng et al.. 
1970). Explicit schemes were used more for convenience than efficiency, since 
we have demonstrated in Chapter 7 that implicit methods are much more 
efficient for equations of this type. In later studies, the PNS equations have 
been primarily solved using implicit algorithms. Cheng et al. (1970) used the 
simple implicit scheme, Nardo and Cresci (1971) employed the Peaceman- 
Rachford alternating direction implicit (ADI) scheme, while Rubin and Lin 
(1972) and Lubard and Helliwell (1973) used similar iterative-implicit schemes. 
Rubin and Lids predictor-corrector multiple iteration scheme is described in 
Section 4.5.10, where it is applied to the 3-D linear Burgers equation 

u, + cuy + du, = p(uyu + uz,) (8.60) 
The 3-D linear Burgers equation is a useful model equation for the PNS 
equations, but of course, it does not represent the nonlinear character of these 
equations. Thus, when the predictor-corrector multiple-iteration method is 
applied to the PNS equations, nonlinear terms such as (u:A,Ij, k ) 2  appear, where 
m is the iteration level, x = i Ax ,  y = J a y ,  and z = k Az .  These nonlinear 
terms are linearized using a Newton-Raphson procedure (see Section 7.3.3). 
That is, if f = f ( x l ,  x 2 , .  . . , x i )  is a nonlinear term, then 

(8.61) 

where x k  denotes the dependent variables. Applying this formula to the nonlinear 
term (u;+i,lj, k ) 2  gives 

(8.62) 
After all the nonlinear terms are linearized in this manner, the resulting set of 
algebraic equations (at iteration level m + 1) can be solved using an efficient 
block tridiagonal solver. The iteration is continued until the solution converges 
at the i + 1 station. This method is implicit in the y direction, where the 
gradients are largest, but is explicit in the z direction (see Section 4.5.101, which 
leads to the following stability condition when applied to the 3-D PNS equations: 

A X  A Z I ; ~  (8.63) 

Beam-Warming scheme. Until the latter part of the 1970s, the PNS equations 
were mainly solved using iterative, implicit finite-difference schemes like the 
ones described above. Vigneron et al. (1978a) were the first to employ a more 
efficient noniterative implicit approximate-factorization finite-difference scheme 
to solve the PNS equations. Their algorithm was adapted from the class of AD1 
schemes developed by Lindemuth and Killeen (19731, McDonald and Briley 

W 



564 APPLICATION OF NUMERICAL METHODS 

(1975), and Beam and Warming (1978) to solve time-dependent equations such 
as the Navier-Stokes equations. Working independently of Vigneron et al. 
(1978a), Schiff and Steger (1979) developed a nearly identical algorithm except 
that the pressure gradient in the subsonic viscous layer was calculated at a 
supersonic point outside the layer using the “sublayer approximation” technique. 
In addition, a different linearization procedure was employed by Schiff and 
Steger. 

In order to explain the Vigneron et al. algorithm, let us apply it to the 3-D 
PNS equations written in Cartesian coordinates (x is the streamwise direction) 
for a perfect gas. In this case, the generalized coordinates become 

t = X  

17 = Y  
l = z  

and Eqs. (8.37)-(8.38) reduce to 

dE d F  dG - + - + - = o  
dx dy d z  

where 
E = Ei 

F = Fi - F, 
G = Gi - G, 

(8.64) 

(8.65) 

(8.66) 

The vectors Ei, Fi, Gi, F,, and G, are given by Eqs. (8.35) and contain the 
following “ parabolized” shear stress and heat flux terms: 

2 - 
TXX - 7/L(-vy - WJ 

Tyy  = ? P ( 2 U y  - WJ 
2 

(8.67) 

In order to use the “Vigneron” technique for handling the streamwise pressure 
gradient, E can be replaced by E’ + P, so that, Eq. (8.65) becomes 

dE’ dP d F  dG - + - + - + - = o  
dx dx dy dz 

(8.68) 
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where E' and P are given by 

(8.69) 

The solution of Eq. (8.65) is marched in x using the following difference 
formula suggested by Beam and Warming (1978): 

" Ai-lE 8 ,Ax d Ax d 

1 + 8, dx  1 + 8, dx  
(A'E) + - -(E') + ~ 

ALE = ~- 
1 + 8, 

1 (8.70) 

where 
A ~ E  = Ei+l - E' (8.71) 

and x = i Ax. This general difference forinula, with the appropriate choice of 
the parameters 8, and O,, reproduces many of the standard difference schemes 
as seen in Table 8.1. For the PNS equations, either the first-order Euler implicit 
scheme (8, = 1,8, = 0) or the second-order, three-point backward scheme 
(8, = 1, O2 = i) are normally used. As shown by Beam and Warming, the 
second-order trapezoidal differencing scheme (8, = i, 8, = 0) will lead to 
unstable calculations when applied to parabolic equations. Note that the 
truncation error (T.E.) in Table 8.1 is for A'E. When dE/dx is replaced by 
AiE/Ax in the numerical scheme, the T.E. is divided by Ax. 

Substituting Eq. (8.65) into Eq. (8.70) yields 

1 dz ] 1 ",k, [ d, dz  

d d 
-(A'F) + -(AiG) - - -(F') + - ( G i )  ALE = - - 

(8.72) 

with the T.E. term omitted. The difference formula is in the so-called "delta" 
form as discussed in Section 4.4.7. The delta terms A'E, A'F, and AiG, which can 

Table 8.1 Finite-difference schemes contained in Eq. (8.70) 

4 02  Scheme Truncation error in Eq. (8.70) 

0 0 Euler explicit C"x)* 1 
0 

1 0 Euler implicit O[(AX)~I 

1 
2 Leap frog (explicit) O[(AX)~I 

2 0 Trapezoidal (implicit) O[(AX)~I 

1 2 Three-point backward (implicit) 0KAx)'I 

-- 
1 - 

I - 
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be written as 
A'E = AiE' + A'p 
A ~ F  = A~F' - A'F" 

A'G = A'G~ - A'G~ 
are linearized using truncated Taylor-series expansions. In order to linearize the 
inviscid delta terms A'E', AiFi, and A'G', we make use of the fact that E', Fi, and 
Gi are functions only of the U vector, 

(8.73) 

For example, Fi can be expressed as 

F. = 

As a consequence, we can readily expand E', Fi, and Gi as 

(E)'" = (E')' + 

(Fi)i+l = (F')' + 

A'U +  AX)'] 

or 

(Gi)'+' = (Gi)' + A'U +  AX)'] ( 3' 
A'E' = [Q]' AiU +  AX)'] 
AiFi = [R]'  A'U +  AX)^] 
AiGi = [S]' A'U +  AX)^] 

(8.74) 

(8.75) 

(8.76) 

(8.77) 

where [Q], [R] ,  and [ S ]  are the Jacobian matrices dE'/dU, dFi/dU, and 
d Gi/ d U given by 
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The expression for the Jacobian dE'/dU is derived by assuming w to be locally 
independent of U. 

The viscous delta terms can be linearized using a method suggested by 
Steger (1977). In order to apply this linearization method, the coefficients of 
viscosity ( p )  and the thermal conductivity ( k )  are assumed to be locally 
independent of U and the cross-derivative viscous terms are neglected. As a 
result of these assumptions, elements of F,, and G,, have the general form 

d 
fk = % - - ( P k )  

(8.81) dY 
d 

d z  gk = a k - (  P k )  

where ak is independent of U and Pk is a function of U. These elements are 
linearized in the following manner: 

so that we can write 

AiFU = [V]' A'U + O[(Axl21 

A'G,, = [W]' A'U + O[(AX)~I 
(8.83) 

where [V]  and [W] are the Jacobian matrices dFJdU and dG,,/dU given by 
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In these Jacobian matrices, dy and d, represent the partial derivatives d / d y  and 
d / d Z .  

We now substitute Eqs. (8.73), (8.771, and (8.83) into Eq. (8.72) to obtain 

- + ( ( % l i +  8 1 A x [  dz dU dU 
d (JF i  W) d ('Gi 

1 + 8, d y  dU 

- - L[ L ( F ' )  + -(Gi) d 
- " Ai-'E - AiP (8.86) 

1 + 8, d y  dZ 

where the expression 

implies 

and the partial derivatives appearing in dF,/dU and dG,/dU are to be applied 
to all terms on their right, including AiU. Note that in Eq. (8.861, all the implicit 
terms have been placed on the left-hand side of the equation, while all the 
explicit terms appear on the right-hand side. Included in the right-hand side of 
the equation is the pressure gradient term AiP, which must be dropped in 
subsonic regions to avoid departure solutions when marching the solution with a 
single sweep of the flow field. 

The left-hand side of Eq. (8.86) is approximately factored in the following 
manner: 

AiU = RHS of Eq. (8.86) (8.87) 

The order of accuracy of this factored expression can be determined by 
multiplying out the factored terms and comparing the result with the left-hand 
side of Eq. (8.86). Upon doing this, we obtain 

= RHS of Eq. (8.86) (8.88) 
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so that 

LHS of Eq. (8.87) = LHS of Eq. (8.86) + O[(hx) ' ]  (8.89) 

As a consequence, the formal accuracy of the numerical algorithm is not 
affected by the approximate factorization. However, it has been observed that 
approximate factorization may lead to sizable errors in certain computations. 

The partial derivatives d/dy and d / d z  in Eq. (8.87) are approximated with 
second-order accurate central differences. For example, the inviscid term 

a ( "), Aiu 
dy au 

is differenced as 

[(dFi/dU)' AiU] i + l  - [(dFJdU)' AiU] 1 - 1  . 

and each element of the viscous term, 

"( qi 
dy dU 

which has the general form 

is differenced as 

(8.90) 

The algorithm given by Eq. (8.87) is implemented in the following manner: 

Step 1: 

d G u ) i ]  AiUl = RHS of Eq. (8.86) 

(8.92) 
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Step 2: AiU2 = - AiUl (3' (8.93) 

dE' ' 8 , A x  d dFi 
Step 3: [ (x) + 1+6:dy( - 2)i] AiU = AiU2 (8.94) 

U' + A'U (8.95) Step 4: ui+1 = 

In Step 1, AiUl represents the vector quantity 

[ ( 3i]-1[ (=) dE' ' + ,-( 8 ,Ax  d - dFi  - 3)i] AtU 
1 + 8  dy dU 

which is determined by solving the system of equations given by Eq. (8.92). This 
system of equations has the following block tridiagonal structure: 

I 
' I 

I 
I 
I 

' I 
I 

' I ' ' I  '. 

' 
\ 

' ' ' ' ' ' ' ' 
I 
I ' ' ' 
I 

I 
I 

I 

I 

\ 
\ ' 

\ 
' ' 

' ' ' ' ' ' ' 

I '\ '\ '\ 

'\ ' 
I ' '\ 

I 

0 ] [ B  ] 
K K 

(8.96) 

where [A], [B], and [C] are 5 X 5 matrices and [AW,] and [RHS] are column 
matrices whose elements are the components of the vectors A'U, and the RHS 
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of Eq. (8.86). This system of equations can be solved using the block tridiagonal 
solver given in Appendix B. Once AiUl is determined, it is multiplied by 
(dE'/dU)' in Step 2. As a result of this multiplication, the inverse matrix 
[(dE'/dU)']-' does not have to be determined in the solution process. In Step 
3, the block tridiagonal system of equations in the y direction is solved. Finally, 
in Step 4, the vector of unknowns at station i + 1 (i.e., U i f ' )  is determined by 
simply adding AiU to the vector of unknowns at station i. The primitive 
variables can then be obtained from U" in the following manner: 

P i + l  = U;+l 

W i + l  - - uqi+ 
- 

u;+ 

ugi+ 
u;+ 2 

( u i + 1 ) 2  + ( v i + 1 ) 2  + (,,,i+1)2 

(8.97) 

For centrally differenced algorithms like the present one, it is often necessary to 
add smoothing (artificial viscosity) in order to suppress high-frequency 
oscillations. This can easily be accomplished by adding a fourth-order explicit 
dissipation term of the form 

e i+f l  = - - 

(8.98) 

to the right-hand side of Eq. (8.86). Since this is a fourth-order term, it does not 
affect the formal accuracy of the algorithm. The negative sign is required in 
front of the fourth derivatives in order to produce positive damping [see Eq. 
(4.201. The smoothing coefficient E,  should be less than approximately & for 
stability. The fourth-derivative terms can be evaluated using the following 
finite-difference approximations: 

JY 

(Az)  ?(UL) 
dZ 

4 d4 

4 d4 

(A)') ~ ( u ' )  Uf+2,k - 4Uf+l,k 6Uf,k - 4uf-1,k + Uf-2.k 
(8.99) 

Uf,k+2 - 4Uf,k+l + 6Uf,k - 4Uf,k-1 + U/,k-2 

In the Schiff and Steger (1979) algorithm as well as that developed by 
Vigneron et al. (1978a), the solution is advanced using computational planes 
(i.e., solution surfaces) normal to the body axis. Most body shapes can be treated 
in this manner. However, for bodies with large surface slopes, the axial 
component of velocity in the inviscid part of the flow field may become subsonic, 
which prevents the computation from proceeding further. To alleviate this 
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difficulty, Tannehill et al. (1982) have applied the numerical scheme (described 
previously) to the PNS equations written in general nonorthogonal coordinates, 
Eqs. (8.37)-(8.39). As a result, the orientation of each solution surface ( 6  = 

const) is left arbitrary, so that the most appropriate orientation can be selected 
for a given problem. In general, the optimum orientation occurs when the 
solution surface is nearly perpendicular to the local flow direction. In a similar 
manner, Helliwell et al. (1980) have incorporated a nonorthogonal coordinate 
system into the Lubard-Helliwell method to permit a more optimum orientation 
of the computational planes. 

The PNS code developed by Schiff and Steger (1979) was further refined 
(Chaussee et al., 1981) and became the basis for the widely used AFWAL (Air 
Force Wright Aeronautical Laboratories) PNS code (Shanks et al., 1982; 
Stalnaker et al., 1986). Other implicit algorithms for solving the PNS equations 
have been developed by McDonald and Briley (1975) and Briley and McDonald 
(1980), who utilize a consistently split linearized block implicit (LBI) scheme, 
and by Li (1981a), who uses an iterative factored implicit scheme. The LBI 
scheme of McDonald and Briley has a linearized block implicit structure that is 
identical to the structure of the “delta” form of the Beam-Warming scheme. 

The explicit-implicit scheme of MacCormack (1981) was applied to the 
solution of the PNS equations by Lawrence et al. (1984). This scheme requires 
the inversion of block bidiagonal systems rather than the block tridiagonal 
systems of the previous factored algorithms. The advent of high-speed vector- 
processing computers led Gielda and McRae (1986) to use the original explicit 
MacCormack (1969) scheme to solve the PNS equations. Since this scheme can 
be almost completely vectorized, it becomes competitive for certain classes of 
problems. In this algorithm the conservative streamwise flux vector E is solved at 
each 6 station, instead of the usual U vector. In another approach, Bhutta and 
Lewis (1985a) employed an implicit algorithm in conjunction with a pseudo- 
unsteady technique to solve the PNS equations. 

Roe scheme. Nearly all of the previously described algorithms employ central 
differences for the derivatives in the crossflow (7, f ) plane. A major difficulty 
for algorithms of this type is that the central differencing of fluxes across flow 
field discontinuities tends to introduce errors into the solution in the form of 
local flow property oscillations. In order to control these oscillations, some type 
of artificial dissipation is required. The correct magnitude of this added 
“smoothing” must be determined through a trial-and-error process. This has led 
to frustration on the part of many users of central-difference PNS codes. To 
alleviate this difficulty, Lawrence et al. (1986, 1987) developed an upwind 
implicit approximately factored finite-volume scheme based on Roe’s 
approximate Riemann problem solver (Roe, 1981). With this upwind scheme, no 
user-specified smoothing coefficients are required when capturing discontinuities 
such as shock waves. The resulting upwind PNS code has been named UPS. 

The development of the finite-volume scheme of Lawrence et al. begins with 
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the integral form of the steady Navier-Stokes equations (Eq. 5.263): 

$ H . d S = O  (8.100) 

The tensor fi can be expressed in terms of the Cartesian fluxes, 

H = (Ei - E,)i + (Fi - F,)j + (Gi - G,)k (8.101) 

where the inviscid (subscript i) and viscous (subscript u )  flux vectors are given 
by Eq. (8.35). The flow field is discretized using small but finite hexahedrons like 
the one shown in Fig. 8.5. Since the numerical solution is marched in the 6 
direction, the flow field is discretized by successively adding slabs of thickness 
A,$ as the solution proceeds. The nth slab ( n  is the index for the ,$ coordinate) 
is bounded by the two (v,[) systems of grid points at n and n + 1. Vinokur 
(1986) refers to these grid points as the primary grids. The vertices of each cell 
are located at mesh points of the primary grids and are connected by straight-line 
segments. The 77 and f coordinates are indexed using k and 1, respectively. The 
present scheme is applied to area-averaged flow properties, which are assigned 
to the secondary grid points. The secondary grid points (see Fig. 8.5) are defined 
by averaging coordinates of the primary grids that define the constant 6 cell 
faces. 

0 PRIMARY GRID POINT 
X SECONDARY GRID POINT 

A E 

C G 

Figure 8.5 Finite-volume geometry. 
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After applying Eq. (8.100) to the structured-grid volume shown in Fig. 8.5, 
with constant properties on each cell face, the discretization becomes 

with the cell-face-area vectors oriented in the positive coordinate directions. 
The cell-face-area vectors are indexed as follows: 

and can be expressed with respect to a Cartesian coordinate system as 

n +  1 n + l  n + l  

S;,:' = ($),,, i + ( $ ) , , ,  j + (f) k 
k ,  1 

n +  f n + f  n + f  

n +  f n + f  n + f  

S " , I ~ ; =  ( f )  i +  ($) j +  ($) k 
k , l + t  k , l + t  k , / + f  

n + f  

n +  f n + t  n + t  
S k , l - f =  n+ 4 - ( f )  :i - (fi , j - (:) k 

k , l - -  k 1 - 1  k , l - t  

(8.104) 

Equations (8.104) and (8.101) can then be inserted into Eq. (8.102) to yield 

where 
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(@. - fiuj = ( -)(Ei 77, - E,) + J 

The metrics (i.e., components of the cell-face-area vectors) are evaluated 
using the formulas of Vinokur (19861, which were discussed in Section 5.7. For 
the three forward-facing sides of the finite volume shown in Fig. 8.5, these 
formulas yield 

Metrics calculated using these formulas satisfy the geometric conservation law 

@ d S = O  (8.108) 

which is obtained from Eq. (8.100) under uniform flow conditions. The 
description of the geometry is completed by determining the volume of the cell. 
The volume is only needed for evaluating the metrics in the viscous terms. Using 
the formula given in Section 5.7 by Vinokur (19861, the volume (i.e., Jacobian) is 
computed from 

n - t l  ) (8.109) 
n +  1 

J = i(S;,, + S k , l ? t  +SiIi , l )  ’ ( ‘ ;+; , I - ;  - r k - f , l + ;  
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The parabolizing assumption is now applied to Eq. (8.105) dropping E, as 
well as derivatives with respect to 8 in k, and G,. In addition, Vigneron's 
technique is used to suppress the ellipticity that is inherent in a space-marching 
procedure. This is accomplished by splitting the inviscid streamwise flux vector 
in the following manner: 

where 
pi);,[ = k?(S;,/,u;,J + EPcs;,[,U;,;l) (8.110) 

T 

k? = [ p r i , p u r i +  ( f )mp,pu8+  ( s j o p , p w o +  ( f ) o p , ( E , + p ) r i ]  

E p  = (1 - d p [ O ,  (f), ($), ( 3 0 1  
T 

r i =  if).+ ($)"+ ( f ) w  
. .  . .  . .  

The notation E*(S;,l, Uc,[) indicates that E* is evaluated using geometrical 
properties at cell face S;,/ and flow variables from U;,/. 

is now made to avoid the 
difficult of extracting the flow properties from E* and also to simplify the 
application of the implicit algorithm. This is accomplished throug: the following 
linearization, which makes use of the homogeneous property of E* : 

A change of dependent variable from k? to 

where 
(8.111) 

After substituting Eqs. (8.110) and (8.111) into Eq. (8.105), the discretized 
conservation law becomes 

- [Ep(s;,:l,u;,l) - Ep(s;,l,u;,jl)] (8.112) 
where 

AnU = Un+l - U" 
At this point the algorithm differs from a conventional finite-difference PNS 

solver only in the fact that the metrics are evaluated at cell interfaces rather 
than at grid points. A central-difference scheme is obtained by simply averaging 
the adjacent grid-point flow properties to obtain the cell-face numerical fluxes. 
Of course, this will lead to undesirable shock-capturing characteristics. To avoid 
this problem, Lawrence et al. determine the fluxes at the cell interfaces using 
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Roe’s (1981) scheme, which is modified to make it applicable to a space-marching 
calculation. With Roe’s scheme, the inviscid portions of the numerical fluxes are 
definedAaccordi9g to solutions of steady approximate Riemann problems. The 
fluxes Fi and Gi are determined separately by splitting the 2-D Riemann 
problem associated with the 3-D PNS equations into two 1-D Riemann problems. 
These 1-D problems have the generic form 

(8.113) 

with initial conditions 

The coefficient matrix [ D], + ; is defined by 

(8.114) 

Although Eq. (8.1 13) is in nonconservative form, the local shock-capturing 
capabilities of the algorithm can be retained if the flow properties in [D],, + 
are averaged between the grid points m and m + 1, so that the following 
relation is satisfied: 

[ 0 1 m  + 4 [ * (s:+ 4 7 u,,, + 1 )  - * (S; + 4 urn)] 
A F ~  + (7) AG; (8.115) =(:) m +  f d E i + ( T )  m + f  m + f  

When the flow is supersonic, Roe’s averaging (see Section 6.5.1) of the flow 
variables yields flow properties that satisfy Eq. (8.1 15). 

The solution to the preceding approximate Riemann problem consists of 
four constant property regions separated by three surfaces of discontinuity (see 
Fig. 8.6) emanating from the cell edge ( e”, K,+ +) and having slopes given by the 
eigenvalues of [ 03, + 4. The resulting first-order accurate inviscid flux across the 
m + $ cell interface is given by 

(8.116) 
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m+l,n , \m+l,n+l 

m,ntl 
m. n 

Figure 8.6 Approximate Riemam problem. 

In this equation the matrix, [sgn D], is defined as 

[sgn Dl  = [Rllsgn Al[Rl-' 

where [ R ]  is the matrix of right eigenvectors of [D] and [sgn A] is the diagonal 
matrix, which has elements related to the eigenvalues of [ D ]  by 

A' 
sgn A' = - 

I A'l 

First-order inviscid numerical fluxes in the 77 and 5 directions are then given by 

( @ i ) k + f , l  = H , + ; , r  

In the definition of the flux in the 77 direction, H,+ t , l  is obtained by inserting 77 
for K and k + i, I for m + 3. Likewise, for the flux in the 5 direction, Hk,,+ 4 is 
obtained by replacing K with 5 and m + 3 with k,  I + i. Lawrence et al. have 
extended the algorithm to second-order accuracy in the crossflow directions by 
adapting the approach of Chakravarthy and Szema (1985) to the PNS equations. 
Details on the second-order fluxes can be found in the work by Lawrence (1987). 
Viscous stresses and heat transfer fluxes are evaluated in both crossflow 
directions using standard central differences. 

The algorithm is made implicit by evaluating the first-order numerical flux 
at the n + 1 marching station. The second-order flux terms are evaluated at the 
n marching station. The first-order flux is linearized using 

The [sgn D] matrix that appears in H is assumed locally constant for the 
evaluation of the Jacobians. The viscous fluxes at n + 1 are linearized in a 
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similar manner using 

(8.118) 

( G u )  k ,  I + f 
+ ( au,,, 1' Anukd 

After substituting these linearized expressions into Eq. (8.1121, the resulting 
block system of algebraic equations is approximately factored into two block 
tridiagonal systems. The algorithm can then be written as 

L 

X 

where 

(8.119) 

(RHS)' = -([kI;,, - rd.12;'ju;,l - a@ - fiujn - a& - 6,)" 
- [Ep(s;y,u:,l> - Ep(s; , I ,u; , ; l ) ]  (8.120) 

and the difference operators are defined by 

a,@ = am+; - am-; 

The system of equations can be solved using the same procedure as employed in 
the Beam-Warming scheme described previously. Further details of the algorithm 
can be found in the works by Lawrence et al. (1986, 1987) and Lawrence (1987, 
1992). 
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Other schemes. The PNS equations have been solved using other upwind 
algorithms including the explicit finite-volume scheme of Korte and McRae 
(1988), which is based on Roe’s approximate Riemann solver; the explicit 
finite-volume scheme of Gerbsch and Agarwal(1990), which is based on Osher’s 
upwind method (Osher and Chakravarthy, 1983); and the scheme of Sturmayr 
et al. (1993), which is based on the E N 0  (essentially nonoscillatory) scheme of 
Yang (1991). 

In addition, several upwind PNS algorithms have been developed that are 
derivatives of upwind time-dependent Navier-Stokes or TLNS solvers. These 
solvers are modified for space-marching using local time iterations at each 
streamwise step. Included in this group are the space-marched conservative 
supra-characteristic methods (CSCM-S) of Lombard et al. (1984) and 
Stookesberry and Tannehill(1987). The CSCM-S method is based on the CSCM 
for eigenvalue-based differencing developed by Lombard. Also included in this 
group is the algorithm of Newsome et al. (1987), which is based on the upwind 
Navier-Stokes scheme of Thomas and Walters (19871, and the algorithms of Ota 
et al. (1988), Thompson and Matus (19891, Molvik and Merkle (19891, and 
Matus and Bender (1990). An advantage of the time-iterative approach is that 
errors due to linearization and factorization can be reduced to negligible levels 
by iteration. An obvious disadvantage is that multiple iterations are required at 
each streamwise marching step. 

8.3.4 Applications of PNS Equations 

The PNS equations have been used to successfully compute the 3-D supersonic/ 
hypersonic viscous flow over a variety of body shapes. For pointed bodies the 
initial starting solution is frequently obtained using the conical Navier-Stokes 
approximation (see Section 8.6). For blunt-nosed bodies, the initial starting 
solution is normally obtained using either a Navier-Stokes code or a viscous 
shock-layer (VSL) code. 

Early studies involved the computation of flows over simple body shapes 
such as flat plates (Rudman and Rubin, 1968; Rubin et al., 1969; Cheng et al., 
1970; Nardo and Cresci, 19711, corners (Cresci et al., 1969; Rubin and Lin, 
1972), pointed cones (Rubin et al., 1969; Lin and Rubin, 1973; Lubard and 
Helliwell, 1974; Vigneron et al., 1978a, 1978b), and spinning cones (Lin and 
Rubin, 1974; Aganval and Rakich, 1978). 

Later, flows were computed over more complicated body shapes such as 
sphere-cones (Lubard and Rakich, 1975; Waskiewicz and Lewis, 1978; Rizk 
et al., 1981; Bhutta and Lewis, 1985a), hemisphere-cylinders (Schiff and Steger, 
1979), ogive-cylinders (Rakich et al., 1979; Degani and Schiff, 1983), ogive- 
cylinder-boattails (Schiff and Sturek, 1980; Gielda and McRae, 1986), blunt 
biconics (Mayne, 1977; Helliwell et al., 1980, Chaussee et al., 1981; Kim and 
Lewis, 1982; Gnoffo, 1983; Neumann and Patterson, 1988), hyperboloids (Bhutta 
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and Lewis, 1985b), sharp leading edge delta wings (Vigneron et al.. 197th. 
1978b), blunt leading edge delta wings (Tannehill et al., 1982), and finned 
missiles (Rai et al., 1983). 

More recently, flows have been computed over airplane-like vehicles such as 
the X-24C (Chaussee et al., 19811, Space Shuttle Orbiter (Li, 1981b; Rakich 
et al., 1984; Chaussee et al., 1984; Prabhu and Tannehill, 1984), generic fighter 
(Chaussee et al., 1985), hypersonic vehicles (Lawrence et al., 1987; Korte and 
McRae 1989; Bhutta and Lewis, 1989; Walker and Oberkampf, 19911, and 
generic versions of the National Aero-Space Plane (Buelow et al., 1990: 
Wadawadigi et al., 1994). See Fig. 8.7. 

Mach number mntours 

Figure 8.7 Comparison of Mach contours in various crossflow planes along the length of the Test 
Technology Demonstrator (TTD) configuration (Wadawadigi et al., 1994). (a) Scramjet engine off. 
(b) Scramjet engine on. 
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In addition to the computation of external flows, the PNS equations have 
been used to compute the supersonic/hypersonic flow in jets/plumes/wakes 
(Edelman and Weilerstein, 1969; Boynton and Thomson, 1969; Tannehill and 
Anderson, 1971; Dash and Wolf, 1984a, 1984b; Dash, 1985, 1989; Gielda and 
Agarwal, 1989; Sinha et al., 19901, ducts (Edelman and Weilerstein, 1969; Rubin 
et al., 1977; Sinha and Dash, 1986; Sinha et al., 1987, 19901, nozzles (Sinha and 
Dash, 1986; Chitsomboon and Northam, 1988; Gielda and Agarwal, 1989; Dang 
et al., 1989; Sinha et al., 1990), and inlets (Buggeln et al., 1980; Lawrence et al., 
1986; Krawczyk and Harris, 1987; Gielda and Agarwal, 1989; Krawczyk et al., 
1989). 

The renewed interest in hypersonic aerothermodynamics has led to the 
development of several PNS codes that account for real-gas effects. PNS codes 
that include equilibrium chemistry have been written by Li (1981b), Gnoffo 
(19831, Prabhu and Tannehill (1984), Bhutta et al. (1985a), Banken et al. (19851, 
Molvik (19851, Stalnaker et al. (1986), Krawczyk and Harris (19871, Ota et al. 
(1988), Liou (1989), Tannehill et al. (1989), and Gerbsch and Agarwal (1991). 
For codes that utilize an upwind algorithm, it is also necessary to modify the 
numerical scheme to account for the equilibrium chemistry. Tannehill et al. 
(1989) have used both the approximate procedure of Grossman and Walters 
(1987) and the nearly exact procedure of Vinokur and Liu (1988) to modify the 
upwind implicit total variation diminishing (TVD) scheme in the UPS code to 
account for equilibrium chemistry. 

For nonequilibrium (chemically reacting) flows, the species continuity 
equations must be solved in addition to the usual gas-dynamic equations. The 
gas-dynamic equations remain the same except for the additional diffusion term 
in the energy equation. The species continuity equations are parabolized by 
dropping the streamwise diffusion terms. The resulting nonequilibrium PNS 
equations have been solved using both fully coupled and loosely coupled 
approaches. In the fully coupled approach the gas-dynamic and species continuity 
equations are solved simultaneously using the same implicit algorithm. A 
drawback to this approach is that as the number of species increases, the size of 
the block matrices that must be inverted also increases. In the loosely coupled 
approach, the gas-dynamic and species continuity equations are solved separately, 
and the coupling between the two sets of equations is obtained through some 
type of iterative coupling. Nonequilibruim (finite-rate chemically reacting) PNS 
codes have been written by Bhutta et al. (1985b) Sinha and Dash (19861, Prabhu 
et al. (1987a, 1987b), Sinha et al. (1987), Tannehill et al. (1988) Gielda et al. 
(1988), Chitsomboon and Northam (19881, Gielda and Agarwal (19891, Molvik 
and Merkle (1989), Buelow et al. (1990), Kamath et al. (1990, Hugues and 
VCrant (1991), Wadawadigi et al. (1992), Ebrahimi and Gilbertson (19921, and 
White et al. (1993). A PNS code for both vibrational and chemical nonequilibrium 
flows has been developed by Miller et al. (1995). Other PNS codes have included 
the effects of ablation (Muramoto, 1993) and finite-catalytic walls (Miller et al., 
1994). 
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8.4 PARABOLIZED AND PARTIALLY PARABOLIZED 

Previous sections in this chapter dealt with flows that are predominantly 
supersonic. In this section we will discuss two computational strategies that are 
particularly useful for subsonic flows. These schemes can be categorized as 
either “once through” (fully parabolized) or multiple space-marching (partially 
parabolized). For both, the starting point is a form of the PNS equations. The 
approaches differ in the way that the pressure is treated. 

NAVIER-STOKES PROCEDURES FOR SUBSONIC FLOWS 

8.4.1 Fully Parabolic Procedures 
The fully parabolic procedure approach is applicable to a 3-D flow in which a 
predominant flow direction can be identified. The velocity component in this 
primary flow direction must generally be greater than zero, although some 
schemes may permit the existence of small regions of reversed flow by using the 
FLARE approximation in the primary flow direction. No restrictions are placed 
on the velocity components in the crossflow direction. As with all forms of the 
PNS equations, diffusion in the streamwise direction is neglected. 

Unless further steps are taken, the PNS equations will permit transmission 
of influences in the streamwise direction through the pressure field for subsonic 
flows, as discussed in Section 8.3.2. In the present approach this elliptic behavior 
is suppressed in the streamwise direction by utilizing an approximation first 
suggested by Gosman and Spalding (1971). This approximation consists of 
representing the pressure gradient in the streamwise direction as an average 
over the flow cross section. A condition for using this approximation is that 
some method must exist for evaluating this pressure gradient. Possibilities 
include steady internal flows for which the pressure gradient can be determined 
with the aid of the global mass flow constraint and certain external flows for 
which the average pressure gradient can be taken as zero. Such external 3-D 
flows include flow in a corner and the subsonic jet discharging from a noncircular 
orifice into an ambient at rest or a co-flowing stream. 

The computational strategy will be illustrated by considering flow through a 
straight rectangular channel. This permits use of the conservation equations in 
the Cartesian coordinate system. The same concepts are applicable to curved 
channels of constant cross-sectional area, but a different coordinate system must 
be used. The 3-D parabolic model has been extended to more general geometries 
by Briley and McDonald (1979). 

The channel axis is in the x direction. Thus the y and z coordinates span 
planes perpendicular to the primary flow direction. The equations will be 
written in a form applicable to either laminar or turbulent flow. The variables 
are understood to represent time-mean quantities. This is the same convention 
as employed in Chapter 7. In developing the parabolized form of the Reynolds 
equations, diffusion in the streamwise direction by both molecular and turbulent 
mechanisms will be neglected. Furthermore, since only subsonic applications are 
to be considered, it will be assumed that m/pii, p”/pi?, and p ’ / p W  are 
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small, so that the difference between conventional and mass-weighted variables 
can be neglected. Terms involving pressure fluctuations in the energy equation 
will also be neglected. The symbol r will denote the effective stress due to both 
molecular and turbulent mechanisms. Similarly, the symbol q will denote heat 
flux quantities from both molecular and turbulent mechanisms. Apart from the 
pressure gradient terms, which will be discussed below, the equations for the 
3-D parabolic procedure follow from Eqs. (5.68), (5.73), and (5.84) after the 
simplifymg assumptions given above are invoked: 

continuity: 
dpu dpv dpw - + - + -  = o  
dx  dy  dz 

pudA = const (global) 

x momentum: 

d%z dU dU du d3 dTXY 

d X  dY dz dx ay dz 
+ -  pu- + pv- + pw- = -- + -  

y momentum: 
aV dV dV dp dTYY I dry2 

pu- + pv- + pw- = -- + -  
d X  dY dz d y  dy d z  

d W  d W  d W  JP drzy drz, 
pu- +pv- + p w -  = -- + - + - 

d X  dY d z  d z  dy  dz 

z momentum: 

energy: 
dT dT dT 

puc - + pvc - + pwc 
ax dY dz 

- 

(8 .121~)  

(8.121b) 

(8.122) 

(8.123) 

(8.124) 

d d d3 dU dU 

dY dZ dx dY d z  
= - ( - q y )  + - ( - q 2 )  + PTu- + rxy- + rxz- (8.125) 

state: 
P = P ( P , T )  (8.126) 

is defined for use in the x momentum equation which is assumed to vary only in 
the x direction. The pressure 3 will be determined with the aid of the global mass 
flow constraint much as for 2-D or axisymmetric channel flows computed 
through the thin-shear-layer equations. On the other hand, the p employed in 
the y and z momentum equations is permitted to vary across the channel cross 
section. The static pressure in the channel is assumed to be the sum of 3 and p. 

The physical assumption in this decoupling procedure is that the pressure 
variations across the channel are so small that they would have a negligible 
effect if included in the streamwise momentum equation. Thus cross-plane 

In the pressure approximation of Gosman and Spalding (19711, a pressure 
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pressure variations have been neglected in the streamwise momentum equation. 
On the other hand, these small pressure variations are included in the 
momentum equations in the y and z directions, since they play an important 
role in the distribution of the generally small components of velocity in the 
directions normal to the channel walls. The determination of @ requires no 
information from downstream; @ is a function of x only and can be uniquely 
determined at each cross section by employing the global mass flow constraint in 
combination with the momentum equations. This permits a “once through” 
calculation of the flow in a parabolic manner. On the other hand, since p varies 
with both y and z ,  the equations are elliptic (for subsonic flow) in the y-z plane. 
In fact, a Poisson equation can be developed for p ( y ,  z )  in the cross plane from 
the y and z momentum equations. The overall calculation scheme then requires 
the use of procedures for elliptic equations in each cross plane, but the solution 
can be advanced in the x direction in a parabolic manner. 

Using the Boussinesq approximation, the stresses (using summation 
notation) in the above equations can be evaluated from 

With similar modeling assumptions, the heat flux quantities are normally 
represented by 

Further simplifications to Eq. (8.127) are often found in specific applications, 
including the fully incompressible representation given by T , ~  = ( p  + 
p T ) d u i / d x j .  Suitable turbulence modeling for pT and Pr, must be employed to 
close the system of equations. The usual boundary conditions for channel flow 

As was the case for the boundary-layer equations, the solution can proceed 
in either a coupled or sequential mode. The earliest and most widely used 
procedure followed the sequential strategy that will be outlined briefly here. We 
note that for a specified pressure field the momentum and energy equations 
would be entirely parabolic, and the solution could be marched in the primary 
flow direction using the x momentum equation to obtain u, the y momentum 
equation to obtain u,  and the z momentum equation to obtain w. The energy 
equation provides T, and the density is obtained from the equation of state. 
However, for all but exactly the correct cross-plane pressure distribution, the 
velocity components will not satisfy the continuity equation. This, of course, is 
the crux of the problem-the momentum, energy, and state equations are a 
natural combination to use to advance the solution for the velocity components 
and density. The way in which the continuity and momentum equations can be 
used to determine the correct pressure distribution is less obvious. Workable 

apply * 
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procedures have been devised for correcting the pressure field, and these will be 
discussed next. 

The computational strategy of solving the momentum equations in an 
uncoupled manner for the velocity components using a prescribed provisional 
pressure distribution and then using the continuity and momentum equations to 
correct the pressure field is known as the pressure correction or segregated 
approach. 

The earliest solutions reported in the literature for the fully parabolic 3-D 
procedure followed the algebraic strategy outlined by Patankar and Spalding 
(1972) as the semi-implicit method for pressure-linked equations (SIMPLE) 
procedure. Some notable improvements in some of the solution steps have been 
suggested, and these are mentioned below. The Patankar and Spalding (1972) 
approach, in turn, draws heavily upon the earlier work of Harlow and Welch 
(19651, Amsden and Harlow (1970), and Chorin (1968). The segregated strategy 
proceeds as follows. The superscript n + 1 refers to the streamwise station 
being computed. 

1. Employing suitable linearization for coefficients in Eq. (8.1221, the pressure 
f i n + '  can be determined in the same manner as for 2-D and axisymmetric 
channel flows solved by means of the boundary-layer equations (see Section 
7.5), by making use of the global conservation-of-mass constraint. Then u:: 
can be determined from the finite-difference solution of Eq. (8.122). The 
energy equation can be solved for T,::', and the equation of state used to 
determine pil l  *. An alternating direction implicit (ADI) scheme works very 
well for solving the momentum and energy equations. 

2. Using an assumed pressure distribution in Eqs. (8.123) and (8.1241, provisional 
values of u and w can be determined from a marching solution (an AD1 
scheme is recommended here too) to these momentum equations just as for 
the x momentum equations. 

3. These provisional solutions for u and w in the cross plane will not generally 
satisfy the difference form of the continuity equation. By applying the 
continuity equation to the provisional solutions for the velocity components, 
mass sources (or sinks) can be computed at each grid point. We now seek a 
means for adjusting the pressure field in the cross plane so as to eliminate 
the mass sources. It is in the computation of the velocity and pressure 
corrections that the 3-D parabolic methods differ the most. Several 
investigators, including Briley (19741, Ghia et al. (1977b1, and Ghia and 
Sokhey (1977) have followed the suggestion of Chorin (1968) and assumed 
that the corrective flow in the cross plane is irrotational, being driven by a 
pressure-like potential in such a manner as to annihilate the mass source. A 
Poisson equation can be developed for this potential from the continuity 
equation. Using p subscripts to denote provisional velocities and c subscripts 
to denote corrective quantities, we demand that 

dpu a a 
- + -[ p(vp + u ~ ) ]  + -[ p(wP + wC)] = 0 
ax d y  dz 

(8.128) 
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The streamwise derivative term and derivatives of the pravisional velocities 
are known at the time the corrections are sought and can be incorporated 
into a siFgle source t e q  S,. Thus we can define a potential function d by 
pvc = d+/dy,  pwc = a+/&, and write Eq. (8.128) as 

(8.129) 

The required velocity corrections can then be computed from the $ 
distribution resulting from the numerical solution of the Poisson equation in 
the cross plane. This approach preserves the vorticity of the original up and 
wp velocity fields. 

The original Patankar and Spalding proposal assumed that the velocih 
corrections were driven by pressure corrections in accordance with a veq 
approximate form of the momentum equations in which the streamwise 
convective terms were equated to the pressure terms. This can be indicated 
symbolically by 

(8.130) 

(8.131) 

In the above, p' can be viewed merely as a potential function (much like 6) 
used to generate velocity corrections that satisfy the continuity equation. In 
some schemes [as in the original Patankar and Spalding (1972) proposal], p' 
is viewed as an actual correction to be added to the provisional values of 
pressure. Since the velocity corrections can be assumed to be zero at the 
previous streamwise station, Eqs. (8.130) and (8.131) can be interpreted as 

apt 
W, = - B -  

d 2  

(8.132) 

(8.133) 

where A and B are coefficients that involve p,  u,  and Ax. The derivatives of 
p' are, of course, eventually to be represented on the finite-difference grid. 
The similarity between Eqs. (8.132) and (8.133) and the representation given 
earlier for the velocity corrections in terms of the potential f should be 
noted. Equations (8.132) and (8.133) can now be used in the continuity 
equation to develop a Poisson equation of the form 

(8.134) 

The required velocity corrections can then be computed from the numerical 
solution of Eq. (8.134) using Eqs. (8.132) and (8.133). This approach is known 
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as the p r  procedure for obtaining velocity corrections. Improvements on this 
procedure have been suggested that attempt to employ a more complete form 
of the momentum equation in relating velocity corrections to pr .  The paper 
by Raithby and Schneider (1979) describes several variations of the p r  
approach. 

4. The next step is the pressure update. The velocity corrections just obtained 
have not been required to satisfy a complete momentum equation. It is now 
necessary to take steps to develop the improved pressure field in the cross 
plane that, when used in the complete momentum equations, will produce 
velocities that satisfy the continuity equation. Several procedures have been 
used. The corrected velocities can be employed in the difference form of the 
momentum equations to provide expressions for the pressure gradients that 
would be consistent with new velocities. We denote these symbolically by 

(8.135) 
JP - = F ,  
dY 

dP 
- = F 2  
dZ 

(8.136) 

One estimate of the “best” revised pressure field can be obtained by solving 
the Poisson equation that is developed from Eqs. (8.135) and (8.136): 

(8.137) 

The right-hand side of Eq. (8.137) is evaluated from the difference form of 
the momentum equations using the corrected velocities and is treated as a 
source term. Patankar (1980) has suggested a slightly different formulation, 
which also results in a Poisson equation to be solved for the updated pressure 
(the SIMPLER algorithm). SIMPLER stands for SIMPLE Revised. In all of 
these solutions of the Poisson equation, care must be taken in establishing 
the numerical representation of the boundary conditions. The differencing 
and solution strategy must ensure that the Gauss divergence theorem (see 
Section 3.3.7) is satisfied. A more detailed example of the boundary treatment 
for the Poisson equation for pressure is given in Section 8.4.3. 

Raithby and Schneider (1979) have proposed a scheme for updating the 
pressure that does not require the solution of a second Poisson equation. 
They refer to this as the procedure for pressure update from multiple path 
integration (PUMPIN). The idea is that the pressure change from grid point 
to grid point can be computed from integrating Eqs. (8.135) and (8.136) again 
using the corrected velocities in the momentum equations to evaluate Fl and 
F2. For exactly the correct velocities u and w, the pressure change computed 
by this procedure between any two points within the cross plane would be 
independent of path. If the velocities u and w are not exactly correct (they 
will only be correct as convergence is achieved), then each different path 
between two points will lead to a different result. We can fix one point as a 
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reference and compute pressures at other points in the cross plane by 
averaging the pressures obtained by integrating over several dlfferent paths 
between the reference point and the grid point of interest. Raithby and 
Schneider (1979) reported good success at averaging pressures over only two 
paths, namely, from the reference point to the point of interest along 
constant y and then constant z ,  and also along constant z and then constant 
Y .  

The pressure can also be updated very simply by accepting the p’ obtained 
in the velocity correction procedure of Patankar and Spalding (1972) [see Eq. 
(8.13411 as the correction to be added to the pressure. 

5. Because the momentum and continuity equations have not been satisfied 
simultaneously in the procedures just described, steps 2-4 are normally 
repeated iteratively in sequence at each cross plane before the solution is 
advanced to the next marching station. Underrelaxation is commonly used for 
both the velocity and pressure corrections. That is, in moving from step 3 to 
4, only a fraction of the computed velocity corrections may be added to the 
provisional u and w velocities. The fraction will vary from method to method. 
Likewise, it is common to only adjust the pressure by a fraction of the 
computed pressure correction before moving to step 2. Time-dependent 
forms of the governing equations are sometimes used to carry out this 
iterative process. Because steps 2-4 are to be repeated iteratively, it is 
common practice to terminate the intermediate Poisson equation solutions 
for velocity and pressure corrections (especially the latter) short of full 
convergence in early iterative passes through steps 2-4. The objective is to 
obtain an improvement in the pressure field with each iterative pass through 
steps 2-4. Until overall convergence is approached, there is little point in 
obtaining the best possible pressure field based on the wrong velocity 
distribution. The iterative sweeps through steps 2-4 are terminated when a 
pressure field has been established that will yield solutions to the momentum 
equations that satisfy the continuity equation within a specified tolerance; 
i.e., velocity corrections are no longer required. 

6. After convergence to the specified degree is achieved, steps 1-5 are repeated 
for the next streamwise station. 

Raithby and Schneider (1979) have reported on a comparative study of 
several of the methods described above for achieving the velocity and pressure 
corrections. The number of iterations through steps 2-5 above, required for 
convergence, was taken as the primary measure of merit. The computation time 
required for the various algorithms would be of interest but was not reported. 
Fixing the method for the pressure update, Raithby and Schneider observed that 
all of the methods given above for achieving the velocity corrections worked 
satisfactorily. There was very little difference between them in terms of the 
required number of iterations. 

When the method for obtaining velocity corrections was fixed and several 
different methods for obtaining the pressure update were compared, the p’ 
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method of Patankar and Spalding (1972) was observed to require notably more 
iterations for convergence than the other methods evaluated. The methods 
utilizing a Poisson equation and the PUMPIN procedure required only about 
half as many iterations as the p f  method. The PUMPIN method required the 
fewest iterations by a slim margin. Use of the p f  (Patankar and Spalding, 1972) 
method would not be recommended on the basis of the Raithby and Schneider 
(1979) study. This conclusion is confirmed by Patankar’s (1980) recommendation 
that his SIMPLER algorithm that employs the Poisson equation formulation be 
used instead of the older p f  method for updating the pressure. It is possible that 
the p’ method may appear more competitive with the other methods when 
computation time rather than number of iterations is taken as the measure of 
merit. 

Several investigators have reported calculations based on the 3-D parabolic 
model. These include the work of Patankar and Spalding (19721, Caretto et al. 
(1972), Briley (1974), Ghia et al. (1977b), Ghia and Sokhey (1977), and Patankar 
et al. (1974). For flows through channels of varying cross-sectional area, 
suggestions have been made to include an inviscid flow pressure (determined a 
priori) in the analysis to partially account for elliptic influences in the primary 
flow direction. Both regular and staggered grids have been used. The concepts 
of the mathematical model appear well established. The essential feature of the 
model is the replacement of the pressure in the streamwise momentum equation 
with an average pressure that can be determined in some manner (such as 
through application of global mass flow considerations) without consideration of 
the details of the downstream flow. Note that this pressure treatment is 
consistent with observations about solution methods for the PNS equations 
discussed earlier in this chapter for high-speed flows with embedded subsonic 
regions. The pressure decoupling discussed in this section is essential in order to 
avoid departure behavior when the solution is advanced in the streamwise 
direction. Aspects of this model, particularly the solution for the velocities and 
pressure in the cross plane, can be accomplished in a variety of ways, including 
through the use of a fully coupled procedure. 

8.4.2 Parabolic Procedures for 3-D Free-Shear and Other Flows 

As was mentioned above, the 3-D parabolic procedure is not restricted entirely 
to confined flows. The essential feature of the model was the decoupling of the 
pressure gradient terms in the primary flow and cross-flow directions. For 
confined flows the pressure gradient in the primary flow direction was determined 
with the aid of the global conservation-of-mass constraint. The main elements of 
the procedure can be used for other types of 3-D flows if the pressure gradient 
in the primary flow direction can be neglected or prescribed in advance. One 
such application occurs in the discharge of a subsonic free jet from a rectangu- 
lar-shaped nozzle into a coflowing or quiescent ambient. The shape of such a jet 
gradually changes in the streamwise direction, eventually becoming round in 
cross section. For such flows, it is reasonable to neglect the streamwise pressure 
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gradient. Small pressure variations in the cross plane must strll be considered. as 
for 3-D confined flows. McGuirk and Rodi (1977) and Hwang and Pletcher 
(1978) have computed such flows by the 3-D parabolic procedure by setting 
d$/& = 0. An example of the 3-D parabolic procedure applied to free surface 
flows is given by Raithby and Schneider (1980). 

8.4.3 Partially Parabolized (Multiple Space-Marching) Model 

If the PNS equations are solved for a subsonic flow without making simplifjing 
approximations regarding the pressure, the equations are only purtialb parabol- 
ized, leading to the terminology PPNS. The system remains elliptic overall 
because of the influence of the pressure field. The elliptic system can be solved 
by a direct method, although the memory requirements to do so are substantial 
for most applications. If the system of equations is solved in a marching mode, 
multiple streamwise sweeps are needed to resolve the elliptic effects transmitted 
by the pressure field. Thus, in developing the PPNS model from the Navier- 
Stokes equations, only certain diffusion processes are neglected, and no 
assumptions are made about the pressure. The neglected processes always 
include diffusion in the streamwise direction, but some schemes employed in 
two dimensions (Rubin and Reddy, 1983; Liu and Pletcher, 1986) may go a step 
further and neglect all diffusion terms in the normal momentum equation. The 
PPNS model has also been referred to as the semi-elliptic or reduced Navier- 
Stokes (RNS) formulation in the literature. The equations for the partially 
parabolized model are as given in Eqs. (8.121)-(8.126) with dF/& replaced by 
d p / d x .  The primary flow direction is assumed to be aligned with the x 
coordinate axis. 

The solution strategies employed for the PPNS model can be distinguished 
as either pressure-correction (segregated) schemes or coupled approaches. 
Multiple streamwise sweeps are required in both approaches. The earliest 
procedures were of the pressure-correction type, and these will be discussed 
first. 

Pressure-correction PPNS schemes. The PPNS model was first suggested by 
Pratap and Spalding (1976). Other partially parabolized procedures of the 
pressure-correction type have been proposed by Dodge (19771, Moore and 
Moore (1979), and Chilukuri and Pletcher (1980). The PPNS scheme was 
originally thought to be restricted to flows in which flow reversal in the primary 
direction does not occur. For these flows, 3-D storage is only required for the 
pressure (and the source term in the Poisson equation for pressure if the 
Poisson equation formulation is used) and not for the velocity components. This 
is the main computational advantage of the PPNS procedure compared to 
procedures for the full Navier-Stokes equations. Madavan and Pletcher (1982) 
have demonstrated that the PPNS model can be extended to 2-D applications in 
which reversal occurs in the component of velocity in the primary direction. This 
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procedure requires that computer storage also be used for velocity components 
in and near the regions of primary flow reversal. 

We will briefly describe how the PPNS strategy of Chilukuri and Pletcher 
(1980) can be applied to a steady incompressible 2-D laminar flow. The 
improvements suggested by Madavan and Pletcher (1982) will be included. For 
such a flow, the PPNS equations can be written 

continuity: 
du dv - + - = o  
d x  d y  

x momentum: 

du  du 1 d p  d 2 U  

d x  d y  p d x  dy2 
+ v- u- + =c 

(8.138) 

(8.139) 

y momentum: 

av dv 1 ap a2v 
u- + 5 + v 2  (8.140) 

d x  d y  P dY dY 

A staggered grid (Harlow and Welch, 1965) is often used with pressure- 
correction schemes, and we will use it in the present 2-D example of the PPNS 
procedure. The idea is to define a different grid for each velocity component. 
This is illustrated in Fig. 8.8. To avoid confusion, only the grid location for the 
scalar variables (pressure and the velocity-correction potential 6, in this example) 

j + l *  

j *  
t 
P 

t 
j - 1 .  

.t 
t 
. +  
. +  
t t t P t  

j - 2 .  + a  + -+ + 
i - 1  i i + l  i + 2  i + 3  i + 4  

VARIABLES STORAGE LOCATION 

+ P 9 6  

U 
V t 

Figure 8.8 Grid spacing definitions and spatial location of variables on a staggered grid. 
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are denoted by solid symbols in the figure. Velocity components are calculated 
for “points” or locations on the faces of a control volume that could be drawn 
around the pressure points. The velocity components are located midway between 
pressure points, which means that for an unequally spaced gnd, the pressure 
points are not necessarily in the geometric center of such a control volume. The 
locations of the velocity components are indicated by arrows in Fig. 8.8. Vertical 
arrows denote locations for u, and horizontal arrows indicate the locations for u.  
It is convenient to refer to the variables with a single set of grid indices, despite 
the fact that the variables are actually defined at different locations. Thus the 
designation (i + 1, j )  identifies a cluster of three distinct spatial locations as 
indicated by the boomerang-shaped enclosure in Fig. 8.8. In the staggered grid, 
uF!l:j is below p i + l , j ,  and u i + l , j  is to the right of p i + l , j .  

The staggered grid permits the divergence of the velocity field to be 
represented with second-order accuracy (for equally spaced grid points) at the 
solid grid points using velocity components at adjacent locations. Such a 
configuration ensures that the difference representation for this divergence has 
the conservative property. Also, the pressure difference between adjacent grid 
points becomes the natural driving force for velocity components located midway 
between the points. That is, a simple forward-difference representation for 
pressure derivatives is “central” relative to the location of velocity components. 
This permits the development of a Poisson equation for pressure that automat- 
ically satisfies the Gauss divergence theorem so long as care is taken in the 
treatment of the boundary conditions. Such boundary conditions are also more 
easily handled on the staggered grid. Patankar (1980) provides an excellent and 
more detailed discussion of the advantages of using a staggered grid for 
problems such as the present one. 

The computational boundaries are most conveniently located along grid 
lines where components of velocity normal to the boundaries are located. This is 
illustrated in Fig. 8.9 for a lower boundary. Fictitious points are located outside 
of the physical boundary as necessary for imposing suitable boundary conditions. 
As an example, we will suppose that it is desired to impose no-slip boundary 
conditions at the lower boundary illustrated in Fig. 8.9. The u component of 
velocity is located at the physical boundary, and it is easy to simply speclfy 
ui+ 1 ,  = 0. The treatment for the u component is not so obvious, since no u grid 
points are located on this boundary. Numerous possibilities exist. The main 
requirement is that the boundary formulation used must imply that the tangential 
component of velocity is zero at the location of the physical boundary. This can 
be achieved by developing a special difference form of the conservation equations 
for the control volume at the boundary, or by constraining the solution near the 
boundary such that an extrapolation to the boundary would satisfy the no-slip 
condition. A third and often used procedure is to employ a fictitious velocity 
point below the boundary with the constraint that (ui+ + u,+ 1,2)/2 = 0. This 
is similar to the reflection technique for enforcing boundary conditions for 
inviscid flow, which was discussed in Chapter 6. The velocity at the fictitious 
point would then be used as required in the momentum equations in the 
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Figure 8.9 The staggered finite-difference grid near a boundary. 

interior. Values of the potential function used to correct the velocities are also 
often obtained from points outside the physical boundaries. Values of pressure 
are not needed from such points for boundaries on which velocity boundary 
conditions are specified in the formulation described below. More details on the 
treatment of boundary conditions on a staggered grid can be found in the work 
of Amsden and Harlow (1970). 

Several choices exist for the representation of the convective derivatives in 
the momentum equations. The scheme illustrated below makes use of three-point 
second-order accurate upwind representations for convective terms of the form 
u d 4 / d x .  A hybrid scheme (see Section 7.3.3) will be used for terms of the form 
v d 4 / d y .  These representations are linearized by extrapolating the coefficients 
based on values at the two adjacent upstream stations. When streamwise flow 
reversal is present, the direction of the “wind” changes, and this is taken into 
account in the representation used for the streamwise derivatives and in the 
extrapolation direction for the coefficients. 

In the ensuing discussion, the following notation is adopted. The superscript 
n + 1 denotes the current marching sweep; the subscript i + 1 denotes the 
current streamwise step for which the solution is sought; and the subscript j 
denotes the grid points in the y direction. For the forward going flow, the 
following representation is used to obtain the extrapolated value of the coeffi- 
cient uy::, : 

The circumflex indicates that iiy::j is a known quantity, determined by 
extrapolation. An extrapolation for ij:!l:j is obtained in a like manner using 
appropriate streamwise mesh increments. If fiy:;, in the above expression 
becomes negative, the flow at (i + 1, j )  is assumed to be reversed. When this 
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occurs, the recommended procedure is to simply represent zi:--l!l by ul- 1,1 and 
ui+ 1, by up+ 1, j, making use of velocities from the previous iteration. which are 
stored for points in and near regions of reversed flow. As an alternative. 
extrapolation can also be used according to the expression 

An+ 1 

An expression for $i"+:tj can also be obtained by extrapolation in regions of 
reversed flow. The streamwise convective derivatives are then represented as 
follows. For the forward going flow, 

U ;-+; (8.141) AX, + 
A x ; ( A x ; +  A x , )  

and for the reversed flow region, 

The term u d u / d y  is represented by a hybrid scheme as follows: 

ui"+';,j - uy:;j-l 
* n + l  (1 - W ) A  + ' i+l,j 

AY-  

The magnitudes of W, A ,  and B are determined as follows. Defining 
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and R, as the critical mesh Reynolds number, equal to 1.9 (see Section 7.3.31, 
then when R i  > R,, 

When RL< -Rc ,  

When R; < R, < RL, 
w =  1 A = O  B = O  

This scheme is thus a weighted average of central and upwind differences 
for larger mesh Reynolds numbers and degenerates to central differencing for 
small mesh Reynolds numbers. 

The second derivative term is represented by 

The pressure derivative in the streamwise momentum equation is represented 
bY 

(8.145) 

The differencing of the pressure gradient term ensures that u:!: is influenced 
by the pressure downstream. 

The y momentum equation is differenced in a similar manner. Because of 
the staggered grid being used, uy!l:j  is not located at the same point in the flow 
as ur:: j .  The evaluation of the coefficients in the difference representation of 
the y momentum equation should reflect this. For example, in representing the 
term u d u / d x ,  the coefficient should be formed using the average of u at two j 
levels. The pressure derivative utilizes pressure values on both sides of u / ! ! ~ : ~ :  

(8.146) 

As the momentum equations are solved, the best current estimate of the 
pressure field is used. Additional details on how this pressure field is determined 
will be discussed below. With the pressure fixed, the momentum equations are 
parabolic and are solved in a segregated manner, the x momentum equation for 
ui"+'ltj and the y momentum equation for u : ! ~ : ~ .  The system of algebraic 
equations for the unknowns at the i + 1 level is tridiagonal and can be solved by 
employing the Thomas algorithm. As was observed for the 3-D parabolic 
procedure, the solution for the velocities will not satisfy the continuity equation 
until the correct pressure field is determined. Thus the velocities obtained from 
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the solutions for the momentum equations are provisional. It is assumed that 
velocity corrections are driven by a potential f in such a manner that the 
continuity equation is satisfied by the corrected velocities. This requires that 

(8.147) 

where u, and u, are velocity corrections and up and up are the provisional 
velocities obtained from the solution to the momentum equations at marchmg 
level i + 1. Defining a potential function f by 

we obtain 

(8.148) 

(8.149) 

In difference form this becomes 

(8.150) 

Such an algebraic equation can be written for each f grid point across the flow; 
j = 2,3, .  . . , NJ, where j = 2 is the first f grid point above the lower boundary 
and j = NJ denotes the 4 grid point just below the upper boundary. This results 
in a tridiagonal system of equations for the unknown C $ i + l , j  if f i , j  and C $ i + 2 , j  
are known. The assumptions made to evaluate f i ,  and f i +  2, are as follows. 

9. . = 4. 1. 1. 

Assumption 1: z , J  1+1,J  

This implies that no corrective flow is present from the ith station where 
conservation of mass has already been established. 

Assumption 2: C $ i + 2 , j  = 0 

This implies that ( u , ) ~ + ~ , ~  is zero, which mFst be the case when convergence is 
achieved. Any other assumption regarding +i+ 2, would appear to be inconsistent 
with convergence. The boundary conditions used when solving the tridiagonal 
system of equations to determine are chosen to be consistent with the 
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prescribed velocity boundary conditions. For example, if velocities are prescribed 
along the top and bottom boundariFs, uc would be zero along these boundaries 
and the conditions used would be &+ 

are determined, velocity corrections are evaluated from the 
finite-difference representation of Eq. (8.148), namely, 

= &+ and &+ NJ = &+ N,+ 
After the &+ 

4 i +  I ,  j 
( U C ) i + l , j  = - - A x +  

and 

The corrected velocities now satisfy continuity at each grid point at the i + 1 
marching level, but unfortunately, until convergence, these velocities do not 
satisfy the momentum equations exactly. 

The pressure is updated between marching sweeps by solving a Poisson 
equation for pressure using the method of SOR by points. The Poisson equation 
is formed from the difference representation of the momentum equations. That 
is, we can write 

du  du 

d X  

du du 

When the above equations are differenced, the G’s are considered to be located 
midway between the pressure points used in representing the pressure derivatives 
on the left-hand side. Thus, G1 “points” are coincident with u locations, and G2 
“points” are coincident with u locations. Then 

d 2 p  d‘p dGl dG2 
- + - = -  + -  = sp 
d X 2  dy2 d x  dY 

(8.151) 

where G1 and G2 are evaluated by using the corrected velocities that satisfy the 
continuity equation. The use of corrected velocities contributes to the develop- 
ment of a pressure field which will ultimately force the solutions to the 
momentum equations to conserve mass locally. The S p  terms are evaluated and 
stored as the marching integration sweep of the momentum equations proceeds. 
Normally, one successive overrelaxation (SOR) sweep of the pressure field is 
made during this marching procedure. It is easy to update the pressure by one 
line relaxation before advancing the velocity solution to the next i level. Several 
more SOR passes are made at the conclusion of the marching sweep. 
Overrelaxation factors of 1.7 have been successfully used, but the source term, 
S p ,  is typically underrelaxed by a factor ranging from 0.2 to 0.65, the smaller 
factor being used for the earliest marching sweeps. 
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The boundary conditions for the Poisson equation for pressure are all 
Neumann conditions as derived from the momentum equations. The divergence 
theorem requires that 

dP / / S p  dxdy = $- dC 
d n  

where C represents the boundary of the flow domain and d p / d n  is the 
magnitude of the Neumann boundary condition. The finite-difference equivalent 
of this constraint must be satisfied before the solution procedure fqr t’l‘  isson 
equation will converge. With the staggered grid, this constrain! can bc satisfied 
by relating the boundary point pressures to the pressures in t!fi’ interior through 
the specified derivative boundary conditions by an equation that is implicit with 
respect to iteration levels in the method of SOR by poir ts. This step eliminates 
all dependence on the boundary pressures themselves (Miyakoda, 1962) when 
solving the Poisson equation for pressure. As long as the difference representa- 
tion for Sp has the conservative property, the iterative procedure will converge. 
This boundary treatment is illustrated by writing Eq. (8.151) in difference form 
for a p point just inside the lower boundary 

k t  1 k +  1 1 I ~ i k + 2 , 2  - P i + l . 2  Pi+l .2  -P:;’  \ 
- I  I 

k +  1 Pit1,2 - P i + I , l  
AY - 

- 

(8 .152)  

In the above, k refers to the iteration level in the SOR procedure for the 
Poisson equation, and k + 1 denotes the level currently being computed. The 
boundary condition on the Poisson equation at the lower boundary is taken as 

That is, the boundary pressure derivative is evaluated from the momentum 
equation. In difference form this becomes 

k+ 1 k+ 1 Pi+ 1 , 2  - Pi + I ,  I 
= G’i+1,2 

AY - 
(8 .153)  

where the pressures have been written implicitly at the present iteration level. 
The pressure below the lower boundary, p ~ ~ l ~ , ,  can now be eliminated from the 
Poisson equation by substituting Eq. (8.153) into Eq. (8.152). This gives 
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An examination of the representation for S p  substantiates that the constraint 
imposed by the divergence theorem is satisfied by this procedure. An evaluation 
of JJSp d x d y  leaves only terms involving G1 and G2 along the boundaries owing 
to cancellation of all other G. These boundary G1 and G2 values are exactly 
equal to $ X d p / d n )  d C  when the boundary conditions are expressed in terms of 
G, as illustrated by Eqs. (8.153) and (8.154). 

The steps in the PPNS solution procedure are summarized below. 

1. The momentum equations are solved for tentative velocity profiles at the 
i + 1 station using an estimated pressure filed. For the first streamwise 
sweep, this pressure field can be obtained by (a )  assuming that d p / d x  = 

-pu,(du,/dx) and d p / d y  = 0 or ( b )  assuming that d p / d y  = 0 and using a 
secant procedure (see Section 7.4.3) to determine the value of d p / d x  that 
will conserve mass globally across the flow, much as is done when solving 
internal flows with boundary-layer equations. For sweeps beyond the first, a 
block adjustment can be added (or subtracted) to the downstream pressure 
through use of the secant procedure at each i station to ensure that mass is 
conserved globally across the flow. This forces the algebraic sum of the mass 
sources across the flow to be zero and appears to speed convergence in some 
cases. A noniterative scheme (Chiu and Pletcher, 1986) has also been used 
successfully to determine the block adjustment of pressure required to satisfy 
the global mass flow constraint. For the first streamwise sweep only, the 
FLARE approximation (see Section 7.4.2) is used to advance the solution 
through any regions of reversed flow. 

2. The velocities are corrected to satisfy continuity locally using the potential 
function 4 as indicated above. 

3. The pressure at i + 1 is now updated by one SOR pass across the flow at the 
i + 1 level. This is optional at this point, as all pressures are further improved 
at the end of the marching sweep. 

4. Steps 1-3 are repeated for all streamwise stations until the downstream 
boundary is reached. 

5. At the conclusion of the marching sweep, the pressures throughout the flow 
are updated by several iterations using the Poisson equation. This completes 
one global iteration. The next marching sweep then starts at the inflow 
boundary using the revised pressure field. The process continues until the 
velocity corrections become negligible; i.e., the pressure field obtained permits 
solutions to the momentum equations that also satisfy the continuity equation. 

Sample computational results from the PPNS procedure are shown in Figs. 
8.10 and 8.11. Chilukuri and Pletcher (1980) found that solutions to the PPNS 
equations for 2-D laminar channel inlet flows agreed well with solutions to the 
full Navier-Stokes equations for channel Reynolds numbers as low as 10. 
Velocity profiles predicted by the PPNS procedure are compared with the 
Navier-Stokes solutions obtained by McDonald et al. (1972) for a channel 
Reynolds number (Re = u,a/u, where a is the channel half-width) equal to 75 
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- PPNS -PPNS 
(x /a = 4.0115) (x/a = 8.928) 

in Fig. 8.10. For reference, solutions to the boundary-layer equations are also 
shown in the figure. The boundary-layer solutions fail to exhibit the velocity 
overshoots characteristic of solutions of the PPNS and Navier-Stokes equations. 
The PPNS scheme employed 32 grid points in the streamwise direction and 18 
across the flow. The sum of the magnitudes of the mass sources at any 
streamwise station were reduced to less than 1% of the channel mass flow rate 
in seven streamwise marching sweeps. 

PPNS results obtained by Madavan and Pletcher (1982) for a separated 
external flow are compared with numerical solutions to the Navier-Stokes 
equations obtained by Briley (1971) in Fig. 8.11. The flow separates under the 
influence of a linearly decelerating external stream. At a point downstream of 
separation, the external stream velocity becomes constant, causing the flow to 
reattach. Reversed flow exists over approximately one-third of the streamwise 
extent of the computational domain. In the PPNS calculation, 35 grid points 
were employed in the streamwise direction and 32 across the flow. Sixteen 
streamwise sweeps were required to reduce the sum of the magnitudes of the 
mass sources at any streamwise station to less than 1% of the mass flow rate. 
The computation was continued for a total of 43 streamwise sweeps, at which 

0 N-S 
(x/a = 8.8) 21 

- _ _  
0.00 0.50 1.00 0.00 0.50 1.00 1.50 

U/U- 

Figure 8.10 Comparison of velocity profiles predicted by the PPNS procedure (Chilukuri and 
Pletcher, 1980) with the Navier-Stokes (N-S) solutions of McDonald et al. (1972) and with 
boundary-layer (B.L.) solutions obtained using the method of Nelson and Pletcher (19741, Re = 75. 
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PPNS 

10 

Figure 8.11 Comparison of velocity profiles predicted by the PPNS procedure (Madavan and 
Pletcher, 1982) with the Navier-Stokes (N-S) solutions of Briley (1971) for a laminar separating and 
reattaching flow; x* = b , x / b o ,  6 ,  = 30.48 m/s, b,  = 300 s-'. 

time the sum of the magnitudes of the mass sources at any streamwise station 
was less than 0.05%. 

Coupled PPNS schemes. Although the multiple space-marching strategy for 
coupled systems does not require that the pressure be entirely fixed for each 
streamwise marching sweep, certain constraints do exist. Specifically, stability 
requires that the downstream value of pressure in the difference expression for 
the streamwise pressure gradient be fixed. To see this, we will consider solving 
the following 2-D system by a coupled space-marching scheme. 

continuity: 
a( p * u * )  a( p*v* )  

dX* dY* 
= 0  + (8.155) 

x momentum: 
dU* dU* ap* 1 d dU* +--  p- (8.156) p*u* - + p*v* - = - - 
d X *  dY * ax* Re dy* ( d y * )  

y momentum: 
dV* dV* ap* 1 a dV* 

p*u*- + p*v*- = - - + - -  p* (8.157) 
dX* dY * dy* Re dy* ( dy ) 

energy: 
- 

T* + +(u*' + v*') = H ,  (8.158) 
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state: 
Y - 1  

p* = - p* T* 
Y 

(8.159) 

In the above equations, asterisks denote nondimensional variables. Length 
coordinates have been nondimensionalized by a characteristic length L ,  the 
velocities by a reference velocity u,, the density by p,, the pressure by ~ u ; .  the 
temperature by u?/c, and the viscosity by k. Note that a simplified version of 
the energy equation, a statement of constant total enthalpy, is used here for 
convenience. The Reynolds number is given by Re = p m u m L / k  and y = 1.4. 
The term marked off by a brace in Eq. (8.157) is often omitted on the basis of 
order-of-magnitude arguments (Rubin, 1984). Without the viscous term in the y 
momentum equation, the system represents the composite of the traditional 
interacting boundary-layer flow model in which the boundary-layer equations 
are solved in viscous regions using a pressure gradient determined by a solution 
of the Euler equations. Most often, such a system has been called the RNS 
equations, although more general formulations (Ramakrishnan and Rubin, 
1987) have also included the time term in the RNS system. 

It is instructive to consider the conditions under which Eqs. (8.155)-(8.159) 
can be solved by a space-marching procedure. Following Liu and Pletcher 
(1986), we first use the equations of state and energy to rewrite the continuity 
equation in the form 

dU* u*u* dV* u* ap* u*v* dU* + -- + -- -+-- 
dx* T* dx* p* dx* T* dy* 

u*2 av* u* ap* 
dy* p* dy* 

+ ( 1 + -  T * )  - +--=(I (8.160) 

We let Z be the vector of primitive variables u , v , p  and write Eqs. (8.1561, 
(8.157), and (8.160) in matrix-vector form as 

where 

[A1 = 

p* u* 0 p*v* 0 
0 p*v* 

u*v* u* [Bl = u*v* v* 
- 1 + -  T* p*u* T* p* 1 I T* T* 

0 
U * 2  

1 + -  - - 

(8.161) 

P* 

(8.162) 
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As indicated in Chapter 2, a marching procedure in the x* direction can be used 
to solve Eq. (8.161) if the eigenvalues of [A]-'[C] are nonnegative and real. 
Wang et al. (1981) have shown that the necessary condition is actually that the 
roots of the characteristic equation 

det I[C] - h[A]I = 0 (8.163) 
be real and nonnegative. The roots (eigenvalues) of Eq. (8.163) and the 
eigenvalues of [A]-'[C] are identical as long as the inverse of [A]  exists. The 
three eigenvalues of [A]-'[C] are (O,O, [(u* + p*u*/p*)/Re p * ( M 2  - l)]}. 
When all viscous terms are neglected in the y momentum equation, the 
expression simplifies to (0, 0, [ u* /Re p* ( M 2  - l)]}. In both cases, when the 
velocities are positive, the eigenvalues will be nonnegative only for supersonic 
flow. Thus for subsonic flow the system is not well posed for a marching solution 
in x*. 

To enable space-marching for subsonic flow, the system can be rearranged 
by treating the pressure gradient in the x momentum equation as a source term 
depending at most on the unknown pressure. That is, in the discretization of the 
pressure gradient, the pressure at one streamwise location must be fixed, for 
example, by using a value from the previous global sweep. Stability considerations 
as well as arguments based on characteristics dictate that it is the downstream 
pressure that should be fixed. This can be incorporated into the system by 
modifying [A]  and d in Eq. (8.162) as follows: 

where it is understood that the pressure gradient in d is to be discretized such 
that the downstream value is fixed and the other pressure in the difference is 
treated as an unknown. The eigenvalues for the system so modified are (0, 0, [1/ 
Re p*u*)]} with or without the viscous term included in the y momentum 
equation. Thus for u* > 0, the system can be solved by marching in the positive 
x* direction. In some applications of interest, local regions of flow reversal are 
embedded in a flow that is predominantly in the positive x* direction. Under 
these conditions (u* < 0, M 2  < l), type-dependent differencing can be used for 
the streamwise convective terms in the momentum equations with the values at 
the upstream point in the difference being fixed using values from a previous 
global sweep. The FLARE approximation can be used for the very first global 
sweep. In the context of marching the solution in the positive x* direction, this 
amounts to treating the streamwise convective term as a source term as was 
done for the pressure gradient in the streamwise momentum equation. The 
eigenvalues for the system treated as indicated above in embedded regions of 
reversed flow are (0, 0,O). 

In the coupled-marching approach, values of u, v, and p (in 2-D) are 
computed at each global sweep. For flows that are fully attached (u  > O), as was 
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the case for the pressure-correction methods, the entire history of the flow from 
one global sweep to the next is recorded in the pressure field. Storage for the 
entire velocity field is not required. If flow reversal occurs, velocities in the 
reversed flow region must be stored for use in the type-dependent differencing 
of convective terms in the next global sweep. 

Rubin and Lin (19811, Rubin and Reddy (1983), and Israeli and Lin (1985) 
were among the first to report coupled space-marching methods for reduced 
forms of the Navier-Stokes (RNS) equations for incompressible or subsonic flow. 
Other coupled approaches for reduced equations include those reported by 
Liu and Pletcher (1986) and TenPas (1990). A discussion of recent coupled 
approaches is included in the review article by Rubin and Tannehill (1992). 

A variety of discretizations have been demonstrated for coupled space- 
marching schemes. Some have maintained the conservation-law form of the 
equations and have employed generalized coordinates. Implicit methods have 
been most often used. In two dimensions, a block tridiagonal elimination 
scheme has worked well. Three-dimensional applications have been 
demonstrated by Reddy and Rubin (1988). Ramakrishnan and Rubin (1987) 
describe a time-consistent version of the 2-D PPNS formulation (all viscous 
terms in the y momentum equation neglected). 

Many aspects of the discretization for the coupled PPNS approaches are 
similar to procedures discussed previously for the boundary-layer equations, 
PNS equations, and pressure-correction PPNS procedures. Two key features of 
the approach will be discussed in some detail for clarity. The most unique 
feature of the coupled multiple space-marching procedure is the treatment of 
the pressure term in the streamwise momentum equation. In order to accurately 
accommodate a wide range of flow Mach numbers, it is desirable (Rubin, 1988) 
to split the representation of the pressure gradient in the streamwise momentum 
equation into positive and negative flux contributions (as described 
8.3.2). This representation is given by 

in Section 

PT+ 1 - PT PT+2 - PT+ 1 

Ax* + (1 - W i + 3 / 2 )  Ax* 

where w is the Vigneron parameter, 0 Q w G min(1, 0,) and w, = yM,?/[l + 
(y - 1)M,2] except that w = 0 is used in regions of reversed flow. In the above, 
M, is the local Mach number of the flow in the x direction. Rubin (1988) 
reports that splitting the streamwise pressure gradient appearing in the energy 
equation is optional. For incompressible flows, o = 0 is clearly appropriate. For 
subsonic compressible flows the optimum value of w is problem dependent, but 
satisfactory results have been observed using w = 0 over a wide range of 
low-speed subsonic flows. 

To further illustrate, a simple two-point difference will be used in the 
Cartesian coordinate system for an incompressible or very low speed flow 
( w  = 0). The solution is being advanced from the i to the i + 1 marching 
station, as is always the case for global sweeps of a space-marching procedure. 
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Thus the pressure term can be represented as 
* k  * k + l  !q == - P i +  2 - P i +  1 

Jx* i + l  Ax* 
where the superscript k indicates the global marching level. It is important to 
notice that the value of p* at the i + 2 position is being specified using the 
solution from a previous sweep, while the pressure at location i + 1 is being 
treated as an unknown. Note that when splitting is employed for subsonic flows, 
it is still only the pressure at i + 2 that is fixed. Of course, when pressure 
splitting is employed and the local flow is supersonic, o = 1 and the influence of 
the downstream pressure vanishes. Rubin and Reddy (1983) point out that the 
best agreement with known solutions is observed if the pressure computed at 
i + 1 for incompressible flow is interpreted as the pressure at the upstream 
station (station i for u* > 0). 

The other, somewhat subtle, point is the representation of streamwise 
convective terms in embedded regions of reversed flow. The procedure normally 
used is to treat the downwind value in the difference stencil as the unknown and 
the upwind value as known. In our example we shall let the value being 
computed (downwind value) be located at the i + 1 station. Thus the upwind 
station would be at level i for u* > 0 and at level i + 2 for u* < 0. Due to the 
existence of a predominant flow direction, at each streamwise location some of 
the flow is moving in the positive x* direction. In that region a convective 
derivative (choosing an incompressible flow for simplicity) might be represented 
as 

= - 
Ax* 

where the expression has been linearized by a Newton method expanding about 
the values obtained at the previous global sweep. The values treated as unknowns 
in the algebraic formulation are marked by overbars for emphasis. The symbol 

indicates a variable such as u* or u*. In the reversed flow portion of the flow 
at i + 1 the representation would be 

* + 1  * k  * k * k + l  + U * k  +*k r + l  1+1 ~:!2+i",", - L Z + i + l  - U i + l + i + l  sli+l = Ax* 
where the unknown being determined is again marked by overbars. 

Boundary condition specification may vary somewhat depending on the 
specific discretization employed, problem being solved, and whether or not a 
diffusion term is used in the y momentum equation. Most frequently for 
incompressible or subsonic flows, velocities or one velocity and a streamwise 
velocity derivative and a thermal variable (when an energy equation is included) 
would be specified at the inflow boundary. The pressure at inflow is extrapolated 
from the interior but specified at the outflow boundary. No-slip conditions are 
specified at solid boundaries, and one velocity and the pressure or a pressure 
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derivative is specified at free stream boundaries. When the viscous term is 
included in the y momentum equation, one more variable, usually the normal 
component of velocity, must be specified at one of the boundaries. h u  and 
Pletcher (1986) describe a systematic way to couple the boundary conditions on 
both sides of a 2-D domain, which provides flexibility for choosing the variables 
to be specified. 

A number of improvements to the basic multiple space-marching coupled 
procedure have been suggested for subsonic applications. These have been 
motivated largely by the observation that the influence of the downstream 
pressure propagates upstream only one grid point per global iteration. Thus to 
improve convergence, some investigators (TenPas, 1990; Bentson and Vradis, 
1987) have employed a backsweep of an approximate Poisson equation between 
global marching sweeps to rapidly transmit pressure changes in the upstream 
direction and thereby accelerate the global convergence. 

It will be pointed out in the next chapter that space-marching procedures 
can be employed to solve the steady flow version of the full Navier-Stokes 
equations. The only difference between the PPNS equations and the steady-flow 
Navier-Stokes equations is the omission of streamwise diffusion terms in the 
former. Such terms can be included in a multiple space-marching scheme if 
values from a previous global sweep are used at the i + 2 level in the 
representation of the streamwise diffusion terms. The effects of streamwise 
diffusion are usually only significant for flows at low Reynolds numbers. Figure 
8.12, taken from TenPas (19901, shows the streamwise development of the axial 
component of velocity at the center of a 2-D channel for several Reynolds 
numbers. A uniform velocity distribution was specified at the inlet. Solutions to 
the full Navier-Stokes equations and the PPNS equations are shown, revealing 
that at the lowest Re, 0.5, the differences are significant. Differences can still be 
discerned at Re = 10 but become insignificant at Re = 75. 

8.5 VISCOUS SHOCK-LAYER EQUATIONS 

The viscous shock-layer (VSL) equations are a more approximate set of equations 
than the PNS equations. In terms of complexity, they fall between the PNS 
equations and the boundary-layer equations. The major advantage of the VSL 
equations is that they remain hyperbolic-parabolic in both the streamwise and 
crossflow directions. Thus the VSL equations can be solved using a marching 
procedure in both directions very similar to techniques employed for the 3-D 
boundary-layer equations. This is in contrast to the PNS equations, which must 
be solved simultaneously over the entire crossflow plane. As a consequence, the 
VSL equations can be solved (in most cases) with less computer time than the 
PNS equations. An additional advantage of the VSL equations is that they can 
be used to compute the viscous flow in the subsonic blunt-nose region, where 
the PNS equations are not applicable. Thus, for bodies with blunt noses, the 
VSL equations can be solved to provide a starting solution for a subsequent PNS 
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computation. The major disadvantage of the VSL equations is that they cannot 
be used to compute flow fields with crossflow separations. This is a direct result 
of the fact that the VSL equations are not elliptic in the crossflow plane. 

The concept of using a set of equations such as the VSL equations to solve 
for the high Mach number flow past a blunt body had its origins in the work of 
Cheng (1963) and Davis and Fliigge-Lotz (1964). As mentioned previously, the 
solution of a set of equations like the VSL equations avoids the need to 
explicitly determine the second-order boundary-layer effects of vorticity and 
displacement thickness. Furthermore, it eliminates the difficulty encountered in 
matching the viscous and inviscid solutions, when the boundary layer is 
significantly merged with the outer inviscid flow. 

Of all the early studies involving the use of the VSL equations, the method 
of Davis (1970) was the most successful. He solved the axisymmetric VSL 
equations in order to determine the hypersonic laminar flow over a hyperboloid. 
The VSL equations used by Davis are derived by first nondimensionalizing the 
Navier-Stokes equations with variables that are of order 1 in the boundary layer 
for large Reynolds numbers. In a similar manner, another set of equations is 
formed by nondimensionalizing the Navier-Stokes equations with variables that 
are of order 1 in the inviscid region of the flow field. In both sets of equations, 
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terms up to second order in E are retained: 

(8.164) 

where pref is the coefficient of viscosity evaluated at the reference temperature. 

T ref = -  (8.165) 

The two sets of equations are then compared and combined into a single set of 
equations, which is valid to second order from the body to the shock. For a 2-D 
(rn = 0) or axisymmetric (rn = 1) body intrinsic coordinate system (see Fig. 5.3), 
the VSL equations in nondimensional form become as follows: 

continuity: 

v,' 
cPm 

d d 
- [ ( r *  + q* cos 4 ) m p * ~ * ]  + ~ [ ( l  + K*q*)(r* + q* cos 4 ) m p * u * ]  = 0 

(8.166) 
* drl 

6 momentum: 

' * (  1 + K*q* a(* 
u* dU* du* K* u*u* 1 ap* 
- + u * -  + 

dq* 1 + K*q* ) + 1 + K*q* d(* 

(8.167) 

where 

'* = '* ($ - 
1 

q momentum: 

dv* K*(u*)* JP* 
+ u * -  - = 0 (8.168) ] + dq* 1 + K*q* 

energy: 

u* dT* u* ap* - u*- dP* 
'*( 1 + K*q* d(* dV* 

E 2 ( 7 *  l2 E 2  + - -- 
P* (1 + K*q*)(r* + q* cos + ) m  

,p* dT* 

Pr d q  
(1 + K*q*)(r* + q* cos 4) - 7 ] (8.169) 
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These equations have been nondimensionalized in the following manner: 

r K 
r* = - K* = - 

‘nose ‘nose ‘nose ‘nose 

17 17* = - 5 5* = - 

(8.170) 

By assuming a thin shock layer, the normal momentum equation reduces to 

dp* K*p* (u* )2 
- -  - 
dV* 1 +K*7)* 

(8.171) 

The above equations can be readily converted to a 2-D Cartesian coordinate 
system by setting 

m = O  
K* = 0 
x* = & *  
y* = 17* 

(8.172) 

The resulting VSL equations in Cartesian coordinates can then be compared 
directly with the PNS equations given previously by Eqs. (8.29)-(8.33). This 
comparison shows that the continuity and x momentum equations are the same 
but the y momentum and energy equations in the VSL set of equations are 
simpler than the corresponding PNS equations. 

In the original solution technique of Davis, the VSL equations were 
normalized with variable values behind the shock. This was done to permit the 
same grid in the normal direction to be used over the entire body. An initial 
global solution was obtained by utilizing the thin shock-layer assumption. This 
assumption makes the VSL equations totally parabolic and permits the use of 
standard boundary-layer solution algorithms. Subsequent global iterations re- 
tained the complete normal momentum equation. Also, for the first global 
iteration the shock was assumed to be concentric with the body. This assumption 
was possible because only hyperboloid body shapes were considered because of 
the difficulties associated with curvature discontinuities in body shapes such as 
sphere-cones. The shock angles for the second iteration were determined from 
the shock-layer thicknesses computed during the first iteration. 

The marching procedure was initiated from an approximate stagnation 
streamline solution. This stagnation streamline solution was obtained from the 
VSL equations, which reduce to ODES along 6 = 0. The solution at each 
subsequent 5 station was obtained by solving the VSL equations individually in 
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the following order: 

1. energy 
2. 6 momentum 
3. continuity 
4. q momentum 

The original method of Davis was not entirely satisfactory because of 
several limitations. First, the method was restricted to analytic body shapes such 
as hyperboloids. This difficulty was circumvented by Miner and Lewis (1975). 
who computed the flow around a sphere-cone body. They started with an initial 
shock shape from an inviscid blunt-body solution and used a transition function 
near the sphere-cone juncture in order to obtain a smooth distribution of 
curvature. Later, Srivastava et al. (1978) overcame this same difficulty by 
applying special difference formulas to the jump conditions across surface 
discontinuities. 

Another difficulty associated with the original Davis method was the poor 
convergence of the shock shape when the shock layer became thick. This 
problem was resolved by Srivastava et al. (1978, 1979), who noted that the 
relaxation process associated with the shock shape was similar to the interaction 
between displacement thickness and the outer inviscid flow in supersonic 
interacting boundary-layer theory. As a result of this observation, they were able 
to solve the shock-shape divergence problem by adapting the AD1 method of 
Werle and Vatsa (1974) for interacting boundary layers. Another problem with 
the original Davis method was that it was not able to solve the flow far 
downstream on slender bodies. This difficulty was traced to the fact that the 
VSL equations were being solved in an uncoupled manner. In particular, the 
two first-order equations (continuity and normal momentum) introduced in- 
stabilities that grew in the streamwise direction. By solving the continuity and 
normal momentum equations in a coupled fashion, Waskiewicz et al. (1978) 
were able to eliminate this stability problem. In a similar manner, Hosny et al. 
(1978) overcame the problem by completely coupling the VSL equations through 
a quasi-linearization technique. More recently, Gordon and Davis (1992) coupled 
the VSL equations with an additional equation for the shock standoff distance 
and have thereby eliminated the need for local iterations. They also developed a 
new global iteration procedure that uses Vigneron’s technique (Vigneron et al., 
1978a, 1978b) to split the differencing of the streamwise derivatives, d p / d [  and 
du/dg, into forward and backward parts. In addition, Gupta et al. (1992) 
developed a solution procedure for the VSL equations in which global iterations 
are required only in the nose region of a blunt body. 

The VSL equations have been successfully applied to a large number of 
different blunt-body flow fields. Murray and Lewis (1978) were the first to solve 
the flow around general 3-D body shapes at angle of attack. Since then, the VSL 
equations have been applied to a variety of body shapes, including sphere-cones 
(Murray and Lewis, 1978; Gogineni et al., 1980; Thompson et al., 19871, 
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ellipsoids (Szema and Lewis, 1981), sphere-cone-cylinder-flares (Kim and Lewis, 
19821, space shuttle geometry (Szema and Lewis, 1981; Shinn et al., 1982; Kim et 
al., 1983; Thompson, 19871, and aeroassist orbital transfer vehicles (Shinn and 
Jones, 1983; Carlson and Gally, 1991). In addition, VSL codes have been 
enhanced to account for turbulence (Anderson et al., 1976; Szema and Lewis, 
1980; Thareja et al., 1982; Gupta et al., 1990), equilibrium chemistry (Thareja et 
al., 1982; Swaminathan et al., 1982; Gupta, 1987), nonequilibrium chemistry 
(Moss, 1974; Miner and Lewis, 1975; Swaminathan et al., 1983; Shinn et al., 
1982; Kim et al., 1983; Song and Lewis, 1986; Thompson, 1987; Gupta et al., 
1987; Zoby et al., 1989; Bhutta and Lewis, 19911, ablation (Thompson et al., 
1983; Song and Lewis, 1986; Bhutta et al., 1989; Gupta et al., 1990), slip effects 
(Swaminathan et al., 1984; Lee et al., 1990), and catalytic walls (Shinn et al., 
1982; Kim et al., 1983; Thompson, 1987). 

8.6 “CONICAL” NAVIER-STOKES EQUATIONS 

The conical flow assumption for inviscid flows makes use of the fact that a 
significant length scale is missing in the conical direction for a flow field 
surrounded by conical boundaries. As a result, no variations in flow properties 
in the radial direction can occur, and a 3-D inviscid flow problem is reduced to a 
2-D problem. This leads to a self-similar solution, which is the same for all 
constant radius surfaces but scales linearly with the radius. The concept of 
conical flow is strictly valid only for inviscid flows. However, the viscous portions 
of the same flow fields have been observed in experiments to be strongly 
dominated by the outer inviscid conical flow. For these flow fields, Anderson 
(1973) suggested that a quick estimate of the heat transfer and skin friction 
could be obtained by solving the unsteady Navier-Stokes equations in a time- 
dependent fashion on the unit sphere with all derivatives in the radial direction 
set equal to zero. Thus the Navier-Stokes equations are solved subject to a local 
conical approximation. We will refer to the equations solved in this manner as 
the “conical” Navier-Stokes (CNS) equations. The local Reynolds number is 
determined by the radial position where the solution is computed. As a result, 
the solution is not self-similar in the sense of inviscid conical flow, but is scaled 
through the local Reynolds number, which remains in the resulting set of 
equations. 

The CNS equations were originally used by McRae (1976) to compute the 
laminar flow over a cone at high angle of attack. Since then, Vigneron et al. 
(1978a), Bluford (19781, McMillin et al. (19871, and Ruffin and Murman (1988) 
have computed the laminar flow over a delta wing, and Tannehill and Anderson 
(1980) have computed the flow in a 3-D axial corner. Also, McRae and Hussaini 
(1978) have employed an eddy viscosity model in conjunction with the CNS 
equations to compute the turbulent flow over a cone at high angle of attack. In 
all of the above cases (except one, where the inviscid flow was not completely 
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conical) the computed inviscid and viscous portions of the flow field agree 
surprisingly well with the available experimental data. 

The CNS equations have also proved quite useful in computing starting 
solutions for PNS calculations of flows over conical (or pointed) body shapes. 
This is the primary use of the CNS equations today. Schiff and Steger (1979) and 
others have incorporated a marching step-back method in their PNS codes, 
which is equivalent to solving the CNS equations using the time-dependent 
approach described above. In these codes the flow variables are initially set 
equal to their free stream values, and the equations are marched from x = xo to 
x = xo + Ax using the same implicit scheme as used to solve the PNS equations 
but with d p / d x  = 0. After each marching step, the solution is scaled back to 
x = xo. The computation is repeated until no change in flow variables occurs. 

The CNS equations are derived from the complete Navier-Stokes equations, 
dU* dE* dF* dG* - + -  + -  + -  = o  
dt* dX* ay* dZ* 

(8.173) 

where U*, E*, F*, and G* are the nondimensional vectors defined by Eqs. 
(5.46). The following conical transformation 

a = [(x*Y + ( y * ) 2  + (z*)y2 
Y* p =  - 
X* (8.174) 
z* 

Y = ,  

7 = t *  

X 

is initially applied to these equations. The resulting transformed equations can 
be written in the following strong conservation-law form: 

= O  1 
where 

A = (1 + p 2  + y 2 ) ’ l 2  
The assumption of local conical self-similarity requires that 

d E* 
- = o  

d a  
d F* - = o  
da 

dG* 
- = o  

d a  

(8.175) 

(8.176) 
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which reduces Eq. (8.175) to 

1 2 a  
d r  h3 h4 
”( fU*) + -(E* + PF* + y G * )  + 

= O  1 (8.177) 

The solution is computed on a spherical surface whose nondimensional radius 
(r* = r / L )  is equal to 1. On this computational surface, a = 1, since 

As a result, Eq. (8.177) can be rewritten as 
dU, dF, dG, - + - + -  + H , = O  
d r  d p  dy 

where 
U* 

- P E *  + F* 

u4 = -p 

A2 

A2 

F4 = 

- Y E *  + G* 
G, = 

2(E* + PF* + y G * )  
h4 

H, = 

(8.178) 

(8.179) 

The partial derivatives appearing in the viscous terms of E*,  F*, and G* are 
readily transformed using 

d d d 

d 
- = A -  

d 

az* dy 

Thus the shear-stress and heat flux terms, given in Eqs. (5.471, become 

(8.180) 

(2hw,* + phu; + yhu; - Av;) 
2 P* 

r; = - 
3 Re, 



(8.181) 
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-(A,$ P* 

- ( X U ;  P* + Aw;) 

- PA$ - ~ALJ,* ) 
Re, 
P* 

Re, 

Re, 

- ( Au*, - PAW; - YAW,* ) 

P* 
( - PAT: - ?AT,* ) 

( y  - l)M? Re, Pr 
P* 

( y  - OM? Re, Pr 
P* 

( y  - 1)M: Re, Pr 

AT: 

AT,* 

Note that the Reynolds number Re, remains in the expressions for shear stress 
and heat flux. This Reynolds number is evaluated using 

(8.182) 

where L is the radius of the spherical surface where the solution is computed. 
As a consequence, solutions of the CNS equations depend directly on the 
position ( r  = L )  where they are computed. This is different from inviscid 
solutions, which are independent of r and, thus, truly conical. 

An analysis by Rasmussen and Yoon (1990) has shown that the boundary 
layer computed on a circular cone with the CNS equations is thinner than would 
be computed with the complete Navier-Stokes equations. Nevertheless, the CNS 
equations are very useful in providing approximate starting solutions for PNS 
calculations of flows over pointed bodies. 

The CNS equations can be solved using the same “time-dependent” 
algorithms that are applied in Chapter 9 to the 2-D compressible Navier-Stokes 
equations. Thus we will postpone our discussion of numerical schemes for the 
CNS equations until then. In closing, it should be remembered that the CNS 
equations are a very approximate form of the complete Navier-Stokes equations, 
and as such, they should not be used for flow problems where a high degree of 
accuracy is required. 

PROBLEMS 

8.1 Verify Eq. (8.8). 
8.2 Derive Eqs. (8.9)-(8.11). 
8 3  Reduce the thin-layer equations in Cartesian coordinates to the set of boundary equations that 
are valid at a no-slip wall ( y  = 0). Assume the wall is held at a constant temperature of T,. 
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8.4 Reduce the thin-layer equations written in the transformed coordinate system [Eqs. (8.9)-(8.11)] 
to the set of boundary equations that are valid at a no-slip wall (17 = 0). Assume the wall is held at a 
constant temperature of T,,. 
8.5 Obtain Eq. (8.15) from Eq. (5.19). 
8.6 Obtain Eq. (8.16) from Eq. (5.19). 
8.7 Obtain Eq. (8.17) from Eq. (5.31). 
8.8 Obtain Eq. (8.23) from Eq. (8.17). 
8.9 Derive the compressible laminar boundaxy-layer equations starting with Eqs. (8.14)-(8.17). Note 
that in the boundary-layer region, A2 - O(1) and (A/S*)' >> 1. 
8.10 Apply the thin-layer approximation to Eqs. (8.37)-(8.39) and show that they are equivalent to 
Eqs. (8.40), (8.101, and (8.11). 
8.11 Verify that Eq. (8.44) is equivalent to Eq. (8.43). 
8.12 Show that the eigenvalues of Eq. (8.44) are given by Eq. (8.46). 
Hint: 1411 - [A1l-'[BlIl = I[A11-'I Ih[All - [BIII. 
8.13 Derive Eq. (8.47). 
8.14 Verify Eqs. (8.48) and (8.49). 
8.15 Derive Eq. (8.50). 
8.16 For the flow conditions, 

M ,  = 0.6 

Re PU - 1000 _ -  
L C l m  

y =  1.4 
Pr = 0.72 

solve Eq. (8.50), and show that all the roots will be real and positive if o = 0.4, which satisfies Eq. 
(8.52). 
8.17 Repeat Prob. 8.16 with o = 0.5, and show that at least one root of Eq. (8.50) will not be real 
and positive. 
8.18 If all the eigenvalues of Eq. (8.50) are real, show that these eigenvalues are positive, provided 
that the conditions given by Eqs. (8.51) and (8.52) are satisfied. 
8.19 Place an o in front of the streamwise pressure gradient term in both the streamwise 
momentum equation and the energy equation, and evaluate the condition that must be satisfied in 
order for Eq. (8.44) to remain hyperbolic if o < 1. You may assume that u ez u. 
8.20 Linearize the following terms using Eq. (8.61): 

( a )  .z+l,l,,kuz:,:,k 

( b )  c . Y l , l , , k ) z ~ l ? : . : , k  

(c) (~;+~", i , , ,d~G,:,~ 
( d )  . ~ ~ , l , , k u ~ : , : , k W l ? : , : , k  

( e )  .r+y,, k(vl?:.:,k)*Wz:,:,k 

8.21 Derive the expression for the Jacobian dE*/dU given by Eq. (8.78). 
8.22 Derive the expression for the Jacobian dF/dU given by Fq. (8.79). 
8.23 Derive the expression for the Jacobian d G / d U  given by Eq. (8.80). 
8.24 If o can be approximated by 

0 -- vM,2 

derive the expression for the Jacobian dE*/dU that results when o is no longer assumed 
independent of U. 
8.25 Derive the expression for the Jacobian dF,/dU given by Eq. (8.84). 
8.26 Derive the expression for the Jacobian dG,/dU given by Eq. (8.85). 
8.27 The elements of the matrix [C], in Eq. (8.96) can be represented by ( c ~ ~ ) ~ ,  where 1 = 1,2, .  . . ,5 
and m = 1,2,. . . ,5. Determine the element (c2& 
8.28 Determine the element ( c ~ ' ) ~  in Prob. 8.27. 
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8.29 Determine the element (c4,), in Prob. 8.27. 
830 The elements of the matrix [ B ] ,  in Eq. (8.96) can be represented by (b,, ) k ,  where I = 1,2, . . . , 5  
and rn = 1,2,. . . ,5 .  Determine the element (b24),. 
831 Determine the element (b4,), in Prob. 8.30. 
832 Determine the elements 
(8.96). 
833 Apply the difference formula given in Eq. (8.70) to the 2-D PNS equation, 

(b,,),, and (c,,), of the matrices [A],, [B],, and [ C ] ,  in Eq. 

aE* a P  a F  - + - + - = o  
a x  ax ay 

and develop a solution algorithm like that given by Eqs. (8.92)-(8.95) for the 3-D PNS equation. 
834 Derive the expressions for the cell-face-area vectors given in Eq. (8.104). 
835 Verlfy Eqs. (8.105) and (8.106). 
836 Starting with the x momentum Navier-Stokes equation [Eq. (5.19)], show how this equation is 
reduced and write out the resulting x momentum equation for the following simplified sets of fluid 
dynamic equations. Assume that the streamwise flow is in the x direction, while the body surface is 
in the x-z plane. 

( a )  thin-layer Navier-Stokes (TLNS) equations 
( b )  reduced Navier-Stokes (RNS) equations 
( c )  PNS equations 
( d )  PNS equations with thin-layer approximation 
( e )  three-dimensional steady boundary-layer equations 
(f) Euler equations 

837 Repeat Prob. 8.36 for the y momentum Navier-Stokes equation. 
838 Repeat Prob. 8.36 for the Navier-Stokes energy equation [Eq. (5.2511. You may ignore all body 
forces and external heat transfer. 
839 Work out the details for a velocity correction procedure for the 3-D parabolic procedure for an 
incompressible flow in a rectangular channel. Use both the 4 potential and p’ methods. Employ a 
staggered grid. 
8.40 Write the y momentum equation in finite-difference form for the PPNS model following the 
strategy outlined in Section 8.4.3 for the x momentum equation. 
8.41 Prove that the formulation described for the Poisson equation for pressure in the PPNS model 
satisfies the constraint 

8.42 Suggest a way that the PPNS procedure might be extended to 3-D flows. 
8.43 Explain how the velocity boundary conditions can be implemented for a boundaly that is a line 
of symmetry (such as the centerline of a 2-D channel) when a staggered grid is used for the PPNS 
momentum equations. Explain in terms of the Thomas algorithm. 
8.44 The incompressible partially parabolized Navier-Stokes momentum equations are given below 
for a flow predominantly in the positive x direction: 

au au 1 ap a2u 

ax ay p a x  a y 2  

av av 1 ap a2v 

ax ay p ay a y 2  

u- + u -  = - -- + v- - - 
term C term A 

u- + v- = + v- 
w 

term B 
The equations are to be solved by a coupled space-marching fully implicit scheme. Assume that the 
unknowns are to be solved at the i + 1 marching station, k + 1 marching sweep. 

(a) Explain how term A is to be treated in the discretization. Give an appropriate difference 
representation. 
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20 35* 
0-0-0 j + l  

I t 
X 

i i+l  i + 2  

Figure P8.1 

( b )  Use Newton linearization to obtain a representation for term B that is linear in the 
unknown values of u and u. 

( c )  Give a difference representation for term C that is appropriate for use in a small region of 
recirculation where u < 0. Apply Newton linearization. 
8.45 The partially parabolized Navier-Stokes equations are being solved on a uniform staggered grid 
for a steady laminar incompressible flow by the method described in the text. Provisional velocities 
(in m/s) have been obtained at the i + 1 marching level, and these are indicated by an asterisk in 
Fig. P8.1. Use the velocity potential method to determine velocity corrections that must be added to 
the three provisional velocities so that mass is conserved. Note that velocities on the upper and 
lower boundaries are fixed by the boundary conditions to be zero (no slip), so that no corrections are 
needed for these. 
8.46 Suggest an implicit discretization scheme to implement a coupled space-marching procedure 
for the PPNS equations given by 5 s .  (8.155)-(8.159) for subsonic applications. Use Newton 
linearization. Explain how the linear equations can be solved. 
8.47 Suggest appropriate boundary conditions for solving the PPNS equations given by Eqs. 
(8.155)-(8.159) by an implicit scheme on a rectangular domain for the following problems. State the 
conditions needed when the viscous term in the y momentum equation is (1) included; (2) omitted. 

( a )  developing flow in a 2-D channel 
( b )  flow over a flat plate of finite length 

8.48 Apply the transformation 
a = x *  

X* 

z* 

r = t *  
to Eq. (8.173) and derive the “conical” Navier-Stokes equations that can be used to compute a 
solution at the station x = L, where a = x* = 1. 

p = -  Y* 

Y =  7 
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