
CHAPTER 

SIX 
NUMERICAL METHODS FOR INVISCID 

FLOW EQUATIONS 

6.1 INTRODUCTION 
The Navier-Stokes equations govern the flows commonly encountered in both 
internal and external applications. Computing a solution of the Navier-Stokes 
equations is often difficult or at least impractical and, in many of these 
applications, unnecessary. Results obtained from a solution of the Euler 
equations are particularly useful in preliminary design work, where information 
on pressure alone is desired. In problems where heat transfer and skin friction 
are required, a solution of the boundary-layer equations usually provides an 
adequate approximation. However, the outer-edge conditions, including the 
pressure, must be specified from the inviscid solution as the first step in such an 
analysis. The Euler equations are also of interest because many of the major 
elements of fluid dynamics are incorporated in them. For example, fluid flows 
frequently have internal discontinuities such as shock waves or contact surfaces, 
Solutions relating the end states across a shock are given by the Rankine- 
Hugoniot relations; these relations are contained in solutions of the Euler 
equations. 

The Euler equations govern the motion of an inviscid nonheat-conducting 
gas and have a different character in different flow regimes. If the time- 
dependent terms are retained, the resulting unsteady equations are hyperbolic 
for all Mach numbers, and solutions can be obtained using time-marching 
procedures. The situation is very different when a steady flow is assumed. In this 
case, the Euler equations are elliptic when the flow is subsonic, and hyperbolic 
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when the flow is supersonic. This change in character of the governing equations 
is the reason that the development of methods for solving steady transonic flows 
has required many years. Many simplified versions of the Euler equations are 
used for inviscid fluid flows. When studying incompressible flows, it is often to 
our advantage to assume irrotationality. Under these conditions, a solution of 
Laplace’s equation for the velocity potential or stream function provides the 
flow field information. Associated with the Euler equations is the companion set 
of small-perturbation equations. In subsonic and supersonic flow, we observe 
that the Prandtl-Glauert equation provides the first-order theory for the potential 
function. In transonic flow the equation obtained for small perturbations is still 
a nonlinear equation. The classification of the various forms of the inviscid 
equations of motion is given in Table 6.1. 

Many different methods are used to obtain solutions to the Euler equations 
or any of their reduced forms. The main goal of this chapter is to present the 
most commonly used methods for solving inviscid flow problems. While many 
techniques may be used to solve the partial differential equations (PDEs) 
governing such flows, our attention will be restricted to finite-difference and 
finite-volume methods. 

The methods presented in this chapter are selected to illustrate the basic 
ideas as well as give information on useful solution schemes. In a textbook, only 
fundamental methods that appear to have some measure of permanence should 
be included. Although some question always exists regarding the long-term 
survivability of “current techniques,” it is hoped that those selected for discussion 
will stand the test of time. 

6.2 METHOD OF CHARACTERISTICS 
Closed-form solutions of nonlinear hyperbolic PDEs do not exist for general 
cases. In order to obtain solutions to such equations we are required to use 
numerical methods. The method of characteristics is the oldest and most nearly 
exact method that can be used to solve hyperbolic PDEs. Even though this 
technique has been replaced by newer, more easily implemented finite- 
difference/finite-volume methods, a background in characteristic theory and its 
application is essential. 

In our discussion in Chapter 2, we observed that certain directions or 
surfaces that bound the zones of influence are associated with hyperbolic 
equations. Signals are propagated along these particular surfaces influencing the 
solution at other points within the zone of influence. The method of 

Table 6.1 Classification of the Euler equations 

Subsonic, M < 1 Sonic, M = 1 Supersonic, M > 1 

Steady Elliptic Parabolic Hyperbolic 
Unsteady Hyperbolic Hyperbolic Hyperbolic 
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characteristics is a technique that utilizes the known physical behavior of the 
solution at each point in the flow. A clear understanding of the essential 
elements of the method of characteristics can be obtained by studying a 
second-order linear PDE. 

6.2.1 Linear Systems of Equations 
Consider the steady supersonic flow of an inviscid, nonheat-conducting perfect 
gas. Suppose the free stream flow is only slightly disturbed by a thin body, so the 
fluid motion satisfies the small perturbation assumptions given by (see Section 
5.5.6) 

- < l  - < < 1  v, u, 
where u and v are perturbation velocity components. If transonic and hypersonic 
flows are not considered, the governing PDEs reduce to the Prandtl-Glauert 
equation for supersonic flow. If the x axis is aligned with the free stream, this 
equation may be written 

(1 - M,'>4x,, + 4JyYy = 0 (6.1) 
The free stream Mach number is denoted by M,, and the perturbation potential 
is denoted by 4. Initial data are specified along a smooth curve, C, which we 
choose to be x = const in this case. Boundary conditions are prescribed at 

U v 

y = 0. 

wall (6.2) 

In order to present the formulation for a system of equations, it is advantageous 
to consider the similar formulation introduced in Chapter 2. Using the 
perturbation velocity components 

d 4  3 4  

dX dY 
,g=- v = -  

and denoting M,' - 1 by p 2 ,  Eq. (6.1) may be written as the system 
du du p - - - = o  2 

dx d y  

ax d y  

dv du = o  
with associated initial data and boundary conditions 

(6.3) 

(6.4) 
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- 1  
0 

0 

4 - 
ds 

In order to use the method of characteristics, the system given by Eq. (6.3) is 
written along the characteristics. The differential equations of the characteristics 
are developed as the first step in this procedure. 

Suppose the initial data for this problem are prescribed along an arbitrary 
smooth curve, C,  and we consider methods for constructing a solution of Eq. 
(6.3) in the neighborhood of this curve. If the solution is sufficiently smooth, the 
first method that might be considered is to write a Taylor series about a point on 
C. Assume that our interest is in a small neighborhood, and only terms through 
the first derivatives need to be retained. The solution for either u or u may then 
be written in the form 

= o  

In this expression, the coordinates ( x , y )  are on the initial data curve where u 
and u are known. However, we need to compute the first derivatives in the 
Taylor series. If s represents arc length along the curve C ,  we may write 

du du dx d u  dy +- -  
ds dx  ds dy ds 
du dv dx du dy +--  
ds dx  ds d y  ds 

- - - _- 

- - - -- 
(6.6) 

The system of four equations in the unknown derivatives given by Eqs. (6.3) 
and (6.6) may be solved by any standard method, such as Cramer’s rule. It is 
clear that the determinant of the coefficients of the system must not vanish. (If 
the determinant of the coefficients vanishes, the direction of curve C is along 
the characteristics of the system and, consistent with our discussion in Chapter 
2, the derivatives may not be uniquely determined.) The differential equations of 
the characteristics are obtained by setting the determinant of this system equal 
to zero: 

P 2  
0 
dx 
ds 

0 

- 

0 
- 1  

ds 
dY - 

0 

0 
1 

0 

dx 
ds 
- 

(6.7) 

Expanding this determinant and solving the characteristic equation yields the 
expressions 

dY 1 

+P - =  
dx (6.8) 

which are differential equations of the characteristics as illustrated in Fig. 6.1. 
Since P is constant, the characteristics can be obtained by integration and are 
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Figure 6.1 Characteristics of the Prandtl- 
x Glauert equation. 

given by 

(6.9) 

The original differential equations written along the characteristics are 
called the compatibility equations. These compatibility equations may be derived 
by continuing to solve the original system of equations for the first derivatives. 
Along the characteristic directions, the determinant of the coefficients vanishes. 
If we solve for any of the first derivatives, for instance, du/dx ,  and require that 
they are at least bounded, the determinant forming the numerator must also 
vanish. This may be written 

0 - 1 1 0  - l I  
0 0  

If this determinant is expanded, the compatibility equations are given by 

or 
d 
ds 
- ( P u  + u )  = 0 

along a right running characteristic, where 
1 

- -- dY 
dx P 
_ -  

and 

(6.10) 

(6.11) 

d 
ds 
- ( p u  - v) = 0 (6.12) 



356 APPLICATION OF NUMERICAL METHODS 

along the left running characteristic 

dY 1 
A P  
_ -  _ -  

A more general procedure for deriving the characteristics is given by 
Whitham (1974). We will repeat the details of the procedure here and omit the 
derivation of the technique. In order to find the characteristics of the system 
[Eq. (6.3)], we write these equations in the vector form: 

dW d W  
- + [A]-  = 0 
d X  dY 

(6.13) 

where 

and 

(6.14) 

The eigenvalues of this system are the eigenvalues of [ A ] .  These are obtained by 
extracting the roots of the characteristic equation of [A]. Thus we write 

I[AI - NlII = 0 
or 

This produces the quadratic equation 

The roots of this equation are 

This pair of roots form the differential equations of the characteristics we have 
already derived in Eq. (6.8). Since our original Prandtl-Glauert equation for 
supersonic flow is just a wave equation in 4, we could have written the 
characteristic differential equations using the results from our discussion of the 
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second-order PDE [Eq. (2.15a)l. The next step is to determine the compatibility 
equations. Following Whitham, these equations are obtained by premultiplying 
the system given by Eq. (6.13) by the left eigenvector of [A]. This effectively 
provides a method of writing the equations along the characteristics. 

Let L' represent the left eigenvector of [A] corresponding to A, and L2 
represent the left eigenvector corresponding to A,. We derive the eigenvectors 
of [ A ] ,  by writing 

[LiIT[A - Ail] = 0 (6.15) 
If we let 

then 

This provides the equations 
11 
61 - + 1 ; = 0  
P 

12 1 
1 

P 
_ _  

1; 1; 

P 2  P 
- + - = o  

which are equivalent as expected. Since we are only able to obtain the normalized 
components of L', assume 1: = - P .  Then the solution for 1; is 

and 
1; = 1 

L1 = [;PI 

In a similar manner, the solution for L2 is 

L2 = [ y ]  
The compatibility equations are now obtained by writing our system [Eq. (6.1311 
along the characteristics. To do this, we multiply Eq. (6.13) by the transpose of 
the left eigenvector: 

T [L'l [wx + [Alw,] = 0 (6.16) 

The term [LiIT[ A] may be replaced by [LiIThi[ I] by substituting from Eq. (6.15). 
Thus, we may write Eq. (6.16) as 

. T  [L'l [w, + AiWyl = 0 
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The compatibility equation along A, is obtained from 

Thus 
d 

dX 
- ( P u  - 

1 d  
u )  + - - (pu  - u )  = 0 

P dY 
( 6 . 1 7 ~  ) 

In a similar manner, the compatibility equation along the right running charac- 
teristic in partial derivative form is 

d 1 d  

dX 
- ( P u  + u )  - - - ( p u  + u )  = 0 

P dY 
(6.17b) 

Equation (6 .17~)  is valid along the positive or left running characteristic. It 
expresses the fact that the quantity ( p u  - u )  is constant along A,. This can be 
demonstrated by letting s represent distance along the characteristic and writing 

However, if ( Pu - u )  is constant along the characteristic, we may write 

d 
ds 
- ( P u  - u )  = 0 

or 

which is the same as Eq. (6 .17~) .  Therefore we conclude that ( P u  - u )  is 
constant along A,, and ( Pu + u )  is constant along A,. The quantities ( Pu - u )  
and ( P u  + u )  are called Riemann invariants (Garabedian, 1964). Since these 
two quantities are constant along opposite pairs of characteristics, it is easy to 
determine u and u at a given point. If at a point (x, y )  we know ( Pu + u )  and 
( Pu - u),  we can immediately compute both u and u. An example illustrating 
this is in order. 

Example 6.1 A uniform inviscid supersonic flow ( M ,  = 6) encounters a one- 
period sine wave wrinkle in the metal skin of a wind tunnel. The geometry of 
this configuration is shown in Fig. 6.2. The maximum amplitude of the sine wave 
is E / L ,  where E / L  e 1. Determine the solution for the perturbation velocities 
u and u using the method of characteristics. 
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Y 

Figure 6.2 Wavy wall geometry. 

Solution Since the flow is assumed to satisfy the small-perturbation assumption, 
the Prandtl-Glauert equation can be used. We choose to solve the system of 
equations [Eq. (6.3)l for the perturbation components u and v. In this case, 
p 2  = 1, and we solve the system of PDEs, 

du dv = o  
d x  d y  

d x  d y  

dv du 
- 0  

with initial data specified along x = 0, y > 0 

u = o  
v = o  

subject to the surface boundary condition (see Section 6.71, 

E 
v = 27i-K- cos ( 2T- ;) O < X < L  L2 

Since the problem is two-dimensional and obeys the small-perturbation 
assumptions, we may apply the boundary conditions in the y = 0 plane. This 
makes the problem much easier. 

We begin our characteristic solution by sketching the characteristics that 
originate at the initial data surface x = 0. Along the left running characteristics, 
we know that 

while along the other characteristic, 

- - 1  u + v =  Q = const 
dY _ -  
ah 
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Therefore we determine u and v at any point as 

Since the right running characteristics that strike the surface originate in the 
free stream, the Q variable is initially zero. It is also true that P = 0 for those 
characteristics that originate in the free stream (see Fig. 6.3). 

Consider the characteristic that strikes the wavy wall. An up or left running 
characteristic is introduced at that point in such a way that the surface boundary 
condition is satisfied. Thus at any station xl, we have 

Q = u  + v = O  
2 T €  

v = -urn cos 2T- 
L2 ( “L’) 

Therefore 

2 T €  
u =  - 

and 

i 2) 4T€ 

L2 
P = u - v =  ---uu,cos 2T- 

The solution for u and v is constructed by marching outward from the 
initial data surface in the x direction. A grid with indices and the corresponding 
characteristics is shown in Fig. 6.4. The solution can now be obtained at the 
intersections of the characteristics. At point (1,3), 

P = O  
Q = O  
u = o  
v = o  

P = u - v = o  

Q = u + v = O  
x Figure 6 3  Initial data line. 
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Y 

-umcos 27r- 
4T€ p =  - 
L2 ( 2) 

Q = O  

-u,cos 27r- 
27r€ 
L2 ( 3 u =  - 

i 2) 2 TTTE 
L2 

u =  -cos 27r- 

The solution is known everywhere in the domain of interest. The results of this 
example may be verified by solving the Prandtl-Glauert equation directly for the 
velocity potential and then computing the solution for u and u. 

6.2.2 Nonlinear Systems of Equations 
The development presented thus far is for a system of two linear equations and 
was chosen for its simplicity. In more complex nonlinear problems, the results 
are not as easily obtained. In the general case, the characteristic slopes are not 
constant but must vary as the fluid properties change. The governing PDEs may 
be nonhomogeneous. Clearly, the compatibility equations cannot be directly 
integrated in closed form along the characteristics in that case. For the general 
nonlinear problem, both the compatibility equations and the characteristic 
equations must be integrated numerically to obtain a complete flow field 
solution. Not only are the flow variables unknown, but the location in the field 
along the characteristics must be computed. 

In order to illustrate the difference in applying the method of characteristics 
to a linear and a nonlinear problem, we consider the two-dimensional supersonic 
flow of a perfect gas over a flat surface. For simplicity, we choose a rectangular 
coordinate system and write the Euler equations (see Section 5.5) governing this 



362 APPLICATION OF NUMERICAL METHODS 

1 
[ A ]  = ~ 

u2 - a2 

inviscid flow as the matrix system: 

v u2 - a2 
- (u2  - a 2 )  ~ 

U PU 
0 

- pva2 pua2 UV 
v 

dW dW 
- + [ A ] -  = 0 
d X  dY 

where 

and 

- 
U 

(6.18) 

0 

0 

0 
v 
U 
-(u2 - a2)  

The initial data, I, are prescribed and may be written as 

and the boundary conditions are 

The eigenvalues of [ A ]  determine the characteristic directions and must be 
found as the first step. These eigenvalues are 

uv + adu2 + v2 - a2 UV - adU2 + V 2  - a2 (6 .19~)  A, = A, = 
u2 - a2 u2 - a2 
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The matrix of left eigenvectors associated with these values of A may be written 

= (6.19b) 

We obtain the compatibility relations by premultiplying the original system by 
[TI-' .  These relations along the wave fronts are given by 

along 

and 

du d v  P dP + u- + -- = 0 
ds, ds, p ds, 

dY 
- = A, 
dx 

du d v  P dP v- --- + -- = 
ds, ds, p ds, 

(6.20) 

(6.21) 

along 
dY - = A, 
dx 

In these expressions, 

Equation (6.20) is an ordinary differential equation, which holds along the 
characteristic with slope A,. Arc length along this characteristic is denoted by s,. 
A similar result is expressed in Eq. (6.21). In contrast to our linear example 
using the Prandtl-Glauert equation, the analytic solution for the characteristics 
is not known for the general nonlinear problem. It is clear that we must 
numerically integrate to determine the shape of the characteristics in a step-by- 
step manner. Consider the characteristic defined by A,: 

dy 
dx u2 - a2 

uv + adu2 + v2 - a2 
- -  - 

Starting at an initial data surface, this expression can be integrated to obtain the 
coordinates of the next point on the curve. At the same time, the differential 
equation defining the other wave front characteristic can be integrated. For a 
simple first-order integration, this provides us with two equations for the wave 
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front characteristics. From these expressions, we determine the coordinates 
of their intersection (point A in Fig. 6.5). Once the point A is known, the 
compatibility relations, Eqs. (6.20) and (6.211, are integrated along the 
characteristics to this point. This provides a system of equations for the 
unknowns at point A.  Of course, auxiliary relationships are required to complete 
the problem, and these are provided by integrating the streamline compatibility 
equations or by using other valid equations relating the unknowns at A .  

By using this procedure, a first-order estimate of both the location of point 
A and the associated flow variables can be obtained. These first-order estimates 
are usually used as a first step in a predictor-corrector scheme in calculating the 
solution to a system of hyperbolic PDEs using the method of characteristics. In 
the corrector step, a new intersection point B can be computed, which now 
includes the nonlinear nature of the characteristic curves. In a similar manner, 
the dependent variables at B are computed. 

The calculation of the solution at point B presents an interesting problem. 
Because the problem is nonlinear, the final intersection point B does not 
necessarily appear at the same value of x for all solution points. Consequently, 
the solution is usually interpolated onto an x = const surface before the next 
integration step is started. This requires additional logic and adds considerably 
to the difficulty in structuring an accurate code. 

The problem of integrating the compatibility equations and satisfying the 
boundary conditions at both permeable and impermeable boundaries is discussed 
in Section 6.7. It should be clear that the wall boundary condition is iterative in 
the sense that we attempt to satisfy a particular boundary condition at a point 
on a surface with an initially unknown x coordinate. 

The two-dimensional (2-D) flow problem used in this section actually can be 
treated using characteristics in a much simpler setting (see Prob. 6.3). The main 
reason for this discussion is to present the ideas behind the numerical integration 
of the equations of motion using characteristic methods and to introduce some 
of the inherent difficulties in the general method. More complete descriptions 
are given by numerous authors, including Owczarek (1964), Shapiro (19531, and 
Courant and Friedrichs (1948). 

1- Figure 6.5 Characteristic solution point. 



NUMERICAL METHODS FOR INVISCID FLOW EQUATIONS 365 

6.3 CLASSICAL SHOCK-CAPTURING METHODS 

Shock-capturing schemes are the most widely used techniques for computing 
inviscid flows with shocks. In this approach the Euler equations are cast in 
conservation-law form, and any shock waves or other discontinuities are 
computed as part of the solution. The shock waves predicted by these methods 
are usually smeared over several mesh intervals, but the simplicity of the 
approach may outweight the slight compromise in results compared to the more 
elaborate shock-fitting schemes. Classical shock-capturing methods have the 
disadvantage that very strong shocks will cause the methods to fail. This failure 
is usually evidenced by oscillations. Computations in hypersonic flow with very 
strong shocks typically lead to the appearance of negative pressures and 
subsequent divergence of the solution during the time-dependent computation 
process. In addition to this problem, higher-order schemes tend to produce 
oscillations in the solution. However, these methods are useful and will be 
modified in later sections to avoid these difficulties. The alternative approach is 
to fit each shock wave as a discontinuity and solve for the discontinuity as part 
of the solution. This shock-fitting approach is very elegant and produces shocks 
that are truly discontinuous. Unfortunately, the procedure for general shock 
fitting in three dimensions with multiple shocks is extremely complex, and as a 
result, the use of shock fitting is usually limited to fitting shocks at boundaries. 

In supersonic flow, when one boundary of the physical domain is a shock 
wave, shock fitting is frequently employed, and the shock shape is computed as 
part of the solution. Since boundary shocks can be fit with either the standard 
schemes discussed in this section or Section 6.7, the real advantage accrues 
when a complicated internal shock structure is captured and the special 
treatment of each shock wave is eliminated. This is a standard approach, where 
the outer boundary is fit when it is a shock wave and the internal shocks are 
captured. In this section, we will examine several simple shock-capturing schemes 
and apply them to example problems to gain experience in understanding the 
behavior of these numerical methods and interpreting the results that are 
produced when they are used. 

Lax (1954) has shown that shock wave speed and strength are correctly 
predicted when the conservative form of the Euler equations is used. This 
means that the physically correct weak solution corresponding to the Rankine- 
Hugoniot equations for shocks is obtained if the conservation-law form is used 
and the equations are discretized in a conservative manner. In our study of 
Burgers’ equation in Chapter 4, we saw that incorrect results were produced 
when the nonconservative form was used. While the nonconservative form of 
the Euler equations will have a weak solution, the solution depends upon the 
form of the equations used. In order that the solution satisfy the Rankine- 
Hugoniot equations, the conservative form must be used when we apply shock- 
capturing techniques. 

As an example of conservation form, consider the supersonic flow of a 
perfect gas over a 2-D surface. If we assume the x axis forms the body surface 
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I 

I M, > 1 
+ 

I 

and is also the marching direction, the equations are given by the steady 2-D 
version of Eq. (5.192) and may be written 

I >  - MARCHING DIRECTION 
t> 

dpu dpu - + - = o  
dx  d y  

dX dY 

d ( p  + pu2)  + d(puu> = o  

(6.22) 

(6.23) 

a( puu) d ( p  + pu2) 

dX dY 
+ = o  (6.24) 

For a steady isoenergetic flow, the total enthalpy is constant. In this case, the 
differential energy equation can be integrated to give 

y p u2 + u2 
H = - -  +- = const 

Y - 1  P 2 
(6.25) 

The system formed by Eqs. (6.22146.24) in conjunction with the constant total 
enthalpy equation is hyperbolic for supersonic flow, and a solution can be 
obtained by marching or integrating the equations in the x direction starting 
from an initial data surface. The geometry for such a marching problem is 
shown in Fig. 6.6. Initial data are prescribed along the line x = 0, and the 
solution is advanced in the x direction subject to wall boundary conditions and 
an appropriate condition at y,,, . 

Equations (6.22146.24) are of the form 

d E  d F  - + - = o  
dx  d y  

(6.26) 

Figure 6.6 Coordinate system for marching problem. 
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where 

Equation (6.26) may be integrated with any of the methods presented in Chapter 
4 for hyperbolic PDEs. If the forward predictor-backward corrector version of 
MacCormack's method is applied, Eq. (6.26) may be written 

(6.27) 

At the end of the predictor and corrector steps, E must be decoded to obtain the 
primitive variables. In this way, the new flux vector can be formed for the next 
integration step. After advancing the solution, the y component of velocity is 
immediately known as 

E3 

El 
u =  - 

where the subscripts denote elements of E. A quadratic equation must be solved 
for the x component of the velocity. If we combine E2 with the energy equation 
to eliminate p ,  we have 

We now eliminate p in favor of u by using 

El P=U 
This yields a quadratic equation for u, which has roots 

(6.28) 

The correct sign on the radical is typically positive. The density can now be 
computed from El, and the pressure from E,, as 

p = E2 - pu2 (6.30) 
Having completed this process, F can be recalculated, and the next step in the 
integration can be implemented. 

I 

Example 6.2 Compute the flow field produced by a 2-D wedge moving at a Mach 
number of 2.0 if the wedge half angle is 15". Assume inviscid flow of a perfect 
gas. 
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Solution The problem requires that we determine the shock wave location and 
strength as well as internal flow detail. The wedge and associated flow are 
shown in Fig. 6.7. In a 2-D wedge flow with an attached shock wave, the flow is 
conical. This means that flow properties along rays from the vertex of the wedge 
are constant (Anderson, 1982). This results in a simplification of the problem. 

For this problem, the governing PDEs are given by Eqs. (6.22)-(6.24) and 
the energy equation [Eq. (6.231. The boundary conditions are the surface 
tangency requirement at the wedge surface and free stream conditions outside 
the shock wave. We recognize that we can select the x axis along the wedge 
surface and march the equations in this direction so long as the shock layer 
Mach number is greater than 1. Unfortunately, the shock layer expands as we 
move downstream, and this eventually causes our outer boundary point (at 
y = y,,,) to interfere with the shock wave. 

The problem can easily be solved utilizing the fact that the shock wave is 
straight and that the thickness of the shock layer grows linearly with x. We 
introduce the independent variable transformation given by 

Y ( = x  ‘7=; (6.31) 

This provides the grid shown in Fig. 6.8. We can solve the wedge-flow problem 
with no difficulty now because the constant ’7 lines grow linearly with x. Since 
the governing equations are hyperbolic in the 6 direction, initial data must be 
prescribed along some noncharacteristic surface. The line 6 = 1 is an easy 
choice. The PDEs are integrated in the 6 direction using arbitrarily assigned 
initial data. Since the solution to 2-D wedge flow is conical, the conical solution 
will be obtained for large 6 (asymptotically). 

If the governing PDEs are transformed from (x, y )  into ( 6 , ~ )  coordinates, 
they become 

(6.32) 
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5 = CONSTANT , /  

Figure 6.8 Wedge with transformed shock layer. 

- where 
E = ( E  

F = F - ~ E  
An additional problem can be avoided by utilizing the conical flow property in 
this problem. The stability of the integration scheme used in solving Eq. (6.32) 
depends upon the eigenvalue structure of the [ A ]  matrix of the expanded system 
written in ( 6 , ~ )  coordinates. 

d W  d W  
- + [ A ] - + H = O  
a6 dT 

(6.33) 

In this expression, w is the vector of primitive variables and H is a source term 
that occurs in this expanded form. If the eigenvalues of [ A ]  are evaluated, they 
are found to depend explicitly on the 6 coordinate. That is, 6 appears in the 
expressions for the eigenvalues. As the solution is marched downstream in 6, 
the allowable step size must change as 6 increases if an explicit method such as 
MacCormack's is used. If the step size did not change as 6 increased, a stability 
problem would occur. This problem can be avoided if we elect to integrate the 
equations from 6 = 1 to 6 = 1 + A t  in an iterative manner until a converged 
solution is obtained. 

The application of boundary conditions requires careful consideration. We 
must include enough points in the 11 direction so that the shock wave can form 
naturally and not be interfered with by the fixed free stream conditions, which 
are maintained at 7 = vmax. For example, if our shock wave angle (measured 
from the wedge surface) is 20°, and we elect to use 10 points in the shock layer, 
then 

vShock = tan(20") = 0.3640 
0.3640 
10 - 1 

A T = - -  - 0.0404 
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Suppose we add an additional 5 points using this computed Aq; then 

q,,,,, = 0.0404(15 - 1) = 0.5662 

and the last mesh point is at an angle of 29.52". This should provide sufficient 
freedom for the shock wave to form without interference from the fixed 
boundary condition at qmax. 

When predictor-corrector methods are used, one or both integration steps 
may require modification when applied at a solid boundary. For example, a 
MacCormack forward predictor can be directly applied at the wall but the 
backward corrector requires modification. One way to assure satisfaction of 
surface tangency is to also use a forward corrector and overwrite the decoded 
value of u at the wall with the boundary condition u = 0. While the use of 
forward differences in both the predictor and corrector is generally unstable, the 
wall boundary condition alters the stability in such a way as to provide a stable 
solution. 

Typical shock-capturing pressure results for wedge flow are presented in 
Fig. 6.9. These results show an excellent solution, at a Courant number ( v )  of 
one with a sharp shock wave, and very few oscillations. However, the same 

DIMENSIONLESS PRESSURE, p 

Figure 6.9 Shock-capturing pressure results for wedge flow. 
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calculation at a Courant number of 0.7 demonstrates the dispersive behavior of 
second-order methods previously discussed in Chapter 4. 

Before we leave the wedge-flow problem, it is worthwhile to note that a 
solution could also have been obtained using a time-dependent formulation. If 
the governing PDEs are written in polar coordinates including the time terms, 
they are of the form 

dE d F  dG - +  - +  - + H = O  
d t  d o  dR 

(6.34) 

where the origin is at the vertex of the wedge and the vectors are the 
appropriate polar forms. If we assume a priori that the flow is conical, a solution 
can be computed in an R = const plane if the radial derivatives are discarded. 
This requires a solution of the system 

dE dF - +  - + H = O  (6.35) 
d t  d o  

This system is hyperbolic in time and can be integrated to attain a steady 
wedge-flow solution. In some ways, the time-dependent set is easier to use. For 
example, the decoding procedure is much simpler. 

As in Example 6.2, the equations of motion are usually transformed into a 
computational domain. One of the more frequently used transformations is that 
of Viviand (1974) and Vinokur (1974). This transformation (see Section 5.6.2) 
assures us that a system of equations in a strong conservation-law form can be 
written in the same form after changing the independent variables. There may 
be disadvantages to Viviand’s transformed equation form because the Jacobian 
of the mapping always appears in the denominator of the conservative variable 
terms. In order to avoid the introduction of errors through the geometry, special 
care must be taken in forming the metrics. 

The difficulty encountered in using a simple rectangular mesh in Example 
6.2 could have been eliminated if the shock wave was treated as a discontinuity. 
In fact, most shock-capturing codes fit boundary shock waves as discontinuities 
and capture interior shock waves as they develop. While the same philosophy of 
shock fitting holds for the steady flow marching problem as for time-dependent 
flows, a slightly different scheme is sometimes used to predict the interior or 
post-shock pressure when the conservative form of the original equations is 
used. Consider a system of PDEs of the form given in Eq. (6.26). Suppose we 
make use of a normalizing transformation, 

( X , Y )  + ( 5 , d  
V 

(6.36) 

where y - y , ( x )  = 0 is the equation for the position of the shock wave. As 
shown in Fig. 6.10, the physical domain is now transformed into a computational 
domain with the shock wave at 77 = 1.0. The conservation form for the governing 
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Figure 6.10 Normalizing transformation. 

equations using such a transformation may be similar to Viviand’s or any other 
form that conserves the appropriate flux terms. We again assume that the 
solution for the interior of the shock layer is advanced. At the shock wave, 
one-sided integration must be used to obtain an estimate for one of the 
variables. We assume initially that we know everything along an initial data 
surface, including the shock slope. We advance the solution on the interior, 
including the shock point. In addition, the shock slope equation (dy,/dx) is 
integrated, providing an updated estimate of the new shock position. We now 
calculate the shock slope at the new location, and the dependent variables other 
than pressure can then be obtained. 

If the pressure on the downstream side of the shock is known, we clearly can 
determine the density and both velocity components from the Rankine-Hugoniot 
equations. Our requirement is to develop the expression for shock slope. We 
write the surface equation of the shock wave as 

y - y s W  = 0 (6.37) 

The shock normal is then written 

n, = 1 (-ix dYs + j) 

[l + ( d ~ J d x ) ~ ]  
(6.38) 

The normal component of velocity on the free stream side of the shock wave is 
given by 

If this equation is solved for the shock slope, we obtain 
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The term uin required in Eq. (6.40) is known from the pressure ratio across the 
shock as given in Eq. (5.209) and is 

(6.41) 

After the shock slope is computed, all quantities are known at the new location. 
The same procedure is repeated for both the predictor and corrector steps. We 
have again performed the shock fitting assuming the post-shock pressure (or 
other quantity) was known. This follows the approach suggested by Thomas 
et al. (1972). 

Since we are examining methods for either time-dependent or steady 
supersonic inviscid flows, the governing equations are hyperbolic. Hyperbolic 
systems are often solved using explicit methods. However, the step size for most 
explicit schemes is limited by the CFL condition. This can lead to unreasonably 
long computation times for some problems. To overcome the step size limitation, 
implicit methods can be used. Examples of implicit algorithms that have been 
developed for the Euler equations include those of Lindemuth and Killeen 
(19731, Briley and McDonald (19731, and Beam and Warming (1976). The 
advantage of implicit methods lies in the unrestricted stability limit. Although 
more computational effort is required per time step compared to an explicit 
method, the overall time required to obtain a solution may be less. We will 
review the development of the basic scheme presented by Beam and Warming 
(1976) for the conservation form of the governing equations. 

The basic system under consideration is of the form given in Eq. (5.192) and 
is repeated here for convenience: 

dU d E  d F  - + - + - = o  
d t  dx  dy 

(6.42) 

where U is the vector of conservative variables and E and F are vector functions 
of U. If the trapezoidal rule given by Eq. (4.58) is used as the basic integration 
scheme, the value of U at the advanced time level is given by 

un+l = U" + %[ At  ( --)" du + ($)"'I 
or 

(6.43) 

This expression provides a second-order integration algorithm for the unknown 
vector Un+' at the next time level. It is implicit because the derivatives of U as 
well as U appear at the advanced level, thus coupling the unknowns at 
neighboring grid points. A local Taylor-series expansion of the derivatives of E 
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and F is used to obtain a linear equation that can be solved for U"". Let 

(6.44) 

where [A]  and [ B ]  are defined: 

dE d F  

dU dU 
[ A ] = -  [ B ] = -  

When the linearization given by Eq. (6.44) is substituted into Eq. (6.431, a linear 
system for U"+ results and may be written as 

This is a linear system for the unknown Un+'.  Direct solution of Eq. (6.45) is 
usually avoided owing to the large operation count in treating multidimensional 
systems. The path usually chosen is to reduce the multidimensional problem into 
a sequence of one-dimensional inversions. This is done using the method of 
fractional steps (Yanenko, 1971) or the method of approximate factorization 
(Peaceman and Rachford, 1955; Douglas, 1955). 

Equation (6.45) may be approximately factored into the equation 

A t  a 
= [ I ]  + - - [ A ] "  [I] + -- 

(6.46) 
( 2 d x  j (  2 dy 

At 

This expression differs from the original Eq. (6.45) by a term that is of O[(At>21, 
and the formal accuracy of our implicit algorithm is maintained as second order. 
This factored scheme may be written as the alternating direction sequence: 

A simpler algorithm results if the delta form introduced in Chapter 4 is used. 
Since the operators on both sides of Eq. (6.46) are the same, define 

AU" = U"f1 - U" 
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so that 

At d 
[ I ]  + - - [ A ] "  [ I ]  + - - [ B ] "  ( 2 d x  ) (  2 d y  

Again this may be replaced by the alternating direction sequence: 

AU' = AU' 

(6.49) 

The solution of this system is not trivial. The x and y sweeps each require 
the solution of a block tridiagonal system of equations assuming the spatial 
derivatives are approximated by central differences. Each block is m X m if 
there are m elements in the unknown U vector (see Appendix B). 

The implicit algorithm developed here used the trapezoidal rule. Generalized 
time differencing presented by Warming and Beam (1977) can be used to 
generate a number of implicit algorithms with varying accuracy. This point is 
discussed in Section 8.3.3. Additional consideration is presented on the required 
addition of artificial damping in conjunction with nondissipative schemes. 

6.4 FLUX SPLITTING SCHEMES 
In the previous section, classical shock-capturing methods using central dif- 
ferences were discussed. In this section the concept of flu-uector splitting is 
introduced. The underlying idea behind flux-vector splitting is to split the flux 
contributions into positive and negative components, where splitting is based on 
the eigenvalue structure of the system or some other appropriately assumed 
behavior. In presenting these methods, the view is taken that the fundamental 
problem that must be solved is to determine the correct flux at the boundaries 
of the control-volume faces. Interpretation of the numerical methods in terms of 
the control-volume surface fluxes for the various methods may also be considered 
in the sense of finite-difference schemes. Wherever this dual interpretation is 
appropriate, a comparison will be made. 

To set the stage for the study of solutions of the Euler equation, consider a 
control volume as shown in Fig. 6.11. As previously discussed, the conservative 
form of the governing equations is integrated over the control volume. The 2-D 
Euler equations are given in Section 5.5.5 in the conservative form: 

dU dE d F  - + - + - = o  
dt d x  d y  

(6.50) 

where the conservative variables are defined in the usual way. Integrating this 
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Figure 6.11 Control volume for Euler 
x equations. 

equation over the control volume yields the form 

d x  dy 
d U  

(6.51) 

Applying Green’s Theorem (Taylor, 1955) to the second term converts this to a 
surface integral of the form 

(6.52) 

where the subscript on the integral around the boundary is denoted by the small 
s. In discrete form the integration results in 

d U  
- 6 ~ +  C ( E A Y - F A x ) = O  (6.53) 
d t  

where the 6u represents the volume of the cell and the Ax and Ay are the arc 
lengths of the cell sides for the 2-D case. The evaluation of the sum of the fluxes 
on the boundary requires that the flux values, i.e., the values of E and F, be 
known on the surface of the control volume. The evaluation of the flux terms on 
the control volume surfaces is the fundamental problem in the development of 
methods for solving the Euler equations. 

cell faces 

6.4.1 Steger-Warming Splitting 
Steger and Warming (1979) developed an implicit algorithm using a splitting of 
E and F in the governing equations. This is similar to the Beam scheme studied 
earlier in the work of Sanders and Prendergast (1974). In splitting the flux 
terms, the flux is assumed to be composed of a positive and a negative 
component. For illustration, consider a 1-D problem where the Euler system 
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under investigation has the form 
dU dE - + - = o  
at dx 

This system can also be written in the form 
d U  dU 
d t  dX 
- + [ A ] -  = 0 

(6.54) 

(6.55) 

where [ A ]  is the Jacobian dE/dU. This system is hyperbolic if a similarity 
transformation exists so that 

[ T l - l [ A 1 [ T l  = [ A 1  (6.56) 
where [ A ]  is a diagonal matrix of real eigenvalues of [ A ]  and [TI-' is the matrix 
whose rows are the left eigenvectors of [ A ]  taken in order. 

According to Steger and Warming, if the equation of state is of the form 

p = p f ( e )  (6.57) 
where e is the internal energy, then the flux vector E(U) is a homogeneous 
function of degree one in U, which means that 

E(aU)  = aE(U) (6.58) 
for any a. This permits the flux vectors E and F of the Euler equations to be 
written in the form 

E = [ A ] U  (6.59) 
We can use this property and the fact that the system is hyperbolic to achieve 
the desired split flux form. 

Combining Eqs. (6.56) and (6.591, E may be written 

E = [ A ] U  = [ T ] [ A ] [ T ] p l U  (6.60) 
The matrix of eigenvalues is divided into two matrices, one with only positive 
elements and the other with negative elements. We write the [ A ]  matrix as 

[ A ]  = [ A ' ]  + [ A - ]  = [ T ] [ A + ] [ T ] - '  + [ T ] [ A - ] [ T ] - l  (6.61) 
and define 

E = E + +  E- (6.62) 
so that 

E + =  [ A + ] U  E-= [A-]U (6.63) 
The original conservation-law form written using the split-flux notation becomes 

dU dE+ dE- - + -  + -  = o  
d t  dX d X  

(6.64) 

where the plus and minus signs indicate that the flux components are associated 
with wave propagation in the positive and negative directions, respectively. The 
key point is that the flux vector E can be split into a positive part and a negative 
part, each associated with the signal propagation directions. The eigenvalues of 
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dE'/dU are not the same as A', but the correct sign is preserved. For the 1-D 
case, the eigenvalues of [A] are the familiar streamline and signal propagation 
terms written as 

A, = u 
A , = u + a  
A , = u - u  

For the supersonic case, with u positive, A + =  A and A - =  0. For the subsonic 
case, both A +  and A -  are nonzero. For subsonic flow, 

[ A + ] =  [" u + a  0 ]  (6.65~) 

and 

The associated split-flux terms are 

(6.656) 

and 

(6.66b) 

(6.67) 
At 

,;+I = Uy - -(Ei++ - Ei-$ 
Ax 

In this setting, the cell-face values of the flux are composed of both + and - 
components according to the splitting, i.e., 

Ei+ ; = (E++ E-)i+ f (6.68) 

For a first-order calculation the flux components may be evaluated with an 
extrapolation consistent with the expressions given in Section 4.4.11 for the 
MUSCL scheme, where the primitive variables were extrapolated to the cell 
faces. In the Steger-Warming splitting, the fluxes are extrapolated to the cell 
faces. However, the MUSCL approach with primitive variables may also be used 
in this splitting. In the simplest case, the values of ET+ ; are set equal to ET, and 

1 ( 2 y  - 1)u + a 
2( y - 1)u2 + ( u  + aI2 E+= E - E-=  _ _  

1 3 1 3 - Y  
2 2 y - 1  

( y  - 1lU3 + - (u  + a)  + -a2- ( u  + a)  
2 Y  

A first-order upwind scheme is easily constructed with this split-flux idea. A 
simple integration of the equations for a 1-D problem may be written 
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the values of EL+ ; are set equal to E;+ 1' This produces a numerical algorithm of 
the form 

or 

u;+l = u,? - At 

Ax 
-(VET+ AE,) (6.69) 

This is the finite-difference form of Eq. (6.64) when the E+ derivative is 
backward differenced and the E- term is forward differenced. Based on earlier 
discussions, the equivalence of the finite-difference and the finite-volume for- 
mulations is clear. 

A second-order algorithm may be developed by using the trapezoidal 
scheme given in Section 4.1.10. The integration in time is written 

u,?+1 = uy+- At [ ( - d U ) n  + ( - d U ) n + l ]  
2 dt i d t  i 

(6.70) 

where the term dU"+'/dt is interpreted as a predicted value for an explicit 
scheme and is included as part of the computed solution for an implicit 
technique. In the application of this scheme the derivative at n is written in 
terms of the fluxes on the surface of the control volume just as in the first-order 
method. However, the flux terms evaluated at the control-volume surfaces must 
be second order in space if the result is to be used in the first term of the 
trapezoidal integration scheme. This can easily be accomplished by noting that 
the second-order flux is obtained by using the upwind extrapolation formula 
given in Section 4.4.11. A second-order spatial calculation requires that a linear 
extrapolation be used for the primitive variables. Here u represents the vector of 
primitive variables, and the extrapolation for the positive terms is written 

while for the negative terms, 

From these extrapolations, the split fluxes may be reformed for the terms in the 
integration. The $b' terms are the same limiters presented in Section 4.4.12, 
and any of the limiters discussed may be used. Split flux schemes will also 
produce oscillations when higher-order algorithms are constructed, so limiting is 
necessary. The final algorithm for the second-order upwind scheme may be 
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written in the following two-step sequence: 
- At 

U:" = UY - -(VET+ AE;) 
Ax 

(6.73) 

(6.74) 

The 2-D version of this scheme follows with the addition of the appropriate 
terms. 

An implicit algorithm using the trapezoidal rule is easily derived using the 
split-flux idea, and a first-order spatial scheme takes the form 

At 

Ax 
(V[AT] + A[Ai ] )  AU: = - -(VE++ AE-) (6.75) 

At 

where 
AUT = U l + '  - Ul 

This is written in the delta form introduced in Section 4.4.7. This algorithm is 
first-order accurate in space even though it is second-order accurate in time. 
The spatial accuracy can be improved by simply increasing the order of the 
spatial operators. Frequently, interest is in the steady-state solution. If this is the 
case, the right-hand side can be modified to obtain second-order accuracy in 
space for the steady-state result without altering the block tridiagonal structure 
of the left-hand side. It is interesting to note that an approximate factorization 
of the left-hand side of Eq. (6.75) is possible, resulting in the product of two 
operators 

[ I ]  + ---[AT] [I] + AUY =RHSofEq.(6.75) (6.76) ( 2 A x  " ) (  2 A x  

This permits the algorithm to be implemented in the sequence 

AU; = RHS of Eq. (6.75) (6 .77~ ) 

(6.77b) 

If Eqs. (6.77~) and (6.77b) are used, each 1-D sweep requires the solution of two 
block bidiagonal systems. The original system [Eq. (6.7511 requires the solution 
of a single block tridiagonal system for each time step. It is important to note 
that savings expected in using Eqs. (6.77~) and (6.77b) may not be realized for 
all problems. Usually, the major advantage of using the split form with bidiagonal 
systems occurs in multidimensional cases. 

The use of split-flux techniques for shock-capturing applications produces 
better results than central-difference methods, but some problems remain even 
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for this formulation. Using the Steger-Warming splitting, the shock waves are 
well represented, but some oscillations are produced when a sonic condition is 
encountered. The problem is that the components of the split flux are not 
continuously differentiable at sonic and stagnation points. Figure 6.12 shows the 
split mass flux behavior as the sonic region is traversed. Steger and Warming 
(1981) attempted to eliminate this problem by modifying the eigenvalues when 
they change signs to be of the form 

(6.78) 

where E is viewed as a blending function to ensure a smooth transition when the 
A's change sign. This modification was only moderately successful, and more 
appropriate schemes employing flux-vector splitting evolved later. 

6.4.2 Van Leer Flux Splitting 
The problems encountered at sonic transitions and at stagnation points with the 
Steger-Warming splitting were addressed by van Leer (1982). He proposed a 
different splitting, defined so that the flux terms were continuously differentiable 
through sonic and stagnation zones. The conditions van Leer imposed to 
accomplish a flux splitting were 

1. E = E + +  E-, 
2. dEf/dU must have all eigenvalues 
3. dE-/dU must have all eigenvalues G 0, 

0, and 

MASS FLUX, E l  

1.5 r 
El/pa - 
Ef/pa ---- 
Ei/pa --- 

1.0 - 

I 
1.25 

MACH NUMBER, M 

-1.0 - 

El/pa - 
Ef/pa ---- 
Ei/pa --- 

1.0 - 

MACH NUMBER, M 

-1.0 - 

- 
1 
J 
. .25 

- 1 . 5 L  

Figure 6.12 Split mass flux using Steger-Warming splitting. 
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with the following restrictions: 

1. E' must be continuous with 

E + =  E(U) M a  1 
E-=E(U) M <  - 1  

2. The components of E+,E- must exhibit the same symmetry as E in terms of 
Mach number. For each component, 

E + =  +E- ( -M)  
if 

E(M) = +E(-M) 

3. The Jacobians dE'/dU must be continuous. 
4. The Jacobians dE*/dU must have one eigenvalue vanish for IMI < 1. 
5. E* must be a polynomial in Mach number of lowest possible order. 

Conditions 1 and 2 ensure that this splitting procedure produces the standard 
upwind differences in supersonic flow. Restrictions 1-3 provide symmetry and 
eliminate the problem at sonic and stagnation points associated with the 
Steger-Warming scheme. The fourth restriction ensures that a stationary shock 
with two interior zones can be constructed, while the last restriction is included 
to provide uniqueness of the splitting. 

For a l-D problem in ( x ,  t )  the van Leer fluxes may be written 

1 1 
- 2 0 (  Y 1 . q  2 I ( 6 . 7 9 ~ )  

Ei= E - E+ (6.79b) 

The flux terms as presented in Eqs. (6.79) satisfy the constraints of the van 
Leer splitting and are continuously differentiable at sonic and stagnation points. 
Splitting for the multidimensional case is accomplished in the same manner as 
in one dimension with the addition of the necessary flux components. 

Both flux splitting schemes have proved to be dissipative (van Leer, 1990, 
19921, and some questions have been raised about the various splitting ideas. 
Van Leer et al. (1987) pointed out that the splitting he proposed does not 
identify contact surfaces and, in some cases, leads to large dissipation. This is 
especially apparent in viscous regions, where large errors may occur (see 
Anderson et al., 1985). Hanel et al. (1987) and Hanel and Schwane (1989) 
observed that the original flux splitting of van Leer does not preserve total 
enthalpy in solutions of the steady Euler equations. They proposed a modification 
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of the energy flux component by writing 

f f p a ( M  l ) ’ H ( u * )  (6.80) 

where the total enthalpy H is now included in the split-flux terms. 
An additional modification due to Hanel and Schwane (1989) employs 

upwinding of the transverse momentum flux. While these changes have been 
shown to improve the dissipation at contact surfaces, and prevent artificial 
thickening of boundary layers, some problems still appear in computing wall 
temperatures for viscous flows. Van Leer (1990) applied the Hanel and Schwane 
(1989) upwind idea to the energy flux in an attempt to resolve this issue. 

6.4.3 Other Flux Splitting Schemes 

Other ideas for splitting the Euler equations have been suggested. A recent 
example is provided by the work of Liou and Steffen (1991). They have 
presented a new scheme, where the pressure and convection terms are treated 
separately. The flux-vector splitting technique of Liou and Steffan has been 
dubbed by them the advection upstream splitting method (AUSM). The inviscid 
flux terms are viewed as a combination of scalar quantities convected by an 
appropriately defined cell interface velocity, and the pressure terms are treated 
as being governed only by the acoustic wave speeds. The inviscid 1-D flux term is 
written as 

or 
E = E, + E, 

+ :I 0 
(6.81) 

(6.82) 

where the subscripts denote convection terms and pressure terms. These terms 
are discretized differently. The interface fluxes for supersonic flow are selected 
by taking either the left (L) and right (R) state, depending on the sign of the 
Mach number. The subsonic case needs a more careful evaluation. For this case, 
Liou and Steffan have suggested that 

where 

(6.83) 

(6.84) 

The quantity U ;  is referred to as the advective velocity, and numerous choices 
exist for defining this value to be used at the cell interface. Liou and Steffan 
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have suggested that 

U; = a , l / R h f i  (6.85) 

M?; =MLf+ M i  (6.86) 

and the split Mach numbers for the left and right states use the van Leer 
definitions 

M ' =  + $ ( M *  1)2 (6.87) 

where 

The interface convective flux terms become 

Pa 
(Ec)i+l/2 = M;[ pua ] (6.88) 

4% + P )  L / R  

The pressure is written as the sum of left and right contributions: 

Pi =p,'+pii (6.89) 

A number of representations can be used for the terms composing p i .  The 
simplest presented was given as 

p" +p(1 * M )  (6.90) 

In fact, the splittings used for both the pressure and convection terms can be 
accomplished in many ways. Unfortunately, the approach that proves to work 
best is not always clear, and numerous numerical experiments are necessary to 
explore the effectiveness of a numerical scheme. The fact that there is no 
unique way to accomplish the flux splitting provides ample opportunity to 
develop new ideas for solving the Euler equations. The flux splittings presented 
in this section each have some issues that are unresolved. The Steger-Warming 
scheme has been modified to eliminate the problems at the stagnation and sonic 
conditions, with limited success. The van Leer scheme seem to be too dissipative 
except for use in the solution of the Euler equations, and the AUSM scheme 
appears to be sensitive to the pressure evaluation. Van Leer (1992) has suggested 
that split-flux schemes only be applied to the Euler equations because of the 
dissipative nature of the methods currently available. Work on construction of 
new schemes that are improvements on existing methods is expected to continue. 
The work of Zha and Bilgen (1993) is an example. 

In the construction of the second-order schemes, the MUSCL approach has 
been used to extrapolate the primitive variables to the cell interface rather than 
the fluxes. Anderson et al. (1985) has performed a series of numerical 
experiments with results that indicate that extrapolation of the primitive variables 
and reconstruction of the flux give better flow solutions. Based on these results, 
it is advisable to use primitive-variable extrapolation and flux reconstruction at 
the cell boundaries wherever practical. 
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6.4.4 Application for Arbitrarily Shaped Cells 

In the previous sections, no information was given regarding the shapes of the 
control volumes. However, it is usually implicitly assumed that the mesh is 
structured and the cells in a physical domain are quadrilateral. A significant 
amount of interest has recently surfaced in applying solvers to cells with 
arbitrary shapes and in using unstructured grids. 

The integration of the conservation law presented in Eq. (6.53) is general 
and applies to any cell. The conserved variable resulting from the application of 
the divergence theorem to a control volume is a cell-averaged value, as previously 
noted in Chapter 4. Calculating the flux values at the cell boundaries may 
require careful consideration when the cells are of arbitrary shape. 

Recently, the use of triangular cells has gained popularity. In this case, the 
flow variables may be computed for a cell-centered scheme or a vertex (node)- 
centered scheme. When using finite-volume schemes, it is natural to consider a 
cell-centered approach. Consider the mesh shown in Fig. 6.13. Each cell is 
triangular, and the cell-centered conservative variables depend upon careful 
estimates of the boundary fluxes for accuracy. 

If a first-order method is used to solve the Euler equations, the primitive 
variables at the cell face may be quickly obtained by simple extrapolation of the 
cell values to the faces using the appropriate upwind directions. Of course, the 
estimation of the cell-face values and techniques to determine these from the 
cell-averaged values must be applied not only for split-flux methods but for any 
numerical method applied on this type of grid. The determination of the 
required values is more complicated when a higher-order approximation is 
desired. 

Consider a cell-centered scheme and assume that we seek a linear extrapo- 
lation of the primitive variables to the control-volume faces in order to obtain 
second-order accuracy. The centroidal values are known, but gradient informa- 
tion is needed to complete the extrapolation. Let u represent any scalar 
primitive variable, and consider the cell face value given by 

(6.91) ud = u, + Vu, - (ref - ri)  

Figure 6.13 Unstructured mesh with triangular cells. 
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This is a first-order Taylor series expression representing the cell-face values in 
terms of the cell averages. The term rCf - ri represents the distance from the 
cell centroid to the midpoint of the cell face, and Vui  is the gradient of ui. The 
product of these two terms represents the directional derivative toward the cell 
face midpoint times the distance to the midpoint. In order to evaluate this 
expression, a way of computing the gradient is needed. 

A common technique to establish the gradient (Barth, 1991) is to compute 
the gradients at the vertices of the cell and use these values to establish a value 
to use in the extrapolation. For triangular cells a simple average of the vertex 
gradients is one way of establishing the required value. The vertex values of the 
gradients are most easily established by using a mesh dual. A Delaunay mesh 
(Delaunay, 1934) is shown in Fig. 6.13, and the Voronoi dual (Voronoi, 1908) is 
an appropriate choice for this case. A description of the mesh construction and 
terminology is given in Chapter 10. It is sufficient for our purposes to use the 
mesh as given in Fig. 6.13. At any node, an evaluation of the gradient may be 
made by applying the identity 

h v V u S v =  u n d l  (6.92) 

to the cell formed by the dual, where n represents the unit normal to the cell 
surface. When applied in a discrete sense, this takes the form 

$ 

(6.93) 

With this expression, any component of the gradient may be evaluated at the 
nodal locations in the mesh. Once these values are known, the gradients at the 
cell centroids may be computed. 

This procedure may be used for cell-centered schemes for arbitrary mesh 
configurations. In calculating higher-order solutions, the gradient terms are 
limited in the same way as previously indicated. Figure 6.14 shows an NACA 
0012 airfoil with the associated unstructured mesh. The corresponding transonic 
solution for the pressure field is shown in Fig. 6.15. In these calculations a van 
Leer split-flux scheme was used, and the solver was second order. The pressure 
data are compared with the calculations of Anderson et al. (1985). In solving the 
Euler equations on an unstructured mesh, significantly more computational 
effort and a larger number of cells are probably required to produce the same 
solution quality when compared to a solution computed on a structured mesh. 
This is a problem of some concern, but increasing availability of low-cost 
memory and improved processor speed suggest that storage and speed may not 
continue to be major problems. 

6.5 FLUX-DIFFERENCE SPLITTING SCHEMES 
The main challenge in constructing methods for solving the Euler equations is 
to find ways of estimating the flux terms at the control-volume faces. Several 
flux-splitting schemes were reviewed in the previous section and were interpreted 
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Figure 6.14 Unstructured grid for NACA 0012 airfoil. 

as schemes that transport particles according to the characteristic information 
(van Leer, 1990). In contrast, the changes in the flm quantities at the cell 
interface using flux-difference splitting have been interpreted as being caused by 
a series of waves. The wave interpretation is derived from the characteristic field 
of the Euler equations. The problem of computing the cell-face fluxes for a 
control volume is viewed as a series of l-D Riemann problems along the 
direction normal to the control-volume faces. One way of determining these 
fluxes is to solve the Riemann problem using Godunov’s method as outlined in 
Section 4.4.8 for the l -D Burgers equation. Of course, the solution in the 
present case would be for a generalized problem with arbitrary initial states. The 
original Godunov method has been substantially improved by employing a 
variety of techniques to accelerate the solution of the nonlinear wave problem 
(Gottleib and Growth, 1988). Because some of the details of the exact solution, 
obtained at considerable cost, are lost in the cell-averaged representation of the 
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Figure 6.15 Pressure contours for NACA 0012 airfoil in transonic flow. M = 0.80, a = 1.25”. 

data, the solution of the full Riemann problem is usually replaced by methods 
referred to as approximate Riemann solvers. The Roe method (Roe, 1980) and 
the Osher scheme (Osher, 1984) are the most well known of these schemes. 
Owing to its simplicity, the Roe scheme and its many variations have evolved as 
the method of choice among flux-difference splitting schemes. In the next 
section, Roe’s scheme will be discussed as applied to the Euler equations. This 
technique is another way of calculating the flux values at the control-volume 
boundaries in the finite-volume approach. 

6.5.1 Roe Scheme 

In view of the fact that the Riemann problem requires a solution of a nonlinear 
system, a significant gain in efficiency can be realized if a solution to a linear 
problem approximating the original Riemann problem can be obtained. This is 
the basis for Roe’s scheme. Consider the original Riemann problem in the form 

d U  d E  - + - = o  
d t  dx 

u, x < o  
u, x > o  i U(X,O) = 

(6 .94~)  

(6.94 b ) 
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The notation for the left and right states has been used previously in Chapter 4. 
Roe's linear approximation to the Riemann problem is written 

dU A dU 
- + [A]-  = 0 
d t  d X  

(6.95) 

where the initial conditions are the same as those in the nonlinear problem and [a] is Roe's averaged matrix and is assumed to be a constant in this formulation. 
Recall that the original Jacobian was defined by 

d E  

dU 
[ A ]  = - (6.96) 

The Jacobian matrix is replaced by [a] in this system. The components of the [a] matrix are evaluated using averaged values of U at the interface separating 
the two states. This is indicated by writing 

[a1 = [A(U,'U,>] (6.97) 

The Roe-averaged matrix [a] is chosen to satisfy certain conditions, so that a 
solution of the linear problem becomes an approximate solution of the nonlinear 
Riemann problem. These conditions include the following. 

1. A linear mapping relates the vector space U to the vector space E. 
2. As U, approaches U,, i.e., as an undisturbed state is reached, 

[ i (U, ,U, ) ]  ==$ [A1 
when 

u, + u, + u 
where [A]  is the Jacobian of the original system. 

correct, i.e., 
3. For any two values U,, U,, the jump condition across the interface must be 

E, - EL = [d](U, - U,) 

4. The eigenvalues of [a] are real and linearly independent. 

system that may be diagonalized by writing the constant matrix [A] as 
Consider the system of equations given by Eq. (6.95). This is a hyperbolic 

[a] = [ f l [ A l [ f I - l  (6.98) 

The original equations can then be cast in the form 
dU - 1  dU 

d t  d X  
- + [ f ] [ A ] [ f ]  - = 0 

Premultiplying by [f]-' and defining the vector W as 

(6.99) 

w = [ f l - ' u  (6.100) 
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leads to the linear problem 
dW A dW 
- + [A]- = 0 

d t  dX 
(6.101) 

where the matrix of eigenvalues [A] is a diagonal matrix. This produces an 
uncoupled hyperbolic system. The numerical method may be applied to each of 
the uncoupled equations of this system, and the result transformed back to the 
original variables. For a single linear equation, the value of W is constant along 
the characteristic defined by h / d t  = A,.  As each of the waves associated with 
the eigenvalues of the system is crossed, the values of the dependent variables 
experience a jump. Consequently, the values of wk are constant between each 
pair of waves in the domain. Mathematically, this can be stated as 

W, = const 
when 

X 

t A k - 1  < - < 
Consequently, the value of W at any point may be written 

k 
wk = w1 + c (4 - 4-1) (6.102) 

j = 2  

Again, since [a] is a constant matrix, we may write 
k 

uk = u1 + c (q  - q-1) 
j = 2  

(6.103) 

and the final result is that the flux changes may be written 
k 

Ek = El + c 8Ej (6.104) 

where the flux increments are associated with the crossing of each wave in the 
system. 

If the entire wave system is traversed and the left and right states are 
identified with appropriate subscripts, then 

E, = E, + [a](U,  - U,) (6.105) 
As shown in the previous section, the [a] matrix may be split, corresponding to 
changes that occur across negative and positive waves. Consequently, we may 
split the calculation of the fluxes into contributions across negative and positive 
waves to determine appropriate formulas for the cell-face fluxes in the linear 
Riemann problem. Referring to Fig. 6.16, one notes that the interface flux can 
be computed by starting at either the left or the right state. 

j = 2  

Starting at the left state, we can write 

(6.106a) 
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t 

i + l  
Figure 6.16 Decomposed flux for the linear 
Riemann problem. 

or, as is usually written, the two expressions for the interface flux become 

(6.106b) 

A symmetric result is used in applications of computational fluid dynamics, and 
this may be obtained by averaging the cell-face flux formulas to obtain the 
following appropriate expression: 

Ei++ + ${(ER + EL) - [lall<uR - UL)} (6.107) 

In this equation, [la11 = [f][lhl][f]-l  and [Iil] is the diagonal matrix whose 
entries are the absolute values of the eigenvalues. The numerical flux expression 
incorporates upwind influence through the addition of contributions across 
positive and negative waves. Condition 3 and the subsequent expressions for the 
interface flux given by Eqs. (6.106) show that the change across any wave 
depends upon the change in state variables across all waves. This point can be 
noted by recalling that a diagonalization of the system leads to uncoupled 
equations providing the changesAacross each wave in a modified set of variables 
derived by multiplication by [TI-'. When the flux values are recovered by 
multiplying by [ f ] ,  the change in flux across each wave is seen to depend upon 
the change in U across the entire system of waves. 

The Roe-averaged matrix may be constructed by noting that U and E are 
quadratic functions of the variable z, defined as 

(6.108) 

The conservative variables may be written in terms of the z variable as 

(6.109) 
+ -- 

2 Y  
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where the vector of conservative variables U is defined by Eq. (5.44) for the 1-D 
case where u = w = 0. The flux term may also be written as 

(6.110) 

We define the arithmetic average of any quantity with an overbar symbol in 
the following manner 

1 ii+f = ? ( X i  + X i + J  

and note the exact expansion formula: 

A ( q ) i + ;  =Xi+;Ay,+;  + y i + ; A ~ i + t  (6.111) 

Applying this expansion formula results in conservative variable and flux 

and 

[CI = 

with the result that 

(6.112) 

(6.113) 

(6.114) 

(6.115) 

Ei+l - Ei = [C][BI-l(Ui+l - Ui) (6.116) 

The matrix [C][B]-' is identical to the Jacobian matrix [A] if the original 
variables are replaced by an average weighted by the square root of the density. 
If 

(6.1 17) 
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then 

A Ri+fui+l + ui 
ui+; = 

1 + R i + ;  

(6.118) 

(6.1 19) 

(6.120) 

where the quantity I? is the averaged total enthalpy and H is defined by 

Et + P  H = -  
P 

(6.121) 

The development of the averaged matrix has used the so-called parameter 
vector approach. This “Roe-averaged state” may be directly obtained by solving 
Eq. (6.105) for the state variables. This follows because the correct averaged 
matrix is the only one that will provide the correct relationship satisfying these 
equations. For further details, the reader should consult Roe and Pike (1985). 

The numerical flux for the first-order Roe scheme is then written in the 
form 

This may be used to calculate a first-order solution using the standard explicit or 
implicit techniques for advancing the solution in time. In this formula, the 
problem of expansion shocks must be considered. By way of review, recall that 
the formulation of the Roe scheme admits an expansion shock as a perfectly 
appropriate solution of the approximate problem. As a consequence, stationary 
expansion shocks are not dissipated by this method. An appropriate entropy fix, 
but one that does not distinguish between shocks and expansions, is easily 
implemented by replacing the components of [In[] by p( i :+  ;I, where 

0 

(6.123) 

and 

(6.124) 

In this set of expressions, the Roe average is implied by the circumflex symbol 
with subscript i + 3. 

While the explicit methods described in previous sections may be used with 
the Roe scheme, more details on the implementation of implicit schemes using 
flux-difference splitting (FDS) are in order. Consider a simple Euler implicit 
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scheme resulting in the expression 

Define the residual R as 

1 ,  
R = -(E,++ - Ei-+) 

Ax 

In terms of the residual, the scheme may be written 

(6.125) 

(6.126) 

(6.127) 

where the linearization of the equations is performed as in the previous section 
with flux-vector splitting (FVS) implicit schemes and [I] represents the identity 
matrix. Implicit schemes result in coupled systems that must be solved simultan- 
eously, and the structure of the coefficient matrices of the system is important. 
The elements of dR/dU result in filling the ith row of the coefficient matrix 
with a bandwidth corresponding to the functional dependence of Rj on Ui, i.e., 

dRj dRj dRj 
, etc. --- 

dUiP1 ' dU, ' dUi+l 
(6.128) 

Barth (1987) has considered exact linearizations as indicated here and an 
additional linearization, leading to what he has called the "frozen" matrix 
scheme, given by 

(E + [MIn)(U:+' - U:) = -R: = -[M]"U," (6.129) 

The idea of the frozen matrix scheme is that various alterations of the [MI 
matrix may be used. If one is only interested in a steady-state result, any 
approach that causes the residual to vanish (as rapidly as possible) is appropriate. 

Ei+; = ${Ej + Ei+ l  - [ T l [ l A l l [ T l ~ l ~ U i + ; )  

For illustration, consider an FDS scheme with a first-order Roe flux: 

(6.130) 

As a simplification in the notation, let the dissipation term be given as 

AIEi++l = [ T I [ I ~ l I [ ~ I - ' ~ U j + ;  (6.131) 

With this notation, the residual vector for the Roe FDS may be written 

1 
2 Ax 

R, = - [Ei+l  - Eipl  - (AIEi++l - AIEi-;l)] (6.132) 
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and the exact local linearization of the Jacobian produces elements of the form 

(6.133b) 

FVS and FDS produce different evaluations for terms like dAIEl/dU. In 
order to understand this difference, the FVS idea can be employed in a setting 
where the numerical flux is represented in a form similar to the FDS approach. 
The linearizations then require treatment of similar terms for both techniques. 
For the FDS scheme, 

while the equivalent calculation for the FVS schemes is 

(6.134) 

(6.135) 

In both of these approaches, the second terms involve differentiation of matrix 
elements and then matrix multiplication. Note the second term of the FDS 
linearization is multiplied by the difference in U. This would suggest that for 
reasonable changes in U, the second term of the FDS linearization is smaller 
than that produced using FVS. Consequently, linearization errors produced will 
also be smaller. The effect of the use of these approximate linearizations on 
convergence rate has been examined by Barth (1987) and by Jesperson and 
Pulliam (1983). Their results show better convergence properties in time 
asymptotic calculations for a variety of steady-state problems using FDS schemes. 
Other linearizations have been considered by Harten (1984), Chakravarthy and 
Osher (1985), and numerous others. However, the linearizations presented here 
for either exact or approximate cases, where the second terms are neglected, are 
conservative and will provide satisfactory results. 

6.5.2 Second-Order Schemes 

Several different techniques are used to extend FDS methods to higher order. 
The MUSCL idea has been explored and used with success in Chapter 4 and in 
the section on flux-vector splitting. Yee (1989) has constructed a framework 
where both MUSCL and non-MUSCL approaches to higher-order schemes can 
be described through similar numerical flux functions. The numerical flux for 



396 APPLICATION OF NUMERICAL METHODS 

the non-MUSCL approach may be written 

(6.136) 

and the corresponding form for the MUSCL approach is 

The [f] matrix is evaluated at some average such as the Roe average, and the 
elements of & are the same as the scalar case, but each element is evaluated 
with the same symmetric average. In the MUSCL approach, the average state 
between i and i + 1 is replaced by the right and left states, as indicated in the 
MUSCL extrapolation. Limiting is accomplished by reducing (limiting) the 
slopes in the extrapolation to cell faces. The dissipation term is written in terms 
of the limited variables and, in general, includes an entropy fix. The construction 
of the numerical flux in this form permits one to limit the wave strengths in the 
non-MUSCL approach (Roe, 1984) rather than restrict the slopes using the 
MUSCL idea. It is argued that this is a better interpretation of the physics. 
When this idea is implemented, the limiters are slightly different, but the 
general form of the flux function can be written the same way. 

The form of 6 may be written 

where the wave strengths are given by 

A - 1  
ai++ = [T,,;] (Ui+l - Ui) (6.139) 

With this notation, the form of the last term in the numerical flux, using the 
idea of local characteristics, may be written 

[t++]&i++ = [c++][lAi++l]ai+; (6.140) 

The form of & now is in terms of the wave strengths, and the general 
description of this term for the various methods will appear in terms of the wave 
strengths and the appropriate limiters. 

A second-order Roe scheme using the MUSCL idea was used to solve 
Burgers' equation in Section 4.4.11. In that case, the limiting was applied to the 
variables extrapolated to the cell faces. For the non-MUSCL approach the 
limiting is applied through the dissipation term. A non-MUSGL second-order 
Roe-Sweby scheme may be developed where the elements of Q, take the form 
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In this expression the definition of d is 

(6.142) 

where wl are components of the characteristic variable vector W and C is 
defined as the sgn(h). The limiter $ ( r l )  may be any of the limiters previously 
discussed in Section 4.4.12. The limiter is expressed in terms of the characteristic 
variables with this formulation. 

Another method arrived at by the characteristic variable extension was 
originally dev:loped by Harten (1984) and later modified by Yee (1986). The 
elements of Q, for this second-order upwind scheme are written 

(4f+;)HY = u ( A i + + ) ( g f + l  - g f )  - $(A;+; + d + + ) a f , ;  (6.143) 

The definition of u is 

u ( s >  = - 2 p ( s )  - -s* '[ A x  
and 

(6.144) 

The limiter function in this case is denoted by gf and may be written as 

gf = minmod( a:- ; , ai+ 1 i ) (6.146) 

gf = (af+;af-+ + Iaf+;ai-;I)/(af+f 1 + a;- ; )  (6.147) 

For other limiters that may be used, the reader is referred to the review by Yee 
(1989). 

In Chapter 4 a general formulation was given to provide time integration of 
the equations for flux formulas similar to those given above. A similar general 
formulation for the integration can be written for systems of equations and 
appears in the following form: 

or 

At  At  
A X  Ax 

U:+' + 8-(E:,+i - EY-+{) = U: - (1 - 8)-(El++ - E:-;) (6.148) 

In this expression, 8 has the same meaning as used previously in Chapter 4. For 
8 = 0 the scheme is explicit; the 8 = 1 case represents backward Euler 
differencing, and when 8 = $, this reduces to the trapezoidal scheme. The 
backward Euler method is first order in time, while the trapezoidal scheme is 
second order in time. If the explicit scheme is used, stability limitations will 
generally be encountered with first-order time differencing and second-order 
spatially accurate fluxes. With the use of limiters, the stability problem may be 
suppressed. However, this is not recommended. For time asymptotic calculations 
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of steady-state flows, the backward Euler scheme with second-order spatial 
fluxes or the trapezoidal scheme are recommended. Depending upon the time 
accuracy desired, these implicit schemes may also be used for time-accurate 
calculations. If a time-accurate solution is desired, the flux Jacobians must also 
be correctly treated. 

6.6 MULTIDIMENSIONAL CASE IN A GENERAL 
COORDINATE SYSTEM 
In previous sections the basic concepts used to compute solutions of 1-D 
time-dependent flow were discussed. In practical applications, calculations are 
almost always multidimensional and are usually performed using a boundary 
conforming grid. This grid may be structured or unstructured, and the numerical 
method should be applicable to either case in a finite-volume formulation. 

In Chapter 5 the general form of the Euler equations in conservative form 
was written as 

d U  d E  d F  - + - + - = o  
dt dx d y  

(6.149) 

For simplicity, only the 2-D case will be studied, since the extension to three 
dimensions follows the same path. For a transformation to a general coordinate 
system, the conservative equation becomes 

dU, dE, dF, - + -  + - = o  
d t  a t  d q  

(6.150) 

where the subscript 1 is used to denote the altered conservative variables 
defined by 

U, = U/J (6.151~) 

(6.151b) 

(6.1%) 

El = [ t ,E + tyFI/J 

F, = [ q x E  + qyFl/J 

and the Jacobian J is 

J = txvy - tYTX 

The flux terms and the corresponding limiters need to be more generally 
interpreted for application to complex geometries. 

In order to proceed with the extension, let the Jacobian matrices of the 
fluxes be identified in the same manner as before, with the subscript 1 indicating 
the transformed coordinate system: 
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where 

[ A ]  = dE/dU 
[B]  = dF/dU 

(6.153a) 

(6.153b) 

The eigenvalues of the [A,] and [B,] matrices will be denoted by A,, and Abl. 
The new matrices [A,] and [B,] may be written 

(6.154a) 

(6.154 b) 

The application of the ideas of the previous sections to multidimensional 
problems is based upon computing the cell-face flux terms as a series of 1-D 
calculations. The Riemann problem is solved as if the flow was normal to the 
cell face in each case. Considering this, severely skewed grids should be avoided 
wherever possible, as is true in any numerical calculation. The application of the 
idea of a 1-D Riemann problem at the cell interface in multidimensional 
problems has been carried out with good success. Much work continues to be 
done in creating a truly multidimensional Riemann solver, but success has been 
limited at best (Parpia and Michelak, 1993). A good review of this approach and 
the difficulties encountered is given in the paper by van Leer (1992). Another 
technique that has been explored to improve the applicability of the Riemann 
solver in the multidimensional case is to use the idea of a rotated difference 
stencil. The idea is to orient the local coordinates so the Riemann problem is 
solved along coordinate lines. This is similar to the work earlier reported by 
Davis (1984) using more classical methods. While some authors report good 
success with this approach (Kontinos and McRae (1991,1994), it is not clear that 
the improvement in accuracy justifies the additional complexity. For a review of 
other work using the rotated difference idea, the papers of Deconick et al. 
(1992), Leck and Tannehill (1993), and Levy et al. (1993) are suggested. 

At the beginning of Section 6.4, the equations for inviscid flow were 
integrated around a general control volume in physical space. The cell-face 
areas and volumes appeared explicitly. The metrics of the transformations 
contained in the conservation form of the general equations appear when the 
transformed equations are used. In either case, the Riemann problem is solved 
normal to the cell faces with the relationships between the geometry of the cells 
as given in Section 8.3.3. 

The numerical flux function that must be treated in the generalized case 
may be written in a general form: 
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In this formulation the matrix [T i+ 4, j] is the eigenvector matrix associated with 
[A,]. The computational coordinates are denoted by 6 and 77, and the metric 
coefficients correspond to the projections of the cell-face areas as shown in 
Section 8.3.3. If Ui+ 3, denotes the symmetric average, 

(6.156) 

or a Roe average, then the quantity represents the eigenvalues of [A,] 
evaluated at Ui+ 4, j ,  and a similar notation may be used for the eigenvalues of 
[B,]. We may also define the wave strengths for the multidimensional case as 

a,,i++,j = [Tl - l (u i+l , j  - Ui,j) (6.157) 

for the 6 direction, and a corresponding form for the 77 direction. The notation 
for the other terms in Eq. (6.155) is 

+, 

(6.158) 

The averaged values of the metrics and Jacobians are used in order to preserve 
the free stream. This is similar to the geometric conservation requirements that 
appear in finite-difference formulations (Hindman, 1981). 

The Q, term that contains the limiters for symmetric or upwind total 
variation diminishing methods may be written in the same form as previously 
given. The structure of the limiter must be interpreted in terms of the altered 
eigenvalues associated with the generalized directions. 

The MUSCL approach leads to a slightly different formulation of the flux 
terms, but the general form is the same as previously defined: 

(6.159) 
In the MUSCL formulation, some liberty exists in selecting the quantity that 

is limited. There are a number of choices that can be made that will provide 
acceptable results. These include limiting the primitive variables, the 
characteristic variables, or any other quantity that is used in the extrapolation. 
The appropriate form of the limiter depends upon the choice of the extrapolation 
variable. The primitive variables are normally the best choice. 

An explicit scheme is easily constructed with the same predictor-corrector 
algorithm as used in Chapter 4. In this case, one may predict at time t + ( A t / 2 )  
and use the results to form the fluxes needed to advance the solution to the next 
time level. Perhaps the most well-known explicit scheme that has been employed 
to solve hyperbolic problems in fluid mechanics is the MacCormack (1969) 
method. An approximate finite-volume form of this method may be constructed 
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by using the standard MacCormack method for the first two steps with an added 
third step to provide the selective dissipation to control the oscillations present 
in conventional shock-capturing methods. This may be written in the form 

(6.160) 

The third step is a postprocessing step appended to the classical MacCormack 
method in order to eliminate the deficiencies associated with calculations 
through strong shocks that are present in the classical methods. In this step the 
overbar quantities may be evaluated either at time level n or at the end of the 
second step. 

Other techniques for generating explicit methods may be used. Many of the 
standard integration schemes for ordinary differential equations have been used 
to advance the solution in time. The most popular of these schemes is the 
Runge-Kutta (R-K) method described in detail for use on time-continuous 
systems in the work of Lomax et al. (1970) and applied extensively by Jameson et 
al. (1981) and Jameson (1987). The formulation of the R-K procedure is 
described in Section 4.1.13, where application is made to the linear wave 
equation. 

Implicit schemes may be constructed using a number of techniques. Most 
common among these is the simple Euler implicit method or the trapezoidal 
scheme described in Chapter 4 as well as the Euler implicit scheme considered 
in the last section. As in the 1-D case, implicit methods create the necessity of 
calculating the flux Jacobians. The discussion presented in the previous section 
applies not only to the 1-D problem, but equally well to any number of 
dimensions. The linear system produced must be solved as efficiently as possible, 
and this becomes the major effort in computing a solution with an implicit 
method. 

In Section 4.3, several techniques were presented for solving scalar systems. 
In solving systems of equations that result from the conservation laws, the same 
methods apply, and to some extent, the same philosophy may be followed. For 
example, one of the goals that is used in solving the 1-D equations is to try to 
create tridiagonal systems of equations. The Thomas algorithm is then applied 
to obtain a direct solution. The same methodology may be applied in the 
multi-equation case, where the goal is to have block tridiagonal systems. This 
naturally suggests the use of approximate factorization, as discussed earlier in 
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this chapter. In 3-D problems the errors introduced by this method have 
historically proved difficult to control. However, through suitable precondition- 
ing, the use of approximate factorization has been shown to be effective for any 
number of dimensions (Choi and Merkle, 1993). Many applications of the 
approximate factorization approach may be found in the literature (Beam and 
Warming, 1976); Steger, 1977; Pulliam, 1985). Other techniques used to solve 
these equations include LU factorizations as described in Section 4.3.4. The 
technique employed to solve the linear system of equations for an implicit 
scheme will also depend upon the application. If only the steady-state solution is 
of interest, the implicit operator may be modified in any way that accelerates 
convergence of the solution to the steady-state value. On the other hand, if the 
transient is of importance, the implicit as well as the explicit operator must be 
retained or approximated as closely as possible (in non-iterative schemes) to 
provide time-accurate results. 

Approximations to the implicit side of the equations have been the most 
popular modification to the basic implicit algorithms. These modifications have 
the largest influence on reducing resources needed to compute solutions to the 
equations of fluid flow. The approximate factorization scheme employed by 
Beam and Warming (1976) was modified by a diagonalization procedure by 
Pulliam and Chaussee (19811, reducing the operation count for the solution of 
the system. Another idea is to use a lower-order implicit operator and a 
higher-order explicit operator when computing time-asymptotic solutions. Such 
procedures have been advocated in the work by Steger and Warming (1982) and 
Rai (1987). Other approaches to the problem of solving systems of equations, 
with the banded structure common to the problems of computational fluid 
dynamics, include the LU factorization schemes noted in Section 4.3.4 and the 
modifications to LU factorization with Gauss-Seidel iteration recently presented 
by Yoon and Kwak (1993). In recent applications of implicit methods, the 
concept of using local iteration schemes to compute solutions of arbitrary 
accuracy have been developed and used with success. In general, the problem of 
computing a solution could be viewed as having two separate issues. The first is 
that a banded matrix structure will probably result from the implicit scheme and 
some ingenuity will be required to solve the system in an efficient manner. The 
other issue is that the modification of the implicit operator in many cases can be 
accomplished by viewing changes as alterations of the dissipation term in the 
numerical flux terms. These two issues are obviously coupled but should be 
recognized as significant in accelerating computations for implicit schemes. 

6.7 BOUNDARY CONDITIONS FOR THE EULER EQUATIONS 

In computing solutions to PDEs, the application of boundary conditions is a key 
ingredient. The technique used in implementing the boundary conditions can 
have a major effect on the stability and convergence of the numerical solution. 
The way that boundary conditions are applied in solving analytical problems is 
usually well defined. This is not necessarily the case when applying boundary 
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conditions for the discrete problem. In this case, reasonable approximations 
have been found to work, although the exact form may be different from that 
expected in comparison to the analytical case. 

In the solution of flow field problems, appropriate conditions must be 
applied on the domain boundaries. Since only finite domains may be considered 
because of limitations in computer memory and speed, we are forced to specify 
conditions on boundaries at a finite distance from the airfoil, body, aircraft, or 
other geometry that is of interest in the simulation. These conditions depend 
upon the type of boundary and the type of flow regime. For hyperbolic problems 
the number of boundary conditions needed can be determined by a careful 
evaluation of the direction that information is carried by the characteristics. The 
number of boundary conditions that must be supplied is equal to the number of 
characteristics that are directed from the exterior of the region toward the 
boundary. This will become apparent below, when specific conditions and 
boundaries are considered. For elliptic and parabolic problems, the application 
of boundary conditions usually results in the specification of a set of dependent 
variables on the boundary or the specification of the normal derivatives. These 
problems require a different approach because of the different physics involved. 

As an example, consider a supersonic flow over a body and the different 
types of domain boundaries that are present. At the inflow boundary the flow is 
entirely supersonic. If one examines the direction of signal propagation for these 
conditions, the characteristics carry information from the exterior of the domain 
toward the interior in all cases. For this steady case the solution for the flow 
over the representative body may be obtained using a marching procedure. 
Reference to the characteristics (see Fig. 6.17) shows that the signals are carried 
into the domain from the upstream region by both the streamline characteristics 
as well as the characteristics involving the acoustic speeds. This indicates that all 
information at the inflow boundary for a supersonic flow must be specified using 
the free stream conditions. There are no characteristics that carry information 
from the interior of the domain to the boundary. For a time-dependent flow, it 
should also be clear that a supersonic inflow will always carry information 
toward the boundary from the exterior [see Fig. 6.18(a)]. In this case the inflow 
conditions are always prescribed, as is the case for the steady marching problem. 
For subsonic flow the characteristics carry information toward the domain 
boundary both from the interior and the exterior [Fig. 6.18(b)l. The boundary 
conditions are used to replace the information carried to the boundary by the 
characteristics from the exterior. 

In order to understand the development of boundary condition procedures 
in more than one dimension, consider the 2-D Euler equation written in (x, y )  
coordinates: 

dU dE d F  
- + - + - = o  
d t  d x  dy 

This equation can be expanded and written in the form 
d U  dU d U  

dX dY d t  - + [A]-- + [B]- = 0 (6.161) 
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Y 

INFLOW 1 
Figure 6.17 Inflow boundary conditions for 

X steady supersonic flow. 

It should be understood that this equation could have been written in genera ized 
( 6 , ~ )  coordinates and the ideas for applying boundary conditions would be 
developed in the same way. The differences would be that the contravariant 
velocities as well as the computational coordinates appear in the flux terms. 

The Jacobian matrices [ A ] ,  [ B ]  and the dependent variables are those 
associated with the equations written in the (x, y )  system, while the Jacobians 
written in generalized coordinates would be in terms of the contravariant 
velocities. At an inflow boundary, assume that the positive x direction points 
from the free stream toward the interior of the domain. The y direction is 
assumed to lie along the boundary, with the boundary defined as a constant x 
surface. In the case where general ( 6 , ~ )  coordinates are used, the inflow 
boundary would be defined as a constant 6 surface with the 77 coordinate 
changing as one moves along the surface. Returning to the formulation in the 
(x, y )  system, we write the governing differential equation in the form 

dU d U  d U  
- + [ T ] [ A , ] [ T ] - '  - + [S][A,][S]-' - = 0 (6.162) 
d t  dX dY 

In this form the dependent variables may be either the primitive variables or the 
conservative variables denoted by U. Usually, primitive variables are used to 
develop the compatibility relations. The compatibility equations written in the 
( t , x )  direction are desired for the development of boundary conditions on a 
constant x surface. If the governing system written in primitive variables is 
premultiplied by the [ TI-' matrix, the compatibility equations are obtained. 

(a) ( b )  

Figure 6.18 Inflow boundaries for time-dependent flow. (a) Supersonic flow. (b) Subsonic flow. 
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These equations may be integrated along with the boundary conditions to 
provide a solution at either inflow or outflow boundaries. The spatial terms must 
be differenced according to the direction of propagation of signals. If the 
elements of the [TI-' matrix are assumed to be constant and a new set of 
variables W is defined as [ T ] - ' U ,  the compatibility equations may be written as 

dW dW dW 
- + [ A a ] -  + [ T ] - ' [ S ] [ A , ] [ S ] - ' [ T ] -  = 0 

d t  d X  dY 
(6.163) 

The terms in the vector W are called characteristic variables, Riemann variables, 
or sometimes Riemann invariants in the literature. The use of characteristic 
variables seems to be the most appropriate choice of notation in the 
multidimensional case. The matrix [ A ]  denotes the matrix of eigenvalues and, 
for the case under consideration, consists of four elements corresponding to the 
repeated streamline characteristics and the wave fronts defining the subsonic or 
supersonic flow: 

(6.164) 
A3,4  = u f a 

For subsonic inflow the streamline characteristics are both positive. The 
remaining characteristics representing the acoustic wave fronts are composed of 
one characteristic that is positive and one that is negative. The one with the 
negative slope carries information from the interior to the boundary of the 
domain and therefore may be viewed as a valid equation to be retained in the 
evaluation of the inflow conditions. The other characteristics all have positive 
slopes, which indicates that information is carried from the free stream to the 
inflow boundary. Therefore these three equations must be discarded, and the 
boundary conditions must provide the missing three pieces of data required to 
close the problem at the inflow boundary. 

The compatibility equations for the multidimensional case cannot be written 
in a perfectly diagonalized form as in the 1-D case. As a consequence, the 
transverse terms in this case, the terms involving derivatives in the y direction, 
must be retained when the integration of the compatibility equations is 
performed to establish the conditions at a boundary. In establishing the boundary 
conditions for an inflow, the assumption is often made that the transverse terms 
do not contribute measurably and may be neglected. The resulting equation is 
the 1-D compatibility equation, and it can be explicitly integrated along the 
characteristics. This integration yields the Riemann invariants in the 1-D case. 
These invariants at the inflow boundary are set by the free stream and are used 
as the inflow boundary conditions. The form of these conditions is given as 

w2 = v 

r 2a 1 
(6.165) 

w , = u +  - 
l Y - 1 1  
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These values of w at the inflow plane are evaluated using free stream conditions. 
The second value of w 2  has been set equal to the tangential velocity and is 
somewhat arbitrary, since this is a 1-D approximation. For supersonic flows the 
characteristics all carry the same sign, and free stream conditions are set at the 
inflow boundary, since no upstream influence is present. 

At outflow boundaries the characteristics all carry the same sign for the 
supersonic case, and the solution must be determined entirely from conditions 
based on the interior. The compatibility conditions may be integrated using a 
suitable upwind approximation to appropriately account for the signals. If the 
outflow is subsonic, the analysis shows that one characteristic has a negative 
slope, indicating that one condition must be specified and that only three of the 
compatibility conditions are valid. This condition is not arbitrary but must be 
selected to ensure that the numerical problem is well posed (Yee, 1981). At an 
outflow boundary it is permissible to specify the pressure, the density, or the 
velocity normal to the cell. The choice of outflow boundary conditions usually 
depends on the way the flow solver is influenced by the boundary conditions. 
Hirsch (1990) suggests that the density should be among the imposed conditions 
for a subsonic inflow boundary. The choice of boundary conditions that work 
best will change owing to the manner of implementation, and the exact form of 
these conditions will be different for different codes. 

Characteristic-based boundary conditions have been extensively used in 
computational fluid dynamics codes. While these methods give excellent results, 
they sometimes constitute a case of overkill, in the sense that a simpler 
boundary condition implementation would have worked equally as well. For 
example, simple extrapolation methods work well in many cases and are very 
easy to apply. The idea of extrapolation can be applied to either inflow or 
outflow boundaries, and any combination of primitive variables, characteristic 
variables, or conservative variables may be used. The easiest extrapolation to 
use is to set the adjacent cell values equal. This is equivalent to the enforcement 
of a zero slope condition on the variable. Higher-order extrapolation procedures 
may be employed as well. 

In applying boundary conditions at inflow or outflow boundaries, the use of 
FVS and FDS schemes may simplify the accounting for signal propagation 
directions and the correct application of exterior information. Parpia (1994) has 
shown that these inflow boundaries may be treated without any special conditions 
if the exterior cells simply are assigned the correct free stream conditions and 
the standard split-scheme operator is then used as if the boundary cells were 
interior cells. Since the characteristic signal propagation directions are correctly 
accounted for in the scheme, the correct information is applied at the boundaries 
through the numerical method. This simplifies the boundary condition procedure 
by a significant amount. 

Impermeable surfaces such as solid boundaries present another situation 
where a valid set of boundary conditions is needed. At a solid boundary, the 
correct boundary condition for the Euler equations is that the material derivative 
of the surface must vanish. Let the equation of the surface be given by 

H x ,  y )  = y - f(x> = 0 (6.166) 
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where the surface is assumed to be independent of time. The inviscid tangency 
condition for a steady flow simply states that the velocity component normal to 
the surface is zero and may be written in the form 

(6.167) 

When the Euler equations are solved using a cell-centered finite-volume method, 
the surface tangency condition makes all fluxes on the surface vanish, and the 
only remaining term that must be evaluated is the surface pressure. An 
approximate value for the surface pressure may be established by simple 
extrapolation from the interior. A more common approach is to solve the 
normal momentum equation to find a suitable value at the surface. If the 
normal momentum equation is written at the body, the pressure gradient is 
balanced by the centrifugal force term and may be written in the form 

(6.168) 

where v, represents the tangential velocity and R the radius of curvature of the 
surface. With this information, an approximation to the pressure at the surface 
may be written. This is accomplished by using the pressure computed at the first 
cell center and employing a Taylor series to find the pressure at the cell face 
corresponding to the body surface. This approach is easily applied in an ( x ,  y )  
system, where the body surface is represented by a constant y surface because 
the normal direction is the same as the y direction. However, it is a simple 
matter to write the series expansion to obtain the wall pressure in a general 
coordinate system. If the body surface is not a cell boundary, the boundary 
conditions required include the variables necessary to find the full array of 
primitive variables. For this case the equations of motion need to be solved at 
the body surface, and a method that permits integration at this location must be 
found. Sometimes the simplest boundary condition procedure for a solid surface 
is to use the idea of refection. If the body is located on the cell boundary, the 
ghost-cell values are established by assigning the reflected values at its cell 
center (see Fig. 6.19). The tangential velocity in the ghost cell is set equal to the 
tangential velocity in the first cell, while the velocity in the ghost cell normal to 
the body is taken to be the negative of the first cell value. In addition, the 
density and the pressure values are equated to the first cell values. With the 

SURFACE 

GHOST CELL 

Figure 6.19 Body-surface representation. (a) Cell face; (b) grid point. 
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ghost-cell conditions known, the correct flux values at the body surface needed 
to continue the calculations can be obtained in a number of ways. One way is to 
use characteristic ideas with information carried from the ghost cell and the first 
cell to the shared body-surface segment. In this case the body-surface segment 
would be a constant 7 curve in generalized coordinates, and the cell-centered 
values of the characteristic variables consistent with the propagation directions 
are then used to determine the surface conditions. The body-surface boundary 
condition (flow tangency) is also implemented in the surface-flux evaluation. Of 
course, the same procedure used in the interior flow field may also be used once 
the appropriate values of the dependent variables in the ghost cells are available. 

Other ways of dealing with the body-surface conditions have been shown to 
be very useful. The compatibility equations can be written and discretized to 
obtain a system of equations for the body-surface conditions when the surface 
tangency requirement is imposed. In this case, the characteristic that carries 
information from the interior of the body is replaced by the body-surface 
condition. The discretized compatibility conditions include the equations along 
the streamline (body surface in this case) as well as the acoustic front equation. 
Kentzer (1970) proposed a scheme of applying the surface tangency condition in 
conjunction with the compatibility equations. In his approach, the surface 
tangency condition is used in differential form. If a time-dependent flow is 
considered, the time derivative of the tangency condition is employed. Others 
have implemented various forms of these conditions to compute surface solutions 
based on the characteristic information available at the body (Chakravarthy 
et al., 1980; Chakravarthy, 1983; Rai and Chaussee, 1994). 

When the compatibility equations are used to determine the body boundary 
conditions, the equations are integrated along the characteristics. In this case, 
assuming that the ( x ,  y, t )  system previously employed can be a usable model, 
the body-surface boundary condition replaces the compatibility equation in the 
(y, t )  direction, corresponding to the positive eigenvalue. This assumes that the 
body surface is at y = 0 with the interior of the body defined for y < 0. The 
same approach can be used in steady marching problems. 

For codes where the numerical method is a cell-centered scheme the body 
surface is often a cell face. In this case the only remaining term in the inviscid 
flux is the body pressure. Consequently, a simple wave corrector may be used to 
evaluate the body-pressure term. This may be viewed as integration across the 
waves, as opposed to the ideas presented previously, where the equations were 
integrated along the characteristics. In this sense, the Roe scheme may be 
directly employed to obtain a simple wave corrector for hyperbolic problems. 
For the time-dependent case the characteristic variable form for the equations 
of motion show that the velocity normal to the cell face is proportional to the 
change in cell surface pressure. This permits the normal velocity to be corrected 
to satisfy the surface tangency condition by correcting the pressure with a weak 
expansion or compression wave. Abbett (1973) proposed that for problems 
where a steady supersonic flow was being computed, a test to evaluate the 
velocity misalignment with the body surface be made after the flow field solution 
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had been advanced. The flow misalignment is then corrected by turning the flow 
back parallel to the body by introducing a simple wave. When a cell-centered 
scheme with a cell center located on the body is used, the velocity is computed 
on the body surface. Otherwise, the body-surface velocity is not computed. 
Consequently, the misalignment of the velocity vector must be approximated by 
using the cell-center value from the first cell in the flow field. The velocity 
vector can be divided into a component normal to the surface and a component 
tangent to the surface. 

The velocity components in the respective directions are (u,  u, w). Let the 
unit vector normal to the surface be 

VF 

IVFl 
where the body-surface equation is given by 

Therefore the body surface normal is 

n = -  

F ( x ~ , x ~ , x ~ )  = x i  - f ( ~ , , ~ 3 >  = O (6.169) 

ii/hi - [(i,/h,)(df/dX,)l - [(ij/hj)(df/dXg)l 
(6.170) n =  

{ l/hT + [(l/h,)(df/dx,)12 + [(l/h,)(df/dX3)12)1’2 

The velocity vector can be divided into a component normal to the surface and a 
component tangent to the surface. If the normal velocity is computed as 

unor = (V * n)n (6.171) 
the small misalignment angle AO, representing the orientation of the velocity 
vector with respect to a surface tangent, becomes 

We may write this as 
V - n  

sin(A8) = - 
[vl 

(6.172) 

(6.173) 

The geometry of this problem is shown in Fig. 6.20. The misalignment angle AO 
is clearly shown. The velocity vector V represents the velocity computed at the 

+ n 

+ 

Figure 6.20 Velocity vector orientation on body surface. 
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body surface using the integration scheme. If MacCormack's method was used 
to solve the equations of motion, the velocity vector V, shown in Fig. 6.20, is the 
value at the end of the corrector step. Again, remember that a forward corrector 
must be used at the body. 

In order to turn the velocity vector through an angle AO so that it is parallel 
to the body, a weak wave is introduced into the flow. If AO is positive, an 
expansion is required. As the flow turns through an angle AO, the body-surface 
pressure must also change. For weak waves the pressure is related to the flow 
turning angle by the expression [see NACA Report 1135 (Ames Research Staff, 
195311. 

(AO)2 + * * *  

(6.174) 
1 ( y  + 1 1 ~ 4  - 4042 - 1) 

4(M2 - 1)2 
y M 2  A O + y M 2  P2 - = I -  

P1 m 

In this expression, M and p 1  are the Mach number and pressure before turning, 
while p 2  represents the pressure after the turn takes place. With the pressure 
known from Eq. (6.174), the density change can now be computed. This is one 
point where Abbett's scheme requires additional information. It is assumed that 
the value of the surface entropy is known. At least along the streamline that 
wets the body, the value of p / p y  is known. The new surface pressure ( p 2 )  is 
used in conjunction with the surface entropy to calculate a new density p 2 .  

The magnitude of the velocity in the tangential direction is computed by use 
of the steady energy equation. If H is the total enthalpy, the velocity along the 
body surface is calculated as 

(6.175) 

The velocity components must now be determined. The direction of the new 
velocity vector along the surface is obtained by subtracting the normal velocity 
from the original velocity computed using the integration routine. This produces 
the result 

VT = V - (V * n)n (6.176) 

and represents the tangential component of the original velocity. It is assumed 
that the new surface velocity vector is in the same direction. The new velocity V2 
is given by 

(6.177) 

This boundary condition routine is relatively easy to apply and provides excellent 
results (see Kutler et al., 1973). One of the major problems is that of determining 
the proper direction for the final velocity vector. Abbett's method assumes this 
final velocity vector lies in the tangent plane of the body in the direction of the 
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intersection of the tangent plane and the plane formed by the unit normal and 
the original velocity vector. No out-of-plane correction is used. 

In supersonic flow, it is common procedure to attempt to fit the outer 
boundary of the physical domain when a shock wave is coincident with the outer 
boundary. This procedure may be followed in either time-dependent or steady 
flow. The process of shock fitting saves memory and produces a precise 
description of the shock front that one obtains from the computational 
procedure. The process of fitting the shock wave is a matter of satisfying the 
Rankine-Hugoniot equations while simultaneously requiring that the solution 
on the downstream side of the shock be compatible with the rest of the flow 
field. 

In the time-dependent problem the solution for the flow variables 
downstream of a shock is determined by the free stream conditions, the shock 
velocity, and the shock orientation. If we know the free stream conditions, the 
initial shock slope, and the shock velocity, the shock pressure can be considered 
as the primary unknown in the shock-fitting procedure. The normal procedure is 
to combine the Rankine-Hugoniot equations with one compatibility equation to 
provide the expression for shock acceleration and post-shock conditions. For 
example, once the downstream pressure has been determined from the 
integration on the interior, the other downstream flow variables may be 
computed using the Rankine-Hugoniot equations: 

ivx + .ivy 

urn,, = Iv, - n,l 
n s =  JII.” 

(6.178) 

The subscript 00 refers to free stream conditions, subscript 2 denotes conditions 
immediately downstream of the shock wave, and subscript s indicates the shock 
surface, and n indicates the normal to this surface. Equations (6.178) can easily 
be derived from the relative velocity expression for the shock motion and the 
Rankine-Hugoniot equations. Figure 6.21 illustrates the notation and the 
orientation of the shock in physical space. Consistent with the discussion of 
boundary condition procedures, only one characteristic carries information from 
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Figure 6.21 Shock geometry. 

the interior to the shock wave. If this characteristic is A,, the corresponding 
compatibility equation (where r is the transformed time) is 

4 

sqi(wi,  + A4wi, + gi) = 0 
i =  1 

(6.179) 

Since we have the shock wave as one boundary of our domain, we may write 

(6.180) 

That is, we explicitly include the dependence of the wi variables on the shock 
pressure. The derivative dwi /dp  can be explicitly evaluated from Eq. (6.178). If 
we substitute Eq. (6.180) into Eq. (6.1791, an expression for the time rate of 
change of pressure is obtained: 

(6.181) 

The will derivatives in this expression are evaluated using backward differences, 
which is consistent with the fact that information is being carried along a 
positive characteristic. The expression given in Eq. (6.181) permits p, to be 
computed, and then time derivatives of the other variables can be obtained 
using Eq. (6.180). These expressions are then integrated to provide the updated 
dependent variables. The shock position is updated by integrating the known 
shock speed. Moretti (1974, 1975) prefers to use the shock speed as the 
dependent variable. This can be easily accomplished within the above analysis. 
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The dependence of the wi variables given in Eq. (6.180) is replaced by 
awi awi av, 
- = -- 
d r  d v ,  d r  

(6.182) 

where we again compute d, w i / d  V,  from the Rankine-Hugoniot equations. 
Substituting this expression into our compatibility equation yields an equation 
that may be solved for the shock acceleration 

(6.183) 

Once the shock acceleration is known, the velocity and position are obtained by 
integration in time. The new dependent variables are computed from the 
Rankine-Hugoniot equations using the new shock velocity. 

Boundary shock fitting is also used when the solution of the Euler equations 
is obtained using a marching procedure. This was discussed in Section 6.3, and a 
general procedure was given to compute the shock wave shape as part of the 
solution. 

The boundary condition procedures presented in this section have been 
successfully applied to solve the Euler equations. While a limited number of 
ideas have been presented here, the literature abounds with different boundary 
condition application procedures. However, most of the ideas follow the 
guidelines given here. As a final comment, it is frequently necessary to specify 
more on a boundary than is required in the analytic formulation of the problem 
when using a numerical method. This should not be surprising, since the 
modification of the continuous problem also has a major effect on the application 
of the boundary conditions. At least, one should expect the boundary conditions 
to enter the computational procedure in ways not anticipated. 

6.8 METHODS FOR SOLVING THE POTENTIAL, EQUATION 
While solutions of the Euler equations are computed on a routine basis, finding 
the flow field for a complete configuration is still a time-consuming procedure. 
More rapid computational procedures that preserve accuracy are desirable in 
many applications where repetitive calculations are needed. A case in point is in 
preliminary design. Many geometric configurations and modifications are 
studied, and fast reliable methods are needed in order to evaluate each change 
in the proposed design. Potential methods are well suited for these situations. 

As is well known in fluid mechanics, a hierarchy of equations exists based 
upon the order of the approximation attempted or the assumptions made in the 
derivation of the governing equation. As we consider reductions from the Euler 
equations, the next logical step is to consider the solution provided by a full 
potential formulation. 

The f i l l  potential equation in conservative or nonconservative form is 
frequently used for solving transonic flow problems. In developing the full 
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potential equation, the existence of the velocity potential requires that the flow 
be irrotational. Furthermore, Crocco’s equation [Eq. (5.18711 requires that no 
entropy production occur. Thus no entropy changes are permitted across shocks 
in supersonic flows when a full potential formulation is used. At first glance, this 
appears to be a poor assumption. However, experience has shown that the full 
potential and Euler solutions do not differ significantly if the component of the 
Mach number normal to the shock is close to 1. The entropy production across a 
weak shock is dependent on the normal Mach number M,, and is approximately 
(Liepmann and Roshko, 1957) 

(6.184) 

This shows that the assumption of no entropy change across a shock is reasonable 
so long as the normal component of the Mach number is sufficiently close to 1. 
It is important to note that the restriction is on the normal component of the 
local Mach number and not the free stream Mach number. 

If the irrotational flow assumption is valid, we expect solutions of the 
potential equation to yield results nearly as accurate as solutions to the Euler 
equations even in supersonic and transonic flows with shocks. Difficulties in 
solving the Euler equations are not completely circumvented by the potential 
formulation, since we retain the nonlinear fluid behavior even with this 
simplification. We will discuss the application of the potential equation to 
typical flow problems later in this section. 

The full potential approximation to the Euler equations can be developed in 
either a nonconservative or conservative form. The nonconservative form of the 
steady potential equation may be written for two dimensions as [Eq. (5.197)] 

(1 - ;)fbXX - -pXY 2uv + (1  - ;) 4 Y Y  = O (6.185) 

where 

(6.186) 

and a is the speed of sound, which may be obtained from the energy equation 

(6.187) 

The nonconservative form of the potential equation is sometimes referred 
to as the quasi-linear form of the full potential equation. In our discussion of 
solutions of the Euler equations, the use of the nonconservative form did not 
produce acceptable results at the shocks. A similar condition holds here, and the 
solutions for flows with shocks obtained with the nonconservative form appear 
to have mass sources at the shock. Most recent techniques use a conservative 
formulation. The conservative form of the full potential equation is simply the 

a2 u2 + v 2  + - = H = const 
Y - 1  2 
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continuity equation: 
dpu dpv - + - = o  
dx dy 

(6.188) 

This equation is written in nondimensional form, where the asterisks denoting 
nondimensional variables have been omitted. The velocity components are 
related to the potential as noted above, and the density is calculated from the 
energy equation in the form 

(6.189) 

In this formulation, the velocity components and the density are nondimension- 
alized by the free stream values. We wish to solve Eqs. (6.188) and (6.189) 
subject to the surface tangency condition, written as 

JdJ - = o  
d n  

(6.190) 

and appropriate boundary conditions at infinity. 
When the full potential equation is solved, care must be exercised in 

correctly treating the spatial derivative terms, as was the case for the spatial 
derivatives for the Euler equations. Since the potential equation eliminates 
entropy changes, both expansion shocks and compression shocks are valid 
solutions, and the expansion shocks must be eliminated. In cases where this 
possibility exists, the addition of dissipation through upwinding is the most 
obvious choice. Artificial viscosity may be added either by explicit means or 
through the more widely used method of upwinding. 

The evolution of methods for solving the potential equation is worth 
reviewing. Murman and Cole (19711, in a landmark paper treating transonic 
flow, pointed out that derivatives at each mesh point in the domain of interest 
must be correctly treated using type-dependent differencing. They were 
particularly interested in solving the transonic small-disturbance equation, but 
the same idea is applicable to the full potential equation. To illustrate type- 
dependent differencing used by Murman and Cole, consider the nonconservative 
equation [Eq. (6.18511. This equation is hyperbolic at points where 

u2 + v 2  
a’ 

u2 + v 2  
a’ 

1 > 0  -- 

and elliptic at points where 

1 < 0  -- 

Consider the case when the flow is aligned with the x direction. If the flow is 
subsonic, the equation is elliptic, and central differences are used for the 
derivatives. If the flow is supersonic, the equation is hyperbolic at the point of 
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interest, and the streamwise second derivative is retarded in the upstream 
direction. The expressions for the finite-difference representation of the second 
derivatives at point (i, j )  become 

(6.191) 

The grid points used for both supersonic and subsonic points are shown in Fig. 
6.22. 

The structure of the point clusters shown in Fig. 6.22 illustrates the correct 
type dependence for either supersonic or subsonic points. The location of the 
points used in the finite-difference representation of the steady potential 
equation shows that it is desirable to use an implicit scheme to compute 
solutions. If we consider only supersonic flow so that no elliptic points exist in 
the field, a solution can be obtained using an explicit formulation. This is not 
advisable if the flow is only slightly supersonic at some field points because the 
CFL stability criterion prohibits reasonable step sizes. In that case an explicit 
solution even for purely supersonic flow becomes impractical. 

If we examine the truncation error in the finite-difference representation of 
c $ ~ ~  at hyperbolic points, we find the leading terms to be of the form 

Ax(u’ - ~ ~ ) 4 ~ ~ ~  (6.192) 

This provides a positive artificial viscosity at all points where u2 > a’. If the 
differencing given in Eq. (6.191) is used at an elliptic point, the artificial viscosity 
becomes negative and a stability problem results. Jameson (1974) pointed out 
that difficulty arises in those cases where the flow is supersonic and the x 
component ( u )  of the velocity is less than the speed of sound. The problem can 
be understood by considering a case where the flow is not aligned with the x 
direction, as shown in Fig. 6.23. The proper domain of dependence for all points 

Figure 6.22 me-dependent differencing. (a) Elliptic point; (b) hyperbolic point. 
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Figure 6.23 Flow with nonaligned mesh system. 

is not included. One of the y coordinates of a point in the finite-difference 
molecule lies behind one of the characteristics passing through the point 
(i A x ,  j A y ) .  In order to remedy this problem, Jameson introduced his well-known 
rotated difference scheme. The idea is to write the potential equation in natural 
coordinates as 

(a2 - v2)c$ss + a2#& = 0 (6.193) 

where s and n are distances along and normal to the streamlines. By applying 
the chain rule for partial derivatives, the second derivatives may be written in 
terms of x and y as 

1 
4 s s  = v'(" A x  + 2uv4xy + v*4yy) 

4 n n  = - T ( v 2 L  - 2uv4,, + u24yy) 
(6.194) 

1 
V 

Both x and y derivative contributions to 4ss are lagged or retarded, while 
central differences are used for the 4flfl term. When the flow is aligned with the 
grid, the rotated scheme reduces to that given in Eq. (6.191) and produces an 
artificial viscosity with leading term of the form 

(1  - $ ) ( A s u 2 4 s s s  + 1 (6.195) 

This provides us with a positive artificial viscosity for all points where the flow is 
supersonic, and we expect shock waves to form only as compressions. While the 
concept of artificial viscosity is used as a means of explaining the behavior of the 
solutions of the full potential equation, it should be understood that the same 
conclusions regarding proper treatment of the various terms can be reached by a 
careful analysis of the finite-difference equations. 
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Hafez et al. (1979) applied the idea of artificial compressibility in transonic 
flows in order to provide artificial viscosity in supersonic regions. This concept 
was originally introduced by Harten (1978) in attempting to devise better 
methods of shock capturing in supersonic flows. Holst and Ballhaus (1979) and 
Holst (1979) used an upwind density bias to provide the necessary artificial 
viscosity. The method presented below incorporates these ideas and is very 
useful for solving the full potential equation. 

To understand the role of density biasing in providing an artificial viscosity, 
it is instructive to consider the 1-D form of the potential equation: 

(6.196) 

This expression may be approximated to second order by writing 

V( Pi+ 1/2 A & )  = 0 (6.197) 

where the notation is as previously defined. For elliptic points, Eq. (6.197) is 
satisfactory. For hyperbolic points, an artificial viscosity must be added such as 
that used by Jameson (1975): 

- A x (  cL4xx)x (6.198) 
where 

(6.199) 

As previously noted, this explicit addition of artificial viscosity is equivalent to 
the type-dependent differencing introduced by Murman and Cole (1971). 
Jameson (1975) has shown that Eq. (6.198) is equivalent to a term with the form 

where 
(6.200) 

(6.201) 

This form is obtained by differentiation of the 1-D form of the energy equation. 
If this artificial viscosity form is incorporated into the potential equation, the 
finite-difference approximation to Eq. (6.196) becomes 

This expression, due to Holst and Ballhaus (1979), is second-order accurate and 
centrally differenced in subsonic regions. In supersonic regions this is a first-order 
upwind scheme due to the addition of the artificial viscosity. The differencing 
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becomes more strongly biased in the upwind direction as the Mach number 
increases. In subsonic regions the density biasing is switched off. 

The difference expression given by Eq. (6.202) can also be written 

"( ") = V(fii+1,2 A 4 i )  = 0 
d x  Pax (6.203) 

if the new density is identified by 

f i i + ;  = (1 - v i )p i++ + vip1-t (6.204) 

where the values at the cell midpoint are obtained from the energy equation 
[Eq. (6.189)]. In this expression for pi+ ;, only u appears and is evaluated as 
(+ i+l  - c$~)/Ax. Equations (6.203) and (6.204) show that the effect of adding 
artificial viscosity is equivalent to using a retarded density. In Jameson's (1975) 
method, the artificial viscosity is explicitly added, while in the scheme outlined 
here, the artificial viscosity is included in the treatment of the density. If the 
artificial viscosity v is chosen as given in Eq. (6.199), the two techniques give 
identical results. If v = 0, the scheme is valid only in elliptic regions and is 
unstable for supersonic flow. However, if v is set equal to a positive constant, 
the scheme can be used for both subsonic and supersonic flows. It should be 
noted that the resulting method is first order and highly dissipative when v is 
set equal to a constant. 

Other techniques for including the upwind or density-biasing effect have 
been developed that are more accurate. Shankar et al. (1985) used a streamwise 
flux-biasing approach that has proven to be effective. The value of f i i + ;  is 
written in terms of mass flux values in the streamwise direction for the 1-D case 
as 

1 d 

U 
(6.205) 

where the negative sign is used with a backward difference and the positive with 
a forward difference. The term ( pu)- is defined as 

( p u F  = pu - p*u* 

( p u > -  = 0 

u > u* 

u < u* 
(6.206) 

and the starred quantities represent the sonic values of the density and the 
velocity. For steady flow these values are constant and generally depend only on 
the free stream Mach number. If the flow is unsteady, the values are computed 
at all points due to the unsteady behavior of the flow. In order to use flux 
biasing, four different cases must be evaluated, and these will be detailed below. 

In solving the potential equation, methods for computing solutions of the 
steady equations using relaxation are popular. When relaxation methods are 
used, the behavior of the equations switches whenever sonic lines are 
encountered. If the time-dependent form of the governing equations is used for 
the general case, the solution procedure is valid for either steady or unsteady 
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flow. However, the special treatment of the density still needs to be carried 
during the solution process. 

The unsteady potential equation may be written 

[ $1 + [ 4 + [ P;] n = 0 

where U, I/ are the contravariant velocities given by 

u = 5t + a 1 1 4 5  + a 1 2 4 7  

I/ = 77r + %146  + a224$ 

with the usual definitions for the metric coefficients, 

a11 = 5,’ + 6; 
a21  = 52lY + tYVX 

a12  = 5,TY + 5 ,a  
a 2 2  = 77,” + v; 

(6.207) 

(6.208) 

(6.209) 

and J is the Jacobian. In the unsteady formulation the density is given by 

l/(y- 1) 

p = 1 - -M,2[24T + (U + + ( u  + 71T)4+ - 11 ) (6.210) 

We seek a solution of Eq. (6.207), and any scheme that provides the desired 
accuracy may be used. Shankar et al. (1985) used a Newton method to solve this 
equation, and we present the basic idea of their approach. 

The conservative form of the continuity equation may be written as a 
function of the velocity potential in the form 

f“41 = 0 (6.211) 

In this expression the value of 4 is the unknown at each mesh point at the 
n + 1 time level. The standard Newton iteration scheme for computing this 
value of 4 is 

{ 7 

(6.212) 

The asterisk denotes the iteration value for 4. That is, the iteration procedes by 
starting with an assumed value of 4 at the n + 1 level. Initially, this value of 4 
is assigned to +*. After the first Newton iteration, the new values of 4 that 
result are then assigned to the +* array. In this manner, the iteration continues 
until 4 approaches 4* within the desired accuracy. 

The solution procedure begins with a specific treatment of the time- and 
spatial-derivative terms. The details of this treatment are outlined below. 

Treatment of the time derivatives. The time derivative may be formed in a 
number of ways. In order to provide flexibility in selecting the temporal 
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accuracy, the term 

may be written in the following form: 

where the denominator is defined as 

and 
D ,  = a, Ar,  - 8b1(Ar1 + h72) (6.214) 

a, = (Ar, + Ar2I2  

(6.215) 

Ar - r n  - 
2 -  

The time accuracy of the method is controlled by 8, where a value of zero 
corresponds to first-order accuracy and one provides a second-order accurate 
scheme. 

The unknown shown in the time discretization is the density. However, we 
write the density in terms of 4 following the original Newton iteration procedure. 
Thus we write the density in the following form: 

p (4*  + A4)  = p ( 4 * >  + Ap (6.216) 
where 

and 
A 4 = 4 - 4 *  

The density derivative is evaluated by writing 

(6.217) 

(6.218) 

(6.219) 

With the time derivative approximated by 1/87, we obtain the density change 
by differentiation, resulting in the expression for A p: 

d 
(6.220) 

Spatial derivatives. The density appearing in the spatial derivatives is treated in 
a manner similar to that outlined above. Consistent with the Newton iteration 
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procedure for 4, the spatial derivatives are written as 

- ( P ; ) = $ ( f + % A 4 )  d ?f 
36 

where 

f = ( p - j )  U 

with 

(6.221) 

(6.222) 

(6.223) 

The upwinding that must be used when the quantity (all - U 2 / a 2 )  is 
negative will create a pentadiagonal matrix. In the interest of computational 
efficiency, the term U( dp/ a+) is sometimes neglected because a tridiagonal 
form is recovered. Since the change in 4 goes to zero when the solution 
converges, this should not produce errors. The final form assumed for the 
spatial derivative becomes 

(6.224) 

where the expanded terms may be written 

The density 6 is given by fi(<b*), where 4, is the initial guess in the Newton 
iteration. 

In flows with shocks or where M > 1, artificial viscosity is added to the 
scheme by density biasing. This may be accomplished in a number of different 
ways. The density may be biased strictly in the coordinate direction, so that 

where the coefficient Y takes the usual form, 

Y.= max 0 , l  - - ( t . i i + +  

(6.226) 

(6.227) 

For values of U that are positive, the negative sign and backward differencing 
are used, while the positive sign and forward differencing are used when U is 
negative. 
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Directional flux biasing can also be employed successfully and consists of 
writing the density in terms of the weighted mass flux. This is written in the form 

(6.228) 

The streamwise biasing approach weights the density by using the streamwise 
mass flux and is written 

where s is the local streamwise coordinate and q represents the speed. This may 
be written in a form consistent with the previous notation as 

where 

Q = ( U 2  + V2)' 
with ( pq)- defined as 

( P U F  = pu - p*u* 

( p u ) -  = 0 

u > u* 

u < u* 

(6.231) 

(6.232) 

and the starred values represent sonic conditions. These sonic conditions are 
given by 

p* = (q*M,)2/(Y-*) (6.234) 

There are four cases that must be considered in the biasing of the density. 

1. Subsonic flow. In the case of subsonic flow the velocity is less than the speed 
of sound at both points under consideration. For q < q* at (i + 3, j )  and 
(i - 3, j ) ,  the density term becomes 

(6.236) 

2. Supersonic flow. For the case of supersonic flow, the velocity is fully supersonic 
at both mesh half intervals, (i + i ,J) , ( i  - $, j ) :  

9 > 4* 
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For U > 0, the density becomes 

(6.237) 

When the flow is steady and supersonic, the value of the density is simplified 
considerably to 

(6.238) 

3. Transition through a sonic point. Figure 6.24 shows a schematic of transition 
through a sonic point region along with the shock transition point. For the 
sonic transition, q > q* at (i + $, j )  and q < q* at (i - $ , j )  for U > 0. The 
density is written 

This may be more simply written as 

- P*4* 
P i + f , j  = - 

4i+ +, j 
(6.240) 

4. Transition through a shock. In the case of transition through a shock, q > q* 
at (i - $ , j >  and 4 < q* at (i + $, j ) .  For U > 0, 

or in a simpler form, 
I 

SONIC LINE SHOCK 

I 1 

/ 
/ , / ,  

j - 1  I j j+l j + 2  j -1  
I 
I 

(6.242) 

( a )  (b) 

Figure 6.24 Transition. (a) Sonic point. (b) Shock point. 
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For steady flows it may be shown that flux biasing and the density biasing 
procedure employed by Holst [1980] give identical results at a purely supersonic 
point. 

The remaining task that must be accomplished to make this full potential 
formulation applicable to both steady and unsteady problems is to correctly 
treat the circulation at the boundary of the computational region. In particular, 
the velocity potential jumps in value across the wake, and an appropriate 
technique to establish the correct jump is needed. The circulation is defined as 

r = $ V - d s  (6.243) 

When circulation is generated in the lifting case, the jump in the velocity 
potential across the airfoil wake is equal to the circulation, i.e., 

4 - 41 = (6.244) 

where the u and 1 subscripts indicate the values taken at the upper and lower 
sides of the airfoil wake. Kelvin’s theorem (Karamcheti, 1966) states that the 
circulation around a fluid curve remains constant for all time if the curve moves 
with the fluid. This permits the conservation of circulation to be expressed as 

DT 
- -  - 0  
Dt 

(6.245) 

Integrating along the wake cut provides the correct r variation relating the 
values of #J across the wake. The circulation is simply convected with the fluid 
particles, and the most convenient form to use may be written 

ar ar ar 
d t  36 dr) 
- + u- + I/-- = 0 (6.246) 

This equation may be substantially simplified with the proper choice of 
coordinates. When this expression is integrated to find the variation in r along 
the wake cut, the recommended practice is to assume that the upper and lower 
values of #J are correct at alternating time steps. This means that the upper and 
lower values are alternately determined by the solutions of the field equations 
or the integration of Kelvin’s theorem. For the steady flow case, the value of r 
along the wake is set equal to a constant and is simply the jump in #J at the 
trailing edge point. 

The unsteady formulation also requires a specification on the normal 
derivatives of #J along the wake cut when the governing equations for #J are 
written. This is usually accomplished by an extrapolation that also includes the 
calculated value of the circulation. The jump in the second derivative of #J 
across the wake may be written 

(6.247) 



426 APPLICATION OF NUMERICAL METHODS 

-1.37 

-0.82 

-0.27 

0.28 
t a=am + S I N ( 2 K t )  

am=O .02, ao=2.51, K-0.081 
a( t )  = - 2  .oo 

0.83 1 I I I 
0 0.25 0.5 0.75 1. 

x/ C 

Figure 6.25 Comparison of the unsteady pressure coefficients (Cp) for a NACA 0012 airfoil 
(Shankar et al., 1985. Copyright 0 1985 AIAA. Reprinted with permission). 

The pressure is continuous across the wake, and the density is also assumed to 
be continuous from the lower to the upper side. 

In addition to the wake treatment, the body-surface boundary conditions 
and conditions in the far field require specification. On the body surface the 
flow must satisfy the surface tangency condition for the steady case, or the more 
general statement for the unsteady case requires that the normal velocity of the 
moving surface be equal to the normal component of the fluid velocity. The far 
field is treated in the same way as the Euler equation boundary conditions, in 

RAY ANGLE, w, DEGREES 

Figure 6.26 Flow over a circular cone. 
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the sense that the Reimann invariants may be used as outlined in the previous 
section. 

The original unsteady equation (continuity) may be written in the form 
H ( A 4 )  - R( 4* , 4n, 4n-1,.. . ) 7 0 (6.248) 

In this equation the residual is denoted by R and the operator H may represent 
the particular scheme selected to compute a solution of the system. Approximate 
factorization, relaxation, or any other suitable method may be chosen. Figure 
6.25 shows the unsteady pressure distribution on an oscillating NACA 0012 
airfoil compared to experimental data from AGARD R-702. This is a transonic 
case and is representative of the unsteady results obtained with full potential 
formulations. Typical results from steady full potential calculations of supersonic 
flows from Shankar and Chakravarthy (1981) are shown in Figs. 6.26 and 6.27. In 
both cases, the agreement with solutions using the Euler equations is excellent. 
In applications where the assumptions inherent in a potential formulation are 
valid, the calculated solutions for the flow field will provide a quick, accurate 
result. In areas such as preliminary design, application of full potential codes 
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Figure 6.27 Flow over wing-body configuration. 
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can substantially reduce the computational effort expended in comparison with 
other approaches. 

6.9 TRANSONIC SMALL-DISTURBANCE EQUATIONS 
The use of the full potential equation for inviscid transonic flows was discussed 
in the previous section. Results obtained for airfoils and some 3-D body shapes 
compare very well with available experimental data. Methods for solving the full 
potential equation are very efficient and are being used extensively. However, 
we still find numerous applications where the sophistication provided by the full 
potential formulation is not required and the accuracy of the solution of the 
transonic small-disturbance equation is sufficient. In addition, a significant 
advantage accrues in the application of boundary conditions. Boundary 
conditions for 2-D problems are applied on the slit in two dimensions or on the 
plane for 3-D problems. The governing equations are greatly simplified, since 
complex body-aligned mappings are unnecessary for the application of boundary 
conditions. This can result in significant reductions in computer time and 
storage requirements, particularly in 3-D problems. 

The transonic small-disturbance equations may be derived by a systematic 
expansion procedure. The details of this procedure are given by Cole and 
Messiter (1957) and Hayes (1966) and provide a means of systematically 
developing higher-order approximations to the Euler equations. In Chapter 5 
the transonic small-disturbance equation [Eq. (5.203)l is derived using a 
perturbation procedure. This may be written in the nondimensional form 

where K is the transonic similarity parameter given by 

(6.250) 

with S representing the maximum thickness ratio and f the shape function of 
an airfoil defined by the expression 

The velocity potential used in Eq. (6.249) is the perturbation velocity potential 
defined in such a way that the x derivative of 4J is the perturbation velocity in 
the x direction nondimensionalized with respect to the free stream velocity, and 
similarly in the y direction. The scaled coordinate j j  is defined by 

j j  = s1/3 Y (6.252) 
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Equation (6.249) is formally equivalent to Eq. (5.203), and both are forms of the 
Guderley-von KArmAn transonic small-disturbance equations. The similarity 
form given in Eq. (6.249) is the equation originally treated by Murman and Cole 
(1971) in calculating the inviscid flow over a nonlifting airfoil. The pressure 
coefficient is the same as Eq. (5.205) and may be written 

c* = -2Cpx 

For flows that are not considered transonic, we obtain the Prandtl-Glauert 
equation for subsonic or supersonic flow. This expression has been used in 
numerous examples in previous chapters and takes the form 

(1 - M,2)4xx + 4yy = 0 (6.253) 

The main point to remember is that the transonic small-disturbance equation is 
nonlinear and switches from elliptic to hyperbolic in the same manner as the full 
potential and Euler equations. 

In their original paper, Murman and Cole treated the inviscid transonic flow 
over a nonlifting airfoil and solved the transonic small-disturbance equation as 
given in Eq. (6.249). In addition to the governing PDE, the necessary body-surface 
boundary conditions for zero angle of attack are given by 

+p(x, 0) = f ’ ( x >  (6.254) 

applied in the plane f = 0 consistent with the theory. A boundary condition 
must also be applied at the outer boundary of the computational mesh. For this 
case, in the far field, 

where 

(6.255) 

(6.256) 

and the airfoil is confined to the interval 
-1 < x <  1 

In the lifting case, the circulation must be imposed and determined by satisfying 
the Kutta condition on the airfoil. The far-field boundary condition in this case 
takes the form of a vortex with the value of circulation determined by the Kutta 
condition. For development of the far-field boundary condition, the papers by 
Ludford (1951) and Klunker (1971) are recommended. 

Murman and Cole solved Eq. (6.249) for a nonlifting transonic airfoil using 
line relaxation methods. Type-dependent differencing given in Eq. (6.191) was 
used for hyperbolic regions, and central differencing was used in the elliptic 
regions. This switched differencing used by Murman and Cole provides a 
method that is equivalent to a first-order Roe scheme. The airfoil now appears 
on the x axis as a line or slit, and boundary conditions are applied there. In this 
case the airfoil lies between two mesh points at the half-mesh interval, as shown 
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Figure 6.28 Surface boundary point distribution. 

in Fig. 6.28. The boundary condition at y’ = 0 enters as a body slope or 
derivative of 4 given in Eq. (6.254). At the (i, 1) point, the +yy derivative is 
differenced as 

The surface boundary condition explicitly enters the calculation through the +? 
term. 

Figure 6.29 shows the pressure distribution for a circular arc airfoil obtained 
by solving the transonic small-disturbance equation. As can be seen, the 
experimental data of Knechtel (1959) and the computed results compare 
favorably for both the subcritical and supercritical cases. It is interesting that the 
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Figure 6.29 Pressure distribution for circular are airfoil. (a) Subcritical case. (b) Supercritical case. 
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shock location and strength for this example agree well with the experimental 
measurements. The nonconservative equations of small-disturbance theory for 
an inviscid flow underestimate shock strength and produce the same effect as a 
shock-boundary layer interaction on shock strength and location. Thus the 
nonconservative form has been popular even though the conservative form is 
mathematically appealing. Numerous applications of the technique, presented 
by Murman and Cole for solving the transonic small-disturbance equation, have 
been made since it was originally introduced, and many refinements of the basic 
method have been developed. However, the main point to remember is that a 
significant simplification over either the Euler equations or the full potential 
formulation is realized when this approach is used. 

The simplified form of the transonic small-disturbance equation was used in 
developing solutions for 3-D wings by Bailey and Ballhaus (1972). Their work led 
to the development of a widely used 3-D code for transonic wing analysis. This 
code has been used extensively in designing improved wings for flight in the 
transonic speed regime. For those interested in 3-D transonic flow over wings, 
the paper by Bailey and Ballhaus is recommended reading. 

Most current work in transonic flow is concentrated on developing Euler or 
Navier-Stokes equation solvers. One area where considerable effort is being 
expended using the transonic full potential or small-disturbance equations is in 
the development of design codes. In the inverse design problem the body 
pressure is prescribed, and the body shape is unknown. For this type of problem 
a simplified approach offers advantages. 

6.10 METHODS FOR SOLVING LAPLACE’S EQUATION 

The numerical techniques presented in the previous sections of this chapter 
were applied to the nonlinear equations governing inviscid fluid flow. Linear 
PDEs are often used to model both internal and external flows. Examples 
include Laplace’s equation for incompressible inviscid irrotational flow and the 
Prandtl-Glauert equation, which is valid in compressible flow if the small- 
perturbation assumptions are satisfied. The methods for solving both of these 
equations are similar. Finite-difference/finite-volume methods for solving 
Laplace’s equation are presented in Chapter 4 and will not be reviewed here. 
Instead, the basic idea underlying the use of panel methods will be discussed. 
These methods have received extensive use in industry. 

The advantage of using panel methods is that a solution for the body-pressure 
distribution can be obtained without solving for the flow field throughout the 
domain. In this case the problem is reduced to the solution of a system of 
algebraic equations for source, doublet, or vortex strengths on the boundaries. 
Using the resulting solution, the body-surface pressures can be computed. Panel 
schemes require the solution of a large system of algebraic equations. For most 
practical configurations, the storage and speed capability of modern computers 
have been sufficient. However, judicious selection of the number of surface 
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panels and correct placement are essential in obtaining a good solution for the 
body-surface pressure. 

In studying panel methods, we will consider the flow of an incompressible 
inviscid irrotational fluid that is governed by a solution of Laplace’s equation 
written in terms of the velocity potential. We require 

v24 = 0 (6.258) 

in the domain of interest and specify either 4 or &$/an on the boundary of the 
domain. For simplicity, we restrict our attention to the 2-D case, although the 
fully 3-D problem is conceptually the same. The geometry of the problem under 
consideration is shown in Fig. 6.30. The basic idea underlying all panel methods 
is to replace the required solution of Laplace’s equation in the domain with a 
surface integral. This method is developed by the application of Green’s second 
identity to the domain of interest. If u and u are two functions with continuous 
derivatives through second order (class C” 1, then Green’s second identity may 
be written 

where n is the unit normal to the boundary and s is arc length along the 
boundary. Suppose we choose u to be the potential 4 and u to be of the form 

u = In ( r )  
where 

r = d ( x  - o2 + ( y  - v)2 
We take (6,771 as the coordinates of the point P where 4 is to be determined 
and ( x ,  y )  as the coordinates of the point Q on the boundary where a source is 
located. In evaluating the integrals in applying Green’s identity, we must 

Figure 6.30 Physical domain for Laplace’s equation. 
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exercise caution as (5,~) approach ( x ,  y ) ,  that is, when r + 0. In order to avoid 
this difficulty we think of enclosing the point P( 5,771 with a small circle of radius 
E and apply Green’s identity to the region enclosed by the original boundary (B) 
and that of the small circle enclosing P. Thus 

O = # ( u V u - u V u ) * n d s -  ( u V u - u V u ) - n d s  
B t 

Consider the second integral with u, u replaced as noted above: 

$[ln ( r )  V 4  - 4 V In ( r ) ]  - n ds 

On the boundary of the small circle, r = E ,  and we may write this integral as 

In ( E ) (  $ V+ - n ds)  - $- 4 ds 
r 

By our original hypothesis, 4 is a solution of Laplace’s equation, and therefore 
the first term must vanish (see Prob. 2.7). The second term may be written 

1 
- t 4  E ds 

which, by the mean-value property of harmonic functions, becomes 

We substitute this result into our original expression to obtain 

(6.259) 

Thus we have reduced the problem of computing a solution to Laplace’s 
equation in the domain to solving an integral equation over the boundary. The 
first term represents a Neumann problem, where &$/an is given on the 
boundary, while the second is an example of the classical Dirichlet boundary 
value problem, where 4 is specified. These integrals correspond to contributions 
to 4 from sources and doublets. We could write 

d In ( r )  
(6.260) 

where we interpret u as a source distribution and p as a doublet distribution 
with axis normal to the bounding surface. 

A surface source distribution with density u per unit length produces a 
potential at an external point given by 

1 
4 = z$u In ( r )  ds (6.261) 
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where the integration is taken over the surface. If we have n surfaces or panels, 
the total potential at a point P is the sum of the contributions from each panel: 

(6.262) 

A similar expression can be developed for a doublet distribution. 

source panels, we include the velocity potential of the free stream and write 
When a uniform stream is superimposed on the domain that includes the 

n 1  

(6.263) 

The simplest panel 
source strength of 

representation to treat numerically is obtained when the 
each panel is assumed to be constant. Some advanced 

methods assume other distributions, and the representation of the velocity 
potential becomes correspondingly more complex. For a constant source strength 
per panel, 

(6.264) 

The geometry appropriate to the above potential distribution is shown in 
Fig. 6.31. The problem in using the source panel representation for a given body 
is to determine the source strengths a;. This is accomplished by selecting a 
control point on each panel and requiring that no flow cross the panel. The 
control point is selected at the midpoint of each panel. We now specify the point 
P to be at the control point of the ith panel. The boundary condition that no 
flow passes through the panel at this point is 

+ 
CONTROL POINT 4 

- 

(6.265) 

Figure 6.31 Panel representation for general shape. 
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Since C#I is the velocity potential, this requires that the normal velocity at the 
control point of the ith panel vanish. Therefore 

(6.266) 

The dot product is used because the velocity component normal to the surface is 
required. The velocity induced at the ith control point due to the ith panel is 
u i / 2  and is usually taken out of the above summation. With this convention, we 
may write 

(6.267) 

Application of this equation to each panel provides n algebraic equations for 
the n source strengths. Once the a;. are computed, the pressure coefficients can 
be determined. When Eq. (6.267) is used to generate the required panel source 
strengths, the integrand function is most easily developed by using the vector dot 
product and may be written 

d In ( r i j )  
ani 

= V, In ( r i j )  - ni (6.268) 

An example demonstrating the procedure for generating the required algebraic 
equations is in order. 

Example 6.3 Suppose we wish to solve for the pressure distribution on a cylinder 
of unit radius in an incompressible flow using the method of source panels. The 
cylinder is to be represented by eight panels, and the configuration is shown in 
Fig. 6.32. 

Solution In order to determine the surface pressures, we must calculate the 
panel strengths required for all eight panels on the cylinder. This is done by 
solving the system of algebraic equations generated by the application of Eq. 

Y 

"OD L. 
Figure 632 Panel representation of cylinder. 
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(6.267) to each panel. In applying Eq. (6.267) to any panel, the most difficult part 
is the evaluation of the integral term. In general, it is convenient to view the 
integral as an influence coefficient and write the system of governing equations 
in the form 

Using the following notation, we may write the components of [C] as 

(6.269) 

(6.270) 
i = j  

To demonstrate the application of Eq. (6.2701, we elect to compute c53, which 
represents the normal velocity at the control point of panel 5 due to a constant 
source strength of magnitude 1/U, on panel 3. For this case we write the radius 
as 

2 1/2 
r53 = [ ( x ,  - x3I2 + (y5 - y3) ] 

and 
( x ,  - x3)i + (y5 - y3)j 

V5 1n(r53) = 
(x5 - x3)2 + (y, - y3Y 

(6.271) 

The unit normal on panel 5 is the unit vector in the positive x direction and 
x5 -x3 V5 1n(rs3) - n5 = 2 

(x, - x3I2  + (y, - y3) 
For this integral, x ,  = 0.9239, y, = 0, and y3 = 0.9239, while x 3  is a variable on 
panel 3. This reduces the integral required to the form 

In this expression the arc length along panel 3 is equal to x - 0.3827; therefore 
ds, = dx, and we use the x coordinates of the panel end points as the integration 
limits. Notice that the integration proceeds clockwise around the cylinder, which 
is the positive sense for the domain where a solution of Laplace's equation is 
required. The [C] matrix is symmetric, i.e., c i j  = cji, and the solution for the a, 
must be such that 

n cui=o 
i = l  

This requirement is an obvious result of the requirement that we have a closed 
body. 

A comparison of the eight-panel solution with the analytically derived 
pressure coefficient is shown in Fig. 6.33. Clearly, the panel scheme provides a 
very accurate numerical solution for this case. 
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Figure 633 Pressure coefficient for a circular cylinder. 

We have used the method of source panels in our example to demonstrate 
the mechanics of applying the technique. We could use doublets or dipoles to 
construct bodies as well as vortex panels. Clearly, we must include circulation if 
we are concerned with lifting airfoils. This may be done in a number of ways, but 
one technique is to use a vortex panel distribution along the mean camber line 
to provide circulation and satisfy the Kutta condition at a control point just aft 
of the trailing edge. 

Panel methods represent a powerful approach for solving certain classes of 
flow problems. They have received extensive use and have resulted in a number 
of standard codes that are used industrywide. For more details on the 
development of these schemes, the paper by Hess and Smith (1967) provides 
basic details, while the papers by Rubbert and Saaris (1972) and Johnson and 
Rubbert (1975) present more advanced ideas. 

PROBLEMS 
6.1 In Example 6.1, we used a characteristic method to solve for supersonic flow over a wavy wall. 
Verify the velocity field obtained by solving the Prandtl-Glauert equation [Eq. (6.1)] directly. 
6.2 Derive the differential equations of the characteristics of the nonlinear system of equations 
governing 2-D supersonic flow kitten in rectangular coordinates [Eq. (6.18)]. 
6.3 The differential equations of the characteristics obtained in Prob. 6.2 are written in rectangular 
coordinates. Transform these results using the streamline angle 0, and show that the characteristics 
are inclined at the local Mach angle, i.e., 

dY t a n ( @ +  p )  = - 
dx 

6.4 Develop the compatibility equations for the nonlinear equations of Prob. 6.2 
6.5 Use the results of Probs. 6.2 and 6.4 and solve Example 6.1 using the method of characteristics 
for the nonlinear equations. 
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6.6 Complete the derivation in Prob. 6.4 by computing [TI. The governing equations are then ready 
to be numerically integrated using an appropriate upwind scheme. 
6.7 The 1-D unsteady Euler equations are given by 

where 

and 

u, + [AIU, = 0 

u = P ,  %PIT 

[ A ] =  0 u l / P  
U P  0 [ 0 pa2 u 

Find the following: 
( a )  eigenvalues 
(b )  characteristics 
(c) left eigenvectors 
( d )  [TI-‘ 
( e )  compatibility equations 

6.8 Develop a code to solve for the supersonic flow over the 2-D wedge of Example 6.2. Use a 
shock-capturing approach and MacCormack’s method in solving the steady flow equations. Use 26 
grid points with the outer boundary located at an angle of 40” with respect to the wedge surface. 
Nondimensionalize the governing equations using the procedure given in Section 5.1.7. Let V ,  = 1, 
cb, = 1, and pm = l/(-yM:). Compute this case by integrating from 6 z 0 to a relatively large value 
of 6 in order to asymptotically obtain the converged solution. Use the maximum allowable A t ,  
which can be determined by performing numerical experiments. Compare your numerical solution 
with the exact solution. 
6.9 Solve the wedge-flow problem of Prob. 6.8 by using the unsteady (time-dependent) approach and 
conical flow. Use the maximum allowable At,  which can be determined by performing numerical 
experiments. Compare your numerical solution with the exact solution. 
6.10 Develop a code to solve the 2-D supersonic wedge problem of Prob. 6.8, but fit the shock wave 
as a discontinuity. Use either the conservative or nonconservative form. 
6.11 Suppose that a solid boundary lies on a ray (6’ = const) in a 2-D flow problem. Use reflection to 
establish a suitable means of determining the flow variables of the sublayer points. Use rectangular 
velocity components. 
6.12 Develop the appropriate boundary condition procedure using Kentzer’s method (see Section 
6.7) for the supersonic wedge-flow problem. 
6.13 The flux-vector splitting method of Steger and Warming “splits” the system of equations 

into the following form: 

If this method is applied to the system of equations 

U, + E, = 0 

U, + Ef+ E;= 0 

where c is a constant, find the following quantities: 
(a)  [A1 
( b )  [A+l,[h-l 
(c) [Tl-’,[Tl 
( d )  [A+I , [A- l  
( e )  E+,E- 

6.14 Repeat Prob. 6.13 for the 1-D unsteady Euler equations given in Prob. 6.7 Assume that 

6.15 The split-coefficient matrix method (Chakravarthy, 1979) “splits” the system of equations 
(0 u a). 

u, + [AIU, = 0 
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into the following nonconservative form: 

where 
u, + [A'IU, + [A-IU, = 0 

[A'] = [T][A'][T]-' 

[A-I  = [Tl[A-l[Tl-' 
If this method is applied to the system of equations 

.=[:I [ A ] = [ !  51 
where c is a constant, find the following quantities: 

(a) [A'l,[A-l 
(b )  [Tl,[Tl-' 
(c) [A+I,[A-l 

6.16 Repeat Prob. 6.15 for the 1-D unsteady Euler equations given in Prob. 6.7. Assume that 
O < u < a .  
6.17 In the CSCM (Conservative Supra-Characteristics Method) flux-difference splitting scheme 
(Lombard et al., 1983), the system of equations 

U, + Ex = 0 
is "split" into the following form: 

U, + [Q'IE, + [Q-IE, = 0 
where 

[Q'l = [Tl[A+l[Al-'[T]-' 

[Q-1 = [TI[A-l[Al-'[Tl-' 
If this method is applied to the system of equations given in Prob. 6.13, find the following quantities: 

(a) [A], [A'], [A-I, [A]-' 
(b )  [TI, [TI-' 
( c )  [Q'l,[Q-l 

6.18 Repeat Prob. 6.17 for the 1-D unsteady Euler equations given in Prob. 6.7. Assume that 
O < u < a .  
6.19 Apply Roe's scheme to the system of equations given in Prob. 6.13 and fiid 

[IAIl = [Tl[lAll[Tl-' 
6.20 Apply Roe's scheme to the 1-D unsteady Euler equation given in Prob. 6.7 and find 

[MI] = [TI[IAll[Tl-' 
if 0 < u < a. 
6.21 Compute the split-flux mass using Steger-Warming flux-vector splitting and show that the van 
Leer flux-vector splitting eliminates the discontinuities in derivatives as indicated in Fig. 6.12. 
6.22 Venfy Eqs. (6.114) and (6.115). 
6.23 Develop a code to solve Prob. 6.9 using the Steger-Warming flux-vector splitting scheme. 
6.24 Develop a code to solve Prob. 6.9 using van Leer flux-vector splitting. 
6.25 Write a computer code to solve the 1-D shock tube problem using van Leer flux-vector 
splitting. Assume that the low-pressure end of the infinitely long shock tube is at standard 
atmospheric conditions and the high-pressure end has a pressure of 10 atm and standard atmospheric 
temperature. 
6.26 Develop a code to solve Prob. 6.25 using the advection upstream splitting (AUSM) method. 
6.27 Develop a code to solve Prob. 6.25 using a first- and second-order Roe scheme. 
6.28 Show that Eq. (6.197) is a second-order representation of the 1-D potential equation. 
6.29 Show that the retarded density formulation of Eq. (6.203) is equivalent to Eq. (6.202). 
630 Derive Eq. (6.210). 
631 Show that Eq. (6.260) is a valid representation for the potential in an incompressible fluid flow. 
632 Compute c43 of Example 6.3. 
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