
CHAPTER 

SEVEN 
NUMERICAL METHODS FOR 

BOUNDARY-LAYER TYPE EQUATIONS 

7.1 INTRODUCTION 
It was pointed out in Chapter 5 that the equations that result from the 
boundary-layer (or thin-shear-layer) approximation provide a useful mathemat- 
ical model for several important flows occurring in engineering applications. 
Among these are many jet and wake flows, two-dimensional or axisymmetric 
flows in channels and tubes, as well as the classical wall boundary layer. Cer- 
tain three-dimensional flows can also be economically treated through the 
boundary-layer approximation. In addition, methods have been developed to 
extend the boundary-layer approximation to flows containing small regions of 
recirculation. Often, a small region exists near the streamwise starting plane of 
these flows in which the thin-shear-layer approximation is a poor one, but for 
moderate to large Reynolds numbers, this region is very (and usually negligibly) 
small. 

In this chapter, methods and numerical considerations related to the 
numerical solution of these equations will be presented. The emphasis will be on 
the application of methods and principles covered in Chapters 3 and 4 rather 
than on the exposition of a single general-numerical procedure. Several finite- 
difference/finite-volume methods for these equations are described in detail 
elsewhere. Except as an aid in illustrating key principles, those details will not 
be repeated here. 

The history of numerical methods for boundary-layer equations goes back to 
the 1930s and 1940s. Finite-difference methods in a form very similar to those 
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now in use began emerging in the 1950s (Friedrich and Forstall, 1953; Rouleau 
and Osterle, 1955). We can think of numerical schemes for the boundary-layer 
equations as being well developed and tested as compared to methods for some 
other classes of flows. Despite this, new developments in the numerical treatment 
of these equations continue to appear regularly. 

7.2 BRIEF COMPARISON OF PREDICTION METHODS 

Before proceeding with a discussion of numerical methods for boundary-layer 
flows, it is well to remember that over the years, useful solutions have been 
obtained by other methods and for some simple flows, engineering results are 
available as simple formulas. These results are presented in standard textbooks 
on fluid mechanics, aerodynamics, and heat transfer. The books by Schlichting 
(1979) and White (1991) are especially valuable references for viscous flows. 

Except for a few isolated papers based on similarity methods, the calculation 
methods for boundary-layer type problems that appear in the current literature 
can generally be categorized as (1) integral methods, (2) finite-difference/fi- 
nite-volume methods, or (3) finite-element methods. 

Integral methods can be applied to a wide range of both laminar and 
turbulent flows and, in fact, any problem that can be solved by a finite- 
difference/finite-volume method can also be solved by an integral method. 
Prior to the 1960s, integral methods were the primary “advanced” calculation 
method for solving complex problems in fluid mechanics and heat transfer. 
Loosely speaking, the method transforms the partial differential equations 
(PDEs) into one or more ordinary differential equations (ODES) by integrating 
out the dependence of one independent variable (usually the normal coordinate) 
in advance by making assumptions about the general form of the velocity and 
temperature profiles (often functions of “ N ”  parameters). Many of these 
procedures can be grouped as weighted residual methods. It can be shown that 
the solution by the method of weighted residuals approaches the exact solution 
of the PDE as N becomes very large. Modern versions of integral methods for 
complex problems make use of digital computers. In practice, it appears that 
implementing integral methods is not as straightforward (requiring more 
“intuition” about the problem) as for finite-difference/finite-volume methods. 
The integral methods are not as flexible or general in that more changes are 
generally required as boundary or other problem conditions are changed. In the 
1970s the preference of the scientific community shifted in favor of using 
finite-difference/finite-volume methods over integral methods for computing 
the more complex boundary-layer flows. However, integral methods have at 
least a few strong advocates and can be used to solve important current 
problems. 

Finite-element methodology has been applied to boundary-layer equations. 
Comments on this approach for boundary layers can be found in the work by 
Chung (1978). The objective of all three of these methods is to transform the 
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problem posed through PDEs to one having an algebraic representation. The 
methods differ in the procedures used to implement this discretization. 

7.3 FINITE-DIFFERENCE METHODS FOR TWO-DIMENSIONAL 
OR AXISYMMETRIC STEADY EXTERNAL FLOWS 

7.3.1 Generalized Form of the Equations 

The preferred form for the boundary-layer equations will vary from problem to 
problem. In the case of laminar flows, coordinate transformations are especially 
useful for maintaining a nearly constant number of grid points across the flow. 
The energy equation is usually written differently for compressible flow than it is 
for incompressible flow. In practice, it is frequently necessary to extend or alter 
a difference scheme established for one PDE to accommodate one that is 
similar but different in some detail. Optimizing the representation often requires 
a trial-and-error procedure. 

The boundary-layer equations were given in Chapter 5 [Eqs. (5.116)-(5.11911 
in physical coordinates. Here, we will utilize the Boussinesq approximation to 
evaluate the Reynolds shear-stress and heat flux quantities in terms of a 
turbulent viscosity pT and the turbulent Prandtl number Pr,. Specifically, we 
will let 

dU 
= PT- 

JY 
and 

cpPT d T  

PrT dy 
- p c p m  = - - 

To solve the energy equation numerically using H as the primary thermal 
variable, it will be helpful to eliminate T in the expression for the Reynolds heat 
flux by using the definition of total enthalpy, H = c,T + u2/2 + u2/2. The 
u2/2 term can be neglected in keeping with the boundary-layer approximation. 
These substitutions permit the boundary-layer equations for a steady compres- 
sible 2-D or axisymmetric flow to be written as follows: 

x momentum: 

dx r"' d y  

dU dU 
pu- + @ - = p u  

dX dY 
energy: 

dy r m  d y  

dH 

dX 
pu- + pe- = - - rm 

+ 

-+-) -  P PT dH 
Pr Pr, dy 

(7.1) 

(7.2) 
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continuity : 
d d 

-(rmpu) + -(r”pG) = 0 
d X  dY 

(7.3) 

state: 

Property relationships are also needed to evaluate p, k, cp as a function (usually) 
of temperature. 

As indicated in Chapter 5, rn is a flow index equal to unity for axisymmetric 
flow and equal to zero for 2-D flow, and 6 = ( i j V  + ’p7v3/ij. When rn = 0, 
r m  = 1 and the equations are in appropriate form for 2-D flows. 

The primary dependent variable in the momentum equation is u,  and it is 
useful to think of Eq. (7.1) as a “transport” equation for u,  in which terms 
representing convection, diffusion, and “sources” of u can be recognized. 
Likewise, the energy equation can be viewed as a transport equation for H with 
similar categories of terms. This interpretation can also be extended to include 
the unsteady form of the boundary-layer momentum and energy equations. 

Within the transport equation context, both Eqs. (7.1) and (7.2) can usually 
[an exception may occur with the use of some turbulence models, Bradshaw et 
al. (1967)l be cast into the general form 

P = p ( T , p )  (7.4) 

(7.5) 
dC#J - d d  1 d d 4  

p u - + + - = - - - A -  + S 
. -. Source 
Convection of C#J Diffusion of 4 terms 

d X  d y  rm d y  ( m d y )  - 
In Eq. (7.51, is a generalized variable, which would be u for the 

boundary-layer momentum equation and H for the boundary-layer energy 
equation; A is a generalized diffusion coefficient and S represents the source 
terms. Source terms are those terms in the PDE that do not involve a derivative 
of 4. The term peue due/& in Eq. (7.1) and the term involving u d u / d y  in Eq. 
(7.2) are examples of source terms. Most of the transport equations for 
turbulence model parameters given in Chapter 5 also fit the form of Eq. (7.5). 

The momentum and energy equations that can be cast into the general form 
of Eq. (7.5) are parabolic with x as the marching coordinate. By making 
appropriate assumptions regarding the evaluation of coefficients, it is possible to 
decouple the finite-difference representation of the equations, permitting the 
momentum, continuity, and energy equations to be marched one step in the x 
direction independently to provide new values of u j ,  Hj,  and q. This strategy is 
illustrated below: 

Equation Marched to obtain 
x momentum .y+l 

energy Hi”+’ 

equation of state + continuity y’ 
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After each marching step, the coefficients in the equations are reevaluated 
(updated), so that the solutions of the three equations are in fact interdependent 
-the decoupling is in the algebraic system for one marching step at a time. In 
some solution schemes, the coupling is maintained so that at each marching 
step, a larger system of algebraic equations must be solved simultaneously for 
new values of uj ,  Hi, 3. Uncoupling the algebraic system is conceptually the 
simplest procedure and can usually be made to work satisfactorily for most flow 
problems. 

7.3.2 Example of a Simple Explicit Procedure 
Although the simplest explicit method is no longer widely used for boundary 
layers owing to the restrictive stability constraint associated with it, it will be 
used here for pedagogical purposes to demonstrate the general solution 
algorithm for boundary-layer flows (Wu, 1961). Consider a 2-D laminar 
incompressible flow without heat transfer. The governing equations in partial 
differential form are given as Eqs. (5.104) and (5.105). 

The difference equations can be written as follows: 

x momentum: 

continuity: 

For flow over a flat plate (see Fig. 7.11, the computation is usually started by 
assuming that u; = u, at the leading edge and 9" = 0. The value 9" is required 
in the explicit algorithm in order to advance the solution to the n + 1 level. 
However, in the formal mathematical formulation of the PDE problem, it is not 
necessary to specify an initial distribution of 9". A compatible initial distribution 
can be obtained for 9" (Ting, 1965) by first using the continuity equation to 
eliminate d u / d x  from the boundary-layer momentum equation. For a laminar, 
incompressible flow, this gives 

dv du due d'u 
-u- + u- = 24,- + u- 

dY dY ak dy2 
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, .  ,I -x'n 

Figure 7.1 Simple explicit procedure. 

We can observe that 
au au 

-u- + V- = 
JY dY 

Thus 

n n t l  n n t l  

j - 1  

MOMENTUM CONTINUITY 

d u  
4-( dY -) 

and using u = 0 at y = 0, we find 

For the flat plate problem at hand, we would assume that uy = u, at x = 0 (the 
leading edge) except at the wall, where u; = 0. We can use a numerical 
evaluation of the integral in Eq. (7.8) to obtain an estimate of a compatible 
initial distribution of 9" to use in the explicit difference procedure. Employing 
the usual central-difference representation for d 2 u / d y 2  gives yn = 2 v / A y  at 
all points except the point on the wall where u; = 0 and the point adjacent to 
the wall where = v / A y .  In practice, letting u? = 0 initially throughout is also 
found to work satisfactorily. 

Having initial values for uy, the momentum equation, Eq. (7.61, can be 
solved for uy+ ' explicitly, usually by starting from the wall and working outward 
until uy+'/u:+'  = 1 - E = 0.9995; that is, owing to the asymptotic boundary 
condition, we find the location of the outer boundary as the solution proceeds. 
The values of uy' ' can now be computed from Eq. (7.7), starting with the point 
next to the lower boundary and computing outward. The difference formulation 
of the continuity equation and the solution procedure described is equivalent to 
integrating the continuity equation by the trapezoidal rule for q*+ 

The stability constraints for this method are 

2 v A x  (,11)2 A x  
Q 1 and Q 2  u Y ( A y >  U p  
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The second term in the momentum equation, Eq. (7.6), has been enclosed 
by a dashed box for two reasons. First, we should be aware that the presence of 
this term is mainly responsible for any difference between the stability constraints 
of Eq. (7.6) and the heat equation, and second, we will suggest an alternative 
treatment for this term below. 

Alternative formulation for explicit method. In order to control the stability of 
the explicit method by checking only a single inequality, the boxed term in Eq. 
(7.6), can be expressed as 

u? - u? 
I 1-1 

Ui” 
AY 

when 

and 

ui” > 0 

when I$’ < 0, whereby the stability constraint becomes 

1 

‘ 2v/[ u; (Ay)* ]  + Iyfll/(u; A y )  

The truncation error (T.E.) deteriorates to only O ( A x )  + O ( A y )  when this 
treatment of u d u / d y  is used. 

Note that the stability constraints for both methods depend upon the local 
values of u and u. This is typical for equations with variable coefficients. The 
von Neumann stability analysis has proven to be a reliable guide to stability for 
boundary-layer equations if the coefficients u andu that appear in the equations 
are treated as being locally constant. Treatment of pT for turbulent flow in the 
stability analysis requires further consideration. For some models, p T  will 
contain derivatives whose difference representation could contribute to numer- 
ical instabilities. In the stability analysis, one can treat pT as simply a specified 
variable property and then by trial and error develop a stable difference 
representation for pT or one can express pT  in terms of the dependent flow 
variables and attempt to determine the appropriate stability constraints by the 
usual methods. 

7.3.3 Crank-Nicolson and Fully Implicit Methods 
The characteristics of most implicit methods can be visualized by considering 
the following representation of the compressible laminar boundary-layer 
equations in physical coordinates on a mesh for which b y  = const. 
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the energy equation as 

energy: 

which, utilizing the 8 notation, can be written in difference form as 

The T.E. for the energy equation is identical to that stated for the momentum 
equation for e = 0, 3, I. 

The fully implicit ( 0  = 1) scheme can be elevated to formal second-order 
accuracy by representing streamwise derivatives by three-level ( n  - 1, n,  n + 1) 
second-order accurate differences, such as can be found in Chapter 3. Davis 
(1963) and Harris (1971) have demonstrated the feasibility of such a procedure. 

For any implicit method ( 0  # 0) the finite-difference forms of the momentum 
and energy equations [Eqs. (7.9) and (7.12)] are algebraically nonlinear in the 
unknowns owing to the appearance of quantities unknown at the n + 1 level in 
the coefficients. Linearizing procedures that can and have been utilized are 
described in the following sections. 

Lagging the coefficients. The simplest and most common strategy is to linearize 
the difference equations by evaluating all coefficients at the n level. This is 
known as “lagging” the coefficients. The procedure provides a consistent 
representation, since for a general function 4 ( x ,  y ) ,  +(xo + Ax ,  yo> = qf4xo, y o )  
+ O(Ax) .  This procedure causes the difference scheme to be no better than 
first-order accurate in the marching coordinate. Using the generalized form [Eq. 
(7.5)] for a transport equation, the linearized difference representation obtained 
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by lagging the coefficients can be written 

The three conservation equations in difference form can now be solved in 
an uncoupled manner. The momentum equation can be solved for u;", the 
energy equation for Ttl, and an equation of state used to obtain pi"+'. Finally, 
the continuity equation can be solved for uy' '. The matrix of unknowns in each 
equation (for momentum and energy) is tridiagonal, and the Thomas algorithm 
can be employed. 

Simple iterative update of coefficients. The coefficients can be ultimately 
evaluated at the n + 1 level as required in Eqs. (7.9), (7.10), and (7.12) by use of 
a simple iterative updating procedure. To do this, the coefficients are first 
evaluated at the n level (lagged) and the system solved for new values of u, T, u 
at the n + 1 level. The coefficients can then be updated by utilizing the solution 
just obtained at the n + 1 level and the calculation repeated to obtain "better" 
predictions at n + 1. 

This procedure can be repeated iteratively until changes are small. Usually 
only two or three iterations are used, although Blottner (1975a) points out that 
up to 19 iterations were required in a sample calculation with the Crank-Nicolson 
procedure before the solution obtained behaved like a second-order accurate 
scheme under grid refinement (see Section 3.2). Although the programming 
changes involved in advancing from the lagged procedure to the simple iterative 
update are minimal, the use of Newton linearization, to be described next, is 
more efficient and is recommended for that reason. 

Use of Newton linearization to iteratively update Coefficients. Newton lineariza- 
tion is another linearization procedure that can be used to iteratively update 
coefficients and, in fact, to provide a useful representation for most nonlinear 
expressions arising in computational fluid dynamics (CFD). The Newton 
procedure is actually more efficient (converges in fewer iterations) than the 
simple iterative update procedure described above. To be general, suppose we 
wish to linearize a function of several dependent variables in a conservation 
equation such as u ,  u, and p. These variables may, in turn, depend upon 
independent variables such as position and time. With an iteration sequence in 
mind, we may think of u, u, and p as being functions of a time-like parameter 
(pseudo-time) that is incremented as the iterative sequence proceeds. We let 



NUMERICAL METHODS FOR BOUNDARY-LAYER W E  EQUATIONS 451 

Au, Av ,  and A p  equal the change in u, v, and p ,  respectively, between two 
iterative solutions to the difference equations. Thus u f - '  = iy-' + Au,, yn+'  
= y+1 + Avi, py" = + Apj ,  where the circumflex denotes an 
evaluation of the variable from a previous iteration level. For the first iteration 
with the steady boundary-layer equations, the variables with circumflexes will be 
assigned values from the previous marching station. We may expand the 
nonlinear function F"+'(u,  v, p )  in a Taylor series in the iteration parameter 7 
about the present state 2"": 

(7.14) 

Linearization is enabled by truncating the series after the first-derivative term. 
Using the chain rule, we can represent the derivative on the right-hand side in 
terms of u, v, p :  

Substituting this result into Eq. (7.14) gives 

(7.15) 

Note that the iteration parameter T does not appear in this final working form 
of Newton linearization. 

As an example, let the function to be linearized be uv/p .  Applying the 
results indicated by Eq. (7.19, we obtain 

When solving the boundary-layer equations with an implicit scheme, we 
need to linearize (ujn")'. Here Fn+l = F n f ' ( u )  = (uy")' and d P / d u  = 

. Our representation after linearization is 26n+ 1 

(7.16) 

in which Auj is the only unknown. Alternatively, we can substitute for Auj 
according to Auj  = uY+' - iiY+l and rewrite Eq. (7.16) as 

(q+ 1)' (7.17) 

This latter procedure will be employed in this chapter. However, both procedures, 
the one in which the delta quantities are treated as the unknowns [as in Eq. 
(7.1611 and the other in which the deltas are eliminated by substitution [as in Eq. 
(7.17)l are widely used in CFD. Note that upon iterative convergence, both 
representations are exact. 
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For a more specific example of the use of this procedure, consider a fully 
implicit (0  = 1) application in which the conservation equations are to be solved 
in an uncoupled manner for an incompressible flow. The most obvious 
nonlinearity appears in the representation for the pu d u / d x  term. Applying 
Newton linearization to the fully implicit finite-difference representation of this 
term gives 

A x  
(7.18) 

in which u:+' is the only unknown. For the first iteration, fir+' is evaluated as 
u;. A slightly different final result is obtained if we apply the linearization 
procedure to this term in the mathematically equivalent form, p d ( u 2 / 2 ) / d x .  

If the conservation equations are to be solved in an uncoupled manner, i.e., 
one unknown is to be determined independently from each conservation 
equation, the other nonlinear terms 

are usually evaluated by the simple iterative updating procedure described 
above. 

Evaluating pu d u / d x  by the Newton linearization as indicated in Eq. (7.18) 
and using simple updating on other nonlinear terms results in a tridiagonal 
coefficient matrix, which permits use of the Thomas algorithm with no special 
modifications. The calculation is repeated two or more times at each streamwise 
location, updating variables as indicated. 

Newton linearization with coupling. Several investigators have observed that 
convergence of the iterations to update coefficients at each streamwise step in 
the boundary-layer momentum equation can be accelerated greatly by solving 
the momentum and continuity equations in a coupled manner. Second-order 
accuracy for the Crank-Nicolson procedure has been observed using only one 
iteration at each streamwise station when the equations are solved in a coupled 
manner (Blottner, 1975a). According to Blottner (1975a), coupling was first 
suggested by R. T. Davis and used by Werle and co-workers (Werle and Bertke, 
1972; Werle and Dwoyer, 1972). An example of the coupled procedure for a 
fully implicit formulation for incompressible, constant property flow follows. 

The u d u / d x  term is treated as in Eq. (7.18). The u d u / d y  term is 
linearized by using ?"+l = 6;" + A 9  and u;+l = Li;+l + Auj.  For the first 
iteration, Y'' and l;;+l are most conveniently evaluated as 9" and uy, 
respectively. Here we are considering F in Eq. (7.15) to be F(u,u) .  After 
replacing the delta quantities by differences in variables at two iteration levels, 
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the term u d u / d y  becomes 

The continuity and momentum equations can then be written in difference 
form as 

- V (u:+'I2 - u:"u: 
- -(U?f' - 2U?+l + u ? + ' )  + (7.21) 

1 - 1  A x  I +  1 I 
( A y l 2  

To clarify the algebraic formulation of the problem, the momentum equation 
can be written as 

B.u?+l + D.u?+' +A.u?+'  + a.u!++' + b.v?++' 1 1 - 1  = Cj (7.22) I 1 - 1  I I I 1 + 1  I I 

where 

In this example, bj could be dropped, since it is equal to zero. We will continue 
to develop the solution algorithm including bj because the result will be useful 
to us for solving other difference equations in this chapter. 

For any j value, four unknowns (five if bj # 0)  appear on the left-hand side 
of Eq. (7.22), uy:;, uy", uyzf, and ,"+*. It is obvious that the matrix of 
coefficients is no longer tridiagonal. However, the continuity equation can be 
written as 

U n + l  I = U n + l  1 - 1  - ej(uyJ: + .in+') + d j  (7.23) 
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where 
<u;-l + u?) Ay d .  = 

AY e .  = - 
2Ax I 2 An 

and Eqs. (7.22) and (7.23) together form a coupled system, which can be written 
in "block-tridiagonal" form (see Appendix B) with 2 X 2 blocks as 

A solution algorithm has been developed (see also Werle et al., 1973, or 
Blottner, 1975a) for solving this coupled system of equations. In this procedure 
(often called the modified tridiagonal algorithm), the blocks above the main 
diagonal are first eliminated. This permits the velocities, u;+', to be calculated 
from the recursion formula u;" = E d ' + '  I 1 - 1  + F/ + G.ufl+' 1 1 - 1  after Ej,  F j ,  Gj ,  and 
YY'~' are computed as indicated below. At the upper boundary, corresponding 
to j = J ,  conditions are specified as 

E, = 0 

Fj = u;-  (specified boundary value) 
Gj = 0 

Then for j = J - 1, J - 2,. . . , 2  we compute 

Dl = Dl + A I E l + ,  - e j (A jGj+ l  + ail 

B, - ej(AjG1+,  + a,) 

Di 
- 

Then the lower boundary conditions are utilized to compute u;+ = 0, u;+ = 0, 
after which the velocities can be computed for j = 2, . . . , J by utilizing u;+ = 

E.u"+' I 1 - 1  + F j  + Gj~Y+l l  and - e1(un+' 1 - 1  + u;") + d j .  The above 
procedure reduces to the Thomas algorithm (but with elements above the main 
diagonal being eliminated) for a scalar tridiagonal system whenever a,, b,, e,, 
and d, are all set to zero. This system of equations can also be solved by the 
general algorithm for a block tridiagonal system given in Appendix B. However, 
the algorithm given above is more efficient because it is specialized to systems 
exactly of the form given by Eqs. (7.22) and (7.23). 

The procedure can be extended readily to compressible variable property 
flows (see Blottner, 1975a). The energy equation is nearly always solved in an 
uncoupled manner in this case. 

= 
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Extrapolating the coefficients. Values of the coefficients can be obtained at the 
n + 1 level by extrapolation based on values already obtained from previous n 
levels. Formally, the T.E. of this procedure can be made as small as we wish. For 
example, we can write 

uj"" = uj" + F ) n  A x + +   AX)^] 
dx j 

Approximating ( d u / d x ) :  by only a first-order accurate representation such as 

gives the following representation for u;+' ,  which formally has a T.E. of 
 AX)^]: 

u? - u?-' 

A x -  
uj"+l = uj" + ' A x , +  ~ [ ( A X ) ~ ]  

A similar procedure can be used for other coefficients needed at the n + 1 
level. This approach has been used satisfactorily for boundary-layer flows by 
Harris (1971). 

A recommendation. For many calculations, the linearization introduced by 
simply lagging the coefficients u and u and the fluid properties (in cases with 
temperature variations) will cause no serious deterioration of accuracy. Errors 
associated with linearization of coefficients are simply truncation errors, which 
can be controlled by adjustment of the marching step size. Many investigators 
have used this procedure satisfactorily. For any problem in which this 
linearization causes special difficulties, extrapolation of coefficients or Newton 
linearization with coupling is recommended. The former procedure requires no 
iterations to update the coefficients and for that reason should be more 
economical in terms of computation time. Clearly, it is desirable to use a 
method that is consistent, so that the numerical errors can be reduced to any 
level required. For turbulent flow calculations in particular, the uncertainties in 
the experimental data that are used to guide and verify the calculations and the 
uncertainties introduced by turbulence modeling add up to several (at least 
three to five) percent, making extreme accuracy in the numerical procedures 
unrewarding. In this situation the merits of using a higher-order method (highly 
accurate in terms of order of truncation error) should be determined on the 
basis of computer time that can be saved through the use of the coarser grids 
permitted by the more accurate schemes. 

A warming on stability. Implicit schemes are touted as being unconditionally 
stable (in the von Neumann sense) if 8 > 4. The Crank-Nicolson scheme just 



456 APPLICATION OF NUMERICAL METHODS 

barely satisfies the formal stability requirement in term of 8, and this 
requirement was based on a heuristic extension of von Neumann's analysis for 
linear equations to nonlinear ones. 

For turbulent flows in particular, the Crank-Nicolson procedure has 
occasionally been found to become unstable. For this reason, the fully implicit 
scheme has become more widely used. Formal second-order accuracy can be 
achieved by use of a three-point representation of the streamwise derivative and 
extrapolation of the coefficients. As an example, for uniform grid spacing, the 
convective terms 

au au 

d x  d y  
u- + u- 

can be represented by 

du du (2u; - u;-1)(3u;+' - 4u; + uy-1) 
u - + u - =  

d x  d y  2 A x  
p u n  - u"-1)(u7+' - U?+1 

+ I J  I - '  + O [ ( A X ) ~ ]  + O [ ( A Y ) ~ ]  
2 AY 

(7.24) 

With a slight increase in algebraic complexity, these representations can be 
generalized to also provide second-order accurate representations when the 
mesh increments A x  and A y  are not constant (Harris, 1971). 

There is still one very real constraint on the use of the implicit schemes 
given for boundary-layer flows. Though not detected by the von Neumann 
stability analysis, a behavior very much characteristic of numerical instability can 
occur if the choice of grid spacing permits the convective transport (of 
momentum or energy) to dominate the diffusive transport. Two sources of this 
difficulty can be identified. First, errors can grow out of hand in the tridiagonal 
elimination scheme if diagonal dominance is not maintained, that is, in terms of 
the notation being used for the Thomas algorithm, if IDj[ is not greater than 
lBjl + IAjl. A second and equally important cause of these unacceptable solutions 
can be related to a physical implausibility that arises when the choice of grid size 
permits the algebraic model to be an inaccurate representation for a viscous 
flow. The same difficulty for the viscous Burgers equation was discussed in 
Chapter 4. It can be shown that satisfying the conditions required to keep the 
algebraic representation a physically valid one provides a sufficient condition for 
diagonal dominance in the elimination scheme. 

To illustrate the basis for these difficulties, consider the fully implicit 
procedure applied to the boundary-layer momentum equation for constant 
property flow with the coefficients lagged. The finite-difference equation can be 
written as 

(7.25) B.u?+' I 1 - 1  + D.U?+' I I +A.u?+'  I ] + I  = Cj 
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with 
vn U B . =  -1 -- 

I 2AY (Ay)* 
Un 2u D . = ’ + -  
Ax (Ay)’ 

vn V 
A .  = 1 -- 

2AY (Ay)’ 

(u;)’ (u:+l  - u:> 
c. = - + u: 

Ax Ax 

By reflecting on the implications of Eq. (7.25) in terms of the predicted 
behavior of u;” relative to changes in uy+: and u;:;, we would expect both 
A j  and Bj to be negative to properly imply the expected behavior of a viscous 
fluid. The expected behavior would be such that a decrease in the velocity of the 
fluid below or above the point n + 1,j would contribute toward a decrease in 
the velocity at point n + 1, j through the effects of viscosity. We should be able 
to see that such would not be the case if either A j  or Bj would become positive. 
To keep Aj  and Bj negative in value requires 

lynl U 
< O  

2AY (by)’ 

or 

(7.26) 
U 

Equation (7.26) confirms our suspicion that the “correct” representation is 
one that permits viscous-like behavior, in that the inequality can be satisfied for 
a sufficiently fine mesh, which of course, is achieved at convergence. The term 
Iyn( Ay/u can be identified as a mesh Reynolds number. Mesh Peclet number, a 
more general terminology, is also frequently used for this term. 

Maintaining the inequality of Eq. (7.26) provides a sufficient (but not the 
necessary) condition for diagonal dominance of the algebraic system. It appears 
that keeping the coefficients A j  and Bj negative to provide correct simulation 
of viscous behavior should be the major concern. 

For some flows the constraint of Eq. (7.26) tends to require the use of an 
excessively large number of grid points. This has motivated several investigators 
to consider ways of altering the difference scheme to eliminate the mesh 
Reynolds number constraint. Most of the studies on this problem have focused 
on the more complex Navier-Stokes equations where the motivation for 
computational economy is stronger. The simplest remedy to the problem of the 
mesh Reynolds number constraint is to replace the central-difference represen- 



458 APPLICATION OF NUMERICAL METHODS 

tation for u d u / d y  by an upstream (one-way) difference: 

J u  q ( u i ” + 1  - u,+,) 1 - 1  
u- = 

dY AY 
when 

and 

when 

u ? ( U n + ’  I 1 + 1  - “i””) 
AY 

Lf < 0 

The T.E. associated with the upstream (also called “upwind”) scheme 
creates an “artificial viscosity,” which tends to enhance viscous-like behavior, 
causing a deterioration in accuracy in some cases. 

It is clearly possible to devise upstream weighted schemes having a more 
favorable T.E. (using two or more upstream grid points), but these can lead to 
coefficient matrices that are not tridiagonal in form-a distinct disadvantage. 
Most of the example calculations illustrating the detrimental effects of upstream 
differencing have been for the Navier-Stokes equations. Less specific information 
appears to be available for the boundary-layer equations. The tentative 
conclusion is that the use of upstream differencing for u d u / d y  (when mandated 
by the mesh Reynolds number) is a sufficient solution to the constraint of Eq. 
(7.26). Use of central differencing for this term is, of course, recommended 
whenever feasible. 

Rather than switching abruptly from the central to the upwind scheme as 
the mesh Reynolds number exceeds 2, the use of a combination (hybrid) of 
central and upwind schemes is recommended. This concept was originally 
suggested by M e n  and Southwell (1955). Others, apparently not aware of this 
early work, have proposed similar or identical forms (Spalding, 1972; Raithby 
and Torrance, 1974). To illustrate this principle, we let RAY = lynl A y / v  and R ,  
equal the desired critical mesh Reynolds number for initiating the hybrid 
scheme, R, G 2. Then for RAY > R, we represent u d u / d y  by 

Central-difference component 

I 

Upwind component 

(7.27) 
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We observe that as RAY increases, the weighting shifts toward the upwind 
representation. As RAY + m, the representation is entirely upwind. The hybrid 
scheme maintains negative values for A j  and Bj in Eq. (7.25) whde permitting 
the maximum utilization of the central-difference representation. 

The reader is referred to the work of Raithby (1976), Leonard (1979a, 
1979b), and Chow and Tien (1978) for an introduction to the literature on the 
mesh Reynolds number problem. 

It is interesting that nothing has been noted in the technical literature about 
the mesh Reynolds number constraint for boundary-layer equations when the 
equations are solved in a coupled manner, as with the Davis coupled scheme 
discussed in this section or the modified box method discussed in Section 7.3.5. 
When coupling is used, the u in u d u / d y  is treated algebraically as an unknown 
and not merely as a coefficient for the unknown u's. It is possible that the 
coupling eliminates the "wiggles" and nonphysical behavior observed when 
central differencing is used for large mesh Reynolds numbers. 

Closing comment on Crank-Nicolson and fully implicit methods. The difference 
schemes presented in this section have been purposely applied to equations in 
physical coordinates and have been written assuming A x  and A y  were both 
constant. This has been done primarily to keep the equations as simple as 
possible as the fundamental characteristics of the schemes were being discussed. 
As familiarity is gained with the basic concepts involved with differencing the 
boundary-layer equations, ways of extending schemes to a nonuniform grid will 
be pointed out. 

7.3.4 DuFort-Frankel Method 

Another finite-difference procedure that has worked well for both laminar and 
turbulent boundary layers is an extension of the method proposed by DuFort 
and Frankel (1953) for the heat equation. The difference representation will be 
written in a form that will accommodate variable grid spacing. We let A x + =  

The implicit 
methods of the previous section can be extended in applicability to a nonuniform 
grid by following a similar procedure. 

In presenting the DuFort-Frankel procedure for- the momentum and energy 
equations, the generalized transport PDE, Eq. (7.5), will be employed with the 
dependent variable 4 denoting velocity components, a turbulence model 
parameter, or a thermal variable such as temperature or enthalpy. In the 
DuFort-Frankel differencing, stability is promoted by eliminating the appearance 
of 4; in the diffusion term through the use of an average of 4 at the n + 1 and 
n - 1 levels. With unequal spacing, however, Dancey and Pletcher (1974) 
observed that accuracy was improved by use of a linearly interpolated value of 4 
between n - 1 and n + 1 levels instead of a simple average. Here we define the 
linearly interpolated value as 3; according to 4; =   AX,^,'^' +  AX-^:+')/ 

- x",  A x -  = X" - x " - ' ,  A y + =  y j +  - y j ,  A y -  = y j  - y j -  X n  + 1 
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( A x + +  A x - ) .  As before, for turbulent flows it is understood that u and v are 
time-mean quantities. For a compressible flow, v = 6. For generality, let h = A, 
+ A, where A, is a turbulent diffusion coefficient. The DuFort-Frankel 
representation of the generalized transport equation becomes 

p;u;(4;+1 - 4y-1) + p? I y  <4;+1 - 4;-1> 
A x + +  A x -  A Y + +  AY-  

+ S; (7.28) 1 [ - AY+ AY - 

- - - 
hi”- 1 / 2 (  3; - 4;- 1) - 2 A;+ 1/2( 4;+ 1 - 4;) - - 

A Y + +  AY-  

In the above, Sj” denotes the source terms. Examples of source terms that 
frequently occur include the pressure gradient dp/dx in the x-momentum 
equation, where 

pj”+l -pi”-’ 
s; = 

A x , +  A x -  

a viscous dissipation term p( d ~ / d y ) ~  in the energy equation when T is used as 
the thermal variable, 

u;+l - u;-1 2 

si” =p;( A Y + +  AY-  ) 
and a dissipation term C D p ( X > 3 / 2 / l  in the modeled form of the turbulence 
kinetic energy equation 

Note that this latter representation avoids using the dependent variable % at 
(n , j ) .  This is required by stability (see Malik and Pletcher, 19781, as might be 
expected in light of the special treatment required for the diffusion term noted 
above. 

We recall (Chapter 4) that the DuFort-Frankel representation is explicit. 
Although 4;’’ appears in both the left and right sides (within 3;) of the 
equation, the equation can be rearranged to isolate $7’ ’ ,  so that we can write 
4?+’ = (all known quantities at the n and n - 1 levels). The formal T.E. 
for the equation with A x + =  A x -  and A y + =  A y -  is  AX)^] + O[(Ay l21  + 
0[( A x / A y I 2 ] .  However, the leading term in the T.E. represented by 
O [ ( A X / A Y ) ~ ]  is actually ( A ~ / A y ) ~ ( d ~ 4 / d x ~ ) ,  and d 2 4 / d x 2  is presumed to be 
very small for boundary-layer flows. One can show that a deterioration in the 
formal T.E. is generally expected as the grid spacing becomes unequal, although 
a paper by Blottner (1974) points out exceptions. This deterioration would be 
observed in all methods presented thus far in this chapter. In practice, the 
increase in actual error due to the use of unequal spacing may be negligible. In 

I 
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nearly all cases, remedies can be found that will restore the original formal T.E. 
at the expense of algebraic operations. For example, Hong (1974) demonstrated 
that the streamwise derivative d + / d x  in the DuFort-Frankel method can be 
written as 

(Ax-)’+:+’ -   AX+)^+^"-^ + F AX,)^ - (Ax-)*]d~,’’ 

Ax- (Ax+)2 + Ax+ 

with second-order accuracy even when Ax+ # Ax-. 
A consistent treatment of the continuity equation is given by 

+ p ~ + l u ? ~ l  - p n - l  n - 1  
pi” - 1 ui” - 1 1-1  J 1 J - l U , - l  

n + l  n + l  - 
= o  

(7.29) 

+ Pi ‘i pi” + 41i” + 1 - pi”-+lq-+l’ 

AY -  AX, + Ax-) 

with T.E. of O(Ax) + O[(AY)~I. 

suggests that 
A stability analysis for Ay = const (Madni and Pletcher, 1975a, 1975b) 

(7.30) 

It would appear that this constraint could also be used to provide a rough guide 
under variable Ay conditions. In practice, this condition has not proven to be 
especially restrictive on the marching step size, probably because u/u is generally 
very small and the other term in the denominator involves differences in the 
diffusion coefficient rather than the coefficient itself. 

It is interesting to note that Eq. (7.30) follows essentially from the Courant- 
Friedrichs-Lewy (CFL) condition rather than the diffusion stability limit for the 
boundary-layer momentum equation. This becomes evident when the diffusion 
term d/dy(h d+/dy) is expanded to two terms and the boundary-layer equation 
is rearranged as 

d+ 1 d i  a+ A d2+ S 
- 

- + -  dx pu ( p u - -  dy]z=zF 2 + -  p u  

Now simply applying the CFL condition gives Eq. (7.30). 
The boundary-layer calculation begins by utilizing an initial distribution for 

the + variables. Since the DuFort-Frankel procedure requires information at 
two streamwise levels in order to advance the calculation, some other method 
must be used to obtain a solution for at least one streamwise station before the 
DuFort-Frankel scheme can be employed. A simple explicit scheme is most 
frequently used to provide these starting values. A typical calculation would 
require the solution to the momentum, continuity, and energy equations. The 
equations can be solved sequentially starting with the momentum equation in an 
uncoupled manner. The usual procedure is to solve first for the unknown 
streamwise velocities from the momentum equation starting with the point 
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nearest the wall and working outward to the outer edge of the boundary layer. 
The outer edge of the boundary layer is located when the velocity from the 
solution is within a prescribed tolerance of the velocity specified as the outer 
boundary condition. The energy equation can be solved in a like manner for the 
thermal variable. The density at the new station can be evaluated from an 
equation of state. Finally, the continuity equation is used to obtain the normal 
component of velocity at the n + 1 level starting from the point adjacent to the 
wall and working outward. 

The explicit nature of the DuFort-Frankel procedure is probably its most 
attractive feature. Those inexperienced in numerical methods are likely to feel 
more comfortable programming an explicit procedure than they are in applying 
an implicit scheme. A second significant feature of the scheme is that no 
additional linearizations, iterations, or assumptions are needed to evaluate 
coefficients in the equation, since these all appear at the n-level, where they are 
known values. Further details on the application of the DuFort-Frankel type 
schemes to wall boundary layers can be found in the work by Pletcher (1969, 
1970, 1971). 

7.3.5 Box Method 

Keller and Cebeci (1972) applied the box-difference scheme (introduced in 
Section 4.2.8) to the boundary-layer momentum and continuity equations after 
they had first been transformed to a single third-order PDE using the Mangler 
and Levy-Lees transformations (see Cebeci and Smith, 1974). The third-order 
PDE is written as a system of three first-order PDEs using newly defined 
variables in a manner that parallels the procedure commonly employed in the 
numerical solution of third-order ODES. The box-differencing scheme with 
Newton linearization is then applied to the three first-order PDEs, giving rise to 
a block tridiagonal system having 3 X 3 blocks, which is solved by a block 
elimination scheme. The corresponding treatment for the energy equation gives 
rise to a block tridiagonal system with 2 X 2 blocks. 

The details of the Keller-Cebeci box method for the boundary-layer 
equations will not be given here but can be found in the work by Cebeci and 
Smith (1974). Instead, we will indicate how a modified box scheme can be 
developed that only requires the use of the same modified tridiagonal elimination 
scheme presented in Section 7.3.3 for the Davis coupled scheme. From reports 
in the literature (Blottner, 1975a; Wornom, 1977), the modified box scheme 
appears to require only on the order of one-half as much computer time as the 
standard box scheme for the boundary-layer equations. 

The momentum and energy equations for a compressible flow can be 
written in the generalized form given by Eq. (7.5). For rectangular coordinates, 
this becomes 

(7.31) 
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n n t l  
+--j 0 

Figure 7.2 Grid arrangement for the modified box scheme 

where 
- 
A = h , + h  

The continuity equation can be written as 

d p u  a p e  
d x  d y  

- + - = o  

The grid nomenclature is given in Fig. 7.2. If we let 

Equation (7.31) can then be written as 

d 4  
P U -  = D 

dX 

Centering on the box grid gives 

(7.32) 

(7.33) 

Utilizing the definition of q;-+$;, 

(7.35) 
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In a similar manner, the momentum equation can be put into difference form 
centering about the point (n + $, j + +), and qY++:/' can be eliminated from 
that equation using the definition of qj"+'///;?. The result is 

( pu);::,2 + ( pu)Y+ 1/2 4;:*;2 - 4;+ 1/2  

2 AX,+ 1 

Equations (7.36) and (7.37) can be combined to eliminate qY+'l2. This is 
accomplished by multiplying Eq. (7.36) by Ayj, and Eq. (7.37) by Ayj+l and 
adding the two products. After replacing quantities specified for evaluation at 
grid midpoints by averages from adjacent grid points, the results can be written 
as 
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AYj 
Equation (7.38) can be expressed in the tridiagonal format for the unknown 

c$’s, but as for all implicit methods, some scheme must be devised for treating 
the algebraic nonlinearities arising through the coefficients. Conceptually, any 
of the procedures presented in Section 7.3.3 can be employed. The most suitable 
representation of the continuity equation may depend upon the procedure used 
to accomplish the linearization of the momentum equation. To date, Newton 
linearization with coupling (Blottner, 1975a) has been the most commonly used 
procedure. For this, the continuity equation can be written as 

( pu);+ l  + ( pu);:; - ( pu); - ( pu)Y-1 

2 Ax,+ 1 

(pG>;+’  + - (pG>i”’: - (P6)Y-l + = o  (7.39) 
2 AYj 

The momentum equation involves ( pG);,?,’, ( pG);+l, and ( pG),?+,’. To 
employ the modified tridiagonal elimination scheme, the continuity equation 
(Eq. 7.39) can be written between the j and j + 1 levels and ( pG),?;,’ eliminated 
from the momentum equation by substitution. After employing Newton 
linearization in a manner that parallels the procedures illustrated in Section 
7.3.3 for the fully implicit Davis coupled method, the coupled momentum and 
continuity equations can be solved with the modified tridiagonal elimination 
scheme. The energy equation is usually solved in an uncoupled manner, and 
properties (including the turbulent viscosity) are updated iteratively as desired 
or required by accuracy constraints. 

With the box and modified box schemes, the wall shear stress and heat flux 
are usually determined by evaluating q at the wall ( j  = 1). For the modified box 
scheme this is done after the solutions’for 4, G, and p have been determined. 
An expression for q ; + l 1 2  can be obtained by writing Eqs. (7.34) and (7.35) for 
j = 2 and eliminating q i+  ‘ I2 by a simple substitution. 

7.3.6 Other Methods 

Exploratory studies of limited scope have indicated that the Barakat and Clark 
ADE method can be used for solving the boundary-layer equations (R. G. 
Hindman, 1975, private communication: S. S. Hwang, 1975, private 
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communication). These results indicate that ADE methods are roughly 
equivalent in accuracy and computation time to the more conventional implicit 
methods for boundary-layer problems. Higher-order schemes (up through fourth 
order) have also been applied to the boundary-layer equations. A critical study 
of some of these schemes was reported by Wornom (1977). It is worthwhile to 
note that the accuracy of lower-order methods can also be improved through the 
use of Richardson extrapolation (Ralston, 1965; Cebeci and Smith, 1974). 

It is believed that the most commonly used difference schemes for 2-D or 
axisymmetric boundary layers have been described in this section. No attempt 
has been made to cover all known methods in detail. 

7.3.7 Coordinate Transformations for Boundary Layers 
The general subject of coordinate transformations has been treated in Chapter 
5. In the present chapter the focus has been on the difference schemes 
themselves, and to illustrate these in the simplest possible manner, the equations 
have been presented in rectangular Cartesian, “physical coordinates.” 

It is well to point out that there may be advantages to numerically solving 
the equations in alternative forms. Two approaches are observed. One proceeds 
by introducing new dependent and independent variables analytically to 
transform the mathematical representation of the conservation principles before 
the equations are discretized. We shall refer to this strategy approach as the 
analytical transformation approach. A second strategy employs an independent 
variable transformation very much along lines introduced in Chapter 5 and will 
be referred to as the generalized coordinate approach. 

The main objective of the transformations is generally to obtain a coordinate 
frame for computation in which the boundary-layer thickness remains as constant 
as possible and to remove the singularity in the equations at the leading edge or 
stagnation point. Unfortunately, for complex turbulent flows, the optimum 
transformation leading to a constant boundary-layer thickness in the transformed 
plane has not been identdied, although the transformation suggested by Carter 
et al. (1980) shows promise. 

Analytical transformation approach. The most commonly used analytical trans- 
formation makes use of the transverse similarity variable 77 employed in the 
Blasius similarity solution to the laminar boundary layer. We will give an 
example of such a transformation applied to the constant property laminar 
boundary-layer equations. We start with 

continuity: 
au av - + - = o  
dx d y  

momentum: 
du du due d 2 u  

u- + v- = ue-  + v 2  
dx dy  dY 

(7.40) 

(7.41) 
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The crucial element of the transformation is the introduction of 

From this point on, several variations are possible, but a common procedure is 
to let x = x (no stretching of x) and F = u/u,. Using the chain rule. we note 
that 

d 

and 
d 

Replacing the x and y derivatives in Eqs. (7.40) and (7.41) as indicated, and 
utilizing F ,  results in the transformed momentum and continuity equations: 

momentum: 
d F  dF  d 2 F  

d X  d77 J V 2  
xF- + V- = p(1 - F 2 )  + - 

continuity: 
dF dV p + l  

X- + - + F- = O  
dx d q  2 

(7.42) 

(7.43) 

where 

x due p =  -- 
ut? 

When x = 0, the streamwise derivatives vanish from the transformed 
equations, and a system of two ODEs remains. It is common to solve these 
equations with a slightly modified version of the marching technique employed 
for the rest of the flow domain, i.e., for x > 0, although special numerical 
procedures applicable to ODEs could be used. 

There is no singular behavior at x = 0 in the new coordinate system, since 
the troublesome streamwise derivatives have been eliminated. In fact, for 
laminar flow over a plate, the solution for x = 0 is the well-known Blasius 
similarity solution. Naturally, for a zero pressure gradient flow, the marching 
solution for x > 0 should reproduce essentially the same solution downstream, 
and the boundary-layer thickness should remain constant. When pressure 
gradients or wall boundary conditions force a nonsimilar laminar flow solution, 
the boundary-layer thickness will change somewhat along the flow. For nearly 
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similar laminar flows, we would expect the solution of the transformed equations 
to provide greater and more uniform accuracy near the leading edge than the 
solution in physical coordinates because of the tendency of the former procedure 
to divide the boundary layer into a more nearly constant number of points in the 
transverse direction. For turbulent flows, we observe the boundary-layer 
thickness growing along the surface, generally quite significantly, even with the 
use of the above transformed variables. 

Analytical transformations have also proven useful for solving the compres- 
sible boundary-layer equations. The Levy-Lees and Mangler transformations 
extend the similarity variable approach to compressible 2-D and axisymmetric 
boundary layers and have been successfully utilized in finite-difference methods 
by Blottner (1975b) and Christoph and Pletcher (1983). 

For external laminar boundary-layer calculations, the use of transformed 
coordinates of the similarity type is recommended. For turbulent flows the 
advantages of transformations suggested to date are less certain. 

Generalized coordinate approach. Generalized nonorthogonal coordinates can 
be introduced into the boundary-layer equations if care is taken to be consistent 
with the boundary-layer approximation. In particular, the x-axis should align 
with the main flow direction; however, the axis need not be straight. A second 
condition is that the grid lines that intersect the x axis should be straight 
(negligible curvature) and should be orthogonal to the x axis. A grid system that 
meets these conditions will be referred to as the generalized boundary-layer grid 
and can be established by the intersection of lines of constant 5 and 77, where 5 
is 5 ( x )  and 17 is dx, y ) .  Two examples of grids that meet the above conditions 
are illustrated in Fig. 7.3. The grid shown in Fig. 7.3(a) would be convenient for 
external flow applications, while the grid of Fig. 7.3(b) would be particularly well 
suited for solving a flow in a straight, symmetric, 2-D channel of varying 
cross-sectional area. Notice that this grid allows the spacing between lines of 
constant 7 to vary in the x direction, permitting grid points to be packed more 
closely in regions where the boundary layer is thin. Letting 77 = ( y / x ) f i  
gives the well-known Blasius similarity variable as a special case of the 
generalized boundary-layer grid. The generalized boundary-layer grid can be 
implemented by introducing 5 and 77 into the governing equations as new 
independent variables using the chain rule to replace derivatives with respect to 
x and y :  

d d d _ -  - 5,- + 77,- 
dX a5 d77 

a a 
- = q -  
dY ya77 

The corresponding Jacobian is J = 5,~~. 
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Figure 7.3 Examples of generalized boundary layer grids. (a) External flow. (b) Internal flow. 

The metric terms in the equations are most conveniently represented as 

(7.44) 

After applying this independent variable transformation to the steady 
incompressible bounday-layer momentum and continuity equations in nondi- 
mensional form (as in Section 5.3.2), the following are obtained: 
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The contravariant velocity component V = vxu + 77yu has been introduced. 
The u velocity component is orthogonal to lines of constant 6 and thus also 
represents a contravariant velocity. Care must be taken in representing the 
metric quantities when discretizing the equations. When the fully implicit 
formulation of the finite-difference equations is used, the best results have been 
obtained (Ramin and Pletcher, 1993) by representing the diffusion term as 

where (y,),, is to be interpreted as (y i ,  j +  - yi, j -  1)/2 Av,  and (y,Ii+ 1 ,  j +  as 
(y i+ 1 ,  j +  - yi+ 1, j ) / A q .  A quallfylng test for the correct representation of the 
metric quantities is that the scheme should reproduce the Blasius laminar 
boundary-layer solution exactly when the grid is specified according to = 

An important advantage of using the analytical transformed coordinates 
discussed previously was that leading edge and stagnation point singularities 
could be removed. This permitted very accurate solutions to be obtained near 
these singular points, in contrast to what was possible when simple physical 
(generally Cartesian) coordinates were used. It is also possible to obtain very 
accurate starting solutions and to resolve regions near leading edges and 
stagnation points using the generalized boundary-layer grid. Since it is well 
known that similarity solutions are valid in such regions, it is only necessary to 
connect the first two marching stations by the use of a grid that is constructed 
from the similarity variables, such as 6 = x  and q = (y/x)& for an 
incompressible 2-D flow. It is best to omit the points at x = 0, since the 
boundary layer is vanishingly thin at that location and only exists in the sense of 
a limit. It is sufficient to resolve the boundary layer at the first Ax beyond 
x = 0, since that is the first location where the boundary-layer thickness is finite. 
A characteristic of the similarity solution is that it is independent of the 
marching coordinate. Thus the finite-difference approximation to it can be 
obtained by iteratively marching from station 2 to 3. With each sweep, the 
solution most recently obtained at station 3 is used at station 2. The iterative 
sweeps from stations 2 to 3 continue until the two solutions agree. This indicates 
that a solution locally independent of the marching coordinate has been found. 

(y/x)JRe,. 

7.3.8 Special Considerations for Turbulent Flows 

The accurate solution of the boundary-layer equations for turbulent flow using 
models that evaluate the turbulent viscosity at all points within the flow requires 
that grid points be located within the viscous sublayer, y + g  4.0 for in- 
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compressible flow, and perhaps y + <  1.0 or 2.0 for flows in which a solution to 
the energy equation is also being obtained. The use of equal grid spacing for the 
transverse coordinate would require several thousand grid points across the 
boundary layer for a typical calculation at moderate Reynolds numbers. This at 
least provides motivation for considering ways to reduce the number of grid 
points required to span the boundary layer. The techniques that have been used 
successfully fall into three categories: use of wall functions, unequal grid 
spacing, and coordinate transformations. 

Use of wall functions. For many turbulent wall boundary layers the inner 
portion of the flow appears to have a “universal” character captured by the 
logarithmic “law-of-the-wall’’ discussed previously (see Fig. 5.7). Basically, this 
inner region is a zone in which convective transport is relatively unimportant. 
The law-of-the-wall can be roughly thought of as a solution to the boundary-layer 
momentum equation using Prandtl’s mixing-length turbulence model when 
convective and pressure gradient terms are unimportant. Corresponding nearly 
universal behavior has been observed for the temperature distribution for many 
turbulent flows, and wall functions can be used to provide an inner boundary 
condition for solutions to the energy equation. Thus, with the wall function 
approach, the boundary-layer equations are solved using a turbulence model in 
the outer region on a relatively coarse grid, and the near-wall region is “patched 
in” through the use of a form of the law-of-the-wall, which in fact, represents an 
approximate solution for the near-wall region. In this approach, the law-of-the- 
wall is usually assumed to be valid in the range 30 < y +  < 200, and the first 
computational point away from the wall is located in this interval. Boundary 
conditions are developed for the dependent variables in the transport equations 
being solved (u ,  T, z, E ,  etc.) at this point from the wall functions. Many 
variations in this procedure are possible, and details depend upon the turbulence 
model and difference scheme being used. The procedure has been well developed 
for use with the k-E turbulence model, and recommended wall functions for u, 
T, k, and E can be found in the work by Launder and Spalding (1974). 

Like turbulence models themselves, wall functions need modifications to 
accurately treat effects such as wall blowing and suction and surface roughness. 
Their use does, however, circumvent the need for many closely spaced points 
near the wall. 

Use of unequal grid spacing. Almost without exception, turbulent boundary-layer 
calculations that have applied the difference scheme right down to the wall have 
utilized either a variable grid scheme or what is often equivalent, a coordinate 
transformation. Arbitrary spacing will work. Pletcher (1969) used A y corres- 
ponding to b y +  [defined as A y ( ~ , , , / p ) ~ / ~ / v , ]  s 1.0 for several mesh increments 
nearest the wall and then approximately doubled every few points until Ay’ 
reached 100 in the outer part of the flow. 
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Another commonly used (Cebeci and Smith, 1974) and very workable 
scheme maintains a constant ratio between two adjacent increments: 

(7.47) 

In this constant ratio scheme, each grid spacing is increased by a fixed percentage 
from the wall outward. This results in a geometric progression in the size of the 
spacing. K is usually a number between 1.0 and 2.0 for turbulent flows. For the 
constant ratio scheme it follows that 

(7.48) 

The accuracy (and occasionally the stability) of some schemes appears sensitive 
to the value of K being used. Most methods appear to give satisfactory results 
for K G 1.15. For a typical calculation using A y ;  = 1.5, K = 1.04, and y: = 3000, 
Eqs. (7.47) and (7.48) can be used to determine that about 113 grid points in the 
transverse direction would be required. 

As a difference scheme is being generalized to accommodate variable grid 
spacing, the truncation error should be reevaluated, since a deterioration in the 
formal T.E. is common in these circumstances. For example, the treatment 
previously recommended for the transverse shear stress derivative is 

u? - Un 

I 1 a au u;+l - ui" 
- &/2  

AY - ,( %): = Ay*+ AY- ( P;+ 1/2 AY+ 

+ O ( A y + -  A y - )  + O [ ( A y + +  A y - I 2 ]  

which at first appears to be first order accurate unless there is a way to show 
that O ( A y + -  A y - )  = O [ ( A Y ) ~ ]  for a particular scheme. Blottner (1974) has 
shown that the treatment of derivatives indicated above in his Crank-Nicolson 
scheme using the constant ratio arrangement for mesh spacing is locally second 
order accurate. To prove this, Blottner interpreted the constant ratio scheme in 
terms of a coordinate transformation (see below) and verified his findings by 
calculations that indicated that his scheme behaved as though the T.E.s were 
second order as the mesh was refined. 

Use of coordinate transformations. The general topic of coordinate transforma- 
tions was treated in Chapter 5. Here we are considering the use of a coordinate 
transformation for the purpose of providing unequal grid spacing in the physical 
plane. Transformation 1 of Section 5.6 provides a good example of this concept 
(see also Fig. 5.8). Such a transformation permits the use of standard equal- 
increment differencing of the governing equations in terms of the transformed 
coordinates. Thus the clustering of points near the wall can be achieved without 
deterioration in the order of the T.E. On the other hand, the equations 
generally become more complex in terms of the transformed variables, and new 
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variable coefficients always appear. The actual mugnzhie of the T.E. will be 
influenced by the new coefficients. 

Transformations 1 and 2 in Section 5.6 of Chapter 5 are representative of 
those that can be readily used with the boundary-layer equations. 

7.3.9 Example Applications 

For laminar flows in which the boundary-layer approximation iq \a!i.’ ‘‘nite- 
difference predictions can easily be made to agree with resu1.s of n d r e  eSact 
theories to several significant figures. Even with only modest ittention to mesh 
size, agreement to within 1-2% of some “exact” standard is rzlatively common. 
Figure 7.4 compares the velocity profile computed by ‘1 DuFort-Frankel type 
difference scheme (Pletcher, 1971) with the analytical results of van Driest 
(1952) for laminar flow at a Mach number of 4 and T,/T, = 4. The temperature 
profiles are compared for the same flow conditions in Fig. 7.5. The agreement is 
excellent and typical of what can be expected for laminar boundary-layer flows. 

The prediction of turbulent boundary-layer flows is another matter. The 
issue of turbulence modeling adds complexity and uncertainty to the prediction. 
Turbulence models can be adjusted to give good predictions for a limited class 
of flows, but when applied to other flows containing conditions not accounted 
for by the model, poor agreement is often noted. Because of the usual level of 
uncertainty in both the experimental measurements and turbulence models, 
agreement to within f3-4% is generally considered good for turbulent flows. 

D-F METHOD 0.6 - - 
aJ 

0 VAN DRIESTTHEORY 31 3 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 

Q% 
Figure 7.4 Velocity profile comparisons for a laminar compressible boundary layer. Solid line 
represents predictions from the DuFort-Frankel finite-difference scheme (Pletcher, 1971). 
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Figure 7.5 Temperature profile comparisons for a laminar compressible boundary layer. Solid line 
represents predictions from the DuFort-Frankel finite-difference scheme (Pletcher, 1971). 

Even a simple algebraic turbulence model can give good predictions over a 
wide range of Mach numbers for turbulent boundary-layer flows in zero or mild 
pressure gradients. Figure 7.6 compares the prediction of a DuFort-Frankel 
finite-difference method with the measurements of Coles (1953) for a turbulent 
boundary layer on an adiabatic plate at a free stream Mach number of 4.554. 
The agreement is excellent. 

1 .o 

0.5 

0 0 DATA OF COLES, TEST 22 
O D - F  METHOD 

cf = 0.00122 (EXPERIMENTAL) 
cf = 0.00119 (PREDICTED) 

0 2 4 6 8 10 12 14 16 18 20 

Y/O 

Figure 7.6 Comparison for a compressible flat plate flow measured by Coles (1953). Solid line 
represents predictions from the DuFort-Frankel finite-difference scheme (Pletcher, 1970). 
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Finite-difference methods easily accommodate step changes in boundary 
conditions, permitting solutions to be obtained for conditions under which 
simple correlations are especially unreliable. Figure 7.7 compares predictions of 
an algebraic mixing-length turbulence model used with a DuFort-Frankel type 
finite-difference procedure with the measurements of Moretti and Kays (1965) 
for low-speed flow over a cooled flat plate with a step change in wall temperature 
and a favorable pressure gradient. The Stanton number (St) in Fig. 7.7 is defined 
as k ( d T / d y ) , / [  p,u,(Ha, - H,)], where Ha, is the total enthalpy of the wall 
under adiabatic conditions. 

Examples of cases where predictions of the simplest algebraic turbulence 
models fail to agree with experimental data abound in the technical literature. 
Several effects, which are not well predicted by the simplest models, were cited 
in Chapter 5. One of these was flow at low Re, especially at supersonic Mach 
numbers. This low Re effect is demonstrated in Fig. 7.8, where it can be seen 
that the point at which the simplest algebraic model (Model A) begins to fail 

- D-F METHOD 

c, 
In 

X ,  METERS 

Figure 7.7 Comparison for a cooled flat plate with flow acceleration measured by Moretti and Kays 
(1965). Solid lines represent predictions from the DuFort-Frankel finite-difference scheme (Pletcher, 
1970). 
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Figure 7.8 Comparison of predicted skin-friction coefficients with the measurements of Coles (1953) 
and Korkegi (1956) for the compressible turbulent boundary layer on a flat plate at low Reynolds 
number. 

shifts to higher and higher Re as the Mach number of the flow increases. 
Predictions of a model containing the simple modification discussed in Section 
5.4.3 for low Re are included in Fig. 7.8 as Model B. 

7.3.10 Closure 

This section has discussed several topics that are important in the finite- 
difference solution of the boundary-layer equations for two-dimensional and 
axisymmetric flows. Several difference schemes have been described. In 
computational work, as in many endeavors, “hands participation or 
“practice” is important. Accordingly, several example problems should be solved 
using the schemes discussed in order to develop an appreciation of the concepts 
and issues involved. Just as an engineer could hardly be considered an 
experimentalist without running an experiment, one likewise should not be 
considered a computational fluid dynamicist until some computations have been 
completed. 

Which finite-difference scheme is best for the boundary-layer equations? 
The question is a logical one to raise at this point, but we need to establish 
measures by which “best” can be identified. All consistent difference schemes 
should provide numerical results as accurate as needed with sufficient grid 
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refinement. With ultimate accuracy no longer an issue, the remaining concerns 
are computational costs and, to a lesser extent, ease of programrmng. In the 
present discussion it is assumed that the user insists on understanding all 
algebraic operations. We will include the time and effort needed to understand a 
given algorithm as part of the programming effort category. Programming effort 
then will measure, not the number of statements in a computer program, but the 
implied algebraic complexity of the steps in the algorithm and the difficulty of 
following the various steps for the beginner. 

A review of the technical literature suggests that the schemes listed in Table 
7.1 have been satisfactorily employed in the solution of the 2-D or axisymmetric 
boundary-layer equations for both laminar and turbulent flow and are 
recommended on the basis of their well-established performance. 

The computation time for a typical calculation for all of the above schemes 
is expected to be modest (only a few seconds) on present-day computers. More 
details can be found in the literature cited above within the discussion of those 
methods. Only a few studies have been reported in which the computer times 
for several schemes have been compared for the boundary-layer equations. The 
work of Blottner (1975a) suggests that the Crank-Nicolson scheme with coupling 
requires about the same time as the modified box scheme for comparable 
accuracy. Again, for comparable accuracy, Blottner (1975a) found that the box 
scheme requires 2 to 3 times more computer time than the modified box 
scheme. 

For the beginner wishing to establish a general purpose boundary-layer 
computer program, a reasonable way to start would be with the fully implicit 
scheme. The scheme is only first-order accurate in the marching direction, but 
second-order accuracy does not appear to be crucial for most boundary-layer 
calculations. This may be due partly to the fact that the O(Ax) term in the T.E. 
usually includes the second streamwise derivative, which is relatively small when 
the boundary-layer approximation is valid. If second-order accuracy becomes 
desirable in the streamwise coordinate, it can be achieved with only minor 
changes through the use of a three-point, second-order representation of the 
streamwise derivative or by switching to the Crank-Nicolson representation. In 
increasing order of programming complexity, the logical choices for linearizing 
the coefficients are lagging, extrapolation, and Newton linearization with 

Table 7.1 Recommended finite-difference schemes for the boundary-layer 
equations listed in estimated order of increasing programming effort 

~ _ _ _ _ ~ ~  ~~ 

DuFort-Frankel 
Fully implicit 
Crank-Nicolson implicit 
Fully implicit with continuity equation coupling 
Crank-Nicolson implicit with continuity equation coupling 
Modified box scheme 
Box scheme 



478 APPLICATION OF NUMERICAL METHODS 

coupling. If lagging is adopted as standard, it would be advisable to program one 
of the latter two more accurate (for the same mesh increment) procedures as an 
option to provide periodic checks. 

7.4 INVERSE METHODS, SEPARATED FLOWS, AND 
VISCOUS-INVISCID INTERACTION - 

7.4.1 Introduction 

Thus far we have only considered the conventional or “direct” boundary-layer 
solution methods for the standard equations and boundary conditions given in 
Section 5.3. An “inverse” calculation method for the boundary-layer equations 
is a scheme whereby a solution is obtained that satisfies boundary conditions 
that differ from the standard ones. The usual procedure in an inverse method is 
to replace the outer boundary condition, 

by the specification of a displacement thickness or wall shear stress that must be 
satisfied by the solution. The pressure gradient [or u,(x)]  is determined as part 
of the solution. It should be noted clearly that it is the bounduiy conditions that 
differ between the conventional direct methods and the inverse methods. It is 
perhaps more correct to think of the problem specification as being direct or 
inverse rather than the method. However, we will yield to convention and refer 
to the solution method as being direct or inverse. 

The inverse methods are not merely an alternative way to solve the 
boundary-layer equations. The successful development of inverse calculation 
methods has permitted an expansion of the range of usefulness for the 
boundary-layer approximation. 

Clearly, some design applications can be envisioned where it is desirable to 
calculate the boundary-layer pressure distribution that will accompany a specified 
distribution of displacement thickness or wall shear stress. This has provided 
some of the motivation for the development of inverse methods for the 
boundary-layer equations. Perhaps the most interesting applications of inverse 
methods have been in connection with separated flow. The computation of 
separated flows has long been thought to require the solution of the full 
Navier-Stokes equations. Thus, any suggestion that these flows, which are very 
important in applications, can be adequately treated with a much simpler 
mathematical model has been received with great interest. For this reason, the 
present discussion of inverse methods will emphasize applications to flows 
containing separated regions. The ability to remove the separation point 
singularity (Goldstein, 1948) is one of the most unique characteristics of the 
inverse methods. 
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7.4.2 Comments on Computing Separated Flows Using the 
Boundary-Layer Equations 

Originally, it was thought that the usefulness of the boundary-layer approxima- 
tion ended as the flow separation point was approached. This was because of the 
well-known singularity (Goldstein, 1948) of the standard boundary-layer 
formulation at separation and because the entire boundary-layer approximation 
is subject to question as the layer thickens and the normal component of 
velocity becomes somewhat larger (relative to u )  than in the usual high Reynolds 
number flow. It is now known that the inverse formulation is regular at 
separation (Klineberg and Steger, 1974) and the evidence suggests (Williams, 
1977; Kwon and Pletcher, 1979) that the boundary-layer equations provide a 
useful approximation for flows containing small, confined (bubble) separated 
regions. In support of the validity of the boundary-layer approximation, it is 
noted that the formation of a separation bubble normally does not cause the 
thickness of the viscous region to increase by an order of magnitude; that is, the 
boundary-layer measure of thinness, S/L 4 1, is still met. The “triple-deck 
theory’’ of Lighthill (1953) and Stewartson (1974) (see Section 7.4.4) also 
provides analytical support for the validity of the boundary-layer approximation 
for large Reynolds number flows containing small separated regions. On the 
other hand, large local values of dS/& may occur and are expected to induce 
rather large values of u/u. At best, it should be conceded that the boundary-layer 
model is a weaker approximation for flow containing recirculation, even though 
it may provide estimates of flow parameters accurate enough for many purposes. 
The full range of applicability of the boundary-layer equations for separated 
flows is still under study. 

Flow separation presents two obstacles to a straightforward space-marching 
solution procedure using conventional boundary conditions with the boundary- 
layer equations; these are (1) the singularity at separation and (2) the flow 
reversal, which prohibits marching the solution in the direction of the external 
flow (see Fig. 7.9) unless the convection terms in the equations are altered. 
When the pressure gradient is fixed near separation by the conventional 
boundary conditions, the normal component of the velocity and d~,,,/& tend 

Y 

S X 

Figure 7.9 Flow containing a separation bubble. 
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Figure 7.10 Effect of x-grid refinement on ue for a direct finite-difference boundary-layer calculation 
(Pletcher and Dancey, 1976) near the separation point for a linearly retarded stream: u, = b, - b,n, 
b, = 30.48 m/s, b,  = 300 s-’ ,  Y = 1.49 x m2/s. 

toward infinity at the point of separation. A detailed discussion of this singularity 
can be found in the works of Goldstein (1948) and Brown and Stewartson 
(1969). This phenomenon appears in finite-difference solutions, where u, (x)  is 
prescribed, as the tendency for u to increase without limit as the streamwise step 
size is reduced. This is illustrated in Fig. 7.10 for the Howarth linearly retarded 
flow (Howarth, 1938). Naturally, a finite u will be obtained for a finite step size, 
but the solution will not be unique. This singular behavior, which is mathematical 
rather than physical, can be overcome by the use of an auxiliary pressure 
interaction relationship with direct methods (Reyhner and Fliigge-htz, 1968; 
Napolitano et al., 1978) or by the use of inverse procedures. In this section we 
will concentrate on the inverse procedures that require no auxiliary relationships 
to eliminate the singular behavior. 

The difficulty with the convective terms can be viewed as follows. We recall 
that the steady boundary-layer equations are parabolic. For u > 0 the solution 
can be marched in the positive x direction. Physically, information is carried 
downstream from the initial plane by the flow. In regions of reversed flow, 
however, the “downstream” direction is in the negative x direction (Fig. 7.9). 
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Mathematically, we observe that when u < 0, the boundary-layer momentum 
equation remains parabolic, but the correct marching direction is in the negative 
x direction. 

It would seem, then, that a solution procedure might be devised to overcome 
the problem associated with the “correct” marching direction by making initial 
guesses or approximations for the velocities in the reversed flow portion of a 
flow with a separation bubble, storing these velocities, and correcting them by 
successive iterative calculation sweeps over the entire flow field. To do this 
requires using a difference representation that honors the appropriate marching 
direction, forward or backward, depending on the direction of flow. To follow 
this iterative procedure means abandoning the once-through simplicity of the 
usual boundary-layer approach. Computer storage must also be provided for 
velocities in and near the region of reversed flow. Such multiple-pass procedures 
have been employed by Klineberg and Steger (19741, Carter and Wornom 
(1975), and Cebeci (1976). Some crucial aspects of differencing for multiple-pass 
procedures will become apparent from the material presented in Chapter 8. 

Reyhner and Fliigge-Lotz (1968) suggested a simpler alternative to the 
multiple-pass procedure. Noting that the reversed flow velocities are generally 
quite small for confined regions of recirculation, they suggested that the 
convective term u d u / d x  in the boundary-layer momentum equation be 
represented in the reversed flow regions by C J u J d u / d x ,  where C is zero or a 
small positive constant. This representation has become known as the FLARE 
approximation and permits the boundary-layer solution to proceed through 
separated regions by a simple forward-marching procedure. It should be clear 
that the FLARE procedure introduces an additional approximation (or 
assumption) into the boundary-layer formation, namely, that the u d u / d x  term 
is small relative to other terms in the momentum equation in the region of 
reversed flow. On the other hand, the FLARE approximation appears to give 
smooth and plausible solutions for many flows with separation bubbles. Example 
solutions are presented in Section 7.4.3. Experimental and computational 
evidence accumulated to date indicates that for naturally occurring separation 
bubbles, the u component of velocity in reversed flow regions is indeed fairly 
small in magnitude, usually less than about 10% of the maximum velocity found 
in the viscous region. 

It should be noted that, although ways of satisfactorily treating the u d u / d x  
convective term have been presented, it still does not appear possible to obtain a 
unique convergent solution of the steady boundary-layer equations alone by a 
direct marching procedure. Direct calculation procedures reported to date have 
always employed an interaction relation whereby the pressure gradient specified 
becomes dependent upon the displacement thickness (or related parameter) of 
the viscous regions, usually in a time-dependent manner (Napolitano et al., 
1978). This is not necessarily a disadvantage. Viscous-inviscid interaction usually 
needs to be considered ultimately in obtaining the solution for the complete 
flow field containing a separated region, if the boundary-layer equations are 
used for the viscous regions. Viscous-inviscid interaction is treated further in 
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Section 7.4.4. On the other hand, we should note that a unique convergent 
solution can be obtained for the steady boundary-layer equations alone using 
inverse methods. 

7.4.3 Inverse Finite-Difference Methods 

Two procedures will be illustrated. The first is conceptually the simplest and is 
especially useful for illustrating the concept of the inverse method. It appears to 
work very well when the flow is attached (no reversed flow region), but gives rise 
to small controlled oscillations in the skin friction when reversed flow is present. 
This oscillatory behavior is overcome by the second method, which solves the 
boundary-layer equations in a coupled manner. The FLARE approximation will 
be employed in both of these methods. For simplicity, the methods will be 
illustrated for incompressible flows. 

Inverse Method A. The boundary-layer equations are written as follows. 

continuity: 
au JU - + - = o  
d x  d y  

momentum: 
du  du due 1 d r  

CIUI- + u- = 2.4,- + -- 
d x  d y  dx P dY 

(7.49) 

(7.50) 

In the above, C = 1.0 when u > 0, and C is a small ( G  0.2) positive constant 
when u G 0 and 

(7.51) 

The above equations are in a form applicable to either laminar or turbulent 
flow. For laminar flow the primed velocities and pT are zero, and for turbulent 
flow the unprimed velocities are time-mean quantities. 

The boundary conditions for the inverse procedure are 

u(x,O) = U ( X , O )  = 0 
and c( 1 - t) dy = 6*(x) 

(7.52) 

(7.53) 

where 6* is a prescribed function. Alternatively, r,,,(x) can be specified as a 
boundary condition. Clearly Eqs. (7.49) and (7.50) can be solved by a direct 
method utilizing the conventional boundary condition 

(7.54) 

in place of Eq. (7.53) for attached portions of the flow. It is possible to start a 
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boundary-layer calculation in the direct mode and switch to the inverse procedure 
when desired. 

The boundary-layer equations are cast into a fully implicit dlfference form, 
and the coefficients are lagged. Such a difference representation is discussed in 
Section 7.3 and will not be repeated here. The inverse treatment of boundary 
conditions is implemented by varying u, in successive iterations at each 
streamwise calculation station until the solution satisfies the specified value of 
6 * ( x ) .  In each of these iterations the numerical formulation and implementation 
of boundary conditions are the same as for a direct method. The displacement 
thickness is evaluated from the computed velocity distribution by numerical 
integration (use of either Simpson’s rule or the trapezoidal rule is suggested). 
The appropriate value of u, needed to satisfy the boundary condition on 6* 
(6&) is determined by considering 6* - a,*, to be a function of u, at each 
streamwise station, S* - S i c  = F(u, ) ,  and seeking the value of u, required to 
establish F = 0 by a variable secant (Froberg, 1969) procedure. In the above, 6* 
is the 6* actually obtained from the solution for a specified value of u,. Two 
initial guesses are required for this procedure, which usually converges in three 
or four iterations (Pletcher, 1978). 

The variable secant procedure can be thought of as a generalization of 
Newton’s method (also known as the Newton-Raphson method) for finding the 
root of F ( x )  = 0. In Newton’s method we expand F ( x )  in a Taylor series about 
a reference point x,: 

We truncate the series after the first derivative term and compute the value of 
A x  required to establish F ( x ,  + A x )  = 0. For Newton’s method this gives 

(7.55) 

Thus, starting with an initial guess, x,,  an improved approximation, x ,  + , , can be 
computed from Eq. (7.55). The process is repeated iteratively until l(x,+ - x,)l 
< E .  

Newton’s method is a simple and effective procedure. Its use does, however, 
require that F ‘ ( x )  be evaluated analytically. When this is not possible, the 
variable secant generalization of the Newton procedure represents a reasonable 
alternative. 

In the variable secant procedure, the derivative is replaced by a secant line 
approximation through two points: 
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Figure 7.11 Determination of u , ( x )  through the use of the variable secant procedure. 

After two initial guesses for x, the third approximation to the root is obtained 
from 

(7.56) 

In the application of the variable secant method to the inverse boundary-layer 
calculation, x, becomes he),, and F = 6* - a&. The iterative process is 
illustrated in Fig. 7.11. 

When the iterative search for the u, (x)  that provides the specified 6 * ( x )  is 
completed, the solution may be advanced to another streamwise station in the 
usual manner for parabolic equations. The simplicity of inverse method A is 
obvious. Apart from small changes to implement the FLARE representation, 
the difference equations are solved the same as for the standard direct method 
for boundary layers. The method performs reasonably well (Pletcher, 1978; 
Kwon and Pletcher, 1979) but does predict small oscillations in the wall shear 
stress when separation is present. These oscillations can be eliminated by 
suitable coupling of the momentum and continuity equations and are not 
present in solutions obtained by the method described below. 

Inverse Method B. Here we will describe the method developed by Kwon and 
Pletcher (1981). More recently, Truman et al. (1993) have described a similar 
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strategy in a more general context. The overall strategy of this method is to 
couple all unknowns and the boundary conditions in one simultaneous system of 
algebraic equations to be solved at each streamwise station. To accomplish this, 
it is convenient to introduce the stream function $. Accordingly. 

The conservation equations for mass and momentum are written as 

where 

The boundary conditions are 

(7.57) 

(7.58) 

(7.59) 
(7.60) 

where S * ( x )  is a prescribed function. The boundary condition for I,!J~ follows 
from the definition of 6 * : 

The upper limit of this integral can be replaced by y at the outer edge of the 
boundary layer, ye ,  since the integrand is equal to zero for y > ye .  Multiplying 
by u, gives 

ueS* = U,y, - l y e u d y  
0 

Expressing u in terms of the stream function permits the integral to be 
evaluated as @.,. Rearranging gives Eq. (7.60). When the difference equations 
that follow are solved in a direct mode, the outer boundary condition becomes 
the conventional one given by Eq. (7.54) instead of that specified by Eq. (7.60). 
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Equations (7.57) and (7.58) are first represented in finite-difference form as 

1-1 = (7.61) 
uy+1 + U l + '  $"+I  - $y 

2 AY - 
q + l  - uy cui" + - 

$"+I - *"-u?+l ] + I  - u ? + l  1-1 

A x  A x  A y + +  A y -  

(7.62) - 1+1  - P;- 1/2  
14n+' - .Y+l 

AY+ AY - 
In the above, 

C =  1 when uy" > 0 

C = O  when u;+' < 0 

x =  --- 

Newton linearization is next applied to the above nonlinear convective terms 
following the procedures presented in Section 7.3.3. We let uy+ = fi;+ + Au; 
and = &?+' + A*, where the circumflexes indicate provisional values of 
the variables in an iterative process. The quantities Au, and A$, are the 
changes in the variables between two iterative sweeps, i.e., A 4; = 4;' - 
for a general variable 4. The resulting difference equations can be written in 
the form 

@ ? + I  I -  1 - $y+l + b;(uy?; + uy+1) = 0 (7.63) 

B.ul+'  I 1-1 + D.ul++' I I + A . u l + + '  I 1 + 1  + E.$."+' I I = H,x"+l + C, (7.64) 

1 dP 
P k  

where 

- 
c(21i;+' - uy) 2 (-+-) P;+ 1/2  P;- 1/2 D. = + 

I A x  p ( A y + + A y - )  A Y +  AY- 
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Hi = 1 

The above algebraic formulation is similar to that presented in Section 7.3 in 
connection with the Davis coupled scheme and solved by the modified Thomas 
algorithm. Equations (7.63) and (7.64) form a block-tridiagonal system with 
2 x 2 blocks and require the simultaneous solution of 2(NJ) - 2 equations for 
2(NJ) - 2 unknowns at each streamwise marching step. The parameter NJ is 
the number of grid points across the flow, including boundary points. One 
difference between this formulation and the algebraic equations arising from 
the Davis coupled scheme is the appearance of the new term, H j x n + ' ,  on the 
right-hand side of Eq. (7.64). The pressure gradient parameter xn+l is one of 
the unknowns in the inverse formulation. The outer boundary conditions are 
also different. These facts preclude the use of the modified tridiagonal algorithm 
presented in Section 7.3. However, the blocks below the main diagonal can be 
eliminated, and a recursion formula can be developed (Kwon and Pletcher, 
1981) for the back substitution. Before the back substitution is carried out, 
however, the parameter xn+ must be determined by a special procedure to be 
indicated subsequently. 

The unknowns can be computed from 
?l+ 1 = A!.u? J I + ,  + 1 + Hjlxn+' + Cj (7.65) 

v+l = Bjuj",'; + D;xn+' + Ej (7.66) 

providing the coefficients AJ, Hi', Cj, Bj, Dj, Ej and the quantities uy+'t and 
xn+l are known a priori. The coefficients are given by 

A .  A'.= -2 
Rl I 

B; = A J R ,  

q = J J 1 - l  

D! = b . H !  +D! + H ! R ,  

C .  - B C  - Ej(bjCj-l + E;- l )  

Rl 

I I 1 - 1  1 - 1  I 

Ej = bjCj-, + Ej-! + C;R2 

H .  - B.H! I 1 - 1  - Ej(bjHjl-l + D;- l )  H!  = 
I Rl 

R ,  = Dj + ( B j  + E j b j ) A J P 1  + Ej(Bj - ,  + b,) 

R ,  = bj(l +A>-,) + Bj-l 
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Since the inner ( j  = 1) boundary conditions on u;+' and Ics.n+l are zero, the 
coefficients A;, B;, C; ,  D;, E;,  Hi,  are also zero and the coefficients above can 
be computed starting from j = 2 and continuing to the outer boundary ( j  = NJ). 

is evaluated by simultaneously 
solving the equations obtained from Eqs. (7.65) and (7.66) by replacing j with 
NJ - 1 and the boundary conditions in the following manner. At j = NJ - 1, 
Eqs. (7.65) and (7.66) become 

(7.67) 

(7.68) 

The pressure gradient parameter x n +  

u;;? 1 = A N ] -  l u N J  n + l  + Hhj- 1 x n + l  + CkJ- 1 

n + l  - n + l  
+NJ- 1 - % -  1~;; + DhJ- 1 x + EkJ- 1 

The boundary conditions are written as 

(7.69) 

where 

(7.72) 

Once the pressure gradient parameter x n f l  is determined, the edge velocity 
u;; can be calculated using Eqs. (7.67H7.71) as 

F2 n + l  F 3  

NJ  F ,  Fl 
-x + -  U n + l  = (7.73) 

Then, +;: * can be computed directly from Eq. (7.69). Now the back substitution 
process can be initiated using Eqs. (7.65) and (7.66) to compute u;+ and *" + 

from the outer edge to the wall. The Newton linearization requires that the 
system of equations be solved iteratively, with fiy" and @+' being updated 
between iterations. The iterative process is continued at each streamwise 
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location until the maximum change, in u's and +'s  between two successive 
iterations is less than some predetermined tolerance. The calculation is initiated 
at each streamwise station by setting fir'' = uy and I&,~-' = IL,". In previous 
applications of this method, only two or three iterations were generally required 
for the maximum fractional change in the variables, i.e., A+/c$, to be reduced 

Details of other somewhat different coupled inverse boundary-layer finite- 
difference procedures employing the FLARE approximation can be found in the 
works of Cebeci (1976) and Carter (1978). 

to 5 x 10-4. 

7.4.4 Viscous-Inviscid Interaction 

In design it is common to obtain the pressure distribution about aerodynamic 
bodies from an inviscid flow solution. The inviscid flow solution then provides 
the edge velocity distribution needed as a boundary condition for solving the 
boundary-layer equations to obtain the viscous drag on the body. In many cases, 
the presence of the viscous boundary layer only slightly modifies the flow 
pattern over the body. It is possible to obtain an improved inviscid flow solution 
by augmenting the physical thickness of the body by the boundary-layer 
displacement thickness. The definition of S*  is such that the new inviscid flow 
solution properly accounts for the displacement of the inviscid flow caused by 
the viscous flow near the body. The improved inviscid edge velocity distribution 
can then be used to obtain yet another viscous flow solution. In principle, this 
viscous-inviscid interaction procedure can be continued iteratively until changes 
are small. In practice, however, severe underrelaxation of the changes from one 
iterative cycle to another is often required for convergence. 

Fortunately, for most flows involving an attached boundary layer, the 
changes that arise from accounting for the viscous-inviscid interaction are 
negligibly small, and it suffices for engineering design purposes to compute the 
inviscid and viscous flows independently (i.e., without considering viscous-inviscid 
interaction). Flows that separate or contain separation bubbles are a notable 
exception. 

The displacement effect of the separated regions locally alters the pressure 
distribution in a significant manner. A rapid thickening of the boundary layer 
under the influence of an adverse pressure gradient even without separation can 
also alter the pressure distribution locally, to the extent that a reasonable flow 
solution cannot be obtained without accounting for the displacement effect of 
the viscous flow. Often under such conditions, a boundary-layer calculation 
obtained using the edge velocity distribution from an inviscid flow solution that 
neglects the displacement effect will predict separation when the real flow does 
not separate at all. 

It is often possible to confine the region where viscous-inviscid interaction 
effects are important to the local neighborhood of the "bulge" in the 
displacement surface. Such a local interaction region is depicted in Fig. 7.12. 
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1 x = x  

‘’ SEPARATION BUBBLE 
2 % I x = x  

I SURFACE OF BODY 

Figure 7.12 Local interaction region on a two-dimensional body. 

The inverse boundary procedure described in Section 7.4.3 is particularly well 
suited for flows in which separation may occur. 

The essential elements of a viscous-inviscid interaction calculation procedure 
are the following: 

1. A method for obtaining an improved inviscid flow solution that provides a 
pressure distribution or edge velocity distribution that accounts for the 
viscous flow displacement effect. In principle, any inviscid flow “solver” could 
be used, but it is also frequently possible to employ a greatly simplified 
inviscid flow calculation scheme based on a small-disturbance approximation. 

2. A technique for obtaining a solution to the boundary-layer equations suitable 
for the problem at hmd. For a flow that may separate, an inverse boundary- 
layer procedure would be appropriate. 

3. A procedure for relating the inviscid and viscous flow solutions in a manner 
that will drive the changes from one iterative cycle to the next toward zero. 

Over the years, numerous viscous-inviscid interaction schemes have been 
proposed. It will not be possible to discuss all of these here. Instead, we will 
summarize a suitable approach for predicting the flow in the neighborhood of a 
separation bubble on an airfoil in incompressible flow. This configuration is 
illustrated in Fig. 7.12. 

For this case, a good estimate of the effect of the displacement correction 
for the inviscid flow solution can be obtained by the use of a small-disturbance 
approximation. We let ue,o denote the tangential component of velocity of the 
inviscid flow over the solid body (neglecting all effects of the viscous flow) and 
u, be the velocity on the displacement surface induced only by the sources and 
sinks distributed on the surface of the body due to the displacement effect of 
the viscous flow in the interaction region. Then, the x component of velocity of 
a fluid particle on the displacement surface can be written as 

(7.74) 
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Following Lighthill (1958), the intensity of the line source or sinks displacing a 
streamline at a displacement surface of the viscous flow can be evaluated as 

d(u,6*) 
4 =  & 

For small values of 6*,  u, can be evaluated from the Hilbert integral 

1 m d(u ,6*)  dx’ 
U J X )  = - j 

T -a dx’ X - X ’  

(7.75) 

(7.76) 

In the numerical computation of u,, it is usually assumed that strong interaction 
is limited to the region x1 G x G x2 shown in Fig. 7.12. The intensity of the 
source or sink caused by the viscous displacement is assumed to approach zero 
as x approaches +m. Consequently, d(u,G*/&) is normally only computed in 
the region x1 < x < x2 using the boundary-layer solution. An arbitrary 
extrapolation of the form (Kwon and Pletcher, 1979) 

b 
q ’ ( x )  = ;? 

X 
(7.77) 

is often used for the regions x < x1 and x > x2 in order to evaluate the integral 
in Eq. (7.76). The constant b is chasen to match the q obtained from the 
boundary-layer solution at x1 and x2. Equation (7.76) can now be written as 

The first and third integrals can be evaluated analytically. The second integral is 
evaluated numerically, normally using the trapezoidal rule. The singularity at 
x = X I  can be isolated using the procedure found in the work by Jobe (1974). 
Some authors have found it possible to evaluate the integral numerically with no 
special attention given to the singularity as long as (x - x’) remained finite 
(Briley and McDonald, 1975). 

The inviscid surface velocity on the solid body (neglecting the boundary 
layer), u,, o, can be obtained by the methods cited in Chapter 6 [as, for example, 
the Hess and Smith (1967) method], or from experimental data. The Hess and 
Smith procedure could be used iteratively for all of the inviscid flow calculations. 
However, the relatively simple small-disturbance procedure requires significantly 
less computer time and has been found to provide sufficient accuracy for 
incompressible viscous-inviscid interaction calculations of a type that permits 
the use of the boundary-layer equations for the viscous flow. 

The inverse boundary-layer procedures discussed in Section 7.4.3 are quite 
suitable for computing the viscous portion of the flow, which may include 
separated regions. The iterative updating of the solutions can be effectively 
carried out by the method successfully demonstrated by Carter (1978) and Kwon 
and Pletcher (1979). 
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The interaction strategy known as a semi-inverse (inviscid solution proceeds 
directly, the viscous, inversely) method proceeds in the following way. First, u,, 
is obtained for the body of interest, and the viscous flow is computed up to the 
beginning of the interaction region by a conventional direct method. These two 
solutions do not change. Next, an initial a*(;) distribution is chosen over the 
region x1 < x < x2  (see Fig. 7.12). The initial guess is purely arbitrary but 
should match the S * ( x )  of the boundary layer computed by the direct method at 
x = xl. The boundary-layer solution is next obtained by an inverse procedure 
using this 6 * ( x )  as a boundary condition. An edge velocity distribution u , , B L ( x )  

is obtained as an output. 
Now the small-disturbance inviscid flow procedure, Eq. (7.781, is used to 

compute the correction to the inviscid flow velocity. This establishes a new 
distribution for the edge (surface) velocity U , , ~ , , ~ ( X ) .  The u,(x) from the two 
calculations, boundary layer and inviscid, will not agree until convergence has 
been achieved. The difference between u,(x) calculated both ways can be used 
as a potential to calculate an improved distribution for 6 * ( x ) .  To do this 
formally, one would seek to determine the way in which a change in u, would 
influence a*. A suitable scheme has been developed for subsonic flows by 
noting that a response to small excursions in local u, tends to preserve the 
volume flow rate per unit width in the boundary layer, i.e., u,6* E const. This 
implies that a local decrease in u, (x)  (associated with a more adverse pressure 
gradient) causes an increase in 6 * ( x )  and a local increase in u,(x) (associated 
with a more favorable pressure gradient) causes a decrease in S * ( x ) .  This 
concept is put into practice by computing the appropriate new distribution of 6* 
(Carter, 1978) to use for a new pass through the boundary-layer calculation by 

ue, BL, (7.79) 

where k denotes iteration level. It is important to note that Eq. (7.79) only 
serves as a basis for correcting S* between iterative passes so that no formal 
justification for its use is required so long as the iterative process converges. At 
convergence u , , ~ ~  = ue, inv; thus, Eq. (7.79) represents an identity, thereby 
having no effect on the final solution. In this sense, the use of Eq. (7.79) is 
somewhat like the use of an arbitrary overrelaxation factor in the numerical 
solution of an elliptic equation by successive overrelaxation (SOR). Carter 
(1978) has given a somewhat more formal justification of Eq. (7.79) based on the 
von IGrmLn momentum integral. 

The viscous-inviscid interaction calculation is completed by making succes- 
sive passes first through the inverse boundary-layer scheme, then through the 
inviscid flow procedure with 6* being computed by Eq. (7.79) prior to each 
boundary-layer calculation. When I u , , ~ ~  - U , , ~ , , ~ I  is less than a prescribed 
tolerance, convergence is considered to have been achieved. In some applications 
of this matching procedure, overrelaxation of 6* in Eq. (7.79) has been 
observed to speed convergence. An illuminating discussion of several matching 
procedures can be found in the paper by Wigton and Holt (1981). 
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Figure 7.13 Comparison of the predicted pressure distribution with experimental data (Gault, 1955) 
for a NACA 66,-0.18 airfoil at zero angle of incidence. 

Some example predictions (Kwon and Pletcher, 1979) are shown in Figs. 
7.13 and 7.14 for the flow in the neighborhood of a transitional separation 
bubble on a NACA 66,-018 airfoil. The parameter Tu in the figures is the free 
stream turbulence level, and Re, is the Reynolds number based on the airfoil 
chord. Figure 7.13 compares the predicted pressure coefficient with 
measurements. The dashed line in Fig. 7.13 indicates the pressure coefficient 
predicted by inviscid flow theory neglecting the presence of the boundary layer. 
In the neighborhood of the separation bubble centered at s/c = 0.7 (s is the 
distance along the airfoil surface measured from the leading edge, and c is the 
chord), this predicted pressure coefficient is seen to be considerably in error 
compared to the measurements. The solid line indicates the prediction of a 
viscous-inviscid interaction procedure, which is seen to follow the trend of the 
measurements fairly closely. Seventeen passes through the viscous-inviscid 
procedure were required for convergence in this case. Velocity profiles are 
compared in Fig. 7.14. Reversed flow is evident from the profiles in the vicinity 
of s/c 2: 0.7. The predicted results are quite sensitive to the model used for 
laminar-turbulent transition. 

The same general strategy outlined above for viscous-inviscid interaction 
calculations has also been found to work well for compressible flows, including 
transonic and supersonic applications (Carter, 1981; Werle and Verdon, 1979). 
However, there has been some evidence that the semi-inverse coupling procedure 
described above becomes unstable for large separated flow regions in a 
supersonic stream. This has led to the development of quasi-simultaneous (Le 
Balleur, 1984; Houwink and Veldman, 1984; Bartels and Rothmayer, 1994) and 
simultaneous (Lee and Pletcher, 1988) methods for achieving the coupling 
between viscous and inviscid solutions. When the flow becomes compressible, 
the boundary-layer form of the energy equation is solved in the viscous flow 
region, usually with the use of the FLARE approximation. The solution 
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Figure 7.14 Comparison of the predicted mean velocity profiles with experimental data (Gault, 
1955) for a NACA 66,-018 airfoil at zero angle of attack. 

procedure used for the inviscid flow normally varies as the flow regime changes. 
A relaxation solution of the full potential equation for inviscid flowwas used by 
Carter (1981) in his transonic viscous-inviscid interaction calculations. For fully 
supersonic streams the concept of a small-disturbance approximation (linearized 
theory) is again useful, and the component of the pressure gradient attributed to 
viscous displacement can be related to the second derivative of the boundary- 
layer displacement thickness in a very simple manner. The exact form of the 
appropriate pressure gradient relation varies somewhat with the application 
considered. The reader is referred to the works of Werle and Vatsa (1974) and 
Burggraf et al. (1979) for specific examples. Despite the fact that the pressure 
gradient depends upon local quantities in the case of a supersonic external 
stream, a downstream condition must be imposed (usually it is on 6 * ) in order 
to obtain a unique solution. Various time-dependent interaction schemes have 
also been successfully applied to both subsonic and supersonic flows (Briley and 
McDonald, 1975; Werle and Vatsa, 1974). 

Mention is often made of “triple-deck theory” or “triple-deck structure” in 
connection with viscous-inviscid interactions. It is natural to wonder if this 
theory introduces something that ought to be taken into account by those 
applying finite-difference methods to viscous-inviscid interaction problems. The 
theory itself is based on a multistructured asymptotic expansion valid as Re + w 

for laminar flow in the neighborhood of a perturbation to a boundary-layer flow 
such as would occur owing to small separated regions or near the trailing edge 
of a flat plate. We will primarily concentrate on the application of triple-deck 
theory to the small-separation problem. 
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Several individuals have contributed to the theory. Some of the early 
concepts were introduced by Lighthill (1958). Stewartson and co-workers have 
made several contributions. An excellent review of developments in the theory 
up through 1974 is given by Stewartson (1974). 

The theory is applicable if the streamwise length of the disturbance is 
relatively short. Thus, the theory would be applicable to small separation 
bubbles, but not to catastrophic separation. The length of the perturbation 
region where the triple-deck analysis would be applicable is of the order of 
ReP3l8, where Re is the Reynolds number based on the origin of the boundary 
layer. The “decks” in the theory are flow regions measured normal to the wall. 
The thickness of the lower deck is of order Re-5/8. The flow in this thin lower 
region has very little inertia, so that it responds quite readily to disturbances 
transmitted by the pressure gradient. The thickness of the middle (main) deck is 
of the order Re-’12. The flow in this region is essentially a streamwise 
continuation of the upstream boundary-layer flow and is predominantly 
rotational and inviscid. All flow quantities in this region are only perturbed 
slightly from those in a conventional noninteracting boundary layer. The 
disturbances being transmitted by the lower deck displace the main deck 
boundary layer outward. The upper deck is of order ReP3l8 in thickness. The 
upper deck flow is the perturbed part of the inviscid irrotational flow. 

Triple-deck theory provides the equations and boundary conditions needed 
to niatch the solutions in each of the three regions. The results are only valid for 
laminar flows where Re + co so in a sense are of limited practical value. These 
equations are frequently solved numerically using viscous-inviscid interaction 
procedures (Jobe and Burggraf, 1974). 

To the computational fluid dynamicist, the most important ideas and 
conclusions that come from the development of the triple-deck theory to date 
are as follows. 

1. The equations that result from the triple-deck theory applied to flows 
containing small perturbations (such as small closed separated regions and 
trailing edge flow) contain no terms that are not present in the boundary-layer 
viscous-inviscid interaction model. This tends to confirm that the boundary- 
layer viscous-inviscid interaction model is correct in the limit as Re -+ =. 
Normal pressure gradients are neglected in the triple-deck theory when 
applied to the class of flows being considered here. 

2. Triple-deck theory identifies length scales that can prove useful in finite- 
difference computations for laminar flows. The theory predicts that the lower 
deck is of order Re-5/8 in thickness. Although this conclusion is only strictly 
valid in the limit as Re 03, it would appear prudent to use a mesh near the 
wall sufficiently fine to resolve this lower deck region, where pressure 
variations-can have a fairly drastic effect on the flow. The importance of 
honoring this scaling is confirmed by the finite-difference study made by 
Burggraf et al. (1979). 
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3. The theory provides clear evidence that the supersonic separation problem is 
boundary value in nature, requiring a downstream boundary condition in 
order to select a unique solution from the branching solutions that might 
otherwise be obtained. This requirement is not immediately obvious in the 
supersonic case because the boundary-layer equations themselves are 
parabolic and, according to linearized theory, the pressure depends only on 
the local slope of the displacement body. The downstream boundary condition 
is usually invoked as a prescribed value of the displacement thickness. 

The paper by Burggraf et al. (1979) is helpful in clarifying the differences 
between the application of boundary-layer viscous-inviscid interaction schemes 
and the numerical solution of the triple-deck equations. At very large Re 
( > lo9) the boundary-layer viscous-inviscid interaction calculation agreed very 
well with the triple-deck results for separating supersonic flow past a compression 
ramp. As Re decreased, the predictions of the boundary-layer viscous-inviscid 
interaction procedure and the triple-deck results differed very noticeably. 

7.5 METHODS FOR INTERNAL FLOWS 

7.5.1 Introduction 

The thin-shear-layer equations provide a reasonably accurate mathematical 
model for two-dimensional and axisymmetric internal flows. These include the 
developing flow in straight tubes and in the annulus formed between two 
concentric straight tubes. In addition, the flow in the central portion of a large 
aspect ratio straight rectangular channel (“parallel plate duct”) is often found to 
be reasonably two-dimensional. These flow configurations are illustrated in Fig. 
7.15. The flow cross-sectional area does not change with axial distance in these 
standard geometries. The boundary-layer model also provides a good approxi- 
mation for some internal flows in channels having abrupt expansions in cross- 
sectional area, which cause regions of flow reversal. These new areas of possible 
applicability of the thin-shear-layer equations are discussed further in Section 
7.5.3. 

The finite-difference/finite-volume approach is particularly useful in 
analyzing the flow from the inlet to the region of fully developed flow. The flow 
is said to be hydrodynamically fully developed when the velocity distribution is 
no longer changing with the axial distance along the flow passage. The 
hydrodynamic fully developed idealization is generally only realized for flows in 
which fluid property variations in the main flow direction are negligible. The 
thermal development of the flow is also of interest and can be predicted for the 
class of flow mentioned above by solving the thin-shear-layer form of the energy 
equation simultaneously with the momentum and continuity equations. Under 
constant property assumptions and with either constant wall temperature or 
uniform wall heat flux thermal boundary conditions, it is possible for the 
nondimensional temperature distribution to become independent of the axial 
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( C )  

Figure 7.15 Internal flow configurations in which the thin-shear-layer equations are applicable. (a) 
Circular duct. (b) Annular passage. (c) Large aspect ratio rectangular channel. 

direction. Shah and London (1978) provide an excellent discussion of the 
thermal aspects of internal flows. 

The finite-difference/finite-volume approach is of less interest for treating 
constant-property fully developed flow, since the governing PDEs reduce to 
ODEs under these conditions. Laminar fully developed flow in a tube is the 
well-known Hagen-Poiseuille flow (White, 1991). If a relatively simple algebraic 
turbulence model is used, even turbulent fully developed flow can be treated by 
numerical methods appropriate for ODEs. With heat transfer present, it becomes 
more likely that the property variations will prevent the flow from reaching a 
fully developed state. 
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The characteristic Re for internal flows makes use of the channel hydraulic 
diameter, DH, as the characteristic length. The hydraulic diameter is evaluated 
as 4 A / P ,  where A is the flow cross-sectional area and P is the wetted 
perimeter. For circular ducts, DH reduces to the duct diameter. 

We expect to find a small region near the channel inlet where the 
boundary-layer approximation is poor. This corresponds to the low Re leading 
edge region in external flows. For channel Re greater than about 75, this region 
is negligibly small. Comparisons of various numerical models for very low Re 
channel inlet flows can be found in the works of McDonald et al. (1972) and 
Chilukuri and Pletcher (1980). 

7.5.2 Coordinate Transformation for Internal Flows 
For steady laminar two-dimensional and axisymmetric constant property flows in 
straight channels (including pipes of circular cross section), Re can be removed 
from the governing equations by a simple nondimensionalization. As a result, it 
becomes apparent that only one solution of the boundary-layer equations is 
required for each geometry. The scaling factors for this nondimensionalization 
are given by 

X Y p* = 7 P (7.80) 
y* = 5 PUi 

x* 2 - 
- D Re 

U u Re 
u* = - U* = - - 

Ui Ui 

where D is the channel diameter and Re is the Reynolds number based on the 
inlet average velocity iii and diameter D. The x axis is at the center of the 
straight channel. Specializing Eqs. (7.1) and (7.3) for constant property laminar 
flow and introducing the variables defined above yields 

du* 1 drmu* -+--=o 
dx* r"' dy* 

(7.81) 

dU* dU* dp* 1 d dU* 

d X *  dY* 
u*- + u*- = -- (7.82) 

where r is the distance from the center of the channel and m is a flow index 
equal to unity for axisymmetric flow and equal to zero for 2-D flow, as before. It 
should be easy to see that if one has a solution to Eqs. (7.81) and (7.82) for a 
developing flow, the results can be stretched (scaled) to be applicable for a flow 
at any specific Re by using Eqs. (7.80). Note again that this simple state of 
affairs is for constant-property laminar flow and, to date, an appropriate general 
scaling for variable-property and turbulent flows has not been identified. 

7.5.3 Computational Strategies for Internal Flows 
It is very important to observe that for steady channel flow, the flux of mass 
across any plane perpendicular to the channel axis is constant in the absence of 
wall blowing or suction. Since an initial velocity and temperature distribution 
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must be given as part of the problem specification for the parabolic equations, 
the mass flow rate can also be considered as specified. If wall blowing or suction 
occurs, the normal component of velocity at the walls would be required as part 
of the boundary conditions for the boundary-layer equations; hence the changing 
mass flow rate through the channel can be computed from the problem 
specifications. For simplicity, in the discussion to follow, we will assume that no 
flow passes through the channel walls. However, computation procedures can 
easily be modified to account for these effects. This additional information 
about the global or overall mass flow in the channel permits a constraint to be 
placed on the solution from which the pressure gradient can be determined. In a 
sense, this mass flow constraint serves the same purpose as the simple relation 
between u, (x)  and dp/ak, which can be obtained from the steady Euler 
momentum equation for external flows. In the usual treatment for external 
flows, the flow outside the boundary layer is assumed to be inviscid, and at the 
outer edge we specialize the Euler equation to dp/& = - pu ,  due/&. Thus for 
external flows, we usually think of the pressure gradient being specified, meaning 
that dp/& is either given or easily calculated from ue(x).  When we apply the 
boundary-layer equations alone to calculate steady internal flows, no information 
is available from an inviscid flow solution, and “outer” boundary conditions on u 
are established from geometric considerations. In general, viscous effects may 
be important throughout the flow, so that the Euler momentum equations 
cannot be used in any manner to obtain the pressure gradient. Instead, the 
global mass flow constraint is used. Thus, in steady internal flows, the pressure 
dadient is determined from the solution (with the help of the global mass flow 
constraint) rather than being “specified” as for external flows. This is the 
primary difference between the numerical treatment of internal and external 
flows. 

The thin-shear-layer equations can be written in a form applicable to 2-D 
internal flows as follows: 

momentum: 
dU dU dp 1 d 

d X  dY dx r”’ dy 
pu- + pG- = - - + --(A) (7.83) 

energy: 
dT dT 1 d dp du 

puc - + @c - = - - ( - r m q y )  + PTu- + T- (7.84) 
d x  dy r”’ d y  dY 

mass: 

global mass: 

(7.85) 

rit = L p u d ~  = const (7.86) 
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In the above, A is the cross-sectional area perpendicular to fhe channel 
axis. In addition, an equation of state is normally used to relate density to 
temperature and pressure. When m = 0, the above equations are applicable to 
2-D flows, and when m = 1, they apply to axisymmetric flows. For turbulence 
models utilizing the Boussinesq assumption, we find 

(7.87) 

(7.88) 

The governing equations reduce to a form applicable to laminar flows whenever 
the fluctuating Reynolds terms above are equal to zero. 

The wall boundary conditions remain the same as for external flows. For 
flows in straight tubes and parallel plate channels, a symmetry line or plane 
exists, and outer boundary conditions of the form 

(7.89) 

are used. For tube flow, the shear-stress and heat flux terms in Eqs. (7.83) and 
(7.84) are singular at r = 0. A correct representation can be found froh an 
application of L'Hospital's rule, from which we find 

Except for the treatment of the pressure gradient, the differencing of the 
governing equations proceeds in the same manner as for external boundary-layer 
flow. The pressure gradient is treated as an unknown in the internal flow case, 
its value to be determined with the aid of the global mass flow constraint, as 
indicated previously. This can be done in several ways. 

When explicit difference schemes are used, the pressure gradient can be 
determined as follows. The finite-difference form of the momentum equation 
can be written in the form 

(7.90) 

where QY and RY contain quantities that are all known. Equation (7.90) is then 
multiplied by the density $+ ' ,  and the resulting equation integrated numerically 
over the channel cross section by Simpson's or the trapezoidal rule. This gives 

The density $+I  is not known a priori at the n + 1 level at the time the 
pressure gradient is being determined. The circumflex indicates the provisional 
nature of this one variable. Very good results have been obtained by simply 
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letting byin+’ = pi”. In fact, this has been the most common procedure. An 
alternative is to evaluate $’+’ from pj” and p,’- by a second-order accurate 
extrapolation. Since m is specified by the problem initial conditions and the 
integrals in Eq. (7.91) contain all known quantities, d p / h  can be determined as 

(7.92) 

Once dp/dx has been evaluated, the finite-difference form of the momentum. 
continuity, and energy equations can be solved just as for external flows. The 
most widely used explicit scheme for internal flow appears to be of the 
DuFort-Frankel type. The DuFort-Frankel scheme was given for the thin-shear- 
layer equations in Section 7.3.4. A typical comparison between the predictions of 
the DuFort-Frankel scheme and experimental measurements of Barbin and 
Jones (1963) is shown in Fig. 7.16 for the turbulent flow of air in a tube. In the 
figure, ub denotes the bulk velocity in the tube and r, is the radius of the tube. 
Even very near the inlet ( x / D  = 1 . 9 ,  the predictions are seen to be in good 
agreement with the measurements. A simple algebraic turbulence model was 
used in the predictions. 

The internal flow problem is conceptually very similar to the inverse 
boundary-layer problem discussed in Section 7.4 for external flows. This is most 
evident when implicit difference schemes are used. For internal flows the 
“correct”’ pressure gradient must be determined that will give velocities that 

dp liz - /A$’jn+lQy dA 
- - _  

dx 3; + ’Rr dA 

I Re = 3.88 x 10 5 

DATA OF BARBIN AND JONES 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.. 

‘b 
U - 

Figure 7.16 Comparison of predicted and measured turbulent velocity profiles in the entrance 
region of a pipe (Nelson and Pletcher, 1974). D-F denotes DuFort-Frankel method. 
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satisfy the global mass flow constraint. This corresponds to adjusting the 
pressure gradient (or edge velocity) until the velocity distribution satisfies the 
specified displacement thickness in inverse methods for external flows. Several 
different procedures have been used with implicit methods to determine the 
pressure gradient. A number of these are briefly discussed below. 

Variable secant iteration. The pressure gradient can be varied iteratively at 
each streamwise location until the global mass flow constraint is met (Briley, 
1974) by employing the variable secant procedure discussed in Section 7.4.3 in 
connection with imposing the 6 * boundary condition for the inverse boundary- 
layer method. For fixed coefficients, velocities vary linearly with the pressure 
gradient, so that convergence is usually obtained with three iterations. 

Lagging the pressure adjustment. Patankar and Spalding (1970) pointed out 
that iterating at each streamwise station is uneconomical and have suggested 
that a value for the pressure gradient be guessed to advance the solution and 
then let the knowledge of any resulting error in mass flow rate guide our choice 
of pressure gradient for the next step. That is, in analogy with the way an 
automobile is steered, adjustments are made to correct the course without going 
back to retrace the path. This was the common-sense approach included in the 
early versions of the Patankar-Spalding finite-difference method for confined 
flows. Although the common-sense aspect of this logic cannot be denied, the 
algorithm appears a bit too approximate by present-day standards and is not 
recommended. In concert with the trend toward lower computer costs observed 
over the past decade, there has been a cost-equalizing trend toward the use of 
algorithms that are potentially more accurate. 

Newton’s method. Raithby and Schneider (1979) proposed a scheme suitable for 
incompressible flows that requires one-third less effort than the minimum (three 
iterations) variable secant calculation. The scheme assumes that the coefficients 
in the difference equations will remain constant, i.e., no form of updating is 
employed as the pressure gradient is adjusted until the global mass flow 
constraint is satisfied. The idea is that once an initial guess for dp/dx is made 
and a provisional solution obtained for the difference equations, a correction 
can be obtained by employing a form of Newton’s method. With “frozen” 
coefficients, the velocities will vary linearly with the pressure gradient, and it 
follows that one Newton-type correction should provide the correct pressure 
gradient. To illustrate, we will let S = dp/dr.  We make an initial guess for 
dp/dx = (dp/dr)* and calculate provisional velocities (uy + ’)* and a provisional 
mass flow rate m*. Due to the linearity of the momentum equation with frozen 
coefficients, we observe from an application of Newton’s method (see Section 
7.4.2) that the correct velocity at each point would be 

(7.93) 
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where AS is the change in the pressure gradknt required to satisfy the global 
mass flow constraint. We define .a,:' = duy+'/dS. The difference equations 
are actually differentiated with respect to the pressure gradient (S) to obtain 
difference equations for u:,:' that are tridiagonal in form. The coefficients for 
the unknowns in these equations will be the same as for the original implicit 
difference equations. The Thomas algorithm is used to solve the system of 
algebraic equations for .a,:'. The boundary conditions on u;,:' must be 
consistent with the velocity boundary conditions. On boundaries where the 
velocity is specified, u;,;' = 0, whereas on boundaries where the velocity gradient 
is specified, du;,;'/dn = 0 ( n  normal to boundary). The solution for u;,:' is 
then used to compute AS by noting that u;,;' A S  is the correction in velocity at 
each point required to satisfy the global mass flow constraint. Thus we can write 

m - m* = AS pun+.' & (7.94) 
P 2 J  

where the integral is evaluated by numerical means. The rit in Eq. (7.94) is the 
known value specified by the initial conditions. The required value of AS is 
determined from Eq. (7.94). The correct values of velocity uy" can then be 
determined from Eq. (7.93). The continuity equation is then used to determine 
yn+'. The computational effort of this procedure is roughly equivalent to two 
iterations of the method employing the variable secant procedure. 

Treating the pressure gradient as a dependent variable. In all of the procedures 
discussed above, the pressure gradient is treated as a known quantity whenever 
the simultaneous algebraic equations for the new velocities are solved. The 
standard Thomas algorithm can be used for the three methods above. Here we 
consider schemes in which the pressure gradient is treated as an unknown in the 
algebraic formulation. The coefficient matrix is no longer tridiagonal. Early 
methods of this type (Hornbeck, 1963) tended to employ conventional Gaussian 
elimination. More recent procedures (Blottner, 1977; Cebeci and Chang, 1978; 
Kwon and Pletcher, 1981) have used more efficient block elimination procedures. 
The method of Kwon and Pletcher (1981) is a modification of inverse method B 
presented in Section 7.4.3. The procedure employs the FLARE approximation 
to permit the calculation of separated regions in internal flows. The changes 
that must be made in inverse method B in order to treat internal incompressible 
flows in a 2-D channel will now be described. The flow is assumed to be 
symmetric about the channel centerline located at y = H/2, where y is 
measured from the channel wall. The channel height is H. Equations (7.57) and 
(7.58) apply. The outer boundary conditions become 

(7.95) 

where riz is the mass flow rate per unit width for a 2-D channel. The difference 
equations, Eqs. (7.61147.641, are applicable, and x n +  ' represents the unknown 
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pressure gradient 
1 dP 
P h  

- _ -  

as before. The procedures for internal and external flow differ in the way in 
which x"+ and ukJ are determined from the outer boundary conditions, which 
are different in the two cases. We express du/dy ) , , ,  in terms of a one-sided 
second-order accurate difference representation, 

where 
AY - = Y N J  - Y N J -  1 

' Y - - =  Y N J -  1 - Y N J - 2  

The outer boundary conditions, Eq. (7.95) can now be written as 
n i l  = U n + l  - U n + l  

U N J  1 N J - 1  2 N J - 2  *;;" = - m 

2 P  
where 

(7.97) 

(7.98) 
- 

4 
c1 = - 

4 - K  
K 

c2 = - 
4 - K  
AY - 

A y - -  
K =  - 

Equations (7.97) and (7.98) are to be solved with Eqs. (7.67), (7.681, and (7.71). 
However, one additional relationship is needed, since five unknowns appear 

among them have been identified thus far [Eqs. (7.971, (7.671, (7.681, and (7.7111. 
The additional equation can be obtained by specializing Eq. (7.65) for u ; ; ! ~  as 

(uNJ n + l  , U n + l  N,pl, u N j - 2 ,  n i l  + N J - l ,  n + l  x n + l )  and only four independent relationships 

(7.99) U$+J!~  = A & J - ~ U ~ T ! ~  H L J - ~  X n + l  c L J - 2  

This system of equations can be solved for xn+ by defining 

f f 1  = 1 - A & j - 1 ( ~ 1  - C ~ A & J - ~ )  

a 2  = (C1 - C ~ A & J - ~ ) H ~ J - ~  - C ~ H L J - ~  
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Then 
a l f f 6  - a 3 f f 4  

ff2 f f4  - f f l  ff5 
xn+l = 

The axial component of velocity at the line of symmetry can Fe f rmd  from 

(7.101) 

At this point the back substitution process can be initiated using Eqs. (7.65) 
and (7.66) to compute uY+' and $I;+' from the outer boundary to the wall. The 
remaining portions of the algorithm are as discussed in Section 7.4.3. The only 
differences between inverse method B and the related procedure for internal 
flows are due to the minor differences in the boundary conditions for the two 
cases. This requires that slightly different algebraic procedures be used to 
evaluate xn+ l  and u$' prior to the back substitution step in the block 
tridiagonal solution procedure. 

An interesting application of this method has been made to laminar channel 
flows having a sudden symmetric expansion that creates a region of recirculation 
downstream of the expansion. The general pattern of such a flow is illustrated in 
Fig. 7.17. The predictions were obtained by the boundary-layer method described 
above utilizing a fully developed velocity profile at the step. Re, is the Reynolds 

0.40 

0.30 

0.20 - 

'>>\- -O-O' -0.010 -0.005 $ = 0.00 

x/h 

Figure 7.17 Streamline contours predicted from boundaxy-layer equations (Kwon et al., 1984) for a 
laminar flow in a channel with a symmetric sudden expansion, Re, = 50, H , / H 2  = 0.5. 
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'JUi ,mix 

Figure 7.18 Velocity profdes for a laminar flow in a channel with a symmetric sudden expansion. 
Re,, (based on urn=) = 56, H , / H ,  = (Kwon et al., 1984). 

number based on step height, and H,/H,  is the ratio of the channel height 
before and after the expansion. Such flows have customarily been predicted by 
solving the full Navier-Stokes equations. 

Figure 7.18 compares velocity profiles predicted by the same method with 
experimental data and Navier-Stokes solutions for a symmetric sudden expansion 
flow. In the figure, u ~ , ~ ~ ~  denotes the maximum velocity just upstream of the 
expansion (step), H,, is the channel height downstream of the expansion, and 
y,, is the distance from the wall to the channel centerline. The symbols h, H I ,  
H2 are as defined previously. The method based on boundary-layer equations 
requires an order of magnitude less computer time than required for the 
solution of the Navier-Stokes equations. 

In Fig. 7.19 the reattachment length and distance to the vortex center 
predicted by the boundary-layer solutions (Lewis and Pletcher, 1986) are 
compared with the Navier-Stokes solutions and experimental data obtained by 
Macagno and Hung (1967) for a 1:2 pipe expansion. The Reynolds number (Re) 
and l/d in the figure are based on the diameter upstream of the expansion. The 
agreement is quite good for Re greater than about 20. Note that the boundary- 
layer results yield straight lines in Fig. 7.19 due to the scaling laws of Eqs. (7.80), 
which are applicable even in the case of fully developed flow undergoing a 
sudden expansion in cross-sectional flow area. Although the solutions to the 
boundary-layer equations are in close agreement with experimental data and 
solutions to the full Navier-Stokes equations for velocity profiles and the 
distance to the reattachment point, some limitations exist. For example, details 
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8.0 
BOUNDARY-LAYER SOLUTION 
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Figure 7.19 Comparison of the distances to flow reattachment and vortex center for experiments 
and Navier-Stokes solutions (Macagno and Hung, 1967) and solution of boundary-layer equations 
with FLARE (Lewis and Pletcher, 1986) for a 1:2 pipe expansion. 

of the eddy structure are not well predicted at low Re, as can be seen in Fig. 
7.20, where the magnitude of the minimum nondimensional stream function is 
plotted against Re for the 1:2 pipe and planar expansions. The minimum stream 
function measures the volume rate of flow in the recirculating eddy. Note that 
the boundary-layer values are independent of Re (indicating that the dimensional 
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Figure 7.20 Comparison of the stream function at the center of the trapped vortex predicted by 
boundary-layer equations (Lewis and Pletcher, 1986; Acrivos and Schrader, 1982) and the Navier- 
Stokes equations (Macagno and Hung, 1967; Osswald et al., 1984) for a 1:2 expansion. 
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volume flow reduces linearly with Re) but are only correct for Re greater than 
about 200. At lower Re the volume rate of flow in the eddy actually reduces 
more rapidly with decreasing Re as indicated by the solutions to the full 
Navier-Stokes equations. 

7.5.4 Additional Remarks 
Details of several difference schemes suitable for the thin-shear-layer equations 
were presented in Section 7.3 as they applied to ordinary external boundary-layer 
flows. As methods for confined flows have been considered in the present 
section, numerical details that remain the same as for external flows have not 
been repeated. However, an attempt has been made to clearly point out and 
emphasize those details that change and are unique to internal flows. 

Coverage in this section has been limited to flows in straight channels. 
Blottner (1977) demonstrated that the thin-shear-layer approximation (also 
known as the “slender channel” approximation) can be extended to curved 2-D 
channels with varying channel height. The equations solved are the boundary- 
layer equations with longitudinal curvature (Van Dyke, 1969). The normal 
pressure gradient induced by the channel curvature is accounted for by 

ap K P U ~  

dn 1 + K I ~  
0 _ -  --= 

where n is the coordinate normal to the channel centerline and K is the 
curvature of the centerline. 

Viscous-inviscid interaction schemes can be applied to internal flows in 
which an inviscid core region can be identified. The interaction effect is 
expected to be negligibly small except very near the inlet for low Reynolds 
number flows and under conditions in which the channel cross-sectional area 
changes abruptly. Viscous-inviscid interaction permits information to be 
transmitted upstream and can give improved predictions for flows in which the 
pressure field at a point is expected to be influenced by conditions farther 
downstream. The incompressible inviscid flow in channels is conveniently 
determined through a numerical solution of Laplace’s equation for the stream 
function. Inverse method B discussed in Section 7.4.3 can be used for the viscous 
portion of the flow. Such a combination has been employed interactively to 
predict the flow over a rearward facing step in a channel (Kwon and Pletcher, 
1986a, 1986b). 

7.6 APPLICATION TO FREE-SHEAR FLOWS 
The thin-shear-layer equations provide a fairly accurate mathematical model for 
a number of free-shear flows. These include the plane or axisymmetric jet 
discharging to a quiescent or co-flowing ambient, the planar mixing layer, and 
simple wake flows. The majority of free-shear layers encountered in engineering 
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applications are turbulent. To date, turbulence models for free-shear flows have 
not exhibited nearly the degree of generality as those used for wall boundary 
layers. It is still a major challenge to find models that can provide accurate 
predictions for the development of both the planar and axisymmetric jet without 
requiring adjustments in the model parameters. 

A complete treatise on the subject of the numerical prediction of free-shear 
flows might devote 60% of its content to turbulence modeling, 25% to coverage 
of the physics of various categories of free-shear flows, and 15% to numerical 
procedures. The numerical procedures, which are our main concern here, are 
the least troublesome aspect of the problem of obtaining accurate predictions 
for turbulent free-shear flows. 

The round jet has been studied extensively both experimentally and 
analytically and provides a representative example of a free-shear flow. The 
thin-shear-layer equations will provide a good mathematical model for the 
round jet following a straight trajectory if pressure in the interior of the jet can 
be assumed to be equal to that of the surrounding medium. This requires that 
the surface tension of the jet be negligible and that the jet be fully expanded, 
i.e., the pressure at the discharge plane equals the pressure in the surrounding 
medium. A subsonic jet discharging from a tube can always be considered as 
fully expanded. For the jet cross section to remain round and the trajectory to 
remain straight, it is necessary that no forces act on the jet in the lateral 
direction. This requires that the medium into which the jet is injected be at rest 
or flowing in the same direction as the discharging jet (co-flowing) and that body 
forces (such as buoyancy) be negligible. Under these conditions, the form of the 
thin-shear-layer equations given by Eqs. (5.1 16)-(5.119) are applicable. These 
equations are specialized further below for the steady incompressible flow of a 
round jet in the absence of a pressure gradient: 

continuity: 

(7.102) 

momentum : 

(7.103) 

Numerically, the primary difference between the wall boundary layer and 
the round jet is in the specification of the boundary conditions. Figure 7.21 
illustrates the round jet flow configuration. Due to the symmetry that exists 
about the jet centerline, the appropriate boundary conditions at y = 0 are 
(du/dy),,, = 0 and u(x,O) = 0. The outer boundary condition is identical to 
that for a wall boundary layer, 

lim u ( x , y )  = u, 

Initial conditions are also needed for the finite-difference/finite-volume 
Y - m  
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Figure 7.21 Round jet configuration. 

calculation. For turbulent jets especially, the initial streamwise velocity 
distribution is usually taken as a uniform stream at the discharge velocity, uo. 
Naturally, this cannot be completely correct, in that the velocities in a small 
region must exhibit the retarding effects of the tube walls. On the other hand, 
the boundary-layer equations are not expected to provide an extremely accurate 
solution very near the discharge plane, i.e., for x /Do  less than about one, where 
Do is the diameter of the jet at discharge. Using a uniform velocity distribution 
at discharge for the turbulent jet appears to provide fairly accurate results for 
x/Do > 1, which includes the region of most interest in engineering applications. 
Some finite-difference schemes applied to the jet problem in the Cartesian 
coordinate system will also require an initial distribution for u. As was mentioned 
in Section 7.3 for wall boundary layers, this is a requirement of the numerical 
procedure and not a requirement in the mathematical specification of the 
problem. When an initial distribution for v is required, using u(0,y)  = 0 is 
recommended. Taking several very small streamwise steps near the starting 
plane helps confine the effects of the starting singularity (which is due to the 
very large values of a u / a x  associated with the vanishingly small initial mixing 
zone) to a small region. This starting singularity is similar to that observed at the 
leading edge of a flat plate for the wall boundary layer when the equations are 
solved in the Cartesian coordinate system. 

For a turbulent jet discharging to a quiescent ambient, the initial mixing 
region, indicated in Fig. 7.21, extends to an x / D  of about 5. For jets discharging 
to a co-flowing stream, the initial mixing region is even longer. This initial 
mixing region is characterized by the fact that the fluid at the centerline is 
moving at the jet discharge velocity. Beyond the initial mixing region, the 
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velocities throughout the jet are influenced by the ambient stream velocity, u,. 
The growth properties of the jet differ in the two regions, initial and main, and 
when algebraic turbulence models are used, it is expected that somewhat 
different models (or values for the constants in the models) will be required in 
the two regions. 

Most of the finite-difference schemes discussed in Section 7.3 have been 
observed to work well for jets. Several methods are described in the Proceedings 
of the Langley Working Conference on Free Turbulent Shear Flows (NASA, 1972). 
This reference should provide a good starting point for obtaining a background 
on the special problems associated with achieving accurate predictions for 
several types of turbulent free-shear flows. Many numerical details can also be 
found in the works of Hornbeck (1973), Madni and Pletcher (1975a, 1975b, 
1977a), and Hwang and Pletcher (1978). This latter work gives the difference 
equations used in evaluating the fully implicit, Crank-Nicolson implicit, 
DuFort-Frankel, Larkin alternating direction explicit (ADE), Saul'yev ADE, and 
Barakat and Clark ADE methods for the round jet. A useful evaluation of 
available experimental data on uniform-density turbulent free-shear layers has 
been provided by Rodi (1975). 

The boundary-layer form of the energy equation is also applicable to 
free-shear flows. For a heated jet discharging vertically into a quiescent ambient, 
with or without thermal stratification, the trajectory of the jet is straight, and no 
special difficulties arise with the boundary-layer model. For the heated jet 
discharging at other angles or discharging at any angle with a cross flow, the jet 
is expected to follow a curved trajectory. Such flows have been treated by solving 
the fully 3-D Navier-Stokes equations by Patankar et al. (1977) and others and 
by more approximate parabolic finite-difference models that assume the flow 
remains axisymmetric (Madni and Pletcher, 1977b; Hwang and Pletcher, 1978). 
In these latter axisymmetric models, the momentum equation in the transverse 
direction is treated in a lumped manner, which yields an ODE for the angle 
between the tangent to the trajectory of the jet centerline and the horizontal 
direction. This approach requires only slightly more computational effort than 
solying the axisymmetric boundary-layer equations and gives surprisingly good 
agreement with experimental measurements, especially with regard to the 
trajectory of the jet. 

No finite-difference algorithms will be provided in this section, since the 
procedures discussed in Section 7.3 can be adapted to free-shear flows in a 
straightforward manner. However, one numerical anomaly that sometimes occurs 
in the prediction of jets discharging to an ambient at rest is worth mentioning. 
For this case, some schemes are unable to correctly predict u to asymptotically 
approach the free stream velocity of zero. The problem is thought to be related 
to the treatment of the coefficients of the convective terms and the procedures 
used to locate the outer boundary. The difficulty is most evident if the coefficients 
are lagged. It is commonplace to overcome this problem in a practical manner 
by letting u, be a small positive velocity of the order of 1-3% of the jet 
centerline velocity. Reports in the literature claim that this approximation does 
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\ 

Figure 7.22 Example of subsonic three-dimensional boundary-layer flow. 

not seriously degrade the accuracy of the calculations. Hornbeck (1973) shows 
that a satisfactory solution for u,  = 0 can be obtained with implicit methods by 
iteratively updating the coefficients. 

7.7 THREE-DIMENSIONAL BOUNDARY LAYERS 

7.7.1 Introduction 
The majority of the flows that occur in engineering applications are 3-D. In this 
section we will consider finite-difference methods for those 3-D flows that are 
“thin” (i.e., with large velocity gradients) in only one coordinate direction. Such 
flows are sometimes referred to as “boundary sheets.” Many flows occurring in 
applications are of this type. These are predominantly external flows. Examples 
include much of the viscous portion of the flow over wings and general 
aerodynamic bodies. 

An example of a 3-D boundaxy-layer flow is illustrated in Fig. 7.22. The 
presence of the cylinder alters the pressure field, causing the inviscid flow 
streamlines to turn as indicated qualitatively in the figure. In accordance with 
the equations of motion, a component of the pressure gradient (responsible for 
the turning) is directed away from the center of curvature of the inviscid flow 
streamlines. Because the viscous layer is thin, this pressure gradient does not 
change in the direction normal to the surface. As a result, the velocity vector 
rotates toward the center of curvature of the inviscid streamlines as we move 
down within the boundary layer. This occurs because the pressure gradient 
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remains fixed but the inertia of the fluid decreases as we move nearer the wall. 
This requires that the radius of streamline curvature decrease as we move in the 
normal direction toward the wall in the boundary layer. Thus the crossflow 
component of velocity will generally reach a maximum at some point within the 
boundary layer, as indicated in Fig. 7.22. This pressure-induced “cross flow” is 
referred to as a secondary flow in some applications and is responsible for such 
phenomena as the transport of sand toward the inside bank of a curved riverbed 
and the migration of tea leaves toward the center (near the bottom) of a stirred 
cup of tea. 

Another interesting example of 3-D boundary-layer flow occurs on bodies of 
revolution at incidence. Such flows on a prolate spheroid, for example, have 
been studied extensively by several investigators, including Wang (1974, 1975), 
Blottner and Ellis (1973), Pate1 and Choi (19791, and Cebeci et al. (1979a). 

The 3-D boundary-layer equations are not applicable to flows near the 
intersection of two surfaces (for example, near wing-body junctions and comers 
in channels) because stress gradients in two directions are important in those 
regions. Other reduced forms of the Navier-Stokes equations can be used to 
treat the flow near comers. These are discussed in Chapter 8. 

The subject of 3-D boundary layers will not be covered in great detail here. 
Instead, we will outline the general numerical strategy required for the solution 
of the problem posed by these equations, making use of the material developed 
in earlier sections for the 2-D boundary-layer equations. Several new 
considerations arise with the 3-D problem, and these will be emphasized. 

7.7.2 The Equations 
The 3-D boundary-layer equations were presented in Chapter 5 in Cartesian 
coordinates [Eqs. (5.120)-(5.12311 and in body intrinsic orthogonal curvilinear 
coordinates [Eqs. (5.124)-(5.128)]. For certain special conditions (the laminar 
supersonic flow over a cone at incidence being one of them), the number of 
independent variables can be reduced from three to two. Special cases of this 
sort will not be discussed here. 

The Cartesian coordinate system can be used for flows over developable 
surfaces (those that can be formed by bending a plane without stretching or 
shrinking), including of course, the special case of a flat surface. Curvilinear 
systems are required for flows over more general bodies. A few studies have 
been made using a curvilinear coordinate system coinciding with the inviscid 
streamlines (see Cebeci et al., 1973). However, most 3-D boundary-layer 
computations have been made with coordinate systems related to the geometry 
of the surface. Even with a body-oriented coordinate system, choices remain in 
the selection of the coordinate axes. Blottner (1975b) provides a review of the 
coordinate systems that have been used for 3-D flows. 

The 3-D boundary-layer equations presented in Chapter 5 are singular at 
the origin at the x1 coordinate. This singularity is of the same type as found at 
the leading edge of a flat plate in 2-D flow (see Section 7.3.7). Several 
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investigators have satisfactorily used the equations in this form both for flows in 
the Cartesian coordinate system (Klinksiek and Pierce, 1973) and for more 
complex flows over axisymmetric bodies (Wang, 1972; Pate1 and Choi, 1979). 
These authors have generally used a separate procedure to generate a satisfactory 
stagnation point solution before utilizing their 3-D solution scheme. 

It is also quite common to eliminate the singular behavior of the equations 
by use of a suitable dependent variable transformation. No single transformation 
has proven optimum for all flows. Blottner (1975b) discusses several that have 
been used for specific problems. An example transformation will be presented 
here that will remove the singularity at the origin of x1 and will permit the 
stagnation point profiles to be obtained from the solution of the ODES that 
remain when x ,  = 0. The transformed equations will permit the solution to be 
advanced from the stagnation point in a smooth and systematic manner. For 
laminar flows the boundary layer will tend to have a nearly uniform thickness in 
the transformed coordinates. 

We first note that the boundary-layer equations revert to the Euler equations 
at the outer edge of the boundary layer, where the viscous terms vanish and 
d u 1 / d x 2  and du3/dx2 + 0. This permits the components of the pressure 
gradient in Eqs. (5.126) and (5.127) to be written as 

where u l J x l ,  x 3 )  and u 3 J x 1 ,  x 3 )  are given by the inviscid flow solution over 
the body. The subscript e denotes quantities evaluated at the outer edge of the 
boundary layer. 

Let us assume that the Reynolds stresses for a turbulent flow will be 
evaluated by a viscosity model. That is, let 

- 
p = p T + p  

The model for pT may be simple or complex; no assumption about the 
complexity of pT is made at this time. The equations remain valid for laminar 
flow where ji = p. 

It is convenient to introduce nondimensional variables for velocity 
components defined by 

H 
I = -  

where We will be designated below as either u , , ~  or u ~ , ~ .  

u3 G = -  u1 F = -  
U 1 , e  We He 
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We now let x = x l ,  z = x,, and 

Using the chain rule for differentiation, derivatives with respect to the original 
independent variables can be replaced according to 

d d d q  d 

dx, dx dx d q  
- = - + - -  

a d q  d 
P- - = - - -  - -  

d d q  d 

dx, d z  dz d q  
+-- - 

d 

Making the indicated substitutions permits Eqs. (5.125)-(5.128) to be written 
as follows: 

continuity: 
x d(h,F) F d V  1 + -(l + p,) + - + -___ 

h1h3 dx 2hl '77 hlh3[( pp)e~1,e /x I"~  

x momentum: 

\ 

(7.106) 

z momentum: 
XF dG dG XG dG 
h ,  dx d q  h ,  dz 

+ V- + - - + xFGK, - xF2K, -- 

(7.108) 
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where 
x ' I2  XF d q  xGW, d q  

'1, e (  P p ) e  h ,  d x  h3ul+ d z  
v=pfi2[  ] +--+--  

Pe e = -  
P 

m 3 . e  " 3 , e  x awe 
P 4  = K h 3 ' l , e  dz  

h 3 ~ 1 , e  dz P7 = h,H,dx P s = m a z  

P5 = W,h,dx 
The metrics and geodesic curvatures of the surface coordinate lines are as 
defined in Chapter 5. 

x awe x dHe x dHe p6 = -- 

An equation of state, p = p ( p ,  T ) ,  is needed to close the system of equations for 
a compressible flow. Several terms in Eq. (7.107) have been numbered for future 
reference. 

The usual boundary conditions are 

V =  F = G = 0 
77 = 0: 

I = I ( x , O , z )  
or 
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where Q ( x ,  0,z) is a specified function related to the wall heat flw In addition, 
initial distributions of F ,  G, and I must be provided. Distributions of u ~ , ~ ,  u ~ , ~ ,  
and He are also required. 

The question of initial conditions requires careful consideration. Examina- 
tion of the 3-D boundary-layer equations in the original orthogonal cunilinear 
coordinates prior to the transformation indicated above (or for that matter, in 
Cartesian coordinates) indicates that the roles of the x1 and x 3  coordinates are 
interchangeable; that is, the equations are symmetric with respect to the 
interchange of x1 and xj coordinates. As long as both u1 and ug are positive, no 
single coordinate direction emerges as the obvious “marching” direction from 
considering the equations alone. Since first derivatives of u l ,  ug ,  and H appear 
with respect to both x1 and x 3 ,  it is expected that initial data should be provided 
in two intersecting planes to permit marching the dependent variables in both 
the x1 and x3 directions. The correct (permissible) marching direction is 
dictated by the zone-of-dependence principle, which will be discussed later. For 
now, we will proceed under the assumption that it is possible to march the 
solution in either the x1 or x 3  directions and that initial data are needed on two 
intersecting planes. It is generally easy to determine a “main” flow direction 
from considerations of the body geometry and the direction of the oncoming 
stream. In defining r)  above, we have already assumed that the x or x1 
coordinates are in this main flow direction and the xj or z coordinates are in 
the crossflow direction. We will first discuss the determination of initial 
distributions of F ,  G, and I in the z,r) plane, which will provide information 
appropriate for marching the solution in the x direction. 

If the origin of the x coordinate is taken at the stagnation point (or line in 
some flows), the momentum and energy equations reduce to ODES, which can 
be solved with the continuity equation to provide the necessary initial conditions 
in one plane. For the flow illustrated in Fig. 7.22, the appropriate form of the 
equations is obtained by simply neglecting all terms multiplied by x (which 
becomes equal to zero). This starting condition is similar to the flow at the 
leading edge of a sharp flat plate. On blunt bodies having a true stagnation 
point, u ~ , ~  and u3,e  are known (Howarth, 1951) to vary linearly with x in the 
stagnation region. Thus, some of the terms that vanish for the sharp leading 
edge starting condition now have a nonzero limiting value as x .+ 0 for blunt 
bodies. Blottner and Ellis (1973) discuss the stagnation point formulation in 
detail for incompressible flow. 

In most 3-D boundary-layer flows, it is possible to compute initial 
distributions of F ,  G, and I (and u l ,  ug ,  and H when the untransformed 
curvilinear system is used) on a second intersecting plane by solving the PDEs 
on a plane of symmety. The formulation of the plane-of-symmetry problem will 
be discussed below, but first, it is worth mentioning that in a few problems it is 
not possible to identify a plane of symmetry. An example of t h s  is the sharp 
spinning cone considered by Dwyer (1971) and Dwyer and Sanders (1975). 
Controversy erupted over the question as to whether this flow can be treated as 
an initial value problem with the boundary-layer equations (Lin and Rubin, 

\ 
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1973a). It appears that use of difference schemes that lag the representation of 
the crossflow derivatives (Dwyer and Sanders, 1975; Kitchens et al., 1975) 
permits the solution to be marched away from a single initial data plane into 
those regions not forbidden by the zone-of-dependence principle. Such difference 
representations as well as the zone-of-dependence principle are discussed in 
Section 7.7.3. 

The plane of symmetry is indicated in Fig. 7.22 for the flow over a flat plate 
with an attached cylinder. Flows over nonspinning bodies of revolution at 
incidence typically have both a windward and a leeward plane of symmetry, the 
former being most commonly used to develop the required second plane of 
initial data. Along the plane of symmetry, 

(7.110) 

The inviscid flow and fluid properties are also symmetric about the plane of 
symmetry. Using Eq. (7.110), the x-momentum and energy equations reduce to 
2-D form. The problem remains 3-D, however, because the cross-derivative term 
in the continuity equation does not vanish on the plane of symmetry. Expanding 
out the cross-derivative term in Eq. (7.106) and invoking the symmetry conditions, 
Eq. (7.1101, permits the continuity equation to be written as 

x d(h,F)  F dV xGz d ~ ~ , ~  
-- + -(1 + P1) + - + -- = 0 (7.111) 
h,h, d x  2 4  aq h 3 U l , e  dz 

where 

The z-momentum equation in the form given by Eq. (7.108) provides no useful 
information because G = 0 everywhere in the plane of symmetry. However, 
differentiating the z-momentum equation with respect to z and again invoking 
the symmetry conditions provides an equation that can be solved for the 
required values of G, : 

(7.112) 

Defining We,, = du j , , / dz ,  we can express the parameters P9 and Plo as 

We,, is to be obtained from the inviscid flow solution. Equation (7.112) for Gz 
has the same general form as the original z-momentum equation and can be 
solved by marching in the x direction along the plane of symmetry. 
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The arbitrary parameter We used in nondimensionalizing the crossflow 
velocity component is chosen to avoid singular behavior. We take We = u ~ , ~  at 
the stagnation point and along the plane of symmetry, and We = u ~ , ~  elsewhere. 

7.7.3 Comments on Solution Methods for Three-Dimensional Flows 

The 3-D boundary-layer problem involves several complicating features and 
considerations not present in the 2-D flows treated thus far. The inviscid flow 
solution required to provide the pressure gradient input for the boundary-layer 
solution is often considerably more difficult to obtain than for 2-D flows. 
Generation of the metrics and other information needed to establish the 
curvilinear-body-oriented coordinate system can also be a significant task for 
complex bodies. Turbulence models need to be extended to provide 
representation for the new apparent stress. In addition, the following features 
require special attention in the difference formulation: (1) implementation of 
the zone-of-dependence principle, and (2) representation of the crossflow 
convective derivatives in a manner to permit a stable solution for both positive 
and negative crossflow velocity components. 

The 3-D boundary-layer equations have a hyperbolic character in the x-z 
plane, and the mathematical constraint that results is very much like the 
Courant-Friedrichs-Lewy condition discussed in connection with the wave 
equation. Major contributions to the formulation and interpretation of the zone 
of dependence principle for 3-D boundary layers can be found in the work of 
Raetz (19571, Der and Raetz (1962), Wang (1970, and Kitchens et al. (1975). 
The principle actually addresses both a zone of dependence and a zone of 
influence and is sometimes just referred to as the “influence” principle. The 
dependence part of the principle is the most relevant to the proper establishment 
of difference schemes and so has been given emphasis here. 

If we consider the point labeled P in Fig. 7.23 within a 3-D boundary layer, 
the influence principle states that the influence of the solution at P is transferred 
instantaneously by diffusion to all points in the viscous flow on a line (labeled 
A-B in Fig. 7.23) normal to the surface passing through P and by convection 
downstream along all streamlines through that point. Normals to the body 
surface form the characteristic surfaces, and the speed of propagation is infinite 
in that direction. Disturbances anywhere along A-B are felt instantaneously 
along the whole line A-B and are carried downstream by all streamlines passing 
through A-B. The positions of the two outermost streamlines through A-B and 
extending downstream define the lateral extent of the wedge-shaped zone of 
influence for points on A-B. Events along A-B can influence the flow within the 
region bounded by the characteristics (lines normal to the wall) through these 
outermost streamlines. Typically, one outermost streamline is the limiting 
streamline at the wall and the other is the inviscid flow streamline. The flow 
along A-B is obviously influenced by the flow upstream, and a zone ofdependence 
is defined by the characteristic lines passing through the two outermost 
streamlines extending upstream. Events at all points within this wedge-shaped 
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ZONE OF DEPENDENCE 
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Figure 7.23 Zones of dependence and influence in three-dimensional boundary layers. 

region upstream can influence events along A-B. The “outermost” streamlines 
are those having the maximum and minimum angular displacement from the 
constant x3 (or z )  surface passing through A-B. The zone of dependence then 
designates the minimum amount of initial data that must be supplied to 
determine the solution along A-B. These concepts apply to the PDEs. It is 
important for the difference molecule used along A-B not to exclude information 
in the zone of dependence; that is, the zone of dependence implied by the 
difference representation must be at least as large as the zone identified with 
the PDEs. This has also been shown previously for hyperbolic PDEs and 
identified as the CFL condition. The exact quantitative statement of the zone- 
of-dependence principle depends upon the difference molecule employed. For 
example, using a scheme that represents dG/dz  centrally (with Az constant) at 
the n marching level as the solution is advanced to the n + 1 level, the 
zone-of-dependence principle would require that 

(7.113) 

Equation (7.113) indicates that the local angle made by the streamlines with 
the plane of constant z must be contained within the angle whose tangent is 
given by the mesh parameter h, A z / ( h ,  Az). We would like Eq. (7.113) to be 
satisfied at a given x level, with A x  being the increment back upstream. It 
would be unprofitable to iterate simply to establish the allowable step size, so 
the usual procedure is to utilize the most recently calculated values of G and F 
to establish the new step size using a safety factor to allow for anticipated 
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changes in G and F over a Ax increment. In using Flq. (7.113) to establish the 
maximum allowable marching step increment, the inequality should be checked 
at each internal point at a given x level before Ax is established for the next 
step. With the use of certain difference schemes for flows in which G does not 
change sign, the zone-of-dependence constraint is automatically satisfied, as will 
be illustrated below for the 3-D Crank-Nicolson scheme. 

Stability is also a concern in 3-D boundary-layer calculations. The presence 
of the additional convective derivative in the momentum equation generally 
influences the stability properties of the difference scheme. The stability 
constraint of a scheme is very likely to change as it is extended from 2-D to 3-D 
flow. The concept of stability is separate from the concept of the zone of 
dependence. This point is demonstrated very well in the work of Kitchens et al. 
(1975). For some schemes the constraint imposed by the zone-of-dependence 
principle will coincide with the stability constraint determined by the usual von 
Neumann analysis, but not always. Kitchens et al. (1975) show that for four 
difference schemes investigated, errors tend to grow whenever the zone-of- 
dependence principle was violated, but that for some schemes the solution 
remained very smooth and “stable” in appearance even though the errors were 
very significant. In other schemes, violation of the zone-of-dependence principle 
may trigger unstable behavior characterized by large oscillations even when such 
behavior is not predicted by a stability analysis. It is even possible to devise 
inherently unstable schemes that satisfy the zone-of-dependence constraint. 

A few common difference schemes for 3-D boundary layers will be briefly 
described. In the following discussion, the indices n, j ,  k will be associated with 
the coordinate directions xl, x2, xg (or x, 7,~). The solution is being advanced 
from the nth marching plane to the n + 1 plane. The solution at the n + 1 level 
will start at k = 1 (usually on the plane of symmetry), where the equations will 
be solved for the unknowns for all values of j .  That is, fixing n and k ,  we obtain 
the solution along a line normal to the wall. Then the k index is advanced by 1, 
and the solution is obtained for another “column” of points along the surface 
normal. Thus the marching (or “sweeping”) at the n + 1 level is in the crossflow 
direction. In difference representations below, the unknowns will be variables at 
the n + 1, k levels. 

Crank-Nicolson scheme. The 3-D extension of the Crank-Nicolson scheme has 
been used by several investigators. Its use is restricted to flows in which the 
crossflow component of velocity does not change sign owing to zone-of- 
dependence and stability considerations. The difference molecule is centered at 
n + $, j ,  k - i. Figure 7.24(a) illustrates the molecule as we look down on the 
flow (i.e., only points in the x-z plane are shown). The shaded area indicates the 
approximate maximum zone of dependence permitted by the molecule. The 
circled point indicates the location of the unknowns, and the x indicates the 
center of the molecule. The presence of negative crossflow components of 
velocity causes this scheme to violate the zone-of-dependence principle because 
no information is contained in the molecule that would reflect flow conditions in 
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Figure 7.24 The Crank-Nicolson scheme. (a) The difference molecule projected on the x-z plane. (b) 
The control volume for the continuity equation. 

the negative coordinate direction as the solution is advanced to the n + 1, k 
level. On the other hand, the zone-of-dependence principle imposes no 
restriction on the size of Ax as long as G 2 0, since the molecule spans all 
possible flow angles for which F > 0, G 2 0. 

More than one variation of the Crank-Nicolson scheme has been proposed. 
In the most frequently used version, terms of the form d / d q ( a  d 4 / d q )  are 
differenced as for the 2-D Crank-Nicolson scheme but averaged between k - 1 
and k. Likewise, &$/ax and d 4 / d q  terms are represented as for the 2-D 
Crank-Nicolson scheme but averaged over k and k - 1. Derivatives in the 
crossflow direction [as for example in the term labeled (1) in Eq. (7.107)l are 
represented by 

For flows over curved surfaces for which the curvature parameters K ,  and K ,  
are nonzero, new terms of the form represented by terms labeled (2) and (3) in 
Eq. (7.107) must be represented. Similar terms appear in the untransformed 
equations in orthogonal curvilinear coordinates given in Chapter 5. Terms of 
this general form, not involving derivatives of the dependent variables, are 
considered source terms according to the definition given in Section 7.3.1. The 
terms labeled (4) and (5) in Eq. (7.107) are two additional source terms that 
arise due to the introduction of the F and G variables. These terms, (2)-(5) in 
Eq. (7.1071, require linearization in the difference representations as do the 
convective terms. Any of the linearization techniques suggested in Section 7.3.3 
can be used, although coupling of the equations is not commonly used. The 
source terms are represented at the center of the difference molecule 
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( n  + i, j ,  k - $) by appropriate averages of variables at neighboring grid points. 
As an example, the term labeled (2) in Eq. (7.107) can be represented as 

(7.1 14) 

The only quantity treated algebraically as an unknown in Eq. (7.114) is <n; ’. 
The linearization is implemented by treating 6lk+* algebraically as a known. 
The value of 6;;’ can be determined by extrapolation, updated iteratively, or 
simply lagged, although lagging is not often used for the 3-D boundary-layer 
equations. Considerable flexibility exists in the way in which the various terms 
can be linearized. Other source terms appear on the right-hand side of Eq. 
(7.1071, but these do not require linearization. The algebraic formulation for 
each momentum equation results in a simultaneous system of equations for the 
unknowns along the n + l , k  column of points. The coefficient matrix is 
tridiagonal, so that the Thomas algorithm can be used. 

Most current procedures for the 3-D boundary-layer equations solve the 
continuity equation separately for after F and G have been determined 
from the solution to the momentum equations. The difference representation 
for the continuity equation is usually established by considering a control 
volume centered about ( n  + $, j - ?, k - ?I. Such a control volume is illustrated 
in Fig. 7.24b). For F and G the average value of these quantities over a face of 
the control volume is established by taking the average of the quantities at the 
four corners of the face. Values of V are only needed at locations n + i, j ,  k - 7 
in the momentum equations. Thus, computational effort is normally saved by 
simply letting the value of V determined from the continuity equation be the 
value at the center of the x-z planes of the control volume. For computer 
storage the V physically considered to be located at n + $, j ,  k - $ is usually 
assigned the subscript n + 1, j ,  k .  The location of is indicated in Fig. 
7.24(b), where the labeling usually used for computer storage is employed. Grid 
schemes in which the dependent variables are evaluated at different locations in 
the computational domain are usually referred to as “staggered” grids. In this 
staggered grid, all variables except I/ are evaluated at regular grid points. 
Further examples of staggered grids arise in Chapter 8. The Crank-Nicolson 
scheme has the potential of being formally second-order accurate {(T. E.= 
0[(Axl2,  AT>^, (Az)~ ] } .  The T.E. may be less favorable, depending on how 
linearizations and unequal mesh sizes are handled. 

1 1 

1 

Krause,zig-zag scheme. The Krause (1969) scheme has been widely used for 
flows in which the crossflow velocity component changes sign. The difference 
molecule is centered at n + 3, j ,  k ,  and its projection on the x-z plane is given 
in Fig. 7.25(a). The shaded area again denotes the approximate maximum zone 
of dependence permitted by the molecule. We note that the molecule includes 
information in both z directions from point n + 1, j ,  k so that, within limits, 
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n n+l 

1 

j ,  k+l 

n n+l  

Figure 7.25 The Krause zig-zag scheme. (a) The difference molecule projected on the x-z plane. (b) 
The control volume for the continuity equation. 

cross flow in both directions is permitted as long as the flow direction remains 
within the zone of dependence of the molecule. As for the Crank-Nicolson 
scheme, we observe that no mesh size constraint occurs when F > 0, G z 0. 
However, a constraint is observed when cross flow in the negative z direction 
occurs. The zone of dependence and the stability constraint for the Krause 
scheme can be stated as 

A x h , G  
A z h , F  

F > O  - 2 - 1  

It should be noted that the permitted flow direction can be altered by changing 
the aspect ratio, A z / A x ,  of the molecule. 

The Krause difference representation is somewhat simpler algebraically 
than the Crank-Nicolson scheme, primarily because most difference representa- 
tions are only averaged between n + 1 and n, but not between two k levels. 
For the Krause scheme, terms of the form d / d q ( a  d + / d q )  and d + / d x  are 
differenced in the same manner as in the 2-D Crank-Nicolson scheme. 
Derivatives in the crossflow direction in the momentum equations are differenced 
using points in the zig-zag pattern denoted by the dashed lines in Fig. 7.25(a). 
For equal Az increments this representation can be written 

(7.115) 

Since the sweep in the z direction is from columns ( n  + 1, k - 1) to ( n  + 1, k) ,  
4:; is the only unknown in Eq. (7.115). The problem of linearization of the 
algebraic representation is much the same as for the Crank-Nicolson scheme 
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except that the molecule is more compact because quantities generally only 
need to be averaged between two grid points instead of four. For example, the 
term labeled (2) in Eq. (7.107) can be represented as 

A tridiagonal system of algebraic equations results from the Krause formulation, 
which can be solved by the Thomas algorithm. 

The difference representation for the continuity equation is established by 
considering a control volume centered about ( n  + $, j - i, k) as indicated in 
Fig. 7.25(b). The average value of F on an y z  face of the control volume can be 
determined from averaging only in the 77 direction, since the middle of the plane 
coincides with a k level. A zig-zag (or diagonal) average is used to represent G 
on an x-q plane. To illustrate this for equal A z  increments, we would represent 
a term of the form d(aG)/dz in the Krause continuity equation as 

(7.117) 

The V determined from the Krause continuity equation is located at the center 
of the upper x-z plane of the control volume (at n + i,j, k ,  but usually stored 
as n + 1, j, k) .  The storage index is the one indicated in the labeling of Fig. 
7.25(b). The truncation error for the Krause scheme is the same as for the 
Crank-Nicolson scheme. Further details on the Crank-Nicolson and Krause 
schemes can be found in the work by Blottner and Ellis (1973). 

Some variations. Two variations on the Krause scheme that have proven to be 
suitable for both positive and negative crossflow velocity components will be 
mentioned briefly. Wang (1973) has developed a second-order accurate two-step 
method that eliminates the need to linearize terms in the momentum equations. 
As with all multilevel methods, initial data must be provided at two marching 
levels. This is usually accomplished through the use of some other scheme for 
one or more steps. The projection of the two-step molecule on the x-z plane is 
shown in Fig. 7.26. The shaded area again indicates the approximate zone of 
dependence permitted by the molecule. Known data on the n - 1 and n levels 
are used to advance the solution. The method is implicit and centered at the 
point ( n ,  j ,  k) .  Derivatives in the x and z direction are represented centrally 
about (n ,  j ,  k) .  Derivatives of the form 
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n-1 n n+l 

UNKNOWN 

Z Figure 7.26 The two-step scheme. 

are represented at ( n  + 1, j, k )  and ( n  - 1, j ,  k )  and averaged. The zone-of- 
dependence constraint is given by 

No formal stability constraint is observed so long as F > 0. 
Kitchens et al. (1975) compared the properties of four schemes for 3-D 

boundary layers and found that their scheme D had quite favorable error growth 
and stability properties. In addition, the results seemed relatively insensitive to 
violations in the zone-of-dependence constraint. The projection of this difference 
molecule on the x-z plane is shown in Fig. 7.27. The shaded area indicates the 
approximate zone of dependence for the method. The method is implicit. 
Derivatives in the x direction are represented centrally about ( n  + i, j, k )  with 
one very unique twist that converts an otherwise unstable scheme into a stable 
one. In the representation for d + / d x ,  values needed at n, j ,  k are replaced by 
the average of 4:k+ and 4Lk- Thus for equal increments we would use 

d 4  4:;’ - 0 . 5 ( 4 f k + ,  + 4j?k-l) 
- 2  

d X  A x  

Derivatives in the crossflow direction are represented centrally about ( n ,  j, k) .  
Derivatives of the form d / d q ( a  d + / d q )  are represented at ( n  + 1, j ,  k )  and 
( n , j , k )  and averaged. The T.E. stated by Kitchens et al. (1975) is O [ A x ,  
( A z ) ’ / A x ,  ( A q ) ’ ,  ( A z ) ’ ] .  The zone-of-dependence constraint for this method is 
the same as for the two-step method. In this case, the stability restriction is the 
same as the zone-of-dependence constraint. 

Inverse methods and viscous-inviscid interaction. McLean and Randall (1979) 
reported the use of a viscous-inviscid interaction in 3-D for computing flows 
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n n+l 
k-1 ---f x 

Figure 7.27 Scheme D (Kitchens et al., 1975). 

over wings. The boundary-layer equations were solved in a direct manner in 
their work. The computation of the displacement surface needed to interface 
with the inviscid solution is somewhat more complex in 3-D. The simple Hilbert 
integral small-disturbance correction [Eq. (7.76)] for an inviscid flow has been 
extended to 3-D (Edwards, 1986), although the inviscid flow may also be 
recomputed in its entirety for each iterative pass. However, rather than 
recomputing the inviscid flow for the body modified by the displacement surface, 
it is frequently advantageous to maintain the same body in the inviscid calculation 
and represent the effects of the viscous flow by a distribution of sources and 
sinks (Lighthill, 1958). In the full inviscid potential flow solution, the sources 
and sinks (related to space derivatives of the displacement thicknesses) are 
represented as normal velocity boundary conditions (blowing or suction) at the 
body surface. This formulation offers an advantage when direct methods are 
used to solve the elliptic PDEs for the subsonic flow, in that the influence matrix 
and its inverse need not be recomputed for each interaction iteration. 

A number of investigators (for example, Delery and Formery, 1983; Edwards 
and Carter, 1985; Edwards, 1986) have reported success in using an inverse 
procedure for solving the 3-D incompressible boundary-layer equations. Such a 
capability is the first step toward the development of 3-D viscous-inviscid 
interaction procedures that could permit computation of separated flows. 

As in two dimensions, the 3-D inverse procedure treats the pressure as 
unknown. Since the direct solution of the 3-D boundary-layer system requires 
specification of two components of the pressure gradient, it is not surprising that 
an inverse solution method requires specification of two alternative functions. 
Edwards and Carter (1985) evaluated the suitability of specifying four different 
combinations of parameters and found that three of them worked satisfactorily 
but a fourth led to the formulation of an elliptic system that allowed departure 
(exponentially growing) solutions when solved in a forward marching manner. 
Examples of boundary condition combinations that worked included the specifi- 
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cation of both integral parameters, 

and 6, and the crossflow component of the edge velocity we. Three-dimensional 
viscous-inviscid interaction schemes based on an inverse treatment of the 
boundary-layer equations apparently have not been widely used in applications, 
although Edwards (1986) demonstrated that such a strategy is workable. This 
may be partly due to the inherent complexity of the two-solver approach and 
partly due to advances in methods based on the solution of a single set of 
governing equations, which have been enabled by rapid progress in computer 
technology. 

7.7.4 Example Calculations 

Here we briefly present some example computational results for the sample 3-D 
flow illustrated in Fig. 7.24. The results were obtained by application of the 
c a u s e  scheme to Eqs. (7.106)-(7.108) for an incompressible laminar flow. The 
Crank-Nicolson scheme was used at the last z station to permit the calculation 
to end without requiring information from the k + 1 level. Computed results for 
this flow have been reported in the literature by several investigators (see, for 
example, Cebeci, 1975). For this flow, the inviscid velocity distribution is given 
by ’ 

Y3 u3+ = -&a2, 
Y1 

where um is the reference free stream velocity and y1 = (x - x0)’ + z2 ,  yz = 

-(x - x0)’ + z 2 ,  and y3 = (x - xo)z. The parameter xo is the distance of the 
cylinder axis from the leading edge, a is the cylinder radius, and x and z denote 
the distance measured from the leading edge and plane of symmetry, respectively. 
It is also useful to know du3,,/dz along the plane of symmetry: 

- 2u,a2 - - du3, e TL0 ( x - x o )  3 

Calculations were made for u, = 30.5 m/s, a = 0.061 m, xo = 0.457 m using 
Ax = 0.0061 m, AT = 0.28, and Az = 0.0061 m. Typical velocity profiles for this 
flow are shown in Fig. 7.28. In particular, we note that the crossflow velocity 
component reaches a maximum within the inner one-third of the boundary 
layer. The variation in the flow angle (in x-z plane) with distance from the wall 
is shown in Fig. 7.2Na). The maximum skewing is observed to occur close to the 
wall. The velocity vector is seen to rotate through an angle of about 13” along 
the surface normal. This corresponds to the included angle made by the zone of 
dependence at this location (see Fig. 7.23). The variation in the skin-friction 
coefficient is shown in Fig. 7.29(b). The presence of the cylinder causes the flow 
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Figure 7.28 Velocity profiles at x = 0.219 m, z = 0.079 m, for an example three-dimensional flow 
over a flat plate with an attached cylinder. (a) Streamwise velocity distribution. (b) Crossflow velocity 
distribution. 

0 2 4 6 

Figure 7.29 Example of three-dimensional boundary-layer flow over a flat plate with an attached 
cylinder. (a) Variation of flow angle (measured from x-7) plane) along the surface normal at 
x = 0.219 m, z = 0.079 m. (b) Variation of skin-friction coefficient along plane of symmetry. 
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, 
on the plane of symmetry to separate at x - 0.26 m. Conventional boundary- 
layer calculation methods can proceed no farther along the plane of symmetry 
because both the x and z components of velocity have vanished. 

7.7.5 Additional Remarks 

Only a few representative difference schemes for 3-D boundary layers have been 
discussed in this chapter. Many other useful procedures have been suggested. 
Several of these are discussed by Wang (1974), Kitchens et al. (19751, and 
Blottner (1975b). Cebeci (1975) has extended the box scheme to 3-D flows, and 
Cebeci et al. (1979a) have implemented a zig-zag feature that permits the 
calculation of 3-D flows in which the crossflow velocity component changes sign. 
No single scheme has emerged to date as being superior for all flows. Several 
investigators have found the need to employ more than one scheme in order to 
cover all regions efficiently in some flows. The Krause zig-zag scheme is 
recommended as a reasonable starting point for the development of a 3-D 
boundary-layer finite-difference procedure. After the Krause procedure is well 
in hand, the user should be encouraged to explore the possible advantages 
offered by the several variations that have been suggested. 

Turbulence modeling is certainly an important concern in 3-D flows. Most 
3-D turbulent calculations to date have assumed that the turbulent viscosity is a 
scalar. Measurements tend to support the view that in the outer portion of the 
flow the apparent viscosity in a Boussinesq evaluation of the stress in the 
crossflow direction may be substantially less (by a factor - 0.4-0.7) than the 
viscosity for the apparent stress in the streamwise direction. Further research on 
turbulence modeling for 3-D flows would seem desirable. 

The most successful application of 3-D boundary-layer theory has probably 
been for flows over wings. Reasonably refined computer programs have been 
documented for this application (Cebeci et al., 1977; McLean and Randall, 
1979). Several papers and reports in the literature of a review or general nature 
should prove useful in obtaining a broad view of the status of predictions in 3-D 
boundary layers. The list includes Wang (1974, 1975), Bushnell et al. (1976), 
Blottner (1975b1, and Kitchens et al. (1975). 

7.8 UNSTEADY BOUNDARY LAYERS 
It is frequently desirable to predict unsteady boundary-layer behavior, especially 
in the design of flight vehicles. Numerical aspects of this problem are reasonably 
well understood; however, challenging aspects of turbulence modeling remain. 
We will limit our discussion to 2-D unsteady boundary layers, although many of 
the concepts carry over to the 3-D case. 

The unsteady 2-D boundary-layer equations appear as Eqs. (5.116)-(5.118) 
in Chapter 5. They differ from their steady flow counterparts only through the 
appearance of the term p d u / d t  in the momentum equation and d p / d t  in the 
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continuity equation. The unsteady equations are also parabolic but with time as 
the marching parameter. Values of u, u, H ,  and fluid properties must be stored 
at grid points throughout the flow domain. Initial values of u,  u, and H must be 
specified for all x and y .  Boundary conditions may vary with time. The usual 
boundary conditions are as follows: 

1. At x = xo, u(t, xo,  y )  and H(t ,  xo, y )  are prescribed for all y and t .  
2. At y = 0, u(t, x,O) = u(t,  x ,O)  = 0. 
3. The lim u(t, x ,  y )  = u,(t, x ) .  

Y - m  

The main objective is to develop computational procedures that will provide 
accurate and stable solutions when flow reversal (u < 0) occurs. In this respect. 
the unsteady 2-D boundary-layer problem is similar to the 3-D steady problem, 
where the concern was to identify methods that would permit flow reversal in 
the crossflow direction. When flow reversal occurs in the unsteady problem, it is 
crucial to employ a difference representation that permits upstream influence. 
This principle has not been formulated in terms of a zone-of-dependence 
concept for the 2-D unsteady boundary-layer equations, but to ignore the 
possibility of information being convected in the flow direction is unacceptable. 
Furthermore, the steady boundary-layer equations are parabolic in the x 
direction, which again requires that information move in the direction of the x 
component of velocity; otherwise it would not be possible to achieve the correct 
steady-state solution from the transient formulation. 

An adaptation of the zig-zag representation introduced by Krause for the 
3-D boundary-layer equations has been frequently used to represent d u /  dx 
when flow reversal is present. This representation is illustrated in Fig. 7.30. 
Using the mesh notation introduced in the figure, the zig-zag representation of 
the streamwise derivative for equal Ax increments is 

(7.118) 

The j index is associated with the normal coordinate. The representation of Eq. 
(7.118) can be used with a difference scheme centered at n + 3, i, j ,  which can 

t 

n+l 

n - t x  Figure 7.30 The zig-zag representation for 
i -1  i i+ l  streamwise derivatives in unsteady flows. 
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be thought of as the unsteady 2-D boundary-layer version of the Krause scheme 
for 3-D boundary layers. 

Concepts from the zig-zag box scheme for 3-D boundary layers have also 
been used to develop a zig-zag box representation for unsteady boundary layers. 
This scheme also appears applicable when flow reversal is present (Cebeci et al., 
1979a). 

Other types of upwind differencing have been found to work satisfactorily 
with flow reversal by Telionis et al. (1973) and Murphy and Prenter (1981). The 
method of Murphy and Prenter (1981) also utilizes a fourth-order accurate 
discretization in the normal direction. 

Blottner (1975a, 1975b) provides a helpful review of computational work on 
the unsteady boundary-layer equations. Other useful references include Telionis 
et al. (1973), Tsahalis and Telionis (1974), Telionis and Tsahalis (1976), Cebeci 
et al. (1979b), Phillips and Ackerberg (1973), Murphy and Prenter (19811, 
Telionis (1979), Kwon et al. (1988a, 1988b), and Ramin and Pletcher (1993). 

PROBLEMS 
7.1 Verify the stability constraints given in Section 7.3.2 for the two versions of the simple explicit 
procedure for the boundary-layer equations. 
7.2 The term ( d u / d y ) 2  needs to be evaluated at the n + 1 marching level, where u is an unknown. 
The marching coordinate is x ,  and y denotes the normal distance from the wall in a viscous flow 
problem. Utilize Newton linearization to obtain a difference representation for ( d u / d y ) *  that could 
be used iteratively with the Thomas algorithm and that would be linear in the unknowns at each 
application of the algorithm. 
7.3 Verify Eq. (7.24). 
7.4 Generalize Eq. (7.24) to provide a second-order accurate representation when the mesh 
increments A x  and A y  are not constant. 
7.5 Consider the following proposed implicit representation for the boundary-layer momentum 
equation: 

Would you expect to find any mesh Reynolds number restrictions on the use of this representation 
when employing the Thomas algorithm for u and u > O? Substantiate your answer. 
7.6 Work Prob. 7.5 for the difference equation that results when the second term in the equation is 
replaced by 

u;:: - u;+1 

yn A y  
7.7 Verify the stability constraint given by Eq. (7.30). 
7.8 Establish that the algebraic system represented by Eqs. (7.38) and (7.39) is block tridiagonal with 
2 X 2 blocks. Verify that it fits the format required by the modified tridiagonal elimination scheme 
given in Section 7.3.3 for solving the momentum and continuity equations in a coupled manner. 
7.9 Write a computer program using an implicit method (either fully implicit, Crank-Nicolson, or 
the modified box scheme) to solve the incompressible laminar boundary-layer equations for flat 
plate flow in both physical (scheme A) and transformed (scheme B) [Eqs. (7.42) and (7.4311 
coordinates. Linearize the difference equations either by lagging or extrapolating the coefficients u 
and u. Solve the momentum and continuity equations in an uncoupled manner. Use the tridiagonal 
elimination scheme to solve the system of simultaneous equations. Use AT = 0.3 for scheme B and 
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p u ,  A y / p  = 60 for scheme A. For scheme A the boundary layer wdi grow with increasing x. so that 
it will be necessary to add points to the computational domain as the calculation progresses. It will 
be possible to increase the marching step size in proportion to the boundary-layer hckness. It is 
suggested that the first step be established as A x  = p ~ , ( A y ) ~ / 2 p  for scheme A. 

Compare schemes A and B for ease of programming and accuracy. Consider the s d a r i t y  
solution tabulated by Schlichting (1979) as an “exact” solution for purposes of comparison. Calculate 

P ( a U / a Y ) w  

P 4 / 2  
Cf = 

from the solution. Determine ( d u / d y ) ,  by fitting a second-degree polynomial through the solution 
near the wall. Limit the downstream extent of the calculation to 75 streamwise steps. Investigate the 
sensitivity of methods to the streamwise step size. Perform the calculations for A x  = 16, 2 6 .  16. For 
scheme B, study the influence of the starting procedure on accuracy by first performing a streamuise 
calculation sweep by using u = 0 at x = 0 in the momentum equation and then repeating the 
calculation determining u at x = 0 iteratively through the use of the continuity equation. 
7.10 Work Prob. 7.9 with the following changes. Select an implicit scheme and choose either 
physical or transformed coordinates in which to express the boundary-layer equations. Scheme A 
linearizes the coefficients by lagging, and scheme B implements the linearization through the 
Newton procedure with coupling of the continuity equation. 
7.11 Work Prob. 7.9 using either physical or transformed coordinates. Let scheme A be an implicit 
scheme of your choice and scheme B be an explicit procedure such as DuFort-Frankel, hopscotch, or 
ADE. 
7.12 Modify a difference scheme used in working Probs. 7.9 through 7.11 to permit the calculation 
of a boundary-layer flow in a pressure gradient. Verify your difference scheme by comparing the 
predicted velocity profiles with the results from the similarity solutions to the Faulkner-Skan 
equations (see Schlichting, 1979) for a potential flow given by u,(x)  = u l x m  where u1 and m are 
constants and x is the streamwise coordinate. Make your comparisons for rn = and -0.0654. You 
may choose any convenient value for ul .  
7.13 Modify a difference scheme used in working Probs. 7.9 through 7.11 to permit the calculation 
of a boundary-layer flow with blowing or suction. Verify your difference scheme by comparing the 
predicted velocity profiles with the results obtained by Hartnett and Eckert (1957) for blowing and 
suction distributions given by 

% ( X )  ---& = 0.25 and -2.5 
UX 

7.14 Develop a computer program to solve the 2-D incompressible constant property boundary-layer 
equations in transformed coordinates using the analytical transformation given in Section 7.3.7. Use 
either the Crank-Nicolson or fully implicit scheme and the Newton-linearized scheme with coupling. 
Validate your code by solving for the zero pressure gradient laminar flow on a flat plate at a plate 
Reynolds number of 800. Compare your predicted skin-friction coefficient with the analytical result: 
Cf(Re,)o.5 = 0.664. Use a second-degree polynomial through points near the wall to compute the 
wall shear stress from the velocity distribution. Tabulate Cf(Re,)n.5 for at least 15 locations along 
the plate out to a location where the Re = 800. Use your scheme to estimate the separation point 
for a laminar flow where the free stream velocity distribution is given by u, = 100-300x. Use at 
least 50 points across the boundary layer as separation is approached. Refine the A [  step near 
separation until the separation point no longer changes. 
7.15 Work Prob. 7.14 using the generalized coordinate approach instead of the analytical 
transformation. Establish the grid based on [ = x /L ,  1) = (y/~)(Re,)’.~. 
7.16 Develop a finite-difference scheme for compressible laminar boundary-layer flow. Solve the 
energy equation in an uncoupled manner. Use the computer program to predict the skin-friction 
coefficient and Stanton number distributions for the flow of air over a flat plate at Me = 4 and 
T,,,/T, = 2. Use the Sutherland equation (Section 5.1.4) to evaluate the fluid vixosity as a function 
of temperature. Assume constant values of Pr and cp [Pr = 0.75, cp = 1 x lo3 J/(kg K)]. Compare 
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your predictions with the analytical results of van Driest (1952) [heat transfer results can be found in 
the work by Kays and Crawford (1993)l. 
7.17 Modify a difference scheme used in working Probs. 7.9 through 7.11 to permit calculation of an 
incompressible turbulent boundary layer on a flat plate. Use an algebraic turbulence model from 
Chapter 5. Use u, = 33 m/s and v = 1.51 x lo-’ m*/s. Compare your velocity profiles in 
law-of-the-wall coordinates with Fig. 5.7. Compare your predicted values of Cf with the 
measurements of Wieghardt and Tillmann (1951) tabulated below: 

x ,  m Cf 
0.087 0.00534 
0.187 0.00424 
0.287 0.00386 
0.387 0.00364 
0.487 0.00345 
0.637 0.00337 
0.787 0.00317 
0.937 0.00317 
1.087 0.00308 

7.18 Verify Eq. (7.72). 
7.19 An inverse boundary-layer method is to be applied to steady incompressible 2-D flow. Use 
p = 1 kg/m3, Y = 1 m2/s, and Ay = Ax = 0.1 m. The solution at the nth station is tabulated 
below. Use the simple explicit method to advance the solution to n + 1 (see Fig. P7.1). Use the 
secant method to determine the pressure gradient required to maintain a constant value of the 
displacement thickness as the solution is advanced to n + 1. That is, find the pressure gradient 
required to give (a*)”+’  = (a*)”. 

nth station 

U v 
- - i 

1 0 0 
2 6 0 
3 10 0 
4 10 0 

- 

7.20 Work out the details of the terms QY and Ry in Eq. (7.90) for the DuFort-Frankel scheme for 
internal flows. 
7.21 Using the boundary-layer equations, develop a finite-difference scheme for the incompressible 
laminar developing flow in a channel. Use the nondimensionalization that removes the Reynolds 
number from the equations (Eq. 7.80). Because of symmetry, you need only solve the equations to 
the channel centerline. Solve out to x / ( h  Re,) = 0.02, where h is the channel half-height. Suppose 
your friend needs the solution for Re = 500 from the inlet to a distance of 25 channel heights 

Y 

n n+l Figure P7.1 
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4 

3 

2 '  

downstream. Explain how you would provide the information needed from your numerical solution. 
Is the flow fully developed after 25 channel heights? Compare the predicted centerline velocity 
development U,,/U,,,,, vs. x / ( h  Re,) with the highest Reynolds number Navier-Stokes solutions 
reported by Chen and Pletcher (1991). 
7.22 The steady viscous flow through a 2-D channel is to be determined by a solution to the 
boundary-layer equations. Use p = 1 kg/m3, u = 1 m2/s, Ay = 0.1 m, and A x  = 0.025 m. The 
solution at the nth station is tabulated below. Use the simple explicit method to advance the 
solution to the n + 1 station (see Fig. P7.2). Determine the pressure and the velocities. 

nth station 

p = 100N/m2 

U v 
- - i 

1 0 0 
2 10 0 
3 10 0 
4 10 0 
5 0 0 

- 

7.23 Work Prob. 7.22 using the fully implicit method with lagged coefficients. 
7.24 Verify Eq. (7.93) for a fully implicit method. 
7.25 Verify Eq. (7.96). 
7.26 Verify Eq. (7.100). 
7.27 Derive Eq. (7.112). 
7.28 Specialize Eqs. (7.106)-(7.108) for an incompressible 3-D laminar flow in the Cartesian 
coordinate system. Write out the Crank-Nicolson representation for the equations. Explain your 
scheme for linearizing the algebraic equations. 
7.29 Work Prob. 7.28 for the Krause zig-zag scheme. 
7.30 Choose a suitable implicit finite-difference scheme to solve the 3-D laminar boundary-layer 
equations on the plane of symmetry for the example flow described in Section 7.7.4. Compare your 
predicted skin-friction coefficients with the results of Cebeci (1975) and/or Fig. 7.29(h). 
731 Solve the example flow of Section 7.7.4 using the Crank-Nicolson scheme. Use the grid 
described in the example. Compare your results with those given by Cebeci (1975). 
7.32 Write out a Krause-type difference scheme for the 2-D unsteady incompressible boundary-layer 
equations. 
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