
CHAPTER 

TWO 
PARTIAL DIFFERENTIAL EQUATIONS 

2.1 INTRODUCTION 
Many important physical processes in nature are governed by partial differential 
equations (PDEs). For this reason, it is important to understand the physical 
behavior of the model represented by the PDE. In addition, knowledge of the 
mathematical character, properties, and solution of the governing equations is 
required. In this chapter we will discuss the physical significance and the 
mathematical behavior of the most common types of PDEs encountered in fluid 
mechanics and heat transfer. Examples are included to illustrate important 
properties of the solutions of these equations. In the last sections we extend our 
discussion to systems of PDEs and present a number of model equations, many 
of which are used in Chapter 4 to demonstrate the application of various 
discretization methods. 

2.2 PHYSICAL CLASSIFICATION 

2.2.1 Equilibrium Problems 
Equilibrium problems are problems in which a solution of a given PDE is 
desired in a closed domain subject to a prescribed set of boundary conditions 
(see Fig. 2.1). Equilibrium problems are boundary value problems. Examples of 
such problems include steady-state temperature distributions, incompressible 
inviscid flows, and equilibrium stress distributions in solids. 
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Figure 2.1 Domain for an equilibrium problem. 

Sometimes equilibrium problems are referred to as jury problems. This is an 
apt name, since the solution of the PDE at every point in the domain depends 
upon the prescribed boundary condition at every point on B. In this sense the 
boundary conditions are certainly the jury for the solution in D. Mathematically, 
equilibrium problems are governed by elliptic PDEs. 

Euzmple 2.1 The steady-state temperature distribution in a conducting medium 
is governed by Laplace’s equation. A typical problem requiring the steady-state 
temperature distribution in a two-dimensional (2-D) solid with the boundaries 
held at constant temperatures is defined by the equation 

d2T d 2 T  
V 2 T =  - d n 2 + d y 2 = 0  0 9 x 9 1  0 9 y g l  (2.1) 

with boundary conditions 
T ( O , y )  = 0 
T ( 1 , y )  = 0 
T(x,O)  = To 
T ( x , l )  = 0 

The 2-D configuration is shown in Fig. 2.2. 
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Solution One of the standard techniques used to solve a linear PDE is separation 
of variables (Greenspan, 1961). This technique assumes that the unknown 
temperature can be written as the product of a function of x and a function of 
y ,  i.e., 

T ( x ,  y )  = X ( x ) Y ( y )  

If a solution of this form can be found that satisfies both the PDE and the 
boundary conditions, then it can be shown (Weinberger, 1965) that this is the 
one and only solution to the problem. After this form of the temperature is 
substituted into Laplace's equation, two ordinary differential equations (ODES) 
are obtained. The resulting equations and homogeneous boundary conditions 
are 

X" + a 2 X =  0 
X ( 0 )  = 0 (2.2) 
X ( 1 )  = 0 

The prime denotes differentiation, and the factor a 2  arises from the separation 
process and must be determined as part of the solution to the problem. The 
solutions of the two differential equations given in Eq. (2.2) may be written 

y" - f f 2 y =  0 

Y ( 1 )  = 0 

X ( x )  = A  sin ( n r x )  Y ( y )  = C sinh [ n r ( y  - 1)1 

the boundary conditions enter the solution in the following way: 

1 .  T(0,  y )  = 0 -3 X ( 0 )  = 0 
T ( x , l )  = 0 + Y(1) = 0 

These two conditions determine the kinds of functions allowed in the 
expression for T ( x ,  y ) .  The boundary condition T(0, y )  = 0 is satisfied if the 
solution of the separated ODE satisfies X ( 0 )  = 0. Since the solution in general 
contains sine and cosine terms, this boundary condition eliminates the cosine 
terms. A similar behavior is observed by satisfying T ( x ,  1 )  = 0 through Y(1) = 0 
for the separated equation. 

2.  T ( 1 ,  y )  = 0 -3 X ( 1 )  = 0 

This condition identifies the eigenvalues, i.e., the particular values of a that 
generate eigenfunctions satisfying this required boundary condition. Since the 
solution of the first separated equation, Eq. (2.21, was 

X ( x )  = A sin ( a x )  

a nontrivial solution for X ( x )  exists that satisfies X ( 1 )  = 0 only if a = n r ,  
where n = 1,2 , .  . . . 
3. T ( x , O )  = To 

The prescribed temperature on the x axis determines the manner in which 
the eigenfunctions are combined to yield the correct solution to the problem. 
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The solution of the present problem is written 
m 

T ( x ,  y )  = A, sin (n.rrx) sinh [ n d y  - 111 (2.3) 

In this case, functions of the form sin (n7rx) sinh [n.rr(y - l)] satisfy the PDE 
and three of the boundary conditions. In general, an infinite series composed of 
products of trigonometric sines and cosines and hyperbolic sines and cosines is 
required to satisfy the boundary conditions. For this problem, the fourth 
boundary condition along the lower boundary of the domain is given as 

n = l  

T ( x , O )  = To 

We use this to determine the coefficients A,, of Eq. (2.3). Thus we find (see 
Prob. 2.1) 

2T0 [( - 1)" - 11 
A = -  

n.rr sinh(n.rr) 

The solution T ( x ,  y )  provides the steady temperature distribution in the solid. It 
is clear that the solution at any point interior to the domain of interest depends 
upon the specified conditions at all points on the boundary. This idea is 
fundamental to all equilibrium problems. 

Example 2.2 The irrotational flow of an incompressible inviscid fluid is governed 
by Laplace's equation. Determine the velocity distribution around the 2-D 
cylinder shown in Fig. 2.3 in an incompressible inviscid fluid flow. The flow is 
governed by 

v24 = 0 

where 4 is defined as the velocity potential, i.e., V 4  = V = velocity vector. The 
boundary condition on the surface of the cylinder is 

V * V F = O  (2.4) 
where F(r, 0 )  = 0 is the equation of the surface of the cylinder. In addition, the 
velocity must approach the free stream value as distance from the body becomes 
large, i.e., as (x, y )  .+ 03, 

v4 = v, (2.5) 

Solution This problem is solved by combining two elementary solutions of 
Laplace's equation that satisfy the boundary conditions. This superposition of 
two elementary solutions is an acceptable way of obtaining a third solution only 
because Laplace's equation is linear. For a linear PDE, any linear combination 
of solutions is also a solution (Churchill, 1941). In this case, the flow around a 
cylinder can be simulated by adding the velocity potential for a uniform flow to 
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Y 

Figure 2.3 Two-dimensional flow around a cylinder. 

that for a doublet (Karamcheti, 1966). The resulting solution becomes 
K c o s 8  K x  

= E x + -  4- x 2  + y 2  
4 = V , x +  (2.6) 

where the first term is the uniform oncoming flow, and the second term is a 
solution for a doublet of strength 27rK. 

2.2.2 Marching Problems 
Marching or propagation problems are transient or transient-like problems 
where the solution of a PDE is required on an open domain subject to a set of 
initial conditions and a set of boundary conditions. Figure 2.4 illustrates the 
domain and marching direction for this case. Problems in this category are 
initial value or initial boundary value problems. The solution must be computed 
by marching outward from the initial data surface while satisfying the boundary 
conditions. Mathematically, these problems are governed by either hyperbolic or 
parabolic PDEs. 

DIFFERENTIAL EQUATION 
MUST BE SATISFIED I N  D 

UNDARY CONDITIONS 
T BE SATISFIED ON B B 

Figure 2.4 Domain for a marching problem. 
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Enample 2.3 Determine the transient temperature distribution in a 1-D solid 
(Fig. 2.5) with a thermal diffusivity a if the initial temperature in the solid is 0" 
and if at all subsequent times, the temperature of the left side is held at 0" 
while the right side is held at To. 

Solution The governing differential equation is the 1-D heat equation 

aT d 2 T  

d t  d X 2  
_ -  - ff- (2.7) 

with boundary conditions 
T(0,  t )  = 0 T(1, t )  = To 

and initial condition 
T(x,O)  = 0 

Again, for this linear equation, separation of variables will lead to a 
solution. Because of the nonhomogeneous boundary conditions in this problem, 
it is helpful to use the principle of superposition to determine the solution as the 
sum of the solution to the steady problem that results as the time becomes very 
large and a transient solution that dies out at large times. Thus we let 
T ( x ,  t )  = u ( x )  + u(x, t). Substituting this decomposition into the governing 
PDE, we find that because u is independent of time, 

d2u - = o  
ak2 (2.8) 

with boundary conditions 

The solution for the steady problem is thus u ( x )  = Tox. We find also that the 
transient solution must satisfy 

u(0) = 0 u(1) = To 

dU d 2V _ -  
d t  - ffs (2.9) 

with associated boundary conditions 

and initial condition 
u(O,t) = u(l,t)  = 0 

U ( X , O )  = -T,x 
The initial condition for u is required in order that the sum of u and u satisfy 
the initial conditions of the problem. Separation of variables may be used to 
solve Eq. (2.9), and the solution is written in the form 

v ( x , t )  = V ( t > X ( x >  
If we denote the separation constant by - p ', it is necessary to solve the ODES 

V ' + f f p 2 v = o  X " + p 2 X = o  
X ( 0 )  =XU)  = 0 
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with the initial distribution on u as noted above. The general solution for V is 
readily obtained as 

v(t> = e-a02t  

A solution for X that satisfies the boundary conditions is of the form 

X ( x )  = sin px 
where must equal nm ( n  = 1,2,. . . ), so that the boundary conditions on X 
are met. The general solution that satisfies the PDE for u and the boundary 
conditions is then of the form 

u ( x ,  t )  = e-an2V2' sin ( n m x )  

The orthogonality properties of the trigonometric functions (Weinberger, 1965) 
are used to meet the initial conditions as a Fourier sine series. This leads to the 
final solution for T, obtained by adding the solutions for u and u together: 

(2.10) 

Example 
between 
sin m x / l  

2.4 Find the displacement y ( x , t )  of a string of length I stretched 
x = 0 and x = I if it is displaced initially into position y (x ,O)  = 

and released from rest. Assume no external forces act on the string. 

Solution In this case the motion of the string is governed by the wave equation 

d 2Y d 2Y - =u2- 
d t 2  d X 2  

y(0 ,  t )  = y ( l ,  t )  = 0 

where u is a positive constant. The boundary conditions are 

(2.11) 

(2.12) 
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and initial conditions 
7TX d, 

1 d,t y ( x , O )  = sin - -y(x, t ) l ,=, ,  = o 
The solution for this particular example is 

y ( x ,  t >  = sin (v;) cos (mi)  

(2.13) 

(2.14) 

Solutions for problems of this type usually require an infinite series to correctly 
approximate the initial data. In this case, only one term of this series survives 
because the initial displacement requirement is exactly satisfied by one term. 

The physical phenomena governed by the heat equation and the wave 
equation are different, but both are classified as marching problems. The 
behavior of the solutions to these equations and methods used to obtain these 
solutions are also quite different. This will become clear as the mathematical 
character of these equations is studied. 

Typical examples of marching problems include unsteady inviscid flow, 
steady supersonic inviscid flow, transient heat conduction, and boundary-layer 
flow. 

2.3 MATHEMATICAL CLASSIFICATION 
The classification of PDEs is based on the mathematical concept of characteris- 
tics that are lines (in two dimensions) or surfaces (in three dimensions) along 
which certain properties remain constant or certain derivatives may be 
discontinuous. Such charactektic lines or surfaces are related to the directions 
in which “information” can be transmitted in physical problems governed by 
PDEs. Equations (single or system) that admit wave-like solutions are known as 
hyperbolic. If the equations admit solutions that correspond to damped waves, 
they are designated parabolic. If solutions are not wave-like, the equation or 
system is designated as elliptic. Although first-order equations or a system of 
first-order equations can be classified as indicated above, it is instructive at this 
point to develop classification concepts through consideration of the following 
general second-order PDE: 

a4xx + wxy + c4yy + d4x + e 4 y  + f4 = g ( x ,  Y )  (2.15~) 
where a,  b, c, d, e ,  and f are functions of ( x , y ) ,  i.e., we consider a linear 
equation. While this restriction is not essential, this form is convenient to use. 
Frequently, consideration is given to quasi-linear equations, which are defined 
as equations that are linear in the highest derivative. In terms of Eq. (2.15~1, 
this means that a, b, and c could be functions of x ,  y ,  4, c$~, and 4y. For our 
discussion, however, we assume that Eq. (2.15~) is linear and the coefficients 
depend only upon x and y. 
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We will indicate how equations having the general form of Eq. ( 2 . 1 5 ~ )  can 
be classified as hyperbolic, parabolic, or elliptic and how a standard or canonical 
form can be identified for each class by making use of the characteristic curves 
associated with the PDE. This will be discussed for equations with two 
independent variables, but the concepts can be extended to equations involving 
more independent variables, such as would be encountered in 3-D unsteady 
physical problems. 

The classification of a second-order PDE depends only on the second- 
derivative terms of the equation, so we may rearrange Eq. (2.15~) as 

~4~~ + WXxy + c4yy = - (d#x + e+,, +f4 - g )  = H (2.1%) 

The characteristics, if they exist and are real curves within the solution domain, 
represent the locus of points along which the second derivatives may not be 
continuous. Along such curves, discontinuities in the solution, such as shock 
waves in supersonic flow, may appear. To identify such curves, we proceed as 
follows. For the general second-order PDE under consideration, the initial and 
boundary conditions are specified in terms of the function 4 and first derivatives 
of 4. Assuming that 4 and first derivatives of 4 are continuous, we inquire if 
there may be any locations where this information would not uniquely determine 
the solution. In other words, may there be locations where the second derivatives 
are discontinuous? 

Let r be a parameter that varies along a curve C in the x-y plane. That is, 
on C, x = x ( r )  and y = y ( r ) .  The curve C may be on the boundary. For 
convenience, on C, we define 

We suppose that 4, p, and q are given along C, as they might be given as 
boundary or initial conditions. With these definitions, Eq. (2.1%) becomes 

4 7 )  + b U ( 7 )  + cw(7)  = H ( 2 . 1 5 ~ )  

Using the chain rule, we observe that 

dP ak dY 

dq ak dY 

- = u- + u- 
d r  d r  d r  

- u- + w- 
d r  d r  d r  
_ -  

(2.15d) 

(2.15e) 

Equations (2.15c)-(2.15e) can be considered a system of three equations from 
which the second derivatives (u,  u, and w) might be determined from the 
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specified values of 4 and the first derivatives of 4 along C. These can be 
written in matrix form ( [ A h  = c) as 

a 
dx 
dr  
- I 0 

b 

dr  
dx 
dr  

dy - 

- 

If the determinant of the coefficient matrix is zero, then there may be no unique 
solution for the second derivatives u, u, w along C for the given values of 4 and 
its first derivatives. Thus we can write the condition for discontinuity (or 
nonuniqueness) in the highest order derivatives as 

or 
a(dy)2 - bdxdy + c(dxJ12 = 0 

Letting h = dy/dx, we can write Eq. (2.16) as 

ah2(dx)2 - bh(dxI2 + ~ ( d x ) ~  = 0 
which, after division by ( d ~ ) ~ ,  reduces to a quadratic equation in h: 

Solving for h = dy/dx gives 
ah2 - bh + c = 0 

(2.16) 

(2.17) 

dy b \/b2 - 4ac 
dx 2a 

h = - =  (2.18) 

The curves y ( x )  that satisfy Eq. (2.18) are called the characteristics of the PDE. 
Along these curves, the second derivatives are not uniquely determined by 
specified values of 4 and first derivatives of 4, and discontinuities in the highest 
order derivatives may exist. Note that when the coefficients a, b ,  and c are 
constants, the solution has a particularly simple form. In passing, we note that 
other useful relationships, known as the compatibility relations, can be developed 
from the system Eqs. (2.15~-2.15e). These are discussed in Chapter 6. See also 
Hirsch (1988). 

We notice that the parameter (b2  - 4ac) plays a major role in the nature of 
the characteristic curves. If ( b 2  - 4ac) is positive, two distinct families of real 
characteristic curves exist. If ( b 2  - 4ac) is zero, only a single family of 
characteristic curves exist. If ( b 2  - 4ac) is negative, the right-hand side of Eq. 
(2.18) is complex, and no real characteristics exist. As in the classification of 
general second-degree equations in analytic geometry, the PDE is classified as 
(1) hyperbolic if ( b 2  - 4ac) is positive, (2) parabolic if ( b 2  - 4ac) is zero, and 
(3) elliptic if (b2  - 4ac) is negative. Note that if a,  b ,  c are not constants, the 
classification may change from point to point in the problem domain. 
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Equations of each class can be reduced to a representative canonical or 
characteristic coordinate form by a coordinate transformation that makes use 
of the characteristic curves. We state these forms here and illustrate the 
transformations needed to obtain them in examples to follow. 

Two characteristic coordinate forms exist for a hyperbolic PDE: 

4g- 4,,,, = h , ( 4 , , 4 , , , 4 , 5 , 7 7 )  (2.19) 

(2.20) 4cq = h2(4p 4?, 4, 6,  77) 
The canonical form for a parabolic PDE can be written as either 

or 

For elliptic PDEs the canonical form is 

(2.21) 

(2.22) 

(2.23) 

In the preceding equations, the coordinates 6 and q are functions of x and y. 
In a coordinate transformation of the form (x, y )  + (6 ,  q),  a one-to-one 
relationship must exist between points specified by (x, y )  and (6 ,  q). We are 
assured of a nonsingular mapping, provided that the Jacobian of the trans- 
formation 

(2.24) 

is nonzero (Taylor, 1955). In order to apply this transformation to Eq. (2.15a), 
each derivative is replaced by repeated application of the chain rule. For 
example, 

d4 d4 d4 
- 5,- + v x -  

d X  arl 

d 24 d *4 d 24 d4 d4 
+ $7 + h x -  + vx,- 

d X 2  a5 “ a t a q  d.rl fx 377 
- 5 x ” T  + 25 71 - 

d 24 

_ -  
(2.25) 

- -  

Substitution into Eq. (2.15~) yields 

where A = a&! + bt, tY + cty” 

C = aqf + bq,q,, + c q i  
B = 2a5,qx + bS,TY + bsy% + 2CtY77, 

An important result of applying this transformation is immediately clear. The 
discriminant of the transformed equation becomes 

B2 - 4AC = ( b 2  - 4ac)((,qy - (yqx)2 (2.26) 
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where 

Therefore, any real nonsingular transformation does not change the type of 
PDE. 

23.1 Hyperbolic PDEs 

From Eq. (2.181, we observe that two distinct families of characteristics exist for 
a hyperbolic equation. These can be found by first writing Eq. (2.18) as 

(2.27) 

where the A represent the right-hand side of Eq. (2.18) and a, b, and c are 
assumed constant. Upon solving the ODES for the characteristic curves, we 
obtain 

(2.28) y - A,x = k ,  

A hyperbolic PDE in ( x ,  y )  can be written in canonical form, 

y - A2x = k ,  

4tV = f( 5, 7794, 46 7 4J (2.29) 

by using the characteristic curves as the transformed coordinates ( ( x , y )  and 
q ( x ,  y ) .  That is, we let 

5 = Y - A l x  q = y - A , ~  (2.30) 

In order to obtain the alternative canonical form for a hyperbolic equation, 

& - hjTj = f( 597, 4, * , 6) (2.31) 

we can introduce linear combinations of 5 and q: 

- 5 + T  - 5 - 7  
7 7 = 2  5 =  - 

2 
An example utilizing the second-order wave equation is instructive. 

Example 2.5 Solve the second-order wave equation 

u,, = c2uxx 

on the interval 

with initial data 
--M < x  < + w  

u ( x ,  0) = f ( x )  

u, (x ,  0) = g ( x )  

(2.32) 
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Solution The transformation to characteristic coordinates permits simple 
integration of the wave equation 

U*? = 0 

where 6 = x + ct, 71 = x - ct. 
We integrate to obtain the solution 

u(x,t) = F1(x  + c t )  + F2(x  - c t )  (2.33) 

This is called the D’Alembert (Wylie, 1951) solution of the wave equation. The 
particular forms for Fl and F2 are determined from the initial data: 

u(x,O) = f ( x )  = F , ( x )  + F , ( x )  
u,(x,O) = g ( x )  = c F ; ( x )  - cF;(x) 

This results in a solution of the form 

f(x + c t )  + f ( x  - c t )  1 + - /*+C&)dT (2.34) 
2 2c x-c t  

u ( x , t )  = 

A distinctive property of hyperbolic PDEs can be deduced from the solution 
of Eq. (2.32) and the geometry of the physical domain of interest. Figure 2.6 
shows the characteristics that pass through the point (x,,, to). The right running 
characteristic has a slope +(l/c), while the left running one has slope -(l/c). 
The solution u(x, t )  at (x,,, to )  depends onjy upon the initial data contained in 
the interval 

x ,  - ct, Q x Q x ,  + ct, 

The first term of the solution given by Eq. (2.34) represents propagation of the 
initial data along the characteristics, while the second term represents the effect 
of the data within the closed interval at t = 0. 

A 
/ \  

/ \  
\ 

xo - c to- 
- .. 

- 4 h -  
It-- xo + c t 0 - - - 4  

Figure 2.6 Characteristics for the wave equation. 
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A fundamental property of hyperbolic PDEs is the limited domain of 
dependence exhibited in Example 2.5. This domain of dependence is bounded 
by the characteristics that pass through the point ( x o ,  to). Clearly, the solution 
u(x,,t , )  depends only upon information in the interval bounded by these 
characteristics. This means that any disturbance that occurs outside of this 
interval can never influence the solution at ( x o ,  to). This behavior is common to 
all hyperbolic equations and is nicely demonstrated through the solution of the 
second-order wave equation. The basis for the term “initial value” or “marching 
problem” is clear. Initial conditions are specified, and the solution is marched 
outward in time or in a time-like direction. 

The term “pure initial value problem” is frequently encountered in the 
study of hyperbolic PDEs. Example 2.5 is a pure initial value problem, i.e., there 
are no boundary conditions that must be applied at x = const. The solution at 
( x o ,  to )  depends only upon initial data. 

In the classification of PDEs, many well-known names are associated with 
the specific problem types. The most well-known problem in the hyperbolic class 
is the Cauchy problem. This problem requires that one obtain a solution u to a 
hyperbolic PDE with initial data specified along a curve C. A very important 
theorem in mathematics assures us that a solution to the Cauchy problem exists. 
This is the Cauchy-Kowalewsky theorem. This theorem asserts that if the initial 
data are analytic in the neighborhood of ( x o ,  y o )  and the function u,, (applied 
to our second-order wave equation of Example 2.5) is analytic there, a unique 
analytic solution for u exists in the neighborhood of ( x o ,  yo) .  

Some discussion is warranted regarding the type of problem specification 
that is allowed for hyperbolic equations. For our second-order wave equation, 
initial conditions are required on the unknown function and its first derivatives 
along some curve C. It is important to observe that the curve C must not 
coincide with a characteristic of the differential equation. If an attempt is made 
to solve an initial value problem with characteristic initial data, a unique 
solution cannot be obtained (see Example 2.6). As is discussed further in Section 
2.4, the problem is said to be “ill-posed.” 

Example 2.6 Solve the second-order wave equation in characteristic coordinates, 

subject to initial data 
utl, = 0 

u(O,?-/) = +(?-/I u*(O, 77) = +(?-/I 

Solution The characteristics of the governing PDE are defined by 6 = const and 
?-/ = const. In this case the initial data are prescribed along a characteristic. 

Suppose we attempt to write a Taylor-series expansion in 6 to obtain a 
solution for u in the neighborhood of the initial data surface 6 = 0. Our 
solution must be in the form 

t 2  
u ( 6 , ? - / )  = u ( 0 , q )  + 6u*(O, 77) + p&?-/) + ... 
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From the given initial data, u(0,q) and us(O,q) are known. It remains to 
determine u,(O, 7). 

The governing differential equation requires 
u&b7) = 0 

U6,(0,71) = @'(77) = 0 

- = - =  d% dubs 

U . g  =f(O 

However, we already have the condition that 

Therefore 

We may also write 
+(v)  = const = c1 

a5 d77 
Integration of this equation yields 

In view of the given initial data, we conclude that 

and 
us5(0, 77) = const = c2 

t2  

u ( 5 , q )  = + g ( 5 >  

u ( 5 ,  77) = +(?I) + 5 C l  + y c 2  

or 

We are unable to uniquely determine the function g ( 6 )  when the initial data 
are given along the characteristic 6 = 0. 

Proper specification of initial data or boundary conditions is very important 
in solving a PDE. Hadamard (1952) provided insight in noting that a well-posed 
problem is one in which the solution depends continuously upon the initial data. 
The concept of the well-posed problem is equally appropriate for elliptic and 
parabolic PDEs. An example for an elliptic problem is presented in Section 2.4. 

23.2 Parabolic PDEs 
A study of the solution of a simple hyperbolic PDE provided insight on the 
behavior of the solution of that type of equation. In a similar manner, we will 
now study the solution to parabolic equations. Referring to Eq. (2.15a), the 
parabolic case occurs when 

b2 - 4ac = 0 
For this case the characteristic differential equation is given by 

d y b  
dr: 2a 
_ -  - -  

The canonical form for the parabolic case is 
4*6 =g(4&, ,4,5,77)  

(2.35) 

(2.36) 
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If a and b are constant, this form may be obtained by identifying 5 and q as 
q = Y - A l x  ( = ~ - A , X  

where A, is given by the right-hand side of Eq. (2.35). In view of Eq. (2.33, we 
obtain only one characteristic. We must choose A, to ensure linear independence 
of 5 and q. This requires that the Jacobian be nonzero: 

(2.37) 

When A, is selected, satisfying this requirement, and the transformation to 
(5,771 coordinates is completed, the canonical form given by Eq. (2.36) is 
obtained. 

Parabolic PDEs are associated with diffusion processes. The solutions of 
parabolic equations clearly show this behavior. While the PDEs controlling 
diffusion are marching problems, i.e., we solve them starting at some initial data 
plane and march forward in time or in a time-like direction, they do not exhibit 
the limited zones of influence that hyperbolic equations have. In contrast, the 
solution of a parabolic equation at time t, depends upon the entire physical 
domain ( t  G tl), including any side boundary conditions. To illustrate further, 
Example 2.3 required that we solve the heat equation for transient conduction 
in a 1-D solid. The initial temperature distribution was specified, as were the 
temperatures at the boundaries. Figure 2.7 illustrates the domain of dependence 
for this parabolic problem at t,. 

This shows that the solution at t = t, depends upon everything that occurred 
in the physical domain at all earlier times. The solution given by Eq. (2.10) also 
exhibits this behavior. Another example illustrating the behavior of a solution of 
a parabolic equation is of value. 

Example 2.7 The unsteady motion due to the impulsive acceleration of an 
infinite flat plate in a viscous incompressible fluid is known as the Rayleigh 
problem and may be solved exactly. If the flow is 2-D, only the velocity 
component parallel to the plate will be nonzero. Let y be the coordinate normal 
to the plate and x be the coordinate along the plate. The equation that governs 
the velocity distribution is 

(2.38) 

where u is the kinematic viscosity. The time derivative term is the local 
acceleration of the fluid, while the right-hand side is the resisting force provided 
by the shear stress in the fluid (7 = updu/dy) .  This equation is subject to the 
boundary conditions 

u ( 0 , y )  = 0 

u(t ,m) = 0 
u(t,O) = u t > 0 
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t 

Sulutiun The solution of this problem provides the velocity distribution on a 2-D 
flat plate impulsively accelerated to a velocity U from rest. An interesting 
method frequently used in solving parabolic equations is to seek a similarity 
solution (Hansen, 1964). In finding a similarity solution, we introduce a change 
in variables, which results in reducing the number of independent variables in 
the original PDE (Churchill, 1974). In this case we attempt to reduce the PDE 
in (y, t )  to an ODE in a new independent variable q. For this problem, let 

U 
f ( q )  = - U 

and 
Y 

q=5G 
The governing differential equation becomes 

with boundary conditions 

f ( 0 )  = 1 
f ( m >  = 0 

This ODE may be solved directly to yield the solution 

Using the definition of the error function 

(2.39) 

(2.40) 

the solution becomes 

u = U[1 - erf(q>l 
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This shows that the layer of fluid that is influenced by the moving plate 
increases in thickness with time. In fact, the layer of fluid has thickness 
proportional to 6. This indicates that the growth of this layer is controlled by 
the kinematic viscosity u and the velocity change in the layer is induced by 
diffusion of the plate velocity into the initially undisturbed fluid. We see that 
this is a diffusion process, as is 1-D transient heat conduction. 

23.3 Elliptic PDEs 

The third type of PDE is elliptic. As we previously noted, jury problems are 
governed by elliptic PDEs. If Eq. (2.15~) is elliptic, the discriminant is negative, 
i.e., 

b2 - 4ac < 0 (2.41) 
and the characteristic differential equation has no real solution. For this case, 
the solutions to Eq. (2.18) take the form (assuming a, b, and c are constant) 

y - clx + ic,x = k, 
y - clx - ic,x = k, 

The transformation to the canonical form 

(2.42) 

(2.43) 

can be achieved by selecting 5 and 77 to be the real and imaginary parts of the 
complex conjugate functions in Eqs. (2.42). This gives 

5 = y - c , x  v = c , x  (2.44) 
The dependence of the solution upon the boundary conditions for elliptic 

PDEs has been previously discussed and demonstrated in Example 2.1. However, 
another example is presented here to reinforce this basic idea. 

Example 2.8 Given Laplace's equation on the unit disk 

subject to boundary conditions 
V 2 u = o  O < r < l  - r < e < r  

what is the solution u(r,  O)? 

Solution This problem can be solved by assuming a solution of the form 
m 

a0 u ( r ,  0 )  = - + r Y a ,  cos nO + b,, sin nO) 
2 n = l  

The correct expressions for a, and b, can be developed using standard 
techniques (Garabedian, 1964). For this example, the expressions for a, and b, 
depend upon the boundary conditions at all points on the unit disk. This 
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dependence on the boundary conditions should be expected for all elliptic 
problems. The important point of this example is that a solution of this problem 
exists only if 

over the boundary of the unit disk (Zachmanoglou and Thoe, 1976). This may be 
demonstrated by applying Green’s theorem to the unit disk. In this problem the 
boundary conditions are not arbitrarily chosen but must satisfy the integral 
constraint shown above. 

2.4 THE WELLPOSED PROBLEM 
The previous section discussed the mathematical character of the different 
PDEs. The examples illustrated the dependence of the solution of a particular 
problem upon the initial data and boundary conditions. In our discussion of 
hyperbolic PDEs, it was noted that a unique solution to a hyperbolic PDE 
cannot be obtained if the initial data are given on a characteristic. Similar 
examples showing improper use of boundary conditions can be constructed for 
elliptic and parabolic equations. 

The difficulty encountered in solving our hyperbolic equation subject to 
characteristic initial data had to do with the question of whether or not the 
problem was “well-posed.” In order for a problem involving a PDE to be 
well-posed, the solution to the problem must exist, must be unique, and must 
depend continuously upon the initial or boundary data. Example 2.6 led to a 
uniqueness question. Hadamard (1952) has constructed a simple example that 
demonstrates the problem of continuous dependence on boundary data. 

Example 2.9 A solution of Laplace’s equation 

u x x + u y y = o  - - c o < x < - c o  y > O  

is desired subject to the boundary conditions ( y  = 0) 

u(x,O) = 0 

uy(x ,O)  = - sin(nx) 
1 
n 

n > 0 

Solution Using separation of variables, we obtain 

1 
n 

u = 7 sin(nx)sinh(ny) 



34 FUNDAMENTALS 

If our problem is well-posed, we expect the solution to depend continuously 
upon the boundary conditions. For the data given, we must have 

We see that u,, becomes small for large values of n. The solution behaves in a 
different fashion for large n. As n becomes large, u approaches eny/n2 and 
grows without bound even for small y. However, u(x, 0) = 0, so that continuity 
with the initial data is lost. Thus we have an ill-posed problem. This is evident 
from our earlier discussions. Since Laplace’s equation is elliptic, the solution 
depends upon conditions on the entire boundary of the closed domain. The 
problem given in this example requires the solution of an elliptic differential 
equation on an open domain. Boundary conditions were given only on the y = 0 
line. 

Problems requiring the solution of Laplace’s equation subject to different 
types of boundary conditions are identified with specific names. The first of 
these is the Dirichlet problem (Fig. 2.8). In this problem, a solution of Laplace’s 
equation is required on a closed domain subject to boundary conditions that 
require the solution to take on prescribed values on the boundary. The Neumann 
problem also requires the solution of Laplace’s equation in D. However, the 
normal derivative of u is specified on B rather than the function u. If s is the 
arc length along B, then 

v2u  = 0 in D 
dU 
- = g ( s )  o n B  
dn 

The specification of the Dirichlet and Neumann problems leads one to speculate 
about the existence of a boundary value problem requiring specification of a 
combination of the function u and its normal derivative on the boundary. This is 
called the mixed or third boundary value problem (Zachmanoglou and Thoe, 
1976) and is also referred to as Robin’s problem. Mathematically, this problem 
may be written as 

v2u = 0 
in D and 

on B. The assignment of the names Dirichlet, Neumann, and Robin to the three 
boundary value problems noted here is generally used to define types of 
boundary or initial data specified for any PDE. For example, if the comment 
“Dirichlet boundary data” is used, it is understood that the unknown, u, is 
prescribed on the boundary in question. This is accepted regardless of the type 
of differential equation. 



PARTIAL DIFFERENTIAL EQUATIONS 35 

v 2 u  = 0 I N  D 

u = f ( S )  ON B 

Figure 2.8 Dirichlet problem. 

2.5 SYSTEMS OF EQUATIONS 
In applying numerical methods to physical problems, systems of equations are 
frequently encountered. It is the exceptional case when a physical process is 
governed by a single equation. In those cases where the process is governed by a 
higher-order PDE, the PDE can usually be converted to a system of first-order 
equations. This can be most easily demonstrated by two simple examples. 

The wave equation [Eq. (2.32)] can be written as a system of two first-order 
equations. Let 

dU dU 
w = c -  v =  - 

d t  d X  

Then we may write 
dv dw 
d t  d X  

dw dv 

- = c -  
(2.45) 

- = c -  
dt  d X  

If we introduce u as one of the variables in place of either w or v, then u can be 
seen to satisfy the second-order wave equation. 

Many physical processes are governed by Laplace’s equation [Eq. (2.111. As 
in the previous example, Laplace’s equation can be replaced by a system of 
first-order equations. In this case, let u and v represent the unknown dependent 
variables. We require that 

dU dv 
- +- 

dU dv 

_ -  
d X  dY 

dY d X  
_ =  _ -  

(2.46) 

These are the famous Cauchy-Riemann equations (Churchill, 1960). These 
equations are extensively used in conformally mapping one region onto another? 

*It should be noted that some differences exist in solving Laplace’s equation and the 
Cauchy-Riemann equations. A solution of the Cauchy-Riemann equations is a solution of Laplace’s 
equation, but the converse is not necessarily true. 
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The equations most frequently encountered in CFD may be written as 
first-order systems. We must be able to classify systems of first-order equations 
in order to correctly treat them. Consider the linear system of equations 

dU dU dU 
- + [ A ] -  + [ B ] -  + r = 0 
d t  d X  dY 

(2.47) 

We assume for simplicity that the coefficient matrices [A] and [B] are functions 
of t, x, y, and we restrict our attention to two space dimensions. The dependent 
variable u is a column vector of unknowns, and r depends upon u, x, y. 

According to Zachmanoglou and Thoe (1976), there are two cases that can 
be definitely identified for first-order systems. The system given in Eq. (2.47) is 
said to be hyperbolic at a point in (x, t )  if the eigenvalues of [A] are all real and 
distinct. Richtmyer and Morton (1967) define a system to be hyperbolic if the 
eigenvalues are all real and [ A ]  can be written as [T][A][T]- ' ,  where [A]  is a 
diagonal matrix of eigenvalues of [ A ]  and [TI-' is the matrix of left eigenvectors. 
The same can be said of the behavior of the system in (y, t )  with respect to the 
eigenvalues of the B matrix. 

This point can be illustrated by writing the system of equations given in Eq. 
(2.45) as 

dU dU 

d t  d X  
- + [ A ] -  = 0 ( 2 . 4 8 ~ )  

where 

The eigenvalues A of the [A] matrix are found from 

Thus 
det l [A]  - h[Z]l = 0 

- A  - c  
I - - c  - * I = ( )  

or 

The roots of this characteristic equation are 
A, = +c  

h - - c  

A2 - c2 = 0 

2 -  

These are the characteristic differential equations for the wave equation, i.e., 

= +c  

( :)2 = -c  
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The system of equations in this example is hyperbolic, and we see that the 
eigenvalues of the [ A ]  matrix represent the characteristic differential equations 
of the wave equation. 

The second case that can be identified for the system given in Eq. (2.47) is 
elliptic. Equation (2.47) is said to be elliptic at a point in (x, t )  if the eigenvalues 
of [ A ]  are all complex. An example illustrating this behavior is given by the 
Cauchy-Riemann equations. 

Example 2.10 Classify the system given in Eq. (2.46), which may be written as 
dW dW 
- + [ A ] -  = 0 
d X  dY 

where 

and 
w =  [ "v ]  

Solution The eigenvalues of [ A ]  are 
A, = + i  
h - - 1  

Since both eigenvalues of [ A ]  are complex, we identify the system as elliptic. 
Again, this is consistent with the behavior we are familiar with in Laplace's 
equation. 

2 -  

The first-order system represented by Eq. (2.47) can exhibit hyperbolic 
behavior in (x, t )  space and elliptic behavior in ( y ,  t )  space, depending upon the 
eigenvalue structure of the A and B matrices. This is a result of evaluating the 
behavior of the PDE by examining the eigenvalues in ( x , t )  or ( y , t )  indepen- 
dently. 

Note that a single first-order equation can be considered as a special case of 
the above development. That is, we can let [ A ]  and [ B ]  in Eq. (2.47) be real 
scalars a and b and the vector u be a scalar variable u. The conclusion is that 
such a single first-order equation would be classified as hyperbolic because 
there is only one root and it is real. 

Since second-order PDEs can be represented as a system of first-order 
equations, one might wonder if such systems can also be identified as hyperbolic, 
parabolic, or elliptic by using a procedure that inquires about the continuity of 
the highest order derivatives. This seems reasonable, since discontinuities in 
second derivatives would show up as discontinuities in first derivatives in any 
first-order system that was developed from a second-order equation. 
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- 

a1 bl c1 dl 

a2 b, c2 d2 

dy 0 
dr 
- 0 -  
d r  d r  

0 -  0 -  
d r  d r  
dr dY 

- 

Consider a system of two first-order equations in two independent variables 
of the form 

d U  dv d U  dv 
a,- + bl- + ~ 1 -  + d1- = f1 

(2.48b) 
d X  d X  dY dY 

d X  d X  dY dY 

d U  dv d U  dv 
a2-  + b2- + c 2 -  + d 2 -  = f2 

This system may be written as a matrix system of the form 
d W  d W  

[A]- + [ C ] -  = F 
d X  dY 

( 2 . 4 9 ~ )  

where 

w=[:] .=[:I 
and 

As before, we consider curves C on which all but the highest order 
derivatives are specified (in this case, we consider u and v specified) and inquire 
about conditions that will indicate that the highest derivatives are not uniquely 
determined. Again, we let a parameter r vary along curves C and use the chain 
rule to write 

du du dr du dy +--  
dr d x  d r  dy  d r  
d v  dv dr dv dy +--  
d r  d x  d r  dy  dr 

- - - -- 

- = -- 

(2.49b) 

Writing the four equations (2.48b) and (2.49b) in matrix form with the prescribed 
data on the right-hand side gives 

fl 

f 2  

du 
d r  
d v  
d r  

- 

- 

A unique solution for the first derivatives of u and v with respect to x and y 
does not exist if the determinant of the coefficient matrix is zero. We can write 
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this determinant in different ways. However, a Laplace development of the 
determinant on the elements of the last row followed by another development 
on the last rows of the third-order determinants allows the determinant to be 
written as 

i 

-(:) 
Letting 

and setting the determinant equal to zero gives the conditions under which first 
partial derivatives are not uniquely determined on C: 

IAl - - IBI- + ICI = 0 (:I2 : 
Notice that this expression has the same form as Eq. (2.17) except that a, b, and 
c have now become determinants. The classification of the first-order system is 
also similar to that of the second-order PDE. Letting 

D = IB12 - 41AI ICI 
we find that the system is hyperbolic if D > 0, parabolic if D = 0, and elliptic if 

Several questions now appear regarding behavior of systems of equations 
with coefficient matrices where the roots of the characteristic equations contain 
both real and complex parts. In those cases, the system is mixed and may exhibit 
hyperbolic, parabolic, and elliptic behavior. The physical system under study 
usually provides information that is very useful in understanding the physical 
behavior represented by the governing PDE. Experience gained in solving mixed 
problems provides the best guidance in their correct treatment. 

The classification of systems of second-order PDEs is very complex. It is 
difficult to determine the mathematical behavior of these systems except for 
simple cases. For example, the system of equations given by 

D < 0. 

~ u, = [Alu,, 

is parabolic if all the eigenvalues of [A] are real. The same uncertainties present 
in classifylng mixed systems of first-order equations are also encountered in the 
classification of second-order systems. 
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2.6 OTHER DIFFERENTIAL EQUATIONS OF INTEREST 

Our discussion in this chapter has centered on the second-order equations given 
by the wave equation, the heat equation, and Laplace’s equation. In addition, 
systems of first-order equations were examined. A number of other very 
important equations should be mentioned, since they govern common physical 
phenomena or they are used as simple models for more complex problems. In 
many cases, exact analytical solutions for these equations exist. 

1. 

2. 

3. 

4. 

5. 

The first-order, linear wave equation 

d u  du  
- + c - = o  
d t  dX 

(2.50) 

governs propagation of a wave moving to the right at a constant speed c. 
This is called the advection equation in meteorology. 
The inviscid Burgers equation 

dU dU 
- + u - = o  
d t  dX 

(2.51) 

is also called the nonlinear first-order wave equation. This equation governs 
propagation of nonlinear waves for the simple 1-D case. 
Burgers’ equation 

dU du d 2 U  
- + u- = 2 1 2  
d t  dX dX 

(2.52) 

is the nonlinear wave equation [Eq. (2.51)] with diffusion added. This 
particular form is very similar to the equations governing fluid flow and can 
be used as a simple nonlinear model for numerical experiments. 
The Tricomi equation 

(2.53) 

governs problems of the mixed type such as inviscid transonic flows. The 
properties of the Tricomi equation include a change from elliptic to 
hyperbolic character, depending upon the sign of y .  
Poisson’s equation 

d 2 U  d 2 U  
- + - = f ( x , r )  
dX2 d y 2  

(2.54) 

governs the temperature distribution in a solid with heat sources described 
by the function f ( x ,  y ) .  Poisson’s equation also determines the electric field 
in a region containing a charge density f ( x ,  y ) .  
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6. 

7. 

8. 

9. 

10. 

The advection-diffusion equation 

d5 a5 a25 
dt d x  dX2 

+ u- = a- - (2.55) 

represents the advection of a quantity 6 in a region with velocity u. The 
quantity a is a diffusion or viscosity coefficient. 
The Korteweg-de Vries equation 

d U  du d 3 U  
- + u - + + -  - 0  
d t  dx d x  

governs the motion of nonlinear dispersive waves. 
The Helmholtz equation 

d2U d2U + k2u = 0 a x Z + a y Z  

(2.56) 

(2.57) 

governs the motion of time-dependent harmonic waves, where k is a 
frequency parameter. Applications include the propagation of acoustic waves. 
The biharmonic equation 

d 4 U  d4U 
i ) X 4 + a y 4 = 0  (2.58) 

determines the stream function for a very low Reynolds number viscous 
(Stokes) flow and is also a governing relation in the theory of elasticity. 

The telegraph equation 

d 2 U  du d 2 U  
- +a-  + bu = c2- 
at2 d t  d X 2  

(2.59) 

governs the transmission of electrical impulses in a long wire with distributed 
capacitance, inductance, and resistance. If b = 0, the equation is called the 
damped wave equation. Applications include the motion of a string with a 
damping force proportional to the velocity and heat conduction with a finite 
thermal propagation speed. 

Many of the equations cited here will be used to demonstrate the application 
of discretization methods in subsequent chapters. While the list of equations is 
not exhaustive, examples of the various types of PDEs are included. 

PROBLEMS 
2.1 The solution of Laplace’s equation for Example 2.1 is given in Eq. (2.3). Show that the 
expression for the Fourier coefficients A ,  is correct as given in the example. Hint: Multiply Eq. (2.3) 
by sin (mnx)  and integrate over the interval 0 < x d 1 to obtain your answer after using the 
boundary condition T ( x ,  0) = To. 
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2.2 Show that the velocity field represented by the potential function in Eq. (2.6) satisfies the 
surface boundary condition given in Eq. (2.4). 
2 3  Demonstrate that Eq. (2.14) is the solution of the wave equation as required in Example 2.4. Use 
the separation of variables technique. 
2.4 Show that the type of PDE is unchanged when any nonsingular, real transformation is used. 
2.5 Derive the canonical form for hyperbolic equations [Eq. (2.29)] by applying the transformations 
given in Eq. (2.30) to Eq. (2 .15~) .  
2.6 Show that the canonical form for parabolic equations given in Eq. (2.36) is correct. 
2.7 Show that a solution to Example 2.8 exists only if 

/ f ( O )  dl = 0 

on the unit circle. 
2.8 Consider the equation 

y2uxx - x2uyy = 0 

( a )  Discuss the mathematical character of this equation for all real values of x and y. 
(b)  Obtain the new coordinates 6 and q that will transform the given equation in the first 

quadrant to its canonical form. 
2.9 ( a )  Classlfy the equation 

2uxx - 4uxy + 2uyy + 3u = 0 

( b )  Obtain the transformation variables required to transform the equation to its canonical 

( c )  Convert the equation into an equivalent system of first-order equations and write them as a 

( d )  Apply the method for classification of a system of equations to the system determined in 

form. 

matrix system. 

Prob. 2.!Xc). 
2.10 Classify the following system of equations: 

au av 

au av 
- + 2 - = o  
at a x  

2.11 The following system of equations is elliptic. Determine the possible range of values for a. 
au av 
- - a -  = 0 
ax ay 

av au 
- + u - = o  
ay  ax 

au av 

- d l  + 8~ = 0 

2.12 Determine the mathematical character of the equations given by 

= o  p 2 z  - ay 
av au 
a x  ay  

0 - - _ =  

2.13 Classify the following PDEs: 

a2u a2u au 
at2 ax2  ax 
- + - + - = 

a 2 U  a 2 U  au 
ax2  axay  ay 

+ - = 4  --- 
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2.14 Classify the behavior of the following system of PDEs in ( t ,  x )  and ( t ,  y )  space: 
au av au 
- + - - - = o  
at ax ay 

av au av 

at ax ay 
+ - = o  

2.15 (a)  Write the Fourier cosine series for the function 

f ( x )  = sin(x) 

f(x) = c o s ( x )  

0 < x  < 77 

(b)  Write the Fourier cosine series for the function 

0 < x  < Tr 

2.16 Find the characteristics of each of the following PDEs: 

a2u a2u a 2 U  
- + 3- + 2 - = o  
ax2 a x a y  a y 2  

a2u a 2 U  a2u 
-- 2- +,=o 
ax2 axay  ay 

2.17 Transform the PDEs given in Prob. 2.16 into canonical form. 
2.18 Obtain the canonical form for the following elliptic PDEs: 

2.19 Transform the following parabolic PDEs to canonical form: 

a2u a2u a2u au au 

ax2  a x a y  ay2  ax ay 
- + 2- + - + 7- - 8- = O  ( b )  

2.20 Find the solution of the wave equation 

a 2 U  a2u 

ax2  a y 2  
- 0  y , o  

with initial data 
u(x ,O)  = 1 

u y ( x , 0 )  = 0 

v u = o  O G X d T r  O < y < T r  

2.21 Solve Laplace’s equation, 

subject to boundary conditions 
u ( x , O )  = sin x + 2sin2x 

U ( T ,  y )  = 0 

u(x ,Tr )  = 0 

u(0, y )  = 0 
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2.22 Repeat Prob. 2.21 with 

u(x, 0) = - T2x2 + 2?rx3 - x 4  

2.23 Determine the solution of the heat equation 

au a2u 
_ = -  0 g x g l  
at 3x2 

with boundary conditions 
u(r,O) = 0 

u ( t ,  1) = 0 

u(0,  x )  = sin ( 2 ~ x 1  
2.24 Repeat Prob. 2.23 if the initial distribution is given by 

u(0, x )  = 1 - cos (47rx) 

and an initial distribution 
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