
CHAPTER 

THREE 
BASICS OF DISCRETIZATION METHODS 

3.1 INTRODUCTION 

In this chapter, basic concepts and techniques needed in the formulation of 
finite-difference and finite-volume representations are developed. In the finite- 
difference approach, the continuous problem domain is “discretized,” so that 
the dependent variables are considered to exist only at discrete points. 
Derivatives are approximated by differences, resulting in an algebraic 
representation of the partial differential equation (PDE). Thus a problem 
involving calculus has been transformed into an algebraic problem. 

The nature of the resulting algebraic system depends on the character of 
the problem posed by the original PDE (or system of PDEs). Equilibrium 
problems usually result in a system of algebraic equations that must be solved 
simultaneously throughout the problem domain in conjunction with specified 
boundary values. Marching problems result in algebraic equations that usually 
can be solved one at a time (although it is often convenient to solve them 
several at a time). Several considerations determine whether the solution so 
obtained will be a good approximation to the exact solution of the original PDE. 
Among these considerations are truncation error, consistency, and stability, all 
of which will be discussed in the present chapter. 
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Figure 3.1 A typical finite-difference grid. 

3.2 FINITE DIFFERENCES 
One of the first steps to be taken in ests,.ishing a finite-difference procedure 
for solving a PDE is to replace the continuous problem domain by a finite 
difference mesh or grid. As an example, suppose that we wish to solve a PDE for 
which u(x, y )  is the dependent variable in the square domain 0 G x 6 1, 
0 ~y G 1. We establish a grid on the domain by replacing u ( x , y )  by 
u(i A x ,  j Ay) .  Points can be located according to values of i and j ,  so difference 
equations are usually written in terms of the general point ( i , j )  and its 
neighbors. This labeling is illustrated in Fig. 3.1. Thus, if we think of u i , j  as 
u(xo, y o ) ,  then 

ui+ = U(X, + A X ,  y o )  

‘ i , j + l  - - ~ ( ~ 0 7  yo + A y )  

ui-1, = ~ ( x O  - A X ,  yo )  

ui, j -  1 = u ( x ~ ,  yo - B y )  

Often in the treatment of marching problems, the variation of the marching 
coordinate is indicated by a superscript, such as ujn”, rather than a subscript. 
Many different finite-difference representations are possible for any given PDE 
and it is usually impossible to establish a “best” form on an absolute basis. First, 
the accuracy of a difference scheme may depend on the exact form of the 
equation and problem being solved, and second, our selection of a best scheme 
will be influenced by the aspect of the procedure that we are trying to optimize, 
i.e., accuracy, economy, or programming simplicity. 

The idea of a finite-difference representation for a derivative can be 
introduced by recalling the definition of the derivative for the function u(x, y )  
at x = xo, y = y o :  

du U(XO + A x , y o )  - u ( x o , y o )  
(3.1) 

Here, if u is continuous, it is expected that [u(xo + A x , y o )  - u ( x o , y o ) l / A x  
will be a “reasonable” approximation to d u / d x  for a “sufficiently” small but 
finite Ax.  In fact, the mean-value theorem assures us that the difference 

_ -  - lim 
dx Ax+O A x  
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representation is exact for some point within the A x  interval. The difference 
approximation can be put on a more formal basis through the use of either a 
Taylor-series expansion or Taylor's formula with a remainder. Developing a 
Taylor-series expansion for u(xo + A x ,  y o )  about ( x , ,  y o )  gives 

d U  d 2 u  ( A x ) 2  
u ( x 0  +  AX,^,) = U ( X ~ , Y , )  + - A X  + 7 - + * * a  

d x ) o  d x  ) o  2! 

d n - 1  ( A x ) " - '  dnu ( A x ) "  
- l)! + Z ) [ l l  

xo G 5 < ( x ,  + A x )  (3.2) 

where the last term can be identified as the remainder. Thus we can form the 
"forward" difference by rearranging Eq. (3.2): 

Switching now to the i, j notation for brevity, we consider 

(3.4) 

where (u i+  - ui, j ) / A x  is obviously the finite-difference representation for 
d u / d x ) , ,  j .  The truncation error (T.E.) is the difference between the partial 
derivative and its finite-difference representation. We can characterize the 
limiting behavior of the T.E. by using the order of (0) notation, whereby we 
write 

where O ( A x )  has a precise mathematical meaning. Here, when the T.E. is 
written as O ( A x ) ,  we mean W.E.1 G KlAxl  for A x  + 0 (sufficiently small A x ) ,  
and K is a positive real constant. As a practical matter, the order of the T.E. in 
this case is found to be A x  raised to the largest power that is common to all 
terms in the T.E. 

To give a more general definition of the 0 notation, when we say f ( x )  = 

O [ + ( x ) J ,  we mean that there exists a positive constant K, independent of x ,  
such that If(x)l Q Kl+(x)l  for all x in S ,  where f and + are real or complex 
functions defined in S. We often restrict S by x CQ (sufficiently large x )  or, as 
is most common in finite-difference applications, x + 0 (sufficiently small x ) .  
More details on the 0 notation can be found in the work by Whittaker and 
Watson (1927). 

Note that O ( A x )  tells us nothing about the exact size of the T.E., but rather 
how it behaves as A x  tends toward zero. If another difference expression had a 
T.E.= 0 [ ( A x l 2 ] ,  we might expect or hope that the T.E. of the second repre- 
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sentation would be smaller than the first for a convenient A x ,  but we could only 
be sure that this would be true if we refined the mesh “sufficiently,” and 
“sufficiently” is a quantity that is hard to estimate. 

An infinite number of difference representations can be found for d u / d x ) , ,  j .  

For example, we could expand “backward”: 

and obtain the backward-difference representation 

(3.6) 

We can subtract Eq. (3.5) from Eq. (3.2), rearrange, and obtain the “central” 
difference 

(3.7) 

We can also add Eq. (3.2) and Eq. (3.5) and rearrange to obtain an approximation 
to the second derivative: 

It should be emphasized that these are only a few examples of the possible ways 
in which first and second derivatives can be approximated. 

It is convenient to utilize difference operators to represent finite differences 
when particular forms are used repetitively. Here we define the first forward 
difference of u , , ~  with respect to x at the point i , j  as 

(3.9) 

Thus we can express the forward finite-difference approximation for the first 
partial derivative as 

Similarly, derivatives with respect to other variables such as y can be represented 
by 

Ay U i ,  j ui, j +  1 - ui, j -= 
AY AY 

The first backward difference of ui , j  with respect to x at i , j  is denoted by 

(3.11) v u .  . = u .  . - u .  
x I , J  1.1 1 - 1 , j  
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It follows that the first backward-difference approximation to the first derivative 
can be written as 

u .  . - u .  v u .  ' ' I  (3.12) + O ( A x )  1 . 1  1 - 1 . j  + O ( A x )  = 
A x  

The central-difference operators 3, S and S 2  will be defined as 
- 
S u .  . = u .  r + l , j  - ' i - 1 , j  

6 x u. r , j  . = u .  r + 1 / 2 , j  - ' i - 1 / 2 . j  

6*2ui,j = S x ( S x U i , j )  = u .  i + l , j  - 2ui , j  + ui-1,j 

(3.13) 

(3.14) 

(3.15) 

X 1 .1  

and an averaging operator p as 

(3.16) 

Other convenient operators include the identity operator I and the shift 
operator E. The identity operator provides no operation, i.e., = u ~ , ~ .  The 
shift operator advances the index associated with the subscripted variable by an 
amount indicated by the superscript. For example, Ex-'ui, = ui- 1 ,  j .  When the 
superscript on E is + 1, it is usually omitted. Difference representations can by 
indicated by using combinations of E and I ,  as for example, 

A x ~ i , j  = ( E x  - Z)U. 1.1 . = u ~ + ~ , ~  - u ~ , ~  

It is convenient to have specific operators for certain common central 
differences, although two of them can be easily expressed in terms of first- 
difference operators: 

S,U,, = Axui ,  + VXui, (3.17) 

a,'.. . = A  u .  . - V u .  . = A  V U . .  (3.18) 

Using the newly defined operators, the central-difference representation for the 
first partial derivative can be written as 

- 

1 .1  X 1 , J  X I , ]  X X l , l  

and the central-difference representation of the second derivative as 

Higher-order forward- and backward-difference operators are defined as 

A ; u ~ , ~  = A ~ ( A ; - ' U ~ , ~ )  (3.21) 

= vx(v*n-lui , j )  (3.22) 
and 
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As an example, a forward second-derivative approximation is given by 

(3.23) ui+2, j  - 2ui+1,j + uj,j d 2 U  
- - + O(Ax> 

(Ax>2 

We can show that forward- and backward-difference approximations to deriva- 
tives of any order can be obtained from 

and 

(3.24) 

(3.25) 

Central-difference representations of derivatives of orders greater than the 
second can be expressed in terms of A and V or S .  A more complete development 
on the use of difference operators can be found in many textbooks on numerical 
analysis such as that by Hildebrand (1956). 

Most of the PDEs arising in fluid mechanics and heat transfer involve only 
first and second partial derivatives, and generally, we strive to represent these 
derivatives using values at only two or three grid points. Within these restrictions, 
the most frequently used first-derivative approximations on a grid for which 
A x  = h = const are 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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The most common three-point second-derivative approximations for a uniform 
grid, Ax = h = const, are 

ui,, - 2ui+l, j  + u i + ~ , j  
h2 

ui+l , j  - 2 U i , j  + ui-1,j 
h2 

+ O ( h )  (3.32) 

+ O ( h )  (3.33) 

t O ( h 2 )  (3.34) 

(3.35) 

The compact, three-point schemes given by Eqs. (3.31) and (3.35) having 
fourth-order T.E.s deserve a further word of explanation (see also Orszag and 
Israeli, 1974). Letting d u / d x I i ,  = ui, j ,  Eq. (3.31) is to be interpreted as 

- 
% U i ,  j 1 + -  v . . = -  ( :) 2h 

or 
- 

1 % U i ,  j - (u i+l , j  + 4 q j  f U i - l , j )  = - 
6 2h 

(3.36) 

which provides an implicit formula for the derivative of interest, q j .  The q j  
can be determined from the ui, by solving a tridiagonal system of simultaneous 
algebraic equations, which can usually be accomplished quite efficiently. 
Tridiagonal systems commonly occur in connection with the use of implicit 
difference schemes for second-order PDEs arising from marching problems and 
are defined and discussed in some detail in Chapter 4. For now it is sufficient to 
think of a tridiagonal system as the arrangement of unknowns that would occur 
if each difference equation in a system only involved a single unknown variable 
evaluated at three adjacent grid locations. The interpretation of Eq. (3.35) 
proceeds in a similar manner, providing an implicit representation of 
d ' u / d ~ ' ) ~ ,  j .  Some difference approximations for derivatives that involve more 
than three grid points are given in Table 3.1. For completeness, a few common 
difference representations for mixed partial derivatives are presented in Table 
3.2. These will prove useful for schemes discussed in subsequent chapters. The 
mixed-derivative approximations in Table 3.2 can be verified by using the 
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Table 3.1 Difference approximations using more than three points 
Derivative Finite-difference representation Equation 

ui+2,j  - 2ui+l,j  + 2Ui-1,j - ui-2 

2h3 
(3.38) ‘ I  + O(h2)  

+ O(h2)  
ui+2, j  - 4u i+l , j  + 6ui,j - 4Ui-1,j + u z - 2 , i  

h4 

+ O(h2) 

+ o(h4)  

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

Taylor-series expansion for two variables: 

u ( x o  + A x , y o  + A y )  

o G 8 G 1 (3.37) 

3.3 DIFFERENCE REPRESENTATION OF PARTIAL 
DIFFERENTIAL EQUATIONS 

3.3.1 Truncation Error 

As a starting point in our study of T.E., let us consider the heat equation 

dU d2U 

d t  dX2 
ff- - =  (3.55) 
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Table 3.2 Difference approximations for mixed partial derivatives 

Derivative Finite-difference representation Equation 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

- ) + O[(Ax)’, Ayl (3.53) 

) + O[(Ax)’, by1 (3.54) 

- u 1 - 1 , 1 + 1  UL- l , ]  

u t - l , ]  - U 1 - 1 , I - l  

2 Ax AY 

2 Ax AY 
- 

Using a forward-difference representation for the time derivative ( t  = n A t )  and 
a central-difference representation for the second derivative, we can approximate 
the heat equation by 

However, we noted in Section 3.2 that T.E.s were associated with the fonvard- 
and central-difference representations used in Eq. ( 3 . 5 6 ~ ) .  If we rearrange Eq. 
(3.55) to put zero on the right-hand side and include the T.E.s associated with 
the difference representation of the derivatives, we obtain 

d 2 U  ui”+l -ui” ff 
-- 

dU _ -  2(ui”+l - 2ui” + U 7 - J  
A t  ( A x )  d t  ffs = 

., 
\ / 

PDE FDE 

(3.563) 1 
T.E. 
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where PDE is the partial differential equation and FDE is the finite-difference 
equation. The T.E.s associated with all derivatives in any one PDE should be 
obtained by expanding about the same point ( n ,  j in the above discussion). 

The difference representation given by Eq. ( 3 . 5 6 ~ )  will be referred to as the 
simple explicit scheme for the heat equation. An explicit scheme is one for which 
only one unknown appears in the difference equation in a manner that permits 
evaluation in terms of known quantities. Since the parabolic heat equation 
governs a marching problem for which an initial distribution of u must be 
specified, u at the time level n can be considered as known. If the second- 
derivative term in the heat equation was approximated by u at the n + 1 time 
level, three unknowns would appear in the difference equation, and the 
procedure would be known as implicit, indicating that the algebraic formulation 
would require the simultaneous solution of several equations involving the 
unknowns. The differences between implicit and explicit schemes are discussed 
further in Chapter 4. 

The quantity in brackets (note that only the leading terms have been written 
out utilizing Taylor-series expansions) in Eq. (3.566) is identified as the truncation 
error for this finite-difference representation of the heat equation and is defined 
as the difference between the PDE and the difference approximation to it. That 
is, T.E. = PDE - FDE. The order of the T.E. in this case is O(At)  + O[(Ax)’], 
which is frequently expressed in the form O[At ,  (Ax)*] .  Naturally, we solve only 
the finite-difference equations and hope that the T.E. is small. If we do not feel 
a little uneasy at this point, perhaps we should. How do we know that our 
difference representation is acceptable and that a marching solution technique 
will work in the sense of giving us an approximate solution to the PDE? In order 
to be acceptable, our difference representation for this marching problem needs 
to meet the conditions of consistency and stability. 

33.2 Round-Off and Discretization Errors 

Any computed solution, including sometimes an “exact” analytic solution to a 
PDE, may be affected by rounding to a finite number of digits in the arithmetic 
operations. These errors are called round-oflemors, and we are especially aware 
of their existence in obtaining machine solutions to finite-difference equations 
because of the large number of dependent, repetitive operations that are usually 
involved. In some types of calculations, the magnitude of the round-off error is 
proportional to the number of grid points in the problem domain. In these cases, 
refining the grid may decrease the T.E. but increase the round-off error. 

Discretization error is the error in the solution to the PDE caused by 
replacing the continuous problem by a discrete one and is defined as the 
difference between the exact solution of the PDE (round-off free) and the exact 
solution of the FDEs (round-off free). In terms of the definitions developed thus 
far, the difference between the exact solution of the PDE and the computer 
solution to the FDEs would be equal to the sum of the discretization error and 
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the round-off error associated with the finite-difference calculation. We can also 
observe that the discretization error is the error in the solution that is caused by 
the T.E. in the difference representation of the PDE plus any errors introduced 
by the treatment of boundary conditions. 

3.3.3 Consistency 
Consistency deals with the extent to which the FDEs approximate the PDEs. 
The difference between the PDE and the finite-difference approximation has 
already been defined as the T.E. of the difference representation. A finite- 
difference representation of a PDE is said to be consistent if we can show that 
the difference between the PDE and its difference representation vanishes as 
the mesh is refined, i.e., lim,,,,,,(PDE - FDE) = lim,,,,,,(T.E.) = 0. This 
should always be the case if the order of the T.E. vanishes under grid refinement. 
An example of a questionable scheme would be one for which the T.E. was 
O ( A t / A x ) ,  where the scheme would not formally be consistent unless the mesh 
were refined in a manner such that A t / A x  + 0. The DuFort-Frankel (DuFort 
and Frankel, 1953) differencing of the heat equation, 

.;+I - u;-1 ff 
=- (.;+I - u;+l - u;-1 + .;-I) (3.57) 

2 A t  ( A x )  
for which the leading terms in the T.E. are 

a d4U 1 d3U 
+-7) 12 d x  n , j  ( A x ) 2  - ( A t ) 2  

serves as an example. All is well if 

lim (g) = 0 
A t , A x + O  

but if A t  and Ax were to approach zero at the same rate, such that A t / A x  = p, 
then the DuFort-Frankel scheme is consistent with the hyperbolic equation 

dU d2U d2U 
- + ap2- - - ff- 
d t  a t 2  dX2  

3.3.4 Stability 
Numerical stability is a concept applicable in the strict sense only to marching 
problems. A stable numerical scheme is one for which errors from any source 
(round-off, truncation, mistakes) are not permitted to grow in the sequence of 
numerical procedures as the calculation proceeds from one marching step to the 
next. Generally, concern over stability occupies much more of our time and 
energy than does concern over consistency. Consistency is relatively easy to 
check, and most schemes that are conceived will be consistent just owing to the 
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methodology employed in their development. Stability is much more subtle, and 
usually a bit of hard work is required in order to establish analytically that a 
scheme is stable. More detail is presented in Section 3.6, and some very 
workable methods will be developed for establishing the stability limits for linear 
PDEs. It will be possible to extend these guidelines to nonlinear equations in an 
approximate sense. 

Using these guidelines, the DuFort-Frankel scheme, Eq. (3.571, for the heat 
equation would be found to be unconditionally stable, whereas the simple 
explicit scheme would be stable only if r = [ a A t / ( A ~ ) ~ l  G 3. This restriction 
would limit the size of the marching step permitted for any specific spatial mesh. 

A scheme using a central time difference and having a more favorable T.E. 
of 0[(AtI2,  

- u;-1 a -- - ,(u;+l - 2u; + UT-1)  
2 At ( A x )  

(3.58) 

is unconditionally unstable and therefore cannot be used for real calculations 
despite the fact that it looks to be more accurate, in terms of T.E., than the ones 
given previously that will work. 

Sometimes instability can be identified with a physical implausibility. That 
is, conditions that would result in an unstable numerical procedure would also 
imply unacceptable modeling of physical processes. To illustrate this, we 
rearrange the simple explicit representation of the heat equation, Eq. (3.56a), so 
that the unknown appears on the left. Letting r = ~ A ~ / ( A x ) ~ ,  our difference 
equation becomes 

Z q + 1  = r(u;+l + q l )  + (1 - 2r)ui" (3.59) 

Suppose that at time I, u ; + ~  = = 100°C and u; = 0°C. This arrangement is 
shown in Fig. 3.2. If r > 3, we see that the temperature at point j at time level 
n + 1 will exceed the temperature at the two surrounding points at time level n. 
This seems unreasonable, since we expect heat to flow from the warmer region 
to a colder region but not vice versa. The maximum temperature that we would 
expect to find at point j at time level n + 1 is 100°C. If r = 1, for example, u;+l 
would equal 200°C by Eq. (3.59). "* O'C 1 OOOC n+' 1W0C 

j -1  j j+l from r = 1. 
" Figure 3.2 Physical implausibility resulting 
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3.3.5 Convergence for Marching Problems 
Generally, we find that a consistent, stable scheme is convergent. Convergence 
here means that the solution to the finite-difference equation approaches the 
true solution to the PDE having the same initial and boundary conditions as the 
mesh is refined. A proof of this is available for initial value (marching) problems 
governed by linear PDEs. The theorem, due to Lax (see Richtmyer and Morton, 
1967) is stated here without proof. 

Lax’s equivalence theorem: Given a properly posed initial value problem and a finite-difference 
approximation to it that satisfies the consistency condition, stability is the necessary and 
sufficient condition for convergence. 

We might add that most computational work proceeds as though this 
theorem applies also to nonlinear PDEs, although the theorem has never been 
proven for this more general category of equations. 

3.3.6 A Comment on Equilibrium Problems 
Throughout our discussion of stability and convergence, the focus was on 
marching problems (parabolic and hyperbolic PDEs). Despite this emphasis on 
initial value problems, most of the material presented in this chapter also 
applies to equilibrium problems. The exception is the concept of stability. We 
should observe, however, that the important concept of consistency applies to 
difference representations of PDEs of all classes. 

The “convergence” of the solution of the difference equation to the exact 
solution of the PDE might be aptly termed truncation or discretization 
convergence. The solution to equilibrium problems (elliptic equations) leads us 
to a system of simultaneous algebraic equations that needs to be solved only 
once, rather than in a marching manner. Thus the concept of stability developed 
previously is not directly applicable as stated. To achieve “truncation con- 
vergence” for equilibrium problems, it would seem that it is only necessary to 
devise a solution scheme in which the error in solving the simultaneous algebraic 
equations can be controlled as the mesh size is refined without limit. Many 
common schemes are iterative (Gauss-Seidel iteration is one example) in nature, 
and for these we want to ensure that the iterative process converges. Here 
convergence means that the iterative process is repeated until the magnitude of 
the difference between the function at the k + 1 and the k iteration levels is as 
small as we wish for each grid point, i.e., Iutf’  - u t j l  < E .  This is known as 
iteration conuergence. It would appear that (no proof can be cited) truncation 
convergence will be assumed for a consistent representation to an equilibrium 
problem if it can be shown that the iterative method of solution converges even 
for arbitrarily small choices of mesh sizes. 

It is possible to use direct (noniterative) methods to solve the algebraic 
equations associated with equilibrium problems. For these methods we would 
want to be sure that the errors inherent in the method, especially round-off 
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errors, do not get out of control as the mesh is refined and the number of points 
tends toward infinity. 

In closing this section, we should mention that there are aspects to the 
iterative solution of equilibrium problems that resemble the marching process in 
initial value problems and a sense in which stability concerns in the marching 
problems correspond to iterative convergence concerns in the solution to 
equilibrium problems. 

3.3.7 Conservation Form and Conservative Property 

Two different ideas will be discussed in this section. The first has to do with the 
PDEs themselves. The terms “conservation form,” “conservation-law form,” 
“conservative form,” and “divergence form” are all equivalent, and PDEs 
possessing this form have the property that the coefficients of the derivative 
terms are either constant or, if variable, their derivatives appear nowhere in the 
equation. Normally, for the PDEs that represent a physical conservation 
statement, this means that the divergence of a physical quantity can be identified 
in the equation. If all spatial derivative terms of an equation can be identified as 
divergence terms, the equation is said to be in “strong conservation-law form.” 
As an example, the conservative form of the equation for mass conservation 
(continuity equation) is 

dp dpu dpv dpw - + -  + - + - = o  
d t  d x  dy az 

(3.60) 

which can be written in vector notation as 

dP 
- + v * p v  = 0 
d t  

A nonconservative or nondivergence form would be 
dp dp du dp dv dp d w  
- + U- + p- + V- + p- + W- + p- = O  
d t  d x  d x  dy dy az dz 

(3.61) 

As a second example, we consider the one-dimensional (1-D) heat conduction 
equation for a substance whose density p ,  specific heat c, and thermal 
conductivity k all vary with position. The conservative form of this equation is 

whereas a nonconservative form would be 

dT d2T ak dT 
pc- = k -  + -- 

d t  dx2  d x  ax 

(3.62) 

(3.63) 

In Eq. (3.62) the right-hand side can be identified as the negative of the 
divergence of the heat flux vector specialized for 1-D conduction. A difference 
formulation based on a PDE in nondivergence form may lead to numerical 
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difficulties in situations where the coefficients may be discontinuous, as in flows 
containing shock waves. 

The second idea to be developed in this section deals with the conservative 
property of a finitedifference representation. The PDEs of interest in this book all 
have their basis in physical laws, such as the conservation of mass, momentum, 
and energy. Such a PDE represents a conservation statement at a point. We 
strive to construct finite-difference representations that provide a good 
approximation to the PDE in a small, local neighborhood involving a few grid 
points. The same conservation principles that gave rise to the PDEs also apply 
to arbitrarily large regions (control volumes). In fact, in deriving the PDEs, we 
usually start with the control-volume form of the conservation statement. If 
our finite-difference representation approximates the PDE closely in the 
neighborhood of each grid point, then we have reason to expect that the related 
conservation statement will be approximately enforced over a larger control 
volume containing a large number of grid points in the interior. Those finite- 
difference schemes that maintain the discretized version of the conservation 
statement exactly (except for round-off errors) for any mesh size over an 
arbitrary finite region containing any number of grid points is said to have the 
conservative property. For some problems this property is crucial. 

The key word in the definition above is “exactly.” All consistent schemes 
should approximately enforce the appropriate conservation statement over large 
regions, but schemes having the conservative property do so exactly (except for 
round-off errors) because of exact cancellation of terms. To illustrate this 
concept, we will consider a problem requiring the solution of the continuity 
equation for steady flow. The PDE can be written as 

v - p v  = 0 

We will assume that the PDE is approximated by a suitable finite-difference 
representation and solved throughout the flow. For an arbitrary control volume 
that could include the entire problem domain or any fraction of it, conservation 
of mass for steady flow requires that the net mass efflux be zero (mass flow rate 
in equals mass flow rate out). This is observed formally by applying the 
divergence theorem to the governing PDE, 

1 i i R V  * pVdR = 11 pV * n dS = 0 
S 

To see if the finite-difference representation for the PDE has the conservative 
property, we must establish that the discretized version of the divergence 
theorem is satisfied. We normally check this for a control volume consisting of 
the entire problem domain. To do this, the integral on the left is evaluated by 
summing the difference representation of the PDE at all grid points. If the 
difference scheme has the conservative property; all terms will cancel except 
those that represent fluxes at the boundaries. This is sometimes referred to as 



the “telescoping property.” It should be possible to rearrange the remaining 
terms to obtain identically a finite-difference representation of the integral on 
the right. For this example the result will be a verification that the mass flux into 
the control volume equals the mass flux out. If the difference scheme used for 
the PDE is not conservative, the numerical solution may permit the existence of 
small mass sources or sinks. 

Schemes having the conservative property occur in a natural way when 
differencing starts with the divergence form of the PDE. For some equations 
and problems, the divergence form is not an appropriate starting point. For 
these situations, use of a control-volume method (Section 3.4.4) for obtaining 
the difference scheme is helpful. This difference representation will usually have 
the conservative property if care is taken to ensure that the expressions used to 
represent fluxes across the interface of two adjacent control volumes are the 
same in the difference form of the conservation statement for each of the two 
control volumes. 

The conservative property issue has been actively discussed and debated 
over the short history of computational fluid mechanics and heat transfer. 
However, the conservative property is not the only important figure of merit for 
a difference representation. PDEs represent more than a conservation statement 
at a point. As shown by solution forms in Chapter 2, PDEs also contain 
information on characteristic directions and domains of dependence. Proper 
representation of this information is also important. Many useful finite- 
difference equations do not have the conservative property and, in a few 
instances, prove to be more accurate in some sense than those that do. The 
importance of maintaining the conservation statement with high accuracy over a 
finite region is highly problem dependent. All consistent formulations, whether 
or not they have the conservative property, can provide an adequate representa- 
tion for most problems if the grid is refined sufficiently. 

3.4 FURTHER EXAMPLES OF METHODS FOR OBTAINING 
FINITE-DIFFERENCE EQUATIONS 

As we start with a given PDE and a finite-difference mesh, several procedures 
are available to us for developing finite-difference equations. Among these are 

1. Taylor-series expansions 
2. polynomial fitting 
3. integral method (called the micro-integral method by some) 
4. finite-volume (control-volume) approach 

It is sometimes possible to obtain exactly the same finite-difference representa- 
tion by using all four methods. In our introduction to the subject, we will lean 
most heavily on the use of Taylor-series expansions, utilizing polynomial fitting 
on occasion in treating boundary conditions. 
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3.4.1 Use of Taylor Series 

We now demonstrate how one might proceed on a slightly more formal basis 
with Taylor-series expansions to develop difference expressions satisfying spec- 
ified constraints. Suppose we want to develop a difference approximation for 
& ~ / d x ) , , ~  having a T.E. of O[(Ax>’l  using at most values ui -2 , j ,  u i - l , j ,  and 

With these constraints and objectives, it would appear logical to write Taylor- 
series expressions for ui-z , j  and u i - l , j  expanding about the point ( i , j )  and 
attempt to solve for du/dx),, from the resulting equations in such a way as to 
obtain a T.E. of O[(Ax)’I:  

u .  .. ‘ . I  

( - 2 A x ) + 7  ; ; ) i , j ( 2 ~ x ) 2  - +dX3 a 3 U )  i , j  ( - 2 ~ ~ ) ~  3 !  + ... 
2 !  ui-2.j 

(3.64) 

d 2 u )  (Ax)’  d3u + ... 
+ ...ii,, 3 !  

(3.65) 

It is often possible to determine the required form of the difference 
representation by inspection or simple substitution. To proceed by substitution, 
we will rearrange Eq. (3.64) to put d u / ~ 3 x ) ~ ,  on the left-hand side, such that 

d2U 

a x  i , j  ~ A X  ~ A X  a~~ + - A x  + O[(Ax)’I  U i ,  j ui-2,j ” j  =- - -  

As is, the representation is O ( A x )  because of the term ( d 2 u / d x 2 )  A x .  We can 
substitute for d’u/dx’ in the above equation using Eq. (3.65) to obtain the 
desired result. A more formal procedure to obtain the desired expression is 
sometimes useful. To proceed more formally, we first multiply Eq. (3.64) by a 
and Eq. (3.65) by b and add the two equations. If - 2 a  - b = 1, then the 
coefficient of du/dx), ,  Ax will be 1 after the addition, and if 2 a  + b / 2  = 0, 
then the terms involving d ’ u / d ~ ’ ) ~ ,  j ,  which would contribute a T.E. of O ( A x )  
to the final result, will be eliminated. A solution to the equations 

b 
2 

j ,  we obtain 

- 2 a - b = l  2 a + - = O  

is given by a = i, b = - 2 .  Thus, if we multiply Eq. (3.64) by i, Eq. (3.65) by 
- 2, add the results, and solve for 

+ O [ ( A X > ~ I  
U i - 2 , j  - 4ui -  1, j + 3ui,  j 

2 A x  
which can be recognized as Eq. (3.30). A careful check on the details of this 
example will reveal that it was really necessary to include terms involving 
~ ? ~ u / d x ~ ) ~ ,  in the Taylor-series expansions in order to determine whether or 
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not these terms would cancel in the algebraic operations and reduce the T.E. 
even further to 0[(  AX)^]. Fortuitous cancellation of terms occurs frequently 
enough to warrant close attention to this point. 

We should observe that it is sometimes necessary to carry out the inverse of 
the above process. That is, suppose we had obtained the approximation 
represented by Eq. (3.30) by some other means and we wanted to investigate the 
consistency and T.E. of such an expression. For this, the use of Taylor-series 
expansions would be invaluable, and the recommended procedure would be to 
substitute the Taylor-series expressions from Eq. (3.64) and Eq. (3.65) above for 
ui- 2, j and ui- 1, into the difference representation to obtain an expression of 
the form d ~ / d x ) ~ ,  + T.E. on the right-hand side. At this point, the T.E. has 
been identified, and if limAx --* ,(T.E.) = 0, the difference representation is 
consistent. 

As a slightly more complex example, we will develop a finite-difference 
approximation with T.E. of O [ ( A Y ) ~ ]  for d u / d y  at point ( i , j )  using at most 

notation that A y +  = y i ,  j +  - y i ,  and b y -  = y i ,  - y i ,  j -  1, as indicated in Fig. 3.3. 

We recall that for equal spacing, the central-difference representation for a 
first derivative was equivalent to the arithmetic average of a forward and 
backward representation. That is, for b y ,  = A y -  = A y ,  

u .  . u . .  l , J + l , u i , j - l  when the grid spacing is not uniform. We will adopt the 

We might wonder if, for unequal spacing, use of a geometrically weighted 
average will preserve the second-order accuracy: 

The truth of the above statement may be evident to some, but it can be verified 
from basics by use of Taylor-series expansions about point ( i , j ) .  Letting 
A y + / A y - =  a, and adopting the more compact subscript notation to denote 
differentiation, uy = d u / d y ) , ,  j ,  uyy = d 2 ~ / d y 2 ) i ,  j ,  etc., we obtain 

ui, j +  = u i ,  + uy a A y -  
2 3 4 

+ ... (3.67) 
(a A y - )  (a A y - )  (a A y - )  

+ u y y  2! + UYYY 3! + uYYYY 4! 

+ u y y  2! + UYYY 3! + uYYYY 4! 

ui,j-1 - - ui , ,  + uY( - A y - )  
2 4 

( - A y - )  ( - A y -  )3 ( - - A y - )  + 0 . .  (3.68) 

As before, we will multiply Eq. (3.67) by a and Eq. (3.68) by b, add the 
results, and solve for d u / d y ) , ,  j .  Requiring that the coefficient of d u / d y ) , ,  j A y -  
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Uf/i,j - - i,j+l 

4v- 
i,j-1 

I Figure 3 3  Notation for unequal y spacing. 

be equal to 1 after the addition, gives a a  - b = 1. For the final result to have a 
T.E. of O[(Ay) ’ ]  or better, the coefficient of uY! must be zero after the 
addition, which requires that a’a + b = 0. A solution to these two algebraic 
equations can be obtained readily as a = l / a (  a + l), 6 = - a/(  a + 1). Thus 

a X Eq. (3.67) + b X Eq. (3.68) 
+ 0 [ ( A y l 2 ]  

AY ~ 

The final result can be written as 

(3.69) 

which can be rearranged further into the form given by Eq. (3.66). 
Our Taylor-series examples thus far have illustrated procedures for obtaining 

a finite-difference approximation to a single derivative. However, our main 
interest is in correctly approximating an entire PDE at an arbitrary point in the 
problem domain. For this reason, we must be careful to use the same expansion 
point in approximating all derivatives in the PDE by the Taylor-series method. If 
this is done, then the T.E. for the entire equation can be obtained by adding the 
T.E. for each derivative. 

There is no requirement that the expansion point be (i, j ) ,  as indicated by 
the following examples, where the order of the T.E. and the most convenient 
expansion points are indicated. The geometric arrangement of points used in the 
difference equation is indicated by the sketch of the difference “molecule.” 

Fully implicit form for the heat equation, Eq. (3.55): 

The difference molecule for this scheme is shown in Fig. 3.4, and point 
(n + 1 , j )  is indicated as the most convenient expansion point. 

Crank-Nicholson form for the heat equation: 

T.E. = O [ ( A t ) 2 ,  ( A X ) ’ ]  
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CONVENIENT 
EXPANSION POINT 

. n+l 

. o n  

* *  * .  

Figure 3.4 Difference molecule, fully implicit 
X form for heat equation. 

t 

The difference molecule for the Crank-Nicolson scheme is shown in Fig. 3.5, 
and point (n + i, j )  is designated as the most convenient expansion point. 

It is interesting to note that the order of the T.E. for difference rep- 
resentations of a complete PDE (not a single derivative term, however) is not 
dependent upon the choice of expansion point in the evaluation of this error by 
the Taylor-series method. We will demonstrate this point by considering the 
Crank-Nicolson scheme. The T.E. for the Crank-Nicolson scheme was most 
conveniently determined by expanding about the point (n + :, j )  to obtain the 
results stated above. Using this point resulted in the elimination of the maximum 
number of terms from the Taylor series by cancellation. Had we used point 
( n , j )  or even (n - 1 , j )  as the expansion point, the conclusion on the order of 
the T.E. would have been the same. To reach this conclusion, however, we often 
must examine the T.E. very carefully. To illustrate, evaluating the T.E. of the 
Crank-Nicolson scheme by using expansions for uy- 1, uy+ uy?,', uy:,', u;+ 
about point (n, j )  in Eq. (3.71a) gives, after rearrangement, 

A t  A t  
2 2 

u, - au,, = -u,,- + autxx-  +  AX)^] + O [ ( A t ) 2 ]  (3.71b) 

At first glance, we are tempted to conclude that the T.E. for the Crank-Nicolson 
scheme becomes O ( A t )  +  AX)^], when evaluated by expanding about point 
(n , j ) ,  because of the appearance of the terms -ufr A t / 2  and au,,, A t / 2 .  
However, we can recognize these two terms as - ( A t / 2 X d / d t X u r  - au,,), 
where the quantity in the second set of parentheses is the left-hand side of Eq. 
(3.71b). Thus we can differentiate Eq. (3.71b) with respect to t and multiply 
both sides by - A t / 2  to learn that - ( A t / a X d / d t X u ,  - au,,) = O [ ( A t l 2 1  + 
0 [ ( A x l 2 ] .  From this, we conclude that the T.E. for the Crank-Nicolson scheme 
is 0 [ ( A t l 2 ]  + ~ [ ( A X ) ~ ]  when evaluated about either point ( n , j )  or point 
(n + i, j ) .  Use of other points will give the same results for the order of the 
T.E. This example illustrates that the leading terms in the T.E. should be 
examined very carefully to see if they can be identified as a multiple of a 
derivative of the original PDE. If they can, they should be replaced by expressions 
of higher order. 
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CONVENIENT 
/EXPANSION POINT 

n+l 

n 

Figure 35 Difference molecule, Crank- . X Nicholson form for heat equation. 

3.4.2 Use of Polynomial Fitting 

Many applications of polynomial fitting are observed in computational fluid 
mechanics and heat transfer. The technique can be used to develop the entire 
finite-difference representation for a PDE. However, the technique is perhaps 
most commonly employed in the treatment of boundary conditions or in gleaning 
information from the solution in the neighborhood of the boundary. Consider 
some specific examples. 

Example 3.1 In this example, the derivative approximations needed to represent 
a PDE will be obtained by assuming that the solution to the PDE can be 
approximated locally by a polynomial. The polynomial is then “fitted” to the 
points surrounding the general point (i, j ) ,  utilizing values of the function at the 
grid points. A sufficient number of points can be used to determine the 
coefficients in the polynomial exactly. The polynomial can then be differentiated 
to obtain the desired approximation to the derivatives. Consider Laplace’s 
equation, which governs the 2-D temperature distribution in a solid under 
steady-state conditions: 

d2T d2T + -  - 
d X 2  dy2 = O 

(3.72) 

Solution We suppose that both the x and y dependency of temperature can be 
expressed by a second-degree polynomial. For example, holding y fixed, we 
assume that temperatures at various x locations in the neighborhood of point 
(i,J) can be determined from 
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For convenience, we let x = 0 at point ( i , j ) ,  and A x  = const. Clearly, ”) = b  
i , j  

The coefficients a, b, and c can be evaluated in terms of temperatures at 
specific grid points and Ax. To do so, we must make some choices as to which 
neighboring grid points to use, and this choice determines the geometric 
arrangement of the difference molecule, that is, whether the resulting derivative 
approximations are central, forward, or backward differences. Here we will 
choose points (i - 1, j), (i, j), and ( i  + 1, j )  and obtain 

T ( i , j )  = a 

T ( i  + 1 , j )  = a + b A x  +  AX)^ 
T ( i  - 1,j) = a - b A x  + c ( A x )  2 

from which we determine that 

Thus 

(3.73) 

This represents an exact result if indeed a second-degree polynomial expresses 
the correct variation of temperature with x .  In the general case, we only 
suppose that the second-degree polynomial is a good approximation to the 
solution. The T.E. of the expression, Eq. (3.73), can be determined by substituting 
Taylor-series expansions about point (i, j )  for T,, into Eq. (3.73). 
The T.E. is found to be O [ ( A X ) ~ I  and will involve only fourth-order and higher 
derivatives, which are equal to zero when the temperature variation is given by a 
second-degree polynomial. 

A finite-difference approximation for d 2 T / d y 2  can be found in a like 
manner. We notice that arbitrary decisions need to be made in the process of 
polynomial fitting, which will influence the form and T.E. of the result: in 
particular, these decisions influence which of the neighboring points will appear 
in the difference expression. We also observe that there is nothing unique about 
the procedure of polynomial fitting that guarantees that the difference 
approximation for the PDE is the best in any sense or that the numerical 
scheme is stable (when used for a marching problem). 

and T,- 
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Ay = CONSTANT 

uI 

Example 3.2 Suppose we have solved the finite-difference form of the energy 
equation for the temperature distribution near a solid boundary and we need to 
estimate the heat flux at the location. Our finite-difference solution gives us 
only the temperature at discrete grid points. From Fourier’s law, the boundary 
heat flux is given by q, = -k  dT/dy) ,= , .  Thus, we need to approximate 
dT/dy) , ,  , by a difference representation that uses the temperature obtained 
from the finite-difference solution to the energy equation. 

J- T5 

+k T4 

T3 

Y 
:: T2 

T1 t 

Solution One way to proceed is to assume that the temperature distribution 
near the boundary is a polynomial and to “fit” such a polynomial, i.e., straight 
line, parabola, or third-degree polynomial, to the finite-difference solution that 
has been determined at discrete points. By requiring that the polynomial match 
the finite-difference solution for T at certain discrete points, the unknown 
coefficients in the polynomial can be determined. 

For example, if we assume that the temperature distribution near the 
boundary is again a second-degree polynomial of the form T = a + by + cy2, 
then referring to Fig. 3.6, we note that dT/dy) , , ,  = b. Further, for equally 
spaced mesh points we can write 

TI = a 

T2 = a + b Ay + c(Ay)’ 

T3 = a + b(2 A y )  + c(2 A Y ) ~  

from which we can determine that 

a = TI 
-3TI + 4T2 - T3 

b =  
2 A Y  

TI - 2T2 + T3 
c =  

2(Ay)’ 
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Thus we can evaluate the wall heat flux by the approximation 

It is natural to inquire about the T.E. of this approximation for dT/dy ) , , , .  
This may be established by expressing T2 and T3 in terms of Taylor-series 
expansions about the boundary point and substituting these evaluations into the 
difference expression for d T / d y ) , ,  o. Alternatively, we can identify the second- 
degree polynomial as a truncated Taylor-series expansion about y = 0. 

Second-degree polynomial: 

Taylor series: 
T = a + by + c y 2  

T.E. 
Thus the approximation T = a + by + cy2 is equivalent to utilizing the first 
three terms of a Taylor-series expansion with the resulting T.E. in the expression 
for T being ~ [ ( A Y ) ~ ] .  Solving the Taylor series for an expression for d T / d y ) , = ,  
involves division by A y ,  which reduces the T.E. in the expression for d T / d y ) , = ,  
to O [ ( A Y > ~ I .  

Example 3.3 Suppose that the energy equation is being solved for the 
temperature distribution near the wall as in Example 3.2, but now the wall heat 
flux is specified as a boundary condition. We may then want to use polynomial 
fitting to obtain an expression for the boundary temperature that is called for in 
the difference equations for internal points. In other words, if qw = 

- k  d T / d ~ ) , - ~  is given, how can we evaluate T at y = 0, i.e., ( T l )  in terms of 
q , / k  and T2,  T3,  etc.? 

Solution Here we might assume that T = a + by + cy2 + dy3 near the wall and 
that d T / d y ) , , ,  = b = -q , /k  (given). Our objective is to evaluate T I ,  which in 
this case equals a. Referring to Fig. 3.6, we can write 

T2 = a - 4, A y  + c ( A Y ) ~  + ~ ( A Y ) ~  
k 

T3 = a - %(2 A y )  + c(2  Ay12 + d ( 2  A y )  3 

k 

k 
T4 = a - 4 " ( 3 A y )  + ~ ( 3 A y ) ~  + d ( 3 A ~ ) ~  

These three equations can be solved for a, c, and d in terms of T2,  T3,  T4, q , /k ,  
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and by.  The desired result, TI as a function of T,, T3, q , /k ,  and Ay, follows 
directly from TI = a and is given by 

18T, - 9T3 + 2T4 + ~ 6 A y q w )  + ~ [ ( A Y ) ~ ]  (3.74) 
11 k 

The T.E. in Eq. (3.74) can be established by substituting Taylor-series expansions 
about ( i , j)  for the temperatures on the right-hand side or by identifying the 
polynomial as a truncated series by inspection. We will close this discussion on 
polynomial fitting by listing some expressions for wall values of a function and 
its first derivative in terms of values of the function. These expressions are 
useful, for example, in extracting a value of the function at the wall, if the wall 
value of the first derivative is specified. The results in Table 3.3 were obtained 
from polynomial fitting, assuming that T(y) can be expressed as a polynomial of 
degree up to the fourth, and that Ay = h = const. 

3.4.3 Integral Method 
The integral method provides yet another means for developing difference 
approximations to PDEs. We consider again the heat equation as the specimen 

Table 3.3 Some useful results from polynomial fitting 

Polynomial 
degree Wall value of function or derivative Equation 

1 ") = -(-25q,, + 48T,,j+l - 36c,,+2 + 16T,,,+3 - 3qi,j+4) (3.81) 
a y  i , j  12h 

+ o(h4) 

4 
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equation: 

(3.83) 

The strategy is to develop an algebraic relationship among the values of u at 
neighboring grid points by integrating the heat equation with respect to the 
independent variables t and x over the local neighborhood of point ( n ,  j ) .  The 
point ( n ,  j )  will also be identified as point (to,  xo) .  Grid points are spaced at 
intervals of A x  and A t .  We arbitrarily decide to integrate both sides of the 
equation over the interval to to to + At  and xo - A x / 2  to xo + A x / 2 .  Choosing 
to - A t / 2  to to + A t / 2  would lead to an inherently unstable difference equation. 
Unfortunately, at this point we have no way of knowing which choice for the 
integration interval would be the right or wrong one relative to stability of the 
solution method. This can only be determined by a trial calculation or application 
of the methods for stability analysis, presented in Section 3.6. The order of 
integration is chosen for each side in a manner to take advantage of exact 
differentials: 

The inner level of integration can be done exactly, giving 
xo+ A x / 2  

[u(to + A t ,  X )  -  to, x>l  d~ 
1 0 - A x / 2  

A x  

For the next level of integration, we take advantage of the mean-value theorem 
for integrals, which assures us that for a continuous function f ( y ) ,  

(3.86) 
'Y  1 

where jj  is some value of y in the interval y ,  < J < y 1  + A y .  Thus, any value of 
y on the interval will provide an approximation to the integral, and we can write 

As we invoke the mean-value theorem to further simplify Eq. (3.83, we 
arbitrarily select xo on the left-hand side and to + At  on the right-hand side as 
the locations within the intervals of integration at which to evaluate the 
integrands: 

[ d t o  + A t ,  ~ 0 )  - d t o ,  x O > I  A X  
A x  
2 

t o + A t , x 0 + -  ) - -  :: ( t o  + A t ,  x0 - ")] 2 At  (3.87) 



BASICS OF DISCRETIZATION METHODS 71 

To express the result in purely algebraic terms requires that the first derivatives, 
d u / d x ,  on the right-hand side be approximated by finite differences. We could 
achieve this by falling back on our experience to date and simply utilizing 
central differences. Alternatively, we can continue to pursue a purely integral 
approach and invoke the mean-value theorem for integrals, again observing that 

from which we can write 

u(t0 + At,  x0  + AX) - u(t0 + A t ,  x 0 )  
- to + At,x0 + - 2 (3.89) 
du d X  i Ax 2 1 Ax 

In evaluating the integral in Eq. (3.88) through the mean-value theorem, we 
have arbitrarily evaluated the integrand at the midpoint of the interval. Hence 
the final result is only an approximation. Treating the other first derivative in a 
similar manner permits the approximation to the heat equation to be written as 

CY  to + At,  x O )  - u(t0, X O ) ]  AX =  to + At,  X O  + A X )  - 2u(tO + A t ,  x O )  

(3.90) 
Ax 

+u(t0 + A t ,  X O  - AX)]  At  

Reverting back to the n , j  notation, whereby n denotes time ( t )  and j denotes 
space ( x ) ,  we can rearrange the above in the form 

(3.91) 

which can be recognized as the fully implicit representation of the heat equation, 
Eq. (3.70), given in Section 3.4.1. The choice of to + A t  as the location to use in 
utilizing the mean-value theorem for the second integration on the right-hand 
side is responsible for the implicit form. If to had been chosen instead, an 
explicit formulation would have resulted. We note that a statement of the T.E. 
does not evolve naturally as part of this method for developing difference 
equations but must be determined as a separate step. 

3.4.4 Finite-Volume (Control-Volume) Approach 

In developing what has become known as the finite-uolume method, the 
conservation principles are applied to a fixed region in space known as a control 
uolume. Some authorities also refer to such a procedure as a control-volume 
method, so that the two terms, finite volume and control volume, are used 
somewhat interchangeably in the literature. In the finite-volume approach a 
point of view is taken that is distinctly different from that taken with any of the 
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other methods considered thus far. In the Taylor-series and integral methods, 
we accepted the PDE as the correct and appropriate form of the conservation 
principle (physical law) governing our problem and merely turned to 
mathematical tools to develop algebraic approximations to derivatives. We never 
again considered the physical law represented by the PDE. The Taylor-series 
and integral methods then proceed in a rather formal, mechanical way, operating 
on the PDE, which represents the conservation statement (physical law) at a 
point. 

In the finite-volume method the conservation statement is applied in a form 
applicable to a region in space (control volume). This integral form of the 
conservation statement is usually well known from first principles, or it can in 
most cases, be developed from the PDE form of the conservation law. In this 
approach, we are recognizing the discrete nature of the computational model at 
the outset. This feature is shared in common with finite-element methods. The 
finite-volume procedure can, in fact, be considered as a variant of the finite- 
element method (Hirsch, 1988), although it is, from another point of view, just a 
particular type of finite-difference scheme. 

As an example, consider unsteady 2-D heat conduction in a rectangular- 
shaped solid. The problem domain is to be divided up into control volumes with 
associated grid points. We can establish the control volumes first and place grid 
points in the centers of the volumes (cell-centered method) or establish the grid 
first and then fix the boundaries of the control volumes (cell-vertex method) by, 
for example, placing the boundaries halfway between grid points. When the 
mesh spacing varies, the points will not be in the geometric center of the control 
volumes in the cell-vertex method. In the present example, equal spacing will be 
used, so that the two approaches will result in identical grid and control-volume 
arrangements. 

We first consider the control volume labeled A in Fig. 3.7, which is 
representative of all internal (nonboundary) points. The appropriate form of the 
conservation statement for the control volume (namely, that the time rate of 
increase of energy stored in the volume is equal to the net rate at which energy 
is conducted into the volume) can be represented mathematically as 

The first term in this equation, an integral over the control volume, represents 
the time rate of increase in the energy stored in the volume. The second term, 
an integral over the surface of the volume, represents the net rate at which 
energy is conducted out through the surface of the volume. This is the integral 
or control-volume form of the conservation law that we are applying in this case 
and is the usual starting point for the derivation of the conservation law in 
partial differential form. On the other hand, if the PDE form of the conservation 
law is available to us, we can usually work backward with the aid of the 



BASICS OF DISCRETIZATION METHODS 73 

X 

ON 
Figure 3.7 Finite-difference grid for control- 
volume method. 

divergence theorem to obtain the appropriate integral form. For example, with 
constant properties, this problem is governed by the 2-D heat equation, an 
extension of Eq. (3.621, which can be written in the form 

where k is the thermal conductivity, p is the density, c is the specific heat, and 
the heat flux vector q is given by q = - k  V T .  We can integrate Eq. (3.92a) over 
the control volume to obtain 

(3.92b) 

Applying the divergence theorem gives 
dT 

j j k p c x d R +  @ q . n d S = O  S 

the integral form of the conservation law. The PDE form of the law is derived 
from the integral form by observing that Eq. (3.92~) must hold for all volumes 
regardless of size or shape. Therefore the integrand itself must be identically 
zero at every point. Of course, representing conservation of energy by Eqs. 
(3.92~-3.92b) assumes the existence of continuous derivatives that appear in 
the divergence term. 

For a 2-D problem, the “volume” employs a unit depth. In two dimensions, 
we can represent n dS as i dy - j dx for an integration path around the 
boundary in a counterclockwise direction. Thus the surface integral on the right, 
representing the net flow of heat out through the surface of the volume, can be 
evaluated as 

$(s, dY - q y  dx) 

where qx and qy are components of the heat flux in the x and y directions, 
respectively. The conservation statement then becomes 

(3.93) 
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It should be noted that Eq. (3.93) is valid for volumes of any shape. No 
assumption was necessary about the shape of the volume in order to obtain Eq. 
(3.93). 

The term on the left containing the time derivative can be evaluated by 
assuming that the temperature at point (i, j )  is the mean value for the volume 
and then using a forward time difference to obtain 

(T,:,,? - T." .) 
" I  Ax A y  

p c  At 
The time level at which the term on the right, representing the net heat flow out 
of the volume, is evaluated determines whether the scheme will be explicit or 
implicit. Reasonable choices include time levels n, n + 1, or an average of the 
two. Fourier's law can be used to represent the heat flux components in terms of 
the temperature: 

d T  dT 

dY d X  
q x =  - k -  q = - k -  

Y 

The second integral in Eq. (3.931, representing the flow of heat out of the 
four boundaries of the control volume about point (i, j ) ,  can be represented by 

- k A y c )  -k A x z )  + k A y -    AX- 
dx  i + + , j  dY i . j + t  

The in the subscripts refers to evaluation at the boundaries of the control 
volume that are halfway between mesh points. The expression for the net flow of 
heat out of the volume is exact if the derivatives represent suitable average 
values for the boundaries concerned. Approximating the spatial derivatives by 
central differences at time level n and combining with the time-derivative 
representation yields 

Dividing by pc Ax Ay and rearranging gives 

where a = k / p c .  Equation (3.94) corresponds to the explicit finite-difference 
representation of the 2-D heat equation. 

This equation was derived by approximating spatial derivatives at control 
volume boundaries by central differences; however, it is possible to develop 
appropriate representations for such derivatives by integral methods in a manner 
that is not restricted to Cartesian or even orthogonal grids (see Appendix D). 

Now consider the control volume on the boundary, labeled B in Fig. 3.7. In 
this example we will assume that the boundary conditions are convective. For 
the continuous (nondiscrete) problem, this is formulated mathematically by 
h(T, - T,, j )  = - k  d T / d ~ ) ~ ,  j ,  where the point (i, j )  is the point on the physical 
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boundary associated with control volume B. If we were to proceed with the 
Taylor-series approach to this boundary condition, we would likely next seek a 
difference representation for dT/dxIi ,  j .  If a simple forward difference is used, 
the difference equation governing the boundary temperature would be 

k 
h(T, - Tn. )  = -(T.". - T,'+l,j) (3.95) 

In the control-volume approach, however, we are forced to observe that 
there is some material associated with the boundary point so that conduction 
may occur along the boundary, and energy can be stored within the volume. The 
energy balance on the control volume will account for possible transfer across 
all four boundaries as well as storage. Applying Eq. (3.93) to volume B gives 

I 3 1  A x  ' 7 1  

- k A y -  - k k ? )  + k!f!?)  
2 d y  i , j + ;  2 d y  i . j - 4  

(T:tl - Tyj) A X  A y  
p c  At 2 

+ h A y ( T y ,  - T,) = 0 

Using the same discretization strategy here as was used for volume A, we can 
write 

k A X  - Tyj-l) +- + h Ay(TYj  - T,) = 0 
2 AY 

Dividing through by pc Ax A y ,  we can write the result as 

which is somewhat different from Ea. (3.93, which followed 

pc A x  
(3.96) 

from the most 
obvious application of the Taylor-seriesmethod to approximate the mathematical 
statement of the boundary condition. 

Looking back over the methodology of the finite-volume and Taylor-series 
methods, we can note that the Taylor-series method readily provided difference 
approximations to derivatives and the representation for the complete PDE was 
made up from the addition of several such representations. In contrast, the 
finite-volume method employs the conservation statement or physical law 
(usually invoked in integral form) corresponding to the entire PDE. The 
distinctive characteristic of the finite-volume approach is that a "balance" of 
some physical quantity is made on the region (control volume) in the 
neighborhood of a grid point. The discrete nature of the problem domain is 
always taken into account in the finite-volume approach, which ensures that the 
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physical law is satisfied over a finite region rather than only at a point as the 
mesh is shrunk to zero. It would appear that the discretization developed by the 
finite-volume approach would almost certainly have the conservative property. 

It is difficult to appreciate the subtle differences that may occur in the 
difference representations obtained for the same PDE by using the four different 
methods discussed in this section without working a large number of examples. 
In many cases, and especially for simple, linear equations, the resulting difference 
equations can be identical. That is, four different approaches can give the same 
result. There is no guarantee that difference equations developed by any of the 
methods will be numerically stable, so that the same difference scheme developed 
by all four methods could turn out to be worthless. The differences in the results 
obtained from using the different methods are more likely to become evident in 
coordinate systems other than rectangular. 

3.5 INTRODUCTION TO THE USE OF IRREGULAR MESHES 
Clearly, it is convenient to let the mesh increments such as Ax and Ay be 
constant throughout the computational domain. However, in many instances this 
is not possible because of domain boundaries that do not coincide with the 
regular mesh lines or because of the need to reduce the mesh spacing in certain 
regions in order to maintain the desired level of accuracy. These irregularities 
occur frequently enough in physical problems to command a significant amount 
of attention from workers in computational fluid mechanics and heat transfer. 
In fact, efficiently dealing with irregular geometries that cannot be defined in 
terms of coordinate lines from a known orthogonal coordinate system is one of 
the important practical problems challenging computational fluid dynamics at 
the present time. This problem is complex and has no optimum solution for all 
cases. Some of the ideas are introduced in this chapter, but the general issue of 
irregular meshes is addressed at various points throughout the remainder of the 
book, particularly in Chapters 5 and 10. 

3.5.1 Irregular Mesh Due to Shape of a Boundary 
Here we address those cases in which some portion of the boundary consists of a 
curve (in two dimensions) that does not coincide with a coordinate line (for an 
orthogonal coordinate system) that is satisfactory for the remainder of the 
boundaries. An example of this would arise in solving Laplace’s equations in a 
rectangular region containing a circular interior “hole.” This could also occur in 
solving for the inviscid flow in a channel containing a circular cylinder, or in a 
rectangular conduction medium containing a circular pipe. A square mesh, 
Ax = Ay = const, would be adequate except near the cylinder, where the 
spacing between some of the boundary points and the internal points is unequal, 
as illustrated in Fig. 3.8. If the boundary conditions are Dirichlet (u specified), 
the following three simple procedures may provide an adequate approximation. 

1. Use an especially fine but regular mesh near the boundary and define the 
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I 
AY 

I Figure 3.8 Irregular mesh caused by the rn rn rn 
B shape of a boundary. 

point closest to the actual boundary as the boundary point for computational 
purposes. This results in the boundary taking on a “zig-zag” appearance. 
Unless a coarser mesh is used away from the boundary, resulting in irregular 
mesh problems where the transition in spacing is made, this method could 
require a very large number of grid points to achieve reasonable accuracy. 

2. Use linear (or bilinear) interpolation to assign values of u to any internal 
point that is less than a regular mesh increment from the boundary. The 
interpolation is between the specified boundary values of u and values of u 
determined at neighboring points by the finite-difference equations applicable 
to internal points in the regular mesh. This procedure may work but is not 
strongly recommended. Usually, we can do much better than this with very 
little additional effort, as indicated below. 

3. Develop a finite-difference approximation to the governing PDE that is valid 
at internal points even when the mesh is irregular. Such a difference 
representation for Laplace’s equation valid on a Cartesian grid with irregular 
spacing ( A x  and A y  not constant) can be developed quite readily through the 
integral method by integrating about point x o ,  y o  and letting each integration 
interval extend halfway to a neighboring point. The mesh notation used is 
defined in Fig. 3.9. The starting point for the integral development of the 
difference expression is 

Using the definition of an exact differential, this can be written as 
A x -  
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i-1 ,j i+l ,j 

Figure 3.9 Notation for arbitrary irregular 
mesh. 

Employing the mean-value theorem for integrals and using the central point of 
the interval to evaluate the integrands gives 

X 0 , Y O  - 2 = o  
A y -  ) I  A x + ;  A x -  

+ - x o , y o  + +) - $( [:f ( 
Approximating these derivatives centrally, as was done in Section 3.4.3 gives, 

after rearrangement, the following approximation for Laplace's equation in 
subscript notation: 

ui+l,j - ui,j - 
A x + +  A x -  A x -  

u .  . - u .  
r , j  1 - 1 , j  

When the above is specialized to the points near the irregular boundary 
depicted in Fig. 3.8, the derivative approximations appear as 

2 uD - $) P A y ( 1  + p ) (  P A Y  
Equation (3.97) can also be developed by the 

utilizing Taylor-series expansions. However, the 

A x  
- 

'P - ' B  - 
AY 

control-volume method or by 
unequal spacing makes the 

Taylor-series method noticeably more laborious, whereas the-integral approach 
proceeds for unequal spacing with no increase in effort. Likewise, using the 
control-volume method would require little additional effort. However, Taylor- 
series expansions about ( i , j )  should be substituted into Eq. (3.97) to establish 
the consistency and T.E. of these approximations. This will be left as an exercise 
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for the reader. As a note of warning, we recall that our second-derivative 
approximations on a regular mesh acquired second-order accuracy only through 
fortuitous cancellation of terms from the forward and backward Taylor-series 
expansions. This cancellation will not occur if the mesh increments are unequal. 

When approximately the same number of grid points are being used, we 
might expect this third method of treating irregular points near boundaries to be 
the most accurate because the governing PDE is being approximated at each 
internal point (not the case for procedure 2), and the location of the boundary is 
not being altered as was done in procedure 1. 

The above approximate procedures can be useful when solving a single 
equation for a problem in which Dirichlet boundary conditions are specified on 
an irregular boundary. However, when a system of equations is being solved or 
the boundary conditions involve derivatives (Neumann), the simple procedures 
given above are usually not adequate. Better ways of dealing with this problem 
usually add significantly to the complexity of the problem formulation. One 
common way of handling this type of problem is through the use of generalized 
body-fitted coordinates. This procedure is discussed in Chapters 5 and 10. The 
finite-volume method can also be extended to provide a satisfactory 
representation. An example of how the finite-volume approach can be applied 
to obtain satisfactory difference representations for control volumes associated 
with irregular boundaries is given below. 

Finite-volume treatment of irregular boundary. As before, the governing PDE is 
Laplace’s equation, and we are considering the effect of an irregular boundary 
on a computational domain that is otherwise discretized with an orthogonal 
coordinate system. In particular, we will consider the configuration depicted in 
Fig. 3.10, where control volumes will be rectangles except near the irregular 
boundary. In this case, application of the finite-volume methodology will result 

Figure 3.10 Finite-volume treatment of irregular boundary. 
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in Eq. (3.97) if the volume faces form a rectangle (i.e., if adjacent faces are 
orthogonal). The only exceptions to this will be for those volumes on the 
irregular boundary and their immediate internal neighbors. Some immediate 
internal neighbors to boundary cells, like volume A in Fig. 3.10, will have 
sufficient geometric symmetry so that Eq. (3.97) will be obtained from the 
finite-volume analysis. 

If the boundary conditions at the irregular boundary are Dirichlet, no 
unknowns exist in the volumes that reside on the boundary, so a heat balance on 
those cells is not necessary. However, if the boundary condition is Neumann, 
corresponding to a specified value of boundary heat flux (qw),  the boundary 
temperature is unknown, and it is appropriate to apply the integral form of the 
conservation statement developed in Section 3.4.4: 

to the volume (labeled B in Fig. 3.10) on the boundary, The dashed lines in Fig. 
3.10 denote the boundaries of the control volume. The comer points, located 
halfway between the specified nodal points, are labeled a, b ,  c, d .  It is assumed 
that the coordinates of the nodal points are known. The coordinates of points a 
and d are given by 

x, = ( X i , j - I  + x i , j  + x i - l , j  + x j - l , j - l ) / 4  

Y ,  = ( Y i . j - 1  + Y i , j  + Y i - l , j  + ~ i - l , j - I ) / 4  

' d  = ( ' i , j + l  + x i , j  + X i - I , j  + X i - I , j + J / 4  

Yd  = ( Y i , j + l  + Y i , j  + Y i - l , j  + Y i - l , j + l ) / 4  

Since we want points b and c to lie exactly on the boundary, we will fix 
y ,  = (y i , j  + y i , j - l ) / 2  and y ,  = ( y i , j + l  + y i , j ! / 2  and establish the x coordinates 
so that the points are on the boundary. This is easily done, since the equation 
for the boundary curve is known in the form (x - xo)2  + ( y  - yo)' = r2 ,  where 
x,,, y o  are the coordinates of the center of the circle and r is the radius. We can 
separate the integral around the boundaries of B into line integrals over the 
four component line segments, a-b, b-c, c d ,  d-u: 

+ j d ( q X  dy - qy dx) + Iu(qx dy - qy dx) (3.98) 

where As,, can be computed exactly in this case, making use of the known 
equation for a circle or approximated by a straight-line segment between the 
fixed points as is done for the other boundaries of the control volume. We now 
start at point a to evaluate the line integral [Eq. (3.98)] around the boundaries 
of control volume B in Fig. 3.10. Along the boundary from a to b the heat flux 

C d 
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components can be evaluated by Fourier’s law as 

where Axob = xb - x ,  and Ayab = yb - y,. The values of dT/dy) , -  a, j -  + and 
d T / d ~ ) ~ _  +, j -  are approximately in the center of the region a’b’c‘d’ denoted in 
Fig. 3.10. It is assumed that these derivatives can be approximated by averages 
over a’b’c’d’. 

1 dT ”) dx i - + , j - ;  = - ( , / L . a J d y & )  A’ 

where A’ denotes the area of the region a‘b’c‘d. Using the Gauss divergence 
theorem again, the integrals over the area a’b’c’d‘ can be evaluated by line 
integrals around the boundary of a’b’c’d‘. This allows the heat flux across the 
a-b portion of the boundary of control volume B to be represented as 

-k (Ti- a, j -  1AYa,b, -k Tb AYb~,~  + T -  a, j Aycrdl + T, AYd’,’) AY,,] (3.99) 

Because A y  = 0 along path a-b, half of the terms on the right-hand side of Eq. 
(3.99) vanish, so that the expression simplifies to 

- k  
A’ -[T-f,,-l(AX,rb’ h a b )  Tb(Axbfcr AX,b) 

+ T -  +, j ( h X c r d r  AX,,) + Ta(AXdtat Ax,,)] (3.100) 

We note that further simplifications would occur if A x  were zero along paths 
b’-c’ and d‘-u‘ (i.e., the paths were parallel to the y axis). The temperatures 
required in Eq. (3.100) must be obtained by interpolation from values at nodal 
points. For this configuration, bilinear interpolation yields 

T, = 0.25(lj,j + T,j- l  + q-l,j-l + T-l , j )  
Tb = 0.5(T,j + T,j-1) 

= 0.25T,-,,j + 0.75T,,, 

q-+, j- l  = 0.25T,-1,j-1 + 0.75T,*j-, 
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The area A’ can be approximated in several ways, one of which is by 
assuming that a’b’c’d) forms a quadrilateral and computing its area as one-half 
the cross product of the diagonals of the quadrilateral region: 

A’ = O.~(AX,,,~ Ay,,,, - AyJb,  AX^',^) 

where xa, = 0.5(xi-  j -  + xi ,  j - l >  
Xb’ = x .  . 

x,, = xi ,  j 
xdt = 0.5(xi - 

1 , 1 - 1  

+ xi, j )  
In this formulation, care must be exercised in order to obtain a positive value 
for the area. This can be assured by employing the right-hand rule or by taking 
the absolute value of the cross product. The y coordinates of points a’, b’, c’, d’ 
are found by replacing x with y in the expressions above. The fluxes across 
control-volume boundaries c-d and d-u can be evaluated by extending the 
methodology illustrated above for boundary a-b appropriately. 

Although the irregular shape of the boundary volumes clearly adds 
significant complexity to the solution procedure, the techniques needed to deal 
with this can be generalized and implemented reasonably systematically and 
efficiently. On the other hand, it is correct to conclude that when the boundaries 
of the domain of interest do not coincide with grid lines of an orthogonal 
coordinate system and the boundary conditions are not Dirichlet, a major 
escalation in the effort required to formulate the solution procedure seems to 
follow. 

3.5.2 Irregular Mesh Not Caused by Shape of a Boundary 

Here we assume that the boundaries of the problem domain conform to grid 
lines in an orthogonal coordinate system. The use of variable grid spacing may 
still be desirable in this situation because it is often necessary to employ very 
small grid spacings in regions where gradients of the dependent variables are 
especially large in order to obtain the desired accuracy or ‘‘resolution.’’ However, 
in the interest of computational economy, we strive to use a coarser grid away 
from these critical regions. This requires that the mesh spacings vary. We can 
cite at least two ways to proceed: 

1. We can employ a coordinate transformation so that unequal spacing in the 
original coordinate system becomes equal spacing in the new system but the 
PDE becomes altered somewhat in form. This procedure is described in 
detail in Chapter 5. 

2. The difference equation can be formulated in such a way that it remains valid 
when the spacing is irregular (grid lines remain orthogonal, but the increments 
in each coordinate direction vary instead of remaining constant). Actually, 
this is the same as procedure 3 used above in connection with the irregular 
mesh caused by curved boundaries. Such a formulation for Laplace’s equation 
is given as Eq. (3.97). 
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3.5.3 Concluding Remarks 
The purpose of this section has been to introduce some of the problems and 
applicable solution procedures associated with irregular boundaries and unequal 
mesh spacing in general. Coverage of the topic has been by no means complete. 
More advanced considerations on this topic tend to quickly become quite 
specialized and detailed. Good pedagogy suggests that we move on and see more 
of the forest before we spend any more time studying this tree. Some ideas on 
this topic will be developed further in Chapters 5 and 10 and in connection with 
specific example problems in fluid mechanics and heat transfer. 

3.6 STABILITY CONSIDERATIONS 
A finite-difference approximation to a PDE may be consistent, but the solution 
will not necessarily converge to the solution of the PDE. The Lax Equivalence 
theorem (see Section 3.3.5) states that a stable numerical method must also be 
used. We will address the question of stability in this section. 

The problem of stability in numerical analysis is similar to the problem of 
stability encountered in a modern control system. The transfer function in a 
control system plays the role of the difference operator. Consider a marching 
problem in which initial values at time level n are known and values of the 
unknown at time level n + 1 are required. The difference operator may be 
viewed as a "black box" that has a certain transfer function. A schematic 
representation would appear as shown in Fig. 3.11. The stability of such a system 
depends upon the operations performed by the black box on the input data. A 
control systems engineer would require that the transfer function have no poles 
in the right-half plane. Without this requirement, input signals would be falsely 
amplified, and the output would be useless; in fact, it would grow without bound. 
Similarly, the way in which the difference operator alters the input information 
to produce the solution at the next time level is the central concern of stability 
analysis. 

As a starting point for stability analysis, consider the simple explicit 
approximation to the heat equation: 

This may be solved for u;+ to yield 
At 

( A x )  
.;+I = ui" + a----+u? J + 1  - 2u; + ui"-l) (3.101) 

This may be solved for u:+' to yield 
At 

( A x )  
.;+I = ui" + a----+u? J + 1  - 2u; + ui"-l) (3.101) 

INPUT 
TIME --i LEVEL n 

BLACK BOX 

Figure 3.11 Schematic diagram of stability. 
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Let the exact solution of this equation be denoted by D. This is the solution that 
would be obtained using a computer with infinite accuracy. Similarly, denote by 
N the numerical solution of Eq. (3.101) computed using a real machine with 
finite accuracy. If the analytical solution of the PDE is A,  then we may write 

Discretization error = A - D 
Round-off error = N - D 

The question of stability of a numerical method examines the error growth while 
computations are being performed. O’Brien et al. (1950) pose the question of 
stability in the following manner: 

1. Does the overall error due to round-off 

instability 
[:::row] * strong[ stability ] 

2. Does a single general round-off error 

instability 
[:::row] * weak[ stability ] 

The second question is the one most frequently answered because it can be 
treated much more easily from a practical point of view. The question of 
weak stability is usually answered by using a Fourier analysis. This method is 
also referred to as a von Neumann analysis. It is assumed that proof of weak 
stability using this method implies strong stability. 

3.6.1 Fourier or von Neumann Analysis 
Consider the finite-difference equation, Eq. (3.101). Let E represent the error in 
the numerical solution due to round-off errors. The numerical solution actually 
computed may be written 

N = D + E  (3.102) 
This computed numerical solution must satisfy the difference equation. Substi- 
tuting Eq. (3.102) into the difference equation, Eq. (3.100, yields 

1 DY” + -D? - en Di”+ 1 + €i”+ 1 - 2Di” - 2Ei” + 0;- 1 + Ei”- 1 
I I 1  = ff( 

At  A x 2  

Since the exact solution D must satisfy the difference equation, the same is true 
of the error, i.e., 

- Ei” Ei”+ 1 - 2Ei” + Ei”- 1 

At  A x 2  
(3.103) 

In this case, the exact solution D and the error E must both satisfy the same 
difference equation. This means that the numerical error and the exact numerical 
solution both possess the same growth property in time and either could be used 
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Figure 3.12 Initial error distribution. 

to examine stability. Any perturbation of the input values at the nth time level 
will either be prevented from growing without bound for a stable system or will 
grow larger for an unstable system. 

Consider a distribution of errors at any time in a mesh. We choose to view 
this distribution at time t = 0 for convenience. This error distribution is shown 
schematically in Fig. 3.12. We assume the error E ( X ,  t )  can be written as a series 
of the form 

E ( X ,  t )  = Cb,( t )e ikmx (3.104) 

where the period of the fundamental frequency ( m  = 1) is assumed to be 2L .  
For the interval 2 L  units in length, the wave number may be written 

m 

2n-m 
k ,  = - 

2 L  
m = 0,1,2, . . . ,M 

where M is the number of increments Ax units long contained in length L. For 
instance, if an interval of length 2 L is subdivided using five points, the value of 
M is 2, and the corresponding frequencies are 

f a  = 0 m=O 

fi=z m = l  

f , = ,  m = 2  

1 

1 

The frequency measures the number of wavelengths in each 2 L  units of length. 
The lowest frequency ( m  = 0, fa  = 0) corresponds to a steady term in the 
assumed expansion. The highest frequency ( m  = M )  has a wave number of 
rr /Ax and corresponds to the minimum number of points (3) required to 
approximately represent a sine or cosine wave between 0 and 2rr. 
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Since the difference equation is linear, superposition may be used, and we 
may examine the behavior of a single term of the series given in Eq. (3.104). 
Consider the term 

E,(x,  t )  = bm(t)eikmx 

We seek solutions of the form 
Zneik,x 

which reduces to e i k m x  when t = 0 ( n  = 0). Toward this end, let 

z = e a  At  

so that 

(3.105) 

where k, is real but a may be complex. 
If Eq. (3.105) is substituted into Eq. (3.1031, we obtain 

) &‘+At )  ik,x - ,yteik,x = r ( e a t e i k m ( x + A x )  - 2eate ik ,x  + e a t e i k , ( x - A x )  e 
where r = a At/(Ax)’. If we divide by eureikmx and utilize the relation 

,is + e - i B  

2 
cos p = 

the above expression becomes 

e a A t  = 1 + 2r(cos p - 1) 

where p = k, Ax. Employing the trigonometric identity 

p 1 - cos p 
2 sin - = 

2 2 
the final expression is 

(3 .lo61 

Furthermore, since E:+ = ea A&,!’ for each frequency present in the solution for 
the error, it is clear that if lea is less than or equal to 1, a general component 
of the error will not grow from one time step to the next. This requires that 

P 
1 - 4r sin’ - 

2 
e a A t  = 

(3.107) 

The factor 1 - 4r sin’ p/2 (representing E,!’+’/E:) is called the amplification 
factor and will be denoted by G. Clearly, the influence of boundary conditions is 
not included in this analysis. In general, the Fourier stability analysis assumes 
that we have imposed periodic boundary conditions. 
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In evaluating the inequality Eq. (3.107), two possible cases must be con- 
sidered: 

1. Suppose (1 - 4r sin' p/2) 2 0; then 4r sin2 p/2 2 0. 
2. Suppose (1 - 4r sin2 p/2) < 0; then 4r sin' p/2 - 1 < 1. 

The first condition is always satisfied if r 0. The second inequality is satisfied 
only if r < 3, which is the stability requirement for this method. This numerically 
places a constraint on the size of the time step relative to the size of the mesh 
spacing. The reason for the physically implausible temperatures calculated in 
the example at the end of Section 3.3.4 is now very clear. The step size At  
selected was too large by a factor of 2, and the solution began to diverge 
immediately. The stability of the calculation with a ( A t / A x 2 )  = 3 can easily be 
verified. It should be noted that the amplification factor given by Eq. (3.106) 
could have been deduced by substituting a general form given by Eq. (3.104) into 
the difference equation. The proof is left as an exercise for the reader. 

Example 3.4 The simple implicit scheme applied to the heat equation is given by 

Determine the stability restrictions (if any) for this algorithm. 

Solution After substituting Eq. (3.105) into this algorithm, we obtain 

eoA'(I + 2r - 2rcos p )  = 1 

Using the trigonometric identity, 
p 1 - cos p 

2 
2 

sin - = 
2 

the amplification factor becomes 

G =  
1 

1 + 4r sin2 p / 2  

The condition for stability (GI Q 1 is satisfied for all r 2 0. Hence there is no 
upper limit on step size because of stability. However, there is a practical limit 
on step size because of T.E. 

The application of the von Neumann or Fourier stability method is equally 
straightforward for hyperbolic equations. As an example, the first-order wave 
equation in one dimension is 

au du 
- +c- = o  
d t  d X  

(3.108) 
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where c is the wave speed. This equation has one characteristic given by a 
solution of xt = c. The solution of Eq. (3.108) is given by 

u(x - c t )  = const 
This solution requires the initial data prescribed at t = 0 to be propagated along 
the characteristics. 

Lax (1954) proposed the following first-order method for solving equations 
of this form: 

u;+l + u;-l A t  u;,, -  in_^ 
2 - .-( A x  2 

.;+I = (3.109) 

The first term on the right-hand side represents an average value of the 
unknown at the previous time level, while the second term is the difference form 
of the spatial derivative. If a term of the form 

uy = e a t e i k m x  

is substituted into the difference equation, the amplification factor becomes 

cos p - iv sin p e a A t  = 

The stability requirement is 1G1 G 1 or 
lcos p - i v  sin pl Q 1 

where v = c A t / A x  is called the Courant number. Since the square of the 
absolute value of a complex number is the sum of the squares of the real and 
imaginary parts, the method is stable if 

Ivl  Q 1 (3.110) 
Again, a conditional stability requirement must be placed on the time step and 
the spatial mesh spacing. This is called the Courant-Friedrichs-Lzwy (CFL) 
condition and was discussed at length relative to the concepts of convergence 
and stability in an historically important paper by Courant et al. (1928). Some 
authorities consider this paper to be the starting point for the development of 
modem numerical methods for PDEs. 

The amplification factor or growth factor for a particular numerical method 
depends upon mesh size and wave number or frequency. The amplification 
factor for the Lax finite-difference method may be written 

G = cos p - iv sin p = IGJe'6 = 4 ~ 0 ~ 2  p + y*  sin2 p e i t a n - ' ( - " t a "  P )  (3.111) 

where 6 is the phase angle. Clearly, the magnitude of G changes with Courant 
number v and frequency parameter p,  which varies between 0 and T. A good 
understanding of the amplification factor can be obtained from a polar plot. 
Figure 3.13 is a plot of Eq. (3.111) for several different Courant numbers. 
Several interesting results can be deduced by a careful examination of this plot. 
The phase angle for the Lax method varies from 0 for the low frequencies to 
- T for the high frequencies. This may be seen by computing the phase for both 
cases. For a Courant number of 1, all frequency components are propagated 
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Figure 3.13 Amplitude-phase plot for the amplification factor of the Lax scheme. 

without attenuation in the mesh. For Courant numbers less than 1, the low- and 
high-frequency components are only mildly altered, while the midrange 
frequency signal content is severely attenuated. The phase is also shown, and we 
can determine the phase error for any frequency from these curves. 

A physical interpretation of the results provided by Eq. (3.110) for hyperbolic 
equations is important. Consider the second-order wave equation: 

(3.112) u,, - c2u,, = 0 

This equation has characteristics 

x + ct = const = c1 

x - ct = const = c2 

A solution at a point ( x , t )  depends upon data contained between the 
characteristics that intersect that point, as sketched in Fig. 3.14. The analytic 
solution at ( x ,  t )  is influenced only by information contained between c1 and c2.  

The numerical stability requirement for many explicit numerical methods 
for solving hyperbolic PDEs is the CFL condition, which, for the wave equation, 
is 



Figure 3.14 Characteristics of the second-order wave equation. 

This is the same as given in Eq. (3.110) and may be written as 

The characteristic slopes are given by dt/& = +l /c .  The CFL condition 
requires that the analytic domain of influence lie within the numerical domain 
of influence. The numerical domain may include more than, but not less than, 
the analytical zone. Another interpretation is that the slope of the lines 
connecting ( j  &- 1, n) and ( j ,  n + 1) must be smaller in absolute value (flatter) 
than the characteristics. The CFL requirement makes sense from a physical 
point of view. One would also expect the numerical solution to be degraded if 
too much unnecessav information is included by allowing c ( A t / A x )  to become 
greatly different from unity. This is, in fact, what occurs numerically. The best 
results for hyperbolic systems using the most common explicit methods are 
obtained with Courant numbers near unity. This is consistent with our 
observations about attenuation associated with the Lax method, as shown in Fig. 
3.13. 

Before we begin our study of stability for systems of equations, an example 
demonstrating the application of the von Neumann method to higher dimen- 
sional problems is in order. 

h’xurnpk 3.5 A solution of the 2-D heat equation 
all d2U d2U 

at a x 2  ay2 
+ a- - = (y- 

is desired using the simple explicit scheme. What is the stability requirement for 
the method? 
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where r, = a [ A t / ( A ~ ) ~ l  and r, = ~x[At/(Ay)~]. In this case, a Fourier 
component of the form 

'7, k e y  = ea te ik ,x  i k  y 

is assumed. If PI = k, Ax and P2 = k, by, we obtain 

euA' = 1 + 2r,(cos p1 - 1) + ~ ~ , ( c o s  P2 - 1) 

If the identity sin2( p/2) = (1 - cos p)/2 is used, the amplification factor is 

P I  P2 G = 1 - 4r, sin2 - - 4ry sin2 - 
2 2 

Thus for stability, I1 - 4r, sin2 ( p1/2) - 4r, sin2 ( P2/2)l =s 1, which is true 
only if (4r, sin2 p,/2 + 4ry sin2 P2/2) 6 2. The stability requirement is then 
(r,  + r,) 6 3 or a At[1/(Ax)2 + l / ( A ~ ) ~ l  Q $. This is similar to the analysis of 
the same method for the 1-D case but shows that the effective time step in two 
dimensions is reduced. This example was easily completed, but in general, a 
stability analysis in more than a single space dimension and time is difficult. 
Frequently, the stability must be determined by computing the magnitude of the 
amplification factor for different values of r, and r,. 

3.6.2 Stability Analysis for Systems of Equations 
The previous discussion illustrates how the von Neumann analysis can be used 
to evaluate stability for a single equation. The basic idea used in this technique 
also provides a useful method of viewing stability for systems of equations. 
Systems of equations encountered in fluid mechanics and heat transfer can 
often be written in the form 

dE dF - + - = o  
dt  dx 

(3.113) 

where E and F are vectors and F = F(E). In general, this system of equations is 
nonlinear. In order to perform a linear stability analysis, we rewrite the system 
as 

or 
d E  d E  
a t  d X  
- + [A]- = 0 

(3.114) 

where [A] is the Jacobian matrix [dF/dE]. We locally linearize the system by 
holding [A] constant while the E vector is advanced through a single time step. 
A similar linearization is used for a single nonlinear equation, permitting the 
application of the von Neumann method of the previous section. 
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For the sake of discussion, let us apply the Lax method to this system. The 
result is 

E"' = - [ I ]  + - [ A ] "  Ey-1 + - [ I ]  - 
1 2 '( A x  " ) :( A x  

where the notation is as previously defined and [ I ]  is the identity matrix. The 
stability of the difference equation can again be evaluated by applying the 
Fourier or von Neumann method. If a typical term of a Fourier series is 
substituted into Eq. (3.115), the following expression is obtained, 

e n + l ( k )  = [G(At ,k ) l e"(k )  
where 

At  
A x  

[GI = [Ilcos p - i-[Alsin P 

(3.116) 

(3.117) 

and en represents the Fourier coefficients of the typical term. The [GI matrix is 
called the amplification matrix. This matrix is now dependent upon step size and 
frequency or wave number, i.e., [GI = [G(At, k)]. For a stable finite-difference 
calculation, the largest eigenvalue of [GI, amax , must obey 

lumaxl Q 1 (3.118) 
This leads to the requirement that 

(3.119) 

where A,,, is the largest eigenvalue of the [A] matrix, i.e., the Jacobian matrix 
of the system. A simple example to demonstrate this is of value. 

Eurmple 3.6 Determine the stability requirement necessary for solving the 
system of first-order equations 

dU dv 
- + c -  = o  
dt d X  

dv d u  
- + c -  = o  
d t  d x  

using the Lax method. 

Solution In this problem 

and 
dE d E  

dt d X  
- + [ A ] -  = 0 

where 
o c  

= [ c  01 
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Thus, the maximum eigenvalue of [A] is c ,  and the stability requirement is the 
usual CFL condition 

It should be noted that the stability analysis presented above does not 
include the effect of boundary conditions even though a matrix notation for the 
system is used. The influence of boundary conditions is easily included for 
systems of difference equations. 

Equation (3.116) shows that the stability of a finite-difference operator is 
related to the amplification matrix. We may also write Eq. (3.116) as 

e"+'(k)  = [ G ( A t ,  k) l"[e'(k) l  (3.120) 
The stability condition (Richtmyer and Morton, 1967) requires that for some 
positive r ,  the matrices [G(At,  k)Y be uniformly bounded for 

O < A t < r  
O Q n A t Q T  

for all k ,  where T is the maximum time. This leads to the uon Neurnunn 
necessuly condition for stability, which is 

(3.121) 
for each eigenvalue and wave number, where a, represents the eigenvalues of 
[G(At,  k) ] .  For a scalar equation, Eq. (3.121) reduces to 

IGl Q 1 + O ( A t )  
The stability requirement used in previous examples required that the 

maximum eigenvalue have a modulus less than or equal to 1. Clearly, that 
requirement is more stringent than Eq. (3.121). The von Neumann necessary 
condition provides that local growth c At can be acceptable and, in fact, must be 
possible in many physical problems. The classical example illustrating this point 
is the heat equation with a source term. 

Iui(At,k)l Q 1 + O(At )  0 < At < r 

Example 3.7 Suppose we wish to solve the heat equation with a source term 
dU d 2 U  

dt dX2 
+ cu - = (y- 

using the simple explicit finite-difference method. Determine the stability 
requirement. 

Solution If a Fourier stability analysis is performed, the amplification factor is 

G = 1 - 4 r s i n 2 -  + c A t  

This shows that the solution of the difference equation may grow with time and 
still satisfy the von Neumann necessary condition. Physical insight must be used 
when the stability of a finite-difference method is investigated. One must 

P 
2 
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recognize that for hyperbolic systems the strict condition less than or equal to 1 
should be used. Hyperbolic equations are wave-like and do not possess solutions 
that increase exponentially with time. 

We have investigated stability of various finite-difference methods by using 
the von Neumann method. If the influence of boundary conditions on stability is 
desired, we must use the matrix method. This is most easily demonstrated by 
applying the Lax method to solve the 1-D linear wave equation: 

du au 
- +c- = o  
at d X  

Assume that an array of m points is used to solve this problem and that the 
boundary conditions are periodic, i.e., 

u;+l  = u; (3.122) 

If the Lax method is applied to this problem, a system of algebraic equations is 
generated that has the form 

where 

and 

[ x lu" (3.123) U n +  1 = 

(3.124) T u" = [ u 1 , u 2 ,  ..., u,] 

1 - u  1 + u  
2 2 

0 0 

0 

1 - v  

l + u  

2 

1 - v  
2 

l + u  
0 0): 2 0 

(3.125) 
The stability of the finite-difference calculation in Eq. (3.123) is governed by the 
eigenvalue structure of [XI. Since [XI was formed assuming periodic boundary 
conditions, only the three diagonals noted in Eq. (3.125) and the two corner 
elements contribute to the calculation. This matrix is called an aperiodic matrix. 
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For matrices of the form 
- 

a, a2 0 * - - a, 

a, a, a2 0 * - 0 

a2 0 a1 

the eigenvalues are given by 

27r 
m 

Aj = a, + (a, + a 2 )  cos - ( j  - 
27r 
m 

1) + i(a, - a,)sin - ( j  - 1) 

In this case a,, a,, and a2 have the values 

l + u  1 - v  
a , = O  a 2 = -  

2 
a, = - 

2 

and the eigenvalues are 

277 27r 
Aj = cos - ( j  - 1) + iv sin - ( j  - 1) 

m m 

(3.126) 

(3.127) 

The numerical method is thus stable if l v l  d 1, i.e., if the CFL condition is 
satisfied. This shows that an analysis based upon the matrix operator associated 
with the Lax method yields the same stability requirement as previously derived 
for the simple wave equation. For periodic boundary conditions, the Fourier and 
matrix method yield virtually identical results. Another example is needed in 
order to demonstrate the effect of boundary conditions and the discreteness of 
the mesh. 

Example 3.8 As in the previous example, assume that the Lax method is used to 
solve the first-order linear wave equation. If a four-point mesh is used, special 
treatment is needed to enforce the boundary conditions at the first and fourth 
points. For simplicity we set u at the first point equal to a constant value for all 
time, so the equation for the first point reads 

4 un+ 1 = 
1 

Since we are computing a solution to the wave equation, the value of u4 cannot 
be arbitrarily chosen. It must be consistent with the way the solution is 
propagated. We elect to set 

which determines the boundary value from the interior solution. 
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Solution For the present boundary condition treatment the [XI  matrix becomes 

[XI = 

- 
1 0 0 0 

0 
2 

2 
0 

0 0 1 0 

l + v  l - v  
0 

2 
l + v  l - v  

0 
2 

The eigenvalues are easily computed and are 
A, = 1 
A, = 0 

A3,4 = k$d(l - v)(3 + v)  
Using the requirement that IAl G 1 for stability, the restriction on v is not the 
usual CFL condition but is 

The CFL condition is altered by the boundary conditions in this example, as is 
normally the case. 

(-6 - 1) G v <  (6 - 1) 

It is clear that the boundary conditions on the mesh are included in the 
matrix method. This means that the influence of boundary conditions on 
stability is automatically included if the matrix analysis is used. Unfortunately, a 
closed-form solution for the eigenvalues is usually not available for arbitrary end 
boundary conditions. 

The treatment of stability presented in this section has included the Fourier 
(von Neumann) method and the matrix method of analysis. These two techniques 
are probably the most widely used to determine the stability of numerical 
schemes. Other methods of analyzing stability have been devised and are 
frequently very convenient to use. The works of Hirt (1968) and Warming and 
Hyett (1974) are typical of these techniques. A more comprehensive mathe- 
matical analysis of stability including many theorems and proofs is contained in 
the book by Richtmyer and Morton (1967). 

PROBLEMS 
3.1 Verify that 

3.2 Consider the function f ( x )  = ex. Using a mesh increment A x  = 0.1, determine f ’ ( x )  at x = 2 
with the forward-difference formula, Eq. (3.26), the central-difference formula, Eq. (3.281, and the 
second-order three-point formula, Eq. (3.29). Compare the results with the exact value. Repeat the 
comparisons for A x  = 0.2. Have the order estimates for truncation errors been a reliable guide? 
Discuss this point. 
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33 Verify whether or not the following difference representation for the continuity equation for a 
2-D steady incompressible flow has the conservation property: 

where u and u are the x and y components of velocity, respectively. 
3.4 Repeat Prob. 3.3, for the following difference representation for the continuity equation: 

3.5 Consider the nonlinear equation 

where p is a constant. 

equation? 

3.6 Verify the approximation to a 2 u / a x  a y  given by Eq. (3.50) in Table 3.2. 
3.7 Verify the approximation to a 2 u / d x 2  given by Eq. (3.40) in Table 3.1. 
3.8 Verify Eq. (3.79) in Table 3.3. 
3.9 Verify Eq. (3.80) in Table 3.3. 
3.10 Verify the following finite-difference approximation for use in two dimensions at the point 
(i, j ) .  Assume A x  = A y  = h. 

(a)  Is this equation in conservative form? If not, can you suggest a conservative form for the 

(b )  Develop a fiiite-difference formulation for this equation using the integral approach. 

3.11 Develop a finite-difference approximation with T.E. of O ( A y )  for d 2 u / d y 2  at point (i, j )  using 
ui, ,!ui,j+l,ui,j-l  when the grid spacing is not uniform. Use the Taylor-series method. Can you 
dewse a three-point scheme with second-order accuracy with unequal spacing? Before you draw your 
final conclusions, consider the use of compact implicit representations. 
3.12 Establish the T.E. of the following finite-difference approximation to d u / a y  at the point (i, j )  
for a uniform mesh: 

du -3ui , j  + 4Ui,j+l - ui,j+2 _ -  - 
aY 2 AY 

What is the order of the T.E.? 
3.13 Investigate the T.E. of the following finite-difference approximation for a uniform mesh: 

- 2) =-- 1 & U i , j  

a x  i , j  2h 1 + 4?/6 

3.14 Utilize Taylor-series expansions about the point ( n  + f ,  j )  to determine the T.E. of the 
Crank-Nicolson representation of the heat equation, Eq. (3.71~). Compare these results with the 
T.E. obtained from Taylor-series expansions about point n, j .  
3.15 Develop a finite-difference approximation with T.E. of O(Ay)’  for a T / d y  at point (i, j )  using 
4, j ,  4, j+ 1, and 4, j + 2  when the grid spacing is not uniform. 
3.16 Determine the T.E. of the following finite-difference approximation for & / a x  at point (i, j )  
when the grid spacing is not uniform: 

u i + l , j  - ( A x + / A x - ) ~ u ~ - ~ , ~  - [ l  - ( A . ~ + / A ~ - ) ~ l u i , j  

A X -  ( A X + / A ~ -  + A X +  
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+ 1 2  
lI11111111 

ADIABATIC BOUNDARY Figure P3.1 

3.17 Suppose that a finite-difference solution has been obtained for the temperature T, near but not 
at an adiabatic boundary (i.e., d T / d y  = 0 at the boundary) (Fig. P3.1). In most instances, it would 
be necessary or desirable to evaluate the temperature at the boundary point itself. For this case of 
an adiabatic boundary, develop expressions for the temperature at the boundary TI, in terms of 
temperatures at neighboring points T2,  T3, etc., by assuming that the temperature distribution in the 
neighborhood of the boundary is 

( a )  a straight line 
( b )  a second-degree polynomial 
( c )  a cubic polynomial (you only need to indicate how you would derive this one). 

Indicate the order of the T.E. in each of the above approximations used to evaluate T I .  
3.18 Consider a steady-state conduction problem governed by Laplace’s equation with convective 
boundary conditions (see Fig. P3.2). The formal statement of the boundary condition is 
-k d T / d ~ ) ~ ~  = h(T, - Tm), which can be readily cast into finite-difference form as -k[(To - 
T , ) / A y ]  + O ( A y )  = h(To - Tm). Use the control-volume approach to develop an expression for the 
boundary condition at point 0. Evaluate the T.E. in this expression assuming that Laplace’s equation 
applies at the boundary point. 
3.19 Consider a heat conduction problem governed by d T / d f  = a(d2T/dn2). Develop a finite- 
difference representation for this equation by the control-volume approach. Do not assume that the 
grid is uniform. 
320 For 2-D steady-state conduction in a solid, apply the control-volume method to derive an 
appropriate difference expression for the boundary temperature in control volume B in Fig. 3.7 for 
adiabafic wall boundary conditions. 
3.21 Solve the 1-D heat equation using forward-time centered-space differences with a ( A t / A x 2 )  
= i. Let the grid consist of five points, including three interior and two boundary points. Assume a 
constant unity wall temperature and a zero initial temperature on the interior. Complete this 
calculation for 10 integration steps. Compare your results with those obtained in the example of 
Section 3.3.4. 
3.22 Refer to Fig. 3.10. Following the methodology illustrated in the text material associated with 
Fig. 3.10, develop an appropriate finite-volume expression for the heat flux across the boundary from 
c to d .  

Ax = Ay 

Figure P3.2 
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3.23 Refer to Fig. 3.10 and the associated text material. In an example in Section 3.5, an expression 
was developed for the heat flux across boundary a-b for control volume B (Eq. 3.100). Foilowing a 
similar methodology, develop an appropriate finite-volume expression for the heat flow into volume 
B across the boundary from d to a. If the difference scheme is to be conservative, this heat flow 
should be equal in magnitude but opposite in direction to the inflow computed for volume A across 
boundary da. Check to see if this is true. 
3.24 Show that the amplification factor derived for the finite-difference solution of the heat 
equation, Eq. (3.101), could be obtained by direct substitution of a solution of the form 

+m 

u? = CCmgPeikxX 

--m 

In this form C ,  represent the Fourier coefficients of the initial error distribution and g, is the 
amplification factor. Identify g, with Eq. (3.106). Discuss the convergence of the solution and relate 
your conclusions to the Lax equivalence theorem. 
3.25 Use a von Neumann stability analysis to show for the wave equation that a simple explicit Euler 
predictor using central differencing in space is unstable. The difference equation is 

Now show that the same difference method is stable when written as the implicit formula 

3.26 The DuFort-Frankel method for solving the heat equation requires solution of the difference 
equation 

Develop the stability requirements necessary for the solution of this equation. 
3.27 Prove that the CFL condition is the stability requirement when the Lax-Wendroff method is 
applied to solve the simple 1-D wave equation. The difference equation is of the form 

3.28 An implicit scheme for solving the heat equation is given by 

Apply the Fourier stability analysis to this scheme and determine the stability restrictions, if any. 
3.29 An implicit scheme for solving the first-order wave equation is given by 

Apply the Fourier stability analysis to this scheme and determine the stability restrictions, if any. 
330 The leap frog method for solving the 1-D wave equation is given by 

I u7+1 - u;-1 
u n + l  - u"l 

+ c  = o  
2 At  2 A x  

Apply the Fourier stability analysis to this method, and determine the stability restrictions, if any. 
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331 Determine the stability requirement necessary to solve the 1-D heat equation with a source 
term 

a u  a2u 

a t  a x  
- = = ~ + k u  

Use the central-space, forward-time difference method. Does the von Neumann necessary condition, 
Eq. (3.121), make physical sense for this type of computational problem? 
332 Use the matrix method to determine the stability of the Lax method used to solve the 
first-order wave equation on a mesh with two interior points and two boundary points. Assume the 
boundaries are held at constant values uleft = 1, uright = 0. 
333 Use the matrix method and evaluate the stability of the numerical method used in Prob. 3.21 
for the heat equation using a five-point mesh. How many frequencies must one be concerned with in 
this case? 
334 In attempting to solve a simple PDE, a system of finite-difference equations of the form 
uy" = [Alu? has evolved, where 

- l J  0 l f u  :I [ 
l + v  lJ 

[ A ] =  0 l + v  

Investigate the stability of this scheme. 
335 The application of a finite-difference scheme to the heat equation on a three-point grid results 
in the following system of equations: 

q" = [Alu;  

[ A ] =  [ b  1 0 2 r  n ]  where 
0 

and r = a A t / ( A x ) * .  Determine the stability of this scheme. 
336 The upstream scheme 

un++l , - u; un - UY-1  

+ c  ' = o  
At A x  

is used to solve the wave equation on a four-point grid for the boundary conditions 

u; u1 = 1 u ; + l  = 

and the initial conditions (n = 1) 
.; = 1 u ; = u ; = u i = O  

Use the matrix method to determine the stability restrictions for this method. 
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