
CHAPTER 

FOUR 

APPLICATION OF NUMERICAL METHODS 
TO SELECTED MODEL EQUATIONS 

In this chapter we examine in detail various numerical schemes that can be used 
to solve simple model partial differential equations (PDEs). These model 
equations include the first-order wave equation, the heat equation, Laplace’s 
equation, and Burgers’ equation. These equations are called model equations 
because they can be used to “model” the behavior of more complicated PDEs. 
For example, the heat equation can serve as a model equation for other 
parabolic PDEs such as the boundary-layer equations. All of the present model 
equations have exact solutions for certain boundary and initial conditions. We 
can use this knowledge to quickly evaluate and compare numerical methods that 
we might wish to apply to more complicated PDEs. The various methods 
discussed in this chapter were selected because they illustrate the basic properties 
of numerical algorithms. Each of the methods exhibits certain distinctive features 
that are characteristic of a class of methods. Some of these features may not be 
desirable, but the method is included anyway for pedagogical reasons. Other 
very useful methods have been omitted because they are similar to those that 
are included. Space does not permit a discussion of all possible methods that 
could be used. 
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4.1 WAVE EQUATION 

The one-dimensional (1-D) wave equation is a second-order hyperbolic PDE 
given by 

This equation governs the propagation of sound waves traveling at a wave speed 
c in a uniform medium. A first-order equation that has properties similar to 
those of Eq. (4.1) is given by 

du du 
- + c - = o  c > o  
d t  dX 

(4.2) 

Note that Eq. (4.1) can be obtained from Eq. (4.2). We will use Eq. (4.2) as our 
model equation and refer to it as the first-order 1-D wave equation, or simply 
the “wave equation.” This linear hyperbolic equation describes a wave 
propagating in the x direction with a velocity c, and it can be used to “model” in 
a rudimentary fashion the nonlinear equations governing inviscid flow. Although 
we will refer to Eq. (4.2) as the wave equation, the reader is cautioned to be 
aware of the fact that Eq. (4.1) is the classical wave equation. More appropriately, 
Eq. (4.2) is often called the 1-D linear convection equation. 

The exact solution of the wave equation [Eq. (4.2)] for the pure initial value 
problem with initial data 

u(x,O) = F(x) --co < x < (4.3) 
is given by 

(4.4) 
Let us now examine some schemes that could be used to solve the wave 
equation. 

u ( x , t )  = F ( x  - c t )  

4.1.1 Euler Explicit Methods 
The following simple explicit one-step methods, 

. ;+I - u,” u;+l - u; 
+ C  = o  c > o  

At  A x  
u;+1 - ui” u;+1 - u/”-l 

+ C  = o  
A t  2Ax 

(4.5) 

(4.6) 

have truncation errors (T.E.s) of O [ A t ,  Ax] and O [ A t ,   AX)^], respectively. We 
refer to these schemes as being first-order accurate, since the lowest-order term 
in the T.E. is first order, i.e., A t  and A x  for Eq. (4.5) and A t  for Eq. (4.6). These 
schemes are explicit, since only one unknown u;+’ appears in each equation. 
Unfortunately, when the von Neumann stability analysis is applied to these 
schemes, we find that they are unconditionally unstable. These simple schemes, 
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therefore, prove to be worthless in solving the wave equation. Let us now 
proceed to look at methods that have more utility. 

4.1.2 Upstream (First-Order Upwind or Windward) Differencing Method 

The simple Euler method, Eq. (4.5), can be made stable by replacing the forward 
space difference by a backward space difference, provided that the wave speed c 
is positive. If the wave speed is negative, a forward difference must be used to 
assure stability. This point is discussed further at the end of the present section. 
For a positive wave speed, the following algorithm results: 

u? - u? 
= o  c > o  Ui" I J - 1  

ui"+l - 
+ C  

At  A x  
(4.7) 

This is a first-order accurate method with T.E. of O [ A t ,  A x ] .  The von Neumann 
stability analysis shows that this method is stable, provided that 

where u = c A t / A x .  

The following equation results: 
Let us substitute Taylor-series expansions into Eq. (4.7) for ur" and ~ 7 ~ ~ .  

( A t ) 3  
u,, + T U " '  + ... (At)' L( At  [uy + A t u ,  + - 2 

Equation (4.9) simplifies to 

]I = 0 (4.9) 

u,,, + ... (4.10) 
At  c A x  ( A t > 2  (Ax)'  

u, + cu, = - z u , ,  + -px - T U , , '  - c- 
6 

Note that the left-hand side of this equation corresponds to the wave equation 
and the right-hand side is the T.E., which is generally not zero. The significance 
of terms in the T.E. can be more easily interpreted if the time-derivative terms 
are replaced by spatial derivatives. In order to replace u,, by a spatial-derivative 
term, we take the partial derivative of Eq. (4.10) with respect to time, to obtain 

c ( A x ) ~  
u,,,, + ... (4.11) u,,,, - ~ 6 

At  c A x  (A t>*  
u,, + cu,, = - y u , , ,  + ~ U X X '  - - 
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and take the partial derivative of Eq. (4.10) with respect to x and multiply by 
- c: 

Adding Eqs. (4.11) and (4.12) gives 

(4.13) 

In a similar manner, we can obtain the following expressions for utf , ,  u,,,, and 
u x x t :  

u,,, = -c3u,,, + O[At, AX] 

u,,, = c 2 ~ , ,  + O[At, Ax] (4.14) 

u , , ~  = -cu,,, + O[At, AX] 

Combining Eqs. (4.101, (4.131, and (4.14) leaves 

c Ax C(Ad2 
u, + cu, = -(l - u)u,, - ~ (2u2 - 3u + l)u,,, 

2 6 

+ O[(AxI3, (Ax)2 At ,  Ax(At)2, (4.15) 

An equation, such as Eq. (4.151, is called a modified equation (Warming and 
Hyett, 1974). It can be thought of as the PDE that is actually solved (if sufficient 
boundary conditions were available) when a finite-difference method is applied 
to a PDE. It is important to emphasize that the equation obtained after 
substitution of the Taylor-series expansions, i.e., Eq. (4.101, must be used to 
eliminate the higher-order time derivatives rather than the original PDE, Eq. 
(4.2). This is due to the fact that a solution of the original PDE does not in 
general satisfy the difference equation, and since the modified equation 
represents the difference equation, it is obvious that the original PDE should 
not be used to eliminate the time derivatives. 

The process of eliminating time derivatives can be greatly simplified if a 
table is constructed (Table 4.1). The coefficients of each term in Eq. (4.10) are 
placed in the first row of the table. Note that all terms have been moved to the 
left-hand side of the equation. The u,, term is then eliminated by multiplying 
Eq. (4.10) by the operator I 

A t  d 

2 dt 
- _ _  
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and adding the result to the first row, i.e., Eq. (4.10). This introduces the term 
-(c At/2)ut, ,  which is eliminated by multiplying Eq. (4.10) by the operator 

c A t  d 

2 dx 
and adding the result to the first two rows of the table. This procedure is 
continued until the desired time derivatives are eliminated. Each coefficient in 
the modified equation is then obtained by simply adding the coefficients in the 
corresponding column of the table. The algebra required to derive the modified 
equation can be programmed on a digital computer using an algebraic 
manipulation code. 

The right-hand side of the modified equation [Eq. (4.15)] is the T.E., since it 
represents the difference between the original PDE and the finite-difference 
approximation to it. Consequently, the lowest order term on the right-hand side 
of the modified equation gives the order of the method. In the present case, the 
method is first-order accurate, since the lowest order term is O[At ,  A x ] .  If 
v = 1, the right-hand side of the modified equation becomes zero, and the wave 
equation is I solved exactly. In this case, the upstream differencing scheme 
reduces to 

-- 

. ;+I = uj”- 1 

which is equivalent to solving the wave equation exactly using the method of 
characteristics. Finite-difference algorithms that exhibit this behavior are said to 
satisfy the shift condition (Kutler and Lomax, 1971). 

The lowest order term of the T.E. in the present case contains the partial 
derivative uxx,  which makes this term similar to the viscous term in 1-D fluid 
flow equations. For example, the viscous term in the 1-D Navier-Stokes equation 
(see Chapter 5) may be written as 

(4.16) 

if a constant coefficient of viscosity is assumed. Thus, when Y # 1, the upstream 
differencing scheme introduces an art@cial viscosity into the solution. This is 
often called implicit artificial viscosity, as opposed to explicit artificial viscosity, 
which is purposely added to a difference scheme. Artificial viscosity tends to 
reduce all gradients in the solution whether physically correct or numerically 
induced. This effect, which is the direct result of even derivative terms in the 
T.E., is called dissipation. 

Another quasi-physical effect of numerical schemes is called dispersion. This 
is the direct result of the odd derivative terms that appear in the T.E. As a result 
of dispersion, phase relations between various waves are distorted. The combined 
effect of dissipation and dispersion is sometimes referred to as difision. 
Diffusion tends to spread out sharp dividing lines that may appear in the 
computational region. Figure 4.1 illustrates the effects of dissipation and 
dispersion on the computation of a discontinuity. In general, if the lowest order 
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Figure 4.1 Effects of dissipation and dispersion. (a) Exact solution. (b) Numerical solution distorted 
primarily by dissipation errors (typical of first-order methods). (c) Numerical solution distorted 
primarily by dispersion errors (typical of second-order methods). 

term in the T.E. contains an even derivative, the resulting solution will 
predominantly exhibit dissipative errors. On the other hand, if the leading term 
is an odd derivative, the resulting solution will predominantly exhibit dispersive 
errors. 

In Chapter 3 we discussed a technique for finding the relative errors in both 
amplitude (dissipation) and phase (dispersion) from the amplification factor. At 
this point it seems natural to ask if the amplification factor is related to the 
modified equation. The answer is definitely yes! Warming and Hyett (1974) have 
developed a “heuristic” stability theory based on the even derivative terms in 
the modified equation and have determined the phase shift error by examining 
the odd derivative terms. However, the analysis of Warming and Hyett has been 
shown by Chang (1987) to be restricted to schemes involving only two time levels 
(n, n + 1). Before showing the correspondence between the modified equation 
and the amplification factor, let us first examine the amplification factor of the 
present upstream differencing scheme: 

G = (1 - v + v cos p )  - i ( v  sin p )  (4.17) 

The modulus of this amplification factor, 
1/2 IGI = [ (1 - v + v cos p12 + (- v sin p12] 

is plotted in Fig. 4.2 for several values of v. It is clear from this plot that v must 
be less than or equal to 1 if the von Neumann stability condition IGl < 1 is to be 
met. 

The amplification factor, Eq. (4.17), can also be expressed in the exponential 
form for a complex number: 

G = (GIe’$ 

where 4 is the phase angle given by 

- v sin p 
1 - v +  vcosp  
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. UNIT CIRCLE 

1 .w 0.50 0:OO 0150 1 :oo 
IGl 

Figure 4.2 Amplification factor modulus for upstream differencing scheme. 

The phase angle for the exact solution of the wave equation is determined 
in a similar manner once the amplification factor of the exact solution is known. 
In order to find the exact amplification factor we substitute the elemental 
solution 

= e a t e i k , x  

into the wave equation and find that a = -ik,c, which gives 

= e i k m ( x - c t )  

The exact amplification factor is then 

u(t  + A t )  e i k m I x - c ( t + A t ) I  
- - 

e i k , ( x  - c t )  G, = 
u ( t )  

which reduces to 
G, = e- ik ,c  A t  = eiq5e 

where 

$e = - k , c A t  = -Pv 
and 

Eel = 1 

Thus the total dissipation (amplitude) error that accrues from applying the 
upstream differencing method to the wave equation for N steps is given by 

(1 - IGIN)A, 
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where A, is the initial amplitude of the wave. Likewise, the total dispersion 
(phase) error can be expressed as N(4e  - 4). The relative phase shift error 
after one time step is given by 

4 tan- '[(-vsinP)/(I  - v +  vcosp) ]  

4 e  - Pv 
(4.18) 

and is plotted in Fig. 4.3 for several values of v. For small wave numbers (i.e., 
small P )  the relative phase error reduces to 

_ -  - 

4 1 
- = 1 - -(2v2 - 3v + l ) P 2  4 e  6 

(4.19) 

If the relative phase error exceeds 1 for a given value of P ,  the corresponding 
Fourier component of the numerical solution has a wave speed greater than the 
exact solution, and this is a leadingphase error. If the relative phase error is less 
than 1, the wave speed of the numerical solution is less than the exact wave 
speed, and this is a laggingphase error. The upstream differencing scheme has a 
leading phase error for 0.5 < v < 1 and a lagging phase error for v < 0.5. 

Example 4.1 Suppose the upstream differencing scheme is used to solve the 
wave equation ( c  = 0.75) with the initial condition 

u(x,O) = sin (67rx) 
and periodic boundary conditions. Determine the amplitude and phase errors 
after 10 steps if A t  = 0.02 and Ax = 0.02. 

0 G x G 1 

Solution In this problem a unique value of p can be determined because the 
exact solution of the wave equation (for the present initial condition) is 

V 

1 I I 1 
1.50 1.00 0.50 0.00 0.50 1 .OO 

@he 

F i  4 3  Relative phase error of upstream differencing scheme. 
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represented by a single term of a Fourier series. Since the amplification factor is 
also determined using a single term of a Fourier series that satisfies the wave 
equation, the frequency of the exact solution is identical to the frequency 
associated with the amplification factor, i.e., f, = k,/27~. Thus the wave 
number for the present problem is given by 

2m7~ 677 
k , = - = -  = 6rr 

2L 1 
and p can be calculated as 

p = k, A X  = (67~)(0.02) = 0.127~ 

Using the Courant number, 

c A t  (0.75)(0.02) 
Ax (0.02) 

= 0.75 * =  - = 

the modulus of the amplification factor becomes 
I/' IGI = [ ( l  - v + v cos p ) 2  + ( -  v sin p) ' ]  = 0.986745 

and the resulting amplitude error after 10 steps is 

(1 - IGIN)A, = (1 - lC1'O)(1) = 1 - 0.8751 = 0.1249 

The phase angle ( 4 )  after one step, 

= -0.28359 I - v sin p 
1 -  v +  v c o s p  

4 = tan-' 

can be compared with the exact phase angle after one step, 

$J~ = - PV = - 0.28274 

to give the phase error after 10 steps: 

10(4e - 4 )  = 0.0084465 

Let us now compare the exact and numerical solutions after 10 steps where the 
time is 

t = 10At = 0.2 
The exact solution is given by 

U(X, 0.2) = sin [67r(x - 0.1511 
and the numerical solution that results after applying the upstream differencing 
scheme for 10 steps is 

U ( X ,  0.2) = (0.8751) sin [67~(x - 0.15) - 0.00844651 

In order to show the correspondence between the amplification factor and 
the modified equation, we write the modified equation [Eq. (4.131 in the 
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following form: 

d 2 n + l  U 

n = l  + ~ 2 n + 1  F) (4.20) 

where C,, and C2n+ represent the coefficients of the even and odd spatial- 
derivative terms, respectively. Warming and Hyett (1974) have shown that a 
necessary condition for stability is 

( -  1)l- 1c21 > 0 (4.21) 

where C,, represents the coefficient of the lowest order even derivative term. 
This is analogous to the requirement that the coefficient of viscosity in viscous 
flow equations be greater than zero. In Eq. (4.15) the coefficient of the lowest 
order even derivative term is 

c A x  
2 

c, = -(l - v )  

and therefore the stability condition becomes 

(4.22) 

(4.23) 

or v < 1, which was obtained earlier from the amplification factor. It should be 
remembered that the “heuristic” stability analysis, i.e., Eq. (4.21), can only 
provide a necessary condition for stability. Thus, for some finite-difference 
algorithms, only partial information about the complete stability bound is 
obtained, and for others (such as algorithms for the heat equation) a more 
complete theory must be employed. 

Warming and Hyett have also shown that the relative phase error for 
difference schemes applied to the wave equation is given by 

4 1 ”  

4 e  n = l  
- = 1 - - c (-1)n(k,)2nC2n+1 (4.24) 

where k ,  = p / A x  is the wave number. For small wave numbers, we need only 
retain the lowest order term. For the upstream differencing scheme, we find that 

1 1 

6 
4 - z 1 - -( -1) 

4 e  c 
C ,  = 1 - -(2v2 - 3~ + l ) p 2  (4.25~) 

which is identical to Eq. (4.19). Thus we have demonstrated that the amplification 
factor and the modified equation are directly related. 

The upstream method given by Eq. (4.7) may be written in a more general 
form to account for either positive or negative wave speeds. The method is 
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normally written separately for these two cases as 

However, if we make use of the following definitions, 

c+=  $ ( c  + Icl) 

c -=  $(c  - Icl) 

the upstream scheme may be written as the single expression 

Upon substituting for the values of C+ and c- ,  the final form becomes 

It is interesting to note that this form of the upstream scheme gives the 
impression that it is a centered method. We recognize the first difference term 
as a central-difference approximation and interpret the last term as an artificial 
viscosity term. The function of this last term is to add the appropriate dissipation 
to produce the upstream scheme when c is either positive or negative. 

4.1.3 Lax Method 
The Euler method, Eq. (4.6), can be made stable by replacing u; with the 
averaged term (u;+ , + u;- 1)/2. The resulting algorithm is the well-known Lax 
method (Lax, 1954), which was presented earlier: 

(4.26) 

This explicit one-step scheme is first-order accurate with T.E. of O[At, (Ax)2/ 
At]  and is stable if IvI Q 1. The modified equation is given by 

c A x  1 c ( A x ) ~  
2 3 

u, + cu, = -( y - v ) u , x  + - (1 - v~)u,,, + e . 9  (4.27) 

Note that this method is not uniformly consistent, since (Ax)2/At may not 
approach zero in the limit as At and A x  go to zero. However, if v is held 
constant as At and A x  approach zero, the method is consistent. The Lax 
method is known for its large dissipation error when v # 1. This large dissipation 
is readily apparent when we compare the coefficient of the u,, term in Eq. 
(4.27) with the same coefficient in the modified equation of the upstream 
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differencing scheme for various values of v. The large dissipation can also be 
observed in the amplification factor 

G = cos P - i v  sin P (4.28) 

which is described in Section 3.6.1. The modulus of the amplification factor is 
plotted in Fig. 4.4(a). The relative phase error is given by 

4 tan-l(-v tan P )  
4% - Pv 

- - _  

which produces a leading phase error, as seen in Fig. 4.Nb). 

4.1.4 Euler Implicit Method 

The algorithms discussed previously for the wave equation have all been explicit. 
The following implicit scheme, 

(4.29) 

is first-order accurate with T.E. of O [ A ~ , ( A X ) ~ ]  and, according to a Fourier 
stability analysis, is unconditionally stable for all time steps. However, a system 
of algebraic equations must be solved at each new time level. To illustrate this, 
let us rewrite Eq. (4.29) so that the unknowns at time level (n + 1) appear on 
the left-hand side of the equation and the known quantity uy appears on the 
right-hand side. This gives 

(4.30) 

v = 1.0 

I L 

I I I 
1 .oo 0.00 1.00 2:oo 1;00 0;w 1 :oo 

161 

(a )  (b) 

Figure 4.4 Lax method. (a) Amplification factor modulus. (b) Relative phase error. 



114 FUNDAMENTALS 

or 

where aj = v/2, d j  = 1, bj = - v/2, and Cj  = u;. Consider the computational 
mesh shown in Fig. 4.5, which contains M + 2 grid points in the x direction and 
known initial conditions at n = 0. Along the left boundary, u;+' has a fixed 
value of uo. Along the right boundary, uG+'+' can be computed as part of the 
solution using characteristic theory. For example, if v = 1, then u;:', = ua.  
Applying Eq. (4.31) to the grid shown in Fig. 4.5, we find that the following 
system of M linear algebraic equations must be solved at each ( n  + 1) time 
level: 

In Eq. (4.32), C, and CM are given by 

C ,  = U ;  - bu;++' 

CM = U ;  - au"+l M +  1 

(4.32) 

(4.33) 

where u;+ and uG'+l1 are the known boundary conditions. 
Matrix [A] in Eq. (4.32) is a tridiagonal matrix. A technique for rapidly 

solving a tridiagonal system of linear algebraic equations is due to Thomas 
(1949) and is called the Thomas algorithm. In this algorithm, the system of 
equations is first put into upper triangular form by replacing the diagonal 

j = O  1 2 M M + l  

Figure 4.5 Computational mesh. 
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elements di  with 

i = 2 , 3  ,..., M bi di  - - 
di- I 

and the Cj with 

The unknowns are then computed using back substitution starting with 

and continuing with 

Further details of the Thomas algorithm are given in Section 4.3.3. 
In general, implicit schemes require more computation time per time step 

but, of course, permit a larger time step, since they are usually unconditionally 
stable. However, the solution may become meaningless if too large a time step is 
taken. This is due to the fact that a large time step produces large T.E.s. The 
modified equation for the Euler implicit scheme is 

(4.34) U, + CU, = ( ;c2 At)u, ,  - [ + f ~ ~ ( A t ) ~ ]  uxxx  + * * *  

which does not satisfy the shift condition. The amplification factor 
1 - i v s i n p  

1 + v 2  sin2 p 

tan-' (- v sin p )  

G =  (4.35) 

and the relative phase error 
4 
- =  (4.36) 
4 e  - Pv 

are plotted in Fig. 4.6. The Euler implicit scheme is very dissipative for 
intermediate wave numbers and has a large lagging phase error for high wave 
numbers. 

v = 1.0 

1 .oo 0.00 1.00 

161 

n 1.00 0.00 1 .oo 

( a )  (b)  

Figure 4.6 Euler implicit method. (a) Amplification factor modulus. (b) Relative phase error. 
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4.1.5 Leap Frog Method 
The numerical schemes presented so far in this chapter for solving the linear 
wave equation are all first-order accurate. In most cases, first-order schemes are 
not used to solve PDEs because of their inherent inaccuracy. The leap frog 
method is the simplest second-order accurate method. When applied to the 
first-order wave equation, this explicit one-step three-time-level scheme becomes 

uy+1 - ujn-1 uy+l - uy-, 
+ C  = o  

2 At 2 A x  
(4.37) 

The leap frog method is referred to as a three-time-level scheme, since u must 
be known at time levels n and n - 1 in order to find u at time level n + 1. This 
method has a T.E. of O[(At)2,(Ax)2] and is stable whenever 1vI Q 1. The 
modified equation is given by 

c ( A x ) ~   AX)^ 
6 120 

u, + cu, = ~ ( v 2  - l)u,,, - - (9v4 - 1ov2 + l)U,,,,, + ..* 

(4.38) 

The leading term in the T.E. contains the odd derivative u , , ~ ,  and hence the 
solution will predominantly exhibit dispersive errors. This is typical of second- 
order accurate methods. In this case, however, there are no even derivative 
terms in the modified equation, so that the solution will not contain any 
dissipation error. As a consequence, the leap frog algorithm is neutrally stable, 
and errors caused by improper boundary conditions or computer round-off will 
not be damped (assuming periodic boundary conditions and Ivl Q 1). The 
amplification factor 

G = +(I - v2 sin2 p)”’ - iv sin p 

4 t an- ’ [ -vs inp/+( l  - v ~ s i n 2 p ) ” ~ I  

(4.39) 

and the relative phase error 

(4.40) _ -  - 
4 e  - Pv 

are plotted in Fig. 4.7. 
The leap frog method, while being second-order accurate with no dissipation 

error, does have its disadvantages. First, initial conditions must be specified at 
two-time levels. This difficulty can be circumvented by using a two-time-level 
scheme for the first time step. A second disadvantage is due to the “leap frog” 
nature of the differencing (i.e., uy” does not depend on uy), so that two 
independent solutions develop as the calculation proceeds. And finally, the leap 
frog method may require additional computer storage because it is a three- 
time-level scheme. The required computer storage is reduced considerably if a 
simple overwriting procedure is employed, whereby uy- is overwritten by uy”. 
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Figure 4.7 Leap frog method. (a) Amplification factor modulus. (b) Relative phase error. 

4.1.6 Lax-Wendroff Method 

The Lax-Wendroff finite-difference scheme (Lax and Wendroff, 1960) can be 
derived from a Taylor-series expansion in the following manner: 

u?" = U; + Atu, + $ ( A t ) 2 ~ , ,  + O[(AtI3] (4.41) 

Using the wave equations 
u, = -cu, 

u,, = c2u,, 

Equation (4.41) may be written as 

(4.42) 

~ 7 "  = U; - c Atu, + ~ c ~ ( A ~ ) ~ u , ,  + O[(At)31 (4.43) 

And finally, if u, and u,, are replaced by second-order accurate central- 
difference expressions, the well-known Lax-Wendroff scheme is obtained: 

c A t  c2 (At )2 

I 2 A x   AX)' 
.y+l == u? - - (Ui",, - Ui"-,> + - (Ui",, - 2ui" + Uin_J (4.44) 

This explicit one-step scheme is second-order accurate with a T.E. of 
O [ ( A X ) ~ , ( A ~ ) ~ ]  and is stable whenever IvI Q 1. The modified equation for this 
method is 

c ( A x ) ~  
(1 - v2)ux,, - - v(1 - v2)u,,,, + *.. (4.45) 

(Ax>2 
u, + cu, = -c- 

6 8 

The amplification factor 

G = 1 - v2(1 - cos p )  - iu sin p (4.46) 
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Figure 4.8 Lax-Wendroff method. (a) Amplification factor modulus. (b) Relative phase error. 

and the relative phase error 

4 
4. - Pv 

tan-'( - v sin @/[I - v2(1 - cos @ > I )  
(4.47) _ -  - 

are plotted in Fig. 4.8. The Lax-Wendroff scheme has a predominantly lagging 
phase error except for large wave numbers with < v < 1. 

4.1.7 Two-step Lax-Wendroff Method 
For nonlinear equations such as the inviscid flow equations, a two-step variation 
of the original Lax-Wendroff method can be used. When applied to the wave 

i equation, this explicit two-step three-time-level method becomes t 

Step 1: 

Step 2: 

(4.48) 

(4.49) 

This scheme is second-order accurate with a T.E. of o [ ( A ~ ) ~ , ( A t ) ~ l  and is 
stable whenever 1v1 G 1. Step 1 is the Lax method applied at the midpoint j + 
for a half time step, and step 2 is the leap frog method for the remaining half 
time step. When applied to the linear wave equation, the two-step Lax-Wendroff 
scheme is equivalent to the original Lax-Wendroff scheme. This can be readily 
shown by substituting Eq. (4.48) into Eq. (4.49). Since the two schemes are 
equivalent, it follows that the modified equation and the amplification factor are 
the same for the two methods. 
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4.1.8 MacCormack Method 

The MacCormack method (MacCormack, 1969) is a widely used scheme for 
solving fluid flow equations. It is a variation of the two-step Lax-Wendroff 
scheme that removes the necessity of computing unknowns at the grid points 
j + $ and j - 3. Because of this feature, the MacCormack method is particularly 
useful when solving nonlinear PDEs, as is shown in Section 4.4.3. When applied 
to the linear wave equation, this explicit, predictor-corrector method becomes 

- At  
n + l  = u? - c-(u? J + 1  - ‘7) 

‘i A x  
(4.50) Predictor: 

- At  - 
u;+l = - u? + U ? + l  - c- u n + l  - u n + l  2 J  “ J A x  ( J  J”) ] Corrector: (4.51) 

The term UF is a temporary “predicted” value of u at the time level 
n + 1. The corrector equation provides the final value of u at the time level 
n + 1. Note that in the predictor equation a forward difference is used for 
d u / d x ,  while in the corrector equation a backward difference is used. This 
differencing can be reversed, and in some problems it is advantageous to do so. 
This is particularly true for problems involving moving discontinuities. For the 
present linear wave equation, the MacCormack scheme is equivalent to the 
original Lax-Wendroff scheme. Hence the truncation error, stability limit, 
modified equation, and amplification factor are identical with those of the 
Lax-Wendroff scheme. 

4.1.9 Second-Order Upwind Method 
The second-order upwind method (Warming and Beam, 1975) is a variation of 
the MacCormack method, which uses backward (upwind) differences in both the 
predictor and corrector steps for c > 0: 

- c At  
u;+l = u; - - (u?  - u? ) (4.52) A x  J J - 1  

Predictor : 

Corrector : 

(4.53) 

The addition of the second backward difference in Eq. (4.53) makes this scheme 
second-order accurate with T.E. of O[(At) ’ ,  ( A t X A x ) ,  (Ax) ’ ] .  If Eq. (4.52) is 
substituted into Eq. (4.53), the following one-step algorithm is obtained: 
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The modified equation for this scheme is 

(4.55) 
The second-order upwind method satisfies the shift condition for both u = 1 
and u = 2. The amplification factor is 

u + 2(1 - u)sin2 1 + 2(1 - v)sin2 - 
2 

(4.56) 
and the resulting stability condition becomes 0 G u Q 2. The modulus of the 
amplification factor and the relative phase error are plotted in Fig. 4.9. The 
second-order upwind method has a predominantly leading phase error for 
0 < u < 1 and a predominantly lagging phase error for 1 < u < 2. We observe 
that the second-order upwind method and the Lax-Wendroff method have 
opposite phase errors for 0 < u < 1. This suggests that a considerable reduction 
in dispersive error would occur if a linear combination of the two methods were 
used. Fromm’s method of zero-average phase error (Fromm, 1968) is based on 
this observation. 

4.1.10 Time-Centered Implicit Method (Trapezoidal 
Differencing Method) 
A second-order accurate implicit scheme can be obtained if the two Taylor-series 
expansions 

v = 1.25 and 0.75 
2.00 and 1.00 
1.50 and 0.50 
1.75 and 0.25 

1.00 0.00 1.00 2.00 1 .oo 0.00 1.00 

I G l  @lo, 

( a )  (b) 

Figure 4.9 Second-order upwind method. (a) Amplification factor modulus. (b) Relative phase error. 
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are subtracted and (u,,)yfl is replaced with 

The resulting expression becomes 
A t  

uy” = uy + ~ [ ( u , ) ~  + ( u , ) ” ~ ] ~  + O[(At)3] (4.58) 

The time differencing in this equation is known as trapezoidal differencing or 
Crank-Nicolson differencing. Upon substituting the linear wave equation u, = 

-cu,, we obtain 
c At 

.y” = ur - - 2 [ (u,)” + ( u , ) ~ + ’ ]  + O[(At)3] (4.59) 

And finally, if the u, terms are replaced by second-order central differences, the 
time-centered implicit method results: 

(4.60) 

This method has second-order accuracy with T.E. of O[(Ax)’,(At)’] and is 
unconditionally stable for all time steps. However, a tridiagonal matrix must be 
solved at each new time level. The modified equation for this scheme is 

 AX)^ c ~ ( A ~ ) ~ ( A x ) ’  + -]u,,,,, c ~ ( A ~ ) ~  + (4.61) 
80 

+ [ 120 24 
-~ 

Note that the modified equation contains no even derivative terms, so that the 
scheme has no implicit artificial viscosity. When this scheme is applied to the 
nonlinear fluid dynamic equations, it often becomes necessary to add some 
explicit artificial viscosity to prevent the solution from “blowing up.” The 
addition of explicit artificial viscosity (i.e., “smoothing” term) to this scheme will 
be discussed in Section 4.4.7. The modulus of the amplification factor, 

1 - ( i  v/2) sin p 
1 + (iv/2) sin p G =  (4.62) 

and the relative phase error are plotted in Fig. 4.10. 

space if the difference approximation given by Eq. (3.31) is used for u,: 
The time-centered implicit method can be made fourth-order accurate in 

(4.63) 

The modified equation and phase error diagram for the resulting scheme can be 
found in the work by Beam and Warming (1976). 
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Figure 4.10 Time-centered implicit method. (a) Amplification factor modulus. (b) Relative phase 
error. 

4.1.11 Rusanov (Burstein-Mirin) Method 
The methods presented thus far for solving the wave equation have either been 
first-order or second-order accurate. Only a small number of third-order methods 
have appeared in the literature. Rusanov (1970) and Burstein and Mirin (1970) 
simultaneously developed the following explicit three-step method: 

uI:)1/2 = &;+l 1 + u;)  - +u(ufl - u;> 
Step 1: I + l  

*I"' = u? - g u  Step 2: J 3 ( J + 1 / 2  - '7'1/2) 

1 
24 

Step3: uy+l = u? - ---u(-2u? ] + 2  + 7u;+, - 7UYpl + 2u;-2) (4.64) 

w 
-- 2 4 ( ~ ; + 2  - 4u? + 624," - 4U;-l + uyp2) I f 1  

S:U; = u ; + ~  - 4 ~ ; + ~  + 6 ~ 7  - 4~,"-,  + ~ y - 2  

Step 3 contains the fourth-order difference term 

which is multiplied by a free parameter w. This term has been added to make 
the scheme stable. The need for this term is apparent when we examine the 
stability requirements for the scheme: 

IUIG 1 
4u2 - u4  < w G 3 (4.65) 

If the fourth-order difference term were not present (i.e., w = 01, we could not 
satisfy Eq. (4.65) for 0 < u G 1. The modified equation for this method is 

U t  + cu, = -q 24 u - 4 u +  u3)u,,,, 

c ( A x ) ~  
120 

+- ( - 5 w  + 4 + 1 5 ~ '  - ~u~)u,,, , ,  + * * *  (4.66) 
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In order to reduce the dissipation of this scheme, we can make the coefficient of 
the fourth derivative equal to zero by letting 

w = 4v2 - v 4  (4.67) 

In a like manner, we can reduce the dispersive error by setting the coefficient of 
the fifth derivative to zero, which gives 

( 4 ~ '  + 1)(4 - v 2 >  

5 
w =  (4.68) 

The amplification factor for this method is 

Y 2  2 0  P 
G = 1 - - sin2 /3 - - sin4 - - iv sin p 

2 3 2 

The modulus of the amplification factor and the relative phase error are plotted 
in Fig. 4.11. This figure shows that the Rusanov method has a leading or a 
lagging phase error, depending on the value of the free parameter w. 

4.1.12 Warming-Kutler-Lomax Method 
Warming et al. (1973) developed a third-order method that uses MacCormack's 
method for the first two steps and has the same third step as the Rusanov 
method. This so-called WKL method is given by 

v = 0.50, = 1.5 
v = 1.00, w = 3.0 

v - 0.25, w = 0.5 v = 0.75. 0 = 2.5 

v = 1.00. w = 3.0 v = 0.75, 
w -  2.5 

v = 0.50, 
w = 1.5 

1 .oo 0.00 1.00 1.00 0.00 1.00 
I G l  !$I+= 

(a )  ( b )  

Figure 4.11 Rusanov method. (a) Amplification factor modulus. (b) Relative phase error. 
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This method has the same stability bounds as the Rusanov method. In addition, 
the modified equation is identical to Eq. (4.66) for the present linear wave 
equation. The WKL method has the same advantage over the Rusanov method 
that the MacCormack method has over the two-step Lax-Wendroff method. 

4.1.13 Runge-Kutta Methods 

Runge-Kutta methods are frequently employed to solve ordinary differential 
equations (ODES). They can also be applied to solve PDEs (Lomax et al., 1970; 
and Jameson et al., 1981, 1983). In fact, several of the methods described 
previously in this section can be derived using Runge-Kutta methodology. The 
first step in this process is to convert the PDE into a "pseudo-ODE." This is 
accomplished by separating out a partial derivative with respect to a single 
independent variable in the marching direction and placing the remaining 
partial derivatives into a term that is a function of the dependent variable. For 
example, the linear wave equation can be written as 

u, = R ( u )  (4.70b) 

where R(u) = -cu,. This pseudo-ODE is a time-continuous equation, and any 
integration scheme applicable to ODES, including Runge-Kutta methods, may 
be used. Once the time differencing is completed, the partial derivatives 
contained in R(u) can be differenced using appropriate spatial differences. To 
illustrate this approach, let us apply the second-order Runge-Kutta method, also 
referred to as the improved Euler's method (Carnahan et al., 1969), to Eq. 
(4.70b1, which gives 

Step 1: ~ ( ' 1  = U" + AtR" 

A t  

2 
U"+1 = U" + - ( R E  + R q  Step 2: 

where 
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The term R(') in step 2 can be evaluated by making use of step 1 in the 
following manner: 

R(') = -cuv' 
= -c (u;  + AtR;) 

= -CU; + c2 Atu,", 

Substituting this expression for R(l) into step 2 yields 
At 
2 

u n + l  = U" + -( -2cu; + c2 Atu;,) 

If second-order accurate central differences are then used to approximate the 
spatial derivatives, the resulting scheme becomes 

c At  c2(At)2  
I 2 A x   AX)^ 

.y+* = u'! - -(.i"+l - ui"-l) + ~ (Ui",, - 2ui" + Ui"-,> 
which is the second-order accurate Lax-Wendroff scheme, Eq. (4.44). 

Procedures and equations for obtaining nth-order Runge-Kutta methods 
can be found in the works by Carnahan et al. (1969), Luther (1966), and Yu et 
al. (1992). A fourth-order Runge-Kutta method, attributed to Kutta, is given by 

Step 1: 

Step 2: 

Step 3: 
At 
6 

Step 4: U n + l  = U" + -(R" + 2R'" + 2R(2) + 
where R( ) = -cu!) for the linear wave equation. If second-order accurate 
spatial differences are inserted into this algorithm, the resulting scheme will 
have a T.E. of 0[(AO4,   AX)^]. In order to obtain higher-order spatial accuracy, 
it is convenient to employ compact difference schemes (Yu et al., 1992) with the 
Runge-Kutta time stepping. 

4.1.14 Additional Comments 
The improved accuracy of higher-order methods is at the expense of added 
computer time and additional complexity. These factors must be considered 
carefully when choosing a scheme to solve a PDE. In general, second-order 
accurate methods provide enough accuracy for most practical problems. 

For the 1-D linear wave equation, the second-order accurate explicit schemes 
such as the Lax-Wendroff scheme give excellent results with a minimum of 
computational effort. An implicit scheme may not be the optimum choice in this 
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case because the solution is unsteady and intermediate results are typically 
desired at relatively small time intervals. 

4.2 HEAT EQUATION 

The 1-D heat equation (diffusion equation), 

d U  d 2 U  

at d X 2  
- = ff- (4.71) 

is a parabolic PDE. In its present form, it is the governing equation for heat 
conduction or diffusion in a 1-D isotropic medium. It can be used to “model” in 
a rudimentary fashion the parabolic boundary-layer equations. The exact solution 
of the heat equation for the initial condition 

u(x, 0) = f < x >  

u(0 , t )  = u( l , t )  = 0 

u(x, t )  = C ~ , e - a ~ * ‘ s i n  ( k ~ )  

and boundary conditions 

is 
m 

n =  1 

where 

(4.72) 

and k = nr. Let us now examine some of the more important finite-difference 
algorithms that can be used to solve the heat equation. 

4.2.1 Simple Explicit Method 
The following explicit one-step method, 

q + l -  U; - 2u; + u;-l 
= f f  

A t  (Ax)’ 
(4.73) 

is first-order accurate with T.E. of O[At, (At)’]. At steady-state the accuracy is 
 AX)']. As we have shown earlier, this scheme is stable whenever 

(4.74) 

(4.75) 
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The modified equation is given by 

2 1  2 1  - - a 2 A t ( A X )  + - a ( A x )  
12 360 

(4.76) 

We note that if r = $, the T.E. becomes of 0 [ ( A t l 2 ,   AX)^]. It is also interesting 
to note that no odd derivative terms appear in the T.E. As a consequence, this 
scheme, as well as almost all other schemes for the heat equation, has no 
dispersive error. This fact can also be ascertained by examining the amplification 
factor for this scheme: 

G = 1 + ~ ~ ( C O S  p - 1) (4.77) 

which has no imaginary part and hence no phase shift. The amplification factor 
is plotted in Fig. 4.12 for two values of r and is compared with the exact 
amplification factor of the solution. The exact amplification (decay) factor is 
obtained by substituting the elemental solution 

= e - a k 2 t  i k m x  
m e  

B 

Figure 4.12 Amplification factor for simple explicit method. 
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into 

which gives 

or 

u ( t  + A t )  

u ( t >  
G, = 

G, = e - a k i  A t  

G, = p p 2  

(4.78) 

(4.79) 

where p = k ,  A x .  Hence the amplitude of the exact solution decreases by the 
factor e - r p z  during one time step, assuming no boundary condition influence. 

In Fig. 4.12, we observe that the simple explicit method is highly dissipative 
for large values of p when r = i. As expected, the amplification factor is in 
closer agreement with the exact decay factor when r = $. 

The present simple explicit scheme marches the solution outward from the 
initial data line in much the same manner as the explicit schemes of the 
previous section. This is illustrated in Fig. 4.13. In this figure we see that the 
unknown u can be calculated at point P without any knowledge of the boundary 
conditions along AB and CD. We know, however, that point P should depend on 
the boundary conditions along AB and CD, since the parabolic heat equation 
has the characteristic t = const. From this we conclude that the present explicit 
scheme (with a finite A t )  does not properly model the physical behavior of the 
parabolic PDE. It would appear that an implicit method would be the more 
appropriate method for solving a parabolic PDE, since an implicit method 
normally assimilates information from all grid points located on or below the 
characteristic t = const. On the other hand, explicit schemes seem to provide a 

‘INITIAL MTA 
LINE 

Figure 4.13 Zone of influence of simple explicit scheme. 
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more natural finite-difference approximation for hyperbolic PDEs that possess 
limited zones of influence. 

Example 4.2 Suppose the simple explicit method is used to solve the heat 
equation (a = 0.05) with the initial condition 

u ( x ,  0) = sin ( 2 7 ~ ~ )  0 Q x G 1 
and periodic boundary conditions. Determine the amplitude error after 10 steps 
if A t  = 0.1 and A x  = 0.1. 

Solution A unique value of p can be determined in this problem for the same 
reason that was given in Example 4.1. Thus the value of p becomes 

fl = k ,  A X  = (27r)(O.l> = 0.27~ 

After computing r ,  
a At  (0.05)(0.1) 

= 0.5 r =  - = 
(Ax)' (0.1)' 

the amplification factor for the simple explicit method is given by 

G = 1 + 2r(cos p - 1) = 0.809017 

while the exact amplification factor becomes 

G, = e-'OZ = 0.820869 

As a result, the amplitude error is 

AoIG,'O - G'OI = (1)(0.1389 - 0.1201) = 0.0188 

Using Eq. (4.72), the exact solution after 10 steps ( t  = 1.0) is given by 

u ( x ,  1) = e - a 4 a z  sin (27~x1 = 0.1389 sin (27Tx) 
which can be compared to the numerical solution: 

u ( x ,  1) = 0.1201 sin (27rx) 

4.2.2 Richardson's Method 

Richardson (1910) proposed the following explicit one-step three-time-level 
scheme for solving the heat equation: 

.;+l - u;-' u;+* - 2u; + uy-l 
= a  

2 At  ( A x ) 2  
(4.80) 

This scheme is second-order accurate with T.E. of 0[(Atl2,  (Ax)']. Unfor- 
tunately, this method proves to be unconditionally unstable and cannot be used 
to solve the heat equation. It is presented here for historic purposes only. 
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4.2.3 Simple Implicit (Laasonen) Method 

A simple implicit scheme for the heat equation was proposed by Laasonen 
(1949). The algorithm for this scheme is 

q + 1  - Mi" u"+l - 2u"+' + u ? + l  
1 + 1  I 1 - 1  

= f f  
At (Ax)' 

If we make use of the central-difference operator 

sx'u; = Ui"+l - 2u; + 
we can rewrite Eq. (4.81) in the simpler form: 

(4.81) 

(4.82) 

This scheme has first-order accuracy with a T.E. of O [ A t , ( A x ) ' ]  and is 
unconditionally stable. Upon examining Eq. (4.82), it is apparent that a 
tridiagonal system of linear algebraic equations must be solved at each time 
level n + 1. 

The modified equation for this scheme is 

+ - 

2 1  2 1  + - a * A t ( A x )  + - - ( A X )  
12 360 

(4.83) 

It is interesting to observe that in this modified equation, the terms in the 
coefficient of u,,,, are of the same sign, whereas they are of opposite sign in 
the modified equation for the simple explicit scheme, Eq. (4.76). This observation 
can explain why the simple explicit scheme is generally more accurate than the 
simple implicit scheme when used within the appropriate stability limits. The 
amplification factor for the simple implicit scheme, 

G = [l + 2 4 1  - cos p>1-' (4.84) 

is plotted in Fig. 4.14 for r = and is compared with the exact decay factor. 

4.2.4 Crank-Nicolson Method 
Crank and Nicolson (1947) used the 
heat equation: 

u;+1 - u; 
- - 

At  

following implicit algorithm to solve the 

sx'u; + s;u;+1 
ff 

 AX)^ 
(4.85) 
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+SIIIPLE I R L I C I T  
+CRANK-NICOLSON 

G 

Figure 4.14 Amplification factors for several methods. 

This unconditionally stable algorithm has become very well known and is 
referred to as the Crank-Nicolson scheme. This scheme makes use of trapezoidal 
differencing to achieve second-order accuracy with a T.E. of O[(At)2, (Ax)’]. 
Once again, a tridiagonal system of linear algebraic equations must be solved at 
each time level n + 1. The modified equation for the Crank-Nicolson method is 

(4.86) 

The amplification factor 

1 - r(1 - cos p> 
1 + r ( 1 -  cos p )  G =  (4.87) 

is plotted in Fig. 4.14 for r = i. 
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4.2.5 Combined Method A 
The simple explicit, the simple implicit, and the Crank-Nicolson methods are 
special cases of a general algorithm given by 

~ ; + l  - U; es;U;+l + (1 - 8) a$; 
= a  (4.88) 

where 8 is a constant (0 G 8 G 1). The simple explicit method corresponds to 
8 = 0, the simple implicit method corresponds to 8 = 1, and the Crank-Nicolson 
method corresponds to 8 = 3. This combined method has first-order accuracy 
with T.E. of O [ A t ,    AX)^] except for special cases such as 

1 .  8 = i(Crank-Nicolson method) T.E. = O [ ( A t ) ’ ,  (Ax) ’ ]  

A t  ( A x > 2  

2 .  
1 (Ax) ’  

8 =  - - - 
2 1 2 a A t  

T.E. = O [ ( A t 1 2 ,  

d% T.E. = O [ ( A t ) ’ ,  3. , g = - - -  and - = 
1 (Ax)’  (Ax) ’  
2 1 2 a A t  a At  

The T.E.s of these special cases can be obtained by examining the modified 
equation 

The present combined method is unconditionally stable if 3 G 8 Q 1. 
However, when 0 G 8 < +, the method is stable only if 

1 
O G r G  - 

2 - 48 
(4.90) 

4.2.6 Combined Method B 

Richtmyer and Morton (1967) present the following general algorithm for a 
three-time-level implicit scheme: 

This general algorithm has first-order accuracy with T.E. of O [ A t ,  ( A x ) 2 ]  except 
for special cases: 
1. e = L  T.E. = O [ ( A t ) ’ ,  

2 .  
1 ( A x ) 2  

8 =  - + ~ 

2 1 2 a A t  
T.E. = O [ ( A t ) ’ ,    AX)^] 
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which can be verified by examining the modified equation 

4.2.7 DuFort-Frankel Method 
The unstable Richardson method [Eq. (4.80)] can be made stable by replacing 
U; with the time-averaged expression (u;' ' + u;-')/2. The resulting explicit 
three-time-level scheme, 

.;+I - uy-1 U;,' - u;+l - u;-' + 
= a  

2 At  (Ax)' 

was first proposed by DuFort and Frankel (1953). Note that Eq. 
rewritten as 

U i " + ' ( l  + 2r) = u;-' + 2r(u;+, - u;-' + U;-') 

(4.92) 

(4.92) can be 

(4.93) 

so that only one unknown, u;", appears in the scheme, and therefore it is 
explicit. The T.E. for the DuFort-Frankel method is O[(At)', (Ax)', (At/Ax)'I. 
Consequently, if this method is to be consistent, then (At/Ax)' must approach 
zero as At and Ax approach zero. As pointed out in Chapter 3, if At/Ax 
approaches a constant value y ,  instead of zero, the DuFort-Frankel scheme is 
consistent with the hyperbolic equation 

dU d 2 U  d 2 U  

(Yax2 - + a y 2 7  = 
dt dt 

If we let r remain constant as At and Ax approach zero, the term (At/Ax)' 
becomes formally a first-order term of O(At). The modified equation is given by 

(Ax)4 U,,,,,, + *.. 1 1 4 1  2 (At)4 + -a(Ax) - -a3(At)  + 2a5- [ 360 3 

The amplification factor 

2r cos p f d 1  - 4r2  sin2 p 
1 + 2r 

G =  

is plotted in Fig. 4.14 for r = 3. The explicit DuFort-Frankel scheme has the 
unusual property of being unconditionally stable for r 0. In passing, we note 
that the DuFort-Frankel method can be extended to two and three dimensions 
without any unexpected penalties. The scheme remains unconditionally stable. 
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4.2.8 Keller Box and Modified Box Methods 

The Keller box method (Keller, 1970) for parabolic PDEs is an implicit scheme 
with second-order accuracy in both space and time. This formulation allows for 
the spatial and temporal steps to vary without causing deterioration in the 
formal second-order accuracy. The scheme differs from others considered thus 
far, in that second and higher derivatives are replaced by first derivatives 
through the introduction of additional variables as discussed in Section 2.5. Thus 
a system of first-order equations results. For the 1-D heat equation, 

dU d2U  

we can define 

- = ff- 
d t  d X 2  

dU 

d X  
u =  - 

so that the second-order heat equation can be written as a system of two 
first-order equations: 

dU 

d X  
- = v  

dU d U  

d t  d X  
Now we endeavor to approximate these equations using only central differences, 
making use of the four points at the corners of a  OX" about ( n  + i , j  - i) 
(see Fig. 4.15). The resulting difference equations are 

- = ff- 

(4.94a) 

(4.94 b) 

where the difference molecules are shown in Figs. 4.16 and 4.17. The mesh 
functions that contain a subscript or superscript 3 are defined as averages, as for 
example, 

After substituting the averaged expressions into Eqs. (4.94~) and (4.94b), the 
new difference equations become 

(4.95a) 



APPLICATION OF NUMERICAL METHODS TO SELECTED MODEL EQUATIONS 135 

n n+l 

Figure 4.15 Grid for box scheme. 

n 
j 6’ 

Figure 4.16 Difference molecule for evalua- 
tion of j-1 

4.17 Difference molecule for Eq. 

The unknowns (un+ ’ ,  vn+’) in the above equations are located at grid points j 
and j - 1. However, when boundary conditions are included, the unknowns may 
also occur at grid point j + 1. Thus the algebraic system resulting from the 
Keller box scheme for the general point can be represented in matrix form as 

[B]Fi”_:’ + [D]F/n+l+ [A]yGl= C 

where 

F = [ u , I J ] ~  

and [B], [D], and [A] are 2 x 2 matrices and C is a two-component vector. 
When the entire system of equations for a given problem is assembled and 
boundary conditions are taken into account, the algebraic problem can be 
expressed in the general form [ M b  = c, where the “elements” of the coefficient 
matrix [MI  are now 2 x 2 matrices, and each “component” of the column 
vectors becomes the two components of y+ ’ and C j  associated with point j .  
This system of equations is a block tridiagonal system and can be solved with the 
general block tridiagonal algorithm given in Appendix B or with a special-purpose 
algorithm specialized to take advantage of zeros that may be present in the 
coefficient matrices. The block algorithm actually proceeds with the same 
operations as for the scalar tridiagonal algorithm with matrix and matrix-vector 
multiplications replacing scalar operations. When division by a matrix would be 
indicated by this analogy, premultiplication by the inverse of the matrix is 
carried out. 
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The work required to solve the algebraic system resulting from the box- 
difference stencil can be reduced by combining the difference representations at 
two adjacent grid points to eliminate one variable. This system can then be 
solved with the simple scalar Thomas algorithm. This revision of the box 
method, which simplifies the final algebraic formulation, will be referred to as 
the modified box method. 

Modified box method. The strategy in the development of the modified box 
method is to express the u’s in terms of u’s. The term UY-’~’ can be eliminated 
from Eq. (4.95b) by a simple substitution using Eq. (4.95~). Similarly, U Y - ~  can 
be eliminated through substitution by evaluating Eq. (4.95~) at time level n.  
This gives 

To eliminate $’+’ and yn, Eqs. (4.952) and (4.95b) can first be rewritten 
with the j index advanced by 1 and combined. The result is 

- 2 f fq ui”+l - ui” +- + 2 f f  
A X j +  I (Axj+1)2 

ui”+l + ui” 
& l + l  

+ 

(4.96b) 

The terms yn+l and yn can then be eliminated by multiplying Eq. (4.96~) by 
Axj and Eq. (4.96b) by  AX^,^ and adding the two products. The result can be 
written in the tridiagonal format 

B . u ! + ~  + D.u?+l + A.u?+l  = 
I J - 1  J J J J + 1  ‘ J  

where 
Ax. 2 f f  A X j +  1 2 f f  

B . =  1 - - 
Atn + 1 Axj 

Ax.  AX^+^ 2ff 2 f f  
D .  = 1 +-  + - + -  

Atn+l Atn+l Axj A X j + l  

A , =  - - - 
Atn+l A X j + l  

J I 

J 

Ui”-l - ui” cj = 2 f f  + 2cY ui”+l - ui” 
Axj ‘Xi+ 1 
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The above equations can be simplified somewhat if the spacing in the x 
direction is uniform. Even then, a few more algebraic operations per time step 
are required than for the Crank-Nicolson scheme, which is also second-order 
accurate for a uniformly spaced mesh. A conceptual advantage of schemes based 
on the box-difference molecule is that formal second-order accuracy is achieved 
even when the mesh is nonuniform. The Crank-Nicolson scheme can be extended 
to cases of nonuniform grid spacing by representing the second derivative term 
as indicated for Laplace’s equation in Eq. (3.97). Formally, the T.E. for that 
representation is reduced to first order for arbitrary grid spacing. Blottner 
(1974) has shown that if the variable grid spacing used is one that could be 
established through a coordinate stretching transformation, then the Crank- 
Nicolson scheme is also second-order accurate for that variable grid arrangement. 

4.2.9 Methods for the Two-Dimensional Heat Equation 
The 2-D heat equation is given by 

d U  d 2 U  d 2 U  

d t  
(4.97) 

Since this PDE is different from the 1-D equation, caution must be exercised 
when attempting to apply the previous finite-difference methods to this equation. 
The following two examples illustrate some of the difficulties. If we apply the 
simple explicit method to the 2-D heat equation, the following algorithm results: 

(4.98) 

where x = i A x  and y = j A y .  As shown in Chapter 3, the stability condition is 
I u? . - 2 u ? .  + u? . u;,y - U t j  u;+ 1 ,  j - 224, j + u;- 1, j + 1,1+1 1.1 1, I - l  

= a[ 
A t  ( A x ) ’  ( A y ) ’  

If (Ax)’  = ( A y ) ’ ,  the stability condition reduces to r Q a, which is twice as 
restrictive as the 1-D constraint r Q 3 and makes this method even more 
impractical. 

When we apply the Crank-Nicolson scheme to the 2-D heat equation, we 
obtain 

(4.99) 

where the 2-D central-difference operators $2 and 6; are defined by 

- 2u;, j + ui”- 1 ,  j ui”+ I, j 

- 2 u ? .  1 , I  + u? 1 , I - l  . 

Sx”U;,j 

s,”.;, j 

-- - 8$;, j = 

(4.100) 
( A x > 2  ( A x ) ’  

U y I 2  U y ) ’  

U? . 
A’ n - r , 1 + 1  = -  ‘y Ui,  j - 

As with the 1-D case, the Crank-Nicolson scheme is unconditionally stable when 



138 FUNDAMENTALS 

- 
C 

b 

0 
0 
a 

0 

0 - 

applied to the 2-D heat equation with periodic boundary conditions. 
Unfortunately, the resulting system of linear algebraic equations is no longer 

The same is true for all the implicit schemes we have studied previously. In 
order to examine this further, let us rewrite Eq. (4.99) as 

tridiagonal because of the five unknowns uz: ', ur;: j ,  ur?: j ,  u z f i l ,  and ui, n +  j -  1 1. 

aunt 1 , J - l  + buy-+:, + cur,:' + buy::, + U U ~ , : :  = dr  (4.101) 

where 
(Y A t  1 a = -~ = -- 

2(Ay)' 2 ' y  

a At 1 b =  _ _ _ _  - p - -  
~ ( A X ) '  

c = 1 + rx f ry 

If we apply Eq. (4.101) to the 2-D (6 X 6) computational mesh shown in Fig. 
4.18, the following system of 16 linear algebraic equations must be solved at 
each ( n  + 1) time level: 

0 a 0 

a 
b 

C 

0 

U 

0 

C 

b 

a 

a 

b 

C 

b 

a a 

b 

C 

0 

a a 
0 

C 

b 

a a 

a a 

b 

C 

b 

a a 

b 
C 

0 

a a 
0 
C 

b 

a 
a 

b 

C 

b 

a 

a 

0 0 a 

(4.102) 
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u,, = CONSTANT ON 
BOUNDARY 

X 

Figure 4.18 Two-dimensional computational mesh. 

where d‘ = d - au, 
d” = d - bu, 
d”‘ = d - (U + b)u, 

A system of equations like Eq. (4.102) requires substantially more computer 
time to solve than does a tridiagonal system. In fact, equations of this type are 
often solved by iterative methods. These methods are discussed in Section 4.3. 

4.2.10 AD1 Methods 
The difficulties described above, which occur when attempting to solve the 2-D 
heat equation by conventional algorithms, led to the development of 
alternating-direction implicit (ADO methods by Peaceman and Rachford (1955) 
and Douglas (1955). The usual AD1 method is a two-step scheme given by 

Step 1: 

Step 2: 

(4.103) 

As a result of the “splitting” that is employed in this algorithm, only tridiagonal 
systems of linear algebraic equations must be solved. During step 1, a tridiagonal 
matrix is solved for each j row of grid points, and during step 2, a tridiagonal 
matrix is solved for each i row of grid points. This procedure is illustrated in Fig. 
4.19. The AD1 method is second-order accurate with a T.E. of 
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n +  

n +  

Figure 4.19 AD1 calculation procedure. 

O[(At)2,   AX)^, ( A Y ) ~ ] .  Upon examining the amplification factor 

where 

we find this method to be unconditionally stable. The obvious extension of this 
method to three dimensions (making use of the time levels n, n + 5, n + 5, n + 
1) leads to a conditionally stable method with T.E. of O[(At ,  ( A x ) 2 ,  ( A Y ) ~ ,  ( A z ) ~ ] .  

In order to circumvent these problems, Douglas and Gunn (1964) developed 
a general method for deriving AD1 schemes that are unconditionally stable and 
retain second-order accuracy. Their method of derivation is commonly called 
approximate factorization. When an implicit procedure such as the Crank-Nicolson 
scheme is cast into residual or delta form, the motivation for factoring becomes 
evident. The delta form is obtained by defining Aui, as 
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Substituting this into the 2-D Crank-Nicolson scheme [Eq. (4.9911 gives 

After rearranging this equation to put all of the unknowns on the left-hand side 
of the equation and inserting r, and ry ,  we obtain 

= (rxS:  + ~ , , S ; ) U : , ~  

If the quantity in parentheses on the left can be arranged as the product of two 
operators, one involving x-direction differences and the other involving y -  
direction differences, then the algorithm can proceed in two steps. One such 
fuctorizution is 

In order to achieve this factorization, the quantity rxry S,'S,' Aui ,  j/4 must be 
added to the left-hand side. The T.E. is thus augmented by the same amount. 
The factored equation can now be solved in the two steps: 

1 - -a2  AuZj = (rX8,' + r , S , z ) ~ : , ~  

Step 2: (1 - %Sy")  A u ~ , ~  = Au* [ > I  . 

where the superscript asterisk denotes an intermediate value. The unknown 
u[T1 is then obtained from 

u:,;' = u:, + Aui ,  

Using the preceding factorization approach and starting with the three- 
dimensional (3-D) Crank-Nicolson scheme, Douglas and Gunn also developed 
an algorithm to solve the 3-D heat equation: 

Step 1: ( ;"I 

Step 1: (1  - $8;) AU* = (rx8; + ry6; + r , g ) u n  

Step 2: (1 - 2 8 ; )  Au** = Au* (4.104) 

Step 3: (1 - 2 8 : )  Au = Au** 

where the superscript asterisks and double asterisks denote intermediate values 
and the subscripts i, j ,  k have been dropped from each term. 

4.2.11 Splitting or Fractional-Step Methods 

The AD1 methods are closely related and in some cases identical to the method 
of fractional steps or methods of splitting, which were developed by Soviet 
mathematicians at about the same time as the AD1 methods were developed in 
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the United States. The basic idea of these methods is to split a finite-difference 
algorithm into a sequence of l-D operations. For example, the simple implicit 
scheme applied to the 2-D heat equation could be split in the following manner: 

Step 1: 

Step 2: 

(4.105) 
n + l  - n + 1 / 2  

Ui, j U i ,  j * 2  n + l  = a u i ,  j 
At 

to give a first-order accurate method with a T.E. of 0 [ A t , ( A ~ ) ~ , ( A y ) ~ l .  For 
further details on the method of fractional steps, the reader is urged to consult 
the book by Yanenko (1971). 

4.2.12 ADE Methods 

Another way of solving the 2-D heat equation is by means of an alternating- 
direction explicit (ADE) method. Unlike the AD1 methods, the ADE methods 
do not require tridiagonal matrices to be “inverted.” Since the ADE methods 
can also be used to solve the l-D heat equation, we will apply the ADE 
algorithms to this equation, for simplicity. 

The first ADE method was proposed by Saul’yev (1957). His two-step 
scheme is given by 

U?+l - q + l  - ui” + .i”+l 
Ui” 1 - 1  

ui”+l - 
Step 1: = a  

At ( A x ) 2  
(4.106) 

In the application of this method, step 1 marches the solution from the left 
boundary to the right boundary. By marching in this direction, ~72,’ is always 
known, and consequently, ui”+ can be determined ‘‘explicitly.” In a like manner, 
step 2 marches the solution from the right boundary to the left boundary, again 
resulting in an “explicit” formulation, since u;:: is always known. We assume 
that u is known on the boundaries. Although this scheme involves three time 
levels, only one storage array is required for u because of the unique way in 
which the calculation procedure sweeps through the mesh. This scheme is 
unconditionally stable, and the T.E. is 0[(At)2,  (Ax)2,  (At/AxI2].  The scheme is 
formally first-order accurate (if r is constant) owing to the presence of the 
inconsistent term (At/AxI2 in the T.E. 

Another ADE method was proposed by Barakat and Clark (1966). In this 
method the calculation procedure is simultaneously “marched” in both 
directions, and the resulting solutions (#+’ and q;”) are averaged to obtain 
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the final value of uy+ ’: 
pi” + 1 - pi” pi”-+; - pi” + 1 - pi” + pi”+ 

= a  
At  ( A x > 2  

At  ( A x ) 2  
qy+1 - qi” qi”-l - qi” - qi”+1 + q?+l  1 + 1  (4.107) 

= a  

This method is unconditionally stable, and the T.E. is approximately 
0 [ ( A t l 2 ,  ( A x ) ’ ]  because the simultaneous marching tends to cancel the ( A t / A x I 2  
terms. It has been observed that this method is about 18/16 times faster than 
the AD1 method for the 2-D heat equation. 

Larkin (1964) proposed a slightly different algorithm, which replaces the p 
and q with u whenever possible. His algorithm is 

ui” + ui”+l n + l  n+l - Pj-1 -Pj 
ff 

( A x > *  

ui”-l - u’! I 1  - qn+l + 4;;; 
(Ax)’  

(4.108) 
ff 

+(pi”+l + 

Numerical tests indicate that this method is usually less accurate than the 
Barakat and Clark scheme. 

4.2.13 Hopscotch Method 
As our final algorithm for solving the 2-D heat equation, let us examine the 
hopscotch method. This method is an explicit procedure that is unconditionally 
stable. The calculation procedure, illustrated in Fig. 4.20, involves two sweeps 
through the mesh. For the first sweep, u:: is computed at each grid point (for 
which i + j + n is even) by the simple explicit scheme 

(4.109) 

For the second sweep, u:; is computed at each grid point (for which i + j + n 
is odd) by the simple implicit scheme 

(4.110) 

The second sweep appears to be implicit, but no simultaneous algebraic equations 
must be solved because u:;:~, u;::~, u:fil, and u:f!l are known from the first 
sweep; hence the algorithm is explicit. The T.E. for the hopscotch method is of 
O [ A t ,  ( A x ) 2 ,  (Ay) ’ ] .  
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f x i + j + n (ODD) 
0 i + j + n (EVEN) 

-i 

1 2 3 4 5 6  

n = O  

Figure 4.20 Hopscotch calculation procedure. 

4.2.14 Additional Comments 
The selection of a best method for solving the heat equation is made difficult by 
the large variety of acceptable methods. In general, implicit methods are 
considered more suitable than explicit methods. For the 1-D heat equation, the 
Crank-Nicolson method is highly recommended because of its second-order 
temporal and spatial accuracy. For the 2-D and 3-D heat equations, both the 
AD1 schemes of Douglas and Gunn and the modified Keller box method give 
excellent results. 

4.3 LAPLACE’S EQUATION 
Laplace’s equation is the model form for elliptic PDEs. For 2-D problems in 
Cartesian coordinates, Laplace’s equation is 

d 2 U  d 2 U  - + - = o  
d X 2  dy2 

(4.111) 

Some of the important practical problems governed by a single elliptic equation 
include the steady-state temperature distribution in a solid and the 
incompressible irrotational (“potential”) flow of a fluid. 

The incompressible Navier-Stokes equations are an example of a more 
complicated system of equations that has an elliptic character. The steady 
incompressible Navier-Stokes equations are elliptic but in a coupled and 
complicated fashion, since the pressure derivatives as well as velocity derivatives 
are sources of elliptic behavior. The elliptic equation arising in many physical 
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problems is a Poisson equation of the form 

(4.112) 

Thus elliptic PDEs will be found to frequently govern important problems in 
heat transfer and fluid mechanics. For this reason, we will give serious attention 
to ways of solving a model elliptic equation. 

4.3.1 Finite-Difference Representations for Laplace’s Equation 
The differences between  method^" for Laplace’s equation and elliptic equations 
in general are not so much differences in the finite-difference representations, 
(although these will vary) but more often, differences in the techniques used for 
solving the resulting system of linear algebraic equations. 

Five-point formula. By far the most common difference scheme for the 2-D 
Laplace equation is the five-point formula first used by Runge in 1908: 

which has a T.E. of  AX)^, (AyI2]. The modified equation is 

Nine-point formula. The nine-point formula appears to be a logical choice when 
greater accuracy is desired for Laplace’s equation in the Cartesian coordinate 
system. Letting Ax = h and Ay = k, the formula becomes 

h2 - 5k2 
ui+l , j+l  + * i - l , j+ l  + U i + l , j - l  + *i-1, j -1  - 2  h2 + k 2  (ui+l , j  + ui-1,j) 

5h2 - k2 
(u i , j+ l  + U i , j - J  - 20u. ‘.I ’ = 0 

h2 + k2 
+ 2  (4.114) 

The T.E. for this scheme is O(h2, k 2 )  but becomes O(h6) on a square mesh. 
Details of the T.E. and modified equation for this scheme are left as an exercise. 
Although the nine-point formula appears to be very attractive for Laplace’s 
equation because of the favorable T.E., this error may be only O(h2, k 2 )  when 
applied to a more general elliptic equation (including the Poisson equation) 
containing other terms. More details on the nine-point scheme can be found in 
the work by Lapidus and Pinder (1982). 

Other finite-difference schemes for Laplace’s equation can be found in the 
literature (see, for example, Thom and Apelt, 1960, but none seems to offer 
significant advantages over the five- and nine-point schemes given here. To 
obtain smaller formal T.E. in these schemes, more grid points must be used in 
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the difference molecules. High accuracy is difficult to maintain near boundaries 
with such schemes. 

Residual form of the difference equations. In some solution schemes it is 
advantageous to solve the difference equations in delta or residual form. We will 
illustrate the residual form by way of an example based on the five-point stencil 
given in Eq. (4.113). We let L be a difference operator giving the five-point 
difference representation. Thus, Lui, = 0 is equivalent to Eq. (4.113). A delta 
(change in the variable) is defined by ui , ,  = Ci,, + Au,, j ,  where Ci, represents a 
provisional solution such as might occur at some point in an iterative process 
before convergence, and ui , j  represents the exact numerical solution to the 
difference equation. (Readers should note that all deltas that arise in 
computational fluid dynamics are not defined in the same way. The deltas may 
have slightly different meanings, depending upon the algorithm or application. 
Deltas denote a change in something, but be alert to exactly how the delta is 
defined.) We can substitute ii,,j + A U , , ~  for u , , ~  in the difference equation 
L U ~ , ~  = 0 and obtain 

Lu. . = Lii. ' . I  . + L A U ~ , ~  = 0 (4.115) 

The residual is defined as the number that results when the difference equation, 
written in a form giving zero on the right-hand side, is evaluated for an 
intermediate or provisional solution. For Laplace's equation the residual can be 
evaluated as Ri, = Lii,, j .  If the provisional solution satisfies the difference 
equation exactly, the residual vanishes. With this definition, Eq. (4.115) can be 
written as 

L A u ~ , ~  = - R .  1 . 1  . (4.1 16) 

Equation (4.116) is an alternate and equivalent form of the difference equation 
for Laplace's equation. Starting with any provisional solution or, in fact, a simple 
guess, allows the residual to be computed at each grid point. From there, Eq. 
(4.116) can be solved for the deltas that are then added to the provisional 
solution. In some iterative schemes, the residuals are updated at each iteration, 
and new deltas are computed. To update the solution for u, the delta values are 
added to the provisional solution used to compute the residual. An example 
below in connection with the multigrid method will help clarify these ideas. 

' > I  

4.3.2 Simple Example for Laplace's Equation 

Consider how we might determine a function satisfying 

d 2 u  a 2 U  - + - = o  
d X 2  d y 2  

on the square domain 
O < X < l  o < y < 1  
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subject to Dirichlet boundary conditions. Series solutions can be obtained for 
this problem (most readily by separation of variables) satisfying certain 
distributions of u at the boundaries. These are available in most textbooks that 
cover conduction heat transfer (Chapman, 1974) and can be used as test cases to 
verify the finite-difference formulation. In this example, we will use the five-point 
scheme, Eq. (4.113), and let Ax = Ay = 0.1, resulting in a uniform 11 X 11 grid 
over the square problem domain (see Fig. 4.21). With Ax = Ay, the difference 
equation can be written as 

U i + l , j  + u i - l , j  + U i , j + 1  + U 1 , j - 1  - 4 U 1 , j  = 0 (4.117) 

for each point where u is unknown. In this example problem with Dirichlet 
boundary conditions, we have 81 grid points where u is unknown. For each one 
of those points, we can write the difference equation so that our problem is one 
of solving the system of 81 simultaneous linear algebraic equations for the 81 
unknown ui,  j .  Mathematically, our problem can be expressed as 

.......... 
‘ , n u n  =‘I 

a 2 n U n  = C 2  

a u + a u +  
a u + a  u + 11 1 12 2 

21 1 22  2 
.......... 

(4.118) 
..................... 

a n n u n  =Cn 
a u + 

n l  1 

or more compactly as [ ,4111 = C, where [A J is the matrix of known coefficients, 
u is the column vector of unknowns, and C is a column vector of known 
quantities. It is worth noting that the matrix of coefficients will be very sparse, 
since about 76 of the 81 a’s in each row will be zero. To make our example 
algebraically as simple as possible, we have let Ax = Ay. If Ax # Ay, the 

f 

x . i  

Figure 4.21 Finite-difference grid for Laplace’s equation. 
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coefficients will be a little more involved, but the algebraic equations will still be 
linear and can be represented by the general [Alu = C system given above. 

Methods for solving systems of linear algebraic equations can be readily 
classified as either direct or iterative. Direct methods are those that give the 
solution (exactly if round-off error does not exist) in a finite and predeterminable 
number of operations using an algorithm that is often quite complicated. 
Iterative methods consist of a repeated application of an algorithm that is 
usually quite simple. They yield the exact answer only as a limit of a sequence, 
but if the iterative procedure converges, we can come within E of the answer in 
a finite but usually not predeterminable number of operations. Some examples 
of both types of methods will be given. 

4.3.3 Direct Methods for Solving Systems of Linear Algebraic Equations 
Cramer’s rule. Cramer’s rule is one of the most elementary methods. All 
students have certainly heard of it, and most are familiar with the workings of 
the procedure. Unfortunately, the algorithm is immensely time consuming, the 
number of operations being approximately proportional to ( n  + l)!, where n is 
the number of unknowns. A number of horror stories have been told about the 
large computation time required to solve systems of equations by Cramer’s rule. 
The number of operations (multiplications and divisions) required to solve a 
system of algebraic equations by Gauss elimination (described below) is 
approximately n 3 / 3 .  The example problem discussed above for an 11 X 11 grid 
involved 81 unknowns. The operation count for solying this problem by Cramer’s 
rule is 82!, which is a very large number indeed (4.75 X dwarfing even 
the national debt. By comparison, solving the problem by Gauss elimination 
would require only about 177,147 operations. If we applied Cramer’s rule to the 
example problem with 81 unknowns using a machine capable of performing 100 
million floating point operations per second (100 megaflops), the calculation 
would require about 3.20 X 10”’ years. This is not worth waiting for! Using 
Gauss elimination would only require a fraction of a second on the same 
machine. Cramer’s rule should never be used for more than about three 
unknowns, since it rapidly becomes very inefficient as the number of unknowns 
increases. 

Gaussian elimination. Gaussian elimination is a very useful and efficient tool 
for solving many systems of algebraic equations, particularly for the special case 
of a tridiagonal system of equations. However, the method is not as fast as some 
others to be considered for more general systems of algebraic equations that 
arise in solving PDEs. Approximately n 3 / 3  multiplications and divisions are 
required in solving n equations. Also, round-off errors, which can accumulate 
through the many algebraic operations, sometimes cause deterioration of 
accuracy when n is large. Actually, the accuracy of the method depends on the 
specific system of equations, and the matter is too complex to resolve by a 
simple general statement. Rearranging the equations to the extent possible in 
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order to put the coefficients that are largest in magnitude on the main diagonal 
(known as “pivoting”) will tend to improve accuracy. However, since we will 
want to use an elimination scheme for tridiagonal systems of equations that 
arise in implicit difference schemes for marching problems, it would be well to 
gain some notion of how the basic Gaussian elimination procedure works. 

Consider the equations 
.......... a u + a u +  11 1 12 2 = C1 

a u + a u +  21 1 22 2 = C2 .......... 
(4.119) 

a u ...................... - 
n l  n -Cn 

The objective is to transform the system into an upper triangular array by 
eliminating some of the unknowns from some of the equations by algebraic 
operations. To illustrate, we choose the first equation (row) as the “pivot” 
equation and use it to eliminate the u1 term from each equation below it. This is 
done by multiplying the first equation by u21/a11t and subtracting it from the 
second equation to eliminate u1 from the second equation. Multiplying the pivot 
equation by a31/all and subtracting it from the third equation eliminates the 
first term from the third equation. This procedure can be continued to eliminate 
the u1 from equations 2 through n.  The system now appears in Fig. 4.22. 

Next, the second equation (as altered by the above procedure) is used as the 
pivot equation to eliminate u2 from all equations below it, leaving the system in 
the form shown in Fig. 4.23. The third equation in the altered system is then 
used as the next pivot equation and the process continues until only an upper 
triangular form remains: 

a u + a u +  11 1 12 2 = c1 

c; a’ u f a ‘  u + = 

............... 
.......... 

22 2 23 3 
.......... a’ 33 u 3 + = c; (4.120) 

We must always interchange rows if necessary to avoid division by zero. 

r FIRST PIVOT EQUATION I 
I- 1 

Figure 4.22 Gaussian elimination, u1 eliminated below main diagonal. 
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Figure 4.23 Gaussian elimination, u1 and u2 eliminated below main diagonal. 

At this point, only one unknown appears in the last equation, two in the 

Consider the following system of three equations as a specific numerical 
next to last equation, etc., so a solution can be obtained by back substitution. 

example: 
u, + 4u2 + u3 = 7 

U, + 6U2 - U3 = 13 
2U, - U2 + 2U3 = 5 

Using the top equation as a pivot, we can eliminate U, from the lower two 
equations: 

u, + 4u2 + u3 = 7 
2U2 - 2U3 = 6 
- 9 4  + 0 = ' - 9  

Now using the second equation as a pivot, we obtain the upper triangular form: 

2U2 - 2U3 = 6 
u, + 4u2 + u3 = 7 

-9u3 = 18 
Back substitution yields U3 = -2, U2 = 1, U, = 5. 

Block-iterative methods for Laplace's equation (Section 4.3.4) lead to systems 
of simultaneous algebraic equations which have a tridiagonal matrix of 
coefficients. This was also observed in Sections 4.1 and 4.2 for implicit 
formulations of PDEs for marching problems. To illustrate how Gaussian 
elimination can be efficiently modified to take advantage of the tridiagonal form 
of the coefficient matrix, we will consider the simple implicit scheme for the 
heat equation as an example: 

dU d 2 U  _ -  at - a s  



APPLICATION OF NUMERICAL METHODS TO SELECTED MODEL EQUATIONS 151 

- 

1 

_ _  

In terms of the format used before for algebraic equations, this can be rewritten 
as 

b.ul"+l + d.u?+' + a.U!+l = 
I 1-1 I I I 1 + 1  

where 

-u;+1 
un + 1 

2 

U;;' 

For Dirichlet boundary conditions, uy?fll is known at one boundary and 
~7:': at the other. All known u are collected into the cj term, so our system 
looks like 

0 . . .  . 
0 . .  . 

a 3 0 .  * 

d ,  a, 0 * 

C1 

c 2  

CNJ 

Even when other boundary conditions apply, the system can be cast into the 
above form, although the first and last equations in the array may result from 
auxiliary relationships related to the boundary conditions and not to the original 
difference equation, which applies to nonboundary points. 

For this tridiagonal system it is easy to modify the Gaussian elimination 
procedure to take advantage of the zeros in the matrix of coefficients. This 
modified procedure, suggested by Thomas (19491, is discussed briefly in Section 
4.1.4. 

Thomas algorithm. Referring to the tridiagonal matrix of coefficients above, the 
system is put into an upper triangular form by computing the new d j  by 

then computing the unknowns from back substitution according to uNJ = 
cNJ/dNJ ,  and then 

' k  - ' k U k + l  

d k  
uk = k = NJ - 1, NJ - 2,. . . , l  
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In the above equations, the equals sign means “is replaced by,” as in the 
FORTRAN programming language. A FORTRAN program for this procedure 
is given in Appendix A. 

Some flexibility exists in the way in which boundary conditions are handled 
when the Thomas algorithm is used to solve for the unknowns. It is best that the 
reader develop an appreciation for these details through experience; however, a 
comment or two will be offered here by way of illustration. The main purpose of 
the elimination scheme is to determine the unknowns; therefore, for Dirichlet 
boundary conditions, the u’s at the boundary need not be included in the list of 
unknowns. That is, u, in the elimination algorithm could correspond to the u at 
the first nonboundary point, and uN, to the u at the last nonboundary point. 
However, no harm is done, and programming may be made easier, by specializing 
a,, d , ,  b,, and d ,  to provide a redundant statement of the boundary 
conditions. That is, if we let d, = 1, a, = 0, d, = 1, bN, = 0, c1 = u;+’ (given), 
and cN, = d;;’ (given), the first and last algebraic equations become just a 
statement of the boundary conditions. As an example of how other boundary 
conditions fall easily into the tridiagonal format, consider convective (mixed) 
boundary conditions for the heat equation: 

A control-volume analysis at the boundary where j = 1 leads to a difference 
equation that can be written as 

d,u;+’ + a 1 2  u“+, = c1 . 
where 

d, = 1 + q ( l +  7) 
( A x )  

- 2 a A t  2 a ( A t ) h ( A x )  . . .  . 

a, = c ,  = u, + u; 
( A x ) ’  ( A x ) 2 k  

which obviously fits the tridiagonal form for the first row. 

Advanced-direct methods. Direct methods for solving systems of algebraic 
equations that are faster than Gaussian elimination certainly exist. 
Unfortunately, none of these methods is completely general. That is, they are 
applicable only to the algebraic equations arising from a special class of 
difference equations and associated boundary conditions. Many of these methods 
are “field size limited” (limited in applicability to relatively small systems of 
algebraic equations) owing to the accumulation of round-off errors. As a class, 
the algorithms for fast direct procedures tend to be rather complicated and not 
easily adapted to irregular problem domains or complex boundary conditions. 
Somewhat more computer storage is usually required than for an iterative 
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method suitable for a given problem. In addition, the best iterative methods 
developed in recent years (mainly multigrid methods) are actually faster than 
the direct methods. It seems that the simplest of the direct methods suffer from 
the field size limitations and are relatively restricted in their range of application, 
and those that are not field size limited have algorithms with very involved 
details that are beyond the scope of this text. Consequently, only a few of these 
methods will be mentioned here, and none will be discussed in detail. 

One of the simplest of the advanced, direct methods is the error vector 
propagation (EVP) method developed for the Poisson equation by Roache 
(1972). This method is field size limited; however, the concepts are 
straightforward. Two fast direct methods for the Poisson equation that are not 
limited, owing to accumulation of round-off errors, are the “odd-even reduction” 
method of Buneman (1969) and the fast Fourier transform method of Hockney 
(1965, 1970). Swartztrauber (1977) discusses optimal combinations of the two 
schemes. More recent developments, including implementation details for 
supercomputers, are discussed by Hockney and Jesshope (1981). Clearly, the fast 
direct methods should be considered for problems where the geometry and 
boundary conditions will permit their use and when computer execution time is 
an overriding consideration. These methods can be 10-30 times faster than the 
simpler iterative methods but are not expected to be faster than the multigrid 
iterative methods, which will be introduced below. 

Another type of advanced direct method is known as a sparse matrix method, 
the most well known of which is the Yale sparse matrix package (Eisenstadt et 
al., 1977). Unlike the “fast” solvers discussed above, the sparse matrix methods 

that take advantage of the sparseness of the coefficient matrix. The methods 
generally require extensive computer memory and are not more efficient than 
the better iterative methods. Examples of the use of such methods to solve the 
Navier-Stokes equations can be found in the works of Bender and Khosla (1988) 
and Venkatakrishnan and Barth (1989). 

L can be quite general. The methods are essentially “smart” elimination methods 

4.3.4 Iterative Methods for Solving Systems of Linear 
Algebraic Equations 

Iterative methods are also known as “relaxation” methods, a term derived from 
the residual relaxation method introduced by Southwell many years ago. This 
class of methods can be further broken down into point- (or explicit) iterative 
methods and block- (or implicit) iterative methods. In brief, for point-iterative 
methods, the same simple algorithm is applied to each point where the unknown 
function is to be determined in successive iterative sweeps, whereas in block- 
iterative methods, subgroups of points are singled out for solution by elimination 
(direct) schemes in an overall iterative procedure. 

Gauss-Seidel iteration. Although many different iterative methods have been 
suggested over the years, Gauss-Seidel iteration (often called Liebmann iteration 
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when applied to the algebraic equation resulting from the differencing of an 
elliptic PDE) is one of the most efficient and useful point-iterative procedures 
for large systems of equations. The method is extremely simple but only 
converges under certain conditions related to “diagonal dominance” of the 
matrix of coefficients. Fortunately, the differencing of many steady-state 
conservation statements provides this diagonal dominance. The method makes 
explicit use of the sparseness of the matrix of coefficients. 

The simplicity of the procedure will be demonstrated by an example prior to 
a concise statement regarding the sufficient condition for convergence. When 
the method can be used, the procedure for a general system of algebraic 
equations would be to (1) make initial guesses for all unknowns (a guessed value 
for one unknown will not be needed, as seen in example below); (2) solve each 
equation for the unknown whose coefficient is largest in magnitude, using 
guessed values initially and the most recently computed values thereafter for the 
other unknowns in each equation; (3) repeat iteratively the solution of the 
equations in this manner until changes in the unknowns become “small,” 
remembering to use the most recently computed value for each unknown when 
it appears on the right-hand side of an equation. As an example, consider the 
system 

4x, - x2 + x3 = 4 

-x, + 2x2 + 5x3 = 2 
x1 + 6 x 2  + x 3  = 9 

We would first rewrite the equations as 

XI = +(4 + x 2  -x3) 

x2 = 5(9 -XI - x 3 )  

x3 = 3 2  + X I  - 2x2) 

1 

then make initial guesses for x 2  and x 3  (a guess for x ,  is not needed) and 
compute xl, x 2 ,  x3 iteratively as indicated above. 

Referring to the five-point stencil for Laplace’s equation, we observe that 
the unknown having the coefficient largest in magnitude is u ~ , ~ .  Letting p = 

Ax/Ay, the grid aspect ratio, the general equation for the Gauss-Seidel 
procedure for Laplace’s equation can be written as 

(4.121) 

where k denotes the iterative level, i denotes the column, and j the row. In Eq. 
(4.121), the sweep direction is assumed to be from low values of i and j to large 
values. Thus, at least two unknowns in each equation would already have been 
calculated at the k + 1 level. In terms of a general system of equations, 
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[Ah = b, the Gauss-Seidel scheme can be written as 
i - 1  

aii j= 1 
X k + l  = - l [  bi - c a..xk+’ ‘ I 1  - 2 aijxk ] (4.122) 

where it is understood that the system of equations has been reordered, if 
necessary, so that the coefficients largest in magnitude are on the main diagonal. 

In passing, we shall mention that an iterative process can also be performed 
without continuously updating values on the right-hand side. If the unknowns on 
the right-hand side are updated only after each iterative sweep through the 
entire field, the process is known as Jacobi iteration. For model problems, Jacobi 
iteration requires approximately twice as many iterations for convergence as 
Gauss-Seidel iteration. 

j= i+  1 

Sufficient condition for convergence of the Gauss-Seidel procedure. In order to 
provide a compact notation, as above, we will order the equations, if possible, so 
that the coefficient largest in magnitude in each row is on the main diagonal. 
Then if the system is irreducible (cannot be arranged so that some of the 
unknowns can be determined by solving less than n equations) and if 

for all i and if 

(4.123) 

(4.124) 

for at least one i, then the Gauss-Seidel iteration will converge. This is a 
suficient condition, which means that convergence may sometimes be observed 
when the above condition is not met. A necessary condition can be stated, but it 
is impractical to evaluate. Stated in words, the sufficient condition can be 
interpreted as requiring for each equation that the magnitude of the coefficient 
on the diagonal be greater than or equal to the sum of the magnitudes of the 
other coefficients in the equation, with the “greater than” holding for at least 
one (usually corresponding to a point near a boundary for a physical problem) 
equation. 

Perhaps we should now relate the above iterative convergence criteria to the 
system of equations that results from differencing Laplace’s equation according 
to Eq. (4.113). First we observe that the coefficient largest in magnitude belongs 
to ui, j. Since we apply Eq. (4.113) to each point where ui, is unknown, we could 
clearly arrange all the equations in the system so that the coefficient largest in 
magnitude appeared on the diagonal. With the exercise of proper care in 
establishing difference representations, this type of diagonal dominance can 
normally be achieved for all elliptic equations. In terms of a linear difference 
equation for u, we would expect the Gauss-Seidel iterative procedure to 
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converge if the finite-difference equation applicable to each point i, j, where ui,  
is unknown, is such that the magnitudes of the coefficient of ui, is greater than 
or equal to the sum of the magnitudes of the coefficients of the other unknowns 
in the equation. The “greater than” must hold for at least one equation. 

We will not offer a proof for this sufficient condition for the convergence of 
the Gauss-Seidel iteration, but hopefully, a simple example will suggest why it is 
true. If we look back to our simple three-equation example for Gauss-Seidel 
iteration and consider that at any point our intermediate values of x are the 
exact solution plus some E ,  i.e., x1 = (xl)exact + el, then our condition of 
diagonal dominance is forcing the E to become smaller and smaller as the 
iteration is repeated cyclically. For one run through the iteration, we could 
observe 

IE:I Q &;I + +:I 
le i1 =G i I E ? l  + ilE:l 

1EiI  < 4k;I + +;I 
If E: and E: were initially each 10, IE;I would be Q 5 and I E ~ I  Q 1.446. Here, 
superscripts denote iterative level. 

Finally, we note for a general system of equations, the multiplications per 
iteration could be as great as n2 but could be much less if the matrix was sparse. 

Successive overrelaxation. Successive overrelaxation (SOR) is a technique that 
can be used in an attempt to accelerate any iterative procedure, but we will 
propose it here primarily as a refinement to the Gauss-Seidel method. As to the 
origins of the method, one story (probably inaccurate) being passed around is 
that the method was suggested by a duck hunter, who finally learned that if he 
pointed his gun ahead of the duck, he would score more hits than if he pointed 
the gun right at the duck. The duck is a moving target, and if we anticipate its 
motion, we are more likely to hit it with the shot pattern. The duck hunter told 
his story to his neighbor, who was a numerical analyst, and SOR was born-or 
so the story goes. 

As we apply Gauss-Seidel iteration to a system of simultaneous algebraic 
equations, we expect to make several recalculations or iterations before 
convergence to an acceptable level is achieved. Suppose that during this process 
we observe the change in the value of the unknown at a point between two 
successive iterations, note the direction of change, and anticipate that the same 
trend will continue on to the next iteration. Why not go ahead and make a 
correction to the variable in the anticipated direction before the next iteration, 
thereby, hopefully, accelerating the convergence? An arbitrary correction to the 
intermediate values of the unknowns from any iterative procedure (Gauss-Seidel 
iteration is of most interest to us at this point, so we will use it as the 
representative iterative scheme), according to the form 

Uk’ .) 
$ , I  (4.125) 
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is known as overrelaxation or successive overrelaxation. Here, k denotes iteration 
level, u$' is the most recent value of ui , j  calculated from the Gauss-Seidel 
procedure, u:;. is the value from the previous iteration as adjusted by previous 
application of this formula if the overrelaxation is being applied successively (at 
each iteration), and u:f " is the newly adjusted or "better guess" for ui, at the 
k + 1 iteration level. That is, we expect utf" to be closer to the final solution 
than the unaltered value u?f ' from the Gauss-Seidel calculation. The formula 
is applied immediately at each point after u t f '  has been obtained, and utf" 
replaces u::' in all subsequent calculations in the cycle. Here, w is the 
relaxation parameter, and when 1 < w < 2, overrelaxation is being employed. 
Overrelaxation can be likened to linear extrapolation based on values u?> and 
u:; '. In some problems, underrelawation 0 < w < 1 is employed. Underrelaxation 
appears to be most appropriate when the convergence at a point is taking on 
an oscillatory pattern and tending to "overshoot" the apparent final solution. 
For underrelaxation the adjusted value, u t f '  is between uy j  and u t f ' .  
Overrelaxation is usually appropriate for numerical solutions to Laplace's 
equation with Dirichlet boundary conditions. Underrelaxation is sometimes 
called for in elliptic problems, it seems, when the equations are nonlinear. 
Occasionally, for nonlinear problems, underrelaxation is even observed to be 
necessary for convergence. 

We note that the relaxation parameter should be restricted to the range 
0 < w < 2. For convergence, we require that the magnitude of the changes in u 
from one iteration to the next become smaller. Use of o > 2 forces these 
changes to remain the same or to increase, in contradiction to convergent 
behavior. 

Two important remaining questions are, how can we properly determine a 
good or even the best value for w ,  and by how much does this procedure 
accelerate the convergence? No completely general answers to these questions 
are available, but some guidelines can be drawn. 

For Laplace's equation on a rectangular domain with Dirichlet boundary 
conditions, theories pioneered by Young (1954) and Frankel (1950) lead to an 
expression for the optimum w (hereafter denoted by wop,). First, defining u as 

7 u = 2 (COS- + p2 cos- 
1 IT 

l + P  P 4 

the optimum w is given by 

2 
wopt = 

1 + (1 - u 2 ) 1 ' 2  

(4.126) 

(4.127) 

where p is the grid aspect ratio as defined previously, p is the number of A x  
increments, and q is the number of Ay increments along the sides of the 
rectangular region. The formula can also be used for problems in rectangular 
regions with certain combinations of Dirichlet and Neumann boundary 
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conditions that permit an equivalent Dirichlet problem to be recognized by 
identifying the Neumann boundaries as lines of symmetry in a Dirichlet problem. 
In general, however, for more complex elliptic problems it is not possible to 
determine wopt in advance. In these cases, some numerical experimentation 
should be helpful in identifying useful values for w. Numerical examples and 
theory generally indicate that it is better to guess on the high side of wept than 
on the low side. Hageman and Young (1981) discuss considerations in the search 
for wopt in some detail. 

Is the w search worthwhile? The answer is emphatically yes. In some 
problems it is possible to reduce the computation time by a factor of 30. This is 
significant! Occasionally, SOR may be found not to be of much help in 
accelerating convergence, but it should always be considered afid evaluated. The 
potential for savings in computation time is too great to ignore. 

Since overrelaxation can be viewed as applying a correction to the values 
obtained from the Gauss-Seidel procedure based on extrapolation from previous 
iterates, it is natural to wonder if other, perhaps more accurate (in terms of T.E. 
of the extrapolation formula) extrapolation schemes can be used to accelerate 
the convergence of iterative procedures. In fact, other schemes such as Aitken 
and Richardson extrapolation have been used in this application. The details of 
these extrapolation schemes are covered in standard texts on numerical analysis, 
but as is perhaps expected, any advantage in accelerating the convergence of the 
iterative process by using more complex extrapolation schemes has to be 
weighed against any added computation costs due to requirements of additional 
storage or algebraic operations. SOR has simplicity in its favor, and it can be 
programmed so that no additional arrays need to be stored. 

In the SOR scheme the calculations normally proceed in a systematic way 
with sweeps from the lower left-hand comer of the domain to the upper 
right-hand side (in two dimensions from low values of i and j to high values of i 
and j ) .  This scheme has a bias in terms of sweep direction that may permit the 
largest errors to accumulate at the high values of i and j .  A modification to 
SOR known as symmetric successive overrelaxation (SSOR) attempts to improve 
upon this condition. In SSOR, one alternates the sweep direction. A pass from 
low values of i and j to high values of i and j is followed by a sweep from high i 
and j to low i and j. 

Coloring schemes. Supercomputers in common use today employ vector 
processing to obtain greater execution speeds. The uectorization occurs in 
FORTRAN DO loops (only in the innermost loop if the loops are nested) and 
can be thought of as a simultaneous execution of the statements in the DO loop 
for all values of the DO parameter. If the statements in the DO loop are 
recursive in nature, i.e., the right-hand side of the statement contains results 
previously computed in the loop, then the compiler rejects that loop for 
vectorization because an apparent error would occur if the statements were 
executed simultaneously. Vectorization naturally speeds up the algorithm and is 
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a desirable feature. An example of a vectorizable FORTRAN DO loop is 

do 1 0 j  = 1,nj  
a ( j )  = b ( j ) * c  + d 

10 continue 

and an example of a recursive loop that cannot be performed as given in a 
vector manner is 

do 10 j = 1, nj 
a ( j )  = a ( j  - l ) * c  + d 

10 continue 

The Gauss-Seidel algorithm is recursive in appearance because of the 
preference to use the most recent (updated) values of the unknown function on 
the right-hand side. Thus the algorithm is not vectorizable. Simple Jacobi 
iteration is vectorizable but converges more slowly than Gauss-Seidel iteration. 
A variation of the Gauss-Seidel procedure known as the red-black or 
checkerboard scheme has approximately the same convergence properties as the 
Gauss-Seidel procedure but is vectorizable. Imagine that the nodes are colored 
like a checkerboard, every other point red, alternate points black, as indicated in 
Fig. 4.24. The red-black scheme updates the variables in two sweeps, much as 
was done for the hopscotch scheme. This can be thought of as performing a 
Jacobi iteration on every other point. Sweep 1 updates red points (points for 
which i + j is even in two dimensions). At this point, black points are surrounded 
by nodes for which the unknown has been updated (see Fig. 4.24). Sweep 2 
updates the black points (points for which i + j  is odd). The two sweeps 
constitute one iteration. The DO loops proceed in strides of 2 (every other 
point), and a compiler directive may be needed to confirm the vectorization 
because the appearance of the right-hand sides may give the impression that the 

t 
til RED 

0 BLACK 

Figure 4.24 Red-black (checkerboard) order- 
A A * & + x , i  ing. 
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scheme is recursive. The favorable convergence properties arise because some 
of the updates use information that has been obtained within the same iteration 
(but not the same DO loop). 

For Laplace’s equation in two dimensions in the Cartesian coordinate 
system, only two subdivisions of points (red and black) are necessary to recover 
the convergence properties of the Gauss-Seidel scheme on a vector machine. 
The question might arise as to whether more than two colors (or two subdivisions 
of points) are ever needed. This question is most likely to arise in the use of 
unstructured grids, for which the cell shape and the ordering of nodes in the 
solution algorithm may vary greatly. Unstructured grids will be discussed in 
Chapters 6 and 10. If we restrict our concern to the nearest neighbors and wish 
to color the domain so that adjacent nodes (or cells) are of a different color, a 
famous theorem from graph theory states that four colors are sufficient to do 
this in two dimensions. This fact has been generally accepted for more than 100 
years but was only proven by Appel and Haken in 1976. Four colors mean that 
four DO loops would be used to “visit” every node or cell. Clearly, less than 
four colors is sometimes adequate, as is the case for a 2-D grid formed in the 
Cartesian coordinate system. 

Block-iterative methods. The Gauss-Seidel iteration method with SOR stands as 
the best all-around method for the finite-difference solution of elliptic equations 
discussed in detail thus far in this chapter. The number of iterations can usually 
be reduced even further by use of block-iterative concepts, but the number of 
algebraic operations required per iterative cycle generally increases, and whether 
the reduction in number of required iterative cycles compensates for the extra 
computation time per cycle is a matter that must be studied for each problem. 
However, several cases can be cited where the use of block-iterative methods 
has resulted in a net saving of computation time, so that these procedures 
warrant serious attention. Ames (1977) and Lapidus and Pinder (1982) present 
useful discussions that compare the rates of convergence for several point- and 
block-iterative methods. 

In block- (or group) iterative methods, subgroups of the unknowns are 
singled out, and their values modified simultaneously by obtaining a solution 
to the simultaneous algebraic equations by elimination methods. Thus the 
block-iterative methods have an implicit nature and are sometimes known as 
implicit-iterative methods. In the most common block-iterative methods the 
unknowns in the subgroups (to be modified simultaneously) are set up so that 
the matrix of coefficients will be tridiagonal in form, permitting the Thomas 
algorithm to be used. The simplest block procedure is SOR by lines. 

SOR by lines (SLOR). Although SLOR is workable with almost any iterative 
algorithm, it makes the most sense within the framework of the Gauss-Seidel 
method with SOR. We can choose either rows or columns for grouping with 
equal ease. To illustrate the procedure, consider again the solution to Laplace’s 
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(1  

SWEEP BY ROWS 

. . . . .  

equation on a square domain with Dirichlet boundary conditions using the 
five-point scheme. If we agree to start at the bottom of the square and sweep up 
by rows, we could write, for the general point 

(4.128) 

If we study this equation carefully, we observe that only three unknowns are 
present, since u::: would be known from either the lower boundary conditions, 
if we were applying the equation to the first row of unknowns, or from the 
solution already obtained at the k + 1 level from the row below. We have 
chosen to evaluate u ~ , ~ + ~  at the k iteration level rather than the k + 1 level in 
order to obtain just three unknowns in the equation, so that the efficient 
Thomas algorithm can be used. This configuration can be seen in Fig. 4.25. 

The procedure is then to solve the system of I - 2 simultaneous algebraic 
equations for the I - 2 unknowns representing the values of ui, at the k + 1 
iteration level. SOR can now be applied in the same manner as indicated 
previously before moving on to the next row. Some flexibility exists in the way 
SOR is applied. After the Thomas algorithm is used to solve Eq. (4.128) for each 
row, the newly calculated values can be simply overrelaxed, as indicated by Eq. 
(4.125) before the calculation is advanced to the next row. 

Alternatively, the overrelaxation parameter w can be introduced prior to 
solution of the simultaneous algebraic equations. This is accomplished by 
substituting the right-hand side of Eq. (4.128) into the right-hand side of Eq. 
(4.125) to replace u t f ' .  The resulting equation 

is then solved for each row by the Thomas algorithm. The overrelaxation has 
been accomplished as part of the row solution and not as a separate step. Since 
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it is highly desirable to maintain diagonal dominance in the application of the 
Thomas algorithm, care should be taken when this latter procedure is used to 
ensure that w G 1 + p2.  

In the SLOR procedure, one iterative cycle is completed when the tridiagonal 
inversion has been applied to all the rows. The process is then repeated until 
convergence has been achieved. In applying the method to a standard example 
problem with Dirichlet boundary conditions, Ames (1977) indicates that only 
1/ as many iterations would be required as for a Gauss-Seidel iteration with 
SOR to reduce the initial errors by the same amount. On the other hand, use of 
the Thomas algorithm is expected to increase the computation time per iteration 
cycle somewhat. 

The improved convergence rates observed for block-iterative methods 
compared with point-iterative methods might be thought of as being due to the 
greater influence exerted by the boundary values in each iterative pass. For 
example, in SOR by rows, the unknowns in each row are determined 
simultaneously, so it is possible for the boundary values to influence all the 
unknowns in the row in one iteration. This is not the case for point-iterative 
methods such as the Gauss-Seidel procedure, where in the first pass, at least one 
of the boundary points (details depend on sequence used in sweeping) only 
influences adjacent points. 

AD1 methods. The SLOR method proceeds by taking all lines in the same 
direction in a repetitive manner. The convergence rate can often be improved by 
following the sequence by rows, say, by a second sequence in the column 
direction. Thus a complete iteration cycle would consist of a sweep over all rows 
followed by a sweep over the columns. Several closely related AD1 forms are 
observed in practice. Perhaps the simplest procedure is to first employ Eq. 
(4.128) to sweep by rows. We will designate the values so determined by a k + $ 
superscript. This is followed by a sweep by columns using 

This completes one iteration, and overrelaxation can be achieved by applying 
Eq. (4.125) to all grid points as a second step before another iterative sweep is 
carried out. Alternatively, we can include the overrelaxation as part of the row 
and column sweeps using first for rows, 

and then for columns 
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To preserve diagonal dominance in the Thomas algorithm requires o d 1 + p 2  
in the sweep by rows and o d (1 + p ' ) / p  in the sweep by columns. 

Schemes patterned after the AD1 procedures for the 2-D heat equation [Eq. 
(4.97)] are also very commonly used for obtaining solutions to Laplace's equation. 
If the boundary conditions for an unsteady problem governed by Eq. (4.97) are 
independent of time, the solution will asymptotically approach a steady-state 
distribution that satisfies Laplace's equation. Since we are only interested in the 
"steady-state" solution, the size of the time step can be selected with a view 
toward speeding convergence of the iterative process. Letting a A t / 2  = P k  in 
Eq. (4.103), we can write the Peaceman-Rachford AD1 scheme for solving 
Laplace's equation as the two-step procedure: 

Step 1: u i ,  k + 1 / 2 = U , k j + P k ( 6 ^ x U i , j  j 2 k + 1 / 2  + 6^2Uk Y ' , I  .) (4.130~) 

Step 2: u i ,  j ui, j Y ' i , i  (4.130 b )  

where 6̂ 2 and 6̂; are defined by Eq. (4.100). 
Step 1 proceeds using the Thomas algorithm by rows, and step 2 completes 

the iteration cycle by applying the Thomas algorithm by columns. The P k  are 
known as iteration parameters, and Mitchell and Griffiths (1980) show that the 
Peaceman-Rachford iterative procedure for solving Laplace's equation in a 
square is convergent for any fixed value of P k .  On the other hand, for maximum 
computational efficiency, the iteration parameters should be varied with k, but 
the same P k  should be used in both steps of the iterative cycle. The key to using 
the AD1 method most efficiently for elliptic problems lies in the proper choice 
of P k .  Peaceman and Rachford (1955) suggested one procedure, and another in 
common usage was suggested by Wachspress (1966). Although the evidence is 
not conclusive, some studies have suggested that the Wachspress parameters are 
superior to those suggested by Peaceman and Rachford. The reader is 
encouraged to study the literature regarding the selection of P k  prior to using 
the Peaceman-Rachford AD1 method. 

It is difficult to compare the computation times required by point- and 
block-iterative methods with SOR because of the difficulty in establishing the 
optimum value of the overrelaxation factor. Conclusions are also very much 
dependent upon the specific problem considered, the boundary conditions, and 
the number of grid points involved. The block-iterative methods as a class 
require fewer iterations than point-iterative methods, but as was mentioned 
earlier, more computational effort is required by each iteration. Experience 
suggests that SLOR will require very close to the same computation time as the 
Gauss-Seidel procedure with SOR for convergence to the same level for most 
problems. Use of an AD1 procedure with SOR (fixed parameter) often provides 
a savings in computer time of 20-40% over that required by the Gauss-Seidel 
procedure with SOR. A greater savings can normally be observed if the iteration 
parameters are suitably varied in the AD1 procedure. 

2 k + 1 / 2  + 6 
+ P k (  'x 'i, j 

k + l  = k + 1 / 2  

Strongly implicit methods. In recent years, another type of block-iterative 
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procedure has been gaining favor as an efficient method for solving the 
algebraic equations arising from the numerical solution of elliptic PDEs. To 
illustrate this approach, let us consider the system of algebraic equations arising 
from the use of the five-point difference scheme for Laplace's equations as 

[Alu  = c 
where [ A ]  is the relatively sparse matrix of known coefficients, u is the column 
vector of unknowns, and C is a column vector of known quantities. It is well 
known that if the matrix [ A ]  could be factored into the product of upper and 
lower triangular matrices, the solution for u could proceed in two sweeps, 
involving only forward and backward substitution. To do this exactly, however, 
requires approximately the same effort as solving the system by Gaussian 
elimination. On the other hand, a number of investigators have explored the 
merits of obtaining an approximate (or incomplete) [ L][U]  factorization, which 
requires less effort than the complete factorization, and then solving for u 
iteratively. The strongly implicit procedure (SIP) proposed by Stone (1968) is 
one example of this factorization strategy. The objective is to replace the sparse 
matrix [ A ]  by a modified form [ A  + PI such that the modified matrix can be 
decomposed into upper and lower triangular sparse matrices denote by [ U ]  and 
[LI, respectively. If the [ L ]  and [ U ]  matrices are not sparse, then very little will 
be gained in computational efficiency over the use of Gaussian elimination. 
Thus the key to any computational advantage of the SIP procedure lies in the 
manner in which [PI is selected. It is essential that the elements of [PI be small 
in magnitude and permit the set of equations to remain more strongly implicit 
than for the AD1 procedure. An iterative procedure is defined by writing 
[Alu = C as 

[ A  + P]U"+l = c + [PIU" 
Decomposing [ B ]  = [A + PI into the upper and lower triangular matrices [ U ]  
and [ L ]  permits our system to be written as 

[ L ] [ u ] u " + l  = c + [ P I U "  

Defining an intermediate vector as Vn+' = [U]un+ ' ,  we form the following 
two-step algorithm: 

Step 1: 

Step 2: 
[L]V"+l = c + [ P I U "  

[UIU"+1 = v n + l  

(4 .131~)  

(4.131b) 

which is repeated iteratively. Step 1 consists simply of a forward substitution. 
This is followed by the backward substitution indicated by step 2. 

Stone (1968) selected [PI so that [LI and [ U ]  have only three nonzero 
diagonals, the principal diagonal of [ U ]  being the unity diagonal. Furthermore, 
the elements of [ L ]  and [ U ]  were determined such that the coefficients in the 
[BI matrix in the locations of the nonzero entries of matrix [ A ]  were identical 
with those in [ A ] .  Two additional nonzero diagonals appear in [BI. The 
elements of [ L ] ,  [ U ] ,  and [PI can be determined from the defining equations 
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established by forming the [ L ] [ U ]  product. The details of this are given by Stone 
(1968). The procedure is implicit in both the x and y directions. Studies have 
indicated that, for a solution to Laplace’s equations, the method requires only 
on the order of 50-60% of the computation time required for AD1 schemes. 

Schneider and Zedan (1981) proposed an alternative procedure for 
establishing the [ L ] [ U ]  matrices, which is reported to reduce the computational 
cost for a converged solution to Laplace’s equation by a factor of 2-4 over the 
procedures proposed by Stone (1968). They refer to their alternative procedure 
as the modified strongly implicit (MSI) procedure. The basic two-step iterative 
sequence remains the same as given in Eqs. (4.131a) and (4.131b). The 
improvement apparently results from extending the approach of Stone to a 
nine-point formulation. The MSI procedure then easily treats five-point 
difference representations as a special case, and the great reduction in 
computational cost mentioned above (a factor of 2-4) applies to use of the 
five-point representation. This new scheme appears to hold great promise as a 
very efficient and general procedure. Further details on the MSI procedure are 
given in Appendix C. 

Despite the recursive steps in the SIP procedure, it is possible to vectorize 
the algorithm by structuring DO loops to move along diagonals. The scheme has 
also been successfully extended to solve coupled systems of equations, i.e., a 
“block” version of SIP has been developed (see, for example, Zedan and 
Schneider, 1985; Chen and Pletcher, 1991). 

Other iterative methods. The quest continues for more economical and memory 
efficient iterative methods. Generally, methods that are economical in terms of 
iteration count or computer time require a relatively large amount of memory. 
The cost of computer memory has been decreasing rapidly, but memory can still 
be a limiting factor for 3-D problems involving the Navier-Stokes equations. 
Another iterative method that appears promising for use with large systems of 
equations is the generalized minimum residual (GMRES) algorithm introduced 
by Saad and Schultz (1986). The GMRES algorithm is closely related to the 
conjugate gradient (see, for example, Golub and van Loan, 1989) procedure but 
is applicable to problems in which the coefficient matrix may be nonsymmetric. 
Examples of the application of the GMRES algorithm to flow problems can be 
found in the works by Wigton et al. (1989, Venkatakrishnan and Mavriplis 
(19911, and Hixon and Sankar (1992). 

4.3.5 Multigrid Method 
The Gauss-Seidel method with and without SOR and the block-iterative methods 
just discussed provide excellent smoothing of the local error. However, because 
the difference stencil for Laplace’s equation is relatively compact, on fine grids a 
very large number of iterations is often required for the influence of boundary 
conditions to propagate throughout the grid. Convergence often becomes 
painfully slow. This violates the “golden rule” of computational physics: “The 
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amount of computational work should be proportional to the amount of real 
physical changes in the simulated system.” 

It is the removal of the low-frequency component of the error that usually 
slows convergence of iterative schemes on a fixed grid. However, a low-frequency 
component on a fine grid becomes a high-frequency component on a coarse 
grid. Therefore it makes good sense to use coarse grids to remove the low- 
frequency errors and propagate boundary information throughout the domain in 
combination with fine grids to improve accuracy. The strategy known as rnultigrid 
can do this (Brandt, 1977). 

The multigrid method is one of the most efficient general iterative methods 
known today. The key word here is “general.” More efficient schemes can be 
found for certain problems or certain choices of grids, but it is difficult to find a 
method more efficient than multigrid for the general case. The multigrid 
technique can be applied using any of the iterative schemes discussed in this 
chapter as the “smoother,” although the Gauss-Seidel procedure will be used to 
illustrate the main points of this technique in the introductory material presented 
here. The objective of the multigrid technique is to accelerate the convergence 
of an iterative scheme. 

To take full advantage of multigrid, several mesh levels are typically used. 
Normally, the mesh size is increased by a factor of 2 with each coarsening. For 
many problems the coarsening may continue until the grid consists of one 
internal point. It would be instructive, however, to illustrate the method first 
using a two-level scheme applied to Laplace’s equation. 

The standard Gauss-Seidel scheme will be used based on the five-point 
stencil. For convenience, let the operator L be defined such that Lui, becomes 
the standard difference representation for the left-hand side of Laplace’s 
equation. That is, 

The residual, R i , j ,  has been defined as the number that results when the 
difference equation, written in a form giving zero on the right-hand side, is 
evaluated for an intermediate solution. Thus for the present application, Ri ,  = 

L U ~ , ~ ,  where it is understood that at convergence, R i , j  = 0. Let the final 
converged solution of the difference equations be ui, and define the corrections, 
Aui, by ui, = Aui, + u: j ,  where the superscript k denotes iteration level. 
Thus the correction is the value that must be added to an intermediate solution 
in order to obtain the final converged solution. Since the difference equation to 
be solved is Lui, = 0, we can write 

L Aui,  + Luf, = 0 

but 
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so that 

L A u , , ~  + R, , j  = 0 (4.133) 

This is known as the residual or delta form of the equation, as discussed earlier. 
This equation can be solved iteratively for the Aui, until convergence. If ui, 
and R i , j  are updated after each iteration, the delta variables vanish upon 
convergence. Alternatively, if Ri, is held fixed, the iterations will converge, 
yielding generally finite values for the Aui, j ,  which can be added to the ut in 
Ri, to obtain the final value for the solution. 

The key idea in multigrid is to improve the fine-grid solution. We do not 
seek a solution to the original problem on the coarse grid. The coarse grid or 
grids are only used to obtain corrections to the fine-grid solution. For the 
present linear PDE (Laplace’s equation), we can “transfer the problem” to a 
coarser grid by interpolating the fine-grid residual to the coarser grid and then 
solving Eq. (4.133) for the corrections. This form of the multigrid scheme that is 
applicable to linear PDEs is known as the coarse-grid correction scheme or the 
correction storage (CS) scheme. The residuals, of course, would be treated as 
known, so we would normally rearrange Eq. (4.133) for numerical solution as 

L A u .  . = -R.  . (4.134) 

and solve for the Au,, by the Gauss-Seidel procedure. For a two-level scheme, 
we would proceed through the following steps: 

1. Do n iterations on the fine grid, solving Laplace’s equation, Lui, = 0, for 
ui, using a “smoother” like the Gauss-Seidel scheme. The value of n would 
be 3 or 4 in most cases. Do not overrelax-use “pure” Gauss-Seidel. If the 
solution has not converged after n iterations, compute and store the residual 
at each fine-grid point. 

2. Interpolate the residual onto the coarse grid by using a restriction operator. 
The most common way to do this on a uniform grid is by “injection,” which 
means using the values of the residual at the fine-grid points that coincide 
with the coarse-grid points. That is, every second fine-grid point will be a 
coarse-grid point. We have Ri, at these points, so we use it. The chore in 
practice is in defining or setting up the coarse grid. Solve Eq. (4.134), the 
residual form of Laplace’s equation, for the corrections using zero as the 
initial guess. [A common mistake here is to neglect to change the grid size in 
implementing Eq. (4.134); the corrections are being computed on the coarse 
grid, so the grid increments in the difference equation need to be adjusted 
accordingly.] The residuals are not updated during the iterations because we 
want the computed deltas to represent corrections to the fine-grid solution. It 
is common to iterate the corrections to some predetermined convergence 
level on the coarsest grid. 

3. The corrections are interpolated onto the fine grid using a prolongation 
operator. The simplest procedure is to use bilinear interpolation. This can be 

[ , I  ‘ . I  
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carried out as follows: 
(a) Sweep through the coarse-grid rows adding values needed on the fine grid 

by simply averaging values of the correction existing to the right and left, 
i.e., simply average the neighboring values of the correction in the row. 

(b) Sweep through the coarse-grid columns, adding values needed on the fine 
grid by averaging values above and below, much as was done for the rows 
in step %a). 

(c) Examining Fig. 4.26, we note that to fill out the fine grid, we still need 
values at the locations marked x. We can obtain these values by sweeping 
either by rows or columns and filling in with averages of the neighbors 
above and below or to the right and the left. The result for either method 
will be identical because of the previous averaging. 

The corrections at the fine-grid points are now added to the intermediate 
solution obtained from step 1. One cycle has now been completed. We would be 
finished except for errors associated with the interpolation (down to the coarse 
grid and back up to the fine grid). We now go back to step 1 and iterate n times 
to obtain an improved solution. If convergence is not indicated, the new 
residuals are interpolated to the coarse grid, and another cycle is implemented. 
This continues until convergence is observed on the fine grid. 

Most features of the multigrid strategy can be demonstrated by use of the 
two-level scheme. However, significant improvements in computational economy 
can be expected by use of additional levels. The extension to additional levels is 
straightforward in principle but requires careful interpretation of the multigrid 
concept in order to correctly implement the procedure. Here we will discuss only 
the simple V cycle, in which the calculation proceeds from the finest grid down 
to the coarsest and then back up to the finest. Many variations in cycles are 
possible, and reference to more complete works on multigrid, such as Briggs 
(19871, Hackbusch and Trottenberg (1982), and Brandt (1977), is recommended 
in order to obtain more complete information on the multigrid concept. As 
before, the scheme will be applied to solve Laplace’s equation on a square 

Y 

Figure 4.26 Prolongation details. 
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domain. The main steps are as follows: 

1. The general multilevel scheme begins in the same manner as the two-level 
scheme discussed previously. The difference scheme, Lui,, = 0, is iterated n 
times (again n is a small number like 3 or 4, or alternatively, a “stalling 
factor” can be used to determine when to transfer to the coarser grids) on the 
finest grid. 

2. The residual, Lut = R;, is computed and stored at each point. This residual 
is then restricted by injection to the next coarsest grid. The restricted residual 
is denoted as I;Rf,i, where I is the transfer operator, the subscript indicates 
the level of origin, and the superscript the level of the destination. The 
superscript on the R indicates the grid upon which the residual was computed. 
The grids will be numbered from the finest (level 1) to coarsest. 

3. The equation L A ( U , ) , , ~  = -IfRi,j is iterated (“relaxed7’) n times on grid 
level 2 using zero as the initial guesses while keeping the residual fixed at 
each grid point. The solution after n iterations, A ( U , ) ? ~ ,  represents a 
correction to the fine-grid solution. This solution, as well as the residual used 
to obtain it, are stored for future use in the prolongation phase. In order to 
transfer the problem to a coarser grid, an updated residual needs to be 
computed on grid level 2. It is about at this point that beginners typically lose 
their concentration and make mistakes. The updated residual at level 2 is 
R; = IfR;, + LA(u2)$, where A(u,)t is the solution obtained on grid 
level 2 after n iterations. The newly updated residual is then restricted to the 
next coarsest grid (level 3) as I2R; j .  

4. The equation L A ( U , ) ~ , ~  = -12Ri”,j is iterated n times on grid level 3 using 
zero as the initial guess. The solution after n iterations can be thought of as a 
correction to the correction obtained on grid level 2, which of course, 
represents a further correction to the fine-grid solution. This solution and the 
residual used to obtain it are stored for use in the prolongation phase. The 
transfer to coarser grids, relaxation sweeps, and creation of new corrections 
continues following the residual update and restriction steps described above 
until the coarsest grid is reached. The coarsest grid may consist of one grid 
point in the interior. The solution is usually iterated to convergence on the 
coarsest grid. With one grid point, this solution can be obtained analytically, 
although the iterative scheme will normally reflect convergence in two passes, 
depending of course, upon how the convergence criterion is applied. 

5. The corrections obtained on the coarsest grid are prolongated (interpolated) 
onto the next finer grid following the steps outlined in the description of the 
two-level scheme. Let us assume that the coarsest grid is grid level 4, in order 
to provide specific notation. These prolongated corrections are then 
I , ~ A ( u , ) ~  j .  These are added to the corrections obtained earlier at level 3 in 
the restriction phase, A(u,)t j .  The sum of the two corrections is used as the 
initial guess at each point, as we continue to solve the problem we started to 
solve on grid level 3 on the way down in the restriction phase. That is, the 
problems to be solved as we move up the sequence of finer grids are the 
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continuation of the problems started on the way down. In other words, on 
grid level 3 in the prolongation phase, we continue to solve the problem 

but the computation is started with the corrections identified above as the 
initial guesses. As in the restriction phase, n sweeps are made at level 3. The 
solution represents improved corrections. 

6. The corrections from level 3 are prolongated onto the next finer grid at level 
2. These corrections are added to the values of A(u& obtained at level 2 in 
the restriction phase, and the sums are used as the initial guesses for 
continuing the computation of the same problem solved at level 2 on the way 
down from finer to coarser grids, L A ( u ~ ) ~ , ~  = -ZfR!,j. Again, n sweeps are 
made, and the solution after n sweeps represents improved corrections. Note 
that no new residuals are computed in the prolongation phase of moving up 
from coarser to finer grids. The solution is being improved as we move up 
toward finer grids because additional sweeps are being made that start with 
improved guesses. 

7. The corrections from level 2 are prolongated onto grid level 1, the finest grid, 
and added to the last solution obtained on the fine grid, u ~ , ~ .  The corrected 
solution is then iterated through n sweeps unless convergence is detected 
before n sweeps are completed. If convergence has not occurred, new 
residuals are computed after n sweeps, and the cycle down to the coarsest 
grid and back up is repeated. 

Example using multigrid. Here we will apply the multigrid technique to obtain 
the solution to Laplace’s equation with Dirichlet boundary conditions. The 
computational effort for the multigrid scheme will be compared with that 
required for the simple Gauss-Seidel scheme and for the Gauss-Seidel scheme 
with optimum overrelaxation. A square domain will be utilized. The Gauss-Seidel 
scheme will also be used as the smoother for the multigrid scheme. Results will 
be presented for both the two-level and the multilevel V-cycle procedure. Fo. 
simplicity, each side of the square will be set at a fixed value of u, as indicated 
in Fig. (4.27). Although use of discontinuous boundary conditions is physically 
somewhat unrealistic, the points of discontinuity do not enter into the finite- 
difference calculation. The primary purpose of this example is to compare the 
computational effort required by the four procedures, so detailed results of the 
solution values themselves will not be given. As a rough check, the reader could 
confirm that the solution at the center is the arithmetic average of the 
temperatures of the four boundaries. An analytic series solution can actually be 
obtained for this problem by superposition and could be used to check the 
numerical solution. 

Use of Dirichlet boundary conditions will make it easy to determine an 
optimum overrelaxation factor to use with the Gauss-Seidel scheme for purposes 
of comparison. The overrelaxation factors are obtained from the formula given 
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previously in this chapter. When the coarsest grid in a multilevel scheme is to be 
simply one interior grid point (i.e., a 3 X 3 grid), it is convenient to let 2" be the 
number of mesh increments into which each side of the square is divided. Hence 
grids of 9 X 9, 17 X 17, 33 X 33, 65 X 65, and 129 X 129 will be used. The 
overrelaxation factors computed for these grids are 1.45, 1.67, 1.82, 1.91, and 
1.95. These will be used with the Gauss-Seidel scheme without multigrid. 

Overrelaxation was not used with multigrid, since it did not seem to improve 
the convergence rate. The computational effort will be reported in terms of 
equivalent fine-grid sweeps that are usually referred to as work units. That is, in 
the multigrid calculations the total number of times the Gauss-Seidel smoother 
was applied was determined, and the total was then divided by the number of 
calculation (internal) grid points in the finest grid. As is customary in such 
comparisons, other operations in the multigrid algorithm such as computation of 
the residual, the restriction and prolongation operations, and the addition of the 
corrections were not counted, as such effort is generally considered to be a fairly 
negligible percentage of the total effort. The convergence parameter used in the 
calculations was the maximum change in the computed variable (u or Au) 
between two successive sweeps divided by the maximum value of the dependent 
variable on the boundary. In the present example, that maximum boundary 
value was 200. 

Using the same reference in the denominator of the convergence parameter 
for both u and Au appeared to be important in order to obtain results that had 
the property that the number of iterations to convergence was independent of 
whether the variable itself or a correction was being computed. Convergence 
was declared when this parameter was less than lop5. 

The number of iterations (in terms of equivalent fine-grid sweeps or work 
units) required for convergence for the four schemes is given in Table 4.2. For 
the multigrid results shown, three sweeps were made on the fine and all 
intermediate grids before a transfer was made and convergence was achieved on 
the coarsest grid for each cycle. The first column, labeled GS, gives results 
obtained with the conventional Gauss-Seidel scheme with no overrelaxation. 
The second column labeled GS wept gives results obtained with the Gauss-Seidel 
scheme using the optimum overrelaxation factor. The column labeled MG2 
gives results obtained with the two-level multigrid, and the column labeled 
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Table 4.2 Number of equivalent fine-grid iterations required for convergence 

Grid sue GS GS @opt MG2 MGMAX 

9 x 9  62 19 19 
17 X 17 215 40 40 
33 x 33 715 75 95 
65 X 65 2282 137 258 
129 X 129 6826 282 732 

17 
19 
20 
20 
21 

MGMAX provides multigrid results obtained using the maximum number of 
levels, i.e., taking the calculation down to one internal grid point. This results in 
use of seven, six, five, four, and three levels for the 129 x 129,65 x 65,33 X 33, 
17 X 17, and 9 X 9 grids, respectively. 

A number of interesting points can be made from the results shown in Table 
4.2. The number of iterative sweeps required by the standard Gauss-Seidel 
scheme can be seen to be almost proportional to the number of grid points used. 
Of course, the computational effort per sweep is also proportional to the 
number of points used. The use of the optimum overrelaxation factor reduces 
the computational effort substantially, especially as the number of grid points 
increases. For the finest grid, use of overrelaxation reduces the computational 
effort by a factor of about 24. This is significant. The two-level multigrid is seen 
to provide a significant reduction in computational effort, but it does not 
perform quite as well as the Gauss-Seidel scheme with optimum overrelaxation. 
However, it is general, whereas the optimum overrelaxation factor can only be 
computed in advance for special cases. 

The performance of the multigrid with the maximum number of levels 
(hereafter referred to as the n-level scheme) is truly amazing. The number of 
sweeps is seen to be nearly independent of the number of grid points used. Only 
21 sweeps were required for the finest grid compared to 6826 for the conventional 
Gauss-Seidel scheme. This is a reduction in effort by a factor of 325! It requires 
only 1/13th as much effort as the Gauss-Seidel scheme with the optimum 
overrelaxation. This reduction in effort or “speed-up factor” is shown graphically 
in Fig. 4.28. Both multigrid schemes required four cycles for convergence for 
this problem, which utilized only 13 or 14 sweeps through the finest grid. 

For the 129 x 129 grid, it was observed that using four or five levels gave 
nearly the same performance as using seven levels. Specifically, it was observed 
that 732, 82, 25, 21, 21, and 21 work units (equivalent fine-grid sweeps) were 
required when using 2, 3, 4, 5, 6, and 7 levels, respectively. This trend is 
illustrated in Fig. 4.29. The especially large improvement observed when moving 
from two to three levrels is noteworthy. 

The results were fairly insensitive to the number of sweeps for the fine and 
intermediate grids. The following trend was observed for the n-level scheme on 
the 129 X 129 grid. For use of 2, 3, 4, and 5 sweeps, the number or work units 
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Figure 4.28 Comparison of effort for Dirichlet problem. GS-SORop,, Gauss-Seidel with optimum 
overrelaxation; MG2, two-level multigrid; MGMAX, multigrid using maximum number of levels. 
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Figure 4.29 Effect of multigrid levels on Dirichlet problem. 

required was 21, 21, 21, and 25, respectively. It was assumed that performance 
would continue to deteriorate as the number of sweeps was increased above 5. 

For the two-level scheme, performance was actually improved by not 
converging on the coarse grid. For the 129 X 129 grid the number of equivalent 
fine-grid sweeps required for convergence was reduced to 495, 471,474, and 479 
if the maximum number of coarse-grid sweeps was limited to 75, 100, 125, and 
150, respectively. This represents a reduction of about one-third in the 
computational effort for the two-level scheme. No effort was made to determine 
a general criterion for determining the optimum number of coarse-grid sweeps. 
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Multigrid for nonlinear equations. For a linear equation it is possible to 
“transfer the problem” from one grid to another by merely transferring the 
residual. This is the correction storage scheme. If the equation is nonlinear, this 
transfer by residual alone is generally not possible, and we must transfer 
(restrict and prolongate) the solution as well as the residual. Such a version of 
multigrid is known as the full approximation storage (FAS) method. It is not 
really much more complicated than the coarse-grid correction scheme, but it 
may seem like it initially because the problem formulation itself for a nonlinear 
equation is more complicated. Consider a 1-D problem governed by the following 
nonlinear equation: 

d U 2  d 2 U  - + - -  - 0  
d x  d X 2  

(4.135) 

Choosing a central-difference discretization, we wish to find a way to satisfy the 
difference equation 

u;+l - u;-l U i + 1  - 22.4, + U i P l  + = o  
2 A x  ( A x > 2  

(4.136) 

Let us introduce a nonlinear difference operator N such that the difference 
equation above can be represented as Nu, = 0. the residual Ri will be the N 
operator operating on any intermediate solution Nu;. This definition of the 
residual is consistent with the terminology used for the linear problem. It will be 
convenient to solve the problem using a delta form for the equation on all grids. 
In this nonlinear case the delta will be an iteration delta, Au, = u;+l - u;. 
Suppose we wish Eq. (4.136) to be satisfied at the k + 1 level and substitute 
u; + Aui for ui in Eq. (4.136). The result can be written as 

Observe that the last term on the left-hand side involves the change in u to the 
second power. Dropping this term, which is small near convergence, linearizes 
the difference equation and is equivalent to a Newton linearization (see Section 
7.3.31, which can be developed through the use of a Taylor-series expansion, 
neglecting terms involving derivatives of higher order than the first. Other ways 
of linearizing the algebraic equation can obviously be found. The final working 
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equation for the fine grid can be written 

2 ~ ; + ,  Aui+,  - 2 ~ ; - ,  AuiPl A U i + ,  - 2 Aui + AuiPl  + 
2 A x  (Ax)2 

where the right-hand side can be recognized as the negative of the residual 
evaluated at the kth iteration level. Notice that as the iterative process converges, 
the delta terms on the left-hand side vanish, and the nonlinear difference 
equation is satisfied exactly as the residual goes to zero. 

Only a two-level FAS multigrid scheme will be discussed here. The sweeping 
strategy is the same as before: n sweeps on the fine grid and then a transfer to 
the coarse grid, where normally, the solution would be iterated to convergence 
and then the changes transferred to the fine grid. The equation being solved on 
the fine grid is Eq. (4.138). Note that because the residual or delta form of the 
governing equation is being solved on the fine grid, the residual in Eq. (4.138) is 
updated at every iteration. After n sweeps, the most recent residual and the 
current solution ui are restricted to the coarse grid. 

As before, on the coarse grid we wish to compute changes to the solution 
that will annihilate the residual on the fine grid. However, because the equation 
is nonlinear, we continue to solve for the solution itself on the coarse grid even 
though it will be the changes or corrections to the fine-grid solution that will be 
prolongated to the fine grid. Thus Eq. (4.138) would be appropriate to use on 
the coarse grid, provided the right-hand side (residual) would vanish if and only 
if the residual on the fine grid vanished. This would happen if we modified the 
residual by adding the difference between the restricted fine-grid residual and 
the residual computed on the coarse grid using the restricted fine-grid solution. 
This modification to the residual can be thought of as compensation for the 
difference in T.E.s associated with the solution on meshes of different sizes. 
Thus, letting M be the operator that gives the left-hand side of Eq. (4.138), we 
can write the difference equation solved on the coarse grid as 

M A u i  = -R; - IfR: + R:(Z:u;) (4.139) 

where the first term on the right-hand side is the residual computed from the 
coarse-grid solution [evaluated as indicated by the right-hand side of Eq. (4.138)] 
at each coarse-grid iteration. The second term on the right is the restricted 
fine-grid residual. This is the same term that was used in the correction scheme 
in the linear example. The third term is the residual computed on the coarse 
grid using the restricted fine-grid solution. The second and third terms are 
source terms that remain fixed during the iterative process on the coarse grid. 

The restricted fine-grid solution is taken as the starting value for u on the 
coarse grid. Thus we notice that the first and third terms cancel for the first 
coarse-grid sweep. This leaves the restricted residual from the fine grid as the 
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source term driving the changes. Notice also that no changes would be computed 
if the residual on the fine grid were zero. This formulation for the right-hand 
side properly takes into account discrepancies that arise owing to the restriction. 
If no “errors” were introduced in the restriction, the second and third terms 
would cancel. The formulation also ensures that it is the residual on the fine 
grid that drives the multigrid process. At the conclusion of the coarse-grid 
iterations (usually signaled by convergence on the coarse grid), the changes in u 
computed over the duration of the coarse-grid iterations are prolongated onto 
the fine grid. An additional n iterations are performed on the fine grid, and if 
the solution has not converged, the cycle is repeated. 

4.4 BURGERS’ EQUATION (INVISCID) 
We have discussed finite-difference methods and have applied them to simple 
linear problems. This has provided an understanding of the various techniques 
and acquainted us with the peculiarities of each approach. Unfortunately, the 
usual fluid mechanics problem is highly nonlinear. The governing PDEs form a 
nonlinear system that must be solved for the unknown pressures, densities, 
temperatures, and velocities. 

A single equation that could serve as a nonlinear analog of the fluid 
mechanics equations would be very useful. This single equation must have terms 
that closely duplicate the physical properties of the fluid equations, i.e., the 
model equation should have a convective term, a diffusive or dissipative term, 
and a time-dependent term. Burgers (1948) introduced a simple nonlinear 
equation that meets these requirements: 

dU dU d 2 U  

+ u- d X  = p . d X 2  
- 
d t  

(4.140) - - - 
Unsteady Convective Viscous 

term term term 
Equation (4.140) is parabolic when the viscous term is included. If the viscous 
term is neglected, the remaining equation is composed of the unsteady term and 
a nonlinear convection term. The resulting hyperbolic equation 

dU dU 
- + u - = o  
d t  d X  

(4.141) 

may be viewed as a simple analog of the Euler equations for the flow of an 
inviscid fluid. Equation (4.141) is a nonlinear convection equation and possesses 
properties that need to be examined in some detail. Methods for solving the 
inviscid Burgers equation will be presented in this section. Typical results for a 
number of commonly used finite-difference/finite-volume methods are included, 
and the effects of the nonlinear terms are discussed. A discussion of the viscous 
Burgers equation follows in Section 4.5. 
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Equation (4.141) may be viewed as a nonlinear wave equation, where each 
point on the wave front can propagate with a different speed. In contrast, the 
speed of propagation of all signals or waves was constant for the linear, 1-D 
convection equation, Eq. (4.2). A consequence of the changing wave speed is the 
coalescence of characteristics and the formation of discontinuous solutions 
similar to shock waves in fluid mechanics. This means the class of solutions that 
include discontinuities can be studied with this simple 1-D model. 

Nonlinear hyperbolic PDEs exhibit two types of solutions according to Lax 
(1954). For simplicity, we consider a simple scalar equation, 

du dF - + - = o  
dt dx  

(4.142) 

For the general case, both the unknown u and the variable F(u)  are vectors. We 
may write Eq. (4.142) as 

dU dU 
- + A -  = 0 
dt d X  

(4.143) 

where A = A ( u )  is the Jacobian matrix d F J d u j  for the general case and is 
dF/du for our simple equation. Our equation or system of equations is 
hyperbolic, which means that the eigenvalues of the matrix A are all real. A 
genuine solution of Eq. (4.143) is one in which u is continuous but bounded 
discontinuities in the derivatives of u may occur (Lipschitz continuous). A weak 
solution of Eq. (4.143) is a solution that is genuine except along a surface in 
( x ,  t )  space, across which the function u may be discontinuous. A constraint is 
placed upon the jump in u across the discontinuity in the domain of interest. If 
w is a test vector that is continuous and has continuous first derivatives but 
vanishes outside some bounded set, then u is termed a weak solution of Eq. 
(4.142) if 

where 4 ( x )  = u(x,O). A genuine solution is a weak solution, and a weak 
solution that is continuous is a genuine solution. A complete discussion of the 
weak solution concept may be found in the excellent texts by Whitham (1974) 
and Jeffrey and Taniuti (1964). The mathematical theory of weak solutions for 
hyperbolic equations is a relatively recent development. Clearly, the existence of 
shock waves in inviscid supersonic flow is an example of a weak solution. It is 
interesting to recognize that the shock solutions in inviscid supersonic flow were 
known 50-100 years before the theory of weak solutions for hyperbolic systems 
was developed. 

Let us return to the study of the inviscid Burgers equation and develop the 
requirements for a weak solution, i.e., the requirements necessary for the 
existence of a solution with a discontinuity such as that shown in Fig. 4.30. 

Let w ( x , t )  be an arbitrary test function that is continuous and has 
continuous first derivatives. Let w(x,  t )  vanish on the boundary B of the domain 
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X 

Figure 4.30 Qpical traveling discontinuity problem for Burgers’ equation. 

D and everywhere outside D (complement of D). D is an arbitrary rectangular 
domain in the (x, t )  plane. We may write 

(4.145) 

or 

(4.146) 

Equations (4.145) and (4.146) are equivalent when both u and F are continuous 
and have continuous first derivatives. The second integral of Eq. (4.144) does 
not appear, since the function w vanishes on the boundary. Functions u(x , t ) ,  
which satisfy Eq. (4.146) for all test functions w, are called weak solutions of the 
inviscid Burgers equation. We do not require that u be differentiable in order to 
satisfy Eq. (4.146). 

Suppose our domain D is now a rectangular region in the (x, t )  plane, which 
is separated by a curve T ( X ,  t )  = 0, across which u is discontinuous. We assume 
that u is continuous and has continuous derivatives to the left of dD1) and to 
the right of 7(D2). Let the test function vanish on the boundary of D and 
outside of D. With these restrictions, Eq. (4.146) can be integrated by parts to 
yield 

a1 + [ F l c o s  a,)& = 0 (4.147) 

The last integrand is evaluated along the curve T ( x , ~ )  = 0 separating the two 
regions D, and D,. This integral occurs through the limits of the integration by 
parts on the discontinuity surface T ( x , ~ )  = 0. The square brackets denote the 
jump in the quantity across the discontinuity, and cos al ,  cos a,  are the cosines 
of the angles between the normal to T ( x , ~ )  = 0 and the t and x directions, 
respectively. The problem is illustrated in Fig. 4.31. 
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Figure 431 Schematic representation of an arbitrary domain with a discontinuity. 

The integrals in Eq. (4.147) over D, and D, are zero by Eq. (4.145). We 
conclude that since the last integral vanishes for all test functions w with the 
required properties, we must have 

[ u ]  cos a1 + [F] cos a, = 0 (4.148) 

This is the condition that u be a weak solution for Burgers’ equation. Let us 
apply this condition to a moving discontinuity. Suppose initial data are prescribed 
for u(x,O) as shown in Fig. 4.30, where u, and u2 denote the values to the left 
and to the right of the discontinuity. In one dimension, we may write the 
equation of the surface ~ ( x ,  t )  = 0 as t - t , ( x )  = 0. The direction cosines as 
required in Eq. (4.148) become 

1 t: 
cos a, = cos ff, = - 

[l + t ; , ] l / z  [ 1 + t;’] 

where the prime denotes differentiation with respect to x .  Thus 

or 
U; - U; dt 

u, - u1 = ~- 
2 a k  

Therefore 

(4.149) 

which shows that the discontinuity travels at the average value of the u function 
across the wave front. Since we now see that a discontinuity in u simply 
propagates at constant speed (u, + u,)/2 with uniform states on each side, a 
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u = o  I 

Figure 432 Initial data for rarefaction wave. 

Figure 4.33 Characteristics for centered expansion. 

numerical solution of a similar problem for a discontinuity can be compared 
with the exact solution. These comparisons are presented for a number of 
finite-difference/finite-volume methods in this section. 

Rarefactions are as prevalent in high-speed flows as shock waves, and the 
exact solution of Burgers’ equation for a rarefaction is known. Consider initial 
data u(x,O) as shown in Fig. 4.32. The characteristic for Burgers’ equation is 
given by 

dt 1 
a k u  
_ = _  (4.150) 

Figure 4.33 shows the characteristic diagram plotted in the ( x ,  t )  plane. In 
the left half-plane, the characteristics are simply vertical lines, while they are 
lines at an angle of 7r/4 radians to the right of the characteristic that bounds 
the expansion. This particular problem is similar to a centered expansion wave 
in compressible flow. Here the expansion is bounded by the x = 0 axis and the 
characteristic originating at the origin denoted by the dashed line. The solution 
for this problem may be written 

u = o  X G O  

u = -  O < x < t  

u = l  x > , t  

X 

t 
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The initial distribution of u forms a centered expansion, where the width of the 
expansion grows linearly with time. 

We have examined two problems, shocks and rarefactions, which are 
frequently encountered in high-speed flows by using the simple analog provided 
by Burgers’ equation. Clearly, these types of solutions can occur in systems of 
nonlinear equations of the hyperbolic type. Armed with simple analytic solutions 
for these two important cases, let us examine the application of some numerical 
algorithms to the nonlinear, inviscid Burgers equation. 

4.4.1 Lax Method 
First-order methods for solving hyperbolic equations are infrequently used. The 
Lax (1954) method is presented as a typical first-order method to demonstrate 
the application to a nonlinear equation and the dissipative character of the 
result. 

The conservation form of the basic PDE, 
du dF - + - = o  
at d x  

is used for all examples that follow. For the Lax method, we expand in a Taylor 
series about the point ( x ,  t), retaining only the first two terms 

and substitute for the time derivative 

Using centered differences and averaging the first term yields the Lax method 
(see Section 4.1.3): 

(4.151) 

In Burgers’ equation, F = u2/2. The amplification factor in this case is 

At 
Ax G = cos p - i-A sin p (4.152) 

where A is the Jacobian dF/du,  which is just the single element u for Burgers’ 
equation. The stability requirement for this method is 

(4.153) 

because uma, is the maximum eigenvalue of the A matrix with the single 
element u. 
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u = l  
EXACT SOLUTION 

-a- A t / A x  = 0.6 + A t / A x  = 1.0 --- 

= o  

Figure 4.34 Numerical solution of Burgers’ equation using Lax method. 

The Lax method applied to a 1-0 right-moving discontinuity produces the 
solutions shown in Fig, 4.34. The location of the moving discontinuity is correctly 
predicted, but the dissipative nature of the method is evident in the smearing of 
the discontinuity over several mesh intervals. As previously noted, this smearing 
becomes worse as the Courant number decreases. It is of interest to note that 
the application of the Lax method to Burgers’ equation with a discontinuity 
produces the double-point solutions as shown. A further comment on these 
results is in order. Notice that the computed solutions are monotone, i.e., the 
solution does not oscillate. Godunov (1959) has shown that monotone behavior 
of a solution cannot be assured for finite-difference methods with more than 
first-order accuracy. This monotone property is very desirable when 
discontinuities are computed as part of the solution. Unfortunately, the 
desirability of monotone behavior must be reconciled with the highly dissipative 
character of the results. The relative importance of these properties must be 
carefully evaluated for each case. 

The finite-volume equivalent of the Lax method can be readily developed by 
noting that first-order integration (in time) over a control volume (see Fig. 4.35) 
provides the expression 

(4.154) 

In this expression the control volume may be considered to be centered at the 
point ( j ,  n + i). The flux terms, f,; 4 are referred to as the numerical fluxes, 
since they represent the flux at the surface of the control volume in the 
finite-volume formulation. Functionally, the numerical flux is written 

f / +  4 = f (u j ,  uj+ 1 )  

The numerical flux must be consistent with the analytical flux F, so that 

f ( u j ,  = F ( u j )  (4.155) 
when 

u .  = u .  
J J + 1  =’ 
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1 Figure 435 Control volume for Lax method. 

The problem of finding the flux function is very important because it represents 
the control-volume boundary flux. This is needed in constructing methods for 
solving the conservative form of the equations of fluid dynamics. 

For the Lax method the numerical flux becomes 
A X  

At 
F j  + F , + ,  - -(Uj+, - Uj) (4.156) 

The last term in this expression can be viewed as a dissipation term. The order 
of the numerical scheme can be altered by using a different form for this term. 
It will be of value to compare Eq. (4.156) with the numerical flux terms of other 
methods in this chapter. 

Another observation can be made regarding the Lax method. Notice that 
the computer solutions in Fig. 4.34 are monotone, i.e., the solution does not 
oscillate. Godunov (1959) studied numerical methods applied to the simple 1-D 
wave equation (Eq. 4.2) having the linear form 

(4.157) 

If the right-hand side is expanded in a Taylor series, second-order accuracy for 
such a method is established if 

Lak = 1 (4.158) 

x k a k =  - u  (4.159) 

x k 2 a ,  = u2 (4.160) 

This may be verified by examining the second-order schemes previously 
considered in Section 4.1. 

If solutions produced by Eq. (4.157) do not oscillate, what are the conditions 
that guarantee monotone behavior? A necessaxy and sufficient condition is that 

k 

k 

k 
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all of the coefficients a k  be positive. Consider the change in the solution 
between points j and j + 1: 

(4.161) 

If the solution at level n is monotone, then every difference on the right-hand 
side is of the same sign. Thus, if the uk are all positive, then the differences on 
the right- and left-hand sides carry the same sign. This is also a necessary 
condition because for at least one value of ak of opposite sign, monotone initial 
data may be constructed that produce an oscillation at the next level. 

Godunov's (1959) theorem states that second-order schemes are not 
monotone. This may be proved by letting uk = (e,)' and substituting into Eqs. 
(4.158)-(4.160) to obtain 

c (ekI2( ke;)' = c k2e; 
k k 

This equation violates the Cauchy inequality (Taylor, 1955) and shows that no 
monotone second-order schemes exist. This result provided a major difficulty 
that needed to be overcome in the development of methods for solving hyperbolic 
PDEs. In regions where discontinuities develop, measures must be taken in 
order to avoid oscillations. 

4.4.2 Lax-Wendroff Method 
The Lax-Wendroff method (Lax and Wendroff, 1960) was one of the first 
second-order finite-difference methods for hyperbolic PDEs. The development 
of the Lax-Wendroff scheme for nonlinear equations again follows from a 
Taylor series: 

The first time derivative can be directly replaced using the differential equation, 
but we need to examine the second-derivative term in more detail. We consider 
the original equation in the form 

dU d F  

dt dX 
_ -  - -- 

Taking the time derivative of this expression yields 

("1 d 2 U  d 'F  d 2F 
dt2 dt dx d x  dt dx dt 
- -  - - - =  - - = _ _  - 
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where the order of differentiation on F has been interchanged. Now F = F(u) ,  
which permits us to write 

dU 
- -A-  dU d F  dF du 

d t  d X  du d x  d X  
- -  _ _ - =  

and 

Hence we may replace d F / d t  with 
dF dF 

d t  d X  
- -A-  - -  

so that 
d 2 U  d 

d t 2  d x  
- = 

The Jacobian A contains a single element for Burgers’ equation. It is clear that 
A is a matrix when u and F are vectors in treating a system of equations. 
Making the appropriate substitution in the Taylor-series expansion for u, we 
obtain 

u ( x , ~  + A t )  = u ( x , ~ )  - A t -  dF + -- (As) + ... 
d X  2 d x  

After using central differencing, the Lax-Wendroff method is obtained: 

.y+l = uy - - At  Fi”,, -yPl + ’( q2 
A x  2 2 A x  

The Jacobian matrix is evaluated at the half interval, i.e., 

In Burgers’ equation, F = u 2 / 2  and A = u. In this case Ajfl12 = (u j  + ~ ~ + ~ ) / 2  
and AjP1,2 = (u j  + ujPl)/2. The amplification factor for this method is 

At  
(1 - cos p )  - 2i-Asin p (4.163) 

A x  
and the stability requirement reduces to l (At /Ax)umaxl  G 1. 

The results obtained when the Lax-Wendroff method is applied to our 
example problem are shown in Fig. 4.36. The right-moving discontinuity is 
correctly positioned and is sharply defined. The dispersive nature of this method 
is evidenced through the presence of oscillations near the discontinuity. Even 
though the method uses central differences, some asymmetry will occur, since 
the wave is moving. The solution shows more oscillations when a Courant 
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--- EXACT SOLUTION 
+ At./& = 0.6 
-0- A t / A x  = 1.0 

Figure 436 Application of the Lax-Wendroff method to the inviscid Burgers equation. 

number of 0.6 is used than for a Courant number of 1.0. In general, as the 
Courant number is reduced, the quality of the solution will be degraded (see 
Section 4.1.6). 

The numerical flux for the Lax-Wendroff scheme consistent with Eq. (4.156) 
may be written as 

where Aj+ ; is defined as the eigenvalue of the Jacobian Aj+ +, which is simply 
uj+  4 for Burgers' equation. 

A comparison of Eq. (4.164) with Eq. (4.156) can yield valuable insight into 
the order and the behavior of the numerical methods. As noted in the previous 
section, the Lax scheme is monotone, while Fig. 4.36 shows that the second-order 
Lax-Wendroff scheme is not. If the numerical flux terms are compared, we see 
that the difference in these terms is 

f", - t+; = - " ( "+12- ") [  1 - ( Ai+;,, A t ) 2 ]  (4.165) 
At  I +  1 

This difference is a correction that may be added to the Lax method to provide 
second-order accuracy and, in fact, modify the solution to the form of the 
Lax-Wendroff scheme. 

However, if oscillations at discontinuities occur as seen in Fig. 4.36, the 
correction term should be suppressed in the region where discontinuities appear. 
This will have the effect of reducing the order of the method and have the 
potential of providing monotone or near-monotone profiles through 
discontinuities. The control of the correction term is usually accomplished by 
the use of limiters. With this idea in mind, the flux may be written 

(4.166) 
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where 4 is a function that can be adjusted to limit the addition of the 
second-order terms. The hybrid method presented by Harten and Zwas (1972) 
used this idea. The concept of using limiters to improve the effectiveness of 
solution techniques is discussed in detail in Section 4.4.12. 

4.4.3 MacCormack Method 
MacCormack‘s (1969) method is a predictor-corrector version of the Lax- 
Wendroff scheme, as has been discussed in Section 4.1.8. This method is much 
easier to apply than the Lax-Wendroff scheme because the Jacobian does not 
appear. When applied to the inviscid Burgers equation, the MacCormack 
method becomes 

The amplification factor and stability requirement are the same as presented for 
the Lax-Wendroff method. The results of applying this method are shown in Fig. 
4.37. Again the right-moving wave is well defined. We note that the solutions 
obtained for the same problem at the same Courant number are different from 
those obtained using the Lax-Wendroff scheme. This is due both to the switched 
differencing in the predictor and the corrector and the nonlinear nature of the 
governing PDE. One should expect results that show some differences, even 
though both methods are equivalent for linear problems. 

In general, the MacCormack method provides good resolution at 
discontinuities. It should be noted in passing that reversing the differencing in 
the predictor and corrector steps leads to quite different results. The best 
resolution of discontinuities occurs when the difference in the predictor is in the 

u = l  --- EXACT SOLUTION 
-o- At/& = 0.6 * At/Ax  = 1.0 

u = o  

Figure 437 Solution of Burgers’ equation using MacCormack’s method. 
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direction of propagation of the discontinuity. This will be apparent when 
problems at the end of the chapter are completed. 

4.4.4 Rusanov (Burstein-Mirin) Method 
The third-order Rusanov or Burstein-Mirin method was discussed in Section 
4.1.11. This method uses central differencing and, when applied to Eq. (4.1421, 
becomes 

1 1 At  
3 A x  up1/2 = $uy+l + u;) - --(F,:, - r;i") 

The last term in the third step represents a fourth-derivative term, 

and is added for stability. The third-order accuracy of the method is unaffected, 
since this added term is  AX)^]. A stability analysis of this method shows that 
the amplification factor is 

x 1 + -(1 - COS 8)[1 - (3]] I :  
It follows that stability is assured for Burgers' equation if 

and 

4 2  - v 4  < w Q 3 

(4.169) 

(4.170) 

Application of this method to Burgers' equation for a right-moving shock 
produces the results shown in Fig. 4.38. The magnitude and position of the 
discontinuity are correctly produced, but the results show an overshoot on both 
sides of the shock front. A schematic showing the numerical solution as it is 
computed from the base points is shown in Fig. 4.39. 
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u =  1 

-- - EXACT SOLUTION 
+ 
+ 

A t / A x  = 0.6, w = 2 .0  
A t / A x  = 1 . 1 .  w = 3.0 

Figure 438 Rusanov method applied to Burgers' equation. 

Figure 439 Point pyramid for the Rusanov method. 

4.4.5 Warming-Kutler-Lomax Method 
Warming et al. (1973) developed a third-order scheme using noncentered 
differences. This technique uses the MacCormack method for the first two levels 
evaluated at 5 At. The advantage of this method over the Rusanov technique is 
that only values at integral mesh points are required in the calculation. 

The Warming-Kutler-Lomax (WKL) method applied to Eq. (4.142) becomes 

1 A t  3 A t  
h!;+' = u ?  - --(-2T+, + 7 y + ,  - 7F." + 2F." ) - --(4y)l -F!,) 

I 24 Ax 1 - 1  8 Ax 1 - 1 )  

The third level for the WKL scheme is exactly the same as that used in the 
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- t + A t ,  n + 1 

- - t + $ A t ,  ( 2 )  
f 2- - 

2 - - w t + TAt,  (1) 
/ ' t f t f t  

w 1\2\22 w - rZ- t , n  
w 

Figure 4.40 Point schematic for WKL method. 

u = l  - -- EXACT SOLUTION 
-0- A t / &  = 0.6, w = 2.0 
Q- A t / A x  = 1.0, w = 3.0 

Figure 4.41 Burgers' equation solution using the WKL method. 

Rusanov technique. We should note that different third-order schemes can be 
generated by altering the first two steps. Burstein and Mirin have shown that 
any second-order method may be used to generate uy). The linear stability 
bound for the WKL and the Rusanov methods is the same as given in Eq. 
(4.170). The schematic illustrating the grid points used in the WKL method is 
presented in Fig. 4.40. Notice that the preferential treatment of the first two 
levels is readily apparent in this diagram. The differencing in the first two levels 
can be reversed or even cycled from time step to time step. 

The results of using the WKL method to solve Burgers' equation for a 
right-moving discontinuity are shown in Fig. 4.41. The solution is nearly the 
same as that obtained in the previous section. Based upon the calculated results, 
either of the third-order methods may be used with approximately equal 
accuracy. 

4.4.6 Tuned Third-Order Methods 

The parameter w ,  which appears in the third level of the methods of the 
previous two sections, can be chosen arbitrarily, as long as the stability bound is 
not violated. Once w is selected at the beginning of a calculation, it retains the 
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same value throughout the mesh. However, if the numerical damping term is 
written in conservation-law form for the third level, i.e., ”( J 3 u )  

d x  OdX3 
then w may be altered from point to point in the calculation, and correct flux 
conservation in the mesh is assured. Using this approach, the w term in the last 
level of either the Rusanov or WIU method can be written as 

The wf* values are now varied according to the effective Courant number in 
the mesh. Warming et al. (1973) suggest that these parameters be calculated at 
each point in the mesh to minimize either the dispersive error or the dissipative 
error. 

A discussion of the modified equation for third-order methods is presented 
in Section 4.1.11. If the minimum dispersive error is desired, then according to 
Eq. (4.681, we should choose 

(4.173) 

It remains to arrive at a rational method to determine the effective Courant 
numbers, uj+1,2 .  Warming et al. (1973) suggest that the effective Courant 
numbers, used to determine the wj parameters, be the average value at the 
mesh points used in the difference formula. Since the term containing 
involves points j + 2, j + 1, j, and j - 1, we can write 

(4.174) 

and similarly, 
1 At  

Ax 
- - ( A j + l  + Aj + AjPl  + AjP2)- ’ j - 1 / 2  - 4 

where A is the local eigenvalue. For Burgers’ equation, A is just the unknown u. 
Results obtained using this variable w or tuned approach are shown in Fig. 4.42. 
This shows that both third-order methods provide satisfactory solutions for the 
minimum dispersion case. A slightly larger overshoot occurs at the left of the 
discontinuity, but a nearly exact solution is obtained on the right. The minimum 
dissipative method of computing wj * 1,2 is not recommended. The w parameter 
was added to provide stability, and when the dissipation is minimized, stability 
problems can occur. Even for stable solutions, large oscillations may be present. 
It should be noted that the parameters w j + 1 / 2  may be computed using any 
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--- EXACT SOLUTION 
u = l  

v = 0.6 
VARIABLE OMEM -0- WKL 

Figure 4.42 Tuned or variable o method applied to Burgers' equation. 

technique that does not violate the stability bound. Clearly, a different computed 
solution will be obtained for each way of computing these parameters. 

4.4.7 Implicit Methods 
The time-centered implicit method (trapezoidal method) is presented in Section 
4.1.10. This scheme is based upon Eq. (4.58). If we substitute into Eq. (4.58) for 
the time derivatives using our model equation, we obtain 

n + l  u;+l = u ;  - I [ ( - - ) n  At d F  + ( g )  ] 
(4.175) 

It is immediately apparent that we now have a nonlinear problem, and some sort 
of linearization or iteration technique must be used. Beam and Warming (1976) 
have suggested that we write 

( U n + l  - u n )  = F" + ~ n ( ~ n + 1  - u n )  

Thus 

'i n + l  = u ?  , - - :{ 2 (x)'+ - ; [A(U;+'  -u; 

If the x derivatives are replaced by second-order central differences, then 

At A:- At A;, 
4Ax 4 Ax 

U ? + l  + u;+1 + - .;:; -~ 

At  y+l -y-, AtAy- luy- AtA;+ , 
A x  2 4Ax ~ A X  

= -- - +u ;+ -  u ; + ~  (4.176) 

The Jacobian A has the single element u for Burgers' equation, and a further 
simplification of the right side is possible. We see that the linearization applied 
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-0- WITH W I N G  

v = 0.5 
w = 0.5 
20 STEPS 

Figure 4.43 Solution of Burgers' equation using Beam-Warming (trapezoidal) method. 

by Beam and Warming leads to a linear system of algebraic equations at the 
next time level. This is a tridiagonal system and may be solved using the Thomas 
algorithm . 

As pointed out in Section 4.1.10, this method is stable for any time step. It 
should be noted that the roots of the characteristic equation always lie on the 
unit circle. This is consistent with the fact that the modified equation contains 
no even derivative terms. Consequently, artificial smoothing is added to the 
scheme. The usual fourth difference, 

(4.177) 

may be added to Eq. (4.176), and the formal accuracy of the method is 
unaltered. According to Beam and Warming, the implicit formula Eq. (4.176) 
with explicit damping added is stable if 

0 < 0 < l  (4.178) 

Figure 4.43 shows the results of applying the time-centered implicit formula 
to a right-moving discontinuity. The solution with no damping is clearly 
unacceptable. When explicit damping given by Eq. (4.177) is added, better 
results are obtained. 

In addition to the trapezoidal formula just presented, Beam and Warming 
(1976) developed a three-point-backward implicit and an Euler implicit method 
as part of a family of techniques. The Beam and Warming version of the Euler 
implicit scheme follows from the backward Euler formula: 

du " + l  
U n +  1 = u" + A t (  --) 
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which for our nonlinear equation becomes 
n +  1 

U n +  1 = U" - A t (  g) 
If the same linearization is applied, we obtain 

AtAY- AtA;+ 
-- U ? + l  + .y+l + - U?+' 

2 A x  I - '  ~ A X  If' 

A t  F,"+l - Y-1 A t A p ,  AtAY+ lujn+ 
A x  2 2 A x  2 A x  

-- Ujn-, + ui" + (4.179) - - -- 

This is again a tridiagonal system and is easily solved. We note that this scheme 
is unconditionally stable, but damping must be added such as that given in Eq. 
(4.177), to ensure a usable numerical result. 

A simpler form of the implicit algorithms presented in this section can be 
obtained if they are written in "delta" form. This form uses the increments in 
the conserved variables and fluxes. In multidimensional problems it has the 
advantage of providing a steady-state solution that is independent of the time 
step in problems that possess a steady-state solution. Let us develop the 
time-centered implicit method using the delta form. Let A u j  = UY" - ujn. The 
trapezoidal formula Eq. (4.175) may be written 

n + l  

A u . =  - r [ ( X ) ' +  A t  dF (g) ] I 

Again a local linearization is used to obtain 

Fn+' = F," + A ;  A u j  
I 

The final form of the difference equation becomes 

AtAY- AtAj", At  
-- A u i P 1  + A u j  + - A u j + '  = - - (F,"+l - Y-1) (4.180) 

2 A x  4 A x  4 A x  

This is much simpler than Eq. (4.176). The tridiagonal form is still retained, but 
the right side does not require the multiplications of the original algorithm. This 
can be important for systems of equations where the operation count is large. 
The solution of Eq. (4.180) provides the incremental changes in the unknowns 
between two time levels. As noted previously, the stability of the delta form is 
unrestricted, but the usual higher-order damping terms must be added. Results 
obtained using the delta form for our simple right-moving shock are shown in 
Fig. 4.44. The solutions with and without damping are essentially identical to 
those obtained using the expanded form, as should be expected. The delta form 
of the time-centered implicit scheme is recommended over the expanded version. 
In problems with time asymptotic solutions, the A u  terms approach zero, and in 
all cases, matrix multiplications are reduced. 
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u = l  --- EXACT SOLUTION 
-0- NO DAMPING * WITH DAMPING 

v = 1.0 
w = 1.0 

Figure 4.44 Solution for right-moving discontinuity time-centered implicit method, delta form. 

Solutions of the inviscid Burgers equation computed with an implicit scheme 
are generally inferior to those calculated with explicit techniques, and more 
computational effort per integration step is required. In addition, transient 
results are usually desired, and the larger step sizes permitted by implicit 
schemes are not of major significance. When discontinuities are present, results 
produced with explicit methods are superior to those produced with implicit 
techniques using central differences. For these reasons, explicit numerical 
methods are recommended for solving the inviscid Burgers equation. 

4.4.8 Godunov Scheme 

The numerical methods applied to Burgers’ equation in this chapter have used 
Taylor series to establish appropriate expressions for the values of the dependent 
variables at the next time level. Differences in the spatial directions were also 
based upon the requirement of having a certain accuracy using a series 
approximation. Taylor-series expansions work very well when conditions for 
convergence of the series are met. In fact, the series will converge everywhere, 
provided the function that is approximated is sufficiently smooth. In the case of 
a finite-difference method, we assume that a series expansion is an appropriate 
means of obtaining a difference approximation and the functions are continuous 
and have continuous derivatives at least through the order of the difference 
approximation. This is certainly not true when shock waves or other 
discontinuities are present. Godunov (1959) recognized this basic problem and 
proposed to avoid the requirement of differentiability by using a finite-volume 
approximation in solving the conservation equations and evaluating the flux 
terms at the cell interfaces by the solution of a Riemann problem. In this section 
we will describe the Godunov scheme specifically applied to Burgers’ equation 
and see how this method leads to a numerical technique that treats the problem 
of discontinuous solutions in a very specific way. 
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Consider the inviscid Burgers equation, Eq. (4.1421, and a finite-volume 
approximation with a control volume as shown in Fig. 4.35. For an explicit 
method the control volume extends from t to t + A t  and from x - A x / 2  to 
x + A x / 2 .  If a control volume centered at ( j , n  + is selected, the resulting 
numerical approximation for the dependent variable may be written 

(4 .181)  

In this equation the value of u is averaged over the volume element, i.e., 

and the flux term is the time-averaged value of the flux at the control-volume 
interface: 

1 t + A t  
f =  -1 fd t  

At  t 

The Godunov method solves a local Riemann problem at each cell interface 
in order to obtain a value of the flux necessary to advance the solution. The 
Riemann problem specifically for Burgers' equation is 

-+"i")=o dU 

d t  d x  2 
(4.182) 

with initial conditions 

x g o  
x > 0 u ( x , O )  = 

The geometry of the problem is shown in Fig. 4.45. The averaged values of 
the dependent variable give the appearance of a slab-like variation in distribution, 

u,t 
4 

RIEMANN PROBLEM 

TIME t 

j-1 j j+l j+2 

Figure 4.45 Wave diagram for Godunov's method. 
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leading to a discontinuity at each cell interface. At each cell interface, either a 
shock or an expansion is initiated and propagates in time. As noted in earlier 
discussions of solutions for the Riemann problem for Burgers' equation, the 
solution is self-similar where the similarity variable is x / t .  In this sense, the 
value of x is assumed to be zero at the interface. There are several cases to 
consider in solving this problem. 

With the notation 

the solution of the Riemann problem for this equation may be written for the 
following cases: 

Case 1: Shock waves 
U j  > U j + l  

Case 2: Expansion waves 
U j  < U j + l  

x / t  < u j  
u = X / t  UJ < x / t  < ui+, I"; U J +  1 x / t  > uj+ 1 

(4.183) 

(4.184) 

An assumption implicit in the above discussion is that the waves from 
adjacent cells do not interact. This is required in order to write a simple solution 
for the state variables at the cell boundaries and is assured only if the wave can 
travel, at most, half of one cell in distance. As a consequence, the stability 
restriction placed on the Godunov scheme is that 
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u = l  --. 
ANALYTICAL 

-0-NUMERICAL 

Figure 4.46 Godunov method applied to 
u=o shock problem. 

Using Eq. (4.181), we can now integrate to obtain a solution of Burgers’ 
equation where the flux is evaluated using the solution of the Riemann problem. 
A typical result is shown in Fig. 4.46. The results of this calculation show that 
the solution is superior for shock propagation. The results for the case of an 
expansion wave are nearly as good. It should be remembered that these results 
are only for a 1-D calculation and that higher-dimensional applications lead to a 
much more rigorous test of the Godunov idea. In multiple dimensions the flux 
at the control-volume boundaries is still determined by solving the 1-D Riemann 
problem and the influence of this 1-D view is shown in Chapter 6. 

4.4.9 Roe Scheme 
The solution of Burgers’ equation using the Godunov method is easily 
accomplished, and the results are excellent. However, when this method is 
applied to the solution of the equations that govern fluid flow, it is necessay to 
employ a computationally inefficient iterative technique. One idea that has been 
used with good success in computing the solution to nonlinear systems is to 
solve an approximate Riemann problem rather than having to deal with the 
exact nonlinear iterative scheme. One of the most popular approximate Riemann 
solvers was proposed by Roe (1980, 1981). Roe suggested solving the linear 
problem 

du  - d u  
- + A -  
d t  d X  

= o  (4.185) 

where 3 is a constant matrix that is depeni ent on local conditions. In the case 
of Burgers’ equation, the 3 matrix is, of course, a single scalar element. The A 
matrix is constructed to satisfy what Roe termed property U, which includes the 
following conditions: 

1. For any u j ,  uj+  

(4.186) 
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2. When u = uj  = u ~ + ~ ,  then 

- - dF 

d U  
A ( u j , u j + J  = A ( u , u )  = - = u (4.187) 

The first of these conditions ensures that the correct jump is recovered when a 
discontinuity is encountered. The second condition provides that in smooth 
regions, the Jacobian, in this case the nonlinear wave speed, reduces to the 
correct value. 

In applying Roe’s scheme to Burgers’ equation, U is a constant and denotes 
the averaged value of 2. We then consider the linear problem 

(4.188) 

where the appropriate value of ii for cells j and j + 1 is determined from the 
first of the requirements noted above. This gives 

(4.189) 

which for Burgers’ equation reduces to 

uj + U j + l  

(4.190) - U j  + ‘ j + l  u j+ t  = 
u .  = u .  [u j  2 I 1 + 1  

With this information, the numerical flux can be developed. Since the original 
Riemann problem has been reduced to a linearized form, the Rankine-Hugoniot 
relations directly provide the relationship between the jump in the flux and the 
jump in the dependent variable u across a wave, i.e., 

F,,, - q = U j + ; ( U j + l  - U j )  (4.191) 

As a consequence, this approximate Riemann solver only recognizes discon- 
tinuities and cannot distinguish between expansions that are discontinuous and 
shock waves. An alteration will be added below to correct for this fact. 

Consider the approximate Riemann problem for Burgers’ equation as 
depicted in Fig. 4.47. For this case, we see that a single wave emanates from the 
cell interface. This single wave travels either in the positive or negative direction, 
depending upon U j +  = dx/dt. Utilizing the definition of the jump across this 
wave, we may write either 
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r C E L L  INTERFACE 
t 

I 
~ 

Figure 4.47 Wave diagram for Roe scheme 

The numerical flux may then be written in the symmetric form 
1 

2 2 
+ - ( ” i + t -  E&;)(uj+l - Uj)  

q+q+1 fi+i+t = 

Consider the individual contributions that occur when the wave travels either 
from the right or left. If each case is evaluated separately, the numerical flux can 
be represented in a single equation of the form 

q+q+1 1 
- p j + f l ( u j + l  - U j )  2 fi+; = (4.192) 

Figure 4.48 illustrates the calculation of a propagating discontinuity using Roe’s 
scheme, and the results show excellent agreement with the known analytical 
solution. 

Roe’s scheme has the stability bound common to explicit methods, i.e., the 
Courant number must be less than 1. The Roe formulation propagates the 
difference in dependent variables between two points as if a discontinuity 
existed between these points. A consequence of this is that expansion shocks 
that are nonphysical may appear. In Burgers’ equation this is a problem when 
uj+ ; vanishes. This is referred to as a sonic transition. The classical example is a 
solution computed using Roe’s scheme with initial data 

- 

-1 O G X G X ,  

xo  < x  Q L u = (  +1 

u= 1 
---- ANALYTICAL 

Figure 4.48 Discontinuity propagated using 
u=o Roe’s scheme. 
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,’ & NUMERICAL 

Figure 4.49 Expansion shock using Roe’s 
u=-1 scheme. 

The analytic solution is a centered expansion about x = xo. The solution 
computed using the Roe scheme is shown in Fig. 4.49. The initial data are 
faithfully reproduced, showing an incorrect stationary expansion shock. 

This nonphysical behavior is due to the fact that the scheme cannot 
distinguish between an expansion shock and a compression shock. Each is a 
valid solution for this formulation. The existence of the expansion shock is said 
to violate the entropy condition, allowing incorrect physical behavior. Oleinik 
(1957) and, later, Lax (1973) developed conditions that must be satisfied by 
discontinuous solutions of hyperbolic equations. The simplest statement of this 
condition applied to Burgers’ equation may be written 

(4.193) 

where uR and uL are the values to the right and the left of the discontinuity. 
The initial data for the expansion violate this condition, eliminating expansion 
shocks. In the example just cited, no information is present regarding the sonic 
transition (u  = 01, and Roe’s scheme interprets the two-point expansion in the 
initial data as a discontinuity. Unlike the Godunov scheme, where admissible 
solutions incorporate the correct physical behavior, a modification of the 
numerics is necessary. A number of techniques to accomplish this have been 
proposed. Harten and Hyman (1983) proposed the following modification of - 
ui+ ;. Let 

then 

(4.194) 

The compression case ( e  = 0) uses the unaltered scheme to propagate 
discontinuities, while the case of an expansion fan [ E = (u j+  - u j ) / 2 ]  requires 
the modification. Figure 4.50 shows the results computed for an expansion 
(- 1 , l )  using Roe’s scheme with the entropy fix included. The agreement 
between the numerical and analytical solutions is good and is approximately 
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u=l 

---- ANALYTICAL 
-0- NUMERICAL 

Figure 4.50 Expansion using Roe’s scheme 
u=-1 with entropy correction. 

what one would expect for a first-order method. The modification of Roe’s 
scheme may be viewed as a way of adding an appropriate amount of dissipation 
to the basic method when the dissipation at the sonic transition goes to zero. 
The alteration given here is equivalent to the introduction of a small expansion 
in the approximate Riemann solution when an expansion appears through a 
sonic point. 

4.4.10 Enquist-Osher Scheme 
In the previous section, Roe’s scheme was seen to replace both shock and 
expansion waves by discontinuities. In order to correctly reproduce expansions 
and not produce expansion shocks, a modification of the numerical flux was 
introduced to correct the physical behavior. The scheme introduced by Enquist 
and Osher (1980, 1981) treats the change in the dependent variables across 
waves as a continuous transition in state space and produces a method that is 
monotone and conservative and that correctly treats both shock and expansion 
waves. In this scheme, the shock discontinuities in the exact Riemann solution 
are replaced by smooth compression waves. The discontinuities are resolved 
with at most two interior points. The stability bound of this approximate 
Riemann solver is the usual Courant-Friedrichs-Lwy (CFL) condition for 
explicit methods. 

The flu at any location is written as the sum of contributions from crossing 
waves with slopes in ( x ,  t )  space that are positive and negative. Thus 

F = F + +  F- (4.195) 

where the individual components are obtained by an integration in phase space 
defined by 

(4.196~) 
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and the switch is defined as 
1 
0 A < O  

A = d F / d u  2 0 
p(7) = 

In this evaluation of the flux, the sonic transition is specifically identified 
through the switch in the integration. With this notation, we may write the cell 
interface flux by starting at either side, as we did in Roe's scheme: 

f i+ ;  = I;,,, - / U i f l p ( ~ )  F ' ( T )  d T  (4.197b) 
"i 

The numerical flux is usually written in the symmetric form 

(4.198) 

where the flux derivative representing the Jacobian and the switch have been 
replaced by IuI in the integral. With this definition of the interface flux, the 
correct form for Burgers' equation may now be written 

(4.199) 

If ui and ui+, are of opposite sign, then 
uj < 0 < U j + l  

uj > 0 > uj+ 1 
(4.200) 

(ui' + u;+ 1)/2 
4.4 = 

While the Godunov scheme treats shocks as discontinuities, the Enquist- 
Osher scheme replaces shocks by what van Leer (1984) describes as overturned 
centered compression waves. Discontinuities are excluded owing to the smooth 
transitions in the phase space integrals. The treatment of sonic transitions leads 
to a small deviation in the slope of expansions when such points are present. 

u= 1 u=l 

----. ANALYTICAL 
-0- NUMERICAL 

u=o u=-1 

Figure 4.51 Results using the Enquist-Osher scheme. (a) Shock wave. (b) Expansion wave. 
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Such a case is shown in Fig. 4.51, where the results produced by applying the 
Enquist-Osher scheme to both a propagating discontinuity and expansion are 
depicted. According to Chakravarthy and Osher (19851, this small deviation at 
the sonic location in the expansion is bounded and does not lead to erroneous 
results. The results shown in Fig. 4.51 were computed using the explicit scheme 
given in Eq. (4.154). For either the Roe or Enquist-Osher scheme, the stability 
bound is the usual requirement of Courant number less than 1. Since only an 
approximate Riemann problem is considered, the smaller limit imposed by the 
Godunov method is avoided. 

4.4.11 Higher-Order Upwind Schemes 
In applying finite-difference methods for the solution of PDEs, a higher-order 
approximation is obtained by introducing more points in the stencil. For upwind 
schemes a first derivative can be approximated to first order using two points, 
while three points are necessary for a second-order expression. In the Riemann 
or approximate Riemann solvers, a higher-order approximation must be 
interpreted in terms of flux values at control-volume boundaries. 

In the original Godunov approach, state variables were assumed to be 
constant in control volumes. For the first-order schemes, this assumption was 
sufficient. Van Leer (1979) extended this idea by assuming that the state 
variables, as projected on each cell, can have a variation. The cell-averaged 
values from the Riemann solution are used to reconstruct the assumed variation 
in each control volume. This idea essentially leads to a higher-order extrapolation 
of the flux or state variables at the cell boundaries. For the variable extrapolation 
approach, van Leer coined the term “monotone upstream-centered schemes for 
conservation laws.” This is referred to as the MUSCL approach, or sometimes 
MUSCL differencing. It should be noted that the flux can be used in the 
formulas for extrapolation to the cell boundaries. In this case, the flux terms do 
not need to be recalculated, since the extrapolation directly provides the needed 
information. 

For the first-order Godunov scheme, the average value of the dependent 
variable is set equal to the constant value of that variable in the cell. For 
higher-order schemes, the values assigned to each cell are the averages over 
each cell. Depending on the accuracy desired, the dependent variables may be 
curve fit with a polynomial of arbitrary order in each cell. Consider the 
piecewise linear representation shown in Fig. 4.52. For cell j ,  the expression for 
the variation of u is a function of position in the cell, and the average value of u 
is assigned to the cell. In order to arrive at an extrapolation for the control- 
volume boundary value, a Taylor-series representation is employed: 

(4.201) 

where the derivatives are evaluated by differences using cell averages. 
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U 

For cell j the expressions for the independent variables will have a right and 
left side. The usual expressions for the right and left extrapolations are 

1 - K  1 + K  
u! 1 = u .  + - au j - ;  + - au j+ ;  

auj+;  - - suj+ 5 u j+ ;  = uj+ l  - - 

4 4 1 + i  1 

1 + K  1 - K  

4 4 

(4.202) 

(4.203) 

These expressions are Taylor-series representations for the state variables, with 
difference approximations for the derivatives. When fluxes are used instead of 
the independent variables, the fluxes are introduced in the extrapolation to the 
cell boundaries. This has the advantage of providing the flux directly, and the 
flux does not require reformulation from the independent variable extrapolation. 
Care must be exercised using this approach because it may not provide a 
solution that is as good as that using the independent variable extrapolation and 
subsequent reformulation of the fluxes at the cell boundaries (Anderson et al., 
1987). In the extrapolation the value of K determines the type of method (van 
Leer, 1979; Yee, 1989). For example, 

- 1 upwind scheme 
K = ( 0 Fromm’s (1968) method (4.204) 

1 central difference 

It is of value to consider the case of K = -1 and the relationship of this 
upwind extrapolation to an upwind finite-difference approximation. The 
second-order upwind scheme studied in Section 4.1.9 can be recovered using the 
one-sided extrapolation with K = - 1 (see Prob. 4.60). The values for the 
extrapolated variables on both sides of the interface become 

1 

2 
uf+;  = u j  + - auj - ;  

1 
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while for K = 1, a central approximation becomes 

1 
2 

uf+; = uj  + - Suj++ 

1 
u j -+  = uj  - 5 su j - ;  

Both the upwind and central differences are linear approximations to the cell 
boundary values of u. The difference between them is the different 
approximation to the slope. The interface values for the K = 1 case reduce to 
the same average between adjacent cells, indicating the central-difference 
scheme. 

Second-order flux values are formed from the dependent variables by 
replacement. Consider Roe’s scheme, where the first-order flux was given by Eq. 
(4.192). Functionally, we may write 

.$?+,Roe = f ( u j ,  u j + l )  (4.205) 

The second-order flux is obtained by replacing u j ,  u j+  in the flux equation with 
right and left values: 

(4.206) .$?+,Roe = f (  Uf+ 4 u;+ i) 

The second-order Roe flux may then be written 

where 

- F(uj , ; )  - F ( u f + + )  
u j++  = 1 u j+ t  - u j++ 

(4.208) 

and is defined in the same manner as the equivalent term in the first-order flux. 
An explicit predictor-corrector method similar to the two-step Lax-Wendroff 

method, producing a second-order solution in space and time, may now be 
constructed. The predictor step is 

(4.209) 

where f represents a first-order flux. Variable extrapolations are then employed 
to obtain the left and right interface values of the dependent variables, yielding 

1 + K  n + ;  1--K n + +  
6 U j + +  - - 6 U j + $  (4.211) r , n  + + 

4 4 
U .  

I + ;  
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The corrector step is written 

where 

(4.212) 

(4.213) 

The stability of this scheme depends on the extrapolation used to construct 
the flux terms. Upwind schemes of higher order have a less restrictive stability 
constraint than central schemes, as we have seen in previous sections. A 
Courant number less than 1 is necessary for the central scheme, while the less 
restrictive value of 2 may be used for the upwind case. Figure 4.53 shows the 
results of applying this scheme to Burgers' equation for a shock propagating to 
the right. As is characteristic of second-order schemes, oscillations are present 
in the calculation. It is desirable to eliminate these wiggles and maintain the 
monotone character of the initial profile. In Section 4.4.1 the concept of a 
monotone solution was introduced when the Godunov theorem was presented. 
It is apparent that the nonmonotone behavior of the present solutions must be 
modified in some way if a better result is to be obtained. It should also be 
apparent that the behavior of the present solution obtained with the second-order 
upwind scheme does little to suggest an improvement over a central-difference 
scheme. In both cases the solution oscillates, and some way of controlling this 
behavior is desired. In the case of the upwind scheme, one can argue that the 
physics of the problem is more closely represented, even though the solution 
does not show any marked improvement over the central schemes. Improvements 
in the results can be achieved with the introduction of limiters that avoid the 
overshoots and undershoots shown in typical solutions. 

4.4.12 TVD Schemes 
The results of the previous section showed that even though upwind schemes 
appear to account for physics in a more appropriate way, as compared to 
central-difference schemes, higher-order methods share the same deficiencies 

u = l  

-0- NUMERICAL 

Figure 4.53 Second-order Roe scheme applied to Burgers' equation without limiting. 
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when discontinuities are encountered. The problem can be demonstrated com- 
putationally by starting with a monotone profile for a compression wave. As the 
compression front steepens, higher-order methods produce numerical solutions 
with new extrema. Consequently, oscillations are introduced that are undesirable. 
This numerical experiment (see Prob. 4.64) is a computational verification of 
Godunov's theorem given in Section 4.4.1. 

Lax (1973) showed that for scalar conservation laws of the form given by 
Burgers' equation, Eq. (4.142), the total variation of physically possible solutions 
does not increase in time. The total variation (TV) is given by 

(4.214) 

and the total variation for the discrete case is 

T V h )  = C l U j + l  - U j l  
i 

(4.215) 

A numerical method is said to be total variation diminishing, or TVD, if 

Harten (1983) proved that 

1. a monotone scheme is TVD, and 
2. a TVD scheme is monotonicity preserving. 

Thus, if higher-order TVD schemes can be constructed, these schemes will be 
monotonicity preserving. 

The central idea in constructing a TVD scheme is to attempt to develop a 
higher-order method that will avoid oscillations and exhibit properties similar to 
those of a monotone scheme. For such schemes the solution is first order near 
discontkuities and higher order in smooth regions. The transition to higher 
order is accomplished by the use of slope limiters on the dependent variables or 
flux limiters. Boris and Book (1973) developed the first nonlinear limiting by 
adding a limited difference between the first- and second-order fluxes to prevent 
oscillations associated with second-order schemes. The work of van Leer (1974) 
was based upon limiting the extrapolation of the dependent variables to the cell 
boundaries in order to prevent overshoots in the solution. Sweby (1984) and Roe 
(1985) developed limiters based on the TVD models of the Lax-Wendroff 
scheme, while Harten (1978) applied the concept of a modified flux to achieve 
the same effect. It is important to understand that methods that are either 
central differenced or upwind can be made TVD by suitable modification with 
limiters. When such higher-order schemes are constructed, a central-difference 
scheme may appear to be upwind in many regions, and upwind schemes may 
sometimes appear to be similar to a central-difference scheme. 

The problem of constructing a solution of Burgers' equation that does not 
include unwanted oscillations when MUSCL differencing is employed can now 
be considered. In this case, unwanted oscillations can be avoided if the slopes of 

TV(un+l) < TV(u") (4.216) 
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the variables used in the extrapolations are limited in such a way that the end 
point values do not create a new maximum or minimum. For the case of 
u j - l  < 

uf-4 > uj-1 (4.217~) 
it is desired that 

Uf+ 4 < uj+ 1 (4.217b) 

For this specification of the extrapolated values of the dependent variables, an 
easy control is devised by the introduction of slope limiters in the following way: 

1 - K 7  1 + K -  s u j - ;  + - s-u j+ ;  u;+; = u j  + - 
4 4 

(4.218~) 

1 + K 7  1 - K -  
s U j + 4  - - s-u j+ ;  (4.2186) 

4 
uf++ = uj+l - - 

4 
In these equations, the quantities s ' u j  are limited slopes. A number of 

X u j + ;  = minmod(6uj+;, w S u j - + )  (4.219~) 

= minmod(6uj++, w 6 u j + + )  (4.219b) 

The minmod limiter is used extensively in TVD numerical methods. This is a 
function that selects the smallest number from a set when all have the same sign 
but is zero if they have different signs. For example, 

different limiters may be used. One choice is the minmod limiter defined by 
- 

x if 1x1 < lyl and xy > 0 
minmod(x,y) = y if 1x1 > IyI and xy > 0 (4.220) 

(0  if x y < o  
or written in another form, 

minmod(x, wy) = sgn(x) maxI0, min[Ixl, wy sgn(x)ll (4.221) 

with the limits on w given as 
3 - K  
1 - K  

l < w < -  (4.222) 

and the values of K not equal to 1. The usual notation of sgn represents the sign 
of the argument indicated. The values of the limited slopes in these expressions 
are selected to satisfy the end point conditions given by Eqs. (4.217). The 
higher-order fluxes are computed as indicated in the previous section, and the 
slopes are limited to prevent the occurrence of nonphysical oscillations. The 
same calculation presented in Fig. 4.53 without the use of limiters is repeated in 
Fig. 4.54 including limiting. The improvement in the solution is apparent, and 
the MUSCL approach does provide a good way of calculating a higher-order 
solution that is dramatically better when using limiters. 

In general, higher-order schemes that are either upwind or central 
differenced can be modified to have the TVD property, thus avoiding the 
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Figure 4.54 Second-order Roe scheme ap- 
plied to Burgers’ equation using the minmod 

u=0.5 limiter. 

deficiencies of the classical shock-capturing numerical methods. Insight into the 
process of designing limiters is gained by utilizing the general class of numerical 
schemes of Yee (1987) and following the analysis of Harten (1984). Consider the 
one-parameter family of difference schemes written in conservative form: 

where 8 varies between 0 and 1 and 

This scheme represents several variations. If 8 = 0, this is an explicit scheme, 
while it is implicit if 8 # 0. If 8 = i, the differencing is trapezoidal and the 
technique is second order in time. This one-parameter family of methods can be 
more easily recognized if the average flux is defined as 

With this notation, Eq. (4.223) may be written in the familiar form 

The average flux is consistent with the conservation statement, in that 

The general scheme may be written in terms of implicit and explicit 

L ( u n + l )  = N u ” )  (4.225) 

operators as 
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where the L and R represent the operators defined by 
At  

L ( u ~ )  = u j  + e-(f j++ -4-Q 
A X  

(4.226) 

In order to ensure that the numerical schemes represented by Eq. (4.223) are 
TVD, it is required that 

Harten (1984) showed that the sufficient conditions for this are 
TV(u"+l) G TV(u") 

TV"u")l < TV(u") (4.228~) 
TV[L(u"+')]  > TV(un+l) (4.2283) 

Rewriting Eq. (4.223) in the form 

Harten proved that the sufficient conditions are 

(4.230) 

and 
At  
A x  CA++ c;+= -(I - e)(C;+;+ C;++) G 1 (4.231) 

with 

(4.232) 

where C is some positive constant. For values of 0 = 0 and 1, the method is first 
order and the TVD conditions are satisfied. In fact, the Lax scheme and all 
first-order upwind schemes can be shown to have the TVD property (see Prob. 
4.65). If the value of 8 is taken to be 0.5, the method is a trapezoidal scheme, 
and the TVD requirements are not satisfied. Consequently, the scheme must be 
modified with the limiter concept to avoid oscillations. The construction of 
appropriate limiters is possible using the requirements given in the preceding 
equations for guidance. 

Jameson and Lax (1984) generalized the idea of TVD schemes for multipoint 
methods. In the case of higher-order schemes, the terms C * are written as 

(4.233~) 

(4.2333) 

c;; = C-(uj+2 , uj+ 1, u j ,  uj-1) 

ci'- ; = C+ ( U j +  1 ,  uj ,  uj- 1 ,  U j J  
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The general explicit scheme 

satisfies the TVD conditions when 

c+‘l’ I +  t > c+‘T’ I +  1 > *.* > c+‘t’ I + ,  > 0 

c-‘?’ I +  i > c-‘?’ 1+1 > a * -  > CG‘f’ > 0 

(4.235a) 

(4.235 b ) 

At  
A x  
- (Ci”!’ + c;+’p) Q 1 (4.23%) 

which is the same condition derived by Harten for the three-point schemes. The 
general implicit scheme 

satisfies the TVD conditions if and only if the coefficients of the implicit and 
explicit operators obey the expressions 

and 

(4.237) 

(4.238) 

This condition is also consistent with the earlier development for the general 
three-point scheme. 

Armed with the information gleaned from the TVD conditions, we can now 
test the second-order upwind scheme (Section 4.1.9) to determine if it is a TVD 
method. The second-order upwind method applied to the first-order wave 
equation yields 

1 
u;” = U? - V ( U ~  J - ufl 1-1 ) + -V(V 2 - l ) ( ~ j ”  - 2~y-1  + U T - ~ )  (4.239) I 

This may be written as 
V V qfl = ui” - -(3 - v) Guy-; - -(v - 1) 8uy-t 2 2 

(4.240) 

showing that 
c c c+m = -(3 - v) c+‘Z’= ] - f  -(v- 1) 
2 2 

(4.241) 
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In this case the coefficient Cj+_(i>2 has the wrong sign when the CFL condition is 
satisfied, and oscillations will occur at discontinuities. 

As another example, let us test the Lax-Wendroff scheme, Eq. (4.44), to see 
if it satisfies the TVD condition. This scheme is written 

U U L  

1 2  2 
u;+’ = un - - ( u ; + ~  - uyp1) + - - < u ; + ~  - 2 ~ 7  + uYp1) (4.242) 

or equivalently, 
U U 

.;+I = u; - -(1 - V )  au;+; - -(1 + u )  au;-t 
2 2 

(4.243) 

For this example, 
c c c;;= -(1+ u )  C G ; =  - -  2(1  - u )  (4.244) 

which indicates that the TVD conditions are not satisfied in the range of 
Courant numbers where this scheme is stable. 

The idea of limiting to control oscillations is demonstrated effectively by 
considering the second-order upwind scheme in the form of Eq. (4.239). This 
may be rewritten as 

2 

U 
u;+’ = U; - u~u;-; + -(u - l)(Su;-; - 8uY-f)  2 

The terms following the positive sign represent contributions from the second- 
order corrections to the first-order difference. The idea is to restrict the 
corrections in regions of rapid change to avoid undesirable behavior by limiting 
the magnitude of the difference in u or, more generally, the flux or variable 
gradients. In this sense, the scheme may be written 

(4.245) 

In this expression the quantity 8 is defined as 
- 
suj  = * s u .  I 

where qh is a limiter function. Equation (4.246) may be written in a form 
showing the dependence of the limited portion on successive changes in the 
dependent variable in the following way: 

V 
.;+I = U; - ~ a u i ” _ ;  -I- - ( v -  l)(@:~ 6u;-; - @’i+-f 6 ~ Y - t )  (4.247) 

2 
In order to arrive at the conditions to ensure the TVD property is contained in 
the difference formulation, this expression is written as 
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where the ratio ri++1,2 is defined as 

(4.249) 

Limiters are customarily written in terms of the successive variations in the 
dependent variables or the flux. In addition to the r+ definition, one may also 
define a quantity r-  of the form 

(4.250) 

Limiters are then written in terms of these ratios. While they may be written in 
general as functions of any number of successive variations, for simplicity, they 
are usually written showing a dependence on only the single ratio at the local 
point in question: 

*:;= @ ( $ i f )  (4.251) 

If a wave propagating in the negative direction is present, limiting on the 
opposite family can be achieved using 

(4.252) 

The TVD conditions that must be satisfied by the upwind method are 

(4.253) 

where 
c;,= 0 

The TVD condition shows that the limiter must satisfy an equation of the form 

(4.254) 

The stability bounds for this formulation are normally selected to satisfy the 
standard CFL condition. This provides a bound on the allowable values of v, 
and the TVD condition can be simplified to 

(4.255) 

Many different formulations for @ can be written to satisfy this inequality. 
Several constraints are imposed on the construction of the different forms. 
These include the fact that $J must be a positive function, leading to the 
condition 

@ ( r )  2 0 for r >  0 (4.256) 
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and when r is negative, $ is set equal to zero, i.e., 

$(r)  = 0 for r = 0 (4.257) 

This results in the following general constraints: 

0 G @(r)  < 2r (4.258) 

If an additional constraint on the magnitude of the limiter is imposed, i.e., 
$(r) G 2 (4.259) 

the TVD requirement may be written as 

0 G $(r) < min(2r,2) (4.260) 

The second-order upwind scheme will then satisfy the TVD condition at any 
point in the shaded area of Fig. 4.55. If the limiters are set equal to 1, the 
original unlimited upwind, or Beam-Warming (1976) explicit upwind scheme, is 
recovered. Roe (1985) has developed weaker conditions for the limiters of the 
form 

$(r> 2 
- < -  r 1 - v  

(4.261) 

and 
2 

$(r)  < - (4.262) 

These conditions are the TVD conditions for the basic Lax-Wendroff method 
(see Prob. 4.65). We have used a linear equation to develop the TVD conditions. 
The corrections necessary to avoid the oscillations associated with the method 
are alterations to the second-order terms that appear as nonlinear terms in the 
difference formulas. It should be clear that the corrections that make a method 
TVD are always associated with nonlinear limiting even for linear convection 
problems. 

V 

Figure 4.55 Limiter range for second-order TVD schemes. 
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Other limiters that are useful in computations have been developed and 
published in the open literature. One of the early examples is the van Leer 
(1979) limiter, which is of the form 

r + lrl 
+ ( r >  = - 1 + r 2  

The van Albada (1982) limiter is of the form 

r + r2  
+ ( r )  = - 1 + r 2  

(4.263) 

(4.264) 

The minmod limiter is also used extensively in TVD numerical methods. As 
previously noted, this is a function that selects the smallest number from a set 
when all have the same sign but is zero if they have different signs. This limiter 
may be written 

+ ( r )  = minmod(1, r )  (4.265) 

Another limiter that has received use, particularly when contact surfaces are of 
importance, is the "Superbee" limiter of Roe (1985), which is written 

+ ( r )  = max[O, min(2r, 11, min(r, 2)1 (4.266) 

All of these limiters satisfy a symmetry condition written in the form 

(4.267) 

which ensures that the limits for forward and backward gradients are treated the 
same way. If this condition is not satisfied, the treatment afforded gradients by 
the limiters is not symmetric. Other TVD schemes may be constructed and are 
available for both upwind and central-difference methods. The Roe-Sweby 
scheme (Roe, 1984; Sweby, 1984) begins with a first-order upwind scheme with a 
numerical flux from Eq. (4.192) written in the form 

(4.268) 

A second-order correction is added to this flux, which is a limiter multiplied by 
the difference in the first-order upwind flux and the flux for the Lax-Wendroff 
scheme. Thus 

This results in an expression for the flux 

(4.269) 
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where the notation for r is 
- uj+ 1 + c r  U j + c  r =  

suj+ f 
(4.271) 

and u may take on integer values defining the r values as previously used for 
r *. The limiters that may be applied with success in this expression are the same 
as previously given in Eqs. (4.261H4.266). The Roe-Sweby scheme produces 
results for the 1-D case that are similar to the Burgers equation solution shown 
previously for the MUSCL scheme (see Prob. 4.66). 

Another technique for creating a TVD scheme is Harten’s modified flux 
method (Harten, 1984). In this approach, the T.E. of a first-order upwind 
scheme is developed, and the idea is to subtract this away like an antidiffusive 
flux term. This is accomplished by modifying the flux used in the original 
approximation. The modifications to the flux are due to the T.E., and as a result 
must necessarily be limited to obtain a TVD scheme. This technique is discussed 
in more detail in Chapter 6. 

4.5 BURGERS’ EQUATION (VISCOUS) 
The complete nonlinear Burgers equation 

f3U dU d 2 U  + u- = p- a t  dX dX2  
- (4.272) 

is a parabolic PDE, which can serve as a model equation for the boundary-layer 
equations, the “parabolized” Navier-Stokes equations, and the complete 
Navier-Stokes equations. In order to better model the steady boundary-layer 
and “ parabolized” Navier-Stokes equations, the independent variables t and x 
can be replaced by x and y to give 

a24 dU d 2 U  + u- = p- 
dx d y  dY 
- (4.273) 

where x is the marching direction. 
As with previous model equations, Burgers’ equation has exact analytical 

solutions for certain boundary and initial conditions. These exact solutions are 
useful when comparing different numerical algorithms. The exact steady-state 
solution [i.e., lim, +,u(x, t)] of Eq. (4.272) for the boundary conditions 

u(0,t) = uo (4.274) 

u ( L , t )  = 0 (4.275) 
is given by 

(4.276) 
1 - exp[ii Re, (x/L - l ) ]  
1 + exp[G Re, (x/L - 111 u = uoii 
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where 
UOL Re, = - 
CL 

and ii is a solution of the equation 
i i - 1  
i i + l  

= exp(-ERe,) 

(4.277) 

(4.278) 

For simplicity, the linearized Burgers equation 

du du d 2U 
- + c -  = p- (4.279) 
d t  d X  d X 2  

is often used in place of Eq. (4.272). Note that if p = 0, the wave equation is 
obtained. If c = 0, the heat equation is obtained. The exact steady-state solution 
of Eq. (4.279) for the boundary conditions given by Eqs. (4.274) and (4.275) is 

(4.280) 1 1 - exp[R,(x/L - 0 1  
1 - exp(-R,) 

C L  

i u = u, 

where 

R L =  F 
The exact unsteady solution of Eq. (4.279) for the initial condition 

u(x ,O)  = sin (ICT) 
and periodic boundary conditions is 

u(x,t) = exp(-k&t)sink(x - c t )  (4.281) 

This latter exact solution is useful in evaluating the temporal accuracy of a 
method. 

Equations (4.272) and (4.279) can be combined into a generalized equation 
(Rakich, 1978): 

U, + (C + bu)u, = pu,, (4.282) 

where c and b are free parameters. If b = 0, the linearized Burgers equation is 
obtained and if c = 0 and b = 1, the nonlinear Burgers equation is obtained. If 
c = 4 and b = - 1, the generalized Burgers equation has the stationary solution 

1 c ( x  - x , )  

2P 
(4.283) 

which is shown in Fig. 4.56 for p = a. Hence, if the initial distribution of u is 
given by Eq. (4.2831, the exact solution does not vary with time but remains f ied 
at the initial distribution. Additional exact solutions of Burgers’ equation can be 
found in the paper by Benton and Platzman (1972), which describes 35 different 
exact solutions. 
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" t  
c = 1/2 

P = 1/4 

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 
x - x o  

Figure 4.56 Exact solution of Eq. (4.283). 

Equation (4.282) can be put into conservation form: 

u, + F x  = 0 
where F is defined by 

- bu 
2 

F = cu + - - p ~ ,  

Alternatively, Eq. (4.282) can be rewritten as 

u, + Fx = W X X  

where F is defined by 

bu 
2 

For the linearized case ( b  = O), F reduces to 

F = c u + -  

F = cu 

If we let A = d F / d u ,  then Eq. (4.286) becomes 

(4.284) 

(4.285) 

(4.286) 

(4.287) 

u,  +Au,  = pu,, (4.288) 

where A = u for the nonlinear Burgers equation (c = 0, b = 1) and A = c for 
the linear Burgers equation ( b  = 0). We will use either Eq. (4.286) or Eq. 
(4.288) to represent Burgers' equation in the following discussion of applicable 
finite-difference/finite-volume schemes. 

The various schemes described previously for the inviscid Burgers equation 
can also be applied to the complete Burgers equation. This is accomplished by 
simply adding a second-order (or higher-order) central-difference expression for 
the viscous term uxx.  We will describe these methods as well as other methods 
for solving the complete Burgers equation in the following sections. 
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4.5.1 lTCS Method 
Roache (1972) has given the name FTCS method to the scheme obtained by 
applying forward-time and centered-space differences to the linearized Burgers 
equation [i.e., Eq. (4.288) with A = c] .  The resulting algorithm is 

(4.289) 
.y+l - Mi” - - 2u; + UY-1 

(Ax)’  
+ C  = P  At  2 A x  

This is a first-order, explicit, one-step scheme with a T.E. of O [ A t , ( A x ) ’ ] .  The 
modified equation can be written as 

u, + cu, = ( p - +).,. + ~ 

3 

+- - 2v + lOvr - 3v3 u,,,, + (4.290) 

where r is defined as p A t / ( A x ) ’  for the viscous Burgers equation and 
v = c A t / A x .  Note that if r = 3 and v = 1, the coefficients of the first two 
terms on the right-hand side of the modified equation become zero. Unfortu- 
nately, this eliminates the viscous term ( pu,,) that appears in the PDE we wish 
to solve. Thus the FTCS method with r = 3 and v = 1, which incidentally 
reduces to MY+’ = uj”- 1,  is an unacceptable difference representation for 
Burgers’ equation. 

The “heuristic” stability analysis, described in Section 4.1.2, requires that 
the coefficient on u,, be greater than zero. Hence 

c2 At  
- d P  2 

or 

c 2 ( A t  )’ At  

(Ax)’  ( A x )  
< 2 p - 7  

which can be rewritten as 

v’ G 2r (4.291) 

A very useful parameter that arises naturally when solving Burgers’ equation is 
the mesh Reynolds number, which is defined by 

c A x  
Rehx = - 

CL 
(4.292) 

This nondimensional parameter gives the ratio of convection to diffusion and 
plays an important role in determining the character of the solution for Burgers’ 
equation. The mesh (cell) Reynolds number (also called Peclet number) can be 
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expressed in terms of Y and r in the following manner: 

C A X  c A t  ( A x ) *  Y 

P A x  p A t  r 

Thus the stability condition given by Eq. (4.291) becomes 

_- -=-  Reh, = - - 

0 
L 

V 
Rehx Q - (4.293) 

As pointed out earlier, the “heuristic” stability analysis does not always give 
the complete stability restrictions for a given numerical scheme, and this 
happens in the present case. In order to obtain all of the stability conditions it is 
necessary to use the Fourier stability analysis. For the FI’CS method, the 
amplification factor is 

G = 1 + 2r(cos p - 1) - i d s in  p )  (4.294) 
which is plotted in Fig. 4.57(a) for a given v and r .  The equation for G describes 
an ellipse that is centered on the positive real axis at (1 - 2r) and has 
semimajor and semiminor axes given by 2r and V, respectively. In addition, the 
ellipse is tangent to the unit circle at the point where the positive real axis 
intersects the unit circle. For stability, it is necessary that IGI Q 1, which 
requires that the ellipse be entirely within the unit circle. This leads to the 
following necessary stability restrictions, which are based on the lengths of the 
semimajor and semiminor axes: 

V Q ~  2 r ~ l  (4.295) 
It is possible, however, for these restrictions to be satisfied and the solution to 
still be unstable, as can be seen in Fig. 4.57(b). Of course, the complete stability 

Im Im 

UNIT 

-Re 

Figure 4.57 Stability of FTCS method: (a) v < 1, r < i, v 2  < 2r; (b) v < 1, r < 4, v 2  > 2r. 
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limitations can be obtained by examining the modulus of the amplification 
factor in the usual manner. This analysis yields 

u 2 < 2 r  r <  + (4.296) 

Note that the first restriction was obtained previously by the heuristic stability 
analysis and that the two inequalities can be combined to yield a third inequality, 

u < 1  
which was obtained by graphical considerations. In terms of the mesh Reynolds 
number, the stability restrictions become 

2 
2 u ~  ReA, < - (4.297) 

It should be mentioned that the right-hand inequality is incorrectly given as 
ReA, < 2 in some references. 

An important characteristic of finite-difference schemes that are used to 
solve Burgers’ equation is whether they produce oscillations (wiggles) in the 
solution. Obviously, we do not want these oscillations to occur in our solutions 
of fluid flow problems. The FTCS method will produce oscillations in the 
solution of Burgers’ equation for mesh Reynolds numbers in the range 

U 

2 
2 < ReAx < - 

U 

For mesh Reynolds numbers slightly above 2 /  u,  the oscillations will eventually 
cause the solution to “blow up,” as expected from our previous stability analysis. 
In order to explain the origin of the wiggles, let us rewrite Eq. (4.289) in the 
following form: 

u y + l =  ( r  - i ) u ; i l  + (1 - 2r)uy + r + - uin_l (4.298) ( 2”)  
which is equivalent to 

r r 
2 2 

.y+l = - ( 2  - ReA,)Uy+l + (1 - 2r)uy -t - ( 2  + Re,,)uy-l (4.299) 

Furthermore, assume we are trying to find the steady-state solution of Burgers’ 
equation for the initial condition, 

and boundary conditions, 
U ( X , O )  = 0 0 < X  < 1 

u ( 0 , t )  = 0 
u(1,t) = 1 

using an 11-point mesh. For the first time step the values of u at time level 
n + 1 are all zero except at j = 10, where 
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Figure 4.58 Oscillations in numerical solution of Burgers' equation: (a) n + 1 time level; (b) n + 2 
time level; (c) n + 3 time level. 

and at the boundary ( j  = ll), where uI1 is fixed at 1. If ReA, > 2, the value of 
u;:' will be negative, which will initiate an oscillation as shown in Fig. 4.58a. 
This figure is drawn for the conditions 

v = 0.4 
r = 0.1 

which make u;,,+ ' = - 0.1. During the next time step, the oscillation propagates 
one grid point further from the right-hand boundary. The values of u at j = 9 
and j = 10 become 

Ugnf2 = + 0.01 

u ; p  = -0.18 

and the resulting solution is shown in Fig. 4.58b. The wiggles will eventually 
propagate to the other boundary but will remain bounded throughout the 
iteration to steady state. The oscillations that occur in this case are similar to 
the oscillations that appear when a second-order (or higher) scheme is used to 
solve the inviscid Burgers equation for a propagating discontinuity. 



224 FUNDAMENTALS 

Additional insight into the origin of the wiggles can be obtained by examining 
the coefficients in Eq. (4.299) from a physical standpoint. We observe that when 
ReAx > 2, the coefficient in front of u ; + ~  becomes negative. Hence, the larger 
the value for u;+ 1, the smaller the value for uj”+ ’. This represents a nonphysical 
behavior for a viscous problem, since we would expect a greater “pull” on uy+ 
(i.e., increased value) because of viscosity as u;+ is increased. As a consequence 
of this nonphysical behavior, oscillations are produced in the solution. 

The oscillations of the R C S  method can be eliminated if the second-order 
central difference used for the convective term cu, is replaced by a first-order 
upwind difference. The resulting algorithm for c > 0 becomes 

This first-order scheme eliminates the oscillations by adding 

(4.300) 

additional 
dissipation to the solution. Unfortunately, the amount of dissipation causes the 
resulting solution to be sufficiently inaccurate to exclude Eq. (4.300) as a viable 
difference scheme for Burgers’ equation. The large amount of dissipation is 
evident when we examine the modified equation for the scheme 

(4.301) 

and compare it to the modified equation of the FTCS method. Equation (4.301) 
has the additional term p ReA,/2 appearing in the coefficient of uxx .  Hence, if 
ReA, > 2, this additional term produces more dissipation (diffusion) than is 
present in the original problem governed by Burgers’ equation. In order to 
reduce dispersive errors without adding a large amount of artificial viscosity, 
Leonard (1979a, 1979b) has suggested using a third-order upstream (upwind) 
difference for the convective term. The resulting algorithm for c > 0 is 

and for c < 0 the algorithm becomes 

(4.302) 

(4.303) 
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4.5.2 Leap Frog/DuFort-Frankel Method 
We have noted earlier that the linearized Burgers equation is a combination of 
the first-order wave equation and the heat equation. This suggests that we might 
be able to combine some of the algorithms given previously for the wave 
equation and the heat equation. The leap frog/DuFort-Frankel method is one 
such example. When applied to Eq. (4.2881, this method becomes 

u;+1 - u;-’ u;+l - u;-l + A; = P  
- .;+I - 24;-1 + uYpl 

(4.304) 
( A x > 2  2 At  2 A x  

This explicit, one-step scheme is first-order accurate with a T.E. of U [ ( A t /  
A x ) 2 , ( A t ) 2 , ( A x ) 2 ] .  The modified equation for the linear case (A = c )  can be 
written as 

2p’c(At) ’  1 
(Ax) ’  6 

- - c (Ax)*  u, + cu, = p(1  - v2)u,, + 

u,,, + *.. (4.305) 1 1 2 p2c3 ( At )4 + - c ~ ( A ~ ) ~  - 
6 ( A x ) 4  

Also for the linear case, a Fourier stability analysis can be performed, which 
gives the stability condition 

v,< 1 
Note that this stability condition is independent of the viscosity coefficient p 
because of the DuFort-Frankel type of differencing used for the viscous term. 
However, because consistency requires that ( A t / A x I 2  approach zero as At and 
A x  approach zero, a much smaller time step than allowed by v 6 1 is implied. 
For this reason, the leap frog/DuFort-Frankel scheme seems better suited for 
the calculation of steady solutions (where time accuracy is unimportant) than for 
unsteady solutions according to Peyret and Viviand (1975). In the nonlinear 
case, this scheme is unstable if p = 0. 

4.5.3 Brailovskaya Method 
The following two-step explicit method for Eq. (4.286) was proposed by 
Brailovskaya (1 965): 

Predictor: 

Corrector : 

(4.306) 
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This scheme is formally first-order accurate with a T.E. of O[At, (Ax)’]. If only 
a steady-state solution is desired, the first-order temporal accuracy is not 
important. For the linear Burgers equation, the von Neumann necessary 
condition for stability is 

IG12 = 1 - { v 2  sin2 p ( l  - v2 sin2 p )  + 4r(l - cos p )  
~ [ l  - r( l  - cos p)(1 + v’ sin2 p)]) < 1 (4.307) 

If we ignore viscous effects (i.e., set r = O), the stability condition becomes 

v < l  

On the other hand, if we ignore the convection term, i.e., set v = 0, the stability 
condition becomes 

r < +  

Based on these observations, Carter (1971) has suggested the following stability 
criterion for the Brailovskaya scheme: 

(4.308) 

An attractive feature of this scheme is that the viscous term remains the same in 
both predictor and corrector steps and needs to be computed only once. 

4.5.4 Allen-Cheng Method 

Allen and Cheng (1970) modified the Brailovskaya scheme to eliminate the 
stability restriction on r.  Their scheme is given by 

Predictor : 

Corrector: 

+ r(ui”+l - 224- I + u? 1 - 1  ) 
(4.309) 

+ r ( u l Z  - 

The unconventional differencing of the viscous term eliminates the stability 
restriction on r ,  so that the stability condition becomes 

V Q  1 

for the linear Burgers equation. As a result, when /.L is large, this method 
permits a much larger time step to be taken than does the Brailovskaya scheme. 
The Allen-Cheng method is formally first-order accurate with a T.E. of 
O[A~,(AX)~I.  
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4.5.5 Lax-Wendroff Method 
We have previously applied the two-step Lax-Wendroff method to the wave 
equation. When applied to the complete Burgers equation, several different 
variations of the method are possible, including the following: 

(4.310) 

q + 1  = u? - Step 2: I 

+ r(ui.,, - 2u; + u;-J 

This version is based on the Lax-Wendroff scheme used by Thommen (1966) to 
solve the Navier-Stokes equations. An alternate version has been proposed by 
Palumbo and Rubin (1972), which computes provisional values at time level 
n + 1 instead of n + 3. The present version is formally first-order accurate with 
a T.E. of O [ A t ,  (Ax) ’ ] .  The exact linear stability condition is 

A t  

( A x )  
(A’ A t  + 2 p )  Q 1 (4.31 1) 

4.5.6 MacCormack Method 
The original MacCormack method (1969) applied to the complete Burgers 
equation (4.286) is 

A t  
I A x  Predictor: uy- = u? - -(E;;.n+, - F,”) + r ( ~ ; + ~  - 2u; + uyp1) 

(4.312) 

which is second-order accurate in both time and space. In this version of the 
MacCormack scheme, a forward difference is employed in the predictor step for 
d F / d x  and a backward difference is used in the corrector step. The alternate 
version of the MacCormack scheme employs a backward difference in the 
predictor step and a forward difference in the corrector step. Both variants of 
the MacCormack scheme are second-order accurate. It is not possible to obtain 
a simple stability criterion for the MacCormack scheme applied to the Burgers 
equation. However, either the condition given by Eq. (4.308) or the empirical 
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formula (Tannehill et al., 1975) 

( A x ) *  
A t  Q 

IAl A x  + 2 p  
(4.313) 

can be used with an appropriate safety factor. The latter formula reduces to the 
usual viscous condition r < when JAI is set equal to zero, and reduces to the 
usual inviscid condition IAl A t / A x  Q 1 when p is set equal to zero. The 
MacCormack method has been widely used to solve not only the Euler equations 
but also the Navier-Stokes equations for laminar flow. For multidimensional 
problems, a time-split version of the MacCormack scheme has been developed 
and will be described in Section 4.5.8. For high-Reynolds-number problems, 
MacCormack has devised several newer methods, which will be discussed in 
Chapter 9. 

An interesting variation of the original MacCormack scheme is obtained 
when overrelaxation is applied to both predicted and corrected values (DCsidCri 
and Tannehill, 1977a) in the following manner: 

.y'l= ui" + .(.j" - u;) (4.314) 

Corrector : 

In these equations, the v's are intermediate quantities, the u's denote final 
predictions, 0 and w are overrelaxation parameters, and uy represents the 
predicted value for ui from the previous step. The original MacCormack scheme 
is obtained by setting W = 1 and w = ?. In general, the overrelaxed 
MacCormack method is first-order accurate with a T.E. of o [ A t , ( A ~ ) ~ l .  
However, it can be shown (DCsidCri and Tannehill, 197%) that if 

00 = I0 - WI (4.316) 

the method is second-order accurate in time when applied to the linearized 
Burgers equation. The overrelaxation scheme accelerates the convergence over 
that of the original MacCormack scheme by an approximate factor a, given by 

1 

2 w w  
1 - (W - 1x0 - 1) 

a =  (4.317) 

A Fourier stability analysis applied to the linearized Burgers equation does not 
yield a necessary and sufficient stability condition in the form of an algebraic 
relation between the parameters Y, r ,  W, and 0. However, a necessary condition 
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of stability is 
I(W - l > ( o  - 111 < 1 (4.318) 

In general, the stability limitation must be computed numerically, and it is 
usually more restrictive than the conditions W G 2 and u G 2. 

4.5.7 Briley-McDonald Method 

The Briley-McDonald (1974) method is an implicit scheme which is often based 
on the following time differencing (Euler implicit) of Eq. (4.286): 

n+ 1 n + l  U ? + l  - ui” 

+(g) j  = P i $ )  i 

J 

A t  
(4.319) 

The term ( d F / d x ) ; + ’  is expanded as 
d dF ( E)n+l = ( E)n d x  j + A t [  -( d t  -)] d x  j + O [ ( A t l 2 1  (4.320) 

d x  j 

thereby introducing d / d t ( d F / d x ) ,  which can be replaced by 
d dF d dF d dF d u  -(-)=a*(at) d t  d x  = ,(,,i = ; ( A ; )  (4.321) 

Finally, if we combine Eqs. (4.319), (4.320), and (4.321) and employ forward-time 
differences and centered-spatial differences, the Briley-McDonald method is 
obtained: 

ui”+ - ui” y+ 1 - F/” 1 A;, 1( 24;;; - ui”+ 1) - A;- 1( ui”:; - .in_ 1) + + 
A t  2 A x  2 A x  

= p fpui”+1 (4.322) 
This scheme is formally first-order accurate with a T.E. of O [ A ~ , ( A X ) ~ ] .  
However, at steady-state the accuracy is  AX)^]. The temporal accuracy can 
be increased by using trapezoidal differencing or by using additional time levels 
in the same manner as discussed earlier for the Beam-Warming scheme. For 
example, if we apply trapezoidal time differencing to Eq. (4.2861, the following 
equation is obtained: 

n + l  
ui”+1 - ui” + -[ 1 ( - ) n  dF + ( 3 + l ]  = ; P [  (2); + ( -g)j d 2 U  ] 

At  2 a x  j 

(4.323) 

Proceeding as before, we find the resulting second-order accurate scheme to be 

ui”+l - ui” Fi”+l - lyl + + An J + 1  (u?” J f l  - u ; + ~ )  -A;-l(uy:: - u ; - ~ )  
A t  2 A x  4 A x  

(4.324) 
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Both of these schemes, Eq. (4.322) and Eq. (4.3241, are unconditionally stable 
and produce tridiagonal systems of linear algebraic equations that can be solved 
using the Thomas algorithm. 

The Briley-McDonald method is directly related to the method developed 
by Beam and Warming (1978) to solve the Navier-Stokes equations. In fact, 
when the two methods are applied to Burgers' equation, they can be reduced to 
the same form. In order to do this, the delta terms in the Beam-Warming 
method must be replaced by their equivalent expressions [i.e., AuY is replaced 
by (u;+ - u?)]. The Beam-Warming method for the Navier-Stokes equations is 
discussed in Chapter 9. 

4.5.8 Time-Split MacCormack Method 
In order to illustrate methods that are designed specifically for multidimensional 
problems, we introduce the 2-D Burgers equation 

au d~ JG d 2 U  d 2 U  
- at + - ax + - ay ="is + (4.325) 

If we let A = d F / d u  and B = d G / d u ,  Eq. (4.325) can be rewritten as 

u, =Au,  + Buy = p(u,, + u y y )  (4.326) 

The exact steady-state solution (derived by Rai, 1982) of the 2-D linearized 
Burgers equation, 

u, + cu, + du, = p(u,, + u y y )  (4.327) 

for the boundary conditions (0 Q t Q m), 

1 - exp[(x - 1)c/pLl 

1 - exp(-c/p) 

1 - exp[(y - l)d/pI 
1 - exp(-d/p) 

and the initial condition (0 < x G 1, 0 < y G 11, 

u ( x ,  0, t )  = 

4 0 ,  y, t )  = 

u ( x ,  1, t )  = 0 

u ( l ,  y, t )  = 0 

(4.328) 

u(x ,  y, 0) = 0 
is given by 

(4.329) 

Note that the extension of this form of solution to the 3-D linearized Burgers 
equation is straightforward. All of the methods we have discussed for the l-D 
Burgers equation can be readily extended to the 2-D Burgers equation. However, 
because of the more restrictive stability conditions of the explicit methods and 
the desire to maintain tridiagonal matrices in the implicit schemes, it is usually 

1 1 - exp[(x - 1)c/pl 1 - exp[(y - W/pI i 1 - expEp(-c/p) I( 1 - exp(-d/p) 
u(x,y)  = 
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necessary to modify the previous algorithms for multidimensional problems. As 
an example, let us first consider the explicit time-split MacCormack method. 

The time-split MacCormack method (MacCormack, 1971; MacCormack and 
Baldwin, 1975) “splits” the original MacCormack scheme into a sequence of 1-D 
operations, thereby achieving a less restrictive stability condition. In other 
words, the splitting makes it possible to advance the solution in each direction 
with the maximum allowable time step. This is particularly advantageous if the 
allowable time steps (At , ,  At,) are much different because of differences in the 
mesh spacings ( A x ,  A y ) .  In order to explain this method, we will make use of 
the 1-D difference operators L,(At , )  and Ly(Aty ) .  The L,(At,)  operator 
applied to u;~, 

u?, = L,(At,)ur, (4.330) 
is by definition equivalent to the two-step formula: 

These expressions make use of a dummy time index, which is denoted by the 
asterisk. The L,(At , )  operator is defined in a similar manner, that is, 

u ? , ~  = L y ( A t y ) u ~ , j  (4.332) 
is equivalent to 

AtY - 
u* . = u!’ . - -(G?. - GCj) + p A t y ~ ~ U ~ , j  1 , )  1 3 1  A y  1 , ] + 1  

(4.333) 
- At - - 

u * .  = - u ! ’ .  + u * .  - d ( G Z j  - G*. ) + p A t  1,l 2 ‘ . I  1 . 1 - 1  [ A y  
A second-order accurate scheme can be constructed by applying the L, and 

L ,  operators to uy in the following manner: 

(4.334) 

This scheme has a T.E. of O [ ( A t ) 2 , ( A ~ ) 2 , ( A y ) 2 ] .  In general, a scheme formed 
by a sequence of these operators is (1) stable, if the time step of each operator 
does not exceed the allowable step size for that operator; (2) consistent, if the 
sums of the time steps for each of the operators are equal; and (3) second-order 
accurate, if the sequence is symmetric. Other sequences that satisfy these 
criteria are given by 

The last sequence is quite useful for the case where A y  (< Ax.  
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4.5.9 AD1 Methods 

Polezhaev (1967) used an adaptation of the Peaceman-Rachford AD1 scheme to 
solve the compressible Navier-Stokes equations. When applied to the 2-D 
Burgers equation, Eq. (4.326), this scheme becomes 

This method is first-order accurate with a T.E. of 0 [ A t , ( A ~ ) ~ , ( A y ) ~ l  and is 
unconditionally stable for the linear case. Obviously, a tridiagonal system of 
algebraic equations must be solved during each step. 

When the Briley-McDonald scheme, Eq. (4.3221, is applied directly to the 
2-D Burgers equation, a tridiagonal system of algebraic equations is no longer 
obtained. This difficulty can be avoided by applying the two-step AD1 procedure 
of Douglas and Gunn (1964): 

- - 

[l + A t (  - S X  A;,j  - y 6 ~ ) ] ~ ~ , ~  = [l - At( LBtj  - p6,?)]~4:,~ + (At)Silj 
2 Ax 2 AY 

(4.337) 

(4.338) 

where 

4.5.10 Predictor-Corrector, Multiple-Iteration Method 
Rubin and Lin (1972) devised a predictor-corrector, multiple-iteration method 
to solve the 3-D “parabolized” Navier-Stokes equations. Their scheme eliminates 
cross coupling of grid points in the normal (y) and lateral (2) directions and 
uses an iterative procedure to recover acceptable accuracy. In order to illustrate 
this method, let us use the following 3-D linear Burgers equation, 

ux + cuy + du, = p(uyy + U Z J  (4.339) 

as a model for the “ parabolized” Navier-Stokes equations. The predictor- 
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corrector, multiple-iteration method applied to this model equation is 

c A x  
U ? ! , l j , k  = ' i , j , k  - - ( ' y ! , ' j + l , k  - '?+I ~ + l , j - l , k )  

2 AY 

- 2u?+",:1j,k + u y + : , l j - l , k )  

where the superscript m indicates the iteration level and x = i A x ,  y = j A y ,  
and z = k A z .  For the first iteration, m is set equal to zero and the corresponding 
terms are approximated by either linear replacement, 

- '!+ 1, j ,  k - 'i, j ,  k 

or by Taylor-series expansions such as 

' ; + l , j , k  = 2 u i , j , k  - u i - l , j , k  + O[(Ax)'I 

As a result, Eq. (4.340) has three unknowns 

':+ 1 ,  j +  1 ,  k 

(4.341) 

which produces a tridiagonal system of algebraic equations. The computation in 
the i + 1 plane proceeds outward from the known boundary conditions at k = 1 
to the last k column of grid points. This completes the first iteration. For the 
next iteration (m = 1) the three unknowns in Eq. (4.340) are 

2 
' i +  1 ,  j -  1 ,  k 

(4.342) 

This iteration procedure is continued until the solution is converged in the i + 1 
plane. Usually, only two iterations (m = 0, m = 1) are required to recover 
acceptable accuracy. The computation then advances to the i + 2 plane. 

4.5.11 Roe Method 

The Roe (1981) scheme was previously applied to the inviscid Burgers equation 
in Section 4.4.9. When applied to the complete Burgers' equation (Eq. 4.2861, 



234 FUNDhENTALS 

, the algorithm becomes 
At 

2 A x  q + 1  = u; - -[(F,;, - F,”,) - lE;+$u;+l - u;> + lE,”_;l(u,” - 

+ r<u;+, - 2u; + Z4Y-J (4.343) 

where F = u 2 / 2  and 
ui” + ui”+l 

2 
u;+; = 

This explicit one-step method is first-order accurate wit., a T.E. o O[At, (Axl21. 
Higher-order versions of Roe’s scheme can be obtained using the techniques 
described in Sections 4.4.11 and 4.4.12. 

4.6 CONCLUDING REMARKS 
In this chapter an attempt has been made to introduce basic numerical methods 
for solving simple model PDEs. It has not been the intent to include all 
numerical techniques that have been proposed for these equations. Some very 
useful methods have not been included. However, those that have been presented 
should provide a reasonable background for the more complex applications that 
follow in Chapters 6-9. 

Based on the information presented on the various techniques, it is clear 
that many different numerical methods can be used to solve the same problem. 
The differences in the quality of the solutions produced using the applicable 
methods are frequently small, and the selection of an optimum technique 
becomes difficult. However, the selection process can be aided by the experience 
gained in programming the various methods to solve the model equations 
presented in this chapter. 

PROBLEMS 
4.1 Derive Eq. (4.19). 
4.2 Derive the modified equation for the Lax method applied to the wave equation. Retain terms up 
to and including u x x X x .  
4 3  Repeat Prob. 4.2 for the Euler implicit scheme. 
4.4 Derive the modified equation for the leap frog method. Retain terms up to and including 
u x x x x x .  
4.5 Repeat Prob. 4.4 for the Lax-Wendroff method. 
4.6 Determine the errors in amplitude and phase for B = W if the Lax method is applied to the 
wave equation for 10 time steps with Y = 0.5. 
4.7 Repeat Prob. 4.6 for the MacCormack scheme. 
4.8 Suppose the Lax scheme is used to solve the wave equation (c = 0.75) for the initial condition 

U ( X ,  0) = 2 sin ( ~ T X  - 0 . 4 ~ )  0 < x d 2 

and periodic boundary conditions with Ax = 0.02 and At  = 0.02. 
( a )  Use the amplification factor to find the amplitude and phase errors after 10 steps. 
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( b )  Use a truncated version of the modified equation to determine (approximately) the 
amplitude and phase errors after 10 steps. 
Hint: The exact solution for the PDE 

U t  + cu, = PPXX + dux,, 

u(x, 0 )  = A ,  sin (kx) 
with initial condition 

and periodic boundary conditions is 

u ( x , t )  =A,,exp(-k’pt)sin{k[x - ( c  + k 2 d ) t ] )  

4.9 Suppose the Lax-Wendroff scheme is used to solve the wave equation ( c  = 0.75) for the initial 
condition 

u(x,O) = 2 s i n ( ~ n )  0 G X  G 2 
and periodic boundary conditions with Ax = 0.1 and A t  = 0.1. 

( a )  Use the amplification factor to find the amplitude and phase errors after 10 steps. 
( b )  Use a truncated version of the modified equation to determine (approximately) the 

amplitude and phase errors after 10 steps. 
Hint: The exact solution for the PDE 

Uf + CUx = dux,, + P ~ x x x x  

u ( x ,  0 )  = A ,  sin (kx) 
with initial condition 

and periodic boundary conditions is given by 

u ( x , t )  =A,exp(k4pt)sin{k[x - ( c  + k’d)tll 

4.10 Repeat Prob. 4.9 for the leap-frog method. 
4.11 Suppose the Rusanov scheme is used to solve the wave equation ( c  = 0.5) for the initial 
condition 

u(x ,O)  = 2 s i n ( ~ x  - 0 . 3 ~ )  0 b x  d 2 
and periodic boundary conditions with An = 0.1, A t  = 0.1, and o = 1.0. 

(a )  Use the amplification factor to find the amplitude and phase errors after 10 steps. 
(b )  Use a truncated version of the modified equation to determine (approximately) the 

amplitude and phase errors after 10 steps, if the exact solution for the PDE 

U l  + CUX = ILu,.rx, + d ~ , , , , ,  

U ( X , O )  = A ,  sin (/a) 

u ( x ,  t )  = A ,  exp (k4pt )  sin ( k [ x  - ( c  - k4d) tI }  

4.12 Derive the amplification factor for the leap frog method applied to the wave equation and 
determine the stability restriction for this scheme. 
4.13 Repeat Prob. 4.12 for the second-order upwind method. 
4.14 Show that the Rusanov method applied to the wave equation is equivalent to the following 
one-step scheme: 

with initial condition 

and periodic boundary conditions is given by 

4.15 Evaluate the stability of the Rusanov method applied to the wave equation using the Fourier 
stability analysis. Hint: See Prob. 4.14. 
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4.16 The following second-order accurate explicit scheme for the wave equation was proposed by 
Crowley (1967): 

(a) Derive the modified equation for this scheme. Retain terms up to and including uxxxxr .  
( b )  Evaluate the necessary condition for stability. 
(c) Determine the errors in amplitude and phase for p = 90" if this scheme is applied to the 

wave equation for 10 time steps with Y = 1. 
4.17 Solve the wave equation ut + u, = 0 on a digital computer using 

(a) Lax scheme 
( b )  Lax-Wendroff scheme 

for the initial condition 

u(x, 0) = sin 2nm (G) O g x 6 4 0  

and periodic boundary conditions. Choose a 41 grid point mesh with Ax = 1 and compute to t = 18. 
Solve this problem for n = 1, 3 and Y = 1.0,0.6,0.3 and compare graphically with the exact solution. 
Determine p for n = 1 and n = 3, and calculate the errors in amplitude and phase for each scheme 
with Y = 0.6. Compare these errors with the errors appearing on the graphs. 
4.18 Repeat Prob. 4.17 using the following schemes: 

(a) Windward differencing scheme 
( b )  MacCormack scheme 

(a) MacCormack scheme 
( b )  Rusanov scheme ( w  = 3) 

(a) Windward differencing scheme 
( b )  MacCormack scheme 

4.19 Repeat Prob. 4.17 using the following schemes: 

4.20 Solve the wave equation ut + u, = 0 on a digital computer using 

for the initial conditions 

U ( X , O )  = 1 
u(x,O) = 0 

x d 10 
x > 10 

and Dirichlet boundary conditions. Choose a 41 grid point mesh with Ax = 1 and compute to 
t = 18. Solve this problem for Y = 1.0, 0.6, and 0.3 and compare graphically with the exact solution. 
4.21 Apply the windward differencing scheme to the two-dimensional wave equation 

ut + c(u ,  + u , )  = 0 

and determine the stability of the resulting scheme. 
4.22 Derive the modified equation for the simple implicit method applied to the 1-D heat equation. 
Retain terms up to and including u,xxxxx. 
4.23 Evaluate the stability of the combined method B applied to the 1-D heat equation. 
4.24 Determine the amplification factor of the ADE method of Saul'yev and examine the stability. 
4.25 For the grid points ( i  + j + n) even, show that the hopscotch method reduces to 

u n + 2  1 .1  = 2u:,;' - u:,, 

4.26 Use the simple explicit method to solve the 1-D heat equation on the computational grid (Fig. 
P4.1) with boundary conditions 

u; = 2 = u; 

u ; = 2 = u ;  u ; = 1  

and initial conditions 
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I 

Show that if r = +, the steady-state value of u along j = 2 becomes 

Note that this infinite series is a geometric series that has a known sum. 
4.27 Apply the AD1 scheme to the 2-D heat equation and find u n + l  at the internal grid points in 
the mesh shown in Fig. P4.2 for r, = ry = 2. The initial conditions are 

X 
u" = 1 - - 

3 A x  
Y u" = 1 - - 

2 AY 

along y = 0 

along x = 0 

u" = 0 everywhere else 

and the boundary conditions remain fixed at their initial values. 
4.28 Solve the heat equation uI = 0 . 2 ~ ~ ~  on a digital computer using 

( a )  Simple explicit method 
(b )  Barakat and Clark ADE method 

for the initial condition 

and boundary conditions 
u(0, t )  = u ( L ,  t )  = 0 

Compute to t = 0.5 using the parameters in Table P4.1 (if possible) and compare graphically with 
the exact solution. 
4.29 Repeat Prob. 4.28 using the Crank-Nicolson scheme. 
430 Repeat Prob. 4.28 using the DuFort-Frankel scheme. 

t 
4 

n = l  
\\ 

j = l  

X 

Figure P4.1 



238 FUNDAMENTALS 

Table P4.1 

Number of 
Case grid points r 

11 
11 
16 
11 
11 

0.25 
0.50 
0.50 
1.00 
2.00 

431  The heat equation 

d T  d 2 T  _ -  
at -77 

governs the time-dependent temperature distribution in a homogeneous constant property solid 
under conditions where the temperature varies only in one space dimension. Physically, this may be 
nearly realized in a long thin rod or very large (infinite) wall of finite thickness. 

Consider a large wall of thickness L whose initial temperature is given by T( t ,  x )  = c sin m / L .  
If the faces of the wall continue to be held at O”, then a solution for the temperature at t > 0, 
O 6 x 6 L i s  

( -7”) sin 7TX 
T ( t , x )  = c exp - 

For this problem let c = lOo”C, L = 1 m, a = 0.02 m2/h. We will consider two explicit methods of 
solution, A. Simple explicit method, Eq. (4.73). Stability requires that a A t / ( A n ) ’  6 for this 
method, B. Alternating direction explicit (ADE) method, Eq. (4.107). This particular version of the 
ADE method was suggested by Barakat and Clark (1966). In this algorithm, the equation for p,”’ ’ 
can be solved explicitly starting from the boundary at x = 0, whereas the equation for q,?’ should 
be solved starting at the boundary at x = L. There is no stability constraint on the size of the time 
step for this method. Develop computer programs to solve the problem described above by methods 
A and B. Also, you will want to provide a capability for evaluating the exact solution for purposes of 
comparison. Make at least the following comparisons: 

1. For A x  = 0.1, At = 0.1 [resulting in a At/(Ax)’ = 0.21, compare the results from methods A and 
B and the exact solution for t = 10 h. A graphical comparison is suggested. 

2. Repeat the above comparison after refining the space grid, i.e., let A x  = 0.066667 (15 increments). 
Is the reduction in error as suggested by ~ [ ( A X ) ~ ] ?  

3. For A x  = 0.1 choose At such that a At/(Ax>2 = 0.5 and compare the predictions of methods A 
and B and the exact solution for t = 10 h. 

4. Demonstrate that method A does become unstable as a At/(Ax)’ exceeds 0.5. One suggestion is 
to plot the centerline temperature vs. time for a A t / ( A x ) ’  = 0.6 for 10-20 hours of problem 
time. 

5. For A x  = 0.1, choose At such that a At/(Ax)2  = 1.0 and compare the results of method B and 
the exact solution for t = 10 h. 

6. Increment a At/(Ax)’ to 2, then 3, etc., and repeat comparison 5 above until the agreement with 
the exact solution becomes noticeably poor. 

432 Work Prob. 4.31 letting method B be the Crank-Nicolson scheme. 
4.33 Work Prob. 4.31 letting method B be the simple implicit scheme. 
434 Derive a way to solve the problem described in Prob. 4.31 utilizing the fourth-order accurate 
representation of the second derivative given by Eq. (3.35). 
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Figure P4.3 

435 Use the difference scheme of Eq. (3.35) for second derivatives 

to develop a finite-difference representation for Laplace's equation where A x  = A y .  Write out the 
scheme explicitly in terms of u on the finite-difference mesh. What is the T.E. of this representation? 
436 Evaluate the T.E. of the difference scheme of Eq. (4.114) for Laplace's equation ( a )  when 
A x  = A y ,  ( b )  when A x  # A y .  
437 What is the T.E. for the difference equation employing the nine-point scheme of Eq. (4.114) 
with A x  = A y  for the Poisson equation u,, + uyy = x + y ?  
438 In the cross section illustrated in Fig. P4.3, the surface 1-4-7 is insulated (adiabatic). The 
convective heat transfer coefficient at surface 1-2-3 is 28 W/m2"C. The thermal conductivity of the 
solid material is 3.5 W/m"C. The temperature at nodes 3, 6, 7, 8, 9 is held constant at 100°C. Using 
Gauss-Seidel iteration, compute the temperature at nodes 1, 2, 4, and 5. 
4.39 A cylindrical pin fin (Fig. P4.4) is attached to a 200°C wall while its surface is exposed to a gas 
at 30°C. The convection heat transfer coefficient is 300 W/m*"C. The fin is made of stainless steel 
with a thermal conductivity of 18 W/m"C. Use five subdivisions and find the steady-state nodal 
temperatures by Gauss-Seidel iteration. Compute the total rate at which heat is transferred from the 
fin. You may neglect the heat loss from the outer end of the fin (i.e., assume end is adiabatic). 
4.40 Determine the inviscid (ideal) flow in a 2-D channel containing a cylinder. Use a stream 
function formulation in which 
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Without viscous effects, the rotation of fluid particles cannot be changed, leading to 

a2+ a2+ - + 7 = o  
ax2 ay 

The flow domain is sketched in Fig. P4.5. Use a grid of Ax = By = 0.5 cm wherever possible. 
Unequal grid spacing will be needed near the cylinder. At the inlet (along A-B) the flow is uniform 
at 1 m/s. Along B-C the stream function remains constant. Along C-D, a+/& = 0. The stream 
function is zero along D-E-A. 

( a )  Determine the values of + throughout the flow. 
( b )  Determine the velocity distribution along C-D. 
( c )  Sketch as best you can the streamline pattern for the flow. 
( d )  From the computed results, estimate the pressure coefficient at the top of the cylinder 

(point D) and compare this with the pressure coefficient from the “exact” analytical solution for 
inviscid flow around a cylinder in a stream of infinite extent. 
4.41 Solve the steady-state, 2-D heat conduction equation in the unit square, 0 < x < 1, 0 < y < 1, 
by finite-differences using mesh increments A x  = Ay = 0.1 and 0.05. Compare the center 
temperatures with the exact solution. Use boundary conditions 

T = O  a t x = O , x = I  
dT 
- = o  a t y = O  
dY 

T = sin ( T X )  at y = 1 

4.42 For the conditions of Prob. 4.41, 
( n )  Use the Gauss-Seidel iterative procedure with SOR. Establish a convergence criteria. For 

each mesh size, use w = 1 and at least three other values of w between 1 and 2 in an attempt to 
determine an appropriate o,,,. Compare this with the value predicted by the Young-Frankel theory. 
For each calculation, use the same initial guess. Make a plot of the number of iterations required for 
convergence to the same specified tolerance vs. w. Also compare the computer solution at the 
center with the exact solution. 

( b )  Devise and explain an SOR point iterative algorithm based on the red-black (checkerboard) 
strategy. Use this algorithm for the same series of computations and comparisons as indicated for 
Prob. 4.42(a). Compare the number of iterations required with the results in Prob. 4.42(a). 

I 

A E 

Figure P4.5 
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-k g) 
x = o  

T, = 300°C 

h = 250 W/m2 

k = 5 W/m "C 

Figure P4.6 

4y 1 5OoC 

"C 

7 -  

50°C 

( c )  Using the same initial guess and convergence criterion as in Prob. 4.42(a), solve the 
problem for Ax = Ay = 0.1 using the line iterative procedure with SOR (SLOR). Solve the problem 
for o = 1 and at least three other values of o. Does this scheme appear to have the same coopt for 
this problem? Compare the number of iterations required with the results in Prob. 4.42(a) and 
4.42(b). 
4.43 Consider steady-state conduction governed by Laplace's equation in the 2-D domain shown 
in Fig. P4.6. The boundary conditions are shown in the figure. The mesh is square, i.e., Ax = Ay = 

0.02 m. 
( a )  Develop an approximate difference equation for the boundary temperature at point G 

using the control-volume approach. 
(b) After obtaining a suitable finite-difference representation for Laplace's equation, use 

Gauss-Seidel iteration to obtain the steady-state temperature distribution. 
4.44 Solve Prob. 4.43 using the line iterative method. 
4.45 It is required to estimate the temperature distribution in the two-dimensional wall of a 
combustion chamber at steady state. The geometry has been simplified for this preliminary analysis 
and is given in Fig. P4.7. Write a computer program using Gauss-Seidel iteration with SOR to solve 
this problem. Give careful attention to the equations at the boundaries. Use grid spacing of 2 cm 
(Ax = Ay), resulting in a 6 X 11 mesh, and use a thermal conductivity of 20 W/m2"C. 

( a )  Compute the steady-state temperature distribution. 
(b )  Compute the rate of heat transfer to the top, and check to see how closely it matches the 

heat removed by the coolant. 
( c )  For the same convergence criteria, repeat the calculation for at least three values of the 

relaxation parameter o. If sufficient computer time is available, make a more detailed search for 
mop? 
4.46 Solve Prob. 4.45 using the line iterative method. 
4.47 Solve Proh. 4.45 using the AD1 method. 
4.48 Write a computer program to solve Laplace's equation with Dirichlet boundary conditions on a 
unit square using the Gauss-Seidel procedure with 

( a )  SOR (using both o = 1 and o = ooPt) 
(b )  a two-level multigrid scheme 

Compare the relative efficiencies of the three procedures for side temperatures (going 
counterclockwise around the square) of 20, 40, 80, and 100 using three different grids, 9 X 9, 
17 x 17, and 33 X 33. Start all calculations with initial guesses of zero. Indicate the solution 
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Figure P4.7 

obtained at the center. Determine the multigrid effort in terms of “work units” of equivalent 
fine-grid iterations. Four coarse-grid sweeps approximately equal one fine-grid sweep. Three or four 
fine-grid sweeps per cycle should work well. Converge the coarse-grid calculation. A number of 
convergence criteria are workable. Monitoring the magnitude of the maximum change from one 
iterative sweep to the next, normalized with the maximum or average boundary value, is easy to 
implement: 

I f k ”  - f k l  
I f r e t l  

where f denotes either u or Au and fret is the maximum or average value of u on the boundary. A 
convergence level of 
4.49 Use the Lax method to solve the inviscid Burgers equation using a mesh with 51 points in the x 
direction. Solve this equation for a right propagating discontinuity with initial data u = 1 on the first 
11 mesh points and u = 0 at all other points. Repeat your calculations for Courant numbers of 1.0, 
0.6, and 0.3 and compare your numerical solutions with the analytical solution at the same time. 
4.50 Repeat Prob. 4.49 using MacCormack‘s method. Use both a forward-backward and a backward- 
forward predictorcorrector sequence. 
4.51 Repeat Prob. 4.49 using the WKL method. 
4.52 Repeat Prob. 4.49 using the Beam-Warming method. 
4.53 Solve the inviscid Burgers equation for an expansion with initial data u = 0 for the first 21 
mesh points and u = 1 elsewhere. Use MacCormack’s method with both forward-backward and 
backward-forward predictorcorrector sequences. Compare your results at two different Courant 
numbers with the analytic solution. 
4.54 Repeat Prob. 4.53 using the Beam-Warming method (trapezoidal) and the Euler implicit 
scheme. 
4.55 Solve the inviscid Burgers equation for a standing discontinuity. Initialize using u = 1 at the 
left end point and u = - 1 at the right end point and zero everywhere else. Apply MacCormack‘s 
method to this problem. 
4.56 Repeat Prob. 4.55 using the Beam-Warming scheme. 
457 Determine the solution of the inviscid Burgers equation for the double-shock profile given by 
u, = 1.0 and u, = 0.5. Compute this solution using MacCormack’s scheme and the Godunov 
method. What is the analytic solution for this set of initial conditions? Compare your numerical 
calculation with the analytical solution. 

on that basis is suggested. 
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4.58 Repeat Prob. 4.49 using the schemes listed below. Remember that the stability bound for 
Godunov’s method is u Q 0.5. 

( a )  Godunov scheme 
( b )  Roe scheme (first order) 
(c) Enquist-Osher scheme 

( a )  Godunov scheme 
( b )  Roe scheme (first-order) with and without the entropy fix 
(c) Enquist-Osher scheme 

4.59 Repeat Prob. 4.53 using the methods listed below: 

4.60 Verify that the extrapolation formulas given in Section 4.4.11 give central or upwind differences 
for K = +1. 
4.61 Solve Prob. 4.49 using the second-order Roe scheme with and without the use of limiters. Use 
the minmod limiter and the van Leer limiter in your calculations. Use an initial profile of u ,  = 1.0 
and u, = 0.5 for this problem. 
4.62 A numerical method is said to be monotone if it does not produce oscillations in the numerical 
solution. Schemes for solving the inviscid Burgers equation may he written in the form 

The condition for monotonicity requires H to be a monotone increasing function of its arguments, 
i.e., dH/du ,  > 0. Show that the Lax method is monotone and that the first-order upwind scheme is 
monotone. What conditions must be satisfied to meet this condition? 

c - 2  

p = 2  

A x =  

X 

m l  s 
m2/s 

l m  

Figure P4.9 
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4.63 In the MUSCL approach the dependent variables are extrapolated directly to the cell 
boundaries, and the flux terms are recalculated. In the non-MUSCL approach, the fluxes are directly 
extrapolated to the interface boundaries. Repeat Prob. 4.49 using Roe’s scheme with both the 
MUSCL and non-MUSCL approaches. Can you draw any conclusions from your results? 
4.64 Solve the inviscid Burgers equation using the Lax-Wendroff method with an initial profile that 
is linear between the left and right boundary values of 1 and - 1. This profile will become steeper as 
the solution progresses until a shock wave ultimately results. Perform the same experiment with the 
Lax method, and compare your results. Does this provide any insight into the Godunov theorem? 
4.65 In Section 4.4.12 the sufficient conditions for a scheme to be TVD were given. Show that the 
Lax scheme satisfies these conditions, while the Lax-Wendroff scheme does not. 
4.66 Solve Prob. 4.49 using the Roe-Sweby scheme. Compare your results with those obtained 
earlier with Roe’s method using the MUSCL approach (Prob. 4.63), and comment on any differences. 
4.67 Show graphically the exact steady-state solution of Eq. (4.272) for the boundary conditions 

u(O,t )  = 1 

u ( l , t )  = 0 

and p = 0.1. 
4.68 Verify that Eq. (4.283) is an exact stationary solution of Eq. (4.282). 
4.69 Derive stability conditions for the FTCS method applied to the 1-D linearized Burgers 
equation. 
4.70 Derive the stability conditions for the upwind difference scheme given by Eq. (4.300). 
4.71 Suppose the FTCS method is used to solve the linearized Burgers equation (c  = 0.5, p = 0.01) 
for the initial condition 

u ( x , O )  = sin(2.rrx) 0 d x  Q 2 

and periodic boundary conditions with Ax = 0.02 and A t  = 0.02. Find the amplitude error and the 
phase error after 20 steps. 
Hint: The exact solution for the linearized Burgers equation for the above initial and boundary 
conditions is 

u ( x , t )  = exp(-4.rr2pt)sin[2a(x - c t ) ]  

4.72 Use the FI’CS method to solve the linearized Burgers equation for the initial condition 

u(x,O) = 0 0 d x  < 1 

and the boundary conditions 

u(O,t )  = 100 
u ( l , t )  = 0 

on a 21 grid point mesh. Find the steady-state solution for the conditions 
( a )  r = 0.50, u = 0.25 
(b )  r = 0.50, u = 1.00 
(c) r = 0.10, u = 0.40 
( d )  r = 0.05, u = 0.50 

and compare the numerical solutions with the exact solution. 
4.73 Repeat Prob. 4.72 using the scheme proposed by Leonard. 
4.74 Repeat Prob. 4.72 using the leap frog/DuFort-Frankel method. 
4.75 Repeat Prob. 4.72 using the Allen-Cheng method. 
4.76 Use the Fourier stability analysis to determine the stability limitations of the scheme proposed 
by Leonard, Eq. (4.302). 
4.77 Determine the modified equation for the Allen-Cheng method. Retain terms up to and 
including u x x x .  
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4.78 Apply the Brailovskaya scheme to the linearized Burgers equation on the computational grid 
shown in Fig. P4.8 and show that the steady-state value for u at j = 2 is 

" 1  3 
u; = lim C 7 = - 

n + m .  3"-' 2 r= l  

Boundary conditions are u; = %= u;, and the initial condition is ui  = 1. Do not use a digital 
computer to solve this problem. 
4.79 Apply the Beam-Warming scheme with Euler implicit time differencing to the linearized 
Burgers equation on the computational grid shown in Fig. P4.9, and determine the steady-state 
values for u at j = 2 and j = 3. The boundary conditions are u; = 1, u! = 4, and the initial 
conditions are ui = 0 = u i .  Do not use a digital computer to solve this problem. 
4.80 Apply the two-step Lax-Wendroff method to the PDE 

ut + F, + uu,,, = 0 

where F = F(u).  Develop the final finite-difference equations. 
4.81 Solve the linearized Burgers equation using 

( a )  FTCS method 
( b )  Upwind method, Eq. (4.300) 
( c )  Leonard method, Eq. (4.302) 

for the initial condition 
u(x ,O)  = 0 0 Q x  Q 1 

and the boundary conditions 
u(0, t )  = 100 
u(1, t )  = 0 

on a 21 grid point mesh. Find the steady-state solution for r = 0.10 and v = 0.40, and compare the 
numerical solutions with the exact solution. 
4.82 Repeat Prob. 4.81 using the following methods 

(a) Leap frog/DuFort-Frankel method 
( b )  Allen-Cheng method 
( c )  MacCormack method, Eq. (4.312) 

4.83 Repeat Prob. 4.81 using the Briley-McDonald method with Euler implicit time differencing. 
4.84 Solve the generalized Burgers equation 

ut + (; - u ) u x  = O.OOlu,, 

using 
(a) MacCormack's scheme 
( b )  Roe's scheme 

for the initial condition 
1 
2 

u = -11 + tanh [ 2 5 0 ( ~  - 20)]) 0 Q x d 40 

and exact Dirichlet boundary conditions. Choose a 41 grid point mesh with Ax = 1, and compute to 
t = 18. Solve this problem for A t  = 1.0 and 0.5, and compare graphically with the exact stationary 
solution. 
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