
CHAPTER 

ONE 
INTRODUCTION 

1.1 GENERAL REMARKS 
The development of the high-speed digital computer during the twentieth 
century has had a great impact on the way principles from the sciences of fluid 
mechanics and heat transfer are applied to problems of design in modern 
engineering practice. Problems that would have taken years to work out with the 
computational methods and computers available 30 years ago can now be solved 
at very little cost in a few seconds of computer time. The ready availability of 
previously unimaginable computing power has stimulated many changes. These 
were first noticeable in industry and research laboratories, where the need to 
solve complex problems was the most urgent. More recently, changes brought 
about by the computer have become evident in nearly every facet of our daily 
lives. In particular, we find that computers are widely used in the educational 
process at all levels. Many a child has learned to recognize shapes and colors 
from mom and dad’s computer screen before they could walk. To take advantage 
of the power of the computer, students must master certain fundamentals in 
each discipline that are unique to the simulation process. It is hoped that the 
present textbook will contribute to the organization and dissemination of some 
of this information in the fields of fluid mechanics and heat transfer. 

Over the past half century, we have witnessed the rise to importance of a 
new methodology for attacking the complex problems in fluid mechanics and 
heat transfer. This new methodology has become known as computational fluid 
dynamics (CFD). In this computational (or numerical) approach, the equations 
(usually in partial differential form) that govern a process of interest are solved 
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numerically. Some of the ideas are very old. The evolution of numerical 
methods, especially finite-difference methods for solving ordinary and partial 
differential equations, started approximately with the beginning of the twentieth 
century. The automatic digital computer was invented by Atanasoff in the late 
1930s (see Gardner, 1982; Mollenhoff, 1988) and was used from nearly the 
beginning to solve problems in fluid dynamics. Still, these events alone did not 
revolutionize engineering practice. The explosion in computational activity did 
not begin until a third ingredient, general availability of high-speed digital 
computers, occurred in the 1960s. 

Traditionally, both experimental and theoretical methods have been used to 
develop designs for equipment and vehicles involving fluid flow and heat 
transfer. With the advent of the digital computer, a third method, the numerical 
approach, has become available. Although experimentation continues to be 
important, especially when the flows involved are very complex, the trend is 
clearly toward greater reliance on computer-based predictions in design. 

This trend can be largely explained by economics (Chapman, 1979). Over 
the years, computer speed has increased much more rapidly than computer 
costs. The net effect has been a phenomenal decrease in the cost of performing 
a given calculation. This is illustrated in Figure 1.1, where it is seen that the cost 
of performing a given calculation has been reduced by approximately a factor of 
10 every 8 years. (Compare this with the trend in the cost of peanut butter in the 
past 8 years.) This trend in the cost of computations is based on the use of the 
best serial or vector computers available. It is true not every user will have easy 
access to the most recent computers, but increased access to very capable 
computers is another trend that started with the introduction of personal 
computers and workstations in the 1980s. The cost of performing a calculation 
on a desktop machine has probably dropped even more than a factor of 10 in an 
8-year period, and the best of these “personal” machines are more capable than 
the best “mainframe” machines of a decade ago, achieving double-digit 
megaflops (millions of floating point operations per second). There seems to be 
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Figure 1.1 Trend of relative computation cost for a given flow and algorithm (based on Chapman, 
1979; Kutler et al., 1987; Holst et al., 1992; Simon, 1995). 
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no real limit in sight to the computation speed that can be achieved when 
massively parallel computers are considered. Work is in progress toward 
achieving the goal of performance at the level of teraflops (10” floating point 
operations per second) by the twenty-first century. This represents a 1000-fold 
increase in the computing speed that was achievable at the start of the 1990s. 
The increase in computing power per unit cost since the 1950s is almost 
incomprehensible. It is now possible to assign a homework problem in CFD, the 
solution of which would have represented a major breakthrough or could have 
formed the basis of a Ph.D. dissertation in the 1950s or 1960s. On the other 
hand, the costs of performing experiments have been steadily increasing over 
the same period of time. 

The suggestion here is not that computational methods will soon completely 
replace experimental testing as a means to gather information for design 
purposes. Rather, it is believed that computer methods will be used even more 
extensively in the future. In most fluid flow and heat transfer design situations it 
will still be necessary to employ some experimental testing. However, computer 
studies can be used to reduce the range of conditions over which testing is 
required. 

The need for experiments will probably remain for quite some time in 
applications involving turbulent flow, where it is presently not economically 
feasible to utilize computational models that are free of empiricism for most 
practical configurations. This situation is destined to change eventually, since it 
has become clear that the time-dependent Navier-Stokes equations can be 
solved numerically to provide accurate details of turbulent flow. Thus, as 
computer hardware and algorithms improve, the frontier will be pushed back 
continuously allowing flows of increasing practical interest to be computed by 
direct numerical simulation. The prospects are also bright for the increased use 
of large-eddy simulations, where modeling is required for only the smallest 
scales. 

In applications involving multiphase flows, boiling, or condensation, es- 
pecially in complex geometries, the experimental method remains the primary 
source of design information. Progress is being made in computational models 
for these flows, but the work remains in a relatively primitive state compared to 
the status of predictive methods for laminar single-phase flows over aerodynamic 
bodies. 

1.2 COMPARISON OF EXPERIMENTAL, THEORETICAL, AND 
COMPUTATIONAL APPROACHES 
As mentioned in the previous section, there are basically three approaches or 
methods that can be used to solve a problem in fluid mechanics and heat 
transfer. These methods are 

1. Experimental 
2. Theoretical 
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3. Computational (CFD) 

The theoretical method is often referred to as an analytical approach, while the 
terms computational and numerical are used interchangeably. In order to 
illustrate how these three methods would be used to solve a fluid flow problem, 
let us consider the classical problem of determining the pressure on the front 
surface of a circular cylinder in a uniform flow of air at a Mach number (M,) of 
4 and a Reynolds number (based on the diameter of the cylinder) of 5 X lo6. 

In the experimental approach, a circular cylinder model would first need to 
be designed and constructed. This model must have provisions for measuring the 
wall pressures, and it should be compatible with an existing wind tunnel facility. 
The wind tunnel facility must be capable of producing the required free stream 
conditions in the test section. The problem of matching flow conditions in a 
wind tunnel can often prove to be quite troublesome, particularly for tests 
involving scale models of large aircraft and space vehicles. Once the model has 
been completed and a wind tunnel selected, the actual testing can proceed. 
Since high-speed wind tunnels require large amounts of energy for their 
operation, the wind tunnel test time must be kept to a minimum. The efficient 
use of wind tunnel time has become increasingly important in recent years with 
the escalation of energy costs. After the measurements have been completed, 
wind tunnel correction factors can be applied to the raw data to produce the 
final wall pressure results. The experimental approach has the capability of 
producing the most realistic answers for many flow problems; however, the costs 
are becoming greater every day. 

In the theoretical approach, simplifying assumptions are used in order to 
make the problem tractable. If possible, a closed-form solution is sought. For 
the present problem, a useful approximation is to assume a Newtonian flow (see 
Hayes and Probstein, 1966) of a perfect gas. With the Newtonian flow 
assumption, the shock layer (region between body and shock) is infinitesimally 
thin, and the bow shock lies adjacent to the surface of the body, as seen in Fig. 
1.2(a). Thus the normal component of the velocity vector becomes zero after 
passing through the shock wave, since it immediately impinges on the body 
surface. The normal momentum equation across a shock wave (see Chapter 5 )  
can be written as 

(1.1) 
where p is the pressure, p is the density, u is the normal component of velocity, 
and the subscripts 1 and 2 refer to the conditions immediately upstream and 
downstream of the shock wave, respectively. For the present problem [see Fig. 
1.2(b)], Eq. (1.1) becomes 

P1 + P I 4  =P2 + P 2 4  

0 

P m  + W~2sin2a = P w a l l +  Pwa11+11 (1.2) 

or 

1 Pa 
pwall = p ,  1 + --I/,'sin2a i P m  
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( a )  ( b )  

Figure 1.2 Theoretical approach. (a) Newtonian flow approximation. (b) Geometry at shock. 

For a perfect gas, the speed of sound in the free stream is 

a, = (1.4) 

where y is the ratio of specific heats. Using the definition of Mach number 

v, 
M, = - 

am 

and the trigonometric identity 

cos 9 = sin u 
Eq. (1.3) can be rewritten as 

Pwall =pm(l + yM,2cos29) 

(1.5) 

(1.6) 

(1.7) 

At the stagnation point, 9 = O", so that the wall pressure becomes 

Pstag = Pm(1 + YM?) (1.8) 

After inserting the stagnation pressure into Eq. (1.7), the final form of the 
equation is 

Pwall = P m  + (Pstag  - P,)COS*~ (1.9) 

The accuracy of this theoretical approach can be greatly improved if, in place of 
Eq. ( 1 8 ,  the stagnation pressure is computed from Rayleigh's pitot formula 
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(Shapiro, 1953): 

which assumes an isentropic compression between the shock and body along the 
stagnation streamline. The use of Eq. (1.9) in conjunction with Eq. (1.10) is 
referred to as the modified Newtonian theory. The wall pressures predicted by 
this theory are compared in Fig. 1.3 to the results obtained using the experimental 
approach (Beckwith and Gallagher, 1961). Note that the agreement with the 
experimental results is quite good up to about f35”. The big advantage of the 
theoretical approach is that “clean,” general information can be obtained, in 
many cases, from a simple formula, as in the present example. This approach is 
quite useful in preliminary design work, since reasonable answers can be 
obtained in a minimum amount of time. 

In the computational approach, a limited number of ‘assumptions are made 
and a high-speed digital computer is used to solve the resulting governing fluid 
dynamic equations. For the present high Reynolds number problem, inviscid 
flow can be assumed, since we are only interested in determining wall pressures 
on the forward portion of the cylinder. Hence the Euler equations are the 
appropriate governing fluid dynamic equations. In order to solve these equations, 
the region between the bow shock and body must first be subdivided into a 
computational grid, as seen in Fig. 1.4. The partial derivatives appearing in the 
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Figure 13  Surface pressure on circular cylinder. 



INTRODUCTION 9 

Figure 1.4 Computational grid. 

unsteady Euler equations can be replaced by appropriate finite differences at 
each grid point. The resulting equations are then integrated forward in time 
until a steady-state solution is obtained asymptotically after a sufficient number 
of time steps. The details of this approach will be discussed in forthcoming 
chapters. The results of this technique (Daywitt and Anderson, 1974) are shown 
in Fig. 1.3. Note the excellent agreement with experiment. 

In comparing the methods, we note that a computer simulation is free of 
some of the constraints imposed on the experimental method for obtaining 
information upon which to base a design. This represents a major advantage of 
the computational method, which should be increasingly important in the future. 
The idea of experimental testing is to evaluate the performance of a relatively 
inexpensive small-scale version of the prototype device. In performing such tests, 
it is not always possible to simulate the true operating conditions of the 
prototype. For example, it is very difficult to simulate the large Reynolds 
numbers of aircraft in flight, atmospheric reentry conditions, or the severe 
operating conditions of some turbomachines in existing test facilities. This 
suggests that the computational method, which has no such restrictions, has the 
potential of providing information not available by other means. On the other 
hand, computational methods also have limitations; among these are computer 
storage and speed. Other limitations arise owing to our inability to understand 
and mathematically model certain complex phenomena. None of these 
limitations of the computational method are insurmountable in principle, and 
current trends show reason for optimism about the role of the computational 
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Table 1.1 Comparison of approaches 

Approach Advantages Disadvantages 

Experimental 1. Capable of being most realistic 1. Equipment required 
2. Scaling problems 
3. Tunnel corrections 
4. Measurement difficulties 
5.  Operating costs 

1. Restricted to simple geometry 
and physics 

2. Usually restricted to linear 
problems 

Theoretical 1. Clean, general information, which 
is usually in formula form 

Computational 1. No restriction to linearity 1. Truncation errors 
2. Complicated physics can be 

3. Time evolution of flow can be 

2. Boundary condition problems 
treated 3. Computer costs 

obtained 

method in the future. As seen in Fig. 1.1, the relative cost of computing a given 
flow field has decreased by almost 3 orders of magnitude during the past 20 
years, and this trend is expected to continue in the near future. As a consequence, 
wind tunnels have begun to play a secondary role to the computer for many 
aerodynamic problems, much in the same manner as ballistic ranges perform 
secondary roles to computers in trajectory mechanics (Chapman, 1975). There 
are, however, many flow problems involving complex physical processes that still 
require experimental facilities for their solution. 

Some of the advantages and disadvantages of the three approaches are 
summarized in Table 1.1. It should be mentioned that it is sometimes difficult to 
distinguish between the different methods. For example, when numerically 
computing turbulent flows, the eddy viscosity models that are frequently used 
are obtained from experiments. Likewise, many theoretical techniques that 
employ numerical calculations could be classified as computational approaches. 

1 3  HISTORICAL PERSPECTIVE 

As one might expect, the history of CFD is closely tied to the development of 
the digital computer. Most problems were solved using methods that were either 
analytical or empirical in nature until the end of World War 11. Prior to this 
time, there were a few pioneers using numerical methods to solve problems. Of 
course, the calculations were performed by hand, and a single solution 
represented a monumental amount of work. Since that time, the digital computer 
has been developed, and the routine calculations required in obtaining a 
numerical solution are carried out with ease. . 
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The actual beginning of CFD or the development of methods crucial to 
CFD is a matter of conjecture. Most people attribute the first definitive work of 
importance to Richardson (1910), who introduced point iterative schemes for 
numerically solving Laplace’s equation and the biharmonic equation in an 
address to the Royal Society of London. He actually carried out calculations for 
the stress distribution in a masonry dam. In addition, he clearly defined the 
difference between problems that must be solved by a relaxation scheme and 
those that we refer to as marching problems. 

Richardson developed a relaxation technique for solving Laplace’s equation. 
His scheme used data available from the previous iteration to update each value 
of the unknown. In 1918, Liebmann presented an improved version of 
Richardson’s method. Liebmann’s method used values of the dependent variable 
both at the new and old iteration level in each sweep through the computational 
grid. This simple procedure of updating the dependent variable immediately 
reduced the convergence times for solving Laplace’s equation. Both the 
Richardson method and Liebmann’s scheme are usually used in elementary heat 
transfer courses to demonstrate how apparently simple changes in a technique 
greatly improve efficiency. 

Sometimes the beginning of modern numerical analysis is attributed to a 
famous paper by Courant, Friedrichs, and Lewy (1928). The acronym CFL, 
frequently seen in the literature, stands for these three authors. In this paper, 
uniqueness and existence questions were addressed for the numerical solutions 
of partial differential equations. Testimony to the importance of this paper is 
evidenced in its re-publication in 1967 in the ZBM Journal of Research and 
Development. This paper is the original source for the CFL stability requirement 
for the numerical solution of hyperbolic partial differential equations. 

In 1940, Southwell introduced a relaxation scheme that was extensively used 
in solving both structural and fluid dynamic problems where an improved 
relaxation scheme was required. His method was tailored for hand calculations, 
in that point residuals were computed and these were scanned for the largest 
value. The point where the residual was largest was always relaxed as the next 
step in the technique. During the decades of the 1940s and 1950s. Southwell’s 
methods were generally the first numerical techniques introduced to engineering 
students. Allen and Southwell (1955) applied Southwell’s scheme to solve the 
incompressible, viscous flow over a cylinder. This solution was obtained by hand 
calculation and represented a substantial amount of work. Their calculation 
added to the existing viscous flow solutions that began to appear in the 1930s. 

During World War I1 and immediately following, a large amount of research 
was performed on the use of numerical methods for solving problems in fluid 
dynamics. It was during this time that Professor John von Neumann developed 
his method for evaluating the stability of numerical methods for solving time- 
marching problems. It is interesting that Professor von Neumann did not publish 
a comprehensive description of his methods. However, O’Brien, Hyman, and 
Kaplan (1950) later presented a detailed description of the von Neumann 
method. This paper is significant because it presents a practical way of evaluating 
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stability that can be understood and used reliably by scientists and engineers. 
The von Newman method is the most widely used technique in CFD for 
determining stability. Another of the important contributions appearing at about 
the same time was due to Peter Lax (1954). Lax developed a technique for 
computing fluid flows including shock waves that represent discontinuities in the 
flow variables. No special treatment was required for computing the shocks. This 
special feature developed by Lax was due to the use of the conservation-law 
form of the governing equations and is referred to as shock capturing. 

At the same time, progress was being made on the development of methods 
for both elliptic and parabolic problems. Frankel (1950) presented the first 
version of the successive overrelaxation (SOR) scheme for solving Laplace’s 
equation. This provided a significant improvement in the convergence rate. 
Peaceman and Rachford (1955) and Douglas and Rachford (1956) developed a 
new family of implicit methods for parabolic and elliptic equations in which 
sweep directions were alternated and the allowed step size was unrestricted. 
These methods are referred to as alternating direction implicit (ADI) schemes 
and were extended to the equations of fluid mechanics by Briley and McDonald 
(1973) and Beam and Warming (1976, 1978). This implementation provided fast 
efficient solvers for the solution of the Euler and Navier-Stokes equations. 

Research in CFD continued at a rapid pace during the decade of the sixties. 
Early efforts at solving flows with shock waves used either the Lax approach or 
an artificial viscosity scheme introduced by von Neumann and Richtmyer (1950). 
Early work at Los Alamos included the development of schemes like the 
particle-in-cell (PIC) method, which used the dissipative nature of the finite- 
difference scheme to smear the shock over several mesh intervals (Evans and 
Harlow, 1957). In 1960, Lax and Wendroff introduced a method for computing 
flows with shocks that was second-order accurate and avoided the excessive 
smearing of the earlier approaches. The MacCormack (1969) version of this 
technique became one of the most widely used numerical schemes. Gary (1962) 
presented early work demonstrating techniques for fitting moving shocks, thus 
avoiding the smearing associated with the previous shock-capturing schemes. 
Moretti and Abbett (1966) and Moretti and Bleich (1968) applied shock-fitting 
procedures to multidimensional supersonic flow over various configurations. 
Even today, we see either shock-capturing or shock-fitting methods used to solve 
problems with shock waves. 

Godunov (1959) proposed solving multidimensional compressible fluid 
dynamics problems by using a solution to a Riemann problem for flux calculations 
at cell faces. This approach was not vigorously pursued until van Leer (1974, 
1979) showed how higher-order schemes could be constructed using the same 
idea. The intensive computational effort necessary with this approach led Roe 
(1980) to suggest using an approximate solution to the Riemann problem 
(flux-difference splitting) in order to improve the efficiency. This substantially 
reduced the work required to solve multidimensional problems and represents 
the current trend of practical schemes employed on convection-dominated flows. 
The concept of flux splitting was also introduced as a technique for treating 
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convection-dominated flows. Steger and Warming (1979) introduced splitting 
where fluxes were determined using an upwind approach. Van Leer (1982) also 
proposed a new flux splitting technique to improve on the existing methods. 
These original ideas are used in many of the modem production codes, and 
improvements continue to be made on the basic concept. 

As part of the development of modem numerical methods for computing 
flows with rapid variations such as those occurring through shock waves, the 
concept of limiters was introduced. Boris and Book (1973) first suggested this 
approach, and it has formed the basis for the nonlinear limiting subsequently 
used in most codes. Harten (1983) introduced the idea of total variation 
diminishing (TVD) schemes. This generalized the limiting concept and has led 
to substantial advances in the way the nonlinear limiting of fluxes is implemented. 
Others that also made substantial contributions to the development of robust 
methods for computing convection-dominated flows with shocks include Enquist 
and Osher (1980, 1980, Osher (19841, Osher and Chakravarthy (19831, Yee 
(1985a, 1985b), and Yee and Harten (1985). While this is not an all-inclusive list, 
the contributions of these and others have led to the addition of nonlinear 
dissipation with limiting as a major factor in state-of-the-art schemes in use 
today. 

Other contributions were made in algorithm development dealing with the 
efficiency of the numerical techniques. Both multigrid and preconditioning 
techniques were introduced to improve the convergence rate of iterative 
calculations. The multigrid approach was first applied to elliptic equations by 
Fedorenko (1962, 1964) and was later extended to the equations of fluid 
mechanics by Brandt (1972, 1977). At the same time, strides in applying reduced 
forms of the Euler and Navier-Stokes equations were being made. Murman and 
Cole (1971) made a major contribution in solving the transonic small-disturbance 
equation by applying type-dependent differencing to the subsonic and supersonic 
portions of the flow field. The thin-layer Navier-Stokes equations have been 
extensively applied to many problems of interest, and the paper by Pulliam and 
Steger (1978) is representative of these applications. Also, the parabolized 
Navier-Stokes (PNS) equations were introduced by Rudman and Rubin (1968), 
and this approximate form of the Navier-Stokes equations has been used to 
solve many supersonic viscous flow fields. The correct treatment of the 
streamwise pressure gradient when solving the PNS equations was examined in 
detail by Vigneron et al. (1978a), and a new method of limiting the streamwise 
pressure gradient in subsonic regions was developed and is in prominent use 
today. 

In addition to the changes in treating convection terms, the control-volume 
or finite-volume point of view as opposed to the finite-difference approach was 
applied to the construction of difference methods for the fluid dynamic 
equations. The finite-volume approach provides an easy way to apply numerical 
techniques to unstructured grids, and many codes presently in use are based on 
unstructured grids. With the development of methods that are robust for 
general problems, large-scale simulations of complete vehicles are now a common 
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occurrence. Among the many researchers who have made significant 
contributions in this effort are Jameson and Baker (1983), Shang and Scherr 
(1985), Jameson et al. (1986), Flores et al. (1987), Obayashi et al. (1987), Yu et 
al. (1987), and Buning et al. (1988). At this time, the simulation of flow about a 
complete aircraft using the Euler equations is viewed as a reasonable tool for 
the analysis and design of these vehicles. Most simulations of this nature are still 
performed on serial vector computers. In the future, the full Navier-Stokes 
equations will be used, but the application of these equations to entire vehicles 
will only become an everyday occurrence when large parallel computers are 
available to the industry. 

The progress in CFD over the past 25 years has been enormous. For this 
reason, it is impossible, with the short history given here, to give credit to all 
who have contributed. A number of review and history papers that provide a 
more precise state of the art may be cited and include those by Hall (1980, 
Krause (19851, Diewert and Green (1986), Jameson (1987), Kutler (19931, Rubin 
and Tannehill(1992), and MacCormack (1993). In addition, the Focus '92 issues 
of Aerospace America are dedicated to a review of the state of the art. The 
appearance of text materials for the study of CFD should also be mentioned in 
any brief history. The development of any field is closely paralleled by the 
appearance of books dealing with the subject. Early texts dealing with CFD 
include books by Roache (19721, Holt (19771, Chung (1978), Chow (1979), 
Patankar (1980), Baker (1983), Peyret and Taylor (1983), and Anderson et al. 
(1984). More recent books include those by Sod (1985), Thompson et al. (19851, 
Oran and Boris (19871, Hirsch (19881, Fletcher (19881, Hoffmann (1989), and 
Anderson (1995). The interested reader will also note that occasional writings 
appear in the popular literature that discuss the application of digital simulation 
to engineering problems. These applications include CFD but do not usually 
restrict the range of interest to this single discipline. 
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