
C H A F E R  

FIVE 
GOVERNING EQUATIONS OF FLUID 
MECHANICS AND HEAT TRANSFER 

In this chapter, the governing equations of fluid mechanics and heat transfer 
(i.e., fluid dynamics) are described. Since the reader is assumed to have some 
background in this field, a complete derivation of the governing equations is not 
included. The equations are presented in order of decreasing complexity. For 
the most part, only the classical forms of the equations are given. Other forms of 
the governing equations, which have been simplified primarily for computational 
purposes, are presented in later chapters. Also included in this chapter is an 
introduction to turbulence modeling. 

5.1 FUNDAMENTAL EQUATIONS 
The fundamental equations of fluid dynamics are based on the following 
universal laws of conservation: 

Conservation of Mass 
Conservation of Momentum 
Conservation of Energy 

The equation that results from applying the Conservation of Mass law to a fluid 
flow is called the continuity equation. The Conservation of Momentum law is 
nothing more than Newton's Second Law. When this law is applied to a fluid 
flow, it yields a vector equation known as the momentum equation. The 
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Conservation of Energy law is identical to the First Law of Thermodynamics, 
and the resulting fluid dynamic equation is named the energy equation. In 
addition to the equations developed from these universal laws, it is necessary to 
establish relationships between fluid properties in order to close the system of 
equations. An example of such a relationship is the equation of state, which 
relates the thermodynamic variables pressure p, density p, and temperature T. 

Historically, there have been two different approaches taken to derive the 
equations of fluid dynamics: the phenomenological approach and the kinetic 
theory approach. In the phenomenological approach, certain relations between 
stress and rate of strain and heat flux and temperature gradient are postulated, 
and the fluid dynamic equations are then developed from the conservation laws. 
The required constants of proportionality between stress and rate of strain and 
heat flux and temperature gradient (which are called transport coefficients) 
must be determined experimentally in this approach. In the kinetic theory 
approach (also called the mathematical theory of nonuniform gases), the fluid 
dynamic equations are obtained with the transport coefficients defined in terms 
of certain integral relations, which involve the dynamics of colliding particles. 
The drawback to this approach is that the interparticle forces must be specified 
in order to evaluate the collision integrals. Thus a mathematical uncertainty 
takes the place of the experimental uncertainty of the phenomenological 
approach. These two approaches will yield the same fluid dynamic equations if 
equivalent assumptions are made during their derivations. 

The derivation of the fundamental equations of fluid dynamics will not be 
presented here. The derivation of the equations using the phenomenological 
approach is thoroughly treated by Schlichting (1968), and the kinetic theory 
approach is described in detail by Hirschfelder et al. (1954). The fundamental 
equations given initially in this chapter were derived for a uniform, homogeneous 
fluid without mass diffusion or finite-rate chemical reactions. In order to include 
these later effects it is necessary to consider extra relations, called the species 
continuity equations, and to add terms to the energy equation to account for 
diffusion. These additional equations and terms are given in Section 5.1.5. 
Further information on reacting flows can be found in the works by Dorrance 
(1962) and Anderson (1989). 

5.1.1 Continuity Equation 
The Conservation of Mass law applied to a fluid passing through an infinitesimal, 
fixed control volume (see Fig. 5.1) yields the following equation of continuity: 

where p is the fluid density and V is the fluid velocity. The first term in this 
equation represents the rate of increase of the density in the control volume, 
and the second term represents the rate of mass flux passing out of the control 
surface (which surrounds the control volume) per unit volume. It is convenient 
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CONTROL 
SURFACE CONTROL 

VOLUME 

Figure 5.1 Control volume for Eulerian approach. 

to use the substantial derivative 

Do - + V . V ( )  - 
Dt dt 

to change Eq. (5.1) into the form 

DP 
- + p(V * v) = 0 
Dt 

(5.3) 

Equation (5.1) was derived using the Euferiun approach. In this approach, a 
fixed control volume is utilized, and the changes to the fluid are recorded as the 
fluid passes through the control volume. In the alternative Lugrangiun approach, 
the changes to the properties of a fluid element are recorded by an observer 
moving with the fluid element. The Eulerian viewpoint is commonly used in 
fluid mechanics. 

For a Cartesian coordinate system, where u , u , w  represent the x , y , z  
components of the velocity vector, Eq. (5.1) becomes 

dP d a d 
- + - ( p u )  + - ( p u )  + - ( p w )  = 0 dt d x  JY dz 

(5.4) 

Note that this equation is in conservation-law (divergence) form. 

incompressible. Mathematically, this implies that 
A flow in which the density of each fluid element remains constant is called 

- =  D p  0 
Dt 

which reduces Eq. (5.3) to 

v . v = o  
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or 
du  dv dw - + - + - = o  
d x  dy dz  

(5.7) 

for the Cartesian coordinate system. For steady air flows with speed V <  100 
m/s or M < 0.3 the assumption of incompressibility is a good approximation. 

5.1.2 Momentum Equation 

Newton’s Second Law applied to a fluid passing through an infinitesimal, fixed 
control volume yields the following momentum equation: 

d 

dt 
-(pV) + v * p w  = pf + v - nij (5.8) 

The first term in this equation represents the rate of increase of momentum 
per unit volume in the control volume. The second term represents the rate of 
momentum lost by convection (per unit volume) through the control surface. 
Note that p W  is a tensor, so that V - p W  is not a simple divergence. This term 
can be expanded, however, as 

(5.9) 

When this expression for V - p W  is substituted into Eq. (5.81, and the resulting 
equation is simplified using the continuity equation, the momentum equation 
reduces to 

v * p w  = p v -  vv  + V(V - pV) 

D V  
Dt 

p- = pf + v - nij (5.10) 

The first term on the right-hand side of Eq. (5.10) is the body force per unit 
volume. Body forces act at a distance and apply to the entire mass of the fluid. 
The most common body force is the gravitational force. In this case, the force 
per unit mass (f) equals the acceleration of gravity vector g: 

p f =  P g  (5.11) 

The second term on the right-hand side of Eq. (5.10) represents the surface 
forces per unit volume. These forces are applied by the external stresses on the 
fluid element. The stresses consist of normal stresses and shearing stresses and 
are represented by the components of the stress tensor nij. 

The momentum equation given above is quite general and is applicable 
to both continuum and noncontinuum flows. It is only when approximate 
expressions are inserted for the shear-stress tensor that Eq. (5.8) loses its 
generality. For all gases that can be treated as a continuum, and most liquids, it 
has been observed that the stress at a point is linearly dependent on the rates of 
strain (deformation) of the fluid. A fluid that behaves in this manner is called a 
Newtonian fluid. With this assumption, it is possible to derive (Schlichting, 1968) 
a general deformation law that relates the stress tensor to the pressure and 
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velocity components. In compact tensor notation, this relation becomes 

du,  d u .  d u k  n . . =  - p a . . + p  -+A +S..p'-  i , j , k = 1 , 2 , 3  (5.12) 
' I  ' I  ( dxj d x , )  ' I  dxk 

where aij is the Kronecker delta function (a i j  = 1 if i = j and Si j  = 0 if i # j ) ;  
u1,u2,u3 represent the three components of the velocity vector V; x 1 , x 2 , x 3  
represent the three components of the position vector; p is the coefficient of 
viscosity (dynamic viscosity), and p' is the second coefficient of viscosity. The 
two coefficients of viscosity are related to the coefficient of bulk viscosity K by 
the expression 

K = 5E.L + P' (5.13) 

In general, it is believed that K is negligible except in the study of the structure 
of shock waves and in the absorption and attenuation of acoustic waves. For this 
reason, we will ignore bulk viscosity for the remainder of the text. With K = 0, 
the second coefficient of viscosity becomes 

= -+P  (5.14) 

and the stress tensor may be written as 

IIij = -pa. .  + p[  ( dui + 2) - -a,.-] 2 d u ,  i ,  j , k  = 1 ,2 ,3  (5.15) 
' I  dXj 3 ' I  dxk 

The stress tensor is frequently separated in the following manner: 

nij = -pa. .  + 7 . .  
' I  ' I  (5.16) 

where T~~ represents the viscous stress tensor given by 

d U i  d U j  2 d u ,  
" ' =  ' I  ' [ (ax ,  + - d x i )  - -a,.- 3 " d x k ]  i ,  j , k  = 1,2 ,3  (5.17) 

Upon substituting Eq. (5.15) into Eq. (5.101, the famous Nuvier-Stokes 
equation is obtained: 

(5.18) DV d d U i  d U j  2 d u k  p- = p f -  vp + - p - + - - -a . .p- -  
Dt dXj [ [ dxj dxi 3 ' I  d x k ]  



254 APPLICATION OF NUMERICAL METHODS 

For a Cartesian coordinate system, Eq. (5.18) can be separated into the following 
three scalar Navier-Stokes equations: 

Du 

d 

Du 
Dt 

d 

Dw 
Dt 

(5.19) 

Utilizing Eq. (5.8), these equations can be rewritten in conservation-law 
form as 

dPU d d 

d t  dx  dY 
- + -( pU + p - T x x )  + -( pUV - T X y )  

d 

az 
+ - ( p u w  - rxz) = pf, 

d 

dz 
+ - ( p u w  - ryz) = pfy 

dpw d d 
- + -( puw - rxz) + -( pvw - ryz) 

dt d x  dY 
d 

dz  
+ -( p W 2  + p - T z z )  = pf, 

where the components of the viscous stress tensor T ~ ,  are given by 

(5.20) 
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TZZ = - p  2- - - - - 
3 ( dw dz du ax ay 7 

dw d u  
7 , , = p - + -  - ( ax a z )  - Tzx 

The Navier-Stokes equations form the basis upon which the entire science 
of viscous flow theory has been developed. Strictly speaking, the term Navier- 
Stokes equations refers to the components of the viscous momentum equation 
[Eq. (5.18)]. However, it is common practice to include the continuity equation 
and the energy equation in the set of equations referred to as the Navier-Stokes 
equations. 

If the flow is incompressible and the coefficient of viscosity ( p)  is assumed 
constant, Eq. (5.18) will reduce to the much simpler form 

DV 
Dt 

p- = p f -  v p  + p v = v  (5.21) 

It should be remembered that Eq. (5.21) is derived by assuming a constant 
viscosity, which may be a poor approximation for the nonisothermal flow of a 
liquid whose viscosity is highly temperature dependent. On the other hand, the 
viscosity of gases is only moderately temperature dependent, and Eq. (5.21) is a 
good approximation for the incompressible flow of a gas. 

5.1.3 Energy Equation 

The First Law of Thermodynamics applied to a fluid passing through an 
infinitesimal, fixed control volume yields the following energy equation: 

dEt JQ - + V * E,V = - - V * q + pf - V + V * (IIij . V )  (5.22) 
d t  dt 

where E, is the total energy per unit volume given by 

+ potential energy + -.. (5.23) 
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and e is the internal energy per unit mass. The first term on the left-hand side 
of Eq. (5.22) represents the rate of increase of E, in the control volume, while 
the second term represents the rate of total energy lost by convection (per unit 
volume) through the control surface. The first term on the right-hand side of 
Eq. (5.22) is the rate of heat produced per unit volume by external agencies, 
while the second term (V - q) is the rate of heat lost by conduction (per unit 
volume) through the control surface. Fourier's law for heat transfer by 
conduction will be assumed, so ihat the heat transfer q can be expressed as 

q = - k  VT (5.24) 

where k is the coefficient of thermal conductivity and T is the temperature. The 
third term on the right-hand side of Eq. (5.22) represents the work done on the 
control volume (per unit volume) by the body forces, while the fourth term 
represents the work done on the control volume (per unit volume) by the 
surface forces. It should be obvious that Eq. (5.22) is simply the First Law of 
Thermodynamics applied to the control volume. That is, the increase of energy 
in the system is equal to heat added to the system plus the work done on the 
system. 

For a Cartesian coordinate system, Eq. (5.22) becomes 

a 

which is in conservation-law form. Using the continuity equation, the left-hand 
side of Eq. (5.22) can be replaced by the following expression: 

(5.26) 

which is equivalent to 

(5.27) 
D ( E , / p )  De D(V2/2) 

Dt = P g t + P  Dt 

if only internal energy and kinetic energy are considered significant in Eq. 
(5.23). Forming the scalar dot product of Eq. (5.10) with the velocity vector V 
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allows one to obtain 
DV 
Dt 

p- - v =  pf  - v -  v p  . v +  (V  * Tij) * v (5.28) 

Now if Eqs. (5.26), (5.27), and (5.28) are combined and substituted into Eq. 
(5.22), a useful variation of the original energy equation is obtained: 

De d Q  
p- + p ( v  V )  = - - V q + V - (7 i j  * V )  - (V * T ~ ~ )  - V (5.29) Dt dt 

The last two terms in this equation can be combined into a single term, since 

(5.30) 

This term is customarily called the dissipation function @ and represents the rate 
at which mechanical energy is expended in the process of deformation of the 
fluid due to viscosity. After inserting the dissipation function, Eq. (5.29) becomes 

De d Q  
p- + p ( V - V ) = -  - V - q + @  Dt d t  

(5.31) 

Using the definition of enthalpy, 

(5.32) 
P h = e + -  
P 

and the continuity equation, Eq. (5.31) can be rewritten as 
Dh Dp dQ 

P D t = - + d t -  Dt 
V . q + @  (5.33) 

For a Cartesian coordinate system, the dissipation function, which is always 
positive if p' = - (2 /3 )p ,  becomes 

@ = p 2 -  [ (y2 + 2 -  (;;)z + 2 -  (;)z+(;+$)2+($+;)2 

If the flow is incompressible, and if the coefficient of thermal conductivity is 
assumed constant, Eq. (5.31) reduces to 

De d Q  

dt 
p~ = - + k V 2 T +  Q, (5.35) 

5.1.4 Equation of State 
In order to close the system of fluid dynamic equations it is necessary to 
establish relations between the thermodynamic variables ( p ,  p, T, e, h)  as well as 
to relate the transport properties ( p, k )  to the thermodynamic variables. For 
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example, consider a compressible flow without external heat addition or body 
forces and use Eq. (5.4) for the continuity equation, Eqs. (5.19) for the three 
momentum equations, and Eq. (5.25) for the energy equation. These five scalar 
equations contain seven unknowns p ,  p ,  e ,  T ,  u, u, w, provided that the transport 
coefficients p, k can be related to the thermodynamic properties in the list of 
unknowns. It is obvious that two additional equations are required to close the 
system. These two additional equations can be obtained by determining relations 
that exist between the thermodynamic variables. Relations of this type are 
known as equations of state. According to the stateprinciple of thermodynamics, 
the local thermodynamic state is fixed by any two independent thermodynamic 
variables, provided that the chemical composition of the fluid is not changing 
owing to diffusion or finite-rate chemical reactions. Thus for the present 
example, if we choose e and p as the two independent variables, then equations 
of state of the form 

p = p ( e ,  p )  T = T ( e ,  p )  (5.36) 
are required. 

For most problems in gas dynamics, it is possible to assume a petfectgus. A 
perfect gas is defined as a gas whose intermolecular forces are negligible. A 
perfect gas obeys the perfect gas equation of state, 

p = pRT (5.37) 

where R is the gas constant. The intermolecular forces become important under 
conditions of high pressure and relatively low temperature. For these conditions, 
the gas no longer obeys the perfect gas equation of state, and an alternative 
equation of state must be used. An example is the Van der Waals equation of 
state, 

where u and b are constants for each type of gas. 
For problems involving a perfect gas at relatively low temperatures, it is 

possible to also assume a culoricully petfect gas. A calorically perfect gas is 
defined as a perfect gas with constant specific heats. In a calorically perfect gas, 
the specific heat at constant volume c,, the specific heat at constant pressure cp ,  
and the ratio of specific heats y all remain constant, and the following relations 
exist: 

R - YR 
cp - - cP 

c ,  Y - 1  Y - 1  
e = c , T  h = c , T  y = -  c , = -  

For air at standard conditions, R = 287 m2/(s2 K) and y = 1.4. If we assume 
that the fluid in our example is a calorically perfect gas, then Eqs. (5.36) become 

( y -  l > e  
p = ( y - l ) p e  T =  R (5.38) 
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For fluids that cannot be considered calorically perfect, the required state 
relations can be found in the form of tables, charts, or curve fits. 

The coefficients of viscosity and thermal conductivity can be related to the 
thermodynamic variables using kinetic theory. For example, Sutherland’s 
formulas for viscosity and thermal conductivity are given by 

i!+ i!+ 
p = el- k = C , -  

T + C, T + C,  

where C,-C, are constants for a given gas. For air at moderate temperatures, 
C ,  = 1.458 x kg/(m s a), C ,  = 110.4 K, C ,  = 2.495 X lo-, (kg m)/(s3Kt), 
and C,  = 194 K. The Prandtl number 

cP p Pr = - 
k 

is often used to determine the coefficient of thermal conductivity k once p is 
known. This is possible because the ratio (c,/Pr), which appears in the expression 

is approximately constant for most gases. For air at standard conditions, Pr = 

0.72. 

5.1.5 Chemically Reacting Flows 

The assumption of a calorically perfect gas is valid if the intermolecular forces 
are negligible and the temperature is relatively low. The equations governing a 
calorically perfect gas are given in the previous section. As the temperature of 
the gas increases to higher values, the gas can no longer be considered 
calorically perfect. At first, the vibrational energy of the molecules becomes 
excited and the specific heats cp and c,  are no longer constant but are functions 
of temperature. For air, this occurs at temperatures above 800 K, where the air 
first becomes themallyperfect. By definition, a thermally perfect gas is a perfect 
gas whose specific heats are functions only of temperature. As the temperature 
of the gas is increased further, chemical reactions begin to take place, and the 
gas is no longer thermally perfect. For air at sea level pressure, the dissociation 
of molecular oxygen (0, -+ 20)  starts at about 2000 K, and the molecular 
oxygen is totally dissociated at about 4000 K. The dissociation of molecular 
nitrogen (N, + 2N) then begins, and total dissociation occurs at about 9000 K. 
Above 9000 K, ionization of the air takes place (N + N + +  e -  and 0 + O++ 
e-1, and the gas becomes a partially ionized plasma (Anderson, 1989). 

For most chemically reacting gases, it is possible to assume that the 
intermolecular forces are negligible, and hence each individual species obeys the 
perfect gas equation of state. In addition, each individual species can be 
assumed to be thermally perfect. In this case, the gas is a chemically reacting 
mixture of thermally perfect gases, and this assumption will be employed for the 
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remainder of this section. The equation of state for a mixture of perfect gases 
can be written as 

9 
A 

p = p - T  (5.39) 

where 9 is the universal gas constant [8314.34 J/(kg mol K)] and A is the 
molecular weight of the mixture of gases. The molecular weight of the mixture 
can be calculated using 

where ci is the mass fraction of species i and 4. is the molecular weight of each 
species. 

The species mass fractions in a reacting mixture of gases are determined by 
solving the species continuity equations, which are given by 

- + v - [ p i ( v + U i ) ] = h i  d Pi i = 1 , 2 ,  . . . , n  
d t  

(5.40) 

where pi is the species density, Ui is the species diffusion velocity, and hi is the 
rate of production of species i due to chemical reactions. The species mass 
fraction is related to the species density by 

Ci = P i / P  

If pi is replaced with p c i  and the global continuity equation, Eq. (5.0, is 
employed, the species continuity equation can be rewritten as 

p - + V . V c i  + V . ( p i U i ) = h i  i = 1 , 2  ,..., FI (5.41) ( 2  1 
The mass flux of species i( piUi) due to diffusion can be approximated for 

most applications using Fick‘s law: 
piui = - p q m  v c i  

where gim is the multicomponent diffusion coefficient for each species. The 
multicomponent diffusion coefficient is often replaced with a binary diffusion 
coefficient for mixtures of gases like air. The binary diffusion coefficient is 
assumed to be the same for all species in the mixture. 

The rate of production of each species hi is evaluated by using an 
appropriate chemistry model to simulate the reacting mixture. A chemistry 
model consists of m reactions, n species, and n, reactants and can be symbolic- 
ally represented as 

n, “ t  

C u ; , ~ A ~  + C 
where u ; , ~  and are the stoichiometric coefficients and Ai is the chemical 
symbol of the ith reactant. For example, a widely used chemistry model for air is 

I = 1,2  ,..., m 
i =  1 i = l  



GOVERNING EQUATIONS OF FLUID MECHANICS AND HEAT TRANSFER 261 

due to Blottner et al. (1971) and consists of molecular oxygen (02), atomic 
oxygen (O), molecular nitrogen (N,), nitric oxide (NO), nitric oxide ion (NO’), 
atomic nitrogen (N), and electrons ( e - ) ,  which are reacting according to the 
chemical reactions 

0, + M, * 2 0  + M, 
N, + M, @ 2N + M, 

N, + N p 2N + N 
NO + M, S N + 0 + M, 

NO + 0 $0, + N 
N, + 0 p NO + N 
N + 0 N O f + e -  

where M,, M,, and M, are catalytic third bodies. This chemistry model involves 
7 reactions (m = 7), 6 species ( n  = 6) excluding electrons, and 10 reactants 
( n ,  = lo), which include species, electrons, and catalytic third bodies. 

Once the chemistry model is specified, the rate of production of species i 
can be computed using the Law of Mass Action (Vincenti and Kruger, 1965): 

where Kr, and Kb, are the forward and backward reaction rates for the lth 
reaction and yj is the mole-mass ratios of the reactants, defined by 

cj/+ j = 1,2, ..., n 

y j = [  C Z j - J i  n j = n + 1 , n  + 2 ,..., 12, 
i =  1 

where Zj-, , ,  are the third-body efficiencies. The forward and backward reaction 
rates are functions of temperature and can be expressed in the modified 
Arrhenius form as 

K2 Kf, = exp (In K ,  + - + K, In T 
T 

For the present air chemistry model, the constants for each reaction ( K l ,  K,, 
K,, K,, K,, K,) and the third-body efficiencies (Zj-,J are given by Blottner 
et al. (1971). 

A chemically reacting mixture of gases can be classified as being frozen, in 
equilibn’um, or in nonequilibrium, depending on the reaction rates. If the 
reaction rates are essentially zero, the mixture is said to be frozen, and the rate 
of production of species i (h i )  is zero. If the reaction rates approach infinity, the 
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mixture is said to be in chemical equilibrium. If the reaction rates are finite, the 
mixture is in chemical nonequilibrium, and Eq. (5.42) can be used to find hi. At 
high velocities and rarefield conditions, the mixture of gases may also be in 
thermal nonequilibrium. In this case, the translational, rotational, vibrational, and 
electronic modes of the thermal energy are not in equilibrium. As a consequence, 
the modeling of the chemistry will require a multitemperature approach as 
opposed to the usual single-temperature formulation. For the present discussion, 
the mixture will be assumed to be in thermal equilibrium. See Anderson (1989), 
Park (1990), and Vincenti and Kruger (1965) for information on flows in thermal 
nonequilibrium. 

The thermodynamic properties for a reacting mixture in chemical non- 
equilibrium are functions of both temperature and the mass fractions. For 
example, the enthalpy and internal energy of the mixture can be expressed as 

h = h(T,c1,c2,...,~,) 
e = e ( T , c , ,  cz,. . . , c,) 

If the mixture is in chemical equilibrium, the thermodynamic properties are a 
unique function of any two thermodynamic variables, such as temperature and 
pressure. In this case, h and e can be expressed as 

h = h ( T , p )  
e = e ( T , p )  

Computer programs are available (i.e., Gordon and McBride, 1971) that 
can be used to compute the composition and thermodynamic properties of 
equilibrium mixtures of gases. Also available are computer programs that obtain 
properties by interpolating values from tables of equilibrium data or by using 
simplified curve fits of the data. Included in the latter approach are the curve 
fits of Srinivasan et al. (1987) for the thermodynamic properties of equilibrium 
air. These curve fits include correlations for p(e ,  p),  a(e, p) ,  T(e ,  p),  s(e,  p),  
h(p ,  p),  T ( p ,  p) ,  p ( p ,  s), e ( p ,  s), and a ( p ,  s). The curve fits are based on the 
data from the NASA RGAS (Real GAS) program (Bailey, 1967) and are valid 
for temperatures up to 25,000 K and densities from lo-' to lo3 amagats ( p/po).  
In addition, Srinivasan and Tannehill(1987) have developed simplified curve fits 
for the transport properties of equilibrium air. These curve fits include 
correlations for p(e ,  p )  k(e,  p),  p ( T ,  p),  and Pr ( T ,  p).  The curve fits are based 
on the data of Peng and Pindroh (1962) and are valid for temperatures up to 
15,000 K and densities from lop5 to lo3 amagats. 

The thermodynamic properties for a reacting mixture in chemical nonequil- 
ibrium can be determined once the mass fractions of each species are known. If 
each species is assumed to be thermally perfect, the species enthalpy and 
specific heat at constant pressure are given by 

hi = C1,,T + hp 

where hp is the enthalpy of formation for species i .  The coefficients Cl,i and 
Cz,i are functions of temperature and can be interpolated from the tabulated 
data of Blottner et al. (1971) or McBride et al. (1963). The mixture enthalpy and 

c p ,  = cz,; 
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frozen specific heat at constant pressure are then given by 
n 

h = C c i h i  
i =  1 
n 

cpf = C Cicp, 
i =  1 

The transport properties for a chemically reacting mixture can be determined 
in a similar manner. The viscosity for each species is given by Svehla (1962) in 
the form of curve fits. Using the viscosity for each species, the species thermal 
conductivity can be evaluated using Eucken’s semi-empirical formula (Prabhu 
et al., 1987a, 198%). The mixture viscosity and thermal conductivity can then be 
determined using Wilke’s mixing rule (Wilke, 1950). Further details on these 
methods can be found in the works by Prabhu et al. (1987a, 198%) and Buelow 
et al. (1991). 

For chemically reacting flows, it is also necessary to modify the energy 
equation to include the effect of mass diffusion. This effect is accounted for by 
adding the following component to the heat flux vector q: 

n 

P C cihiui 
i =  1 

where Ui is the diffusion velocity for each species. 

5.1.6 Vector Form of Equations 
Before applying a numerical algorithm to the governing fluid dynamic equations, 
it is often convenient to combine the equations into a compact vector form. For 
example, the compressible Navier-Stokes equations in Cartesian coordinates 
without body forces, mass diffusion, finite-rate chemical reactions, or external 
heat addition can be written as 

dU dE dF dG 
- + - + - + - =  0 (5.43) 
d t  dx  dy  dz 

where U, E, F, and G are vectors given by 

P U  

P U 2  + P  
puv - 

puw - 
- urxx - 
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G =  

(5.44) 

- 
PW 

PUW - 7 x 2  

PVW - r y z  

( E ,  + p > w  - urx2 - v7y2 - wr2, + q2 
PW2 + P  - 722 

- - 

5.1.7 Nondimensional Form of Equations 
The governing fluid dynamic equations are often put into nondimensional form. 
The advantage in doing this is that the characteristic parameters such as Mach 
number, Reynolds number, and Prandtl number can be varied independently. 
Also, by nondimensionalizing the equations, the flow variables are “normalized,” 
so that their values fall between certain prescribed limits such as 0 and 1. Many 
different nondimensionalizing procedures are possible. An example of one such 
procedure is 

where the nondimensional variables are denoted by an asterisk, free stream 
conditions are denoted by m, and L is the reference length used in the Reynolds 
number: 

P,KL 
Re, = - 

I-b, 
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u* = 

E* = 

If this nondimensionalizing procedure is applied to the compressible Navier- 
Stokes equations given previously by Eqs. (5.43) and (5.44), the following 

- 
P* -. 

p* u* 
p*v* 

p* w* 

- ET ~ 

- 
p* u* 

p * u * 2  + p *  - * 
p*u*u* - rx*, 

p*u* w* - rx*, 

(E;" + p* )u* - u*rx*, - u*r$ - w*rx*, + q,* 

r x x  

L 

G* = 

and 

p*u* 
p*u*u* - rx*, 

p*u*2 + p* - r; 
p*u*w* - r,*z 

(ET + p* )u* - u*rx*, - u*r; - w*ry*, + q,* 

p* w* 

p*u*w* - r,*, 

p*u*w* - ry*, 

p*w*2  + p *  - r; 
(ET + p* )w* - u*r$ - u*r,*z - w*7,, + 4 

(5.45) 

(5.46) 

u*2 + u*2 + w * 2  
EF = p* e* + i 2 

The components of the shear-stress tensor and the heat flux vector in nondi- 
mensional form are given by 

r,*, = - 
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2/L* ( dW* dU* dU*) 
rz = - 

3Re, dz* dx* dy* 

dU* dW* 

Re, dz* dx* 
.x*, = - P * (  - +-) 

P* dT* 

P* dT* 

P* dT* 

4: = - 
(y - 1)M2 Re, Pr dx* 

‘: = - ( y  - 1)M2 Re, Pr dy* 

( y  - 1)M: Re, Pr dz* 
4T = - 

where M, is the free stream Mach number, 

(5.47) 

and the perfect gas equations of state [Eqs. (5.3811 become 
p* = (y - l)p*e* 

Note that the nondimensional forms of the equations given by Eqs. (5.45) and 
(5.46) are identical (except for the asterisks) to the dimensional forms given by 
Eqs. (5.43) and (5.44). For convenience, the asterisks can be dropped from the 
nondimensional equations, and this is usually done. 

5.1.8 Orthogonal Curvilinear Coordinates 
The basic equations of fluid dynamics are valid for any coordinate system. We 
have previously expressed these equations in terms of a Cartesian coordinate 
system. For many applications it is more convenient to use a different orthogonal 
coordinate system. Let us define xl, x2, x3 to be a set of generalized orthogonal 
curvilinear coordinates whose origin is at point P and let i , , i 2 , i 3  be the 
corresponding unit vectors (see Fig. 5.2). The rectangular Cartesian coordinates 
are related to the generalized curvilinear coordinates by 

(5.48) 
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J 
X 

Figure 5.2 Orthogonal curvilinear coordinate system. 

so that if the Jacobian 
d ( x ,  y ,  z) 

d ( x l ,  x 2 ,  x3) 

is nonzero, then 
x1 = x , ( x ,  y ,  z) 

x2 = X , ( X ,  y ,  2) 

x3 = x 3 ( x ,  y ,  z) 

(5.49) 

The elemental arc length ds in Cartesian coordinates is obtained from 

( d d 2  = (W2 + ( d y l 2  + (5.50) 

If Eq. (5.48) is differentiated and substituted into Eq. (5.501, the following result 
is obtained: 

( d d 2  = ( h ,  dr,Y + (h2  + (h3  A3l2 (5.51) 
where 
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If 4 is an arbitrary scalar and A is an arbitrary vector, the expressions for the 
gradient, divergence, curl, and Laplacian operator in the generalized curvilinear 
coordinates become 

(5.52) 

(5.55) 

The expression V - VV, which is contained in the momentum equation term 
DV/Dt, can be evaluated as 

h,  dx, h,  d x ,  h ,  d x ,  

u, d u2 d - - + - - + - - (u , i ,  + u,i, + u3i,)  

where u1,u2,u3 are the velocity components in the x1,x2,x3 coordinate 
directions. After taking into account the fact that the unit vectors are functions 
of the coordinates, the final expanded form becomes 

u, du, u2 du, u3 du ,  ulu2 dh, - -+- -+--+--  
h,  dx, h,  ax, h ,  ax, h,h2 a x ,  

hih3 dx3 h,h2 dx ,  h,h3 dx ,  

~ 1 ~ 3  dh, U: ah, + - - - - - - - - 

u, du, u2 du, u3 du, u: dh, - -+- -+ 
h ,  d x ,  h,  dx, h ,  dx, h,h, dx, 

h,h, a x ,  h2h3 dx3 h2h3 dx2 
+--+ ----- 

u, du, u, du, u, du3 u: ah, - -+ - -+  ----- 
hi ~ X I  h ,  dx, h3 dx3 h1h3 3x3 

U; dh2 U , U ~  ah3 ~ 2 ~ 3  dh, 

ulu2 dh, u2u3 dh, 

+-- + --)i3 
h2h3 dx, h1h3 d x ,  h2h3 ax, 
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The components of the stress tensor given by Eq. (5.15) can be expressed in 
terms of the generalized curvilinear coordinates as 

where the expressions for the strains are 

1 du ,  u, dh, u, ah, +--+-- 
hi dx, hih, d ~ 2  h1h3 3x3 exlx, = - - 

1 du, u, dh, u1 dh, +--++- 
h,  dx, h,h, dx, h,h, dx, ex,xz = - - 

1 du, u1 dh, u2 ah, 
- - -- +-- + 

ex3x3 h ,  dx, h,h, dx, h,h,dx, 
(5.57) 

The components of V - ITij are 



T = Izi 1 = 'x 

M=E~ 

n = zn 
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( a )  CYLINDRICAL COORDINATES (I-, 8.  2 )  c 
( b )  SPHERICAL COORDINATES 

BODY 

-- 

2-D OR AXISYMMETRIC BODY I N T R I N S I C  COORDINATES ( E  

Figure 5.3 Curvilinear coordinate systems. (a) Cylindrical coordinates ( r ,  0 , ~ ) ;  (b) spherical 
coordinates ( r ,  0,+); (c) 2-D or axisymmetric body intrinsic coordinates ( 6 ,  g, 9). 
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5.2 AVERAGED EQUATIONS FOR TURBULENT FLOWS 
5.2.1 Background 
For more than 60 years it has been recognized that our understanding of 
turbulent flows is incomplete. A quotation attributed to Sir Horace Lamb in 
1932 might still be appropriate: “I am an old man now, and when I die and go to 
Heaven there are two matters on which I hope for enlightenment. One is 
quantum electrodynamics and the other is the turbulent motion of fluids. And 
about the former I am rather optimistic.” 

According to Hinze (1973, “Turbulent fluid motion is an irregular condition 
of flow in which the various quantities show a random variation with time and 
space coordinates so that statistically distinct average values can be discerned.” 

We are all familiar with some of the differences between laminar and 
turbulent flows. Usually, higher values of friction drag and pressure drop are 
associated with turbulent flows. The diffusion rate of a scalar quantity is usually 
greater in a turbulent flow than in a laminar flow (increased “mixing”), and 
turbulent flows are usually noisier. A turbulent boundary layer can normally 
negotiate a more extensive region of unfavorable pressure gradient prior to 
separation than can a laminar boundary layer. Users of dimpled golf balls are 
well aware of this. 

The unsteady Navier-Stokes equations are generally considered to govern 
turbulent flows in the continuum regime. If this is the case, then we might 
wonder why turbulent flows cannot be solved numerically as easily as laminar 
flows. Perhaps the wind tunnels can be dismantled once and for all. This is 
indeed a possibility, but it is not likely to happen very soon. To resolve a 
turbulent flow by direct numerical simulation (DNS) requires that all relevant 
length scales be resolved from the smallest eddies to scales on the order of the 
physical dimensions of the problem domain. The computation needs to be 3-D 
even if the time-mean aspects of the flow are 2-D, and the time steps must be 
small enough that the small-scale motion can be resolved in a time-accurate 
manner even if the flow is steady in a time-mean sense. Such requirements place 
great demands on computer resources, to the extent that only relatively simple 
flows at low Reynolds numbers can be computed directly with present-day 
machines. 

The computations of Kim et al. (1987) provide an example of required 
resources. They computed a nominally fully developed incompressible channel 
flow at a Reynolds number based on channel height of about 6000 using grids of 
2 and 4 million points. For the finer grid, 250 hours of Cray XMP time were 
required. For channel flow the number of grid points needed can be estimated 
from the expression (Wilcox, 1993) 

NDNs = (0.088 Re, )9’4 

where Re, is the Reynolds number based on the mean channel velocity and 
channel height. Turbulent wall shear flows that have been successfully simulated 
directly include planar and square channel flows, flow over a rearward facing 
step, and flow over a flat plate. Much useful information has been gained from 
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such simulations, since many of the statistical quantities of interest cannot be 
measured experimentally, but can be evaluated from the simulations. Recently. 
simulations have been extended to include compressible and transitional flows. 

Another promising approach is known as large-eddy simulation (LES). in 
which the large-scale structure of the turbulent flow is computed directly and 
only the effects of the smallest (subgrid-scale) and more nearly isotropic eddies 
are modeled. This is accomplished by “filtering” the Navier-Stokes equations to 
obtain a set of equations that govern the “resolved” flow. This filtering, to be 
defined below, is a type of space averaging of the flow variables over regions 
approximately the size of the computational control volume (cell). The 
computational effort required for LES is less than that of DNS by approximately 
a factor of 10 using present-day methods. Clearly, with present-day computers, it 
is not possible to simulate directly or on a large-eddy basis most of the turbulent 
flows arising in engineering applications. However, the frontier is advancing 
relentlessly as computer hardware and algorithms improve. With each advance 
in computer capability, it becomes possible to apply DNS and LES to more and 
more flows of increasing complexity. Sometime during the twenty-first century it 
is highly likely that DNS and LES will replace the more approximate modeling 
methods currently used as the primary design procedure for engineering 
applications. 

The main thrust of present-day research in computational fluid mechanics 
and heat transfer in turbulent flows is through the time-averaged Navier-Stokes 
equations. These equations are also referred to as the Reynolds equations of 
motion or the Reynolds averaged Navier-Stokes (RANS) equations. Time 
averaging the equations of motion gives rise to new terms, which can be 
interpreted as “apparent” stress gradients and heat flux quantities associated 
with the turbulent motion. These new quantities must be related to the mean 
flow variables through turbulence models. This process introduces further 
assumptions and approximations. Thus this attack on the turbulent flow problem 
through solving the Reynolds equations of motion does not follow entirely from 
first principles, since additional assumptions must be made to “close” the system 
of equations. 

The Reynolds equations are derived by decomposing the dependent variables 
in the conservation equations into time-mean (obtained over an appropriate 
time interval) and fluctuating components and then time averaging the entire 
equation, Two types of averaging are presently used, the classical Reynolds 
averaging and the mass-weighted averaging suggested by Favre (1965). For flows 
in which density fluctuations can be neglected, the two formulations become 
identical. 

5.2.2 Reynolds Averaged Navier-Stokes Equations 
In the conventional averaging procedure, following Reynolds, we define a 
time-averaged quantity f as 

(5.60) 
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We require that A t  be large compared to the period of the random 
fluctuations associated with the turbulence, but small with respect to the time 
constant for any slow variations in the flow field associated with ordinary 
unsteady flows. The At  is sometimes indicated to approach infinity as a limit, 
but this should be interpreted as being relative to the characteristic fluctuation 
period of the turbulence. For practical measurements, A t  must be finite. 

In the conventional Reynolds decomposition, the randomly changing flow 
variables are replaced by time averages plus fluctuations (see Fig. 5.4) about the 
average. For a Cartesian coordinate system, we may write 

u = U + u ’  u = V + u ’  w = i i + w ’  p = P + p ’  
(5.61) 

p = p + p ’  h = L + h ‘  T = T + T ’  H = H + H ’  

where total enthalpy H is defined by H = h + uiu,/2.  Fluctuations in other 
fluid properties such as viscosity, thermal conductivity, and specific heat are 
usually small and will be neglected here. 

By definition, the time average of a fluctuating quantity is zero: 

(5.62) 

It should be clear from these definitions that for symbolic flow variables f and 
g, the following relations hold: 

- 
fg’ = 0 z=J% f + g = f + g  (5.63) 

It should also be clear that, whereas T= 0, the time average of the product of 
two fluctuating quantities is, in general, not equal to zero, i.e., V Z  0. In fact, 
the root mean square of the velocity fluctuations is known as the turbulence 
intensity. 

U U 

U 

t 
t t 

( a )  STEADY FLOW (b)  UNSTEADY FLOW 

Figure 5.4 Relation between u, ii, and u’. (a) Steady flow. (b) Unsteady flow. 
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For treatment of compressible flows and mixtures of gases in particular, 
mass-weighted averaging is convenient. In this approach we define mass-averaged 
variables according to f =  X/p. This gives 

- - - - 
- P U  - P V  - P W  - *  - P T  - P H  

- 

H =  - - T =  - - u = -  u = -  w = -  h = -  - - - - 
P P P P P P 

(5.64) 

We note that only the velocity components and thermal variables are mass 
averaged. Fluid properties such as density and pressure are treated as before. 

To substitute into the conservation equations, we define new fluctuating 
quantities by 

u = fi + U” v = 5 + v” w = $ + w “  h = h + ) f  T = f + T ”  

H = H + H“ (5.65) 
It is very important to note that the time averages of the doubly primed 
fluctuating quantities V,7, etc.) are not equal to zero, in general, unless 
p’ = 0. In fact, it can be shown that Z= - - /p ,  ?= - p u  / p ,  etc. Instead, 
the time average of the doubly primed fluctuation multiplied by the density is 
equal to zero: 

f l = O  (5.66) 

The above identity can be established by expanding Z= p ( f +  f”) and using 
the definition of f: 

n- 

5.2.3 Reynolds Form of the Continuity Equation 

Starting with the continuity equation in the Cartesian coordinate system as given 
by Eq. (5.41, we first decompose the variables into the conventional time-averaged 
variables plus fluctuating components as given by Eqs. (5.61). 

The entire equation is then time averaged, yielding in summation notation 
0 0 

d-  
ap + g + - ( P E j >  + - ( p ’  j )  + - ( p  I) + - ( p ’ u ’ . )  = o  d t  dXj - dXj + : j f O  dXj ’ 

(5.67) 

Three of the terms are identically zero as indicated because of the identity given 
by Eq. (5.62). Finally, the Reynolds form of the continuity equation in conven- 
tionally averaged variables can be written 

a p  d 

d t  dXj 
- + - (p i j  + %) = 0 (5.68) 

Substituting the mass-weighted averaged variables plus the doubly primed 
fluctuations given by Eqs. (5.65) into Eq. (5.4) and time averaging the entire 
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equation gives 
0 

(5.69) 

Two of the terms in Eq. (5.69) are obviously identically zero as indicated. In 
addition, the last two terms can be combined, i.e., 

which is equal to zero by Eq. (5.66). This permits the continuity equation in 
mass-weighted variables to be written as 

d p  d 

d t  axj 
- + -( pij) = 0 (5.70) 

We note that Eq. (5.70) is more compact in form than Eq. (5.68). For 
incompressible flows, p’ = 0, and the differences between the conventional and 
mass-weighted variables vanish, so that the continuity equation can be written as 

d E j  

d X j  
= o  - (5.71) 

5.2.4 Reynolds Form of the Momentum Equations 
The development of the Reynolds form of the momentum equations proceeds 
most easily when we start with the Navier-Stokes momentum equations in 
divergence or conservation-law form as in Eq. (5.20). Working first with the 
conventionally averaged variables, we replace the dependent variables in Eq. 
(5.20) with the time averages plus fluctuations according to Eq. (5.61). As an 
example, the resulting x component of Eq. (5.201, after neglecting body forces, 
becomes 

d 

d.2 
+ -[( 3 + p’ ) (s  + U ’ ) ( w  + W ’ )  - T,,] = 0 

Next, the entire equation is time averaged. Terms that are linear in 
fluctuating quantities become zero when time averaged, as they did in the 
continuity equation. Several terms disappear in this manner, while others can be 
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grouped together and found to be zero through use of the continuity equation. 
The resulting Reynolds x-momentum equation can be written as 

-n d d 

d t  d X  
-( pu + n) + -( puu + up u ) 

d d + -( puv+ u g >  + -( piiw + $2) 

- -- - u p u  p u u  -pi? 

dY dz 

du ----- 
d x  a x  

- 

d 

dz 
(5.72) 

The complete Reynolds momentum equations (all three components) can be 
written 

d d 
-( pui + a) + -( puiuj + Ei%) 

- - -- + -(Yij - u.p‘u: 1 - *T ‘ I  - p’ulu’.) ‘ I  

d t  d X j  

dj3 d 

axi  ax, 
(5.73) 

where 

+ - - -a,.- 
3 l1 dx,  

(5.74) 

To develop the Reynolds momentum equation in mass-weighted variables, 
we again start with Eq. (5.20) but use the decomposition indicated by Eq. (5.65) 
to represent the instantaneous variables. As an example, the resulting x 
component of Eq. (5.20) becomes 

d d 
-[( p + p’Nfi  + u”)] + -“( 
d t  d X  

+ p’)(fi + u”)(fi + u”)  + ( F  + p ’ )  - r,,] 

d 

dz 
+ -[( p + p’)(fi  -k U f ’ ) ( 6  + W ” )  - T,,] = 0 (5.75) 

Next, the entire equation is time averaged, and the identity given by Eq. (5.66) is 
used to eliminate terms. The complete Reynolds momentum equation in mass- 
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weighted variables becomes 

d d d j i  d 

d t  dx; dXi dx; ' I  
-( p f i i )  + -( 36.6.) = - - + -(?.. - P U ~ U ; )  (5.76) 

where, neglecting viscosity fluctuations, Ti; becomes 

+ - - -&.- (5.77) 
3 ' I  a x ,  

The momentum equation, Eq. (5.76), in mass-weighted variables is simpler 
in form than the corresponding equation using conventional variables. We note, 
however, that even when viscosity fluctuations are neglected, Fi, is more 
complex in Eq. (5.77) than the 7,; that appeared in the conventionally averaged 
equation [Eq. (5.7411. In practice, the viscous terms involving the doubly primed 
fluctuations are expected to be small and are likely candidates for being 
neglected on the basis of order of magnitude arguments. 

For incompressible flows the momentum equation can be written in the 
simpler form 

d d ap d 
-( p ~ , )  + -( pii ...) = - - + -(Yi, - p L L )  (5.78) 
d t  ax; ' I dx, dx; 

where Ti ,  takes on the reduced form 

(5.79) 

As we noted in connection with the continuity equation, there is no 
difference between the mass-weighted and conventional variables for incom- 
pressible flow. 

5.2.5 Reynolds Form of the Energy Equation 
The thermal variables H, h, and T are all related, and the energy equation 
takes on different forms, depending upon which one is chosen to be the 
transported thermal variable. To develop one common form, we start with the 
energy equation as given by Eq. (5.22). The generation term, d Q / d t ,  will be 
neglected. Assuming that the total energy is composed only of internal energy 
and kinetic energy, and replacing E, by p H  - p ,  we can write Eq. (5.22) in 
summation notation as 

d d dP 
-( PHI + -( pu;H + 4. - u . T . . )  = - 

d t  d t  dX; I 1  1J 
(5.80) 

To obtain the Reynolds energy equation in conventionally averaged variables, 
we replace the dependent variables in Eq. (5.80) with the decomposition 
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indicated by Eq. (5.61). After time averaging, the equation becomes 

(5.81) 

It is frequently desirable to utilize static temperature as a dependent 
variable in the energy equation. We will let h = cpT and write Eq. (5.33) in 
conservative form to provide a convenient starting point for the development of 
the Reynolds averaged form: 

dP 
at I dx j  + u.- + @ (5.82) 

The dissipation function @ [see Eq. (5.34)] can be written in terms of the 
velocity components using summation convention as 

@ =  7..- dui  = p  [ - -  ( - ;z:)2 + ;( 2 + 2)2] (5.83) 
l' axj  

The variables in Eq. (5.83) are then replaced with the decomposition indicated 
by Eq. (5.60, and the resulting equation is time averaged. After eliminating 
terms known to be zero, the Reynolds energy equation in terms of temperature 
becomes 

d d 
- ( cp pT + C P T )  + - ( p c p R i j  + C p T & )  
d t  dXj  

@ dPf + E.- + uI.- @ = -  
d t  ' a x ,  ' d x ,  

where 

(5 .85)  

The Yij  in Eq. (5.85) should be evaluated as indicated by Eq. (5.74). 
To develop the Reynolds form of the energy equation in mass-weighted 

variables, we replace the dependent variables in Eq. (5.80) with the 
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decomposition indicated by Eq. (5.65) and time average the entire equation. The 
result can be written 

d 

d t  
pfijk + puYH" - 

(5.86) 

where Yi, can be evaluated as given by Eq. (5.77) in terms of mass-weighted 
variables. 

In terms of static temperature, the Reynolds energy equation in mass- 
weighted variables becomes 

-( d p c p q  + -( d pc,Fii,) - = - JF + 6 . -  dF + Ul- dP 
d t  d X ,  d t  ' d x ;  ' dx, 

where 
- d U i  d i i i  d u; @ = 7..- = ?..- + 7..- 

'1 dx, " dx, l1  d X j  
( 5  .88) 

For incompressible flows the energy equation can be written in terms of 
total enthalpy as 

- 
p u j H  + ~7 - k -  

d t  ax, 

and in terms of static temperature as 

d d dF JF dP' 
d t  d t  ' ax, ' ax, 
-(pc,T) + ..,( pcp7ii,) = - + E.- + u'.- 

dx  . 

where $ is reduced slightly in complexity owing to the vanishing of the 
volumetric dilatation term in Yij  for incompressible flow. 

5.2.6 Comments on the Reynolds Equations 
At first glance, the Reynolds equations are likely to appear quite complex, and 
we are tempted to question whether or not we have made any progress toward 
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solving practical problems in turbulent flow. Certainly, a major problem in fluid 
mechanics is that more equations can be written than can be solved. Fortunately, 
for many important flows, the Reynolds equations can be simplified. Before we 
turn to the task of simplifymg the equations, let us examine the Reynolds 
equations further. 

We will consider an incompressible turbulent flow first and interpret the 
Reynolds momentum equation in the form of Eq. (5.78). The equation governs 
the time-mean motion of the fluid, and we recognize some familiar momentum 
flux and laminar-like stress terms plus some new terms involving fluctuations 
that must represent apparent turbulent stresses. These apparent turbulent 
stresses originated in the momentum flux terms of the Navier-Stokes equations. 
To put this another way, the equations of mean motion relate the particle 
acceleration to stress gradients, and since we know how acceleration for the 
time-mean motion is expressed, anything new in these equations must be 
apparent stress gradients due to the turbulent motion. To illustrate, we will 
utilize the continuity equation to arrange Eq. (5.78) in a form in which the 
particle (substantial) derivative appears on the left-hand side, 

Mean pressure Laminar-lke Apparent stress 
gradient stress gradients gradients due to 

Particle 
acceleration 

of mean motion for the mean motion transport of 
momentum by 

turbulent fluctuations 

where (7ij)lam is the same as Eq. (5.79) and has the same form in terms of the 
time-mean velocities as the stress tensor for a laminar incompressible flow. The 
apparent turbulent stresses can be written as 

(5.92) 

These apparent stresses are commonly called the Reynolds stresses. 
For compressible turbulent flow, labeling the terms according to the 

acceleration of the mean motion and apparent stresses becomes more of a 
challenge. Using conventional averaging procedures, the presence of terms like 
p ui can result in the flux of momentum across mean flow streamlines, frustrating 
our attempts to categorize terms. The use of mass-weighted averaging eliminates 
the f l  terms and provides a compact expression for the particle acceleration 
but complicates the separation of stresses into purely laminar-like and apparent 
turbulent categories. When conventionally averaged variables are used, the 
fluctuating components of Ti j  vanish when the equations are time averaged. 
They do not vanish, however, when mass-weighted averaging is used. To illustrate, 
we will arrange Eq. (5.76) (using the continuity equation) in a form that utilizes 

7 
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the substantial derivative and label the terms as follows: 

di j  d(7ij)lam d(7ij)turb + -- 
Dfii 

dx, + d X j  dXj 
ij,, = - -  - - 
Particle Mean Laminar-like Apparent stress gradients 

for the mean momentum by turbulent 

attributed to fluctuations 

pressure stress gradients due to transport of acceleration 
Of mean motion gradient 

motion fluctuations and deformations 

(5.93u) 

The form of Eq. (5.93~) is identical to that of Eq. (5.91) except that G i  replaces 
the 6, used in Eq. (5.91). If we insist that (7ij)lam have the same form as for a 
laminar flow, then the second half of the Yij of Eq. (5.77) should be attributed to 
turbulent transport, resulting in 

and 

As before, viscosity fluctuations have been neglected in obtaining Eq. (5.93~). 
The second term in the expression for (?i,)turb involving the molecular viscosity 
is expected to be much smaller than the - pu','ur component. 

We can perform a similar analysis on the Reynolds form of the energy 
equation and identify certain terms involving temperature or enthalpy fluctua- 
tions as apparent heat flux quantities. For example, in Eq. (5.84) the molecular 
"laminar-like'' heat flux term is 

(5.94u) 

and the apparent turbulent (Reynolds) heat flux component is 
d 7 n -(v ' q)mrb = -( -pc,T uj  - c ,~'T'u;  - E j c p p  T )  (5.94b) 

d X j  

Further examples illustrating the form of the Reynolds stress and heat flux 
terms will be given in subsequent sections that consider reduced forms of the 
Reynolds equations. 

The Reynolds equations cannot be solved in the form given because the new 
apparent turbulent stresses and heat flux quantities must be viewed as new 
unknowns. To proceed further, we need to find additional equations involving 
the new unknowns or make assumptions regarding the relation between the new 
apparent turbulent quantities and the time-mean flow variables. This is known 
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as the closure problem, which is most commonly handled through &ulence 
modeling, which is discussed in Section 5.4. 

5.2.7 Filtered Navier-S tokes Equations for Large-Eddy Simulation 
At the present time, DNS and LES require such enormous computer resources 
that it is not feasible to use them for design calculations. However, during the 
professional careers of the present generation of students, it is very likely that 
the use of LES as a design tool will become as commonplace as the more 
refined closure schemes used today for the Reynolds averaged equations. In 
light of these anticipated advances, it seems appropriate to describe the LES 
approach briefly in this section. Because the goal is to only introduce the LES 
approach, the incompressible equations will be considered for the sake of 
brevity. 

The methodology for LES parallels that employed for computing turbulent 
flows through closure of the Reynolds averaged equations in many respects. 
First, a set of equations is derived from the Navier-Stokes equations by 
performing a type of averaging. For LES a spatial average is employed instead 
of the temporal average used in deriving the Reynolds equations. The averaged 
equations contain stress terms that must be evaluated through modeling to 
achieve closure. The equations are then solved numerically. The basic difference 
between the RANS and LES approaches arises in the choice of quantities to be 
resolved. 

The equations solved in LES are formally developed by “filtering” the 
Navier-Stokes equations to remove the small spatial scales. The resulting 
equations describe the evolution of the large eddies and contain the subgrid-scale 
stress tensor that represents the effects of the unresolved small scales. 

Following Leonard (19741, flow variables are decomposed into large (filtered, 
resolved) and subgrid (residual) scales, as follows: 

(5.94c) 

Note that the bar and prime have a different meaning here than when previously 
used in connection with the Reynolds equations. The filtered variable is defined 
in the general case by the convolution integral 

ui = ui + u; 

over the entire flow domain, where x i  and xi are position vectors and G is the 
general filter function. To return the correct value when u is constant, G is 
normalized by requiring that 
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Although several filter functions, G, have been employed (Aldama, 19901, 
the volume-averaged “box” (also known as “top-hat”) filter is most frequently 
used with finite-difference and finite-volume methods. The box filter is given by 

(5.94e) 

This gives 

x , + A x l / 2  x 2 + A x 2 / 2  I x 2 - A x 2 / 2  

x 3 + A x 3 / 2  
X u ( x ,  - x ; ,  x 2  - x;, x3 - x;> du; du; dxj (5.94f) 

L 3 - A x , / 2  

where A = (A, A 2  A3)’l3 and Al ,  A2,  A 3  are increments in xl, x2, x3, 
respectively. Filtering the Navier-Stokes continuity and momentum equations 
gives 

a ii; 
d X j  
- = o  (5.94g) 

(5.94h) 

However, we cannot solve the system for both U i  and q, so we represent the 
convective flux in terms of decomposed variables, as follows: 

- 
U.U. = E.U. + 7.. 

‘ I  ‘ I  11 

resulting in 

d*i i i  d‘r,; 
+v--- (5.941’) 

aiii dZ,ii;  aF 
at dXj a x i  a x ,  a x ,  ax j  

- + - = - -  

where ‘rij is the subgrid-scale stress tensor, 

(5.945’) 

The first term in parentheses on the right-hand side is known as the Leonard 
stress, the second term, the cross-term stress, and the third term, the Reynolds 
stress. Note that if time averaging were being employed instead of filtering, the 
first two terms would be zero, leaving only the Reynolds stress. Thus an 
important difference between time averaging and filtering is that for filtering, 
F #  ii,. That is, a second averaging yields a different result from the first 
averaging. 

Although the Leonard term can be computed from the resolved flow, it 
is not easily done with most finite-difference and finite-volume schemes. 
Furthermore, the Leonard stresses can be shown to be (Shaanan et al., 1975) of 
the same order as the truncation error for second-order schemes. As a result, 
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most present-day finite-difference and finite-volume approaches consider that 
the subgrid-scale model accounts for the important effects of all three terms in 
Eq. (5.941'). Another point in defense of this approach is that the sum of the 
cross-term stress and the Reynolds stress is not Galilean invariant (Speziale. 
1985), whereas the sum of all three terms is. 

Solving the filtered Navier-Stokes equations gives the time-dependent 
solution for the resolved variables. In applications that operate nominally at 
steady state, we are usually interested in the time-mean motion of the flow and 
the drag, lift, etc., in a steady sense. Thus the solution to the filtered equations 
must be averaged in time (and/or averaged spatially in directions in which the 
flow is assumed to be homogeneous) to obtain the time-averaged values of the 
variables. If it is desired to compute turbulence statistics to compare with 
experimental measurements, the fluctuations in the time-averaged sense are 
computed from the difference between the resolved flow and the time-averaged 
results, as for example, iiy = U i  - ( i i i ) ,  where the double prime designates a 
time-basis fluctuation and the angle brackets indicate a time- or ensemble- 
averaged quantity. Of course, the solution to the filtered equations resolves the 
motion of the large eddies and is not quite the same as the true instantaneous 
solution to the full Navier-Stokes equations. Thus we cannot expect perfect 
agreement when turbulence statistics computed from LES are compared with 
DNS results or experimental data. 

Modeling for the subgrid-scale stress is addressed in Section 5.4.8. 
Information on the extension of LES to compressible flows can be found in the 
works of Erlebacher et al. (1992) and Moin et al. (1991). 

5.3 BOUNDARY-LAYER EQUATIONS 

5.3.1 Background 

The concept of a boundary layer originated with Ludwig Prandtl in 1904 
(Prandtl, 1926). Prandtl reasoned from experimental evidence that for sufficiently 
large Reynolds numbers a thin region existed near a solid boundary where 
viscous effects were at least as important as inertia effects no matter how small 
the viscosity of the fluid might be. Prandtl deduced that a much reduced form of 
the governing equations could be used by systematically employing two 
constraints. These were that the viscous layer must be thin relative to the 
characteristic streamwise dimension of the object immersed in the flow, 6/L << 
1, and that the largest viscous term must be of the same approximate magnitude 
as any inertia (particle acceleration) term. Prandtl used what we now call an 
order of magnitude analysis to reduce the governing equations. Essentially, his 
conclusions were that second derivatives of the velocity components in the 
streamwise direction were negligible compared to corresponding derivatives 
transverse to the main flow direction and that the entire momentum equation 
for the transverse direction could be neglected. 
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In the years since 1904, we have found that a similar reduction can often be 
made in the governing equations for other flows for which a primary flow 
direction can be identified. These flows include jets, wakes, mixing layers, and 
the developing flow in pipes and other internal passages. Thus the terminology 
“boundary-layer flow’’ or “boundary-layer approximation” has taken on a more 
general meaning, which refers to circumstances that permit the neglect of the 
transverse momentum equation and the streamwise second-derivative term in 
the remaining momentum equation (or equations in the case of 3-D flow). It is 
increasingly common to refer to these reduced equations as the “thin-shear- 
layer” equations. This terminology seems especially appropriate in light of the 
applicability of the equations to free-shear flows such as jets and wakes as well 
as flows along a solid boundary. We will use both designations, boundary layer 
and thin-shear layer, interchangeably in this book. 

5.3.2 Boundary-Layer Approximation for Steady Incompressible Flow 
It is useful to review the methodology used to obtain the boundary-layer 
approximations to the Navier-Stokes and Reynolds equations for steady 2-D 
incompressible constant-property flow along an isothermal surface at 
temperature T,. First, we define the nondimensional variables (much as was 
done in Section 5.1.7): 

(5.95) 
and introduce them into the Navier-Stokes equations by substitution. After 
rearrangement, the results can be written as 

continuity: 
au* dv* 

ax* dy* 
- + - = o  (5.96) 

1 d 2 U *  d 2 U *  
x momentum: 

+v*-= dU* -- dP* - + -) (5.97) 
+ -( 

dU* 
U* - 

d X *  dY * dx* Re, dy*2  

1 d2V* d2V* dV* dU* 

dX* dY* dy* Re, d ~ * ~  dy*2 

y momentum: 

dP* + -( - + -) u*- + v*- = -- (5.98) 

energy: 

dX* 

Ec [2( d ~ * ) ~  (dv*)’+ ( d v *  - -  + ” U * ) ~ ]  
+ 2  - 

do 
U* - 

dX* 

+- - 
Re, dx* 8Y * d X *  ay* 

(5.99) 
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In the above, 

PUmL 
Re, = Reynolds number = - 

P 

cP P Pr = Prandtl number = - 
k 

To - Tm 
T, - T, 

Ec = Eckert number = 2- 

and u,, T, are the free stream velocity and temperature, respectively, and To is 
the stagnation temperature. The product RePr is also known as the Peclet 
number Pe. 

Following Prandtl, we assume that the thicknesses of the viscous and 
thermal boundary layers are small relative to a characteristic length in the 
primary flow direction. That is, 6/L << 1 and 6,/L K 1 (see Fig. 5.5). For 
convenience, we let E = S/L and E, = 6JL. Since E and E, are both assumed 
to be small, we will take them to be of the same order of magnitude. We are 
assured that E and E, are small over L if d S / d x  and d S , / d x  are everywhere 
small. At a distance L from the origin of the boundary layer, we now estimate 
typical or expected sizes of terms in the equation. 

As a general rule, we estimate sizes of derivatives by using the “mean value” 
provided by replacing the derivative by a finite difference over the expected 
range of the variables in the boundary-layer flow. For example, we estimate the 
size of du*/dx* by noting that for flow over a flat plate in a uniform stream u* 
ranges between 1 and 0 as x* ranges between 0 and 1; thus we say that we 
expect du*/dx* to be of the order of magnitude of 1. That is, 

dU* 0 -  1 /a*./ =lid = 

Y 
EDGE OF VELOCITY B.L. 
EDGE OF THERMAL B.L .  

I 
I - A  

I 

Figure 5.5 Notation and coordinate system for a boundary layer (B.L.) on a flat plate. 
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A factor of 2 or so does not matter in our estimates, but a factor of 10-100 does 
and represents an order of magnitude. It should be noted that the velocity at the 
outer edge of the boundary layer may deviate somewhat from u, (as would be 
the case for flows with a pressure gradient) without changing the order of 
magnitude of d u * / d x * .  Having established ( d u * / d x * )  = 1, we now consider 
the du*/dy*  term in the continuity equation. We require that this term be of 
the same order of magnitude as d u * / d x * ,  so that mass can be conserved. Since 
y* ranges between 0 and E in the boundary layer, we expect from the continuity 
equation that u* will also range between 0 and E .  Thus, u* = E .  If d t 3 / d x  
should locally become large owing to some perturbation, then the continuity 
equation suggests that u* could also become large locally. The nondimensional 
thermal variable 6 clearly ranges between 0 and 1 for incompressible constant- 
property flow. 

We are now in a position to establish the order of magnitudes for the terms 
in the Navier-Stokes equations. The estimates are labeled underneath the terms 
in Eqs. (5.100)-(5.103). 

continuity: 
dU* dU* - + -  = o  
dX* dy* 

(5 .loo) 

1 3 
x momentum: 

1 d2U* d2U* + u * -  dU* = -- dP* + -( - + -) dU* 
U* - 

dX* dY * d x *  Re, d ~ * ~  dy*' 
(5.101) 

1 - 1 
E E 2  

E -  1 E 2  1 1 1  
y momentum: 

1 d2U* d2U* dP* + -( - + -1 + u*- = -- 
dU* 

U* - 
dX* dY * dy* Re, dy*2 

(5.102) 
dU* 

1 E  E l  

energy: 
1 - d0 + u*- - ~ 

d 0  
U* - 

dX* dy* Re, Pr 

1 
E -  E 2  

E 
1 1  

Ec +- 
Re, 

E 2  

- d 2O + 5) +,(.*Z + u*dpl) 
dX*2 dy*2 dX* dY * 

1 
1 1 E 2  1 E' 

(5.103) 
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Some comments are in order. In Eq. (5.101), the order of magnitude of the 
pressure gradient was established by the observation that the Navier-Stokes 
equations reduce to the Euler equations (see Section 5.5) at the outer edge of 
the viscous region. The pressure gradient must be capable of balancing the 
inertia terms. Hence the pressure gradient and the inertia terms must be of the 
same order of magnitude. We are also requiring that the largest viscous term be 
of the same order of magnitude as the inertia terms. For this to be true, Re, 
must be of the order of magnitude of 1/e2, as can be seen from Eq. (5.101). 

The order of magnitude of all terms in Eq. (5.102) can be established in a 
straight-forward manner except for the pressure gradient. Since the pressure 
gradient must be balanced by other terms in the equation, its order of magnitude 
cannot be greater than any of the others in Eq. (5.102). Accordingly, its 
maximum order of magnitude must be E, as recorded in Eq. (5.102). 

In the energy equation, we have assumed somewhat arbitrarily that the 
Eckert number Ec was of the order of magnitude of 1. This should be 
considered a typical value. Ec can become an order of magnitude larger or 
smaller in certain applications. The order of magnitude of the Peclet number, 
RePr, was set at 1/e2. Since we have already assumed Re, = (1/e2) in dealing 
with the momentum equations, this suggests that Pr z 1. This is consistent with 
our original hypothesis that E and E,  were both small, i.e., 6 = 6,. In other 
words, we are assuming that the Pe is of the same order of magnitude as Re. We 
expect that the present results will be applicable to flows in which Pr does not 
vary from 1 by more than an order of magnitude. The exact limitation of the 
analysis must be determined by comparisons with experimental data. Three 
orders are specified for the last term in parentheses in Eq. (5.103) to account for 
the cross-product term that results from squaring the quantity in parentheses. 

Carrying out the multiplication needed to establish the order of each term 
in Eqs. (5.101)-(5.103), we observe that all terms in the x-momentum equation 
are of the order of 1 in magnitude except for the streamwise second-derivative 
(diffusion) term, which is of the order of E’.  No term in the y-momentum 
equation is larger than E in estimated magnitude. Several terms in the energy 
equation are of the order 1 in magnitude, although several in the compression 
work and viscous dissipation terms are smaller. Keeping terms whose order of 
magnitude estimates are equal to 1 gives the boundary-layer equations. These 
are recorded below in terms of dimensional variables. 

continuity: 

du dv - + - = o  
d x  dy 

momentum: 

d u  du 1 dp d 2 u  + v- u- + v- = --- 
d x  dy P ah dY2 

(5.104) 

(5.105) 
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energy: 

d2T pTu dp p du 
+ - - + -  - (5.106) u- + v- = a- 

where v is the kinematic viscosity p / p  and a is the thermal diffusivity k/pc, .  
The form of the energy equation has been generalized to include nonideal 

gas behavior through the introduction of p, the volumetric expansion coefficient: 

dT dT 

L Y j l  d x  d y  d Y 2  P C p  & P C p  

For an ideal gas, p = 1 / T ,  where T is absolute temperature. It should be 
pointed out that the last two terms in Eq. (5.106) were retained from the order 
of magnitude analysis on the basis that Ec - 1. Should Ec become of the order 
of E or smaller for a particular flow, neglecting these terms should be permissible. 

To complete the mathematical formulation, initial and boundary conditions 
must be specified. The steady boundary-layer momentum and energy equations 
are parabolic with the streamwise direction being the marching direction. Initial 
distributions of u and T must be provided. The usual boundary conditions are 

U ( X , O )  = v ( x , O )  = 0 

lim u ( x , y )  = u, (x )  lim T ( x , y )  = T,(x)  
Y - m  Y - m  

where the subscript e refers to conditions at the edge of the boundary layer. The 
pressure gradient term in Eqs. (5.105) and (5.106) is to be evaluated from the 
given boundary information. With u, (x )  specified, dp/& can be evaluated from 
an application of the equations that govern the inviscid outer flow (Euler's 
equations), giving dp/& = - pu, due/&. 

It is not difficult to extend the boundary-layer equations to variable-property 
and/or compressible flows. The constant-property restriction was made only as 
a convenience as we set about the task of illustrating principles that can 
frequently be used to determine a reduced but approximate set of governing 
equations for a flow of interest. The compressible form of the boundary-layer 
equations, which will also account for property variations, is presented in 
Section 5.3.3. 

Before moving on from our order of magnitude deliberations for laminar 
flows, we should raise the question as to which terms neglected in the 
boundary-layer approximation should first become important as 6 / L  becomes 
larger and larger. Terms of the order of E will next become important and then, 
eventually, terms of the order of e2 .  We note that the second-derivative term 
neglected in the streamwise momentum equation is of the order of e 2 ,  whereas 
most terms in the y-momentum equation are of the order of E. This means that 
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contributions through the transverse momentum equation are expected to 
become important before additional terms need to be considered in the x- 
momentum equation. The set of equations that results from retaining terms of 
both orders of 1 and E in the order of magnitude analysis, while neglecting 
terms of the order of e 2  and higher, has proven to be useful in computational 
fluid dynamics. Such steady flow equations, which neglect all streamwise 
second-derivative terms, are known as the “parabolized” Navier-Stokes equations 
for supersonic applications and are known as the “partially parabolized” 
Navier-Stokes equations for subsonic applications. These are but two examples 
from a category of equations frequently called parabolized Navier-Stokes 
equations. These equations are intermediate in complexity between the Navier- 
Stokes and boundary-layer equations and are discussed in Chapter 8. 

We next consider extending the boundary-layer approximation to an in- 
compressible constant-property 2-D turbulent flow. Under our incompressible 
assumption, p‘ = 0 and the Reynolds equations simplify considerably. We will 
nondimensionalize the incompressible Reynolds equations very much in the 
same manner as for the Navier-Stokes equations, letting 

Asterisks appended to parentheses indicate that all quantities within the 
parentheses are dimensionless; that is, instead of u’*v’*, we will use the more 
convenient notation O* . 

As before, we assume that 6 / L  << 1, S,/L -=z 1, and let E = 6 / L  = 6JL. 
We rely on experimental evidence to guide us in establishing the magnitude 
estimates for the Reynolds stress and heat flux terms. Experiments indicate that 
the Reynolds stresses can be at least as large as the laminar counterparts. This 
requires that m* - E. Measurements suggest that (u’2)*, O*, (vf2)*, while 
differing in magnitudes and distribution somewhat, are nevertheless of the same 
order of magnitude in the boundary layer. That is, we cannot stipulate that the 
magnitudes of any of these terms are different by a factor of 10 or more. A 
similar observation can be made for the energy equation, leading to the 
conclusion that O* and o* are of the order of magnitude of E. Triple 
correlations such as (=?* are clearly expected to be smaller than double 
correlations, and they will be taken to be of the order E’ (Schubauer and Tchen, 
1959). It will be expedient to invoke the boundary-layer approximation to the 
form of the energy equation that employs the total enthalpy as the transported 
thermal variable, Eq. (5.89). We will, however, substitute for H’ according to 

- 
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The above expression for H' may look suspicious because a time-averaged 
expression appears on the right-hand side. However, this is necessary so that 
F =  0. The correct expression for H' can be derived by expanding H in terms 
of decomposed temperature and velocity variables and then subtracting H.  That 
is, let H' be defined as H' = H - p, where 

uiui (Zi + U i ) ( E i  + 24:) 
H = c , T +  y = c , T + c , T ' +  9 

L. L 

The incompressible nondimensional Reynolds equations are given below 
along with the order of magnitude estimates for the individual terms: 

continuity: 
dU* dU* - + -  = o  
d X *  dy* 

1 1 
x momentum: 

1 d 2 U *  d 2 U *  
+u*-  = -- 

dU* 
U* - 

d X *  dY * dx*  Re, d ~ * ~  dy*2  
dP* + -[- + - dU* 

(5.109) 

d -  --(-* a U U )  - -&'2y 
dY * 

(5.110) 

E 

E 
E - 

y momentum: 

dU* 
+ u * - =  -- 

dU* 
U* - 

dY * d X *  dY * 
1 

1 E  E l  1 E 1 E 2  E - 
E 

(5.111) 
energy: 

U* - + u * -  - 
dH* dH* T, - T, d 

dX*  dy* T, - To 
- 

E 

E E 
- 

1 
E -  1 E 1 1  

1 d 

1 
E 2  

E 2  1 1 E E 2  - 
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a d 1 d  1 d  
- - ( u n ) *  - --(Urn)* - --(u'U'u')* - --(Jim)* 

dY * dY * 2 d X *  2 d X *  

E E L  
E 2  E 2  - - 

E E 

---(rn) 1 d  * - --(xi)*] 1 d  + "[2--(u*=) d dU* 

2 dy* 2 dy* Re, dx* 

E 2  - 
E 

E 2  
- 

E 
E 2  1 

+ - ( u * " Y ' )  dU* + - j - $ ( u * - p )  dV* + -$(.*$) + - $ ( U * T )  dU* 
d 

d X *  

E 

E 
- E - E 2  

E 2  

1 
E 2  
- 

E 2  

E 2  
- E 

E 

E 
E - 

d d 
(5.112) 

E 

E 
- 

E 
- 
E 2  

E 
- 
E 2  

Again we assume that Pr and Ec are near 1 in order of magnitude. The 2-D 
boundary-layer equations are obtained by retaining only terms of the order of 1. 
They can be written in dimensional variables as follows: 

continuity: 
d i i  dv - + - = o  
d x  d y  

momentum: 

d i i  d i i  dp d 2 i i  d 

dX dY dY dY 
pii- + pv- = -- + p7 - p - ( n )  (5.113) 

energy: 
- - 

dH dH d 2 T  d d 

d X  dY dY dY dY 
pii- + pjj- = k7 - pc -((V') - p - ( i i r n )  + 

(5.114) 
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It should be noted that terms of the order of 1 do remain in the y-momentum 
equation for turbulent flow, namely, 

These terms have not been listed above with the boundary-layer equations 
because they contribute no information about the mean velocities. The pressure 
variation across the boundary layer is of the order of E (negligible in comparison 
with the streamwise variation). The boundary-layer energy equation can be 
easily written in terms of static temperature by substituting 

for H in Eq. (5.114). In doing this, we are neglecting V 2  compared to ti2 in the 
kinetic energy of the mean motion. Examination of the way in which H appears 
in Eq. (5.114) reveals that this is permissible in the boundary-layer approximation. 
Utilizing Eq. (5.113) to eliminate the kinetic energy terms permits the 
boundary-layer form of the energy equation to be written as 

(5.115) 

The last two terms on the right-hand side of Eq. (5.115) can be neglected in 
some applications. However, it is not correct to categorically neglect these terms 
for incompressible flows. The last term on the right-hand side, for example, 
represents the viscous dissipation of energy, which obviously is important in 
incompressible lubrication applications, where the major heat transfer concern 
is to remove the heat generated by the viscous dissipation. In some instances, it 
is also possible to neglect one or both of the last two terms on the right-hand 
side of Eq. (5.114). Both Eq. (5.114) and (5.115) can be easily treated with 
finite-difference/finite-volume methods in their entirety, so the temptation to 
impose further reductions should generally be resisted unless it is absolutely 
clear that the terms neglected will indeed be negligible. The boundary conditions 
remain unchanged for turbulent flow. 

In closing this section on the development of the thin-shear-layer 
approximation, it is worthwhile noting that for turbulent flow, the largest term 
neglected in the streamwise momentum equation, the Reynolds normal stress 
term, was estimated to be an order of magnitude larger, E ,  than the largest term 
neglected in the laminar flow analysis. We note also that only one Reynolds 
stress term and one Reynolds heat flux term remain in the governing equations 
after the boundary-layer approximation is invoked. 
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For any steady internal flow application of the thin-shear-layer equations, it 
is possible to develop a global channel mass flow constraint. This permits the 
pressure gradient to be computed rather than requiring that it be given, as in 
the case for external flow. This point is developed further in Chapter 7. 

53.3 Boundary-Layer Equations for Compressible Flow 
The order of magnitude reduction of the Reynolds equations to boundary-layer 
form is a lengthier process for compressible flow. Only the results will be 
presented here. Details of the arguments for elimination of terms are given by 
Schubauer and Tchen (1959), van Driest (1950, and Cebeci and Smith (1974). 
As was the case for incompressible flow, guidance must be obtained from 
experimental observations in assessing the magnitudes of turbulence quantities. 
An estimate must be made for p ’ / p  for compressible flows. 

Measurements in gases for Mach numbers ( M )  less than about 5 indicate 
that temperature fluctuations are nearly isobaric for adiabatic flows. This 
suggests that T’/T = - p’ /p .  However, there is evidence that appreciable 
pressure fluctuations exist (8-10% of the mean wall static pressure) at M = 5 
and it is speculated that p ’ / p  increases with increasing M. In the absence of 
specific experimental evidence to the contrary, it is common to base the order of 
magnitude estimates of fluctuating terms on the assumption that the pressure 
fluctuations are small. This appears to be a safe assumption for M Q 5, and 
good predictions based on this assumption have been noted for M as high as 7.5. 
We will adopt the isobaric assumption here. It is primarily the correlation terms 
involving the density fluctuations that may increase in magnitude with increasing 
Mach number above M = 5. 

We find that the difference between ii and ii vanishes under the boundary- 
layer approximation. This follows because p’Ur is expected to be small compared 
to pii and can be neglected in the momentum equation. We also find 7; = f 
and H = a to be consistent with the boundary-layer approximation. On the 
other hand, f l  and pV are both of about the same order of magnitude in a thin 
shear layer. Thus E # 6. Below, the unsteady boundary-layer equations for a 
compressible fluid are written in a form applicable to both 2-D and axisymmetric 
turbulent flow. For convenience, we will drop the use of bars over time-mean 
quantities and make use of t, = ( pV + p ” ) / p .  The equations are also valid for 
laminar flow when the terms involving fluctuating quantities are set equal to 
zero. The coordinate system is indicated in Fig. 5.6. The equations are as 
follows. 

(5.116) 

dU dp [ ( p $  - pT)] (5.117) 
dU dU 

d t  d X  dY dx r m  dy 
p- + pu- + pij- = -- + -- r m  



2% APPLICATION OF NUMERICAL METHODS 

( a )  EXTERNAL BOUNDARY LAYER 

(b )  AXISYMMETRIC FREE-SHEAR FLOW 

X 

( c )  CONFINED AXISYMMETRIC FLOW 

Figure 5.6 Coordinate system for axisymmetric thin-shear-layer equations. (a) External boundary 
layer; (b) axisymmetric free-shear flow; (c) confined axisymmetric flow. 

energy: 

dH dH dH 
p- + pu- + p6- 

at d X  dY 

1 d  

rm dy Pr dy 

(5.118) 
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state: 

P = P ( P , T )  (5.119) 

In the preceding equations, rn is a flow index equal to unity for axisymmetric 
flow ( r m  = r )  and equal to zero for 2-D flow ( r m  = 1). Other forms of the 
energy equation will be noted in subsequent sections. 

We note that the boundary-layer equations for compressible flow are not 
significantly more complex than for incompressible flow. Only one Reynolds 
stress and one heat flux term appear, regardless of whether the flow is 
compressible or incompressible. As for purely laminar flows, the main difference 
is in the property variations of p, k, and p for the compressible case, which 
nearly always requires that a solution be obtained for some form of the energy 
equation. When properties can be assumed constant (as for many incompressible 
flows), the momentum equation is independent of the energy equation, and as a 
result, the energy equation need not be solved for many problems of interest. 

The boundary-layer approximation remains valid for a flow in which the 
turning of the main stream results in a 3-D flow as long as velocity derivatives 
with respect to only one coordinate direction are large. That is, the 3-D 
boundary layer is a flow that remains “thin” with respect to only one coordinate 
direction. The 3-D unsteady boundary-layer equations in Cartesian coordinates, 
applicable to a compressible turbulent flow, are given below. The y direction is 
normal to the wall. 

continuity: 
d p  d p u  dppt, d p w  - + -  + - + - - 0  (5.120) 
d t  d x  d y  dz 

x-momentum: 

dU dU dU dU 
- + P U -  + pG- + P W -  = - 
d t  d X  dY d z  

z-momentum: 

d W  d W  d W  d W  
- + P U -  + @--- + P W -  = - 
d t  d X  dY dz 

energy: 

dH dH dH dH 
- + p u -  + pG- + p w -  

d t  d X  dY dz 
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For a 3-D flow, the boundary-layer approximation permits H to be written as 

u2 w 2  
H = c , T +  - + - 

2 2  
The 3-D boundary-layer equations are used primarily for external flows. This 
usually permits the pressure gradient terms to be evaluated from the solution to 
the inviscid flow (Euler) equations. Three-dimensional internal flows are 
normally computed from slightly different equations, discussed in Chapter 8. 

It is common to employ body intrinsic curvilinear coordinates to compute 
the 3-D boundary layers occurring on wings and other shapes of practical 
interest. Often, this curvilinear coordinate system is nonorthogonal. An example 
of this can be found in the work by Cebeci et al. (1977). The orthogonal system 
is somewhat more common (see, for example, Blottner and Ellis, 1973). One 
coordinate, x,, is almost always taken to be orthogonal to the body surface. This 
convention will be followed here. Below we record the 3-D boundary-layer 
equations in the orthogonal curvilinear coordinate system described in Section 
5.1.8. Typically, x1 will be directed roughly in the primary flow direction and x, 
will be in the crossflow direction. The metric coefficients (h l ,  h,, h,) are as 
defined in Section 5.1.8; however, h, will be taken as unity as a result of the 
boundary-layer approximation. In addition, we will make use of the geodesic 
curvatures of the surface coordinate lines, 

1 dh, K , =  -- 
h1h3 dx3 h1h3 ax, 

1 dh, 
K , =  -- (5.124) 

With this notation, the boundary-layer form of the conservation equations for a 
compressible turbulent flow can be written as follows: 

continuity: 

x,-momentum: 

x,-momentum: 

(5.126) 

(5.127) 
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energy: 
dH pu, dH 

hl d x ,  d x ,  h,  d x ,  
+pZ-i,- + -- PU,  dH -- 

1 
-pu,= - p u 3 G ]  (5.128) 

As always, an equation of state, p = p(p, T ) ,  is needed to close the system of 
equations for a compressible flow. The above equations remain valid for a 
laminar flow when the fluctuating quantities are set equal to zero. 

5.4 INTRODUCTION TO TURBULENCE MODELING 
5.4.1 Background 
The need for turbulence modeling was pointed out in Section 5.2. In order to 
predict turbulent flows by numerical solutions to the Reynolds equations, it 
becomes necessary to make closing assumptions about the apparent turbulent 
stress and heat flux quantities. All presently known turbulence models have 
limitations: the ultimate turbulence model has yet to be developed. Some argue 
philosophically that we have a system of equations for turbulent flows that is 
both accurate and general in the Navier-Stokes set, and therefore, to hope to 
develop an alternative system having the same accuracy and generality (but 
being simpler to solve) through turbulence modeling is being overly optimistic. If 
this premise is accepted, then our expectations in turbulence modeling are 
reduced from seeking the ultimate to seeking models that have reasonable 
accuracy over a limited range of flow conditions. 

It is important to remember that turbulence models must be verified by 
comparing predictions with experimental measurements. Care must be taken in 
interpreting predictions of models outside the range of conditions over which 
they have been verified by comparisons with experimental data. 

The purpose of this section is to introduce the methodology commonly used 
in turbulence modeling. The intent is not to present all models in sufficient 
detail that they can be used without consulting the original references, but 
rather to outline the rationale for the evolution of modeling strategy. Simpler 
models will be described in sufficient detail to enable the reader to formulate a 
“baseline” model applicable to simple thin shear layers. 

5.4.2 Modeling Terminology 

Boussinesq (1877) suggested, more than 100 year ago, that the apparent turbulent 
shearing stresses might be related to the rate of mean strain through an 
apparent scalar turbulent or “eddy” viscosity. For the general Reynolds stress 
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tensor, the Boussinesq assumption gives 

where p T  is the turbulent viscosity, l is the kinetic energy of turbulence, k 
= m / 2 ,  and the rate of the mean strain tensor S i j  is given by 

1 d U i  d u .  
- + I s.. = - 

” 2 ( dXj  d X i )  
(5.129b) 

Following the convention introduced in Section 5.3.2, we are omitting bars over 
the time-mean variables. 

By analogy with kinetic theory, by which the molecular viscosity for gases 
can be evaluated with reasonable accuracy, we might expect that the turbulent 
viscosity can be modeled as 

PT = P U T 1  (5.130) 

where uT and 1 are characteristic velocity and length scales of the turbulence, 
respectively. The problem, of course, is to find suitable means for evaluating uT 
and 1. 

Turbulence models to close the Reynolds equations can be divided into two 
categories, according to whether or not the Boussinesq assumption is used. 
Models using the Boussinesq assumption will be referred to as Category I, or 
turbulent viscosity models. These are also known as first-order models. Most 
models currently employed in engineering calculations are of this type. Experi- 
mental evidence indicates that the turbulent viscosity hypothesis is a valid one in 
many flow circumstances. There are exceptions, however, and there is no 
physical requirement that it hold. Models that affect closure to the Reynolds 
equations without this assumption will be referred to as Category I1 models and 
include those known as Reynolds stress or stress-equation models. The stress- 
equation models are also referred to as second-order or second-moment closures. 

The other common classification of models is according to the number of 
supplementary partial differential equations that must be solved in order to 
supply the modeling parameters. This number ranges from zero for the simplest 
algebraic models to 12 for the most complex of the Reynolds stress models 
(Donaldson and Rosenbaum, 1968). 

Category I11 models will be defined as those that are not based entirely on 
the Reynolds equations. Large-eddy simulations fall into this category, since it is 
a filtered set of conservation equations that is solved instead of the Reynolds 
equations. 

As we turn to examples of specific turbulence models, it will be helpful to 
keep in mind an example set of conservation equations for which turbulence 
modeling is needed. The thin-shear-layer equations, Eqs. (5.1 16)-(5.119), will 
serve this purpose reasonably well. In the incompressible 2-D or axisymmetric 
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thin-shear-layer equations, the modeling task reduces to finding expressions for 
- p m  and p c p U ) .  

5.4.3 Simple Algebraic or Zero-Equation Models 
Algebraic turbulence models invariably utilize the Boussinesq assumption. One 
of the most successful of this type of model was suggested by Prandtl in the 
1920s: 

where 1, a “mixing length,” can be thought of as a transverse distance over 
which particles maintain their original momentum, somewhat on the order of a 
mean free path for the collision or mixing of globules of fluid. The product 
lldu/dyl can be interpreted as the characteristic velocity of turbulence, vT. In 
Eq. (5.131~1, u is the component of velocity in the primary flow direction, and y 
is the coordinate transverse to the primary flow direction. 

For 3-D thin shear layers, Prandtl’s formula is usually interpreted as 

(5.131 b )  

This formula treats the turbulent viscosity as a scalar and gives qualitatively 
correct trends, especially near the wall. There is increasing experimental 
evidence, however, that in the outer layer, the turbulent viscosity should be 
treated as a tensor (i.e., dependent upon the direction of strain) in order to 
provide the best agreement with measurements. For flows in corners or in other 
geometries where a single “transverse” direction is not clearly defined, Prandtl’s 
formula must be modified further (see, for example, Patankar et al., 1979). 

The evaluation of 1 in the mixing-length model varies with the type of flow 
being considered, wall boundary layer, jet, wake, etc. For flow along a solid 
surface (internal or external flow), good results are observed by evaluating 1 
according to 

li = KY(1 - e - Y + / A + )  (5.132) 

in the inner region closest to the solid boundaries and switching to 

1, = c,s (5.133) 

when li predicted by Eq. (5.132) first exceeds 1,. The constant C ,  in Eq. (5.133) 
is usually assigned a value close to 0.089, and S is the velocity boundary-layer 
thickness. 

In Eq. (5.1321, K is the von Urmbn constant, usually taken as 0.41, and A +  
is the damping constant, most commonly evaluated as 26. The quantity in 
parentheses is the van Driest damping function (van Driest, 1956) and is the 
most common expression used to bridge the gap between the fully turbulent 
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region where 1 = ~y and the viscous sublayer where 1 -+ 0. The parameter y +  
is defined as 

Numerous variations on the exponential function have been utilized in order to 
account for effects of property variations, pressure gradients, blowing, and 
surface roughness. A discussion of modifications to account for several of these 
effects can be found in the work by Cebeci and Smith (1974). It appears 
reasonably clear from comparisons in the literature, however, that the inner 
layer model as stated [Eq. (5.132)] requires no modification to accurately predict 
the variable-property flow of gases with moderate pressure gradients on smooth 
surfaces. 

The expression for Zi, Eq. (5.132), is responsible for producing the inner, 
“law-of-the-wall” region of the turbulent flow, and 1, [Eq. (5.13311 produces the 
outer “wake-like’’ region. These two zones are indicated in Fig. 5.7, which 
depicts a typical velocity distribution for an incompressible turbulent boundary 

TYPICAL VELOCITY PROFILE, Reg - 5000 

--- u + = L  o.41 I n  y+ + 5.15 

+ +  25 

I u = y  -- 
~~ 

INNER REGION 

OUTER REGION 

I 
I 
1 FULLY TURBULENT VISCOUS 

LOG-LAW ZONE 
10 1 

1 2  5 10 20 50 100 200 500 1000 2000 5000 10,000 

Y+ 

Figure 5.7 Zones in the turbulent boundaly layer for a typical incompressible flow over a smooth 
flat plate. 
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, layer on a smooth impermeable plate using law-of-the-wall coordinates. In Fig. 
5.7, Re, is the Reynolds number based on momentum thickness, peu,B/pe, 
where for 2-D flow, the momentum thickness is defined as 

The nondimensional velocity u+ is defined as u’ = u/( l~ , , I /p , , , )~ /~.  The inner 
and outer regions are indicated on the figure. Under normal conditions, the 
inner law-of-the-wall zone only includes about 20% of the boundary layer. The 
log-linear zone is the characteristic “signature” of a turbulent wall boundary 
layer, although the law-of-the-wall plot changes somewhat in general appearance 
as Re and M are varied. 

It is worth noting that for low Re,, i.e., relatively near the origin of the 
turbulent boundary layer, both inner and outer regions are tending toward zero, 
and problems might be expected with the two-region turbulence model employing 
Eqs. (5.132) and (5.133). The difficulty occurs because the smaller 6 occurring 
near the origin of the turbulent boundary layer are causing the switch to the 
outer model to occur before the wall damping effect has permitted the fully 
turbulent law-of-the-wall zone to develop. This causes the numerical scheme 
using such a model to underpredict the wall shear stress. The discrepancy is 
nearly negligible for incompressible flow, but the effect is more serious for 
compressible flows, persisting at higher and higher Re as M increases owing to 
the relative thickening of the viscous sublayer from thermal effects (Pletcher, 
1976). Naturally, details of the effect are influenced by the level of wall cooling 
present in the compressible flow. 

Predictions can be brought into good agreement with measurements at low 
Re by simply delaying the switch from the inner model. Eq. (5.132), to the outer, 
Eq. (5.1331, until y + &  50. If, at y + =  50 in the flow, Z/6 Q 0.089, then no 
adjustment is necessary. On the other hand, if Eq. (5.132) predicts Z/6 > 0.089, 
then the mixing length becomes constant in the outer region at the value 
computed at y +  = 50 by Eq. (5.132). This simple adjustment ensures the existence 
of the log-linear region in the flow, which is in agreement with the preponderance 
of measurements. 

Other modeling procedures have been used successfully for the inner and 
outer regions. Some workers advocate the use of wall functions based on a 
Couette flow assumption (Patankar and Spalding, 1970) in the near-wall region. 
This approach probably has not been quite as well refined as the van Driest 
function to account for variable properties, transpiration, and other near-wall 
effects. 

An alternative treatment to Eq. (5.133) is often used to evaluate the 
turbulent viscosity in the outer region (Cebeci and Smith, 1974). This follows the 
Clauser formulation, 

(5.134) 
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where a accounts for low-Re effects. Cebeci and 

(1.55) 
= 0.0168- 

l + T  

Smith (1974) recommend 

where 7r = 0.55[1 - exp(-0.243~'/~ - 0.298z)I and 
Re, > 5000, a z 0.0168. The parameter S,* is the 
thickness, defined as 

(5.135) 

z = (Re,/425) - 1. For 
kinematic displacement 

(5.136) 
I 

Closure for the Reynolds heat flux term, p c p m ,  is usually handled in t 
algebraic models by a form of the Reynolds analogy, which is based on the 
similarity between the transport of heat and momentum. The Reynolds analogy 
is applied to the apparent turbulent conductivity in the assumed Boussinesq 
form: 

dT 
PC,V T - -kT-  

dY 
-- 

In turbulent flow this additional transport of heat is caused by the turbulent 
motion. Experiments confirm that the ratio of the diffusivities for the turbulent 
transport of heat and momentum, called the turbulent Prandtl number, Pr, = 

p T  cp /k , ,  is a well-behaved function across the flow. Most algebraic turbulence 
models do well by letting the Pr, be a constant near 1; most commonly, 
Pr, = 0.9. Experiments indicate that for wall shear flows, Pr, varies somewhat 
from about 0.6-0.7 at the outer edge of the boundary layer to about 1.5 near the 
wall, although the evidence is not conclusive. Several semi-empirical distributions 
for Pr, have been proposed; a sampling is found in the works by Cebeci and 
Smith (19741, 
turbulent heat 
as 

Kays (1972), and Reynolds (1975). Using Pr,, the apparent 
flux is related to the turbulent viscosity and mean flow variables 

cppT d T  
-pcpVITI = - - 

Pr, dY 
(5.137~) 

and closure has been completed. 
For other than thin shear flows, it may be necessary to model other 

Reynolds heat flux terms. To do so, the turbulent conductivity, k ,  = c! pT/PrT, 
is normally considered as a scalar, and the Boussinesq-type approxlmation is 
extended to other components of the temperature gradient. As an example, we 
would evaluate - p c P P  as 

cpPT d T  
- p c p m  = -- 

Pr, dx 

To summarize, a recommended baseline algebraic model for wall boundary 
layers consists of evaluating the turbulent viscosity by Prandtl's mixing-length 
formula, Eq. (5.131a), where 1 is given by Eq. (5.132) for the inner region, and is 
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given by Eq. (5.133) for the outer region. Alternatively, the Clauser formulation, 
Eq. (5.134), could be used in the outer region. The apparent turbulent heat flux 
can be evaluated through Eq. (5.137~) using Pr, = 0.9. This simplest form of 
modeling has employed four empirical, adjustable constants as given in Table 
5.1. 

Note that outer-region models used with the boundary-layer equations 
typically require the determination of the boundary-layer thickness or displace- 
ment thickness. Such measures are satisfactory for the boundary-layer equations 
because the streamwise velocity from the boundary-layer solution smoothly 
reaches the specified outer-edge velocity at the outer edge of the viscous region. 
As a consequence, the edge of the viscous region is reasonably well defined 
when solving the boundary-layer equations. This is not the case when solving 
more complete forms of the conservation equations, as for example, the full 
Reynolds averaged Navier-Stokes (RANS) equations, because the solution 
domain extends well outside the viscous region and the solution to the remaining 
Euler terms often results in a streamwise velocity that varies with distance from 
the solid boundary. This makes it difficult to identify a viscous layer thickness. A 
widely used algebraic model introduced by Baldwin and Lomax (1978) avoids the 
use of boundary-layer parameters such as displacement thickness or boundary- 
layer thickness. Basically, the Baldwin-hmax model is a two-region algebraic 
model similar to the Cebeci-Smith model but formulated with the requirements 
of RANS solution schemes in mind. 

The inner region is resolved as for many other algebraic models but with the 
use of the full measure of vorticity: 

Inner: 

dW du  dw 
(5.137~) 

Table 5.1 Empirical constants employed in algebraic turbulence models for 
wall boundary layers 

Symbol Description 

K von Khrmhn constant, used for inner layer = 0.41 
A +  

C, or a 

PrT 

van Driest constant for damping function = 26, but frequently modified to account 

constant for outer-region model C, = 0.089, a = 0.0168, but usually includes 

turbulent Prandtl number, = 0.9 is most common 

for complicating effects 

f(Re,) in a 
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Outer: 

where 

(5.1371’) 

and y,,, = value of y for which F,,, occurs. 
Algebraic models have accumulated an impressive record of good 

performance for relatively simple viscous flows but need to be modified in order 
to accurately predict flows with “complicating” features. It should be noted that 
compressible flows do not represent a “complication” in general. The turbulence 
structure of the flow appears to remain essentially unchanged for Mach numbers 
up through at least 5. Naturally, the variation of density and other properties 
must be accounted for in the form of the conservation equations used with the 
turbulence model. Table 5.2 lists several flow conditions requiring alterations or 
extensions to the simplest form of algebraic models cited above. Some key 
references are also tabulated where such model modifications are discussed. 

The above discussion of algebraic models for wall boundary layers is by no 
means complete. Over the years, dozens of slightly different algebraic models 
have been suggested. Eleven algebraic models were compared in a study by 

Table 5.2 Effects requiring alterations or additions to simplest form of 
algebraic turbulence models 

Effect References 
~~~ 

Low Reynolds number 

Roughness 

Transpiration 

Strong pressure 
gradients 

Cebeci and Smith (1974), Pletcher (1976), Bushnell et al. (19751, 
Herring and Mellor (1968), McDonald (1970) 

Cebeci and Smith (1974), Bushnell et al. (19761, McDonald and 
Fish (1973), Healzer et al. (1974), Adams and Hodge (1977) 

Cebeci and Smith (1974), Bushnell et al. (19761, Pletcher (19741, 
Baker and Launder (19741, Kays and Moffat (1975) 

Cebeci and Smith (19741, Bushnell et al. (1976), Adam and Hodge 
(1977), Pletcher (1974), Baker and Launder (19741, Kays and 
Moffat (19751, Jones and Launder (19721, Kreskovsky et al. 
(1974), Horstman (1977) 

Bradshaw et al. (19731, Stephenson (1976), Emery and Gessner 
(1976), Cebeci and Chang (19781, Malik and Pletcher (1978) 

Merging shear layers 
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McEligot et al. (1970) for turbulent pipe flow with heat transfer. None were 
found superior to the van Driest-damped mixing-length model presented here. 

Somewhat less information is available in the literature on algebraic 
turbulence models for free-shear flows. This category of flows has historically 
been more difficult to model than wall boundary layers, especially if model 
generality is included as a measure of merit. Some discussion of the status of the 
simple models for round jets can be found in the works of Madni and Pletcher 
(1975b, 1977a). The initial mixing region of round jets can be predicted fairly 
well using Prandtl’s mixing-length formulation, Eq. (5.131a), with 

1 = 0.07626, (5.138) 

where 6, is the width of the mixing zone. This model does not perform well 
after the shear layers have merged, and a switch at that point to models of the 
form (Hwang and Pletcher, 1978) 

V T  = P T / P  = Y F Y I / ~ ( U ~ ~ ~  - Urnin) (5.139) 

or (Madni and Pletcher, 1975b) 

(5.140) 

has provided good agreement with measurements for round co-flowing jets. 
Equation (5.139) is a modification of the model suggested for jets by Prandtl 
(1926). In the above equations, a is the jet discharge radius and y is an 
intermittency function, 

G 0.8 
Y 

y = l  O G -  
Y 1/2 

2.5 

y =  (0.5)’ ~ > 0.8 where 
Y 1 / 2  

z = (k - 0.8) (5.141) 

F is a function of the ratio ( R )  of the stream velocity to the jet discharge 
velocity given by F = 0.015(1 + 2.13R2). The distance y is measured from the 
jet centerline, and y I l 2  is the “velocity half width,” the distance from the 
centerline to the point at which the velocity has decreased to the average of the 
centerline and external stream velocities. 

Philosophically, the strongest motivation for turning to more complex models 
is the observation that the algebraic model evaluates the turbulent viscosity only 
in terms of local flow parameters, yet we feel that a turbulence model ought to 
provide a mechanism by which effects upstream can influence the turbulence 
structure (and viscosity) downstream. Further, with the simplest models, ad hoc 
additions and corrections are frequently required to handle specific effects, and 
constants need to be changed to handle different classes of shear flows. To 
many investigators, it is appealing to develop a model general enough that 
specific modifications to the constants are not required to treat different classes 
of flows. 
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If we accept the general form for the turbulent viscosity, pT = puTl, then a 
logical way to extend the generality of turbulent viscosity models is to permit uT 
and perhaps 1 to be more complex (and thus more general) functions of the flow 
capable of being influenced by upstream (historic) effects. This rationale serves 
to motivate several of the more complex turbulence models. 

5.4.4 One-Half-Equation Models 
A one-half-equation model will be defined as one in which the value of one 
model parameter (uT,  I ,  or pT itself) is permitted to vary with the primary flow 
direction in a manner determined by the solution to an ordinary differential 
equation (ODE). The ODE usually results from either neglecting or assuming 
the variation of the model parameter with one coordinate direction. Extended 
mixing-length models and relaxation models fall into this category. A one- 
equation model is one in which an additional partial differential equation (PDE) 
is solved for a model parameter. The main features of several one-half-equation 
models are tabulated in Table 5.3. 

The first three models in Table 5.3 differ in detail, although all three utilize 
an integral form of a transport equation for turbulence kinetic energy as a basis 
for letting flow history influence the turbulent viscosity. Models of this type have 
been refined to allow prediction of transition, roughness effects, transpiration, 
pressure gradients, and qualitative features of relaminarization. Most of the test 
cases reported for the models have involved external rather than channel flows. 

Although models 5D, 5E, and 5F appear to be purely empirical relaxation or 
lag models, Birch (1976) shows that models of this type are actually equivalent 
to 1-D versions of transport PDEs for the quantities concerned except that these 
transport equations are not generally derivable from the Navier-Stokes 
equations. This is no serious drawback, since transport equations cannot be 

Table 5.3 Some one-half-equation models 

Model parameter 
determined by ODE Transport equation used 

Model as basis for ODE solution References 

5A Turbulence kinetic energy 1, McDonald and Camerata (1968), 
Kreskovsky et al. (1974), 
McDonald and Kreskovsky 
(1974) 

5B Turbulence kinetic energy 1, Chan (1972) 
5C Turbulence kinetic energy 1, Adams and Hodge (1977) 
5D Empirical ODE for /+(outer) /+(outer) Shang and Hankey (1975) 
5E Empirical ODE for PT(outer)  outer) Reyhner (1968) 
5F Empirical ODE for 1, 1, Malik and Pletcher (1978). 

Pletcher (1978) 
Johnson and King (1985) 5G Empirical ODE for T , , , ~ ~  %lax 
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solved without considerable empirical simplification and modeling of terms. In 
the end, these transport equations tend to have similar forms characterized by 
generation, dissipation, diffusion, and convection terms, regardless of the origin 
of the equation. 

To illustrate, for wall boundary layers, model 5F utilizes the expression for 
mixing length given by Eq. (5.132) for the inner region. In the outer part of the 
flow, the mixing length is calculated according to 

I ,  = 0.12L (5.142) 

where L is determined by the solution to an ODE. For a shear layer of constant 
width, the natural value of L is presumed to be the thickness 6 of the shear 
layer. When 6 is changing with the streamwise direction, x ,  L will lag 6 in a 
manner controlled by the relaxation time for the large-eddy structure, which is 
assumed to be equal to 6/ii,, where U, is a characteristic turbulence velocity. If 
it is further assumed that the fluid in the outer part of the shear layer travels at 
velocity u,, then the streamwise distance traversed by the flow during the 
relaxation time is L* = C2u,6/ii , .  A rate equation can be developed by 
assuming that L will tend toward 6, according to 

(5.143) 

This model has been extended to free-shear flows (Minaie and Pletcher, 1982) 
by interpreting 6 as the distance between the location of the maximum shear 
stress and the outer edge of the shear flow and replacing u, by the average 
streamwise velocity over the shear layer. The optimum evaluation for ii, appears 
unsettled. The expression ii, = (L/SXI.r, l/p,,,)*’2 has been employed 
successfully for flows along solid surfaces, whereas ii, = ( T ~ . J ~ , , , ) ~ / ~  has proven 
satisfactory for free-shear flows predicted to date. It might be speculated that 
this latter evaluation would work reasonably well for wall boundary layers also. 
The final form of the transport ODE for L used for separating wall boundary 
layers (Pletcher, 1978) and merging shear layers in annular passages (Malik and 
Pletcher, 1978) can be written as 

(5.144) 

Although the simple one-half-equation model described above provides 
remedies for shortcomings in zero-equation models for several flows, it performs 
badly in predicting shock-separated flows. The one-half-equation model proposed 
by Johnson and King (19851, and modified by Johnson and Coakley (1990), 5G 
in Table 5.3, was developed to excel especially for the nonequilibrium conditions 
present in transonic separated flows. Basically, it provides an extension of 
algebraic models to nonequilibrium flows and effectively reduces to the Cebeci- 
Smith model under equilibrium conditions. 
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5.4.5 One-Equation Models 
One obvious shortcoming of algebraic viscosity models that normally evaluate U, 
in the expression p, = pu,l by uT = l lau /dy(  is that p, = k, = 0 whenever 
du /dy  = 0. This would suggest that p, and k, would be zero at the centerline 
of a pipe, in regions near the mixing of a wall jet with a main stream and in flow 
through an annulus or between parallel plates where one wall is heated and the 
other cooled. Measurements (and common sense) indicate that pT and k, are 
not zero under all conditions whenever d u / d y  = 0. The mixing-length models 
can be "fixed up" to overcome this deficiency, but this conceptual shortcoming 
provides motivation for considering other interpretations for p, and k,. In 
fairness to the algebraic models, we should mention that this defect is not always 
crucial because Reynolds stresses and heat fluxes are frequently small when 
d u / d y  = 0. For some examples illustrating this point, see Malik and Pletcher 
(1981). 

It was the suggestion of Prandtl and Kolmogorov in the 1940s to let U, in 
p, = puTl be proportional to the square root of the kinetic energy of turbulence, 
k = im. Thus the turbulent viscosity can be evaluated as 
- 

(5.145) 

and p, no longer becomes equal to zero when du /dy  = 0. The kinetic energy 
of turbulence is a measurable quantity and is easily interpreted physically. We 
naturally inquire how we might predict k. 

A transport PDE can be developed (Prob. 5.22) for k from the Navier-Stokes 
equations. For incompressible flows, the equation takes the form 

- 1 / 2  
PT = c k  p l ( k )  

ak 

(5.146) 

The term - ipu$:u> - $i$ is typically modeled as a gradient diffusion process, 

where Prk is a turbulent Prandtl number for turbulent kinetic energy and, as 
such, is purely a closure constant. Using the Boussinesq eddy viscosity 
assumption, the second term on the right-hand side readily becomes 

The last term on the right-hand side of Eq. (5.146) is the dissipation rate of 
turbulent kinetic energy per unit volume, p. Based on dimensional arguments, 
the dissipation rate of turbulent kinetic energy is given by E = C,k3/'/l. Thus 
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the modeled form of the turbulent kinetic energy equation becomes 

Particle rate 
of increase Diffusion rate 

of X for Z 

1 

Dissipation 
rate for X Generation 

rate for X 
The physical interpretation of the various terms is indicated for Eq. (5.147). 

This modeled transport equation is then added to the system of PDEs to be 
solved for the problem at hand. Note that a length parameter, 1, needs to be 
specified algebraically. In the above, Pr, = 1.0 and C, = 0.164 if 1 is taken as 
the ordinary mixing length. 

The above modeling for the X transport equation is only valid in the fully 
turbulent regime, i.e., away from any wall damping effects. For typical wall flows, 
this means for y +  greater than about 30. Inner boundary conditions for the k 
equations are often supplied through the use of wall functions (Launder and 
Spalding, 1974). 

Wall functions are based on acceptance of the law of the wall as the link 
between the near-wall velocity and the wall shear stress. The logarithmic portion 
of the law of the wall follows exactly from Prandtl’s mixing-length hypothesis 
and is confirmed by experiments under a fairly wide range of conditions. In the 
- law of the wall region, experiments also indicate that convection and diffusion of 
k are negligible. Thus generation and dissipation of 2 are in balance, and it can 
be shown (Prob. 5.23) that the turbulence kinetic energy model for the turbulent 
viscosity reduces to Prandtl’s mixing-length formulation, Eq. (5.131u), under 
these conditions if we take Ck = (CD)’/3 in Eq. (5.145). At the location where 
the diffusion and convection are first neglected, we can establish (Prob. 5.26) an 
inner boundary condition for k in a 2-D flow as 

where y ,  is a point within the region where the logarithmic law of the wall is 
expected to be valid. For y < y ,  the Prandtl-type algebraic inner-region model 
[Eqs. (5.131~) and (5.132)] can be used. 

Other one-equation models have been suggested that deviate somewhat 
from the Prandtl-Kolmogorov pattern. One of the most successful of these is by 
Bradshaw et al. (1967). The turbulence energy equation is used in the Bradshaw 
model, but the modeling is different in both the momentum equation, where the 
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turbulent shearing stress is assumed proportional to k, and in the turbulence 
energy equation. The details will not be given here, but an interesting feature of 
the Bradshaw method is that, as a consequence of the form of modeling used for 
the turbulent transport terms, the system of equations becomes hyperbolic and 
can be solved by a procedure similar to the method of characteristics. The 
Bradshaw method has enjoyed good success in the prediction of wall boundary 
layers. Even so, the predictions have not been notably superior to those of the 
algebraic models, one-half-equation models, or other one-equation models. 

Not all one-equation models have been based on the turbulent kinetic 
energy equation. Nee and Kovasznay (1968) and, more recently, Baldwin and 
Barth (1990) and Spalart and Allmaras (1992) have devised model equations for 
the transport of the turbulent viscosity or a parameter proportional to the 
turbulent viscosity. To illustrate the approach, the model of Spalart and Allmaras 
will be outlined below. 

The Spalart and Allmaras turbulent kinematic viscosity is given by 

uT = S f u l  (5.148bj 

The parameter 5 is obtained from the solution of the transport equation, 

aS dS 1 d 
- + u . -  = -- 
d t  ’ dXj  u dx, 

where the closure coefficients and functions are given by 

cbl = 0.1355 cb2 = 0.622 cU1 = 7.1 (T = 2/3 

Cbl  (1 + Cb2) 
K 2  U 

cwl = - + cW2 = 0.3 cW3 = 2 K = 0.41 

1 d U i  d u .  s = J q  a , . = -  --I 
‘I 2 ( d X j  d X i )  

and d is the distance from the closest surface. Corrections for transition can be 
found in the work by Spalart and Allmaras (1992). A comparison of the 
performance of the Baldwin-Barth and Spalart-Allmaras models has been 
reported by Mani et al. (1995). 

The one-equation model has been extended to compressible flow (Rubesin, 
1976) and appears to provide a definite improvement over algebraic models. The 
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recent one-equation models of (Baldwin-Barth and Spalart-Allmaras) have 
provided better agreement with experimental data for some separated flows 
than has generally been possible with algebraic models. On the whole, however, 
the performance of most one-equation models (for both incompressible and 
compressible flows) has been disappointing, in that relatively few cases have 
been observed in which these models offer an improvement over the predictions 
of the algebraic models. 

5.4.6 One-and-One-Half- and Two-Equation Models 
One conceptual advance made by moving from a purely algebraic mixing-length 
model to a one-equation model was that the latter permitted one model 
parameter to vary throughout the flow, being governed by a PDE of its own. In 
most one-equation models, a length parameter still appears that is generally 
evaluated by an algebraic expression dependent upon only local flow parameters. 
Researchers in turbulent flow have long felt that the length scale in turbulence 
models should also depend upon the upstream “history” of the flow and not just 
on local flow conditions. An obvious way to provide more complex dependence 
of 1 on the flow is to derive a transport equation for the variation of 1. If the 
equation for 1 added to the system is an ODE, such as given by Eq. (5.144) for 
model 5F, the resulting model might well be termed a one-und-one-half-equation 
model. Such a model has been employed to predict separating external turbulent 
boundary layers (Pletcher, 1978), flow in annular passages with heat transfer 
(Malik and Pletcher, 19811, and plane and round jets (Minaie and Pletcher, 
1982). 

Frequently, the equation from which the length scale is obtained is a PDE, 
and the model is then referred to as a nvo-equution turbulence model. Although a 
transport PDE can be developed for a length scale, the terms in this equation 
are not easily modeled, and some workers have experienced better success by 
solving a transport equation for a length-scale-related parameter rather than the 
length scale itself. 

Several combinations of variables have been used as the transported quantity, 
including the dissipation rate E ,  kl, o, r ,  and kr ,  where w = c/k is known as 
the specific dissipation rate and r is a dissipation time, r = l/o. Thus the 
length scale needed in the expression for turbulent viscosity, pT = C;/%E1/’, 
can be obtained from the solution for any of the combinations listed above. For 
example, 

The most commonly used variable for a second transport equation is the 
dissipation rate E.  The versions of the k-E model used today can largely be 
traced back to the early work of Harlow and Nakayama (1968) and Jones and 
Launder (1972). The description here follows the work of Jones and Launder 
(1972) and Launder and Spalding (1974). 
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In terms of k and E ,  the turbulent viscosity can be evaluated as p T  = 
C , p k ’ / ~ ,  where in terms of C, introduced earlier, C, = Cil3.  Although an 
exact equation can be derived for the transport of E (see, for example, Wilcox, 
1993), it provides relatively little guidance for modeling except to support the 
idea that the modeled equation should allow for the production, dissipation, 
diffusion, and convective transport of E.  The turbulent kinetic energy equation 
used in the k-E equation is given by Eq. (5.147) except that E is maintained as 
an unknown. The transport equations used in the “standard” k-E model are as 
follows: 

turbulent kinetic energy: 

dissipation rate: 

E 2  
p- = - ( p  + 

Dt d x j  

The terms on the right-hand side of Eq. (5.150~) from left to right can be 
interpreted as the diffusion, generation, and dissipation rates of E .  Typical 
values of the model constants are tabulated in Table 5.4. 

The most common k-E closure for the Reynolds heat flux terms utilizes the 
same turbulent Prandtl number formulation as used with algebraic models, Eq. 
(5.137~). A number of modifications or adjustments to the x-8 model have been 
suggested to account for effects not accounted for in the standard model such as 
buoyancy and streamline curvature. 

Numerous other two-equation models have been proposed and evaluated. 
Several of these are described and discussed by Wilcox (1993). Of these other 
two-equation models, the k-w model in the form prescribed by Wilcox (1988) 
has probably been developed and tested the most extensively. 

The standard k-E model given above is not appropriate for use in the 
viscous sublayer because the damping effect associated with solid boundaries 
has not been included in the model. Closure can be achieved with the use of the 
standard model by assuming that the law of the wall holds in the inner region 
and either using wall functions of a form described by Launder and Spalding 
(1974) or using a traditional damped mixing-length algebraic model and matching 

Table 5.4 Model constants for k-r two-equation model 

CP c, 1 c, 2 Prk Pr, PrT 

0.09 1.44 1.92 1.0 1.3 0.9 
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with the two-equation model by neglecting the convection and diffusion of k 
and E.  This provides a boundary condition for z at a point y, within the law of 
the wall region given by Eq. (5.148~). Applying the strategy to E gives 

(5.150b) 

A frequently used alternative is to employ a model based on transport equations 
for k and E that have been modified by the addition of damping terms to extend 
applicability to the near-wall region. The models proposed by Jones and Launder 
(1972), Launder and Sharma (19741, Lam and Bremhorst (1981), and Chien 
(1982) are among the most commonly used of these low Reynolds number x-8 
- models. The Re that is “low” in these models is the Re of turbulence, ReT = 

k 2 / & v ,  where k 3 l 2 / c  is used as a length scale for dissipation of kinetic energy. 
As an example, the low Reynolds number k-E model of Chien (1982) is given 
below with the modified or added terms identified by labels underneath. 

turbulent kinetic energy: 

dissipation rate: 

- 
added 
term 

added 
term 

- ’ I  

modified 
term 

where the turbulent viscosity is evaluated as 

pT = cpfp P k 2 / &  (5.150e) 

and the additional functions are given by 
& 

f = 1 - e-0.0115yt f1 = 1 - 0.22e-(ReT/Q2 f - -2p.-e-~+/2 
Y 2  

P 2 -  
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The constants C,, Prk, Pr, have the same values as in the standard k-E model, 
but C,, and C,, are assigned slightly different values of 1.35 and 1.80, 
respectively. 

Only a few of the large number of two-equation models proposed in the 
literature have been discussed in this section. A number of those omitted, 
particularly those based on renormalization group theory (Yakhot and Orszag, 
19861, show much promise. 

The literature on the application of two-equation turbulence models to 
compressible flows is relatively sparse (see Viegas et al., 1985; Viegas and 
Horstman, 1979; Coakley, 1983a; Wilcox, 1993). Details of modeling 
considerations for the compressible RANS equations will not be given here, but 
the compressible form of the k-E model equations (Coakley, 1983a) will be 
listed below in Favre variables for completeness. 

turbulent kinetic energy: 

(5.150 f ) 

dissipation rate: 

Despite the enthusiasm that is noted from time to time over two-equation 
models, it is perhaps appropriate to point out again the two major restrictions 
on this type of model. First, two-equation models of the type discussed herein 
are merely turbulent viscosity models, which assume that the Boussinesq 
approximation [Eq. (5.129~11 holds. In algebraic models, pT is a local function, 
whereas in two-equation models, pT is a more general and complex function 
governed by two additional PDEs. If the Boussinesq approximation fails, then 
even two-equation models fail. Obviously, in many flows the Boussinesq 
approximation models reality closely enough for engineering purposes. 

The second shortcoming of two-equation models is the need to make 
assumptions in evaluating the various terms in the model transport equations, 
especially in evaluating, the third-order turbulent correlations. This same 



GOVERNING EQUATIONS OF FXUID MECHANICS AND HEAT TRANSFER 317 

shortcoming, however, plagues all higher-order closure attempts. These model 
equations contain no magic; they only reflect the best understanding and 
intuition of the originators. We can be optimistic, however, that the models can 
be improved by improved modeling of these terms. 

5.4.7 Reynolds Stress Models 
By Reynolds stress models (sometimes called stress-equation models), we are 
referring to those Category I1 (second-order) closure models that do not assume 
that the turbulent shearing stress is proportional to the rate of mean strain. 
That is, for a 2-D incompressible flow, 

Such models are more general than those based on the Boussinesq 
assumption and can be expected to provide better predictions for flows with 
sudden changes in the mean strain rate or with effects such as streamline 
curvature or gradients in the Reynolds normal stresses. For example, without 
specific ad hoc adjustments, two-equation viscosity models are not able to 
predict the existence of the secondary flow patterns observed experimentally in 
turbulent flow through channels having a noncircular cross section. 

Exact transport equations can be derived (Prob. 5.21) for the Reynolds 
stresses. This is accomplished for 2-D incompressible flow by multiplying the 
Navier-Stokes form of the ith momentum equation by the fluctuating velocity 
component u> and adding to it the product of u: and the jth momentum 
equation and then time averaging the result. That is, if we write the Navier-Stokes 
momentum equations in a form equal to zero, we form 

u ~ N ,  + u;Ni = 0 

where the 4 and Nj denote the ith and j th components of the Navier-Stokes 
momentum equation, respectively. Before the time averaging is carried out, the 
variables in the Navier-Stokes equations are replaced by the usual decomposition, 
ui = Ei + u:, etc. Intermediate steps are outlined by Wilcox (1993). The result 
can be written in the form 

where 
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Thus, in principle, transport equations can be solved for the six components of 
the Reynolds stress tensor. However, the equations contain 22 new unknowns 
that must be modeled first. Thus, we see again that in turbulence modeling, 
transport equations can be written for nearly anything of interest but none of 
them can be solved exactly. Models that employ transport PDEs for the 
Reynolds stresses are often referred to as second-order or second-moment 
closures. 

Modeling for stress transport equations has followed the pioneering work of 
Rotta (1951). A commonly used example of the stress equation approach is the 
Reynolds stress model proposed by Launder et al. (1973, although numerous 
variations have since been suggested. Because of their computational complexity, 
the Reynolds stress models have not been widely used for engineering 
applications. Because they are not restricted by the Boussinesq approximation 
and because the closure contains the greatest number of model PDEs and 
constants of all the models considered, it would seem that the Reynolds stress 
models would have the best chance of emerging as “ultimate” turbulence 
models. Such ultimate turbulence models may eventually appear, but after more 
than 20 years of serious numerical research with these models, the results have 
been somewhat disappointing, considering the computational effort needed to 
implement the models. 

Another Category I1 approach that has shown considerable promise recently 
is known as the algebraic Reynolds stress model (ASM). The idea here is to allow 
a nonlinear constitutive relationship between the Reynolds stresses and the rate 
of mean strain while avoiding the need to solve full PDEs for each of the six 
stresses. To do this, of course, requires modeling assumptions, just as modeling 
assumptions are needed to close the transport equations that arise in the 
- development of a full Reynolds stress model. Many of the ASM models employ 
k and E as parameters, and the working forms of the models often have the 
appearance of a two-equation model but with the constant in the expression for 
the turbulent viscosity being replaced by a function. Thus the computational 
effort required for such models is only slightly greater than that for a traditional 
two-equation model. 

Two approaches have been followed in developing ASM models. Several 
researchers have simply proposed nonlinear relationships between the Reynolds 
stresses and the rate of mean strain, usually in the form of a series expansion 
having the Boussinesq approximation as the leading term (see for example, 
Lumley, 1970; Speziale, 1987, 1991). Such constitutive relationships are usually 
required to satisfy several physical and mathematical principles, such as Galilean 
invariance and “realizability.” Realizability (Schumann, 1977; Lumley, 1978) 
requires that the turbulent normal stresses be positive and that Schwarz’s 
inequality hold for fluctuating quantities, as, for example, lZ/ -1 B 1, 
where a and b are fluctuating quantities. Without the realizability constraint, 
models (even the standard k-E model) may lead to nonphysical results, such as 
negative values for the turbulent kinetic energy. As an example, the ASM model 
of Shih et al. (1994) for incompressible flow will be summarized below. 
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The Reynolds stress in the Shih et al. (1994) ASM model is evaluated as 

where 

The constants in Eq. (5.150i) are given by 

where 

and 

1 41 - 9c i (s *%/E)2  
c, = c, = 

6.5 + A:U*k/& 1.0 + ~S*(R*%’/E~ 

s* = 4% a* = @-$q u* = p s .  ‘ I  ‘ I  + n..a.. ‘ I  ‘ I  

The values of x and E are determined according to the standard x-8 model 
given by Eqs. (5.149) and (5.150a). 

The second approach, and the one followed by Rodi (1976), is to deduce a 
nonlinear algebraic equation for the Reynolds stresses by simplifying the full 
Reynolds stress PDE, Eq. (5.150h). Rodi argued that the convection minus the 
diffusion of Reynolds stress was proportional to the convection minus the 
diffusion of turbulent kinetic energy, with the proportionality factor being the 
ratio of the stress to the turbulent kinetic energy. That is, 

a( -u;u>> 
P + ‘ i j k  

D( -%) 
Dt 

f3z 1 
p- - -piu’.u’. - 

a x j  2 ’ I 

(5.150j) 

Simply put, this relates the difference between production and dissipation of 
Reynolds stresses to the difference between production and dissipation of 
turbulent kinetic energy. Thus, by defining 
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and recalling the definitions of E ,  E ~ , ,  and II,,, we can directly write the 
following nonlinear algebraic relation: 

- p‘. uf. 

Pk 
-I ’ ( p - P E ) = p . . + & . . - - n . .  11 

11 ‘1  

With closure approximations for eij and II,,, Rodi (1976) developed a nonlinear 
constitutive equation relating Reynolds stresses and rates of mean strain that 
contained l and E as parameters. For thin shear layers the constitutive relation 
reduces to 

2 (1 - C , )  c, - 1 + C , ( P / E )  E 2  du 

3 c, [ C ,  - 1 + ( P / E ) I 2  E dY 
-- (5.150k) 

where C ,  = 1.5 and C ,  = 0.6. The above can be viewed as a variation of the E-E 
eddy viscosity model in which the “constant” (Cw) is replaced by a function of 
P / E .  Notice that when P = E (production and dissipation of turbulent kinetic 
energy are in balance), the function takes on the standard value of C, in the %-E 

model, 0.09. 
Because the Boussinesq assumption is not invoked directly in the ASM 

models, they are considered to belong in Category 11. However, they are not 
generally considered to be second-order or second-moment models because they 
are not based on solutions to modeled forms of the full-transport PDEs for 
Reynolds stresses. 

The algebraic Reynolds stress models have provided a means of accounting 
for a number of effects, including streamline curvature, rotation, and buoyancy 
that cannot be predicted without ad hoc adjustments to standard two-equation 
models. They can predict the Reynolds-stress-driven secondary flow patterns in 
noncircular ducts, for example. However, they have generally not performed as 
well as full Reynolds stress models for flows with sudden changes in mean strain 
rate. 

n -uu  = - 

5.4.8 Subgrid-Scale Models for Large-Eddy Simulation 
In LES the effect of the subgrid-scale (SGS) stresses must be modeled. Because 
the small-scale motion tends to be fairly isotropic and universal, there is hope 
that a relatively simple model will suffice. The earliest and simplest model was 
proposed by Smagorinsky (1963). It takes the form of a mixing-length or 
gradient diffusion model with the length, 1, = CsA, being proportional to the 
filter width. Thus the SGS stress tensor is represented by 

Ti, = 2 P T S . .  (5.1501) 
11 

where Sij is the rate of strain tensor, 

1 diii d i i .  
- + I s.. = - 

” 2 [ ax, d x i )  
I (5.150m) 
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as before, and 

PT = f d C , A ) 2 J W  (5.150n) 

The Smagorinsky constant C,, unfortunately, is not universal. Values ranging 
from 0.1 to 0.24 have been reported. For wall shear flows it is common to 
multiply the mixing length by a Van Driest-type exponential damping function 
(Moin and Kim, 1982; Piomelli, 1988) to force the length scale to approach zero 
at the wall. 

A number of more complex models have been proposed for LES. One of 
the most promising model variations is the dynamic SGS model proposed by 
German0 et al. (1991). In its most basic form, the dynamic model follows the 
Smagorinsky mixing-length format but provides a basis for the value of the 
modeling constant C, to be computed as part of the solution by using filters of 
two sizes. This approach has been extended to the transport of a scalar and 
compressible flow (Moin et al., 1991). When applied to flows with heat transfer, 
the dynamic model permits the turbulent Prandtl number to be computed as 
part of the solution rather than being specified a priori, and the van Driest 
damping function is not required to provide the correct limiting behavior near 
solid boundaries. Very good results have been reported with the use of the 
model to date (see, for example, Yang and Ferziger, 1993; Akselvoll and Moin, 
1993; Wang and Pletcher 1995a, 1995b). 

5.5 EULER EQUATIONS 
Prandtl discovered in 1904 (see Section 5.3.1) that for sufficiently large Re the 
important viscous effects are confined to a thin boundary layer near the surface 
of a solid boundary. As a consequence of this discovery, the inviscid (non-viscous, 
nonconducting) portion of the flow field can be solved independently of the 
boundary layer. Of course, this is only true if the boundary layer is very thin 
compared to the characteristic length of the flow field, so that the interaction 
between the boundary layer and the inviscid portion of the flow field is 
negligible. For flows in which the interaction is not negligible, it is still possible 
to use separate sets of equations for the two regions, but the equations must be 
solved in an iterative fashion. This iterative procedure can be computationally 
inefficient, and as a result, it is sometimes desirable to use a single set of 
equations that remain valid throughout the flow field. Equations of this latter 
type are discussed in Chapter 8. 

In the present section, a reduced set of equations will be discussed that are 
valid only in the inviscid portion of the flow field. These equations are obtained 
by dropping both the viscous terms and the heat-transfer terms from the 
complete Navier-Stokes equations. The resulting equations can be numerically 
solved (see Chapter 6) using less computer time than is required for the 
complete Navier-Stokes equations. We will refer to these simplified equations as 
the Euler equations, although strictly speaking, Euler’s name should be attached 
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only to the inviscid momentum equation. In addition to the assumption of 
inviscid flow, it will also be assumed that there is no external heat transfer, so 
that the heat-generation term d Q / d t  in the energy equation can be dropped. 

5.5.1 Continuity Equation 

The continuity equation does not contain viscous terms or heat transfer terms, 
so that the various forms of the continuity equation given in Section 5.1.1 cannot 
be simplified for an inviscid flow. However, if the steady form of the continuity 
equation reduces to two terms for a given coordinate system, it becomes possible 
to discard the continuity equation by introducing the so-called stream function 
t,b. This holds true whether the flow is viscous or nonviscous. For example, the 
continuity equation for a 2-D steady compressible flow in Cartesian coordinates 
is 

d d 
- ( p u )  + - ( p u )  = 0 
dX dY 

If the stream function I,!J is defined such that 

a* 
pu  = - 

dY 

a* 
pv= -dx 

(5.151) 

(5.152) 

it can be seen by substitution that Eq. (5.151) is satisfied. Hence the continuity 
equation does not need to be solved, and the number of dependent variables is 
reduced by 1. The disadvantage is that the velocity derivatives in the remaining 
equations are replaced using Eqs. (5.152), so that these remaining equations will 
now contain derivatives that are one order higher. The physical significance of 
the stream function is obvious when we examine 

a* a* 
dX dY 

= pV - d A  = d h  

d $ = - & +  - d y =  - p v & + p u d y  

(5.153) 

We see that lines of constant +(d@ = 0) are lines across which there is no mass 
flow ( d h  = 0). A streamline is defined as a line in the flow field whose tangent 
at any point is in the same direction as the flow at that point. Hence lines of 
constant I) are streamlines, and the difference between the values of I,!J for any 
two streamlines represents the mass flow rate per unit width between those 
streamlines. 

For an incompressible 2-D flow the continuity equation in Cartesian 
coordinates is 

du du - + - = o  
dx dy 

(5.154) 
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and the stream function is defined by 

a* 
dY 

u = -  

a* v =  -- 
d X  

(5.155) 

For a steady, axially symmetric compressible flow in cylindrical coordinates (see 
Section 5.1.81, the continuity equation is given by 

1 d  d 
- - ( rpu, )  + -( pu,) = 0 
r dr dz 

and the stream function is defined by 

1 a* 
pu, = -- 

r dz 

(5.156) 

(5.157) 

p u z =  r dr 

For the case of 3-D flows, it is possible to use stream functions to replace the 
continuity equation. However, the complexity of this approach usually makes it 
less attractive than using the continuity equation in its original form. 

5.5.2 Inviscid Momentum Equations 
When the viscous terms are dropped from the Navier-Stokes equations [Eq. 
(5.18)1, the following equation results: 

D V  
Dt 

p -  = p f  - vp (5.158) 

This equation was first derived by Euler in 1755 and has been named Euler’s 
equation. If we neglect body forces and assume steady flow, Euler’s equation 
reduces to 

1 

P 
v - v v =  --vp (5.159) 

Integrating this equation along a line in the flow field gives 

1 

P 
/(V - VV) - d r  = - / -Vp - d r  (5.160) 

where d r  is the differential length of the line. For a Cartesian coordinate 
system, d r  is defined by 

d r  = dui + dy j + dz k (5.161) 
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Let us assume that the line is a streamline. Hence V has the same direction as 
dr, and we can simplify the integrand on the left side of Eq. (5.160) in the 
following manner: 

d V  dV 
dr dr 

( V .  V V )  * d r  = V-  - d r  = V-dr  = V d V = d  

Likewise, the integrand on the right-hand side becomes 

and Eq. (5.160) reduces to 

V 2  
2 
- + jf =const (5.162) 

The integral in this equation can be evaluated if the flow is assumed barotropic. 
A barotropic fluid is one in which p is a function only of p (or a constant), i.e., 
p = p(p ) .  Examples of barotropic flows are as follows. 

1. steady incompressible flow: 

2. isentropic (constant entropy) flow (see Section 5.5.4): 
p = const (5.163) 

p = (const)pl/Y (5.164) 

Thus for an incompressible flow, the integrated Euler’s equation [Eq. (5.162)] 
becomes 

p + +pv2 = const (5.165) 

which is called Bernoulli’s equation. For an isentropic, compressible flow, Eq. 
(5.162) can be expressed as 

= const - + -- V 2  Y P  
2 Y - l P  

(5.166) 

which is sometimes referred to as the compressible Bernoulli equation. It should 
be remembered that Eqs. (5.165) and (5.166) are valid only along a given 
streamline, since the constants appearing in these equations can vary between 
streamlines. 

We will now show that Eqs. (5.165) and (5.166) can be made valid everywhere 
in the flow field if the flow is assumed irrotational. An irrotational flow is one in 
which the fluid particles do not rotate about their axes. From the study of 
kinematics (see, for example, Owczarek, 1964), the vorticity 5, which is defined 

& = V X V  (5.167) 
is equivalent to twice the angular velocity of a fluid particle. Thus for an 

bY 
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irrotational flow, 
c = v x v = o  (5.168) 

and as a result, we can express V as the gradient of a single-valued point 
function 4, since 

v x v = v x  ( V 4 )  = o  (5.169) 

The scalar 4 is called the velocity potential. Also, from kinematics, the 
acceleration of a fluid particle, DV/Dt,  is given by 

DV dV 
- -  + v -  - v x c  
Dt - -  d t  (7) (5.170) 

which is called Lagrange’s acceleration formula. For an irrotational flow, this 
equation reduces to 

DV dV 
Dt d t  
- -  - - + v ( ? )  

which can be substituted into Euler’s equation to give 

1 - + v -  = f - - v p  
d V  d t  (7) p 

(5.171) 

If we again neglect body forces and assume steady flow, Eq. (5.171) can be 
rewritten as 

v ( - + p ) = o  V 2  
2 

since 
dP V / -  . d r  = 
P 

Integrating Eq. (5.172) along any arbitrary 

v 2  rdP 

VP 
- . d r  

line in the flow field yields 
P 

(5.172) 

(5.173) 

The constant in this equation now has the same value everywhere in the flow 
field, since Eq. (5.173) was integrated along any arbitrary line. The incompressible 
Bernoulli equation [Eq. (5.165)] and the compressible Bernoulli equation [Eq. 
(5.166)] follow directly from Eq. (5.173) in the same manner as before. The only 
difference is that the resulting equations are now valid everywhere in the 
inviscid flow field because of our additional assumption of irrotationality. 

For the special case of an inviscid incompressible irrotational flow, the 
continuity equation 

v . v = o  (5.174) 
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can be combined with 
v = v4 

v2qb = 0 
to give Laplace’s equation 

(5.175) 

(5.176) 

5.5.3 Inviscid Energy Equations 

The inviscid form of the energy equation given by Eq. (5.22) becomes 

(5.177) dE, 
- + V * E,V = pf * V - V * ( P V )  

d t  

which is equivalent to 

d dP 
-( p H )  + V .( pHV) = pf . V  + - 
d t  dt 

(5.178) 

Additional forms of the inviscid energy equation can be obtained from Eq. 
(5.29, 

De 
p -  Dt + p ( V . V ) = O  

and from Eq. (5.331, 
Dh Dp 

PDt=E 

(5.179) 

(5.180) 

If we use the continuity equation and ignore the body force term, Eq. (5.178) 
can be written as 

DH 1 dp 
Dt p dt 
- = -- (5.181) 

which for a steady flow becomes 
V * V H = O  (5.182) 

This equation can be integrated along a streamline to give 

V 2  
H = h + - = const 

2 
(5.183) 

The constant will remain the same throughout the inviscid flow field for the 
special case of an isoenergetic (homenergic) flow. 

For an incompressible flow, Eq. (5.179) reduces to 
De 
- = o  
Dt 

(5.184) 

which, for a steady flow, implies that the internal energy is constant along a 
streamline. 
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5.5.4 Additional Equations 

The conservation equations for an inviscid flow have been presented in this 
section. It is possible to derive additional relations that prove to be quite useful 
in particular applications. In some cases, these auxiliary equations can be used 
to replace one or more of the conservation equations. Several of the auxiliary 
equations are based on the First and Second Laws of Thermodynamics, which 
provide the relation 

Tds = d e  + p d  - (3 
where s is the entropy. Using the definition of enthalpy, 

P h = e + -  
P 

it is possible to rewrite Eq. (5.185) as 

dP Tds = dh - - 
P 

(5.185) 

(5.186) 

This latter equation can also be written as 

VP T V s = V h -  - 
P 

since at any given instant, a fluid particle can change its state to that of a 
neighboring particle. Upon combining this equation with Eqs. (5.170) and 
(5.158) and ignoring body forces, we obtain 

dV 
d t  
- - V X J = T V S  - V h  - V 

or 
dV 
- - V X J = T V s - V H  
d t  

(5.187) 

which is called Crocco’s equation. This equation provides a relation between 
vorticity and entropy. For a steady flow it becomes 

V X J = VH - T V S  (5.188) 
We have shown earlier that for a steady inviscid adiabatic flow, 

V * V H = O  
which if combined with Eq. (5.188), gives 

v - v s = o  
since V X J is normal to V .  Thus we have proved that entropy remains constant 
along a streamline for a steady, nonviscous, nonconducting, adiabatic flow. This 
is called an isentropic flow. If we also assume that the flow is irrotational and 
isoenergetic, then Crocco’s equation tells us that the entropy remains constant 
everywhere (i.e., homentropic flow). 
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The thermodynamic relation given by Eq. (5.185) involves only changes in 
properties, since it does not contain path-dependent functions. For the isentropic 
flow of a perfect gas it can be written as 

dP 
T ~ s  = 0 = c _ d T  - RT- 

Y P 

or 

The latter equation can be integrated to yield 

= const 
P 

T?'/(Y- 1) 

which becomes 

P 
- = const 
P Y  

(5.189) 

after substituting the perfect gas equation of state. The latter isentropic relation 
was used earlier to derive the compressible Bernoulli equation [Eq. (5.166)l. It is 
interesting to note that the integrated energy equation, given by Eq. (5.1831, can 
be made identical to Eq. (5.166) if the flow is assumed to be isentropic. 

The speed of sound is given by 

a =  Jio), (5.190) 

where the subscript s indicates a constant entropy process. At a point in the 
flow of a perfect gas, Eqs. (5.189) and (5.190) can be combined to give 

(5.191) 

5.5.5 Vector Form of Euler Equations 
The compressible Euler equations in Cartesian coordinates without body forces 
or external heat addition can be written in vector form as 

d U  dE d F  dG - + - + - + - = o  
at d x  dy dz 

(5.192) 



GOVERNING EQUATIONS OF FTUID MECHANICS AND HEAT TRANSFER 329 

where U, E, F, and G are vectors given by 

U =  

I 

E =  

1 
F =  1 p:v:p G =  1 P:W 1 

For a steady isoenergetic flow of a perfect gas, it becomes possible to remove 
the energy equation from the vector set and use, instead, the algebraic form of 
the equation given by Eq. (5.166). This reduces the overall computation time, 
since one less PDE needs to be solved. 

PW + P  
(E t  + p ) v  ( E ,  + p ) w  

5.5.6 Simplified Forms of Euler Equations 
The Euler equations can be simplified by making additional assumptions. If the 
flow is steady, irrotational, and isentropic, the Euler equations can be combined 
into a single equation called the velocity potential equation. The velocity potential 
equation is derived in the following manner. In a Cartesian coordinate system, 
the continuity equation may be written as 

(5.193) 

where the velocity components have been replaced by 

The momentum (and energy) equations reduce to Eq. (5.162) with the 
assumptions of steady, irrotational, and isentropic flow. In differential form this 
equation becomes 

2 

Combining Eqs. (5.190) and (5.195) yields the equation 

(5.195) 

(5.196) 
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which may be used to find the derivatives of p in each direction. After 
substituting these expressions for px, py, and p, into Eq. (5.193) and simplifying, 
the velocity potential equation is obtained: 

(5.197) 

Note that for an incompressible flow (a -+ m), the velocity potential equation 
reduces to Laplace’s equation. 

The Euler equations can be further simplified if we consider the flow over a 
slender body where the free stream is only slightly disturbed (perturbed). An 
example is the flow over a thin airfoil. An analysis of this type is an example of 
small-perturbation theory. In order to demonstrate how the velocity potential 
equation can be simplified for flows of this type, we assume that a slender body 
is placed in a 2-D flow. The body causes a disturbance of the uniform flow, and 
the velocity components are written as 

u = u, + u’ 
u = u’ 

(5.198) 

where the prime denotes perturbation velocity. If we let +’ be the perturbation 
velocity potential, then 

d 4  d 4 ’  u = - = u + -  
dx dx 

u = - = -  d 4  d 4 ’  (5.199) 
dY dY 

Substituting these expressions along with Eq. (5.191) into Eq. (5.166) gives 

(5.200) 

which can then be combined with the velocity potential equation to yield 
f3u’ du’ 

(1 -M,2)- + - 
dx d y  

uf y + 1 ( U ’ l 2  y - 1 (U’l2 du‘ 
=M,‘ [ ( y +  1)- u, + ( - 2 1 - u,2 + ( T ) T F ] X  

u’ y + 1 ( U O 2  y - 1 (u’)2 du‘ 
+M,2 [ ( y -  1)- u, + ( - 2 )u :  - +(li,], 

(5.201) 
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Since the flow is only slightly disturbed from the free stream, we assume 
ut vr 
- - < < 1  
K ’ K  

As a result, Eq. (5.200) simplifies to 

a2 = a: - ( y  - 1)U’K 
and Eq. (5.201) becomes 

(5.202) 

(5.203) 

The latter equation is called the transonic smalldisturbance equation. This 
nonlinear equation is either elliptic or hyperbolic, depending on whether the 
flow is subsonic or supersonic. 

For flows in the subsonic or supersonic regimes, the magnitude of the term 
M:(y + l)(ut/&)~i:, is small in comparison with (1 - M?)&, and Eq. (5.203) 
reduces to the linear Prandtl-Glauert equation: 

(1 - M,)& + 4iY = 0 (5.204) 

Once the perturbation velocity potential is known, the pressure coefficient can 
be determined from 

(5.205) 

which is derived using Eqs. (5.1661, (5.1891, (5.1981, and the binomial expansion 
theorem. 

5.5.7 Shock Equations 
A shock wave is a very thin region in a supersonic flow, across which there is a 
large variation in the flow properties. Because these variations occur in such a 
short distance, viscosity and heat conductivity play dominant roles in the 
structure of the shock wave. However, unless one is interested in studying the 
structure of the shock wave, it is usually possible to consider the shock wave to 
be infinitesimally thin (i.e., a mathematical discontinuity) and use the Euler 
equations to determine the changes in flow properties across the shock wave. 
For example, let us consider the case of a stationary straight shock wave 
oriented perpendicular to the flow direction (i.e., a normal shock). The flow is in 
the positive x direction, and the conditions upstream of the shock wave are 
designated with a subscript 1, while the conditions downstream are designated 
with a subscript 2. Since a shock wave is a weak solution to the hyperbolic Euler 
equations, we can apply the theory of weak solutions, described in Section 4.4, to 
Eq. (5.192). For the present discontinuity, this gives 

[El = 0 
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or 

Thus 
El = E, 

P l U l  = P 2 U 2  

P1 + P l 4  = P2 + P 2 4  

( E t l  + p&, = ( E t ,  + pz )u ,  
P l U l V ,  = P 2 U 2 V 2  

Upon simplifying the above shock relations, we find that 
P l U l  = P 2 U 2  

P1 + P I 4  = P2 + P 2 4  
v1 = v, (5.206) 

4 4 h,  + - = h 2  + - 
2 2 

Solving these equations for the pressure ratio across the shock, we obtain 

(5.207) 

Equation (5.207) relates thermodynamic properties across the shock wave and is 
called the Runkine-Hugoniot equation. The label “Rankine-Hugoniot relations” 
is frequently applied to all equations that relate changes across shock waves. 

For shock waves inclined to the free stream (i.e., oblique shocks) the shock 
relations becomes 

P2 

P1 

( Y  + 1)PZ - ( Y  - 1)Pl 
( Y  + 1 ) P l  - ( Y  - O P 2  

- =  

P , K 1  = P 2 K 2  

P1 + P I K ?  = P2 + P Z K ;  
v1 = v;, (5.208) 

v: v2’ hl + - = h 2  + - 
2 2 

where V, and V, are the normal and tangential components of the velocity 
vector, respectively. These equations also apply to moving shock waves if the 
velocity components are measured with respect to the moving shock wave. In 
this case, the normal component of the flow velocity ahead of the shock 
(measured with respect to the shock) can be related to the pressure behind the 
shock by manipulating the above equations to form 

(5.209) 

This latter equation is useful when attempting to numerically treat moving shock 
waves as discontinuities, as seen in Chapter 6. A comprehensive listing of shock 
relations is available in NACA Report 1135 (Ames Research Staff, 1953). 
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5.6 TRANSFORMATION OF GOVERNING EQUATIONS 
The classical governing equations of fluid dynamics have been presented in this 
chapter. These equations have been written in either vector or tensor form. In 
Section 5.1.8, it was shown how these equations can be expressed in terms of any 
generalized orthogonal curvilinear coordinate system. For many applications, 
however, a nonorthogonal coordinate system is desirable. In this section, we will 
show how the governing equations can be transformed from a Cartesian 
coordinate system to any general nonorthogonal (or orthogonal) coordinate 
system. In the process, we will demonstrate how simple transformations can be 
used to cluster grid points in regions of large gradients such as boundary layers 
and how to transform a nonrectangular computational region in the physical 
plane into a rectangular uniformly-spaced grid in the computational plane. 
These latter transformations are simple examples from a very important topic of 
computational fluid dynamics called grid generation. A complete discussion of 
grid generation is presented in Chapter 10. 

5.6.1 Simple Transformations 
In this section, simple independent variable transformations are used to illustrate 
how the governing fluid dynamic equations are transformed. As a first example, 
we will consider the problem of clustering grid points near a wall. Refinement of 
the mesh near a wall is mandatory, in most cases, if the details of the boundary 
layer are to be properly resolved. Figure 5.8(a) shows a mesh above a flat plate 
in which grid points are clustered near the plate in the normal direction ( y ) ,  
while the spacing in the x direction is uniform. Because the spacing is not 
uniform in the y direction, it is convenient to apply a transformation to the y 
coordinate, so that the governing equations can be solved on a uniformly spaced 
grid in the computational plan (T,F) as seen in Fig. 5.8(b). A suitable 

't 
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- 
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- 
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L 

(a) PHYSICAL PLANE ( x ,  y) ( b )  COMPUTATIONAL PLANE (x, 7) 
Figure 5.8 Grid clustering near a wall. (a) Physical plane ( x ,  y ) .  (b) Computational Plane (a, 8) .  
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transformation for a 2-D boundary-layer type of problem is given by the 
following. 

Transformation 1: 
Z = X  

This stretching transformation clusters more points near y = 0 as the stretching 
parameter p approaches 1. 

In order to apply this transformation to the governing fluid dynamic 
equations, the following partial derivatives are formed: 

d dx d d J  d + -7 
d x  dx  dx dx  dy 

d dx a d J  d + -7 
dy dy dx dy dy 

- -  - -- 

- -  - -- 

(5.211) 

where 
dx d J  
- -  - 1  - = o  
d X  d X  

2P - dx d J  - = o  _ -  
dY dy h{ P’ - [I - ( y / h ) ~ * } ~ n [ ( ~  + O / ( P  - 111 

As a result, the partial derivatives simplify to 
d d 

dx  dx 
- = _  

(5.212) -= ($)% d d 

dY 
If we now apply this transformation to the steady 2-D incompressible continuity 
equation written in Cartesian coordinates, 

du dv - + - = o  (5.213) 
dx  dy 

the following transformed equation is obtained: 
du d J  dv 
z + (& = O  

(5.214) 

This transformed equation can now be differenced on the uniformly spaced grid 
in the computational plane. The grid spacing can be computed from 

L A x =  ~ 

NI - 1 
1 (5.215) 
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where NI and NJ are the number of grid points in the x and y directions, 
respectively. We note that the expression for the metric Q / d y  contains y ,  so 
that we must be able to express y as a function of 7. This is referred to as the 
inverse of the transformation. For the present transformation, given by Eqs. 
(5.2101, the inverse can be readily found as 

x = z  

The stretching transformation discussed here is from the family of general 
stretching transformations proposed by Roberts (1971). Another transformation 
from this family refines the mesh near walls of a duct, as seen in Fig. 5.9. This 
transformation is given by the following. 

Transformation 2: 

X = X  

7 = a +  (1 - a )  (5.217) 

In ({ p + [ y ( 2 a  + O/hI - 2 a ) / {  p - [ y ( 2 a  + l ) / h I  + 2 a l )  
In [( p + 1)/( p - 01 

X 

For this transformation, if a = 0, the mesh will be refined near y = h only, 
whereas if a = i, the mesh will be refined equally near y = 0 and y = h.  
Roberts has shown that the stretching parameter p is related (approximately) to 
the nondimensional boundary-layer thickness ( 6/h) by 

' t  

6 - 1 / 2  

p = ( 1 - i )  o < - < 1  h 

1 .o 1 

X 

( a )  PHYSICAL PLANE (x,Y) 

Figure 5.9 Grid clustering in a duct. (a) Physical 

- 

't 

(5.218) 
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( b )  COHPUTATIONAL PLANE (XS 3 
plane ( x ,  y) .  (b) Computational plane (X, j ) .  
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Y 

Figure 5.10 Roberts’ stretching transformation (a = 0). 

where h is the height of the mesh. The amount of stretching for various values 
of 6 / h  is illustrated in Fig. 5.10 for the case where a = 0. For the transformation 
given by Eqs. (5.2171, the metric d y / d y  is 

2p(1 - a ) ( 2 a  + 1) 
- =  (5.219) 
J Y  h{ p 2  - + l)/h - 2al2}1n[(p + O / ( P  - 01 

and the inverse transformation becomes 

x = x  

y = h  
( p  + 2a)[( p + 1)/( p - l p a ) ’ ( l - )  - p + 2 a  (5.220) 

( 2 a  + 1){1 + [ ( p  + 1)/( p - l)l(J-a)’(l-a)} 

A useful transformation for refining the mesh about some interior point y ,  
(see Fig. 5.11) is given by the following: 
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( a )  PHYSICAL PLANE ( x ,  y) (b) COMPUTATIONAL PLANE (x, 7) 
Figure 5.11 Grid clustering near an interior point. (a) Physical plane ( x ,  y ) .  (b) Computational plane 
(X, 9) .  

Transformation 3: 
X = X  

1 
1 = B + - r sinh-' [ ($ - I)  sinh(rB)] 

(5.221) 

where 

O < r < m  1 1 + ( e T  - 1Myc/h)  
1 + ( e - 7  - l ) ( y c / h )  

B = - l n  

In this transformation, r is the stretching parameter, which varies from zero (no 
stretching) to large values that produce the most refinement near y = y c .  The 
metric @ / d y  and y become 

sinh ( r B )  

TYC 41 + [ ( y / y , )  - 1I2sinh2 ( r B )  
- (5.222) 

4j _ -  
d y  

I sinh [ r ( J  - B ) ]  
sinh ( r B )  

(5.223) 

For our final transformation, we will examine a simple transformation that 
can be used to transform a nonrectangular region in the physical plane into a 
rectangular region in the computational plane, as seen in Fig. 5.12. The required 
transformation is as follows: 

Transformation 4: 

(5.224) 
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( a )  PHYSICAL PLANE ( x ,  y) ( b )  COMPUTATIONAL PLANE (x. 7) 
Figure 5.12 Rectangularization of computational grid. (a) Physical plane ( x ,  y); (b) Computational 
plane (i, j ) .  

The known distance between the lower boundary and the upper boundary 
(measured along a x = constant line) is designated by h(x). The required partial 
derivatives are 

(5.225) 

where h'(x)  = dh(x)/dx. Hence the steady 2-D incompressible continuity 
equation in Cartesian coordinates is transformed to 

du h ' ( x )  du 1 dv -J-- +--=(I 
h(x) d J  h(x) d J  

(5.226) 

5.6.2 Generalized Transformation 

In the preceding section, we examined simple independent variable 
transformations that make it possible to solve the governing equations on a 
uniformly spaced computational grid. Let us now consider a completely general 
transformation of the form 

(5.227) 

which can be used to transform the governing equations from the physical 
domain (x, y ,  z )  to the computational domain ( (,q, 5 ). Using the chain rule of 
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partial differentiation, the partial derivatives become 
d d d d - _  - 5,- + 77,- + 5,- 

dX as 871 d l  
d a d d - = ( - + v - + l -  

dy  Y d g  Y a v  Y d g  
(5.228) 

d d d d 
- -  - 5,- + 77,- + 5,- 
dz as d.rl d l  

The metrics (tx, vx, lx, $, qy, lY, &, 7,) 6,) appearing in these equations can be 
determined in the following manner. We first write the differential expressions 

(5.229) 
d 5 =  5,&+ SYdY + t,dZ 

a= l x h +  lYdY + lZdZ  

d77 = 77, & + 77y dY + 77r dz 

which in matrix form become 

[ :; 
In a like manner, we can write 

Therefore 

s x  s y  t z  

5, s y  l z  

= J  

Thus the metrics are 

[;I= 
(5.230) 

dz 

(5.231) 
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which can be evaluated in the following manner: 

(5.233) 

(5.234) 

The metrics can be readily determined if analytical expressions are available for 1 
the inverse of the transformation: I 

(5.236) 

For cases where the transformation is the direct result of a grid generation 
scheme, the metrics can be computed numerically using central differences in 
the computational plane. A brief discussion on the proper way to compute 
metrics is presented in Chapter 10. 

If we apply the generalized transformation to the compressible Navier-Stokes 
equations written in vector form [Eqs. (5.4311, the following transformed equation 
is obtained: 

u, + 5,Ef + %E, + 4-3, + SYF* + 7 7 y q  + s y q  + 52Gg + %G, + 52Gl = 0 
(5.237) 

Viviand (1974) and Vinokur (1974) have shown that the gas dynamic equations 
can be put back into strong conservation-law form after a transformation has 
been applied. In order to do this, the transformed equation is first divided by the 
Jacobian and is then rearranged into conservation-law form by adding and 
subtracting like terms. When this procedure is applied to Eq. (5.237), the 
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following equation results: 

Evx + Fvy + 672 

+ (  

+ 

J + Gh)i - E[ (f), + (f), + (f),] 

(5.238) 

The last three terms in brackets are all equal to zero and can be dropped. This 
can be verified by substituting the metrics given by Eqs. (5.233) into these terms. 
If we now define the quantities 

(5.239) 

and substitute them into Eq. (5.238), the final equation is in strong conservation- 
law form: 

dU, dE, dFl dG,  - + -  + - + - = o  
dt d 6  JT d l  

(5.240) 

It should be kept in mind that the vectors El, F,, and GI contain partial 
derivatives in the viscous and heat-transfer terms. These partial derivative terms 
are to be transformed using Eqs. (5.228). For example, the shearing stress term, 
T~,, would be transformed to 

dv dv 

The strong conservation-law form of the governing equations is a convenient 
form for applying finite-difference schemes. However, when using this form of 
the equations, caution must be exercised if the grid is changing. In this case, a 
constraint on the way the metrics are differenced, called the geometric 
conservation law (Thomas and Lombard, 1978), must be satisfied in order to 
prevent additional errors from being introduced into the solution. 
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5.7 FINITE-VOLUME FORMULATION 
The governing equations of fluid dynamics have been mathematically expressed 
in differential form in this chapter. When a numerical scheme is applied to 
these differential equations, the computational domain is subdivided into grid 
points, and the finite-difference equations are solved at each point. An 
alternative approach is to solve the integral form of the governing equations. In 
this approach, the physical domain is subdivided into small volumes (or areas for 
a 2-D case), and the dependent variables are evaluated either at the centers of 
the volumes (cells) or at the comers of the volumes. 

The integral approach includes both the finite-volume and finite-element 
methods, but only the finite-volume method will be discussed here. The finite- 
volume method has an obvious advantage over a finite-difference method if the 
physical domain is highly irregular and complicated, since arbitrary volumes can 
be utilized to subdivide the physical domain. Also since the integral equations 
are solved directly in the physical domain, no coordinate transformation is 
required. Another advantage of the finite-volume method is that mass, 
momentum, and energy are automatically conserved, since the integral forms of 
the governing equations are solved. 

5.7.1 Two-Dimensional Finite-Volume Method 
In order to explain the finite-volume method, consider the following 2-D model 
equation: 

au d~ dF 
at ax ay 
- + - + - = o  (5.242) I 

I Integrating this equation over the finite volume abcd (with unit depth) shown in 
Fig. 5.13 gives 

(5.243) 

where the differential volume d T  is dxdy (1). After applying Green’s theorem, 
this equation becomes 

(5.244) 

where n is the unit normal to the surface S of the finite volume and H can be 
expressed in Cartesian coordinates as 

H = Ei + Fj 

For the present 2-D geometry, 

(5.245) 
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j-1 

i -1 

L X  

Figure 5.13 Two-dimensional finite volume. 

which can be substituted into Eq. (5.244) to yield 

d 
Udxdy + $ (Edy - Fdx) = 0 (5.246) 

j j a h c d  abcd 

This expression can then be approximated as 

where Sabcd is the area (which is assumed constant) of the quadrilateral abcd 
and q, is the average value of U in the quadrilateral or cell. This formulation 
is referred to as a cell-centered finite-volume scheme. An alternate approach 
would be to evaluate the dependent variables at the vertices of the cell, and this 
is called a nodal-point finite-volume scheme. 

The increments in x and y are given by 

AXab = Xb - X, 

= Yb - Ya 

h X b c  = X, - Xb 

AYbc = Yc - Yb 

AX,d = Xd - Xc 

Aycd = Yd - Yc 

AXd, = Xa - x d  

AYda = Ya - Yd 
(5.248) 
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The fluxes E and F can be evaluated at time level n or n + 1 to provide either 
an explicit or implicit scheme. In addition, the spatial values of the fluxes can be 
determined in a variety of ways, which will lead to the various algorithms 
discussed in Chapter 4. As an example, let us evaluate the fluxes using average 
values given by 

Ei- t , ,  = O.5(Ei- 1 ,  j + Ei, j )  4 - f , j  = 0.5(4-1,j + 4,j)  

Substituting these expressions into Eq. (5.247) yields 

+ 0.5(Ei+ I , ,  + Ei, j )  Aybc - 0.5(&+1, j + Fi, j )  AXbc 

+ OS(Ei,j+l + Ei,j> AYcd - OS(F,,j+, + 4,j) Axed 
+ 0.5(Ei- 1 ,  + Ei, j )  Ay,, - 0.5(Fi-l, + 6.j) AXda = 0 (5.250) 

If the quadrilateral abcd is rectangular in shape and if the sides coincide 
with lines of constant x and y, Eq. (5.250) reduces to 

which we recognize as the FTCS scheme applied to our model equation. Other 
schemes, such as upwind algorithms, can be obtained by using appropriate 
expressions for the fluxes at the cell faces. 

The finite-volume method described thus far in this section has been 
applied to a model PDE containing only first derivatives. In order to show how 
the finite-volume method can be applied to equations containing second 
derivatives, let us consider the 2-D heat equation, 

dT d 2 T  d 2 T  

d t  
(5.252) 

where a is assumed constant. Integrating this equation over the finite volume 
abcd (with unit depth) shown in Fig. 5.14 gives 
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i - 1  

Figure 5.14 Overlapping 2-D finite volumes. 

After applying Green’s theorem, this equation becomes 

t 

j - 1  

where H can be expressed in Cartesian coordinates as 

dT dT 

d x  d y  
H = -i + -j 

For the present 2-D geometry, 

which can be substituted into Eq. (5.254) to yield 

(5.254) 
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Equation (5.255) can then be approximated, as before, to obtain 

where the increments in x and y are given in Eq. (5.248). Different techniques 
(see Peyret and Taylor, 1983) can be used to evaluate the derivatives in Eq. 
(5.256). A common approach is to evaluate the derivatives as a mean value over 
the appropriate area. For example, the derivatives ( d T / d ~ ) ~ ,  j -  ; and 
( ~ ? T / d y ) , , ~ -  + can be evaluated as their mean values over the finite volume 
a’b’c’d’ in Fig. 5.14. Thus 

where the line integral can be approximated by 

#Tdy T ,  j - l  Ayarbr + Tb Aybrcr + q, j  Aycfdl + T, Aydlal (5.258) 

The temperatures T, and Tb are evaluated as the average of the four surrounding 
temperatures: 

In a like manner, 

1 
(5.260) 

and the line integral can be approximated as 

The other derivatives appearing in Eq. (5.256) can be determined in a similar 
manner. 
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5.7.2 Three-Dimensional Finite-Volume Method 
The finite-volume formulation can readily be extended to three dimensions, 
although it does become more complicated. Consider the 3-D Navier-Stokes (or 
Euler) equations [Eq. (5.43)l: 

d U  dE d F  dG - + -  + - + - = o  (5.262) 
at ax d y  JZ 

These equations can be expressed in integral form as 
d 

d t  S 
- jjjyu d T +  @(H - n) dS = 0 (5.263) 

where the finite volume T is bounded by the surface S and the tensor is 
given in Cartesian coordinates as 

H = Ei + Fj + Gk (5.264) 
If we utilize the cell-face surface-area vector d S  (defined as dS n> and assume 
that the volume M is constant, then Eq. (5.263) can be written in discrete form 
for a finite volume I as 

d 

d t  
q--(u,>+ C H . S = O  

sides 
(5.265) 

where U, is the value of U associated with the finite volume 1 and the 
summation is applied to all exterior sides of the finite volume. 

In three dimensions the computational region is usually subdivided using 
six-sided hexahedrons such as the one shown in Fig. 5.15. The edges of the 
hexahedron (cell) are taken to be straight-line segments, so that a cell face can 

Figure 5.15 Three-dimensional hexahedral finite volume. 
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be considered to consist of two planar triangles. For example, the face ABCD in 
Fig. 5.15 can be subdivided into triangles ABC and ADC or, alternately, 
triangles ABD and BCD. The cell-face surface-area vector S is then obtained by 
summing the triangular area vectors. This vector is not dependent on which 
diagonal is used to separate the face into two triangles. Expressions for 
determining S in an efficient manner are given by Vinokur (1986). For face 
ABCD the surface-area vector can be determined from 

(5.266) 

and rA, r B ,  rc, rD are the position vectors of the points A, B, C, D, respectively. 
Similar expressions can be written for the other faces. For example, 

(5.267) 

The volume of a hexahedral cell can be determined in several different 
ways. The usual approach is to subdivide the hexahedron into tetrahedrons or 
pyramids. Vinokur (1986) has devised a relatively simple expression for the 
volume of a hexahedron, which can be expressed in terms of the notation of Fig. 
5.15 as 

y= i (SABCD + SDCGH + SBFGC) * (rc - r E )  (5.268) 
This formula is derived by breaking the hexahedron into three pyramids that 
share the main diagonal as a common edge. 

PROBLEMS 
5.1 Verify Eq. (5.9). 
5.2 Show that for an incompressible constant-property flow, Eq. (5.18) reduces to Eq. (5.21). 
5.3 Verify Eq. (5.30). 
5.4 Using the nondimensionalization procedure described in Section 5.1.7, derive Eqs. (5.47). 
5.5 Write the energy equation [Eq. (5.33)] in terms of axisymmetric body intrinsic coordinates. 
5.6 Write the incompressible Navier-Stokes equation [Eq. (5.21)] in a spherical coordinate system. 
5.7 Show that m= n. 
5.8 Show that li - ii = P / p .  
5.9 Verify that ii”= - m/p. 
5.10 Starting with Eq. (5.801, show the steps in the development of Eq. (5.81). 
5.11 Develop Eq. (5.84) by substitution (i.e., using c,T = R - i i i i i i /2  - m/2) starting with Eq. 
(5.81). 
5.12 Show the steps in the derivation of Eq. (5.76) starting with the Navier-Stokes equations. 
5.13 Using the decomposition indicated in Section 5.2.7 for large-eddy simulation, verify the 
expression for T~~ given in Eq. (5.941’). 
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5.14 Apply an order of magnitude analysis to the incompressible 2-D Navier-Stokes equations for 
the case of a planar 2-D laminar jet. Indicate which terms in the Navier-Stokes equations can be 
neglected in this flow. 
5.15 Verify that H' = c,T' + u:Ei + 4 4 / 2  - m / 2 .  
5.16 Explain why the boundary-layer equations may be applicable to the developing flow in a tube. 
5.17 Determine the proper boundary conditions to apply to the thin-shear-layer equations for the 
2-D shear layer formed by the merging of two infinite streams at uniform velocities U, and U,. 
5.18 In the boundary-layer equations for a compressible turbulent flow, explain why + a has 
been replaced by 7 but + has been left intact. 
5.19 In a flow governed by the incompressible boundary-layer equations, it is often said that the 
Reynolds number is of the order of 1/c2. What is the basis for this statement? 
5.20 The boundary-layer equations, Eqs. (5.104)-(5.106), were developed for Prandtl numbers of the 
order of magnitude of 1. For a laminar flow over a heated flat plate, indicate what alterations should 
be made in these equations to properly treat flows in which the Prandtl number becomes of the 
order of magnitude of (a) E ,  ( b )  c 2 ,  ( c )  l /e ,  ( d )  1/c2. 
5.21 Using the Navier-Stokes equations, develop an exact Reynolds stress transport equation 
applicable to an incompressible turbulent boundary layer, i.e., obtain an expression for p D q / D t .  
Show the steps in your development. 
5.22 Using the expression for the transport of Reynolds stresses from Prob. 5.21, let i = j to obtain 
an expression for the transport of turbulence kinetic energy. 
5.23 Using the modeled form of the turbulence kinetic energy equation, Eq. (5.147), show that when 
convection and diffusion of turbulence kinetic energy are negligible, the kinetic energy turbulence 
model reduces to the Prandtl mixing-length formula. 
5.24 Assuming that convection and diffusion of turbulence kinetic energy are negligible within the 
log-law region of a turbulent wall boundary layer, find an expression for the turbulence kinetic 
energy at the outer edge of the log-law region in terms of the wall shear stress. Compare this 
estimate with experimental measurements of x such as those of Klebanoff (see Hinze, 1975). 
5.25 Assuming the validity of the Prandtl mixing-length formula for a turbulent wall boundary layer, 
obtain an expression for the ratio of the apparent turbulent viscosity to the molecular viscosity in the 
log-law region. 
5.26 Verify the inner boundary condition for z stated in Eq. (5.148~). 
5.27 Verify that when P = E in Eq. (5.150k), the representation for becomes equivalent to that 
used in the standard x-E model. 
538 In a 2-D body intrinsic coordinate system, define the stream function for a steady compressible 
flow. 
5.29 Obtain Eq. (5.220). 
530 Verify Eqs. (5.222) and (5.223). 
531  Transform Laplace's equation 

a 2 U  a2u - + - = o  
a x 2  ay2  

into the ( 5 , ~ )  computational space using the transformation 

Note that x and y (as well as the partial derivatives with respect to these variables) should not 
appear in the final transformed equation. 
532 Transform the steady 2-D incompressible continuity equation 

u, + uv = 0 
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to ( 6 , ~ )  computational space using the transformation 
Y 

5 = x  7)=7 
X 

and display the results in strong conservation-law form using the technique of Viviand. 
533 The 2-D physical space ( x ,  y) is transformed to the computational space ( 6 , ~ )  by the following 
transformation: 

( = X  

Y 
( x  + 1) - x 2  

7)= 

(a )  Find the Jacobian of this transformation. 
( b )  Using this transformation, transform the 2-D steady incompressible continuity equation in 

Cartesian coordinates. The transformed equation should contain 5 , ~  as the only independent 
variables. 
5 3 4  Transform the 2-D incompressible Navier-Stokes equation [Eq. (5.21)] using the transformation 
defined by Eqs. (5.217). 
535 Show that the transformation defined by 

x = rcos e 
y = r s i n e  

will transform the 3-D compressible continuity equation expressed in cylindrical coordinates into the 
compressible continuity equation in Cartesian coordinates. 
536 Apply in a successive manner the transformations given by Eqs. (5.224) and Eqs. (5.210) to the 
inviscid energy equation [Eq. (5.179)] written for a 2-D steady flow. 
537 Transform the 2-D continuity equation 

z = z  

ap apu apv - + - + - = o  
at ax ay 

to the (7, 5, 7)) computation domain using the transformation 
r = t  

5 =  S ( t , x , y )  

7) = d t ,  x ,  Y )  
Use the technique of Viviand to write the transformed equation in conservation-law form. Show all 
intermediate steps. 
538 Transform the steady form of Euler’s equations [Eqs. (5.192)] to the ([,q, 6 ) computational 
domain using the transformation 

[ = X  

7) = d x ,  Y, 2) 

I = t(x. Y, z )  
Using the technique of Viviand, write the transformed equations in conservation-law form. 
539 Consider the generalized transformation 

r = t  

5 = 6 0 ,  x ,  Y, z )  
7) = d t ,  x ,  Y, z )  

I = 5 0 ,  x ,  y, z )  

(a )  Determine suitable expressions for the Jacobian of the transformation as well as the 

( b )  Apply this transformation to the compressible Navier-Stokes equations written in vector 
metrics. 

form [Eqs. (5.4311. 
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