
APPENDIX 

A 
SUBROUTINE FOR SOLVING 

A TRIDIAGONAL SYSTEM OF EQUATIONS 

Subroutine SY solves a tridiagonal system of equations following the Thomas 
algorithm described in Chapter 4. To use the subroutine, the equations must be 
of the form 

The call statement for subroutine SY is of the form 
CALL SY(ZL, ZU, B, D ,  A,C) 

where B, D, A, and C are the array names for the singly subscripted real 
variables H I ) ,  D ( I ) ,  A(Z), C(I). The variables IL and ZU are unsubscripted 
integer variables. The arrays must be defined for subscripts ranging from ZL to 
ZU according to 

B, Coefficient behind (to the left of) the main diagonal 
D, Coefficient on the main diagonal 
A, Coefficient ahead (to the right of) the main diagonal 
C, Element in the constant vector 
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716 APPENDIX A 

The equations in the system are ordered according to the value of the subscript. 
The variable IL corresponds to the subscript of the first equation in the system 
and IU corresponds to the subscript of the last equation in the system. The 
number of equations in the system is IU - IL + 1. The solution vector, U, is 
returned to the callingprogram in the C array. That is, the constant vector C is 
overwritten in the subroutine with the solution. The D array is also altered by 
the subroutine. A and B remain unchanged. 

LISTING OF SUBROUTINE SY 

C... 
SUBROUTINE SY(IL,IU,BB,DD,AA,CC) 
DIMENSION AA(1) ,BB(l),CC(l),DD(l) 

C... 
C...SUBROUTINE SY SOLVES TRIDIAGONAL SYSTEM BY ELIMINATION 
C...IL = SUBSCRIPT OF FIRST EQUATION 
C...IU = SUBSCRIPT OF LAST EQUATION 
C...BB = COEFFICIENT BEHIND DIAGONAL 
C...DD = COEFFICIENT ON DIAGONAL 
C...AA = COEFFICIENT AHEAD OF DIAGONAL 
C...CC = ELEMEhT OF CONSTANT VECTOR 
C. . .  
C...ESTABLISH UPPER TRIANGULAR MATRIX 
C... 

LP = IL+1 
DO 10 I = LP,IU 
R = BB(I)/DD(I-l) 
DD(1) = DD(I)-R”AA(I-l) 

10 CC(1) = CC(I)-R+CC(I-l) 
c.. . 
C...BACK SUBSTITUTION 
c... 

CC(1U) = CC(IU)/DD(IU) 
Do 20 I = LP,IU 
J = IU-I+IL 

20 CC(J) = (CC(J) -AA( J)“CC( J+1) )/DD( J) 
L . .  . 
C...SOLUTION STORED IN CC 
L . .  . 

RETURN 
END 



APPENDIX 

B 
SUBROUTINES FOR SOLVING BLOCK 

TRIDIAGONAL SYSTEMS OF EQUATIONS 

The subroutines described here for solving block tridiagonal systems of equations 
were provided by Sukumar R. Chakravarthy of Rockwell International Science 
Center. Subroutine NBTRIP solves a block tridiagonal system of equations of 
the form 

Subroutine PBTRIP solves a periodic block tridiagonal system of equations in 
the form 

The block matrices A ,  B ,  and C are N x N matrices at every point Z with 
N being an integer greater than 1. Note that for N = 1, the Thomas algorithm 
of Appendix A can be employed. The right-hand side vector D has length N at 

717 



718 APPENDIX B 

each point I. The total number of I points at which the matrices are defined 
(denoted by NZ) is given by 

NZ = (ZU - ZL + 1) (€3.3) 
The matrices A, B, and C are dimensioned as 

A ( N ,  N ,  NZ) 
B ( N ,  N ,  N I )  
C ( N ,  N ,  NZ) 

D( N ,  NZ) 
The call statement for subroutine NBTRIP is 

CALLNBTRIP(A, B,C,D,ZL,ZU,ORLIER) 

while the vector D is dimensioned as 

with arguments defined by 

A,  Subdiagonal block matrix 
B, Diagonal block matrix 
C ,  Superdiagonal block matrix 
D, Right-hand side vector 
ZL, Lower value of Z for which matrices are defined 
ZU, Upper value of Z for which matrices are defined 
ORDER, N (order can be any integer greater than 1) 

vector with the X vector. The calling statement for subroutine PBTRIP is 

CALL PBTRIP( A ,  B , C , D , ZL , IU, ORDER) 
with the same arguments as subroutine NBTRIP. However, if ORDER is greater 
than 5 a dimension statement must be changed in this subroutine (see listing of 
subroutine). 

Subroutines NBTRIP and PBTRIP employ no pivoting strategy in their 
elimination schemes. It should be noted that a specialized subroutine for solving 
a block tridiagonal system of equations can be written for each value of N 
which will be faster than the general subroutines given here. 

The solution ( X )  is returned to the calling program by overwriting the D 

LISTING OF SUBROUTINE NBTRIP 

C... 
C...SUBROUTINE TO SOLVE NON-PERIODIC BLOCK TRIDIAGONAL 
C...SYSTEM OF EQUATIONS WITHOUT PIVOTING STRATEGY 
C. ..WITH THE DIMENSIONS OF THE BLOCK MATRICES BEING 
C. ..N x N (N IS ANY NUMBER GREATER THAN 1). 
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c... 
SUBROUTINE NBTRIP(A,B,C,D,IL,IU,ORDER) 
INTEGER ORDER,ORDSQ 
DIMENSION A(l),B(l),C(l),D(l) 

C... 
C...A = SUB DIAGONAL MATRIX 
C. ..B = DIAGONAL MATRIX 
C. ..C = SUP DIAGONAL MATRIX 
C...D = RIGHT HAND SIDE VECTOR 
C. ..IL = LOWER VALUE OF INDEX FOR WHICH MATRICES ARE DEFINED 
C...IU = UPPER VALUE OF INDEX FOR WHICH MATRICES ARE DEFINED 
C... (SOLUTION IS SOUGHT FOR BTRI(A,B,C)*X = D 
c... FOR INDICES OF X BE'IWEEN IL AND IU (INCLUSIVE). 
c... SOLUTION WRITTEN IN D VECTOR (ORIGINAL CONTENTS 
C... ARE OVERWRITTEN)). 
C...ORDER = ORDER OF A,B,C MATRICES AND LENGTH OF D VECTOR 
c... AT EACH POINT DENOTED BY INDEX I 
C. .. (ORDER CAN BE ANY INTEGER GREATER THAN 1). 
c... 
C...THE MATRICES AND VECTORS ARE STORED IN SINGLE SUBSCRIPT FORM 
C... 

C... 
C...FORWARD ELIMINATION 

ORDSQ = ORDER9**2 

C... 

100 
200 

300 

I = IL 
IOMAT = 1+(I-l)*ORDSQ 
IOVEC = 1+(1-l)*ORDER 
CALL LUDECO(B(IOMAT),ORDER) 
CALL LUSOLV(B(IOMAT),D(IOVEC),D(IOVEC),ORDER) 
W 100 J=l,ORDER 
IOMATJ = IOMAT+(J-l)*ORDER 
CALL LUSOLV(B(IOMAT),C(IOMATJ),C(IOMATJ),ORDER) 
CONTINUE 
CONTINUE 
I = L+1 
IOMAT = 1+(I-l)*ORDSQ 
IOVEC = 1+(I-l)*ORDER 
IlMAT IOMAT-ORDSQ 
IlVEC = IOVEC-ORDER 
CALL MULPUT(A(IOMAT),D(IlVEC),D(IOVEC),ORDER) 
W 300 J=l,ORDER 
IOMATJ = IOMAT+(J-l)*ORDER 
IlMATJ = IlMAT+(J-l)*ORDER 
CALL MULPUT(A(IOMAT),C(IlMATJ),B(IOMATJ),ORDER) 
CONTINUE 
CALL LUDECO (B ( IOMAT) ,ORDER) 
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CALL LUSOLV(B(IOMAT),D(IOVEC),D(IOVEC),ORDER) 
IF(I.EQ.IU) GO TO 500 
DO 400 J=l,ORDER 
IOMATJ = IOMAT+(J-l)+ORDER 
CALL LUSOLV(B(I0MAT) ,C(IOMATJ) ,C(IOMATJ) ,ORDER) 

400 CONTINUE 
GO TO 200 

500 CONTINUE 
C... 
C..;BACK SUBSTITUTION 
C... 

600 

c... 

I = IU 
CONTINUE 
I = 1-1 
IOMAT = l+(I-l)*ORDSQ 
IOVEC = 1+(I-l)*ORDER 
IlVEC = IOVECWRDER 
CALL MVLPUT(C(IOMAT),D(IlVEC),D(IOVEC),ORDER) 
IF (1.GT.IL) GO TO 600 

RETURN 
END 

LISTING OF SUBROUTINE PBTRIP 

C... 
C...SUBROUTINE TO SOLVE PERIODIC BUCK TRIDIAGONAL 
C...SYSTEIY OF EQUATIONS WITHOUT PIVOTING STRATEGY. 
C...EACH BLOCK MATRIX MAY BE OF DIMENSION N WITH 
C.. .N 
C... 

C... 
C.. .A 
C.. .B 
c.. .c 

ANY “ B E R  GREATER ’I” 1. 

SUBROUTINE PBTRIP(A,B,C,D,IL,IU,ORDER) 
INTEGER ORDER,ORDSQ 
DIMENSION A(l),B(l),C(l),D(l) 
D1PII;NSION AD(25),CD(25) 

= SUB DIAGONAL rUTRIX 
DIAGONAL MATRIX 

= SUP DIAGONAL MATRIX 
- - 

C.. .D = RIGHT HAND SIDE VECTOR 
C...IL = LOWER VALUE OF INDEX FOR WHICH MATRICES ARE DEFINED 
C...IU = UPPER VALUE OF INDEX FOR WHICH MATRICES ARE DEFINED 
C... (SOLUTION IS SOUGHT FOR BTRI(A,B,C)*X = D 
C... FOR INDICES OF X BEWEEEN IL AND IU (INCLUSIVE). 
C... SOLUTION WRITEN IN D VECTOR (ORIGINAL CONTENTS 
C. .. ARE OVERWRITTEN)). 
C...ORDER = ORDER OF A,B,C MATRICES AND LENGTH OF D VECTOR 
C... AT EACH POINT DENOTED BY INDEX I 
C... (ORDER CAN BE ANY INTEGER GREATER THAN 1) 
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c... (ARRAYS AD AND CD MUST BE AT LEAST OF LENGTH ORDER:K2) 
C.. . (CURREhT LENGTH OF 25 ANTICIPATES MAXIMUM ORDER OF 5). 
c... 

IS = IL+1 
IE = IU-1 
ORDSQ = ORDER9-*2 
IUMAT = 1+( IU-l)^ORDSQ 
IWEC = l+(IU-l)*ORDER 
IEMAT = I+( IE-l)*ORDSQ 
IEVEC = l+(IE-l)*ORDER 

C... 
C...FORWARD ELIMINATION 
C. 

10 
c... 

20 

22 

I = IL 
IOMAT = l+(I-l)*ORDSQ 
IOVEC = l+(I-l)”ORDER 
CALL LUDECO(B(IOMAT),ORDER) 
CALL LUSOLV(B(IOMAT),D(IOVEC),D(IOVEC),ORDER) 
DO 10 J=l,ORDER 
IOMATJ = IOMAT+(J-].)*ORDER 
CALL LUSOLV(B(IOMAT),C(IOMATJ),C(IOMATJ),ORDER) 
CALL LUSOLV(B(IOMAT),A(IOMATJ),A(IOMATJ),ORDER) 
CONTINUE 

DO 200 I = IS,IE 
IOMAT = l+(I-l)*ORDSQ 
IOVEC = l+(I-l)*ORDER 
IlMAT = IOMAT-ORDSQ 
IlVEC = IOVEC-ORDER 
DO 20 J=l,ORDSQ 

IOMATJ = J-l+IOMAT 
IUMATJ = J-l+IUMAT 
AD(J) = A(I0MAT.J) 
CD(J) = C(1UMATJ) 
A(I0MATJ) = 0.0 
C(1UMATJ) = 0.0 
CONTINUE 
CALL MULPUT(AD,D(IlVEC),D(IOVEC),ORDER) 
DO 22 J=l,ORDER 
IOMATJ = IOMAT+(J-l)*ORDER 
IlMATJ = IlMAT+(J-l)*ORDER 
CALL MULPUT(AD,C(IlMATJ),B(IO.MTJ),ORDER) 
CALL MULPUT(AD,A(IlMATJ),A(IOMATJ),ORDER) 
CONTINUE 
CALL LVDECO(B(IOMAT),ORDER) 
CALL LUSOLV(B(IOMAT),D(IOVEC),D(IOVEC),ORDER) 
W 24 J=l,ORDER 
IOMATJ = IOMAT+(J-l)*ORDER 
CALL LUSOLV(B(IOMAT),C(IOMATJ),C(IOMTJ),ORDER) 
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, 

C...BACK SUBSTITUTION 

24 

26 
200 

C... 

30 

32 

c... 

CALL LUSOLV(B(IOMAT),A(IOMATJ),A(IOMATJ),ORDER) 
CONTINUE 
CALL MULPUT(CD,D(IlVEC),D(IUVEC),ORDER) 
DO 26 J=l,ORDER 
IUMATJ = IUMAT+.( J- 1);kORDER 
I lMATJ = I 1MAT+ (J - 1 )"ORDER 
CALL MULPUTfCD,A(IlMATJ),B(IUMATJ),ORDER) 
CALL MULPUT(CD,C(IlMATJ),C(IUMATJ),ORDER) 
CONTINUE 
CONTINUE 

DO 30 J=l,ORDSQ 
IUMATJ = J-l+IUMAT 
AD(J) = A(IUMATJ)+C(IUMATJ) 
CONTINUE 
CALL MULPUT(AD,D(IEVEC),D(IUVEC),ORDER) 
DO 32 J=l,ORDER 
IUMATJ = IUMAT+ (J - 1 ) QORDER 
IEMATJ = IEMAT+(J-1)"ORDER 
CALL MULPUT(AD,C(IEMATJ),B(IUMATJ),ORDER) 
CALL MULPUT(AD,A(IEMATJ),B(IUMATJj,ORDER) 
CONTINUE 
CALL LUDECO(B(IUMAT),ORDER) 
CALL LUSOLV(B(IUMAT),D(IUVEC),D(IUVEC),ORDER) 

c... 

40 
c.. . 

C... 

DO 40 IBAC = IL,IE 
I = IE-IBAC+IL 
IOWT = l+(I-l)*ORDSQ 
IOVEC = l+(I-l)QORDER 
IlVEC = IOVEC+ORDER 
CALL ~LPUT(A(IOMAT),D(IWEC),D(IOVEC),ORDER) 
CALL MULPUT(C(IOMAT),D(IlVEC),D(IOVEC),ORDER) 
CONTINUE 

RETURN 
END 

C...SUBROUTINE TO CALCULATE L-U DECOMPOSITION 
C...OF A GIVEN MATRIX A AND STORE RESULT IN A 
C...(NO PIVOTING STRATEGY IS EMPLOYED) 
C... 

SUBROUTINE LUDECO(A,ORDER) 
INTEGER ORDER 
DIMENSION A(ORDER,l) 

C... 
DO 8 JC=Z,ORDER 



SUBROUTINES FOR SOLVING BLOCK TRIDIAGONAL SYSTEMS OF EQUATIONS 723 

8 

10 

12 
14 

16 
18 

c.. . 

A(1,JC) = A(l,JC)/A(l,l) 
JRJC = 1 
CONTINUE 
JRJC = JRJC+l 
JRJCMl = JRJC-1 
JRJCPl = JRJC+l 
DO 14 JR=JRJC,ORDER 
SUM = A(JR,JRJC) 
DO 12 JM=l,JRJCMl 
SUM = SUM-A(JR,JM)*A(JM,JRJC) 
A(JR,JRJC) = SUM 
IF (JRJC.EQ.ORDER) RETURN 
DO 18 JC = JRJCP1,ORDER 
SUM = A(JRJC,JC) 
DO 16 JM-1,JRJCHl 
SUM = SUM-A( JRJC ,JM)*A(JM, JC) 
A(JRJC,JC) = SUM/A(JRJC,JRJC) 
GO TO 10 
END 

C...SUBROUTINE TO MULTIPLY A VECTOR B BY A MATRIX A 
C...SUBTRACT RESULT FROM ANOTHER VECTOR C AND STORE 
C...RESULT IN C. THUS VECTOR C IS OVERWRITTEN. 
C... 

SUBROUTINE MULPUT(A,B,C,ORDER) 
INTEGER ORDER 
DIMENSION A(l),B(l),C(l) 

c... 
DO 200 JR=l,ORDER 
SUM = 0.0 
DO 100 JC=l,ORDER 
IA = JR+(JC-l)*ORDER 

loo SUM = SUM+A(IA)*B(JC) 
200 C(JR) = C(JR)-SUM 

C. .. 
RETURN 
END 

C... 
C...SUBROUTINE TO SOLVE LINEAR ALGEBRAIC SYSTEM OF 
C...EQUATIONS A*C=B AND STORE RESULTS IN VECTOR C. 
C...MATRIX A IS INPUT IN L-U DECOMPOSITION FORM. 
C...(NO PIVOTING STRATEGY HAS BEEN EMPLOYED TO 
C...CONPUTE THE L-U DECOMPOSITION OF THE MATRIX A) 
C.. . 

SUBROUTINE LUSOLV(A,B,C,ORDER) 
INTEGER ORDER 
DIMENSION A(ORDER,l) ,B(l) ,C(l) 
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C... 
C...FIRST L(INV)*B 
C... 

C(1) = C(l)/A(l,l) 
DO 14 JR=Z,ORDER 
JRMl = JR-1 
SUM = B(JR) 
DO 12 JM=l,JRMl 

12 SUM = SUM-A(JR,J?l)*C(JH) 
14 C(JR) = SUM/A(JR,JR) 

c... 
C...NEXT U(1NV) OF L(INV)*B 
C... 

DO 18 JRJR=2,ORDER 
JR = ORDER-JRJR+l 
JRPl = JR+1 
SUM = C(JR) 
DO 16 JMJM = JRP1,ORDER 
JM = ORDER-J).ZTn+JRPl 

16 SUM = SUM-A(JR,JM)*C(JM) 
18 C(JR) = SUM 

c... 
RETURN 
END 



APPENDIX 

C 
THE MODIFIED STRONGLY 

IMPLICIT PROCEDURE 

This appendix describes the Modified Strongly Implicit (MSI) procedure 
(Schneider and Zedan, 1981) for solving a class of elliptic PDE’s. The overall 
strategy of this procedure was described in Chapter 4. This appendix supplies 
further details. Schneider and Zedan (1981) presented the procedure as a means 
for solving the algebraic equations arising from the finite-difference 
representation of the elliptic equation 

which governs two-dimensional steady-state heat conduction when u is the 
temperature. In the above, k ,  and k, are thermal conductivities for heat flow in 
the x and y directions, respectively, and q ( x ,  y )  is a source term accounting for 
possible heat generation. It should be clear that a wide variety of problems are 
governed by equations of the form given by Eq. (C.1). With k, = k, = constant 
and q ( x , y )  # 0, Eq. (C.l) becomes the Poisson equation. With k ,  = k,  = 

constant and q ( x , y )  = 0, Eq. (C.l) reduces to the Laplace equation. Only 
numerical examples for the solution to the Laplace equation were presented in 
Schneider and Zedan (1981). Examples presented employed Dirichlet, Neumann, 
and Robins (convective) boundary conditions. 

The algorithm is developed to handle a nine-point finite-difference 
representation of Eq. (C.1) and treats the five-point representation as a special 
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case. A nine-point [see Eq. (4.11411 representation of Eq. ((2.1) can be written in 
the general form 
~ i , j u i , j + l  + ~ T , j u i + l , j + 1  + ~ j , j u i + I , j  + ~ f , j u i + , , j - I  + ~ ; , j u i , j - l  + ~ P , j ~ i - l , j - l  

+Ai , ju i - l , j  +A! , ju i - l , j+ l  +A? 1.1 .u. t . 1  . = q .  1.1 (C.2) 
The i,j subscript refers to location within the grid network rather than the 
matrix row-column designation. Note that superscripts are used to identify the 
coefficients in the difference equation written for the general point (i, j ) .  The 
five-point representation becomes a special case in which 

Af . = A ? .  = A 6 .  =A8.  = 0 
9 1  1 , J  1 , I  1 , J  

The equations can be written in the form 

where the coefficient matrix has the form 
[Alu = c (C.3) 

For reference, the diagonals corresponding to grid points having the same value 
for the i index (same grid column) and are identified by an asterisk. We now 
construct a matrix 

[B] = [ A  + PI 
such that [BI can be decomposed into upper and lower triangular matrices, [LI 
and [U] .  We require that the original nine coefficients through A;, j )  
remain unchanged as [A + PI is constructed. The [ L ]  and [ U ]  matrices have the 
form 

[Ll  = 
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Again the asterisk is used to identify diagonals corresponding to grid points 
having the same value for the i index. 

The equations to be used to determine the coefficients of [ L ]  and [ U ]  such 
that the original nine coefficients in [ A ]  remain unchanged in [ B ]  are 

(C.3a)  

((2.36) 

(C.3c)  

u j , j h i - l , j - l  + b j , , g j , , - l  + d i , , = A : , ,  ( C . 3 d )  

ai,jSi-l,j-l + bi,jhi,,-l + C i , j g i + l , ; - l  + d j , , f i - l , ,  + e ; , ,  = A : , ~  (C.3e)  

a .  1,l . = A ' ! .  [ , I  

a i , j . f - l , j - l  + b. r , ]  . = A 5 .  r , ]  

b. I , ]  .f. [ , ] - I  . + c. ' . I  . = A ?  1 . 1  . 

bi,;si,;-l + c i , l h i + ~ , j - ~  + ei.1L.j =Al , j  

d j , , h j - l , j  + e j , j g i . j  =A: , ,  

d i ,  j s i - l , l  + e i ,  j h l .  = Af, 

ei, jsi,j = AT,] 
The modified coefficient matrix [ B ]  = [ A  + PI has the form 

(C.3f  1 
( C . 3 g )  

(C.3h)  

(C.3 i )  

where the asterisk has the same meaning as before. 



728 APPENDIX C 

i - 2  i - 1  i i+l i + z  

Figure C.l The numerical molecule for the MSI procedure for a nine-point formulation, points 
labeled A;,,, A:,,, A:,,, A:,,, R,, +:, are eliminated when a five-point formulation is used. 

The elements in [ B ]  denoted by 4; j ,  4: j ,  4; j ,  and 4:; are determined 
from 

4ifj = c i , ; . t+ l , j - l  (C.4a) 

43. 1 , J  = c .  l , ]  .s. l + I , J - l  

4:; = ai, jg i -  I ,  j -  1 (C.4b) 

(C.4C) 

4 ? .  Z , J  = d.  i , ~ i - 1 , J  . g .  (C.4d) 

The numerical molecule associated with the modified matrix [ B ]  is shown 
schematically in Fig. C.l.  

Schneider and Zedan (1981) employed Taylor-series expansions to obtain 
values of u ~ - ~ , , ,  u ; + ~ , ~ ,  u i + 2 , j - l ,  and ui- 2, j +  in terms of u’s in the original 
nine-point molecule to partially cancel the influence of the additional (4i, j )  

terms in the [ B ]  matrix. These are 
ui-2,; - - -ui,; + 2 u i - l , j  

*i+ 2 ,  j -  1 = -2ui,j + 2 u i + l , j  + ui, j - l  

(C.5a) 

(C.5b) 

(C.5C) 

ui - z , j+ l  - - -2u, , ;  + 2 U i P l , j  + ui , j+ l  (C.5d) 
Other “extrapolation” schemes for obtaining values outside the original molecule 
may work equally well. The use of such approximations affects only the approach 
to convergence of the iterative sequence and not the final converged solution. 

An iterative parameter a is employed to implement partial cancellation of 
the influence of the c $ ~ , ~  terms appearing in [ B ] .  This is done by using a 
modified representation for the nine-point scheme in the form 

ui+2, j = -ui, j + 2ui+ I ,  j 

A;,;u; , j - l  + A ; , j u i - , , ;  +Aq,;ui,j +A; , ju i , ;+ ,  +A:, jui+l , j  

+ ~ 4 , j u i - l , j - 1  + ~ H , j u i - l , j + l  +At , ;u i+l , j+ l  

+A; , ;u i+l , ; - l  + 4 ; , j [ u i + 2 , ; - l  - 4 - 2 u i , j  + 2 U i + l , j  + U i , j - J ]  
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+ 4; j[u i -2 , j  - a c u i , j  + 2U,-l,j)] + 4?j[’i+2,] - a(-ui, j  + 2ui+l,j)] 

+ 4:j[ui-2,j+1 - a ( - 2 u i , j  + 2ui_1,j + U i , j + J ]  = qi,j (C.6) 

Equations (C.3) and (C.4) are modified to include the partial cancellation 
indicated in Eq. ((2.6) and rearranged to permit the explicit evaluation of the 
elements of [LI and [UI: 

a.  . =A! , (C.7a) 

(C.7b) 

(C.7C) 

1,l 1,1 

b, , = A ! .  1 , ~  - a .  1.1 . f .  1 - 1 , j - l  - aA4,jfi+l,j-1 

c .  . = A ? .  - b. . f .  . 

1 3 1  1 - a f i , j - l f i + l , j - l  

1,l 1 9 1  1 . 1 1 , 1 - 1  

The 4i, j 7 s  appearing in the above are evaluated as indicated in Eqs. (C.4) using 
the values of a, b, c, d ,  f ,  g ,  and s obtained from Eqs. (C.7). Note that the 4i, j’s 
are needed in Eqs. (C.7) and should be evaluated as soon as the evaluation of 
di,j is complete. The results obtained by Schneider and Zedan (1981) indicate 
that the MSI procedure is not extremely sensitive to the choice of a. Values of 
a between 0.3 and 0.6 worked well in their calculations. 

It is important to observe that when the MSI procedure is used for the 
five-point difference representation, 

(C.8) A ? .  1 3 1  = A ? .  1.1 = A ! .  I , ]  = A 8 .  1 3 1  = O  
and, as a result, 

a.  . = s .  . = 4 ? . = + ? . = 0  
l , l  1.1 1,l 1.1 (C.9) 

The iterative sequence is developed as follows. Adding [ Plu to both sides of 

(C.10) 
Eq. (C.3) gives 

[ A  + PIU = c + [PIU 
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We evaluate the unknowns on the right-hand side at the n iteration level to 
write 

(C.11) 
Decomposing [A + PI into the [ L] and [ U] matrices gives 

((2.12) 

Defining an intermediate vector V"' by 
Vn+l = [ U]U"+ 1 

[ A  + P]U"+l = c + [PIU" 

[ L][ U]U"+ 1 = c + [ PIU" 

(C.13) 
we can employ the two-step process 

Step 1: [L]Vn+l = c + [ P I U "  (C.14~) 

Step 2:  [UIun+l = V"+l (C.14b) 

The elements of [PI are simply the +', 42, 43, 44 (only 4' and 44 when the 
five-point scheme is used) values determined from Eqs. (C.4). 

Alternatively, we can define a difference vector 

U" (C.15) 

((2.16) 

6 n + l  = urz+l - 

and a residual vector 

so that Eq. (C.11) becomes 
R" = [A]u" - C 

[ A  + Z']6"+* = -R" (C.17) 
Replacing [A + PI by the [LI[Ul product gives 

Defining an intermediate vector Wn+l by 
[L][U]6"+l = -R" 

Wn+l = [U]6n+l (C.18) 
the solution procedure can again be written as a two-step process: 

Step 1: [L]W"+l = - R" (C.19~) 

Step 2: [U]6n+l = W"+l (C.19b) 

The processes represented by Eqs. (C.14) and (C.19) consist of a fokard 
substitution to determine Vn+l  or Wn+l followed by a backward substitution to 
obtain u"+l or ti"+'. The coefficients remain unchanged for the iterative 
process. The right-hand side of the Step 1 equation is then updated and the 
procedure is repeated. 



APPENDIX 

D 
FINITE-VOLUME DISCRETIZATION FOR 

GENERAL CONTROL VOLUMES 

The finite-volume method enforces conservation principles in integral form to 
fixed regions in space known as control volumes. The purpose of this appendix is 
to illustrate how this can be carried out for general control volumes for which 
the boundaries may not necessarily intersect in an orthogonal manner. The main 
points can be readily illustrated by considering two examples in two dimensions, 
that of mass conservation in steady, incompressible flow and thermal energy 
conservation. 

The approach is largely the same regardless of the shape of the control 
volume. The grid may be structured or unstructured. We will utilize the 
generally nonorthogonal but structured grid illustrated in Fig. D.l. in which 
control volumes are quadrilaterals. The boundaries of control volumes are 
placed approximately halfway between grid points. More precisely, the 
coordinates of the corners of the control volumes (points a, b, c, d) are taken as 
the average of the coordinates of the four surrounding grid points. That is, 

x ,  = ( x i , j -  1 + xi+ 1 ,  j - 1  + xi+ 1 ,  j + xi, j ) / 4  

The coordinates of points b, c, d are located in a similar manner. The corners 
are connected by straight lines to form the control volume. This illustrates a cell 
vertex or nodal point scheme, the procedure employed in Chapter 3 (Section 
3.4.4). In passing we note that other choices for the establishment of control 
volumes could have been made. For example, we could have considered the 

731 
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Figure D.l Control volume for finite-volume discretization; shaded area is secondary volume used in 
representation of boundary derivatives. 

intersecting solid lines in Fig. D.l to be the control volume boundaries and 
placed “grid” points (where variables will be evaluated) in the center of the 
volumes. This would have been a cell-centered scheme, the scheme utilized in 
Chapter 5 (Section 5.7). 

For a control volume, conservation of mass in steady, incompressible, 
two-dimensional flow requires 

g V - n d S = O  (D.1) 

where n is a unit vector normal to the control volume (positive when pointing 
outward) and V is the velocity vector, V = ui + uj. The integral represents the 
net volume rate of flow out of the volume S. For two-dimensional flow, the 
“volume” is formed by including a unit depth normal to the x-y plane. This unit 
depth will be omitted in the equations that follow. Equation (D.l) serves as a 
model for conservation statements that require evaluation of surface fluxes that 
can be represented in terms of simple functions of the dependent variables 
themselves. 

In two dimensions, we can represent ndS as idy - jdx (omitting the unit 
depth) for an integration path around the boundary in a counter-clockwise 
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direction. Thus, Eq. (D.l) can be written as 

g ( u d y  - udx)  = 0 03.2) 

To evaluate this integral for the control volume A in Fig. D.l, we need to 
represent the velocity components on the boundaries of the control volume. 
One choice is to use the average of the velocity components at nodes on either 
side of the boundary. Thus, for boundary a-b we could use 

u a b  = u i +  1 / 2 ,  j ('i+l, j + 'i, j ) I 2  ' a b  = 'i+ 1 / 2 ,  j ('i+ 1 ,  j + U , , j ) / 2  

Thus, 

- 
= U i +  1 / 2 ,  j A Y a b  - ' i + 1 / 2 ,  j A X a b  + u i ,  j +  l / Z A Y b c  - ' i ,  j +  1 / Z A X b c  

+ u i -  1 / 2 ,  j A Y c d  - ' i - 1 / 2 ,  j A x c d  + u i ,  j -  l / Z A Y d a  - 'i, j -  l / Z A X d a  (D'3) 
where the increments in the coordinates indicated above must be evaluated very 
carefully as Axab  = x b  - x,, Ayab = y ,  - y a ,  for example. Some of the 
increments will be positive and some will be negative as the integration proceeds 
around the control volume. Note that if the control volume is a rectangle with 
sides aligned with the Cartesian coordinate system, one of the coordinate 
increments will be zero along each boundary and some of the velocity 
components will cancel resulting in the central representation 

(udy - udx) ( u i + l , j  - U i - 1 , j I A Y a b  + ( ' i , j + l  - ' i , j - ~ ) ~ X d a  (D.4) 

Many conservation statements required in applications govern unsteady 
phenomena and others contain fluxes that depend on derivatives. The integral 
form of the 2-D heat equation will be used as a model to illustrate how such 
terms can be handled for a control volume of arbitrary shape. The differential 
form of the 2-D heat equation is given by Eq. (3.92a) 

sffs, 

The corresponding integral form is 

dT dT 

dX dY 
where q = - k - i  - k- j .  Following the strategy employed with the surface 

integral that appeared in the previous example, we can write Eq. (D.5) as 
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The term on the left containing the time derivative can be evaluated by 
assuming that the temperature at point (z, j)  is the mean value for the volume 
and then using a forward-time difference to obtain 

( y Y  - 
Rabcd 03.7) 

where Rabcd is the volume of the control volume. In this 2-D example, we will 
take the volume to be the area of the 2-D control volume in the x-y plane, 
A a b c d ,  times a unit depth normal to that plane. As before, the unit depth will be 
omitted in the equations to follow. We will determine the area of the 
quadrilateral region Aabcd as one-half the magnitude of the cross products of its 
diagonals, 

A a b c d  = o.51(AXdbAyac - A y d b A X a c ) l  

Note that for a rectangular region with boundaries aligned with the Cartesian 
coordinate system, this results in A a b c d  = A x A y .  

To evaluate the surface integral in Eq. (D.6) we will first discretize by 
approximating the integrand on the boundaries. When doing this, a decision 
must be made as to the time level at which the boundary fluxes are to be 
evaluated. This determines whether the scheme will be explicit or implicit. 
Reasonable choices include time levels n, n + 1 or an average of the two. 
Selecting time level n, 

pc At 

A X a b  - k -  J T ) n  
+ k c ) "  JY i + 1 / 2 , j  dx  i , j + 1 / 2  

For rectangular volumes whose boundaries align with the Cartesian coordinate 
system, the derivatives at boundaries are readily represented by central 
differences utilizing neighboring nodal values of temperature. This is 
demonstrated in Chapter 3 (Section 3.4.4). However, it is possible to develop 
appropriate representations for derivatives at control volume boundaries by 
integral methods in a manner that is not restricted to Cartesian or even 
orthogonal grids. The method makes use of results that can be obtained from 
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application of the divergence theorem, 

/ / & V * V d S  = # V . n d S  
S 

Letting V = Ti  and applying the divergence theorem gives 

where again we are making use of the fact that ndS  can be represented by 
idy - jdx. In a like manner, letting V = Tj ,  we observe 

(D.10) 

Further, by multiplying the first expression by i and the second by j and adding, 
we can see that 

/ / l R V T d R  = @ T n  dS 
S 

(D.ll)  

These results provide a way in which derivatives of temperature on the control 
volume boundary can be represented by integrating the temperature itself 
around the boundaries of a suitable volume. Suppose, for example, that we wish 

torepresent c ) f l  for an interior control volume such as 

volume A in Fig. D.l. We first establish a secondary volume (area in this 2-D 
example) in such a manner that the point at which the representation is desired, 
i + i, j in this case, is approximately in the center. The shaded area in Fig. D.l 

will serve that purpose. This procedure assumes that cr and 

and E ) f l  
dx i + l / z , j  dy i + 1 / 2 , j  

ax i + 1 / 2 , i  

"i' dv i + 1 / 2 , i  
are mean values for the secondary area Thus, it follows 

frhm the results above that 

The coordinates of the secondary volume are established by employing suitable 
averages of the coordinates of neighboring points. The determination of the 
coordinates of points a, b, c, d has already been discussed. The coordinates are 
found to be averages of the coordinates of the four neighboring nodal points. 
The location of a' can be determined by averaging the coordinates of points 
(i + 1, j )  and (i + 1, j - 1). The coordinates of point b '  can be determined by 
averaging the coordinates of points (i + 1, j )  and (i + 1, j + 1). The coordinates 
of points c' and d' are determined as averages in a similar manner. We next 
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approximate the line integrals as, for example, 

(D.12) 

where T,” and T; are determined as averages of the four neighboring nodal 
temperatures. Notice that for a rectangular volume with boundaries that align 
with the Cartesian coordinate system, Eq. (D.12) reduces to 

T+l.i - Tin; 
A x  

To complete the discretization of Eq. (D.81, seven more equations similar to 
Eq. (D.12) must be developed. This requires that a different secondary area be 
established for approximating derivatives on each of the four sides of the 
original control volume labeled A in Fig. D.l. This is computationally intensive, 
but the result is general and not restricted to orthogonal grids. 
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